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Foreword

Acoustics is a classic field of inquiry that has enjoyed a strong revival during the
past two decades, propelled mainly by the advent of phononic crystals and acoustic
metamaterials, two newly developed research areas that focused on man-made
structures with acoustic properties not commonly found in nature. Whereas pho-
nonic crystals denote periodic structures exhibiting frequency bandgaps in which
there can be no propagating acoustic/elastic waves, acoustic metamaterials acquire
their exotic characteristics as collective manifestations of local resonators. Both
phononic crystals and acoustic metamaterials are composite structures comprising
materials of different mass densities and hardness. In the case of acoustic meta-
materials, however, the response of the composite to external excitations can differ
from a rigid solid by having internal relative motions between the different material
components. The past fifteen years have witnessed the novel capabilities that can
arise from such locally resonant sonic materials, which are characterized not only
by their subwavelength physical size, but also by their effective mass density and
bulk modulus that can exhibit negative values. The unusual phenomena exhibited
by the phononic crystals and acoustic metamaterials, as well as their underlying
physics, are the subjects of the present volume—New Acoustics.

The author, Dr. Woon Siong Gan, was trained as a physicist, with a Ph.D. degree
in acoustics from Imperial College London. After doing postdoc at International
Centre for Theoretical Physics, Trieste, Italy, he returned to Singapore and taught at
Nanyang University from 1970 to 1979. He was a practicing acoustic consultant for
ten years, from 1979 to 1989, and after that he founded Acoustical Technologies
Singapore Pte Ltd. The contents of the present volume very much reflect this rather
unique background of the author—a combination of basic theory and practical
applications. The initial few chapters lay the theoretical basis of the “new acous-
tics”, a term coined to denote the recent developments enabled by acoustic meta-
materials, followed by chapters with each one devoted to some specific application.
Underlying these applications are some unifying principles, such as the coordinate
transformation of the acoustic wave equation and its one-to-one equivalence to a
system where the material constants of the transformed system can be point-wise
determined by those of the original untransformed system, plus the Jacobian matrix
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of the coordinate transformation. This mathematical equivalence, denoted trans-
formation acoustics, offers tremendous freedom in designing structures that can, for
example, “cloak” objects and achieving effects that were thought impossible pre-
viously. However, a basic requirement for the successful implementation of such a
structure, with mathematically transformed material constants, is the availability of
material properties that can take all possible values. That is where metamaterials
come in—they offer the freedom of material design not available before, such as
negative refractive index and negative (dynamic) mass density. The latter may seem
counter-intuitive at first, but the effect can be easily demonstrated with a mechanical
system comprising local resonators, so that when the external forcing is out of
phase with the internal resonances, large relative motion of the components can
result, with the momentum of the internal resonators opposing the externally
exerted force. Similarly, in an array of Helmholtz resonators, the overall bulk
modulus can appear negative. Such negative values of the material properties have
to be interpreted in an effective medium sense, where the intend structure of the
system are “homogenized”, i.e. averaged over. As far as an external observed is
concerned, this may not be a problem since only the external response of the system
is sensed. And if one can realize a system where both the effective mass density and
bulk modulus are simultaneously negative, then negative index becomes possible.
As shown by the Russian physicist Veselago in 1967, if a material possesses
negative index, then the phase velocity and group velocity would be in opposite
directions. His prediction was realized experimentally about four decades later, with
the realization of structures that can exhibit the strange behaviours implied by the
negative index, one of which is that an obliquely incident plane wave will bend to
the same side of the (planar) interfacial normal as the incident wave. Subsequently,
J. Pendry at Imperial College London predicted the possibility of using negative
index materials to break the classical resolution limit that is imposed by the finite
wavelength. This work has stimulated a great deal of experimental interests in both
optics and acoustics, and various schemes, some of them not even involving the
negative index materials, were devised to show that resolution beyond the classical
limit is indeed possible. In fact, it may be said that the greatest contribution of
metamaterials lies in their liberating effect on thinking about what is possible in the
manipulation of electromagnetic and acoustic waves. Above are just few of the
many developments that can be traced to this effect, and the present volume gives a
selection of those topics judged by the author to reflect not only the novelty, as
advertised by the title of the book, but also their potential importance in applica-
tions. With the very fast advance of this whole area, this book can give the readers
not only a timely vignette of the current landscape, but also serve as the basis for
further development.

August 2016 Ping Sheng
HKUST, Clear Water Bay

Hong Kong
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Chapter 1
Symmetry Properties of Acoustic Fields

Abstract W S Gan introduced symmetry properties of the acoustic field in 2007.
This has been confirmed by the successful fabrication of the acoustical metamaterials,
diverse applications of time reversal acoustics and that phonon is a Goldstone mode.
The form invariance of the linear acoustic field equation demonstrates the symmetry
properties of acoustic fields. Likewise, form invariance is also applicable to nonlinear
acoustic field equations such as Burgers equation, Westervelt equation and Shapiro–
Thurstone equation. The symmetry between the acoustic velocity field and stress field
is a further demonstration of the symmetry properties of acoustic fields. Symmetry is
the theoretical framework of acoustical metamaterials. The propagation of sound
waves in fluids obeys both translational and rotational symmetry, whereas propa-
gation of sound waves in solids obeys rotational symmetry but broken translational
symmetry due to the discrete and periodic nature of the crystal gives rise to phonons.
The scale invariance or symmetry property of the turbulence field also supports the
symmetry properties of acoustic fields as turbulence field is intrinsically acoustic field
considering that turbulence is the source of the aerodynamic noise.

1.1 Introduction

In 2007, Gan [1] proposed gauge invariance approach to acoustic this means
introducing symmetry properties to acoustic fields. This has been confirmed by the
successful fabrication of the acoustical metamaterials [2], the various applications
of the time reversal symmetries of the acoustic fields [3], that phonon is a Goldstone
mode [4] and the symmetry properties of the turbulence field which is basically
acoustic field [5]. In the past, most works have been on the symmetry properties of
the medium, e.g. the crystal and not on the symmetry property of the propagating
sound wave. This will give a better understanding of the property of sound wave.

© Springer Nature Singapore Pte Ltd. 2018
W.S. Gan, New Acoustics Based on Metamaterials, Engineering Materials,
https://doi.org/10.1007/978-981-10-6376-3_1
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1.2 Sound Propagation in Solids

1.2.1 Derivation of Linear Wave Equation of Motion and Its
Solutions

Our work will emphasize the mechanical and elastic properties of sound waves. We
will start with the propagation of linear sound waves or infinitesimal amplitude
sound waves in solids. First, the acoustic field equations of motion will be derived.
There are two basic field equations. These will involve Newton’s law of motion
from mechanics and Hooke’s law of the theory of elasticity. The first field equation
is Newton’s law of equation of motion given as

r:T ¼ q
@2u
@t2

� F ð1:1Þ

where T = stress, u = displacement, F = body force.
The second field equation is the strain-displacement relation related to Hooke’s

law given as

S ¼ rsu ð1:2Þ

where S = strain.
In order to solve the two variables, u and T, a second equation is necessary and

this is given by Hooke’s law from the theory of elasticity states that the strain is
linearly proportional to the stress. That is

Tij ¼ cijklSkl ð1:3Þ

where i, j, kl = x ,y ,z
with summation over the repeated subscripts k and l. The microscopic spring

constants cijkl in (1.3) are called elastic stiffness constants.
We consider source-free region, so F = 0. The next step is to eliminate T from

(1.1) and (1.3). From (1.2) and (1.3), T = cijkl rs u = cijkl @u@x, if only one dimension,
x-direction is chosen. Substituting in (1.1), we obtain

cijkl
@2u
@x2

¼ q
@2u
@t2

ð1:4Þ

The above equation is also known as the Christoffel equation.
Equation (1.4) is the equation of a travelling wave and the solution can be given as

u ¼ u0ei xt� kxð Þ ð1:5Þ
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which gives

qx2 ¼ cijklk
2 ð1:6Þ

Phase velocity is given by v = x/k. Thus for transverse (or shear) waves, the
velocity is

vs ¼
ffiffiffiffiffiffiffi
cijkl
q

r
ð1:7Þ

1.2.2 Symmetries in Linear Acoustic Wave Equations
and the New Stress Field Equation

Equation (1.2) can be written in terms of the particle velocity and compliance as

rsv ¼ s :
@T
@t

ð1:8Þ

where s = compliance.
Acoustic wave equations can be obtained by eliminating either T or v from the

acoustic field equations. Usually the stress field is eliminated since it is a tensor
quantity and consists of six field components rather than three like a vector field.

For infinitesimal amplitude sound waves, the lossless acoustic field equations are
given by (1.1) and (1.2). We will now eliminate the velocity field from (1.1) and
(1.8).

Differentiating (1.8) with respect to t:

rs
@v
@t

¼ s :
@2

@t2
T ð1:9Þ

with F = 0 for source-free region, and taking the divergence of both sides of (1.1):

rs r:Tð Þ ¼ qrs
@v
@t

ð1:10Þ

By the insertion of (1.9), we also have

rsðr:TÞ ¼ qs :
@2

@t2
T

1.2 Sound Propagation in Solids 3



or

crsðr:TÞ ¼ q
@2

@t2
T ð1:11Þ

This is a new stress equation. The potential and the applications of this equation
have yet to be explored.

We also discover an important property. That is the acoustic wave Eqs. (1.4) and
(1.11) are symmetrical in u and T. This symmetrical property can give rise to
several simplications in the solving of acoustic wave equations.

1.3 Use of Gauge Potential Theory to Solve Acoustic Wave
Equations

As analogous to the electromagnetic wave fields, we can also represent the acoustic
particle velocity field in terms of the gauge potentials of gauge theory, that is in
terms of the scalar potential ф and the vector potential A. For isotropic media,
which are always nonpiezoelectric, the Christoffel equation can be written as

c44k
2vþðc11 � c44Þk k:vð Þ ¼ x2qv ð1:12Þ

for an isotropic medium. This governs plane wave solutions with harmonic time
variation. To obtain the general equation for plane wave solutions, the substitutions

r ! �ik;
@

@t
! ix

are inverted. This gives

c44r2vþ c11 � c44ð Þr r:vð Þ ¼ q
@2v
@t2

ð1:13Þ

or

c11r r:vð Þ � c44r�r� v ¼ q
@2v
@t2

ð1:14Þ

where the vector identity

r�r� A ¼ r r:Að Þ � r2A ð1:15Þ

has been used to rearrange terms.
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Solutions of (1.14) are obtained by using a gauge theory formulation of
expressing v in terms of the gauge potentials, the scalar potential ф and the vector
potential A

V ¼ ruþr� A ð1:16Þ

Substitution of (1.16) in (1.14) gives

r c11r2u� q
@2u
@t2

� �
�r� c44r�r� Aþ q

@2A
@t2

� �
¼ 0 ð1:17Þ

Since r:r� A ¼ 0 and r�ru ¼ 0
For the second term, the quantity in brackets is set equal to the gradient of an

arbitrary function f:

c44r�r� Aþ q
@2A
@t2

¼ c44rf ð1:18Þ

Application of the identity (1.15) will convert (1.18) into:

r r:A� fð Þ � r2Aþ 1
v2s

@2A
@t2

¼ 0 ð1:19Þ

where vs ¼
ffiffiffiffiffi
c44
q

q
. Since f is arbitrary, it can always be chosen to cancel r: A in the

first term on the left. The vector potential can thus be taken as a solution to the
vector potential wave equation

r2A� 1
v2s

@2A
@t2

¼ 0 ð1:20Þ

The first term in (1.17) is made zero by simply requiring that the scalar potential
u satisfies the following scalar potential wave equation:

r2u� 1
v2s

@2u
@t2

¼ 0 ð1:21Þ

Equations (1.20) and (1.21) show that the linear wave equations are symmetrical
in u and A, same as for the case of the electromagnetic waves. Equations (1.20) and
(1.21) are also of the same form as the Helmholtz wave equation, which confirms
the analogy.
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1.4 Gauge Theory Formulation of Sound Propagation
in Solids

1.4.1 Translational Symmetry

So far the acoustic equations of motion derived are for the case of a stationary
medium. In real world situations, usually the medium is moving. This is applied to
the case when sound wave is propagating in solids and the unstressed state of the
material is moving with time. Galilean transformation or Galilean symmetry is the
type of gauge transformation which is applicable to sound wave propagation in
solids. Gauge theory or gauge transformation includes both translational symmetry
and rotational symmetry. Galilean transformation is translational symmetry. Kambe
[6] derived gauge theory formulation for ideal fluid flows based on Galilean
transformation and covariant derivative which are properties of gauge transfor-
mation and intrinsic properties of acoustic equation of motion. Here, we extended
the gauge principles to sound propagation in solids. Kambe’s [6] work involves
only translational symmetry or Galilean transformation. Here, we cover also rota-
tional symmetry. The analogy in the electromagnetic counterpart is that covariant
derivative is also intrinsic properties of Maxwell’s equations. However, due to the
different nature of sound waves and electromagnetic waves, covariant derivative for
Maxwell’s equations leads to Lorentz transformation and covariant derivative for
acoustic equation of motion leads to Galilean transformation. In fact, the Lorentz
transformation reduces to the Galilean transformation when the medium is moving
at a velocity much less than the velocity of light.

First, we have a brief description of the gauge principle. In gauge theory, there is
the global gauge invariance and the local gauge invariance. Local gauge invariance
is more stringent than the global gauge invariance. There is Weyl’s gauge principle
which states that when the original Lagrangian is not locally gauge invariant, the
principle of local gauge invariance requires a new gauge field to be introduced in
order to acquire local gauge invariance, and the Lagrangian is to be altered by
replacing the partial derivative with the covariant derivative. Covariant derivative is
necessary for local gauge invariance as well as to fulfil Galilean transformation.
This can be illustrated as follows:

Dt :¼ @t þG ð1:22Þ

where Dt = covariant derivative, and G the new gauge field.
We will use Galilean transformation which describes sound propagation in

solids. The symmetries to be investigated here are the translational symmetry and
the rotational symmetry. First, we consider translational symmetry without local
rotation. A translational transformation from one coordinate system A to another A’
moving with a relative velocity R is called a Galilean transformation in Newtonian
mechanics. The transformation law is defined by
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x ¼ t; xð Þ ! x0 ¼ t0; x0ð Þ ¼ t; x� Rtð Þ ð1:23Þ

Please refer to Fig. 1.1.
Kambe [6] has derived for local Galilean transformation, the covariant derivative

given as

Dt ¼ @t þðv:rÞ ð1:24Þ

1.4.2 Introduction of Covariant Derivative
to the Infinitesimal Amplitude Sound Wave Equation

Replacing the partial derivative in (1.1) by the covariant derivative given by (1.24),
we have

r:T ¼ q
@v
@t

þðv:rÞv
� �

� F ð1:25Þ

If only one direction, x-direction is chosen, and with F = 0 for source-free
region, (1.25) can be reduced to a simpler form as shown below:

@2u
@x02

¼ q
@2u
@t2

þ q
@u
@t

@2u
@x0@t

ð1:26Þ

where x′ = moving coordinate given by x′ = x − Rt.
We realize that with the introduction of the covariant derivative, there is the

additional second term on the right-hand side of the equation. So far no one has
attempted on the exact analytical solution of this equation yet.

Fig. 1.1 Coordinate system
moving with velocity R
translationally
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1.4.3 Introduction of Covariant Derivative to the Large
Amplitude Sound Wave Equation

We apply the covariant derivative (1.24) to the nonlinear wave equation given by

€u ¼ M2

q
@2u
@x2

1þ M3

M2

@u
@x

� �
ð1:27Þ

we obtain

CijklM2
@2u
@x02

1þ M3

M2

@u
@x0

� �
¼ q

@2u
@t2

þ @u
@t

@2u
@x0@t

� �
ð1:28Þ

The introduction of the covariant derivative only introduces the same additional
term on the right-hand side of the equation as in the case for the linear wave
equation in (1.26). Again, so far no one has obtained the exact analytical solution of
this equation yet.

1.4.4 Local Rotational Symmetry

Kambe’s [6] work does not include the local rotational symmetry. Here, we include
the rotational symmetry. This is described by Weyl’s [7] gauge transformation
which involves at every spacetime point, also called U(1) rotation essentially a
simple rotation in the complex plane. This can be illustrated by the invariance of the
compliance and stiffness of an isotropic solid under same coordinate rotation at
every point in the spacetime. For an isotropic solid, the form of coordinate rotation
is different at different points in the spacetime. For an isotropic solid, the sound
velocity and the stress field are the same in all directions. This is a consequence of
the rotational symmetry of the velocity field.

1.5 Symmetry Is the Theoretical Framework of Acoustical
Metamaterial

The symmetry in acoustical metamaterials can be manifested in two aspects: one is
the intrinsic symmetry property of the medium and another is the symmetry
property of the acoustic field. Metamaterials are artificial materials with periodic
and repetitive structures and hence can be considered as artificial crystals. Since
crystals, they will have symmetry properties. Metamaterials were first proposed by
Veselago [8] in 1968 as materials with negative permeability and negative per-
mittivity and electromagnetic wave was used as the propagating wave. His concept
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was originating from the dispersion relation for isotropic material, n = index of
refraction = � ffiffiffiffiffi

le
p

where l = permeability, e = permittivity which has form
invariance irrespective of positive or negative values of l and e. However, both
positive and negative signs occur in front of the square root sign and there is
ambiguity on whether the positive or negative sign has to be chosen. This type of
metamaterial with negative l and e is also known as left-handed material or neg-
ative material. This is because the Poynting vector will be in the negative direction,
and the phase velocity will be opposite in direction to the Poynting vector. The idea
of left-handed metamaterial was subsequently extended to acoustic wave in 2004 by
Li et al. [9]. However, bandgap metamaterials were first proposed in the form of
photonic crystals [10] and phononic crystals [11] in the 1990s. They are artificial
crystals.

The symmetry property of the acoustic fields was given in Sect. 1.4.

1.5.1 Rotational Symmetry and Theory of Elasticity

The concept of negative mass density and negative bulk modulus is an extension of
the positive mass density and positive bulk modulus of the theory of elasticity to the
negative mass density and negative bulk modulus depending on rotational sym-
metry and coordinate transformations with 180

�
coordinates rotation in the clock-

wise direction. In Hooke’s law, within the linearity limit, stress/strain = elastic
constant, cij. cij has rotational symmetry and is invariant with coordinates trans-
formation. It has global U(1) symmetry for isotropic solids where the velocity field
and the stress field are the same in all directions. For anisotropic solids, there is
local symmetry where each point in spacetime has its own rotational symmetry and
independent of each other but governed by the acoustic equation of motion.

1.6 Local Gauge Invariance

A gauge theory is a type of field theory in which the Lagrangian is invariant under a
continuous group of local transformation. Many powerful theories in physics are
described by Lagrangians that are invariant under a transformation identically
perform at every point in the space in which the physical processes occur. These are
said to have a local symmetry. The requirement of local symmetry, the cornerstone
of gauge theory is a stricter constraint. In fact, a global symmetry is just a local
symmetry whose group’s parameters are fixed in spacetime. So far most of the
theories and applications of acoustical metamaterials and phononic crystals are all
based on global gauge invariance.

The application of gauge invariance or gauge symmetry concept has the
advantage of being able to extend to local symmetry unlike the Veselago [8] paper

1.5 Symmetry Is the Theoretical Framework of Acoustical Metamaterial 9



which is based on the dispersion relation and unable to extend to local symmetry.
Local gauge invariance is an important topic, shown in the Yang Mills theory [12],
the theoretical foundation of the Standard Model of particle physics is an example
of extending global transformation to local transformation. The first equation of
Yang Mills paper [12], the equation of global transformation is the same as the
equation used in the elastic fields transformation in crystals. Hence by extending
global gauge transformation to local symmetry for acoustic fields will also yield
remarkable consequences.

1.7 Covariant Derivative

First, we shall give a brief description of the gauge principle. In gauge theory, there
are global gauge invariance and local gauge invariance. Global gauge invariance
requires symmetry of the object as a whole, whereas in local gauge invariance
demands symmetry of each point in spacetime. Hence, local gauge invariance is
more stringent than global gauge invariance. Maxwell’s equations of electromag-
netic theory are an example of local gauge invariance. Weyl’s [7] gauge principle
states that when the original Lagrangian is not locally gauge invariant, a new gauge
field must be introduced in order to satisfy local gauge invariance, and the
Lagrangian is then to be altered by replacing the partial derivative with the
covariant derivative. The introduction of a covariant derivative is necessary for
local gauge invariance. It is the theoretical framework of local gauge invariance.
The well-known Yang Mills theory [12] and the Higgs theory [13] can both be
derived by using covariant derivative approach [14].

In acoustics, there are two types of covariance, the Galilean covariance and the
manifest covariance. The Galilean covariance is a form of local gauge invariance
which takes account of continuous translational symmetry for sound propagation in
solids. The broken translational symmetry gives rise to the Goldstone mode which
is phonon for acoustics. Manifest covariance, on the other hand, takes account of
nonlinear interaction and coupling of sound wave with the lattice resulting in
nonlinear phonon-phonon interaction.

For manifest covariance, the coupling between the sound wave and the crystal
lattice has to be considered. This will be in the form of phonon-phonon interaction
and the form of the covariant derivative will be given by:

D ¼ @þ ie~A ð1:29Þ

where e = coupling constant, and ~A = vector potential or vector gauge field.
In the global transformation or global gauge invariance, we have
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u0 ¼ Gu ð1:30Þ

where u is a vector of fields and u′ is the vector of fields after transformation and
G = transformation matrix. For local gauge transformation or local transformation
or demanding the Lagrangian to have local gauge invariance requires that the
G matrix which were earlier constant should be allowed to become function of the
spacetime coordinate v. Unfortunately, the G matrix does not pass through the
derivative when G = G(v):@l(G) = G(@lu). The failure of the derivative to com-
mute with G introduces an additional term (in keeping with the product rule), which
spills the invariance of the Lagrangian. In order to rectify this we define a new
derivative operator, the manifest covariant derivative such that the derivative of a
Gauge transformation will be identical with u:

ðDluÞ0 ¼ GDlu ð1:31Þ

where Dl ¼ @l + ie ~A.
Here, we would like to mention that Pauli called gauge transformation of the first

kind to the one applied to scalar field only while the compensating transformation in
the vector gauge field is said to be a transformation of the second kind. Gauge
transformation of the first kind is in fact, the global transformation and gauge
transformation of the second kind in fact is local transformation.

1.8 Discovery of Anisotropy as a Form of Local Symmetry

Crystal, both natural crystal and phononic crystal have repetitive patterns and
periodic structures and so have symmetry properties. Their symmetry is micro-
scopic symmetry. For anisotropic crystals, the symmetry changes at every point in
spacetime and so is local symmetry. This is different from isotropy which is global
symmetry such as symmetry of elastic properties in isotropic solids. There are two
basic kinds of symmetry operations that transform a crystal lattice into itself:

1. Translations, which displace the lattice as a whole. This is global symmetry.
2. Point transformations, which leave at least one point in the lattice unchanged.

This is local symmetry.

Since the compliance and stiffness matrices relate stress and strain fields at the
same point in a crystal, their symmetry properties can be obtained from the point
symmetry transformation alone. These transformations include rotation, reflection,
inversion, rotation-inversion and rotation-reflection symmetries for anisotropic
media are local and so are much more complicated than that for the isotropic case.
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1.9 Role of Symmetry Properties of Acoustic Field
in the Design of a Phononic Structure

Phononic crystals are periodic structures which possess spectral gaps primarily
based on avoided crossing due to the Bloch symmetry. The spectral gaps that occur
are due to the Bragg like scattering. The Bloch’s theorem is mathematically actually
a manifestation of discrete translational symmetry. The creation of phononic
metamaterial possessing multiple complete spectral gaps is very interesting both
from a fundamental and application perspective, allowing for the study of nonlinear
phonon-phonon interaction processes to development as a structured material for
shaping and moulding nonlinear waves such as solitons and shock waves. The local
design principle takes into account the propagation behaviour of the classical
phonons and identifies the category of the geometrical structure of the phononic
crystal which we need to control the relative placement of energy eigenvalues of the
dispersion bands. By utilizing two general design principles, one governing the
global properties and one governing the local wave interactions of phonons within
the structure, it is possible to impose controls over spectral gaps in a rational fashion
and even control the band curvature. In the design of phononic crystals, one main
challenge has been the control of the dispersion of bands along general directions,
i.e. low symmetry directions. This is, especially important when one wishes to
optimize complete gaps. These details are spectral position of our bands which
require the details of the phonons propagation dynamics. The imprint of the
symmetry of the system on the eigenmodes affords a powerful alternative to its
usage as a tool to guide design of phononic crystal, cavities and waveguides, etc.
Symmetry has proven here its power as an elegant language with which to design
not just analysing the dispersion relation because it laid the foundation with which
to apply all the subsequent design principles which we have had to involve to arrive
at our final design of dispersion relation depending on symmetry. By building on
the symmetry of the phononic structure and the symmetry property of the acoustic
fields and conservation principles places the design of various phononic structures
on the same footing. This relies on two fundamental principles: global group
symmetry which governs the allowed degeneracy of the eigenfunctions at specific
positions and along specific directions vis a vis the plane group and point group
symmetry. The global symmetry imparts on the structure the second principle,
namely the eigenmodes are classified by a set of irreducible representation shaping
the dispersion relation and forming the spectral gaps. These two symmetry prin-
ciples control the possibility of interaction and provide the framework and the
language which we utilize to design the dispersion relation. This is in our symmetry
language which governs the physical propagation of phonons within the structure.
This is derived from conservation and continuous principle enabling us to develop
the concept of the dynamic mechanical bond and our lattice classification of the
topology of the phononic structure. In the dispersion relation, in the linear phonon
regime, we noted the ability to control the interaction between phonons of different
frequencies, i.e. phonon-phonon interaction. While the phonon-phonon scattering
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process is inelastic and often nonlinear the intrinsic material nonlinearities which
govern the phonon-phonon scattering process are embodied in the material con-
stitutive relations and hence do not alter the fundamental continuity and flux
equation.

1.10 Phonon as a Goldstone Mode

The phonon as a Goldstone [4] mode is another demonstration of the symmetry
property of acoustic fields. In a lattice, both longitudinal and rotational symmetries
are broken which give rise to longitudinal and transverse phonons which are the
Goldstone bosons of this symmetry breaking. However, one cannot link, e.g.
longitudinal modes to translational symmetry breaking and transverse to rotational.
Everything is mixed and the relationship between symmetry breaking and the
different Goldstone phonons depend on the symmetry of the lattice. Goldstone
modes are present in any system with a broken continuous symmetry. Phonons are
an example of Goldstone modes, corresponding to the breaking of translation and
rotation symmetry by a crystal structure.

Crystals are rigid because of the broken translational symmetry. The elementary
excitations in crystal are the sound waves. In crystals¸ the broken translational
symmetry introduces a rigidity to shear deformations and low frequency phonons.

Goldstone’s [4] theorem examines a generic continuous symmetry which is
spontaneously broken; that is, its currents are conserved, but the ground state is not
invariant under the action of the corresponding charges. Then, necessarily, new
massless scalar particles appear in the spectrum of possible excitations. There is one
scalar particle called a Nambu-Goldstone boson for each generator of the symmetry
that is broken, i.e. that does not preserve the ground state. The Nambu-Goldstone
mode is a long-wavelength fluctuation of the corresponding order parameter. In
fluids, the phonon is longitudinal and it is the Goldstone of the spontaneously
broken Galilean symmetry. In solids, the situation is more complicated. The
Goldstone bosons are the longitudinal and transverse phonons and they happen to
be the Goldstone bosons of spontaneously broken Galilean, translational and
rotational symmetry with no simple one-to-one correspondence between the
Goldstone modes and the broken symmetries.

1.11 Symmetry Property of Turbulence Field

Kolmogorov’s [5] theory of turbulence is based on scale invariance or symmetry of
the turbulence field. The turbulence field is basically acoustic field [15] and this
demonstrates symmetry property of the acoustic field. Kolmogorov’s [5] idea was
an extension of Richardson’s [16] concept. Richardson’s [16] notion of turbulence
flow is composed of “eddies” of different sizes. The sizes define a characteristic
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length scale for the eddies which are also characterized by flow velocity scales and
time scales dependent on the length scale. The large eddies are unstable and
eventually break up originating smaller eddies, and the kinetic energy of the initial
large eddy is divided into the smaller eddies that stemmed from it. These smaller
eddies undergo the same process, giving rise to even smaller eddies which inherit
the energy of their predecessor eddy, and so on. In this way, the energy is passed
down from the large scales of the motion to smaller scales until reaching a suffi-
ciently small length scale such that the viscosity of the fluid can effectively dissipate
the kinetic energy into internal energy. In his original theory of 1941, Kolmogorov
[5] postulated that for very high Reynolds numbers, the small scale turbulent
motions are statistically isotropic. In general, the large scales of a flow are not
isotropic, since they are determined by the particular geometrical features of the
boundaries (the size characterizing the large scales will be denoted by L).
Kolmogorov’s [5] idea was that in Richardson’s energy cascade this geometrical
and directional information is lost, while the scale is reduced, so that the statistics of
the small scales has a universal character. They are the same for all turbulent flow
when the Reynolds number is sufficiently high.

Thus, Kolmogorov [5] introduced a second hypothesis: for very high Reynolds
numbers the statistics of small scales are universally and uniquely determined by
the kinematic viscosity (v) and the rate of energy dissipation (e). With only these
two parameters, the unique length that can be formed by dimensional analysis is

g ¼ v3

e

� �1=4

ð1:32Þ

This is also known as the Kolmogorov length scale.
A turbulent flow is characterized by a hierarchy of scales through which the

energy cascade takes place. Dissipation of kinetic energy takes place at scales of the
order of Kolmogorov length η, while the input of energy into the cascade comes
from the decay of the large scales, of order L. These two scales at the extremes of
the cascade can differ by several order of magnitude at high Reynolds numbers. In
between there is a range of scales (each one with its own characteristic length r) that
has formed at the expense of the energy of the large ones. These scales are very
large compared with the Kolmogorov length but still very small compared with the
large scale of the flow. Since eddies in this range are much larger than the dissi-
pative eddies that exist at Kolmogorov scales, kinetic energy is essentially not
dissipated in this range, and it is merely transferred to smaller scales until viscous
effects become important as the order of the Kolmogorov scale is approached.
Within this range inertial effects are still much larger than viscous effects, and it is
possible to assume that viscosity does not play a role in their inertial dynamics.

Hence, a third hypothesis of Kolmogorov was that at very high Reynolds
number the statistics of scales in the range r much smaller than L and much larger
than η are universally and uniquely determined by the scaled r and the rate of
energy dissipation e.
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1.12 Time Reversal Symmetry in Acoustics

Acoustic fields have time reversal (TR) symmetry property. This can be demon-
strated by the solutions of the acoustic equation of motion. It implies that changing
the time variable into a –t for the solution for a given field produces another field
which is also solution of the same equation. In other words, if within a given
medium there exists a solution of the wave equation denoted S(t), then another dual
solution, namely the time reversed one S(−t), necessarily exists as well. For
instance, if one is able to record the entire field created by a diverging source placed
inside a reversible medium, time reversing and reemitting the latter generates a
wave field that converges toward the initial source. Such an ideal TR experiment,
however, requires the knowledge of the field throughout the medium, which is
impossible in most practical environments. In practice, TR is made possible with
the use of the Helmholtz-Kirchhoff integral theorem. The latter states that a wave
field and its normal derivative known on the boundaries of a closed surface holds
the knowledge of the field inside the whole volume the solution denoted S(t), then
another dual solution, namely the time reversed one S(−t), necessarily exists as
well. For instance, if one is able to record the entire field created by a diverging
source placed inside a reversible medium, time reversing and reemitting the latter
generates a wave field that converges toward the initial source. Such an ideal TR
experiment, however, requires the knowledge of the field throughout the medium,
which is impossible in most practical environments. In practice, TR is made pos-
sible by using the Helmholtz-Kirchhoff integral theorem. The latter states that a
wave field and its normal derivative known on the boundaries of a closed surface
hold the knowledge of the field inside the whole volume contained by the surface.
Hence, a more realistic TR experiment can be imagined as follows: a source
generates a brief pulsed inside a heterogeneous medium that is surrounded by
sensors which record the corresponding time varying fields until all the energy has
exited the closed surface. In a second step, the sensors play the recorded fields in a
reversed chronology, which generates the time reversed wave field on the boundary
of the closed surface.
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Chapter 2
Negative Refraction and Acoustical
Cloaking

Abstract Negative refraction is not only the consequence of the negative mass
density and negative bulk modulus of the acoustical metamaterial but also can
produce phononic crystal’s band gap. Acoustical cloaking is an application of the
form invariance of the acoustic field equation. It is the first application of sound
propagation in curvilinear space-time. It enables the bending and the manipulation
of the direction of the sound wave to our requirement. Both negative refraction and
acoustical cloaking can be derived from coordinates transformation of the acoustic
field equation. In fact, negative refraction is a special case of acoustical cloaking
when the value of the determinant of the coordinates transformation equals -1.
Negative refraction enables the production of super-resolution lens and acoustical
cloaking can be used for shielding objects.

2.1 Introduction

The phenomenon of negative refraction was first theoretically mentioned in
Veselago’s 1968 [1] paper with idea taken from Mandel’stam’s [2] 1945 paper.
This is the outcome of the two key parameters of electromagnetic waves: permit-
tivity and permeability having negative values. The material having these properties
is known as double negative metamaterial (DNG). It is a special type of metama-
terial. This paper did not receive much attention because it was not possible to
fabricate double negative metamaterial (DNG) although the other important form of
metamaterial, the band gap metamaterial such as photonic crystals and phononic
crystals was fabricated much earlier in the 1980s and in the early 1990s, respec-
tively, and photonic crystals were known more than 100 years ago by Lord
Rayleigh. In 1999 Pendry et al. [3] of Imperial College London successfully
introduced the theoretical concept of split-ring resonator (SRR). This was a great
contribution to the field of double negative metamaterial (DNG) as his theoretical
concept enabled Smith [4] of Duke University USA to successfully fabricate
experimentally the double negative metamaterial (DNG) using the concept of SRR.
Then, there was great increase in interests in double negative metamaterials.
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W.S. Gan, New Acoustics Based on Metamaterials, Engineering Materials,
https://doi.org/10.1007/978-981-10-6376-3_2

17



Metamaterials are artificial materials engineered to have properties that may not
be found in nature. Metamaterials usually gain their properties from structure rather
than composition, using small inhomogeneities to create effective macroscopic
behaviour. It is a high-level form of composite material with periodic structure.
Double negative metamaterials (DNG) also known as left-handed material because
the negative directions of the permittivity, the permeability and the Poynting vector
will form an anticlockwise rotation.

The phenomenon of negative refraction of left-handed symmetry can be con-
sidered and explained in the light of gauge theory. Maxwell’s equation is the oldest
gauge theory, Left-handed symmetry and the negative values of permeability and
permittivity can be regarded as gauge condition. With the substitution of this gauge
condition, there is no change in the form of the Maxwell’s equations or Maxwell’s
equation is invariant with respect to a set of negative values of permeability and
permittivity. In a subsequent section, acoustical cloaking uses the concept of
gauge invariance of the Maxwell’s equation subjected to curvilinear coordinate
transformations (used in general relativity) and metamaterial. This reconfirms that
negative refraction and acoustical cloaking can be explained in terms of gauge
invariance.

2.2 Limitation of Veselago’s Theory

2.2.1 Introduction

Veselago [1] proposed in 1968 the concept of metamaterials for electromagnetic
waves having simultaneous negative values of the permittivity and the permeability,
or double negativity. In this section, we point out the limitation of Veselago’s [1]
theory. Veselago’s [1] theory is based on the dispersion relation for isotropic solids.
Our new approach or alternative approach is based on the gauge invariance
approach to acoustic fields proposed by the author in 2007 [5]. We show that this
approach can extend metamaterials from electromagnetic waves to acoustic waves
from first principles without using analogy. Also it can remove the ambiguity of
using the dispersion relation for the refractive index because both the positive and
the negative signs for the refractive index simultaneously occur due to the square
root sign and this has to be justified. In addition, it is applicable to acoustical
cloaking using coordinates transformation, a form of gauge invariance. We also
discover parity invariance in acoustic field equations although the Maxwell’s
equations are known to be parity invariant. Electromagnetic metamaterials are
materials with artificial electromagnetic properties defined by their sub-wavelength
structure rather than their chemical composition. The left-handed metamaterials are
a special type of metamaterial with parity p equals −1 and having the properties of
negative permittivity and negative permeability and with the Poynting vector for
energy flow in the opposite direction to that of wave propagation.
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2.2.2 Gauge Invariance of Homogeneous Electromagnetic
Wave Equation

Veselago [1] started with the dispersion relation for the propagation of electro-
magnetic wave in isotropic material. He considered the dispersion relation

k2 ¼ x2

c2
n2 ð2:1Þ

and

n2 ¼ el ð2:2Þ

where k = wave number, x = frequency, c = wave velocity, n = index of refrac-
tion of the medium, e = permittivity and l = permeability.

Neglecting losses and regarding n, e and l as real numbers, it can be seen from
(2.1) and (2.2) that a simultaneous change of the signs of e and l has no effect on
these relations. That is, (2.1) and (2.2) are also valid for �l and �e. He then shows
that for e[ 0 and l[ 0 then ~E; ~H and k form a right-handed triplet of vectors and
if e\0 and l\0 they form a left-handed set where ~E = electric field and
~H = magnetic field. He then introduced direction cosines for the vectors ~E; ~H and

k
!

and denote them by ai; bi; and ci respectively, to characterize wave propagation
in a medium:

G ¼
a1 a2 a3
b1 b2 b3
c1 c2 c3

0@ 1A ð2:3Þ

The determinant of this matrix is equal to +1 if the vectors ~E; ~H and k
!

are a
right-handed set and −1 if this set is left-handed. He then denoted this determinant
by p and said that p characterized the “rightness” of the given medium. That is, the
medium is “right-handed” if p = +1 and “left-handed” if p = −1.

In this section, I replace “rightness” by parity and parity = −1 is for left-handed
set and parity = +1 is for right-handed set. Parity is the language of gauge
invariance. All physics laws obey parity invariance except the b decay in weak
interaction.

Also Poynting vector~S which denotes energy flow and the parameter of highest
interest in electromagnetic wave is given by

~S ¼ c
4p

~E ^ ~H
� � ð2:4Þ
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From (2.4), the vector~S always forms a right-handed set with the vectors ~E and

H
!
. Accordingly, for right-handed substances~S and k are in the same direction and

for left-handed substances, they are in opposite directions [1]. Since the vector k is
in the direction of the phase velocity, it is clear that left-handed substances with a
so-called negative group velocity, which occurs in particular in anisotropic sub-
stances or when there is spatial dispersion. That is for left-handed substance or
parity = −1, the Poynting vector is of opposite direction to the phase velocity or the
direction of wave propagation. For right-handed substance or parity = +1, the
Poynting vector is of same direction as the phase velocity.

In this section, we build left-handed metamaterial on the framework of gauge
invariance as it covers the both characteristics of left-handed material: negative
permeability and negative permittivity and the Poynting vector pointing in the
opposite direction to the phase velocity direction.

Next, we will show that the homogeneous electromagnetic wave equation is
gauge invariant to negative permeability and negative permittivity.

For homogeneous medium, the electromagnetic wave equations can be given as:

r2~E � el
c2

€~E ¼ 0; r2~H � el
c2

€~H ¼ 0 ð2:5Þ

We find that there is no change in the form of Eq. (2.5) if e and l are to be
replaced by �e and �l. This shows the gauge invariance of Eq. (2.5) to negative
values of permittivity and permeability.

2.2.3 Gauge Invariance of Acoustic Field Equations

The Helmholtz homogeneous acoustic wave equation is given by

r2Pþ x2

qj
p ¼ 0 ð2:6Þ

where p = acoustic pressure, q = mass density and j = bulk modulus.
Again we find that there is no change in the form of Eq. (2.6) if q and j are

replaced by �q and �j. This shows that the Helmholtz wave equation is gauge
invariant to the negative values of q and j.

Here, we have extended the left-handed media to acoustics using gauge
invariance formulation. We also discover the parity invariance of acoustic field
equation instead of using the Veselago’s theory. Left-handed media has parity
equals −1.
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2.2.4 Acoustical Cloaking

Acoustical cloaking is the first introduction of acoustics to curvilinear space-time.
Previously, all associations of acoustics with curvilinear space-time are only to
describe the geometrical shape of certain structure. They are not dealing with the
propagation or bending of sound wave in curvilinear space-time.

Acoustical cloaking deals with the deflection of bending of sound wave and the
control of the propagation and direction of sound wave according to our specified
direction.

Again Veselago [1]’s theory of using dispersion relation is not relevant here. We
use coordinate transformations, a form of gauge invariance. That is, there is no
change in the form of the acoustic field equation after the coordinate transforma-
tions or the acoustic field equation is gauge invariant subjected to coordinate
transformations.

As an illustration, we quoted the results from Cummer [6].
Cummer [6] illustrated coordinate transformations for acoustics by using the

linear acoustic equation for inviscid fluid:

jxp ¼ �jr �~v; jxp~v ¼ �rp ð2:7Þ

where x = angular frequency, v = sound velocity.
Next, he imposed a new set of curvilinear coordinates x0, y0 and z0 on these

equations. Using A as the Jacobian matrix of coordinate transformations from x; y; zð Þ
to x0; y0; z0ð Þ, he expressed the gradient operation in the new primed coordinates as:

rp ¼ ATr0p ¼ ATr0p0 ð2:8Þ

and the divergence operation can be expressed as

r �~v ¼ det Að Þr0 � A
det Að Þ~v ¼ det Að Þr0 � v0! ð2:9Þ

With these expressions, the original Eq. (2.7) can be written in the new coor-
dinates as

jxp0 ¼ �jdet Að Þr0 � v0!

jx det Að Þ AT
� ��1

q A�1� �
v0
! ¼ �r0p0 ð2:10Þ

which is in the same form as the original Eq. (2.7) but with the new medium
parameters:

j0 ¼ det Að Þj; p ¼ det Að Þ AT
� ��1

q A�1� � ð2:11Þ
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Physically, this means that if one applies a coordinate transformations to a
solution to Eq. (2.7) and changes the medium properties according to Eq. (2.11),
the transformed fields are a solution to the acoustic equations in the new medium.

2.2.5 Gauge Invariance of Nonlinear Homogeneous
Acoustic Wave Equation

The nonlinear homogeneous acoustic wave equation up to the second order can be
given as:

j1r2pþ j2r2p
@p
@x

� �
þ x2p

q
¼ 0

or

qj1r2pþ qj2r2p
@p
@x

� �
þx2p ¼ 0 ð2:12Þ

where j1 = second-order bulk modulus and j2 = third-order bulk modulus.
Again if we replace q and j1, and j2 by �q, �j1 and �j2, there is no change in

the form of Eq. (2.12). In another word, the nonlinear acoustic wave equation is
gauge invariant to negative values of q; j1; and j2.

2.2.6 My Important Discovery of Negative Refraction Is
a Special Case of Coordinate Transformations
or a Unified Theory for Negative Refraction
and Cloaking

Here, we are considering both cloaking and negative refraction under the umbrella
theory of coordinate transformations or gauge invariance of the form of equations
under coordinates transformation. This is a pattern of nature and is applicable to all
equations of physics covering both Maxwell’s equations and the acoustic equation
of motion. When the determinant of the direction cosines matrix (or transformation
matrix) equals −1, one will have negative refraction or parity equals −1. Also when
multiplying the original permittivity and the original permeability by the determi-
nant value of −1 will produce negative values of the permittivity and the perme-
ability. This shows that negative refraction is a special case of coordinate
transformations used in cloaking problem when the determinant of the transfor-
mation matrix equals −1. This can be illustrated as follows:
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v0x
v0y
v0z

0@ 1A ¼
/1 /2 /3

b1 b2 b3
c1 c2 c3

0@ 1A vx
vy
vz

0@ 1A ð2:13Þ

When the determinant of the direction cosines matrix on the right-hand side of
(2.13) equals −1, we have

v0
! ¼ �~v ð2:14Þ

Replacing the vectors by the examples of permeability and permittivity, we will
have

l0ij
�! ¼ � lij

�! and e0il
!¼ �eil

! ð2:15Þ

This shows that negative refraction also produces negative permeability and
negative permittivity.

Since this gauge invariance of the form of equation is a pattern of nature of all
physics equations, it is also applicable to the acoustic case where the equivalence of
the permittivity and permeability is the mass density and the bulk modulus or
compressibility.

This also shows that cloaking material or component will become the lens in the
special case of negative refraction, and refraction is a special case of cloaking or the
bending of light wave or sound wave when the path of wave propagation becomes
linear from nonlinearity.

This shows that gauge invariance has a broader coverage and applications than
Veselago [1]’s dispersion relation.

Also reflection invariance (or right-left symmetry) can be introduced to explain
negative refraction. In fact, −l and −e can be considered as the mirror image of l
and e and −q and −j can be considered as the mirror image of q and j. Again here
the concept of coordinate transformations is used.

Of course, it should be also mentioned here that gauge invariance approach to
negative refraction removes the ambiguity caused by using the dispersion relation.
There are both positive and negative signs occur simultaneously due to the square
root sign of the dispersion relation and this has to be justified.

2.2.7 Conclusions

The above evidence shows that Veselago’s [1] theory is applicable only to elec-
tromagnetic waves and for isotropic materials and for the special case of double
negativity and for linear case. Gauge invariance approach on the other hand has
broader applications even to acoustic waves, to anisotropic materials, to cloaking
problems, to negative refraction and to nonlinear acoustics. It also has the important
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contribution of removing the ambiguity occurred of whether to use the positive or
the negative sign of the dispersion relation.

In fact after Smith’s [4] and Pendry’s [3] accomplishments with metamaterials,
Veselago realized that the most important contribution of his original 1968 paper is
not that a composite material can be designed to produce a negative refraction, but
that a composite material can be designed to produce any value for permittivity and
permeability. This reconfirms my important discovery that negative refraction or
double negativity in permittivity and permeability is only a special case of the
general case of cloaking using coordinate transformations where a composite
material can be designed to produce any value for permittivity and permeability.

2.3 Multiple Scattering Approach to Perfect Acoustic Lens

The multiple scattering theory (MST) usually known as the KKR (Korringa, Kohn
and Rostoker) approach [7, 8] was developed mainly for the calculation of elec-
tronic band structures although it originated from the study of classical waves
including acoustic waves used by Liu et al. [9] to calculate the propagation of sound
waves in periodic structures such as phononic crystals. The phononic crystals in this
case are stainless steel balls immersed in water. They found theoretically and
experimental agreement using ultrasound experiment of the observation of a sizable
directional stopband in the transmission along (001) centred at about 0.65 units,
coincides with unexpectedly directional gap along the C� x direction in the band
structure. In the transmission along (111) they observed a narrow stopband at about
0.65 units, corresponding to the small gap at the L point in the band structure at the
same frequency.

Other works on the studies on the existence and properties of phonon band gap
are [10–13]. These are due to Bragg scattering when the sound wavelength is
comparable with the lattice constants. This leads to frequency bands where wave
propagation is forbidden. This enables the understanding of how to achieve large
complete band gaps in physically realizable materials and the mechanism of wave
transport at band frequencies due to tunnelling [14]. Also there has been relatively
less attention paid to investigate how periodicity affects wave propagations over a
wide range of frequencies outside the band gaps where novel refraction, diffraction
and focusing effects may be possible.

At low sound frequencies, an effective continuum or medium approximation can
be used to study the wave properties and accurately predict the wave speed. In this
frequency range, there is much in common with the properties of low-frequency
phonons in atomic crystals, where phonon focusing phenomena have been sys-
tematically studied [15]. However, at higher frequencies, much less is known about
the behaviour in pass bands where the wavelengths can be much less than the lattice
constant. Suxia Yang et al. [14] have addressed this problem by theoretically and
experimentally investigating the character of wave pattern and propagation in a 3D
phonon crystal at frequency above the first complete band gap. They showed how a
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dramatic variations in wave propagation with both frequency and propagation
direction can lead to novel focusing phenomena associated with large negative
refraction. This is a different approach to negative refraction from that of
Veselago’s work for the electromagnetic wave based on negative values of per-
mittivity and permeability. They demonstrated the effect of negative refraction
experimentally by using ultrasound technique to image the transmitted wave field
and show that a flat crystal can focus a diverging incident beam into a sharp focal
spot that can be seen remarkably far from the crystal.

They also calculated the field pattern theoretically using a Fourier imaging
technique in which wave propagation through the crystal is accurately described by
the 3D equifrequency surfaces predicted from the multiple scattering theory
(MST) [16]. Their theoretical results also give an excellent explanation of the
experimental data, showing how wave physics in the regime can be accurately
modelled and how the theoretical structures on the equifrequency surfaces of
phonon crystal can give rise to potential applications.

Zhang and Liu [17] first discussed the issue of negative refraction for acoustic
waves in phononic crystals. They also repeated the observation of the negative
refraction of acoustic wave in phononic crystals, occurring at the frequencies with
~S �~k[ 0 where ~S represents the Poynting vector. They considered a 2D phononic
crystal consisting of infinite-length “rigid” or liquid cylinders embedded in a back-
ground which have been studied extensively in Refs. [18–20]. Two types of pho-
nonic crystals were used by them. One is steel cylinders in air background, and the
other is water cylinders in mercury background. The band structures of these two
types of phononic crystals were plotted in Fig. 2.1a, b, respectively. Both of them
were calculated by theMST (or Korringa-Kohn-Rostoker method given in Ref. [21]).

Fig. 2.1 a The acoustic band structures for a square lattice of steel cylinders in air background,
with cylinder radius R = 0.36a. b The acoustic band structures for a square lattice of water
cylinders in mercury background with cylinder radius R = 0.4a. The light line shifted to M is
shown in dashed line. Dot-dashed lines mark the region for negative refraction and the shadow
represent the AANR region. From Zhang and Liu [17]
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To visualize and analyse refractive effects of the acoustic wave when it hits the
above phononic crystal interfaces, Zhang et al. [17] investigated the equifrequency
surfaces (EFS) of the band structures just like the case for the electromagnetic
waves in the photonic crystals because the gradient vector of constant-frequency
contours ink-space give the group velocities of the phononic modes. Hence, the
propagation direction of energy velocity of acoustic wave can be reduced from
them. The EFS can also be calculated using the MST or the
Korringa-Kohn-Rostoker method. The features of the EFS for these two kinds of
system within the first band are similar. Thus, only the results of water-mercury
system with R ¼ 0:4a in given in Fig. 2.2. The equifrequency surface contours at
several relevant frequencies such as 0.05, 0.1, 0.2, 0.235 and 0.27 are demonstrated.
It is clear that the lowest band has ~S �~k[ 0 everywhere within the first Brillouin
zone, meaning that the group velocity is never opposite to the phase velocity. The
0.05 and 0.1 contours are very close to a perfect circle, and the group velocity at
any point of the contour is collimated with the k vector, indicating that the crystal
behaves like an effective homogeneous medium at these two long wavelengths.

Fig. 2.2 Several constant-frequency contours of the first band of the 2D phononic crystal, which
is composed of a square lattice of water cylinders in mercury background with R = 0.4a. The
numbers in the figure mark the frequencies in unit of 2pcl/a
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The 0.2 contour is a little bit distorted from a circle, and the 0.235 contour is convex
around the M point due to a negative phononic “effective band”. The conservations
of the component along the surface of refraction would result in the negative
refractions effect in some frequency region, marked as dotted lines in Fig. 2.1.

Furthermore, according to the analysis approach of [18, 22], the required con-
dition for all-angle negative refraction (AANR) effect in some cases can be
observed. Under these conditions, an acoustic beam incident on the CM surface
with various incident angles will couple to a single Bloch mode that propagates into
this crystal on the negative side of the boundary normal. Therefore, we can define a
frequency region for the AANR by using these criteria.

From Fig. 2.1a, we noted that the AANR region is absent in the steel-air system,
although the negative refractive region is very large. However, in the water-mercury
system, the AANR region exists within the range of about 63 near x ¼
0:24 2pcl=að Þ (shadow region in Fig. 2.1b). This point differs from the two kinds of
system. This difference is very important for the superlensing and focusing of
acoustic waves in phononic crystals.

In order to test this theoretical analysis, Zhang et al. [17] performed a numerical
simulation to the two phononic crystals system based on the MST [19]. They used a
30° wedged sample which consisted of 238 water cylinders of R ¼ 0:4a in the
mercury background with a square array. The shape of the sample and an illus-
tration of the refraction process are shown on the top of Fig. 2.3. The black frame
marked the boundaries and the size of the sample. The wedged surface was the
(11) surface when a slit beam of frequency x ¼ 0:235 2pcl=að Þ with a half-width
wl ¼ 2a incident normal to the left surface of the sample, it transports along the
direction of incidence wave until it meets the wedge (11) interface of the sample,
and then a part of it will refract outside of the sample and the other reflect inside.
There are two possibilities for the refracted wave. It may travel on the right side
(positive refraction) or left side (negative refraction) of the surface normal. The
simulation results are plotted in Fig. 2.3. The field energy pattern of the incidence
and refraction is shown in the figure. The arrows and text illustrate the various beam
directions. It can be clearly seen that the density flux of the refractive wave outside
of the sample travels on the negative refraction side of the surface normal. The
refraction angle is consistent with the estimation from the wave vector space in
Fig. 2.2. The simulation results show clearly that the negative refraction of the
acoustic wave exists in the first band for the case with~S �~k[ 0. Similar phenomena
have also been demonstrated in the steel-air system.

The concept of perfect lens or microsuperlens has been designed using the
concept of negative refraction [1, 20] and fabricated with 2D photonic crystals [18].

Such a superlens can focus a point source on one side of the lens into a real point
image on the other side even for the case of a parallel sided slab of material. The
advantage of the superlens or perfect lens is the capability to defeat the diffraction
limit or Rayleigh resolution criterion of wavelength divided by two. Such an image
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can be realized by flat slab instead of curved shapes and thus fabrications can be
easier in principle. Zhang and Liu [17] demonstrated the design of such a perfect
lens for sound waves which possess the same advantage as that of optical system.
They used a slab of the sample with 40a width and six layers thick. A continuous
wave point source is placed at a distance 1.0a from the left surface of the slab. The
frequency of the incident wave emitting from such a point source is
x ¼ 0:24 2pcl=að Þ, chosen to be within the region where all-angle negative
refractions may occur (Fig. 2.1b).

The MST method is used to calculate the propagation of an acoustic wave in
such a system. The typical results of field pattern of pressure wave and their images
across the slab sample are given in Fig. 2.4. The geometry of the phononic crystal
slab is also displayed. One can find quite a high-quality image formed in the
opposite side of the slab. A closer look at the data reveals a transverse size (full size
at half-maximum) of the image spot as 0.6a (or 0:14k) at a distance of 1.0a from the
right surface of the slab. The focusing size of the image depends on certain
parameters such as the thickness of the slab and the distance between the source and
the slab which is similar to the case for the optical system. The tuning of these
parameters will produce a clearer acoustic image.

They also studied the effect on the image quality when the frequency of the
sound wave is outside of the AANR region and system without the AANR region
such as steel-air system. For these cases, the focusing phenomena are degraded.
These show that the AANR is very important for the image formations.

This shows that negative refraction for acoustic wave in the 2D phonons crystal
exists in a manner similar to that of optics.

Fig. 2.3 Simulation of
negative refraction. The
boundaries of the sample are
marked with black frame. The
intensity of pressure field for
incidence and refraction are
shown in different shadows.
A wedged sample considered
here consists of water
cylinders in mercury
background with R = 0.4a as
shown on top of the figure.
The frequency of incident
wave is x = 0.235(2pcl/a)
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2.4 Acoustical Cloaking

2.4.1 Introduction

Acoustical cloaking can be classified as a form of acoustical imaging because by
placing a metamaterial acoustical cloak on the object to be cloaked it will render its
disappearance from one sight. The concept of acoustical cloaking also extended
from electromagnetic cloaking [21, 23]. Electromagnetic cloaking uses concepts of
gauge invariance from general relativity that is the form of the Maxwell’s equations
remain unchanged under arbitrary coordinate transformations with transformed
permittivity and permeability values which are scaled by a common factor. Because
of the nature of negative refraction of metamaterial, by cloaking the object with a
metamaterial, the light rays will be deflected, stretched and bended and guided
around the object and returned to their original trajectory.

However, due to the dispersion nature of the light, the cloaking effect is specific
only to a single frequency and not broadband.

The concept of acoustical cloaking was extended to acoustics by Milton et al. in
2006 [24] and by Cummer and Schurig in 2007 [6]. The analysis by Milton et al.
[24] indicated that the coordinate transformations approach cannot be extended to
elastodynamic waves in solids in the fully general case or even for the special case
of compressional waves in a fluid. However, a scattering theory analysis has shown
that the cloaking solution exists for acoustic waves in fluids as three dimensions
[25–27] and by analogies with electromagnetics. It has been shown that 2D acoustic
waves [6] and 3D acoustic waves [28] can be made transformation invariant.

Fig. 2.4 Field pattern of
pressure wave of a point
source and its image across a
six-layer slab at frequency
x = 0.24(2pcl/a). The system
considered here consists of
some water cylinders in
mercury background with
R = 0.4a. Dark and bright
regions correspond to
negative and positive values,
respectively
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The material parameters required to implement acoustic coordinate changes have
also been obtained by Greenleaf et al. [29].

It has to be noted that the phenomenon of acoustical cloaking cannot be trans-
planted blindly from electromagnetic cloaking using analogy. As shown in
Sect. 2.2, Veselago’s [1] theory is not applicable to acoustic waves and even for
electromagnetic waves is valid only to isotropic case and not for anisotropic
cloaking material which most cloaking materials are made of. Also the acoustic
metamaterial has to be derived using the theory of elasticity and not from dispersion
relation as what used to derive the Veselago [1]’s negative permeability and neg-
ative permittivity. Our gauge invariance approach can provide better physical
understanding of negative refraction and cloaking. We also noted that acoustic
negative refraction can be obtained from multiple scattering theory (MST) besides
the approach of negative mass density and negative bulk modulus. This also con-
firms negative refraction is a form of multiple scattering. The above analysis is also
given in Sect. 2.2.

Our idea of objection to use analogy between acoustic wave and electromagnetic
wave is supported by Cummer et al. [25]. They pointed out that demonstrating the
invariance through analogy of acoustic wave with electromagnetic wave masks
some of the physics of the transformations approach particularly how vectors such
as particle velocity and the pressure gradient change under transformation. Through
an analysis of how power flow and constant phase surfaces must transform for
completely general waves, they show that the velocity vector in acoustics must
transform in a different way than the ~E and ~H vectors in electromagnetics. This
explains why Milton et al.’s [24] elastodynamics analysis which assumed that the

acoustic velocity transforms like E
!

and H
!

did not result in acoustic equation
transformation invariance. We feel that this further shows the intrinsic elastic
properties of acoustic wave as different from the electromagnetics. The treatment of
negative refraction using theory of elasticity approach by Lee et al. [30] and Gan’s
analysis on the gauge invariance of acoustic fields [5] further confirm this. An
example of the fabricating of acoustical cloak is given by Cheng et al. [31].

2.4.2 Derivation of Transformation Acoustics

Here, we follow approach of Cummer et al. [26]. The fluids version of the linear
acoustic field equations will be used:

rp ¼ ixq ~rð Þq0~v ð2:16Þ

ixp ¼ j ~rð Þj0r �~v ð2:17Þ

where q ~rð Þ and j ~rð Þ are the normalized density and bulk modulus, respectively, of
the medium and are coordinate transform invariant. We will demonstrate how the
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acoustic velocity vector ~v must transform by considering ~v in a nonorthogonal
coordinate system described by coordinate q1, q2 and q3 with unit vectors û1,û2 and
û3, respectively. Following Pendry et al. [23] and letting i ¼ 1; 2; 3

Q2
i ¼

@x
@qi

� �2

þ @y
@qi

� �2

þ @z
@qi

� �2

ð2:18Þ

n̂ ¼ ð bu1 � bu2Þ=ð= bu1 � bu2=Þ
Area ¼ Q1dq1Q2dq2 û1 � û2j j

Figure 2.5 shows what happens when we apply the divergence theorem to an
infinitesimal volume in this nonorthogonal coordinate system.

Deriving the net outward flux of~v from this volume and setting it equal to the
divergence of~v times the infinitesimal volume, it can be shown that

r �~vð ÞQ1Q2Q3 û1 � û2 � û3ð Þj j ¼ @

@q1
Q2Q3~v � û2 � û3ð Þ½ � þ @

@q2
Q1Q3~v � û1 � û3ð Þ½ �

þ @

@q3
Q1Q2~v � û1 � û2ð Þ½ �

ð2:19Þ

Let Vfrac ¼ û1 � û2 � û3ð Þj j because this is the fraction by which a unit volume is
compressed by the coordinate nonorthogonality and we use the conventional
superscript (subscript) notation for contravariant (covariant) vector components
using

~v � û2 � û3ð Þ ¼ v1û1 � û2 � û3ð Þ ð2:20Þ

Equation (2.19) can be rewritten as

r�~vð ÞQ1Q2Q3Vfrac ¼ @

@q1
Q2Q3Vfracv

1� �þ @

@q2
Q1Q3Vfracv

2� �þ @

@q3
Q1Q2Vfracv

3� �
ð2:21Þ

Fig. 2.5 Parallel piped that
defines an infinitesimal
volume in the transformed
coordinates. The area and unit
normal of each face enter in
the calculation of the net flux
of a vector out of this volume.
From Cummer et al. [26]
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Noting that the divergence in the transformed coordinates is defined by
rq �~v ¼ @v1

@q1
þ @v2

@q2
þ @v3

@q3
, we can write

r �~vð ÞQ1Q2Q3Vfrac ¼ rq � ðVfracQper v
1v2v3

� �T¼ rq � ~v ð2:22Þ

where

Qper ¼
Q2Q3 0 0
0 Q1Q3 0
0 0 Q1Q2

24 35 ð2:23Þ

and the transformed velocity vector ~v is given by

~v ¼ VfracQper v
1v2v3

� �T ð2:24Þ

The per subscript on the tensor Qper is to denote that the diagonal elements
transform each vector component by the product of the coordinate scaling factors
perpendicular (more general, not parallel, for the case of nonorthogonal coordi-
nates) to the direction of the vector component. Recall that our qualitative dis-
cussion above, summarized in Fig. 2.6, showed that this is precisely how the
velocity vector must transform in a compressed wave in order for transformation

acoustics to work. Note that the elements of the volume vector v1v2v3½ �T are the
contravariant components of ~v in the nonorthogonal coordinate system while the
element of the vector ~v is the component in the original orthogonal coordinate
system.

Multiplying (2.17) (with k ~rð Þ ¼ 1) by Q1Q2Q3Vfrac and using (2.24) results in
the equation in the transformed coordinates,

ixp ¼ j ~qð Þjrq � ~~v ð2:25Þ

Fig. 2.6 Transformation of vectors in electromagnetic (left) and acoustic or compressional
elastodynamic (right). The white converging arrows denote which component of each vector is
compressed by the coordinate transformations. From Cummer et al. [26]
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with

j qð Þ ¼ Q1Q2Q3Vfracð Þ�1 ð2:26Þ

This demonstrates the coordinate to function invariant of (2.17) provided that the
bulk modulus is modified according to (2.26) and the velocity vector is transformed
according to (2.25). More generally, this also shows how a vector must transform in
order for the gradient operator to maintain its basis form.

Cummer et al. [26] derived how (2.16) and therefore the gradient operator
transforms under a coordinate change using the gradient theorem and integrating
rp along a short length in the q1 coordinate directions, they find that

rp � Q1û1 ¼ @p
@q1

¼ rqp
� �1 ð2:27Þ

The left-hand side contains the scaled covariant components of rp which must
be converted to covariant components before it can be equated component-wise to
rqp, the gradient in the transformed coordinates. They find that

rqp ¼ Qparh
�1 rpð Þ ð2:28Þ

where Qpar is the diagonal tensor containing coordinate scaling factors parallel to
the direction of the vector component or

Qpar ¼
Q1 0 0
0 Q2 0
0 0 Q3

24 35 ð2:29Þ

and

h
�1 ¼

û1 � û1 û1 � û2 û1 � û3
û2 � û1 û2 � û2 û2 � û3
û3 � û1 û3 � û2 û3 � û3

24 35 ð2:30Þ

Note that this h
�1

is the same as g�1 defined by Pendry et al. [23]. They rename
this tensor because they will use g later to denote the metric tensor which is not

quite the same as this h.

Finally multiplying (1) (with q ~rð Þ ¼ 1) by Qpar, they find

pqp ¼ ixQparh
�1
q0~v ¼ ixQparh

�1
Q

�1

parV
�1
fracq0~v ð2:31Þ
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leaving us with the equivalent of (12.16) in fully transformed coordinates:

rqp ¼ ixqq0~v ð2:32Þ

with

p ¼ Qparh
�1
Q

�1

parV
�1

frac ð2:33Þ

Equations (2.25) and (2.32) show that the acoustic equations are fully trans-
formation invariant with the modified material parameters in (2.26) and (2.33).

They further show that these experiments are equivalent to those shown by Chen
and Chan [24] purely by analogy with electromagnetics through the electric con-
ductivity equation [32] and those derived by Greenleaf et al. [29] for the general scale
Helmholtz equation. Consequently, cloaking shell, concentrator and other devices
that have been designed theoretically by electromagnetics can also be realized for
acoustics provided that the bulk modulus and anisotropic effective mass density
tensor can be realized in practice as specified by (2.26) and (2.33). This first principles
derivation without using analogy shows explicitly in (2.24) how the acoustic velocity
vector must transform under coordinate change, which as noted above is different
from how the ~E and ~H field, transform in electromagnetics. The scalar pressure is,
however, not changed by the coordinate transformations and thus like phase fronts
and power flow lines is simply deformed by any coordinate transformations.

2.4.3 Application to a Specific Example

We consider the spherical cloaking transformation [6] as illustrated in Fig. 2.7 and
specified by r0 ¼ aþ r b� að Þ=b where a and b are constants and b[ a. This

coordinate transformations is orthogonal and then h ¼ 1 and Vfrac ¼ 1 which are
good simplification. The Qi length scaling factors are straightforward to calculate
provided one realizes that the azimuthal and polar angles and not length, as in
Cartesian coordinates and (2.18) must be modified slightly. The Qi is defined by the
ratio of infinitesimal lengths in the transformed and untransformed coordinates and
thus,

Qr ¼ dr
dr0

¼ b
b� a

; Q/ ¼ rd/
r0d/0 ¼

b
b� a

r0 � a
r0

ð2:34Þ

QH ¼ r sin h

r0 sin h0
dh
dh0

¼ hu ð2:35Þ

in agreement with the parameter found through other approaches by Chen and Chan
[28], Greenleaf et al. [29] and Cummer et al. [27].
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Thus, Cummer et al. [26] showed ~E and ~H of electromagnetics transform dif-
ferently from~v of acoustic waves under coordinate transformations. It shows that a
first principle analysis of the acoustic equation under arbitrary coordinate trans-
formations confirms that the divergence operator is preserved only if velocity
transforms in this physically correct way.

2.5 Acoustic Metamaterial with Simultaneous Negative
Mass Density and Negative Bulk Modulus

This is a different approach from that of using multiple scattering theory(MST) to
produce acoustic negative refraction using phonons crystals [17, 33] (of Sect. 2.3 of
MST) and also different from that of the fabrication of acoustical metamaterials for
acoustical cloaking based on the invariance of the acoustic field equations under
coordinate transformations. The concept is based on the gauge invariance of the
acoustic field equations [5]. That is, there is no change in the form of the acoustic
field equation with the replacement of the density and bulk modulus by negative
density and negative bulk modulus. We have shown in Sect. 2.2 that the concept of
negative permittivity and negative permeability giving rise to negative refraction
([1] of Section one) can also be explained by the gauge invariance of the Maxwell’s
equation with the replacement of the positive permeability and positive permittivity
by negative permeability and negative permittivity. In fact, gauge invariance is
more appropriate than the approach of Veselago [1] using the dispersive relation as
the starting point to introduce negative permeability and negative permittivity as
this will give rise to the restriction that only single frequency electromagnetic

Fig. 2.7 The real part of the
pressure field in the r−h plane
of the problem domain
computed from the series
solution. The plane wave is
incident from the left
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cloaking is allowed and also the Veselago [1]’s dispersion relation is used only to
the isotropic case whereby most acoustic cloaking materials are anisotropic.

Applying gauge invariance of acoustic fields [34] to negative refraction,
broadband double negative spectral range in the structure can be obtained [30]. This
is also an experimental verification of my hypothesis on the gauge invariance of
acoustic fields [5]. Lee et al. [30] fabricated an acoustic double negativity
(DNG) acoustic metamaterial with both membranes and side holes (Fig. 2.8). Here,
the acoustic waves are governed by Eqs. (2.36) and (2.37)

�rp ¼ q� j
x2

h i @~u
@A

ð2:36Þ

and

r �~u ¼ � 1
B
� r2SH
qSHAx2

	 

@p
@A

ð2:37Þ

where j = new elastic modulus, ~u = velocity of the fluid (air in this case),
q = dynamic mass density, B = bulk modulus, A = cross section of the tube,
rSH = SH-cross sectional-density, qSH = SH-mass-density.

The existence of the side holes (SH) does not modify Eq. (2.36). Likewise,
because the membranes do not sink any fluid, Eq. (2.37) is still valid. Then, the
system is described by the dynamic and continuity equations

Fig. 2.8 a One dimensional SAE structure consisting of thin tensioned elastic membranes in a
tube. Negative effective density is observed in this system. b A tube with an array of side holes that
exhibits negative effective modulus. c An acoustic DNG structure with both membranes and side
holes. From Lee et al. [30]
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�rp ¼ qeff
@y
@A

� �
r �~u ¼ � 1

Beff

� �
@p
@A

� �
with the effective density and modulus are given by (2.36) and (2.37)

Peff ¼ q0 � j
x2 ¼ q0 1� x2

SAE

x2

	 

ð2:38Þ

Beff ¼ 1
B
� r2SH
qSHAx2

	 
�1

¼ B 1� x2
SH

x2

	 
�1

ð2:39Þ

where xSAE = critical frequency =
ffiffiffi
j
q0

q
The resulting wave equation gives the phase velocity,

vph ¼ �
ffiffiffiffiffiffiffi
Beff

qeff

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

q0 1� x2
SAE=x

2
� �

1� x2
SH=x

2
� �s

ð2:40Þ

where xSH ¼ Br2SH=AqSH
� �1=2

The experimental set-up is given in Fig. 2.9a.
It consists of a nonmetal tube on the left and the DNG metamaterial on the right.

The absorbers at both ends completely absorb the acoustic energy, preventing any
reflection so the system behaves as if it extends to infinity. This eliminates concerns
about the effect of the finite number of cells used in the experiment, as well as the
interference effect from the reflected waves. The sound source rejects acoustic
energy into the tube through a small hole, generating incident waves propagating to
the right. At the boundary, a position of the incident energy is reflected and the rest
is transmitted into the metamaterial regions. On the metamaterial side, the trans-
mitted acoustic energy flow steadily to the right until it hits the absorber.

Pressure was measured as a function of time and position on both the normal
tube side and the metamaterial side. It can be seen that on the normal tube side, the
wave proceeds forward, but on the metamaterial side, the wave propagated as
indicated by the arrows. Clearly, the wave on the metamaterial propagated in a
direction antiparallel to the energy flow. This confirms the theoretical prediction of
negative phase velocity. It was noted that the amplitudes and the apparent phase
velocity in the normal tube deviated from the actual values of the incident wave
because of the interference of the reflected wave from the boundary. In the meta-
material, there is no such interference effect because there is no reflected wave.

The comparison between the theory and experiment is shown in Fig. 2.10.
Theoretically, expected single negative gap is experimentally confirmed by the

transmission data (inset). In the DNG and DPS (double positions) pass bands, the
phase velocities experimentally determined agree well with the theoretical values.
The calculations are given as accurate description of the behaviour of the phase
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Fig. 2.9 a Experimental set-up for the transmission and phase velocity measurements.
b ‘Snapshots’ of measured pressure distribution showing backward wave propagation in the
metamaterial (x > 0). c Characteristic diagrams of pressure measurements for the frequencies 303
and 357 Hz. Negative slopes of the wave-paths in the metamaterial sides (x > 0) indicate negative
phase velocities. From Lee et al. [30]

Fig. 2.10 Transmission
(inset) and phase velocities of
the present acoustic DNG
medium. From Lee et al. [30]
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velocity in the frequency range from 250 to 1500 Hz. Which is broadband?
Because the experiment confirms the theoretical prediction of negative phase
velocity, it can be concluded that the density and the bulk modulus actually
becomes simultaneously negative in the frequency range below 440 Hz.

We would like to point out the novel concept of spatially anchored elasticity [16]
was used. This uses a homogenized structure of membranes to produce negative
effective density. This is termed spatially anchored elasticity (SAE) because the
fluid is elastically anchored in space by the membranes. The new elasticity can be
regarded as an intrinsic variables that characterizing the behaviour of the meta-
material according to Eq. (2.41)

rp ¼ �j~n ð2:41Þ

where j = new elastic modulus, n = displacement of the fluid, p = pressure of the
fluid.

Furthermore, by making additional side holes along the tube wall, acoustic DNG
materials were obtained and backward-wave propagation was observed. The con-
structed structure exhibited DNG characteristic in the spectral range from 240 to
440 Hz which is broadband unlike the electromagnetic case which is limited only to
a single frequency due to dispersion. The phase velocity in this band was negative
and highly dispersive.

Again this proves that acoustic metamaterial cannot be just transplanted by
analogy from the electromagnetic case. It has to be based on the theory of elasticity
unlike for the electromagnetic which is based on the dispersion relation of Veselago
[1].

2.6 Acoustical Cloaking based on Nonlinear Coordinate
Transformations

So far the coordinates transformations used in acoustical cloaking are based on
linear coordinate transformations [6]. Akl et al. [35] extended to nonlinear trans-
formation using

r1 ¼ aþ b� að Þ r
b

� n
ð2:42Þ

where n = an arbitrary transformation exponent that accounts for the degree of
nonlinearity in the transformation and can be used as an additional degree of
freedom in designing and controlling the bending of the acoustic wave inside the
cloak. For unity value of n, the transformation returns back to the linear transfor-
mation proposed by Cummer and Schurig [6].

Linear transformation is effective for the case of rigid objects. However, the
cloaking becomes less perfect and dependent on the selection domain when flexible
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objects are considered where its permeable nature might induce considerable
absorption of sound wave which would bring less perfection to the cloak. Akl et al.
[35] have presented acoustic cloaking based on different nonlinear coordinate
transformations. They developed a finite element model developed through
time-harmonic analysis to study the preserve field distribution using different
nonlinear coordinate transformations. Such transformations have shown consider-
able improvements to the cloak performance when applied to flexible objects
allowing for wider applicability bandwidth (broadband) as well as for providing
additional control of the shape of acoustic wave bending inside the cloak region.

For a metamaterial anisotropic acoustic cloak of a flexible object, the cloak
works in a limited frequency range around its resonant frequency. In order to show
this fact, a quantifiable measure for the cloak’s performance has been developed.
They proposed a new performance indicator of the cloak’s quality using the
acoustic pressure value at a preselected set of points downstream of the cloak. The
set of points selected for pressure measurements were distributed along the fluid in
such a way to accurately predict the calculation from ideal cloak. The proposed
indicator is based on the fact that for ideal cloak, the r.m.s. of the difference
between the acoustic pressure values along the wave front downstream of the cloak
and a reference value measured along the same wavefront at a reference wave
propagation line tend to be zero. A reference wave propagation line located at the
middle of the domain is quite a good unbiased choice. This process is repeated with
as many planes in the axial direction (along wave propagation lines) and lateral
directions as needed to scan the entire fluid domain, where the sum of all the
calculated values is divided by the number of measurement points as given in
Eq. (2.43)

P.I. ¼
Xjmax

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXimax

i¼1

Pi;j � Pi;ref
� �2vuut ð2:43Þ

to yield the targeted performance indicator (P.I.). The measurement grid points are
as illustrated in Fig. 2.11.

In this case, any determination of the cloak performance would result in a
positive r.m.s. value of the proposed pressure difference. The number of points
selected was large enough to capture even the smallest deviation from the ideal
cloak performance.

In Eq. (2.43) i is the measurement point index along the wave propagation line
(axial direction), which j represents the point index in the lateral directions. Based
on this indicator the performance of an anisotropic acoustic cloak surrounding a
flexible object is quantified at different excitation frequency values such that the
larger the indicator values, the more deterioration in the cloak performance is.

The proposed nonlinear transformations of Akl et al. [35] have proven to
improve the way in which the acoustic metamaterial anisotropic cloak works away
from the limited frequency values. This is shown in Fig. 2.12 by plotting the
performance indicator of the linear cloak and one of the nonlinear cloaking over the
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frequency range under study. It is clear that the nonlinear cloak performance at
frequency ranges away from these domain resonant frequencies is much better. The
same conclusion is drawn from Fig. 2.13 where the acoustic pressure field for both
the linear and nonlinear transformation for frequency values away from the domain
resonance frequency is plotted. In order to show the degree by which the nonlinear
transformation has improved the cloaking performance, the difference between the
performance indicator values for nonlinear transformation with minimum PI value
and those for linear transformation at each frequency is calculated and plotted
against the excitation frequency as shown in Fig. 2.14. In this figure, the higher the
positive difference, the more improvement of the acoustic cloak performance is
achieved. Once more, it is evident that a perfect linear acoustic cloak is achievable
only at the same specific frequency values and the proposed nonlinear transfor-
mation has improved significantly the way in which the acoustic metamaterial
anisotropic cloak works away from the limited frequency values. Although the
simulations of the acoustic metamaterial anisotropic cloak around flexible objects
encounter some sort of numerical error, the proposed nonlinear transformations
open the door for searching for different coordinate transformations function that
would lead to simulation results insensitive to the solution domain dimensions.

2.7 Acoustical Cloaking of Underwater Objects

A group at the Mechanical Engineering Department of the University of Illinois led
by Nicholas Fang have created a numerical model to build a metamaterial cloak that
guides sound waves around objects in water. The model is based on the acoustic
lumped circuit network. The unit cell of the network is so small compared to the
wavelength of the sound that it becomes and effective anisotropic medium that
guides sound flow around the cloaked object. Computer simulations demonstrated
that the numerical model successfully achieved a cloaking effect. The next step is to
construct and test an actual physical version of the cloak based on that numerical
model. If the metamaterial cloak also works, considerably more work needs to be
done before the cloak could be scaled up to hide a ship or a submarine. Their mesh

Fig. 2.11 Schematic of the
measurement grid points
required revaluation the
performance indicator. From
Akl et al. [35]
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Fig. 2.13 Full wave time-harmonic acoustic pressure field plot of the analyzed ideal cloak with
water as base medium: a linear at 6000 Hz, b nonlinear (n = 0.3) at 6000 Hz, c linear at 7000 Hz
and d nonlinear (n = 0.3) at 7000 Hz. From Akl et al. [35]

Fig. 2.12 Nonlinear (n = 0.3) acoustic cloak performance against the linear cloak when
surrounding the host medium at different frequency values. From Akl et al. [35]
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model is based on cloaking an object with a diameter of about 0.67 times the
wavelength of light a far cry from the 50-foot beam of a nuclear submarine. Their
work is published in the 15 May 2009 issue of the Physical Review Letters [36].

2.8 Extension of Double Negativity to Nonlinear Acoustics

The lossless form of nonlinear acoustic wave equation up to the third-order elastic
coefficient can be given by Thurstone and Shapiro [37] as

€u ¼ M2

q0

@2u
@x2

þ M3

q0

@2u
@x2

� �
@u
@x

� �
ð2:44Þ

where u = displacement, x = Lagrange coordinate in the direction of motion of a
particle and anisotropic solid is used.

WhereM2 is a linear combination of second-order elastic coefficients andM3 is a
linear combination of second- and third-order elastic coefficients.

To allow for energy dissipation, Eq. (2.44) is modified by adding a term to
include the frequency dependent attenuation coefficient a ¼ a xð Þ, to the right hand
side

€u ¼ M2

q
@2u
@x2

þ M3

q
@2u
@x2

� �
@u
@x

� �
þ 2a

x2 C
3 @2u
@x2@t

ð2:45Þ

where C2 ¼ M2=q = speed of propagation of an infinitesimal amplitude sound
wave and q = mass density of medium.

By replacing q by �q and M2 and M3 by �M2 and �M3. There is no change in
the form of equation. Hence, the nonlinear acoustic new equation is also gauged
invariant in the mass density and the elastic coefficient.

Fig. 2.14 Performance
indicator difference between
linear and nonlinear cloaks at
different frequency values.
From Akl et al. [35]
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Chapter 3
Basic Mechanisms of Sound Propagation
in Solids for Negative Materials

Abstract The three basic forms of sound propagation in solids are diffraction,
refraction and scattering. Acoustical metamaterials will enable the control and
manipulation of these three mechanisms and hence the manipulation of the direc-
tion of sound propagation in solids. A detailed description of this three mechanisms
for the case of negative mass density and negative bulk modulus enabling negative
acoustical metamaterial are given.

3.1 Methods to Treat Multiple Scattering in Conventional
Solids

The basic mechanisms of sound propagation in solids and fluids are scattering,
diffraction and refraction. For natural, conventional positive materials with parity
= +1, the usual treatment of multiple scattering is by Rytov approximation, Born
approximation, statistical treatment and T-matrix. For negative material, with par-
ity = −1 and negative bulk modulus and mass density, the above methods can still
be used. However, in this book, only the T-matrix method will be used.

3.2 T-Matrix of Multiple Scattering

T-matrix of multiple scattering was first used in quantum scattering since the
1930 s. T-matrix stands for transition matrix. It is used frequently together with S-
matrix or scattering matrix. In 1965, Peter Waterman introduced this method of
multiple scattering into classical electromagnetic scattering [1] and acoustic scat-
tering [2]. The acoustic scattering properties of an obstacle are completely described
by its infinite acoustic T-matrix. The T-matrix is particularly useful when one is
interested in analysing changes in sound wave propagation with respect to various
changes in orientation or configuration of single or multiple scatterings. This is
because the T-matrix is independent of the incoming wave directions and hence can
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be used to easily simulate the scattered sound waves without the need to fully set up
and solve each reconfigured system. However, in practice, one must use the trun-
cated finite-dimensional T-matrix which is usually computed using the null field
method. For acoustically large obstacles or highly nonspherical particles, the null
field method is numerically unstable.

Acoustic scattering simulation using the T-matrix method exterior to a ball
circumscribing and centred inside the nonspherical scattering object is based on
series expansion of the incident and scattered fields using spherical wave functions.
In sound wave propagation simulation, the coefficients in the expansion of the input
data(incident field) and the coefficients in the expansion of the output data (the
scattered far field) processed through the Helmholtz operator are connected by an
infinite matrix, because the Helmholtz equation is linear. This transition matrix is
called the T-matrix [3, 4, 5, 6]. The acoustic scattering properties of an obstacle are
completely described by its infinite acoustic T-matrix.

The T-matrix is a powerful tool when one is interested in scattering properties
averaged over a range of incident directions because such information is readily
obtained directly from the T-matrix. The T-matrix is also very useful for simulation
of multiple scattering by ensembles of obstacles because the individual T-matrix of
each scatterer can be combined using the translation addition theorem [3, 4].
Waterman [1] initially developed the T-matrix for electromagnetic scattering by a
single scatterer. It was extended to multiple scatterers by Peterson and Strӧm [5].
The truncated T-matrix is usually computed using the null field also known as the
extended boundary condition method [1, 3, 6–8].

For medium- to high-frequency problem or highly nonspherical obstacles, the
null field method is numerically unstable. This is usually due to fast growth of the
spherical Hankel function used in expansion of the surface field in the null field
method [3]. For acoustically large or highly nonspherical obstacles, the T-matrix
computation can become divergent [7, p. 543]. There are several approaches to
tackle this problem [3, 4, 7] such as using expansions based on spheroidal or
ellipsoidal functions for high-aspect ratio convex obstacles, and using slow
extended precision arithmetic to minimize the effect to round off errors.

The T-matrix method could be computed using far field simulation based on
surface integral equation for incident spherical waves, but to date, no algorithm of
this type has been developed for acoustic scattering in three dimensions [3]. Many
good algorithms exist for far field computations, and such details are described by
Ganesh and Graham [5].

The fundamental computational difficulty in computing the T-matrix using a
stable far field surface integral method is that this approach requires solving a large
number of complex dense linear systems with a fixed scattering matrix (obtained by
discretizing the associated surface integral operator) but thousands of right-hand
sides(corresponding to each wave function used in expanding the incident field).
Consequently, using a computational scattering algorithm that allows set-up, stor-
age and LU-factorization of the numerical scattering matrix is crucial.
LU-factorization is not practically possible for three-dimensional scattering prob-
lem using low-order schemes such as the standard boundary element methods that
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usually require hundreds of thousands to millions of unknowns for low- to
medium-frequency scattering for each incident direction. Such large systems
require iterative solvers to avoid setting up and storing the scattering matrix, and
hence, thousands of acoustic scattering problems are to be set up and solved for
each term in the incident wave expansions separately. Ganesh and Graham [5] give
computational complexity and CPU time requirements to three-dimensional scat-
tering problems. They describe a spectrally accurate three-dimensional scattering
algorithm that requires less than 10% of the unknown than several established
algorithms and hence is ideal for acoustic T-matrix computation, solving for
thousands of terms in the incident field expansion using simple back and forward
substitution technique after the storage of the LU-factorization of the numerical
scattering matrix which is only computed once.

3.3 Application of T-Matrix to Multiple Scattering
in Acoustical Metamaterials

The existence of frequency ranges where the effective medium presents negative
constitutive parameters is related to sub-wavelength resonances of the individual
scatterers that constitute the metamaterial. These resonances can be, for example, due
to soft-resonances or to Helmholtz-like resonances. The same phenomenon is found
in EM waves under the name of Mie resonances, and they present an alternative way
of designing EM metamaterials to that offered by split-ring resonators or metal-
lodielectric composites which have been the dominant structures so far. Therefore,
metamaterials based on local resonances are important not only for acoustic but also
for EM metamaterials. It is known that the monopolar resonances in the individual
scatterers are responsible for negative bulk modulus and that the dipolar ones are
responsible for negative mass density [9, 10]. However, the behaviour of aggregates
of scatterers in the homogenization limit has been partially explained since multiple
scattering effects or anisotropic lattices have not been studied in depth.

Torrent and Sanchez-Dehesa [11] applied T-matrix method to multiple scattering
in acoustic metamaterials. The description of acoustic metamaterials was given by
using a multiple scattering approach under the assumption that the wavelength in
the background is asymptotically large, whereas inside the scatterer, it remains
finite. It is based on their theory which is already applied to the homogenization of
sonic crystals [12–14]. They consider in the long wavelength limit an ensemble of
ordered or disordered scatterers as an effective medium with acoustic parameters
that are frequency dependent and can take negative values in certain frequency
regions. The frequency-dependent parameters are given in terms of the lattice
symmetry, the multiple scattering interactions and the fields at the scatterers’ sur-
face. This formulation covers all the previous results regarding single negative
metamaterials (SNM) and double negative metamaterials (DNM) and, moreover,
can be applied to any type of radially symmetric scatterer, to nonsymmetric lattices
and even to any filling fraction.
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3.4 Low-Frequency Resonances Giving Rise to Locally
Negative Parameters

Low-frequency resonances will lead to locally negative parameters in acoustic
metamaterials. The homogenization theories for aggregates of scatterers will be
used here. These theories are based on small-wave number (long wavelength)
expansions of the fields in both the background and the scatterers. When working
with metamaterials, it is assumed that the wave number in the background is
asymptotically small although the wave number inside the scatterer still be finite.
Physically, it means that outside the scatterers, the wave field propagates through an
effective medium, but the scatterers are still allowed to have complex scattering
processes. The complexity leads to negative parameters in a narrow frequency
region, as will be explained below.

A simple example of this type of scatterer A is a homogeneous fluid-like scat-
terer. If the sound speed inside this scatterer is much smaller than that of the
background, ca � cb, then for a given frequency x, the wavelength inside the
scatterer, ka, is also much smaller than that in the background, i.e. ka � kb. Thus,
outside the scatterer, the field will be a function of kb = x/cb, which is a slowly
oscillating function, while inside the scatterer, the field will be a rapidly oscillating
function of ka = x/ca. Since the low-frequency limit is considered, in principle, the
medium to behave as an effective homogeneous medium with constant parameters,
but in fact, due to the fields inside the scatterer, the resulting effective medium has
parameters that are frequency dependent.

3.5 Acoustic Scatterers with Locally Negative Parameters

The wave equation for a pressure field in an inhomogeneous fluid is given as [15]

r q�1ðrÞrPðrÞ� �þ x2

jðrÞ pr ¼ 0; ð3:1Þ

where qðrÞ and j(r) are the fluid mass density and bulk modulus, respectively,
and r ¼ ðr; hÞ defines an arbitrary point in the x–y-plane in polar coordinates.
Here, the scatterer has radius Ra and is radially symmetric with parame-
ters q(r) and j(r), and embedded into a fluid background with acoustic
parameters qb and jb.

This is a canonical problem whose solution outside the scatterer is given in terms
of the Bessel and Hankel functions [15]:

Pðr; h;xÞ ¼
X1
q¼�1

A0
q JqðkbrÞþ TqHqðkbrÞ
� �

eiqh; r[Ra ð3:2Þ
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with k2b ¼ x2q=jb. The coefficients Aq
0 are determined by the incident field, and the

scatterer response is described by the matrix elements Tq. This matrix is diagonal
for the case considered due to axial symmetry of the scatterer, and it can be
obtained by solving the wave Eq. (3.1) inside the scatterer and applying boundary
conditions at the scatterer surface, r = Ra. The conditions are the continuity of the
pressure field and the normal component of the velocity:

PðRþ
a Þ ¼ PðR�

a Þ; ð3:3aÞ
1
qb

@rPðRþ
a Þ ¼ 1

qðR�
a Þ

@rPðR�
a Þ: ð3:3bÞ

Since the scatterer is radially symmetric and parameters q and j depend only on
the radial coordinate, the field inside the scatterer can be expressed as a Fourier
series of the form

Pðr; h;xÞ ¼
X1

q¼�1
jqðxÞwqðr;xÞeiqh; ð3:4Þ

where the eigenfunctions wq(r; x) are the solutions of the radial part of Eq. (3.1) in
cylindrical coordinates,

qðrÞ
r

@r
r

qðrÞ @rwqðr;xÞ
� �

þ x2 qðrÞ
jðrÞ �

q2

r2

� �
wqðr;xÞ ¼ 0: ð3:5Þ

From this equation, after applying the boundary conditions, the general
expression for the diagonal components of the T-matrix is easily obtained:

Tq ¼ � vqJ
0
qðkbRaÞ � JqðkbRaÞ

vqH0
qðkbRaÞ � HqðkbRaÞ ; vq ¼

qðRaÞ
qb

wqðRa;xÞ
@rwqðRa;xÞ kb: ð3:6Þ

This matrix contains two contributions: the background contribution is described
by the Bessel and Hankel functions, while the scatterer contribution is described by
the function vq. In general, Eq. (3.5) must be solved in order to obtain the vq
functions; for example, for a homogeneous and isotropic cylinder of mass density
qa and speed of sound ca, the solutions to Eq. (3.5) are Bessel functions; thus,

vq ¼
qaca
qbcb

JqðkaRaÞ
J 0qðkaRaÞ : ð3:7Þ

Standard homogenization theory based on multiple scattering uses the asymp-
totic form of these expressions to derive the effective medium properties. In par-
ticular, the monopolar and dipolar terms (q = 0 and q = 1) are used to obtain the
effective modulus and mass density, respectively, both being positive [13, 16].
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However, it is shown below that metamaterial behaviour (i.e. effective parameters
with negative values) appears in the regime where only the Bessel and Hankel
functions of the background are replaced by their asymptotic forms at low fre-
quencies. In other words, when the wavelength in the background is large, the
wavelength in the scatterer is comparable in size.

So the arguments of the Bessel and Hankel functions are considered to be
small, kbRa � 1, and use their asymptotic forms [17]. Then, the monopolar com-
ponent of the T-matrix becomes

T0 � ipR2
ak

2
b

4
1þ 1

2 kbRav0
k2bR

2
a

2 ln kbRa � 1
2 kbRav0

; ð3:8Þ

where the logarithmic term in the denominator is negligible in comparison with the
linear term in kb in the low-frequency limit but cannot be neglected when dealing
with metamaterials. This term, which has been omitted in many preceding studies
about acoustic and EM metamaterials, is of paramount importance to determine the
metamaterial effective parameters.

Equivalently, the dipolar component of the T-matrix is

T1 � ipR2
ak

2
b

4
v1=kbRa � 1
v1=kbRa þ 1

: ð3:9Þ

Since behaviour is expected to that of a homogeneous scatterer with effective
acoustic parameters qa and ja, the matrix elements should have the standard form

T0 � ipR2
ak

2
b

4
jb
ja

� 1
� �

; ð3:10aÞ

T1 � ipR2
a

4
qa � qb
qa þ qb

� �
k2b : ð3:10bÞ

Now, comparing Eqs. (3.8) and (3.9) with Eqs. (3.10a) and (3.10b), one can
introduce frequency-dependent bulk modulus and mass density functions as
follows:

jaðxÞ=jb ¼ k2bR
2
a

2
ln kbRa � 1

2
kbRav0 ð3:11aÞ

qaðxÞ=qb ¼ v1=kbRa: ð3:11bÞ

These functions depend on the mass density at the scatterer surface, q(r = Ra),
and also depend on the field and its derivative at the surface: that is, wq(r = Ra; x)
and ∂rwq (r = Ra; x), respectively. These quantities are frequency dependent and
are responsible for the frequency dependence of the parameters jaðxÞ and qa(x). It
is worthwhile to show that jaðxÞ � jb and qa(x) � qb for a homogeneous

52 3 Basic Mechanisms of Sound Propagation …



scatterer. This is done in Appendix (http://iopscience.iop.org/article/10.1088/1367-
2630/13/9/093018/meta;jsessionid=7CB9A734A04B2E377A0FBBEED20097D3.
c3#nj381920s6).

The derivation described above is similar to that in [9, 10] where the authors
employed the coherent potential approximation method and seek the self-consistent
solution to ensure that the inhomogeneous system embedded within an effective
medium generates no scattering in the lowest order of frequency. However, in [9,
10], the expressions are left as functions of the so-called scattering coefficients, and
therefore, they are very general and valid for any type of isotropic scatterer. Here, a
further step is given and analyse the low-frequency limit of the scattering coeffi-
cients under the assumption that only the wave number in the background is
asymptotically large, which allows us to understand metamaterial phenomena.

3.6 Multiple Scattering of Acoustic Waves
in the Low-Frequency Limit

A cluster of cylindrical scatterers defined by their homogeneous parameters qa
and ja will behave in the low-frequency limit (i.e. for wavelengths larger than the
typical separation between scatterers) as a homogeneous medium with effective
parameters q* and j*. These parameters were obtained by Berryman [18] in 1980
by making a comparison of the scattering properties of the cluster and the effective
scatterer. The resulting estimate was not exact because multiple scattering effects
were neglected. This approach was recently generalized by including all the mul-
tiple scattering interactions between scatterers, and very general expressions were
obtained in [13, 14, 16].

The following subsections present a generalization of the results of previous
studies to the case of metamaterials in which effective parameters are frequency
dependent. It will be considered that parameters qa and ja can be replaced by their
corresponding frequency-dependent values qa(x) and jaðxÞ. It is demonstrated
that this procedure is self-consistent and therefore gives a correct method for the
extraction of the effective parameters of acoustic metamaterials.

3.7 Multiple Scattering Effects: The D Factor

A cluster of scatterers periodically distributed in a fluid background is considered.
In the low-frequency limit, the cluster behaves like an effective fluid-like medium
with the parameters given as [18]
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1
j�ðxÞ ¼

1� f
jb

þ f
jaðxÞ ; ð3:12aÞ

q�ðxÞ ¼ qaðxÞð1þ f Þþ qbð1� f Þ
qaðxÞð1� f Þþ qbð1þ f Þ qb; ð3:12bÞ

where the frequency dependence of scatterer parameters (see Eqs. 3.11a and 3.11b)
has been included.

While Eq. (3.12a) is valid for all filling fractions, Eq. (3.12b) is valid for diluted
clusters only (i.e. low filling fractions). In [13] and [14], the expressions for the
effective density were generalized to the case of high filling fractions, and all
the multiple scattering terms were introduced in Eq. (3.12b) by means of the
so-called D factor, leading to

q�ðxÞ ¼ qaðxÞðDþ f Þþ qbðD� f Þ
qaðxÞðD� f Þþ qbðDþ f Þ qb: ð3:13Þ

The factor D represents a correction to the effective density and takes into
account all the multiple scattering interactions between the cylinders in a cluster
or in an infinite lattice. Technical details of its derivation are given in Appendix
(http://iopscience.iop.org/article/10.1088/1367-2630/13/9/093018/meta;jsessionid=
A9746E63EF7AAEE3334FA959047513E6.c3#nj381920s7). D also contains
information on the mass density of the cylinders forming the cluster, and hence, if
we want to introduce a frequency-dependent factor D(x), the frequency-dependent
mass density must also be considered.

It has been shown that the contribution of the scatterers’ density to the D factor is
made through the factor η defined as [13, 14]

g ¼ qa � qb
qa þ qb

: ð3:14Þ

It is tempting to replace qa ! qa(x) in order to define the frequency-dependent
D(x). However, it must be remembered that the η factor appears in the power
expansion of the q-component of the T-matrix as follows:

lim
kb!0

Tq

k2 qj j
b

¼ ipR2q
a

q!ðq� 1Þ!22q
qa � qb
qa þ qb

: ð3:15Þ

Then, for the D factor to be consistent with our theory, we must compute Tq
given by Eq. (3.6) taking into account that the wavelength inside the scatterer is still
finite. This leads to the following equation that replaces Eq. (3.15):
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Tq

k2 qj j
b

� ipR2q
a

q!ðq� 1Þ!22q
qvq=kbRa � qb
qvq=kbRa þ qb

: ð3:16Þ

This equation shows that we can generalize the D factor as long as one makes the
substitution

g ! gðxÞ ¼ qvq=kbRa � qb
qvq=kbRa þ qb

ð3:17Þ

in the corresponding multipolar components in [13, 14].
The D factor was studied in the quasi-static limit (i.e. for k ! ∞), and it was

demonstrated that its contribution is important only for high filling fractions and for
strong scatterers [13, 14]. This is because the coupling to higher multipolar com-
ponents is always weaker. Similar behaviour is expected for the
frequency-dependent factor, D(x), although we would expect in this case the
presence of resonances different from monopolar or dipolar. However, it was shown
in [14] that the multipolar contributions to the D factor are proportional to a set of
lattice sums Sq, whose values depend on the lattice symmetry. Thus, for the square
or hexagonal lattices, only the sums such that q = 4n or q = 6n, respectively, for
n = 1, 2, …, are different from zero. Thus, the first multipolar term appearing in the
D factor is that with q = 4 for a square lattice and with q = 6 for a hexagonal one.
The resonances of these modes for a lattice of homogeneous cylinders occur at
frequencies higher than those for q = 0 and q = 1. Thus, they cannot be observed in
the low-frequency limit. It does not mean, however, that the D factor is not relevant,
as will be discussed in the following example, but rather that the higher-order
resonances do not contribute to the effective parameters.

The contribution of the D factor to the effective parameters is better understood
for strong scatterers. For the case of almost rigid scatterers (i.e. cylinders made of
heavy solid materials embedded in air), this factor contributes considerably to the
calculation of the effective parameters, but since these cylinders do not possess
low-frequency internal resonances, they are of no interest to this study. In contrast,
the case of soft scatterers like air cylinders embedded in water represents the
opposite system and is discussed below.

Figure 3.1 shows the bulk modulus of a hexagonal lattice of air cylinders in a
water background (ja = 5.14 � 10−5jb), qa = 103 kg m−3 and qb = 1.24 kg m−3)
for several filling fractions. It has been pointed out that the effective bulk modulus
does not need a multiple scattering correction. However, this example demonstrates
that the homogenization limit can be defined here only from a frequency-dependent
theory since the modulus is negative in a wide frequency range. The expression for
the frequency-dependent bulk modulus is given by Equation (http://iopscience.iop.
org/article/10.1088/1367-2630/13/9/093018/meta;jsessionid=A9746E63EF7AAEE
3334FA959047513E6.c3#nj381920eqnA.1a), where we observe that, since Ba/Bb

� 5�10−5, the dominant contribution comes from the logarithmic term. The second
term contributes to a weak resonance near the reduced frequency of 0.3, as can be
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observed in the figure. On the one hand, this resonance is too sharp to be measured
in a real system; on the other, it occurs beyond what one could consider the
homogenization limit, which is found to be at a/k � 0.25.

The lower panel of Fig. 3.1 shows the frequency-dependent mass density for
three different filling fractions. The continuous line corresponds to the calculation
considering the D(x) factor as explained above; the dashed line corresponds to the
low filling fraction approximation. It is shown how the multiple scattering cor-
rection is important for high filling fractions only, as expected, and also, one can see
that the resonant frequency is almost the same in both situations, showing that the D
factor is relevant mainly in the quasi-static limit.

Finally, Fig. 3.2 shows the imaginary part of the effective speed of sound. As the
effective bulk modulus is negative for the whole range of frequencies considered as
the homogenization limit, the effective speed of sound is always purely imaginary.
It becomes real only in the narrow region where the effective mass density is also
negative, due to the local resonance. This sharp resonance can be observed
numerically; however, it is hard to believe that this could be observed experi-
mentally. Thus, one can conclude that the system of air cylinders in a water
background will always be a nonpropagating medium in the low-frequency limit.

Fig. 3.1 Upper panel effective bulk modulus of a composite medium made of air cylinders
distributed in a hexagonal lattice and embedded in water. The results are shown for three filling
fractions ff. The effective bulk modulus is negative in the whole frequency region considered as
homogenization. Only in a very narrow region corresponding to infinite wavelength is the effective
bulk modulus positive. Lower panel the corresponding effective mass densities. The dashed lines
correspond to the dilute approximation (low-ff), and the continuous lines represent calculations
where the multiple scattering terms are considered (mst-ff) (After Daniel and Jose Sanchez-Dehesa)
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3.8 Suitability of the T-Matrix Method to Multiple
Scattering in Acoustic Metamaterials

There are several methods for dealing with multiple scattering in solids. They
should not be used blindly. Acoustic metamaterials are artificial composites/crystals
with periodic structures enabling negative material parameters such as negative
mass density and negative bulk modulus. This is due to local resonances due to
propagating sound waves with restriction to certain frequencies range. This will
enable the control of multiple scattering by the choice of uniting cells of the
metamaterial to produce negative mass density and negative bulk modulus. The T-
matrix method of multiple scattering is introduced from quantum field theory of
multiple scattering, although there are other methods of multiple scattering. But
they are for treating scattering in random media. T-matrix is a symmetry trans-
formation. Hence, it is suitable for treating a medium with symmetry property such
as metamaterial.

3.9 Diffraction

Diffraction refers to various phenomena which occur when a wave encounters an
obstacle or a slit. It is defined as the bending of wave around the corners of an
obstacle or aperture into the region of geometrical shadow of the obstacle. In
classical physics, the diffraction phenomena are described as the interference of
waves according to the Huygens–Fresnel principle. These characteristic behaviours
are exhibited when a wave encounters an obstacle or a slit that is comparable to its

Zoom In Zoom Out Reset image size

Fig. 3.2 Imaginary part of
the effective sound speed for a
medium consisting of a
hexagonal lattice of air
cylinders in a water
background. The lattice
constant is a
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wavelength. Similar effects occur when wave travels through a medium with a
varying refractive index or when a sound wave travels through a medium with
varying acoustic impedance. If the obstructing object provides multiple, closely
spaced openings, a complex pattern of varying intensity can result. This is due to
the addition, or interference, of different parts of a wave interference that travels to
the observer by different parts, where different path lengths result in different
phases.

Diffraction arises because of the way in which waves propagate. This is
described by the Huygens–Fresnel principle and the principle of superposition of
waves. The propagation of a wave can be visualized by considering every particle
of the transmitted medium on a wavefront as a point source for a secondary
spherical wave. The wave displacement at any subsequent point is the sum of these
secondary waves. When waves are added together, their sum is determined by the
relative phases as well as the amplitudes of the individual waves so that the summed
amplitude of the waves can have any value between zero and the sum of the
individual amplitudes. Hence, diffraction patterns usually have a series of maxima
and minima. There are various analytical models which allow the diffracted field to
be calculated, including the Kirchhoff–Fresnel diffraction equation, which is
derived from wave equation, the Fraunhofer diffraction approximation of the
Kirchhoff equation which applied to the far field and the Fresnel diffraction
approximation which applied to the near field. Most configurations cannot be
solved analytically, but can yield numerical solutions through finite element and
boundary element methods.

It is possible to obtain a qualitative understanding of many diffraction phe-
nomena by considering how the relative phases of the individual secondary wave
sources vary, and in particular, the conditions in which the phase difference equals
half a cycle in which case waves will cancel one another out.

The simplest descriptions of diffraction are those in which the situation can be
reduced to a two-dimensional problem. For water waves, this is already the case;
water waves propagate only on the surface of the water. For light, we can often
neglect one direction if the diffracting object extends in that direction over a dis-
tance far greater than the wavelength. In the case of light shining through small
circular holes, we will have to take into account the full three-dimensional nature of
the problem.

3.10 Diffraction by Negative Inclusion

In acoustic metamaterial, the diffraction will take place in a negative material with
negative mass density and negative bulk modulus.
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3.11 Theory of Diffraction by Negative Inclusion

3.11.1 Formulation of Forward Problem of Diffraction
Tomography

The diffraction in a double negative medium (DNG) can be studied following the
formulation of diffraction tomography. The ability to control and manipulate
diffraction will give rise to a new form of diffraction and a new theory of diffraction.
We will consider the diffraction by negative inclusion which described a double
negative medium compared with the conventional diffraction tomography which
deals with positive medium with parity equals +1. We shall follow the approach of
Burov et al. [19] who use the linearized hydrodynamic equation as the starting point
instead of the Helmholtz wave equation to derive the Lippmann–Schwinger
equation used in diffraction tomography. The reason is the Helmholtz wave
equation involves the refractive index squared. This is not quite consistent and
requires additional justifications concerning the sign of n in a left-handed medium
that is associated with the necessity of doing a positive work by the source, with the
direction of the vector of the energy flux away from the source, with the causality
principle, etc. We have to resort to the causality principle to justify the negative sign
of the refractive index for a negative medium [16]. The linearized hydrodynamic
equation, on the other hand, does not involve inconsistency, arises in choosing the
sign of n, the refractive index.

The linearized hydrodynamic equation (for acoustics) is:

d
dt

ĵpð Þþr~V ¼ u

d
dt

q̂pð Þþr~p ¼~f
ð3:18Þ

where u and~f are the scalar and vector primary sources of the acoustic field,
respectively. For media without dispersion,~p and ĵ are scalars. When dispersion is
present, they are convolution-type operators over the time variable.

A four-dimensional representation of the field variables (pressure p and three
components of velocity ~V) is used in (3.18). The resonator response function Q sð Þ
which characterizes the appearance of a secondary source in response to the inci-
dent field is then a 4 � 4 matrix at each fixed s. The properly transformed
Krämers–Krönig relations also acquire a matrix form.

Since q and j can be negative only in a narrow frequency band, whose width is
determined by the resonator Q-factor, Burov et al. [19] discuss only stationary
monochromatic fields at this stage. As a result, they can abstract from the specific
resonator design and disregard the explicit form of the response function Q sð Þ,
reasoning in the language of effective functional parameters q and j, which depend
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only on the coordinates at a fixed frequency. It should be noted that the
monochromatic case cannot give an answer to the question about the relationship
between the real and imaginary parts of each functional parameters characterizing
the medium since this relationship follows precisely from the Krämers–Krönig
relations. However, this relationship should also be taken into account when
working with monochromatic fields.

An ordinary (positive) medium is considered as a background with parameters
qo and jo, while a negative medium is obtained from it by adding corrections q0 ~rð Þ
and j0 ~rð Þ (which are not small): q ~rð Þ � qo þ q0 ~rð Þ, j ~rð Þ � jo þ j0 ~rð Þ. This
approach allows the propagation of waves in media with arbitrary (in magnitude
and sign) q and j distributions to be calculated using the well-known methods of
the scattering theory that are not based on the Born approximation or similar
assumptions.

In the monochromatic case, the system of Eqs. (3.18) for time dependence
—exp �ixtð Þ transforms to

r~V � ixqp ¼ u;rp� ixq~V ¼~f ð3:19Þ

Burov et al. [19] introduce column vectors �U � ~V
P

� �
, �F � ~f

u

� �
and an oper-

ator Â in the form of a matrix acting both in the coordinate space and in the space of

field variables
~V
P

� �
:

Â � �ixq ~rð Þ r
r ixj ~rð Þ

� �
¼ Âo � Â;

where Âo � �ixqo r
r ixjo

� �
and Â1 � ixq0 ~rð Þ 0

0 ixj0 ~rð Þ
� �

are the operators that

characterize the homogeneous medium of a positive background and its perturba-
tion, respectively. It should be noted that the introduced quantities are a combi-
nation of both scalar and vector field components in the region under study. In
matrix form, system (3.19) is Â�U ¼ �F. At Â1 ¼ 0, implying the absence of cor-

rections q0 ~rð Þ and j0o ~rð Þ, the sources �F produce the incident field �Uo � Vo

Po

� �
, in

the region under consideration, and the system is

Â0 �Uo ¼ �F ð3:20Þ

hence

�Uo ¼ Â�1
o

�F ð3:21Þ
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Let Ĝ be the retarded Green function of a homogeneous medium for the system
of (3.20), i.e. a system of type (3.19),

Â�1
o ð�Þ ¼

Z
Ĝ ~r �~r0ð Þð�Þd~r 0

In the presence of corrections q0 and j0, the following relation holds for the �U:

�U ¼ Â�1�F ¼ Â�1Â0Â
�1
o

�F ¼ Â�1Â0
� �

�Uo

¼ Â�1Â
� ��1 �Uo ¼ Â�1

o Â0 � Â1
� 	� ��1 �Uo ¼ �U � Â�1

o1

� ��1 �Uo

Hence

�U ¼ Ê � Ĝ � Â1
� ��1 �Uo ð3:22Þ

where Ê ¼ unit operator and � denote the convolution operation in the coordinate
space.

Equation (3.22) is an operator form of the solution to the Lippmann–Schwinger
equation for the field �U:

�U ~rð Þ ¼ �Uo ~rð Þþ
Z
R

Ĝ ~r �~r 0ð Þ Â1 ~r
0ð Þ�U ~r 0ð Þ� �

d~r 0 ð3:23Þ

where R is the localization region of the q0 and j0 inhomogeneities.

Here, the operator Â1 ~r 0ð Þ acts in the space of wave variables �P
!h i

, while in the

coordinate space, it is a local multiplication operator at each point ~r. The inverse
operator in (3.22) exists since all its eigenvalues are complex for passive media, to
which the media under consideration belongs [20] and imposes no constraints on
the scatterer strength.

An explicit expression for the matrix form of the retarded Green function Ĝ can
be derived [21] by passing the space of wave vector ~j, i.e. by decomposing the
fields using a set of plane harmonic waves for which the pressure and oscillation
velocity varies as—exp �ixtþ i~j~rð Þ. In this space, the operator Âo takes the form of

an ordinary matrix
�ixqo i~j
i~j �ixjo

� �
, whose inversion gives

�ixqo i~j
i~j �ixjo

� ��1

¼ 1
j2o�~j2

�ixjo i~j
i~j �ixqo

� �
, where ko ¼ x

ffiffiffiffiffiffiffiffiffiffi
qojo

p
is the wave

number in the background medium. To obtain the Green function ~G in coordinate
representation, we must perform the inverse Fourier transform (the transition from~j
to~r) of this expression. In this case, a pole appears in the denominator going around
which requires introducing an infinitesimal imaginary part 	n for the wave
number: ko ¼ x

ffiffiffiffiffiffiffiffiffiffi
qojo

p 	 in, where n ! þ 0. The “+” or “−” sign in front of the
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infinitesimal but positive n defines whether the Green function will be retarded or
advanced one. As a result, for the retarded Green function, we derive the expression

Ĝ ~r �~r 0ð Þ � �ixqo r
r ixjo

� �
G ~r �~r 0ð Þ, where G ~r �~r 0ð Þ is the retarded Green

function of the Helmholtz equation for a homogeneous space of the corresponding
dimension with parameters qo and jo, whose analytical form is well known. The
operator r � rr acts on the argument ~r of the function G ~r �~r 0ð Þ: in the
one-dimensional (D = 1) and two-dimensional (D = 2) cases, the Green function
for the system of Eq. (3.19) is then

ĜD¼1 x� x0ð Þ ¼ exp iko x� x0j jð Þ
2

ffiffiffiffi
ko
qo

q
sgn x� x0ð Þ

sgn x� x0ð Þ
ffiffiffiffi
qo
ko

q
2
4

3
5 ð3:24Þ

ĜD¼2 ~r �~r 0ð Þ ¼ i
4

�ixj0H
1ð Þ
0 j0~r �~r 0j jð Þ ~r�~r 0

~r�~r 0j j j0H
1ð Þ
1 j0~r �~r 0j jð Þ

~r�~r 0
~r�~r 0j j j0H

1ð Þ
1 j0~r �~r 0j jð Þ �ixq0H

1ð Þ
0 j0~r �~r 0j jð Þ

" #
ð3:25Þ

Equations (3.22) and (3.23) are written for the system of hydrodynamic
Eq. (3.19) and not for the Helmholtz wave equation.

Since the background medium in Eqs. (3.22) and (3.23) is positive, there is no
need to use the advanced Green function to calculate the field in a negative medium.
These relations allow the field to be reproduced for any configuration of a finite (in
size) scatterer that consists of a positive or negative material for an arbitrary inci-
dent field �u0.

One has to discretize Eq. (3.23). The region under consideration is sampled by
dividing it into areas dSn, characterized by the radius vectors of their centres~rn. The
area size is chosen to be much smaller than the wavelength, in such a way that the
parameters of the medium q and j, within each area as well as the incident field �u0
and the diffracted field �u, may be considered constant. The integration on the
right-hand side of Eq. (3.23) is reduced to the summation over the area dSn, in each
of which Â1 and �u are assumed to be constants determined only by the area number
n. For the field inside area m, the sampled form of the Lippmann–Schwinger
equation becomes:

�um ¼ �uom þ
X Z

dSn

Ĝ ~rm �~r 0ð ÞÂ1 ~r
0ð Þ�u ~r 0ð Þd~r 0

2
64

3
75

� �uom þ
X
n

Z
dSn

Ĝ ~rm �~r 0ð Þd~r 0

2
64

3
75 Â1�u
� �

n

ð3:26Þ
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From Eqs. (3.24) and (3.25), the Green function is smooth everywhere in the
one-dimensional case and at ~r 6¼~r 0 in the two-dimensional case. The amount of
calculations can then be reduced significantly when calculating the elements of the
matrix Ĝmn �

R
dSn

Ĝ ~rm �~r 0ð Þd~r 0, by assuming it to be constant within the area and
equal to its value at the area’s centre in these cases:

Ĝmn � Ĝ ~rm �~rnð ÞdSn ð3:27Þ

Equation (3.27) cannot be used to calculate the matrix elements Ĝmn in the
two-dimensional and three-dimensional case at m ¼ n and must perform the inte-
gration over the area dSn ¼ m. In this case, the singularity of the function Ĝ, that
arises when its argument tends to zero (in the two-dimensional case, the Hankel

functions H 1ð Þ
0 and H 1ð Þ

1 have a singularity) is integrable.
As a result of the estimation of all matrix elements Ĝmn, Eq. (3.26) takes the

form

�um ¼ �uom þ
X
n

Ĝmn Â1�u
� �

n ð3:28Þ

The following is the sampled analogue of Eq. (3.22):

�um ¼ Enm � ĜÂ1
� �

nm

� ��1
�uon ð3:29Þ

In Eq. (3.29), the matrix elements ĜÂ1
� �

nm are formed by the products of the

matrices Ĝmn and Â1
� �

m at fixed m. All quantities in Eqs. (3.22) and (3.23) and
(3.16–3.29) are defined on the direct product of the space of field variables and the
coordinate space of vector~r sampled in terms of the indices m and n. Hence, it is
appropriate to use Eq. (3.29) to find the field inside the scatterer localization region
R and in its neighbourhood with minimum sizes required by the problem, and since
in the case of an unjustifiable increase in the sizes of the region being analysed, the
matrix inversion operation requires a very large amount of a computer’s random
access memory.

It has to be noted that during the inversion of the nonsampled operator in
Eq. (3.22), the width of its spatial spectrum increases, since the inversion procedure
reflects the entire set of rescattering process [22]. Therefore, even at the formation
stage of the direct matrix Enm � ĜÂ1

� �
nm, one has to significantly reduce the spatial

sampling step for the inversion of the matrix in Eq. (3.29) to lead to the correct
values of �um. The optimal choice of the sampling step will be considered during the
process of numerical simulation. Once the internal field �un and consequently the
secondary sources of the scattered field have been found at all points of region R,
the total field �um out of any point~rm 62 R can be found as the sum of the incident
field from the primary sources and the scattered field from the sampled secondary
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sources Â1�u
� �

n from Eq. (3.23), which after the sampling taken a form similar to
Eq. (3.26):

�uoutm ¼ �uoutom þ
X
n

Ĝmn Â1�u
� �

n ð3:30Þ

Hence, Burov et al. [19] have constructed a mathematical framework suitable for
modelling the wave processes in both positive and negative media.

3.11.2 Modelling Diffraction Procedure in a Negative
Medium

In diffraction to tomography, one is concerned with the propagation of sound wave
in an inhomogeneous medium which in this case is the composite double negative
material (DNG). This will involve refraction, reflection, transmission and multiple
scattering processes at the boundaries. Bliokh and Bliokh [23] argued that a
two-dimensional medium with negative refraction of a wave at a boundary can be
considered as a left-handed medium. However, there exist several more effects that
allow one to talk about a negative medium even in the one-dimensional case. First,
these include the wave reflection and transmission coefficients in pressure and
oscillation velocity in combination with information about the sign of the effective
density of the medium. Thus, for example, in the special case of a perfect match
between the bordering positive (with density q0 and phase velocity c0) and negative
(q and c) acoustic media, when their densities and compressibilities relations q ¼
q0 and j ¼ �j0 hold, the impedances qc ¼ q0c0 and the absolute values of the
phase velocities of these media coincide. Owing to the coincidence of the impe-
dances, there is no wave reflected from the boundary. Thus, while talking about a
one-dimensional negative medium, the phase velocity c in it may be considered
from the absence of a reflected wave and a priori knowledge about the negativity of
the effective density q\0 to be also negative. Secondly, the conclusion about
whether the directions of the energy propagation and the phase velocity are the
same or opposite can be drawn directly from the following effect.

For a plane monochromatic acoustic wave with a wave vector ~k0, propagating

along the Z axis (pressure and velocity P0; v0 
 ei~k0~r ¼ e	ik0z), the
three-dimensional plot with the imaginary and real part of the pressure or oscillation
velocity along the X and Y axis, respectively, and with the only spatial coordinate
along the z axis is a left-handed or right-handed helix, depending on whether the
wave vector and, hence, the phase velocity are oriented in the negative (Fig. 3.5;
P0v0 
 e�ik0z) or positive direction of the Z axis. In other words, for a fixed time
dependence 
 e�ixt, there is a unique relationship between the orientation of vector
~k0 and the sign of helicity, i.e. the sign of HELICX is determined by the direction of
~k0 in a given medium, positive or negative. If two waves propagate in opposite
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directions in a positive or negative medium, then the circular helix becomes an
elliptical one or even concentrates in the form of oscillations on a plane if the
amplitudes of both waves are equal. Since the direction of rotation of the circular
helix is uniquely related to the direction of the phase velocity in the medium, the
change of the sign of helicity at the boundary between two media is a criterion that
one of them is negative.

Since Eqs. (3.29) and (3.30) suggest the field construction simultaneously in the
entire scattering region R, scatterers with finite sizes are considered in numerical
simulations. A background medium with q0 � 1 and j0 � 1 is assumed to be
unbounded, and the incident field �u0 is defined analytically everywhere. In the
numerical simulations of Burov et al. [24], they considered a layer of the back-
ground medium with a thickness of 5k0 where k0 is the wavelength in the back-
ground medium. In turn, a thinner layer of a positive (q � 2 and j � 5) or perfectly
matched (with the background medium) negative (q � �1 and j � �1) material
with a thickness of 2k0=3 was placed in the middle part of this layer. The sampling
step was k0=100. The acoustic pressure field of the incident plane wave P0 which is
described by one component in the one-dimensional case of normal incidence on
the layer here is shown in Fig. 3.3.

3.11.3 Results of Numerical Simulation

The total pressure P and the scattered field PSC � P� P0 calculated when a layer of
a positive material was included in the background medium are presented in
Fig. 3.6.

The helix corresponding to the total pressure field P (Fig. 3.4a) changes its shape
(but not the sign of helicity) at the boundaries of the layer, because the waves
reflected from the boundary appear. Figure 3.4b shows the field scattered by the
layer. It shows that the helix corresponding to the wave reflected from the layer has
an inverse helicity with respect to the incident field (Fig. 3.3), since the wave
vectors of the incident and reflected waves are directed oppositely. The radius of

Fig. 3.3 Graphic
representation of the incident
monochromatic wave. The
arrow indicates the direction
of the wave vector~k0 (From
[19])
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this helix, which is equal to the amplitude of the reflected wave RpP0

�� �� (here
P0j j ¼ 1), shows the magnitude of the reflection coefficient from the layer in
pressure Rp

�� �� to be estimated. This coefficient can be compared with its theoretical
value calculated from the formula [22, p. 40]

Rp

�� �� ¼ s�1 � s
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s�1 � sð Þ2 þ 4 cot2 kdð Þ
q ð3:31Þ

where S � q0c0
qc , k and c are the wave number and the speed of sound in the medium,

k0 and c0 are those in the background medium, and d is the layer thickness. For
q � 2 and j � 5, Rp

�� �� can be analytically obtained as approximately 0:3588. The
magnitude of the reflection coefficient calculated using the data from Fig. 3.4b
Rp

�� �� ¼ 0:3576, corresponding to its theoretical value within the limits of the errors
caused by sampling. This is indicative of an adequate qualitative and quantitative
description of the fields with Eqs. (3.22) and (3.23).

Figure 3.5 presents similar plots for an inclusion in the form of a layer of a
negative material. Note that the sign of helicity of the total field changes (Fig. 3.5a)
at the boundaries of the layer. This means that the phase velocity of sound in a
negative medium is opposite in direction to that in positive one. It should also be
noted that the radius of the helix of the scattered field (Fig. 3.5b) on the segment of
the Z axis from 2:7k0 to 5k0 is 0, and hence, there is no reflection from the layer at
q � 1 and j � 1, as expected, owing to a perfect match between the background
medium and the medium of a negative material with identical acoustic impedances.
Since there is no reflected wave, the Poynting vector ~S, along with the group
velocity, is constant in the entire segment. Under consideration, it is directed along
the Z axis. Thus, the wave vector ~k is directed along ~S in a positive medium and

Fig. 3.4 Calculated total acoustic pressure field P (a) and scattered field PSC (b) in a layer of a
positive material. The solid and dashed lines indicate the fields in the background positive medium
and in the layer placed in it, respectively. The arrow indicates the direction of the wave vector~k0 of
the incident wave
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opposite to it in a negative one. As a result, as the wave energy propagates along the
vector ~S, the coordinate phase shift of the wave has opposite signs in positive and
negative media.

The numerical simulations above for the one-dimensional case show that the
simultaneous negativity of the density and compressibility of the material is a
sufficient condition that the medium has a number of properties usually attributed to
negative refraction.

The next step is to consider two-dimensional model of a negative medium,
which allows the effects of negative refraction to be observed. The following cases
are considered: (a) scattering of plane waves by negative inclusions in the shape of
a cylinder, (b) a plane parallel plate introduced in a positive background medium,
(c) inclusions of a similar shape but composed of a positive material.

The problem about the scattering of a plane wave by a cylinder has an analytical
solution. This problem was solved numerically using Eqs. (3.19) and (3.30).
Subsequently, the field was calculated at a given distance from the cylinder centre at
various angles with respect to the direction of the incident wave. The results of the
calculations for an inclusion in the shape of a cylinder of radius R ¼ k0 with
parameters q � 1 and j � 5 of the positive material are presented in Fig. 3.6

An angle of 0° corresponds to the direction of the incident plane wave in which
the pressure amplitude was taken to be 1. The solid curve indicates the dependence
of the pressure amplitude of the scattered field on the scattering angle at a distance
of 4k0 from the cylinder centre derived from the analytical solution, and the dotted
line indicates the dependence calculated from Eqs. (3.29) and (3.30). The sampling
step was k0=10. The deviation of the cylinder shape from a strictly cylindrical one
caused by sampling in the calculation based on Eqs. (3.29) and (3.30) is responsible
for the slight difference between the two curves. To within this error, a close

Fig. 3.5 Calculated total acoustic pressure field P (a) and scattered field PSC (b) in a layer of a
negative material. The solid and dashed lines indicate the fields in the background positive
medium and in the layer placed in it, respectively. The arrow indicates the direction of the wave
vector ~k0 of the incident wave (After [19])
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coincidence is retained for various cylinder radii and contrasts. Thus, our com-
parison of the numerical simulations with the analytical solution indicates that the
approach used is applicable.

In Fig. 3.7, the arrows indicate the path of the rays (corresponding to the pattern
of energy propagation, i.e. the vector ~S) calculated using the Snell’s law and their
focusing in a cylinder of radius composed of a negative medium. For example, at
q � �1 and j � �1, a plane wave in the paraxial approximation is focused by the

Fig. 3.6 Diagram of the
acoustic pressure PSCj j of the
field of a plane
monochromatic wave with the
unit’s amplitude scattered by
a cylinder of a positive
material. The arrow indicates
the direction of its
propagation. The solid and
dashed lines indicate the fields
calculated using the exact
formulae and Eqs. (3.29) and
(3.30), respectively

Fig. 3.7 Magnitude of the
calculated acoustic pressure
field Pj j of a plane wave
refracted by a cylinder of a
negative material. The arrows
indicate the directions of the
rays (After [19])
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cylinder at a distance of r=z from its centre. The field for a cylinder with r ¼ 2:5k0
is calculated numerically with a sampling step of k0=10. Although applying the
geometric approximation for such small objects is not quite legitimate, the calcu-
lated total field in the cylinder also has a focus at this point, as can be clearly seen
from Fig. 3.7.

To model the refraction of a wave on a plane parallel plate, a plane beam with a
width of 5 k0 is used whose amplitude was taken to be 1. The plate has a thickness
of 1:4 k0 and a length of 5 k0. It should be noted that since the method used does not
allow scattering objects of infinitely large sizes or fragments of such objects to be
modelled, this leads to an explicit or implicit appearance of boundary conditions
and unavoidable undesirable consequences in the form of false reflection and the
formation of standing waves. To reduce the edge effects caused by the finite plate
and beam sizes, the beam edges were artificially smoothed. The beam fell at an
angle of 18° to the normal to plate.

Figure 3.8a shows the result of the calculation for a plate of a positive material
(q � 1, j � 4). The wavelength in it and, hence, the speed of sound are approxi-
mately half those in the background medium, in agreement with the formula for the
speed of sound c ¼ 1=

ffiffiffiffiffiffi
qj

p
. The normals to fronts of the incident and refracted

waves lie on opposite sides relative to the normal to plate, which corresponds to the
case of classical wave refraction at a boundary. The angles of incidence and
refraction obey the Snell’s law. Since the impedances of the plate and the back-
ground medium do not match, there are waves reflected from the boundaries in the
system that interfere and form a structure in the form of field minima and maxima
along the front of the incident wave, as can be clearly seen from the figure.

When the beam falls on the plate of a negative material (q � �1 and j � �1),
the phenomenon of negative refraction is observed (Fig. 3.8b). The exact equality
of the angles of incidence and refraction manifests itself in the symmetry of the

Fig. 3.8 Real part of the calculated acoustic pressure field Pj j for a plane wave incident on a plate
of a positive and b negative materials. The arrows indicate the characteristic propagation directions
of the wave energy; the white horizontal line represents the plate boundaries
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picture of the wavefronts relative to the plate boundaries (the wavelength inside the
plate remains equal to k0). The normal fronts of the incident and refracted waves
directed along the vector~S in the plate and the background medium are on the same
side from the normal to plate. There is no reflected wave, since the impedances are
equal. The vector~k is directed along~S in a positive medium and opposite to~S in a
negative one, and the Snell’s law is satisfied: the wave vectors of the incident and
refracted waves have identical (not only in magnitude but also in sign) projections
onto the interface. Thus, we have shown that a set of phenomena similar to the
phenomena in left-handed media in electrodynamics follows from the simultaneous
negativity of q and j in an acoustic medium.

Next, the case of a negative medium perfectly matched with the background is
considered. This is a case of special interest because a plane parallel plate of such a
material is a focusing one (Fig. 3.9)

It was noted in [22] that such a lens has a number of peculiarities. Firstly, as has
already been illustrated, there are no losses by the reflection of the incident wave
from it. Secondly, it has no focal plane. The image produced by it is a
three-dimensional one, as in the case of a mirror, but, in contrast to the latter, it is
real one. Thirdly, for each of rays emanated from one point, the length of the ray
path is the same in negative and positive media. The coordinate phase shift in a
negative medium is opposite in sign to that in a positive one and as a result, they
cancel each other out. Therefore, the wave phase at the image point is exactly equal
to the wave phase at the corresponding source point. In this sense, a plane parallel
plate of a negative material is a perfect lens. The equality of the phases at the source
and image points does not lead to any paradox and does not violate the causality
principle, since it takes place only at one frequency at which the effective density
and compressibility of negative medium satisfies the relations q ¼ �q0, j ¼ �j0.
Strict satisfaction of this condition is not possible even in a narrow frequency band,
and this is probably an important restriction in the application of such lenses.
Another shortcoming of such a lens is that it produces real images of objects located
only at a short distance L\H from it, where H is the plate thickness.

Fig. 3.9 Magnitude of the
total calculated acoustic
pressure field Pj j, emerging
when a point source is placed
near a plane parallel plate of a
negative material; the
sampling step is k0=10. The
dashes mark the lines along
which the sections are
considered; the solid
horizontal lines represent the
plate boundaries
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Such a lens was proposed theoretically by Pendry [25] in 2000 showing that
Rayleigh diffraction limit can be defeated. Information about the source’s fine
details is contained in its near field. It includes the inhomogeneous waves that are
usually neglected, since it decays exponentially with distance from the source and
are evanescent. However, the near field retains information about the initial phase
and amplitude of the field near the source. Therefore, to reconstruct an ideal image,
it will suffice to amplify it. A layer of a negative material can act as such an
amplification. The fact that being a passive medium the hypothetical ideal negative
material has no energy source to amplify the evanescent waves appears paradoxical.
However, this is not required: the decay of the evanescent field in a positive
medium with increasing the distance from its source does not lead to any energy
loss or heat release. By analogy, the inverse process in a negative medium does not
require any expenditure of energy either.

The refraction of the field of a point source illustrating the effect for plane
parallel plates differs in length and parameters q, and j. The thickness of all plates
was the same, 3k0. The scalar point source was located at the coordinate origin
0; 0ð Þ at a distance of 1:5k0 from the plate and was specified in the form

F ~rð Þ ¼ ~f ¼ 0
q ¼ d ~rð Þ

� �
. Its field was calculated at each point as �u0 ¼ q̂ � �F and was

normalized in such a way that the magnitude of the acoustic pressure at the source
point was equal to 1.

A plate of a negative material (q � �1 and j � �1) with a length of 10k0 is
considered. The distribution of the magnitude of the calculated pressure field Pj j in
the chosen region is shown in Fig. 3.9. Two focal spots are clearly seen: in the
middle of and behind the plate. When the negative refractive index of the plate is
taken into account, their locations correspond to the geometric construction and
confirm the picture of operation of a negative material.

To determine and investigate the resolution of the plate used as a lens, Burov
et al. [19] constructed two sections of the distribution of Pj j: the longitudinal one
(i.e. parallel to the normal to the plate) passing along the line connecting the centres
of the source and the focal spots, and the transverse one (perpendicular to it)
passing through the centre of the external focus (these sections are indicated in
Fig. 3.9 by the dashes). The corresponding plots are presented in Fig. 3.10 (thick
solid line). The values of Pj j in these sections were also calculated for a similar
plate of negative material but with a length of 4k0.

As the aperture of the lenses decreases, their resolution in both longitudinal and
transverse directions is reduced (Fig. 3.10, thin solid line). For comparison, similar
sections for a flat collecting lens with a length of 4k0 are constructed. They are
made in the shape of a plane parallel plate of a positive material with a variable
(along the X axis) refractive index [20]. The focus produced by it is much more
blurred than that for a plate of negative material, particularly in the longitudinal
direction (Fig. 3.10, dashed line). The increase in the resolution of the lenses of a
negative material is related to the amplification of the evanescent field component
of the source in the negative medium.
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3.11.4 Points to Take Care of During Numerical Simulation

Choosing an optimal sampling step is important in a numerical analysis. Increasing
the number of samples N per wavelength entails an increase in the sizes of the
reversible matrices as N2 � N2 (in the two-dimensional problem), increasing the
amount of the random access memory used and the computational time. On the
other hand, enlarging the resolution elements does not lead to any degradation of
the quality of the field picture, possibly only to certain limits. In particular, as yet no
increase in the sizes of the focal waist occurs (Fig. 3.10, dotted line). As the number
of samples per wavelength decreases further, the field calculation procedure
becomes unstable, causing the picture to be destroyed. The instability for plates of
negative and positive materials arises at sampling steps of k0=5 or sparser and k0=3
or sparser, respectively. This is probably because when the evanescent field com-
ponent is amplified, the errors caused by sparse sampling increases simultaneously.
This is a manifestation of the fact that the problem here is an ill-posed one. The
image quality can be slightly improved by applying regularization during the
inversion of the operator in Eq. (3.22) similar to the least-square method:

�u ¼ M̂yM̂þ vÊ
h i�1

M̂þ �u0 ð3:32Þ

where M̂ � Ê � Ĝ � Â1, v[ 0 is a small regularization parameter. The results of
the calculation for a coarse sampling step of k0=5 for the plate with regularization

Fig. 3.10 Longitudinal (a) and transverse (b) sections of the acoustic pressure field passing
through the external focus as shown in Fig. 3.11. The thick solid line corresponds to a lens of a
negative material with a length of 10k0, and the dash-dotted line corresponds to the same lens with
absorption. The thin solid line corresponds to a lens of a negative material with a length of 4k0; the
dashed line corresponds to a lens of a positive material with a variable refractive index. In all these
cases, the sampling step is k0=10: The dotted line corresponds to a lens of a negative material with
a length of 10k0 at a sampling step of k0=7:5
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are shown in Fig. 3.11. The image stability is restored as the focal spot broadens
significantly. More surprisingly, the internal focus in the plate virtually disappeared,
and it is so far difficult to explain this fact.

It should be noted that choosing a sampling step is important not only in
computer simulations but also for the practical creation of negative metamedia,
which are discrete in their nature. In particular, to achieve an acceptable lens
resolution, there should be at least ten discrete elements of the metamedium per
wavelength. This requirement is actually reduced to the fact that the speed of sound
inside the element of the resonating inclusion should be at least an order of mag-
nitude lower than that in the background medium, which is significantly difficult in
creating such media.

3.12 Refraction

The third basic mechanism involved in sound propagation in solids and fluids is
refraction. Refraction is the change in direction of propagation of a wave due to a
change in its transmission medium. The phenomenon is explained by the conser-
vation of energy and conservation of momentum. Due to change of medium, the
phase velocity of the wave is changed but its frequency remains constant. This is
most commonly observed when a wave passes from one medium to another at any
angle other than 0° from the normal. Refraction of light is the most commonly
observed phenomenon, but any type of wave can refract when it interacts with a
medium, for example when sound waves pass from one medium into another or when
water waves move into water of a different depth. Refraction is described by Snell’s

Fig. 3.11 Magnitude of the
total acoustic pressure field
Pj j emerging when a point
source is placed near a plane
parallel plate of a negative
material and calculated using
regularization. The sampling
step is k0=5 (After [19])
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law, which states that for a given pairs of media and a wave with a single
frequency, the ratio of the sines of the angle of incidence h1 and angle of refraction
h2 is equivalent to the ratio of phase velocities (v1=v2) in the two media, or
equivalently, to the opposite ratio of the indices of refraction(n2=n1):

sin h1
sin h2

¼ v1
v2

¼ n2
n1

ð3:33Þ

In general, the incident wave is partially refracted and partially reflected. The
details of this behaviour are described by the Fresnel equations.

Refraction in acoustic metamaterials will be described in more details in Chap. 2
of this book.
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Chapter 4
Artificial Elasticity

Abstract Acoustical metamaterials with negative mass density and negative bulk
modulus enable negative elasticity and in turn artificial elasticity. This demonstrates
the form invariance or symmetry of the acoustic field equation and in turn the
symmetry properties of the acoustic fields. An example of an acoustical metama-
terial demonstrating artificial elasticity is given.

4.1 Elastic Stiffness and Compliance

The basic theory of elasticity is given by Hooke’s law which is valid only for the
linear range. Hooke’s law states that the strain is linearly proportional to the stress,
or conversely, that the stress is linearly proportional to the strain. The second form
can be written mathematically by writing each component of stress or elastic storing
force as a general linear function of all the strain components. In general,

Tij ¼ cijklSkl ð4:1Þ

where summation over the repeated subscripts k and l. cijkl are known as the elastic
stiffness constants. Like macroscopic spring constants, they have small values for
easily deformed materials and large values for very rigid materials. Since (4.1)
contains nine equations corresponding to all possible combinations of the subscripts
ij, and each equation contains nine strain variables, there are 81 elastic stiffness
constants.

However, these are not all independent. In fact:

cijkl ¼ cjikl ¼ cijlk ¼ cjilk

which reduces the number of independent constants to 36. Further, it can be shown
that cijkl = cklij and this means that the constants are further reduced to 21. This is
the maximum number of constants for any medium. Usually, the number is much
less than this, because of additional restrictions imposed by the microscopic nature
of the medium.
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Alternatively, the strains may be expressed as general linear functions of all the
stresses:

Sij ¼ sijkl Tkl ð4:2Þ

i; j; k l ¼ x; y; z

Here, the constants sijkl known as compliance constants are measures of the
deformability of the medium and have large values for easily deformed materials
and small values for rigid materials.

Equation (4.2) and its converse are called the elastic constitutive relations. The
compliance constants sijkl describe the elastic properties of a medium in a manner
analogous to the description of its electrical properties by the permittivity matrix
elements eij, where the electrical constitutive relation corresponding to (4.2) is:

Di ¼ eij Ej ð4:3Þ

I; j ¼ x; y; z

4.2 Symmetry Properties of Stress Field and Particle
Velocity Field

It is known that the acoustic equation of motion has symmetry properties. It has
invariance under gauge transformation. The symmetry will be in the form of rota-
tional invariance in the phase factor of the solution of the equation and the form
invariance of the equation. The acoustic fields here will be the particle velocity field
and the stress field. This is analogous to the gauge invariance introduced by Hermann
Weyl to Maxwell’s equations in 1929. There are two forms of symmetry in the
propagation of the sound wave in solids and in fluids. One is the rotational symmetry
of the solution and the other is translational symmetry of the solution for a continuum
but broken translational symmetry for a discrete media such as crystals giving rise to
the phonons which are broken translational symmetry mode and a Goldstone mode.
There are two aspects of symmetry to be considered during sound propagation in
solids and fluids. One is symmetry of the medium, and the other is symmetry property
of the propagating sound wave. This is analogous to the two forms of nonlinearity
when finite amplitude wave propagating in solids and fluids. One is the nonlinearity
of the medium, and the other is nonlinearity of the propagating sound wave.

The rotational invariance of the solution of the acoustic equation of motion can
be demonstrated in the symmetry of the particle velocity field and the stress field.
Usually, the acoustic equation of motion is expressed in terms of the particle
velocity and not in the stress. This is because particle velocity is a vector quantity
with three components and whereas stress is a tensor quantity with nine components
and more complicated to deal with. However, it can be shown that there is a high
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degree of symmetry between the particle velocity field and the stress field analo-
gous to the high degree of symmetry between the electric field and the magnetic
field. This can be illustrated as follows, by deriving the acoustic equation of motion
for infinitesimal amplitude sound waves in solids. There are two basic field equa-
tions: the first is obtained from Newton’s laws of motion in mechanics, and the
second from Hooke’s law in the theory of elasticity. The first field equation
expresses Newton’s laws of motion, written as

r � T ¼ q
@2u
@t2

� F ð4:4Þ

The second field equation is the strain-displacement relation related to Hooke’s
law given as

S ¼rsu ð4:5Þ

where T = stress, u = displacement, F = body force, S = strain and q = density
of medium.

In order to solve the two variables: u and T, a second equation is necessary and
this is given by Hooke’s law from the theory of elasticity states that the strain is
linearly proportional to the stress. That is

Tij ¼ cijkl Skl ð4:6Þ

i; j; k; l ¼ x; y; z

with summation over the repeated subscripts k and l. The microscopic spring
constants cijkl in (4.6) are called elastic stiffness constants.

We consider source-free region, so F = 0. The next step is to eliminate T from
(4.4) to (4.6). From (4.5) to (4.6), T = cijkl rs u = cijkl @u@x, if only one dimension, x-
direction is chosen. Substituting in (4.4), we obtain

cijkl
@2u
@x2

¼ q
@2u
@t2

ð4:7Þ

The above equation is also known as the Christoffel equation.
Equation (4.7) is the equation of a travelling wave and the solution can be given

as

u¼u0eiðxt�kxÞ ð4:8Þ

which gives

qx2 ¼ cijklk
2 ð4:9Þ
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Phase velocity is given by v = x/k. Thus for transverse (or shear) waves, the
velocity is

vs ¼
ffiffiffiffiffiffiffi
cijkl
q

r
ð4:10Þ

4.2.1 Symmetries between the Particle Velocity Field
Acoustic Equation of Motion and the Stress Field
Acoustic Equation of Motion

Equation (4.5) can be written in terms of the particle velocity and compliance as

rsv ¼s:
@T
@t

ð4:11Þ

where s = compliance.
Acoustic wave equations can be obtained by eliminating either T or v from the

acoustic field equations. Usually, the stress field is eliminated since it is a tensor
quantity and consists of nine field components rather than three like a vector field.

For infinitesimal amplitude sound waves, the lossless acoustic field equations are
given by (4.4) and (4.5). We will now eliminate the velocity field from (4.4) to
(4.11).

Differentiating (4.11) with respect to t:

rs
@v
@t

¼ s :
@2

@t2
T ð4:12Þ

With F = 0 for source-free region, and taking the divergence of both sides of
(4.4)

rs r � Tð Þ ¼ qrs
@v
@t

ð4:13Þ

Substituting (4.12) into (4.13) we have

rs(r � T) = qs :
@2

@t2
T

or

crsðr � TÞ ¼q
@2

@t2
T ð4:14Þ
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This is a new stress equation. The potential and the applications of this equation
have yet to be explored.

We also discover an important property. That is the acoustic wave Eqs. (4.7) and
(4.14) are symmetrical in u and T. This symmetrical property can give rise to
several simplications in the solving of acoustic wave equations.

4.3 Rotation Invariance of the Stress Field and Particle
Velocity Field for an Isotropic Solid

In an isotropic solid, there is rotational invariance in the stress field and particle
velocity field which are the principal acoustic fields. Rotational invariance means
invariance of the stress field and the particle velocity field with respect to rotation.
The type of rotation is U(1) rotation or U(1) symmetry. Also in an isotropic solid,
there is global U(1) rotation symmetry for the whole object and also there is local
U(1) rotation symmetry at every point in space-time in unison with the whole
object. The consequence is the particle velocity and the stress field is the same in all
directions in an isotropic solids.

4.4 Reflection Symmetry as a Special Case of Rotational
Symmetry

Here, both the particle velocity field and the stress field are under a clockwise
rotation of the coordinate axes through an angle 180� about the z axis. The con-
sequence is negative values of the particle velocity field and stress field are
obtained, or there is a reflection image of the velocity field and the stress field. This
is known as reflection symmetry. The coordinate transformation matrix for this case
is:

axx axy axz
ayx ayy ayz
azx azy azz

2
4

3
5 ¼

cos n sin n 0
�sin n cos n 0

0 0 �1

2
4

3
5 ¼ �1 ð4:15Þ

Transformation of a particle velocity field v to the rotated coordinate system is
performed with the matrix equation

v0x
v0y
v0z

2
4

3
5 ¼

cos n sin n 0
�sin n cos n 0

0 0 �1

2
4

3
5 vx

vy
vz

2
4

3
5 ¼ �

vx
vy
vz

2
4

3
5 ð4:16Þ
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or

v0 ¼ �v ð4:17Þ

Transformation of a stress field T to the rotated coordinate system is performed
with the matrix equation

T 0
xx T 0

xy T 0
xz

T 0
yx T 0

yy T 0
yz

T 0
zx T 0

zy T 0
zz

2
4

3
5 ¼

cos n sin n 0
�sin n cos n 0

0 0 �1

2
4

3
5 Txx Txy Txz

Tyx Tyy Tyz
Tzx Tzy Tzz

2
4

3
5

¼ �
Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

2
4

3
5 ð4:18Þ

Or

T 0 ¼ T ð4:19Þ

4.5 Form Invariance of the Particle Velocity Field
Acoustic Equation of Motion

The Helmholtz homogeneous acoustic wave equation is given by

r2Pþ x2

qj
p ¼ 0 ð4:20Þ

where p = acoustic pressure, q = mass density and j = bulk modulus.
Again, we find that there is no change in the form of Eq. (4.20) if q and j are

replaced by �q and �j. This shows that the Helmholtz wave equation is gauge
invariant to the negative values of q and j.

Here, we have extended the left-handed media to acoustics using gauge
invariance formulation. Another demonstration of the form invariance of the
acoustic equation of motion is acoustical cloaking.

Acoustical cloaking deals with the deflection of bending of the sound wave and
the control of the propagation and direction of sound wave according to our
specified direction.

We use coordinate transformations, a form of gauge invariance. That is there is
no change in the form of the acoustic field equation after the coordinate transfor-
mations, or the acoustic field equation is gauge invariant subjected to coordinate
transformations.

As an illustration, we quoted the results from Cummer [1]
Cummer [1] illustrated coordinate transformations for acoustics by using the

linear acoustic equation for inviscid fluid
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jxp ¼ �jr � v; jxpv ¼ �rp ð4:21Þ

where x = angular frequency, v = sound velocity.
Next a new set of curvilinear coordinates x0, y0 and z0 are imposed on these

equations. Using A as the Jacobian matrix of coordinate transformations from
x; y; zð Þ to ðx0; y0; z0Þ, he expressed the gradient operation in the new primed coor-
dinates as:

rp ¼ ATr0 p ¼ ATr0 p0 ð4:22Þ

and the divergence operation can be expressed as

r � v ¼ det Að Þr0 � v0 A
det Að Þ v ¼ det ðAÞr0 � v0 ð4:23Þ

With these expressions the original Eq. (4.21) can be written in the new coor-
dinates as

jx p0 ¼ �j det Að Þr0 � v0

jx det Að Þ AT
� ��1

q A�1� �
v0 ¼ �r0p0 ð4:24Þ

which is in the same form as the original Eq. (4.21) but with the new medium
parameters:

j0 ¼ det Að Þj; p¼ ¼ det Að Þ AT
� ��1

q A�1� � ð4:25Þ

Physically, this means that if one applies a coordinates transformation to a
solution to Eq. (4.21) and changes the medium properties according to Eq. (4.25),
the transformed fields are a solution to the acoustic equations in the new medium.

4.6 Gauge Invariance of Nonlinear Homogeneous
Acoustic Wave Equation

The nonlinear homogeneous acoustic wave equation up to the second order can be
given as

j1r2pþ j2r2p
@p
@x

� �
þ x2p

q
¼ 0
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or

qj1r2pþ qj2r2p
@p
@x

� �
þx2p ¼ 0 ð4:26Þ

where j1 = second-order bulk modulus and j2 = third order bulk modulus.
Again, if we replace q and j1, and j2 by �q, �j1, and �j2, there is no change

in the form of Eq. (4.26). In another words, the nonlinear acoustic wave equation is
gauge invariant to negative values of q; j1; and j2.

4.7 Acoustic Metamaterial with Simultaneous Negative
Mass Density and Negative Bulk
Modulus-Demonstration of Artificial Elasticity

The concept is based on the gauge invariance of the acoustic field equations. That
is, there is no change in the form of the acoustic field equation with the replacement
of the density and bulk modulus by negative density and negative bulk modulus.

Applying gauge invariance of acoustic fields to negative refraction, broadband
double negative spectral range in the structure can be obtained. [2] This is also an
experimental verification of my proposal on the gauge invariance of acoustic fields
[3]. Lee et al. 2010 [2] fabricated an acoustic double negativity (DNG) acoustic
metamaterial with both membranes and side holes (Fig. 4.1). Here, the acoustic
waves are governed by Eqs. (4.27) and (4.28)

�rp ¼ q� j
x2

h i @v
@A

ð4:27Þ

and

r � v ¼ � 1
B
� r2SH
qSHAx2

� �
@p
@A

ð4:28Þ

where j ¼ new elastic modulus, v ¼ velocity of the fluid (air in this case), q ¼
dynamic mass density, B ¼ bulk modulus, A ¼ cross section of the tube, rSH ¼ SH
cross-sectional density, qSH ¼ SH mass density.

The existence of the side holes (SH) does not modify Eq. (4.27). Likewise,
because the membranes do not sink any fluid, Eq. (4.28) is still valid. Then, the
system is described by the dynamic and continuity equations

�rp ¼ qeff
@y
@A

� �
r � v ¼ � 1

Beff

� �
@p
@A

� �

with the effective density and modulus given by (4.29) and (4.30)
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Peff ¼ q0 � j
x2 ¼ q0 1� x2

SAE

x2

� �
ð4:29Þ

Beff ¼ 1
B
� r2SH
qSHAx2

� ��1

¼ B 1� x2
SH

x2

� ��1

where

xSAE ¼ critical frequency ¼
ffiffiffiffi
j
q0

r
ð4:30Þ

The resulting wave equation gives the phase velocity,

vph ¼ �
ffiffiffiffiffiffiffi
Beff

qeff

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

q0 1� x2
SAE=x

2
� �

1� x2
SH=x

2
� �

s

where

xSH ¼ Br2SH=AqSH
� �1=2 ð4:31Þ

The experimental set-up is given in Fig. 4.2a.

Fig. 4.1 a One-dimensional SAE structure consisting of thin tensioned elastic membranes in a
tube. Negative effective density is observed in this system. b A tube with an array of side holes that
exhibits negative effective modulus. c An acoustic DNG structure with both membranes and side
holes. (From [2])
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It consists of a nonmetal tube on the left and the DNG metamaterial on the right.
The absorbers at both ends completely absorb the acoustic energy, preventing any
reflection so the system behaves as if it extends to infinity. This eliminates concerning
about the effect of the finite number of cells used in the experiment, as well as the
interference effect from the reflected waves. The sound source rejects acoustic energy
into the tube through a small hole, generating incident waves propagating to the right.
At the boundary, a position of the incident energy is reflected and the rest is trans-
mitted through the metamaterial regions. On the metamaterial side, the transmitted
acoustic energy flows steadily to the right until it hits the absorber.

Pressure was measured as a function of time and position on both the normal
tube side and the metamaterial side. It can be seen that on the normal tube side, the
wave proceeds forward, but on the metamaterial side, the wave propagated as
indicated by the arrows. Clearly, the wave on the metamaterial propagated in a

Fig. 4.2 a Experimental set-up for the transmission and phase velocity measurements,
b “Snapshots” of measured pressure distribution showing backward-wave propagation in the
metamaterial (x > 0). c Characteristic diagrams of pressure measurements for the frequencies 303
and 357 Hz. Negative slopes of the wave paths in the metamaterial sides (x > 0) indicate negative
phase velocities. (From [2])
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direction antiparallel to the energy flow. This confirms the theoretical prediction of
negative phase velocity. It was noted that the amplitudes and the apparent phase
velocity in the normal tube deviated from the actual values of the incident wave
because of the interference of the reflected wave from the boundary. In the meta-
material, there is no such interference effect because there is no reflected wave.

The comparison between the theory and experiment are shown in Fig. 4.3.
Theoretically expected single negative gap is experimentally confirmed by the

transmission data (inset). In the DNG and DPS (double positive) pass bands, the
phase velocities experimentally determined agree well with the theoretical values.
The calculations are given as an accurate description of the behaviour of the phase
velocity in the frequency range from 250 to 1500Hz, which is broadband. Because
the experiment confirms the theoretical prediction of negative phase velocity, it can
be concluded that the density and the bulk modulus actually become simultaneously
negative in the frequency range below 440Hz.

We would like to point out the novel concept of spatially anchored elasticity [2]
was used. This uses a homogenized structure of membranes to produce negative
effective density. This is termed spatially anchored elasticity (SAE) because the
fluid is elastically anchored in space by the membranes. The new elasticity can be
regarded as an intrinsic variable that characterizes the behaviour of the metamaterial
according to Eq. (4.32)

rp ¼ �j n
! ð4:32Þ

where j ¼ new elastic modulus, n ¼ displacement of the fluid, p ¼ pressure of the
fluid.

Furthermore, by making additional side holes along the tube wall, acoustic DNG
materials were obtained and backward-wave propagation was observed. The con-
structed structure exhibited DNG characteristic in the spectral range from 240 to
440Hz which is broadband unlike the electromagnetic case which is limited only to
a single frequency due to dispersion. The phase velocity in this band was negative
and highly dispersive.

Fig. 4.3 Transmission (inset)
and phase velocities of the
present acoustic DNG
medium. (From [2])
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4.8 The New Field of Artificial Elasticity

The successful fabrication of material with negative bulk modulus as shown above
confirms the symmetry property of the acoustic equation of motion and the sym-
metry property of the acoustic fields: particle velocity field and the stress field. This
enables the control of the key parameter if elasticity: bulk modulus and hence the
elastic constant:

bulk modulus ¼ j ¼ C44; a Lam�e constant ð4:33Þ

This paves the path towards artificial elasticity.
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Chapter 5
Artificial Piezoelectricity

Abstract First, piezoelectricity is explained as an example of second-order phase
transition with the spontaneous symmetry electrical polarization and spontaneous
symmetry breaking. Artificial piezoelectricity with negative permittivity, negative
piezoelectric strain constant and negative piezoelectric stress constant is described.
The stiffened Christoffel equation for artificial piezoelectricity is given. Artificial
piezoelectricity opens the way for artificial second-order phase transition and
control and manipulation of artificial second-order phase transition.

5.1 What Is Piezoelectricity?

The Hooke’s Law equation does not fully describe the response of a solid to
acoustic strain. Certain materials become electrically polarized when they are
strained. This effect, known as the direct piezoelectric effect, manifests itself
experimentally by the appearance of bound electrical charges at the surfaces of a
strained medium. It is a linear phenomenon and the polarization changes sign when
the sign of the strain is reversed. Piezoelectricity is intimately related to the
microscopic structure of solids and although a complex subject, can be explained
qualitatively in terms of a rather simple atomic model. Briefly, the atoms of a solid
and also the electrons within the atoms themselves are displaced when the material
is deformed. The displacement produces microscopic electrical dipoles with the
medium, and in certain crystal structures these dipole moments combine to give an
average macroscopic moment or electrical polarization.

The direct piezoelectric effect is always accompanied by the converse piezo-
electric effect, whereby a solid becomes strained when placed in an electric field.
Like the direct effect, this is also linear and the piezoelectric strain reverses sign
with reversal of the applied electric field. Since the piezoelectric strain produced by
an electric field will always generate internal stresses, the converse piezoelectric
effect must be included in the Hooke’s Law equation by adding a stress term that is
linearly proportional to the electric field. This linear electrically induced stress will
be present only in materials with microscopic structures appropriate to the existence
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of piezoelectricity. There is, however, another kind of electrically induced stress
that occurs in all materials. This stress, called electrostrictive stress, is a quadratic
function of the electric field. It is produced by the same microscopic mechanism
that causes the converse piezoelectric effect, namely by electrical forces acting on
the ionized atoms that form the crystal lattice, but, by contrast with the piezoelectric
stress, it produces a macroscopic effect in all materials.

Since electrostriction is a second-order phenomenon, its role will be negligible in
the small signal approximation of a linear theory. Piezoelectricity, on the other hand,
introduces linear coupling between the acoustic field equations and Maxwell’s
electromagnetic field equations. In magnetic materials, two analogous effects are
observed. Magnetostriction is quadratic magnetically induced stress present in
materials of all symmetry classes, and piezomagnetism is a linear magnetoacoustic
coupling that occurs only when certain lattice symmetry conditions are satisfied.
Intrinsic piezomagnetic effects are not, at the present time, of any practical signifi-
cance. Technologically useful linear magnetoacoustic coupling can, however, be
realized by applying both a dc bias field Hð Þdc and a time-varying signal field
Hð Þsignal to certain kinds of magnetic materials. In this case, the quadratic or mag-
netostrictive effect produces stress terms, proportional to terms such as
ðHÞidcðHjÞsignal that are linearly dependent upon the applied signal field. This biased
piezomagnetism is a strong effect and has many important engineering applications.

In one way or another, piezoelectricity and biased piezomagnetism provide the
physical basis for almost all practical applications of acoustic fields. This is because
they provide an effective means for electrically generating and detecting acoustic
vibrations. In order to design the electroacoustic converters or transducers used for
this purpose, it is necessary to establish a mathematical formalism relating the
coupled electromagnetic and acoustic fields. It would hardly seem necessary to
consider at this point the familiar equations governing uncoupled electromagnetic
fields in nonpiezoelectric media. There is, however, an important benefit to be
gained from doing so. By making some very simple notational changes, one may
cast the acoustic field equations into a form that very closely parallel Maxwell’s
equations of electromagnetism. This procedure provides much more than a satis-
fying mathematical symmetry. The field problems of greatest interest in acoustics
are of the same general nature as problems, such as uniform plane wave propa-
gation, guided waves, periodic waveguides, coupled modes, resonators and filters,
that have received much attention in electromagnetism, particularly in the area of
microwave theory. Presentation of the acoustic field equations in a form analogous
to Maxwell’s equations simplifies the task of transferring to acoustics, the analytical
methodology and techniques that have been applied to problems of this kind in
electromagnetism. In this chapter, the electromagnetic–acoustic analogy is first
established and then illustrated by comparing the basic characteristics of electro-
magnetic and acoustic uniform plane waves. Then, the concept of negative mate-
rials is introduced in the equations, and how it modifies the equations are shown.
Then, this is applied to the vibration problem, to the transmission line method, the
resonance theory and the stiffened Christoffel equation.
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5.2 Piezoelectric Constitutive Relations

Within a solid medium, mechanical forces are described by the stress field com-
ponents Tij and mechanical deformations by the strain field components Sij. If the
equilibrium state of all field variables is defined to be zero, one can write the field
equations as:

Di ¼ eTijEj þ dijkTjk

Sij ¼ dijkEk þ sEijklTkl
ð5:1Þ

where D = electrical displacement, d = piezoelectric strain constant, e = dielectric
constant, d = piezoelectric strain coefficient, e = piezoelectric stress coefficient.
Superscripts T and E have been added to e and s to show that these constants
describe dielectric and elastic properties measured under conditions of constant
stress and constant electric field, respectively. Because of the coupling between
electric and acoustic fields in a piezoelectric solid, measurements of the electrical
properties depend upon the mechanical constraints imposed on the medium and
vice versa.

For a negative piezoelectric medium, the dielectric constant e will be replaced
by −e.

5.3 Coupled Acoustic Field Equations and Maxwell’s
Equations

The electromagnetic field equations are given by:

r� E ¼ @B
@t

ð5:2Þ

r � H ¼ @D
@t

þ Jc þ Js ð5:3Þ

were shown to have a strong analogy with the acoustic field equations:

r � T ¼ @p
@t

� F ð5:4Þ

rsv ¼ @S
@t

ð5:5Þ

And for nonpiezoelectric media, plane wave solutions to these two sets of
equations were found to have many characteristics in common. The most striking
difference is that the electromagnetic equations have two plane wave solutions
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while the acoustic equations have three. In a nonpiezoelectric medium, the elec-
tromagnetic and acoustic solutions are completely independent of each other. But in
the piezoelectric case, they are coupled together through the piezoelectric strain
equations:

D ¼ eT � EþD : T ð5:6Þ

S ¼ d � Eþ sE : T ð5:7Þ

or the piezoelectric stress equations:

D ¼ eS � Eþ e : S ð5:8Þ

T ¼ �e:þ cE : S ð5:9Þ

Plane wave solutions in a piezoelectric solid are therefore coupled electromag-
netic–acoustic waves. Since there were five plane wave solutions (two electro-
magnetic and three acoustics) to the uncoupled equations, there must also be
five-coupled-wave solutions. For a negative piezoelectric medium, the e will be
replaced by −e. The negative piezoelectric medium can be achieved by using
acoustic metamaterial. This gives rise to artificial piezoelectricity.

5.4 The Stiffened Christoffel Equation for Piezoelectricity

It was noted that the effects of piezoelectric coupling between electromagnetic and
acoustic uniform plane waves in unbounded media are completely negligible in
comparison with the influence of the quasi-static electric field. Consequently,
insignificant errors are introduced if the rotational or electromagnetic part of E is
neglected in the coupled acoustic and electromagnetic equations. This is known as
the quasi-static approximation, and it leads to a very great simplification of the
analysis. Removal of all terms in E rð Þ from those equations reduces the set of
equations to two:

r � cE : rsv� q
@2

@t2
v ¼ �r � e � @rU

@t

� �
ð5:10Þ

0 ¼ �l0r � ðeS � @
2

@t2
r/Þþ l0r � e : rs

@v
@t

� �
ð5:11Þ

These equations govern plane wave solutions that travel at velocities comparable
to acoustic velocities. In the quasi-static approximation, quasi-electromagnetic
waves are regarded as purely electromagnetic. The conversion of (5.10) and (5.11)
to matrix form is carried out in the following way:
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riKc
E
KLrLjvj � q

@2

@t2
vi ¼ �riKeKjrj

@U
@t

ð5:12Þ

These equations are not restricted to uniform plane waves and will be applied to
more general problems. For plane wave solutions proportional to the complex wave
function ðxt � kÎ � rÞ where Î is a unit vector in the propagation direction, they may
be reduced still further. First, one may write

�k2ðliKcEKLlLjÞvj þ qx2vi ¼ ix k2ðliKeKjljÞU ð5:13Þ

x2k2ðlieSijljÞU ¼ �ix k2ðlieiLlLjÞvj ð5:14Þ

The factor multiplying U on the left-hand side of (5.14) is a scalar and may be
divided out, giving the potential in terms of the particle velocity. That is

U ¼ 1
ix

li
lieSij lj

eiLlLj

 !
vj ð5:15Þ

After substitution into (5.13) and some rearrangement of terms, one has

k2 liK cEKL þ
eKjlj
� �

lieiL½ �
lieSijlj

( )
lLj

 !
vj ¼ qx2vi ð5:16Þ

This has exactly the same form as the Christoffel equation but with cKL replaced

by the expression in curly brackets, cEKL þ
eKjlj½ � lieiL½ �
lieSij lj

� �
which is called a piezo-

electrically stiffened elastic constant.
It is worth noting that for negative piezoelectricity, the piezoelectrically stiffened

elastic constant will be of negative value after the substitution of negative values for
cEKL, eKj, eiL and eSij:

5.5 Application of Metamaterial to Acoustic Resonator

Practical acoustic resonators take many forms, differing from the basic thin-plate
geometry of the plane wave transducer. Here, a variety of the basic types will be
considered, with emphasis on methods of analysing the natural frequencies of the
free resonant modes and the equivalent circuits for electrical input impedances or
admittance of a forced resonance. Modal analysis will be used. For a resonator with
no losses, the free modes are undamped free oscillations. These are characterised by
a set of natural frequencies xv and the distribution elastic displacement uv. As in the
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forced waveguide problem, the forced response of a resonator is represented by the
sum of the individual mode responses.

The transmission line model will be used to illustrate the general principles of
resonator analysis. This model represents plane acoustic wave propagation in iso-
tropic medium. It is also an analogue for wave propagation on a stretched string.
The resonator analysis begins with the derivation of a mode orthogonality relation
and a mode excitation formula. First, the transmission line equations are reduced to
a pair of wave equations for I and V:

@2

@z2
I ¼ �x2LCI ð5:17Þ

@2

@z2
V ¼ �x2LCV ð5:18Þ

A reciprocity relation for the wave equation (5.17) is obtained by assuming two
solutions “1” and “2” with frequencies x1 and x2 Solution one is first written into
the equation, which is multiplied by solution two. A corresponding expression, with
subscripts one and two interchanged, is then formed and subtracted from the first

I2
@2

@z2
I1 þ LCx2

1I1

� �
� @2

@z2
I2 þ LCx2

2I2

� �
¼ 0 ð5:19Þ

Using the derivative identity
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ð5:20Þ

Equation (5.19) can be reduced and rearranged into the form

@

@z
I2
@I1
@z

� I1
@I2
@z

� �
¼ LCðx2

2 � x2
1ÞI1I2 ð5:21Þ

This is the real reciprocity relation for the current wave equation.
A corresponding expression can be derived from (5.18).

A mode orthogonality relation for the transmission line resonator is obtained by
integrating (5.21) over the resonator length, with subscripts one and two now
changed to mode subscripts l and m. The left side is zero because of the open circuit
boundary conditions and from the right side

Zl

0

IlIv dz ¼ 0; x2
l 6¼ x2

v ð5:22Þ

An analogous voltage orthogonality relation is obtained from the voltage version
of (5.21).
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A mode excitation formula and an expression for the input impedance can also
be obtained (5.21). Solution “1” is now the forced solution at frequency x
expressed as a sum over the open circuit modes,

I1 � I zð Þ ¼
X
l

alIl zð Þ ð5:23Þ

with

Il ¼ sin
pl
l
z

Solution “2” is the th free mode at frequency xl. Substituting into (5.21) and
integrating over the resonator length now gives

Is
pv
l
¼ LCðx2

v � x2Þ
X
l

al

Z l

0

IlIvdz

where Is is the drive current. From (5.22), only the mth term in the summation is
nonzero. The amplitude of the mth mode is then

av ¼ KvIs
w2
v�w2 with

Kv ¼ 1
LC

pv
l
2
l and m arbitrary. Substitution into (5.23) gives

I zð Þ ¼ Is
X
l

Kl sin pl=lð Þz½ �=ðx2
l � x2Þ ð5:24Þ

To find the resonator input Zr impedance, the voltage at the resonator input is
derived from (5.24) and the transmission line equation

@I
@z

¼ �iwCCV

The impedance is then obtained as V(0) over Is,

Zr ¼ � 1
ixC

X
l

Kl pl=lð Þ=ðx2
l � x2Þ ð5:25Þ

To model more realistically, the response of an acoustic resonator, the trans-
mission line resonator is excited through a series capacitor. The input impedance is
then

5.5 Application of Metamaterial to Acoustic Resonator 95



ZIN ¼ 1
ixCs

þ Zr

¼ 1
ixCs

þ 2
ixCl

X
l

x2
lðx2 � x2

lÞ
ð5:26Þ

An equivalent circuit representation can be constructed by noting that the
impedance of a simple parallel LC resonant circuit can be reduced to the form

ZLC ¼ 1
ixCp

x2=ðx2 � x2
r Þ ð5:27Þ

With

xr ¼ LPCPð Þ�1=2 ð5:28Þ

Equation (5.28) gives the resonance frequency of the acoustic resonator. Using
the analogue between the acoustic field equation and the electrical transmission line
equations, the L is equivalent to the mass density, and the C is equivalent to the
inverse stiffness constant. Hence, the resonance frequency of the acoustic resonator
should be given by

xr ¼ q=cJJð Þ�1=2 ð5:29Þ

For an acoustic resonator made from metamaterial with negative mass density
and negative stiffness, there is no change in the form of (5.29) or there is form
invariance in (5.29), and the same formula for the resonance frequency can be used.

5.6 Application of Metamaterial to Acoustic Waveguide

The ability to use double-negative material (DNG) to control and manipulate
scattering will give rise to a new form of scattering and a new theory of scattering.
The use of double-negative material (DNG) as substrate of acoustic waveguide can
improve the directivity and optimize the far field radiation. Wu et al. [1] studied the
use of metamaterial as antenna substrate to enhance gain for electromagnetic waves.
Their idea can be extended to acoustic waves. They studied the radiation set-up and
simulated the far field radiation and calculated the electric fields and radiated power.
They manipulated e and l through the specific inclusion of metal in dielectrics to
achieve substrate properties in order to yield optimum radiation characteristics. For
calculation of scattering in acoustical waveguides, the following procedure has to
be taken [2].

To calculate the scattering of quasi-longitudinal plane sound wave at a boundary
between two anisotropic media of different parities, one with parity equals to þ 1, a
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normal double-positive material (DPS) and a left-handed material (DNG) with
parity equals to �1. Auld [2] has obtained results for two media of same parity þ 1.
It would be of great interest to extend this calculation to two media of different
parities. These will produce equations for new reflection coefficient, refraction
coefficient, transmission coefficient and scattering coefficient for both SV wave and
P wave for different polarizations. Fresnel equations for anisotropic solids for the
two media of different parities will have to be derived. This will study the scattering
at the boundary between the two media. It would be of great interest to study the
behaviour of reflected evanescent wave and transmitted evanescent wave at the
boundary of two media of different parities.

The new phenomena of scattering in DNG material can be manifested in the
salient and conventional features of acoustic cavity resonators, acoustic waveg-
uides, scatterers and antennas loaded or covered with double-negative and/or
double-positive (DNG, DPS) metamaterials. The unconventional acoustical char-
acteristics of metamaterials are exhibited when these materials are paired with other
materials with at least one oppositely signed constitutive parameters, In other
words, when we pair a DNG material with a DPS layer, we may obtain interesting
wave propagation properties that may be absent if we paired one DNG layer with
another one.

It is of great interest to notice that the interface between two media with at least
one pair of oppositely signed parameters can play a major role in offering
anomalous behaviours for the combined structure. At the boundary between such
two media, using the acoustic field equation one can write the continuity of the
tangential stress field and particle velocity field components. It is clear that the
normal derivatives of these tangential components are not necessarily continuous
and furthermore, if q1 and q2 and/or j1 and j2 have opposite signs, then the
derivatives of the tangential fields on both sides of the interface will have opposite
signs. The discontinuity for the tangential components of fields at the interface
between such media may imply a concentrated resonant phenomenon at that
interface similar to the current and voltage distributions at the junction between an
inductor and a capacitor at the resonance of an L-C circuit. This feature can lead to
interesting characteristics for wave interaction in devices and components con-
taining metamaterials.

It is also worth noticing that this interface resonance is independent of the total
thickness of the paired layers, since it arises along the discontinuity between two
such conjugate materials. The mechanism behind this resonance can be described
by the equivalent circuit approach. These resonant characteristics, which may occur
in sub-wavelength structures formed by pairing such media, have provided us with
ideas for acoustic cavities, acoustic waveguides, scatterers, acoustic antennas and
acoustic lenses that may operate with dimensions below the conventional diffraction
limits.

This concentrated resonant phenomenon can be used to design, thin,
sub-wavelength acoustic cavity resonators and parallel-plate acoustic waveguides
in which a layer of DNG material is paired with a layer of DPS material.
By exploiting the antiparallel nature of the phase velocity and acoustic Poynting
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vector in a DNG slab, we found the possibility of resonant modes in electrically
thin-parallel-plate structures containing such bi-layered structures. This is an out-
come of parity equals �1.

5.7 Piezoelectricity as Second Order Phase Transition

Piezoelectricity is the conversion of mechanical energy phase to electrical energy
phase and involves spontaneous electrical polarization. Also there is lining in
parallel of the dipole moments, with the system becomes more orderly as it cools
through the transition temperature and spontaneous symmetry breaking takes place.
These are the basic ingredients of a second-order phase transition. Some of the
examples of second-order phase transition are superconductivity, superfluid, mag-
netization, turbulence and sonoluminescence.

The following description will give a more detailed explanation of what is meant
by second-order phase transition by giving the illustration of turbulence as an
example of second-order phase transition.

In 2009, Gan [3] proposed the transition of laminar flow to turbulence flow as a
second-order phase transition with spontaneous symmetry breaking. The examples
of second-order phase transition with spontaneous symmetry breaking are mag-
netization, superconductivity and superfluids. This hypothesis has been subse-
quently supported by the experimental work of Goldenfeld’s [4] group which
showed that turbulence has the same behaviour as magnetization. In his paper, he
presented experimental evidence that turbulent flows are closely analogous to
critical phenomena from a reanalysis of friction factor measurements in rough pipes.
He found experimentally two aspects that confirm that turbulence is similar to
second-order phase transition such as magnetization in a ferromagnet. These are
experimentally verified power-law scaling of correlation functions which is remi-
niscent of the power-law fluctuations on many length scales that accompany critical
phenomena for example in a ferromagnet near its critical point which is
second-order phase transition. Another aspect is the phenomena of data collapse or
Widom scaling [5]. For example, in a ferromagnet, the equation of state, nominally
a function of two variables, is expressible in terms of a single reduced variable
which depends on a combination of external field and temperature. This has been
confirmed by the experiments of Nikuradze [6] in 1932 and 1933 which showed
data collapse. Goldenfeld’s [4] work proposed that the features of the turbulence
can be understood as arising from a singularity at infinite Reynolds number and
zero roughness. Such singularities are known to arise in second-order phase tran-
sition such as that occurs when iron is cooled down below the Curie temperature
and becomes magnetic. The theory predicts that the small-scale fluctuations in the
fluid speed, a characteristic of turbulence, are connected to the friction, and this can
be demonstrated by plotting the data in a special way that causes all of the
Nikuradze [6] curves at different roughness to collapse into a single curve.
According to Goldenfeld’s [4] study, the formation of eddies in turbulence might be
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a similar phenomenon to the lining of spins in magnetization. The rise of tem-
perature in case of magnets is similar to the increase in velocity in case of the fluid
passing through a pipe. Eddies are thus similar to the clusters of atoms. Goldenfeld
[4] hope that as a result of these discoveries, the approaches that solved the problem
of phase transitions will now find a new and unexpected application in providing a
fundamental understanding of turbulence. On the other hand, it seems that turbu-
lence offers us at macroscopic level, a view of what happens during other phase
transitions at microscopic level. Thus, when we are looking at eddies in a river, at
turbulence, at a cascade or at cigarette smoke, we can also imagine that we are
actually watching what happens to molecules during a melting process, or how
magnetism gradually vanishes when a magnet is melted. With the mature status of
statistical physics and the gauge theory in today’s scientific world, these two
available disciplines are used to solve turbulence. Statistical physics was first used
by Landau [7] in 1937 in the phenomenology of describing the second-order phase
transition, with the use of order parameter and spontaneous symmetry breaking
(SSB). Examples of gauge theory are the standard model of particle physics, Yang
Mills theory, quantum chromodynamics and general relativity. Maxwell’s equations
are the oldest gauge theory, and SSB is a property of gauge theory. The gauge
theory is a more sophisticated theory than the chaos theory which is sometimes used
in describing turbulence. The beauty of gauge theory is that it can be applied to both
the classical regime and the quantum regime.

Landau’s [7] theory of second-order phase transition which is phenomenology
can be extended to a more rigorous approach by using statistical physics and gauge
theory. The Gross-Pitaevskii equation or nonlinear Schrodinger equation (NLSE)
will be used. Turbulence is proposed as a condensate with pairing of molecules
which is a property of condensate. The proposal that turbulence is a condensate is
supported by Prof. Gregory Falkovitch’s group’s work [8] with the following
quotes from his paper: “In fluids, condensates are system sized vortices or zonal
flows. Turbulence with the condensate shares many properties with quantum sys-
tems displaying both fluctuations and coherences”. This closeness is shown perhaps
most vividly within the framework of the nonlinear Schrodinger (Gross-Pitaevskill)
equation (NSE). In their paper [6], turbulence is considered with a Gross-Pitaevskii
model and the creation of a coherent condensate via an inverse cascade originating
at small scales. The growth of the condensate leads to a spontaneous breaking of
statistical symmetries of over condensate fluctuations. They describe a phenomenon
of spontaneous symmetry changes in the turbulent state by the change in a single
parameter, the condensate level. We call this the condensate wave function. The
results of their paper are supported by computer simulations. Here, turbulence is
proposed as a classical analogue of the Bose Einstein condensate as the
Gross-Pitaevskii equation is also used in the description of Bose Einstein con-
densate. Pumping to increase the condensate level is also used in Bose Einstein
condensate. It has to be noted that Bose Einstein condensate such as superfluids is
second-order phase transition. This in turn supports that turbulence as condensate is
second-phase transition. Landau’s [7] theory of second-order phase transition using
order parameter is a phenomenology and a mean field theory. It has these
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conditions: (1) the free energy must be analytical; (2) it must be independent of the
detailed mechanism that causes symmetry in the Hamiltonian. The order parameter
was introduced by Landau [7] to describe spontaneous symmetry breaking. The
weakness of the theory lies in its assumption of the coefficients of the order
parameter and its inability to describe the fluctuations in the critical point over a
range of temperatures since it is a mean field theory. Landau [7] first showed the
general relation between phase transition of the second kind and the change in the
symmetry of the body. Landau’s [7] theory of second-order phase transition states
the thermodynamic potential or Landau free energy Ф in the format of a power
series in the order parameter η:

U p; T; gð Þ ¼ þ a p; Tð ÞgþA p; Tð Þg2 þB p; Tð Þg3 þC p; Tð Þg4 þ � � � ð5:30Þ

The Landau free energy is equivalent to the Hamiltonian for the gauge invari-
ance of the system at temperature above the critical temperature and no conden-
sation takes place. For temperature at and below the critical temperature and
condensation takes place and causes degeneracy in the ground state of the Landau
free energy and spontaneous symmetry breaking takes place. Landau [7] observes
that during a phase transition, the system becomes more orderly as it cools through
the transition temperature. He proposed to measure the orderliness by a field
parameter called the order parameter.

There are currently two research groups in the world whose works confirmed the
hypothesis that turbulence is a second-order phase transition. The first is Nigel
Goldenfeld’s group [4] at the University of Illinois. Prof. Goldenfeld showed that
the turbulent state is indeed not random but contains subtle statistical coordinations
similar to those known to exist at second-order phase transition such as the onset of
magnetism in crystals. A metal becomes magnetic when clusters of atoms feel one
another’s magnetic forces and align, their magnetic moments in the same direction,
like a collection of tiny arrows all adding up to one big arrow. If one heats them up,
the arrows jiggle more and more and at very high temperatures, they all point in
random directions. However, there is an intermediate Curie temperature, where
atoms can still feel one another’s magnetism and form aligned clusters, although
each cluster points in a random direction. According to Goldenfeld’s [4] studies, the
formation of eddies might be a similar phenomenon. The rise of temperature in case
of magnets is similar to the increase in velocity in case of the fluid passing through
a pipe. Eddies are thus similar to the cluster of atoms. The second confirmation
came from the works of the research group of Prof. Gregory Falkovitch [8] from
Weizmann Institute of Science. They consider turbulence within the
Gross-Pitaevskii mode and the use of this equation and look into the creation of a
coherent condensate via an inverse cascade originating at small scales. The growth
of the condensate leads to a spontaneous breaking of statistical symmetry of over
condensate fluctuation. This shares many properties with second order phase
transition such as superconductivity.

The phenomenon and the meaning of condensation in two-dimensional turbu-
lence [4] are a very striking example of the self-organization of large scale
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coherence from small-scale fluctuations. The process works via the so-called
inverse cascade mechanism whereby energy injected into a two-dimensional fluid
by a small scale stochastic force is transformed to large scales by nonlinear coupling
between different scales of motion in the Navier Stokes equations. When this
inverse cascade reaches the size of the system, the energy carried by the inverse
cascade accumulates at the largest scales and subsequently self-organizes to form
large-scale coherent vortices. Condensation is self-organization. Self-organization
is a process where some form of global order or coordination arises out of the local
interactions between the components of an initially disordered system. This process
is spontaneous, and it is not directed or controlled by any agent or subsystem inside
or outside of the system. However, the laws followed by the process, and its initial
condition may have been chosen or caused by an agent. It is often triggered by
random fluctuations that are amplified by positive feedback. The resulting organi-
zation is wholly decentralized or distributed over all the components of the system.
Examples of self-organization are crystallization, magnetization and superconduc-
tivity, where spontaneous symmetry breaking takes place. In analogous to the role
of electrons pairing in superconductor, which is responsible for superconductivity,
the molecule interaction is responsible for turbulence. There are two reasons to
support the hypothesis of the pairing of water molecules: one is that the Gross–
Pitaevskii equation for the purpose of simplification assumes that the interactions
between condensate particles are of the contact two-body type. The second reason
is that to exhibit Bose Einstein condensation, the fermions must pair up to form
compound particles (e.g. molecules or Cooper pairs) that are bosons. To understand
turbulence, one needs to understand the detailed pairing mechanism. In turbulence,
the fluid condenses and forms an ordered line up in pairs of molecules. The
mechanism of pairing is a special form of nonlinear interaction analogous to the
mechanism of Cooper pairing which is a special form of electron–electron inter-
action. Due to the attractive force of pairing, the condensation free energy will go
downwards to the ground state and condense and cause spontaneous symmetry
breaking of the ground state of the Hamiltonian. Hence, the pairing potential is the
force needed to pull the pair of molecules apart. The pumping technique can be
used to increase the condensate level to achieve turbulence at critical point. As
condensate grows, there is symmetry breaking. The more one pumps the system the
more ordered the system becomes. The pairing of molecules is a special form of
molecules alignment. Pairing points towards an ordered system, and the degree of
pairing can be expressed in terms of entropy which can be calculated. The nonlinear
interaction between molecules is responsible for pairing. The control parameter is
the condensate level. The condensates are system sized vortices. An inverse cascade
culminates in the creation of a spectral condensate mode that is spatially coherent,
and one can use the same condensate wave function throughout the space. We
expect the molecules pair to condensate until an equilibrium point is reached. As
condensate grows, it leads to a spontaneous breaking of statistical symmetry. There
is change in the pattern of distribution of the molecules from laminar flow to
turbulence causing spontaneous symmetry breaking. Pairing is a form of molecular
distribution. The condensate wave function is Landau order parameter here. These
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are huge number of distribution of molecular pairs, and their distribution will be
described by the Boltzmann distribution. The hypothesis that turbulence is a
second-order phase transition has now been confirmed by Goldenfeld [4] and
Falkovitch’s [8] research groups. Landau’s [7] theory of second-order phase tran-
sition is phenomenology and a mean field theory. Now a microscopic theory is built
up for turbulence. The understanding of superconductivity is that it is a Bose
Einstein condensate with the mechanism which is the interaction of the electrons,
the Cooper pairing of the electrons. The classical analogue for the understanding of
turbulence is that it is a coherent condensate with pairing of water molecules which
is the mechanism of molecular interaction. The condensation free energy will be
derived for turbulence. It will be shown that there is spontaneous symmetry
breaking at the ground state of the condensate free energy, and the fluctuations in
the critical point over a range of temperatures are explained. Turbulence is well
understood to be a condensate [8] and Vladimirova et al.’s [8] work also confirmed
that turbulence is condensate. The Gross-Pitaevskii equation is used in their
treatment as what is used for the treatment of Bose Einstein condensate.

Following the above procedure for treatment of second-order phase transition,
the critical temperature for piezoelectricity when the spontaneous parallel lining of
dipole moments and spontaneous electrical polarization can be obtained.

5.8 Artificial Piezoelectricity

Metamaterial with negative piezoelectric strain constant and negative permittivity
constant can be used as artificial piezoelectric material. This will enable the
manipulation and control of piezoelectricity.

5.9 Fabrication of Artificial Piezoelectricity

This will be done by extending the method used for fabricating negative elastic
material by replacing the material used for the unit cell of the resonator with
piezoelectric material.

First, we will start with the split-ring resonator. Figure 5.1 shows an example of
a split-ring resonator.

In 2004 split-ring resonators (SRR) became the object of acoustic metamaterial
research [7]. Prior research with SRRs fabricated as negative index electromagnetic
metamaterials was referenced as the progenitor of further research in acoustic
metamaterial [7]. An analysis of the frequency band gap characteristics, derived
from the inherent limiting properties of artificially created SRRs, paralleled an
analysis of sonic crystals. The band gap properties of SRRs were related to sonic
crystal band gap properties [7]. Inherent in this inquiry is a description of
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mechanical properties and problems of continuum mechanics for sonic crystals, as a
macroscopically homogeneous substance [7].

The correlation in band gap capabilities includes locally resonant elements and
elastic moduli which operate in a certain frequency range. Elements which interact
and resonate in their respective localized area are embedded throughout the
material. In acoustic metamaterials, locally resonant elements would be the inter-
action of a single 1-cm rubber sphere with the surrounding liquid. The values of the
stopband and band gap frequencies can be controlled by choosing the size, types of
materials and the integration of microscopic structures which control the modula-
tion of the frequencies. These materials are then able to shield acoustic signals and
attenuate the effects of anti-plane shear waves. By extrapolating these properties to
larger scales, it could be possible to create seismic wave filters (see Seismic
metamaterials) [7]. According to research prior to this analysis, arrayed metama-
terials can create filters or polarizers of either electromagnetic or elastic waves [7].
Here, a method is shown which can be applied to two-dimensional stopband and
band gap control with either photonic or sonic structures [7]. Similar to photonic
and electromagnetic metamaterial fabrication, a sonic metamaterial is embedded
with localized sources of mass density q and the (elastic) bulk modulus j param-
eters, which are analogous to permittivity and permeability, respectively. The sonic
(or phononic) metamaterials are sonic crystals. These crystals have a solid lead core
and a softer, more elastic silicone coating [8]. The sonic crystals have built-in
localized resonances due to the coated spheres which resulted in almost flat dis-
persion curves. Low-frequency band gaps and localized wave interactions of the
coated spheres were analyzed and presented in [7]. Similar method can be used to
tune band gaps inherent in the material and, also, create new low-frequency band

Fig. 5.1 Copper split-ring
resonators and wires mounted
on interlocking sheets of
fiberglass circuit board.
A split-ring resonator consists
of an inner square with a split
on one side embedded in an
outer square with a split on
the other side. The split-ring
resonators are on the front and
right surfaces of the square
grid, and the single vertical
wires are on the back and left
surfaces [10]
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gaps. It is also applicable for designing low-frequency phononic crystal waveguides
(radio frequency). Doubly periodic square array of SRRs is used to illustrate the
methodology [7].

The concept of split-ring resonator used in acoustics is an extension of the
invention of Movchan and Guenneau [9]. They used split-ring resonator for
electromagnetic waves. In their split-ring resonator, due to local resonance effect, it
is possible to produce negative magnetic permeability. In addition, they have shown
that microstructures built from nonmagnetic conducting sheets exhibit an effective
magnetic permeability which can be tuned to values not accessible in naturally
occurring materials, including large imaginary components of the magnetic per-
meability. The microstructure is on a scale much less than the wavelength of
radiation, is not resolved by incident microwaves, and uses a very low density of
metal so that structures can be extremely lightweight. Most of the structures are
resonant due to internal capacitance and inductance, and resonant enhancement
combined with compression of electrical energy into a very small volume greatly
enhances the energy density at critical locations in the structure, easily by factors of
a million and possibly by much more. Weakly nonlinear materials placed at these
critical locations will show greatly enhanced effects raising the possibility of
manufacturing active structures whose properties can be switched at will between
many states and the production of negative magnetic permeability. By extending
their split-ring resonator concept to acoustic waves, it is possible to produce neg-
ative bulk modulus and negative mass density due to local resonance effect.

Here, split-ring resonator concept is further extended to piezoelectricity with the
replacement of copper in the unit cell of the resonator by piezoelectric material. The
local resonance effect will produce negative electrical permittivity and negative
piezoelectric strain constant.
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Chapter 6
Acoustic Diode

Abstract The acoustic diode is an application of metamaterial in the nonlinear
acoustics regime. Here, the broken time reversal symmetry is achieved by intro-
ducing a nonlinear medium made of nonlinear phononic crystal. The acoustic diode
has potential application in acoustical imaging such as medical imaging with the
elimination of acoustic disturbances caused by sound waves going in two directions
at the same time and interfering with each other. The propagation direction of
output wave can be controlled freely and precisely. This enables clearer images.

6.1 Nonlinear Acoustics based on the Metamaterial

6.1.1 Principles

This is an introduction of nonlinear acoustics-based on metamaterial. The meta-
material chosen here is the nonlinear phononic crystal, a form of band gap meta-
material. The wave dynamics in strongly nonlinear phononic crystals based on
granular chains in a Silicone elastometer or Teflon matrix will be considered. The
wave equation for strongly nonlinear solitary wave has to be used [1]. This is more
general than the weakly nonlinear KdV equation:

utt ¼ �c2 ð�uxÞ3=2 þ a2

10
�uxð Þ1=4 �uxð Þ54

� �
xx

h i� �
ð6:1Þ

where −ux [ 0; c2 ¼ 2E
pq0 1�v2ð Þ, c0 ¼ 3

2

� �1=2
cn1=40 .

Here, c is not a sound speed, instead c0 is a sound speed corresponding to initial
strain n0. This equation has no characteristic wave speed independent on amplitude.
Despite its complex nature, it has simple stationary solutions with unique proper-
ties. In a system moving with a speed vp, its periodic solution is represented by a
sequence of humps (n0 = 0) [2]:
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Solitary shape can be taken as one hump of periodic solution (with only two
harmonics) with finite length equal five particle diameters. This unique wave was
observed in numerical calculations and detected in experiments [3]. Solitary wave
can be considered as a quasiparticle with mass equals about 1.4 mass of grain in the
chain, and its speed Vs has a nonlinear dependence on maximum strain nm or
particle velocity vm:

vs ¼ 4
5

1=2

c n1=4m ¼ 16
25

	 
1=5
c4=5 v1=5m ð6:3Þ

Equation (6.3) shows that the speed of this wave can be infinitely small if the
amplitude is small. This means that using this material as a matrix in Nonlinear
Tunable Phononic Crystals (NTPC) one can ensure infinite elastic contrast of
components, important for monitoring of band gaps. At the same time, the speed of
solitary waves can be considered as constant at any relatively narrow interval of
amplitudes due to power law dependence with small exponent. These properties
enable NTPC to be used as effective delay lines with exceptionally low speed of
signal.

Also when one-dimensional testing was performed by Daraio et al. [1] using
chains of stainless steel spheres placed in Teflon or Silicone elastomer matrixes, a
remarkable feature of “sonic vacuum” is observed, meaning a very rapid decom-
position of initial impulse on the distances comparable with the soliton width. This
example also demonstrates that short-duration impact on highly nonlinear ordered
periodic systems (lattices) with weak dissipation may result in a chain of solitary
waves instead of intuitively expected shock wave. This property of strongly non-
linear phononic crystal can be used for controlled impulse transformation in rela-
tively short transmission lines. If chains of grains are placed into a polymer matrix,
the nonlinear elastic behaviour is accompanied by strong dependence of electrical
resistivity on local pressure [3]. Nesterenko et al. [4] also performed testing of the
heavy light interface of the two strongly nonlinear granular media under the
magnetically induced precompression resulted in a dramatic change of reflectivity.
Anomalous reflected compression waves and transmitted rarefaction waves were
detected in experiments and numerical calculations. They name this phenomenon
the “acoustic diode” effect because of the dramatic change of the reflectivity trig-
gered by the precompression. The nonlinear phenomenon described here can be
used as tunable controllers of information flow through interfaces and in the design
of novel types of tunable shock protection layers. The precompression can be
employed for designing tunable information transportation lines with the unique
possibility of manipulating the signal’s delay, reflection and decompositions at will
for security-related information.
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It also has to be noted that the tunability of strongly nonlinear system with the
variation of the elastic modulus of the stainless steel beads can be used for the
design of tunable acoustic focusing lenses.

6.1.2 Nonlinear Acoustic Metamaterials for Sound
Attenuation Applications

The previous section shows that an acoustic crystal composed of tightly packed
spherical particles can exhibit a wide spectrum of acoustic properties with responses
varying from linear to highly nonlinear regimes. The physical attractiveness of
these crystals resides in the controllability of such acoustic responses by simple
manipulation of static precompression applied to the material. Jinkyu and Chiara
Daraio [5] showed that from the fundamental understanding of the energy trans-
mission through these crystals in relation to the tunable acoustic nonlinearity, one
can control the degree of nonlinearity. To do this, three parameters have to be
varied: precompression, striker velocity and striker mass, maintaining an identical
configuration of one-dimensional granular structures. The transmission gain in the
stop/pass frequency band of the granular chain was evaluated as a function of the
nonlinearity. The evolution of the frequency band structure was studied as the
degree of nonlinearity was changed. The transmission gain of the granular structure
showed a remarkable dependence on the structural linearity level.

To combine the frequency filtering response governed by the discrete particles
with an amplitude filtering response, they assembled a system composed of a highly
nonlinear granular chain and a deformable linear medium. Acoustic wave propa-
gation can then be efficiently manipulated and redirected with such added degree of
freedom.

In the second part of the study, they build a hybrid linear/nonlinear metamaterial
to allow high-energy transmission only in a selected range of external impact
amplitude. In this hybrid structure, the nonlinear granular chain takes the role of
transmitting energy when the system is excited with low-amplitude impacts, con-
trolled by structural deflections. A strong correlation of transmission gain with
external impact amplitudes was verified, showing an order of magnitude reduction
of transmission gain for large-amplitude impacts compared to that of low-amplitude
impacts. The wave propagation and impact mitigation were evaluated in the non-
linear acoustic metamaterial using a combined discrete particle model and a finite
element method. Finally, it was verified that the numerical results are in excellent
agreement with the experimental results.

The proposed metamaterials are fundamentally different from any other
approach to vibration isolation. They do not use active modulation to suppress
vibration/impacts, but rely on passive insulation. Furthermore, they are stiff and
load-bearing, present large recovery to external deformation, and do not develop
permanent damage in the ranges of excitations studied. The proposed systems are
designed to forbid the propagation of waves in selected frequency ranges (also
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known as band gaps or stop bands). Incident waves in these forbidden frequency
ranges experience an exponential decay of their amplitudes (i.e. they are evanescent
waves), and they are fully reflected. The presence of nonlinearity in the structure
may allow the redirection of part of the incoming energy into allowed modes. This
type of acoustic filter system could be useful in protecting soldiers against hearing
damage from weapons fire, while largely retaining their situational awareness.

6.2 Acoustic Diode Enabling One-Way Sound
Transmission

An acoustic diode was introduced in August 2009 [6]. An electrical diode allows
current to flow in only one direction in a wire; it is an essential electronic device
which had no analogues for sound waves. However, the reported design partially fills
this role by converting sound to a new frequency and blocking any backwards flow of
the original frequency. In practice, it could give designers new flexibility in making
ultrasonic sources like those used in medical imaging. The proposed structure
combines two components: The first is a sheet of nonlinear acoustic material—one
whose sound speed varies with air pressure. An example of such a material is a
collection of grains or beads, which becomes stiffer as it is squeezed. The second
component is a filter that allows the doubled frequency to pass through but reflects
the original. The acoustic diode is like a one-way mirror for sound waves.

A diode allows electric current to flow in only one direction in a wire and is
essential in electronics, but no such one-way device exists for sound waves. Bin
Liang et al. [6] describe a design that partially fills this role by converting sound to a
new frequency and blocking any backwards flow of the original frequency. If the
technique is practical, it could give designers new flexibility in making ultrasonic
sources like those used in medical imaging.

Usually, waves can travel just as easily in either direction along a given path. So
lasers, for example, are sometimes protected from their own reflections by shining
them through clear magnetic materials that sidetrack any reflected light. But there is
no analogous trick to deflect backtracking sound waves that might disturb the
operation of an ultrasound source.

In related work, however, researchers have recently proposed “thermal diodes”
[7]—layered structures that let heat flow one way but not the other. Inspired by
these results, Jian-chun Cheng and his colleagues at Nanjing University in China
designed a device, which they call an acoustic diode that passes some sound energy
in only one direction [6].

Their proposed structure combines two components. The first is a sheet of
“nonlinear” acoustic material–one whose sound speed varies with air pressure. An
example of such a material is a collection of grains or beads, which becomes stiffer
as it is squeezed, says Vitali Nesterenko of the University of California in San
Diego. A sound wave passing through such a nonlinear material creates additional
sound waves at other frequencies—including some with twice the original
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frequency—much as an over-amplified sound system adds extra noise to the music.
Cheng and colleagues calculated the effect of putting this doubling material face to
face with a second component: a filter that allows the doubled frequency to pass
through but reflects the original.

If the sound comes from the right, it hits the nonlinear material first, creating
doubled-frequency sound that passes through the filter. But any sound coming from
the left at the original frequency is blocked before it reaches the doubling layer.
Choosing a set of specific material parameters, the researchers calculate that about
100,000 times less energy can pass left-to-right than right-to-left.

This acoustic diode differs from its counterpart used in electronic circuits
because it only works for sound waves in a narrow range of frequencies. In addi-
tion, the transmitted sound has twice the frequency, so it can pass back through the
filter, even though the original frequency cannot. Nonetheless, Cheng is hopeful
that the device may be useful in “a variety of significant situations where the
acoustic waves need to be specially controlled or modified”, such as the use of
focused ultrasound to break up kidney stones.

Nesterenko says that the numbers used in the paper may not be representative of
real materials, and “a lot of work remains to be done, especially experimentally”.
But he still thinks the structure is innovative and opens new design possibilities.
Nicholas Fang of the University of Illinois in Urbana-Champaign finds the “almost
completely one-way transmission” to be impressive.

The Acoustic Diode. By tuning the elastic spheres in certain ways—by changing their sizes and
shapes from one end of the chain to the other, for instance—it’s possible to manipulate a sound
wave as it travels down the chain, downshifting the frequency or making it possible for sounds to
travel in one direction but not the other
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We have few mature technologies that enable us to control and manipulate the
way sound travels. But Caltech researchers are working to change that via the first
tunable, acoustic diode that can be used to let sound flow in one direction only.

The acoustic diode works much like the electrical component of the same name,
letting current (or, in this case, sound waves) to pass in one direction but blocking it in
the other. Composed of a structured arrangement of elastic spheres that ferry the sound
through the material, the diode can be tuned to work only at certain frequencies or to
downshift the frequencies moving through the material to lower frequencies as needed.

That opens the technology up to several potential applications. In the case of
soundproofing, the technology could enable true one-way transmission of sound (rather
than the simple dispersion and muting performed by ”soundproofing” foams). But per-
haps more interestingly, the material could be used to harvest energy from sound waves.

For instance, the tunable diode could scavenge energy from noisy machinery and
channel it back into a transducer that converts those sound vibrations into electricity
that could be fed back to the machine, reducing net energy consumption. It could
also downshift sound frequencies to ranges that are optimal for energy conversion.

All that’s a long way off, but the notion is pretty intriguing. In the meantime, the
Caltech team is also exploring a range of other technological applications for their
wave-manipulating technology, including medical uses (ultrasound), architectural
acoustics and insulating materials that regulate temperature.

Based on a simple assembly of granular crystals that transmit sound vibrations,
Caltech researchers have created the first tunable acoustic diode that allows sound
to travel only in one direction.

“We exploited a physical mechanism that causes a sharp transition between
transmitting and non-transmitting states of the diode,” explained Chiara Daraio,
lead author of the new study. “Using experiments, simulations, and analytical
predictions, we demonstrated the one-way transmission of sound in an audible
frequency range for the first time.”

The system, described in Nature Materials, is based on a simple assembly of
elastic spheres—granular crystals that transmit the sound vibrations—that could be
easily used in multiple settings, can be tuned easily, and can potentially be scaled to
operate within a wide range of frequencies, meaning its application could reach far
beyond soundproofing.

Similar systems have been demonstrated previously, but they all featured smooth
transitions between transmitting and non-transmitting states instead of the sharp
transitions needed to be more effective at controlling the flow of sound waves. To
obtain the sharp transition, the team created a periodic system with a small defect
that supports this kind of quick change from an “on” to an “off” transmission state.

According to Daraio, this means the system is very sensitive to small variations
of operational conditions, like pressure and movement, making it useful in the
development of ultrasensitive acoustic sensors to detect sound waves.

The system can also operate at different frequencies of sound and is capable of
downshifting, or reducing the frequency of the travelling signals, as needed. “We
propose to use these effects to improve energy-harvesting technologies”, she added.
“For example, we may be able to scavenge sound energy from undesired structural
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vibrations in machinery by controlling the flow of sound waves away from the
machinery and into a transducer. The transducer would then convert the sound
waves into electricity”.

• The new mechanism may have applications beyond soundproofing and energy
harvesting. “Because the concepts governing wave propagation are universal to
many systems, we envision that the use of this novel way to control energy
might enable the design of many advanced thermal abstract”.

6.3 Application of Acoustic Diode to Acoustical Imaging

An acoustic diode, enabling the one-way transmission of sound waves, could
dramatically improve the quality of medical ultrasound imaging and lead to better
sound dampening materials. Such a device has now been created by researchers at
China’s Nanjing University led by Professor Jian-chun Cheng [6].

Acoustic diodes are analogous to the electric diodes that produce unidirectional
flow of current through electronic devices, protecting them from sudden and dam-
aging reversals of flow. Electric diodes, which are akin to the check valves in car
engines, work by providing nearly zero resistance to current flow in one direction and
very high resistance in another. However, says associate professor and team member
Bin Liang, “there is no analogous method to protect ultrasound sources from the
disturbance of backtracking acoustic waves. Indeed, such unidirectional flow is far
tougher to achieve with acoustic waves than with electric current because sound
waves travel just as easily in both directions along any given path”.

The acoustic diode consists of two parts. The first is an ultrasound contrast agent
(UCA), made from a suspension of microbubbles. The UCA has a strong acoustic
nonlinearity, which means it converts the acoustic energy of an incident wave into a
wave with twice as many pulsations per second. Therefore, Liang says, “sound
waves enter such a material at a particular frequency and leave with a frequency
twice as great”. The UCA microbubbles come in a broad range of sizes, so they can
produce acoustic nonlinearity over a broad frequency range.

The second part of the acoustic diode is a superlattice consisting of thin alter-
nating sandwich-like layers of water and glass. The superlattice acts like a filter that
allows the sound waves with the doubled frequency to pass through the material but
not the original sound waves.

“Hence,” Liang says, “if the sound comes from the side of the nonlinear
material, it will hit that material first, creating doubled frequency sound that passes
through the filter, while any sound coming from the other side at the original
frequency is blocked before it reaches the doubling layer.”

In clinical medical imaging using ultrasound, acoustic waves are sent into the
body, and the reflected waves are received by the scanning instrument and the
surrounding sensors to form the ultrasound images of the internal organs.
“However, some of the reflecting waves interfere with the ingoing waves, which
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may lower the brightness and the resolution of the image. Therefore, preventing
waves from coming back toward the ultrasound source would help to improve the
quality of the ultrasound image”, Liang says.

“In general,” he adds, “we hope that the acoustic diode could apply to diverse
situations where a special control of acoustic energy flux is required, for example,
to improve the quality and effect of medical ultrasound diagnosis and therapy, or
the design of unidirectional sound barriers.”

Another group with Chang Liu et al. [8] also proposed alternative acoustic diode
(AD) mode for acoustical imaging. The acoustic diode (AD) can provide brighter
and clearer ultrasound images by eliminating acoustic disturbances caused by sound
waves travelling in two directions at the same time and interfering with each other.
Such an AD could give designers new flexibility in making ultrasonic sources like
those used in medical imaging or nondestructive testing. However, current AD
designs, based on nonlinear effects, only partially fill this role by converting sound
to a new frequency and blocking any backward flow of the original frequency. In
this work, an AD model that preserves the frequencies of acoustic waves and has a
relatively high forward-power-transmission rate is proposed. Theoretical analysis
indicates that the proposed AD has forward, reverse and breakdown characteristics
very similar to electrical diodes. The significant rectifying effect of the proposed
AD is verified numerically through a one-dimensional example. Possible schemes
for experimental realization of this model as well as more complex and efficient AD
designs are also discussed.

One-way flow of sound would create brighter and clearer ultrasound images by
eliminating acoustic disturbances caused by sound waves going in two directions at
the same time and interfering with each other, says Prof Jian-chun Cheng.
Propagation direction of the output wave would be controlled freely and precisely.

The research team developed its theoretical diode model based on a material not
found in nature—a near-zero index metamaterial (ZIM)—and an asymmetric prism
to create high-transmission-efficacy acoustic waves that strike a reflective boundary
from two opposite sides. According to Cheng, this would produce a unique tun-
nelling effect and an unprecedented property that the output waveform is kept
consistent with those of the waves travelling towards a boundary.

6.4 Theoretical Framework of the Acoustic Diode [9]

6.4.1 Introduction

Realizations of one-way manipulations in various kinds of energy flux are always
highly desirable. The most famous example should be the invention of electric
diodes which marked the emergence of modern electronics and resulted in
worldwide technology revolutions. Acoustic wave, albeit a classical wave with
much longer research history in comparison with the electricity, has long been
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thought to propagate easily along two opposite directions in any path. Hence, it
should be intriguing to realize the one-way transmission of acoustic waves by
designing the acoustical analogy of electric diodes, which would have deep
implications in all the acoustics-based applications and the field of acoustics in
general. Acoustic one-way manipulation has become a new frontier of science and
is of remarkable significance in both the physics and engineering communities. The
emergence of the first “acoustic diode”, formed by coupling a phononic crystal
(PC) with a nonlinear medium, offers the possibility of rectifying acoustic energy
flux by breaking through the barrier of reciprocity principle via the introduction of
nonlinearity. Despite of the efforts in enhancing the performances of nonlinear
acoustic diodes by updating their structures, the inherent shortcomings in nonlinear
systems such as low efficiency and narrow bandwidth still attract considerable
attentions on the potential of linear structures, aiming at constructing a one-way
manipulation on particular modes of an acoustic wave without breaking the
reciprocity principle. A series of linear acoustic one-way devices have already been
designed and fabricated with significantly improved performances. On the basis of
asymmetric mode conversion, a linear one-way plate for Lamb waves is designed.
High efficient one-way transmission for plane waves propagating along two
opposite directions is realized by coupling a PC and a diffraction structure.
Unidirectional waveguide is designed and fabricated which only allows for a plane
wave incident from one of the two openings to pass. A unidirectional structure with
a total thickness as thin as the wavelength is realized by reconstructing the other-
wise plane wavefront with acoustic gratings. An acoustic gradient-index structure is
proposed that can directly manipulate the wave trajectory asymmetrically and then
yield asymmetric acoustic transmission within a considerably broad band. Acoustic
metamaterials with near-zero indexes have also been employed to realize unidi-
rectional transmission with a controllable transmitting angle and consistent wave-
front. These advances are important steps toward the practical applications which
generally require integration and minimization of devices having high efficiency
and broad bandwidth. The recently emerged “acoustic transistor” can be regarded as
the acoustical counterpart of an electric transistor and enables the amplification and
switch of acoustic waves by an acoustic wave, or by exploiting the three-wave
mixing effect. The usage of acoustic one-way devices in controlling acoustic waves
has both challenge and promise. The realizations of one-way manipulations in
various kinds of energy flux are always highly desirable. The most famous example
should be the invention of electric diodes which marked the emergence of
electronics.

6.4.2 Physics of Acoustic Diode

Electrical diodes, due to their capability of rectification of current flux, have sig-
nificantly revolutionized fundamental science and advanced technology in various
aspects of our routine life. Motivated by this one-way effect of electric currents,
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considerable effort has been dedicated to the study of the unidirectional nonrecip-
rocal transmission of electromagnetic waves, showing important promise in optical
and rf communications [10–15]. The realization of such nonreciprocal and unidi-
rectional propagation requires either a broken time reversal symmetry [10–13] or a
broken spatial inversion symmetry [14, 15] in the artificial photonic structures (e.g.,
photonic crystals).

Sonic crystals (SCs), in an analogy with the electronic and photonic band struc-
tures of semiconductors and photonic crystals, have shown promising impacts in
acoustic devices and applications that can efficiently trap, guide and manipulate
sound [16–24]. In the past two decades, with rapid developments in SCs ranging
from engineering of band structure for bulk acoustic waves to design of acoustic
grating for surface waves, a series of fascinating acoustic effects are consequently
demonstrated, such as acoustic band gaps [24, 25], negative refractions [10] and
extraordinary transmission [24]. It is therefore expected, with a sophisticated SC
design, that the exotic properties of SCs can lead to more counterintuitive sound
manipulation, for example, the realization of acoustic diodes that can break down the
conventional transmission reciprocity [25–27]. Similar to electromagnetic wave,
sound usually propagates reciprocally back and forth along a given path.
Unidirectional flux transmission requires considering the breaking of parity and time
reversal symmetry simultaneously in uniform media [28] that do not typically exist in
nature. Therefore, SCs are currently considered good candidates to implement non-
reciprocal and unidirectional sound propagation. Previous studies proposed the uti-
lization of acoustic nonlinear effects combined with SCs to implement the broken
time reversal symmetry as shown in the upper panel of Fig. 6.1a [25, 26]. The
nonlinear medium induces the frequency conversion as the solid red line in Fig. 6.1b
indicates, and the adjacent SC acts as a frequency filter to block the incidence from
the right since only the fundamental frequency locates within the band gap. However,
the unidirectional transmission from left to right is quite low due to the inherent low
conversion efficiency in acoustic nonlinear activities.

Fig. 6.1 a Illustration for two diode models, with the top one coupling nonlinear medium to SC
and the bottom one using diffraction structure. b Schematic for transitions between different
modes: the solid red line represents the transition with frequency change and the dashed purple line
represents the transition between different spatial modes. (Li et al. [9]) colour figure online
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Here, a more sophisticated design approach is used by Li et al. [9] to break the
spatial inversion symmetry in the constructed SCs, and both experimentally and
numerically demonstrate unidirectional transmission in such SCs. The constructed
SC-based acoustic diodes can be further controlled by simply mechanically
manipulating the unit cell of SCs [23] to support either reciprocal or nonreciprocal
sound transmission. The SC-based acoustic diode here is a completely linear system
without any acoustic nonlinearity. The acoustic diode is designed with an asym-
metric periodic corrugated SC as shown in the lower panel of Fig. 6.1a that consists
of a diffraction structure and a regular SC. The diffraction structure causes the
transition between two spatial modes with different spatial frequencies as indicated
by the dashed purple line in Fig. 6.1b. The adjacent SC thus behaves as a spatial
filter due to its intrinsic anisotropy of acoustic band structures, such that different
spatial modes, especially high-order diffraction modes with different parallel wave
vectors, can be either transferred or prohibited in the designed SC.

The concrete design of the acoustic diode by Li et al. [9] as shown in Fig. 6.2a,
consisted of a two-dimensional (2D) SC arranged in a square mesh with a lattice
constant of a = 7 mm and a corrugated diffraction structure with a modulation
period of L = 6a in the y direction to the left of the SC. Both the SC and the
diffraction structure were composed of square steel rods with the width of
d = 4 mm in an air background. Finite element simulation was implemented to
evaluate the unidirectional transmission property of the acoustic diode, as shown in
Fig. 6.2d, where the transmission spectra clearly demonstrates nonreciprocal
transmission efficiencies for the left incidence (LI) and the right incidence (RI) with
a normally incident plane wave. The unidirectional frequency band is indicated by
the blue-shaded region in Fig. 6.2d. In the experiment, the manufactured acoustic
diode had seven corrugation periods in the y direction, and acoustic field scanning
measurement was carried out in two ranges of frequencies from 15.0 to 25.0 and
from 35.0 to 50.0 kHz, due to the limited response range of transducers. In spite of
limitations of the finite size in the transverse direction and slight imperfection of the
plane wave source in the experiment, the measurement results shown in Fig. 6.2e
still agreed with the simulation. Especially within 17.5–19.5 and 38.7–47.5 kHz, LI
was associated with high transmission efficiency, but transmission was not allowed
for RI, showing a relatively broadband unidirectional transmission only for LI as
indicated by the blue shaded region in Fig. 6.2e. In order to illustrate this unidi-
rectional transmission more clearly, spatial intensity distributions of the acoustic
pressure field are mapped out both numerically and experimentally as shown in
Figs. 6.2b and 6.2c at two frequencies of 18.0 and 47.0 kHz, respectively. Because
of the SC’s directional band gap in the x direction (C−X), RI was almost com-
pletely reflected without any transmission. In the case of LI, however, strong
acoustic field can be observed in the output area; for example, the transmission at
18.0 kHz was about 69%. But since the outgoing waves are not parallel to the
incident waves, it is evident that energy in the normal incidence was converted,
through high-order diffractions, to other spatial modes that have different spatial
frequencies to overcome the barrier imposed by the −X directional band gap. The
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unidirectional transmission was therefore established, and the output field was
actually the interference of outgoing beams from different diffraction orders.

To clearly quantify the performance of the acoustic diode, the contrast ratio (Rc)
is defined by Li et al. [9] as

Rc ¼ ðTL � TRÞ=ðTL þ TRÞ ð6:4Þ

where TL and TR are the transmissions for LI and RI respectively. The absolute
value of RC represents the relative transmission weight between these two incident
cases. Rc was also evaluated as a function of frequency as shown in Fig. 6.2f.
Within the specific frequency ranges where unidirectional transmission was clearly
observed, Rc reaches 1 with a good agreement with experiments and simulations.

In addition to the broken spatial symmetry resulting from the diffraction struc-
ture, the building block of the SC, the steel square rod also introduces a broken
rotational symmetry to the unit cell itself [29]. The introduced broken rotational
symmetry can cause the change of the SC’s band dispersion by simply mechani-
cally rotating all the square rods with the same lattice configuration, as different
rotations affect the effective scattering section for acoustic waves significantly. It is
therefore expected to effectively control the sound rectification (i.e., efficiently tune
the relative transmission weight between LI and RI) with the acoustic diode by
rotating the rods. In the experiment, we rotated all the square rods 45 degrees with
keeping other parameters the same in the diode configuration, as shown in
Fig. 6.3a. Intrinsic characteristics of multiple scatterings in the SC were conse-
quently dramatically changed, leading to a broader first band gap of SC as shown in
Fig. 6.3d due to the increase of the effective scattering section. The unidirectional
transmission could still be observed from 16.2 to 22.3 kHz. But from 40.0 to
50.0 kHz, transmission was allowed for both LI and RI, and the one-way phe-
nomenon was deactivated. Therefore, it is evident that the sound rectification effect
could be effectively turned on or off in the acoustic diode by rotating the square rods
of the SC. This tunable acoustic diode was further confirmed with mappings of
spatial intensity distribution of the acoustic pressure field at 17.25 and 47.0 kHz, as
shown in Figs. 6.3b and c, respectively. Consistent with transmission spectra in
Figs. 6.3d and e, pronounced unidirectional transmission can be seen at 17.25 kHz,
but equivalent transmission was obtained in both directions at 47.0 kHz. The
contrast ratio in Fig. 6.3f also confirmed that the relative transmission weight is 1
from 16.5 to 22.5 kHz, and the unidirectional character thus remains the same
(compared to Fig. 6.2), while the weight was around 0 from 35.0 to 50.0 kHz,
showing the change from unidirectional to bidirectional transmission. In addition,
this tunable unidirectional transmission effect could also be influenced by different
rotation angles and filling fractions (see Fig. S4 in [29]). In principle, with a more
systematic design of the square-rod-based SC, this tunable acoustic diode could be
constructed either in the first or the second band (as demonstrated above), or both.
And the frequency range of unidirectional transmission might be anticipated to be
effectively controlled with different rotational angles of these square rods.
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To gain deeper insight, the mechanism underlying this unidirectional transmis-
sion phenomenon was analytically investigated by Li et al. [9] as follows.

With a plane wave incidence the acoustic pressure field in the input and output
half-spaces can be Fourier expanded as

P x; yð Þ ¼ expðjk0xÞþ
X/
n¼�/

qnexpðj /n yþ jbnxÞ ð6:5Þ

P x; yð Þ ¼
X/
n¼�/

snexpðj /n yþ jbnxÞ ð6:6Þ

Fig. 6.2 a Schematic diagram of the SC-based acoustic diode which is periodic in y direction. b,
c Simulated and experimental field distribution mappings with the incident wave frequency at 18.0
and 47.0 kHz, respectively. Green arrows indicate the propagation directions. d, e Numerically
calculated and experimentally measured transmission spectra of LI and RI, respectively. Green
arrows indicate the frequency at which field distribution is mapped. f Contrast transmission ratio of
the acoustic diode. (Li et al. [9]) colour figure online
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where bn ¼ k20� /2
n

� �1=2
, /n = 2np/L (n is the diffraction order), k0 is the

free-space wave number, and /n and bn are amplitudes of the nth order diffraction
beams in reflection and transmission, respectively. The mechanism of the acoustic
diode is closely relevant to these two diffraction terms. These diffraction terms
represent the energy conversion among different diffraction orders. The difference
of structure geometries on two sides resulted in different diffraction orders, and only
the orders locating within the propagating band of the SC could transmit the energy
from one side to the other. Notice that, however, the diode in this study cannot be
completely analytically described by Eqs. (6.5) and (6.6), due to its complex
diffraction construction. Therefore simplified diode geometry was studied and
compared to them.

As shown in Figs. S2(b) and S2(d) of [28], tunable unidirectional transmission
effect is also realized with a much weaker diode behaviour. The optimized complex
geometry here has advantages over this simplified diode in two aspects. (1) With
the adiabatic change in the complex asymmetric corrugation, the reflection of the
acoustic wave incident from the left side could be efficiently reduced. (2) Compared
to diffractions through the simpler corrugation, it is more efficient to generate higher
order diffraction modes through the complex asymmetric corrugation due to the
large slope angle.

In order to illustrate nonreciprocal sound propagation in the acoustic diode, Li
et al. [9] further analyse the equifrequency surfaces (EFSs) at different frequencies
of the SC as shown in Fig. 6.4. For the case of RI in Figs. 6.4a and 6.4b, high
diffraction orders completely fell in the evanescent regime (/n and bn are 0) in the
interested frequency ranges, and thus all the energy was still conserved in the zero
order, i.e., normal incidence to the SC, which was located within the directional
band gap of the SC. Therefore, sound transmission for RI was prohibited by the SC.
However, for the case of LI, the existence of the diffraction structure before the SC
converted the normal incidence mode to high-order diffraction modes. This can be
more clearly visualized in Fig. S3 of [29] where an incident beam with a finite
width was considered. The transmitted beams propagated along different directions,
corresponding to different positive and negative diffraction orders due to the
complex diffraction structure. Consistent with EFSs in Figs. 6.4a and 6.4b, 1 and 2
modes significantly contributed to transmission through the SC and resulted in
unidirectional sound transmission. After the rotation of the square rods, EFS from
17 to 19 kHz remained almost the same as shown in Fig. 6.4c, demonstrating a
nonreciprocal feature as all the diffracted beams easily transmits through the SC for
LI as shown in Fig. S3(f) of [29]. But from 45 to 49 kHz, EFS was drastically
changed as shown in Fig. 6.4d, and the original directional band gap in Fig. 6.4b
disappeared. Therefore, sound transmission was also allowed for RI, and the
nonreciprocal sound propagation is thus expected to be simply mechanically con-
trolled by rotating the rods of the acoustic diode.
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The above description showed the theory proposed by Li et al. [9] and experi-
mentally demonstrated by constructing a sonic-crystal-based acoustic diode with a
broken spatial inversion symmetry in which nonreciprocal propagation and unidi-
rectional transmission of sound were clearly observed. Furthermore, the introduced
broken rotational symmetry of the unit cell of the sonic crystal results in a
sophisticated mechanical manipulation of the observed nonreciprocal sound
transmission. Compared to previously proposed acoustic diodes using nonlineari-
ties, the system described is a completely linear system, showing advantages such
as broadband operation, high conversion efficiency and much less power con-
sumption. The same concept is also expected to implement an on-chip isolator for
various types of acoustic waves, such as surface acoustic waves [30] and Lamb
waves [31].

Fig. 6.3 a Schematic diagram of the SC-based acoustic diode after rotating the square rods. b,
c Simulated and experimental field distribution mappings with the incident wave frequency at
17.25 and 47.0 kHz, respectively. Green arrows indicate the propagation directions. d,
e Numerically calculated and experimentally measured transmission spectra of LI and RI,
respectively. Green arrows indicate the frequency at which field distribution is mapped. f Contrast
transmission ratio of the acoustic diode. (Li et al. [9]) colour figure online
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Chapter 7
Energy Harvesting and Phononics

Abstract Energy can be harvested from the heat energy produced by phonon–
phonon interaction. Acoustical metamaterial in the form of phononic crystal will be
used in the structure of the system for energy harvesting. Here, one needs to design
the phononic crystal structure. To enable this, one needs to design the phononic
crystal system’s dispersion relation and phonon–phonon interaction in the structure.
A classical treatment using continuum medium is used. The thermoelectric effi-
ciency is defined and its relation to the phononic crystal structure is described.

7.1 Introduction—Technological Application of Phononic
Networks

The pursuit of a universal design framework to control the flow of phonons,
photons and other vector/scalar waves through rational design of artificial structures
affords an extremely interesting way to greatly further the reach of materials science
and engineering. Phononic crystals and metamaterials have contributed greatly to
the development of classes of interesting devices, such as super-resolution negative
refractive lenses, broadband filters, supercouplers and even acoustical cloaks and
sound insulation materials. The approach to the science of manipulating phonons
should avoid potential pitfalls of adopting empirical design rules often arising from
engineering constraints and instead concentrated on the fundamental symmetry
principles to control phonon propagation behaviour. In this chapter, descriptions are
made on the technological applications of phononics and energy harvesting. Here,
we demonstrated the possibility of creating artificial structures with various unique
band diagrams, from those having extremely large single complete spectral gaps, to
those having multiple complete in-plane spectral gaps. Such structures offer unique
opportunities for exploring the control of nonlinear wave propagation and wave
interactions. In the dispersion relations in the linear phonon regime, it was noted the
ability to create multiple frequency spectral gaps which also implied the ability to
control the interactions between phonons of different frequencies, i.e. phonon–
phonon interactions. While the phonon–phonon scattering process is inelastic and
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often times nonlinear, the intrinsic material nonlinearities, which govern the pho-
non–phonon scattering processes, are embodied in the material constitutive rela-
tions and hence do not alter the fundamental continuity and flux equation starting
points. Hence, even in the linear regime, the designed phononic structures offer a
valid starting point as well as a framework on which to build on the development
and understanding of these nonlinear processes. Some of the most promising
applications that come to mind include (i) improving the ZT of thermoelectric
materials by engineering the thermal conductivity to (ii) phononic crystals for
breaking up the propagation of high-energy nonlinear pulses, such as shock waves
and solitons. Here, some speculation and possible future directions for technolog-
ical considerations for phononic structures are given.

Before embarking on the technology of energy harvesting, the following steps
have to be studied:

1. Elastodynamics of Artificial Structure
2. Classification of Lattices: Physical Topology of Phononic Structures
3. Designing Dispersion Relation in Phononic Crystals, I. Avoid Crossings
4. Designing Dispersion Relation in Phononic Crystals, II. A Polychromatic

Nonsymmorphic Phononic Crystals.

7.2 What Is Phononic Crystal?

The control and manipulation of acoustic/elastic waves is a fundamental problem
with many potential applications, especially in the field of information and com-
munication technologies. For instance, confinement, guiding and filtering phe-
nomena at the scale of the wavelength are useful for signal processing, advanced
nanoscale sensors and acousto-optic on-chip devices; acoustic metamaterials,
working in particular in the sub-wavelength regime, can be used for efficient and
broadband sound isolation as well as for imaging and super-resolution.

Phononic crystals, which are artificial materials constituted by a periodic repe-
tition of inclusions in a matrix, are proposed to achieve these objectives via the
possibility of engineering their band structures. The elastic properties, shape and
arrangement of the scatterers modify strongly the propagation of the acoustic/elastic
waves in the structure. The phononic band structure and dispersion curves can then
be tailored with appropriate choices of materials, crystal lattices and topology of
inclusions.

Similarly to any periodic structure, the propagation of acoustic waves in a
phononic crystal is governed by the Bloch [1] or Floquet theorem from which one
can derive the band structure in the corresponding Brillouin zone. The periodicity
of the structures, which defines the Brillouin zone, may be in one (1D), two (2D) or
three dimensions (3D). The propagation of acoustic waves in layered periodic
materials or superlattices which are now being considered as 1D phononic crystals
has been extensively studied [2] since the early paper of Rytov [3]. However, the

126 7 Energy Harvesting and Phononics



concept of phononic crystal was introduced only two decades ago in relation to 2D
[4–6] and 3D [7] periodic media, especially to seek for the possibility of the
so-called absolute band gaps [8–10]. Indeed, the dispersion curves exhibit band
gaps in which the propagation of waves is prohibited. Such gaps may occur for
particular directions of the wave vector, but they can also span the whole 2D or 3D
Brillouin zone where the propagation of elastic waves becomes forbidden for any
polarization and any incident angle. Then, the structure behaves like a perfect
mirror for any incidence angle, thus prohibiting the transmission of sound waves.

The concept of phononic crystal followed by a few years the analogous concept
of photonic crystals [11, 12] for the propagation of electromagnetic waves. The
existence of band gaps is especially well known in solid state physics in the field of
electronic band structure of crystalline materials. In particular, the properties of
semiconductors, such as electronic, conduction and optical properties, are domi-
nated by the band gap separating the valence and conduction bands, and, moreover,
these properties can be drastically modified and tailored by introducing defects into
the semiconductor due to the emergence of new states inside the band gaps (the
so-called localized modes associated with the defects which have a decaying wave
function far from the defect position). Similarly, the introduction of defects such as
waveguides and cavities in phononic or photonic crystals is at the origin of many of
their potential applications for confinement, guiding, filtering and multiplexing of
acoustic waves at the level of the wavelength [10] and paves the way for the
realization of advanced sensors and acousto-optic devices.

The progress in the field of phononic crystals goes in parallel with their photonic
counterpart, although they involve a larger variety of materials as concerns the
possibility of high contrast among the elastic properties, large acoustic absorption
and the solid or fluid nature of the constituents. Since the band structure is scalable
with the dimensions of the structure (as far as the linear elasticity theory applies), a
great deal of works has been devoted to macroscopic structures in the range of sonic
(kHz) and ultrasonic (MHz) frequencies where the proof of concepts of band gaps
and manipulation of sound (such as wave guiding, confinement and sharp bending)
has been established with simple demonstrators. Yet, there is a continuous interest
in the engineering of band structures with new structures and materials as well as
the technological fabrication of sub-micron scale structures working in the hyper-
sonic (GHz) regime.

The general mechanism for the opening of a gap is based on the destructive
interference of the scattered waves by the inclusions and therefore requires a high
contrast between the elastic properties of the materials. In periodic structures, this is
called the Bragg mechanism and the first band gap generally occurs at a frequency
which is about a fraction of c/a, where c is a typical velocity of sound and a the
period of the structure. However, when the propagating waves in the embedding
medium are strongly scattered by the internal resonances of the individual inclu-
sions, one may obtain a so-called hybridization gap which results from the coupling
between the propagating waves of the matrix and the localized mode of the scat-
terers [13, 14]. Such a gap is less sensitive to the periodicity and can persist even in
presence of some disorder in the structure [15, 16]. For common materials, it may
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happen that both types of gaps arise in the same frequency range since the internal
resonances of the inclusions would be of the order of c/d where d is the typical
diameter or size of the inclusion. In such cases, the combination of the two effects
can widen the actual band gap. It is also worthwhile mentioning the concept of
locally resonant sonic materials (LRSM) introduced by Sheng et al. [17] which later
developed into the field of acoustic metamaterials. In the latter work, the coating of
hard inclusions by a very soft rubber produced a very low-frequency resonance gap
situated two orders of magnitude below the Bragg gap, thus allowing the sound
isolation below kHz by a sample with a thickness of a few centimetres only.

Point or linear defects [18] such as cavities or waveguides [19] can be introduced
into the phononic crystal by removing or modifying one, a few or a row of
inclusions. Depending on their geometries and constitutions, such defects can give
rise to new modes inside the band gap of the phononic crystal that correspond to
localized or evanescent waves with a decaying displacement field far from the
defect [20–22]. Therefore, they can be used for confinement and guiding [23, 24] of
the acoustic waves, and the coupling between a waveguide and cavities provides the
possibility of filtering devices [10, 25, 26].

7.3 Elastodynamics of Artificial Structure

7.3.1 Introductory Remarks

The control of phonon propagation in artificial structures (AS) hinges heavily on the
ratio of the length scale of the inhomogeneity of the medium, normalized to the
wavelength of the propagating phonon under consideration. In general, one also has
to consider the specific displacement field pattern, i.e. the eigenmodes; this later fact
stems from vector nature of the phonon, that is, the elastic fields are vector in nature.
It is quite interesting how much of this fact, once we consider artificial structures,
even though, one has no issues with this in considering anisotropic bulk crystals. In
fact, recognizing that the distinction between artificial crystals and bulk atomic
crystals lies in the length scale of the inhomogeneity is extremely pertinent towards
the development of the universal framework. It allows us to renormalize and map
the viewpoints between the traditional bulk atomic crystals and the artificial
structures. Many of the apparent differences or anomalies demonstrated in AS stem
from not being able to access length scales not previously obtainable experimen-
tally. Indeed, it has only been with the advent of nanotechnology that we are able to
characterize artificial structures (AS) where the measurement precision and access to
length scales match the length scale of fabricated structures. Thankfully, this finally
allows for the development of a toolset where we are able to truly test designed AS.
The connection of phononics, and its relation to classical acoustics, elasticity and
mechanics lies in the length scales. The classical field theory of mechanics is used
for the description of phonons and their propagation behaviour, in the guise of
elastic waves in a continuum. It turns out that the classical–quantum transition for
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phonons in media is at a much smaller length scale than we were aware of [27]. One
notes that it is quite remarkable, as well as quite reassuring, that in the age of
advanced multiscale computational tools and techniques, one may verify that the
classical limit still holds even at very small scales, (nanostructures * 10–100 nm).
Hence, one needs to recognize the critical length scales involved and adopt the
correct computational tools most suited at those length scales. In all of these cases,
the crucial point is to always recognize the issue of length. In fact, the timelessness
of classical continuum mechanics has manifested itself interestingly in recent work
on phonon transport at the nanoscale. Examples of these include the experimental
discovery of the role of flexural and interface modes on supported graphene [28].
While the interactions themselves may sometimes breach the quantum regime (e.g.
at extremely low temperatures), in many of these cases, it is collective mode at the
longer length scales that are quite rigorously predicted and accounted for in the
classical field theories, that one is interested in. Hence, it is stated here outright that
one is working in the classical limit, i.e. the frequencies and wavelengths which one
deals with are much lower than the actual atomic/intrinsic optical phonon limit. The
latter point is the defining feature of the nonclassical limit of phonons in materials,
contrary to common misuse in the literature [29], where the classically confined slab
modes were regarded as exhibiting quantum effects. One focuses on ways of
moulding the flow of phonons at the length scales where one can design and then
successfully fabricate, in order to directly verify with experimental measurements
the theoretical predictions. Hence, one is bounded below by the *10 nm regime,
this being set by current state-of-the-art reproducible top down fabrication methods.
This incidentally lies in the regime where the phonons are technologically relevant,
e.g. ultrasonic (MHz) and hypersonic (GHz). It is also quite interesting that even the
control of phonons in such structures and materials in the linear regime eludes our
complete comprehension. Here, a universal framework is developed in order to both
design and control the phonon propagation behaviour in AS materials. A subset of
these AS materials is also conventionally known as phononic crystals (PnC) [30], or
metamaterials (MM) [31], depending on the length scales of the phonons propa-
gating through the medium. This will be systematically elaborated as we build up
the framework. Hence, one utilizes the well-developed classical field theories in
mechanics, within a mathematical framework that one shall use to develop this field
theory which turns out to be extremely useful and suitable for designing structures
to control the propagation behaviour of phonons. This universal design framework
will be used for designing phononic structures.

7.3.2 Fundamental Equations and Governing Principles

While using classical field theory, one wishes to remark that while extremely
complete in its exposition, the roots were more algebraic, rather than geometric in
nature. Hence, the solutions of various mechanical problems arrived at by
researchers were more microscopic and dynamic in nature, as opposed to the
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geometrical approach, in which the observation of invariants and conserved quan-
tities of the entire systems would be pursued. The former approach would solve the
problem at the microscopic level and hence demonstrate its evolution along a path.
The latter approach while not pinpointing the actual path that the solution evolves
along would elucidate all the possible paths that were amenable, as well as impos-
sible. One seeks to combine both approaches and reconcile them, enabling us to be
able to shift one’s viewpoint when it is more illuminating to the problem solution.
Part of the reason this universal framework was not previously developed is simply a
question of the disjoint timelines of the two viewpoints. To illustrate these two
viewpoints, the fundamental equations of elastodynamics are developed from both
approaches. First, the classical discrete harmonic crystal is reprised, and the con-
tinuum limit is taken to obtain the conventional linear acoustic dispersion curves for
a homogeneous solid, highlighting the conversion from the discrete regime to the
classical regime. This is the microscopic approach. This is also the only place where
one is able to explicitly state the limits in which one is allowed to work within the
continuum framework. This model is elaborated to show how a phononic structure is
often regarded as a “larger-scale” atomic crystal through a renormalization of the
length scale which is examined. Here, the concept of length scales involved is
illustrated when visualizing the relevant length scales between a bulk crystal, and
that of a phononic crystal. One notes that one may effectively “discretizes” the
phononic crystal to the length scale of the building blocks, that is our discrete length
scale is given by a, the size of the unit cell. This is equivalent to considering only the
first two symmetric (bands 2 and 4 in solid black), or first two anti-symmetric
branches, if one only allows one degree of freedom in comparing with the
one-dimensional building block systems. One sees that these two branches are
effectively analogous to the diatomic classical chain, with the two components of the
phononic crystal being the two “atoms” in the chain. This is exactly the cut-off length
scale which one is talking about! By taking this into account, it is shown that the
models can be mapped onto one another. The distinctions that exist between the
atomic and artificial that are often misunderstood are then highlighted, which can
lead to erroneous conclusions in the literature. This treatment leads to the concept of
quasi-statics, locality and nonlocality, and this turns out to be one of the central
themes of the design framework given here. Then, a complimentary viewpoint is
then approached, which is more mathematical but at the same time quite physical in
nature. The premise for this is the validity of being able to describe the elastic
displacements as a continuous field, and this allows us to use the tools offield theory,
i.e. one may treat the medium as a continuum. One starts from the perspective of the
conservation equations, namely of continuity of mass and momentum flow [32], in
developing the general equations of classical waves. This is in contrast to the typical
way of inducing an equation of motion (E.O.M) based solely on the stress–strain
relation from the starting elastostatics equilibrium viewpoint. Since the equations of
motion are microscopic in nature, i.e. the wave propagates and is subject to certain
requirements of continuity in the medium but omits critical information about the
system, which is actually derivable from the conservation equations. The implica-
tions of the equivalency of these two viewpoints are then discussed, noting that the
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latter viewpoint will still be valid, for example in the event of shock wave propa-
gation for example, because of the nature of the physical induction of the equations.
Another reason for utilizing the conservation equations is the connection, often
utilized in theoretical physics, to broken symmetries in the systems, and hence to the
allowed symmetries of the phonon modes in the system. This serves to motivate the
following work where, starting from the viewpoint of conservation and broken
symmetries, elastodynamics is included into the mathematical framework.

7.3.3 The Discrete to the Continuum: Taking Limits

A regular lattice with a single atomic building block is considered, i.e. a
mono-atomic lattice, in N dimensions. In the discrete approach, the many-body
potential energy is represented, with the ionic coordinates V (q1, q2,…, qn). Within
the harmonic approximation, one may represent the deformations in the potential
energy to only second order in the displacements, ua(r), where a represents the
spatial component and r represents the position of the ion being considered. One
may hence write this potential energy function under small perturbations as:

V ¼ V0 þ 1
2

X
r/;r0

b

@2

@qr;/@qr0 ;b
V u/ rð Þub r0ð Þ þOðU3Þ ð7:1Þ

where q is the generalized coordinate of the system, r is equilibrium positional
coordinate of ion, and u is displacement variable from equilibrium position r.

The full Hamiltonian is given by H = T + V
where

T ¼
X
r;/

p/
2m

rð Þ2 ð7:2Þ

p/(r) = momentum
Because we are working with a lattice, the discrete translation symmetry, which

implies the lack of a unique origin, shows that the potential energy function should
only depend on the difference between the position vectors r and r′ and also that this
translational symmetry allows us to diagonalize the Hamiltonian using the Fourier
modes (the translational symmetry implies that we may use the wave vectors as
conserved number and hence Fourier modes), i.e. we may express the displacement as:

U/ rð Þ ¼
X

k;1st BZ

eik:rffiffiffiffi
N

p U/ kð Þ ð7:3Þ
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This sum is only restricted to lie within the first Brillouin zone (BZ); this is due to
the intrinsic discrete length scale restriction of the minimum wavelength of a prop-
agating phonon to the first BZ edge (shortest wavelength possible for discrete lattice).
The final Hamiltonian, diagonalized in terms of the Fourier modes, is given by

H ¼ V0 þ 1
2

X
k;/;b

=p/ kð Þ=2
m

þK/;bðkÞu/ kð ÞubðkÞ ð7:4Þ

This is the Hamiltonian that represents a lattice occupied by a discrete ionic
basis. The discrete nature of the lattice is represented by the form of the Fourier
mode decomposition, with the displacement at each ionic position given by:

un ¼
Zp=2
�p

dk
2p

e�knau kð Þ ð7:5Þ

where a is the equilibrium lattice spacing, and n is the nth ion in the entire lattice.
Hence, in this microscopic Hamiltonian, one essentially tracks the oscillating

positions of all the ions in the lattice, and one describes, up to second order only, the
harmonic displacement of the lattice about each equilibrium ionic position. Because
of the (discrete) translation symmetry, one may perform a diagonalization and
rewrite the equation in the Fourier basis with the wave vector k, which is constrained
to lie only within the first BZ. Because translational symmetry implies that the
system is invariant to translations operations of the entire lattice, the natural space for
the displacement lies in the Fourier, or the reciprocal wave vector space, hence the
diagonalization into k-space. However, one notes that this group of transformations
is only distinguishable up to the unit lattice vector. Physically, this just tells us that
the discrete nature of the lattice only allows a wave, to possess a minimum wave-
length of 2 lattice translations, with the unit cell size being half a wavelength,
represented by two adjacent ions being exactly out of phase in their motions. This is
all of course done with a mono-atomic lattice. The discrete nature of the lattice is
thus markedly manifested near values of the wave vector at the BZ edges, where
strong interactions with wavelengths on the order of the unit cell size occur. When
can one utilize the continuum approximation? Away from the BZ edge, the wave
vectors and hence, the associated wavelength of the propagating phonons typically
span numerous unit cells and hence, at each atomic position, the displacement
caused by the wave is incremental, with individual displacements satisfying

u/ rð Þ\\=rn/ � rn
0

/= ð7:6Þ

In addition, if we consider long wavelength (small k numbers), the displace-
ments take place at a length scales l = a

e, 0 < e � 1. where a is the unit cell
dimension. Hence, the wavelength is much longer than an individual unit cell.
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Finally, provided that this lattice is approximately uniform (i.e. low defect,
isotope densities, etc.) and considering processes that occur at longer time scales
(i.e. the fast microscopic fluctuations die out quickly), one will hence be able to
coarse-grain the system and apply the continuum approximation to the discrete
lattice. The essence of this is that one is then able to replace the discrete dis-
placements of the ions in the lattice with a continuous displacement field. One now
develops the continuum approach inducing the equations of motion from the
Hamiltonian. By taking @p

@t ¼ @H
@q0 this gives us, in the original discrete form:

nd2

dt2
un/ ¼ �

X
n0

K/;b n�n0ð Þun0b ð7:7Þ

where n and n′ represent different ionic positions.
The continuum approximation allows us essentially to treat the displacement as a

continuous field; hence, we may carry out a Taylor expansion of the displacement:

ub r0ð Þ ¼ ub rð Þþ
X
/
ðr0/ � r/Þr/ub rð Þþ 1

2

X
/;�

ðr/0 � r/Þðr0� � r� Þr�r/ub rð Þ

ð7:8Þ

u is displacement, r is the coordinate in space.
Due to stability requirements of the lattice near equilibrium, only the quadratic

terms remain; hence, we obtain finally

m
d2

dt2
u/ ¼

X
/;b;� ;g

C/;b;� ;gr�r�ub ð7:9Þ

where m is the relevant mass, here we assumed point mass, u, is the displacement,
C is the elasticity tensor which is exactly the linearized form of the elastodynamic
E.O.M for a continuous medium. This shows explicitly where the continuum
approximation of the original many-body problem is valid, i.e. whenever one is able
to treat the displacements of a propagating wave as a continuous field. Physically,
this implies that despite the intrinsic many-body nature in most systems, that the
emergent collective modes of propagation dominate the behaviour of the entire
system. In most situations, the classical discrete transition limit, i.e. the situations
where the quantum behaviour is dominant should be considered properly and is
different in considering different situations. For phonons, this crossover is some-
where in the sub-10 nm regime; in all cases, one needs to consider the ratio of the
various length scales present in the system, the intrinsic atomic length scale, the
length scale of the propagation mode/wave which one is interested in and hence the
length scales of the inhomogeneity that exists in the system that the wave may and
may not see. Now, one shall work with the displacement existing as a continuous
field in the medium, which one may consider also as a continuum. We note here
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that the condition of being able to take limits from the discrete into the continuum
only lies in the validity of representing the displacement as a continuous field.
Subsequently, even when one considers artificial structures (AS), which are inho-
mogeneous, this fact does not change, because the length scale of those inhomo-
geneities is “macroscopic”, compared to the intrinsic unit cell size; hence, the
medium is still continuing for our purposes. Now, one utilizes the two viewpoints
of elastic wave propagation in the continuum limit, the first which is microscopic
and hence is evolutionary (with time) in nature, while the second is based on
conservation principles and hence is more variational in nature. That two view-
points are needed is crucial because it is only through the second viewpoint that one
is able to induce the concept of broken symmetries and generalize the concept of
polarizations, allowing us to treat the vector nature of the phonon subsequently.

7.3.4 Evolution versus Conservation: The Microscopic
E.O.M. versus the Variational Principle

We start first with the microscopic E.O.M. This is typically derived from the
equilibrium conditions, or of force balance of an infinitesimal element, where
equilibrium requires:

rjrji þXi ¼ q
@2

@t2
ui ð7:10Þ

where Xi = external body forces, rij = stress tensor component ui = particle dis-
placement. Subsequently, depending on the exact solid, we have to include extra
information on the elasticity tensor of the particular solid. In the case of an homo-
geneous isotropic, linearly elastic medium, this is reduced to the familiar form:

kþ lð Þr½r � u rð Þ� þ lr2uðrÞþX ¼ q
@2

@t2
u rð Þ ð7:11Þ

This is the common vector displacement E.O.M, or more commonly known as
the elastic wave equation. In this microscopic approach, we only consider the
conditions of equilibrium on an infinitesimal element in the body. Physically, this is
equivalent to regarding a propagating elastic wave as a very small perturbation
travelling through every microscopic element and the subsequent motion at each
position acts to restore the slight perturbation from equilibrium. There is no external
or additional knowledge about the nature, and form of the propagating wave
through the medium, which is what one is actually interested in. The subsequent
Ansatz on the solution form, namely u(r) • e[i(k • r − wt)], seems more of an
exercise based on experience rather than one induced from the form of the phe-
nomenon at hand. In fact, why does this Ansatz even work? One knows that this
takes the form of a wave equation (although given the original vector form, it might

134 7 Energy Harvesting and Phononics



be hard to guess initially.), but why would one choose such a form of the solution?
Given say a large disturbance, such as a shock wave that propagates through the
body, the assumptions underlying this E.O.M undoubtedly break down and we
seem to need to formulate a new, probably nonlinear E.O.M to describe now shock
wave propagation. How would one does this? What does the k in the Ansatz imply?
The answers to these fundamental questions lie in the second approach, which
stems from conservation and will form the philosophical backbone behind the
development of our framework. One now demonstrates this and reconciles this with
the previous microscopic approaches. Initially, consider the medium to be a
homogeneous continuum (later one relaxes this assumption); hence, we can rep-
resent the displacement as a continuous field. Since one is interested in the prop-
agating wave, one focuses on the wave. In such a system, one knows that in the
absence of dissipation, energy is conserved due to continuous symmetry in time.
Because the system possess continuous spatial symmetry (at the length scales which
we consider), linear momentum is conserved. If the system is not rotating, angular
momentum is also conserved. These conservation principles allow us to define an
equation of continuity of some conserved quantity,M(t), in some region of space X,
with a boundary dX, and boundary gradient normal n can be stated as:

dM tð Þ
dt

¼ R tð Þþ S tð Þ ð7:12Þ

M tð Þ ¼
Z
X

q r; tð ÞdV ð7:13Þ

R tð Þ ¼
Z
X

F r; tð Þ � n dS ð7:14Þ

S tð Þ ¼
Z
X

s r; tð Þdv ð7:15Þ

F (r, t) represents the corresponding flux of the quantity and s (r, t) represents
any source and sink in the region. This continuity equation, which tracks all the pro-
cesses that conserve the quantity M (r, t), is valid even in the presence of shock waves
[32], as long as the medium doesn’t tear and hence introduce new discontinuities via
cracks, etc. For elastic waves (and avoiding dealing with shock waves), one may deal
with the differential form of the conservation laws and now, recalling that the system
conserves energy (mass) and linear momentum yields two such equations of continuity:

@ qvð Þ
@t

þr � T ¼ 0 ð7:16Þ
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@q
@t

þr � qvð Þ ¼ 0 ð7:17Þ

T is the momentum stress tensor, p is the mass density, v is the relevant flux
velocity. Here, we input our constitutive equations, which represent the behaviour
of the particular material we are interested in, e.g. linear elasticity and the aniso-
tropy of the elasticity tensor. In this approach, it is only the constitutive relations
which we input into our conservation equations that need to change when we are
dealing with different systems. The modifications into the wave equation only occur
as a result of the constitutive relations. We further assume a linearly elastic, iso-
tropic medium, which allows us to approximate the form of the stress tensor T, and
if we assume that the mass density varies on length scales (L) longer than that of the
wavelength of the propagating wave (X) and hence the wave does not sample any
mass density inhomogeneity, we recover the elastic wave equation:

kþ lð Þr½r � u rð Þ� þ lr2uðrÞþX ¼ q
@2

@t2
u rð Þ

X are all the relevant external body forces, if any. Once again, this time without
considering small microscopic displacements from equilibrium as before. This
second formulation, which one calls geometric, presents a slightly different view-
point. By treating the wave initially as a propagation of an initial disturbance
throughout the medium, one can regard this through any region in space as a flow of
some quantity; in our case, this is linear momentum. In general, one may treat this
propagation as a continuity equation for momentum. The constitutive relation,
which in this case is the linear elastic response of an isotropic, linear elastic solid,
inputs the phenomenological or material response of the material to the propagating
wave. This is where the main piece of the appropriate material physical response
comes into play for the system. This could include nonlinearity, viscosity and other
nontrivial complexities in material response. Explicitly, these features enter through
the stress tensor term, T, of the momentum continuity equation. After inputting this
constitutive relation into the continuity equation, one recovers back the elastic wave
equation, verifying that given the linear elastic response a general propagating
disturbance will fulfil the following wave equation, as represented by the vector
elastic wave equation. One notes here in passing that this method of derivation
acknowledges fully the role of momentum conservation in deriving the resultant
wave equation, whereas the microscopic method bypasses this knowledge. But
what else does this geometrical approach offer us, in terms of insights? Because the
wave equation is derived from the conservation of linear momentum, the system
possesses continuous spatial symmetry (again, at these length scales); this imme-
diately tells us that once again, the normal mode decompositions should be taken in
Fourier space, u(r) � ei(k � r − wt), where the wave vector k represents the natural
space in which the eigensolutions of this wave equation lie. This can be regarded as
normal mode decomposition of the solutions in terms of Fourier modes; hence, one
can choose solutions to be “carried” by the ei(k * r) forms, which are the said
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natural coordinates. This is precisely why the normal modes take the following
form of u(r) � e(k � r − wt), where k takes on either a discrete set or continuous
spectrum of values that depends on the actual spatial symmetry. So now, we have
utilized two countering viewpoints to derive the same elastodynamic wave equation,
with the second geometrical approach giving an additional insight through correct
identification of the processes that lead to the formation of the wave equation. The
latter approach also identifies the significance of k as the normal mode index and
explains the rationale behind the well-known plane wave type solutions to the wave
equation. However, one needs to extend these principles further in order to be able to
understand how to treat the vector nature of the elastodynamics. Right now, this
equation does not possess any extra information about the vector nature of the elastic
waves, or the number of polarization degrees of freedom. One needs to now introduce
the concept of polarization, working from the concept of broken symmetries of a
continuous system. This framework of viewing polarization and hence the vector
nature of the phonon field will be crucial towards our universal framework, which
enables us to treat vector fields as readily as scalar fields.

7.3.5 Broken Symmetry and Polarizations of the Vector
Phonon

From the discrete viewpoint, the polarization of a phonon arises from the fact that it
is connected to other material building blocks/atoms by virtue of the requirements
of stability and the dimensionality of the space and material. From the continuum
viewpoint, the polarization of a phonon arises also from the requirements of sta-
bility and dimensionality as well, albeit from considering the relevant potential
“energy” and considering possible stable solutions. In this latter case, there is no
assumption on the details of the internal structure of the medium except for the fact
that it is a mechanically and energetically stable continuous medium. Yet the
connectivity requirement is intimately connected to the stability of the medium.
How then does the dimensionality of the medium lead to the induction of the
allowable polarization degrees in a structure? This is exactly related to the con-
servation equations and to the concept of the broken symmetries and finally, the
extension of length scales once inhomogeneities are introduced into the system. To
get an insight into the polarization of the vector fields, one has to consider the
existence of phonons from another perspective, that from broken symmetry [33]
and Goldstone modes. The polarization degrees of freedom are constrained by both
the dimensionality of the space with which we are considering the problem as well
as the general rigidity of the system. The former is clearly shown by simply con-
stricting the motion to occur in N dimensions and gives the maximum permitted
degrees of freedom. The second condition of rigidity, however, gives the final
allowed degrees of polarization freedom permitted by considering the physics of the
problem. One example of this is exemplified by the difference between a fluid and a
solid. A typical fluid supports a single “polarization” mode, a scalar acoustic wave
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formed from mass density fluctuations. In contrast, an elastic solid, that resists both
shear, torque and compression, possesses three polarization modes, in general, in any
direction. One now elaborates somewhat on polarizations, since one has identified
them as one major challenge towards the control of the designing the dispersion
relations of different phononic structures. In a homogeneous three dimensional
continuous medium, it has been taken for granted that one derives these solutions to
be the two transverse (shear and rotational, no dilation) and the longitudinal modes
(only dilatational/compressional, but not shear). Typically, this is derived from the
fact that every possible vector displacement field takes the form [34]:

U rð Þ ¼ r;þrxw ð7:18Þ

/ = scalar potential, w = vector potential. These two potentials yield the respective
longitudinal and transverse modes but do not provide much intuition for understand
the resultant mode. One may choose instead, to consider the Hamiltonian which is
given by:

H ¼ 1
2

Z
ddx

X
a

q
@u/
@t

@u/
@t

� �
þ

X
/;b

2lu/bu/b þ ku//ubb
� �" #

ð7:19Þ

l, k are the Lamé coefficients. It is clear from the repeated summation that the
resultant Hamiltonian is rotationally invariant, and hence, in Fourier space, our
Hamiltonian now should only contain rotationally invariant quantities and takes the
form:

H ¼ 1
2

Z
dd

2pð Þd k
q
2
=
@u kð Þ
@t

=2 þ l
2
k2=u kð Þ=2 þ lþ k

2
k � u kð Þð Þ2

� �
ð7:20Þ

By decomposing this Hamiltonian, one can group the modes into those that are
transverse (k perpendicular to u) and longitudinal (k parallel to u), with the trans-
verse modes having a degeneracy of (d − 1), where d is the dimensionality. Now
one considers what governs the available polarization modes in a medium. This has
to be done in steps. First of all, phonons are a simple form of Goldstone modes,
which derive from breaking the continuous symmetry of the medium. One notes
that earlier, it is mentioned that the continuous symmetry is what gives rise to the
phonon modes, so is there contradiction? The distinction here is precisely the
question of the length scale of “continuous” which one is considering! First the
Goldstone mode. In a solid, bonds are formed, with the formation of a crystalline
lattice breaking the continuous translational symmetry at all scales, replacing the
system with discrete translational symmetry instead. This broken continuous
symmetry leads to the Goldstone modes which are our phonons (long wavelength).
One characteristic of Goldstone modes is that their wavelength goes to infinity
(frequency w goes to zero) at zero wave vector. Each such broken symmetry will
give rise to a maximum of one new mode, hence giving rise to condition 1. This is
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for the Goldstone modes. At the length scales where one considers the medium to
be a continuum (much larger scales), however, one has continuous spatial sym-
metry (continuous and homogeneous) and one has not contradicted ourselves. This
is why the recognition of the correct length scales is very important in general.
Now, one needs to extend this concept of broken symmetry further. That the
longitudinal and transverse modes are the only eigenmodes is derived from the
symmetry of the system, in this case the isotropic solid. Such a crystal is still rather
symmetric. Of course, actual structures are never elastically isotropic; even the
highest symmetry cubic crystals have an extra rigidity constant. Excellent treat-
ments for the correct classification of different crystal elasticity constants are given
in Nye [35] and Landau. The pertinent point here is that the polarization eigenstates
of an elastic wave that exists in a structure depends on its underlying symmetry. To
give an example, if instead of an isotropic medium, we have a medium which
possesses spherical symmetry, the polarization eigenstates naturally need to obey
the spherical symmetry. One of the eigenstates will possess spherical symmetry
(depends only on /r/), with the other possible eigenstates depending on their
dependence on the angular coordinates (U, Ɵ). These are commonly recognized as
the radial-like “breathing”, dipolar-like, and quadrupolar-like modes, with the exact
polarization of a propagating phonon depending on its propagation direction taken
with respect to the crystal symmetry. In other words, it represents the eigenmodes
present in the crystal along the direction which it is propagating in. This is geo-
metrically often taken as a normal projection along the relevant quadric but clearly
this is exactly equivalent to the projection into the relevant sub-space of the basis of
eigenmodes of the relevant structure/medium, which we call the irreducible rep-
resentations (Irreps). One recognizes that bulk crystals have lower symmetry than
the isotropic system, and hence break the symmetry of the original higher symmetry
system. This leads to the formation of different polarization eigenstates, with dif-
ferent propagation velocities along different directions, depending on the symmetry
of the new system, much like how that of a spherical symmetric system differs from
those in an isotropic system. Hence, the polarization eigenstates are not always
purely transverse or longitudinal; they are fundamentally the polarization eigen-
states of the elastic waves, which depend on the particular symmetry of the system.
One can be easily misled by the conventional use in bulk crystals typically
described using orthogonal coordinates. Let us now restate the crucial point about
what polarization is and how one should treat polarization. The polarization degrees
of freedom depend on the dimensionality of the medium and the conventionally
known transverse and longitudinal modes in a system are but a subset of the larger
class of possible modes, known more correctly as the polarization eigenstates. The
nature and form of these polarization eigenstates depends on the underlying sym-
metry of the medium; this is the most general and correct classification of polar-
ization eigenstates. These inhomogeneities further break the original symmetry of
the homogeneous system at various length scales. In both the bulk crystal and this
AS case, one breaks symmetry from an initially higher symmetry case, yet, the
dispersion relations turns out to be clearly different, with the latter becoming visibly
more complex. What is the origin of this behaviour? This is where once again the
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length scale comes into play. In the artificial structure, the symmetry is broken
above some length scale once the phonon can sense the inhomogeneity. This causes
changes in the nature of the wave vector k, as well as its associated allowable
spectrum of values; all of this represents the breaking of the spatial symmetry.
However, in both cases, it remains true that polarization states are derived with the
only difference in the length scales present in the latter, due to the artificial struc-
turing, or the nonlocality present in the medium. Stated physically, the inhomo-
geneity present in the AS leads to changes in the wave propagation behaviour
beyond certain length scales. This leads to spatial dispersion and is commonly
known as the nonlocality of the structure. Mathematically, nonlocality in this
context implies that the response of the medium to a propagating wave (its group
velocity, etc.) depends on the wave vector k explicitly. One easy example would be
a diatomic crystal; its first indication of the nonlocality is at the length scale of the
sub-lattice separation and manifests itself as the optical phonon branch! This
realization clarifies that the polarization of each eigenmode in the medium, whether
bulk or artificially structured, stems from the proper diagonalization into the rele-
vant sub-spaces, dictated by the symmetry of the crystal. The subsequent com-
plexity from the polarization fields is due purely to the interactions from the
nonlocality of the structure. The nature of these interactions may of course differ,
depending once again on their length scales, ranging from scattering (k/a < 1) to
interference (k/a > 1). But once again, the complexity is due to the mechanics of
the interactions present, but they are governed still by the global invariants and the
symmetry of the medium.

7.3.6 Concluding Remarks on Elastodynamics
from a Symmetry Breaking Perspective

One utilized two viewpoints, one the more conventional microscopic method, and
the second method, more geometric in nature and based on conservation and
symmetry. By utilizing conservation principles and reconciling them with the more
conventional microscopic method, one is able to develop more insight into the
nature of elastic wave propagation and relate it with the conservation of linear
momentum. One then showed that the polarization degrees of freedom actually
derive from the broken symmetries at the atomic scale, leading to the formation of
gapless Goldstone modes in homogeneous media. However, in contrast to con-
vention, polarization eigenstates are not always decomposable into the common
transverse and longitudinal modes. This decomposition is only true for systems
with orthogonal symmetry, e.g. cubic, orthorhombic systems. In general, the
existence of polarization stems from the broken symmetry from an initial contin-
uous system (at all length scales). The exact form of the polarization eigenstates,
however, respects the details of the symmetry which the structure possesses; hence,
it may be arbitrarily complicated depending on the symmetry of the homogeneous
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medium. This situation does not change in considering AS, where purposeful
inhomogeneity occurs at various length scales as desired. The polarization state still
follows the symmetry of the AS and while the dispersion relations may be much
more complicated, the governing principle for the polarization eigenstates remains
the same. What the inhomogeneity changes though, is that it changes the permis-
sible values and actual physical meaning of the wave vector k. Now that we have
shown that despite the apparent complexity of the polarization states, exemplified in
a typical band diagram of a phononic structure, that their underlying 60 classifi-
cation and nature is isomorphic to that of a bulk crystal. This points a way forward
towards being able to identify and classify the polarization eigenstates in various
AS. While one now can place the polarization eigenstates within our framework of
broken symmetry and conservation laws, the question still remains now as to how
to control the polarization states in these phononic structures, in order to control the
dispersion relation of these structures in a rational way. It is shown that the
polarizations obey the explicit symmetries which are bestowed upon the structure
which it propagates. One also realizes that the restrictions/constraints which the
explicit symmetry places on the structure is absolute and actually offers a way with
which one can manipulate the polarizations, and hence the dispersion relations of
phononic structures. The relation here is not so clear presently and requires a
discussion of the effects of nonlocality in the structure. The remarks on the
importance of understanding and controlling the polarization state of the phonon
will become clear as one demonstrates unique phonon propagation behaviour as
well as record performance metrics in the designs. These will be achieved simply by
utilizing the notion of the length scales and polarization to develop a transparent
design framework that can dramatically improve one’s control over w(k).

7.4 Development of a Universal Design Framework:
Mathematical Structure

7.4.1 Introductory Remarks

The previous section highlighted the elastodynamic equations governing the
propagation of classical phonon in general inhomogeneous media. The vector
nature of a classical phonon, propagating in an inhomogeneous medium (waveg-
uide, resonator, crystal or metamaterial) makes it rather difficult to track micro-
scopically. From an applied perspective, it is desirable to be able to obtain rules for
designing a particular inhomogeneous medium, in order to obtain a desired prop-
agation behaviour of a phonon to be able to develop novel and useful applications
for phononics. Hence, understanding and control over the vector nature of the
phonons is both scientifically interesting and desirable from an engineering per-
spective. The question thus becomes is one able to find general governing relations
in order to control the vector fields that propagate through the AS? When mapped
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the polarization states of the phonons for an artificial structure and that of a bulk
crystal onto the same network, it can be shown that the difference in the two
stemmed from the relevant length scales of the inhomogeneity in the medium; this
has direct implications to the nonlocality (dependence on the wave vector and the
material wavelength) of the medium, which controls the type of interaction causing
the dispersion of the propagating phonons. The interaction due to this nonlocality in
turn, are bounded by global invariants, via the symmetry of the artificial structure,
in terms of the possibility of an interaction occurring. Hence, the ability to develop
control over this dispersion relation would extend the capabilities beyond just, e.g.
creating complete spectral gaps; we will also be able to induce bands that effect
negative refraction, generate double negative index bands, and even perform
hyperlensing. In fact, one aims to control the curvature and the placement, i.e.
frequencies of each individual band, in principle allowing unparalleled control over
the propagation velocities and dispersion of the possible eigenmodes within a
structure. Ideally, one would not want to be limited to a pedagogical infinite bulk
system, but also to be able to incorporate the boundaries, interfaces between dif-
ferent media as part of our entire design framework; indeed, we would like our
design framework to be as general, practical and as unrestrictive as possible. This
implies that one would need to have control over the presence (or absence) of
eigenstates as well as the curvature and dispersion of individual bands. How can
this be done? It has been remarked in the previous section hat the projection into the
correct sub-space of the degrees of polarization freedom allows one to extract the
eigenmodes of the system. Naturally, these eigenmodes then form an irreducible
basis of that invariant sub-space. The crucial question here is what governs these
sub-space projections? Because each new mode originates from a broken symmetry
of the original system, the polarization state of each mode is controlled by the
global symmetry which the structure possesses. Group theory poses global
invariants on the explicit spatial symmetries which a particular phonon eigenmode
may possess; it has to be explicitly an irreducible representation of the isotropy
group of the wave vector. While one refers to excellent texts for a detailed and clear
exposition into groups and representations, one notes here that the representation
theory is isomorphic to the sub-space projection of the phonon eigenmodes which
one has been mentioning and have explicitly demonstrated in previous section. This
will be the approach here, i.e. one will use the mathematical machinery to map
explicitly to the physical process of designing different phononic AS for different
applications. In this section, one endeavours to develop a general design frame-
work, to mould the dispersion relations of phononic structures by casting the
fundamental linear elastodynamics governing the phonon propagation within a
concrete mathematical framework. This mathematical framework allows one to
extract the global possibilities of the types of interactions that may occur, that may
lead, for example to the formation of a spectral gap. This framework also allows us
to treat the often complicated polarization fields of phonons with a surprising
transparency that automatically accounts for the vector or scalar nature of the field
which one is interested in. Finally, one is also able to directly control the size and
extent of desired interactions present in the system; indeed one will be able to show,
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quite clearly what kind of features are exactly needed in a phononic structure, in
order to obtain a desired phonon mode. One claims that these are the main ingre-
dients which one needs in order to achieve an unprecedented level of control in
designing the dispersion relations of phonons in these structures. While one will
develop all the pieces of the framework in detail here, one next concisely highlight
the various aspects of the mathematical framework which allows us to treat the
vector nature of these fields in a transparent manner that treats both infinite, finite
and (non)-periodic systems with the same footing. This framework consists of the
following main ingredients: (i) The general interaction process leading to the for-
mation of the spectral gap is the avoided crossing between bands having the same
symmetries, (ii) The nonlocality principle, which illustrates the importance of the
lattice in controlling the dispersion and dynamics of phonon propagation, (iii) The
local principle, which utilizes a variational perspective to tie together the micro-
scopic physical details of the phonon propagation and controls the eigenfrequency
spectra at several k positions, (iv) The global principle which ties together all the
global invariants of a structure and the related phonon dispersion The combinations
of these four aspects of our framework are instrumental in controlling and aug-
menting the position and size of complete spectral gap formation in phononic
structures, both infinite as well as finite. To be clear, there is no actual restriction on
the extent and presence/absence of boundaries of the structure. In fact, although
seemingly purely mathematical and somewhat abstract in nature, it will turn out that
the irreducible representations imparted by the group on the eigenmodes actually
control the interactions due to the nonlocality which is present in the structure.
A more accurate statement is that the irreducible representation provides the
character, or signature of the eigenmodes and the possible interactions between the
various bands. For now, let us keep in mind that this global principle enforces
global constraints on the allowed behaviour of the eigenmodes of the phononic
structure. Before we delve more deeply into the global principles, we first motivate
the interaction process that allows us to design a fundamental spectral gap and now
examine the conditions for the occurrence of an avoided crossing.

7.4.2 Generalization of Avoided Crossings and Perturbation
Theory

The generality of a framework requires one to also be able to microscopically
control the energetic, or in this case, the exact modes and their positions in the band
dispersion relations. This is quite important as while global constraints allow us to
limit the possibilities that the phonon propagation may have, it does not allow us to
create a particular functionality. In order to do this, one needs to deal with the
microscopic, or the dynamics involved in designing the dispersion relation. In
general, a phonon propagating through a structured medium involves encounters
with various interfaces and subsequent multiple scattering events. In classical
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systems, one envisions that this phonon remains a coherent wave (with no dissi-
pation) at least to first order. In the previous section, one mentioned briefly that the
polarization and hence, the eigenmodes of the phonons in an AS or bulk medium,
depends on its underlying symmetries. One also showed, in the case of a
one-dimensional phononic crystal, examples of eigenmodes and how they relate to
the traditional concepts of transverse and longitudinal modes in bulk materials.
Having established that the eigenmodes in an AS are determined by the underlying
symmetries of the system, one now proceeds to examine the fundamental condi-
tions that actually determine the formation of a spectral gap and hence the need for
control of the eigenmodes. The phenomena of avoided crossings have been well
known since the days of Zener and the early years of solid state physics with the
theory of electrons and solid state band theory. However, the concept of an avoided
crossing is quite general and can be traced back exactly to the study of the sym-
metry of the eigenmodes of the system and their behaviour in (w, k) space. One
noted earlier that in a one-dimensional phononic crystal, the symmetries of the
system resulted in the selection of two classes of eigenmodes which were (anti)
symmetric with respect to the mirror plane along the direction of periodicity. One
showed clearly that Bragg-type scattering at the BZ edges only occurred between
pairs of modes which were (anti)symmetric, i.e. modes with the same symmetry. In
fact, this Bragg-scattering mechanism, which is well known is precisely an example
of an avoided crossing. Physically, this corresponds to the fact that degeneracy at
the position where two eigenmodes meet or cross was not permitted by the sym-
metry of the system; hence, these bands interact and as a result form a spectral gap
due to this interaction. An absolutely important point to note is that the underlying
fundamental condition for the interaction to occur is that these two modes need to
have the same behaviour with respect to the symmetry of the group which the AS
possesses, i.e. they need to have the same irreducible representation. From a
mathematical standpoint, the concept of avoided crossings and irreducible repre-
sentations stem from the theory of representations as well as from group theory
[36]. Here a physical intuition of an irreducible representation is developed. Let us
consider now a system that has some symmetry in the two-dimensional X–Y plane
and is invariant along the orthogonal Z-axis, i.e. the system possesses uniaxial
symmetry. Hence, suppose one is describing say a general displacement in this
system, we write it in the usual Cartesian coordinate as:
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We note that any symmetry operation of the group in the XY plane will only
change Irrepxy, leaving Irrepz invariant and likewise. For example, suppose we
apply a rotation of 8 about the z-axis, in the XY plane, we get the following:
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It is clear here that the rotation only affects Irrepxy and the two sub-spaces as one
has laid out here are orthogonal and do not interact with one another. This is a
trivial example of the concept of an irreducible representation, i.e. it is basically the
representation of a field variable, within the invariant sub-space it exists in. Hence,
two eigenmodes which have the same irreducible representation exist in the same
sub-space may interact, leading to the avoided crossings, whereas those with dif-
ferent irreducible representations simply cross each other in (w, k) space; this latter
phenomenon is commonly denoted as an accidental degeneracy at the point of
crossing. The whole point of identifying the symmetry of an AS lies exactly in
retrieving the irreducible representations of each and every eigenmode of the band
dispersion. This knowledge enables one then to predict and hence control where
avoided crossings, and hence, spectral gap formation may occur. The physical
problem can be viewed in a concrete mathematical framework where one may treat
all physically distinct perturbations to the system, such as a change in the material
components, the actual geometrical structure of the material, the inclusion of
boundaries and interfaces with the exact same underlying mathematical framework.

Clearly, the exact polarization state of the eigenmodes is represented by their
irreducible representations, which in turn depends on the symmetry of the system and
very often, traditional concepts of longitudinal and transverse waves lose their exact
meaning. One has to bear in mind that longitudinal and transverse modes originated
from the original Lamé solution of elastic waves in an isotropic homogeneous
medium; hence, they are eigenmodes of such a system, not of all systems.

By applying this concept of irreducible representations to such a classical
problem, one finds that one is able to explain the behaviour of the band dispersions
without tracing the k-evolution algebraically or microscopically. In fact, from an
algebraic standpoint, the fact that this avoided crossing occurs may have itself been
obscured. One chose to revisit this classical problem because of two factors, one
that it has the simplest group, consisting of only the two element group {E, m}.
Furthermore, it is a bounded system, i.e. has a finite dimension. These two factors
help illustrate the generality of the approach of an avoided crossing, particularly in
illustrating that one may treat the entire system, including both the bulk as well as
the boundaries within the same system. At the same time, the low symmetry group
of this particular system helps make the irreducible representations nearly trivial
and tractable. One now wishes to do better and aim to induce multiple complete
spectral gaps within this Lamb plate, not just a single spectral gap.

One recognizes here once again that the underlying principle behind the sepa-
ration of the two sets of modes governing the dispersion in the original Lamb plate
originated from the symmetry of the system. Hence, one physically enhances the
interaction between bands by changing mathematically the character of the bands in

7.4 Development of a Universal Design Framework: Mathematical … 145



the dispersion, i.e. one is utilizing an underlying global principle of reducing all the
irreducible representations to be only of the trivial identity representation.
Physically, this amounts to controlling the interactions such that the only allowed
eigenmodes obey the boundary conditions, which are anti-symmetric about the
centre of the plate. We note there that while along FX, the only allowed irreducible
representations are the trivial identity representations, this is not true at C.

One showed here, through the classical Lamb plate problem, that by correcting
identifying the fundamental origins behind the eigenmodes of the system, that one
is able to design quite novel changes to the system by altering the fundamental
solutions themselves. In this particular instance, simply identifying the irreducible
representations of the system and then subsequently reducing the symmetry of this
system, one is able to create via anticrossings multiple spectral gaps into an
otherwise homogeneous plate.

7.4.3 Nonlocality: The Effect of the Lattice and its
Interactions

The eigenmodes of the AS, be it a phononic crystal or slab, must obey the discrete
symmetries of the space/plane group of the crystal and only adopt the permitted
irreducible representations which correspond to the isotropy group of the relevant
wave vector [36]. This can be summarized as a consequence of the discrete sym-
metry invariance of the physical system and the adherence of the eigenmodes
solutions to adopt the corresponding irreducible representations. From a less
physical and more abstract perspective, the presence of a symmetry group that an
AS possesses mathematically partitions, for a particular problem such as elastic
wave, or electromagnetic wave propagation, the solutions into invariant and
orthogonal sub-spaces; this is a consequence of Schur’s second Lemma [38], which
states that different irreducible representations are orthogonal. Avoided crossings
may be said to be meso-scale as well as nonlocal. It occurs at all length scales, i.e.
the process is meso-scale as we have made no approximations in the calculation of
the spatial dispersion. Our pedagogical examples have demonstrated the same
phenomenon from the simplest possible finite system, to an infinite lattice; in both
cases, the avoided crossing was clearly identified to occur due to the irreducible
representations. It is also nonlocal, i.e. its behaviour depends on the wave vector
vis-a-vis the relevant isotropy groups and the formation of spectral gaps in finite
plates and infinite phononic crystals are treated on the same footing. Hence, it
automatically incorporates the nonlocality in the system, if present. It acknowledges
all the forms of symmetries that will lead to interaction, regardless of the length
scale, the specific type of symmetries, translational, point or time reversal, etc.
Physically we understand that the strength of the spatial dispersion depends
strongly on the nonlocality of the medium to the wave propagation; i.e. E(k, w),
where E is the response function of interest. This spatial dispersion is in turn
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inherently linked to the interaction length scales between the wave, and the geo-
metrical structures of the medium. For example, a linear dispersion relation implies
that the medium is interacting with the wave independently of the length scales
involved. At the other extreme, when the dispersion relation becomes independent
of the wavelength, this implies that the wave is spatially localized, and has flat or
zero dispersion. This is the extreme case of dispersion whereby any form of
propagating extended state is not supported. Bands in the system typically lie
between these two extremes and it seems an intractable task to be able to control
how much dispersion occurs in a general system that has dimension n > 1.
Analytically, one might apply perturbation theory to specific points where the
interaction has occurred and hope to be able to capture the subsequent dispersion
which occurs; this becomes a question of keeping the correct terms in the pertur-
bation of the system [39]. The crucial question for one to actually ask is then, what
is causing the perturbation in some general position in k-space? The answer to this
lies in the symmetry of the bands because the symmetries must persist across
multiple length scales (e.g. an entire band) and automatically keeps track of all the
interactions, automatically manifesting itself through the final calculation. As we
alluded to earlier, the occurrence of an interaction or avoided crossing depends on
the irreducible representations.

By applying this concept of irreducible representations to such a classical
problem, one finds that one is able to explain the behaviour of the band dispersions
without tracing the k-evolution algebraically or microscopically. In fact, from an
algebraic standpoint, the fact that this avoided crossing occurs may have itself been
obscured. One chose to revisit this classical problem because of two factors, one
that it has the simplest group, consisting of only the two element group {E, m}.
Furthermore, it is a bounded system, i.e. it has a finite dimension. These two factors
help illustrate the generality of the approach of an avoided crossing, particularly in
illustrating that one may treat the entire system, including both the bulk as well as
the boundaries within the same system. At the same time, the low symmetry group
of this particular system helps make the irreducible representations nearly trivial
and tractable. One now wishes to do better and aim to induce multiple complete
spectral gaps within this Lamb plate, not just a single spectral gap. One notices that
none of the bands in this structure ever cross, i.e. all the bands have undergone
avoided crossings. This is incidentally the first demonstration of multiple spectral
gaps in a structured slab, yet the underlying principle behind this design is
exceedingly simple and quite amenable to fabrication. By recognizing that the
original Lamb plate possessed two orthogonal sets of solutions, one now proceeds
to reduce the irreducible representations to a single one along the—X direction, that
of only the trivial identity, i.e. one removes the mirror plane in the original Lamb
plate. This structuring of the two boundaries explicitly breaks the mirror symmetry,
resulting in only one class of solutions remaining for the eigenmodes. Clearly, both
these modes do not possess any mirror (anti)symmetry, both modes have the
identity (trivial) irreducible representation hence avoided crossing occurs between
them.
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One recognizes here once again that the underlying principle behind the sepa-
ration of the two sets of modes governing the dispersion in the original Lamb plate
originated from the symmetry of the system. Hence, one physically enhances the
interaction between bands by changing mathematically the character of the bands in
the dispersion, i.e. one is utilizing an underlying global principle of reducing all the
irreducible representations to be only of the trivial identity representation.
Physically, this amounts to controlling the interactions such that the only allowed
eigenmodes obey the boundary conditions, which are anti-symmetric about the
centre of the plate. One notes there that while along FX, the only allowed irre-
ducible representations are the trivial identity representations, this is not true at
r. One showed here, through the classical Lamb plate problem, that by correctly
identifying the fundamental origins behind the eigenmodes of the system, that one
is able to design quite novel changes to the system by altering the fundamental
solutions themselves. In this particular instance, simply identifying the irreducible
representations of the system and then subsequently reducing the symmetry of this
system, one was able to create via anticrossings multiple spectral gaps into an
otherwise homogeneous plate.

7.4.4 Nonlocality: The Effect of the Lattice and its
Interactions

The eigenmodes of the AS, be it a phononic crystal or slab, must obey the discrete
symmetries of the space/plane group of the crystal and only adopt the permitted
irreducible representations which correspond to the isotropy group of the relevant
wave vector [37]. This can be summarized as a consequence of the discrete sym-
metry invariance of the physical system and the adherence of the eigenmodes
solutions to adopt the corresponding irreducible representations. From a less
physical and more abstract perspective, the presence of a symmetry group that an
AS possesses mathematically partitions, for a particular problem such as elastic
wave, or electromagnetic wave propagation, the solutions into invariant and
orthogonal sub-spaces; this is a consequence of Schur’s second Lemma [38], which
states that different irreducible representations are orthogonal. Avoided crossings
may be said to be meso-scale as well as nonlocal. It occurs at all length scales, i.e.
the process is meso-scale as one has made no approximations in the calculation of
the spatial dispersion. The pedagogical examples have demonstrated the same
phenomenon from the simplest possible finite system, to an infinite lattice; in both
cases, the avoided crossing was clearly identified to occur due to the irreducible
representations. It is also nonlocal, i.e. its behaviour depends on the wave vector
vis-a-vis the relevant isotropy groups and the formation of spectral gaps in finite
plates and infinite phononic crystals are treated on the same footing. Hence, it
automatically incorporates the nonlocality in the system, if present. It acknowledges
all the forms of symmetries that will lead to interaction, regardless of the length
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scale, the specific type of symmetries, translational, point or time reversal, etc.
Physically one understands that the strength of the spatial dispersion depends
strongly on the nonlocality of the medium to the wave propagation; i.e. E(k, w),
where E is the response function of interest. This spatial dispersion is in turn
inherently linked to the interaction length scales between the wave, and the geo-
metrical structures of the medium. For example, a linear dispersion relation implies
that the medium is interacting with the wave independently of the length scales
involved. At the other extreme, when the dispersion relation becomes independent
of the wavelength, this implies that the wave is spatially localized, and has flat or
zero dispersion. This is the extreme case of dispersion whereby any form of
propagating extended state is not supported. Bands in the system typically lie
between these two extremes and it seems an intractable task to be able to control
how much dispersion occurs in a general system that has dimension n > 1.
Analytically, one might apply perturbation theory to specific points where the
interaction has occurred and hope to be able to capture the subsequent dispersion
which occurs; this becomes a question of keeping the correct terms in the pertur-
bation of the system [5]. The crucial question for one to actually ask is then, what is
causing the perturbation in some general position in k-space? The answer to this lies
in the symmetry of the bands because the symmetries must persist across multiple
length scales (e.g. an entire band) and automatically keeps track of all the inter-
actions, automatically manifesting itself through the final calculation.

As one alluded to earlier, the occurrence of an interaction or avoided crossing
depends on the irreducible representations; this already implies the nonlocality of
the propagation behaviour in the medium. In fact, it is actually the degree of
nonlocality that is affected by the geometry and the contrast between the material
constants of the different constituents. The nonlocality in the medium is extremely
important because it influences the strength of the interactions between bands, and
therefore naturally controls the group velocity along the bands, i.e. the curvature
and dispersion of the bands. This latter fact has been often overlooked. Indeed, in
the pioneering work of the locally resonant sonic (LSR) crystal [31], the nonlocality
of the medium was not mentioned, primarily due to the focus by the authors on
large elastic contrast between the constituents employed, which made the structure
behave in the weakly nonlocal limit. In Liu’s work, the originality arises from the
“local” nature of the spectral gap opening mechanism, which was distinct from the
common Bragg-type mechanism. However, in actuality, both mechanisms for gap
formation are strictly avoided crossings, albeit at different k vectors and the pres-
ence of the lattice itself implied that the mechanism was not local, but only weakly
nonlocal. The point which one wishes to emphasize here is that the mechanism of
spectral gap opening is strictly nonlocal in the presence of the lattice. It is the degree
of nonlocality which is affected by specific material choices. One next shows,
through a series of very simple models, the clear influence of the lattice on the
dispersion relations by utilizing the same building block and then introducing
nonlocality via tuning of only one of the material phases. In all of these lattices, one
retains the material choices of the solid scatterer (E = 40 GPa, v = 0.3,
p = 4000 kg m−3) and the matrix (E = 4 GPa, v = 0.17, p = 1300 kg m−3), and
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vary only the connecting—phase. One notes here that one has continuously tuned
the LRS structure, from a classical phononic crystal into a resonant LRS by tuning
only one of the material phases (i.e., 1). One minor point of note is that even in (d),
our 1-phase is still three orders of magnitude stiffer than that in the original work
[31], yet it has reproduced the same qualitative band structure. Hence, the perceived
“local” mechanism was actually a result of the strength of a material perturbation on
the nonlocality and not a distinct mechanism by itself. In fact, one may notice that
the very statement of a local mechanism is wrong, since the avoided crossing has
occurred at nonzero wave vector. Furthermore, by examining the eigenmodes, one
recognizes that the irreducible representations of the bands are different, as the
isotropy groups are also different. The irreducible representations of the eigenmodes
once again emphasize the nonlocal nature of the spectral gap openings.

7.4.5 Local Principles: The Variational Principle
from a Geometric Viewpoint

One has shown that one is able to control the extent of nonlocality both through a
choice of materials, and the symmetries governing the system vis-a-vis avoided
crossings. These principles have thus far been global in nature, i.e. they apply to all
structures that fulfil a particular choice of space or plane group symmetry. One has
utilized the materials choices to only tune the extent of the nonlocality, but not
(i) the strength of the interactions in the spectral gap, (ii) the positions of the bands,
i.e. their eigenfrequencies and (iii) the evolution of the bands across k-space. In the
design of a phononic crystal, one usually considers the scattering strength of the
scattering phase, the mechanical contrasts between the different material phases and
the fill fraction. However, these design factors neither recognize the actual role of
avoided crossings nor the lattice (nonlocality), which one has shown to be crucial
for spectral gap formation. For example, while sub-wavelength and Bragg gaps are
readily identified to originate from avoided crossings in our network, this under-
lying similarity is not so clear from the microscopic viewpoints of resonant tun-
nelling or Bragg scattering, respectively. Furthermore, these two microscopic
mechanisms are strictly tractable only in isolated or simpler systems or lower
dimensionality, i.e. structures with no long range order (resonant tunnelling) or
simple one-dimensional lattices (Bragg scattering). There is a need as well for
developing a general principle that governs the eigenfrequency distribution and
hence the ability to treat the energetics involved in scattering and in tunnelling
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equivalently. The variational perspective provides a natural approach with regard to
the symmetries of the eigenmodes and their eigenfrequencies. In fact, most equa-
tions of motion can be converted into a variational form, in a method analogous to
how we converted an E.O.M in a conservation equation in Sect. 7.3. The funda-
mental governing idea is that in the variational method, one formulates a relevant
energy functional, E{u(r, t), ut(r, t), ur(r, t), r, t}, before projecting out each
eigenmode, /uk [ and its eigenfrequency, k. A simple example of this is to
examine a freely vibrating acoustic sphere. The eigenmodes, in ascending order of
eigenfrequencies, are the fully radial breathing mode, followed by an m-fold
degenerate set of dipolar modes, etc. From a physical perspective, one may rec-
ognize that the eigenfrequencies increase with the number of nodes in the eigen-
mode profiles. This is linked to the exact form of the energy functional, which
contains first-order spatial derivatives in the displacements; hence, the presence of
increasing number of nodes increases the energies and hence the associated
eigenfrequencies. While simplistic, this example of an acoustic sphere is actually
quite representative of the variational method and the subsequent eigenmodes
which it yields. One next illustrates this design principle and focuses on developing
physical intuition. One first discusses the issue of design of the geometric structure
in order to optimize a particular avoided crossing interaction.

By considering the problem from a variational perspective, one accounts
simultaneously for all the microscopic processes that lead to the final evolution of
the eigenfrequencies and all that one has to focus on is the eigenfrequency place-
ment of each mode by considering the terms in the strain energy functional and the
allowed irreducible representations in each k direction.

The above discussion demonstrated how one would apply variational principles
based on the symmetry of the system; it turned out that this particular geometrical
optimization process is equivalent to enhancing the Bragg-scattering process (in a
phononic structure) to increase the size of the spectral gap. Our final principle is that
of the global principle of utilizing group theory and the theory of representations
[36]. While the concept of irreducible representations has been utilized in all our
discussions and one did motivate the concept of irreducible representations from a
simple uniaxial system, one did not address their relation to the entire band structure
and dependence on the particular choice of the plane/space group. The choice of the
global symmetry dictates the possibilities and bounds possible for a band structure;
this will be the final development we shall undertake here The variational method,
together with the avoided crossing, covers most possibilities for designing most of
the major features in band structure, such as the formation of a spectral gap, one of
the main interests in the phononics community. By complementing these local
principles with the global symmetry principle, which governs the evolution of the
dispersion bands in momentum space, one will be able to truly mould the dispersion
relations to create the desired propagation behaviour, or spectral gap.
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7.4.6 Groups and Representations: Nonsymmorphicity
and Wyckoff Positioning

One now discusses the global design principle, which pertains to the group sym-
metry and its representations. Group symmetry is global because it controls the
likelihood for interactions (avoided crossings) and determines the character of each
eigenmode vis-a-vis their irreducible representations [36, 38]. Unfortunately, it has
been used mainly as an analysis tool [36] and not so much as a design principle; in
reality the two are equivalent, merely reversed in causality. It is no surprise then that
group theory may be used as the underlying foundation as well as the language for
our generalized design framework. In this section, we focus on two uncommon
facts in group theory in its applications to solid state physics: (1) the concept of
factor groups in plane groups, and specifically, the dressing of Wyckoff positions to
modify the band structure of phononic metamaterials, and (2) the global properties
of nonsymmorphic groups and specifically, the special property that they impart
band sticking along certain directions along BZ boundaries/edges.

7.4.6.1 Translation Subgroups and Wyckoff Positions

It has been commonly conjectured that large optimal spectral gaps will be favoured
in structures possessing the smallest irreducible Brillouin zones (IRBZ). The rea-
soning behind this was a direct extension of Bragg scattering from one dimension to
greater than one dimension. This usually implied high symmetry plane groups, such
as hexagonal plane groups (p6mm) as candidate space groups. However, this needs
not be the case, and recent works have suggested that certain lower symmetry plane
groups, such as a honeycomb-like lattice with a two-’atom’ basis (p3m1) has a
slightly larger spectral gap than the corresponding parent p6mm lattice. This dis-
cord originates from a lack of understanding of what the symmetries of a plane
group actually impart upon an artificial structure (AS). The AS structures, chosen
with a certain plane/space group may be regarded as having broken the symmetry
from an initial structure which is isotropic at all length scales. Naturally, these
eigenmodes, which reflect this broken symmetry, necessarily adopts the irreducible
representations that result from this lower symmetry plane group. This is exactly
analogous to how transverse and longitudinal modes are borne out of an elastically
isotropic and homogeneous medium. Mathematically, when one says that an AS
possesses a certain symmetry group, it implies that all functions (susceptibilities,
fields such as displacements, etc.), have to conform to this set of symmetry oper-
ations. To summarize, the symmetry group which the AS possesses, be it spatial,
spatiotemporal, or others, controls the nature of the eigenmodes, especially their
vector polarization states vis-a-vis the irreducible representations. All forms of
interactions, propagations and motions in the AS are governed by the symmetry
group; the most classical examples of these include the selection rules in Raman
and Brillouin inelastic scattering. Now one makes the explicit connection between
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our earlier use of irreducible representations concretely from its induction from
broken symmetry and an explicit space group. As the irreducible representations
govern the vector polarization states of each eigenmodes, they also determine the
absence/presence of avoided crossings which are crucial in spectral gap formation.
Avoided crossings are only allowed between eigenmodes with identical irreducible
representations. One also understands that along with a particular direction in k-
space, the irreducible representations are determined by the isotropy group and not
the entire point symmetry group. One now proceeds to develop the role of point
group symmetry in controlling the band structure. One reminds that a plane or space
group is actually an infinite (countable) group, because the translation operations
are infinite. For symmorphic groups, i.e. groups that do not possess glide lines (in
2D) or glide planes or screw axes (in 3D) as primary group generators, the group of
translations is actually a normal subgroup of the entire plane/space group. This
implies that one only needs to deal with the relevant factor group, given by:

F ¼ G=H ð7:23Þ

G is entire symmetry group, H is the translation subgroup, F is commonly
known as the Factor Group/Quotient Group.

One outlined here the mathematical framework of group theory, which estab-
lished the global principles governing the possibilities of the band dispersion
relation. In addition, representation theory of the groups allowed the classification
of eigenmodes into their irreducible representations. By identifying all spectral gap
opening processes as avoided crossings and adopting a variational like approach,
we are able to rationally control and design various features of the band structure.
Most notably, one is able to augment spectral gaps and generalize various design
principles within the same framework, utilizing the language of symmetry and
conservation. One next discusses the actual dynamics of phonon propagation in
these AS, which deals with the actual propagation behaviour of phonons in these
AS. It will turn out that the dynamics of phonon propagation actually address the
question of matching the optimal physical topology of a structure, as well as choice
of materials, etc., for a particular phononic application.

7.4.7 Classifications of Lattices: Physical Topology
of Phononic Structures

7.4.7.1 Introductory Remarks

We examine the unanswered question of the choice of the physical topology of a
phononic structure to achieve desired phonon propagation properties. To date, there
is no framework which is general, i.e. does not rely on some specific geometry of
the scatterers within the artificial structure (AS), and is capable of treating different
types of fields, both vector (electromagnetic, elastic, etc.) and scalar (acoustic) in a
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coherent fashion. Current approaches suffer from their specificity to certain types of
geometrical structures, either due to some particular choice of calculation methods
[30], or utilizing physical models which are not transitive between fields possessing
different polarization degrees of freedom. In general, one might consider the con-
trast in elastic constants, mass density, longitudinal and transverse velocities as
possible parameters for controlling the size of the spectral gaps. However, there is
neither a clear trend nor rational principle guiding the theoretical works, often
leading to frustrations in attempting to elucidate a coherent principle to guide
selection of the optimal topology for a particular structure for phononics, photonics
or any wave in general. We argue here that this is due to several reasons. First of all,
not all the above-mentioned parameters are independent; velocities are, strictly
speaking, deduced values from the set of elastic constants and only hold for “ho-
mogeneous” media or for the inhomogeneous system in the geometric (short
wavelength) limit. In isotropic media (at continuum length scales), the two inde-
pendent elastic constants, along with the mass density determine the longitudinal
and transverse velocities and this is only strictly true in the homogeneous limit or
geometric limit for inhomogeneous systems (within each of the homogeneous
component materials). In considering phonon propagation at length scales where
the phonon wavelengths are on the order of the structure or the material inhomo-
geneity, one needs to recognize that wave velocities are highly dependent on the
details of the AS. The homogeneous phonon velocities are physically meaningful
only for two situations:(1) in the long wavelength limit (X � a) where the phonon
samples no perturbation in the structure, or (2) in the geometrical limit
(X � a) where the wavelength of the phonon is so short that one may physically
consider it as a particle and hence one may associate a “particle” velocity with it
within each homogeneous phase. At the intermediate length scales (X * a),
commonly known as the scattering/diffraction regime, which is of primary interest,
one needs to consider not just the velocity, elastic constants or mass densities
separately, but instead the generalized energy flux at any interface, together with its
physical wavelength, which depends on the local refractive index. In this situation,
the detailed structure becomes crucial, due to proximity in the length scales between
the phonon wavelength and the structure! Recalling that one may deduce the rel-
evant wave equation from the original momentum continuity equation, the con-
servation of linear momentum is assured for all length scales. This is the motivation
for insisting on utilizing the conservation as the starting point of our discussion and
development of the design framework. One now shows that doing so makes the
final developments to the framework totally transparent. In a linearly isotropic solid,
the 3 elastic constants (two Lamé coefficients with twofold degeneracy in the shear
component) lead in general to 3 Goldstone modes and hence three polarizational
degrees of freedom. The flux of phonons through a region depends on their nature,
i.e. the vector and scalar nature of the fields lead to disparate behaviour in their
propagation and it is this distinction that holds the starting point for elucidating the
underlying design principles governing the choice of the optimal physical topology
for phononic and acoustic structures! It will turn out that by only considering the
“dynamic impedance” at an interface between two media, one is able to develop a
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concept of a “dynamical mechanical bond” to classify the nature of phonon
propagation in various AS comprised of different materials in a general fashion.
This leads to a classification scheme for phononic structures based on the spatial
extent or degree of spatial (de)localization of the phonon eigenmodes. Structures
are subsequently grouped between two bounding lattice classes, depending on the
mechanical bond type. One will refer to these as the extended and tight-binding
lattice (TBL) classes. This lattice class classification allows one to select target
structure designs that achieve different phononic properties, from large spectral
gaps, negative refraction bands with both isotropic and superprism type effects. In
particular, we shall demonstrate large complete spectral gaps, indeed the largest
ever reported in the literature, in both classes of structures as well as controllably
induce negative refraction bands which are polarization specific. To be “complete”,
one examines the typical solid-solid AS lattice classes before one deals with the
solid-air AS lattice class, which is advantageous due to fabrication considerations.
Despite a critical difference between the two types of structures (solid–solid vs.
solid–air/vacuum), the classification still holds true under an appropriate transfor-
mation. For the rest of the section, one develops some structures possessing various
unique phononic properties. The necessary criteria for achieving various properties
are discussed for various constraints on materials choice, and the particular type of
application. Finally, one chooses to demonstrate this with two distinct phononic
AS, belonging, approximately speaking, to the two ends of our lattice classification
spectrum. One modifies these structures in an entirely coherent way, utilizing only
the fundamental tools and framework which one has built up over the previous few
sections to show that indeed, this method of classification and framework devel-
oped enables an entirely rational method of designing a phononic structure.

7.4.7.2 The Dynamical Mechanical Bond

One emphasized the role which the normalized wavelength ratio (X/a) plays in
understanding phonon propagation. One has mentioned geometric and material
inhomogeneity, the former deals with the situation that the structure plays a role
vis-a-vis the boundaries; the latter is the more familiar case which we shall discuss
shortly. The former, one has earlier mentioned is of second order importance as it
deals with the exact geometry of scatterers in optimizing a specific functionality.
There are, however, intrinsic characteristics inherited by the phonon transport with
certain topological features of the phases. This naturally leads to the concept of the
matrix and the scatterer phase. One differs here from the ad hoc usage of the
network vs cermet topology for the following reasons. This analogy was borrowed
from the earlier photonic crystals work where one phase is always air; hence, there
is no ambiguity present in defining the nonair phase as either a disconnected
(cermet) or connected (network) phase. In the case of phononic crystals though,
there is no standard reference material phase, where the velocity is highest (as in
light/vacuum–air); hence, the naming of a cermet or network phase is further
convolved by assumptions about the “scattering” abilities of each material phase.
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Using this new methodology of naming, the cermet and the network topology is
classified according to the impedance contrast between the matrix and the dis-
connected phase, with the definition of the two components only dependent on the
physical topography of the phases, and not their constituent material properties.
This separates the actual physical network topography from the intrinsic material
parameters, which is a crucial distinction because in this situation; we do not make
any a priori distinction on the type of transport based on the intrinsic material
parameters alone because the actual problem involves considering both the physical
topography and the material impedance contrasts before the dominant mechanism
of phonon transport can be deduced, vis-a-vis the mechanical bond. Hence, this
method prevents one from making any invalid assumptions on phonon transport
before trying to proceed to create optimal phononic structures for certain types of
propagation behaviour. In fact, this methodology and approach greatly extends the
framework for choosing an optimal physical topography for a particular phononic
structure for desired transport properties and is not limited to just spectral gaps, but
is appropriate more for properties such as negative refraction or slow modes, i.e. all
aspects of phonon transport. The fundamental framework which one developed
emphasized the need to recognize the correct length scales and the role of nonlo-
cality of the eigenmodes that result from either the symmetry of the structural
design and from material choices. Now we address the complementary problem,
that is, how does the physical topography of the structure affect its dispersion
relations? Previous works have focused attention onto the choice of topographies
that favoured the appearance of complete spectral gaps [41]. However, from the
concepts developed of avoided crossing as the primary underlying mechanism for
creating spectral gaps, as well as the relations between the space/plane group
symmetries and the probabilities of optimizing a complete gap, it suggests that one
would be able to create complete spectral gaps in structures with different
topographies, both cermet and network type While this is indeed the case, the
physical topography choice for the structure possesses a tremendously more fun-
damental significance. It controls the dynamics of phonon propagation, i.e. the
actual propagation and group velocities of the eigenmodes. This has tremendous
importance in determining the optimal lattice classes for phonon propagation, such
as negative refraction and slow modes.

In previous works, the physical topography of the structure was only considered
in dealing with the possibilities of opening a complete spectral gap, i.e. only within
a specific normalized frequency range, which one associates readily with either the
Bragg-scattering regime or the resonant tunnelling regime. This viewpoint suffers
from several drawbacks, including the (now clarified) point that observed gap sizes
are not necessary correlated with the particular bands bounding them and indeed
may have nothing very much to do with those hypothesized scattering mechanisms
supposedly accounting for the presence of the gaps! Physical topography of the
structure affects the propagation behaviour at all length scales. It is the length scale,
i.e. the wavelength of the phonon with respect to the physical structure that
determines the scattering (type), and hence propagation behaviour of the phonon in
the different regimes. This implies that the eigenmodes of the phonon at some wave
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vector k, takes on different displacement profiles with different frequencies. This
displacement profile, or eigenvector, depends on the choice of the physical
topography vis-a-vis the actual material constants and the physical geometrical
interfaces and boundary/interface conditions, i.e. both the material and the geo-
metrical structure. This eigenvector physically represents the trajectory of the
phonon at some (w, k) within each unit cell; this is clear if we consider this from a
variational viewpoint, where each eigenvector can be mapped to an irreducible
representation that physically represents the trajectory of a phonon through each
unit cell, showing how the energy propagates through the structure. The eigenvector
represents the dynamics of the phonon propagation that is manifested through the
slopes (linearized group velocity) and the curvature of the bands (group velocity
dispersion). The variational viewpoint develops the physical concept of our
dynamical mechanical bond, by considering the spatial (de)localization of the
profile of the eigenmode. From a mathematical standpoint, a variational formulation
[3] induces mathematically, for every eigenvalue problem corresponding pairs of
eigenvalues and eigenvectors, from an energy minimizing perspective. Physically,
each eigenvector corresponds to a normal mode, i.e. the displacement field profile
of a phonon mode, at some (w, k) of the dispersion relation w(k). In all of these
cases, one defines the matrix phase as the connected phase, and the scatterers as the
disconnected components. The displacement field provides information on the
dynamics of phonon propagation at each (w, k): one sees the phonon propagating
within the structured medium and taking on either a delocalized strain field spread
throughout the matrix, or possessing a more localized strain field, for example being
concentrated between scatterers along its trajectory. Of course, there can be some
modes that are hybrid in between these two extreme regimes. These two situations
are reminiscent of electronic structure and chemical bonding, with the delocalized,
or “metallic-like” bond, and the localized, or directional “covalent-like” bond only
now we are dealing with a dynamic situation where the nature of the bonds is
reflected in the “dynamic” phonon eigenmodes which represent the dynamics of
phonon energy propagation in the medium. Let us give a physical interpretation of
the dynamic mechanical bond which links directly to the familiar scattering and
hopping mechanisms. Each eigenmode determines the corresponding dynamics, or
type of “mechanical bond “at each (w, k); the dynamics varies depending on the
particular phonon wavelength versus the length scale of the structure. This length
scale ratio affects the scattering cross section as the phonon propagates through the
structure. While, the (an)isotropy of this scattering cross section certainly depends
on the scattering resonance profiles of the scattering components and hence their
actual geometric shape, this is of secondary importance compared to the dynamic
impedance, which determines the nature of the mechanical bond. For phononic
structures, the nature of the bond is exhibited most clearly by the dispersion of the
particular band in question. An extended “metallic-like” bond exhibits a somewhat
more linear dispersion, indicative of its spatially delocalized nature (this is distinct
from the nonlocality discussed previously). Microscopically, this indicates that
phonon energy transport is favoured primarily through the matrix, with appreciable
strong perturbations occurring only at specific frequencies due to the resonant
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scattering of the particular scatterers. This situation is what we classify as the
extended lattices (EL). Subsequently, a typical characteristic of this class of lattice
structure is that the dispersion of the bands is typically linear with only strong
perturbations of the bands due to band–band interactions at certain positions; these
are where the spectral gaps typically (but not always!) form. Next, the geometry of
the scatterers comes into play. Their arrangements in the structure, and the resultant
point group and little group symmetries determine the anisotropy of the spectral
gaps, negative refractive bands, etc. At the other extreme, we have the localized,
“directional” bond; we classify these structures as TBLs. The dispersion shapes of
the bands in TBL structures are typically flatter, indicative that the transport of
energy typically occurs along directed/localized trajectories between scatterers in
direct contrast to energy transport in modes that are delocalized in the extended
lattice. In TBL lattices, the strategy for designing optimal structures is somewhat
different and more flexible, in the sense that the dispersion relations can be tuned
more readily from local changes in the geometric structure. In TBL, the local point
symmetries of the scatterers as well as their physical connectivity, either through the
matrix or through connected architectures of the scatterers. These two considera-
tions effectively control the dispersion of the band structure of the material, as we
shall show later in the chapter. Viewed in this classification scheme, one may now
understand that structures of different physical topology exhibit different types of
dynamic phonon propagation behaviour; two of these examples include the EL
case, where mostly extended wave propagation with resonant scatterings of the
entire structure at certain spatial correlations, this is commonly associated with
Bragg scattering. The second TBL case, involves mostly localized, hopping mode
wave propagation among scatterers, i.e. resonant tunnelling mechanisms with
individual resonant scattering. These regimes can be continuously spanned from
one to the other by appropriate changes to the structure. For example, a periodic
structure which has some spatial disorder, or as a trivial example, taking the
wavelength asymptotically to infinity (all extended) for a system which is initially
tight-binding. The question concerns what metric do we use as the measure for the
dynamic mechanical bond? First, one notes that this description depends on the
matching or not matching the number of polarizations between the two (or more
phases) present. Thus for solid–solid structures, the dynamic mechanical bond can
be defined generally regardless of the detail of the geometric structure, as long as
the matrix and scatter phase has been defined. Solid–air structures provide a dif-
ferent situation for two reasons: (1) the number of polarizations differs across the
solid–air boundary; hence, the definition of the dynamical mechanical bond is not
as straightforward, and (2) the elastic contrasts of solid and air is so large that one
may model the solid–air interface as a free surface [2, 4] for propagation in the
solid. In this situation, the type of physical topology is transformed into the physical
geometrical structure. However, this classification of the lattice type, now based on
the actual geometric topography, is once again valid. This method of classification
has been separately verified with Painter’s work on opto-mechanical slabs, although
it was not recognized that their studied structures were only one part of the larger
classification scheme. We now return back to the issue at hand. The key need now
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is to decide which metric to use. This choice is related to the contrast between the
elastic constants and mass densities. The details of phonon propagation within an
inhomogeneous medium depend on a multitude of factors, listed previously in the
framework. However, in previous sections, one did not consider the dynamics of
phonon transport nor how the choice of the component, i.e. and how the material
choices affect the propagation behaviour. This is crucial as this offers us the ability
and insight to guide phononic structural design. The metric in this case is the
impedance contrast between the matrix and the scatterer phases; with the impedance
is given by Z′ = pv′, where i depends on the particular polarization being consid-
ered. The concept of the impedance turns out to be quite fundamental and together
with the refractive index, forms an alternate set of dynamic variables, conjugate to
that of the elastic constants and mass density [32, 40]. Hence, the choice of which
pair of dynamic variables to use then depends on the particular problem one is
concerned with. Recalling the equations of the conservation of linear momentum, as
well as the values of the reflection and transmission coefficients at a flat interface
between two media [34], one finds that the fundamental quantity of interest is that
of the flux of a generalized linear momentum, expressed naively as pv. The
dynamical bond concept applies equally well in structures consisting of two solid
phases, solid–fluid phases as well as solid–air phases, with the proviso that we have
to adjust the corresponding terms in the continuity equation to account for the
changes in the polarization degrees of freedom. The utility of the concept of the
dynamic mechanical bond lies in its general applicability. The reason is the fol-
lowing: the relevant phases (matrix and scatterers), and their roles are determined
by the dynamic impedance, and hence, the dynamic impedance contrasts, which
one defines as: DZ = Zmatrix − Zscatterer: The dynamic impedance contrast auto-
matically determines the lattice class that the structure lies in. For solid–solid
structures, one demonstrates explicitly now that by simply controlling the dynamic
impedances that we may continuously tune the behaviour of a given structure from
an extended lattice to a TBL.

It is clear that to develop a physically accurate framework of the dynamic
mechanical bond, the classification scheme employed needs to be lucid and con-
sistent. To verify that it is only the impedances and the associated refractive index
which determine the dynamics of phonon propagation, we next take various
combinations of “particle (geometric limit)” velocities, densities, parameters
loosely associated with the scattering cross-sections, while maintaining the same
overall impedances in each phase to show that ultimately, it is the impedances are
the crucial parameters determining the classification.

In summary, one has shown here that it is the dynamic impedance, essentially
the linear momentum, that is the physical parameter which determines, via the
impedance contrast between the constituents, the dynamics of the phonon propa-
gation. In order to be able to rationally design a phononic structure for a particular
function, it is crucial to know the dynamics of the phonon transport partly because
the type of scattering and interactions that lead to the desired properties depends on
the very dynamics of the interactions. An important conclusion that can be drawn
from this is that the spectral gap size is then not dependent on the scattering
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mechanism directly, since the two bands bounding the gap sizes are not the two
interacting bands.

In general, the actual mechanism of the linear phonon propagation through the
medium depends on the wavelength of the phonon, the spatial correlation within the
structure, the material components. These are all coupled into the variational for-
malism, which describes the trajectory of the flux of linear momentum within the
domain, subject to all of the above constraints. The corresponding (k, |k)) pairs
automatically set for each wavelength range (eigenvalue), the corresponding tra-
jectory (eigenvector), based on the energy minimization. By deriving the elastic
wave equation from the initial continuity equations, the problem is mapped to a
variational problem. It is also this recognition that allowed us to recognize that the
physical parameter or variable, which is governing the evolution of the eigenmodes,
is actually the flux of linear momentum itself as modified by the impedance contrast
of the structure. This is exactly why from just considering the intrinsic material
parameters that one may deduce the nature of the trajectory of phonon transport and
classify the lattice types based on that. Especially, key to one’s distinction over
prior work is that one recognizes the need to decouple the material contrast issue
from the geometric structure issue; one’s assignment of the matrix and scatterer
phase is geometry dependent only, not material dependent. This assignment
depends on the connectivity of the geometric structure, with the connected phase
always being assigned as the matrix phase. Once these assignments have been
made, one hence judges the dynamics of the phonon propagation, based on the
materials parameters, which is reasonable, but only in the form of the linear
momentum flow, or the impedance because based on the variational perspective, the
momentum flux is actually the quantity being “diagonalized” or projected out into
orthogonal modes to form all the eigenmodes of the system and build up the band
structure. This is the rationale for the choice of impedance as the only physical
parameter related to the material choice.

7.4.7.3 Specialization for Solid–Air/Vacuum Structures: An Exercise
in Symmetry Breaking and the High Impedance Limit

One mentioned earlier that in the case for typical solid–air systems, that due to the
extremely high impedance contrast, for the solid matrix case one may essentially
ignore coupling to air (impedance contrast *99.994%! for silicon). In this situa-
tion, the solid matrix now forms the effective propagating medium which we are
interested in; hence, the concept of the mechanical bond needs to be recast into the
geometrical structure itself. The concept of the mechanical bond is actually more
intuitive from the structure itself, because the bonds are now actually physically
manifested through the structuring of the system.

In this series of structures, one retained the plane group symmetry but one varied
the building blocks, such that one slowly increased the size of the building block at
the (0, 0) and equivalent positions. One observes the evolution of the band structure
from having a more extended lattice character in (a), to the gradual flattening of
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bands which meet the length scales of the structures, in (b) and subsequently in the
TBL (c). In all three cases, the avoided crossings result in the formation of the
complete spectral gap from the 6th and 7th bands. What is perhaps more interesting
of note though is that the avoided crossing takes place at different k values in
(a) compared with (b) and (c), the latter pair of which take place at the Gamma
point. Without the utilization of the avoided crossing framework, it could be falsely
assumed that the gap formation is due to interactions between different pairs of
bands. In this regime, the mechanical bonds are manifested through the connections
between the building blocks geometrically, since the high impedance contrast
between the constituents indicates that mode propagation will occur essentially only
through the solid matrix phase.

From a fabrication and technological perspective, it is advantageous to be able to
design and fabricate phononic structures which only require one material, i.e. solid–
air systems. This is obviously due obviously to fabrication considerations if one has
to scale the structures down to smaller scales and is the reason why most of the
recent demonstrations of novel behaviour in phononic/acoustic crystals have been
demonstrated at larger scales (mm scale or larger). To date, there is no procedure
available to design targeted phonon transport, be it a simple acoustic wave or a
mixed mode within the solid. Hence, it was unclear whether solid-solid systems are
even necessary to obtain desired phonon propagation behaviour. Solving this puzzle
is the rationale for seeking the governing rules for the dynamics of phonon prop-
agation, as this complements our universal framework for the complete rational
design of phononic structures. Based on the previous demonstrations, one has
“abstractly” distilled our requirements for the phonon dynamics in terms of the
lattice or topography class. This provides guiding principles for applications
requiring considerations on the specific dynamic propagation of key modes, e.g.
negative refraction, slow or fast modes of propagation. By showing that this
classification can be renormalized with both the most generic solid-solid lattice
structure as well as the solid–air/vacuum structures, one is able to reduce the
dynamic requirements to a single material platform system, which is extremely
favourable from technological considerations as well as scalability. Finally, with the
correct renormalization of the lattice classes into the solid–air/vacuum cases, one is
able now to design structures with desired dynamics based mainly on geometric
considerations, not the particular choice of material combinations. This leads us to
then implement the universal design framework which will enable rational design
for almost all desired forms of phonon propagation behaviour. One now illustrates,
using structures belonging to both the EL and the TBL classes (i) structures with
polarization-specific negative refraction bands with low group velocity in a “fast”
EL system, (ii) an anisotropic structure which has a higher transverse like velocity
than longitudinal velocity and finally, (iii) a TBL structure which possesses the
largest complete spectral gap known so far (by a factor of twofold).
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7.4.7.4 Linking the Physical Topography to the Applications

The reasons for the concept of a dynamic mechanical bond are manifold. One is to
search for a simple classification parameter that highlights the role of the material
parameter, i.e. one that is physically relevant. Previous pioneering works overly
relied on the identification of different terms of a similar equation (e.g. Schrödinger
equation), resulting in inferences that are sometimes incomplete [41]. The second
reason for this method of classification of the lattice via the strength of the bond,
while borrowing from the foundations of the concepts of elementary solid state
theory, is that it is physically intuitive in allowing the researcher to choose what
kind of structures, and in which combination, to design and fabricate their structure
for a particular application, this is especially true in solid–air systems. Different
examples of desirable applications include, for example, the ability to achieve
effective negative refraction, extremely large spectral gaps, as well as to provide a
platform for studying nonlinear as well as defect interactions. One would prefer
relatively linear dispersion with negative refraction and thus it becomes highly
advantageous to have extended state like bonds, i.e. an EL structure to ensure
efficient negative refraction behaviour. At the same time, in order to produce a large
spectral gap, it is less clear which class of lattice would produce an outright superior
candidate for the champion structure. In the next section, we obtain structures with
large spectral gaps, utilizing both categories of lattices. The complete gaps we
design are much bigger than what is currently demonstrated in the literature. In this
situation, the TBL outperforms the extended lattice. However, we note there that the
common physical mechanism underlying the large spectral gap is that the resonant
mode of the geometric scatter lines up with the frequencies at which the Bloch
symmetry (Bragg resonance) is in effect.

7.4.7.5 The Extended Lattice: Rational Design of Polarization-Specific
Negative Refraction Bands

The nature of the bond between scatterers controls the character of phonon prop-
agation behaviour ranging from a delocalized, extended bond type to the localized,
tight-binding type bond, with an entire continuum of behaviour in between these
limits. Mathematically, the bond nature determines the spatial dispersion of a band,
i.e. its dependence on the wave vector; physically, this translates into the propa-
gation velocity of the eigenmodes of the structure. This is an important factor to
consider when designing a structure for a particular functionality. For example, to
design a structure that possesses a large spectral gap within some frequency region,
but otherwise quasi-linear dispersive behaviour for propagating modes, one would
likely choose a structure that belongs to the extended lattice class. On the other
hand, for a structure to possess multiple slow-group velocity modes, a TBL is
preferred. To the best of our knowledge, this classification of different structures has
not yet been recognized so the design of precious structures has not been guided nor
optimized for the particular functionality. For example, in negative refraction, what

162 7 Energy Harvesting and Phononics



has been commonly done is to pick the second band which is related to the 2nd BZ
as the negative refraction band. Depending on the band structure, one may or may
not be able to have a complete region in the entire (w, k) space with only the desired
negatively refracting bands, i.e. you might get undesired losses from mode mixing
There is not much control over the design of this propagation behaviour in this
sense. An additional complication arises from the fact that it is not always clear that
a high order band immediately implies negative refractive behaviour; one needs to
understand the details of the dynamic behaviour of the eigenmodes to be able to
verify this behaviour. To demonstrate a rational way of designing specific func-
tionality in certain dispersion bands, i.e. to truly mould phonon propagation
behaviour, we need to demonstrate that one is able to specifically insert certain
bands with characteristic propagation behaviour and to be able, as well, to control
their vector polarization. We first demonstrate this control using a 2D extended
lattice of solid/air. We opt to control the flow of phonons in their full vector nature
through the solid as opposed to structures where the solid phase forms only discrete
perturbing scatterers, and the scalar fluid is the main propagating medium. One will
first create a structure that possesses a large complete in-plane spectral gap
of *80%; it also possesses a complete spectral gap of 72%, which is larger than
what has been obtained in the literature currently, to the best of one’s knowledge.
The EL design is implemented in a square lattice that possesses the maximal (for
the square lattice) p4mm plane symmetry. By choosing to utilize only a single
monolithic material, the designs are amenable to scaling and not reliant on specific
material combinations and rely only on the specific material geometry and are thus
materials property tolerant.

Hence, the choice of topography consisting of connected cylinders is to create
the presence of multiple low group velocity modes, i.e. relatively flat bands. The
reason for this occurrence stems once again due to our introduction of topographical
cuts to link the cylinders with orthogonal channels, which allows for multiple
localized modes which serve to localize the strain energies at the free surfaces, as
shown earlier. One then chooses to geometrically induce a distortion by increasing
the “connectivity” of the structure; this intuitively leads to an increase in group
velocity in selected bands, forming our negative refracting bands; as previously
shown, the mechanical connectivity is directly related to the resultant momentum
flux and hence its spatial extent of (de)localization, which was discussed in some
detail in the earlier sections; hence, one has induced locally in space, a reinstate-
ment of the connectivity to 4 once again. These negative refracting bands are also
polarization specific, i.e. these are negatively refracting polarization bands. This
approach is different from current approaches of “producing” negatively refracting
phononic crystals, in that one first creates a structure with a large complete spectral
gap by utilizing an extended lattice structure. One then induces specific negative
refractive bands into this spectral gap by geometrically increasing the connectivity
of the structure. This maintains the size of the spectral gap while selectively
modifying the behaviour of specific bands. To be precise, one controls their dis-
persion and hence makes them negatively refracting. This ensures the formation of
a “clean” negative refracting region, since one has formed these bands in a spectral
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gap. The ability to retain polarization persistence in the bands stems as well from
the increase in connectivity of the structure while retaining specifically the point
symmetry of the structure (4 mm); this ensures that the increase in connectivity
does not lead to mode mixing, which would then destroy the polarization speci-
ficity. Intuitively, one notes that in structure (b), the transverse and longitudinal
modes “see” the same structural rigidity and hence do not mix to form new
eigenmodes.

One can visualize the physical process as follows. In (a), these flat bands were
localized modes which effectively had zero group velocity and they are formally
present due to the topology of the structure which induced the localized modes due
to the presence of the extra boundaries. One notes that in (a), the three modes were
respectively symmetric (a, c) an anti-symmetric (b) with respect to ox. However,
one notes here that in (b), by increasing the connectivity of the structure, effectively
will induce spatial dispersion to these very same modes (The interfaces for strong
localization of energy cannot be sustained), one visualizes this connectivity increase
as the inclusion of addition mechanical bonds, hence leading to coherent extended
modes. Another interesting point of note is that this connectivity causes modes 4(c)
and 6(a) to mix, forming the new modes (d) and (f) through bonding and
anti-bonding combinations. This leads to the formation of polarization persistent
negative refracting bands for transverse (anti-symmetric) and longitudinal(sym-
metric) polarization phonons. This tailored method of inducing negative refracting
bands allows for efficient coupling of incident beams into negative refracting
channels for solid elastic waves, which is something that is not trivially achieved in
considering structures with full vectorial fields. To date, there has been no rational
way of controlling the polarization persistence in solid phononic metamaterials, to
our knowledge. In fact, due to the previous lack of knowledge as to how to actually
deal with the vector phonon field that this control of polarization for individual
bands has not been attempted or was not successful.

One demonstrated here a series of principles which one applied rationally in
order to create a desired propagation behaviour. By choosing the initial topology of
four connected cylinders, one created a structure with a large spectral gap to start.
More importantly, the choice of the connected topography was to induce multiple
localized flat modes, which we will subsequently tailor. This is done by changing
the dynamics of the phonon propagation by utilizing an increase in their bond
connectivity. We recall that in solid-air systems, this connectivity shapes the bond
nature of the lattice and hence the associated propagation velocities. The net result
of this is in the creation of three negative refracting bands, of which two are
polarization-specific negative refracting bands. To date, this is the first known
rational design of polarization refractive bands in a solid phononic metamaterial.
One follows this by introducing the design of a nonresonant metamaterial which is
anisotropic in its long wavelength properties. In particular, we seemingly defy the
common knowledge of a homogeneous medium limits, by creating a structure
which has a higher transverse than longitudinal velocity along one direction but
behaves normally in the other principle direction.
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The motivation in this section was to understand the relevant physical param-
eters involved in controlling the phonon dynamics in inhomogeneous media. The
problem is interesting, in that one has to consider the physical topography of the
structure, the elastic contrasts, as well as the frequency ranges of interest; hence,
there are a lot of variables to consider. At the same time, because these variables are
frequently coupled to, there is a lack of a sense of how to rationally treat combi-
nations of these variables that makes the design transparent, and also physically
accurate. One chooses to consider the fundamental process of phonon flux through
a general structure and recognize that the linear momentum (in our system), or
impedance, is the relevant quantity of interest. In other words, given a particular
frequency, we are concerned with the resultant trajectory of a phonon flux through
the entire structure. This is essentially a variational extremization of the continuity
equation, with the momentum flux being the quantity of interest. One found that the
linear momentum/impedance serves as the relevant parameter for determining the
dynamics of the phonons, taking into account as well the physical wavelength of
the phonon in the medium. This is in contrast to other previous works, which
separately considered contrasts in elastic constants, mass density, etc., without
being able to elucidate a general guiding principle that works in all cases. In
contrast, the utilization of impedance contrast as the parameter holds valid, even
under deliberately introduced conditions with different contrasts of the elastic
constants and density. Hence, the impedance contrast is utilized as the first-order
physical parameter that determines the phonon dynamics, giving us the concept of
the mechanical bond. The assignment of a bond type to a particular structure
depends on the impedance contrast, this is strictly dependent only on the materials
involved, independent of the exact structure. The role of the physical topography
comes in determining the matrix and the scatterer phase, from where we define the
sign of the impedance contrast parameter value. In this sense, the assignment of the
“matrix” or “scatterer” phase is only dependent on the geometric structure, not the
particular set of materials. These two conditions then determine the dynamics of the
phonons vis-a-vis the mechanical bond classification, hence giving a concrete
grounding of types of material combinations and physical topography. We do not
consider how these parameters affect the spectral gap opening tendencies because
based on our general framework, this is not necessary. In a lot of the cases, the
bounds of the gaps do not relate to the particular gap opening mechanism at work,
as we have shown repeatedly throughout this and the previous sections. Instead, it is
more important to understand the dynamics which the phonons inherit based on
these parameters, hence the concept of the mechanical bond. The dynamics are
more important in controlling the subsequent desired propagation behaviour and
realistically speaking, we can create complete spectral gaps irrespectively of what
lattice class we are in. One subsequently generalizes this approach also to solid-air
structures and remapped the dynamical bond concept to rely on the geometry of the
structure instead. One demonstrated full control by designing a structure with
engineered polarization-specific negative refracting bands using a starting EL lattice
type. One subsequently also created a phononic structure, based on a TBL concept,
that possesses an in-plane spectral gap of 102% and a combined total spectral gap

7.4 Development of a Universal Design Framework: Mathematical … 165



of 88%. In the subsequent sections, one demonstrates further the combinations of
the general design framework together with the phonon dynamics consideration to
demonstrate a series of unique phononic metamaterials, utilizing only a single
material platform, some with propagation behaviour that has not been demonstrated
before nor thought possible in phononics.

7.5 Designing Dispersion Relation for Phononic
Metamaterials I: Avoided Crossings

7.5.1 Introductory Remarks

The previous chapters sought to outline the governing physical principles of clas-
sical elastodynamics (Sect. 7.3), transitioning from discrete lattice dynamics into
the continuum regime. This allowed one to view elastic waves as broken symmetry
modes, both globally, which led to the formation of the transverse and longitudinal
modes which we are familiar with, as well as the classical Rayleigh (edge) and
Stoneley (interfacial) type modes, which is derived from symmetry breaking in a
specific spatial region, analogous to surface plasmons. One took care to outline the
different scenarios pertaining to bulk systems with induced discrete translational
periodicities of different dimensionality as well as the connection of the bulk
response of a medium and its interfaces in a general context of symmetry breaking
and one was able to expound the role that group symmetry plays in tracking the
actual eigenmodes of the phonons in a structure, which associated the entire details
of each eigenmode’s polarization field as having to conform to the symmetry
representation of the mode, dictated by the little group of the respective k-vector. At
the expense of being seemingly too general, the purpose was to highlight the most
fundamental conserved quantities that are present in a dynamical process that takes
place at a general interface. This is crucial to help distinguish the governing
equations (which conserve the relevant system under which the evolution of the
phonons occur) from the constitutive relations (elastic constants coefficients, mass
density), which is somewhat more phenomenological and pertains directly to the
material system being studied. This clear distinction is necessary in order to prevent
one classification from being obfuscated with the other and subsequently, missing
potential governing principles otherwise overlooked. As one seeks governing
principles that are universal and hence are to a large extent, material system
independent, this clear distinction and isolation is very important. This led to the
development of a concrete mathematical structure (Sect. 7.4) that illustrated both
the global as well as local principles of group theoretical and variational methods in
order to control the band structure of a generic AS. It was also here where the
concept of avoided crossings in the context of spectral gap formation was first
outlined. In this section, one generalizes the requirements for the formation of
spectral gaps in both phononic “metamaterials” and “crystals” by identifying what
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are the irreducible requirements for the formation of the spectral gaps in all cases.
We will show that the fundamental requirements here, are the (i) correct plane
group symmetry, because they govern the allowed symmetry representations each
dispersion bands can adopt, as well as (ii) controlling the avoided crossing, which
leads to the spectral gap formation. One subsumes the current working knowledge
tools by identifying their physical model as one of the possibilities in the gener-
alized framework. One then illustrates how the generalized framework, by identi-
fying the necessary and sufficient guiding principles, enable us to create both
metamaterials and crystals (as defined in the current literature), using only a single
elastic material. In fact, the design framework fully utilizes and accounts auto-
matically the dispersion of the bands, i.e. their nonlocality; hence, the physical basis
for the design principle for the band structure is assumption-free. This is in contrast
to conventional working knowledge for phononic metamaterials, which is inher-
ently quasi-static in nature, and hence ignores the effect of the lattice in a cavalier
fashion. Through this process, we remove the artificial distinction between what
constitutes a phononic metamaterial and what constitutes a crystal. This is
demonstrated through two examples, the first being an AS which possess both a
complete sub-wavelength gap and a crystalline like gap, hence straddling the
metamaterial and crystal regime. Importantly, this structure was designed utilizing
only a single material platform; hence, only explicit knowledge is made use of the
plane group symmetry. The second example also builds on this theme, except that
in this instance one creates a structure which possesses meso-scale gaps, specifi-
cally a sub-wavelength gap for transverse modes and a crystalline gap for longi-
tudinal modes. We call this a meso-scale polarization-specific phononic
metamaterial. To the best of the knowledge, these are the first demonstrations of
such behaviour in phononic structures. More interestingly, these unique classes of
behaviour are achievable using only a single monolithic material platform. In
addition, these designs are largely material independent; hence, they are achievable
using a significantly wide range of materials, ranging from polymer all the way to
metals. This validates the value and utility of approaching the design of these
structures from as global a perspective as possible. One now proceeds to demon-
strate these different forms of phonon propagation behaviour, highlighting the
governing principle in each demonstration.

7.5.2 From Crystals to “Resonant” Metamaterials

7.5.2.1 Untruths

As briefly mentioned, the conventional distinction between a resonant metamaterial
and a crystal lies in the wavelength regime in which the spectral gap forms, together
with their associated negative index bands. Another inherent assumption for
metamaterials is the resonant response of the building blocks that determines the
behaviour of the material, and hence the exact arrangement, i.e. lattice class doesn’t
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matter; this is somewhat linked to an erroneous interpretation of the effective
medium approach [40], also commonly known as the locality approximation. The
typical form of a metamaterial is strongly resembling a mechanical spring model. In
these situations, typically three materials are needed, to take the role of the
mechanical mass and springs. The associated signature is that of the typical dis-
persion relation, where the interaction occurs between the resonant mode and the
“effective medium” mode, leading to the formation of a spectral gap, which is
deeply sub-wavelength. The exact position of this gap depends on the material
properties, which follows the model that the spring resonance scales inversely with
the static mass. There are a few points of note here. First is that the formation of the
spectral gap comes from the avoided crossing between the said two modes; hence,
the uniqueness of the property is linked to the building blocks and not so much the
lattice, or that is at least the conventional explanation. This is untrue and can be
regarded as somewhat over misinterpreted due to the choice of the building blocks
in this case. In the pioneering work of Liu et al. [31], their choice of the large
contrast of the mechanical spring had a much larger impedance than the coupling
rubber (the elastic constants have a ratio of *105, and an incompressible rubber);
hence, this leads to the fact that the resonances of the mechanical spring are only
weakly coupled through the lattice; we gave a two-dimensional analogue of this
system earlier where one discussed the role of nonlocality explicitly in the devel-
opment of band structures. Hence, the response is very weakly nonlocal, i.e. the
locality is a result of the material parameters choice and not a general mechanism,
as it was purported to be. The second point is that the avoided crossing is occurring
at a small, BUT still finite wave vector, which naturally implies nonlocality; this is
further reinforced by the fact that by definition, the avoided occurs between two
modes with like-symmetries, since we know that the eigenmodes can only adopt
representations belonging to the isotropy group of the particular wave vector, this
implies immediately that the eigenmodes encompass information about the lattice
lies in. This implies that in resonant metamaterials, the dispersion is nonlocal in
general [40]; any perceived locality is due to particular choices of the material
components. One should not mistake the latter for the general case, as has been
mistakenly done, for both electromagnetic and acoustic metamaterials [42]. This
was illustrated very clearly in Sect. 3.4 where we took a common canonical
structure of a 2D resonant metamaterial and plot the corresponding eigenmodes
across the avoided crossing point, at various material parameters. One sees clearly
that all the displacement fields maintain the symmetry of the isotropy group and not
that of the isolated resonances. Hence, one now formally casts the necessary
condition for opening a spectral gap, regardless of whether one is dealing with a
metamaterial or a conventional crystal, as the respective avoided crossing with the
correct symmetries. The perceived key distinction between a metamaterial and a
crystal is then the wavelength at which this avoided crossing occurs. In contrast to
conventional working knowledge, while this is common but not always so, we do
not regard the spectral gap formation of crystal to be due to the discrete translational
symmetry; there are numerous examples that show that many bounds of the spectral

168 7 Energy Harvesting and Phononics



gaps are not at the Brillouin zone boundaries [43]; hence, one subsumes the peri-
odicity as translational Bloch symmetry and as but one of the possible symmetries
that cause avoided crossings.

To summarize then, the present state-of-the-art suffers from several issues,
mostly fundamental in nature (i) what are the usual and actual constraints when
creating a spectral gap (ii) what is actually controlling the symmetry of the response
functions and (iii), what are the true requirements for a dynamic negative suscep-
tibility. Moreover, the problem of the choice of the optimal space and plane group
symmetry and the subsequent symmetry of the response actually entail more than
just the naive issue of reducing the size of the IRBZ, for both crystals The spatial
nonlocality, or wave vector dependence of the AS response is inherently present
and is meso-scale because it encompasses, in general, all the relevant length scales
in the response through the irreducible representation of a particular band.

7.5.2.2 Truth: Avoided Crossings

To remove the artificial classifications of resonant type metamaterials and the
classical phononic crystal, one recasts the concept of spectral gap formation into a
framework which is scale-invariant, i.e. does not require an intrinsic length scale to
interpret. In this sense, one may now identify phononic crystals as structures which
possess spectral gaps primarily based on avoided crossings due to the Bloch
symmetry, whereas for phononic metamaterials, spectral gaps occur due to avoided
crossings between low-lying resonance modes and the longer nonlocal linearly
dispersive bands of the medium. One thus removes the artificial distinction between
what is a crystal and what is a metamaterial and classify them all within the same
category of metamaterial from here on. Within this approach, one now identifies the
requirement of the low-lying mechanical resonance as a geometrical structuring of
the material to have low-lying resonant eigenmodes with the same irreducible
representation as the long wavelength linear modes in order to create the
sub-wavelength avoided crossing. The actual mimicking of a mechanical spring is
no longer necessary. In addition, by controlling the types of these resonances, one
can selectively induce different dynamic negative mass density, modulus, and even
shear modulus. Recalling the previous discussion one notes that because in sym-
morphic symmetry groups, one may carry out the factor group decomposition on
the infinite plane group, that for considerations of the dispersion relations, it suffices
for one to consider only the relevant isotropy group of k being considered; this is
the normal subgroup which one is interested in. Hence, reduction in point group
symmetry is not as traumatizing as was originally purported to be.

One has created a metamaterial that has two-scale complete gaps, one
sub-wavelength gap and one crystalline gap, using only a single monolithic elastic
material with a geometric perturbation that changes the “connectivity” of the
medium and lowers its symmetry utilizing the global and local variational principle
outlined in Sect. 7.4. This completely generalizes requirements for generating
sub-wavelength gaps which are “metamaterial”, and by creating both classes of
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complete spectral in-plane gaps, one has hopefully established to the reader that a
strict division between metamaterials and crystals is artificial, unnecessary and can
be counterproductive for engineering the dispersion relations for devices and
applications. It is also important to reiterate here that in the design of such a
material, that we have shown that the process of generating these gaps depends
strongly on nonlocality. In fact, in this demonstration, one utilizes the full extent of
the nonlocality in the bands, clear from their dispersion to create the resultant band
structure. This is distinct in execution from the classical method, which is based on
a locality approximation, as discussed in Sect. 7.4. Finally, one notes that in order
to create a negative index band, the initial motivation for metamaterial applications
in order to achieve negative refraction, in an elastic material, is considerably more
complicated than creating such a band in an acoustic medium; this is mathemati-
cally a classical analogue to what is known as a more general case of induced
transparency, except here we are more interested in the induced dispersion relation
than the phenomenon of tuning that transparency, i.e. we are more interested in the
formation of the bands with desired dispersion rather than the dynamics of tuning
this transparency.

7.5.3 Meso-scale Phononic Metacrystal:
Polarization-Specific Spectral Gaps

In this section, we illustrate the design process using structures that specifically
retain a square lattice and p4mm symmetry. This is complementary to Sect. 7.5.2
where one reduced the plane group symmetry in order to enforce avoided crossings.
In this approach, one induces avoided crossings by utilizing the mechanical con-
nectivity and hence variational principles to control the positions of the avoided
crossings. The first part of the work involves choosing a structure which possesses a
complete crystalline-scale spectral gap at the lattice scale, and by connecting
sub-elements of the structure to induce the formation of a metamaterial which
possesses polarization-specific spectral gaps at both the lattice scale and the
sub-wavelength scale. This topographical change involves a simple change in the
directions. which one would normally follow and hence, a reduction in the
propensity that this change preserves the 4 mm point symmetry involves a volume
fraction change from 39 to 51.5% in the connectivity of the structure along asso-
ciate with increased channels for forming complete spectral gaps.

As noted, the original parent structure possesses a complete in-plane normalized
gap width of approximately 80%. The origin of this quite large gap here can be
traced to the condition where the building block dimension in this case optimizes
the Bloch type avoided crossing process, similar to the situation described in
Sect. 7.3.

One utilized here fully the nonlocality and the dispersion of the bands, through
selective geometric perturbations, to control specifically the positioning of several
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dispersion bands in order to enforce avoided crossings, resulting in the creation of
spectral gaps in the frequency range that is desired. In the first example, we utilized
symmetry reduction in order to enforce the avoided crossing and in this situation,
we created two-scale complete spectral gaps in a deformed version of the honey-
comb lattice. Crucial to this realization was that one introduced a geometric per-
turbation that interchanged the transverse-like and longitudinal-like mode, this was
critical to enforce the avoided crossing in the desired frequency range. In the second
example, we retained the plane and point symmetry of the system but this time one
adopted the opposite approach and increased the connectivity to push the
transverse-like mode to higher velocities, this allows the avoided crossings to occur
at the sub-wavelength frequency range, in addition to the fundamental crystalline
gap, enabling us to generate the meso-scale polarization-specific spectral gaps. One
summarizes here that all these are based on the simple realization of what are the
critical components for controlling the band structure of the structure and purely by
utilizing geometric structuring; one is able to achieve quite a series of unique band
structures without any reliance on specific material properties. This is to the best of
the knowledge, the first demonstration of this general mechanism for controlling the
band structures of any periodic structure, not just for phonons.

7.6 Designing Dispersion Relations Phononic
Metamaterials II: A Polychromatic Nonsymmorphic
Phononic Crystal

7.6.1 Introduction

In this second part to the design of dispersion relations in phononic metamaterials,
one here utilizes a different approach, previously unemployed, in order to create a
nonsymmorphic phononic crystal that possesses multiple complete spectral gaps.
Instead of using avoided crossings which have been the default mechanism for
creating spectral gaps and negative index bands, one utilizes a complementary
approach from the variational perspective. In particular, one creates multiple
complete in-plane high-frequency gaps, by not making use of any avoided cross-
ings. In fact, here one makes use of both global and local principles to design such
an AS. By recognizing that the relevant eigenmodes of the phonons obey the
allowed Irreps corresponding to the isotropy group, one is able to control and treat
the vector nature of the phonons as before by only considering the global plane
group symmetry. However, instead of employing avoided crossings, here one uti-
lizes the local variational principles by shaping of the building blocks of the AS
structure; this allows one to control the eigenfrequencies at the r point. Together
with the choice of the particular TBL lattice class, one controls the evolution of the
bands in k-space, forcing them to be quasi-flat. This results in a natural two-scale
splitting of eigenfrequencies at the r point, first due to the (anti)symmetry with
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respect to a mirror plane parallel to the k-vector direction considered, and then the
(anti)symmetry with respect to the primary C4 rotation operation. Together with the
choice of the lattice class, which controls the transport dynamics, and the global
plane group symmetry, one is able to control both the positions of the eigenfre-
quencies and their evolution in k-space. This entire suite of tools, developed in
Sect. 7.4, allows one to design a phononic structure possessing multiple complete
in-plane spectral gaps (6), spanning a total normalized gap width,
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of over 100. The creation of phononic metamaterials possessing multiple complete
spectral gaps is very interesting, both from a fundamental and applications per-
spective, allowing for the study of nonlinear phonon–phonon interaction processes
[44] to development as a structural material for shaping and moulding nonlinear
waves such as solitons and shock waves [32].

7.6.2 Global Symmetry: Nonsymmorphicity and Sticking
Bands

In addition to the previous illustrations on the utilization of the generalized avoided
crossing, one hinted of the final governing principle which aids our universal
framework by linking the global constraints with the local design principles
highlighted in the previous two sections. Simply stated, it is an adiabatic pertur-
bation theory in wave vector space which has its origins in the compatibility
relations in group theory. Traditionally, this has been utilized for identifying the
irreducible representations (Irreps) in the individual bands in electronic structure
calculations. The perturbation can be fundamentally traced to a group-subgroup
decomposition of the Irreps as one progresses along a particular trajectory in k-
space, for example the Gamma Point to a generic position along the GX direction.
One remarks that this entire band can be joined and treated in this manner is not
obvious, or easily proved [45] but one is able to trace as a series of equivalence
transformations as one adiabatically varies the wave vector along some direction in
k-space. For the time being, we will accept that this procedure works well and is
well verified. The elegance of this perturbation theory is that once again, it is
scale-invariant, i.e. takes care intrinsically of the nonlocality of the bands and
inherently conforms to the symmetry requirements along the trajectory in k-space.
What one observes is the fact that this “analyticity” of the bands only sets together
with the possible connections in k-space in terms of symmetry requirements, but it
enables us still full freedom in choosing how and where in the reciprocal space do
the bands choose to evolve across. This controls, to a very large extent, how the size
of the gaps may evolve. In fact, this allows the possibility of a new paradigm in
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designing spectral gaps, for example by controlling the position of eigenfrequencies
at the Gamma point, which is local (k = O), and then controlling the evolution of
the bands across the rest of reciprocal space such that, for example, to create
polychromatic complete spectral gaps. To achieve this, one needs to control (i) the
allowed dispersion of the bands as well as (ii) their allowed energies. This is
because control over both these two features, in principle, allows us to have
unprecedented freedom and control over where the dispersion bands exist in fre-
quency, as well as their curvatures. Broadly speaking, in order to realize multiple
complete gaps in a single structure, we want to reduce the dispersion of the bands as
much as possible while at the same time create large spectral gaps, this requires
control over both the curvature as well as the spectral positions of multiple bands as
well as their evolution throughout the reciprocal space. A combination of a global
constraint and local design principle is utilized to achieve this purpose. Broadly
outlining the steps we shall undertake, the global constraint utilizes group theo-
retical principles [36] and casts the underlying mathematical structure onto the
linearized elastic wave equation; this provides a framework within which to operate
and engineer the band structure. The “local” design principle takes into account the
propagation behaviour of the classical phonon and identifies the category of geo-
metrical structure of the phononic crystal which we need in order to control the
relative placement of energy eigenvalues of the dispersion bands. One chooses to
do this, of course for the in-plane two-dimensional linearized elastic wave equation,
given by:
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q is the density k, l are the lâ me coefficients ui are the displacement
components.

The elastic wave, or phonon, possesses in general, three degrees of freedom; in
two dimensions, the in-plane polarizations (two) are coupled with the final,
out-of-plane polarization decoupled from the system, it is the former case which
one is solving for now. Surprisingly, the nature of the field which one is trying to
design, offers no more complication in the global constraint framework, once one
has properly identified their rank (i.e. vector, scalar). In general, the definition of a
transverse or longitudinal phonon loses meaning in an inhomogeneous medium and
the phonon eigenmodes possess a nontrivial displacement field with mixed polar-
ization, consisting of both transverse and longitudinal character. While the details of
the displacement field may differ greatly, depending on the normalized length scale
of the medium inhomogeneity (over the wavelength of the wave one is consider-
ing), a general rule remains: The eigenmodes will possess the relevant symmetries
of the system [37]; whether the symmetries are dynamic, static or time-varying, this
principle holds true. In phononic crystals, the eigenmodes hence must obey the
discrete symmetries of the space (3D)/plane (2D) group of the system. Group
theoretical principles have been utilized mainly as a powerful analysis tool [36]; one
here applies it as a global constraint principle. While on its own, group theory
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cannot be utilized to design a particular structure, its elegance and power lies in its
ability to cast the governing equation of a physical problem into a concrete
mathematical structure that states the possibilities the solutions may take, i.e. its
invariants; in this case, group theory is able to dictate for us the allowed possibilities
for the band structure, which is physically realized through our choice of the
symmetry group of the phononic crystal. In the design of phononic crystals, one
main challenge has been to control the dispersion of bands along general directions,
i.e. low symmetry directions; this is especially important when one wishes to
optimize complete spectral gaps. Hence, in order to create multiple complete
spectral gaps, one needs to have a way of controlling or reducing band curvatures
along these low symmetry directions. One chooses to employ band sticking, dis-
cussed earlier in Sect. 7.4, which enforces bands to exist at least as double
degenerate pairs along entire Brillouin zone (BZ) faces (3D) and edges(2D) that
typically have low symmetries. In particular, band sticking occurs in structures
possessing nonsymmorphic plane/space groups, along with certain BZ faces/
boundaries or edges.

One notes here that not all the nonsymmorphic plane groups will possess
sticking bands; the strict requirement is that along the particular BZ boundary of
interest, that there are two commuting symmetry elements with their invariant axes
perpendicular to one another; for the p4mg plane group, these are the glide planes
and twofold axes and happen to lie on the XM BZ face which we need to control.
Although initially discussed for electronic systems, band sticking is rather general
and exists for vector fields as well, since it relies only on the symmetry of the
structure. The group theoretical principle is a powerful global constraint because it
is valid regardless of the nature of the field or its dimensionality. The dispersion
bands exist solely as degenerate pairs along the XM BZ boundary at all fill fractions,
as they all maintain p4gm symmetry demonstrating that the sticking bands are a
robust signature of the plane group symmetry. Hence, the global constraint has
helped cast the wave equation with a concrete mathematical structure, bearing in
mind that all of the allowed eigenmodes conform to the symmetries of the little
group of the relevant wave vector.

It is important to note that the parameter of fill fraction is not so useful in the
actual design of a phononic crystal, or any periodic structure for that matter
although it is indeed useful from a fabrication standpoint as a practical tuning
parameter. The issues lies in the fact that it is potentially misleading when utilized
as an actual design parameter when exploring for ideal structures from a funda-
mental standpoint, i.e. what structures we should be looking at for the properties
which one wants One shall end with the remark that the crucial design parameter is
to identify the category of geometric lattice structure that is desired before con-
sidering the fill fraction of the building blocks within the correct category. This
leads us now to the local design principles which one bases on variational argu-
ments. As the purpose is to create structures with multiple complete spectral gaps,
one wishes to reduce the curvature of our bands, indeed to flatten them as much as
possible across the XM BZ boundary, if at all possible. In addition, one also needs to
be able to control the band dispersions in order to maximize the complete spectral
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gaps. This is achieved through the phononic analogue of the TBL class in the
extreme sense. By choosing solid building blocks which have very specific ani-
sotropic eigenmodes and then connecting them through weak “mechanical” bonds,
one creates bands with very small curvatures, i.e. almost flat, across the XM
boundary edges. Effectively, one has designed a lattice such that the eigenvalues are
nearly degenerate at the X and M point, which belong to two different isotropy
groups. The TBL enforces a series of constraints on the allowed frequencies and
their subsequent evolution across k-space

The final design consideration is in controlling the positions of the energy bands.
In order to achieve multiple sizeable spectral gaps requires us to control the evo-
lution of the remaining bands from the r point to the respective sticking points at the
X and M points such that the coalescing pairs of bands (from F to X or M) are
separated by smaller spectral widths, preferably between adjacent bands. This is
exactly where one is able to utilize the vector nature of the phonon to our advan-
tage. The original two degrees of freedom (DOF) (two polarization modes) have
hence been mapped into the irreducible representations of the isotropy group. From
group compatibility relations in evolving from r to X or M (C4v to C2v), we know
that the bands coalescing to the sticking point need to NOT both be either sym-
metric (A1, B1) or anti-symmetric (A2, B2) at the r point. This naturally establishes
the desired criterion for how the symmetries of the eigenmodes should be arranged
at each wave vector k. This is readily accomplished in the TBL through the choice
of making the building blocks highly anisotropic, coupled with the fact that there
are two DOF due to the vector nature, creates two orders of splitting in the energy
eigenvalues at the r point. Hence this automatically groups (A1, B2) and (A2, B1)
type bands adjacently, enabling us to finally arrive at the desired pairwise coa-
lescing from r to X and M. Note that this two-energy scale splitting method is
unique to our choice of geometrical structure in the TBL class, which is crucial to
deriving the eventual band structure and is quickly lost once we move to structures
that do not belong in this regime. Our final criterion is that one would require that
the bands remain essentially flat across the XM face as part of the design criterion to
maximize the sizes of the multiple spectral gaps; this is fulfilled with the combi-
nation of the choice of the global plane group symmetry (p4gm), the TBL lattice
and most importantly, the building blocks. The choice of p4gm, the highest sym-
metry nonsymmorphic group ensures that one only needs to match the energy
eigenvalues at the X and M points, since bands only exist pairwise degenerate along
XM. In order to ensure the persistence of the gaps, one needs to ensure that the
bands evolve from the X to the M point flat, i.e. they do not cross in the XM region.
This is distinct from sticking bands, since nonsymmorphicity merely ensures that
points at X and M are now double degenerate, it does not prevent the bands from
crossing one another along XM. To do this, one has to design accidentally
degenerate eigenmodes at the corresponding X, and M points. For the p4gm group,
the isotropy groups at both the X and M points are C2v, hence by utilizing our TBL,
the eigenfrequencies are determined strongly by the geometry of the unit cell, and
hence the building blocks. One notes also the fact that the tight-binding nature of
the lattice helps ensure the coalescence of the odd–even pairs of bands because of
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the low energy requirement in switching the displacement fields between the two
parities in the tight-binding regime.

By utilizing these two general design principles, one governing the global
properties and one governing the local wave interactions of phonons within the
structure, one demonstrates that it is indeed possible to impose controls over
spectral gaps in a rational fashion and even control the band curvature. By first
considering how the plane group symmetry of the crystal manifests itself in the
global constraints placed on the dispersion relation of the crystal, one describes
design principles for controlling the allowed evolution of the eigenmodes of the
phononic crystal, this led one to choose a p4gm plane group for our starting
structure, which ensures band sticking along low symmetry BZ edges. This global
principle determines the Irreps of each eigenmode by defining specific site sym-
metry representations via the isotropy groups along various directions in k-space,
giving a very useful and tractable handle towards controlling the eventual band
dispersion. This directed the specific approach one should exploit in controlling the
eigenfrequencies from a variational viewpoint, which was our local design prin-
ciple. Finally, building on earlier work (Sect. 7.4), one recognizes that the actual
dynamics, and hence dispersion and curvature of the bands hinges crucially on the
lattice class of the structure, hence the final choice of a TBL class completed our
design process, allow us to design a phononic crystal to have polychromatic
spectral gaps utilizing a relatively simple geometric structure. Beyond its tremen-
dous importance as an analysis tool in understanding certain selection rules in
scattering processes and to examine spin-orbit coupling processes [36], the imprint
of the symmetry of the system on the eigenmodes affords a powerful alternative to
its usage as a tool to guide design of phononic crystals, cavities and waveguides,
etc. Importantly, in this work, symmetry has allowed us to make sense of how to
most completely deal with the vectorial nature of the in-plane elastic waves/
phonons vis-a-vis our local design principles, to achieve our desired phononic
structure. While the entire design principle might seem involved, one notes there
that the salient point here is that the global symmetry principles determined the
entire framework and language in an unambiguous manner, to allow us to “mi-
croscopically”, or locally alter the dispersion relation in a coherent and controlled
fashion. Symmetry has proven here, more than in the previous section, its power as
an elegant language with which to design, not just analyse the dispersion relations
because it laid the foundations with which to apply all the subsequent design
principles which one has had to invoke to arrive the final design.

Here one developed a generalized framework for the design of Artificial
Structures (AS) that control phonons, or elastic waves. The approach here differs
from others because one focused on the fundamental physical limits of phonon
propagation in structured materials, reducing the governing principles into an
identifiable minimal set. One calls this the science of designing structures for
manipulating phonons. By focusing on the own understanding of the propagation of
phonons in structured materials, one believes that one will be able to develop a
coherent understanding of phonon propagation that is valid across the meso-scales
and is independent of the dimensionality and size of the structure. More
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importantly, one believes that the current lack of a deterministic framework with
which to guide the design of surfaces, waveguides and finite structures is due to the
fact that technological concerns have been sometimes misinterpreted as scientific
principles. One such instance is the reliance of fill fraction as a design parameter.
Although a practical engineering parameter, fill fraction actually affects a multi-
plicity of issues in phonon propagation. These usually obscure the causal behaviour
of w(k) when fill fraction is viewed as a primary design parameter from the engi-
neering perspective. Instead one takes inspiration instead from both a “more is
different” [46] but at the same time, reductionist approach of paying care to the
fundamental symmetries and develop the framework by building on symmetries
and conservation principles. The framework utilizing group theory places the
design of various phononic structures, crystals, metamaterials and plates on the
same footing. Importantly, this point of view directly elucidates the vector nature of
the phonon in a solid structure, an issue that has prevented the current scientific
community from being able to identify the true underpinnings of the principles
governing phonon propagation in Artificial Structures. The framework is surpris-
ingly simple, in that it relies primarily only on two fundamental principles. One of
these was the global group symmetry, which governs the allowed degeneracies of
the eigenfrequencies at specific positions and along specific directions vis-a-vis the
plane group and point group symmetry. The global symmetry imparts on the
structure the second principle, namely the eigenmodes are classified by a set of
irreducible representations. The irreducible representation confers significant
physical insight: they are the actual classification of the polarization states of every
eigenmode in any structure, just like the transverse and longitudinal modes, which
one is familiar with, in bulk homogeneous systems. Moreover, the irreducible
representations govern the possibility of interactions between different eigenmodes
(scattering, resonant couplings, etc.), shaping the dispersion relations and forming
the spectral gaps which result from avoided crossings of bands with the same
irreducible representation. Furthermore, the irreducible representations, when
viewed from a variational perspective, help interpret the relative positioning of the
eigenfrequencies. For example, one utilized this to our advantage when designing
the polychromatic phononic metamaterial, by controlling the positioning of
eigenfrequencies in specific (anti)symmetric–symmetric pairs as a function of the
energetics. This variational perspective of viewing the propagation of phonons is
complimentary to the conventional microscopic method of tracing the time evo-
lution of the equations of motion. It automatically incorporates all the interactions
governing the final trajectory of the propagation into the set of possible w(k) solu-
tions for the structure. The two symmetry principles control the possibility of
interactions and provide the framework and importantly, the language which one
utilizes to design the dispersion relations. To realize the final design of a phononic
structure, one further developed concepts, in our “symmetry” language, that govern
the physical propagation of phonons within the structure. This is derived from
conservation and continuity principles, enabling us to develop the concept of the
dynamic mechanical bond and our lattice classification of the topology of the
phononic structures. From the viewpoint of the continuity and flux equation
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(Sect. 7.3), the variational perspective of flux flow in a inhomogeneous medium
allowed us to uncover a simple material and geometric parameter in classifying the
type of dynamics which the propagating phonons possess in artificial structures,
leading to the concept of a dynamic mechanical bond and the classification of
different structures, with different combinations (solid–solid, solid–air) into differ-
ent lattice classes. This helped to reconcile a long-standing argument with regards
to the optimal physical topography for a phononic crystal. Crucial to this was the
recognition that one needs to separate the geometric definitions of the matrix and
scattering phase from the material choices for each phase. This method of classi-
fication was able to identify and reconcile the observed phonon dynamics within
these structures in a coherent fashion and properly subsumes previous results within
this new lattice classification scheme. As a result, one is able to create phononic AS
with a wide and even new set of properties, ranging from phononic materials with
complete and polarization-specific meso-scale in plane gaps, to polychromatic gaps
and to large single gaps that are a significant improvement over the current state of
the art (*twofold to threefold), all by utilizing the same set of governing principles
to deliberately design these properties. Many of these designs show a significant
advancement over the current state of the art. Some of these, including the poly-
chromatic band structure, have never been previously realized or thought possible
and offer very interesting new routes towards the control of phonon–phonon
interactions and even the moulding of nonlinear elastic waves. This new design
paradigm for artificial structures allows new technologically useful properties via
moulding phonon flow. The technological requirements and metrics become con-
straints and inputs for the realization of unique devices that exhibit novel behaviour
enabled by the unique physics.

In this work, one developed a generalized framework for the design of Artificial
Structures (AS) that control phonons, or elastic waves. The approach differs from
others because we focused on the fundamental physical limits of phonon propa-
gation in structured materials, reducing the governing principles into an identifiable
minimal set. One calls this the science of designing structures for manipulating
phonons. By focusing on the own understanding of the propagation of phonons in
structured materials, one believes that one will be able to develop a coherent
understanding of phonon propagation that is valid across the meso-scales and is
independent of the dimensionality and size of the structure. More importantly, one
believes that the current lack of a deterministic framework with which to guide the
design of surfaces, waveguides and finite structures is due to the fact that techno-
logical concerns have been sometimes misinterpreted as scientific principles. One
such instance is the reliance of fill fraction as a design parameter. Although a
practical engineering parameter, fill fraction actually affects a multiplicity of issues
in phonon propagation. These usually obscure the causal behaviour of w(k) when
fill fraction is viewed as a primary design parameter from the engineering per-
spective. Instead we take inspiration instead from both a “more is different” [46] but
at the same time, reductionist approach of paying care to the fundamental sym-
metries and develop our framework by building on symmetries and conservation
principles. The framework utilizing group theory places the design of various
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phononic structures, crystals, metamaterials and plates on the same footing.
Importantly, this point of view directly elucidates the vector nature of the phonon in
a solid structure, an issue that has prevented the current scientific community from
being able to identify the true underpinnings of the principles governing phonon
propagation in Artificial Structures. The framework is surprisingly simple, in that it
relies primarily only on two fundamental principles. One of these was the global
group symmetry, which governs the allowed degeneracies of the eigenfrequencies
at specific positions and along specific directions vis-a-vis the plane group and point
group symmetry. The global symmetry imparts on the structure the second prin-
ciple, namely the eigenmodes are classified by a set of irreducible representations.
The irreducible representation confers significant physical insight: they are the
actual classification of the polarization states of every eigenmode in any structure,
just like the transverse and longitudinal modes, which we are familiar with, in bulk
homogeneous systems. Moreover, the irreducible representations govern the pos-
sibility of interactions between different eigenmodes (scattering, resonant cou-
plings, etc.), shaping the dispersion relations and forming the spectral gaps which
result from avoided crossings of bands with the same irreducible representation.
Furthermore, the irreducible representations, when viewed from a variational per-
spective, help interpret the relative positioning of the eigenfrequencies. For
example, one utilized this to the advantage when designing the polychromatic
phononic metamaterial, by controlling the positioning of eigenfrequencies in
specific (anti)symmetric–symmetric pairs as a function of the energetics. This
variational perspective of viewing the propagation of phonons is complimentary to
the conventional microscopic method of tracing the time evolution of the equations
of motion. It automatically incorporates all the interactions governing the final
trajectory of the propagation into the set of possible w(k) solutions for the structure.
The two symmetry principles control the possibility of interactions and provide the
framework and importantly, the language which one utilizes to design the disper-
sion relations. To realize the final design of a phononic structure, one further
developed concepts, in our “symmetry” language, that govern the physical propa-
gation of phonons within the structure. This is derived from conservation and
continuity principles, enabling us to develop the concept of the dynamic mechanical
bond and the lattice classification of the topology of the phononic structures. From
the viewpoint of the continuity and flux equations (Sect. 7.3), the variational per-
spective of flux flow in a inhomogeneous medium allowed us to uncover a simple
material and geometric parameter in classifying the type of dynamics which the
propagating phonons possess in artificial structures, leading to the concept of a
dynamic mechanical bond and the classification of different structures, with dif-
ferent combinations (solid–solid, solid–air) into different lattice classes. This helped
to reconcile a long-standing argument with regards to the optimal physical
topography for a phononic crystal. Crucial to this was the recognition that one
needs to separate the geometric definitions of the matrix and scattering phase from
the material choices for each phase. This method of classification was able to
identify and reconcile the observed phonon dynamics within these structures in a
coherent fashion and properly subsumes previous results within this new lattice
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classification scheme. As a result, one is able to create phononic AS with a wide
and even new set of properties, ranging from phononic materials with complete and
polarization-specific meso-scale in plane gaps, to polychromatic gaps and to large
single gaps that are a significant improvement over the current state of the art
(*twofold to threefold), all by utilizing the same set of governing principles to
deliberately design these properties. Many of these designs show a significant
advancement over the current state of the art. Some of these, including the poly-
chromatic band structure have never been previously realized or thought possible
and offer very interesting new routes towards the control of phonon-phonon
interactions and even the moulding of nonlinear elastic waves. This new design
paradigm for artificial structures allows new technologically useful properties via
moulding phonon flow. The technological requirements and metrics become con-
straints and inputs for the realization of unique devices that exhibit novel behaviour
enabled by the unique physics.

7.7 Thermoelectrics and Engineering Thermal
Conductivity

Recent interest in the search for improved renewable and sustainable energy sources
has highlighted the need for new technologies for harvesting energy; thermoelectric
(TE) devices currently play a very minor role—mostly TE devices are employed in
portable refrigeration units or as coolers for electronic equipment. However, with
further research and exploitation, TE has a large future potential for major contri-
bution to practical energy technologies since thermoelectrics can harvest energy
from waste heat present in all technological processes. TEs thus provide the
opportunity of an essentially “zero cost” source of either electrical power or
cooling. At the same time, it is a well-known fact that controlling heat flow or
phonon flow is a very challenging problem. The history of thermoelectric materials
performance has exhibited essentially no change for nearly 40 years until the
dramatic upswing in the figure of merit (ZT) in the past decade (Eq. 7.26). This
sudden jump in progress can be attributed, in no small part, to the development of
fabrication and characterization methods that allow manipulation of materials on
the nanoscale. The efficiency of a thermoelectric device can be summarized in the
following figure of merit (FOM):

ZT ¼ S Tð Þ2=qðje þ jlÞ ð7:26Þ

T = temperature, S(T) = Seebeck Coefficient, q = electronic resistivity,
je = electronic thermal conductivity, jl = lattice thermal conductivity The effi-
ciencies of both thermoelectric power generation as well as Peltier cooling depend
on ZT. Hence, the higher the FOM, the more efficient a thermoelectric device and
hence its potential to be an alternative energy source. The main strategy has been to
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increase the Seebeck coefficient while at the same time reducing the electrical
resistivity and thermal conductivity of the material system. The Seebeck coefficient,
which corresponds to the voltage developed per unit temperature difference across
the device, can be improved by controlling the electronic structure of the material,
by engineering either the electronic density of states or the electronic transport
properties of the material [39, 47]. At the same time the thermal conductivity (more
specifically, the lattice contribution to the thermal conductivity) can be reduced by
impeding phonon transport in the material. There have been many approaches for
reducing the thermal conductivity, divided broadly into (1) bulk material compo-
sition approaches [47] and (2) artificial structuring of the material [48]. It is the
latter approach that we focus on. Structuring of the thermoelectric material includes
use of nanocomposites [5], superlattices [49] and nanowires. All these approaches
aim to increase phonon scattering, by increasing the density of scattering surfaces/
interfaces for the phonons by either geometrical confinement effects [nanowires,
superlattices (in-plane propagation)] or introducing inhomogeneities in the struc-
tures [nanograin size composites, superlattice (out-plane)]. These approaches can be
unified into the notion of fabricating materials with correct compositions and
appropriate length scale structures, such that electrons and phonons will interact
with the materials at their respective physical length scales, to produce the desired
thermoelectric power generation or cooling effects. Appropriate length scales
straddle the subnm to sub-micron regime and hence were not easily accessible until
recently with the development of nanofabrication equipment—indeed, this explains
the sudden jump in FOM via nanoscale breakthroughs over the past decade.
Moreover, it appears that there has not yet been a clear focus towards a design
strategy of an optimal thermoelectric material; theoretical approaches have explored
only the available materials processing platforms or focused on computations for
simple structures which have already been built. The structures considered have
mostly been limited to superlattices; only recently have TE investigations been
extended to nanostructures such as nanowires and nanocomposites. From a more
fundamental perspective, current theoretical methods have not yet been able to
make quantitative predictions on the thermal conductivity of nanostructured ther-
moelectric materials. Hence, while experimental capabilities have managed to allow
access to these nanoscale dimensions, there are several fundamental notions on
thermal transport and thermoelectric efficiency which have not been fully under-
stood. It is important to note here that quantitative methods of predicting thermal
conductivity would open the avenues not just to more efficient methods of
designing optimal thermoelectrics, but also to the question of finally being able to
control thermal management of structures and materials over the meso-scale,
something that is crucial to device performance and reliability. For example,
dielectric structures (films, multilayers) with high thermal conductivities are desired
in order to rapidly dissipate heat on dense electronic device platforms, while
structures with low thermal conductivities are required to enhance the efficiency of
thermoelectrics. Theoretical methods that can quantitatively calculate and predict
the conduction of heat at these small scales become crucial in the development of
novel electronic and thermoelectric devices. While the strategies and routes towards
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the nanoengineering of composite materials have been diverse, there remains a need
for a series of rational design principles to help guide the realization of optimal
structures for controlling thermal emission and thermal flow and phonon and
photon propagation in general. A TE device that was structured as a phononic
crystal would effectively reduce the thermal conductivity of the material while
maintaining good electronic conductivity. This is possible because the physical
de-Broglie wavelengths of phonons and electrons are very different, hence by
structuring the materials at the correct length scales, one can selectively control the
phonon behaviour and for example, increase the FOM by reducing thermal con-
ductivity, while keeping the electron resistivity largely unaffected. For example, by
adding inclusions(e.g. voids), one reduces both the electrical conductivity and the
thermal conductivity by reducing the effective cross section (purely geometrical
effect), but most importantly by designing the inclusion feature size and spacing to
be on the order of the average phonon wavelength for the temperature of the
material, we can greatly influence the phonon scattering by creating the set of
interfaces between the two materials having quite different mechanical impedances
and hence reduce the thermal conductance. Heat transport is nonlinear and is
inherently coupled to the intrinsic material parameters of surface and interface
roughness and compositional purity, which strongly impacts the mean free path and
coherency of the phonons as well. The design framework allows us a coherent
platform to probe the dynamics of phonon-phonon interaction because of our ability
to correct classify the polarization states of the different phonon eigenmodes and
hence the subsequent phonon–phonon interactions. This enables finding selection
rules for the vector phonon-phonon interactions, something that has not been dealt
with much so far [43]. From a scientific perspective, phonon–phonon interactions
belong to the extremely rich realm of many-body physics. The control of the linear
dispersion and most importantly, the polarization states, offer a promising route
with which one may now design these AS to replicate many-body behaviour in a
more-controlled manner, i.e. dealing with particular frequency regimes. While
manipulating thermal conductivity points certainly to an immediate technological
area of relevance, the possibilities of being able to rationally control the degree of
(non)linearity in the interactions between phonons offers promise for the devel-
opment of new thermal management materials.

7.8 Phononic Metamaterial Networks and Information
Processing

The development of a complete theoretical tool-box operating with a universal set
of design principles for the design of structures and devices with arbitrary appli-
cation requirements would significantly open up technical applications and shorten
the search for promising candidates for the desired device application before pro-
totyping and subsequent experimental characterization. As previously mentioned, a
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direct extension of this current work is the desire to enable wave propagation
control using a structure with a form factor significantly more compact than that
utilizing “scattering”; this was one of the touted considerations leading to the
development of metamaterials, although this remains somewhat immature in its
development. From a technological and device standpoint, it is important to be able
to include form factor requirements in the development of devices that can exploit
these unique phonon dynamics. Some of these questions include, how does one go
about designing a finite device, based on the theoretical infinite systems in order to
achieve the optimal level of performance possible in the required form factor?
Producing entire classes of structures with unique opportunities for controlling the
flow of photons and phonons within a wide window of frequencies/wavelengths,
with the additional advantage of having a compact form factor (up to 1–2 orders of
magnitude smaller compared to the wavelength of interest). Furthermore, by being
able to create structures with different dispersion relations out of a single monolithic
material, one will be able to design an entire network of structures that may almost
arbitrarily mould, deflect and shape incident (non)linear elastic vector and acoustic
scalar waves in a wide variety of applications, ranging from absorption to even
information processing. To extend the work further, the generality of the framework
is transitive from phonons to photons, spin waves as well as coupling interactions in
inelastic processes. The proviso is to understand and classify the different waves
into the correct lattice classes with respect to the structure we decide on.

7.9 Current and Future Work

The concepts of broken symmetry are general and can also apply to broken sym-
metries at an internal interface or free boundary. In bulk media, there are the
well-known Stoneley modes and Rayleigh modes [4]. As the symmetry is broken
along a free surface, in a semi-infinite medium, a new mode, the Rayleigh mode
appears. This Rayleigh mode is an edge or surface mode, analogous to surface
waves. In comparison, when we compare with a finite slab, as before in the classical
Lamb plate the mirror symmetry and the presence of two symmetric boundaries,
causes symmetry to be broken at two spatial locations, leading to two broken
symmetry modes. In this case, the mirror plane forces the Rayleigh-like modes to be
coupled at both boundaries, forming, symmetric and anti-symmetric irreducible
representations with respect to the mirror plane.

This simple problem is exactly analogous to the situation of surface modes of
phononic metamaterials. Current work in the community suffers from a lack of a
governing principle with which to design a surface of an otherwise bulk volume
phononic or photonic metamaterial. The design of the surface is extremely
important for devices because the interface between the device and the external
(interacting) environment governs the propagation and hence distribution of
information within the metamaterial. Once again, the link between this demon-
stration of broken symmetry leading the presence of a surface, interface or edge
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mode and that of surface, edge and interface modes lies once again in the length
scale of the propagating waves and the artificial structure inhomogeneity. To reit-
erate, the eventual goal of this approach is, to borrow from PW Anderson’s famous
words, that “more is different”, to understand complexity from a set of simple
principles. In a somewhat analogous approach, we have focused on only utilizing
the underlying symmetries of the system to deduce the possible eigenmodes of
phonons. Moreover, the framework is not restricted to phonons, but works for all
fields, vector or scalar, with the only proviso that one correctly identify the relevant
length scales. This suggests that this approach would enable the design of efficient
multifunctional phononic–photonic–magnonic networks that the different kinds of
waves with one another at specific spatial locations because our design rules are not
based on artificial requirements of infinite periodicity and may treat interfaces,
boundaries and the bulk alike. It is interesting to contemplate Nature’s various
phononic networks, the auditory systems of all living organisms. From the com-
plexity and meso-scale multiple sensing auditory system of insects to the compact
yet broadband auditory systems of humans, it will be interesting to determine if
nature exploits symmetries to develop an efficient auditory systems, subject to the
needs of various situational awareness and of course, the constraint of the available
constituent materials found in all living forms. A “complex” system can be
described by a few “simple” fundamental principles, just like how a complicated
phononic band structure can be described and dictated by a few governing rules. To
truly realize a multifunctional phononic–photonic–magnonic metamaterial network,
this same set of underlying simple principles will provide a tractable way for us to
realize fully functional integrated material platforms and extend the materials
design and performance paradigm and to be able to control complexity with
simplicity.
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Chapter 8
Local Resonant Structures

Abstract The local resonance in the material was discovered in 2000. Since then,
it has been developed as an acoustical metamaterial. The local resonance enables
negative mass density and negative bulk modulus. A detailed description of the
physics of local resonance is given. This is followed by several applications and
even a list of potential areas under the early stage of development is given.

8.1 Introduction

The science of acoustic metamaterials begins with the study of phononic crystals
around the early 1990s. Metamaterials are artificial materials capable of controlling
and manipulating functionalities beyond the limits of natural materials. The concept
of photonic crystals was proposed in late 1980s [1–4] and the concept of phononic
crystal in early 1990s [1–4]. Both are realized experimentally [5–7]. Both concepts
have involved with band gaps. The concept of band gap is the same as that of the
band theory of solids in quantum mechanics. Here, electron waves interact with
periodically structured atomic lattice to form energy bands separated by energy
gaps. The formation of band gap will take place when the lattice constant has to be
of the same order as the wavelength. Due to the long wavelength of sound wave in
the audible range, phononic crystals are usually realized in the ultrasonic frequency
regime. The arrival of acoustic metamaterial will resolve the sample size problem
and introduce new functionalities.

To understand the origin of acoustic metamaterials, it would be useful to start
with the phononic crystals.
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8.2 Background of Phononic Crystals

Phononic crystals like photonic crystals belong to the class of metamaterials known
as band gap metamaterials. This class of metamaterials is as important as double
negative metamaterials (DNG).

The 1980s has seen a tremendous research interest in the physical properties of
artificial structures comprised of two or more materials which differ in certain
properties. The 1980s began with enthusiasm for microstructures of reduced
dimensionality [8] such as quantum heterostructures, quantum wires and quantum
dots. In the late 1980s, there has been ever increasing interest in macrostructures
known as photonic crystals [1]. Typically, these are periodic arrays of two trans-
parent dielectrics. The periodicity plays a crucial role in understanding the physical
properties of both microstructures and macrostructures. One important aspect in
photonic crystals is the formation of forbidden frequency bands in which electro-
magnetic (EM) modes spontaneous emission and zero-point fluctuations are all
absent [9]. In this chapter, we deal with phononic crystals which are elastic com-
posites made up of two materials with different elastic properties. In analogy to the
case of phononic crystals, the emphasis will be on the existence of complete
phononic band gaps for the elastic composites and their practical implications. The
earliest papers on theoretical studies of phononic crystals are given in Refs. [3, 4,
10–12]. In Ref. [10], a periodic array of parallel rods of circular cross section
embedded in a different background was considered. The intersection of these rods
with perpendicular plane forms a two-dimensional lattice. Sigalas and Economou
[10] investigated only the transverse polarization mode with displacement ~u ~r; tð Þ
parallel to the cylinders (and perpendicular to the Bloch wave vectors). The com-
putations performed for Ni(Al) alloy cylinders in Al(Ni) alloy background exhibited
absolute band gap extending throughout the Brillouin zone. Sigalas and Economou
[10] also considered the mixed (longitudinal transverse) polarization modes for
which ~u ~r; tð Þ and the Bloch wave vectors are in the plane perpendicular to the
cylinders. They found that Au cylinders in Be matrix exhibit a narrow, but complete
gap, shared by both polarization. An elaborate theory of acoustic band structure in
periodic composites of arbitrary dimensionality is presented in Ref. [4].

Analogous to the photonic crystals in the frequency range of a phononic band
gap, vibrations, sound and phonons would be forbidden. From a practical point of
view, a complete phononic band gap could be engineered to provide a vibrationless
environment for high-precision mechanical devices in a given frequency range.
Phononic crystals in the form of piezoelectric and pyroelectric composites have
already found useful applications in transducers for pulse-echo medical ultrasonic
imaging and for transmitting and receiving signals underwater [6, 11–14].

An adequate of a phononic crystal composite transducer requires a detailed
understanding of elastic wave propagation in periodic structures, so that the char-
acteristic dimensions of the transducer disc and the composite may be correctly
chosen. For such understanding, the availability of band structures is essential.
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For acoustic devices based on periodic composites, the width of the band gaps
and the midgap frequency (frequencies) play an essential role. For these elastic
composites, the details of the gaps depend on the structure of the crystal lattice, on
the average density and average elastic constant contrast C44 of the two constituent
solids, on their density contrast and elastic constant contrast, on the filling fraction
of one of the constituents and on the lattice constant. An elaborate study of such a
complicated dependence is a major task.

Experimental studies on phononic crystals are given in Refs. [6–15], demon-
strating the usefulness of acoustic waves in illustrating general features of wave
propagation in inhomogeneous or random media.

8.3 Theory of Phononic Crystals—The Multiple
Scattering Theory (MST)

The theory of phononic crystals will involve the calculations of acoustic wave
propagation in periodic structures. The ultimate purpose is to find the existence of
band gap in the periodic structures which is analogous to the photonic band gaps in
photonic crystals, and the calculations have been performed using the plane wave
(PW) method, which is based on the expansion of the periodic coefficients in the
wave equations in Fourier sums. Study using the PW methods shows that band gap
can exist under rather extreme conditions that concern mainly the elastic parameters
(density, velocities) of the components of the composite, the volume fraction of one
of the two components and the topology. However, the PW method is unable to
describe composites with solid scatterers in a fluid.

Here, we shall follow the multiple scattering (MS) approach of Kafesaki and
Economou [16] based on the well-known (in the band-structure electronic com-
munity) Korringa–Kohn–Rostoker (KKR) theory [17, 18].

Spherical scatterers embedded in a fluid host were considered by Kafesaki and
Economou [16]. They start from the acoustic wave equation in a periodic medium:

k ~rð Þr 1
q ~rð ÞrP ~rð Þ

� �
þx2P ~rð Þ ¼ 0 ð8:1Þ

where P = acoustic pressure, p ~rð Þ = mass density, x = sound angular frequency,
k ¼ q c2l � c2t

� �
= Lamé coefficient of the medium, cl; ct = longitudinal and trans-

verse sound velocities, respectively.
Equation (8.1) can be rewritten as

r2P ~rð Þþ x2

co
P ~rð Þþx2 1

c2 ~rð Þ �
1
c2o

� �
P ~rð Þþ q ~rð Þ r 1

q ~rð Þ
� �

rP ~rð Þ ¼ 0 ð8:2Þ
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which has the form

Ho ~rð ÞP ~rð ÞþU ~rð ÞP ~rð Þ ¼ 0 ð8:3Þ

where Ho ~rð Þp ~rð Þ ¼ 0, Ho ~rð Þ ¼ r2 þ x2

c2o
represents the wave equation in the

absence of scatterers, and co is the wave velocity in the host material.
Equation (8.3) has the same form as the Schrödinger equation for the electron

waves. This analogy shows that one can extend the KKR to the acoustic case.
However, one has to beware of the important difference between the electronic case
and the acoustic case. That is, the potential in the acoustic case has a d function
singularity at the surface of the scatterers due to the factor rp�1. Thus, the con-
tribution of the surface scattering to the volume integrals is not negligible as in the
electronic case [18].

It can be shown that [19] in a periodic system Eq. (8.2) is equivalent to the
following integral equation:

P ~rð Þ ¼
Z
U

G ~r �~r0
� �

V ~rð ÞP ~r0
� �

d~r0 ð8:4Þ

where V = volume of a unit shell, V ~rð Þ = local potential.

The Green function G ~r �~r0
� �

is given by

G ~r �~r0
� �

¼
X
n

ei
~k�~RnGo ~r �~r0 �~Rn

� �
ð8:5Þ

G0 is the Green’s function [20] for the homogeneous equation Ho ~rð ÞP ~rð Þ ¼ 0:

Go ~r �~r0
� �

¼ � 1
4p

eiKo ~r�~r0j j
~r �~r0
��� ��� ; Ko ¼ x

co
ð8:6Þ

V ~rð Þ is zero outside the unit shell centred at the origin of the coordinate system.

It is related to U by U ~rð Þ ¼ P
n V ~r0 �~Rn

� �
, and the pressure field P ~rð Þ obeys

the Bloch’s condition, P ~rþ~Rn
� � ¼ ei~k�~RnP ~rð Þ.

Taking into account that for acoustic waves the local potential V is nonzero only
inside and at the surface of the scatterers (8.2), the integral over the unit shell in
Eq. (8.4) is reduced to an integral over the volume of a scatterer (r0 � rs, rs is the
scatterer radius). Z

V

d~r0 ¼ lim
2!0þ

Z
~r0 � rs þ2

d~r0 ð8:7Þ
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The limiting procedure in Eq. (8.7) ensures that we approach the surface of the
sphere from inside, including the surface singularity.

By noticing that for nonoverlapping spheres and~r;~r0 inside a unit shell centred
at the origin of the coordinate system, the function G obeys the equation

r2G ~r �~r0
� �

þK2
oG ~r �~r0

� �
¼ d ~r �~r0

� �
ð8:8Þ

and by the wave equation and the Gauss theorem, the volume integral in Eq. (8.7)
can be transformed into a surface integral.

After some algebraic manipulations, one can find that

lim
r0!rþs

Z
s0

½P ~r0
� �

rr0G ~r �~r0
� �

� G ~r �~r0
� �

rr0P ~r0
� �

d~s0 ¼ P ~r0
� �

for r[ rs
0 for r\rs

(
ð8:9Þ

where s0 is a spherical surface of radius r0, centred at the origin of the coordinates.
r0 ! rþs in the above limit denotes that we approach the sphere surface from the
outside. This is a direct consequence of (8.7), and it is very important for the
acoustic case as the integrated functions are not continuous across the surface. The
acoustic pressure is continuous, but its derivative has a step function discontinuity.
Thus, the side limits do not coincide. The solution of Eq. (8.9) for r\rs gives the
eigenfrequencies of our periodic system for each Bloch’s vector ~k. To obtain this

solution, we use the fact that both the functions G ~r �~r0
� �

and P ~r0
� �

can be

expanded in spherical functions of~r and ~r0:

G ~r �~r0
� �

¼
X
‘m

X
‘0m0

A‘m‘0m0 j‘ Korð Þj‘0 Kor0ð Þ
þKoj‘ Korð Þy‘0 Kor0ð Þd‘‘0dmm0

� �
� Y‘m ~rð ÞY�

‘0m0 ~r0
� �

ð8:10Þ

for r\r0

P ~r0
� ����

r0 � rs
¼ Pout ~r0

� �
¼

X
‘m

a‘m j‘ Kor
0ð Þ þ t‘h‘ Kor

0ð Þ½ �Y‘m ~r0
� � ð8:11Þ

and second-kind spherical Bessel functions of order ‘ and h‘ ¼ j‘ þ iy‘:
Substituting Eqs. (8.10) and (8.11) into Eq. (8.9), we obtain the final multiple

scattering equation: X
‘0m0

½A‘m‘0m0 � KoIm t�1
‘0

� �
d‘‘0dmm0 �a‘0m0 ¼ 0 ð8::12Þ
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The coefficients A‘m‘0m0 in the above equations are called structure constants, and
they depend on ~K, x and the lattice constants. The coefficients t‘, relating the
incident to the scattered field at each scatterer, can be calculated by solving a
single-scattering problem.

Equation (8..12) can be rewritten asX
‘0m0

A‘m‘0m0a‘0m0 ¼ 0 ,
X
L0

KLL0aL0 ¼ 0; L 	 ‘;mð Þ ð8:13Þ

which corresponds to a linear homogeneous algebraic system. The condition for
this system to have nonvanishing solutions, det Kð Þ ¼ 0, gives the eigenfrequencies
of the periodic composite.

A careful analysis of the above equations show that the elastic parameters of the
scattering material affect the calculation only through the scattering coefficients t‘. t‘
can be calculated very easily and accurately for both solid and fluid scatterers. Thus,
the method can be applied to both solid and fluid scatterers changing only the form
of a single-scattering problem. This, however, is not the only advantage of the
method. Its most important advantage is that it can be applied also in disordered
system. It can treat system with positional as well as substitutional disorder.

8.3.1 Details of Calculation

The eigenmodes of a periodic system are obtained by requiring nonvanishing
solutions for the linear homogeneous system (Eq. 8.13). Thus, one has to calculate
the matrix X, the determinant of which has to be set equal to zero. The order of the
matrix K depends on the number of the angular momentum term that we keep in the
field function (8.11) in the calculations of Kafesaki and Economou [16]. They
obtained good convergence by keeping the maximum number of ‘ ¼ ‘max ¼ 3 or 4,
while for the lower bands they had good convergence with ‘max less than 3.

Another parameter of the problem is the size of the periodic system. Kohn and
Rostoker [18] have considered a system of 400–500 lattice vectors in the direct as
well as the reciprocal lattice with excellent convergence.

Among the calculational problems of the multiple scattering method, one worth
mentioning is the problem of the spurious “roots”. That is the sign changes of the
determinant that do not correspond to actual eigenfrequencies of the system.

8.3.2 Discussion of Results

Figure 8.1 shows the band structure along the L C and CX directions for an FCC
periodic composite consisting of solid spheres in water host. The volume fraction of
the spheres is fs = 50%. Figure 8.1b shows the band structure for fluid spheres of
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the same k and q as the solid ones and in the same periodic arrangement also in
water host. Figure 8.1b shows the band-structure results for the same material
combination using the plane wave (PW) method. The results are very different,
which shows that the replacement of solid scatterers with fluids can change the band
structure drastically.

The results for different material system consisting of glass spheres are shown in
Fig. 8.2. This is in SC structure and glass volume fraction f = 45%. Again here, the
left panel is MS method result and the right is using PW method. Compared to

Fig. 8.1 Dispersion relation along the LC and CX directions for an fcc periodic composite
consisting of solid spheres in water. The parameters are as follows: qo

qn
¼ 1=2, co

c‘i
¼ 1=2, koki ¼ 1=4,

cti
c‘i
¼ 1=2. Volume fractions of spheres f = 50%. co is the wave velocity in the host and a the lattice

constant. a Shows the result within MS method and b the same with PW and Eq. (15.3.1) [16]

Fig. 8.2 Dispersion relation along the MX CR directions for a sc periodic composite consisting of
glass spheres in water. Glass volume fraction f = 45%. co is the wave velocity in the water and a
the lattice constant [16]
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Fig. 8.1, the difference between the MS result and the PW result is reduced. This
means that reduction of the influence of the rigidity of the scatterers can be
attributed to the larger velocity and density contrast between scatterers and host.
The velocity and mainly the density contrast between scatterers and host are the
most important parameters controlling the scattering and thus the propagation in the
composite system. As these contrasts increase, other parameters as the rigidity of
the scatterers become less important [21, 22].

8.4 Multiple Scattering Approach to Perfect Acoustic Lens

The multiple-scattering theory (MST) usually known as the KKR (Korringa, Kohn
and Rostoker) approach [17, 18] was developed mainly for the calculation of
electronic band structures although it originated from the study of classical waves
including acoustic waves used by Liu et al. [23] to calculate the propagation of
sound waves in periodic structures such as phononic crystals. The phononic crystals
in this case are stainless steel balls immersed in water. They found theoretical and
experimental agreement using ultrasound experiment of the observation of a sizable
directional stopband in the transmission along (001) centred at about 0.65 units,
coincides with unexpectedly directional gap along the C–x direction in the band
structure. In the transmission along (111), they observed a narrow stopband at about
0.65 units, corresponding to the small gap at the L point in the band structure at the
same frequency.

Other works on the studies on the existence and properties of phonon band gap
are given in [4, 10]. These are due to Bragg scattering when the sound wavelength
is comparable with the lattice constants. This leads to frequency bands where wave
propagation is forbidden. This enables the understanding of how to achieve large
complete band gaps in physically realizable materials and the mechanism of wave
transport at band frequencies due to tunnelling [22]. Also, there has been relatively
less attention paid to investigate how periodicity affects wave propagations over a
wide range of frequencies outside the band gaps where novel refraction, diffraction
and focusing effects may be possible.

At low sound frequencies, an effective continuum or medium approximation can
be used to study the wave properties and accurately predict the wavespeed. In this
frequency range, there is much common with the properties of low-frequency
phonons in atomic crystals, where phonon focusing phenomena have been sys-
tematically studied [24]. However, at higher frequencies, much less is known about
the behaviour of pass bands where the wavelengths can be much less than the lattice
constant. Yang et al. have addressed this problem by theoretically and experi-
mentally investigating the character of wave pattern and propagation in a 3D
phonon crystal at frequency above the first complete band gap. They showed how a
dramatic variation in wave propagation with both frequency and propagation
direction can lead to novel focusing phenomena associated with large negative
refraction. This is a different approach to negative refraction from that of
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Veselago’s work for the electromagnetic wave based on negative values of per-
mittivity and permeability. They demonstrated the effect of negative refraction
experimentally by using ultrasound technique to image the transmitted wave field
and show that a flat crystal can focus a diverging incident beam into a sharp focal
spot that can be seen remarkably far from the crystal.

They also calculated the field pattern theoretically using a Fourier imaging
technique in which wave propagation through the crystal is accurately described by
the 3D equifrequency surfaces predicted from the multiple scattering theory
(MST) [25]. Their theoretical results also give an excellent explanation of the
experimental data, showing how wave physics in the regime can be accurately
modelled and how the theoretical structures on the equifrequency surfaces of
phonon crystal can give rise to potential applications.

Zhang and Liu [26] first discussed the issue of negative refraction for acoustic
waves in phononic crystals. They also repeated the observation of the negative
refraction of the acoustic wave in phononic crystals, occurring at the frequencies
with ~S �~k[ 0 where ~S represents the Poynting vector. They considered a 2D
phononic crystal consisting of infinite-length “rigid” or liquid cylinders embedded
in a background, which has been studied extensively in Ref. [19–21]. Two types of
phononic crystals were used by them: one is steel cylinders in air background, and
the other is water cylinders in mercury background. The band structures of these
two types of phononic crystals are plotted in Figs. 8.3a and 8.1b, respectively. Both
of them were calculated by the MST (or Korringa–Kohn–Rostoker method given in
Refs. [17, 18]).

Fig. 8.3 a Acoustic band structures for a square lattice of steel cylinders in air background with
cylinder radius R = 0.36a. b The acoustic band structures for a square lattice of water cylinders in
mercury background with cylinder radius R = 0.4a. The light line shifted to M is shown in dashed
line. Dot-dashed lines mark the region for negative refraction, and the shadow represents the
AANR region [26]
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To visualize and analyse refractive effects of the acoustic wave when it hits the
above phononic crystal interfaces, Zhang and Liu [26] investigated the equifre-
quency surfaces (EFS) of the band structures just like the case for the electro-
magnetic waves in the photonic crystals because the gradient vector of
constant-frequency contours in k-space gives the group velocities of the phononic
modes. Hence, the propagation direction of energy velocity of acoustic wave can be
reduced from them. The EFS can also be calculated using the MST or the Korringa–
Kohn–Rostoker method. The features of the EFS for these two kinds of system
within the first band are similar. Thus, only the results of water–mercury system
with R ¼ 0:4a are shown in Fig. 8.4. The equifrequency surface contours at several
relevant frequencies such as 0.05, 0.1, 0.2, 0.235 and 0.27 are demonstrated. It is
clear that the lowest band has~S �~k[ 0 everywhere within the first Brillouin zone,
meaning that the group velocity is never opposite to the phase velocity. The 0.05
and 0.1 contours are very close to a perfect circle, and the group velocity at any
point of the contour is collimated with the k vector, indicating that the crystal
behaves like an effective homogeneous medium at these two long wavelengths. The
0.2 contour is little bit distorted from a circle, and the 0.235 contour is convex
around the M point due to a negative phononic “effective band”. The conservations

Fig. 8.4 Several constant-frequency contours of the first band of the 2D phononic crystal, which
is composed of a square lattice of water cylinders in mercury background with R = 0.4a. The
numbers in the figure mark the frequencies in unit of 2p cl/a [26]
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of the component along the surface of refraction would result in the negative
refractions effect in some frequency region, marked as dotted lines in Fig. 8.5.

Furthermore, according to the analysis approach of [26, 27], the required con-
dition for all-angle negative refraction (AANR) effect in some cases can be
observed. Under these conditions, an acoustic beam incident on the CM surface
with various incident angles will couple to a single Bloch mode that propagates into
this crystal on the negative side of the boundary normal. Therefore, we can define a
frequency region for the AANR by using these criteria.

From Fig. 8.5a, we noted that the AANR region is absent in the steel–air system,
although the negative refractive region is very large. However, in the water–mer-
cury system, the AANR region exists within the range of about 63 near x ¼
0:24 2pcl=að Þ (shadow region in Fig. 8.1b). This point differs for the two kinds of
system. This difference is very important for the superlensing and focusing of
acoustic waves in phononic crystals.

In order to test this theoretical analysis, Zhang and Liu [26] performed a
numerical simulation to the two phononic crystals system based on the MST [28].
They used a 30° wedged sample which consisted of 238 water cylinders of R ¼
0:4a in the mercury background with a square array. The shape of the sample and
illustration of the refraction process are shown on the top of Fig. 8.5. The black
frame marked the size of the sample. The wedged surface was the (11) surface when
a slit beam of frequency x ¼ 0:235 2pcl=að Þ with a half-width wl ¼ 2a incident
normal to the left surface of the sample, it transports along the direction of inci-
dence wave until it meets the wedge (11) interface of the sample, and then, a part of
it will refract outside of the sample and the other reflects inside. There are two
possibilities for the refracted wave. It may travel on the right side (positive
refraction) or left side (negative refraction) of the surface normal. The simulation

Fig. 8.5 Simulation of
negative refraction. The
boundaries of the sample are
marked with black frame. The
intensity of pressure field for
incidence and refraction is
shown in different shadows.
A wedged sample considered
here consists of water
cylinders in mercury
background with R = 0.4a as
shown on top of the figure. The
frequency of incident wave is
x = 0.235(2p c l /a) [26]
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results are plotted in Fig. 8.5. The field energy pattern of the incidence and
refraction is shown in the figure. The arrows and text illustrate the various beam
directions. It can be clearly seen that the density flux of the refractive wave outside
of the sample travels on the negative refraction side of the surface normal. The
refraction angle is consistent with the estimation from the wave vector space in
Fig. 8.6. The simulation results show clearly that the negative refraction of the
acoustic wave exists in the first band for the case with~S �~k[ 0. Similar phenomena
have also been demonstrated in the steel–air system.

The concept of perfect lens or microsuperlens has been designed using the
concept of negative refraction [29, 30] and fabricated with 2D photonic crystals [27].

Such a superlens can focus a point source on one side of the lens into a real point
image on the other side even for the case of a parallel sided slab of material. The
advantage of the superlens or perfect lens is the capability to defeat the diffraction
limit or Rayleigh resolution criterion of wavelength divided by two. Such an image
can be realized by flat slab instead of curved shapes, and thus, fabrications can be
easier in principle. Zhang and Liu [26] demonstrated the design of such a perfect
lens for sound waves which possesses the same advantage as that of optical system.
They used a slab of the sample with 40a width and six layers thick. A continuous
wave point source is placed at a distance 1:0a from the left surface of the slab. The
frequency of the incident wave emitting from such a point source is
x ¼ 0:24 2pcl=að Þ, chosen to be within the region where all-angle negative
refractions may occur (Fig. 8.3b).

The MST method is used to calculate the propagations of an acoustic wave in
such a system. The typical results of field pattern of pressure wave and their images
across the slab sample are given in Fig. 8.6 The geometry of the phononic crystal

Fig. 8.6 Field pattern of
pressure wave of a point
source and its image across a
six-layer slab at frequency
x = 0.24 (2p cl/a). The
system considered here
consists of some water
cylinders in mercury
background with
R = 0.4a. Dark and bright
regions correspond to
negative and positive values,
respectively [26]
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slab is also displayed. One can find quite a high-quality image formed on the
opposite side of the slab. A closer look at the data reveals a transverse size (full size
at half maximum) of the image spot as 0:6a (or 0.14 k) at a distance of 1:0a from
the right surface of the slab. The focusing size of the image depends on certain
parameters such as the thickness of the slab and the distance between the source and
the slab which is similar to the case of the optical system. The tuning of these
parameters will produce a clearer acoustic image.

They also studied the effect on the image quality when the frequency of the
sound wave is outside of the AANR region and system without the AANR region
such as steel–air system. For these cases, the focusing phenomena are degraded.
These show that the AANR is very important for the image formations.

This shows that negative refraction for acoustic wave in the 2D phonons crystal
exists in a manner similar to that of optics.

8.5 Acoustic Metamaterials in a Broader Sense Beyond
the Phononic Crystals (Ma and Sheng [31])

Metamaterial is a composite material. Its wave functionalities are a combination of
manifestation of the local resonant constituent units. It is to be noted that the
resonant frequency will be orders of magnitude larger than the physical dimension
of the resonant unit due to its dependence on the restoring force due to the spring
and the inertia of the mass. This is known as the sub-wavelength characteristic and
is a common feature of metamaterials which have functionalities not found in
nature.

In this chapter, the treatment is limited to the linear case; dealing only with
infinitesimal amplitude sound wave, linear acoustic field equation is used. Acoustic
metamaterials can be used to manipulate and control the propagation of acoustic
waves described by the linear acoustic field equation which is derived from
Newton’s equation of motion, equation of continuity and the thermodynamic
equation of state for adiabatic process as:

r2P� q
j
@2

@t2
P ¼ 0 ð8:14Þ

where P = acoustic pressure, q = mass density, and j = bulk modulus or com-
pressibility. q and к are the two constitutive parameters. The particle velocity is

given by v =
ffiffi
j
q

q
.

In an acoustic metamaterial, the two constitutive parameters can have unusual
values when considered in the effective medium sense, such as close to infinity,
zero or negative. Such values imply acoustic wave characteristics that are usually
not associated with ordinary composites. However, in acoustic metamaterials, such
unusual features will occur due to local resonances of the constituent components.
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They will be of “narrow band” in nature and occur only in the vicinities of the
resonant frequencies.

Acoustic waves in fluids are longitudinal scalar waves. Acoustic waves in solids
have two propagating modes, longitudinal scalar waves and transverse vector waves
with polarization. In contrast, electromagnetic waves are transverse vector waves
with two polarizations. However, there exists a close analogy between them since
both are wave phenomena, and their wave equations have the same mathematical
form. Their corresponding two constitutive parameters can be mapped as q ! �
and j ! l−1, where � and l are dielectric constant or permittivity and magnetic
permeability, respectively. This also indicates that these two types of waves share
much but not all of the underlying physics. This is the reason why negative
refraction [32, 33], superlensing [34] and cloaking [35, 36] in acoustic metamate-
rials have developed in parallel with their counterparts in electromagnetic
metamaterials.

In the subsequent section, one first analyses the local resonant structures that
give rise to the unusual negative values of effective mass density and bulk modulus.
For this purpose, a special class metamaterial known as decorated membrane res-
onators (DMRs) is chosen to demonstrate the negative effective values of the
constitutive parameters, dispersions and the underlying physics. The diverse
applications of acoustic metamaterials and emerging directions are then given.

8.6 Demonstration of Local Resonance Using the
Spring-Mass Model and Dynamic Effective Mass [31]

There is a characteristic of the composite that is different from that of a rigid body.
That is, the constituent components of a composite can display an inertial response.
This can be mathematically illustrated as follows. First one considers a simple
one-dimensional coupled oscillator with external excitation.

Mass M1 will form a cavity. Mass M2 is sliding inside the cavity without friction.
The total force exerted on mass M1 will be given by F(x) + K(x2 − x1). The second
term comes from the contact where the spring is connected to mass M1. x1,
x2 = displacements of M1 and M2, respectively.

The harmonic oscillator of M2 is described by:

M2€x2 ¼ �Kðx2 � x1Þ; ð8:15Þ

With €x 1;2ð Þ = −x2 x1;2, x2 can be solved in terms of x1. Then, F can be expressed
in terms of x1, as

F ¼ ½M1 þðx2
0 � x2Þ�€x1 ð8:16Þ

where x0 =
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M2

p
; M2 = the local resonance frequency, K = spring constant.
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The inner structure of the system can be described by the system’s apparent
inertia, which possesses a frequency dispersion relation of

MðxÞ ¼ M1 þK=ðx2
0 � x2Þ ð8:17Þ

as plotted in Fig. 8.7b.
Due to the interesting fact that there are relative motions between the constituent

components in a composite such as acoustic metamaterial, there can be a significant
difference between the inertial response of the systemM(x) and its static value. This
is the reason for introducing the concept of dynamics effective mass to the system.
Then, Newton’s second law of motion can be rewritten as the system’s inertial
response M(x) can deviate significantly from its static value. That is why the
dynamic effective mass is introduced into the system. This allows Newton’s second
law to be rewritten as: F = M(x)€x1. The dynamics mass density q can be defined as

q ¼ fh i= €xh i ð8:18Þ

where f = force density, x = unit cell displacement, and 〈 〉 denotes averaging over
the surface area of the unit cell under consideration.

The subject of effective mass is treated in Milton and Willis [37] and Mei et al.
[38] on similar spring-mass system. Yao et al. [39] gave an experimental proof.

8.6.1 Effective Mass Dispersion between Two Resonances

A characteristic of acoustic metamaterial is mass density dispersion. This is known
as antiresonance condition which takes place at a frequency between two reso-
nances. It is of interest to calculate the average displacement of a sample with two
resonances at frequencies x1 and x2. When the system is driven at a frequency x
between the two, both resonances will be excited but with opposite phases. The
average displacement can cross zero at the antiresonance frequency ~x. Then
⟨€x⟩ = −x2 ⟨x⟩ for harmonic motion. From Eq. (8.17), frequency dispersion can
occur for the dynamic mass density. This is shown in Fig. 8.7b.

Acoustic metamaterial is an example of such composites with frequency dis-
persive properties. First, the acoustic metamaterial possesses local resonances. Ma

Fig. 8.7 Origin of anomalous constitutive parameters in acoustics [31]
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and Sheng [31] proposed that the metamaterial be a matrix of silicone-coated
metallic spheres embedded in epoxy [40]. Figure 8.8a shows image of a matrix and
a unit cell. The relative motions of the constituents of the elementary building
blocks will generate low-frequency resonances. The displacement of the metallic
sphere will be related to the lowest frequency resonance of 400 Hz. The dis-
placement of the silicone rubber layer is responsible for the second resonance at
around 1350 Hz, with the metallic sphere almost at rest. The dynamic mass density
q− [41] will possess a strong frequency dispersion due to these resonances. This
strong frequency dispersion can cause the effective dynamic mass density q− to
diverge to a very large value or with a negative value. Under such situations, the
acoustic wave will be strongly attenuated within the structure yielding almost total
reflection of the sound wave.

8.6.2 Effective Bulk Modulus and Spatial Symmetry
of the Resonances [31]

Here, one considers the case of effective bulk modulus instead of the effective mass
density to be frequency dependent. The Helmholtz resonator is an example of this.
Here, the centre of mass is stationary and the deformation involves extension–
compression motion. This is not like the dispersion in frequency of the effective
mass density which is always associated with the displacement of the system’s
centre of mass.

Negative bulk modulus was experimentally demonstrated to be caused by the
frequency dispersion of local resonances by Fang et al. [42]. They used an ultra-
sonic waveguide shunted by a chain of Helmholtz resonators which produce
Helmholtz resonances due to the oscillation of the fluid in the neck section under
the restoring force arisen from the expansion and compression of the fluid in the
cavity. This is shown in Fig. 8.8b with the sample in sub-wavelength dimension.

The local resonances have spatial symmetrical properties. The effective bulk
modulus and effective mass density characteristics are associated with these

Fig. 8.8 Initial realizations of local resonant acoustic metamaterials [31]
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symmetrical properties. The one-dimensional harmonic motion can be considered
as the weighted superposition of symmetric and antisymmetric motions. This cor-
responds to the dipolar and monopolar resonant displacements, respectively. Li and
Chan [43] use the Mie resonance of soft rubber spheres to analyse the relation
between the symmetry of motion and acoustic response. They found out that
dominantly expansive–compressive symmetry is generated by monopole symmetry,
and this response is related to the bulk modulus. On the other hand, inertial
response is due to the dipolar symmetry of motion. Also, modes with higher angular
momenta have been studied and they produce interesting response for the elastic
waves [44, 45].

8.6.3 Doubly Negative Mass Density and Bulk Modulus

There are several ways to achieve acoustic double negativity. Method one is to use
only one resonator which can have different eigenmodes, each exhibiting the
monopole resonance and dipole resonance separately. By tuning the frequency of the
different eigenmodes, one can achieve simultaneous effective negative values of the
bulk modulus and mass density. There are several examples based on this design.
One is the Mie resonance of porous silicone rubber spheres producing negative
refractive index [46]. Another is possible to achieve acoustic double negativity by
overlapping the frequency responses with the above two symmetry types. There are
several approaches to achieve this. First, a single resonator can have multiple
eigenmodes exhibiting distinctive symmetries. With careful design, it is possible to
tune the relative frequency of these eigenmodes to achieve double negativity [46].
Another example is the coupled membrane resonators [47]. The theoretical works on
these approaches are given by Ding et al. [48], Christensen et al. [49] and Fok and
Zhang [50]. Lee et al. [51–53] first showed experimentally acoustic double nega-
tivity. They used a sample that consists of a waveguide segmented by elastic
membranes [53]. This enables frequency dispersion in the effective mass density.
The same waveguide is also shunted by a series of side holes to produce frequency in
the bulk modulus [54]. The acoustic double negativity is due to the overlap in the
two dispersive frequency ranges. More recently, it is discovered that the interaction
between identical symmetry type eigenmodes also leads to double negativity [54].
The following section on acoustic superlens will have more details on this.

8.7 Membrane-Type Acoustic Metamaterials [31]

An example of a group of acoustic metamaterials that can exhibit effective mass
density frequency dispersion over certain frequency ranges, typically audible fre-
quency ranges of 50–2000 Hz and double acoustic negativity, is decorated double
membrane resonators (DMRs) [31]. Here, the membranes are light and thin and
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hence with high application potentials. Figure 8.9a shows an example of DMRwith a
flexible membrane of only sub-millimetres thick and several centimetres width fixed
on a rigid film. In order to be modelled as a spring-mass oscillator, a rigid platelet is
attached to the centre of the membrane. The proper restoring force for oscillations is
given by a uniform prestress. The spring will be equivalent to membrane and the
central platelet equivalent to the mass [55]. Next, one analysed the response of the
DMR. This will be represented by the normal displacement profile W(x).

The scattering characteristics of the DMR can be observed by the dipole sym-
metry of the local resonance. This gives rise to the frequency dispersion of the
effective mass density q. This is due to the membrane’s thin nature. The com-
pressitivity of the membrane is required in the high frequency region. The dipole
symmetry is the nature of the low-frequency eigenmodes. Usually, two eigenmodes
will occur below 1 kHz. Normal displacement profiles are plotted in Fig. 8.9b.

8.7.1 Normal Displacement Decomposition
and Relationship to Propagative and Evanescent
Modes

For the purpose of analysis, one writes the normal displacement W(x) as the sum of
two components, the surfaced averaged portion and the variation term on the
normal displacement:

Fig. 8.9 Single membrane with negative effective mass density [31]
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WðxÞ ¼ Wh iþ dWðxÞ ð8:19Þ

where ⟨W⟩ = surface-averaged normal displacement and is given by

Wh i 	 1
pR2

Z2p
0

ZR
0

Wðr;uÞrdrdu ð8:20Þ

and R = DMR’s radius, r and u = radial and azimuthal coordinate, respectively.
The whole picture of piston-like motion is described by 〈W〉, and dW(x) only

represents the high spatial frequency portion. The Fourier wave vector parallel to
the plane of the membrane k11 will describe the spatial variation of dW(x). The
magnitude of this wave vector will obey the inequality/k11=� 2p/R.

Acoustic wave in air obeys the following dispersive relation:

k2k þ k2? ¼ 2p
k


 �2

ð8:21Þ

where k⊥ = normal component of the wave vector and k = wavelength.
From (8.21), normal displacement is continuous across the membrane–air

interface, k 
 R at the relevant frequencies, and k11 is imaginary. This shows that
dW(x) will couple only to evanescent waves. On the contrary, ⟨W⟩ is constant and
will couple to propagating wave. Hence, the Fourier k11 components will have a
distribution that will peak at k11 = 0. These are schematically shown in Fig. 8.9c.

Evanescent waves are nonpropagating and located at nearfield. In the far field,
DMR will be concerned only with ⟨W⟩, which describes piston-like motion [38,
47].

8.7.2 Effective Mass Density and Impedance
of the Membrane Resonator

The effective mass density can be derived from the previous section’s description of
propagation mechanism as:

q ¼ ð1=x2dÞ Ph i
Wh i ð8:22Þ

where d = mean thickness, 〈P〉 = surface-averaged pressure difference on two sides
of the membrane, and €W = −x2 ⟨W⟩ = surface-averaged acceleration.

Plotting the effective mass density as a function of frequency shows interesting
results (Fig. 8.9d). q becomes zero at the DMR’s eigenfrequencies. Also, it has
positive sign and negative sign across the point. This also implies that there is a
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phase difference of p on two sides of a resonance. A negative mass density also
means that the system’s acceleration is against the external force.

The next parameter to consider is the impedance of DMR. It can be defined as

Z ¼ Ph i= _W
�  ¼ i Ph i=x Wh i ¼ �ixq:d: ð8:23Þ

The above equation shows that a near-zero value of the effective mass density
implies that the effective impedance is well matched to the impedance of the air.
This will enable an optimal coupling of the DMR with the incident sound. Further,
if one expresses the effective mass density as: [56]

G ¼ Wh i= Ph i ¼ i=xZ ¼ �1=ðx2qdÞ ð8:24Þ

then a nonzero value of q will enable the normal displacement to diverge in the
absence of dissipation. Hence, there will be a huge transmission peak as expected
when q becomes zero (Fig. 8.9d).

Another interesting effect of the near-zero value of effective mass density is the
phenomenon of supercoupling. This means an almost perfect through small paths
during normal incidence [57–59]. Further, in the imaginary part of q, the implying
dissipation will be positive, if judged from the relation of q with Green’s function
and the impedance. The positive value can be further confirmed from its relation
with the impedance where real part is associated with dissipation.

There is another interesting point known as antiresonance, which lies in the
frequency range between the two resonance peaks. At this antiresonance
frequency, 〈W〉 = 0 causes q to diverge with a change in sign and the impedance to
diverge, and the wave will be totally reflected. This is shown in Fig. 8.9d as a
transmission drop near 440 Hz. This interesting property leads super thin and light
weight reflective panels with exceptional capability to block low-frequency noise
[55, 60–64].

〈W〉 ! 0 is due to the fixed boundary condition of the membrane. This causes q
to be negatively divergent in the static limit. With a quasistatic force, this provides
an infinite inertia of the system. The negative sign of the effective mass density is
also a consequence of Newton’s third law. This negative sign behaviour of q is also
shown in other types of structures [51, 65]. For instance, a negative q in the
low-frequency limit was recently demonstrated for liquid foam, which is equivalent
to an array of flexible membranes [66].

8.7.3 Effective Bulk Modulus of Two Coupled Membrane
Resonators and Double Negativity

In this section, the effective bulk modulus characteristics will be studied. For a thin
membrane, the vibrations with the expansion and compression of the membrane
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along the thickness direction will only occur at very high frequencies. These are
monopolar vibrations giving anomalous values of the effective bulk modulus. One
way to lower in monopolar resonant frequency is to couple two membranes to form
a new DMR (Fig. 8.10a). This two coupled membrane resonator is similar to a
single DMR as it also has two dipolar eigenmodes. Hence, it also possesses the
characteristics of the effective mass density. It is to be pointed out that in this new
structure, a third mode and a new mode are produced. Hence, the two membranes
oscillate against each other. So, there are altogether three eigenmodes (Fig. 8.10b).
The characteristics of the new mode lead to an effective bulk modulus j, and it is
frequency dispersive (Fig. 8.10c, middle). This is because the DMR is pulsating
with volume in compressive–expansive motions, while the centre of mass is kept
stationary. Again j approaches zero at the monopolar frequency and becomes
negative at the higher frequency side of this eigenmode. Kafesaki and Economou
[22] found that the monopole mode is situated near the dipolar antiresonance. The
monopolar and dipolar modes of the DMR can be tuned independently. Since j has
a value almost zero, the two coupled membrane resonators with air space in

between have a characteristic impedance Z which will be given by z =
ffiffiffiffiffiffi
qj

p
and

has a magnitude equal to that of air despite having a large q.
The double negativity of q and j will produce a real effective wave vector k = xffiffi
q
j

q
. This implies a propagating wave.

The following is an analysis of how acoustic double negativity will give rise to a
negative refractive index. Figure 8.10c will be referred. One will show that the real

part of the effective index n = v0/
ffiffi
j
q

q
will be negative where v0 = speed of sound in

air. Since P * j〈W〉, j * 1/G′, and q = −1/G, where G = Green’s function. The
sign of the imaginary part of G must be fixed. This shows that the imaginary parts
of j and q must be opposite in sign. The previous section shows that the imaginary

Fig. 8.10 Coupled membranes giving rise to both mass and modulus dispersions [31]
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part of q is positive. This indicates that q should be in the second quadrant of the
complex plane and j in the third quadrant. It follows that q/j must be in the fourth
quadrant. Also, the imaginary part of the refractive index will be positive if the
sound is propagating forward, and as a consequence, the real part of the effective
refractive index will be negative. Figure 8.10c (middle) shows j and q negative in
the grey-shaded region. This shows a negative refractive index in the finite fre-
quency range.

8.8 Super-Resolution and Focusing Beyond the Diffraction
Limit [31]

8.8.1 Resolution Limit and the Evanescent Waves

The double acoustic negativity enables the manipulation of acoustic wave. An
important application is the enhancement of the resolution limit of acoustical
imaging. The resolution limit is due to the dispersion relation k2 = (x/v)2 = (2p/k)2.
The dispersion relation sets a limit on the magnitude of the real component k11, the
wave vector lying along the plane of the image.

With k2 = k2|| + k2⊥, and for a negative value of k2⊥ or k⊥ to be purely imag-
inary, one is able to increase the magnitude of k11 components to be larger than 2p/
k. This will produce a smaller value of k and hence enhance the image resolution. It
is to be noted that the wave components with imaginary k⊥ are evanescent waves
which are nearfield waves and nonpropagating. They decay exponentially with
distance away from the source. Hence, details of the source/scatterer are contained
in the nearfield.

8.8.2 To Defeat the Diffraction Limit

Here, one will describe the achievement of sub-diffraction scale image resolution
using acoustic metamaterials which manipulate the properties of the medium in the
vicinity of the focal spot.

Sub-diffraction focusing was experimentally demonstrated by Lemoult et al.
[67]. Their system consists of a two-dimensional square lattice of soda cans which
act as acoustic cavity resonators. There will be interference between the resonating
and the continuous fields giving rise to leaky modes in the system. These leaky
modes are shown in Fig. 8.11a as polariton-like dispersion and Fano-like resonance
profile. There is an interesting feature showing that below the band gap there is an
almost flat dispersion. This indicates huge wave vector with a large density of states
which is the cause of sub-diffraction intense focusing (Fig. 8.11b). Besides this,
defect modes can also contribute to sub-wavelength diffraction. These can be
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produced by blue-shifting some selected cavities “resonant frequency to the bulk
band gap” (Fig. 8.11a, grey region).

Sofar one obtains the sub-wavelength diffraction focal spot by adding on extra
wave vectors with the rescaling of the diffraction limit near the focus positions. To
obtain a perfect image of a source, one needs to capture the nonpropagating
evanescent wave which contains all the sub-wavelength diffraction information. The
evanescent wave lies in the nearfield. Hence, one needs the acoustical imaging system
to function in the nearfield region of the sound source, and with the acoustic lens
made of metamaterial to capture the evanescent wave. In addition, defect modes can
be created by blue-shifting the resonant frequency of some chosen cavities of the bulk
structure so that they fall into the bulk band gap (Fig. 8.11a, grey region). As a result,
the acoustic energy carried by these resonators was spatially confined in the lateral
directions because there were no propagative modes within the bulk structure for
these frequencies. Energy transport in the deep-sub-wavelength scale was thereby
demonstrated by line defects, as shown in Fig. 8.11b [68].

In the above analysis, the sub-diffraction focal spot is made possible by the extra
wave vectors supplied by rescaling the diffraction limit near the positions of the
focus.

Next is to study the mechanism for retaining the evanescent modes. The method
is to make use of the local resonances because the magnitude of k can be extended
to huge values without altering the frequency. This is due to flat dispersion
(Fig. 8.11a). This will introduce extra momenta and will sustain the evanescent
waves. These Fabry–Perot resonances can be realized in waveguides with the
length on the order of a wavelength or more but with cross-sectional dimension
much less than the wavelength. The acoustical imaging system consists of an array
of these waveguides placed in the nearfield of the source with each waveguide unit

Fig. 8.11 Super-resolution with local resonances [31]
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capable of recording highly localized disturbances and conveys the information to
the targeted locations. For such design of systems, acoustical images with
sub-wavelength resolution have been obtained (Fig. 8.11c) [50, 51].

8.8.3 Acoustic Superlens

The superlens concept [69] which enables perfect imaging was proposed by Pendry
[69] for electromagnetic waves. Here, a double negativity metamaterial (with
negative permittivity and negative permeability) is used. This double negativity also
produces negative refractive index. Snell’s law shows that at the interface between a
conventional material and a negative refractive index material, an obliquely incident
wave from the side of the conventional material will bend to the same side of the
surface normal, into the negative refractive index material. This is known as neg-
ative refraction. Negative refraction will enable a diverging wave to reconverge. It
shows a rectangular slab of material that can be used as a lens. For such type pf
lens, two foci will be generated by a point source: one within the slab and the other
outside, on the other side of the slab [30] (Fig. 8.12a top).

Zhang et al. [70] demonstrated the first acoustic negative refraction using
metamaterial. They built an interface between a normal material and a metamaterial,
and negative refraction was shown which gave a negative refractive index with the
source placed at one side of the interface; a focus was identified. The double
negativity of the acoustic metamaterial amplifies the evanescent waves which
carried the detailed information, and this enables the superlens (Fig. 8.12 bottom).

It is to be noted that singly negative metamaterial can also amplify the
evanescent waves. This is due to the surface plasmons like resonance formation at
the interface between the metamaterial and the normal material. This has been

Fig. 8.12 Acoustic realization of superlens and hyperlens [31]
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demonstrated by Park et al. [71]. They used a two-dimensional membrane array’s
negative effective mass density regime to amplify the evanescent waves, and
super-resolution can be achieved [72]. Since this interfacial mode decays expo-
nentially, from the interface, the lens has to be of sub-wavelength thickness.

Kaina et al. [54] also demonstrated an acoustic superlens made of doubly neg-
ative acoustic metamaterial. The principle used can be understood by the
tight-binding model. The unit cell of the doubly negative acoustic metamaterial
comprises two coupled Helmholtz-like cavity resonators which will generate
monopolar modes and negative effective bulk modulus. The metamaterial is a
two-dimensional lattice which consists of those unit cells. Coupling two eigenstates
with identical eigenfrequencies will produce anticrossing and two modes with
opposite symmetries separated by their resonant frequencies. One can adjust the
coupling by introducing a slight mismatch in their eigenfrequencies or altering the
distance between the resonances. This is equivalent to tuning the frequency and
intensity of the dipolar modes. Two resonators out of phase will produce the dipolar
mode. It is observed that within the negative effective bulk modulus band gap, there
is a narrow transparency band with negative dispersion.

With the above design, it was experimentally demonstrated that a doubly neg-
ative flat lens can be fabricated with foci inside and outside the lens. It also showed
that the evanescent waves can be amplified by the coupled resonators and
sub-wavelength resolution can be achieved. Indeed the focal spot has a sharpness
with amplitude full width at half maximum of of k/15, three times smaller than the
size of the image source which is k/5 bandwidth. The reason for this additional
sharpness arises from the superlens’ doubly negative band which gives relatively
flat dispersion, thus yielding extra wave vectors and high density of states.

The evanescent waves will decay once they leave the superlens [73]; in order to
overcome this, one can build a far field superlens. For electromagnetic waves, this
has been done by adding sub-wavelength structures such as corrugations or gratings
[74, 75] which will provide additional wave vectors to bring the evanescent waves
with lateral wave vectors larger than 2p/k in magnitude back into the light cone of
the free space propagating waves. This has yet to be done for the case of the
acoustic waves.

8.8.4 Acoustic Hyperlens [31]

The acoustic hyperlens is an another approach to super-resolution [76]. The concept
is based on a hyperbolic dispersion relation given by

k2h
qr

þ k2r
qh

¼ x2

r
ð8:24Þ

This dispersion relation has a hyperbolic shape. This is a consequence of the
effective mass density being negative along the radial direction r̂ but positive along
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the azimuthal direction bh. This yields qh qr < 0. This is illustrated in Fig. 8.12c.
The relation is shown to be valid for acoustic wave [77–79]. Based on Eq. (8.2), the
wave vector.

kh and/or kr is no longer bounded and can take on arbitrarily large values. This
means that the hyperbolic dispersion relation can be satisfied without any a dis-
persion which was shown to be possible for acoustic waves [77–79]. As a
result, kh and/or kr is no longer bounded and can, in principle, take arbitrarily large
values. This means that the hyperbolic dispersion relation can be satisfied without
any of the wave vectors to be imaginary.

This concept of acoustic hyperlens has been experimentally demonstrated by
Shen et al. [79]. They fabricated a fan-shaped structure with alternating brass and

air stripes lining along the bh direction (Fig. 8.6d).
In such a geometric structure, the effective mass density will be given as the

arithmetic average of brass and air’s mass density along the bh direction and also as
the average of brass and air’s inverse mass densities along the br direction. Since
there is a huge difference between brass and air’s mass densities, the effective mass
densities of brass and air can differ by a large ratio. Consequently, this geometric
structure will have an elliptical equifrequency contour, with a large eccentricity. This
enables access to huge wave vector components. The advantage of such a structure is
that super-resolution can be achieved without the need for negative mass density and
negative bulk modulus which are the outcomes of resonances, and hence is restricted
over a narrow frequency range. The separation of the sound sources four to seven
times smaller than the sound wavelength were shown to be clearly separated and
magnified, measured outside the hyperlens. The measurements took place outside
the hyperlens demonstrating successful conversion of evanescent waves into prop-
agating waves. Besides the above experiments, an acoustic hyperlens using hyper-
bolic dispersion relation was also demonstrated using membranes made of
metamaterials which generate negative mass density [79].

8.9 Coordinate Transformations

8.9.1 My Important Discovery of Negative Refraction is
a Special Case of Coordinate Transformations
or a Unified Theory for Negative Refraction
and Cloaking

Here, we consider both cloaking and negative refraction under the umbrella theory
of coordinate transformation or gauge invariance of the form of equations under
coordinate transformations. This is a pattern of nature and is applicable to all
equations of physics covering both Maxwell’s equations and the acoustic equation
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of motion. When the determinant of the direction cosines matrix (or transformation
matrix) equals −1, one will have negative refraction or parity equals −1. Also,
multiplying the original permittivity and the original permeability by the determi-
nant value of −1 will produce negative values of the permittivity and the perme-
ability. This shows that negative refraction is a special case of coordinate
transformations used in cloaking problem when the determinant of the transfor-
mation matrix equals −1. This can be illustrated as follows:

v0x
v0y
v0z

0@ 1A ¼
/1 /2 /3

b1 b2 b3
c1 c2 c3

0@ 1A vx
vy
vz

0@ 1A ð8:25Þ

When the determinant of the direction cosines matrix on the right-hand side of
(8.25) equals −1, we have

~v0 ¼ �~v: ð8:26Þ

Replacing the vectors by the examples of permeability and permittivity, we will
have

l0lj
�! ¼ � llj

�! and e0il
!¼ �eil

!: ð8:27Þ

This shows that negative refraction also produces negative permeability and
negative permittivity.

Since this gauge invariance of the form of equation is a pattern of nature of all
physics equations, it is also applicable to the acoustic case where the equivalence of
the permittivity and permeability is the mass density and the bulk modulus or
compressibility.

This also shows that cloaking material or component will become the lens in the
special case of negative refraction and refraction is a special case of cloaking or the
bending of light wave or sound wave when the path of wave propagation becomes
linear from nonlinearity.

This shows that gauge invariance has a broader coverage and applications than
Veselago [30]’s dispersion relation.

Further, we also introduce reflection invariance (or right–left symmetry) to
explain negative refraction. In fact, −l and −e can be considered as the mirror
image of l and e and −q and −j can be considered as the mirror image of q and j.
Again here, the concept of coordinate transformations is used.

Of course, it should be also mentioned here that gauge invariance approach to
negative refraction removes the ambiguity caused by using the dispersion relation.
Both positive and negative signs occur simultaneously due to the square root sign of
the dispersion relation, and this has to be justified.
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8.9.2 Acoustical Cloaking

Acoustical cloaking deals with the deflection or bending of sound wave and the
control of the propagation and direction of sound wave according to our specified
direction.

Again, Veselago [30]’s theory of using dispersion relation is not relevant here.
We use coordinate transformations, a form of gauge invariance. That is, there is no
change in the form of the acoustic field equation after the coordinate transforma-
tions or the acoustic field equation is gauge invariant subjected to coordinate
transformations.

As an illustration, we quoted the results of Cummer and Schurig [80].
Cummer and Schurig [80] illustrated coordinate transformations for acoustics by

using the linear acoustic equation for inviscid fluid:

jxp ¼ �jr �~v; jxp~v ¼ �rp ð8:28Þ

where x = angular frequency, v = sound velocity.
Next, he imposed a new set of curvilinear coordinates x0, y0 and z0 on these

equations. Using A as the Jacobian matrix of coordinate transformations from
x; y; zð Þ to x0; y0; z0ð Þ, he expressed the gradient operation in the new primed coor-
dinates as:

rp ¼ ATrp ¼ ATr0p0; ð8:29Þ

and the divergence operation can be expressed as

r �~v ¼ det Að Þr0 � A
det Að Þ~v ¼ det Að Þr0 � v0! ð8:30Þ

With these expressions, the original Eq. (8.28) can be written in the new
coordinates as

jxp0 ¼ �j det Að Þr0 � v0!

jx det Að Þ AT
� ��1

q A�1� �
v0
! ¼ �r0p0 ð8:31Þ

which is in the same form as the original Eq. (8.28), but with the new medium
parameters:

j0 ¼ det Að Þj; p ¼ det Að Þ AT
� ��1

q A�1
� �

: ð8:32Þ

Physically, this means that if one applies a coordinate transformations to a
solution to Eq. (8.28) and changes the medium properties according to Eq. (8.31),
the transformed fields are a solution to the acoustic equations in the new medium.
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Acoustical cloaking can be classified as a form of acoustical imaging because by
placing a metamaterial acoustical cloak on the object to be cloaked it will render its
disappearance from one sight. The concept of acoustical cloaking also extended
from electromagnetic cloaking [81, 82]. Electromagnetic cloaking uses concepts of
gauge invariance from general relativity, that is, the form of the Maxwell’s equa-
tions remains unchanged under arbitrary coordinate transformations with trans-
formed permittivity and permeability values which are scaled by a common factor.
Because of the nature of negative refraction of metamaterial, by cloaking the object
with a metamaterial, the light rays will be deflected, stretched and bent and guided
around the object and returned to their original trajectory.

However, due to the dispersion nature of the light, the cloaking effect is specific
only to a single frequency and not broadband.

The concept of acoustical cloaking was extended to acoustics by Milton and
Willis [37] and by Cummer and Schurig [80]. The analysis by Milton and Willis
[37] indicated that the coordinate transformations approach cannot be extended to
elastodynamic waves in solids in the fully general case or even for the special case
of compressional waves in a fluid. However, a scattering theory analysis has shown
that the cloaking solution exists for acoustic waves in fluids as three dimensions
(Cummer and Schurig [80]) and by analogies with electromagnetics. It has been
shown that 2D acoustic waves (Cummer and Schurig [80]) and 3D acoustic waves
can be made as transformation invariant. The material parameters required to
implement acoustic coordinate changes have also been obtained by Greenleaf et al.
[83].

It has to be noted that the phenomenon of acoustical cloaking cannot be trans-
planted blindly from electromagnetic cloaking using analogy. As shown in section
two of this chapter, Veselago [30]’s theory is not applicable to acoustic waves, and
even for electromagnetic waves, it is valid only to isotropic case and not for
anisotropic cloaking material which most cloaking materials are made of. Also, the
acoustic metamaterial has to be derived using the theory of elasticity and not from
dispersion relation as what used to derive the Yablonovitch [1]’s negative perme-
ability and negative permittivity. Our gauge invariance approach can provide better
physical understanding of negative refraction and cloaking. We also noted that
acoustic negative refraction can be obtained from multiple scattering theory
(MST) besides the approach of negative mass density and negative bulk modulus.
This also confirms that negative refraction is a form of multiple scattering. The
above analysis is also given in section two of this chapter.

Our idea of objection to use analogy between acoustic wave and electromagnetic
wave is supported by Cummer and Schurig [80]. They pointed out that demon-
strating the invariance through analogy of acoustic wave with electromagnetic wave
masks some of the physics of the transformations approach particularly how vectors
such as particle velocity and the pressure gradient change under transformation.
Through an analysis of how power flow and constant phase surfaces must transform
for completely general waves, they show that the velocity vector in acoustics must
transform in a different way than the ~E and ~H vectors in electromagnetics. This
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explains why Milton Willis’s [37] elastodynamics analysis assumed that the

acoustic velocity transforms like E
!

and H
!

did not result in acoustic equation
transformation invariance. We feel that this further shows the intrinsic elastic
properties of acoustic wave as different from the electromagnetics. The treatment of
negative refraction using theory of elasticity approach by Lee et al. [84] and Gan
[85]’s analysis on the gauge invariance of acoustic fields [85] further confirms this.
An example of the fabricating of acoustical cloak is given by Cheng et al. [86].

8.9.2.1 Derivation of Transformation Acoustics

Here, we follow approach of Cummer et al. [87]. The fluid version of the linear
acoustic field equations will be used:

rp ¼ ixq ~rð Þq0~v ð8:33Þ

ixp ¼ j ~rð Þj0r �~v ð8:34Þ

where q ~rð Þ and j ~rð Þ are the normalized density and bulk modulus, respectively, of
the medium and are coordinate transform invariant. We will demonstrate how the
acoustic~v must transform by considering ~v in a nonorthogonal coordinate system
described by coordinate q1, q2 and q3 with unit vectors bu1, bu2 and bu3, respectively.
Following Pendry [69] and letting i ¼ 1; 2; 3

Q2
i ¼

@x
@qi


 �2

þ @y
@qi


 �2

þ @z
@qi


 �2

ð8:35Þ

Area ¼ Q1dq1Q2dq2 bu1 � bu2j j

Figure 8.13 shows what happens when we apply the divergence theorem to an
infinitesimal volume in this nonorthogonal coordinate system.

Deriving the net outward flux of~v from this volume and setting it equal to the
divergence of~v times the infinitesimal volume, it can be shown that

r �~vð ÞQ1Q2Q3 bu1 � bu2 � bu3ð Þj j ¼ @

@q1
Q2Q3~v � bu2 � bu3ð Þ½ � þ @

@q2
Q1Q3~v � bu1 � bu3ð Þ½ �

þ @

@q3
Q1Q2~v � bu1 � bu2ð Þ½ �

ð8:36Þ

Let Vfrac ¼ bu1 � bu2 � bu3ð Þj j because this is the fraction by which a unit volume is
compressed by the coordinate nonorthogonality and we use the conventional
superscript (subscript) notation for contravariant (covariant) vector components using
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~v � bu2 � bu3ð Þ ¼ v1bu1 � bu2 � bu3ð Þ ð8:37Þ

Equation (8.4) can be rewritten as

r�~vð ÞQ1Q2Q3Vfrac ¼ @

@q1
Q2Q3Vfracv

1� �þ @

@q2
Q1Q3Vfracv

2� �
þ @

@q3
Q1Q2Vfracv

3� � ð8:38Þ

Noting that the divergence in the transformed coordinates is defined by
rq �~v ¼ @v1

@q1
þ @v2

@q2
þ @v3

@q3
, we can write

r �~vð ÞQ1Q2Q3Vfrac ¼ rq � ðVfracQper v1v2v3
� �ÞT

¼ rq �~v
ð8:39Þ

where

Qper ¼
Q2Q3 0 0
0 Q1Q3 0
0 0 Q1Q2

24 35 ð8:40Þ

and the transformed velocity vector~v is given by

~v ¼ VfracQper v
1v2v3

� �T
: ð8:41Þ

The per subscript on the tensor Qper is to denote that the diagonal elements
transform each vector component by the product of the coordinate scaling factors
perpendicular (more general, not parallel, for the case of nonorthogonal coordi-
nates) to the direction of the vector component. Recall that our qualitative dis-
cussion above, summarized in Fig. 8.6, showed that this is precisely how the
velocity vector must transform in a compressed wave in order for transformation

Fig. 8.13 Parallelepiped that
defines an infinitesimal
volume in the transformed
coordinates. The area and unit
normal of each face enter in
the calculation of the net flux
of a vector out of this volume
[87]
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acoustics to work. Note that the elements of the volume vector v1v2v3½ �T are the
contravariant components of ~v in the nonorthogonal coordinate system, while the
element of the vector ~v is the component in the original orthogonal coordinate
system (Fig 8.14).

Multiplying (8.34) with k ~rð Þ ¼ 1) by Q1Q2Q3Vfrac and using (8.41) results in the
equation in the transformed coordinates,

ixp ¼ j ~qð Þjrq �~v ð8:42Þ

with

j ~qð Þ ¼ Q1Q2Q3Vfracð Þ�1: ð8:43Þ

This demonstrates the coordinate to function invariant of (8.34) provided that the
bulk modulus is modified according to (8.43) and the velocity vector is transformed
according to (8.42). More generally, this also shows how a vector must transform in
order for the gradient operator to maintain its basis form.

Cummer et al. [87] derived how (8.33) and therefore the gradient operator
transform under a coordinate change using the gradient theorem, and integratingrp
along a short length in the q1 coordinate directions, they find that

rp � Q1bu1 ¼ @p
@q1

¼ rqp
� �1

: ð8:44Þ

The left-hand side contains the scaled covariant components of rp which must
be converted to covariant components before it can be equated component-wise to
rqp, the gradient in the transformed coordinates. They find that

rqp ¼ Qparh
�1 rpð Þ ð8:45Þ

Fig. 8.14 Transformation of vectors in electromagnetic (left) and acoustic or compressional
elastodynamic (right). The white converging arrows denote which component of each vector is
compressed by coordinate transformations [87]
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where Qpar is the diagonal tensor containing coordinate scaling factors parallel to
the direction of the vector component or

Qpar ¼
Q1 0 0
0 Q2 0
0 0 Q3

24 35 ð8:46Þ

and

h
�1 ¼

bu1 � bu1 bu1 � bu2 bu1 � bu3bu2 � bu1 bu2 � bu2 bu2 � bu3bu3 � bu1 bu3 � bu2 bu3 � bu3
24 35: ð8:47Þ

Note that this h
�1

is the same as g�1 defined by Pendry [69]. They rename this
tensor because they will use g later to denote the metric tensor which is not quite the

same as this h.

Finally, multiplying (8.33) (with q ~rð Þ ¼ 1) by Qpar, they find

pqp ¼ ixQparh
�1
q0~v ¼ ixQparh

�1
Q

�1

parV
�1
fracq0~v ð8:48Þ

leaving us with the equivalent of (1) in fully transformed coordinates

rqp ¼ ixqq0~v ð8:49Þ

with

p ¼ Qparh
�1
Q

�1

parV
�1

frac: ð8:50Þ

Equations (8.42) and (8.49) show that the acoustic equations are fully trans-
formation invariant with the modified material parameters in (8.43) and (8.50).

They further show that these experiments are equivalent to those shown by Naify
et al. [63] purely by analogy with electromagnetics through the electric conductivity
equation (Greenleaf et al. [88]) and those derived by Greenleaf et al. [83] for the
general scale Helmholtz equation. Consequently, cloaking shell, concentrator and
other devices that have been designed theoretically by electromagnetics can also be
realized for acoustics provided that the bulk modulus and anisotropic effective mass
density tensor can be realized in practice as specified by (8.43) and (8.50). This first
principle derivation without using analogy shows explicitly in (8.41) how the
acoustic velocity vector must transform under coordinate change, which as noted
above is different from how the ~E and ~H field transform in electromagnetics. The
scalar pressure is, however, not changed by the coordinate transformations, and
thus, like phase fronts and power flow lines, it is simply deformed by any coor-
dinate transformations.
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8.9.2.2 Application to a Specific Example

We consider the spherical cloaking transformation [80] as illustrated in Fig. 8.7 and
specified by r0 ¼ aþ r b� að Þ=b where a and b are constants and b[ a. This

coordinate transformations is orthogonal and then h ¼ 1 and Vfrac ¼ 1 which are
good simplification. The Qi length scaling factors are straightforward to calculate
provided one realizes that the azimuthal and polar angles and not length, as in
Cartesian coordinates and (8.35), must be modified slightly. The Qi is defined by
the ratio of infinitesimal lengths in the transformed and untransformed coordinates,
and thus,

Qr ¼ dr
dr0

¼ b
b� a

; Q/ ¼ rd;
r0d/0 ¼

b
b� a

r0 � a
r0

ð8:51Þ

QH ¼ r sin h
r0 sin h0

dh
dh0

¼ hu ð8:52Þ

in agreement with the parameter found through other approaches by Greenleaf et al.
[83] and Cummer et al. [89].

Thus Cummer et al. [87] showed ~E and ~H of electromagnetics transform dif-
ferently from~v of acoustic waves under coordinate transformations. It shows that a
first principle analysis of the acoustic equation under arbitrary coordinate trans-
formations confirms that the divergence operator is preserved only if velocity
transforms in this physically correct way (Fig. 8.15).

Fig. 8.15 Real part of the
pressure field in the r–h plane
of the problem domain
computed from the series
solution. The plane wave is
incident from the left [89]
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8.9.3 Zero-Index Medium [31]

Zero-index medium (ZIM) [31] which has a refractive index near zero can be
applied to acoustical cloaking with n � 0; then Du = kd = nxd/c � 0 means no
advance of phase inside the medium where d = propagating distance, x = angular
frequency and ΔU = accumulated phase of the sound wave. The area/volume ratio
of this type of material, from transformation acoustics, will be equivalent to a point
with a measure of zero but with expansion in space [63]. This means that the
wavefield inside such a medium will not change and will remain constant. The
shape of the ZIM’s boundary will determine the outgoing wavefront. This means
that if viewed from outside, a scatterer will not generate any scattered wave if it is
placed inside a ZIM and hidden [90].

A ZIM can generate other interesting effects. For instance, although a plane
wave passing through a slab of ZIM with thickness d will accumulate no phase, the
same wave when propagating through the background medium with refractive
index n will advance in phase by Du = nxd/c. This will cause difference in the
phases of the outgoing wave in these two different cases unless d = 2 mpc/nx,
where m = integer. This means that the cloaking effect would be lost through
comparison of the two phases unless d fulfils the above relation.

Besides this, ZIM cloaking is limited only to normal incidence because total
internal reflection will occur to the wave with oblique incident angles. There is
some application of this interesting characteristic as shown below. First, one takes a
prison made with ZIM and with two boundaries makes a nonzero angle. With an
incoming wavefront at normal incidence to a boundary of the prism, total trans-
mission through both prism interfaces is expected. However, a wave propagating in
the opposite direction of the incident wave will be totally reflected by the prism due
to nonzero incident angle. Thus, the restricted geometry of the prism gives rise to a
symmetric transmission [91]. Another advantage is that ZIM’s functionality is
highly sensitive to the nature of defects. This is due to the boundary dependence of
ZIM in the presence of acoustic waves. A defect with an acoustically soft boundary
or P = 0 placed inside a ZIM will enable the wavefield inside to be zero everywhere
giving rise to total reflection of incident wave [92–94]. This boundary dependence
of the ZIM in the presence of sound wave can also be used to mitigate the
transverse-longitudinal mode conversion of scatterers [95].

8.10 Space-Coiling and Acoustic Metasurfaces [31]

8.10.1 Incurring Large Phase Delays Within a Small Space

Acoustic waves are longitudinal waves. This is an advantage that can be tapped on
for the design of the acoustic metamaterials. This will enable the acoustic waveg-
uide to have no cut-off frequency. This advantage has been exploited by Liang and
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Li [90] in their design using the space-coiling concept. This is a complex passage,
with sub-wavelength cross section. This enables sound to propagate through pas-
sages that are much longer than their external dimension (Fig. 8.16a). The coiling
up of passages produces a huge phase delay Du = k0L, where k0 = wave number in
the background fluid and L = “acoustic path”. This type of geometric structure has
been used in bass woofers or folded horn speakers [96]. Here, the phase and group
velocities and hence the effective refractive index and dispersion relation can be
tuned by adjusting the total length of the sound passage. This concept was
experimentally proved [97–99].

The space-coiling design is easy to implement and also effective. This received
much attention. Various functionalities such as high transmission [100, 101],
absorption [102], one-way transmission [101] and zone plate focusing [100, 103–
105] were demonstrated.

Cheng et al. [106] reported a fan-shaped design of space-coiling. The cylindrical-
shaped unit cell with the winding air passage produces a high effective refractive
index. This produces a multipleMie resonances of angular momenta. Single negativity
in the mass density and bulk modulus was shown. The strong Mie resonances produce
a huge scattering cross section leading to high reflection with sparse units.

8.10.2 Phase Manipulation with Acoustic Metasurfaces [31]

Space-coiling design structures are useful for constructing acoustic metasurfaces,
which are acoustic phase arrays with sub-wavelength thickness. They are capable of

Fig. 8.16 Space-coiling and acoustic metasurfaces [31]
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generating phase shift up to 2 p across a single layer. This phase shift supplies the
incident wave with an extra momentum. This phase shift can cause the incident
wave to reflect/refract at an abnormal angle due to the extra moment acquired. Li
et al. [107] proposed a feasible design. Their reflective geometry is shown in
Fig. 8.16c.l. Here, part of the incident wave that enters the coiled channels so that
nonspecular reflected beam will be formed due to the laterally varying phase delay
is acquired by the reflected wave. The wavefront of the nonspecular reflected beam
is marked by red ridge as shown in Fig. 8.16c. Subsequent experiments [108] show
interesting phenomena of negative refraction, focusing and surface wave
conversion.

A weakness of this space-coiling design is the large impedance mismatch
between the incident wave and the reflected wave. For sound transmission, besides
phase shifts, impedance matching is also necessary to obtain optimal results. Some
theoretical works [109, 110] have considered this. Some experimental works have
target to resolve the impedance matching problem. One method is to use resonances
to improve coupling [111, 112]. Another method is to improve impedance matching
by adding on horn-like design [113, 114]. This is shown in Fig. 8.16d. With this
addition of horn-like design, negative refraction was shown in transmission by
using a lateral gradient in phase delay. However, these designs have to sacrifice the
thickness of the devices. Their thickness is close to k/2. Li et al. [107] also
demonstrated exotic functionalities such as complex wavefront shaping in the
formation of self-bending beams by imprinting spatial function to the phase profile
generated by the metasurface. These performances will depend on the condition of
the incident wave such as incident angle, beam shape, position and source geometry
[108, 111].

8.11 Absorption [31]

Acoustic absorption is essential for noise reduction and sound insulation. The three
principal mechanisms of absorption are dissipation, impedance matching and res-
onances. Friction will give rise to dissipation. So, sound absorbing materials are
porous. Some common forms are fibreglass, mineral wools, sponges and cotton
[115]. Impedance matching improves absorption by enhancing coupling of the
incident acoustic energy with the absorbers. An example is gradient index material.
Examples of gradient index materials are porous materials with varying filling
density. Improvement in impedance matching can be obtained by cutting blocks
wedge or conical shapes. Improved impedance matching and high energy density
will produce resonances. An example is microperforated panels with back cavities
[116].

The above methods will show good performance for a relatively broad and
relatively high frequencies. They are less effective for low frequencies. This is due
to quadratic dependence of attenuation on frequencies. An obvious way is to
increase the thickness of the sound absorbing material which would be of the order
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of a few wavelengths which can exceed 1 m for low-frequency sound as sound
absorbing material. This is impractical. A way out is to use acoustic metamaterial as
sound absorbing material. Sub-wavelength resonators can produce very high-level
energy density. Since absorption is proportional to the product of energy density
and absorption coefficient in the low-frequency regime, a small value of the
absorption coefficient can be compensated by a large value of the energy density.
This has been demonstrated by Maa [116]. They obtained large absorption by using
sub-millimetre elastic membranes dotted by asymmetrically shaped rigid platelets.
Figure 8.17a shows a concentration of large energy density within small regions
near the perimeter of the rigid platelets due to the contrast in flexural rigidity. These
regions are of sub-wavelength dimensions. This causes the decoupling of the high
energy densities from the propagating modes, and so, only absorption can take
place. Also, it has been shown that perfect impedance matching and high local
energy density can take place simultaneously [117]. This can be achieved by adding
a thin layer of sealed gas behind the DMR (Fig. 8.17b left), which will result in a
new resonant mode by combining two low-frequency modes (Fig. 8.17b). Because
the new resonant mode is a linear superposition of the two low-frequency eigen-
modes, the two components of the normal displacements 〈W〉 and dW(x) from
Eq. (8.19) can be separately tunable. Thus, one can optimize 〈W〉 for perfect
matching for air, and at the same time, dW(x) can become very large so that all the
incident wave energy will be absorbed (Fig. 8.17b right). This can lead to an
extremely thin low-frequency narrow bandwidth total absorber.

There are also other forms of space-coiling design reported. One [102] is that
sound was forced to travel a distance of k/4 through a convoluted air passage and
total reflection was reduced. This thin air passage, resembling a perforated plate,
will be the absorbing medium. Also, broadband absorption was demonstrated by
Jiang et al. [118]. This was done by stacking multiple quarter-wave resonators from
optics. This is due to the destructive interference between counter-propagating
waves. This will lead to the cancellation of outgoing waves, and total absorption
can be achieved. Theoretical works have been done applying CPA to acoustics
[119, 120]. They showed that stringent requirements are needed for geometry and
material properties. For instance, Leroy et al. [120] showed high absorption in
waterborne ultrasound using a sub-wavelength layer of resonant bubbles hollowed
in a soft polymer film to cover a sound reflector.

Another method to obtain total absorption is by degenerating critical coupling.
This can be done by using proper metamaterial design to obtain the exact degen-
eracy of two eigenmodes with different symmetric conditions [121]. The special
advantage is the sub-millimetre thickness of the sound absorbing membrane made
of acoustic metamaterial for low-frequency noise reduction compared with the
tremendous thickness required for sound absorbing material for low-frequency
applications.
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8.12 Sound Insulation Materials as Application
of Complex Local Resonant Structures

8.12.1 Introduction

Noise pollution is an outcome of increasing population density, traffic flow and
construction activities. There is increasing concern about inadequate sound insulation
in buildings and the consequent implications for occupants’ health and well-being
both in the public sector and in the private sector. Indications from recent studies
[122–124] show growing dissatisfaction from residents regarding the acoustic per-
formance of their accommodation, reflected by an increasing number of noise nui-
sance complaints [124]. The problem is particularly evident in medium- to
high-density housing situations. Acoustic intrusion commonly occurs at frequencies
below 1 kHz which corresponds to the bass beat of music systems where human
hearing has its highest sensitivity. The insulation in buildings for such low-frequency
range using conventional methods will require thick sound absorbing material which
is cumbersome and expensive. Acoustic metamaterial enables the sound insulation
membrane with sub-millimetre thickness and for low-frequency noise absorption.
This section will focus on the development of local resonant structures (LRS) as a
form of metamaterials. Simple analytical models of single and multiresonant linear
spring-mass systems will be used to study important design trade-offs and response
characteristics such as bandwidth, band positioning and sound transmission loss
during and after the frequency of localized resonance. New LRS specimens are then

Fig. 8.17 Acoustic absorption by DMRs [31]
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subjected to dynamic, plane wave impedance tube and diffuse field testing methods,
to indicate the performance of the metamaterial samples.

8.12.2 Sound Insulation

The purpose of sound insulation is to reduce sound transmission through the
building. There are various conventional methods of sound insulation. One com-
mon way is the use of sound barriers which reflects sound transmission energy. For
plane waves travelling though a medium, the quantity most commonly used for
expressing the performance of a partition’s sound insulation is the transmission loss
TL or sound reduction index R. First defined in the 1950s [125], the sound
reduction index is related to the transmission coefficient s by:

R ¼ 10 log10
1
s


 �
: ð8:53Þ

The transmission coefficient is a frequency-dependent fraction of the incident
sound energy and the transmitted sound energy through a medium. In the problem
frequency range, reflection properties are dominated by the mass/area. This region
may be approximated by the mass law equation:

R ¼ 10 log10 1þ pfM cos h
qaca


 �2
" #

ð8:54Þ

where M is the mass per area, qa is the density of air, ca is speed of sound, f is the
frequency, and h is the angle of incidence. The sound reduction index is maximized
when sound is transmitted at normal incidence.

8.12.3 Application of Acoustic Metamaterials to Sound
Insulation [126]

Acoustic metamaterials are artificial composites with periodic structures and pos-
sess properties which can be artificially manipulated, that is, with properties not
found in nature. They are inhomogeneous in nature and thus with a nonuniform
composition engineered to provide properties which may not be readily available in
nature. These inhomogeneous materials have a nonuniform composition.
Klironomos and Economou [127] showed that the presence of inhomogeneity in a
material can influence the propagation of waves in periodic material structures.
These materials have been developed by John [128] and Kushwaha et al. [129] in
the areas of electromagnetics and acoustics, respectively. Metamaterials can form
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band gaps enabling the material to prevent wave transmission in specific frequency
ranges of electromagnetic, elastic or acoustic waves in any direction. The band gap
can be created by two mechanisms [130]: (1) Bragg scattering and (2) localized
resonance. Analysis of large-scale acoustic Bragg scattering was first realized in
1995 by Martinez-sala et al. [131] where he described the sound transmission
properties of a large open air sculpture in Madrid. This sculpture consisted of a
periodic crystal-like arrangement of tall metal rods. Band gap behaviour of these
structures is due to the phenomena of wave diffraction and interference created by
the high-density rods acting as scattering reflectors. In order to create an acoustic
band gap in the audible range using Bragg scattering, the internal structure of the
material needs to be large. Because of the existence of Bragg scattering, it is
required that the lattice constant/arrangement be a minimum of half the wave length
of the incident sound wave [132]. For low-frequency wavelengths in order of
metres, this is simply too large to be practical for insulation applications.

Liu et al. [133] in 2000 created band gap by localized resonances. Here,
localized resonances were created by a three-component acoustic metamaterial,
including a host material with polymer-coated rigid inclusions. The frequency of
the band gap is dictated by the resonant frequency of the resonators and is inde-
pendent of periodicity and symmetry. LRS use internal resonances to alter the
effective properties of the material at different frequencies. One such property is the
ability to inhibit sound transmission in a targeted frequency range. Liu et al. [133]
showed that when a significant improvement in sound transmission loss was found
between 200 and 1000 Hz in a selected 100 Hz band. Using a unique LRS known
as a local resonant sonic material LRSM.

Theoretically, Milton et al. [134], Yao et al. [135], Huang and Sun [136, 137],
Gang et al. [138], Calius et al. [139] used the spring-mass model to explain the
important features of the LRS. Starting with a simple resonator LRS, the model
consisting of a mass attached to a spring is mounted on another two springs. Next,
one applied point force P to the backing layer will represent the acoustic pressure
applied by the sound field. First, the response of the system will be given as
follows:

F
0


 �
¼ k0 þ k1 � m0x2 þ ixc1 �k1 � ixc1

�k1 � ixc1 k1 � m1 þ ixc1

� �
x0
x1


 �
ð8:55Þ

where F = total force, x = displacement, m = mass, c = damping coefficient and
k = spring constant.

Rearranging and assuming no damping and solving the matrix, the system’s
effective mass (mT ) can be obtained as [134]:

mT ¼ F
am0

¼ m0 þm1x
2
1=ðx2

1 � x2
0Þ ð8:56Þ
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where F = externally applied force, am0 = acceleration of the host/layer,
x1 = resonant frequency of the spring k1 and mass m1 when attached to a rigid base
and can be found using:

x1 ¼
ffiffiffiffiffiffi
k1
m1

r
ð8:57Þ

By changing the spring stiffness k1 or internal mass m1, the resonant frequency
and the amplitude may alter.

From the analysis of (8.56), at frequencies well below f1 = x1/2p = 400 Hz, the
acceleration of the host material and resonator mass is close to equal, and the
effective mass is approximately the sum of the components mT = m0 + m1. At
frequencies far above the resonance frequency, where x 
 x1, the acceleration of
the resonator mass approaches zero and the total effective mass becomes the host
material only, where mT = m0. The frequency range most relevant here is fre-
quencies around resonance. As x approaches x1, the resonator mass and host
components are in phase with each other. The acceleration of the host material
drops towards zero, while the resonator mass acceleration is increasing. At x = x1,
the ratio of the resonator mass and host acceleration is at maximum and the host
material is almost stationary. The host material has a large total effective mass, and
therefore, sound transmission can be reflected well at this frequency. Frequencies
immediately above resonance components become out of phase with each other,
and it may be seen that the acceleration of both the host and resonator mass
increases to a maximum. At this point, the ratio of the two components is zero. The
result of this high acceleration in the host material is a decrease in the effective mass
to almost zero and an increase in transmission though the structure. By substituting
mT = 0 and rearranging Eq. (8.56), it can be seen that the frequency at which this
occurs is described by Yao et al. [135]:

x ¼ x1

ffiffiffiffiffiffiffiffi
ðm0

p
þmÞ=m0: ð8:58Þ

The biggest weakness in the LRS method is the limitation of the attenuation to a
narrow range of frequencies, the detrimental effects, immediately after resonance,
on transmission loss from the peak acceleration of the matrix material and to a
lesser extent, the limiting effect of damping.

LRS performance is strongly affected not only by the characteristics of the
resonator itself, but also more so by the way these local resonators are connected
together to form the LRS. The realization of useful LRS-based applications depends
on the combination of cost-effective materials and processes with modelling tools
that enable design, analysis and optimization.

In the following section, a modelling-driven building block approach is used by
Hall et al. [126] to develop LRS designs, with experimental verification at every
level. The local resonant unit represented schematically by the spring-mass model
provides the basic building blocks from which groups of resonant units are inte-
grated to form layers which are combined to form panels. Here, a modelling
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methodology is presented that predicts the transmission loss in an impedance tube
and a full-scale room-to-room test facility. This modelling methodology is then
used to explore the sensitivity of LRS performance to design parameters, with
particular attention to broadening the transmission loss bandwidth and reducing
detrimental effects outside this frequency band.

8.12.4 Modelling Methodology of the Localized Resonances
Structures (LRS)

It is well known that complex mechanical systems can be represented by a com-
bination of a large enough number of single degree-of-freedom SDOF sub-systems
such as the one depicted schematically in the spring-mass model [140].

8.12.5 Experimental Methods of the Localized Resonance
Structures (LRS)

Two different experimental methods were used to test the performance and validate
the modelling approach by Hall et al. [126]. Plane wave testing and diffuse field
testing laboratory-scale evaluations were performed using an impedance tube,
which is suitable for testing single units or small groups of resonators and mea-
suring the transmission and reflection of predominantly plane waves. Full-scale
measurements were performed between reverberation rooms, which were suitable
for testing relatively large specimens consisting of many resonators under diffuse
sound field conditions.

8.12.6 Plane Wave Testing

Here, normal transmission loss measurements were performed using the impedance
tube conforming the European Standard ISO 10534-2:2001 (E). Dimensions of the
impedance tube followed that of the B&K type-4026 impedance tube.
A 100-mm-diameter hollow cylinder made of medium density fibre (MDF) contains
the resonator units being tested. Alternative resonator designs were attached to a
backing plate that represented the matrix material of the LRS. The cylindrical LRS
sample was suspended on two rubber rings between two parts of the impedance
tube. A loud speaker generates plane wave sound that propagates down the first
tube. Part of the signal is transmitted through the sample which is measured in the
second tube using three microphones. Microphones 1, 2 and 3 are used to find the
transmitted side complex wave constants A and B, while microphones 4, 5 and 6 are
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used to find the receiving complex wave constants C and D. The receiving side of
the impedance tube is in anechoic condition where reflections (D) are assumed to be
near 0, and hence, the transmission coefficient is found to be near the ratio of A to
C. The transfer coefficient may be found from s = (AC − BD)/(AA − DD) where s
is the transmission coefficient. When s is applied to R = 20 log10(1/|s|), the sound
reduction index may be found.

8.12.7 Diffuse Field Testing

Full-scale diffuse field testing was carried out by Hall et al. [126] in the
room-to-room testing facility. It was developed according to ISO 140-3. Sound
reduction index of the samples is measured in two reverberation rooms (202 and
208 m3). The room-to-room testing facility was used by Hall et al. [126] for
full-scale diffuse field testing and was designed to ISO 140-3. There is an adjustable
gap between two well-insulated sliding doors that separate the two rooms. The test
specimen is to fill this gap. A broadband pink noise source signal is then placed in
one of the rooms. The spatial average sound pressure and reverberation time (RT) in
the emitting and receiving rooms are then measured using 1/2″ B&K 4190 and
4165 microphones. The process is then repeated with the noise source in the other
room. Data were processed in third octaves. In order to study the frequency
response in more detail than third octaves, the spectrum was found by calculating
the power spectral density (square of the magnitude of the Fourier transform of the
signal) from the raw time domain pressure signals. The narrow band RT was found
by interpolating the third octave RT results. The absorption area of the receiving
room was found using:

A ¼ 0:163V=T60 ð8:59Þ

where T60 is the reverberation time, V is the volume of the receiving room. The
level difference (dL) of the specimen was then calculated from:

dL ¼ 10 log10½P0� � 10 log10½P1� ð8:60Þ

where P0 is the incident sound power and P is the radiated sound power. Under the
assumption of diffuse sound fields in the transmitting and receiving rooms, the
actual sound reduction index of the specimen may be found using:

Rd ¼ dLþ 10 log10
S
A

� �
ð8:61Þ

where S is the area of the wall specimen. The single-layer panel consisted of 252
resonators attached to a 2.65 � 0.95 � 0.01 m plasterboard matrix layer using
Loctite 401 adhesive. The accelerations perpendicular to the panel plane were also
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measured, while the panel was subjected to pink noise. For each measurement, two
PCB A353 B65 accelerometers were attached at any 2 of 9 different positions on
the back of the panel using wax. The amplitude of the acceleration as a function of
frequency at various locations were measured. These measurements also allowed
the phase difference to be calculated between adjacent resonators. This testing
method gives insight into the sound insulating performance of large-scale meta-
material samples under a diffuse field.

8.12.8 Results

Experimental results are obtained and compared with theoretical calculations using
the spring-mass model by Hall et al. [126] for single-frequency local resonant
structures, parallel multi-frequency systems, series systems and series parallel
systems.

8.12.9 Discussion

The results obtained for single-frequency LRS through both experimental obser-
vations and analysis indicate that when x � x1, where x1 is the resonant fre-
quency of the resonator, the LRS transmission loss is equal or greater than that of a
homogeneous material with the equivalent mass area density. At frequencies
approaching x1, the host material and resonator mass are in phase with each other.
It may be seen that the acceleration of the resonator mass gradually increases in this
frequency region, while the host material reduces the acceleration mass of the host
material. The comparisons between modelling and experimental results, together
with the experimental results obtained by Yao et al. [135], confirm that systems of
linear spring-mass models can be used to obtain an accurate estimate of LRS sound
transmission behaviour, whether it is in an impedance tube or between reverberant
chambers. The key question for practical applications is how to maximize the
frequency band over which the LRS is effective while also achieving a large enough
increase in sound attenuation within that frequency range. Ideally, the LRS will
have a multiplicity of resonances at frequencies that are so close together that the
resonant peaks overlap. This can be achieved by designing systems of resonant
units with incremental closely spaced frequencies and an appropriate amount of
damping. Other researchers [141–143] have approached this problem by con-
structing multilayer LRS where each layer has a single resonance frequency, that is,
the resonators in any given layer are all tuned to the same frequency, but this
frequency is different from layer to layer. The limitation inherent in this approach is
that increasing the system’s bandwidth requires additional layers, each layer
increases the thickness of the system, and building applications impose practical
limits on the total thickness. So the question is whether sets of resonant units with
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different but closely spaced resonant frequencies arranged in a single layer could
produce a similar effect. The experimental and model results shown by Andrew
Hall et al. [126] demonstrate that this is the case. When resonators are placed in
parallel with only a small amount of damping, the band of increased attenuation
becomes several times wider than the previous single resonator arrangement, but
has a significantly lower peak magnitude. Similar to the single-frequency LRS,
there is also a significant drop in the transmission loss after resonance due to a drop
in the effective mass of the structure. Eventually, the LRS curve asymptotically
approaches the host material mass law. One method of shaping the transmission
loss curve and reducing the transmission loss dip around 1000 Hz is to use different
masses in the resonators tuned to different frequencies. By tapering off the weights
of the parallel resonator masses gradually from the bottom to the top over the LRS
high TL band and with the addition of damping, the result is a smoothing effect
over the TL dip after localized resonance. It has been already shown that practical
methods of implementing these design features are possible and will be studied in
future work. Single-frequency and parallel multifrequency LRS both consist of a
single reflective layer with a specific effective mass spectra. In a series arrangement,
a sound wave will interact with multiple reflective layers each with their own
effective mass frequency spectra. A high attenuation band gap is shown. The
magnitude of the attenuation approaches infinity when one increases the number of
layers in the series. However, the width of the band gap given by the distance
between its shoulders does not change significantly with the number of layers in
series. These results show the condition for the full development of a band
gap. That is, the inter-layer coupling spring has to be softer than the resonator
spring or of equal stiffness. Also, the bandwidth will be wider for a softer inter-layer
coupling relative to the resonator. In a multilayer system, the number of multiple
transmission loss dips increases with the number of layers. This occurs outside the
transmission band gap. Because these dips are the result of layer movement within
the structure, increasing the damping factor significantly in the inter-layer coupling
(f = 0.1 − 0.5) reduces the adverse effects of these transmission loss dips while
having no visible effect on the sound reduction index performance within the band
gap. It is clear that combination of series and parallel arrangements is what yielded
systems with the largest amount of attenuation over large bandwidths. Therefore, by
designing a LRS system with the following elements: • several layers in series •
offset spring stiffness between resonators and layers • damping between each layer,
a stopband filter response is effectively created that has a wide enough bandwidth to
be suitable for practical applications. Experimental verification of the model pre-
dictions has yet to be conducted. Implementations of this series–parallel LRS are
still at the design stage due to the complexity of the problem when considering
practical constraints such as structural integrity, construction materials and cost.
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8.12.10 Conclusion

Local resonant structures (LRS) exhibit a significant improvement in sound atten-
uation over what can be achieved with a homogeneous material of similar mass,
albeit in a limited frequency bandwidth. The magnitude of improvement is strongly
dependent on the ratio of host:resonator mass, the damping of the resonator mass
and the overall design of the LRS. To guide design, a modelling approach was
developed based on the systems of interconnected single degree-of-freedom linear
spring, mass and damper units, each of which represents one or a group of identical
local resonators. Good correlation was obtained between modelling and various
experimental methods showing that this modelling approach can be used to estimate
both plane wave and diffuse field transmission through an LRS in the frequency
domain of interest. Different LRS system configurations were analysed using this
modelling method for the purposes of widening the frequency band of improved
transmission loss, increasing the magnitude of transmission loss in this band and
reducing adverse effects outside this band. Parallel systems were shown through
modelling and testing to produce transmission loss gains over a much wider fre-
quency range, with a reduction in the transmission loss dips at other frequencies by
tapering the resonator mass distribution and damping across frequencies. Series
resonators developed very high peak transmission loss, leading to transmission
band gaps or stopbands. These complex designs need more detailed modelling and
further experimental analysis to develop practical implementations. The realization
of LRS applications requires the use of modelling to optimize the geometry,
material properties, performance and cost of the materials, as well as to understand
the tolerances of these variables. The ideal final outcome would be a cost-effective
method for the fabrication and implementation of a local resonant metamaterial that
satisfies the qualities described previously.

8.13 Emerging New Directions and Outlooks

Acoustic metamaterials have undergone tremendous further developments since
they were first proposed and fabricated. This results in several new functionalities
and has gone beyond the original definition of double acoustic and local resonant
unit cells.

8.13.1 Elastic and Mechanical Metamaterials [31]

Acoustic metamaterial can be applied also to the study of structural elastic waves.
This has been shown in the study using thin plates for the manipulation of elastic
surface waves [144–147], cloaking [148–151] negative refraction [152–154] and
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sub-diffraction focusing [154, 155]. Sofar, theoretical and numerical works on
resonant elastic metamaterials have produced negative shear modulus and super-
anisotropy. However, experimental investigations are rare. An interesting experi-
ment by Brule et al. [156] drilled a rectangular array of boreholes into the ground
surface to block low-frequency surface vibrations and hence mitigate the destruc-
tive effects of seismic waves.

Mechanical metamaterials in the form of pentamode metamaterials were pro-
posed by Milton and Cherkaev [157] and Milton [158]. For this type of mechanical
metamaterial, rigidity is maintained through point contacts between the tips of the
elongated structural elements. For this type of structure, one can have a bulk
modulus much larger than the shear modulus leading to the decoupling of the
compression and transverse vibrations. This is because the bending and rotational
motion about the point contacts encounter much smaller resistances. During the past
few years, pentamode metamaterials have been successfully fabricated using
technology of lithography and three-dimensional printing [157–162].

8.13.2 Acoustic Metamaterials as Rapidly Developing Field
with Tremendous Potential

Recent developments on digitizing of metamaterials into binary units [163] can find
applications in actively controllable metasurfaces and other functionalities more
accessible. Acoustic metamaterial is a product and confirmation of the symmetric
properties of the acoustic fields. This enables the manipulation and control of the
acoustic fields. The local resonance aspect of acoustic metamaterials implies fre-
quency dispersion and narrow frequency band limitation in the effectiveness.
Broadening the frequency range of operation of acoustic metamaterials will enable
a more diverse application of acoustic metamaterials. The application of acoustic
metamaterials to acoustical imaging will extend application to ultrasound, such as,
nondestructive testing and medical ultrasound. New concepts of “digitizing”
metamaterials into binary units [163] have already made some promised func-
tionalities more accessible, such as, actively controllable metasurfaces. Acoustic
metamaterials have been used in underwater cloaking and antisubmarine works.
Seismic metamaterials have been developed to protect buildings against earth-
quakes. Due to simple fabrication works, metamaterials can be used as sound
insulation materials, a passive means as opposed to the electronic method of active
noise cancellation. Recently, acoustic metamaterials have been used in selective
perception in human audition [164].
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Chapter 9
Application of Acoustic Metamaterial
to Time-Reversal Acoustics

Abstract Time reversal acoustics is based on the time reversal symmetry of the
acoustic fields. A detailed description of the acoustic field equation showing the
time reversal symmetry property of S the solution is given. A geometric structure of
a metamaterial for both an electromagnetic wave and acoustic wave is given. Then,
the geometric structure of the metamaterial to implement time reversal acoustics is
given. Time reversal acoustics has been successfully applied to non-destructive
testing, medical ultrasound imaging, and underwater acoustics. The advantage of
using metamaterial in time reversal acoustics is that it supports modes which radiate
spatial information of the near field of a source efficiently in the far field.

9.1 Time-Reversal Symmetry Property of Acoustic
Field-Basic Principle of Time-Reversal Acoustics

One will start with the linear acoustic field equation of an acoustic pressure field
p(r, t) in an inhomogeneous medium, which will be valid for a lossless fluid
medium with compressibility j rð Þ and density q(r) that vary with space and local

sound velocity as cðrÞ ¼ ðq rð Þj rð Þ�1=2, one obtains for the propagation equation of
an acoustic pressure field p(r.t) in the transient regime [1]:

r � rp
q

� �
� 1
qc2

@2

@t2
p ¼ 0 ð9:1Þ

For propagation in the x direction, the solution will be given by p = expj
(xt − kx). Time-reversal symmetry property of the acoustic field means that
replacing t by −t is another solution of the equation. This means the solution will
consist a right propagating wave as well as a left propagating wave. A further
illustration of the principle of time-reversal symmetry can be shown as follows. The
simple case of the reflection and transmission of the plane sound wave at the
straight interface of two media with different densities is considered. Let the inci-
dent sound pressure field be p(r,t) and the amplitude of the reflected wave be R and
the amplitude of the transmitted wave be T. Hence, there will be three different
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waves to be considered: the incident wave, the reflected wave and the transmitted
wave. The next step is to show the application of the time-reversal symmetry
property of the acoustic field. That is the process can be time reversed by reversing
the sound wave vector direction. The time-reversed solution will be p(r, −t) and by
substitution into the acoustic equation of wave motion will show that it is also a
solution of the wave equation.

If one defines the amplitudes of the reflected and transmitted waves for the
incident wave coming out of medium two as R′ and T′ then using principle of
superposition for the two incident waves one at medium 1 and one at medium 2 can
lead to the generation of four waves, two propagating in medium 1 with amplitude
R2 þTT0; and two propagating in medium 2 with total amplitude RT þTR0.
A simple calculation of the reflection and transmission coefficients R, T, R′ and T ′
will give:

R2 þTT0 ¼ 1 ð9:2Þ

RþR0 ¼ 0 ð9:3Þ

The above example shows the acoustic wave equation has time-reversal sym-
metry property.

The above outcome of time-reversal symmetry can be generalized to other forms
of acoustic fields beside the simplest form of plane waves and also to other
structures of inhomogeneities.

It is to be noted that Eqs. (9.2) and (9.3) are only valid for propagating waves.
That is, the reflected and transmitted waves have real wave numbers. Evanescent
wave or nonpropagating wave will not obey Eqs. (9.2) and (9.3). Usually, the
incident wave will contain both propagating wave and evanescent wave. Thus,
evanescent wave cannot be time reversed due to the undefined direction of prop-
agation [2]. The evanescent wave can be produced by an incident sound wave being
scattered by a medium whose bulk modulus j(r) contains spatial frequency com-
ponents of dimension smaller than the wavelength. The evanescent wave can also
be produced sound wave incident at specific angles. If the incident wave is of finite
bandwidth then some information will be lost during the time-reversal process.
Thus, time-reversal process has limitation due to the presence of both propagating
and evanescent waves.

9.2 Experimental Implementation of Time-Reversal
Acoustics

Time-reversal symmetry property of acoustic field enables one to focus through an
inhomogeneous medium. The acoustic pressure field can be time reversed and
re-emitted. This process can be used to focus through inhomogeneous media on a
reflecting target that behaves as an acoustic source after being isonified. Fink et al.’s
[3] work is the first application of time-reversal acoustics to acoustical imaging.
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Time-reversal acoustics enables the focusing of a wave on a target, stationary or
moving through an inhomogeneous medium. This is an important problem to solve
in acoustics. In order to experimentally implement this concept, Fink et al’s. [3]
time-reversal mirror (TRM) is made of an array of piezoelectric transducers. These
transducer elements can both receive and transmit an instantaneous measurement of
the temporal pressure wavefront. They also have linear property. The experimental
procedure is as follows. Digital signal processing plays a major role in time-reversal
process and the construction of the time-reversal mirror (TRM). It also enables
focusing through an inhomogeneous medium. The technique used is known as the
adaptive time-delay technique. The spatial-temporal matched filter is used to
describe the pulse wave time-reversal focusing inhomogeneous propagation transfer
function between the array and the target. This enables reciprocity in the inho-
mogeneous medium. Optimal inputs are also provided to the transducer elements.
The construction of the time-reversal mirror (TRM) is as follows. It is a 1D or 2D
transducer array. Each element is connected to an individual electronic circuit,
which includes a receiving amplifier, A/D converter, a programmable transmitter
and a storage memory. The programmable transmitter is the most important element
of the electronic circuitry because it synthesizes the time-reversed version of the
stored signal.

Thus, the TRM is able to detect the pressure field located at a position ri: with a
transducer array. The signals are then digitized and stored over the time interval
T. This acoustic pressure field is retransmitted in a reversed temporal chronology by
the same transducer array. This enables transmission of pðri; T � tÞ, the
time-reversal process converts the divergent wave into a convergent wave focusing
onto the same source. This process is valid even in an inhomogeneous medium. The
conventional mirror produces a virtual acoustic image of a real object whereas the
TRM produces a real acoustic image of a virtual object/source. This time-reversal
process can be extended to focusing on a reflective target, which can be isonified to
become an acoustic source.

9.3 Ultrasonic Focusing in Inhomogeneous Media

9.3.1 Adaptative Time-Delay Focusing Techniques

To put the principle of time-reversal acoustics into practice, Fink et al. [3] design
the time-reversal mirror (TRM), which is based on signal processing technique.
The TRM is made of transducer arrays. Each element of the transducer element acts
as a receiver of the acoustic signal. They are then digitized. There is time delay
between signals from neighbouring array elements, and this is calculated using
cross-correlation formula. These time delays will be used to calculate the optimal
time-delay characteristic required to focus on the source. Here, the focusing of
sound waves in an inhomogeneous medium is based on the electronic method of
using a set of delay that can exactly compensate the spherical curvature of the
signals that are received by the transducer array. The delay lines allow the signals to
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be brought into phase before their summation. Also, the acoustic source can be
passive, like a target reflecting an incident wave.

The inhomogeneous medium is an aberrating medium. Here, the alignment of
the signals does not obey the spherical character of the time-reversal mirror (TRM).
This necessitates the compensating time delay. The correct time delay can be
calculated from the time shift of the peak of the cross-correlation between signals
from neighbouring transducers [4, 5]. There is a second technique, which is using
for the case of an aberrating medium; the signals are no longer aligned by the
spherical delay characteristic. Here, one needs to superimpose a compensating time
delay. The correct time delays are determined by the time shift corresponding to the
peak of the cross-correlation between signals from neighbouring transducers [4, 5].
There is a second technique, which is using the time-delay law [6]. Here, it deals
with the maximization of the energy of the summed signals. These two methods are
similar because they achieve the maximization of the cross-correlation between all
pairs of signals simultaneously to achieve the energy maximization [7]. However,
both methods unable to achieve optimal focusing. This will be illustrated by
real-life situations later in this chapter. When the aberrator-array probe distance
increases, the adaptive delay-line focusing technique will not work [7]. Then, it will
need a more general approach to take into consideration all the information
recorded such as shape variation and time-delay characteristic.

Results will vary. There are various problems to be solved. The first is the nature
of the reflective target that one is focusing. The point-like target is the ideal target,
and this is the source of the spherical wave, which will be distorted during prop-
agation through the inhomogeneous aberrating medium. In a real situation, the
medical ultrasound imaging takes place in the near field and the sources are not
point-like. For instance, the liver or the kidney stone has a finite size. The scattered
signals from such targets will be different from one transducer element to the other
and thus the cross-correlation will vary.

In usual practical situations, the region to be scanned does not contain the highly
reflective target, in the scanning of the abdomen, there is sound velocity variation
throughout the region causing degrading in the focusing of low megahertz ultra-
sonic waves. This will result in multiple scattering in the region instead of single
scattering from a highly reflective target. Here, the calculation of the adequate
focusing time-delay law for such multiple scattering media can be done using the
cross-correlation technique [4–7]. This is based on the summation of individual
echoes reflected on each scatterer. The Van Cittert Zernike theorem [8] states that
the sound field propagates with a spatial correlation width that increases propor-
tionally to the propagation distance. This property can be applied to the optimal
focusing is neighbouring transducer elements can receive a highly correlated signal
if they are sufficiently far from the scattering region [8, 9]. These signals will be
shifted by the aberrating layer, and the proper delay will be found by the
cross-correlation technique. This will put the targeted nature under control. The
next problem to resolve will be the nature of the inhomogeneous medium. Here, the
cross-correlation technique has its limitations. This is due to its assumption of all
the effects of the inhomogeneity on the spherical wavefront can be summed up as a
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simple distortion of the wavefront shape. This amounts to that the inhomogeneity of
the medium only modifies the propagation delay between the source and the
transducer. This means that time-delay characteristics are sufficient for the optimal
transducer array. This assumption fails for medical ultrasound imaging as the
imaging is in the near field and the inhomogeneities are spread over the whole
volume of the region to be scanned. Sound wave propagates through such an
inhomogeneous medium due to diffraction, refraction and multiple scattering. Its
temporal and spatial shape will be distorted and also delayed. Also, the adaptive
delay-line focusing technique fails when the aberrator-array probe distance
increases [7]. In this case, the time-reversed process has to take into account all the
information recorded on the medium that is the shape variation and the time-delay
characteristics.

9.3.2 The Time-Reversal Cavity

The solution p(r, t) of the wave equation is determined by the initial boundary
conditions and acoustic source. The purpose of the experiment is to generate the
dual solution of p(r, −t). Due to causality consideration, p(r, −t) is not experi-
mentally valid and generation of p(r, T − t) has to be implemented instead.

It is difficult to generate the time-reversed solution experimentally. First, the
pressure p(r, t) has to be measured during the whole time-reversed period T for the
whole 3D volume. The pressure field vanishes for t > T and then retransmit in all
the volume p(r, T − t). This method is unrealistic because the whole volume with
transmit-receive probes has to be sampled.

Here, Huygens’ Principle produces a more realistic solution to the time-reversal
process. The acoustic pressure field at any point of a 3D volume problem can be
reduced to a 2D surface problem because the acoustic pressure field form and its
normal derivative at any point of a closed surface can predict the wave field at any
point of the volume [10]. This concept is used to treat the focusing on a target in an
inhomogeneous medium as follows. An inhomogeneous medium will distort the
spherical wavefront of a point-like source. To fabricate, a time-reversal mirror
(TRM) has to assume that one is able to measure the acoustic pressure field and its
normal derivative at any point on the closed surface. Step two, one will make use of
Huygens’ Principle to assume that the secondary sources (monopole and dipole) can
be created on the surface corresponding to the time reversal of the signals measured
during step one. Due to the creation of the secondary sources, the acoustic pressure
field is time reversed and back propagated inside the surfaced, but interaction with
the inhomogeneities of the medium will cause distortion on the wavefront.

This will cause the time-reversed pressure field to refocus on the initial sound
source [11, 12]. This will provide better focusing than the correlation technique.
The reason is that here, there is no assumption that the inhomogeneities are located
near the transducer array and that the time delay due to inhomogeneity is reduced to
only a time delay under such conditions, it can be shown [11, 12] that the
time-reversed pressure field is focused to only a varying from one transducer
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element to another. However, the resolution will be restricted by the finite spectral
bandwidth. This is due to the fact that spatial scales of inhomogeneities smaller than
the minimum wavelength will be blurred. Hence, generation of p(r, T − t) is not
perfect throughout the whole volume.

9.3.3 Time-Reversal Mirror

The time-reversal mirror (TRM) is difficult to fabricate in practice as the
time-reversal cavity is only an ideal concept for focusing through an inhomogeneous
medium. The greatest difficulty is for surrounding the focal region by an array of
transducers. For acoustical imaging with applications to ultrasound nondestructive
testing and medical ultrasound, usually, the pulse-echo mode imaging mode is used.
This means that it is necessary to place the probe on one side of the region to be
scanned. This imaging mode is important and has the advantage of focusing only
from an array of transducers. Here, the time-reversal cavity will become the
time-reversal mirror (TRM). Although the TRM is open, its capability to focus
through an inhomogeneous medium is comparable with that of a closed cavity.

The TRM can be prefocused in 1D or in 2D or a plane mirror. Even in focusing
through homogeneous media, the TRM has limitations same as those with con-
ventional focusing using the delay-line technique. These are: (1) diffraction effects
will still be there resulting in the image of a point becoming a spot with dimensions
depending on the wavelength. This is equivalent to low-pass filter on the spatial
frequency spectrum of any wave field, (2) a point spread function (PSF) with width
related to the angular aperture of the mirror observed from the focal point due to the
limited dimension of the TRM, (3) the time-delay law of classical time-delay
focusing has to be applied to the temporal sampling of the data recorded and
transmitted by the TRM. To avoid secondary lobes, a maximum rate of T/8 with
T = central period is needed [5, 13]. Grating lobes will be produced by the spatial
sampling of the TRM using an array of transducers. This can be avoided if the array
pitch of the order k/2, k = central wavelength of the pressure field is used. This is
not necessary with a spherical or cylindrical TRM prefocused on the regional
interest.

9.3.4 Focusing with a Time-Reversal Mirror

The mechanism of time-reversal focusing by a time-reversal mirror (TRM) can be
understood as follows. First, the acoustic field propagates through the inhomoge-
neous medium from the mirror to the target. The acoustic wave will be multiply
scattered by the target and is distorted. This scattered field is then recorded by the
transducer array. Next, the transducer array synthesizes the time-reversed field. The
time-reversed field then back propagated through the inhomogeneous aberrating
medium and refocused on the target. The TRM has a limitation when applied to a
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strongly inhomogeneous medium. This is due to multiple scatterings in all direc-
tions. This will cause distortion in the wavefront as experimentally demonstrated
[14]. This is a weakness of the TRM compared to the closed cavity. It is also
necessary to perform the measurement over a long interval due to the slow decay of
the multiple scatterings. On the other hand, when dealing with weak inhomo-
geneities, which give rise to single scattering and first born approximation can be
used and the TRM will compensate exactly for the time-reversal wavefront over
shorter time duration and optimal focusing can be achieved by recording the
time-reversal of the field recorded on only one plane.

9.3.5 Signal Processing used in Time-Reversal Method

The time-reversed mechanism can also be interpreted in terms of electronic engi-
neering and signal processing can be used. In terms of signal processing language,
time-reversal focusing through the inhomogeneous medium is equivalent to first
derive the inhomogeneous propagation transfer function between the time-reversed
mirror elements and the target. Then the spatial-temporal matched filter is obtained
for the transfer function. Hence, the time-reversed-focusing technique is related to
the matched filter principle of signal processing. The analogy between the
time-reversed-focusing and the matched filter principle of electronics is shown by
that using the matched filter principle for a linear system with the output signal of
impulse response h(t) will be maximised by an input signal in the form h(−t) [15].
The energy of the input signal produces the impulse response.

The principle of time-reversal symmetry is valid for any lossless inhomogeneous
medium and is valid for any size of the geometry and sampling pitch of the
transducer elements. Our aim of using the TRM is to maximise the acoustic
pressure at the target location by providing inputs to the transducer elements. First,
the optimal transient signals from a set of transducer elements Ei located in ri will
be calculated. This signal will be focused on a point located in r0:. The calculation
will be done for the individual pressure fields produced by each transducer element
Ei. This calculation in the transient regime is performed using the diffraction
impulse theory.

9.3.6 The Iterative Time-Reversal Mode—an Automatic
Target Selection

The TRM has the capability and the advantage to choose the duration of the signals
to be time reversed and the origin by using the temporal window, which can select
the data to be time reversed. The time-reversed process cannot be used to directly
focus on one point when the medium contains several reflectors. For instance, when
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there are two targets with different reflectivity illuminated by a short pulse, two
wavefronts refocused on each target will be generated by the time-reversal of the
echoes reflected from these targets. TRM produces two real acoustic images of the
two reflections on themselves with the most reflective target giving the highest
amplitude wavefront and the second target giving the weakest wavefront. In fact,
what is described above is valid after neglecting the multiple scattering processes
between the two targets. Multiple scattering processes can be avoided by selecting
echoes within a particular time-reversed window. Then, the time-reversed process
can be iterated [3, 16]. After the first time-reversal, the second target or the weakest
target will reflect a wavefront more weakly. After several iterations, a wavefront
focused on the most reflective target will be obtained after the convergence of the
process. However, the convergence will occur only if the illumination of one target
by the real acoustic image of the other target is avoided by choosing sufficient target
separation [16, 17].

There is an existing contradiction between the concept of iteration and the
physical principle of time-reversal symmetry. The complete time-reversal of an
acoustic scene results in the time-reversed scene. Therefore, the iteration of the
time-reversal operation gives stationary results, a contradiction with wavefield
modification after each iteration. This can be explained as follows. A complete
time-reversal operation requires a closed-time-reversal cavity surrounding the
acoustic scene and a recording time T long enough to take into account all the
multiple scattered waves. Here, one utilizes only a finite spatial aperture and short
temporal windows. Hence, some information is lost. This information loss gives the
iterative mode its target selection capabilities. Experimental results show the effi-
ciency of the process on single wire targets [14]. In lithotripsy applications, the
iterative mode allows the automatic selection of one of the kidney stones [14].

9.4 Some Practical Applications of Time-Reversal
Acoustics

An example of the practical application of time-reversal acoustics is to medical
ultrasound imaging to lithotripsy. The stone position can be imaged accurately with
X-ray imaging. However, with ultrasound imaging it is difficult. There is sound
speed variation through the inhomogeneities will distort and redirect the sound
beam. Even more serious than this is breathing causes stone motion with amplitude
up to 2 cm. Stone tracking is the first step to enable efficient therapy. These
problems can be overcome by the time-reversal process, which can identify the
target with the highest reflectivity such as the stone to be identified among other
stones and organ walls. First, the transducer array will beam out an ultrasound to the
whole region. The transducer array will receive the reflected field, time reversed and
retransmit back to the source. The time-reversal process is iterated to enable the
ultrasound beam to select the highest reflectivity. The whole process will converge
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on one spot with dimension depending on the wavelength and the TRM geometry
of the target is spatially extended. Hence, the last iteration will locate the target for
stone destruction. It has to be mentioned that the frequency of the region of interest
does not contain any highly reflective target.

Frequently, the region of interest does not contain any highly reflective target.
Another example of practical application of time-reversal acoustics is the imaging
of the abdomen where sound speed aberrations in the body can degrade the
focusing characteristics of the ultrasonic beam at frequencies in the low-megahertz
range. The advantage of time-reversal acoustics is that here, the single reflective
target is replaced by the many scatterers that comprise the region being imaged. The
cross-correlation technique can be used for the estimation of the adequate focusing
time-delay law for such scattering media can be estimated for such scattering media
[4–7]. This is an outcome of the remarkable property of the scattered pressure field
that results from the summation of the individual echoes reflected on each scatterer.
The Van Cittert Zernike theorem [8] states that the field propagates with a spatial
correlation function width that increases proportionally to the propagation distance.
The field propagates with a spatial correlation function width that increases pro-
portionally to the propagation distance. This means that neighbouring transducers,
as long as they are sufficiently far from the scattering region, will sense echographic
signals that are highly correlated [8, 9]. These signals will be shifted by an aber-
rating layer and the proper delay can be determined by the cross-correlation tech-
nique. Sofar the problem of the targeted nature seemed to be solved. The nature of
the inhomogeneous medium seems to be more critical. The underlying assumption
of the cross-correlation technique is that all the effects of the inhomogeneity on the
spherical wavefront added up as a simple distortion of the wavefront shape. That is,
the aberration only modifies the propagation delay between the source and the
elementary transducers. Knowledge of the proper time-delay characteristic is suf-
ficient for accurate focusing in the receive or transmit modes. It is to be noted that
this assumption is valid only when the aberration is thin and located very close to
the array. In most medical applications, this assumption is incorrect, as one always
work in the near field of the transducers and the inhomogeneities are distributed
over the whole volume. Thus, a wave propagates in such an inhomogeneous
medium is not only delayed, but also its spatial and temporal shape is also distorted
through refraction, diffraction and multi-scattering.

In lithotripsy application, the stone is an extended target. An incident beam can
induce acoustical resonances of the stone, and the wave reflected by the stone may
contain different wavefronts resulting from these resonances [14]. This makes the
time-reversal process a complicated one. Fortunately, in such situation, the
time-reversal mirror is also efficient. It allows some matching of the new transmit
waveform in order to produce stone resonances through the iterative time-reversed
transmission. A simple explanation of this phenomenon can be given by a 1D
experiment conducted with a plane transducer illuminating at normal incidence or a
parallel face plate medium. In this experiment, the pulse-echo signal e(t) reflected
by the plate contains the multiple reflected waves generated in the resonant plate.
For an ideal transducer excited by an electrical pulse d(t), the signal e(t) represents
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the impulse response of the resonator. The time-reversal process will lead to a
transmission of e(−t). This is the optimal signal needed to excite the faceplate
resonance This corresponds to the faceplate matched a filter that produces the
maximum system response. These concepts can be extended with caution to 3D
vibrating structure, the extended target, illuminated by 2D time-reversal mirrors.
The theoretical modelling of this process is complex, and some simple physical
ideas are provided here as guidelines. The vibration of a complex 3D structure is a
linear combination of the different natural Fourier modes of the problem. Each
mode is characterized by a wave vector K. In the case of the parallel face plate,
there is only one mode with these modes if the corresponding wave vector direc-
tions are inside the angular aperture of the TRM. Besides, due to the array finite
bandwidth, the phase conjugation of these modes will work only for wave vectors,
whose modulus correspond to a frequency included in the transducer bandwidth.
These concepts suggest the possibility of an automatic selection and excitation of
some vibration modes of an object.

9.5 Sub-wavelength Focusing Using Far Field
Time-Reversal for Electromagnetic Waves

Application of acoustic metamaterial to time-reversal mirror was based on the
capability of the acoustic metamaterial to convert evanescent wave into propagating
wave and thus achieving sub-wavelength image resolution limit at the far field. The
procedure is as follows. First, one fabricates the acoustic metamaterial medium.
Using the time-reversal symmetry property of the acoustic wave equation of
motion, one is able to focus back into the initial source position from the far field.
With the time-reversal symmetry property between the propagating wave and the
evanescent wave, one is able to obtain a sub-wavelength resolution at the focal spot.
Thus, if one places the sources with impulse response at a distance from the TRM
much smaller than the wavelength in the acoustic metamaterial medium, one is able
to focus independently on each of them. This will enable the conventional
diffraction limit to be defeated.

The availability of the sub-wavelength information in the free space radiation is
due to the resonance enhancement of the eigenmode of the broadband source placed
at the near field of the medium. This enables sub-wavelength image resolution. This
will occur during the conversion of the evanescent wave into propagating wave by
the acoustic metamaterial.

Lerosey et al’s. [18] experiment for electromagnetic waves using metamaterial for
TRM is performed in an anechoic chamber. It is performed as follows. The central
frequency used is 2.45 GHz. The bandwidth is 100 MHz. There is a receiver array
consists of 8 antennas located in the anechoic chamber. Each antenna is surrounded
by a microstructure consisting of a random distribution of almost parallel thin copper
wires. Hence, the focusing points are in the far field of the TRM.
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The evanescent waves will be converted into propagating waves after scattering
by the thin copper wires. A TRM consisting of eight commercial bipolar antennae is
placed in the far field at a distance of ten wavelengths from the receiving array.
The TRM will be a virtual far field time-reversal cavity. The conventional image
diffraction limit is defeated in this manner.

The principles of the above experiment can be described as follows. The
broadband incident field is decomposed into high-spatial frequency components
upon scattering of the random distribution of thin copper wire. A sub-wavelength
focusing around the source location is created from time-reversal symmetry out-
come of the time-reversal scattering process. These propagating waves are propa-
gated back from the far field in the time-reversed process. On the other hand, the
initial evanescent waves around the focus are created by spatial reversibility and
reciprocity after each propagating wave interacts with the random distribution of
copper thin wires.

9.6 Extension of Above Concept to Acoustics

Due to the many similarities in wave properties between electromagnetic waves and
acoustic waves, the above method of converting evanescent waves into propagating
waves and sub-wavelength focusing can be extended to acoustic waves. The
acoustic metamaterials consist of basic unit cells with properties that can be
manipulated and controlled. These unit cells have resonant character and are of
sub-wavelength size. The effective medium theory is used here. There are several
examples of the unit cells of acoustic metamaterials such as split-ring resonator
(SRR), complimentary SRR and parallel cut wires. The effective parameters of the
acoustic metamaterial are obtained by averaging the acoustic field across one unit
cell. Acoustic metamaterial with negative effective mass density and negative
effective modulus has been successfully fabricated and they produce negative
refractive index [19].

There are several proposals on experiments on sub-wavelength focusing in
acoustics. Here, the experiment of Lemoult et al. [20] is given. They achieved
sub-wavelength focusing in the far field with wavelength much smaller than the
sound wavelength in air. Helmholtz resonators are used as unit cells. An array of
soda cans is used in the far field. The theoretical concept of the resonant meta-
material given in the previous section is used. The experiment demonstrates that the
array of cans excited in resonant periodic modes in sub-wavelength spatial period.
The incident waves are from commercial computer loudspeaker and are diffraction
limited. These sub-wavelength resonant modes are Bloch modes with radiation
patterns depending on their wave vectors. The outcome is one is able to obtain in
the far field sub-wavelength focusing of sub-diffraction wave field of broadband
sound. The capability is focusing on sound into spots as small as 1/25th of sound
wavelength in the air and a position resolution of the centre to centre distance
between the soda cans of up to 1/15th of sound wavelength.
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Their experimental set-up is shown in Fig. 9.1. Figure 9.2 shows the array of
cans surrounded by loudspeakers. The experiment demonstrated that incident
monochromatic and diffraction limited sound fields can generate sub-diffraction
resonant modes over the whole array of soda cans. Sub-wavelength focal spots can
be produced. Time-reversal is used to focus sound from an array of sensors into one
point. This is equivalent to summing up all the modes with zero relative phase at
this specific position to create a spatio-temporally focused wave. To extend this to
the broadband source, by adding up various presenting modes coherently at a
specific time and a given location while they add up incoherently at other positions
and other times.

Their experiments have been performed at several locations using the ensemble
of Helmholtz resonators and the eight computer loudspeakers. It is also shown that
focusing sound using an array of cans results in much thinner foci than with a single
can.

They also discovered a key property for the design of high-performance actu-
ators. That is the sub-wavelength focusing of acoustic pressure fields can lead to
strong enhancement of the acoustic displacement.

Lemoult et al’s. [20] experiment has made some discoveries of fundamental
interests. First is that sub-wavelength pressure fields can create enhanced acoustic
displacements with numerous potential applications, especially to the design of
sensors and actuators. Second, with the advantage of dispersion, it allows one to
independently address many sensors with their temporal signatures and a few

Fig. 9.1 Experimental set-up. a A picture of the set-up utilized in the experiment. Eight
commercial computer speakers (1) are controlled using a multichannel sound card (4) and create
sounds that excite an array of Helmholtz resonators (i.e. soda cans) (2). Mounted on a 3D moving
stage (5), a microphone (3) records the pressure over the array of cans. b Typical emitted pulse
(red) and measured pressure (blue) on top of one can. c The spectrum of the original pulse
(red) and average spectrum of the pressure measured every can of the array (blue) (Lemoult et al.
[20])
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Fig. 9.2 Sub-wavelength modes. a A close view of the array of cans surrounded by the 8
computer speakers. The speakers are placed more than one wavelength away from the cans so that
evanescent waves are negligible at this distance. b A sub-wavelength mode measured at 398 Hz
when the speakers are used to generate a monopolar radiation pattern, this mode is already
sub-wavelength, with a k/4 spatial period. c A mode corresponding to a horizontal dipolar pattern
at 400 Hz. d A vertical dipolar wave field created with the speakers results in a k/3 spatial period
mode at 409 Hz. e A quadripolar far field pattern excites a deep sub-wavelength mode at 413 Hz
(Lemoult et al. [20])
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sources. Third, it produces the capability of engineering a matrix of sensors and
actuators that are arranged on a sub-wavelength scale.

Lemoult et al’s. [20] results can be extended to a broad frequency spectrum of
resonators and even generalized to elastic waves in solids. There are many potential
applications such as the design of arrays of actuators, micro-mechanical actuators at
any frequency (or audible sound control, for audible sound generation).

The sub-wavelength image resolution of the resonant acoustic metalens is useful
in acoustical imaging. This is known as superresolution, which enables the pro-
jection on the far field the near-field information of a source regardless of its spatial
variations.
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Chapter 10
Underwater Acoustical Cloaking

Abstract Acoustical cloaking is the first example of sound propagation in curvi-
linear spacetime. Previous works are concerned only with the application of
curvilinear coordinates to describe a stationary object’s geometrical structure. The
cloaking of underwater objects is an extension of the cloaking of objects in the air.
This is more complex than cloaking in the air. The theory of sound propagation
underwater is given. The form invariance of the Westervelt equation is shown. This
enables the bending of sound around the object and the shielding of the object
underwater. The application to anti-sonar work is described.

10.1 Acoustical Cloaking

Acoustical cloaking or the manifestation of invisibility objects is based on the form
invariance of the acoustic field equation or the symmetry property of the acoustic
field. This means that the acoustic field equation will remain in the same form under
coordinate transformations. Acoustical cloaking has initiated a new field with much
activities. This invention enables a hidden object undetectable under sound prop-
agation by manipulating and controlling the direction of sound propagation around
the object in the 3D space. The physics of cloaking underwater and cloaking in air
is different in the effective parameters concerned. Chapter 2 of this book presents
the subject of acoustical cloaking taking place in air. Here it is extended for
acoustical cloaking taking place underwater. Cloaking underwater is not possible
for light waves but realizable for sound waves. Acoustical cloaking in water is an
entirely different field from acoustical cloaking in water.

One has to take note that the acoustic field equation for sound propagation
underwater is different from that for sound propagation in the air. However,
underwater acoustic wave equation also has form invariance property as acoustic
field equation for sound propagation in air. To illustrate this, a theory for under-
water sound propagation is given.
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10.2 Propagation Theory

The underwater propagation of sound can be described mathematically by the
homogeneous wave equation in the acoustic pressure P:

d2P
dt2

¼ c2
@2P
@x2

þ @2P
@y2

þ @2P
@z2

� �
; ð10:1Þ

where c = sound velocity in water, using the appropriate boundary and medium
condition for a particular problem.

There are two theoretical approaches to the solution of (10.1). One is the wave
theory approach, and the other is the ray tracing or geometrical approach. For the
wave theory approach, the solution of the wave equation is described in terms of
characteristic functions called normal modes, each of which is a solution of the
equation.

The wave theory approach takes account of wave nature of sound propagation in
the sea such as the phenomena of diffraction and multiple scattering. The normal
modes are combined additively to satisfy the boundary and source conditions of
interest. The wave theory gives a formally complete solution. The result will show a
mathematical solution suitable for computational purpose. Only in limiting cases,
the analytical solutions exist. It presents computational difficulties in all but sim-
plest boundary condition. However, it gives little insights on the distribution of
energy of the sources in space and time and the solution is difficult to interpret.
Normal mode theory is particularly suitable for description of sound propagation in
shallow water. It is valid for all frequencies but practically is useful for low fre-
quencies (few modes). The source function can be easily inserted. But it cannot
easily handle real boundary conditions.

The ray theory approach is also known as ray acoustics or geometrical acoustics.
Like geometrical optics, it does not handle diffraction problem. It has the following
properties: (1) the existence of rays that describe the paths of propagation of sound
wave. Rays are easily drawn. Sound distribution is easily visualized, (2) the concept
of wavefronts, along which the phase or time function of the solutions, is constant.
Real boundary conditions are inserted easily, for example, a sloping bottom. It is
independent of the source. Ray acoustics is analogous to geometrical optics and it
presents a picture of the propagations of sound in the sea in the form of the ray
diagram. Rays can be drawn by hand using Snell’s law. However, a ray-trace
computer program is normally used. The ray theory does not provide an accurate
solution when (a) the radius of curvature of the rays or (b) the pressure amplitude
changes appreciably over the distance of one wavelength. In practice, ray theory is
therefore restricted to high frequencies or short wavelengths if radius of ray cur-
vature is larger than the wavelength or the sound velocity does not change much in
a wavelength. It cannot be used for predicting the intensities of sound in shadow
zones or caustics. An important book on theory of sound propagation in the sea is
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that of Brekhovskikh [1]. Brekhovskikh’s book is based on the representation of the
sea or the medium of sound propagates as a layered medium (Fig. 10.1).

Ray theory uses Snell’s law which shows the analogies between sound waves
and light waves. Snell’s law describes the refraction of sound rays in a medium of
variable velocity. Snell’s law states that in a medium consisting of constant velocity
layers (Fig. 10.1), the grazing angles h1, h2, … of a ray at the layer boundaries are
related to the sound velocities c1, c2, … of the layers by

cos h1
c1

¼ cos h2
c2

¼ cos h3
c3

¼ � � � ¼ a constant for any one ray: ð10:2Þ

When h ¼ 0�, the ray constant becomes the reciprocal of the sound velocity in
the layer in which the ray becomes horizontal. This expression is the basis of ray
computation used by most analogue and digital computers, since it enables a par-
ticular ray to be “traced out” by following it through the successive layers into
which the velocity profile may have been divided. In a layered medium having
layers with constant velocity, the rays consist of a series of straight-line segments
joined together, in effect, by Snell’s law.

10.3 Reflection and Scattering from the Sea Surface

The sea surface is both a reflector and a scatterer of sound and has a profound effect
on sound propagation in the sea where the sound or receiver lies at shallow depth. If
the sea surface were perfectly smooth, it would form an almost perfect reflector of
sound. The intensity of sound reflected from the smooth sea surface would be very
nearly equal to that incident upon it. The reflection loss, equal to 10 log Ir=Iið Þ,
where Ir and Ii are the reflected and incident intensities of an incident plane wave,
would be closely equal to zero decibels. In real situations, the sea is somewhat
rough, and the loss on reflection is found to be no longer zero. A criterion for the
roughness or smoothness of the surface is given by the Rayleigh parameter, defined

Fig. 10.1 Refraction in a
layered medium
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as R ¼ kH sin h, where k = wave number = 2p/k, H = rms “wave height” (crest to
trough) and h is the grazing angle. When R � 1, the surface is primarily a reflector
and produces a coherent reflection at the specular angle equal to the angle of
incidence. When R � 1, the surface acts as a scatterer, sending incoherent energy
in all directions. With certain theoretical assumption, the amplitude reflection
coefficient l of an irregular surface defined as the ratio of the reflected or coherent
amplitude of the return to the incident amplitude can be shown to be l ¼ exp �Rð Þ.
When R � 1, the return from the surface is incoherent scattering, instead of
coherent reflection with a distribution throughout space depending upon the nature
of the surface roughness.

10.4 Reflection and Scattering from the Sea Bottom

The sea bottom is a reflecting and scattering boundary of the sea having a number
of characteristics similar to the sea surface. However, its effects are more compli-
cated because of its diverse and multilayered composition. An example of this
similar behaviour is the fact that the sea bottom casts a shadow or produces a
shadow zone, in the upward-refracting water above it in the depths of the deep sea.

The reflection of sound from the sea bed is vastly more complex than that from
the sea surface. First, the bottom is more variable in its acoustic properties because
it may vary in composition from hard rock to soft mud. Secondly, it is often layered,
with a density and a sound velocity that change gradually or abruptly with depth.
For these reasons, the reflection loss of the seabed is less easily predicted than that
of the sea surface.

10.5 Sea Bottom—Reflection Loss

The reflection loss of sound incident at an angle to a plane boundary between two
fluids was worked out by Rayleigh [2]: If a plane wave is incident at grazing angle
h, upon the boundary between fluids of density q1 and q2 and of sound velocity c1

Fig. 10.2 Reflected and
transmission rays at a
discontinuity between two
media
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and c2 as shown in Fig. 10.2, then by the Rayleigh formula, the intensity of the
reflected wave Ir is related to the intensity of the incident wave Ii by

Ir
Ii
¼ m sinh1 � n sinh2

m sinh1 þ n sinh2

� �2
¼ m sinh1 � n2 � cos2h1ð Þ1=2

m sinh1 þ n2 � cos2h1ð Þ1=2
" #2

; ð10:3Þ

where following the citations of Brekhovskikh [1] m ¼ q1
q2

and n ¼ c1
c2
.

Figure 10.3, adapted from Brekhovskikh [1], shows the behaviour of the loss
with grazing angle for four different conditions on m and n. Of these four, the most
common condition for natural bottom is probably that of Fig. 10.3c, in which a
critical angle h0 exists such that complete or total reflection occurs (zero loss) at
grazing angles less than critical. In many soft mud bottoms, the sound velocity is
less than that in the water above, and an angle of intromission hB may exist, as in
Fig. 10.3a.

So far, absorption has not been brought into picture. All bottom materials are to
some extent absorptive, and the effect of absorption is to smooth out the variation of
loss with angle, so as to eliminate, or obscure, the sharp changes occurring at the
critical angle h0 and the angle of intermission hB. An example of the effect of
absorption is the dashed curve as shown in Fig. 10.3c.

Many measurements of sound attenuation in sediments have been made [3].
They show that the attenuation coefficient of compressional waves in marine sed-
iments is related to frequency by

Fig. 10.3 Ratio of reflected to incident intensities for four combinations of conditions of sound
velocities and densities in lossless media separated by a plane interface. The dashed curve in ©
shows the effect of an attenuation lower medium (From Brekhovskikh [1], Fig. 10.7)
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a ¼ kf n; ð10:4Þ

where a is in decibels per metre, f is the frequency in kilohertz and k and n are
empirical constants.

If the bottom in the most simple model is taken to be a homogeneous absorptive
fluid with a plane interface, then the three bottom parameters that determine the
reflections loss are its density, sound velocity and attenuation coefficient. If the
bottom happens to be a sedimentary material, these quantities are related to and
determined by the porosity of the sediment.

However, a number of complications to this simple model occur in the real
world. First of all, the ocean flow is not a perfectly plane interface so that scattering
as well as reflection takes place. In a very rough area, such as the Mid-Atlantis
Ridge, scattered sound dominates the bottom return. As a result, some sound is sent
by the bottom in all directions and the “beam pattern” of the bottom return shows
no appreciable lobe or peak in the specular direction.

10.6 Westervelt Equation

A common equation for use in underwater acoustics is the Westervelt equation:

r2p� 1
c20

@2

@t2
pþ d

c40

@3

@t3
p ¼ � b

q0c
4
0

@2

@t2
p2; ð10:5Þ

where p = sound pressure, c0 = small signal sound speed, d = sound diffusivity,
l = shear viscosity, lB = bulk viscosity, c = thermal conductivity, cv, cp = specific
heat at constant volume and pressure, respectively.
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þ c

q0

1
cv

� 1
cp

� �
: ð10:6Þ

It is of interest to note that the Westervelt also has the form invariance property.
That is, by replacing the l, lB and q by their negative values, there is no change in
the form of the equation. This confirms that coordinate transformations is applicable
to the Westervelt equation. Also the status of viscosity in underwater is equivalent
to that of bulk modulus in solids.

To study the difference between underwater cloaking and cloaking in the air, one
needs to understand the difference in properties between the two host media, water
and air. When performing cloaking in the air, one has the advantage that most
materials used as inclusions have large effective mass compared with that of air and
very high speed of mass anisotropy can be achieved due to the very low density and
very high compressibility of air. However, this also gives rise to the limitation that
it is very difficult to fabricate an acoustic metamaterial that is lighter and more
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compressible than air. Water on the other hand is more compressible and less dense
than most solid inclusion. Hence, it is difficult to attain high effective mass density
and high effective stiffness with water as a host medium. However, it has been
recorded in the literature that closed-cell metal foam which enables gas-filled
materials demonstrating masses less than that of the water host.

The above shows that the achievable effective parameters are difficult for using
air and water as host media. An example is that in air, it is easy to achieve a density
component that is very large at the inner edge of the shell, but it is difficult to do so
for water.

10.6.1 Coordinate Transformations on the Westervelt
Equation

Coordinate transformations on the Westervelt can be done by following the pro-
cedure below:

Here, we follow approach of Cummer et al. [4]. The fluids version of the linear
acoustic field equations will be used:

rp ¼ ixq r!� �
q0 v
!; ð10:7Þ

ixp ¼ j r!� �
j0r � v!; ð10:8Þ

where q r!� �
and j r!� �

are the normalized density and bulk modulus, respectively,
of the medium and are coordinate transform invariant. We will demonstrate how the
acoustic v!must transform by considering v! in a nonorthogonal coordinate system
described by coordinates q1, q2 and q3 with unit vectors û1,û2 and û3, respectively.
Following Pendry et al. [5] and letting i ¼ 1; 2; 3

Q2
i ¼

@x
@qi

� �2

þ @y
@qi

� �2

þ @z
@qi

� �2

; ð10:9Þ

n̂ ¼ û1 � û2
û1 � û2j j ;

Area ¼ Q1dq1Q2dq2 û1 � û2j j:

Figure 10.4 shows what happens when we apply the divergence theorem to an
infinitesimal volume in this nonorthogonal coordinate system.

Deriving the net outward flux of v! from this volume and setting it equal to the
divergence of v! times the infinitesimal volume, it can be shown that
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r �~vð ÞQ1Q2Q3 û1 � û2 � û3ð Þj j ¼ @

@q1
Q2Q3~v � û2 � û3ð Þ½ �

þ @

@q2
Q1Q3~v � û1 � û3ð Þ½ � þ @

@q3
Q1Q2~v � û1 � û2ð Þ½ �:

ð10:10Þ

Let Vfrac ¼ û1 � û2 � û3ð Þj j; because this is the fraction by which a unit volume is
compressed by the coordinate nonorthogonality, and we use the conventional
superscript (subscript) notation for contravariant (covariant) vector components using

v!� û2 � û3ð Þ ¼ v1û1 � û2 � û3ð Þ: ð10:11Þ

equation (10.10) can be rewritten as

r� v!� �
Q1Q2Q3Vfrac ¼ @

@q1
Q2Q3Vfracv

1� �þ @

@q2
Q1Q3Vfracv

2� �þ @

@q3
Q1Q2Vfracv

3� �
:

ð10:12Þ

Noting that the divergence in the transformed coordinates is defined by
rq � v!¼ @v1

@q1
þ @v2

@q2
þ @v3

@q3
, we can write

rq � ðVfracQper v
1v2v3

� 	T¼ rq � ev; ð10:13Þ

where

Qper ¼
Q2Q3 0 0
0 Q1Q3 0
0 0 Q1Q2

24 35 ð10:14Þ

and the transformed velocity vector ev is given by

ev ¼ VfracQper v
1v2v3

� 	T
: ð10:15Þ

Fig. 10.4 The parallelepiped
that defines an infinitesimal
volume in the transformed
coordinates. The area and unit
normal of each face enters in
the calculation of the net flux
of a vector out of this volume
(From Cummer et al. [4])
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The per subscript on the tensor Qper is to denote that the diagonal elements
transform each vector component by the product of the coordinate scaling factors
perpendicular (more general, not parallel, for the case of nonorthogonal coordi-
nates) to the direction of the vector component. Recall that our qualitative dis-
cussion above, summarized in Fig. 10.6, showed that this is precisely how the
velocity vector must transform in a compressed wave in order for transformation

Fig. 10.5 The transformation of vectors in electromagnetic (left) and acoustic or compressional
elastodynamic (right). The white converging arrows denote which component of each vector is
compressed by the coordinate transformations (From Cummer et al. [4])

Fig. 10.6 Schematic diagram of the experimental set-up. A burst of monotonic signal with a
width of twenty periods was used to drive the transducer as an underwater point source in the water
tank. One needle-sized hydrophone detected the ultrasonic signals in the immediate environment
of a the object and b the cloaked object (Zhang et al. [6])
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acoustics to work. Note that the elements of the volume vector v1v2v3½ �T are the
contravariant components of v! in the nonorthogonal coordinate system while the
element of the vector v! is the component in the original orthogonal coordinate
system (Fig. 10.5).

Multiplying (10.8) (with k r!� � ¼ 1) by Q1Q2Q3Vfrac and using (10.14) results in
the equation in the transformed coordinates,

ixp ¼ j ~qð Þjrq � v! ð10:16Þ

with

j qð Þ ¼ Q1Q2Q3Vfracð Þ�1: ð10:17Þ

This demonstrates the coordinate to function invariant of (10.8) provided that the
bulk modulus is modified according to (10.17) and the velocity vector is trans-
formed according to (10.16). More generally, this also shows how a vector must
transform in order for the gradient operator to maintain its basis form.

Cummer et al. [4] derived how (10.7) and therefore the gradient operator
transform under a coordinate change using the gradient theorem and integrating rp
along a short length in the q1 coordinate directions, they find that

rp � Q1û1 ¼ @p
@q1

¼ rqp
� �1

: ð10:18Þ

The left-hand side contains the scaled covariant components of rp which must
be converted to covariant components before it can be equated component-wise to
rqp, the gradient in the transformed coordinates. They find that

rqp ¼ Qparh
�1 rpð Þ; ð10:19Þ

where Qpar is the diagonal tensor containing coordinate scaling factors parallel to
the direction of the vector component or

Qpar ¼
Q1 0 0
0 Q2 0
0 0 Q3

24 35 ð10:20Þ

and

h
�1 ¼

û1 � û1 û1 � û2 û1 � û3
û2 � û1 û2 � û2 û2 � û3
û3 � û1 û3 � û2 û3 � û3

24 35: ð10:21Þ
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Note that this h
�1

is the same as g�1 defined by Pendry et al. [5]. They rename
this tensor because they will use g later to denote the metric tensor which is not

quite the same as this h.

Finally, multiplying (10.1) (with q ~rð Þ ¼ 1) by Qpar, they find

pqp ¼ ixQparh
�1
q0 v
!¼ ixQparh

�1
Q

�1

parV
�1
fracq0 v

!; ð10:22Þ

leaving us with the equivalent of (10.7) in fully transformed coordinates:

rqp ¼ ixqq0 v
! ð10:23Þ

with

p ¼ Qparh
�1
Q

�1

parv
�1

frac: ð10:24Þ

Equations (10.16) and (10.23) show that the acoustic equations are fully trans-
formation invariant with the modified material parameters in (10.17) and (10.24).

They further show that these experiments are equivalent to those shown by Chen
and Chan [7] purely by analogy with electromagnetics through the electric con-
ductivity equation [8] and those derived by Greenleaf et al. [9] for the general scale
Helmholtz equation. Consequently, cloaking shell, concentrator and other devices
that have been designed theoretically by electromagnetic can also be realized for
acoustics provided that the bulk modulus and anisotropic effective mass density
tensor can be realized in practice as specified by (10.17) and (10.24). This first
principle derivation without using analogy shows explicitly in (10.14) how the
acoustic velocity vector must transform under coordinate change, which as noted
above is different from how the ~E and ~H field, transform in electromagnetics. The
scalar pressure is, however, not changed by the coordinate transformations and,
thus like phase fronts and power flow lines, is simply deformed by any coordinate
transformations.

10.7 A Practical Example of Underwater Acoustical
Cloaking

10.7.1 Principle of Underwater Acoustic Cloaking

As one can see from above section that sound propagation in water undergoes
different mechanisms from sound propagation in air and so underwater cloaking
will be a different treatment from cloaking in the air. To tackle the problem of
underwater acoustical cloaking, underwater acoustic cloaking [6] used a different
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approach from that of acoustic cloaking in the air. It is based on the acoustic
transmission line approach using the analogy between the electronic circuit ele-
ments and the lumped acoustic elements. The basic geometry of the cloak is of
cylindrical shape. It consists of an array of sub-wavelength cavities and connecting
channels with spatially designed geometry. The acoustic wave equations describing
ultrasound propagation through the electronic networks will be replaced by the
telegraph’s equations. The fluid motion will be analogous to the current flow in the
electronic circuit. The transmission line approach has the advantage of (a) simple
geometric structure, (b) scaling, (c) ease of manufacturing (d) low loss, (e) broad-
band using nonresonant constituents and (f) potential to extend to large number of
other acoustic devices based on transformation.

The 2D acoustic metamaterial cloak will squeeze the cylindrical region of 0 < r<
R2 into an annular region of R1 < r′ < R2. r and r′ are the radial coordinates in the
original and transformed region, respectively. The sound wave will be smoothly
bent inside the cloak and will be excluded from the extended volume without
perturbation of external field.

The distributed acoustic system will be described by the 2D telegrapher’s
equations. The warping of space will follow the distribution of shunt capacitor and
serial inductor in the annular region given as:

Lr ¼ qw
Dr
2Sr

; ð10:25Þ

LU ¼ qwr
DU
2SU

r � R1

r

� �2

; ð10:26Þ

C ¼ 2DrSUbw
R2

R2�R1

� �2

: ð10:27Þ

10.7.2 Geometric Structure of the Underwater Acoustic
Cloak

The above parameters are used for the fabrication of the underwater acoustic cloak.
The transmission line approach is used. The underwater cloak is implemented by a
network of anisotropic acoustic transmission line making use of the analogy
between the lumped element of the transmission line and the parameters of the
acoustic equation of motion. First one will start with the building blocks of this
network. The acoustic cloak consists of sixteen homogeneous concentric cylinders.
The first cylinder next to the inner lining of the cloak is divided into 32 units around
the circumference. From the first to the fourth layer, the spacing along the radial
direction is k/7, k/8, and k/9, respectively, in the outward direction, where k =
sound wavelength in water. From the fifth layer onwards to the sixteenth layer, the
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layers are evenly spaced with distance equal to k/10 along the radial direction. The
size of each unit cell is only k/10. Also the first cylinder next to the inner lining of
the cloak consists of 32 unit cells around the circumference. The size of the unit cell
is smaller than k/10 along the circumference of direction. From the second layer
onwards, the number of unit cells is doubled to 6 and further increased to 128 from
the sixth layer.

10.7.3 Experimental Procedure

To start the experiment, the whole metamaterial structure is placed in water [6].
This structure behaves like an anisotropic lumped transmission line for incoming
underwater ultrasound. The equivalence of the acoustic lumped elements to the
transmission line elements works as follows. Here, the acoustic capacitor C ¼
V=qwC

2
w is equivalent to the cavity with large volume in centre, and the serial

inductors are Lr ¼ qwlr=Sr; LU ¼ qwlU=SU; [10–14] equivalent to the channels
connecting it to the four neighbouring cavities. The transmission line cloak is
realized by tailoring the geometry of the building blocks given in Fig. 10.2c with
the spatially varying profile given by the above relation. Reroutes the path of
underwater sound around the cloaked object without significant scattering.

As an analysis, aluminium is chosen as material for the cloak. Aluminium has
acoustic impedance eleven times that of water. From the elasticity of aluminium,
one can infer that at low frequencies most of the acoustic energy will be confined in
the fluid where the excitation comes from [13]. Also ultrasound propagates through
aluminium may increase the energy loss by the cloaking material [14].

The experiment will demonstrate the performance of the underwater acoustic
cloak. First the object is placed in the water tank. Then, the acoustic pressure of the
propagating ultrasound is measured with and without the presence of the cloak
(Fig. 10.6). The object to be cloaked is a steel cylinder. The radius of this cylinder
is equal to the inner radius of the cloak. The metamaterial network is machined on
the side of the cloak. The side of the cloak was placed against the bottom of the
tank. The steel cylinder is surrounded with the metamaterial cloak. A spherical-
shaped transducer as a point source generates the ultrasound waves. In order to map
the spatial acoustic pressure field distribution in 2D xy direction, a hydrophone is
mounted on a linear translation stage by stepping the hydrophone in small incre-
ments and recording the acoustic pulse signal from the water at every
step. Fig. 10.8a shows the experimental results. The results show the effect of
cloaking. Without the cloak and with the steel cylinder standing alone, there is
considerable shadowing and scattering at 60 kHz. With the presence of the cloak,
the cloak together with the hidden cylinder becomes invisible because the wave
trajectory was restored behind the cloak with diminutive distortion in the cylinder
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Layer (mm) ) (mm)    V( )
1 2.05  0.10  3.00 

 0.22  2.29 
 0.41  2.06 
 0.30 2.06 
 0.41  2.06 
 0.52  2.06 
 0.63 2.06 

(
3 1.37
5 1.24
7 1.24
9 1.24
11 1.24
13 1.24
15 1.24  0.74 2.06 
L ©

La
ye

r 
(m

m
) 

(a)

(b)

(c)

Fig. 10.7 A 2D acoustic cloak for underwater ultrasound waves. (a) The configuration of the
acoustic cylindrical cloak synthesized by an acoustic transmission line, namely serial inductors and
shunt capacitors. The inset is the expanded view of the network. The cavities with large volume
work as shunt capacitors and those cavities are connected by narrow channels that act as the serial
inductors. (b) One building block of the acoustic circuit, each unit cell consists of one large cavity
in the centre with channels connecting to the four neighbouring blocks. The reduced cloaking
parameters are used in the design. The serial impedance Z, shunt admittance Y have constant value
and Z/ increases as radius changes from R1 = 13.5 mm to the R2 = 54.1 mm. (c) The geometry
parameters of the building blocks in the layers with odd number are presented in the table. The
depth and width tr, wr and t/, w/ of the channels along radial and angular directions have constant
values of 0.5 mm (Zhang et al. [6])
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wavefronts. The very small attenuation of the transmitted fields observed on the exit
side of the cloak showed the low loss nature of the metamaterial cloak (Fig. 10.7).

Figure 10.8b–f show the acoustic wavefield distribution with and without
cloaking at 52 and 60 kHz. This demonstrates the broadband nature of the cloak.
The unit cells of the metamaterial cloak are nonresonant in nature. An example of
the acoustic wavefield distribution at 52 and 60 kHz are given in Fig. 10.8b–f for
cases with and without cloak by Zhang et al. [6] to demonstrate with broadband
from 40 to 80 kHz. Below 40 kHz, the scattering from object with radius 13.5 mm
is negligible. At the 80 kHz end, there are limitations by two factors. One is the
transmission line model will break down at around 120 kHz when the unit cell size
is about one quarter wavelength. The upper frequency limit can be extended by
using smaller unit cells. The other factor is the cutoff frequency at 80 kHz. This is
due to the low pass topology of the circuit network. This problem can be resolved
by modifying the geometry of the building block.

The improvement on the performance of the underwater cloak was further
investigated by Zhang et al. [6]. They conduct a number of measurements over
different frequencies. For these experiments, they measured the peak values of the
acoustic pressure along the wavefronts below the underwater cloak.

The cloaking performance is measured quantitatively by the average visibility of
the object. It is defined as

Fig. 10.8 Measured pressure field mappings of the bare steel cylinder and the cloaked steel
cylinder illuminated with a point ultrasound source. The cloak lies in the centre of the water tank
and surrounds the steel cylinder. The scattering field patterns of the bare steel cylinder at a 60 kHz
b 52 kHz and c 64 kHz. The pseudo colormaps in the immediate environment of the cloaked steel
cylinder at d 60 kHz e 52 kHz and f 64 kHz (Zhang et al. [6])
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!¼ 1
h

Xn
j¼1

!j; ð10:28Þ

where !j ¼ Pmax;j � Pmin;j
� �

= Pmax;j þPmin;j
� �

, Pmax,j and Pmin,j are the maximum
and minimum peak values, respectively, and numbered by j.

An example of the measured peak pressure at 60 kHz long one wavefront in the
exit side of the object for with cloak and without cloak are shown in Fig. 10.9. The
measurement results for the free space case when there is neither object nor cloak in
the water tank is plotted as reference. It is shown that there is small modulation in
the amplitude along one wavefront. Figure 10.9b shows the comparison of the
averaged visibility of the cloaked objet over all wavefronts on the exit side with the
case of an uncloaked cylinder. This comparison shows the underwater acoustic
cloak has good performance of shielding effectiveness over a broad frequency range
even with impedance mismatch at the outer interface of the cloak. The visibility is
0.62 for the bare steel cylinder but reduced to 0.32 for the cloaked cylinder at
60 kHz. This shows significant reduction in shadowing and scattering.

Theoretically, the averaged visibility should be zero when there is no scattering
and shadowing. However, in practice due to the presence of noise in the measure,
the averaged visibility still has a small value for the free space as shown in
Fig. 10.9b. The above results show that the transmission model consisting of a
network of lumped circuit elements for the underwater cloak is workable. The unit
cell of this acoustic metamaterial is nonresonant in nature and can be valid for a
broad frequency range.

Fig. 10.9 Frequency dependence of the averaged visibility of the steel cylinder with and without
the acoustic cloak. (a) The measured peak values of the pressure field along the wavefront lies
between y = 100 mm and y = 170 with and without cloak at 60 kHz. The green line plot is the
reference case when there is no object in the water tank. (b) Plot of the averaged visibility. The
experimental results measured with and without cloak are marked by the magenta circles and green
square, respectively. The reference visibility when there is no object is marked by blue triangular
(Zhang et al. [6])
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10.8 Application of Underwater Acoustical Cloaking

Underwater acoustic cloaking can be applied to shield submarines from sonar. It
will need further works to scale up the above underwater acoustic cloak to the size
that can be applied to deroute the sonar.
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Chapter 11
Seismic Metamaterials

Abstract The seismic metamaterial is an application of the cloaking of objects to
shielding of buildings and large objects from seismic waves. This enables the
bending of seismic waves away from the structures. The detailed theory and
adaptation to the required situation are given. This is an example of the scaling up
the capability of the acoustical metamaterials from nanometre size to building scale.

11.1 Introduction

The sudden release of huge amount of energy from the earth’s crust will give rise to
earthquakes which produce seismic waves. A seismic metamaterial is a meta-
material that is designed to counteract the adverse effects of seismic waves on
artificial structures, which exist on or near the surface of the earth. As of 2009,
seismic metamaterials were still in the development stage. More than a million
earthquakes are recorded each year, by a worldwide system of earthquake detection
stations. The propagation velocity of the seismic waves depends on density and
elasticity of the earth materials. In other words, the speeds of the seismic waves
vary as they travel through different materials in the earth. The two main compo-
nents of a seismic event are body waves and surface waves. Both of these have
different modes of wave propagation.

Computations showed that seismic waves travelling towards a building could be
directed around the building, leaving the building unscathed, by using seismic
metamaterials. The very long wavelengths of earthquake waves would be short-
ened as they interact with the metamaterials; the waves would pass around the
building so as to arrive in phase as the earthquake wave proceeded, as if the
building was not there. The mathematical models produce the regular pattern
provided by metamaterial cloaking. This method was first understood with elec-
tromagnetic cloaking metamaterials—the electromagnetic energy is in effect di-
rected around an object, or hole, and protecting buildings from seismic waves
employs this same principle.

Giant polymer-made split ring resonators combined with other metamaterials
are designed to couple at the seismic wavelength. Concentric layers of this material
would be stacked, each layer separated by an elastic medium. The design that
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worked is ten layers of six different materials, which can be easily deployed in
building foundations. As of 2009, the project is still in the design stage.

11.2 Electromagnetics Cloaking Principles for Seismic
Metamaterials

For seismic metamaterials to protect surface structures, the proposal includes a
layered structure of metamaterials, separated by elastic plates in a cylindri-
cal configuration. A prior simulation showed that it is possible to create conceal-
ment from electromagnetic radiation with concentric, alternating layers of
electromagnetic metamaterials. That study is in contrast to concealment by inclu-
sions in a split ring resonator designed as an anisotropic metamaterial [1].

The configuration can be viewed as alternating layers of “homoge-
neous isotropic dielectric material” A with “homogeneous isotropic dielectric
material” B. Each dielectric material is much thinner than the radiated wavelength.
As a whole, such structure is an anisotropic medium. The layered dielectric
materials surround an “infinite conducting cylinder”. The layered dielectric mate-
rials radiate outwards, in a concentric fashion, and the cylinder is encased in the first
layer. The other layers alternate and surround the previous layer all the way to the
first layer. Electromagnetic wave scattering was calculated and simulated for the
layered (metamaterial) structure and the split ring resonator anisotropic metama-
terial, to show the effectiveness of the layered metamaterial [1].

11.3 Acoustical Cloaking Principles for Seismic
Metamaterials

The theory and ultimate development for the seismic metamaterial is based
on coordinate transformations achieved when concealing a small cylindrical object
with electromagnetic waves. This was followed by an analysis of acoustic cloak-
ing, and whether or not coordinate transformations could be applied to artificially
fabricated acoustic materials [2].

Applying the concepts used to understand electromagnetic materials to material
properties in other systems shows them to be closely analogous. Wave vec-
tor, wave impedance and direction of power flow are universal. By understanding
how permittivity and permeability control these components of wave propagation,
applicable analogies can be used for other material interactions [3].

In most instances, applying coordinate transformations to engineered artifi-
cial elastic media is not possible. However, there is at least one special case where
there is a direct equivalence between electromagnetics and elastodynamics.
Furthermore, this case appears practically useful. In two dimensions, isotropic
acoustic media and isotropic electromagnetic media are exactly equivalent. Under
these conditions, the isotropic characteristic works in anisotropic media as well [3].
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It has been demonstrated mathematically that the 2D Maxwell equa-
tions with normal incidence apply to 2D acoustic equations when replacing the
electromagnetic parameters with the following acoustic parameters: pressure, vec-
tor fluid velocity, fluid mass density and the fluid bulk modulus. The compres-
sional wave solutions used in the electromagnetic cloaking are transferred to
material fluidic solutions where fluid motion is parallel to the wave vector. The
computations then show that coordinate transformations can be applied to acoustic
media when restricted to normal incidence in two dimensions [3].

Next, the electromagnetic cloaking shell is referenced as an exact equivalence
for a simulated demonstration of the acoustic cloaking shell. Bulk modulus and
mass density determine the spatial dimensions of the cloak, which can bend any
incident wave around the centre of the shell. In a simulation with perfect conditions,
because it is easier to demonstrate the principles involved, there is zero scattering in
any direction.

11.4 Seismic Cloak Would Minimize Earthquake Damage

Seismic invisibility cloaks can shield vulnerable buildings from damaging earthquakes.
A group of researchers in France under Guenneau [1] have been testing experimentally
an early prototype of such seismic cloak. The concept could be extended to protect
sensitive facilities such as nuclear power plants from earthquake damage by creating
protective cloaks or barriers that divert earthquake energy away (Fig. 11.1).

Traditionally, earthquake engineering, a study of insulating the building from
earthquake, is based on the dissipation and damping of energy when the building is
hit by shock waves. Now with the arrival of seismic metamaterials in France,
Sebastien Guenneau [1] and colleagues at the Institut Fresnel and the geoengi-
neering company Ménard modify the condition and structure of the ground around
the building to shield it from the seismic waves. This forms a seismic cloak for the
building from the propagating earthquake. Preliminary tests on the effectiveness of
seismic cloak are also carried out.

Their work is an example of the application of acoustic metamaterials, an
extension of electromagnetic metamaterial. The concept of metamaterial was pro-
posed by Victor Veselago in 1968. Experimentally, electromagnetic metamaterial
was built in 2000 by David Smith of Duke University, USA. Subsequently, John
Pendry et al. also developed coordinate transformations method known as trans-
formation optics which forms the mathematical basis of cloaking.

11.4.1 Transformation Seismology

Coordinate transformations introduced from Einstein’s theory of general relativity into
electromagnetic waves enables the bending and the shielding of the object away from
the electromagnetic wave, making the object invisible. Guenneau et al. [1] applied
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transformation optics to seismology. Here, the propagation and the scattering of
electromagnetic waves take place. In this chapter, sound waves or seismic waves and
transformation acoustics are used instead. The interchange of the kinetic energy and
the elastic energy contained in sound wave propagation and the potential energy stored
in the deformation of the earth’s crust takes place. The analogy between electro-
magnetic wave and sound wave is manifested as the soil mass density is equivalent to
the electric permittivity and the elastic modulus is equivalent to the magnetic per-
meability. So transformation seismology is analogous to transformation optics.

The practical implementation of this theory in a seismic cloak workable for all
types of destructive seismic waves is extremely difficult. Now, both the soil mass
density and the elastic modulus of the surroundings will be controlled simultane-
ously. To satisfy the anisotropic nature requirement of the cloak, the elastic moduli
have to be different in different directions. This is the same requirement as for the
electromagnetic cloak. For the electromagnetic cloak, the solution is to fabricate a
2D cloak instead of a 3D cloak. For the seismic waves, the same method is applied
to seismic cloak for earthquake shielding using the same principle that seismic
wave is only propagating in 2D across the earth’s surface.

Fig. 11.1 Putting the cloak
to the test (after Stephane
Brule of Menard)
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The above hypothesis has been tested by Stéphane Brûlé et al. at Ménard. The
following experiment was performed to test the effectiveness of the seismic cloak.
A source vibrating at 50 Hz, the upper limit of the earthquake surface wave, was
buried just below the surface of a sedimentary basin. Sensors were placed several
metres away to record the earth’s speed of vibration. Strong oscillations were
recorded. Then, they bored holes at strategic positions with 5 m depth to modify the
elastic modulus and mass density of the soil based on their calculations. Sensors
were again placed on some regions on the other side of the bore holes, recorded less
than 20% of the oscillation amplitude. This demonstrated that the seismic cloak in
the form of the modified elastic modulus and mass density of the soil can shield off
much of the seismic energy.

It is to be noted that the seismic cloak would require the similar space to the
region being cloaked. Also, a potential weakness of the present cloak showed that
the seismic waves not transmitted will be reflected. Hence, the next step should be
to build a full cloak that will control the seismic wave propagation and will not
damage neighbouring buildings.

11.5 A Practical Example of a Seismic Cloak

For the last fifteen years, cloaking technology has been an intensive area of research
and development. The capability of hiding objects from incident waves has
numerous practical applications. One of them is in the shielding of buildings from
seismic wave possibility. The function of the seismic cloak which is surrounding
the building and its foundation is to steer seismic wave around the building
structures. Several groups have been involved in this work (Fig. 11.2).

One group, the collaboration of Sang-Hoon Kim of the Mokpo N Maritime
University in South Korea and the Australian National University showed that the
metamaterials can instead dissipate seismic energy by the conversion of the propagating
waves into nonpropagating evanescent waves which will also die down exponentially in
travelling. This is done by analysing and calculating the properties of the metamaterials
and designing the unit cells which consist of repeating concrete cylinders of 18 m

Fig. 11.2 A Seismic Cloak
a A sample of a meta-cylinder
with 4 side holes. The size of
the cylinder is less than the
wavelength of the surface
waves. b A combined form of
the 4 meta-cylinders. An
electrical analogy is shown
(after Kim and Das [4])
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diameter with four perpendicular holes in its sides [Fig. 11.2]. The building will be
surrounded by these cylindrical shells with varying size placed some 60 m across. This
will absorb seismic energy over a range of wavelengths. This seismic cloak will be in
the form of big structure which has to be constructed only around isolated buildings.
Hence, this will not benefit the neighbouring buildings. The cost is high but not pro-
hibitive. So the seismic cloak will be essential for structures of importance to society
such as nuclear reactors, dams, power plants, airports and oil refineries.

There is still an outstanding issue of how to handle the seismic energy that is
dissipated. It is necessary to have a convincing proof that the concrete seismic cloak
can handle the tremendous seismic energy released and dissipated during big
earthquakes.

11.6 Seismic Waveguide Made of Metamaterials

Kim and Das [4] have developed a new method of an earthquake-resistant design to
support conventional seismic designs using acoustic metamaterials. They suggest a
simple and practical method to reduce the amplitude of a seismic wave exponen-
tially. Their device is an attenuator of a seismic wave. Constructing a cylindrical
shell-type waveguide that creates a stopband for the seismic wave, they convert the
wave into an evanescent wave for some frequency range without touching the
building they want to protect.

11.6.1 Introductory Theory on Seismic Waves

As mentioned in above section, Kim and Das [4] have developed a new method of
earthquake-resistant seismic metamaterial using acoustic metamaterials. Their
device is equivalent to an attenuator of seismic wave. They construct a cylindrical
shell-type waveguide that creates a stopband for the seismic wave. The seismic
wave was converted into an evanescent wave for same frequency range without
touching the building they will protect. Earthquake produces seismic waves. These
seismic waves that possess large amplitudes and low frequencies cause great haz-
ards to extensive life and property such as the collapse of dams, bridges and power
plants. Hence, seismic capabilities are highly relevant to public safety, and huge
amount of researches have gone into establishing practical analysis and design
works for them. Several earthquake-proof engineering methods have been pro-
posed, but still they are not so successful. Seismic waves are a kind of inhomo-
geneous acoustic wave with various long wavelengths. There are two types of
seismic waves: body waves and surface waves. The body waves are the P (primary)
and S (secondary) waves, and the surface waves are the R (Rayleigh) and L (love)
waves. Surface waves travel slower than body waves, and their amplitudes decrease
exponentially with the depth. It travels about 1–3 km/sec with various varieties

282 11 Seismic Metamaterials



within the depth of a wavelength [2, 5]. The wavelengths are in the order of 100 m,
and the frequencies are about 10–30 Hz. These frequencies are at the low end of the
spectrum and are just below the audible frequency. During earthquake, the Rayleigh
wave or surface wave decays slower than body waves and will be there for a long
duration due to their very low frequencies or infrasonic frequencies. Also, they are
of very high intensity and is a field of nonlinear acoustics. Hence, they are more
destructive than body waves. This surface wave or Rayleigh wave can exist only in
a homogeneous medium with boundaries and homogeneity. Rayleigh waves are
transverse waves [2, 5]. The motion during earthquake observed at the ground
surface is mainly Rayleigh waves or R waves. During earthquake, there is another
type of waves known as L waves. They are polarized shear waves through the
elastic layer. L waves have both transverse and longitudinal components. Most
people feel the horizontal shifting of the earth during earthquake. This is due to the
presence of the L waves.

However, the cloaked seismic waves are still destructive to the buildings behind
the cloaked region. Recent development of acoustic metamaterials research opens a
new direction to control the seismic waves. Sang-Hoon Kim et al. [4] proposed a
different approach. Their solution is based on that metamaterial acts as an attenuate
shifting or by using negative modulus and by converting the destructive seismic wave
into evanescent wave using the imaginary velocity of stopband of the seismic waves.

There are several ways to represent the scale of the earthquake. The most
common one is the Richter scale which is based on the amplitude of the seismic
waves. It is defined as:

M ¼ log ðA=A0Þ ð11:1Þ

where A = maximum amplitude of the seismic wave and A0 = maximum amplitude
of the background vibration and order of µm. The seismic measuring equipment
provides a transformed magnitude of the intensity. The strength of earthquake can
be also measured in terms of the peak ground acceleration (PGA) which is
expressed in closed form. Here, Sam Lee et al’s. [4] work is based on the reduction
of the amplitude of the seismic wave using seismic metamaterials.

11.6.2 Negative Modulus

The elasticity of the medium can produce acoustic waves. Elasticity is usually
measured in terms of the elastic moduli which are: (1) Young’s modulus, Y, which
is one dimensional and is defined by

Y ¼ DPl
Dl

; ð11:2Þ
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where ΔP = stress and l = the length. (2) shear modulus, G, is a two dimensional
for a surface wave and is defined by

G ¼ DP
Dx=h

ð11:3Þ

where Δx = horizontal shift and h = height of the object. (3) bulk modulus, or
compressibility к, which is three-dimensional one for body wave and is defined by

k ¼ �DP
DV
V

: ð11:4Þ

The earth crust as a seismic medium can be considered as an accumulation of
infinite number of elastic plates. Although the seismic surface wave is not pure
two-dimensional, its velocity is mainly dependent upon the density, q, and shear
modulus, G, of the seismic medium.

Seismic wave is a form of acoustic wave and hence follows the acoustic field
equation derived as follows. Assuming time dependence and propagation in the
plane wave time dependence, ejwt and propagation in a two-dimensional flat
spacetime, one has first the Newton’s second law:

rsp ¼ ixqv ð11:5Þ

where p = acoustic pressure, v = particle velocity andrs = Laplace operator at the
surface.

and the continuity equation written as:

ixp ¼ Grs � v ð11:6Þ

where ∇s is the Laplacian operator at the surface, p is the pressure, x is the angular
frequency of the wave, and v is the velocity. Combining (11.5) and (11.6) yields the
acoustic field equation:

r2
s pþ

x2

v2
p ¼ 0 ð11:7Þ

where x = angular frequency of the sound wave.
The particle velocity of the seismic wave is:

v ¼
ffiffiffiffi
G
p

s
ð11:8Þ

The physics of the conversion of propagating seismic waves into dissipating
evanescent waves is as follows. The seismic metamaterial will produce negative
bulk modulus. This yields an imaginary velocity. The refractive index n = v0

v ¼
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v0
ffiffiffiffiffiffiffiffiffi
q=G

p
where v0 = background velocity also becomes imaginary and thus in turn

produces a negative wave number k as k = 2pn/k. The imaginary value of the wave
vector makes the amplitude of the seismic wave decaying or dissipating, giving rise
to the evanescent wave. This is known as the noise attenuator or noise barrier. The
impedance z = qv =

ffiffiffiffiffiffiffi
qG

p
also becomes imaginary and absorptive.

Acoustic metamaterials with negative bulk modulus and negative mass density
have been investigated and fabricated for other frequency range other than the
infrasonic or seismic frequency range [6–8]. The key component used is the
Helmholtz resonator. An array of Helmholtz resonators is used to produce negative
bulk modulus. The resonance of the Helmholtz resonator gives rise to the negative
bulk modulus at some specific frequency ranges. Within this frequency range,
sound intensity decays exponentially and the propagating sound wave is converted
into the evanescent wave.

In general, the elastic material is described by three independent elastic moduli
components: G, B, and therefore, sometimes the G is replaced by a linear combi-
nation of G, B, and the Lamé constant [2, 5], but it will not change the structure of
the theory. Acoustic waves from the modulus share fundamental properties of
sound waves. From the formalism of electromagnetic response in metamaterials,
effective electric permittivity and effective magnetic permeability show negative
values at some specific frequency ranges around resonances [9]. The Helmholtz
resonator is a realization of an electrical resonance circuit by mechanical corre-
spondence. It is known as that the plasmon frequency in metals or in an array of
metal wires produces the electric permittivity as [10]:

e ¼ e0 1� x2
p

x xþ iCð Þ

" #
ð11:9Þ

where xp is the plasma frequency and C is a loss by damping. With the analogy
between electromagnetic wave and the acoustic wave, Eq. (11.2) is analogous to
the Faraday’s law and Eq. (11.3) is analogous to the Ampere’s law. Also, the
inverse of the elastic modulus in acoustic wave is analogous to the permittivity of
the electromagnetic wave. With the structural loss, the effective shear modulus,

Geff , is given similarly with the general form of the bulk modulus as [11–15]:

1
Geff

¼ 1
G

1� Fx2
0

x2 � x2
0 þ iCx

� �
ð11:10Þ

where x0 is the resonance frequency and F is a geometric factor [10, 16].
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11.6.3 Seismic Attenuator

One can build an attenuator or an earthquake-proof barrier of a seismic wave by
filling up many resonators under the ground around the building that we want to
protect. Then, the amplitude of the seismic wave that passed the waveguide is
reduced exponentially by the imaginary wave vector at the frequency ranges of
negative modulus. Mixing up many different kinds of resonators will cover many
different corresponding frequency ranges of the seismic waves. If one assumes that
the plain seismic wave of wavelength k propagates in x-direction, the amplitude of
the wave reduces exponentially as:

Aeikx ¼ Aei2pnx=k ¼ A exp �2p=n=x=kð Þ ð11:11Þ

Let the initial seismic wave, that is, before entering the waveguide, have
amplitude Ai and magnitude Mi, and final seismic wave, that is after leaving the
waveguide, have amplitude Af and magnitude Mf , then following the Eqs. (11.1)
and (11.11), one obtains:

Af ¼ Ai exp �2p=n=x=kð Þ ð11:12Þ

which shows the amplitude of the seismic wave reduces exponentially as passing
through the waveguide of metamaterials.

One can rewrite Eq. (11.12) with the definition of the magnitude given in
Eq. (11.1) as:

A010Mi exp �2p=n=x=kð Þ ¼ A010Mf ð11:13Þ

Taking logarithms both sides of Eq. (11.13), one obtains the width of the
waveguide, x ! Δx, as

Dx ¼ ln 10
2p

kDM==n= ¼ 0:366 kDM==n= ð11:14Þ

where DM ¼ Mi �Mf .
For example, if the refractive index is n = 2 and the wavelength of the surface

wave is k = 100 m, one will need the waveguide of the width Δx ’ 18 m to reduce
ΔM = 1. If the aseismic level of the building is M = 5 and the width of the
waveguide surrounding the building is about 60 m, then the effective aseismic level
of the building is increased to M = 8. Therefore, a high refractive index material is
desirable for a narrow waveguide.

In civil engineering, earthquake proofing methods must be practical. That is easy
to construct and clear to manufacture, and the resonator must be easy to build. Kim
and Das [4] designed an example of a resonator shown in Fig. 11.2. The size of the
cylinder can be estimated from the analogy between mechanical pipes and electric
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circuits. Hence, a tube or a pipe with open ends corresponds to an inductor, and a
closed end corresponds to a capacitor [16, 17].

L¼ ql
S

0
; C ¼ V

xv2
ð11:15Þ

where q = density inside the volume, l′ = effective length, S = area of the
cross-section, V = volume and v = velocity inside.

From Eq. (11.15), the resonant frequency is given as

x0 � 1ffiffiffiffiffiffi
LC

p ¼
ffiffiffiffiffi
Sv
l0v

r
ð11:16Þ

In the meta-cylinder, l′ is the effective length which is given by l′ ’ l + 0.85d
[17], where l = length of the hole or thickness of the cylinder, and d = diameter of
the hole.

The shape of the meta-cylinder is neither necessary to be circular nor to have 4
holes. It could be any form of a concrete box with several side holes. Cubic or
hexagonal boxes would be fine. Various kinds of resonators may cover various
kinds of resonance frequencies of the seismic waves. An energy dissipation of the
seismic waves will take place inside the waveguide, and the absorbed energy will
turn into sound and heat. This makes the temperature of the waveguide increasing
depending on the magnitude of energy that arrives at the waveguide.

Hence, a supportive method is proposed for aseismic design. It is not to add
another aseismic system to a building but to construct an earthquake-proof barrier
around the building to be protected. This barrier or attenuator is a seismic
waveguide which reduces exponentially the amplitude of the dangerous seismic
waves.

By controlling the width and refractive index of the waveguide, one can upgrade
the aseismic range of the building as needed in order to defend it, at will, without
touching it. This would be the big advantage of the waveguide or attenuator
method. This method will be effective for isolated buildings because one needs
some areas to construct the aseismic shell. This method will be applicable to
sensitive buildings such as power plants, dams, airports, nuclear reactors, oil
refining complexes, long-span bridges and express railroads.
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Chapter 12
Application of Acoustic Metamaterials
to Finite Amplitude Sound Wave

Abstract First, the application of finite amplitude wave to acoustical cloaking is
given. This is an extension of coordinate transformations from the linear acoustic field
equation to nonlinear acoustic field equation which also shows form invariance. Then,
metamaterial isapplied to twoexamplesofnonlinearacoustics.First toacoustic radiation
force. Metamaterial enables a negative radiation force. Previous work on negative
acoustic radiation force has the limitation only toBessel beam.The second example is to
apply to force of levitation. Metamaterial enables the control and manipulation of the
force of levitation and allows for the levitation and suspension of larger objects.

12.1 Introduction

In 2007, Gan [1] introduced symmetry properties to acoustic fields. This has been
confirmed by the successful fabrication of the acoustic metamaterials, various
applications of time reversal acoustics [2], the scale invariance properties of the
turbulence field which is basically acoustic field [3] and that the phonon is a
Goldstone mode [4]. Acoustic metamaterials give rise to several novel applications
such as negative refraction [5], acoustical cloaking [6], sound insulation [7], acoustic
waveguides [8]. It would be of great interest to extend to the new field of the
application of finite amplitude wave to acoustic metamaterials. In this paper, the
Burgers equation is applied to acoustical cloaking. Also, acoustical metamaterial is
applied to the acoustic radiation force (ARF) which has application in acoustical
imaging and drug delivery and the force of levitation which are based on intense
sound waves which are finite amplitude sound waves. The force of levitation is the
outcome of the balance of the upward thrust of the ARF and the downward pull of the
gravitational force. The metamaterial with a negative mass density will produce a
repulsive gravity and also the ARF travelling in an opposite direction, that is, towards
the sound source instead of travelling in the same direction of sound propagation as in
conventional material. Since the repulsive gravity is related to general relativity, this
will be the first application acoustical metamaterial to general relativity. The intro-
duction of general relativity will bring nonlinear acoustics to the next level.

© Springer Nature Singapore Pte Ltd. 2018
W.S. Gan, New Acoustics Based on Metamaterials, Engineering Materials,
https://doi.org/10.1007/978-981-10-6376-3_12
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12.2 Acoustical Cloaking

Acoustical cloaking is the first introduction of acoustics to curvilinear space-time.
Previously, all associations of acoustics with curvilinear space-time are only the use
of curvilinear coordinates to describe the geometrical shape of certain structure of
interest. They are not concerned with the propagation or bending of sound wave in
curvilinear space-time. Acoustical cloaking is based on the form invariance or
symmetry property of the acoustic equation of motion. The basic mathematics here
is coordinate transformation which is also used in the derivation of the nonlinear
field equations of general relativity. The Burgers equation will be used here:

@p
@t

þ prp ¼ dr2p ð12:1Þ

where p = acoustic pressure, d = diffusion coefficient or viscosity.
For simplification, the one-dimensional x-direction propagation is chosen with

sinusoidal wave,

p ¼ i xt � kxð Þ: Then,
jxpþ p2 �jkð Þ ¼ dð�k2pÞ ð12:2Þ

To start with, the acoustic pressure p must transform by considering p in a
nonorthogonal coordinate system described by coordinates q1, q2, q3 with unit
vectors u1!; u2

!; u3
!, respectively. Following Pendry et al. [6] and letting i = 1, 2, 3:

Q2
i ¼

@x
@qi

� �2

þ @y
@qi

� �2

þ @z
@i

� �2

ð12:3Þ

The divergence theorem is applied to an infinitesimal volume in this
nonorthogonal coordinate system. Deriving the net outward flux of p from this
volume and setting it equal to the divergence of p times the infinitesimal volume, it
can be shown that

ðr � pÞQ1Q2Q3=u1
!� u2

!� u3
!� �

= ¼ @

@q1
Q2Q3p � u2

!� u3
!� �� �

þ @

@q2
Q1Q3p � u1

!� u3
!� �� �þ @

@q3
Q1Q2p � u1

!� u2
!� �� �

ð12:4Þ

Let Vfrac ¼ =u1
!� ðu2!� u3

!Þ because this is the fraction by which a unit volume is
compressed by the coordinate nonorthogonality and the conventional superscript
(subscript) notation for contravariant (covariant) vector components using
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p � u2
!� u3

!� � ¼ p1u1
!� u2

!� u3
!� � ð12:5Þ

Then, Eq. (12.4) can be rewritten as

ðr � pÞQ1Q2Q3Vfrac ¼ @

@q1
Q2Q3Vfracp

1� �þ @

@q2
Q1Q3Vfracp

2� �þ @

@q3
Q1Q2Vfracp

3� �

ð12:6Þ

Noting that the divergence in the transformed coordinates is defined by

rq � p ¼ @p1

@q1
þ @p2

@q2
þ @p3

@q3
, then

rq � VfracQper

� 	
p1p2p3
� �T¼ rq�p ð12:7Þ

where

Qper ¼
Q2Q3 0 0
0 Q1Q3 0
0 0 Q1Q2

2
4

3
5 ð12:8Þ

and the transformed acoustic pressure is given by

p ¼ VfracQper p
1p2p3

� �T ð12:9Þ

The “per” subscript on the tensor Qper is to denote that the diagonal elements
transform each vector component by the product of the coordinate scaling factors
perpendicular (more general, not parallel, for the case of nonorthogonal coordi-
nates) to the direction of the vector component.

The p in (12.9) is same as the p given by (12.1).

12.3 Acoustic Radiation Force

The concept of acoustical tweezers was introduced by Wu [9] and this triggers off an
increasing interest on ARF. Acoustic tweezers are under the field of acoustophoresis.

In acoustophoresis, ARF is used in the contactless manipulation, separation and
trapping of small particles and cells [10]. Two-dimensional tweezers have been
achieved in lab-on-a-chip devices [11] and by using circular phase arrays [12].

Over the last century, single-beam acoustical tweezer has also been developed
using a tightly focused beam [13]. Force exerted by a plane or a spherical wave on a
suspended sphere in a nonviscous fluid has been extensively investigated over the
last century [14–20], based on the partial-wave expansion of the incident and the
scattered waves and the axial radiation force exerted on a sphere by a planar piston
beam [21, 22], a spherically focused beam [23], Bessel beams [24], [25–27], and a
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Gaussian [28] beam. In all these studies, the sphere is located on the axis of the
beam, and for focused beams, the analysis was restricted to the sphere placed in the
focus point.

The design of a single-beam acoustical tweezers will require an analysis of how
the radiation force on the sphere behaves in the vicinity of the transducer’s focus
point. So far, this analysis has been done only for ka � 1, the geometric scattering
region [29] where k = incident wave number and a = sphere’s radius. For other
regimes such as Rayleigh scattering (ka � 1) and resonant scattering (ka � 1), the
ARF can be computed using the partial-wave expansion method [30]. Here, the
radiation force exerted on a suspended sphere is expressed in terms of the
beam-shape and the scattering coefficients [31]. Each beam-shape coefficient
(BSC) is the complex amplitude of an incident partial-wave, while the scattering
coefficients are obtained from the acoustic boundary conditions across the sphere’s
surface. The scattering coefficient is related to the mechanical properties of the
scatterer, while the BSCs carry information on the geometry of the incident beam.

The radiation force produced by a spherically focused transducer on a sphere
arbitrarily located in the host medium can be obtained by calculating the BSC with
respect to the particle’s position. There are several numerical schemes to compute
the BSC include the mid-point integral rule [31, 32] and the discrete spherical
harmonics transform (DSHT) [33, 34], which is based on the discrete Fourier
transform and several other quadrature methods to compute BSCs in the context of
optical computing [35]. Both the mid-point integral rule and DSHT method require
that the incident pressure amplitude should be sampled over a virtual sphere which
encloses the beam propagation region, containing the spherical target. For highly
oscillating functions, the mid-point integral rule requires a large number of sam-
pling points to ensure proper converge of the BSC computation while the DSHT
method renders more accurate results with less sampling points, it may develop
numerical errors related to aliasing due to undersampling and spectral leakage
caused by function domain truncation.

In order to circumvent numerical approximations for the calculation of ARF, an
exact method is proposed here based on the partial-wave expansion method [30, 34]
and the translational addition theorem [36]. A similar method has been used to
exactly calculate the radiation pressure generated by the electromagnetic wave [37].
The proposed method is used to calculate the radiation force produced by a
spherically focused transducer on a silicone-oil droplet. The incident beam is
generated by a biomedical focused transducer with a driving frequency of 3.1 MHz,
and an F-number of 1.6ARF is computed along the beam’s axis and on the
transducer’s focal plane using closed expression of the BCS with respect to the
beam focal point [38]. Both resonant and Rayleigh scattering regimes are consid-
ered. The results obtained from the Rayleigh regime are compared with those from
Gorkov’s theory [18]. A significant deviation is noted in the axial radiation force
when ultrasound absorption inside the droplet is taken into account. In addition,
transverse trapping is obtained in both the Rayleigh and the resonant scattering
regimes. However, simultaneous axial and transverse trapping occurs only for
droplets in the Rayleigh scattering regime.
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The following is a specific application with an example of the procedure for the
derivation of the ARF on a sphere.

Consider an acoustic beam of arbitrary wavefront with angular frequency x and
propagating in an inviscid infinite fluid. The fluid has ambient density q0 and speed
of sound c0. The acoustic beam is described by the excess of pressure p as a
function of the position vector r, with respect to a defined coordinate system. The
time-dependence e�iwt is suppressed for the sake of simplicity. A spherical scatterer
with radius a, density q1 and speed of sound c1 is placed in the ultrasound beam
path.

A spherically focused transducer with diameter 2b and curvature radius z0 is
used to produce a focused beam. The origin of the coordinate system O is set at the
transducer’s focus. When the centre of the sphere coincides with O, the scattering of
the incident beam is referred to as the on-focus scattering configuration [38].

In this on-focus scattering formalism, the normalized amplitude of the incident
pressure beam can be described in spherical coordinates r = rer (h, /), where er is
the radial unit-vector, h and / are the polar and the azimuthal angles, respectively.

The incident pressure partial-wave expansion is given by [38]:

pi ¼
X
n;m

amn jn krð ÞYm
n €;Uð Þ ð12:10Þ

where k ¼ x=c0, jn = nth-order spherical Bessel function and Ym
n = spherical

harmonic function of nth-order and mth-degree. Here, the amplitude is normalized
to the pressure magnitude p0.

ARF is produced when acoustic waves illuminate on objects and is the result of
momentum exchange between the object and the incident field. In most cases,
ARFs are positive as acoustic waves usually push objects towards the propagating
direction. Negative ARFs occur when acoustic waves pull the objects continuously
towards the wave source direction. Negative ARFs have more applications than
positive ARFs such as in particle manipulation and in acoustic levitation. ARF has
applications in acoustical imaging [39] and biomedical applications in microfluids
[40] and in the force of levitation [41] The ARF is due to intense sound and so the
finite amplitude wave has to be used.

The ARF on a general object in an ideal fluid is:

Fi ¼
Z
SR

� qv2

2
þ q

2c2
@/2

@t
þ q vivj

� �
 �
dSj ð12:11Þ

where q = mass density, v = particle velocity, c = sound velocity and / = scalar
potential.

This will give an upward acoustic pressure on the object. If the object is made of
acoustic metamaterial of negative mass density, the ARF will be negative. The
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thrust on the object will be in opposite in direction. That is will be downward
instead. Also, negative radiation force has been observed by Marston [42] but it is
restricted only to Bessel beams.

12.4 Application of Acoustical Metamaterials to Force
of Levitation [41] in the Presence of General
Relativity and Gravitational Force

Levitation is a process demonstrated by Einstein’s theory of general relativity and
the effect of gravitational force. It happens when the upward thrust of the ARF
balances the downward gravitational pull. Levitation can be realized by various
physical means, such as ARF, aerodynamic force, electrostatic force, and magnetic
force. Acoustic levitation enables the suspension of an object in air or in fluid. In
this chapter, only one-dimensional levitation methods utilizing high-intensive
ultrasonic sound waves will be discussed. An acoustic wave can exert an ARF force
on objects immersed in the wave field. These forces are normally weak, but they
can become quite substantial when high-intensity sound wave is used due to the
nonlinear characteristics. These ARFs can become large enough to levitate sub-
stances against gravitational force. This technique is known as acoustic levitation or
ultrasonic levitation, and the sound waves used are in the ultrasonic frequency
range (higher than 20 kHz).

The recent successful detection of gravitational wave enhances the status of
general relativity. Here, general relativity will be applied to nonlinear acoustics.
This will bring nonlinear acoustics to the next level. An obvious application will be
to the force of levitation [41]. Acoustic levitation enables the suspension of an
object in the air or in the fluid. This will occur when the upward thrust of the
acoustic pressure on the object is equal to the downward force of gravity. To
understand acoustic levitation, both nonlinear acoustics and general relativity have
to be used. This will introduce general relativity into nonlinear acoustics and show
the role and the effect played by general relativity in nonlinear acoustics.

This will be the second application of sound propagation in curvilinear
space-time. The first application is acoustical cloaking.

The presence of a negative mass density will produce a negative ARF. Marston
[42] produced a negative ARF using Bessel beams. The advantage of using acoustic
metamaterial for producing negative ARF is without the restriction to Bessel beams.
In addition, negative mass density will produce a negative mass which in turn will
produce a negative force of gravity or a repulsive force of gravity. This will enable
the use of acoustic metamaterials on space flight.
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12.4.1 Modelling of the Proposed Levitation System [41]

Zhao et al. [41] proposed an acoustic levitation system to levitate a relatively large
object (a few times of the sound wavelength in air) of disc shaped. A circular plate
vibrating in its flexural vibration mode is chosen as the sound radiator to obtain a
large sound radiation surface. The sound field can be simplified and described as
follows: the circular disc vibrates in its flexural vibration mode and generates the
sound, and radiator (a circular disc) vibrates in its flexural vibration mode and
generates a sound beam in front. The sound beam propagates forward and is
reflected by a rigid surface, the object to be levitated, placed perpendicular to the
sound beam at a distance of L away from the radiator. An acoustic wave field
resulted from multiple reflections is formed between two surfaces. The acoustic
field becomes a standing wave when L is equal to multiple times of half wavelength
of sound. Excessive pressure on the rigid surface is generated by the acoustic field.

In the Zhao et al. [41] system, a piezoelectric Langevin type transducer driven in
its first longitudinal mode (k/2) at 20 kHz is used to generate ultrasonic vibrations.
A stepped horn (k/2) is attached to magnify the vibration amplitude of the trans-
ducer. An aluminium plate of diameter 120 mm is used as sound radiator. The plate
is screwed into the horn. To match one of the plate’s asymmetric flexural modes of
vibration, the axial resonant frequency of horn and transducer, the plates thickness
is chosen so that the corresponding natural frequency of the free vibrating plate
appears at 20 kHz. By properly matching the thickness, flexural modes of vibration
with one, two and three nodal circles have been constructed. A plate with two
modals has been formed experimentally, a good compromise between mechanical
strength and achievable vibration amplitude. After assembly, the resonant fre-
quency of the entire system (transducer, horn and plate) appears at about 19 kHz. It
is slightly depending on the input power. The resonant frequency of the system can
be tracked during operation by using an Adaptive Phase Locked Loop control
algorithm (APLL) is used.

An experimental set-up is used to measure the acoustic levitation force produced
by the disc levitation system. A schematic diagram of the experimental set-up is
shown in Fig. 12.1. An aluminium plate with the same diameter as the radiation
plate is positioned in opposite to the radiator. This sound-reflecting plate is mounted
on a vertical linear stage through a load cell for being able to measure the vertical
force acting on the reflector directly. Using the linear stage, the reflector will be
positioned freely between the contact position and a distance of about 40 mm above
the radiator. A laser interferometer is installed to measure the exact vertical position
of the reflector.

A common compact disc (CD) is chosen as the object to be levitated. It has the
same diameter as the vibrating plate, with a thickness of 1.3 mm and a mass of
16 g. A stable levitation state is observed when the input power reaches about 30 W
The CD then rests without any instable vertical motion above the flexural plate. The
maximum vibration amplitude of the excitation system occurs at the centre of the
flexural plate and is about 25 µm at 19 kHz for this level of power. This is
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measured by the laser vibrometer. It is noted that the CD in this experiment is at a
position slightly higher than half a wavelength above the peak of the levitation
force, where the acoustic levitation force equals the gravitational force of the CD.
This is different from the common radiator-reflector-type systems, in which small
particles are levitated at positions slightly below the pressure nodes of the standing
wave. Stable levitation could not be achieved at one wavelength or higher positions
with the proposed experimental set-up due to the quickly dropped levitation force.

12.4.2 Computation of the Acoustic Levitation Force

The cylindrical coordinates (r, H, z) is used here to describe the sound radiator
which is a circular plate with constant thickness, where r = radius from the centre of
the sound radiator, h = angle of that radius and z = length in the direction normal to
the plane of the radiator.

The formulation is that of the transverse vibration of a circular plate: one has the
following general solution for the plate equation:

Fig. 12.1 Experiment set-up
for measuring the ARF (Zhao
and Wallaschek [41])
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Zðr;H; tÞ ¼ aijJi
kijr
a

� �
þ bijIi

kijr
a

� �
 �
cos ih cos 2pt ð12:12Þ

where Z(r, h) = the displacement of the mid-surface of the plate, a = radius of the
circular plate, f = natural frequency of the related mode shape, i, j = the number of
nodal diameters and nodal circles, not counting the boundary, respectively. Ji and Ii =
Bessel function and modified Bessel function of the first kind relatively, and i order. aij
and bij = constants which are determined to within an arbitrary constant by the
boundary conditions and mode number. kij = dimensionless frequency parameter
related to the boundary conditions on the plate, the plate geometry and Poisson’s ratio.

Zhao et al. [41] have derived the Rayleigh radiation pressure from the vibrating
circular plate as:

pra ¼ ZðrÞ2 v20
4ðsin h2a0Lþ sin2 kLÞ q0 ð12:13Þ

where V0 = surface vibration amplitude, q0 = ambient density, L = distance
between object to be levitated and the radiator and a′ = increased absorption
coefficient of finite amplitude wave.

Zhao et al. [41] have been able to levitate a compact disc of radius of 6 cm to a
height of 2 cm or around half the sound wavelength. The levitated object is shown
in Fig. 12.2.

Fig. 12.2 Stable levitation of
CD at half wavelength (k/2)
above the radiator. The central
pin (screwed into the flexural
plate) is used only for centring
the plate in radial direction
(Zhao and Wallaschek [41])
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The effect of negative mass density of acoustical metamaterial will modify the
balancing condition of the force of levitation. This will enable the control and
manipulation of the force of levitation and enable the levitation or suspension of
larger object. Negative ARF will travel in a direction towards the sound source
instead of in the same direction of sound propagation as in conventional material.
Also, negative mass density will produce repulsive gravity. A new balanced con-
dition can be evaluated based on the use of acoustic metamaterials. This will enable
the levitation of heavier objects. Also, this will open the door of the application of
acoustic metamaterials on space flight. This will be the first application of acoustic
metamaterial to general relativity.

12.5 Conclusions

Extension of metamaterials to nonlinear acoustics will enable novel applications in
acoustical cloaking, acoustical radiation force and to levitation of a heavier object.
The introduction of metamaterial to general relativity with the concept of repulsive
gravity will enable the use of acoustic metamaterials on space flight. Acoustic force
of levitation taking account of gravitational force and general relativity is the
second application of sound propagation in curvilinear space-time after acoustical
cloaking.
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Chapter 13
Acoustical Imaging on a Curvilinear
Spacetime

Abstract First is the introduction to the subject. Then, there are the usual appli-
cations to the theory of general relativity. Two examples of applications to
acoustical imaging are given: vibrography and elasticity imaging.

13.1 Introduction

So far, all the theories and equations for acoustical imaging are based on a flat
spacetime or Minkowski spacetime. The transpose to a curvilinear spacetime [1] will
enable a nonlinear treatment and more accurate calculation of the energy and
momentum besides the add-on of the gravitational force term. This is because the
curvature of the spacetime is very sensitive to a slight change in the energy and
momentum of the system. This will enable the more accurate calculation of the
acoustic intensity used in the formation of acoustical images and also provide more
information. Since high frequencies acoustical imaging is a branch, it is necessary to
consider the curvilinear spacetime platform. As an illustration, two acoustical
imaging modalities, vibrography and elasticity imaging, are analysed. Einstein, in his
original paper on the theory of general relativity [1], specially singled out hydro-
dynamics as a field of fundamental physics for extension to the curvilinear spacetime.
Acoustics is related to hydrodynamics and fluid dynamics, hence is of particular
relevance here. This will enable more accurate and correct calculation of the acoustic
radiation force (ARF) and stress energy and enable better image resolution.
Vibrography and elasticity imaging are not only frequencies dependent based on the
classical Rayleigh image resolution criterion but also on the precise calculation of the
energy and momentum of the system which includes the gravitational force.

© Springer Nature Singapore Pte Ltd. 2018
W.S. Gan, New Acoustics Based on Metamaterials, Engineering Materials,
https://doi.org/10.1007/978-981-10-6376-3_13

301



13.2 The Usual Applications of the Theory of General
Relativity

So far, the applications of the theory of general relativity are to astrophysics and
cosmology and to plasma physics related to cosmology and to fission. These are
areas related either to the large mass size or to intense energy where nonlinear
aspects of physics are concerned. It is to be noted that in nonlinear acoustics when
finite amplitude sound wave or intense sound field is involved with, the relativistic
treatment is necessary. It will be reduced to the linearized, nonrelativistic treatment
when the sound field is weak. An example where relativistic treatment is particu-
larly relevant is the calculation of the ARF which is intense sound field. A further
support of this argument is the force of levitation. The acoustic levitation occurs
when the ARF balances the gravitational force. This shows the relevance of the
theory of general relativity which is used to calculate the gravitational force.

Another area in nonlinear acoustics which will need relativistic treatment is
sonoluminescence or sonofusion. This is the release of tremendous heat energy
when the bubble breaks up analogous to the release of tremendous heat energy
when the atoms break up. The relativistic treatment of the elastic energy exerted by
the skin of the bubble before it collapses will enable a more accurate determination
of the heat energy released. In the following sections, two examples of acoustical
imaging related to the curvilinear spacetime treatment are given.

13.3 Vibrography

The principle of vibrography is a form of acoustical imaging based on the ARF. The
derivation of ARF is from the Navier–Stokes equation of fluid dynamics. To enable
the curvilinear spacetime and a relativistic formulation of the ARF, one will start
with the procedure of the derivation of the ARF from the Navier–Stokes equation.
The theory of the ARF relies on a perturbation expansion of the acoustics fields in
the fluid. The main results of the perturbation theory are summarized here. The
ultrasound perturbations on a quiescent fluid are considered to first and second
order in density q, pressure p and velocity u (1st denotes first order and 2nd denotes
second order):

q ¼ q0 þ q1 þ q2 ð13:1Þ

p ¼ p0 þ c20 q1st þ p2nd ð13:2Þ

u ¼ u1st þ u2nd ð13:3Þ
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where c0 = speed of sound in the fluid, and p1st ¼ c20q1st. Neglecting viscosity in the
bulk fluid, the first-order Navier–Stokes equations are:

@tq1st ¼ �q0r:u1st ð13:4aÞ

which is the continuity equation

q0@tu1st ¼ �c20rq1st ð13:4bÞ

One assumes time-harmonic fields,

q1st ¼ q1stð~rÞe�ixt ð13:5aÞ

p1st ¼ p1stð~rÞe�ixt ð13:5bÞ

u1st ¼ u1stð~rÞe�ixt ð13:5cÞ

and introduces the velocity potential /1st,

u1stð~rÞ ¼ r/1ð~rÞ ð13:6aÞ

p1stð~rÞ ¼ iq0ðxÞ/1ð~rÞ ð13:6bÞ

q1stð~rÞ ¼ iq0ðx=c20Þ/1ð~rÞ ð13:6cÞ

The velocity potential fulfils the Helmholtz wave equation:

r2/1st ¼
1
c20

@2
t /1 ¼ �x2

c20
/1 ð13:7Þ

which forms the starting point for the scattering theory to calculate the ARF acting
on the particle.

As an illustration, one will take the case of the ARF for the case of an oscillating
sphere. The ARF can be calculated as the surface integral of the averaged
second-order pressure and the momentum flux tensor at a fixed surface just outside
the oscillating sphere. Using the first-order Navier–Stokes equation and the
first-order Helmholtz wave equation, the ARF can be derived as:

Urad ¼ Z
daf p2ndh i~nþ q0 ð~n:u1st�!u1st

�!Þ� �g ð13:8Þ

where a = diameter of sphere � k = sound wavelength, p2nd = second-order
acoustic pressure, q0 = density of sphere, and u1st = 1st order particle velocity = ∇
/1st, where /1st ¼ 1st order acoustic potential, and /1st ¼ /in þ/scat where /in =
velocity potential of incident sound field, and /scat = velocity potential of scattered
sound field, and
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p2ndh i ¼ 1
2
j0 p21st
� �� 1

2
q0 u21st
� �

For the curvilinear spacetime, the momentum equation and the continuity
equation are as follows:

ðeþ pÞDu
Ds

¼ �rp� u
Dp
Ds

ðmomentum equationÞ ð13:9Þ

ulrle ¼ �ðeþ pÞrlul ðcontinuity equation) ð13:10Þ

Solving (13.9) and (13.10), one will be able to obtain p and u. Substitution in
(13.8) will provide the ARF.

It is also of interest to study the difference between Eq. (13.10), the continuity
equation for the curvilinear spacetime, and the Eq. (13.4a), the continuity equation
for the flat spacetime.

For flat spacetime, the momentum equation is given by:

Duj
Dt

¼ @Tij
@xj

� qgj ð13:11Þ

13.4 Elasticity Imaging

Elasticity imaging is another modality of acoustical imaging where stress tensor and
strain tensor are involved. Usually, the Hooke’s law gives a linear relationship
between the stress tensor and the strain tensor. The weakness of this law is that it
fails for intense stress. A common approach for the extension to nonlinear elasticity
is to start with the linear first-order Hooke’s law and extend to include
second-order, third-order and higher-order elastic constants. Our treatment of using
the theory of general relativity is that it starts with the nonlinear strong field case
and reduces to the linear weak field as an approximation. This will be more accurate
method and includes all the necessary information.

For the curvilinear spacetime, the stress tensor can be given as:

Tlm ¼ ðeþ pÞulum þ pglm ð13:12Þ

where e = total energy density and glm ¼ metric.
For weak field limit, or the flat spacetime limit, ui � 1, e � p, e * q, and

glm ¼ 1; and (13.12) reduces to

Tlm ¼ qulum þ p ð3:13Þ

where q = rest frame mass energy density.
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Chapter 14
Transport Theory is Key Foundation
of Theoretical Metamaterials Design—
Metamaterial is Artificial Phase Transition

Abstract An introduction to transport theory and transport properties followed by
the discovery that metamaterial is in fact artificial phase transition. Singularity
behaviour of the transport properties at the critical point of phase transition is given.
Then, there is the use of the transport properties to explore new forms of meta-
materials. Metamaterials as artificial phase transition is a breakthrough to a new
world of artificial materials.

14.1 Transport Theory, Transport Properties
and Discovery of Metamaterial is in Fact Artificial
Phase Transition

Recently, Gan discovered that metamaterial is in fact an artificial phase transition.
In this chapter, it will illustrate that the double negativity of permeability and
permittivity of electromagnetic metamaterial and the double negativity of effective
bulk modulus and effective mass density of acoustic metamaterial are in fact,
artificial phase transition from positive phase material to negative phase material.
The transport properties here are as follows: permeability, permittivity, effective
bulk modulus and effective mass density. Phase transition enables a breakthrough to
a world of new materials. The Nobel physics award in 2016 to topological phase
transition enhanced the status of phase transition. Transport theory will play the role
of key foundation of theoretical materials design. Transport theory describes
transport phenomena which in turn are governed by transport properties. Transport
properties are key constituents of phase transition. Examples of transport properties
are as follows: binary diffusion coefficients, electrical conductivity, diffusion
coefficients, thermal conductivity, thermal diffusion coefficients, viscosity, perme-
ability, porosity, dipole moment, polarizability of molecules, rotational relaxation
time and Lenaerd-Jones well depth, etc.

In 1966, Gan coined the term transport theory during his Ph.D. work at the
physics department of Imperial College London. His Ph.D. thesis, Transport Theory
in Magnetoacoustics [1] (1969, Imperial College London), is the first to introduce
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transport theory into condensed matter physics. Throughout the years, there have
been tremendous developments in transport theory as described by Vijay Shenoy’s
lectures [2]. The most important developments took place in electronic transport
theory and in quantum transport theory which includes fractional quantum Hall
effect, Anderson localization, Onsager relation, etc. Today, transport theory is the
key foundation of theoretical materials design. It is the most important theory in
condensed matter physics. The status of transport theory in condensed matter
physics is equivalent to that of the Yang Mills theory [3] in particle physics. In
1967, Philip Warren Anderson and Volker Heine coined the term condensed matter
physics when they changed the name of the solid state theory group to condensed
matter theory group at the Cavendish Lab, Cambridge, to combine solid state
physics with liquid state physics and to reflect the important role of phase transition.
Gan’s Ph.D. thesis [1] also is the first to introduce statistical mechanics approach to
ultrasound propagation in semiconductors in the presence of high magnetic fields
and at low temperatures instead of the usual method of electron–phonon interaction
and phonon–phonon interaction of many body theory. His Ph.D. thesis included the
calculation of the magnetoconductivity tensor and the ultrasound attenuation
coefficient which are transport properties. Thus, his Ph.D. thesis also played a role
in the founding of the field of condensed matter physics. Today, condensed matter
physics group is the largest group in terms of membership in the American Physical
Society. This shows the importance of condensed matter physics.

14.2 Discovery of Metamaterial is Artificial Phase
Transition and Singularity Behaviour
of the Transport Properties of Metamaterials
at the Critical Point of Phase Transition

Based on transport properties, one can discover other forms of metamaterials
beyond the electromagnetic metamaterial and the acoustic metamaterial. Also, there
is no need to use analogy to extend the electromagnetic metamaterial to the acoustic
metamaterial because this is based on the fundamental and first principle of the

ω

μeff

ω
ω0

μeff =1

mp

Fig. 14.1 Singularity
behaviour of permeability in
magnetism at the critical point
of phase transition [4]
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problem, the transport properties. Also, it is of interest to note that the transport
properties have singularity or divergent behaviour at the critical point of phase
transition. The plots of the transport properties versus frequencies show a hyper-
bolic shape of rising to a very high value and then a sudden drop to a huge negative
value followed by a gradual rise in the negative region. This can be illustrated by
Figs. 14.1, 14.2, 14.3 and 14.4.

Fig. 14.2 Singularity
behaviour of permittivity in
high temperature
superconductivity at the
critical point of phase
transition [5]

Fig. 14.3 Singularity
behaviour of the bulk
modulus at the critical point
of phase transition or
resonance frequency [6]
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It will be of interest to note that the second-order phase transition such as
magnetization also has a singularity at the point of condensation or phase transition.
This helps to support that metamaterial has phase transition characteristics.

14.3 Use of Transport Properties to Explore New Forms
of Metamaterials

The double negativity of electromagnetic metamaterial and acoustic metamaterial
and the singularity of the dielectric response function of high temperature super-
conductivity are first examples of the use of transport properties to discover new
forms of metamaterials.

Fig. 14.4 Typical
piezoelectric resonance curves
and corresponding Cole-Cole
diagram for a low frequency
acoustic resonance mode
observed in the sample T/
above and below the
transition temperature Tc ¼
13:43 �C [7]
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14.3.1 Artificial Elasticity

The singularity behaviour of the effective bulk modulus at the resonance frequency
or critical point of phase transition can be exploited to fabricate acoustic meta-
material [6]. Here, there is a sudden increase in the effective bulk modulus to a very
high value at the resonance frequency followed by a sudden drop to very high
negative value and a gradual increase in value in the negative region. This singu-
larity behaviour can be exploited to fabricate acoustic metamaterial using the
geometric structure of split-ring resonator (SRR) with the unit cell made of elastic
material. This enables the control and manipulation of the elasticity of the material.
This is artificial elasticity.

14.3.2 Artificial Magnetism

Pendry et al.’s [4] paper on magnetism from conductors and enhanced nonlinear
phenomena is an example of artificial magnetism. Here, the permeability, which is a
transport property, shows a singularity behaviour at the critical point of phase
transition with a sudden rise in the resonance frequency to positive infinite value
followed by a sudden drop to negative infinite value and then a gradual rise in the
negative region. The negative values of permeability are used to fabricate
the negative electromagnetic metamaterial using the SRR geometric structure as the
unit cell of the metamaterial, and the material of the unit cell is made of magnetic
material. This enables the achievement of an electromagnetic metamaterial exper-
imentally and the manipulation and control of magnetism. This is artificial
magnetism.

14.3.3 Artificial High Temperature Superconductivity

Smolyaninov and Smolyaninova [5] proposed that high temperature superconduc-
tivity can be achieved usingmetamaterial. This is because dielectric response function
governing electron–electron interaction can be used to increase the critical temper-
ature of high temperature superconductivity according to Kirzhnits et al. [8]. It is
found that the dielectric response function, which is a transport property, has sin-
gularity behaviour (hyperbolic shape) at the resonance frequency or the critical point
of phase transition. The dielectric response function versus frequencies plot shows a
sudden increase to high positive value and then a sudden drop to large negative value
followed by a gradual increase in value in the negative region. This behaviour can be
exploited in the fabrication of high temperature superconductor by using a geometric
structure of SRR for the unit cell made of high temperature superconductor.
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This enables one to manipulate and control high temperature superconductivity.
Hence, the name high temperature superconductivity metamaterial.

14.3.4 Artificial Piezoelectricity

Piezoelectricity is an important phenomenon in acoustics. It provides the physical
basis for almost all practical applications of acoustic fields. This is because they
provide an effective means for electrically generating and detecting acoustic
vibrations. It is found by Legrand [7] that the permittivity also has a singularity
behaviour at the resonance frequency or point of phase transition with a sudden
increase to a very high value followed by a sudden drop to negative value then a
gradual increase in value in the negative region. This singularity behaviour can be
used to fabricate artificial piezoelectricity by using SRR as a geometric structure of
the unit cell made of piezoelectric material. This will enable the manipulation and
control of piezoelectricity. This is artificial piezoelectricity.

14.3.5 Artificial Ferromagnetism

In ferromagnetism, according to Mayer [9], there is some sort of mathematical
singularity at the condensation point. The transport property of ferromagnetism is
magnetization or dipole moment. It is of interest to investigate the singularity
behaviour of the dipole moment at the critical point of phase transition or con-
densation point. There will be a temperature dependence of the dipole moment
besides the frequencies dependence. One will have to plot the dipole moment
versus the frequencies at a series of temperatures. There will be no singularity
behaviour of the dipole moment versus frequencies plots at other temperatures.
However, at the critical temperature of second-order phase transition, there will be a
hyperbolic shape behaviour of the dipole moment versus frequencies plot similar to
that of the cases of the artificial elasticity, artificial magnetism and artificial
piezoelectricity.

14.4 Metamaterial as Artificial Phase Transition as
Breakthrough to a New World of Artificial Materials

Double-negativity electromagnetic metamaterial and double-negativity acoustic
metamaterial are manifestations of artificial magnetism and artificial elasticity. This
will be a starting point for the exploration of various new artificial materials based
on metamaterial and phase transition. Immediate examples are artificial
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piezoelectricity and artificial ferromagnetism. This will open to a new world of
artificial materials based on other transport properties besides permeability, per-
mittivity, effective bulk modulus and effective mass density.

14.5 Conclusions

Transport theory has come a long way with tremendous development in condensed
matter physics since the term was coined by me in 1966. It has now become the key
foundation of theoretical materials design. Hence, it has become the most important
theory in condensed matter physics.
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