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Preface 

The observation is often made that, in creating a chemical installation, the 
time spent on the recipient where the reaction takes place (the reactor) 
accounts for no more than 5% of the total time spent on the project. This 
series of books deals with the remaining 95% (with the exception of oil-fired 
furnaces). 

It is conceivable that humans will never understand all the truths of the 
world. What is certain, though, is that we can and indeed must understand 
what we and other humans have done and created, and, in particular, the 
tools we have designed. 

Even two thousand years ago, the saying existed: “faber fit fabricando”, 
which, loosely translated, means: “c’est en forgeant que l’on devient 
forgeron” (a popular French adage: one becomes a smith by smithing), or, 
still more freely translated into English, “practice makes perfect”. The 
“artisan” (faber) of the 21st Century is really the engineer who devises or 
describes models of thought. It is precisely that which this series of books 
investigates, the author having long combined industrial practice and 
reflection about world research. 

Scientific and technical research in the 20th century was characterized by 
a veritable explosion of results. Undeniably, some of the techniques 
discussed herein date back a very long way (for instance, the mixture of 
water and ethanol has been being distilled for over a millennium). Today, 
though, computers are needed to simulate the operation of the atmospheric 
distillation column of an oil refinery. The laws used may be simple statistical 
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correlations but, sometimes, simple reasoning is enough to account for a 
phenomenon. 

Since our very beginnings on this planet, humans have had to deal with 
the four primordial “elements” as they were known in the ancient world: 
earth, water, air and fire (and a fifth: aether). Today, we speak of gases, 
liquids, minerals and vegetables, and finally energy.  

The unit operation expressing the behavior of matter are described in 
thirteen volumes. 

It would be pointless, as popular wisdom has it, to try to “reinvent the 
wheel” – i.e. go through prior results. Indeed, we well know that all human 
reflection is based on memory, and it has been said for centuries that every 
generation is standing on the shoulders of the previous one. 

Therefore, exploiting numerous references taken from all over the world, 
this series of books describes the operation, the advantages, the drawbacks 
and, especially, the choices needing to be made for the various pieces of 
equipment used in tens of elementary operations in industry. It presents 
simple calculations but also sophisticated logics which will help businesses 
avoid lengthy and costly testing and trial-and-error. 

Herein, readers will find the methods needed for the understanding the 
machinery, even if, sometimes, we must not shy away from complicated 
calculations. Fortunately, engineers are trained in computer science, and 
highly-accurate machines are available on the market, which enables the 
operator or designer to, themselves, build the programs they need. Indeed, 
we have to be careful in using commercial programs with obscure internal 
logic which are not necessarily well suited to the problem at hand. 

The copies of all the publications used in this book were provided by  the 
Institut National d’Information Scientifique et Technique at Vandœuvre-lès-
Nancy. 

The books published in France can be consulted at the Bibliothèque 
Nationale de France; those from elsewhere are available at the British 
Library in London. 

In the in-chapter bibliographies, the name of the author is specified so as 
to give each researcher his/her due. By consulting these works, readers may 
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gain more in-depth knowledge about each subject if he/she so desires. In a 
reflection of today’s multilingual world, the references to which this series 
points are in German, French and English. 

The problems of optimization of costs have not been touched upon. 
However, when armed with a good knowledge of the devices’ operating 
parameters, there is no problem with using the method of steepest descent so 
as to minimize the sum of the investment and operating expenditure. 
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Theoretical Plates in Distillation, 
Absorption and Stripping    
Choice of Type of Column 

1.1. General 

1.1.1. Definitions 

A theoretical plate is characterized by the fact that the vapor and the 
liquid it leaves behind are at equilibrium in terms of pressure, temperature 
and composition. Each theoretical plate is a point on the equilibrium curve 

i iy f (x )= . The vapor leaving the plate is always richer in lightweight 
substances than the liquid left behind. Thus, at the top of the column, light 
weights are found in the distillate, and at the bottom, heavier materials are 
recovered in the residue.  

The absorption of a gaseous compound into a liquid may take place either 
adiabatically or else when the plates are cooled down, as happens during the 
synthesis of nitric acid. 

Stripping consists of vaporizing a compound dissolved in a liquid (e.g. 
extraction of bromine from seawater). In order to do so, we bring an inert 
(non-soluble) gas into contact with the solution, the effect of which is to 
decrease the partial vapor pressure of the solute above the solution.  

The methods discussed in this chapter enable us to determine the number 
of theoretical plates needed to separate out the components of a mixture to 
attain predefined levels of purity. 

–
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1.1.2. Practical data 

In our discussion here, we shall use: 

1) The saturating vapor pressures: 

It is helpful to express these using Antoine’s equation: 

B(t) A
t C

π = −
+

 (t in °C)  

2) The equilibrium coefficients: 

By definition, the equilibrium coefficient of the component i is the ratio 
yi/xi of the molar fraction in the gaseous phase to the molar fraction in the 
liquid phase. 

If we have a single equation of state for both phases, it will be sufficient 
to write that the fugacity of the component i has the same value in the two 
phases:  

Li Li i T Vi i T Vif x P y P f= φ = φ =   

Thus, we have the following expression of the equilibrium coefficient 
iE :  

i i i Li ViE y / x /= = φ φ   

φLi and φVi are the fugacity coefficients of the component i in the liquid 
and in the vapor. 

If we do not have an equation of state and if the gaseous phase is far from 
the critical conditions, we can express φVi with the equation of the virial and 
deal with the liquid phase in a real solution by bringing into play the activity 
coefficient γi. We would then write:  

Vi Vi i T i i i Lif y P x f= φ = γ π =    

TP : total pressure of the system: Pa 

iπ : saturating vapor pressure of the component i in the pure state: Pa 
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Therefore:  

i i
i

Vi T

E
P

γ π=
φ

  

3) Enthalpies:  

The vapor enthalpy HV and liquid enthalpy hL of each component can be 
expressed by linear functions of the temperature (in the simplest cases) or by 
higher-degree polynomials. It must be remembered that the difference  
(HV – hL) is the latent heat of vaporization which may be deduced from the 
saturating vapor pressure by Clapeyron’s equation:  

d (t)H T V
dt
πΔ = × Δ   

H:Δ  molar latent heat of vaporization: 1J.kmol−  

V :Δ  difference of the molar volumes of the vapor and the liquid: 
3 1m .kmol−  

t  and T: temperatures in Celsius and Kelvin 

The enthalpy of the gaseous phase will often be a weighted mean of the 
enthalpies of the components:  H Σ

i
H y   

However, the enthalpy of the liquid phase must often include the excess 
enthalpy Eh .  

The enthalpy of the liquid will then be:  

L L E
i i

i
h h x h= +∑   

1.1.3. Calculation methods presented in this chapter 

Three methods are found here:  

– the simple, graphical method advanced by McCabe and Thiele. This 
method is useful only for binary mixtures; 
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– the global method, which is used for the simulation of an existing 
column, regardless of the number of components. This method is also apt if 
lateral discharges are expected;  

– the successive plate method, whereby the calculations are performed on 
the basis of the two extremities of the column. When convergence is 
reached, the results of the calculation of the feed plate are the same as when 
we start at one end or the other of the column. This method can be used to 
directly find the number of plates necessary.  

Unlike the global method, the successive plate method is unable to take 
account of any lateral discharge. 

1.2. McCabe and Thiele’s method 

1.2.1. Hypotheses specific to McCabe and Thiele’s method 

1) The sensible heats are discounted, and the excess enthalpies considered 
to be null.  

2) The molar latent heats of state change (vaporization or liquefaction) 
are equal for the two components of the mixture.  

It results from this that the vapor and liquid flowrates are constant along 
each of the two sections of the column, though on condition that we discount 
the sensible variations in heat. 

1.2.2. Equilibrium curves y = f(x) 

For certain binary mixtures, we may define a relative volatility α  of the 
lightweight species A in relation to the heavy compound B:  

A B A A

A B A A

y x y 1 x
x y 1 y x
⎡ ⎤ ⎡ ⎤ −α = = ×⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 so A
A

A

xy
1 ( 1)x

α=
+ α −  

(where 1)α >  

The equilibrium curve passes through the origin A A(y x 0)= =  and 
through the point A A[y x 1]= = . It is situated above the diagonal y x=  and  
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deviates from it all the more when α is greater. If 1α = , it is identical to that 
diagonal. If we accept the laws of ideality we can write:  

A A APy x= π  and B B BPy x= π  and therefore A B/α = π π  

Aπ  and Bπ  are the vapor pressures of the light species A and the heavy 
species B. 

In most situations encountered in industry, the idea of relative volatility 
independent of the compositions is not appropriate. Thus, we need to use the 
equilibrium curve y f (x)=  or x g(y)= , determined experimentally.  

Note that the experimental curves all pass through the origin and through 
the point x y 1= = . If an azeotrope exists, the equilibrium curve crosses the 
diagonal y x=  at the point corresponding to the composition of the 
azeotrope. 

1.2.3. Material balances 

The feed F splits the column into two sections. The accepted conventions 
dictate that we refer to the light species and, therefore, that the upper section 
be called the enriching section and the lower section be called the stripping 
(exhausting) section. 

From the accepted hypotheses, it stems that, in each section, the 
downward liquid molar flowrate L is constant, and so too is the upward 
vapor molar flowrate V.  

1) Enriching section (operating line): 

Let us isolate a domain surrounding the top of the column and several 
plates. Write that the input is equal to the output. D is the flowrate of the 
material decanted into the condenser (the distillate):  

V L D= +   

More specifically, let the plates be numbered from the top to the bottom 
of a section. Plate number 1 is constituted by the condenser. The boundary of  
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the domain runs between plates n and n + 1. Let us write that what enters the 
domain thus defined and what exits it are exactly the same:  

n 1 n DVy Lx Dx+ = +   

If we eliminate V between these two equations, we find:  y x x   

Let us introduce the reflux ratio R = L/D. We obtain the equation for a 
straight line in the plane x, y.  

D
n 1 n

xRy x
R 1 R 1+ = +

+ +
  

This line is the operating line for enrichment. It passes through the two 
points:  

[ ]D Dx x ,y x= =  and [ ]Dx 0,y x (R 1)= = +   

2) Exhausting section: 

The vapor and liquid flowrates are denoted V’ and L’; let the plates be 
numbered from bottom to top. W is the flowrate of material deposited at the 
bottom of the column (the residue):  

L ' V ' W= +   

m 1 m WL'x V'y Wx+ = +   

Thus, by eliminating L'  and setting V '/ Wθ = , we obtain the equation of 
the operating line for exhaustion: 

Wm
m 1

xyx
1 1+
θ= +
+ θ + θ

  

θ is the revaporization rate.  
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c) Thermal state of the feed: 

At the point I where the operating lines meet, we must have:  

DVy Lx DxΙ Ι= +  [1.1] 

WV'y L'x WxΙ Ι= −  [1.2] 

Let us subtract these two equations from one another, term by term: 

D W(V V')y (L L')x Dx WxΙ Ι− = − + +  [1.3] 

Let τ be the molar fraction of the feed vaporized. We have: 

V V ' F− = τ  and L' L (1 )F− = − τ  

The overall balance of the lightweight species is written:  

D WDx Wx Fz+ =   

z is the feed’s content in light species.  

Equation [1.3] is then written:  

1 zy xΙ Ι
τ −= +

τ τ
 [1.4] 

This equation defines the line of thermal state of the feed.  

We can verify that the meeting point I between lines [1.1] and [1.2] 
satisfies equation [1.4], so the line of thermal state passes through the two 
points F and I (see Figure 1.1): 

[ ]F x z,y z= =   

[ ]I x x , y yΙ Ι= =   

It is rare for the line of thermal state to intersect the equilibrium curve 
precisely at a point representative of a theoretical plate.  
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If the mixture fed in is two-phased, its enthalpy is expressed by:  

V LH H (1 )h= τ + − τ  where 0 1< τ <  

For a superheated vapor, we have:  

VH H= ν  where 1ν >  

For a supercooled liquid:  

LH h= λ  where 1λ <  

Let us now find the corresponding value of τ:  

V V LH H h (1 )ν = τ + − τ   

Hence:  

V L

V L

H h 1
H h

ν −τ = >
−

 for the superheated vapor 

Similarly, for the supercooled liquid:  

L V Lh H h (1 )λ = τ + − τ   

Thus:  

L

V L

h ( 1) 0
H h

λ −τ = <
−

 for the supercooled liquid 

This generalizes the use of the line of thermal state of the feed, but 
parameter τ has no physical significance outside of the interval [0,1] .  

If 0τ = , the result is that x zΙ =  and the line of thermal state 
(equation 1.4) is vertical. If 1τ = , then y zΙ =  and the line is horizontal. If 

1τ > , the slope of the line is positive, and if 0τ < , then the slope is positive 
as well. On the other hand, for a two-phase feed, the slope of the line of 
thermal state is negative (i.e. for 0 1< τ < ). 
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If the line of thermal state (which passes through I) intersects the 
equilibrium curve at a point E (see Figure 1.1), identical to the point 
representative of a plate, then the arrival of the feed on that plate will not 
result in either the vaporization or the liquefaction of the feed. Generally, 
this is not the case. 

1.2.4. Plotting of the tiers 

1) Enriching: 

We suppose that the vapor coming from plate 1 (the highest plate in the 
column) is entirely condensed. For this vapor:  

1 Dy x=  V (R 1)D= +  

Similarly, for the liquid reflux reaching plate 1:  

D0x x=  L RD=  

The equation of the operating line is satisfied for plates 0 and 1:  

D
1 0 D

xRy x x
R 1 R 1

= + =
+ +

  

The composition of the liquid exiting plate 1 is given by the equilibrium 
curve:  

1 1x f (y )=   

The composition of the vapor 2y  is then given by:  

1 D
2

Rx xy
R 1 R 1

= +
+ +

  

We obtain:  

2 2x f (y )=  etc.   
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which is represented graphically in Figure 1.1, as follows: 

From the point Dy x=  on the bisector, we draw a horizontal toward the 
equilibrium curve, so 1x . The operating line gives 2y  for the vertical with 
abscissa value 1x , and so on.  

 

Figure 1.1. Graphical construction of McCabe and Thiele 

2) Exhaustion: 

We take the reboiling (revaporization) rate θ.  

The residue decanted at the bottom of the column has the composition 
Wx .  The rising vapor V '  has the composition 0 Wy f (x )= .  

The liquid arriving at the bottom of the column has the composition given 
by the equation of the operating line:  

0 W
1

y xx
1 1
θ= +
+ θ + θ

  

The vapor leaving plate no. 1 has the composition:  

1 1y f (x )=   
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The composition of the liquid falling from plate 2 is:  

W1
2

xyx
1 1

θ= +
θ + + θ

  

Therefore:  

2 2y f (x )=  etc.   

which is represented graphically in Figure 1.1, as follows: 

From the point Wx x= , we draw a vertical line which gives the 
composition 0 Wy f (x )=  of the vapor leaving the bottom of the column. The 
horizontal with the ordinate 0y  cuts the operating line at the point with 
abscissa 1x , which gives 1y  by the equilibrium curve 1 1y f (x )= , etc. 

1.2.5. Overall material balance of the column 

The material balance is written:  

F D W= +  (kilomoles per second) 

The material balance relative to the volatile species is:  

D WFz Dx Wx= +   

If, for example, we take a specific value for z, Dx  and Wx , those two 
equations give us w W /F=  and d D/F:=   

D

W D

z xWw
F x x

−= =
−

 and W

D W

z xDd
F x x

−= =
−

  

Strictly speaking, it would be preferable to employ McCabe and Thiele’s 
method, setting:  

F 1=  W w=  and D d=   
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1.2.6. Overall heat balance for the column 

Consider:  

BQ : thermal power of the boiler: Watt 

CQ : thermal power of the condenser: Watt 

WC : molar specific heat capacity of the residue: 1 1J.kmol . C− −°  

Wt : temperature at the bottom of the column (and therefore of the 
residue): °C 

Dt : temperature of the distillate: °C 

DC : molar specific heat capacity of the distillate: 1 1J.kmol . C− −°  

FH : mean molar enthalpy of the feed: 1J.kmol−  

F V LH H (1 )h= τ + − τ   

where:  

VH : enthalpy of the vaporized fraction of the feed: 1J.kmol−  

Lh : enthalpy of the liquid fraction of the feed: 1J.kmol−  

τ : ratio of vaporization of the feed 

The overall balance is then written:  

CF B D D W WFH Q DC t WC t Q+ = + +   

In practical terms, we set the flowrate of distillate D and the reflux ratio R 
(generally between 2 and 5).  

In view of the operating pressure of the column and supposing we  
know the vapor pressures of the light and heavy species, we deduce the 
temperatures Wt  and Dt .  
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The power of the condenser can be deduced from this:  

C DQ D(R 1) H= + Δ   

DH :Δ  latent heat of condensation of the lightweight species: 1J.kmol−  

The overall heat balance gives us the power of the boiler.  

B D D W W C FQ DC t WC t Q FH= + + −   

In practice, it is wise to increase the power BQ  by 10% in order to allow 
for the inevitable thermal losses. 

1.2.7. Revaporization ratio of the boiler 

It is tempting, if we know BQ , to write:  

B wV' Q / H= Δ   

WHΔ : latent heat of vaporization of the heavy species 

Hence:  

V ' /Wθ =   

In reality, if we wish to maintain consistency with the hypotheses 
underpinning McCabe and Thiele’s method, we need to operate differently.  

Consider a domain encapsulating the bottom of the column and a few 
plates from the exhausting section. Write that the input is equal to the output:  

V ' W L' L (1 )F RD (1 )F+ = = + − τ = + − τ   

Thus, we have the reboiling rate:  

V' (R 1)D F
W W

+ − τθ = =   

If we know τ, R and θ it is possible to plot the three lines representing the 
column’s operation:  

– the two operating lines;  
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– the line of thermal state of the feed.  

We can, for instance, set Dx , R and τ, which determines the operating 
line of enriching and the line of thermal state of the feed. Thus, we have the 
point I and, if we set Wx , the operating line of exhaustion is determined (see 
Figure 1.1). 

1.2.8. Regulation of continuous distillation 

In order to regulate the vapor of heating, we base our reasoning on a 
temperature reading at the sensitive point of the column. The sensitive point 
corresponds to the point of inflection of the curve illustrating the variation in 
temperature as a function of the level in the column. This is the point at 
which the temperature changes most quickly as a function of vapor flowrate 
in the reboiler – i.e. its thermal power.  

Incidentally, note that reboilers generally have pipes whose internal 
diameter is 2 cm. These pipes are vertical and 2 meters long. Their heat 
transfer coefficient is close to 2 1500 W.m . C− −° . The heating vapor is outside 
the pipes.  

 

Figure 1.2. Regulation in a distillation column 

Temperature 

Coolant 

Condensor 

Distillate 

Feed

   
 

Sensitive 
point 

 Vapor 

Reboiler 
Condensates

Residue 

Regulation of : 
RP    pressure 
RD   flowrate 
RN    level 
RT    temperature 
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Condensers have pipes which may be over two meters long. The internal 
diameter of these pipes is generally 2 cm. The cooling fluid circulates in the 
pipes. The presence of un-condensable gases greatly decreases the transfer 
coefficient, which may drop to 2 110 W.m . C− −° . 

1.2.9. Number of plates for high purity of the light species 

The equilibrium curve passes through the point x y 1= =  and has the 
slope m:  

y 1 m(x 1)− = −   

Thus: 

y mx (1 m)= + −   

The operating line has the slope 
L
V

 and passes through the point 

Dy x x= =  (D as distillate).  

n n 1 D
L Ly x (1 )x
V V+= + −   

These two lines intersect at a point P outside of the square x between 0 
and 1 and y between 0 and 1. 

D
L(1 m) (1 )x
Vx L m

V

Ρ

− − −
=

−
  

The y and x values have an identical index, which is that of the point on 
the equilibrium curve which they characterize. This point is the image of a 
plate.  

For reasons of proportionality, we see that:  

1) on the operating line:  

0 1 n 1

1 2 n

y y y y y yL ...
V x x x x x x

Ρ Ρ Ρ −

Ρ Ρ Ρ

− − −= = = − =
− − −
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2) on the equilibrium line:  

0 1 n 1

0 1 n 1

y y y y y ym ...
x x x x x x

Ρ Ρ Ρ −

Ρ Ρ Ρ −

− − −= = = − =
− − −

  

3) and, by dividing the fractions L/V  by the fractions m and multiplying 
the fractions obtained by one another, we find:  

N
0

n

x xL
Vm x x

Ρ

Ρ

−⎡ ⎤ =⎢ ⎥ −⎣ ⎦
  

 

Figure 1.3. McCabe and Thiele’s plot (enriching end) 

The number of theoretical plates necessary, therefore, is:  

0

n

x xLn
x x

N
LLn

Vm

Ρ

Ρ

⎡ ⎤−
⎢ ⎥−⎣ ⎦=
⎡ ⎤
⎢ ⎥⎣ ⎦

  

EXAMPLE 1.1.– 

How many theoretical plates would be needed to increase the purity of 
methanol from 0.9 to 0.9999? The impurity is water.  

L 12 / 20 0.6
V

= =  m 0.45=  Dx 0.9999=  ox 0.9=   
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0.55 0.4 0.9999x 1.00027
0.6 0.45Ρ

− ×= =
−

  

1.00027 0.9Ln
1.00027 0.9999N 19.50.6Ln

0.45

−
−= =   

Thus, we have 20 theoretical plates. 

1.2.10. Number of plates for a high degree of purity of the heavy 
species 

 

Figure 1.4. McCabe and Thiele’s plot (exhausting end) 

The equilibrium curve passes through the origin and has the slope E:  

y Ex=   

The operating line has the slope L '/ V '  and passes through the point 
Wy x x := =   

n ' n ' 1 W
L' L'y x (1 )x
V' V'+= + −   
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Numbering proceeds from top to bottom. These two lines intersect at a 
point P outside of the square x between 0 and 1 and y between 0 and 1.  

W

P

L ' 1 x
V 'x L' E

V '

⎛ ⎞−⎜ ⎟
⎝ ⎠=

−
 and P Py Ex=   

Similarly to what has been demonstrated for the enriching section:  

1 P 2 P n P

0 P 0 P n 1 P

y y y y y yL'
V' x x x x x x−

− − −= = = =
− − −

LL   

0 P 1 P n 1 P

0 P 1 P n 1 P

x x x x x x1
E y y y y y y

−

−

− − −= = = =
− − −

LL   

N
n P

0 P

y yL'
V 'E y y

−⎡ ⎤ =⎢ ⎥ −⎣ ⎦
  

The number of theoretical plates necessary, therefore, is:  

n P

0 P

y yLn
y y

N
L'Ln

V'E

⎡ ⎤−
⎢ ⎥−⎣ ⎦=
⎡ ⎤
⎢ ⎥⎣ ⎦

  

EXAMPLE 1.2.– 

How many theoretical plates would be needed to decrease the water 
content of a methanol solution from 0.18 to 0.0001?  

L' 1.0444
V'

=  E 3.72=  4
Wx 10−=  0y 0.18=   

4
6

P
0.0444.10x 1.659.10

1.0444 3.72

−
−= = −

−  
 

6 6
Py 1.659.10 3.72 6.1715.10− −= − × = −   
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4 6

6
.

. .
.

.

.

10 1 659.10Ln
0 18 1 659.10

N 5 88
1 0444Ln

3 72

− −

−

⎡ ⎤+
⎢ ⎥+⎣ ⎦= =

⎛ ⎞
⎜ ⎟
⎝ ⎠  

 

Thus, we have 6 theoretical plates. 

1.3. Global method (more than two components) 

1.3.1. Equations and unknowns 

Consider a column with N plates with indices j (for the condenser j 1=  
and for the reboiler j N)=  dealing with a mixture of c components with the 
indices i. We shall present the results found by Taylor and Edmister  
[TAY 69], which are explained by those authors themselves. Let us specify a 
number of additional matters.  

We take the following variables:  

– the feeds in each plate in terms of composition, temperature and 
flowrate, the fractions remaining after lateral discharge in either liquid or 
vapor form. These are the jb  and jB , which we shall discuss later on. 
Obviously, these remaining fractions are between 0 and 1; 

– the heats jQ  applied to each plate.  

The goal is to determine the following values:  

– the partial liquid and vapor flowrates of each component i exiting each 
plate j, so we have 2cN unknowns;  

– the overall liquid and vapor flowrates exiting each plate, so we have 2N 
unknowns;  

– the temperatures jT  of each plate, so we have N unknowns.  

Thus, in total, we are looking for 2cN + 3N unknowns. For this purpose, 
we have the following relations:  

– cN partial material balances; 

– cN equilibrium relations; 
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– N overall material balances; 

– N enthalpy balances; 

– N boiling-point relations. 

In total, then, we have 2cN + 3N relations.  

We shall now examine each of these relations in turn. 

1.3.2. Partial material balance 

The partial material balance is the balance pertaining to a given 
component taken in isolation.  

Obviously, the sum of the partial flowrates over all the components is 
equal to the total flowrate. Thus, the vapor leaving plate j is:  

c

ji j
i 1

v V
=

=∑  with ji
ji

j

v
y

V
=

 
 

 

Figure 1.5. Partial material balance of the component i 
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Similarly, for the liquid leaving plate j:  

c

ji j
i 1

1 L
=

=∑  with ji
ji

j

1
x

L
=

 
 

In addition, the following flowrates are discharged from plate j:  

– vapor:  

c
V V
ji j

i 1
w W

=

=∑  with 
V

ji ji
ji V

j

v w
y

V W
= =

 
 

– liquid:  

c
L L
ji j

i 1

w W
=

=∑  with 
L

ji ji
ji L

j

1 w
x

L W
= =

 
 

Around plate j, the balance of the component i is written:  

L L V V
j 1,i j 1,i ji j 1,i j 1 ji ji ji1 w f v w f v 1− − + +− + + − + = +   

L
jif  and V

jif  are the feeds of liquid and vapor to plate j.  

Let us now define the absorption factor jiA  pertaining to the component i 
on the plate j by the relation:  

j
ji

ji j

L
A

E V
=   

The partial equilibrium equations are written:  

ji ji j
ji

ji j ji

y v L
E

x V 1
= = ×   

Consequently:  

ji ji ji1 A v=   
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The balance equation of the component i becomes:  

L V
j 1 j 1 L V

j 1,i j 1,i ji ji j 1,i ji ji
j 1 j 1

w w
1 A v (1 A )v 1 v f f

L v
− +

− − +
− +

⎡ ⎤ ⎡ ⎤
− − + + − − = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

Let us set:  

V
j j jB 1 W / V= −  and L

j j jb 1 W / L= −   

and also:  

L V
ji ji jif fφ = +  (here, jiφ  is not a fugacity coefficient) 

The balance equation is then written:  

j 1 j 1,i j 1,i ji ji j i j 1,i jib A v (1 A )v B v− − − + +− + + − = φ   

The term j 1 j 1,i j 1,ib A v− − −  plays no part on the upper plate in the column.  

Similarly, the term j 1 j 1,iB v+ +  does not play a part for the lower plate in the 
column.  

Thus, we obtain the following system of partial material balance 
equations:  

1i 1i 2 2i(1 A )v B v+ − 1i= φ   

1 1i 1i 2i 2I 3 3ib A v (1 A )v B v− + + − 2i= φ   

j 1 j 1,i j 1,i ji ji j 1 j 1,ib A v (1 A )v B v− − − + +− + + − ji= φ
  

N 2 N 2,i N 2,i N 1,i N 1,i N Nib A v (1 A )v B v− − − − −− + + − N 1,i−= φ   

N 1 N 1,i N 1,i Ni Nib A v (1 A )v− − −− + + Ni= φ   

Similarly, if we define the stripping factor by:  

j
ji ji

j

V
S E

L
=   
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we obtain a system of equations equivalent to the previous one:  

1i 1i 2 2i 2i(1 S )1 B S 1+ − 1i= φ  

1 1i 2i 2i 3 3i 3ib 1 (1 S )1 B S 1− + + − 2i= φ   

j 1 j 1,i ji ji j 1 j 1,i j 1,ib 1 (1 S )1 B S 1− − + + +− + + − ji= φ
  

N 2 N 2,i N 1,i N 1,i N Ni Nib 1 (1 S )1 B S 1− − − −+ + − N 1,i−= φ   

N 1 N 1,i Ni Nib 1 (1 S )1− −− + + Ni= φ   

1.3.3. Solutions to partial balance equations (compound i) 

For the heavy components (small value of jiE ):  

j
ji ji

j

V
S E

L
=  and 

N

jij 1
S 1

=
Π ≤

 
 

0i 1σ =   

1i 1i1 Sσ = +   

ji j 1,i ji j 2,i j 1 j ji(1 S ) b B S− − −σ = σ + − σ
             2 j N≤ ≤   

N 1 N 1

Ni N 1,i t qi q 1,it qq 1
Ni

Ni

b
1

− −

− −==

⎡ ⎤⎡ ⎤φ σ + Π φ σ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦=
σ

∑

 
 

j 1 j 1

ji j 1,i t qi q 1,i j 1,i j 1,i j 1 j 1,it qq 1
ji

ji

b 1 S B
1

− −

− − + + + −==

⎡ ⎤⎡ ⎤φ σ + Π φ σ + σ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦=
σ

∑

 
N 1 j 2− ≥ ≥   

1i 2i 2i 2
1i

1i

1 S B1 φ +=
σ  
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For the light components (large value of jiE ):  

j
ji

ji j

L
A

E V
=  and 

N

jij 1
A 1

=
Π ≤

 
 

N 1,i 1+α =   

Ni Ni1 Aα = +   

ji j 1,i ji j 1 j ji j 2,i(1 A ) B b A+ + +α = α + − α                         N 1 j 1− ≥ ≥  

N q

1i 2i t qi q 1,it 2q 2
1i

1i

B
v

+==

⎡ ⎤⎡ ⎤φ α + Π φ α⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦=
α

∑
  

N q

ji j 1,i t qi q 1,i j 1,i j i j i,i j 1,it j 1q j 1
ji

ji

B A b v
v

+ + − − − += += +

⎡ ⎤⎡ ⎤φ α + Π φ α + α⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦=
α

∑

      
2 j N 1≤ ≤ −  

Ni N 1,i N 1 N 1,i
Ni

Ni

b v
v − − −φ + α

=
α

  

1.3.4. Overall material balances 

Let L
jF  and V

jF  be the feeds of liquid and vapor onto plate j. We know 

that V
jW  and L

jW  are the discharges of vapor and liquid on the plate. The 
balance for plate j is written:  

L L V V
j 1 j 1 j j 1 j 1 j j jL W F V W F L V− − + +− + + − + = +   
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The system of equations can be rendered explicit for the jV  values:  

 21 VV −  = L V V
1 1 2F F W+ −  

 32 VV −  = L V L V
2 2 1 2 1 3F F L L W W+ + − − −  

 . . 
  . . 
  . . 

 1jV +− jV  = L V L V
j j j 1 j j 1 j 1F F L L W W− − ++ + − − −  

 . . 
  . . 
  . . 

  N1N VV −−  = L V L V
N 1 N 1 N 2 N 1 N 2 NF F L L W W− − − − −+ + − − −  

 NV  = L V L
N N N 1 N N 1F F L L W− −+ + − −  

1.3.5. Heat balances 

For plate j, the balance of inputs and outputs is written:  

c c c
L L F

j 1,i j 1,i j 1,i j 1,i ji ji
i 1 i 1 i 1

l h w h f h− − − −
= = =

− + +∑ ∑ ∑   

c c c
V V F

j 1,i j 1,i j 1,i j 1,i ji ji j
i 1 i 1 i 1

v H w H f H Q+ + + +
= = =

− + +∑ ∑ ∑   

c c

ji ji ji ji
i 1 i 1

l h v H
= =

= +∑ ∑
           

1 j N≤ ≤   

The quantity jQ  is the thermal power applied to plate j and counted 
positively if that plate receives heat. In a distillation column, NQ  will be 
positive (reboiler) and 1Q  negative (condenser).  

The above balance can be written:  

c c c cL F V F
j 1 j 1,i j 1,i j 1 j 1,i j 1,i j 1,i ji ji ji ji j

i 1 i 1 i 1 i 1
b l h B S H l f h f H Q− − − + + + +

= = = =
+ + + +∑ ∑ ∑ ∑   
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c c

ji ji ji ji ji
i 1 i 1

l h S l H
= =

= +∑ ∑   

In these equations, the h values represent the enthalpies of the liquids and 
the H those of the vapors.  

The thermal power of the reboiler is deduced from that of the condenser 
by finding an overall balance for the column.  

n c
L F V F L V

N 1 ji ji ji ji ji ji ji ji
j 1 i 1

Q Q (f h f H w h w H )
= =

= − + − −∑∑   

An estimation of the right-hand side of this equation enables us to 
evaluate NQ .  

The power of the condenser results from the choice of the reflux ratio R 
of the column. 

c
L

1 1,i 2,i 1,i
i 1

Q (R 1) w (H h )
=

= + −∑   

1 2 1Q (R 1)D(H h )= + −   

D is the flowrate of the distillate.  

Stripping operations generally take place without heat exchange with the 
outside world. On the other hand, this is not always the case with 
absorptions, because it may be that the plates are cooled. 

1.3.6. Boiling-point relations 

On each plate, it is sufficient, by a classic calculation of liquid–vapor 
equilibrium, to solve the equation:  

c

ji ji
i 1

E x 1
=

=∑   

We could use the tangent method. Remember that the Eji depend on the 
temperature Tj.  

With these relations, we are able to determine the temperatures of the 
plates. 
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1.3.7. Global solution method 

We take linear initial profiles along the column for the temperatures jT  

and liquid flowrates jL . We then calculate any lateral discharges jW :  
L
j j j jW L b L= −   

1) The overall balances give the jV . From this, we deduce the V
jW  by:  

V
j j j jW V B V= −   

We repeat this procedure with the overall balances until the V
jW  no 

longer vary.  

2) With the hypothesis of ideal behavior accepted, we calculate the jiA  

and jiS .  

3) The partial material balances give us the jiv  and ji1 . From this, we 
deduce the compositions:  

ji
ji c

ji
i 1

1
x

1
=

=
∑

 and ji
ji c

ji
i 1

v
y

v
=

=
∑

  

4) The jT  are then calculated by N boiling-point equations (see 
section 1.3.6). 

5) We then evaluate the enthalpies of the liquid- and vapor phases.  

6) By combining the N heat balances and the N overall material balances, 
we calculate the 2 N unknowns jL  and jV  by the Gauss–Jordan elimination 
method.  

We go back to step 2 but, this time, we have composition profiles which 
enable us to evaluate the equilibrium coefficients jiE  in the hypothetical 
case of non-ideality.  
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The calculation is halted when the relative precision in terms of the liquid 
and vapor flowrates is 1‰ and 0.001°C on the temperatures jT . 

1.4. Successive plates method 

1.4.1. General 

To define a distillation column without lateral discharge, we define 
certain data of composition in the distillate and in the residue. The feed is 
known in terms of flowrate, composition and temperature. Here, we shall 
discuss certain points of the procedure put forward by [WUI 65].  

The calculations are performed starting from the two ends of the column 
and working towards the feed. 

1.4.2. Flowrate and composition of the distillate and of the 
residue 

All the components must be specified either in the distillate D or in the 
residue W. Let us number the components whose specifications wis  are 
given (in molar fractions) in the residue from 1 to r, and from r 1+  to c the 
components whose specifications dis  are given in the distillate and set:  

r

w wi
i 1

S s
=

=∑  and 
c

d di
i r 1

S s
= +

= ∑   

Suppose that the feed F W D= +  is split according to the specifications. 
For the component i specified in the residue:  

i wi diFz Ws (F W)z= + −  with 
r

di d
i 1

z S 1
=

+ =∑
 

 

Thus:  

r r

w i w di w d
i 1 i 1

F F z WS D z WS (F W)(1 S )
= =

= = + = + − −∑ ∑   
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Therefore:  

d w

d w

F(1 S ) FW
1 S S

− −=
− −

 and, similarly: w d

d w

F(1 S ) FD
1 S S

− −=
− −

  

The solution is indeterminate if d w(1 S S ) 0− − = . We shall not examine 
the case in which all the components are specified in the same effluent – W 
or D – because to do so we would need to isolate each component and then 
make the desired mixture. However, it may happen that w dS S 1+ ≥ , but 
without wS  or dS  being equal to 1 or 0. To avoid this situation, we simply 
need to specify the content levels of impurities in D and W because, by 
nature, the impurity levels are much less than 1.  

As regards the non-specified molar fractions:  

i wi
di

Fz Wsz
F W

−=
−

 and i di
wi

Fz Dsz
F D

−=
−

  

1.4.3. Overall heat balance 

This balance is written by equaling the incomings and outgoings.  

R F C D WQ Q Q Q Q+ + = +  (here, all the Q values are positive and 
expressed in watts) 

The meaning of the indices is:  

R: reboiler   F: feed    D: distillate 

C: condenser     W: residue 

The heat balance is useful in calculating the thermal power of the reboiler 
when we have determined that of the condenser.  

Remember that the heat carried by a fluid mixture A (whose fraction AL  
is liquid), i.e. its enthalpy, is:  

[ ]
c

E
A A Ai Ai A Ai Ai

i 1

Q AH A L x h (1 L )y H
=

= + + −∑   
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In general, we overlook the excess enthalpy EH .  

The thermal power of the condenser is  

C D DQ (R 1)D(H h )= + −   

DH  is the enthalpy of the distillate in the gaseous state at its dew point 
and, for total condensation, Dh  is that of the liquid distillate at its boiling 
point. 

1.4.4. Calculation of the plate temperatures 

Consider the upper section of the column. The plates are numbered from 
top to bottom, with 1 being the plate situated immediately beneath the 
condenser. Consider a domain encapsulating the condenser and plates 1 to j. 
For that domain, the balance of component i is written:  

j 1 j 1,i j ji diV y L x Dx+ + = +  [1.5] 

Let us multiply this equation by j 1,iH +  – i.e. the partial enthalpy of the 

component i in the vapor phase j 1V +  – and sum in terms of i: 

c c c

j 1 j 1,i j 1,i j ji j 1,i di j 1,i
i 1 i 1 i 1

V y H L x H D z H+ + + + +
= = =

= +∑ ∑ ∑   

In addition, the heat balance is written:  

c c

j 1 j 1,i j 1,i j ji ji D C
i 1 i 1

V y H L x h Q Q+ + +
= =

= + +∑ ∑   

By equaling the right-hand sides of these two equations, we find:  

c

D C di j 1,i
j i 1

1j c

j,i j 1,i j,i
i 1

(Q Q ) / D z HL
D x (H h )

+
=

+
=

+ −
ϕ = =

−

∑

∑
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However, we know that:  

j 1,i
j 1,i

j 1,i

y
x

E
+

+
+

=  and that: 
c

j,i
i 1

x 1
=

=∑
 

 

By dividing equation [1.5] by j 1,iE +  and summing in terms of i, we find:  

c
di

i 1j j 1,i
2 j c

j,i

i 1 j 1,i

z1
L E

xD 1
E

= +

= +

−
ϕ = =

−

∑

∑
  

Here, let us introduce the function: j 1j 2 jR .= ϕ − ϕ  

The temperature Tj+1 must render the function Rj equal to zero by way of 
the enthalpies Hj+1,i and the equilibrium ratios Ej+1,i.  

The denominator of φ2j becomes zero for a temperature Tr,j, which is the 
dew point of a fictitious vapor with the composition xji. This temperature is 
greater than Tj+1. Indeed, the composition xj,i is less rich in light species than 
that composition yj+1,i because the light species are discharged with the 
distillate. In addition, the plate j + 1 is situated beneath plate j, and hence Tj+1 
is greater than Tj. Thus:  

j j 1 r, jT T T+< <
  (therefore, jT  and r, jT  are two limits for j 1T + ) 

Furthermore, φ1j decreases with Tj+1 and φ2j grows with Tj+1. In other 
words, Rj is a monotonic decreasing function of Tj+1.  

More generally, let (n 1)
j 1T −
+  and (n 2)

j 1T −
+  be two limits encapsulating j 1T + . 

We calculate j jR R=  for j 1T + , which is the arithmetic mean of those two 

limits. We eliminate the limit (x)
j 1T +  for which jR  has the same sign as jR , 

and replace it with j 1T + . Thus, we obtain a narrower interval for j 1T + . The 

calculation is halted when j 1T +  varies by less than 0.001°C between two 
operations.  
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For the lower section of the column (exhaustion of volatile species, which 
is tantamount to enriching in heavy species), the plates are numbered from 
bottom to top, with 1 being the plate situated just above the bottom of the 
column. The equations are:  

k 1 k 1,i k ki wiL x L y Wz+ + = +   

c c

k 1 k 1,i k 1,i k ki ki W R
i 1 i 1

L x h V y H Q Q+ + +
= =

= + −∑ ∑
 

 

From this, we derive: 

c

wi k 1,i W R
k i 1

1k c

ki ki k 1,i
i 1

z h (Q Q ) / W
V
W y (H h )

+
=

+
=

− −
ϕ = =

−

∑

∑
  

c

wi k 1,i
k i 1

2k c

ki k 1,i
i 1

1 z E
V
W y E 1

+
=

+
=

−
ϕ = =

−

∑

∑
  

k 1k 2kR = ϕ − ϕ   

kR  is a monotonic increasing function of k 1T + .  

b,k 1 k 1 kT T T+ +< <   

As we did for the upper section, we shall use the mean method (which is 
also known as the “dichotomy method”). 

1.4.5. Compositions on the plates 

With regard to the upper section, knowing j 1T +  gives us the value of 

jL /D . The overall and partial material balances yield j 1V +  and the j 1,iy + . 
Remember that these balances pertain to a domain encapsulating the  
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condenser and plates 1 to j. The equilibrium relations (x y/E)=  give the 

j 1,ix + . For the lower section, k 1T +  gives us kV , so k 1L +  and k 1,ix +  and finally 

k 1,iy + .  

Generally, the ratios at equilibrium E depend on the compositions. 
Therefore we need to operate step-wise, taking, say, the initial value of E as:  

(0)
i iE / P= π   

iπ  is the vapor pressure of the component i at j 1T +  (or k 1T + ) and P is the 
pressure. 

1.4.6. Consistency between the two sections 

It is possible to calculate the feed plate by starting either at the top or at 
the bottom. If the compositions of the distillate and the residue are correct, 
the compositions found for that plate must be the same by one method or the 
other.  

If this is not the case, it is necessary to correct the specifications of the 
components at the top and at the bottom.  

Let fdix  and fwix  represent the compositions of the liquid of the feed 
plate calculated respectively from top down and from bottom up.  

1) r 1 i c+ ≤ ≤  

The specification of the component has been defined at the top. The new 
value of the specification will be:  

(n 1) (n) fwi
di di

fdi

xs s
x

+ =   

2) 1 i r≤ ≤  

The specification of the component has been defined at the bottom. The 
new value of the specification will be:  

(n 1) (n) fdi
wi wi

fwi

xs s
x

+ =   
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We have introduced the square roots to decrease the amplitude of the 
correction and prevent oscillations.  

Also, in Wuithier [WUI 65], readers will find another way to correct the 
compositions of the distillate and the residue. However, it must not be 
forgotten that consistency with the feed plate is impossible to obtain if  
the specifications involve the crossing of an azeotrope. In this situation, only 
the global method will serve, but neither will this method enable us to cross 
the azeotrope. 

1.5. Conclusion 

1) If we need to design a simple column separating two components, we 
use the successive plate method. Having determined the specifications, we 
start at the top and the bottom, a priori taking a fairly high number of plates 
(at least 15) for each section. The engineer responsible will then examine the 
temperatures and compositions on each section and choose, as the feed plate, 
that for which the two calculations yield the closest results. This 
immediately gives us the number of plates in each section. We then merely 
need to employ the procedure of consistency between the two sections.  

2) We may also seek to design a column with lateral discharge to isolate a 
compound that is present only in a low quantity in the feed. We first use the 
successive plate method as explained above, and once consistency between 
the two sections has been obtained, we look to see whether, along the length 
of the column, there is a maximum of concentration (a concentration 
“center”) for the product we wish to discharge. Having chosen the discharge 
plate, we apply the global method.  

3) The global method can be used manually (i.e. using a calculator) if the 
number of plates and the number of components are limited and if, more 
importantly, the equilibria are ideal. In general, the global method requires a 
computer with scientific precision (128 significant binary figures for each 
number).  

4) The equivalence of a theoretical plate is approximately 1.4 to 1.7 real 
plates or, which is the same thing, a real plate is equivalent to 0.6 to 0.7 
theoretical plates. Traditionally, though, numerous practitioners agree that 
the equivalence of a real plate is 0.5 theoretical plates. 
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1.6. Choice of type of column 

For absorption or stripping distillation columns, the most commonly-used 
plates are perforated plates, because they are cheapest to make and of  
well-established design. 

However, when the gaseous flowrate is very low, the liquid would pass 
through the holes instead of through the outlet(s). We then need to turn to 
bubble-cap plates, made with bubble caps of 10 cm nominal diameter. 

When we want a slight drop in pressure on the side of the gas, we need to 
use a packed bed. Indeed, in this type of column, the gas only brushes 
against the liquid and does not pass through it. An additional advantage to 
these columns is how well they are suited to the treatment of corrosive 
fluids. Indeed, it is not overly costly to make the vessel out of a noble alloy 
and use ceramic or graphite as the packing. 



2 

Design and Performances of  
Gas–Liquid Perforated Plates 

2.1. Geometry of the plate 

2.1.1. Advantage to using perforated plates 

Perforated plates are cheaper to make than bubble-cap plates, for which 
the calculations are given by Bolles [BOL 56] and which, today, are used 
only for very low gaseous flowrates because they do not present any danger 
of weeping. 

2.1.2. Diameter of the column 

Treybal [TRE 80] indicates that the value of the parameter G GV ρ  must 
lie between 0.7 and 2.2 for proper operation. 

GV : in empty columns velocity of the vapor: 1m.s−  

For an estimation of the column’s diameter, we shall write: 

G G
1V (0.7 2.2) 1.45
2

ρ = + =   

i.e.: 

G
G

1.45V =
ρ
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Thus, the diameter of the column is: 

V
C

G

4QD
V

=
π

  

EXAMPLE 2.1.– 
3

G 1.25 kg.m−ρ =  
3 1

VQ 11.66 m .s−=   

1
G

1.45V 1.30 m.s
1.25

−= =   

The diameter of the column is: 

C
4 11.66D 3.39 m

1.30
×= =

π×
  

The section of the column is: 
2

2
C

3.39A 9 m
4

π×= =   

2.1.3. Design of the downcomers 

The liquid–vapor mixture disappears by separation of the bubbles and the 
clear liquid. The bubbles come together by coalescence, giving rise to larger 
bubbles, whose rate of ascension is sufficient for them to burst when they 
reach the surface. In order to evaluate the foaming nature of a liquid, we 
merely need to fill one third of a test tube with it and shake it hard for five 
seconds in the axial direction. 

In order to do this, coalescence requires a sufficient time of stay, just like 
in a chemical reactor. This residence time is longer when the foam is stable. 

Type of liquid Residence time τ of the liquid  
supposed to be degassed (seconds) 

Light hydrocarbons 
(non-foamy) 

2–3 

Heavy hydrocarbons 
(moderately foamy) 

4–5 

Glycols and amines 
(highly foamy) 

6–7 

Table 2.1. Speed of bubbles 
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The volume of the downcomer can be deduced from this:  

D LQΩ = τ   

However, a downcomer is more complicated than a chemical reactor. 
Indeed, the gas bubbles only disappear on the free surface of the foam. The 
downcomer then behaves like an inverted decanter in which the discontinuous 
phase gathers in the upper part. According to the decanter theory, the 
downcomer must provide the foam with a sufficient “decantation” surface DA  
where: 

L
D

B

QA
V

=   

LQ : flowrate of clear liquid: 3 1m .s−  

BV : rate of ascension of the bubbles (“decantation” rate): 1m.s−  

The common values of the rate BV  are distributed as given in Table 2.2. 

Type of liquid Decantation rate 1(m.s )−  
Non-foamy 0.15 

Moderately foamy 0.10 
Highly foamy 0.07 

Table 2.2. Speed of bubbles 

In Appendix 3, readers will find a proposal of a standardized foaming 
test. 

It is useful to know the angle at the center 2 θ blocked by the dam. For 
this purpose, we write that the section of the downcomer is the difference 
between the surface of the sector intercepted by the dam and the surface of 
the triangle delimited by the cord (see Figure 2.1): 

2

D
RA (2 2sin cos )
2

= θ − θ θ   
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Thus: 
2
C

D
DA
8

= ϕ  where: 2 sin 2ϕ = θ − θ  

ϕ is an increasing function of θ. Remember that 1 0,017453rad° = . The 
minimum value of the space between plates is: 

D
P min

D

S
A
Ω=   

EXAMPLE 2.2.– 

Moderately-foamy liquid 

LQ  3 10.02 m .s−=  

BV  10.10 m.s−=  
CD  3.39 m=  

τ  4 s=  

3
D 0.02 4 0.08 mΩ = × =   

2
D

0.02A 0.2 m
0.10

= =
 

 

2

8 0.2 0.139
3.39
×ϕ = =

 
 

0.478rad 27.39θ = = °   

P minS 0.08 / 0.2 0.4 m= =   

Let us proceed by successive tests: 

θ 0.45 0.47 0.48 0.478 
ϕ 0.117 0.133 0.141 0.139 

2.1.4. Possible configurations for the downcomer 

The most typical type of spillway is the segmented downcomer, as 
illustrated below. 
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Figure 2.1. Conventional downcomer (one pass) 

In general, the lower outlet from the deck is 10 mm lower than the height 
of the dam at the outlet from the plate. Additionally, the free height of the 
mouth for the passage of the liquid entering onto the plate will always be 
greater than 5 mm. 

The dams at the entrance to the plate prevent unwanted weeping of the 
liquid, but they are inadvisable for viscid liquids. Their height must be equal 
to the height of the mouth. They cause a 20% increase of the pressure drop 
for the liquid entering onto the plate, on condition that the section available 
to the liquid is constant throughout its path. 

 

Figure 2.2. Lowered guard 

 

Dam
Plate 

Deck 

Plate 

Descent

Mouth
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Lowered liquid guards are always watertight and give the liquid and 
upward motion, which prevents weeping at the entrance to the plate. 

The sink depth is 100 mm. The passage area available to the liquid must 
remain constant for all changes in direction. 

At the exit from the plate, the downcomer contains a dam which is 
extended by an apron. When the diameter of a column increases, the length 
of the dam increases proportionally to the diameter, whilst the liquid 
flowrate increases with the square of the diameter. 

Consequently, the line load on the dam quickly reaches the limiting  
value of 3 1 10.025 m .s .m− − . Therefore, we need to increase the number of 
passes. 

 

Figure 2.3. Two-pass spillway 

Conversely, for small columns such as those encountered in pilots, the 
tube downcomer may be envisaged. 
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Figure 2.4. Tube downcomer 

2.1.5. Dam length and number of passes 

The dam length for a single pass is:  

B CL D sin= θ   

A single pass is justified if the liquid load at the dam is: 

2 1L

B

Q 0.02m .s
L

−≤   

Otherwise, multiple passes are necessary, though it should be observed 
that the acceptable number of passes is limited. According to 
Economopoulos [ECO 78], we must have: 

P P max CN N 1.1 D≤ =  (take the higher integer) 
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If we wish to prevent the liquid taking preferential paths and some of this 
liquid is in weak contact with the gaseous phase, we must have: 

B

C

L 0.4
D

≥   

When the liquid load at the dam is less than 2 10.001 m .s− , we must put in 
place a sawtoothed crenellated dam. 

EXAMPLE 2.3.– 

0.478radθ = CD 3.39 m= 3 1
LQ 0.02 m .s−=   

BL 3.39 sin 0.478= ×   

BL 1.56 m=   

L BQ L 0.02 1.56 0.0128 0.02= = <   

We may content ourselves with a single pass, noting that the diameter of 
the column would allow for up to: 

P maxN 1.1 3.39 3.7= × =  which represents four passes 

In addition, we can verify that: 

B

C

L 1.56 0.46 0.4
D 3.39

= = >   

NOTE.– [WUI 72] gives additional information about downcomers 
downways. 

2.1.6. Active area 

It is necessary to leave an area on the plate without holes in, to take 
account of the rivets or welding that ensure the plate’s rigidity and fixation. 
Similarly, we must allow for a calm zone, which therefore is not holed at the  
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exit and entry to the spillways. We shall accept that these surfaces are 
equivalent to a circular band whose width is 3% of the diameter of the 
column. The area of the non-holed dead zone is therefore: 

2
M CA 0.03 D= π   

The active area can be deduced from this: 
d

A C M Dk
k 1

A A A A
=

= − −∑   

The sum of the DkA  is the sum of the inlet and outlet areas of the 
downcomers on the plate. The term CA  is the area of the section of the column: 

2
C

C
DA
4

π
=   

EXAMPLE 2.4.– 

The plate is single-pass. 

2
CA 9 m=  

2
DA 0,2 m= CD 3.39 m=   

2
AA 9 0.03 3.39 2 0.2= − π − ×   

2
AA 7.52 m=   

2.1.7. Characteristics of holes 

The parameters defining a set of holes are: 

– the diameter of the holes; 

– the step between the holes; 

– the thickness of the sheet metal. 

1) In industrial practice, hole diameter varies from 5 to 15 mm. 

Holes with a large diameter may be less costly than others. Indeed, they 
are more difficult to block and easier to clean than holes of a small diameter 
because, at constant perforated section, their total perimeter is smaller. 
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However, according to certain authors, when the velocity of the gas is 
high, or else when the diffusion on the side of the gas is difficult (high 
Schmidt number), it is preferable to use holes of moderate diameter. 

The effectiveness of the plate depends on its operating regime. If we 
choose the foam regime, the vapor has little kinetic energy and, to encourage 
its dispersion in the liquid, many authors have suggested that numerous 
holes with small diameter (say, 3 mm, for instance) would lead to a large 
interfacial area. 

On the other hand, in the jet regime, the dispersion of the liquid into 
droplets depends primarily on the vapor’s kinetic energy (which is high) and 
the diameter of the holes is much less important. For a given perforated 
fraction ( 0,1ϕ = , which is 10% of the active area, for example), it is cheaper 
to make holes of a larger diameter, of a restricted number. A diameter of  
1 cm works well. 

2) The second parameter to consider is the step p of the holes. Habitually, 
we define it by the ratio Tp d  of the step to the diameter of the holes. 

In general: 

T

p2.5 4
d

< <   

When the ratio Tx p d=  approaches its lower bound, the plate reaches 
its maximum “flexibility”, meaning that its effectiveness is maintained at an 
acceptable level for low values of the gaseous flowrate. Indeed, in these 
conditions, the volume of the liquid separating two holes is small. Therefore, 
it is not necessary for the gas to vigorously stir the liquid in order for the 
exchange of material to be correct. 

3) Knowing the ratio x = p/dT, it is possible to determine the fraction φ of 
the active surface AA which is covered by the holes – i.e. the degree of 
piercing. In general, this fraction is somewhere between 5 and 15%. Let AT 
be the surface area of the holes. 
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For a triangular step: 

T
2

A

A
A 2 3x

πφ = =   

For a square step: 

T
2

A

A
A 4x

πφ = =   

The thickness pe  of the plate is the parameter which, along with the 
degree of piercing φ, characterizes the holes from the point of view of the 
pressure drop. In general, the thickness of the sheet metal chosen is 2 to  
3 mm for stainless steel and noble alloys and 3 to 5 mm for soft steel. 

For holes made in a thin sheet of metal (2 mm), the section of the gas jet 
is again reduced at the output from the hole, and the pressure recovers above 
the plate in a single step. On the other hand, if the sheet is thick (5 mm), an 
initial recovery of pressure takes place within the thickness of the metal, and 
a second recovery above the plate. However, the pressure recovery is better 
if it takes place in two steps. 

2.1.8. Plate of large diameter 

When the diameter of the plate is greater than 2 m, then on both sides of 
the liquid flow, zones may appear where the liquid rotates and does not 
renew as shown in Figure 2.5. 

 

Figure 2.5. Dead zones 
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The existence of these true dead zones can seriously affect the 
effectiveness of the plate, particularly if the dams are short in length. One 
solution may be to place a few flaps (“ears”) in the lateral areas to incline the 
vapor jets and cause the liquid to move in the desired direction. 

 

Figure 2.6. Directive ear 

2.2. Drop in vapor pressure on crossing the plate 

2.2.1. Dry pressure drop (across the plate without liquid) 

According to Liebson et al. [LIE 57]: 

2

T
S G

o

V1P
2 C

⎡ ⎤
Δ = ρ ⎢ ⎥

⎣ ⎦
 or indeed 

2

GT
S

o L

V1h
2g C

⎡ ⎤ ρ= ⎢ ⎥ ρ⎣ ⎦
  

SPΔ : dry pressure drop: Pa 

Gρ : density of the gaseous phase: 3kg.m−  

TV : velocity of the vapor on going through the holes: 1m.s−  

Sh : dry load loss: m of column of liquid (m.C.L.) 

According to Economopoulos [ECO 78]: 

( )o
p

T

e
C 0.836 0.273 0.674 0.717

d
⎛ ⎞= + × + φ⎜ ⎟
⎝ ⎠
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pe : thickness of the plate: m 

φ : degree of piercing of the active surface of the plate: 

surface of the holes
active surface

φ = ; in general: 0.05 0.15< φ <   

Td : diameter of the holes: m 

In general: T0.005 m d 0.015 m< <   

According to Economopoulos [ECO 78], it is also possible to use 
Hughmark and O’Connell’s [OCO 57] formulae, or indeed those of Hunt  
et al. [HUN 55]. 

2.2.2. Capillarity term in the pressure drop in the presence of 
liquid 

( )
T

2
TT

D 4P
dd 4

σ
π σ σΔ = =
π

  

σ : surface tension of the liquid: 1N.m−  

Consider a load loss of: 

L T

4h
g dσ

σ=
ρ

  

hσ : capillary load loss: m.C.L. 

The contribution of hσ  is generally negligible. Let us stress the fact that a 
pressure drop is measured in Pascals, whilst a load loss is measured in 
meters of liquid column. A load is a height of liquid. 

2.2.3. Pressure drop on crossing the liquid–vapor mixture 

Particularly in the jet regime, it is difficult to experimentally evaluate 
both the true height of the liquid–vapor mixture (LVM) on the plate and the 
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true liquid fraction in volume of the LVM. We can get around this difficulty 
by directly expressing the pressure drop LPΔ  on crossing the LVM by: h h h β					with					∆P ρ gh   

Bh : height of the dam at the outlet from the plate: m.C.L. 

LBh : height of liquid above the dam: m.C.L. 

Lρ : density of the liquid: .3kg.m−  

β : correction coefficient (different from the volumetric fraction of liquid) 
according to Fair (reported by Economopoulos [ECO 78]): 

2 3
A A A0.977 0.5075 F 0.2292 F 0.035 Fβ = − + −   

AF : kinetic parameter in relation to the active area on the plate: 

A A GF V= ρ 0,5 0,5 1(kg .m .s )− −   

Gρ : density of the vapor: 3kg.m−  

AV : velocity of the vapor in relation to the active area: 1m.s−  

G
A

A

QV
A

=   

The linear flowrate of liquid above a dam, after introduction of an 
empirical coefficient equal to 0.7, is given by Francis’ formula: 

3/2L
LB

B

0.7 2 2gQ h
L 3

×
=  and therefore 

2/3

LB
L

B

Q
h 0.61

L
⎛ ⎞= ⎜ ⎟
⎝ ⎠  

 

LQ : frank liquid flowrate in terms of volume: 3 1m .s−   

BL : length of output dam: m  

g : acceleration due to gravity: 29.81 m.s−
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2.2.4. Pressure drop and height of the output dam 

The total pressure drop on the plate is: 

( )T S m S L B LBP P P P P P g h hσ σΔ = Δ + Δ + Δ = Δ + Δ + ρ β +   

and, after division by Lgρ : 

( )T S B LBh h h h hσ= + + β +   

If we take the total load loss hT, we can deduce the height of the dam 
from it: 

B T S LB
1h (h h h ) hσ= − − −
β

  

In practice, we ignore the term hσ . 

A reasonable value of the total pressure drop of all the plates in the 
column must not be greater than 20% of the absolute operating pressure at 
the top of the column. In a vacuum, Bh  may be negative. In this case, we 
need to increase the diameter of the column. 

The common values for the height of the output dam are within the range 
(0.02 m – 0.08 m). 

EXAMPLE 2.5.– 

We agree that the vapor pressure drop across all of the plates represents 
7% of the pressure at the head of the column. The column operates at 1.8 bar 
abs., and has 20 plates. Thus, we have the acceptable pressure drop per plate: 

5
TP 10 1.8 0.07/20 630PaΔ = × × =   

However: 

3
L 800 kg.m−ρ =   
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The corresponding height of liquid is: 

T
630h 0.08 m.C.L.

800 9.81
= =

×
  

We have chosen 10 mm holes, and the plates are made of stainless steel. 
Hence: 

p Te d 0.2=   

The degree of piercing (aperture) of the plate is 0.1, which corresponds to 
a triangular step p such that: 

2

2

(0.01)0.1
2 3p

π×=   

Thus: 

p 0.03 m=   

oC (0.836 0.273 0.2) (0.674 0.717 0.1)= + × × + ×   

oC 0.664=   

Dry load loss (expressed in height of clear liquid): 

2

S
1 1,55 1.25h 0.044 m.C.L.

2 9.81 0.664 0.1 800
⎡ ⎤= × =⎢ ⎥× ×⎣ ⎦

  

The length of the dam being 1.69 m, the height of liquid on the dam is 
(Francis’ formula): 

2/3

LB
0.02h 0.61 0.0334 m.C.L.
1.56
⎛ ⎞= =⎜ ⎟
⎝ ⎠
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0,5 0,5 1G
A G

A

Q 11.66F 1.25 1.7335 kg .m .s
A 7.52

− −= ρ = =   

2 30.977 0.5075 1.7335 0.2292 1.7335 0.035 1.7335β = − × + × − ×   

0.603β =   

The height of the dam is then: 

B
1h (0.08 0.044) 0.0334 0.026 m

0.603
= − − =   

2.3. Hydrodynamics of the plate  

2.3.1. General points on flooding 

The flooding of a column is expressed by an accumulation of liquid and 
an elevated pressure drop for the gaseous phase. 

We distinguish two types of flooding: 

– flooding by insufficient downcomer. This occurs when the liquid 
flowrate is too great to be channeled by the downcomer. The LVM 
accumulates in the downcomer and spills out onto the uppermost plate. We 
can remedy this situation by increasing the height of the downcomer – i.e. 
the space between the plates; 

– flooding by entrainment of liquid droplets. In this case, the pressure 
drop becomes significant. To reduce the entrainment, we need to increase the 
spacing of the plates, which means that the drops have time to fall back onto 
the lower plate before they reach the upper one. 

The result of the two types of flooding is the same and ultimately 
produces the accumulation of liquid in the spillway and a significant 
pressure drop on the side of the gas. 

Note that a premature flooding may occur due to certain defects of the 
column – e.g. if the plate is not perfectly horizontal. 
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2.3.2. Accumulation of liquid in the downcomer 

The height LDh  of liquid in the downcomer must balance: 

1) the load loss at the “mouth” of the spillway – i.e. across the space 
existing between the deck and the next plate down. The liquid load 
corresponding to the outlet of the spillway is [FAI 63]: 

2 2

L L
SD

B BO SD

Q Q1h 0.1525
2g L 0.6 h A

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥× ×⎣ ⎦ ⎣ ⎦

  

If the lower edge of the deck is rounded, 0.6 must be replaced by 1. 

hSD: height of liquid: m 

hBO: free height (height of the mouth) for the passage of the liquid under 
the deck: m 

QL: flowrate of liquid: m3.s-1 

ASD: area available for the passage of the liquid between the lower plate 
and the underside of the apron: m2 

SD BO BA h L=   

According to Economopoulos [ECO 78], the surface of the mouth of the 
downcomer is equal, on average, to: 

SD DA 0,42A=   

DA : horizontal section of the spillway: 2m  

2) The height of liquid immediately at the outlet of the mouth of the 
downcomer on the lower plate: h h   

Bh : height of the dam of the downcomer: m 

LBh : height of liquid above the dam 
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3) The height of liquid hT corresponds to the pressure drop of the gaseous 
phase on crossing the upper plate. 

Thus, we are at the surface of the liquid–vapor mixture present in the 
downcomer. 

NOTE.– To preserve a hydraulic joint which stops the vapor from climbing 
back into the downcomer, the free height for the input of liquid onto the 
plate must be less than 10–15 mm at the height of the outlet dam. 

If the height of the outlet dam from the plate is slight (e.g. 2 cm) because 
the pressure drop across the plate is limited, the free height 1.56 m=  is not 
sufficient to allow the liquid to pass, we need to use a lowered mouth (see 
Figure 2.2) or else a dam at the bottom of the deck. The height of that second 
dam would then be: 

Lh 0.02 m+   

Lh : height of clear liquid on the plate: m 

EXAMPLE 2.6.– 

LQ  3 10.02 m .s−=  

DA  20.2 m=  

Bh  0.026 m=  

LBh  0.033 m=  

Th  0.08 m=  

BL  1.56 m=  

2
SDA 0.42 0.2 0.084 m= × =   

BOh 0.084 / 1.56 0.054 m= =   

As this height is greater than that of the dam, we need a lowered outlet 
(see Figure 2.2) with: 

SB BO Bh h (h 0.01) 0.054 (0.026 0.01) 0.038 m= − − = − − =   

2

SD
0.02h 0.1525 0.0086 m

0.084
⎛ ⎞= =⎜ ⎟
⎝ ⎠  

 

LDh 0.0086 0.026 0.033 0.08 0.148 m.C.L.= + + + =   
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Let us assume a value of 0.5 for the mean compactness of the LVM in the 
spillway. The compactness is the fraction of the volume occupied by the 
liquid. The height of the LVM is then: 

0.148/0.5 0.30 m.C.L.=   

This value is minimal for the spacing of the plates. Remember that, 
before, we had obtained a different minimal value: 

P minS 0.40 m.C.L.= ∞   

It is this latter value which needs to be chosen for PS . 

NOTE.– In reality, the mean porosity ε  of the LVM in the descent of the 
downcomer must be taken as equal to the arithmetic mean between zero (at 
the bottom) and Gε  (on the plate). The mean porosity is then (1 ).− ε  

G
G

1 (0 )
2 2

εε = + ε =   

EXAMPLE 2.7.– 

G 0.874ε =  (see section 2.4.1) 

0.874 0.437#(1-0,5)
2

ε = =
 

 

2.3.3. Flooding by entrainment of drops of liquid 

Here, we define a kinetic parameter by: 

0,5
G

S

G

L

QF
A

ρ⎛ ⎞= ⎜ ⎟ρ⎝ ⎠
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AS is the horizontal area of the volume separating the gaseous phase and 
the drops it has brought with it (entrained): 

S C DA A A= −   

CA  and DA  are respectively the area of the section of the column and 
that of the downcomer. 

Upon engorgement, Treybal [TRE 68] proposed the following form for 
the kinetic parameter EF  at flooding (obtained on the basis of the curves 
found by Fair [FAI 61]): 

E P 10 M PF (0,0744 S 0,0117)Log X 0,0304 S 0,0153= + + +   

where: 

0,5
G

M
S

G

L

QX
A

ρ⎛ ⎞= ⎜ ⎟ρ⎝ ⎠
  

The aperture of the plates is the ratio of the surface of all the holes to the 
active surface of the plate. When this aperture (which is represented by φ) is 
less than 0.1, we need to multiply EF  by the correction coefficient FC : 

0.2 0.44

FC
0.020 0.1

σ φ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

The gas flowrate in terms of volume and on flooding is: Q A F .
  

The approach to flooding is then: 

G

GE E

Q FE
Q F

= =   

In practical terms, we must have: 

0.6 E 0.8< <   
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EXAMPLE 2.8.– 

Lρ  3800 kg.m=  

Gρ  31.25 kg.m−=  
σ  10.020 N.m−=  

LQ  3 10.02 m .s−=  

GQ  3 111.66 m .s−=  

PS  0.4 m=  

CA  29 m=  

DA  20.20 m=  
  ϕ  0.1=  

0,5

M
11.66 1.25X 23.04678
0.02 800

⎛ ⎞= =⎜ ⎟
⎝ ⎠

  

FC 1=   

E 10F (0.0744 0.4 0.0117)Log 23.0468 0.0304 0.4 0.0153= × + + × +   

     0.04146 1.36236 0.01216 0.0153= × + +   

EF 0.0839=   

0.5

GE
800Q 0.0839(9 0.20) 18.68
1.25
⎛ ⎞= − =⎜ ⎟
⎝ ⎠  

 

The approach to flooding is: 

G

GE

Q 11.66E 0.62
Q 18.68

= = =   

This value, which is relatively close to 0.7, is satisfactory. 

NOTE.– [STI 78] proposes what he calls a maximum flowrate, characterized 
by: 

0.252
max L GF 2.5 ( )g⎡ ⎤= φ σ ρ − ρ⎣ ⎦   

where: 

max max GV F= ρ  and G max max AQ V A= ×  
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EXAMPLE 2.9.– 

ϕ  0.1=  
σ  10.020 N.m−=  

Lρ  3800 kg.m=  

Gρ  31.25 kg.m−=  
g  29.81 m.s−=  

AA 27.38 m=  
0.253

maxF 2.5 0.2.10 800 9.81 2.80−⎡ ⎤= × × =⎣ ⎦   

1
maxV 2.80 1.25 2.5 m.s−= =   

3 1
G maxQ 2.5 7.52 18.4 m .s−= × =   

Note that this value is very close to GEQ , according to Treybal, which is 
equal to 3 118.84 m .s− . For the calculation of the interfacial area, therefore, 
we use the method developed by Stichlmair and Mersmann [STI 78] but 
with an approach to engorgement in line with Treybal [TRE 68]. 

2.3.4. Flowrate of entrained drops 

According to Fair [FAI 61], the degree of entrainment is defined by: 

e
eX

L e
=

+
  

L: liquid mass flowrate: 1kg.s−  

e: entrained liquid mass flowrate: 1kg.s−  

The calculation of Xe involves the approach to flooding E and the 
flowrate parameter: 

L L

G G

QPD
Q

ρ=
ρ

  

Thus, we have the degree of entrainment: 

( 0.132 0.654 E)
eX (6.692 1.956 E) PD − +⎡ ⎤= − +⎣ ⎦   
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EXAMPLE 2.10.– 

E 0.62=           PD 0.0434=   
( 0.132 0.654 0.62)

eX exp (6.692 1.956 0.62)0.0434 − + ×⎡ ⎤= − + ×⎣ ⎦   

eX 0.035 3.5 %= =   

According to the rules of the discipline, the entrainment must not be 
greater than 8%. 

2.3.5. Heights of clear liquid and of the LVM 

According to Benett et al. [BEN 83]: 
0.67

LC e B
L

eB

Q
h h C

L
⎡ ⎤⎛ ⎞= α +⎢ ⎥⎜ ⎟α⎝ ⎠⎢ ⎥⎣ ⎦

  

( )
0.910.5

G
e A

L
exp 12.55 V ρ

ρ
⎡ ⎤⎛ ⎞α = −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
   

and BC 0.50 0.438exp( 137.8 h )= + −   

AV : velocity of the gaseous phase expressed in relation to the active area: 
1m.s−  

Bh : height of the dam: m 

BL : length of the dam: m 

The fraction of volume occupied by the gaseous phase is: 

0.28 0.28
G G GE(Q /Q ) Eε = =  [STI 78a] 

That is: 

LC
m

G

hh
1

=
− ε

  

mh : height of the LVM: m 
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EXAMPLE 2.11.– 

Bh  0.026 m=  

LQ  3 10.02 m .s−=  

GQ  3 111.66 m .s−=  

E  0.62=  
BL  1.56 m=  

 Gρ  31.25 kg.m−=  
 Lρ  3800 kg.m−=  
 AA  27.52 m=  

1
AV 11.6/7.52 1.55 m.s−= =   

( )
0.910.5

e
1.25
800

exp 12.55 1.55
⎡ ⎤⎛ ⎞α = − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

 

e 0.372α =   

C 0.50 0.438exp( 137.8 0.026)= + − ×   

C 0.5121=   
0.67

LC
0.02h 0.372 0.026 0.5121

0.372 1.56
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟×⎝ ⎠⎢ ⎥⎣ ⎦  

 

LCh 0.030 m=   

0.280.62 0.875ε = =   

mh 0.030 / (1 0.875) 0.24 m= − =   

2.3.6. Beginning of weeping 

The correlation found by Lockett and Banik [LOC 84] can be written: V l ϕ 0.67 l
/

  

The flexibility of a holed plate measures the relative decrease of the 
gaseous flowrate in order for weeping to occur: S Apl  
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EXAMPLE 2.12.– 

g  20.981 m.s−=  

Lρ 3800 kg.m−=  

hcℓ 0.03 m=  

AV  11.55 m.s−=   
ϕ   0.1=  

Gρ 31.25 kg.m−=  V l 0.1 0.67 . .. /
  V l 0.92	m. s   

If the plate works at a speed expressed in relation to the active area equal 
to 11,55 m.s− , its flexibility is: 

1.55 0.92S 40 %
1.55

−= =   

The flexibility of holed plates is less than that of bubble-cap plates, which 
can be up to or even greater than 70%. This property is exploited when, in 
the process or indeed along a column, the gaseous flowrate is highly 
variable, but this situation is essentially the only one for which bubble-cap 
plates are still used. [WUI 72] gives a calculation method for such plates, as 
does Bolles [BOL 56]. 

2.3.7. Transition between the foam and jet regimes 

The gaseous flowrate calculated here corresponds to the jet regime 
established for all the holes of the plate. 

According to Fell and Pinczewski [FEL 82], the velocity of the gas 
expressed in relation to the active area is: 

n

L
Atra L

BG

Q2.75V
L
⎡ ⎤

= ρ⎢ ⎥ρ ⎣ ⎦
 where: Td

n 0,91⎛ ⎞= ⎜ ⎟φ⎝ ⎠  
 

φ : aperture of the plate 

Td : diameter of the holes: m 

LQ : flowrate of liquid: 3 1m .s−  
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BL : length of the dam: m 

Lρ  and G:ρ  densities of the liquid and the gas: 3kg.m−  

EXAMPLE 2.13.– 

1
AV 1.55 m.s−=   

n

Atra
2.75 0.02V 800

1.691.25
⎡ ⎤= ⎢ ⎥⎣ ⎦  

0.91 0.003n
0.1
×=

 
 

n 0.0273=  
1

AtraV 2.39 m.s−=   

However: 

1.55 2.39<   

Thus, we are in the foam regime. Note that that correlation of Jeronimo  
et al. [JER 73] gives a smaller value for AtraV  but that value corresponds to a 
jet operation of only 70% of the holes. 

2.4. Transfers of mass and heat 

2.4.1. Interfacial area [STI 78] 

If we know the operating regime (foam or jet), it is possible to find 
whether the LVM is presented in the form of gaseous bubbles in the liquid or 
indeed liquid droplets dispersed in the gaseous phase. The corresponding 
diameters are given by: d / d 	where	V V /E  

To evaluate the volume occupied by the dispersed phase, Stichlmair 
introduced the parameter A GF V= ρ  and the ratio maxF F  where maxF  
corresponds to flooding by entrainment of liquid. We replace that ratio by 
the flooding approach E, and we write: 

0.28
G LE 1ε = = − ε [STI 78a]  
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Gε  and Lε  represent the volume fraction occupied by the gas and the 
liquid in the LVM. Expressed in relation to the volume of the MLV, the 
interfacial area is: 

D6a
d
ε=   

Dε  is the fraction of volume occupied by the dispersed phase. 

NOTE.– Certain authors advocate a correction term to be applied to a, but 
that term is not included in Stichlmair and Fair [STI 98]. However, a 
calculation for it is given in Appendix 1. 

EXAMPLE 2.14.– 

σ   10.02 N.m−=  

AV 11.55 m.s−=  
Lρ  3800 kg.m−=  

g  19.81 m.s−=  
E  0.62=  

Gρ 31.25 kg.m−=  
ϕ  0.1=  
 

1/2

b ( )

6 0.02d
800 1.25 9.81

×⎛ ⎞= ⎜ ⎟− ×⎝ ⎠
  

bd 0.0039 m=   

g 2

12 0.02 0.01d
1.55 1.25
× ×=

×  
 

gd 0.0008 m=   

0.28
G 0.62 0.874ε = =   

L 1 0.874 0.126ε = − =   

1
b

6 0.874a 1344 m
0.0039

−×= =            1
g 4

6 0.126a 945 m
8.10

−
−

×= =   
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With these data, we have obtained the nature of the regime, which is a 
foam regime. We therefore need to employ the value ba .  

2.4.2. Coefficient of mass transfer on the side of the gaseous 
phase 

According to Stichlmair [STI 78b]: 
1/2

*
G

AG

m G

D V2
h

⎛ ⎞β = ⎜ ⎟π ε⎝ ⎠
  

Accepting the validity of the ideal gas law, the total concentration is: 

T
n Pc
V RT

= =   

Hence: 
1/2

*
G T G

AG

m G

2P D Vc
RT h

⎛ ⎞β = β = ⎜ ⎟π ε⎝ ⎠
  

P : pressure: Pa 

R : ideal gas constant: 1 18314 J.kmol .K− −  

T : absolute temperature: K 

AV : velocity of the gaseous phase: 1m.s−  

G
A

A

QV
A

=   

AA : active surface: 2m  

mh : height of the LVM (the “foam”): m 

Gε : fraction of the volume occupied by the gaseous phase 

LC
m

G

hh
1

=
− ε

  

LCh : height of clear liquid: m 
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EXAMPLE 2.15.– 

P  50.95.10 Pa=  
T  323 K=  

Gε 0.874=  

LCh  0.030 m=  

AV  11.55 m.s−=  
 

E  0.62=  
GD  4 2 10.3.10 m .s− −=  

mh  0.24 m=  

m
0.030h 0.24 m

1 0.874
= =

−
  

1/25 4

G
2 0.95.10 0.3.10 1.55
8314 323 0.24 0.874

−⎛ ⎞× ×β = ⎜ ⎟× π× ×⎝ ⎠
  

3 2 1
G 0.594.10 kmol.m .s− − −β =   

2.4.3. Coefficient of mass transfer on the side of the liquid phase 

According to Stichlmair [STI 78b]: 

0.5
*
L

L A

m G

D V2
h

⎛ ⎞β = ⎜ ⎟π ε⎝ ⎠
  

*
L T Tcβ = β   

Tc : total concentration of the liquid: 3kmol.m−  

L
T

ii i i
i i

1c x v x M
ρ= =

∑ ∑
  

iv : partial volume of the component i: 3 1m .kmol−  

iM : molar mass of the component i: 1kg.kmol−  

ix : molar fraction of the component i 
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EXAMPLE 2.16.– 

Tc  337 kmol.m−=  

mh  0.24 m=  323 K=  
LD  9 2 11.5.10 m .s− −=  AV  11.55 m.s−=  

Gε  0.874=  
0,59

*
L

1.5.10 1.552
0.24 0.874

−⎛ ⎞×β = ⎜ ⎟π× ×⎝ ⎠
  

* 3 1
L 0.119.10 m.s− −β =   

3 3 2 1
L 37 0.119.10 4.40.10 kmol.m .s− − − −β = × =   

2.4.4. Overall transfer coefficient 

According to the simplified two-film theory (see section 4.2.2): 	  and  	   

m: slope of the equilibrium curve: m dy / dx=  

EXAMPLE 2.17.– 

m 0.9= 3 2 1
L 4.40.10 kmol.m .s− − −β = 3 2 1

G 0.594.10 kmol.m .s− − −β =  

3 3

L

1 10 10
K 4.40 0.9 0.594

= +
×  

 

3 2 1
LK 0.476.10 kmol.m .s− − −=   

3
3 2 1

G
0.476.10K 0.53.10 kmol.m .s

0.9

−
− − −= =

 
 

2.4.5. Arrangement of the mixture on the plate 

Consider the plate with index j, on which the liquid ( j 1)−  and the vapor 
( j 1)+  arrive, having known compositions. 



68     Distillation 

We shall suppose, to begin with, that the active area AA has the shape of a 
rectangle whose sides are: 

– ℓT: distance between the deck of the upstream downcomer and the dam 
of the downstream spillway – i.e. the length of the active area; 

– LB: length of the dam of the downcomers. 

We shall also suppose that, along the distance ℓT, not only does the 
composition of the liquid evolve, but also the composition of the vapor 
coming from the lower plate is inconstant. On the other hand, along the 
dimension BL , those two compositions are constant. 

We shall begin by evaluating what we call the local transfer which takes 
place in the elementary volume: dω h L dl h dA 	 A : area	active   

mh : mean height of the LVM: m 

 

Figure 2.7. Liquid–vapor contact on a plate 
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2.4.6. Local transfer (on a vertical) 

We shall make the hypothesis that the composition of the liquid is 
constant on a vertical. This results from the intense agitation existing in the 
LVM. The consequence of that is that the composition of the vapor at 
equilibrium with the liquid is also constant on a vertical. Let iy∗  represent 
that composition. 

Consider the elementary volume (see Figure 2.7): dV L dhdl  

The component with the index i transferred into that volume is:  

Gi i iK (y y )adV∗−   

a: volumetric area for the transfer expressed in relation to the LVM: 1m−  

The gaseous flowrate affected by this transfer is: G l
l
		 G:	kmol. s   

Thus, we have the balance relative to the gaseous phase: K y y∗ adhL dl = l
l
Gdy   

This means, after simplification by dℓ, that: 

∗ l   

G: total gaseous flowrate: 1kmol.s−  

Let us integrate over the thickness hm of the LVM. We obtain the local 
composition of the gas on exiting the plate with index n (the plates are 
numbered from top to bottom of the column): yj, yj , e yj,∗ 1 e  [2.1] 
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where: N l   

Note that the number of local transfer units is the same on the whole of 
the active surface of the plate if, though, we can accept that GiK  does not 
vary. 

2.4.7. Murphree efficiency 

Let us set: 

OG ,iN
MGE 1 e−= −   

Equation [2.1] becomes: 

j,i j 1,i
MG

j,i j 1,i

y y
E y y

+
∗

+

−
= −   

This relation is the definition of the Murphree efficiency, which is valid 
over the whole of the active surface. On that surface, it must not be forgotten 
that n,iy∗  is not constant, as we shall see. 

EXAMPLE 2.18.– 

OG,iN 2.57=  and therefore 2.57
MGE 1 e 0.923−= − =   

2.4.8. Evolution of liquid on the plate 

If the gas is impoverished, the liquid is enriched, and vice versa (owing to 
the conservation of material): 

j,i j,i j 1,iLdx (y y )dG 0++ − =  [2.2] 

where: dG G l
l
					and					yj,∗ mj, xj, x .j,   
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However, we know that (see equation [2.1]) 

OG,iN
j,i j 1,i j,i j,i 0, j,i j 1,iy y (1 e )(m x x y )−

+ +− = − + −  [2.3] 

By combining equations [2.2] and [2.3]: 

j,, j, , ,j, j , l
l
			 [2.4] 

In general, j 1,iy +  is not constant on the plate j 1+ , and it is necessary to 
integrate equation [2.4] numerically. In the particular case that n 1,iy −  is 
constant, we would have: 

j,i 0, j,i j 1,i j,i

j 1,i 0, j,i j 1,i j,i
OG,i

x (x y ) mL Ln 1
x (x y ) mmG 1 exp( N )

+

− +

⎡ ⎤+ −
= −⎢ ⎥

+ −⎢ ⎥⎣ ⎦⎡ ⎤− −⎣ ⎦

  

Let us set: 

j,i OG,i
mG 1 exp( N )
L

⎡ ⎤λ = − −⎣ ⎦   

Thus, we have the transfer equation: 

i
i

j,i j 1,i j 1,i 0, j,i
j,i

1 ex x e (y x )
m

−λ
−λ

− +

⎛ ⎞−= + − ⎜ ⎟⎜ ⎟
⎝ ⎠

  

EXAMPLE 2.19.– 

j 1,ix −  0.40=  

  AA  27.52 m=  
    a  11344 m−=  

GiK  3 2 10.530.10 kmol.m .s− − −=  
L/G  1.6=  

j 1,iy +  0.65=  
  mh  0.24 m=  
   G  10.5 kmol.s−=  
 j,im  0.9=  

o, j,ix  0.25=  

3
OG,iN (7.52 0.530.10 1344 0.24) 0.5−= × × ×   
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OG,iN 2.57=  and OG,iexp( N ) 0.077− =   

j,i
0.9 (1 0.077) 0.519
1.6

λ = − =
 

 

j,i
1 0.595x 0.40 0.595 (0.65 0.25)

0.9
−⎛ ⎞= × + − ⎜ ⎟

⎝ ⎠  
 

j,ix 0.418=   

2.4.9. Mass balance on the side of the liquid 

When the liquid flowrate varies significantly between the inlet and the 
outlet of a plate, we need to divide the length ℓT of the liquid trajectory into 
elementary intervals. 

Let j,q 1L −  and j,qL  represent the flowrates at the inlet and outlet of the 
interval with index q and set: 

L
j,i,q j,q j,i,q j,i,q 1w L (x x )−= −  [2.5] 

The relationship between these two molar fractions is a transfer equation 
of the same form as that which normally links j,ix  and j 1,ix + . The number of 
intervals is such that, for each of them, we have: 

L
j,q

j,q 1

W
0,01

L −

≤      where:     L L
j j,i,q

i

W w=∑
 

 

We would then have: 

L
j,q

j,q j,q 1

W
L L

2−= +   

This value needs to be used in equation [2.5]. The calculation of each 
elementary interval, therefore, is iterative. 
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Finally: 

L
j,q j,q 1 j,qL L W−= +      and     L L

j j,q
q

W W=∑
 

 

Hence: 

L
j j 1 jL L W−= +   

This way of operating is coherent, if we calculate jL  on the basis of j 1L −  
or indeed j 1L −  on the basis of jL . 

The calculation of the j,ix  can be deduced from this by the relations: 

L
j j,i j 1 j 1,i j,iL x L x w− −− =  where: L L

j,i j,i,q
q

w w=∑
 

 

By summing on the i values, we can see that, automatically, we have: 

j,i
i

x 1=∑  if we had j 1,i
i

x 1− =∑   

and vice versa. 

NOTE.– 

This slice-wise calculation enables us to directly transpose, to the side of 
the liquid, the calculation of the differential extractors to express the 
influence of backmixing on the plate. For the axial dispersion coefficient, we 
could try a modified expression of that of the A.I.Ch.E journal. 

0.5 L
A A B

B

QKD 0.6299 2.85V 613.56 29.97h
L

= + + +   

With the above data and 3K 3.10= : 

5 2 1
AD 1.90.10 m .s− −=   
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2.4.10. Material balance on the side of the vapor (unsteady 
regime) 

We have: 

j 1 j j j 1V V L L+ −− = −   

Thus, jV  as a function of j 1V + , and vice versa. 

j,i
j 1 j 1,i j j,i j j,i j 1 j 1,i j

dx
V y V y L x L x M

d+ + − −− = − +
τ

  

j,iy  as a function of j 1,iy + , and vice versa. 

The last term on the right-hand side refers to section 2.4.11. 

By summing on i, we see that: 

If j 1,i
i

y 1+ =∑  then j,i
i

y 1=∑   

and vice versa. 

Logically, it would make sense to repeat the calculations for transfer on 
the side of the liquid with: 

j 1 j
1V (V V )
2 += +  and j 1 j

1L (L L )
2 −= +   

2.4.11. Mean composition of the liquid on a plate 

We shall discuss the most complex case, which is that of a plate where 
the level wavefront, representing a discontinuity in the liquid flowrate, 
progresses. 

The level wavefront where the value of the flowrate L changes sharply 
moves at the speed 

(1)
T

L
B LC

L / cv
L h

=   
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BL : length of the dam (width of the active area): m  

LCh : height of clear liquid: m  

(1)L : liquid flowrate 1kmol.s−  

Tc : total molar concentration: 3kmol.m−  

Consider the band of active area with the breadth BL  and the horizontal 
thickness ℓF. This distance ℓF links the mouth of the upstream downcomer 
and the wavefront. 

For ℓ ≤ ℓF, the transfer equation is written thus (see section 2.4.8): xj, l bj, xj , bj, exp λj, l
l

  

where: 

j 1,i o, j,i
j,i

j,i

y x
b

m
+ −

=  O,G ,iNj,i j 1
j,i

j 1

m V
(1 e )

L
−+

−

λ = −  

On the band of thickness ℓF, the mean value of j,ix  is: xj, , l
xj, dl bj, l

l j, xj , bj, 1 exp λj, l
l

l   

Similarly: xj, , bj, xj, , bj, exp λj, l l
l

  

xj, l l
x , , dll

l   

              b , l
l l

x , , b , 1 exp λ , l l
l

  

and, for the whole of the plate: xj,i l
l xj,i, l l xj,i,   
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Having thus obtained an analytical expression for j,ix , it is entirely 
possible to calculate its derivative with respect to time τ  by writing: 

j, j,
l
. l j,

l
V   

Indeed, as time τ  elapses, the distance ℓF increases proportionally to τ . 
In other words, the level wavefront moves across the plate at a constant 
velocity Lv .  

EXAMPLE 2.20.– 

j 1,ix − 0.40=  

j,iλ  0.519=  

j,im 0.9=  

ℓF = ℓT 

j 1,iy + 0.65=  

o, j,ix 0.25=  

j,i
0.65 0.25b 0.4444....

0.9
−= =   

0.519
j,i

1x 0.4444.... (0.40 0.4444....)(1 e )
0.519

−= + − −   

j,ix 0.40977=
 

 

The mean value of xj,i is not too far from the arithmetic mean of j,ix  and 

j 1,ix − . 

Indeed, if we look again at section 2.4.8 where we found j,ix 0.418= , we 
see that: 

1 (0.418 0.40) 0.409#0.40977
2

+ =   
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2.4.12. Direction of calculation (bottom-up or top-down in the 
column) 

The above calculation was conducted with the supposition that we know 
the liquid and vapor arriving onto the plate. However, it is of greater interest 
to know: 

– either the outgoing liquid and the incoming vapor, which defines the 
lower “inter-plate”. In this case, we simply need to reverse the direction of 
the transfers, starting at the outlet of the liquid; 

– or the incoming liquid and the outgoing vapor, which defines the upper 
inter-plate. Then, we need to make a hypothesis about the incoming vapor 
and, by calculation, deduce the outgoing vapor (0)

touy  and we correct the 
incoming vapor (0)

iny  by setting: 

out,i(1) (0)
in ,i in ,i (0)

out ,i

y
y y

y
=   

Having made these corrections, it is important not to forget to normalize 
the iny  by writing: 

in,iN
in,i

in,i
i

y
y

y
=
∑

 

(“N” for “normalized”)  

Thus, we can proceed along the column in one direction or the other by 
calculating the exchanges j,iwΔ  between the liquid and vapor on the plate j 
and pertaining to each component i. 

2.4.13. Equilibrium straight lines of the components 

Hereinafter, knowledge of what we call the “inter-plate j” means 
knowledge of the compositions j,ix  and j 1,iy + . Furthermore, the asterisk 
means “at equilibrium with”. We are able to calculate the inter-plates one 
after another, working upwards or downwards in a column (see 
section 2.4.12), but in order to do so we need to know the equilibrium 
straight lines of each component on the plate j 1+ . 
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Knowing the composition of the liquid jL , we can calculate the 
composition of the vapor *jV  at equilibrium with jL  at its boiling point. 

Similarly, if we know j 1V + , we can calculate the composition of *j 1L +  at the 

dew point of j 1V + . Thus, for each component, we know the two couples at 
equilibrium which characterize the inter-plate j situated beneath plate j. 

*
j,i j,i(x , y )  and *

j 1,i j 1,i(x , y )+ +   

From these two couples, we deduce the equilibrium line for the transfer 
taking place on the plate j 1+  (see section 4.2.2 of the volume [DUR 16] of 
this set of books on thermodynamic), and leading to the inter-plate j 1+ . In the 
same way, we would calculate the inter-plate j 2+  on the basis of j 1+ . In the 
calculation of the plate j 1+ , a refinement could consist of accepting, for both 
parameters of the equilibrium line, the arithmetic mean of the parameters of 
the lines for the inter-plates j 1−  and j . 

A computer with good precision (128 meaningful binary figures) is 
recommended for these calculations. 

2.4.14. Heat transfer on the plate (see section 4.6 [DUR 16]) 

By replacing IQ  with its value in the expression of It , we obtain (see 
section 4.6.1 volume 1): 

I G G L L O
1t (B t B t t )
A

= + +   

the index I characterizes the liquid–gas interface with: 

G I Gi
i

G
G L

N C
B

α +
=

α + α

∑
  

L i Li
i

L
G L

N C
B

α −
=

α + α

∑
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i Li Gi
i

G L

N (C C )
A 1

−
= −

α + α

∑
  

i i
i

O
G L

N
t

Λ
=

α + α

∑
 

The meaning of the symbols is discussed in section 4.6.1 of [DUR 16]. 

Suppose the Ni are known and assimilated to their mean value on the 
plate. Indeed, taking account of the variations of Ni both across the height of 
the LVM and across the active surface would greatly complicate the 
calculations without significantly improving the accuracy. In an elementary 
volume dV, the heat exchanged is: 

G I G G G
OG G L LB t B t t

dq (t t )adV t adV
A A A

⎛ ⎞= α − = α + + −⎜ ⎟
⎝ ⎠

  

We shall accept that the temperature of the liquid is constant on a 
vertical, and examine the variation in temperature of the gaseous phase. 

( )*
G L G

GB
dq 1 t t adV

A
⎛ ⎞= α − −⎜ ⎟
⎝ ⎠

  

where: 

* L L O
L

G

(B t t )t
A B

+=
−

  

Hence: d	t 	 1 t∗ t a	L l dh  

Let us set: 

G G
A m

G

B(1 )aA h
G C A

αθ = −   

where: 

BL  : length of the dam: m  

ℓT : distance between the mouth and the dam: m  
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AA : active area: 2m  A L l   

mh : height of foam: m  

a : interfacial area expressed in relation to the volume of foam: 1m−  

θ : number of units of heat transfer on a vertical 

On a vertical, we have: 

G
*

G L m

dt dh
t t h

= −θ
−

 and therefore 
*

G, j 1 L
*

G, j L

t t
Ln e

t t
+ −θ⎡ ⎤−

=⎢ ⎥
−⎢ ⎥⎣ ⎦  

 

*
Gj G, j 1 L G, j 1t t (t t )(1 e )−θ

+ +− = − −   

As the liquid progresses toward the dam, its temperature Ljt  varies, 
because it takes heat from the gas. This gives us the heat balance: LC dt j t ,j t ,j C dG					where					dG l

l
  

or indeed: LC dt t∗ t ,j 1 e C l
l
G  

However: 

* OL
L L

G L

tBt (t )
A B B

= +
−

  

G G, j 1* OL
L G, j 1 L

G L L

(A B )ttB(t t ) t
A B B B

+
+

−⎡ ⎤
− = + −⎢ ⎥− ⎣ ⎦

  

Let us set: 

G G, j 1* O
G, j 1

L L

(A B )ttt
B B

+
+

−
= − +   
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The heat balance is written: LC dt t t ,j∗ C l
l
G 1 e   

Let us set: 

G L
q

L G

C G B (1 e )
C L(A B )

−θ−
λ =

−
  

We integrate: 

q*
L, j L, j 1 G, j 1 L, j 1t t (t t )(1 e )−λ

− + −= + − −   

where, remember: 

i i
G G, j 1* i

G, j 1
L G L L

N(A B )t
t

B ( )B
+

+

Λ−
= −

α + α

∑
  

2.4.15. Calculation of the values used 

1) The mean value of the transfer flux densities is: 

j,i j 1,i
i

A m

L(x x )
N

A h a
−−

=   

AA : active area: 2m  

mh : height of LVM: m  

a : volumetric area of transfer: 1m−  

2) The heat transfer coefficients are calculated in the same way as the 
material transfer coefficients: 

1/2
*

G G G
G A

m m

VD
2 C

h
⎛ ⎞α = ρ ⎜ ⎟π ε⎝ ⎠

 
1/2

*
L L L

L A

m m

VD
2 C

h
⎛ ⎞α = ρ ⎜ ⎟π ε⎝ ⎠
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Gρ  and Lρ : densities of the gas and the liquid 

*
GC  and *

LC : specific heat capacities of the gas and the liquid: 1 o 1J.kg . C− −  

GD  and LD : heat diffusivities of the gas and the liquid: 2 1m . s−  

mε : porosity of the LVM (fraction of volume occupied by the gaseous 
phase)  

mh : height of the LVM: m  

AV : velocity of the gas across the active surface: 1m.s−  

EXAMPLE.– 

j,ix  0.418=  

j 1,ix −  0.40=  

LD  6 2 10.15.10 m . s−=  
*
L LC ρ  6 3 12.5.10 J.m . K− −=  

LC  4 1 15.10 J.kmol . K− −=

L, j 1t −  45 C= °  

1N 5 2 11,37.10 kmol.m . s− − −=

1Λ  6 122.10 J.kmol−=  

AA  27.52 m=  

AV  11.55 m.s−=  

BL  1.56 m=  
a  11344 m−=  
G  10.5 kmol .s−=
L 10.8 kmol .s−=  

Gε  0.874=  

mh  0.24 m=  

GD  6 2 120.10 m. s− −=  
*
G GC ρ  3 3 12.6.10 J.m . K− −=  

GC  4 1 13.10 J.kmol . K− −=  

G, j 1t +  50 C= °  

2N 5 2 10.2.10 kmol.m . s− − −= −  

2Λ  6 137.10 J.kmol−=  

1
0.8(0.418 0.40)N
7.52 0.24 1344

−=
× ×

  

5 2 1
1N 1.37.10 kmol. m. s− − −=   

1/26

G
20.10 1.552600 2

0.24 0.874

−⎛ ⎞×α = × ⎜ ⎟π× ×⎝ ⎠
  

2 1
G 35.66W.m. K− −α =   
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1/26
6

L
0.15.10 1.552.5.10 2

0.24 0.874

−⎛ ⎞×α = × ⎜ ⎟π× ×⎝ ⎠
  

2 1
L 2970 W.m . K− −α =   

5 4
6(1.37 0.2).10 (5 3)10A 1 1 77.8.10

2970 35.66
−− −= − = −

+
  

A 1=   

( )4 5
G

1B 35.66 3.10 (1.37 0.2)10
3005.66

−= + −   

GB 0.011981=   

( )4 5
L

1B 2970 5.10 (1.37 0.2).10
3005.66

−= − −   

LB 0.98794=   

5 6 5 6

o
1.37 10 22 10 0.2 10 37 10t

3005.66

− −× × × − × × ×=   

Ot 0,07565 C= °   

4

35.66 (1 0.011981) 1344 7.52 0.24
0.5 3.10

θ = − × ×
×  

 

θ 5.697		(see section 2.4.14) 

1 e 0.9966−θ− =   

4

q 4

3.10 0.5 0.98794 0.9966
5.10 0.8(1 0.011981)

× × ×λ =
× −  

 

λ 0.3736										1 e 0.3117  
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*
G, j 1

(1 0.011981)50 0.07565t
0.98794 0.98794+

−= −   

*
G, j 1t 49.927 C+ = °   

L, jt 45 (49.927 45) 0.3117= + − ×   

L, jt 46.53 C= °   

NOTE.– If the liquid flowrate varies noticeably, the path must be divided into 
elementary lengths, which will be the same as those used for the transfer of 
mass. 

In addition, we should find that the vapor is slightly superheated and the 
liquid slightly supercooled. The opposite situation (supercooled vapor and 
superheated liquid) is, normally, unlikely to occur. In any case, though, 
whatever the situation, the equilibrium calculation will give a temperature 
(which we shall not use) and the composition of the two phases present. 

More specifically, we shall calculate: 

– the dew point of the vapor and the composition of that dew; 

– the boiling point of the liquid and the composition of the bubbles. 

2.4.16. Homogeneization of the vapor 

We shall agree that there is homogenization over the section of the 
column for the vapor coming from a plate if: 

C

P

D 7
S

<   

This limit may seem high, but it must be remembered that the direction of 
flow of the liquid over the active surface is reversed from one plate to the 
next. 



3 

Design and Performances of  
Liquid–Gas Packed Columns 

3.1. General 

3.1.1. Principle of packed columns 

Packed columns are vertical cylinders filled with small solid bodies of 
varying shapes. Collectively, these solid bodies are known as the packing. 

The gas is injected at the base of the column and recovered at the top. 
The liquid, for its part, is fed in to the top of the packing by various devices 
(feeders), the most effective of which ensure even distribution of the liquid 
throughout the section of the column. 

3.1.2. Important characteristic values of packed columns 

When the gas and liquid flowrates increase too much, a limit manifests 
itself, where the liquid has difficulty in descending, and where the drop in 
pressure of the gas on traversing the packing becomes excessive. This is 
known as flooding, and by studying it, we can link the diameter of the 
column to the desired flowrates. 

The quantity of material exchanged by transfer between the gas and the 
liquid essentially depends on the nature of the packing and the height of the 
column. This height can be determined using the concepts of the material 
transfer coefficients and, sometimes, heights of transfer units. 
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3.1.3. Usage and advantage of packed columns 

Packed columns are generally used with diameters of less than 0.3 m. In 
addition, their pressure drop on the side of the gas is less than that of a plate 
column with the same transfer performances. 

However, these columns absolutely must be used when the diameter of 
the column is greater than 6 m, as is the case with the stripping of bromine 
from seawater, because an evenly-distributed flow of the liquid on too large, 
a plate would become difficult to deliver. 

In a packed column, the liquid flows in a film and is not agitated by the 
gaseous phase as it is on a plate. The packing solution, therefore, is useful 
when dealing with foamy products. 

To deal with a corrosive product, it is economical to use ceramic or 
plastic packing rather than manufacture plates of noble metal. 

With an absolute pressure of less than 1 atm but greater than 0.2 atm, the 
pressure drop of the gas in a packed column is less than it would be in a plate 
column. Thus, packing is an appropriate solution when using moderate 
vacuums. For use in more powerful vacuums, manufacturers offer special, 
highly-porous packing. 

Appendix 1 gives empirical relations regarding the vapor pressures for 
the absorption of hydrochloric gas and ammonia gas in water. 

3.1.4. Real height of a packed column 

Ultimately, the total height of packing HT can be found by the following 
calculations: 

– transfer of material across the effective area (effective height He); 

– 25% increase of the effective height to take account of backmixing in 
the gaseous phase. We then obtain the useable height Hu; 

– taking account of dead zones due to the distributors (feeder and 
recenterers) which neutralize a certain height of packing. This is the dead 
height, Hm. 
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3.2. Hydrodynamics of packed columns 

3.2.1. Physical significance of engorgement 

Upon flooding the liquid no longer flows in the column, because of 
viscous friction of the liquid against the packing but also the friction existing 
between the liquid and the gas. 

The values we shall employ are: 

Ac: section area of the column: m2; 

a: volumetric surface for flow of the liquid: m-1; 

fL, fG: dimensionless friction factors (liquid and gas); 

ρL, ρG: densities (liquid and gas): kg.m-3; 

ΩL: volume of liquid present: m3; 

ε: porosity of the packing; 

R: fraction of the void occupied by the liquid hold-up. Note that we 
are talking, here, about retention in relation to the void left by the packing 
rather than in relation to the volume of the column; 

VL, VG: velocities in an empty bed of the liquid and the gas: m.s-1; 

UG, UL: real velocities of the gas and the liquid: m.s-1. 

The force of gravity drawing the liquid downwards is of the form: 

1 L LF g= ρ Ω   

The solid–liquid force of friction is expressed by: 

2
L L

2 L c
VF f A
2

ρ=   

The gas–liquid force of friction is expressed by: 

2
G G

3 G c
VF f A
2

ρ=   
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At flooding there is, of course, an equilibrium relation, which is of the 
form: F F F 	 [3.1] 

Over a unitary height (1 meter), the volume of liquid LΩ  present in the 
column is: 

L cA RΩ = ε   

Over the same height, the surface area over which the liquid flows is of 
the form: 

e cA A .a=   

The true velocities of the liquid and the gas are: 

L
L

VU
R

=
ε

            G
G

VU
(1 R)

=
ε −  

 

By feeding these values back into the equilibrium equation [3.1], we find: 

23 23
GL L L

2 2
G G L G G L

fg V2R R
U a f V f 1 R

⎡ ⎤ ⎡ ⎤ρ ε ρ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ρ ρ −⎣ ⎦⎣ ⎦⎣ ⎦
  

However, fL on the left-hand side of this equation can be replaced by 
0.2
Lf 'μ . This stems from a relation that is valid for the flow of a fluid in a 

pipe with Re 5000>  (see [MCA 63]). 

Using the usual notations, the engorgement relation becomes: 

23
2 G

E L

f1 2R RX
Y f ' f 1 R

⎡ ⎤= + ⎢ ⎥−⎣ ⎦
  

Because the coefficients of friction and liquid retention R are functions of 
X, it made sense to try the following form: 

n m

E

1 X X
Y

= α + β   
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The equation established by Tao [TAO 63] is: 

1.43 0.40

E

1 30.7 X 22 X
Y

= +   

where: X 	and	Y . . . .
  [3.2] 

dL: density of liquid in relation to water (at 15°C): dimensionless; 

L and G: mass flowrates of liquid and gas: kg.s-1; 

µL: viscosity of the liquid: centipoises. 

In reality, the expression of YE [3.2] is apt only when using 25 mm 
Raschig rings. For any other type of packing, the volumetric surface area aT 
of the packing must be corrected by a form coefficient CF. In addition, in this 
correlation, we take the total volumetric surface of the packing aT in relation 
to the unit volume of the column. 

The expression of YE then becomes: 

2 0,2
GE GF T L

E 3
L L

V C aY . . .
g d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ρ μ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ε ρ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  

Table 3.1 gives the form coefficient CF for various types of packing (see 
[PRA 69]). 

Nature of the packing Form coefficient FC  
Ceramic Raschig rings (30/dN)0,26 
Steel Raschig rings 1.6 
Pall rings 0.5 
Berl saddles 0.6 
Intalox saddles 0,29

N(4,4/d )  

Table 3.1. Form coefficient for flooding 

dN: nominal dimension of the packing: mm 
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The table in Appendix J gives the values of aT and ε for the different 
types of packing. 

3.2.2. Rate of engorgement (approach to engorgement) 

We can distinguish between two rates of engorgement: 

1) Case of engineering: 

We look for the diameter Dc of the column and impose L and G, and 
therefore L/G, and thus X. We also impose an approach to engorgement EI: 

G
I

GE E E

V G LE
V G L

= = =   

The diameter of the column is then: 

c
I GE G

GD
E V / 4

=
ρ π

  

It is commonplace to adopt: 

I0.7 E 0.8< <   

In this zone, the liquid retention and the pressure drop start to increase 
rapidly with VG. This is the loading zone. It is also the zone where the 
intensity of the material transfer is maximal. 

2) Case of an existing column: 

Here, φ and L are fixed, and we are looking to find how much we can 
increase VG. This represents, for example, the flowrate of gas in an 
absorption column or distillation column. That flowrate is initially equal to 
G(0). We calculate: 

(0) G

L

LX
G

ρ
=

ρ  
)0(

EY→ (0)
GEV→   
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( )(1) (0) (0)
G GEX X V V= (1)

EY→ (1)
GEV→   

( )(2) (0) (1)
G GEX X V V= (2)

EY→ (2)
GEV→   

( )(3) (0) (2)
G GEX X V V= (3)

EY→ (3)
GEV→   

In general, three iterations are sufficient, and we obtain: 

(3)
I G GEE V V=   

Predictably, if L remains constant, the increase in gas flowrate facilitated 
will be greater than in the case of engineering. 

3.2.3. Pressure drop 

The pressure drop of the gas is given by: 

T(7762 8762 X)Y HP
1 Y(41 X 0.6)

+ × ×Δ =
− × +

  

HT: total height of packing: m 

∆P: pressure drop: Pa 

X and Y are calculated with the true values: 

G

L

LX ;
G

ρ
=

ρ          

2 0,2
G GF T L

3
L N

V C aY . . .
g d

⎡ ⎤⎡ ⎤ ⎡ ⎤ρ μ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ε ρ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  

EXAMPLE 3.1.– 

Ceramic Raschig rings: 

G 10,83 kg.s−=  Nd = 0,05 m  L 1kg.s95,1 −=   

Gρ 31 kg.m−=  Ta 1130 m−=  Lρ 31000 kg.m−=   
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TH 2 m=    ε 0.77=  Lμ 1centipoise=   

0.26
FC (30/50) 0.88= =   

1.95 1X 0.074
0.83 1000

= =
 

 

1.43 0.40

E

1 30.7(0.074) 22(0.074)
Y

= +
 

 

EY 0.1176=   

2
2GE

3 GE

V 130 0.88 1 1
0.1176 V 0.0257

9.81 (0.77) 1000 1
× × × ×

= = ×
× × ×  

 

1
GEV 2.14 m.s−=   

Let us choose (case of engineering): 

IE 0.7=   

Thus: 

1
GV 2.14 0.7 1.5 m.s−= × =   

c
0.83D 0.84 m

0.7 2.14 1 0.785
= =

× × ×  
 

21.5Y 0.1176 0.058
2.14
⎡ ⎤= × =⎢ ⎥⎣ ⎦  

 

1P (7762 8762 0.074)0.058 617 Pa.m
H 1 0.058(41 0.074 0.6)

−Δ + ×= =
− × +  

 

P 617 2 1234 Pa 0.012 barΔ = × = =   
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Suppose that this column exists. By how much do we need to increase VG 
to achieve engorgement with a constant liquid flowrate? 

 
E

X  EY  
GE

V  

0 0.074 0.1176 2.14 
1 0.052 0.14 2.33 
2 0.048 0.144 2.36 
3 0.047 0.146 2.38 

Table 3.2. Iterative calculation 

The answer to this question is given in Table 3.2. 

1
GEV 2.38 m.s−=   

Thus: 

GE GV V 2.38 /1.5 1.59= =   

Therefore, we need to increase VG by 59%. In case 1 (L/G = const.), the 
relative increase in VG would be only 1/0.7 = 1.43, which is 43%. 

3.2.4. Liquid retention 

When studying chemical reactions, it may be useful to be aware of the 
hold-up. The expression given by Jesser and Elgin [JES 43], in SI units, is 
written: 

0.6 n
0.1 0.78
L L

p

L 0.0721.0357
d

−⎛ ⎞ ⎛ ⎞ϕ = × ×μ ×ρ ×⎜ ⎟⎜ ⎟ σ⎝ ⎠⎝ ⎠
  

with: 

n 0.465 0.0108 L= −   

L: mass flux density of the liquid in an empty bed: kg.m-2.s-1 

φ: volume of liquid expressed in relation to the unit volume of the 
column 
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ρL: density of the liquid: kg.m-3 

σ: surface tension of the liquid: N.m-1 

dp: diameter of the sphere with the same surface area as the packing: m 

p Nd Kd=   

dN: nominal size of packing: m 

The coefficient K is given in Table 3.3. 

Type of packing K 
Raschig rings (ceramic) 0.85 
Berl saddles (ceramic) 0.78 
Pall rings (steel) 0.55 
Pall rings (ceramic) 0.80 
Intalox saddles (ceramic) 0.73 

Table 3.3. Jesser and Elgin’s coefficient 

Details of how to calculate K are given in [WUI 72]. 

EXAMPLE 3.2.– 

L
2 13.52 kg.m .s− −=  Lρ 3800 kg.m−=  Nd 0.025 m=   

Lμ 31 cp 10 Pa.s−= =    σ
10.02 N.m−=    K 0.85= (Raschig rings) 

n 0.465 0.0108 3.52 0.428= − × =   
0.6 0.428

3 0.1 0.783.52 0.0721.0357 (10 ) 800
0.025 0.85 0.020

− −⎛ ⎞ ⎛ ⎞ϕ = × × × ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠   

0.105ϕ =   

3.3. Effective height and useable height for the transfer 

IMPORTANT NOTE.– 

The calculation methods presented below are valid only for an approach 
to engorgement equal to 0.7 (70%) and with L/G = const. 
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3.3.1. Methodology 

Suppose we have chosen a particular type of packing and calculated the 
diameter of the column. We then determine: 

– the effective area of contact between the gaseous phase and liquid 
phase; 

– the transfer coefficients of material and possibly of heat; 

– the useable height that actually contribute to the transfer obtained by 
increasing the effective height by 25%; 

– the dead height, relating to the imperfect distribution of the liquid. The 
height of packing is the sum of these two heights. 

3.3.2. Effective area for the transfer 

This area can be expressed as follows: 

e T I Ma (ua a )F= −   

ae: effective volumetric area expressed in relation to the volume of the 
column: m-1 

aT: total volumetric area of the packing, also in relation to the volume of 
the column: m-1 

u: degree of wetting (fraction of the total area that is truly wetted) 

aI: volumetric area wetted but ineffective (stagnant recesses): m-1 

The total area aT is a given value, supplied by the manufacturer (see 
Appendix 2). However, let us consider several types packing of the same 
nature but different sizes, and characterize that size by a similarity ratio k, 
which is the ratio between the size of the packing in question and that of the 
reference packing. In this case, the number of elements contained in the unit 
volume varies with k-3, and the surface of each element with k2. The total 
volumetric area aT therefore varies with k-1. 

The meaning of the use rate u is as follows: if we place a piece of sheet 
metal underneath a flowing faucet, there is a very high probability that only 
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one of the two faces of that metal will be irrigated. Furthermore, that wetted 
surface will probably actually be wetted only partly. This being the case, the 
use rate u of the surface of the sheet would be less than 0.5, and equal to, 
say, 0.3. Note that this factor depends only on the shape of the packing; not 
its dimension. 

The surface aI is the surface area of the recesses where there is stagnant 
liquid that is not renewed and, consequently, does not contribute to the 
material transfer. 

A meniscus situated at the edge between two planes has a surface area 
which depends only on the length of that edge. The area of each meniscus 
therefore varies proportionally to k. 

The number of menisci contained in 1 m3 of packing varies with the 
number of packing elements contained in 1 m3, i.e. with k-3. 

Ultimately, aI varies with k-2. 

Here, we propose to use the values of u and aI that are given in Table 3.4. 

Nature of the packing u Ia  

Raschig rings  0.29 20 

Pall rings 0.34 26 

Berl saddles 0.33 35 

Intalox saddles  0.34 35 

Table 3.4. Coefficients for efficient area 

In this table, aI is given for 25 mm elements. For elements whose size dN 
is different, we take k = dN/25, where the nominal dimension dN is measured 
in mm. These values correspond to operation with a degree of flooding equal 
to 70% (where the height of the transfer unit is minimal). 

Let us examine the way in which the value (uaT – aI) varies with the size 
of the packing in the case of Raschig rings. 
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K Ta  Ia  u T Iua a−  
1 200 20 0.29 38 
½ 370 80 0.29 27 
2 95 5 0.29 22 

Table 3.5. Effective area of transfer 

Note that the effective area of the packing in question is maximum for 
k 1= . This somewhat-surprising result concurs with the experimental results 
obtained by certain authors, who affirm that Raschig rings of 25 mm are the 
most plus effective. However, larger rings accept a higher flowrate of liquid 
at a constant degree of flooding. Thus, we can categorically state that small 
rings are not necessarily more effective than large ones. 

Certain manufacturers offer high-performance packings made of vertical 
parallel plates that are corrugated to a greater or lesser degree, and of 
varying distances apart. Thus, the liquid flows over the two faces and there 
are no recesses of stagnant liquid. A limit to how close the plates can come 
to one another is the need for the gas to have sufficient room to maintain the 
pressure drop at a value lower than those of conventional packings. 

Now let us examine the influence of the nature of the substances 
involved: in order for the column to really be irrigated, obviously, the liquid 
must be able to wet the packing. For this purpose, it may be favorable to 
look for a rough surface (rather than a polished one). However, if the liquid 
does not wet the packing and, in an extreme case, rolls on its surface in the 
form of drops, it is entirely possible that the transfer between the gas and the 
liquid will be acceptable, on condition that the drops are small enough. 
Therefore, the wettability of the packing is not necessarily a determining 
criterion, and the proof is that packing made of Teflon or graphite, which are 
hydrophobic, yield satisfactory results with an aqueous liquid phase. 

A low surface tension encourages wetting of the packing and, if it is 
hydrophobic, favors the presence of small droplets, which therefore have a 
large surface area per unit volume. For this reason, we introduce an 
empirical factor Fm which multiplies the effective area: 

0.25

M
0.073F ⎡ ⎤= ⎢ ⎥σ⎣ ⎦
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σ: surface tension of the liquid: 1N.m−  

(Remember that the surface tension of pure water is 10,073 N.m− ). 

Of course, this expression of FM is valid only in the absence of a 
tensioactive agent. Indeed, such an agent, whilst it does indeed increase the 
wetting of the packing, presents the major drawback of accumulating on the 
surface of the liquid and thus forming a barrier to the transfer of material 
between the liquid and the gas. 

The effective area is often only around 10–20% of the total volumetric 
area, which is unsurprising. Indeed, tests have shown that half the liquid 
flows over 5% of the surface aT, and that 50% of that surface is not in 
contact with any liquid at all. 

The effective area can be measured directly by the sodium sulfite 
oxidation method. 

3.3.3. Partial transfer coefficient on the side of the gas 

The coefficient on the side of the gas is expressed as follows: 

D
G 2/3

G

jG.
Sc

β =   

where: 

R
D 0,36

Fj 0,76
Re

=   

βG: material transfer coefficient on the side of the gas: kmol.m-2.s-1 

G: total molar flux density (in an empty bed): kmol.m-2.s-1 

ScG: Schmidt number on the side of the gas: 

G
G

G G

Sc
D

μ
=

ρ
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ReG: Reynolds number on the side of the gas: G
G

G T

6GM
Re

a
=

μ
 

MG: mean molar mass of the gas: kg.kmol-1 

FR: renewal factor: dimensionless 

The factor FR expresses the aptitude of the packing to divide the gaseous 
flow and to create and renew the gaseous film, and so to favor transfer. 

Thus, when a fluid flows over a crest which divides that fluid to form two 
films, the local transfer coefficient (or heat or material) is considerable (if 
not infinite) along the edge. On the other hand, the surface involved is small, 
except when the packing is entirely composed of wires or vertical plates not 
in contact with each other, along which the liquid flows. 

We use the term “renewal perimeter” to speak of the total length of the 
edges contained in the unitary volume of the packing. 

Thus, the renewal perimeter of a Raschig ring is equal to the perimeter of 
one of the two circles which form its ends. Along the second circle, the film 
created by the first disappears, and this is true on the statistical level: half of 
the existing edges serve to create exchange films, while the other half 
eliminate those films. 

The renewal perimeter PR for usual packings for the nominal dimension 
of 25 mm is shown in Table 3.6. 

Nature of the packing R 25P  

Raschig rings  27.8.10−  
Pall rings 230.10−  
Berl saddles 210.10−  
Intalox saddles 214.10−  

Table 3.6. Renewal perimeter 

For the above packings, we shall accept that in the expression of the 
renewal factor FR, the renewal perimeter PR comes into play with the power 
2/3. 
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When the nominal size dN of the packing varies, the perimeter of each 
element varies in accordance with dN. The number of elements contained in 
the unitary volume varies with 3

Nd− . Therefore, the renewal perimeter varies 

with 2
Nd− . 

The result of the above is that the renewal factor is of the form: 
2/3

R 25
R 2

N

PF K
d

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  

In addition, with Raschig rings of 0.025 m in diameter, we shall agree 
that the factor FR is equal to the unit, so: 

2/3

R 25
R 2

N

PF 0.0415
d

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  

dN: nominal size of the packing: m 

PR25: renewal perimeter of the element of nominal size 0.025 m: m 

3.3.4. Partial transfer coefficient on the side of the liquid 

We shall use a modification of the expression developed by Van 
Krevelen and Hoftijzer [VAN 47]. 

0.66 0.33L
L T L L

F

Dc 0.012Re Scβ = ×
δ

  

βL: material transfer coefficient on the side of the liquid: kmol.m-2.s-1 

cT: total concentration of the liquid in terms of all its components 
(including the solvent): kmol.m-3 

DL: diffusivity of material: m2.s-1 

δF: thickness of the limiting film: m 

δ / 	 [3.3] 
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µL: viscosity of the liquid: Pa.s 

ρL: density of the liquid: kg.m-3 

g: acceleration due to gravity: m.s-2 

2g 9.81m.s−=   

ReL: Reynolds number on the side of the liquid: Re   

LM2: mass flux density (in an empty bed) of the liquid: kg.m-2.s-1 

ScL: Schmidt number for the liquid solution: 

L
L

L L

Sc
D

μ=
ρ

  

3.3.5. Heat transfer coefficients 

Using the Chilton–Colburn analogy and examining the dimensions, we 
obtain the expressions below: 

0.66 0.33L
L L L

F

0.012 Re Prλα =
δ

  

The thickness δF is the same as for material transfer (equation [3.3]). 

T pG
G 2/3

G

j GC
Pr

α =   

The factor Tj  is equal to Dj .  

G: mass flux density (in an empty bed) for the gas: kmol.m-2.s-1 

CpG: molar specific heat capacity of the gas: J.kmol-1.°C-1 
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PrL and PrG: Prandtl numbers on the side of the liquid and of the gas: 

pL L
L

L

C
Pr

μ
=

λ
 and pG G

G
G

C
Pr

μ
=

λ
  

ML and MG: mean molar masses of the liquid and the gas: kg.kmol-1 

αL and αG: heat transfer coefficients on the side of the liquid and the gas:  

W.m-2.°C-1 

λG and λL: heat conductivities of the gas and the liquid: W.m-1.°C-1 

The other parameters have the same meaning as before. 

3.3.6. Height of transfer unit and useable height 

We have seen (in section 3.2.2): 	 [3.4] 

m: slope dy/dx of the equilibrium curve 

βG, βL: partial transfer coefficients in the gas and the liquid: kmol.m-2.s-1 

x, y: molar fractions of the solute in the liquid and the gas  

KG: global transfer coefficient expressed in relation to the gas:  
kmol.m-2.s-1 

Let us write a material balance for a segment of the column of height dH: 

*
G eGdy K (y y)a dH= −   

Remember that L and G are the molar flux densities of liquid and gas in 
relation to the area section of the column (kmol.m-2.s-1). 

ae: effective volumetric area of transfer: m-1 

y*: molar fraction in the gas at equilibrium with the liquid whose molar 
fraction is x 
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The effective height of the column is: 

H H

e OG*
00 G e

G dyH dH H NTU
K a (y y)

⌠ ⌠
⎮ ⎮
⎮ ⎮

⌡⌡
= = = ×

−
  

HOG: height of a transfer unit to the side of the gas: m 

NTU: number of transfer units 

Multiply, by 
e

G
a

, both sides of the expression of G1/K  [3.4]: 

G e G e L e

G G mG L
K a a L a

⎡ ⎤= + ⎢ ⎥β β⎣ ⎦
  

The partial heights of transfer unit are defined by: 

G
G e

GH
a

=
β

 and L
L e

LH
a

=
β

  

The global height of the transfer unit on the side of the gas is then: 

OG G L
mGH H H
L

= +   

Finally, the useable height Hu is: 

u e OGH 1.25H 1.25H NUT= =   

3.3.7. Directly calculating the partial heights of transfer units 

The expressions given in this section correspond to the case where the 
distribution of the liquid is perfect and there is no wall effect. 

1) On the side of the gas: 

0.36 0.66 1
G G G R

e

1.33H .Re .Sc .F
a

−=   
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In this expression, we see the following values play a part (already 
defined in the discussion of the coefficients Gβ  and L ):β  

ReG: Reynolds number on the side of the gas: 

6GMGRe aG TG
= μ   

MG: mean molar mass of the gas: kg.kmol-1 

G: molar flux density (in an empty bed) of the gas: kmol.m-2.s-1 

µG: viscosity of the gaseous phase: Pa.s 

aT: total volumetric area of the packing: m-1 

ScG: Schmidt number on the side of the gas  

G
G

G G

Sc
D

μ
=

ρ
  

ρG: density of the gas: kg.m-3 

DG: diffusivity in the gas of the transferred component: m2.s-1 

HG: partial height of transfer unit on the side of the gas: m 

FR: renewal factor (as explained for the calculation of βG) 

This expression is consistent with that which was given for βG. 

2) On the side of the liquid: 

0.34 0.67
L F L LH 21 . Re .Sc= δ   

HL: partial height of transfer unit on the side of the liquid: m 

The expressions of δF, ReL and ScL are the same as those which were used 
for the calculation of βL. 

This expression of HL is consistent with that given for βL. 
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EXAMPLE 3.3.– 

Packed column using 50 mm Raschig rings 

VG = 1.5 m.s-1 WL = 1.95 kg.s-1 σ = 0.030 N.m-1 
µG = 20.10-6 Pa.s µL = 10-3 Pa.s Dc = 0.84 m 
ρG = 1 kg.m-3 ρL = 1000 kg.m-3 m = 1.29 
MG = 32 kg.kmol-1 ML = 18 kg.kmol-1 u = 0.29 
DG = 0.152.10-4 m2.s-1 DL = 0.20.10-8 m2.s-1 aT = 95 m-1 
cTG = 0.03125 kmol.m-3 cTL = 55 kmol.m-3 aI = 5 m-1 
VG = 1.5 m.s-1 g = 9.81 m.s-2 WL = 1.95 kg.s-1 

1) Effective area: 

0.25

M
0.073F 1.25
0.030
⎡ ⎤= =⎢ ⎥⎣ ⎦

  

1
ea (0.29 95 5) 1.25 28.19 m−= × − × =   

2) Coefficient on the side of the gas: 
2/32

R 3 2

30.10F 0.0415 1.0093
(50.10 )

−

−

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
  

G 6

6 (1,5 1)Re 4736
20.10 95−

× ×= =
×  

 

D 0.36

1.0093j 0.76. 0.0365
4736

= =
 

 

6

G 4

20.10Sc 1.32
1 0.152.10

−

−= =
×   
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G 2/3

0.03651.5 0.03125
1.32

β = × ×
 

 

2 1
G 0.00142 kmol.m .s− −β =   

3) Coefficient on the side of the liquid: 
1/36

3
F 6

10 0.047.10 m
10 9.81

−
−⎡ ⎤

δ = =⎢ ⎥×⎣ ⎦
  

2 1
L 2

1.95LM 3.52 kg.m .s
0.785 0.84

− −= =
×

  

L 3

4 3.52Re 500
10 28.19−

×= =
×

  

3

L 3 8

10Sc 500
10 0.20.10

−

−= =
×

  

8
0.66 0.33

L 3

55 0.2.10 0.012 500 500
0.047.10

−

−

×β = × × ×   

2 1
L 0.01344 kmol.m .s− −β =   

4) Heights of transfer unit: 

2 11.5 1G 0.0469 kmol.m .s
32

− −×= =   

G
0.0469H 1.17 m

0.00142 28.19
= =

×  
 

2 13.52L 0.1955 kmol.m .s
18

− −= =   

L
0.1955H 0.51 m

0.01344 28.19
= =

×   
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With the direct calculation method: 

0.36 0.66 1
G

1.33H 4736 1.32 1.0093
28.19

−= × × ×   

0.04712 21.045 1.20 0.99= × × ×   

GH 1.17 m=   

3 0,34 0,67
LH 21 0.047.10 500 500−= × × ×   

30.987 10 8.27 64.31−= × × ×   

LH 0.51 m=   

OG
1.29 0.0469H 1.17 0.51

0.1955
×⎡ ⎤= + ×⎢ ⎥⎣ ⎦

  

OGH 1.32 m=   

3.4. Effects of the distribution of the liquid: dead height 

3.4.1. General 

In order for a column to work properly, the following is necessary: 

– the injection of liquid at the top of the column must lead to a uniform 
distribution of that liquid across the section of the column. For this purpose, 
there are various devices (feeders) in existence. We shall examine the 
performances of some of these; 

– the wall effect must be combatted. Indeed, the liquid always has a 
tendency to spread horizontally and, consequently, to accumulate at the wall, 
and in this situation, the contact between the gas and liquid becomes slight. 
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3.4.2. Feeders 

The wetting of the packing at the top of the column is performed by a 
feeder, which could be: 

– a downward vertical jet of liquid, coaxial with the column; 

– a jet issuing from a sprayer and which is therefore in the shape of a full 
cone. However, sprayers may require a pressure of 1–3 bars; 

– a spray corona, which is a horizontal torus shot through with holes in its 
lower circle. The diameter of the torus is generally half that of the column. 
This type of corona consumes a small amount of pressure; 

– gutters whose edges are sawtoothed to render the overflow of the liquid 
uniform. These gutters are arranged in parallel to one another. They are used 
for columns with a very large section. 

It must be understood that if, on a section of the column, there is a dry 
zone and a zone irrigated by the liquid, the gas will favor the path 
corresponding to the dry zone, which prevents mutual contact between those 
two fluids. 

An article published in the erstwhile journal Génie Chimique (for which it 
has not been possible to find the exact reference) shows that the ratio 
between the vertical distance traveled Zm and the horizontal displacement Lh 
of the spreading liquid is equal to 15: 

m hZ 15L=   

Thus, over the height Zm which contributes to the dead height, the 
transfer of solute between the gas and liquid is very slight, if not in fact non-
existent. The height corresponding to Zm is neutralized, meaning that it is 
useless. Table 3.7 gives the value of Lh depending on the type of feeder. 

Nature of the feeder hL  

Axial jet of liquid 
Full conical jet of spray 
Spray corona 
Parallel gutters 

Radius of the column 
Zero 

Half the radius of the column 
Half the interval between gutters 

Table 3.7. Horizontal displacement of the liquid 
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EXAMPLE 3.4.– 

Consider a spray corona whose diameter is 0.2 m for a column whose 
diameter is 0.4 m. 

h
0.4 1L 0.1
2 2

⎛ ⎞= × =⎜ ⎟
⎝ ⎠

  

The un-useable height of packing beneath the corona is: 

IZ 15 0.1 1.5 m= × =   

3.4.3. Accumulation of liquid at the wall (wall effect) 

As it descends down the column, therefore, the liquid, whose flowrate is 
maximum on the axis of the column, has a tendency to spread and, hence, 
move towards the wall to form a film which practically produces no 
exchange at all with the gaseous phase. 

When the liquid running along a vertical wall does not have many 
available paths to take it away from the wall, it tends to accumulate there. In 
other words, the wall is not highly reflective. 

However, it has been possible to render the wall of a column almost 
reflective and, thereby, increase the effectiveness of the transfer by one of 
the following two methods: 

1) coating the internal face of the wall with a product that is not wetted by 
the liquid; 

2) particularly, shaping the wall like an accordion (Kirschbaum). Indeed, 
the liquid flowing over inclined surfaces is projected toward the inside of the 
column. 

Unfortunately, these are laboratory curios and, on the industrial level, 
vessel walls are not reflective. 

Over a height dZ, the flux density reaching the wall is: 

p
p

c

dW1V
D dZ

=
π

 [3.5] 
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Wp: flowrate at the wall: kg/s or kmol/s, or indeed m.s-1  

Dc: diameter of the column: m 

The flux density of the liquid in an empty bed in the column is: 

L P
L 2

2

W WV
D / 4

−=
π

 [3.6] 

LW : is the liquid flowrate fed in at the top of the column 

The lateral resistance to the spreading of the liquid in the vicinity of the 
wall is proportional to the friction surface – i.e. to ae with (see section 3.3.2): a μa a   

In addition, pV  is proportional to LV . Thus, we write: V V   

Let us use expressions [3.1] and [3.2]. We find: 

  

We then integrate: W W 1 exp   

We shall take K 0.5= . 

Look now for the limiting value of Z/De so that the liquid at the wall 
represents no more than 10% of the liquid fed in. This is expressed by: exp . 0.9	so	 0.21	a   

For example, with Raschig rings of 25 mm, ae is equal to 38 m-1 (see 
Table 3.5). 
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Thus: 

c

Z 0.21 38 8
D

≤ × =   

3.4.4. Effect of parietal flux on absorption and stripping 

Consider a liquid feed WL with the content x0 and which needs to exit the 
column at the specified content xs. The parietal flowrate rises from zero to 
Wp from the top to the bottom of the column. If we accept, for simplicity’s 
sake, that this rise is linear, the mean parietal flowrate will be taken as equal 
to ppW /2 W= . In addition, we shall suppose that the liquid at the wall does 
not give rise to exchange. 

The solute balance is written: 

p p1 L 0 s Lx (W W ) x W x W− + =   

The content x1 is that of the non-parietal liquid at the outlet: 

s 0
1

x pxx
1 p
−=
−

 with p

L

W p
W

=
 

 

1) Consider gas absorption with p 0.05:=  

0x 0.01=   

sx 0.1=   

1
0.1 0.05 0.01x 0.105

1 0.05
− ×= =

−  
 

We can see that the performance of the column needs to increase from  
x1 = 0.100 to x1 = 0.105, which does not cause a significant alteration of the 
equipment. 

2) Consider the stripping of a liquid, still with p 0,05:=  

0x 0.1=  sx 0.01=   

1
0.01 0.05 0.1x 0.0053

1 0.05
− ×= =
−  
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Owing to the wall effect, the column must be designed with a 
specification x1 as half of xs, which may cause its height to triple, flowrates 
permitting. Packed columns need to be used carefully for stripping. 

NOTE.– According to Leenaerts [LEE 66], the velocity profile of the liquid 
in an empty bed in a packed column is not uniform, and resemble a bell 
curve. The local velocity can be expressed as: 

LLV G(r)V=   

LV : mean velocity in the section of the column: 1m.s−  

Thus: 

– not too far from the axis: G(r) 1> , 

– in the vicinity of the wall: G(r) 1<< . 

Locally, the flux density for the spreading of the liquid is: 

h LV kV=   

The coefficient k is constant throughout the entire section of the column. 

Finally: 

h LV / V kG(r)=  

However, we have seen that: 

– not too far from the axis: 

Lh hV / V L / Z 1/15 0.067= = =   

– on the periphery (Raschig rings of 25 mm): 

h L p L *
e

0.5V / V V / V 0.0033
4a

= = =   

These results, then, are consistent. 
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3.4.5. Remedying the wall effect – recenterers 

We divide the column into segments whose height corresponds to 
approximately ten times the diameter of the column. Between the segments 
thus defined, we install recentering distributors, which are conical frusta 
combined with an overflow corona (see Figure 3.1). 

 

Figure 3.1. Recenterer with a conical frustum and crenelated corona 

The slope of the conical frustum may be 45° and its internal diameter will 
be around 0.5 times that of the column. The pressure drop in the whole 
system is less than 500 Pa. It is due to the changes in direction of the gas. 
This type of device is recommended for columns whose diameter is less than 
0.4m. Indeed, the influence of the wall effect quickly fades when the 
diameter of the column increases. 

3.4.6. Conclusion 

The results acquired in Chapter 4 concerning material transfers of 
material are immediately usable for the calculations for a packed column, 
even in complicated cases such as the adiabatic absorption into water of 
hydrochloric gas or ammonia. For this purpose, we divide the column into 
ten or so slices. To calculate the section k 1+  as a function of the section k, 
we calculate the material transferred with the composition in k, which gives 
us an initial value of the composition in k 1+ . We then calculate the matter 
transferred using that composition. Next, we find the arithmetic mean of 

Conical frustrum

Crenelated corona 
for overflow 
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these two transferred amounts of material (from k and from k 1+ ), which 
gives us the value of the composition in k 1+  from k. Appendix 1 gives the 
vapor pressures ip  of HCl, 3NH  and H2O as a function of the temperature 
and of the composition of the liquid phase. If TP  is the total pressure, we 
have: 

* i
i

T

py
P

=   

The Runge–Kutta method (see Appendix 4) represents an improvement 
for the solving of this problem. 

Remember, though, that the old concept of the HETP (height equivalent 
to a theoretical plate) can be evaluated as equal to around 25 times the 
nominal size of the packing. Thus, we can quickly gain a rough estimation of 
the height of a distillation column or even an isothermal absorption column. 
However, this way of working is imprecise, because there is no rational 
justification for the concept of the HETP. 



4 

Batch Distillation 

4.1. Simple boiling 

4.1.1. Simple boiling of a vat 

The ASTM procedure of petroleum engineers is a standardized version  
of this laboratory operation. The equipment necessary for this procedure 
includes only a balloon with a thermometer, heated electrically. As a 
function of the fraction vaporized, we raise the temperature of the liquid in 
the balloon, and therefore in the vat. This way of working, without a column 
above the vat, is similar to the distillation in an alembic or the retorts used by 
alchemists. 

Such an operation can be performed by heating a simple balloon and 
noting the temperature of the liquid as it vaporizes. At each time τ , the 
liquid is at its boiling point, and an equilibrium calculation gives us the 
instantaneous composition iy  of the vapor produced. 

Over the course of a time period Δτ , the molar quantity VΔ  of vapor 
produced is such that: 

( )i i i
i

Q V y H hΔτ = Δ −∑   

Q : thermal power of heating of the vat: Watt 

iH  and ih : enthalpies of the component i in the vapor state and in the 
liquid state: 1J.kmol−  
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The amount of component i present in the vat is im ( )τ  and over the 
period Δτ , this quantity decreases by:  

i im VyΔ = Δ   

The composition of the vat has become: 

i i
i

i i
i

m mx
(m m )

− Δ=
− Δ∑

  

Using this composition, at the boiling point of the vat, we are able to 
calculate the iy  at equilibrium with the ix . Let (x) symbolize the set of ix  
values. The above relations are of the form: 

( )d(x) F (x),
d

= τ
τ

  

The Runge–Kutta procedure can be employed (see Appendix 4). 

NOTE (Purification of dirty liquids).– 

The purification of used motor oils can be done by simple boiling in a 
moderate vacuum, followed by condensation of the oil vapors. Indeed, the 
ultra-fine particles of carbon which blacken the oil have a vapor pressure of 
zero. The boiler must be composed of flat parallel hollow plates, containing 
electrical resistors, or else, more economically, allowing the passage of 
water vapor heating. Two or three internal chicanes ensure the rigidity of the 
hollow plate and distribute the vapor evenly. The flatness of the plates and 
sufficient spacing between them make for easy cleaning, because the boiling 
of a dirty liquid inevitably leaves deposits on the heated surfaces. 

Purification by filtration is not a viable solution, for the simple reason of 
quick clogging of the filtering support. 

The most elegant solution is centrifugal decantation, with a machine 
made up of superposed “plates”, rotating around a vertical axis which passes 
through their center. However, these machines are not cheap to buy, and this 
method does not eliminate certain dissolved products deriving from the 
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degradation of additives in the oil, whereas simple boiling can probably do 
the job well. 

In any case, the oil thus recovered can only, at best, be used as a filler in 
the manufacture of new oil, unless we obtain a detailed analysis of the 
components of the recovered oil and define an appropriate range of 
adjuvants to add to it in order to make it usable. 

4.2. Total-reflux distillation 

4.2.1. Operating principle 

In steady operation, the components rotate in the column, rising with the 
vapor and dropping with the liquid. The volatile products are primarily 
drawn toward the top of the column (high values of jix  and jiy  for these 
products), whereas the heavier fractions are found at the bottom (high values 
of jix  and jiy  for these heavy products and small values for the light ones). 

At the bottom of the loop corresponding to each component, that 
component is transferred from the liquid to the vapor phase, and at the top, 
the transfer takes place from the vapor to the liquid. 

4.2.2. Important convention 

Throughout this volume just like everywhere else in this set of books, the  
plates will be numbered from top to bottom of the column with the index  
j = 1 for the ensemble of the condenser and the reflux tube, and the index  
j = p for the vat and its boiler. Additionally, Appendix 5 discusses the 
implementation of the total molar quantities Mj on the plates. 

4.2.3. Balances and transfers of material and heat (total reflux) 

Consider a domain encapsulating the vat and its boiler, as well as the 
bottom of the column situated beneath plate j ⎯ 1. By writing that what goes 
in must come out (i.e. that the input and output are equal to one another), we 
obtain, for the component i: ℓj , vj, 		2 j p  
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The overall flowrates are the sum of the partial flowrates for all the 
components: Lj Σ

i
lj ,   and 		Vj, Σ

i
vj,   

Thus: 

j 1 jL V− =   

It is important to quash the idea that, with total reflux, there is no 
exchange between the two phases. Indeed: 

lj , vj,   

lj, vj ,   

By subtracting, term by term: 

lj, lj , vj , vj, ∆wj,   

The term j,iwΔ  is the molar quantity of component i (gained by the 
liquid and lost by the vapor) on plate j, per unit time. 

The same reasoning applies to heat: 

p j 1 j 1 j jQ L h V H− −+ =   

(with p 1Q Q 0+ = ) 

p j j j 1 j 1Q L h V H+ ++ =   

Thus, by subtraction, we find: 

jj j j 1 j 1 j 1 j 1 j jL h L h V H V H q− − + +− = − = Δ   

The term jqΔ  is, on plate j, the thermal power gained by the liquid and 
lost by the vapor. 
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On each plate, we need to determine: 

– the material exchanged between the liquid and vapor, 

– the variations in temperature of the liquid and the vapor. 

To do so, we refer to the discussion in Chapter 2 for real plates and to 
Chapter 3 for packed columns. 

4.2.4. Calculations for a total reflux column 

This calculation must be performed in several iterations: 

1) calculation from the vat, supposing that the molar quantity present on 
the plates is null. However, from this, we deduce the compositions of the 
liquid on the plates; 

2) taking molar quantities of liquid on the plates and, using the calculated 
compositions, we can, by subtraction, discover the molar quantity and 
composition of the vat; 

3) we repeat the calculation for the column, starting with the vat, which 
gives new compositions of the liquid on the plates; 

4) we correct the molar quantity and composition of the vat; 

and so on. 

We shall proceed on the basis of the vat kept at boiling point. An 
equilibrium calculation gives us the composition and temperature of the 
vapor pV . The composition of the liquid p 1L −  is the same as that of pV . On 
the other hand, it is necessary to make a hypothesis about the temperature of 
that liquid which can be estimated as 2 or 3°C below the boiling point of that 
liquid. Let (0)

p 1h −  represent the corresponding enthalpy. 

The calculation can then be easily performed, working back up the 
column until we reach plate 2 which, itself, defines the vapor 2V  and its 
temperature. 

As is common, the condenser will be supposed to operate by total 
condensation, so that the supercooling of the condensate 1L  will be either 
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zero or imposed, which is tantamount to defining the enthalpy (0)
1h  of that 

condensate. Because we have assimilated p 1h −  to the value (0)
p 1h − , it is normal 

that we have: 

(0)
1 1h h≠   

The true value of p 1h −  must be such that we have: 

p p p p 1 p 1 2 2 1 1 1Q V H L h V H L h Q− −= − = − = −   

However: 

p 1 pL V− =  and 1 2L V=   

Thus: 

( ) ( )(1) (0)
p p p p 1 2 2 1Q V H h V H h−= − = −   

This relation enables us to calculate (1)
p 1h − , which should replace (0)

p 1h − . 
However, it would undoubtedly be prudent to adopt: 

( )(1) (1) (0)
p 1 p 1 p 1

1h h h
2− − −= +   

In any case, three bottom-up calculations for the column will certainly be 
sufficient. 

4.3. Batch distillation 

4.3.1. Definitions and advantage to the operation 

In order for continuous distillation to become discontinuous, we simply 
need to suddenly change some of the parameters. For this reason, here, 
“discontinuous distillation” will be different from “batch distillation”. The 
equipment we shall study will contain: 

– a vat heated electrically or with a steam boiler; 
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– a plate column or packed column above the vat; 

– a condenser cooled by refrigerant liquid, with a reflux tube to collect 
the condensate. 

This equipment contains no external feed or withdrawal mechanism, 
other than the withdrawal of distillate at the outlet from the reflux tube. In 
principle, distillation is continued until the vat is exhausted – i.e. until all the 
liquid contained in the vat has gone. The study presented below is the theory 
of the true boiling point (TBP) curve used by American Petroleum 
Engineers. This curve represents the variations in the temperature of the 
distillate in the vapor state at the top of the column as a function of the 
fraction of the vat’s contents having been vaporized. If the column is 
equivalent to 30 theoretical plates and if the reflux rate is around 30 (i.e. 
very high), the TBP appears as a succession of platforms, each 
corresponding to a pure component. 

 

Figure 4.1. Shape of the TBP curve for a mixture of petroleum spirits 

Thus, the components exit successively with the distillate, a little like the 
effluents in chromatography. 

Now suppose that we have the following conditions: 

– the amount being handled is small; 

– the number of components is limited; 

– low purity is sufficient for the products obtained (a component of which 
there is little in the vat would be obtained with mediocre purity). 

Vaporized fraction 

Temperature 
at the top 
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The fractioning will be all the better when there is a broad range of 
fugacities. We could, for instance, design a 5 3m  vat, topped with a recovery 
column 0.8 m in diameter and containing 20 or 30 plates. It may therefore be 
cheaper to distill several vats over the course of a year rather than install 
three or four columns running continuously. 

The provisional calculation method proposed here is an improvement of 
that published by Domenech and Enjalbert [DOM 81]. Indeed, here, the 
plates are real rather than theoretical, so the mean composition of the liquid 
on a plate is no longer equal to the output composition. 

4.3.2. Time taken to cross a plate 

Let us set down the following definitions: 

pS : spacing between two consecutive plates: m 

LCh : height of clear liquid on the plate: m 

GV : velocity of the gas in an empty bed: 1m.s−  

LV : velocity of the liquid in an empty bed: 1m.s−  

The order of magnitude of the crossing times is: 

LC
L 3

L

h 0,02# 20 s
V 10−τ = =  and p LC

G
G

S h 0,4 0,02# 0,38 s
V 1
− −τ = =   

Thus, any disturbance in the gaseous flowrate immediately impacts 
across the whole height of the column. On the other hand, a disturbance of 
the liquid flowrate at the top will take several minutes to have an impact at 
the bottom of the column. Similar conclusions can be drawn for packed 
columns. 

4.3.3. Choice of time increment 

The increment kΔτ  separates times k 1−τ  and kτ . 
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Let us set: 
0
pM : initial molar quantity in the vat 

D : molar flowrate of the distillate withdrawn 

The time T of the rectification is less than the following maximum: 

0
max pT T M D< =   

Indeed, when the liquid level in the vat is relatively low, the boiler begins 
not to work properly, because the remaining heavy products are often 
difficult to fractionate. 

If n is the predictable number of components present in the mixture being 
processed, we set: 

k
T
qn

Δτ =   

The number q is greater than or equal to 3 or 4, in the hope of clearly 
seeing the appearance of platforms of temperature and composition at the top 
of the column. 

4.3.4. Balances of the vat + boiler ensemble 

Suppose we know the overall flowrate, the composition and the enthalpy 
of the liquid exiting plate p 1−  at time k 1− , and the composition and 
overall molar quantity of the vat’s contents. 

The material balances of the vat are written: 

– overall balance: 
k k 1
p p k 1 k

p 1 p
k

M M
L V

−
−
−

−
= −

Δτ
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The overall flowrate of vapor will be: 

k k 1
p p 1V L D−

−= +   

Indeed, the overall molar quantities jM  are constant in the reflux tube 
and throughout the column;  

– partial balances: 

k k 1
p,i p,i k 1 k 1 k k

p 1 p 1,i p p,i

m m
L x V y

−
− −
− −

−
= −

Δτ
  

p p,i
i

M m=∑  p,i
p,i

p

m
x

M
=

 
 

The composition of the vapor pV  results from the equilibrium between 
that vapor and the vat contents. The composition of the mixture would be the 
arithmetic mean of p,ix  at time k 1−  and at time k. The result of this is that 
the equilibrium calculation is iterative. Note that this calculation gives us the 
temperature and enthalpy pH  of the vapor pV , and similarly for ph , the 
enthalpy of the content of the vat all at time k. 

The heat balance of the vat + boiler ensemble is written: 

p p
p p 1 p 1 p p

d(M h )
Q L h V H

d− −+ = +
τ

  

However: 

p p p p
p p

d(M h ) dM dh
h M

d d d
= +

τ τ τ
 and pdM

D
d

= −
τ

  

The balance becomes: 

( ) ( )
k k 1
p pk k k 1 k k 1

p p p p 1 p p 1 p

h h
Q V H h D h h M

−
− −
− −

−
= − − − +

Δτ
  

From this balance comes the thermal power pQ  of the boiler. 
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4.3.5. Balances of the condenser + reflux tube ensemble 

Suppose, for the vapor 2V , we know its overall flowrate, composition 
and enthalpy (or temperature). In addition, the liquid in the reflux tube is 
homogenous. 

The material balance for the reflux tube is: 

1 2L V+ =  1 1L L D+ = +   

1,i
1 1,i 2 2,i 1

dx
L x V y M

d
+ = −

τ  
 

Between times k–1 and k, we have: 

( ) ( )k k 1
1,i 1,ik k 1 k k k

1,i 1,i 1 2 2,i 1
k

x x1 x x L V y M
2

−
− +

−
+ = −

Δτ
 where k k

1 2L V+ =   

From the above equation, we deduce that: k
1,ix .  

The heat balance for the reflux tube is written: 

( ) ( )k k 1
1 1k k 1 k k ck

1 1 1 1 1 1
k

h h1 h h L L h M ,
2

−
− + +

−
+ = −

Δτ
 from which we obtain k

1h  

The enthalpy ck
1h  is that of the condensate exiting the condenser. That 

condensate is at its boiling point. 

The downward reflux in the column is: 

2
1 1

V RL L D
R 1

+= − =
+

 (R is the reflux rate)  

Note that the instantaneous refrigeration power of the condenser is given 
by: 

( )k k k ck
1 2 2 1Q V H h= −   
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The heat balance for the reflux tube is: 

( ) ( )
k k 1
1 1 ck k

1 1 1 1
k

h h
M L h h

−
+

−
= −

Δτ
  

Hence, we have the enthalpy k
1h  of the liquid exiting the reflux tube and 

entering the column. 

4.3.6. Proceeding of the simulation 

Initial conditions: the column works with total reflux. 

Time τ1: between the start of the withdrawal of the distillate and the 
arrival of the disturbance in the liquid flowrate in the vat, a period of time 
elapses of around 1 to several minutes. During that time, we can accept that 
the composition and temperature of the distillate are those of the condensate 
during total reflux. 

Time τ2: the mixture begins to be depleted. The balances for the vat and 
the boiler give the vapor Vp at time τ1 and, based on the liquid known Lp-1 at 
time τ0, we work back up the column, using the transfers and balances of 
heat and material for each plate. The material and heat balances of the 
condenser + reflux tube ensemble give the liquid L1 at time τ1, in terms of its 
composition, flowrate and temperature. We work back down the column to 
the vat, which gives us a new value of Lp-1 at time τ1 and, having found the 
balances for the vat, we work back up to the condenser. Two or three 
journeys up and down the column suffice for convergence to be achieved, so 
that the characteristics of L1 and Lp-1 no longer change. 

It may be of interest to approach the solution more slowly, by choosing 
not the new values of Lp-1 and L1, but their arithmetic mean with the previous 
value. 

Time τ3, τ4…: the procedure is the same as at time τ2. 

In summary, for each time period Δτk = τk – τk-1, we perform: 

1) the calculation of the balances in the vat; 

2) the climbing of the column; 
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3) the calculation of the balances of condensate; 

4) the descent of the column and return to 1 until we have convergence 
for L1 and Lp-1. 

Appendix 5 describes the way to determine the molar hold-up of liquid 
on the plates. The residence time of the liquid in the reflux tube is around 
5 minutes. 

4.3.7. Practical running of an industrial installation 

Over time, the vat and the column become poorer in light components 
and, consequently, richer in the heavier components. Thus, the boiling and 
dew points of the liquid and gaseous mixtures present gradually increase, 
which has consequences for the operation of the boiler and the condenser. It 
is desirable, though, throughout the operation, to be able to adjust the 
thermal powers Q1 and Qp of the condenser and boiler at will. 

In a condenser, the heat transferred from the vapor to the coolant liquid 
increases with the gap in the temperatures of the two fluids. If the proportion 
of heavy components increases, the dew and boiling points of the vapor and 
its condensate increase, which increases the temperature gap. The solution is 
to decrease the flowrate of coolant liquid (line (2) in Figure 4.2). 

 

Figure 4.2. Heat transfer curves for total condensation 

tbubble 

tdew 

Power (Watt) 
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The boiler is composed of a bundle of vertical pipes, generally 2 m high 
and with an internal diameter of 2 cm. The heating vapor condenses on the 
outside of the pipes, and it is in those tubes that the boiling takes place. From 
the very start of the operation, the device must be overdimensioned. If the 
lower part of the tubes is flooded with the condensate of the heating vapor, 
the boiler, whilst it may be oversized, will deliver the correct amount of 
thermal power. We merely need to gradually lower the level of condensate to 
increase the device’s power. Naturally, if the heating system is electrical, we 
simply need to set the position of a rheostat to obtain the desired power. 

Thus, it is possible to obtain preset values of 1Q  and pQ . 

Researchers in laboratories and industrial operators seek to obtain the 
following during the course of the operation: 

– a constant distillate flowrate D, which can easily be obtained by using a 
flow-regulating valve; 

– a constant reflux rate 1L /D  of around 20–30. For this purpose, we need 
to act on the thermal powers 1Q  and pQ , as has just been explained. 
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A Few Expressions for  
Partial Vapor Pressures 

A1.1. Henry’s constant 

Henry’s law is expressed by: 

p Hx=   

p: vapor pressure of the solvent at equilibrium 

x: molar fraction of the solute 

p is measured in atmospheres, 

H is therefore measured in atmospheres, and depends on the temperature. 
Thus, for ammonia dissolved in water at a concentration of less than 15%: 

3031.16H exp 12.186
.t 229 35

⎛ ⎞= −⎜ ⎟+⎝ ⎠
  

H: atm 

t C= °   

When using Henry’s law, it is important to remember that, in parallel, the 
vapor pressure of the solvent varies in accordance with Raoult’s law, 
meaning that it is proportional to the molar fraction of the solvent. 
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A1.2. Empirical formulae 

In certain cases – e.g. when there is complexation in solution or even a 
chemical reaction – it is necessary to employ empirical expressions. 

Such is the case with the dissolution of ammonia gas and hydrochloric 
gas in water (hereinafter, the x values represent the mass fractions). 

System 3NH water− : contents less than 15%: use Henry’s law. 

3NH : contents greater than or equal to 15%, use the following relation: 

62.512814.219 1 1.6xp exp 11.01672 0.7574
t 230 x t 230

⎡ ⎤ − ⎛ ⎞⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥+⎝ ⎠ ⎝ ⎠ +⎝ ⎠⎣ ⎦
  

Water:  

2p exp 13.778154 0.267373x 2.74972x
⎡

= + −⎢
⎣

  

25185.22 52.3998x 156.448x
t 273

⎤− +⎛ ⎞−⎜ ⎟⎥+⎝ ⎠⎦
  

HCl-water system 

HCl:  

211121.269 22170.193x 17972.592xp exp 20.24525 14.31977x
t 273

⎡ − + ⎤⎛ ⎞= − − ⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
  

Water: 

25326.137 21262.392x 7290.398xp exp 13.88267 1.0834x
t 273

⎡ ⎤− +⎛ ⎞= − − ⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
  

For both systems: 

p is expressed in atmospheres, 

x is expressed in gravimetric fractions. 
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Characteristics of Typical Packings 

Material Dimension 
(mm) 

Thickness of 
the wall 
(mm) 

Apparent 
density 
(kg.m–3)  

Volumetric 
surface  
(m–1)  

No-load 
fraction (%) 
(Porosity) 

Ceramic Raschig 
rings 

102 

76 

51 

38 

25 

19 

13 

9.5 

8 

6.5 

11 

9.5 

6.5 

6.5 

3 

2.5 

2.5 

1.5 

1 

0.8 

600 

650 

650 

700 

700 

700 

800 

800 

800 

800 

50 

70 

95 

130 

200 

240 

370 

500 

600 

800 

75 

75 

75 

68 

73 

72 

64 

65 

72 

70 

Steel Raschig 
rings 

76 

51 

38 

25 

19 

13 

9.5 

6.3 

1.6 

1.2 

0.9 

0.7 

0.6 

0.5 

0.5 

0.5 

450 

460 

480 

560 

580 

700 

930 

1 400 

70 

100 

140 

210 

270 

400 

600 

800 

94 

94 

94 

93 

93 

91 

88 

82 
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Ceramic Pall  
rings 

102 

51 

25 

9.5 

5 

3 

420 

550 

640 

56 

125 

220 

82 

78 

73 

Steel Pall rings 

51 

35 

25 

16 

1 

0.8 

0.6 

0.4 

400 

430 

500 

550 

105 

145 

240 

370 

95 

95 

94 

93 

Porcelain Berl 
saddles 

51 

38 

25 

19 

13 

6.3 

 640 

610 

720 

800 

900 

900 

110 

150 

250 

300 

480 

1 000 

77 

76 

70 

67 

65 

62 

Intalox saddles 

51 

38 

25 

19 

13 

 600 

600 

600 

600 

600 

110 

160 

250 

300 

480 

75 

74 

75 

73 

73 
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Proposal For a Normalized Foaming Test 

A3.1. Experimental protocol 

Take four clean test tubes (washed with distilled water). 

Fill the tubes to one third of their height with the liquid to be tested and 
four control solutions. Stir the tubes for 5 seconds, parallel to their axes. By 
comparing the test liquid with the control solutions, we are able to assign the 
liquid a foaming index. 

A3.2. Composition of the control solutions 

Foaming index Composition of the solution 

4 Highly foamy 

3 Foamy 

2 Slightly foamy 

 
1 Non-foamy 

2 drops of Teepol in water in 1/3 of test tube 

1 drop of Teepol in water in 1/3 of test tube  

Solution 3 is diluted with an equal volume of water and expressed in 
relation to 1/3 of the tube 

Water with no Teepol 
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Numerical Integration:  
Runge–Kutta 4th Order Method 

Integrate the following differential equation: 

( )dx F x,
d

= τ
τ

  

0 0x xτ= =   

We assume: 

i 1/2 i 2+
Δττ = τ +   

(1)
i 1/2 i i i x x F (x , )

2+
Δτ= + τ   

(2) (1)
i 1/2 i i 1/2 i 1/2x x F (x , )

2+ + +
Δτ= + τ   

(1) (2)
i 1 i i 1/2 i 1/2x x F (x , )+ + += + Δτ τ   

where: 

[ (1)
i 1 i i i i 1/2 i 1/2x x F (x , ) 2F (x , )

6+ + +
Δτ= + τ + τ +

 
 

         (2) (1)
i 1/2 i 1/2 i 1 i 12F (x , ) F (x , )+ + + + ⎤τ + τ ⎦   
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We can apply a general method to a system of n differential equations of 
the first-order, involving n variables xj (j from 1 to n). The independent 
variable is x0: 

( )j
j 0 1 j n

0

dx
F x ,x ,..., x ,..., x

dx
=   

Assume: 

( ) ( )

0
0,i 1 0,i 0 0,i 1/2 0,i

1 0
j,i 1/2 j,i j 0,1 j,i n,i

xx x x and x x
2

xx x F x ,..., x ,...x
2

+ +

+

Δ= + Δ = +

Δ= +
  

( ) ( )( )1 1(2) 0
j,i 1/2 j,i j 0,i 1/2 j,i 1/2 n,i 1/2

xx x F x ,..., x ,..., x
2+ + + +

Δ= +   

( ) ( )( )2 2(1)
j,i 1 j,i 0 0,i 1/2 j,i 1/2 n,i 1/2x x x F x ,..., x ,..., x+ + + += + Δ   

And, finally: 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 10
j,i 1 j,i j 0,i j,i n,i j 0,i 1/2 j,1 1/2 n,i 1/2

2 2 1 1
j 0,i 1/2 j,i 1/2 n,i 1/2 j 0,i 1 j,i 1 n,i 1

xx x F x ,...x ,...., x 2F x ,...x ,...x
6

2F x ,...x ,...x F x ,...x ,...x

+ + + +

+ + + + + +

Δ ⎡= + + +⎣

⎤+ ⎦
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Molar Retentions 

In each area, the liquid volume Ω flows according to the existing 
hydrodynamic conditions in the area. If jiω  is the partial volume of 
component i in the liquid of tray j, we should find, at time k: 

k k
ji ji j

i
m csteω = Ω =∑

 
 

where k
jim  represents the molar quantity of component i present on the tray j 

at time k. 

Therefore, after this calculation, we generally find: 

k k(0) (0)
ji ji j j

i

mω = Ω ≠ Ω∑   

According to which we must revise k(0)
jim  and insert: 

jk k(0)
ji ji (0)

j

m m
Ω

=
Ω

 
 

The molar quantity present in area j at time k is therefore: 

k k
j ji

i
M m=∑   
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However, the molar quantity present in the tank gradually decreases as 
the distillation continues and there is no correction make it at this level. 

These calculations can be broken down into the following steps: 

– calculate the total reflux using the assumed retentions (0)
jM ;  

– calculate the total concentration (0)
T, jc  (kmol.m-3) throughout the column; 

– use the hydrodynamics of the column to calculate the volumetric 
retentions jΩ (j from 1 to p–1; where p is the tank) 

– recalculate the molar retentions by (1) (0)
j j T, jM c= Ω  

(1)
jM retentions are assumed to be constant for every calculation of tank 

distillation. 
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