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Preface

Teaching vehicle dynamics and control for the last 25 years, I have often

struggled with the challenge of how to give students a proper understanding

of the vehicle as a dynamic system. Many times, students new to the field do

not currently have sufficient practice in design and experimental performance

assessment, which are required for them to progress in skills and knowledge.

Fortunately, most students in automotive engineering have a minimal

(and sometimes much higher) level of practical experience working on vehi-

cles. This practical experience is usually a motivator to choose automotive

engineering. However, that experience is not always matched with a suffi-

cient level of practical knowledge of mathematics and dynamics, which is

essential in vehicle dynamics and control. Lately, I have seen more and more

students with a background in control or electronics who choose to specialize

in automotive engineering. This should be strongly supported because future

advanced vehicle chassis design requires a multidisciplinary approach and

needs engineers who are able to cross borders between these disciplines.

However, these students can often be focused on a small element of the

vehicle and lack a complete overview of the entire vehicle system. An overall

understanding is important because this system is more complex than a linear

system, which can be given any response with appropriate controllers. The

tire�road contact and the interface between the vehicle and the driver espe-

cially should not be disregarded. At the end of a study, it is always asked

whether the vehicle performance has been improved with respect to safety

and handling, with or without the driver in the loop. Because drivers do not

always respond in the way engineers expect, engineers must always be aware

of the overall driver�vehicle performance assessment.

I wrote this book with the objective to address vehicle dynamics within a

solid mathematical environment and to focus on the essentials in a qualitative

way. Based on my experience, I strongly believe that a qualitative understand-

ing of vehicle handling performance, with or without the driver, is the essential

starting point in any research and development on chassis design, intelligent

chassis management, and advanced driver support. The only way to develop

this understanding is to use the appropriate mathematical tools to study dynam-

ical systems. These systems may be highly nonlinear where the tire�road con-

tact plays an important role. Nonlinear dynamical systems require different

analysis tools than linear systems, and these tools are discussed in this book.

This book will help the reader become familiar with the essentials of

vehicle dynamics, beginning with simple terms and concepts and moving

to situations with greater complexity. Indeed, there may be situations that ix



require a certain model complexity; however, by always beginning a

sequence with minimal complexity and gradually increasing it, the engineer

is able to explain results in physical and vehicle dynamics terms. A simple

approach always improves understanding and an improved understanding

makes the project simpler.

My best students always tell me, after completing their thesis project, that

with their present knowledge, they could have solved their project must

quicker and in a simpler way if they repeated it. This improved understanding

they gained is one of the objectives of teaching.

Starting from scratch with too much complexity leads to errors in models

and therefore, improper conclusions as a result of virtual prototyping (e.g.,

using a model approach, and more and more common in the design process).

To help reader to evaluate their learning, a separate chapter of exercises is

included. Many of these exercises are specially focused on the qualitative

aspects of vehicle dynamics. Further, they encourage readers to justify their

answers to verify their understanding.

The book is targeted toward vehicle, mechanical, and electrical engineers

and engineering students who want to improve their understanding of vehicle

dynamics. The content of this book can be taught within a semester. I wel-

come, and will be grateful for, any reports of errors (typographical and other)

from my readers and thank my students who have pointed out such errors

thus far. I specifically acknowledge my colleague Saskia Monsma for her

critical review in this respect.

Joop Pauwelussen

Elst, The Netherlands

May 2014
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Chap te r | One

Introduction

Vehicle dynamics describes the behavior of a vehicle, using dynamic analysis

tools. Therefore, to understand vehicle behavior, one must have a sufficient

background in dynamics. These dynamics may be linear, as in case of nonex-

treme behavior, or nonlinear, as in a situation when tires are near saturation

(i.e., when the vehicle is about to skid at front or rear tires.). Hence, the tires

play a critical role in vehicle handling performance.

To improve handling comfort, the predictability of the vehicle perfor-

mance from the control activities of the driver (i.e., using the steering wheel,

applying the brake pedal, or the pushing the gas pedal) must be considered.

The road may be flat and dry, but one should also consider cases of varying

road friction or road disturbances.

In this case, the major response of the vehicle can be explained based on a

linear vehicle model. The state variables, such as yaw rate (in-plane rotation

of the vehicle, which is the purpose of steering wheel rotation), body slip angle

(drifting, meaning the vehicle is sliding sideways), and forward speed follow

from a linear set of differential equations, where we neglect roll, pitch, elasto-

kinematic effects, etc. These effects can be added in a simple way, which will

result in only slight modifications in the major handling performance. The

control input from the driver causes a (rotational, translational) dynamic vehi-

cle response, which results in inertia forces being counteracted by forces

between tires and road. These forces are, in first order, proportional to tire

slip. In general, tire slip describes the proportionality between local tire defor-

mation and the longitudinal position in the tire contact area. Tire slip is related

to vehicle states (yaw rate, body slip angle) or vehicle forward speed and

wheel speeds, in case of braking or driving (longitudinal slip). The analysis of

this linear system, with an emphasis on the vehicle (mainly tire) specific

stability properties, forms the basis of vehicle handing performance and must

be well understood. Any further enhancement of the model’s complexity, such

as adding wheel kinematics, vehicle articulations (caravan, trailer, etc.), or

load transfer, will lead to an improved assessment of vehicle handling

performance, but always in terms of performance modifications of the most

simple dynamical vehicle system, i.e., with these effects neglected.

1
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The theory of linear system dynamics is well established and many tools

related to state space format are available; this includes local stability analy-

sis that refers to the eigenvalues of the linear vehicle system. Therefore,

once the handling problem is formulated in (state space) mathematical terms,

as follows,

_x 5A:x1D:u

y5C:x1D:u
ð1:1Þ

an extensive toolbox is available to the researcher. In Eq. (1.1), x denotes the

state vector (e.g., yaw rate, wheel speed), u denotes the input (e.g., steering

angle, brake force), and y denotes the system output.

However, a mathematical background in system dynamics alone is not

sufficient for solving vehicle dynamics problems. The experience in lecturing

on vehicle dynamics shows that there is room for improvement in the mathe-

matical background of the students, with reference to multivariate analysis,

Laplace transformation, and differential equations. For this reason, we

included a number of necessary commonly used tools in the appendices

for further reference. These tools will help the researcher to interpret model

output in physical terms. The strength of the simple linear models is the

application and therefore, the interpretation to understanding real vehicle

behavior. The researcher should answer questions such as:

� What is the impact of axle characteristics (force versus slip) or center of

gravity position on vehicle handling performance?

� How are the axle characteristics related to kinematic design?

� How are the axle characteristics related to internal suspension

compliances?

� How reliable are axle characteristics parameters and how robust are our

analysis results against variations of these parameters?

� What is the impact of roll stiffness on front and rear axles on simplified

model parameters?

� How can we take driving resistance (additional drive force to prevent the

vehicle speed from decreasing) into account?

In addition, the contents of this book should be linked to practical experi-

ence in testing, aiming at model validation and parameter identification.

Moving to extreme vehicle behavior, a problem arises in the sense that

the vehicle model becomes nonlinear. In the case of linear vehicle perfor-

mance, the vehicle is either globally stable or globally unstable, with stability

depending on vehicle and tire characteristics. One can analytically determine

the vehicle’s response for a specific driver control input and investigate the

sensitivity regarding vehicle parameters. Therefore, a researcher is able to

use both qualitative tools (is the model correctly described at a functional

level?) and quantitative tools (does the model match experimental results?) to

analyze the vehicle model in reference to experimental evidence.
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For a nonlinear model, situations change principally. Nonlinear models

arise if we accept that the axle characteristics depend nonlinearly on slip

(i.e., when one of the axles is near saturation). A typical example of longitudi-

nal tire behavior in terms of brake force Fx versus brake slip κ (defined in

(2.19)) is shown in Figure 1.1 for various wheel loads Fz (see Section 2.4 for

a more extensive treatment of longitudinal tire characteristics).

For small brake slip κ, this relationship is described as linear, with pro-

portionality factor Cκ, between slip and tire force, as indicated in Figure 1.1.

Clearly, for brake slip 0.05 or higher, this linear approximation is incorrect.

When considering safety, we must account for nonlinear model behavior.

Are the driver (closed loop) and vehicle (open loop) capable of dealing with

dangerous driving conditions, with or without a supporting controller?

With a stable linear model, any small disturbance (input, external circum-

stances) leads to a small difference in vehicle response. For a nonlinear system

being originally stable, a small disturbance may result in unstable behavior, i.e.,

with a large difference in vehicle response. For example, with an initial condition

of a vehicle approaching a stable circle, a small change could result in excessive

yawing of the vehicle (i.e., stability is completely lost). Consequently, quantita-

tive tools (i.e., calculating the response by integrating the system equations) can-

not be interpreted any further in a general perspective. However, there are ways

to get around this problem:

� Consider the linearization of the model around a steady-state solution

(where there may be multiple solutions, in contrast to the linear model

where one solution is found in general), and use the analysis tools for the

linear model to find the model performance near this steady-state solution.

� Use qualitative (graphical) analysis tools specifically designed for nonlinear

dynamical systems. A number of these tools are discussed in Chapter 5 and

the appendixes, with distinctions made for phase plane analysis, stability

and handling diagrams, the MMM method, and the “g�g” diagram.
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This last approach may seem to be insufficient, but remember that

quantitative response only makes sense if the so-called qualitative

“structural” model response is well matched. Is the order of the system

correct and are trends and parameter sensitivities confirmed by the model?

In other words, is the mathematical description of the model sufficient to

match vehicle performance if the right parameter values are selected? For

example, quadratic system performance will never be matched with sufficient

accuracy to a linear model. In the same way, one must ensure that the vehicle

nonlinear performance (and specifically the axle or tire performance) is well

validated from experiments.

Mathematical analysis of vehicle handling always begins with the objec-

tive to understand certain (possibly actively controlled) vehicle performance,

or to guarantee proper vehicle performance within certain limits. Therefore,

the first priority is a good qualitative response. Moving into quantitative

matching with experimental results (as many students appear to do) under

certain unique circumstances only guarantees a certain performance under

these unique circumstances. In other words, without further general

understanding of the vehicle performance, such matching gives no evidence

whatsoever on appropriate vehicle performance under arbitrary conditions.

Testing and quantitative matching for all possible conditions may be an

alternative of qualitative matching (and assessing the structural system prop-

erties), but this is clearly not feasible in practice.

This book is structured as follows. In Chapter 2, we will discuss

fundamentals of tire behavior. The chapter follows the classical approach by

first treating the free rolling tire (including rolling resistance), which is

followed by discussions on purely longitudinal and lateral tire characteristics

and combined slip. First, we focus on empirical tire models, which are essen-

tial elements of any vehicle handling simulation study. Second, we discuss

two physical tire models: the brush model and the brush-string model.

These models are not intended for use in practical simulation studies;

however, they enable a deeper understanding of the physical phenomena in

the tire�road contact under steady-state slip conditions.

When vehicle speed is relatively low and/or tires experience loading fre-

quencies beyond 4 Hz (as in case of road disturbances or certain control mea-

sures), the steady-state assumption on tire performance (tire belt follows rim

motions instantaneously) is no longer valid. A first step to include dynamics is

to consider the tire as a first order (relaxation) system. Higher order dynamics

require the belt oscillation to be incorporated in the tire model.

Chapter 3 discusses both situations in full analytical detail to allow the

reader to reproduce the analytical approach. Modern tire modeling software

may account for these (transient and dynamic) effects. Using such software

requires an understanding of the background of the tire models used, which is

what we offer to the reader.

Chapters 4 and 5 address vehicle performance. Chapter 4 discusses low-

speed kinematic steering (maneuvering), which is followed by handling perfor-

mance for nonzero speed in Chapter 5. Low-speed maneuvering means that

4 Introduction



tires are rolling and tire�road contact shear forces are negligibly small. The

steering angle may be large and some examples of steering design are treated,

showing that this force-free maneuvering can be approximated but never

exactly satisfied. Chapter 4 discusses the zero lateral acceleration reference

cases for the nonzero tire�road interaction forces, treated in Chapter 5.

Chapter 5 begins with a discussion of criteria for good handling perfor-

mance and how it should be rated, with an emphasis on subjective and objec-

tive methodology strategies. The most basic, but still powerful, model is the

single-track model (also referred to as the bicycle model), where tires are

reduced to (linear or nonlinear) axles and roll behavior is neglected. In spite of

its simplicity, effects such as lateral and longitudinal load transfer, alignment

and compliance effects, and combined slip can be accounted for. One should

be aware that the single-track model is based on axle characteristics that, in

contrast to tire characteristics, depend on suspension design, which is expressed

in terms of roll steer, roll camber, compliances, and aligning torque effects.

This model forces the researcher to focus on the most essential aspects of

handling (either under normal driving conditions or under extreme high

acceleration situations) and therefore understand the vehicle performance in

terms of driver and/or control input and vehicle parameters. Straightforward

extensions, such as the two-track model (distinction of left and right tires),

are discussed as well.

Next, the steady-state vehicle behavior is treated in terms of understeer

characteristics (response to steering input) and neutral steer point (response to

external forces and moments). The concept of understeer is usually discussed

in terms of linear axle characteristics, resulting in a linear relationship between

steering input and vehicle lateral acceleration response in terms of the under-

steer gradient. The nonlinear extension is not straightforward and will be dis-

cussed in detail. We will distinguish between four definitions of understeer

(and oversteer) that are identical for linear axle characteristics but are not iden-

tical for nonlinear axles. Further, we shall show that these nonlinear axle char-

acteristics completely determine the vehicle understeer characteristics and

therefore the open-loop yaw stability properties (vehicle is considered in

response to steering input) and handling performance. In Chapter 6, we will

show that, when the response of the driver to vehicle behavior is taken into

account, the so-called closed-loop stability of the total system of driver and

vehicle depends on the vehicle understeer properties as well. In addition, the

vehicle response in the frequency domain is discussed, with reference to speed-

dependent damping properties and (un-)damped eigenfrequencies.

As indicated earlier, nonlinear system analysis is qualitative and uses

appropriate graphical assessment tools:

� Phase plane analysis is used to visualize solution curves near critical

(steady-state) points and to support interpretation of the performance

along these solution curves from a global system perspective.

� The stability diagram is used to visualize the type of local yaw stability

in terms of axle characteristics and vehicle speed.
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� The handling diagram is used to visualize the stable and unstable steady-

state conditions in terms of axle characteristics, vehicle speed, steering

angle, and curve radius.

� The moment method (MMM) diagram is used to visualize the vehicle

potential in terms of lateral force and yaw moment (limited due to axle

saturation), which basically corresponds to the phase plane representation

in terms of these force and moment.

� The “g�g” diagram is used to link tire shear forces to vehicle lateral and

longitudinal forces and therefore indicates which tire will saturate first

under extreme conditions.

In Chapter 6, we discuss the vehicle�driver interface. Good handling

performance cannot be assessed without considering the driver. The driver

controls the vehicle by applying input signals, such as the steering wheel

angle and gas or brake pedal position. Major driving tasks are guidance (e.g.,

following another vehicle or negotiating a curve) or stabilization (e.g., when

the vehicle safety is at stake). The driver is supported in these tasks by many

different types of advanced driver assistance systems. Conversely, these

support systems and other onboard (infotainment) devices create an increas-

ing number of distractions for driver.

The practical situation on the road is that the driver responds to changing

vehicle and traffic conditions. That may not always be an easy task, resulting

in increased workload, which, in turn, has an effect on the driver’s ability to

carry out driving task safely. Not only is the total closed-loop behavior rele-

vant for the assessment of good handling performance, but the costs (effort,

workload) for the driver are relevant in achieving such closed-loop perfor-

mance. The assessment of driver’s state is discussed in Chapter 6, with spe-

cial emphasis on workload.

The vehicle�driver interface can be treated as a system, with the driver

adapting to the vehicle performance. Two different cases are discussed, addres-

sing following behavior and handling, with the final situation described in terms

of path following. The driver models for both driving scenarios are special cases

of the McRuer crossover model approach. In the case of following a lead vehi-

cle, it is shown that the driver model allows us to identify the transition of the

regulation phase (no safety risk) to the reaction phase (perceived increase of risk

indicated by releasing the throttle) in terms of relative speed and time headway.

In the case of handling, the driver model is based on tracking a certain path

at a preview distance, with a delayed steering angle response that is propor-

tional to the observed path deviation. The relationship between the model para-

meters is analyzed in terms of closed-loop vehicle�driver performance, the

closed-loop stability is treated, and the identification and interpretation of these

parameters in terms of driver state is discussed in the final section of Chapter 6.

Chapter 7 includes exercises based on lectures and examinations at the

HAN University of Applied Sciences. These exercises serve to improve the

understanding of the vehicle system behavior, especially its qualitative aspects.
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Chap te r | Two

Fundamentals of
Tire Behavior

In this chapter, attention is paid to the properties and resulting steady-state

performance of tires as a vehicle component. With the tire as the prime contact

between vehicle and road, the vehicle handling performance is directly related

to the tire�road contact. The tires transfer the horizontal and vertical forces

acting on the vehicle from steering, braking, and driving, under varying road

conditions (slippery, road disturbances, etc.). Tire forces are not the only forces

acting on the vehicle. Other forces acting on the vehicle could be from external

disturbances (e.g., aerodynamic forces from crosswind). However, the contact

between vehicle and road is by far the dominant factor in vehicle behavior and

may be the difference between safe and unsafe conditions. Therefore, emphasis

is put on the influence of tire properties in general and specifically in this chap-

ter, which describes the tire steady-state behavior. Transient and dynamic tire

performance will be discussed in Chapter 3.

The tire�road interface is schematically shown in Figure 2.1. The tire is a

complex structure, consisting of different rubber compounds, combinations of

rubberized fabric, or cords of various materials (steel, textile, etc.) that act as

reinforcement elements (referred to as plies) that are embedded in the rubber

with a certain orientation. The outer part of the tire is cut in a specific pattern

(tread pattern design), referred to as the tire profile. The tire profile serves to

guide the water away from the contact area under wet road conditions, and to

adapt to the road surface in order to maintain a good contact (and therefore

load transfer) between tire and road. Therefore, each tire has unique structural

and geometrical design parameters. These parameters result in tire properties

that, in combination with the vehicle, lead to vehicle performance. That

means that the vehicle manufacturer will set up requirements for the tire man-

ufacturer in terms of vehicle performance, which the tire manufacturer must

fulfill. These requirements include many different things, such as:

• Good adherence between road and tire under all road conditions in longi-

tudinal (braking/driving) and lateral (cornering) situations.

• Low energy dissipation (low rolling resistance). 7
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• Low tire noise, which has two aspects—the effect observed inside of the

vehicle and the noise emitted into the environment

• The effect observed inside the vehicle is directly related to the vibra-

tion transfer from tire, through vehicle’s suspension, toward the

driver. This is a comfort issue for the driver.

• Noise emitted into the environment is undesirable from an environ-

mental point of view.

• Good durability and therefore, good wear resistance

• Tire properties change with wear, which will in general lead to a

higher tire stiffness in horizontal and vertical direction.

• Good comfort properties (filtering of road disturbances) and low interior

noise transfer.

• Good subjective assessment, including predictability (consistency in

response).

Each tire parameter has an effect on each of the tire properties, which

makes the task of the tire designer a difficult one. Ultimately, this results in a

compromise between these properties. Tire manufacturers are faced with the

task of judging tire properties in terms of vehicle performance, and therefore

must be able to understand this performance in detail for modeling and testing.

In turn, the tire manufacturer determines the requirements for the component

and material suppliers, i.e., for the rubber compounds, the cord materials, etc.

This covers the tire parameters, but there are further considerations.

First, road has a certain structure, porosity, roughness, and thermal prop-

erties, all of which can vary. In general, the top layer of the road might be

resurfaced every 5�7 years, depending on the traffic use. This means a cycle

of 5�7 years for road properties. In addition, the road surface conditions may

FIGURE 2.1 Tire�road interface.
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change due to weather conditions, day/night conditions, the traffic, and other

external conditions, such as nearby housing, bridges, and viaducts.

Finally, the tire�road interface changes with the vehicle’s motion.

Changes in tire load will change the tire performance, which must be

accounted for in the vehicle handling analysis. When the driver is cornering,

the outer tires are loaded and the inner tires are unloaded. When the driver is

braking or accelerating, the tire load shifts between the front and rear wheels.

An increase in vehicle speed will in general lead to more critical adverse

tire�road conditions. All these effects depend on the tire inner pressure.

We will take a closer look at the structure of the radial tire (Figure 2.2).

The term “radial tire” refers to the radial plies, running from bead to bead,

with the bead being the reinforced (with an embedded steel wire) part of the

tire, connecting the tire to the rim. However, radial plies do not give the tire

sufficient rigidity to fulfill the required performance under braking and cor-

nering conditions. For that reason, the tire is surrounded by a belt with cords

(steel, polyester, Kevlar, etc.) that are oriented close to the direction of travel.

The radial plies give good vertical flexibility and therefore, good ride

comfort (in case of road irregularities). Cornering leads to distortion of the

tire in the contact area, which evolves into deflection of rubber and extension

of the cords in that area. With an almost parallel orientation of the cords in

the belt, the extension of the cords is the dominant response, which means

there is a large resistance (the modulus of elasticity of the cord material by

far exceeds that of rubber) against this distortion and therefore, a stiff connec-

tion between vehicle and road. One could say that the different functions of

the tire (i.e., having good comfort and, at the same time, good handling per-

formance) are well covered by this distinction between radial and belt plies.

The total combination of cords and plies that contributes to the tire rigidity is

called the carcass.

Tread area

Sipes
Groove

Cap plies

Side wall

Carcass

Bead

Belt plies

Inner liner

Rim width

Radial plies

FIGURE 2.2 Schematic layout tire structure.
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The radial tire was patented by A.W. Savage in 1915 [43], but was not

commercially successful until Michelin improved the design in the 1950s.

Before that, cars were equipped with bias-ply (or cross-ply) tires with cords

that run diagonally around the tire casing. For these tires, the cords have a

much larger angle in relation to direction of travel (order of magnitude 40�)
compared to the belt plies of a radial tire. In addition, no distinction is made

between plies alongside wall and contact area. See Figure 2.3 for a schematic

layout of the cross-ply and radial tire.

The cord structures (the plies) extend from contact area to sidewalls, such

that deformation of the sidewalls would lead to deflections in the contact

area, which would have a negative effect on wear at the shoulder of the tire.

Because of the structural differences between both tires, the tread motion is

reduced for the radial tire compared to the cross-ply tire, which also contri-

butes to better fuel economy (reduced rolling resistance, see also

Section 2.3). It has been shown by Moore [29] that bias-ply tires show signif-

icantly higher concentrations of shear stress, as well as normal contact pres-

sure, at the shoulders of the tire, compared to radial tires.

The main contact between tire and road is through the tread area.

Figure 2.2 indicates a tread pattern that is shaped to channel water away,

with straight and s-shaped grooves that move from center of the tire to the

side. We also indicated very small cuts in the pattern, referred to as sipes.

These sipes are typical for winter tires and allow small motion between tread

elements for rolling tires, leading to effectively larger friction on icy and

snowy surfaces.

In the next section, we begin with a description of the input and output quan-

tities of a tire. Determining what forces and moments are acting on a tire, and

what input variables (such as slip, camber, and speed) these forces and moments

depend on defines our language to define tire characteristics. In Section 2.2, we

discuss the free rolling tire. Sections 2.3 addresses rolling resistance, with refer-

ence to all varying circumstances that can affect it. One may think of speed,

additional slip such as brake or drive slip, temperature, tire pressure, tire load,

etc. Sections 2.4 and 2.5 describe the tire under pure slip conditions, in case of

braking/driving and cornering, respectively. In all sections, steady state behavior

is assumed with the tire responding immediately to changes in slip or tire load.

The phenomena in the contact area will be explained and empirical descriptions

of tire characteristics will be discussed, specifically the Magic Formula descrip-

tion that was first introduced by Pacejka [32]. Section 2.6 discusses combined

Cross-ply tire Radial tire

FIGURE 2.3 Schematic layout of cross-ply and radial tire.
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slip situations (such as braking in a turn) and empirical relationships, and

includes some useful simplifications.

The information covered in these sections provides the resources for any-

one involved in automotive handling dynamics to resolve problems.

However, for an engineer to use practical tools to describe steady-state tire

behavior, the underlying physical phenomena must first be understood. For

that reason, physical tire models are discussed in Section 2.7. We will treat

two types of models, the brush model (which describes the local deflection in

the contact area by linear springs) and the brush-string model where the belt

deformation is also accounted for. These models will allow us to examine the

local contact phenomena between tire and road.

2.1 TIRE INPUT AND OUTPUT QUANTITIES

A tire is schematically shown in Figure 2.4, with all the output quantities

(forces and moment) and speeds indicated.

Note that the z-axis is chosen in the downward direction. There are three

forces and three moments acting on the tire (the output quantities):

FIGURE 2.4 Forces and moments, acting on tire, speeds, and slip speeds.

Forces

Fx : Brake/drive force

Fy : Lateral (cornering) force

Fz : Tire load (to carry the vehicle weight)

Moments

Mx : Overturning moment

My : Moment about the wheel axis (drive/brake torque)

Mz : Self-aligning moment

2.1 Tire Input and Output Quantities 11



These forces and moments depend on a number of input quantities, which

will be discussed in the subsequent sections:

A tire travels with a horizontal velocity V with components Vx and

Vy in longitudinal and lateral direction, respectively. Due to brake or

drive torque and cornering forces, slip will occur, which means that the

tire slides with nonzero speed over the surface. The corresponding slip

speeds Vsx and Vsy are shown in Figure 2.4 as well. Note that the slip

quantities tan(α) and κ, introduced previously, correspond to the nega-

tive ratios of slip speed and forward speed in x direction. The tire rolls

over the surface with an angular speed Ω, leading to the rolling speed:

Vr 5Ω � Re ð2:1Þ

where Re is the effective rolling radius of the free rolling tire. For a free roll-

ing wheel (zero slip speed), the rolling speed coincides with Vx; therefore, the

effective rolling radius is defined as the ratio between Vx and Ω under these

conditions.

The effective rolling radius is not the same as the loaded tire radius Rl

where the latter is defined as the vertical distance between the wheel cen-

ter and the horizontal surface. A free rolling tire rotates around a point

near the contact patch. For a rigid wheel on a flat horizontal surface, this

point coincides with the single contact point between tire and road; here,

the forward speed Vx equals the angular speed times (loaded5unloaded)

radius.

For a pneumatic tire, the distance between points at the circumference of

the tire and the wheel center varies from a value close to the unloaded radius

d : Radial deflection—the difference between the unloaded and the loaded radius R�Rl

Ω : Rotational speed

γ : Camber angle—the angle between the normal vector to the wheel plane and the road surface

(or, alternatively, the angle between the road surface normal direction and the wheel plane)

α : Slip angle— angle between speed direction and tire orientation in the plane

parallel to the road’s surface

κ : Longitudinal slip—the ratio of the slip speed (the difference between the rolling speed Ω � Re
and the forward speed Vx in x direction) and the forward speed, where Re is the

effective rolling radius at free rolling

ϕ : Spin—the component of rotational speed in the global vertical direction, which is usually

neglected except for situations when the curve radius is small (parking behavior)

or for significant camber
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just prior to entering the contact area, to the same value as the loaded radius

just at the projection point of the wheel center on the contact area. At that

point, the peripheral velocity of the tread (as relative to the wheel center)

coincides with the horizontal velocity V of the wheel center for a free rolling

tire. Moving out of the contact area, the tread regains its original length and

the peripheral velocity returns to Ω �R, where R is the unloaded radius.

Consequently, the rotational speed of the wheel with a pneumatic tire under

free rolling conditions is less than that of a rigid wheel

Rl ,Re ,R ð2:2Þ

This means that the center of rotation of the wheel usually lies some-

where below the surface. The effective rolling radius of a tire under free roll-

ing conditions behaves different with varying tire load, as compared to the

loaded tire radius. A loaded radius behaves almost linearly in the tire load Fz,

i.e., the tire behaves as a linear spring with stiffness CFz in vertical direction.

The effective rolling radius also varies with tire load, but tends to saturate

for large Fz. This can be described, based on empirical fit, as follows (see

Chapter 9 in Ref. [32])

Re 5R2 d0 � D � arctan B � d
d0

� �
1E � d

d0

� �
ð2:3Þ

in which tire radial deflection d, tire radial deflection d0 for nominal tire load

Fz0, and fit parameters B, D, E, may vary according to

We have selected the parameters values as given in Table 2.1 to derive

the effective rolling radius as a function of the tire load.

These parameters were not derived from real experiments, but were

selected to show the effect on the experimental Re�Fz relationship, see

Eq. (2.3). The plots are shown in Figure 2.5. The loaded tire radius Rl versus

Fz is also shown. One observes a different behavior for Re than for Rl. Where

Rl linearly decreases with increasing load, we see the effective tire radius sat-

urate for a large load. For the radial tire, this occurs with a slope near zero

3, B, 12 : Note that d can be described as Fz/CFz, where CFz is the vertical tire stiffness.

This means that B stretches the effective rolling radius characteristic curve

along the Fz-axis. Large B (i.e., radial tire) means there will be a large slope

of Re, versus Fz at Fz5 0.

0.2, D, 0.4 : This value is related to the tread height, with larger values representing new tires.

0.03, E, 0.25 : This parameter describes the slope of the Re�Fz curve for large tire loads.

Typically, the bias-ply tire corresponds to larger E-values.
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for large Fz. Consequently, for a realistic range for the wheel load (varying

around the nominal tire load of 4000 [N]), the radial tire shows very little

variation in Re, in contrast with the bias-ply tire, which shows a significant

reduction with Fz. The initial change with Fz is strongest for the radial tire.

Qualitatively, these results match those by Pacejka [32].

With increasing speed, the tire belt experiences a larger radial accelera-

tion. As a result, the effective rolling radius will increase with increasing

speed and increasing inflation pressure. The variation with speed is strongly

dependent on the tire radial stiffness and therefore, on the tire carcass struc-

ture. In this respect, the bias-ply tire is more sensitive than the radial tire.

TABLE 2.1 Parameters for the Re�Fz Relationship, Eq. (2.3)

Parameter Radial,
New

Radial,
Worn

Bias-Ply,
New

Bias-Ply,
Worn

CFz [N/m] 23 105 23 105 23 105 23 105

R [m] 0.32 0.32 0.32 0.32

Fz0 [N] 4000 4000 4000 4000

B 10 10 3 3

D 0.4 0.2 0.4 0.2

E 0.03 0.03 0.2 0.2

Effective rolling radius

Loaded radius

Radial, new
Radial, worn
Bias-ply, new
Bias-ply, worn

0 1000 2000 3000 4000 5000 6000

Tire load [N]
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FIGURE 2.5 Effective and loaded tire radius under conditions of free rolling.
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2.2 FREE ROLLING TIRE

Let us discuss the rolling tire in more detail, see Figure 2.6 (see also Ref.

[29]). As the tread enters and moves through the contact area, the distance

to the wheel center changes from the unloaded radius to the loaded radius,

then back to the unloaded radius. Assuming complete adhesion in the

contact area, i.e., no local sliding, the peripheral speed (circumferential

speed with respect to the tire center) in the contact area must be equal to

the forward speed of the tire and correspond to the effective rolling radius

Re. Consequently, the peripheral speed drops when entering the contact

area, which suggests a negative shear stress at that point (as the rubber is

being pushed into the contact zone). The opposite situation, stretching of

the rubber, i.e., positive shear stress, is expected at the trailing edge of the

contact area.

Let us consider the local conditions in the contact area in more detail

(see Figure 2.7). With a point of the tire entering the contact area with

FIGURE 2.6 Free rolling tire.

FIGURE 2.7 Behavior in contact area.
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peripheral speed Ω �R, this speed must decrease. As we previously observed,

the peripheral speed in the contact area will be equal to Ω �Re when local

sliding is absent. That means that, in the front part of the contact area, points

of the tire circumference should move faster, considering the distance to the

wheel center (exceeding Re). With the same points passing the center of the

contact area, the distance to the wheel center equals Rl,Re, which suggests

that this point is moving faster than what it would be based on this distance

(speed5 radius3 rotational speed). Consequently, the shear deformation

speed in the contact area (in x direction) starts as negative and moves to be

positive at the center of this area.

For the same reason, it moves back to a negative value in the last part

of the contact area. The shear stress follows the shear deformation, i.e., the

integral of the shear deformation speed along the contact area. This results

in a shear stress pattern, as indicated in Figure 2.8. The total integral of

this shear stress is equal to the rolling resistance force FR and is negative.

We also indicated the normal stress behavior between tire and road surface

in Figure 2.8. The relative order of magnitude for both types of stress has

no relationship to real data. The normal stress is expected to be much

larger than the shear stress during free rolling. With a wheel rolling freely,

i.e., without any brake or drive torque, there must be equilibrium in

moment around the wheel center. Using the notations from Figure 2.8, this

means that

Fz � h5FR � Rl 5 fR � Fz � Rl ð2:4Þ

for coefficient of rolling resistance fR. Consequently, the resulting

wheel load Fz will be slightly in front of the center of the contact area

(the projection of the wheel center on the ground surface) with this

distance h, given by

h5 fR � Rl ð2:5Þ

Leading edge Trailing edge

shear
FR

Rl

Fz
h

stress

Normal
stress

Ω

FIGURE 2.8 Shear and normal stress behavior in the contact area.
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2.3 ROLLING RESISTANCE

For a rolling tire, deformation of the tire material occurs while entering the

contact patch. The original (undeformed) conditions are restored when the

deformed area leaves the contact patch again. This process involves energy

losses, mainly due to hysteresis of the rubber material. These losses arise in

the tread area, the belt, the carcass, and the sidewalls.

An overview of the various contributions in this energy loss is shown

in Figure 2.9. Together, these losses correspond to the rolling resistance force fR.

As a result, the rolling resistance is reduced for

• less hysteresis in the tire material

• less deformation of the tire.

This discussion is for a rigid flat road. For a deformable (compliant) road,

such as soil, the resistance is further increased due to additional friction

forces between tire and soil and the nonelastic deformation of the soil.

The rolling resistance, which is on the order of 0.01�0.05 for a rigid road

or hard soil, may easily increase to 0.35 for a wet saturated soil and even

higher for a soft muddy surface. In other words, a wheel on compliant soil

attempts to climb out of the pit it is digging. For a concrete or tarmac road

surface, fR varies between 0.01 and 0.02.

Rolling resistance is not a fixed property of the tire. Varying conditions

such as braking/driving, temperature, and speed will change the rolling resis-

tance. Rolling resistance depends on:

• braking/driving conditions

• parasitary forces (depending on wheel alignment: toe, camber)

• temperature

• inflation pressure

• tire load

• wheel velocity

• road conditions

• tire structure, size and geometrical design (truck versus passenger

car tires)

• tire aging (wear).

We discuss each of these dependencies in more detail.

Belt Tread area

Sidewalls Other

100 %0

Carcass

FIGURE 2.9 Contributions of tire parts to energy losses under free rolling conditions.
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2.3.1 Braking/Driving Conditions

The generation of longitudinal forces is always accompanied by some sliding

in part of the contact zone, as we shall see in subsequent sections. This means

that more energy is lost and the rolling resistance coefficient will increase.

Note that braking and traction also affect the deformation in the contact

patch, which may impact rolling resistance, in addition to the occurrence of

local sliding. It was shown in Ref. [10] (with reference to work of Schuring)

that, during a small tractive force, the rolling resistance may decrease com-

pared to free rolling conditions, up to a level of about 75�85% of free rolling

conditions. To understand the impact of braking and driving on rolling

resistance, we assume that the longitudinal force Fx linearly depends on

wheel load and on longitudinal slip κ, which was introduced in Section 2.1,

as follows

FxðκÞ5 cκ � Fz � κ ð2:6Þ

with

κ5
Ω � Re 2V

V
ð2:7Þ

assuming only longitudinal motion. This approximates a nonlinear relation-

ship, as we shall see in the next sections. The parameter cx is referred to as

the normalized longitudinal slip stiffness. This parameter is of the order of 20

(PKx1, see Appendix 6), if we assume κ to be close to zero. For larger κ
range, we estimate cκ to be smaller, accounting for the convex shape of the

Fx�κ characteristic.

Slip is negative in case of braking and positive in case of traction.

The effective rolling resistance force is found from the difference between

input power and effective power at the wheel�road contact

FR � V 5M � Ω2Fx � V ð2:8Þ

where M is the drive or brake torque and Fx is the longitudinal force between

tire and road, which includes the rolling resistance force fR �Fz under free

rolling. Under equilibrium conditions, the moment M must be equal to con-

tact force Fx times the loaded tire radius Rl. The variable Ω can be eliminated

from Eq. (2.8) using Eq. (2.7). Replacing FR in Eq. (2.8) with

FR 5 fRx � Fz ð2:9Þ

one finds

fRx 5
Rl

Re

� cκ � ð11 κÞ � κ1 fR 2 cκ � κ ð2:10Þ
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In contrast to Ref. [10], we expressed the rolling resistance coefficient in

terms of longitudinal slip. Genta and Morello [10] show this coefficient in

terms of the normalized longitudinal force Fx/Fz, but that is a matter of

substituting the value of κ in the longitudinal tire characteristics, the lineari-

zation of which is given by Eq. (2.6). We plotted this relationship for

Rl5 0.953Re, cκ5 12, fR5 0.025 (Figure 2.10). Indeed, one observes a min-

imum value for positive slip (traction). It can easily be verified that this has

to do with the ratio of loaded and effective tire radius and therefore, with the

wheel load (see Figure 2.5).

2.3.2 Parasitary Forces: Toe and Camber

Depending on the wheel alignment, the wheel may have a small steering

angle α under straight ahead driving. This will result in a small lateral force

Fy, with component Fy � sin(α)�Fy �α in the vehicle longitudinal direction,

which contributes to the rolling resistance. For small angles, the lateral force

Fy can be approximated by a linear function in α, which leads to a total roll-

ing resistance coefficient of

fRα 5 fR 1 cα � α2 ð2:11Þ

where cα is the normalized cornering stiffness, which is on the order of

10�15. For a value of 15, this leads to a contribution of 0.0045 and 0.018 to

fRα for toe angle 1 and 2 [�], respectively.
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FIGURE 2.10 Rolling resistance coefficient in case of braking or driving
(approximation).
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In case of a camber angle γ, there are two effects. First, there is camber

thrust, meaning a lateral force that can again be approximated using a linear

relationship in γ, replacing Eq. (2.11) with

fRαγ 5 fR 1 cα � α2 1 cγ � α � γ ð2:12Þ

The second effect is related to the aligning torque Mz, if present (which is

generally the case). This torque, in case of camber, has a component perpen-

dicular to the tilted wheel plane of Mz � sin(γ), which in turn corresponds to

the resistance force Mz � sin(γ)/Rl. At the same time, the rolling resistance

coefficient during free rolling is reduced with a factor cos(γ), which leads to

the following rolling resistance coefficient:

fRαγ 5 fR � cos γ1 Mz

Rl � Fz

� sin γ1 cα � α2 1 cγ � α � γ ð2:13Þ

2.3.3 Temperature

A rolling tire has internal hysteresis losses contributing to rolling resistance.

As an additional result, temperature is raised when the wheel begins to roll.

This temperature raise has the following effects:

• The internal damping of rubber decreases with increasing temperature.

• The friction between road and tire decreases with temperature, resulting

in a reduction of the contribution of local sliding in rolling resistance.

• The inflation pressure is increased, which reduces the tire radial

deflection.

All these effects result in a reduction of the rolling resistance, and therefore,

a reduction in heat dissipation, which restricts the temperature rise.

Consequently, the decrease of rolling resistance tends to stabilize the temperature

of the tire. From test results given in Ref. [10], in which a tire has been acceler-

ated up to 185 [km/h] on a 2.5 m drum with the constant speed, it appears that

the temperature increases up to 110 [�C] with a lag time of more than 5 [min].

This means that the temperature T(t) can be well approximated by the equation:

τlag � _T 1 T 5 Tsaturated ð2:14Þ

with a lag time τlag of about 5 [min] and Tsaturated5 110 [�C]. The rolling resis-

tance coefficient fR decreases at the same time with the same lag time. The time

histories of both temperature and rolling resistance are shown in Figure 2.11.

We scaled both histories against the final tire temperature and the initial

fR-value, respectively. Note that the rubber material of a tire has very low

conductivity. Therefore, sharp variations in temperature may arise through the

tire wall, with the outer temperature greatly exceeding the average temperature.

This outer temperature determines the contact conditions. Genta and Morello

[10] indicated that the temperature was measured inside the tire body.
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The final tire temperature depends on the wheel speed. An equilibrium

value of 80 [�] tire temperature for a constant speed of 120 [km/h] is a fair

value. This equilibrium value increases progressively with higher speeds.

Tests were conducted on a drum with more radial deflection compared to a

flat surface. In addition, the thermal properties of the drum may affect the test

results. Driving on a flat road will result in slightly smaller temperature values.

2.3.4 Forward Speed

The dependency of the rolling resistance on forward velocity V can be approxi-

mated by a higher-order formulation, with the second order being the most

common one, and suggested to be a fourth order expression by Mitschke and

Wallentowitz in Ref. [27], with the second-order term neglected (with the argu-

ment that this term is small compared to aerodynamic forces):

fR 5 fR0 1 fR1 �
V

100

� �
1 fR4 �

V

100

� �4
;V in km=h

� � ð2:15Þ

The order of magnitude for the coefficients fR0, fR1, fR4 is included in

Table 2.2 for nominal tire pressure, for three different types of radial (R) tires:

FIGURE 2.11 Variation of temperature and rolling resistance for a tire, accelerated up
to 185 [km/h] (based on results by Genta and Morello [10]).

S : allowable maximum speed of 180 [km/h]

H : allowable maximum speed of 210 [km/h]

M1 S : tires, designed for mud and snow (winter tires)
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From this table, a number of observations can be made:

• The range of possible values is well defined for the high performance (H) tire.

• The H-tire has the lowest value for fR4, meaning that this tire is least

sensitive for temperature effects.

• In contrast, the S-tire has the highest sensitivity with respect to temperature.

As mentioned, the second-order description is most commonly used

fR 5 fR0 1 fR2 �
V

100

� �2
;V in km=h

� � ð2:16Þ

where we used the same scaling as in Eq. (2.15). It is shown in Ref. [10], by

comparison of this fit with experimental results, that this expression may

underestimate the behavior for high speeds.

We determined the rolling resistance coefficient according to expressions

(2.15) and (2.16), where we used average values based on Table 2.2.

For the second-order approximation, we selected the same parameters as in

Ref. [10], fR05 0.013 and f025 0.005 [h2/km2]. The results are shown in

Figure 2.12. As expected, the HR tire is least sensitive for speed. The SR-tire

TABLE 2.2 Parameters for the Re�Fz Relationship (2.3)

Type of Tire fR0 (1022) fR1 (10
22 [h/km]) fR4 (1022 [h4/km4])

SR 0.7�1.1 0.03�0.3 . 0.08

HR 0.8�1.0 0.1�0.25 0.02�0.04

M1 S 0.9�1.2 0.23�0.34 0.04�0.07

FIGURE 2.12 Rolling resistance versus speed for different types of tire and according
to Eqs. (2.15) and (2.16).
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has the highest sensitivity for high speeds. For speeds that are not too high, the

second-order approximation is qualitatively not very different from the higher-

order fit. A sharp increase at high speed, such as for the SR-tire, is difficult to

match with Eq. (2.16).

Next, it may be asked what will happen with the SR-tire when the speed

is increased. A larger value of fR means more heat dissipation. Consequently,

the temperature of the tire in the contact area will increase strongly with

speed. At the same time, the tire will show standing waves around the cir-

cumference, with an increasing number of modes for increasing speed.

A number of these modes are shown in Figure 2.13. With increasing modes,

the pressure distribution in the contact area will show more pressure concen-

trations, which will lead to increased heat dissipation. This self-reinforcing

effect will finally destroy the tire. The speed for which the tire collapses

exceeds the so-called critical speed, being the maximum speed allowed for

the tire, and indicated on the tire sidewall with a speed index symbol. The

references H and S, used above (for 180 and 210 [km/h], respectively) are

examples of this speed index.

2.3.5 Inflation Pressure

Increasing the tire inflation pressure leads to a stiffer belt and therefore, a

lower rolling resistance. On the other hand, increasing the tire load leads to

more deformation and therefore, to increased rolling resistance. The critical

speed increases with lower rolling resistance in these cases. An increase in

temperature leads to an increased inflation pressure, which lowers the rolling

resistance and corresponding heat dissipation, and therefore has a stabilizing

effect regarding temperature.

Genta and Morello [10] refer to an empirical formula, suggested by

the SAE, for the rolling resistance dependent on inflation pressure pi [N/m
2],

forward velocity V [m/s], and tire load Fz [N]:

fR 5
K

1000
� 5:11

5:5 3 105 1 90 � Fz

pi
1

11001 0:0388 � Fz

pi
� V2

� �
ð2:17Þ

FIGURE 2.13 Some tire standing waves.
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The factor K is 0.8 for radial tires and 1 for nonradial tires. We have

taken a fixed speed, 150 [km/h], and determined the rolling resistance

coefficient for varying inflation pressure and wheel load. Results are

shown in Figure 2.14. Observe that the inflation pressure is the dominant

factor in the rolling resistance coefficient. The impact of changing wheel

load is small.

2.3.6 Truck Tires Versus Passenger Car Tires

For truck tires, the dependency on vehicle speed appears to be more linear,

i.e., the factor fR4 can be neglected (see Ref. [27]). Truck tires will experience

a large variation in load during normal practice. One of the performance

criteria is therefore that the dependency of the rolling resistance with

tire load is small, or that it shows a reduced resistance coefficient with

increasing load.

Rolling resistance is important for heavy goods vehicles. About one third

of the energy produced by the engine is used to compensate for the rolling

resistance.

The paper by Popov et al. [40] confirms that the rolling loss (longitu-

dinal resistance force) is almost linear in the tire load, with the slope

slightly increasing with decreasing inner pressure. We determined the

rolling resistance coefficients from their results (Figure 2.15). One

observes a trend of reducing fR-value for increasing wheel load and

increasing inflation pressure. The Fz dependency does not correspond to

Eq. (2.17). Apparently, this expression does not hold for all tires, includ-

ing truck tires.

FIGURE 2.14 Rolling resistance coefficient for different inflation pressures and tire

load, for 150 [km/h].
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2.3.7 Radial Versus Bias-Ply Tires

Radial tires normally show a rolling resistance that is about 20% or more less

than for bias-ply tires, and a higher value of critical speed (see Schuring [47]).

This can be explained by the tire structure design, which leads to less rubber

deformation energy for the radial tire compared to the bias-ply tire. This effect

was increased when low rolling resistance tires were introduced in the begin-

ning of this century, and where a significant reduction of the order of 40% was

claimed with respect to conventional radial tires, i.e., ending up with half of the

rolling resistance of bias-ply tires.

Other design aspects have had an impact on rolling resistance as well,

such as the number and orientation of plies, the choice of rubber compounds,

and the design of treads. Natural rubbers have lower damping compared to

synthetic rubbers, which leads to a lower rolling resistance, however, at the

cost of lower critical speed and shorter lifetime of the tire.

2.3.8 Other Effects

With a significant amount of water on the road, the tire must push away this

water, which leads to a larger rolling resistance, depending on the water

height h, the tire speed V, and the tire width b. This resistance will increase

with speed up to the level where the full tire is floating on the water. Beyond

this point, the resistance will not increase further with speed.

As reported by Gengenbach in Ref. [9], the effect of speed on the

resistance force FRW [N] can be expressed as:

FRW 5AðhÞ � b � Vn; V in ½km=h�; b in ½cm� ð2:18Þ

FIGURE 2.15 Rolling resistance coefficient for truck tires versus tire load and tire

pressure from Ref. [40].
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with exponent n approximately equal to n5 1.6 if h. 0.5 [mm]. For h5 0.2

[mm], n can be approximated by n5 2.2. The coefficient A(h) depends on

the water height h. If we express V in [m/s] and b in [m], this coefficient var-

ies from the order of 5.5 for h5 0.5 [mm] to about 11.0 [N.sn.m2n21] for

h5 1.0 [mm].

Rolling resistance decreases with wear. Hysteresis losses occur mostly in

the tread band. Hence, reducing the tread band material will result in lower

resistance.

The two tire geometrical parameters having an effect on rolling resistance are:

• Tire radius

• Aspect ratio (section height/tire width).

Rolling resistance is decreased for a larger tire radius or a lower aspect

ratio (low profile tires). Hence, smaller tires have a larger rolling resistance

coefficient. However, such tires are usually used for lighter cars with a lower

tire load and therefore lower rolling resistance force.

2.4 THE TIRE UNDER BRAKING AND DRIVING
CONDITIONS

2.4.1 Braking Behavior Explained

Consider a tire under a brake torque, as indicated in Figure 2.16. The brake

torque Mz must be balanced by moments due to a brake force Fx and the tire

load Fz. The offset of the tire load in front of the wheel center increases with

FIGURE 2.16 Braking tire.
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respect to the free rolling tire. The tire will experience a slip speed of the

wheel with respect to ground, reducing the angular speed and therefore

increasing the effective rolling radius Re. In the ultimate situation of a sliding

nonrolling tire, this radius of rotation will become unbounded, with the center

of the rotation moving to z5N. This means that, in general under braking

conditions, the effective rolling radius Re,braking will exceed the unloaded

radius. The total longitudinal shear stress in the contact area now consists of

a part due to free rolling (dashed in Figure 2.16) and a superimposed shear

stress caused by braking. As a result, the major part of the tire in the contact

area is stretched due to the brake torque. Tread elements entering the contact

area first try to adhere to the road surface, with the longitudinal deflection

and therefore, the shear stress increasing linearly along the contact zone. At a

certain point, the shear stress reaches the limits of friction (μ �σz with local

road friction μ and normal stress σz under Coulomb law) and the treads begin

to slide. As a result, the shear stress drops down along the rear part of the

contact zone. In a similar way as discussed for a free rolling tire, one arrives

at a distribution of the peripheral velocity of treads (with respect to the wheel

center), as shown in the bottom part of Figure 2.16.

Note that sliding begins in the rear of the contact area and extends toward

the front part of the contact area for increasing brake torque, until finally slid-

ing is apparent along the full contact area.

In case of a tire under driving conditions, the angular speed is increased

and therefore, the effective rolling radius Re,driving is decreased. In the ulti-

mate case of a spinning tire on the spot, the effective rolling radius has

decreased to zero (no forward speed) and the point of rotation coincides with

the wheel center. The drive torque must balance moments resulting from a

drive force in the contact area and the tire load. The offset of the tire load in

front of the wheel center is decreased with respect to the case of the free roll-

ing tire. The shear stress is now built up from the free rolling distribution,

including a triangular-shaped pattern along the contact area, and the tire tread

material is experiencing a compression.

We introduce the practical longitudinal slip κ as follows

sx � 2κ5
Vsx

Vx

5
Vx 2Ω � Re

Vx

� Ω0 2Ω
Ω0

ð2:19Þ

with angular speed Ω0 under free rolling conditions and slip speed Vsx of

tread elements, with respect to the road surface. This slip speed is obtained

from the difference between the forward speed Vx at the wheel center and the

peripheral speed Ω �Re.

When a driver begins braking, the wheel rotation is decelerated by the

resulting brake torque and the tire brake force

Jwheel: _Ω52MB 2Rl � FxðκÞ ð2:20Þ
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with Fx. 0 in positive x direction (i.e., Fx, 0 in case of braking) and the

wheel polar moment of inertia Jwheel. This equation is part of a larger set of

equations used to solve the braking problem for a vehicle. Clearly, the for-

ward vehicle speed (included in the preceding angular wheel velocity equa-

tion through the slip κ) is not a constant but will decrease, which is the

intention of braking. The resulting forward vehicle speed follows from

another equation describing the balance of the vehicle deceleration and the

wheel forces

m � _Vx 5
X
wheels

FxðκÞ

for mass m of the vehicle, and neglecting other longitudinal forces (slope,

aerodynamic drag, etc.). Note that the wheel forces and longitudinal slip are

in general different for the four wheels of the vehicle.

To solve the angular wheel velocity equations for each wheel, one

requires a description of Fx in terms of practical slip κ. A typical behavior of

this characteristic longitudinal tire behavior is shown in Figure 2.17

for different tire loads. In the left-hand image, we plotted the absolute

brake force 2Fx versus 2κ, whereas in the right-hand image, we

plotted 2μx �2Fx/Fz, the normalized tire force (also known as the longitudi-

nal force coefficient or longitudinal friction coefficient), for various values of

the tire load.

Usually, the curves will not exactly pass the origin (due to rolling resis-

tance and inaccuracies in the tire). Clearly, the longitudinal tire force is

nearly, but not quite, proportional to the tire load. One observes a peak value

and saturation value in both images for the longitudinal force coefficient indi-

cated as μxp (peak braking coefficient) and μxs (the sliding braking coeffi-

cient, which is the limit of μx for pure sliding, i.e., at κ521). The peak

value is obtained for brake slip around 0.1 and 0.15 in absolute value

(10�15% slip).

FIGURE 2.17 Brake force and normalized brake force versus brake slip κ for different
wheel loads.
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For small brake slip, the Fx versus κ characteristic can be approximated

using a linear relationship, with the slope referred to as the longitudinal slip

stiffness Cκ (Figure 2.18).

The peak value is the optimal value of braking, but just beyond the

slip 2κ0 corresponding to this optimal value, the wheel will lock in very

short time. To understand that, consider Eq. (2.20) for κ close to a value κ1
with jκ1j. jκ0j.

Linearization around κ5κ1, assuming the speed Vx reduces slowly, and

considering the brake torque constant, leads in first order to

Jwheel � ð _Ω2 _Ω1Þ1
Rl � Re

Vx

� dFx

dκ
ðκ1Þ � ðΩ2Ω1Þ5 0 ð2:21Þ

Because the derivative F0
xðκ1Þ, 0, nontrivial solutions of this equation

will blow up in time, and therefore, the system will become unstable.

This is why all new vehicles are equipped with antilock systems to pre-

vent excessive brake slip. In the same way, one may discuss drive slip and

the risk of spinning of the wheel in case of too high traction. This phenome-

non can be prevented using traction control systems.

The normalized tire force μx (and therefore the longitudinal tire force

itself) depends on the tire�road conditions:

• Road roughness. Pavement exhibits three types of roughness, micro-

texture (with wavelength less than 0.5 [mm]), macro-texture (wavelength

between 0.5 and 50 [mm]), and mega-texture (wavelength exceeding

50 [mm]), see Ref. [65].

• Tire tread wear.

• Wet conditions (rain, snow, ice, etc.).

FIGURE 2.18 Longitudinal slip stiffness.
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Macrotexture is related to the overall roughness of the road resulting

from the number, type, and size of stone chippings, whereas microtexture is

related to the roughness of the individual chippings. Idealized texture leads to

sufficient drainage and significant hysteretic friction (local pressures) at the

cost of tire wear. Tips should preferable be sharp to provide good friction

even under wet conditions, but this may lead to abrasive wear. The existence

of microtexture is due to the typical asphalt ingredients (silica, sand,

quartzites).

Macrotexture and microtexture vary in time. It is known from drain

asphalt that, because of many small contact zones between rubber and the

ground, there is an increased polishing effect and therefore, rounded asperi-

ties, which impact the adhesive properties of the tire�road contact. Roughly

speaking, one might say that macrotexture is related to a strong velocity

dependence of the tire�road contact under wet road conditions, whereas

microtexture is related to the slightly wet or dry-adhesive road conditions.

Under wet road conditions, the longitudinal force coefficient maximum

level drops, to levels on the order of 0.6�0.8 for a wet road, to 0.4�0.5 for

snow, and to levels of 0.2�0.4 for ice.

A special case is given if a significant amount of water is present on the

road. To maintain contact between tire and road, the water must be evacu-

ated. This property may be improved by adjusting the tread block pattern of

the tire (longitudinal grooves, or grooves curved in an outward direction

guiding the water in a radial direction away from the tire, see also

Figure 2.2). With increasing speed, there is less time to remove the water and

the contact zone is further reduced. Consequently, the brake force and there-

fore, the friction coefficient drops significantly with vehicle speed.

At a certain speed, the tire may float entirely on a film of water (hydro-

planing), and the friction coefficient drops to very low values (,0.1). In

other words, hydroplaning occurs when a tire is lifted from the road by a

layer of water trapped in front of and under a tire.

One usually distinguishes between dynamic hydroplaning (water is not

removed fast enough to prevent loss of contact) and viscous aquaplaning (the

road is contaminated with dirt, oil, grease, leaves, etc.). Usually, regular rain

will wash away the road contaminants that cause viscous aquaplaning.

However, after an especially long dry period, the contaminants pile up, and a

sudden rain may result in a more viscous mixture on the road, which causes

unexpected, and dangerous (i.e., low friction), conditions.

Many sources exist for tire behavior under the combined effect of speed

and water on the road (see Borgmann [4] and Gnadler [12]).

2.4.2 Modeling Longitudinal Tire Behavior

There are different ways to describe the slip behavior using tire models. One

distinguishes between physical models and empirical models. A physical

model describes the tire based on the recognized physical phenomena during
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braking, usually in a simplified way. Such simplified models do not aim to

provide a quantitative description of the tire handling performance, but

merely explain the qualitative phenomena. These phenomena will be

addressed in Section 2.7. Physical models that are more complex (e.g., finite

element (FE) models) are applied to derive quantitatively correct tire perfor-

mance based on a detailed description of the tire structure and material prop-

erties. This means that FE models form a link between tire design and tire

performance. However, FE models are very time consuming, both in CPU

and preparation time.

Empirical tire models are based on a similarity approach in which experi-

mental results are used to find parameters to tune a certain mathematical

description. A well-known empirical tire model is the Magic Formula model

described by Pacejka, which is often referred to as the Pacejka model [32].

The basic mathematical formula describing the longitudinal characteris-

tics is given by the sine-version of the Magic Formula, given by

FxðκÞ5Dx � sinðCx � arctanðBx � κx 2Ex � ðBx � κx 2arctanðBx � κxÞÞÞÞ1 SVx

ð2:22Þ

with

κx 5κ1 SHx ð2:23Þ

The parameters SHx and SVx are shifts that allow the curve not to pass

through the origin, which may be due to rolling resistance and tire irregulari-

ties (asymmetry). The other four parameters are:

Except for Cx, these factors depend on the tire load Fz. To keep the

Magic Formula dimensionless, the tire load is included as its relative devia-

tion from the nominal tire load Fz0:

dfz 5
Fz 2Fz0

Fz0

ð2:25Þ

Dx : Peak factor—determines the maximum value of Fx

Cx : Shape factor—describes whether the curves in Figure 2.17 are monotonously increasing

(0, Cx, 1) or include a local extreme (Cx. 1)

Bx : Stiffness factor—determines the slope of the curve at κx5 0, i.e., the longitudinal slip stiffness.

This slip stiffness Cκ can easily be found to be given by

Cκ 5 Bx � Cx � Dx ð2:24Þ

Ex : Curvature factor—affects the behavior of the curves in Eq. (2.18) beyond the critical slip jκ0j
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The nominal tire load is related to the maximum admissible static load

for the specific temperature and speed index, usually referred to as the

ETRTO value, which is the European Tire and Rim Technical Organization

value. Choosing the nominal value Fz0 equal to 80% of this ETRTO value,

a reasonable choice for Fz0 is listed in Table 2.3.

Hence, a specific nominal tire load is related to a class of tires, with

the same maximum allowable operating speed. Different nominal tire loads

refer to different classes of tires, in contrast to the variation in tire load

for one specific tire (due to static load variations, load transfer during

cornering, etc.).

The factor Dx is related to the peak of the longitudinal force coefficient

(normalized longitudinal force) and the wheel load:

Dx 5μxp � Fz ð2:26Þ

Assuming pure longitudinal slip (no camber, no slip angle), this parame-

ter μxp can be expressed in terms of Fz, as follows:

μxp 5 ðPDx1 1PDx2 � dfzÞ ð2:27Þ

for PDx1 and PDx2. Other parameters in the Magic Formula for pure longitudi-

nal slip can be expressed as follows:

Cx 5PCx1 ð2:28Þ

Bx � Cx � Dx 5Fz � ðPKx1 1PKx2 � dfzÞ � expðPKx3 � dfzÞ ð2:29Þ

Ex 5 ðPEx1 1PEx2 � dfz 1PEx3 � df 2z Þ � ð12PEx4 � signðκÞÞ ð2:30Þ

SHx 5PHx1 1PHx2 � dfz ð2:31Þ

SVx 5PVx1 1PVx2 � dfz ð2:32Þ

TABLE 2.3 Typical Values for the Nominal

Tire Load Fz0

Class Fz0 [N]

Compact class 3000

Middle class 5000

Top class 6000
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2.5 THE TIRE UNDER CORNERING CONDITIONS

2.5.1 Cornering Behavior Explained

Let us consider a tire under cornering conditions, as indicated in Figure 2.19

(top view), first neglecting camber. Under cornering conditions, a local veloc-

ity vector exists that is generally not parallel to the wheel center plane. This

wheel center plane is defined as the symmetry plane of the tire such that forces

acting in the symmetry plane do not contribute to a lateral force for the tire.

In the front part of the contact area, the treads of the tire try to follow this

local speed direction, resulting in a displacement from the symmetry plane

along the tire circumference within the contact area, which increases linearly

from zero (just in front of the contact area) up to a situation where the induced

lateral shear stress just reaches the maximum possible shear stress level, i.e.,

μ �σz with local road friction μ and normal stress σz under Coulomb law.

Beyond this point, the lateral displacement reduces to zero at the trailing

edge of the contact area. We discussed similar phenomena for braking and

driving (traction) of the tire. Beyond the point where the shear stress first

reaches μ �σz, the treads of the tire will slide, leading to a reduction of the

shear stress in the direction of the contact area rear end. Clearly, when sliding

and in the absence of longitudinal slip, the lateral shear stress will remain

equal to μ �σz. With σz reducing to zero at the edges of the contact area, the

friction limits for the shear stress will decrease further, and sliding is likely

to extend until the contact area rear end.

Deflection of the tire is due to two separate effects:

• The deflection of the contact rubber, i.e., of the treads

• Deflection of the belt

Both compliances allow the tire to direct itself to the local speed direc-

tion, but the stiffnesses are different. In terms of physical models, one may

FIGURE 2.19 Tire under cornering conditions.

2.5 The Tire Under Cornering Conditions 33



distinguish here between the brush model and the stressed string model. Both

will be discussed in more detail in Section 2.7.

We introduce the practical lateral slip as 2tan(α), i.e.,

sy 52tanðαÞ5 Vsy

Vx

5
Vy

Vx

ð2:33Þ

with slip speed Vsy. As we will see later, the practical slip quantities corre-

spond with a description of tire deflection in terms of deformed quantities.

An alternative approach might be to express slip in terms of the undeformed

coordinate system. This will result in the so-called theoretical slip quantities,

defined as

ρx 5
Vsx

Vr

; ρy 5
Vsy

Vr

ð2:34Þ

with

Vr 5Vx 2Vsx 5Ω � Re ð2:35Þ

We observed in Section 2.5 that, under braking, the practical slip sx5κ
varies between 21 (locked wheel, Ω5 0) and 0 (Vsx5 0). In case of a driven

wheel, κ varies from 0 to1N, with the extreme case of spinning obtained if

Vx5 0. Changing to theoretical slip values, the slip remains bounded in case

of driving. It is clear that ρx-1 if κ-N.

Using

κ5
Vr 2Vx

Vx

5
Ω � Re 2Vx

Vx

ð2:36Þ

one easily arrives at the following relationship between practical and

theoretical slip quantities

ρx 5
sx

12 sx
; ρy 5

sy

12 sx
ð2:37Þ

As we observed previously, the practical brake slip sx varies between 0

and 1, whereas under driving conditions, it is —N, sx, 0, i.e., the practical

drive slip may attain very large absolute values if the wheel spins on the

spot. In contrast to the practical slip, the theoretical longitudinal slip remains

bounded under driving conditions but may grow to large absolute values in

case of braking when the wheel becomes locked.

Vehicle dynamics analysis requires relationships between tire lateral shear

forces and slip angles at front and rear axles. This will be explained in more

detail in Chapter 5. It will be shown that, by restricting to tire lateral shear
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forces, these four tire forces balance the centrifugal force, acting on the vehi-

cle in local lateral direction

m � ð _vy 1Vvehicle � rÞ5
X
wheels

FyðαÞ ð2:38Þ

with vehicle mass m, vehicle speed Vvehicle, vehicle lateral speed vy at the

vehicle center of gravity CoG, and yaw rate r. In addition, the moments of

the four tires around the CoG must balance the total inertial moment, which

can be approximated by

Jz � _r5
X

front wheels

a � FyðαÞ 2
X

rear wheels

b � FyðαÞ ð2:39Þ

with vehicle moment of inertia in vertical z-direction Jz and distances of a

and b from CoG to front and rear axle, respectively. Note that, for small slip

angles and steering angle δ, the vehicle speed can be approximated by Vx.

Usually, one assumes the slip angles to be identical for both front wheels

and likewise for both rear wheels. Slip angles are defined by the orientation

of the local velocity vector relative to the wheel symmetry plane. In terms of

lateral speed and yaw rate, this leads to expressions for slip angles α1 at front

axle and α2 at rear axle (see Chapter 5 for more details)

α1 � tanðα1Þ5 δ2
vy 1 a � r
Vvehicle

; α2 � tanðα2Þ52
vy 2 b � r
Vvehicle

ð2:40Þ

A typical behavior of Fy versus slip angle α is shown in Figure 2.20.

Similar to the case of braking or driving, we plotted both Fy and μy � Fy/Fz,

the normalized tire force with alternative names such as lateral force coeffi-

cient or lateral friction coefficient (side force coefficient), for various values

FIGURE 2.20 Cornering force and normalized cornering force versus slip angle α for

different wheel loads.

2.5 The Tire Under Cornering Conditions 35



of the tire load. Again, one observes the tire force to be nearly proportional

to the tire load.

One observes peak values and saturation values in both images, indicated

for the lateral force coefficient as the peak value μyp, and μys as the limit of

μy when the tire is drifting for large slip angle. The peak value is usually

obtained for lateral slip near 0.1�0.2 in radians, or near 5�10 [�].
For small slip angle, the Fy versus α characteristic can be approximated

using a linear relationship, with a slope that is the lateral slip stiffness Cα,

also referred to as the cornering stiffness (Figure 2.21).

The normalized side force in Figure 2.20 indicates that the cornering stiff-

ness tends to increase less than proportional with Fz for increasing tire load.

This is shown in Figure 2.22 where the cornering force is plotted against the

FIGURE 2.21 Cornering stiffness.

FIGURE 2.22 Cornering stiffness versus tire load.
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tire load for the tire data, which is listed in Appendix 6. This nonlinear rela-

tionship is important in the sense that, during cornering, the tire load of the

outer wheel will increase, whereas the inner wheel load will decrease.

Because of the nonlinear dependence of cornering stiffness on tire load, the

change in cornering stiffness at the outer wheel is exceeded in absolute value

by the change at the inner wheel. For this reason, the average cornering stiff-

ness for the full axle is decreased. With different roll stiffnesses at front and

rear axles, this works out differently at both axles, changing the handling

characteristics of the vehicle.

Lupton and Williams [22] give data for the sliding side force coefficient

μys for one specific tire but different texture depths, under wetted conditions,

and for two different speeds: 50 and 80 [km/h]. Results are shown in

Figure 2.23. One observes some variation in results and dependency on

texture depth. Also, observe the effect of speed: increased speed lowers the

friction, especially with a small texture depth (as expected).

Figure 2.19 indicates that the side force acts a small distance behind the

wheel center. This distance is called the pneumatic trail tp(α). At small slip

(small α), there is almost no sliding and the adhesion part of the contact area

(linearly increasing lateral deflection) extends almost over the entire contact

area. This corresponds to a situation where the shear stress profile is very

asymmetrical along the contact area, with a rather large pneumatic trail. With

increasing slip, the sliding area increases toward the front end of the contact

area. Under Coulomb law, the shear stress in the sliding area follows μ �σz
with road friction μ and normal stress σz. This normal stress is indicated in

Figure 2.8. Consequently, the pneumatic trail will reduce with increasing

slip. Note that the resulting vertical contact force acts slightly in front of the

wheel center, meaning that the pneumatic trail may become negative for

excessive sliding.
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FIGURE 2.23 Side force coefficient μys on a wetted road for different texture depths

and velocities from Ref. [22].
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Hence, we obtain a side force Fy(α), starting at small values, at α5 0, and

growing to a maximum value (with the full contact area in sliding conditions,

and therefore, Fy5μ �Fz), whereas the pneumatic trail tp(α) starts at large

values and reduces to small values with even negative values for excessive slip.

Pneumatic trail times side force yields the self-aligning torque (or

moment) Mz, introduced in Section 2.1 (see Figure 2.4). This torque is called

self-aligning because it tries to orient the tire in the speed direction. It works

against the lateral deformation due to the lateral force.

For pure lateral slip (no braking or driving), the self-aligning torque can

be described as follows

MzðαÞ52tpðαÞ � FyðαÞ1MzrðαÞ ð2:41Þ

for residual torque Mzr, a small torque that results from inaccuracies in the tire

design that rapidly decreases in absolute value with increasing slip angle.

When the tire experiences a brake or drive force in combination with lateral

slip (we call that a situation of combined slip), the lateral deflection from the

symmetry plane times the longitudinal force will contribute to the aligning tor-

que, as will be discussed further in the next sections. For pure lateral slip, this

contribution is omitted.

Considering the qualitative behavior of side force and pneumatic trail as

described previously, we expect this aligning torque to start close to zero for

α5 0, then to grow in absolute value, but decrease again with the pneumatic

trail for increasing slip.

We plotted the pneumatic trail and the aligning torque in Figure 2.24 for

varying tire loads and for the tire data from Appendix 6. Observe a sharp

decay in both trail and aligning torque for decreasing tire load, which is not

shown for the side force (Figure 2.20). Pneumatic trail and aligning torque

are much more sensitive to the tire load than the side force. The same conclu-

sion holds with respect to road friction.

In Figure 2.25, we plotted the relative values of the aligning torque

and side force (both scaled by their maximum value) in one image for

FIGURE 2.24 Pneumatic trail and aligning torque versus slip angle.
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Fz5 4 [kN]. Observe that the aligning torque passes its maximum at a slip

angle value that is smaller than at the maximum of the side force (i.e., where

the tire begins to slide). This is valuable information for the driver. The tor-

que from the combined effect of mechanical trail (caster) and pneumatic trail

is felt by the driver through the steering wheel. That means that the driver

will experience a reduction in the feedback torque from the steering wheel

because of the reduction of the aligning torque in absolute value. This should

warn the driver that he or she is approaching a situation with an increased

risk of skidding of the front axle.

2.5.2 Modeling Lateral Tire Behavior

Just like the longitudinal force description in Section 2.4.2, the lateral force

can be described by the Magic Formula as follows

FyðαÞ5Dy � sinðCy � arctanðBy � αy 2Ey � ðBy � αy2arctanðBy � αyÞÞÞÞ1 SVy

ð2:42Þ

with

αy 5α1 SHy ð2:43Þ

and with shifts SHy and SVy. The other parameters again depend on the tire

load Fz but also on the camber angle, except for Cy. Again, the relative devia-

tion dfz of the tire load from the nominal tire load is used. According to

Pacejka [32], the coefficient Dy (peak factor) can be expressed in terms of

tire load Fz and camber angle γ, as follows:

Dy 5μy � Fz 5
PDy1 1PDy2 � dfz
11PDy3 � γ2

� Fz ð2:44Þ

FIGURE 2.25 Scaled side force and aligning torque for Fz54 [kN].
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for some parameters PDyi, where the effect of decaying friction with slip

speed has been neglected. Other coefficients (shape factor Cy, stiffness factor

By, curvature factor Ey, and the shifts SHy and SVy) are found from

Cy 5PCy1 ð2:45Þ

By � Cy � Dy � Kyα 5Fz0 �
PKy1

11PKy3 � γ2

� sin PKy4 � arctan
Fz

Fz0 � ðPKy2 1PKy5Þ � γ2
� �� � ð2:46Þ

Ey 5 ðPEy1 1PEy2 � dfzÞ � f11PEy5�γ2 2 ðPEy3 1PEy4 � γÞ � signðαyÞg ð2:47Þ

SHy 5 ðPHy1 1PHy2 � dfzÞ1
Fz � γ � ðPKy6 2PVy3 1 ðPKy7 2PVy4Þ � dfzÞ

Kyα
ð2:48Þ

SVy 5Fz � ðPVy1 1PVy2 � dfzÞ1Fz � ðPVy3 1PVy4 � dfzÞ � γ ð2:49Þ

where we assumed sin(γ)� γ, and introduced certain parameters Pjyi with j

indicating the specific factor (shape, stiffness, etc.) and i5 1, 2, 3,. . . being
used to distinguish between the different Magic Formula parameters. The

notation of the coefficients is taken directly from Ref. [32]. There are some

differences from Ref. [32], in the sense that scaling factors are omitted and

spin is assumed to be small (see Section 2.1). Furthermore, the equations in

Ref. [32] also account for zero or very small values of velocity or tire load.

These cases are not considered here.

The pneumatic trail, as shown in Figure 2.24, suggests a cosine version of

the Magic Formula. According to Pacejka [32], the pneumatic trail can be

expressed as follows in terms of slip angle α:

tpðαÞ5Dt � cosðCt � arctanðBt � αt 2Et � ðBt � αt2arctanðBt � αtÞÞÞÞ � cosðαtÞ
ð2:50Þ

with

αt 5α1 SHt ð2:51Þ

for some shift SHt. As in the expression for Fy, the other parameters depend

on the tire load Fz and camber angle γ, except for Ct. The factor cos(α)
is introduced to account for large slip behavior. In the original equation in

Ref. [32], this factor is slightly different to cover situations with very small

velocity of the wheel contact center. In this chapter, we will not discuss this

40 Fundamentals of Tire Behavior



case further, and we refer reader to Ref. [32] for more details. According to

Ref. [32], the various coefficients in Eq. (2.50) are found from

Bt 5 ðQBz1 1QBz2 � dfz 1QBz3 � df 2z Þ � ð11QBz5 � jγj1QBz6 � γ2Þ ð2:52Þ

Ct 5QCz1 ð2:53Þ

Dt 5
Fz � R0

Fz0

� ðQDz1 1QDz2 � dfzÞ � ð11QDz3 � jγj1QDz4 � γ2Þ � signðVCxÞ

ð2:54Þ

Et 5 ðQEz1 1QEz2 � dfz 1QEz3 � df 2z Þ � f11 2 � ðQEz4 1QEz5 � γÞ
� arctanðBt � Ct � αtÞ=πg

ð2:55Þ

SHt 5QHz1 1QHz2 � dfz 1 ðQHz3 1QHz4 � dfzÞ � γ ð2:56Þ

for unloaded tire radius R0, and longitudinal speed VCx of the wheel contact

center. The parameters QCz1, QBz1, . . . are tire dependent (see Appendix 6

for a specific set of data). The residual torque in Eq. (2.41) can be expressed

as follows

Mzr 5Dr � cosðarctanðBr � αrÞÞ ð2:57Þ

with

αr 5α1 SHy 1
SVy

Kyα
ð2:58Þ

Br 5QBz9 1QBz10 � By � Cy ð2:59Þ

Dr 5Fz � R0 � fQDz6 1QDz7 � dfz 1 ðQDz8 1QDz9 � dfzÞ:γ
1 ðQDz10 1QDz11 � dfzÞ � γ � jγjg � cos α � signðVCxÞ

ð2:60Þ

for empirical factors Qjzi, j5B, D, and i5 1, 2, 3, . . .
Thus far, we have not discussed the effect of camber on the lateral tire

characteristics. With only a camber angle and no slip angle, the tire tries to

follow an almost circular track that is determined by the local shape of the

tire cross section.

The direction of motion of the wheel is forced by the vehicle velocity

vector. For example, the wheel may be moving forward in a straight path. As

a result, local shear stresses arise in the contact area and build up a camber

force (Figure 2.26). For a motorcycle, the camber force is the major force

between tire and road that prevents the tire from sliding.
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In the linear range, the side force can be expressed in terms of slip angle

and camber angle, as follows

FyðαÞ5Cα � α1Cγ � γ ð2:61Þ

with cornering stiffness Cα and camber stiffness Cγ, defined as

Cα 5
@Fy

@α
ðα5 0; γ5 0Þ ð2:62Þ

Cy 5
@Fy

@γ
ðα5 0; γ5 0Þ ð2:63Þ

The ratio of camber stiffness and tire load is referred to as the normalized

camber stiffness (also denoted as the camber thrust coefficient). For a passen-

ger car tire, this value can be of the order of 1, to be compared to the value of

Cα/Fz, which can range between 10 and 15 (see Figure 2.22). Hence, the cam-

ber stiffness is of the order of 10% or less, compared to the cornering stiffness.

We determined lateral force, pneumatic trail, and aligning torque for a

fixed wheel load of 4000 [N] and for camber angle values of 25, 0, and

5 [�]. The results for Fy and for trail and aligning torque are shown in

Figures 2.27 and 2.28, respectively.

2.6 COMBINED CORNERING AND BRAKING/DRIVING

2.6.1 Combined Slip

The discussion in the preceding sections deals with pure slip, i.e., with situa-

tions where the car is either cornering, or braking/driving. When a drive or

brake torque is applied during cornering, the total horizontal force is not act-

ing purely in the longitudinal or lateral direction, and the cornering force

potential is therefore reduced. According to Figures 2.17 and 2.20, the maxi-

mum longitudinal and lateral forces for a certain wheel load Fz are given by

Fx;max 5μxp � Fz ð2:64Þ

FIGURE 2.26 Camber-induced side force.
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Fy;max 5μyp � Fz ð2:65Þ

Clearly, the peak friction coefficients are related to the road friction, with

lower road friction leading to a proportional decrease of μxp and μyp. This

suggests that the envelope of the general normalized shear force under com-

bined slip between tire and road is a closed curve, with a maximum value

μxp along the x-axis (pure slip in longitudinal direction) and a maximum

value μyp along the y-axis (pure slip in lateral direction). In general, the drive

force will be smaller than the brake force because it is bounded by the engine

power. Furthermore, this enveloping curve will depend on speed on a

wet road, especially in case of a significant amount of water (aquaplaning).

A tire is not a rotational symmetric object, which explains the difference

in size between μxp and μyp. This enveloping curve will be different for

different tires.

FIGURE 2.27 Side force vs. slip angle for different camber angle value and wheel load
Fz54000 [N].

FIGURE 2.28 Pneumatic trail and aligning torque vs. slip angle for different camber
angle value and wheel load Fz54000 [N].
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Let us assume the enveloping curve to be well approximated by an

ellipse, as indicated by the outer curve in Figure 2.29. The right-hand part of

this figure corresponds to driving (Fx. 0), whereas the left-hand side of this

figure corresponds to braking. The outer ellipse describes the maximum shear

force, which can be applied for a certain road friction and wheel load. The

figure shows clearly (point A) that the side force in case of such a maximum

shear force, under presence of a drive force Fx5μx �Fz, will be less than

μyp �Fz. Likewise, applying a side force while braking or driving will reduce

the longitudinal force, i.e., the braking or driving potential of the tire.

The internal ellipses are approximations for the shear force for constant

slip angle α and for varying longitudinal slip. We shall see later, when we

plot Fx versus Fy for fixed slip angle, based on test data, that this approxima-

tion is rather rough. These elliptic approximations were used by Genta and

Morello [10] to estimate the cornering stiffness under conditions of combined

slip. In absence of a brake or drive force, the side force is indicated by

Fy05μy0 �Fz (i.e., in case of pure side slip). With maximum brake or drive

force, the longitudinal friction coefficient is assumed equal to μxp.

The internal ellipses in Figure 2.29 can therefore be described by the fol-

lowing relationship between Fx and Fy:

Fy

μy0 � Fz

 !2
1

Fx

μxp � Fz

 !2
5 1 ð2:66Þ

Assuming the slip angle to be small, such that the side force can be

expressed as cornering stiffness times slip angle, the relationship (2.66)

leads to

Cα;combined 5Cα;pure �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

Fx

μxp � Fz

 !2vuut ð2:67Þ

FIGURE 2.29 Elliptic approximation of a tire friction envelope.
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with the Cα,pure and Cα,combined indicating the cornering stiffness in case of

pure side slip and combined slip, respectively. We refer to Eq. (2.67) as the

elliptic approximation of the cornering stiffness under combined slip.

Following the approximation of the inner ellipse in Figure 2.29, we can

conclude the following:

• The side force Fy is a function of both κ and α. For a fixed slip angle α,
this side force has a maximum value at κ5 0, which reduces with

increasing jκj (i.e., in case of either driving or braking). This also means

that the peak value of Fy(α; κ) versus α decreases for increasing jκj, as
we observed previously.

• Pure longitudinal slip characteristic behavior, as shown in Figure 2.17,

shows a local peak value in Fx, followed by a decrease of Fx when κ is

further increased. This behavior is not shown in Figure 2.29, which indi-

cates serious limitations in the elliptic approximation.

Let us consider the polar diagram (Fx versus Fy for fixed slip angle),

based on the tire parameters included in Appendix 6. The results are shown

in Figure 2.30. Negative values for the slip angle correspond to negative Fy-

values. Indeed, one observes local maximum values for the longitudinal force

Fx(κ; α) versus κ, with these values decreasing with increasing jαj
(Figure 2.31). This behavior is similar to the lateral force for varying κ, as
observed previously. The lateral force versus longitudinal slip κ is shown in

Figure 2.31 as well, for varying slip angle α. There is a slight lack of symme-

try in κ when the side force is very small (α5 0). In case of only brake slip,

FIGURE 2.30 Polar diagram: Fx vs. Fy for constant slip angle (α526, 22, 0, 2, 4,

6, 8, and 10 [�]), for Fz56000 [N].
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a small side force arises that is negative for drive slip and positive for brake

slip. This is due to irregularities in the tire design.

Next, let us consider the aligning torque under combined slip conditions.

When both a lateral and a longitudinal force act on a tire, the longitudinal

force acts some distance s away from the tire symmetry plane, as indicated in

Figure 2.32.

A positive lateral force leads to this deflection s. 0, which in combina-

tion with the drive force Fx, results in a contribution to the aligning torque

of �s �Fx. This must be added to the residual torque minus side force times

pneumatic trail, according to expression (2.41), which leads to

Mzðα;κÞ52tp � Fy 1Mzr 2 s � Fx ð2:68Þ

with now all functions at the right-hand side depending on both slips α and κ.
This means a negative contribution to the aligning torque for driving and a

positive contribution to the aligning torque for braking. The aligning torque is

shown versus Fx in Figure 2.33 for the same variation in slip angles as in

Figure 2.30. The almost straight line corresponds to α5 0. Indeed, a positive

longitudinal force leads to a negative torque, with the opposite behavior for

braking. For a positive slip angle, the aligning torque becomes more negative

for zero longitudinal slip, with some recovery of increasing κ, but not tending

FIGURE 2.31 Fx and Fy vs. longitudinal slip, for varying slip angle, and wheel load
6000 [N].

FIGURE 2.32 Drive force induced aligning torque under combined slip conditions.

46 Fundamentals of Tire Behavior



to a small positive value as for pure slip (see Figure 2.24). For large κ, the last
term in Eq. (2.68) is dominant in the aligning torque.

2.6.2 Modeling Tire Behavior for Combined Slip

Pacejka [32] describes the combined slip characteristics by multiplying the

pure slip force with a weighting function G(α, κ)

Fxðκ;αÞ5Gxαðα;κÞ � Fx;pureðκÞ ð2:69Þ

Fyðα;κÞ5Gyαðα;κÞ � Fy;pureðαÞ1 SVyκ ð2:70Þ

for vertical shift SVyκ, which is a function of both slip values α and κ.
Consider braking in a turn. With small lateral slip, the brake force will be

close to the pure slip value Fx,pure(κ), which means that the weighting func-

tion G(α, κ) will be close to 1. If cornering is more extreme and the slip

angle increases, the brake force will drop (see Figure 2.31), which means that

the weighting function must also drop. Obviously, reduction with α also

depends on κ. The reduction will be stronger if jκj is smaller.

This weighting function is shown in Figure 2.34 for varying slip angle α
and longitudinal slip κ. Apparently, this function has the qualitative behavior

of the pneumatic trail (see Figure 2.28) and can therefore be described well

using the cosine function of the Magic Formula description, balanced by a

denominator to make the function equal to 1 for α5 0

Gxαðα;κÞ5
cosðCxα � arctanðBxα �αs2Exα � ðBxα �αs2arctanðBxα �αsÞÞÞÞ

cosðCxα � arctanðBxα � SHxα2Exα � ðBxα � SHxα2arctanðBxα � SHxαÞÞÞÞ

FIGURE 2.33 Fx vs. aligning torque for constant slip angle (α526, 22, 0, 2, 4, 5,
8, and 10 [�]), for Fz56000 [N].
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with

αs 5α1 SHxα;Bxα 5 ðRBx1 1RBx3 � γ2Þ � cosðarctanðRBx2 � κÞÞ

for horizontal shift SHxα. The other parameters in this weighting function

depend on wheel load and we refer to Ref. [32] for more details.

In a similar way, one can describe the weighting function in Eq. (2.70)

Gyαðα;κÞ5
cosðCyκ � arctanðByκ � κs2Eyκ � ðByκ � κs2arctanðByκ � κsÞÞÞÞ

cosðCyκ � arctanðByκ � SHyκ2Eyκ � ðByκ � SHyκ2arctanðByκ � SHyκÞÞÞÞ

with

κs 5κ1 SHyκ;Byκ 5 ðRBy1 1RBy4 � γ2Þ � cosðarctanðRBy2 � ðα2RBy3ÞÞÞ

for horizontal shift SHyκ. The other parameters in this weighting function

depend on wheel load, see Ref. [32] again for more details.

The aligning torque follows Eq. (2.68) with certain equivalent slip angles

used in the pneumatic trail for combined slip and in the residual torque. We

refer to Ref. [32].

2.6.3 Approximations in case of Combined Slip

The elliptic approximation (2.67) has been introduced to determine the corner-

ing stiffness when a drive force is known (e.g., to compensate for rolling or

aerodynamic and slope resistances). To judge the accuracy of this approxima-

tion, we consider it as a function of lateral slip α and longitudinal slip κ
through the drive force Fx in case of combined slip. We used the tire

FIGURE 2.34 Weighting function Gxα, as function of slip values α and κ.
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parameters from Appendix 6. Results are shown in Figure 2.35, where we var-

ied the drive slip from 0 to 0.02. The error in the cornering stiffness amounts

about 10% at maximum, especially if lateral slip is low. If lateral slip is larger

(it is to be expected that drive slip will be small compared to lateral slip), the

error reduces but not that much. The major contribution to accuracy is to have

a small drive slip. Consequently, use this approximation for combined slip only

if the longitudinal force (drive or brake force) is small.

Another approximation exists that is quite accurate but does not require

expensive combined slip measurements. In Section 2.7, a physical modeling

approach will be discussed known as the brush model. It is shown that within

the restrictions of that physical model, the combined slip shear forces Fx

and Fy can be expressed in terms of the pure slip shear forces as follows

Fx 5
ρx
ρ
� Fx;pureðρÞ;Fy 5

ρy
ρ
� Fy;pureðρÞ ð2:71Þ

for theoretical slip vector (ρx, ρy), defined in Eq. (2.34) and expressed in

practical slip quantities in Eq. (2.37), and with magnitude ρ:

ρ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2x 1 ρ2y

q
ð2:72Þ

It has been shown by Pauwelussen and Andress [34] that Eq. (2.71)

is also a good approximation of tire contact forces if practical slip quantities

are used:

Fx 5
κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 1 tan2α
p � Fx;pure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 1 tan2α

p	 

ð2:73aÞ

FIGURE 2.35 Elliptic approximation of cornering stiffness.
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Fy 5
tan αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 1 tan2α
p � Fy;pure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 1 tan2α

p	 

ð2:73bÞ

In Ref. [34], a maximum error of about 8% was observed between Magic

Formula estimates and the estimates based on Eqs. (2.73a) and (2.73b), for eight

different passenger car tires, for which Magic Formula data were available. In

many applications, this is sufficient. A typical example is when one needs to

complete verification analyses using tire data for which only plots of pure slip

characteristics are known (e.g., derived from a paper), or if only pure slip tests

are available. Such plots or test results can easily be transferred (or well esti-

mated) in Magic Formula parameters for pure slip (see Appendix 7). The

expressions (2.73a) and (2.73b) will allow approximate combined slip analysis.

We verified this approximation using the same data as used in the previous

plot, and for a wheel load of 6000 [N] (see Figure 2.37). This figure corresponds

to the polar diagram in Figure 2.30. The behavior for small and large brake slip is

quite good. For intermediate brake slip, the brake force is underestimated for the

set of Magic Formula data from Appendix 6. Also, observe the symmetry in the

approximation based on Eqs. (2.73a) and (2.73b). Changing the sign of the slip

angle will only lead to a sign change in Fy without any effect on Fx. The Magic

Formula allows a lack of symmetry, as shown in Figure 2.36.

2.7 PHYSICAL TIRE MODELS

In this section, we shall present the theory of steady-state slip with the aid of

some simple physical models:

• The brush-type tire model

• The brush-string model

FIGURE 2.36 Tire combined slip characteristics, approximation (2.73), and Magic

Formula results.
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In all cases, it is assumed that the properties of the tire can be

described by averaging the local behavior over the tire width, which means

that the tire is replaced by a disk of zero width. For both the brush-

type and the string models, one may extend the model to account for a

finite width. However, this is not discussed here and we refer the reader to

Ref. [32].

In the previous sections, we discussed the empirical Magic Formula

model, with the mathematical relationships between forces, moments, and

slip chosen so that experimental results are reproduced in an accurate way.

Such an approach is usually referred to as a similarity approach. In contrast

to this, one may try to describe the tire performance in a physical way, i.e.,

deriving the tire performance characteristics based on an analytical descrip-

tion of belt and treads. Such a description for the belt may be a string

model, which is stressed by a tensile force and restricted in lateral or longi-

tudinal deflection by a distributed stiffness acting in the contact area.

A model of that kind is known as the stretched string model. The stretched

string model has been used in various investigations in case of pure slip

(mainly out of plane), both for steady-state and transient conditions (see

Chapter 3). The latter case is often related to shimmy. The works of von

Schlippe [45], Segel [49], Pacejka [31] and [32], and Besselink [2] provide

more information on this. Higuchi [17] applied the stretched string model

for combined slip.

With focus on only the tread deflection, the tire could be described

using a rigid ring with little beams (brushes) that connect radially to the

belt with a constant linear stiffness against transversal or longitudinal load-

ing. Such a model is referred to as the brush model, originally discussed

by Fromm [8].

FIGURE 2.37 Schematic layout of the brush tire model.
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Extending the stretched string model with the tread stiffness means that

brushes are attached to the flexible belt and therefore, combining belt and

tread compliance, leading to the brush-string model, which is investigated by

Pauwelussen in Ref. [36] for combined slip. When the brushes are absent,

the model is referred to as the bare string model. Before the work of

Pauwelussen [36], the combined brush-string model was not derived and

applied for all possible cases of combined slip and for all possible combina-

tions of carcass stiffness, tread stiffness, and string tension. The status for the

brush-string model, as well as for its extreme cases of bare string, and brush

model are indicated in Table 2.4.

2.7.1 The Brush Model

In this section, we discuss the theory of steady-state combined tire slip

with the aid of the simple brush-type tire model. The theory of this sec-

tion will not consider camber and turning (turn slip) of the wheel (see

Ref. [32] for an extensive treatment of the brush model). We refer to

Figure 2.36 for a schematic layout of the model. The tire is equipped

with small linear beams (brush elements), some of which touch the

ground (the contact area) and, as a result, will be deformed as a linear

beam. Both a lateral force and a longitudinal force are assumed to act in

the contact area. Consequently, the tire is assumed to move sideways

with a slip angle α, in combination with a longitudinal slip κ, i.e., we
assume the general case of combined slip. Each brush element in the con-

tact area connects the ground (the “tip” of the brush element) with the

tire (the “base” of the brush element). A brush element tries to follow the

direction of the speed, which means that in case of a nonzero slip angle

and as long as the tip is fixed to the road (adhesion), the tips of subse-

quent brush elements follow a linear pattern. This pattern is obviously

defined by this slip angle. Under conditions of pure side slip, the tip

moves only laterally with respect to the tire. The longitudinal slip will

force the tip to move rearward in the contact area in case of braking and

forward in case of driving. When the friction limit at the brush tip is

TABLE 2.4 Status of Various Physical Tire Models

Physical
Tire Model

Pure
Slip

Combined
Slip

Brushes only Well established Well established

Bare string Pacejka [31] Higuchi [17]

Brush string Restricted to one sliding region at the rear (Pacejka [31])

Extended to two sliding regions (Pauwelussen [36])

Pauwelussen [36]
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exceeded, the tip begins to slide. These phenomena have been discussed

in the preceding sections, and we conclude that two regions are identi-

fied: a leading adhesion region where the contact line (connecting the

tips of the brush elements) is straight and a sliding region where the shear

stress follows Coulomb law

τ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2x 1 τ2y

q
5μ � σz

for shear stresses τx, τy in the contact area, road friction μ, and normal con-

tact stress σz. The tire is moving with speed V, built up from a rolling speed

(see Eq. (2.35)) and a slip speed Vs with both a lateral and a longitudinal

component.

A top view of the tire under deflection of the tread elements (the brushes)

is shown in Figure 2.38. At the leading edge of the contact area, with total

length 2a, the deformation is still zero. The base and the tip of the tread ele-

ment coincide. With the tire moving with speed V and rolling with rolling

speed Vr, the base of the tread is attached to the wheel plane and will move

inside the contact area with the rolling speed, say to point B. At the same

time, the tip of the tread element will move to point A opposite to the

speed V. Figure 2.38 suggests a positive longitudinal (drive) slip, but this is

not a restriction and is merely done for the figure only. The discussions given

next do not depend on the sign of slip κ.
Assuming a time interval Δt, this means that the displacement wA in the

actual contact area along the deformed treads can be written as

wA 5V �Δt

The new positions ξA (tip) and ξB (base) are found from

ξA 5V � cosðαÞ �Δt; ξB 5Vr �Δt

FIGURE 2.38 Top view brush model.
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from which expressions for the deflections u and v (cf. Figure 2.38) can

be derived

u5 ðVr 2V � cos αÞ �Δt

v5V � sin α �Δt

This means that the displacements can be expressed in terms of either the

position in the deformed tread situation ξA or in the undeformed tread coordi-

nate ξB as follows:

u

v

� �
5

Vr 2Vx

Vx

tan α

0
@

1
A � ξA 5

Vr 2Vx

Vr

Vx

Vr

� tan α

0
BBB@

1
CCCA � ξB ð2:74Þ

The vector of coefficients corresponds to either practical slip or theoreti-

cal slip, as previously defined. The expression (2.74) is of the general form

Displacement5 slip 3 position

where slip is defined on the basis of either the position ξA with respect to

the deformed tire, or the position ξB with respect to the undeformed tire.

Consequently, practical slip quantities are related to the deformed tire

quantities, whereas the theoretical slip quantities are derived based on

undeformed tire quantities.

The contact area is taken as a square with length 2a and width 2b. It is

common to assume a parabolic pressure distribution σz(x), that is taken

uniform over the contact width 2b

σzðxÞ5σz0 � 12
x

a

	 
2� �
ð2:75Þ

with σz0 following from the condition that

Fz 5

ZZ
contact area

σzðxÞ � dx dy

and thus

σz0 5
3 � Fz

8ab

Please note that the parabolic contact pressure distribution (2.75) is not a

real restriction and one may easily use other distributions.
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We shall now derive expressions for the total displacement in the contact

area, where a distinction is made between adhesion and sliding. In the adhe-

sion region, it follows that

e5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 1 v2

p
5 ρ � ξB 5

ξB
11κ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 1 tan2α

p
ð2:76Þ

with total theoretical slip ρ. In the sliding region, assuming Coulomb friction

with friction coefficient μ, the shear stress τ(x,y) is bounded by μ �σ(x).
The displacement e is therefore bounded as well, and it follows from the

stiffness of the tread, denoted as k:

e5 emax 5
τðx; yÞ

k
5

μ � σzðxÞ
k

5
3 � μ � Fz

8 � a3 � b � k � ða
2 2 x2Þ

Note that k will not be the same in x and y directions. Considering this

analysis for pure slip in case of either lateral or longitudinal direction, one

can distinguish between different stiffnesses kx and ky. For combined slip, we

restrict our analysis to equal tread stiffnesses k5 kx5 ky (isotropic model).

We introduce the tire parameter θ by

θ5
4

3
� a

2 � b � k
μ � Fz

ð2:77Þ

resulting in

emax 5
ξB � ð2 � a2 ξBÞ

2 � a � θ

The breakaway point ξs (indicated in Figure 2.38), at which adhesion

becomes sliding, is found by taking emax equal to the expression (2.76)

yielding:

ξs 5 2 � a � ð12 θ � ρÞ

Consequently, for ρ5 0, the breakaway point is given by ξs5 2a and the

full contact area is in the state of adhesion. With increasing ρ, the breakaway

point ξs moves to a value ξs5 0, attained at ρ5 1/θ. In other words, the

parameter θ. 1 is the reciprocal total slip, for which the full contact area is

sliding. When the total theoretical slip exceeds the magnitude 1/θ, the tire

remains in a state of complete sliding. In case of pure slip, this situation is

reached for either

αm 5 jαj5 arctanð1=θÞ
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or

κm 5
1

θ2 1
; in case of driving ðκ. 0Þ

κm 52
1

θ1 1
; in case of braking ðκ, 0Þ

In the adhesion region, the shear stresses follow from the deflections (2.76):

τ adh 5 k � e5 k � ξB � ρ � k � ξB � ρx
ρy

� �

In the sliding region, the shear stresses follow Coulomb rule, assuming

that the shear stress vector has the same orientation as the theoretical slip

vector,

τ sliding 5μ � σzðxÞ �
ρ

ρ
5

k � emax

ρ
� ρx

ρy

� �
5

k

ρ
� ξB � ð2 � a2 ξBÞ

2 � a � θ � ρx
ρy

� �

Clearly, for pure slip, the shear stress vector and the slip vector will have

the same orientation. In case of combined slip, these orientations will not be

identical, but the difference is small.

With these expressions, we are now able to derive expressions for the

contact forces Fx and Fy, as well as the aligning torque Mz by integrating (the

moment of) the shear stresses over the contact area. For the shear force vec-

tor, one arrives at

F shear

ðξs
0

q
adh

ðξBÞdξB 1
ð2�a
ξs

q
sliding

ðξBÞdξB
" #

and the force components (lateral and longitudinal force) are obtained from

F shear 5
ρ

ρ
� F �

ρ

ρ
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x 1F2

y

q
ð2:78Þ

with F found to be given by

F5μ � Fz � ½3 � θ � ρ2 3 � ðθ � ρÞ2 1 ðθ � ρÞ3� ρ, 1=θ ð2:79aÞ

5μ � Fz; ρ$ 1=θ ð2:79bÞ

where q
adh

and q
sliding

denote the integrated shear stress over the tire width

q5
qx
qy

� �
5

ð
tire width

τ :dy ð2:80Þ
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Note that the slip stiffness Cρ (with ρ referring to either lateral slip or

longitudinal slip) is found by linearization of Eqs. (2.79a) and (2.79b) near ρ5 0:

Cρ 5 4 � a2 � b � k
Selecting different tread stiffnesses in lateral and longitudinal directions

(no isotropic model), one arrives at different values for the cornering and lon-

gitudinal slip stiffness, as expected.

The longitudinal and lateral force are shown in Figure 2.39 for varying

brake slip and selected values of the slip angle, where we have chosen:

k5 23 107 [N/m3]

b5 0.1 [m]

μ5 1.0

We select an unloaded tire radius R5 0.32 [m], and assume the loaded

tire radius Rl behavior to conform to Figure 2.5. The half-contact length can

be approximated by:

a5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2R2

l

q
or, in terms of tire radial deflection d

a5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � R � d2 d2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � R � d

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � R � Fz=CFz

p
ð2:81Þ

for tire stiffness CFz. This expression will overestimate the contact length.

The tire in Figure 2.5 has a stiffness of CFz5 2.105 [N/m]. Assuming

Fz5 4000 [N], one finds a5 0.11 [m].

Observe that Figures 2.31 and 2.39 are very similar, where the results in

Figure 2.31 are based on the empirical Magic Formula model and the results

in Figure 2.39 are based on the simple brush model. However, two

FIGURE 2.39 Fx and Fy versus longitudinal slip, for varying slip angle, and wheel load

4000 [N], based on the physical brush model cf. Eqs. (2.79a) and (2.79b).

2.7 Physical Tire Models 57



differences can be observed. The longitudinal force according to the brush

model saturates without showing the typical local peak in the longitudinal

force characteristic, followed by the decay for larger slip κ. Consequently,
the saturation level of the brake or drive force is reached much sooner and

does not change beyond this slip value. Tire irregularities are not accounted

for in the lateral force for small slip angle.

In Figures 2.40 and 2.41, we show the top view of brush deflections in

case of pure lateral speed (Figure 2.40) and combined slip with a fixed slip

angle and increasing brake slip (Figure 2.41). Slip is increasing from the

image at the top to the image at the bottom of these figures. In Figure 2.40,

the extension of the sliding region is clearly shown. At first, the major part of

the brush deflection develops in a linear way from the leading edge of the

contact area. With slip angle increasing, the intersection point between slid-

ing and adhesion region moves to the front, which means that the adhesion

region is reduced and the sliding region is extended.

In Figure 2.41, the lateral deflections of the brushes reduce in size when

the brake slip is increased. There is a major deflection in-plane because of this

brake slip, which cannot be seen in a top-down projected view. At the same

time, one observes a change in orientation of the brush elements from purely

lateral to a rearward deflection. Tread elements, entering the contact area, are

stretched because of the brake contact force, as explained in Section 2.4.1.

The phenomenon shown in Figure 2.41 is consistent with the general physical

considerations in Section 2.4.1. Finally, when increasing the brake slip,

FIGURE 2.40 Brush deflections along the contact area for pure side slip with increas-

ing slip angle.
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the total slip and the sliding are increased, as shown in Figure 2.41.

A side view for pure longitudinal slip (braking) is shown in Figure 2.42.

Vertical brushes remain vertical at the leading edge, with the base moving

rearward along the contact area, and this deflection vanishing at the trailing

edge of the contact area.

In the same way as for the shear forces, one arrives at a closed form

expression for the aligning torque Mz:

Mz 52

ð2�a
0

qyðξBÞ � ða2 ξBÞdξB 5

5
2ρy
ρ

� μ � Fz � a � θρ2 3 � ðθρÞ2 1 3 � ðθρÞ3 2 ðθρÞ4� �
; ρ, 1=θ ð2:82Þ

FIGURE 2.41 Brush deflections along the contact area for combined slip with increas-
ing brake slip and fixed slip angle.

FIGURE 2.42 Brush deflections along the contact area for pure brake slip.
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In case ρ$ 1/θ, Mz will vanish. Note that this can either be a result of

increasing slip angle α or increasing brake slip or drive slip jκj. The pneu-

matic trail follows from the ratio of Fy and 2Mz:

tp 5
1

3
� a � 12 3 � θ � ρ1 3 � ðθ � ρÞ2 2 ðθ � ρÞ3

12 θ � ρ1 1
3
� ðθ � ρÞ2 ; ρ, 1=θ ð2:83aÞ

5 0; ρ$ 1=θ ð2:83bÞ

Aligning torque and pneumatic trail versus slip angle are shown in

Figure 2.43 for the same values of the road friction and model parameters as

chosen previously. The wheel load has been varied from 1000 to 5000 [N].

The aligning torque reaches a peak at α5 arctan (1/(4 � θ)), after which it

reduces in absolute size to zero at α5 arctan(1/θ). The aligning torque does not

change sign with increasing slip angle in contrast to results based on the Magic

Formula description (see Figures 2.24 and 2.28). The pneumatic trail is a

monotonous function in α, starting with a nonzero slope at α5 0. It tends to

zero, which value is reached at α5 arctan(1/θ). Its value at vanishing slip angle

tp-
a

3
; αk0

is smaller than normally encountered (around a/2), see also Ref. [32].

We close this section with some remarks concerning the effect of brake/

drive force on the aligning torque and the approximations for combined slip

contact force according to Eq. (2.71).

Remarks
1. The polar plot of Fx versus Fy, as depicted in Figure 2.30 for the empirical

Magic Formula, can also be derived for the physical brush model.

Because the force characteristics based on the brush model saturate

FIGURE 2.43 Aligning torque and pneumatic trail versus slip angle in case of pure slip, for

different wheel loads, based on the physical brush model, cf. Eqs. (2.82), (2.83a) and
(2.83b).
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without decay for large slip, this polar plot will be similar to the one in

Figure 2.29. We determined this polar plot for the brush model for

Fz5 4000 [N] (see Figure 2.44). When we plot the aligning torque versus

Fx, expression (2.82) leads to a plot that is symmetric in Fx, unlike

Figure 2.33. This can be corrected by adding simple carcass flexibility

to the brush model. This means that the entire carcass is pinned to the

projected center of the wheel through springs acting in lateral and

longitudinal direction with different stiffness values. Just as in the discus-

sion on Figure 2.33, the resulting carcass deflections will then contribute

to the aligning torque, leading to the loss of symmetry, as indicated in

Figure 2.33. We refer to Ref. [32] for further details.

2. The combined equations (2.79a) and (2.79b) show that the explicit expres-

sion of contact shear force versus slip does not change if we move from pure

slip to combined slip. The only difference is that ρ equals α or 2κ/(11κ)
in case of pure lateral or longitudinal slip, or the total theoretical slip accord-

ing to Eq. (2.76). That means that expression (2.78) can be interpreted as

Fxðρx; ρyÞ
Fyðρx; ρyÞ

� �
5

ρx
ρy

� �
� FpureðρÞ

ρ

Thus far, we discussed an isotropic brush model. The preceding

expression has been the inspiration for the approximation (2.71), which

gave accurate results that were sufficient in many cases, especially if

qualitative analysis (trends, sensitivity) is the objective.

FIGURE 2.44 Polar diagram of Fx versus Fy for constant slip angle for Fz54000 [N]
and μ5 1.0 based on the brush model.
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2.7.2 The Brush-String Model

In this section, we shall discuss the brush-string model. In this model, the

brushes are attached to a flexible belt, in contrast to the preceding section

where brushes were attached to a rigid ring. The brush-string model combines

belt and tread compliance. Two deflections are distinguished in longitudinal

and lateral directions, which we shall denote as u and v, respectively. These

deflections refer to the tread deflection and the belt deflection, indicated with

subscripts t and b, respectively:

u5 ut 1 ub; v5 vt 1 vb ð2:84Þ

Only the variation of deflections with the longitudinal coordinate x is

studied here, i.e., all deflections and forces are assumed the averaged value

over the width of the contact area. Conditions such as turn-slip of very large

camber angles, for which this assumption is not correct, are not considered.

A schematic outline is shown in Figure 2.45. The belt is modeled as an

infinite string under a tension force and is connected to the tire symmetry

plane through longitudinal ccx and lateral carcass stiffnesses ccy per unit

length. In the contact area, brush elements are attached to the belt. It is

assumed that both longitudinal and lateral slip are present, with resulting

shear forces Fx and Fy and aligning torque Mz. The leading edge of the adhe-

sion part of the contact area (usually equal to the leading edge of the entire

contact area) is displaced with belt deflections u1 and v1 in longitudinal and

lateral directions, respectively. Because of the presence of carcass stiffnesses

per unit length ccx and ccy, any part of the belt with length dx experiences

resistance forces in x and y direction, equal to ccx � u � dx and ccy � v � dx,
respectively. With the definition of qx and qy according to Eq. (2.80) (i.e.,

being the longitudinal and lateral external forces on the tire per unit length)

and considering the equilibrium of a part of the belt with length dx

FIGURE 2.45 Schematic outline of the brush-string model.
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(see Figure 2.45), one is able to derive the following differential equations

for the belt defections ub and vb

S1 �
d2ub

dx2
2 ccx � ub 52qx; 2a, x, a ð2:85aÞ

S2 �
d2vb

dx2
2 ccy � vb 52qy; 2a, x, a ð2:85bÞ

where S1 is the longitudinal elastic resistance of the tread band (Young’s

modulus E times cross sectional area) and S2 is the effective tension force in

the belt. We refer to Pacejka [31] and [32] and Higuchi [17] for more details

about the derivation of Eqs. (2.85a) and (2.85b). Clearly, the Eqs. (2.85a) and

(2.85b) are not restricted to the contact area, but hold on the entire belt,

where the noncontact part is “rolled out to infinity.” Considering Eq. (2.85b)

for qy5 0, and assuming the belt deflection to be finite for x. a, one finds

from integration for x. a that

vbðxÞ5C � e2x�
ffiffiffiffiffiffiffiffiffi
ccy=S2

p
; x. a

and therefore, at x5 a

dvb

dx
ðx5 aÞ52v1 �

ffiffiffiffiffiffi
ccy

S2

r
52vbðx5 aÞ �

ffiffiffiffiffiffi
ccy

S2

r
ð2:86Þ

Consider Figure 2.45, in which we indicate the distance σα between the

leading edge of the contact area and the intersection of the line through the

straight part of the contact zone (adhesion) with the wheel center plane. This

distance is referred to as the relaxation length for the belt deflection in the

lateral direction. Further, it is related to the distance a tire needs to travel

before a significant percentage of steady-state shear force is reached follow-

ing a sudden change in the slip angle. With the line through the straight part

of the contact zone tangent to the deflection profile, one should have

dvb

dx
ðx5 aÞ52

v1

σα
ð2:87Þ

A similar reasoning holds for longitudinal deflection, in which we intro-

duce the relaxation length σκ for the belt deflection. As a result, we can

rewrite Eqs. (2.85a) and (2.85b) as follows:

σ2
κ �

d2ub

dx2
2 ub 52

qx

ccx
; 2a, x, a ð2:88aÞ

σ2
α � d

2vb

dx2
2 vb 52

qy

ccy
; 2a, x, a ð2:88bÞ
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with boundary conditions:

dubð6 aÞ
dx

5 7
ubð6 aÞ

σκ
;

dvbð6 aÞ
dx

5 7
vbð6 aÞ

σα
ð2:89Þ

With the treads again modeled as linear massless springs, the tread deflec-

tions are proportional to the shear forces qx and qy, with tread stiffnesses

denoted by kx and ky:

qx 5 kx � ut; qy 5 ky � vt; 2a, x, a ð2:90Þ

Equations (2.88a), (2.88b) and (2.90) describe the relationship between

belt and tread deflections and the local shear stress in the contact area. In the

preceding section (which covered the brush model), we distinguished between

adhesion and sliding in the contact area. Depending on the level of slip, one of

the following situations will occur:

• For large slip, the full tire is sliding and no adhesion occurs within the

contact patch.

• For other combinations of slip, the tire is partly sliding and partly in

adhesion.

In contrast to the brush model, it has been shown by Pacejka (under pure

slip conditions [31]) and extended by Higuchi [17] that the bare string model

may show two sliding regions: a small leading region (a1,a) and a trailing

sliding region (2a, a2), surrounding an adhesion region (a2, a1). Therefore,

for the brush-string model, one might expect both the possibility of one and

two sliding regions, depending on the model parameters (specifically the

stiffnesses of carcass and treads). The breakaway points between adhesion

and sliding parts of the contact area follow from the condition of continuity

of shear forces. The shear forces are in general not differentiable at these

points. Consequently, an explicit expression for a single breakaway point ξs,
as derived for the brush model, does not hold for the brush-string model.

Let us consider the sliding part of the contact area in more detail, where

the normal tire force per unit length qz is defined by

qzðxÞ5
ð
tire width

σz � dy

We shall assume the same parabolic pressure distribution as introduced in

Eq. (2.75), which means that

qzðxÞ5 qz0 � 12
x

a

	 
2� �
; qz0 5

3 � Fz

4 � a ð2:91Þ
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This is not a real restriction, as Higuchi [17] showed by also considering

higher-order behavior. Again assuming Coulomb friction with road friction

μ, the shear forces in the sliding region are linearly related to qz:

qshear 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x 1 q2y

q
5μ � qz ð2:92Þ

Consequently, there exists an angle ϕ (that may depend on x) that

describes the orientation of the shear force components, as well as of the slid-

ing speed components, such that under conditions of sliding, the shear forces

can be parameterized by

qxðxÞ5μ � cosðφÞ � qzðxÞ; qyðxÞ5μ � sinðφÞ � qzðxÞ ð2:93Þ

In the adhesion region (a2, a1), the tire is attached to the road, which

means that the sliding speed vanishes. We have seen in the preceding section

that, for the brush model, the deflection behaves linearly along the contact

area with the theoretical slip acting as the proportionality factor, cf.

Eq. (2.74). Neglecting the tire yaw velocity, and assuming small slip angles

and restricting to steady-state behavior, the sliding speed components Vgx and

Vgy within the contact area can be expressed as (see Ref. [32])

Vgx 52Vð11κÞ � ρx 1
du

dx

� �
; Vgy 52Vð11 κÞ � ρy 1

dv

dx

� �
ð2:94Þ

for tire forward speed V, and theoretical slip values ρx and ρy, defined by

Eq. (2.37). These equations express the difference of the effective tire sliding

speed and the deflection speed in the contact area, building up the local slid-

ing speed. Expressions (2.94) are referred to as the fundamental differential

equations of a rolling and slipping body, and hold in general, regardless of

the tire model used, with u and v the total deflections in the contact area

depending on the position (x, y) within the contact area. Hence, in the adhe-

sion region with vanishing sliding speeds Vgx and Vgy, one obtains

du

dx
52ρx;

dv

dx
52ρy; a2 , x, a1 # a ð2:95Þ

which agrees with Eq. (2.74). In combination with Eq. (2.90), the following

expressions for the belt deflections can be derived in case of adhesion:

ubðxÞ52ρxðx2 a1Þ1 u1 2
qx

kx
; a2 , x, a1 # a ð2:96aÞ

vbðxÞ52ρyðx2 a1Þ1 v1 2
qy

ky
; a2 , x, a1 # a ð2:96bÞ
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Substituting these expressions in the belt Eqs. (2.88a) and (2.88b), one

finds the following equations for qx and qy:

σ2
tκ �

d2qx

dx2
2 qx 52 ε2x � kx � u1 2 ρx � ðx2 a1Þ

� �
; a2 , x, a1 # a

σ2
tα � d

2qy

dx2
2 qy 52ε2y � ky � v1 2 ρy:ðx2 a1Þ

h i
; a2 , x, a1 # a

with

ε2x 5
ccx

ccx 1 kx
; ε2y 5

ccy

ccy 1 ky

σtκ 5 εx � σκ; σtα 5 εy � σα

The general solutions of these equations are given by

qxðxÞ5Ax � ex=σtκ 1Bx � e2x=σtκ 1 ε2x � kx � ½u1 2 ρx � ðx2 a1Þ�; a2 , x, a1 # a

qyðxÞ5Ay � ex=σtα 1By � e2x=σtα 1 ε2y � ky � ½v1 2 ρy � ðx2 a1Þ�; a2 , x, a1 # a

with integration constants Ax, Bx, Ay, By that, in combination with

Eqs. (2.96a) and (2.96b), result in explicit expressions for the belt deflection

in case of adhesion. In case of sliding, Eq. (2.93) holds and the solution of

Eqs. (2.88a) and (2.88b) can be written as

ubðxÞ5Cx � ex=σκ 1Dx � e2x=σκ 1
Q � cosðφÞ
ccx � a2

� ða2 2 2 � σ2
κ 2 x2Þ ð2:97aÞ

vbðxÞ5Cy � ex=σα 1Dy � e2x=σα 1
Q � sinðφÞ
ccy � a2

� ða2 2 2 � σ2
α 2 x2Þ ð2:97bÞ

with integration constants Cx, Dx, Cy, Dy. In case of two sliding regions, one

must distinguish between ϕ1 and ϕ2 for the leading and trailing sliding

region. In that case, four more integration constants must be introduced (and

eliminated from boundary conditions at x52a, a2, a1, and a). In conclusion,

assuming one sliding region (i.e., a15 a), we derived explicit expressions for

the belt deflections and shear forces in the adhesion and sliding parts of the

contact area, involving unknowns Ax, Bx, Ay, By, Cx, Dx, Cy, Dy, u1, v1, ϕ, and
a2. These unknowns are found from the mixed boundary conditions

Eq. (2.89), vanishing shear force at x5 a, continuity of the shear forces and

the belt deflections at x5 a2, and differentiability of the belt deflections at

x5 a2. In case of a1 6¼ a, similar continuity and differentiability conditions

hold at x5 a1, and we demand differentiability of the shear forces at x5 a1.
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We first examine the output for two sets of parameters for small and large

relaxation lengths, respectively, in accordance with Refs. [17] and [36]. We

included one more dataset for moderate relaxation lengths. The data are listed

in Table 2.5. The sliding speed is proportional to the tire speed V, see

Eq. (2.94). The tire speed V is chosen as 10 [km/h].

The first results are obtained for the large values of σκ and σα for tread

stiffnesses kx, ky5 1.03 107 [N/m2], and for slip values κ5 0.02 and

α5 0.04.

Figures 2.46�2.48 show the belt and total tire deflections, shear forces,

and sliding speeds. Observe the smooth transition in the belt deflections and

the sharp transition in the total tire deflections at the breakaway point near

x520.031, due to the attached brushes. Tread deflections vanish at the

edges of the contact area, but the belt deflections do not. Clearly, with

TABLE 2.5 Parameters for the Brush-String Model Calculations

Parameter Large σ Small σ Moderate σ

a [m] 0.05 0.05 0.05

ccx [N/m
2] 2.03 105 2.03 105 2.03 105

ccy [N/m
2] 1.03 105 1.03 105 1.03 105

Fz [N] 3003 9.81 3003 9.81 3003 9.81

μ 1 1 1

σκ [m] 0.3 0.01 0.15

σα [m] 0.5 0.02 0.25

FIGURE 2.46 Belt and total tire deflections for large σ, (κ,α)5 (0.02, 0.04), and
kx5 ky5 1.03 107 [N/m2].
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jαj. jκj, the lateral belt deflections and local shear force are expected to

exceed their longitudinal counterparts. In the adhesion part, the total tire

deflection is linear in the x position and the sliding speeds are zero. In the

sliding part, the shear forces follow the normal contact stress cf. Eq. (2.93),

with the value for ϕ found as 65 [�].
Figures 2.49�2.51 show the belt and total tire deflections, shear forces,

and sliding speeds for small values of the relaxation lengths σκ and σα for

the same tread stiffness and practical slip values.

FIGURE 2.47 Shear forces for large σ, (κ,α)5 (0.02, 0.04) and kx5 ky5 1.03
107 [N/m2].

FIGURE 2.48 Sliding speeds for large σ, (κ,α)5 (0.02, 0.04) and kx5 ky5
1.03 107 [N/m2].
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The sliding part has slightly decreased in size compared to the large

σ-case. The tire deflections are reduced and the relative contribution of the

belt deflections in the total deflections has been reduced as well.

Consequently, the tire deflections only occur near the contact area,

whereas for large σ, the deflections extend over a large part of the tire cir-

cumference. In mathematical terms, this is obvious because the exponential

part of the solution for the belt Eqs. (2.88a) and (2.88b) is reduced with smal-

ler relaxation lengths. In physical terms, smaller values of relaxation lengths

FIGURE 2.49 Belt and total tire deflections for small σ, (κ,α)5 (0.02, 0.04) and
kx5 ky5 1.03 107 [N/m2].

FIGURE 2.50 Shear forces for small σ, (κ,α)5 (0.02, 0.04) and kx5 ky5 1.03
107 [N/m2].
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correspond to larger values of the carcass stiffnesses ccx and ccy, and there-

fore, smaller belt deflections. The sliding speeds do not change much, except

for exhibiting a more curved behavior.

Next, we will vary the tread stiffnesses kx and ky. Note that the shear

forces in the adhesion area depend on the parameters εx and εy, varying

between 0 (for large tread stiffness) and 1 (for small tread stiffness).

That means that, for large tread stiffnesses, the effective relaxation lengths in

the expressions for the shear forces in case of adhesion are quite small, and

the third term becomes proportional to ccx and ccy for qx and qy, respectively.

Therefore, one should expect the solution to be dominated by the belt. For

small tread stiffnesses, this third term becomes proportional to this tread stiff-

ness and a more brush-type behavior is expected.

The lateral belt deflection v and the lateral shear force qy are shown

in Figures 2.52 and 2.53 for large relaxation lengths σκ and σα and

for different values of tread stiffness kx5 ky, as listed in Table 2.6. The corre-

sponding values for small relaxation lengths are depicted in Figures 2.54

and 2.55.

Table 2.6 also includes the edge values of the adhesion part of the con-

tact area, which indicate a front sliding region for small relaxation values

and high tread stiffness (as clearly shown in Figure 2.55). Indeed, with

increasing tread stiffness, the tire behavior becomes more belt-like

and the results correspond well with those obtained by Higuchi [17],

whereas small tread stiffness typically leads to the sharp transition between

adhesion and sliding, corresponding to a brush-type response. Comparing

Figures 2.50�2.55, one may conclude that softer treads lead to an enlarged

adhesion region, and therefore, an increased cornering and braking potential

FIGURE 2.51 Sliding speeds for small σ, (κ,α)5 (0.02, 0.04) and kx5 ky5
1.03 107 [N/m2].
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of the tire (e.g., winter tires versus summer tires). In the limit of belt-type

tire behavior, a discontinuous behavior arises in the local shear forces,

which was also observed by Higuchi [17]. A larger relaxation value results

in a smaller adhesion region and a sharper decrease of the local shear force

in the adhesion region to increase tread stiffness.

We close this section with an investigation of the local tire deflections

and shear forces for varying slip. We selected a fixed value of α5 0.025 and

have varied κ from 0.02 to 0.16. The tire parameters were chosen according

FIGURE 2.53 Shear force qy for large σ, (κ,α)5 (0.02, 0.04) and kx5 ky according
to Table 2.6.

FIGURE 2.52 Total tire deflection v for large σ, (κ,α)5 (0.02, 0.04) and kx5 ky
according to Table 2.6.
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to the last column of Table 2.5 (moderate σ) and kx5 ky5 1.03 107 [N/m2].

Results are given in terms of total tire deflections u and v (Figure 2.56), local

shear forces (Figure 2.57), and sliding speeds (Figure 2.58).

Starting with the tire deflections, one observes an increase of u and a

decrease of v with increasing κ, as expected. The slope of u versus x in the

adhesion region increases with κ as well, whereas the slope of the lateral tire

defection v versus x decreases. The local shear force qx increases with κ,
where we note that the local stress orientation angle ϕ in the rear sliding

region will decrease, which has an effect on qx and qy. It is clear from

Figure 2.55 that the total longitudinal tire shear force Fx (the local force qx
integrated over the contact area) will saturate, just as we found for the brush

model. The lateral tire shear force Fy decreases at the same time, eventually

vanishing at very large κ.

FIGURE 2.54 Total tire deflection (v) for small σ, (κ,α)5 (0.02, 0.04), and kx5 ky,
according to Table 2.6.

TABLE 2.6 Varying Tread Stiffness

kx5ky [N/m
2] Large σ Small σ

a2 [m] a1 [m] a2 [m] a1 [m]

5.03 106 20.0402 0.05

1.03 107 20.3100 0.05 20.0346 0.05

5.03 107 20.0064 0.05 20.0222 0.05

1.03 108 0.0024 0.05 20.0187 0.05

5.03 108 0.0140 0.05 20.0143 0.0490

1.03 109 20.0134 0.0483
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FIGURE 2.55 Shear force qy for small σ, (κ,α)5 (0.02, 0.04), and kx5 ky, according
to Table 2.6.

FIGURE 2.56 Total tire deflections u and v for α50.025 and varying slip (κ) from
0.02 to 0.16 (for moderate relaxation lengths, kx5 ky5 1.03 107 [N/m2]).

FIGURE 2.57 Local shear forces qx and qy for α50.025 and varying slip (κ) from
0.02 to 0.16 (for moderate relaxation lengths, kx5 ky5 1.03 107 [N/m2]).
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Figure 2.58 shows an increase of the sliding region, as well as an increase

of the sliding speeds in this region in longitudinal direction. At the same time,

the lateral sliding speeds are reduced. In the total sliding limit, the tire will fol-

low the resulting shear force. According to Figure 2.58, the lateral contribution

in this sliding speed is expected to correspond to an almost constant local lat-

eral sliding speed along the contact area. In longitudinal direction, the local

longitudinal rubber sliding is expected to vary linearly along this contact area.

Remark
Consider pure lateral slip conditions and no treads (i.e., only belt behavior).

Assuming there is no sliding at the leading edge of the contact area, the initial

slope of the deflection near x5 a satisfies dvb/dx (x5 a)52ρy, according to

Eq. (2.96b). That means that v1 (x5 a)5σα � ρy, according to Eq. (2.87).

With a lateral force Fy acting on the tire, a lateral defection arises that,

as shown in Figures 2.46 and 2.52, doesn’t change much along the contact

area in case of large σy. Let us define the lateral spring stiffness of the

tire as

CFy;ξ � Fy

vðx5 ξÞ ;

which will also not vary much along the contact area. Taking ξ5 0, we can

approximate the ratio of cornering stiffness and slip stiffness as follows:

Cα

CFy;0
� Fy=ρy

Fy=ρy:σα
5σα ð2:98Þ

We conclude that the relaxation length σα can be interpreted as the ratio

of the tire cornering stiffness and the tire spring stiffness. We will use this in

Chapter 3, where we treat tire transient behavior.

FIGURE 2.58 Sliding speeds Vgx and Vgy for α50.025 and varying slip (κ) from

0.02 to 0.16 (for moderate relaxation lengths, kx5 ky5 1.03 107 [N/m2]).

74 Fundamentals of Tire Behavior



Chap te r | Th ree

Nonsteady-State
Tire Behavior

In this chapter, the nonsteady-state behavior of a tire is discussed. For fast

maneuvering of the tire, the behavior cannot be assumed to be steady state.

If the slip angle changes instantaneously (a step input), the effective slip

angle at the contact between tire and ground changes from a zero value to the

input value within a nonzero time, due to the compliance of the tire carcass,

as the carcass is moving away from the wheel plane. This effective slip angle

corresponds to shear stress, which means that the tire shear force needs time

to build up as well. A similar phenomenon is observed for a tire under a sud-

den brake torque, where the local brake slip in the contact area, and therefore

the contact force between tire and road, needs time to build up because of the

rotational compliance of the tire. This delay effect is known as transient tire

behavior, which is discussed in Section 3.1.

In addition to these transient effects, a tire can be considered as a belt with

finite mass, which is being suspended to the rim by the sidewalls. As a result,

the belt may move separately from the rim, with the sidewall stiffnesses (radial,

tangential, camber, etc.) and damping values determining the eigenfrequencies

of this motion and the sensitivity of the belt behavior for these eigenfrequen-

cies. These inertia effects have to be accounted for in case of relatively short

and sharp road undulations with a single step as an obvious example, when

control algorithms interfere with the tire dynamic behavior such as in case of

Active Brake Control and Electronic Stability Control, and in case of interme-

diate frequency ride and comfort studies when the longitudinal contact force

has to be considered. This dynamic tire behavior is treated in Section 3.2.

3.1 TIRE TRANSIENT BEHAVIOR

3.1.1 The Tire Transient Model

A tire responding to a sudden change of the slip angle α is schematically

shown in Figure 3.1. The carcass is modeled as a simple spring with stiffness
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CFy, linking the tire at the center of the contact area to the undeformed wheel

plane. The slip angle at the wheel center (the axle) is denoted by α, and the

effective slip angle at the contact area is denoted by α0.
The deflection of the tire at ground level is denoted by v, pointing in neg-

ative y direction. The lateral speed of the tire at this point is given by:

_y5Vsy 1 _v ð3:1Þ

Dividing this expression by constant forward speed (V) and assuming

small slip, one may derive

Fy

Cα
5α0 52

_y

V
52

Vsy 1 _v

V
5α2

_Fy

V � CFy

for cornering stiffness Cα. Replacing Fy with Cα �α and multiplying the equa-

tion by V, this relationship can be rewritten as:

Cα

CFy

_α0 1V � α0 5V � α ð3:2Þ

We conclude that the effective slip angle α0 under transient conditions

follows from a first-order lag equation with lag (relaxation) time

τlag 5
1

V
� Cα

CFy

� σα

V
ð3:3Þ

with σα being the corresponding relaxation distance, which is also referred to

as the lateral relaxation length. Compare this expression with Eq. (2.98).

In case of large slip α, we replace Eq. (3.3) with

σαðα0Þ5 ð@Fy=@αÞðα0Þ
CFy

ð3:4Þ

meaning that Eq. (3.2) now becomes nonlinear in α0

σαðα0Þ � _α0 1V � α0 5V � α ð3:5Þ

FIGURE 3.1 Tire responding to sudden change in slip angle.
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We determined the relaxation function σα from the cornering force, as

depicted in Figure 2.21 for Fz5 4000 [N]. The lateral spring stiffness has

been chosen as 23 105 [N/m2] and the result is shown in Figure 3.2. As long

as the slip angle (α) does not exceed 0.03, one might take σα as constant.

Beyond that value, one should take the dependency on α into account. Due

to the lower value of σα, the tire will respond quicker to sharp changes in

slip angle when it is closer to extreme slip conditions (Figure 3.2).

Transient tire behavior is considered in practice as follows. In case of a rap-

idly changing slip angle α at the wheel axle, Eq. (3.2) is solved to obtain α0. The
slip angle α is directly related to the vehicle states (yaw rate and lateral speed),

cf. Eq. (2.40). The tire model (e.g., the empirical Magic Formula model) is then

used to determine Fy from α0, which is then used in the vehicle equilibrium

equations (such as Eqs. (2.38) and (2.39)). In case of large lateral slip, one must

include a feedback loop based on the relationship (3.4). We have illustrated this

process in Figure 3.3.

A similar relationship can be derived for longitudinal slip response in

the contact area. Consider a wheel under varying longitudinal slip κ and a

resulting longitudinal force Fx between tire and road, as shown in

Figure 3.4. Due to the sidewall compliance, the rotation angles of tire and

wheel axle will not be the same. As a result, the slip as applied at the axle

(denoted as κ) will differ from the slip based on the rotation of the tire

(denoted as κ0).
We indicated the difference in angle with θ. If we write the circumferen-

tial stiffness of the tire as CFx � R2
l , with loaded radius Rl, then the longitudi-

nal force Fx is proportional to Rl � θ (which is the longitudinal displacement

FIGURE 3.2 Function σα versus slip angle based on Fy cf. Figure 2.21 and for

CFy523 105 [N/m].

3.1 Tire Transient Behavior 77



of the tire in the contact area, with respect to the axle position). Under lin-

ear tire conditions, the longitudinal force is also proportional to the ratio of

slip speed and forward speed. One must account for nonstationary rotation

angle θ, and therefore, a different rotational speed at the contact between

tire and road compared to the rotation speed at the axle. As a result, we can

write for Fx

Fx 5CFx � Rl � θ � CFx � Re � θ ð3:6Þ

with CFx as the proportionality factor and Re as the effective tire radius under

free rolling. We can also write

Fx 52Cκ �
Re:_θ1Vsx

V
52Cκ �

Re

V
� _θ1Cκ � κ ð3:7Þ

CFX •Rl
2

v
Rl

Fx

θ

FIGURE 3.4 Tire, responding to sudden change in longitudinal slip.
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with Cκ as the longitudinal slip stiffness and Vsx as the slip speed (taken at

the wheel axle). Combining expressions (3.6) and (3.7), and writing (assum-

ing small slip),

κ0 5
Fx

Cκ

one finds

Cκ

CFx

_κ0 1V � κ0 5V � κ ð3:8Þ

which is the counterpart of expression (3.2) in the longitudinal direction. This

means we can substitute the relaxation length σκ in Eq. (3.8), which is

defined similar to Eq. (3.3):

σκ 5
Cκ

CFx

ð3:9Þ

yielding

σκ � _κ0 1V � κ0 5V � κ ð3:10Þ

For large slip, the relaxation length should be taken as a function of κ0,
similar to the situation for large lateral slip. The longitudinal spring stiffness CFx

is, in general, larger than the lateral spring stiffness. On the other hand, the longi-

tudinal slip stiffness exceeds the lateral slip stiffness as well. For the tire data

used in the preceding sections, the relaxation length σκ is slightly smaller than

its lateral counterpart and falls off more rapidly with increasing slip.

Remarks
1. The practical longitudinal slip is defined in expression (2.19) as the slip

speed divided by the forward speed. That means that small speeds, or even

zero speed, will lead to numerical problems (dividing by zero) in case of

steady-state slip conditions. This problem can be handled by assuming tran-

sient tire behavior and applying Eq. (3.10), with the right-hand side being

the slip speed at the axle. This equation does not suffer from a situation

with small speed. A similar remark holds for lateral slip with small speed.

2. As previously described, there are two mechanisms resisting tire deflection,

(1) the tire spring resistance and (2) the slip stiffness. The first mechanism

acts, by definition, as a spring. The second mechanism, slip stiffness, means

that the longitudinal tire force is proportional to the rotational deflection

speed (see Eq. (3.7)). Consequently, this mechanism can be assumed to act
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as a damper. In conclusion, the tire�road contact can be considered as a

spring and damper in series. This observation was previously made by

Pacejka and we refer reader to Ref. [32] for further details.

3.1.2 Applications of the Tire Transient Model

In this section, we shall address applications of the tire transient model in

either lateral or longitudinal direction. These cases are:

1. Shimmy of a trailing wheel

2. A single wheel vehicle under repetitive braking

SHIMMY OF A TRAILING WHEEL
This problem has been investigated extensively by Besselink and Pacejka,

see [2], [31], and [32]. A schematic layout of a trailing wheel system is

shown in Figure 3.5, with caster length e and a constant speed V, with the

rotational motion of the swivel axis restricted by a torsional spring with stiff-

ness c and a torsional damper with damping value k. Under certain condi-

tions, such a system may show extreme oscillations, which is known as

shimmy. Shimmy can lead to significant wear on tire and wheel alignment,

and can be very dangerous if it occurs, for example, during landing of an air-

plane. In comparison to the research previously mentioned, we neglect the

aligning torque and describe the lateral motion of the wheel using the lateral

single-point transient model (expression (3.2)). The yaw inertia Jw of the

trailing arm system around the kingpin will, in general, include a contribution

that is proportional to e2; however, we will treat e and Jw independently.

The equation of equilibrium for the trailing wheel system can be written

as follows:

Jw � €ψ1 k � _ψ1 c � ψ52e � Fy

We assume a small swivel angle and therefore, small slip. Consequently,

we have a linear relationship between Fy and the slip angle α0 at ground

level. Hence,

Jw � €ψ1 k � _ψ1 c � ψ52e � Cα � α0 ð3:11Þ

FIGURE 3.5 A trailing wheel system.
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for cornering stiffness Cα. The slip angle α at axle level equals the ratio of

local lateral speed and forward speed, with the local lateral speed following

from rotation and forward speed

α5
e � _ψ1V � sin ψ

V
� e � _ψ

V
1ψ ð3:12Þ

As a result, and using Eq. (3.2), one arrives at the following equation:

σα _α0 1V � α0 5 e � _ψ1V � ψ ð3:13Þ

with relaxation length σα. Equations (3.11) and (3.12) form a homogenous

system, the characteristic equation of which can be written as:

Jw � λ2 1 k:λ1 c e � Cα
e � λ1V 2 σα � λ1Vð Þ

����
����5 0 ð3:14Þ

or

Jw � σα � λ3 1 ðJw � V 1 k � σαÞ � λ2 1 ðk � V 1 c � σα 1 e2 � CαÞ � λ
1 c � V 1 e � V � Cα 5 0

ð3:15Þ

for eigenvalue λ, of which the real part should be negative to guarantee sta-

bility, i.e., to avoid shimmy. The conditions for stability are based on the

Routh�Hurwitz criterion, stating that stability is preserved in case of a third-

order characteristic equation:

p0 � λ3 1 p1 � λ2 1 p2 � λ1 p3 5 0

if, and only if, the following conditions hold

Condition (i):

All coefficients are positive: pi. 0 for i5 0, 1, 2, 3

Condition (ii):

The so-called Hurwitz determinants should be positive, which means for

a third-order equation that

p1 � p2 2 p0 � p3 . 0

The nontrivial conditions, resulting from Eq. (3.15), are:

(i) c � V1 e � V � Cα . 0

(ii) ðJw � V1 k � σαÞ � ðk � V 1 c � σα 1 e2 � CαÞ2 Jw � V � σα � ðc1 e � CαÞ. 0

The first condition indicates that, in order to avoid instability, the caster

length should exceed 2c/Cα. In case of no yaw stiffness, e should be
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positive. A negative caster length is allowed for nonzero c if either c is large

enough or if the cornering stiffness is not too large. Instability will then be of

the nonoscillatory divergent type.

The more interesting case is when condition (ii) is violated. Let us choose

the case of c5 0 and a very small speed V. Then, condition (ii) is reduced to

(ii) c50, Vk0 e2 . 0

which is satisfied as long as e 6¼ 0, meaning that stability is secured. A second

special case is when c5 0 and k is small, for which condition (ii) becomes

(ii) c50, kk0 e2 2 σα:e. 0

Hence, if kk0, then e should exceed σα. Clearly, a small relaxation length

will improve stability. It is easily shown that e. σα is a sufficient condition

for stability for arbitrary values of c, k, and V. The condition (ii) is fulfilled if

the following condition holds

Jw � V � ðc � σα 1 e2 � CαÞ2 Jw � V � σα � ðc1 e � CαÞ. 0

which is identical to the condition for c5 0 and k5 0. Therefore, we will

restrict ourselves to values of the caster length e less than σα.
Next, let us consider the general case for the parameters as listed in

Table 3.1.

Results are shown in Figure 3.6 for damping value (k) varying from 0 to

60 [Nms] and for two values of c as listed in Table 3.1. One observes areas

of instability between the lines e5 0 and e5σα5 0.25. Increasing the damp-

ing reduces this area and therefore improves the stability (avoiding shimmy).

This type of instability is oscillatory. The plots indicate a stable behavior for

large speeds and positive caster lengths, where the minimal speed depends on

TABLE 3.1 Parameters for Shimmy Analysis

Parameter Value Range

Jw [kgm2] 5.0

c [Nm] 0.0, 500.0

k [Nms] 0 (10) 60

σα [m] 0.25

Cα [N] 53 104

V [m/s] 0. . .30

e [m] 0. . .σα

82 Nonsteady-State Tire Behavior



the damping value k. A zero speed corresponds to stability, as long as k. 0. If

we increase the stiffness c, the instability areas reduce in size, which means that

the system will become more stable. This is especially true for large damping.

In case of oscillatory loss of stability, the solution of the characteristic

equation will be purely imaginary, i.e., it will be equal in size to the radial

frequency ω. We write λ5 i �ωx/V, which means that we consider the path

frequency ωx (oscillations along the traveled distance). Substitution in the

characteristic equation provides

ω2
x 5

p3

p1
5

e � Cα

V � ðJw � V 1 k � σαÞ
ð3:16Þ

That means that a larger caster length will correspond to a larger path fre-

quency. If we account for dependency of Jw on the caster length e, the same

conclusion holds for not too large values of e. Starting with a fixed caster

length, the path frequency will decrease with increasing speed.

SINGLE WHEEL VEHICLE UNDER REPETITIVE BRAKING
Consider a single wheel system, as shown in Figure 3.7. A mass m is attached

to a wheel, moving with speed V and rotational speed Ω. When a brake

moment Mb is applied, a slip κ0 arises and a corresponding contact force Fx.

It is assumed that the slip is small enough to consider the relationship

between Fx and κ0 as linear.
We use a repetitive brake torque, which means that Mb will be active

for 2 s, followed by an inactive period of the same duration, after which

the brakes are activated again and this pattern continues. As a result, the
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FIGURE 3.6 Areas of (oscillatory) loss of stability for the trailing wheel system, for
varying rotational damping value (k), and for two values of rotational stiffness (c).
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single wheel system will slow down in separate steps, with sharp transitions

between the active and inactive parts of the braking process. This problem is

described by three equations:

i. equilibrium of vehicle in forward direction

m � _V 5Cκ � κ0 ð3:17Þ

ii. equilibrium of wheel in rotational direction

Jwheel � _Ω52Rl � Cκ � κ0 2Mb � 2Re � Cκ � κ0 2Mb ð3:18Þ

iii. transient tire behavior

σκ � _κ0 1V � κ0 5V � κ5Ω � Re 2V ð3:19Þ

with three unknowns: speed V, wheel rotational speed Ω, and longitudinal

slip at ground level κ0. We have solved this system for the repetitive brake

torque Mb with the resulting speed V shown in Figure 3.8. The speed V drops

to almost zero in four steps, with the transitions indicated by the numbers

①,. . .,④. It is expected that oscillations will occur in Ω and κ0 at these transi-

tions between Mb 6¼ 0 and Mb5 0, with the frequency and damping depend-

ing on the speed V and the model parameters. Due to the large vehicle mass,

the speed V will change much slower than Ω and κ0, and oscillations will not

be present in the speed time history. The parameter values for this analysis

are listed in Table 3.2, where Jwheel represents the wheel rotational moment

of inertia. The other parameters were defined previously.

To investigate the response in Ω and κ0, assume V to be constant and com-

bine Eqs. (3.18) and (3.19), which leads to the following second-order equation:

Jwheel � σκ � €Ω1 Jwheel � V � _Ω1R2
e � Cκ � Ω5Re � Cκ � V 2V �Mb 2σκ � _Mb

Mass m V(t)

Fx = Cκ•κ� (t)

Ω (t)Mb(t)

Rl

FIGURE 3.7 Single wheel vehicle.
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The undamped natural frequency ω and damping ratio ζ (see Appendix 2)

are found to be

ω5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
e :Cκ

Jwheel:σκ

s
; ζ5

V

2:Re

:

ffiffiffiffiffiffiffiffiffiffiffiffi
Jwheel

σκ:Cκ

s
B

Vffiffiffiffiffiffi
σκ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mwheel

m

s

where Jwheel is proportional to the wheel mass mwheel times the square of the

tire radius, and the longitudinal slip stiffness is nearly proportional to the ver-

tical load, i.e., to the vehicle mass m.

Note that the natural frequency does not depend on the vehicle speed V, but

the damping ratio does. Lowering the speed (there are different speed ranges dur-

ing the braking procedure) will decrease the damping and therefore, increase the

oscillations in the rotational speed. This typically occurs during ABS (Anti-lock

FIGURE 3.8 Speed versus time for repetitive braking.

TABLE 3.2 Parameters for Single Wheel

Vehicle Analysis

Parameter Value

Jwheel [kgm
2] 1.225

σκ [m] 0.40

Cκ [N] 83 104

m [kg] 400

Re [m] 0.35
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Braking System) braking. At the end of the braking process, when the vehicle

speed is low, the wheel rotational speed variations show the largest amplitudes.

In addition, the lag between the actual slip κ0 at the tire�road contact and the

slip κ at the axle will increase, moving from transition ① to transition ④.

Results are shown in Figures 3.9 and 3.10. From Figure 3.9, which shows the

slip values for κ and κ0 at transition ②, one observes a much larger oscillation

FIGURE 3.9 Longitudinal slip κ (axle) and κ0 (tire-road) for transition 2 for
V5 22.2 [m/s].

FIGURE 3.10 Rotational speed response at the four transitions between Mb50

and Mb 6¼ 0.

86 Nonsteady-State Tire Behavior



amplitude for the slip at the axle (due to the oscillations in the rotational wheel

speed), and a significant lag of κ0 with respect to κ. The wheel speeds for the

four transitions fromMb5 0 toMb 6¼ 0 are shown in Figure 3.10, where the time

is taken from 0.05 [s] before this change in Mb. It is clear from the results that

the damping is significantly reduced for lower speed V.

3.2 DYNAMIC TIRE RESPONSE TO ROAD
DISTURBANCES

3.2.1 Introduction to the Rigid Ring Tire Model

Thus far, we have discussed steady-state and first-order dynamic behavior of

tires. That means a tire responds immediately to external impacts such as

changes in slip angle, brake torque, smoothly varying road undulations, or

the response of the tire�wheel system is delayed with the lag time depending

on the tire relaxation length. Typical cases for which this (first order) tran-

sient tire model can be applied are braking or power off in a turn, cornering

and/or braking on a bumpy road, and shimmy phenomena.

However, a tire is more than a first-order system. For instance, the belt

may move with respect to the rim in different in-plane and out-of-plane direc-

tions, where the tire wall stiffnesses and damping values (radial, tangential,

camber, yaw, etc.), in combination with the belt mass, determine this behav-

ior. These dynamic effects occur in case of relatively short and sharp road

disturbances, where one may be interested in comfort, or in the impact of

road disturbances on fatigue in the vehicle chassis structure. Another situa-

tion, when belt dynamics are important, is when control algorithms are

applied such as in case of Active Brake Control and Electronic Stability

Control. Belt behavior may be misinterpreted by the controller, leading to

non-optimal control actions.

Historically, one refers to transient behavior if only the first order relaxa-

tion effect of the tire is considered, in spite of the fact that this is part of the

dynamic behavior of the tire too. One distinguishes between the following

application ranges for tire behavior:

1. Steady-state behavior: the tire contact forces respond immediately to

changes in slip.

2. Transient behavior: first-order relaxation (lag) of slip at the tire�road

contact (and contact forces) to changes in slip at axle level.

3. Dynamic behavior: belt dynamics are accounted for, in lateral, longitudi-

nal, vertical, and combined slip conditions.

Clearly, the eigenfrequencies of the belt behavior against the rim play an

important role when belt dynamics must be accounted for. These eigenfre-

quencies were studied by Gong [14] using a flexible ring tire model and were

discussed for in-plane applications by Zegelaar [59]. A distinction can be
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made between two types of vibration modes for a free tire (i.e., not standing

on the road):

1. Rigid ring modes: the belt moves around the rim as a rigid ring.

2. Flexible ring modes: the belt deflects around the circumference.

The qualitative behavior of rigid ring and flexible ring modes for a free

tire are shown in Figure 3.11 (see also Figure 2.13).

The difference between a free tire and a standing tire is the static deflection in

vertical and longitudinal (also lateral and yaw) directions. Pacejka [32] introduced

the residual stiffnesses, which are the static tire stiffnesses, to ensure that these

deflections were correctly described. A tire can be considered a combination of

the free tire behavior (depicted in Figure 3.11) and these residual stiffnesses.

Therefore, the modes illustrated in Figure 3.11 also arise for a standing tire, with

the deformation shape being quite similar, but with more and different representa-

tions. For example, the second free mode (n5 1) leads to both a longitudinal and

a vertical mode for the standing tire, with different natural frequencies.

These natural frequencies for the standing (passenger) tire begin in the range

of 35�50 Hz for the circumferential mode (n5 0). The longitudinal and vertical

(n5 1) modes are around 70�100 Hz, and the higher modes have natural fre-

quencies far above 100 Hz (see Refs. [46] and [59]). This leads to an important

conclusion:

If the relevant excitation of the tire is sufficiently below 80 Hz, the

tire response can be modeled using a rigid ring approach, if the static

deflections are accounted for by residual stiffnesses.

Using this conclusion, the tire model can be rather elegant and simple, and

maintain good performance up to frequency levels, being relevant for the analysis

of road disturbances, active chassis control, fatigue loading to the chassis compo-

nents, etc. This idea has resulted in the so-called industrial SWIFT project

(SWIFT: Short Wavelength Intermediate Frequency Tyre Model), being carried

out in joint cooperation between de Delft University of Technology and the

Dutch TNO contract research organization, with a major support by many auto-

motive companies and suppliers, and with its results included in the theses by

Zegelaar [59] and Maurice [23], and of course in [32]. This work has been contin-

ued by Schmeitz [46], finally yielding a complete well-established treatment of

dynamic tire behavior for intermediate frequencies, and for longitudinal, lateral,

and combined conditions.

FIGURE 3.11 Vibration modes of free tire.
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A complete discussion on dynamic tire modeling for all possible combi-

nations of slip is too lengthy to be included here. However, one should

have an understanding of this subject to understand the various software

tools and the need to apply them. For this reason, this section addresses the

dynamic tire model for in-plane applications (i.e., only longitudinal slip) in

case of specific road disturbances. The extension to out-of-plane and com-

bined slip applications uses similar model elements and ideas as the in-

plane case, which means that a solid basis is derived through the in-plane

discussion.

Using a rigid ring model for in-plane applications requires us to build

our tire model as a combination of a rigid belt, attached to residual stiff-

nesses in vertical and longitudinal (circumferential) directions. The ring itself

is attached to the wheel rim with radial and circumferential springs and dam-

pers. In the contact area, a slip model must be used, which will, in general,

correspond to the first-order transient model (see Section 3.2). Zegelaar sche-

matically described the complete in-plane model, as shown in Figure 3.12.

Note that the transient model can be considered as a spring (carcass spring

stiffness) and a damper (slip stiffness) in a series, as discussed in the preced-

ing section. The model is a single-point model, with slip properties and

forces transferred between road and tire through this single contact point.

A single-point model has many advantages over models with multiple

contact points, but cannot be realistically used, as shown in Figure 3.13 in

which we depict a rigid ring on an arbitrary road surface (lower left picture).

In this case, the speed is assumed to be low. The enveloping model

(shown in the upper left image) is expected for a tire rolling over such a sur-

face, meaning that the tire adapts to the road surface, which further leads to a

certain profile for the axle position. The tire envelops the actual road surface,

acting like a filter, and transfers the road surface to the pattern for the wheel axle,

which is referred to as the effective road surface (i.e., the axle position profile).

Rotational stiffness
and damping Rigid ring

Longitudinal
stiffnes and damping

Residual stiffness

Slip model

Vertical stiffnes
 and damping

z

x

θ

FIGURE 3.12 Schematic layout of dynamic tire model, consisting of a rigid ring belt

description, a residual stiffness, and a contact slip model (based on Ref. [59]).
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However, suppose we determined this effective road surface. Then, one might

expect the following to hold true:

A rigid ring single-point tire model (combined with residual elastic

behavior and a slip model) following the effective road surface gives

the same response, with sufficient accuracy up to 80 Hz, compared to

the real flexible tire following the actual road surface.

This is the main idea behind the rigid ring dynamic tire model (schemati-

cally depicted in the upper right image in Figure 3.13). The dynamic analysis

based on the effective road surface will lead to the dynamic forces and

moments, which act on the tire while passing road disturbances. The resulting

change in position and tire load can then be used to update the effective road

surface from the actual road surface, and so forth. Hence, this approach

requires the derivation of the quasi-static enveloping behavior of the tire,

which will be the subject of the next section.

3.2.2 Enveloping Properties of Tires
to Road Disturbances

The enveloping properties of a tire have been investigated with different

models [23], [46], and [59]. The simplest approach by far is the single-point

contact follower approach, as it only considers the vertical variation of the

road profile. The classic theory of comfort and ride using combinations of

quarter vehicle models is based on this approach. Because this approach only

accounts for the vertical spring, and neglects the tire geometry, it cannot

describe any enveloping properties. One possible improvement to this approach

is obtained if the radial variation of the road profile, with respect to the wheel

Axle
position 

Rigid ring
tire model

Enveloping model Effective road profile

Dynamic responsePosition, orientation

Actual road profile Forces and moments

My

Fx

Fz

FIGURE 3.13 Assessment of dynamic tire performance using a tire enveloping model.
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center, is considered instead of the vertical variation. This would result in both

vertical and longitudinal contact forces, but would still lack accuracy. Another

possible improvement would be to describe the tire as a flexible system; for

example, using a suspended flexible ring model, a finite element model, or a

model with flexibly interconnected radial springs (radial�interradial spring

model). However, these models are not able to determine the tire axle behavior

with either sufficient accuracy or within the required calculation time, making

this approach unsuitable for handling analysis.

Let us consider a tire rolling over a step obstacle, as indicated in

Figure 3.14. Suppose we could describe the effective road surface for such an

obstacle, then one might expect that, when an arbitrary road surface is approxi-

mated by subsequent (upward and downward) steps, the effective road surface

could be derived from a superposition of step-based effective road surfaces.

The following situations are considered in Figure 3.14:

• A rigid wheel rolling over the step obstacle.

• A flexible wheel rolling over the step obstacle.

For the rigid tire, the wheel center is lifted at a distance Lb before the step

(being at position Xstep), when the wheel first hits the step. The shape of the

axle position Zaxle above road level versus position X with X, varying from

Xstep�Lb to Xstep, is found to be

Zaxle 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2 ðXstep2XÞ2

q
1 hstep 2R ð3:20Þ

for wheel radius R, and step height hstep. The length Lb follows from:

Lb 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2 ðR2hstepÞ2

q
ð3:21Þ

For the flexible wheel, however, the axle position appears to change

according to a shifted superposition of two sinus-type curves. Zegelaar’s

Rigid wheel, rolling over a step Flexible wheel, rolling over a step

Lb

FIGURE 3.14 A rigid and flexible wheel, rolling over a step.
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research provides references on this observation and its experimental valida-

tion. This observation was then used to develop a pragmatic approach to

derive the effective road surface. This approach, shown in Figure 3.15, con-

sisted of the following steps:

1. Use the step input to derive a quarter sine wave type basic road function.

This basic function is defined for an X interval of length Lb. It is found that

this function is shifted over a distance Lf in the direction of the step obstacle.

2. Use a two-point follower model with length Ls, moving along this basic

function.

3. The midpoint of this two-point follower describes the height we of the

effective road input.

4. The orientation of the two-point follower describes the effective road

slope βe.

The two-point follower should be considered as the contact of the tire to the

road. Indeed, the length Ls of the two-point follower (the “skateboard” in

Figure 3.15) appears to be on the order of 80% of the tire contact length. This

also means that Ls depends on the wheel load. It was shown by Zegelaar [59]

that the shift Lf and the “length” Lb of the basic function only depend on the step

height (and on the tire) and not on the tire load. Consequently, the approach by

Zegelaar allowed a distinction between the road-dependent parameters and the

tire load-dependent parameters. Note that the dynamic tire response will also

include variation in tire load, and therefore, the need to update the skateboard

length with every new time step. On the other hand, the values of Lf and Lb can

be determined beforehand, regardless of the actual tire behavior.

In summary, we introduced three types of road profiles:

1. The actual road profile: the real road profile.

2. The effective road profile: the position of the wheel axle, to be used as the

input for the dynamic analysis using the single-point rigid ring tire model.

3. The basic road function: a road profile, defined previously for a step

obstacle, to be used as an intermediate step from an actual road to an

effective road.

Effective road profile
basic function

Lf

Lb

Ls

–Weβe

FIGURE 3.15 Derivation of the effective road surface based on a basic road function
and a two-point follower.
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The approach by Zegelaar appeared to lead to a number of considerations,

which made this not an ideal approach for an effective dynamic tire software tool:

• The shift Lf was difficult to interpret in terms of physical phenomena, and

an explicit expression for the basic road function that would end at the

step obstacle is preferred.

• A sine function for the description of the basic road function appeared not

to be a very accurate approach, also with the shift Lf in mind.

• The superposition of steps to build up an arbitrary road shape appeared to

be cumbersome, especially in case of a downward slope.

Schmeitz [46] suggested a very elegant alternative for this sinus-type

basic function by introducing elliptical cams.

He found that the basic function can be well described by introducing an

elliptical cam with half axis lengths ae and be (see Figure 3.16), with this

elliptical cam following the road profile. This leads to a basic function

(Xb, Zb) serving as the center of the cam. This approach can be justified by

the observation that the tire shape near the contact area is elliptically shaped

in a similar way (see also Figure 3.15). The elliptic cam is described by shape

parameters ae, be, and ce as follows:

x

ae

� �ce

1
y

be

� �ce

5 1 ð3:22Þ

the expression (3.21) for Lb now changes into

Lb 5 ae � 12 12
hstep

be

� �ce
� �1

ce

ð3:23Þ

Expression (3.20) changes into

Zaxle 5 be � 12
Xstep2X

ae

� �ce
� �1=ce

1 hstep 2 be ð3:24Þ

X = Xe

ae

be

X = Xstep

hstep

FIGURE 3.16 Deriving a basis road curve using elliptical cams.
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A two-point follower can still be used but now, two elliptic cams are

“rolling” as a tandem over the step obstacle, with the lowest points connected

by this two-point follower. Figure 3.17 shows the “enveloping” tire to illus-

trate the relationship of the tandem with the tire.

Referring to these cams with index f for front and index r for rear, and

denoting the global heights of the front and rear ellipse centers by Zf and Zr, we

find for the effective road height we and effective forward slope βe that

2weðXÞ5 ZfðXfÞ1 ZrðXrÞ
2

2 be ð3:25Þ

βeðXÞ5
ZfðXfÞ2 ZrðXrÞ

Ls
ð3:26Þ

where Xf and Xr denote the positions of the ellipse centers along the road,

i.e., where X is exactly between Xf and Xr, at distance Ls/2.

Two important conclusions were drawn in Ref. [46], based on experimen-

tal research:

• The tandem (two-point follower) base length Ls depends solely on the

contact length of the tire (i.e., on the vertical load). Usually, Ls equals

about 80% of the contact length.

• The shape of the elliptical cam (i.e., the parameters ae, be, and ce) is not

affected by the vertical load or the step height.

Hence, the only parameter changing during simulation is Ls. Schmeitz

uses a more accurate estimation for half the contact length a, dependent on

Fz, compared to Eq. (2.81):

a5 q2 � Fz 1 q1 �
ffiffiffiffiffi
Fz

p
ð3:27Þ

Wheel centre
Elliptical cams

Zr

hstep

Zf

–We

βe

Ls

FIGURE 3.17 Tandem of elliptical cams, replacing a flexible tire to derive the effective
road input.
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where q1 and q2 are determined from matching Eq. (3.27) with experimental

results. The cam parameters vary by tire, within average (according to Ref. [46]):

ae� 1.05�1.20 times the free tire radius R

be� 1.00�1.10 times the free tire radius R, with ae. be
ce� 1.6�1.8

We used the elliptic cam approach to determine the effective road input

we and road slope βe for a number of specific road shapes:

i. a step-up

ii. a sinusoidal bump

iii. a pothole

for different wheel loads Fz5 2000, 4000, and 6000 [N]. The additional para-

meters were chosen cf. Ref. [46], with the order of magnitude listed in

Table 3.3. Results are shown in Figures 3.18�3.20.

Using the elliptic cam approach to determine the effective road profile

(i.e., the tire enveloping properties) appears to be effective for different road

shapes. This has been confirmed in Ref. [46] by comparison of the analytical

results with experiments.

Figure 3.18 shows the typical superposition of two functions that resemble

quarter sine functions that, together, build up the effective road height corre-

sponding to the wheel axle height. Increasing the load means a larger tandem

length Ls, which means that the effective road is initiated earlier and lasts lon-

ger. The slope is typically shaped like a shifted sine function that is subtracted

from another one. This slope defines the orientation of the steady-state wheel

force while passing this step. A short obstacle, such as the sinusoidal bump, is

enveloped quite nicely with a large wheel load.

The 15 [mm] obstacle pushes into the tire for about 50%, whereas the

lowest wheel load only shows an indentation of the obstacle into the tire for

TABLE 3.3 Parameters to Determine Enveloping

Tire Behavior

Parameter Value

R [m] 0.31

ae [m] 0.32

be [m] 0.32

ce 1.82

Ls/(2 � a) 0.88

q1 [m/N
1/2] 6.63 1024

q2 [m/N] 4.53 1026
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FIGURE 3.18 Effective road input (height, slope) for a step-up obstacle.

FIGURE 3.19 Effective road input (height, slope) for a sinusoidal bump obstacle.

FIGURE 3.20 Effective road input (height, slope) for a pothole.
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only about 2.5 [mm]. The effective road slope changes sign while passing

this obstacle. As illustrated, the pothole is the opposite of the step-up obstacle

because the pothole is too short for the tire to hit the bottom. If the length of

the pothole had been extended, it would yield a similar shape as in

Figure 3.18, but from inverted as high to low. The larger the wheel load, the

more constant the axle height while passing this pothole.

3.2.3 Dynamic Response to Road Disturbances

In this section, we discuss the dynamic response of the rigid ring model

(shown in Figure 3.12) following the effective road surface derived using the

cam-based two-point follower, which has been described in the preceding

section. We argued that this response corresponds to the dynamic response of

a real tire operating on an uneven road. This has been validated extensively

in the research [23, 46, 59].

The center of the rigid ring-shaped belt is denoted as (xb, zb) and the loca-

tion of the rim is denoted as (xa, za). Consider a vehicle moving at a constant

speed V. The position of the rim will move vertically and longitudinally with

respect to the vehicle due to elastokinematic wheel suspension deflections.

With the belt suspended to the rim, the center of the belt (xb, zb) will move

with respect to the rim. In addition to these displacements, both rim and belt

will show rotational deflections θa and θb, respectively, with respect to the

angular wheel position ϕ on a flat road. Denoting the rotation speed on a flat

road with Ω, we obtain (see also Eq. (2.1))

V 5Ω � Re 5 _ϕ � Re

for an effective rolling radius Re under free rolling. That means that the rota-

tional speeds of rim and belt are described by:

rim : Ω2 _θa

belt : Ω2 _θb

Note that Ω acts in the negative y direction, whereas the rotational speeds of

rim and belt are defined in the positive y direction. With both the speed of the

belt center along the effective road profile and the rotational speed of the belt

varying in time, the longitudinal slip in the contact area will also vary. The belt

motions and the contact slip are initiated by normal and tangential contact forces

between belt and road, denoted as FcT and FcN, respectively.

The rigid ring belt equations in case of a tire moving over an uneven sur-

face with effective road height we and effective road slope βe are second-

order equations and are described as follows:

mb � €xb 1 kbx � ð _xb 2 _xaÞ1 cbx � ðxb 2 xaÞ
1 kbz � ðΩ2 _θaÞ � ðzb 2 zaÞ5 cosðβeÞ � FcT 1 sinðβeÞ � FcN

ð3:28Þ
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mb � €zb 1 kbz � ð_zb 2 _zaÞ1 cbz � ðzb 2 zaÞ
2 kbx � ðΩ2 _θaÞ � ðxb 2 xaÞ52sinðβeÞ � FcT 1 cosðβeÞ � FcN

ð3:29Þ

Jby � €θb 1 kbθ � ð_θb 2 _θaÞ1 cbθ � ðθb 2 θaÞ5Re � FcT 1Mcy ð3:30Þ

for belt mass mb, belt polar moment of inertia Jby, sidewall damping values

kbx, kbz, and kbθ, and sidewall stiffness values cbx, cbz, and cbθ. In the right-

hand side of Eq. (3.30), we replaced the loaded tire radius with the effective

tire radius Re, as discussed by Zegelaar [59]. The second term Mcy in the

right-hand side corresponds to rolling resistance, which will be neglected

here. The local forces in the contact area are shown in Figure 3.21. Note that

βe denotes the effective road slope, as discussed in Section 3.2.2.

The last terms in the left-hand sides of Eqs. (3.28) and (3.29) are because

moving the belt with respect to the rim leads to a net velocity of elements of

the belt, perpendicular to the direction of the belt displacement. Consider

Figure 3.22, where the belt is displaced with respect to the rim over a dis-

tance za�zb. One can show that an arbitrary point of the belt at angle γ at

some time has a velocity component in the x direction of

VxðγÞ5 ðΩ2 _θaÞ � ðR � sinγ1 za 2 zbÞ

where quadratic and higher-order terms in the deflection have been omitted.

Integration over the belt circumference results in a net velocity between belt

and rim in x direction and therefore, a net damping force, which explains the

FIGURE 3.21 Local contact forces and rotational speeds.

FIGURE 3.22 Vertical belt deflection leads to a horizontal net deflection speed and an

additional damping force.
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last term in the right-hand side of Eq. (3.28). A similar explanation can be

found for the additional vertical damping force in Eq. (3.29).

The inertia and damping coefficients in Eqs. (3.28)�(3.30) are assumed

constant. The stiffness coefficients (sidewall stiffness) will, in general, be

dependent on the tire rotational velocity. This is described in Ref. [59] by the

following expression for cbx

cbx 5 cbx0 � 12 qbVx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΩ2 _θaj � kxb 2 xak

q� �

for constants cbx0 and qbVx and where k � k is used to indicate the total dis-

placement of the tire ring, with respect to the rim. The second constant is typ-

ically on the order of 0.2�0.3 [s1/2/m1/2]. Similar relationships are used for

cbz and cbθ, with the same order of magnitude for qbVz and qbVθ, respectively.

The tangential contact force FcT depends on the longitudinal slip at the

contact area, and the normal force FcN

FcT 5FcTðκ0;FcNÞ ð3:31Þ

with FcT, described by the Magic Formula, (see Eq. (2.22)) with the model

parameters given in Appendix 6. As we have seen in Section 3.1.1, the slip

satisfies the transient Eq. (3.10), which is expressed here as follows:

σκ � _κ0 1 Vr;belt

�� �� � κ0 52Vs;belt ð3:32Þ

with belt rolling speed Vr,belt and slip velocity Vs,belt in the contact area.

The rolling speed equals the effective tire radius times the belt rotational

speed, i.e.,

Vr;belt 5Re � ðΩ2 _θbÞ ð3:33Þ

Please note that the relaxation length σκ varies with slip (see Figure 3.2).

In this section, we assume σκ to be constant. If the tangential residual stiff-

ness is neglected, then the relaxation length at free rolling is equal to half the

contact length a (see Eq. (3.27)). The slip velocity equals the difference

between the belt velocity parallel to the road surface and the belt rolling

speed, i.e.,

Vs;belt 5 _xb � cos βe 2 _zb � sin βe 2Vr;belt ð3:34Þ

The normal deflection of the tire has two components: the deflection

between the rim and the rigid ring that describes the belt due to sidewall stiff-

nesses, and the residual deflection between belt and contact patch (see also

Figure 3.12). The first component follows from the preceding differential

equations. The residual deflection, denoted by ρzr, is related to the normal
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tire force in a nonlinear way, which Zegelaar introduced as a third-order

relationship

FcN 5 qFzr3 � ρ3zr 1 qFzr2 � ρ2zr 1 qFzr1 � ρzr ð3:35Þ

assuming ρzr. 0. Negative deflection means there is no contact and there-

fore, FcN5 0. The coefficients in expression (3.35) depend on the rotational

speed of the rim and the belt stiffness cbz. We refer reader to Refs. [32], [46],

and [59] for further details. We determined these coefficients using the tire

data, as presented by Schmeitz (see Section 3.7 in Ref. [46]), for different

forward speeds V5Ω �Re. The results are listed in Table 3.4.

The residual deflection consists of different contributions. First, it

includes the difference between the effective road height we and the height of

the belt zb. A second contribution comes from the fact that the tire radius

increases with increasing rotational velocity Ω, also known as the centrifugal

phenomenon. Finally, it is stated in Refs. [32] and [59] that the vertical force

appears to decrease with the horizontal displacement of the contact patch.

This displacement is given by:

ρx 5 ðxb 2 xaÞ1R0 � ðθb 2 θaÞ ð3:36Þ

where R0 is the unloaded tire radius. The completed vertical tire deflection

can be written as:

ρzr 5 ðzb 2weÞ1ΔR2 qFcx � ρ2x
� ðzb 2weÞ1 qV1 � ðΩ2 _θaÞ2 2 qFcx � ρ2x

ð3:37Þ

where we is the effective road height for coefficients qV1 (on the order of

1027 [m/s2] for a passenger car) and qFcx (on the order of 3 [1/m]).

The increase of tire radius with increasing Ω also affects the effective tire

radius Re. As we have seen in Section 2.1, this radius Re also depends on the

normal tire load. This value could be described using expression (2.3), how-

ever, we follow Refs. [32] and [59] and obtain

Re 5 qre3 �
ffiffiffiffiffiffiffiffi
F3
cN

q
1 qre2 � FcN 1 qre1 �

ffiffiffiffiffiffiffiffi
FcN

p
1 qre0 1ΔR ð3:38Þ

TABLE 3.4 Coefficients in Normal Force Versus Residual Deflection Relationship

Wheel Velocity
V [km/h]

qFzr1
[N/m]

qFzr2
[N/m2]

qFzr3
[N/m3]

30 1.9573 105 8.3723 105 7.5953 105

50 1.9923 105 8.5533 105 7.9113 105

70 2.0273 105 8.7353 105 8.2363 105
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for coefficients qre0, qre1, qre2, and qre3. Schmeitz [46] determined the values

of these parameters for a passenger car. The order of magnitude for these

parameters is given in Table 3.5.

We have plotted FcN versus Re in Figure 3.23. Comparing this plot with

Figure 2.5, they both show a similar qualitative behavior.

We have now introduced four differential equations, three of which

describe the belt deformations and one that describes the longitudinal slip in

the contact area. We still must describe the rotational rim performance, i.e.,

give an equation from which θa can be determined. This equation reads (see

Refs. [46] and [59])

Jay � €θa 1 kbθ � ð_θa 2 _θbÞ1 cbθ � ðθa 2 θbÞ5May ð3:39Þ

for moment of inertia Jay, including all rotating axle and brake system parts and

forced torque May. Zegelaar [59] shows the performance of the tire under repeti-

tive brake torque oscillations, as we have shown in Section 3.1.2 using the tran-

sient model. Such torque oscillations will not be considered here, as we focus on

driving over various road shapes. Therefore, in this section, we will take

May5 0. The extension to nonzero torque is straightforward and we refer reader

to Refs. [32] and [59]. The horizontal and vertical motions of the rim depend on

the vehicle suspension characteristics. Schmeitz [46] investigated the dynamic

TABLE 3.5 Coefficients in Normal Force Versus Residual Deflection Relationship

qre0 [m] qre1 [m/N1/2] qre2 [m/N] qre3 [m/N3/2]

0.31 23.03 1024 2.53 1026 21.03 1028
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FIGURE 3.23 Effective tire radius depending on the normal contact force (tire load).
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tire model as a component of a vehicle system and found a strong resemblance

between the rigid ring model and experimental results, up to large frequencies

(90�100 Hz). He investigated the effect of enveloping and found that significant

deviations from experimental results start to arise from about 20 to 30 Hz if the

enveloping properties of the tire are neglected. He also considered a linearized

model (important for parameter estimation and eigenfrequency assessment), and

found that this model provides good results up to about 60�70 Hz.

In this section, we follow Zegelaar’s approach, where the rim is fixed at a

certain height and tire is moving over the road at a fixed speed.

This case corresponds to experiments being carried out in the laboratory

on a 2.5 m diameter drum that is equipped with specific road obstacles (such

as those discussed in Section 3.2.2). Therefore, when we take the tire as mov-

ing in the x direction instead of along the road, the longitudinal rim speed

equals V and the vertical motion is zero:

_xa 5V ; _za 5 0

According to Ref. [59], the belt stiffness and damping coefficients can be

estimated as follows. We assume the following equalities:

cb � cbx 5 cbz; kb 5 kbx 5 kbz

In his discussion on the flexible ring model, Zegelaar distinguishes

between radial sidewall stiffness cr and tangential sidewall stiffness cϕ, that

latter of which is defined as per unit length of the flexible belt with dimen-

sion N/m2. The translational sidewall stiffness cb is the combined effect of

radial deflection and tangential deflection. The rotational sidewall stiffness

cbθ follows from integration of the contribution of the tangential deflection of

each element of the belt to the total moment over belt circumference. This

leads to (see also Ref. [59])

cb 5π � R � ðcr 1 cϕÞ; cbθ 5 2 � π � cϕR2 ð3:40Þ

The radial and tangential sidewall stiffnesses can be estimated from the

undeformed carcass geometry; here we follow Ref. [59]. It is thereby assumed

that the deflections of the carcass are small and that the inner pressure pi remains

constant in case of tire deflection. In Figure 3.24, the sidewall height between

the rim and the tread area is denoted by hs, the half angle describing the sidewall

shape is denoted by ϕs, and the sidewall thickness is denoted by ts. According to

Ref. [59], the radial and tangential stiffnesses depend on the angle ϕs, the inner

tire pressure pi, and the shear modulus Gr of the sidewall rubber. From Ref. [59],

the following expressions for these stiffnesses can be derived:

cr 5 pi �
cos ϕs 1ϕs � sin ϕs

sin ϕs 2ϕs � cos ϕs

; cϕ 5
Gr � ts
hs

� ϕs

sin ϕs

1
pi

tan ϕs
ð3:41Þ
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Using a combination of Eqs. (3.40) and (3.41) shows us that the belt stiff-

nesses reduce with increasing angle ϕs (especially stiffness cb), as well as

with the sidewall height hs. This suggests a significantly higher belt stiffnesses

for a low-profile tire. The stiffnesses clearly increase with an increase in the

inner pressure. One might think of truck tires, with higher inner pressure com-

pared to passenger car tires, but also with a larger sidewall height. Zegelaar

derived an order of magnitude for the preceding parameter values as follows:

G� 1.63 106 [N/m2], ϕs� 60�65 [�], and ts� 0.1 [m], which are for a

passenger car tire with an inner pressure of 2.2 bar in cb� 1.13 106 [N/m]

and cbθ� 4.83 104 [Nm/rad]. Schmeitz [46] gives parameter values that

are approximately 50 larger. This difference might be explained by a

different choice of tires. Zegelaar refers to Gong’s research [14], which was

published in 1993, whereas Schmeitz’s research was defended in 2004.

Nevertheless, the expressions (3.40) and (3.41) might be helpful in estimating

belt parameters for dynamic tire response studies. The belt parameters may

also be estimated based on the belt eigenfrequencies. As indicated in Ref. [32]

and the relevant PhD theses [46, 59], the vertical belt eigenfrequency is

usually around 70�80 Hz for a passenger car. The in-phase rotational mode

(rim and belt moving in the same direction) has an eigenfrequency between

30 and 40 Hz.

Let us now consider the dynamic belt performance for a fixed axle height,

where we choose the road disturbances as introduced in Section 3.2.2, i.e.,

• step-up with height 0.2 [m]

• sinusoidal bump with height 0.15 [m]

• pothole with depth 0.2 [m].

FIGURE 3.24 Carcass geometry layout.
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We have chosen the following parameters for our analysis (Table 3.6).

The mass mv is the contribution of the vehicle mass to the single wheel.

Other parameters are given in Tables 3.3�3.5. For each type of obstacle, we

give three plots:

• The variation of the vertical force versus time, with distinction between

the axle force and the contact force between road and tire.

• The variation of the longitudinal force versus time, also with distinction

between axle force and contact force between road and tire.

• The variation of wheel speed in rad/s for belt and rim.

The force variation for the step-up obstacle is shown in Figures 3.25 and

3.26. Observe the large oscillations in both the vertical and the longitudinal

TABLE 3.6 Parameters Used in the Dynamic Tire Response Analysis for

Uneven Roads

Parameter Value Parameter Value

V [km/h] 36 cbx0, cbz0 [N/m] 1.33 106

R [m] 0.31 cbθ0 [N/m] 7.53 104

mb [kg] 7.5 kbx, kbz [Ns/m] 250

ma [kg] 18 kbθ [Nms/rad] 7.53 104

mv [kg] 400 qbVx [s
1/2/m1/2] 0.25

Jby [kgm
2] 0.64 qbVz [s

1/2/m1/2] 0.25

Jay [kgm
2] 0.15 qbVθ [s

1/2/m1/2] 0.25

qV1 [ms
2] 8.03 1028 qFcx [1/m] 3.0
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FIGURE 3.25 Vertical force variations for a step-up obstacle.
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axle force variation, where the vertical force shows an eigenfrequency of

about 70 Hz and the longitudinal force shows a lower eigenfrequency

of about 35 Hz. These values are of the same order of magnitude as those

derived for the vertical mode and the in-phase rotational mode by Zegelaar

[59] and Schmeitz [46].

The vertical eigenfrequency is slightly lower (Schmeitz finds 79 Hz), but

we have chosen the belt stiffness slightly lower compared to Ref. [46].

Compare this also with the in-plane transient tire behavior, shown in

Figures 3.9 and 3.10, which has the oscillation frequency near 32 Hz. The

force variation is larger at the axle than in the contact area. The force varia-

tion in the contact area may be of interest for road wear assessment. Note

that we constrained the axle height and therefore, restricted the vertical axle

motion, which is not a realistic condition to examine road wear due to

dynamic wheel load variation. Nevertheless, one observes a significant slip

force in the contact area, as well as oscillations in the vertical contact force.

With an unrestrained axle, one must add a larger force oscillation with a

lower frequency due to wheel hob. The wheel speed variation is shown in

Figure 3.27. There appears to be a minor difference between the belt and the

rim rotation. A maximum wheel speed of 1.5 [rad/s] corresponds to about a

1% longitudinal slip.

The force variation for the sinusoidal bump obstacle is shown in

Figures 3.28 and 3.29. Similar observations can be compared with the step-

up obstacle. The vertical contact force appears to follow the shape of the

effective road input, as expected. The first peaks in the vertical force are

approximately of the same magnitude. Increasing the speed will lead to a

larger vertical axle load. Because the sine bump obstacle is higher than the

step-up obstacle, a larger variation in the longitudinal force is obtained com-

pared to Figure 3.26. This phenomenon corresponds with the findings in
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FIGURE 3.26 Longitudinal force variations for a step-up obstacle.
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Refs. [46] and [59]. Zegelaar discusses the reasons for the first small peak in

Figure 3.29, where one expected a negative value. He explains this result

with the rotational velocity variations of the wheel (Figure 3.30, showing the

wheel speed variation) being more important than the effective road slope

when the tire first makes contact with the bump. We repeated the simulation

for a higher speed, V5 66 [km/h], and the resulting force variations are

shown in Figures 3.31 and 3.32.

Increasing the velocity leads to more damping in the longitudinal

force variation, which is similar to the case of transient behavior
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FIGURE 3.30 Wheel speed variation for a sine bump obstacle.
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(see Section 3.1.2). As mentioned previously, the first peak in vertical axle

force has been significantly increased with this higher velocity. The oscilla-

tion amplitudes, after the sine bump has passed, are also increased.

The force variation for the pothole (for 36 [km/h]) is shown in

Figures 3.33 and 3.34.

In this case, the initial vertical force variation shows an amplitude of

2000 [N]. Note that, in this case, the effective road slope βe varies much fas-

ter than in the other two cases, as one may conclude from Figures 3.18�3.20.

The longitudinal force variation is more or less the opposite behavior
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FIGURE 3.32 Longitudinal force variations for a sine bump obstacle (66 [km/h]).
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compared to the sine bump, with a small change of the slip force in negative

direction followed by a large positive change, when first entering the pothole.

The wheel speed is shown in Figure 3.35. The maximum values correspond

to slip and exceed 1.5%. In combination with braking on a slippery road, this

value is large enough to have an effect on the ABS control.
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FIGURE 3.34 Longitudinal force variations for a pothole.
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Chap te r | Fou r

Kinematic Steering

In Chapters 4 and 5, attention is paid to vehicle behavior. This chapter dis-

cusses when tire forces are neglected, which is usually referred to as

Ackermann steering. Chapter 5 covers handling and stability behavior.

4.1 AXIS SYSTEMS AND NOTATIONS

To study the response of a vehicle in order to control inputs or disturbances,

it is necessary to specify one or more coordinate systems to measure the posi-

tion of the vehicle. The SAE method (SAE: Society of Automotive Engineer)

[61] will be followed here. There are two main systems to measure the posi-

tion of the vehicle. The first is an earth-fixed system, denoted by XYZ. The

second system is a vehicle-fixed system xyz (lower case), as indicated in

Figure 4.1. The origin of the xyz system is usually taken at the vehicle’s cen-

ter of mass. The orientation of the vehicle’s axis system xyz with respect to

XYZ is given by a sequence of three angular motions:

ϕ: roll rotation angle about the vehicle’s x-axis

θ: pitch rotation angle about the vehicle’s y-axis

ψ: yaw rotation angle about the vehicle’s z-axis

A reference situation is considered in the case of earth-fixed and vehicle-

fixed coordinate systems coinciding. The x-axis is taken from the vehicle’s

central plane, which is pointing forward and horizontal in the reference situa-

tion. The y-axis points to the driver’s right-hand side and is horizontal in the

reference situation. The z-axis points downward. The velocity of the vehicle

is taken as the velocity of the center of mass, as measured in the XYZ system.

Its components in the local xyz system are referred to as:

u: longitudinal velocity along the x-axis

v: side velocity along the y-axis

w: normal velocity along the z-axis
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Clearly, these velocity components, in general, will not be parallel to the

ground plane. Therefore, we define the following velocity components:

forward velocity: horizontal velocity component\y-axis

lateral velocity: horizontal velocity component\x-axis

The angular velocities relative to the local xyz system are denoted as:

p: roll angular speed

q: pitch angular speed

r: yaw angular speed (yaw rate)

A top-down view of a car following a path with speed V is shown in

Figure 4.2. Three angles are distinguished here that describe the projected

Pitch

Roll
Yaw

w, z

u, x

v, y

FIGURE 4.1 Vehicle local axis xyz.

FIGURE 4.2 Projected view.
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orientation of the vehicle, with respect to the earth-fixed coordinate

system:

• The heading angle ψ between the projected x-axis and the global X-axis.

• The side slip angle β between the forward velocity (path tangent) and the

projected x-axis (taken positive clockwise).

• The course angle η between the forward velocity and the global X-axis.

Consequently,

η5ψ1β5ψðt5 0Þ1
ðt
0

rðτÞUdτ1 β ð4:1Þ

4.2 ACKERMANN STEERING

In general, steering of a vehicle at a finite velocity leads to side forces at the

wheels, which will counteract the lateral force, acting on the vehicle. These

side forces correspond to tire slip angles, according to certain lateral tire

characteristics. In this chapter, we discuss a situation where the vehicle veloc-

ity is very small, such that no significant lateral forces act on the vehicle.

Consequently, no side forces are required at the wheels and, ideally, maneu-

vering of the vehicle can be done by pure rolling of the wheels if we neglect

tire turn slip. Any steering mechanism that satisfies these conditions is

referred to as Ackermann steering (Figure 4.3). The pole, or center, of the

vehicle rotation is on the line connecting the rear wheels.

FIGURE 4.3 Low-speed cornering.
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From this figure, one easily obtains, for pure rolling of wheels

cotðδLÞ2 cotðδRÞ5
t

a1 b
� t

L
ð4:2Þ

for track width t and wheelbase L. Unfortunately, no practical steering mech-

anism satisfies Eq. (4.2); some examples are illustrated next, discussed earlier

by Genta and Morello in Refs. [10] and [11]. The Ackermann share of a

steering mechanism is defined as (see Ref. [16], Chapter 1):

Ackermann share:
δR 2 δL

δR 2 δL;AM
3 100 %½ � ð4:3Þ

with inner wheel steering angle δR, outer wheel steering angle δL, and exact

Ackermann outer steering wheel angle δL,AM, which satisfies Eq. (4.2).

Pure Ackermann steering means that the inner and outer wheel steering

angles are not identical. The reader may easily verify that Eq. (4.2) results in

a steering angle difference, as shown in Figure 4.4, for t5 1.5 [m] and

L5 2.76 [m]. One observes a small difference for wheel steering angle, up

to 5�, which is the range for normal handling situations. Clearly, applying

the same steering angle for both the inner and outer wheels is an

acceptable approximation for handling analyses (discussed in Chapter 5). For

parking conditions with a large steering angle, one may expect a difference

between inner and outer wheel steering angle, up to 10�.
Let us consider the quadrilateral steering mechanism, shown in Figure 4.5.

We follow the analysis in Ref. [10]. The mechanism consists of four bars, con-

nected at four rotational joints. The length of the lower bar, f2, is found from

f2 5 f 2 2UdUsin γ

The lateral horizontal distance H between the lower two joints follows

from the lengths of the remaining bars and the steering angles:

H5 f 2 dUsinðγ2 δLÞ2 dUsinðγ1 δRÞ

0
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δR [°]

δ R
–

δ L
 [°

]

FIGURE 4.4 Difference between inner and outer steering angle, pure Ackermann

steering.
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Further, H follows from the orientation of the lower bar after steering:

H2 5 f 22 2 ½dUcosðγ2δLÞ2dUcosðγ1δRÞ�2

These two results are sufficient to determine δL from δR for this steering

mechanism, as we have done. We determined the Ackermann share according

to Eq. (4.3) for different inner wheel steering angle and angle γ. Figure 4.6

shows the results for f5 1.3 [m] and d5 0.2 [m] (right plot). We also deter-

mined the difference between the outer wheel steering angle and the optimal

Ackermann value according to Eq. (4.2), as shown in the left plot of Figure 4.6.

One observes errors in the outer wheel steering angle, compared to pure

Ackermann steering, on the order of 2 to 3 [�], when the angle γ is varied

between 16 and 24 [�]. The value γ = 20 [�] appears to be a reasonably good

choice. The relative deviation in terms of Ackermann share varies from 60%

to 130%, with γ = 22 [�] apparently giving a share closest to 100% over the
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FIGURE 4.6 Deviation of outer wheel steering angle to Ackermann steering (left plot)
and Ackermann share (right plot).

FIGURE 4.5 Example steering mechanism.
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full range for the inner wheel steering angle. Note that, for small steering

angle and therefore a small absolute deviation from Ackermann steering, the

Ackermann share can still be quite different from 100%.

Next, we will consider the rack and pinion system, shown schematically

in Figure 4.7. The system is assumed to be in one horizontal plane, defined

by the parameters a, h, d, f, and angle ζ .
The rack is positioned at a distance a from the axle. There are six revo-

lute joints, with fixed kingpins on the axle. We will investigate the kinematic

properties for variations for these parameters.

The steering angles δ1 and δ2 can be determined for different positions of

the rack, as indicated in the lower part of Figure 4.7. The end positions of the

rack are known, the positions of the kingpins on the axle remain unchanged, and

the positions of the other joints are found from the fact that the bar lengths

remain unchanged. We completed this analysis for the following reference data:

a5 0.25 [m]

h5 0.50 [m]

d5 0.32 [m]

f 5 0.65 [m]

ζ5 5 [�]

Results are shown in Figures 4.8 and 4.9. One observes:

• There is an optimal value for d when the other parameters are unchanged.

The error, with respect to the Ackermann steering, can be reduced to less

than 0.5 [�].
• With the a-value reduced (rack is positioned closer to the axle), the error

is reduced as well.

• The same sensitivity is observed when the angle ζ is reduced to zero.

Indeed, a quick survey confirms that this angle is chosen small in general,

which likely is a consequence of packaging restrictions.

• Finally, the value for rack length h appears to be rather optimal for our

choice of the other design parameters.

FIGURE 4.7 Rack and pinion system.
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A design for an improved rack and pinion steering system has not been

attempted here. The preceding analysis demonstrates the sensitivity of the

steering system configuration with respect to certain parameters (it provides a

qualitative analysis), with reference to pure Ackermann steering. We con-

clude that one will not reach the ideal Ackermann performance, but one

could get satisfactorily close to it.

Steering is done with the intention to maneuver the vehicle, which means

the driver is aiming for a certain trajectory curvature for a given steering

angle δ, i.e., for a trajectory curvature gain. We choose the steering angle δ
as the average of the left and right steering angle, as follows:

cot δ5 1
2
Uðcot δL 1 cot δRÞ5

Rrear

L

which is near the direct average of the steering angles. For kinematic steer-

ing, the following gains are distinguished (see also Figure 4.3):

Trajectory curvature gain:
1=R

δ
5

1

δU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 1 L2Ucot2 δ

p � 1

L
ð4:4aÞ

Body slip angle gain:
β
δ
5

1

δ
Uarctan

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 2 b2

p
� �

� b

RUδ
� b

L
ð4:4bÞ
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ing parameters d and a.
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FIGURE 4.9 Deviation of outer wheel steering angle to Ackermann steering, for

varying parameters ζ and h.
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where the curve radius R is assumed to be large, compared to the wheelbase

L. From Eq. (4.4a), the important expression for the Ackermann steering

angle δAM follows as:

δ5 δAM 5
L

R
ð4:5Þ

This expression means that for negligible velocity, and therefore negligible

lateral acceleration, the axle steering angle of a vehicle is equal to the ratio of

wheelbase and path curve radius. In Chapter 5, we will discuss the relationship

between steering angle and lateral acceleration under steady-state conditions.

Expression (4.5) provides the first point on that curve, i.e., for ay5 0.

We close this section with some remarks concerning the need for

Ackermann steering. As mentioned previously, the situation of pure Ackermann

steering is never reached, but can be closely approximated. In addition:

• The condition of negligible vehicle velocity is usually not satisfied.

• There is always side slip because of toe-in (usually present).

• Aligning effects lead to roll-induced steering.

• Suspension compliance and steering compliance lead to additional steer-

ing and therefore side slip.

Conversely, too large a deviation from pure Ackermann steering could

result in significant tire wear, which in itself will affect the feedback of the

steering performance and road conditions to the driver. Turn slip plays an

important role in this, and this feedback preferably should not be influenced

by side slip response or aligning torque effects.

4.3 THE ARTICULATED VEHICLE

The analysis of low-speed vehicle maneuverability is of interest in deter-

mining the amount of space required by the vehicle. In general, the

designer’s intention is to reduce the requirements for maneuvering space,

i.e., to limit this space as much as possible. For a single passenger car,

this analysis is straightforward. For articulated vehicles, such as a

car�caravan or truck�trailer combination, a limited maneuverability space

is not obvious. In general, the different articulations (car, caravan, trailer,

etc.) follow different curve radii. As a result, the difference between the

minimum inner radius and the maximum outer radius for the vehicle com-

bination during maneuvering can be significantly larger than the width of

the vehicle combination. This difference is called the swept path, which

should preferably be as small as possible. The optimal situation is when

the larger trailer axle is following exactly the same curve as the first vehi-

cle’s axle. Consider a car�trailer combination, as schematically shown in

Figure 4.10. The trailer is assumed to have one axle that may be steered.
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The question is how to steer this axle so that the curve radii at vehicle’s

front axle and the trailer’s back axle are identical to create a swept path as

minimal as possible.

Let us begin with the situation with the trailer axle as not steered, i.e.,

δ25 0, and the radius Rrear perpendicular to the trailer. Assume that all curve

radii are large compared to the dimensions of the vehicle. In that case, one

may write

γ5 π2 arccos
L2

R1

� �
2 arccos

f

R1

� �
� L2 1 f

R1

R1 � R5
L1

tanðδ1Þ
� L1

δ1

A combination of these relationships gives the trailer angle gain:

γ
δ1

5
L2 1 f

L1
ð4:6Þ

In other words, a large articulation angle γ is obtained under low-speed

conditions, if the coupling overhang f is large or there is a large distance

between kingpin and trailer axle.

FIGURE 4.10 Car�trailer combination with steerable trailer axle.
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The radii Rfront and Rrear can be expressed as follows:

Rfront 5
L1

sin δ1

Rrear 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1

L21
tan2δ1

2 L22

s

Eliminating δ1 leads to

R2
rear 5R2

front 2 L21 2 L22 1 f 2

As illustrated, we have determined the relative off-tracking

Rfront 2Rrear

Rfront

in percent, for different values of L2 and f, for Rfront5 10 [m], and a fixed car

wheelbase of 2.76 [m] (Figure 4.11). One observes a dominant effect from

the position of the trailer axle, with respect to the kingpin between car and

trailer. The parameter f has only a minor effect.

If δ2 6¼ 0, the radius Rrear is no longer perpendicular to the trailer. We use

the cosine rule in the triangle Rrear�R1�L2 and find, under the same assump-

tion of large curve radii, that

γ
δ1

5
L2 1 f

L1
2

δ2
δ1

ð4:7Þ
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FIGURE 4.11 Off-tracking for different vehicle parameters.
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We choose δ2 such that Rrear5R. The cosine rule then results in the

following relationship:

R2 1 f 2 5R2
1 5R2

rear 1 L22 2 2URrearUL2Usin δ2 � R2 1 L22 2 2URUL2Uδ2

Hence,

R5
L22 2 f 2

2UL2Uδ2

However, we have also

R5
L1

δ1
Consequently,

δ2
δ1

5
L22 2 f 2

2UL1UL2
and

δ2
γ

5
L22 2 f 2

ðL21f Þ2 ð4:8Þ

where we used Eq. (4.7). Expression (4.8) describes how the trailer axle

steering angle should be linked to the kingpin angle γ to minimize the swept

path at low speed. We plotted this ratio in Figure 4.12 for various values of

L2 and f; this ratio was plotted for the same values for Rfront and wheelbase

L1 as in Figure 4.11. Clearly, small values of f (such as for compact cars)

require the largest trailer axle steering, which is consistent with the largest

off-tracking in Figure 4.11. Less steering is required for larger values of f

and smaller values of L2. Note that, for a conventional trailer, the kingpin

angle γ increases with L2 and f, cf. Equation (4.6), and therefore, a smaller

gain is required to minimize the off-tracking.
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FIGURE 4.12 Optimal trailer axle steering gain with respect to kingpin angle.
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Chap te r | F i ve

Vehicle Handling
Performance

In this chapter, the handling and stability behavior of vehicles is discussed.

Because the contact between vehicle and road is the dominant factor for this

behavior, major emphasis is put on the influence of tire properties.

Handling and stability are two properties of the vehicle that are of major

importance for the following reasons. First, vehicle behavior should be safe,

which means that input from the driver should not lead to an excessive vehi-

cle response that makes the vehicle uncontrollable for the driver. Clearly, a

vehicle has certain physical limits. If the friction limits at one of the tires are

exceeded, full sliding of this tire may occur. This must be avoided and the

main controller of the vehicle to do so is the driver. This means that the

driver is constantly monitoring the vehicle behavior with the aim of respond-

ing to any vehicle behavior judged to be too critical.

Furthermore, car manufacturers ensure their vehicles have smooth han-

dling behavior, in the sense that it is judged positively by their test drivers

and customers. The car should give the driver a feeling that he or she is in

control of the car, that the car is responsive to driver inputs, that sudden

deviations from a path will damp out quickly, that body roll is limited, etc.

This vehicle performance should be experienced over a large range in both

longitudinal and lateral acceleration, which may be in conflict with the previ-

ous requirement of noticing critical behavior in time in order to perform ade-

quate corrections.

In Section 5.1, we will explain the concept of good handling in more

depth, with an emphasis on subjective and objective methodology strategies.

We will discuss these strategies and how to assess good handling using vehi-

cle tests and simulations. Good handling is strongly related to the experience

of the driver in handling the vehicle and how the driver responds to vehicle’s

behavior under varying circumstances. Will the driver experience an

increased workload to maintain a minimum closed-loop performance, and in
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what way can we assess this workload? These questions are discussed in

Chapter 6, where we address the vehicle�driver interface.

In contrast to the kinematic steering case, we will consider vehicle mod-

els that allow us to investigate vehicle performance with tire forces consid-

ered. Tire forces should be considered in nearly all cases, as they occur when

the driver is steering, braking, or accelerating. The simplest vehicle model to

address these situations is the single-track model (also referred to as the

bicycle model). Because of its simplicity, this model is usually used as a first

step in vehicle performance analysis for applications such as those involving

active steering control. With control measures (such as wheel-by-wheel brak-

ing) that have the objective of limiting excessive yaw motion, one must dis-

tinguish between left and right tire road contact. The first extension of the

bicycle single-track model is to the double-track vehicle model. The single-

track model is treated in detail in Section 5.2, with some comments on the

extension to the double-track model.

Note that both models may include the full nonlinear tire characteristics.

This means that, in case of constant speed, one is faced with a second-order set

of nonlinear differential equations and the model being used should be trea-

ted using the appropriate tools. Consequently, multiple singular points may be

expected, depending on the model parameters, with sudden transitions from

one to multiple points with a slight change to these parameters (of which the

parameters related to the tire will appear to be the dominant ones). Small varia-

tions in the initial values do not automatically guarantee small variations in the

solution and the local stability analysis is not straightforward.

We explain the steady-state characteristics in Section 5.3, including a discus-

sion on the basic handling curves arising from steady-state circular tests.

The steady-state solutions are the singular points for the nonsteady solutions,

which are discussed in Section 5.4. The occurrence of unstable motion in yaw

(i.e., referred to as yaw instability) strongly depends on the tire characteristics,

which can be expressed in a handling diagram. This handling diagram is directly

related to the basic handling curves discussed in Section 5.3 and is specifically

suited for studying nonlinear vehicle performance; it will be discussed in detail

in Section 5.5. Nonlinear systems are usually primarily used to investigate the

qualitative behavior and trends in response to variations in control and system

parameters. That means that one is verifying the essential system characteristics,

which is, in general, more difficult than fitting a model to test results. If the quali-

tative match is not satisfactory, the quantitative match will never be possible.

Graphic assessment tools, such as the handling diagram, allow for visuali-

zation of these sensitivities. Another way to visualize these sensitivities is to

exploit the phase plane approach, which is a common tool for nonlinear

dynamical systems in two dimensions. Singular (i.e., steady-state) points and

the behavior near these points (i.e., the stability behavior of the vehicle), as

well as global stability properties, can be illustrated in an elegant way. Other

graphical assessment methods such as the stability diagram, the MMM, and

the g-g diagram, will be discussed as well.
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5.1 CRITERIA FOR GOOD HANDLING

Different methodologies exist for the assessment of vehicle performance:

open-loop and closed-loop tests. With open-loop tests, the driver gives spe-

cific input to the vehicle and therefore acts more or less as a steering robot.

These steering inputs could be a step or ramp input, a fixed steering input

with possibly increasing speed, a steering impulse, or a sinusoidal steering

input for different frequencies, etc.

For a closed-loop test, the driver responds to the vehicle’s behavior to ful-

fill a specific task. Examples of this include the double lane change maneu-

ver, with the maximum speed as one of the performance metrics, and the

slalom test, with cones positioned at a specific distance (usually 18 m).

We refer to the available ISO descriptions for the various tests [62, 63, 64],

see also [19]. This distinction refers to the vehicle control by the driver, with

the driver considered as part of the feedback control loop or not. Methodologies

on the assessment of vehicle performance can be done through judgment by

the driver (based on open- or closed-loop tests) or though measured vehicle

behavior (based on a known driver input, which is usually, but not necessarily,

based on open-loop tests). These methodologies may be structured as follows:

• Subjective methodology strategies

2 Performance tests refer to a specific task, such as determining a

maximum speed (lane change), minimum lateral deviations, steering

motions (straight lane test), etc.

2 Rating scales questionnaires based on a scale of some magnitude

(5-point, 10-point scale) followed by data reduction.

2 Open questions are other data gained that are considered additional

to the previous two strategies.

• Objective methodology strategies

2 Reference maneuvers with instrumented vehicles.

When the vehicle performance is subjectively assessed, the test driver scores

handling based on concepts such as steering feel, controllability, feeling of safety,

straight ahead stability, etc. Tests can be selected so that the vehicle behaves

more discriminately with respect to these assessment aspects. Examples of this

include braking at different road frictions for the left and right tires (μ split),

releasing the throttle or braking while cornering, single sinus steer input, releasing

the steering wheel while cornering, etc. However, there is very little standardiza-

tion in subjective handling assessment, meaning that vehicles can be ranked, but

a comparison of these assessments completed by various organizations is diffi-

cult. Moreover, this approach produces a full vehicle evaluation, meaning the

cause of low scores is not immediately clear and requires further investigations.

One should note that not only the ratings themselves are important, but also

the deviations among the ratings. These deviations allow a distinction between

individual assessments by the subjects and assessments with a high level of

consistency.
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Usually, the set of original variables is reduced to a set of principal com-

ponents or factors that can be regarded as orthogonal (statistically indepen-

dent) to each of the other components. Principal components are weighted

linear combinations of the original measured variables. A next step could

then be to reduce this set to new linear combinations with maximum discrim-

ination between two or more clusters (related to maneuverability or stability).

This second step is referred to as discriminant function analysis (DFA). Some

researchers skip the principal component analysis (PCA) and apply a direct

reduction based on the criterion of maximum discrimination, followed by an

interpretation toward more independent factors.

Completing a PCA analysis on both open-loop test results and subjective

ratings would allow for further correlation studies between the objective and

subjective testing procedures.

An alternative approach is the objective reference test. A large number

of these tests have been agreed upon within ISO standardization committees.

A vehicle is fitted with instruments and given a clearly defined input, for which

vehicle behavior is characterized using measured readings such as reaction

times, the lag of certain variables in relation to the steering input, etc. An advan-

tage of the objective reference test is that these maneuvers can be imitated in

simulation models. In this way, the effect of design changes on vehicle behavior

can be assessed at an early stage. However, these measurements only provide a

limited picture of the subjective feel of the vehicle for the test driver.

In Table 5.1, some known criteria of good handling are listed that corre-

late well with driver preferences. We note that most of these criteria can be

verified with simple vehicle models. Hence, to identify more refined differ-

ences between vehicles, this list is insufficient.

Two ISO tests are described here in some detail:

5.1.1 ISO 4138: Steady-State Circular Test

The objective of this test is to determine the steady-state vehicle directional

control response. A circular path is followed with increasing vehicle speed.

The steady-state behavior is usually described in terms of steering wheel

angle δ as a function of lateral acceleration ay (handling curve). This relation-

ship is directly related to the nonlinear axle characteristics, with the shape of

the curve describing the important yaw stability properties of the vehicle. We

return to this in subsequent sections of this chapter. Other vehicle outputs can

be presented versus lateral acceleration, such as

• vehicle side slip angle

• vehicle roll angle

ISO 4138 : Steady-state circular test

ISO 7401 : Lateral transient response test
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leading to the following gradients (performance metrics).

5.1.2 ISO 7401: Lateral Transient Response Test

The primary objective of this standard test is to determine the transient

response behavior of a vehicle. Typical characteristic values and functions in

the time domain and frequency domain are time lags, response times, gains

(lateral acceleration, yaw rate), and overshoot values. An outline of most of

the tests in ISO 7401 is given in Table 5.2.

TABLE 5.1 Criteria of Good Handling, an Overview (see also Refs. [33] and [48])

Good Handling
Criteria Clarification

Short time delay Long delays between command input and vehicle response (yaw

rate, lateral acceleration, etc.) should be avoided.

Gains not too large or too

small

A large gain is experienced as nervous behavior with only a small input

leading to a severe response. On the other hand, a significant driver

input to have only a small vehicle response (low gain) is not

preferable either.

Compromise between

responsiveness and

stability

Stability and responsiveness contradict each other. Vehicle instabilities

require the driver to provide continuously stabilizing control, which is

regarded as disadvantageous. Too high stability leads to delays, which

one tries to avoid.

Small body slip angle This means that the driver is looking in the direction the vehicle is

moving. In other words, the heading angle and course angle coincide.

On the other hand, a nonzero body slip angle is part of the feedback to

the driver.

Response immunity to

external disturbances

A vehicle is always subject to external disturbances, such as crosswind

gusts, road disturbances, etc.

Small roll response The best conditions for accurate sensing by the driver of the vehicle

environment are obtained for minimum vehicle body roll.

Consistent vehicle behavior Large changes in vehicle response with speed, loading, road surface

conditions, lateral acceleration level, etc. are undesirable from the point of

view of building up driving skills. This would lead to consistent vehicle

properties over all running conditions and consequently, that the driver is

not “warned” when approaching the saturation limits for the tires. Hence,

consistent behavior should be limited to nonextreme vehicle behavior.

Steering wheel gradient: @δ
@ay

ðay 5 0Þ

Side slip gradient: @β
@ay

ðay 5 0Þ

Roll angle gradient: @ϕ
@ay

ðay 5 0Þ
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Two tests are discussed in more detail: the step steer input test (also

called “J-turn”) and the random steer input test.

The input and output for a J-turn test are shown in Figure 5.1. The first

plot illustrates the steering wheel input and the second plot shows the vehicle

response, e.g., the yaw rate. With a constant steering angle input, the vehicle

will end up in a steady-state circular curve. The transition from straight ahead

TABLE 5.2 Test Methods, Included in ISO 7401

Test Method Description Performance Metrics

Time Domain

Step input Rapid change (ramp) of steering

angle δ
Response time, peak response

time, overshoot values for

vehicle motion response (yaw

rate ay)

Sinusoidal input (one period) One period steering wheel input

(0.5 Hz, 1 [Hz] optional) at

ay5 4 [m/s2] (2 or 6 [m/s2]

optional)

First peak values of ay, yaw

rate r, time lags of ay, r to δ,
gains (ay, r ) w.r.t. steering

input δ

Frequency Domain

Random input Continuous inputs covering a

frequency area, for ay, 4 [m/s2]

(2 [m/s2] recommended)

Steady-state gains (ay, r ) w.r.t.

steering input δ, bandwidth,
peak ratio, equivalent time

Pulse input Triangular wave form steering

input of 0.3�0.5 s width, with

δmax cf. ay5 4 [m/s2] steady

state

Similar to random input

Continuous sinusoidal input Three successive periods in δ,
with increasing frequency and

ay, 4 [m/s2]

Amplitudes (ay, r ), gains (ay, r )

w.r.t. steering input δ, phase
shifts between ay, r, and

steering angle δ

FIGURE 5.1 Ramp steer input and vehicle yaw rate response.
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driving to these steady-state conditions requires a certain response time, and

usually leads to overshoot behavior.

Response time Tr is measured from the time that δ reaches 50% of its final

value up to the time that 90% of the steady-state value of the vehicle response

is reached. Peak response time Tr,max is the time required to reach the maxi-

mum yaw rate response. Overshoot Ur is defined as the relative difference

between the peak value and the yaw rate steady-state value rss. Other perfor-

mance metrics considered include the lag time between yaw rate and lateral

acceleration and the TB factor. This factor is the product of the steady-state

side slip angle and the yaw rate peak time, determined from the step steer test.

Xia and Willis refer to this parameter as a vehicle characteristic [33,58]. The

TB factor was shown to correlate well with subjective ratings, meaning that a

driver is not able to distinguish properly between not being oriented in the

driving direction, and a lag in yaw rate response (especially with excessive

cornering). When a vehicle experiences a step or ramp steer input, the front

tire side forces build up first, and the vehicle begins to yaw. Next, the rear tire

side forces build up and, likewise, the lateral speed (drifting). This drifting is

therefore delayed with respect to the yaw rate. Drifting (lateral sliding) contri-

butes to the lateral acceleration. Consequently, the lateral acceleration will be

delayed with respect to the yaw rate. This means that the driver will experi-

ence yaw before the vehicle side force. This is illustrated in Figure 5.2, where

the yaw rate and lateral acceleration responses (divided by the steady-state

values rss and ay,ss, respectively) are depicted for a ramp steer input. One

observes a larger lag for the lateral acceleration.

The random steer test is the experimental assessment of the vehicle fre-

quency performance with lateral acceleration up to 4 [m/s2]. This behavior

can be expressed graphically in Bode diagrams of gain and phase (see

Appendix 4). A diagram of yaw rate and some performance metrics is shown

in Figure 5.3 for a single-track vehicle model. The upper plot shows the gain,

which is the ratio of yaw rate amplitude and steering angle amplitude for a

FIGURE 5.2 Yaw rate and lateral acceleration response to ramp steer input.
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sinusoidal steering input. The lower plot shows the phase difference between

the yaw rate and the steering angle. Note the resonance peak in the gain and

the phase moving to 290 [�] for large frequency. This frequency behavior

will be discussed in more detail in subsequent sections [54].

Weir and Dimarco suggested plots for the steady-state yaw rate gain H0

(ratio of yaw rate and steering angle) versus the equivalent time Teq and indi-

cated areas of preferred vehicle behavior for American cars around 1978

[57]. A large value for H0 means that small changes in the steering angle

lead to large effects in response, which are conditions only an experienced

driver could handle. A small value for H0 means that a large steering input is

required to have a sufficient vehicle response, which is not preferable either.

Consequently, the optimal range in steady-state gain is a band between a

maximum and minimum value. For an expert driver, this band covers larger

values for H0 than for the average driver. The equivalent time expresses the

dynamic response of the vehicle to sudden changes in the steering angle

(such as avoiding unexpected obstacles). The smaller Teq, the better the vehi-

cle is able to follow the driver input to avoid accidents. In Figure 5.4, some

(H0, Teq) values are shown for European cars that were tested around 1995.

Two bands, originated from Weir and Dimarco [57], have been added to

this figure: one for the expert driver and one for the typical driver. Various

clusters of cars have been included, and one observes the dependency of

vehicle cluster on Teq. Larger cars tend to show more time lag for quick

FIGURE 5.3 Random steer test.

Bandwidth ωb : range of frequencies for which the gain equals at

least 0.7075 1=
ffiffiffi
2

p
of the steady-state gain H0

Equivalent time Teq : 2.π/ωeq where ωeq corresponds to a phase lag of 45[
�]
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driver input. Remarkably, all cars seem to have steady-state gain close to the

lower boundary for the expert driver, which is in the lower half of the area

for a typical driver. The more sporty cars show a larger yaw rate gain.

5.2 SINGLE-TRACK VEHICLE MODELING

5.2.1 The Single-Track Model

In this section, the more fundamental aspects of possible vehicle motions are

addressed. Instead of discussing simulation runs of complicated vehicle mod-

els, we use the simplest automobile model, which runs at a constant speed

over an even horizontal road surface.

The steer and slip angles are restricted to relative small values. The driv-

ing force required to keep the speed constant is assumed to remain small with

respect to the lateral forces acting on the tires. Brake and drive forces are

neglected. The vehicle body roll and possible pitch behavior are neglected

too. This assumption holds if the height of the center of gravity (CoG) of the

vehicle is small compared to the track width. Another situation when roll and

pitch motions are negligible is when friction coefficients between tires and

road are not too large.

Using these assumptions, the front wheels can be considered one system

with an overall lateral force, aligning torque, and a slip angle obtained from the

combined effect of left and right wheel. A similar simplification holds for the

rear wheels. That means that tire characteristics are replaced by axle characteris-

tics, which finally leads to a vehicle model as shown in Figure 5.5. Observe that

the pole of the rotation has moved forward compared to kinematic steering (see

Figure 4.3) and that, therefore, the driver must turn his or her head slightly to

the left (i.e., in outer direction), to see where he or she is going.

The slip angles for the front and rear axle are denoted by α1 and α2,

respectively. The total lateral force and aligning torque for front and rear

axles are denoted by Fy1 and Fy2, and Mz1 and Mz2, respectively. The aligning

torques will be disregarded in the forthcoming analysis.

FIGURE 5.4 Weir�Dimarco plot for European cars.
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The vehicle CoG is positioned between both axles, at distances a and b

from front and rear axle, respectively. The horizontal behavior of the vehi-

cle is described using a local lateral velocity v at the CoG, a local forward

velocity u, yaw rate r, and body slip angle β. Because the lateral velocity

will be small compared to the forward velocity u, this body slip angle fol-

lows from

β5 arctan
v

u

� �
� v

u
ð5:1Þ

The total vehicle velocity is denoted as V. For small body slip angle, u is

equal to V up to second-order; therefore, we replace u with V when

appropriate.

The equations of motion follow from the statements that equilibrium

must hold in longitudinal, lateral, and yaw direction. The longitudinal and lat-

eral vehicle accelerations must be balanced by the horizontal tire forces. The

yaw moment acting on the vehicle must be balanced by the tire forces

moment (where aligning torques are neglected). In the global coordinate sys-

tem (Figure 5.6), this means that the following equations hold:

m � €X5FX

m � €Y 5FY

Jz � €ψ5MZ

ð5:2Þ

where m is the vehicle mass and Jz is the polar moment of inertia in z direc-

tion (yaw moment of inertia), and FX, FY, and MZ are the total forces and

moments.

Moving from a global to a local coordinate system, we can define the

locally defined forces and moments as

FIGURE 5.5 One-track vehicle handling model.
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Fx 5FX � cos ψ1FY � sin ψ
Fy 52FX � sin ψ1FY � cos ψ
Mz 5MZ

ð5:3Þ

The velocity vector is transformed as follows:

_X
_Y

� �
5

cos ψ 2sin ψ
sin ψ cos ψ

� �
� u

v

� �
ð5:4Þ

and therefore, for the accelerations

€X5 _u � cos ψ2 _v � sin ψ2 _ψ � ðu � sin ψ1 v � cos ψÞ
€Y 5 _u � sin ψ1 _v � cos ψ1 _ψ � ðu � cos ψ2 v � sin ψÞ

In combination with Eqs. (5.2) and (5.3), one arrives at

m � ð _u2 v � rÞ5Fx

m � ð _v1 u � rÞ5Fy

Jz � _r5Mz

ð5:5Þ

We substitute the tire forces according to Figure 5.5 and account for pos-

sible external force Fye and moment Mze.

Then, the following handling equations arise for the bicycle one-track

vehicle handling model:

m � ð _v1 u � rÞ5Fy1 1Fy2 1Fye ð5:6aÞ

Jz � _r5 a � Fy1 2 b � Fy2 1Mze ð5:6bÞ

To be more accurate, the pneumatic trails front and aft should have been

accounted for in the distances a and b in Eq. (5.6b), but these effects will be

disregarded.

FIGURE 5.6 Vehicle behavior for local and global coordinates.
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The first equation in (5.5) describes the forward behavior of the vehicle, i.e.,

where Fx is the total longitudinal force (drive, brake, resistances). Remember

that we assume the vehicle speed V to be constant, which means that a drive

force should exist to counteract rolling resistance, aerodynamic drag, slope resis-

tance, etc. In addition, we note that the second term in the left-hand side of this

equation is of higher order (both lateral speed and yaw rate assumed small).

REMARKS REGARDING FORCES ACTING ON THE VEHICLE
1. The external force and moment in expressions (5.6a) and (5.6b) could be

from an aerodynamic source. Considering only the planar motion of the

vehicle, a side force Fy,aer and a yaw moment Mz,aer might be included in

expressions (5.6a) and (5.6b), of the form

Fye 5Fy;aer 5
1

2
� ρair � S � Cy � V2

r Mze 5Mz;aer 5
1

2
� ρair � S � L � Cz � V2

r

with air density ρair, vehicle frontal area S, relative wind speed Vr, wheel-

base L, lateral force coefficient Cy, and yawing moment coefficient Cz.

The last two coefficients are functions of the relative wind direction angle

(see Ref. [1] and Chapter 21 in Ref. [11]). These additional loads may be

due to crosswind disturbance.

Similarly, an aerodynamic vehicle lift or down force may be

accounted for, as well as aerodynamically induced roll and pitch

moments. These forces will result in larger or smaller wheel loads, and

therefore, affect the tire�road contact characteristics.

2. When brake and/or driving forces are not neglected, they contribute to the

side force at each steered axle. For the vehicle in Figure 5.5, this leads to

modified model equations for the single-track model:

m � ð _v1 u � rÞ5Fy1 � cos δ1Fy2 1
X

front wheels

Fx � sin δ

Jz � _r5 a � Fy1 � cos δ2 b � Fy2 1
X

front wheels

a � Fx � sin δ

3. We assume a flat road. A road with a transversal slope ζ will initiate an

additional side force of Fye5m � g � sin(ζ).

Expressions (5.6a) and (5.6b) can also be derived from Lagrange’s equa-

tions (see Appendix 5). We follow the approach in Ref. [32], but neglect roll.

The kinetic energy T of the vehicle is due to forward speed, lateral speed,

and yaw rate. The lateral speed and yaw rate contribute to the cornering

energy. In total, we have

T 5
1

2
� m � v2 1 u2

� �
1

1

2
� Jz � r2 ð5:7Þ
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The potential energy U is built up in the springs (suspension, roll stiff-

ness). With only the planar motion accounted for, these contributions are

neglected and the Lagrangian equation is taken as the kinetic energy T. With

generalized velocities _X, _Y , and r5 _ψ (global coordinates X, Y) the

Lagrangian equations (with U omitted) become

d

dt

@T

@ _qi
2

@T

@qi
5

d

dt
� @T
@ _qi

5Qi

With (cf. Eq. (5.4))

u5 _X � cos ψ1 _Y � sin ψ v52 _X � sin ψ1 _Y � cos ψ

and the transformation between global generalized force and local lateral

force (see Eq. (5.3))

QY � cos ψ2QX � sin ψ5Fy1 1Fy2

the equation follows as

d

dt
� @T
@v

1 r � @T
@u

5Fy1 1Fy2

With T from expression (5.7), one easily derives Eq. (5.6a). The deriva-

tion of Eq. (5.6b) is found using the Lagrange equations for generalized rota-

tional velocity r.

Sometimes, the yaw moment of inertia is written in terms of the radius of

gyration rg:

Jz 5m � r2g ð5:8Þ

The axle loads front and aft follow from equilibrium in the (x, z) plane:

Fz1 5m � g � b

a1 b
5m � g � b

L
Fz2 5m � g � a

a1 b
5m � g � a

L
ð5:9Þ

for acceleration of gravity g and wheelbase L. To obtain simpler equations, it is

convenient to approximate the yaw moment of inertia using the value obtained

with the mass consisting of two separate parts, concentrated at the front and rear

axle:

Jz � Jz;conc 5 a2 � m � b
L

1 b2 � m � a
L

5m � a � b; i:e:; rg 5
ffiffiffiffiffiffiffiffiffi
a � b

p
ð5:10Þ

If the vehicle is not too small, this is not a bad approximation. Moreover,

this approximation does not affect the qualitative aspects of the vehicle han-

dling performance, which is the subject of the current analysis.
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Expressions (5.6a) and (5.6b) is formulated in terms of two dependent vari-

ables, v and r. The lateral axle forces Fy1 and Fy2 depend on the slip angles α1

and α2:

Fy1 5Fy1ðα1Þ Fy2 5Fy2ðα2Þ ð5:11Þ

where we recall that these functions are highly nonlinear. In Figure 5.7, we

depicted the tire side force for the tire data, given in Appendix 6, and certain road

friction (with the sum of left and right side force being the lateral axle force).

The tire slip angle is defined as the angle between the symmetry plane of the

wheel and the local velocity vector. The local velocity vector is a result of the

velocity of the vehicle CoG and the rotation of the vehicle around this point.

In general dynamic terms, if a body is moving with a speed vector VCoG

and rotating with a rotation velocity vector ω, then the global speed of any

point P of this body is found from

V P 5VCoG 1ω 3 ðXP 2XCoGÞ

The rotation velocity is given by the yaw rate r. Consider the right front

wheel in Figure 5.8 with steering wheel angle δ and half-track width d at the

front axle. The slip angle α1 is then found from

α1 5 δ2 arctan
v1 a � r
u2 d � r

� �
� δ2

v1 a � r
u2 d � r ð5:12Þ

In most cases, the forward speed u exceeds d � r by far, which means that

this final term can be neglected. A similar approach can be followed for the

FIGURE 5.7 Lateral tire force versus slip angle.
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rear axle, which, accounting for the approximation of small track width times

yaw rate with respect to forward speed u, leads to

α1 5 δ2
v1 a � r

u
α2 52

v2 b � r
u

ð5:13Þ

with steering angle δ. Equation (5.13) can be used to eliminate the slip angles

in Eqs. (5.6a) and (5.6b), leaving a set of equations with lateral speed v and

yaw rate r as the only states.

Equations (5.13) can also be used to eliminate lateral speed and yaw rate

in Eqs. (5.6a) and (5.6b). When we replace the state variables v and r with

the slip angles α1 and α2 and neglect Fye and Mze, we obtain

_α1

_α2

� �
5

u

L

21 1

21 1

� �
� α1

α2

� �
2
1

u
�

1

m
1

a2

Jz

1

m
2

a � b
Jz

1

m
2

a � b
Jz

1

m
1

b2

Jz

0
BBBB@

1
CCCCA � Fy1

Fy2

� �

1
u � δ
L

� 1

1

� �
1

_δ
0

 !
ð5:14Þ

Using expression (5.9), and under the assumption (5.10), these equations

simplify to

_α1

_α2

� �
5

u

L
� ðα2 2α1 1 δÞ � 1

1

� �
2

g

u
� fy1ðα1Þ

fy2ðα2Þ
� �

1
_δ
0

� �
ð5:15Þ

with normalized axle side forces (lateral friction coefficient) fy1 and fy2 for front

and rear axles, respectively, defined as the ratio of axle side force and axle load.

Consequently, we derived two sets of Eqs. (5.6a), (5.6b) and (5.14), which are

FIGURE 5.8 Kinematic description of tire slip angle.
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completely identical in terms of system performance; the only difference is that

we use either (v, r) or (α1, α2) as dependent variables (states).

The lateral forces can be taken in their full nonlinear setting or they can

be approximated using linear relationships Cαi �α with cornering stiffness

Cαi for front and rear axles (with i5 1, 2, respectively) for small slip angle

α. This cornering stiffness is indicated in Figure 5.7. Note that the cornering

stiffness Cαi refers to the axle characteristics. Expressing the right-hand side

of expressions (5.6a) and (5.6b) in terms of the tire cornering stiffness, a fac-

tor of 2 must be included if load transfer is not considered.

When we introduce the “derivatives of stability” Yβ, Yr, Nβ, and Nr:

Yβ 52ðCα1 1Cα2Þ Yr 52
a � Cα1 2 b � Cα2

V
ð5:16aÞ

Nβ 52ða � Cα1 2 b � Cα2Þ Nr 52
a2 � Cα1 1 b2 � Cα2

V
ð5:16bÞ

expressions (5.6a) and (5.6b) simplifies, in case of linear axle characteristics

and constant vehicle speed V, to the linear equations

m � Vð _β1 rÞ5 Yβ � β1 Yr � r1Cα1 � δ1Fye ð5:17aÞ

Jz � _r5Nβ � β1Nr � r1 a � Cα1 � δ1Mze ð5:17bÞ

where we have replaced v with β using expression (5.1), and used the fact

that u�V. For nonconstant speed, one must add a term m � _V � β to the left-

hand side of Eq. (5.17a).

Note that we neglected the axle aligning torques in expressions (5.6a) and

(5.6b). If we account for the torques, equation (5.16b) would be adjusted as

follows (see also Ref. [11]):

Nβ 52ða � Cα1 2 b � Cα2Þ1
@Mz1

@α1

ðα1 5 0Þ1 @Mz2

@α2

ðα2 5 0Þ

Nr 52
a2 � Cα1 1 b2 � Cα2 1 a � @Mz1

@α1
ðα1 5 0Þ1 b � @Mz2

@α2
ðα2 5 0Þ

V

The expressions (5.16a) and (5.16b) are referred to as derivatives of stabil-

ity because they are the derivatives of the right-hand sides of expressions

(5.6a) and (5.6b) to the body slip angle β and yaw rate r, for linear axles. Note

that 2Yβ and 2Nr act as damping coefficients in Eqs. (5.17a) and (5.17b).

We close this section with comments about the validity of the one-track

vehicle model. This model was introduced under a number of assumptions.

These assumptions may be relaxed (or corrected), thus yielding a much larger

area for application of this model.
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5.2.2 Effect of Body Roll and Lateral Load Transfer

The lateral tire force Fy depends on the tire load Fz in a nonlinear fashion.

An example is shown in Figure 5.9 in which the tire force Fy depicts versus

tire load Fz for different slip angles. Tire data is taken from Appendix 6. One

observes the decreasing absolute slope of these curves, meaning that under

load transfer of for example 1500 [N] (being the increase, decrease of the tire

load at outer and inner tire, respectively) and with an axle slip angle of 3 [�],
the total lateral axle force (being the sum of the side forces at inner and outer

wheel) is reduced.

Consequently, the entire lateral axle characteristics are changed. Note that

load transfer changes with increasing lateral acceleration and thus with

increasing slip angle. The load transfer can be different for both axles and it

depends on the roll stiffness distribution over both axles. Most load transfer

will occur at the axle with the largest roll stiffness. We assume steady-

state behavior, i.e., roll damping is neglected. The roll stiffness at axle i

(i5 1, 2) is denoted as Kϕ,i. Using a vehicle CoG height hCoG and a track

width ti (i5 1, 2), the load transfers ΔFz1 and ΔFz2 from inner to outer

wheels satisfy

t1 �ΔFz1 1 t2 �ΔFz2 5 hCoG � Fy ð5:18Þ

where Fy is the total vehicle side force. This is a consequence of the equilib-

rium in roll moment around the vertical projection of the vehicle’s CoG on

the road. Lateral force times CoG height must be balanced by vertical reac-

tions at the wheels. The contribution hCoG �m � g �ϕ (mass, acceleration of

gravity) in this roll moment, due to the lateral deviation of the CoG over the

FIGURE 5.9 Tire side force versus tire load, load transfer.
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roll angle ϕ, has been neglected. The roll angle ϕ satisfies the following

relationships:

ϕ5
t1 �ΔFz1

Kϕ1
5

t2 �ΔFz2

Kϕ2
5

P
i ti �ΔFziP

i Kϕi
5

hCoG � FyP
i Kϕi

ð5:19Þ

and therefore

ΔFz1 5
Kϕ1P
i Kϕi

� hCoG � Fy

t1
ΔFz2 5

Kϕ2P
i Kϕi

� hCoG � Fy

t2
ð5:20Þ

From Eq. (5.20), it is clear that load transfer is directly related to the dis-

tribution of axle roll stiffnesses. Assuming steady-state conditions, we will

show in Section 5.2.3:

Fy1

Fz1

5
Fy2

Fz2

5
Fy

m � g

In other words, constants Mi, i5 1, 2, exist such that

ΔFzi 5Mi � Fyi

Applying this in the description of the lateral tire characteristics, denoted

as Flateral(α, Fz), one may write for the front axle:

Fy1 5Flateral α;
1

2
� Fz1 1M1 � Fy1

� �
1Flateral α;

1

2
� Fz1 2M1:Fy1

� �
ð5:21Þ

This is a nonlinear equation in Fy1 that can be solved by iteration. We

solved it, assuming that 75% of the roll stiffness is covered by the front axle.

In this way, we distinguished between the noncorrected axle side force char-

acteristic (twice the tire side force) and the solution of expression (5.21).

Figure 5.10 shows the results.

Observe that the side force shows a significant reduction. Also, in spite of

the fact that the slope of this curve at α5 0 doesn’t change, a lower effective

cornering stiffness (linearization over the linear slip angle range 024 [�]) is
observed.

This load transfer could have been determined using a double-track vehi-

cle model. This is the straightforward extension of the single-track model,

with distinction of considering separate wheels instead of the axles. Slip

angles and steering angles are assumed the same for left and right wheels.

Using this model means that one must determine the individual wheel

ground contact forces under varying conditions of changing lateral accelera-

tion ay. If we allow the vehicle speed to change, one must account for chang-

ing longitudinal acceleration ax as well, which means that we include the
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longitudinal load transfer in this model. There are different approaches to

determine these contact forces (Genta and Morello [11], Kiencke and Nielsen

[20], and Venhovens and van der Knaap [55]). Starting with the first

approach (extending expression (5.20)) provides the following.

CONTACT FORCES ACCORDING TO GENTA AND MORELLO

1

m
� Fz1L 5

b

2 � L � g2 hCoG � Kϕ1

t1 �
X
i

Kϕi
� ay 2

hCoG

2 � L � ax ð5:22aÞ

1

m
� Fz1R 5

b

2 � L � g1 hCoG � Kϕ1

t1 �
X
i

Kϕi
� ay 2

hCoG

2 � L � ax ð5:22bÞ

1

m
� Fz2L 5

a

2 � L � g2 hCoG � Kϕ2

t2 �
X
i

Kϕi
� ay 1

hCoG

2 � L � ax ð5:22cÞ

1

m
� Fz2R 5

a

2 � L � g1 hCoG � Kϕ2

t2 �
X
i

Kϕi
� ay 1

hCoG

2 � L � ax ð5:22dÞ

with wheel load Fzij with i5 1,2 (front and rear axle) and j5L, R (left, right

wheel). Kiencke and Nielsen introduce virtual masses at front and wheel

axles:

m�
1 5

Fz1

g
; m�

2 5
Fz2

g

FIGURE 5.10 Effect of load transfer on lateral axle characteristics.
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to obtain, for the left and right wheel loads

Fzij 5
1

2
� Fzi 6m�

i �
hCoG

ti
� ay 5

1

2
6

hCoG

ti
� ay
g

� �
� Fzi

with the axle loads being changed by longitudinal load transfer. Together,

this leads to

CONTACT FORCES ACCORDING TO KIENCKE AND NIELSEN

1

m
� Fz1L 5

b

L
� g2 hCoG

L
� ax

� �
� 1

2
2

hCoG

t1
� ay
g

� �
ð5:23aÞ

1

m
� Fz1R 5

b

L
� g2 hCoG

L
� ax

� �
� 1

2
1

hCoG

t1
� ay
g

� �
ð5:23bÞ

1

m
� Fz2L 5

a

L
� g1 hCoG

L
� ax

� �
� 1

2
2

hCoG

t2
� ay
g

� �
ð5:23cÞ

1

m
� Fz2R 5

a

L
� g1 hCoG

L
� ax

� �
� 1

2
1

hCoG

t2
� ay
g

� �
ð5:23dÞ

Venhovens and van der Knaap extended the approach of Kiencke and

Nielsen, allowing the inertia Jxz to not be equal to zero. This provides addi-

tional contributions from yaw acceleration to the wheel loads. However,

they took the track width as identical for front and rear axles. Their

approach is identical to expressions (5.23a)�(5.23d), if Jxz5 0. For identi-

cal track widths, one can show that expressions (5.23a)�(5.23d) implies

that the lateral load transfer per axle is proportional to the instantaneous

axle load:

Fz1R 2Fz1L

Fz1

5
Fz2R 2Fz2L

Fz2

Venhovens and van de Knaap [55] indicated it as a design of good han-

dling when this proportionality was fulfilled.

We compared both approaches for the rear axle wheel loading using the

vehicle data from Appendix 6 and for a roll stiffness distribution

between front and rear axles of 2:3. The longitudinal acceleration ax has been

varied from 0 to 0.6 [g] (with the upper bound being too large for driving

but acceptable for braking) and the lateral acceleration from 0 to 0.8 [g].
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The curves in Figure 5.11 illustrate that the ax � ay term in expression

(5.23a)�(5.23d) tends to reduce the effect of ax for the inner wheel and

increase it for the outer wheel. Note that a more extreme distribution of roll

stiffness will increase the difference between the two approaches.

5.2.3 Alignment and Compliance Effects

Pacejka [32] discusses the determination of effective axle characteristics in

the presence of steering compliance and suspension kinematics. Additional

steering angles may arise because of

• Roll steer.

• Steering compliance due to a torque on the wheels, which is the side force

times the trail (pneumatic, caster).

• Suspension compliance.

Similar effects may be observed with respect to additional camber angles.

Both effects will change the axle characteristics. If we restrict ourselves to

additional steering angles, this means that points on the axle characteristic

curve (Fy versus α) are shifted horizontally along the α-axis (from α to αc,

Figure 5.12). It is assumed that additional steering angles δαL and δαR arise at

FIGURE 5.11 Wheel loads for different ax and ay according to Eqs. (5.22a)�(5.22d)
and (5.23a)�(5.23d).

FIGURE 5.12 Effective axle characteristics in case of steering or suspension
compliance.
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left and right wheels from the preceding compliances and suspension kine-

matics, respectively. These steering angles depend on the side force and we

obtain (see also expression (5.21)):

Fy 5Flateralðα1 δαLðFyÞÞ1Flateralðα1 δαRðFyÞÞ

which is a nonlinear equation from which Fy(α) can be determined. One

might combine this with the load transfer, described by expression (5.21).

The graphical interpretation is given in Figure 5.12 (taken from Ref. [32]).

Because the disturbance slip angle δα depends on Fy, we may also write it as

a function of the undisturbed angle α. This relationship is then used to mod-

ify the axle side force behavior, as indicated in Figure 5.12.

We mention two sources where explicit data is given on the impact of

compliance and alignment effects on the cornering compliance CCα, which

is defined as follows:

CCαi 5
Fzi

Cαi
ð5:24Þ

i.e., being the ratio of axle load and the axle cornering stiffness for axle i,

i5 1,2. Using the given information about the cornering compliance, and

accounting for some of the preceding effects and known axle load, one is

able to derive the effective axle cornering stiffness.

The first source is from Bickerstaff [3], and uses a pickup truck.

In Table 5.3, we list the causes for modified cornering compliance in the first

column. In the next two columns, we provide the values for the cornering

compliance, taking into account the effects up to that row, including all the

potential causes in this row and previous rows. The last two columns list the

cornering stiffnesses. Based on Ref. [3], we assumed a front axle load of

3000 [lb]5 6675 [N], and a rear axle load of 6000 [lb]5 13350 [N].

TABLE 5.3 Effective Axle Cornering Stiffness for a Pickup Truck [3]

CCα1 CCα2

Cα1

(N/rad)
Cα2

(N/rad)

Tire response, load transfer 0.103 0.131 64822 101986

1aligning stiffness 0.117 0.106 57082 125393

1roll steer 0.134 0.080 49669 166282

1camber thrust 0.138 0.080 48411 166282

1lateral compliance 0.155 0.080 42972 166282

1steering compliance 0.173 0.080 38631 166282
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We observe that the front axle cornering stiffness can be reduced to 60%

of the original value, whereas the rear axle cornering stiffness may increase

over 60%. Note that the reference is from the 1970s and is therefore not cur-

rent. That means a little out of date. To discuss this table in more detail, we

first address the axle stiffness based on only the tire data, including the effect

of load transfer. The aligning torque, which is usually neglected, has an effect

on the vehicle steering response that can be accounted for by modifying the

axle cornering stiffnesses. Roll steer means that steering arises from body

roll, which is experienced as a modified side force for the same slip angle,

i.e., as a different axle cornering stiffness. A similar effect is observed for

camber. Finally, the front axle cornering stiffness is affected by lateral

(depending on the position of the steering linkage) and steering compliance.

The second source [5] is more recent. It refers to a passenger car, with mass

of 1200 [kg], and front and rear axle load given as 6474 [N] and 5297 [N],

respectively. Results are presented in Table 5.4 where, as in Table 5.3, the data

has been transferred to Newtons and radians instead of pounds and degrees.

Again, observe the significant effect, specifically on the front axle corner-

ing stiffness (a reduction of 30%). In more detail, the modified CoG position

is due to a possible different loading balance of the vehicle. This leads to dif-

ferent axle loads and might require different tire pressures (these effects have

been included). Roll steer and camber have been discussed previously in

Table 5.3. They lead to a different side force for the same slip angle and

therefore, a different effective cornering stiffness. Aligning torques have a

similar effect, especially for the front axle in combination with the steering

compliance. In addition, they move the tire side forces rearward; this move-

ment is referred to as aligning torque on a rigid body.

5.2.4 Effect of Combined Slip

For combined slip, when a specific brake or drive torque is applied, we can

account for that torque in the lateral axle forces, as described in Section 2.6.

TABLE 5.4 Effective Axle Cornering Stiffness for a Passenger Car [5]

CCα1 CCα2

Cα1

(N/rad)
Cα2

(N/rad)

Tire response, load transfer 0.105 0.105 61828 50586

1modified CoG position 0.110 0.099 58884 53249

1roll steer 0.119 0.091 54554 58369

1roll camber effect on steer 0.122 0.099 52995 53249

1lateral compliance 0.126 0.103 51523 51444

1aligning torque compliance 0.145 0.105 44695 50586

1aligning torque on rigid body 0.147 0.103 44163 51444
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This can be completed by applying the combined slip Magic Formula description

for the front or rear axle, or by using one of the approximations introduced in

Section 2.6. One might think of the general situation when a certain drive force is

required to overcome various resistances (rolling resistance, aerodynamic drag,

slopes). Genta and Morello [11] discussed this case, showing the impact on the

neutral steer point (see Section 5.3.3). For wheel-by-wheel braking or driving,

one requires at least a double-track vehicle model.

5.3 STEADY-STATE ANALYSIS

5.3.1 Steady-State Solutions

In this section, we shall discuss the steady-state solutions of expressions

(5.6a) and (5.6b). We consider vehicle behavior as described by the

steady-state circular test ISO 4138. Stability of vehicle behavior can be

described as the return of the vehicle to steady-state behavior following a

disturbance from some deviation from the original path. Following the

dynamic behavior in terms of states v(t) and r(t), the steady-state solutions

can be considered as the final limits of the vehicle states. In other words,

the steady-state solutions correspond to the singular points for the full

dynamic system.

Under steady-state conditions, and neglecting external loads Fye and Mze,

time derivatives vanish and expressions (5.6a) and (5.6b) reduces to

m � u � r5Fy1 1Fy2 5Fy ð5:25aÞ

a � Fy1 5 b � Fy2 ð5:25bÞ

In terms of the axle loads as given by Eq. (5.9), one finds from

Eq. (5.25b)

Fy1ðα1Þ
Fz1

5
Fy2ðα2Þ
Fz2

ð5:26Þ

Hence, the normalized axle characteristics or lateral friction coefficients

fi(αi) coincide. Substituting Eq. (5.26) in Eq. (5.25a), one finds

fy1ðα1Þ5 fy2ðα2Þ5
u � r
g

5
u2

g � R 5
Fy

m � g ð5 ay in g0sÞ ð5:27Þ

for radius of a vehicle path R. The lateral acceleration Fy/mg depends on the

relative path curvature L/R (wheelbase L) in a linear sense:

Fy

m � g 5
u2

g � L

� �
� L
R

ð5:28Þ
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In terms of this same relative path curvature, it follows from Eq. (5.13),

between slip angles and state variables (v, r), that

δ5
L

R
1 ðα1 2α2Þ ð5:29Þ

See also expression (4.5). The effect of finite velocity compared to the

situation of kinematic steering is that the axle steering angle is changed with

α1�α2. Equality of normalized axle side forces (see expression (5.26)) fol-

lows very easy from the equations of motion, in terms of the slip angles (see

expression (5.15)). In addition, Eq. (5.27) follows directly from expression

(5.15), in combination with Eq. (5.29). Likewise, expression (5.14) (without

the simplification Jz5m � a � b) can be used to obtain the same results.

REMARK
Note that different sets of (α1, α2) may satisfy Eqs. (5.26) and (5.29) due to

the nonlinear behavior of fy1 and fy2. This has been illustrated in Figure 5.13,

in which two normalized axle curves are shown. One is looking for sets (α1,

α2), with a difference equal to δ 2 L/R and with equal values of fyi. Three

pairs of solutions are indicated, one corresponding to both the parts of both

curves with positive slope, and two corresponding when the axle slip for a

maximum side force is exceeded (“over the top”).

In summary, one observes, from the previous expressions, that the centrif-

ugal force Fy can be described in terms of both the slip angles through the

normalized axle curves (these relationships are highly nonlinear) and in terms

of the path curvature where slip angles and path curvature are related through

expression (5.29).

FIGURE 5.13 Different steady-state solutions.
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5.3.2 Understeer and Oversteer

Let us examine Eqs. (5.25a), (5.25b) and (5.26) in more detail, starting with

linear tire behavior. One finds from expressions (5.26) that

u2

g � R 5
Cα1 � α1

Fz1

5
Cα2

� α2

Fz2

ð5:30Þ

which means that

Fz1

Cα1
2

Fz2

Cα2

	 

� u2

g � R � η � u2

g � R 5 η � ayðgÞ5α1 2α2 5 δ2
L

R
ð5:31Þ

where η is the coefficient, referred to as understeer gradient. This relation-

ship (5.31) expresses clearly the dependency of the vehicle cornering perfor-

mance on tire characteristics. This can be explained as follows. For very low

speed u, the steering angle necessary to negotiate a curve is equal to the rela-

tive curvature L/R (Ackermann angle). Increasing speed over the same curve

(a circle with radius R), creates a necessary change in required steering angle

that depends on the understeer gradient and hence, on the tire characteristics.

For a positive understeer gradient η, the steering angle δ must increase,

whereas for a negative value of η, the opposite is true and the steering angle

δ must be reduced. In the second case, without this change in δ, the vehicle

would end up on a curve with a small curve radius. Increasing speed means a

larger lateral acceleration and hence, more extreme conditions. Without cor-

rective action from the driver, and for negative η, these conditions lead to a

smaller curve radius which further increases the lateral acceleration. Hence,

the vehicle exhibits a self-reinforcing effect, making things worse for under-

steer gradient η, 0. It will be demonstrated that, beyond a certain speed, this

case will lead to instability.

As one observes, the understeer gradient is written as the difference of

two terms, related to the front and the rear axles, and was introduced in

Section 5.3.1 as the cornering compliance of the front axle CCα1 and rear

axle CCα2 (see expression (5.24)). These terms include contributions from

the tire characteristics (cornering stiffness), as well as from other effects such

as aligning torque, compliance, camber effects, etc. The data from Tables 5.3

and 5.4 can be used to show the impact on the understeer gradient, simply

by subtracting CCα2 from CCα1. The resulting understeer gradient is given

in Table 5.5.

Consequently, if one is restricted to tire response only, the pickup truck

has a negative understeer gradient. The other effects result in a positive value

for η. In a relative sense, this change in η is much larger than the impact on

the individual axle contributions (CCαi) to η. The same can be said for the

passenger car. The impact on the separate axles was significant, but the rela-

tive effect of compliances, suspension kinematics, and alignment is more
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pronounced. In Section 5.4, we discuss how these changes in η crucially

affect the vehicle handling performance and yaw stability.

We provide definitions for understeer and oversteer behavior, follow-

ing from Eq. (5.31).

DEFINITION 1
A vehicle is understeered if the axle steering angle must be increased for an

increasing vehicle forward speed to negotiate the same curve. A vehicle is

oversteered if the opposite is true, i.e., the steering angle must be decreased

for increasing vehicle forward speed to negotiate the same curve. We call a

vehicle neutrally steered if no adjustment of δ is required.

DEFINITION 2
A vehicle is understeered if the front axle slip angle exceeds the rear axle

slip angle under steady-state conditions: α1.α2 (or, in more general terms,

jα1j. jα2j). The vehicle is oversteered if the opposite is true (α1,α2).

DEFINITION 3
A vehicle is understeered if the understeer gradient η. 0, i.e., the front axle

normalized axle cornering stiffness is exceeded by the rear axle normalized

axle cornering stiffness. Note that

η � Yr . 0; η � Nβ . 0 ð5:32Þ

in case that η 6¼ 0, and with Yr and Nβ defined in Eqs. (5.16a) and (5.16b). If

η, 0, we define the vehicle as being oversteered.

Note that the understeer property is directly related to the steering

wheel gradient, which is related to the steady-state circular behavior

(see Section 5.1). This means that the following alternative definition of

understeer may be introduced.

TABLE 5.5 Understeer Gradient, Accounting for Different Compliance and

Alignment Effects

Pickup Truck [3] η Passenger Car [5] η

Tire response, load transfer 20.028 Tire response, load transfer 0.000

1aligning stiffness 0.010 1modified CoG position 0.010

1roll steer 0.054 1roll steer 0.028

1camber thrust 0.058 1roll camber effect on steer 0.023

1lateral compliance 0.075 1lateral compliance 0.023

1steering compliance 0.093 1aligning torque 0.040

1aligning torque on rigid body 0.044
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DEFINITION 4
A vehicle is understeered if the steering wheel gradient @δ/@ay (ay5 0) is pos-

itive. A vehicle is oversteered if this gradient is negative.

We conclude that, for linear tire characteristics, all four definitions are

identical. Definition 1 is general and applies for larger lateral acceleration

where nonlinear axle behavior cannot be neglected. Definitions 2�4 are

related to tire behavior for small lateral acceleration, i.e., for the range of ay
for which linear tire behavior is a realistic approximation.

Consider Figure 5.14, in which we depicted possible relationships between

axle steering angle δ and lateral acceleration ay (handling curves), as a result

of a stationary vehicle situation, i.e., driving a circle with a constant radius R.

The left part of the curves corresponds to linear tire behavior, cf. expression

(5.31). It is clear that, with increasing speed and lateral acceleration, this lat-

eral acceleration cannot be increased forever. There is a moment when the

tires saturate and the vehicle will skid out, either at the front axle or at the rear

axle. That means that the curve, which begins as a linear relationship for small

ay, will have to bend off upward or downward. Compare this with Figure 5.13

where the normalized axle characteristics were assumed to intersect at a cer-

tain slip angle. This means a steady-state situation with the same slip angles at

front and rear axles and thus, δ5L/R. This is only possible if the curve in

Figure 5.14 is bending off downward, which means that there will be an area

in terms of ay where the vehicle behaves as oversteered (according to defini-

tion 1). Observe that the rear axle is saturated at this intersection point, i.e., the

vehicle is expected to skid out at the rear axle. If the normalized axle charac-

teristics do not intersect, the situation of the upper curve occurs, where the

vehicle remains understeered until it skids out at the front axle.

Now let us assume again linear axle behavior and examine the vehicle

steady-state steering behavior more closely. Remember that we derived expres-

sions for the trajectory gain and the body slip angle gain in Section 4.1 under

FIGURE 5.14 Stationary steering performance.
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conditions of kinematic steering. Under steady-state conditions, one can derive

from Eqs. (5.25a) and (5.25b), in combination with expression (5.13), that

Trajectory curvature gain:

1=R

δ

� �
5

L � Cα1 � Cα2

L2 � Cα1 � Cα2 1m � u2 � Nβ
ð5:33aÞ

Body slip angle gain:

β
δ

� �
5

b � L � Cα1 � Cα2 2 a � Cα1 � m � u2
L2 � Cα1 � Cα2 1m � u2 � Nβ

ð5:33bÞ

Yaw rate gain:

r

δ

� �
5

u � L � Cα1 � Cα2

L2 � Cα1 � Cα2 1m � u2 � Nβ
ð5:33cÞ

Lateral acceleration gain:

ay

δ

� �
5

u2 � L � Cα1 � Cα2

L2 � Cα1 � Cα2 1m � u2 � Nβ
ð5:33dÞ

with Nβ defined in Eqs. (5.16a) and (5.16b). The reader may verify that

Eqs. (5.33a) and (5.33b) correspond to the values for Ackermann steering

if u-0.

Define the stability factor Ks:

Ks 5
m � Nβ

L2 � Cα1 � Cα2
5

1

g � L � η ð5:34Þ

The yaw rate gain and body slip angle gain can now be written as

r

δ

� �
5

u

L � ð11Ks � u2Þ
ð5:35aÞ

β
δ

� �
5

b2B � u2
L � ð11Ks � u2Þ

where B5
a � m
L � Cα2

ð5:35bÞ

From these expressions, one can draw two important conclusions:

1. If the vehicle is understeered (i.e., Ks. 0), the yaw rate gain and body slip

angle gain are bounded. A speed u exists for which the yaw rate gain has a

maximum value. This speed is called the characteristic speed uch.

2. If the vehicle is oversteered (i.e., Ks, 0), these gains will become

unbounded for a certain speed, which is referred to as the critical speed ucr.
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The following expressions hold for the characteristic and critical speeds:

u2ch 5
1

Ks

5
g � L
η

η. 0 ð5:36Þ

u2cr 52
1

Ks

52
g � L
η

η, 0 ð5:37Þ

We evaluated the relationships (5.35a) and (5.35b) for the vehicle para-

meters of Appendix 6 for understeer (η5 0.042), neutral steer (η5 0), and

oversteer vehicle (η520.02). This leads to

uch 5 89:3 ½km=h�

ucr 5 132:5 ½km=h�

Results are shown in Figure 5.15. Observe the increasing gains (in abso-

lute sense) for oversteer, the linear yaw rate gain for neutral steer, and the

maximum yaw rate gain for u5 uch.

The next step is to extend Eq. (5.31) for nonlinear axles, which means

that we want to describe the curve of δ versus ay cf. Figure 5.14 for the full

nonlinear regime.

The first step is to invert Eq. (5.27), where we denote

giðayÞ5 invf fyiðαiÞgðayÞ i5 1; 2 ð5:38Þ

with inv{f} indicating the inverse of a function f. The functions gi are now

multivalued functions in the lateral acceleration ay (in g’s, i.e., Fy/(mg)),

where both single-valued branches may be treated separately.

It follows using Eq. (5.29) that

δ2
L

R
5α1 2α2 5 g1ðayÞ2 g2ðayÞ � hðayÞ ð5:39Þ

FIGURE 5.15 Vehicle yaw rate and body slip angle gain.
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This relationship is the nonlinear extension of Eq. (5.31), where the linear

term η � ay(g) is replaced by h(ay).

It follows that the curve of δ5 L/R1α1�α2 versus ay/g, as shown in

Figure 5.14, can be obtained using vertical subtraction of g1 and g2 in the

(ay, δ) plane, i.e., using horizontal subtraction of the original normalized axle

characteristic curves in the (αi, fyi) plane. Because the functions gi are multi-

valued, there are different ways to carry out this subtraction, i.e., different

branches of the two functions g1 and g2 can be combined.

Branches can only exist when the ay/g value is below the lowest maxi-

mum (of the two maximum values of both normalized axle characteristics,

respectively). Consider the axle characteristics, depicted in Figure 5.13.

They are also shown in the left-hand plot of Figure 5.16. The dashed line

in Figure 5.16 corresponds to the function h(ay)5α1�α2, described in

Eq. (5.39). Because of the intersection of f1 and f2, the function h(ay)

intersects the line α1�α25 δ�L/R5 0. This is clear from the right-hand

figure, with δ�L/R plotted against ay(g). This plot is the representation of

the stationary steering performance for the axle characteristics from

Figure 5.13. The dashed line in the left-hand image of Figure 5.16 is

usually referred to as handling curve. Consequently, according to

definition 1, the vehicle behaves as understeered up to the maximum of

this handling curve. Beyond this point, the vehicle behaves as oversteered.

Note that, even in case of oversteer, we may still obtain α1.α2. This

implies that definition 2 does not hold for the nonlinear case.

In the same way, one may use axle characteristics that do not intersect, as

indicated in Figure 5.17 (left-hand plot). In this case, the nonlinear handling

curve in the right-hand plot is continuously increasing, in contrast to

Figure 5.16, which means that the vehicle behaves as understeered for the

full ay range. The maximum of fy1 is now decisive for the ay/g versus α1�α2

branch in the left-hand image in Figure 5.17.

FIGURE 5.16 Handling curve, example 1.
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These figures clearly show that the vehicle steering characteristics depend

directly on the axle characteristics and thus the tire characteristics. The

understeer region corresponds to the situation in which

@fy1ðα1Þ
@α1

,
@fy2ðα2Þ
@α2

ð5:40Þ

showing that definition 3 still holds if η is replaced by

ηnonlinear 5
1

ð@fy1ðα1ÞÞ=ð@α1Þ
2

1

ð@fy2ðα2ÞÞ=ð@α2Þ
5

@hðayÞ
@ay

ð5:41Þ

where ay is expressed in terms of g. The extension of definition 4 to nonlinear

axle characteristics is straightforward from Eq. (5.41).

5.3.3 Neutral Steer Point

Another approach to understeer is to consider a vehicle under a lateral force

and no steering. With the force acting at a point at the front of the vehicle,

the vehicle is expected to experience a yaw motion. The same is true if the

force is acting at a point at the rear of the vehicle, but with the yaw direction

opposite to the previous situation. One may expect the existence of a point,

in the (x, z) plane of symmetry, such that any side force acting at that point

does not cause a steady-state yaw motion, i.e., the vehicle will only drift side-

ways with body slip angle (β). This point PNS is referred to as the neutral

steer point (Figure 5.18) and has an x position relative to the vehicle CoG,

denoted as xNS. The static margin Ms is defined as

Ms 5
xNS

L
ð5:42Þ

with wheelbase L. Refer also to Genta and Morello [11] and Dukkipati et al.

[6] for further discussion of the neutral steer point and the static margin.

FIGURE 5.17 Handling curve, example 2.
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In Ref. [6], a different sign convention is used, in the sense that xNS indicates

the vehicle CoG with respect to the neutral steer point, instead of the inverse.

The consequence is that xNS, as well as Ms, will have a different sign com-

pared to the analysis here. The total force Fy must be equal to the sum of

both axle side forces. Each axle experiences a slip angle equal to β, because
the yaw rate r5 0.

Consequently,

Fy 5Fy1ðβÞ1Fy2ðβÞ

which can be described, for linear axle characteristics, as

Fy 5 Yβ � β52ðCα1 1Cα2Þ � β

The value of xNS follows from equilibrium of moments around the vehicle

CoG:

xNS 5
a � Fy1ðβÞ2 b � Fy2ðβÞ

Fy1ðβÞ1Fy2ðβÞ

In case of linear axle characteristics,

xNS 5
a � Cα1 2 b � Cα2

Cα1 1Cα2
5

Nβ

Yβ
ð5:43Þ

Let us investigate what occurs for linear axles if the neutral steer point is

located behind the CoG, i.e., xNS, 0.

A force, acting on the vehicle at the CoG, will result in a yaw motion

as the vehicle moves away from this force. The slip angle at the front axle

will therefore increase (with a � r=V) and the slip angle at the rear axle will

FIGURE 5.18 Vehicle under lateral force Fy, acting at the Neutral Steer Point.

5.3 Steady-State Analysis 155



decrease. Consequently, α1�α2 will increase, which means that the vehicle

behaves as understeered.

The opposite is true if the neutral steer point is ahead of the CoG. When

the vehicle experiences a force acting on vehicle CoG (e.g., a crosswind),

drifting will move the vehicle away from the source of this force. However,

the resulting yaw motion will give the vehicle the tendency to move toward

this force, i.e., to act against the loading.

In this case, α1�α2 will decrease, which means that the vehicle behaves

as oversteered. Also compare Eq. (5.43) with expression (5.31), from which

it follows that xNS has the same sign as 2η.
Both cases (understeer and oversteer) are schematically shown in

Figure 5.19 and are summarized in Table 5.6.

5.4 NONSTEADY-STATE ANALYSIS

5.4.1 Yaw Stability

In this section, we discuss the solutions of the equations of motion (5.6a) and

(5.6b) where we neglect Fye and Mze. In Section 5.3, the steady-state solutions

of equations (5.6a) and (5.6b) have been discussed and we observed the rele-

vance of the understeer and oversteer properties, with respect to the vehicle’s

steady-state behavior.

Let us now discuss stability of these steady-state solutions. We will line-

arize around the steady-state solutions and discuss the nontrivial solutions of

the resulting set of homogeneous equations. We use the theory of system

dynamics as discussed in Appendix 2.

Let the slope of the axle characteristics front and rear for steady-state slip

angles α1 and α2 be denoted by A1 and A2, respectively (Figure 5.20). Note

FIGURE 5.19 Vehicle response to external force in absence of steering.

TABLE 5.6 Steering Performance and Neutral Steer Point

Behavior η α1�α2 xNS Ms

Understeer .0 .0 ,0 ,0

Oversteer ,0 ,0 .0 .0
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that these slopes are the same as the cornering stiffnesses Cα1 and Cα2 if lin-

ear axle characteristics are assumed. Linearization around the steady-state

solution leads to equations in dv5 v � vs and dr5 r 2 rs, with an index s

indicating steady-state behavior.

Let these equations have solutions of the form (see Appendix 2)

dv 5Kv � eλ�t dr 5Kr � eλ�t

resulting in the equation

m � λ1
A1 1A2

u
m � u1 a � A1 2 b � A2

u

a � A1 2 b � A2

u
Jz � λ1

a2 � A1 1 b2 � A2

u

0
BBBB@

1
CCCCA � Kv

Kr

� �
5

0

0

� �
ð5:44Þ

The characteristic equation follows from stating that the determinant of

the coefficient matrix vanishes:

m � Jz � u2 � λ2 1 u � λ � ðJz � ðA1 1A2Þ1m � a2 � A1 1m � b2 � A2Þ
1A1 � A2 � J � L2 2m � ða � A1 2 b � A2Þ5 0

ð5:45Þ

The local stability of the vehicle around the steady-state point is deter-

mined by the resulting eigenvalues. In Appendix 2, we discuss this stability

and the type of local behavior (oscillatory, monotonous).

First, we first assume linear axle characteristics. The extension to non-

linear axle characteristics is treated in detail in Section 5.5.2. The same

FIGURE 5.20 Steady-state solutions.
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equation as expression (5.45) is then derived, with A1 and A2 replaced by Cα1

and Cα2, respectively. This equation, and all equations derived from

Eq. (5.45) are simpler if we take Jz5m � a � b, as suggested in expression

(5.10). In that case, Eq. (5.45) becomes

a � b � m2 � u2 � λ2 1m � u � λ � L � ða � Cα1 1 b � Cα2Þ
1Cα1 � Cα2 � L2 2m � u2 � ða � Cα1 2 b � Cα2Þ5 0

ð5:45aÞ

This is no real restriction in the sense that stability properties are qualita-

tively the same as for arbitrary Jz. From Eq. (5.34), we find for the understeer

gradient:

η5
m � g

L � Cα1 � Cα2
� ðb � Cα2 2 a � Cα1Þ ð5:46Þ

resulting, after substituting in Eq. (5.45a), in

λ2 1
L � ða � Cα1 1 b � Cα2Þ

m � u � a � b � λ1
Cα1 � Cα2 � L � η
m2 � a � b � g � 11

g � L
η � u2

� �
5 0 ð5:47Þ

There are in general two solutions λ12, written as

λ12 52ζ � ω0 6ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 2 1

q
if ζ. 1 ðoverdampedÞ

λ12 52ω0 if ζ5 1 ðcritically dampedÞ

λ12 52ζ � ω0 6 i � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ζ2

q
if ζ, 1 ðunderdampedÞ

with

ω2
0 5

Cα1 � Cα2 � L � η
m2 � a � b � g � 11

g � L
η � u2

� �
ð5:48Þ

ζ5
L � ða � Cα1 1 b � Cα2Þ
2 � m � a � b � u � ω0

ð5:49Þ

For positive ζ and ω2
0, these eigenvalues have a negative real part (or are

real and negative), which implies asymptotic stability. We indicated over-

damped because any deviation from the steady-state solution will behave

nonoscillatory in this case (the eigenvalue is real and assumed to be nega-

tive). This corresponds to the two-sided node, described in Appendix 2.

Underdamped means that deviations will oscillate while decaying to zero (the

eigenvalue has a nonzero imaginary part). This corresponds to the focus or

spiral point (again, see Appendix 2).
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Let us consider these eigenvalues for different values of η. Remember

that the vehicle is understeered if η. 0 and oversteered if η, 0.

From expression (5.48), it can easily be concluded that

If η. 0 then ω2
0 . 0 for all velocities u

If η, 0 then ω2
0 . 0 if and only if u, ucr

with ucr given by expression (5.37). Furthermore, using Eqs. (5.48) and

(5.49), one is able to prove that

If η. 0 then
dζ
du

, 0 for all velocities u. 0

If η, 0 then
dζ
du

. 0 for all velocities satisfying 0, u, ucr

We used the fact that the cornering stiffnesses Cα1 and Cα2 are positive.

Following the same approach for nonlinear axles, one or two of the slopes A1

and A2 may become negative, which changes the situation. We return to this

in Section 5.5.2.

For an understeered (linear) vehicle, for large values of u, ω0 approaches

a finite nonzero value, which implies that ζ will become arbitrarily small,

i.e.,,1. For small values of velocity u the value of ζ approaches

ζ-
a � Cα1 1 b � Cα2

2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a � b � Cα1 � Cα2

p . 1 if a � Cα1 6¼ b � Cα2

Hence, the understeered vehicle will respond as overdamped to deviations

from steady-state behavior up to a certain speed, and will respond as under-

damped beyond that speed.

For the oversteered vehicle, the velocity must be smaller than the criti-

cal velocity ucr. At this critical speed, the steady-state behavior becomes

unbounded, as shown in Figure 5.15. However, a steady-state solution

exists if u. ucr for an oversteered vehicle. If u. ucr and η, 0, then ω2
0 , 0

(this follows from expression (5.48)). Consequently, as following from

expression (5.47), the resulting eigenvalues are real: one positive and one

negative. According to Appendix 2, this stationary (equilibrium) point is an

(unstable) saddle point in the phase plane.

We determined the relationship between ω0 and ζ versus velocity u,

with the result plotted in Figures 5.21 and 5.22 for an understeered

vehicle (η. 0), an oversteered vehicle (η, 0), and a neutrally steered

vehicle (η5 0).

Observe the behavior of ω0 near the critical speed ucr for an oversteered

vehicle. No eigenfrequency can be found for u. ucr. The damping ratio ζ
satisfies ζ. 1 for all velocities; hence; the vehicle responds as overdamped,
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in contrast to the understeered vehicle for not too small speed. For small

speed, the damping ratio ζ exceeds 1, cf. Figure 5.22).

We have chosen the vehicle data from Appendix 6 for the understeered

vehicle. For the oversteered vehicle, we have chosen η520.02.

What would occur if the driver suddenly changed the steering angle with

a finite step, resulting in the ramp or step steer response (or J-turn) as dis-

cussed in Section 5.1? Assuming a step change in the steering angle, the front

axle slip angle α1 will experience a step change as well according to expres-

sion (5.13). As a result, there is an instantaneous change in the front axle side

force and in the lateral acceleration (see Appendix 1). The yaw rate now

begins to change, resulting in a side force at the rear axle, with the lateral

acceleration increasing further. Finally, the vehicle is reaching the steady-

state behavior after a possible overshoot in the yaw rate. This overshoot indi-

cates underdamped oscillatory behavior near the steady-state yaw rate value,

hence a focus or spiral point in the phase plane (see Appendix 2). When the

maximum yaw rate is reached, the rear axle drift is still increasing. Hence,

the lateral acceleration (and therefore, the vehicle lateral speed) lags behind

the yaw rate. Consequently, applying a step (or ramp) steer input, a vehicle

will first yaw and then drift (see Figure 5.2 for a ramp steer). We have used

FIGURE 5.21 Parameter ω0 versus speed u.

FIGURE 5.22 Damping ratio ζ versus speed u.
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the state space model from Appendix 1 for two different values of the under-

steer gradient, and determined the yaw rate response to a ramp steer

(120 km/h, maximum axle steering angle of 3�), Figure 5.23. For η. 0, the

plot shows overshoot behavior in contrast to the case of η, 0. In addition,

one observes a much larger yaw rate steady-state value (i.e., the yaw rate

gain) for the oversteered vehicle compared to the understeered vehicle. This

was shown previously in Figure 5.15, in which we depicted the yaw rate gain

versus vehicle speed for varying vehicle velocity. We also depicted the body

slip angle for the same ramp steer input (Figure 5.24).

FIGURE 5.23 Yaw rate response to a ramp steer for an understeered (η50.042)
and oversteered (η520.02) vehicle.

FIGURE 5.24 Body slip angle response to a ramp steer for an understeered

(η50.042) and oversteered (η520.02) vehicle.
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Another step input refers to the situation where a side force is applied on

a vehicle, driving straight ahead, i.e., with a steering angle of zero. Such a

force could be a result of a sudden change in the lateral slope of the road or a

crosswind loading. In Section 5.3.3, we introduced the neutral steer point,

which is the point in the (x, z) plane of symmetry such that any side force act-

ing at that point does not cause a yaw motion. For an understeered vehicle,

this point lies behind the vehicle CoG. For an oversteered vehicle, the neutral

steer point lies ahead of the CoG (see Table 5.6). As a result, if a sudden

(ramp input) lateral force Fe is applied at the vehicle CoG, the ultimate vehi-

cle response will only include drifting, i.e., a constant body slip angle and no

yaw if the vehicle is neutrally steered. If the vehicle is understeered, the lat-

eral force Fe acts in front of the neutral steer point. The vehicle will have a

yaw response, making the vehicle move away from the source of the side

force Fe. A similar qualitative behavior is observed for any vehicle subjected

to a lateral force acting in front of the neutral steer point and in absence of an

external yaw moment. An oversteered vehicle (or a vehicle with the external

force acting behind the neutral steer point) will move toward this source. The

vehicle response to a ramp input for an external force Fe, in case of under-

steer, neutral steer, and oversteer is shown in Figure 5.25.

The following discussion is taken from Milliken and Milliken [26].

Consider a road with a lateral slope that induces a lateral force acting on the

neutrally steered vehicle. The understeered vehicle will move away from the

force, i.e., run down the slope, in contrast to the oversteered vehicle, which

will run up the slope. This is an efficient way to determine the understeer ten-

dency of a vehicle.

FIGURE 5.25 Vehicle response to a ramp input for a lateral force, acting at the CoG.
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It is of interest to consider the vehicle stability properties in terms of the

normalized slip stiffnesses, denoted as cαi, i5 1, 2 and defined by

cαi 5
@fyiðαi 5 0Þ

@αi

5
Cαi

Fzi

i5 1; 2

Here, we indicate the different stability areas in the (cα2, cα1) plane,

which is also denoted as the stability diagram (see Section 5.5). The follow-

ing transitions between stability areas are relevant:

i. The transition of understeer to oversteer.

ii. The transition of stable oversteer to unstable oversteer.

iii. The transition of oscillatory behavior to nonoscillatory behavior near the

steady-state solution for an understeered vehicle at low speed.

AD (i)
From definition 3 of understeer (and expression (5.31)), it is clear that this

transition is given by

cα2 2 cα1 5 0

AD (ii)
This is the curve where ω0 vanishes for negative η. Using Eq. (5.48) and the

definition of η according to expression (5.31), one finds

2η5
1

cα2
2

1

cα1
5

g � L
u2

Hence, we arrive at a curve in the stability diagram passing the origin

under an angle of 45� and with a vertical asymptote for

cα2 5
u2

g � L

AD (iii)
This is the curve where ζ5 1 for positive η. Using Eqs. (5.48) and (5.49),

together with expression (5.31), we find

cα2 2 cα1 5
4 � u2
g � L

These curves are plotted in the (cα2, cα1) plane in Figure 5.26 for two dif-

ferent speeds, u1 and u2. u1.
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For speed u1, the vehicle is stable for all combinations of the normalized

slip stiffnesses, lying to the right of the solid hyperbolic curve. Left of that,

the vehicle is oversteered and unstable, with the steady-state solution being a

saddle point in the phase plane (see Appendix 2). The stable area is divided

into three areas, one for an oversteered but still stable vehicle, one for the

understeered vehicle with oscillatory behavior near the steady-state point in

the phase plane (focus), and one for the stable understeered vehicle with local

nonoscillatory behavior (and hence, no overshoot for a ramp steer input).

Consider point A in the plot. For speed u1, this point corresponds to a

stable vehicle. For speed u2, the stability has been lost. In the graph, the

asymptote has shifted to the right and passed this point.

Such behavior is valid for every point above the line cα15 cα2. There is

always a forward speed u such that the asymptote for cα25 u2/(g � L) passes

this point, corresponding to loss of stability. In other words, if the speed is high

enough, stability is lost for an oversteered vehicle, as concluded previously.

Next, we consider point B. For speed u1, a vehicle with these normalized

slip stiffnesses, would respond monotonously to a step or ramp steer input.

With increased speed u2, this behavior changes, and an overshoot will be

observed (as shown in Figure 5.23 for η. 0. In other words, assuming linear

axle characteristics, a vehicle is expected to show overshoot behavior in

response to sudden steering changes, but only if the speed is not too low.

We close this section with the root locus visualization of the eigenvalues

of the linear single-track vehicle model, i.e., the solutions of the characteristic

Eq. (5.45). This visualization shows the eigenvalues in the complex domain

for variation of a specific vehicle parameter, e.g., vehicle velocity. The

importance of a root locus plot is that the speed sensitivity of parameters,

such as the damped eigenfrequency (imaginary part) and the damping ratio

(angle between eigenvalue and imaginary axis), for a specific eigenmode can

be read immediately from the plot. We refer to Appendix 3 for more

FIGURE 5.26 Stability of a linear one-track vehicle model in terms of the normalized
slip stiffnesses.
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information. This improves our qualitative understanding of vehicle perfor-

mance, which is especially relevant if more degrees of freedom (i.e., more

eigenmodes and more eigenvalues in one root locus plot) must be considered.

We varied the vehicle velocity and plotted one of the eigenvalues for both

the understeer and oversteer situations (Figure 5.27).

Observe the increasing damped eigenfrequency and decreasing damping

ratio for increasing velocity and compare this with Figure 5.22. The oversteered

vehicle becomes unstable beyond a certain critical speed, which is indicated by

passing the imaginary axis into the right half plane. In Figure 5.28, we have

plotted the eigenvalue for modified slip stiffness of the front axle and for

increased inertia (mass, yaw moment of inertia). As expected, larger inertia

FIGURE 5.27 Root locus plot (understeer and oversteer).

FIGURE 5.28 Root locus plot, understeer, varying vehicle parameters.
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reduces the eigenfrequency. Larger slip stiffness at the front axle also leads to

lower eigenfrequencies, but to a larger damping ratio for a lower speed. This is

consistent with the fact that a smaller stiffness results in less understeer, and

that oversteer corresponds to a damping ratio exceeding 1.

5.4.2 Frequency Response

In this section, we consider the linear vehicle response to an oscillatory steer-

ing input:

δðtÞ5Aδ � ei�Ω�t ð5:50Þ

Here, we assume linear axle characteristics with the equations of motions

given in Eqs. (5.17a) and (5.17b). Substituting expression (5.50) into

Eqs. (5.17a) and (5.17b) for Fye5 0 and Mze5 0, and solving for yaw rate

and body slip angle, we arrive at the following expressions:

rðtÞ5Ar � ei�ϕr � ei�Ω�t ð5:51Þ

βðtÞ5Aβ � ei�ϕβ � ei�Ω�t ð5:52Þ

In Appendix 4, we discuss Bode diagrams, in which a graphical represen-

tation of the frequency transfer function G(i �Ω) is defined as

x5Gði � ΩÞ � u

for input u (steering angle, amplitude Aδ), and state x (yaw rate or body slip

angle). With the notation of Eqs. (5.50)�(5.52), we obtain

Grði � ΩÞ5
Ar

Aδ
� ei�ϕr

Gβði � ΩÞ5
Aβ

Aδ
� ei�ϕβ

Using Eqs. (5.17a) and (5.17b), the following expressions for these fre-

quency transfer functions may be obtained:

Grði � ΩÞ5
Cα1

m � Jz � V
� L � Cα2 1 i � a � m � V � Ω
ω2
0 1 2 � i � ζ � ω0 � Ω2Ω2

ð5:53Þ

Gβði � ΩÞ5
Cα1

m � Jz � V2
� b � L � Cα2 2 a � m � V2 1 i � Jz � V � Ω

ω2
0 1 2 � i � ζ � ω0 � Ω2Ω2

ð5:54Þ

with ω0 and ζ introduced in Eqs. (5.48) and (5.49). That means that we use

the simplification (5.10).

166 Vehicle Handling Performance



We plotted the frequency response in terms of Bode diagrams

(see Appendix 4), for the yaw rate and body slip angle in Figures 5.29 and

5.30, respectively, for different speeds for an understeered vehicle (vehicle

data taken from Appendix 6).

The following observations can be made:

• The yaw rate damping is reduced with increased speed, which is consistent

with Figure 5.22. The same is true for the body slip angle damping (drifting).

• The damped eigenfrequency shifts to large values with increasing speed,

which is consistent with Figure 5.28.

• The steady-state gain is not monotonous in speed V. Apparently,

150 [km/h] is beyond the vehicle’s characteristic speed (see Figure 5.15).

• A slight phase lead is observed for high speed, for low frequency below

the yaw resonance frequency.

• A small steady-state value in the body slip angle magnitude plot is

because the steady-state body slip angle is quite small for V5 30 [km/h]

(see Figure 5.15).

• The steady-state body slip angle changes sign around 40 [km/h] (see

again Figure 5.15). For that reason, the phase is changed with 180 [�] for
increasing speed, as indicated in Figure 5.30.

FIGURE 5.29 Bode diagrams for yaw rate frequency transfer.

FIGURE 5.30 Bode diagrams for body slip angle frequency transfer.
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5.5 GRAPHICAL ASSESSMENT METHODS

5.5.1 Phase Plane Analysis

The Eqs. (5.6a) and (5.6b) are a second-order system, with vehicle states (v,

r) of (β, r), where v5β �V and with vehicle total speed V, body slip angle β,
yaw rate r, and lateral speed v. This set of equations can also be described in

terms of vehicle states (α1, α2) through Eq. (5.15), where α1 and α2 are the

slip angles at the vehicle’s front and rear axles. Assume the steering angle δ
and vehicle speed V are constant. That means that the vehicle will be steady

state on a curve with radius R, if

δ5
L

R
1 h

V2

g � R

� �
ð5:55Þ

according to expression (5.39), where the function h is the difference of the

inverse functions of the normalized axle side force according to Eq. (5.38). In

case of linear axle characteristics, Eq. (5.55) can be replaced by Eq. (5.31),

depending on the understeer gradient η. If expression (5.55) is not satisfied,

the vehicle will not be in steady state and the states will change in time.

Suppose a vehicle following a steady-state circle suddenly experiences a dis-

turbance such that expression (5.55) is no longer satisfied. If the driver does

not change the steering angle or the speed, two things can occur. First, the

vehicle returns to the steady-state curve, i.e., it supports the driver to reach

stable cornering conditions. Second, the vehicle is lost in spinning or drifting

with extreme yaw rate or body slip. Under extreme driving conditions (large

lateral acceleration), a third option exists, which is limit cycle behavior.

Obviously, the first type of behavior is preferred. As discussed in

Section 5.4.1 for linear axle characteristics, this behavior is related to the sta-

bility of the steady-state solution, which depends on the normalized axle slip

stiffness, as indicated in Figure 5.26. This stability is global, meaning that,

regardless of the size of the disturbance, the vehicle will always return to the

steady-state situation. In case of nonlinear axle characteristics, stability

depends on the eigenvalues of the equations, obtained using linearizations of

these equations near the steady-state solutions. We refer to Appendix 2 for

further details. See Section 5.5.2, in which the stability diagram for linear

equations (Figure 5.26) is extended to nonlinear axle characteristics.

Demonstrating stability in that way does not guarantee global stability.

To understand global stability (what happens to large disturbances?), we

take advantage of the fact that the bicycle model is a second-order system.

We can draw solution curves in the (β, r)- or (α1, α2) plane. We can visualize

the global behavior near the steady-state points (also called critical points) in

these planes. A plot of all possible solution curves for a fixed input is called

a phase plane, and the solution curves are called trajectories. Smakman

[50] applied the phase plane in terms of β and _β in the design of a wheel

load controller to improve the vehicle handling properties. For that, he
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derived an area in this phase plane of acceptable combinations of these vehi-

cle states, for which smooth handling is fulfilled.

An interesting and elegant approach was proposed by Guo [15], selecting

the following nondimensional states:

xGuo 5β; yGuo 5
rg � r
V

ð5:56Þ

where rg is the radius of gyration (see expression (5.8)). He denoted the phase

plane for these states as the energy phase plane. Further, he observed that

the sum of squares of these states is equal to the ratio of cornering kinetic

energy Tc and translational kinetic energy Tk:

x2Guo 1 y2Guo 5
Tc

Tk
ð5:57Þ

where

Tc � 1

2
� m � V2 � β2 1

1

2
� Jz � r2; Tk � 1

2
� m � V2

Consequently, the following interpretation for points in the energy phase

plane holds:

Interpretation 1

The square of the distance of points on trajectories in the energy phase

plane to the origin is directly proportional to the cornering energy of

the vehicle.

Let us draw the trajectories for three different cases, for the vehicle and

axle data corresponding to the handling curves of Figure 5.16:

i. V5 70 [km/h], δ5 2 [�]
ii. V5 90 [km/h], δ5 2 [�]
iii. V5 70 [km/h], δ5 3 [�]

Results are shown in Figure 5.31. We highlighted the specific trajectory pass-

ing through the origin (which corresponds to a step steer input response) in bold.

The following observations can be made:

• A critical stationary point exists that attracts the trajectories near this

point in an oscillatory way. According to Appendix 2, this stationary

point is a stable focus.

• Following the solution curve passing (0, 0), the body slip angle is first pos-

itive and then becomes negative. Compare this with Figure 5.15, in which
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the steady-state body slip angle gain is plotted versus speed V, with β. 0

for small speed and β, 0 for large slip. Starting at (β, r)5 (0, 0), the rear

axle slip angle needs time to build up to a certain value, i.e., it follows the

steering angle with some lag. With the rear slip angle not fully developed,

the lateral speed still points into the curve, i.e., with positive β. Beyond a

certain speed, the steady-state body slip angle will be negative, which

means that β will change sign at a certain time, as shown in Figure 5.31.

• Considering the same curve, the vehicle shows yawing before it shows

drifting (lateral sliding). Consequently, the yaw rate will respond faster to

changes in steering angle than the body slip angle.

• Increasing speed or steering angle will increase the cornering energy.

Note that x and y scales are not the same in Figure 5.31.

• Increasing speed leads to a smaller yGuo for the final stationary solution.

This is because speed has a nonproportional effect on the yaw rate gain

(see Figure 5.15).The state yGuo has an additional term V in the denomina-

tor, pushing yGuo down with increasing speed.

• This is different for changing steering angle δ, as it pushes the yaw rate r

upward (see Eq. (5.33c)].

• In both cases, increasing speed V and increasing steering angle δ, the
steady-state body slip angle is increased as well.

Let us next consider tire slip angles α1 and α for front and rear axles.

These angles can be expressed in terms of xGuo and yGuo as follows:

α1 5 δ2 xGuo 2
a

rg
� yGuo; α2 52xGuo 1

b

rg
� yGuo ð5:58Þ

These expressions indicate that constant slip angles correspond to fixed

straight lines in the energy phase plane. In other words:

Interpretation 2

Families of straight lines xGuo 1 (a/rg) yGuo5 constant and xGuo 2

(b/rg)yGuo5 constant correspond to constant values of α1 2 δ and α2.

FIGURE 5.31 Energy phase plane for the one-track vehicle mode, axle characteristics

(cf. Figure 5.13) for (V, δ)5 (70, 2), (90, 2), and (70, 3) ([km/h], [�]).
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For V5 70 [km/h] and δ5 2 [�], these lines are shown in Figure 5.32, in

combination with the trajectory through the origin (response of the step steer

input). Each point of this trajectory (and any other trajectory) falls upon two

straight lines that correspond to a certain slip angle for the front and rear axles,

respectively. The rear slip angle is obtained by taking the distance between the

origin and the intersection of the line for which α2 is constant with the β-axis
(yGuo5 0). A positive value for α2 corresponds to an intersection at the left

side of the origin. The difference between the steering angle and the front

slip angle follows from the distance of the origin and the intersection of the

line for which α1 is constant with the β-axis. A positive value of α1�δ
again corresponds to an intersection at the left side of the origin.

Following the trajectory from the origin to the final steady-state point, the

rear axle slip angle α2 appears to grow from 0 to approximately 1.2 [�]. The front
axle slip angle starts at the value of δ, then slightly decreases up to about 1.5 [�],
after which it increases again to a value, slightly exceeding the steering angle δ.

Note that the constant α15 δ and α25 0 lines cut the two quadrants in

the energy phase plane in two parts for positive yaw rate corresponding to a

specific vehicle behavior in terms of slip angles and body slip angle, as sche-

matically depicted in Figure 5.33.

Starting on the right, all local speeds at the axles and at the vehicle’s

CoG are pointing to the right of the vehicle, where the front axle slip angle

may be negative. Consequently, the pole of the vehicle motion must lie

behind the rear axle and the driver is looking outside of the curve. Passing

the line α25 0 means that the rear axle slip angle changes sign and indicates

FIGURE 5.32 Wheel slip angles in the energy phase plane.
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that the pole of the vehicle’s motion is shifted in forward direction (relative

to the vehicle’s direction). Passing the line β5 0 means that the body slip

angle changes sign. Therefore, the pole of the motion has shifted further in

forward direction and the driver now looks into the curve. Finally, passing

the line α15 δ means that α1 exceeds δ and the local speed at the front axle

points to the left, relative to the vehicle’s orientation (port side). The pole of

the vehicle motion will now be ahead of the front axle position.

The distance between the pole and the vehicle CoG, projected on the vehi-

cle symmetry plane, is called the rotating length λ, Figure 5.34. This length is

positive if the pole lies behind the vehicle’s CoG. According to Figure 5.34,

the rotating length will exceed b for large positive β and finite yaw rate r. The

pole of rotation will then lie behind the rear axle. Similarly, the rotating length

FIGURE 5.33 Typical vehicle behavior in terms of body slip angle and wheel

slip angles.

FIGURE 5.34 Rotating length (λ) and curvature radius (R).
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will exceed, in an absolute sense, the distance a between vehicle CoG and front

axle for large negative β and finite yaw rate.

The path curvature and the radius of curvature are related to the course

angle η, which is shown in Figure 4.2 and is the sum of the yaw angle ψ and

the body slip angle β. From standard kinematics for a planar motion of a par-

ticle, one can show that

1

R
� _η

V
5

_β1 r

V
5

ay

V2

for small angles. For small changes in the body slip angle (e.g., when the vehi-

cle behavior is close to steady state), the curve radius can be approximated by

R � rg

yGuo
ð5:59Þ

Consequently, large values of yGuo correspond to large values of path cur-

vature. Clearly, this will be true if changes in the body slip angle are not

small, as well.

In other words:

Interpretation 3

Large values of yGuo correspond to small values of the curve radius

R, i.e., large curvature, in case that the vehicle behavior is close to steady

state.

If Eq. (5.59) holds, the rotating length λ can be expressed in xGuo and

yGuo as follows:

λ5R sin β � rg �
sin xGuo

yGuo
� rg �

xGuo

yGuo
ð5:60Þ

This expression confirms the change in pole position, indicated previ-

ously. For large positive value of xGuo/yGuo, the pole will move to the rear. If

xGuo/yGuo is large in negative direction, the pole will move to the front, with

respect to the vehicle orientation.

Interpretation 4

The rotating length, which describes the pole position during handling,

varies with xGuo/yGuo. This means that points in the energy phase plane close

to the y-axis for finite yGuo will have a pole close to the vehicle CoG position,

whereas (for a positive yaw rate) moving these points to large jxGuoj will shift
the pole to the front (xGuo, 0) or to the rear (xGuo. 0). For a negative yaw

rate, the steering orientation is reversed. Therefore, the pole will, in that

case, move to the front if xGuo. 0 and to the rear if xGuo, 0.
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This interpretation is schematically shown in Figure 5.35.

Thus far, we considered one steady-state point in the phase plane.

However, Figure 5.13 in Section 5.3.1 indicates that more than one steady-

state point may exist for a large axle side force. Therefore, more than one

critical point may be expected in the energy phase plane. We consider three

different sets of axle characteristics (Figure 5.36). If we consider only the lin-

ear range of these sets, then the first two cases correspond to an understeered

vehicle and the last case corresponds to an oversteered vehicle.

A steady-state solution exists with identical nontrivial slip angles for case

1 but not for case 2. Compare this with the handling curves in Figures 5.16

and 5.17, corresponding with case 1 and case 2, respectively.

Let us examine case 1 closer. If we look for steady-state solutions with a

fixed lateral acceleration (and therefore also a fixed normalized axle force)

between 0.6 and 0.8 g, two different values of α2 are found for only one

choice of α1. For one case, α1,α2 and for the other case, α1.α2. In case

of a fixed steering angle δ and speed V, we show, in Section 5.5.3, that three

steady-state solutions exist for case 1. These steady-state solutions correspond

FIGURE 5.35 Variation of pole position in the phase plane.

FIGURE 5.36 Three different sets of normalized axle characteristics.
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to different lateral accelerations. Two of these solutions are lost in case 2.

Case 3 also corresponds to one steady-state solution.

We determined the energy phase planes for V5 70 [km/h] and δ5 2 [�] for
cases 1 and 2, and for V5 40 [km/h] and δ5 3 [�] for case 3, respectively (using

the vehicle data from Appendix 6). Figure 5.37 illustrates these phase plane plots.

For case 1, three steady-state points are recognized: one being a

stable focus and the other two unstable saddle points. See Appendix 2 for a

more detailed discussion of the possible types of steady-state (critical) points.

With the intersection between the axle characteristics gone, the saddle points

disappear as well (see the second plot in Figure 5.37 for case 2). Locally,

near the focus point, nothing has truly changed. However, as some trajecto-

ries would never reach this focus point for case 1, all possible trajectories

tend to move to this point for case 2. Hence, the local stability has not chan-

ged, but the global stability has. For case 3, no focus point appears; however,

one recognizes a stable two-sided node. Clearly, the vehicle is behaving

stable near this point, which is because the speed has been chosen as low.

Oversteered vehicles are only stable if the speed is not too high, as we have

seen in Section 5.3.

The interpretations 1 to 4 are not exclusive for solutions with constant

input, but also hold for nonstationary solutions of our one-track vehicle model

(5.6a) and (5.6b) with varying steering input. Let us consider a lane change,

which will be discussed in Section 6.4. The vehicle response is shown in

Figure 5.38 for 90 [km/h]. The corresponding Guo states (xGuo, yGuo) are plot-

ted in Figure 5.38. The lines for vanishing α1�δ and α2 are shown as dashed

lines. Following the previous interpretations, we observe that, during the lane

change, the cornering energy varies significantly as expected, that the slip

angles at front and rear axles vary qualitatively similarly to the Guo states

themselves, and the pole of rotation moves from front to rear.

We conclude that the phase plane representation is a powerful tool to

visualize the local and global behavior of solution curves (trajectories) near

critical points, as well as to interpret the performance along these solution

curves in terms of position of the pole of rotation, of the slip at front and rear

axles, and of the curvature. Nonstationary solutions with varying input can be

visualized and interpreted in a similar way.

FIGURE 5.37 Phase plane plots for the sets of axle characteristics of Figure 5.36.
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5.5.2 Stability Diagram

Let us return to Eq. (5.45) describing the eigenvalues of the linearized bicycle

model. As in Section 5.4, we will take Jz5m � a � b. We will extend the sta-

bility diagram, shown in Figure 5.26 to nonlinear axle characteristics. This

diagram was first introduced by Pauwelussen in Ref. [37]. Writing

aαi 5
@fyiðαiÞ
@αi

5
Ai

Fzi

i5 1; 2 ð5:61Þ

we may conclude (as in Section 5.4) that for positive slope aαi of the normal-

ized axle side forces, the steady-state solution is stable if

aα2 .
aα1

11 aα1 � g�Lu2
ð5:62Þ

Similar to Figure 5.26, one may distinguish between areas of oscillatory

stability (stable focus in the phase plane), nonoscillatory stability (stable one-

sided node), and loss of stability (saddle point). These types of stationary

(critical) points are further explained in Appendix 2. See also Section 5.5.1

on phase plane analysis. For nonlinear axle characteristics, one or both of the

slopes may be negative. Let us, as an illustration, take the vehicle from

Appendix 6 with the normalized axle characteristics shown in Figure 5.39.

Let us assume a ramp steer input, with a rise time of 0.2 [s], with the axle

steering angle changing from 0 to 10 [�]. Results are shown in Figure 5.40.

One observes a stable response, but with the saturated front axle. This indi-

cates that stability can be obtained, even under adverse conditions.

FIGURE 5.38 Solution of a lane change in terms of Guo states (xGuo, yGuo).
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Using (5.45) and substituting (5.61), the characteristic equation can be

written as follows:

λ2 1
g

u
� ðaα1 1 aα2Þ � λ1

g

L
� ðaα2 2 aα1Þ1

aα1 � aα2 � g2
u2

5 0 ð5:63Þ

A solution with only negative real parts requires

aα2 1 aα1 . 0 ð5:64Þ
Oscillatory solutions (which are also stable if expression (5.64) is satis-

fied) are obtained if the damping ratio is bounded by 1, which is equivalent

to the condition

ðaα1 2 aα2Þ � 11
g � L
4 � u2 � ðaα1 2 aα2Þ

� �
, 0

FIGURE 5.39 Normalized axle characteristics.

FIGURE 5.40 Ramp steer response for large steering angle.
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This condition is satisfied, if and only if

aα2 2
4 � u2
g � L , aα1 , aα2 ð5:65Þ

This is a strip with constant width in the (aα2, aα1) plane, just as the area

in Figure 5.26 indicated as related to a stable focus.

Nonoscillatory stable solutions (two-sided node) are obtained if, in com-

bination with Eq. (5.64), the constant term in Eq. (5.63) is positive:

g

L
� ðaα2 2 aα1Þ1

aα1 � aα2 � g2
u2

. 0

which is identical to

aα1 ,
aα2

12 ðg � LÞ=u2 � aα2
if aα2 ,

u2

g � L ð5:66aÞ

aα1 .
aα2

12 ðg � LÞ=u2 � aα2
if aα2 .

u2

g � L ð5:66bÞ

When we combine the preceding conditions and allow for nonpositive

values of aα1 and aα2, we arrive at the full stability diagram (shown in

Figure 5.41).

Figure 5.41 is the visualization of the extension of the stability analysis of

Section 5.4.1, with the first quadrant corresponding to Figure 5.26. We list

some conclusions that can be drawn from Figure 5.41.

FIGURE 5.41 Stability of the steady-state solution of a nonlinear one-track vehicle

model in terms of the slopes of the normalized axle side forces at this solution.
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1. Stability of the stationary solution is lost if aα11 aα2, 0.

2. Two areas exist bounded by hyperbolic curves, and extending to large abso-

lute values of aα11 aα2 that consist of stationary points with real eigenvalues

with opposite signs, i.e., corresponding to saddle points in the phase plane.

3. A strip exists between two lines under 45 [�], passing through the origin

and the point (0, 24u2/(g � L)), respectively, such that the behavior near

stationary points, within this strip, behave oscillatory. Depending on the

sign of aα11 aα2, these stationary solutions can be stable or unstable.

4. There exist nonoscillatory stable and unstable steady-state solutions

(two-sided node). The areas for (aα2, aα1) for which such nodes exist are

bounded by the saddle point areas and the strip of focus points. Again, the

stability depends on the sign of aα11 aα2.

5. Consequently, stable steady-state behavior is possible for a negative slope

for the front normalized axle curve. This is referred to as excessive under-

steer. This point could be a focus (oscillatory behavior) or a two-sided

node (nonoscillatory behavior).

6. The area of stable two-sided nodes for positive front normalized axle

characteristics slope aα1 corresponds to stable oversteer behavior.

This area is reduced for increasing vehicle speed u. Consequently,

stability is obtained if the speed is bounded by a certain maximum value

(the critical speed).

7. The area of stable stationary points in case of excessive understeer is

increased for increasing speed u. Consequently, stability of the stationary

solution is obtained if the speed exceeds a minimum value.

In practice, large negative values of aα1 and aα2 will not occur. We have

indicated the area of practical interest using a dash-dotted box in Figure 5.41

with the remaining part of this figure being shaded.

5.5.3 The Handling Diagram

When a vehicle is under steady-state conditions, it follows a circular path

with a specific curve radius R, with a certain speed V for which a steering

angle δ is required. These parameters cannot be chosen independently.

Section 5.5.1 shows that more than one steady-state solution may exist, and

these solutions determine the global stability properties of the stable steady-

state solution (2s). Hence, one is faced with the following questions:

1. If, for a nonlinear vehicle (i.e., allowing nonlinear axle characteristics),

two of the three parameters (speed, curve radius, and/or steering angle)

are known, how does the third parameter depend on these two, and how is

this related to the axle characteristics?

2. In what way does the number of steady-state solutions depend on the axle

characteristics and the selection of the mutually dependent parameters

speed, curve radius, and steering angle?
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The answers to these questions can be derived based on the handling dia-

gram, which has been first introduced and discussed extensively by Pacejka [32].

Let us consider Figure 5.16, in which the left plot shows both the normal-

ized axle characteristics and the curve derived from horizontal subtraction of

these characteristics (referred to as handling curve). This handling curve

describes the relationship between α1�α2 and ay/g under steady-state condi-

tions, and visualizes the vehicle’s handling performance. Increasing the vehi-

cle speed slowly, such that steady-state behavior is maintained, this curve

shows to what extent the vehicle is understeered or oversteered in relation-

ship to vehicle speed. This curve does not depend on the steering angle or

curve radius, but only on the axle characteristics.

Let us consider this dashed handling curve from Figure 5.16 closer, and

combine the situations where the vehicle may turn right or turn left (i.e., posi-

tive and negative values of ay). Using Eq. (5.39), i.e.,

α1 2α2 5 δ2
L

R

the handling curve in Figure 5.16 (case 1 in Figure 5.36) can be depicted as

shown in Figure 5.42. Steady-state solutions must coincide with points of this

handling curve. We also indicated the understeer gradient η for the linear

approximation, as defined in Eq. (5.31).

As previously mentioned in Section 5.3.2, more branches should be included

because the function h(ay) in expression (5.39) is multivalued. For case 1, these

extra branches correspond to values of fy1 with negative slope. For case 2 (cf.

Figure 5.17), extra branches correspond to the values of fy2 with negative slope.

In this section, we restrict ourselves to the branches that are passing through the

origin and being continuously extended for larger lateral acceleration. For more

information, including these additional branches, see Ref. [32].

FIGURE 5.42 Handling curve for case 1 (see Figure 5.36).
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Next, we combine this handling curve with an expression of the lateral

acceleration in terms of curvature. For steady-state behavior, the following

expression holds:

ay

g
5

V2

R � g 5
V2

L � g �
L

R
ð5:67Þ

for speed V, wheelbase L, and curve radius R. In other words, the normalized

lateral acceleration is a linear function in the nondimensional curvature L/R

with the slope of linear relationship increasing with V2.

This is indicated in Figure 5.43, and it is an obvious consequence of

Eq. (5.17a) under steady-state conditions, for which the yaw rate r equals V/R.

We now have two curves (a nonlinear handling curve in Figure 5.42 and

a linear relationship in Figure 5.43, referred to as the speed curve) for which,

in both cases, steady-state solutions must coincide with points of each of

these curves. Figure 5.42 shows ay/g versus L/R�δ5α12α2, whereas

Figure 5.43 shows ay/g versus L/R. Consequently, when we shift the linear

curve in Figure 5.43 to the left (in negative direction) over a distance δ, the
abscissa of both figures coincide, and we can plot the curves in one plot, as

shown in Figure 5.44, where we have selected V5 70 [km/h]. The combina-

tion of these curves is referred to as the handling diagram.

Because steady-state solutions correspond to points of both curves, these

steady-state solutions are found from the points of intersection after shifting

over the steering angle δ, which is taken here as 4 [�], and indicated in

Figure 5.44 with numbers 1, 2, and 3. Comparing these three steady-state

solutions for case 1 of Section 5.5.1 with Figure 5.37, one observes solution

1 to be stable and solutions 2 and 3 to be unstable.

The handling diagram shows all the three parameters R, V, and δ in one

image. Speed V corresponds to the slope of the linear curve, which is

FIGURE 5.43 Lateral acceleration versus nondimensional curvature L/R.
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described by Eq. (5.67), δ is the shift of this linear curve to obtain the steady-

state solutions from the intersections of the shifted curve with the handling

curve, and the curvature L/R follows from the original linear curve and the

lateral acceleration for the steady-state solution.

Let us return to the first question at the beginning of this section, and

assume two of these three parameters known. How can we determine the

third parameter? Figure 5.45 shows a schematic indication of the procedures

explained next.

i. Steering angle δ and speed V are known

The speed V determines the linear speed curve. Shift this curve over a

distance δ, to find the intersection A with the handling curve. This leads

to the lateral acceleration ay/g, which in turn determines L/R.

ii. Steering angle δ and curvature L/R are known

The curvature L/R corresponds to a vertical line passing through the

horizontal axis at position L/R. Shift this line over a distance δ, to find

the intersection A with the handling curve. This leads to the lateral

FIGURE 5.45 How to derive steady-state parameters from the handling diagram.

FIGURE 5.44 Handling diagram.

182 Vehicle Handling Performance



acceleration ay/g. The speed curve is the line that passes through the ori-

gin and the point (L/R, ay/g). The slope of this curve determines V2 and

therefore, the speed V.

iii. Speed V and curvature L/R are known

The speed curve and the vertical line passing through the horizontal

axis at position L/R, intersect at point B, leading to a certain value for ay/g.

This value determines the steady-state point A on the handling curve.

The horizontal distance between the intersection point B and the steady-

state point A provides the steering angle value.

The handling diagram can be used to analyze the occurrence of steady-

state solutions and the impact of these solutions on lateral acceleration and

steady-state parameters δ, V, and R, when one of these parameters is chan-

ged. The following conclusions can be easily verified:

1. Increasing the steering angle for fixed speed V leads to a larger lateral

acceleration (larger curvature). When the steering angle is increased

beyond the value where the shifted speed curve intersects the handling

curve, the stable steady-state solution vanishes. This means that the vehi-

cle loses stability (there is saturation at the rear axle).

2. Increasing the steering angle for fixed curve radius R leads to a larger

speed. Again, beyond a certain value of δ, the vehicle loses stability.
3. Increasing the speed V for a fixed curvature leads to similar results.

4. Increasing the speed for a fixed steering angle results in a larger lateral acceler-

ation and in a larger curve radius (smaller curvature). This may lead to loss of

stability for larger speeds, but only if the steering angle exceeds a certain

value.

Depending on the axle characteristics, different handling curves and han-

dling diagrams are possible, which results in different types and number of

steady-state solutions (as shown for cases 2 and 3 in Figure 5.37). We treat three

more situations in this section, all with a front axle steering angle of 4 [�].

1. Axle characteristics compared to case 2 in Section 5.5.1; understeer

behavior in the linear range, and no intersection of these normalized axle

characteristics. The speed is chosen as 70 [km/h].

2. Axle characteristics compared to case 3 in Section 5.5.1; oversteer behav-

ior in the linear range, and there is no intersection of these normalized

axle characteristics. Two speeds are considered, 40 and 90 [km/h].

3. Axle characteristics with oversteer behavior in the linear range; however

here, these normalized axle characteristics intersect at a specific slip

angle. Again, two speeds are considered, 40 and 90 [km/h].

Considering situation 1 first (depicted in Figure 5.46), the difference with

Figure 5.44 is that the handling curve does not pass the ay-axis.
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Consequently, only one steady-state solution is shown. Increasing the steering

angle (or speed) leads to increasing α1�α2. There is a maximum value for ay
where sliding at the front axle will occur, and where, for a larger steering

angle, the lateral acceleration decreases.

The handling diagrams for situations 2 and 3 are shown in Figures 5.47 and

5.48, respectively. The steepest speed curves correspond to 90 [km/h]. The

FIGURE 5.47 Axle characteristics and handling diagram for situation 2.

FIGURE 5.48 Axle characteristics and handling diagram for situation 3.

FIGURE 5.46 Axle characteristics and handling diagram for situation 1.
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slope of the handling curves in Figures 5.47 and 5.48 in the linear range is now

positive, meaning that the understeer gradient is negative. With no intersection

of the axle characteristics, the handling curve for situation 2 is quite similar to

the curve in Figure 5.46, but mirrors that curve. At the intersection of the speed

curve with the handling curve, the slope of the speed curve is either smaller

(for 40 [km/h]) or larger (for 90 [km/h]) than the slope of the handling curve.

The first case corresponds to stable oversteer, whereas the second case

corresponds to unstable oversteer. Note that for a low speed, more than one

steady-state solution may exist; where the two outer solutions correspond to a

slope of the rear normalized axle characteristic that is positive but small, or

negative. According to Figure 5.41, one would expect saddle points in the

phase plane for these steady-state solutions.

The handling curve in Figure 5.48 is qualitatively similar to the curve in

Figure 5.42, but again is mirrored with respect to this curve. The same con-

clusions can be drawn with regard to understeer and oversteer behavior for

low and high speeds. For a large speed and small steering angle (smaller than

indicated in the figure), three steady-state solutions may exist, with the two

outer ones now corresponding to a slope of the front normalized axle charac-

teristic that is positive but small or negative. According to Figure 5.41, one

expects stable solutions with possible excessive understeer. Apparently, the

stability at the intermediate steady-state solution in Figure 5.47 is transferred

to the outer steady-state solutions with increasing speed.

To analyze this further, we determined the phase plane representation

according to Guo (see Section 5.5.1), for the axle characteristics according to

situation 3, and for speeds 40, 60, and 80 [km/h], see Figure 5.49, with a

steering angle of 1 [�].
Observe that for a low speed, only one stable critical point exists, being a

two-sided node (see Appendix 2). With increasing speed, this node moves to

a stable focus. Increasing the speed further to 80 [km/h], three critical points

arise: a saddle point, and two stable focus points. The steady-state yaw rate

tends to decrease because the curve radius that corresponds to the highest

intersection of speed curve and handling curve (shown in Figure 5.47)

increases with speed. This can easily be concluded by following procedure

(i), which has been included previously.

FIGURE 5.49 Phase plane representation for situation 3, for speeds 40, 60, and

80 [km/h], and for steering angle δ5 1 [�].
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5.5.4 The MMM Diagram

In the preceding sections, graphical assessment methods have been intro-

duced to visualize and analyze vehicle state patterns, local and global stabil-

ity, and the relationship between operating parameters under steady-state

conditions. These methods apply for nonlinear axle characteristics. This

means that axles may saturate, with the saturation limits depending on vehi-

cle and tire parameters. With our focus on the vehicle states, these saturation

limits have not been shown in the various “portraits” of vehicle handling and

maneuvering performance discussed thus far.

Starting from the phase plane representations in Section 5.5.1, the follow-

ing approach can be followed to correct that. Define output variables:

lateral force coefficient : CF 5
Fy

m � g

yaw moment coefficient : CM 5
Mz

m � g � L

where Fy and Mz are the lateral force and yaw moment acting on the vehicle,

respectively, resulting from the lateral tire forces, see Eq. (5.5). These coefficients

were introduced by Milliken and Milliken in Ref. [26]. Let us use the axle charac-

teristics corresponding to case 1 in Figure 5.36 and determine these coefficients

for the combinations of Guo states (body slip angle and non-dimensional yaw

rate) depicted in the phase plane representation in Figure 5.37 for a vehicle veloc-

ity of 70 [km/h] and a steering angle of 2 [�]. This means that we determine the

phase plane representation in terms of CF and CM (Figure 5.50). As expected, the

figure is bound due to the saturation limits of the axle characteristics.

FIGURE 5.50 Phase plane representation of CF versus CM for the understeered vehi-

cle cf. case 1 (V5 70 [km/h], δ52 [�]).
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From this figure, the following observations can be made:

1. Under steady-state conditions, no yaw acceleration exists and therefore

Mz5 0. Consequently, the steady-state solutions are lying on the CF-axis.

This is clearly shown for the stable steady-state solution.

2. The position of the stable steady-state solution along the CF-axis indicates

the severity of the handling conditions. Approximately 40% of the side

force potential has been used.

3. The other steady-state solutions (there are three steady-state conditions in

this case, see Figures 5.47 and 5.44) correspond to extreme conditions

and are therefore located at the edge of the diagram in Figure 5.50.

4. The vehicle lateral force Fy may act in two opposite directions. From the

trajectories, it is clear that only the positive direction (for positive steering

angle) is a candidate for the steady-state solution.

The CM-axis corresponds to situations where a yaw moment, but no lat-

eral force, is acting on the vehicle. Clearly, these situations are not steady

state. When we increase the steering angle to large values, one does not

expect the negative CM value, with the vehicle yawing against the direction

of the front axle steering, to be possible. We have determined the (CF, CM)

phase plane for case 1, for steering angles 5 and 10 [�] (Figure 5.51). The

steady state solution moves to larger values of CF, and the lower half of the

diagram is reduced in size. In case of δ = 10 [�], no stable solution exists.

These (CF, CM) phase plane representations are related to the so-called

MRA Moment Method diagrams, or MMM-diagrams for short, introduced

by Milliken and Milliken [26]. These diagrams are a subset of the preced-

ing phase plane representations, in which the yaw rate times speed is

taken equal to the lateral acceleration. In this way, the yaw rate is

expressed in terms of CF, which reduces the dimension of the phase plane

representation for fixed δ to 1, i.e., to a single curve for varying β. That

FIGURE 5.51 (CF, CM) phase plane representations for the understeered vehicle cf.

case 1, for δ5 5 and 10 [�] (V5 70 [km/h]).
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allows the variation of the steering angle, as well in the same plot, bring-

ing this representation again back to a two-dimensional visualization.

With β fixed and δ varying, we obtain other curves of the MMM diagram.

The MMM diagram for the understeered vehicle cf. case 1 is shown in

Figure 5.52. The overall size of the diagram is similar to Figure 5.50.

The δ curve through the origin corresponds to the behavior for δ5 0.

The intersection of other δ curves with the CF-axis provides the steady-

state solution for that steering angle. The outer boundaries of the diagram corre-

spond to the front and rear tire saturation limits. With β5 b/R (see Figure 5.5)

and δ 6¼ 0, the only contribution to CF and CM comes from the front axle. Hence,

CM 5
a

L
� Fy1

m � g 5
a

L
� CF

This line is denoted as the front construction line in Figure 5.52. In the

same way, one can consider the situation with only the rear axle contributing

to CF and CM, and denoted as the rear construction line. In that case,

one finds

CM 52
b

L
� Fy1

m � g 52
b

L
� CF

For linear axle characteristics, CF and CM can be expressed as

Fy 5 Yβ � β1 Yr:r1Cα1 � δ

Mz 5Nβ � β1Nr � r1 a � Cα1 � δ

FIGURE 5.52 MMM-diagram for the understeered vehicle cf. case 1 (V = 70 [km/h]).

188 Vehicle Handling Performance



(see Eqs. (5.16a) and (5.16b)). We can eliminate the body slip angle β, to
arrive at the following relationship between CF and CM:

CM 5
a � Cα1 2 b � Cα2

L � ðCα1 1Cα2Þ
� CF 1

Cα1 � Cα2

m � g � ðCα1 1Cα2Þ
� δ2

r � L
V

� �
ð5:68Þ

With yaw rate times speed replaced by the lateral acceleration (g �CF)

and introducing

C0 5
Cα1 � Cα2

ðCα1 1Cα2Þ � m � g

and one finds

CM 5 Ms 2C0 �
g � L
V2

� �
� CF 1C0 � δ ð5:69Þ

where Ms is the static margin defined in expression (5.42). Hence, for a fixed

steering angle and linear tires, the relationship between CF and CM corre-

sponds to lines in the MMM diagram with slope

SI5 Ms 2C0 �
g � L
V2

� �
52

Cα1 � Cα2

m � g � ðCα1 1Cα2Þ
� η1

g � L
V2

� �
ð5:70Þ

This slope is referred to as the stability index, which is directly related to

the undamped yaw eigenfrequency ω0; see also Eq. (5.48):

SI52
m � a � b

ðCα1 1Cα2Þ
� ω2

0

For an understeered vehicle, SI, 0. For a stable oversteered vehicle, the

stability index is negative as well, SI, 0, whereas for the unstable over-

steered vehicle it is SI. 0. Varying speed between 0 and N for the under-

steered vehicle, SI varies between 2N and Ms, 0. In Figure 5.21, we have

depicted ω0 versus speed.

From the preceding discussion, the MMM diagram is expected to be

reduced in case that one or both of the axles have lower saturation limits.

Consider Figure 5.53 where the friction at the front tire has been reduced.

As seen from the MMM diagram, the width along the front construction line

has been reduced, as expected.

We close this section with a discussion of the oversteered vehicle using axle

characteristics, as shown in Figure 5.48. The discussion on handling and stability

diagrams revealed that a stable steady-state solution exists for low speed (two-

sided node), becoming unstable for increasing speed, and transferred to

stable excessive understeer solutions when the speed is increased further. The

(CF, CM) phase planes for speeds 40 and 120 [km/h] are shown in Figure 5.54.

5.5 Graphical Assessment Methods 189



The two-sided node is clearly shown in the left image of Figure 5.54.

Notice that the steady-state point moves to the right for increasing speed,

with the slope of the trajectories (for constant δ5 1 [�]) changing from a neg-

ative sign to positive sign. This is consistent with the discussion on

stable and unstable oversteer behavior. The corresponding MMM diagrams

are shown in Figure 5.55.

One observes the same variation in stability index, with the solution for

120 [km/h] clearly unstable. As indicated earlier, the intersections of the con-

stant δ curves with the CF-axis provide the steady-state solutions. In the dia-

gram for V5 40 [km/h], the difference between consecutive constant δ curves

is 3 [�], meaning a maximum steering angle of less than 6 [�]. This confirms

(in order of magnitude) the results in Section 5.5.3 (see also Figure 5.48).

5.5.5 The g-g Diagram

When a vehicle is under cornering conditions, load transfer occurs from the

inner wheels to the outer wheels. When a vehicle is braking, load transfer

occurs from rear wheels to front wheels. The effect of lateral and longitudinal

FIGURE 5.54 (CF, CM) phase plane representation for the oversteered vehicle
cf. Figure 5.47 for δ5 1 [�] and V540 and 120 [km/h].

FIGURE 5.53 MMM diagram for an understeered vehicle with reduced friction at front

axle.
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acceleration on wheel loads Fzij (with index i denoting front and

rear, and index j denoting left and right) has been described in

Section 5.2.2. The potential shear force per wheel is bounded by μ �Fzij with

road friction μ. The best performance of a vehicle is such that this potential

is equally shared among the four wheels, which makes it important to con-

sider this potential during arbitrary maneuvering conditions.

Considering shear forces at the tire�road interface as the only forces act-

ing on the vehicle, the sum of wheel forces provides the total lateral and lon-

gitudinal forces acting on the vehicle, i.e., being the total cornering force

(m � ay) and the total driving force (m � ax). This maximum potential in terms

of acceleration in g was referred to by Milliken and Milliken as the g-g

diagram [26].

Clearly, the vehicle’s capability to accelerate, decelerate, and corner

depends on the underlying separate friction circles per wheel. As discussed

by Milliken and Milliken [26], these friction limits per wheel are not pure cir-

cle, but have traction limitations, which means that the maximum drive force

is exceeded by the maximum brake force (in absolute sense). Suspension

effects change the local wheel orientation, and therefore, the local tire forces.

A vehicle is, in general, understeered, meaning that the rear axle saturation

limits will not be reached under extreme (steady-state) cornering conditions.

In this section we will discuss a vehicle, completing a lane change. A

lane change requires a driver; the vehicle-driver behavior during a lane

change is covered in Section 6.4 in the next chapter. We use the driver pre-

view time of 0.68 [s] and a driver lag time of 0.1 [s]. The vehicle is described

using a two-track model with wheel loads determined using expressions

(5.23a)�(5.23d), according to Kiencke and Nielsen. The vehicle has an initial

speed of 90 [km/h], and the driver tries to maintain this speed. At the same

time, the driver will not accept lateral accelerations exceeding 0.7 [g], which

means that the driver will decelerate the vehicle as soon as ay is expected to

grow beyond this value. When the lateral acceleration drops below 0.7 [g]

and the speed is still below 90 [km/h], the driver will accelerate again.

FIGURE 5.55 MMM-diagrams for the oversteered vehicle cf. Figure 5.47 for δ5 1 [�]
and V540 and 120 [km/h].
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This acceleration and deceleration is assumed to depend on the deviation of

the actual speed Vact from the intended speed Vint, with a maximum driving

and braking torque per wheel Mdrive and Mbrake. We used the following

approach for the brake torque Tbrake in case the intended speed Vint is

exceeded by the actual speed Vact:

Tbrake 5 θF �Mbrake � ð12 e2jVact2Vintj:Kbrake=Mbrake Þ; Vact .Vint ð5:71Þ

for the share θF of Tbrake to the front axle (and share 12 θF to the rear axle),

and some factor Kbrake, describing the brake torque gain for small speed

deviations. If the intended speed Vint.Vact, the brake torque is set to zero.

The driving torque has been similarly defined. Brake torque is distributed

over front and rear axles such that 70% is carried by the front axle. The vehi-

cle is assumed rear driven.

The nonlinear normalized tire forces, loaded by half of the axle load (i.e.,

load transfer neglected) are shown in Figure 5.56. Combined slip characteris-

tics have been accounted for.

The lane change maneuver resulted in time histories for the four tire loads

shown in Figure 5.57.

Initially, the wheel load equals half of the axle load. When the maneuver

begins, load is transferred to the right wheels, which are currently the outer

wheels. Halfway into the second lane, the left wheels become the outer wheels.

Moving back to the original lane, a similar behavior is observed.

We selected four times for this maneuver, indicated in Figure 5.57. For

each of these times, the friction potential per wheel is determined from the

wheel load (for μ5 0.9).

FIGURE 5.56 Tire characteristics used in lane change analysis.
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This friction potential is shown in Figure 5.58 using a solid circle for

each wheel with radius Rij (i5 1,2 for front and rear axle, and j5 L, R for

left and right):

Rij 5
μ � Fzij

1=2Fzi

for axle load Fzi. The reference value Rij5μ is indicated with dotted circles.

Tire forces are shown (divided by half of the axle load) as solid straight lines.

Following Figure 5.58, the vehicle slows down at the first change of lanes to

keep the lateral acceleration within reasonable bounds to prevent a loss of

control. One observes that the inner wheels (left) are close to saturation.

FIGURE 5.58 Wheel shear force diagrams for different times during a lane change.

FIGURE 5.57 Wheel loads versus time for a lane change maneuver.
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Entering the second lane is done with some slight acceleration at the rear

wheels. Observe that the friction potential of the left wheels (now being the

outer wheels) has been increased, whereas the opposite is shown (decrease of

potential) for the right wheels.

Returning to the first lane requires further speed reduction, and

Figure 5.58 shows significant braking at 3.70 sec. Consequently, the friction

potential of the front wheels increases, relatively compared to the rear

wheels. The front left wheel now has the highest potential for combined brak-

ing and cornering; this is where the largest wheel force occurs. Finally, at

4.70 sec. we have a situation where apparently the speed is close to the value

where a lateral acceleration of 0.7 [g] is expected, and nearly pure cornering

occurs. With the vehicle entering the first lane, the driver is expected to

accelerate to the original 90 [km/h].

Figure 5.58 only shows four times during the lane change. An alternative

visualization is found by plotting the variation of wheel forces in a similar

plot as in Figure 5.58, but for the entire lane change. The friction potential

circles will vary as well, but that will be omitted. This means that we show

the nondimensional wheel forces (wheel forces, divided by half of the axle

load). Likewise, we can show the total lateral and longitudinal forces (m � ay
and m � ax) acting on the vehicle and being the sum of the wheel forces in lat-

eral and longitudinal direction. To arrive at the same scale, we have divided

these forces by m � g, which means that we showed the vehicle accelerations

in g. This plot is referred to by Milliken and Milliken [26] as the g-g dia-

gram. Results are shown in Figure 5.59 with the same reference circles as in

Figure 5.58, i.e., having a radius μ. Observe that a drive torque only occurs

at the rear wheels and for a negative side force. A negative side force occurs

when the vehicle is just beginning the lane change and when it returns to the

original lane at the end of the lane change maneuver. This last situation is

when the more extreme maneuvering has passed and the intended speed of

90 km/h is restored.

FIGURE 5.59 Wheel and vehicle shear forces during a lane change.
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Chap te r | S i x

The Vehicle�Driver
Interface

Vehicle and driver are each interacting subsystems of the entire

vehicle�driver system. The driver controls the vehicle’s behavior by apply-

ing input signals, such as steering angle and throttle or brake pedal position.

In doing so, the driver intends to follow the road or maintain a certain dis-

tance from the vehicle in front of him or her under relatively mild conditions.

The driver may also be faced with unexpected situations where extreme

maneuvering is required to avoid accidents.

The behavior of the vehicle in response to the driver’s input assists the

driver in predicting the vehicle’s performance. It confirms that the driver is

still in control, it informs about any deviations from an intended path or

desired lead time, etc. Further, the vehicle response serves to predict and

warn about danger ahead, and therefore affect the driver’s perception and

response at different levels. These levels can be considered with reference to

the categories of human behavior and driving task hierarchy as distinguished

by Donges [7] (depicted in Figure 6.1). At the left of this figure, the classic

hierarchy in behavioral categories is shown with distinction between:

• Knowledge-based behavior, which corresponds to the response to unfa-

miliar situations.

• Rule-based behavior, which corresponds to associative response based on

selection of the most appropriate alternative according to previous subjec-

tive experience.

• Skill-based behavior, which can be regarded as an automatic unconscious

reflex.

Comparing these classifications for the different driving task levels as

shown in Figure 6.1 (transport mission), the vehicle�road contact is mainly

relevant at the levels indicated as guidance and stabilization. The dynamic

status of the vehicle involves changes in the input data to the driver, a major

part of which is affected by the tires (steering feel, vibrations, noise, lateral

motions, etc.). The driver responds partly at guidance level (such as 195
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corresponding to open-loop control), meaning that driver must choose a steer-

ing strategy to negotiate a curve, pass another vehicle, or maintain a set dis-

tance (a certain lead time) from the vehicle ahead.

The driver also responds partly at stabilization level (such as closed-loop

control) when potentially critical conditions may be apparent. The distinction

between these two levels depends on the driver and driver’s experience with

similar traffic situations. At the lowest level, information is obtained from the

dynamics of the vehicle, yielding perceived data (such as friction level,

tire�road contact, road unevenness, resulting cornering, and braking resistance)

from which the driver must decide, consciously or unconsciously, about safe

versus unsafe conditions and the necessary measures to overcome any unsafe

circumstances. Anticipation of forthcoming situations will improve the driver’s

response and ability to avoid accidents.

Note that the driver is assisted at all levels of his driving task. Clearly, naviga-

tion is, in many cases, a matter of activating your navigating system. However,

this support system is not yet capable of judging the conditions of the driver, such

as the driver managing possible dense traffic conditions or driving in unfamiliar

area. Both these examples can be serious problems for elderly drivers. Examples

for guidance support available for these tasks are lane keeping, parking assistance,

and adaptive cruise control. Stabilization supports include a collision avoidance

system or electronic stability control (ESP). An outline of such driver support sys-

tems is given by the ATZ Fahrwerkhandbuch [16, Chapter 8]. As for the naviga-

tion support, these guidance and stabilization support systems do not account for

driver’s state, which means that the driver must use the same systems, regardless

of his perceived driving skills under the circumstance at hand (mental workload).

Another schematic overview of the driver’s reactions in emergency situa-

tions has been given by Braun and Ihme and reported by Käppler and Godthelp

in [19] (see Figure 6.2). The three “partners” in any arbitrary traffic situation
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FIGURE 6.1 Human behavior and driving tasks.
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indicated in the right half of Figure 6.1 (i.e., driver, vehicle, and environment)

are shown in Figure 6.2 as contributors to an experienced level of risk. Such

“latent risks” could be affected by poor driving behavior (e.g., excessive speed),

a vehicle deficiency (e.g., low tire pressure), or changes in the environment

(e.g., slippery road, poor visibility, dense traffic). A sudden event may yield a

sharp increase in risk level and, consequently, a reduced stabilizing tolerance.

Following a reaction time, the driver may intervene correctly, may intervene

incorrectly (e.g., braking on an icy surface), may not respond, or may respond

too late (e.g., if the accident level has already been reached). In general, appro-

priate information largely based on tire performance helps the driver anticipate

risky situations (i.e., reduce the reaction time), whereas the vehicle�driver

system performance is crucial to overcoming and preventing emergencies.

The vehicle�driver system is schematically shown in Figure 6.3. The

driver controls the vehicle through steering, acceleration, and braking. The

vehicle responds, providing information to the driver in terms of path to be

followed, orientation (i.e., yaw angle), lead time, and distance to the preced-

ing vehicle. Vibrations and vehicle acoustic variations are feedback values

used by the driver to assess the current and forthcoming vehicle status, with

respect to the intended response. In addition, the driver receives information

through the control devices. Low road friction will reduce the torque feed-

back on the steering wheel and activation of ABS is noticed through

vibrations in the brake pedal. Further, the vehicle will experience external

disturbances such as aerodynamic forces, road irregularities, and road friction

variations. Consequently, the vehicle will not respond in the same way to the

driver input in all cases. This impact of external disturbances and the limited

ability of the driver to control the vehicle accurately means that the driver

is constantly correcting his input to the vehicle. The driver responds to the
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vehicle behavior to fulfill a certain task, which is closed-loop behavior (dis-

cussed in Chapter 5), in contrast to the situation where one is considering

vehicle response to driver input without driver feedback (denoted in

Chapter 5 as open-loop behavior).

6.1 ASSESSMENT OF VEHICLE�DRIVER
PERFORMANCE

From Figure 6.3, it is clear that a driver, as a subsystem of the entire

vehicle�driver system, combines the following activities.

• Monitoring of vehicle performance and the environment by using all

senses, which includes vestibular input (sense of balance, accelerations),

proprioception (sense of motion and relative position of body parts and

the effort applied to achieve such motion), haptic feedback (communica-

tion through touch), and visual observations.

• Actuation through the vehicle control inputs (steering wheel, throttle and

brake pedal, and gear). Human limitations can be accounted for, such as

reaction time (delay) and neuromuscular lag, reflecting the time required

for muscle activity to occur following the required response.

• Processing, which is the transfer of monitoring input to actuation output.

All the inputs (indicated in Figure 6.3) are used to make a decision about

the control actions to be taken by the driver.

The ultimate goal is good performance of the vehicle�driver system. Good

performance is defined as a predictable vehicle response, meaning that the

effect of disturbances should be limited (immunity to external disturbances)

and that the behavior of the vehicle is proportional to the driver input. For
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FIGURE 6.3 Vehicle�driver system.
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example, if steering with a fixed steering angle of 2� for a certain speed results

in a lateral acceleration of 3 m/s2, then a steering angle of 3� would be expected
to result in a 50% higher acceleration, i.e., of 4.5 m/s2. This proportional behav-

ior holds under low acceleration and high road friction conditions, and the

gains have been discussed in Section 5.3.2. It is clear that, under extreme condi-

tions, this predictability is lost. Moreover, even if control systems in the vehicle

were able to maintain such linear (predictable) behavior up to large accelera-

tions, one would be faced with sudden transitions towards tire saturation and

loss of control. Consequently, the driver does not receive sufficient prewarning

for extreme situations, which misleads the driver’s perception.

In addition to this predictability, good performance has been described in

Chapter 5 in terms of time delays between command input and vehicle

response (not too large), gains (not too large and not too small), body slip angle

(not too large, but not close to zero either), roll response (preferably small),

and a compromise between responsiveness and stability. A loss of stability

means that small changes in the driver command input results in large varia-

tions in vehicle response. On the other hand, too high stability may lead to lack

of responsiveness to driver command input and large delays, which should also

be avoided. Finally, good performance includes comfort, which corresponds to

the sensation of internal noise and vibrations experienced by the driver.

As discussed in Chapter 5, the assessment of such performance can

be completed on an open- or closed-loop basis. In the first case, the driver is

acting as a robot with a prescribed input to the vehicle. Hence, one is only

considering the transfer properties (response to inputs) of the vehicle as an

independent system. In the second case, the driver responds to vehicle behav-

ior as indicated in Figure 6.3. However, one may question whether this is

always an easy task for the driver. Under normal traffic conditions, a driver

is expected to control his vehicle in a routine way. As traffic becomes denser,

with large speed variations and perhaps with reduced visibility (fog, rain) and

road friction, the driving task becomes more complex and the driver will

experience a higher demand and require higher performance to control the

vehicle to avoid safety risks. If the required driver performance approaches

the driver’s maximum ability to respond, the driver will have more difficulty

dealing with the situation, resulting in an increased workload.

The concept of mental workload has extensively been studied by

de Waard [56]. In addition to this, there exist other types of workload, such

as physical workload and visual workload. In this book, we will mainly refer

to mental workload, for which different definitions exist. De Waard formu-

lates workload as follows:

Workload is the portion of the operator’s limited capacity that is

actually required to perform a particular task.

This definition makes mental workload specific to each person, meaning

to what extent one is willing or capable to use the available personal

resources to fulfill the task demand. Demand describes the goal (as judged
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by the driver) in terms of task performance. The influence of this demand on

the driver and his limited capacity corresponds to the workload. Figure 6.1

distinguishes between driving tasks at different hierarchical levels. Here,

capacity may be insufficient to match the demand at each of these levels.

A distinction is made between the primary task (described in Ref. [56] as

safe control of the vehicle within the traffic environment) and secondary

tasks (which refers to all other tasks, such as checking the navigation system,

making a phone call, or controlling the entertainment devices in the car).

According to Ref. [56], factors influencing driver workload may be related to

the driver’s state (e.g., fatigue and alcohol use), to the driver’s traits (experi-

ence and age), and to environmental factors (vehicle ergonomics, road and

traffic conditions, poor visibility, or advanced driver support measures).

When the workload is high, the performance of the driver, and therefore

of the vehicle�driver system, is expected to be low. With high task demand,

the driver is expected to put more effort in his primary task to compensate. In

this way, the driver may be able to maintain good closed-loop performance

to avoid possible safety risks. This effort is task related. On the other hand,

with very low demand, the driver may be lacking the reference to perform at

a good level, which also results in an increased workload. A typical example

is driving on an almost empty road, where a high level of attention is

required for good driving performance. This effort is clearly state related.

De Waard [56] distinguishes four regions of primary task demand, shown

in Figure 6.4, denoted as A, B, C, and D. Region A corresponds to normal�
challenging traffic behavior with high performance. Increasing demand

corresponds to a transition from region A to C through B. In region B, the

driver capacity is insufficient to compensate for the increased workload and

the vehicle�driver performance drops. In region C, workload is high and per-

formance is low, meaning that the driver is overloaded, which results in high

safety risks. In terms of Figure 6.2, this is the case where the stabilizing toler-

ance is completely lost. Lower demand may correspond to monotonous tasks
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FIGURE 6.4 Regions with distinctive workload and performance, cf. De Waard [56].
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which may result in a reduction of driver capacity (e.g., boredom) used for

task performance, leading to a higher workload. The driver may turn attention

to things other than primary task-related effects, and this may lead to

increased stress reactions. This corresponds to region D.

The region A consists of three subregions: A1, A2, and A3. Region A1 is

related to low density monotonous conditions. Region A2 corresponds to normal

routine traffic behavior, in which the driver has no difficulty in adjusting to the

traffic circumstances. Region A3 is related to more demanding traffic conditions.

Note that this model is simple in the sense that mental workload is dis-

played one-dimensionally. In practice, workload will have more dimensions,

with different transitions for specific task demands.

Assessment of the vehicle�driver performance can be completed using sub-

jective methodology strategies including primary task performance tests, rating

scales, and open questions. The concept of rating scales means that test drivers

use self-report measures that can account for both performance and workload.

As indicated in Ref. [56], self-report measures can be used in combination with

all the task demand areas except the A2 region. Considering Figure 6.4, we

observe that distinction in performance requires test conditions to be linked to

demand region D-A1 or region A3-B. When we want to understand the

impact of vehicle design or driver support modifications on mental workload,

we need to design the test scenario in region A1 or region A3, depending

whether the assessment refers to state- or task-related effort. We restrict our-

selves to task-related effort, i.e., to region A3. One way to achieve such condi-

tions is to add secondary tasks. When these tasks are sufficiently demanding,

they affect the available capability of the driver to perform his primary driving

tasks, which allows us to shift the workload conditions from A2 to A3. In addi-

tion, secondary task measures can be used to assess the workload.

Typical driver primary task measures are maximum speed, minimum

errors, or deviations from optimal driver performance. More specifically, this

may refer to lane departure, path deviations, or time to line crossing, which is

the time required for any wheels of the vehicle to reach either edge of the

driving lane given the vehicle original path [13]. It may also refer to distance

gap or distance headway (the distance between two subsequent vehicles), the

time headway (THW), which is the following time between two subsequent

vehicles, and the time to contact (TTC), which is the time required for the

following vehicle to make contact with the lead vehicle for unchanged

speeds, i.e., if no corrective action is taken [44].

Typical driver secondary tasks are cognitive tasks (e.g., memory search,

arithmetic tasks) or event response tasks (the driver responds to random

visual or acoustic signals). Another way to establish a shift towards region

A3 is to restrict the driver’s primary tasks capacity. This can be done using

an occlusion strategy. In that case, the driver is asked to perform a certain

primary task with vision that is limited by glasses. It is left to the driver to

judge the time (occlusion time) not required to look at the road for proper
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maneuvering, and to decide about restoring vision and visual feedback.

Frequency of opening and closing, occlusion time, and the resulting primary

task performance can be taken as measures of the workload performance.

When test design is such that workload is likely to be affected, it may be

expected that the control behavior of the driver will change. Such control behav-

ior includes steering and using the accelerator pedal. For example, when a driver

is stressed, one may expect him to steer more frequently and with increased

intensity. Measuring the steering wheel signal, more frequent steering is

reflected in the so-called steering reversal rate (SRR), defined as the number of

steering reversals per unit time (second, minute), exceeding a certain threshold

value (gap size, for example, 2 degrees).

Savino [44] includes an extensive list of driving performance measures.

Typical reversals with the intention to turn the vehicle are neglected; only the

unintentional reversals are included. An alternative definition is the number

of changes from negative (clockwise movement) to positive (counterclock-

wise) rotational velocity, with the positive rotational velocity exceeding

a certain value (e.g., 3 [o/s]). Another definition is the number of events

when the steering rate leaves a zero velocity dead band and returns to it, with

a minimum change in steering angle. Note that SRR does not describe the

magnitude of the steering corrections, only the frequency. Note also that

a low SRR value may indicate a lack of attention in driving, which is not

the same as a low workload. Observed changes in SRR indicate an effect

on driver control behavior, but one should be careful in interpreting these

changes in terms of driving performance and workload.

The SRR has been used in a study on a side stick steered vehicle [60]

and in a study on the impact of changing steering interface characteristics

(i.e., torsion bar stiffness) and vehicle handling performance (i.e., understeer

gradient) on driver response [35]. Different maneuvers were used, including a

single lane change and a U-turn. The discrimination of SRR appeared to be

low, except for extreme variation in vehicle parameters.

An approach that includes the steering intensity is the power spectral den-

sity (PSD) of the steering wheel signal: PSD(δ; ω), where ω indicates the

radial frequency. The PSD is further explained in Appendix 8. When the

driver shifts to higher steering frequencies, the PSD will shift to increasing

frequency as well, meaning that a specific radial frequency ωs can be found

such that the high frequency area HFA

HFA5

ÐN
ωs

PSDðδ;ωÞdω
Ðωs

0

PSDðδ;ωÞdω
ð6:1Þ

is expected to increase with higher workload. HFA depends on both steering

frequency and steering intensity. It was shown in Ref. [35] that HFA was
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able to discriminate between variations in steering interface characteristics

and vehicle understeer behavior.

For longitudinal following behavior, TTC and THW are defined as:

THW5
xrel

VF

ð6:2Þ

TTC52
xrel

Vrel

52THW � VF

Vrel

ð6:3Þ

Where xrel and Vrel are the relative distance and relative velocity between lead

car and following car, respectively, and VF is the velocity of the following car.

As discussed in Ref. [30], different phases can be distinguished in following

scenarios. The first phase is the regulation phase with the driver of the follow-

ing vehicle maintaining a headway, being sufficiently large and no perceived

risk to hit the leading car. The second phase is the reaction phase, which is

when the driver takes action to correct when the present or predicted distance

is too small. In terms of THW and TTC, this means that the transition between

the regulation and the reaction phases is a driver-dependent hyperbolic-shaped

curve in the (THW, TTC) plane, as indicated in Figure 6.5.

It is shown in Ref. [30] that the decision of the driver to release the accel-

erator pedal and respond to the lead vehicle can be described by a simple

curve (the decision line) in the plane, defined by the relative speed Vrel

(replacing TTC) and the deviation of THW from the desired time headway,

denoted as THWdes, with this curve being independent on THWdes. The shape

of this curve (discussed further in Section 6.3) suggests characteristic driver

parameters that are related to the driver’s response as matched with a driver

model, and which can be determined during actual following conditions.

Changing the driver state is expected to change this curve, meaning that the

curve-related characteristic driver parameters might be used to identify this

driver state. In the same way, driver steering response may be described by a

Regulation
phase

Reaction
phase

TTC

THW

FIGURE 6.5 Driver response phase in terms of TTC and THW based on Ref. [30].
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driver model with the magnitude of the relevant driver model parameters

functioning as an indication of the driver state.

We close this section with comments on physiological measures, which

are sensitive to driver mental workload variation. More specifically, as for-

mulated by De Waard [56], physiological measures are shown to change with

human activation level, or with information processing by the driver. This

means a change of such measures may have various causes, not all related to

the primary driving task, which may make it difficult to interpret these mea-

sures in terms of traffic and driving conditions. The “low workload” refer-

ence values are driver dependent. According to Ref. [56], physical efforts

and emotional factors may have an impact on the resulting physiological

measures. We mention some physiological measures here, where we refer to

Ref. [56] for further information

The Inter-Beat-Interval

This is defined as the time between two subsequent heartbeats, in terms of

electric impulses related to the heart contraction, obtained from an ECG

(electrocardiogram). Increasing mental workload is expected to lead to a

higher heart rate (beats per minute), and therefore a reduced mean inter-beat-

interval (IBI). This measure is known to be sensitive to physical workload.

The Heart Rate Variability

This measure is defined as the ratio of the IBI standard deviation divided by

the mean IBI. Heart rate variability (HRV) is often considered in the fre-

quency domain, where a distinction is made between a low frequency band

(0.02�0.06 Hz), the 0.10 Hz frequency band (0.07�0.14 Hz), and the high

frequency band (0.15�0.5 Hz). The power over the mid frequency band is

shown to change with mental workload and task demand and appears to be

insensitive to physical workload, which makes it a better indicator for work-

load than the mean IBI.

Pupil Diameter and Endogenous Eye Blinks

Increasing task demand (e.g., visual demands, information processing) tends

to result in an increase of pupil diameter, whereas eye blink latency related to

stimulus occurrence and eye closure duration decrease. The problem is that

ambient conditions (e.g., illumination, air quality) affect the eye response,

which makes this type of measurement less suited for in-vehicle use.

Blood Pressure Variability

The HRV 0.10 Hz band is related to short-term blood pressure regulation. It

is therefore expected that workload variations will affect blood pressure.

Successful application of blood pressure variability (BPV) assessments in

mental tasks is referred to in Ref. [56]. However, the technique (pressure

monitoring using a cuff enclosing a finger) is less suited for in-vehicle use.
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Skin Conduction Response

The conductance of the skin is determined using a small current, where it has

been reported [56] that skin conduction response (SCR) is sensitive to infor-

mation processing. As commented in Ref. [56], skin measurement results

may be related to all undifferentiated kinds of emotional or physical stress. In

addition, these results depend on many external factors (such as humidity,

temperature, gender of the driver, time of the day, age, emotional arousal),

which makes this measure less selective.

Facial Muscle Activity

Facial muscle behavior reflects human emotion and mental effort. Tools are

available for visual recognition and interpretation of these emotions, which

may be of interest to identify the driver’s state.

An example of the application of the HRV frequency approach is reported

by Monsma and Shrey [28], where subjective ratings for perceived mental

workload from professional test drivers were compared with mean IBI and

HRV measures. The drivers had to follow a curved path, indicated with

cones, for different speeds and with different tire pressure conditions.

Different cone spacing strategies were used, including different fixed dis-

tances and varying (unpredictable) spacing. In contrast to the HRV frequency

bands, described above, a low frequency band between 0.04 and 0.15 Hz was

chosen. The high frequency band was the same as given previously, i.e.

between 0.15 and 0.5 Hz. In this way, low and high frequency powers can be

determined. The ratio LF/HF was used as a measure for workload. Figure 6.6

shows the variation of mean IBI and the LF/HF ratio for a driver for varying

FIGURE 6.6 Mean IBI and LF/HF ratio for a professional driver following a handling

curve for different speeds [57].
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speed with fixed cone spacing, and normal tire pressures. Increasing the

speed (using cruise control) will result in increasing mental workload, and

the mean IBI and LF/HF ratio are expected to decrease and increase with

speed, respectively. This is confirmed by Figure 6.6.

6.2 THE VEHICLE�DRIVER INTERFACE, A SYSTEM
APPROACH

There are two reasons we want to find approximate simplified (i.e., linear-

ized) descriptions of driver behavior. First, we want to analyze and predict

the vehicle�driver closed-loop performance. Second, we want to understand

the mechanism of human operation of the vehicle. The functionality, as well

as the assessment, of the driver model parameters from realistic driving con-

ditions can provide us with valuable information.

Linearized behavior means that the driver response to certain input e(t)

can be modeled using a linear transfer function Gd(s) in the Laplace domain,

which is equivalent to a linear differential equation in the time domain.

(Appendix 4 discusses Bode plots and transfer functions further). This is

illustrated in Figure 6.7, taken from Jagacinski and Flach [18]. The function

n(t) describes the internal noise, which is part of the driver behavior that does

not follow the linear transfer assumption.

It is argued by Jagacinski and Flach [18] that quasi-linear driver behavior

has a limited field of application. The driver perception has certain thresholds,

but drivers are able to learn and adapt to situations. The more random (unpre-

dictable) the input to the driver is, the better the quasi-linear assumptions hold.

6.2.1 Open-Loop and Closed-Loop Vehicle Behavior

According to Jagacinski and Flach [18], a human operator, controlling a

plant (such as a vehicle) adapts behavior to the characteristics of this plant.

Consider Figure 6.8, in which a driver is expected to follow an input signal

u(t) and we neglected the internal noise. The combined driver�vehicle

(human operator�plant) response results in an output x(t) that, due to external

disturbances, will be different from u(t).

Driver

n(t)

d(t)
d ′(t)Gd(s)

u(t)

FIGURE 6.7 Human operator with quasi-linear transfer function Gd, where d(t) is the
linear response and n(t) is the internal noise, accounting for nonlinear characteristics.
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The transfer functions of the driver and the vehicle are denoted by

Gd(iΩ) and Gv(iΩ), respectively, for radial frequency Ω (we replaced the

Laplace variable s with i �Ω), with the combined transfer function G(iΩ),
given by

GðiΩÞ5GdðiΩÞ � GvðiΩÞ ð6:4Þ

Feedback of the error x(t)�u(t) allows the human operator to compensate

for this error. Suppose the vehicle acts as a simple gain Gv(iΩ)5K, meaning

that the vehicle responds proportionally to the control input. It was demon-

strated in Ref. [18] on the basis of a one-dimensional compensatory tracking

study that the driver exhibits a first-order behavior (i.e., including a gain, lag,

or integrator) and a delayed time response

GdðiΩÞ5K � e2i�Ω�τd

iΩτL 1 1
or GdðiΩÞ5K � e

2i�Ω�τd

iΩ
ð6:5Þ

with a lag time τL, reaction (delay) time τd, and gain K. If the simple zero-

order plant is replaced with a first-order plant behavior, the human operator

appears to react as a simple gain with some reaction time delay according to

Ref. [28], especially near the crossover frequency (the frequency where the

gain jG(iΩ)j5 1. Apparently, the operator adapts behavior to the plant to be

controlled, such that the combined transfer function G(iΩ) behaves as a first-

order system. This adaptive human behavior is consistent for a situation

where the plant behavior becomes more complex, e.g., behaves as a second

order acceleration control system. The human operator appears to respond

with lead behavior, which means that the operator anticipates future error

input by extrapolating the present trend in input error variation. In control

terms, the operator acts as a differentiator for high frequencies, again in com-

bination with a time delay.

The three situations described previously are illustrated in Table 6.1,

assuming certain typical representative frequency response descriptions for

the plant and the human operator (see Appendix 4).

The Bode diagrams for these transfer functions are shown in Figure 6.9

for certain parameter choices. The last column of plots includes the visualiza-

tion of the transfer function G(iΩ) of the total vehicle�driver system,

Driver
d x

Vehicle

Gd(i,Ω) Gv(i,Ω)

G(i,Ω)

u +

–

FIGURE 6.8 Closed-loop vehicle�driver system.
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TABLE 6.1 Typical Combinations of Plant (Vehicle) and Operator

(Driver) Transfer Functions, Resulting in Combined First-Order

Behavior

GvðiΩÞ GdðiΩÞ
Zero-order Lag1 time delay

M K Ue2iUΩUτd

iUΩUτL 1 1

First-order Gain1 time delay

M

iUΩUτ1 1

K Ue2iUΩUτd

Second-order Lead1 time delay

M

ðiUΩÞ2
K Uð11 iΩUTLÞUe2iUΩUτd

Gv(iΩ) Gd(iΩ) G(iΩ)

Zero-order Lag + time delay

First order Gain + time delay

Second order Gain, lead + time delay
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FIGURE 6.9 Combinations of operator (driver) and plant (vehicle) transfer perfor-
mance, leading to a driver�vehicle transfer function, being approximately a gain in com-

bination with an integrator and a delayed time response. Gain and phase (Bode
diagrams, first the gain plot, then the phase plot) are shown against the radial frequency
Ω. Phase is shown in radians.
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confirming approximately a simple gain in combination with an integrator

and a time delay for frequencies near the crossover frequency Ωc:

GðiΩÞ5Gdði � ΩÞ � Gvði � ΩÞ5K � e
2i �Ω � τd

i � Ω ð6:6Þ

According to the Nyquist criterion (see Appendix 4), the vehicle�driver

closed-loop system shown in Figure 6.8 is stable if the phase margin ϕm and

the gain margin of the corresponding open-loop system are both positive. The

phase margin is defined as the phase angle of the open-loop transfer function

G(iΩ) on top of a phase of π, when this transfer function has unit magnitude,

i.e., jG(iΩ)j5 1. A positive phase margin (jG(i �Ω)j5 1, and therefore

K5Ω5Ωc) leads to

ϕm 5π2Ω � τd 2 π
2
5

π
2
2Ω � τd 5 π

2
2K � τd . 0 ð6:7Þ

Consequently, closed-loop stability is lost if either the gain K or the delay

time τd are large.
The behavior of G(iΩ), as shown in Figure 6.9, could also have been

described by the combination of a gain, a time delay, and a simple lag:

GðiΩÞ5Gdði � ΩÞ � Gvði � ΩÞ5K � e2i �Ω � τd

i � Ω � τL 1 1
ð6:8Þ

Near the crossover frequency, the qualitative difference between expressions

(6.6) and (6.8) is small, especially for larger frequencies. The major difference

is found in the low frequency range, where expression (6.8) is bounded and

expression (6.6) is not. An unbounded transfer is unrealistic. The parameter τL
in Eq. (6.8) expresses the fact that the driver is not able to keep track of high fre-

quency error changes and responds slower than the error input. It takes time to

reach a steady-state response in case of sudden error changes. This is indicated

in Figure 6.10, where the first-order response to a unit step is shown. This is due

to human neuromuscular restrictions. Appendix 4 and Ref. [54] offer a more

extensive discussion of first- and second-order systems. The delay (or reaction)

time shows that the driver is responding τd seconds later than the error input.
Suppose the overall open-loop transfer is given by Eq. (6.8). What does

this mean for the stability of the closed-loop model of Figure 6.8? Again,

applying the Nyquist criterion of positive phase margin, one finds:

ϕm 5π2Ω � τd 2 arctanðΩ � τLÞ. 0

jGðiΩÞj5 Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 τ2L � Ω2

q 5 1
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leading to

π2 S � τd
τL

2 arctanðSÞ. 0; S5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 2 1

p
ð6:9Þ

Hence, we arrive at a stability condition that depends on lag time, delay

time, and gain. The stability boundary is shown in the (τd, K) plane in

Figure 6.11 for different lag time values τL. For fixed lag time, this plot

shows the same qualitative behavior with respect to stability as previously

1
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0 0.2 0.4 0.6 0.8 1

Time [s]

Lag time
Lag time and delay time

τd

τL

1.2 1.4 1.6 1.8 2

FIGURE 6.10 First-order time response for a unit step input at t50, with distinction
between slower response (lag time) and later response (response time).

FIGURE 6.11 Stability depending on gain K and delay time τd for different lag time
values τL.
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observed. Large gain or large delay may lead to loss of stability. In other

words, if a driver corrects his steering in response to path deviations, he will

run into problems if the steering corrections are too large or if the driver

needs too much time to respond. However, the driver will also have a diffi-

cult time if the path deviation is followed too precisely. More lag means

more stable behavior, possibly at the cost of path accuracy.

We fixed the lag time at 0.2 [s], and determined the solution of the model as

shown in Figure 6.8 for a step-input, with the transfer function G given by

Eq. (6.8). Two separate cases were considered, K5 0.5 and K5 1.5, with the

delay time taking values from 0.05 to 0.2 [s]. Results are shown in Figure 6.12.

Observe a good response for large gain and small delay time. For larger

delay time, increasing the gain makes the response more oscillatory and less

stable. For smaller gain, the closed-loop response becomes slower. Jagacinski

and Flach [18] describe this behavior for low gain as “sluggish.”

6.2.2 The McRuer Crossover Model

The general expression for a quasi-linear model of a human operator, with

reference to McRuer et al. [24,25], is presented in Ref. [18] as follows:

GdðiΩÞ5K � e2i�Ω�τd

i � Ω � τN 1 1

� �
� i � Ω � TL 1 1

i � Ω � τL 1 1

� �
ð6:10Þ

with delay (reaction) time τd, lag times τL and τN, lead time TL, and gain K.

The τN lag time is related to the human’s limited ability to follow quickly

changing inputs due to neuromuscular inertial properties of the human sys-

tem. The last factor in Eq. (6.10) is a combination of lead and lag, where

lead describes the driver’s ability to extrapolate on the expected control input

in the near future. Typical values for the human operator (driver) related

parameters are reported in Ref. [18] to be in the order of τd� 0.1�0.25 [s]

(tracking studies) and τN� 0.1�0.3 [s], see also Ref. [1]. For longitudinal
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FIGURE 6.12 Closed-loop response for different gains and time delays.
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control, delay times are found to be higher, on the order of 0.5�1.0 [s], [30,

53]. The other model parameters, K, τL, and TL, depend on the plant proper-

ties, as discussed in the preceding Section 6.2.1, and are used to tune the

operator performance to the plant (i.e., vehicle) characteristics.

We discuss two specific driver behavior situations in the following

sections:

1. Vehicle�driver longitudinal conditions are discussed in Section 6.3. In

these conditions, the driver is following a lead vehicle and adjusting the

accelerator and brake pedal position in response to the distance and veloc-

ity difference with this lead vehicle.

2. Vehicle�driver handling conditions, where the driver is adjusting the

steering wheel angle to track a certain path to guide vehicle through a cor-

nering situation, a lane change, etc.

In both situations, the expression (6.10) will be simplified and the impact

of changing driver parameters will be discussed. It will be shown that the

identified driver model parameters can be interpreted in terms of traffic safety,

and may be used effectively as input for advanced driver support systems.

6.3 VEHICLE�DRIVER LONGITUDINAL
PERFORMANCE

Consider the situation of a car following task, i.e., where one car is following

a lead car. A schematic layout is shown in Figure 6.13. The position, speed,

and acceleration of the following and leading cars are indicated with index F

and L, respectively. Note that the positions of the front end of the following

car and of the rear end of the leading car are used to define the relative dis-

tance xrel.

The driver of the following car is observing errors in the desired headway

distance, and the relative velocity, which both should be kept at a minimum.

Assuming a desired time headway THWdes and considering a time delay τd,
the following driver model is used:

Pa 5K1 � _xFðt2 τdÞ � ðTHWðt2 τdÞ2 THWdesÞ1K2�Vrelðt2 τdÞ ð6:11Þ

FIGURE 6.13 Schematic layout, following a lead car.
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where Pa is the percentage of accelerator pedal depression. In the frequency

domain, this model corresponds to the following two transfer functions:

Gd;1ðiΩÞ5
Pa

THW 2 THWdes

5K1 � e2i�Ω�τd

Gd;2ðiΩÞ5
Pa

Vrel

5K2 � e2i�Ω�τd

It is usually assumed that the desired headway distance is linear in the

following vehicle velocity, and we take THWdes as a parameter in the driver

model. The vehicle acceleration is taken as a gain Ga times the gas pedal

stroke. A typical value of Ga is on the order of 0.025 [m/s2/%] [41], which

means that 50% pedal depression corresponds to 1.25 [m/s2] longitudinal

acceleration. In this situation, the variations in pedal stroke are assumed to be

small, with the zero position (no acceleration) corresponding to a fixed small

pedal depression. Releasing the pedal means a deceleration (engine braking)

assumed to be on the same order as acceleration. One might choose different

gains for acceleration and deceleration in case of extreme braking. One might

also account for more accurate power train and engine performance. In our

case of nonextreme following situations, we use the value for Ga as men-

tioned previously, i.e., 0.025 [m/s2/%].

Typical values for the driver gains K1 and K2 appear to vary with the distur-

bance frequency of the leading vehicle. In Ref. [30], the dependency of these

gains on the time headway was shown to be small. A larger THWdes tends to

reduce the gains slightly. In Ref. [30], the lead vehicle speed was given a distur-

bance frequency, where values of 0.3, 0.5, and 0.7 Hz were chosen.

In Ref. [53], Urban examined an effective and accurate assessment

method to determine the driver gains. His studies were completed using a

driving simulator. He distinguished between normal driving conditions, con-

ditions of limited visual input (modeled using occlusion), and conditions

where the driver was performing a secondary task. These conditions are typi-

cal for driving in heavy rain, or with sun shining into the driver’s eyes, and

in case of a distraction (phone, radio, navigation, etc.), respectively.

In Ref. [41], values for these gains were determined for normal driving

and deviated driving (the driver showed reduced attention to the leading

vehicle’s behavior). The gains were reduced in this case. The reaction time

τd was neglected in Ref. [41]. Typical values for K1 and K2 are listed in

Table 6.2.

We discuss the stability of Eq. (6.11) when the pedal depression is

replaced by the longitudinal acceleration, divided by the gain Ga, with the

delay approximated by

e2i�Ω�τd � 1

11 i � Ω � τd
ð6:12Þ
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This leads to the system matrix A for Eq. (6.11), given as follows:

A5

0 1 0

0 0 1

2
Ga � K1

τd
2
Ga � K2

τd
2

1

τd

0
BB@

1
CCA

The stability boundary can be given by

K1

K2

� τd 5 1 ð6:13Þ

As a result, closed-loop stability is lost if either the delay time is large or

the gain ratio K1/K2 is large, qualitatively confirming Figure 6.11.

6.3.1 Following a Single Vehicle

In this section, we discuss a vehicle following a lead vehicle that changes its

speed with a certain frequency. The data used in the analysis are listed in

Table 6.3.

These values are similar to the data used in Ref. [30]. The leading vehicle

has a speed VL that is a superposition of a constant part (90 km/h5 25 m/s),

and three parts varying with 0.05, 0.1, and 0.3 Hz, respectively. The ampli-

tudes of the parts with the lowest frequencies are chosen randomly and are

not too large, whereas the amplitude of the part with 0.3 Hz is chosen as a

fixed value of 2.0 [m/s]. For the first 10 [s], we multiplied the speed VL with

a smooth monotonously increasing function, growing from a value and slope

of zero at initial time t5 0 [s] up to a value of 1 and again a slope equal to

zero for t5 10 [s]. This allows a smooth transition from an undisturbed fol-

lowing situation to a situation of disturbed lead vehicle behavior.

The variations of the leading vehicle’s speed VL and the following vehi-

cle’s speed VF are both shown in Figure 6.14. The headway distance (THW

times VF) and the desired headway distance (THWdes times VF) are shown in

Figure 6.15. Observe the low frequency behavior of the leading vehicle, with a

TABLE 6.2 Typical Values of the Driver Model Gains K1, K2 Introduced in

Eq. (6.11), Based on Refs. [30], [41], and [53]

[30]
0.3 Hz

[30]
0.5 Hz

[41]
Normative

[53]
Normal

[53]
Occlusion

[53]
Distraction

K1
[%/m]

1.2 2.8 2.0 1.8 1.5 1.8

K2
[s.%/m]

4.5 5.3 22.0 9.0 5.0 6.6
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FIGURE 6.14 Velocity versus time for leading and following vehicle.

FIGURE 6.15 Realized and desired distance headway.

TABLE 6.3 Numerical Values for Model Parameters Used in Section 6.3.1

Ga [m/s2/%] K1 [%/m] K2 [s.%/m] THWdes [s] τd [s]

0.025 1.8 4.0 1.0 0.6
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0.3 Hz frequency superimposed. The impact of the speed variation appears to

be the variation in the following distance, varying between 22 and 29 [m],

which shows a deviation from the desired headway distance of about 2�3 [m].

The driver is accelerating and decelerating to keep the speed difference

small and the headway distance close to the desired distance. This means that

both TTC and THW vary, with each of them being important for the transi-

tion of the regulation phase to and from the reaction phase, as indicated in

Figure 6.5.

We plotted the THW deviation versus the relative speed in Figure 6.16.

The same plots were used in Ref. [30] for different combinations of disturb-

ing frequency and amplitude. Part of the curves is highlighted with additional

markers. These situations correspond to a negative gas pedal depression, i.e.,

when the driver is in the reaction phase, aiming to slow down the vehicle.

The plot shows four quadrants in which the curves are drawn clockwise.

The top two quadrants correspond to a negative relative speed, i.e., to a posi-

tive TTC, becoming smaller when moving toward larger values along the ver-

tical axis. With a minimum relative distance of about 22 [m] and a maximum

Vrel of 0.12 times VF, the minimum TTC appears to be on the order of 7 [s],

which is not very critical, but which already initiates some deceleration activ-

ity. In the two quadrants on the right-hand side, the actual time headway is

less than the desired THW. Clearly, in the top-right quadrant, the driver is

likely to take action to decelerate the vehicle because the TTC is decreasing

and the THW is too small. Connecting the dots where the driver starts to

decelerate (release of the accelerator) gives more or less a straight line (the

dashed straight line in Figure 6.16) above which speed VF is reduced. The

position of this line is expected to depend on the disturbance frequency,

FIGURE 6.16 THW deviation versus relative vehicle speed.
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where a maximum level 0.5 Hz was considered realistic in Ref. [30]. The

driver is deciding to release the accelerator at a time of τd5 0.6 sec before

the actual accelerator l release. This means that a second line could be drawn

in Figure 6.16, just below the dashed one, to indicate these decision points.

Mulder et al. [30] completed a Monte Carlo analysis by taking 100 lead

car velocity disturbance profiles for different disturbance frequencies that

lead to a linear band of decision points in the (Vrel/VF, ΔTHW) plane. The

combination of these bands gives a boundary in this plane, which can be

described explicitly in terms of relative speed and realized THW, that

can be used as a basis for an active driver deceleration support tool. This is

further examined by Mulder et al. [30].

6.3.2 Driver Model and Driver State Identification

The driver parameters K1, K2, THWdes, and τd can be derived from observed

speed differences, headway distances, and gas pedal depression (e.g., in Ref.

[53], where a combination of Kalman filtering and Recursive Least Squares

is used). For a discussion of these identification techniques, see Ref. [20]. It

is to be expected that different driver states, such as workload, will corre-

spond to different driver parameters. Moreover, driver parameters being

changed might indicate a change in driver state, which is relevant for the way

that driver support systems are being understood and used effectively.

Some of these relationships are shown in Table 6.2. When the driver is

distracted by a secondary task, the gain K2 tends to be reduced, meaning that

the driver will respond less on speed differences. In case of reduced vision,

both the headway deviation and the speed differences will have less impact

on the driver’s longitudinal vehicle control.

Mulder et al. [30] show that faster fluctuations of the lead vehicle speed

changes the THW deviation and the relative speed for which the driver de-

cides to release the gas pedal. A larger frequency results in a higher closing

speed between both vehicles.

It was found in Ref. [41] that driving with less attention leads to reduced

gains K1 and K2, confirming the results of Ref. [53].

6.4 VEHICLE�DRIVER HANDLING PERFORMANCE

Closed loop cornering behavior is defined as when a driver is controlling his

steering wheel to follow a specific road layout. This control requires some

reference, which could be a vehicle in front of the driver’s vehicle, a far end-

point, or one of the sides of the road. Using this reference, the driver knows

from this visual feedback of the road and traffic conditions how to correct the

steering so that crossing or hitting the side of the road is avoided. When

changing lanes, the driver moves attention from the first to the second lane

before actually arriving in the second lane. A well-known driver model is the

path-tracking model, where the driver is assumed to follow a certain artificial
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path. We discuss this model, which fits with the McRuer general model

(6.10), in some detail in Section 6.4.1 and discuss the corresponding closed-

loop stability in Section 6.4.2, with reference to Section 6.2.1. The identifica-

tion of the model parameters and their relationship with driver workload is

discussed in Section 6.4.3.

6.4.1 Path-Tracking Driver Model

We consider the situation in which a vehicle aims to follow a specific path in

the global (X, Y) plane, as indicated in Figure 6.17. As the vehicle follows

its course, it will deviate from the intended path. The driver receives visual

feedback of the expected path deviation, and is expected to change the steer-

ing angle to correct this deviation. In the single path-tracking model, the

driver is assumed to observe the path deviation straight ahead of the vehicle,

at a preview distance Lp from the vehicle’s CoG. This deviation Dp(t;Lp) con-

sists of two parts. The first part is due to the initial deviation of the vehicle,

denoted by y(t). The second part is due to the difference in yaw angle orienta-

tion between the vehicle and the path. The orientation of the intended

position along the path at distance Lp ahead of the vehicle, with respect to the

path location near the vehicle (projected perpendicularly from the local longi-

tudinal x direction), is denoted by the yaw angle ψp. Preview points ahead of

the vehicle and along the path are denoted as A and T. The vehicle position

is indicated as (XV, YV).

According to the McRuer crossover model, one may expect a delay or lag

in the driver steering response. In the frequency domain, this model can be

described by

δðiΩÞ
DpðiΩÞ

5Kp �
e2i�Ω�τd

i � Ω � τL 1 1
ð6:14Þ

where τL is assumed to include the neuromuscular lag. One might add a lead

term for when the driver is able to anticipate forthcoming path deviations

FIGURE 6.17 Vehicle following a path.
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from the deviation change at distance Lp. When we approximate the delay

term using lag, and assume the lag times to be small, we can neglect the

delay term in Eq. (6.14). The lag time τL is then considered to cover both the

actual lag and delay. In the time domain, this leads to the following differen-

tial equation:

τL � _δðtÞ1 δðtÞ5Kp � Dpðt; LpÞ5Kp � ðLp � ðψpðt; LpÞ2ψðtÞÞ2 yðtÞÞ ð6:15Þ

This model is used and explained in different textbooks, such as Refs. [1]

and [11]. It has been examined extensively by Pauwelussen [38,39] and varia-

tions of this model are considered, such as the Salvucci model [42], where

two preview lengths are used. Another extension of the model is when not

only the path deviation, but also the deviation in yaw orientation, is consid-

ered. In this case, an additional term is added to the right-hand side of

Eq. (6.15) that is proportional to the difference in yaw angle between

the vehicle and the path at preview distances Lp. In this book, we restrict our-

selves to path deviation and Eq. (6.15).

Let us start with a discussion on the driver model under stationary condi-

tions, i.e., with the driver model reduced to

δ5Kp � ðLp � ðψpðt; LpÞ2ψðtÞÞ2 yÞ ð6:16Þ

That means that the vehicle intends to follow a circular path with a curve

radius R. Let us consider the situation that this vehicle is able to follow this

path exactly, i.e., y5 0. This case was examined in Ref. [38], with the layout

schematically shown in Figure 6.18. The preview length is usually on the

order of 10�25 [m], which is much smaller than the curve radius. That

means that higher-order terms in Lp/R can be neglected. Figure 6.18 shows

relatively large Lp for reasons of clarity. The vehicle has a body slip angle β.
The angle between the speed direction (perpendicular to the radial direction)

Y

T
R

R

ψp

Lp
X

ψ

–βψp–ψ

2.(ψp–ψ–β)

FIGURE 6.18 Steady-state path-tracking model.
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and the line between the vehicle CoG and the point T on the circular path is

given by ψp�ψ�β, which is half of the angle at the circle center in the trian-

gle, given by this center, the vehicle CoG, and point T. From this, one may

derive that the following expression is correct up to first-order in the angle

ψp-ψ:

ψp 2ψ2 β5 arcsin
Lp

2R

� �
ð6:17Þ

We refer to Section 5.3.2, where we derived the steering angle for a

single-track vehicle model following a circular path

δ5
L

R
1 η � V2

g � R

with speed V, acceleration of gravity g, vehicle wheelbase L, and under-

steer coefficient η. Substituting this expression and Eq. (6.17) into

Eq. (6.16) for y5 0, and accounting for the steady-state gain expression

for the body slip angle as derived in Section 5.3.2, we arrive at a relation-

ship between the model parameters Kp (steering gain) and Lp (preview

length)

Lp � Kp � A1 1
Lp

2

� �
� Lp � Kp � A1 1R � arcsin Lp

2 � R

� �� �
5A2 ð6:18Þ

with

A1 5 g � A2 �
b2B � V2

L � g1 η � V2
;A2 5 L1 η � V

2

g

We used the notation found in Section 5.3. The parameters B and η
depend on the axle cornering stiffnesses as discussed in Chapter 5.

Apparently, the parameters Kp and Lp cannot be chosen independently, but

they satisfy a hyperbolic relationship

Kp 5
A2

Lp � A1 1
1
2
Lp

� � ð6:19Þ

Hence, the same steady-state vehicle performance is obtained for various

combinations of Kp and Lp, where a large Lp corresponds to a small steering

gain Kp and reducing the preview length should be compensated for with

a larger steering gain. Considering Figure 6.18, this relationship is obvious.

A larger preview length means a larger path deviation, which suggests a larger
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steering angle. However, because the steering angle only depends on curve

radius, speed, and vehicle properties, this is a contradiction. Consequently, the

gain must be reduced in Eq. (6.16) to bring the path deviation and the steer-

ing angle to the original values. Note that (6.19) does not depend on the

curve radius, which suggest that, if the vehicle is not too far from steady

state conditions, the expression (6.19) holds for any arbitrary path, as long

as the speed and the vehicle properties do not change. In Ref. [38], driver

behavior was examined for oscillatory steering input for different frequen-

cies resulting in lateral accelerations ranging from 0.02 to 0.5 [g]. The driver

model was used to set a path and then track it. The driver parameters

(Lp, Kp) were determined by matching the model steering output with

the original steering input. It was observed that the resulting combinations

(Lp, Kp) matched Eq. (6.19) quite well. Repeating the calculations in which

the parameters were determined by matching the vehicle path instead of the

steering angle resulted in the same results with maximum difference on the

order of 2.5%.

We determined the (Lp, Kp) relationship for different speeds and different

axle cornering stiffnesses, starting with the vehicle and axle cornering stiff-

ness data included in Appendix 6. The results are shown in Figures 6.19 and

6.20, with reference speed 50 [km/h] used in Figure 6.20. One observes that

a larger speed will lead to larger gains for the same preview length. In addi-

tion, a higher rear axle cornering stiffness or a lower front axle cornering

stiffness will also lead to a larger steering gain. The latter corresponds to a

FIGURE 6.19 Preview length versus gain for various vehicle velocities.
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higher understeer gradient, i.e., increased understeer where more steering

would be expected. We summarize the results thus far:

1. Following a steady-state turn using a path-tracking driver model, the dri-

ver’s steering gain and the preview length are related through a hyperbolic

relationship.

2. The path dependency is small, meaning that this relationship (6.19) holds

approximately for an arbitrary vehicle path.

3. The (Lp, Kp) relationship depends on the vehicle handling behavior (axle

characteristics, understeer gradient, body slip angle gain, etc.) and vehicle

speed.

Thus far, we considered the driver model in terms of steering gain and pre-

view length. However, instead of the preview length, one may use the pre-

view time, which is defined by

Tp 5
Lp

V
ð6:20Þ

To maintain a similar relationship between preview time and steering

gain, as given by Eq. (6.19), the steering gain is replaced by a corrected gain,

which is defined as the product of the steering gain and vehicle speed:

Kcorrected 5Kp � V ð6:21Þ

FIGURE 6.20 Preview length versus gain of various axle cornering stiffnesses.
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Again, we determined the impact of changing vehicle speed V, but here for

the (Tp, Kcorrected) relationship. The result is shown in Figure 6.21. This result is

remarkable in the sense that this relationship seems to be almost invariant, with

respect to the speed V. The invariance is not perfect, but does appear to be a

good approximation. This is especially due to the replacement of the preview

length by the preview time according to Eq. (6.20). We selected the same pre-

view distance range, from 10 to 25 [m], as used in the previous analysis.

Suppose one is interested in the identification of these driver parameters from

realistic vehicle data, obtained under practical traffic conditions. Under those

circumstances, one cannot expect a constant speed. Expressing the results graph-

ically would therefore lead to a “cloud” of points in Figure 6.19, whereas these

results would be closer to a curve when they are expressed as Tp versus Kcorrected

and this would simplify the identification process.

The next step is to determine the closed-loop performance of a vehicle;

for this, we selected the ISO 3888 severe lane change [62]. In this test, the

FIGURE 6.21 Driver preview time versus speed corrected steering gain.

FIGURE 6.22 Geometry of the severe double lane change.
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driver is asked to change lanes through a restricted area marked by cones.

This could be either a single lane change or a double lane change.

Figure 6.22 illustrates a double lane change. The start of the lane change is

at the left end in the figure. After 15 [m] between cones, the driver must

move to the second lane. This means steering to the left while exiting the

first lane and steering to the right to enter the second lane. Exiting the sec-

ond lane and moving back to the first lane involves again steering to the

right, followed by steering to the left. Note that we have taken the positive

lateral position downward in Figure 6.22. The width of the vehicle excludes

the side mirrors. The width of the lane between the cones is prescribed as

follows: 1.1 times the width of the vehicle plus 0.25 [m] for the first section,

1.2 times the width of the vehicle plus 0.25 [m] for the second lane section,

and 1.3 times the width of the vehicle plus 0.25 [m] for the final section of

the first lane.

This test is a purely dynamic test, corresponding to a typical case in

which a driver tries to avoid an obstacle or carries out an overtaking maneu-

ver (in case of a single lane change). The double lane change test serves to

verify excessive vehicle handling performance; for example, in relation to

varied vehicle characteristics (tire properties) or driver support systems

(active steering, wheel-by-wheel braking strategies).

Only a skilled driver should be involved in such tests and one should

begin at a low speed and then gradually increase this speed while repeating

the test. Assessment of vehicle performance can be completed based on:

• Peak values and lag (with respect to the steering input) for yaw rate, body

slip angle response, and lateral acceleration, for different speeds.

• Subjective rating of vehicle handling performance by the test driver.

• The maximum speed applied without hitting any cones.

Instead of keeping the vehicle between the cones, we discuss the situation

of a driver controlling the vehicle to keep the deviation from a lane change

path as small as possible. This path (indicated in Figure 6.22) consists of

straight and circular parts describing the transitions between these straight

parts. We selected a curve radius of 40 [m] for these circular path transitions.

It means that the vehicle is assumed to follow a nearly straight path, with

a small yaw angle ψ. The closed-loop problem can now be described in terms

Yv

Lp
Lp

YpathT

FIGURE 6.23 Schematic layout of river path-tracking model for nearly straight path.

224 The Vehicle�Driver Interface



of the global lateral vehicle position YV, as indicated in Figure 6.23. Abe [1]

studied this case and we follow this approach.

Eq. (6.15) is now replaced by

τL � _δðtÞ1 δðtÞ5KpðDpðt;LpÞÞ5Kp � ðYpath 2 Lp � ψ2 YVÞ ð6:22Þ

where Ypath is taken at position XV1 Lp, with (XV, YV) introduced earlier as

the global vehicle CoG coordinates. The problem of a closed-loop path-track-

ing model is now a fifth-order system, with state vector x5 (β, r, δ, ψ, YV).
For linear axles, neglecting external forces and moments, and assuming ψ to

be small (i.e., sin(ψ)5ψ, cos(ψ)5 1), this problem is described by the fol-

lowing matrix equation:

_x5

Yβ

mV

Yr

mV
2 1

Cα1

mV
0 0

Nβ

Jz

Nr

Jz

a:Cα1

Jz
0 0

0 0 2
1

τL
2
KpLp

τL
2
Kp

τL

0 1 0 0 0

V 0 0 V 0

0
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1
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� x1

0

0
Kp

τL
� Ypath

0

0

0
BBBBBBBB@

1
CCCCCCCCA

ð6:23Þ

using derivatives of stability Yβ, Yr, Nβ, and Nr introduced in Chapter 5,

mass m, yaw moment of inertia Jz, and front axle slip stiffness Cα1.

We solved this set of equations for the double lane change using the vehicle

data given in Appendix 6. The axle data were based on the Pacejka tire model,

treated in Section 2.5.2, with parameters listed in Table 6.4. The understeer gra-

dient η was determined from the axle cornering stiffness Cα5B �C �D.
Consequently, we modified the stiffness factor B of the front axle to change the

understeer gradient η. All other parameters have been left unchanged. The lag

time τL was chosen as 0.1 [s].

TABLE 6.4 Axle Pacejka Model Parameters Used in the Lane Change Analyses

Strong Understeer Limited Understeer
Axle Parameter Front Rear Front Rear

C 1.3 1.3 1.3 1.3

B 6.3983 10.8545 8.5311 10.8545

D [N] 7107.3 8446.0 7107.3 8446.0

E 20.0744 21.3367 20.0744 21.3367

η 0.0482 0.0181
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If we denote the lateral position of the path at longitudinal position XV by

Yp, then we can express the cumulative path error along the lane change

by the root mean square value

Errorpath 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t2 2 t1
�
ðt2
t1

½YpðXVðtÞÞ2YVðtÞ�2
vuuut ð6:24Þ

with times t1 and t2 corresponding to entry and exit of the lane change,

according to the description in Figure 6.22.

Optimizing the lane change with respect to path error, we can determine

the preview length as a function of vehicle speed Lp(V), for which this error

has a minimal value. Results are shown in Figure 6.24 for the two sets of

parameters from Table 6.4. We depicted Lp versus speed V, as well as Lp(V)

versus gain Kp(V) according to Eq. (6.19). Note that the right-hand plot does

not describe the hyperbolic relationship (6.19) for constant speed. The pairs

(Lp, Kp) in this plot are determined for different vehicle speeds.

An optimal value for Lp corresponds to a steering history, which will

become more and more demanding for the driver with increasing speed.

Further, it is not clear if the driver is actually capable of steering properly

under such demanding conditions. Even if the driver is able to perform as

required, it is expected that the driver will not act in that way and will accept

increased path deviation. In other words, it is to be expected that some balance

will be established between path error and the acceptable driver steering activ-

ity. This last aspect refers to steering effort, physical or mental workload, or

other consequences of steering that may become too extreme. In this section,

these effects are disregarded, and we focus only on path error as the dominant

factor for the driver review length Lp.

From Figure 6.24, we conclude that increasing the vehicle velocity leads

to a larger preview length and a smaller steering gain. Considering the differ-

ence in understeer, the results in Figure 6.24 show that a reduction in under-

steer only results in a change (increase) in preview length for high speed, i.e.,

FIGURE 6.24 Optimal driver parameters for varying speed.
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when the tires are expected to be loaded beyond the range in which they can

be considered linear. A more responsive vehicle (smaller value of η) results in
a lower value for the optimal steering gain, which is expected.

Next, we discuss the results of the lane change maneuver for two different

speeds, V5 60 and 90 [km/h], and for the case of η5 0.0482. These two

speeds correspond to (Lp, Kp)5 (12.45, 0.061) and (20.70, 0.040), respec-

tively, in the appropriate dimensions (cf. Figure 6.24). The lag time is again

set at τL5 0.1 [s]. Results are included in Figures 6.25 and 6.26, in which we

have shown the vehicle path and the output variables steering angle, body

slip angle, and lateral acceleration vs. time. Starting with 60 [km/h], one

observes that the vehicle follows the path well, with a maximum path error

of about 0.4 [m] just before the driver steers the vehicle back to the first lane.

Steering angle and lateral acceleration are more or less in phase. There is

some drifting (body slip).

Increasing the speed to 90 [km/h] leads to a significant path error

increase, exceeding 0.9 [m]. In addition, drifting is more than doubled com-

pared to the low speed case, which contributes to an increase in lateral accel-

eration (beyond 0.6 [g]). Also, observe the large lag between lateral

acceleration and steering angle.

FIGURE 6.25 Vehicle path and vehicle behavior versus time for 60 km/h.

FIGURE 6.26 Vehicle path and vehicle behavior versus time for 90 km/h.
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Clearly, the vehicle is no longer able to follow the steering input.

Compare this with the frequency response plots in Chapter 5, where the yaw

rate phase response was depicted for different speeds. It can be shown that

the steering effort has increased for higher speed.

Thus far, we considered combinations of driver parameters (Lp, Kp) lead-

ing to a minimum path error, with a lag time equal to 0.1 [s]. Next we deter-

mine the vehicle path for the parameter sets listed in Table 6.5 if we move

along the (Lp, Kp)-curve of Figure 6.19, or reduce the steering gain for the

same preview length.

The reference case is chosen for a vehicle speed of 70 [km/h] (see

Figure 6.19). The cases A, B, and C are indicated in the figure to the right in

Table 6.5. Case D corresponds to an increase in the lag time. The results are

shown in Figures 6.27�6.29. In Figure 6.27, one observes a later response

due to the smaller preview length, which could be interpreted as a larger

delay because it takes the driver longer to respond when approaching a

change in the path.

One also observes oscillations in the path, indicating a reduced stability.

Comparing this to Figure 6.11, which shows a loss of stability beyond a cer-

tain minimum level for the time delay, this makes sense. A larger preview

FIGURE 6.27 Vehicle path for low and high preview length, respectively, with the

steering gain satisfying Eq. (6.19).

TABLE 6.5 Different Driver Parameter Sets to Determine the Vehicle Path

Case Lp [m] Kp [rad/m] τL [s]

Reference 17 0.039 0.1

Reference
B

A

C

Lp

Kp

A 10 0.133 0.1

B 25 0.017 0.1

C 17 0.023 0.1

D 17 0.039 0.2

228 The Vehicle�Driver Interface



length shows an earlier response for both lane changes (moving to the second

lane and back to the original lane), as well as a reduced overshoot. Reducing

the gain and moving away from the ideal (Lp, Kp) curve shows a significant

lag in Figure 6.28, as well as a reduced overshoot. It takes longer to build up

a significant steering response, which also results in a larger integrated

path deviation, cf. Eq. (6.24). Finally, an increased lag time leads to a more

antisymmetric path and more overshoot (as shown in Figure 6.29).

FIGURE 6.28 Vehicle path for reduced steering gain and unchanged preview length.

FIGURE 6.29 Vehicle path for increased delay time, τL50.2 s.
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6.4.2 Closed-Loop Handling Stability

The stability of the closed-loop problem (6.23) has been examined by

Abe [1], assuming equal axle stiffness at front and rear. He arrived at a stabil-

ity area in the (Lp, Kp) plane, described by

Kp #
tr 1 τL
tr � τL

� 1

Lp � V
� 12

V � ðtr 1 τLÞ
Lp

� �
ð6:25Þ

with
tr 5

m � V
2 � Caxle

ð6:26Þ

for axle cornering stiffness Caxle. Inequality (6.25) states that stability is lost

if either the steering gain is too high or the preview length is too small.

Another consequence of Eq. (6.25) is that, for a large preview length, the

steering gain must be small to guarantee stability. A larger speed results in a

smaller stability area, and the minimum preview length for which stability

can be expected is the value where the right-hand side of the inequality

(6.25) changes sign, i.e., when

Lp;min 5V � τL 1
m � V
2 � Caxle

� �

It was discussed in Ref. [38] that Eq. (6.25) might underestimate the criti-

cal gain values (at the boundary of the stability area). The stability of

Eq. (6.23) is lost if the eigenvalues of the coefficient matrix have positive real

parts. The corresponding characteristic equation is a fifth-order polynomial

a5 � λ5 1 a4 � λ4 1 a3 � λ3 1 a2 � λ2 1 a1 � λ1 a0 5 0 ð6:27Þ

with

a0 5
L � Cα1 � Cα2

m � Jz � τL
� Kp

a1 5
L � Cα1 � Cα2

m � Jz � V � τL
� Kp � ðLp 1 bÞ

a2 5
a � Cα1 � Kp � Lp

Jz � τL
1

Cα1 � Kp

m � τL
1

L2 � Cα1 � Cα2

m � Jz � V2 � τL
1

Nβ

Jz � τL

a3 5
L2 � Cα1 � Cα2

m � Jz � V2
1

Nβ
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1
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Note that the last three coefficients do not depend on the driver model

parameters Lp and Kp. The coefficients a0, a1, and a2 are proportional to the

reciprocal lag time tL
21. Loss of stability occurs where the eigenvalues λ

move into the right-hand part of the complex domain, i.e., when λ5 i �μ.
Substitution into Eq. (6.27), and splitting the equation into the real and imagi-

nary parts, leads to two equations in μ2:

μ4 2 a3 � μ2 1 a1 5 0 ð6:28Þ

a4 � μ4 2 a2 � μ2 1 a0 5 0 ð6:29Þ

If we multiply Eq. (6.29) by a4 and subtract Eq. (6.29) from Eq. (6.28),

we arrive at

μ2 5
a1 � a4 2 a0

a3 � a4 2 a2

If we multiply the Eqs. (6.28) and (6.29) by a0 and a1, respectively, and

subtract the resulting equations, we arrive at

μ2 5
a0 � a3 2 a1 � a2
a0 2 a1 � a4

In order for both expressions for μ2 to hold, the following equality must

hold:

ða02a1 � a4Þ2 1 ða0 � a3 2 a1 � a2Þ � ða3 � a4 2 a2Þ5 0 ð6:30Þ

which describes the boundary of the stability area in the (Lp, Kp) plane. One

solution of Eq. (6.30) is found for Kp5 0, but it is not a relevant condition.

The nontrivial stability boundary has been derived from Eq. (6.30) for two

different speeds and two different lag times, using the same vehicle para-

meters as in Figures 6.19 and 6.20. The results are shown in Figure 6.30,

with the area of stability lying beneath the curves.

Large gains or small preview lengths lead to a loss of stability, which

confirms the stability results expressed in Figure 6.11, interpreting a preview

length in terms of delay. Observe the nonlinear shape of the stability bound-

ary, with the largest acceptable Kp range not far from the minimum preview

length. From this figure, it is also clear that the stability is significantly

reduced with increasing speed. Increasing speed means that the driver should

either look further ahead of his vehicle or reduce his steering gain. Increasing

the lag time also reduces the stability. To compensate for a larger τL, the
driver should observe variations on the path earlier, i.e., have a larger value

of the preview length.

When we combine the optimal path following (Lp, Kp) characteristics,

expressed by Eq. (6.19), with the stability area for different speeds, one
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observes from Figure 6.31 that combinations of preview length and steering

gain exist for which the closed-loop vehicle�driver system becomes unstable.

The intersection of the optimal hyperbolic path following curve with the sta-

bility boundary determines the combination (minimum preview length, maxi-

mum gain) where stability is lost. Increasing the speed from 50 to 70 [km/h]

means that (according to Figure 6.31) the minimum preview length is
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FIGURE 6.30 Stability areas for different speeds and lag times, in terms of driver
gain Kp and preview length Lp.
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increased from approximately 5 to more than 10 [m], with the maximum

steering gain reduced from about 0.37 to about 0.14 [rad/m].

The closed-loop stability boundary depends on the vehicle parameters. To

obtain a better understanding of this dependency, we determined an explicit

expression for the value Lp,min that is the intersection of the stability bound-

ary with the Lp-axis, i.e., for Kp5 0. It can be shown that, by dividing

Eq. (6.30) by Kp and setting Kp5 0, this value can be expressed as follows:

Lp;min 52 b1V � τL � 12
1

τL � ω2
0

� Yβ

m � V 1
Nr

J

� �� �
ð6:31Þ

with the undamped natural yaw frequency ω0 introduced in Eq. (5.48) in

Chapter 5 [under the simplification (5.10)], and given by

ω2
0 5

Cα1 � Cα2 � L2
m2 � J � V2

1
Nβ

J

This frequency plays an important role in the open-loop stability, as dis-

cussed in Chapter 5. For an oversteered vehicle, ω0 approaches zero for the

speed close to the critical speed. Consequently, Lp,min becomes unbounded,

which means that closed-loop stability is also lost. Increasing Lp,min corre-

sponds to a reduced stability area and Eq. (6.31) can now be used for further

analysis of the sensitivity of the closed stability, with respect to the vehicle

parameters such as inertias and axle cornering stiffnesses. We reduced the front

and rear axle cornering stiffnesses by 30% (see Figure 6.32). As expected, a

FIGURE 6.32 Minimum preview length Lp,min versus vehicle versus vehicle speed for

different axle cornering stiffnesses.
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lower Cα1 leads to better stability beyond a certain speed, whereas a lower Cα2

has the opposite effect. These effects become stronger for larger speed.

6.4.3 Driver Model and Driver State Identification

In the preceding sections, the closed-loop vehicle driver behavior has been

considered for fixed driver model parameters. The discussion on optimal path

following model parameters suggests that such parameters can vary, as long

as the preview length and the steering gain are related through a hyperbolic

relationship. However, drivers may not follow this relationship precisely at

the cost of a larger path deviation. We have seen that, even for this relation-

ship of minimal path deviation to hold, the preview length should not be too

small to avoid loss of closed-loop stability.

In this section, the driver model parameters are allowed to vary during

normal driving, where we restrict ourselves to the parameters Lp and Kp, i.e.,

we choose τL to be constant.

We expect the model parameters to be, in some way, related to the driver

state, and specifically to experience and workload. This means that on-line

identification of Lp and Kp helps us to interpret the driver state and contribute

to the improvement of driver support systems. Note that the lag time τL can

only be identified under nonsteady-state conditions, which is one of the rea-

sons we selected a fixed value for τL.
Starting from the path-tracking model (6.15), parameter identification

requires information about the intended path, as indicated in Figure 6.17.

This path is usually not available, and it cannot be derived from onboard

data. The previewed path deviation in Eq. (6.15) consists of two parts: a path

deviation due to differences in yaw orientation between vehicle and path and

the present path deviation y(t). The first part of the deviation is the dominant

one in most situations with significant yaw motion, such as in cornering or

changing lanes. However, these are precisely the cases when driver steering

control is substantial and the driver model parameters are relevant.

Instead of basing driver behavior on the intended path, we use the realized

path and neglect the local lateral displacement y(t) in Eq. (6.15). This affects

driver behavior, which has been examined by Pauwelussen and Patil [39]. They

used a driver model with model parameters Kp and Lp that depend on the antici-

pated lateral acceleration in the forthcoming transitions in path curvature, with

specified boundaries in, and desired value of driver preview time. A path was

selected that consisted of several cornering conditions and a double lane change.

The preview length was dependent upon the driver’s speed, with vehicle accel-

eration and deceleration determined using desired speed and the same antici-

pated lateral acceleration. By using this model for a certain intended path, and

then identifying the driver parameters in time from the realized vehicle path, the

effect of neglecting the lateral displacement y(t) was determined. Three different

model settings (i.e., three different drivers) were applied. The first reference

driver was assumed to vary the preview time between 0.5 and 2.0 [s], whereas
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the preview time for the second driver was bounded by 0.3 and 1.2 [s]. Hence,

the second driver would respond later and the vehicle-driver system would pos-

sibly be less stable while approaching a maneuvering situation. The third driver

was different from the first one in the sense that the lag time τL was reduced

from 0.2 to 0.1 [s]. The conclusions in Ref. [39] were as follows:

• The delay time has only a limited effect on the identified preview length

and steering gain.

• The global trend in model parameters was confirmed using the identified

values but with a reduced variation. Apparently, using the real vehicle

path has a filtering effect on the driver model parameters.

• The distinction of the three different drivers was maintained qualitatively,

both in mean and in standard deviation (of the Lp variation along the path).

By neglecting the local lateral displacement y(t), Eq. (6.15) reduces to

τL � _δðtÞ1 δðtÞ5Kp � Dpðt; LpÞ5Kp � Lp � ðψpðt; LpÞ2ψðtÞÞ ð6:32Þ

The parameters Lp, Kp are determined during practical driving conditions by

matching the solution of Eq. (6.32) with the real steering angle δtest(t) over finite
time intervals (ti, ti1 τint) with interval length τint. This means that the identi-

fied values of Lp and Kp will give a minimum for the following functional:

ErrorδðLp;Kp; τLÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðti1Tint

ti

ðδtestðtÞ2δðtÞÞ2 � dt

vuuut ð6:33Þ

where δ(t) is the solution of Eq. (6.32):

δðtÞ5 1

τL
�
ðt

ti

e
2t2s

τL � Kp � Dpðs; LpÞ � ds1 δtestðtiÞ � e2
t2ti
τL ð6:34Þ

The intervals may overlap. Choosing ti5 i �Δt for i5 1, 2, 3,. . ., minimiza-

tion of Eq. (6.33) leads to values Lp (ti) and Kp (ti). The accuracy depends on the

choice ofΔt and Tint, where we typically chooseΔt5 0.5 [s] and Tint5 3 [s].

Following this approach, a problem arises with numerical efficiency.

Minimization of Eq. (6.34) can be realized using Newton iteration, where the

preview length varies and the path error must be determined from this pre-

view length. This part of the analysis requires an additional iteration. A more

efficient way to proceed is to first estimate the path deviation by a polyno-

mial expression as follows:

Dpðt; LpÞ5
XN
j50

ajðtÞ � Ljp ð6:35Þ
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This can easily be completed using interpolation from N1 1 selected

points on the path ahead of the vehicle. A value N5 3 or 4 gives good

results. Consider Figure 6.17 and note that the points T (on the path), A (pre-

view point), and the vehicle CoG are on a circle that has the distance between

the vehicle CoG and point T as the diameter. Hence, the position of point A

can easily be derived from the vehicle position and orientation and the point

T. Substituting Eq. (6.35) into Eq. (6.34) gives an explicit expression for the

root mean square error (6.33) in terms of Lp and Kp, from which the mini-

mum can be efficiently determined.

Tests were completed on a public road using an instrumented midsize test

vehicle. These tests were completed by four different drivers: two experi-

enced ones, and two inexperienced drivers (students). The vehicle parameters

and the lag time τL are listed in Table 6.6.

All drivers drive around for about one hour, collecting data from cornering

events, lane changes, roundabouts, etc. Such data included yaw rate, lateral

acceleration, speed, GPS, and steering angle. Though the body slip angle was

measured, we based our body slip angle data on a special observer from the

match between model end test results for yaw rate and lateral acceleration.

This has the advantage of being independent of body slip angle measurement

data without losing accuracy in the assessment of this angle. One specific test

part was a closed area at a nearby industrial and office area (see Figure 6.33),

TABLE 6.6 Vehicle Parameters and Lag Time τL
m [kg] Jz [kg m2] Cα1 [N/rad] Cα2 [N/rad] a [m] b [m] τL [s]

1776 2750 88,800 124,000 1.508 1.252 0.2

FIGURE 6.33 Vehicle path.
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being driven clockwise and counterclockwise, for a total duration of about

2 min. Here we use the results from the counterclockwise test. Note that part

of this path is straight, leading to larger preview length. We set a maximum to

the preview length of 30 [m], which means that every Lp value larger than

30 [m] is set as 30 [m]. The maximum lateral acceleration on this closed path

was 5.2 [m/s2] for the experienced drivers and the speed varied between 8 and

18 [m/s]. For the inexperienced drivers, the maximum lateral acceleration was

4.5 [m/s2] and the speed ranged between 6 and 14 [m/s].

The time history of the preview length in time for the experienced driver is

shown in Figure 6.34. The preview length appears to vary between 5 and

17 [m], with a maximum value of 30 [m] for some (straight) parts of the path.

This time history does not give much information on the actual driver behav-

ior. Closer examination of the vehicle and driver results indicates reduction in

preview length while approaching a certain transition in lateral acceleration,

being restored to larger values when the driver is close to this transition (and

beyond). Note that the preview length also depends on speed. Instead of this

behavior in time, it is more interesting to plot the preview time Tp versus the

steering gain Kp for both types of drivers. As we discussed previously (see

Figures 6.19 and 6.21), this use of Tp is more robust with respect to speed than

the optimal hyperbolic (Lp, Kp) relationship. Results are shown in Figure 6.35.

One recognizes the typical hyperbolic relationship in both plots, where

the experienced driver is very consistent in behavior, whereas the inexperi-

enced driver deviates further from this ideal behavior.

We also determined the frequency distributions for the preview time, pre-

view length, and steering gain for both drivers. Results for the preview time

are shown in Figure 6.36. The experienced driver clearly shows, in average, a

higher preview time, and therefore a lower steering gain, compared to the

FIGURE 6.34 Preview length versus time for the experienced driver.
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inexperienced driver. This suggests a higher workload for the inexperienced

driver. This is further supported by SRR results, also presented in Ref. [39].

The largest values were obtained for the inexperienced driver.

When the inexperienced driver repeats the same path several times, the

driver becomes more experienced on this specific path, and one would expect

the frequency distribution to shift to larger values of Tp. This tendency was

observed from the test results, which could be interpreted as a more feed-

forward path-tracking performance.

We close this section with some remarks regarding the scientific value of

these results. So far, some results are shown for only a limited number of drivers,

and driving tests under practical traffic circumstances. Drawing general conclu-

sions would therefore be incorrect. Nevertheless, it has been shown that driver

model parameters can be derived under practical traffic conditions, that the

results confirm earlier observations regarding the relationship between preview

length and steering gain, and that distinction is obtained for different drivers.

FIGURE 6.35 Preview time versus steering gain for the inexperienced driver (left) and
the experienced driver (right).

FIGURE 6.36 Frequency distributions for preview time for the inexperienced driver
(left) and the experienced driver (right).
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Chap te r | Seven

Exercises

7.1 EXERCISES FOR CHAPTER 2

Question 1

1.a Give exact definition of each of the following tire properties and input/

output quantities:

� Effective rolling radius for a free rolling tire Re

� Slip angle α
� Camber angle γ
� Practical longitudinal slip κ
� Longitudinal slip speed Vsx

1.b The rolling resistance force depends on many properties. Indicate in the

next table with 1 , o, or 2 whether the rolling resistance force will

increase, stay the same, or decrease. Justify your answer.

1.c We sketched a tire under free rolling conditions. We know that the

peripheral speed of points at the circumference of the tire varies

between ΩR and ΩRl for unloaded and loaded radii R and Rl, respec-

tively, and circumferential speed Ω. A third speed level is given

by ΩRe.

Rolling Resistance

Wheel begins braking

Inner tire pressure is increased

Tire begins rolling after 2 h of stand still

Next, after 1 h of rolling at 80 km/h, speed is increased to 160 km/h

The camber angle is increased
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In the preceding figure, clearly indicate the behavior of the periph-

eral speed of the tire circumference as it approaches the contact area,

passes through the contact area, and leaves the contact area.

Indicate in the boxes the peripheral speeds ΩR, ΩRl, and ΩRe to dis-

tinguish which values the peripheral speed is varying between.

1.d The following subquestions address the concept of a tire under com-

bined slip.

i. Explain what combined slip means.

ii. Sketch the longitudinal tire force Fx versus longitudinal slip κ for

three different values of the slip angle (e.g., α5 2�, 4�, and 6�).
1.e Give a sketch of the lateral tire force Fy versus longitudinal slip κ, for

three different values of the slip angle (e.g., α5 2�, 4�, and 6�). Explain
your sketch.

1.f Polar plot: Use the sketches from exercise 1.d and 1.e, plot lateral tire

force Fy versus longitudinal tire force Fx for different (discrete) values

of the slip angle.

1.g In the next figure, we plotted the aligning torque versus longitudinal tire

force for varying longitudinal slip. Different lines correspond to

different values of the slip angle α. Explain why this aligning torque

changes sign if we move from a large brake force to a large driving

force, as shown in this figure.

Ω

V

Peripheral speed:

Circumference
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Question 2

2.a Tire design is a compromise of many output properties. Three of these

properties (handling performance, rolling resistance, and comfort) are

included in the following table, as well as three possible design/service

adjustments to improve them.

Indicate with a 1, o, or2 sign whether the specific tire performance

aspect is positively influenced, not affected, or has a negative effect.

Justify your answer.

2.b We have included a top-down view of a tire under a side force in which

we consider, for the time being, pure lateral slip. We have also indicated

the simple parabolic normal stress behavior in the contact area.

150

100

50

0

–50

–100

–150
–8000 –6000 –4000 –2000 0 2000

Fx (N)

M
z 

(N
m

)

4000 6000 8000

Handling
Performance

Rolling
Resistance

Comfort

Higher inner pressure

Stiffer belt plies

More hysteresis in the tread area

rubber compound
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i. Please clearly indicate in the preceding top-down view figure:

� Practical lateral slip α
� Lateral force Fy

� Pneumatic trail tp
� Aligning torque Mz

ii. Sketch the lateral shear stress pattern along the contact area in the same

graph as the normal stress has been indicated. Explain your sketch.

2.c The Magic Formula tire model for the lateral force is described by the

following mathematical expression:

Fy 5D � sin½C � arctanfB � α2E � ðB � α2 arctanðBαÞg�

for slip α. We neglected the horizontal and vertical shifts and varied

three of the four Magic Formula factors B, C, D, and E. Mark (X) in the

following table to indicate which curve corresponds to the variation of

which factor. Each column should only contain one mark.

Sliding

Wheel
Centre plane

Normal stress σz

Contact area

–Vy

V

Vx

4500

4000

3500

3000

2500

F
y 

(N
)

2000

1500

1000

500

0
0 5 10 15

Slip angle (º)

20 25

Reference
Plot 1
Plot 2

Plot 3
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Question 3

3.a The Magic Formula (Pacejka) tire model for the longitudinal force is

described by the following mathematical expression:

Fy 5D � sin½C � arctanfB � κ2E � ðB � κ2 arctanðBκÞg�

for pure longitudinal (brake/drive) slip κ. Give the exact definition of

practical longitudinal slip.

3.b Give the values for the practical longitudinal slip for a locked wheel or

excessive spinning wheel in case of braking and driving, respectively.

3.c The behavior of longitudinal slip versus tire brake force (pure slip) is

shown in the next figure.

Indicate in this figure:

• The longitudinal force versus slip for road friction reduced by 50%

• The longitudinal force versus slip in case of combined slip (braking

combined with side slip)

• The lateral force versus longitudinal slip for a fixed slip angle (brak-

ing while cornering).

Plot 1 Plot 2 Plot 3

Change of B

Change of C

Change of D

Change of E

Brake force |Fx|

Brake slip |κ|
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7.2 EXERCISES FOR CHAPTER 3

Question 1

1.a Consider the accelerating single wheel vehicle, shown next.

Use practical slip quantities, i.e., the stationary longitudinal slip

κ5
Ω � R2V

V

The following symbols for parameters are used:

• Relaxation length σκ

• Total mass vehicle m

• Radius tire R

• Rotational wheel inertia J (proportional to R3)

• Longitudinal slip stiffness tire Cκ

Use the following data:

• Relaxation length σκ5 0.6 m

• Longitudinal slip stiffness tire Cκ5 75,000 [N/rad] (linear tires)

Give the value of the longitudinal spring stiffness Cx of the tire in N/m.

1.b For a fast change in driving torque M, the slip in the contact area κ0 will
not be the same as the slip κ at the axle level. Give the differential equa-

tion in κ0, describing the transient behavior of the tire in longitudinal

direction.

1.c Assume that the speed V is varying very slowly, which means that we

can take the speed V constant compared to tire slip and wheel speed.

Then, the problem of a single wheel driven by a drive torque M is

described by two equations, with tire slip κ0 and rotational speed Ω. The
equation in Ω is given by

J � _Ω5M2R � Fx

Express this equation in terms of κ0 and Ω assuming linear tire behavior.

Mass m

Torque M

Angular
speed Ω Fx

V(t)

R
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1.d We have now derived two first-order equations. They can be transferred

to a second-order equation in κ0 or Ω. Derive this equation. Assume M

constant.

1.e The system of the accelerating wheel has a rotational undamped eigen-

frequency ω and a damping ratio ζ . Which of the following statements

are true? Justify your answer.

• the eigenfrequency ω increases with Cκ

• the eigenfrequency ω increases with R

• the eigenfrequency ω increases with σκ
• the eigenfrequency ω increases with V

• the damping ratio ζ increases with V

• the damping ratio ζ increases with σκ

Question 2

2.a We consider a vehicle under cornering conditions, moving with constant

speed V (only lateral slip), under transient tire behavior and assume lin-

ear tire behavior. The z-axis is pointing downward.

The following data are given:

Cog to front axle : a5 1.1 [m]

Cog to rear axle : b5 1.5 [m]

Mass vehicle : 1600 [kg]

Normalized axle cornering stiffness, front : 18

Normalized axle cornering stiffness, rear : 15

Lateral spring stiffness for each tire : 2 � 105 [N/m]

Is this vehicle understeered or oversteered? Justify your answer.

2.b Calculate the relaxation lengths σ1 and σ2 for the front and rear axles.

2.c With transient tire behavior, the slip angles between tires and road are

unknown vehicle states, following from the slip angles at front and rear

axles. Show that the front and rear axle slip angles satisfy the following

equations:

σ1

V
� _α1 1α1 5 δ2β2

a � r
V

;
σ2

V
� _α2 1α2 52 β1

b � r
V

with vehicle speed V, steering angle δ, body slip angle β, and yaw rate r.
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2.d

We have carried out a step steer analysis for a vehicle model with linear

tires, with and without accounting for transient effects. Results for the

front axle side force are shown in the preceding figure.

• Mark which curve has transient effects and which curve does not.

Justify your answer.

• What will happen with the transient curve when we reduce the vehi-

cle speed?

7.3 EXERCISES FOR CHAPTER 4

Question 1

1.a Explain what Ackermann steering means.

1.b See the top-down (planar) sketch of the low speed cornering situation

for a tractor�semitrailer combination.
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The following data are given:

L15 3.70 [m]

f520.60 [m]

L25 7.5 [m]

L35 11 [m], distance from kingpin up to end of the semitrailer

δ5 4�

Calculate the articulation angle γ.
1.c The track width of tractor and trailer is equal to 2 [m]. Give the value of

the swept path (difference between inner and outer radius).

1.d What would happen to the swept path if you:

i. Choose the kingpin behind the rear tractor axle

ii. Increase the tractor wheel base L1.

1.e To minimize the off-tracking, a rear axle steering angle δ2 is applied

such that Rrear5R1 (see the following figure). Determine the ratio δ2/δ1
(the trailer axle gain).

7.4 EXERCISES FOR CHAPTER 5

Question 1

1.a We consider a vehicle under a lateral force Fy (e.g., one initiated by a

crosswind), as shown in the next figure.

R1

δ2

δ1

γ

O

R1

Rfront

R

f
L2

L1

2
L2

2
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PNS indicates the neutral steer point. The z-axis is taken upward.

i. The lateral force acts in the neutral steer point. How does this affect

the resulting yaw behavior of the vehicle?

ii. The lateral force is counteracted by two reactions forces at the front

and rear axles. Suppose linear tires, with cornering stiffnesses C1 and

C2 for front and rear axle, respectively. Derive an expression of the

neutral steer point in terms of parameters a and b and the cornering

stiffnesses.

1.b We show two vehicles next, again under a lateral force Fy, now acting in

the CoG, and resulting in a yaw response for vehicles A and B, as indi-

cated. Which vehicle is understeered and which vehicle is oversteered?

Justify your answer.

PNS

(A) (B)

r

–Vy

Fy

PNS

r

–Vy

Fy

a β

b

Fy2

Fy1

PNS Fy

–XNS
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1.c An oversteered vehicle is driving on a straight flat road slope. At a cer-

tain point, the road is changed from flat to a transverse slope (see fig-

ure). The driver is keeping the steering angle fixed. Which of the

following cases is true? Justify your answer.

i. The vehicle will move up the slope.

ii. The vehicle will move down the slope.

iii. The vehicle will remain where it is.

1.d The relationship between lateral acceleration ay and front axle steering

angle δ under steady-state conditions on a flat road is given as follows:

δ5
L

R
1 η � ay

g

i. Give the meaning of L, R, and η.
ii. Derive an expression for the steady-state yaw rate gain from this

expression.

1.e Suppose η, 0. One may sketch the steady-state yaw rate gain versus

vehicle speed. In the next graph, we show three curves. Which one is

the correct one? Justify your answer.
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Question 2

2.a We have included four definitions of understeer behavior. Select the cor-

rect definition. Justify your answer.

i. A vehicle is understeered if the axle steering angle must be

increased for increasing vehicle forward speed to negotiate the same

curve.

ii. A vehicle is understeered if the rear axle slip angle exceeds the front

axle slip angle under steady-state conditions: α1,α2 (or, in more

general terms, jα1j, jα2j).
iii. A vehicle is understeered if the understeer gradient η. 0.

iv. A vehicle is understeered if the rear axle normalized axle cornering

stiffness is exceeded by the front axle normalized axle cornering

stiffness.

2.b Provide the exact definition of the understeer gradient.

2.c A vehicle is driving a circular path with constant speed. At some

moment, the driver decides to accelerate but keeps the steering wheel

angle fixed. The vehicle tends to move out of the curve. Is the vehicle

understeered or oversteered? Justify your answer.

2.d The driver decides to increase the roll stiffness at the front axle. Will the

response as described under 2.c increase (i.e., moving more out of the

curve) or decrease? Justify your answer.

Question 3

3.a In this exercise, the dimensions along the x- and y-axis are always in

degrees ([�]). The figure shows the energy phase plane for a speed of

70 [km/h] and a front axle steering angle of 2 [�].

Explain what phase plane means.
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0
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V = 70 km/h
δ = 2°
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3.b The energy phase plane is based on the notion that the ratio of cornering

energy Tc and longitudinal kinetic energy Tk corresponds to the distance

of a solution point to the origin.

i. Define the x and y variables in terms of yaw rate and body slip

angle.

ii. Explain the drifting and yawing phase based on the solution curve in

the above figure, passing through the origin.

3.c We have depicted three energy phase plane representations.

We have increased the speed in one figure and increased the steering

angle in the other.

i. Which figure shows the increased speed and which shows the

increased steering angle? Justify your answer.

ii. The steady-state solution in the middle figure corresponds to a radius

of R5 200 [m]. Estimate the radius of gyration.

3.d The next figure shows the energy phase plane with the lines of constant

angle α2 (rear axle slip angle) and α12 δ (difference of front axle slip

angle and steering angle). The energy phase plane is divided in four

areas, 1, . . ., 4.
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Which situation (A,. . .,D), indicated for the bicycle one-track vehicle

model, corresponds to what area in the phase plane, and why?

3.e Next, we show three energy phase plane representations and three plots

of normalized axle characteristics. Which axle characteristics plot corre-

sponds to what phase plane and why?
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Question 4

4.a The next figure shows a handling diagram for a passenger car (z-axis

downward) with a wheelbase of 2.5 [m].

Sketch the normalized axle characteristics that lead to this type of han-

dling diagram.

4.b Estimate the understeer gradient.

4.c Determine the steering angle graphically for the car moving in a steady-

state circle with radius 50 [m] for two different speeds:

V5 36 km/h

V5 54 km/h

Take the acceleration of gravity as g5 10 m/s2.

4.d Assume a front axle steering angle of 0.06 [rad]. Determine graphically

the curve radius for a speed of 54 [km/h].

4.e Below, four phase (energy) planes are shown. Two of them are con-

nected to the preceding handling diagram for V5 36 and 54 [km/h].

Which one corresponds to which speeds? Justify your answer.
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7.5 EXERCISES FOR CHAPTER 6

Question 1

1.a To model human behavior, McRuer performed a tracking experiment, in

which systems with different behavior (zero-order, first-order, and sec-

ond-order) should be controlled by the human. By measuring input and

output of the human controller, Bode diagrams were made of the human

behavior for these different systems. What was McRuer’s main conclu-

sion from these experiments?

1.b For this experiment, the Bode diagram of a first-order plant and of the

human1 plant is given next. Draw the gain curve and the phase delay

curve in the Bode diagram for the human. Dimension of phase angle is in

radians.
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1.c Give an expression for this human transfer function G(i �Ω).
1.d The Bode plot of the human1 plant is given again next.

The closed-loop behavior of this first-order plant1 human controller

is stable. Explain how you can see this from the Bode diagram for the

human1 plant.

Question 2

2.a The McRuer crossover model is given next. Explain all five parameters

of this model.

GdðiΩÞ5K � e2i�Ω�τd

i � Ω � τN 1 1

� �
� i � Ω � TL 1 1

i � Ω � τL 1 1

� �

2.b Next, the simplified version of the crossover model in the s-domain is

given as a driver model with input u(s) and output d(s) for following a

given path:

GðsÞ5 dðsÞ
uðsÞ 5K � 1

11 τ � s

Given that:

• The input u(s) corresponds with the error Δψ(t), defined as the error

between the actual value of the vehicle yaw angle and the yaw angle

corresponding to the required path.

• The output d(s) corresponds to the steering wheel angle δ(t)

Provide the time domain differential equation of this driver model.

2.c The resulting vehicle�driver system behavior is quite bad for following

a given path. Explain why.

2.d Suggest (and justify) an extension of this driver model so that path track-

ing behavior will improve.
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Appendix 1:
State Space Format

We have seen in Section 5.2 that the simplest way to describe handling of a

vehicle with linear tire characteristics, under action of external force Fye,

moment Mze, and/or steering angle input δ, is by using the following

equations:

m � V � ð _β1 rÞ5 Yβ � β1 Yr � r1Cα1 � δ1Fye ðA1:1Þ

Jz � _r5Nβ � β1Nr � r1 a � Cα1 � δ1Mze ðA1:2Þ

where the derivatives of stability Yβ, Yr, Nβ, and Nr are defined by (see also

Section 5.2):

Yβ 52ðCα1 1Cα2Þ ðA1:3Þ

Yr 52
a � Cα1 2 b � Cα2

V
ðA1:4Þ

Nβ 52ða � Cα1 2 b � Cα2Þ ðA1:5Þ

Nr 52
a2 � Cα1 1 b2 � Cα2

V
ðA1:6Þ

where we neglect the contributions of the aligning torque. The variables and

parameters in Eqs. (A1.1). . .(A1.6) are the yaw rate r, body slip angle β, the
vehicle forward speed V, the mass m, yaw inertia Jz, the front and rear axle

cornering stiffnesses Cα1 and Cα2, and the distances a and b between front

axle and vehicle’s CoG, and rear axle and vehicle’s CoG, respectively. The

preceding system can be considered in a general generic form:

_x5A � x1B � u ðA1:7Þ

where x and u are the state and input vectors, respectively,

x5
β
r

� �
; u5

δ
Fye

Mze

0
B@

1
CA ðA1:8Þ
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and where system matrix A and input matrix B are given by

A5

Yβ

m � V
Yr

m � V 2 1

Nβ

Jz

Nr

Jz

0
BBB@

1
CCCA; B5

Cα1

m � V
1

m � V � 0

a � Cα1

Jz
0

1

Jz

0
BBB@

1
CCCA ðA1:9Þ

Suppose, we are interested in obtaining output in terms of the lateral

speed vy (5β �V) and lateral acceleration ay. Then, we can write the output

vector yðtÞ in generic form as follows:

y5
vy
ay

� �
5C � x1D � u ðA1:10Þ

with the matrices C and D given by

C5

V 0

Yβ

m

Yr

m

0
B@

1
CA; D5

0 0� 0

Cα1

m

1

m
0

0
B@

1
CA ðA1:11Þ

The formulation (A1.7) and (A1.10) is known as the state space format.

It describes the general system of n first-order equations in state vector x.

The input is given by the m-dimensional vector u. The dimension of the out-

put vector y is denoted as k. Consequently, the system matrix A is an n3 n

matrix, B is an n3m matrix, C is a k3 n matrix, and D is a k3m matrix.

The system in state space format may be described using a block diagram,

as shown in Figure A1.1.

The symbol “1/s” indicates integration and is in correspondence with the

s-domain properties. Note that integration in the time domain is created by

dividing by s in the s-domain (obtained after using the Laplace transformation).

Various tools exist in Matlab�Simulinks to treat state space models.

First, one must define the state space model in terms of the matrices A,. . .,D
as follows:

SYS5 SSðA;B;C;DÞ;

FIGURE A1.1 Block diagram for state space model.
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Next, one must define the initial conditions X0 for the state vector X (a

matrix with a number of rows similar to the number of time steps, and with a

column for each separate scalar state). In the same way, the input vector U is

a matrix with rows corresponding to time stamp, and the same number of col-

umns as the number of entries of the vector uðtÞ. The time stamp is stored in

an array T.

For a predefined input U, the solution of the state space problem is

obtained by a single statement:

½Y ;T ;X�5LSIMðSYS;U;T ;X0Þ

The columns of X and Y are the states and outputs of the problem,

respectively.

As an illustration, we determined the step response for the vehicle data

specified in Appendix 6. The response in lateral acceleration is shown in

Figure A1.2.

FIGURE A1.2 Output (lateral acceleration) of the state space model (Eqs. (A1.7)
and (A1.10)).
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Appendix 2:
System Dynamics

A2.1 GENERAL APPROACH IN N DIMENSIONS

Consider the n-dimensional autonomous ordinary differential equation

_x5Fðx; uÞ t. 0 ðA2:1Þ

where x is an n-dimensional function in time and u is an m-dimensional time-

dependent input, i.e.,

x:½o;NÞ-IRn u:½o;NÞ-IRm

Likewise, the right-hand side function F 5 (F1, F2, . . ., Fn)
T will also be

n-dimensional and it may be nonlinear. For example, the bicycle model in

Chapter 5 (with axle behavior described by the Pacejka model) is a nonlinear

differential equation with n5 2 and m5 1 (assuming the steering angle to be

the only input).

In many situations, one first examines the steady-state solutions for

Eq. (A2.1), i.e., with the input being constant in time:

uðtÞ5 us t. 0 ðA2:2Þ

That means that we search for solutions that are constant in time, satisfying

the equation

Fðxs; usÞ5 0 ðA2:3Þ

These solutions are referred to as the equilibrium points, critical points, or

singular points of Eq. (A2.1). The next question one may pose is whether

solutions of Eq. (A2.1) for constant input u, starting close to xs at t5 0, stay

close to xs or increase in time. This is the problem of stability for steady-state

solutions.
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A2.1.1 Definition: Stability

A steady-state solution xs of Eq. (A2.1) with constant input (us) is stable if

for every ε1. 0, a value ε2. 0 exists such that

jj xðt5 0Þ2 xsjj, ε2

implies

jj xðtÞ2 xsjj, ε1 t. 0

In general, the behavior of the solution may be even better, in the sense

that deviation from the equilibrium solution becomes arbitrarily small with

increasing time, which is referred to as asymptotic stability.

A2.1.2 Definition: Asymptotic Stability

A steady-state solution xs of Eq. (A2.1) with constant input (us) is asymptoti-

cally stable if a value ε2. 0 exists such that

jj xðt5 0Þ2 xsjj, ε2

implies

jj xðtÞ2 xsjj-0 t-N

Most readers will be familiar with the fact that the size of a vector, indicated

with jj � jj, is usually determined as the square root of the sum of squares of

the separate entries:

jjxjj5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i5 1:n

x2i

r
for x5 ð x1 x2 ::: xn ÞT

The practical relevance of the preceding definitions can be explained as

follows. Consider a system that is behaving stationary because of an input us,

for example, a vehicle with a chosen steering angle. The vehicle should fol-

low a perfect circle. However, the world is not perfect, and the vehicle path

may suffer from wind, road disturbances, inclinations, etc. Consequently, the

circle will not be perfect either; there will be a small deviation in the vehicle

state. One expects the vehicle to be forgiving, in the sense that these small

deviations will not lead to excessive vehicle behavior, without the driver

interfering. This means we expect the vehicle to be stable with respect to

yaw and drift disturbance. We define

dx � xðtÞ2 xs
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with xðtÞ being a solution of Eq. (A2.1) for u � us. Using the previous equa-

tions, this function is found to satisfy the following vector equation:

_dx 5FðxðtÞ; usÞ2Fðxs; usÞ t. 0 ðA2:4Þ

Assuming F to be differentiable, and assuming x to be close to xs, this

equation can be approximated by

_dx 5DxFðxs; usÞ � dx t. 0 ðA2:5Þ

where DxF is the Jacobian matrix of F , with entries

ðDxFÞij 5
@Fi

@xj
ðA2:6Þ

This Jacobian is an n3 n matrix, which is constant in time. It means that the

behavior of the solution of Eq. (A2.1) can be described locally near an equi-

librium (critical) point by a linear n-dimensional differential equation

_d5A � d t. 0 ðA2:7Þ

where we denoted the Jacobian with A, and removed the index x in the vector

function dðtÞ. Solutions for Eq. (A2.7) can be expressed as a superposition of

exponential functions

dðtÞ5
X
i5 1:n

ai � eλi t t. 0 ðA2:8Þ

for constant eigenvectors ai and where λ1, λ2, . . . , λn are the eigenvalues of

the (Jacobian) matrix A, i.e., for which the determinant of A2λi � I vanishes:

jA2λi � Ij5 0 i5 1; 2; . . . ; n ðA2:9Þ

where I is the unit matrix with the diagonal terms equal to one and all other

entries as zero. The stability of the steady-state solution xs depends on these

eigenvalues. If Re(λ). 0 for at least one of these eigenvalues, then dðtÞ will
become infinitely large. Consequently, there will be no stability. On the other

hand, if Re(λ)# 0 for all i5 1, 2, . . . , n, then xs is stable according to the def-

inition given previously. If Re(λ), 0 for all i5 1, 2, . . . , n, then d-0 and xs
is asymptotically stable.

A2.2 SYSTEM DYNAMICS IN TWO DIMENSIONS

Let us consider the situation for n5 2. This allows us to draw solution curves

in two dimensions, i.e., plot x1 versus x2, or d1 versus d2, if we consider only
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the deviations from the equilibrium solution. This plot of solution curves is

called the phase plane and the solution curves are called trajectories. Starting

from Eq. (A2.7) means that we consider solution curves around an equilib-

rium solution that are equal to d 5 0, which leads to the same local behavior

as for Eq. (A2.1) near x5 xs. The preceding discussion explains the local

behavior near the critical points, in terms of the eigenvalues of the system

matrix A (Jacobian of the right-hand side in case of a nonlinear set of equa-

tions). We now have, at most, two eigenvalues (λ1 and λ2), which means that

we can identify different situations for this local behavior, depending whether

the eigenvalues are real or nonreal, and whether the real part of the eigenva-

lues is positive, zero, or negative. The situation of one of the eigenvalues

being equal to zero corresponds to the matrix A being singular.

i. λ1 and λ2 are both real, λ1 �λ2, 0

One of the eigenvalues is positive, and the other is negative. Local

solutions are described by

dðtÞ5 a1 � eλ1�t 1 a2 � eλ2�t ðA2:10Þ

Part of this solution tries to approach the origin 0, whereas the other

part of the solution tries to move away from it. If λ1, 0, then all solu-

tions in the (d1, d2) plane along the orientation given by a1 are moving

toward 0. This is the only orientation for which this occurs. All other

orientations will have some share in the second part of dðtÞ and, after

having first approached 0, will change direction and move away again

from 0. The only orientation for solution curves to move away immedi-

ately is given by a2. Plotting the solution curves results in the image

shown in Figure A2.1. The dashed lines correspond to the vectors a1 and

a2, where the intersection is the critical point. Solution curves (the solid

FIGURE A2.1 Local behavior near critical point case (i) (saddle point).
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lines) approach this point but never reach it, bending off away from it.

A critical point with this local behavior is referred to as a saddle point.

ii. λ1 and λ2 are both real, λ1 �λ2. 0, λ1 6¼ λ2
Both eigenvalues are positive or negative. This means that all trajec-

tories move away from the critical point (a source of trajectories) or

approach it (a sink of trajectories), respectively. Suppose all trajectories

are approaching the steady-state point, i.e., the eigenvalues are negative.

Each term in Eq. (A2.10) tends to zero. The term for the eigenvalue with

the smallest absolute value dominates the behavior near 0. It still has a

significant value away from zero when the other term is already quite

small. We selected the coefficients ai, i5 1, 2, as in case (i). Plotting the

solution curves then results in the image shown in Figure A2.2. The two

dashed lines again correspond to the eigenvectors a1 and a2. Most curves

enter along the line corresponding to the eigenvalue with the smallest

absolute value. A critical point with this local behavior is referred to as a

two-sided node.

iii. λ1 and λ2 are both real, λ1 �λ2. 0, λ15λ2
There are two possibilities here: the eigenvalue can have a multiplic-

ity of 1 or 2. A multiplicity of 2 means that all vectors in IR2 are eigen-

vectors. The only possible way for this to occur is when matrix A is a

diagonal matrix where the diagonal terms are identical. In that case, the

arbitrary solution of Eq. (A2.7) is given by

dðtÞ5 a � eλ1�t

for any vector a. This implies that the vector dðtÞ moves along straight

lines toward the critical point 0 (if λ1, 0) or away from 0 (if λ1. 0).

Consequently, the local behavior is star-shaped, as indicated in

FIGURE A2.2 Local behavior near critical point, case (ii) (two-sided node).
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Figure A2.3, and the critical point is called a star. For a multiplicity of 1,

meaning that the set of eigenvectors is one-dimensional, the general solu-

tion of Eq. (A2.7) can be written as

dðtÞ5 ½C1 � a1 1C2 � a2� � eλ1�t 1C2 � a1 � t � eλ1�t

for arbitrary coefficients C1 and C2, eigenvector a1, and some vector a2
depending on a1. Now, all trajectories move along a single line toward or

away from the critical point, given by the orientation of eigenvector a1.

This is called a one-sided node (Figure A2.4).

FIGURE A2.3 Local behavior near critical point, case (iii) (star).

FIGURE A2.4 Local behavior near critical point, case (iii) (one-sided node).
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iv. λ1 and λ2 are both nonreal, with Re λi 6¼ 0, i5 1, 2.

The eigenvalues are complex and conjugate each other (same real

value, opposite imaginary value). We obtain solutions of Eq. (A2.7) of

the form

dðtÞ5 eμ1�t � ½a1 � cosðμ2 � tÞ1 a2 � sinðμ2 � tÞ� ðA2:11Þ

with the eigenvalues λi, i5 1, 2, expressed in real numbers μ1, μ2:

λ5μ1 6 i � μ2

and for some vectors a1 and a2. The imaginary part μ2 corresponds to the

radial eigenfrequency. Solution curves (trajectories) are spiraling in

(sink) and out (source) around the critical point for μ1, 0 and μ1. 0,

respectively (Figure A2.5). A critical point with this local behavior is

referred to as a focus or a spiral point.

v. λ1 and λ2 are both nonreal, with Re λi5 0, i5 1, 2.

This is the final case, with the eigenvalues being purely imaginary.

The expression (A2.11) now becomes

dðtÞ5 a1 � cosðμ2 � tÞ1 a2 � sinðμ2 � tÞ ðA2:12Þ

Hence, there is no decay to zero or unbounded growth of the solution

dðtÞ. The critical point is neither sink nor source and trajectories move

around this point as ellipses, which is indicated in Figure A2.6. A critical

point with this local behavior is referred to as a center.

FIGURE A2.5 Local behavior near critical point, case (iv) (focus).
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A2.2.1 Concluding Remark

Considering the different types of critical points, the saddle point, two-sided

node, and focus are the most common. The situations of Figures A2.3, A2.4,

and A2.6 are all rare, but are discussed here for the sake of completeness of

the theory. In the discussion of global stability of the vehicle bicycle model

in Chapter 5, these types of critical points are not of interest.

A2.3 SECOND-ORDER SYSTEM IN STANDARD FORM

A set of two first-order linear equations, obtained from expression (A2.7) in

two dimensions, can be rewritten as one single second-order system. Begin

with the general form of Eq. (A2.7), written as two coupled linear equations:

_x5 a11 � x1 a12 � y
_y5 a21 � x1 a22 � y

Differentiating the first equation in time, and using both equations for substi-

tutions, one arrives at the second-order equation in x:

€x2 ða11 1 a22Þ � _x1 ða11 � a22 2 a12 � a21Þ � x5 0

In terms of the trace (sum of diagonal terms) and determinant of the

matrix A, this equation can also be written as

€x2 trðAÞ � _x1 jAj � x5 0

FIGURE A2.6 Local behavior near critical point, case (v) (center).
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A second-order linear differential equation can be written in standard

form

€x1 2 � ζ � ω0 � _x1ω2
0 � x5 0 ðA2:13Þ

with undamped natural frequency ω0. 0 and damping ratio ζ (see Ref. [54]).

The general solution of Eq. (A2.13) can be expressed as

x5C1 � eλ1�t 1C2 � eλ2�t

for coefficients C1, C2 and with

λ12 52ζ � ω0 6ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 2 1

q
ðA2:14Þ

Clearly, if ζ. 1, all solutions will decay monotonously to zero, which

corresponds to case (ii) of Section A2.2. If 0, ζ, 1, solutions will decay to

zero, but in an oscillatory way, which corresponds to case (iv) of

Section A2.2. The damped radial eigenfrequency (ω) is then given by

ω5ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ζ2

q
ðA2:15Þ

We plotted the solution of expression (A2.13) with initial value x(0)5 1

and zero initial slope in Figure A2.7.

FIGURE A2.7 Second-order response to initial step for different damping values.
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Appendix 3:
Root Locus Plot

When dealing with differential equations, such as those described in state

space format in Appendix 1,

_x 5A � x1B � u x: ½0;NÞ-IRn u: ½o;NÞ-IRm ;

the eigenvalues λi, i5 1, 2, . . . , n of the system matrix A play an important

role. Each eigenvalue, being a root of the characteristic equation,

jA2λ � Ij5 0

corresponds to an eigenvector (eigenmode) that is a nontrivial state vector of

the form

x5 a � eλi :t t. 0

satisfying the differential equation for zero input u5 0. In general, the eigen-

values are complex numbers λi5μi11 i. μi2 with their real part indicating

the damping properties of the system at hand for that specific eigenmode,

and their imaginary part corresponding to the radial eigenfrequency

x5 eμi1:t � ða1 � cosððμi2 � tÞ1 a2 � sinðμi2 � tÞÞÞ t. 0

When discussing handling analyses, one is interested in yaw and roll fre-

quencies. When discussing comfort analysis, the eigenmodes of the vehicle

suspension in heave and pitch are the main topics of investigation.

Motorcycle handling strongly depends on eigenfrequencies of front assembly

(wobble) and the total frame (weave). Eigenvalues, and therefore eigen-

modes, also depend on vehicle parameters.

Hence, to improve the dynamic vehicle performance, one must find the

relationship between eigenvalues and these parameters, considering vehicle

speed as one of the most important parameters. The variation of the eigenva-

lues when one of these parameters is changed, when plotted in the complex

domain, is called a root locus. The combination of these plots for all eigenva-

lues is called the root locus plot. We saw in Appendix 2 that stability of the

steady-state solution requires that all of the eigenvalues must be in the left-

hand half of the complex domain, i.e., in negative real part.
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Let us consider the characteristic equation for the single-track vehicle han-

dling problem (3.53). Here, we varied the vehicle velocity and plotted one of

the eigenvalues for both understeer and oversteer situation in Figure A3.1.

Observe that, for the understeered vehicle, the eigenvalue becomes nonreal at

a certain speed, as expected from the discussion in Section 5.4. The eigenvalue

for an oversteered vehicle remains real and passes the imaginary axis at a cer-

tain speed (the critical speed), resulting in a loss of stability.

For nonreal eigenvalues (understeered vehicle), Eq. (3.53) can be related

to a second-order differential equation in standard form (cf. Eq. (A2.13) in

Appendix 2):

€x1 2 � ζ � ω0 � _x1ω2
0 � x5 0

with complex eigenvalues

λ12 52ζ � ω0 6 i � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ζ2

q

for ζ, 1. We selected an eigenvalue for a specific speed and indicated the

real and imaginary parts in Figure A3.1. From this, the following conclusions

are given:

(i) The imaginary part (if it exists) corresponds to the damped radial eigen-

frequency, which is connected to the specific eigenmode.

(ii) The real part of the eigenvalue describes the decay to zero. Hence, the

further the eigenvalue is positioned to the left, the faster any disturbance

to steady-state behavior will disappear.
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FIGURE A3.1 Root locus plot of one-track vehicle model.
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(iii) The distance between origin and eigenvalue in the complex domain is

equal to the undamped radial eigenfrequency.

(iv) The angle between the imaginary axis and the eigenvalue as a vector in

the complex domain describes the damping ratio (ζ).

When more modes exist, this graphical interpretation is a strong tool for

interpreting vehicle performance and identifying significant vehicle

parameters.
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Appendix 4:
Bode Diagram

It is assumed that the transfer function in the s-domain for the solution of a

linear differential equation can be written as follows:

GðsÞ5 K

sn
� S1 � S2?Sk � Q1 � Q2?Ql

Sk11:Sk12. . .Ql11 � Ql11. . .
ðA4:1Þ

for some n, l, k$ 0, where Si and Qj are linear and quadratic expressions in s:

Si 5 s � τi 1 1 ðA4:2Þ

Qj 5
s

ωj

� �2
1 2 � ζ j �

s

ωj

1 1 ðA4:3Þ

The parameters τi, ωj, and ζ j are all assumed positive. The functions

(A4.2) and (A4.3) determine the poles (eigenvalues, eigenfrequencies) and

zeroes of the transfer function [G(s)]. Here, we follow the treatment of Bode

plots by van de Vegte [54]. Hence, for an input u(s), a solution x(s) in the

s-domain can be found in the form

xðsÞ5GðsÞ � uðsÞ ðA4:4Þ

which is obtained by Laplace transformation of the differential equation.

Considering a complex input in the time domain

uðtÞ5A � ei�Ω�t 5A � ½cosðΩ � tÞ1 i � sinðΩ � tÞ� ðA4:5Þ

a solution x(t) in the time domain is found of the form

xðtÞ5MðΩÞ � A � ei�Ω�t � ei�ϕðΩÞ 5MðΩÞ � A � ½cosðΩ � t1ϕÞ1 i � sinðΩ � t1ϕÞ�
ðA4:6Þ

Hence, an oscillatory (e.g., sinusoidal) input results in a forced response

being oscillatory (sinusoidal) as well, with the amplitude being increased

with a factor M and the phase shifted with an angle ϕ, that both depend on

the forced input frequency Ω. Comparing the last two expressions (A4.5) and

(A4.6) with Eq. (A4.4), one may conclude that 275



• The multiplication factor M(Ω) corresponds to the magnitude of the trans-

fer function G(s), where s is replaced by i �Ω

MðΩÞ5 jGði � ΩÞj

This magnitude is typically expressed in terms of decibels (dB)

MdB 5 20 � 10log M

• The phase angle ϕ between output and input corresponds to the argument

of the frequency transfer function G(i �Ω).
A set of Bode diagrams shows M versus Ω (or MdB versus Ω) and ϕ ver-

sus Ω. For very small Ω, M will correspond to the steady-state gain (M0). For

large Ω, one expects the system is unable to follow the input anymore, which

leads to small values of M and large negative values of ϕ (large phase shift).

We introduced the bandwidth Ωbw and the equivalent time Teq in

Section 5.1. These properties were defined as the range of frequencies for

which the magnitude exceeds M0/
ffiffiffi
2

p
, and 2 �π/Ωeq for which Ωeq corre-

sponds to a phase lag of 45�, respectively (see also Figure 3.7). This band-

width corresponds to a reduction of 10. 10log(2)5 3.0103 in MdB, hence, in a

reduction of approximately 3 dB.

Where G(iΩ) is a product of factors with magnitude Mj and phase ϕj:

Gði � ΩÞ5 L
j

Mj � ei�ϕj

it follows that

MdB 5 20 �
X
j

10log Mj ϕ5
X
j

ϕj

Hence, one composes the Bode diagrams from the magnitude and phase

of the basic elements of Eq. (A4.1), including gain, integrators, differentia-

tors, first- and second-order lead (numerator in Eq. (A4.1)), and lag (denomi-

nator in Eq. (A4.1)).

i. A simple gain K

For a simple gain K, the magnitude and phase are found to be inde-

pendent of Ω:

MdB 5 20 � 10log K ϕ5 0

ii. An integrator

In case of an integrator, the transfer function G is given by:

Gði � ΩÞ5 1

i � Ω

� �n
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for some n5 1, 2, 3,. . .. The magnitude and phase are found to be

MdB 5 20 � 10logji:Ωj2n 52 20 � n � 10log Ω ϕ52n � π
2

On a log scale (for Ω), the magnitude versus frequency is a straight

line, passing through (Ω, MdB)5 (1, 0) with slope 220 � n dB/decade. By

selecting n, 0, we obtain a differentiator that leading to plots being the

mirror image of an integrator with respect to the 0 dB and 0� lines in the

magnitude and phase plots.

iii. A simple lag

In case of a simple lag, the frequency transfer function is given by:

Gði � ΩÞ5 1

i � Ω � τ1 1

For low frequency (Ω), one finds

MdB-0 ϕ-0 if Ωk0

For large frequency, one finds

MdB-2 20 � 10log Ω2 20 � 10log τ ϕ-2
π
2

if Ω-N

Both approximations are straight lines in the magnitude plot on a log

scale, intersecting at Ω � τ5 1. Bode plots for a first-order lag are shown

in Figure A4.1.

We make a remark here on a delay, described in the frequency

domain as

Gði � ΩÞ5 e2iΩ�τR
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FIGURE A4.1 Bode diagrams for first-order lag and lead.
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which, for a small delay time τR (typically in the order of 0.1�0.3 [s])

can be approximated (Taylor series extension) by a simple lag

Gði � ΩÞ5 1

i � Ω � τR 1 1

for a radial frequency (Ω) that is not too large. For larger frequencies, the

major differences are the changes in gain (constant for a delay, dropping to

lower values for a simple lag) and phase. As shown in Figure A4.1, the phase

of a simple lag drops down to—π/2 for very large frequencies, whereas the

phase of a delay, —Ω � τR, may result into very large negative values.

iv. A simple lead

In case of a simple lead, the frequency transfer function is given by

Gði � ΩÞ5 i � Ω � τ1 1

resulting in a similar low frequency behavior, and with the large fre-

quency behavior given by

MdB-20 � 10log Ω1 20 � 10log τ ϕ-
π
2

if Ω-N

Again, both approximations are straight lines in the magnitude plot

on a log scale, intersecting at Ω � τ5 1; however, here, the magnitude is

increasing with increasing frequency Ω. τ21. Bode plots for a simple

lead (for the same value of τ) are also shown in Figure A4.1.

v. Quadratic lag

In case of a quadratic lag, the frequency transfer function is given by

(see Eq. (A4.3))

Gði � ΩÞ5 1

ðði � ΩÞ=ωÞ2 1 2 � ζ � ði � ΩÞ=ω1 1

and therefore

MðΩÞ5 12
Ω
ω

� �2 !2

1
2 � ζ � Ω

ω

� �20
@

1
A

2
1
2

� ϕðΩÞ52 arctan
2 � ζ � Ω=ω
12Ω2=ω2

For small frequency (Ω), the magnitude approaches 0 dB and the phase

tends to 0�, similar to the simple lag. For very large Ω, M(Ω) behaves qua-

dratic in Ω, with

MdBðΩÞ-240 � 10log Ω
ω

� �
ϕðΩÞ-2π if Ω-N
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We depicted the quadratic lag response in Figure A4.2 for different values

of ζ. Observe the resonance behavior near Ω5ω and the behavior for large

and small Ω.
We close this appendix section with the introduction of the gain

margin GM and the phase margin ϕm for an open-loop transfer function

GðsÞ5Gði:ΩÞ5 e2i:Ω:τR .

Consider the closed-loop system, shown in Figure A4.3, which indicates

the control of the vehicle by the driver, in response to feedback from vehicle

performance output x (i.e., path deviation, yaw rate, lateral acceleration). The

open-loop transfer function in the frequency domain is denoted by G(iΩ).
According to this functional block diagram, we obtain

x5GðsÞ � ðu2 xÞ

and therefore

x5 TðsÞ � u � GðsÞ
11GðsÞ � u ðA4:7Þ

The characteristic equation is given by

11GðsÞ5 0 ðA4:8Þ
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FIGURE A4.2 Bode diagrams for quadratic lag for different values of ζ.

FIGURE A4.3 Closed-loop vehicle�driver system.
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and stability is violated if solutions si of Eq. (A4.8) exist with a positive real

part, i.e., lying in the right half complex s plane. In that case, a reverse trans-

formation of Eq. (A4.7) to the time domain using partial fractions will lead to

an exponential contribution eλt in x(t) with Re �λ. 0, i.e., yielding an

unbounded solution. Letting s5 iΩ follow the imaginary axis means encir-

cling these points si, and therefore the origin by 11G(s), which is the same

as encircling G521 by G(i �Ω). This image G(i �Ω) for Ω increasing along

the real axis is called the polar plot. Consequently, the critical condition for

stability is reached if the polar plot just passes the point where G5 21. This

means that the denominator in the closed-loop transfer function T(i �Ω)
vanishes, which is identical to

jGði � ΩÞj5 1 arg½Gði � ΩÞ�5 6π

As an example, we take

GðsÞ5 1

ðs1aÞ2 � ðs1 1Þ ðA4:9Þ

for a. 0. We plotted G(s) for s5 i �Ω in Figure A4.4 and the magnitude of

the corresponding closed-loop transfer function in Figure A4.5 (Bode magni-

tude plot), for a5 0.2, 0.3, and 0.4. Clearly, for the polar plot passing through

G521, for parameter a close to 0.3 (in fact, a5 0.2972), the closed-loop

transfer function becomes unbounded. For lower values of a, the correspond-

ing closed-loop system is unstable. This result is known as the simplified

Nyquist criterion. This criterion states that, for an open-loop transfer system

G(s) with no poles in the right half s-plane, the corresponding closed-loop

system is stable only if the polar plot passes the point 21 on the right-hand

FIGURE A4.4 Polar plot of G(i �Ω) according to Eq. (A.35) for various values of

parameter a.
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side (see Ref. [54] for further reference). That means that, if the polar plot

intersects the negative real axis, it will do so at a point with a magnitude less

than 1. Defining the gain margin GM as the reciprocal magnitude of G(i �Ω)
for phase ϕ52π, and GMdB5 20. 10log(GM) means that at ϕ52π,
M(Ω), 1 and therefore GMdB. 0.

FIGURE A4.5 Magnitude of closed-loop transfer function T(i �Ω).

FIGURE A4.6 Polar plot, with indication of gain margin GM and phase margin ϕm.

FIGURE A4.7 Indication of phase margin and gain margin in Bode plots.
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Defining the phase margin ϕm as the angle on top of a phase of 6 π for

unit magnitude, M(Ω)5 1, i.e., for MdB (Ω)5 0 (this frequency is called the

crossover frequency), this phase margin will be positive for a stable system,

because of the Nyquist criterion. Gain margin and phase margin have been

indicated in the polar plot in Figure A4.6 and in the Bode magnitude and

phase plots in Figure A4.7.
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Appendix 5:
Lagrange Equations

Consider a mechanical system with n generalized coordinates qi, i5 1, . . ., n.
Assume that generalized nonconservative forces Qi exist, meaning that these

forces (or moments) cannot be expressed as a gradient 2rU of a potential

function U(qi) (i.e., of the potential energy), and do not depend on the gener-

alized coordinates qi and their time derivatives. The total transfer of energy is

given by the following function:

L� 5 T 2U1
X
i

qiUQi ðA5:1Þ

with kinetic energy T, potential energy U, and work being carried out using

the nonconservative forces Qi. The first part of the right-hand side in

Eq. (A5.1) is usually referred to as the Lagrangian (Lagrange function). We

will follow the system for the time interval [0, T ] and state that the general-

ized coordinates correspond to the situation with an extreme total energy

transfer. This means that we are searching for the extreme of the following

functional (known as the action of the system):

J5

ðT
0

L�ðqi; _qi; tÞdt ðA5:2Þ

i.e., the solution qi(t) for which the variation of J, with respect to variations

in qi and its time derivatives, vanishes. This is called the principle of least

action and it states that a dynamical system “moves” from an initial to a final

situation in a way that keeps the action minimal. The variation of J can be

found as (see Chapter 4 in Ref. [21])

δJðqiUδqiÞ5
ðT
0

X
i

@L�

@qi
Uδqi 1

@L�

@ _qi
Uδ _qi

� �
dt5 0 ðA5:3Þ

for arbitrary variations δqi and δ _qi, which all satisfy the same initial

conditions.

It can be shown by partial integration that

@L�

@qi
2

d

dt

@L�

@ _qi
5 0 ðA5:4Þ
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where we have used the fundamental lemma of the calculus of variations:

if

ðT
0

hðtÞUδqðtÞdt5 0 for all continuous functions δqðtÞ then

hðtÞ5 0 all along the interval ½0;T �

Equation (A5.4) is also known as the Euler�Lagrange equation. By

substituting Eq. (A5.1) into Eq. (A5.4), for the generalized coordinates qi(t)

for which expression (A5.2) has an extreme value, one finds

d

dt

@T

@ _qi
2

@T

@qi
1

@U

@qi
5Qi i5 1; . . .; n ðA5:5Þ

We assumed that the potential energy only depends on qi and not on its

time derivative. In case of dissipated energy (such as for dampers), one may

subtract the so-called Rayleigh function Ld from Eq. (A5.1), given by (and

assumed to depend only on generalized state derivatives)

Ld 5
1
2
U _qTUCU _q ðA5:6Þ

for matrix with damping values C (see Appendix A.5 in Ref. [11]).

Equation (A5.5) is a system of n equations that describe the behavior of

the states derived from the coordinates qi(t) (e.g., yaw rate, body slip angle)

for certain initial conditions and nonconservative forces Qi (e.g., tire forces,

aerodynamic loads). Setting up the equations of motion means that one must

describe the kinetic and potential energy (and possibly dissipation/damping)

in terms of generalized coordinates and their time derivatives and then substi-

tute these values into Eq. (A5.5). An alternative but equivalent approach is to

start from Newton’s second law (impulse equals change in momentum) and

likewise its rotational analogy (angular impulse equals change in angular

momentum).
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Appendix 6:
Vehicle Data

A6.1 PASSENGER CAR DATA

This section contains arbitrary, but realistic, vehicle data for a typical sporty

sedan, indicated in Figure A6.1.

We will always assume for the acceleration of gravity g that g5 9.81 [m/s2].

Damper characteristics are usually described as the damper force, which

depends on damper speed according to a more or less piecewise linear func-

tion that consists of three linear parts. We link three linear functions:

fiðvÞ5 ai � v1 bi i5 1; 2; 3 ðA6:1Þ

for damper speed (v), intersecting at two speeds, v5 v1, v2. v1. This can be

achieved by combining these functions as follows:

f ðvÞ5 ð12 h1ðvÞÞ � f1ðvÞ1 ðh1ðvÞ2 h2ðvÞÞ � f2ðvÞ1 h2ðvÞ � f3ðvÞ ðA6:2Þ

such that h1(v) is close to 0 for v, v1 and close to 1 for v. v1. Further, h2(v)

is close to 0 for v, v2 and close to 1 for v. v2.

A function that satisfies these conditions is given by

hiðvÞ5 1
2
� 11

2

π
� arctanðD � ðv2 viÞÞ

� �
ðA6:3Þ

a 1.51 [m] Mass 1600 [kg]

b 1.25 [m] Jx 880 [kg.m2]

tfront 1.50 [m] Jy 3110 [kg.m2]

Trear 1.51 [m] Jz 3280 [kg.m2]

hCoG 0.57 [m]

Steering ratio 15

Spring stiffness front 19 [N/mm] Spring stiffness rear 75 [N/mm]
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with the parameter D tuned to make this transition either more abrupt (large

D value) or smooth (small D value). For this vehicle, we selected the follow-

ing parameters:

Note that the axle damping force amounts to twice the wheel

damping force. We depicted the corresponding damper characteristics in

Figure A6.2.

Further, we note that this fit approach can be used for arbitrary descrip-

tions of the damper characteristics. This does not have to be a piecewise lin-

ear curve. Higher-order descriptions may be used in a similar way.

The axle data are expressed in terms of axle cornering stiffnesses

FIGURE A6.1 Passenger car with indication of CoG and axle positions.

Damper Front Wheel

a1 250 [Ns/m] b1 2300 [N]

a2 4100 [Ns/m] b2 0 [N]

a3 625 [Ns/m] b3 500 [N]

D 50 [s/m]

Damper Rear Wheel

a1 395 [Ns/m] b1 2400 [N]

a2 5000 [Ns/m] b2 0 [N]

a3 835 [Ns/m] b3 1000 [N]

D 50 [s/m]
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resulting in an understeer gradient η5 0.042 (see Section 5.3.2).

A6.2 EMPIRICAL MODEL TIRE DATA

We use different sets of Pacejka data for tires. Some realistic data are listed

here, with notation based on the Pacejka model [32]. All other Pacejka tire

parameters that are not included are taken as zero.

Cα1 55,000 [N] Cα2 98,000 [N]

FIGURE A6.2 Damper characteristics fitted according to Eq. (A5.4).

Nominal Load 4000 [N] Vertical Stiffness 0.25 [MN/m]

PCx1 1.6 PDx1 1.0

PDx2 20.1 PEx1 0.1

PEx2 0.25 PKx1 20

PKx2 12 PKx3 20.5

RBx1 11 RBx2 10

RCx1 1.0 REx1 20.5

REx2 20.5 PCy1 1.3

PDy1 0.9 PDy2 20.08

PEy1 20.8 PEy2 20.6

PKy1 15.0 PKy2 1.8

PKy3 0.5 PKy4 2.0

PKy6 21.0 PKy7 20.3

RBy1 12.0 RBy2 10.0

RBy3 20.01 RCy1 1.05

REy1 0.25 QBz1 13.0

QBz2 21.5 QBz9 20

QCz1 1.3 QDz1 0.1

QDz6 0.002 QDz7 20.002

QDz8 20.15 QEz1 21.0

QEz2 0.8
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Appendix 7: Empirical Magic
Formula Tire Model

In Subsections 2.4.2 and 2.5.2, the empirical Magic Formula is shown to be

suited to describe longitudinal and lateral tire characteristics, i.e., longitudinal

force Fx versus practical slip κ and lateral force Fy versus slip angle α. The
general form of this formula, neglecting horizontal and vertical shifts, reads

FðsÞ5DUsinðCUarctanðBUs2EUðBUs2 arctanðBUsÞÞÞÞ ðA7:1Þ

for slip s, and factors D, C, B, and E. These factors typically depend on wheel

load and/or camber within certain additional empirical relationships, as

described in Sections 2.4 and 2.5. Expression (A7.1) and the additional rela-

tionships require model data to be derived from tests. There are many situa-

tions for which such data is not available, but graphical information (i.e., plots

of these characteristics) can be obtained. The question then is whether such

limited information can be used to derive good estimates for the factors in

Eq. (A7.1). Moreover, if we can derive these estimates for different wheel

loads, then one would be able to find the parameters of the additional relation-

ships (e.g., B, C, D, or E as a function of wheel load Fz, see also Eq. (2.29) and

Eq. (2.46)). The dependency on camber angle is usually less important here.

Please refer to Section 2.6 where it is shown that Magic Formula data for pure

slip, in turn, can be used to estimate the combined slip characteristics.

Two observations are found easily (Figure A7.1):

1. The peak value of F(s) is given by D.

2. The slope of F(s) at s5 0 is given by K�B �C �D.
The values of D and K can usually be estimated quite well from available

graphs. Now suppose that the value FN of F for very large slip s can be esti-

mated well, as indicated in Figure A7.1. When s is very large, Eq. (A7.1) can

be expressed as

FN 5DUsin
π
2
UC

� �
ðA7:2Þ

and thus

C5 16 12
2

π
Uarcsin

FN

D

� �� �
ðA7:3Þ
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Because C. 1, the1 sign must be selected. The value for B follows now

easily from K, D, and C.

Finally, if one is able to determine the point sm with sufficient accuracy,

for which F(s) attains a maximum, one can use the relationship

dF

ds
ðsmÞ5 0

to show that, if C. 1,

E5
BUsm 2 tan π

2UC

� �
BUsm 2 arctanðBUsmÞ

ðA7:4Þ

This estimated derivation of the Magic Formula parameters can also be found

in Ref. [32].
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FIGURE A7.1 Tire shear force (F) versus slip (s).
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Appendix 8:
The Power Spectral Density

Let x(t) be a real-valued signal derived from the behavior of a system in

time. For a vehicle�driver system, x(t) could be the steering angle or the

vertical position of the vehicle body. The energy, related to x(t), is propor-

tional to x(t)2. For the vehicle body, the square of the vertical position is pro-

portional to the energy stored in the suspension, due to road disturbances. For

a driver, the square of the steering angle corresponds to the energy that is

being delivered by the driver to steer the vehicle. The corresponding average

power P(x;T) over a time interval with length T can be expressed as the sum-

mation of the supplied energy per unit of time:

Pðx; TÞ5 1

T

ðT
0

xðtÞ2Udt ðA8:1Þ

For the example of the driver, one may be interested in the contribution

to this power from the frequencies of steering, with a significant contribution

for high frequencies that indicate a high workload. That means that one must

discuss the system behavior in the frequency domain and consider the

Fourier transform F(Ω;x), defined by

FðΩ; xÞ5
ð1N
2N

xðtÞUe2iΩtUdt ðA8:2Þ

For further study, Strang [51] provides an in-depth discussion of Fourier

transformation and Sneddon [52] addresses integral transforms.

Because x(t) is defined for positive real time, it must be defined for nega-

tive real values as well for Eq. (A8.2) to make sense. Two different

approaches are clear:

i. Take x(t)5 0 for t, 0 (one-sided description).

ii. Take x(t)5 x(2t) for t, 0 (two-sided description).

The difference between these two approaches is only a factor 2. We fol-

low approach (ii) in this appendix.

The Fourier transform exists if the signal x(t) is integrable over the entire

time domain, and this condition is not always satisfied. An efficient way to
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deal with this, remembering that x(t) is only available for a finite time span,

is to replace the signal by xT(t) defined by

xT ðtÞ5 xðtÞ; 0, t, T

xT ðtÞ5 0; t. T
ðA8:3Þ

with the extensions to the negative time domain as discussed previously. We

write, for the corresponding Fourier transform:

FT ðΩ; xÞ5
ð1N
2N

xT ðtÞUe2iΩtUdt ðA8:4Þ

Note that Eq. (A8.1) may exist for very large T, even if the signal x(t) is

not integrable over the entire time domain. A clear example is when x(t) is

constant.

We can replace x(t) with xT(t) in Eq. (A8.1). We note that a theorem

exists, which states that the integral over the time domain of the square of a

function is equal (except for a factor 2π) to the integral over the frequency

domain of the square of the absolute value of the Fourier transform of this

function. This theorem, known as Parseval’s relation or Plancherel’s formula

[51,52] can be expressed as

2Uπ
ð1N
2N

xT ðtÞ2Udt5
ðN
2N

jFT ðΩ; xÞj2UdΩ ðA8:5Þ

and, consequently,

Pðx; TÞ5 1

T

ðT
0

xðtÞ2dt5 1

2T

ðN
2N

xT ðtÞ2dt5
1

2π

ðN
2N

jFT ðΩ; xÞj2
2T

dΩ ðA8:6Þ

This expression suggests introducing the integrand of the integral over the

frequency domain as the power spectral density (PSD). More precisely, PSD

is defined as this function for infinite T, i.e.,

PSDðΩ; xÞ5 lim
T-N

jFT ðΩ; xÞj2
2T

ðA8:7Þ

The average mean square (MS) of the signal x(t) can now be expressed in

terms of the PSD:

Pðx; TÞ5 1

T

ðT
0

xðtÞ2dt � 1

2π

ðN
2N

PSDðΩ; xÞdΩ ðA8:8Þ

for large T. The contribution of a certain frequency range (Ω1, Ω2) to the

power (P) is derived from the integral of PSD over this frequency interval.
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We treat two examples, where x(t) is a sine function, and when x(t) is the

solution of a second-order equation, respectively.

Case 1. Signal x(t)5 sin(ω0 � t)
With

xðtÞ5 sinðω0UtÞ

one finds

FT ðΩ; xÞ5 2Uω0

ω2
0 2Ω2

2
cosððω0 1ΩÞUTÞ

ω0 1Ω
2

cosððω0 2ΩÞUTÞ
ω0 2Ω

1 iU
sinððω0 1ΩÞUTÞ

ω0 1Ω
2 iU

sinððω0 2ΩÞUTÞ
ω0 2Ω

For T-N, this function tends to zero for ω 6¼ ω0. We have chosen

ω05 1 [rad/s] and approximated PSD(Ω;x) for T5 8, 12, and 24 s. Results

are shown in Figure A8.1. Observe that the PSD becomes narrower near ω0

with increasing time interval length T. Increasing T further, the PSD tends to

a Dirac function, with a finite integral, but which remains zero everywhere

except for ω5ω0.

Case 2. Signal x(t) as a solution of a second-order equation

We shall discuss the solution of the following differential equation:

m � €x1 c � _x1 k � x5 c � _u1 k � u ðA8:9Þ

FIGURE A8.1 Approximations of the PSD for a sine function for different

time intervals.
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for certain values of m, c, and k, with zero initial conditions. This is the case

of a single mass quarter vehicle model with vertical position x(t) and road

profile u(t) (see Ref. [11] for more information). The absolute value of the

frequency transfer function (G) can easily be obtained:

jGðiUΩÞj2 5 k2 1 c2UΩ2

ðk2mUΩ2Þ2 1 c2UΩ2

As a result, the power spectral density of the vertical body acceleration

(in which one is usually interested) can be derived from PSD(Ω;u):

PSDðΩ; €xÞ5Ω4U
k2 1 c2UΩ2

ðk2mUΩ2Þ2 1 c2UΩ2
UPSDðΩ; uÞ

The power spectral density of the road profile is usually expressed as

PSDðΩ; uÞ5 cuUΩ22UV

which means that road disturbances tend to be smaller if the frequency is

higher, i.e., if the road disturbance is shorter. Higher speeds correspond to a

higher PSD.

We determined the power spectral density for the vertical body accelera-

tion for parameters m5 400 [kg], c5 23 103 [N/ms], k5 33 104 [N/m],

cu5 53 1025 [m3], and V5 25 [m/s]. The results are shown in Figure A8.2.

The maximum PSD response is found near the natural eigenfrequency ω0

with ω2
0 5 k=m, as expected.

FIGURE A8.2 Power spectral density for the body acceleration with the body displa-

cements x(t) following from Eq. (A8.9).
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List of Symbols

a distance CoG—front axle

a half tire contact length

ae, be, ce elliptic cam parameters

ax longitudinal acceleration

ay lateral acceleration

b distance CoG—rear axle

b half tire contact width

c stiffness

cbx, cbz translational sidewall stiffness values

cbθ rotational sidewall stiffness value

ccx, ccy carcass stiffnesses per unit length

cαι normalized cornering stiffness, axle i

CCα cornering compliance

CF lateral force coefficient

CFy tire lateral spring stiffness

CFz vertical tire stiffness

CM yaw moment coefficient

CoG center of gravity

Cα cornering stiffness

Cγ camber stiffness

Cκ longitudinal slip stiffness

d vertical tire deflection

dfz deviation from nominal tire load

Dp path deviation

e trailing arm length

fy normalized cornering force (lateral friction coefficient)

fR coefficient of rolling resistance

FcN normal contact force

FcT tangential contact force

FR rolling resistance force

Fx longitudinal (brake, drive) force

Fy lateral (cornering) force

Fye external lateral force

Fz wheel load, axle load

Fz0 nominal tire load

Fzij wheel load, axle i ( f, r), side j (L, R)

g acceleration of gravity

G(s) transfer function 295



Gd(s) transfer function driver

Gv(s) transfer function vehicle

hCoG height vehicle CoG

Jay rim moment of inertia

Jby belt moment of inertia

Jwheel, Jw wheel moment of inertia

Jz vehicle yaw moment of inertia

k damping

kbx, kbz translational sidewall damping values

kbθ rotational sidewall damping value

kx, ky, k tire read stiffnesses

K gain

Kp driver steering gain

Ks stability factor

Kϕ1, Kϕ2 axle roll stiffnesses

L wheelbase

Lb, Lf parameters basic road function

Ld Rayleigh function

Lp driver preview length

Ls length two-point follower

L* Lagrange function

m mass (vehicle)

ma rim mass

mb belt mass

MdB 20 � 10log M(Ω)
Ms static margin

Mx overturning moment

My drive, brake torque

Mz aligning torque

Mze external yaw moment

Mzr residual torque

M(Ω) magnitude transfer function

pi inflation pressure

Pa accelerator pedal depression

PSD power spectral density

qx, qy integrated shear stress

qz integrated normal stress

r yaw rate

rg radius of gyration

R unloaded tire radius

R curve radius

Re effective rolling radius

Rl loaded tire radius

s Laplace variable
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sx, sy practical slip quantities

SI stability index

SRR steering reversal rate

t track width

tp pneumatic trail

T temperature

T kinetic energy

Tc cornering kinetic energy

Teq equivalent time

THW time headway

Tk translational kinetic energy

TL lead time

Tp preview time

TTC time to contact

u, v tire contact deflections

u, v local vehicle speeds

ub, vb tire belt deflections

ut, vt tire tread deflections

U potential energy

V velocity

Vgx, Vgy sliding speeds

Vr rolling speed

Vsx longitudinal slip speed

Vsy lateral slip speed

Vx forward tire speed

vy vehicle lateral speed

we effective road height

xa, za rim position

xb, zb belt rigid ring position

xGuo, zGuo vehicle states cf. Guo

xNS position neutral steer point

Yβ, Yr derivatives of stability

Nβ, Nr derivatives of stability

α wheel, axle slip angle

α0 effective slip angle

β body slip angle

βe effective road slope

δ steering angle

γ camber angle

γ articulation angle

η course angle

η understeer gradient

ϕ phase angle

ϕ angular wheel position
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ϕ vehicle roll angle

ϕm phase margin

κ brake slip

κ0 effective brake slip

λ eigenvalue

λ vehicle rotating length

μ road friction

μx normalized brake force (longitudinal friction coefficient)

μxp peak braking coefficient

μxs sliding braking coefficient

μy normalized cornering force (lateral friction coefficient)

μyp peak cornering coefficient

μys sliding cornering coefficient

θ tire parameter

θ vehicle pitch angle

θa rim rotational deflection

θb belt rotational deflection

ρ total theoretical slip

ρx horizontal contact patch displacement

ρx, ρy theoretical slip quantities

ρzr residual tire deflection

σz normal contact stress

σα, σκ relaxation lengths

τd delay time

τlag, τL lag time

τ total shear stress

τx, τy shear stresses

ω eigenfrequency

ω0 undamped eigenfrequency

Ω forced frequency

Ω rotational speed

Ωbw bandwidth

Ω0 rotational speed under free rolling conditions

ψ yaw angle

ψp path yaw orientation

ζ damping ratio
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Schräglauf. Diss., Braunschweig (1963).

[5] J.C. Dixon.: Tires, Suspension and Handling. SAE International, Warrendale, PA,

USA (1996).

[6] R.V. Dukkipati, J. Pang, M.S. Quatu, G. Sheng, Z. Shuguang.: Road Vehicle

Dynamics. SAE International, Warrendale, PA, USA (2008).

[7] E. Donges.: Supporting Drivers by Chassis Control Systems. In: J.P. Pauwelussen,

H.B. Pacejka (eds.): Smart Vehicles. Swets & Zeitlinger Publishers, Amsterdam/

Lisse, The Netherlands (1995).

[8] H. Fromm.: Kurzer Bericht über die Geschichte der Theorie des Radflatterns. Bericht

140 der Lilienthal Gesellschaft, 1941; NACA TM 1365, 1954.

[9] W. Gengenbach.: Experimentelle Untersuchung von Reifen auf Nasser Fahrbahn.

Automobiltechnisch Zeitschrift (ATZ), Band 70, Nr. 8 und 9 (1969).

[10] G. Genta, L. Morello.: The Automotive Chassis, Volume 1: Components Design.

Springer, Berlin, Mechanical Engineering Series (2009).

[11] G. Genta, L. Morello.: The Automotive Chassis, Volume 2: System Design. Springer,

Berlin, Mechanical Engineering Series (2009).

[12] R. Gnadler.: Nassgriff und Aquaplaningverhalten von PKW-Reifen. Verkehrsunfall

und Fahrzeugtechnik (1988).

[13] J. Godthelp, P. Milgram, G.J. Blaauw.: The development of a time-related measure to

describe driving strategy, Human Factors, Vol. 26, pp. 257�268 (1988).

[14] S. Gong.: A Study of In-Plane Dynamics of Tires. PhD Thesis, Delft University of

Technology, The Netherlands (1993).

[15] K.-H. Guo.: A Study of a Phase Plane Representation for Identifying Vehicle

Behavior. Proceedings of the 9th IAVSD Symposium, Linköping (1985).
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Note: Page numbers followed by “f ” and “t” refer to figures and tables, respectively.

A
Ackermann share, 114�116, 115f

Ackermann steering, 113�118

deviation of outer wheel steering angle

to, 117f

Action of the system, 283

Actual road profile, 92

Actual road surface, 89�90

Aligning torque, 38�39, 60

Alignment and compliance effects, 143�145

Articulated vehicle, 118�121

Asymptotic stability, defined, 262�263

Average mean square (MS), 292

Axis systems and notations, 111�113

Axle characteristics, 3, 5, 138, 143�144,

150, 153, 175f, 180, 184f, 186, 189

linear, 5, 155, 157�158, 166, 168,

188�189

nonlinear, 5, 126�127, 157�158, 168,

176, 186

normalized, 146�147, 150, 153, 174f,

177f, 252

Axle cornering stiffness, 144�145,

221�222

minimum preview length versus vehicle

speed for, 233f

for passenger car, 145t

preview length versus gain, 222f

Axle load, 144

B
Bare string model, 52

Basic road function, 92

Basis road curve, deriving, 93f

Belt dynamics, 87�88

Bias-ply tires, 10

radial tires versus, 25

Bicycle model, 5, 124

Blood pressure variability, 204

Bode diagram, 275

for body slip angle frequency transfer, 167f

for first-order lag and lead, 277f

indication of phase margin and gain

margin, 281f

magnitude of closed-loop transfer

function, 281f

polar plot, with indication of gain

margin, 281f

for quadratic lag, 279f

for yaw rate frequency transfer, 167f

Body roll, effect of, 139�143

Body slip angle, 132, 161f, 172f, 173

Body slip angle gain, 117�118, 151

frequency transfer, bode diagrams

for, 167f

and vehicle yaw rate, 152f

Brake force, 26�28

versus brake slip, 28f

Brake slip, 3, 29, 50, 58�59

brake force versus, 28f

brush deflections along contact area

for, 59f

Brake torque, 18�19, 26�28, 191�192

Braking/driving conditions, 18�19

tire under, 26�32

braking behavior, 26�30, 26f

longitudinal tire behavior, modeling,

30�32

Breakaway point, 55, 64

Brush deflections, 58, 58f, 59f

Brush model, 4, 49, 51�61, 53f

Brush tire model, 51f, 52�53

Brush-string model, 4, 52, 62�74, 62f, 67t

C
Camber stiffness, 42

Camber thrust coefficient, 42

Camber-induced side force, 41, 42f

Car following task, 212, 212f

Carcass, 9, 75�76

geometry layout, 103f

Car�trailer combination, 118�119, 119f

Center, defined, 267

Centrifugal phenomenon, 100

Characteristic speed, 151 303



Closed-loop cornering behavior, 217�218

Closed-loop handling stability, 230�234

Closed-loop test, 125

Closed-loop vehicle behavior, 206�211,

207f

Closed-loop vehicle�driver system, 279f

Combined slip, 42�47, 145�146

approximations in case of, 48�50

effect of, 145�146

modeling tire behavior for, 47�48

Complex eigenvalues, 272�273

Contact area, 15f, 54

behavior in, 15, 15f

shear and normal stress behavior in,

16�17, 16f

Cord structures (plies), 10

Cornering compliance, 144

Cornering conditions, tire under, 33�42

cornering behavior, 33�39

lateral tire behavior, modeling, 39�42

Cornering force, 35f, 36�37

Cornering stiffness, 36, 36f

elliptic approximation of, 44�45, 49f

versus tire load, 36f

Corrected gain, 222�223

Coulomb law, 33, 37, 52�53

Course angle, 113

Critical points, 168�169, 261

Critical speed, 23, 151

Crossover frequency, 282

Cross-ply tire, 10, 10f

Curvature radius, 172f

D
Damped radial eigenfrequency, 269

Damper characteristics, 285, 287f

Deformation of tire material, 17

Derivatives of stability, 138, 257�258

DFA. See Discriminant function analysis

(DFA)

Differential equations

for belt defections, 62�63

fundamental, 65�66

nonlinear, 124

Discriminant function analysis (DFA), 126

Distinctive workload and performance,

regions with, 200f

Double lane change, 223�224, 223f

Double-track vehicle model, 140�141

Drifting, 129

Driver model and driver state identification,

217, 234�238

Driver response phase, 203f

Driver response to potentially dangerous

situations, 197f

Dynamic behavior, 87

Dynamic hydroplaning, 30

Dynamic tire model, 89, 89f, 90f, 101�102

E
Effective road profile, 92

Effective road surface, 89�91, 92f

Effective rolling radius, 12�15, 26�27

Effective rolling resistance force, 18�19

Effective tire radius and normal contact

force, 101f

Elliptic approximation, 48�49

of cornering stiffness, 44�45, 49f

of tire friction envelope, 44, 44f

Elliptical cams, 93f, 94f, 95

Empirical Magic Formula model, 77, 289

Empirical model tire data, 287

Empirical tire models, 31

Energy losses under free rolling conditions,

17, 17f

Energy phase plane, 169, 170f, 250�251

wheel slip angles in, 171f

Equilibrium points, 261

ETRTO value, 32

Euler�Lagrange equation, 283�284

European cars, Weir�Dimarco plot

for, 131f

F
Facial muscle activity, 205�206

Focus, defined, 267

Forward speed, 21�23, 136�137

Fourier transform, 291�292

Free rolling tire, 15�16, 15f

Free tire, vibration modes of, 87�88, 88f

Frequency response, 166�167

Frequency transfer function, 276

for quadratic lag, 278, 279f

for simple lag, 277�278

for simple lead, 278

Friction coefficient, 30, 43, 55

Front construction line, 188

Fundamental differential equations, 65�66

G
“g�g” diagram, 6, 190�194

Good handling, 123�124

criteria for, 125�131

ISO 4138: Steady-State Circular

Test, 126

304 Index



ISO 7401: Lateral Transient Response

Test, 127�131

ISO tests, 126

objective methodology strategies, 125

subjective methodology strategies, 125

open questions, 125

performance tests, 125

rating scales, 125

Good performance, 198�199

Graphical assessment methods, 168�194

g-g diagram, 190�194

handling diagram, 179�185

MMM diagram, 186�190

phase plane analysis, 168�175

stability diagram, 176�179

H
Handling curve, 153, 153f, 154f, 180

Handling diagram, 6, 124, 179�185, 182f

axle characteristics and, 184f

steady-state parameters from, 182f

Heading angle, 113

Heart rate variability (HRV), 204

HFA. See High frequency area (HFA)

High frequency area (HFA), 202�203

HR tire, 22�23

HRV. See Heart rate variability (HRV)

Human behavior and driving tasks, 195,

196f

Human operator with quasi-linear transfer

function, 206f

I
Inertia forces, 1

Inflation pressure, 23�24

Inter-beat-interval, 204

ISO 3888 severe lane change, 223�224

ISO tests, 126

ISO 4138, 126

ISO 7401, 127�131

J
J-turn test, 128�129, 160�161

Judgment by driver, 125

K
Kinematic steering, 111

Ackermann steering, 113�118, 117f

articulated vehicle, 118�121

axis systems and notations, 111�113

Knowledge-based behavior, 195

L
Lag time values, stability boundary

of, 210f

Lagrange equations, 135, 283

Lagrange function, 283

Lateral acceleration, 118, 126�127, 129,

146�148, 150, 160�161, 174�175,

183, 191�192, 194, 234�235, 259

gain, 151

versus nondimensional curvature, 181,

181f

Lateral belt deflection, 67�68, 70

Lateral load transfer, effect of, 139�143

Lateral relaxation length, 76

Lateral shear force, 70

Lateral slip stiffness, 36, 36f, 79

Lateral tire behavior, modeling, 39�42

Lateral tire force, 139, 186

versus slip angle, 136f

Lateral tire shear force, 72�74

Lateral Transient Response Test, 127�131

Linear axle characteristics, 5, 155,

157�158, 166, 168, 188�189

Linear relationships, 18, 80�81, 138, 181

Linear system dynamics, 1�2

Linear tire behavior, 148, 150

Linear tire characteristics, 150, 257�258

Linear vehicle model, 1

Linearized behavior, 206

Loaded tire radius, 12�14, 97�98

Local contact forces and rotational speeds,

98f

Longitudinal slip, 18, 52�53

behavior, 3, 3f, 30�32

response, 77, 78f

stiffness, 18, 29, 29f

Low tire noise, 8

Low-speed vehicle maneuverability,

118�119

M
Macrotexture, 30

Magic Formula, 10�11, 31�33, 39�40,

50, 50f, 60, 145�146, 289

Magic Formula tire model, 242�243,

257�258

Maneuverability, 118�119

Mathematical analysis of vehicle handling,

4

Matlab�Simulinks, 258�259

McRuer crossover model, 6, 211�212,

218�219

Mean IBI and LF/HF ratio, 204�206, 205f
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Mental workload, 199�201, 204

Microtexture, 30

MMM diagram. See Moment method

(MMM) diagram

Moment method (MMM) diagram, 6,

186�190

N
Neutral steer point, 145�146, 154�156,

162, 247�248

Nominal tire load, 31�32

Nonlinear differential equations, 124

Nonlinear vehicle model, 2

Nonreal eigenvalues, 272�273

Nonsteady-state analysis, 156�167

frequency response, 166�167

yaw stability, 156�166

Normalized camber stiffness, 42

Nyquist criterion, simplified, 209�210,

280�282

O
One-sided node, 265�266, 266f

One-track vehicle handling model, 132f,

133

One-track vehicle model, 175, 272f

energy phase plane for, 170f

stability of, 164f

Open-loop tests, 125

Open-loop transfer function, 209, 279

magnitude of, 281f

Open-loop vehicle behavior, 206�211

Oversteer behavior, 149

Oversteered vehicle, 162, 165�166, 175, 189

P
Pacejka model, 31, 287

Parasitary forces, 19�20

Parseval’s relation, 292

Passenger car, 285�286, 286f

damper front wheel, 286t

damper rear wheel, 286t

indication of CoG and axle positions, 286f

Passenger car tires, 42, 50, 103

truck tires versus, 24

Path-tracking driver model, 217�229

PCA. See Principal component analysis

(PCA)

Peripheral speed, 15�16

Phase margin, defined, 209

Phase plane, 164, 168�169, 187�188,

263�268

Phase plane analysis, 5, 168�175

Physical tire models, 4, 30�31, 50�74

brush model, 52�61

brush-string model, 62�74

Plancherel’s formula, 292

Plies of reinforcement elements, 7�8

Pneumatic trail, 37�38, 38f, 40�41, 43f

Polar diagram, 45�46, 45f, 50, 61f

Polar plot, 279�280, 281f

Pothole, 95�97

longitudinal force variations for, 109f

vertical force variations for, 108f

wheel speed variation for, 109f

Power spectral density (PSD), 202�203,

291�292, 293f, 294, 294f

Practical brake slip, 34

Preview length versus gain

various axle cornering stiffnesses, 222f

for various vehicle velocities, 221f

Preview length versus time, for experienced

driver, 237f

Preview time, 222

versus steering gain

for inexperienced driver and

experienced driver, 238f

Principal component analysis (PCA), 126

Principle of least action, 283

PSD. See Power spectral density (PSD)

Pupil diameter and endogenous eye blinks,

204

R
Rack and pinion system, 116, 116f

Radial plies, 9

Radial tire, 9�10, 10f, 13�14, 25

Radial versus bias-ply tires, 25

Random steer test, 129�130, 130f

Rayleigh function, 284

Rear construction line, 188

Reinforcement elements, 7�8

Relaxation length, 63�64, 79, 87, 99

Repetitive braking

single wheel vehicle under, 83�87

speed versus time for, 85f

Resistance force, 25�26

Rigid ring tire model, 87�90

River path-tracking model, 224f

Road disturbances, dynamic tire response

to, 87�109

enveloping properties of tires, 90�97

local contact forces and rotational

speeds, 98f

normal deflection, 99�100
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radial sidewall stiffness, 102�103

residual deflection, 99�100

rigid ring tire model, 87�90

sinusoidal bump obstacle, 105�107

tangential sidewall stiffness, 102�103

translational sidewall stiffness, 102

vertical belt deflection, 98f

Rolling resistance, 17�26, 239

braking/driving conditions, 18�19

coefficient of, 16�17

for truck tires versus tire load and tire

pressure, 24, 25f

for varying inflation pressure and

wheel load, 24, 24f

forward speed, 21�23

inflation pressure, 23�24

parasitary forces, 19�20

radial versus bias-ply tires, 25

resistance force, 25�26

temperature, 20�21

truck tires versus passenger car tires, 24

Root locus, 271

Root locus plot, 165f, 271

of one-track vehicle model, 272f

Rotating length, 172�173, 172f

Rule-based behavior, 195

S
Saddle point, 264�265, 264f

Savage, A.W., 10

SCR. See Skin conduction response (SCR)

Second-order system in standard form,

268�269

Self-aligning torque, 38

Shear deformation speed, 15�16

Shear force, 43�44, 64�65, 67�68, 68f,

69f, 70, 71f, 73f

Shear stress, 16�17, 26�27, 33, 37

Shimmy of trailing wheel, 80�83

Side force, 37�39, 37f, 39f, 45, 113, 162

camber-induced, 42f

coefficient, 37, 37f

versus slip angle, 43f

Side slip angle, 113

Simple gain, 207, 276

Sine bump obstacle, 105�107

longitudinal force variations for, 106f

vertical force variations for, 106f, 107f

wheel speed variation for, 107f

Single wheel vehicle

under repetitive braking, 83�87, 84f

Single-track model, 5, 124, 131�138

Single-track vehicle modeling, 131�146

alignment and compliance effects,

143�145

body roll, effect of, 139�143

combined slip, effect of, 145�146

lateral load transfer, effect of, 139�143

possible vehicle motions, 131�138

Singular points, 261

Skill-based behavior, 195

Skin conduction response (SCR), 205

Sliding speed, 65�67, 68f, 70f, 74, 74f

Slip, defined, 12

Slip angle, 35, 40�41, 45�46, 52�53, 63,

77, 131, 136

lateral tire force versus, 136f

sudden change of

response to, 75�76, 76f

under transient conditions, 78f

Slip stiffness, 57

lateral, 36, 79�80

longitudinal, 18, 29, 29f

Speed, forward, 21�23

Speed, varying

optimal driver parameters for, 226�227,

226f

Speed curve, 181

Spiral point, 267

SRR. See Steering reversal rate (SRR)

SR-tire, 22�23

Stability, defined, 262

Stability diagram, 5, 163, 176�179

Stability index, 189

Stabilization support system, 196

Standing waves of tire, 23, 23f

Star, 265�266, 266f

State space model, 257�259, 258f

block diagram for, 258f

output (lateral acceleration) of, 259f

State variables, 1

Static margin, 154�155

Steady-state analysis, 146�156

oversteer, 148�154

steady-state solutions, 146�147

understeer, 148�154

Steady-state behavior, 87, 126�127, 146, 159

Steady-State Circular Test, 126

Steady-state path-tracking model, 219�220,

219f

Steady-state solutions, 124, 146�147, 157f,

168, 174, 181, 262

Steering gain, reduced

vehicle path for, 229f

Steering reversal rate (SRR), 202

Steering wheel gradient, 149
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Stiffness coefficients, 99

Stressed string model, 51�52

Swept path difference, 118�119

SWIFT project (Short Wavelength

Intermediate Frequency Tire

Model), 88

System dynamics

in n dimensions, 261�263

second-order system in standard form,

268�269

in two dimensions, 263�268

T
Tangential contact force, 99

Temperature, of rolling tire, 20�21

Theoretical slip quantities, 34, 54

THW. See Time headway (THW)

Time headway (THW), 201, 203�204

deviation versus relative speed, 216f

Time to contact (TTC), 201, 203

Tire behavior, 7

combined slip, 42�47

approximations in case of, 48�50

modeling tire behavior for, 47�48

free rolling tire, 15�16, 15f

input and output quantities, 11�14

physical tire models, 50�74

brush model, 52�61

brush-string model, 62�74

rolling resistance, 17�26

braking/driving conditions, 18�19

forward speed, 21�23

inflation pressure, 23�24

parasitary forces, 19�20

radial versus bias-ply tires, 25

resistance force, 25�26

temperature, 20�21

truck tires versus passenger car tires, 24

under braking and driving conditions,

26�32

braking behavior, 26�30

longitudinal tire behavior, modeling,

30�32

under cornering conditions, 33�42

cornering behavior, 33�39

lateral tire behavior, modeling, 39�42

Tire behavior, nonsteady-state, 75

road disturbances, dynamic tire response

to, 87�109

enveloping properties of tires, 90�97

introduction to rigid ring tire model,

87�90

tire transient model, 75�80

applications of, 80�87

shimmy of trailing wheel, 80�83

single wheel vehicle under repetitive

braking, 83�87

transient tire behavior, 75�87

Tire forces, 7

longitudinal, 79�80, 124

normalized, 28�30, 35�36

per unit length, 64

Tire side force

versus load transfer, 139f

versus tire load, 139f

Tire slip, 1

Tire slip angle, 136

kinematic description of, 137f

versus tire force, 136f

Tire�road interface, 7�9, 8f

Tires, 1, 7

bias-ply, 25

characteristics, 2, 131, 148

in lane change analysis, 192f

longitudinal, 3f

enveloping properties, 90�97

parameter, 8, 55, 71�72

profile, 7�8

radial, 25

truck tires, 24

Trailer axle steering gain, 121, 121f

Trailing wheel system, 80f

shimmy of, 80�83

Trajectories, 168�169, 263�268

Trajectory curvature gain, 117�118, 151

Transfer function, 207, 276�277

Transient behavior, 87

Transient tire behavior, 75�87

tire transient model, 75�80

applications of, 80�87

shimmy of trailing wheel, 80�83

single wheel vehicle under repetitive

braking, 83�87

Tread motion, 10

Tread stiffness, 52, 72t

Truck tires versus passenger car tires, 24

TTC. See Time to contact (TTC)

Two-sided node, 178, 190, 265, 265f

U
Understeer, 5, 148�154

behavior, 5

body slip angle response to, 161f

gradient, 148�154

stationary steering performance, 150f

yaw rate response to, 161f
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V
Vehicle control by driver, 125

Vehicle dynamics, 1

Vehicle handling performance, 7

good handling, 123�124

criteria for, 125�131

ISO 4138: Steady-State Circular Test,

126

ISO 7401: Lateral Transient Response

Test, 127�131

ISO tests, 126

objective methodology strategies, 125

subjective methodology strategies, 125

graphical assessment methods, 168�194

g-g diagram, 190�194

handling diagram, 179�185

MMM diagram, 186�190

phase plane analysis, 168�175

stability diagram, 176�179

nonsteady-state analysis, 156�167

frequency response, 166�167

yaw stability, 156�166

single-track vehicle modeling, 131�146

alignment and compliance effects,

143�145

body roll, effect of, 139�143

combined slip, effect of, 145�146

lateral load transfer, effect of, 139�143

single-track model, 131�138

steady-state analysis, 146�156

steady-state solutions, 146�147

understeer and oversteer, 148�154

Vehicle path and vehicle behavior versus

time, 227f

Vehicle shear forces

during lane change, 194f

Vehicle yaw rate

and body slip angle gain, 152f

ramp steer input and, 128f

Vehicle�driver interface, 6, 195

handling performance, 217�238

closed-loop handling stability,

230�234

driver model and driver state

identification, 234�238

path-tracking driver model, 218�229

longitudinal performance, 212�217

driver model and driver state

identification, 217

following single vehicle, 214�217

performance assessment, 198�206

blood pressure variability, 204

facial muscle activity, 205�206

heart rate variability (HRV), 204

inter-beat-interval, 204

primary task, 200�201

pupil diameter and endogenous eye

blinks, 204

secondary task, 200�202

skin conduction response (SCR), 205

system approach, 198f, 206�212

McRuer crossover model, 211�212

open-loop and closed-loop vehicle

behavior, 206�211

Viscous aquaplaning, 30

W
Weighting function, 47�48, 48f

Weir�Dimarco plot, for European cars,

131f

Wheel center plane, 33

Wheel ground contact forces, 140�141

Wheel loads versus time

for lane change maneuver, 193f

Wheel shear forces

for different times during lane change,

193f

during lane change, 194f

Wheel slip angles, 172f

Workload, 199�201

Y
Yaw instability, 124

Yaw rate, 128�129, 160�161, 187�188

and body slip angle gain, 152f

frequency transfer, bode diagrams for,

167f

gain, 151

and lateral acceleration response to ramp

steer input, 129f

Yaw stability, 156�166
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