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But even if the radiation formula should prove to be absolutely accurate
it would after all be only an interpolation formula found by happy
guesswork, and would thus leave one rather unsatisfied. I was, therefore,
from the day of its origination, occupied with the task of giving it a real
physical meaning.

- Max Planck
(1919 Nobel Prize address, ‘The Origin and Development of the
Quantum Theory’.)

Picture courtesy: http://en.wikiquote.org/wiki/File:Max Planck.png
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Preface

This bock is an outgrowth of my lectures for the courses “Conduction
and Radiation” and “Radiative heat transfer” that I have been offering
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radiation best transfer which is anathema to meny students. I use
an easy to follow conversational style, backed up by fully worked out
exasmples in all the chapters to vaporise the myth that radiation is only
for dare devils.
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adding material based on the findings of my regearch. The focus instead
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40 lectures, esch of 50 min durstion. Carefully chosen exercise problems
supplement the text and eqguip students to face “radiation” boldly.

I thank Prof. 8. P. Venkateshan, my former research advisor and now &
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Thanks are due to my wife Bharathi for painstakingly transcribing
my video lectures on radiation offered for the National Program on
Technology Enhanced Learning (NPTEL) for the course “Conduction
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thank my students Bamanujam, (nanasekaran, Pradeep Kamath,
Chandrasekar, Konda Reddy, Bajesh Baby, Somarjeet, Krishna and
Srikanth for their help with the exercises and examples and in compiling
the material in TEX. Special thanks are due to ty doctoral student



Samarjeet who spent long hours with me in reworking the examples and
the text for Chapter 7, for this international edition that is being co-
published by Ane and John Wiley.

T also wish to thank the Center for Continuing Education, IIT Madras
for financial assistance.

The support of ANE books for bringing out the book in record time
is gratefully acknowledged. I also thank John Wiley for coming forward
to take this book to the international markets.
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CHAPTER 1

Introduction

1.1 Imoportance of thermal radiation

Heat transfer is accomplished by one or more of the following modes
pamely, conduction, convection and radiation. However, the basic modes
of heat transfer are only two: conduction snd radiation, as convection
iz a special case of conduction where there i macroscopic movement of
molecules cutside of an impoesed temperature gradient. We restrict our
attention to radistion heat transfer in this book.

Now we look at the Importance of thermal radiation. Most people have
the fecling that thermal radiation is important only if the temperatures
are high. Generslly, when temperatures are low, “radiation can be
neglected”is the familiar refrain or srgument put forward by many peopls
who are 0ot inclined o include it in their analysis. We will consider an
example very shortly and try to find out if this assumption of neglecting
radiation in heat transfer analysis is justified or not.

Exploring the relation between the heat transfer rate and the
temperature gradient, we have,

Qeond o< AT (1.1)

oonw 0 AT (1,2)

Equation {1.2) is strictly not valid for free convection. Let us consider, a
frequently used correlation for the dimensionless heat transfer coefficient,
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namely the Nusselt number, for free convection.

Nu = aRa’ (1.3)

Nu = alcAT)Y (1.4)
b == 0.25 (for laminar flow) (1.5)
Nu o (AT (1.6)
Qoo & (ATY (1.7)

So ¢ is proportional to AT to the power of 1.25 for laminar natural
convection fows. For turbulent natural convection Hows, q will go as

(&T)l.%‘,
The Rayleigh number, Ha in Eq. (1.3}, is given by

_ gBATEL?

L2

Ra (1.8}

where

» g - acceleration due to gravity

s 3 - isobaric cubic expansivity (for ideal gases, £ can be equated to
1/T, where T is the temperature in Kelvin)

o AT - temperature difference imposed in the problem

» I - characteristic dimension, which can be the length of a plate or
the dismeter of & cylinder or sphere

s 1/ - kinematic viscosity

# ¢ - thermal diffusivity

Now we can see that (eony 18 proportional to AT with a pinch of salt as
it is actually (AT)%# for natural convection. For radiation,

Qrad — (T4 - Tgc) (19)

A non linearity enters the problem right away because g is proportional
to the difference in the fourth powers of temperature.

Assume that a bucket filled with water is heated using an immersion
hegter. Then under steady state, we know that {J; heat supplied must
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egual that lost to the outside as the sum of the convective and radiative
heat transfer, then

Qh = Qcoﬂv+Qrud (1‘10)
Qn = hA(T —Tw) +ec AT —T1) (1.11)

In Fq. 1.11, ¢ is the emissivity of the surface and A is the surface area
{we will study about emissivity in far greater detail in a later chapter).
Eguation 1.11 has to be solved iterstively even under steady state to
determine the femperature of the water with the bucket, assswming that
the material of the bucket is at the same temperature as that of the
water. To solve this non lnear equation, we need to assume a value
of T of water and see if the LHS is equal to the BHS. If they are not
equal, then we update the value of T and redo the procedure and this
is repeated till the LHS becomes equal to the RHS. This is called the
successive substitution method.

The difficulty with radiation first stems from the fact that radiation
is proportional to (T4 - Tﬁe)w Therefore its imporfance increases non
linearly with increasing lemperofure. So at high temperatures of the
order of 1200 °C or 1500 °C, whether it i an IC engine, furnace or
boiler, there is no escape from considering radiation, as this will be the
dominant mode of heat transfer. In fact, in boilers, there is a radiant
super heater section, where the ulbimate heat trapsfer takes place and
the temperature of the steam is lifted, Even in the ubiguitous microwave
oven, there is basically radiative heating in the microwave region of the
spectrum. The importance of thermal radiation fret stems from the fact
that g.,g varies non Bnearly with temperature.

The second point is that radiation requires no materiel medium fo
propagate. The proof is the receipt of solar radiation on this earth from
the sun, which lies millions of miles away. This shows that radiation is
able to travel through vacuum. In fact, radiation travels best in vacuum,
because there is no absorption or scattering. Omnce it enters the earth’s
atmosphere, there is absorption and reflection by certain molecules.
This reflection is called scattering. Also, as these molecules are at a
temperature greater than 0K, a8 a consequence of the Prevost’s law,
they alsc emit. So the atmosphere is emitting, absorbing and scattering.
However, outside the atmosphere, the radiation is able to trawvel without
any digtortion at atl.

The third point 4 that even of low lemperalures, rodiction may be
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T =303K

\

Figure 1.1: Natural convection boundary layer over a vertical flat plate

significant. Let us consider an example. We consider a vertical flat
plate whose length, L = 0.5m and is maintained at T, = 373K standing
in still and quiescent air with emissivity 0.9 (i.e. it is coated with black
paint). The ambient temperature, To, =303K. Needless to say, a natural
convection boundary will be set up along the plate, on both sides. The
boundary layer will develop as shown in Fig. 1.1. The velocity at points
A and B will be 0 for different reasons. At A, the velocity is zero as a
congequence of the no glip condition, while at B, it is zero, because air
is quiescent in the free stream region.

The Nusselt number is given by

Nu = gRa® (1.12)

Let us consider a very simple, well known correlation for laminar natural
convection from a vertical plate, where a and b are 0.59 and 0.25 based
on well known results from Sparrow and Gregg, [8].

Nu = 0.59Ra%% (1.13)

The Rayleigh number is calculated with the following values. g = 9.81
m/s?, AT = T0K, 8= 1/Tmean, Tmean = (373+303)/2 = 338K, v = 16
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x 1078 m?/s ; Pr = v/a = 0.71. The Rayleigh number, Ra turns out
to be 7x 10%. (When Ra < 109, the flow is laminar and when Ra> 10°,
transition to turbulent flow begins.) Substituting for Ra in Eq. 1.13, Nu
= 96. The Nusselt number is the dimensionless heat transfer coefficient,
which is given by Nu = hL/k; k=0.03 W/mK for air. We now calculate
the average heat transfer coefficient of the plate, h to be 5.8 W/m?K.

Although both radiation and convection are taking place on both sides
of the plate, let us consider for the present that they take place from
just one side. {Goony=hAT = 58x7T0=406 W/m?). Such calculations
are also very profound as the temperature we are talking abous, 100 °C,
is more than the reliable temperature of operating electronic equipment,
which is normally about 80 or 85°C. So if we do all these caleulations,
We g6t Geony =406 W/m?,

At this point, a little digression ig in order. So let us now ssy we have
some other situation where we have h 10 be § or 8.5, Qeony Can touch
about 500 W/m? in this case. So we are talking about flux levels of 0.5
kW /m? of natural convection. If we are talking about a flux level in our
equipment which is more than 0.5 kW/mz, we have to use a fan to cool
it in order to maintain it at the desired temperature!

We can also do similar calculations and defermine the maxiroum flux that
one fan can withstand, I required we use 2 fans, similar to what is found
in desktop computers. After that comes liquid cooling, bmpingerent
cooling. For example, data centers cannot be cooled by fans alone. The
air itgelf will be conditioned. such that the data center is maintained af,
say 16 °C.

Getting back to the problem at hand, we need to find out what the groan
for this problem will be. The following assumptions hold, {1) the sink for
the radiation is the same as the sink for convection, {2} the walls of the
room are al the same temperature as the ambient, which is a reasonable
assumption. (Sometimes, T for convection need not be the same as
Too for radiation. But most of the times, we assume them to be the
same.), (3} Stefan Boltzmann constant ¢ = 5.67 x 107 W/m?K4%;
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€ = 0.9. For these values, gyog = 557 W/m?.

S Gtotal = YGeonw + Grad (114)

964 W/m?
.. The radiation contribution is
Qrad 567’
G 064 (1.18)
= B7T8%

This clearly proves that radiation cannot be neglected at low
temperatures. This analysis has bowever be taken with a pinch of salt.
Suppose we blow air using a fan, wherein the natural convection will
change to forced convection, the heat transfer coefficient instead of being
5, may change to a value of 15 or 20. Then g, may have a value of 1
or 1.2 kW/m®. So convection will begin dominating radiation. However,
even if the Bux level is 1.8KW /1%, ¢puq/Georar 18 not negligibly small. So
radiation may be neglected only in cases where the other modes of heat
transfer are dominant. If it is convection in air, free or forced, radiation
cannot be neglected. Even so if the medium is water, the story changes
completely. Water has a terrific thermal conductivity of 0.6 W/mK
as opposed to air. All these numbers will change because the Nusselt
number is hl/k. Since h increases for water, the radiation contribution
will be negligible. 8o if we have air cooling and are doing computational
fluid dynamics (CFD) analysis of a desktop or some other electronic
equipment, we cannot neglect radiation in cur analysis. Thankfully,
cormmercial software has vadiation modules and many people use the
combined analysis nowadays in the prediction of maximum or operating
temperatures of electronic equipment. In summary, in natural convection
alone or in mixed convection, where both natural and forced convection
are mporiant, radiation pleys a part and cannot be neglected by simply
putting forward the argument that temperature is very low.

1.2 Nature of radiation

To explain radiation and its effects, generally two models are used (i)
the wave model and (ii) the quantum model. Using the wave model, we
can characterize radiation by wavelength, frequency and speed; all that
which i applicable for optics can be applied bere too but neither the
radiative properties of gases nor black body behavior could be explained
using the clectromagnetic theory and heuce the guantum theory had to
be developed. Electromagnetic radiation travels with the speed of lght.
Thervefore the velocity of light in vacuum ¢, can be assuraed to be the
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Figure 1.2: Electromagnetic spectrum

velocity of electromagnetic radiation in vacuum. ¢, = 2.998 x 10° m/s
or 3 x 10° m/s (app.).

Now we can characterize radiation by the following additional
parameters: v - frequency, A - wavelength, 1/A - wave number. If the
velocity of light in a medium is ¢, we know that ¢ must be less than or
equal to ¢,. The refractive index of the medium = n = ¢, /c. For glass,
n = 1.5 and for gases, n = 1;

Now let us look at the electromagnetic spectrum which can hbe
characterized by either (1) the wavelength, (2) the frequency (see Fig.
1.2). For example, the wavelength of radio waves is about 10°m. The
wavelength of gamma rays is about 10~1?m, which gives them a high
frequency of around 102° Hz. The energy of electromagnetic radiation is
given by E = hv (which we shall derive later), where h, Planck’s constant
= 6.626 x 10734 Js.

If we consider gamma rays, their energy is very high. Looking at
the other end of the spectrum where we encounter radio waves, the
energy is very low. This is used by electronics and communications
engineers where the original signal, having low energy, is first modulated
with a high energy carrier wave, transmitted and demodulated at the
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other end. Mechanical engineers lie somewhere between these two
ends and operate in the visible, ultraviolet or infrared regions because
this corresponds to reasomable levels of temperatures encountered
in engineering applications. We usually are not concerned with
temperatures of 10° or 10% K. The only place where we may come across
this is in nuclear fusion. Genperally we falk about temperatures in the
range of 200 - 3000 K. So wavelength of thermal radiation of interest to
thermal engineers is A = 0.1 - 100 pm.

In the visible range, whose wavelength lies between 0.4pm - 0.7pm,
colours range from violet to red. For us, mechanical engineers,
wavelengths of the order of 10m are very big. We work with rays whose
wavelengths range from micro meters to nano meters.

Example 1.1: Radiation of o wavelength, A=8um trovels through
vacuum nte o medivm with refractive index, n=1.4.

(o} Determine the speed, frequency and wave number for radialion in
VOO,

{b)Determine the above quantities and also the wavelength for madiation
in the medium.

Holution:

a. In vacuum:

Co = 2008 x 10%m/s (1.16)
X 3 x 107%n (1.17)
2,998 x 108 3
v o= Mg =0993 x 109Hz  (118)
S R S 5y
Wowe number = 3T 3w 106 = 3.33 x 10°m {1.19)

b. In the medium;

Even when the radiation moves from vacuum to the medium, the
frequency does not change, only the wavelength changes.
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Frequency = v =9.993 x 1013 Hz (remains same]1.20)

8
co _ 29WXIDT _ 5 14 % 108m/s (1.21)

T n 14
e = v {(1.22)
Wave length, A = - 2. 14pmm {1.23)
17
Waove number = 4.66 x 10°m™! (1.24)

Example 1.2: The wavelength and speed of radiation traveling within
a medium are 3.%um and 2.3x10Pm/s vespectively. Determine the
wavelength of the radiation in vacuum.

Solution:

e o= MA {1.25}
e 23x10° 3
&0, ¥V = X = m =718 x 10" Hz (1926}

Thig is the frequency of the radiation in the medium as well as in vacuum.
The wavelength in vacuum is

<o 3 x 108






CHAPTER 2

Black body and its characteristics

We will now look at a very important concept in radiation heat transfer,
namely, the black body.

Definition: A black body is one that allows all incident radiction
and infernally absorbs oll of it.

S0 what does it imply technically? Reflection = G Transmittance=- Q.
This definition requires further qualification because that a black body
allows all incident radiation and absorbs all of it is true for (a) all
wavelengths (b) all incident divections. Therefore, for a given wavelength
and in & given ncident direction, there can be ne body which absorbs
more radiation than a black body. Any real body has to absorb a
radiation which iz lower than that of the black body. This is essentinlly
a conceptual definition, and serves as a benchreark, This concept of
maximurn absorption, regardiess of the incident wavelength and direction
is central to the understanding of radiative heat transfer. So, a black
body serves as the benchmark or the gold standard against which all
other real surfaces can be compared.

Incidentally, the black body also emits the maximum radiation for a given
temperature. This is a consequence of the above, which can be proved.
The black body is basically defined based on its ability to absorb fully
and not on its emission capacities. That it is emitting the maximum is
a consequence of it being the perfect absorber and is just a coroliary!

11
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Some examples of black bodies:

¢ Lamp black
= Platinum black
¢ Gold black

» Special paints

Suppose we want to do experiments using a black body in the laboratory,
we usually want to take an aluminium plate and coat it with black paint.
However, the emissivity of this, when measured, will be just 3.8 or (.88
or 0.9 because there will be some places where we have not fully coated
it. After a second coat of paint, the emissivity may increase to 0.92 or
so. After that, the emissivity will asymptotically saturate; ideally we
cannot get to 1.00. 'We can get a maximum of $.94 or (.95 and for all
practical purposes, this can serve as a black body or stated clearly, can
gerve as a high emissivity surface.

Let us move on to an interesting question - why the name “black body™?
(GGenerally, black bodies are very poor reflectors. Hence, they appear to
be visually black! Even so, the eye is a very poor instrument to detect
radiation because it can detect radiation only in a very narrow range of
O.4pure to 0.7um. So a surface may be very black in the range 0.4pm to
0.7um, but in the other parts of the spectrum its “blackness”cannoct
be visually evaluated and hence verified and we npeed sophisticated
equipment like the spectrometer to determine its behavior.

On the contrary since the visible part of the spectruwe is genvinely a part
of the electromagnetic spectrum, if something is truly radiatively black,
it will be black between 0.4um to 0.7um too. Therefore, all radiatively
black bodies have to be visually black.
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So a radiatively black body will be visually black but a visually
black body need nol necessarily be radiatively black.

2.1 Key attributes of a black body

2.1.1 Perfect emitter (perfect absorber is already there
in the definition)

e Let us consider an evacuated enclosure which is at a temperature
T With vacuum inside, as shown in Fig. 2.1. Now let a small black
body, initially at temperature T,,, be inserted into the middle of
the enclosure. Let Ty, > Too.

T >T
©

w

Blackbody
initially at T |

Vacuum

Figure 2.1: Illustration for proving that a black body is a perfect emitter

Since the black body is not touching the walls of the enclosure, there is no
conduction heat transfer. Since the chamber is evacuated and there is no
medium, convection is also non existent. Let us say T, = 30°C while T,
= 200°C. Since this is a small body in a large enclosure, after sufficient
time has elapsed, the black body will acheive thermal equilibrium with
the surroundings, i.e. it will reach a temperature of Ty, as shown in
Fig.2.2.

The small object is however black body and so what is the story there?
The small object is absorbing exactly the same amount as it is emitting
because if the emission is not equal to the absorption, then there is a
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body

-
Time, s

Figure 2.2: Temperature time history of the small black body undergoing
cooling in a large enclosure

net rate of change of enthalpy which has to take place inside the black
body as a consequence of which, its temperature has to go down or
go up, which is again forbidden by the second law of thermodynamics
because equilibrium has already been established. Therefore, the amount
of radiation which is emitted by the black body is (or has got to be)
exactly equal to the amount of radiation which is absorbed by the black
body. Since the body under consideration is black and is absorbing the
maximum amount of radiation, therefore it is also emitting the maximum
amount of radiation!

2.1.2 Radiation isotropy

Consider an enclosure with a black body similar to the one shown in
Fig. 2.1. Now let this black body be placed in another enclosure of
a size smaller than the previous one. The two cases are shown in
Figs. 2.3 a and 2.3 b respectively. The enclosure temperature is the
same for both the cases and so is the initial temperature of the black
body. So long as the enclosure temperature is T, and both are small
bodies placed in large surroundings (which have an infinite capacity to
take on the heat), regardless of the position of the black body, both
will reach the same equilibrium temperature upon cooling of the black
bodies. Upon reaching equilibrium, the emission will be equal to the
absorption and that will be maximum, corresponding to the temperature
T. This is independent of position and orientation and we therefore say
that radiation isotropy exists within the enclosure and that a uniform
radiation field has been established.
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Figure 2.3: A typical small body in a large enclosure of different sizes

Hence, radiation isotropy means that the radiation field within
the enclosure is independeni of the position and orientation of
the black body.

If we make a cavity like the one shown in Fig. 2.4 and close it on
all sides and have only a small hole and heat it such that it becomes an
evacuated cavity that is heated, the radiation field emerging from it will
be isotropic, meaning that it does not have direction dependence and the
radiation comes out with uniform intensity in all directions corresponding
to the temperature of the body. This is known as a Hohlraum meaning
“empty room”in German. The hohlraum concept can be used to mimic
or simulate a “near "black body under laboratory conditions.

2.1.3 Perfect emitter in every direction

Consider an enclosure as shown in Fig.2.5, with a small area dA being
active on the walls of the enclosure with all the other areas being
radiatively inactive. Even for this situation, after sufficient time has
elapsed, equilibrium will be established and the body will be cooled
down to the temperature T.

Now, the body will continue to absorb radiation and this radiation will
be maximum as it is a black body but all the radiation is coming in
a particular direction because only one portion of the enclosure wall
is active. The black body has to radiate back the same radiation
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Figure 2.4: The schematic of the cavity used for illustration

for equilibrium to be established. Therefore, since it is absorbing the
maximum in that particular direction, it has to radiate maximum in the
same direction. Therefore in a particular direction, it will be a maximum
emitter too. Since it is anyway the same in all directions, this emitied
radiation is maxzimum and equal in all directions.

2.1.4 Perfect emitter in every wavelength

Now we can repeat the same experiment such that the walls of the
enclosure are so designed that they emit or absorb radiation in very small
intervals of dX about A. The black body will also absorb radiation in a
small wavelength interval dA about A. While it can continue emitting
radiation in any other wavelength, the walls of the enclosure are in
a position to absorb radiation only in the wavelength dA about M.
Therefore whatever is absorbed must be equal to whatever is emitted
in order that equilibrium is maintained. This dA about A is purely under
our control. It should be valid for any dA about A. Hence, at every
wavelength, the black body will be a perfect emitter.
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Enclosure
dA\ temperature T
Vacuum
Black body
T >T att=0

w

Figure 2.5: Schematic to prove that black body is a perfect emitter in
all directions

2.1.5 Radiation is a function of temperature alone

Suppose we have two enclosures like the ones shown in Fig. 2.6, evacuated
with no conduction or convection, what will be the eventual equilibrium
temperature reached here?

In both cases, it will be T,,. Hence, the characteristics or the shape
of the enclosures do not affect the eventual equilibrium temperature.
Therefore the radiation field inside the black body is not a function of
the shape and size. So long as it is evacuated and fully closed, it will

T

—'

Figure 2.6: A typical small body in a large enclosure of different sizes
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continue to emit isotropic radiation, depending only on its temperature.
Therefore, black body radiation strength is a function of T only.

2.1.6 Does the radiation strength increase or decrease
with temperature?

The answer is obvious that it increases with temperature. To prove
it from thermodynamic arguments, consider two plates which are at

Tl’ E1 Plate 1
Evacuated
a0 (90
- —>
T,E
i 2 Plate 2

Q= Ez-E1
Figure 2.7: Radiation heat transfer between two plates at T and T>

temperatures T; and T9 and whose radiation strengths are E; and E5, as
shown in Fig. 2.7. Let us now assume that T7 > T3 while E; < Es. Q =
Es - E; and hence the direction of flow of energy will be from plate 2 to
plate 1. Positive transfer of energy from a body at lower temperature to
a body at higher temperature is forbidden by the law of thermodynamics
unless we do some work. Hence nothing in this argument is wrong except
for the initial assumption that E is proportional to 1/ T . Therefore the
original assumption should be wrong which proves that E should be a
monotonically increasing function of temperature. Such a way of proving
something by proving the converse to be absurd is called Reductio as
absurdum, and has been extensively used in the past.

These are the attributes of a black body. But what is this E ? How is it
related to the temperature, we do not know. The best of physicists were
working on this problem a little over hundred years back.
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In order to derive the quantitative aspects of the black body behavior,
it is imperative that we study some solid geometry.

2.2 Solid angle - dw

Consider Fig. 2.8a, the elemental plane angle shown here is da = dl/r.
Consider the elemental area dA,, which subtends an elemental solid angle
dw,, as shown in Fig. 2.8b. The elemental solid angle dwy, is given by

d
dun = %2'" steradians or sr (2.1)

where A, is the normal area.

dcon

-

(a) Plane angle (b) Solid angle

Figure 2.8: Depiction of plane and solid angles

2.2.1 Spherical coordinate system

Let us consider an elemental area dA;, as seen in Fig. 2.9, that is emitting
radiation in all directions. There is another elemental area dA,, which
is intercepting this radiation and if we shine a torch light on dA,, its
shadow will fall on the plane such that the angle thus formed is called
the azimuthal angle denoted by ¢. The other angle formed will be @,
which is measured from the vertical, as seen in Fig. 2.9. This angle is
known as the zenith angle. If we have the axes x, y and z and we have
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Figure 2.9: Emission of radiation from a differential area dA; and
intercepted by another differential area dA,,

a point (X3,y1,21) as shown in Fig. 2.10, the coordinates of this point can
also be described as (r,d,¢} where 1?2 = x34+y%422. We introduce the
spherical coordinate system because it is operationally convenient for us
to work with this in radiation heat transfer.

2.2.2 Solid angle subtended by an elemental area dA,, in
the spherical coordinate system

Consider Fig. 2.11. The solid angle is the angle subtended by an elemental
area dA,, at a point on dA; where dA; is the area which is emitting the
radiation and dA,, is the elemental area which is receiving the radiation.
So for defining the solid angle we need a giver and a taker (for radiation).
dA; is the emitting surface and radiation is spreading from this surface
in all the directions. Among all the directions, we are taking a small
elemental area dA,, and are trying finding out how much radiation this
area intercepts and try and work this out in terms of the fundamental
coordinates. As r keeps increasing, it is intuitively apparent that for the
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4 : (Xl’ Yp zl)
2 ' (1, 8, D)
L= (X + Y +2))
y s
G :
(00,0 5 n >
X (I) ...‘."'s,_ E

Figure 2.10: The spherical coordinate system

same area, the fraction of radiation captured will keep decreasing.

dA,
dA, = rsindddrde (2.3)
b — 7 sinf dep df 2.4)

e

Therefore, the total solid angle associated with the elemental area dA;,
if radiation is falling on a hypothetical hemisphere above it, is given by

2r %
w = /dw=/ f sinf df do (2.5}
o [+]

w = Zw[—cosﬂ]g/ . (2.6}
w = 2w sr (2.7)
Therefore the total solid angle associated with the hemisphere

is 27 sr. The solid angle associated with a sphere will be 47 sr.
The solid angle is a very important concept in radiative heat transfer
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Figure 2.11: Solid angle subtended by dA, about dA; in the spherical
coordinate system

because we are finally interested in the radiation heat transfer between
surfaces, be it the combustion chamber of an IC engine or the radiant
super heater of a boiler. We seec that there are various surfaces, some
hot some cold. Radiation comes out of the hot surface, while water
tubes are present on the cold surface. Hot water or steam flows through
the tubes and the job of the radiant super heater is to heat up the
steam or the water which is on one side by the radiation from the other
side. So, in all these cases, we are looking at radiation heat transfer
between finite surfaces. We do not always encounter a situation of a
small body surrcunded by a hemispherical bucket or basket. Therefore,
if we are interested in heat transfer between surfaces and these surfaces
are of finite area, because radiation has a tendency to spread in all the
directions, it is important for us to know the directional orientation of
one surface with respect to the other surface. Or in other words, we want
to know how the receiving surface is oriented directionally with regard
to the emitting surface. In order to do this, not only is the spherical
coordinate system useful, the definition of the solid angle also becomes
imperative and essential.
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We already saw that w for a hemisphere = 27 sr, but why are we talking
mostly about hemispheres and not spheres 7 The answer is we are
interested in the radiation from a surface (at least for now!). But this
is not the be all and end all of everything. For example, if we were to
consider radiation from the atmosphere, then radiation will travel in the
upper and lower hemispheres also. So once we encounter radiation in
participating media, as for example in the atmosphere or in the guses of
a combustion chamber, we need to consider the full sphere.

First, we want to be able to caloulate the radiation and hest
transfer between surfaces. There are surfaces at different temperatures,
characterized by different surface properties and are oriented in different
directions. The key engineering question is What is the net heat transfer
between any 2 surfaces 7 A more involved version of this could be that,
outside of radistion, conduction and convection are alse present in the
problem. In such an eventuality, it becomes a muli mode heat transfer
problem, which is often the case, and our goal is to be able to compute
the total heat transfer.

2.3 Spectral or monochromatic radiation
intensity, I .

Figure 2.11 is crucial for understanding the concept of radiation intensity
I,.. Here dA; is the emitting surface or the surface that emits the
radiation and the shaded region represents the elementsl area dA, that
intercepts the radiation from dAi. The centers of dAi and dA, are
joined, and the distance between them is denoted by radius r. In
principle, if we join any point on dA; with any point on dA,,, that
should alzo be r because dAy and dA,, are infinitesimally small surfaces.
The zenith angle and the azimuthal angle are also marked on the figure.
The zenith angle § varies from 0 to w/2 for the hemisphere while the
azimuthal angle ¢ varies from 0 to 27,

Now, with this in background, we will introduce a quantity called spectral
radiation intensity denoted by I . where “X"denotes that it is a spectral
quantity or that it concerns a radiation intensity in a small wavelength
interval dX about ). The subscript “e "denoctes that emission is under
cousideration.

In conduction and convection hest transfer, we deal with the guantity
known as flux denoted by g, whose units are W/m?. This logically leads
t0 the question, when we already bave this quantity in W/m?, where is



24 Black body and its characteristics

the need to introduce another quantity called infensity? Why cannof
we work with flux and why did people deem it fit or necessary to
introduce this quantity I7 The answer to this question lies in the fact
that radiation falling on a surface can come from all possible directions.
The radiation, whether emission or reflection, in general, will be a
function of wavelengths., The radiation emitted by a surface can also
be in all possible directions or wavelength. Therefore, it is important
that the directional and spectral nature of the infensity of radiation
be taken infto account and since i is very difficult fo work with flux,
we introduce a “radistion intensity”which takes care of spectral aund
directional effects. The latter, in conjunction with the solid angle and the
spherical coordinate system, gives us an eminently convenient platform
to begin our study of black body behavior and radistion beat transfer
itself. The spectral radiation intensity Iy (A, 6, ¢) is given by,

acl

I)\,e(}\s 95 @) = W

(2.8)
The units of I . will be W/m? pim sr.

The formal definition of spectral radiation intensity of emission, I, is
the rate at which radiant energy is emitted by a surface, per
unit area normal o the surface, in the direction 8, per unit
solid angle dw about (8,4} in the unit wavelength interval dA
gbout A

The importance of Eg. (2.8} is as follows. If we know the distribution
of Ine, it is possible for us to integrate and determine the value of
q. Furthermore, it is instructive to mention here that q is based on
the actual area as it has the unit W/m? However, I is based on the
projected area. The above equation is valid for emission, reflection or
incoming radiation (also called irradiation). Therefore, we can say that
this equation is a generic expression to convert T to ¢ and it is applicable
for radiation that is emitted from a body, radiation that is incident on
a body and the radiation that is reflected from a body.

2.4 Spectral hemispherical emissive power

Let us now geb back to the black body and see how we can define its
emissive power based on the framework proposed horve. Then we will
come to a state where if we know what I, . is for a black body, we can
calculate the spectral Bux, the directional Sux, the total fux and so on.
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The search for the correct I . produced many Nobel laureates and many
celebrated physicists miserably failed to get it right because they tried
to derive it from using classical physics. The defining moment arrived
when Planck proposed the quantum hypothesis in order to derive the
correct distribution for I .. Even today we cannot say that this is the
only distribution which is correct. It may be disproved later on. But the
argument is that the only distribution that agrees with experiments is
the Planck’s distribution and therefore must be correct, $ill it is found
to be incorrect More on this later!

The spectral emissive power from a black body Ep()A) is

2w pwfd )
Ey(d) = jij jl; I evosfsinddfde (2.9)

This is called the spectral hemispherical emissive power. I is
spectral because it is still & function of A as we have not integrated it
with respect to A and it is hemispherical because we have integrated
it with respect to a hypothetical hemisphere by doing two integrations,
one with respect to # and the other with respect to ¢. The units of
Fp(A) will be W/m®um. Since the black body is a diffuse emitter, Iy,
is not a function of # and ¢. Hence, one can pull out the integral and
integrate the remaining expression in Eq. {2.9). Now, the beauty is that
after defining the solid angle and after having introduced the spherical
coordinate system and I ., we have an excellent framework with which
we can calculate the fux. All the quantities of engineering interest are
on the left hand side of the equations, be it Ep(A) or Ey. The right side
contains 1. Hence, one can say that the right hand side of Eq. (2.9} is
physics while the left side is engineoring!.

The hemispherical total emissive power of the black body is given by
oo
Ey(T) = / Ey(A)d> (2.10)
0
Substituting for Ez(A) from Eq. 2.9

oo p2m  pwf2
By(T) = jg; fg fi Iy a(h, T)cosOsinfdfdgd) (2.11)

Ag a black body is diffuse, I 3{A, T} can be pulled out of the integral and
retained while performing the integration with reapect to the divection.

2 e f2
E(TYy = DL{T) j; A cosfsinfdfde (2.12)
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By(T) = n1y(T) (2.13)

In Eq.(2.11), E; represents the total hemispherical emissive power where
total means that the integration is with respect to the wawvelength,
hemispherical means that the integration is with respect to the angle.
Hence, the calculation of the total hemispherical emissive power involves
three integrations. Having studied the Stefan Boltzmann’s law (from
the first course in heat transfer), we must remember that in this law,
3 integrations have already been done in : 8, ¢ and A. The primordial
relation with this law is the fundamental I{X) which the black body is
supposed to emit and which can be verified by experiments and has been
proposed by theory. Two points have to be reiterated here :

1. If we look at radiation transfer between surfaces, we are talking
about hemisphere and not about sphere.

2. Surprisingly, the result in Eq. (2.13) has 7 and not 2.

Example 2.1: A surface of area Ay = 2 x 107* m? emits diffusely
(same in all the directions). The total hemispherical emissive power from
this surface is 9x 100 W/m?. Another small surface As = Tx10~*m?,
is oriented as shown in the figure. Determine the fraction of the total
radiation from Ay that is intercepted by Ag.

Figure 2.12: Geometry for example 2.1



2.4, Spectral hemispherical emissive power 27

Solution:
A; is a diffuse emitter.

Bl = =l (2.14)
I Eyfm =9 x 1047 = 2.86 x 10*°W/m?sr (2.15)
I = dQ/{dA;.cosb.dw) (2.16)
dw = Agcosls/r? = (7 % 1074 .c0855) /0.4°

= 2.509 x 1073 (2.17)
G = I1dAjcosfdw {2.18)

G = 2.86x10* x2x 107 % 00835 x 2.508 x 1073
= 11756 x 1075W (2.19)
Qipotay = F1A; =9 x 108 x2x 1074 = 18W {2.20)

Fraction of total radiation from A: that is infercepted by As,

Q/ @i (totary = 11.756 x 1072 /18 = 6.53 x 107 (2.21)

Example 2.2: What is the fraction of the total hemispherical emissive
power (E W/m?} leaving o diffuse emitter in the direction 20< 8 <
50° and 10< ¢ < 70°.

Solution:
oo plr paf2
B o= f f f I pcosBsin@dddd i (2.22)
G [ 0
Since I, 5% £(f, ¢}, it can be pulled out of the integral.
E = 7l (2.23)
oo pBO° pTO°
Etrnction = jf j’f f I ocosdsinfdbdgd {2.24)
5 J Jio
T 50°
Etraction = Ipx 3 coslsinddl (2.25)
20
Efraction = Ipx 1—’; x 0.9396 (2.26)
Efraction 093967,
A = iown, T 0.0783 {2.27)

The most important point we bave to recognize is that out of § to 90°
that € normally varies between, here the £ given is 20 to 50°, which
is 1/3 of the total. And if we consider ¢, out of 0 to 2x, here it is
10 to 70°, which is 1/6th of the total. What is the product of these
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two? It is 1/18 which is 0.0557. But from Eq. (2.28),the solution
is not 0.0557 but 0.0783. So there is no shortcut for determining the
radiation going out and performing the integration with respect to the
angles is inevitable. The problem is simple to work out if the radiator
is azimuthally independent. However, zenith angle dependence (i.e
dependence on ¢) is not uncommon.

Let us now explore the question “What does the quantity I mean”. If
the body is diffuse and I is given, one can determine E in the above way
or if E is given, one can find out what is the flux coming onto the second
surface if we know what is being emitted from the first surface and so
on. But suppose we know only the temperature of the first surface, how
one can get E or I 7 This comes from basic radiation laws and the first
important concept to know is that radiation also exerts a pressure.

2.5 Radiation pressure

The radiation from the sun exerts a force of nearly 1.2 x 10% kN on the
earth. Notwithstanding this, the ability of radiation to exert pressure
was unknown till almost the end of the 19** century. It was the Italian
physicist A. Bartoli who first proposed a thought experiment (whose top
view is given in Fig.2.13) to prove the existence of radiation pressure.
The arrangement consists of a cylindrical chamber that is insulated on

Valves
Movable
piston ‘
Insulatpd
v
A /3 ;
Black |/ Y [ ]Black
gody at 7 : 1 ) I é body at T,
! v
/ L/ / T1< T2
i i~
Insnlated

Figure 2.13: Apparatus for Bartoli’s thought experiment
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its periphery so that there 18 no convection. The cylinder is attached
to a black body on the left hand side, which ig at temperature Ty and
is attached to another black body on the right hand side which is at
temperature Ty such that Ty < T3, There are 2 movable frictionless,
massless pistons (A and B) contained in this cylindrical enclosure, with
a small gap in between, which can be covered or opened by sliding valves.
The pistons are perfectly reflecting. Bartol postulated a thermodynamic
cycle with three processes using this.

Initially, the velve which is close to piston A is open. The other valve is
closed. The region to the left of A as well as that between A and Bisin
contact with a black body ab temperature T1. I we give enough time,
the cavity consisting of chambers I and II, which is extending upto piston
B, is filled with radiation energy density corresponding to the black body
at Tj.

Proecess 1. The valve near piston A is closed, piston A moves $owards
piston B till such time that the radiation energy densily between the 2
pistons rises 10 a value corresponding to the black body temperature Ts.
This process is akin to compressing a gag. Chamber IIT is anyway in
contact with the black body af Ty, Hence the radiation energy density
corresponding to chamber 11T will be equal to that of the black body at
temperature Tq.

Process 2: Valve near piston B is opened and the radiation energy
densities on either side of piston B are the same as that of the black
body at Te. Both the pistons are moved towards the black body at T
such that the energy density is pushed towards the black body at T,

Process 3: Bring back the pistons and valves to their initial positions,

In this hypothetical cycle, everything is alright except that the second
law of thermodynamics seems to have been viclated when heat was
transferred from a body at lower temperature to a body at higher
temperature. The heat could be radiation, conduction or convection and
in this case, it happened o be radiation. This is allowed only when extra
work is done and hence we have to find a mechanism or & place where this
extra work could have been done. This work could have beon done when
pushing the pistons towards the right but the pistons are mass less. If
friction were present, the movement of the pistons would have generated
heat which would have incressed the temperature. However, the pistons
and valves are frictionless. But if heat transfer is 1o take place from
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a body at lower temperature Ty to a body at higher temperature Ta,
some work needs to have been done. Bartoli argued that if everything
is correct and the second law of thermodynamics has to be obeyved, this
work must have been done against the radiation pressure!l Therefore
radiation can be treated like a gas. When we are moving it from T: to
To, we do work and compress . This is the only way which will make
cycle will work. Hence, radistion pressure has to exist!

HRadiation pressure is not fction or fardasy and people bave measured
it using large sails on boafs by cutting out the wind component. That
said it is quite small and difficult to measure. The existence of radiation
pressure opens up new vistas for dolng research and exploring “P becanse
basic thermodynamic laws can now be used to obbain a guantibative
handle on radiation. If radiation has a pressure and if we also assume
that it has internal evergy density and if we are able to relate these
quantities to I, we can use the T'dS {often punned jocularly as “tedious”)
relations of the classical thermodynamics to relate T and T,

The radiant power passing through dA in Fig 2.11 in the (8,¢) direction
in Wis

dH A, 8, 0) = DA, 8, ¢)d A cosbdwd (2.28)
The net momenturm fox pagsing through dA; in the (8,¢) direction is
tricky to answer. We can relate the momentum to the pressure. Bul we
should be in a position to relate the radiant power to the net momentum
flux. How can we do this?

Radiant power / (Area x speed) at which radiant power propagates will
have the units W/(m*)(m/s) = W s/ m® = Joules/ w® = Nm/m® =
N/m? which has the units of pressure.

d (X, 8, ¢}

codE(A, 8, ¢) = cdA (2.29)

where df has units of N/’mg. Now, the component normal to the
radiation will be the component normal to dA.

dijeost
cdd

dgﬁ()‘s gs ¢) =

Substituting from Eq. 2.28

(2.30)

dén (X, 8, 8) = WC&SQQ&‘J@ (2.31)



2.5. Radiation pressure 31

The net change in momentum is equal to the difference between what
is going out and what is coming in. Now, if dA is a perfect reflector,
whatever is going in must equal whatever is coming out. Therefore the
net change in the flux will be twice the value which is obtained in Eq.
(2.31). Now integrating over 6, ¢ and A, we have the following expression
for pressure, P

9 [oo [ /2
P=" / / / I ccos®0sinfdOdpd (2.32)
cJo Jo Jo
/2

P= %Ib27r / cos?0sinfdf (2.33)
0

Between the above two equations, (2.32 and 2.33) we have done several
things. We have gotten rid of integration with respect to A by saying
that Iyd\ can be replaced by I. I is not a function of 8, ¢ because we
are assuming everything is a black body so that I; can be pulled out of
the integration. Secondly, we already did the integration with respect to
d¢ and have brought the 27 outside the integral. Upon evaluating Eq.
(2.33), which turns out to be 1/3, we have

Al
2= S (2.34)

This is an important step that thermodynamicists achieved 150 years
back when they related the radiation pressure to the intensity.

Next we define an expression for the radiation energy density u
(J/m3). While radiation energy density has the units J/m3, radiation
flux or power is just W or W/m?. So if we have to convert the flux
into energy density, the additional variable that enters the problem is
time. Therefore we have to consider a time dt such that in this interval,
a length dL is swept by the incident beam and the question we have
before us is, if radiation is shining on an object, how much of energy will
it accumulate in this dt? dL is the swept length in an interval of time
dt. dL can be written as cdt, as shown in Fig. 2.14. The swept volume,
dV is given by dL . dA cos#.

The total amount of energy contained in this volume is
dEx\()\, 0, ¢) = I) .dAcosfdwdAdt (2.35)

Let us now define a du, as follows

dE\(A,6,¢)

du)\()\,O,qS) = dv

(2.36)
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Incident radiation,

dL=cdt

_____

X ~

Figure 2.14: Figure showing a beam of intensity I(}, 8, ¢) incident on
the surface element dA

Substituting for dEy from Eq. 2.35
I, o(A, 0, $)dAcosfdwddt

dux(A,0,9) = o dt dA cosb (2.37)
Upon integrating from A=0t0 A = o
1 00
du(@,¢) = = Iy e dw dX (2.38)
C Ja=0
= % f 106, $)dw (2.39)

For a black body, I # f(#,¢) and so I(8,A) = I,. The integration is over
4x. Therefore,
u=1u, = {(4dnl)/c (2.40)

The progress we made thus far can be summarized as

(1) an expression for the radiation pressure in terms of the intensity has
been derived
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(2) an expression for the radiant energy density in terms of the intensity
has been derived

(3) radiation pressure is basically the radiation intensity divided by
speed.

Figure 2.15 gives a depiction of the three central “characters ”in the
development thus far, namely I, Py and ug.

Q Intensity
Radiation Q Radiation

Pressure energy density

Figure 2.15: A depiction of the interrelationship between I, Py and u,

From the expressions derived thus far, we have

P, = 4;{” (2.41)
iy = @ (2.42)

Therefore we get
P=P= g (2.43)

2.6 Relationship between the intensity, I and
temperature, T

When the emissive power of a black body is integrated for all the
wavelengths and over the hemisphere, we know that the relationship
between E and I is given by

E =nl, (2.44)
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So getiing a relationship between Iy and T is as good as getting a
relationship between E and T. This has been independently confirmed
by experiments. By thermodynamic arguments, can we get the same
relationship?

Consider a gas occupying & volumme V, with pressure P, ai temperature
T.

U=uV (2.45)

The total internal energy U is equal to the product of the specific internal
encrgy and the volume. The specific internal energy is defined as energy
per unit volume. From the TdS relations in thermodynamics, we have

TdS = dU + pdV (2.46)
TdS = duV)+ PdV (2.47)
TdS = udV -+ Vdu-+ PdV {2.48)

w

But P = °©

" 3
TdS = udv+vczu+§dv (2.49)
TdS = Vdu+ gudv {2.50)

v 4

dS = dut gudV (2.51)

The guantity 5, here is entropy, a property and hence it is & point
function.

As a consequence, dS is an exact differential.

If

Z = flz) (252
dZ = Mdz+ Ndy (2.53)

For dz to be an exact differential

M N
W " (2.54)
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Applying the above to Eq. 2.51 we have

o [V ou 0 4u
av TaT] = oTar (2:55)
1 du 4 du  4u
TdT ~ 3TdT 372 (2:56)
4 u 1 du
S = = 3
312 3TdT (2:57)
du dr
= = 4= 2.
" - (2.58)
Integrating both sides
Inu = 4nT +Inc; (2.59)
u = oT* (2.60)
Substituting for u from equ.2.42
4WTI” = aoT? (2.61)
= 14
L = T (2.62)
For a black body
E, = 7l (2.63)
_&:%# (2.64)

Equation (2.64) is a very important relationship which was figured out
in the last part of the 19 century. Stefan and Boltzmann arrived at
this independently. In the above equation, ¢ is the velocity of light in
vacuum = 2.998 x 108 m/s. However the constant a is not known. So,
to get the value of a, this expression has to be matched with the values
got through experiments. By doing this, it is now known that ac/4 =
5.67 x 1078 W/m?K* = o, which is known as Stefan Boltzmann
constant

. EBy=o0T* (2.65)

A word about the two scientists. Josef Stefan (1835 - 1896) and Ludwig
Boltzmann (1844 - 1906) were the two physicists behind this equation.
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Stefan was an Austrian Professor and Boltzmann’s research supervisor.
It is worth noting that Boltzmann got his PhD at the age of 22 and at
the age of 25, he was appointed full professor in mathematical physics
at the University of Graz!

Getting back to the distribution, we still do not know what “I "is. But
with the help of thermodynamics, without koowing I, we were able to
establish that the black body radiation is proportional to the fourth
power of temperature. Many questions are still unanswered such as, for
a given tempersture, bhow does I vary with A 7 Does it hit 5 peak
or are thers multiple peaks? For s given wavelength, how does I, vary
with temperature? What happens when A tends to § or when it tends
to infinity? The best brains in the last part of the nineteenth century
and the early part of twentieth century worked on this problem and came
out with different proposals for I,{A). These are called candidate black
body distribution functions.

Intuition suggests that the following constraints have to be satisfied by
all possible candidate black body distribution functions I(A).

I(A} — 0,4 — o0 (2.66)
L{A) =+ 0,A—0 (2.67)
(N =0, =0 (2.68)

{3\ — 00, T — o0 (2.69)

Furthermore, the correct distribution of Iy 5 (A, T) should also satisfy the
following relation

oo p2r pwjl
jf f Jf Iy (>, 6, 8) sinficosddfdgd = 0T (2.70)
] 3 4}

Wien (1864 - 1928), a German, was the first scientist who proposed a
distribution in 1886 as follows

clz\—s

Ib"x(A, T) == m

2.71)

Where ¢; and ¢g are the two radiation constants whose values are

er = 119 x10° Wem*/m? (2.72)
ep = 14388umiC (2.73)

For a black body st 6000 K, while the Wien's distribution holds good
for short wavelengths, it deviates from the experimentally obtained
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distribution at higher values of A (see Fig 2.16). Furthermore, when
T— oo, ext —1 and 8o, the curve saturates violating the constraint given
by Eq. (2.69). There is a significant departure from the experimental
values at higher values of A. What is special about this temperature 7
The temperature under consideration, 6000 K, is important for engineers
because it is the temperature of the sun! Therefore, if we take the
spectral distribution of I vs A, corresponding to a black body at
6000K, the Wien’s distribution departs significantly beyond the peak
corresponding to the 6000K. On the left side of the spectrum, though,
the distribution does agree with the experiments. It is semi empirical and
based on thermodynamics and Wien does not seen to have considered
the experimental results available in literature while arriving at the
distribution.

10® +
LAS000K) |
W/m? pm sr
7
1 Expts/Planck
10°
10° -
| f i
1] 0.5 1 1.5 2
Apm

Figure 2.16: Wien’s distribution and comparison with experiments

The second distribution was proposed by the two scientists Lord Rayleigh
(1842 - 1919) in 1900 and Sir Jeans (1877 - 1946) in 1905. They both
independently worked out yet another incorrect distribution for I , as
follows
61/\_5
e
AT
Let us now see how this differs from the Wien’s distribution. The
numerator is the same. c¢; and cy are the first and second radiation
constants respectively and have the same value as in the Wien’s
distribution. The denominator, though, is different. While in the Wien’s
distribution it is €2/*T | in the Rayleigh and Jeans distribution, it was
ca/AT. The Wien and Rayleigh-Jeans distribution together with that

A\ T) = (2.74)
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obtained by experiments are shown in Fig 2.17. At shorter and shorter
wavelengths for the distribution proposed by Rayleigh and Jeans, I »
(A, T) — oo! But that was not observed by anybody. This means that
with very small wavelengths, extremely high I 5 can be produced. This is
far from being true. Though the two were very celebrated scientists, their
digtribation failed miserably st very low wavelengihs. So at ultraviolet
wavelengths, there is & significant deviation from measured values and
this dramatic failure of classical physics in the hands of two greatest
physicists was called as the ultraviclet catastrophe!

10° +
A,6000K -
Ih.A( )168— Raviei 1
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Pigure 2.17: Comparison of candidate distributions with experimental
results

2.7 Planck’s distribution

In 1801 (four years before the publication of the incorrect Rayleigh-Jeans
distribution}, Max Planck proposed a distribution for I ) as

ci A8

Ib;)s()‘iT) = eca/AT _ |

(2.75)

where he just added a “1” in the denominator of the Wien's distribution.

His distribution agreed excellently well with the measured I , data, at
any temperature for all wavelengths., Then he started thinking as to why
it agreed so perfectly. First he just did curve fitting. The intriguing part
though, is the fact that Max Planck gave the correct digtribution in 1801
while Jeans gave his incorrect distribution in 1805 and ironically both
papers were published in the same journal. Then Planck wondered about
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the physics behind the “1”in the denominator of Eq. 2.75 and figured out
that this would not be possible if he adopted the classical physics route.
Therefore, Planck figured out that unless he used E=hv, one will not
get the final result. Therefore, he concluded that E=hy must be correct.
This, in turn, changed the notion that continuous transfer of energy was
alone possible and the conclusion was that energy is transferred only in
steps of hv or in quantum steps of hy, which in turn makes it conditional
that h have a finite value, which was found to be 6.627 x 10~3*Js now
called the Planck’s constant. More about this in a later section.

2.8 The Rayleigh Jeans distribution

Let us look at radiation field enclosed in a cubical box of side a and
volume a® (see Fig. 2.18).

a

|~
PV

// / y o
[ [

X

Figure 2.18: Radiation field enclosed in a cube

The goal is to determine the radiation energy density within the box, u,
to further get the relation between u, and I,. Consider standing waves
with a frequency,v. Between v and v+dv, if we get the possible number of
modes of vibrations or standing waves, say for a cubical volume, multiply
it by the average energy per frequency or average energy for each wave
and then divide it by the volume of the container, we get the spectral
energy radiation density.
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From classical physics, we know that every harmonic oscillator has got
two degrees of freedom, one is the kinetic energy and the other is the
potential energy. From Boltzmann statistics, we know that the kinetic
energy is {(1/2) kT and the energy associated with potential energy is
another (1/2) kT. So kT is the average energy. If we multiply it by
the momber of waves between v and v+dy, we get the numerator and if
the denominator is the volume a®, we get the spectral radiation energy

density in terms of v. Furthermors,

\Ldvl = |Id) (2.76)
¢ = VA (2.77)
v o= ¢fA {2.718)
dv = —{c/AB)dA (2.79)
L = L{c/X®) {2.80)

This is the relationship between §, and 1. So, once we have an expression
for u,, we can obtain one for I, and using Eq. (2.70), in turn get an
expression for I,. We will now formally derive the Rayleigh-Jeans
distribution.

Consider the radiation field enclosed in a cubical box, as shown in

Fig. 2.18, whose walls sre impermeable. Stationary waves or standing
waves ave set up inside, whose allowable frequencies have to be
determined.

- (No. of standing waves between (v and v + du) x {SEOIEENETIY

WEVE

Ry a3
(2.81)

_ {No. of standing waves between (v and v + dv) x (k7)) (2.82)

aﬁ

14

Mathermnatical development -

.. The average energy/ wave = kT= potential energy (1/2 kT) + kinetic
energy (1/2 kT)(where k is the Boltzmann constant given by 1.3806 x
1023 J/K)

The governing equation for standing waves in the domain is given by the
following equation

i@&w _ 32,#5 32?’/} @2,4}
C2 862 Bx? 7 Gyt G2

1 is the wave function in the Eq. 2.83. For an electromagnetic wave,
%) represents the electric or magnetic field magnitude. We are not going

(2.83)
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to get into the full solution of this equation but have a limited objective
of pulling out the number of waves of a prescribed frequency from this.
The radiation energy density should be independent of the size of this
container. So it is intuitively apparent that the term a3 will be present
in this expression for the number of waves so that the denominator term
a? will see to it that w, is independent of a.

Eq. (2.83) is a hyperbolic linear partial differential equation, which can
be solved using the method of separation of variables. The first step here
is to assume a preduct solution.

= T X(2}¥ (y}Z(z) (2.84)

We requirve 2 conditions in time and § conditions iv space for the cubical
container geomelry.

w=0 for z=0 and z=a {2.85)
Y=0 for y=0 and y=a {2.86)
P=0 for z=0 and z=q {2.87)

The general solution to Eq. (2.83) is given by

1TE | Mgy | TWZ
871 &N

P = {AnCo8nt + Bﬂsmwnt)smﬁ . . . {2.88)

where ny, ne and ng sre integers and w,, is the circular frequency. The
circular frequency, wy, i given by

wled
wﬁ = wgzjw(n% + n% + né) {2.89)
w ==y {(2.90)

L#
o = o4 /(nd +n2 +nd) (2.91)

The challenge is to come up with a number for the discrete frequency
modes that are allowed in the frequency interval v to v+dv. Once we
have this, we are kind of done. In order to comprehend its derivation
better, let us take recourse to geometfry.

Consider a situation shown in Fig. 2.19, where ni, ns and ng can take
on integer velues and all have to be positive. Let us consider a 2
dimensional situation, where we have unit squares. We now consider
differential area 2Zwdr in the first quadrant. What is seen here is
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a 2 dimensional representation using n; and n; instead of the three
dimensional representation. The hatched area in the figure is given by
27r.dr/4 (the division by 4 comes in a8 we are considering only one
quadrant). Here dr=1 and the hatched area = 12.6. Now we count the
number of lattice points that this hatched area cuts. It is 13. Soifr

1 %?%

Figure 2.19: Figure depicting counting in two dirmensions

is sufficiently greater than 1, the ares of the quadrant is equal to this
number. But what we want for the spectral density is the number of
waves, The number of waves can be related to the aves. Hare we have
cnly ny and By, but in the actusl case, we will have ni, ns and ny and
instead of the guadrant, we will have the first octant of a sphere. Bo
the volume for the octant will be 4mwr?dr/8 which will be exactly equal
to the number of lattice points, which will, in turn, be the number of
waves that are allowed between the frequencies v to v+dr. Let us now
try to think of the discrete frequencies in terms of a space lattice, then
count the number of lattice points having unit dimensions. For a three
dimensional case, radius 1, is given by

Tr = 4/ (0% + 03 + nd) (2.92)

The number of points having & distance between v and r-+dr iz given by
dN = darr¥de /8. In a two dimensional case, the number of points between
r and r+dr can be easily counted by not doing a number count but by
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just taking 27rdr/4. Therefore, the number of points lying between r
and r4dr in a 3 dimensional lattice space is given by 47r?dr/8. So the
number count was analogous to the elemental area in the case of two
dimensions while it is analogous to the elemental volume in the case of
3 dimensions. So, we have the following

whenr, = 4/(n?+nZ+nl) (2.93)
4mrdr
dN = ——— 2.94
8(1) (2.94)
and so when, r, = i\/ (n? + n2 + n3) (2.95)
drvdy
dN, = ——= 2.96
8(5)° (299
3
N, = %2, (2.97)
3
The expression for v, then becomes (when dv = 1) the following
4mady?
SV ET
42
But two possible directions need to be considered. For an

electromagnetic wave, two polarizations namely, vertical polarization and
horizontal polarization or Epsraiier and Eperpendicular are possible.

2
U, = (2)47;;’ kT (2.100)
2
oy =g (2.101)
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But we know that

Ar],
U, = ”c”f” (2.102)
9 2
Ey = c%k:r (2.103)
C
Buth,)\ — I},’,,)‘V2 (2.104)
22 c
C
Iy = 24k (2.106)
2hc? = ¢ (2.107)
h
¢ T o (2.108)
-5
g (2.109)
AT

This is the Rayleigh-Jeans distribution. The Rayleigh Jeans distribution
is good for long wavelengths. However, for short wavelengths, it performs
very poorly, as already discussed. When A —0, I — co and hence
violates Eq. (2.66). This was a dramatic failure of the Maxwell-
Boltzmann statistics that was very impressive until then.

2.8.1 Planck’s black body distribution function

The correct distribution was proposed by Planck and for proposing this
correct quantum hypothesis, he was awarded the Nobel prize in 1918 at
the age of 60. The logic is more or less the same as what Rayleigh Jean
proposed, but there is a modification in terms of the average energy.
The number counting is the same as Rayleigh Jeans. There are 3 terms
involved in which are the number of standing waves, the average energy
per standing wave and the volume of the container. The volume of the
container is the same in both the cases. The number of standing waves is
the same. But Planck figured out that there is an issue with the value of
KT as average energy per standing wave that came from clasical physics
and kinetic theory of gases. Planck was sure that there was a problem
with kT. He used a different approach and used a harmonic oscillator
instead to put forth his theory.

The harmonic oscillator is the equivalent of a spring mass system
as shown in Fig.2.20, where the stiffness is K and the mass is M.
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M

Figure 2.20: Depiction of an harmonic oscillator, with the help of a
spring-mass analogy

He considered an atomic oscillator as being eguivalent to a spring
mass system becanse here, we can get the natural frequency and
other parameters. Two points are to be noted here. (1) The spring
mass oscillator is in thermal equilibvinm with its surroundings at a
temperature T. Inspife of this, it continues to emit radiation, as said
by Provost’s law and this activity will cease only when the temperature
is 0 K. {2} The second point is that the oscillator is capable of interacting
with electromagnetic radiation.

We will start with classical physics or mechanics and use Boltzmann
statistice and determine the total energy, the number of oscillators
possible between two energy levels and the total energy of a certain
number of oscillators. The fotal energy divided by the number of
oscillators in the energy band will give us the average energy. This
average energy should be different from kT. If we happen to get kT
again, we will come back to the Rayleigh Jeans distribution. Planck
did some magic there and got values different from kT because of which
ke got the -1 in the denominator apart from the term got by Wien.
The argument goes like this: The proof is correct and finally, one gets
an agreement with experiments. If everything is correct, there is & very
cruecial sssumption Planck makes in one step, which must also be correct.
Therefore that is the correct theory to explain black body behavior, as
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of today. No one else has been able to come with a betier explanation
that agrees better with experimental resulis,

The total energy of one oscillator with mass M and spring constant
K is given by € = KE + PE = P2/2M + 1/2Kx® where P =
instantancous momentum ; x = instantapeous displacement. Any
ogcillator is characterized by its momentum and displacement.

Number of oscillators having values of (x,P?) lying within dx and dP has
to come from probability. This comes from the Maxwell-Boltzmann (M-
B) statistics which actually belong to the the pre-quantum era. Planck
did not dispute all of what Rayleigh-Jeans said. He used most of the
arguments and had problems only with the average energy.

AN = NCe "y dp (2.110)

The (M-B) probability follows an exponential distribution. Egn. 2.111
is known as Arrhenius tyvpe distribution. In Eqn 2.111, C is a constant,
defined such that N = { [ dN. Somehow, if we know the total number
of oscillators at all levels, we can pull cut all values except C and get its
value.

How will the curves of constant energy sppear 7 This is basically elliptic
phase space where the lines are iso energy comtours { see Fig. 2.21).
There can be several combinations of momentum and displacement that
can give the same energy and these when drawn give us elliptical rings,
each of a particular energy. We can say one line represents an energy level
of ¢’ while the next one is &'+ A¢. Between ¢ and ¢+ Ad, if we are able
to find out the energy of all the oscillators, we keep it in the numerator.
Between ¢ and ¢'+A¢, if we find the total number of oscillators and
keep it in the denominafor, then the total energy of all the oscillators
between two bands divided by the total number of oscillators between
the two bands will give the average energy of any oscillator that lies
between the two bands. Once this step is done, we go back to Rayleigh-
Jeans and instead of kT, use this value and complete the derivation.
Let us start by saying that Ae’ is very small so that e~¢/*T ig a constant
over Ad’.

The mumber of oscillators lying in the band e to ¢'+A¢’ is then given by

AN = NCe~¢/*T j jf dzdp (2.111)
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\

Figure 2.21: Depiction of the elliptical phase space in the derivation of
the Planck’s distribution

What is [ [dxdp? It is the area of the slice of the ellipse indicated by
the hatched portion in the Fig. 2.21, denoted by AS. The entire area of
the ellipse is given by S = mab (a-semi major axis, b-semi minor axis).

In the elliptic phase space, the area of the ellipse is given by S =«

Xmaz Pmacz-
[2€!
= — 2.112
Py = 2M¢e (2.113)

Now we can get the area S as

M
= Yok
8 = 2me % (2.114)

The natural frequency of an atomic oscillator with spring constant K
and mass M is
1 /K
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Combining Eqns. 2.115 and 2.116 we have

= £ 2.11
5= ¢ (2.116)
i

AS = ‘%f (2.117)

(2.118)
Substituting for [ [ dx dp in Eq. 2.112, we have
—& R A ot

an = NeeTITAe (2.119)

Recall AS= | {dxdp.

Now comes the Planck’s hypothesis. Consider that the elliptic phase
space i3 divided into increments and indo equal bands of area h. Consider
a number of such elliptical rings and number them as n=0,1, ... Planck
proposed that the energy of an oscillator located at the inner boundary
of & particular ring is ¢’= Sr = nhy, where 8 is the area between 2 bands
that he replaced as nhr. If h=0, we are in trouble as the expression will
reduce to kT, Se Planck’s hypothesis was

¢ = Sy = nhy {2.120)

There is no rational basis of establishing this by mathematical principles.
Also, here, n is a number that can take only integer values.

'
AN = NCelhw)/iT A€ (2.121)

v

The number of oscillators in & ring “n” is given by

NCAe e(—nhv)/kT

No =~ (2.122)
N, = Npel-nh)/kT (2.123)
whers
_ NCAe

Ng
¥

Now, what is the total energy of all oscillators? The minimum and
maximurn values of n are 0 and oo, So we have o add up for all values
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of n. The total energy of all the oscillators, E, is then given by

fe.v)

E = Y N, (2.124)
=0}
o0

E = Zﬁge“(“k")’;w.nhsf {2.125)
n=0

— NG&(“ﬂhv}/kThy[l + ge("nhv)/k’f' + Sem(ﬁfav)fk'f‘ + c?l?ﬁ)
Nﬁhb’ﬁm (e /BT

= o et (2.127)
The total number of oscillators N is given by
o0
N = 3N, (2.128)
n=={}
N = No[te BV L ] (2.129)
- No

We now have the total energy of all the cscillators (2.127) and the total
number of oscillators Bq. (2.130). The average energy per oscillator is
basically Bq. (2.127) divided by Eq. (2.130) which is

Nelﬁmﬁufk‘l"]hym - 6——:‘w/kT]
= 2.131
W [ — e~ /KT N, (2.131)
by

(elow/RT) _ 1)

w (2.132)

Now Planck wanted to check what will happen when hv /kT is very small.

When g% -0 (2.133)
= T’ = kT (2.134)
1+ 57 —1]

This is what we get in the Rayleigh-Jeans distribution and also Planck
was forced to come to the conclusion that b cannot be 0. So h has to
be small but Anite. 5o he introduced a fundamental physical constant in
nature of in physics which was hitherto unknown and when he matched
these resulfs with the experiments, he found h to have a value §.67x
107315, In honour of hitn, it was called the Planck’s constant. Let
us now complete the derivation. The spectral radiational energy density
Uy is given by
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Substituting for v as §

Black body and its characteristics

w - 8t hv
T ek -]
4r]
Butu, = 77ch,u
2h3
DAy = o
c2lerr — 1]
c\3
L, = 27
cZlexr — 1]
2hc
Iby'/ = Tar -
A3lerr — 1]

We also know that

So,finally we have

1

1

1

C2

C2

Iyc
Ly = ;2
2hc?
Ly = —5——
A[err — 1]
If g = 2hc}
cg = heo
2T Tk
P
Ib,A:clz—
e — 1]

= 2x6.627 x 1073* x (2.998 x 108)2

= 1.198 x 10716

= 1.198 x 108

Jsm?
52
W um*
e

heo _ 6.62 x 1073 x 2.998 x 10°

k
= 14388umK

1.38 x 10-23

(2.135)

(2.136)

(2.137)

(2.138)

(2.139)

(2.140)
(2.141)

(2.142)
(2.143)

(2.144)

(2.145)

(2.146)
(2.147)

(2.148)
(2.149)
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c1 is called the first rediation constant and cy is called the second
radiation constant. What is so great about Eq.2.144 7 Planck got an
expression for I 5, which when plotted against A for any temperature,
gives exactly the same results as what other people measured for all
wavelengths at all temperatures. Therefore, his result must be correct.
If the result is correct, then all the steps he has done fo get it must be
correct. All, but one of the steps, are exsctly the same as what Rayleigh-
Jeans have donse, that was based on the Maxwell Boltzmann statistics.
There was one crucial departure from the Maxwell Boltzmann statistics
when he proposed that the energy can be divided into bands and e=nhw.
Therefore e=nhy must be correct!

We get an expression that matches with experimental results only if
this assumption is made. Therefore, the hypothesis that energy
transfer must take place only in discrete multiples of hy is
correct and this was the beginning of quantum mechanics. He
proposed this in 1901 and spent many vears after that trying to figure this
out. In 1818, be was finally awarded the Nobel prize. Please remember
that the integral of Iy x with respect to A must lead to T4 We will look
at Planck’s distribution and see if we can exfract any further information
from that. We have only been seeing the mathematical form. A plot of
the Planck’s distribution for various temperatures is shown in Fig.2.22

;\_"5
Lo tilz% (2.150)
fest — 1]
s = 1108 x 108 Wum™t/m? {2.151)
e = 1439 %10 umX {2.152)
When ey >> 1 {2.153)
Cl)\“s .

Ipyp = g = [y \(Wien) {2.154)

[ear — 1]

When c3AT >> 1, the Planck’s distribution is approximated to the
Wien’s distribution, which is valid for very shorf value of A or good
for short wavelengths. Now, let us see what happens when {4 — 0

C]_.)\m5 - C]_)\m5
1+ 3% —1] [$%]

We see that the Planck’s distribution in this case can be approximated to
the Rayleigh-Jeans distribution, whick is good for long wavelengths i.e

% — Qord — co. 8o, the Wien's distribution and the Rayleigh-Jeans

Ly = i = Iy, A {Rayleigh-Jeans) {2.155)
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distribution are two asymptotes to the Planck’s distribution. While
the Planck’s distribution is valid for all values of the wavelengths, the
Wien’s distribution and the Rayleigh-Jeans distribution are valid for
some portion of the electromagnetic spectrum.

One can now perform a good exercise by taking values of co/AT as
10, 100 and 1000 and calculating the value of I y using the Planck’s
distribution, Wiens distribution and the Rayleigh-Jeans distribution and
then determining the percentage error. This way we can understand the
penalty that we pay for using an approximate expression instead of the
correct black body distribution (Planck).

2.9 Planck’s distribution - salient features

If we look at Fig 2.22, the following points emerge

0
100 F 12000 K

Spectral emissive power
E b (W/m?. pm)

0.1 0.2 0406 1 2 4 6 10 20 40 60 100
Wavelength , A (um)

Figure 2.22: Planck’s distribution

1. Ip» is a continuous function of A. Stated explicitly, for every value
of A, we have a unique value for Iy ).
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2. For every temperature T, there is a peak.

3. For a given A, I;) increases with lemperaiure, as can be seen
from the graph.This is intuitively apparent from the second law
of thermodyunamics, that higher the temperature, higher will be

T 5.

4. The pesk of the I, keeps shifting to the left for increasing
temperatures.

How do we get the peak of I A(A,T)? For this, we do the following

&
gy bl =0 (2.156)

We do not want to differentiate I , with respect to T because we know
that L; 5 anyway keeps increasing with T. With A, though, it increases,
reaches a peak and then decreases. Thervefore if Iy, is differentiated
with respect 5o A snd the first derivative equated o ¢, it will become
stationary and we can get that value of X that will yield the maximum
of Ty ».

b Ci}ams
@)\[[&ﬁ~ . 0 (2.157)
~BAE ~IATE entey
. + . = 0 2.158
e3F 1) [exr — 12 T (2159
~5x6 _ - e;%"cz (2.159)
et -1} [ext — 12 AT ”
5 o e (2.160)
}q - A T [exj" e 1] )
Let g, = (2.161)
X
efe_ - =5 (2.162)

We need to solve this non linear, transcendental equation to get x which
is actually x* where x* is that value of cp/AT which will make I
stationary. We will numerically solve this using the method of successive
substitution. Rearranging the equation, we get

5(e® — 1)

T o= (2.163)
Ble® ~ 1

g = =) (2.164)

e
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We start with some x; and get x;41. X1 i8 now treated as the new
x; and we keep doing this till the modulus of (x;1;- %;)/x; is equal to
some acceptably low value. The above is frequently referred to as the
convergence criterion or the stopping criterion. Let us start with x=3
and do the calculations. The results are given in Table 2.1,

Table 2.1: Determination of the root of eqn.2.184 by successive
substitution

Iteration No. X HKi1 (&H“Xi)g
1 3 4.75 3.06
2 475 | 4.95 0.044
3 4.95 | 4.964 | 1.96x10™4
4 4964 | 49654 | 1x19™4

One can solve Egn. 2.159 using the Newton-Baphson method too. Here,
the advantage is that in the Hrst or second iteration itself, the value of x*
is obtained, as the Newton-Raphson method has quadratic convergence
( see Balaji {2011) for a fuller discussion on this method).

7 = 2 . 40es g (2.165)

4.1639 x 10*

(2.167)

Fagn.2.166 is known as the Wien’s displacement law. We do not
require Planck’s distribution to get this, by curve fitting tee by joining
the points of individual meximes of experimentally obtained curves of
Ipn Vs T, this can be got. This is a very profound result. Look at
the sun’s temperature, 6000K. A,z corresponding to solar radiation is
about 0.5um. This is so important because 0.5um lies in the visible part
of the spectrum, which is 0.4-0.7pm and that is why we have daylight
and Earth is so habitable. If the sun’s temperature were to be 12000K,
we would require light 24 hours a day. The electric bulb, tube lighi, CFL
etc are all being developed so that the lighting inside mimics the sunlight
cutside. Our shirt colour and body temperature are at about 37°C or
300K. Suppose the green stripes in our shirt were because of emission,
for this 300K, what would be the AT 10pm. Is this in the visible part
of the spectrum? No, it is in the infrared region. So a shirt is green in
colour, not becanse of emission, but because it absorbs all other colours
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and reflects only the green colour. From Wiens displacement law, we
can understand that for all practical purposes, colour és largely based
on reflection rather than emission, unless we encounier high
temperaiures.

If we really want to see colours based on emission, we have fo take
an iron rod and heat it to a high temperature and the colour we see
then is because of the emisgion. 8o, colowr can be because of reflection
and emission. Suppose we want to selectively absorb radiation, the
temperature of the source, is important. I we want to capture the
maximum amount of radiation, absorption should be highest in that
portion of the spectrum wherve its maximum les,

Let us look at something even more interssting. Let us divide the
quantity I » by the quantity T

-5
Iy = 7“"‘}23‘ (2.168)

[eat — 1]

Ty 5 cy
2 wm —————————— = AT only 2,169
v " oyt o0 (2109

By innocuously dividing Iy » by a simple quantity such as T5, we get a
very profound resuit. The right band side of eqn 2.165 becomes
a fanction of only AT. Therefore, we get only one curve as shown
in Fig. 2.23, by werging A and T. The peak corresponds to 2898 umK.
This curve is called the universal black body distribution function,
whose maximum 8 the same as that obtained by Wien's displacement
law. If we got the ares under the curve and trest it to be unity, then
hetween any two wavelengths A; and A2, we can find out the fraction
that is emitted in a particular band, which is very tmportant.

For example, if we want to design a solar collector, to know the
percentage of radiation which is absorbed or emitted in the visible part
of the spectrum, the black body radiation function is used and these are
called f function charts. SoifI; ; is divided by T3, then the curves get
displaced such that only one curve emerges which is the universal black
body distribution function. Therefore, some people argue that because
some curves get displaced, this should be the Wien’s displacement law
and not the other one (i.e. Eqn.2.167).
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5
Ly
W/m?*um sr. K®

Figure 2.23: Universal black body distribution function

Let us now integrate the Planck’s distribution over the hemisphere

E,(\T) = ]Ib,)\cosﬂdw (2.170)
2x  pw/2
Ey(AT) = Iy f cosBsinfdide (2.171)
0 0
Ey(AT) = whya (2.172)
(2.173)

Integrating again from A = 0 to co

By(T) = f Ty xdA (2.174)
A=0
o0 -5
E(T) = mci f );zi (2.175)
A=0 [eaT — 1]

This is a very difficult expression to integrate. Already we have
introduced the variable x=cy/AT and using this, we were able to get
Wien's displacement law. So common sense tells us that we can try



2.9. Planck’s distribution - salient features 57

integrating this too, using the same variable x as before. Please be
reminded that this is for a particular temperature.

Let 7 = /\C—QT (2.176)
5 X~
Ey(T) = 7o /0 = (2.177)
2
— AT
dx = ¥ (2.179)
2
0 39T
o0
_ma =1 T
men [ 22 T
Ey(T) = g i @—Sex_ld:c (2.182)
T, g [ z3dx

Now we have to integrate the above expression, which is again not easy.
We will use the result that mathematicians have got by integrating such
an expression. Please note that T has been taken out of the integral
because the integration is with respect to x.

© z3dx it
= — 2.184
/0 e —1 15 (184
4

: _ AT 4
o Ey(T) = a =T (2.185)
Ey(T) = 5.67 x 10787 (2.186)
Ey(T) = oT* (2.187)

Planck’s law is like the sun of the solar system.

e For the limit that ¢2/AT is very small, we get the
Rayleigh-Jeans law

e When c2 /AT is very large, we get the Wien's law
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» When we differentiate the Planck’s distribution, we get
the Wien’s displacement law

» When we integrate the Planck’s distribution, we get the
Stefan-Boltzmann law

As already mentioned, often times we are not interested in finding out
the total area under the curve from A=0 to A=co. Sometimes we may
be interested in the amount of energy that is absorbed in the visible part
of the spectrum or the infrared part of the spectrum. For example, if
we have a satellite orbiting the earth in a geostationary orbit at a height
of 36000km and we have an instrument on it that captures the infrared
radiation coming from Earth which is altered by the rain, clouds and
other particles in the atmosphere (this instrument is a multi frequency
or a multi spectral instrument, capable of capturing the radiation at
different frequencies). It may have a frequency response in various
channels. In each channel, we cannot have a Dirac Delta function.
Around a particular A=4.5um, it is not that the radiation captured by
it at A=4.4pm or A=4.6um is zero. There is no device on earth that can
have a frequency response as shown in Fig. 2.24.

-

) I
=
=]
P
55
= 0
38
A -
4.65 A, pm

Figure 2.24: Frequency response curve of a sensor aboard a satellite
(ideal)

Normally, the response of any instrument will be as shown in Fig 2.25,
such that around the A or v, there will be a dA or dr associated.
Therefore, there will be a small band of frequencies or wavelengths over
which this instrument will respond.
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Figure 2.25: Frequency response curve of a sensor aboard a satellite
(actual)

The energy captured will be over the wavelengths A; to Ag. Hence the
area under the curve between these two will be the energy captured by
the instrument. Therefore, now, we are interested in the energy captured
in some portions of the spectrum. Therefore we are also interested in
knowing the fraction of the energy which is absorbed, transmitted or
reflected between A; and Az. Hence, from Ejp 3 Vs A, , if we know A and
Mg, we are interested in finding out the area of the shaded portion given
in Fig 2.25 for example. So, from 0 to co, the total area under the Ep 3
Vs A curve is oT?. Out of this, if we know the fraction in A, - Az, we
can multiply this by oT¢ for a body at temperature T and obtain the
energy emitted in Ay - Aq.

The question before us is what is the fraction of energy emitted by the
black body between two limits A; and Az ? Please note that we are not
saying T; and T3, because it is for a body at temperature T. The area
under the curve between the two wavelengths A; and Ay = (area under
the curve from A=0 to A=Az) - (area under the curve from A=0 to A=X;)

Fou-ag)r or Four-x,1) (2.188)

So, if one can have a look up chart or table that can give us the value of
Fo_) for any value of A, then the problem is solved. Suppose we want to
find out the area between 0.4um and 0.7um, then we will take A;=0.4um
and Ao=0.7um. If the temperature is known, we will multiply A and T
and first calculate A;T and AyT. Then from the look up chart, using these
values of A; T and A»T, we can determine the corresponding fraction and
golve the problem easily. Mathematically, this can be written as
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o FQT)A(T)
Jo~ FOAT)d(AT)

Fonr = (2.189)

This fraction is the fotal energy in the band 0 to AT divided by the
total energy in the band 0 to oo, So F 18 a dimensionless number that
varies between § and 1. Therefore, the fraction of radistion emitted in
}\1T - )\gT = FA1T—A2T-

Energy emitted in the A; - Ag band = (Fy,7_x,7) aT4 W/m?.

S0 we need to work with this fraction. This is called F-function. The
tabulated values are given in Table 2.2

From Table 2.2 it is clear that with increasing values of AT, the value
of Ip JaT® also keeps increasing till it reaches the maximum value at
AT=2898umK, after which it again starts to fall. The second*l column
on the right gives the F-function value or the fraction Fg_pr. We can
use this table intelligently and do a lot of things with it. For example,
if we have a problem involving the determination of the fraction of the
total energy emitied by the sun in the visible part of the spectrum, such
a problem can be easily solved with the F function table. For bodies at
different temperatures, that are emitting radiation, we can get an idea of
the fraction of radiation that is emitted in o particular wavelength band.

The firet column here i8 AT, while the second column is the value of
Fy 5. The third lets us calculate fy 3 (A, T} rapidly for a given {A, T} and
the fourth colomn gives an interesting ratio of how badly off I, is as
a consequence of A not being Amar 8t a given temperature. Needless
to say this ratio is 1 at AT = 2808umK and falls off rapidly on either
gide of the spectrum, with the fall at A < A5, being more severe than
for A > Aqnae. By plotting the values in the third column, we get the
universal black body distribution curve.
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Table 2.2: Blackbody radiation functions

AT
{(umK)
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
2808
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6860
7000
7200
7400

Fooay
0.000000
0.000000
0.000000
0.000016
{.000320
0.602130
0.007778
G.019691
0.039202
0.066653
(0.100782
(.140119
0.182051
(.227691
(0.248913
0.273004
0.317847
0.381457
(.403307
0.443063
(.480541
0.515662
0.548431
0.578903
0.607171
0.633350
0.657564
(.676548
0.700626
0.719732
(.737386
0.7563704
0.768763
0.782754
(.795680
0.807657
0.818763
0.829070

I}\,b(’\s T)/UTE
{(pm.K.sr)™?
3.711772x 10~ %8
4. 87725410714
1.036654x 1072
0.883105x 108
1.182284 %108
5.228789x 106
1.341736% 1075
2487352 %108
3.750250x10™°
4.927735% 1475
5.880147x 108
£.580043% 105
7.005151%107°
7.104804 108
7.215735x 1078
7.195287x 1075
7052908 x 108
6.800082x 108
£.498093x 1070
6.146872x 1075
5757341078
5.399468x 105
5.028467 %1078
4.669735% 105
4.327738%107%
4.005083%108
3.703038x 108
3.421938x 108
3.161478x10°5
2.920932x 1079
2.699316x 1075
2.495496x 1075
2.308268%x107°
2.136417x 1078
1.978750% 108
1.834121 %1075
1.701444x 1075
LET9705x 1075

LA T)

Ih,b()‘m ? T)
0.000000
0.600000
0.000014
0.001370
0.016385
(.072464
0.185846
0.344712
0.619732
0.682014
0.816153
(3.912027
0.970816
0.997099
1.000000
0.997166
0.977434
(.943644
0.900540
0.851870
0.800436
0.748291
(.696875
0.647160
0.599764
0.665048
0.513189
0.474233
0.438137
0.404800
0.374087
0.345841
0.310854
0.286077
0.274227
0.254183
0.235796
0.218925
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Table 2.2: Blackbody radiation functions

AT 13,5}()\, T)/G‘T5 I)\}b()\, T)
(pmK) Fr oy  (pmKsr)™' Ty p(Ames, T)
7600  (.838643  1.487960x 107 {1.903439
TROD  0.847543  1.365338x 108 0.189217
8000  0.855825 1.271039x 1078 0.176148
8200 0.863538  1.184331x107° 0.164132
8400 0870728  1.104546x 108 0.15307%
8600  0.877437  1.031075x<1073 0.142893
8800  (.883702 9.633637x10°° (1133509
9000 0.880550  9.000003x 1076 {1.124853
8200  0.805038 8.432545x107¢ 0.116863
5400 0.900169  7.899844x10° {.109481
9600 0.904977  7.407225x1078 0.102654
0800 0.900488  6.951272x107° 0.096335
10000  0.913723  6.528882x10~° 0.090481
10500 0.923232  5.601903x10°8 0.077635
11000 0931410  4.830888x 1078 0066042
11500  0.938479  4.184824107% 0.057096
12000 0.944616 3.641843x10°€ (.050471
12500  0.949969  3.182853x 106 0.044110
13000 0.954656  2.792002x 108 0.038707
13500  0.958777  2.460320x10°% 0.034097
14000 0.962413 21751631078 0.030145
14500  0.065634  1.920783x 1078 (.026744
15000 0.9684968 1.717707x107% 0.023805
15500  0.971047 1.533730x10°6 0.021255
16000 0.973328  1.373542%10™8 0.019035
16500 0.975374  1.233578x10°% 0.017096
17000 0.977214  1.110874x10™® 0.015395
17500 0.978873  1.002056x10~¢ 0.013900
18000 ©0.980373 9.077520x10~7 0.012580
18500 0.981732 8.235169x10~7 0.011413
19000 0.982966 7.487779%1077 0.010377
19500 0984090 6.822862x1077 0.000456
20000 0.985114 6.220790x 1077 0.008634
25000  0.991726  2.763310%10°7 {1.003830
30000  0.994851  1.403976x10-7 0.001946
35000 0.996514  7.862366% 1078 0.001090
40000 0.997478  4.736531x108 0.000656
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Table 2.2: Blackbody radiation functions

63

AT IA,b ()\, T) /O’Ts IA,b ()\, T)
(pmK)  Froy  (pmKer)™' D y(Ames, 1)
45000  0.998075  3.020086x 107" 0.000419
50000 0998464 2.015049% 108 0.000279
55000 0.998728  1.395263x1078 0.000193
60000  0.008914  9.964006x10~° 0.000138
65000 0.000048%  7.308743x10°% 0.000101
70000 0.999148  5.474720x107° 0.000076
75000 0999223  4.183928x 1079 0.000058
80000  0.999281  3.252025x107% 0.000045
85000 0.099327  2.565680x107? 0.000036
90000 0.999363  2.051193>3107° 0.000028
05000  0.999392  1.650422x107% 0.000023
100000  0.999415  1.356864x 1079 0.000019

Example 2.3: Consider a block body of o lemperaiuvre of 6000K.

Determine the following. (o) Ly ot 0.4um (b} L 5 at 0.01um (¢} & af
10pm (d) total hemispherical emissive power Ey(T) (e} | 5 corresponding
10 Amaz (f)rotio of B ot dmag to Ly ot 10um (g) fraction of radiction
in the visible part of the spectrum.

Solution:

Temperature of the black body T = 000K

{a) Iy, at 0.4um

Iy

Iy =

¥

Ipy =

cl)\‘5

[exF~1]

1.198 x 10%(0.4)~°

1.439x104

[e 0.4xB0D0 — 1]

291 x 107 W/m?um sr

(2.190)

(2.191)

(2.192)

(b} Iy at 0.00pm = § (hardly any radiation in this ultraviolet part of
the spectrum from the sun)

) Tpa at 10um = 4420 W/m2um sr
(c) T, I ji
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(d) Ep(T) = oT* = 7.35 x 107 W/m?

(€) AmazT = 2898 umK ; Aper = 0.483 pm (this corresponds to blue light
as the wavelength of blue radiation is between 0.45um to 0.49um!
Of course, if we want to do it for solar radiation, instead of 6000K,
we will use 5800 K.} I, corresponding 10 Apae = 3.181 x 107
W/mZumsr

() Ly ot Apgx / I3 at 10pm = 7196 ;
This is a very important result. The I ) corresponding to visible blue
light divided by the Iy at infrared of 10um for the temperature of
G000k, which corresponds to the outer temperature of the sun, we
can see that the ratio of intensity of vigible radiation to infrared
radiation is about 7196.

(g) Fraction in the visible part of the spectrum: A= G.4um, Ag = 0.7um,
T=6000 K, MT = 2400 pm¥, J2T = 4200 pmk

The fraction corresponding to AT = 2400 umX, Fo..yr = 0.14.
The fraction corresponding to AT = 4200 umK, Fo.,,r = 0.516.
Fi -z, = 0.376 or 37.6%.

Please do not underestimate the importance of this result because § to
o0 is 80 huge and the wavelengih band of G.4pm - 0.7um is so small,
vet the fraction of radiation in this band is almost 40% of the total
radiation in the 0-00 band. So, nearly 40% of the solar radiation is
concentrated in a very small portion of the spectrum, namely the visible
range. If the tempersture of the sun were not 6000K, the pesk would be
in some other part of the spectrum and we would not be getting enough
“vigible” radiation.

50 now the guestion arises: if we have the temperature of the sun to be
6000K, which makes the earth so habitable, when all of it it started with
the big bang theory (assuming this to be the correct theory to explain
the origins of the universe), it was basically a cooling problem. It started
with some initial conditions. If the initial conditions were to be different,
then the temperature of the outer sun would have been different, which
means that the fraction of the radiation falling would have been different
and the earth’s temperature may have been different because of which
we all may not have been here today! Why were the initial conditions
chosen that way, or who chose them o be s0?
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PROBLEMS

2.1 (a) Verify that the spectral intensity distribution given by Planck
(I1,») when divided by ¢7® becomes a function of AT alone.

(b) Obtain the value of AT at which the quantity given by (a)
becomes the maximum,

{c) Hence, obtain the maxiraum value of the quantity Ipy 5/ oT? and
verify it with the value given in the ¥ Tables.

2.2 Compute the fraction of total, hemispherical emissive power leaving
a diffuse surface in the direction § €< and0< o < ‘%"T.

2.3 The directional, total intensity of solar radistion incident on the
surface of the earth on & bright sunny day at a particular location
in the tropics is given by Iy = f,co88, where I, = 500W}m2 8r is
the total intensity of radiation corresponding to #=0 {# is the zenith
angle). Determine the solaxr irradiation at the earth’s surface.

2.4 Bhow that the Planck’s distribution seduces to Epy = c;T[czk‘*
when ¢y/AT < 1. Corapute the error with respect to the Planck’s
distribution when AT = 1.8 % 108 umK and comment on your result.

2.5 Show that the Planck’s distribution reduces to Fy,y, = ¢/ \fe~a/3T
when ¢g/AXT » 1. Compute the error with respect to the Planck’s
distribution at A7 = 2898 K and comment on your result.

2.6 Determine the sun’s radiation intensity st the middie of the visible
spectrum assuming that the cuter surface of the sun is a black body
at BROO K.

2.7 Estimate the temperature of the earth’s surface (assuming it to be
black) given that the outer surface of the sun has an equivalent
temperature of 5800 K. The diameters of the sun and the earth may
be taken to be 1.39 x 10%m and 1.29 x 107m respectively and the
distance between the sun and the earth is 1.5 x 10 m,

2.8 Determine the wavelength corresponding to the maximum emission
from each of the following surfaces: the sun, a tungsten filament at
2000 K, a heated metal at 1400 K, earth’s surface at 300 K, and a
metal surface in outer space at 70 K.

2.9 Using the data given in Problem 2.8, estimate the fraction of the solar
emission that is in the following spectral regions: the ultraviolet, the
visible and the infrared. Compute these values for the tungsten
filament. Compare the fraction of emission of the two sources in the
visible part of the spectrum and comment on your findings,






CHAPTER 3

Radiative properties of non-black
surfaces

Thus far, we considered only a black body. In reality, though, it is almost
impossible to encounter a black hody. Real bodies are neither perfect
absorbers nor perfect emitters. So there is a deviation or departure
from black body behavior. As engineers, we have to live with real
surfaces. S0 if we alveady know upfront that vesl surfaces are not black
bodies, we need to characterize their behavior in so far as radiation is
concerned. Therefore, we have to introduce the concept of radiation
surface properties.

The goal of this characterization is to be able to quantify the departure
of real bodies from black body behavior. This departure manifests itself
as incomplete absorption and imperfect emission,

Consider Fig. 3.1, that presents the typical variation of spectral infensity
of emission with wavelength for a black body at 1073 K (about 800
°C), a temperature normally encountered in engineering. Using the
Planck’s distribution, we can plot the curve of I; 5 vs A and the peak
of the distribution is around 2.8 pm, which is consistent with the Wien’s
displacement law. We can have a body corresponding to curve ‘a’ which
is called a gray body at 1073 K, whose ratio of emission at a particular
wavelength to that by a blackbody is fixed.

67
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i Black body, T

Gray surface, T (Curve a) 8

./ Real surface, T (Curve b) “4“’

Biack body, !m‘,A
e Real
surface,

{a) Spectral ' {b) Directional

Figure 3.1: Typical distribution of I , for real surfaces

Mathematically, for a gray surface,

oo F IO (3.1

Any body/ surface satisfying Eq. (3.1) is known as a gray body/ surface.

3.1 Why do we need a gray body model?

The gray body is an idealization, which we use because it belps us to
simplify calculations in radiative heat transfer. Otherwise, if we want to
consider this ratic as a function of A, the analysis becomes more tedious.
Curve 'D’ is actually more representative of the behavior of most real
surfaces. So we can guess that radiative analysis of o surface which
follows ‘b’ is a lot more difficult than the behavior which follows ‘a’. But
still, the area under the curves ‘a’ and ‘b’ may be more or less the same.
Even so, if we use the gray body assumption and use the smooth curve,
it may lead to some local errors. For example, when we try to define
the value of I for a particular value of A, there may be a noticeable
difference between the Iy for a gray body and that for the real surface.
However, when we average out and integrate from 0 to oo, the ervor may
not be significant.

But why would we want to use this? Because, for most surfaces, I versus
X dg not konown, The ratio given above is called emissivity and when i
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is a function of wavelength, it is called spectral emissivity and this is
unknown for most surfaces and therefore we go in for gray body hehavior.
The other reason is that even if the spectral emissivity is known, often
we do not know how to incorporate this information into our analysis,
which is generally the case. So, because of these two reasons, namely,
either the spectral emissivity is not known or if known, we do not have
the competence or wherewithal to use this information, people go in for
& simple assumption where I,/ I 5 is not a function of A. This is called
the gray body assumption.

Now if we look at Fig. 3.1(b}, it gives the directional spectral intensity
I;, at a given wavelength, temperature and azimuthal angle for a black
surface, a diffuse surface and 2 hypotheticel real surface. The zenith
angle, 8 is with respect to the vertical. For purposes of drawing this
graph, T=Ty, which is fixed. The wavelength A=2X,, is again fixed and so
is ¢ which takes on the value ¢;. There are basically 4 parameters here,
namely the wavelength, temperature, zenith angle and the azimuthal
angle, where the wavelength, temperature and the azimuthal angle are
fixed. We are studying the variation of I, with respect to € alone. We
already said that the black body emission ig independent of all angles,
including the zenith angle. Hence, we get a semicircular shape for I, as
it varies with &, as the magnitude remains the same.

Curve ‘a’ corresponds to a surface whose I is not a function of 8. At
any #, it will have a value or maguitude smaller than that of the black
body as the black body emission is the maximum possible. Hence, we
get & curve that is concentric with the curve obtained for the black body,
but which has & smealler magnitude. This leads us to the concept of a

diffuse surface. b WT.0,0)
EWAGTERLE

’ # 3.2

Ib,X(AsT) % f( } ( }

Now we can draw one more curve, where, instead of keeping ¢ fixed, we
keep # fixed and say that the azimuthal angle is a variable. Therefore
we should have a general case where, for a diffuse surface,

IX,&(Aa T; 9# Cﬁ)

TaOuT) # f(0.9) (3.3)

Now if we say that a body is simultaneously gray and diffuse, then for this
dimensionless ratio, its functional dependence on A, & and ¢ is knocked
out. This dimensionless ratio, which is emissivity, becomes a function of
only the temperature. Then if we do some engineering apalysis, and we
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are also working in a very narrow temperature range, we can say that
the emissivity is not a function of temperature in this case and thus say
that it does not depend on any variable. However, it is instructive to
mention here that many approximations are involved in reaching that
step and we must be aware of the assumptions we are making,.

Why do we use this gray diffuse approximation? The answer is: Many
engineering materials conform to this behawvior and it helps us do the
radiative transfor caleulations very fast. It also helps us combine
radiation with convection and conduction eagily in multi-mode problems
of engineering interest. Therefore, the gray diffuse approximation is very
useful, potent and is frequently used in engineering practice.

3.2 Spectral directional emissivity, ¢,(}, 7,8, ¢)

The spectral directionsl emissivity given by e; is the ratio of the

spectral directional intensity of emission of a real surface to the

spectral radiation intensity of & black body at that wavelength,

at that temperature in the same direction. Mathematically
L . ©

€, (A, T8, ¢) is given by,

-E’,\,ﬁ(}"s Ta gr ¢)

T8, 9) = =P

(3.4)

So, as expected, eg is & dimensionless ratio, which varies between 0 and
1. |t is & non dimensional way of declaring the efficiency of emission of
a surface. To say how efficient a surface is, we need a benchmark or a
standard, which is the black body here. Corresponding to a black body,
how efficiently the surface is emitting is what this number conveys. For
a given temperature, wavelength and direction, if e; is given, sither from
theory or from experiments, we can use the Planck’s distribution and
get I », multiply these two and get the value of I, . using the equation
given below.

IneNT,8,0) = ex(A\, T8, 8).In x(A, T) (3.5)
For a gray body or a gray surface,

aAMT,6,8) # F() (3.6)

aAT,0,8) = (T,0,6)# F(N) (3.7}

So for a gray body, f; is independent of A. Though 53 is not a function of
A it is still a spectral guantity. Urnfortunately or fortunately, that value
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is the same for all the wavelengths. What do we mean by saying that
it is a spectral quantity? The integration with respect to A is not done,
so it is spectral. If integration with respect to angle is not done, it is
called directional. Even though we removed the functional dependence
on A, we still call it e')\. There could be surfaces that need not exhibit
gray body behavior for all angles. For particular zenith and azimuthal
angles, they can exhibit gray body behavior; in other angles, they may
not exhibit gray body behavior. That depends on their nature. If in the
angle of our interest, a surface exhibits gray body behavior, the analysis
becomes easier.

For a diffuse surface the following relations hold,

T, 0,0) # f(6,9) (3.8)
ANT0,8) = e(AT) (3.9)

The term “diffuse” is with respect to angle and “gray” is with respect
to wavelength. For a gray, diffuse surface, then, we have

ex(\ T,8,8) = f(T) only (3.10)

Equation (3.10) is a very powerful approximation and many surfaces
exhibit this behavior.

There are surfaces where this gray diffuse approximation is not valid.
So for such surfaces from e')\, we have to get to e. For this, we need to
integrate el)\, with respect to A, 6 and ¢. This will be the basic parameter
€, which we would have used in a heat transfer course. ¢ is a function of
A for many surfaces. Let a be the solar absorptivity. If we are interested
in a solar collector, the « should be very high. But then o means the
absorptivity corresponding to the sun’s temperature, 5800 K. The body
will get heated but its temperature will be about 70 or 80 °C. However,
when it emits, according to Wien’s displacement law, Iy maximum will
be around 10 ym. So, for the design of a solar collector, we would want
to look at a surface where the emissivity corresponding to infrared is low
and the absorptivity corresponding to incoming solar radiation is high.
So if « is high and e is low, it will start collecting heat and it will be
like a green house. We would want the exactly opposite behavior when
we want to design a system that cuts out the radiation and keeps the
interiors cool. This is what is achieved by sun control films and double
paned glasses. So, depending on the application, we can play with o and
€, which are functions of A. These are called “selective emitters” and
“selective absorbers”.
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3.3 Hemispherical spectral emissivity, ¢,(A, 1)

The mathematically hemispherical spectral emissivity, €,(),7’) is defined
a'si

(A, T) = Syt (3.11)

Let us consgider a surface which is at a particular temperature. We
are trying to find out the radistion emission from this surface over a
hemispherical basket, at each and every wavelength, for which we have
to integrate with respect to & and ¢. That is why we knocked off the 8
and ¢ in the mumerator of the expression given above. The numerator
of Fq. (3.11) can be obtained as follows.

B b
MO T) = ji G J,i 20 I5o(\ T, 8, $)cosBainfdbds (3.12)

Howover, from the definition of spectral directional emissivity we have,

Duel0T,8,8) = (A, T8, @)y (A, T) (3.13)

2n z
L EAAT) = f f L ENT, 8, ) AN Teoshsinfdbdp  (3.14)
P S G}

We are already able to see some silver lining, as we know that I, ) is not a
function of ¢ and ¢, Before doing this, we can substitute this expression
{equ 3.14) in place of Ej in our originad definition of ¢y or Eq. (3.11).

L5 TT 300 fio €400 T8, 8)cosBsingabdd
7 Do T )

2 pE
L aAT) = ;}? f; _ J{:Ge;(A,T?ﬁgé)cosﬁsinﬁdﬁdé (3.16)

alAT) = 3.15)

From this equation, it is clear that if we know f; we can determine €. So
Eq. (3.18) is a powerful expression which relates a spectral, directional
gquantity o a speciral, hemispherical guantity. It is hemispherical
because we used =0 to 7/2 in the integration and not - 7/2 to + 7/2.
We are only looking at radiation from s hemisphere. Equation (3.16) is
generic enough that it can be applied to reflectivity, absorptivity and so
on. So if we give e:\ in the form of tables or data sheets, we can integrate
and calculste ). From ¢, if we do one more integration, we will get <.
Then we can use the Stefan Boltzmann’s law to get, BE= coT4
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In the above expression cosfsinfdfde is basically dw and the integral in
the numerator turns out to 7, should we have a diffuse surface. Hence,
for a diffuse surface, the following additional relations hold

& # [(0,0) (3.17)

¥ 2?1, w
a1y = @ j; _ ; cosfsindddds = (A T,6,6) (3.18)

3.4 Directional total emissivity, (7,6, ¢)

The directional total emissivity is represented by ¢ (7,8, ¢). The prime
in the symbol denotes that it is still a directional guantity, but we got
rid of the A and bence it is & total emissivity. Mathematically, ¢'(T, 8, ¢)
is given by

! _ E’(Ts ﬁa ‘;é)
e{1,8,¢4) = (T, 8,0) {3.19)

. _ E(T,8,¢)
e (1.0, ¢) = W (3.20)

The numerator in Eq. (3.19) can be written as
(0.0 = [ BOT.000 (3.21)

The procedure we are following to derive this is to introduce the
definition of emissivity formally. The denominator is that of a black
body. We only manipulate the numerator. Equation (3.20) is a slightly
changed versmn of Eq. (3.19) where the Ey is changed to 1. Now, m
order to get €, we have to somebow link it tc eA, because we koow EX
8¢ on the right mdeg we have o introduce f‘x In the numerator, we
have veplaced the B by the mtegral expression which has E}. within the
1ntegra.1 sign. We know that E can be written in terms of E)k Replacing
EA as I‘\cosﬂ in Eqn. (3.21)

E(T,8,¢) = /,\ : L\ T,8, ¢)cosfdX (3.22)

Furthermore,

LAT,8,) = (0 T,8, )55 (A,T) (3.23)

e 0]
- E(T,0,¢) = f e[\ T, 8, $) s A (X, T)cosddA (3.24)
A=0
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Now we can substitute for E(T,0,¢) in the original definition for
€(T,$,8), in Eq. (3.19). Canceling out the cosf in the numerator and
the denominator, we get

£ (T,6,4) = e\ T, 95, i)fb,A(A,T)dA (3.25)

Now, the acid test is, what happens if it is a gray surface. For such a
surface, the following additional relations hold.

o # f) (3.26)
E, (Ts 9: (j}) = ﬁA;(Ti gs ‘gﬁ) (32?)

Therefore, the formmula that we derived for hemispherical directional
ernissivity, as well as for directional total emissivity, when reduced to
the case of a gray and diffuse body respectively, reduce to the cases for
which we are able to intuitively guess the values of ei\, Therefore the
expressions we derived must be correct and these two expressions can
be used to relate the fundamental emissivity t“; to that quantity, which
is the emissivity integrated once, either with respect to angle or with
respect fo wavelength. Ounce the triple integral with respect to 8, ¢ and
A is done, we get the hemispherical total emissivily e

3.5 Hemispherical total emissivity, «(T)

After we accomplish three integrations of e;, once with respect to
wavelength and other with respect to the angles (both azimuthal and
zenith} we get the hemispherical total emissivity e{T). Please note
that the final emissivity will be a function of temperature. However,
sometimes the dependence is weak and in which, we assume that the
emissivity is independent of temperature. The hemispherical, total
emissivity denoted by e(T) is given by the emissive power of a real surface
at a given temperature T divided by the emissive power of a black body
at the same temperature.
E(T)

«T) = 5oy (3.28)

oo r /2 s
B(T) = f f [ 0T, 8, )y a (N, T)casbsinfdbdpd)  (3.29)
A== of ghey of Q==

We know that
Ey(T) = oT* {3.30)
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1 oo p2w paw/f2 , )
L E(T) = e /{; . /¢ _ (AT, 8, 0) Iy 2 (X, T)cosBsinfdfdpd A

0 Jo=0
(3.31)
Equation 3.31 represents a very important relationship in view of the
fact that it tells us that given the spectral directional emissivity 6;, it is
possible for us to do the 3 integrations and obtain ¢. For a gray diffuse
surface, €, is not a function of X, 8 or ¢.

ex # F(1,0,9) (3.32)

Therefore e; can be taken out of all the 3 integrals in Eq.(3.31). Applying
Stefan’s law for the remsining terms within the integral, we get oT*.
Upon doing this and simplifying Eq. (3.31}, we finally have

() = ﬁ;{e; (T = &,(T) (3.33)

Therefore, if we have the hemispherical directional emissivity for a
gray, diffuse surface, it is its hemispherical total emissivity too. Figure
3.2 gives a bird’s eye view of the various emissivities involved.

Spectral, direciional emissivity, aA’

fwrt (8, @) Fwort (A
Hemispherical, spectral Directional, total
emissivity, €, emissivity, £

J’w.;@\\\ //’?ﬂe @)

Hemispherical, total
amissivily, g

Figure 3.2: Bird’s eye view of various emissivities

Example 3.1:

The hemispherical spectral emissivity of tungsten is shown in Fig. 3.3
{this is an approximation of the actual variation and is sufficient enough
to obtain reasonable estimates of e{T}). Consider a cylindricel tungsten
filoment that has a diameter of D=0.8 mm ond length L=25 mm. The
filament is enclosed in on evacuated bulb and is heated electrically 4l it
reaches a steady state temperature of 3000 K.
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Tungsten
0.6 1
£=0.4
0.4
A 8320‘2
0.2——
i
G 1 A, pim

Figure 3.3: Variation of spectral emissivity of tungsten with wavelength

{a). Determine the total hemispherical emissivity when the filament
temperature is 3000 K.

{b). Determine the rate of cooling of the fillament at the instant when the
power is switched off? Tungsien properiies are : p = 19300 kg/m?
;o = 138 J/kgK.
Assume the following: 1) surroundings ave at 303 K 2) filoment is
spatially isothermal 3} neglect convection to the surroundings.

Bolution:

The first part can be answered by directly using some formulae we have
learned so far. The second part is a typical heat transfer problem, whers
using this emissivity and our knowledge of heat transfer, we will need to
write the governing equation and obtain the initial rate of cooling.

{(a). The first part involves the conversion of hemispherical spectral
emissivity to hemispherical total emissivity.

20 2% 703 €\(N, T, 8, 6) Iy scosf sin §dfdgpd

e(T) = e (3.34)

2w pwid ,
(0 T) = e)\zi f @ ji SONT6, GJeonfsingdsdd (339

Equation {3.34) may be rewritten as follows,

20 Tondh 370 o2 €, (X, T, 8, §)cosd sin 0d0dgs

d7) = oT4

(3.36)
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Equation (3.36) may be simplified using Eq. (3.35) as

_ Sooemhpdd _ [{ZgeaBpadh

«(T) o T Eo(T)

(3.37)

Now we have to apply it to the tungsten function given in the question.
The emissivity of tungsten can be written as

fjﬁﬁ €15 2 f;‘_;l €2 by 2dA
Ep(T) Ey(T)

(T) = (3.38)

Here €1=0.4 (constant) in the range A=0 to A=1 pm and ¢=0.2
{constant) in the wavelength range A=1 pm to A=0o0.

€1 fo g EopdA L [0, By dA

&(T) = B, () BT (3.39)
(T) = 0.4Fpn; + 0.2F 00 (3.40)
Ay = Lum {3.41)

AT = 3000umK (3.42)
Fpsp, = 0.273 (3.43)
(T} = 0.4 x 0.273 + 0.2(1 — 0.273) (3.44)
(T} = 0.254 (3.45)

In this example, we have thus far learnt how to get the hemispherical
total emissivity, if the speciral emissivity is given for a non gray surface.
I the ey v A is completely jageed, we will have to consolve the Planck’s
function with the €, and solve the problem numerically, If we have a
band model like the one specified in this problem, we can use the F-
function chart and obtain (T} straightaway.

Here, if the temperature changes, even though ¢, remaing the same
with respect to A, if the same tungsten filament were to be at 2000
K, A1 T=2000 pumK. Therefore the ¢(T) will change and it can be seen
that €, in general, is a function of temperature. Here gince 0-1 um is
such a small portion of the total electromagnetic spectrum, and for the
remainder of the spectrum, ey is only 0.2, we can actually calculate for
various temperatures and see that for a range of temperatures, ¢ is more
or less 0.2, because from 1 um to oo, ¢ is 0.2,

{b} We have to caleulate the initial cooling rate and for this, we have to
get the energy eguation first. For this, we will assume that the whole
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tungsten filament is at the same femperature and that convection heat
losses are negligible.

mcpif = —ec A(T* - TL) (3.46)

When it starts cooling, the temperature of tungsten is at 3000 K while
the temperature of the surroundings is 300 K. The other parameters in
the above equation are known and hence we can get the initial cooling
rate. But this cooling rate will not remain a constant a8 the right side is
a function of temperature. As the flament cools, the temperature will
fall and in turn, the cooling rate will fall and this is why it is called a
npon linear function. Because the cooling rate is the rate of change of
temperature and rate of change of temperature is itself a function of the
temperature, it is a non linear function,

We calculate the volume and muliiply it by the density 1o get the mass
and then get the surface area (both the lateral surface area and the top
and bottom areas). We then calculate the initial cooling rate, because
the emisgivity also changes with temperature. We can write a Matlab
code to determine the cooling rate at various instants of time, if this is
desired. For the question at hand

m = gy {3.47)

v = gdﬁz = 1.256 x 10~ %m? (3.48)

A = 2uwrh + 2nr? {3.49)

A = 6.383 x 1075m? (3.50)

1.256 x 1078 x 19300 x 132‘21 = (1254 % 6.383 % 107° % 5.67 x 1078
x [3000* — 300*] {3.51)

2~ —sorok/s (3.52)

‘We should not carried away and think that in 1 s, the filament will lose
3279 K! This is just the initial cooling rate. In a few micro seconds,
because of the terrific cooling the temperature will go down, ¢ will go
down and the rate reduces and reaches saner values. There are other
properties like reflection, absorption and transmission and each of these
may have a variation with respect to A. We need to characterize all these
and the energy equation may not be so simple. There may be combined
conduction and convection. The energy equation may be such that we
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may have to solve the Navier-Stokes equations and the energy equation
for a moving fluid or we may have to solve the Laplace equation or the
Poisson equation for the solid wherein radiation is added that it becomes
a multi-mode heat transfer problem.

Example 3.2: The divectional folal emissivity of many non metallic
surfaces may be approzimated, represenied a3 ¢g = ¢nc088 where ¢, is
the normal emissivity. Determine the ratio of the totel, hemispherical
emissivity and the emissivily af =0, frequently veferved to as normal
emissivity for one such material.

Solution:

S J512 colycossingdfdg
o

N (3.53)
o o2 Tcossingdddg
/2
e = 22 [ L 6singas (3.54)
@ f=0
4]
e = —2, mszﬁd(msﬁ) (3.55})
&=1
3
€ = —-—26;@ [Cﬁs@] (3'56)
3 1
2en,
¢ = X (3.57)

8o given the directional fotal emissivity, we can get the total
hemispherical emissivity.

Example 3.3:

A zirconia based ceramic is being considered for use as a candidate
fillament maierial for en incandescent bulb. It hos a hemispherical
apectral emissivity distribution as shouwn in Fig. 3.4.

1. Determine hemispherical, total emissivity of the zirconia filoment
at 2800 K?
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e,=0.84

0.8 +
0.6 +
0.4 +

N 0.2 |E S0.18 e,~€=0.18

I 1
0.4 0.7 A, pm

Figure 3.4: Variation of spectral emissivity of zirconia with wavelength

2 Compare the power consumption of o zirconia and {ungsien
operating ot 2000 K in an evacuated bulb ¢

8. In so far as the production of visible radiation, which is more
efficient? {ndapted from Incropera et al. (2007))

Solution:

1. Hemispherical total emissivity ¢
M=0.4 pm, Ag= 0.Tpm, T=2800 K,
AT=1160 pmK | AyT=2030 pmK

ReBadh R eBadh | fi? eald)

€= = .
ff_ﬁe By 3dA f;iﬂ Ey 2dA j;’ie EpxdA

A=00
B ot (3.58)

We have to use the F-function chart now.
€ =1 Fpn, + @[Fong — Fooa] + a3l — By, (3.58)
From the chart

Fyuy = LTTx1g73 {3.60)
Fyy, = 00711 {3.61)
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Now we will insert these values in the expression for emissivity.

e = (0.18 x 1.77 x 107%) + (0.84 x (0.0711 — 1.77 x 1073))
+(0.18 x (1 — 0.0711)) (3.62)

€ = 0.295 (3.63)

Therefore the hemigpherical total emissivity of the ziveonia Blamient
is 0.225

2. Power consumption
Q= eo A(T* —T2) (3.64)
From Problem 3.1, the total emissivity of tungsten at 2000K,

MT = 1% 2900 = 2900umK (3.65)
Fpon, = 0.250 (3.66)
€(T) = 0.4(0.250) +0.2(1 — 0.250) = 0.250  (3.67)

Both the filaments are operating at 2900 K. Assuming thai the
ambient temperature is the same for both, Stefan Boltzmann's
congtant 18 the same for both the filaments, the areas ars also the
same. Therefore the ratio of the power consumption is the ratio of
their emiggivities.

(airconia _ Exirconia = 01.295 /0_25{) = .904 (3.68)
Qwﬂg Cung

Therefore the zirconia bulb consumes 90.4% the power consumad
by the tungsten flament bulb, for the same temperature.

3. To determine which is more efficient in production of visible
radiation, we need to find out the radiation emitted in the visible
part of the spectrum. The radiation which is coming out of the
bulb must be equal to oT* the black body fraction (corresponding
t0 0.4 um - 0.7 um band corresponding emissgivity). This can be
worked out for both the bulbs and since we are only looking at the
ratios, we can keep 0T as such without substituting the numerical
values. Badiation emitted in the vigible part of the spectrum is thus

Quisitie =  ex-{(Fhyig)-oT? {3.69)
Quisivie Birconia = 0.84 x (0.0711 — 1.77 x 10730 T*(3.70)
Quisibte Tungsten = 0.4 x (00711 — 177 x 107 0T (3.71)
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The value used for the emissivity is that which corresponds to the visible
part of the spectrum for the material under consideration. This ¢ is 0.84
for the zirconia filament, while it is just 0.4 for the tungsten filament.
Even though the tungsten filament hag a higher total hemispherical
emissivity as opposed to the zirconia filament, the zirconia filament, by
virtue of ite having a very high spectral emissivity of 0.84 exactly in the
vigible part of the spectrum, gives more visible radiation compared to the
tungsten flament. Farthermore, its power consumption is also lowerl.

So a zirconia Hlament is infinitely better than the tungsten filament.
Of course, cost, availability and other properties have to be considered
during production. Suffice it to say for now that from the point of view
of radiation, the zirconia flament is betber,

Example 3.4:

Position "a' Position b
N EAZ:] e “zgc;(\ ;7‘[%
i ~
g; -
T | -
-l g8 .
P
L
J —

Figure 3.5: Surface arrangements for example 3.4

Consider an arrangemeni as shown in Fig. 8.5 o delect rodiation
emitted by an elemental surface of area A= 6.25x107%m? and
temperature Ty =1100 K. The area of detector Ay = 4x107%m2. For the
radiation emitted by A, at 6=0 (normal direction) ot a distance of L=0.4
m, the detector measures a radiant power of 1.5x 1079 W. Determine the
directional total emissivity of Ay ot 8§=0. Now the detector is moved
horizontally to position b such that §=45. For this position, the detector
measures o vadiant power of 1.46x 1077 W, Can we comment on whether
the surface 1 13 o diffuse emitier?
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Solution:

By = oT*=567x107% x (1100)* (3.72)
By = 830145 W/m?® (3.73)
b o= "T = 26432 W/misr {8.74}
d = Azgfg =4 zg 25 % 10758 (3.75)
G o= 15x107%W {3.76)
G = Achdw (3.77)

15 x107% = 625 x107% x e x 26432 x 2.5 x 107°  {3.78)
e = (.36 (3.79)

The normal emissivity = .36. This is one possible way by which we can
measure emissivity, If we have a vacuuwm arrangement with & defector
and we are able to eliminate the effects of conduction and convection, it
is possible to get emissivity, The more difficult part is when the detector
is moved horizontally. So cos(0) now changes to cosf. The distance, L
also changes. Now because the detector is at an angle and the distance
also changes, expeciedly, the radiant power intercepted by Az has to go
down.

i

R = = /2L = 0.566m (3.80)

088y

: A

d = 2200 g g4 1075sr (3.81)

R
Q' 1.46 x 107TW (3.82)
Q Aycosthdu yeg. s {3.83)
146 x 1077 = 4x107%x 52 x 8.84 x 107% x € x 26432(3.84)
gy = 0.142 (3.85)

Suppose we had gotten an answer of 0.36, we could have conjectured
that there is a possibility that it is a diffuse surface, as with results from
just two angles, we cannot decide for sure. But we now know for sure
that it is not & diffuse surface as even for two angles, the values differ.
So the emitter Ay is NOT a diffuse surface.
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3.6 Absorptivity, o

The next important property is absorptivity. Often times, we are also
interested in the absorption and not just the emission. For example, if
our application is a solar collector, where we want to intercept the solar
radiation, we want to have a surface that absorbs a lot of radiation in the
visible part of the spectrum. Once it starts absorbing,the temperature
of the surface may go from the room temperature of 30°C up to 80°C or
90°C. If concentration ratio is unity from the Wien’s displacement law,
for T of 400 K, Apaz will be about 9um. So a body which is heated by
incoming solar radiation to a temperature of 80°C or 100°C, will emit
in the infrared part of the spectrum. Now, if we have a surface that
emits very poorly in the infrared part of the spectrum, but absorbs very
well in the visible part of the spectrum, we have a good solar collector.
By the same token, if we have a surface that absorbs very poorly in the
visible part of the spectrum, but emits very well in the infrared part of
the spectrum, it may be a good candidate for insulation.

First, we have to discuss about the story of radiation that is incident on
a surface.

What can happen to this radiation? Let us consider a surface on
which radiation is incident (Fig.3.6). This radiation can be absorbed,
reflected or transmitted. If we apply the first law of thermodynamics to
this system, mathematically we can state that at steady state,

Incident radiation = absorbed radiation + reflected radiation +
transmitted radiation.

) Reflected
Incident

N R

Transmitted

Surface

Figure 3.6: Absorption, reflection and transmission processes associated
with a semitransparent medium
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Qinc = Qabs + Qre_f + thﬂs (3-86)
Dividing by Q. throughout, we get
1= Qabs + Qref + Qtrans (3.87)

B Qim: Q‘i‘&&? Qz’nc

On the right side, all 3 terme are dimensionless ratios, none of which
individually can be greater than 1. They are also measures of the
efficiency with which & surface absorbs, reflects or transmits.

Qubs/Qine 18 called the absorptivity, denoted by «.
Qref/Qine 15 called the reflectivity, denoted by p.
Qirans / Qine is called the transmissivity, denoted by 7.

Hence, Equn. {3.86) can be rewritten as

(3.88)

We can also write Eq. {3.88) for a particular wavelength in which case
it becomes

(3.89)

In Eqn.3.88 we are falking about hemispherical total quantities, as
already, the integrations are dome with respect to the angle and the
wavelength. This is just to introduce the concepts. We will go through
the definition of individual absorptivities and reflectivities a little later.
For an opaque surface, 7=0. Hence, Eqn.3.88 becomes

a+p=1 (3.90)
a=1-p (3.91)

We have 4 quantities to deal with namely, emissivity, absorptivity,
reflectivity and transmissivity. =~ We killed one of them, namely
transmissivity, by saying that the surface is opague. We have 3 quantities
left. We are now trying to see if further simplifications are possible. If
emissivity is known, we can write o in terms of p. What then remain are
only & and e. Is there any relationship between these two? When the best
riinds were working on 8nding out the correct black body distribution,
they were also looking ab the properties of resl surfaces and wondering
if the emissivity and the absorptivity are related to each other. This
was being studied as it makes a lot of things very convenient. Supposs
we could establish & relationship between o and ¢, and we were able 4o
measure the emissivity, then using this relationship, we can get o and
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also determine p using Eq. (3.91). Therefore, for an opaque surface, by
just knowing the emissivity, we get all its properties that are required
for carrying out a radiative transfer analysis.

Why do we think there should be a relationship between the emissivity
€ and the absorptivity a? Can this relationship come from theory?
Since the physical mechanisms of absorption and emission are different,
we do not expect any logical relationship between emissivity € and the
absorptivity « to flow from theory and hence this relationship must come
from experiments. Fortunately, people have done experiments and have
determined relationships, which we shall study in the next section.

Consider an evacuated enclosure at a temperature T as shown in Fig.3.7.
Now we have a body initially at a temperature T,,, where T, > T.
For a change, we do not have a black body, but we have a body whose
spectral directional emissivity is given by e&()\,T,B,q&). What does the
second law of thermodynamics tell us? If Ty, is different from Ty, and
Tw > Tw, because there is vacuum, there will be no conduction or
convection and only radiation will take place. Eventually, this body will
also reach a temperature of T. We put some filters, which are basically

Enclosure at T

Filters
(7
Z &0\ T, 6, @)

Vacuum

Initially at T_(T, >T )

Figure 3.7: Radiation in an enclosure with filters placed between a real
body and the walls of the enclosure

band pass filters which will allow radiation of narrow wavelength band
dX to cross the boundary. We can have as many filters as possible in
as many wavelength intervals as possible. Suppose we have one filter in
one particular wavelength interval, let us say between 3.6 pm and 3.7
pm, which allows the radiation from the body in the center to reach
the wall, what will happen? The radiation that goes out of the body in
the center and reaches the wall can only be radiation in this wavelength
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because any other wavelength will be reflected by the filter which will
be eventually reabsorbed by the body. Since the body is in equilibrium,
it must absorb exactly the same amount as it emifs so that it remains
at a temperature of T. But since the body is only allowed to emit in the
wavelength interval d), thanks to the bandpass filter, it can also absorb
anly in the same wavelength inberval dA. This dA is under our conbrol
and we can change it from say 3.6 g to 3.7 pm or from 8.1 um to 8.3
pm. Therefore, under these conditions, since the body is both emitting
and absorbing in a particular wavelength interval, we can also choose the
direction, by making the filter in such a way that it permits in only one
direction. We are taking recourse to the second law of thermodynamics,
which forbids the body from being at & temperature different from that
of the surroundings because eventually equilibrivm will be established.

d@abs = d@amitted (3'92)

The right side can be evaluated using the formule discussed earlier. But
to calculate dQg., it is imperative for us to define spectral directional
absorptivity.

3.7 Spectral directional absorptivity, o}

The spectral directional absorptivity, o} is defined as

d@abs

; e -
(AT, 0, ¢) I sc088;51n8:d0;dp,dXd A

(3.93)

Eaquation 3.93 clearly states that the spectral directonal absorptivity is
the radiation absorbed in a particular wavelength and divection to that
incident at the same wavelength and direction. Needless to say, o) too
is & dimensionless quantity varying from 0 to 1.

Having defined o/, we continue with our discussion on Eqn.(3.92).
According to Equ.(3.92)

Qnm‘. = Qautgaing - Qincomz'ng = Qemiﬂ;sd + Qreﬂected _ Qincident (394)

For this body, which is in equilibrium, Qpe = 0. If this Que were not
equal to 0, the temperature of the body will increase or decrease with
time, Therefore,

Qemﬁtﬁed -+ Qreﬁec’ted - Qéﬁm’deﬂt == { (3'95)
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If there is no transmission,

Qincident — Qreflected = Qabsorbed (3.96)
. Qemitted — Qabsorbed = 0 (3.97)
or {(3.98)

Qemitted = @abswbed (3'99)

Apart from saying that the radiation will be only in the wavelength band
4 about A, we can also decide on the direction, by making the bandpass
filter allow radiation in one divection only. Substituting the expressions
in BEq. (3.99), we get

a{XT,6,6)0 (X, 8;, ¢iyeostsind;dfdgd X
= &5 (AT, 85, i) 0o 2 (X, Tcosbisinb;dbidgid A (3.100)

A spherical cavity with vacuum inside is equivalent to a black body.
Therefore the incident radiation, as far as the smmall object is concerned,
is basically coming from the walls of the enclosure. There is perfect
reflection among the varicus surfaces of the walls of the enclosure.
Since the walls of the enclosure and the small body are at the same
temperature, I ; corresponds to upiform or isotropic radiation from the
walls of the enclosure which can be deemed fo be radiation from a black
body at a temperature T, which is the same as that of the small body
within the enclosure. Therefore, we are allowed to change I5; to {5 on
the left hand side of Eqgun.3.100

Dy = I (3.101)

Upon deing this in Eq. (3.100) and canceling the common terms on both
sides, we get

{3.102)

Thus, the spectral directional absorptivity is egual to the
spectral directional emissivity.

This is the Kirchoff’s law which is always true and holds good without
any constraints.

The Kirchoff’s law is general and is valid for any wavelength and any
angle and is also applicable for situations where a surface need not be
housed in an enclosure. This configuration was only used to prove this
law. The law can be experimentally verified. What we have presented
above is one kind of proof of the Kirchoff’s law.
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For a gray surface,

ewan # F(A) (3.103)
L €(T,8,9) = a(T,8,¢) (3.104)
For a diffuse surface,
evon #F FO¢) (3.105)
LaAT) = ay(AT) (3.106)

The 8; and ¢; are very important becanse normally we can keep them as
# and ¢. But when we are considering reflection, (here we are considering
only absorption) there is a #; and ¢; and &, and ¢,. The radiation can be
received in one direction while the reflection can be in all directions or 1§
can be specular (the radistion enters in one divection and goes out in one
direction only). That is why in absorptivity, we use the subscript i for
the angles. But in reflectivity, we will encounter both 1 and r subscripts
for the angles, which makes it more complicated.

For a gray diffuse surface, the emisgivity is equal to the absorptivity
which iz also equal to the total hemispherical emissivity snd the
total hemispherical absorptivity. Equation (3.106) can be substantially
simplified as,

€ == (3.107)

The other important thing is that Eq. {3.107) is not the Kirchoff’s law.
It is the post processed version of the Kirchofl’s law for a gray diffuse
body. The Kirchoff’s law in its basic form is more general as it states
that the spectral directional emissivity is equal to the spectral divectional
absorptivity. For a gray, diffuse, opaque surface, € = o which is a very
corumon engineering assumption. Suppose we want t0 determine the
radiative heat transfer between the walls in a room, we start off with
the knowledge that walls of the room are opaque. Then if we make the
assumption that these walls are made of gray, diffuse surfaces, the walls
of the enclosure of this room can now be treated as a gray, diffuse, opaque
enclosure which considerably simplifies the analysis. For such a wall,

T=0 a=¢ (3.108)
p=1l—a=1-¢ {3.109}

From literature and from experiments, if we know what the emisgivity of
the surfaces is, then we can calculabe the absorptivity and reflectivity and
proceed with the detailed radiative heat transfer calewlations. Before we
proceed to the spectral hemispherical absorptivity, we will give a sneak
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peek into what all this will eventually lead to. The final goal of all
this is that we should be in a position to calculate the net radiation
heat transfer from any surface. This surface may be a surface that is
isolated or maybe a part of several surfaces in an enclosure or furnace or
combustion chamber and so on.

WNet radiation heat transfer at an opague surface:

We have incident radiation, reflected radiation, absorbed radiation and
since the surface is taken as opague, there is no transmitted radiation.
But there is alse an emission consequent upon the temperature of the
gurface being at & temperature greater than § K.

Bo, net radiation heat transfer at the surface = radiation that is going
oul - radistion that is coming in.

Outgoing radiation = reflected component -+ emission component.

Incoming radiation = incident radiation.

o, Net radiation hest transfer at the surface = refloction 4+ cmission -
incident.

If convection and conduction are ruled out, the net radiation heat
transfer at the surface is given by

Qneﬂ = Qemét + Qre F Qémﬁ (3'110)

Example 3.B: The hemisphericol spectrol emissivity of a surface is as
shown in Fig. 3.8, Draw the corresponding disiributions for hemispherical
spectral obsorplivity o, and hemispherical spectral veflectivity py,.

A £=0.8
0.8 -+
£, 0.6 -
0.4 +
0.2

£=0.4

£=0.2

Figure 3.8  Hemispherical spectral emissivity distribution for
Example 3.5
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Solution:
The absorbtivity distribution will be the same as the emissivity
digtribution. The reflectivity is obtained as 1-a. However, calculating a

& a=0.8 & p=0.8
0.8 + 0.8
% 0.6 T 2, 0.6 +
={.4
0.4 + I 0.4 + _—
a=02
.2 0.2 -+
t t t t - } f } f ol
1 2 3 4 1 Z 3 4
K, pm A, um

(aj {b}

Figure 3.9: Variation of spectral absorptivity and spectral reflectivity
with wave length for Example 3.5

from «y is not so straightforward. We need to know the variation of Iy
with respect to A. Or we should know from where that this I is coming
from, as for example the sun. In this case, we are interested in calculating
the solar absorptivity. For this case, the sun can be considered to be a
black body at 5800 K. We can use the F-function chart and calculate
absorptivity much in the same way a8 we calculate emissivity.

3.8 Hemispherical spectral absorptivity,
QA(}%TA)

H T4 iz temperature of the absorbing surface, then the spectral,
hemispherical absorptivity of the surface is defined as follows,

o) o o Sl @ (\ T, 65, ) I o, 85, o8By sinBydfiddy
AN 1A= - p _
2‘:0 gifg D55 (2, 65, ¢i)cost;sind;dbde;

(3.111)
T we know the distribution of o, as a function of 8 and we also have
information on I; vs a;, it is possible for us to multiply the two
and integrate the product over the complete hemisphere to obtain the
spectral hemispherical absorptivity.
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What is the goal of defining this quantity? Basically we have an
elemental surface of area dA. The unit vector is 74. We are considering
the hemispherical space above dA (see Fig.3.10). Radiation from this
hemispherical space is falling on this object dA. The ratio of the total
radiation from the hemispherical space above at a particular wavelength
interval which is absorbed by the body to the total radiation, coming
from the hemispherical space, which is falling on this object in a
particular wavelength interval is the hemispherical spectral absorptivity.

Figure 3.10: Typical representation for absorption of radiation by a
surface with area dA

3.9 Directional total absorptivity, (T 4,0,¢)

The directional, total absorptivity is given by the ratio of the total
radiation absorbed by a surface at all wavelengths in the (6, ¢) direction
to that incident in the (8, ¢) direction. In view of this, the A dependence
goes because we will perform one integration with respect to A to arrive
at this quantity from a’A. Mathematically a(T4,8, ¢) is given by
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S s @alX, Ta, 0;, ) Ini (X, 6;, ¢ )dAdw

Oii T4,0i,¢i) =
(T4, 0, ¢4) fgef)‘?g(%ahqﬁi)d’\d{u

(3.112)

3.10 Hemispherical total absorptivity, a(T )

The hemispherical, total absorptivity, a is given by

Sra 2:;0 ;:fg ai\(}‘? Ta, 0, i) 1 so0s0;sindidlyddydh
I o S Iy cosbisintidfsdidA

afTy) =

{3.113)
H a; is given to us, we have a mechanism to get o. If the distribution is
known, we can integrate the numerator and denominator of Eqn 3.112
analytically or numerically and get ¢, This is of final engineering interest
to us. With o and «, we can work on the actual heat transfer problems
which could involve modes other than radistive heat transfer. So, once
we have information of & and ¢, we have crossed two important hurdles
in our purswit of determining radiation heat transfer between surfaces.

These are (1) the radiation laws and (ii} characterization of a surface that
s not a black body.

The next two hurdles will be how to take care of the geometric orientation
of the various obiects and if many objects are involved, how do we take
care of the overall formulation and what is the influence of cne object
on the other?

Getting back to Eqn.3.113 the irradiation is from a black body that is
at temperature Tg, which is the temperature of the sun, in this case,
the denominator of Eq.(3.113) will becomes o¢T¢. Then & is no longer
indepondent of the tempersture of the surface from which the radiation
is originating because T% is there in the denominator of this expression.
Therefore, a becomes a function of T4 and Tg. This s valid even if the
irradiation is from a diffuse gray cbject at a temperature Ts.

Hence, for the special case of irradiation from a black body at
temmperature Tg, the hemispherical total absorptivity, @, is given as

Ty, Tg) = Qﬁf,%?i f f j oy I seosBsinddddgd {(3.114)
£

The most profound and subtle change we bave made on the left hand
side of the eguation is that we have made a a Tunction of Ty too, cutside
of Ta.
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Example 3.6: C(onsider oen opaque surface with the spectral
hemispherical absorptivity as shown in the Fig.5.11. The spectral
distribution of incident radiation is also given in the figure.

(¢} Determine the hemispherical total absorptivity of the surface?

(8} If this surface iz diffuse and is at 1200 K, what is its total
hemispherical emissivity?

{c) Determine the net radiation heat transfer from the surface?

40000 poresesees,

2
a, §M,me am

0 1.5 hum 0 15 35 &
Aum
@) ® F

Figure 3.11: Variation of spectral absorptivity and radiation intensity
with wave length for problem 3.6

Solution:

{a} Hemispherical total absorptivity of the surface

_ [Zgandyd) [ [ cosfsingdfde

- 3.115
oo IngdA f [ cosfsinddfde ( )
The total irradiance G in W/m? is given by
(43
G= [ Dydi= 2023000 o so000 4 LEXAH0 g

A=0 2 2



3.10. Hemispherical total absorptivity, (T4 )

G = 140000 W/m?*

0 DA 05 [P Ddd 05 7 Ddh
*= 140000
, . 05 x 80000 + 30000 x 0.5

140000 = 0.39

{b) Total hemispherical emissivity

For a diffuse surfacs,

ey, == €3
Ay = LBum
AT == 1.5 x 1200 == 1800umK
Foynr = 0.0393

f{)l.ﬁ Ebe’,\d}s ffz EAEb?AdA

0 =gy Ey(T)

= 4 (L5{1 ~ 0.0393) = 0.480
{c) Net radiation heat transfer

Q = ecaT 4 pG ~ @
Q = eoT? — o7

Q) = 0.480 x 5.67 x 1073 % 1200% — (0.39 x 140000)

Q = 5643509 — 54600 = 1.83kW/m?®

95

(3.117)

(3.118)

(3.119)

(3.120)
(3.121)
(3.122)
(3.123)

(3.124)

(3.125)
(3.126)
(3.127)
(3.128)

Example 3.7: An opaque surfaoce has o hemispherical speciral
reflectivity as shown in the Fig.3.12(a). It is subjecled to a speciral

irradiation as shoun in Fig.3.12(b).

1. Sketch the speciral hemispherical spectral absorplivity distribulion.

2. Determine the total irradiation on the surface.

& Determine the rodiant flux that is cbsorbed by the surface.
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0.5 frennnnns s pre— 1000 foverenes .
Py I, , Wim?.um
o 15 Aum 3] Sﬁls.sm 6 &
& (b}

Figure 3.12: (a) Hemispherical spectral reflectivity and (b} Spectral
irradiance for Example 3.7

4. Determine the total hemispherical absorptivity of the surface.

Solution:

1. For an opague surface, =0

ay+to=1 o =1—p (3.129)

1.0 -

% 0.5+ B

3 ;
Figure 3.13: Spectral absorptivity distribution for Example 3.7

2. The total incident radiation, Ly in W/ m? is the area under the curve.

1 1
Tinsi = (5 3% 1000) + (3 x 1000) + (5 x 3 x 1000)
= 1500 -+ 3000 + 1500 = 6000W/m2  (3.130)
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3. Radiant flux absorbed by the surface

[o o]
Iabs If (I)\f,\,z'dz‘\ (3131)
A=0
1x1
Lps = (1 x 25{}8) + 0.5 x 3000 + 0.5 x 3000 (3.132)
Lps = S000W/m? {3.133)

4. Total, hemispherical absorptivity of the surice

Taps 3000
e 1008 Pt = ). 134
Fine 6000 05 (3.184)
Example 3.8:
4 o =0.95
10 -
o, =0.75
0.75 +
a&
05 +
0.25 +
o, =0
o, *
t -

0 05 1 15 2 285
AN P

AMm

Figure 3.14: Spectral absorptivity distribution for Example 3.8

A spatially isothermal surface is maintained ot a temperature of 120°C.
Solar radiation with Lyeigens=1050 W/m?, is incident at the top of the
surface. The surface has an area of 2.55m?. The surface is opague and
diffuse and its spectral hemispherical absorptivity is given in Fig. 5.14.
Determine

1. the absorbed irradiation
2. the emissive power

8. net radiation heat transfer from the surface.
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Solution:

1. Absorbed irradistion

_ g B ad
f;:ﬁ 125
Since nothing is specified abont the variation of e« or €5 with

respect to temperature, we assume that the same calculation holds
good for all the temperatures. From F-function charts

o (3.135)

MT = 0.5 % 5800 = 2000umK (3.136)
AT = 5800umK (3.137)
MT = 11600umK (3.138)
Foon, = 0.250 (3.139)
By axg = 10720 — 0.250] = 0.47 (3.140)
Frgpoo = 0.06 (3.141)
a = 0+ {0.47 x0.75) +(0.95 x 0.06)  (3.142)

a = 0.41 (3.143)

If we remember, nearly 37% of the radiation was concentrated in
the visible region of the solar spectrum. The wavelength band was
0.4pm-0.7um. Here, we have a range of 0.5-1.0um. So if 0.4urm-
0.7pm were to be 37%, we expect .5um -1.0um to be about 50%.
Out of this 50%, its efficiency is 0.75. So we will get a value of
about 0.38 and anvway beyond 2um, the smission fraction is only
6%. Even though the surface has a tervific o of 0.95 for A > 2um,
there ia not much incoming radiation in that part of the spectrum.
So, instead of just mechanically and routinely calculating with
the F-function chart, with some insight, just by looking at the
distribution, we will be able to estimate o for a given temperature.
Beyond 2um, o can be anything and its value does not really affect
our calculations in this problem.

Gaps = 0.41 x 1050 = 420.97W/m*? (3.144)

Absorbed irradiation=—=428.97 % 2.55=1006 W.
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2. Emissive power

T =39K,MT = 196.5umK, Fy ), =0 (3.145)
T = 393umK,F\; 5, =0 (3.146)

MT = T86umK, Fy, 0 = 1.64 x 1075(3.147)

e = 0.95 (3.148)

That is the way it should be because the surface temperature is 393
K and if we use the Wien's displacement law, Ay T==2808pmI(
Hence, here T=393 K. Ay in this case would be Tum. In this
problem, we have said that after 2um, there is no change and hence,
even without using the F-function chart, we can say that all the
distribution below 2um given here is irrelevant and (its effect is to
the extent of 1.64x1075),

Badiation emitted = eoT?A
= (1.945 x 5.67 x 1078 x 2.55 x 303*
3276.49W (3.149)

3. Net radiation heat transfer from the surface

Net radiotion = Ewmitted + (Re flected — Incident)

= Emitted — Absorbed
3276.49 — (0.41 x 1050 x 2.55)
2178.71W (3.150)

Example 3.9: Soler fluz of 950 W/m? is incident on the top surface
of o plote whose solor absorptivity is 0.9 end emissivity is 0.1. The air
and surroundings are ot 27° C and the convection heat transfer coefficient
between the plate and air is § W/m* K. Assuming that the botiom side
of the plate is perfectly insulated, defermine the sleady stale temperature
of the plate. (Refer Fig. 3.15)

Selution:
The energy equation for this scenario will be

Net emission + reflection + convection = Incident {or)

Net cmission <+ convection = Net absorbed

ﬁg(Td‘ - Té)) + QGﬂ'ﬂc + h(T - Too) = Gine (3'151)
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=300 K, h =9 W/m’K I G
= m>
Emitted veflec

—= 77

t A4 I LA A A A A

Q=0

Figure 3.15: Various heat transfer processes associated with Example
3.9

0.1 x 5.67 x 1078(T* — 300%) + 9(T'— 300) = 0.9 x 950  (3.152)

[0.9 x 950 — 0.1 x 5.67 x 1078(T* — T1)]
9

This is a non linear equation which has to be solved by iterations. It
is called a transcendental equation because it has a T4 term. It has to
be solved by the Newton-Raphson method or the method of successive
substitution.

T= +300  (3.153)

The algorithm for successive substitution can be written as

0.9 x 950 — 0.1 x 5.67 x 10~8(7T4 — 3004
By = 100 X ] B 1is0  @ise)

We will start with 320 K and do iterations using the method of successive
substitution.

Iteration No. T; T
1 320 393.5
2 393.5 385
3 385 | 386.26
4 386.26 | 386.08

After 3 iterations, we get T=386 K.

3.11 Reflectivity, p

We have already worked out problems based on this, but reflectivity is
much more difficult and involved than we think. Radiation coming on to
a surface can come from one particular direction or from the hemisphere
above the surface. By the same token, we can look at the reflected
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radiation as going out in a particular direction or as going out in the
hemigpherical space above the surface; so there are 4 possibilities here.

1) If incident radiation is from a particular direction, reflected radiation
can go out in a particular direction.

2) The incoming radiation can be from a particular direction while the
vadiation going out iz into the hemdspherical space.

3) The incoming radiation can come from the hemispherical space and
the outgoing radiation can be in a particular direction.

4} Finally, radiation can come from the hemispherical space and also go
out in to the hemispherical space.

To &ll this, we add the spectral dependence. Consider Fig. 3.16 and let
the incident radiation I, ; be & function of A, 6; and ¢;. The outgoing

Y N
IM(?\,&@,P IM@,SF,@,)
e!
8!‘ /’/
.
=T T
™~

/ h

Figure 3.16: Figure for defining bi-directional reflectivity

radiation dl,; is a function of A, the temperature of the surface T4,
8, @i, 8, and ¢,.. I); is incident from a particular angle 6;, ¢;. The
reflection can take place in any direction but we are looking at the
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reflected radiation in an angle 8,, ¢,.. As opposed to absorptivity, there
is a significant departure here because the reflected radiation is qualified
by two additional variables 6, and ¢,.. The solid angle around (#;, ;)
is small. Therefore, we expect the reflected component to be small as
opposed to the incident. Therefore we denote the reflected radiation by
diy .

The incoming radiation is from an angle (#;, ¢}, and outgoing is from (&,
¢r). We are still discussing spectral quantities and hence the reflectivity
under consideration should be a directional-directional spectral quantity.
Thersfore, it should be pA Mathematically, the directionsl-directional
spectral reflectivity P,x or the bi-directionsl reflectivity {BDRF}is defined
a8

df}z,r(}‘z s, 6ﬁ7 ¢i: 99": ‘}ér)
D s, B, i yoosBidu;

In the denominator, we have cos#; because we are considering the
projected area and dw; is the elemental solid angle subtended in the
reflected direction &y, ¢y. This dw; can also be replaced by sinf; df; de;.
Please note that this bidirectional reflectivity, by definition, is not a
dimensionless quantity. Tt has the unit sr™1. I we have good laboratory
facilities, it can be experimentally messured. In engineering, we are
mostly interested in p or st most, py. Most of owr swfaces are diffuse,
which means that the reflection is diffuse in all the directions. Sometimes
we use specular surfaces, for some special applications. It is impertant
to know that all other reflectivities have their origin from this p}. Apart
from experimental measurements, p)\ can also come from the theory of
optics. In summary pA has limited engineering significance but has 5 lot
of conceptual importance.

pH(ASTAagiaé’é:gmqﬁr) (3155)

For the first time, we have a property which is not dimensionless butb
has the unit sr~!, which means that we have to use it with caution
in problems. A pictorial representation of reflectivity and its types, is
gshown in Fig. 3.17. The bi-hemispherical spectral reflectivity is given by

J:;,P_g g;:li_?g IA,T (A, T4, 6,040, (iﬁr)w'gﬁrsz‘narderd{b’fk&lsﬁ)

- L
JoT o ST B o(A, Ta, 01, b, O, ) cosbysinbidBidds

oA, Ta) =

The I, , in the numerator can be written as I ; multiplied by p;‘ where p;
can be directional to hemispherical or hemispherical to directional. This
p; can be connected to pz which is divectional directional reflectivity. In
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Reflectivity
|
Directional - p'** Spectral -5,
Directional Directional Hemnispherical Hemispherical
- directional ~ henispherical -L3irectional ~hemispherical

Figure 3.17: Pictorial representation of reflectivity and its types

short, if we know the bi-directional reflectivity pﬁ:, it is possible for us to
accomplish the integration and calculate the numerator. If we know the
directional distribution of the incident radiation I ;, we can calculate
the denominator. Hence we can straightaway get o). If o) information
is not available to us but if p;: is given, we can calculate py and if it is
an opague surface, 1-g), can be taken to be o). Things get complicated
only when 7 # (.

The bi-hemispherical total reflectivity p is given by

_ f)f:ﬂ pxdni8A

= SR (3.157)
A=0 &

If the I, ; distribution is not given, but we say that the incident radiation
is from a black body at 5800 K, then we can convert it to Hy » and use
the F-function chart, use the o) and take py=1-a and then calculate p.
if in a problem, we have both g, and r, we can use a+p-+r=1 and hence
calculate «. So seamlessly, we should be able to go from one property to
the other.

3.12 Transmissivity, 7

I we consider a materisl Lke glass, radistion incident on it can either be
reflected, absorbed or transmitted. For a transparent or semitransparent
medium {(i.e, a medium that is not opaque), there is a possibility that
the radiation will penetrate the medium and come out of it. Therefore,
an additional property enbers, which is the transmissivity.
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Transmissivity (7} is also a dimensionless property and can have a value
between 0 and 1. For an opaque surface, 7={0. If some surface has
100% transmittance, then 7=1. Just like emissivity, absorptivity and
reflectivity, this can also vary with A, € and can lead to complexities.
However, we often deal with thin media or a thin layer of glass or the
atmosphere. The atmosphere i3 “$hin” because compared to the radius
of the Farth which is 6378 kum, the thickness of the atmosphere iz only
80 or 90 k. The height of the atmosphere divided by the radius is
so small that the atmosphere can also be said be to & thin layer. If
the atmosphere is considered to be thin, we can treat the resulting
rediation problem a8s one dimsnsiongl slong the height dirsction. We
can consider all properties to vary only with the height or z axis. That
makes matters simple. If everything varies only with z, then variation
of trangmissivity with angle does not have to be considered. Therefore
the concept of directional transmissivity becomes redundant for s one
dimensional medium or a plane parallel medium. 5o, wherever possible,
we make a plane parallel assumption. I ¢ is the thickness of the medium
and L is its length, then if L4>>1 the medium is said to be a plane
parallel. Properties vary only across the thickness only and divectional
transmissivity is superfluous.

3.13 Spectral transmissivity 7,(A,t)

A medium that can absorb, scatter and transmit is called a participating
medium. I § is the thickness of the participating medivm, then the
spectral transmissivity

I Aty O‘)
Ds{A)

The basic difference befween a participating medium and the surfaces so
far considered is that reflection, absorption, etc were all happening in the
first few micrometers of the surface and being surface phenomena,were
called radiative surface properties, But in the atmosphere, the radiation
penetrates deep inside, agitates all the molecules within it, which may
absorb, scatter or reflect the radiation or the atmosphere itself may emit
volumetrically, This is different from the emission of a surface. In the
case of the stroosphere, the whole gas volume emits. It may scatier
differently ie different directions, which is called anisotvopic scattering.
The governing equation is called the Radiative Transfer equation or
BT equation.

Ta{A 1) = (3.158)
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Getting back to transmissivity, the total transmissivity 7 is given by

f;i 0 ‘T)‘I )‘)id/\
f:zﬂ I 4dA
Congider the case of solar irradiation on a semi-transparent surface. If

we bave the spectral distribution of p and o bui we do not give any
Further information on 7, still v can be calculated as follows

() = (3.159)

a4 ptT=0 (3.160)

From the graphical distribution given for p and @, using the relation 7=1-
(p+a), we can reconstruct the distribution for 7. For Iy ;, we will take
the By corresponding to the sun’s temperature. Using the F-function
chart, we can finally calculate 7.

In participating media, there can be emission, absorption and also
scattering. Scattering is basically reflection, but is from the volume,
There can be in scattering, which is reflection on to the surface and
out scattering, which is reflection away from the surface and the net
will be the difference between the sut scattering and the in scattering.
This scattering could be s function of wavelength and slse a function
of the angle. If it i3 not, then the medivm is termed as Izotropic
Scattering also depends on the size of the particle, like in the case of
the atmosphere. Scattering by a dust particle will be different from the
scattering by & water molecule, which will be different from the scattering
by an ice particle. When the ice parficle is oblique and non spherical,
the scattering phenomena can get very involved.
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Example 3.10: The spectral absorptivity a;, and the spectral reflectivity
pa Jor a diffuse surface are given in the Fig. 3.18.

1.0 B 0.25
0.75 0.2 -]
ﬁA pA
5 018~ o = 0,125
0= 0.25

0.28 d 0.1 —
i .
15 A {um) 15 A (my

{8} (B}

Figure 3.18: Variation of spectral absorptivity and spectral reflectivity
with wave length for problem 3.10

a. Sketch the spectral transmissivity distribution.

b. I solar radiation G = BOOW/m? and spectral distribution
corresponding to a back body of G000K s incident on the malerial,
determine the fractions of the irvadiotion that are absorbed, refiecied and
tramsmitlied by the moterial

Solation

a) Spectral transmissivity distribution

ay -+ o1y =1 (3.161}
Ty = 1 — (Oé}\ + p}\} (3.162)
72 =1—{0.25+0.125) = 0.625 {3.163)
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1.0
0.75 1= 0.625
T
0.5
0.95
T= 0

. -
L5 A (pr}
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Figure 3.19: Variation of spoctral {ransmissivity with wave length

{Problem 3.10)

biAbsorption,reflection and transmission

o0
f ac;‘.I;\,id}g
o= }.:(ig
[ I8
A=0
oo
{ oy Epdh
o = ’)‘x{f}o
[ Epndr
A=
1.5 o0
f QA-EbAd}‘"i" f QA~E§,A£’£}&
o = A= A=1.5
oD
[ EppdA
A=D
15 oo
025 [ EpdA+1 [ Epda
o= A=0 A=L1.5
o0
f EpdA
Y
1.5 oo
025 | Epdh 1 [ EpadA
Q= A=(} + A=1.5

I Bpad § EpadA
A= A=0

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)
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T, = 6000K (Given)

Radiative properties of non-black surfaces

AT = 1.5 x 6000 = 9000umK

Fyar = 089

a = 0.25x0.89 4+ 1{1 — 0.89] = 0.332

Solar absorptivity = 0.332

o0 o0
J onDadrh [ pyEydh
R0

P
£ =" =
f Iy A f Fpadi
1.5 o0
oy-Epndh + f oxBpadA
Al A==1.B
po= o0
| Epndh
A=)
1.5 o0
f ,QAthAd}\ f pAnEﬁAd:’\
po=2 4 A=l
| Epnd) { Epxda
A=0 A=0
14 =2 (0125 « 080 + 0 = (.111
Now
a+p+r = 1
7 o= l—{a+p
v = .557
Gabs == 265.6W/?ﬂ2
Gref = 88.8W/m?
Gtra,ns = 445-6W/ m2

(3.169)
(3.170)
(3.171)

(3.172)

(3.173)

(3.174)

{3.178)

(3.176)
(8.177)
(3.178)
(3.179)
(3.180)
(3.181)
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Example 3.11: The spectral transmissivity of plain end tlinted
glass wvaries non-linearly with wavelength. However, as a first cul
approzimation the following distribution may be assumed.

Plain glass: 7, = 0.9,03 < A < 2.5um

Tinted glass: 7, = 0.8,0.5 < A < 1.5um

Elsewhere, the speciral transmissivity is 0 for both the glasses.

a. Compare the solar energy that is transmitied through the fwo glasses.
b. If solar radiation is incident on the two glasses, compare the wisible
rediation that is fransmitied by the two glosses.

¢. Comment on whether tinting the glass helps or hurts. (1), values taken
From Incropera ef ol. (2007))

Solution
a}) Plain glass:

[ ] [,
J madedd  f T Eud
7= A0 = A= (3.182)
[ hudh [ Epd
Al Az
Let T; = 6000K

A X Ty = 0.3 % 5800 = 1740pmK (3.183)
Do X Ty = 2.5 X 5800 = 14500umK (3.184)
Faonyz, = 0.0326 (3.185)
Fﬁ{}__).zn = (1.O6643 (3,136)
Fi, -5, = 0.068 — 0.039 = 0.929 (3.187)

7= 0 % 0.0326 + 0.9 x {0.96643 — 0.0326) == (.84 (3.188)

So, for plain glass, 84% of the incident energy is transmitted.

For tinted glass:

Ay = 08um; A x T, = 2000umK (3.189)
Ap = 1.5um; Mg x T = 8700umK (3.190)
By, = 0.250 (3.191)
Fosyr, = 0.8806 (3.192)

7= 0 % 0.253 + 0.9 x (0.8806 — 0.250) = 0.567 (3.193)
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For tinted glass, only 56.7% of the incident energy passes through. So if
the incident radiation is 1000W/m2, plain glass will allow 840W/m? to
pass through while the tinted glass allows 567W/m? to pass through. So
compared to plain glass, tinted glass stops 273W/ m? more which means
the reduction is 27.3% in this case. This is important as the current
trend everywhere is the use of glass and steel structures. Therefore, to
reduce the air conditioning load, some solutions like this need to be used.
b} Performance in the visible part of the spectrum

Plain glass:

Within the visible band, =, = 0.9

Ay % Ty = 0.4 x 5800 = 2320pmK {3.194)

Ag X Ty = 0.7 x 5800 = 4060pumK {3.195)
Foyyxr, = 0.1239 {3.196)
Fpa,xr, = 0.4913 (3.187)
o= 00x 001238 4+ 0.9 x (0.4913 — 0.1289) = 0.33 {3.198)

Tinted glass:

A X Ty == 0.5 % BBOO == 2900umK {3.199)

Az % Ty = 0.7 x 5800 = 4060umK {3.200)
Fongt, = 0.250 (3.201)
Fy_nr, = 049813 (3.202)

= 00X 0.250 + 0.9 x (04013 — 0.250) = 0.217  (3.208)

c) Tinted glass cuts out the visible part by 12%. So, tinting the glass
certainly helps in reducing the solar load.

3.14 Optical pyrometry

We can devise instruments to measure the temperature of a surface
based on its emission characteristics. This becomes the basis of an
optical pyrometer. Suppose the surface is in the background, we can
devise a system of lenses and focus on the radiation coming from the
background. Consider an arrangement where a filament is placed ahead
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of the surface. The background is at some temperature. The temperature
of the filament can be controlled by connecting to a power source as
shown in Fig. 3.20. We keep increasing the filament’s temperature such
that its characteristics also change. We can change the settings such
that at & particular point, this filament has the same temperature as the
background. Since the two will merge, the filament will disappear from
our field of view. At that point of time, the temperature of the filament
is exactly the same as the temperature of the background and hence this
is a way of inferring the temperature remotely. This is called pyrometry.

filament —{ ™

Figure 3.20: Schematic of & vanishing flament optical pyrometer

Similarly, based on radiation and Planck’s law also, equipment can
be devised to mneasure the temperature remotely. Based on infrared
radiation emitted from the objecis, we can infer the temperature, So first
calibration is done where each colour is calibrated against a temperature
and from the colour, the temperature is deduced. So if we lock at all
equiprment we come across in heat transfer, their design is based on
some particular law. They are adequately, calibrated and benchmarked
to male readings obtained from them trustworthy.
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PROBLEMS

3.1 The hemispherical, spectral emissivity, €, for a metal at 1000 K is
approximately given by

D<A 2um, ey =08
2< A< dpm ey = 0.3
A2 dum, ey = 0.15

The ¢y, values do not change significantly with temperature and the
metal surface may be assumed to be diffuse.

{a} What is the hemispherical, total emissivity of the surface at 1000
K7

{b} If radiation is incident from a black body at 1400 K, what is the
value of the

{c) hemispherical total absorptivity for the incident radiation?
{d} If the irradiation due to the black body at 1400 K is 8000 W/m?,

what 15 the net radiation heat transfor from the surface?

3.2 The hemispherical spectral emissivity, €, for a metal at 1200 K is
approximately given by

0 <A< 28um, ey =078
2.5 < A< Bum, gy = 0.55
B<LA<Tum,e; = 0.35
Az fum, e =015

The hemispherical spectral values do not change significantly with
temperature.

{a) What is the hemispherical, total emissivity of the surface at 1200
K?

(b) If radiation is incident on this metal surface from a blackbody
at 6000 K, what is the value of o for the incident radiation?

{c)} What is the wavelength Ay5 for which 50% of the total radiation
emitied by this surface Hes in the spectral region A > Ags?

{d) How does the solution to part (¢} compare with the wavelength
corresponding to maximum radiation for this surface?
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3.3

34

3.5

Consider a surface that has the following directional emissivity, ¢
distribution:

0<0 <456 =09
45° < 6 < 90°, ¢ = 0.3

The surface is isotropic in the ¢ divection. Caleulate the ratio of
the normal emissivity to the hemispherical emissivity.

The spectral absorptivity, as and the spectral reflectivity g, for a
spectrally selective, diffuse material vary as follows:
Absorptivity:

0< A< 1L38um, oy = 0.2
A L38um, qy = 1.0

Reflectivity:

0< A< 1L.38um, py =01
A2 1.38um, py =0

{a) Sketch the spectral transmissivity.

(b) If solar radiation, with G=750 W/m? and tcmperature
corresponding to a black body at 5800 K, is incident on this
material, determine the absorbed, transmitted sand reflected
fluxes.

{c) ¥ the temperature of this material is 350 K, determine the
emissivity, €.

(d) Determine the net radiant heat flux from the material.

A very large, Hat horizontal metal surface (as, for example, a
roof) receives solar irradiation of 1150W/m? on its upper surface.
The convection heat transfer coefficient on the surface is around
20W/m2K. The solar absorptivity of the surface is 0.65, the surface
emissivity is 0.15 and the ambient temperature is 30 °C. Assume
that the bottom of the surface is beavily insulated so that there is
no heat transfer from the bottom of the surface. Also peglect any
temperature distribution within the metsl suwrface. For steady state
conditions on the metal surface,

{a} Determine the temperature of the metal by employing energy
balance.
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(b) What will be the temperature of the metal if both the emissivity
and the absarptivity of the surface are equal to 0.657

(c) What will be the temperature if both the emissivity and the
absorptivity are equal to 0.157 Comment on your results.

3.8 In problem 3.5, if the surface is assuwed to be very highly conducting
and there is natural convection from the bottom of the metal surface
with a convective heat transfer coefficient of TW/m”K and the
ambient temperature is 35 ?C with negligible radistion heat transfer,
what will be the surface teraperature for conditions corresponding
to part (a) of the problem?

3.7 Consider a thin opaque, horizontal plate with an electrical heater
on its bottom side. The top side is exposed to ambient air at 25
°C with a convection heast transfer coefficient of 12W/m®K, solar
irradiation of 650W/m* and an effective sky temperature of -40 °C.
Determine the electrical power required fo maintain the temperaturs
of the surface at 65 °C if the plate is diffuse and has the following
spectral, hemispherical reflectivity

0 <AL 2um,py =02
2um < A <oo,py =075



CHAPTER 4

adiation heat transfer between
surfaces

A very important topic in radiation is the calculation of radiation beat
trangfer between surfaces. As engineers, we know that in a typical
engineering problem we encounter many surfaces, each having its own
temperature, reflectivity, absorptivity, emissivity and so on. These
surfaces are usually part of an enclosure or otherwise. The key question
to be answered is, What is the net radiative heat transfer from a surface?
Even if other modes of heat transfer such as conduction and couvection
are present, we have to take cave of radistion with due diligence. We
may solve the convective heat transfer problem and at every iteration,
we may stop and caloulate the radistive heat transfer rate, update the
convection solver and proceed or we may just have & purely radiation
problem.

For example, if we are interested in the cooling of clectronics in &
satellite, we have a lot of equipment which is generating heat and the
temperatures of these have to be controlled. This is done by employing
a heat exchanger which will pick up the heat. The Huid which has picked
up the heat must be coocled again so that it can be re-circulated to pick
up the heat again, as the electronic devices are continuously operating
and generating heat. So the hot fAuid has to become cold fuid somehow.
Therefore, we need a heat exchanger.

Unfortunately there is no ambient air in outer space and hence convective
heat transfer is not possible. Therefore, only radiative heat fransfer is

115
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possible. The design hinges on how we are able to select the surfaces,
their configuration, if fins are going to be used, what type of fins are
required, their number, thickness, material to be used. We have to solve
a combined conduction-radiation problem and design the heat exchanger.

4.1 Enclosure theory

There are so many applications in which calculation of radiation heat
transfer is important, such as satellite temperature control, design of
combustion chambers and furnaces, design of radiant super heaters and
boilers. Ewen in other problems where there is cooling of electronics,
radiation also has its part to play as we saw earlier how radiation is
significant even at lower temperatures and is comparable with natural
convection. Therefore it is imperative that we have a method to compute
the radiative heat transfer between surfaces, for which we learn what
is called the enclosure theory. This was developed by Prof. E. M.
Sparrow and his colleagues at the University of Minnesota in the US
in the early 1960s. This enclosure theory, though developed about 45
years back, is still in use and has not been challenged. It is even used by
commercial software such as Fluent.

The key idea is like this. Suppose there is a furnace which has 4 surfaces
with temperatures and emissivities as shown in Fig. 4.1, radiation from
any surface can fall on any of the other 3 surfaces.

T.&,

Figure 4.1: Radiation exchange in an enclosure
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We account for all the radiation which is originating from a surface and
all the radiation that is falling on the surface and (what is going out =
what is coming in) should be balanced amongst all the surfaces. The
gystem of simultaneous equations can be solved to obtain the radiative
fux(or heat transfer) we desire.

Suppose we have a configuration as shown below (Fig. 4.2), which is
called an open cavity, with 3 surfaces and an open top, it is no longer
an enclosure. It is like an open cup. The beauty of the enclosure theory is
that we close the top by an imaginary surface that has zero reflectivity, is
a perfect emitter and has a temperature equal to To,. So we can consider
this as the fourth surface and treat the whole geometry as an enclosure.
Thus, any possible configuration on planet earth can be treated as an
enclosure!

T,E

22

Figure 4.2: Concept of an imaginary surface under the framework of
the enclosure theory

Even if there is a simple one surface enclosure, we can enclose it in
a hemispherical basket whose emissivity is 1 and temperature is Ty
(Fig. 4.3).
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T e=1

T. e

11

Figure 4.3: Conversion of a simple one surface problem into one of a
two surface enclosure

Therefore, for any possible configuration, irrespective of whether the
surfaces are plane, convex or concave, or if some surfaces are open, we
can mark a dotted line, and close the geometry. We make everything
in the world an enclosure and look at the energy balance of each of
the surfaces in the enclosure. This is the key idea behind the enclosure
theory.

But all of the information we already have through this course, so far,
is enough only to calculate the radiation from one surface. But now we
are looking at radiation from an enclosure. Obviously,we can see that
geometry has a critical role to play. It is intitutively apparent that the
size of the various surfaces in the enclosure and the orientation of one
surface with respect to the other will eventually decide the net radiation
heat transfer from each of the surfaces. Therefore, geometry plays a
critical part.

4.2 View factor

View factor is also known as shape factor or angle factor. Figure 4.4
shows a surface A; which has a temperature T;, and takes an elemental
area dA;. The unit vector is n;. On another surface A; at temperature
T;, take an elemental area dA; whose unit vector is n;. Then connect
both elemental area centroids and this distance is called the radius R.
The angles made by the unit vectors n; and n; with the radius R are 8;
and 8; respectively. F;_;, represents the view factor from the ith surface
to the jt* surface.
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Figure 4.4: Figure for the derivation of the view factor expression

The formal definition for the view factor (Fy;) is as follows: *The view
factor between two finite areas 4; and 4;, denoted by F;_;, is the
fraction of the radiation leaving the surface ¢ that is intercepted
by the surface 7.7 It has no units and is dimensionless and its value
can vary between 0 and L.

dQﬂgAi_g:Aj = I;.dA; cos Gidw; i (4.1)
dd;cosd;
i = 0088 @)

Substituting for dw;_; in BEq 4.1 we have

dA;cosb;
RZ
Now consider 7 to be a diffuse emitter and a diffuse reflector. This

means it does not have a directional preference. The radiation leaving
this surface will be the sum of its emission and reflection.

deA,—-dA,— = I;.dA; cos ; (4.3)

Ja;, = ’I‘i"fi?e,;‘?- (44)
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where J is called the radiosity, whose units are W/m?2. Substituting for
I; in Eqn.4.3

J;cos0;cos 0;dA;dA;
. dQaa;—aa; = Z7I'R2J - (4.5)

The radiation leaving dA; is J;.dA;.

The view factor between the two infinitesimal areas(based on our
definition) is then given by

dQda,—da;  JcosB;cosbdAdA;

dFdAi—dAj = J.dA; /M?TR2 (46)
cos 0; cos 0;dA;
dFgp,—da; = # (4.7)

This is a fundamental formula which can be used. For example if we are
computationally very rich, each surface in an enclosure can be divided
into thousands of surfaces and this fraction can be calculated for all the
thousand surfaces, two at a time. Needless to say, this is computationally
expensive and is also unimaginative, to say the least. We will see a
little later how we can use algebra to reduce the computational effort
associated with evaluating view factors.

Often times, we are not interested in the view factor between elemental
areas, but in the view factor between infinitesimal to finite area and
then between one finite area and another. The view factor between an
infinitesimal area dA; and finite area A; is given by

,{ dQda;—da,

Fia,—a; = ]JT (4.8)
L dAT [ cosb;cos0;dA;
A "
FdAi—Aj = jMWR2 (49)

,4{ cos §; cos ;dA;
i

FdAi—Aj = (4.10)

wR2

Finally the view factor between two finite areas A; and A;, denoted by
F4,—a; or simply F;_; is given by
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J [ dQan;—aa,

A; A
[ JidA;

FAi—AJ' =Fi_;= (4.11)
Substituting for the numerator from Eq 4.5 together with the assumption
of uniform radiosity wherein J; can be pulled out of both the numerator
and denominator, we have

J [ cosB;cos8;dA;dA;
1 |44

Fp—n; = o R (4.12)
By intuition,
[ [ cosb;cosb;dA;dA;
1 | A4
Fpo._p. = — s 4.1
Aj=As Aj ’/TR2 ( 3)

Now, if we want to solve a four zone enclosure problem, first we need view
factors. If we were to integrate and get all the view factors, evidently,
it is going to take a lot of time. So we need to see if there are some
clever ways of getting the view factor. This whole subfield, where we
try to manipulate algebraically to get the view factors, with minimum
recourse to the original formula involving integrals, is called “view
factor algebra”. If we are computationally very rich, we can write
programs using the above formula to get the view factors, as already
mentioned. But for simple surfaces, can we do better and use a simpler
approach to get the view factor? From Egs. (4.12) and (4.13), it evident
that

Equation 4.14 is known as the reciprocal rule or reciprocal relation and
is our first ammunition in the view factor algebra arsenal!

4.3 View factor algebra

Consider an enclosure of N sides. There will be N? view factors,
associated with this enclosure. The view factors can be written out
as a matrix, as given below.
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Figure 4.5: A typical N surface enclosure (N=5)

Fii. Fis ... ... ... Fn

. . Foy Fyy ... ... ... Fy
View factor matrix = . . .

Fnvi Eng o ooo ... ... Fnn

Is it a good idea to get the 25 view factors for this 5 sided enclosure
using the integration method? For the i* surface, common sense tells
us the following,

N
> Fi=1 for all i (4.15)
=1

This is called the summation rule.The sum has to be 1 because this
follows energy balance. For the 5 surface enclosure under consideration,
for the surface 1, we can write Eq. (4.15) as

Fiu+Fpo+Fizg+Fu+Fis=1 (4.16)

For an N surface enclosure, N such rules are available. We already
saw that A;F;;=A;F;;. For an N surface enclosure there are NCy such
reciprocal rule.

N.(N —1)

5 (4.17)

Number of reciprocal rules=NC5 =
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We can exploit the summation and reciprocal rules and therefore, the
number of independent view factors to be determined for a N surface
enclosure is

N.(N —-1)
2
If all the surfaces are plane or convex, the self view factors Fj; = 0.
Therefore, if all the surfaces are plane or convex, then the total number
of view factors to be independently evaluated = NCy — N = N(N —
1)/2 — N. A key goal of view factor algebra is to determine the number
of independent view factors which have to be evaluated necessarily by
adopting the fundamental view factor integral.

= N2 = NC; (4.18)

Example 4.1: Consider a two dimensional evacuated triangular
enclosure with three surfaces of length a, b and c. Determine all the
view factors.

Figure 4.6: Triangular enclosure for example 4.1

Solution

.. Total number of view factors = N2 =9
Sum rules = 3; reciprocal rules = 3Cy = 3; Self view factors = 3
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View factors to be obtained independently =9 —-9=20

So there is no need to work cut any view factor using the integration
formula. Having obtained guidance from view factor algebra, we now set
out to determine all the view factors purely by algebra.

Area of BC (a) =axl = a{m?/m)

Area of AC (b} =bx1 = a{m?/m)

Area of AB (¢} =cx1 = a{m?/m)

Using three sum rules

Foo + Fop + Fyp = 1 (4’19)
Foo + P+ Fpe = 1 (420}
Fag+ Fop+ Fop =1 (4.21)

All self view factors are zero, Fj, = Fip = F . = (.

B+ Fap+ Fye =1 (4322)

Fg + Py + Fypp = 1 {4.23)

Foo+ Fup+ Fle=1 (4.24)

Foap+ Fee=1 {4.25)

Fop,+F,=1 (426)

Fog -+ Fep =1 {4.27)

Multiplying the first equation by a, the second by b and the third by ¢,
aFy +afp = a {4.28)

bFy, +8F, = b {4.29)

eFop 4+ cFp = ¢ {4.30)

Now we add Eqgs. 4.28 and 4.29, subtract 4.30 from the sum, followed
by an application of the reciprocal rule and upon doing this we get the
following

2aFp=a+b—c (4.31)

[To make things more explicit, while doing the above manipulation, we
have used the following relations afy = bFy,, aFy. = cFy and bl =
cFep)

| Fp=tiTe (4.32)
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For checking if this result is correct, consider an equilateral triangle. All
view factors are 0.5 which is intuitively apparent.

Example 4.2: Consider a two dimensional V-groove or wedge with
surfaces 1 and 2 as shown, and whose interior angle is a. Determine

Fis.

Figure 4.7: Wedge type enclosure (example 4.2)

Solution
Since we are using enclosure theory, the first step is to mark a dotted
line and close this, making the wedge or groove an enclosure.

We determine the length of side 3 using the sine function.
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Length of side 3 = 2 x Lsin(a/2)

L1+ L-Ls
Fla = oL, (4.33)
L+ L—2Lsi 2
Fp = 7 sin(e/2) (4.34)
2L
2L — 2L si 2
Fip = sin(a/2) (4.35)
2L
2£(1 — sin{a/2))
Fy = 4.36
12 oF (4.36)

As an engineer, how will we validate this result?

If o« = 180°, the wedge will open completely. Then the two sides do not
see each other and there is no interaction between them. Therefore

““ 1 sin(a/2)
s 3
‘\‘ L sm(w'Z)
o2 s
///é////

L

Figure 4.8: View factors in a wedge (example 4.2)

sin(e/2) = sin(90)=1 (4.37)
Flg = 1-— sin(oz/Z) =0 (438)

Equation (4.38) is consistent with our common sense understanding of
the situation.
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Example 4.3: Consider two concentric pipes where the inner pipe is
carrying a fluid. The radius of the inner pipe is r1 while that of the
ouler pipe is ro. The pipes are infinitely deep, perpendicular to the cross
section. Do not consider the radiation from the outer side of the external
pipe and the inner side of the inner pipe. For this cylindrical duct, get
all the view factors. Assume that there is vacuum between the two pipes.

Figure 4.9: View factors in a concentric pipe enclosure (Example 4.3)

Solution:
The view factor matrix will be
Fyy P
4.39
[ Fy Fp ] 59
Fi=0 (4.40)

(because surface 1 is a convex surface and so the self view factor is 0)

Fipa=1 (4.41)
A1 Fig = AsFy (4.42)
Fy = A1/A2 (4.43)
Fp=1-4/4 (4.44)
Concentric cylinders:
Fy =11/ (4.45)

F22 =1- 'rl/'r2 (4.46)
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View factor matrix is given by
0 1
[ no1_n ] (4.47)
T2 r2

For concentric spheres, the above can be extended as follows:

Py =ri/r} (4.48)
3

Fp=1-11 (4.49)
a2

View factor matrix is given by
0 1
2 3 (4.50)
B o1-3

Getting back to the example, in practical applications, this is one
way of insulation and is used in tramsporting liquid nitrogen and
oxygen over large distances. The temperature of the liquid will be
150K and the outside may be 300K. There will be a heat leak
causing the liquid nitrogen to wvaporize. So we have a small vent
to allow it to escape. we can work out the rate of vaporization
of this and if we know the transportation time, we can calculate
the amount of liquid nitrogen that will be left at the receiving end.

Example 4.4: Consider a two dimensional quadrilateral enclosure as
shown in Fig. 4.10. Determine F,..

Figure 4.10: Quadrilateral enclosure (example 4.4)
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Solution
Total number of view factors = 42 = 16
Sum rules = 4

Reciprocal rules = 4C; = 6
Self view factors = 4

Number of view factors to be independently determined = 16 — 14 = 2
(Fac and Fyq)

If F,. is obtained, we can use the same formula for Fj4.

The first step is to complete the two diagonals L; and Lj

Bie+ Fap+ Fao+ Fog = 1 (4.51)
o) Fop=1— (Fap + Fag) (4.52)
By % (4.53)
Fag= “J“:a_f’z (4.54)

Figure 4.11: Depiction of the Hottel’s crossed string method for a
quadrilateral enclosure
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Substituting for Fgp and Fug in Eq. 4.52

(a+d—L1)+ (a+d— Ly)

Foe=1- o (4.55)
2 —{L1+ L
Fo—1- a+b+d— (L1 + Lg) (4.56)
2a
Li+ L) — d
P = 1t ) = (b+d) (4.57)

2a

This is called the Hottel’s Crossed String method. This is because if
we look at the formula, we find that the view factor between surfaces a
and c is the sum of the crossed strings (L; + Lg) minus the sum of the
uncrossed strings (b + d) divided by two times the line segment a.

", Fye = (sum of the crossed strings - sum of the uncrossed strings)/2a

This is a very powerful expression for two dimensional enclosures, which
can be used for any geometry.

Example 4.5: Consider a two dimensional regular pentagonal duct as
shown in Fig. 4.12. Determine Fio.

Figure 4.12: Pentagonal duct (Example 4.5)
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Solution

Exterior angle = 360° /n = 360°/5 = T72°

So the interior angle is 108°. Let us draw the diagonals as shown in Fig.
4.13.

Figure 4.13: Pentagonal duct with depiction of cross string method
(Example 4.5)

Using Hottel’s Crossed string method
[ad + ce — (ac + de)|

Fig = (4.58)
L2
p, = 2X1BBL—(L+1618) .. m

2L
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Example 4.6: Consider an infinitely deep semi circular disc of radius
r and unit depth together with the base. Get all the view factors for this
geomeltry.

1

Figure 4.14: Semi-circular disk (Example 4.6)

Solution:
Fii+F=1 (4.61)
Fii=0,Fia=1
A1 Fia = AsFy (4.62)
2r x 1 =7r x Fpy (4.63)
2
Fy = o (4.64)
Byl (4.65)
2
Fon=1— — 4,
) - (4.66)

.". The view factor matrix is
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Example 4.7:

Q“O
]
]

Figure 4.15: Problem geometry for example 4.7

LERRRR LR RN ‘

For the given configuration (see Fig.4.15) with unit depth, get all the
view factors

Solution
M+ F=1 (4.67)
Fii=0F2=1
A Fip = AgFy (4.68)
2 x 1= 2mr x g x Fy = 3%1:’21 (4.69)
4
Fy = o (4.70)
Fp=1— 4 (@711
Z_ﬂ'

.". The view factor matrix is

[0 : ]
4 4
w 1 &
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4.4 View factors from direct integration

Example 4.8: Determine the view factor Fg1_o between a differential
area (dA;)and o finite disk of radius v, at o height H.

Figure 4.16: View factor between a differential area and a disk of finite
area

Solution:

cos 6; cos §,d A

— (4.72)

Fya,—a, or Fg_g= ]
Az

We have to convert the problem into one in which the variable is r, which
can take a value between 0 and r,. Therefore, first, we have to take an
infinitesimally small area on the disc, take a thickness of dr so that the
area will be 2nrdr. The area dA,, can be replaced by 2rrdr. Then if it
is at a radius r, from fundamental trigonometric principles, we can find
out what R is,(Please note that R # H). Then the two terms cos #; and
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cos §; also have to be represented in terms of known quantities. After all
this, the integration can be done easily.

;i =0,=0 (4.73)
R =r?4 H? (4.74)
cosf = H/R {4.75)
dAg = 2wrdr (4.76)
Substituting for cos 8, R and dAg in the integral,
7 B2 %
-
Fa2= | p AR (4.77)
o
o d
rar
Fy g = 2H* R (4.78)
0
p i
e rdr
Farg=2H éf (2 4 oy (4.79)
Let, v + H? =y, Ordr = dy (4.80)
i
Limits, r =0,y = Hr = rg,y = H 4 3, dr = 2§ (4.81)
o g
, 7
Fyi_g = 3H? 4 (4.82)
¥
2
Hg-i-r%
d
Fy_g = H? f }}g (4.83)
H?
_1\ Hr
Fy_o=H? (?)Hz (4.84)
—1 1
2
Fpo=H ( wyat HE) (4.85)
H? {4 v}
Fyio = H? < (2 < (4.86)

,;“2
Fa-a = <m§> (4.87)
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What is the physical interpretation of the solution to this problem?
When H is infinite, F = 0. If r,/H << 1, we can reduce the expression

to Fpp_a = % and it confirmng that the view factor varies as the inverse
of the square of the distance between the two.

Pleage remember that since one ares was infinitesimal, the nfegration
was not only possible but was also straightforward. If both are finite
areas and one is not a dise, the resulting mathematics would be very
tedicus. Many groups of people in the world in the 1960s — 1980s
worked on developing view factor relations and solving these integrals,
which was considered a very important activity. The view {actors are
repeatedly used in radiogity calculations and multi-mode heat transfer
problems. View factors are also one of the reagons why double precision
was required. We need view factors up to the seventh or eighth decimal
securacy, ag, if we have s hundred thousand view factors, we cannot
round off each o the second or third decimal. When we are doing
a convective solver or convection and radiation together, such an
approximation will lead to a lot of errors.

But now, with computational resources becoming more powerful and
more programs being svailable, this activity of research is not so
prominent thege days. These are mostly considered well settled problems.

So far, we have restricted our working to two dimensional surfaces. But
most of the surfaces in veality are three dimensional surfaces and the
view factors cannot be got by just algebra. People have developed
eleborate techniques for this, of which one of the most important is
contour integration. If we look at dAy and dA, we see that they can
be written as dA; = dz dyy and dAs = doadiys.

Therefore, 4 integrations are involved. Elemental strips on A; and As
are considered, cosé; and cos§; are determined and four integrations are
performed. These are available in the form of charts and Tables. These
are given in Figs.4.17-4.20 for three commonly encountered geometries.
We will now solve a few problems using these charts.
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B = =T
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Figure 4.17: View factor for aligned parallel rectangles
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Figure 4.18: View factor for perpendicular rectangles with a common
edge
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s 8/2/—?" 1 @ E
y // / / 2/1 n-is | @

0.1 0.2 0.4 08 1 2 4 7 10

L/r,
Figure 4.19: View factor for coaxial parallel disks
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Geometry Relation
Aligned parallel reciangles x
JI=7,I’=l
LT [ " | jaszn
[ 2 X+, 2 e, 1 X
e il L s= A R XYY tan (1+Y2]1"
LTy e o
X
Coaxlal parallel disks
r r r
| R=7.R=F
J
L §= 1+¥21
R
r L 1 " 2|2
i =i §*—a(d
Q o4
1
Parpandicular rectangles with a
common edge z ¥
H==,w=
X X
e il 1 1 -1l (g A
Fy=— o Wan™ o+ Hian™ {H+w " tam

1 .
(m? W“]m]
h{[1+W2](1+H’H wi+we ) [ o B W) ﬂ

1
4

'ﬂ'

WS |(1+W)] W’+H"]I |+ [+ W]

Figure 4.20: View factors for a few frequently encountered three
dimensional geometries
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Example 4.9: Consider two perpendicular rectangles as shown in the
Fig. 4.21. Determine the view factor Fi_s.

Im

1m

4 m

Figure 4.21: Problem geometry (Example 4.9)

Solution:
Let us learn about the decomposition rule first. It says that

Fi3=F 1+ (4.88)

Equation 4.88 is a consequence of simple energy balance. Whatever
radiation is originating from 2 and is falling on the combined area (13)
must be equal to the sum of that originating from 2 and falling on 1 and
3 individually. We know that

AgFy_13 = Aj3F13 9 (4.89)
Further
A1Fip = APy (4.90)

A2F2_3 = A3F3_2 (4.91)
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Substituting for the above in Eqn.(4.88), we get

ApFiz2 A Az
4 A_2F12 + A_2F32

From Eq 4.125 it is clear that
Figa# Flo+ Fya

Getting back to the problem under consideration
zfx = 0.67 ;
y/x=4/3=1333

Fy.13 = 0.14 {from the chart)

Fyoag=F. +Fy

Fy_3 = 0.07 {(from the chart z/z = 0.33;y/2 = 4/3 = 1.333)

014 = Fypy+007
4 0.07
ARy = AgFy

A1 = 3?’?’&2;}12 == 12%2

Jax Fj_z == 12 x (.07
and so Fip = (.28

141

(4.92)

(4.93)

(4.04)

(4.95)
(4.96)
(4.97)

(4.98)
(4.99)
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Example 4.10: In the figure given below (Fig 4.22) get Fi_g

L/
4
5

Figure 4.22: Problem geometry (Example 4.10)

Solution:

We have to use the law called “law of corresponding corners”, according

to which Flg = F27

A1231 F1234 5678 = A1F1_s5678 + A2Fa 5678 + A3F3 5678 + AsFy_ners

A1234F1234 5678 = A12F12_5678 + A34F34 5678
A1234F1234 5678 — A34F34_5678 = A12F12-5678

A12F12_sgrs = A1F1_sere + A2F>_pers
Fy 5618 = 1567 + Fl—s

Fy_ 5618 = F> 568 + Fl—s

But Fl_g=F~«

(4.100)

(4.101)
(4.102)

(4.103)
(4.104)
(4.105)
(4.106)
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Fia sers = 2.A1F1 g + A1aFia56 + A1F1 7+ AsFo g
A1234F1234-56 = A12F12-56 + AzeF3a-56
A1234F1234-56 — A3aF34-56 = A12F12 56

AraFiu-57 = AuFiy-5 + AuFua 1

Ay Fiqgr — A Fias = A Fyr g + A Fy g
A Fig 57 — AraFigs — Ay = L5 g
AgFy 7+ AgFy 5= A4 Fy 57
Ay g == AgFy 57 — AgFy 5

AzaFas—es = AaFaes + A3F3os

AgaFoggs = AgsFin g + AgaFoz-a

AgaFiy.gg — AgaFag.g = AgzFaz g

AgsFoy. g8 — Agaloz.g = AgFog + AsFap

A3Fy_gg == A3F3 g+ A3F3 g

AgFy g8 — AgFy g = A3Fh.a

AgFy g = AgaFog g5 — AnaFozs — AsFa g8 + AsFa s

AFir = AuFisr — AwaFras — AgFy 57 + AgFys
1
Fi_g= 54 (A1 135678 — A1aFi2—56 — A1 Fi_y — AgFo_s)

1
Fig= m(ﬁmﬁf”m%msﬁ?& — AzaFaase78 — ArazaFiass-38

+ Az o 55 — A Fig_sy + ApaFias + AgFy gy — AgFy 5
—AgaFoy gn + AnaFoa g + AzFy g — AzF35)
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(4.107)
(4.108)
(4.109)
(4.110)

(4.111)
(4.112)
(4.113)
(4.114)

(4.115)
(4.116)
(4.117)
(4.118)
(4.119)
(4.120)
{4.121)
(4.122)

(4.123)

(4.124)
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Example 4.11: For the geometry given in Fig 4.23 determine Fiq

Figure 4.23: Problem geometry (Example 4.11)

Solution:
We know that

A1zFi3 04 = A1Fy_24 + A3F3_24 (4.125)
oo APz 94— A3l g4 = AP0y (4.126)

Further, A1Fi_o4 = A1 Fi_o+ A1 Fy_4 (decomposition rule) (4.127)
Substituting Eq. (4.126) in Eq. (4.125),

A13Fi3 94 — A3F3 o4 = AP o+ A1y (4.128)
1
Fig= E(A13F13—24 — AsF3 94 — A1 F ) (4.129)
A1zFi3_9 = A1Fi_5 + A3F3_4 (4.130)
AizFiz_o — AsF3_ 9 = A1Fi_2 (4.131)
Az = A, + Aj (4.132)

Substituting Eq. (4.131) in Eq. (4.129),

1
Fia= A_I(A13F13_24 — A3F3 o4 — A13Fis o+ AsF3 5)  (4.133)
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Example 4.12: Consider the configuretion shown in Fig. 4.24. Two
parallel rectangles with a common edge, are further subdivided into 2

rectangles each, so that we have 4 areas Ai, Az, Az and Ay. Determine
the view factor Fis.

cm

Figure 4.24: Problem geometry(Example 4.12)
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Solution:

Ay =5 x 1.5 = 7.5m? (4.134)
Ag = 7.5m? (4.135)
Ag =5 x 3.5 = 17.5m* (4.138)
Ag = 17.5m* (4.137)
Az = 25m?; Agy = 25m? (4.138)

Fha_a4{can be obtained from the chart) = 0.2 = Fhy_ys;
vz =1z/z =1

Fiy{from the chart) = 0.12 = Fjy (y/z = 3.33; z/z = 3.33)
Fgg(frem the chart) z (1Y = Fgg

(y/x = B3.5 = 1.428; z/x = 53.5 = 1.428)

Now, we have to use the reciprocal rule and decomposition rule and
manipulate them algebraically to get the remaining view factors.

Fo_ a3 =Fp_g 4+ Fh_3 (4.139)
Figg4 = Fig.g + Fig.a {4.140)
0.2 = Figa + Fig-q {4.141)
From Eq. {4.141)

Py = Faoq +0.17 (4.142)
AsFy gy = AiaFiz o (4.143)
17.6F5 13 = 25F3_9 (4.144)
Figg = 07F..13 (4,145)
Fona = Fgq + Fyg {4.146)
AgFy 33 = ApsFizy (4.147)
7.5Fy 13 = 25F13_4 (4.148)
Fi34 =0.3F_13 (4.149)

Substituting for Fig_4 and Fi3_» into Eq. (4.141),
0.2 = 0.7(Fyq +0.17) + 0.3(0.12 + Fyg) (4.150)

But, Fy..4 = Fy..1 by the law of corresponding corners.
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On simplifying, we get

0.0415 = 0.7F,_; + 0.3Fi; (4.151)

A Fi2 = AsFn (4.152)
17.5F13 = 7.5F;_, (4.153)
Fo1 = 0.428F), (4.154)
0.0415 = 0.7 x 0.428F15 4+ 0.3F12 (4.155)
0.0415 = 0.5996 F1 2 (4.156)
Fig = 0.07 (4.157)

Because of errors associated with reading the charts, the final result may
vary from (.06-0.08. Furthermore, the error will be more when the view
factor is much smaller.

Example 4.13: An enclosure is in the shape of the frustum of a cone.
The dimensions of the enclosure are given in the Fig.4.25. Delermine
all the view factors.

Figure 4.25: Problem geometry(Example 4.13)
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Solution:

If an enclosure problem is given, it is always a good idea to state the
number of view factors to be determined, the number of sum rules,
reciprocal rules, self view factors and then find out how many view
factors have o be independently determined. By this, we will get an
idea of whether we have to use the charts or by manipulation alone, the
problem of view factor determination can be solved.

Total number of view factors = N* = 90

Sum ruleg =3

Reciprocal rules = 3

Self view factors = 2

Total = 8

So only one view factor (F13) has to be independently determined and
this can be got from the chart.

r; = 2.25m ; r; = L.5m ; L = 5m; L/ry= 2.22 and 1;/L = 0.33

From the chart (Fig 4.19),F15 = 0.07

From the sum rule for surface 1

Fiy+Fp+Fig=1 (4158)
Also Fyy = § {4.159)
Fyg = 1007 =0.93 {4.160)
A1 Fyy = AgFoy {4.161)
Fogy = (.4’11/}5.2)}?}2 {40162)
= (?‘1/’3”2)2}?12 (4163)

= {0.157
From the sum rule for surface 2 (4.164)
Foy+Fog+ Fog =1 (4.165)

By =0

L. Fgg =] - Fgg_ == (3,843 (4166)
Ay Fiy = AgFy (416?}
Ao Foq = Ak (4168)

To determine Ag, we have to take recourse to basic geometry.
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Figure 4.26: Use of similar triangles principle in example 4.13

From law of similarity of triangles,

x ozt 59
15 225
x == 10

Surface area of the cone = wrl , where L-slant length

L1 = V275 + 5.0625 = 15.16m
Ly = 100 + 2.25 = 10.1m

Surface area of the frustum Ay = w(riL; — roLg) = 59.6m
Substituting this in Eq. (4.167), we get

2

APy = AgFa
158 « 0.93 = 58.6 x Fy
Fyy = 0.248 = (.25

(4.169)
(4.170)

(4.171)
(4.172)

(4.173)
(4.174)
(4.175)
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From Eq. (4 168), A2F23 = A3F32

7.06 x 0.843 = 59.6 x Fiy (4.176)
Fyp =0.10 (4.177)
Fag =1 — (Fa + Faz) = 0.65 (4.178)

. The final view factor matrix for the above configuration is

¢ 007 683
0.167 0 0.843
.25 010 085

The above problem involved only & 3 X 3 matrix and so, we are able
to solve it by hand. If we encounter a 10 x 10 or a 20 x 20 matrix
{meaning a 10 or 20 surface enclosure), we will need to write a computer
program to determine the view factor matrix and store it once and for
all. When the temperatures are dynamically updated, this matrix will
not change as it depends only on the geometry. However, if we have a
problem, where the surfaces are also changing and the dimensions are
also changing, which can happen if we have an ablating surface like in the
case of a re-entry vehicle entering the earth’s astmosphere, where a fow
millimeters of the surface may sublimate because of heat, the geowmetry
itgelf will change and geometry linked view factor updation should be
done in such a case,

So far, we have developed the background to do the radiation analysis.
If there is an n-surface enclosure, how do we find out the net radiation
heat transfer between the various surfaces? We will answer this guestion
in the ensuing sections.

4.5 Enclosure analysis

There are several ways of solving problems involving radiation from
multiple surfaces. In undergraduate courses, we would have done
something called network analysis, in which the radiation resistance will
be drawn and using series and parallel combinabtions, the analogy to
electrical resistance will be used to solve the problem. The major lacunsa
with the network analysis method is that as the number of surfaces
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increases, it becomes increasingly messy to handle all the resistances. So
in this course, we will not use the network analysis method at all but
will instead use the radiosity irradiation method, which can be applied
from a one surface enclosure to that with any number of surfaces.

4.5.1 Radiosity-Irradiation method

As already mentioned, the credit for the development of this method
goes t0 Professor E.M. Sparrow and his colleagues at the University of
Minnesota at Minneapolis. The method is eminently programmable on
the computer. It blends itself easily with CFD calculations. So for
combined heat transfer problems, this method is very good. Before
getting into the actusl method, we have to Hesh out certain definitions.

Consider irradiation @; falling on a surface that has a hemispherical
total emissivity of £; which is maintasined at a temperature T;. A
certain portion of the incident radiation is reflected, given by &G, and
the absorbed radiation is given by oG;. Because the suvface is at a
temperature above 0K, it also emits radiation given by a,;ai’ff‘.

- ﬁiGi

TTIIITIIT I

Figure 4.27: Depiction of various radiation processes on a surface

Now, radiosity or the leaving flux or the leaving radiation J;{W/m?) is
given by,

Ji == ewa‘ + ;G4 {4.179)
The incoming radiation is given by G, We are using the subscring 4
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because the expression can be for any surface in an enclosure.

The net radiation heat transfer from 4, given by ¢, is

g =dJ;i— Gy {4.180)

For an opague surface, transmission 7; = 0
ag ot = 1 (4.181)
Lpp = L—oy (4.182)

Bubstituting for p; in Eqn.{4.179), we get
Ji = 5@0’21;4 + {1 — o) G (4.183)

This is the radiosity relation for the #** surface of the enclosure. For a
gray diffuse surface,

(g == £y (418‘1)
= e+ (1 — )G (4.185)

In Eqn.4.185, the first term represents the contribution from emission
while the second is the contribution from reflection. Tt is eagy to ses that
when g; = 1, J; = 0T},

If we want to caleulate the radiosity from a particular surface, we need to
know the emissivity, the temperature and the irradiation falling on that
surface. If the irradiation is because of radiation from several surfaces, we
need to worry about the radiosity of these several surfaces. That is what
the enclosure analysis is all sbout. But we ave now in the preliminary
stage and are fryving to get an expression for the net radiation heat
fransfer, so that we can use it eventually in the enclosure apalveig.

For an i** surface of an enclosure,
g =J; -Gy = s,:al’? + G —5,G — G (4.185)
g; = 6.;:(0’1;4 - G;) {4.187)

8o, if we are able to find just the irradiation on all the surfaces, we have
solved the problem. But it is not so easy to caleulate the irradiation on
s surface becanse the rradiation on a surface i8 because of the radiosity
originating from other surfaces together with the geometric orientation
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accounted for. So, we must simultaneously solve either for the radiosities
or for the irradiations. Working further on Eq. 4.186

G =J -Gy (4.188)
(4.189)
e o T
But from Fq. 4.183 G; = Ji - g0ty (4.150}
(1 - Eg)
Substituting for G; in Eq. 4.18% we have
g = s — J“mgg‘ﬁ?‘ (4.191)

g = (4.192)

(1 - Ei)

ot - )
gi - (1 . gi)

What is the difference between Eq. {4.187) and Eq. {4.193)7 Both
are expressions for heat fux and are correct! While Eq. (4.187) is in
terms of irradiation, Eq. (4.193} is in terms of radiosity. Our original
one (Fq.4.180)is in terms of both radiosity and irradiation. If we are
evaluating the radiosity and irradiation for thousands of elements, there
is no point in simultanecusly storing both radiosity and irradiation.
Information of radiosity can be obtained from irradiation and vice verss.
Therefore, it makes sense to store only one of the two quantities. Some
people use just the irradiation method where they will solve for G's
alone. Some people use the radiosity method, where they solve for J's.

(4.193)

One word of caution. Can Fq. 4.183 be applied in all situations? No,
it cannot be applied to black bodies as it has a singularity and the
denominator becomes (0. When writing programs, we make g; for
the black body as 0.995 or something close it and use i, Else we
avcid Eq. 4.193 and instead use other expressions derived above for
determining the net radiation heat transfer from a surface.

4.5.2 Re-radiating surface

A re-radiating surface is the radiation equivslent of an insulator. In an
insulator, g = 0, where ¢ can be g-conduction or g-convection. If ¢-
radiation= 0, then it is called a re-radiating surface,
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How do we make this? Take a surface and insulate it heavily on the
back side so that no conduction heat transfer takes place and prevent all
possible opportunities for heat transfer to take place. When we do that,
whatever radiation is impinging on it must go out. For such a surface

Ji = Gy {4.194)

g Gl ]
g =0 = e {4.195)
R A e (4.196)

It is a remarkable result because the radiosity of a re-radiating surface
is independent of the emissivity and it will come fo an equilibrium
tempserature of T; depending on whatever irradiation it recsives from
the neighbouring bodies. This o7% is also equal to G, The reradiating
surface temperature iz decided by its neighbours. Consider a 3 surface
enclosurs, where one surface is a hot surface, a8 in a heat {reatment
Furnace, surface 2 houses the object to be heat treated and surface 3 i
the intermediate surface which acts as the mediator. In this case surface
3 takes the heat from the hot surface and passes it on to the other
surfaces and will come to a temperature which is in betwesn these two.
Such re-radiating surfaces are frequently used in furnaces, combustion
chambers and enclosures.

In passing, it is instructive to mention that for both a black surface
and a re-radisting surface J; = an. However, the latter has one more
gualification. For a re-radiating surface J; = & so that ¢; = 0. A siyaple,
black surface need not satisfy the above condition.

{onsider an IV surface enclosure as given in Fig 4.28. Each of these
surfaces is characterized by a hemispherical spectral emissivity and
temperature. Al of these are gray, diffuse surfaces. The total radiation
leaving the i** surface is

A= e.,-Awa“ + pi(Incident) (4.197)
Ay = s,;AgcCIl-‘l + (1 — &;)(Incident) (4.198)

What is this “Incident radistion”in the above two equations? It is
intuitive that this “Incident radiation”should be
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Figure 4.28: Radiosity method for & N surface enclosure

158

“Incident”
N
= A+ A ds + AaFn s+ AnFrdy = zﬁjf}ifj
=l
(4.199)
Substituting for “Incident® in Eqg 4.198
N
Ay = Ao+ (1 -6} Y A;Fyld; {4.200)
=1
But A;Fy = AjFj;(reciprocal rule) {4.201)
N
AL Ao T AL — ) Y Fld (4.202)
5=1

N
However A,G; = Z AiFnJ; {4.203)

=1

N
G :%z Fyud; (4,204)
=1

N
Gi= 3 Fuld (4.205)

F=1
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Substituting in Eq. 4.202, we get
Ji = gioTH 4+ (1 — £)G; (4.206)

Therefore, if we want to solve for the radiosity in an N surface enclosure
problem, the first part is the emission part. Here, the Stefan Boltzmann’s
law is at work, which is e;0T%, for which we need to know the
hemispherical spectral emissivity. We need to exploit the Kirchhoff’s
law and the fact that the surface under consideration is an opaque, gray
and diffuse surface, for which p = 1 — @ and 1 — a can be written as
1—e. So our knowledge of radiative properties is being used here. When
we write F;;J;, the view factors come into effect. So, all that we have
studied thus far is incorporated in one single equation (Eq.4.206), as seen
above.

In an N surface enclosure, there are N such radiosity relations. If
there are N equations and N unknowns, they can be easily solved
simultaneously and we can get all the radiosities. Once we get all the
radiosities, we can straightaway use the formula for the net radiative
heat transfer from any surface in terms of radiosity. Otherwise, if it is
only 3 surfaces, if we have the time and the patience, we can individually
evaluate G1,G2 and G3 for the 3 surfaces. We can then get (J-G) for
the 3 surfaces, and hence the heat fluxes.

Essentially, we have solved the problem of radiative heat transfer in an
enclosure where there is no conduction and convection. If these two
are present, we will write the additional energy equations and solve.
But what we have described above will continue to be the radiation
portion of the solver. However, here the enclosure is evacuated or filled
with a medium which is not participating in the radiation. This is
the enclosure theory developed by Prof. Sparrow and his colleagues.
For up to 3 or maximum 4 surfaces, we can solve this using hand
calculations. If the number of surfaces in the enclosure exceeds 4,
we have to use the computer. Since it is a system of simultaneous
equations, it is eminently solvable by the iterative Gauss-Seidel method.
We don’t have to invert. We usually start with some assumption like
J1 = Jo = J3 = Jy = 1000W/m?.

Example 4.14: Consider o flat plate with an emissivity (), and
maintained at a temperature T;. It is placed in large surroundings at
Tw- The bottom of the plate is insulated. Using the radiosity-irradiation
method, determine the net radiation heat transfer from the plate.



4.5. Enclosure analysis 157
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Figure 4.20: A simple two surface enclosure problem

Solution

First, we encloge the plate with an Imaginary hemispherical basket at
T for which £ = 1 and call this as surface 2. Now, we have an enclosure
in hand.

View factor matrix for the two surface enclosures = [ Hi P ]
Fn P
Jy = 10T 4+ (1 — e (P Ay + Fia k) (4.207)
Jo = eoTh 4+ (1 — e} (P Jy + Fan o) (4.208)
Jo =1 x oTE + 0 x (FpJy + Fopdo) (4.200)
Jy = o5 (4.210)

Now do we understand why we don't have to determine Fpy and Fog?
Whenever we have surroundings like this where £ = 1, there is no need

to waste time calculating those view factors.

Jy o= e TR+ (1 — e 0+ 1 x J) (4.211)
o= 510’Tf‘ +{1 —ey)fq {(4.212)
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Substituting for .J3,

Ji = 10T+ (1 — &1)o T2 (4.213)
Gy = By + By = G’T:o (4.214)
g="-0G (4.215)
a1 = e10Ty +oFPE — e10TE — oFE (4.216)
g = e10(T} — Th) (4.217)

This is one of the most used and abused formula in heat transfer. Now,
having gone through this course, we must be aware of the limiting
conditions under which formula is valid.

p—y

. Bingle plate at a uniform temperaiure

Plate has uniform radiosity

Plate is characterized by one hemispherical spectral emissivity
Surroundings are ab constant temperatiiee

There is o irradiation from any other object

G I S

There is ne other object in the vicinity

Locking at the formula, it must now be clear under which situations
this formuls can be used and in which ones, ifs use is incorrect.

Example 4.15: Consider two porallel plates as shouwn in Fig 4.30.
They are infinttely decp in the lop ond botfom directions and extend
infinitely in the divection verpendicular to the plane of the board. There
is vacuwm between the plates. The infinile exient is to basicolly help
figure out that Fis = 1. Find out the net radiation heat transfer between
the two surfeces using enclosure theory.

Solution:

View factor matrix = i:

Fy Fgi 101
Fpo Foe | {1 0
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Figure 4.30: Parallel plate geometry (Example 4.15)

Ji1= 5-210{1-':[1 +(1—e1)k2 (4.218)
Jo = Ezo‘Tﬁ1 + (1 —g2)d) (4.219)
J1= slan + (1 - 61) [EzO’T24 =+ (1 - Eg)Jl]
(4.220)
1-(1—e1)(—eg2))1 = 510‘5[-'{l + Ezt)'TéL — ‘.‘.‘1L‘-:zu.':.l‘ﬂr'z;1 (4.221)
Jy— (e10T¢ + e20Ty — e1620T3) (4.222)
[l L~ Ba {1 —}
By inspection,
oT? oT§ — oT#
g, = (E10TE + 20T — e1690TH) (4.223)
[1—(1—e1)(1—e2)]
n=h-Gi (4.224)
G1 = Fuih + FiaJs (4.225)
Gi=0+Dh=J (4.226)

g1 = Jl et Jz (4227)
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E1Ea0r I:T{'l - T24]
1—1+4 &1 +&2 —€189)
4 4
q= & 1 7] (4.229)
A+a-

This is called the “Parallel plate formula” which is a very powerful
formula in radiation. Let us now look at the asymptotic correctness of
the result. What we mean by this is that when we apply the result
to an extreme case, it should work, Let us check this cut for this
problem. Buppose surface 2 were to be the surroundings at T, then
gy = 1 and o = 1, Ty = Ty. Hence the formula for g would reduce
to ¢ = e1o(TF — T2) which is the result for net radiation heat transfer
from a single surface, a formula we derived a little while ago. Therefore,
for the asympiotic limit of the second surface being the ambient, this
Tormula works.

®= (4.228)

H we have 2 parellel plates and even though we do not have convestion
between them, if the temperature difference between the 2 plates is
sufficiently large, high radiation heat transfer between them is inevitable.
But many times we want to avoid this radiation heat trarsfer between
them and just because there is vacuum between the plates, it does not
mean that we have solved the problem. If both the surfaces have good
emissivity and have a good temperature difference, the radiation heat
transfer will not be insignificant. Therefore, the challenge is now to coms
up with some method by which we reduce the radiation heat transfer
between the 2 surfaces. One possibility is to insert a thin film and we
try to find out what the heat transfer will be when such a shield is
inserted between the 2 plates. Once we derive the heat transfer with one
such shield, by induction, we can find out what the heat transfer will be
if there are 2 shields, 3 shields or n such shields.

Example 4.16: Consider two infinitely long paraliel plates that are at
temperatures Ty and 15 respectively with hemispherical total emissivities
g1 and €9. The intervening space is evacuated. The radiative heat
transfer has already been derived for such a case. Now we insert a
radiation shield thal has emissivity £3 on both the sides. We hawe o
say both sides becouse emissivily is o surface property and by having
different coatings on both sides, we con hove 2 different emissivities also.
The whole shield may be af one temperature bui the two sides may have
differeni emissivities. Lel the temperafure of the shield be T3. Sieady
state prevails in the system. Rodiation heat fronsfer is teking place as
shoun. Come up with o mathematical expression for g with the shield.
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Radiation shield

161

Figure 4.31: Radiation between parallel plates in the presence of a

shield
Solution:
With the shield
i [T - T3] (4.230)
[a+4-1]
£1 £3
_o[B-T§
£3 £9
Under steady state, g13 = g32 = ¢12,shield
o [Ff—T5
q12,shield = M (4.232)
[+&-1]
_ 9|13 - 1] (4.233)

€3 (2]
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We do not know T3 at this point in time as it is the equilibrium
temperature. Instead of putting in thermocouples and determining

T3, let us try and eliminate 73. If % = % then this is also equal
to % = % = % (Dividendo componendo rule). Using this rule,

_ o[mtpper] (4.234)

q12,shield 1.1, 2
e1Teates _2]
o|TE-T4
Q12 shield = L2 (4.235)

a2
If e1=e9=e3=¢, then
o|TA-T4
912, shield = ﬂ (4.236)

If there were no shield and if €1 = g9 = ¢, then from Eq 4.229

o|Tt-14

q12,noshield = [g _1] (4237)
S Q12,8hield = Tlmgehicld (4.238)

If n such shields are inserted, it is intuitively clear that

912,noshield (4.239)

q12,shield = S

Therefore, it is possible to insulate surfaces radiatively by employing
n number of shields. Just because we have vacuum, it does not mean
that we have insulated the plates, it is just that we have removed the
convection. Radiation still will be present. But if we have evacuated
the surfaces and have n shields placed in between, the radiation can
be substantially reduced. Sometimes this is also referred to as a super
insulation. It is apparent that the position of the sheet does not actually
matter.

In the above example, while the heat transfer rate is easy to determine, if
we want to know if the radiation sheet that is introduced can withstand
some temperature, it is imperative to evaluate T3. This has to be
evaluated as a post processed quantity and we used to see whether it
is within limits of the material of the shield.
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Example 4.17: Determine the steady state temperatures of 2 radiation
shields placed in the evacuated space between two infinite plates at
temperatures 600K and 300K respectively. All the surfaces are gray and
diffuse with emissivities of 0.85.

Solution:

w Lo

0 0]

|5
81=0.85 ol W 82=0.85
T1=600 T2=300 K

Figure 4.32: Problem geometry (Example 4.17)

o [Tt —T4
qlzmoshield = [2112] (4.240)
[2-1]
5.67 x 1078 [600* — 3004
= [ ] (4.241)
(085 — 1]
— 5091.9W/m?
_ N12,noshield _ 5091.6
d12,25hield = 2+1 E) 3 (4‘242)
= 1697.3W/m?

T3 ="
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T3]

o - 1697.3 (4.243)
&
5.67 x 1078 [600* — T4
X i [ 3] _ 1697.3 (4.244)
[oss — 1]
Ty = 587.5K (4.245)
Ty =7
4 pd
ol -T] _ 1ggr5 (4.246)
2 -1]
5.67x 1078 [587.5° ~Tf] _ . . (4.247)
[o5s — 1]
Ty = 529.5K (4.248)

Example 4.18: A hole 5mm in diameter and 25mm deep is bored in
a gray diffuse material. The emissivity of all the surfaces is 0.6 and is
maintained at a uniform temperature of 1000K. The surroundings are
at 300K . Determine the net radiant heat transfer leaving the opening of

the cavity.

LIS S S, g

>

E,=0.6
T,=1000 K

NGRRARRRAY

Waai

2| 1300k

5 mm o

-

25 mm

Figure 4.33: Problem geometry(Example 4.18)
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Ezrplanation:

We have o flat bottomed hole, which has been bored into o plute. Iis
depth is 25mm and its diameter is bmm. It is evacuated or filled with
air which is radiatively non participating. The temperature of surface
1, which includes the botlom and the lateral surface aren of the hole
is 1000K. Hs emissivity g1 = 0.6, The bored hole is opening lo the
surroundings of 300K, We con now treat i a8 ¢ 2 zone enclosure. The
beauty of the problem is that, suppose the hole were not there and we
have surface 2 alone, & would be o circulay disc of diameter S5mm. But
now we say that this circle is o black body, which is at 1000K. This wnll
dissipaie ceriain eamount of heat fo the surroundings af 300K. We wont
to see, compared to this, how much the bored hole will dissipate? The
ratic of these two is called effective emissivity. As the depth of the
bored hole increases, is effective emissivily will approach 1. Suppose we
do not get o surfoce with a good emissivily, it is possible for us to bove
holes at o few places and ougment the heal dransfer pussively, without
ugINgG aNY pumping power.

Solution:

a) View factor Fay = 1; Fag =0
Ay = 2nrh + nr? (4.249)
Ay = (2w % 0.0025 x 0.025) +7 x 0.00257  {4.250)
Ay = 4.121 x 10742

A = 7rl = 7 x 0.0025% {4.251)
Ag = 1.96 x 1073m?
AiFig = AgFy {4.252)
410 x 10t % Fla =196 x 1075 x 1 (4.253)
Fig = 0.0475

F11 =1-0.0475 = 0.9525

View factor matrix = [ 0.9525 0.0475

1 0
Ji = 81@‘3"1% 4 (1 - 81) [Fme_ - Fm.fz] (4.254)
Jo = oTE = 450.3W /m? (4.255)
€1
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Ji = 0.6 x 5.67 x 1078 x (1000)% (4.257)
+ 0.4[0.0525J; + 0.0475 x 459.3]
Ji[1—0.4 x 0.9525] = 0.6 x 5.67 x 1078 x {1000)* (4.258)
+ 0.4 x 0.0475 x 459.3
0.6188.7; = 34020 + 8.73 (4.250)
oy = 54991 5W /m?
g1 = g-?-z (56700 — 54991.5] (4.260)
g1 = 2562.8W /m?
Ql =gy X Al = 1.06W {4.2@1)
b)
Q1 (lackbody) = A2 % o [T ~ 300%] (4.262)
= 1.102W
1.08

Hence, the effective emissivity of the flat bottomed hole is .96 which
is very close to that of a black body. What this means is that if we
just had a black circular disk 5 mm in diameter at 1000K, radiating
to the surroundings at 300K, the radiant encrgy transferred would have
been 1.1 W. As opposed to this, with the hole we obtain & value close
to 1.068 W. Please note that the original surface had an emissivity of
only 0.6 and if we did not have the hole, the disk would have radisted
0.661 W, Hence, there is an augmentation in the heat transfer which will
decrease as € — 1 {of the parent surface}

Example 4.19: A very long elecirical conductor 10mm diameter is
concentric with o cooled cylindrical tube 50mm in diameter whose surface
is groy end diffuse with an emissivity of 0.9 and e temperature of 300K.
The electrical conductor has a diffuse gray surfoce with an emissivity of
0.6 and dissipates TW/m length. Assuming that the space between the
conductor and the tube is evacuated, determine the surface temperature
of the conductor.
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Figure 4.34: Problem geometry (Example 4.19)

Solution:

We can say that this is an inverse problem where we know the heat flux
but don’t know the temperature.We need to find the temperature to see
if the wire can withstand it or not. Inverse problems are more practical
from an engineer’s perspective than a direct problem. Many a time, we
have to infer as we can not straightaway solve this without first writing
the radiosity relations and getting the formula. It is better that we keep
it as surface 1 and surface 2 with areas A; and As, start with view factors
and get expressions for J; and J;. Next we get an expression for ¢, and
then substitute the values to get the answer. We call these areas A; and
Aj so that in the exam, if a problem of sphere within a sphere is given,
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the area formulae alone need be substituted in that case.

Fn=0,Fz=1 (4.264)
A]_F}_z = Angl (4265)
Fy = A1/Ay (4.266)
Py == 1 — Ay /Ag {4.267)
View factor matrix = [ ¢ 1 ]
Ai/As 1 A3/4s
Radicsity relations for the 2 surface enclosure
J1 = Elo‘Tf +{1—¢&1})dy (4.268)
4 Ay
gy = e’y + (1 62) Jl + 11— AT Jo (4,269)
Substituting for J; in Eqg. (4.269)
A A
Sy == EQUT;? + (1 - EQ)JJ]; + (1 - 52) i i Ja (4.2?0}
Ag ‘42
Al Al
Jg = 820’1? 4 (1 e EQ)EQ Eﬁ‘lo'T:i 4 (1 o 51):}2] e (1 . 52) 1 - 4?2 o
(4.271)
A A
g Eil - <A> (1—e1){1 —gg) — {1 —&g) (1 - fﬂ
2
= £a0T + (1 — £3) { ------ A ) e10TH {4.273)
[520’2"24 + (ﬁlj g10T¢ — €169 (ﬁl) o’Tf*]
Jg = . A (4.273)
jeaten (B) - aiea (2)]
Substituting in Eq. (4.268), we can get J; or
g2 =J1—.J2 {4.274)
go=coTi+(1—e)a— o (4.275)
g2 = e10T} + J —e1)do — K (4.276)
giz = E10‘Tf — &1.J9 (4.277)
EE:;O’T‘i (A2> £1G‘T1 E1E9 <&> G’Tf}
g1z = €107} — & (4.278)

s (£) - een ()]
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e1890[TH — T3]

" v () e ()

o[T} — T3]

ST -(3)]

@iz = quadnr L

(4.279)

(4.280)

A good check for this formula is that if 4;/4s = 1, Eqn.4.280 will reduce
1o the parallel plate formuyla.

So, this formula displays asymptotic correctness. Substituting for
515627A1>A2 and Tﬁs

—8Brd 4
T &?;x 1@1 (T — 300%) (4.282)
2mr {1} a8 T F5l0.2) — 0.2

Ty = 348.4K

The wire can withstand this temperature, roughly 75°C. Whenever the
view factors involve the fundamental dimensions such as 7 and v in
thig case, the analysis becomes complicated but towards the end, we get
a simplified answer.

Example 4.20: Consider e very deep triongulor duct (deep in the
direction perpendicular to the plane of the board) made of diffuse gray
walls, each of which has a width of 1.5m (Fig.4.85). The temperatures of
surfaces 1 and 2 are 1200K and BOOK respectively. The corresponding
emissivities are 0.4 and 0.6 reapectively. Surfacz 3 is completely insulated
and has an emissivity of 0.5. For this two dimensional enclosure,
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1 2
£,=0.4 e,=0.6
T =1200 K T,=800K
3 =05
Re-Radiating T,=7

Figure 4.35: Problem geometry(Example 4.20)

a.Determine the net radiation heat transfer from surface 1.
b. Determine the temperature of the insulated surface 3.

c.If e3 is changed, will your results change?

Solution:
a.
0 05 05
View factor matrix=| 0.5 0 05
05 05 0
Ji = 10T+ (1 — £1)[0.5.12 + 0.5.73] (4.283)
Jz = e20T3 + (1 — £2)[0.5]; +0.5J3] (4.284)
J3 = Gy = FiJ1 + FaaJy + Fs3J3 = 051 + Ja] (4.285)

This is a crucial step in enclosure with re-radiating surface. Even if we
have N surfaces, we have to solve for N-1 equations only, because for the
re-radiating surface, the radiosities can be directly expressed in terms of
the radiosities of the other surfaces. So, instead of solving 3 simultaneous
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equations, we need to solve for only 2.
Substituting the values for the variables, we get

Jy = 0.4 % 5.67 x 107% x 1200* + 0.6[0.5.7; + 0.5J3] (4.286)
J1 = 47029.3 + 0.312 + 0.3J3 (4.287)
Ja = 13934.6 + 0.2J1 + 0.2J; (4.288)

We substitute for J5 in terms of 3 and Jfo, which reduces the 2 equations
having the variables Ji and J> only

Jy = 47029.3 + 0.8J5 + 0.3[0.5J; + 0.5J;] {4.289)

Jy = 13934.6 -+ 0.2J, -+ 0.2[0.5.7; + 0.5.13] (4.290)
0.85.7; = 47020.3 - 0.45.1; (4.291)
0.9 = 13934.6 + 0.3J; (4.292)

Equations (4.291) and (4,292} can be solved to get Ji and J

Jy == TTL3T.OW /m?
Jp = 41195 5W/m?

Jom LTI 59166W /m?
£3 .
gy == o o7~ 1] {4.293)
11
g1 = 2.69 x 10°W/m? {4.204)
O =qd =260 x W0 x 15 %1 {4.295)
= 4.04 x 10°W/m
Jy = 0T} {4.296)
b.
J3 .25
= |22 4.2
= (2) (4.207)
= 1010.7K

Surface 3 i5 just receiving heat from surface 1| and is transferring this
onto surface 2. So it has no net radiation beat transfer. What is going
out is equal to what is coming in, which is why it is a re-radiating surface.

¢.Jf the emissivity is changed, it has no bearing. BSo the specification,
emissivity=0.5 for surface 3 is superfluous or redundant and is never
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used in the calculations. The good thing about a re-radiating surface is
that we never worry about its emissivity. The temperature T3 is actually
called the equilibrium temperature of the re-radiating surface.

PROBLEMS

4.1 In a rectangular box type enclosure consisting of € surfaces, how
many factors are there in total? How many independent view factors
need to be determined?

4.2 A very long duct has the shape of & regular pentagon. How many
view factors need to be independently evalusted? Determine the
view factor between any two adjacent sides.

4.3 A long duct has a regular hexagonal cross section. Determine the
view factor between the opposite sides by view factor algebra. Cross
check the answer with the direct application of crossed string method
to determine the same view factor.

4.4 Consider & glass house like structure shown in Fig. 4.36. All the
walls are infinitely deep in the direction perpendicular to the plane
of the paper. Evaluate the view factor Fy, by any method known to
you (No integration). Please note that “2”is the full bottom inside
surface.
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4.5

4.6

L/2

2 —

Figure 4.36: Figure for Problem 4.4

Consider a rectangular box type enclosure. This enclosure (radiation
from the outer surfaces of the six walls is not part of the analysis) is
cut vertically at the middle by an imaginary wall so that the top and
bottom surfaces are divided into two surfaces each. The two surfaces
now constituting the top are 1 and 4 while the two at the bottom are
3 and 4 with 3 placed right below 1. Each area is denoted using the
letter A followed by the subscript. For example, the area of surface
is A;. Show that for this enclosure, the view factor F3 is given by

1
Fig = ——[A1aF14-23 — A1Fig — A4Fy)
24,

Consider two rectangular thin strips AB and CD with dimensions
and orientation as seen in Fig. 4.37 (all dimensions are in m). The
strips are infinitely deep in the direction perpendicular to the plane
of the paper. Determine the view factor Fagp_¢cp by using

(a) The Hottel’s crossed string method

(b) The decomposition rule (together with the simple view factor
formula for a triangular enclosure)
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Figure 4.37: Geometry for Problem 4.6

4.7 Consider two semi-circular surfaces of radius R, separated by a
minimum distance of S, as shown in Fig. 4.38 The two surfaces
are infinitely deep in the plane perpendicular to the plane of the
paper. Determine the view factor Fio by an intelligent application
of the Hottel’s crossed string method (Hint: We may have to use arc
lengths in the Hottel’s method).

Figure 4.38: Geometry for Problem 4.7
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4.8

4.9

4.10

411

4.12

413

Congider a vertical enclosure in the shape of the frugtum of a cone
with the bottom surface having a diameter of 3.5 m and the top
surface having a diameter of 1.75 m. The height of the enclosure
is 5 m. Using view factor charts and algebra, treating the bottom
surface as 1, top as 2 and the lateral surface as 3, determine all the
view factors for the three surface enclosure.

A cubical furnace is 1.5 m long on all the sides. Ewvaluate all the
view factors.

Counsider the situation of a clear night sky in & desert. The minimum
sky temperature on a particular night is -42°C. Determine the
temperstiure on the surface of a shallow poad of water if the ambient
temperature is 24°C and the natural convection coefficient for air
is 5.5 W/m?K. Take the emissivity of water to be 0.98 (Clue:
Write down the energy balance equation and solve it iteratively for
temperature of water).

Consider two very long, gray, diffuse parallel plates that are
geparated by a small distance. The space between the two plabes
is evacuated. The left plate i3 at 700K and the right plate is ab
400K, Two radiation shields, which are also gray and diffuse, are
placed between the two plates. Al swrfsces have an emissivity of
0.8. Determine the steady state temperature of the two shields.

A spherical tank of diameter Dy =0.52m containing Hguid nitrogen
is enclosed inside enother apherical tank of diameter Do=0.81m and
the space between them is evacuated. The inner and outer spheres
are maintained at T1=80K and Ty=2T70K respectively. Both spheres
have an emissivity of 0.07. Calculate the rate of transfer to the inner
sphere and the rate of evaporation, if the latent heat of vaporization
of liquid nitrogen is 2 x 10° Ws/ke.

The annular space between two concentric tubes having diameters of
20 mm and 50 mm is evacuated. The outer surface of the inner tube,
which is diffuse and gray with an emissivity of 0.02, is maintained
at a temperature of 255K. The inner surface of the larger tube,
with an emissivity of 0.05, iz maintained at a temperature of 303K.
Determine the radiative heat transfer in the annular space between
the tubes by treating this as a two surface enclosure. If a thin walled
radiation shield, that is diffuse and gray with an emissivity of 0.02
{both sides) is inserted in the middle (i.e. betwsen the inner and
outer surfaces), calculate the heai transfer rate in the presence of
the shield.



176 Radiation heat transfer between surfaces

4.14 Consider a cylindrical evacuated enclosure with height 1 m and
radius 0.4 m. The top wall is maintained at 400 K and has an
emissivity of 0.8, while the bottom wall is at 800 K and is black.
The lateral wall of the enclosure is maintained at 600 K and has an
emissivity of 0.4. Evaluate the net radiative heat transfer from all
the three surfaces (not just the heat flux alone!) and thereby verify
the energy balance.

4.15 A two dimensional gray-diffuse evacuated enclosure (with no heat
transfer to outside) has each surface at a uniform temperature. The
following conditions apply:

Surface A1: T = 1500 K, Length = 4 m and ¢ = 0.6
Surface As: T = 300 K, Length = 3 m and e = 0.9
Surface Ag: T = 700 K, Length = 4.5 m and € = 0.5

Calculate the net radiation heat transfer from all the three surfaces.

Figure 4.39: Geometry for Problem 4.15

4.16 An evacuated, gray diffuse enclosure is in the shape of a triangle
ABC. The sides of the enclosure are infinitely deep in the direction
perpendicular to the plane of the paper.

(a) Obtain all the view factors using view factor algebra.

(b) Formulate the problem using the radiosity-irradiation method.

(c) Solve for the radiosities and determine both the fluxes and the
heat transfer rates at all the three walls.

Properties of the triangular enclosure surfaces are listed in Table 4.1.
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Table 4.1
Surface | Length, m | Emissivity € | Temperature, K
AB 7.1 0.9 1200
BC 6.2 0.6 400
CA 5.3 0.1 Reradiating

4.17 A frustum of a cone has its base heated as shown in Fig. 4.40. The
top is held at 600 K while the side is perfectly insulated. All surfaces
are diffuse-gray. The pertinent dimensions, properties and heat flux
from the surface 1 are shown in figure. Treating this is a three surface
enclosure problem, determine the temperature attained by surface 1

as a result of radiative exchange within the enclosure?

A, T,=600 K, £.=0.6

A, q,=10 kW/m?, £ =0.4

Figure 4.40: Geometry for Problem 4.17







CHAPTER &

adiation in participating media

A participating medium i an absorbing, omitting and scatfering
medinm.

o Any particle at a teruperature more than 0 K will emit radiation.
Absorption is different, in the sense that, if 100W/m? radistion is
incident on a gas volume, what comes out will be less than that,
as it absorbs a cerfain portion of the electromagnetic radiation.

+ What it can do further is to receive the radiation and reflect it in
several directions, which is called scattering. From a volume, thers
can be out-scattering {the name given to the radiation going out)
and in-scattering too. Out scattering need not be the same in all
directions, which means that the medium is anisotropic. How much
a medium scatiers can be a function of €. Treatment of scaitering
can thus get very complex |

The study of heat trapsfer through media which can absorb, emit and
scatter radiation has been receiving increasing attention in the last few
decades. In fact, it gained a lot of momentum after Nobel laureate Prof.
Subramaniam Chandrashekar among others made seminal contributions
to the equation for radiative heat iransfer and its solution. The interest
in this field arises from phenomena associated with rocket propulsion,
combustion chambers, ablating systems, nuclear fusion and insulating
systerns. In all these, we have gases which are participating, unlike
transparent media like air.

¥or example, in a class room which contains air, the radiation from
the left wall will divectly go to the right wall. Air does not participate
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in this; it just is at some temperature and convection may take place.
The moment we have carbon dioxide or water vapour in large quantities
ingide the room, the air will absorb and or scatter. The absorption and
emission of these gases in general are spectrally dependent and these
also vary with the temperature. If we look at the absorption of solar
radiation by the earth, we will see that the radiastion is incoming from
a black body at 000K, while the outgoing radiation is from a body
at 288 or 300K. The incoming is mostly in the visible region while the
outgoing is mostly in the infrared region and if the gases which are in
the atmosphere are such that they permit the incoming energy and do
not permit the outgoing energy, what happens is that there is a constant
buildup of energy within the earth’s atmosphere.

Some of the above phenomena are new while others are hundreds
years old. Man was always interested in atmospheric radiation.
Astrophysicists have been interested in gas radiation with regard to
studying structure, the structure of stars and radiation coming cut of
them., The spectrum observed during emission or absorption of radiation
by a gas is characteristic of that gas alone. From the spectrum, we can
get the signature, which is diagnostic of the gas present in the ster. If
this is studied over varied periods of time, we can find out if the gas
copcentration is changing or the star is moving towards or away from
us and so on. Hence, the spectrum can be used as a diagnostic tool to
determine the gas temperature, concentration, its speed and so on.

If we consider a black body source or outer layers of a star structure,
we can look ab two spectra, which are the emission specira and the
absorption spectra. The signature is obtained as intensity versus
wavelength., From this, we can figure out the gas concentration and
the gas temperature. This is basically an inverse problem, as from the
cutput, we have to guess the input. There can be various causes for
such a spectrum and the goal of a successful inverse methodology is to
correctly identify the cause which led to such a behavior.

A simplified representation of the same is given in Fig. 5.1. We have
& hot source and then a gas. We can get a continuous spectrum or an
absorption spectrum or an emission spectrum in the form of emission
bands, ag seen here.

If we look at the incident solar energy flux that is coming on to the earth,
ag shown in Fig. 5.2, we can see that the frst dashed line gives the energy
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Black body source Diffuse gas {(eg: outer
{eg: stellar core) kayers of a star ora
ot 5 Intenstty V\
e ' Wavelength
Absorption spectrum
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Wavelength Wavelength
Continuum spectrum Emisslon spectrum

Figure 5.1: Stellar structure and emission/absorption spectra

0030609121518 21 24 27 3.1 34
Wavelength A (pm)

Figure 5.2: Attenuation of incident solar spectral energy flux by the
earth’s atmosphere

distribution of a black body at 6000 K. The second curve shows the actual
solar irradiance outside the atmosphere. The inner curve shows the solar
irradiance after passing normally through the atmosphere, which we see
has a jagged shape, because there are absorption bands due to oxygen,
carbon dioxide and water vapour molecules,
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We can determine the absorption by having an instrument that has
a sensor, which will exactly capture this between two particular
wavelengths. We can see that ozone absorption is maximum in the visible
part of the spectrum while carbon dioxide presence is felt more in the
infrared region. Water vapour absorption is present almost throughout
and hence we can design an instrument to measure i by having multiple
channels. This instrmnent can be housed in & geostationary satellite,
and hence will be called a multi spectral nstrument or sounder.

In passive remote sensing, the radiation emitted from the earth’s surface
that is absorbed and scattered by the atmospheric constituents is usually
measured by a satellite. This is done through radiometric sensors placed
at the top of the polar or geostationary sstellite and is called top of
the atmosphere radiance. The intensity itself is a matrix consisting
of spectral infensities with two polarizations each, which is the spectral
signature. The inverse problem of radiative transfer I8 concerned with
estimating the atmospheric constituents from the spectral signature.

What is the logic on which this works? We will assume some stmospheric
concentration, solve equations and determine ¢, at various As. Then
we try to match our prediction with what is messured. The two will
not agree in peneral and hence we iterate. We keep doing this till the
measurements and simulations match closely. This guessing is easier said
than done. What was described so far as one word “guessing” is the field
of “inverse problems”!

Applications of gas radiation

Other applications of gas radiation are to be found in design of furnaces
where carbon dioxide and water vapour are combustion products, which
are also significant emitiers and absorbers. These gases are found in
combustion chambers, furnaces, IC engines, where the Hame temperatyure
can reach a few thousands of Kelvin. Apart from these two, thers is soot
too in many cases, which is luminous and contributes to gas radiation.

Origin of studies on gas radiation

The origin of all this is from the classic problem of radiation from molten
glass in s furnsce. Glass blowing is a very traditional and old technique.
When ftemperature distribution in molten glass was measured, it was
found o be more uniform thap that expected from best conduction slone.
When researchers wrote the equations and solved for the temperature
distribubion uwsing heat conduction alone, they found more variation than
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was actually measured and they started investigating why it was so.
They thought convection may be the culprit and tried incorporating
it. But this too did not help the simulations better agree with the
measured results. It was later discovered that glass itself has emission
and absorption characteristics and one has to integrate this conduction
with the eguation of radiation. In the late 1940s, it became clear thaf gas
radiation was largely responsible for this behavior and it was observed
that when radiation interacts with a substance, part of the energy may
be redirected by scatiering, which may in turn, be caused by a small
particle such as an electron or & huge one such as a planet. 8o a wide
range of length scales are involved.

Depending on the length scale, different theoriss of seattering are used.
I the length scale is very small, Rayleigh scattering is adeguate. If we
consider ice, water or rain in the atmosphers, we cannot use the Rayleigh
scattering, but ingtead use the Loventz-Mie scattering theory. However,
if the particles are big enough and are not spherical, this theory will also
not work and geometric optics has to be used.

5.1 Principal difficulties in studying gas
radiation

In gas radiation, evervthing is happening from a volume and not from a
surface like before. Absorption, emission and scattering are a function
of the wavelength, A and happen at all locations within the medivm,
which makes il mathematically very difficult, Spectral effects are more
provounced in gases than from solid surfaces. This gray gas assumption
s more a myth than a reality. Hence, the engineering treatment of gas
radiation would involve simplification of one or both of these difficulties.

5.2 Important properties for study of gas
radiation

» w3 is a monochromatic orspectral absorption coefficient {m™')
Therefore, if incident monochromatic radiation is given by I, the
absorption by the gas per unit volume per unit solid angle per unit
wavelength interval is given by xyf) in W/m® ym.sr.

¢ Similarly, we have €, which is the monochromatic or spectral
emission coefficient which also has the unit m™t. The ¢, we define
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for gas radiation is different from the e) we defined for radiation
from surfaces. The emission by the gas is given by e)I)(Ty)
W /m3.pum sr.

5.3 Equation of transfer or Radiative transfer
equation (RTE)

dA I

Il.,s Astds
WN}
s f—>]

Figure 5.3: Gas volume used in the derivation of the RTE

Consider a gas volume with a cross sectional area dA, thickness ds. I ,
is the incoming radiation in direction s, while I 544, is the outgoing
radiation. The area dA is normal to the direction s such that the
radiation is traveling in a direction normal to the cross sectional area.
We are now trying to find out the rate of change of the intensity of the
radiation as it passes through the gas volume. Then we to determine
the factors which malke this rate of change of intensity not equal to zero.
Since we are neglecting scattering, there can be only two phenomena,
namely absorption within the gas volume or re-emission from the gas
volume. The balance between this emission and absorption will lead
to this dI,. It looks very simple and unassuming, but this is only
deceptively innocuous.

The change in intensity Iy , when passing through the gas volume

=D orde-dA — I ..dA (5.1)

By Taylor’s series expansion,

dI, d*I, ds?
I)‘,3+dsdA — Ix,adA = gds.dA + @ EdA (52)
We set the higher order terms to 0, which is the error associated with

this approximation.
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Energy absorbed by the gas in the interval dA is
= kI dAds (5.3)
Energy emitted by the gas volume:
exlpn (Tg)dAds (5.4)

The intensity I, which is incoming, need not be related to the
temperature Ty, as it can come from anywhere. But what it emits will
be completely dependent on its temperature Ty.

With the absorption, the I will tend to decrease as the radiation passes
through the gas volume but this will be compensated by the emission
from the gas. So now we have to do the energy balance for the gas

volume,

dl

d—: = exlpa(Ty) — kalx (5.5)
We can cancel dAds throughout, implicitly assuming that dAds # O.
Hence these equations are not valid at mathematical points, which have

no area or volume. These are valid only around a small area or volume.

On doing this we get the following

dl
d_S)‘ + kD) = EAIbA(Tg) (56)

Equation (5.6) is known as the RTE or radiative transfer equation.

The out scattering and the in scattering may have integral terms also as
scattering may be different in different angles and different directions. So
the left hand side will have a differential term, while the right hand side
will have integral terms and hence Eq. (5.6) often becomes an integro-
differential equation. This makes radiative heat transfer extremely
difficult. Fortunately, numerical techniques are available now to solve
such equations.

Now let us try to work further with the above equation. Let the whole
gas be contained in an isothermal enclosure at T' = T,;. The beauty of
the isothermal enclosure is that the gas and the walls are all at the same
temperature T,. The radiation coming out from this enclosure will be
analogous to radiation coming from a black body. Therefore, if we take
a sample and find out the I, in a particular wavelength interval and if
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we take apnother sample, it will also be the same. Therefore,% =0
everywhere within the isothermal cavity.

I # f(s) (5.7)
Iy = D(Ty) (5.8)
(5.9)
Substituting in Eqn.5.6
0-+mdpa(Ty) = eadan(Ty) (5.10)
T (5.11)

This is Kirchhof's law.

The isothermal enclosure concept is used ounly to prove this but it is
universally applicable; we can make measurements and check it. Getting
back to the BTE, we have

dls

— ol = madn(Tg) (5.12)

Eguation 5.12 locks so simpls, but when we try to solve the equation,
we will see that it will lead to an integral that cannot be solved.

Let us now consider an asymptotic case where the absorption is more
important than the emission. Consider a wall which is black at a
temperature T, surrounded by gasg at 7T,. Let a receiver be placed
at s distance L from the wall which receives the radistion coming out of
the wall. This radiation is made up of two contributions

1. The radiation from the wall which is modified or attenuated by the
participating medivin, which evenfually reaches the receiver,

2. Radiation from the gas also falls on the receiver, The radiation on
the receiver can come from any portion of the wall and hence we
have to derive the formulation for a general angle 8 (# = 0, is the
special case).

When Ty >> Ty, exdy(T},) is much smaller compared fo the other terms
in the equation because the emission component is very less. If we have
& 1000 K wall while the gas is only at 300 K then this condition is
approached. Then the RTE becomes (if x is taken as the s direction),

dl,
22 Sy = A
du fady =0 (5 3}
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W _ e (5.14)
I,
Asgguming a gray gas,
’
dT = —kdx (5.15)

If we integrate this, we get J = Ade™*¥,
Atz =0,1=1I, . A=1I, Now the solution becomes [ = fye~*®,

Therefore, the radiation decays exponentially as it passes through the
depth. This is called the Beer’s law or the Lambert’s law or the
Beer-Lamwbert’s law.

Now consider solar radistion which is impioging on the ocean waters.
Let us say it is fy at the surface and as it goes in, it will go as fpe ™%,
As we go to the bottom layers of the ocean, the radiation received hy
the bottom layers is much less compared to the top. Because of this,
the bottom layers are at a temperature much lower than that of the top
layers. If the top layer is at 30°C, then at 1km depth, it may be at
10°C. This is a stable temperature gradient because the warmer snd
lighter water stays ot the top. This is what helps meintain the aquatic
Life. We can see that it is very difficult for organisms $o survive very deep
below because light is not available for photosynthesis. If we exploit this
temperature difference o run a heat engine, we are talking about what
is called the Ocean Thermal Energy Conversion or OTEC.

So, simple radiative transfer equations can be used to explain s0 many
phenomenal In the case of above example the source is at 5800 K and
we do not worry about €3y (T} as the medium is around 300 X or so.

We will look at the simplified treatment of the RTE equation and some

of its solutions. Consider a black wall whose emissivity ¢ = 1 at

temperature T,,. Next o it is a plane gas layer of thickness L, which

is infinite in the other two directions at temperature T,;. Essentially, we

are looking at how the intensity varies in the direction x. Now we want

to solve the equation of transfer and find out how I propagates with x.
diy

et fady = madpn (Ty) (5.16}

If & is oriented at an angle # to dA (look at path 2 in Fig. 5.4}
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Figure 5.4: Radiation heat flux at a distance L from the source in a
participating gas

dl
003(9)(1—; + falx = waoa(Ty) (5.17)

When ¢ = 0, equation reduces to Eq. (5.16). The radiation arriving at
the area dA consists of two components.

1. The first is the radiation from the wall, which goes through the
gas gets attenuated (because the gas is absorbing radiation and
participating in the process) and arrives at dA.

2. The second component arriving at dA is because of emission from
the gas.

So the two components are transmission by the gas and emission from
the gas. For a plane gas layer,
ar+
dx

koT?
+ It = % (5.18)

We have done several things here. We are assuming that the gas is gray
as we knocked out k) and replaced it by k. We have used It ,because
we are looking at the positive direction of x.
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‘We have replaced Iy, by I and ds by dz. We will solve the equation of
transfer for the straight path and infer what the solution for the slant
path will be.

5.4 Solution for the straight path

There will be two parts to the solution, the complementary function
(CF) and the particular integral (PI). The complementary function is
obtained by setting the right hand side to 0 of Eq. 5.18.

General solution = CF 4+ PI

To get the CF, we do the following

+
% +wIT =0 (5.19)

It = Ao (5.20)

The PL, I+ = gT—?;; is evident. The general solution is then

T4
It = Aem 4 g; (5.21)
Atg =0, It = g Therefore,
4, 4
Ty o ped 4 T (5.22)
Kis kil
[+3
A= (T~ T5) (5.23)
4 s
IH(g) = Tomemre 4 T8 (g gy (5.24)
w ki
Atz=1L . T4
L) = -‘T%’—e—“b e (5.25)

The units of xL is m~L.m, a dimensionless quantity. This frequently

appears in radiation heat transfer and is called the optical depth (). If
the optical depth of one medium is higher than that of another medium,
it means that its capacity to absorb gas radiation is much more. An
optically thin gas is one in which + is very small and it absorbs a small
amount of the incident radiation. An optically thick gas is something
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that has a high 7 and little will emerge out of it. 7 is a dimensionless
guantity. In general,

4 oT?
I'(z) = %e—"z + 79(1 — e ) (5.26)

The performance metric for the gas layer of thickness L is the ratio of
the intensify ai x to the intensily at 0, given by

I'z)
o

e " 4 (;:’:})4{1 —e %} {6.27)

If %ﬁ- << 1, (for example, the gas temperature is 300 K and the
wall temperature is 1500 K), the above equation reduces to the Beer-

Lambert’s law. I (z)
z T
=g e 2
7+(0) e {(5.28)
Why should we always worry about the straight path as radiation can
arvive at the elemental area d4 from anywhere? We did not want to
work with the general path and gef into a mess and now having got the

result for simple path, by induction or inference, we can get what I will
be for a slant path. For a slant path,

4 74
b Tey Oty o Tl
I (msg)- e 0 - P {1 — &7 cest ) {5.29}
Let cosf = pu
T‘i Ty T4 re
}"i"(z‘?;)m f@'ﬁemﬁ +m(1—-—ﬁ“#'} (53@}
i w w

‘We can check for the asymptotic correctness of the expression by making
cosfl = pu=1.

This is the solution for the equation of transfer. We can see that even
for the simple case of one wall being black, a gas layer which is gray, and
for one positive direction of x, it looks quite formidable. Even so, this
can be handled by pen and paper; the more complex ones have to be
solved using programs.

55 Heat Huxes
The heat fux at x=0, going out in the positive direction of x is given by

I p%
0 = j{ f " I} (u)cosbsinfdods (5.31)
$=0 J8=0
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I is only a function of g and cannot be pulled out of the integral and
it is not a function of = as we are specifically evaluating the integral at
z = L. If we have azimuthal symmetry, then infegration with respect
to d¢ can be done. The first simplification is to pull the d¢ out of the
integral, as follows:

1
g5 = 2= ji; I} (1)cosfd{cost) {5.32)

Here, the sind was taken as d{cosf) and therefore the limnits were changed
from 1 to 0 into 0 to 1. Now d{cos@)can be written as di and we have
to substitute for Jp(p) and accomplish the integration.

1
g = j; I (el (5.33)

o1 r,  oTy T
+ 2f W o TEy Ta g o TE 524
i = o @{ en(="0) 47 (- eap(-")) b (5.34)

1
4,2 1
o Tig Toph _TE
g, = 2% S G+f;} QW?T{TW T Hexp( #)Mdgﬁ (5.35)
3
it = o+ 20T - 1) [ eon(-"")pdu (5.36)
o

‘Whatever method we try, this integration cannot be done. This ig an
integral that frequently appears in radiative hest transfer. It is called
an exponential integral of order 3.

85.5.1 Exponential integral of order n

The expression for an exponential integral of order '’ is given by

i
Eu(®) = [ urtep(~2)du (5.37)

When n=3, we have

By(t) = f;} a"exp(—ﬁ)dﬁ (5.38)

#4 is bagically & dummy variable.
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5.5.2 Salient properties of E;(z)

. 1
l.l_r;% Ey(t) = (2 — t) (5.39)
E3(0) = 0.5. The ¢ in Eq. (5.38) corresponds to actually 7 or optical
depth. If the optical depth is very small, this exponential integral
reduces to % — ¢, 8o the limit where ¢ spproaches O is called the
optically thin limit for radiation. It is optically thin encugh to
allow the approximation, but it is not optically thin enough to neglect
gas radiation. Fg{oo) = 0. Now we can write the general expression for

g7 as

af = o)+ 20Ty — T;)Es(ry) (5.40)
= 2E3{rp)oTyy + 0Tyl — 255(7))] (5.41)

The values of Eg(x)} for various values of x are presented in Table 5.1,

Table 5.1: Values of exponential integral Fa(x)

x  Eafx) x  Ealx)
0.00  0.50000 0.60 0.19156
0.01  0.48029 0686 017830
0.02 0.48098 0.7 0.18607
.03 047201 075 015477
.04 (.46333 .80 0.14433
0.05 0.45483 (.85 0.13466
0.06 0.44677 0.9¢ 012671
0.07 0.43884 .85 011741
0.08 043113 1.0 010870
.06 0.42362 1.20 0.083%4
010 0.41630 1.40  0.06458
0.15 0.38228 1.60 0.04991
0.20 0.35185 1.80 0.03872
0.25 (.32469 2.00  0.03014
0.30 0.3000b 2.25 0.02212
0.35 0.27768 250 0.01630
0.40  0.25720 2.5 0.01205
.45 (.23867 3.00  0.00803
.80 0.22161 3.25 000664
.56 0.20895 3.50 0.00485
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For the optically thin gas,

1

Ey(rr) = 5-7L (5.42)
and 1 — 2E3(TL) = TL (543)
g = 20Ty + (1—271)0T, (5.44)

.. The radiation arriving at x=L consists of two parts namely:

1. the radiation which is directly coming from the gas (first term)

2. the radiation which is coming from the wall and is attenuated by
the gas (second term)

¢ = 27 =(2L)(K) (5.45)
g = 1-21,=(1—¢y) (5.46)
- qf =€qoTy + 140T,, (5.47)

In the above two equations, €¢; and 74 can be considered to be the
emissivity of the gas and gas transmissivity respectively.

At the end, we are able to define the gas emissivity which consists of two
parts 2L and k. 2L is basically related to the geometry while « is related
to the capacity of the gas to absorb. Therefore, when we combine the
geometry part and the thermal part, we are able to get the equivalent gas
emissivity, which we can use with the radiosity formulation developed for
the evacuated enclosure, by modifying it.

What is this 2L? This 2L represents the mean path traveled by all rays
to arrive at the elemental area dA which is located exactly at a minimum
distance L from the wall. For cosf = 1, it will be just L. For all the
others, it will be L/cosf and hence keeps changing. This 2L is some
sort of an average or mean length which a ray travels before hitting the
elemental area in the receiver (Fig. 5.4). Hence, 2L is called the mean
beam length, usually denoted by L.

We started out with the equation of transfer and now the formulation
has reached a critical stage, where the gas emissivity is a product of
two distinct parts wherein the thermal part can be completely separated
from the geometry part. This 2L is the mean beam length for a plane
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gas layer. This mean beam length will change for a cylinder, sphere and
so on. So, if we are able to calculate the mean beam length and we
also know k, we can calculate the gas emissivity and from that, the gas
absorptivity can be determined and we can proceed further.

Let us consider a hemispherical gas volume whose radius is R (see Fig.
5.5). There is an elemental area dA at the center of the bottom surface.
We are looking at this gas volume which is absorbing and emitting. We
also have a small area on the hemisphere and we are connecting to the
elemental area dA by trying to find out what is the radiation arriving
from here at dA after traveling through the gas volume.

The gas is at a temperature T; and is optically thin. These are the two
assumptions. The idea behind this exercise is to understand the physics
behind the mean beam length concept. We have derived that for an
optically thin gas, for radiation from somewhere arriving from length
L, expression for intensity for I, (L), (where + indicates the positive
direction of x) is

It(L) = ai#V exp(—xL) + a:; (1 — exp(—«L)) (5.48)

Now let us consider ¢~ instead of I,

4 O'T4

g (R)=m aiw exp(—kR) + Tg(l — exp(—kR)) (5.49)

We have done two things here:

1. instead of L, we have used R

2. we have multiplied the intensity expression by 7 because it is
isotropic.

Optically thin gas
at temperature Tg

Figure 5.5: Hemispherical gas volume used for elucidating the concept
of mean beam length
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It is the gas which is contributing more to the radiation. T,, may be at
300K while the gas may be at 15800K. For such a case, we can neglect
the first term and so Eq. (5.49) becoines

g (R) = 0T, (1 — ezp(—~&R)) (5.50)

For optically thin gases, #K << 1, 50 the expression within brackets can
be expanded as xR,
g (B) = oTyxR (5.51)

If we are able to write the flux as oT¢ multiplied by some guantity
{xH in this case), this quantity in brackets can be called as equivalent
emissivity.

g(R) = eolf (5.52)
where, ¢ = &H (5.53)

In Eq.0.53 x ig thermal part and R {8 the geometric part. When we
congidered o plane wall which was black and at & femperature T3,
surrounded by an isothermal gas at T, we figured out that the mean
beam length was egual to 2L. Here, the mean beam length is A itsell

However, these analytical ways of deriving the mean beam length cannot
be done for each and every geometry. Certain mean beam lengths have to
be caleulated or evaluated., Tabulated values of the mean beam Jength for
a few geometries are given in Table 5.2, which may be used in problems
involving those geometries.
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Table 5.2: Mean beam lengths L. for different gas geometries (adapted
from Howell et al. (2011)

Sl Characteristic
No. Geometry length L.
1. Hemisphere radiating to element at  Radins B R
center of base
2. Sphere (radiation to surface) Diameter D 0.65D

3. Infinite circular cylinder (radiation Diameter D 0.95D
to curved surface)

4. Semi-infinite  circular  cylinder Diameter I (0.65D
{radiation to base)

&8 Circudar cylinder of equal height Dismeter D (60D
and diameter (radiation to entire

surface)
6. Infinite parallel planes (radiation to  Spacing 1.80L
planes) between
planes L
7.  Cube (radiation to any surface) Side L (.661L
8.  Arbitrary shape of volume V Volume to 36V/A
(radiation to surface of area A} area  ratio
V/A

In this table, the mean beam length between two parallel plates is 1.8L
ingtead of 2L becaunse of the expansion of E3(7"} in the vicinity of 7. For
an arbitrary shape of volume V and surface area A, the mean beam
length = 3‘6%, If we apply this formula for the plane gas layer of
thickness L, we get 1.8L.

Example 5.1: Consider a gray gas with an absorption coefficient of
% = 0.15m™1. It is mainfained of a termperature of 400K and is 0.4m
thick. A black wall at 500K is at x = 0. Determine the intensity af
x = 0.4m for

e straight path

» slant path at 60°

Use the small v approzimaition as well as the ezponeniial iniegral for
evaluating the heot flux of x = 0.4m and comment on the resull.
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/|
/ X
@ T =400 K
T,=500 K[ k=0.15m’ Z
e=1 <
/( L=0.4m
| /]

Figure 5.6: Problem geometry for Example 5.1

Solution
a)
T4 T
I{0=0 = ° Wemp(~xL)+ " ¢ (1-eap(~kL)) (5.5
I}, ,(6=0) = 1049.2 +26.99 (5.55)
I}_,4(6=0) = 1076.1Wm 2sr (5.56)

The intensity coming out of the wall is

4
oTy,

I = = 1128.01Wm ™ 2sr (5.57)

The intensity coming out of the wall is not asked in the problem but we

have calculated this to infer the result. Now look at the ratio of I at

z=Land I at £ =0. It is almost 0.98 or 0.99. This shows that the gas

is not absorbing much. Therefore, it is an optically thin gas. If this ratio

were instead got as 0.5 or 0.6, then the gas would no longer be thin.
TG,

176 =60) = “Werp(— )

4

4 07-"(1 — ezp(- (5.58)

wL
cos(60) )

I} _,,(0=60) = 1052.7Wm 2sr (5.59)



198 Radiation in participating media

b) Small v approximation:

= &L (5.60)

= 0.15x 0.4 = 0.06 (5.61)

Es(rg) = 0.44 (5.62)
g, = B.67 x 107%[400%{1 — 0.88)] (5.63)

+ B00% x 0.88) {5.64)
3292.TWm > (5.65)

a(EI) = oTi{1—2Es(rL)] + 20T (Es(L)] (5.66)
From the tables,

Ea{0.06) = 0.447 {5.67)
ar(BEI) = 567 » 107%(400%)(12 x 0.447)  (5.68)
+ 2% 567 x 10735001 < 0447 (5.69)
= 3321Wm™? {5.70)
21 — 32
Percentage ertor = (33332393) X 100 = (.84 {5.71)

If 7 < 0.1, then the optical thin gas approximation is good. So whether
a gas is opiically thin or thick depends on not only its absorptivity but
also on the length scale involved. It is the product which matters. One
can have a very heavily absorbing gas but if the length scale is only 1mm
or 2mm, the medinum will still be optically thin. On the contrary one
can encounter a poorly absorbing gas but because of a large thickness,
sl product can be significant.

In the previcus problem, we have made many asswmptions - a gray gas,
single gas, isothermal gas. Any of these assumpticns can be questioned.
Most importantly, this analvsis cannot be used in an internal combustion
engine or a combustion chamber simply because there is never a single
gas there. 5o the next levels of complexity will be

(1) How do we get the €, for a mixture of gases?
(2} What will happen if the walls are not black?

Are there some recipes available if there is a mixture of gases? Yes! The
commonly encountered participating gases are carbon dioxide and water
vapour, as found in power plants, internal combustion engines. People
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have done experiments at 1 atmospheric pressure and have given charts
for a mixture of carbon dioxide and water vapour, using which we can
calculate the mixture properties.

Example 5.2: Two infinitely long vertical plates are parallel lo each
other. Both the plates are black and are at lemperatures T = 1600K
and Ty = 900K respectively. The spacing between the two plates is 1.bm
and is filled with a gray gas of 1200K with an absorption coefficient of
0.08m~1. Determine the heat transfer rate at each of the two boundaries.

R e S
Tg
T, k= 0.08 m*
TZ
€= « g,=1
-
15my”®

Figure 5.7: Problem geometry for Example 5.2

Solution

We can use superposition solving,for the left and right walls separately.
For one wall, from left to right we consider in the positive x direction
and for the other we consider the negative x direction. We need to take
the algebraic sum of the heat fluxes. The heat flux expression must be
asymptotically correct, such that when « = (0, we must get the original
parallel plate formula for

g=0o(T} —T) whenep = =1
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Left wall:

Heat flux is transferred from left wall to the right wall.
g0 = 20T} E3(rs) + 0T [1 — 2E3(n)] (5.72)
Right wall:
qr = 2005 Balry, — 72) + ool — 2Ea(rp ~ )] (5.73)

Heat flux is transferred from the right wall to the left wall.

Net radiative flux at x == go -+ gz, {5.74)
Special case: K = 0 {(5.75)

@ = oIt (5.76)

g, = oT§ (5.77)

Net radiative flux at x = gg — qr = o(T9 — T5) {5.78)

The contribution for the gas volume term is 0 from both the left and the
right. This is consistent with our understanding of the problem. Now,
substituting the numerical values in the equations for the problem under
consideration, we get go and gr. At x=0,

Ea(0) = 035 (5.79)
Go = 20T{E(7)+ 0Tyt — 2Bs(rz)]
= 2% 5.67 x 1078 x 1500* x 0.5+0
= 287.043kW/m? (5.80)

Bylrp —1e) = F3(0.12) = 0.40 (5.81)
qr = 2075 x 040+ T, [12 x 0.40]

29961.5807 + 22879.7291

52.84kW/m? (5.82)

a0 — gz, = 234.20kW/m? (5.83)

Gnet

5.5.3 Enclosure analysis in the presence of an absorbing
or emitting gas

Lot us consider two areas 41 and Ap in an enclosure and two elomental
areas in them, d4; and dA;. The distance between them is R, The
unit vectors are n; and nq and the angles subtended by them are &
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Path through the gas

Figure 5.8: Enclosure analysis in the presence of an absorbing and
emitting gas

and 69 respectively. What is the difference between this R and one we
considered in the previous chapter? This R is the path through the gas
which interferes with the radiation passing through, while previously R
was the path through vacuum or a non participating medium. All the
surfaces in the enclosure are gray and diffuse. The gas is optically thin.
So the radiation leaving dA; that falls on dA; is given by

Jl dAl dAgCOS(Ql)COS (92)
nR2

The extra term in expression (5.84) is the attenuation which is
exponential. For an optically thin gas,

exp(—kR) (5.84)

exp(—kR) = 1 — kR (5.85)
Substituting Eq. (5.85) in Eq. (5.84), we have

J1dA1dAgcos(61 )cos(G2) B EJldAldAgcos(Bl)cos(ﬂz)

s R (5.86)

Therefore, the irradiation of A because of the radiation emanating from
A; is given by the double integral of the two terms over A; and As.
Assuming uniform radiosity, we take the J; out.
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The irradiation of A; because of radiation from A; is given by

/ /’ dA1dAzcos(0;)cos{02) /' /’ dA1dAzcos(01)cos(fs)
Jlﬁi 2 ‘—Jj_K'.
Ax J Az ﬂ'R Ay + Ag ?TR

(5.87)

The term within the first integral is A, Fip = A3F5;. The term within
the second integral should also be something similar and let us say if
can be given by Ai1Lys = AsLoy. The irradiation on Az only from the
radiation coming from 4; is given by

J1A1F12 e %Jlﬁle = AQG; (588}
Using reciprocal rules, we can write
AQG%" = J1AaFys — wJ1AsLy {5.86}
sk wl
Gf = JiFyll — ] = J P [l — 2] (5.90)
Foy Fip
By the same token, L
G = Bl - 2 (5.91)
Fyy

For a two surface enclosure problem, please remember the parallel plate
formula for an evacuated case, the &1 will be J multiplisd by the view
factor. Now, in this case, we get Jo multiplied by the view factor and
another factor. This extra factor can be deemed to be the transmittancs
of the gas. If the transmittance of the gas is 1, the expression reduces
to what we obtained for the evacuated enclosure or the transparent
medium. 5o whatever is within the brackets, will have a value less than
1 consequent upon the fact that x 3% 0. & represents the amount of
absorption. Ewen if the gas is optically thin, » will still have a value.
Therefore, 1 — %‘%ﬁl can be considered as r{g) or the transmissivity of
the gas.

Gt = IaFiams {5.92)
Lig = Ly1= mean beam length {5.93)
L;; also follows the reciprocal rule.

H.Lzl K,le
p=l-—=1-—= 5.94
Fyy Fia (5:94)
Having defined this, we have to modify the irradiation terms. ) consists
of two components

1. Irvadiation from other surfaces, which can be handled by
calculating 7y; for all the surfaces
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2. Gas emission, given by me_,f,.’i"g4

N
G;= EgO‘T; + Z Fyjtimi (5.95)
g=1
EL@') ( ﬁLﬁ)
wherer;=(1— —21=1{1-— 5.96
kX ( ﬂj F}‘i ( )

There are two critical changes, we have done to irradiation with respect
to evacuated enclosures:

e We have an emidssion term in the irradistion too.

o Within the summation, we have the gas transmittance included by
the use of 7.

The gas f{ransmittance consists of Lis, which is the simplified
representation of the solution to the equation of transfer. If it is not
an optically thin gas, all these tricks do not work and we have to solve
the equation of transfer and do full blown radiation calculations. Just
Hke for the case of & lumped capacitance system in conduction analysis,
wherein we say the whole body is at one temperature, here too, the
approximations are valid only for a single optically thin gas.

B o= ol + (1 - )G (5.97)
o = Ji— Gy {5.98)

So the formulation is exactly as before, except that the irradiation has
extra terms and one modified term. The extra term is the one involving
emission while the modified term is Fi;.J;.

This iz basically the theory of evacuated enclosure applied to an
absorbing/emitting gas. If k = 0 and the gas is not participating,
112 = 1,64 = 0 and hence the first term in Eq. (5.97) becornes 0 while
G; becomes essentially the summation of just Fj;J;. Hence, there is an
asymptotic correctness associated with this.
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Example 5.3: Revisit example 5.2 and solve it using the modified
enclosure theory.

/-\/-\/

Tg =1200 K
k=0.08 m!
1.5 m

T,=1500K |lg—— | T,
81:1 £

Figure 5.9: Geometry and pertinent data for example 5.3
Solution:

View factors:
Fi1=0Fy=1,Fy=1,Fy=0

2 = Tm=1- Lo (5.99)
Fig
ST (.. 11'8 x15) _ o784 (5.100)

What does this 0.784 represent physically? It means that the gas is

allowing 80% of the radiation to go through. It is absorbing 20% of the
radiation.

eg = 1—712=0216 (5.101)
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Jio= elo'Tf + (1 — El)Fngg = O'T{1 (5.192)
Ji o= 287 x10° Wz
m
Jo = eoTi+(1—e)Fnd (5.103)
= 37200~
Gy == Ege‘.’!'fz;i + Fiadors (5.104)
= 0.216 x 5.67 x 107% x 1200* + 1 x 37200 x 0.784 (5.108)
= 54.4@5
e
g o= — G o= .87 x 100 — 544 x 107 (5.106)
= 232;“%;
it
g2 = J2-Go (5.107)
Gy = €Ty + Fiahims (5.108)
= 25395.8 + 1 x 2.87 % 10° x 0.784 (5.109)
= 25x10° W;
it
gy = Jy— Gy = 37200 — 2.5 x 10° {5,110}

= 213 x 1@5;@
wm

If we are given a black enclosure or a problem involving two black
surfaces, parallel plate formula, we can either use the solution and get
the exponential integral or we can use the theory of evacuated enclosures
and solve the problem.

As common sense will tell us, the most important point is that radiation
is leaving the left wall and arriving at the right wall. Therefore, the net
heat fux from the left wall will have to be positive because that is the
wall at the highest temperature. The gas and this wall are at higher
temperatures compared to the right side wall. The right side wall, being
at a lower temperature, must receive radiation from both the left wall
and the intervening gas. Therefore, intuitively one would expect g9 to
be negative. But the beauty is that ¢4 # ga.

This means that the situation is unbalanced. We do not have equilibrium
here and therefore the radiative transfer equation is not an expression
of the law of conservation of energy. At a particular instant of time,
what iz the net heat flux which is golng out? This is the question it
fries to answer. We have to combine it with some energy equation if we
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have to get the temperature distribution. Alternatively, we can pose the
problem like this. For equilibrium to prevail between these fwo parallel
plates, what should the gas temperature be? That means we will have
to start with ¢1 = —gg, treat T, as unknown and determine the resultant
temperature, we do it in the next problem.

Example 5.4: Revisit the previous problem for the case of radialive
equilibrivum. Determine the gas temperature T, All other parameters
are the same as before,

Sclution: The solution fo & radiative transfer equation does nos
guarantes eguilibrium, The gas is getting heated in this case, The left
wall is giving out 232 kW/m? while the right wall is getting only 213
kW/m?, So 18 kW/m? of energy is being absorbed by the gas every
second. The gas has to get heated up. So the equilibrium temperature
should be above 1200 K.

Radiative equilibrium case:

g = Ji—G {5.111)
g = Jo—Go (5.112)
g1 = —goffor radiative equilibrium) (5.113)
p:
Joo= o= 2.87 x 10533 {5.114)
W2
Jo = oTy= 37200 — {5.115)
Gy = Ty + Flalyma (5.116)
Gy = 0.216 x 567 x 107 x T} + 20164 (5.117)
Tig = (.784 {5.118)

Fortunately, the mean beam length is not dependent on tempersture.
H it were so, we would get into a loop. We mede a statement earlier
that we are able to separate the geometric and thermal parts. Now,
we can appreciate the significance of that statement. If the thermal
and geometric parts were combined, it would lead to tedious iterations.
Fortunately view factors are also not dependent on temperatures.

GFg = ng’T; + FiaJims (&119)

0.216 x 5.67 x 1078 x T3 4 2.25 x 1077 (5.120)

g1 = —¢2 (5.121)

Y I N T o £ {5.122)

Fiddy = Gy {5.123)
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2.87 x 10° + 37200 = 0.216 x 5.67 x 107 x T + 29164
+0.216 x 5,67 x 107% x T +2.25 x 107° (5.124)
2.87 x 10° + 37200 = 0.432 x 5.67 x 107°% x T + 2.54 x 10° (5.125)

T} = 2.859 x 10 (5.126)

T, = 1300K (5.127)

If we want the gas to be under radiative equilibrium, it should be at
a temperature of 1300 K or left to itself, if sufficiently long time has
glapsed, and we are not controlling the gas temperature, the gas will
come to this temperature. Then, whatever is coming from the loft side
will go to the right side.

In the absence of the gas, what will ¢ be? In this case, with the gas,

gy = —gy == 2.22 X 105% We want to appreciate the 3 cases:
o Ty = 1200K,q1 = 2.32 x 10°.% gy = ~2.13 x 105 %5 If all the
temperatures ave specified, we have no control over the energy
balance.

talk about energy balance in the equilibrium case when ¢ = —@a
Even in this case, because the gas hag a £ # 0, we are getting a
Hux lower than what we would have got if we had a transparent
gas or vacuum between the two plates.

e Gaswith s =0,q1 = —¢g = 2.5 x 1052’;-
So by working out the last 3 problems, maoy of the comcepls in gas
radiation become clear. Because of the absorption of the gas, though it
is emitting, the gas is at a temperature in between the other two walls
and the net effect is that it refards the How of heat from one wall to the

other wall.

There could be another case where the gas is very hot and we want the
heat to be transferred to the other walls. Where will such a situation
occur? In a fire tube boiler, water Hows outside of the tubes which
bhecomes steam because of the hest From the gases. In this case, the
walle are hot and the gas is getting heated up due to the presence of the
wall. The gas will reduce the radiative heat transfer befween the two
walls, because of its absorptive characteristics.
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5.5.4 Calculation of emissivities and absorptivities in
mixtures of gases

Mixtures of gases are very important, as we find them in combustion
chambers, furnaces and exhaust gases of automobiles. Wherever
hydrocarbons are burnt, the resultant products contain water vapour and
carbon dioxide. Both are radiatively participative and they interact such
that they have overlapping bands which cannot be separated. Radiation
entering Farth’s outside atmosphere follows the Planck’s distribution
for & body at 5800 K while entering, but the same becomes zig-zag afier
getting attenuated by gases like water vapour and CUy. If we want to
do & detailed caloulation, we have to solve the equation of transfer for
every spectral band knowing the properties of absorptivity and emissivity
which must come from molecular spectroscopy and then solve it band
by band or interval by interval. This iz called the line by line model,
which is very advanced and time consuming.

However for practical purposes, if we want to have a first cut analysis or
degign of & combustion chamber or & furnace and so on, we do not have to
do those detatled calenlations but opt for a simplified approach instead.
We use some tables or charts, do minimal caleulations and arrive af the
required information. These charts were developed by Hottel, mainly for
the Ho + OOy mixture at 1 atm pressure.

The gas emissivity, ¢, should be a function of

fg = f(Lmﬁ’Pg}PﬁC}Tg)

Ly = mean beam length

P, = partial pressure of the gas
P = total pressure of the gas

' = concentration of other gases
T, = temperature of the gas

The temperature is included here as we have already shown that
emissivity i a function of tempersture. We have included the
concentration of other gases because there could be inferaction and
overlap of absorption bands. There could be bands in which more than
one gas absorbs and so on. The total pressure affects the emissivity
because it decides how touch gas is present in & particular volume which
decided the intermolecular spacing, which in turn affects its capacity to
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absorb and emit. So,w baseline charts have been developed for pressure
of 1 atmosphere and the correction charts help give the corrections for
pressures other than 1 atmosphere.

Principally we arc considering two gases - HoO + C0Oq

¢ Emissivity of OO, is & {unction of the partial pressure of C0;
multiplied by the rmean beam length and its gas temperature.

&0 = fl(PGLma Tg)

The product of mean beam length and pressure is given in 8] units
as atw-m in the chart (see Fig 5.10) It will directly give us the gas
emittance and we can see that the maximum is 0.3, Suppose we
consider two parallel plates with L = 1.5m, mean beam length =
1.8x L. If the total pressure is 2 bar and the mole fraction of C0; is
0.4, the partial pressure of €O, is 0.8 bar. Now if we calculate and
get FerLy,, we see in the chart that varicus curves are available for
various values of Poln. T s the gas temperature given in Kelvin.
From this, we can straightaway read the value of ;. For pressures
other than 1 atm, we use the correction factor given in Fig 5.11

v Water vapour
g = fE(PwLms Tg)

Following s similar procedure, we will read the emissivity value
of water vapour from the charts given in Fig 5.12. If the P #
latm, we apply the correction factors from the charts again

(Fig 5.13).
ce = falP, Fulin) (5.128)
Py+P
cw = fi(Tg s Pulm) (5.129)

These charts are mostly empirical, and results were obtained after
many experiments were done with different concentrations of gases.

Then there are some spectral bands in which the absorption of
carbon dioxide and water vapour overlap. So we cannot simply
add the emissivity of carbon dioxide with the emissivity of water
vapour. If we want to get the total emissivity, we may be inclined
to believe that it would be correct to do it as e, + €. This should
be valid for lafm pressure. For other pressures, we would say it
should be c.6,.+ cweyw. But what will happen is that sometimes the
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sum of these two will exceed 1, which is not practically possible.
That is because we have not taken care of the overlap which has
to be subtracted.

Spectra of COs and HaO+C (O, overlap, so a correction is required.

P

Be=hlp,n
The correction charts for Ae¢ are given in Fig 5.14 for three gag
temperstures. Unfortunately, these are given only for three values
of temperatures -400 K, 810 K and > 1200K. If some other
temperature is given, then linear interpclation must be done
between two charts to get the value. Also, note that F, + F, #
Frorai 88 there may be other gases present, like nitrogen.

AP 4 Py L, Ty) {5.130)

Finally, for the HoO + U0y mixture, we have

(5.131)

{as absorptivity:

A mixture of COy and HeO mixture is not a gray gas and also has
different absorption spectral bands for various frequencies, hence ¢, #
og. Fortunately for us, the same charts can be used for oy also, but
with some changes. For ¢, the gas temperature (T3} is very important.
On the other hand for oy, the surface temperature (T3) will be very
important.
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T 0.65
Qs = UBats (Ti) (5.132)
T 0.45
Ay = cwew( 9) (5.133)
T;
T
where now, e, = fg (PL T) (5.134)
9
T,
€w = fr (PwLm—,Ts) (5.135)
Tg

In the above equation, Ty is surface temperature. A correction to take
care of overlap is given below,

Py

A =
* fs(w+PT

P+ P)In,T,) (3130

o= 0.+ ay — Aa (5.137)
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Example 5.5: A furnace having a spherical cavity of 0.5 m diameter,
containg a gas mirture at 2 atm and 1400 K. The mizfure consists of
COs ai o partial pressure of 0.6 atm, N3 with a partial pressure of 0.9
atm and the remaining is water vapour. If the cavity wall is black, what
iz the cooling rofe required o maodntain its femperature at 500 K¢

Sohstion:

Fip == Mean beam length = (.65 0.325m {65.138)
PLy, =0.6x0325 = 0.195atm m (5.139)
From the charts, €, .13 {6.140)
Correction factor for carbon dioxide ¢, 1.2 {5.141)
Correction factor for water vapour ¢y 1.57 (5.142)
Poley =05% 0325 = 0.1630tm m (5.143)
From the charts, €, 0.14 {5.144)
(P + Py)ly = 1.1 x 0.325 0.35 atm m {5.145)

Foy 0.5
poap =11 = 04 (5.146)
Ae(T, = 1400K) = 0.03 (5.147)
€y = Cofo + Oy — Qe (5.148)
gg = 0.13x 12+ 014 x1.57 003 (5149)
¢, = 0.36 (5.150)

We repeat the procedure for calcudation of ay. Bul remember that we
have to apply the correction in this case as

o, {from the charts) = 0.09 (5.151)
Oy {from the charts) = 0.17 {65.152)
ce = 1.2 (5.153)
cw = 157 (5.154)
T,
o, = ccac(—g)m:ﬂ.m (5.155)
Cuy = G| 9)045 0.432 (5.156)
P
Aa = fg (P +P’(P + Py )Ly, T,) (5.157)
Aa = 0.005 (5.158)
Qp = O 0y — A = 0.64 (5.159)



5.5, Heat fluxes 215

The most important thing we see here is that ¢, # ay. A mixture of
carbon dioxide and water vapour is a non gray gas.

g = SJ-G (5.160)

Q1 = (Ji—G)4nR? (5.161)

e = 1 (5.162)

J o= qoTi+{1-¢)=oT} (5.163)

G = egoly+ o (o) (5.164)
Dg+Tgtpg = 1; pg=10 (5.165)
ap+1, = Lirg=1—0y (6.166)

G = 0T, +(1—og)(oTT) (5.167)

g o= Ji-G =0T~ ega'T;* — 0T + oo TH5.168)

q = goT}— egoTy (5.169)

For this problem under consideration,

g1 = (.64 x 5687 x 107% x 5004

— 0.36 x 5.67 x 1078 x 1500* (5.170)

EW
@ o= =762y (5.171)
G = qirH* = —50.8kEW (5.172)

The solution tells us that we need o cool the cavity, which is very
evident. Most importantly, in this spherical cavity, if we have ethane,
propane, butane or LPG, burn it, allow it to reach a temperature of
1500 K and we get & mixture of C(q-+Ha(, it is possible to have tubes
on the outside of the spherical cavity, send water through them which
will get heated at the rate of 60 k'W. This is the radiative heat transfer
power that the gas is capable of {ransferring to the wsll. This will be
very important in furnace calculations, design of radiant super heaters
and so on. It has several engineering applications!
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PROBLEMS

5.1 Two very long parallel plates are maintained at uniform
temperatures of T;=850 K and Ts=>550 K. The respective
emissivities are 0.6 and 0.8. Between the two plates, an absorbing
and emitting gas at a uniform temperature of Ty= 400 K flows. The
spacing between the plates, L is 1.2 m. Neglecting any convection
between the gas and the plates, compute the net radiative heat fux
at the two walls in kW /m?,

5.2 An absorbing and emitting gas at a temperature of Ty= 1100 K
flows between two very long parallel plates. Both the plates have
an emissivity of (.8 and are maintained at s uniforie temperature of
Ty=To= b0 K. The spacing between the plates, L 18 1 m. Determine
the absorption coefficient of the gas if the amount of cooling reguired
at each wall surface is g = 35 kW/m® (Please note that this is a
classic inverse problem where one or more properties are estimated
from measured heat fluxes or temperatures, as the case may be}.

5.3 A cubical furnace 1 m on each side is made up of a mixture of
4% CO2 and 50 % Hz0. The remainder is Nitrogen. The gas
temperature is uniform at 1900 X and the walls are maintained at
10006 K. The inner surfaces of the furnace are black. Determine
the total heat removed from the walls in order to maintain the
temperatures.

5.4 Repest problem 5.3 for the case of the wall emissivities being 0.8
Comment on your results.

5.5 A rectangular furnace is of dimensions (.45 x (.65 x 2.0 (all in m).
The interior walls have a hemigpherical total emissivity of (0.8 and are
maintained at 750K, The furnace is filled with combustion products
at a temperature of 2100 K. The composition of the combustion
products by volume is 42% of CO3, 22% of water vapour and the
remainder Nj. The total pressure is 2.5 atm. Calculate the net
radiative heat flux to the walls of the furnace using the charts
for gas emissivity of mixtures and the radiosity method applied to
enclosures, modified for participating media.



CHAPTER 6

1erc

Introduction to atmospl
radiation

6.1 Introduction

In this chapter, the basics of radiative transfer in planctary atmosphere
are introduced. First we lock at radiation spectra, followed by black
body radiastion for temperatures comumonly encountered in planetary
atmosphere. This is followed by a consideration of RTE for a plane
parallel atmosphere that is emitting and absorbing. We then discuss the
case of radiative equilibrivin foliowed by & brief description of infrared
remate sensing.

6.2 Electromagnetic spectrum

As already discussed in earlier chapters, the speed of light {c}, wave
length{A) and frequency (v) are related by

In atmospheric science, A < 4um refers to shortwave radiation and is
typically associated with solar radiation. Long wave radiation {A >
4im} is typically associated with terrestrial radiation from the earth.
As already mentioned, visible radiation bas a wave length range of 0.4 —
0.7, Radistion with wavelength less than 0.4 and greater than 0.01m
is termed as ultra violet radiation. The range .7 — 4 is known as near
infrared (IR} and 4 — 100pm is known as far infrared. Radistion in the
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range 1 — 10mm is known as microwave radiation. The energy balance
of the earth is largely decided by the incoming sclar radiation which is
mostly in the UV, visible and near infrared radiation and the earth’s
radiation itself which peaks around 10mm (Far infrared). Microwave
radiation has no role in this. However, microwave radiation from the
earth can penetrate clouds and because of this reason is extremely useful
in both passive and active remote sensing. It is instructive to mention
that based on the relation E = hv, the energy associated with microwave
radiation emission is small and hence remote sensing of the atmosphere
with space borne instruments to detect the radiation has to be necessarily
done with low earth orbiting satellites. Figure 6.1 shows a simplified
representation of the electromagnetic spectrum.

Visible
Radiation

400 nm 700 nm

10 * nm
10 nm

Infrared
radiation

1 mm
Micro waves

10 cm

Radio waves
100 Km

. Fret:[uenl:\,lr
"‘. ﬂ /’ “\
|| |||| \ | \ 4'\“ | f\ / \‘ \ f\ \ \
[ IJ WYY \\; \/ I\ '( \f \_/ / Pl
Hz 10 1013 101 1015' 1012 108 104

Figure 6.1: Electromagnetic spectrum

6.3 Black body radiation

The basic radiation laws-namely the Planck’s distribution, Wien’s law
and Stefan Boltzmann can all be applied in atmospheric radiation with
the assumption that the sun is a black body.
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The Stefan Boltzmann law can also be applied to determine the Earth’s
equivalent black body temperature, as will be shown shortly.

6.3.1 Temperature of the sun

Example 6.1: Toking the mean sun-earth distance to be 1.49 x 10Hm
and the rodius of the oulermost visible layer of the sun Huy to be
6.96 x 10%m, determine the equivalent black body temperature Toy of the
sun {i.e sun’s outermost visible layer also known as soler photosphere) if
the intensity of solar radietion reaching the earth is 1353 W/m?.

Solution: .
1.48 x 101
Gphotosphere == 1383 Ei 6.96 % 108 ] (5.2)
{We can use the inverse square law in the above expression)
W
Uphotosphere = B.711 X 10?@ (6.3)

(The quantity 1353 ;E; is. known as the solar constant and is
experimentally measured). Using Stefan Boltzmann law, we have

ol = 6.411 x 107 (6.4)
6.711 x 10775

— 4

Tog = [5_6? x 10“8] (6.5)

Toq = 5865K (6.6)

Example 6.2: From the equivalent black body temperature of the sun
determined in the previous ezample and the Wien's displacement low,
determine the wave length corresponding fo the mazimum intensily of
solar radiation.

Solution:

Amaed = 2888um K (6.7}
2898
Mo = oa = 0.494um (6.8)

It is seen that A,z 18 very much in the visible part of the EM spectrum.
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6.3.2 Temperature of the earth

The earth is not a perfect black body and the fraction of incoming
radiation that is reflected, reflectivity, is around 0.3. In the parlance
of atmospheric science, this reflectivity is known as planetary albedo.

Example 8.3: If the carth’s olbedo is 0.3 determine the eguiveleni black
body temperature of the earth, assuming it o be in radiative equilibrium.
The solar constant con be assumed to be 1853 W/m”.

Solution:

4x RyoTy = mRE(1 ~ 0.3) x 1353 (6.9)
0.7 x 1358 19%

Teg = [4 x 5.67 x 1@-—8} (6.10)

Teq = 254K {6.11)

6.4 Radiative transfer equation for a plane
parallel atmosphere

From the previcus chapter, the RTE for a plane parallel atmosphere can
be written as

af Tt

— A =k A2

7 + kI =k o {(6.12)
where T is the temperature of the air layer in k, I is the intensity in m‘;?;r

and k is the absorption coefficiens. The use of Stefan-Boltzmann law in
Eq. (6.12) tacitly implics that local thermal equilibrium (LTE) prevails
in the atmosphere, However, this is true only for the lower atmosphere.

The plane parallel assumption reduces the problem to a one dimensional
one. Now, we have only two fluxes 77 and J~ in the upward and
downward directions.
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It = [[I(6).cosfsinfdfdg integrated over the downward facing
atmosphere and I~ = [ I(6). cos 8 sin §dfd¢ integrated over the upward
facing atmosphere.

6.5 Radiative transfer equation (RTE) for an
absorbing and emitting atmosphere

The RTE eqguaftion for monochromatic or spectral radiation intensity, Iy
(or 1), as derived in the last chapter is,

{Z? kI = k)‘Ib)A(Tg) (5.13)
In Eq.(6.13) ky is the spectral absorptivity in m™, “” is the direction
under consideration. The first term on the left hand side represents the
change in intensity, the second represents the attenuation by absorption
and the right hand side represents attenuation by emission. Please note
that if scattering by particles needs to be accounted, as is the case in
mictowave remobe sensing, a source tertn needs to be added to the vight
hand side of Eq.(6.13). Furthermore, please also note that Eq.(6.13)
agguress a gray atmosphere consequent upon the appearance of & in
the emission term, which in turn arises fom the Kircholf's law for a
gray medium wherein ey=k,. FEquation (6.13) is frequently referred
to a8 the Schwartzchild’s equation. Under the assumption of local
Schwartzchild's thermodynamic equilibrium{LTE), Iy can be replaced
by the Planck’s law. The LTE does not hold good for the upper parts
of the atmosphere, where the latter is rarefied.

In consonance with the terminclogy commonly used in afmospheric
sciences, we will denote f; 5 as By (T"). With this, Eq. {6.13) becomes

% + kx.In = By Ba(T) (6.14)
Equation (6.14) is a first order linear differential equation, provided
the source function (RHS) is known a priori, which is the case
for an absorbing and emitting medium and for simplified cases of
scattering.  For atmospheric scattering, the solution to BTE is
formidable. Multiplying both sides of Eq. {6.13) by ¢f»*

g8 i:%% + k;\..z;\] == ALy By (T (6.15)
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The LHS is actually %€2°-12); substituting for the LHS in Eq. (6.15)
d(em.1,)
ds -

Recall that 2% is an factor. Integrating Eq. (6.16) from 0 to any sy
along s, we have

e*x3 ks Ba(T) (6.16)

&3, 41
(ek"'g.h)@ = j:; 52 Ly By (T)ds (6.17)

(552 1 (s1)) ~ 13 (0) = j; " e b By (T)ds (6.18)

a1
I(s1) = L{0).e7F® & Jf glal gy By (Tds (6.19)
0

In Eq. (6.18) Iy at 8 = 0 is known. The first term on the right
hand side of Eg. (6.19) represents the radiation intensity at I(0)
arviving at a1 after getting atienuabed because of a nov-zero &y, The
second term represents attenuation of the radiation infensity because
of emission {in fact By{T) can be more generally written as a source
term Sy in which case, the second term on the RHS of Hg. (6.19)
represents atfenuation by both emission and in scatfering in the direction
s). FEquation {6.19) is an integral equation and as afore mentioned
obtaining [y for & anisotropic scattering can be challenging, demanding
the use of numerical techniques.

It is instructive to note that for By(T) ~ 0, Eq. (6.19) reduces 1o

In(81) = 1) (0).e 7P (6.20)

Equation (6.20) is the familiar Beer or Beer-Lambert law of radiation
applicable for & strongly absorbing and weakly emitting gas. The plane
parsilel atmosphere considersbly sirplifies radiation caleulstions and
the temperaturs, densities of atmospheric gquantities are assumed to be
function of only the height {or pressure). By introducing a new property
called optical depth (7) given by k,.x, the upward/downward spectral
fluxes can be computed as follows

2r  puf2
G(m) = ]0 /0 IE (75 cos 8) cos @ sin Bdfde (6.21)

6.6 Infrared remote sensing

To calculate the heat flux ¢+ or ¢~ from the spectral fluxes q;f or gy
one has to integrate Eq. (6.21) over the desired wave length interval
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A1 — Az (or wave number). In order to be able to do this, the variation
of 7, with X needs to be known. Hence the flux determination will
involve a convolution of q}f and the Planck’s distribution, since g, usually
varies rapidly with A. Integration is usually done over a narrow range
of wave lengths {or wave numbers), leading to what are known as line-
by-line calculations, wherein typically for an IR instrument, millions of
line by line caleulations with available spectroscopic shsorption date
are to be done. This iz & big challenge in passive remote sensing of
the atmosphers with the help of & multi-spectral instrument usually
known ag sounder. In view of this, repeated calculations with assumed
profiles of the atmosphere become inevitable to solve the inverse problem
of retrieving or estimating the atmospheric temperature and humidity
profile from satellite flux densities (or radiances}. A fast radiative
trangfer (RT) model is invariably required by satellite meteorologists.
Though fast models are usually regression based, researchers have also
begun using state-of-art simulation tools like Artificial Neural Network
{ANN) to develop “fast RT model”.

A fast BT model, by definition, is one which takes in the atmospheric
profile, typically temperature and humidity and returns the Buxes within
& time, order of magnitude lower than a regular WTE solution. A
fast RT model is built on a database of profiles vs fluxes, developed
by repeated solutions to the RTE. They are trained and tested
rigorously before they can be employed operationally. In actusl remote
sensing, the sensor characteristics, also known as the spectral response
function {SRF}, has to be convolved with the Planck’s distribution
and the wvariance of 7, vs A to compule the radiances. For satellite
meteorologists, knowledge of SRI’s is tequired before atmospheric
profiles of termperature and humidity can be retrieved from measured
satellibe radiances at designated frequencies. In a typical multi-spectral
nstrument usually 15 — 20 channels are present. These are carefully
chosen based on atmospheric absorption and transmission windows and
the mission objectives. Readers are advised to lock at advanced texts on
atmospheric radiation or remote sensing to know more about the state-
of-the art in this field.
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PROBLEMS

6.1 The mean sun-earth distance is 1.48x 10! m and the radius of the
photosphere of the sun is 6.95%10® m. The equivalent black body
temperature of the sun is 5800 K.

{a) With the above data, defermine the intensity of the solar
radiation reaching the earth (also known as the solar constant}.

{b) The mean sun-carth distance given above is known as one
astronomical unit (AU}, If the Venus-Sun distance is (.72 AU,
determine the solar constant for Venus and compare it with the result
obtained in part (a).

{c) Using the result obtained in part (b}, determine the equivalent
black body temperature of Venus, if the planetary albedo
{reflectivity) for Venus is 0.77.



CHAPTER 7

Inverse problems in radiation

7.1 Imtroduction

Consider the case of a person with exeruciating chest pain who is being
wheeled into the emergency care unit of 2 hospital. Upon checking the
patient’s vitals and stabilizing him, if required, the intensivist and other
doctors try to ascertain the cause of the pain. An ECG will be taken to
rule out a myocardial infraction (heart attack) followed by a battery of
tests, The exact cause of the pain could range from a simple indigestion
related gas pain to a life threatening heart attack or even a cardiac arrest.
In the lengusge of engineering, the chest pain is our “messurement”or
“data” with which is cause has to be identified. Needless to say the pain
here is the effect. Since, there cap be several causes o this pain, the
problem at hand is challenging and ill posed, as several causes could Jead
to the same effect (pain}). The goal, then, is to identify the correct cause.
This example is 5 classic case of an inverse problem. An important point
to be noted in the foregoing example is the importance of the physician’s
gkills in guickly and deftly sifting through the symptoms the patient
presents, results of the examinations and tests and how he/she correlates
here with similar cases seen in the past. His “expert”knowledge is a
distinguishing feature that holds the key to tackle the ill-posedness.
Much in the same way, the prior knowledge of the problem goes a
long way in reducing the ill-posedness associated with most problems
in science and engineering. An analyst who uses such prior knowledge
for better estimation of parameters or causes is frequently referred as a
Bayesian,

Similarly, in thermal sciences too there are several situstions where one
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needs to identify or establish the correct cause or the set of causes
from the effect(s). In thermal sciences, more often than not the
effect is temperature time history, temperature distribution or heat flux
distribution. The cause we are seeking could be a thermo physical
property like emissivity, thermal conductivity or thermal diffusivity.
Sometimes one may be interested in obtaining the estimate of the heat
tramsfer or mass transfer coefficient, which are known as transport
properties. In quite a few engineering applications, the goal can also
be the estimation of the heat Hux or the heat fux distribution, which
presents itself, invariably, as a boundary condition.

A classic frequently guoted exmmple in inverse heat transfer is the
problem of determination of surface heat flux in a re-entry vehicle. When
such a vehicle re-enters the earth’s atmnosphere from ouber space the
velocities encountered are enormous as for example 8 /s (translating
to & Mach number of the order of 25) leading o a massive aerodynamic
heating at the surface, wherein the kinetic energy of the air is converted
to enthalpy rise as a result of the “braking”action on the fluid. Very high
temperatures on the surface forbid us from placing heat placing heat Jux
gauges on the vehicle surface, However, the surface heat flux is a critical
design parameter which needs to be known to design among other things,
Thermal Protection Systems. In view of this, temperature measurements
are made at convenient locations on the inside of the vehicle with the
belp of thermocouples. Using the “messurements”as data, an inverse
heat transfer model is set up wherein guess values of the surface heat fux
arve given and teraperatures corresponding to the measurement locations
are computed by solving the appropriate governing eguations for the
problem under condsideration. The sum of the squares of the deviations
between measurements and sirmulstions is usually minimised to obtain
what is freguently referred to as the maxinmm Bkelihood estimate of the
parameters.

Examples of inverse problem in radiation:

¢ Estimation of radiative surface properties like emissivity and
absorptivity.

¢ Estimation of the absorption coefficient in tissues with help of
CT scans. The absorption coefficient can reveal information on
whether an underlying pathology(i.e disease) is present.
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e Remote measurement of global rainfall through infrared or
microwave combined sensors placed in satellites.

7.2 Least squares minimization for parameter
estimation

In the previous section, an introduction to inverse problems in thermal
sciences in gemeral and radiation heat transfer in particular was
presented.  Atmospheric remote sensing is s field whose progress
critically hinges on cur ability to invert satellite messured guantities into
geophysical parameters. Parameter estimation problems are invariably
posed as optimisation problems. Gftentimes, minimistion of the sum of
the least squares of the residue is done. Mathematically, if ¥y, 5 is the
messured data vector and Y, ¢ is the simulated or caleolated vector of
Y values for assumed values of the parameters, then, we define 5(X) as

N
S(X) = Z(Ydam,i = Yaimmi) {(7.1)
)

Where N refers to the total number of measurement. The goal then is
to minimise S(X) and X refers to the set of parameters that need to be
estimated.

¥ each measurement is associated with a different error, given by a
standard deviation o; Eq.(7.1) can be modified as

K

Yiatai — Yeimi)*
S(X) = Z( data, ~ ) (7.2)
i1 i

Minimisation of S(X} in Fq.(7.2) is known as weighted least sguares
minimisation. A different o for each measurement makes the weighted
least squares more general than the plain least squares minimization.

Example 7.1: Consider one dimensional steady conduction in an
infinitely long slab of thickness 100 mm made of insulating material
whaose thermal conductivity is k = 1 W/mK. The lefi end of the slab
s maintained ol o lemperature of 100°C while the right end is exposed
to evacuated environment at 30°C. There is ne heat generalion within
the slab. The temperature distribulion measured of eight locations across
the sleb is given below. Using the principle of least sguare miénimisaetion,
defermine the hemispherical total emissivity of the exposed surfoce of the
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slab at its right end. Use finite differences to solve for the temperature
distribution in the slab for guess values of emissivity in the range of
0.15< ¢ <£0.95, with a search interval of 0.1.

Table 7.1: Temperature vs distance for Example 7.1

[z,mm | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80
| T,K | 371.2 | 370.4 | 367.8 | 366.2 | 363.3 | 362 | 361.3 | 357.9

[

[

[

| Evacuated

k=1 \MlmK environment
T=373 K

| Tm= 303K
|
[

1 &

| 100 mm |

Figure 7.1: Infinitely long slab subjected to constant temperature at one
end and radiating to evacuated environment at other end

Solution

As is evident, this is typically an inverse problem since it requires
the estimation of surface the thermophysical property (emissivity) from
measured temperature distribution. Generally the direct problem for
such a case would be the determination of temperature distribution
for given thermopysical properties such as emissivity in this case. The
assumptions pertinent to the present problem are listed below:
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1. The slab is infinitely long and finitely thick, facilitating one
dimension heat conduction along the thickness dirction only.

2. The thermophysical properties for the slab are constant and do not
change either with temperature or location.

3. The right wall loses heat to a constant temperature evacuated space
only by radiation and convection currents are completely absent.

4. There is no internal heat generation in the slab and temperatures
are recorded at steady state.

The governing equation for the above stated problem can be written as

47

——& =0 7.3
g2 (7.3)
subject to
T = 313K at ©=0 (7.4}
—k% = ge(T* —T2) af = 100 mm {7.5)
Where

£ -+ emissivity of the foil surface
o -+ Stefan Boltzmann constant, 5.6 x 1078 W/m?K*
Too — temperature of the evacuated environment, K

T -+ temperature of the slab, K

Solution to the forward model:

The governing equation as given by Eq.(7.3) along with the boundary
conditions as specified in Eq. (7.4) and Eq. (7.5) can be discretised using
second order finite differences. This would lead to a set of simultaneous
linear equations in T, which then can be solved using an iterative method
such as the Gauss Siedsel scheme. A sample FORTRAN program for the
problem is listed hereby for ready reference.

1 \ prograr forward model H
2 implicis wnone

3 ‘INTEGER: 01

4 | Integer ,pavamater:: Nx=il [} No. of grid points 4un 2

direcidion
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double precision :: TO(Nx),T{Nx),ITER, ERR(Nx), ermax,EPS,
tol ,1x=0.10,dx ,E=0.83,2
double precigion :: k=1,Tamb=303,sigma=5.672-8,dunny

ITO : Represents temperaiure in previous iteration
IT . Hepresenits temperailure in current iteraciion
fITER : Iieraiion number

'ERR: error

larmas: mMeBLmUm ervoer

1EPS: moatmum permissible error

ftel: telarance

flz :lengih of compuwistional domain in 3 direciion
tde: lengih of conirel volume

{E: emissivity

T2 =0

ITER=0

EPS = le-8fmamimym evrror permisszibie or convergence
erieterion

dx=lx/{Hz-1)
a=-%/{dx}
tol=1

fgtarting 4terations for seiving Laplace gquation (Geuss
Seidel Solver)

B0 WHILE(teol> EPS}
ITER=ITER+1

TO(:) = T(:)

B ¥=2,8x-1

T(I)= {(T{I-1)+T{I+1)})/2
END DO

tBoundary conditions

T{L)=373
T{(Hx)}=E*SIGMA»{(TO(Nx})»»4-{Tanbssd) y+taw{dsT(Nx-L)-T(W=x-2})

T{Hx)Y=T{Hx}/{3%a)
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65
66
&7
68
69
70
71
T2
73
T4
75
76
77
78
79
80
81
832
83

B3
86
87
&8
&9
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ermax = 0.0
Do I=1,HN=x
ERR(I) = T(I) - To{I)
if (ABS(ERR(I}} » ermax)THEW
ermax =ARBS{ BRR{I}}
ENDIF

EXS B0

write(s , %) “Residuopl, = %,ermax

if {ermax < EPS)THEN

¥BITE (% ,#)"Solutien,converged in" ,ITER , "iterationa”
ENDIF

tol = ermax

ERD DO

BPEN (unit=5,file="temperature . txt",status="unknown"®)

Do i=1.mx

WRITE (5 ,#)T{1)

END DO

CLOSE(5)

eand program forvard.model
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Least squares minimization can be used to solve the inverse problem by
substituting different values of ¢ and solving the governing equation to
obtain the temperature distribution T;, where the subscript i denotes the
location at which the temperature is measured. Once this is obtained,
the sum of the residues is calculated as follows:

S(E) E(Temp, calc,:) (7.6)

The sum of the square of the residual, S(¢) is computed for ¢ ranging
from 0.15< £ <0.95 in steps of 0.1 and these are as shown in Table.
7.2. Figure 7.2 depicts the plot of residuals S(¢) for different values of
g. From Table 7.2 and Fig.7.2 one can conclude that ¢ should lie in the
range 0.75< g <0.95.

Table 7.2: Variation of the sum of the residues, S(g) with emissivity(g)
for Example 7.1

e 0.15 0.25 0.35 045 | 055 | 0.65 | 0.75 | 0.85 | 0.95

‘S(e) 386.02 | 259.06 | 169.75 | 98.84 | b2.84 | 23.57 | 7.81 | 3.01 | 7.14

400

300

200

S(e)

100

0 010203040506070809 1
£

Figure 7.2: Variation of residuals with emissivity for Example 7.1

The exercise we have performed here iz frequently referred to as
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exhaustive equal interval search. It is possible to employ faster and more
sophisticated search algorithms like the Fibonacci or (Golden Section
search to get a much better estimate of £ with same number of functional
evaluations (Please refer to Balaji(2011) for further discussion of different
optimization methods for single and multi variable problem.). Even with
the slightly crude exhaustive search method presented above, we can fit a
lgcal Lagrangian interpolating polynomial for S(¢) by using three values
of ¢ where the residusls approach minimurm ie in the range 0.75 < ¢ <
.95,

(e — 0.85){c — 0.95)

a1
8€) = 075085075 005 < °
{g — 0.75}{(c — 0.95)
* (0.85 - 0.75)(0.85 — 0.95) © S0
{e — 0.78){¢ — 0.85)
7.14 7.7
095 T 0095 — 0.85) (*.7)
S(z) = 10485 ¢* — 1785.8 & + 757.38 (7.8)

Differentiating Eq.(7.8) to obtain % and equating it to zero we can
make 5(c)} stationary

as(e)

. 2097 £ — 1785.8 = 0 (7.9)

€ = 0.84 (7.10)

Therefore, while the exhaustive search gave the solution as 0.75 < e <
0.95, upon fine tuning this with the Lagrangian interpolation our best
estimate of £ is (.84,

In the foregoing example, the direct or forward model was an ordinary
ditferential equation. However, a non-linearity was present in one of the
boundary conditions. Often times in thermal sclences, particularly in
radiative heat transfer, the forward model would iovolve the solution
of a partial differential equation or an integral equation and sometimes
even an integro-differential equation. These are formidable to solve and
invariably require numerical techniques. From the flow chart given in
Fig.7.3, it is clear that any inverse problem involves repeated solution to
the forward model, as invariably the forward model cannot be directly
inverted. For example, there i8 no way by which we can wrile out a
closed form expression for £ in example 7.1 in ferm of temperatures and
determine it rightaway., This ig further compounded by the presence of
noise in the measurement of temperature. The requirement of repeated
solution o the forward model often makes the solution of an inverse
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problem time consuming. Researchers have tried to address this by
developing a faster equivalent of the forward model using techniques
like artificial neural networks, which are known as surrogates. From the
flow chart, it is also evident that the solution to the inverse problem
can often be posed as a minimisation problem and so advanced and
cutting edge optimisation techniques can be made use of to improve
accuracy, speed and robustness of the ever increasing challenge posed by
the high dimensional inverse problems wherein several parameters need
to be estimated from limited measurements.

T(x...x T
%) Forward model =
Ri)=(T,, T, )
Experimental
daia
L
No Is
Inverse heat transfer IR(x)<
(xi"“xn)mnr T el
Yes
Stop

Figure 7.3: Typical flow chart for solving an inverse problem in heat
transfer

7.3 The Bayesian method for inverse problems

In the previous section, the basic concepts involved in solving an inverse
problem were presented. A specific case of single parameter estimation
in a combined conduction radiation problem was presented. It is now
fairly straight forward for us to see that in a multiparameter problem
several combination of parameters or the “causes” may lead to the same
“effect”. In view of this, an inverse problem is essentially ill posed and
suffers from a lack of uniqueness. Several techniques and methods have
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been developed to address the higher dimensionality in these problems
and these are elaborated in several books and research articles. However,
as engineers, some information on the parameters should be and often
is available. The next logical question would be “Why not then make
use of it {the available information)?”. If the answer to this question
is “ves”, then we are entering into the terrifory of Bayesian inference,
which is elucidated in the ensuing section.

7.3.1 Bayesian inference

Bayesien inference is based on the Baye’s conditional probability theorem
and uses probability to characterize all forms of uncertainty in a problem.
The Baye's theorem relates the experimental data Y(in the previous
problem this was T(x}) and the parameters (this was ¢ in the previous
example) and is given by

P(Y/x) Plz) _ P(Y/2)P(z)

P@/Y) = =55y = TH(¥/a)Pla)is

(7.11)

In Eq.(7.11} P{z/Y) is called the posterior probability density function
(PPDEY, P(Y/x) is the likelihood density function, P{z) is the prior
density function and P(Y") is the normalizing constant. Equation (7.11)
captures the idea of how measurements, model and prior knowledge can
be combined mathematically to return a posterior density fonction for
P(x/Y}, which is tantamount to declaring the chance or probability that
x is the cause for the measurement Y. This probability is the product of
two quaptities namely P(Y/x} which is the likelihood density or the
probability of getting Y for an assumed x, the calculation of which
requires measurements and a mathematical model and P{x) which is
one's prior belief. P{Y/x) is objective and P{x) is subjective making the
P(x/Y}, an objective solution peppered with subjective beliefs.

As afore mentioned, in the above equation, the first term on the RHS
represents the probability of getting Y for an assumed value of x. This
can be obtained from a sclution to the direct problem for an assumed
x and we convert the S(X)} = SN, (Yizpi — Yims)? in to a PDF
(probability demnsity function). Invariably, a Gaussian distribution for
the measurement errors is assumed for doing this. The P{z) is our prior
knowledge or belief about x, even before the measurements are made
or calenlations are done. Oune can call this as ‘expert knowledge’ or
‘domain knowledge’. For example, if the geal of an inverse problem is
to determine the density(p) of a metal using an inverse methodology,
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if the material looks like aluminium, we can construct a Gaussian for
P{p) with a mean (), say 2500 kg/m® and a standard deviation (o)
of say, 200 kg/m3. This means 99% of the time our prior belief is that
the dfensity lies between 25004600 kg/m3. This is a fairly rcasonable
assumption and can help reduce the ill-posedness. Here, if an informative
and objective prior like the one mentioned above is used, then the search
can be resticted to 1800 < p < 3100 kg/m3 ingtead of O < p < co. This
is the cornerstone of Bayesian infersnce wherein enginsering knowledge
is used to reduce ill-posedness.

7.3.2 Steps involved in solving a problem using Bayesian
approach

The Bayesian method to solve an inverse problem involves three steps:

1. Collection of experimental or measurement data. In the previous
example, the data is in the form of temperatures

2. Modelling of (i} the likelihod function that takes into account both
the forward model and the measurements and (i} prior information
invariably in the form of a distribution about the parameters
to be estimated even before the forward model is solved or the
messurements are done. Headers may recall the example of the
diagonosis of chest pain by a physician presented earliey.

3. Estimation of x

The first step ig to conduct the experiments snd obtain the meassured
temperatures. In so far as the likelihood is concerned, we exploit the
idea of measurement error in temperature as follows

Tmeasured - Tsimulmﬁsd + ] (712}

In Eq.(7.12), § is a random variable from a normal distribution with
mean “0 and standard deviation o, where o is the standard deviation of
the measuring instrument (thermocouple). The uncertainty 4 is usually
agsumed to follow a normal or Gaussian distribution, upon which the
likelihood can be modelled as

RS S (T — Fla))" (T — F(z))
P(T{x) ( m)n p< 02 ) (7.13)

In Eq.{7.13) T is a vector of dimension n, i.e, n meassuremenis are
available and F(x) is the solution to the forward model with the
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parameter vector x (x represents a set of parameters). Equation (7.13)
can be written as

1 —52)
P(T/z) = _ 7.14
= ans o (5 (710
where 52 o g (Tm“g“ss’ig; zéim,i)z (?15)

In BEq.(7.15), Teim i are the simulated values of T for an assumed X (set
of parameters).
The posterior probability density function {(PPDF) is then given by

|y e ()| 1P

P{z/T) = {7.16)

In Eq.(7.16} the prior probability density P(x) is usually a standard
distribution like & uniform, normal or log-normal distribution. In the
case of a uniform prior, P{x) is assigned the same value (say 1) the
gsame for all values of x. Such a prior is frequently referred to as non-
informative objective prior and will not help us obtain a much sharper
PPDF. A sharper PPDF also kvnown as a tighter PDF results in lower
standard deviation of the estimates.

Consider the case of P{x) following a normal distribution with mean p,
and standard deviation ;. Mathematically P(x) is given by

P(z) = { &/2:;6 )ﬁemp"(z ffp) (7.17)

Hence the PPDY turns out to be

a0 7 (28]

I e 8+ ()] e

From Eq.(7.18) it is clear that, for every assumed value of the data vector
X{zy, zg....zy), P{x/Y) can be worked out. From this posterior density
function, two possible estimates can be pulled out {i) Mean estimate also
known as expectation or (ii) Maximum a posteriori (MAP}- whic is, the
value of x for which P{x/Y)} is maximum.

P(z/T) = (7.18)
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A sampling algorithm is used to generate samples of x. In a
multiparameter problem, the marginal PDF of every parameter needs
to be computed.

Simplifying Eq.(7.18), we have

——eap(-)[§ + (“)

Ly 2 (o™ op)
P(z]Y) = — (7.19)
| el + (-‘-----égffﬁ---)]ldm
Finally _
exp(-)1§ + 545
Pa/Y) = e (7.20)
fleap(=)[§ + ¢ 2553? lide
The expectation or the mean of x is given by
[ @ exp(-3[5 ‘52 - (xgésﬁ')z]da:
F= {7.21)

Sleap(-)§ + C lda

The integral is invariably replaced by a sumumation for discrete values of
x and the expectation turns out to be

¥z ezp(-)[G + ©5 A
T . - 7.22
leap(-)§ + 34" Aw, e

When Az; are the same Eq.(7.22) reduces to the following

&

 Eimiemn(-)[f -+ E5ph]
T SOl + E) 2

, _ Dl eanl- )i + 5] 720
T Yleap()E + {2:;)*11 '

In Eq. (7.24), o, is the standard deviation of the estimated
parameter. This is the hallmark of the Bayesian method, as we
obtain an estimate and s uncertainty directly and the lafter is
very hard to determine in many other estimation methodologies.

Example 7.2: Consider Example 7.1, where in, steady stote conduction
with Dirichlel boundary conditions on left and Robin condition {mized
condition} on the right side wall wos prescribed. Using the same date
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and sample, determine the mean and standard demiation of the estimated
value of emissivity (¢) with Bayesian approach for two cases (i) no prior
and (i) with a Gaussian prior for € with mean ficp = 0.8 and op = 0.05.
Standard deviation of uncerieinty in measured temperature is 1K,

Bolution:

We can use the Bayesian framework presented above, for the no prior
case, to compute the posterior densitios for various valnes of g; and these
are presented in Table 7.3. The PPDY for the case without prior is shown
in Fig. 7.4.

Table 7.3: Estimation of ¢ using the Bayesian method (no prioss)

SN __(:?_ifs)) __(“?Sf«:? A2 __{ﬁ_(fs'?_
No & 8la)  gexp Vit exp  Eed {g; — B} exp™ 36
1 015 386.02 224 x107% 149 x107% 7.39 x107%

2 0.25 250.05  1.30 <1075 558 %10 2.03 x10-57
3 035 18075 358 x107¥ 1.0i5xi(8 28T 10~%

4 045 9884 135107 345x107% 5.50x107%3
5 055 E284 Le4x1071% zanxipiR 3.08x10718
6§ 085 2357  493%x10°S 7.6%1078 3.18%1077

707 1.8t 0.015 0.020 $4.0002
8 085 3.01 (.189 0.222 1.937%x10°%
8 085 7.14 0.027 0.0281 £.0002
3 $.231 0.270 0.00048
= = 0.0421 {7.25)

The expectation or mean for the no prior case is 0.855 and the standard
deviation of the estimate ¢.=0.0421. This estimate i3 also known as the
maximum likelthood estimate.
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PPDF

0.4 A

0.2 A

Figure 7.4: PPDF of ¢ with the Bayesian method (no prior) for example

7.2

Next we include the Gaussian prior and obtain the results as presented

in Table 7.4.

Table 7.4: Estimation of £ using the Bayesian method (with a Gaussian

prior) for example 7.2

B= (e—pe,prior)?

s | Be) | A=TF 202 siexp~ATE) | € = ezp~(ATB (& — £)*(C)
P
0.15 | 386.02 193.01 58.68 7.36x10° 111 [ 4.901x10~11% | 2.35x10~ 110
0.25 | 259.05 129.52 42,01 7.92x10"7° | 3.168x10~"° 1.50x10~ 75
0.35 | 169.76 82.87 28.12 2.17x10~%% | 6.198x10~%? 1.50x10" % |
0.45 | 08.84 49.42 17.0 6.33x10~%° | 1.41x10~ 2 2.16x102
0.55 | 52.84 26.42 0 3.14x107® | 57x10°18 4.88x10~ 17
0.65 | 23.57 11.78 0.5 2.17%10~7 3.34x10~7 1.24x10°%
0.75 7.81 3.91 0.347 0.0106 0.0142 0.00012
0.85 3.01 1.50 0.347 0.1334 0.1569 B.89x 10~ ¢
0.95 7.14 3.57 3.125 0.0012 0.0012 1.42x10°%
P 0.1452 0.1724 0.000144

From Table 7.4 the
deviation of the estimate are obtained as

0.1452

£ =

0.1724

=0.84, o, =

0.000144
0.1724

=0.028

expectation (or mean) of £ and also the standard

(7.26)

The PPDF for this case with the Gaussian prior is given in Fig. 7.5.
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0.8

0.6

PPDF

0.4

0.2

Figure 7.5: PPDF of £ with the Bayesian method (for a Gaussian prior)
for example 7.2

Upon ingestion of the Gaussian prior, the standard deviation of the
estimate of € has decreased substantially. The informative and subjective
Gaussian prior has thus been extremely useful in the estimation process.

It is possible for us to use Markov chain, where in, the next sample of
x (e in this case) depends on only the current value of x. This can be
accomplished by drawing the new sample from a Gaussian distribution
with its mean being the current value of “x” and “o” being typically
5% of the current mean. While a sample with higher PPDF is always
accepted, rejection is done with a probability based on an acceptance
ratio (see Balaji (2011) for a further discussion on this). This method is
known as Metropolis Hastings (MH) based “Markov chain Monte Carlo
(MCMC)” method. For further discussions on the powerful MCMC
method readers may refer to statistics books and journals.
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PROBLEMS

7.1 Consider & thin aluminium f{foil coated with a paint of
“high” emissivity ¢ with dimensions of 2em x Zem, 2w thickness
suspended in an evacuated chamber., The chamber is maintained at
303K and the foil is initially at 373K. The foil gets cooled radiatively
and its measured temperature response is tabulated below. Estimate
the emissivity of the coating by using an exhaustive squal interval
search, in the range 0.68 < ¢ < 0.5 with an interval of 0.05 and
then switching to a Lagrangian interpolation formula by using a least
seuare approach. The foil density is 2707 kg/m® and the specific heat
is 803 J/kgK.

\ t,{s) &0 109 150 200 250 300 350
"I‘, {K) | 363.3 | 365.3 | 348.6 | 342.9 | 3380 3338 3302

7.2 Congider the problem of determination of emissivity of a thin foil
with a messured temperature distribution that was discussed in
exercige problem 7.1, With the same dats and gampling, determine
the mean of the estimate of “s” using a Bayesian approach with (i}
Uniform prior (if)A Gaussian prior with u,=0.84 and op=0.06. The
total uncertainty in the temperature measurement (which arises as
a consequence of the thermocouple error and the error in accurabely
determining the position of the thermocouple} is 1K,
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