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But even if the radiation formula should prove to be absolutely accurate 
it would after all be only an interpolation formula found by happy 
guesswork, and would thus leave one rather unsatisfied. I was, therefore, 
from the day of its origination, occupied with the task of giving it a real 
physical meaning. 

- Max Planck 
(1919 Nobel Prize address, 'The Origin and Development of the 

Quantum Theory'.) 

Picture courtesy: http://en.wikiquote.org/wiki/File:Max Planck.png 
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Preface 

This book is an outgrowth of my lectures for the courses "Conduction 
and Radiation" and "Radiative heat transfer" that I have been offering 
almost continuously since 1998 at IIT Madras. The question uppermost 
in the minds of many readers maybe "Why another book on radiation"? 
My response to this is that in every subject or course, there is still space 
for a new book so long as the latter is able to bring in some alacritic 
freshness either in the content, treatment or both. Through this book, I 
have endeavoured to "decomplexify" or more acceptably, "demystify" 
radiation heat transfer which is anathema to many students. I use 
an easy to follow conversational style, backed up by fully worked out 
examples in all the chapters to vaporise the myth that radiation is only 
for dare devils. 

Though I research quite a lot in radiation, I have scrupulously avoided 
adding material based on the findings of my research. The focus instead 
is to present a book that can be used as a text either at the senior 
undergraduate or at the graduate leveL Based on my past experience, I 
believe that the material presented in this book can be covered in about 
40 lectures, each of 50 min duration. Carefully chosen exercise problems 
supplement the text and equip students to face "radiation" boldly. 

I thank Prof. S. P. Venkateshan, my former research advisor and now a 
colleague, for introducing me to radiation and for graciously passing on 
to me the baton of carrying radiation forward, after I joined IIT Madras. 

Thanks are due to my wife Bharathi for painstakingly transcribing 
my video lectures on radiation offered for the National Program on 
Technology Enhanced Learning (NPTEL) for the course "Conduction 
and Radiation" .This served as the starting point for the book. I 
thank my students Ramanujam, Gnanasekaran, Pradeep Kamath, 
Chandrasekar, Konda Reddy, Rajesh Baby, Samarjeet, Krishna and 
Srikanth for their help with the exercises and examples and in compiling 
the material in TEX. Special thanks are due to my doctoral student 



Samarjeet who spent long hours with me in reworking the examples and 
the text for Chapter 7, for this international edition that is being co
published by Ane and John Wiley. 

I also wish to thank the Center for Continuing Education, lIT Madras 
for financial assistance. 

The support of ANE books for bringing out the book in record time 
is gratefully acknowledged. I also thank John Wiley for coming forward 
to take this book to the international markets. 

Thanks are also due to my daughter Jwalika for being so understanding. 

Queries and suggestions are welcome at balaji@iitm.ac.in. 

C. Balaji 
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CHAPTER 1 

I ntrod uction 

1.1 Importance of thermal radiation 

Heat tranBfer is accomplished by one or more of the following modes 
namely, conduction, convection and radiation. However, the basic modes 
of heat transfer are only two: conduction and radiation, as convection 
is a special case of conduction where there is macroscopic movement of 
molecules outside of an imposed temperature gradient. We restrict our 
attention to radiation heat transfer in this book. 

Now we look at the importance of thermal radiation. Most people have 
the feeling that thermal radiation is important only if the temperatures 
are high. Generally, when temperatures are low, "radiation can be 
neglected" is the familiar refrain or argument put forward by many people 
who are not inclined to include it in their analysis. We will consider an 
example very shortly and try to find out if this assumption of neglecting 
radiation in heat transfer analysis is justified or not. 

Exploring the relation between the heat tranBfer rate and the 
temperature gradient, we have, 

(1.1) 

(1.2) 

Equation (1.2) is strictly not valid for free convection. Let us consider, a 
frequently used correlation for the dimensionless heat transfer coefficient, 

1 



2 Introduction 

namely the Nusselt number, for free convection. 

Nu 

b "" 
Nu DC 

qcvnv DC 

Nu= aRab 

a(cliT)b 

0.25 (for laminar flow) 
(liT)o.25 

(liT) 1.25 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

So q is proportional to liT to the power of 1.25 for laminar natural 
convection flows. For turbulent natural convection flows, q will go as 
(liT) 1.33 • 

The Rayleigh number, Ra in Eq. (1.3), is given by 

where 

Ra = gf3liTL3 
1Icy' 

• g - acceleration due to gravity 

(1.8) 

• f3 - isobaric cubic expansivity (for ideal gases, f3 can be equated to 
lIT, where T is the temperature in Kelvin) 

• liT - temperature difference imposed in the problem 

• L - characteristic dimension, which can be the length of a plate or 
the diameter of a cylinder or sphere 

• II - kinematic viscosity 

• CY. - thermal diffusivity 

Now we can see that qconv is proportional to liT with a pinch of salt as 
it is actually (liT)1.25 for natural convection. For radiation, 

(1.9) 

A non linearity enters the problem right away because q is proportional 
to the difference in the fourth powers of temperature. 

Assume that a bucket filled with water is heated using an immersion 
heater. Then under steady state, we know that Qh heat supplied must 
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equal that lost to the outside as the sum of the convective and radiative 
heat transfer, then 

Qoonv + Qrud 

hA(T - Too) + €O·A(T4 -1;!,) 
(1.10) 

(1.11) 

In Eq. 1.11, f is the emissivity of the surface and A iB the surface area 
(we will study about emissivity in far greater detail in a later chapter). 
Equation 1.11 has to be solved iteratively even under steady state to 
determine the temperature of the water with the bucket, assuming that 
the material of the bucket is at the same temperature as that of the 
water. To solve this non linear equation, we need to assume a value 
of T of water and see if the LnS is equal to the RES. If they are not 
equal, then we update the value of T and redo the procedure and this 
is repeated till the LHS becomes equal to the RJIS. This i.s called the 
successive substitution method. 

The difficulty with radiation first sterns from the fact that radiation 
is proportional to (T4 - T~). Therefore its importance increases non 
linearly with increasing tempemture. So at high temperatures of the 
order of 1200 °c or 1500 ac, whether it is an IC engine, furnace or 
boiler, there is no escape from considering radiation, as tbis will be the 
dominant mode of heat transfer. In fact, in boilers, there is a radiant 
super heater section, where the ultimate heat transfer takes place and 
the temperature of the steam is lifted. Even in the ubiquitous microwave 
oven, there is basically radiative heating in the microwave region of the 
spectrum. The importance of thermal radiation first sterns from the fact 
that qrad varies non linearly with temperature. 

The second point is that mdiation requires no material medium to 
propagate. The proof is the receipt of solar radiation on this earth from 
the sun, which lies millions of miles away. This shows that radiation is 
able to travel through vacuum. In fact, radiation travels best in vacuum, 
because there is no absorption or scattering. Once it enters the earth's 
atmosphere, there is absorption and reflection by certain molecules. 
This reflection is called scattering. Also, as these molecules are at a 
temperature greater than OK, as a consequence of the Prevost's law, 
they also emit. So the atmosphere is emitting, absorbing and scattering. 
However, outside the atmosphere, the radiation is able to travel without 
any distortion at all. 

The third point is that even at low tempemtures, radiation may be 
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Figure 1.1: Natural convection boundary layer over a vertical flat plate 

significant. Let us consider an example. We consider a vertical flat 
plate whose length, L = a.5m and is maintained at Tw = 373K standing 
in still and quiescent air with emissivity 0.9 (i.e. it is coated with black 
paint). The ambient temperature, Too =303K. Needless to say, a natural 
convection boundary will be set up along the plate, on both sides. The 
boundary layer will develop as shown in Fig. 1.1. The velocity at points 
A and B will be 0 for different reasons. At A, the velocity is zero as a 
consequence of the no slip condition, while at B, it is zero, because air 
is quiescent in the free stream region. 
The Nusselt number is given by 

(1.12) 

Let us consider a very simple, well known correlation for laminar natural 
convection from a vertical plate, where a. and b are 0.59 and 0.25 based 
on well known results from Sparrow and Gregg, [8]. 

N u = O.59Rao.25 (1.13) 

The Rayleigh number is calculated with the following values. g = 9.81 
mis', t.T = 70K, fJ= I/T~.n' T~.n = (373+303)/2 = 338K, v = 16 
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X 10-6 m2/s; Pr = viOl = 0.71. The Rayleigh number, Ra turns out 
to be 7x 108 . (When Ra < 109 , the flow is laminar and when Ra> 109 , 

transition to turbulent flow begins.) Substituting for Ra in Eq. 1.13, Nu 
= 96. The Nusselt number is the dimensionless heat transfer coefficient, 
which is given by Nu = hL/k; k=O.03 W/rrlK for air. We now calculate 
the average heat transfer coefficient of the plate, h to be 5.8 W /m2K. 

Although both radiation and convection are taking place on both sides 
of the plate, let us consider for the present that they take place from 
just one side. (qconv=h.6.T = 5.8x70=406 W/m2). Such calculations 
are also very profound as the temperature we are talking about, 100°C, 
is more than the reliable temperature of operating electronic equipment, 
which is normally about 80 or 85°C. So if we do all these calculations, 
we get qoonv=406 W 1m2

• 

At this point, a little digression is in order. So let us now say we have 
some other situation where we have h to be 6 or 6.5. qconv can t01wh 
about 500 W 1m2 in this case. So we are talking about flux levels of 0.5 
kW 1m2 of natural convection. If we are talking about a flux level in our 
equipment which is more than 0.5 kW 1m2 , we have to use a fan to cool 
it in order to maintain it at the desired temperature! 

We can also do similar calculations and determine the maximum flux that 
one fan can withstand. If required we use 2 fans, similar to what is found 
in desktop computers. After that comes liquid cooling, impingement 
cooling. For example, data centers cannot be cooled by fans alone. The 
air itself will be conditioned such that the data center is maintained at, 
say 16°C. 

Getting back to the problem at hand, we need to find out what the qradn 

for this problem will be. The following assumptions hold, (1) the sink for 
the radiation is the same as the sink for convection, (2) the walls of the 
room are at the same temperature as the ambient, which is a reasonable 
assumption. (Sometimes, Too for convection need not be the same as 
Too for radiation. But most of the times, we assume them to be the 
same.), (3) Stefan Boltzmann constant a = 5.67 x 10-8 W/m2K 4 ; 
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E = 0.9. For these values, qrad = 557 Wjm2. 

... qtotal = qconv + qrad 

= 964 Wlm2 

... The radiation contribution is 
qrad 567 

= qwt 964 
57.8 % 

Introduction 

(1.14) 

(1.15) 

This clearly proves that radiation cannot be neglected at low 
temperatures. This analysis has however be taken with a pinch of salt. 
Suppose we blow air using a fan, wherein the natUIal convection will 
change to forced convection, the heat transfer coefficient instead of being 
5, may change to a value of 15 or 20. Then ~v may have a value of 1 
or 1.2 kW 1m2 . So convection will begin dominating radiation. However, 
even if the flux level is 1.8kW 1m2 , qrad/qtotal is not negligibly small. So 
radiation may be neglected only in cases where the other modes of heat 
transfer are dominant. If it is convection in air, free or forced, radiation 
cannot be neglected. Even so if the medium is water, the story changes 
completely. Water has a terrific thermal conductivity of 0.6 W ImK 
as opposed to air. All these numbers will change because the N usselt 
number is hL/k. Since h increases for water, the radiation contribution 
will be negligible. So if we have air cooling and are doing computational 
fluid dynamics (CFD) analysis of a desktop or some other electronic 
equipment, we cannot neglect radiation in our analysis. Thankfully, 
commercial software has radiation modules and many people use the 
combined analysis nowadays in the prediction of maximum or operating 
temperatures of electronic equipment. In summary, in natural convection 
alone or in mixed convection, where both natUIal and forced convection 
are important, radiation plays a part and cannot be neglected by simply 
putting forward the argument that temperature is very low. 

1.2 Nature of radiation 

To explain radiation and its effects, generally two models are used (i) 
the wave model and (ii) the quantum model. Using the wave model, we 
can characterize radiation by wavelength, frequency and speed; all that 
which is applicable for optics can be applied here too but neither the 
radiative properties of gases nor black body behavior could be explained 
using the electromagnetic theory and hence the quantum theory had to 
be developed. Electromagnetic radiation travels with the speed of light. 
Therefore the velocity of light in vacuum Co can be assumed to be the 
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Figure 1.2: Electromagnetic spectrum 
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velocity of electromagnetic radiation in vacuum. Co = 2.998 X 108 m/s 
or 3 x 10" m/_ (app.). 

Now we can characterize radiation by the following additional 
parameters: v - frequency, A - wavelength, 1/>.. - wave number. IT the 
velocity of light in a medium is c, we know that c must be less than or 
equal to co. The refractive index of the medium = n = Co /c. For glass, 
n = 1.5 and for gases, n ~ 1; 

Now let us look at the electromagnetic spectrum which can be 
characlerized by either (1) the wavelength, (2) the frequency (see Fig. 
1.2). For example, the wavelength of radio waves is about lOSm. The 
wavelength of gamma rays is about 1O-12m, which gives them a high 
frequency of around 1020 Hz. The energy of electromagnetic radiation is 
given by E = hv (which we shall derive later), where h, Planck's constant 
= 6.626 x 10-34 Js. 

If we consider gamma rays, their energy is very high. Looking at 
the other end of the spectrum where we encounter radio waves, the 
energy is very low. This is used by electronics and communications 
engineers where the original signal, having low energy, is first modulated 
with a high energy carrier wave, transmitted and demodulated at the 
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other end. Mechanical engineers lie somewhere between these two 
ends and operate in the visible, ultraviolet or infrared regions because 
this corresponds to reasonable levels of temperatures encountered 
in engineering applications. We usually are not concerned with 
temperatures of 105 or 106 K. The only place where we may come across 
this is in nuclear fusion. Generally we talk about temperatlITes in the 
range of 200 - 3000 K. So wavelength of thermal radiation of interest to 
thermal engineers is A = 0.1 - 100 ttm. 

In the visible range, whose wavelength lies between O.4ttm - 0.7 ttm, 
colours range from violet to red. For us, mechanical engineers, 
wavelengths of the order of 10m are very big. We work with rays whose 
wavelengths range from micro meters to nano meters. 

Example 1.1: Radiation at a wavelength, A=3ttm travels through 
vacuum into a medium with refractive index, n=1.4. 
(a}Determine the speed, frequency and wave number for radiation in 
vacuum. 
(b )Determine the above quantities and also the wavelength for radiation 
in the medium. 

Solution: 

a. In vacuum: 

Co = 2.998 x 108m! s 
A = 3 x 1O-6m 

2.998 x 10
8 

= 9.993 X 1013Hz 
3 X 10-6 

Wavenumber 1 1 5 -1 
= ); = 3 X 10-6 = 3.33 x 10 m 

b. In the medium: 

(1.16) 
(1.17) 

(1.18) 

(1.19) 

Even when the radiation moves from vacuum to the medium, the 
frequency does not change, only the wavelength changes. 
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Frequency 

c 

c 

Wave length, A 

Wavenumber 

9 

v = 9.993 X 1013Hz (remains sameI1.20) 

CO = 2.998 X 10
8 

= 2.14 X 108mls (1.21) 
n 1.4 
vA (1.22) 
c - = 2.14tLm 
v 
4.66 x lOfim-l 

(1.23) 

(1.24) 

Example 1.2: The wavelength and speed of radiation traveling within 
a medium are 3.2tLm and 2.3x lrJlm/s respectively. Determine the 
wavelength of the radiation in vacuum. 

Solution: 

c 

so, v 

v,\ 

c 2.3 X 108 
13 

= A = 3.2 X 10-6 = 7.18 x 10 Hz 

(1.25) 

(1.26) 

This is the frequency of the radiation in the medium as well as in vacuum. 
The wavelength in vacuum is 

CO 3 X 108 

c = V = 7.18 X 1013 = 4.18tLm (1.27) 





CHAPTER 2 

Black body and its characteristics 

We will now look at a very important concept in radiation heat transfer, 
namely, the black body. 

Definition: A black body is one that allows all incident mdiation 
and internally absorbs all of it. 

So what does it imply technically? Reflection = O.Transmittance= O. 
This definition requires further qualification because that a black body 
allows all incident radiation and absorbs all of it is true for (a) all 
wavelengths (b) all incident directions. Therefore, for a given wavelength 
and in a given incident direction, there can be no body which absorbs 
more radiation than a black body. Any real body has to absorb a 
radiation which is lower than that of the black body. This is essentially 
a conceptual definition, and serves as a benchmark. This concept of 
maximum absorption, regardless of the incident wavelength and direction 
is central to the understanding of radiative heat transfer. So, a black 
body serves as the benchmark or the gold standard against which all 
other real surfaces can be compared. 

Incidentally, the black body also emits the maximum radiation for a given 
temperature. This is a consequence of the above, which can be proved. 
The black body is basically defined based on its ability to absorb fully 
and not on its emission capacities. That it is emitting the maximum is 
a consequence of it being the perfect absorber and is just a corollary! 

11 
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Some examples of black bodies: 

• Lamp black 

• Platinum black 

• Gold black 

• Special paints 

Suppose we want to do experiments using a black body in the laboratory, 
we usually want to take an aluminium plate and coat it with black paint. 
However, the emissivity of this, when measured, will be just 0.8 or 0.88 
or 0.9 because there will be some places where we have not fully coated 
it. After a second coat of paint, the emissivity may increase to 0.92 or 
so. After that, the emissivity will asymptotically saturate; ideally we 
cannot get to 1.00. We can get a maximum of 0.94 or 0.95 and for all 
practical purposes, this can serve as a black body or stated clearly, can 
serve as a high emissivity surface. 

Let us move on to an interesting question - why the name "black body"? 
Generally, black bodies are very poor reflectors. Hence, they appear to 
be visually blackl Even so, the eye is a very poor instrument to detect 
radiation because it can detect radiation only in a very narrow range of 
O.4l'm to 0.7I'm. So a surface may be very black in the range O.4l'm to 
0.7I'm, but in the other parts of the spectrum its "blackness" cannot 
be visually evaluated and hence verified and we need sophisticated 
equipment like the spectrometer to determine its behavior. 

On the contrary since the visible part of the spectrum is genuinely a part 
of the electromagnetic spectrum, if something is truly radiatively black, 
it will be black between O.41'm to O.71'm too. Therefore, all radiatively 
black bodies have to be visually black. 
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So a radiatively black body will be visually black but a visually 
black body need not necessarily be radiatively black. 

2.1 Key attributes of a black body 

2.1.1 Perfect emitter (perfect absorber is already there 
in the definition) 

• Let us consider an evacuated enclosure which is at a temperature 
Too with vacuum inside, as shown in Fig. 2.1. Now let a small black 
body, initially at temperature Tw, be inserted into the middle of 
the enclosure. Let Tw > Too. 

T >T 
w CD 

Blackbody 
initially at T 

w 

Vacuum 

Figure 2.1: Illustration for proving that a black body is a perfect emitter 

Since the black body is not touching the walls of the enclosure, there is no 
conduction heat transfer. Since the chamber is evacuated and there is no 
medium, convection is also non existent. Let us say Too = 30°C while Tw 
= 200° C. Since this is a small body in a large enclosure, after sufficient 
time has elapsed, the black body will acheive thermal equilibrium with 
the surroundings, i.e. it will reach a temperature of Too, as shown in 
Fig.2.2. 

The small object is however black body and so what is the story there? 
The small object is absorbing exactly the same amount as it is emitting 
because if the emission is not equal to the absorption, then there is a 
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Time, S 

Figure 2.2: Temperature time history of the small black body undergoing 
cooling in a large enclosure 

net rate of change of enthalpy which has to take place inside the black 
body as a consequence of which, its temperature has to go down or 
go up, which is again forbidden by the second law of thermodynamics 
because equilibrium has already been established. Therefore, the amount 
of radiation which is emitted by the black body is (or has got to be) 
exactly equal to the amount of radiation which is absorbed by the black 
body. Since the body under consideration is black and is absorbing the 
maximum amount of radiation, therefore it is also emitting the maximum 
amount of radiation! 

2.1.2 Radiation isotropy 

Consider an enclosure with a black body similar to the one shown in 
Fig.2.1. Now let this black body be placed in another enclosure of 
a size smaller than the previous one. The two cases are shown in 
Figs. 2.3 a and 2.3 b respectively. The enclosure temperature is the 
same for both the cases and so is the initial temperature of the black 
body. So long as the enclosure temperature is Too and both are small 
bodies placed in large surroundings (which have an infinite capacity to 
take on the heat), regardless of the position of the black body, both 
will reach the same equilibrium temperature upon cooling of the black 
bodies. Upon reaching equilibrium, the emission will be equal to the 
absorption and that will be maximum, corresponding to the temperature 
Too. This is independent of position and orientation and we therefore say 
that radiation isotropy exists within the enclosure and that a uniform 
radiation field has been established. 
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<a) (b) 

Figure 2.3: A typical small body in a large enclosure of different sizes 

Hence, radiation isotropy means that the radiation field within 
the enclosure is independent of the position and orientation of 
the black body. 

IT we make a cavity like the one shown in Fig. 2.4 and close it on 
all sides and have only a small hole and heat it such that it becomes an 
evacuated cavity that is heated, the radiation field emerging from it will 
be isotropic, meaning that it does not have direction dependence and the 
radiation comes out with uniform intensity in all directions corresponding 
to the temperature of the body. This is known as a Hohlraum meaning 
"empty room"in German. The hohlraum concept can be used to mimic 
or simulate a "near" black body under laboratory conditions. 

2.1.3 Perfect emitter in every direction 

Consider an enclosure as shown in Fig.2.5, with a small area dA being 
active on the walls of the enclosure with all the other areas being 
radiatively inactive. Even for this situation, after sufficient time has 
elapsed, equilibrium will be established and the body will be cooled 
down to the temperature Too. 

Now, the body will continue to absorb radiation and this radiation will 
be maximum as it is a black body but all the radiation is coming in 
a particular direction because only one portion of the enclosure wall 
is active. The black body has to radiate back the same radiation 
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Small hole 

Figure 2.4: The schematic of the cavity used for illustration 

for equilibrium to be established. Therefore, since it is absorbing the 
maximum in that particular direction, it has to radiate maximum in the 
same direction. Therefore in a particular direction, it will be a maximum 
emitter too. Since it is anyway the same in all directions, this emitted 
radiation is maximum and equal in all directions. 

2.1.4 Perfect emitter in every wavelength 

Now we can repeat the same experiment such that the walls of the 
enclosure are so designed that they emit or absorb radiation in very small 
intervals of dA about A. The black body will also absorb radiation in a 
small wavelength interval dA about A. While it can continue emitting 
radiation in any other wavelength, the walls of the enclosure are in 
a position to absorb radiation only in the wavelength dA about A. 
Therefore whatever is absorbed must be equal to whatever is emitted 
in order that equilibrium is maintained. This dA about A is purely under 
our control. It should be valid for any dA about A. Hence, at every 
wavelength, the black body will be a perfect emitter. 
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Enclosure 
cIA temp~atl;lTe T 

CD 

Vacuum 

Blackbody 

T >T att=O 
w 

Figure 2.5: Schematic to prove that black body is a perfect emitter in 
all directions 

2.1.5 Radiation is a function of temperature alone 

Suppose we have two enclosures like the ones shown in Fig. 2.6, evacuated 
with no conduction or convection, what will be the eventual equilibrium 
temperature reached here? 

In both cases, it will be Too. Hence, the characteristics or the shape 
of the enclosures do not affect the eventual equilibrium temperature. 
Therefore the radiation field inside the black body is not a function of 
the shape and size. So long as it is evacuated and fully closed, it will 

T 
~ 

T 
~ 

T 

T 
~ . 

• 
9 

Figure 2.6: A typical small body in a large enclosure of different sizes 
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continue to emit isotropic radiation, depending only on its temperature. 
Therefore, black body radiation strength is a function of T only. 

2.1.6 Does the radiation strength increase or decrease 
with temperature? 

The answer is obvious that it increases with temperature. To prove 
it from thermodynamic arguments, consider two plates which are at 

ro .. 

Plate 1 

Evacuated 

Plate 2 

Q=E -E 2 , 

ro • 

Figure 2.7: Radiation heat transfer between two plates at T, and T2 

temperatures Tl and T2 and whose radiation strengths are El and E2, as 
shown in Fig. 2.7. Let us now assume that Tl > T2 while El < E2. Q = 
E2 - El and hence the direction of flow of energy will be from plate 2 to 
plate 1. Positive transfer of energy from a body at lower temperature to 
a body at higher temperature is forbidden by the law of thermodynamics 
unless we do some work. Hence nothing in this argument is wrong except 
for the initial assumption that E is proportional to 1/ T . Therefore the 
original assumption should be wrong which proves that E should be a 
monotonically increasing function of temperature. Such a way of proving 
something by proving the converse to be absurd is called Reductio as 
absurdum, and has been extensively used in the past. 

These are the attributes of a black body. But what is this E ? How is it 
related to the temperature, we do not know. The best of physicists were 
working on this problem a little over hundred years back. 
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In order to derive the quantitative aspects of the black body behavior, 
it is imperative that we study some solid geometry. 

2.2 Solid angle - dw 

Consider Fig. 2.8a, the elemental plane angle shown here is dO! = dl/r. 
Consider the elemental area dAn which subtends an elemental solid angle 
dWn as shown in Fig. 2.8b. The elemental solid angle dwn is given by 

dw - dAn steradians or sr n - r2 

where An is the normal area. 

dl 

da = dlJr 

r 

(a) Plane angle (b) Solid angle 

Figure 2.8: Depiction of plane and solid angles 

2.2.1 Spherical coordinate system 

(2.1) 

dA 
n 

Let us consider an elemental area dAb as seen in Fig. 2.9, that is emitting 
radiation in all directions. There is another elemental area dAn which 
is intercepting this radiation and if we shine a torch light on dAn, its 
shadow will fallon the plane such that the angle thus formed is called 
the azimuthal angle denoted by <p. The other angle formed will be (), 
which is measured from the vertical, as seen in Fig. 2.9. This angle is 
known as the zenith angle. If we have the axes x, y and z and we have 
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z 

y 

Figure 2.9: Emission of radiation from a differential area dAl and 
intercepted by another differential area dA,. 

a point (XbYl,Zl) as shown in Fig. 2.10, the coordinates of this point can 
also be described as (r,B,</J) where r2 = x~+y~+z~. We introduce the 
spherical coordinate system because it is operationally convenient for us 
to work with this in radiation heat transfer. 

2.2.2 Solid angle subtended by an elemental area dAn in 
the spherical coordinate system 

Consider Fig. 2.11. The solid angle is the angle subtended by an elemental 
area dA,. at a point on dAl where dAl is the area which is emitting the 
radiation and dA,. is the elemental area which is receiving the radiation. 
So for defining the solid angle we need a giver and a taker (for radiation). 
dAl is the emitting surface and radiation is spreading from this surface 
in all the directions. Among all the directions, we are taking a small 
elemental area dAn and are trying finding out how much radiation this 
area intercepts and try and work this out in terms of the fundamental 
coordinates. As r keeps increasing, it is intuitively apparent that for the 
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x 

z (r, e, <1» 

rJ(x~+y~+z~) 

n 
(O,O,O)'k-----~---........ 

". '. '. '. ". '. '. '. 

Figure 2.10: The spherical coordinate system 

same area, the fraction of radiation captUIed will keep decreasing. 

dw 
dA,. 
r2 

dAn = r sinO d¢ r dO 

dw 
,z sinO d¢ dO 

,z 
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(2.2) 

(2.3) 

(2.4) 

Therefore, the total solid angle associated with the elemental area dA), 
if radiation is falling on a hypothetical hemisphere above it, is given by 

w = J l~[ dw = 0 0

2 

sinO dO d¢ (2.5) 

w = 211'[-cosOl~/2 (2.6) 

W = 211' sr (2.7) 

Therefore the total solid angle associated with the hemisphere 
is 211' sr. The solid angle associated with a sphere will be 411' sr. 
The solid angle is a very important concept in radiative heat transfer 
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y 

x 

Figure 2.11: Solid angle subtended by dAn about dAl in the spherical 
coordinate system 

because we are finally interested in the radiation heat transfer between 
surfaces, be it the combustion chamber of an Ie engine or the radiant 
super heater of a boiler. We see that there are various surfaces, some 
hot some cold. Radiation comes out of the hot surface, while water 
tubes are present on the cold surface. Hot water or steam flows through 
the tubes and the job of the radiant super heater is to heat up the 
steam or the water which is on one side by the radiation from the other 
side. So, in all these cases, we are looking at radiation heat transfer 
between finite surfaces. We do not always encounter a situation of a 
small body surrounded by a hemispherical bucket or basket. Therefore, 
if we are interested in heat transfer between surfaces and these surfaces 
are of finite area, because radiation has a tendency to spread in all the 
directions, it is important for us to know the directional orientation of 
one surface with respect to the other surface. Or in other words, we want 
to know how the receiving surface is oriented directionally with regard 
to the emitting surface. In order to do this, not only is the spherical 
coordinate system useful, the definition of the solid angle also becomes 
imperative and essential. 
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We already saw that w for a hemisphere = 27r sr, but why are we talking 
mostly about hemispheres and not spheres ? The answer is we are 
interested in the radiation from a surface (at least for now!). But this 
is not the be all and end all of everything. For example, if we were to 
consider radiation from the atmosphere, then radiation will travel in the 
upper and lower hemispheres also. So once we encounter radiation in 
participating media, as for example in the atmosphere or in the gases of 
a combustion chamber, we need to consider the full sphere. 

First, we want to be able to calculate the radiation and heat 
transfer between surfaces. There are surfaces at different temperatures, 
characterized by different surface properties and are oriented in different 
directions. The key engineering question is What is the net heat transfer 
between any 2 surfaces? A more involved version of this could be that, 
outside of radiation, conduction and convection are also present in the 
problem. In such an eventuality, it becomes a multi mode heat transfer 
problem, which is often the case, and our goal is to be able to compute 
the total heat transfer. 

2.3 Spectral or monochromatic radiation 
intensity, I.~,e 

Figure 2.11 is crucial for understanding the concept of radiation intensity 
IA,.. Here dAl is the emitting surface or the surface that emits the 
radiation and the shaded region represents the elemental area dA,.. that 
intercepts the radiation from dA 1. The centers of dA 1 and dAn are 
joined, and the distance between them is denoted by radius r. In 
principle, if we join any point on dA! with any point on dA", that 
should also be r because dAl and dAn are infinitesimally small surfaces. 
The zenith angle and the azimuthal angle are also marked on the figure. 
The zenith angle 0 varies from 0 to 1r /2 for the hemisphere while the 
azimuthal angle ¢ varies from 0 to 21r. 

Now, with this in background, we will introduce a quantity called spectral 
radiation intensity denoted by h,e where "),."denotes that it is a spectral 
quantity or that it concerns a radiation intensity in a small wavelength 
interval dA about A. The subscript "e "denotes that emission is under 
consideration. 

In conduction and convection heat transfer, we deal with the quantity 
known as flux denoted by q, whose units are W 1m2 • This logically leads 
to the question, when we already have this quantity in W 1m2, where is 
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the need to introduce another quantity called intensity? Why cannot 
we work with flux and why did people deem it fit or necessary to 
introduce this quantity I? The answer to this question lies in the fact 
that radiation falling on a surface can come from all possible directions. 
The radiation, whether emission or reflection, in general, will be a 
function of wavelengths. The radiation emitted by a surface can also 
be in all possible directions or wavelength. Therefore, it is important 
that the directional and spectral nature of the intensity of radiation 
be taken into account and sinc.e it is very difficult to work with flux, 
we introduce a "radiation intensity"which takes care of spectral and 
directional effects. The latter, in conjunction with the solid angle and the 
spherical coordinate system, gives us an eminently convenient platform 
to begin our study of black body behavior and radiation heat transfer 
itself. The spectral radiation intensity IA,e(A, II, <1» is given by, 

(2.8) 

The units of IA,. will be W 1m2 /.I.m sr. 
The formal definition of spectral radiation intensity of emission, IA,e is 
the rate at which radiant energy is emitted by a surface, per 
unit area normal to the surface, in the direction II, per unit 
solid angle dw about (IJ,<I» in the unit wavelength interval dA 
about A. 

The importance of Eq. (2.8) is as follows. If we know the distribution 
of IA,., it is possible for us to integrate and determine the value of 
q. Furthermore, it is instructive to mention here that q is based on 
the actual area as it has the unit W 1m2 • However, I is based on the 
projected area. The above equation is valid for emission, reflection or 
incoming radiation (also called irradiation). Therefore, we can say that 
this equation is a generic expression to convert I to q and it is applicable 
for radiation that is emitted from a body, radiation that is incident on 
a body and the radiation that is reflected from a body. 

2.4 Spectral hemispherical emissive power 

Let us now get back to the black body and see how we can define its 
emissive power based on the framework proposed here. Then we will 
come to a state where if we know what IA,e is for a black body, we can 
calculate the spectral flux, the directional flux, the total flux and so on. 
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The search for the correct IA,. produced many Nobel laureates and many 
celebrated physicists miserably failed to get it right because they tried 
to derive it from using classical physics. The defining moment arrived 
when Planck proposed the quantum hypothesis in order to derive the 
correct distribution for IA,e' Even today we cannot say that this iB the 
only distribution which is correct. It may be disproved later on. But the 
argument is that the only distribution that agrees with experiments is 
the Planck's distribution and therefore must be correct, till it is found 
to be incorrect More on this later! 

The spectral emissive power from a black body Eb(J.) is 

Eb(J.) = 12" 1,,/2 h,ecos()sinlld()d<f; (2.9) 

This is called the spectral hemispherical emissive power. It is 
spectral because it is still a function of >. as we have not integrated it 
with respect to >. and it is hemispherical because we have integrated 
it with respect to a hypothetical hemisphere by doing two integrations, 
one with respect to () and the other with respect to <f;. The units of 
Eb(J.) will be W/m2"m. Since the black body is a diffuse emitter, IA,. 

is not a function of Il and <p. Hence, one can pull out the integral and 
integrate the remaining expression in Eq. (2.9). Now, the beauty is that 
after defining the solid angle and after having introduced the spherical 
coordinate system and IA,e, we have an excellent framework with which 
we can calculate the flux. All the quantities of engineering interest are 
on the left hand side of the equations, be it Eb(>') or Eb. The right side 
contains 1. Hence, one can say that the right hand side of Eq. (2.9) is 
physics while the left side is engineering!. 

The hemispherical total emissive power of the black body is given by 

Eb(T) = 10''''' Eb(>.)d>. (2.10) 

Substituting for Eb(JI) from Eq. 2.9 

rOO (2'K r/2 

Eb(T) = 10 10 10 I b,>.(>', T)cosfJsinOdOd<f;d>' (2.11) 

As a black body is diffuse, Ib,.l.(>.,T) can be pulled out of the integral and 
retained while performing the integration with respect to the direction. 

r2
" r/2 

Eb(T) = h(T) 10 10 cos()sinOd()d<p (2.12) 
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In Eq. (2.11), Eb represents the total hemispherical emissive power where 
total means that the integration is with respect to the wavelength, 
hemispherical means that the integration is with respect to the angle. 
Hence, the calculation of the total hemispherical emissive power involves 
three integrations. Having studied the Stefan Boltzmann's law (from 
the first course in heat transfer), we must remember that in this law, 
3 integrations have already been done in : (J, if> and A. The primordial 
relation with this law is the fundamental I(A) which the black body is 
supposed to emit and which can be verified by experiments and has been 
proposed by theory. Two points have to be reiterated here: 

1. If we look at radiation transfer between surfaces, we are talking 
about hemisphere and not about sphere. 

2. Surprisingly, the result in Eq. (2.13) has 1r and not 21r. 

Example 2.1: A surface of area Al = 2 X 10-4 m2 emits diffusely 
(same in all the directions). The total hemispherical emissive power from 
this surface is 9xlrf' W/m2. Another small surface A2 = 7xlrr4m2, 
is oriented as shown in the fi9ure. Determine the fraction of the total 
radiation from Al that is intercepted by A2 . 

...--+---.-----------1~ n, 

r=O.4 m 8 =55 0 

2 

Figure 2.12: Geometry for example 2.1 
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Solution: 
A I is a diffuse emitter. 

EI = 
I = 
I 

dJ.,; 

1rI 

E1/1r = 9 X 104/1r = 2.86 x 104W/m2sr 

dQ I (dAI'ooSO.dJ.,;) 

A2coS02/r2 = (7 x 1O-4.cos55)/0.42 

27 

(2.14) 

(2.15) 
(2.16) 

2.509 X 10-3 (2.17) 

Q I.dAI'COSO.dJ.,; (2.18) 

Q 2.86 x 104 x 2 X 10-4 x 00835 x 2.509 x 10-3 

11.756 X 1O-3W 

QI(total) EIAI = 9 X 104 X 2 X 10-4 = 18W 

Fraction of total radiation from Al that is intercepted by A2 , 

(2.19) 

(2.20) 

Q/Ql(total) = 11.756 x 10-3/18 = 6.53 x 10-4 (2.21) 

Example 2.2: What is the fraction of the total hemispherical emissive 
power (E W 1m2) leaving a diffuse emitter in the direction 20:::; () :::; 
50 0 and 10 5, <P 5, 70 0

• 

Solution: 

E = 1000 

10
2

" 10"/2 h,eoos!JsinOd(}dq,d)' 

Since IA,. # f(O, <p), it can be pulled out of the integral. 

E rr1b 
00 50° 70° 

EJractiOrt 10 1 1 h,ecosOsinOdOd<pd)' 
o 20 10 

50' 
Efractiun = h x i 10 cosOsinOdO 

Efractiun 
1r 

= h x 12 x 0.9396 

Ejractian 0.9396rr1b = 0.0783 
Eb 12rrh 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

The most important point we have to recognize is that out of a to 90° 
that 0 normally varies between, here the 0 given is 20 to 50°, which 
is 1/3 of the total. And if we consider <p, out of 0 to 2"., here it is 
10 to 700

, which is 1/6th of the total. What is the product of these 
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two? It is 1/18 which is 0.0557. But from Eq. (2.28),the solution 
is not 0.0557 but 0.0783. So there is no shortcut for determining the 
radiation going out and performing the integration with respect to the 
angles is inevitable. The problem is simple to work out if the radiator 
is azimuthally independent. However, zenith angle dependence (i.e 
dependence on 0) is not uncommon. 

Let us now explore the question "What does the quantity I mean". If 
the body is diffuse and I is given, one can determine E in the above way 
or if E is given, one can find out what is the flux coming onto the second 
surface if we know what is being emitted from the first surface and so 
on. But suppose we know only the temperature of the first surface, how 
one can get E or I ? This comes from basic radiation laws and the first 
important concept to know is that radiation also exerts a pressure. 

2.5 Radiation pressure 

The radiation from the sun exerts a force of nearly 1.2 x 106 kN on the 
earth. Notwithstanding this, the ability of radiation to exert pressure 
was unknown till almost the end of the 19th century. It was the Italian 
physicist A. Bartoli who first proposed a thought experiment (whose top 
view is given in Fig.2.13) to prove the existence of radiation pressure. 
The arrangement consists of a cylindrical chamber that is insulated on 

Black 
body at 
T, 

Valves 
Movable 

pistoFn'--+-.::==,r-t_--, 

A 

I 

Black 
bodyatT: 

T<T , 2 

Figure 2.13: Apparatus for Bartoli's thought experiment 
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its periphery so that there is no convection. The cylinder is attached 
to a black body on the left hand side, which is at temperature T1 and 
is attached to another black body on the right hand side which is at 
temperature T2 such that TJ < T2 . There are 2 movable frictionless, 
massless pistons (A and B) contained in this cylindrical enclosure, with 
a small gap in between, which can be covered or opened by sliding valves. 
The pistons are perfectly reflecting. Bartoli postulated a thermodynamic 
cycle with three processes using this. 

Initially, the valve which is close to piston A is open. The other valve is 
closed. The region to the left of A as well as that between A and B is in 
contact with a black body at temperature T 1. If we give enough time, 
the cavity consisting of chambers I and II, which is extending upto piston 
B, is filled with radiation energy density corresponding to the black body 
at T 1. 

Process 1: The valve near piston A is closed, piston A moves towards 
piston B till such time that the radiation energy density between the 2 
pistons rises to a value corresponding to the black body temperature T 2 • 

This process is akin to compressing a gas. Chamber III is anyway in 
contact with the black body at T2. Hence the radiation energy density 
corresponding to chamber III will be equal to that of the black body at 
temperature T2. 

Process 2: Valve near piston B is opened and the radiation energy 
densities on either side of piston B are the same as that of the black 
body at T2. Both the pistons are moved towards the black body at T2 
such that the energy density is pushed towards the black body at T 2. 

Process 3: Bring back the pistons and valves to their initial positions. 

In this hypothetical cycle, everything is alright except that the second 
law of thermodynamics seems to have been violated when heat was 
transferred from a body at lower temperature to a body at higher 
temperature. The heat could be radiation, conduction or convection and 
in this case, it happened to be radiation. This is allowed only when extra 
work is done and hence we have to find a mechanism or a place where this 
extra work could have been done. This work could have been done when 
pushing the pistons towards the right but the pistons are mass less. If 
friction were present, the movement of the pistons would have generated 
heat which would have increased the temperature. However, the pistons 
and valves are frictionless. But if heat transfer is to take place from 
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a body at lower temperature Tl to a body at higher temperature T 2 , 

some work needs to have been done. Bartoli argued that if everything 
is correct and the second law of thermodynamics has to be obeyed, this 
work must have been done against the radiation pressure! Therefore 
radiation can be treated like a gas. When we are moving it from Tl to 
T 2 , we do work and compress it. This is the only way which will make 
cycle will work. Hence, radiation pressure has to exist I 

Radiation pressure is not fiction or fantasy and people have measured 
it using large sails on boats by cutting out the wind component. That 
said it is quite smail and difficult to measure. The existence of radiation 
pressure opens up new vistas for doing research and exploring "I" because 
basic thermodynamic laws can now be used to obtain a quantitative 
handle on radiation. If radiation has a pressure and if we also assume 
that it has internal energy density and if we are able to relate these 
quantities to I, we can use the TdS (often punned jocularly as "tedious") 
relations of the classicai thermodynamics to relate I and T. 

The radiant power passing through dA in Fig 2.11 in the ((},</J) direction 
in W is 

dQ()" 0, </J) = h()" 0, </»dAlcosBdwd), (2.28) 

The net momentum flux passing through dAl in the (O,</» direction is 
tricky to answer. We can relate the momentum to the pressure. But we 
should be in a position to relate the radiant power to the net momentum 
flux. How can we do this? 

Radiant power I (Area x speed) at which radiant power propagates will 
have the units W/(m2)(m/s) = W s/ m3 = Joules/ m3 = Nm/m3 = 
N 1m2 which has the units of pressure. 

where dE has units of N/m2 . Now, the component normal to the 
radiation will be the component normal to dA. 

rit (), () A) = dQcos() (2.30) .....,n ,,'1' c.dA 

Substituting from Eq. 2.28 

(2.31) 
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The net change in momentum is equal to the difference between what 
is going out and what is coming in. Now, if dA is a perfect reflector, 
whatever is going in must equal whatever is coming out. Therefore the 
net change in the flux will be twice the value which is obtained in Eq. 
(2.31). Now integrating over (), </J and)" we have the following expression 
for pressure, P 

(2.32) 

(2.33) 

Between the above two equations, (2.32 and 2.33) we have done several 
things. We have gotten rid of integration with respect to ). by saying 
that I>.d)' can be replaced by h. Ib is not a function of (), </J because we 
are assuming everything is a black body so that h can be pulled out of 
the integration. Secondly, we already did the integration with respect to 
d</J and have brought the 271" outside the integral. Upon evaluating Eq. 
(2.33), which turns out to be 1/3, we have 

p = 471"h 
3c 

(2.34) 

This is an important step that thermodynamicists achieved 150 years 
back when they related the radiation pressure to the intensity. 

Next we define an expression for the radiation energy density u 
(Jjm3 ). While radiation energy density has the units J/m3 , radiation 
flux or power is just W or W 1m2 . So if we have to convert the flux 
into energy density, the additional variable that enters the problem is 
time. Therefore we have to consider a time dt such that in this interval, 
a length dL is swept by the incident beam and the question we have 
before us is, if radiation is shining on an object, how much of energy will 
it accumulate in this dt? dL is the swept length in an interval of time 
dt. dL can be written as cdt, as shown in Fig. 2.14. The swept volume, 
dV is given by dL . dA cos(). 

The total amount of energy contained in this volume is 

dE>.()., (), </J) = h,edAcos()dwd)'dt (2.35) 

Let us now define a du>. as follows 

d ().()A.)=dE>.().,(),</J) 
u>. , ,If' dV (2.36) 
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Incident radiation, 
z IP..,8,Cb) 

y 

x 

Figure 2.14: Figure showing a beam of intensity I),(A, 0, 4» incident on 
the surface element dA 

Substituting for dE), from Eq. 2.35 

d (A 0 "') = h,e(A,0, 4»dAcosOdwdAdt 
u), , ,'1' edt dA cosO (2.37) 

Upon integrating from A= 0 to A = 00 

du(O,4» 1100 

- h,e dw dA 
e ),=0 

(2.38) 

u - ~ J [(0, 4»dw (2.39) 

For a black body, Ib '" f(O,4» and so I(O,A) = lb. The integration is over 
47r. Therefore, 

u = Ub = (47rh)/e (2.40) 

The progress we made thus far can be summarized as 

(1) an expression for the radiation pressure in terms of the intensity has 
been derived 
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(2) an expression for the radiant energy density in terms of the intensity 
has been derived 
(3) radiation pressure is basically the radiation intensity divided by 
speed. 

Figure 2.15 gives a depiction of the three central "characters "in the 
development thus far, namely Ib, Pb and Ub. 

Radiation 
Pressure 

Radiation 
energy density 

Figure 2.15: A depiction of the interrelationship between Ib, Pb and Ub 

From the expressions derived thus far, we have 

Therefore we get 

P
b 

= 47r1b 
3c 

47r1b 
Ub=-

c 

U 
P=Pb= -

3 

(2.41) 

(2.42) 

(2.43) 

2.6 Relationship between the intensity, I and 
temperature, T 

When the emissive power of a black body is integrated for all the 
wavelengths and over the hemisphere, we know that the relationship 
between E and I is given by 

E=7rh (2.44) 
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30 getting a relationship between Ib and T is as good as getting a 
relationship between E and T. This has been independently confirmed 
by experiments. By thermodynamic arguments, can we get the same 
relationship? 

Consider a gas occupying a volume V, with pressure P, at temperature 
T. 

(2.45) 

The total internal energy U is equal to the product of the specific internal 
energy and the volume. The specific internal energy is defined as energy 
per unit volume. From the Td3 relations in thermodynamics, we have 

TdS dU +pdV (2.46) 

TdS d(uV) +PdV (2.47) 
TdS udV + V du + PdV (2.48) 

But P 
u 
-

3 

TdS 
u 

udV + Vdu + 3dV (2.49) 

TdS 
4 

Vdu+ 3udV (2.50) 

dS 
V 4 
T du + 3TudV (2.51) 

The quantity S, here is entropy, a property and hence it is a point 
function. 
As a consequence, dS is an exact differential. 
IT 

Z 

dZ 

For dz to be an exact differential 

8M 
8y 

f(x,y) 

Mdx+Ndy 

8N 
8y 

(2.52) 

(2.53) 

(2.54) 
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Applying the above to Eq. 2.51 we have 

~ [V au] 
av TOT 

1 du 
TdT 
4 u 
3T2 

du 
u 

Integrating both sides 

lnu 

u 

Substituting for u from equ.2.42 

For a black body 

a 4u 
aT3T 
4 du 4u 
-- - -
3TdT 3T2 
1 du 

3TdT 

4
dT 
T 
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(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

Equation (2.64) is a very important relationship which was figured out 
in the last part of the 19th century. Stefan and Boltzmann arrived at 
this independently. In the above equation, c is the velocity of light in 
vacuum = 2.998 x 108 m/s. However the constant a is not known. So, 
to get the value of a, this expression has to be matched with the values 
got through experiments. By doing this, it is now known that ac/4 = 
5.67 x 10-8 W /m2K4 = u, which is known as Stefan Boltzmann 
constant 

. E - T4 .. b- U (2.65) 

A word about the two scientists. Josef Stefan (1835 - 1896) and Ludwig 
Boltzmann (1844 - 1906) were the two physicists behind this equation. 
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Stefan was an Austrian Professor and Boltzmann's research supervisor. 
It is worth noting that Boltzmann got his PhD at the age of 22 and at 
the age of 25, he was appointed full professor in mathematical physics 
at the University of Graz! 

Getting back to the distribution, we still do not know what "I "is. But 
with the help of thermodynamics, without knowing I, we were able to 
establish that the black body radiation is proportional to the fourth 
power of temperature. Many questions are still unanswered such as, for 
a given temperature, how does Ib vary with .>. '! Does it hit a peak 
or are there multiple peaks? For a given wavelength, how does 10 vary 
with temperature? What happens when).. tends to 0 or when it tends 
to infinity? The best brains in the last part of the nineteenth century 
and the early part of twentieth century worked on this problem and came 
out with different proposals for Ib('>'). These are called candidate black 
body distribution functions. 

Intuition suggests that the following constraints have to be satisfied by 
all possible candidate black body distribution functions 1.('>'). 

Ib('>') -+ 0,'>' -+ 00 

h('>') -+ 0,'>' -+ 0 
Ib('>') -+ 0, T -+ 0 

h('>') -+ 00, T -+ 00 

(2.66) 
(2.67) 

(2.68) 

(2.69) 

Furthermore, the correct distribution of I b,).('>', T) should also satisfy the 
following relation 

100 12" 1"/2 Ib,A('>" (), ¢) sin(}cos(}dfjd¢d'>' = uT4 (2.70) 

Wien (1864 - 1928), a German, was the first scientist who proposed a 
distribution in 1886 as follows 

I (.>. T) _ Cl.>.-5 
b,A, - ",fAT e 

Where C1 and C2 are the two radiation constants whose values are 

1.19 X lOB W J1.m4 /m2 

14388J1.mK 

(2.71) 

(2.72) 
(2.73) 

For a black body at 6000 K, while the Wien's distribution holds good 
for short wavelengths, it deviates from the experimentally obtained 
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distribution at higher values of A (see Fig 2.16). Furthermore, when 
T -t 00, e~ -t 1 and so, the curve saturates violating the constraint given 
by Eq. (2.69). There is a significant departure from the experimental 
values at higher values of A. What is special about this temperature? 
The temperature under consideration, 6000 K, is important for engineers 
because it is the temperature of the sun! Therefore, if we take the 
spectral distribution of Ib,>. vs A, corresponding to a black body at 
6000K, the Wien's distribution departs significantly beyond the peak 
corresponding to the 6000K. On the left side of the spectrum, though, 
the distribution does agree with the experiments. It is semi empirical and 
based on thermodynamics and Wien does not seen to have considered 
the experimental results available in literature while arriving at the 
distribution. 

la' 
';.(A,6000K) .." la' 
W/m' ~msr 

10' 

la' 

la' 

a 0.5 

ExptslPlanck 

Wien 

1 1.5 2 

Figure 2.16: Wien's distribution and comparison with experiments 

The second distribution was proposed by the two scientists Lord Rayleigh 
(1842 - 1919) in 1900 and Sir Jeans (1877 - 1946) in 1905. They both 
independently worked out yet another incorrect distribution for Ib,>., as 
follows 

CIA-5 
h,>.(A, T) = ----", (2.74) 

>'T 

Let us now see how this differs from the Wien's distribution. The 
numerator is the same. C! and C2 are the first and second radiation 
constants respectively and have the same value as in the Wien's 
distribution. The denominator, though, is different. While in the Wien's 
distribution it is eC2 />'T , in the Rayleigh and Jeans distribution, it was 
c2/AT. The Wien and Rayleigh-Jeans distribution together with that 
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obtained by experiments are shown in Fig 2.17. At shorter and shorter 
wavelengths for the distribution proposed by Rayleigh and Jeans, lb,>. 
(A, T) -+ oo! But that was not observed by anybody. This means that 
with very small wavelengths, extremely high Ib,A can be produced. This is 
far from being true. Though the two were very celebrated scientists, their 
distribution failed miserably at very low wavelengths. So at ultraviolet 
wavelengths, there is a significant deviation from measured values and 
this dramatic failure of classical physics in the hands of two greatest 
physicists was called as the ultraviolet catastrophe! 

10' 

T ,(A,6000K) 
.,,~ 10' 
Wlm2~msr 

107 

10' 

105 

o 0.5 

Rayleigh/Jeans 

Wien 

1 1.5 2 

Figure 2.17: Comparison of candidate distributions with experimental 
results 

2.7 Planck's distribution 

In 1901 (four years before the publication of the incorrect Rayleigh-Jeans 
distribution), Max Planck proposed a distribution for lb,>. as 

(2.75) 

where he just added a "-1" in the denominator of the Wien's distribution. 

His distribution agreed excellently well with the measured lb,>. data, at 
any temperature for all wavelengths. Then he started thinking as to why 
it agreed so perfectly. First he just did curve fitting. The intriguing part 
though, is the fact that Max Planck gave the correct distribution in 1901 
while Jeans gave his incorred; distribution in 1905 and ironically both 
papers were published in the same journal. Then Planck wondered about 
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the physics behind the "-1" in the denominator ofEq. 2.75 and figured out 
that this would not be possible if he adopted the classical physics route. 
Therefore, Planck figured out that unless he used E=hll, one will not 
get the final result. Therefore, he concluded that E=hll must be correct. 
This, in turn, changed the notion that continuous transfer of energy was 
alone possible and the conclusion was that energy is transferred only in 
steps of hll or in quantum steps of hll, which in turn makes it conditional 
that h have a finite value, which was found to be 6.627 x 1O-34Js now 
called the PlancM 8 constant. More about this in a later section. 

2.8 The Rayleigh Jeans distribution 

Let us look at radiation field enclosed in a cubical box of side a and 
volume a3 (see Fig. 2.18). 

z 

a 

Figure 2.18: Radiation field enclosed in a cube 

The goal is to determine the radiation energy density within the box, U v 

to further get the relation between Uv and Iv. Consider standing waves 
with a frequency, II. Between II and lI+dll, if we get the possible number of 
modes of vibrations or standing waves, say for a cubical volume, multiply 
it by the average energy per frequency or average energy for each wave 
and then divide it by the volume of the container, we get the spectral 
energy radiation density. 
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From classical physics, we know that every harmonic oscillator has got 
two degrees of freedom, one is the kinetic energy and the other is the 
potential energy. From Boltzmann statistics, we know that the kinetic 
energy is (1/2) kT and the energy associated with potential energy is 
another (1/2) kT. So kT is the average energy. If we multiply it by 
the number of waves between v and v+dv, we get the numerator and if 
the denominator is the volume a3 , we get the spectral radiation energy 
density in terms of 11. FUrthermore, 

Ilyd1l1 Ihd)'1 (2.76) 

c v), (2.77) 
v c/)' (2.78) 

d1l -(c/),2)d)' (2.79) 

h I y(c/),2) (2.80) 

This is the relationship between Iv and IA• So, once we have an expression 
for uv, we can obtain one for Iv and using Eq. (2.70), in turn get an 
expression for Ib,"" We will now formally derive the Rayleigh-Jeans 
distribution. 

Consider the radiation field enclosed in a cubical box, as shown in 
Fig.2.18, whose walls are impermeable. Stationary waves or standing 
waves are set up inside, whose allowable frequencies have to be 
determined. 

{No. of standing waves between (11 and 11 + dv) x (average energy)) 
U v = 

(2.81) 

Mathematical development: 

:. The average energy/wave = kT= potential energy (1/2 kT) + kinetic 
energy (1/2 kT)(where k is the Boltzmann constant given by 1.3806 x 
10-23 J/K) 
The governing equation for standing waves in the domain is given by the 
following equation 

(2.83) 

,p is the wave function in the Eq. 2.83. For an electromagnetic wave, 
,p represents the electric or magnetic field magnitude. We are not going 
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to get into the full solution of this equation but have a limited objective 
of pulling out the number of waves of a prescribed frequency from this. 
The radiation energy density should be independent of the size of this 
container. So it is intuitively apparent that the term a3 will be present 
in this expression for the number of waves so that the denominator term 
a3 will see to it that liv is independent of a. 

Eq. (2.83) is a hyperbolic linear partial differential equation, which can 
be solved using the method of separation of variables. The first step here 
is to assume a product solution. 

.p = T(t)X(x)Y(y)Z(z) (2.84) 

We require 2 conditions in time and 6 conditions iIl space for the cubical 
container geometry. 

,p = 0 for x = 0 and x = a 

,p = 0 for y = 0 and y = a 

.p = 0 for z = 0 and z = a 

The general solution to Eq. (2.83) is given by 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

where nl, n2 and n3 are integers and w" is the circular frequency. The 
circular frequency, w" is given by 

w2 7f
2c? (2 2 2) (2.89) 

" -2- nl +n2+n3 
a 

w = 27f1l (2.90) 

II" - c V( 2 2 2) 2a n1+n2+n3 (2.91) 

The challenge is to come up with a number for the discrete frequency 
modes that are allowed in the frequency interval II to lI+dll. Once we 
have this, we are kind of done. In order to comprehend its derivation 
better, let us take recourse to geometry. 

Consider a situatioIl shown in Fig. 2.19, where Ill, Il2 and n3 can take 
on integer values and all have to be positive. Let us consider a 2 
dimensional situation, where we have unit squares. We now consider 
differential area 27fdr in the first quadrant. What is seen here is 
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a 2 dimensional representation using n 1 and n2 instead of the three 
dimensional representation. The hatched area in the figure is given by 
211"r .dr / 4 (the division by 4 comes in as we are considering only one 
quadrant). Here dr=1 and the hatched area = 12.0. Now we count the 
number of lattice points that this hatched area cuts. It is 13. So if r 

1 

2 

n 3 
2 

4 

5 

6 

7 

8 

• y 7: : 

:t.~>.12ZZI: ~ 
~~ ~. 

'\ ~ 
IY~ ~ 

'\ ~~ 
! \<~ 

c'P 
I;; 

1 2 3 4 n 5 
1 

6 7 8 

Fib'1lre 2.19: Figure depicting counting in two dinlensions 

is sufficiently greater than 1, the area of the quadrant is equal to this 
number. But what we want for the spectral density is the number of 
waves. The number of waves can be related to the area. Here we have 
only nl and n2, but in the actual case, we will have nl, n2 and na and 
instead of the quadrant, we will have the first octant of a sphere. So 
the volume for the octant will be 41fT2dr /8 which will be exactly equal 
to the number of lattice points, which will, in turn, be the number of 
waves that are allowed between the frequencies 1I to lI+dll. Let us now 
try to think of the discrete frequencies in terms of a space lattice, then 
count the number of lattice points having unit dinlensions. For a three 
dimensional case, radius rn is given by 

r rn=V(n~+n~+n~) (2.92) 

The number of points having a distance between r and r+dr is given by 
dN = 411"r2dr /8. In a two dimensional case, the number of points between 
r and r+dr can be easily counted by not doing a number count but by 
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just taking 27rrdr / 4. Therefore, the number of points lying between r 
and r+dr in a 3 dimensional lattice space is given by 47rr2dr /8. So the 
number count was analogous to the elemental area in the case of two 
dimensions while it is analogous to the elemental volume in the case of 
3 dimensions. So, we have the following 

when rn J(n~ + n~ + n~) (2.93) 

dN 
47rr2dr 

(2.94) 
8(1) 

and so when, rn ~J(n2 + n 2 + n 2) 2a 1 2 3 
(2.95) 

dNlI 

47rl)2d1/ 
(2.96) 

8(2~Y 

dNlI 
47ra

3 
2d (2.97) = --1/ 1/ 

c3 

The expression for 1/r then becomes (when d1/ = 1) the following 

(2.98) 

U ll = (2.99) 

But two possible directions need to be considered. For an 
electromagnetic wave, two polarizations namely, vertical polarization and 
horizontal polarization or Eparallel and Eperpendic'Ular are possible. 

:. U ll = 

_ 87r1/
2 
kT 

U ll - c3 

(2.100) 

(2.101) 
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But we know that 

4n1bv 
(2.102) Uv --' 

C 

2v2 

(2.103) Ib,v -kT 
c2 

ButIb,A 
c 

h,v ),2 (2.104) 

Ib,A 
2v2 c 
--;?kT ),2 (2.105) 

Ib,A 
c 

2 ),4kT (2.106) 

2hc2 
Cl (2.107) 

h 
(2.108) - c C2 

k 

Cl),-5 

Ib,A = ..£2- (2.109) 
AT 

This is the Rayleigh-Jeans distribution. The Rayleigh Jeans distribution 
is good for long wavelengths. However, for short wavelengths, it performs 
very poorly, as already discussed. When), --+0, I~f --+ 00 and hence 
violates Eq. (2.66). This was a dramatic failu~e of the Maxwell
Boltzmann statistics that was very impressive until then. 

2.8.1 Planck's black body distribution function 

The correct distribution was proposed by Planck and for proposing this 
correct quantum hypothesis, he was awarded the Nobel prize in 1918 at 
the age of 60. The logic is more or less the same as what Rayleigh Jean 
proposed, but there is a modification in terms of the average energy. 
The number counting is the same as Rayleigh Jeans. There are 3 terms 
involved in which are the number of standing waves, the average energy 
per standing wave and the volume of the container. The volume of the 
container is the same in both the cases. The number of standing waves is 
the same. But Planck figured out that there is an issue with the value of 
kT as average energy per standing wave that came from clasical physics 
and kinetic theory of gases. Planck was sure that there was a problem 
with kT. He used a different approach and used a harmonic oscillator 
instead to put forth his theory. 

The harmonic oscillator is the equivalent of a spring mass system 
as shown in Fig. 2.20, where the stiffness is K and the mass is M. 
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K 

Figure 2.20: Depiction of an harmonic oscillator, with the help of a 
spring-mass analogy 

He considered an atomic oscillator as being equivalent to a spring 
mass system because here, we can get the natural frequency and 
other parameters. Two points are to be noted here. (1) The spring 
mass oscillator is in thermal equilibrium with its surroundings at a 
temperature T. Inspite of this, it continues to emit radiation, as sald 
by Provost's law and this activity will cease only when the temperature 
is 0 K. (2) The second point is that the oscillator is capable of interacting 
with electromagnetic radiation. 

We will start with classical physics or mechanics and use Boltzmann 
statistics and determine the total energy, the number of oscillators 
possible between two energy levels and the total energy of a certain 
number of oscillators. The total energy divided by tbe number of 
oscillators in the energy band will give us the average energy. This 
average energy should be different from kT. If we happen to get kT 
again, we will come back to the Rayleigh Jeans distribution. Planck 
did some magic there and got values different from kT because of which 
he got the -1 in the denominator apart from the term got by Wien. 
The argument goes like this: The proof is correct and finally, one gets 
an agreement with experiments. If everything is correct, there is a very 
crucial assumption Planck makes in one step, which must also be correct. 
Therefore that is the correct theory to explain black body behavior, as 
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of today. No one else has been able to come with a better explanation 
that agrees better with experimental results. 

The total energy of one oscillator with mass M and spring constant 
K is given bye' = KE + PE = p 2/2M + 1/2Kx2 where P = 
instantaneous momentum ; x = instantaneous displacement. Any 
oscillator is characterized by its momentum and displacement. 

Number of oscillators having values of (x,P) lying within dx and dP has 
to come from probability. This comes from the Maxwell-Boltzmann (M
B) statistics which actually belong to the the pre-quantum era. Planck 
did not dispute all of what Rayleigh-Jeans said. He used most of the 
arguments and had problems only with the average energy. 

dN = NCe-e'/kTdx dp (2.110) 

The (M-B) probability follows an exponential distribution. Eqn. 2.111 
is known as Arrhenius type distribution. In Eqn 2.111, C is a constant, 
defined such that N = f f dN. Somehow, if we know the total number 
of oscillators at all levels, we can pull out all values except C and get its 
value. 

How will the curves of constant energy appear? This is basically elliptic 
phase space where the lines are iso energy contours ( see Fig. 2.21). 
There can be several combinations of momentum and displacement that 
can give the same energy and these when drawn give us elliptical rings, 
each of a particular energy. We can say one line represents an energy level 
of e' while the next one is e'+l!.e'. Between e' and e'+l!.e', if we are able 
to find out the energy of all the oscillators, we keep it in the numerator. 
Between e' and e' + l!.e', if we find the total number of oscillators and 
keep it in the denominator, then the total energy of all the oscillators 
between two bands divided by the total number of oscillators between 
the two bands will give the average energy of any oscillator that lies 
between the two bands. Once this step is done, we go back to Rayleigh
Jeans and instead of kT, use this value and complete tbe derivation. 
Let us start by saying that l!.e' is very small so that e-e' /kT is a constant 
over l!.e'. 

The number of oscillators lying in the band e to e' +l!.e' is then given by 

l!.N = NCe-e'lkT J J dxdp (2.111) 
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y 

x 

Figure 2.21: Depiction of the elliptical phase space in the derivation of 
the Planck's distribution 

What is J J dxdp? It is the area of the slice ofthe ellipse indicated by 
the hatched portion in the Fig. 2.21, denoted by ~S. The entire area of 
the ellipse is given by S = 7rab (a-semi major axis, b-semi minor axis). 

In the elliptic phase space, the area of the ellipse is given by S = 7r 
Xma::z: Pmax · 

Xmax 

Now we can get the area S as 

S=27rel~ 

(2.112) 

(2.113) 

(2.114) 

The natural frequency of an atomic oscillator with spring constant K 
and mass M is 

(2.115) 
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Combining Eqns. 2.115 and 2.116 we have 

e' 
S = 

v 

l::,.S = 
l::,.e' 

v 

Substituting for J J dx dp in Eq. 2.112, we have 

NCe·' jk'I'l::,.e' 
l::,.N = 

v 

Recall l::,.S= J J dxdp. 

(2.116) 

(2.117) 

(2.118) 

(2.119) 

Now comes the Planck's hypothesis. Consider that the elliptic phase 
space is divided into increments and into equal bands of area h. Consider 
a number of such elliptical rings and number them as n=0,1, ... Planck 
proposed that the energy of an oscillator located at the inner boundary 
of a particular ring is e'= Sv = nhv, where S is the area between 2 bands 
that he replaced as nhv. If h=O, we are in trouble as the expression will 
reduce to kT. So Planck's hypothesis was 

e' = Sv = nhv (2.120) 

There is no rational basis of establishing this by mathematical principles. 
Also, here, n is a number that can take only integer values. 

l::,.N = NCe( -nhv)jk'I' l::,.e' 
v 

The number of oscillators in a ring "n" is given by 

where 

NCl::,.e' e(-nhv)jk'I' 
v 

Noe(-nhv)jk'I' 

No = NCl::,.e' 
v 

(2.121) 

(2.122) 

(2.123) 

Now, what is the total energy of all oscillators? The minimum and 
maximum values of n are 0 and 00. So we have to add up for all values 
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of n. The total energy of all the oscillators, E, is then given by 

00 

E = LNne~ 
n=O 

00 

E LNoe-(nhv)/kT.nhv 
n=O 

49 

(2.124) 

(2.125) 

E Noe(-nhv)/kThv[1 + 2e(-nhv)/kT + 3e-(nhv)/kT + .. '~.126) 

:.E 
Nohve-(hv)/kT 

[1 - e-(hv)/kT]2 

The total number of oscillators N is given by 

00 

N 

N = No[l + e-(hv)/kT + ... ] 
No 

N 
[1 - e-hv/ kT] 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

We now have the total energy of all the oscillators (2.127) and the total 
number of oscillators Eq. (2.130). The average energy per oscillator is 
basically Eq. (2.127) divided by Eq. (2.130) which is 

w 

w 

No[e-hv/kT]hv[l _ e-hv/kT] 

[1 - e-hv/ kT j2 No 
hv 

(e(hv/kT) - 1) 

(2.131) 

(2.132) 

Now Planck wanted to check what will happen when hv jkT is very small. 

When hv -> 0 
kT 

w- hv =kT 
[1 + ~~ -1] 

(2.133) 

(2.134) 

This is what we get in the Rayleigh-Jeans distribution and also Planck 
was forced to come to the conclusion that h cannot be o. So h has to 
be small but finite. So he introduced a fundamental physical constant in 
nature or in physics which was hitherto unknown and when he matched 
these results with the experiments, he found h to have a value 6.67x 
1O-34Js. In honour of him, it was called the Planck's constant. Let 
us now complete the derivation. The spectral radiational energy density 
U v is given by 
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87r1l2 hll 

c3 hv 
[e kT - 1] 

But U v 
47rhv 
--'-

c 
2h1l3 

hv 
c2 [e kT - 1] 

Substituting for 1I as ~ 

2h(~)3 
hv 

c2 [e kT - 1] 
2hc 
hv 

).3[e kT - 1] 

We also know that 

lb,>. 

h,>. hv 
).5[e kT - 1] 

2hc5 

hCO 
k 

So,finally we have 

C1 2 x 6.627 X 10-34 x (2.998 X 108 )2 

1.198 x 10-16 J8m2 

c1 
8 2 

C1 1.198 X 108 WJ.Lm4 

m 2 

hCO 6.62 x 10-34 x 2.998 X 108 

C2 -
k 1.38 X 10-23 

C2 14388J.LmK 

(2.135) 

(2.136) 

(2.137) 

(2.138) 

(2.139) 

(2.140) 

(2.141) 

(2.142) 

(2.143) 

(2.144) 

(2.145) 

(2.146) 

(2.147) 

(2.148) 

(2.149) 
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C1 is called the first radiation constant and C2 is called the second 
radiation constant. What is so great about Eq. 2.144? Planck got an 
expression for lb,>., which when plotted against A for any temperature, 
gives exactly the same results as what other people measured for all 
wavelengths at all temperatures. Therefore, his result must be correct. 
If the result is correct, then all the steps he has done to get it must be 
correct. All, but one of the steps, are exactly the same as what Rayleigh
Jeans have done, that was based on the Maxwell Boltzmann statistics. 
There was one crucial departure from the Maxwell Boltzmann statistics 
when he proposed that the energy can be divided into bands and e=nhll. 
Therefore e=nhll must be correct! 

We get an expression that matches with experimental results only if 
this assumption is made. Therefore, the hypothesis that energy 
transfer must take place only in discrete multiples of hv is 
correct and this was the beginning of quantum mechanics. He 
proposed this in 1901 and spent many years after that trying to figure this 
out. In 1918, he was finally awarded the Nobel prize. Please remember 
that the integral of Ib,A with respect to A must lead to aT4.We will look 
at Planck's distribution and see if we can extract any further information 
from that. We have only been seeing the mathematical form. A plot of 
the Planck's distribution for various temperatures is shown in Fig.2.22 

h,>. 

C1 

C2 

When 

C1 A- 5 

"2 
[e>T - 1] 
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[e>T - 1] 

(2.150) 

(2.151) 

(2.152) 

(2.153) 
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When C2AT > > 1, the Planck's distribution is approxJmated to the 
Wien's distribution, which is valid for very short value of A or good 
for short wavelengths. Now, let us see what happens when # ---+ 0 

C1A-5 C1 A- 5 • 
h,A = [ 02 _ ] = -[ ""] = h,A(Rayl€1gh-Jeans) 

l+>'T 1 AT 
(2.155) 

We see that the Planck's distribution in this case can be approximated to 
the Rayleigh-Jeans distribution, which is good for long wavelengths i.e 
# ---+ 0 orA ---+ 00. So, the Wien's distribution and the Rayleigh-Jeans 
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distribution are two asymptotes to the Planck's distribution. While 
the Planck's distribution is valid for all values of the wavelengths, the 
Wien's distribution and the Rayleigh-Jeans distribution are valid for 
some portion of the electromagnetic spectrum. 

One can now perform a good exercise by taking values of c2/>"T as 
10, 100 and 1000 and calculating the value of Ib,A using the Planck's 
distribution, Wiens distribution and the Rayleigh-Jeans distribution and 
then determining the percentage error. This way we can understand the 
penalty that we pay for using an approximate expression instead of the 
correct black body distribution (Planck). 

2.9 Planck's distribution - salient features 

If we look at Fig 2.22, the following points emerge 
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Figure 2.22: Planck's distribution 

1. Ib,A is a continuous function of >... Stated explicitly, for every value 
of >.., we have a unique value for Ib,A. 
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2. For every temperature T, there is a peak. 

3. For a given A, lb,A increases with temperature, as can be seen 
from the graph. This is intuitively apparent from the second law 
of thermodynamics, that higher the temperature, higher will be 
lb, ... 

4. The peak of the lb,A keeps shifting to the left for increasing 
temperatures. 

How do we get the peak of h, .. (A, T)? For this, we do the following 

8 
8A[h,A] = 0 (2.156) 

We do not want to differentiate lb,A with respect to T because we know 
that Ib,A anyway keeps increasing with T. With A, though, it increases, 
reaches a peak and then decreases. Therefore if h,A is differentiated 
with respect to A and the first derivative equated to 0, it will become 
stationary and we can get that value of A that will yield the maximum 
OfIb,A' 
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(2.162) 

We need to solve this non linear, transcendental equation to get x which 
is actually x' where x' is that v-olue of c2/AT which will make lb, .. 

stationary. We will numerically solve this using the method of successive 
substitution. Rearranging the equation, we get 

x 
5(e" - 1) 

eX 
(2.163) 

Xi+l 
5(e'" - 1) 

eXi 
(2.164) 
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We start with some Xi and get XH 1. Xi+! is now treated as the new 
Xi and we keep doing this till the modulus of (Xi+1- Xi)/Xi is equal to 
some acceptably low value. The above is frequently referred to as the 
convergence criterion or the stopping criterion. Let us start with x=3 
and do the calculations. The results are given in Table 2.1. 

Table 2.1: Determination of the root of eqn.2.164 by successive 
substitution 

Iteration No. I Xi Xi+1 (Xi+1-Xi)2 
1 3 4.75 3.06 
2 4.75 4.95 0.044 
3 4.95 4.964 ···T96xii:JC:{ 
4 4.964 4.9654 Ix 10-4 

One can solve Eqn. 2.159 using the Newton-Raphson method too. Here, 
the advantage is that in the first or second iteration itself, the value of x' 
is obtained, as the Newton-Raphson method has quadratic convergence 
( see Balaji (2011) for a fuller discussion on this method). 

x' 
C2 5.1' = 4.965 p.mK (2.165) 

4.1639 x 104 

4.965 
~T (2.166) 

(2.167) 

Eqn.2.166 is known as the Wien's displacement law. We do not 
require Planck's distribution to get this, by curve fitting too by joining 
the points of individual maxima of experimentally obtained curves of 
Ib,A V s T, this can be got. This is a very profound result. Look at 
the sun's temperature, 6000K. Am"", corresponding to solar radiation is 
about 0.5JLm. This is so important because 0.5p.m lies in the visible part 
of the spectrum, which is 0.4-0.7 p.m and that is why we have daylight 
and Earth is so habitable. If the sun's temperature were to be 12000K, 
we would require light 24 hours a day. The electric bulb, tube light, CFL 
etc are all being developed so that the lighting inside mimics the sunlight 
outside. Our shirt colour and body temperature are at about 3T'C or 
300K. Suppose the green stripes in our shirt were because of emission, 
for this 300K, what would be the A'! lOp.m. Is this in the visible part 
of the spectrum? No, it is in the infrared region. So a shirt is green in 
colour, not because of emission, but because it absorbs all other colours 
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and reflects only the green colour. From Wiens displacement law, we 
can 1lllderstand that for all practical purposes, colour is largely based 
on reflection rather than emission, unless we encounter high 
temperatures. 

If we really want to see colours based on emission, we have to take 
an iron rod and heat it to a high temperature and the colour we see 
then is because of the emission. So, colour can be because of reflection 
and emission. Suppose we want to selectively absorb radiation, the 
temperature of the source, is important. If we want to capture the 
maximum am01lllt of radiation, absorption should be highest in that 
portion of the spectrum where its maximum lies. 

Let us look at something even more interesting. Let us divide the 
quantity lb,,,, by the quantity T5. 

C1A-5 

'2 
[e'T - 1] 

C1 -----""ooc -- = f(AT) only 
(AT)5[e'T - 1] 

(2.168) 

(2.169) 

By innocuously dividing lb,A by a simple quantity such as T 5, we get a 
very profound result. The right hand side of eqn 2.165 becomes 
a function of only AT. Therefore, we get only one curve as shown 
in Fig. 2.23, by merging A and T. The peak corresponds to 2898 J,!mK. 
This curve is called the universal black body distribution function, 
whose maximum is the same as that obtained by Wien's displacement 
law. If we get the area 1lllder the curve and treat it to be unity, then 
between any two wavelengths Al and A2, we can find out the fraction 
that is emitted in a particular band, which is very important. 

For example, if we want to design a solar collector, to know the 
percentage of radiation which is absorbed or emitted in the visible part 
of the spectrum, the black body radiation function is used and these are 
calk>d f function charts. So if Ib A is divided by T5, then the curves get , 
displaced such that only one curve emerges which is the universal black 
body distribution [unction. Therefore, some people argue that because 
some curves get displaced, this should be the Wien's displacement law 
and not the other one (Le. Eqn.2.167). 
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A T=2898 
max AT,llmK 

Figure 2.23: Universal black body distribution function 

Let us now integrate the Planck's distribution over the hemisphere 

J h,;"cosOdL.; 

h,;" 102'1r 1o'lr/2 cosOsinOdJ)d¢ 

7rh,;" 

Integrating again from ).. = 0 to 00 

= roo 7rh,;,.d)" 
J;,.~o 

100 )..-5d)" 
7rCl c 

;,.~o [e~ -11 

(2.170) 

(2.171) 

(2.172) 
(2.173) 

(2.174) 

(2.175) 

This is a very difficult expression to integrate. Already we have 
introduced the variable x=c2/)"T and using this, we were able to get 
Wien's displacement law. So common sense tells us that we can try 
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integrating this too, using the same variable x as before. Please be 
reminded that this is for a particular temperature. 

Let x (2.176) 

(2.177) 

dx (2.178) 

d)" (2.179) 

(2.180) 

(2.181) 

(2.182) 

(2.183) 

Now we have to integrate the above expression, which is again not easy. 
We will use the result that mathematicians have got by integrating such 
an expression. Please note that T has been taken out of the integral 
because the integration is with respect to x. 

rX) x 3dx 

Jo eX - 1 

Planck's law is like the sun of the solar system. 

(2.184) 

(2.185) 

(2.186) 

(2.187) 

• For the limit that C2 / AT is very small, we get the 
Rayleigh-Jeans law 

• When c2/AT is very large, we get the Wien's law 
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• When we differentiate the Planck's distribution, we get 
the Wien's displacement law 

• When we integrate the Planck's distribution, we get the 
Stefan-Boltzmann law 

As already mentioned, often times we are not interested in finding out 
the total area under the curve from A=O to A=oo. Sometimes we may 
be interested in the amount of energy that is absorbed in the visible part 
of the spectrum or the infrared part of the spectrum. For example, if 
we have a satellite orbiting the earth in a geostationary orbit at a height 
of 36000km and we have an instrument on it that captures the infrared 
radiation coming from Earth which is altered by the rain, clouds and 
other particles in the atmosphere (this instrument is a multi frequency 
or a multi spectral instrument, capable of capturing the radiation at 
different frequencies). It may have a frequency response in various 
channels. In each channel, we cannot have a Dirac Delta function. 
Around a particular A=4.5Jlm, it is not that the radiation captured by 
it at A=4.4Jlm or A=4.6Jlm is zero. There is no device on earth that can 
have a frequency response as shown in Fig. 2.24. 

4.65 A,lIm 

Figure 2.24: Frequency response curve of a sensor aboard a satellite 
(ideal) 

Normally, the response of any instrument will be as shown in Fig 2.25, 
such that around the A or v, there will be a dA or dv associated. 
Therefore, there will be a small band of frequencies or wavelengths over 
which this instrument will respond. 
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4.65 "11., 11m 

Figure 2.25: Frequency response curve of a sensor aboard a satellite 
(actual) 

The energy captured will be over the wavelengths Al to A2. Hence the 
area under the curve between these two will be the energy captured by 
the instrument. Therefore, now, we are interested in the energy captured 
in some portions of the spectrum. Therefore we are also interested in 
knowing the fraction of the energy which is absorbed, transmitted or 
reflected between Al and A2. Hence, from Eb)' Vs A, , if we know Al and , 
A2, we are interested in finding out the area of the shaded portion given 
in Fig 2.25 for example. So, from 0 to 00, the total area under the Eb,)' 

V s A curve is aT4. Out of this, if we know the fraction in Al - A2, we 
can multiply this by aT4 for a body at temperature T and obtain the 
energy emitted in Al - A2. 
The question before us is what is the fraction of energy emitted by the 
black body between two limits Al and A2 ? Please note that we are not 
saying Tl and T2, because it is for a body at temperature T. The area 
under the curve between the two wavelengths Al and A2 = (area under 
the curve from A=O to A=A2) - (area under the curve from A=O to A=Al) 

(2.188) 

So, if one can have a look up chart or table that can give us the value of 
F 0-), for any value of A, then the problem is solved. Suppose we want to 
find out the area between O.4jlm and 0.7jlm, then we will take Al =O.4jlm 
and A2=0.7jlm. If the temperature is known, we will multiply A and T 
and first calculate Al T and A2 T. Then from the look up chart, using these 
values of Al T and A2 T, we can determine the corresponding fraction and 
solve the problem easily. Mathematically, this can be written as 
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(2.189) 

This fraction is the total energy in the band 0 to >'1 T divided by the 
total energy in the band 0 to 00. So F is a dimensionless number that 
varies between 0 and 1. Therefore, the fraction of radiation emitted in 
Al T - A2T = FA,T-A2T. 

So we need to work with this fraction. This is called F -function. The 
tabulated V'dJues are given in Table 2.2. 

From Table 2.2 it is clear that with increasing values of AT, the value 
of lb,).! aT5 also keeps increasing till it reaches the maximum value at 
AT=2898JlmK, after which it again starts to fall. The second'l column 
on the right gives the F-function value or the fraction FO-AT. We can 
use this table intelligently and do a lot of things with it. J<br example, 
if we have a problem involving the determination of the fraction of the 
total energy emitted by the sun in the visible part of the spectrum, such 
a problem can be easily solved with the F function table. For bodies at 
different temperatures, that are emitting radiation, we can get an idea of 
the fraction of radiation tbat is emitted in a particular wavelengtb band. 

The first column here is AT, while the second column is the value of 
F 0,,1,. The third lets us calculate h,i. (A, T) rapidly for a given (.J", T) and 
the fourth colomn gives an interesting ratio of how badly off lb,)" is as 
a consequence of A not being Am.." at a given temperature. Needless 
to say this ratio is 1 at AT = 2898J1mK and falls off rapidly on either 
side of the spectrum, with the fall at A < Am... being more severe than 
for A > Am.... By plotting the values in the third column, we get the 
universal black body distribution curve. 
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Table 2.2: Blackbody radiation functions 

>'T I)',b(>', T)/cyT5 I)',b(>', T) 
(JimK) F(o->>.) (Jim.K.sr)-l I).,b(>'max, T) 

200 0.000000 3.711772 X 10-28 0.000000 
400 0.000000 4.877254 X 10-14 0.000000 
600 0.000000 1.036654 x 10-9 0.000014 
800 0.000016 9.883195 X 10-8 0.001370 
1000 0.000320 1.182284 X 10-6 0.016385 
1200 0.002130 5.228789x 10-6 0.072464 
1400 0.007778 1.341736x 10-5 0.185946 
1600 0.019691 2.487352 X 10-5 0.344712 
1800 0.039292 3. 750250x 10-5 0.519732 
2000 0.066653 4.927725 X 10-5 0.682914 
2200 0.100782 5.889147x 10-5 0.816153 
2400 0.140119 6.580943x 10-5 0.912027 
2600 0.182951 7.005151 X 10-5 0.970816 
2800 0.227691 7. 194804 x 10-5 0.997099 
2898 0.249913 7.215735xlO-5 1.000000 
3000 0.273004 7.195287 X 10-5 0.997166 
3200 0.317847 7.052908x 10-5 0.977434 
3400 0.361457 6.809082 X 10-5 0.943644 
3600 0.403307 6.498093 x 10-5 0.900545 
3800 0.443063 6.146872 x 10-5 0.851870 
4000 0.480541 5.775734xlO-5 0.800436 
4200 0.515662 5.399468 x 10-5 0.748291 
4400 0.548431 5.028467x 10-5 0.696875 
4600 0.578903 4.669735 x 10-5 0.647160 
4800 0.607171 4.327738x 10-5 0.599764 
5000 0.633350 4.005083x 10-5 0.555048 
5200 0.657564 3.703038 x 10-5 0.513189 
5400 0.679946 3.421938xlO-5 0.474233 
5600 0.700626 3.161478xlO-5 0.438137 
5800 0.719732 2.920932 x 10-5 0.404800 
6000 0.737386 2.699316x 10-5 0.374087 
6200 0.753704 2.495496x 10-5 0.345841 
6400 0.768793 2.308268x 10-5 0.319894 
6600 0.782754 2.136417xlO-5 0.296077 
6800 0.795680 1.978750x 10-5 0.274227 
7000 0.807657 1.834121 X 10-5 0.254183 
7200 0.818763 1.701444xlO-5 0.235796 
7400 0.829070 1.579705 X 10-5 0.218925 



62 Black body and its characteristics 

Table 2.2: Blackbody radiation functions 

AT l>.,b( A, T) I (ITs l>.,b(A, T) 
(JimK) I"{o::::,>.} (Jim.K.sr)-l t;,b(~,;;~,'t'L 
7600 0.838643 1.467960;(16=5 0.203439 
7800 0.847543 1.365338x 10-5 0.189217 
8000 0.855825 1.271039x 10-5 0.176148 
8200 0.863538 1.184331 x 10-5 0.164132 
8400 0.870728 1.104546 x 10-5 0.153075 
8600 0.877437 1.031075 x 10-5 0.142893 
8800 0.883702 9.633637x 10-6 0.133509 
9000 0.889559 9.009093 x 10-6 0.124853 
9200 0.895038 8.432545 x 10-6 0.116863 
9400 0.900169 7.899844x 10-6 0.109481 
9600 0.904977 7.407225 x 10-6 0.102654 
9800 0.909488 6.951272xlO-6 0.096335 
10000 0.913723 6.528882 x 10-6 0.090481 
10500 0.923232 5.601903x 10-6 0.077635 
11000 0.931410 4.830388x 10-6 0.066942 
11500 0.938479 4.184824xlO-6 0.057996 
12000 0.944616 3.641843x 10-6 0.050471 
12500 0.949969 3.182853xlO-6 0.044110 
13000 0.954656 2.792992 x 10-6 0.038707 
13500 0.958777 2.460320x 10-6 0.034097 
14000 0.962413 2.175193xlO-6 0.030145 
14500 0.965634 1. 929783 x 10-6 0.026744 
15000 0.968496 1. 717707 x 10-6 0.023805 
15500 0.971047 1.533730x 10-6 0.021255 
16000 0.973328 1.373542 x 10-6 0.019035 
16500 0.975374 1.233578x 10-6 0.017096 
17000 0.977214 l.110874xlO-6 0.015395 
17500 0.978873 1.002956x 10-6 0.013900 
18000 0.980373 9.077520x 10-7 0.012580 
18500 0.981732 8.235169xlO-7 0.011413 
19000 0.982966 7.487779 x 10-7 0.010377 
19500 0.984090 6.822862 x 10-7 0.009456 
20000 0.985114 6.229790x 10-7 0.008634 
25000 0.991726 2.763310xlO-1 0.003830 
30000 0.994851 1.403976x 10-7 0.001946 
35000 0.996514 7.862366x 10-8 0.001090 
40000 0.997478 4.736531 x 10-8 0.000656 
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Table 2.2: Blackbody radiation functions 

AT I>.,b(A, T)/aT5 I>.,b(A, T) 
(JLmK) l."(o::::,:A) (JLm.K.sr)-l I;,b(~;~''l'r 
45000 0.998075 3:020096><10=8 0.000419 
50000 0.998464 2.015049 x 10-8 0.000279 
55000 0.998728 1.395263 x 10-8 0.000193 
60000 0.998914 9.964006 x 10-9 0.000138 
65000 0.999048 7.303743 x 10-9 0.000101 
70000 0.999148 5.474729 x 10-9 0.000076 
75000 0.999223 4.183928xlO-9 0.000058 
80000 0.999281 3.252025 x 10-9 0.000045 
85000 0.999327 2.565680 x 10-9 0.000036 
90000 0.999363 2.051193 x 10-9 0.000028 
95000 0.999392 1.659422 x 10-9 0.000023 
100000 0.999415 1.356864x 10-9 0.000019 

Example 2.3: Consider a black body at a temperature of 6000K. 
Determine the following. (a) lb,A at O.4JLm (b) h,A at O.OlJLm (c) lb,>. at 
lOj.lm (d) total hemispherical emi.9sive power b"b(T) (e) lb,>. corresponding 
to Amax (f)ratio of Ib,A at Amax to Ib,A at 10JLm (g) fraction of radiation 
in the visible part of the spectrum. 

Solution: 

Temperature of the black body T = 6000K 

(a) lb,)' at O.4JLm 

h,>. 

h,>.. 

h,>.. 

CIA -5 

"'[e'T- 1] 

1.198 x 108 (0.4)-5 
-------------i.-4-39-~iiii-----

[e OAx6000 - 1] 

= 2.91 X 107 W 1m2 JLm sr 

(2.190) 

(2.191) 

(2.192) 

(b) lb,>.. at O.01JLm = 0 (hardly any radiation in this ultraviolet part of 
the spectrum from the sun) 

(c) Ib,A at 10JLm = 4420 Wjm2j.lm sr 
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(d) Eb(T) = oT4 = 7.35 X 107 W 1m2 

(e) Am=; T = 2898 J.tmK ; Am=; = 0.483 J.tm (this corresponds to blue light 
as the wavelength of blue radiation is between 0.45J.tm to 0.49J.tm! 
Of course, if we want to do it for solar radiation, instead of 6000K, 
we will use 5800 K.) lb.), corresponding to Amax = 3.181 X 107 

W/m2/1msr . 

(f) h,A at Amax / Ib,A at lOJ.tm = 7196 ; 
This is a very important result. The lb,)' corresponding to visible blue 
light divided by the lb, ... at infrared of lOJ.tm for the temperature of 
6000K, which corresponds to the outer temperature of the sun, we 
can see that the ratio of intensity of visible radiation to infrared 
radiation is about 7196. 

(g) Fraction in the visible part of the spectrum: Al = O.4J.tm, A2 = 0.7J.tm, 
T = 6000 K, AIT = 2400 J.tmK, A2T = 4200 J.tmK 

The fraction corresponding to AIT = 2400 J.tmK, FO-,l,lT = 0.14. 
The fraction corresponding to A2T = 4200 J.tmK, FO-A,T = 0.516. 
FA1 - A, = 0.376 or 37.6%. 

Please do not underestimate the importance of this result because 0 to 
00 is so huge and the wavelength band of O.4J.tm - 0.7 J.tm is so small, 
yet the fraction of radiation in this band is almost 40% of the total 
radiation in the 0-00 band. So, nearly 40% of the solar radiation is 
concentrated in a very small portion of the spectrum, namely the visible 
range. If the temperature of the sun were not 6000K, the peak would be 
in some other part of the spectrum and we would not be getting enough 
"visible" radiation. 

So now the question arises: if we have the temperature of the sun to be 
6000K, which makes the earth so habitable, when all of it it started with 
the big bang theory (assuming this to be the correct theory to explain 
the origins of the universe), it was basically a cooling problem. It started 
with some initial conditions. If the initial conditions were to be different, 
then the temperature of the outer sun would have been different, which 
means that the fraction of the radiation falling would have been different 
and the earth's temperature may have been different because of which 
we all may not have been here today! Why were the initial conditions 
chosen that way, or who chose them to be so? 
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PROBLEMS 

2.1 (a) Verify that the spectral intensity distribution given by Planck 
(Ib,,\) when divided by uT5 becomes a function of AT alone. 

(b) Obtain the value of AT at which the quantity given by (a) 
becomes the maximum. 

(c) Hence, obtain the maximum value of the quantity I(b,A)/uT5 and 
verify it with the value given in the F Tables. 

2.2 Compute the fraction of total, hemispherical emissive power leaving 
a diffuse surface in the direction ~ ::; I) ::; i and 0 ::; ¢ ::; 5;. 

2.3 The directional, total intensity of solar radiation incident on the 
surface of the earth on a bright sunny day at a particular location 
in the tropics is given by Ie = IncosO, where In = 500W/m2 

Sf is 
the total intensity of radiation corresponding to 1)=0 (II is the zenith 
angle). Determine the solar irradiation at the earth's surface. 

2.4 Show that the Planck's distribution reduces to Eb,A = c1T/C2A4 
when C2/ AT «1. Compute the error with respect to the Planck's 
distribution when AT = 1.8 x lO5/tmK and comment on your result. 

2.5 Show that the Planck's distribution reduces to Eb,A = c!/A5e-c,!>.T 
when 02/ AT »1. Compute the error with respect to the Planck's 
distribution at AT = 2898/tmK and comment on your result. 

2.6 Determine the sun's radiation intensity at the middle of the visible 
spectrum assuming that the outer surface of the sun is a black body 
at 5800 K. 

2.7 Estimate the temperature of the earth's surface (assuming it to be 
black) given that the outer surface of the sun has an equivalent 
temperature of 5800 K. The diameters of the sun and the earth may 
be taken to be 1.39 X 109m and 1.29 x lO7 m respectively and the 
distance between the sun and the earth is 1.5 x lOHm. 

2.8 Determine the wavelength corresponding to the maximum emission 
from each of the following surfaces: the sun, a tungsten filament at 
2900 K, a heated metal at 1400 K, earth's surface at 300 K, and a 
metal surface in outer space at 70 K. 

2.9 Using the data given in Problem 2.8, estimate the fraction of the solar 
emission that is in the following spectral regions: the ultraviolet, the 
visible and the infrared. Compute these values for the tungsten 
filament. Compare the fraction of emission of the two sources in the 
visible part of the spectrum and comment on your findings. 





CHAPTER 3 

Radiative properties of non-black 
surfaces 

Thus far, we considered only a black body. In reality, though, it is almost 
impossible to encounter a black body. Real bodies are neither perfect 
absorbers nor perfect emitters. So there is a deviation or departure 
from black body behavior. As engineers, we have to live with real 
surfaces. So if we already know upfront that real surfaces are not black 
bodies, we need to characterize their behavior in so far as radiation is 
concerned. Therefore, we have to introduce the concept of radiation 
surface properties. 

The goal of this characterization is to be able to quantify the departure 
of real bodies from black body behavior. This departure manifests itself 
as incomplete absorption and imperfect emission. 

Consider Fig. 3.1, that presents the typical variation of spectral intensity 
of emission with wavelength for a black body at 1073 K (about 800 
DC), a temperature normally encountered in engineering. Using the 
Planck's distribution, we can plot the curve of lb,;' vs A and the peak 
of the distribution is around 2.8 11m, which is consistent with the Wien's 
displacement law. We can have a body corresponding to curve 'a' which 
is called a gray body at 1073 K, whose ratio of emission at a particular 
wavelength to that by a blackbody is fixed. 

67 
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Black body, T 

Gray surface, T (CulVe a) e 
.. I .. 

Black body, I 
";:"-r---. 

11, ~m 
(al Spectral (b) Directional 

Figure 3.1: Typical distribution of lb,>. for real surfaces 

Mathematically, for a gray sllIface, 

J.x(A,T) .............................. i= f(A) 
Ib,>.(A, T) 

(3.1) 

Any body! sllIface satisfying Eq. (3.1) is known as a gray body! surface. 

3.1 Why do we need a gray body model? 

The gray body is an idealization, which we use because it helps us to 
simplify calculations in radiative heat transfer. Otherwise, if we want to 
consider this ratio as a function of A, the analysis becomes more tedious. 
Curve 'b' is actually more representative of the behavior of most real 
surfaces. So we can guess that radiative analysis of a surface which 
follows 'b' is a lot more difficult than the behavior which follows 'a'. But 
still, the area under the curves 'a' and 'b' may be more or less the same. 
Even so, if we use the gray body assumption and use the smooth curve, 
it may lead to some local errors. Fbr example, when we try to define 
the value of IA for a particular value of A, there may be a noticeable 
difference between the I)" for a gray body and that for the real surface. 
However, when we average out and integrate from 0 to 00, the error may 
not be significant. 

But why would we want to use this? Because, for most surfaces, I" versus 
A is not known. The ratio given above is called emissivity and when it 
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is a function of wavelength, it is called spectral emissivity and this is 
unknown for most surfaces and therefore we go in for gray body behavior. 
The other reason is that even if the spectral emissivity is known, often 
we do not know how to incorporate this information into our analysis, 
which is generally the case. So, because of these two reasons, namely, 
either the spectral emissivity is not known or if known, we do not have 
the competence or wherewithal to use this information, people go in for 
a simple assumption where l)J lb,.>. is not a function of A. This is called 
the gray body assumption. 

Now if we look at Fig. 3.1(b), it gives the directional spectral intensity 
l~, at a given wavelength, temperature and azimuthal angle for a black 
surface, a diffuse surface and a hypothetical real surface. The zenith 
angle, 0 is with respect to the vertical. For purposes of drawing this 
graph, T=Tl, which is fixed. The wavelength A=Al, is again fixed and so 
is cP which takes on the value CPl. There are basically 4 parameters here, 
namely the wavelength, temperature, zenith angle and the azimuthal 
angle, where the wavelength, temperature and the azimuthal angle are 
fixed. We are studying the variation of I), with respect to 0 alone. We 
already said that the black body emission is independent of all angles, 
including the zenith angle. Hence, we get a semicircular shape for I;. as 
it varies with (), as the magnitude remains the same. 

Curve 'a' corresponds to a surface whose loX is not a function of O. At 
any 0, it will have a value or magnitude smaller than that of the black 
body as the black body emission is the maximum possible. Hence, we 
get a curve that is concentric with the curve obtained for the black body, 
but which has a smaller magnitude. This leads us to the concept of a 
diffuse surface. 

h,e(A, T, e, cp) -I f(O) 
h,).(A, T) 

(3.2) 

Now we can draw one more curve, where, instead of keeping rjJ fixed, we 
keep () fixed and say that the azimuthal angle is a variable. Therefore 
we should have a general case where, for a diffuse surface, 

h,e(A, T, (), cp) -I f(O cp) 
h,).(A, T) , 

(3.3) 

Now if we say that a body is simultaneously gray and diffuse, then for this 
dimensionless ratio, its functional dependence on A, 0 and cP is knocked 
out. This dimensionless ratio, which is emissivity, becomes a function of 
only the temperature. Then if we do some engineering analysis, and we 



70 Radiative properties of non-black sur:fuce8 

are also working in a very narrow temperature range, we can say that 
the emissivity is not a function of temperature in this case and thus say 
that it does not depend on any variable. However, it is instructive to 
mention here that many approximations are involved in reaching that 
step and we must be aware of the assumptions we are making. 

Why do we use this gray diffuse approximation? The answer is: Many 
engineering materials conform to this behavior and it helps us do the 
radiative transfer calculations very fast. It also helps us combine 
radiation with convection and conduction easily in multi-mode problems 
of engineering interest. Therefore, the gray diffuse approximation is very 
useful, potent and is frequently used in engineering practice. 

3.2 Spectral directional emissivity, E~().., T, e, ¢) 

The spectral directional emissivity given by E~ is the ratio of the 
spectral directional intensity of emission of a real surface to the 
spectral radiation intensity of a black body at that wavelength, 
at that temperature in the same direction. Mathematically 
f~ (>., T, (J, ¢) is given by, 

'(' (J "') = h,.(>', T, 0, ¢) 
f), 1\, T, , 'I' I (>. T) 

b,A , 
(3.4) 

So, as expected, f~ is a dimensionless ratio, which varies between 0 and 
1. It is a non dimensional way of declaring the efficiency of emission of 
a surface. To say how efficient a surface is, we need a benchmark or a 
standard, which is the black body here. Corresponding to a black body, 
how efficiently the surface is emitting is what this number conveys. For 
a given temperature, wavelength and direction, if f~ is given, either from 
theory or from experiments, we can use the Planck's distribution and 
get Ib)', multiply these two and get the value of I), e using the equation , , 
given below. 

h,.(>.,T,e,¢) = E~(>.,T,e,¢).h,>.(>.,T) 

For a gray body or a gray surface, 

€~(>.,T,(),¢) i' 
€~(>.,T,(j,¢) 

f(>.) 
E~(T,(J,¢) i' f(>.) 

(3.5) 

(3.6) 
(3.7) 

So for a gray body, E~ is independent of A. Though E~ is not a function of 
>. it is still a spectral quantity. Unfortunately or fortunately, that value 
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is the same for all the wavelengths. What do we mean by saying that 
it is a spectral quantity? The integration with respect to >. is not done, 
so it is spectral. If integration with respect to angle is not done, it is 
called directional. Even though we removed the functional dependence 
on >., we still call it E~. There could be surfaces that need not exhibit 
gray body behavior for all angles. For particular zenith and azimuthal 
angles, they can exhibit gray body behavior; in other angles, they may 
not exhibit gray body behavior. That depends on their nature. If in the 
angle of our interest, a surface exhibits gray body behavior, the analysis 
becomes easier. 

For a diffuse surface the following relations hold, 

E~(>', T, (), c/J) =1= f((), c/J) 
E~(>', T, (), c/J) E~(>', T) 

(3.8) 

(3.9) 

The term "diffuse" is with respect to angle and "gray" is with respect 
to wavelength. For a gray, diffuse surface, then, we have 

E~(>.,T,(),c/J) = f(T) only (3.10) 

Equation (3.10) is a very powerful approximation and many surfaces 
exhibit this behavior. 

There are surfaces where this gray diffuse approximation is not valid. 
So for such surfaces from E~, we have to get to Eo For this, we need to 
integrate E~, with respect to >., () and c/J. This will be the basic parameter 
E, which we would have used in a heat transfer course. E is a function of 
>. for many surfaces. Let a be the solar absorptivity. If we are interested 
in a solar collector, the a should be very high. But then a means the 
absorptivity corresponding to the sun's temperature, 5800 K. The body 
will get heated but its temperature will be about 70 or 80 °e. However, 
when it emits, according to Wien's displacement law, I>. maximum will 
be around 10 /-Lm. So, for the design of a solar collector, we would want 
to look at a surface where the emissivity corresponding to infrared is low 
and the absorptivity corresponding to incoming solar radiation is high. 
So if a is high and E is low, it will start collecting heat and it will be 
like a green house. We would want the exactly opposite behavior when 
we want to design a system that cuts out the radiation and keeps the 
interiors cool. This is what is achieved by sun control films and double 
paned glasses. So, depending on the application, we can play with a and 
E, which are functions of >.. These are called "selective emitters" and 
"selective absorbers" . 
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3.3 Hemispherical spectral emissivity, E>.(>', T) 

The mathematically hemispherical spectral emissivity, (),p" T) is defined 
as, 

E}.(>., T) €}.(>., T) = ............................ . 
Eb(>" T) 

(3.11) 

Let us consider a surface which is at a particular temperature. We 
are trying to find out the radiation emission from this surface over a 
hemispherical basket, at each and every wavelength, for which we have 
to integrate with respect to B and </>. That is why we knocked off the () 
and </> in the numerator of the expression given above. The numerator 
of Eq. (3.11) can be obtained as follows. 

E),,(>.,T) = r2
" r; l]"e(>.,T,B,</»cosl)sin()dOd</> 

J¢~o J9~O 
(3.12) 

However, from the definition of spectral directional emissivity we have, 

h,e(>',T,B,</» = (~(>.,T,B,</»Ib,>.(>.,T) (3.13) 

12" L~ , :. E>.(>', T) = fA (>., T, B, </»h,>.(>', T)cosf)sin{)dOd</> 
¢~o 0=0 

(3.14) 

We are already able to see some silver lining, as we know that lb,>.. is not a 
function of </> and (). Before doing this, we can substitute this expression 
(eqn 3.14) in place of E), in our original definition of f>. or Eq. (3.11). 

~ J:=o Je~of~(>', T,B, </»cos()sin(}d()d</> 
E>..(>.,T) = 1f~ (3.15) 

:.fA(>" T) = ! r27r 

(I;. E~ (>., T, B, <I»coslJsinOdlJd<l> (3.16) 
1f .1</>=0 J 9=0 

From this equation, it is clear that if we know (~ we can determine E,>,. SO 
Eq. (3.16) is a powerful expression which relates a spectral, directional 
quantity to a spectral, hemispherical quantity. It is hemispherical 
because we used {)=o to 1l' /2 in the integration and not - 1f /2 to + 1l' /2. 
We are only looking at radiation from a hemisphere. Equation (3.16) is 
generic enough that it can be applied to reflectivity, absorptivity and so 
on. So if we give (~ in the form of tables or data sheets, we can integrate 
and calculate EA' From EA, if we do one more integration, we will get E. 

Then we can use the Stefan Boltzmann's law to get, E= €O'T4. 



3.4. Directional total emissivity, £' (T, (J, tP) 73 

In the above expression cosOsinOdOd¢ is basically dw and the integral in 
the numerator turns out to 'If, should we have a diffuse surface. Hence, 
for a diffuse surface, the following additional relations hold 

, 
fA 01 I(O,¢) 

E). 2 cosOsin()d()d¢= €~(>"T,O,¢) , 12
" 1" 

'If 4>~O O~O 

3.4 Directional total emissivity, f'(T, e, </J) 

(3.17) 

(3.18) 

The directional total emissivity is represented by itT, 0, ¢). The prime 
in the symbol denotes that it is still a directional quantity, but we got 
rid of the.>.. and hence it is a total emissivity. Mathematically, f' (T, II, ¢) 
is given by 

,'(T e A..) = E (T, 0, ¢) 
, , 'I' E~(T, 0, ¢) 

€'(T,O,¢) = ,E(T, II, ¢) 
Ib(T, 0, ¢)cosO 

The numerator in Eq. (3.19) can be written as 

(3.19) 

(3.20) 

(3.21) 

The procedure we are following to derive this is to introduce the 
definition of emissivity formally. The denominator is that of a black 
body. We only manipulate the numerator. Equation (3.20) is a slightly 
changed version of Eq. (3.19) where the Eb is changed to lb. Now, in 
order to get /, we have to somehow link it to f~, because we know €~. 
So on the right side, we have to introduce €~. In the numerator, we 
have replaced the E' by the integral expression which has E~ within the 
integral sign. We know that E~ can be written in terms of f~. Replacing 
E~ as I~ cos 0 in Eqn. (3.21) 

, , 1
00 

E (T,O,¢) = '\=0 h.(.>..,T,O,¢)cosed.>.. (3.22) 

Furthermore, 

I~(>" T, 0, ¢) = f~('>", T, e, ¢)Ib,>.('>", T) (3.23) 

, 100 

, :.E (T,IJ,¢) = €).(.>..,T,IJ,¢)h,>.(.>..,T)cosIJd.>.. 
'\=0 

(3.24) 



74 Radiative properties of non-black suxfaces 

Now we can substitute for E'(T,e,¢) in the original definition for 
,'(T, ¢, 0), in Eq. (3.19). Canceling out the cosO in the numerator and 
the denominator, we get 

,'(T, O,¢) = Jo
oo 

,~(>"T, f)~t}h'A(A' T)dA (3.25) 
1f 

Now, the acid test is, what happens if it is a gray surface. For such a 
surface, the following additional relations hold. 

, 
fA # f(A) 

e' (T, e, ¢) = E>.'(T, e, ¢) 

(3.26) 
(3.27) 

Therefore, the formula that we derived for hemispherical directional 
emissivity, as well as for directional total emissivity, when reduced to 
the case of a gray and diffuse body respectively, reduce to the cases for 
which we are able to intuitively guess the values of €~. Therefore the 
expressions we derived must be correct and these two expressions can 
be used to relate the fundamental emissivity E~ to that quantity, which 
is the emissivity integrated once, either with respect to angle or with 
respect to wavelength. Once the triple integral with respect to fI, ¢ and 
A is done, we get the hemispherical total emissivity E. 

3.5 Hemispherical total emissivity, E(T) 

After we accomplish three integrations of E~, once with respect to 
wavelength and other with respect to the angles (both azimuthal and 
zenith) we get the hemispherical total emissivity E(T). Please note 
that the final emissivity will be a function of temperature. However, 
sometimes the dependence is weak and in which, we assume that the 
emissivity is independent of temperature. The hemispherical, total 
emissivity denoted by E(T) is given by the emissive power of a real surface 
at a given temperature T divided by the emissive power of a black body 
at the same temperature. 

E(T) 
f(T) = Eb(T) 

E(T) = 1:0 i: .10:2 

€~(A, T, IJ, ¢)h,>.(A, T)coslJsinfldfld¢dA 

We know that 

(3.28) 

(3.29) 

(3.30) 
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:. E{T) =14 (00 r" ("/2 €~(>"T,e,¢)h,A{J..,T)coS(}8in(}d(}d¢dJ.. 
uT J A~O J "'~O J e~o 

(3.31) 
Equation 3.31 represents a very important relationship in view of the 
fact that it tells llS that given the spectral directional emissivity €~, it is 
possible for us to do the 3 integrations and obtain €. For a gray diffuse 
surface, E~ is not a function of J.., () or ¢. 

€~ f- f(J.., e, ¢) (3.32) 

Therefore €~ can be taken out of all the 3 integrals in Eq.{3.31). Applying 
Stefan's law for the remaining terms within the integral, we get uT4. 
Upon doing this and simplifying Eq. (3.31), we finally have 

1 , L"."r , 
€(T) = p:rr'>. (T )/.1"1 = fA (T) (3.33) 

Therefore, if we have the hemispherical directional emissivity for a 
gray, diffuse surface, it is its hemispherical total emissivity too. Figure 
3.2 gives a bird's eye view of the various emissivities involved. 

Spectral, directional emissivity, e; 

Iw.r.t (8, <1» 

Hemispherical, spectral 
emissivity, EA 

Directional, total 
emissivity, E' 

Iw.r.t (A) 

Hemispherical, total 
emissivity, E 

Figure 3.2: Bird's eye view of various emissivities 

Example 3.1: 
The hemispherical spectml emissivity of tungsten is shown in Fig. 3.3 
(this is an approximation of the actual variation and is sufficient enough 
to obtain reasonable estimates of €(T)). Consider a cylindrical tungsten 
filament that has a diameter of D=0.8 mm and length L=25 mm. The 
filament is enclosed in an evacuated bulb and is heated electrically till it 
reaches a steady state tempemture of 3000 K. 
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Tungsten 
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0.4 
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Figure 3.3: Variation of spectral emissivity of tungsten with wavelength 

(a). Determine the total hemispherical emissivity when the filament 
temperature is 3000 K. 

(b). Determine the rate 0/ cooling 0/ the filament at the instant when the 
power is switched off? Tungsten properties are : p = 19300 kg/m3 

,. Cp = 132 J/kgK. 
Assume the following: 1) surroundings are at 303 K 2) filament is 
spatially isothermal 3) neglect convection to the surroundings. 

Solution: 
The first part can be answered by directly using some formulae we have 
learned so far. The second part is a typical heat transfer problem, where 
using this emissivity and our knowledge of heat transfer, we will need to 
write the governing equation and obtain the initial rate of cooling. 

(a). The first part involves the conversion of hemispherical spectral 
emissivity to hemispherical total emissivity. 

,(T) = J;:o J::o J;~~ E~(A, T~~:)h'Aco8eSinOdOd¢dA{3.34) 

E,\(..\,T) = fA = ~ r" {,,/2 f~(A,T,(},¢)cos(}sin(}d(}d¢ (3.35) 
1r J",~o J9~O 

Equation (3.34) may be rewritten as follows, 

J).":o h,>.dA J::o J9~~ E~ (A, T, 0, ¢ )easO sin Oded¢ 
(T) =;;'y4 (3.36) 
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Equation (3.36) may be simplified using Eq. (3.35) as 

Jl:o'>.1f1b,>.dA Jl:o,>.Eb,AdA 
,(T) =;;1'4 =E~(ff (3.37) 

Now we have to apply it to the tungsten function given in the question. 
The emissivity of tungsten can be written as 

(3.38) 

Here £1=0.4 (constant) in the range A=O to A=l f.lm and £2=0.2 
(constant) in the wavelength range A=l f.lm to A=OO. 

( ) 
_ '1 J;-o Eb,AdA (1 J;:"..2 Eb,AdA 

f T - Eb(T) + Eb(T) 

(T) = OAFo->Al + 0.2FA1 ->OO 

Al = 1f.lm 

AIT = 3000f.lmK 

FO->Al = 0.273 
(T) = 0.4 x 0.273 + 0.2(1 - 0.273) 

(Tl = 0.254 

(3.39) 

(3040) 

(3.41 ) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

In this example, we have thus far learnt how to get the hemispherical 
total emissivity, if the spectral emissivity is given for a non gray surface. 
If the fA VB A is completely jagged, we will have to consolve the Planck's 
function with the fA and solve the problem numerically. If we have a 
band model like the onc specified in this problem, we can use the F
function chart and obtain f(T) straightaway. 

Here, if the temperature changes, even though fA remains the same 
with respect to A, if the same tungsten filament were to be at 2000 
K, Al T=2000 f.lmK. Therefore the f(T) will change and it can be seen 
that E, in general, is a function of temperature. Here since 0-1 f.lID is 
such a small portion of the total electromagnetic spectrum, and for the 
remainder of the spectrum, f). is only 0.2, we can actually calculate for 
various temperatures and see that for a range of temperatures, f is more 
or less 0.2, because from 1 11m to 00, fA is 0.2. 

(b) We have to calculate the initial cooling rate and for this, we have to 
get the energy equation first. For this, we will assume that the whole 
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tungsten filament is at the same temperature and that convection heat 
losses are negligible. 

dT 
me" dt = -€O-A(T

4 -1!) (3.46) 

When it starts cooling, the temperature of tungsten is at 3000 K while 
the temperature of the surroundings is 300 K. The other parameters in 
the above equation are known and hence we can get the initial cooling 
rate. But this cooling rate will not remain a constant as the right side is 
a function of temperature. As the filament cools, the temperature will 
fall and in turn, the cooling rate will fall and this is why it is called a 
non linear function. Because the cooling rate is the rate of change of 
temperature and rate of change of temperature is itself a function of the 
temperature, it is a non linear function. 

We calculate the volume and multiply it by the density to get the mass 
and then get the surface area (both the lateral surface area and the top 
and bottom areas). We then calculate the initial cooling rate, because 
the emissivity also changes with temperature. We can write a Matlab 
code to determine the cooling rate at various instants of time, if this is 
desired. For the question at hand 

m=pv 

v = ~d2L = 1.256 x 1O-sm3 

4 
A = 27rr h + 27rr2 

A = 6.383 x 1O-5m2 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

dT 
1.256 x 10-8 x 19300 x 132 dt = -0.254 x 6.383 x 10-5 x 5.67 X 10-8 

x [30004 - 3004] (3.51) 

dT dt = -3279K/s (3.52) 

We should not carried away and think that in 1 s, the filament will lose 
3279 K! This is just the initial cooling rate. In a few micro seconds, 
because of the terrific cooling the temperature will go down, E will go 
down and the rate reduces and reaches saner values. There are other 
properties like reflection, absorption and transmission and each of these 
may have a variation with respect to A. We need to characterize all these 
and the energy equation may not be so simple. There may be combined 
conduction and convection. The energy equation may be such that we 



3.5. Hemispherical total emissivity, t:;(T) 79 

may have to solve the N avier-Stokes equations and the energy equation 
for a moving fluid or we may have to solve the Laplace equation or the 
Poisson equation for the solid wherein radiation is added that it becomes 
a multi-mode heat transfer problem. 

Example 3.2: The directional total emissivity of many non metallic 
surfaces may be approximated, represented as EO = En COs!} where En is 
the normal emissivity. Determine the ratio of the total, hemispherical 
emissivity and the emissivity at () =0, frequently referred to as normal 
emissivity fOT one such material. 

Solution: 

J::o Jo"l~ fohcosi}sin(}d(}d</> 
E= ------------------------------------------------------------------------------------------

J;:o Jo~; hcosi}sin(}dIJd</> 
(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

So given the directional total emissivity, we can get the total 
hemispherical emissivity. 

Example 3.3: 
A zirconia based ceramic is being considered fOT use as a candidate 
filament material for an incandescent bulb. It has a hemispherical 
spectral emissivity distribution as shown in Fig. 3.4. 

1. Determine hemispherical, total emissivity of the zirconia filament 
at 2900 K? 
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Figure 3.4: Variation of spectral emissivity of zirconia with wavelength 

2. Compare the power consumption of a zirconia and tungsten 
operating at 2900 K in an evacuated bulb ? 

3. In so far as the production of visible radiation, which is more 
efficient? (adapted from Incropera et al. (2007)) 

Solution: 

1. Hemispherical total emissivity f 

>'1 =0.4 /tID, >'2= 0.7 /tID, T=2900 K, 
>'IT=1160 /tmK , >'2T=2030 /tmK 

J{:o fAEo,>.d>' f;;;,o £tEb,>.d>' J;" f2Eb,>.d>' 
f = J{:o E.,>. d>' = J{:o Eb,>. d>' + j~':o Eb,>. d>' 

f >.-oo 
>.2- f2Eb,>. d>' + ............................................... . 
f>.':o Eb,Ad>' 

We have to use the F-function chart now. 

£ = fIFO->A, + £2 [FO->A, - Fo->>.,] + £3[1 - Fo->",,] 

From the chart 

1.77 X 10-3 

0.0711 

(3.58) 

(3.59) 

(3.60) 

(3.61) 
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Now we will insert these values in the expression for emissivity. 

€ = (0.18 x 1.77 x 10-3 ) + (0.84 x (0.0711 - 1.77 x 10-3)) 

+(0.18 x (1 - 0.0711)) (3.62) 

€ = 0.225 (3.63) 

Therefore the hemispherical total emissivity of the zirconia filament 
is 0.225 

2. Power consumption 

Q = EUA(ri - T,!,) (3.64) 

From Problem 3.1, the total emissivity of tungsten at 2900K, 

1 x 2900 = 2900JLmK 

0.250 

0.4(0.250) + 0.2(1 - 0.250) = 0.250 

(3.65) 

(3.66) 

(3.67) 

Both the filaments are operating at 2900 K. Assuming that the 
ambient temperature is the same for both, Stefan Boltzmann's 
constant is the same for both the filaments, the areas are also the 
same. Therefore the ratio of the power consumption is the ratio of 
their emissivities. 

Qzirconia = (zirconia = 0.225/0.250 = 0.904 
Qtung ftung 

(3.68) 

Therefore the zirconia hulb consumes 90.4% the power consumed 
by the tungsten filament bulb, for the same temperature. 

3. To determine which is more efficient in production of visible 
radiation, we need to find out the radiation emitted in the visihle 
part of the spectrum. The radiation which is coming out of the 
bulb must be equal to o-T4 the black body fraction (corresponding 
to 0.4 JLm - 0.7 JLm band corresponding emissivity). This can be 
worked out for both the bulbs and since we are only looking at the 
ratios, we can keep ,,-T4 as such without substituting the numerical 
values. Radiation emitted in the visible part of the spectrum is thus 

Qvisible = E)..(F).1-+).2)·,,-T4 (3.69) 
Qvisible,Zircania 0.84 x (0.071l - 1.77 x 1O-3 ),,-T4(3.70) 

Qvisible,Tungsten 0.4 x (0.0711 - 1.77 x 1O-3),,-ri (3.71) 
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The value used for the emissivity is that which corresponds to the visible 
part of the spectrum for the material under consideration. This f is 0.84 
for the zirconia filament, while it is just 0.4 for the tungsten filament. 
Even though the tungsten filament has a higher total hemispherical 
emissivity as opposed to the zirconia filament, the zirconia filament, by 
virtue of its having a very high spectral emissivity of 0.84 exactly in the 
visible part of the spectrum, gives more visible radiation compared to the 
tungsten filament. Furthermore, its power consumption is also lower!. 

So a zirconia filament is infinitely better than the tungsten filament. 
Of course, cost, availability and other properties have to be considered 
during production. Suffice it to say for now that from the point of view 
of radiation, the zirconia filament is better. 

Example 3.4: 

Position 'a' 

r;t=J , 
1 

8 
~./ 
./ 

A, 

Position 'b' 

45' " 71,---;:---' ./ A, 

Figure 3.5: Surface arrangements for example 3.4 

Consider an arrangement as shown in Fig. 3.5 to detect radiation 
emitted by an elemental surface of area Al = 6.25x la-6 m2 and 
tempemture TI =1100 K. The area of detector A2 = 4 X 1O-6m 2. For the 
mdiation emitted by Al at (}=o (normal direction) at a distance of L=0.4 
m, the detector measures a mdiant power of 1. 5x 1 a-6 W. Determine the 
directional total emissivity of Al at ()=O. Now the detector is moved 
horizontally to position b such that 0 =45". For this position, the detector 
measures a mdiant power of 1.46x la-7 w. Can we comment on whether 
the surface 1 is a diffuse emitter? 
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Solution: 

Eb uT4 = 5.67 X 10-8 x (1100)4 

Eb 83014.5 W/m2 

aT4 

h - = 26432 W/m2sr 
7r 

A cosO 4 X 10-6 
dw 2 = 2.5 x 1O-5sr 

R2 0.42 

Q = 1.5 X 1O-6W 

Q Afhdw 

(3.72) 
(3.73) 

(3.74) 

(3.75) 

(3.76) 
(3.77) 

1.5 X 10-6 6.25 X 10-6 x € x 26432 x 2.5 x 10-5 (3.78) 

0.36 (3.79) 

The normal emissivity = 0.36. This is one possible way by which we can 
measure emissivity. If we have a vacuum arrangement with a detector 
and we are able to eliminate the effects of conduction and convection, it 
is possible to get emissivity. The more difficult part is when the detector 
is moved horizontally. So cos(O) now changes to cosO. The distance, L 
also changes. Now because the detector is at an angle and the distance 
also changes, expectedly, the radiant power intercepted by A2 has to go 
down. 

~f) = hL = 0.566m (3.80) 
cos 2 

dw' = A2cos/12 -6 ii:' = 8.84 x 10 sr (3.81) 

Q' 1.46 x 1O-1W (3.82) 

Q' = A1coslhdw' IbE~=45 (3.83) 

1.46 X 10-1 = 4 x 10-6 x J2 x 8.84 x 10-6 x E' x 26432 (3.84) 

0.142 (3.85) 

Suppose we had gotten an answer of 0.36, we could have conjectured 
that there is a possibility that it is a diffuse surface, as with results from 
just two angles, we cannot decide for sure. But we now know for sure 
that it is not a diffuse surface as even for two angles, the values differ. 
So the emitter Al is NOT a diffuse surface. 
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3.6 Absorptivity, 0: 

The next important property is absorptivity. Often times, we are also 
interested in the absorption and not just the emission. For example, if 
our application is a solar collector, where we want to intercept the solar 
radiation, we want to have a surface that absorbs a lot of radiation in the 
visible part of the spectrum. Once it starts absorbing, the temperature 
of the surface may go from the room temperature of 30°C up to 80°C or 
90°C. If concentration ratio is unity from the Wien's displacement law, 
for T of 400 K, Am..: will be about 9JLm. So a body which is heated by 
incoming solar radiation to a temperature of 80°C or lOO°C, will emit 
in the infrared part of the spectrum. Now, if we have a surface that 
emits very poorly in the infrared part of the spectrum, but absorbs very 
well in the visible part of the spectrum, we have a good solar collector. 
By the same token, if we have a surface that absorbs very poorly in the 
visible part of the spectrum, but emits very well in the infrared part of 
the spectrum, it may be a good candidate for insulation. 

First, we have to discuss about the story of radiation that is incident on 
a surface. 

What can happen to this radiation? Let us consider a surface on 
which radiation is incident (Fig.3.6). This radiation can be absorbed, 
reflected or transmitted. If we apply the first law of thermodynamics to 
this system, mathematically we can state that at steady state, 
Incident radiation = absorbed radiation + reflected radiation + 
transmitted radiation. 

Transmitted 

Figure 3.6: Absorption, reflection and transmission processes associated 
with a semitransparent medium 
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(3.86) 

Dividing by Qinc throughout, we get 

1 = Qabs + Qre' + Qtrans 
Qinc Qinc Qinc 

(3.87) 

On the right side, all 3 terms are dimensionless ratios, none of which 
individually can be greater than 1. They are also measures of the 
efficiency with which a surface absorbs, reflects or transmits. 

Qabs/Qinc is called the absorptivity, denoted by a. 
Qret!Qinc is called the reflectivity, denoted by p. 
Qtrans/Qinc is called the transmissivity, denoted by r. 

Hence, Eqn. (3.86) can be rewritten as 

(3.88) 

We can also write Eq. (3.88) for a particular wavelength in which case 
it becomes 

(3.89) 

In Eqn.3.88 we are talking about hemispherical total quantities, as 
already, the integrations are done with respect to the angle and the 
wavelength. This is just to introduce the concepts. We will go through 
the definition of individual absorptivities and reflectivities a little later. 
For an opaque surface, r=O. Hence, Eqn.3.88 becomes 

a+p=l 
a=1-p 

(3.90) 

(3.91) 

We have 4 quantities to deal with namely, emissivity, absorptivity, 
reflectivity and transmissivity. We killed one of them, namely 
transmissivity, by saying that the surface is opaque. We have 3 quantities 
left. We are now trying to see if further simplifications are possible. If 
emissivity is known, we can write O! in terms of p. What then remain are 
only a and E. Is there any relationship between these two? When the best 
minds were working on finding out the correct black body distribution, 
they were also looking at the properties of real surfaces and wondering 
if the emissivity and the absorptivity are related to each other. This 
was being studied as it makes a lot of things very convenient. Suppose 
we could establish a relationship between a and E, and we were able to 
measure the emissivity, then using this relationship, we can get a and 
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also determine p using Eq. (3.91). Therefore, for an opaque surface, by 
just knowing the emissivity, we get all its properties that are required 
for carrying out a radiative transfer analysis. 

Why do we think there should be a relationship between the emissivity 
E and the absorptivity a? Can this relationship come from theory? 
Since the physical mechanisms of absorption and emission are different, 
we do not expect any logical relationship between emissivity E and the 
absorptivity a to flow from theory and hence this relationship must come 
from experiments. Fortunately, people have done experiments and have 
determined relationships, which we shall study in the next section. 

Consider an evacuated enclosure at a temperature T as shown in Fig.3.7. 
Now we have a body initially at a temperature Tw, where Tw > Too. 
For a change, we do not have a black body, but we have a body whose 
spectral directional emissivity is given by E~{)..,T,(I,¢). What does the 
second law of thermodynamics tell us? If Tw is different from Too and 
Tw > Too, because there is vacuum, there will be no conduction or 
convection and only radiation will take place. Eventually, this body will 
also reach a temperature of T. We put some filters, which are basically 

Filters_ ..... 

Vacuum--'c-1r- E,:(A, T, 8, ell) 

Figure 3.7: Radiation in an enclosure with filters placed between a real 
body and the walls of the enclosure 

band pass filters which will allow radiation of narrow wavelength band 
d)" to cross the boundary. We can have as many filters as possible in 
as many wavelength intervals as possible. Suppose we have one filter in 
one particular wavelength interval, let us say between 3.6 p,m and 3.7 
p,m, which allows the radiation from the body in the center to reach 
the wall, what will happen? The radiation that goes out of the body in 
the center and reaches the wall can only be radiation in this wavelength 
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because any other wavelength will be reflected by the filter which will 
be eventually reabsorbed by the body. Since the body is in equilibrium, 
it must absorb exactly the same amount as it emits so that it remains 
at a temperature of T. But since the body is only allowed to emit in the 
wavelength interval dA, thanks to the bandpass filter, it can also absorb 
only in the same wavelength interval dA. This dA is under our control 
and we can change it from say 3.6 I'm to 3.7 I'm or from 8.1 /lm to 8.3 
/lm. Therefore, under these conditions, since the body is both emitting 
and absorbing in a particular wavelength interval, we can also choose the 
direction, by making the filter in such a way that it permits in only one 
direction. We are taking recourse to the second law of thermodynamics, 
which forbids the body from being at a temperature different from that 
of the surroundings because eventually equilibrium will be established. 

(3.92) 

The right side can be evaluated using the formule discussed earlier. But 
to calculate dQahs, it is imperative for UB to define spectral directional 
absorptivity. 

3.7 Spectral directional absorptivity, a~ 

The spectral directional absorptivity, dA is defined as 

, () dQabs a" A, T, e, if> = h.,icos()isin()id()idif>idAdA (3.93) 

Equation 3.93 clearly states that the spectral directonal absorptivity is 
the radiation absorbed in a particular wavelength and direction to that 
incident at the same wavelength and direction. Needless to say, a~ too 
is a dimensionless quantity varying from 0 to 1. 

Having defined a~, we continue with our discUBsion on Eqn.(3.92). 
According to Eqn.(3.92) 

Qnet = Qautgoing - Qinooming = Qemitted + Qreflecled - Qincident (3.94) 

For this body, which is in equilibrium, Qnet = O. If this Qnet were not 
equal to 0, the temperature of the body will increase or decrease with 
time. Therefore, 

Qemitted + Qreflected - Qincident = 0 (3.95) 
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If there is no transmission, 

Qincident - Qrefleeted Qabsarbed 

:. Qemitted - Qabsarbed 0 

or 

Q emitted = Q absorbed 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

Apart from saying that the radiation will be only in the wavelength band 
dA about A, we can also decide on the direction, by making the bandpass 
filter allow radiation in one direction only. Substituting the expressions 
in Eq. (3.99), we get 

alA, T, 0, ¢lh,i(A, Oi, ¢i)cosOisin()idOid¢idA 

= f~ (A, T, Oi, <Pi)h,>.(A, T)cosOisin();dOid<pidA (3.100) 

A spherical cavity with vacuum inside is equivalent to a black body. 
Therefore the incident radiation, as far as the small object is concerned, 
is basically corning from the walls of the enclosure. There is perfect 
reflection among the various surfaces of the walls of the enclosure. 
Since the walls of the enclosure and the small body are at the same 
temperature, I A,. corresponds to uniform or isotropic radiation from the 
walls of the enclosure which can be deemed to be radiation from a black 
body at a temperature T, which is the same as that of the small body 
within the enclosure. Therefore, we are allowed to change h,i to lb,)' on 
the left hand side of Eqn.3.100 

(3.101) 

Upon doing this in Eq. (3.100) and canceling the common terms on both 
sides, we get 

(3.102) 

Thus, the spectral directional absorptivity is equal to the 
spectral directional emissivity. 

This is the Kirchoff's law which is always true and holds good without 
any constraints. 

The Kirchoff's law is general and is valid for any wavelength and any 
angle and is also applicable for situations where a surface need not be 
housed in an enclosure. This configuration was only used to prove this 
law. The law can be experimentally verified. What we have presented 
above is one kind of proof of the Kirchoff's law. 
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For a gray surface, 
, , 

fA'O:'A 

:. / (T, 0, </» 

For a diffuse surface, 
, , 

fA,OA 

:. E~(>', T) 

# 1(>') 
a' (T, IJ, </» 

# I(IJ,</» 
a~(>., T) 

89 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

The IJi and </>i are very important because normally we can keep them as 
() and </>. But when we are considering reflection, (here we are considering 
only absorption) there is a I); and </>i and (}r and </>r. The radiation can be 
received in one direction while the reflection can be in all directions or it 
can be specular (the radiation enters in one direction and goes out in one 
direction only). That is why in absorptivity, we UBe the subscript i for 
the angles. But in reflectivity, we will encounter both i and r subscripts 
for the angles, which makes it more complicated. 

For a gray diffuse surface, the emissivity is equal to the absorptivity 
which is also equal to the total hemispherical emissivity and the 
total hemispherical absorptivity. Equation (3.106) can be substantially 
simplified as, 

(3.107) 

The other important thing is that Eq. (3.107) is not the Kirchoff's law. 
It is the post processed version of the Kirchoff's law for a gray diffuse 
body. The Kirchoff's law in its basic form is more general as it states 
that the spectral directional emissivity is equal to the spectral directional 
absorptivity. For a gray, diffuse, opaque surface, E = a which is a very 
common engineering assumption. Suppose we want to determine the 
radiative heat transfer between the walls in a room, we start off with 
the knowledge that walls of the room are opaque. Then if we make the 
assumption that these walls are made of gray, diffuse surfaces, the walls 
ofthe enclosure of this room can now be treated as a gray, diffuse, opaque 
enclosure which considerably simplifies the analysis. For such a wall, 

r = 0, a = € 

p=l-a=l-E 
(3.108) 

(3.109) 

From literature and from experiments, if we know what the emissivity of 
the surfaces is, then we can calculate the absorptivity and reflectivity and 
proceed with the detailed radiative heat transfer calculations. Before we 
proceed to the spectral hemispherical absorptivity, we will give a sneak 
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peek into what all this will eventually lead to. The final goal of all 
this is that we should be in a position to calculate the net radiation 
heat transfer from any surface. This surface may be a surface that is 
isolated or maybe a part of several surfaces in an enclosure or furnace or 
combustion chamber and so on. 

Net radiation heat transfer at an opaque surface: 

We have incident radiation, reflected radiation, absorbed radiation and 
since the surface is taken as opaque, there is no transmitted radiation. 
But there is also an emission consequent upon the temperature of the 
surface being at a temperature greater than 0 K. 

So, net radiation heat transfer at the surface = radiation that is going 
out - radiation that is coming in. 

Outgoing radiation = reflected component + emission component. 

Incoming radiation = incident radiation. 

:. Net radiation heat transfer at the surface = reflection + emission -
incident. 

If convection and conduction are ruled out, the net radiation heat 
transfer at the surface is given by 

(3.110) 

Example 3.5: The hemispherical spectral emissivity of a surface is as 
shown in Fig.9.B. Draw the corresponding distributions for hemispherical 
spectral absorptivity 0<), and hemispherical spectral reflectivity p),. 

Figure 3.8: 
Example 3.5 

0.8 

fA 0.6 

0.4 
£=0,2 

0.2 +--"';'~;;;",..j 

£=0.8 

o 1 2 

£=0.4 

3 4 
'A, ~m 

Hemispherical spectral emissivity distribution for 
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Solution: 
The absorbtivity distribution will be the same as the emissivity 
distribution. The reflectivity is obtained as I-a. However, calculating a 

«=0.8 p~0.8 

0.8 r-- 0.8 p~O.6 

aA 0.6 P,\ 0.6 
0::=0.4 

0.4 0.4 p~O.2 
«=0.2 

'--0.2 0.2 

1 2 3 4 1 2 3 4 
A.llm A.llm 

(0) (b) 

Figure 3.9: Variation of spectral absorptivity and spectral reflectivity 
with wave length for Example 3.5 

from 0>. is not so straightforward. We need to know the variation of 1>. 
with respect to A. Or we should know from where that this I>. is coming 
from, as for example the sun. In this case, we are interested in calculating 
the solar absorptivity. For this case, the sun can be considered to be a 
black body at 5800 K. We can use the F-function chart and calculate 
absorptivity much in the same way as we calculate emissivity. 

3.8 Hemispherical spectral absorptivity, 
ct),(>.,TA ) 

If TA is temperature of the absorbing surface, then the spectral, 
hemispherical absorptivity of the surface is defined as follows, 

f:~o Jo:~o a~ (A, TA, (Ji, <Pi)h,i(A, (Ji, <Pi)ms(Jisin(JidlJid<Pi 
O),(A, TA) = 2" ,,/2 . 

f",,=o Jo,=o h,i(A, (Ji, <Pi)cos(Jis~n()id(}id<pi 
(3.111) 

If we know the distribution of o~ as a function of (J and we also have 
information on Iii,; vs a~, it is possible for us to multiply the two 
and integrate the product over the complete hemisphere to obtain the 
spectral hemispherical absorptivity. 
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What is the goal of defining this quantity? Basically we have an 
elemental surface of area dA. The unit vector is 1/A. We are considering 
the hemispherical space above dA (see Fig.3.1O). Radiation from this 
hemispherical space is falling on this object dA. The ratio of the total 
radiation from the hemispherical space above at a particular wavelength 
interval which is absorbed by the body to the total radiation, coming 
from the hemispherical space, which is falling on this object in a 
particular wavelength interval is the hemispherical spectral absorptivity. 

Figure 3.10: Typical representation for absorption of radiation by a 
surface with area dA 

3.9 Directional total absorptivity, a(TA,O,I/J) 

The directional, total absorptivity is given by the ratio of the total 
radiation absorbed by a surface at all wavelengths in the (0, cjJ) direction 
to that incident in the (0, cjJ) direction. In view of this, the A dependence 
goes because we will perform one integration with respect to A to arrive 
at this quantity from a~. Mathematically a(TA,O,cjJ) is given by 
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'(T . .) _ 1;;'0 a~ {,x, TA, (ji, <Pi)h,i('x, Ili' <Pi)d,Xdw 
a A,{).,<p. - f"" I '(' (J. -/,·)d'dw 

).=0 A,t A, "o/t A 

(3.112) 

3.10 Hemispherical total absorptivity, a(TA) 

The hemispherical, total absorptivity, a is given by 

T />'':0/:,:0 /0::::0 a~('x, TA, Oi, <Pi)h,icosOisinOidOid<pid,X 
a{ A) = f"" 1211" J'7[/2 . ),=0 <1>,=0 8,=0 h,icos{)ismIJidOid<pid,X 

(3.113) 
If a~ is given to us, we have a mechanism to get a. If the distribution is 
known, we can integrate the numerator and denominator of Eqn.3.112 
analytically or numerically and get a. This is of final engineering interest 
to us. With a and f, we can work on the actual heat transfer problems 
which could involve modes other than radiative heat transfer. So, once 
we have information of a and f, we have crossed two important hurdles 
in our pursuit of determining radiation heat transfer between surfaces. 
These are (il the radiation laws and (ii) characterization of a surface that 
is not a black body. 

The next two hurdles will be how to talie care of the geometric orientation 
of the various objects and if many objects are involved, how do we take 
care of the overall formulation and what is the influence of one object 
on the other? 

Getting back to Eqn.3.113 the irradiation is from a black body that is 
at temperature Ts, which is the temperature of the sun, in this case, 
the denominator of Eq.(3.1l3) will becomes uTJ. Then a is no longer 
independent of the temperature of the surface from which the radiation 
is originating because Tj; is there in the denominator of this expression. 
Therefore, a becomes a function of TA and T s. This is valid even if the 
irradiation is from a diffuse gray object at a temperature Ts. 

Hence, for the special case of irradiation from a black body at 
temperature Ts, the hemispherical total absorptivity, a, is given as 

a(TA,Ts) = ~f J J J a~h,icos()sin(Jd(Jd¢d). (3.114) 

The most profound and subtle change we have made on the left hand 
side of the equation is that we have made a a function of Ts too, outside 
ofTA· 
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Example 3.6: Consider an opaque surface with the spectml 
hemispherical absorptivity as shown in the Fig.3.11. The spectml 
distribution of incident mdiation is also given in the figure. 

(a) Determine the hemispherical total absorptivity of the surface? 

(b) If this surface is diffuse and is at 1200 K, what is its total 
hemispherical emissivity? 

(c) Determine the net mdiation heat tmnsfer from the surface? 

0.5 .... - 40000 •••••••• ";':' .---,. 

o 1.5 

(a) 

o 

. 

. 
1.5 

(b) 

3.5 5 
l\,l.lm 

Figure 3.11: Variation of spectral absorptivity and radiation intensity 
with wave length for problem 3.6 

Solution: 

(a) Hemispherical total absorptivity of the surface 

(3.115) 

The total irradiance G in WI m 2 is given by 

G = roo !;",;d)" = 1.5 x 40000 + 2 x 40000 + 1.5 x 40000 (3.116) 
1>.=0 2 2 
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G = 140000 W/m2 

o J~.5 hid)" + 0.5 J13~'i h,id)" + 0.5 J~\ h,id)" 
Q= 140000 

= 0.5 x 80000 + 30000 x 0.5 = 0 39 
Q 140000 . 

(b) Total hemispherical emissivity 

For a diffuse surface, 

Q", =f", 

)..1 = 1.5/Lm 

)..IT = 1.5 x 1200 = 1800/LmK 

FO->AIT = 0.0393 

Ji·5 
€),Eb,>.d)" Jt~ €>.Eb,),d)" f(T) = ........................................... + ........................................ . 

Eb(T) Eb(T) 

= 0 + 0.5(1 - 0.0393) = 0.480 

(e) Net radiation heat transfer 

Q=€uT4 +pG-G 

Q = fuT4 
- Oi.G 

Q = 0.480 x 5.67 x 10-8 x 12004 - (0.39 x 140000) 

Q = 56435.09 - 54600 = 1.83kWjm2 

95 

(3.117) 

(3.118) 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

(3.128) 

Example 3.7: An opaque surface has a hemispherical spectml 
reflectivity as shown in the Fig.3.12(a}. It is subjected to a spectml 
irradiation as shown in Fig.3.12{b). 

1. Sketch the spectml hemispherical .• pectml absorptivity distribution. 

2. Determine the total irradiation on the surface. 

3. Determine the mdiant flux that is absorbed by the surface. 
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0,5 ......... ..------11101 1000 

a 1,5 A.lJm 

(al 

a 3 6 
A.>lm 

(b) 

9 

FigllIe 3.12: (a) Hemispherical spectral reflectivity and (b) Spectral 
irradiance for Example 3.7 

4. Determine the total hemispherical absorptivity of the surface. 

Solution: 

1. For an opaque sllIface, 7),=0 

0<", + p", = 1 , 0<", = 1 - p", (3,129) 

a, :.: "!". ----....... --------,~ I 

o 1.5 A, 11m 

Figure 3.13: Spectral absorptivity distribution for Example 3,7 

2. The total incident radiation, linci in W 1m2 is the area lmder the CllIve. 

1 1 
linci = (2" x 3 x 1000) + (3 x 1000) + (2" x 3 x 1000) 

= 1500 + 3000 + 1500 = 6000W/m2 (3,130) 
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3. Radiant flux absorbed by the surface 

labs = roo OI>.h,id:A 
}>.=o 
(1 X 1500) , labs = ................................. + 0.5 X 3000 + 0.5 X 3000 

2 

labs = 3000W/m2 

4. Total, hemispherical absorptivity of the surfce 

labs 3000 
01 = ............ = ............... = 0.5 

line 6000 

Example 3.8: 
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(3.131) 

(3.132) 

(3.133) 

(3.134) 

Figure 3.14: Spectral absorptivity distribution for Example 3.8 

A spatially isothermal surface is maintained at a temperature of 12fJ' C. 
Solar radiation with /;ncid.ent=1050 W/m2, is incident at the top of the 
surface. The surface has an area of 2. 55m2 . The surface is opaque and 
diffuse and its spectra! hemispherical absorptivity is given in Fig. 3.14. 
Determine 

1. the absorbed irradiation 

2. the emissive power 

3. net radiation heat transfer from the surface. 
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Solution: 

1. Absorbed irradiation 

(3.135) 

Since nothing is specified about the variation of "'A or fA with 
respect to temperature, we assume that the same calculation holds 
good for all the temperatures. From F-function charts 

AIT = 0.5 x 5800 = 2900pmK (3.136) 

A2T = 5800/.!mK (3.137) 

AsT = 11600/.!mK (3.138) 

FO-->A, = 0.250 (3.139) 

F)"-->A2 = [0.720 - 0.250] = 0.47 (3.140) 

FAS-->oo = 0.06 (3.141) 

'" 0+ (0.47 x 0.75) + (0.95 X 0.06) (3.142) 

a 0.41 (3.143) 

If we remember, nearly 37% of the radiation was concentrated in 
the visible region of the solar spectrum. The wavelength band was 
0.4/.!m-O.7/.!m. Here, we have a range of O.5-1.0pm. So if O.4/.!m-
0.7/.!m were to be 37%, we expect 0.5pm -1.0/.!m to be about 50%. 
Out of this 50%, its efficiency is 0.75. So we will get a value of 
about 0.38 and anyway beyond 2pm, the emission fraction is only 
6%. Even though the surface has a terrific a of 0.95 for A > 2/.!m, 
there is not much incoming radiation in that part of the spectrum. 
So, instead of just mechanically and routinely calculating with 
the F-function chart, with some insight, just by looking at the 
distribution, we will be able to estimate a for a given temperature. 
Beyond 2pm, a can be anything and its value does not really affect 
our calculations in this problem. 

Gabs = 0.41 X 1050 = 429.97W/m2 (3.144) 

Absorbed irradiation=429.97x2.55=1096 w. 
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2. Emissive power 

T=393K,AIT 

A2T 

A3T 

€ 

196.5"mK, Fo-+>.. = 0 (3.145) 

393JLmK, FA.-tA2 = 0 (3.146) 

786JLmK, FA3 -+00 = 1.64 X 10-5(3.147) 

0.95 (3.148) 

That is the way it should be because the surface temperature is 393 
K and if we use the Wien's displacement law, AmaxT=2898JLmK. 
Hence, here T=393 K. Amax in this case would be 7 "m. In this 
problem, we have said that after 2pm, there is no change and hence, 
even without using the F-function chart, we can say that all the 
distribution below 2,Lm given here is irrelevant and (its effect is to 
the extent of 1.64xlO-5). 

Radiation emitted EaT' A 

0.945 X 5.67 X 10-8 X 2.55 X 3934 

3276.49W (3.149) 

3. Net radiation heat transfer from the surface 

Net radiation Emitted + (Reflected - Incident) 

Emitted - Absorbed 

= 3276.49 - (0.41 X 1050 X 2.55) 

= 2178.71W (3.150) 

Exam.ple 3.9: Solar flux of 950 W 1m2 is incident on the top surface 
of a plate whose solar absorptivity is 0.9 and emissivity is 0.1. The air 
and surroundings are at 27' C and the convection heat transfer coefficient 
between the plate and air is 9 W 1m2 K. Assuming that the bottom side 
of the plate is perfectly insulated, determine the steady state tempemture 
of the plate. (Refer Fig. 3.15) 

Solution: 
The energy equation for this scenario will be 

Net emission + reflection + convection = Incident (or) 

Net emission + convection = Net absorbed 

(3.151) 
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T =300 K h = 9W/m2K 
a ' I =950 W/m2 

----t~~ Emitted inc 

~ 

Figure 3.15: Various heat transfer processes associated with Example 
3.9 

0.1 x 5.67 x 1O-8(T4 - 3004
) + 9(T - 300) = 0.9 x 950 (3.152) 

T = [0.9 x 950 - 0.1 x 5.67 x 1O-8(T4 
- T!)] + 300 (3.153) 

9 

This is a non linear equation which has to be solved by iterations. It 
is called a transcendental equation because it has a T4 term. It has to 
be solved by the Newton-Raphson method or the method of successive 
substitution. 

The algorithm for successive substitution can be written as 

T. 
[0.9 x 950 - 0.1 x 5.67 x 1O-8(T/- 3004 )] 

i+1 = 9 + 300 (3.154) 

We will start with 320 K and do iterations using the method of successive 
substitution. 

I Iteration No. Ti 
I 1 320 393.5 

2 393.5 385 
3 385 386.26 
4 386.26 386.08 

After 3 iterations, we get T=386 K. 

3.11 Reflectivity, p 

We have already worked out problems based on this, but reflectivity is 
much more difficult and involved than we think. Radiation coming on to 
a surface can come from one particular direction or from the hemisphere 
above the surface. By the same token, we can look at the reflected 
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radiation as going out in a particular direction or as going out in the 
hemispherical space above the surface; so there are 4 possibilities here. 

1) If incident radiation is from a particular direction, reflected radiation 
can go out in a particular direction. 
2) The incoming radiation can be from a particular direction while the 
radiation going out is into the hemispherical space. 
3) The incoming radiation can come from the hemispherical space and 
the outgoing radiation can be in a particular direction. 
4) Finally, radiation can come from the hemispherical space and also go 
out in to the hemispherical space. 

To all this, we add the spectral dependence. Consider Fig. 3.16 and let 
the incident radiation IA,; be a function of A, Oi and ,/>i. The outgoing 

J 

Figure 3.16: Figure for defining bi-directional reflectivity 

radiation dIAT is a function of A, the temperature of the surface TA, , 
0;, <Pi, Or and <Pr. Iii,; is incident from a particular angle Oi, <Pi. The 
reflection can take place in any direction but we are looking at the 
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reflected radiation in an angle Oro <Pr. As opposed to absorptivity, there 
is a significant departure here because the reflected radiation is qualified 
by two additional variables Or and <Pr. The solid angle aI01md (0" <p,) 
is small. Therefore, we expect the reflected component to be small as 
opposed to the incident. Therefore we denote the reflected radiation by 
dIA,r. 

The incoming radiation is from an angle (0" <Pi), and outgoing is from (Oro 
<Pr). We are still discussing spectral quantities and hence the reflectivity 
under consideration should be a directional-directional spectral quantity. 
Therefore, it should be p~. Mathematically, the directional-directional 
spectral reflectivity p~ or the bi-directional reflectivity (BDRF)is defined 
as 

"(A T e. A.. 0 A.) = dh,r(A, TA, OJ, <P;, Oro <Pr) 
P ,A, "'I',, n'l'r I .(\. (). A..) O.d,w . 

..\,' Ai, 1.,0/'1. cos t t 

(3.155) 

In the denominator, we have cosO, because we are considering the 
projected area and dw; is the elemental solid angle subtended in the 
reflected direction Or, <Pr. This dw, can also be replaced by sinO, dO, d<pi. 
Please note that this bidirectional reflectivity, by definition, is not a 
dimensionless quantity. It has the unit 8r-1 . If we have good laboratory 
facilities, it can be experimentally measured. In engineering, we are 
mostly interested in p or at most, PA. Most of our surfaces are diffuse, 
which means that the reflection is diffuse in all the directions. Sometimes 
we use specular surfaces, for some special applications. It is important 
to know that all other reflectivities have their origin from this p~. Apart 
from experimental measurements, p~ can also come from the theory of 
optics. In summary p~ has limited engineering significance but has a lot 
of conceptual importance. 

For the first time, we have a property which is not dimensionless but 
has the unit 8r-1 , which means that we have to use it with caution 
in problems. A pictorial representation of reflectivity and its types, is 
shown in Fig. 3.17. The bi-hemispherical spectral reflectivity is given by 

The IA,r in the numerator can be written as IA,i multiplied by p~ where p~ 
can be directional to hemispherical or hemispherical to directional. This 
p~ can be connected to p~ which is directional directional reflectivity. In 
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Directional 
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Reflectivity 
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-hemispherical 
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Figure 3.17: Pictorial representation of reflectivity and its types 

short, if we know the bi-directional reflectivity p~, it is possible for us to 
accomplish the integration and calculate the numerator. If we know the 
directional distribution of the incident radiation IA,i, we can calculate 
the denominator. Hence we can straightaway get p).. If 0<). information 
is not avdilable to us but if p~ is given, we can calculate P)' and if it is 
an opaque surface, I-p", can be taken to be 0<",. Things get complicated 
only when T =I- O. 

The bi-hemispherical total reflectivity p is given by 

p = f",";, p",h,;dJ.. 

!>.=Oh,idJ.. 
(3.157) 

If the IA,; distribution is not given, but we say that the incident radiation 
is from a black body at 5800 K, then we can convert it to Eb,)' and use 
the F-function chart, use the 0<), and take p).=l-o<>. and then calculate p. 
If in a problem, we have both P>. and T>., we can use o<+p+T=l and hence 
calculate 0<. So seamlessly, we should be able to go from one property to 
the other. 

3.12 Transmissivity, T 

If we consider a material like glass, radiation incident on it can either be 
reflected, absorbed or transmitted. For a transparent or semitransparent 
medium (i.e, a medium that is not opaque), there is a possibility that 
the radiation will penetrate the medium and come out of it. Therefore, 
an additional property enters, which is the transmissivity. 
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Transmissivity (r) is also a dimensionless property and can have a value 
between 0 and 1. For an opaque surface, 7=0. If some surface has 
100% transmittance, then r=1. Just like emissivity, absorptivity and 
reflectivity, this can also vary with A, () and can lead to complexities. 
However, we often deal with thin media or a thin layer of glass or the 
atmosphere. The atmosphere is "thin" because compared to the radius 
of the Earth which is 6378 km, the thickness of the atmosphere is only 
80 or 90 km. The height of the atmosphere divided by the radius is 
so small that the atmosphere can also be said be to a thin layer. If 
the atmosphere is considered to be thin, we can treat the resnlting 
radiation problem as one dimensional along the height direction. We 
can consider all properties to vary only with the height or z axis. That 
makes matters simple. If everything varies only with z, then variation 
of transmissivity with angle does not have to be considered. Therefore 
the concept of directional transmissivity becomes redundant for a one 
dimensional medium or a plane parallel medium. So, wherever possible, 
we make a plane parallel assumption. If t is the thickness of the medium 
and L is its length, then if Lt> > 1,the medium is said to be a plane 
parallel. Properties vary only across the thickness only and directional 
transmissivity is superfluous. 

3.13 Spectral transmissivity 7A(>",t) 

A medium that can absorb, scatter and transmit is called a participating 
medium. If t is the thickness of the participating medium, then the 
spectral transmissivity 

_ h,tr(A) 
rA(A, t) - I '(A) 

A,' 
(3.158) 

The basic difference between a participating medium and the surfaces so 
far considered is that reflection, absorption, etc were all happening in the 
first few micrometers of the surface and being surface phenomena,were 
called radiative surface properties, But in the atmosphere, the radiation 
penetrates deep inside, agitates all the molecules within it, which may 
absorb, scatter or reflect the radiation or the atmosphere itself may emit 
volumetrically. This is different from the emission of a surface. In the 
case of the atmosphere, the whole gas volume emits. It may scatter 
differently in different directions, which is called anisotropic scattering. 
The governing equation is called the Radiative Transfer equation or 
RT equation. 
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Getting back to transmissivity, the total transmissivity T is given by 

(3.159) 

Consider the case of solar irradiation on a semi-transparent surface. If 
we have the spedral distribution of p and O! but we do not give any 
further information on 7, still 7 can be calculated as follows 

a+p+7=0 (3.160) 

From the graphical distribution given for p and a, using the relation 7=1-
(p+a), we can reconstruct the distribution for T. For IA,i, we will take 
the Eb,A corresponding to the slm's temperature. Using the F-nmdion 
chart, we can finally calculate 7. 

In participating media, there can be emISSIOn, absorption and also 
scattering. Scattering is basically refledion, but is from the volume. 
There can be in scattering, which is reflection on to the surface and 
out scattering, which is reflection away from the surface and the net 
will be the difference between the out scattering and the in scattering. 
This scattering could be a fimction of wavelength and also a function 
of the angle. If it is not, then the medium is termed as isotropic. 
Scattering also depends on the size of the particle, like in the case of 
the atmosphere. Scattering by a dust particle will be different from the 
scattering by a water molecule, which will be different from the scattering 
by an ice particle. When the ice particle is oblique and non spherical, 
the scattering phenomena can get very involved. 
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Exrunple 3.10: The spectra! absorptivity ail and the spectra! reflectivity 
P>. for a diffuse surface are given in the Fig. 3.18. 

1.0 -,--,-------, 0.25 ---;,------------, 

a, 
0.75-

0.5 -

cr.: 0.25 
0.25 

I 

1.5 A (!-1m) 

(a) 

0.2 -

Ph 
0.15-

0.1-

P,= 0.125 

1.5 

(b) 

Figure 3.18: Variation of spectral absorptivity and spectral reflectivity 
with wave length for problem 3.10 

a. Sketch the spectral transmissivity distribution. 
b. If solar radiation G = 800W/m2 and spectral distribution 
corresponding to a black body at 6000K is incident on the material, 
determine the fractions of the irradiation that are absorbed, reflected and 
transmitted by the material 

Solution 

a) Spectral transmissivity distribution 

a,>, + P,>, + T). = 1 

T). = 1 - (aA + PAl 

Til = 1 - (0.25 + 0.125) = 0.625 

(3.161) 

(3.162) 

(3.163) 
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A (11m) 

Figure 3.19: Variation of spectral tranBmissivity with wave length 
(Problem 3.10) 

b )Absorption,rellection and transmission 
00 

f OI.)'.lA,id)' 

01.= 
}.=o 

00 
(3.164) 

f lA,id)' 
}.=o 
00 

f OI.),.Eb),d)' 

01.= 
"'=0 (3.165) 

(3.166) 

1.5 00 

0.25 J Eb>.d)' + 1 J Eb>.d)' 

01.= 
),=0 ),=1.5 (3.167) 

1.5 00 

0.25 J Eb>.d)' 1 I Eb>.d)' 
),=0 + -"=1.5 

01.= 
00 00 

(3.168) 
f Eb",d)' f Eb",d)' 

A~O A~O 
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T. = 6000K (Given) 

>'T 

FO-AT 

1.5 x 6000 = 9000I.!mK 

0.89 

a = 0.25 x 0.89 + 1[1 - 0.89] = 0.332 

Solar absorptivity = 0.332 

00 00 

J p). ·h.,id>. J p). .Eb)' d>' 
A~O ).~O 

p 00 00 

J h.,id>. J Eb>.d>' 
>.~O A~O 

1.5 00 

J p>..Eb>.d>' + J p>..Eb>.d>' 

p 
).~O )'~1.5 

00 

J Eb).d>' 
).~O 

1.5 00 

J p>..Eb>.d>' J p>..Eb>.d>' 

p >'=0 
00 

.......................... + ).=1.5 
00 

J Eb).d>' J Eb).d>. 
).=0 ).=0 

P = 0.125 x 0.89 + 0 = 0.111 

Now 

a+p+r 1 

r l-(a+p) 

r 0.557 

Gabs 265.6W/m2 

G re! 88.8W/m2 

Gtrans 445.6W/m2 

(3.169) 

(3.170) 

(3.171) 

(3.172) 

(3.173) 

(3.174) 

(3.175) 

(3.176) 

(3.177) 

(3.178) 

(3.179) 

(3.180) 

(3.181) 
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Example 3.11: The spectral transmissivity of plain and tinted 
glass varies non-linearly with wavelength. However, as a first cut 
approximation the following distribution may be assumed. 
Plain glass: T). = 0.9,0.3 :5 A :5 2.5j.Lm 
Tinted glass: T). = 0.9, 0.5 :5 A :5 1.5j.Lm 
Elsewhere, the spectral transmissivity is 0 for both the glasses. 
a. Compare the solar energy that is transmitted through the two glasses. 
b. If solar radiation is incident on the two glasses, compare the visible 
mdiation that is tmnsmitted by the two glasses. 
c. Comment on whether tinting the glass helps or hurts. (T). values taken 
from Incropem et al. (2007)) 

Solution 
a) Plain glass: 

00 

J T>..h.idA 
A •• -=::"O~ __ _ 

T= - 00 

f h,idA 
A=O 

Let T. = 6000K 

A1 x Ts = 0.3 x 5800 = 1740j.LmK 

A2 x Ts = 2.5 x 5800 = 14500j.LmK 

FO-AIT. = 0.0326 

FO- A2T. = 0.96643 

FAl - A, = 0.968 - 0.039 = 0.929 

T = 0 x 0.0326 + 0.9 x (0.96643 - 0.0326) = 0.84 

So, for plain glass, 84% of the incident energy is transmitted. 

For tinted glass: 

A1 = 0.5j.Lm; A1 x T. = 2900j.LmK 

A2 = 1.5j.Lm; A2 x T. = 8700j.LmK 

Fa-AlT. = 0.250 

Fo- A2T• = 0.8806 

T = 0 x 0.253 + 0.9 x (0.8806 - 0.250) = 0.567 

(3.182) 

(3.183) 

(3.184) 

(3.185) 

(3.186) 

(3.187) 

(3.188) 

(3.189) 

(3.190) 

(3.191) 

(3.192) 

(3.193) 
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For tinted glass, only 56.7% of the incident energy passes through. So if 
the incident radiation is 1000W/m2 , plain glass will allow 840W/m2 to 
pass through while the tinted glass ailows 567W/m2 to pass through. So 
compared to plain glass, tinted glass stops 273W/m2 more which means 
the reduction is 27.3% in this case. This is important as the current 
trend everywhere is the use of glass and steel structures. Therefore, to 
reduce the air conditioning load, some solutions like this need to be used. 
b) Performance in the visible part of the spectrum 

Plain glass: 

Within the visible band, TA = 0.9 

>'1 X T. = 0.4 x 5800 = 2320j.!mK 

>'2 x T. = 0.7 x 5800 = 4060j.!mK 

FO-AIX1' = 0.1239 

FO-A,XT. = 0.4913 

:. T = 0 x 0.1239 + 0.9 x (0.4913 - 0.1239) = 0.33 

Tinted glass: 

>'1 X T. = 0.5 x 5800 = 2900l"mK 

>'2 x Ts = 0.7 x 5800 = 4060j.!mK 

FO- AIT• = 0.250 

FO- A2T. = 0.4913 

T = 0 x 0.250 + 0.9 x (0.4913 - 0.250) = 0.217 

(3.194) 

(3.195) 

(3.196) 

(3.197) 

(3.198) 

(3.199) 

(3.200) 

(3.201) 

(3.202) 

(3.203) 

c) Tinted glass cuts out the visible part by 12%. So, tinting the glass 
certainly helps in reducing the solar load. 

3.14 Optical pyrometry 

We can devise instnunents to measure the temperature of a surface 
based on its emission characteristics. This becomes the basis of an 
optical pyrometer. Suppose the surface is in the background, we can 
devise a system of lenses and focus on the radiation coming from the 
background. Consider an arrangement where a filament is placed ahead 
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of the surface. The background is at some temperatUIe. The temperature 
of the filament can be controlled by connecting to a power SOUIce as 
shown in Fig. 3.20. We keep increasing the filament's temperatUIe such 
that its characteristics also change. We can change the settings such 
that at a particular point, this filament has the same temperature as the 
background. Since the two will merge, the filament will disappear from 
our field of view. At that point of time, the temperature of the filament 
is exactly the same as the temperature of the background and hence this 
is a way of inferring the temperature remotely. This is called pyrometry. 

filament --0-1 

Figure 3.20: Schematic of a vanishing filament optical pyrometer 

Similarly, based on radiation and Planck's law also, equipment can 
be devised to measure the temperature remotely. Based OIl infrared 
radiation emitted from the objects, we can infer the temperature. So first 
calibration is done where each colour is calibrated against a temperature 
and from the colour, the temperatUIe is deduced. So if we look at all 
equipment we come across in heat transfer, their design is based on 
some particular law. They are adequately, calibrated and benchmarked 
to make readings obtained from them trustworthy. 
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PROBLEMS 

3.1 The hemispherical, spectral emissivity, fA for a metal at 1000 K is 
approximately given by 

o :0; A :0; 211m, fA = 0.6 
2:<::; A:<::; 4I1m,EA = 0.35 
A 2': 411m, fA = 0.15 

The fA values do not change signlficantly with temperature and the 
metal surface may be assumed to be diffuse. 

(a) What is the hemispherical, total emissivity of the surface at 1000 
K? 

(b) If radiation is incident from a black body at 1400 K, what is the 
value of the 

(c) hemispherical total absorptivity for the incident radiation? 

(d) If the irradiation due to the black body at 1400 K is 9000 Wjm2 , 

what is the net radiation heat transfer from the surface? 

3.2 The hemispherical spectral emissivity, fA for a metal at 1200 K is 
approximately given by 

o :<::; A :0; 2.5J.Lm, fA = 0.75 
2.5 :<::; A :<::; 5J.Lm, fA = 0.55 
5 :<::; A :<::; 711m, fA = 0.35 
A 2': 711m, f>. = 0.15 

The hemispherical spectral values do not change significantly with 
temperature. 

(a) What is the hemispherical, total emissivity ofthe surface at 1200 
K? 

(b) If radiation is incident on this metal surface from a blackbody 
at 6000 K, what is the value of a for the incident radiation? 

(c) What is the wavelength Ao.5 for which 50% of the total radiation 
emitted by this surface lies in the spectral region A > AO.5? 

(d) How does the solution to part (e) compare with the wavelength 
corresponding to maximum radiation for this surface? 
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3.3 Consider a surface that has the following directional emissivity, E9 

distribution: 

o ~ () ~ 45°,£9 = 0.9 
450 ~ () ~ 900

, E9 = 0.3 

The surface is isotropic in the ¢ direction. Calculate the ratio of 
the normal emissivity to the hemispherical emissivity. 

3.4 The spectral absorptivity, 01), and the spectral reflectivity p), for a 
spectrally selective, difluse material vary as follows: 
Absorptivity: 

o ~ A :s: 1.38J1m,0I), = 0.2 
A 2:: 1.38J1m, 01), = 1.0 

Reflectivity: 

o ~ A :s: 1.38J1m, P>. = 0.1 
A 2:: 1.38J1m, P>. = 0 

(a) Sketch the spectral transmissivity. 

(b) If solar radiation, with G=750 W/m2 and temperature 
corresponding to a black body at 5800 K, is incident on this 
material, determine the absorbed, transmitted and reflected 
fluxes. 

(c) If the temperature of this material is 350 K, determine the 
emissivity, £. 

(d) Determine the net radiant heat flux from the material. 

3.5 A very large, flat horizontal metal surface (as, for example, a 
roof) receives solar irradiation of 1150W/m2 on its upper surface. 
The convection heat transfer coefficient on the surface is around 
20W/m2 K. The solar absorptivity of the surface is 0.65, the surface 
emissivity is 0.15 and the ambient temperature is 30 "C. Assume 
that the bottom of the surface is heavily insulated so that there is 
no heat transfer from the bottom of the surface. Also neglect any 
temperature distribution within the metal surface. For steady state 
conditions on the metal surface, 

(a) Determine the temperature of the metal by employing energy 
balance. 
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(b) What will be the temperature of the metal if both the emissivity 
and the absorptivity of the surface are equal to 0.651 

(c) What will be the temperature if both the emissivity and the 
absorptivity are equal to 0.151 Comment on your results. 

3.6 In problem 3.5, if the surface is assumed to be very highly conducting 
and there is natural convection from the bottom of the metal surface 
with a convective heat transfer coefficient of 7W/m2 K and the 
ambient temperature is 35°C with negligible radiation heat transfer, 
what will be the surface temperature for conditions corresponding 
to part (a) of the problem? 

3.7 Consider a thin opaque, horizontal plate with an electrical heater 
on its bottom side. The top side is exposed to ambient air at 25 
DC with a convection heat transfer coefficient of 12W/m2 K, solar 
irradiation of 650W/m2 and an effective sky temperature of -40°C. 
Determine the electrical power required to maintain the temperature 
of the surface at 65°C if the plate is diffuse and has the following 
spectral, hemispherical reflectivity 

o ~ >. ~ 2Jtm, P>. = 0.2 
2Jtm ~ >. ~ 00, P>. = 0.75 



CHAPTER 4 

Radiation heat transfer between 
surfaces 

A very important topic in radiation is the calculation of radiation heat 
transfer between surfaces. As engineers, we know that in a typical 
engineering problem we encounter many surfaces, each having its own 
temperature, reflectivity, absorptivity, emissivity and so on. These 
surfaces are usually part of an enclosure or otherwise. The key question 
to be answered is, What is the net radiative heat transfer from a surface? 
Even if other modes of heat transfer such as conduction and convection 
are present, we have to take care of radiation with due diligence. We 
may solve the convective heat transfer problem and at every iteration, 
we may stop and calculate the radiative heat transfer rate, update the 
convection solver and proceed or we may just have a purely radiation 
problem. 

For example, if we are interested in the cooling of electronics in a 
satellite, we have a lot of equipment which is generating heat and the 
temperatures of these have to be controlled. This is done by employing 
a heat exchanger which will pick up the heat. The fluid which has picked 
up the heat must be cooled again so that it can be re-circulated to pick 
up the heat again, as the electronic devices are continuously operating 
and generating heat. So the hot fluid has to become cold fluid somehow. 
Therefore, we need a heat exchanger. 

Unfortlmately there is no ambient air in outer spaee and hence convective 
heat transfer is not possible. Therefore, only radiative heat transfer is 
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possible. The design hinges on how we are able to select the surfaces, 
their configuration, if fins are going to be used, what type of fins are 
required, their number, thickness, material to be used. We have to solve 
a combined conduction-radiation problem and design the heat exchanger. 

4.1 Enclosure theory 

There are so many applications in which calculation of radiation heat 
transfer is important, such as satellite temperature control, design of 
combustion chambers and furnaces, design of radiant super heaters and 
boilers. Even in other problems where there is cooling of electronics, 
radiation also has its part to play as we saw earlier how radiation is 
significant even at lower temperatures and is comparable with natural 
convection. Therefore it is imperative that we have a method to compute 
the radiative heat transfer between surfaces, for which we learn what 
is called the enclosure theory. This was developed by Prof. E. M. 
Sparrow and his colleagues at the University of Minnesota in the US 
in the early 1960s. This enclosure theory, though developed about 45 
years back, is still in use and has not been challenged. It is even used by 
commercial software such as Fluent. 

The key idea is like this. Suppose there is a furnace which has 4 surfaces 
with temperatures and emissivities as shown in Fig. 4.1, radiation from 
any surface can fall on any of the other 3 surfaces. 

T, 
E, 

T, 
E, 

Figure 4.1: Radiation exchange in an enclosure 
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We account for all the radiation which is originating from a surface and 
all the radiation that is falling on the surface and (what is going out = 
what is coming in) should be balanced amongst all the surfaces. The 
system of simultaneous equations can be solved to obtain the radiative 
flux( or heat transfer) we desire. 

Suppose we have a configuration as shown below (Fig. 4.2), which is 
called an open cavity, with 3 surfaces and an open top, it is no longer 
an enclosure. It is like an open cup. The beauty of the enclosure theory is 
that we close the top by an imaginary surface that has zero reflectivity, is 
a perfect emitter and has a temperature equal to Too. So we can consider 
this as the fourth surface and treat the whole geometry as an enclosure. 
Thus, any possible configuration on planet earth can be treated as an 
enclosure! 

E =1, T=Too 

T, 
E, 

Figure 4.2: Concept of an imaginary surface under the framework of 
the enclosure theory 

Even if there is a simple one surface enclosure, we can enclose it in 
a hemispherical basket whose emissivity is 1 and temperature is Too 
(Fig. 4.3). 
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T=T 
2 00,....--

Radiation heat transfer between surfaces 

E =1 
2 

Figure 4.3: Conversion of a simple one surface problem into one of a 
two surface enclosure 

Therefore, for any possible configuration, irrespective of whether the 
surfaces are plane, convex or concave, or if some surfaces are open, we 
can mark a dotted line, and close the geometry. We make everything 
in the world an enclosure and look at the energy balance of each of 
the surfaces in the enclosure. This is the key idea behind the enclosure 
theory. 

But all of the information we already have through this course, so far, 
is enough only to calculate the radiation from one surface. But now we 
are looking at radiation from an enclosure. Obviously,we can see that 
geometry has a critical role to play. It is intitutively apparent that the 
size of the various surfaces in the enclosure and the orientation of one 
surface with respect to the other will eventually decide the net radiation 
heat transfer from each of the surfaces. Therefore, geometry plays a 
critical part. 

4.2 View factor 

View factor is also known as shape factor or angle factor. Figure 4.4 
shows a surface Ai which has a temperature T;, and takes an elemental 
area dA.;. The unit vector is ni. On another surface Aj at temperature 
Tj , take an elemental area dA j whose unit vector is nj. Then connect 
both elemental area centroids and this distance is called the radius R. 
The angles made by the unit vectors !"Ii and nj with the radius R are ()i 

and ()j respectively. Fi - j , represents the view factor from the ith surface 
to the lh surface. 
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dA , 

Figure 4.4: Figure for the derivation of the view factor expression 

The formal definition for the view factor (F ij) is as follows: "The view 
factor between two finite areas A. and Aj , denoted by Fi-j, is the 
fraction of the radiation leaving the surface i that is intercepted 
by the surface j." It has no units and is dimensionless and its value 
can vary between 0 and 1. 

Substituting for dwj - i in Eq 4.1 we have 

(4.1) 

(4.2) 

(4.3) 

Now consider i to be a diffuse emitter and a diffuse reflector. This 
means it does not have a directional preference. The radiation leaving 
this surface will be the sum of its emission and reftection. 

(4.4) 
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where J is called the radiosity, whose units are W/m2. Substituting for 
Ii in EqnA.3 

(4.5) 

The radiation leaving dAi is kdAi. 

The view factor between the two infinitesimal areas(based on our 
definition) is then given by 

~cosOicosOjyL4idAj 
7~1fR2 

dF. 
_ cos Oi cos OjdAj 

dA·-dA· - R2 
• J 1f 

(4.6) 

(4.7) 

This is a fundamental formula which can be used. For example if we are 
computationally very rich, each surface in an enclosure can be divided 
into thousands of surfaces and this fraction can be calculated for all the 
thousand surfaces, two at a time. Needless to say, this is computationally 
expensive and is also unimaginative, to say the least. We will see a 
little later how we can use algebra to reduce the computational effort 
associated with evaluating view factors. 

Often times, we are not interested in the view factor between elemental 
areas, but in the view factor between infinitesimal to finite area and 
then between one finite area and another. The view factor between an 
infinitesimal area dAi and finite area Aj is given by 

JidAi 
MAi J cos Oi cos OjdAj 

Aj 

MAi1fR2 

(4.8) 

(4.9) 

(4.10) 

Finally the view factor between two finite areas Ai and Aj , denoted by 
F Ai-Aj or simply Fi - j is given by 
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J J dQdAi-dAj 
Aj Ai 

FAi-Aj = F i- j = J JidAi 
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(4.11) 

Substituting for the numerator from Eq 4.5 together with the assumption 
of uniform radiosity wherein Ji can be pulled out of both the numerator 
and denominator, we have 

(4.12) 

By intuition, 

(4.13) 

Now, if we want to solve a four zone enclosure problem, first we need view 
factors. If we were to integrate and get all the view factors, evidently, 
it is going to take a lot of time. So we need to see if there are some 
clever ways of getting the view factor. This whole subfield, where we 
try to manipulate algebraically to get the view factors, with minimum 
recourse to the original formula involving integrals, is called "view 
factor algebra". If we are computationally very rich, we can write 
programs using the above formula to get the view factors, as already 
mentioned. But for simple surfaces, can we do better and use a simpler 
approach to get the view factor? From Eqs. (4.12) and (4.13), it evident 
that 

(4.14) 

Equation 4.14 is known as the reciprocal rule or reciprocal relation and 
is our first ammunition in the view factor algebra arsenal! 

4.3 View factor algebra 

Consider an enclosure of N sides. There will be N 2 view factors, 
associated with this enclosure. The view factors can be written out 
as a matrix, as given below. 
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3 2 

5 

Figure 4.5: A typical N surface enclosure (N=5) 

[ Fl1 
F12 FIN 

F21 F22 F2N 
View factor matrix = 

FNl FN2 FNN 

Is it a good idea to get the 25 view factors for this 5 sided enclosure 
using the integration method? For the ith surface, common sense tells 
us the following, 

for all i (4.15) 

This is called the summation rule.The sum has to be 1 because this 
follows energy balance. For the 5 surface enclosure under consideration, 
for the surface 1, we can write Eq. (4.15) as 

(4.16) 

For an N surface enclosure, N such rules are available. We already 
saw that AiFij=AjFji. For an N surface enclosure there are NC2 such 
reciprocal rule. 

N (N -1) 
Number of reciprocal rules=NC2 = . 2 (4.17) 
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We can exploit the summation and reciprocal rules and therefore, the 
number of independent view factors to be determined for a N surface 
enclosure is 

= N2 _ N.(N - 1} = NC2 
2 

(4.18) 

IT all the surfaces are plane or convex, the self view factors F;; = o. 
Therefore, if all the surfaces are plane or convex, then the total number 
of view factors to be independently evaluated = NC2 - N = N(N -
1} /2 - N. A key goal of view factor algebra is to determine the number 
of independent view factors which have to be evaluated necessarily by 
adopting the fundamental view factor integral. 

Example 4.1: Consider a two dimensional evacuated triangular 
enclosure with three surfaces of length a, band c. Determine all the 
view factors. 

Solution 

A 

b 

BL-------------------------~C 

a 

Figure 4.6: Triangular enclosure for example 4.1 

... Thtal number of view factors = N 2 = 9 
Sum rules = 3; reciprocal rules = 3C2 = 3; Self view factors = 3 
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View factors to be obtained independently = 9 - 9 = 0 
So there is no need to work out any view factor using the integration 
formula. Having obtained guidance from view factor algebra, we now set 
out to determine all the view factors purely by algebra. 

AreaofBC (a) =axl = a (m2 /m) 

Area of AC (b) =bxl = a (m2 /m) 

Area of AB (c) =cxl = a (m2 /m) 

Using three sum rules 

F",,+Fob+Fac = 1 

Fba + Fbb + Fbc = 1 

Fca + Fcb + Fcc = 1 

All self view factors are zero, Faa = Fbb = Fcc = O. 

.Ji1;;; + Fob + Fac = 1 

Fba + Ji1;b + Fbc = 1 

Fca+Fcb+P& = 1 

Fab+ Fac=1 

Fba +Fbc = 1 

Fca+ Fcb=l 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

Multiplying the first equation by a, the second by b and the third by c, 

aFa,b + aFac = a 

bFba + bFbc = b 

cFca + cFcb = c 

(4.28) 

(4.29) 

(4.30) 

Now we add Eqs. 4.28 and 4.29, subtract 4.30 from the sum, followed 
by an application of the reciprocal rule and upon doing this we get the 
following 

2aFab=a+b-c (4.31) 

[To make things more explicit, while doing the above manipulation, we 
have used the following relations aFab = bFba, aFac = cFca and bFbc = 
CFcbJ 

a+b-c Fab = ............................ . 
2a 

(4.32) 
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For checking if this result is correct, consider an equilateral triangle. All 
view factors are 0.5 which is intuitively apparent. 

Example 4.2: Consider a two dimensional V-groove or wedge with 
surfaces 1 and 2 as shown, and whose interior angle is "'. Determine 
F12 • 

1 

L 

2 

I~ L ~I 

Figure 4.7: Wedge type enclosure (example 4.2) 

Solution 
Since we are using enclosure theory, the first step is to mark a dotted 
line and close this, making the wedge or groove an enclosure. 

We determine the length of side 3 using the sine function. 
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Length of side 3 = 2 x Lsin(a/2) 

F12 
L 1 +L2 -L3 

2L1 

F12 
L + L - 2Lsin(a/2) 

2L 

F12 = 
2L - 2Lsin(a/2) 

2L 

F12 = 
,%"(1 - sin(a/2)) 

.%" 

As an engineer, how will we validate this result? 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

If a = 1800
, the wedge will open completely. Then the two sides do not 

see each other and there is no interaction between them. Therefore 

... L sin(aJ2) 
• 
\3 • 

\ L sin(aJ2) 

~:;::;:J~~rl\ 
2. 

L 

Figure 4.8: View factors in a wedge (example 4.2) 

sin(a/2) 

F12 

sin(90) = 1 

1 - sin(a/2) = 0 

(4.37) 

(4.38) 

Equation (4.38) is consistent with our common sense understanding of 
the situation. 
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Example 4.3: Consider two concentric pipes where the inner pipe is 
carrying a fluid. The radius of the inner pipe is Tl while that of the 
outer pipe is r2. The pipes are infinitely deep, perpendicular to the cross 
section. Do not consider the radiation from the outer side of the external 
pipe and the inner side of the inner pipe. For this cylindrical duct, get 
all the view factors. Assume that there is vacuum between the two pipes. 

Figure 4.9: View factors in a concentric pipe enclosure (Example 4.3) 

Solution: 
The view factor matrix will be 

(4.39) 

Fll = 0 (4.40) 

(because surface 1 is a convex surface and so the self view factor is 0) 

Concentric cylinders: 

F12 = 1 

AIF12 = A2F21 

F21 = AdA2 

F22 = l-AdA2 

F21 = rdr2 

F22 = l-rdr2 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 
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View factor matrix is given by 

For concentric spheres, the above can be extended as follows: 

View factor matrix is given by 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

Getting back to the example, in practical applications, this is one 
way of insulation and is used in transporting liquid nitrogen and 
oxygen over large distances. The temperature of the liquid will be 
150K and the outside may be 300K. There will be a heat leak 
causing the liquid nitrogen to vaporize. So we have a small vent 
to allow it to escape. we can work out the rate of vaporization 
of this and if we know the transportation time, we can calculate 
the amount of liquid nitrogen that will be left at the receiving end. 

Example 4.4: Consider a two dimensional quadrilateml enclosure as 
shown in Fig. 4.10. Determine Fac. 

b 

d 

c 

Figure 4.lO: Quadrilateral enclosure (example 4.4) 
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Solution 
Thtal number of view factors = 42 = 16 
Sum rules = 4 
Reciprocal rules = 402 = 6 
Self view factors = 4 

129 

Number of view factors to be independently determined = 16 - 14 = 2 
(Fac and Fhd) 
If Fac is obtained, we can use the same formula for Fhd. 
The first step is to complete the two diagonals Ll and L2 

d 

••• 
•• •• •• L .. , 

•• 
•••• • •• 

..... "ItIt • 
•• ••• •• • ••• 

•• 

••••••••••••• 

•• 

•• • •• ••• Ll ••••• .. . ..... 
•• • ••• • •• ••• • •••• 

c 

b 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

Figure 4.11: Depiction of the Hottel's crossed string method for a 
quadrilateral enclosure 
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Substituting for F ab and Fad in Eq. 4.52 

Fac = 1 _ (a + d - L1 ) + (a + d - L2 ) 

2a 

Fac = 1 _ 2a + b + d - (L1 + L2 ) 

2a 

Fac = (L1 + L2 ) - (b + d) 
2a 

(4.55) 

(4.56) 

(4.57) 

This is called the Hottel's Crossed String method. This is because if 
we look at the formula, we find that the view factor between surfaces a 
and c is the sum of the crossed strings (L1 + L2 ) minus the sum of the 
uncrossed strings (b + d) divided by two times the line segment a. 

:. Fac = (sum of the crossed strings - sum of the uncrossed strings)j2a 

This is a very powerful expression for two dimensional enclosures, which 
can be used for any geometry. 

Example 4.5: Consider a two dimensional regular pentagonal duct as 
shown in Fig. 4.12. Determine F12 • 

a 

e b 

Figure 4.12: Pentagonal duct (Example 4.5) 



4.3. View factor algebra 131 

Solution 
Exterior angle = 3600 /n = 3600 /5 = 720 

So the interior angle is 1080
• Let us draw the diagonals as shown in Fig. 

4.13. 

a .. .. 
• • • • • • • • • • • • • • :.... b 

• • • • • • .. . ... -. . .. '. ~ : ... ~ 
• •• • . - . . ' ...... . 

: ... ~ -.. 

Figure 4.13: Pentagonal duct with depiction of cross string method 
(Example 4.5) 

Using Hottel's Crossed string method 

[ad+ce- (ac+de)] 
2ae 

L/2 
ad - -72 = 1.618L 

cos 
2 X 1.618L - (L + 1.618L) 

2L = 0.309 

(4.58) 

(4.59) 

(4.60) 
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Example 4.6: Consider an infinitely deep semi circular disc of mdius 
r and unit depth together with the base. Get all the view factors for this 
geometry. 

1 

Figure 4.14: Semi-circular disk (Example 4.6) 

Solution: 

Fn = D;F12 = 1 

Fn +F12 = 1 

AIF12 = A2F21 

2TX1=1I"TXF21 

2 
F21 =-

11" 

F22=1-F21 

2 
F22=1--

11" 

... The view factor matrix is 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

(4.66) 
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Example 4.7: 

2 

• •••••••• p •••••••• .. . .. 
~~~ : ", 

.. . .. 1 
.~. ,. 
' .. ' • • 

Figure 4.15: Problem geometry for example 4.7 
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For the given configumtion (see Fig.4.15) with unit depth, get all the 
view factors 

Solution 

Fu = 0; F12 = 1 

Fu +F12 = 1 

AIF12 = A2F21 

3 311'T 
2T xl = 211'T X 4: X F21 = TF21 

4 
F21 = -

311' 
1 

F22 =I- r 
411' 

... The view factor matrix is 

(4.67) 

(4.68) 

(4.69) 

(4.70) 

(4.71) 
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4.4 View factors from direct integration 

Exrunple 4.8: Determine the view factor Fdl-2 between a differential 
area (dA1)and a finite disk of mdius ro at a height H. 

H 

Figure 4.16: View factor between a differential area and a disk of finite 
area 

Solution: 

J cos (}i cos (}jdA2 
FdAI-A2 or Fdl-2 = 7rR2 (4.72) 

A2 

We have to convert the problem into one in which the variable is r, which 
can take a value between 0 and r o. Therefore, first, we have to take an 
infinitesimally small area on the disc, take a thickness of dr so that the 
area will be 27rrdr. The area dA2 , can be replaced by 27rrdr. Then if it 
is at a radius r, from fundamental trigonometric principles, we can find 
out what R is, {Please note that R i- H). Then the two terms cos (}i and 
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cos OJ also have to be represented in terms of known quantities. After all 
this, the integration can be done easily. 

O. = OJ = 0 

R2=r2+H2 
cosO = H/R 
dA2 = 27frdr 

Substituting for cos e, Rand dA2 in the integral, 
TO 

J H22;&dr 
Fdl-2 = R2 ;:;(R2 

o 

TO 

2JrdT 
Fdl-2 = 2H R4 

o 

Let, 1'2 + H2 = y, 2rdr = dy 

Limits, 'I' = O,y = H2;r = To,Y = H2 +r5,dr = ~~ 

Fdl-2 = H2 (H2-~ '1'5 + ~2) 

Fdl-2 =~(7;;+~~;j) 
Fdl-2 = (H2

ri rfi) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

(4.83) 

(4.84) 

(4.85) 

(4.86) 

(4.87) 
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What is the physical interpretation of the solution to this problem? 
When H is infinite, F = O. If ro/H « 1, we can reduc.e the expression 

2 
to Fdl- 2 = if, and it confirms that the view factor varies as the inverse 
of the square of the distance between the two. 

Please remember that since one area was infinitesimal, the integration 
was not only possible but was also straightforward. If both are finite 
areas and one is not a disc, the resulting mathematics would be very 
tedious. Many groups of people in the world in the 19608 - 19808 
worked on developing view factor relations and solving these integrais, 
which was considered a very important activity. The view factors are 
repeatedly used in radiosity calculations and multi-mode heat transfer 
problems. View factors are also onc of the reasons why double precision 
was required.We need view factors up to the seventh or eighth decimal 
accuracy, as, if we have a hundred thousand view factors, we cannot 
round off each to the second or third decimal. When we are doing 
a convective solver or convection and radiation together, such an 
approximation will lead to a lot of errors. 

But now, with computational resources becoming more powerful and 
more programs being available, this activity of research is not so 
prominent these days. These are mostly considered well settled problems. 

So far, we have restricted our working to two dimensional surfaces. But 
most of the surfaces in reality are three dimensional surfaces and the 
view factors cannot be got by just algebra. People have developed 
elaborate techniques for this, of which one of the most important is 
contour integration. If we look at dAl and dA2 we see that they can 
be written as dAI = dx1dYI and dA2 = dX2dY2. 

Therefore, 4 integrations are involved. Elemental strips on Al and A2 
are considered, cos 0; and cos OJ are determined and four integrations are 
performed. These are available in the form of charts and Tables. These 
are given in Figs.4.17-4.20 for three commonly encountered geometries. 
We will now solve a few problems using these charts. 
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Figure 4.17: View factor for aligned parallel rectangles 
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Figure 4.18: View factor for perpendicular rectangles with a common 
edge 
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Figure 4.19: View factor for coaxial parallel disks 
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Figure 4.20: View factors for a few frequently encountered three 
dimensional geometries 
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Example 4.9: Consider two perpendicular rectangles as shown in the 
Fig. 4.21. Determine the view factor Fl - 2 . 

1m 

1m 

4m 

Figure 4.21: Problem geometry (Example 4.9) 

Solution: 
Let us learn about the decomposition rille first. It says that 

(4.88) 

Equation 4.88 is a consequence of simple energy balance. Whatever 
radiation is originating from 2 and is falling on the combined area (13) 
must be equal to the sum of that originating from 2 and falling on 1 and 
3 individually. We know that 

(4.89) 

Further 

(4.90) 

and 

(4.91) 
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Substituting for the above in Eqn.(4.88), we get 

A 13F 13-2 _ Al F A3 P. 
A2 - A2 12 + A2 32 

From Eq 4.125 it is clear that 

Getting back to the problem under consideration 

z/x = 0.67; 

y/x = 4/3 = 1.333 

F2- 13 = 0.14 (from the chart) 

F2-3 = 0.07 (from the chart z/x = 0.33;y/x = 4/3 = 1.333) 

:. 3 x F12 

and so F12 

F2-1 + 0.07 

0.07 

A2F21 

12 x 0.07 

0.28 
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(4.92) 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.99) 
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Example 4.10: In the figure given below (Fig 4.22) get Fl - 8 

2 

4 3 

Figure 4.22: Problem geometry (Example 4.10) 

Solution: 

We have to use the law called "law of corresponding corners", according 
to which FlB = F27 

Al234Fl234-567B = AlFl-5678 + A2F2-5678 + A3F3-5678 + ~F4-5678 
(4.100) 

Al234Fl234-5678 = Al2Fl2-5678 + A34F34-5678 

Al234Fl234-5678 - A34F34-5678 = Al2Fl2-5678 

A l2F l2-5678 = A l F l-5678 + A 2F 2-5678 

Fl-5678 = Fl-567 + Fl-8 

F2-5678 = F2-568 + Fl-8 

But Fl-8 = F2-7 

(4.101) 

(4.102) 

(4.103) 

(4.104) 

(4.105) 

(4.106) 
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F12-5678 = 2.A1F l - 8 + A12F12-56 + A 1F l - 7 + A2F2- 8 

A 1234F 1234-56 = A12 F12-56 + A34F a4-56 

A1234F1234-56 - A34F34-56 = A 12F 12-56 

A14F 14-57 = A14H4-5 + A14F 14-7 

A14F14-57 - A14F14-5 = A1Fl-7 + A4F4-7 

A14F14-57 - A14F14-5 - A4F4-7 = A 1F l - 7 

~F4-7 + A4F4-5 = ~F4-57 
~F4-7 = ~F4-57 - A4F4-5 

A23F23-68 = A 2F 2- 68 + A aF 3- 68 

A 23F 23-68 = A 23F 23-6 + A 23F 23-8 

A 23F 23-68 - A 23F 23-6 = A 2aF 23-8 

A23F23-68 - A2aF23-6 = A2F2-8 + A aF 3-8 

A aF 3-68 = A 3F:1-6 + A 3 F:1-8 

A 3F:1-68 - A3F3-6 = AaFa-8 

A 2F 2- 8 = A2aF23-68 - A2aF23-6 - A 3F 3- 68 + A aF 3- 6 

A 1F l - 7 = A14F14-57 - A14F14-5 - ~F4-57 + A4F4-5 

1 
Fl-8 = ······A········ (A12F 12-S678 - A 12F 12-56 - A 1F l-7 - A2F2-8) 

2. 1 

1 
F l - 8 = 2.Al (A1234F 1234-5678 - A34F 34-5678 - A 1234F 1234-56 
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(4.107) 

(4.108) 

(4.109) 

(4.110) 

(4.111) 
(4.112) 
(4.113) 

(4.114) 

(4.115) 
(4.116) 

(4.117) 

(4.118) 

(4.119) 

(4.120) 

(4.121) 

(4.122) 

(4.123) 

+A34F 34-56 - A14F14-57 + A 14F 14-5 + ~F4-57 - A4F 4-5 

-A23F23-68 + A23F23-6 + AaF3-68 - A3Fa-6) (4.124) 
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Example 4.11: For the geometry given in Fig 4.23 determine Fl4 

1 

3 

2 

4 

Figure 4.23: Problem geometry (Example 4.11) 

Solution: 
We know that 

(4.125) 

(4.126) 

Further, A I F I - 24 = A I F I - 2 + A I F I - 4 (decomposition rule) (4.127) 

Substituting Eq. (4.126) in Eq. (4.125), 

A13F13-24 - A3F3- 24 = A I F I - 2 + A I F I -4 

1 
F I - 4 = Al (AI3FI3-24 - A3F3-24 - A I F I - 2) 

A13F13-2 = A I F I - 2 + A3F3- 2 

A13F13-2 - A3F3- 2 = A I F I - 2 

Al3 = Al +A3 

Substituting Eq. (4.131) in Eq. (4.129), 

1 
FI-4 = Al (AI3F I3-24 - A3F3-24 - A 13F 13-2 + A3F3-2) 

(4.128) 

(4.129) 

(4.130) 

(4.131) 

(4.132) 

(4.133) 
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Example 4.12: Consider the configumtion shown in Fig. 4.24. Two 
pamllel rectangles with a common edge, are further subdivided into 2 
rectangles each, so that we have 4 areas Al, A2, Aa and A4. Determine 
the view factor F12. 

4cm 

4 2 

Figure 4.24: Problem geometry(Example 4.12) 
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Solution: 

Al = 5 x 1.5 = 7.5m2 

A4 = 7.5m2 

A3 = 5 x 3.5 = 17.5m2 

A2 = 17.5m2 

Ala = 25m2; A24 = 25m2 

F 13-24(can be obtained from the chart) = 0.2 = F24-13; 
y/x = 1;z/x = 1 
F14(from the chart) = 0.12 = F41 (y/x = 3.33; z/x = 3.33) 
F23 (from the chart) = 0.17 = F32 
(y/x = 53.5 = 1.428; z/x = 53.5 = 1.428) 

(4.134) 

(4.135) 

(4.136) 

(4.137) 

(4.138) 

Now, we have to use the reciprocal rule and decomposition rule and 
manipulate them algebraically to get the remaining view factors. 

From Eq. (4.141) 

F2- 13 = F2- 1 + F2- 3 

F13- 24 = F13- 2 + F13-4 

0.2 = F13- 2 + F13-4 

F2- 13 = F2- 1 + 0.17 

A 2F2- 13 = A13F13-2 

17.5F2- 13 = 25F13- 2 

F13- 2 = 0.7F2- 13 

F4-13 = F4-1 + F4-3 

~F4-13 = A 13F13-4 

7.5F4-13 = 25F13-4 

F13-4 = 0.3F4-13 

Substituting for F13-4 and F13-2 into Eq. (4.141), 

0.2 = 0.7(F2- 1 + 0.17) + 0.3(0.12 + F4-3) 

But, F3- 4 = F2- 1 by the law of corresponding corners. 

(4.139) 

(4.140) 

(4.141) 

(4.142) 

(4.143) 

(4.144) 

(4.145) 

(4.146) 

(4.147) 

(4.148) 

(4.149) 

(4.150) 
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On simplifying, we get 

0.0415 = 0.7F2_1 + 0.3F12 

A1F12 = A2F21 

17.5F12 = 7.5F2_1 

F21 = 0.428F12 

0.0415 = 0.7 x 0.428F12 + 0.3F12 

0.0415 = 0.5996F12 

F12 = 0.07 
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(4.151) 

(4.152) 

(4.153) 

(4.154) 

(4.155) 

(4.156) 

(4.157) 

Because of errors associated with reading the charts, the final result may 
vary from 0.06-0.08. Furthermore, the error will be more when the view 
factor is much smaller. 

Example 4.13: An enclosure is in the shape of the frustum of a cone. 
The dimensions of the enclosure are given in the Fig.4.25. Determine 
all the view factors. 

3m 

Figure 4.25: Problem geometry(Example 4.13) 
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Solution: 

If an enclosure problem is given, it is always a good idea to state the 
number of view factors to be determined, the number of sum rules, 
reciprocal rules, self view factors and then find out how many view 
factors have to be independently determined. By this, we will get an 
idea of whether we have to use the charts or by manipulation alone, the 
problem of view factor determination can be solved. 
Total number of view factors = N2 = 9 

Sum rules = 3 
Reciprocal rules = 3 
Self view factors = 2 
Total = 8 
So only one view factor (FI2) has to be independently determined and 
this can be got from the chart. 
ri = 2.25m ; rj = 1.5m ; L = 5m; L/r;= 2.22 and rj/L = 0.33 

From the chart (Fig 4.19),F12 = 0.07 

From the sum rule for surface 1 

Fll+F12+F13=1 

Also FH = 0 

F I3 = 1 - 0.07 = 0.93 

AIF12 = A2F21 

F21 = (All A2 )F12 

= (r1/r2)2 F12 

= 0.157 

From the sum rule for surface 2 

F21+F22+F23=1 

F22 = 0; 

:. F23 = 1 - F21 = 0.843 

A1F1S = AsF31 

A2F23 = AaF32 

To determine A3 , we have to take recourse to basic geometry. 

(4.158) 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

(4.163) 

(4.164) 

(4.165) 

(4.166) 

(4.167) 

(4.168) 
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x 

5 

Figure 4.26: Use of similar triangles principle in example 4.13 

From law of similarity of triangles, 

x 
1.5 

x 

x+5 
2.25 

10 

Surface area of the cone = 1fT L , where L-slant length 

Ll = v'225 + 5.0625 = I5.16m 

L2 = v'100 + 2.25 = 1O.1m 

Surface area of the frustum A3 = 1f(rlLl - T2L2) = 59.6m2 

Substituting this in Eq. (4.167), we get 

A 1F13 = A3F31 

15.9 X 0.93 = 59.6 X Fa1 

F31 = 0.248 = 0.25 

(4.169) 

(4.170) 

(4.171) 

(4.172) 

(4.173) 

(4. 174} 

(4. 175} 
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7.06 X 0.843 = 59.6 X F32 

F32 = 0.10 

F33 = 1 - (F31 + F32) = 0.65 

:. The final view factor matrix for the above configuration is 

[0.~57 0.25 

0.07 
o 

0.10 

0.93 ] 
0.843 
0.65 

(4.176) 

(4.177) 

(4.178) 

The above problem involved only a 3 X 3 matrix and so, we are able 
to solve it by hand. If we encounter a 10 x 10 or a 20 x 20 matrix 
(meaning a 10 or 20 surface enclosure), we will need to write a computer 
program to deterntine the view factor matrix and store it once and for 
all. When the temperatures are dynantically updated, this matrix will 
not change as it depends only on the geometry. However, if we have a 
problem, where the surfaces are also changing and the dimensions are 
also changing, which can happen if we have an ablating surface like in the 
case of a re-entry vehicle entering the earth's atmosphere, where a few 
millimeters of the surface may sublimate because of heat, the geometry 
itself will change and geometry linked view factor updation should be 
done in such a case. 

So far, we have developed the background to do the radiation analysis. 
If there is an n-surface enclosure, how do we find out the net radiation 
heat transfer between the various surfaces? We will answer this question 
in the ensuing sections. 

4.5 Enclosure analysis 

There are several ways of solving problems involving radiation from 
multiple surfaces. In undergraduate courses, we would have done 
something called network analysis, in which the radiation resistance will 
be drawn and using series and parallel combinations, the analogy to 
electrical resistance will be used to solve the problem. The major lacuna 
with the network analysis method is that as the number of surfaces 
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increases, it becomes increasingly messy to handle all the resistances. So 
in this course, we will not use the network analysis method at all but 
will instead use the radiosity irradiation method, which can be applied 
from a one surface enclosure to that with any number of surfaces. 

4.5.1 Radiosity-Irradiation method 

As already mentioned, the credit for the development of this method 
goes to Professor E.M.Sparrow and his colleagues at the University of 
Minnesota at Minneapolis. The method is eminently programmable on 
the computer. It blends itself easily with CFD calculations. So for 
combined heat transfer problems, this method is very good. Before 
getting into the actual method, we have to flesh out certaln definitions. 

Consider irradiation G; falling on a surface that has a hemispherical 
total emissivity of Ci which is maintained at a temperature Ti . A 
certain portion of the incident radiation is reflected, given by piG; and 
the absorbed radiation is given by CY.iGi. Because the surface is at a 
temperature above OK, it also emits radiation given by cwTt 

Figure 4.27: Depiction of V'd.fious radiation processes on a surface 

Now, radiosity or the leaving flux or the leaving radiation J;(W/m2 ) is 
given by. 

(4.179) 

The incoming radiation is given by Gi. We are using the subscript i 
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because the expression can be for any surface in an enclosure. 

The net radiation heat transfer from i, given by qi is 

qi = Ji - Gi 

For an opaque surface, transmission Ti = 0 

ai+p,+Ti 

.". Pi 

Substituting for Pi in Eqn.(4.179), we get 

1 

1- ai 

(4.180) 

(4.181) 

(4.182) 

Ji = E:WTi4 + (1 - ai)Gi (4.183) 

This is the radiosity relation for the ith surface of the enclosure. For a 
gray diffuse surf~e, 

ai = ei (4.184) 

.". Ji = EwT;4 + (1 - ci)Gi (4.185) 

In EqnA.185, the first term represents the contribution from emission 
while the second is the contribution from reflection. It is easy to see that 
when C; = 1, Ji = aT;4 

If we want to calculate the radiosity from a particular surface, we need to 
know the emissivity, the temperature and the irradiation falling on that 
surf~e. If the irradiation is because of radiation from several surf~es, we 
need to worry about the radiosity of these several surfaces. That is what 
the enclosure analysis is all about. But we are now in the preliminary 
stage and are trying to get an Hxpression for the net radiation heat 
transfer, so that we can use it eventually in the enclosure analysis. 

For an itk surf~e of an enclosure, 

qi = Ji - Gi = eWT,4 + Gi - eiG, - Gi 

qi = ci(aTi
4 - Gi) 

(4.186) 

(4.187) 

So, if we are able to find just the irradiation on all the surfaces, we have 
solved the problem. But it is not so easy to calculate the irradiation on 
a surface because the irradiation on a surface is because of the radiosity 
originating from other surfaces together with the geometric orientation 
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accounted for. So, we must simultaneously solve either for the radiosities 
or for the irradiations. Working further on Eq. 4.186 

qi = Ji - Gi 

But from Eq. 4.183 G. _ Ji - c,crTl 
• - (1 - ei) 

Substituting for Gi in Eq. 4.189 we have 

_ Ji -E:wT{ q. J. - .................................. . 
• -, (1 - e,) 

qi = 
.Ii - eiJi -.Ii + eWT{ 

(1 - e,) 

e, [I7T,4 - Ji] 
qi = 

(1 - ei) 

(4.188) 

(4.189) 

(4.190) 

(4.191) 

(4.192) 

(4.193) 

What is the difference between Eq. (4.187) and Eq. (4.193)7 Both 
are expressions for heat flux and are correct! While Eq. (4.187) is in 
terms of irradiation, Eq. (4.193) is in terms of radiosity. Our original 
one (Eq.4.189)is in terms of both radiosity and irradiation. If we are 
evaluating the radiosity and irradiation for thousands of elements, there 
is no point in simultaneously storing both radiosity and irradiation. 
Information of radiosity can be obtained from irradiation and vice versa. 
Therefore, it makes sense to store only one of the two quantities. Some 
people use just the irradiation method where they will solve for Gi'S 
alone. Some people use the radiosity method, where they solve for Ji's. 

One word of caution. Can Eq. 4.193 be applied in all situations? No, 
it cannot be applied to black bodies as it has a singularity and the 
denominator becomes O. When writing programs, we make ei for 
the black body as 0.995 or something close it and use it. Else we 
avoid Eq. 4.193 and instead use other expressions derived above for 
determining the net radiation heat traJIBfer from a surface. 

4.5.2 Re-radiating surface 

A re-radiating surface is the radiation equivalent of an insulator. In an 
insulator, q = 0, where q can be q-conduction or q-convection. If q
radiation= 0, then it is called a re-radiating surface. 
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How do we make this? Take a surface and insulate it heavily on the 
back side so that no conduction heat transfer takes place and prevent all 
possible opportunities for heat transfer to take place. When we do that, 
whatever radiation is impinging on it must go out. For such a surface 

J; = Gi 

0i [u1j4 - Ji] 
qi = 0 = (1 _ oi) 

. J·_~T4 
•• 1. - v i 

(4.194) 

(4.195) 

(4.196) 

It is a remarkable result because the radiosity of a re-radiating surface 
is independent of the emissivity and it will come to an equilibrium 
temperature of T; depending on whatever irradiation it receives from 
the neighbouring bodies. This u1j4 is also equal to Gi . The re-radiating 
surface temperature is decided by its neighbours. Consider a 3 surface 
enclosure, where one surface is a hot surface, as in a heat treatment 
furnace, surface 2 houses the object to be heat treated and surface 3 is 
the intermediate surface which acts as the mediator. In this case surface 
3 takes the heat from the hot surface and passes it on to the other 
surfaces and will come to a temperature which is in between these two. 
Such re-radiating surfaces are frequently used in furnaces, eombustion 
chambers and enclosures. 

In passing, it is instructive to mention that for both a black surface 
and a re-radiating surface .Ii = uT{. However, the latter has one more 
qualification. For a re-radiating surface J; = Gi so that q; = O. A simple, 
black surface need not satisfy the above condition. 

Consider an N surface enclosure as given in Fig 4.28. Each of these 
surfaces is charad;erized by a hemispherical spectral emissivity and 
temperature. All of these are gray, diffuse surfaces. The total radiation 
leaving the ith surface is 

A;J; = c;A;O"T{ + p;{Incident) 

A;J; = c;A;aT{ + (1 - c;)(Incident) 

(4.197) 

(4.198) 

What is this "Incident radiation"in the above two equations? It is 
intuitive that this "Incident radiation" should be 
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Figure 4.28: Radiosity method for a N surface enclosure 

"Incident" 

N 

= AIFnJl + A2F21 J2 + AaF31 J3 + ..... ANFN;JN = LAjFj;Jj 
j~l 

Substituting for "Incident" in Eq 4.198 

N 

A;Ji = A;CWTi4 + (1- <Oi) LAjFijJj 
j~1 

But AjFj; = Ail'ij(reciprocal rule) 
N 

. ,vJ. = ,ve·"T4 + ~(1 - e·) '" PI . . Pi'" Pil" t .J"1il " ~ 2" J 
j~l 

N 

HoweverA.Gi = LAjFj;Jj 
j~1 

N 

.KG; = foL Fj;Jj 
;=1 

N 

: .Gi = L Fj;Jj 

j=1 

(4.199) 

(4.200) 

(4.201) 

(4.202) 

(4.203) 

(4.204) 

(4.205) 
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Substituting in Eq. 4.202, we get 

(4.206) 

Therefore, if we want to solve for the radiosity in an N surface enclosure 
problem, the first part is the emission part. Here, the Stefan Boltzmann's 
law is at work, which is 6WT4, for which we need to know the 
hemispherical spectral emissivity. We need to exploit the Kirchhoff's 
law and the fact that the surface under consideration is an opaque, gray 
and diffuse surface, for which p = 1 - a and 1 - a can be written as 
1-6. So our knowledge of radiative properties is being used here. When 
we write FijJj , the view factors come into effect. So, all that we have 
studied thus far is incorporated in one single equation (Eq.4.206), as seen 
above. 

In an N surface enclosure, there are N such radiosity relations. If 
there are N equations and N unknowns, they can be easily solved 
simultaneously and we can get all the radiosities. Once we get all the 
radiosities, we can straightaway use the formula for the net radiative 
heat transfer from any surface in terms of radiosity. Otherwise, if it is 
only 3 surfaces, if we have the time and the patience, we can individually 
evaluate GI , G2 and G3 for the 3 surfaces. We can then get (J-G) for 
the 3 surfaces, and hence the heat fluxes. 

Essentially, we have solved the problem of radiative heat transfer in an 
enclosure where there is no conduction and convection. If these two 
are present, we will write the additional energy equations and solve. 
But what we have described above will continue to be the radiation 
portion of the solver. However, here the enclosure is evacuated or filled 
with a medium which is not participating in the radiation. This is 
the enclosure theory developed by Prof. Sparrow and his colleagues. 
For up to 3 or maximum 4 surfaces, we can solve this using hand 
calculations. If the number of surfaces in the enclosure exceeds 4, 
we have to use the computer. Since it is a system of simultaneous 
equations, it is eminently solvable by the iterative Gauss-Seidel method. 
We don't have to invert. We usually start with some assumption like 
JI = J2 = J3 = J4 = 1000W/m2. 

Example 4.14: Consider a fiat plate with an emissivity (6), and 
maintained at a temperature Ti. It is placed in large surroundings at 
Too. The bottom of the plate is insulated. Using the radiosity-irradiation 
method, determine the net radiation heat transfer from the plate. 
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........ - ......... 

" • • 

Figure 4.29: A simple two surface enclosure problem 

Solution 

First, we enclose the plate with an imaginary hemispherical basket at 
Too for which c = 1 and call this as surface 2. Now, we have an enclosure 
in hand. 

View factor matrix for the two surface enclosures = [ ~ 

J1 = f:WT]4 + (1 - eJ)(FllJ1 + F12 J2 ) 

J2 = eaT~ + (1 - e2)(F21Jl + F22J2) 

J2 = 1 x aT! + 0 X (F2!Jl + F22h) 

J2=a~ 

(4.207) 

(4.208) 

(4.209) 

(4.210) 

Now do we understand why we don't have to determine F21 and F22? 

Whenever we have surroundings like this where e = 1, there is no need 
to waste time calculating those view factors. 

J! = E:WT[ + (1 - 01)(0 + 1 x J2) 

J! = claTt + (1 - e1)J2 

(4.211) 

(4.212) 
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Substituting for h, 

Jl = ewTt + (1 - eIlaT!, 
G1 = ftfJJI + Pr2J2 = aT!, 
ql = Jl- Gl 

ql = ewTt + ~ - ewT! -~ 
ql = ew(Tt - T!) 

(4.213) 

(4.214) 

(4.215) 

(4.216) 

(4.217) 

This is one of the most used and abused formula in heat transfer. Now, 
having gone through this course, we must be aware of the limiting 
conditions under which formula is valid. 

1. Single plate at a uniform temperature 

2. Plate has uniform radiosity 

3. Plate is characterized by one hemispherical spectral emissivity 

4. Surroundings are at constant temperature 

5. There is no irradiation from any other object 

6. There is no other object in the vicinity 

Looking at the formula, it must now be clear under which situations 
this formula can be used and in which ones, its use is incorrect. 

Example 4.15: Consider two parallel plates as shown in Fig 4.90. 
They are infinitely deep in the top and bottom directions and =tend 
infinitely in the direction perpendicular to the plane of the board. There 
is vacuum between the plates. The infinite extent is to basically help 
figure out that Fi2 = 1. Find out the net radiation he-at tmnBjer between 
the two surfaces using enclosure theory. 

Solution: 

. . [Fll F12] [01] VIew factor matrIX = F21 F22 = 1 0 
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1 2 

Figure 4.30: Parallel plate geometry (Example 4.15) 

By inspection, 

Jl = cwTt + (1 - cl)J2 (4.218) 

J2 = c2uTi + (1 - c2)Jl (4.219) 

J l = cwTt + (1- cd [c2U~ + (1- c2)J1] 

(cluTt + c2~ - clc2uTt) 
h = ~'-'[1~---c(~1---c--"l)'-(1;---c-2") l~ 

ql = Jl- Gl 

Gl = FuJl + Fl2h 

G1 = 0+J2 = J2 

ql = J1 - J2 

(4.220) 

(4.221) 

(4.222) 

(4.223) 

(4.224) 

(4.225) 

(4.226) 

(4.227) 
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01020" [Tf - Ttl 
q1 = 

[1 - 1 + 01 + 02 - 0102] 
(4.228) 

0" [Tf - Ttl 
q1=[11 1 .. +.,-1 

(4.229) 

This is called the "Parallel plate formula" which is a very powerful 
formula in radiation. Let us now look at the asymptotic corre(.-tness of 
the result. What we mean by this is that when we apply the result 
to an extreme case, it should work. Let us check this out for this 
problem. Suppose surface 2 were to be the surroundings at To,,, then 
E2 = 1 and 1, = 1, T2 = Too. Hence the formula for q would reduce 
to q = E:w(Tt - T!) which is the result for net radiation heat transfer 
from a single surface, a formula we derived a little while ago. Therefore, 
for the asymptotic limit of the second surface being the ambient, this 
formula works. 

If we have 2 parallel plates and even though we do not have convection 
between them, if the temperature difference between the 2 plates is 
sufficiently large, high radiation heat transfer between them is inevitable. 
But many times we want to avoid this radiation heat transfer between 
them and just because there is vacuum between the plates, it does not 
mean that we have solved the problem. If both the surfaces have good 
emissivity and have a good temperature difference, the radiation heat 
transfer will not be insignificant. Therefore, the challenge is now to come 
up with some method by which we reduce the radiation heat transfer 
between the 2 surfaces. One possibility is to insert a thin film and we 
try to find out what the heat transfer will be when such a shield is 
inserted between the 2 plates. Once we derive the heat transfer with one 
such shield, by induction, we can find out what the heat transfer will be 
if there are 2 shields, 3 shields or n such shields. 

Example 4.16: Consider two infinitely long parallel plates that are at 
temperatures T1 and T2 respectively with hemispherical total emissivities 
1"1 and 102. The intervening space is evacuated. The radiative heat 
transfer has already been derived for such a case. NO'IJ.J we insert a 
radiation shield that has emissivity 103 on both the sides. We have to 
say both sides because emissivity is a surface property and by having 
different coatings on both sides, we can have 2 different emissivities also. 
The whole shield may be at one temperature but the two sides may have 
different emissivities. Let the temperature of the shield be T3. Steady 
state prevails in the system. Radiation heat transfer is taking place as 
shown. Come up with a mathematical expression for q with the shield. 
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1 2 

E TEE E2,T2 l' 1 3 3 

.......................... ..... ~ 

~ 
Radiation shield 

Figure 4.31: Radiation between parallel plates in the presence of a 
shield 

Solution: 

With the shield 

q13 = 
(T [Tf - Ttl 

(4.230) 
[e1

, + e13 -1] 

q32 = 
(T [71 - Ttl 

(4.231) [l+l_l] 
t"a t"2 

Under steady state, q13 = q32 = q12,shield 

Q12,shield = (4.232) 

(4.233) 
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We do not know T3 at this point in time as it is the equilibrium 
temperature. Instead of putting in thermocouples and determining 
T3 , let us try and eliminate T3 . If ~ = ~ then this is also equal 
to ~t~ = ~ = ~ (Dividendo componendo rule). Using this rule, 

ql2,shield 
_ u[Tt-y(+y(-Ti] 
- [1 + 1 + 2 -2] 

el E2 Eg 

Ql2,shield 
u[Tt-TiJ 

If cl = c2 = c3 = c, then 

Ql2,shield 

If there were no shield and if Cl = C2 = c, then from Eq 4.229 

Ql2,noshield 

.'. Q12,shield 
_ Q12,noshield 
- 2 

If n such shields are inserted, it is intuitively clear that 

Q12,noshield 
Q12,shield = n + 1 

( 4.234) 

( 4.235) 

(4.236) 

(4.237) 

( 4.238) 

( 4.239) 

Therefore, it is possible to insulate surfaces radiatively by employing 
n number of shields. Just because we have vacuum, it does not mean 
that we have insulated the plates, it is just that we have removed the 
convection. Radiation still will be present. But if we have evacuated 
the surfaces and have n shields placed in between, the radiation can 
be substantially reduced. Sometimes this is also referred to as a super 
insulation. It is apparent that the position of the sheet does not actually 
matter. 

In the above example, while the heat transfer rate is easy to determine, if 
we want to know if the radiation sheet that is introduced can withstand 
some temperature, it is imperative to evaluate T3 . This has to be 
evaluated as a post processed quantity and we used to see whether it 
is within limits of the material of the shield. 
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Exrunple 4.17: Determine the steady state temperatures of 2 radiation 
shields placed in the evacuated space between two infinite plates at 
temperatures 600K and 300K respectively. All the surfaces are gray and 
diffuse with emissivities of 0.85. 

Solution: 

£,=0.85 

T,=600 

1 3 

L!l L!l 
00 00 
c:i c:i 
II ~.I ... w" _ 

2 

£2=0.85 

T2=300 K 

Figure 4.32: Problem geometry (Example 4.17) 

0' [Tf - Tt] 
Q12,noshield = [~ _ 1] 

5.67 X 10-8 [6004 - 3004] 

[O.~5 - 1] 
= 5091.9W/m2 

Q12.no.hield = 5091.6 
Q12.2.hield = 2 + 1 3 

= 1697.3W/m2 

(4.240) 

(4.241) 

(4.242) 
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a [T4 - T4] 
21 3 = 1697.3 (4.243) 

[. - 1] 

5.67 X 10-8 [6004 - Tt] 
(4.244) [~_ ] = 1697.3 

0.85 1 
T3 = 587.5K (4.245) 

T4 =? 

a [T4 - T4] 
2
3 

4 = 1697.3 (4.246) 
[. -1] 

5.67 x 10-8 [587.54 - Tt] 
(4.247) [~_ ] = 1697.3 

0.85 1 
T4 = 529.5K (4.248) 

EXaIIlple 4.18: A hole 5mm in diameter and 25mm deep is bored in 
a gmy diffuse material. The emissivity of all the surfaces is 0.6 and is 
maintained at a uniform tempemture of 1000K. The surroundings are 
at 300K. Determine the net mdiant heat tmnsfer leaving the opening of 
the cavity. 

2 I T=300K 
-r7~ ••••• J .... 2 •• ....... "'<"'r --"7"" 

E -0 6 ,- . 
T,=1000 K 

I 

E 
E 
l(l 

Figure 4.33: Problem geometry(Example 4.18) 
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Explanation: 

We have a flat bottomed hole, which has been bored into a plate. Its 
depth is 25mm and its diameter is 5mm. It is evacuated or filled with 
air which is mdiatively non participating. The tempemture of surface 
1, which includes the bottom and the lateml surface area of the hole 
is lOOOK. Its emissivity E1 = 0.6. The bored hole is opening to the 
surroundings at 300K . We can now treat it as a 2 zone enclosure. The 
beauty of the problem is (hat, suppose the hole were not there and we 
have surface 2 alone, it would be a circular disc of diameter 5mm. But 
now we say that this circle is a black body, which is at 1000K. This will 
di. .. ipate certain amount of heat to the surrounding .. at 300K. We want 
to see, compared to this, how much the bored hole will dissipate? The 
mtio of these two is called effective emissivity. As the depth of the 
bored hole increases, its effective emissivity will approach 1. Suppose we 
do not get a surface with a good emissivity, it is possible for us to bore 
holes at a few places and augment the heat tmnsfer pa .... ively, without 
using any pumping pawer. 

Solution: 
a) View factor F21 = 1; F22 = 0 

Al = 27r1'h + 7r1'2 (4.249) 

Al = (27r x 0.0025 x 0.025) + 7r x 0.00252 (4.250) 

Al = 4.121 x 1O-4m2 

A2 = 7r1'2 = 7r X 0.00252 (4.251) 

A2 = 1.96 x 1O-5m2 

AIF12 = A2F21 (4.252) 

4.121 x 10-4 x F12 = 1.96 X 10-5 x 1 (4.253) 

F12 = 0.0475 

Fn = 1 - 0.0475 = 0.9525 

V· f ct t . [ 0.9525 leW a ,or rna nx= 1 

Jl = elrTrt + (1 - ell [FllJl + F12J2] 

J2 = rT1! = 459.3W/m2 

ql = ~ [rTTt - JI] 
1- 01 

(4.254) 

(4.255) 

(4.256) 
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b) 

Radiation heat transfer between surfaces 

.h = 0.6 X 5.67 X 10-8 X (1000)4 

+ 0.4 [0.9525Jl + 0.0475 X 459.3] 

Jl [1 - 0.4 X 0.9525] = 0.6 X 5.67 X 10-8 X (1000)4 

+ 0.4 X 0.0475 X 459.3 

0.6188Jl = 34020 + 8.73 

:. JI = 54991.5W/m2 

ql = 0.6 [56700 - 54991.5] 
0.4 

ql = 2562.8W/m2 

QI = ql X Al = 1.06W 

QI(blackbody) = A2 X (J [Tf - 3004
] 

= 1.102W 
1.06 

Eolf = 1.102 = 0.961 

(4.257) 

(4.258) 

(4.259) 

(4.260) 

(4.261) 

(4.262) 

(4.263) 

Hence, the effective emissivity of the flat bottomed hole is 0.96 which 
is very close to that of a black body. What this means is that if we 
just had a black circular disk 5 mm in diameter at lOOOK, radiating 
to the surroundings at 300K, the radiant energy transferred would have 
been 1.1 W. As opposed to this, with the hole we obtain a value close 
to 1.06 W. Please note that the original surface had an emissivity of 
only 0.6 and if we did not have the hole, the disk would have radiated 
0.661 W. Hence, there is an augmentation in the heat transfer which will 
decrease as 10 -+ 1 (of the parent surface) 

Example 4.19: A very long electrical conductor lOmm diameter is 
concentric with a cooled cylindrical tube 50mm in diameter whose surface 
is gray and diffuse with an emissivity of 0.9 and a temperature of 300K. 
The electrical conductor has a diffuse gray surface with an emissivity of 
0.6 and dissipates 7W 1m length. Assuming that the space between the 
conductor and the tube is evacuated, determine the surface temperature 
of the conductor. 
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Figure 4.34: Problem geometry (Example 4.19) 

Solution: 
We can say that this is an inverse problem where we know the heat flux 
but don't know the temperature.We need to find the temperature to see 
if the wire can withstand it or not. Inverse problems are more practical 
from an engineer's perspective than a direct problem. Many a time, we 
have to infer as we can not straightaway solve this without first writing 
the radiosity relations and getting the formula. It is better that we keep 
it as surface 1 and surface 2 with areas Al and A2 , start with view factors 
and get expressions for J I and J2 • Next we get an expression for QI and 
then substitute the values to get the answer. We call these areas Al and 
A2 so that in the exam, if a problem of sphere within a sphere is given, 
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the area formulae alone need be substituted in that case. 

Fn = O,F12 = 1 

AIF12 = A2F21 

F21 = Al/A2 

F22 = 1- Al/A2 

View factor matrix = [Al~A2 1 -ldA2 ] 

Radiosity relations for the 2 surface enclosure 

J2 = c2uT# + (1 - 1'72) [~~ Jl + (1 - ~~) J2] 

Substituting for Jl in Eq. (4.269) 

h = c2uT# + (1 - c2) ~~ Jl + (1 - c2) (1 - ~~) J2 

(4.264) 

(4.265) 

(4.266) 

(4.267) 

(4.268) 

(4.269) 

(4.270) 

J2 = c2Ur,t + (1 - c2) ~~ [c1uTt + (1 - c1)J2] + (1 - c2) (1- ~~) J2 

= e2uT~ + (1 - 02) (1;) owTt 

[O'2uTt + (~i) f:WTt - 0'10'2 (~i) uTtl 
J2=~--'-~~Y-__ ----__ ~~~ 

[02 + 01 (1~) - 0'102 U:) 1 
Substituting in Eq. (4.268), we can get Jl or 

q12=Jl-h 

q12 = O'1O'Tt + (1 - eIlJ2 - J2 

q12 = 01O'Tt + X - O'IlJ2 - X 
q12 = f:WTt - 0'1 J2 

4 [[02UT~ + (1:) Cl uTt - t:le2 U~) uTt l] 
q12 = 01 UTI - 1:1 

[1:2 + 1:1 (1~) - 1'711'72 (1:) 1 

(4.271) 

(4.272) 

(4.273) 

(4.274) 

(4.275) 

(4.276) 

(4.277) 

(4.278) 
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(4.279) 

(4.280) 

A good check for this formula is that if All A2 = 1, Eqn.4.280 will reduce 
to the parallel plate formula. 
So, this formula displays asymptotic correctness. Substituting for 
01, 02, AI, A2 and T2, 

(4.281) 

(4.282) 

The wire can withstand this temperature, roughly 75°C. Whenever the 
view factors involve the fundamental dimensions such as 1'1 and "'2 in 
this case, the analysis becomes complicated but towards the end, we get 
a simplified answer. 

Example 4.20: Consider a very deep triangular duct (deep in the 
direction perpendicular to the plane of the board) made of diffuse gmy 
walls, each of which has a width of 1.5m (Fig.4.35). The tempemtures of 
surfaces 1 and 2 are 1200K and BOOK 1-espectively. The corresponding 
emissivities am 0.4 and 0.6 respectively. Surface 3 is completely insulated 
and has an emissivity of 0.5. For this two dimensional enclosure, 
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E =04 1 • 

T,=1200 K 

3 

Re-Radiating 

Figure 4.35: Problem geometry(Example 4.20) 

a.Determine the net mdiation heat tmnsfer from surface 1. 

b.Determine the tempemture of the insulated surface 3. 

c.lf ca is changed, will your results change? 

Solution: 

a. 

[ 

0 0.5 0.5] 
View factor matrix = 0.5 0 0.5 

0.5 0.5 0 

J1 = Cl!TTt + (1 - cl)[0.5J2 + 0.5Ja] 

J2 = C2!TTt + (1 - c2) [0.5J1 + 0.5Ja] 

~=~=~~+&~+&~=0.5~+~] 

(4.283) 

(4.284) 

(4.285) 

This is a crucial step in enclosure with re-radiating surface. Even if we 
have N surfaces, we have to solve for N-1 equations only, because for the 
re-radiating surface, the radiosities can be directly expressed in terms of 
the radiosities of the other surfaces. So, instead of solving 3 simultaneous 
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equations, we need to solve for only 2. 
Substituting the values for the variables, we get 

J1 = 0.4 X 5.67 X 10-8 
X 12004 + 0.6[0.5J2 + 0.5J3] 

J1 = 47029.3 + 0.3J2 + 0.3J3 

J2 = 13934.6 + 0.2J1 + 0.2J3 
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(4.286) 

(4.287) 

(4.288) 

We substitute for Ja in terms of J1 and J2, which reduces the 2 equations 
having the variables J1 and J2 only 

J1 = 47029.3 + 0.3J2 + 0.3[0.5J1 + 0.5J2] 

J2 = 13934.6 + 0.2J1 + 0.2[0.5J1 + 0.5J2] 

0.85J1 = 47029.3 + 0.45h 

O.9h = 13934.6 + 0.3J1 

Equations (4.291) and (4.292) can be solved to get J1 and J2 

J 1 = 77137.9W/m2 

h. 

J2 = 41195.5W/m2 

J3 = J 1 + J2 = 59166W/m2 

2 

ql =1:1 [a'It - J 1] 
1- E1 

q1 = 2.69 x 109W/m2 

Q1 = q1A1 = 2.69 X 104 x 1.5 x 1 

= 4.04 x 109W/m 

J3 = O'Ti 

(
Ja) 0.25 

T3= -
0' 

= 101O.7K 

(4.289) 

(4.290) 

(4.291) 

(4.292) 

(4.293) 

(4.294) 

(4.295) 

(4.296) 

(4.297) 

Surface 3 is just receiving heat from surface 1 and is transferring this 
onto surface 2. So it has no net radiation heat transfer. What is going 
out is equal to what is coming in, which is why it is a re-radiating surface. 

c.lf the emissivity is changed, it has no bearing. So the specification, 
emissivity=0.5 for surface 3 is superfluous or redundant and is never 
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used in the calculations. The good thing about a re-radiating surface is 
that we never worry about its emissivity. The temperature T3 is actually 
called the equilibrium temperature of the re-radiating surface. 

PROBLEMS 

4.1 In a rectangular box type enclosure consisting of 6 surfaces, how 
many factors are there in total? How many independent view factors 
need to be determined? 

4.2 A very long duct has the shape of a regular pentagon. How many 
view factors need to be independently evaluated? Determine the 
view factor between any two adjacent sides. 

4.3 A long duct has a regular hexagonal cross section. Determine the 
view factor between the opposite sides by view factor algebra. Cross 
check the answer with the direct application of crossed string method 
to determine the same view factor. 

4.4 Consider a glass house like structure shown in Fig. 4.36. All the 
walls are infinitely deep in the direction perpendicular to the plane 
of the paper. Evaluate the view factor F12 by any method known to 
you (No integration). Please note that "2"is the full bottom inside 
surface. 
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1 

...J 

2 L 

Figure 4.36: Figure for Problem 4.4 

4.5 Consider a rectangular box type enclosure. This enclosure (radiation 
from the outer surfaces of the six walls is not part of the analysis) is 
cut vertically at the middle by an imaginary wall so that the top and 
bottom surfaces are divided into two surfaces each. The two surfaces 
now constituting the top are 1 and 4 while the two at the bottom are 
3 and 4 with 3 placed right below 1. Each area is denoted using the 
letter A followed by the subscript. For example, the area of surface 
is Al . Show that for this enclosure, the view factor Fl2 is given by 

4.6 Consider two rectangular thin strips AB and CD with dimensions 
and orientation as seen in Fig. 4.37 (all dimensions are in m). The 
strips are infinitely deep in the direction perpendicular to the plane 
of the paper. Determine the view factor FAB-CD by using 

(a) The Hottel's crossed string method 

(b) The decomposition rule (together with the simple view factor 
formula for a triangular enclosure) 
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3 

, ____________ Tj C.:::.... ___ --.p' 

I ... 3 .1... 3 .1 
Figure 4.37: Geometry for Problem 4.6 

4.7 Consider two semi-circular surfaces of radius R, separated by a 
minimum distance of S, as shown in Fig. 4.38 The two surfaces 
are infinitely deep in the plane perpendicular to the plane of the 
paper. Determine the view factor F12 by an intelligent application 
of the Hottel's crossed string method (Hint: We may have to use arc 
lengths in the Hottel's method). 

Figure 4.38: Geometry for Problem 4.7 
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4.8 Consider a vertical enclosure in the shape of the frustum of a cone 
with the bottom surface having a diameter of 3.5 m and the top 
surface having a diameter of 1. 75 m. The height of the enclosure 
is 5 m. Using view factor charts and algebra, treating the bottom 
surface as 1, top as 2 and the lateral surface as 3, determine all the 
view factors for the three surface enclosure. 

4.9 A cubical furnace is 1.5 m long on all the sides. Evaluate all the 
view factors. 

4.10 Consider the situation of a clear night sky in a desert. The minimum 
sky temperature on a particular night is -42°C. Determine the 
temperature on the surface of a shallow pond of water if the ambient 
temperature is 24°C and the natural convection coefficient for air 
is 5.5 W /m2K. Take the emissivity of water to be 0.98 (Clue: 
Write down the energy balance equation and solve it iteratively for 
temperature of water). 

4.11 Consider two very long, gray, diffuse parallel plates that are 
separated by a small distance. The space between the two plates 
is evacuated. The left plate is at 700K and the right plate is at 
400K. Two radiation shields, which are also gray and diffuse, are 
placed between the two plates. All surfaces have an emissivity of 
0.8. Determine the steady state temperature of the two shields. 

4.12 A spherical tank of diameter Dl =0.52m containing liquid nitrogen 
is enclosed inside another spherical tank of diameter D2=0.81m and 
the space between them is evacuated. The inner and outer spheres 
are maintained at Tl =80K and T 2=270K respectively. Both spheres 
have an emissivity of 0.07. Calculate the rate of transfer to the inner 
sphere and the rate of evaporation, if the latent heat of vaporization 
of liquid nitrogen is 2 X 105 Ws/kg. 

4.13 The annular space between two concentric tubes having diameters of 
20 mm and 50 mm is evacuated. The outer surface of the inner tube, 
which is diffuse and gray with an emissivity of 0.02, is maintained 
at a temperature of 255K. The inner surface of the larger tube, 
with an emissivity of 0.05, is maintained at a temperature of 303K. 
Determine the radiative heat transfer in the annular space between 
the tubes by treating this as a two surface enclosure. If a thin walled 
radiation shield, that is diffuse and gray with an emissivity of 0.02 
(both sides) is iIlserted in the middle (Le. between the inner and 
outer surfaces), calculate the heat transfer rate in the presence of 
the shield. 
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4.14 Consider a cylindrical evacuated enclosure with height 1 m and 
radius 0.4 m. The top wall is maintained at 400 K and has an 
emissivity of 0.8, while the bottom wall is at 800 K and is black. 
The lateral wall of the enclosure is maintained at 600 K and has an 
emissivity of 0.4. Evaluate the net radiative heat transfer from all 
the three surfaces (not just the heat flux alone!) and thereby verify 
the energy balance. 

4.15 A two dimensional gray-diffuse evacuated enclosure (with no heat 
transfer to outside) has each surface at a uniform temperature. The 
following conditions apply: 

Surface AI: T = 1500 K, Length = 4 m and € = 0.6 
Surface A2: T = 300 K, Length = 3 m and € = 0.9 
Surface A3: T = 700 K, Length = 4.5 m and € = 0.5 

Calculate the net radiation heat transfer from all the three surfaces. 

Figure 4.39: Geometry for Problem 4.15 

4.16 An evacuated, gray diffuse enclosure is in the shape of a triangle 
ABC. The sides of the enclosure are infinitely deep in the direction 
perpendicular to the plane of the paper. 

(a) Obtain all the view factors using view factor algebra. 

(b) Formulate the problem using the radiosity-irradiation method. 

(c) Solve for the radiosities and determine both the fluxes and the 
heat transfer rates at all the three walls. 

Properties of the triangular enclosure surfaces are listed in Table 4.1. 
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Table 4.1 

Surface Length, m Emissivity E Temperature, K 
AB 7.1 0.9 1200 
BC 6.2 0.6 400 
CA 5.3 0.1 Reradiating 

4.17 A frustum of a cone has its base heated as shown in Fig. 4.40. The 
top is held at 600 K while the side is perfectly insulated. All surfaces 
are diffuse-gray. The pertinent dimensions, properties and heat flux 
from the surface 1 are shown in figure. Treating this is a three surface 
enclosure problem, determine the temperature attained by surface 1 
as a result of radiative exchange within the enclosure? 

A
2

, reradiating, 
E =0 8 2 • E 

(.) 

Ll) 
.-! 

Figure 4.40: Geometry for Problem 4.17 





CHAPTER 5 

Radiation In participating media 

A participating medium is an absorbing, emitting and scattering 
medium. 

• Any particle at a temperature more than 0 K will emit radiation. 
Absorption is different, in the sense that, if lOOW/m2 radiation is 
incident on a gas volume, what comes out will be less than that, 
as it absorbs a certain portion of the electromagnetic radiation. 

• What it can do further is to receive the radiation and reflect it in 
several directions, which is called scattering. From a volume, there 
can be out-scattering (the name given to the radiation going out) 
and in-scattering too. Out scattering need not be the same in all 
directions, which means that the medium is anisotropic. How much 
a medium scatters can be a function of (). Treatment of scattering 
can thus get very complex! 

The study of heat transfer through media which can absorb, emit and 
scatter radiation has been receiving increasing attention in the last few 
decades. In fact, it gained a lot of momentum after Nobel laureate Prof. 
Subramaniam Chandrashekar among others made seminal contributions 
to the equation for radiative heat transfer and its solution. The interest 
in this field arises from phenomena associated with rocket propulsion, 
combustion chambers, ablating systems, nuclear fusion and insulating 
systems. In all these, we have gases which are participating, unlike 
transparent media like air. 

For example, in a class room which contains air, the radiation from 
the left wall will directly go to the right wall. Air does not participate 
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in this; it just is at some temperature and convection may take place. 
The moment we have carbon dioxide or water vapour in large quantities 
inside the room, the air will absorb and or scatter. The absorption and 
emission of these gases in general are spectrally dependent and these 
also vary with the temperature. If we look at the absorption of solar 
radiation by the earth, we will see that the radiation is incoming from 
a black body at HOOOK, while the outgoing radiation is from a body 
at 288 or 300K. The incoming is mostly in the visible region while the 
outgoing is mostly in the infrared region and if the gases which are in 
the atmosphere are such that they permit the incoming energy and do 
not permit the outgoing energy, what happens is that there is a constant 
huildup of energy within the earth's atmosphere. 

Some of the above phenomena are new while others are hundreds 
years old. Man was always interested in atmospheric radiation. 
Astrophysicists have been interested in gas radiation with regard to 
studying structure, the structure of stars and radiation coming out of 
them. The spectrum observed during emission or absorption of radiation 
by a gas is characteristic of that gas alone. From the spectrum, we can 
get the signature, which is diagnostic of the gas present in the star. If 
this is studied over varied periods of time, we can find out if the gas 
concentration is changing or the star is moving towards or away from 
us and so on. Hence, the spectrum can be used as a diagnostic tool to 
determine the gas temperature, concentration, its speed and so on. 

If we consider a black body source or outer layers of a star structure, 
we can look at two spectra, which are the emission spectra and the 
absorption spectra. The signature is obtained as intensity versus 
wavelength. From this, we can figure out the gas concentration and 
the gas temperature. This is basically an inverse problem, as from the 
output, we have to guess the input. There can be various causes for 
such a spectrum and the goal of a successful inverse methodology is to 
correctly identify the cause which led to such a behavior. 

A simplified representation of the same is given in Fig. 5.1. We have 
a hot source and then a gas. We can get a continuous spectrum or an 
absorption spectrum or an emission spectrum in the form of emission 
bands, as seen here. 

If we look at the incident solar energy flux that is coming on to the earth, 
as shown in Fig. 5.2, we can sec that the first dashed line gives the energy 
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Figure 5.1: Stellar structure and emission/absorption spectra 
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Figure 5.2: Attenuation of incident solar spectral energy flux by the 
earth's atmosphere 

distribution of a black body at 6000 K. The second curve shows the actual 
solar irradiance outside the atmosphere. The inner curve shows the solar 
irradiance after passing normally through the atmosphere, which we see 
has a jagged shape, because there are absorption bands due to oxygen, 
carbon dioxide and water vapour molecules. 
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We can determine the absorption by having an instrument that has 
a sensor, which will exactly capture this between two particular 
wavelengths. We can see that ozone absorption is maximum in the visible 
part of the spectrum while carbon dioxide presence is felt more in the 
infrared region. Water vapour absorption is present almost throughout 
and hence we can design an instrument to measure it by having multiple 
channels. This instrument can be housed in a geostationary satellite, 
and hence will be called a multi spectral instrument or sounder. 

In passive remote sensing, the radiation emitted from the earth's surface 
that is absorbed and scattered by the atmospheric constituents is usually 
measured by a satellite. This is done through radiometric sensors placed 
at the top of the polar or geostationary satellite and is called top of 
the atmosphere radiance. The intensity itself is a matrix consisting 
of spectral intensities with two polarizations each, which is the spectral 
signature. The inverse problem of radiative transfer is concerned with 
estimating the atmospheric constituents from the spedral signature. 

What is the logic on which this works? We will assume some atmospheric 
concentration, solve equations and determine q). at various AS. Then 
we try to match our predidion with what is measured. The two will 
not agree in general and hence we iterate. We keep doing this till the 
measurements and simulations match closely. This guessing is easier said 
than done. What was described so far as one word "guessing" is the field 
of "inverse problems"! 

Applications of gas radiation 
Other applications of gas radiation are to be found in design of furnaces 
where carbon dioxide and water vapour are combustion products, which 
are also significant emitters and absorbers. These gases are found in 
combustion chambers, furnaces, Ie engines, where the flame temperature 
can reach a few thousands of Kelvin. Apart from these two, there is soot 
too in many cases, which is luminous and contributes to gas radiation. 

Origin of studies on gas radiation 
The origin of all this is from the classic problem of radiation from molten 
glass in a furnace. Glass blowing is a very traditional and old technique. 
When temperature distribution in molten glass was measured, it was 
found to be more uniform than that expeded from heat conduction alone. 
When researchers wrote the equations and solved for the temperature 
distribution using heat conduction alone, they found more variation than 
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was actually measured and they started investigating why it was so. 
They thought convection may be the culprit and tried incorporating 
it. But this too did not help the simulations better agree with the 
measured results. It was later discovered that glass itself has emission 
and absorption characteristics and one has to integrate this conduction 
with the equation of radiation. In the late 19408, it became clear that gas 
radiation was largely responsible for this behavior and it was observed 
that when radiation interacts with a substance, part of the energy may 
be redirected by scattering, which may in turn, be caused by a small 
particle such as an electron or a huge one such as a planet. So a wide 
range of length scales are involved. 

Depending on the length scale, different theories of scattering are used. 
If the length scale is very small, Rayleigh scattering is adequate. If we 
consider ice, water or rain in the atmosphere, we cannot use the Rayleigh 
scattering, but instead use the Lorentz-Mie scattering theory. However, 
if the particles are big enough and are not spherical, this theory will also 
not work and geometric optics has to be used. 

5.1 Principal difficulties in studying gas 
radiation 

In gas radiation, everything is happening from a volume and not from a 
surface like before. Absorption, emission and scattering are a function 
of the wavelength, A and happen at all locations within the medium, 
which makes it mathematically very difficult. Spectral effects are more 
pronounced in gases than from solid surfaces. This gray gas assumption 
is more a myth than a reality. Hence, the engineering treatment of gas 
radiation would involve simplification of one or both of these difficulties. 

5.2 Important properties for study of gas 
radiation 

• "'), is a monochromatic orspectral absorption coefficient (m -1 ) 

Therefore, if incident monochromatic radiation is given by h, the 
absorption by the gas per unit volume per unit solid angle per unit 
wavelength interval is given by "'Ah in W/m3 ./-Im.sr. 

• Similarly, we have fA which is the monochromatic or spectral 
emission coefficient which also has the unit m -1. The EA we define 
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for gas radiation is different from the EA we defined for radiation 
from surfaces. The emission by the gas is given by E A h (T g) 
W/m3 .pm.sr. 

5.3 Equation of transfer or Radiative transfer 
equation (RTE) 

dA IU +dS 

5 

Figure 5.3: Gas volume used in the derivation of the RTE 

Consider a gas volume with a cross sectional area dA, thickness ds. h s , 
is the incoming radiation in direction s, while h,s+cJs is the outgoing 
radiation. The area dA is normal to the direction s such that the 
radiation is traveling in a direction normal to the cross sectional area. 
We are now trying to find out the rate of change of the intensity of the 
radiation as it passes through the gas volume. Then we to determine 
the factors which make this rate of change of intensity not equal to zero. 
Since we are neglecting scattering, there can be only two phenomena, 
namely absorption within the gas volume or re-emission from the gas 
volume. The balance between this emission and absorption will lead 
to this dh. It looks very simple and unassuming, but this is only 
deceptively innocuous. 

The change in intensity h,s when passing through the gas volume 

= h s+cJs.dA - h s.dA , , (5.1) 

By Taylor's series expansion, 

dh ~hds2 
h s+dsdA - h sdA = -d ds.dA + -d 2 -, .dA , , s s 2. (5.2) 

We set the higher order terms to 0, which is the error associated with 
this approximation. 
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Energy absorbed by the gas in the interval d>' is 

= /'i,>.h.dAds (5.3) 

Energy emitted by the gas volume: 

The intensity h., which is incoming, need not be related to the 
temperature Tg , as it can come from anywhere. But what it emits will 
be completely dependent on its temperature Tg • 

With the absorption, the h. will tend to decrease as the radiation passes 
through the gas volume but this will be compensated by the emission 
from the gas. So now we have to do the energy balance for the gas 
volume, 

(5.5) 

We can cancel dAds throughout, implicitly assuming that dAds =1= o. 
Hence these equations are not valid at mathematical points, which have 
no area or volume. These are valid only around a small area or volume. 

On doing this we get the following 

(5.6) 

Equation (5.6) is known as the RTE or radiative transfer equation. 

The out scattering and the in scattering may have integral terms also as 
scattering may be different in different angles and different directions. So 
the left hand side will have a differential term, while the right hand side 
will have integral terms and hence Eq. (5.6) often becomes an integro
differential equation. This makes radiative heat transfer extremely 
difficult. Fortunately, numerical techniques are available now to solve 
such equations. 

Now let us try to work further with the above equation. Let the whole 
gas be contained in an isothermal enclosure at T = Tg • The beauty of 
the isothermal enclosure is that the gas and the walls are all at the same 
temperature Tg . The radiation coming out from this enclosure will be 
analogous to radiation coming from a black body. Therefore, if we take 
a sample and find out the h. in a particular wavelength interval and if 
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we take another sample, it will also be the same. Therefore fu - 0 'ck -
everywhere within the isothermal cavity. 

h i f(s) 

1;,. h,>.(Tg) 

Substituting in Eqn.5.6 

0+ K>Jb),(Tg) = €),h),(Tg) 

:. K), = fA 

This is Kirchhoff's law. 

(5.7) 
(5.8) 
(5.9) 

(5.10) 

(5.11) 

The isothermal enclosure concept is used only to prove this but it is 
universally applicable; we can make measurements and check it. Getting 
back to the RTE, we have 

dh ds + K>.1;,. = K>.IbA(Tg) (5.12) 

Equation 5.12 looks so simple, but when we try to solve the equation, 
we will see that it will lead to an integral that cannot be solved. 

Let us now consider an asymptotic case where the absorption is more 
important than the emission. Consider a wall which is black at a 
temperature Tw, surrounded by gas at Tg • Let a receiver be placed 
at a distance L from the wall which receives the radiation coming out of 
the wall. This radiation is made up of two contributions 

1. The radiation from the wall which is modified or attenuated by the 
participating medium, which eventually reaches the receiver. 

2. Radiation from the gas also falls on the receiver. The radiation on 
the receiver can come from any portion of the wall and hence we 
have to derive the formulation for a general angle (J ((J = 0, is the 
special case). 

When Tw »Tg , €),Ib),(Tg) is much smaller compared to the other terms 
in the equation because the emission component is very less. If we have 
a 1000 K wall while the gas is only at 300 K then this condition is 
approached. Then the RTE becomes (if x is taken as the s direction), 

dh 
dx +K>.h = 0 (5.13) 
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Assuming a gray gas, 
dI - = -I<dx 
I 

If we integrate this, we get [ = Ae-kx . 

At x = 0, [ = [0,:. A = [0, Now the solution becomes [ = [oe-kx • 
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(5.14) 

(5.15) 

Therefore, the radiation decays exponentially as it passes through the 
depth. This is called the Beer's law or the Lambert's law or the 
Beer-Lambert's law. 

Now consider solar radiation which is impinging on the ocean waters. 
Let us say it is 10 at the surface and as it goes in, it will go as Ioe-kx . 

As we go to the bottom layers of the ocean, the radiation received by 
the bottom layers is much less compared to the top. Because of this, 
the bottom layers are at a temperature much lower than that of the top 
layers. If the top layer is at 30°C, then at 1km depth, it may be at 
10°C. This is a stable temperature gradient because the warmer and 
lighter water stays at the top. This is what helps maintain the aquatic 
life. We can see that it is very difficult for organisms to survive very deep 
below because light is not available for photosynthesis. If we exploit this 
temperature difference to run a heat engine, we are talking about what 
is called the Ocean Thermal Energy Conversion or OTEC. 

So, simple radiative transfer equations can be used to explain so many 
phenomena! In the case of above example the source is at 5800 K and 
we do not worry about f>.h.l\{Tg} as the medium is around 300 K or so. 

We will look at the simplified treatment of the RTE equation and some 
of its solutions. Consider a black wall whose emissivity E = 1 at 
temperature Tw. Next to it is a plane gas layer of thickness L, which 
is infinite in the other two directions at temperature Tg • Essentially, we 
are looking at how the intensity varies in the direction x. Now we want 
to solve the equation of transfer and find out how I propagates with x. 

dh 
ds + I<.l\h = l<>-.h.l\(Tg) (5.16) 

If 8 is oriented at an angle () to dA (look at path 2 in Fig. 5.4) 
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Figure 5.4: Radiation heat flux at a distance L from the source in a 
participating gas 

dh 
cos(O) ds + K,>.h = K,>.h>.(Tg) (5.17) 

When 0 = 0, equation reduces to Eq. (5.16). The radiation arriving at 
the area dA consists of two components. 

1. The first is the radiation from the wall, which goes through the 
gas gets attenuated (because the gas is absorbing radiation and 
participating in the process) and arrives at dA. 

2. The second component arriving at dA is because of emission from 
the gas. 

So the two components are transmission by the gas and emission from 
the gas. For a plane gas layer, 

d/+ K,uT4 

-- + K,/+ = --g 
dx 7r 

(5.18) 

We have done several things here. We are assuming that the gas is gray 
as we knocked out K,>. and replaced it by K,. We have used /+ ,because 
we are looking at the positive direction of x. 
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We have replaced h,>. by 1 and ds by dx. We will solve the equation of 
transfer for the straight path and infer what the solution for the slant 
path will be. 

5.4 Solution for the straight path 

There will be two parts to the solution, the complementary function 
(CF) and the particular integral (PI). The complementary function is 
obtained by setting the right hand side to 0 of Eq. 5.18. 

General solution = CF + PI 

To get the CF, we do the following 

d1+ 
-+K1+=0 
dx 

1+ = Ae-= 

The PI, 1+ = qf is evident. The general solution is then 

+ -I<X 17Ti 1 =Ae + ............ . 
1r 

~ 
At x = 0 J+ = =0. Therefore , 'IT • , 

A = '!:(1'!. -~) 
1r w 9 

Atx=L 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

T4 17T4 
J+(L) = 17 we-KL + _9 (1 _ e-KL ) (5.25) 

1r 1r 

The units of KL is m-1.m, a dimensionless quantity. This frequently 
appears in radiation heat transfer and is called the optical depth (T). If 
the optical depth of one medium is higher than that of another medium, 
it means that its capacity to absorb gas radiation is much morc. An 
optically thin gas is one in which T is very small and it absorbs a small 
amount of the incident radiation. An optically thick gas is something 
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that has a high T and little will emerge out of it. T is a dimensionless 
quantity. In general, 

uT.4 aT.4 
J+(x) = ----"'e-,.' + _9 (1 - e-"') (5.26) 

1r 1r 

The performance metric for the gas layer of thickness L is the ratio of 
the intensity at x to the intensity at 0, given by 

J+(x) T. -- = e-r , + (~)4(1 - e-r ,) 
/+(0) Tw 

(5.27) 

T If T! < < 1, (for example, the gas temperature is 300 K and the 
wall temperature is 1500 K), the above equation reduces to the Beer
Lambert's law. 

(5.28) 

Why should we always worry about the straight path as radiation can 
arrive at the elemental area dA from anywhere? We did not want to 
work with the general path and get into a mess and now having got the 
result for simple path, by induction or inference, we can get what J+ will 
be for a slant path. For a slant path, 

(5.29) 

Let cosl) = J.I 

J+(TX) _ aT:' -"" aTi(t -"') - - --e ,.. + -- - e P-

f.' 1r 1r 
(5.30) 

We can check for the asymptotic correctness of the expression by making 
cosl) = J.I = 1. 

This is the solution for the equation of transfer. We can see that even 
for the simple case of one wall being black, a gas layer which is gray, and 
for one positive direction of x, it looks quite formidable. Even so, this 
can be handled by pen and paper; the more complex ones have to be 
solved using programs. 

5.5 Heat fluxes 

The heat flux at x=O, going out in the positive direction of x is given by 

qt = r" (i Jt(f.')cosOsinl)dOd¢ 
1¢=0 10=0 

(5.31) 
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h is only a function of p, and cannot be pulled out of the integral and 
it is not a function of x as we are specifically evaluating the integral at 
x = L. If we have azimuthal symmetry, then integration with respect 
to d¢ can be done. The first simplification is to pull the d¢ out of the 
integral, as follows: 

qt = 211" l It (p, )cosOd( cosO) (5.32) 

Here, the sinO was taken as d( cosO) and therefore the limits were changed 
from 1 to 0 into 0 to 1. Now d(cosO)can be written as dp, and we have 
to substitute for h (p,) and accomplish the integration. 

q+ -
L -

(5.33) 

Whatever method we try, this integration cannot be done. This is an 
integral that frequently appears in radiative heat transfer. It is called 
an exponential integral of order 3. 

5.5.1 Exponential integral of order n 

The expression for an exponential integral of order 'n' is given by 

(5.37) 

When n=3, we have 

(5.38) 

p, is basically a dummy variable. 
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5.5.2 Salient properties of E3(X) 

lim Ea(t) = (1 -t) 
t-+O 2 

(5.39) 

Ea(O) = 0.5. The t in Eq. (5.38) corresponds to actually T or optical 
depth. If the optical depth is very small, this exponential integral 
reduces to ~ - t. So the limit where t approaches 0 is called the 
optically thin limit for radiation. It is optically thin enough to 
allow the approximation, but it is not optically thin enough to neglect 
gas radiation. E3(OO) = O. Now we can write the general expression for 
qi as 

qi = uTi + 2u(T~ - Ti)E3( TL) (5.40) 

2E3(TL)Ura, + ur,i[l - 2E3(TL)] (5.41) 

The values of Ea(x) for various values of x are presented in Table 5.1. 

Table 5.1: Values of exponential integral E3(X) 

x E3(X) x E3(X) 
0.00 0.50000 0.60 0.19156 
0.01 0.49029 0.65 0.17830 
0.02 0.48098 0.70 0.16607 
0.03 0.47201 0.75 0.15477 
0.04 0.46333 0.80 0.14433 
0.05 0.45493 0.85 0.13466 
0.06 0.44677 0.90 0.12571 
0.07 0.43884 0.95 0.11741 
0.08 0.43113 1.00 0.10970 
0.09 0.42362 1.20 0.08394 
0.10 0.41630 1.40 0.06458 
0.15 0.38228 1.60 0.04991 
0.20 0.35195 1.80 0.03872 
0.25 0.32469 2.00 0.03014 
0.30 0.30005 2.25 0.02212 
0.35 0.27768 2.50 0.01630 
0.40 0.25729 2.75 0.01205 
0.45 0.23867 3.00 0.00893 
0.50 0.22161 3.25 0.00664 
0.55 0.20595 3.50 0.00495 
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For the optically thin gas, 

E3(TL) 

and 1 - 2E3(TL) 
. q+ .. L 

1 
- -TL 
2 
TL 

2TUTTi + (1 - 2TL)(}T~ 

.'. The radiation arriving at x=L consists of two parts namely: 
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(5.42) 

(5.43) 

(5.44) 

1. the radiation which is directly coming from the gas (first term) 

2. the radiation which is coming from the wall and is attenuated by 
the gas (second term) 

2TL = (2L)(K) 

1 - 2TL = (1 - Eg) 

(5.45) 

(5.46) 

(5.47) 

In the above two equations, Eg and Tg can be considered to be the 
emissivity of the gas and gas transmissivity respectively. 

At the end, we are able to define the gas emissivity which consists of two 
parts 2L and /'i,. 2L is basically related to the geometry while /'i, is related 
to the capacity of the gas to absorb. Therefore, when we combine the 
geometry part and the thermal part, we are able to get the equivalent gas 
emissivity, which we can use with the radiosity formulation developed for 
the evacuated enclosure, by modifying it. 

What is this 2L? This 2L represents the mean path traveled by all rays 
to arrive at the elemental area dA which is located exactly at a minimum 
distance L from the wall. For cosO = 1, it will be just L. For all the 
others, it will be L / cosO and hence keeps changing. This 2L is some 
sort of an average or mean length which a ray travels before hitting the 
elemental area in the receiver (Fig. 5.4). Hence, 2L is called the mean 
beam length, usually denoted by Le. 

We started out with the equation of transfer and now the formulation 
has reached a critical stage, where the gas emissivity is a product of 
two distinct parts wherein the thermal part can be completely separated 
from the geometry part. This 2L is the mean beam length for a plane 
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gas layer. This mean beam length will change for a cylinder, sphere and 
so on. So, if we are able to calculate the mean beam length and we 
also know 1<, we can calculate the gas emissivity and from that, the gas 
absorptivity can be determined and we can proceed further. 

Let us consider a hemispherical gas volume whose radius is R (see Fig. 
5.5). There is an elemental area dA at the center of the bottom surface. 
We are looking at this gas volume which is absorbing and emitting. We 
also have a small area on the hemisphere and we are connecting to the 
elemental area dA by trying to find out what is the radiation arriving 
from here at dA after traveling through the gas volume. 

The gas is at a temperature Tg and is optically thin. These are the two 
assumptions. The idea behind this exercise is to understand the physics 
behind the mean beam length concept. We have derived that for an 
optically thin gas, for radiation from somewhere arriving from length 
L, expression for intensity for I+(L), (where + indicates the positive 
direction of x) is 

(5.48) 

Now let us consider q- instead of 1+, 

(5.49) 

We have done two things here: 

1. instead of L, we have used R 

2. we have multiplied the intensity expression by 1r because it is 
isotropic. 

Optically thin gas 

C:::::::Iat temperature T g 

Figure 5.5: Hemispherical gas volume used for elucidating the concept 
of mean beam length 
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It is the gas which is contributing more to the radiation. Tw may be at 
300K while the gas may be at 1500K. For such a case, we can neglect 
the first term and so Eq. (5.49) becomes 

(5.50) 

For optically thin gascs, I<,R < < 1, so the expression within brackets can 
be expanded as I<,R. 

(5.51) 

If we are able to write the flux as uT4 multiplied by some quantity 
(I<,R in this case), this quantity in brackets can be called as equivalent 
emissivity. 

q- (R) - (guT: 

where, (9 I<,R 

(5.52) 

(5.53) 

In Eq.5.53 I<, is thermal part and R is the geometric part. When we 
considered a plane wall which was black and at a temperature Tw 
surrounded by an isothermal gas at Tg , we figured out that the mean 
beam length was equal to 2L. Here, the mean beam length is R itself. 

However, these analytical ways of deriving the mean beam length cannot 
be done for each and every geometry. Certain mean beam lengths have to 
be calculated or evaluated. Tabulated values of the mean beam length for 
a few geometries are given in Table 5.2, which may be used in problems 
involving those geometries. 
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Table 5.2: Mean beam lengths Le for different gas geometries (adapted 
from Howell et al. (2011) 

SI. 
No. Geometry 
1. Hemisphere radiating to element at 

center of base 
2. Sphere (radiation to surface) 
3. Infinite circular cylinder (radiation 

to curved surface) 
4. Semi-infinite circular cylinder 

(radiation to base) 
5. Circular cylinder of equal height 

and diameter (radiation to entire 
surface) 

Characteristic 
length 
Radius R 

Diameter D 
Diameter D 

Diameter D 

Diameter D 

6. Infinite parallel planes (radiation to Spacing 
planes) between 

planes L 
7. Cube (radiation to any surface) Side L 
8. Arbitrary shape of volume V Volume to 

(radiation to surface of area A) area ratio 
VIA 

Le 
R 

0.65D 
0.95D 

0.65D 

0.60D 

1.80L 

0.66L 
3.6V/A 

In this table, the mean beam length between two parallel plates is 1.8L 
instead of 2L because of the expansion of E3(T) in the vicinity of T. For 
an arbitrary shape of volume V and surface area A, the mean beam 
length = 3.6 ~ . If we apply this formula for the plane gas layer of 
thickness L, we get 1.8L. 

EXaIIlple 5.1: Consider a gray gas with an absorption coefficient of 
I< = 0.I5m- l . It is maintained at a temperature of 400K and is OAm 
thick. A black wall at 500K is at x = O. Determine the intensity at 
x = DAm for 

• stmight path 

• slant path at 60° 

Use the small T approximation as well as the exponential integral for 
evaluating the heat flux at x = DAm and comment on the result. 
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x 
Tg=400 K 

K = 0.15 m-l 

L=OAm 

Figure 5.6: Problem geometry for Example 5.1 

Solution 

a) 

It(() = 0) 

It~0.4(() = 0) 

It~0.4(() = 0) 

~T,4 ~T4 
Wexp(-KL) + 9 (1- exp(-KL)) 

1r 1r 

1049.2 + 26.99 

1076.1Wm-2sr 

The intensity coming out of the wall is 

~T,4 
Iii = ----.J!' = 1128.01 W m -2 sr 

1r 
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(5.54) 

(5.55) 

(5.56) 

(5.57) 

The intensity coming out of the wall is not asked in the problem but we 
have calculated this to infer the result. Now look at the ratio of I at 
x = L and I at x = O. It is almost 0.98 or 0.99. This shows that the gas 
is not absorbing much. Therefore, it is an optically thin gas. If this ratio 
were instead got as 0.5 or 0.6, then the gas would no longer be thin. 

It(() = 60) 
~TW KL 
-exp( ) 

1r cos (60) 

~T: KL 
+ 1r(1-exp( cos(60))) (5.58) 

(5.59) 
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b) Small r approximation: 

rL KL (5.60) 

Ea(n) -

qI" -

+ 
-

qL(EI) -
From the tables, 

E3(0.06) 

Percentage error 

0.15 X 0.4 = 0.06 (5.61) 

0.44 (5.62) 

5.67 X 10-8 [4004 (1 - 0.88)] (5.63) 

5004 
X 0.88] (5.64) 

3292.7Wm-2 (5.65) 

uTt[l- 2E3(rL)] + 2uTit(E3(rL)] (5.66) 

0.447 

5.67 X 10-8(4004)(12 X 0.447) 

+ 2 X 5.67 X 10-8 (5004
) X 0.447 

3321Wm-2 

= (3321=3~932 X 100 = 0.84 
3321 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

If r < 0.1, then the optical thin gas approximation is good. So whether 
a gas is optically thin or thick depends on not only its absorptivity but 
also on the length scale involved. It is the product which matters. One 
can have a very heavily absorbing gas bnt if the length scale is only Imm 
or 2mm, the medium will still be optically thin. On the contrary one 
can encounter a poorly absorbing gas but because of a large thickness, 
KL product can be significant. 

In the previous problem, we have made many assumptions - a gray gas, 
single gas, isothermal gas. Any of these assumptions can be questioned. 
Most importantly, this analysis cannot be used in an internal combustion 
engine or a combustion chamber simply because there is never a single 
gas there. So the next levels of complexity will be 

(1) How do we get the fg for a mixture of gases? 

(2) What will happen if the walls are not black? 

Are there some recipes available if there is a mixture of gases? Yes! The 
commonly encountered participating gases are carbon dioxide and water 
vapour, as found in power plants, internal combustion engines. People 
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have done experiments at 1 atmospheric pressure and have given charts 
for a mixture of carbon dioxide and water vapour, using which we can 
calculate the mixture properties. 

Example 5.2: Two infinitely long vertical plates are pamllel to each 
other. Both the plates are black and are at tempemtures T, = 1500K 
and T2 = 900K respectively. The spacing between the two plates is 1.5m 
and is filled with a gmy gas at 1200K with an absorption coefficient of 
0.08m-1. Determine the heat tmnsfer mte at each of the two boundaries. 

Tg 
T, K= 0.08 m·l 

T2 

£ =1 £ =1 1 2 X .. 
~ 

I" 
1.5 m 

00 

Figure 5.7: Problem geometry for Example 5.2 

Solution 
We can use superposition solving, for the left and right walls separately. 
For one wall, from left to right we consider in the positive x direction 
and for the other we consider the negative x direction. We need to take 
the algebraic sum of the heat fluxes. The heat flux expression must be 
asymptotically correct, such that when I< = 0, we must get the original 
parallel plate formula for 

q = a(Tt - Ttl when '1 = '2 = 1 
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Left wall: 

Heat flux is transferred from left wall to the right wall. 

(5.72) 

Right wall: 

qL = 2uTiE3(n - Tx) + 1711[1 - 2E3(n - Tx)J (5.73) 

Heat flux is transferred from the right wall to the left wall. 

Net radiative flux at x = qo +qL (5.74) 

Special case: K, = 0 (5.75) 

go uT[ (5.76) 

qL uTi (5.77) 

Net radiative flux at x qo - qL = u(T[ - Ti) (5.78) 

The contrihution for the gas volume term is 0 from both the left and the 
right. This is consistent with our understanding of the problem. Now, 
substituting the numerical values in the equations for the problem under 
consideration, we get qo and qL. At x=O, 

E3(TL - Tx) 

qL 

qnet 

0.5 

2uT[E3(Tx) + 1711[1 - 2E3(Tx)J 

2 x 5.67 X 10-8 x 15004 x 0.5 + 0 

287.043kW/m2 

= E3(0.12) = OAO 

= 2uTi x OAO + uTi [12 x 0.40J 

= 29961.5807 + 22879.7291 

= 52.84kW/m2 

= qo - qL = 234.20kW/m2 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

(5.83) 

5.5.3 Enclosure analysis in the presence of an absorbing 
or emitting gas 

Let us consider two areas Aland A2 in an enclosure and two elemental 
areas in them, dAl and dA2 . The distance between them is R. The 
unit vectors are nl and n2 and the angles subtended by them are 01 
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Figure 5.8: Enclosure analysis in the presence of an absorbing and 
emitting gas 

and O2 respectively. What is the difference between this R and one we 
considered in the previous chapter? This R is the path through the gas 
which interferes with the radiation passing through, while previously R 
was the path through vacuum or a non participating medium. All the 
surfaces in the enclosure are gray and diffuse. The gas is optically thin. 
So the radiation leaving dAl that falls on dA2 is given by 

J1dA1dA2cos(01)COS(02) ( R) 
7rR2 exp -K (5.84) 

The extra term in expression (5.84) is the attenuation which is 
exponential. For an optically thin gas, 

exp( -KR) "" 1 - KR (5.85) 

Substituting Eq. (5.85) in Eq. (5.84), we have 

J1 dA 1 dA2cos( 01 )COS( 02) _ K _J1o...d_A--'l'---dA--=-2CO----;;S (,--0~1 ),---CO_S--,(,--,02:..c) 
7rR2 7rR 

(5.86) 

Therefore, the irradiation of A2 because of the radiation emanating from 
Al is given by the double integral of the two terms over Al and A2. 
Assuming uniform radiosity, we take the J1 out. 
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The irradiation of A2 because of radiation from Al is given by 

(5.87) 
The term within the fIrst integral is AIF12 = A2F21 • The term within 
the second integral should also be something similar and let us say it 
can be given by A1L12 = A 2L 21 . The irradiation on A2 only from the 
radiation coming from Al is given by 

J 1A 1F 12 - I<J1A 1L 12 = A 2Gt 
Using reciprocal rules, we can write 

A 2Gt = J1A2F12 - I<J1 A 2L 21 

+ I<L21 I<L12 
G2 = JIF21[1- --,;;-l = JIF21 [1 - -F 1 

r21 12 

By the same token, 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

For a two surface enclosure problem, please remember the parallel plate 
formula for an evacuated case, the G1 will be h multiplied by the view 
factor. Now, in this case, we get .12 multiplied by the view factor and 
another factor. This extra factor can be deemed to be the transmittance 
of the gas. If the transmittance of the gas is 1, the expression reduces 
to what we obtained for the evacuated enclosure or the transparent 
medium. So whatever is within the brackets, will have a value less than 
1 consequent upon the fact that K, 01 o. K, represents the amount of 
absorption. Even if the gas is optically thin, K, will still have a value. 
Therefore, 1 - ~f;:,~' can be considered as T(g) or the transmissivity of 
the gas. 

Gt = .J2F12T12 

L12 = L21 = mean beam length 

Lij also follows the reciprocal rule. 

T12 = 1 _ I<L21 = 1 _ I<L12 

F21 F12 

(5.92) 
(5.93) 

(5.94) 

Having defined this, we have to modify the irradiation terms. Gi consists 
of two components 

1. Irradiation from other surfaces, which can be handled by 
calculating Tij for all the surfaces 
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2. Gas emission, given by afgT: 

N 

Gi = 'gaTi + L F,jJjTij 
j~l 

( 
;;'£,j) ( ;;'£ji) where Tij = 1 - -- = 1 - --
Pij Fii 

203 

(5.95) 

(5.96) 

Tbere are two critical changes, we have done to irradiation with respect 
to evacuated enclosures: 

• We have an emission term in the irradiation too. 

• Within the summation, we have the gas transmittance included by 
the use of Tij. 

The gas transmittance consists of L 12 , which is the simplified 
representation of the solution to the equation of transfer. If it is not 
an optically thin gas, all these tricks do not work and we have to solve 
the equation of transfer and do full blown radiation calculations. Just 
like for the case of a lumped capacitance system in conduction analysis, 
wherein we say the whole body is at one temperature, here too, the 
approximations are valid only for a single optically thin gas. 

J, f.WTi4 + (1- f.i)Gi 

q, - Ji - Gi 

(5.97) 

(5.98) 

So the formulation is exactly as before, except that the irradiation has 
extra terms and one modified term. The extra term is the one involving 
emission while the modified term is Fij Jj. 

This is basically the theory of evacuated enclosure applied to an 
absorbing/emitting gas. If;;. = 0 and the gas is not participating, 
T12 = 1, fg = 0 and hence the first term in Eq. (5.97) becomes 0 while 
Gi becomes essentially the summation of just Fij Jj. Hence, there is an 
asymptotic correctness associated with this. 
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Exrunple 5.3: Revisit example 5.2 and solve it using the modified 
enclosure theory. 

Tg = 1200 K 

1C: = 0.08 m·l 

1.5 m 

00 

Figure 5.9: Geometry and pertinent data for example 5.3 

Solution: 

View factors: 
Fll = 0, F12 = 1, F21 = 1, F22 = 0 

T12 

T12 

KL12 
T21 = 1--

F12 

= 1 _ (0.08 x 1.8 x 1.5) _ 0 784 
1 - . 

(5.99) 

(5.100) 

What does this 0.784 represent physically? It means that the gas is 
allowing 80% of the radiation to go through. It is absorbing 20% of the 
radiation. 

1 - T12 = 0.216 (5.101) 
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EwTt + (1 - fl)F12J2 = art 
sW 

J1 = 2.87 x 10 2 
m 

f2aTi + (1 - f2)F21Jl 

W 
37200 

m2 

205 

(5.102) 

(5.103) 

fgaTi + F12hT12 (5.104) 

0.216 x 5.67 X 10-8 X 12004 + 1 X 37200 X 0.784 (5.105) 

= 54.4 kv;' 
m 

J1 - Gl = 2.87 X 104 - 54.4 X 103 

232
kW 

m2 

h-G2 

fgaTi + F l2 Jl Tl2 

= 25395.8 + 1 X 2.87 X 105 
X 0.784 

sW = 2.5 X 10 2 
m 

q2 h - G2 = 37200 - 2.5 X 105 

5 W 
-2.13 X 10 :I 

m 

(5.106) 

(5.107) 

(5.108) 

(5.109) 

(5.110) 

If we are given a black encloslITe or a problem involving two blac.k 
surfaces, parallel plate formula, we can either use the solution and get 
the exponential integral or we can use the theory of evacuated enclosures 
and solve the problem. 

As common sense will tell us, the most important point is that radiation 
is leaving the left wall and arriving at the right wall. Therefore, the net 
heat flux from the left wall will have to be positive because that is the 
wall at the highest temperature. The gas and this wall are at higher 
temperatures compared to the right side wall. The right side wall, being 
at a lower temperature, must receive radiation from both the left wall 
and the intervening gas. Therefore, intuitively one would expect q2 to 
be negative. But the beauty is that q1 # Q2. 

This means that the situation is unbalanced. We do not have equilibrium 
here and therefore the radiative transfer equation is not an expression 
of the law of conservation of energy. At a particular instant of time, 
what is the net heat flux which is going out? This is the question it 
tries to answer. We have to combine it with some energy equation if we 
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have to get the temperature distribution. Alternatively, we can pose the 
problem like this. For equilibrium to prevail between these two parallel 
plates, what should the gas temperature be? That means we will have 
to start with q1 = -Q2, treat Tg as unknown and determine the resultant 
temperature, we do it in the next problem. 

Example 5.4: Revisit the previous problem for the case of mdiative 
equilibrium. Determine the gas tempemture Tg • All other pammeters 
ar" the same as before. 

Solution: The solution to a radiative transfer equation does not 
guarantee equilibrium. The gas is getting heated in this case. The left 
wall is giving out 232 kW 1m2 while the right wall is getting only 213 
kW 1m2 . So 19 kW 1m2 of energy is being absorbed by the gas every 
second. The gas has to get heated up. So the equilibrium temperature 
should be above 1200 K. 
Radiative equilibrium case: 

Q1 Jl-Gl (5.111) 

Q2 J2 -G2 (5.112) 

q1 -q2(for radiative equilibrium) (5.113) 

J l 
4 SW2 

(5.114) = CITl = 2.87 x 10 -
m 

W2 
J2 CITt = 37200- (5.115) 

m 

G l = EgCITi + F l2 J 27l2 (5.116) 

Gl = 0.216 x 5.67 x 10-8 x Ti + 29164 (5.117) 

712 = 0.784 (5.118) 

Fortunately, the mean beam length is not dependent on temperature. 
If it were so, we would get into a loop. We made a statement earlier 
that we are able to separate the geometric aod thermal parts. Now, 
we cao appreciate the significance of that statement. If the thermal 
and geometric parts were combined, it would lead to tedious iterations. 
Fortunately view factors are also not dependent on temperatures. 

G2 EgCITi + i<12Jl7l2 (5.119) 

0.216 x 5.67 x 10-8 x Ti + 2.25 x 10-5 (5.120) 

ql -q2 (5.121) 

:. Jl - Gl = -J2+G2 (5.122) 

Jl +J2 = Gl +G2 (5.123) 
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2.87 X 105 + 37200 = 0.216 X 5.67 X 10-8 X r: + 29164 

+0.216 X 5.67 X 10-8 X Ti + 2.25 X 10-5 (5.124) 

2.87 X 105 + 37200 = 0.432 X 5.67 X 10-8 X r: + 2.54 X 105 (5.125) 

2.859 X 1012 

1300K 

(5.126) 

(5.127) 

If we want the gas to be under radiative equilibrium, it should be at 
a temperature of 1300 K or left to itself, if sufficiently long time has 
elapsed, and we are not controlling the gas temperature, the gas will 
come to this temperature. Then, whatever is coming from the left side 
will go to the right side. 

In the absence of the gas, what will q be? In this case, with the gas, 
ql = -q2 = 2.22 X 105:' We want to appreciate the 3 cases: 

• T. = 1200K ql = 2.32 X lOSW q2 = -2.13 X 105W . If all the g, rn2 ' r,,2 
temperatures are specified, we have no control over the energy 
balance. 

• At radiative equilibrium: Tg = 1300K, ql = -q2 = 2.22 X 105 ~. We 
talk about energy balance in the equilibrium case when ql = -q2 
Even in this case, because the gas has a K, =I 0, we are getting a 
flux lower than what we would have got if we had a transparent 
gas or vacuum between the two plates. 

• Gas with K, = 0, ql = -q2 = 2.5 X lOs W, m 

So by worlring out the last 3 problems, many of the concepts in gas 
radiation become clear. Because of the absorption of the gas, though it 
is emitting, the gas is at a temperature in between the other two walls 
and the net effect is that it retards the flow of heat from one wall to the 
other wall. 

There could be another case where the gas is very hot and we want the 
heat to be transferred to the other walls. Where will such a situation 
occur? In a fire tube boiler, water flows outside of the tuhes which 
becomes steam because of the heat from the gases. In this case, the 
walls are hot and the gas is getting heated up due to the presence of the 
wall. The gas will reduce the radiative heat transfer between the two 
walls, because of its absorptive characteristics. 
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5.5.4 Calculation of emissivities and absorptivities in 
mixtures of gases 

Mixtures of gases are very important, as we find them in combustion 
chambers, furnaces and exhaust gases of automobiles. Wherever 
hydrocarbons are burnt, the resultant products contain water vapour and 
carbon dioxide. Both are radiatively participative and they interact such 
that they have overlapping bands which cannot be separated. Radiation 
entering Earth's outside atmosphere follows the Planck's distribution 
for a body at 5800 K while entering, but the same becomes zig-zag after 
getting attenuated by gases like water vapour and CO2 • If we want to 
do a detailed calculation, we have to solve the equation of transfer for 
every spectral band knowing the properties of absorptivity and emissivity 
which must come from molecular spectroscopy and then solve it band 
by band or interval by interval. This is called the line by line model, 
which is very advanced and time consuming. 

However for practical purposes, if we want to have a first cut analysis or 
design of a combustion chamber or a furnace and so on, we do not have to 
do those detailed calculations but opt for a simplified approach instead. 
We use some tables or charts, do minimal calculations and arrive at the 
required information. These charts were developed by Hottel, mainly for 
the H20 + C02 mixture at 1 atm pressure. 

The gas emissivity, Eg should be a function of 

Eg - f(Lm,Pg,P,C,Tg ) 

Lm - mean beam length 

Pg - partial pressure of the gas 

P total pressure of the gas 

C concentration of other gases 

Tg temperature of the gas 

The temperature is included here as we have already shown that 
emissivity is a function of temperature. We have included the 
concentration of other gases because there could be interaction and 
overlap of absorption bands. There could be bands in which more than 
one gas absorbs and so on. The total pressure affects the emissivity 
because it decides how much gas is present in a particular volume which 
decided the intermolecular spacing, which in turn affects its capacity to 
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absorb and emit. So, w baseline charts bave been developed for pressure 
of 1 atmosphere and the correction charts help give the corrections for 
pressures other than 1 atmosphere. 

Principslly we are considering two gases - H20 + C02 

• Emissivity of CO2 is a function of the partial pressure of CO2 

multiplied by the mean beam length and its gas temperature. 

The product of mean beam length and pressure is given in S1 units 
as atm-m in the chart (see Fig 5.10) It will directly give us the gas 
emittance and we can see that the maximum is 0.3. Suppose we 
consider two parsllel plates with L = 1.5m, mean beam length = 
1.8 x L. If the totsl pressure is 2 bar and the mole fraction of C02 is 
0.4, the partisl pressure of CO2 is 0.8 bar. Now if we calculate and 
get PaLm, we see in the chart that various curves are available for 
various vslues of PaLm. Tg is the gas temperature given in Kelvin. 
From this, we can straightaway read the vslue of f 9 • For pressures 
other than 1 atm, we use the correction factor given in Fig 5.11. 

• Water vapour 
fw = h(PwLm, Tg) 

Following a similar procedure, we will read the emissivity vslue 
of water vapour from the charts given in Fig 5.12. If the Ptota! of 
latm, we apply the correction factors from the charts again 
(Fig 5.13). 

(5.128) 

(5.129) 

These charts are mostly empirical, and results were obtained after 
many experiments were done with different concentrations of gases. 

Then there are some spectrsl bands in which the absorption of 
carbon dioxide and water vapour overlap. So we cannot simply 
add the emissivity of carbon dioxide with the emissivity of water 
vapour. IT we want to get the totsl emissivity, we may be inclined 
to believe that it would be correct to do it as Ec + Ew' This should 
be vslid for latm pressure. For other pressures, we would say it 
should be Ccfc + Cw€w. But what will happen is that sometimes the 
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sum of these two will exceed 1, which is not praciically possible. 
That is because we have not taken care of the overlap which has 
to be subtracted. 

Spectra of C02 and H20+C02 overlap, so a correction is required. 

(5.130) 

The correction charts for IlE are given in Fig 5.14 for three gas 
temperatures. Unfortunately, these are given only for three values 
of temperatures -400 K, 810 K and > 1200K. If some other 
temperature is given, then linear interpolation must be done 
between two charts to get the value. Also, note that Pw + Pc of 
Ptatal as there may be other gases present, like nitrogen. 

Finally, for the H 20 + CO2 mixture, we have 

(5.131) 

Gas absorptivity: 

A mixture of C02 and H20 mixture is not a gray gas and also has 
different absorption spectral bands for various frequencies, hence Eg of 
ago Fortunately for us, the same charts can be used for a g also, but 
with some changes. For Eg, the gas temperature (Tg) is very important. 
On the other hand for ag , the surface temperature (T.l will be very 
important. 
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Figure 5.10: Emissivity of carbon dioxide in a mixture with nonradiating 
gases at a total pressure of 1 atm and of hemispherical shape 

0.006 1 0.0 17 0.037 

P, atm 

Figure 5.11: Correction factor for obtaining carbon dioxide emissivities 
at pressures other than 1 atm 
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Figure 5.12: Emissivity of water vapour in a mixture with nonradiating 
gases at a total pressure of 1 atm and of hemispherical shape 
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Figure 5.14: Correction factor associated with mixtures of water vapour 
and carbon dioxide 
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Figure 5.13: Correction factor for obtaining water vapour emissivities at 
pressures other than 1 atm 

Q e (Tg r·65 
Cefe Ts (5.132) 

Q w 
(Tg r.45 Cwfw Ts (5.133) 

where now, fe 16 (PeLm~:' Ts) (5.134) 

fw = 17 (PwLm~:,Ts) (5.135) 

In the above equation, T s is surface temperature. A correction to take 
care of overlap is given below, 

(5.136) 

Q = Qe+Qw -~Q (5.137) 
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Example 5.5: A furnace having a spherical cavity of 0.5 m diameter, 
contains a gas mixture at 2 atm and 1400 K. The mixture consi..ts of 
CO2 at a partial pressure of 0.6 atm, N2 with a partial pressure of 0.9 
atm and the remaining is water vapour. If the cavity wall is black, what 
is the cooling mte required to maintain its tempemture at 500 K? 

Solution: 

Lm = Mean beam length = 0.65D = 
PcLm = 0.6 x 0.325 = 

0.325m (5.138) 

0.195atm m (5.139) 

From the charts, Ec 

Correction factor for carbon dioxide Co 

Correction factor for water vapour Cw 

PwLm = 0.5 X 0.325 

From the charts, fw 

(Pc + Pw)Lm = 1.1 x 0.325 

= 0.13 (5.140) 

.6.E{Tg = 1400K) 

E9 = 
Eg = 
Eg = 

= 1.2 (5.141) 

Pw 0.5 
Pw+Pc 1.1 

0.03 

Cofc + CwEw - .6.E 

1.57 (5.142) 

0.163atm m (5.143) 

0.14 (5.144) 

0.35 atm m (5.145) 

0.45 (5.146) 

(5.147) 

(5.148) 

0.13 x 1.2 + 0.14 x 1.57 - 0.03 (5.149) 

0.36 (5.150) 

We repeat the procedure for calculation of ago But remember that we 
have to apply the correction in this case as 

ac (from the charts) 0.09 (5.151) 

a w (from the charts) 0.17 (5.152) 

c'" 1.2 (5.153) 

Cw 1.57 (5.154) 
T. 

a e Coac( i )0.65 = 0.211 (5.155) 

T. 
a w Cwaw (i )0.45 = 0.432 (5.156) 

.6.a = Is( p P
w 

P , (Pc + Pw)Lm, T.) (5.157) 
w+ e 

.6.a = 0.005 (5.158) 

ag = a c + a w - .6.a = 0.64 (5.159) 
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The most important thing we see here is that fg of OI.g. A mixture of 
carbon dioxide and water vapour is a non gray gas. 

ql 

Q1 

€1 

J1 

G1 

OI.g + Tg + Pg 

OI.g + 7"9 

G1 

q1 = 
q1 

= J1 - G1 

= (J1 - G1 )41fR2 

1 

= €luT{ + (1 - €J) = uT{ 

(5.160) 

(5.161) 

(5.162) 

(5.163) 

'gurt + Tg(UT{) (5.164) 
1; Pg = 0 (5.165) 

1; 7"g = 1 - OI.g (5.166) 

'guTt + (1 - OI.g)(uTil (5.167) 

J1 - G1 = uT{ - €yurt - uTi + OI.guT{(5.168) 

OI.guT{ - fguT: (5.169) 

For this problem under consideration, 

q1 - 0.64 x 5.67 x 10-8 x 5004 

0.36 x 5.67 x 10-8 X 15004 

kW 
q1 - -76.2 2 m 

Q1 Q141fU2 = -59.8kW 

(5.170) 

(5.171) 

(5.172) 

The solution tells us that we need to cool the cavity, which is very 
evident. Most importantly, in this spherical cavity, if we have ethane, 
propane, butane or LPG, burn it, allow it to reach a temperature of 
1500 K and we get a mixture of C02+H20, it is possible to have tubes 
on the outside of the spherical cavity, send water through them which 
will get heated at the rate of 60 kW. This is the radiative heat transfer 
power that the gas is capable of transferring to the wall. This will be 
very important in furnace calculations, design of radiant super heaters 
and so on. It has several engineering applications! 
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PROBLEMS 

5.1 Two very long parallel plates are maintained at uniform 
temperatures of Tl=850 K and T2 = 550 K. The respective 
emissivities are 0.6 and 0.8. Between the two plates, an absorbing 
and emitting gas at a uniform temperature of T g= 400 K flows. The 
spacing between the plates, L is 1.2 m. Neglecting any convection 
between the gas and the plates, compute the net radiative heat flux 
at the two walls in kW 1m2 . 

5.2 An absorbing and emitting gas at a templ'.rature of T g= 1100 K 
flows between two very long parallel plates. Both the plates have 
an emissivity of 0.8 and are maintained at a uniform temperature of 
Tl =T2= 500 K. The spacing between the plates, Lis 1 m. Determine 
the absorption coefficient of the gas if the amount of cooling required 
at each wall surface is q = 35 kW 1m2 (Please note that this is a 
classic inverse problem where one or more properties are estimated 
from measured heat fluxes or temperatures, as the case may be). 

5.3 A cubical furnace 1 m on each side is made up of a mixture of 
40% C02 and 50 % H20. The remainder is Nitrogen. The gas 
temperature is uniform at 1900 K and the walls are maintained at 
1000 K. The inner surfaces of the furnace are black. Determine 
the total heat removed from the walls in order to maintain the 
temperatures. 

5.4 Repeat problem 5.3 for the case of the wall emissivities being 0.8. 
Comment on your results. 

5.5 A rectangular furnace is of dimensions 0.45 x 0.65 x 2.0 (all in m). 
The interior walls have a hemispherical total emissivity of 0.8 and are 
maintained at 750K. The furnace is filled with combustion products 
at a temperature of 2100 K. The composition of the combustion 
products by volume is 42% of C02, 22% of water vapour and the 
remainder N2 • The total pressure is 2.5 atm. Calculate the net 
radiative heat flux to the walls of the furnace using the charts 
for gas emissivity of mixtures and the radiosity method applied to 
enclosures, modified for participating media. 



CHAPTER 6 

I ntrod uction to atmospheric 

radiation 

6.1 Introduction 

In this chapter, the basics of radiative transfer in planetary atmosphere 
are introduced. First we look at radiation spectra, followed by black 
body radiation for temperatures commonly encountered in planetary 
atmosphere. This is followed by a consideration of RTE for a plane 
parallel atmosphere that is emitting and absorbing. We then discuss the 
case of radiative equilibrium followed by a brief description of infrared 
remote sensing. 

6.2 Electromagnetic spectrum 

AB already discussed in earlier chapters, the speed of light (c), wave 
length (,\) and frequency (1I) are related by 

c 
V= -

,\ 
(6.1) 

In atmospheric science, ,\ < 4p,m refers to shortwave radiation and is 
typically associated with solar radiation. Long wave radiation (,\ > 
4p,m) is typically associated with terrestrial radiation from the earth. 
AB already mentioned, visible radiation has a wave length range of 0.4 -
0.7p,m. Radiation with wavelength less than 0.4 and greater than O.OIp,m 
is termed as ultra violet radiation. The range 0.7- 4p,m is known as ncar 
infrared (IR) and 4 - 100p,m is known as far infrared. Radiation in the 
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range 1 - lOmm is known as microwave radiation. The energy balance 
of the earth is largely decided by the incoming solar radiation which is 
mostly in the UV, visible and near infrared radiation and the earth's 
radiation itself which peaks around lOmm (Far infrared). Microwave 
radiation has no role in this. However, microwave radiation from the 
earth can penetrate clouds and because of this reason is extremely useful 
in both passive and active remote sensing. It is instructive to mention 
that baBed. on the relation E = hv, the energy associated. with microwave 
radiation emission is small and hence remote sensing of the atmosphere 
with space borne instrUlDents to detect the radiation has to be necessarily 
done with low earth orbiting satellites. Figure 6.1 shows a simplified 
representation of the electromagnetic spectrum. 

400 nm 

, , 0 , 0 0 
0 , -• 0 

0 1 -- • , ~ • , 
~ 

, 
> • 0 

H 

Visible 
Radiation 

, 
0 

0 
0 -

, , 

Fr~quency 
, , 

, 
, , , 

700 nm 

, ~ 
~ 0 ' s ~ 0 , 

41 .- ... 0 
" - g ~ .~ --~ , , , 

10' 

Figure 6.1: Electromagnetic spectrum 

6.3 Black body radiation 

~ , 
> • ; 0 
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0 -I ~ . • 

10 • 

The basic radiation laws-namely the Planck's distribution, Wien's law 
and Stefan Boltzmann can all be applied in atmospheric radiation with 
the assumption that the sun is a black body. 
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The Stefan Boltzmann law can also be applied to determine the Earth's 
equivalent black body temperature, as will be shown shortly. 

6.3.1 Temperature of the sun 

Example 6.1: Taking the mean sun-earth distance to be 1.49 X lO11m 
and the mdius of the outermost visible layer of the sun R.un to be 
6.96 x 108m, determine the ~uivalent black body tempemture Teq of the 
.• un (i.e sun's outermost visible layer also known a.9 solar photosphere) if 
the intensity of solar mdiation reaching the earth is 1353 W 1m2 • 

Solution: 

[
1.49 X 1011] 2 

qphatosphere = 1353 6.96 x 108 

(We can use the inverse square law in the above expression) 

7 W 
qphatosphere = 6.711 x 10 2 

m 

(6.2) 

(6.3) 

(The quantity 1353 ,::;; is known as the solar constant and is 
experimentally measured). Using Stefan Boltzmann law, we have 

ar,;tq = 6.411 x 107 

T. = [6.711 X 107
] 0.25 

eq 5.67 x 10 8 

Teq = 5865K 

(6.4) 

(6.5) 

(6.6) 

Example 6.2: From the equivalent black body tempemture of the sun 
determined in the previous example and the Wien's displacement law, 
determine the wave length corresponding to the maximum intensity of 
solar mdiation. 

Solution: 

AmaxT = 28981-'mK 
2898 

Amux = 5865 = 0.4941-'m 

(6.7) 

(6.8) 

It is seen that Am.., is very much in the visible part of the EM spectrum. 



220 Introduction to atmospheric radiation 

6.3.2 Temperature of the earth 

The earth is not a perfect black body and the fraction of incoming 
radiation that is reflected, reflectivity, is around 0.3. In the parlance 
of atmospheric science, this reflectivity is known as planetary albedo. 

Example 6.3: If the earth's albedo is 0.3 determine the equivalent black 
body temperature of the earth, assuming it to be in radiative equilibrium. 
The solar constant can be assumed to be 1353 W/m2. 

Solution: 

41r R~O"T~ = 1r R1,;(1 - 0.3) x 1353 

_ [ 0.7 x 1353 ] 0.25 

Teq - 4 x 5.67 X 10-8 

Teq = 254K 

6.4 Radiative transfer equation for a plane 
parallel atmosphere 

(6.9) 

(6.10) 

(6.11) 

From the previous chapter, the RTE for a plane parallel atmosphere can 
be written as 

dI +kI=kuT4 
ds 11" 

(6.12) 

where T is the temperature of the air layer in k, I is the intensity in m1f.r 
and k is the absorption coefficient. The use of Stefan-Boltzmann law in 
Eq. (6.12) tacitly implies that local thermal equilibrium (LTE) prevails 
in the atmosphere. However, this is true only for the lower atmosphere. 

The plane parallel assumption reduces the problem to a one dimensional 
one. Now, we have only two fluxes 1+ and 1- in the upward and 
downward directions. 
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f+ = II f(IJ).cosOsinlJdlJdljJ integrated over the downward facing 
atmosphere and f- = II f(O). cos /1 sinlJdOdljJ integrated over the upward 
facing atmosphere. 

6.5 Radiative transfer equation (RTE) for an 
absorbing and emitting atmosphere 

The RTE equation for monocllromatic or spectral radiation intensity, l;. 
(or f), as derived in the last chapter is, 

dl;. 
d~ + k>..l;. = k>.h,>.(Tg) (6.13) 

In Eq.(6.13) k>. is the spectral absorptivity in m-l, "s" is the direction 
under consideration. The first term on the left hand side represents the 
change in intensity, the second represents the attenuation by absorption 
and the right hand side represents attenuation by emission. Please note 
that if scattering by particles needs to be accounted, as is the case in 
microwave remote sensing, a source term needs to be added to the right 
hand side of Eq.(6.13). Furthermore, please also note that Eq.(6.13) 
assumes a gray atmosphere consequent upon the appearance of k>. in 
the emission term, which in turn arises from the Kirchoff's law for a 
gray medium wherein EJ\=kJ\. Equation (6.13) is frequently referred 
to as the Schwartzchild's equation. Under the assumption of local 
Schwartzchild's thermodynamic equilibrium(LTE), fbJ\ can be replaced 
by the Planck's law. The LTE does not hold good for the upper parts 
of the atmosphere, where the latter is rarefied. 

In consonance with the terminology commonly used in atmospheric 
sciences, we will denote h,J\ as B>.(T). With this, Eq. (6.13) becomes 

dh 
ds + k>..I>. = k>.B),(T) (6.14) 

Equation (6.14) is a first order linear differential equation, provided 
the source function (RHS) is known a priori, which is the case 
for an absorbing and emitting medium and for simplified cases of 
scattering. For atmospheric scattering, the solution to RTE is 
formidable. Multiplying both sides of Eq. (6.13) byek,. 

ek,8 [~: + k),.h] = ek"k),B),(T) (6.15) 
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The LHS is actually d(e'~;.l'); substituting for the LHS in Eq. (6.15) 

d(ek,s.h) = ek,skAB).(T) 
ds 

(6.16) 

Recall that ek,. is an factor. Integrating Eq. (6.16) from 0 to any 81 

along s, we have 

(6.17) 

(6.18) 

(6.19) 

In Eq. (6.19) h(o) at s = 0 is known. The first tenn on the right 
hand side of Eq. (6.19) represents the radiation intensity at h(O) 
arriving at 81 after getting attenuated because of a non-zero k).. The 
second term represents attenuation of the radiation intensity because 
of emission (in fact BA(T) can be more generally written as a source 
term S). in which case, the second term on the RHS of Eq. (6.19) 
represents attenuation by both emission and in scattering in the direction 
s). Equation (6.19) is an integral equation and as afore mentioned 
obtaining h for a anisotropic scattering can be challenging, demanding 
the use of numerical techniques. 
It is instructive to note that for BA(T) "" 0, Eq. (6.19) reduces to 

(6.20) 

Equation (6.20) is the familiar Beer or Beer-Lambert law of radiation 
applicable for a strongly absorbing and weakly emitting gas. The plane 
parallel atmosphere considerably simplifies radiation calculations and 
the temperature, densities of atmospheric quantities are assumed to be 
function of only the height (or pressure). By introducing a new property 
called optical depth (r) given by k.\.x, the upward/downward spectral 
fluxes can be computed as follows 

(6.21) 

6.6 Infrared remote sensing 

To calculate the heat flux q+ or q- from the spectral fluxes qt or qJ:, 
one has to integrate Eq. (6.21) over the desired wave length interval 
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>'1 -),2 (or wave number). In order to be able to do this, the variation 
of T). with A needs to be known. Hence the flux determination will 
involve a convolution of qt and the Planck's distribution, since q),. usually 
varies rapidly with A. Integration is usually done over a narrow range 
of wave lengths (or wave numbers), leading to what are known as line
by-line calculations, wherein typically for an IR instrument, millions of 
line by line calculations with available spectroscopic absorption data 
are to be done. This is a big challenge in passive remote sensing of 
the atmosphere with the help of a multi-spectral instrument usually 
known as sounder. In view of this, repeated calculations with assumed 
profiles of the atmosphere become inevitable to solve the inverse problem 
of retrieving or estimating the atmospheric temperature and humidity 
profile from satellite flux densities (or radiances). A fast radiative 
transfer (RTl model is invariably required by satellite meteorologists. 
Though fast models are usually regression based, researchers have also 
begun using state-of-art simulation tools like Artificial Neural Network 
(ANN) to develop ''fast RT model" . 

A fast RT model, by definition, is one which takes in the atmospheric 
profile, typically temperature and humidity and returns the fluxes within 
a time, order of magnitude lower than a regular RTE solution. A 
fast RT model is built on a database of profiles vs fluxes, developed 
by repeated solutions to the RTE. They are trained and tested 
rigorously before they can be employed operationally. In actual remote 
sensing, the sensor characteristics, also known as the spectral resporu;e 
function (SRF) , has to be convolved with the Planck's distribution 
and the variance of 7), vs A to compute the radiances. I<br satellite 
meteorologists, knowledge of SRF's is required before atmospheric 
profiles of temperature and humidity can be retrieved from measured 
satellite radiances at designated frequencies. In a typical multi-spL'Ctrai 
instrument usually 15 - 20 channels are present. These are carefully 
chosen based on atmospheric absorption and transmission windows and 
the mission objectives. Readers are advised to look at advanced texts on 
atmospheric radiation or remote sensing to know more about the state
of-the art in this field. 
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PROBLEMS 

6.1 The mean sun-earth distance is 1.48 x lOll m and the radius of the 
photosphere of the sun is 6.95 x 108 m. The equivalent black body 
temperature of the sun is 5800 K. 

(a) With the above data, determine the intensity of the solar 
radiation reaching the earth (also known as the solar constant). 
(b) The mean sun-earth distance given above is known as one 
astronomical unit (AU). If the VenUB-S1lll distance is 0.72 AU, 
determine the solar constant for VenUB and compare it with the result 
obtained in part (a). 
(c) Using the result obtained in part (b), detennine the equivalent 
black body temperature of Venus, if the planetary albedo 
(reflectivity) for Ven1L9 is 0.77. 



CHAPTER 7 

Inverse problems In radiation 

7.1 Introduction 

Consider the case of a person with excruciating chest pain who is being 
wheeled into the emergency care unit of a hospital. Upon checking the 
patient's vitals and stabilizing him, if required, the intensivist and other 
doctors try to ascertain the cause of the pain. An ECG will be taken to 
rule out a myocardial infraction (heart attack) followed by a battery of 
tests. The exact cause of the pain could range from a simple indigestion 
related gas pain to a life threatening heart attack or even a cardiac arrest. 
In the language of engineering, the chest pain is our "measurement" or 
"data"with which its cause has to be identified. Needless to say the pain 
here is the effect. Since, there can be several causes to this pain, the 
problem at hand is challenging and ill posed, as several causes could lead 
to the same effect (pain). The goal, then, is to identify the correct cause. 
This example is a classic case of an inverse problem. An important point 
to be noted in the foregoing example is the importance of the physician's 
skills in quickly and deftly sifting through the symptoms the patient 
presents, results of the examinations and tests and how he/she correlates 
here with similar cases seen in the past. His "expert"knowledge is a 
distinguishing feature that holds the key to tackle the iIl-posedness. 
Much in the same way, the prior knowledge of the problem goes a 
long way in reducing the ill-posedness associated with most problems 
in science and engineering. An analyst who uses such prior knowledge 
for better estimation of parameters or causes is frequently referred as a 
Bayesian. 

Similarly, in thermal sciences too there are several situations where one 
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needs to identify or establish the correct cause or the set of causes 
from the effect(s). In thermal sciences, more often than not the 
effect is temperature time history, temperature distribution or heat flux 
distribution. The cause we are seeking could be a thermo physical 
property like emissivity, thermal conductivity or thermal diffusivity. 
Sometimes one may be interested in obtaining the estimate of the heat 
transfer or mass transfer coefficient, which are known as transport 
properties. In quite a few engineering applications, the goal can also 
be the estimation of the heat flux or the heat flux distribution, which 
presents itself, invariably, as a boundary condition. 
A classic frequently quoted example in inverse heat transfer is the 
problem of determination of surface heat flux in a re-entry vehicle. When 
such a vehicle re-enters the earth's atmnosphere from outer space the 
velocities encountered are enormous as for example 8 kID/s (translating 
to a Mach number of the order of 25) leading to a massive aerodynamic 
heating at the surface, wherein the kinetic energy of the air is converted 
to enthalpy rise as a result of the "braking" action on the fluid. Very high 
temperatures on the surface forbid us from placing heat placing heat flux 
gauges on the vehicle surface, However, the surface heat flux is a critical 
design parameter which needs to be known to design among other things, 
Thermal Protection Systems. In view of this, temperature measurements 
are made at convenient locations on the inside of the vehicle with the 
help of thermocouples. Using the "measurements"as data, an inverse 
heat transfer model is set up wherein guess values of the surface heat flux 
are given and temperatures corresponding to the measurement locations 
are computed by solving the appropriate governing equations for the 
problem under condsideration. The sum of the squares of the deviations 
between measurements and simulations is usually minimised to obtain 
what is frequently referred to as the maximum likelihood estimate of the 
parameters. 

Examples of inverse problem in radiation: 

• Estimation of radiative surface properties like emissivity and 
absorptivity. 

• Estimation of the absorption coefficient in tissues with help of 
CT scan.~. The absorption coefficient can reveal information on 
whether an underlying pathology(Le disease) is present. 
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• Remote measurement of global rainfall through infrared or 
microwave combined sensors placed in satellites. 

7.2 Least squares minimization for parameter 
estimation 

In the previous section, an introduction to inverse problems in thermal 
sciences in general and radiation heat transfer in particular was 
presented. Atmospheric remote sensing is a field whose progress 
critically hinges on our ability to invert satellite measured quantities into 
geophysical parameters. Parameter estimation problems are invariably 
posed as optimisation problems. Oftentimes, minimistion of the sum of 
the least squares of the residue is done. Mathematically, if Y data,; is the 
measured data vector and Y.im,i is the simulated or calculated vector of 
Y values for assumed values of the parameters, then, we define S(X) as 

N 

S(X) = I)Ydata,i - Ysim,i? (7.1) 
i=l 

Where N refers to the total number of measurement. The goal then is 
to minimise S (X) and X refers to the set of parameters that need to be 
estimated. 

If each measurement is associated with a different error, given by a 
standard deviation <Ii Eq.(7.1} can be modified as 

(7.2) 

Minimisation of S(X) in Eq.(7.2) is known as weighted least squares 
minimisation. A different (5 for each measurement makes the weighted 
least squares morc general than the plain least squares minimization. 

Example 7.1: Consider one dimensional steady conduction in an 
infinitely long slab of thickness 100 mm made of insulating material 
whose thermal conductivity is k = 1 W /mK. The left end of the slab 
is maintained at a temperature of 100'C while the right end is exposed 
to evacuated environment at 30 'C. There is no heat generation within 
the slab. The temperature distribution measured at eight locations across 
the slab is given below. Using the principle of least square minimisation, 
determine the hemispherical total emissivity of the exposed surface of the 
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slab at its right end. Use finite differences to solve fOT the tempemture 
distribution in the slab fOT guess values of emissivity in the mnge of 
0.15~ e ~0.95, with a search interval of 0.1. 

Table 7.1: Temperature VB distance for Example 7.1 

I 
k = 1 "'YmK 

T=373 K 
I 

100 

I" 100 mm _I 

Evacuated 
environment 

T =303K 
~ 

Figure 7.1: Infinitely long slab subjected to constant temperature at one 
end and radiating to evacuated environment at other end 

Solution 
As is evident, this is typically an inverse problem since it requires 
the estimation of surface the thermophysical property (emissivity) from 
measured temperature distribution. Generally the direct problem for 
such a case would be the determination of temperature distribution 
for given thermopysical properties such as emissivity in this case. The 
assumptions pertinent to the present problem are listed below: 
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1. The slab is infinitely long and finitely thick, facilitating one 
dimension heat conduction along the thickness dirction only. 

2. The thermophysical properties for the slab are coIllitant and do not 
change either with temperature or location. 

3. The right wall loses heat to a constant temperature evacuated space 
only by radiation and convection currents are completely absent. 

4. There is no internal heat generation in the slab and temperatures 
are recorded at steady state. 

The governing equation for the above stated problem can be written as 

subject to 

Where 

373K at x= 0 T 

_kdT 
dx 

ea(T4 - T!) at x = 100 mm 

e ~ emissivity of the foil surface 

a ~ Stefan Boltzmann constant, 5.6 x 10-8 W/m2K 4 

Too ~ temperature of the evacuated environment, K 

T ~ temperature of the slab, K 

Solution to the forward model: 

(7.3) 

(7.4) 

(7.5) 

The governing equation as given by Eq.(7.3) along with the boundary 
conditions as specified in Eq. (7.4) and Eq. (7.5) can be discretised using 
second order finite differences. This would lead to a set of simultaneous 
linear equations in T, which then can be solved using an iterative method 
such as the Gauss Siedel scheme. A sample FORTRAN program for the 
problem is listed hereby for ready reference. 

1 I program forward_model 
2 I implici t none 
3 INTEGER:: I 
4 I Integer , parameter:: Nx=ll 

direction 
No. Of grid. pOints in a: 

II 
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5 double precision :: TO(Nx) ,T(Nx) ,ITER, ERR(Nx), ermax,EPS, 
tol,lx-O.l0,dx,E-O.83,a 

6 double precision :: k=1,Tamb=303,sigma=5.67e-8,dummy 
7 
8 !TO: Represents temperature in pre~ious iteration 
9 IT Represents temperature in current iteration 

10 ! ITER : Iteration number 
11 ! ERR: error 
12 ! ermare: mamimum error 
13 !EPS: ma:cimum permissibLe error 
14 !tol.: tol.erance 
15 ! tz : Length oj computational. domain in :!l direction 
16 lare: length of control. 'VoLume 
17 IE: emissivity 
18 
19 T (:) =0 
20 
21 ITER=O 
22 
23 EPS : le-8!mazimum error permissible or convergence 

crieterion 
24 
25 dx=lx/(!Ix-l) 
26 
27 a=-k!(dx) 
28 
29 tol=l 
30 
31 !starting iterations Jar Bottling Lap'Lace equation(Gauss 

Seidel. Sol.ver) 
32 
33 DD WHILE(tol> EPS) 
34 
35 ITER=ITER+l 
36 
37 TO ( :) = T ( : ) 
38 
39 DO I=2,lIx-l 
40 
41 T(l)= (T(I-l)+T(I+l»/2 
42 
43 END DO 
44 
45 ! Boundary condi tions 
46 
47 
48 T(1)=373 
49 
50 T(Nx)=E'SIGMA'«TO(Nx»"4-(Tamb"4»+a'(4'T(Nx-l)-T(Nx-2» 
51 
52 T(Nx)=T(Nx)/(3'a) 
53 

II 

II 
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54 ermax "" 0.0 
55 
56 DO I=l, Nx 

57 
58 ERR(l) = T(I) - TO(l) 
59 
60 if(ABS(ERR(I» > ermax)THEN 
61 
62 ermax =ABS( ERRO» 
63 
64 ENDIF 
65 
66 END DO 
67 
68 
69 write(.,.) IIResidualu=ull ,ermax 
70 
71 if (ormax < EPS) THEN 
72 
73 WRITE (. $ *) II Solutionuconvergeduin II, ITER, II i tarat ions II 
74 
75 ENDIF 
76 
77 tal "" ermax 
78 END DO 
79 OPEN (uni t =5, file"" II temperature. txt Ii , status"" II unknown II) 
80 
81 DO i=l,nx 

82 
83 WRITE(S,')T(i) 
84 
85 END DO 
86 
87 CLOSE (5) 
88 
89 end program forward_model 
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Least squares minimization can be used to solve the inverse problem by 
substituting different values of 0 and solving the governing equation to 
obtain the temperature distribution Ti, where the subscript i denotes the 
location at which the temperature is measured. Once this is obtained, 
the sum of the residues is calculated as follows: 

N 

8(0) = ~)Texp,i - Tcalc,;)2 (7.6) 
i=l 

The sum of the square of the residual, S(o) is computed for 0 ranging 
from 0.15~ 0 ~0.95 in steps of 0.1 and these are as shown in Table. 
7.2. Figure 7.2 depicts the plot of residuals S(o) for different values of 
0. From Table 7.2 and Fig.7.2 one can conclude that 0 should lie in the 
range O. 75~ 0 ~0.95. 

Table 7.2: Variation of the sum of the residues, S(o) with emissivity(o) 
for Example 7.1 

400,---~------------------------, 

300 

";i' 200 -III 
100 

o 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

E 

Figure 7.2: Variation of residuals with emissivity for Example 7.1 

The exercise we have performed here is frequently referred to as 
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exhaustive equal interval search. It is possible to employ faster and more 
sophisticated search algorithms like the Fibonacci or Golden Section 
search to get a much better estimate of e with same number of functional 
evaluations (Please refer to Balaji(2011) for further discussion of different 
optimization methods for single and multi variable problem.). Even with 
the slightly crude exhaustive search method presented above, we can fit a 
local Lagrangian interpolating polynomial for S( e) by using three values 
of 0 where the residuals approach minimum i.e in the range 0.75 :0; 0 :0; 
0.95. 

8(0) 
(0 - 0.85)(0 - 0.95) 

(0.75 _ 0.85)(0.75 _ 0.95) X 7.81 

+ 
(0 - 0.75)(0: - 0.95) 

x 3.01 
(0.85 - 0.75)(0.85 - 0.95) 

+ 
(0: - 0.75)(10 - 0.85) 

X 7.14 (7.7) 
(0.95 - 0.75)(0.95 - 0.85) 

8(0) - 1048.5 ,,2 - 1785.8 e + 757.38 (7.8) 

Differentiating Eq.(7.8) to obtain dB,},,") and equating it to zero we can 
make S (e) stationary 

dS(e) 
de 

= 2097 e -1785.8 = 0 

0.84 

(7.9) 

(7.10) 

Therefore, while the exhaustive search gave the solution as 0.75 :0; e :0; 
0.95, upon fine tuning this with the Lagrangian interpolation our best 
estimate of e is 0.84. 
In the foregoing example, the direct or forward model was an ordinary 
differential equation. However, a non-linearity was present in one of the 
boundary conditions. Often times in thermal sciences, particularly in 
radiative heat transfer, the forward model would involve the solution 
of a partial differential equation or an integral equation and sometimes 
even an integra-differential equation. These are formidable to solve and 
invariably require numerical techniques. From the flow chart given in 
Fig.7.3, it is clear that any inverse problem involves repeated solution to 
the forward model, as invariably the forward model cannot be directly 
inverted. For example, there is no way by which we can write out a 
closed form expression for e in example 7.1 in term of temperatures and 
determine it rightaway. This is further compounded by the presence of 
noise in the measurement of temperature. The requirement of repeated 
solution to the forward model often makes the solution of an inverse 
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problem time consuming. Researchers have tried to address this by 
developing a faster equivalent of the forward model using techniques 
like artificial neural networks, which are known as surrogates. From the 
flow chart, it is also evident that the solution to the inverse problem 
can often be posed as a minimisation problem and so advanced and 
cutting edge optimisation techniques can be made use of to improve 
accuracy, speed and robustness of the ever increasing challenge posed by 
the high dimensional inverse problems wherein several parameters need 
to be estimated from limited measurements. 

T("' ... .x) 
Fonvard model 

ExperImental 
data 

Inverse heat transfer 
model 

No 

Stop 

Figure 7.3: Typical flow chart for solving an inverse problem in heat 
transfer 

7.3 The Bayesian method for inverse problems 

In the previous section, the basic concepts involved in solving an inverse 
problem were presented. A specific case of single parameter estimation 
in a combined conduction radiation problem was presented. It is now 
fairly straight forward for us to see that in a multiparameter problem 
several combination of parameters or the "causes" may lead to the same 
"effect". In view of this, an inverse problem is essentially ill posed and 
suffers from a lack of uniqueness. Several techniques and methods have 
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been developed to address the higher dimensionality in these problems 
and these are elaborated in several books and research articles. However, 
as engineers, some infonnation on the parameters should be and often 
is available. The next logical question would be "Why not then make 
use of it (the available infonnation)?". If the answer to this question 
is "yes", then we are entering into the territory of Bayesian inference, 
which is elucidated in the ensuing section. 

1.3.1 Bayesian inference 

Bayesian inference is based on the Baye's conditional probability theorem 
and uses probability to characterize all forms of uncertainty in a problem. 
The Baye's theorem relates the experimental data Y(in the previous 
problem this was T(x)) and the parameters (this was c: in the previous 
exarnple) arid is given by 

P( /Y) = pry/x) P(x) = P(Y/x)P(x) 
x pry) f P(Y/x)P(x)dx 

(7.11) 

In Eq.(7.11) P(xIY) is called the posterior probability density function 
(PPDF), pry/x) is the likelihood density function, P(x) is the prior 
density function and pry) is the normalizing constant. Equation (7.11) 
captures the idea of how measurements, model and prior knowledge can 
be combined mathematically to return a posterior density function for 
P(x/y), which is tantamount to declaring the chance or probability that 
x is the cause for the measurement Y. This probability is the product of 
two quantities namely pry Ix} which is the likelihood density or the 
probability of getting Y for an assumed x, the calculation of which 
requires measurements and a mathematical model and P(x) whic.h is 
one's prior belief. pry Ix) is objective and P(x) is subjective making the 
P(x/Y), an objective solution peppered with subjective beliefs. 

As afore mentioned, in the above equation, the first term on the RRS 
represents the probability of getting Y for an assumed value of x. This 
can be obtained from a solution to the direct problem for an assumed 
x and we convert the S(X) = 2:::;;:'1 (y"xp,i - y"im,iJ2 in to a PDF 
(probability density function). Invariably, a Gaussian distribution for 
the meaBurement errors is assumed for doing this. The P( x) is our prior 
knowledge or belief about x, even before the measurements are made 
or calculations are done. One can call this as 'expert knowledge' or 
'domain knowledge'. For example, if the goal of an inverse problem is 
to determine the density(p) of a metal using an inverse methodology, 
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if the material looks like aluminium, we can construct a Gaussian for 
pep) with a mean ('lp), say 2500 kg/m3 and a standard deviation (a) 
of say, 200 kg/m3 . This means 99% of the time our prior belief is that 
the dfensity lies between 2500±600 kg/m3 . This is a fairly reasonable 
assumption and can help reduce the ill-posedness. Here, if an informative 
and objective prior like the one mentioned above is used, then the search 
can be resticted to 1900 :5 p :5 3100 kg/m3 instead of 0 :5 p :5 00. This 
is the cornerstone of Bayesian inference wherein engineering knowledge 
is used to reduce iII-posedness. 

1.3.2 Steps involved in solving a problem using Bayesian 
approach 

The Bayesian method to solve an inverse problem involves three steps: 

1. Collection of experimental or measurement data. In the previous 
example, the data is in the form of temperatures 

2. Modelling of (i) the likelihod function that takes into account both 
the forward model and the measurements and (ii) prior information 
invariably in the form of a distribution about the parameters 
to be estimated even before the forward model is solved or the 
measurements are done. Readers may recall the example of the 
diagonosis of chest pain by a physician presented earlier. 

3. Estimation of x 

The first step is to conduct the experiments and obtain the measured 
temperatures. In so far as the likelihood is concerned, we exploit the 
idea of measurement error in temperature as follows 

T measured = Tsimulated + 8 (7.12) 

In Eq.(7.12), 0 is a random variable from a normal distribution with 
mean "0" and standard deviation a, where CT is the standard deviation of 
the measuring instrument (thermocouple). The uncertainty 0 is usually 
assumed to follow a normal or Gaussian distribution, upon which the 
likelihood can be modelled as 

P(T/ ) = 1 ((T-F(X)f(T-F(X))) 
x ( )n exp 2 2 

';27rCT2 CT 
(7.13) 

In Eq.(7.13) T is a vector of dimension n, i.e, n measurements are 
available and F(x) is the solution to the forward model with the 
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parameter vector x (x represents a set of parameters). Equation (7.13) 
can be written as 

1 (-e) P(T/x) = ( )n exp -
"j27r{y2 2 

(7.14) 

h 
,,2 ~ (Tmea.,i - 7~im,i)2 

were~=L.. 2 
i=l (J' 

(7.15) 

In Eq.(7.15), Tsim,i are the simulated values of T for an assumed X (set 
of parameters). 
The posterior probability density function (PPDF) is then given by 

[(v'2;,,'r exp (=f)] [P(x)] 
P(x/T) = 

J [(;,72;":')" exp (=i')] [P(x)]dx 

(7.16) 

In Eq.{7.16) the prior probability density P(x) is usually a standard 
distribution like a uniform, normal or log-normal distribution. In the 
case of a uniform prior, P(x) is assigned the same value (say 1) the 
same for all values of x. Such a prior is frequently referred to as non
informative objective prior and will not help us obtain a much sharper 
PPDF. A sharper PPDF also known as a tighter PDF results in lower 
standard deviation of the estimates. 

Consider the case of P(x) following a normal distribution with mean Jlp 
and standard deviation (Yp. Mathematically P{x) is given by 

1 -(x - Jlp)2 
P{x) = (J )nexp 2 2 27r<,,2 (Yp 

P 

(7.17) 

Hence the PPDF turns out to be 

1 exp(-) [e + ((X-I':f)')] 
HI 2 20" 

P(x/T) = (211')"¥{un up) p 

f[ ~ exp(-)[~+(X;')')l]dX 
(2,,-) (0'" O'p) p 

(7.18) 

From Eq.(7.18) it is clear that, for every assumed value ofthe data vector 
X(Xl' X2 .... Xn)' P(x/Y) can be worked out. From this posterior density 
function, two possible estimates can be pulled out (i) Mean estimate also 
known as expectation or (ii) Maximum a posteriori (MAP)- whic is, the 
value of x for which P(x/Y) is maximum. 
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A sampling algorithm is used to generate samples of x. In a 
multiparameter problem, the marginal PDF of every parameter needs 
to be computed. 
Simplifying Eq.(7.18), we have 

nk -exp(_)[e; + (";::)')] 
P(x/Y) = ~2 (un up) p 

[!".J>..-----exp( - ) [e + ("=11)') lldx 
..(2n-J 2 (an up) 2 20"p 

Finally 

The expectation or the mean of x is given by 

_ ! x exp( - )[; + (X;:;)']dx 

x = f[exp(-)[~ + (X;:t]]dx 

(7.19) 

(7.20) 

(7.21) 

The integral is invariably repl~ed by a summation for discrete values of 
x and the expectation turns out to be 

(7.22) 

When l!.xi are the same Eq.(7.22) reduces to the following 

" ()[e (x-I' )'] L..i Xi exp - 2 + 2u:t 
X= p 

E[exp( _) [~ + (x;,)']] 
• 

(7.23) 

2 E,(Xi - x)2 exp(-)[~ + (x;:,r)'] 
a = p 

x Elexp( _) [; + (x;,)']] 
• 

(7.24) 

In Eq. (7.24), ax is the standard deviation of the estimated 
parameter. This is the hallmark of the Bayesian method, as we 
obtain an estimate and its uncertainty directly and the latter is 
very hard to determine in many other estimation methodologies. 

EXanlple 1.2: Consider Example 7.1, where in, steady state conduction 
with Dirichlet boundary conditions on left and Robin condition (mixed 
condition) on the right side wall was prescribed. Using the same data 
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and sample, determine the mean and standard deviation of the estimated 
value of emissivity (0) with Bayesian approach for two cases (i) no prior 
and (ii) with a Gaussian prior for e with mean /-I",p = 0.8 and 17p = 0.05. 
Standard deviation of uncertainty in measured tempemture is lK. 

Solution: 
We can use the Bayesian framework presented above, for the no prior 
case, to compute the posterior densities for various values of 0i and these 
are presented in Table 7.3. The PPDF for the case without prior is shown 
in Fig. 7.4. 

Table 7.3: Estimation of e using the Bayesian method (no priors) 

S.No £i S(£i) 
_(~_(~~2) 

Ei exp 20-
-(~J~i) ) exp 2u 

(S(.,) ) 
(Ci - 6)2 exp -2~' 

1 0.15 386.02 2.24 xlO-85 1.49 X 10-84 7.39 xl0-85 

2 0.25 259.05 1.39 X 10-57 5.58 X 10-57 2.03 X 10-57 

3 0.35 169.75 3.55;(10=37 1.015;(10=36 2.57;(16=37 
4 0.45 98.84 1.55xlO-22 3.45 x 10-22 5.59xlO-23 

5 0.55 52.84 1.84xlO-12 3.35xlO-12 3.08xlO-13 

6 0.65 23.57 4.93xlO-6 7.6xlO-6 3.13xlO-7 

7 0.75 7.81 0.015 0.020 0.0002 
8 0.85 3.01 0.189 0.222 -------------; 1:937;(10=6 
8 0.95 7.14 0.027 0.0281 0.0002 

I: 0.231 0.270 0.00048 

0.231 g = ................. = 0.855 0" = 
0.270 ' E 

0.00048 ........................ = 0.0421 
0.270 

(7.25) 

The exp<o'Ctation or mean for the no prior case is 0.855 and the standard 
deviation of the estimate 0",,=0.0421. This estimate is also known as the 
maximum likelihood estimate. 
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Figure 7.4: PPDF of e with the Bayesian method (no prior) for example 
7.2 

Next we include the Gaussian prior and obtain the results as presented 
in Table 7.4. 

Table 7.4: Estimation of e using the Bayesian method (with a Gaussian 
prior) for example 7.2 

S«,) A_S(~,) B~ 
Co ,.. ... ,prior}:.! E:iexp-(A+B) C = ea:p-(A+B «, - ")'(0) <, - :;1.,.:1 ,.' 

0.15 386.02 193.01 58.68 7.35xlO -U.l 4.901xlO-uU 2.35xlO -.L.lU 

0.25 259.05 129.52 42.01 7.92xlO 3.168xlO 7 1.50xlO 
0.35 169.75 82.87 28.12 2.17xlO -4tf 6.198 x 10 -.. ~ 1.50x 10 -4V 

0.45 98.84 49.42 17.0 6.33xlO 1.41xlO 2.16xlO 
0.55 52.84 26.42 o 3.14xlO 16 5.7xlO 16 4.88xlO 17 

0.65 23.57 11.78 0.5 2.17xlO 3.34xlO 7 1.24xlO 8 
0.75 i 7.81 i 3.91 i 0.347 0.0106 0.0142 0.00012 
0.85 3.01 1.50 0.347 0.1334 0.1569 8.89xlO- o 

0.95 I 7.14 I 3.57 I 3.125 0.0012 0.0012 1.42xlO-o 

2- 0.1452 0.1724 0.000144 

From Table 7.4 the expectation (or mean) of e and also the standard 
deviation of the estimate are obtained as 

0.1452 
e = 0.1724 = 0.84, (IE = 0.000144 = 0 028 

0.1724 . (7.26) 

The PPDF for this case with the Gaussian prior is given in Fig. 7.5. 
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Figure 7.5: PPDF of 0 with the Bayesian method (for a Gaussian prior) 
for example 7.2 

Upon ingestion of the Gaussian prior, the standard deviation of the 
estimate of 0 has decreased substantially. The informative and subjective 
Gaussian prior has thus been extremely useful in the estimation process. 

It is possible for us to use Markov chain, where in, the next sample of 
x (0 in this case) depends on only the current value of x. This can be 
accomplished by drawing the new sample from a Gaussian distribution 
with its mean being the current value of ''x'' and "a" being typically 
5% of the current mean. While a sample with higher PPDF is always 
accepted, rejection is done with a probability based on an acceptance 
ratio (see Balaji (2011) for a further discussion on this). This method is 
known as Metropolis Hastings (MH) based "Markov chain Monte Carlo 
(MCMC)" method. For further discussions on the powerful MCMC 
method readers may refer to statistics books and journals. 
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PROBLEMS 

7.1 Consider a thin aluminium foil coated with a paint of 
"high" emissivity € with dimensions of 2cm x 2cm, 2mm thickness 
suspended in an evacuated chamber. The chamber is maintained at 
303K and the foil is initially at 373K. The foil gets cooled radiatively 
and its measured temperature response is tabulated below. Estimate 
the emissivity of the coating by using an exhaustive equal interval 
search, in the range 0.65 :,; e :,; 0.95 with an interval of 0.05 and 
then switching to a Lagrangian interpolation formula by using a least 
square approach. The foil density is 2707 kg/ms and the specific heat 
is 903 J /kgK. 

I t,(s) I 50 I 100 150 I 200 I 250 I 300 I 350 I 

7.2 Consider the problem of determination of emissivity of a thin foil 
with a measured temperature distribution that was discussed in 
exercise problem 7.1. With the same data and sampling, determine 
the mean of the estimate of "I':" using a Bayesian approach with (il 
Uniform prior (ii)A Gaussian prior with /-Lp=0.84 and o-p=0.06. The 
total uncertainty in the temperature measurement (which arises as 
a consequence of the thermocouple error and the error in accurately 
determining the position of the thermocouple) is ±1K. 
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