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Preface

This book was written as a comprehensive introduction to the theory of
ordinary differential equations with a focus on mechanics and dynamical
systems as time-honored and important applications of this theory. His-
torically, these were the applications that spurred the development of the
mathematical theory and in hindsight they are still the best applications for
illustrating the concepts, ideas, and impact of the theory.

While the book is intended for traditional graduate students in mathe-
matics, the material is organized so that the book can also be used in a wider
setting within today’s modern university and society (see “Ways to Use the
Book” below). In particular, it is hoped that interdisciplinary programs
with courses that combine students in mathematics, physics, engineering,
and other sciences can benefit from using this text. Working professionals
in any of these fields should be able to profit too by study of this text.

An important, but optional component of the book (based on the in-
structor’s or reader’s preferences) is its computer material. The book is one
of the few graduate differential equations texts that use the computer to
enhance the concepts and theory normally taught to first- and second-year
graduate students in mathematics. I have made every attempt to blend to-
gether the traditional theoretical material on differential equations and the
new, exciting techniques afforded by computer algebra systems (CAS), like
Maple, Mathematica, or Matlab. The electronic material for mastering and
enjoying the computer component of this book is on Springer’s website.

Ways to Use the Book

The book is designed for use in a one- or two-semester course (preferably
two). The core material, which can be covered in a single course, consists of
Chapters 1, 2, 3, 4, and 5 (maybe Chapter 6, depending on what you think
is basic). The other chapters consist of applications of the core material
to integrable systems (Chapter 7), Newtonian mechanics (Chapters 8), and
Hamiltonian systems (Chapter 9). These applications can be covered in a
sequel to a first course on the core material, or, depending on the depth with
which the core material is treated, parts of these applications (like Chapter 9)
can be squeezed into the first course. There is also much additional material
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in the appendices, ranging from background material on analysis and linear
algebra (Appendices A and C) to additional theory on Lipschitz maps and a
proof of the Hartman-Grobman Linearization Theorem (Appendix B). The
electronic material serves as an extensive supplement the text.

The material is structured so that the book can be used in a number of
different ways based on the instructor’s preferences, the type of course, and
the types of students. Basically the book can be used in one of three ways:

• theoretical emphasis

• applied emphasis

• combination of theoretical and applied emphasis

Here the designation applied means, for the students, not being required to
prove theorems in the text or results in the exercises. Besides using the
first emphasis, I have also had success using the third emphasis in classes
that have had math and physics students. For such classes, I would require
that students understand major theorems and definitions, be able to prove
some of the easier results, and work most of the non-theoretical exercises
(especially the ones requiring a computer).

Guide to the Chapters

Chapters 1 and 2 are intended to develop the students’ backgrounds and
give them plenty of examples and experiences with particular systems of
differential equations (DEs) before they begin studying the theory in Chapter
3. I have found this works well, because it gives students concrete exercises
to study and work on while I am covering the existence and uniqueness
results in Chapter 3.

Chapter 3 is devoted both to proving existence and uniqueness results
for systems of differential equations and to introducing the important con-
cept of the flow generated by the vector field associated with such systems.
Additional material on Lipshitz maps and Gronwall’s inequality is presented
in Appendix B.

Chapter 4 presents the basic theory for linear systems of differential
equations, and this material, given its heavy dependence on concepts from
linear algebra, can take awhile to cover. Some might argue that this material
ought to be in Chapter 1, because the theory for linear systems is the simplest
and most detailed. However, I have found, over the years developing this
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book, that starting with this material can put too much emphasis on the
linear theory and can tend to consume half of the semester in doing so.

Chapter 5 describes the linearization technique for analyzing the behavior
of a nonlinear system in a neighborhood of a hyperbolic fixed point. The
proof of the validity of the technique (the Hartman-Grobman Theorem) is
contained in Appendix B. Another, perhaps more important, purpose of the
chapter is the introduction of the concept of transforming vector fields, and
thus of transforming systems of differential equations. Indeed, this concept
is the basis for classifying equivalent systems—topologically, diferentiably,
linearly equivalent—and helps clarify the basis of the Linearization Theorem.

Chapter 6 covers a number of results connected with the stability of sys-
tems of differential equations. The standard result for the stability of fixed
points for linear systems in terms of the eigenvalues of their coefficient ma-
trices leads, via the Linearization Theorem, to the corresponding result for
nonlinear systems. The basic theorem on Liapunov stability, determined by
a Liapunov function, is discussed and shown to be most useful in the chapters
on mechanics and Hamiltonian systems. A brief introduction to the stabil-
ity of periodic solutions, characteristic multipliers, and the Poincaré map is
also provided as an illustration of the analogies and differences between the
stability techniques for fixed points and closed integral curves (cycles).

Chapter 7 is a brief introduction to the topic of integrable systems, which
is a special case of the more general theory for integrable systems of partial
differential equations (in particular, Pffafian systems). The ideas are very
simple, geometrically oriented, and are particularly suited to study with
computer graphics.

Chapter 8 begins the application of the theory to the topic of Newtonian
mechanics and, together with Chapter 9, can serve as a short course on
mechanics and dynamical systems. A large part of Chapter 8 deals with
rigid-body motion, which serves to illustrate a number of the concepts stud-
ied for linear systems and integrable systems.

Chapter 9 comprises the elementary theory of Hamiltonian systems and
includes proofs of Arnold’s Theorem, the Transport Theorem, Liouville’s
Theorem, and the Poincaré Recurrence Theorem. This chapter is indepen-
dent of Chapter 8, but certainly can serve as an important complement to
that chapter. Because of the independence there is a certain amount of rep-
etition of ideas (conservation laws, first integrals, sketching integral curves
for 1-D systems). However, if your students studied the prior chapters, this
can help reinforce their learning process.

PREFACE
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Additional Features

There are several features of the book that were specifically included to
enhance the study and comprehension of the theory, ideas, and concepts.
They include the following:

• Proofs: Complete proofs for almost every major result are provided
either in the text or in the appendices (with the exception of the Inverse
Function Theorem, Taylor’s Theorem, and the change of variables for-
mula). Minor results are often proved or the proofs are assigned as
exercises. Even if the book is used in an applied way, without an em-
phasis on proofs, students may at some later point in their careers
become more interested in, and in fact need, the additional under-
standing of the theory that the proofs provide.

• Blackboard Drawings: An extensive number of figures is provided
to either illustrate and enhance the concepts or to exhibit the often
complex nature of the solutions of differential equations. Most of these
have been done with Corel Draw and Maple. However, the text has a
number of hand-drawn figures, which are reproduced so as to appear as
blackboard sketches. These are meant to convey the belief that many
aspects of visualization are still easiest and best done by hand.

• Electronic Component: The electronic material on Springer’s web-
site is provided to complement and supplement the material in the
text. It is a major resource for the book. Many of the pertinent ex-
amples in the text that use Maple are on the website, in the form of
Maple worksheets, along with extensions and additional commentary
on these examples. These can be beneficial to students in working re-
lated computer exercises and can greatly reduce the amount of time
spent on these exercises.

An important part of the electronic component of the book is the
supplementary material it contains on discrete dynamical systems, or
the theory of iterated maps, which has many analogies, similarities,
and direct relations to systems of differential equations. However, to
eliminate confusion, to add flexibility of use, and to save space, all the
theory, applications, and examples of this subject have been relegated
to the electronic component of the book. This can serve as material
for a short course in itself.

PREFACE
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The electronic component also contains many worksheets that are tu-
torial in nature (like how to plot phase portraits in Maple). There is
also some special-purpose Maple code for performing tasks such as (1)
plotting the curves of intersection of a family of surfaces with a given
surface, (2) plotting integral curves dynamically as they are traced out
in time (an extension of Maple’s DEplot command), (3) implementat-
ing the Euler numerical scheme for the planar N -body problem, (4)
animating rigid-body motions, (5) animating the motion of a body
constrained to a given curve or surface, and (6) animating discrete
dynamical systems in dimensions 1 and 2.

The electronic material is organized by chapters, corresponding to the
chapters in the text. You can access all the Maple worksheets con-
stituting a given chapter by opening the table of contents worksheet,
cdtoc.mws, and using the hyperlinks there. Appendix D has the table
of contents for the electronic material.

PREFACE



x

Preface to the 2nd Edition

In this the 2nd Edition of the book, all the chapters have been revised
and enhanced, and in particular, extensive additional examples, exercises,
and commentary have been added to Chapter 4 (Linear Systems), Chapter
7 (Stability Theory), and Chapter 9 (Hamiltonian Systems). The electronic
material (obtained from Springer’s website) has been revised and extended
too, with all files now compatible with any version of Maple from Maple 5
to Maple 12.

PREFACE
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Chapter 1

Introduction

This book is about the study of systems of differential equations (DEs), or
more precisely, systems of 1st-order ordinary differential equations. As we
shall see, any higher-order system of differential equations can be reduced
to a 1st-order system and thus the study of first-order systems suffices for
the general theory. Many systems of differential equations model the motion
of something, and for this reason systems of DEs are often referred to as
dynamical systems.

The purpose of this introduction is not only to present a number of ex-
amples which serve to illustrate the main concepts and ideas involved in the
study of dynamical systems, but also to give some of the initial mathemati-
cal definitions for these concepts. Do not be concerned with the complexity
of some of these examples or the physics behind them. For now, just read
and get an overview of what dynamical systems are (if you do not already
have experience with them from elsewhere).

1.1 Examples of Dynamical Systems
Most of the examples presented here arise in either fluid mechanics or New-
tonian mechanics, two areas that provide a rich supply of dynamical systems.
The examples are further discussed and elaborated in the accompanying elec-
tronic component.

Example 1.1 (Circular Flow) Our first example, although very simple,
is important and connected with many topics. The system is

x′ = y (1.1)
y′ = −x. (1.2)

1
© Springer Science + Business Media, LLC 2010
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In this system there are two unknown functions x = x(t) and y = y(t),
each being a function of t (the time), and the prime ′ stands for the time
derivative: x′ = dx/dt, y′ = dy/dt. A solution of the system (1.1)-(1.2)
consists of a pair of functions x, y which satisfy the equations simultaneously.
Simply put: the derivative of x is y and the derivative of y is −x. One well-
known pair of such functions is x = sin t, y = cos t, which is easily verified:

(sin t)′ = cos t and (cos t)′ = − sin t.

Any such solution can be thought of as a (parametrized) curve

α(t) = (x(t), y(t)) = ( sin t, cos t )

in the x-y plane (i.e., in the 2-dimensional space R
2). The electronic com-

ponent provides some review material on curves in the plane (as α is here),
curves in space, i.e., in R

3, and more generally curves in R
n. In this case α

parametrizes the unit circle x2 + y2 = 1.
There are many other solutions of the system and, in fact, we will see

later how to get the “general solution” of this system. It is

x(t) = x0 cos t+ y0 sin t
y(t) = −x0 sin t+ y0 cos t,

or in terms of a curve, the general solution is

α(t) = (x0 cos t+ y0 sin t, −x0 sin t+ y0 cos t ),

where x0, y0 are constants. It is easy to check that (x, y) is a solution of the
system. Also note that in this general solution, α(0) = (x0, y0) and so x0, y0

are the coordinates of the point that α passes through at time t = 0. An
easy computation also shows that x(t)2 + y(t)2 = x2

0 + y2
0 , for all t, and so

α lies on the circle x2 + y2 = r20, where r20 = x2
0 + y2

0 . Thus, all solutions
of this system parametrize circles of various radii and centers at the origin.
See Figure 1.1.

Example 1.2 (A Row of Stagnation Points) This example comes from
fluid mechanics and, as in the last example, consists of a system of two
equations

x′ = sinh y (1.3)
y′ = − sinx, (1.4)
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Figure 1.1: Solution curves of the system x′ = y, y′ = −x which represents
circular flow in the plane.

with two unknown functions x = x(t), y = y(t), and any solution x, y of the
system (1.3)-(1.4) can be thought of as a curve: α(t) = (x(t), y(t)) in the
R

2.
What’s different here, however, is that we do not have any analytical

expressions for particular solutions x, y of this system and certainly cannot
write down the general solution. Nevertheless, we can still study this system
by computer and other means. For instance, the system in the first example
(which is known as a linear system) is similar in some respects to this system
(which is a nonlinear system). More specifically, since sinh y ≈ y for y near
zero and − sinx ≈ −x for x near zero, we might expect that the nonlin-
ear system here have solutions near (0, 0) which are similar to the circular
solutions in the linear system. We will see that this is indeed the case.

Knowing something about what the system represents can also be helpful
in studying it. The particular system of DEs in this example provides a
model of a planar fluid flow, with any particular solution α representing a
streamline in the flow, i.e., the path a particular particle of the fluid would
take as it is carried along by the overall motion of the fluid. Thus, α′(t) =
(x′(t), y′(t)) represents the velocity of the fluid particle at time t and the
system (1.3)-(1.4) is interpreted as saying that the velocity at any point and
any time should match the given expressions on the right hand sides of these
equations. Figure 1.2 shows the plots of 38 different streamlines (solutions
α of the system).

It is important to note the system (1.3)-(1.4) has some solutions of a
very special and simple type. Such a solution is one where the position of
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Figure 1.2: Solution curves of the system x′ = sinh y, y′ = − sinx which
represents a fluid flow past a row of stagnation points.

the fluid particle is constant in time and therefore the solution “curve” is
actually just a point. This is known as a fixed point for a dynamical system
in general and, for this example, is known as a stagnation point. Here the
system (1.3)-(1.4) has infinitely many fixed points (seven of which are shown
in Figure 1.2). These points occur where the velocity is zero, i.e., at points
(x, y) which satisfy the algebraic system of equations

sinh y = 0 and sinx = 0.

This system is easily solved to give {(kπ, 0)|k ∈ Z} as the set of fixed points
(stagnation points).

The interpretation of Figure 1.2 is that the fluid flows from left-to-right
above the stagnation points and from right-to-left below them. The further
the streamline is from the x-axis the greater the speed of flow. This comes
from the calculation of the speed

v ≡ (x′(t)2 + y′(t)2)1/2 = (sinh2 y + sin2 x)1/2.

Now sinx is bounded, taking values between −1 and 1, while sinh y ap-
proaches ±∞ as y → ±∞. Thus, the speed v → ∞ as y → ±∞.
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Figure 1.3: Solution curves of the system (1.5)-(1.6) which represents a fluid
flow past two rows of vortices with opposite circulations.

Example 1.3 (Karmen Vortex Sheet) A more complicated system than
the last one, but one with solution curves which are more interesting is

x′ =
cosx sinh y − sinh c

M(x, y)
(1.5)

y′ =
− sinx cosh y
M(x, y)

. (1.6)

Here c = 0.8828 and the function in the denominators is

M(x, y) =
[cosh(y + c) + cos x][cosh(y − c) − cos x]

(2 cosh c)
(1.7)

The solution curves of this system again represent the streamlines in a planar
fluid flow that contains two rows of vortices (infinitely many in each row)
with opposite circulation in each row. Figure 1.3 shows 24 of these curves.

A vortex is the complete opposite of a stagnation point in a fluid flow.
The circulation of the flow around a vortex becomes faster and faster as
the center is approached and at the vortex center the speed of the flow is
infinite. In this example, according to equations (1.5)-(1.6), the velocity
α′(t) = (x′(t), y′(t)) becomes unbounded where the denominator M(x, y) =
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0. This occurs where

cosh(y + c) + cos x = 0 or cosh(y − c) − cos x = 0.

Since the minimum value of cosh is 1, we see that the solution of the first
equation is y = −c, x = (2k + 1)π and the solution of the second equation
is y = c, x = 2kπ (for k = 0,±1,±2, . . .).

In this example, as the figure appears to indicate, there are no fixed
points of the flow. This is indeed the case.

Example 1.4 (Heat Flow in a Cube) This example deals with a system
of three differential equations,

x′ = b sin(2πx) cos(2πy) sinh(2
√

2πz)
y′ = b cos(2πx) sin(2πy) sinh(2

√
2πz) (1.8)

z′ = −1 −
√

2b cos(2πx) cos(2πy) cosh(2
√

2πz)

where b = 2π/ sinh(2
√

2π). This system describes the flow of heat in a
unit cube U = [0, 1] × [0, 1] × [0, 1], and for this reason we restrict attention
to solution curves α(t) = (x(t), y(t), z(t)) which lie in U , even though the
system (1.8) is defined on all of R

3. Visualizing a curve in three dimensional
space can be difficult, especially if the curve is complicated, and visualizing
a number of them simultaneously can be even more confusing. Thus, it helps
to know something about what to expect.

Without going into all the details of the heat problem here, we just
mention that the system arises from a certain distribution S of temperatures
in the cube. Thus, S(x, y, z) gives the temperature at the point (x, y, z). The
heat flux vector field is −∇S, and −∇S(x, y, z) is the direction of greatest
decrease in S at the point (x, y, z). The theory is that the heat flows in
this direction at each point and thus the heat flow lines are curves α(t) =
(x(t), y(t), z(t)) that satisfy α′(t) = −∇S(α(t)). In terms of components this
is the system of DEs:

x′ = −Sx(x, y, z) (1.9)
y′ = −Sy(x, y, z) (1.10)
z′ = −Sz(x, y, z). (1.11)

This system of DEs results in the particular system (1.8) when the temper-
ature function is

S(x, y, z) = z +
(

cos(2πx) cos(2πy) sinh(2
√

2πz)
)
/ sinh(2

√
2π).
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The function S is the solution of the partial differential equation Sxx +
Syy + Szz = 0 which also satisfies certain conditions on the boundary of
the cube. In this example, these conditions are the following: the vertical
sides are insulated, the bottom is held at 0 degrees, and the top is held at a
temperature that is S(x, y, 1) = 1 + cos(2πx) cos(2πy) degrees at the point
(1, x, y) on the top. Note that the distribution of temperatures across the
top of the cube varies from 0 to 2 degrees (in a rather complicated way) and
the distribution on the bottom is a constant 0 degrees. Using the principle
that heat flows from hot to cold, we expect that some of the heat flow lines
that start on the top of the cube will end up on the bottom of the cube.
By judiciously choosing some starting points on the top and plotting the
solution curves of the system (1.8) that start at these points, we get the
picture shown in Figure 1.4. Note that the system in this example has no

x

y

>

>
>

>

>

<

straight line solution curves

(0,0,0)

z

Figure 1.4: Heat flow lines in a unit cube which arise as solutions of the
system (1.8).

fixed points and that it has three solutions which are straight lines (exercise).

Example 1.5 (The Two-Body Problem) One of the oldest examples of
a dynamical system is the two-body system: two bodies with masses m1,m2,
attract each other mutually with the force of attraction along the line joining
the bodies and of magnitude reciprocally as the square of the distance. In
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terms of Newton’s second law of dynamics (mass × acceleration = forces),
the model for this system is

m1r′′1 = Gm1m2(r2 − r1)/r312 (1.12)
m2r′′2 = Gm1m2(r1 − r2)/r312 (1.13)

This is actually a second-order system of DEs written in vector form. Here

r1(t) = (x1(t), y1(t), z1(t))
r2(t) = (x2(t), y2(t), z2(t)),

are the position vectors for the two bodies, and for convenience we’ve used
the notation

r12(t) ≡ |r1(t) − r2(t)|

for the distance between the bodies at time t. For the sake of comparison,
we can write the two-body system (1.12)-(1.13) as a system of 12 first-order
DEs:

x′1 = u1

y′1 = v1

z′1 = w1

x′2 = u2

y′2 = v2

z′2 = w2 (1.14)
u′1 = Gm2(x2 − x1)/r312
v′1 = Gm2(y2 − y1)/r312
w′

1 = Gm2(z2 − z1)/r312
u′2 = Gm1(x1 − x2)/r312
v′2 = Gm1(y1 − y2)/r312
w′

2 = Gm1(z1 − z2)/r312

In addition to the six unknown functions xi, yi, zi, i = 1, 2, the above system
involves the six functions ui, vi, wi, i = 1, 2, which you recognize (via the first
six DEs in the system) as the components of the velocity vectors for the two
bodies:

vi ≡ (ui, vi, wi) = r′i.
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This system (1.14) of 1st-order scalar DEs is not as convenient as the 2nd-
order vector form (1.12)-(1.13), but exhibits a general technique for reducing
higher order systems to 1st-order systems (introduce extra unknown func-
tions!). A solution of the first-order system (1.14) is a curve in the 12-
dimensional space: R

12 ∼= R
6 × R

6, of positions and velocities. Thus, α has
the form

α(t) =
(

r1(t), r2(t), v1(t), v2(t)
)
,

for t in some interval I. More precisely, since r12 cannot be zero on the
right side of the two-body system (1.14), each solution curve lies in the
12-dimensional submanifold O of R

12 defined by:

O ≡ U × R
6,

where U ≡ { (r1, r2) | r1 
= r2 }. This space O is known as the phase space for
the two-body dynamical system. While we cannot visualize (except possibly
mentally) the graph of solution curve in this 12-dimensional phase space O,
it is nevertheless a useful theoretical notion. By using projections, or in this
special case, center of mass coordinates, we can get around this visualization
limitation and plot the orbits of the two bodies relative to the center of mass.
We will look at the details for this later.

By analogy with the two-body system, the space O = R
2 \ C for the

row of vortices example and the space O = U for the heat flow in a cube
example are also called the phase spaces for those dynamical systems, even
though historically the term phase space referred to spaces of positions and
velocities (or positions and momenta).

Example 1.6 (Pendulum/Ball in a Hoop) An example from mechan-
ics that is considerably simpler than the two-body problem (and which you
might have studied as an undergraduate) is the motion of a pendulum. A
weight is suspended from a point with a string and the motion of the weight,
as it swings back and forth, is modeled by the second-order DE:

θ′′ = −k sin(θ),

where θ = θ(t) is the angle, at time t, that the string makes with the vertical.
See Figure 1.5. As in the two body problem, if we introduce the velocity
v = θ′ (which is actually the angular velocity), then it’s easy to see that the
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above 2nd-order DE can be written as the following 1st-order system

θ′ = v (1.15)
v′ = −k sin(θ). (1.16)

The phase space here is the whole plane O = R
2, and while this makes sense

mathematically, several comments are necessary for the physical interpre-
tation. First, the angle θ ∈ R describing the position of the weight must
be interpreted in terms of its related angle in the interval [0, 2π]. Thus, for
example, θ = 0, 2π, 4π, . . . all refer to the position where the weight hangs
vertically (straight down). Second, the physical apparatus of a weight sus-
pended by a string does not correspond to the full phase space. For example,
if the weight is displaced to position θ = 3π/4 and released from rest, it will
temporarily fall straight down before the slack in the string is taken up.
Then the above DE fails to model the actual motion. Thus, it is best to
revise the physical apparatus to one consisting of a hollow, circular tube, in
a vertical plane, with a ball rolling around inside, i.e., a ball in a hoop (see
Figure 1.5). The ball in the hoop (or pendulum) is one example of what is
known as constrained motion.

By plotting a sufficient number of solution curves, α(t) = (θ(t), v(t)),
of the system (1.15)-(1.16), we obtain an overall picture, or portrait, of the
behavior of the ball in the hoop under various initial conditions. This is
known as the phase portrait for the system. The phase portrait for this
example is shown in Figure 1.6. As you can see, this phase portrait appears
similar to the one for the row of vortices in Figure 1.2, but has important
differences. Here the closed curves (orbits) correspond to motions of the ball

Figure 1.5: Motion of a ball enclosed in a hollow, circular tube (a hoop).
Under the force of gravity only, the hoop constrains the motion to being
along the prescribed circular path.
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Figure 1.6: Phase portrait for the system (1.15)-(1.16), which models the
constrained motion of a ball in a circular hoop (pendulum model)

where it oscillates periodically, back and forth, about the low point in the
hoop, which is the stable, equilibrium point. This physical point corresponds
to a set C = {(2kπ, 0)|k ∈ Z} in the phase space and is a set of fixed points
for the system. Each point in C corresponds to an initial condition where
the ball is placed at the low point in the hoop and released with no angular
velocity. Thus, obviously the ball remains stationary (fixed). The points in
C are also the centers for the various sets of closed orbits. By contrast, in the
example for the row of vortices, the centers for the closed orbits are not fixed
points and indeed the system is not even defined at these points. The set
{((2k+1)π, 0)|k ∈ Z} corresponds to the high point on the hoop, which is an
unstable, fixed point, since small displacements of the ball from this point
result in motions that take it far away from the summit. The wavy, non
closed, solution curves (shown above and below the orbital solution curves)
correspond to motions where the ball has enough initial energy (potential
and kinetic) to cycle perpetually around the hoop. The solution curves
that divide, or separate, the orbital and wavy solution curves are known as
separatrices for the system.

ple, whose many interesting properties we will explore later, is the model
obtained by perturbing the motion of the ball in the hoop from the last ex-
ample. One way to do this is to have the hoop oscillate periodically about
its vertical axis as shown in Figure 1.7. Suppose the hoop has radius 1
and is initially in the vertical x-z plane and oscillates between angular dis-

Example 1.7 (Perturbed Pendulum/Ball in a Hoop) One more exam-
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Figure 1.7: A ball rolling in an oscillating hoop.

placements of ω = ±a, with frequency b. The position of the ball on the
hoop is again determined by the angular position function θ = θ(t), with
θ = 0 corresponding to the position (0, 0,−1) on the axis of oscillation. The
differential equation for θ is

θ′′ = −g sin(θ) +
a2b2

2
sin2(bt) sin(2θ). (1.17)

Here g is the acceleration of gravity near the earth’s surface. If we again
introduce v = θ′ for the angular velocity, then the second-order DE (1.17),
can be written as the following 1st-order system for unknowns θ, v

θ′ = v (1.18)

v′ = −g sin(θ) +
a2b2

2
sin2(bt) sin(2θ). (1.19)

One aspect of this system that is different from the systems considered
above is that the right side of the system (1.18)-(1.19) explicitly involves
the time t. For this reason this system is called nonautonomous or time-
dependent. The five previous systems we have considered are autonomous
or time-independent systems. Figure 1.8 shows the plot of just one integral
curve α(t) = (θ(t), v(t)) of this system in the θ-v plane from times t = 0
to t = 40.5. The parameter values g = 1, a = 1, b = 2 were used when
producing this figure. Thus, the hoop oscillates with period π between an-
gular displacements ω = ±1 (radians) from the x-z plane. The integral
curve shown in Figure 1.8 describes how the angular position and velocity
change over time for a ball initially placed at the low point in the hoop and
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Figure 1.8: Plot of a single integral curve for the perturbed ball on the hoop
model with initial condition (θ(0), θ′(0)) = (0, 0.5).

given and initial angular velocity of 0.5. Note that the curve crosses itself
several times (this happens for nonautonomous systems, but cannot occur
for autonomous ones) and does not appear to be periodic (so the ball never
returns to the same position with exactly the same velocity).

The erratic behavior of the ball in the hoop is more easily analyzed by
converting the nonautonomous system to an autonomous one. This requires
introducing an additional dimension and is a technique that works in general.
The conversion amounts to introducing an additional function, τ(t) = t, to
hide the time dependence and also adding an equation for τ to the system.
In this example the resulting autonomous system is

τ ′ = 1
θ′ = v (1.20)

v′ = −g sin(θ) +
a2b2

2
sin2(bτ) sin(2θ).

Of course, this additional equation just says that τ(t) = t+ c for some con-
stant c. So in a certain sense (which can be made precise) the autonomous
system (1.20) is equivalent to the nonautonomous system (1.18)-(1.19) (exer-
cise). If the initial time is c = 0, then the integral curves of the autonomous
system (1.20) have the form

α̃(t) = (t, θ(t), v(t)),
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with α(t) ≡ (θ(t), v(t)), an integral curve of the nonautonomous system
(1.18)-(1.19). Thus, a plot of α̃ in R

3 gives a curve that, when projected
orthogonally on the θ-v plane, gives the integral curve α. This is shown in
Figure 1.9 for the integral curve α from Figure 1.8. For clarity, we have

Figure 1.9: Plot of the integral curve α̃(t) = (t, θ(t), v(t)) with initial condi-
tions t = 0, θ(0) = 0, and θ′(0) = 0.5 for the perturbed ball in the hoop.

rotated the view in Figure 1.9 so that the time axis (axis for τ) is vertical.
This makes it easier to visualize how the curve projects onto the curve shown
in Figure 1.8.

Having examined some concrete examples of dynamical systems, we need
to introduce some precise terminology and definitions in an abstract setting
for the notions and ideas contained in these examples (systems of DEs, so-
lution curves, phase space, etc.). This is done in the next section.

Exercises 1.1
1. If you need some review on curves in the plane and curves in space, read

the Maple worksheets plcurves.mws and spcurves.mws on the electronic
component and work the suggested exercises there.

2. Learn how to plot phase portraits for systems in the plane using some com-
puter software package. If you wish to use Maple for this, study the material
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on the electronic component in the Maple worksheet: deguide1a.mws. Apply
what you learn to do the following problems. Note: If you are using Maple,
you might want to cut and paste some of the code from deguide1a.mws
directly into your worksheet, which you create for solving the problems.

(a) Plot the phase portrait for the system in Example 1.3 in the text (the
Karmen vortex sheet). Make your figure look like, or better than, Figure
1.3 in the text. Mark the direction of flow on several integral curves.

(b) Plot the phase portrait for the system in Example 1.6 in the text (the
ball in the hoop). Make your figure look like, or better than, Figure
1.6 in the text. Mark the direction of flow on several integral curves.
Describe the motion of the ball corresponding to each type of integral
curve in the phase portrait. There are four types in this example. Note:
θ is measured in radians.

(c) For the system in Example 1.7 (perturbed pendulum), use a computer
to draw the single integral curve shown in Figures 1.8 and 1.9. Describe
the motion of the ball which corresponds to this integral curve. Note:
θ is measured in radians.

3. Consider the unit cube U = [0, 1]× [0, 1] × [0, 1] with temperature function

S(x, y, z) = z + k cos(πx) cos(2πy) sinh(
√

5πz),

where k = 1/ sinh(
√

5π). As in Example 1.4, this distribution of tempera-
tures in U corresponds to boundary conditions where the temperature is held
at 0 degrees on the bottom of U , varies as S(x, y, 1) on the top, and no heat is
allowed to escape through the (insulated) vertical sides of U . Use a computer
to draw the heat flow lines that start at appropriately selected points on
the top face. Suggestion: Among others, use the following groups of points:
Gx = {(x, .55, 1), (x, .6, 1), (x, .7, 1), (x, .8, 1), (x, .9, 1)} for x = .4, .5, .6. Draw
numerous pictures, some with projections of the flow lines on the coordinate
planes, in order to adequately describe the phase portrait. Choose your pic-
tures judiciously. Do not waste paper by handing in too many ill-conceived
pictures.
Determine if there are any flow lines that are straight lines. Show that the
heat flow lines that start at points in the plane y = .5, remain in this plane.
If you are using Maple, read the worksheet deguide1b.mws first and make
this assignment easier by using portions of that worksheet in yours.

4. (First Integrals/Conservation Laws) In Example 1.1 the solution curves
of the system were shown to lie on circles y2 +y2 = r2 of various radii r. This
was determined by using the formula for the general solution curve. We can,
however, determine this by using the system of DEs directly. To see this,
take the system

x′ = y, y′ = −x,
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and multiply the first equation by y′ and the second equation by x′ to get

x′y′ = yy′, x′y′ = −xx′.

Hence
yy′ = −xx′ or xx′ + yy′ = 0.

Consequently
d

dt
(x2 + y2) = 0,

and so x2 + y2 is a constant: x2 + y2 = k, for some constant k. This equation
is known as a conservation law. The function F (x, y) = x2 + y2 is called
a first integral for the system of DEs. The above argument indicates that
each solution (x, y) of the system of DEs lies on a level curve F (x, y) = k of
the function F . Thus, a plot of the level curves of F gives a picture of the
solution curves.

(a) Find a first integral F for the system x′ = sinh y, y′ = sinx in Example
1.2. Plot the graph of F and a number of its level curves F (x, y) = k.

(b) (A Row of Vortices) Consider the following system, which is related
to the system in Example 1.2,

x′ =
sinh y
M(x, y)

y′ =
− sinx
M(x, y)

,

where M(x, y) = cosh y − cosx. Show that this system has the same
first integral as the system in Example 1.2. What can you conclude from
this about the solution curves of this system? Show that this system
has vortices (places where the speed is infinite) as well as stagnation
points. Locate where these occur.

(c) Can you find a first integral for the system in Example 1.3?

1.2 Vector Fields and Dynamical Systems
In this section we define the important concept of a vector field on an open
set in R

n, which allows us to think of a 1st-order system of differential
equations in a geometric way.

There is a discussion of certain aspects of multivariable calculus and
analysis in Appendix A. You should review it if necessary, since some of the
concepts and notation from it will be used here and elsewhere throughout
the book. However, a brief word about terminology is appropriate here.
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It is standard to denote by R
n the set of all n-tuples,

x = (x1, . . . , xn),

of real numbers xi ∈ R, i = 1, . . . , n. We will view R
n either as the canonical

n-dimensional Euclidean space, whose elements x ∈ R
n are points in this

space, or alternatively as an n-dimensional vector space, whose elements
x are vectors (position vectors). Of course, when n = 2 or n = 3, the
subscripting notation is sometimes not used (as in the previous section) and
instead of (x1, x2) we often use (x, y) or (θ, v) for a point or vector in R

2.
Similarly, (x, y, z) or other variants are often used instead of (x1, x2, x3) for
a point or vector in R

3.
Generally we will not denote vectors or elements x ∈ R

n by bold face,
like x, or with arrows drawn over them, like �x. It seems easier to teach a
class and write on the blackboard without having to embellish vectors with
these extra notations. Thus, the distinction between vectors and scalars (i.e.,
numbers) will have to, and usually can be, understood from the context. The
one exception to this rule, as you have noticed in the example of the 2-body
problem, is in the places where we discuss mechanics (Chapters 8 and 9).
There we will use boldface to denote vectors.

Definition 1.1 (Vector Fields) Suppose O ⊆ R
n is an open set. A vector

field on O is just a function, or map:

X : O → R
n.

In component form, the map X is given by:

X(x) =
(
X1(x), . . . ,Xn(x)

)
,

where x ∈ O and Xi : O → R, i = 1, . . . , n, are the component functions of
X. The terminology of differentiability, C1, . . . , C∞, applies to vector fields
(Appendix A), so we speak of C1 vector fields, . . . , C∞ vector fields, and so
on. Usually in the sequel we will assume some degree of differentiability of
our vector fields, and not mention this explicity except where it is necessary
to be more precise.

Vector fields have an important geometric interpretation: for a point
x ∈ O, one interprets X(x) as a vector attached to the point x. Namely,
instead of plotting the vector X(x) with its initial point at the origin, take
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Figure 1.10: A plot of X at a number of points in O.

its initial point to be x. See Figure 1.10. Doing plots like this at a number
of different points x, y, z, . . . in O, as shown, gives a geometric picture of a
field of vectors (in some respects similar to a field of Kansas wheat). This
geometric picture also explains the origin of the name vector field.

In our study of systems of DEs, the notion of a vector field is more or
less synonymous with a system of (autonomous) DEs. Thus, if X is a vector
field on O, the corresponding system of DEs is

x′ = X(x). (1.21)

Written out fully in component form the system is

x′1 = X1(x1, . . . , xn)
x′2 = X2(x1, . . . , xn)

...
x′n = Xn(x1, . . . , xn).

Example 1.8 Suppose X : R
2 → R

2 is the vector field given by

X(x1, x2) = (x1x2, x1 + x3
1x

4
2).

The two component functions of X are X1(x1, x2) = x1x2 and X2(x1, x2) =
x1 + x3

1x
4
2. The system of DEs associated with X is

x′1 = x1x2

x′2 = x1 + x3
1x

4
2.
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The precise description of what is meant by a solution of a system of
DEs is contained in the following definition.

Definition 1.2 (Solutions of Autonomous Systems)

(1) A curve in R
n is just a map: α : I → R

n from some interval I into R
n.

If α is differentiable, then it is called a differentiable curve.

(2) If X is a vector field on O, then a solution of the system

x′ = X(x)

is a differentiable curve α : I → R
n with the properties:

(a) α(t) ∈ O, for all t ∈ I;

(b) α′(t) = X(α(t)), for all t ∈ I.

Such a curve α is also called a solution curve of the system, or an integral
curve of the vector field X (or an integral curve of the system of DEs).
Geometrically, property (a) says that the curve α lies in the open set O,
which of course is necessary in order for the expression X(α(t)) in property
(b) to make sense (X(x) is only defined at points x in O). Property (b) is
the important requirement on α. It just says that α satisfies the system of
DEs. In component form property (b) is:

α′
1(t) = X1(α1(t), . . . , αn(t))
α′

2(t) = X2(α1(t), . . . , αn(t))
...

α′
n(t) = Xn(α1(t), . . . , αn(t)),

for all t ∈ I. From a geometrical point of view, this property: α′(t) =
X(α(t)), means that α is a curve whose tangent vector to the curve at the
point α(t) coincides with vector X(α(t)) at the same point. See Figure 1.11.

There are many concrete realizations of this in physics. For example if
X is an electrostatic force field on a region O ⊆ R

3, then the integral curves
of X are the force field lines. If X = −∇φ is derived from a potential, then
a positively charged particle in the force field will move along a force field
line towards regions of lower potential. Another physical interpretation, as
we have seen in Examples 1 and 2 above, is where O is a vessel or tank



20 Chapter 1. Introduction

Figure 1.11: Geometric view of an integral curve α of X

in which a fluid is circulating with a steady flow, and X(x) represents the
velocity of the fluid flowing through the point x at any time. If we select
any one particle in the fluid and follow its motion over time, then it will
describe a trajectory that is an integral curve of the vector field X. The
heat flow in Example 3 above is yet another situation where the vector field
and its integral curves have physical meaning. There O is the unit cube, X
is the heat flux vector and the integral curves of X are the heat flow lines,
or lines along which the heat must flow in order to maintain the distribution
of temperatures.

The idea of viewing solutions of systems of DEs as integral curves of
a vector field, with the geometrical interpretation this implies, is of great
importance to the theory of differential equations. In fact, an accurate plot
of the vector field at a large number of points in O will almost delineate the
picture of what all the integral curves look like.

Example 1.9 The system of DEs

x′1 = 1
2(x1 + x2)

x′2 = − 1
2x2,

is associated with the vector field X : R
2 → R

2 given by

X(x1, x2) =
(

1
2(x1 + x2), − 1

2x2

)
.

For this example, it’s relatively easy to plot the vector X(x) by hand at a
number of different points x in R

2. The plot of this field of vectors is shown
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Figure 1.12: Hand-drawn plot of X(x1, x2) = (1
2(x1 + x2), − 1

2x2).

in Figure 1.12 and gives a rough picture of what X looks like. Even as simple
as this vector field is, the plot shown in the figure can take 15 minutes or
so to construct by hand. For more complicated vector fields, the process of
plotting by hand is far too tedious to be practical. Prior to the advent of
the computer, and especially the PC, all plots of vector fields were limited to
the simplest examples. Now we can take advantage of plotting software to
exhibit vector field plots for even the most complicated vector fields. Most
software actually plots what is known as the direction field for X. This is
the plot of kX(x)/|X(x)| at all the points x on a specified grid (Here |X(x)|
denotes the length of the vector X(x)). All these vectors have the same
length, namely k, so the resulting plot only indicates the direction of X at
each point in the grid. The scale factor k depends on the software package
and on the grid size. For this example the plot of the direction field on the
rectangle [−1, 2] × [−3, 3], divided into a grid of 20 × 20 points, is shown in
Figure 1.13.

Since each integral curve of X traces out a path in R
2 that is tangent

to the direction field element at each point, its not hard to roughly discern
from the figure what some of the integral curves look like (and that some
are straight lines).

The simplicity of this example also allows us to analytically solve the
system and explicitly exhibit formulas for the solutions. Thus, solving the
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Figure 1.13: A computer-generated direction field for the vector field
X(x1, x2) = (1

2(x1 + x2), − 1
2x2).

second equation in the system: x′2 = −x2/2, gives

x2 = b2e
−t/2 (1.22)

as the general solution involving an arbitrary constant b2. Substituting this
in the first equation and solving the resulting DE for x1 gives

x1 = b1e
t/2 − 1

2b2e
−t/2 (1.23)

as the general solution, involving yet another arbitrary constant b1. The
resulting integral curve is then

α(t) =
(
b1e

t/2 − 1
2b2e

−t/2, b2e
−t/2

)
. (1.24)

This can be thought of as a formula for the general integral curve since the
arbitrary constants b1, b2 can be chosen so that α(0) = c, where c = (c1, c2)
is any specified point. This gives the system: b1 − b2/2 = c1, b2 = c2, which
is easily solved for b1, b2. Then using these values for b1, b2 in the formula
(1.24) for the general integral curve, we get the specific integral curve that
starts at c at time t = 0. For example if c = (1, 2), then one easily finds that
b1 = 2, b2 = 2 and thus the curve

α(t) =
(

2et/2 − e−t/2, 2e−t/2
)
,
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is the integral curve that satisfies α(0) = (1, 2).
Even with this explicit formula for α, the plot of the curve (by hand)

might be tedious, unless more information is used. Generally for curves
in the plane that are given parametrically (which are easier for computers
to graph), one can, in theory, eliminate the parameter to get a Cartesian
equation for the curve. Often this is impossible to do by hand, and when it
is, the resulting equation is not one for a well-known type of curve. In this
example, however, we observe that each integral curve must lie on a branch
of a hyperbola or on a straight line. To see this eliminate the parameter t
in the parametric equations for the curve and arrive at the single equation

2x1x2 + x2
2 = 2b1b2. (1.25)

To get this, it is necessary to make the assumption that b2 
= 0. Thus, any
integral curve with b2 
= 0 will lie on the curve given by equation(1.25). Since
this is a second-degree equation, the corresponding curve is a conic section
(possibly a degenerate one). From the plot of the direction field in Figure
1.13, it is easy to guess that this curve is a hyperbola or a straight line. The
straight line case occurs for b1 = 0 and then equation(1.25) gives a pair of
lines: 2x1 + x2 = 0 and x2 = 0. The integral curves that lie on these lines
are also discernible from the plot of the direction field as well. Note that
in the case when b2 = 0, then equation(1.24) for the general integral curve
reduces to α(t) = (b1et/2, 0) and this (when b1 
= 0) lies on the straight line
x2 = 0.

Example 1.10 For the system

x′ = sinh y
y′ = − sinx,

which models the infinite row of stagnation points, the corresponding vector
field is

X(x, y) = ( sinh y,− sinx).

Doing a plot of this vector field, or its direction field, by hand is not so easy.
However, a computer-generated plot is shown in Figure 1.14. Solving this
system, by hand or computer, explicitly in terms of elementary functions is
not possible. Numerical solutions are always possible and, since explicity
solvable systems are in some sense rare, the numerical method will be our
main tool in studying systems. This is discussed in Chapter 2 and is the
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Figure 1.14: The direction field for the system (1.3)-(1.4) which represents a
fluid flow past a row of stagnation points.

method used in drawing the phase portraits for the figures in this chapter.
Even when drawing the integral curves with a computer, the plot of the
direction field for the system is an essential aid and should perhaps always
be done before plotting any of the curves. A plot of the direction field gives
an overall view of what to expect, gives the direction of flow for the system,
and helps locate fixed points, if any.

Exercises 1.2
1. This exercise is related to the activities described in Example 1.9. The system

there and those here are very simple, so these activities are practical and of
pedagogical value. For more general systems these activities are not practical.
For each of the following vector fields X on R

2:

(i) Plot (by hand) the vector X(x) at each of the points x = (x1, x2) in
the grid of points (x1, x2), with integer components in the specified
rectangle R = [a, b] × [c, d]. Do this in pencil or black ink. Then plot,
in red ink, the vectors X(x)/(2|X(x)|) at the same points.

(ii) Solve (by hand) the system x′ = X(x) exactly, using two arbitrary con-
stants b1, b2 in your answer. Eliminate the parameter t in the solution
and find the x1-x2 equations for the integral curves.

(iii) Find the straight line integral curves, if any. These are straight lines in
the plane such that any integral curve starting at a point on the line,
remains on the line for all time.
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(a) X(x1, x2) = (−x1 + 2x2, x1). R = [−2, 4] × [−2,−2]. Hint for part
(ii): Differentiate the second equation in the system x′ = X(x) and
substitute the result in the first equation to get a 2nd-order DE involving
only x2.

(b) X(x1, x2) = (x1,−x1 + x2). R = [−2, 3]× [−1, 2].
(c) X(x1, x2) = (x1,−x1 − x2). R = [−2, 3]× [−1, 2].

2. Suppose α : I → R
n is a solution of the autonomous system: x′ = X(x).

Show that for any number r, the curve β defined by

β(t) = α(t+ r),

for t ∈ I − r, is also a solution of the autonomous system. This is a basic
property of autonomous systems. Note: By definition, I − r = {s− r|s ∈ I}.
Thus, if the interval I = (a, b), then I − r = (a− r, b− r).

3. Suppose X : O → R
n is a vector field on an open set O ⊆ R

n and that O is
symmetric about the origin, i.e., if x ∈ O then −x ∈ O. Suppose X has the
property:

X(−x) = −X(x),

for every x ∈ O. Show that for each integral curve α : I → R
n of X , the

curve β defined by
β(t) = −α(t),

t ∈ I, is also an integral curve of X . Interpret, geometrically, what this
means for the phase portrait of x′ = X(x). An example of such a vector field
is X(x1, x2) = (x2

1x2, x1 + x2).

4. With the same supposition as in the last problem, but now with the assump-
tion that

X(−x) = X(x),

for every x ∈ O, show that for every integral curve α : I → R
n of X , the

curve:
β(t) = −α(−t),

for t ∈ −I, is also an integral curve of X . Interpret this geometrically. An
example of such a vector field is X(x1, x2) = (x1x2, x

2
1 + x2

2).

5. As a generalization of Exercise 3, suppose X : O → R
n is a vector field on an

open set O ⊆ R
n and that A is an n× n matrix. Assume that O is invariant

under A, i.e., if x ∈ O, then Ax ∈ O. Suppose X has the property

X(Ax) = AX(x),

for every x ∈ O. Show that for each integral curve α : I → R
n of X , the

curve β defined by:
β(t) = Aα(t),

t ∈ I, is also an integral curve of X .
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1.3 Nonautonomous Systems
So far we have only developed the abstract setting for autonomous dynamical
systems. They are modeled by x′ = X(x), where X is a vector field on some
open subset O ⊆ R

n. The example of the externally driven pendulum we
discussed above requires a setting where we use time-dependent vector fields,
with the corresponding system denoted by

x′ = X(t, x).

The following definition give the specifics of this.

Definition 1.3 (Nonautonomous Systems)

(1) A time-dependent vector field is a map

X : B ⊆ R
n+1 → R

n,

defined on an open subset B of R
n+1 ∼= R × R

n. Denoting the points
in B by (t, x), with x ∈ R

n, t ∈ R, gives a component form for X:

X(t, x) =
(
X1(t, x), . . . ,Xn(t, x)

)
.

For each t ∈ R we let

Bt = {x ∈ R
n | (t, x) ∈ B }.

This is a slice through B at time t (and may be empty). At this instant
t in time we get a vector field on Bt in the previous sense (when Bt is
open). It is the map: Xt(x) ≡ X(t, x). Plotting the direction field for
Xt gives us a snapshot of X at time t. As t varies so do the plots of the
direction fields. See Figure 1.15. Often B is a product: B = J ×O, of
an open interval J and an open set O in R

n, which greatly simplifies
things.

(2) Suppose X : B → R
n is a time-dependent vector field. A solution,

or integral curve, of the corresponding nonautonomous system x′ =
X(t, x) is a curve: α : I → R

n, in R
n, with the following properties:

(a) (t, α(t)) ∈ B, for every t ∈ I;

(b) α′(t) = X(t, α(t)), for every t ∈ I.



1.3. Nonautonomous Systems 27

Figure 1.15: Plots of the direction fields for Xt and Xs.

(3) An initial value problem (IVP) consists of finding a solution of a system
of DEs which passes through a given point at a given time. More
specifically, suppose (t0, x0) ∈ B is a given. The corresponding initial
value problem is written symbolically as

x′ = X(t, x) (1.26)
x(t0) = x0. (1.27)

A solution of the initial value problem is a curve α : I → R
n that is a

solution of the system (1.26) and which also satisfies α(t0) = x0 (note
this implies that the interval I contains t0. The condition (1.27) is
known as an initial condition. Often x0 is called an initial point for
the integral curve in the IVP.

Later we will look at some theorems and propositions concerning the
solvability of the initial value problem in general. These results come under
the heading of existence and uniqueness theorems. Basically we are interested
in knowing whether a given initial value problem (IVP) has a solution at all.
This is the existence part. When this is the case, we also wish to know if there
is only one solution (uniqueness), or if possibly there are several solutions.
For dynamical systems that arise in physics and the other sciences, existence
and uniqueness of solutions to IVPs is often taken for granted.

Example 1.11 In the two-body system (1.14) discussed above, the system
is (in vector form)

r′1 = v1
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r′2 = v2

v′
1 = Gm2(r2 − r1)/r312

v′
2 = Gm1(r1 − r2)/r312, (1.28)

and the initial condition just specifies the initial positions and initial veloc-
ities of the two bodies:

r1(0) = a1

r2(0) = a2

v1(0) = b1

v1(0) = b2.

Here a1 
= a2,b1,b2 are given points (vectors) in R
3. With some effort

we can actually exhibit a solution of this IVP (see the next chapter) with
explicit dependence on the initial condition data that gives uniqueness of the
solution. For a larger number of bodies, 3-bodies (like the earth, moon, sun),
4-bodies, . . . , or in general N -bodies, the possibility of exhibiting an exact
solution of the IVP (except in highly special cases) is too much to hope for.
However, proving existence and uniqueness by other means is more tractable.
The existence and uniqueness question here can be interpreted as saying that
Newtonian mechanics is deterministic, i.e., knowing the initial positions and
velocities of the all the bodies determines uniquely their evolution in time
thereafter.

Exercises 1.3
1. In the following parts, a solution, involving an arbitrary constant k, of a

nonautonomous DE x′ = X(t, x) on the real line R, is given. Verify that
the stated solution actually satisfies the DE and then find the two particular
solutions that satisfy the two given initial conditions x(t0) = x0. Determine
the largest domain B ⊆ R

2 for the time-dependent vector field X : B → R,
associated with the system and describe the sets Bt. Determine the largest
intervals I, on which the solutions, α : I → R

2, of the initial value problems
are defined. Plot, in the same figure, the graphs of the two particular solutions
and mark, on the figure, the points (t0, x0) for the initial data.

(a) x = t±
√
t2 − t3 + k is a solution of

x′ =
2x− 3t2

2(x− t)

for any value of k (and each choice of the ± sign). Initial conditions
x(1) = 0 and x(1) = 2.
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(b) x = t tan(ln |t| − k) is a solution of

x′ =
t2 + xt+ x2

t2
,

for any value of k. Initial conditions x(1) = 1 and x(−1) = 1.

1.4 Fixed Points
Many autonomous systems have very special solutions, called fixed points,
which are important not only because they are very simple, but also because
they often determine the behavior of the other integral curves around them.

Definition 1.4 (Fixed Points) A point c ∈ O is called a fixed point of the
vector field X : O → R

n, if X(c) = 0.
Any fixed point gives rise to a very simple integral curve (also called a

fixed point) of the autonomous system: x′ = X(x). Namely, define α(t) = c,
for every t ∈ R. Then since α′(t) = 0 and X(α(t)) = X(c) = 0 for every t, it
is clear that α is an integral curve. Fixed points are also called equilibrium
points because, for example, in the N -body problem, a fixed point of the
system gives positions at which the N bodies would remain forever if placed
there initially with no initial velocity. Another name for fixed points that is
often used in the literature is critical points.

Not all systems have fixed points, but the existence of a fixed point is
often helpful in analyzing the other solutions of the system, as you will see
in the later chapters. Some of the previous examples discussed the physical
significance of fixed points, which further indicates the importance of fixed
points in the study of systems of DEs.

You should realize that the determination of fixed points amounts to
solving the system of algebraic equations X(x) = 0, i.e., X1(x1, . . . , xn) =
0, . . . ,Xn(x1, . . . , xn) = 0, for the n unknowns x1, . . . , xn. In general this
can be difficult to do, both theoretically and numerically, but the following
exercises give examples where the fixed points can easily be calculated by
hand.

Exercises 1.4
1. For each of the following systems, write down the formula for the associated

vector field X and find all the fixed points of X .
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(a)

x′ = y2 + x− 2
y′ = x2 − y2

(b)

x′ = (x− 5)(y − 1)
y′ = (x− 3)(y + 2)

(c)

x′ = (e− ax− by)x
y′ = (f − cx− dy)y

(d)

x′ = y(z − 1)
y′ = x(z + 1)
z′ = −2xy

1.5 Reduction to 1st-Order, Autonomous
Not all systems of differential equations are first-order systems, but, from
a theoretical viewpoint, a system of any order can be replaced by a corre-
sponding first-order system that is equivalent in some sense to the original
system. This is called reduction to first-order and because of this it suffices
to just study the theory for first-order systems.

The technique for reducing a system of nth-order DEs to first-order is
quite natural and easy to do in practice. After reducing to a 1st-order
system, we remove the time dependence to obtain an autonomous system.

Many higher order systems are commonly 2nd-order, having their origin
in physics, chemistry, etc., where the laws of motion of complex systems
seem to dictate 2nd-order equations. For 2nd-order systems, reduction to
1st-order amounts to considering the velocities, i.e., the 1st derivatives, as
extra unknown functions and adding extra equations to the system.

The general 2nd-order system has the form

f(t, x, x′, x′′) = 0,

involving n unknown functions of t, i.e., the component functions of x =
(x1, . . . , xn). In the above system f : E → R

n is a vector-valued function
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defined on some open subset E of R × R
n × R

n × R
n, and we will assume

that system can be manipulated algebraically so as to solve for x′′ in terms
of t, x, and x′. Namely so as to put it in normal form:

x′′ = F (t, x, x′). (1.29)

By resorting to the Implicit Function Theorem (with some restrictions on
f), we are guaranteed that this is possible (in theory). The relation between
the solutions of the original system and (one) of its normal forms can be
delineated, but in order to circumvent all these details we will just consider
systems in normal form (1.29). The function F is a map: F : U → R

n, with
domain some open subset U of R × R

n × R
n.

The 1st-order system to which (1.29) reduces is

x′ = v (1.30)
v′ = F (t, x, v). (1.31)

This is a system of 2n equations for the 2n component functions of x =
(x1, . . . , xn) and v = (v1, . . . , vn). For the sake of clarity, we explicitly write
the system (1.30)-(1.31) in component form:

x′1 = v1
...

x′n = vn

v′1 = F 1(t, x1, . . . , xn, v1, . . . , vn)
...

v′n = Fn(t, x1, . . . , xn, v1, . . . , vn).

We can be a little more formal than this by introducing a time-dependent
vector field X : U → R

n × R
n, defined by

X(t, x, v) = (v, F (t, x, v)),

and then exhibiting the explicit relationship between the solution curves of
the 1st-order system determined by X and the solution curves of the original
system. This level of formality is necessary to be precise about the reduction
to first-order technique, but is rather simple to carry out, so the details are
left to the reader.
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The reduction of an kth-order system (in normal form):

x(k) = F (t, x, x′, . . . , x(k−1)), (1.32)

to a 1st-order system is entirely similar to what we just did for a 2nd-order
system: just introduce (vector-valued) functions z1 = x, z2 = x′, . . . , zk =
x(k−1), for x and all its derivatives up to order k − 1. Then the kth order
system reduces to the 1st-order system:

z′1 = z2

z′2 = z3
...

z′k−1 = zk

z′k = F (t, z1, z2, . . . , zk).

The unknowns here are curves: zj : I → R
n, j = 1, . . . , k, in R

n, and so this
system in vector form is

z′ = Z(t, z),

where Z : O → R
kn is an appropriate time-dependent vector field on an

open set O of R×R
kn. Again, we could be more formal about this, but the

main idea is clear. The exercises will explore some of the formalities.
The technique for reducing a 1st-order, nonautonomous system

x′ = X(t, x),

to an autonomous system, amounts to introducing another equation for the
time, considered as a new unknown function. Thus, one considers:

x′0 = 1
x′ = X(x0, x).

The exact relation of the integral curves of this autonomous system to those
of the system we began with will be studied in the exercises.

Exercises 1.5
1. Consider a second-order system in normal form:

x′′ = F (t, x, x′), (1.33)
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where F is a map: F : U → R
n, with domain some open subset U of

R × R
n × R

n. The corresponding first-order system is:

(x′, v′) = X(t, x, v),

where X is the time-dependent vector field: X : U → R
n × R

n, defined by

X(t, x, v) = (v, F (t, x, v)).

The purpose of this exercise is to describe the precise relationship between
the solutions of the 2nd-order system and its corresponding 1st-order system.

(a) Give a definition of what is meant by a solution: α : I → R
n, of the

second-order system.

(b) Show that for each solution α : I → R
n of the second order system, the

curve α̃ : I → R
n × R

n defined by:

α̃(t) = (α(t), α′(t)),

is a solution of the corresponding first-order system.

(c) Suppose α̃ : I → R
n × R

n is a solution of the corresponding 1st-order
system. Being a curve in R

n × R
n it can be written as

α̃(t) = (α(t), β(t)),

where α and β are curves in R
n. Show that α is a solution of the original

2nd-order system.

2. Consider the 1st-order, nonautonomous system:

x′ = X(t, x),

where X : B → R
n is a time-dependent vector field on an open set B ⊆

R
n × R. The corresponding autonomous system is

x′0 = 1
x′ = X(x0, x).

More formally, introduce a vector field: X̃ : B → R × R
n on B, defined by

X̃(x0, x) = (1, X(x0, x)).

This exercise exhibits the relation between the solutions of the original nonau-
tonomous system and the autonomous system determined by X̃ .
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(a) Suppose α : I → R
n is a solution of the nonautonomous system and

define a curve: α̃ : I → R × R
n by

α̃(t) = (t, α(t)).

Show that α̃ is a solution of the corresponding autonomous system:
z′ = X̃(z).

(b) Suppose that α̃ : I → R × R
n is a solution of the autonomous system:

z′ = X̃(z). Since α̃ is curve in R × R
n, it can be written in the form

α̃(t) = (τ(t), α(t)),

where τ and α are curves in R and R
n, respectively. Show that there

exists a constant t0 such that the curve β defined by:

β(t) = α(t− t0),

for t ∈ I + t0, is a solution of the original nonautonomous system.

3. Reduce each of the following systems to a 1st-order, autonomous system.

(a) x′′′ = x′x+ x2 + x′′.

(b) x′′′ = x′x+ x2t+ x′′.

(c) x′′′ = 5x′′ + 2x′ − x+ sin 3t.

(d)

x′′ = x′y + x2y′ + y

y′′ = xy′ + y2 − x′.

4. For each of the DEs you were assigned in Exercise 1, Section 3, reduce the DE
to a 1st-order, autonomous system and plot, in the same figure, the direction
field for the autonomous system along with the graphs of the two particular
solutions you found of the nonautonomous system.

1.6 Summary
In this introduction we have attempted to give an overview of the subject of
study—dynamical systems/systems of DEs. This we have done by means of
specific examples, general discussions of the important features, and precise
definitions of some of the objects necessary to formulate the theory in math-
ematical terms. The rest of the book will add to this, not only by digging
deeper into the details of the topics which arose here in the discussion, but
also by introducing new topics that suggest themselves naturally.
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The next chapter will introduce some further concepts and techniques
that arise in the theory of differential equations, and, for the most part,
the discussion is intuitive. The mathematical tools, theorems, and results
necessary to make these concepts rigorous will, beginning in Chapter 3,
eventually be covered.

While your previous experience in the study of DEs has probably dealt
primarily with writing down exact, closed-form solutions of DEs and IVPs,
or with deriving series solutions where possible, you will now find very little
of that activity stressed here (although from time to time we will explicity
solve some DEs). In essence the emphasis here is on the qualitative theory
of systems of DEs, since in practice most nonlinear systems do not have
solutions that can be written down explicitly in terms of elementary functions
(Being able to do this is the quantitative aspect of the study of systems of
DEs.)



Chapter 2

Techniques, Concepts and
Examples

In this chapter we look at a number of examples of dynamical systems (sys-
tems of DEs) in detail and use this as an opportunity to introduce many
concepts, such as gradient vector fields, stable/unstable fixed points, sepa-
ratrices, limit cycles, transformations of DEs, and conservation laws, which
will be studied more formally later. Our goal is to give the reader some expe-
rience with looking at, working with, studying, and analyzing some typical
examples of systems that can occur. The computer exercises here, in the
previous chapter, and on the electronic component are intended to aid the
student in obtaining this experience and to help establish an intuitive feel
for the concepts well before we study the underlying theory for these con-
cepts. Waiting until after the development of the theory to begin computer
analyses of dynamical systems is too long to wait.

A basic understanding of the concepts is easily obtained with a good
computer and a computer algebra system (CAS), like Maple, which we will
use here and throughout the text. Maple will be used to numerically plot
the integral curves for the systems we study and not as a tool for finding
closed-form formulas for these integral curves (which rarely is possible). In
essence the vector field X defining the system

x′ = X(t, x)

contains all the information we need to numerically study the integral curves
of the system via their plots. It also contains much geometric information
about the phase portrait of the system as well.

The mathematics behind the various numerical schemes for solving differ-
ential equations is discussed in many numerical analysis courses and books,
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and is not part of the scope of this book. However, it is very important, both
for building a geometric intuition about systems and their flows and for us-
ing Maple’s numerical software properly, to have some some understanding
of how these numerical schemes work. With this in mind we briefly discuss
the Euler method for numerically solving systems.

2.1 Euler’s Numerical Method
For simplicity here, we limit the discussion to autonomous systems x′ =
X(x), with X : O → R

n a vector field on O.
One can motivate Euler’s numerical method in several ways. We begin

with the geometric way.

2.1.1 The Geometric View

Suppose we want to determine an approximation to the integral curve γ
which starts the point c ∈ O at time t = 0, i.e., to the curve γ which satisfies

γ′(t) = X(γ(t))
γ(0) = c

Plotting the vector X(c) at the point c gives us the direction the integral
curve will go in flowing away from c (since X(c) = X(γ(0)) = γ′(0) is
the tangent to γ at c = γ(0)). Visualize constructing (actually drawing) a
polygonal approximation as follows. Fix a small positive number h and move
from c along the tangent line a distance of h|X(c)|, arriving at the point

c1 ≡ c+ hX(c).

See Figure 2.1. Note: |X(c)| stands for the length of the vector X(c). If the
tangent vector X(c) is not too large in magnitude, then the point c1 will be
approximately on the integral curve γ. Thus, joining c and c1 gives the first
side in a polygonal approximation to γ. The next side starts at the point
c1, where the flow has tangent vector X(c1) As in the first step, now move
from c1 along the tangent line a distance of h|X(c1)|, arriving at the point

c2 ≡ c1 + hX(c1).

Joining c1 to c2 with a straight line gives the second side in the polygonal
approximation. By repeating the process for a total of N steps, we get



2.1. Euler’s Numerical Method 39

Figure 2.1: The geometry behind Euler’s numerical method for approximating
integral curves of the vector field X.

a polygonal approximation with vertices c0 = c, c1, c2, . . . , cN , which are
successively computed by

Euler’s Method:
cj+1 = cj + hX(cj), (2.1)

for j = 0, 1, . . . , N − 1.

Quite simply, Euler’s method amounts to computing the points c1, c2, . . . , cN
from equation (2.1), with c0 = c as the initially given point, and then joining
these points successively with line segments to get the polygonal approxima-
tion to the desired integral curve. See Figure 2.2.

Figure 2.2: The geometry behind Euler’s numerical method for approximating
an integral curve γ of the vector field X. Starting at the initial point c the
points c1, . . . , cN are generated by Formula (2.1) and the resulting polygonal
approximation to γ is obtained.

The polygonal approximation to γ is on the time interval [0, T ], where
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T = Nh, and the h in Euler’s method is known as the stepsize (or more
precisely the temporal stepsize because it is the amount of time between
the successive points), while N is known as the number of time steps. The
spatial stepsize can vary with j, since the length of the step from cj to cj+1

is
|cj+1 − cj | = h|X(cj)|.

In regions where X is large in magnitude, these spatial steps can become
quite large and Euler’s method will give poor approximations when h is not
sufficiently small.

2.1.2 The Analytical View
Euler’s method, and it’s accuracy, is based on the Taylor series expansion of
γ

γ(t+ h) =
∞∑

k=0

γ(k)(t)
k!

hk

= γ(t) + hγ′(t) +
h2

2
γ′′(t) + · · ·

Note: In the second equation, we have written the scalars hk/k! on the left
of the vectors γ(k)(t), as is the custom. Using just the first two terms of the
Taylor series and the fact that γ′(t) = X(γ(t)), we get the approximation
by the first two terms in its Taylor series expansion:

γ(t+ h) ≈ γ(t) + hγ′(t)
= γ(t) + hX(γ(t)).

Even with h small enough so that the approximation is good at the first
step, successive steps compound the approximation and can cause the error
to grow. This is indicated by looking at the first two steps (starting at t = 0):

γ(0) = c

γ(h) ≈ γ(0) + hX(γ(0))
= c+ hX(c) = c1

γ(2h) ≈ γ(h) + hX(γ(h))
≈ c1 + hX(c1) = c2.

Here, as you can see, c1 involves one approximation while c2 involves two
approximations. Similarly, the approximations to γ(3h), . . . , γ(Nh) involve
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the Taylor series approximation and the approximations from the previous
steps. You can well imagine (see Figure 2.2) how the overall error could
accumulate over a large time interval. Thus, controlling the stepsize h is
crucial to obtaining accurate plots.

Most computer algebra systems like Maple use more refined numerical
methods than the Euler method, but the basic ideas on approximating so-
lutions, stepsize, accumulation of errors, and so on, are similar.

Example 2.1 (Row of Vortices) Exercise 4(b) from Section 1.1 will serve
well to illustrate the need to set appropriate stepsizes to achieve accurate
plots of integral curves. The system of DEs is

x′ =
sinh y
M(x, y)

y′ =
− sinx
M(x, y)

,

where M(x, y) = cosh y− cos x. So the system is closely related to Example
1.2, except now the function M occurs in the denominators. The vector field
for the system is

X(x, y) =
(

sinh y
M(x, y)

,
− sinx
M(x, y)

)
,

and this becomes infinite where M(x, y) = 0 (i.e., at the vortex centers).
Let’s consider plotting an integral curve near the vortex center (0, 0).

If we choose a point c close to (0, 0), say c = (0, 0.1), then the integral
curve γ that starts there at time zero, γ(0) = c, is a closed, circular-like,
curve. Since the speed of flow along a streamline (integral curve) is very
great near the center of a vortex, the numerical approximations to γ will be
quite poor unless the stepsize is small.

This is illustrated in Figure 2.3, which shows four approximations to
γ, only one of which is reasonably accurate. The plot in the upper left of
the figure is for the time interval t = 0 . . . 1 and stepsize h = 0.05. This
means that there are N = T/h = 1/0.05 = 20 spatial steps in the numerical
method and the resulting approximation is a polygon with 20 sides (which
can clearly be counted in the figure). However, due to the high velocity,
the actual integral curve γ wraps around the vortex center three times in
the 1 second time interval. Thus, 20 steps are not enough to give a good
approximation and this is readily apparent in the figure. Taking a stepsize of
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h = 0.01 T = 10h = 0.001 T = 1

h = 0.01 T = 1h = 0.05 T = 1

Figure 2.3: Plots of the approximations to a single integral curve near a
vortex center in Example 2.1. Upper Left: stepsize = 0.05 and t = 0 . . . 1.
Upper Right: stepsize = 0.01 and t = 0 . . . 1. Lower Left: stepsize =
0.001 and t = 0 . . . 1. Lower Right: stepsize = 0.01 and t = 0 . . . 10.

h = 0.01 gives N = 1/0.01 = 100 steps and results in a better approximation
as shown in the upper right of Figure 2.3. This is still inaccurate because
the heavy line thickness indicates that the approximation is “wandering”
somewhat as it wraps around the vortex center. This is verified by taking
h = 0.001 (one thousand steps) to get the plot in the lower left of the figure.
The “wandering” problem in approximations is exhibited more vividly in
the plot at the lower right of the figure. This is for t = 0 . . . 10, so that
γ winds about the vortex center a greater number of times, and h = 0.01.
Even though the approximation has the right shape, its thickness indicates
the inaccuracy.

Having said this, we should also say that there are systems, like the
perturbed ball in the hoop example from Chapter 1, where an integral curve
will wander around the phase space and appear to fill out whole regions.
This is known to occur theoretically and not to be a result of inaccuracies
in the approximations. This points out the need for having some theory to
guide the experimental studies done on a computer.
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Exercises 2.1
1. Use Euler’s method to construct, by hand, polygonal approximations to the

specified integral curves of the following systems. In each case the integral
curve starts at c at time t = 0. Two stepsizes h are specified for the given
time interval [0, T ] and both of the corresponding approximating polygons
should be drawn in the same figure for comparison.

(a) c = (1, 1), T = 2, h = 0.5, and h = 0.2. The system is

x′1 = x1

x′2 = −x1 + x2.

(b) c = (3,−1), T = 1, h = 0.2, and h = 0.1. The system is

x′1 = −x1 + 2x2

x′2 = x1.

2. For the system in 1(a), but now with h and T unspecified, compute the points
c1, . . . , c5 in Euler’s method in terms of h.

3. As in Example 2.1, but now for the Karmen vortices, use a computer to draw
the polygonal approximations to the integral curve that starts at c = (0, 0.25)
at time zero and stepsizes and time intervals: (a) h = 0.05, T = 1, (b)
h = 0.01, T = 1, (c) h = 0.001, T = 1, and (d) h = 0.01, T = 10. Compare
and contrast these results with those shown in Figure 2.3.

2.2 Gradient Vector Fields
Many systems x′ = X(x) arise from vector fields X which are gradients of
scalar fields X = ∇F . All heat flow systems and some fluid flow systems are
of this type. These systems are special and the extra information about the
system that we get from F is often helpful.

Definition 2.1 A vector field X : O → R
n on an open set O ⊆ R

n is called
a gradient vector field if there is a (scalar) function F : O → R, such that

∇F (x) = X(x),

for every x ∈ O. In terms of components of X, the condition is

∂F

∂xi
= Xi(x),

for i = 1, . . . , n and all x ∈ O. The function F is called a potential (or
potential function) for X. If X represents a force field (and is a gradient
vector field), then it is called a conservative force field.
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Clearly not all vector fields are gradient vector fields, i.e., have potentials.
Indeed if X has a potential (and is continuously differentiable on O), then
necessarily the components of X must satisfy the equations:

Integrability Conditions:

∂Xj

∂xi
=
∂Xi

∂xj
, (2.2)

on O for all i, j = 1, . . . , n (exercise). Note: For n = 3, i.e., for a vector field
X on an open set O in R

3, the integrability conditions are equivalent to the
condition that curl(X) = 0 on O. In general equations (2.2) are necessary,
but not sufficient, forX to be the gradient of some function. If the domain O
is simply connected, in particular if O = R

n, then there are integral formulas
for constructing potentials for any X that satisfies equations (2.2). Maple
and other CASs have built-in procedures for calculating potentials for vector
fields (exercises). When X has a potential F , then for any constant c, the
function F + c is also a potential for X. Thus, potentials are not unique.

If X is a gradient vector field with potential F , then since ∇F is per-
pendicular to each hypersurface

Sk
F = {x ∈ R

n |F (x) = k },

(called a level set of F ), it follows that X = ∇F is also perpendicular to
each of these surfaces. Consequently, each integral curve of X intersects
each level set of F orthogonally. In dimensions n = 2 and n = 3 this is often
useful information, as the next example shows.

Example 2.2 (Heat Flow in a Square Plate) All heat flows arise from
gradient vector fields, because the heat flow lines are the integral curves of
the heat flux vector field X. The heat flux vector field, by definition, is the
negative of the gradient of the temperature function F , i.e., X ≡ −∇F . The
minus sign in this definition is there because ∇F points in the direction of
greatest increase in temperature and physically heat flows from hot to cold.
Thus, −∇F is the direction of heat flow. As a specific example consider the
temperature function

F (x, y) = b cos(2πx) sinh(2πy),

where b = 1/ sinh(2π). This temperature distribution F arises from bound-
ary conditions where the bottom of the square is held at temperature 0, the
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Figure 2.4: Plot of the heat flow lines for the temperature function F (x, y) =
b cos(2πx) sinh(2πy).

top is held at a temperature that varies as F (x, 1) = cos(2πx), and the sides
are insulated (i.e., the heat flux vectors X(0, y) and X(1, y) are tangent to
these sides, respectively). The heat flux vector field for F is

X(x, y) =
(

2πb sin(2πx) sinh(2πy),−2πb cos(2πx) cosh(2πy)
)
.

The plots of some of the integral curves of X, i.e., some of the heat flow lines
for the temperature distribution F , are shown in Figure 2.4.

By what was said above, each heat flow line must intersect each level
curve of F orthogonally. A level curve of a temperature function is known
as a isotherm, since the temperature is the same at all points along such a
curve. Figure 2.5 shows the plots of some isotherms for this example.

With enough isotherms drawn in, it is possible to construct a relatively
good plot of the heat flow lines by starting at a point on the top boundary
of the square and drawing a curve, by hand, that intersects each isotherm at
a right angle. While Figure 2.5 does not indicate which temperature corre-
sponds to which isotherm, you can get a relative idea of this correspondence
by plotting the graph of the temperature function F and using a style for
the rendering that has the isotherms drawn in on the surface. This is shown
in Figure 2.6.
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Figure 2.5: Plot of some level curves (isotherms) for the temperature function
F (x, y) = b cos(2πx) sinh(2πy) and some heat flow lines.

Example 2.3 (Flow Past a Cylinder) In fluid mechanics there is a class
of planar fluid flows where the velocity vector field X for the fluid is a
gradient vector field. These are often introduced using complex function
theory and, indeed, the construction of many of these is best understood
using complex variables. We will not go into the details here (see [Ma 73], [Be
98]), but just mention that is where the vortex examples in the Introduction
came from. This example comes about in a similar way.

Thus, consider the vector field on the plane given by

X(x, y) =
(
a+

b(y2 − x2)
(x2 + y2)2

,
−2bxy

(x2 + y2)2

)
,

where a and b are positive constants. This vector field is defined on the
whole plane minus the origin, O = R

2 \ {0}.
From the form of X, it is not too hard to recognize that it is the gradient

of the function
F (x, y) = ax+

bx

x2 + y2
.

(Verify!) If you wish, you can use Maple to find this function, even though in
this case this is easy to do by hand. The role of the potential function F is not
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Figure 2.6: Plot of temperature function F (x, y) = b cos(2πx) sinh(2πy) with
some of the isotherms drawn in on the surface.

very physically meaningful here, although it could be used to visualize the
integral curves as suggested in the last example. Namely, a plot of sufficiently
many level curves of F will enable you to draw the integral curves, by hand
(see the exercises).

The plot of X (or rather, its direction field) is shown in Figure 2.7.
The figure indicates the presence of a circle of radius r = 1 with center at
the origin. The points (x, y) on this circle are special since they have the
property that X(x, y) is tangent to the circle at this point (exercise). This
is important in fluid mechanics because the theory requires that the velocity
vector field for a certain fluids should be tangent to the boundary of an
obstacle placed in the fluid. Thus, if we disregard the integral curves on the
interior of the circle, then the corresponding picture represents an ideal fluid
flow past a cylinder. This is shown in Figure 2.8.

You can see from the figure that far from the cylinder, the flow is essen-
tially uniform. Check also that X(x, y) ≈ (a, 0) for x2 +y2 large, so that the
parameter a represents the speed of the uniform flow.

A related vector field, which contains the one above as a special case, is

X(x, y) =
(
a+

b(y2 − x2) + cy(x2 + y2)
(x2 + y2)2

,
−(2bxy + cx(x2 + y2)

(x2 + y2)2

)
,

The choice of c = 0 gives the vector field for the flow past a cylinder . For
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Figure 2.7: Plot of the direction field for the vector field X in Example 2.3.
The parameter values are a = 1, b = 1.

c 
= 0, this vector field gives a model for a spinning (or rotating) cylinder
in a uniform flow. Thus, the extra terms change things slightly and give a
very interesting fluid flow (which you can study more in the exercises). A
potential for this flow is

F (x, y) = ax+
bx

x2 + y2
− c tan−1

(
y

x

)
.

(Verify this!) Besides having a different form, this new potential has a dif-
ferent domain, in fact a smaller one:

U = { (x, y) |x 
= 0 } = R
2 \ { y-axis }.

Thus, unless the domain for X, which is still O, is changed, we cannot claim
that X is gradient vector field according to the above definition. This is in
the nature of things. One can show that there does not exist a function G
defined on all of O, such that ∇G = X on O (exercise).

Exercises 2.2
1. (Flow past a cylinder) Consider the vector field from Example 2.3:

X(x, y) =
(
a+

b(y2 − x2)
(x2 + y2)2

,
−2bxy

(x2 + y2)2

)
,

where a and b are positive constants. Do the following
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Figure 2.8: Ideal fluid flow past a cylinder in a uniform flow. The parameter
values are a = 1, b = 1, the radius of the cylinder is r =

√
b/a = 1, and the

speed of the flow far from the cylinder is approximately a = 1.

(a) Verify that the function

F (x, y) = ax+
bx

x2 + y2

is a potential function for X .

(b) Show that for a point (x, y) on the circle of radius r =
√
b/a (i.e.,

x2 + y2 = b/a), the vector X(x, y) is tangent to the circle at the point.
Hint: Recall that a tangent vector to a circle at a point is perpendicular
to the radius vector from the center to the point.

(c) Show that (±
√
b/a, 0) are the only fixed points (stagnation points) of

the flow.

(d) (Maple users see worksheet gradvecfields.mws.) For parameter values
a = 1, b = 1, use a computer to plot some level curves of the function
F . Print this out and then, by hand, use the level curve plots to con-
struct integral curves of X (i.e., flow lines past a cylinder). Make sure
the original computer plot contains enough level curves to achieve an
accurate plot of the flow lines (Cf. Figure 2.8.)

2. (Flow past a rotating cylinder) Consider the vector field

X(x, y) =
(
a+

b(y2 − x2) + cy(x2 + y2)
(x2 + y2)2

,
−(2bxy + cx(x2 + y2)

(x2 + y2)2

)
,
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which contains the vector field from Exercise 1 as a special case. Do the
following

(a) Use a computer to find a potential F for X . State the domain of F and
compare with the potential in the text.

(b) Determine if there is a circle in the domain of X , that X is tangent to
at each of its points.

(c) Determine the stagnation points of the fluid flow.

(d) (Maple users see worksheet gradvecfields.mws.) For parameter values
a = 1, b = 1, c = 1, use a computer to plot the graph of the potential
function F of your choice. Render it with the contours drawn in on
the surface. Print out a plot of the level curves of F and use this to
construct, by hand, a phase portrait, i.e., plots of the fluid flow lines
past the rotating cylinder. Use a computer to construct a more accurate
phase portrait. Make sure to include in this the flow lines that flow
toward and away from the stagnation points.

2.3 Fixed Points and Stability
We consider a few examples to illustrate the technique of finding fixed points
both by hand and by using Maple.

Example 2.4 We revisit the last example and consider the vector field

X(x, y) =
(
a+

b(y2 − x2)
(x2 + y2)2

,
−2bxy

(x2 + y2)2

)
.

The fixed points of X (places where it vanishes) are the solutions (x, y) of
the equation X(x, y) = 0, i.e., of the algebraic system of equations

a+
b(y2 − x2)
(x2 + y2)2

= 0

−2bxy
(x2 + y2)2

= 0.

This is easy to solve by hand. Thus, the second equation gives that either
x = 0 or y = 0. If x = 0 then the first equation reduces to a + b/y2 =
0, which has no (real) solutions. On the other hand if y = 0, then the
first equation reduces to a − b/x2 = 0, which has solutions x = ±

√
b/a =

±r. Thus, there are two fixed points (±r, 0), which in this case are called
stagnation points. These points are clearly shown in Figure 2.8, and each is
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an unstable fixed point. Later we will give a precise definition of stability for
systems of DEs and develop some tools for determining stability. However,
the instability of the two stagnation points here should be easy to understand
intuitively. If a particle is placed at either stagnation point, it will remain
there forever. However, if a particle is placed near, but ever so slightly away
from, a stagnation point, then the fluid flow will carry it away downstream
to infinity. That is to say, integral curves of X that start near a fixed point
do not remain near it as time evolves.

Example 2.5 An interesting abstract system that does not represent any
particular physical situation is

x′ = (x2 − 1)y (2.3)
y′ = (x+ 2)(y − 1)(y + 2). (2.4)

The fixed points of this system are the solutions of the algebraic system

(x2 − 1)y = 0
(x+ 2)(y − 1)(y + 2) = 0.

Because of the factored form, this is easy to solve by hand. The reasoning
is as follows. For the first equation to hold, either x = ±1 or y = 0. We
examine what each of these implies in the second equation of the system. (A)
If x = ±1, then the second equation is (2± 1)(y − 1)(y + 2) = 0 and so either
y = 1 or y = −2. From this we get four fixed points (1, 1), (−1, 1), (1,−2),
and (−1,−2). (B) If y = 0, then the second equation is −2(x + 2) = 0 and
so x = −2. This gives the fixed point (0,−2). Thus, altogether this system
of DEs has five fixed points.

The plot of the direction field for the system is shown in Figure 2.9. Here,
as is often the case, the number of fixed points can be discerned from the
figure and even their approximate locations can be found by clicking on the
plot window at approximately where the fixed points appear to occur.

The system of DEs has some easily found integral curves which lie on
horizontal or vertical straight lines. Thus, if we take x = 1 in the first
equation of the system, i.e., look for an integral curve of the form α(t) =
(1, α2(t)), we see that such integral curves are possible because the first
equation is satisfied automatically, while the second equation becomes y′ =
(y− 1)(y+ 2), which is easily solved for y (i.e., for α2(t)). Thus, the vertical
line through x = 1 contains straight-line integral curves and in fact three
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Figure 2.9: The direction field for the system (2.3)-(2.4).

distinct ones, since this line is divided into three parts by the two fixed points
(1,1) and (1,−2) which lie on it.

Similar reasoning will lead you to discover the other vertical and horizon-
tal integral curves in the system. These, along with numerous other (curved)
integral curves are shown in Figure 2.10.

You can see that some of the fixed points have nearby integral curves
which are qualitatively different from the others. The fixed point (1,−2)
is an asymptotically stable fixed point, since all integral curves that start
near enough to it will tend toward it over time. On the other hand the
fixed point (1, 1) is unstable, since all integral curves that start in a suitable
small neighborhood of it will leave this neighborhood in a finite amount
of time. The fixed points (−1,−2) and (−1, 1) are likewise unstable fixed
points since, in a small enough neighborhood of either point, most integral
curves starting in the neighborhood will eventually leave the neighborhood.
The last fixed point (−2, 0) is stable (but not asymptotically stable), since
(roughly speaking) integral curves that start near it, will stay near it, but
not approach it in the limit.

Example 2.6 This example illustrates the need to use numerical methods
to find the fixed points of a system. The system of DEs is

x′ = x5y3 + x2 + y2 − 4
y′ = x3y + x2 − y2 + 1.
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Figure 2.10: The phase portrait for the system (2.3)-(2.4).

The corresponding system of algebraic equations for the fixed points of the
system is

x5y3 + x2 + y2 − 4 = 0 (2.5)
x3y + x2 − y2 + 1 = 0, (2.6)

and since the individual equations do not factor completely, the system is
not readily solvable by hand. You can find the solutions of this system
numerically by using Maple’s fsolve command (see the Maple worksheets
for details on this). This command generally tries to find all real solutions
if the equations are polynomial equations (as they are here), but often will
return only one solution. This is the case for this example. Maple returns
the single solution

(x, y) = (−.7817431847,−1.530451384).

Determinig the number of solutions of such a system can be theoretically
and practically difficult. It is often useful, for systems with two equations
and two unknowns, to try to determine the number of solutions and their
approximate values by graphical methods. This is based on the following
observation. Each equation in the algebraic system (2.5)-(2.6) represents a
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Figure 2.11: Plots of the curves x5y3+x2+y2−4 = 0 and x3y+x2−y2+1 =
0, showing the two points where these curves intersect.

curve in the plane, and solving the system amounts to finding the points of
intersection of the two curves in the system. Hence, plotting both curves in
the same picture (with an appropriate window size) can help find the number
of solutions and their approximate values. Figure 2.11 shows the two curves
in the system here. Using this information, you can specify a rectangle for
Maple to use in searching for the other solution. As it turns out, the other
solution is

(x, y) = (.7817431847, 1.530451384),

which is the negative of the one found above. One could have exploited
the symmetry in the system to predict this (exercise), and thus the plot
in Figure 2.11 only serves to verify that there are only two solution to the
system. Note: This is not absolute proof that there are only two solutions.

Thus, the system of DEs has just two fixed points. The plots of the
direction field and a collection of integral curves of the system is left as an
exercise.

Exercises 2.3
1. Plot the curves of the algebraic system

(x2 − 1)y = 0
(x+ 2)(y − 1)(y + 2) = 0,
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using different colors for each curve. This system comes from Example 2.5
and its solutions are the fixed points of the corresponding system of DEs.
Because of the algebraic factors, these fixed points are easy to determine.
Verify that the fixed points are the points of intersection of the curves you
plotted. Explain why the equations for the curves, because they are factored,
influences the nature of these “curves.”

2. Plot the phase portrait for the system in Example 2.6, i.e., the system:

x′ = x5y3 + x2 + y2 − 4
y′ = x3y + x2 − y2 + 1,

Determine the stability of the fixed points. See the material on the worksheet
fixedpts.mws.

3. Consider the system

x′ = x2y + xy2 − x− 1
y′ = x4 + xy2 + y − 4.

Do a complete study of this system, that is, do the following.

(a) Find all the fixed points. Plot, using different colors, the curves in the
algebraic system that determines these fixed points. Justify that you
have found all the fixed points.

(b) Draw a good, complete phase portrait for the system. Choose the view-
ing rectangle of a suitable size so that all the features of the system are
showing.

2.4 Limit Cycles
A limit cycle for a system of DEs is a closed integral curve which has the
property that it attracts or repels nearby integral curves. Limit cycles will
be classified as stable or unstable, much like fixed points, and indeed you
can consider a limit cycle as sort of a one dimensional analog of a fixed point
(which is zero-dimensional). As with fixed points, a given system of DEs
may not have any limit cycles.

Example 2.7 For convenience of notation let r = (x2 + y2)1/2 and consider
the following system in the plane:

x′ = (1 − r2)x− (a+ r2)y (2.7)
y′ = (a+ r2)x+ (1 − r2)y, (2.8)
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where a is a constant which we will take to be a = −4. (The exercises will
cover some other interesting choice for a.) This gives a system with a limit
cycle which is a circle of radius 1 centered at the origin. (In general, limit
cycles need not be circular.) Figure 2.12, shows this limit cycle and some
of the other integral curves of the system. As you can see, this limit cycle

Figure 2.12: Plots of flow lines (integral curves) for the vector field X in
Example 2.7. A limit cycle, i.e. a closed integral curve which is approached
in the limit by other integral curves, is clearly visible in the picture.

is stable, since all the integral curves of the system which start at points
either inside or outside the circle approach it asymptotically. Chapter 6
gives a general technique for transforming a system of DEs and shows how,
in particular, the system here can be transformed to polar coordinates. By
doing so, we can prove that the circle of radius 1 here is actually a limit
cycle and not just a manifestation of poor numerical approximations. Rather
than using the general transformation theory, here we motivate the idea by
showing how it works for transforming to polar coordinates.

Thus, suppose we look for solutions of the system (2.7)-(2.8) that have
the special form

x = r cos θ
y = r sin θ,
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where r = r(t) and θ = θ(t) are two new unknown functions of t. The above
relation between the two sets of unknowns x, y and r, θ allows us to calculate
the relation between their derivatives. It is easy to see that this relation is

x′ = r′ cos θ − rθ′ sin θ
y′ = r′ sin θ + rθ′ cos θ.

Using all of these relations, we can rewrite the system (2.7)-(2.8) entirely in
terms of the new unknown functions r, θ. This gives a new system:

r′ cos θ − rθ′ sin θ = (1 − r2)r cos θ − (a+ r2)r sin θ (2.9)
r′ sin θ + rθ′ cos θ = (a+ r2)r cos θ + (1 − r2)r sin θ. (2.10)

Multiplying the first equation by cos θ, the second equation by sin θ, and
adding the two resulting equation will yield an equation involving only r′. A
similar combination will give an equation involving only θ′. These two new
equations are quite simply

r′ = (1 − r2)r (2.11)
θ′ = r2 − 4. (2.12)

(exercise). This new system is known as the polar coordinate version of
the original or as the transformed system under the polar coordinate map.
You can see now why transforming the original system is helpful. Indeed
the new system (2.11)-(2.12) is completely solvable by elementary methods
(exercise). The first equation does not involve θ and is a separable DE.
Solving this for r and using this in the second equation, allows θ to be found
by integration. This will give the general solution of the system and then
using x = r cos θ and y = r sin θ will give the general solution of the original
system.

Here, however, we wish to look at only three particular solutions. In the
system (2.11)-(2.12), the first equation is just a 1st-order, one-dimensional
system and is easily seen to have three fixed points r = 0, 1,−1. The use
of these values in the second equation of the system gives θ′ = k, where
k = −4,−3,−3, respectively, is a negative constant. Thus, θ(t) = kt + θ0.
These three solutions of the r-θ system give us two solutions of the x-y
system which are, respectively, (1) a fixed point at the origin (x, y) = (0, 0)
corresponding to the zero radius r = 0, and (2) the limit cycle, or circle
of radius one, corresponding to r = ±1. The fact that this is a limit cycle
and is stable can be proven by using the explicit general solution of the r-θ
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Figure 2.13: Plots of flow lines for the polar system (2.11)-(2.12) Example
2.7.

system (exercise). Figure 2.13 shows the phase portrait for the polar system
(2.11)-(2.12). The two vertical, straight-line integral curves correspond to
the fixed point at the origin (r = 0) and the limit cycle (r = 1). The plots
of the other integral curves lend experimental evidence to the assertion that
the r = 1 integral curve corresponds to an asymptotically stable limit cycle
in the original system.

There is a method for constructing, by hand, a rough sketch of the phase
portrait for the original system just by interpreting the polar system (2.11)-
(2.12) geometrically. The circle r = 1 divides the plane into two regions
and we can examine the behavior of the integral curves α(t) = (x(t), y(t))
which start in one of these two regions. For an integral curve α having
corresponding polar version β(t) = (r(t), θ(t)) with r(0) = r0 > 1, the
quantity (1 − r2)r is negative in a neighborhood of r0. Thus, r′ = (1 −
r2)r < 0 and so r will be a decreasing function near time zero (and in
fact for all time) and we would expect α to approach the limit cycle r = 1
in the long run. In addition, the quantity θ′ = r2 − 4 will change from
positive to negative as r goes from being greater than to less than 2. This
indicates that the integral curves that are outside the limit cycle will have
a turning point in their approaches to the limit cycle and that this point
occurs as they cross the circle r = 2. This is exhibited in Figure 2.12.
It is predicted from the above comment, since where θ′ > 0, the angle θ
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is increasing (moving counterclockwise) and where θ′ < 0, the angle θ is
decreasing (moving clockwise). In a similar fashion, for an integral curve α
that starts inside the limit cycle (and not at the fixed point), 0 < r0 < 1,
we can predict from r′ = (1 − r2)r > 0 that r is increasing and from θ′ =
r2−4 < 0 that the angle θ is always a clockwise rotation (no turning points).
This analysis enables us to draw a reasonably accurate phase portrait.

Exercises 2.4
1. In Example 2.7, the system

x′ = (1 − r2)x− (a+ r2)y (2.13)
y′ = (a+ r2)x + (1 − r2)y, (2.14)

in the x-y plane was transformed into the polar system

r′ = (1 − r2)r (2.15)
θ′ = r2 − 4, (2.16)

in the r-θ plane, and it was shown how the polar system can be used to easily
sketch, by hand even, the phase portrait of the original system in the x-y
plane. While this is the main use of the polar system, it has other uses as
well.

(a) The DE (2.15) in the polar system is a separable DE. Solve this explicitly
and write out the particular solution which satisfies r(0) = r0. Use this
to show that the limit cycle in the x-y plane corresponding to r = 1 is
stable, and indeed is asymptotically stable. This means that if α is an
integral curve, distinct from the limit cycle and the fixed point at the
origin, then

lim
t→∞ |α(t)| = 1.

This is apparent intuitively from the plot of the phase portrait in Figure
2.12, but needs some rigorous proof nonetheless. You may use the fact
that any integral curve α of the system (2.13)-(2.14) has the form:

α(t) = (r(t) cos θ(t), r(t) sin θ(t)),

where r, θ is a solution of the polar system (2.15)-(2.16).

(b) Figure 2.13 shows the phase portrait of the polar system for a viewing
rectangle [0, 3]× [−6, 6], i.e., r = 0..3, θ = −6..6 (radians). Look at the
phase portrait on the larger viewing rectangle [−3, 3] × [−6, 6] shown
on the worksheet limitcycles.mws. There is an apparent symmetry of
the phase portrait about the θ-axis (the vertical axis). Show that this
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is indeed the case by proving that if β(t) = (r(t), θ(t)), for t ∈ J , is a
solution of the polar system (2.15)-(2.16), then the curves defined by

γ(t) ≡ (−r(t), θ(t))
µ(t) ≡ (r(t), θ(t) + π),

for t ∈ J , are also solutions to the polar system. Show also that β and
µ correspond to the same integral curve in the x-y plane. Discuss how
these assertions explain the symmetry in the polar phase portrait and
why.

2. The system

x′ = (1 − r2)x − (a+ r2)y (2.17)
y′ = (a+ r2)x+ (1 − r2)y + b, (2.18)

with parameters a, b has dramatically different features for different values of
a and b. In Exercise 1 above, a = −4, b = 0. In this exercise study the system
for the two cases (i) a = −1, b = 0 and (ii) a = −1, b = 1/2. Specifically, find
all the fixed points and limit cycles (if any) and plot a phase portrait (for the
x-y system only) which displays all the prominent features.

2.5 The Two-Body Problem
We return to the two-body problem from the introduction and use it to
illustrate several concepts and techniques—conservations laws, Jacobi coor-
dinates, and transformations of systems of DEs, which will help us explicitly
solve this system. The second-order version of this system

m1r′′1 =
Gm1m2

r312
(r2 − r1) (2.19)

m2r′′2 =
Gm1m2

r312
(r1 − r2), (2.20)

will be the most convenient form of the system to use in the theoretical
discussion.

We first derive a conservation law associated with this system, which
comes simply from the observation that if r1 = r1(t), r2 = r2(t), for t ∈ I,
is a solution of the system (2.19)-(2.20), then these functions also satisfy the
equation obtained by adding equations (2.19)-(2.20) together, i.e.,

m1r′′1 +m2r′′2 = 0,
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or equivalently:
d

dt

(
m1r′1 +m2r′2

)
= 0.

This implies there exists a constant (vector) P such that r1, r2 satisfy the
following:

Conservation of Linear Momentum:

m1r′1(t) +m2r′2(t) = P, (2.21)

for all t ∈ I. The constant vector P = (P1, P2, P3) is known as the total
linear momentum of the system, and the conservation law just says that no
matter how the individual momenta m1r′1(t),m2r′2(t) change over time, their
sum remains constant. Thus, if the initial velocities r′1(0), r′2(0) are known,
then the total linear momentum is

P = m1r′1(0) +m2r′2(0).

Another way to write the conservation of linear momentum law (2.21) is

d

dt

(
m1r1(t) +m2r2(t)

)
= P,

and thus we see (by integration) that there exists a constant vector B such
that

m1r1(t) +m2r2(t) = Pt+ B,

for all t ∈ I. If we let M = m1 + m2 denote the total mass of the system
and divide the last equation by M , we get the following:

Uniform Motion of the Center of Mass:

m1

M
r1(t) +

m2

M
r2(t) = Vt+ C, (2.22)

for all t ∈ I. Here m1r1(t)/M + m2r2(t)/M is (by definition) the position
of the center of mass of the system at time t and the above equation is just
the law that the center of mass moves with uniform (i.e., constant) velocity
V = P/M and has position C = B/M at time t = 0. This is illustrated in
Figure 2.14.
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Figure 2.14: Line of motion for the center of mass in the two-body system.

2.5.1 Jacobi Coordinates
Having seen above that the motion of the center of mass is as simple as
possible, i.e., rectilinear, we separate this motion from the more complex
motion of the bodies relative to one another. Technically, this amounts to
transforming to new coordinates.

Definition 2.2 (Jacobi Coordinates) If r1 = r1(t), r2 = r2(t), for t ∈ I,
is a solution of the two-body system (2.19)-(2.20), let

R =
m1

M
r1 +

m2

M
r2 (2.23)

r = r2 − r1. (2.24)

Then R, r are known as the Jacobi coordinates for the system. The first is a
vector-valued function pointing, at each time t, from the origin to the center
of mass, and the second is a vector-valued function pointing, at each time t,
from the first body to the second (see Figure 2.15).

Note that the above definition expresses R and r as linear combinations
of r1, r2. In matrix form this is[

r
R

]
= A

[
r1

r2

]
,

where A is a certain 2 × 2 matrix and the other matrices shown are 2 × 3
matrices with r,R and r1, r2 as their rows, respectively. Thus, transform-
ing to Jacobi coordinates is a linear transformation of the system of DEs.
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Figure 2.15: The Jacobi coordinates R, r for the two-body system.

The transformation to polar coordinates in the last example was a nonlin-
ear transformation. Since A is invertible we can express r1, r2 as a linear
combination of R, r as well (exercise). Thus, knowing R, r will give us r1, r2.

To get the transformed system of DEs for R, r, we use the equations of
motion (2.19)-(2.20) and the conservation of linear momentum. We use the
notation

r ≡ |r| = |r1 − r2| ≡ r12.

From the equations of motion, we easily find that R, r satisfy the equations

R′′ = 0
r′′ = r′′2 − r′′1

= −Gm1

r3
r− Gm2

r3
r

= −GM
r3

r.

These equations are uncoupled and the general solution of the first equation,
as we have seen above, is R(t) = Vt + C. Thus, all we need to do is solve
the second equation for r and that will complete the solution.

2.5.2 The Central Force Problem
It is traditional to introduce the reduced mass for the two-body system:

m ≡ m1m2

m1 +m2
.

Then the second equation we found above can be written as

mr′′ = −Gm1m2

r3
r.
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This is a special case of the general central force problem. It is simply
interpreted as the equation of motion for a body attracted toward the origin
(which is where the first body is) by a force that varies inversely as the square
of the distance. The general central force problem has the same form, but
allows for the force to depend on the separation r in a different manner:

mr′′ = −f(r)
r

r.

Here f : (0,∞) → R is a function that gives the dependence of the force on
the distance r. For the inverse square law, f(r) = Gm1m2r

−2.
There is a further conservation law that comes immediately from the

above DE. To get it, note that

r×mr′′ = −r× f(r)
r

r = 0.

Then recall that there is a product rule for derivatives of cross products (see
Appendix C), which when applied here gives

d

dt

(
r×mr′

)
= r′ ×mr′ + r ×mr′′ = r×mr′′ = 0.

Since this hold for all t ∈ I, there is a constant vector L, such that the
following law holds.

Conservation of Angular Momentum:

r(t) ×mr′(t) = L, (2.25)

for all t ∈ I. The conservation law says that this (vector) quantity does not
change during the motion.

The angular momentum conservation law has the important geometric
consequence that the motion of the body lies in one plane, namely the plane
through the origin with normal vector L (see Figure 2.16). We will take
advantage of this fact and assume, without loss of generality, that the motion
is actually in the x-y plane. If not, we could make a linear transformation
of the system into one whose motion is in the x-y plane. If we were tracking
satellites, the details of this transformation would be important, but we do
not need this extra information here.

Thus, we assume the DE for equation of motion has the following form

r′′ = −kf(r)
r

r,
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Figure 2.16: In a central force problem the motion is in the plane through
the origin with the angular momentum vector L as normal.

where r = (x, y), r = (x2 + y2)1/2, and k = m−1.
Writing out the above DE in terms of components, we get two 2nd-order

DEs:

x′′ = − kf(r)
r

x (2.26)

y′′ = − kf(r)
r

y, (2.27)

and the form of this suggests transforming to polar coordinates x = r cos θ, y =
r sin θ, with r = r(t), θ = θ(t) as the new unknown functions. Doing this
just as we did for the example with the limit cycle (except now we need the
second derivatives), we obtain first

x′ = r′ cos θ − rθ′ sin θ
y′ = r′ sin θ + rθ′ cos θ.

Then differentiating these, we get

x′′ = r′′ cos θ − 2r′θ′ sin θ − rθ′′ sin θ − r(θ′)2 cos θ
y′′ = r′′ sin θ + 2r′θ′ cos θ + rθ′′ cos θ − r(θ′)2 sin θ.

Substituting these in the x-y equations above and collecting terms, gives the
system in polar coordinates:

((r′′ − r(θ′)2) cos θ − (2r′θ′ + rθ′′) sin θ = −kf(r) cos θ
(r′′ − r(θ′)2) sin θ + (2r′θ′ + rθ′′) cos θ = −kf(r) sin θ.
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Now we multiply the top equation by cos θ, the bottom equation by sin θ,
and add to get the first equation below. In a similar manner we obtain the
second equation below. These two equations are the following:

Central Force Equations in Polar Coordinates:

r′′ − r(θ′)2 = −kf(r) (2.28)
2r′θ′ + rθ′′ = 0. (2.29)

The second of these equations leads directly to Kepler’s 2nd law. To see
this, multiply both sides of it by r to get

2rr′θ′ + r2θ′′ = 0,

or, equivalently
d

dt

(
r2θ′

)
= 0.

Thus, we get that, if r = r(t), θ = θ(t) is a solution of the system (2.28)-
(2.29), then there exists a constant such that the following law holds.

Kepler’s Second Law:
r(t)2θ′(t) = c, (2.30)

for all t ∈ I. Kepler worked prior to the invention of calculus, so he did not
state his law like this, but rather phrased it as: equal areas are swept out in
equal times as a planet orbits the sun. To see why equation (2.30) says the
same thing, multiply both sides by 1/2 and then integrate both sides from
t1 to t2 (two arbitrary times) to get

1
2

∫ t2

t1
r2(t)θ′(t)dt = 1

2c(t2 − t1).

The integral on the left side is precisely the area swept out by the curve in
polar coordinates between the two times t1 < t2. The equation says the area
depends only on the duration of time t2 − t1. (See Figure 2.17.) Of course,
the above derivation gives a much more general result than Kepler’s. It says
that Kepler’s law on equal areas holds in all central force problems.

It is also important to note that the constant c is related to the mag-
nitude of the angular momentum. In the coordinates we have chosen r =
(r cos θ, r sin θ, 0) and so it is easy to see that

L = r×mr′

= (0, 0,mr2θ′) = (0, 0,mc) = (0, 0, k−1c).
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Figure 2.17: Illustration of Kepler’s 2nd law: equal areas are swept out in
equal times in any central force problem.

The next step in the explicit solution of the central force system is to
transform it once again, this time with a nonlinear transformation. The
transformation arises from the assumption that r and θ are functionally
related. More specifically, assume there is a real-valued function ρ, of a real
variable, such that for each solution r = r(t), θ = θ(t), with t ∈ I, we have:

r(t) = ρ(θ(t))−1 =
1

ρ(θ(t))
, (2.31)

for all t ∈ I. For simplicity in the calculations below, we will suppress the
explicit dependence of the functions on t in equation (2.31) and the resulting
equations. Thus, we write the functional relation that ρ establishes as

r = ρ(θ)−1. (2.32)

The strategy is now to use the system (2.28)-(2.29) to deduce something
about ρ. However, first note that knowing ρ will enable us to find solutions
r, θ of the system. To see this, observe that Kepler’s law r2θ′ = c can be
written as

θ′ = cρ(θ)2. (2.33)

So if we know ρ then this becomes a separable DE for θ and has its solution
given implicitly by ∫

ρ(θ)−2dθ = ct+ b.
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Theoretically we can solve this explicity for θ as a function of t and then
from equation (2.31), we can get r explicitly as a function of t as well. Thus,
all we need to do is to determine ρ.

To do this, start with equation (2.32) and differentiate both sides with
respect to t. This will give

r′ = −ρ(θ)−2ρ′(θ)θ′ = −cρ′(θ),

where we have used the relation (2.33). Differentiating the above equation
once again and using relation (2.33) again gives

r′′ = −cρ′′(θ)θ′ = −c2ρ(θ)2ρ′′(θ).

For brevity, write this last equation as r′′ = −c2ρ2ρ′′ and write relation
(2.33) as θ′ = cρ2 (thus we are suppressing the explicit dependence on θ as
well as t). Substituting these into equation (2.28), i.e., into the equation

r′′ − r(θ′)2 = −kf(r),

gives, after minor simplification,

ρ′′ + ρ = aρ−2f(ρ−1). (2.34)

Here we have, in the simplification process, let a = k/c2. This assumes that
c 
= 0. The case when c = 0 is important because the motion then is along
a straight line through the center of force. The study of this case is left to
the exercises.

Equation (2.34) is viewed as a 2nd-order DE for ρ as a function of θ. This
DE is simplest for an inverse square law f(z) = 1/z2, since then f(ρ−1) = ρ2

and the DE reduces to
ρ′′ + ρ = a.

This elementary, 2nd-order, linear DE has general solution

ρ = a+A cos θ +B sin θ,

where A,B are constants determined by the initial conditions. Since r = 1/ρ,
we get the following functional relation between r and θ:

r =
1

a+A cos θ +B sin θ
, (2.35)
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Thus, the arguments have led us to the conclusion that any solution r =
r(t), θ = θ(t) of the polar system for the central force problem with an
inverse square law will satisfy

r(t) =
1

a+A cos(θ(t)) +B sin(θ(t))
, (2.36)

The constants a,A,B can be determined from the initial conditions and
it can be shown that equation (2.35) is an equation for a conic section in
polar coordinates with pole located at a focus of the conic section (see the
exercises). Thus, the body moves on an elliptical, parabolic, or hyperbolic
trajectory about the center of force. The exception to this is when the
trajectory is a straight line through the origin. This is the case c = 0 which
we mentioned above.

Figure 2.18 shows three trajectories for an inverse square law of attrac-
tion with k = 1, initial positions (x0, y0) = (1, 0), (1, 0), (1, 0), and initial
velocities (x′0, y′0) = (−0.5, 0.5), (−1, 1), (−1, 1.25), respectively.

Figure 2.18: Plots of three trajectories (x(t), y(t)) for a body attracted to-
ward the origin with a inverse square law force. The initial positions are
all the same (x0, y0) = (1, 0), while the initial velocities are (x′0, y′0) =
(−0.5, 0.5), (−1, 1), (−1, 1.25), respectively.

The initial velocity (−0.5, 0.5) gives the elliptical orbit shown, while the
initial velocities (−1, 1) and (−1,−1.25) give trajectories that appear to be
a parabola and a hyperbola, respectively. Of course, the plots of the latter
two do not have enough information to rule out the possibility that these
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trajectories are elliptical or even to decide definitively if they are parabolic
or hyperbolic. However, this can be determined theoretically (exercise).

Figure 2.19 shows two trajectories of a body under an inverse cube law
of attraction f(r) = 1/r3. The initial position in each case is the same,
(x0, y0) = (1, 0), while the initial velocities are (x′0, y′0) = (0, 1), (−0.1, 1),
respectively. With the first initial velocity, the body travels in a closed orbit
around the origin, while the latter initial velocity gives a trajectory that
spirals in toward the origin.

Figure 2.19: Plots of two trajectories (x(t), y(t)) for a body attracted toward
the origin with a inverse cube law of force. While the initial positions are
the same, the initial velocities are (x′0, y′0) = (0, 1), (−0.1, 1).

It is important to note that the figures give the trajectories of a hypo-
thetical body in a central force field with r the position of the body relative
to the origin. In the discussion, we reduced the two-body problem to such a
central force problem and in that setting r = r2 − r1 represents the position
of the second body relative to the first. The actual motion of the two bodies
comes from writing r1, r2 in terms of R, r and then plotting each trajectory,
i.e., curves r1, r2. Each of these trajectories can look quite different than
those in Figures (2.17)-(2.19). See Figure 9.4 in Chapter 9 for an example
of what we mean. Generally each body will trace a path about the center of
mass, which may be stationary or in motion (exercise). In the cases where,
say m1 is very large compared with m2 (like the sun’s mass as compared
with the earth’s), the center of mass essentially corresponds to the position
of the first body, given by r1. Thus, for all practical purposes the solution r
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of the central force problem gives the trajectory of the second body orbiting
the mass first body. In this case figures (2.17)-(2.19) give pictures of the
“actual” motion of the second body.

Exercises 2.5
1. The transformation to Jacobi coordinates, in matrix form, is[

r
R

]
= A

[
r1

r2

]
.

Find the matrix A and it’s inverse A−1. Use this to give the formulas that
explicitly express r1, r2 as linear combinations of r,R.

2. Suppose f : (0,∞) → R is any function. Show that the system of DEs

m1r′′1 = Gm1m2f(r12)(r2 − r1)/r12
m2r′′2 = Gm1m2f(r12)(r1 − r2)/r12,

transforms into the system

r′′ = − kf(r)
r

r

R′′ = 0,

in Jacobi coordinates. That is, any solution r1, r2 of the first system gives
a solution r,R of the second system, and conversely. Thus, the two-body
problem with a general force of interaction f is reduced to the general central
force problem. This generality is useful, for example, in electromagnetism
where some particles repel one another and where some molecular interactions
are modeled by something other than an inverse square law.

3. Use Kepler’s 2nd law to show that the central force equations (2.28)-(2.29)
are equivalent to the system

r′′ − c2

r3
= −kf(r) (2.37)

r2θ′ = c. (2.38)

For some choices of f , one can explicitly do the integrals necessary to solve
(2.37) for r. Then θ is determined directly from equation (2.38).

4. In the central force problem, a particle’s trajectory is in a straight line when
its angular momentum is zero, i.e., when c = 0. This is to be expected
physically, but mathematically it follows from the fact that the system of
DEs (2.37)-(2.38) in Exercise 1 reduces to

r′′ = −kf(r) (2.39)
θ = θ0. (2.40)
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This says that the particle moves along the line through the origin which
makes an angle θ0 with the x-axis and its position r = r(t) on this line is
determined from the differential equation for r. The motion is toward or away
from the origin depending on the initial radial velocity r′0. Even if r′0 > 0,
the velocity may not be great enough for the particle to “escape” the central
force, i.e., at some time the particle may change direction and move back
toward the origin. This exercise studies the precise type of motions possible
for the inverse square law: f(r) = r−2. Specifically:

(a) Show that for any solution r : I → R of the DE (2.39), there is a
constant E such that

1
2r

′(t)2 =
k

r(t)
+ E, (2.41)

for all t ∈ I. Assuming 0 ∈ I and r(0) = r0, r
′(0) = r′0 are given initial

values, the value of E is

E = 1
2 (r′0)

2 − k

r0
.

Show that equation (2.41), after some algebraic manipulation, becomes
a separable DE with solution formally given by

t = ±
∫ √

r√
2
√
Er + k

dr. (2.42)

Here the ± sign is chosen as + if r′0 ≥ 0 and as − if r′0 < 0.

(b) In the case E > 0, show that the relation between r and t described by
equation (2.42) is

t = ±E
−3/2

√
2

(√
E
√
r
√
Er + k− k ln

(√
Er + k +

√
Er√

k

))
+ b. (2.43)

This requires computing the indefinite integral by using a rationalizing
substitution, a trig substitution, and integration by parts. Do not use
a computer for this, but rather show your work by hand.

(c) In the case E < 0, show that the relation between r and t described by
equation (2.42) is

t = ±E
−3/2

√
2

(√
E
√
r
√
Er + k + k sin−1

(√
Er + k√
k

))
+ b. (2.44)

(d) In the case E = 0, show that the relation between r and t described by
equation (2.42) is

t = ±
√

2
3
√
k
r3/2 + b. (2.45)
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(e) For a given initial position r0 (always assumed to be positive) analyze
the nature of the motion of the particle with initial radial velocity r′0.
For this, sketch (by hand) graphs of r as a function of t, by using
the information in the DE: r′′ = −kr−2 and the equation (2.41). Do
graphs illustrating the differences that occur for choices of r′0 and E that
are positive, zero, and negative. Note: Equations (2.43)-(2.45) give t
precisely as a function of r (the constant of integration b is determined
from r(0) = r0). However, you should be able to do the sketches without
this information.

(f) Let r : I → R be a solution of the DE (2.39) with initial conditions
r(0) = r0, r

′(0) = r′0. For the cases when r′0 > 0, show that there is a
radial velocity ε > 0, the escape velocity, such that (i) if r′0 ≥ ε, then
r′(t) > 0, for all t and so the particle escapes the central force, and (ii)
if r′0 < ε, then r′(t∗) = 0, at some time t∗ and r′(t) < 0 for all t > t∗.
Thus, the particle stops and reverses its direction of travel. In case (ii),
find the time t∗.

(g) Let τ be the function defined by

τ(r1) = ±
∫ r1

r0

√
r√

2
√
Er + k

dr. (2.46)

This depends on E as well as the choice of the ± sign. Use equations
(2.43)-(2.45) to find explicit formulas for τ in the three cases E > 0, E <
0, E = 0. Express your answers, in the first two cases, with the escape
velocity ε in them. For particles with initial radial velocity that is
negative, or positive but less than the escape velocity, show that the
particle collides with the origin in a finite amount of time and find the
exact time at which this occurs.

5. (Conic sections in polar coordinates) Ellipses, parabolas, and hyperbolas
are particularly simple to describe in polar coordinates and indeed all three
are described by the same equation. This is so provided the origin is one of the
foci. Geometrically the description is one and the same as well. Thus, let F
be a given point (a focus), D a given line (the directrix) not passing through
F , and e > 0 a given number (the eccentricity). Consider the collection of all
points P in the plane such that the distance PF to the focus in ratio to the
distance to the PD to the directrix is equal to e. Specifically,

PF

PD
= e.

See Figure 2.20. Take F as the origin and the x-axis perpendicular to D
as shown. Let b be the distance from the focus to the directrix, r = PF ,
u = PD, and θ the angle as shown in the figure.
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Figure 2.20: Geometrical description of a conic section in polar coordinates.

(a) Show that the polar equation for the curve with the above geometrical
description is

r =
eb

1 + e cos θ
. (2.47)

(b) Find the Cartesian equation of the curve with polar equation (2.47) and
use this to show that the curve is a parabola if e = 1, an ellipse if e < 1,
and a hyperbola if e > 1. In terms of e and b, compute all the standard
quantities for these conics (coordinates of the center, major and minor
axis lengths, etc.). Sketch the curves in the three cases.

6. (Inverse square law) For the inverse square law of attraction, we found
that each integral curve, in polar coordinates, of the central force problem,
lies on a curve with polar equation

r =
1

a+A cos θ +B sin θ
. (2.48)

This exercise is to identify this latter curve as a conic section and to relate
a,A,B with the constants from the initial conditions.

(a) Show that the curve (2.48) is a conic section with focus at the origin.
Hint: Convert equation (2.48) into one of the form (2.47) as follows.
Let R =

√
A2 +B2 and let δ be the unique angle in [0, 2π] such that

cos δ =
A

R
, sin δ =

B

R
.

Then show that

A cos θ +B sin θ = R cos(θ − δ),
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Figure 2.21: The curve r = (a+ A cos θ +B sin θ)−1 is a conic section with
focus, axis, and directrix as shown.

and that equation (2.48) can be written in form (2.47) with

e =
R

a
, b =

1
R
.

Explain how this gives the picture shown in Figure 2.21. In particular
describe how to locate the axis of the conic section and determine the
point on the curve closest to the origin. This is known as the pericenter
for the conic section. For the ellipse also determine the point with
greatest distance from the origin (know as the apocenter).

(b) Suppose t → (r(t), θ(t)) is an integral curve of the central force equations
(2.28)-(2.29) in polar coordinates, with initial conditions (r(0), θ(0)) =
(r0, θ0) and (r′(0), θ′(0)) = (r′0, θ

′
0). For simplicity assume that θ0 = 0.

Let c and k be the constants introduced in the text, and, assuming the
angular momentum is not zero (c 
= 0), let

a =
k

c2
.

Use equation (2.36) to show that

A =
1
r0

− a, B = − r40r
′
0

c
. (2.49)

7. Use the results in Exercise 6 to prove that the three trajectories in Figure
2.18 are an ellipse, a parabola, and a hyperbola. For each trajectory, find the
angle δ that the axis of the conic section makes with the x-axis, the point
(pericenter) of closest approach to the origin, and the approximate time t1
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when the closest approach occurs. Note: While there is a way to exactly
determine the time t when the body is at any point on its trajectory (see
Chapter 9), you are to experimentally determine t1 by using a computer and
an appropriate graph. For the elliptical trajectory, also find the lengths of the
major and minor axes, the period of the orbit (time for one complete cycle),
the point (apocenter) on the trajectory farthest from the origin, and the time
t2 when this occurs.

8. (Inverse cube law) The differential equation

ρ′′ + ρ = aρ−2f(ρ−1),

that determines the function ρ is particularly simple when the law of attrac-
tion is inverse cube: f(u) = u−3. In this case it becomes

ρ′′ + (1 − a)ρ, (2.50)

which has well-known solutions depending on the value of 1 − a. Recall that
a = k/c2.

(a) Suppose a ≡ k/c2 < 1 and let ω =
√

1 − a. Then the general solution
of (2.50) is

ρ = A cos(ωθ) +B sin(ωθ).

Use the technique from Exercise 6 to rewrite this with only a cosine
term and thus show that when the angular momentum c >

√
k for a

solution t → (r(t), θ(t)) of the equations of motion lies on the curve
with polar equation of the form.

r =
R−1

cosω(θ − δ)
. (2.51)

Analyze the nature of this curve, explaining the significance of R, δ and
what happens when the denominator is zero. Is there an axis for the
curve, apocenter, or pericenter (or does the curve tend to infinity)?
Determine the relationship of A,B,R, δ to the initial data r0, r′0 for the
DE (you may assume that θ0 = 0).

(b) Suppose a ≡ k/c2 > 1 and let ω =
√
a− 1. Then the general solution

of (2.50) is
ρ = A cosh(ωθ) +B sinh(ωθ). (2.52)

Since the hyperbolic functions have entirely similar properties to the
corresponding trig functions, we can use a technique like that in Exercise
4 to rewrite the above as a single hyperbolic cosine function. However,
we do need to divide into cases depending on where the point (A,B)
lies in the x-y plane. Note that every point in the plane lies on a unique
hyperbola x2 − y2 = ±R2, or on the pair of lines x2 − y2 = 0.
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(i) If B = ±A show that equation (2.52) reduces to ρ = Ae±ωθ and
thus the solutions of the polar equations of motion lie on the curve
with polar equation

r = A−1e∓ωθ.

Analyze the nature of the motion in each case (choice of ±) and
relate the constants to the initial data r0, r′0.

(ii) If R2 ≡ A2−B2 > 0, show that the solutions of the polar equations
of motion lie on the curve with polar equation having one of the
following forms:

r =
R

coshω(θ + δ)
or r =

−R
coshω(θ − δ)

.

Analyze the nature of the motion in each case (choice of ±) and
relate the constants to the initial data r0, r′0.

(iii) If R2 ≡ A2 −B2 < 0, do an analysis like that in (ii).

Note: The curves in these cases (i), (ii), and (iii) are known as Cotes’
spirals.

9. Give a precise meaning and explanation for the statement that, in the two-
body problem, each body executes an orbit about the center of mass.

2.6 Summary
In using a computer to numerically approximate solutions and plot phase
portraits for systems of DEs, it is essential to have some understanding of
the algorithm used by the computer to obtain these approximations. This is
especially so in effectively controlling and interpreting the computer plots.
This chapter discussed the Euler numerical scheme as the most basic and
easily understood numerical method for solving systems of differential equa-
tions. In practice, most software packages, like Maple, use more refined nu-
merical techniques, but the Euler method is best for pedagogical purposes
and also helps in understanding the more refined methods.

The chapter discussed gradient systems x′ = ∇F (x), where F : O ⊆
R

n → R is a given differentiable function, as special examples of systems
that arise in heat flow and potential fluid flow. The form of gradient systems
leads to the result that each integral curve of the system intersects each level
set of F orthogonally. In dimension n = 2 this allows one to use the time-
honored technique of sketching the integral curves from plots of a sequence
of level curves.
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The determination of fixed points and the classification of their stability
was studied via a number of representative examples of systems in R

2. While
stability of fixed points for systems in the plane can usually be discerned from
plots of the phase portrait, a rigorous definition of stability (see Chapter 6)
is needed, especially in higher dimensions where visualization is difficult.

Limit cycles were introduced and their stability discussed by means of the
technique of transforming a planar system into a system in polar coordinates.
Again Chapter 6 will give precise definitions for these concepts, but here
the discussion was directed toward showing how, like fixed points, these 1-
dimensional geometrical objects influence the nature of the phase portrait
and how the technique of transforming systems of DEs (studied in Chapter
5) is an important analytical tool.

The discussion of the two-body problem provides a prelude to the study
of the N -body problem in Chapter 8. Even if you do not intend to study
the material in Chapter 8, the discussion here is valuable as a motivation
for why conservation laws are important in the analysis of systems of DEs.
Conservation laws are synonymous with the existence of 1st integrals, and
this topic is discussed in more detail in the chapter on integrable systems
(Chapter 7) and, of course, in the chapters related to mechanics (Chapters
8 and 9).



Chapter 3

Existence and Uniqueness:
The Flow Map

In this chapter we describe in detail several general results concerning the
initial value problem (IVP):

x′ = X(t, x)
x(t0) = c.

The main result is the Existence and Uniqueness Theorem, from which many
additional results can be derived. Throughout, X : B → R

n is a time-
dependent vector field on an open set B ⊆ R

n+1. Various continuity and
differentiability conditions will be imposed on X in order to get the results,
but at the start we assume, at the bare minimum, that X is continuous on
B. For the sake of reference we include the proofs of most of the results,
although understanding some of the details requires being comfortable with
several basic ideas from functional analysis.

The most fundamental and important construct to arise from the results
presented here is the flow map, or simply the flow, φ generated by the vector
field X. It is an indispensable notion and tool in many fields of study ranging
from differential geometry to continuum mechanics.

A key ingredient in the proof of existence and uniqueness theorems is the
fact that any initial value problem (IVP) can be reformulated as an integral
equation. To see how to do this, we need a definition.

Definition 3.1 Suppose α : I → R
n is a continuous curve:

α(s) = (α1(s), . . . , αn(s)) ,

© Springer Science + Business Media, LLC 2010
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for s ∈ I. Assume I contains the given initial time t0. For t ∈ I, the integral
of α from t0 to t is, by definition:∫ t

t0
α(s) ds =

(∫ t

t0
α1(s) ds, . . . ,

∫ t

t0
αn(s) ds

)
.

Thus, the value of the integral is a point (or vector) in R
n.

It is easy to see that the Fundamental Theorem of Calculus extends to
such integrals of vector-valued functions. Specifically:

For a curve α as above, we get a curve β : I → R
n, given by:

β(t) ≡
∫ t

t0
α(s) ds.

Here we use the convention that
∫ t
t0

= −
∫ t0
t , if t < t0. The curve β is

differentiable and

β′(t) =
d

dt

∫ t

t0
α(s) ds = α(t),

for every t ∈ I. This is the first part of the Fundamental Theorem of
Calculus. The second part is:∫ t

t0
γ′(s) ds = γ(t) − γ(t0),

for any differentiable curve: γ : I → R
n.

The reformulation of the IVP: x′ = X(t, x), x(t0) = c, in terms of an
equivalent integral equation, involves two observations:

Observation 1: Suppose that α : I → R
n is a solution of the IVP, i.e.,

t0 ∈ I, (s, α(s)) ∈ B, for all s ∈ I,

α′(s) = X(s, α(s)), (3.1)

for all s ∈ I, and
α(t0) = c.

Then it’s legitimate to integrate both sides of equation (3.1) from t0 to
t. Doing so, using the Fundamental Theorem of Calculus and the initial
condition, shows that α satisfies the integral equation:
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Integral Version of the IVP:

α(t) = c+
∫ t

t0
X(s, α(s)) ds (3.2)

for all t ∈ I.

In order to justify the name integral version of the IVP, we must also show
than any solution α of equation (3.2), does indeed satisfy the original IVP.
This comes from the following:

Observation 2: Suppose that α : I → R
n is a continuous curve that satisfies

the integral equation (3.2). This means that t0 ∈ I, (s, α(s)) ∈ B, for all
s ∈ I, and that (3.2) holds. Then clearly α(t0) = c. By the first part of
the Fundamental Theorem of Calculus, the curve defined by the right side
of equation (3.2) is differentiable, and thus so is α, and

α′(t) =
d

dt

[
c+

∫ t

t0
X(s, α(s))ds

]
= X(t, α(t)),

for all t ∈ I.
This shows the equivalence of the differential and integral versions of the

IVP.

Example 3.1 The initial value problem:

x′ = (x+ 1)y
y′ = x− y,

x(0) = 3, y(0) = 5, is equivalent to the system of integral equations:

α1(t) = 3 +
∫ t

0
(α1(s) + 1)α2(s) ds

α2(t) = 5 +
∫ t

0
(α1(s) − α2(s)) ds.

Of course reformulating, an IVP as an integral equation does not make
it any easier to solve by hand. However, from a theoretical point of view
integral equations are easier to deal with than differential equations.

Inherent in the integral equation version of the IVP is a certain operator,
or transformation, T acting on curves. This is defined as follows.
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Definition 3.2 Suppose β : I → R
n is any continuous curve with (s, β(s)) ∈

B, for all s ∈ I. Let T (β) denote a new curve on I (a transformation of β)
defined by:

T (β)(t) = c+
∫ t

t0
X(s, β(s))ds, (3.3)

for t ∈ I.

Using the notation from the definition, it is clear that the integral version
(3.2) of the IVP is

α = T (α).

This equation just says that α is a fixed point of the map T . This is not
to be confused with the notion of a fixed point of an autonomous vector
field (although we shall see later that a fixed point of a vector field is indeed
a fixed point of the flow it generates). This viewpoint of considering a
solution of the IVP as nothing other than a fixed point of the map T has
led to generalizations and broad abstractions of the material present here.
In addition, the key ingredient in the proof of the existence and uniqueness
theorem below is the idea that a fixed point of T can be found by iterating
the action of the map T . This gives the modern version of Picard’s iteration
scheme.

3.1 Picard Iteration
The Picard iteration scheme is a method used not only to prove the existence
of a solution α of an IVP (i.e., a fixed point of T ), but also to give us explicit
approximations to α. The method is actually quite simple and is described
as follows.

Again assume that I is an interval containing the initial time t0 for the
IVP. Let C be the set of all continuous curves β : I → R

n, and for simplicity
in this section on Picard iteration, assume that B = I × R

n. Then the
map T , defined by equation (3.3), has the set C as its domain as well as its
codomain, i.e., T : C → C. Note that for a general open set B in R

n+1,
there is no guarantee that T (β) ∈ C for each β ∈ C. In the Existence and
Uniqueness Theorem in the next section, where there is no restriction on B,
we will have to choose a somewhat smaller set of curves C, which T , in the
general case, will map into itself.



3.1. Picard Iteration 83

Definition 3.3 For a given curve β ∈ C, the Picard iterates of β are the
elements in the sequence {T k(β)}∞k=1,

T 0(β) = β

T 1(β) = T (β)
T 2(β) = T (T (β))
T 3(β) = T (T (T (β)))

...
T k(β) = T (T k−1(β)).

It will be shown in the Existence and Uniqueness Theorem that, under
appropriate assumptions, a sequence of Picard iterates always converges to
a fixed point α of T , regardless of the choice for the initial curve β. This
is a rather remarkable fact. The assumptions we use also guarantee that α
is unique. Thus, we can start with any curve β and take the limit of its
iterates to find α. Because of this, a standard choice for the initial curve is
the constant curve: β(t) = c, for all t ∈ I.

Example 3.2 If the system of DEs is not too complicated, the first few
Picard iterates are easy to compute by hand. For example, consider the
system:

x′ = x(y + 1)
y′ = x2 − y2,

with initial conditions x(0) = 1, y(0) = 1. Then c = (1, 1) and the vector
field X is

X(x, y) = (x(y + 1), x2 − y2).

If we take the constant map

β(t) = (1, 1),

for all t ∈ R, as the initial curve, then since X(1, 1) = (2, 0), the first Picard
iterate is

T (β)(t) = (1, 1) +
∫ t

0
(2, 0)ds = (1 + 2t, 1).
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Since X(1 + 2s, 1) = (2 + 4s, 4s + 4s2), the 2nd Picard iterate is

T 2(β)(t) = (1, 1) +
∫ t

0
(2 + 4s, 4s + 4s2)ds

= (1 + 2t+ 2t2, 1 + 2t2 + 4
3 t

3).

The higher-order Picard iterates get rather complicated algebraically and
while the calculations at each step involve only polynomial integration, the
work quickly becomes tedious if done by hand. For example, it takes several
minutes to calculate the 3rd iterate:

T 3(β)(t) =(
1 + 2t+ 2t2 + 2t3 + 4

3 t
4 + 4

3 t
5 + 4

9 t
6, 1 + 2t2 + 4

3 t
3 + 4

3 t
4 − 8

9 t
6 − 16

63 t
7
)

by hand. For T 4(β), which has polynomial components of the 14th and 15th
degrees, and the rest of the iterates, it is best to use a computer algebra
system to calculate the results. One can also use a computer to see how well
the iterates approximate the actual solution α near c. Figure 3.1 illustrates
this for the example here. As the figure indicates, the 1st Picard iterate is

Figure 3.1: Plots of the Picard iterates T k(β), k = 1, . . . , 6 that approximate
the solution α if the IVP in Example 3.2.

the tangent line to α. It’s not hard to show, in general, that whenever X is
an autonomous vector field and for the initial curve we take β(t) = c, for all
t, then the first Picard iterate T (β) is the tangent line to the actual solution
α at α(0) = c.
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Exercises 3.1
1. Let βk = T k(β), k = 1, 2, 3, . . ., be the sequence of Picard iterates for an

initial value problem x′ = X(x), x(0) = c. For each of the following IVPs
compute, by hand, the first few Picard iterates: β1, β2, and β3, starting with
β(t) = β0 ≡ c. This will be informative and good practice for future tests.
Then use a computer to compute the iterates βk, k = 1, . . . , 6 and graph
these, in the same figure, along with the actual solution α of the IVP. Choose
suitable ranges for the plots and annotate the resulting figure, identifying the
iterates and the exact solution α. Also, do the additional studies asked for
in each specific problem. You may find it helpful to read and use the Maple
worksheet picard.mws on the electronic component.

(a)

x′ = 1 + x2

x(0) = 0.

Also, for this problem, find the general solution of the DE.
(b)

x′ = −y
y′ = x(y + 1)

(x(0), y(0)) = (1, 1).

Also, do the following additional study:
(i) The actual solution: α(t) = (x(t), y(t)), of the initial value prob-

lem is a closed curve. Plot, in the same figure, the graphs of the
component functions x, y on a sufficient time interval to determine
the approximate period p of α.

(ii) k k k

approximate α on the whole time interval [−p, p]. Include plots of
the graphs of x and u4, u5, u6 in the same figure and plots of y and
v4, v5, v6 in the same figure (properly annotated). If your computer

7 8 9

of memory requirements. The theory is that the Picard iterate βk,
for large k, will approximate α well only on a neighborhood, i.e.,
interval I, of the initial time t = 0. From your figures determine,
for each iterate, the largest interval on which the approximation
appears good. Why, for the particular approximations here, would
you expect them only to be good for t close to zero ?

(c)

x′ = y − x

y′ = x(y − 2)
(x(0), y(0)) = (−1, 1).

is capable, extend the study to the iterates β , β , β , but be careful

Study how well the Picard iterates β (t)=(u (t),v (t)),k=1,...,6,
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Also do the following additional study. The actual solution: α(t) =
(x(t), y(t)), of the initial value problem is a spiral that tends to the
origin as t→ ∞. Study how well the Picard iterates approximate α by
following the instructions in part (b)(ii) of the last problem, but now
use the time interval [0, 20] instead of [−p, p].

2. Let βk = T k(β), k = 1, 2, 3, . . ., be the sequence of Picard iterates for an
initial value problem x′ = X(x), x(0) = c, and assume that the initial curve
β is the constant curve β(t) = c, for every t ∈ R. Let α : I → R

n be an (the)
actual solution of the initial value problem. Show that the 1st Picard iterate
β1, is the tangent line to the curve α at c. Show that the 2nd Picard iterate
β2 is a curve that passes through c and has the same velocity and acceleration
as α at time 0, i.e., β′

2(0) = α′(0) and β′′
2 (0) = α′′(0). Can you generalize?

3.2 Existence and Uniqueness Theorems
There are numerous existence and uniqueness results in the literature and
this section discusses just one from the many available. By assuming less
than we do here, more general results on the existence of solutions to systems
of DEs can be proven. In addition, existence and uniqueness can be proven
by using the more general idea of a Lipschitz condition. These extensions
will be discussed in the exercises and Appendix B.

Theorem 3.1 (Existence and Uniqueness Theorem) Suppose X : B →
R

n is a time-dependent vector field on B ⊆ R × R
n. Assume that all the

partials ∂Xi/∂xj , i, j = 1, . . . , n, exist and are continuous on B. Then for
each point (t0, c) ∈ B, there exists a curve α : I → R

n, with t0 ∈ I, which
satisfies the initial value problem

x′ = X(t, x)
x(t0) = c.

Furthermore, if γ : J → R
n is any other solution for the initial value prob-

lem, then there is an interval Q ⊆ I ∩ J , with t0 ∈ Q such that:

α(t) = γ(t) for every t ∈ Q. (3.4)

Hence any two solutions of the initial value problem agree on a neighborhood
of t0.

Note: Corollary 3.1 below improves on the uniqueness result by showing
that equation (3.4) holds for all t ∈ I ∩ J . For now it’s more expedient to
just prove the restricted result stated in the theorem.
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Proof: We will need to make some estimates that require a norm on the
elements x = (x1, . . . , xn) in R

n. The usual norm |x| = the length of x, while
being geometrically preferred (|x− y| gives the distance between the points
x, y ∈ R

n), is not as easy to use here as is the norm ‖ · ‖ defined by

‖x‖ =
n∑

i=1

|xi|.

This is called the �1 norm, and ‖x − y‖ is abstractly still considered as
measuring the “distance” between x and y. With respect to this norm, we
use the notation:

B(c, r) ≡ {x ∈ R
n | ‖x− c‖ ≤ r},

for the closed ball in R
n, centered at c, and having radius r.

Since B is an open set and (t0, c) ∈ B, we can choose r > 0, b > 0 so that
[t0 − b, t0 + b]×B(c, r) ⊂ B. Since the functions Xi, ∂Xi/∂xj , i, j = 1, . . . , n
are continuous on B, and therefore also on [t0 − b, t0 + b] ×B(c, r), and the
latter set is compact, there exists a constant K > 0 such that:

|Xi(t, x)| ≤ K (3.5)∣∣∣∣∣∂Xi

∂xj
(t, x)

∣∣∣∣∣ ≤ K, (3.6)

for all (t, x) ∈ [t0 − b, t0 + b]×B(c, r), and all i, j = 1, . . . , n. Inequality (3.5)
immediately leads to the inequality:

‖X(t, x)‖ =
n∑

i=1

|Xi(t, x)| ≤ nK, (3.7)

for all (t, x) ∈ [t0 − b, t0 + b] × B(c, r). We also claim that inequality (3.6)
leads to the inequality:

‖X(t, x) −X(t, y)‖ ≤ nK‖x− y‖, (3.8)

for all x, y ∈ B(c, r) and t ∈ [t0 − b, t0 + b]. To see this, fix x, y ∈ B(c, r), t ∈
[t0 − b, t0 + b], and for each i define a function hi by:

hi(λ) = Xi(t, λy + (1 − λ)x),

for λ ∈ [0, 1]. Note that the point λy + (1 − λ)x lies on the line segment
joining x and y, and so lies in the set B(c, r), since this set is convex. Thus,
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the above definition of hi makes sense. Now apply the mean value theorem
to hi to get that there exists a λ0 ∈ (0, 1) such that

hi(1) − hi(0) = h′i(λ0).

Using this, the chain rule to differentiate hi, and inequality (3.6) gives us

|Xi(t, x) −Xi(t, y)| = |hi(1) − hi(0)| = |h′i(λ0)|

=

∣∣∣∣∣∣
n∑

j=1

∂Xi

∂xj

(
t, λ0y + (1 − λ0)x

)
[yj − xj ]

∣∣∣∣∣∣
≤ K

n∑
j=1

|yj − xj | = K‖y − x‖.

Thus, summing both sides of this last inequality as i goes from 1 to n gives
the desired inequality (3.8).

Now choose a number a > 0 such that

a < r/(nK), a < b a < 1/(nK),

and let C denote the following set of curves:

C = {β : [t0 − a, t0 + a] → B(c, r) |β is continuous }.

Restricting the transformation T defined by

T (β)(t) = c+
∫ t

t0
X(s, β(s)) ds

to the curves in the set C, we claim that T : C → C. That is, if β is in C,
then also T (β) is in C. Note that T (β) is automatically continuous, since,
by the Fundamental Theorem of Calculus, it is differentiable. Thus, all we
have to show is that T (β)(t) ∈ B(c, r) for all t ∈ [t0 − a, t0 + a]. To see this,
suppose first that t > t0. Then

‖T (β)(t) − c‖ = ‖
∫ t

t0
X(s, β(s)) ds‖

≤
∫ t

t0
‖X(s, β(s))‖ ds

≤ nK(t− t0)
< nKa < r.



3.2. Existence and Uniqueness Theorems 89

The first inequality in the above is a general result which follows from the
definition of the integral of a curve from t0 to t and the special choice of the
norm ‖·‖. The other inequalities follow from the above work. The argument
in the case that t < t0 is similar.

We next show that T : C → C is a contraction map, i.e., there exists a
constant 0 < q < 1 such that

‖T (β) − T (γ)‖ ≤ q‖β − γ‖, (3.9)

for all β, γ ∈ C. This inequality says that the distance between T (β) and
T (γ) is strictly less than the distance between β and γ (since q < 1). Thus, T
“contracts” the distance between points. This is the crucial property needed
to ensure convergence of the Picard iterates.

The contraction property of T in (3.9) comes from an estimate involving
yet another norm. This is a norm not on R

n, but rather on the vector space:

C ≡ {β : [t0 − a, t0 + a] → R
n |β is continuous },

of all continuous curves on the interval [t0−a, t0+a] (not just the ones that lie
in B(c, r)). This vector space C is infinite-dimensional and contains the set C
as a subset. The norm on C, which also applies to elements in C, is a natural
one, called the sup or supremum norm. It is defined as follows. If β ∈ C,
then the map t → ‖β(t)‖ is continuous on the closed interval [t0 − a, t0 + a],
and so by the Extreme Value Theorem from advanced calculus, attains its
largest (or supreme) value on this interval. The value is the norm of β.
Symbolically we write

‖β‖ = sup{‖β(t)‖ | t ∈ [t0 − a, t0 + a]}.

With respect to this norm, we will show that T is a contraction on C. Note:
By the above definition, ‖β(t)‖ ≤ ‖β‖, for all t.

Now suppose that β, γ ∈ C and t ∈ [t0−a, t0 +a]. We assume that t0 < t.
The other case is similar. Then we get

‖T (β)(t) − T (γ)(t)‖ = ‖
∫ t

t0
[X(s, β(s)) −X(s, γ(s))] ds ‖

≤
∫ t

t0
‖X(s, β(s)) −X(s, γ(s))‖ ds

≤ nK

∫ t

t0
‖β(s) − γ(s)‖ ds

≤ nK|t− t0|‖β − γ‖ ≤ nKa‖β − γ‖.



90 Chapter 3. Existence and Uniqueness: The Flow Map

We get the same result when t0 > t. Hence by definition of the supremum,
we get

‖T (β) − T (γ)‖ ≤ nKa‖β − γ‖. (3.10)

Thus, we can take
q = nKa < 1

to get that T is a contraction mapping on C. We now use this to show that
the sequence of Picard iterates converges to a unique solution of the IVP,
for any choice of β ∈ C.

We have already seen that T maps C into itself: T : C → C. So suppose
we select any curve β ∈ C and apply T to it successively, resulting in the
sequence of Picard iterates:

{T k(β)}∞k=1,

which is a sequence of curves (or abstract points) in C. We first get an esti-
mate on how far apart T k(β) and T k+p(β) are with respect to the sup norm.
Using the contraction property (3.9) repeatedly, we derive the inequality:

‖T k(β) − T k+p(β)‖ = ‖T (T k−1(β)) − T (T k+p−1)(β))‖
< q‖T k−1(β) − T k+p−1(β)‖
...
< qk‖β − T p(β)‖, (3.11)

for any k and p. A particular case of this inequality is for p = 1, from which
we get

‖T k(β) − T k+1(β)‖ ≤ qk‖β − T (β)‖. (3.12)

To analyze inequality (3.11) further, we ask how far apart can β and T p(β)
be with respect to the sup norm? To answer this, note that the sup norm
satisfies the triangle inequality: ‖γ + µ‖ ≤ ‖γ‖ + ‖µ‖, for any two curves
γ, µ ∈ C. The triangle inequality extends to the sum of any number of
curves. Using this and the contraction property (3.9), and inequality (3.12),
we get

‖β − T p(β)‖ = ‖β − T (β) + T (β) − T 2(β) + · · · + T p−1(β) − T p(β)‖
≤ ‖β − T (β)‖ + ‖T (β) − T 2(β)‖ + · · · + ‖T p−1(β) − T p(β)‖
≤ ‖β − T (β)‖(1 + q + · · · + qp−1)
≤ ‖β − T (β)‖/(1 − q) (3.13)
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If we use this on the last part of inequality (3.11), we get:

‖T k(β) − T k+p(β)‖ < qk‖β − T (β)‖/(1 − q), (3.14)

for all k and p. This is the result we have been working toward. It says
(since limk→∞ qk = 0) that the sequence {T k(β)}∞k=0 is a Cauchy sequence
in C ⊆ C. It is a standard result in functional analysis that C is complete,
i.e., every Cauchy sequence in C converges to some element in C. Thus,
there exists an α ∈ C such that

lim
k→∞

‖T k(β) − α‖ = 0.

(This is equivalent to saying the sequence of curves: {T k(β)}∞k=0, converges
uniformly on [t0 − a, t0 + a] to the curve α.)

We now want to show that in fact α ∈ C and is a fixed point of T . To
see the first assertion, note that for every t ∈ [t0 − a, t0 + a], and for all k

‖α(t) − c‖ ≤ ‖α− c‖
≤ ‖α− T k(β)‖ + ‖T k(β) − c‖
≤ ‖α− T k(β)‖ + r.

Here we are abusing notation and writing c, when we really mean the con-
stant curve: γ(t) ≡ c, for every t. Also in the above we used the fact that
T k(β) ∈ B(c, r). Now taking the limit as k → ∞ in the above gives:

‖α(t) − c‖ ≤ r,

for every t ∈ [t0 − a, t0 + a], which says that the curve α lies in B(c, r).
As mentioned above the curve to which the sequence of iterates converges

is an element of C, which means in the case at hand that α is continuous.
Thus, we have verified that α ∈ C.

To see that α is a fixed point, it suffices to observe that since T is a
continuous map:

T (α) = T

(
lim

k→∞
T k(β)

)
= lim

k→∞
T (T k(β))

= lim
k→∞

T k+1(β) = α.

All of the above shows the existence of a solution α defined on the interval
I = [t0 − a, t0 + a], and we finally wish to show that α is unique in the sense
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that if γ : J → R
n is any other solution of the IVP, then γ = α on an interval

Q = [t0 −m, t0 +m] ⊆ I ∩ J . We choose m > 0 as follows. By continuity
of γ, there is a δ > 0 such that |γ(t) − c| ≤ r for all t such that |t− t0| < δ.
Now take m = min{δ, a}. By construction α(t) and β(t) lie in B(c, r) for all
t ∈ Q. Next let

M = sup{ ‖α(t) − γ(t)‖ | t ∈ Q }.
Then all we need to show is that M = 0. The argument for this is entirely
similar to that used in deriving inequality (3.10). Thus, suppose t ∈ Q.
Then since α and γ satisfy the IVP, we have

α(t) = c+
∫ t

t0
X(s, α(s))ds

γ(t) = c+
∫ t

t0
X(s, γ(s))ds,

and so we get (assuming that t > t0)

‖α(t) − γ(t)‖ = ‖
∫ t

t0
[X(α(s)) −X(γ(s))] ds ‖

≤
∫ t

t0
‖X(α(s)) −X(γ(s))‖ ds

≤ nK

∫ t

t0
‖α(s) − γ(s)‖ ds

≤ nK|t− t0|M ≤ nKaM.

Note that the second inequality above comes from inequality (3.8) and re-
quires that α(s), γ(s) ∈ B(c, r) for all s ∈ Q. That is why we chose Q the
way we did and is also why we must settle for a weaker version of unique-
ness (which we strengthen in the next corollary). Many differential equations
texts incorrectly handle the argument on uniqueness at this point, so beware.

Similar reasoning holds if t < t0. From this last inequality and the
definition of the sup, and with q = nKa as before, we get:

M ≤ qM.

Since q < 1, the only way for this inequality to hold is for M = 0, which is
what we wanted to show. This completes the proof.

The proof just given, while quite lengthy, is certainly worth your study.
It exhibits several ideas—contraction mapping, fixed points, and complete-
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ness of normed linear spaces—that have become essential to much of modern
analysis. There are several results connected with the Existence and Unique-
ness Theorem. These are directed to the all-important definition of the flow
generated by the vector field X.

Corollary 3.1 (Global Uniqueness) If α : I → R
n and β : J → R

n

are two solutions of the system x′ = X(t, x) and if α(t0) = β(t0) for some
t0 ∈ I ∩ J , then

α(t) = γ(t) for every t ∈ I ∩ J.

Proof: Let a0, b0 be the left- and right-hand end points, respectively, of the
interval I ∩ J (possibly a0 = −∞ or b0 = ∞). Define two sets of numbers:

A = { a ∈ I ∩ J |α = β on (a, t0] }
B = { b ∈ I ∩ J |α = β on [t0, b) }.

If A is not bounded below, then α = β on (−∞, t0] and if B is not bounded
above, then α = β on [t0,∞). Thus, α = β on R, and so the corollary is
certainly true.

Suppose B is bounded above and let b1 = sup B ≤ b0. Note that if
t ∈ [t0, b1), then t is not an upper bound for B and so there is a b ∈ B such
that t < b. Then α(t) = β(t). This shows that α = β on [t0, b1).

Claim: b1 = b0.

If not, then b1 < b0, and we get a contradiction as follows. Since b1 is not
an end point of I ∩ J , there is an ε > 0 such that (b1 − ε, b1 + ε) ⊂ I ∩ J .
See Figure 3.2. Now α = β on (b1 − ε, b1). For if t ∈ (b1 − ε, b1), then t is
not an upper bound for B and so there is a b ∈ B such that t < b. Hence

Figure 3.2: The intervals (b1 − ε, b1 + ε) and (b1 − δ, b1 + δ) that occur in the
proof.
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α(t) = β(t). Having thus shown that α = β on (b1 − ε, b1), continuity of
α and β gives in addition that α(b1) = β(b1). By the local uniqueness of
solutions of initial value problems, we have that α = β on a neighborhood
of b1, say on (b1 − δ, b1 + δ), for some δ. We have, in total, that α = β on
the intervals [t0, b1 − ε], (b1 − ε, b1], and [b1, b1 + δ). Thus, if b ∈ (b1, b1 + δ),
then α = β on [t0, b). Hence b ∈ B and b > b1. This contradicts the fact
that b1 is the least upper bound for the set B.

With the claim verified, we have that α = β on [t0, b0). A similar argu-
ment can be constructed for the case when A is bounded below and gives
that α = β on (a0, t0]. In total, we have α = β on (a0, b0), i.e., on I ∩ J ,
except possibly at the endpoints a0, b0, if one or both of these belong to
I ∩ J . If a0 ∈ I ∩ J , then continuity gives that α(a0) = β(a0). Similarly if
b0 ∈ I ∩ J . This completes the proof.

Exercises 3.2

1. (Continuous Dependence on Parameters) This exercise is a good one
for reinforcing your understanding of the proof of Theorem 3.1. It also gives
an important generalization of that theorem. The generalization involves
a time-dependent vector field which also depends on additional parameters
u1, . . . , um. For example, the perturbed pendulum model in Example 1.6 has
a time-dependent vector field X : R × R

2 → R
2 given by

X(t, θ, v) =
(
v, −g sin(θ) +

a2b2

2
sin2(bt) sin(2θ)

)
,

where the parameters g, a, b are the acceleration of gravity, the string length
(or hoop radius), and the magnitude of the oscillation about the vertical axis.
Thus, the solutions of the corresponding system of DEs implicitly depend on
the parameters g, a, b, and we would like to know how small variations in the
parameters affect the corresponding solutions. For example, if b is very small,
but nonzero, is the phase portrait for the system very “close” to the phase
portrait shown in Figure 1.5 for the unperturbed pendulum?

To formulate a precise result, we explicitly include the parameters in the
domain for the vector field. Thus, assume that G is an open subset of R ×
R

n × R
m and that X : G → R

n is a time- and parameter-dependent vector
field. Then X(t, x, u) ∈ R

n for (t, x, u) ∈ G. A solution of the system
x′ = X(t, x, u) is, by definition, a map α : I×U → R

n, where I is an interval
and U is an open set in R

m, such that (t, α(t, u), u) ∈ G for all (t, u) ∈ I×U ,
and

∂α

∂t
(t, u) = X(t, α(t, u), u),
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for all (t, u) ∈ I × U . This assumes implicitly that α is differentiable with
respect to t. With these definitions, prove the following generalization of
Theorem 3.1

Theorem 3.2 Suppose X : G → R
n is a time- and parameter-dependent

vector field on G ⊆ R×R
n×R

m. Assume that all the partials ∂X i/∂xj , i, j =
1, . . . , n, exist and are continuous on G. Then for each point (t0, c, u0) ∈ G,
there exists a differentiable map α : I × U → R

n, with t0 ∈ I and u0 ∈ U ,
which satisfies the initial value problem:

x′ = X(t, x, u)
x(t0, u0) = c,

for all u ∈ U . Furthermore, if γ : J × V → R
n is any other solution for the

initial value problem, then there is an interval Q ⊆ I ∩ J , with t0 ∈ Q, and
an open set W ⊆ U ∩ V , such that

α(t, u) = γ(t, u) for every t ∈ Q and u ∈W. (3.15)

Hence any two solutions of the initial value problem agree on a neighborhood
of t0.

Hints and Suggestions: Modify the proof of Theorem 3.1 by including a
u in the notation, using the same constants a, r, b,K, and use the following
set of maps for C:

C = { β : [t0 − a, t0 + a] ×B(u0, r
′) → B(c, r) |β is continuous },

where r′ > 0 is an appropriately chosen number.

2. (Contraction Mapping Principle) In proving Theorem 3.1, we constructed
a set of curves C which the Picard iteration map T mapped into itself:
T : C → C and on which T was a contraction. This technique, generalizes
and abstracts to other situations and has been elevated to a basic principle in
analysis and functional analysis. This exercise studies such a generalization.

Definition 3.4 (Metric Spaces) A map d : M ×M → R on a set M is
called a metric if

(1) d(x, y) ≥ 0, for all x, y ∈M , and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x), for all x, y ∈M . (Symmetry)
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈M . (Triangle Inequality)

The pair (M,d), consisting of a set together with a metric on this set, is
called a metric space. A map T : M → M is called a contraction if there is a
positive constant q such that

d(T (x), T (y)) ≤ q d(x, y), for all x, y ∈M. (3.16)
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The metric d is considered as measuring the distance between points in M ,
with d(x, y) being the distance between x and y. Thus, equation (3.16) says
that a contraction map decreases the distances between points. As with the
Picard map, we let T k denote the composition of T with itself k times, i.e.,
T 2 ≡ T ◦ T, T 3 ≡ T ◦ T ◦ T , and so on.
Relative to these concepts, suppose T : M → M is a contraction and do the
following.

(a) Suppose x is any point in M . Imitate the pertinent steps in the proof
of Theorem 3.1 to show that

d(T k(x), T k+p(x)) ≤ qk(1 − qp)
1 − q

d(x, T (x)), (3.17)

for all positive integers k, p.

(b) A sequence {xk}∞k=1 in M is called a Cauchy sequence if for every ε > 0
there is a positive integer K such that d(xk, xm) < ε, for all k,m ≥ K.
Use the result in part (a) to show that {T k(x)}∞k=1 is a Cauchy sequence
in M for any choice of x ∈M .

(c) A map f : M → M is called continuous if for every x ∈ M and every
ε > 0, there is a δ > 0 such that d(f(x), f(y)) < ε, for every x, y with
d(x, y) < δ. Show that f is continuous.

(d) A sequence {xk}∞k=1 in M is said to converge to c ∈ M , if for every
ε > 0 there is a K such that d(xk, c) < ε, for every k ≥ K. In this case
we write limk→∞ xk = c. Show that if f : M →M is a continuous map
and limk→∞ xk = c, then limk→∞ f(xk) = f(c).

(e) A metric space (M,d) is called complete if every Cauchy sequence in M
converges to a point in M . Use parts (b)-(d) to prove the following:

Theorem 3.3 (Contraction Mapping Principle) If T : M → M
is a contraction on a complete metric space (M,d), then there is a unique
point c ∈ M , such that T (c) = c. Moreover, for each x ∈ M , one has
limk→∞ T k(x) = c.

The point c in the theorem is called a fixed point of T .

3.3 Maximum Interval of Existence
The Existence and Uniqueness Theorem above guarantees a solution defined
on some interval of times. Here we construct a solution that is defined on
the largest possible interval of times.

Theorem 3.4 (Maximum Interval of Existence) Suppose X : B → R
n

is a time-dependent vector field satisfying the hypotheses of the Existence and
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Uniqueness Theorem 3.1. If (s, c) ∈ B, then there exists an interval I(s,c)
containing s, and a curve: α(s,c) : I(s,c) → R

n, which satisfies the IVP:

x′ = X(t, x)
x(s) = c,

and which has the further property that if β : J → R
n also satisfies the IVP,

then
J ⊆ I(s,c).

The interval I(s,c) is called the maximum interval of existence, and the in-
tegral curve α(s,c) is the maximal integral curve passing through c at time
s.

Proof: Let I denote the collection of all open intervals J = (a, b) on which
there exists a curve: β : J → R

n, which satisfies the IVP. Note that s ∈ J
for all J ∈ I. Further, let L denote the set of numbers that are left-end
points of some interval in I, and let R denote the set of all numbers that
are right-end points of some interval in I. Finally, let:

� = inf{a|a ∈ L}
r = sup{b|b ∈ R},

be the greatest lower bound of L and least upper bound of R, respectively.
Note that it is possible that � = −∞ and/or r = ∞. The maximum interval
that we are looking for is then

I(s,c) = (�, r).

We define a curve α(s,c) on this interval as follows. Suppose t ∈ (�, r). We
consider two cases:

(1) (t < s) Since � < t and � is the infimum of L, there exists an a ∈ L
with a < t < s. By definition of L there is an interval of the form (a, b)
on which there is a solution β : (a, b) → O of the IVP. Note that since
a < t < s and s ∈ (a, b), it follows that t ∈ (a, b). So we define

α(s,c)(t) = β(t).

(2) (s < t) Since t < r and r is the supremum of R, there exists an b ∈ R
with s < t < b. By definition of R there is an interval of the form
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(a, b) on which there is a solution β : (a, b) → O of the IVP. Note that
since s < t < b and s ∈ (a, b), it follows that t ∈ (a, b). So we define

α(s,c)(t) = β(t).

This defines α(s,c). Note that in the definition there is no ambiguity in the
choice of a (or b) and β for the given t. This is so because a different choice
γ : (c, d) → O, being a solution of the same IVP, must, by the uniqueness of
solutions, coincide with β on an interval about t, and therefore agree with
β at t. A little thought shows that α(s,c) satisfies the IVP and that I(s,c)
contains every interval on which a solution is defined.

A somewhat shorter proof of the last theorem is as follows. Let I be the
collection of all open intervals I on which there is defined a solution of the
IVP. Then let

I(s,c) = ∪{I|I ∈ I}.

Since I(s,c) is the union of open, connected sets with a point in common
(namely s), it is also open and connected. A fact from basic topology says
that the only connected subsets of R are the intervals. Thus, I(s,c) is an open
interval. Define a curve α(s,c) on this interval as follows. If t ∈ I(s,c), then
there is an interval I ∈ I, such that t ∈ I. By definition of I, there is a
solution β of the IVP defined on I. We take

α(s,c)(t) = β(t).

By the uniqueness part of the Existence and Uniqueness Theorem the choice
of β (as opposed to some other solution γ of the IVP defined on I) does not
matter, and so α(s,c) is well defined. It is also easy to see that α(s,c) satisfies
the IVP. It is clear that I(s,c) is the maximal interval on which there is defined
a solution.

Some vector fields are particularly important since the maximum interval
of existence for each integral curve is as large as possible, viz., R. Such vector
fields are called complete, as the following definition explicitly records.

Definition 3.5 Suppose X : B ⊆ R × R
n → R

n is a (time-dependent)
vector field. X is called a complete vector field if

I(s,c) = R,
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for every (s, c) ∈ B. A point (s, c) ∈ B is called (+) complete if

[0,∞) ⊆ I(s,c).

Similarly c is called (−) complete if

(−∞, 0] ⊆ I(s,c).

The point (s, c) is called complete if I(s,c) = R.

Note that the definition includes the case whenX does not depend on the
time (i.e., is autonomous). Generally it is quite difficult, even impossible, to
determine maximum intervals of existence and thus determine completeness
of a vector field. The exercises here give some examples of how to compute
I(s,c) for some simple DEs that can be solved explicitly. The next chapter
shows how, for 1 dimensional systems, to determine maximal intervals and
the domain for the flow. Theorem 3.8 below and Theorem B.1 in Appendix
B give some general results about completeness.

Exercises 3.3
1. Determine the maximal interval existence I(s,c) for each of the following DEs

and each of the two given initial conditions x(s) = c. Do this by solving the
DE explicitly (show your work), choosing constants so the initial condition
is satisfied and then determining the largest interval on which the particular
solution is defined. if the maximum interval is not R, describe how the
solution behaves as t approaches an endpoint of the interval

(a) Initial conditions x(0) = 2, x(0) = 1/4, and differential equation

x′ = x(1 − x),

which is a separable DE.
(b) Initial conditions x(1) = 2, x(1/2) = 0, and differential equation

x′ =
1 − 2t
cos(x)

,

which is a separable DE.
(c) Initial conditions x(1) = 1/15, x(3) = −3/17, and differential equation

x′ = t−1x+ 4t2x2,

which is a Bernoulli DE.
(d) Initial conditions (x(0), y(0)) = (1, 1), (x(0), y(0)) = (−1, 1), and sys-

tem of differential equations

x′ = x

y′ = xy−1.
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3.4 The Flow Generated by a Time-Dependent
Vector Field

We are now in a position to define the flow φ generated by time-dependent
vector field X : B ⊆ R × R

n → R
n that satisfies the hypotheses of Theorem

3.1. From now on these hypotheses will be implicitly assumed to hold for
all vector fields. Some texts define the flow only for autonomous vector
fields and mention that the general case can be reduced to this, since the
nonautonomous field X can always be extended to an autonomous one: X̃ :
B → R × R

n, by:
X̃(t, x) = (1,X(t, x)).

While this is one way to handle the general case (see the exercises), we
do not take this approach here for two reasons. One is that the flow φ̃
for X̃ is not the correct geometric object to use for the flow φ for X. A
second reason is that geometric concepts connected with X̃ on R × R

n can
be confusing when related back to those for X in R

n. In particular, it is not
directly apparent how the semigroup property for autonomous vector fields
should generalize to the nonautonomous case. Indeed, the general semigroup
property presented below is not discussed in most textbooks on differential
equations.

For (s, c) ∈ B, we let α(s,c) : I(s,c) → O denote the maximal integral
curve of X that passes through c at time s. Thus, I(s,c) is the maximal
interval of existence, and α(s,c) satisfies

α′
(s,c)(t) = X(t, α(s,c)(t)), ∀t ∈ I(s,c) (3.18)

α(s,c)(s) = c.

We now bundle all the integral curves together, as (s, c) varies over B, to
get the flow map.

Definition 3.6 Let D̃ be the following subset of R × R × R
n:

D̃ = { (t, s, x) ∈ R × R × R
n | (s, x) ∈ B and t ∈ I(s,x) }.

Note that if X is a complete vector field, then I(s,x) = R,∀x, and so D̃ =
R × B. The flow generated by the vector field X is the map φ : D̃ → R

n

defined by
φ(t, s, x) = α(s,x)(t). (3.19)
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An alternative notation, which will be convenient, is

φs
t (x) = φ(t, s, x). (3.20)

Here (s, x) ∈ B and t ∈ I(s,x), by definition of D̃. Note that since α(s,x) is a
solution of the system, we have

(t, φs
t (x)) ∈ B,

for all t ∈ I(s,x).

If we fix (s, x) ∈ B, then t → φs
t (x) is the maximal integral curve of X which

is at x at time s. In the new notation this last condition is

φs
s(x) = x, (3.21)

for all (s, x) ∈ B. This gives the first important property of the flow map.
There is more to the flow φ than just the convenient relabeling implied

by its definition in (3.19). In fact, we would now like to fix s and t and
consider the map: x → φs

t(x). This requires a little preciseness about the
domain for the x variable. For this we first introduce the following:

Theorem 3.5 The domain D̃ of the flow map φ is an open set.

We do not prove this theorem here (cf. [Di 74, p. 5]), but rather just use it
for our purposes.

Now take a point (t0, c) ∈ B. Then since (t0, t0, c) ∈ D̃ and D̃ is open,
there exists an open set U ⊆ R

n with c ∈ U , and an open interval I contain-
ing t0, such that

I × I × U ⊆ D̃.

Restricting the flow map φ to I × I × U , we get the following construction.
For s, t ∈ I, we can consider the notation in (3.20) as the notation for a

map φs
t : U → R

n. Again this is just more notation, but the distinction is
important. If you trace back through the above notation, you will find that
α(s,x) : I(s,x) → R

n is the map (or curve) you get by fixing (s, x) in the flow
map φ(t, s, x), and

α(s,x)(t) = φ(t, s, x) = φs
t (x),

for every x ∈ U and s, t ∈ I. Thus, we get a two-parameter family,

{φs
t}s,t∈I ,
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of maps φs
t : U → R

n, with the property: φs
s = 1 (the identity map on U),

for all s ∈ I. The fact that two of these maps can sometimes be combined,
via composition of functions, to give another map in the family, is known as
the semigroup property. This comes from the following general result.

Theorem 3.6 (Semigroup Property for Nonautonomous Flows)
Suppose φ is the flow generated by an time-dependent vector field X : B ⊆
R × R

n → R
n. Suppose (s, x) ∈ B and t ∈ I(s,x). Then I(t,φs

t (x)) = I(s,x) and

φt
u(φs

t (x)) = φs
u(x), (3.22)

for every u ∈ I(s,x).

Proof: Let J = I(t,φs
t (x)) ∩ I(s,x). Note that J is not empty since t ∈ J . The

two maximal integral curves α(t,φs
t (x)) and α(s,x) have domains I(t,φs

t (x)) and
I(s,x), respectively, and these curves have the same initial value at time t:

α(t,φs
t (x))(t) = φs

t (x) = α(s,x)(t).

Hence by definition of the maximal intervals (see Theorem 3.4), we have
I(t,φs

t (x)) ⊆ I(s,x) and I(s,x) ⊆ I(t,φs
t (x)). Hence these intervals are the same

and thus also the respective maximal integral curves are the same:

α(t,φs
t (x)) = α(s,x). (3.23)

But this identity is the same as the semigroup property (3.23) when properly
interpreted with the established notation:

φt
u(φs

t (x)) = α(t,φs
t (x))(u) = α(s,x)(u) = φs

u(x),

for every u ∈ I(s,x).

To interpret the semigroup property (3.22) in terms of algebraic struc-
tures, we return to the situation described prior to the theorem. With
I × I × U ⊆ D̃, we are guaranteed, for every x ∈ U and every s, t ∈ I,
that (s, x) ∈ B and t ∈ I(s,x). Further, because φt0

t0(x) = x for every x ∈ U

and because the flow φ : D̃ → R
n is continuous, we can assume that the in-

terval I is small enough so that φs
t (U) ⊆ U , for all s, t ∈ I. Thus, each of the

maps in the two-parameter family S = {φs
t}s,t∈I maps U into itself. Hence
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any two maps in the family can be combined via composition of functions
and in particular

φt
u ◦ φs

t = φs
u, (3.24)

for every s, t, u ∈ I. Further, since φs
s = 1 is the identity map on U , a

particular case of identity (3.24) is

φt
s ◦ φs

t = 1, (3.25)

for all s, t ∈ I. Thus, each map φs
t in the family S is invertible with inverse

(φs
t )−1 = φt

s. Consequently, S would be a group (mathematically) if the
composition operation ◦ were a closed operation on the elements of S. While
this is not true for any pair of elements of S, the semigroup property (3.24)
says that certain pairs of elements of S do combine to give another element
of S.

The semigroup property also has important interpretations in continuum
mechanics, a special case of which is fluid mechanics. For such a situation,
n = 3 and X(t, x) is interpreted as the velocity of the fluid flowing through
the point x in a tank U at time t. For steady fluid flows this velocity does not
change over time, but in the case where X varies with time, the flow through
a given point varies continually. The motion of a particular portion the fluid
therefore depends upon the time at which the observation begins. Thus,
suppose at time s a portion W of the fluid located in a region W ⊆ U of the
tank is observed. Following the motion until time t > s, we find that W has
moved and deformed into the region φs

t (W ). From time t until time u > t,
the fluid in the region φs

t (W ) moves and deforms into the region φt
u(φs

t (W )).
By the semigroup property, this region is the same as φs

u(W ), and thus the
time u shape and position does not depend on the intermediate shapes and
positions, but rather only on the initial time s and the position and shapeW .
See Figure 3.3. Each of the maps φs

t : U → U is considered as a deformation
of the parts W of the continuum U (or, in the fluid case, as a motion of the
fluid in U). For a starting time s, ending time u > s, and intermediate times
s < t1 < t2 < · · · < tk < u, compounding the corresponding deformations
φti

ti+1
gives the overall resultant deformation

φtk
u ◦ φtk−1

tk
◦ · · · ◦ φt1

t2 ◦ φs
t1 = φs

u. (3.26)

Of course, this identity holds whether the times are ordered as mentioned
or not, but the ordering helps focus on the concept involved.

A further interpretation of the semigroup property is that it provides
a rationale for studying discrete dynamical systems as being modeled by a
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Figure 3.3: Deformation of a set W ⊆ U by the flow.

sequence of iterates of a family of maps. Starting with the point c ∈ U , a
first iterate φs

t (c) gives another point in U , a second iterate φt
u(φs

t (c)) gives
yet another. The semigroup property says that all three of these points lie
on the same integral curve. Thus, for a sequence of closely spaced times,
the discrete iterates approximate the continuous motion along an integral
curve. Additional details of this are discussed in Exercises 2 and 3 in the
next section.

In the next example, we consider a planar, nonautonomous system, which
is simple enough so that we can actually compute the formula for its flow and
also analyze the flow lines without too much difficulty. You should realize
that the flow is mainly a theoretical tool, since for almost all meaningful
examples, such as the fluid flow examples in Chapters 1 and 2, the formulas
for the flows are impossible to compute. One exception to this is for 1-
dimensional dynamical systems, which are treated extensively in the next
chapter.

Example 3.3 Consider the following nonautonomous system in the plane:

x′ =
x

t
y′ = x.

This is a rather contrived system, not representing any real physics, but
for the reasons stated above it can serve to illustrate the theory. Thus, we
view X(t, x, y) ≡ (xt−1, x), with domain B = { (t, x, y) ∈ R

3 | t 
= 0 }, as
representing a velocity vector field for a nonsteady, planar fluid.

Note that the y-axis, L = {(0, y)|y ∈ R}, is a line of fixed points (stagna-
tion points) for the system. We can find the other solutions of the system by
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solving the first equation in the system (it is a separable DE) and substitut-
ing the result in the second equation. Thus, the first equation in separated
form is x−1dx = t−1dt and when integrated gives lnx = ln t + k. Choosing
k so that the initial condition x(s) = c1 holds, with s and c1 given, yields
k = ln c1 − ln s. Substituting this for k and solving for x leads to

x =
t

s
c1. (3.27)

The argument assumes implicitly that all the quantities are positive, but it
is easy to see that the resulting formula actually is the solution of the initial
value problem for any choice of c1 and any s 
= 0.

Using this result gives y′ = c1
s t, for the second DE in the system. Integra-

tion of this results in y = c1
2s t

2 +k. The constant k is again determined from
the generic initial condition: y(s) = c2. After some minor rearrangement,
we find that

y =
(
t2 − s2

2s

)
c1 + c2. (3.28)

Consequently, the formula for the flow is

φs
t (c1, c2) =

(
t

s
c1,

(
t2 − s2

2s

)
c1 + c2

)
, (3.29)

where s 
= 0 and t ∈ I(s,c). It is easy to see that I(s,c) is (−∞, 0) or (0,∞) if
s < 0 or s > 0 and c is not a fixed point. We will assume from now on that
s > 0, and thus just analyze the flow for positive times.

We have expressed the formula for the flow with the constants c1 to
the right of t, which may seem to be a nonstandard order, but this makes
verification of the semigroup property easier. Thus, direct calculation gives

φt
u (φs

t (c)) =
(
u

t

t

s
c1,

(
u2 − t2

2t

)
t

s
c1 +

(
t2 − s2

2s

)
c1 + c2

)
=

(
u

s
c1,

(
u2 − s2

2s

)
c1 + c2

)
= φs

u(c).

We can use the explicit formula for the flow to describe the behavior
of points and subsets of R

2 under deformation by the flow. As simple as
this example is, this description is still somewhat complicated. Consider the
flow as that of a fluid, and imagine dropping a small cork into the fluid at
some point c = (c1, c2) and observing its motion. What happens? Well,
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Figure 3.4: The possible trajectories of a cork for various choices of initial
positions c and choice of initial time s = 1.

that depends on the initial time s when your observation starts. Wait a few
minutes and the path followed by c will be completely different. But with s
fixed, the cork follows the path given by the curve: t → φs

t (c).
Assume that c is not a stagnation point, and for definiteness that s > 0.

By eliminating the parameter t in equations (3.27)-(3.28), we see that the
path of the cork lies on the parabola with equation

y =
s

2c1
x2 + c2 −

s

2
c1. (3.30)

It is easy enough to plot by hand a number of these parabolas for various
initial positions c of the cork. Figure 3.4 shows these curves for the case
s = 1. Note that the paths, or flow lines, intersect each other, but this should
not seem contradictory, since particles of the fluid traveling along different
paths will reach the point of intersection at different times. This together
with the parabolic shape of the flow lines can also be better understood by
considering the behavior of the velocity vector field X = (xt−1, x), that is
generating the flow.

At any instant t > 0 in time, X has the same direction, namely (t−1, 1),
at every point, but this direction changes continually and tends to a vertical
direction (0, 1), as t → ∞. Thus, the longer we wait before dropping the
cork in the tank, the more vertical will be its path of flow.
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It is also instructive to examine how the flow deforms subsets W of R
2,

that is, how φs
t (W ) changes over time. This again depends on the initial

time s when the observation starts. Figure 3.5 shows this for a particular
square W and two initial observation times: s1 = 0.2 and s2 = 1.

Figure 3.5: Deformation of a square W under the flow. The deformation
depends on the time s at which the observation begins. The deformation on
the left begins at time s = 0.2, while the one on the right begins at s = 1.

Exercises 3.4
1. For the nonautonomous, planar systems

(a)

x′ =
(

2t
1 + t2

)
x

y′ = 3x,

(b)

x′ = e−tx2

y′ = x,

do the following.

(a) Find an explicit formula for the flow map and use it to directly verify
the semigroup property of the flow.
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(b) For a selected initial time s, use a computer to draw the flow lines
t → φs

t (c) for number of different initial points c. Use your judgment
here since you will be graded on how well your drawing represents the
nature of the flow. Mark directions on the flow lines and annotate the
drawing to make it easy to read.

(c) Select four suitable points that are the vertices of a square and use a
computer to study the deformation of the square under the flow. Do
this for two suitable initial times s1 and s2 and same time duration for
each.

2. You might wonder whether it is possible to do without two time parameters
s, t in the flow φs

t . The answer to this is both yes and no. The next section
shows that for autonomous systems, the flow is best expressed with only
one time parameter. However, for nonautonmous flows, we believe that the
two-parameter version is the best: it is the most natural, convenient, and
unrestricted way of expressing the complex nature of the non-autonomous
flow. However, if you are willing to accept restrictions and loss of information,
you can do the following.
With great loss of generality, you can assume that all initial value problems
have a canonical starting time, say time 0. To see this suppose that X : B ⊆
R

n+1 → R
n is a nonautonomous vector field and (t∗, c) ∈ B. Since B is open,

there is an open interval L = (r1, r2) containing t∗, and an open set O ⊆ R
n,

containing c, such that L×O ⊆ B. Restricting X to L×O, consider an IVP
with arbitrary starting time t0 ∈ L:

x′ = X(t, x) (3.31)
x(t0) = c. (3.32)

Let M = L − t0 = (r1 − t0, r2 − t0) and define Y : M × O → R
n by

Y (s, y) = X(s−t0, y) for (s, y) ∈M×O. Show that each solution β : J → R
n

of the IVP

y′ = Y (s, y)
y(0) = c,

determines a solution α of the IVP (3.31)-(3.32), and conversely each solution
α of the first IVP gives rise to a solution β of the second IVP.
This result allows one to use 0 as the canonical starting time in the two-
parameter flow φ0

t . To see how restrictive this is, you might want to look at
Example 4.5 in the next chapter.

3.5 The Flow for Autonomous Systems
Suppose now thatX : O → R

n is autonomous and let φ : D̃ → R
n be the flow

for X as defined in the previous section. Because of the time independence



3.5. The Flow for Autonomous Systems 109

of X, the flow has additional properties and we can specialize it to a more
useful map. These additional properties arise from the following elementary
observation.

Proposition 3.1 (Time Translational Symmetry) If α : J → R
n is an

integral curve for an autonomous vector field X, then for any t0 ∈ J , the
curve β : J − t0 → R

n, defined by

β(t) = α(t+ t0),

for t ∈ J − t0, is also an integral curve of X.

Proof: This is easy to prove, and indeed is an exercise in Chapter 1.

Corollary 3.2 For an autonomous vector field X : O → R
n, the maximal

intervals I(s,c) and integral curves α(s,c) : I(s,c) → R
n, for s ∈ R and c ∈ O,

satisfy the relations

I(s,c) = I(0,c) + s, (3.33)
α(s,c)(t) = α(0,c)(t− s), ∀ t ∈ I(s,c). (3.34)

Consequently, the flow φ for X satisfies

φs
t (c) = φ0

t−s(c), (3.35)

for all t ∈ I(s,c).

Proof: By the proposition, the curve β defined by

β(t) = α(s,c)(t+ s),

for t ∈ I(s,c)− s, is an integral curve of X. Further, β(0) = α(s,c)(s) = c, and
consequently β satisfies the same initial value problem as α(0,c). Hence, by
maximality, I(s,c) − s ⊆ I(0,c) and β = α(0,c) on I(s,c) − s.

In a similar fashion, the curve γ defined by

γ(t) = α(0,c)(t− s),

for t ∈ I(0,c) +s, is an integral curve satisfying the same initial value problem
as α(s,c). Hence, by maximality, I(0,c) + s ⊆ I(s,c) and γ = α(s,c) on I(0,c) + s.

Putting both parts together gives the results of the corollary.
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Property (3.35) says that the flow map φs
t only depends on the difference

t−s of the two times s and t, i.e., on the amount of time elapsed between these
two times. For this reason, in the autonomous case, the flow reduces from
a dependence on two parameters to a dependence on only one parameter.
We can thus revise the notation and redefine the domain of the flow map as
follows.

Definition 3.7 (The Flow for Autonomous Systems) Let X : O →
R

n be a vector field on O ⊆ R
n. We choose 0 ∈ R as the standard initial

time and, for x ∈ O let Ix = I(0,x) and αx = α(0,x) denote the maximal
interval and integral curve that passes through x at time 0. Let D be the
following subset of R × R

n:

D = { (t, x) ∈ R × R
n |x ∈ O and t ∈ Ix }.

Note that if X is a complete vector field, then: Ix = R,∀x, and so D = R×O.
The flow φ : D̃ → R

n defined previously in general can now be reduced
to map φ : D → R

n. We use the same notation φ for this map (hopefully
with no confusion). The flow generated by an autonomous vector field X is
the map defined by

φt(x) = φ0
t (x). (3.36)

We also use the notation φ(t, x) = φt(x). Viewing the integral curves of X as
tracing out paths in O as time moves in the positive direction, we interpret
(3.36) as saying that the integral curve that starts at x at time 0, is at φ(t, x)
at time t.

The semigroup property discussed above now specializes to the following.

Theorem 3.7 (Semigroup Property for Autonomous Systems)
Suppose φ is the flow generated by an autonomous vector field on O and
x ∈ O. If t ∈ Ix and s ∈ Iφt(x), then s+ t ∈ Ix and

φs(φt(x)) = φs+t(x). (3.37)

The proof of the theorem is left as an exercise.

To interpret what the theorem says, we restrict φ to a product neighbor-
hood I × U ⊆ D, with I = (t0 − a, t0 + a). Note that I ⊆ Ix for all x ∈ U .
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By continuity of φ, we can choose a small enough so that φt(U) ⊆ U , for
every t ∈ I. Then

{φt}t∈I

constitutes a one parameter family of maps: φt : U → U . The parameter
is the time t. The semigroup property (3.37) now reads more simply as: If
x ∈ U and s, t, s+ t ∈ I, then φs(φt(x)) = φs+t(x). A better way to put this
is in terms of composition of maps:

φs ◦ φt = φs+t, (3.38)

for every s, t ∈ I for which s + t ∈ I. This last proviso about s + t being
in I is what restricts the family (or set) {φt}t∈I from being a group. The
semigroup operation is composition ◦ of maps, and property (3.38) is just
the closure property of ◦ . Note that

φ0 = I,

the identity transformation on U is the identity element of the semigroup.
Also if t ∈ I, then

φt ◦ φ−t = φt−t = φ0 = I,

and so φ−t is the inverse of the transformation φt. In symbols:

φ−t = φ−1
t .

In the case when X is a complete vector field, we can take U = O, I = R,
and get that {φt}t∈R is actually a group: a one-parameter group of invertible
transformations.

Besides having a special semigroup property, autonomous vector fields
X have many other special features. The following theorem gives some
information on completeness of X and is useful in other regards too.

Theorem 3.8 Suppose X : O → R
n is a C1 vector field on O and that

c ∈ O. Let the Ic = (ac, bc). If the forward flow through c remains in a
compact, convex set M ⊆ O, i.e., if

φt(c) ∈M, ∀t ∈ [0, bc),

then bc = ∞. Likewise, if the backward flow through c remains in a compact,
convex set M ⊆ O, i.e., if

φt(c) ∈M, ∀t ∈ (ac, 0],
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then ac = −∞. Hence, if φt(c) ∈ M for all t ∈ Ic, then Ic = R, i.e., c is a
complete point if the entire forward and backward flow remains in a compact
convex set.

Proof: As in the proof of Theorem 3.1, we use the �1 norm ‖x‖ for x ∈ R
n

and we choose a constant K > 0 such that

‖X(x)‖ ≤ K (3.39)
‖X(x) −X(y)‖ ≤ K‖x− y‖, (3.40)

for all x, y ∈ M . This relies on the compactness and convexity of M . We
just prove the first part of the theorem which assumes that φt(c) ∈ M for
all t ∈ [0, bc). We suppose bc <∞ and get a contradiction as follows.

Recall the notation: αc(t) = φt(c), which will be convenient to use here.
If t1 < t2 ∈ Ic, then since αc is an integral curve, it satisfies

αc(ti) = c+
∫ ti

0
X(αc(s)) ds,

for i = 1, 2. Thus, from inequality (3.39) we get

‖αc(t2) − αc(t1)‖ = ‖
∫ t2

t1
X(αc(s))‖ ≤ K(t2 − t1).

Now let {tk}∞k=1 be a sequence in Ic that converges to bc. Applying the last
inequality above gives

‖αc(tk) − αc(tm)‖ ≤ K|tk − tm|,

for all k,m. Thus, {αc(tk)}∞k=1 is a Cauchy sequence in the compact set M
and so converges to a point p ∈M .

Let β : J → O be a solution of the initial-value problem x′ = X(x), x(bc) =
p, with, say, J = (bc − r, bc + r). Then we have

αc(t) = c+
∫ t

0
X(αc(s)) ds, ∀t ∈ (ac, bc)

β(t) = p+
∫ t

bc

X(β(s)) ds, ∀t ∈ (bc − r, bc + r).

Note also that p = c+
∫ bc
0 X(αc(s)) ds. Thus, if we define γ : (ac, bc +r) → O

by

γ(t) =

{
αc(t) if t ∈ (ac, bc)
β(t) if t ∈ [bc, bc + r),
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then γ is continuous. Furthermore, we claim that γ satisfies the initial value
problem: x′ = X(x), x(0) = c. To see this we check the integral version of
the IVP.

First suppose ac < t < bc. Then

c+
∫ t

0
X(γ(s)) ds = c+

∫ t

0
X(αc(s)) ds = αc(t) = γ(t).

On the other hand, if bc ≤ t < bc + r then

c+
∫ t

0
X(γ(s)) ds = c+

∫ bc

0
X(γ(s)) ds +

∫ t

bc

X(γ(s)) ds

= c+
∫ bc

0
X(αc(s)) ds +

∫ t

bc

X(β(s)) ds

= p+
∫ t

bc

X(β(s)) ds = β(t) = γ(t).

This shows that γ is a solution of the IVP: x′ = X(x), x(0) = c, and so
its interval of definition (ac, bc + r) is contained in the maximal interval of
existence Ic = (ac, bc). This is a contradiction!

Exercises 3.5
1. Prove Theorem 3.7. Hint: Use Theorem 3.6 for the general nonautonomous

flow and be careful with the notation. For example, the first part of Theorem
3.6 says that for any time t1, if t2 ∈ I(t1,x) (i.e., if t2 − t1 ∈ I(0,x), because
(3.33) holds in the present setting), then

I(t2,φ
t1
t2

(x)) = I(t1,x).

Hence (in the present setting) it follows that if t3 is a time such that t3− t2 ∈
I(0,φt2−t1 (x)), then t3 − t1 ∈ I(0,x).

2. (Discrete Dynamical Systems, Part I) There is a area of mathematical
study, called discrete dynamical systems, which is closely related to the study
of systems of differential equations and which, even though the idea originated
with Poincaré a century ago, has only within the last two decades received
widespread attention and popularity, primarily because of the advent of the
personal computer. This exercise and the next give a brief introduction to this
topic. The electronic component has much additional material, theory, and
exercises (see CDChapter 3), but this can only give you a glimpse extensive
number of results, computer studies, and theorems arising from the study of
discrete dynamical systems. See the texts [Rob 95], [Dev 86], [CE 83], [Mar
92] for more details.
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The motivation behind discrete dynamical systems comes from the flow map
and its semigroup property. Consider the autonomous case where φ is the flow
for a vector field X : O ⊆ R

n → R
n. To make the discussion simple, suppose

that X is complete, so that the domain for the flow map is D = R × O,
and hence the flow φ : R × O → O gives a 1-parameter group {φt}t∈R

of
maps φt : O → O. The dynamics of the system of differential equations is
controlled by this group in the sense that t → φt(c) gives the continuous
motion of each c ∈ O. Instead of the continuous motion of c under the flow,
we can look at its positions:

c, φτ (c), φ2τ (c), φ3τ (c), . . . ,

at a discrete set of times 0, τ, 2τ, 3τ, . . ., where τ is fixed (small) positive
number. By the semigroup property of the flow, the position of c at time
t = kτ is given by a composition of maps:

φkτ (c) = φτ ◦ φτ ◦ · · · ◦ φτ (c) = (φτ )k(c),

i.e., repeated application of the map φτ gives the position of c at time t. Here,
as in the discussion of Picard iterates, we use the customary notation for the
repeated composition of a map with itself: If f : S → S is any map, let

fk = f ◦ f ◦ · · · ◦ f,
denote the composition of f with itself k times. For example, f2 = f ◦ f and
f3 = f ◦ f ◦ f .
Thus, for a small increment τ of time, we can replace the continuous dynamics
of the flow with the discrete dynamics of the map

f ≡ φτ .

We would expect that studying how points c ∈ O behave under repeated
applications of f would in some sense be similar to studying the true dynamics
of the flow.
Abstracting from the above motivational discussion, this exercise studies sev-
eral particular maps f of a set into itself. There are a few initial concepts
comprising this study that are most natural and defined as follows.

Definition 3.8 A discrete dynamical system is a map f : S → S, of a set S
into itself. The forward orbit of a point c under f is the set of points:

O+(c) = { fk(c) | k = 0, 1, 2, . . . }.

If f is 1-1 and onto, then we let f−k ≡ f−1 ◦ f−1 ◦ · · · ◦ f−1, denote the
composition of the inverse f−1 with itself k times. Then the backward orbit
of c under f makes sense and is defined as

O−(c) = { f−k(c) | k = 0, 1, 2, . . . }.
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A fixed point of f is a point c ∈ S such that f(c) = c. A periodic point of f is
a point c ∈ S such that fk(c) = c for some positive integer k. The period of
a periodic point is the least positive integer p such that fp(c) = c. A point
c ∈ S is called eventually periodic if there is a positive integer k such that
fk(c) is a periodic point of f .

It is clear that a periodic point c has orbit O+(c) consisting of p points,
where p is the period of c, and this orbit corresponds to the notion of a closed
integral curve for a system of DEs. An eventually periodic point c has orbit
O+(c) consisting of a finite number of points and corresponds to an integral
curve of a DE that asymptotically approaches a limit cycle of the DE.
If we let xk ≡ fk(c), k = 0, 1, 2, . . ., denote the sequence of iterates of c under
the map f , then this sequence is a solution of the basic and most simplistic
of all iteration schemes

xk+1 = f(xk), (k = 1, 2, , 3, . . .),

and satisfies the initial condition x0 = c. This gives us another interpretation
discrete dynamical systems and their analogy with systems of differential
equations.
For the particular study in this exercise, consider the following maps:

(a) The logistic map f : R → R, given by

f(x) = rx(1 − x),

where r > 0 is a parameter.
(b) A cubic map f : R → R, given by

f(x) = rx(1 − x)(2 − x),

where r > 0 is a parameter.
(c) The Hénon map f : R

2 → R
2, given by

f(x, y) = ( r − qy − x2, x ),

where r and q are parameters.

For each of the maps assigned for study, do the following:

1. Find all the fixed points.
2. Read the material on the Maple worksheets, referenced by CDChapter

3 on the electronic component and work the exercises shown there. The
electronic component contains some special Maple code for visualizing
discrete dynamics in one and two dimensions. Using this and the dis-
cussion there, you will be able to experimentally discover periodic and
eventually periodic points for f and look at how the dynamics change
when the parameters r and q change.
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3. (Discrete Dynamical Systems, Part II) In this exercise, we generalize
the discussion of discrete dynamical systems in the last exercise to obtain
the discrete analog of a nonautonomous system of differential equations x′ =
X(t, x). Since the vector field X depends on the time, it is natural to obtain
the discrete analog by allowing the map f in the iteration scheme to depend
on the time step k. Thus, the scheme has the form

xk+1 = fk(xk), (k = 1, 2, , 3, . . .).

So formally we define the concept by

Definition 3.9 A nonautonomous, discrete dynamical system is a sequence
{fk}∞k=1 of maps fk : S → S of a set S into itself.

This can also be motivated by the analogy with the flow φ generated by a
time-dependent vector field. With the appropriate restrictions, the flow gives
a two parameter family {φs

t} of maps φs
t : O → O, which has the semigroup

property
φt

u ◦ φs
t = φs

u.

Then, relative to a starting time s, the continuous dynamics of each point
c ∈ O is given by its flow line: t → φs

t (c). To make the motion discrete,
suppose τ is a (small) positive number. Then by the semigroup property, we
see that the position of c at time t = kτ is

φ0
kτ (c) = φ

(k−1)τ
kτ ◦ φ(k−2)τ

(k−1)τ ◦ · · · ◦ φ0
τ (c).

Thus, the discrete dynamics is expressed by iterations:

fk ◦ fk−1 ◦ · · · ◦ f1,

of the sequence {fk}∞k=1 of maps fk : O → O, defined by

fk ≡ φ
(k−1)τ
kτ .

It is instructive to note that when X does not depend on the time, the flow
map φ has the property: φs

t = φ0
t−s, and so fk = φ0

τ ≡ φτ , for every k. Thus,
the discrete dynamical system reduces to the autonomous one discussed in
the previous exercise.
In this exercise you are to study the following nonautonomous, discrete dy-
namical systems.

(a) A sequence of logistic maps fk : R → R, given by

fk(x) = rk x(1 − x),

where {rk}∞k=1 is a sequence of positive numbers.
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(b) A sequence of cubic maps fk : R → R, given by

fk(x) = rk x(1 − x)(2 − x),

where {rk}∞k=1 is a sequence of positive numbers.

(c) A sequence of Hénon maps fk : R
2 → R

2, given by

f(x, y) = ( rk − qk y − x2, x ),

where {rk}∞k=1 and {qk}∞k=1 are sequences of numbers.

For each of the maps assigned to you for study, read the material on the Maple
worksheets referenced by CDChapter 3 on the electronic component and use
the special-purpose software to complete the exercises on the worksheet.

3.6 Summary
The most important concept discussed in this chapter is that of the flow
(or flow map) φ generated by a vector field X. This geometrical concept
can be thought of as the expression for the general solution of the system of
differential equations associated with X—it contains the maximal integral
curves for all initial value problems.

For an autonomous vector field X : O ⊆ R
n → R

n, the flow is a map:
φ : D → R

n, defined on the open set D = { (t, x) ∈ R × R
n |x ∈ O} in

R × R
n, and has the properties

∂φ

∂t
(t, x) = X(φ(t, x)), for all t ∈ Ix

φ(0, x) = x, for all x ∈ O
φ(s, φ(t, x)) = φ(s+ t, x), for all t ∈ Ix and s ∈ Iφ(t,x).

A further concept introduced in the chapter is the notion of using iterates
of a map to prove existence of a desired result. In our case, this map was
the Picard map T : C → C and its iterates converge to the local solution of
the initial value problem. This concept has been abstracted to many other
situations and has become extremely useful in mathematics. Depending on
your course of study, you might encounter this idea in other places in this
book, for example, in the proof of the stability of periodic solutions (Chapter
7) and proof of the Hartman-Grobman Linearization Theorem (Appendix
B).



Chapter 4

Linear Systems

In this chapter we study linear systems of differential equations and see how
the general theory specializes to give us a much more complete description
of the flow. As would be expected, the material here relies on many topics
from linear algebra and so a good background in this subject will be help-
ful. (Appendix C has some review material on linear algebra and matrix
analysis.)

Linear systems have the form

x′ = A(t)x+ b(t),

where A(t) = {aij(t)}n
i,j=1 is an n × n matrix and b(t) is a vector in R

n.
Thus, the vector field for the system is X(t, x) = A(t)x + b(t) and, for a
fixed t, is an affine transformation X(t, ·) : R

n → R
n. Written out in terms

of components, the linear system is:

x′1 = a11(t)x1 + a12(t)x2 + · · · + a1n(t)xn + b1(t)
x′2 = a21(t)x1 + a22(t)x2 + · · · + a2n(t)xn + b2(t)

...
x′n = an1(t)x1 + an2(t)x2 + · · · + ann(t)xn + bn(t)

Both A and b, in general, depend on the time t and we assume the interval
of times is I = (r1, r2). If we let Mn denote the collection of n× n matrices
with real entries, then A : I → Mn is a given matrix-valued function and
b : I → R

n is a given vector-valued function or curve in R
n. If b(t) = 0, for

every t, the system is called homogeneous, and if A is constant (independent
of t), the system is said to have constant coefficients.

© Springer Science + Business Media, LLC 2010
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Example 4.1 The following system does not represent any particular physi-
cal situation, but serves to illustrate various aspects of the theory throughout
the next several sections.

x′1 = −x1 + 2tx2 + sin(t2)
x′2 = −2tx1 + x2 + cos(t2)

In vector form the system is x′ = A(t)x+ b(t), where

A(t) =

[
−1 2t
−2t −1

]
and b(t) =

[
sin(t2)
cos(t2)

]
.

The time interval I on which A and b are defined is I = (−∞,∞) and the
system is nonhomogeneous with nonconstant coefficients.

Linear systems arise naturally in a number of physical situations, as the
following example shows. In addition to the motivations for their study in
connection with physical phenomena, we shall also see, in the next chapter,
that linear systems are useful in the study of nonlinear systems.

lying on a frictionless table as shown in Figure 4.1. The bodies are attached
together by a spring and each is also attached to a rigid support by a spring.
For simplicity, assume the masses of the bodies are the same: m1 = m2 = 1
and that the stiffnesses of the springs, indicated by their spring constants
k1, k2, k3, are all the same as well: k1 = k2 = k3 = 1.

Figure 4.1: Two bodies with springs attaching them together and to rigid
supports.

The figure shows the bodies and springs lying in a straight line, with the
springs at their natural lengths, neither extended nor compressed, and the
bodies at their equilibrium positions. To get the bodies to oscillate in this

Example 4.2 (Coupled Masses) Suppose we have two bodies (metal balls)
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line. we displace each of them forward or backward of their equilibrium po-
sitions and impart some initial velocities to them. Their subsequent motion
is modeled by a 2nd-order, linear system of DEs which is derived as follows.

By Newton’s 2nd Law, the motion of each body is such that its mass
times its acceleration is equal to the sum of all the forces on the body. The
downward force of gravity is canceled by the upward supporting force of the
table, so we can forget about those forces. There remains only the forces of
the two springs acting on the body. By Hooke’s Law, a spring exerts a force
whose magnitude is the spring constant times the amount of displacement
and whose direction is opposite the extension or compression. So suppose
x1(t), x2(t) denote the displacements of the bodies from equilibrium at time
t. See Figure 4.2.

1x
2x

equilibrium positions

Figure 4.2: Displacements of the bodies from their equilibrium positions.

Referring to Figure 4.2, we see that body 1 has spring forces −k1x1 = −x1

and k2(x2 − x1) = x2 − x1 acting on it. Note that in the situation depicted,
the 2nd spring is extended and its force on body 1 is to the right (the positive
x-direction). Its force on body 2, however, is toward the left, and thus, the
two spring forces acting on body 2 are −k2(x2 − x1) = −(x2 − x1) and
−k3x2 = −x2. Putting all of this together gives (mass times acceleration
equals sum of forces) for each body:

x′′1 = −x1 + (x2 − x1)
x′′2 = −(x2 − x1) − x2

or

x′′1 = −2x1 + x2

x′′2 = x1 − 2x2

In terms of vectors and matrices, we can write this system of DEs as

x′′ = Kx,
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where

K =

[
−2 1
1 −2

]
.

To reduce this system to 1st-order, we introduce velocities: v1 = x′1, v2 =
x′2 and get the system:

x′1 = v1

x′2 = v2

v′1 = −2x1 + x2

v′2 = x1 − 2x2

In matrix form this system is z′ = Az, where

z =


x1

x2

v1
v2

 , A =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −2 0 0


Later in this chapter we will see how to solve this linear system of DEs.

We will also study the general system of coupled masses.

Example 4.3 (Linear, nth-order DEs) The general form of an nth-order,
nonhomogeneous, linear differential equation is typically given as

x(n) + an−1(t)x(n−1) + · · · + a2(t)x′′ + a1(t)x′ + a0(t)x = r(t), (4.1)

with the coefficient functions aj, j = 0, . . . , N − 1, defined and continuous
on an interval I. In your undergraduate DE course you studied the theory
for constructing the general solution of such an equation and learned how to
solve, in closed form, particular cases of this type of equation. It is important
for you to note that the discussion and theory presented here, which is for
1st-order systems of DEs, contains all of that undergraduate material. This
is so because we can rewrite equation (4.1) as the 1st-order system

z′ = A(t)z + b(t),
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where

A =



0 1
0 0 1

. . . . . .

0 0 0 · · · 0 1
−a0 −a1 a2 · · · −an−2 −an−1


, (4.2)

and b = (0, 0, . . . , r) (exercise).
As a particularly simple example of this, consider the 2nd-order linear

homogeneous DE

x′′ − 2
t− 1

x′ +
2

(t− 1)2
x = 0,

with t in the interval I = (−∞, 1). Letting v = x′, reduces this 2nd-order
DE to the following 1st-order system

x′ = v

v′ =
−2

(t− 1)2
x+

2
t− 1

v

To write this system in matrix form, let z = (x, v) and

A(t) =

[
0 1
−2

(t−1)2
2

t−1

]
.

Then the system of 1st-order DEs is z′ = A(t)z.

Before embarking on a detailed study of linear systems of equations,
we point out that linear systems have many special properties which are
not generally present in nonlinear systems. In particular we mention the
following

Properties of Linear Systems:

(1) The solutions (integral curves) exist for all times t ∈ I, i.e., each max-
imum interval of existence coincides with I (see Theorem 4.1 below).
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(2) Any linear combination of solutions of the homogeneous system

x′ = A(t)x

is also a solution. Specifically, if α1, . . . , αk : I → R
n are integral

curves and c1, . . . , ck are constants, then the curve

β(t) = c1α1(t) + · · · + ckαk(t),

for t ∈ I, is also an integral curve. This is called the superposition
principle.

(3) There is an “explicit” formula for the general solution of the nonho-
mogeneous equation x′ = A(t)x+ b(t). It is

α(t) = G(t)c +G(t)
∫ t

0
G(s)−1b(s)ds,

where G is the fundamental matrix for A and c ∈ R
n is an arbitrary

constant vector. The fundamental matrix is discussed below and the
above formula is explicit only to the extent that we are able to com-
pute the fundamental matrix and its inverse and the definite integral
involved.

4.1 Existence and Uniqueness for Linear
Systems

Note: Since the domain of the vector field X(t, x) = A(t)x + b(t) is B =
I×R

n, we can always assume, without loss of generality that 0 ∈ I (exercise).
This will be convenient and will simplify the notation.

From here on we also make the assumption that A : I → Mn and
b : I → R

n are continuous functions. Continuity of a matrix-valued function
A = {aij} just means that each of its entries aij : I → R is a continuous
function.

We let
C := {β : I → R

n |β is continuous }

denote the set of all continuous curves on I. For a given point c ∈ R
n, the

Picard iteration map T : C → C is defined by

T (β)(t) = c+
∫ t

0
[A(s)β(s) + b(s)]ds,
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for t ∈ I. It is easy to see that T (β) is continuous on I (indeed is differentiable
everywhere, except possibly at the endpoints of I). Thus, T is a mapping
from C into C. In proving the general Existence and Uniqueness Theorem
(Chapter 3), we found that, beginning with any curve β, the sequence of
iterates

β, T (β), T 2(β), T 3(β), . . . ,

converges to the integral curve α that satisfies α(0) = c. The transformation
T we used there arose after judiciously picking certain constants and intervals
in order to make T a contraction. Here, for linear systems, this is not needed
and, further, the maximum interval existence for integral curves turns out
to be the same as the given interval I on which A and b are continuous:

Theorem 4.1 (Existence and Uniqueness for Linear Systems) If A :
I → Mn and b : I → R

n are continuous on I, then for each c ∈ R
n, there is

a unique solution α : I → R
n of the IVP:

x′ = A(t)x+ b(t)
x(0) = c.

Note: What’s new here is that the solution α is defined on all of the given
interval I where A and b are continuous. The general existence and unique-
ness theorem only guarantees us the existence of a solution defined on some
interval about 0.

Proof: This theorem is not a corollary of Theorem 3.1, since it yields a
stronger result than we can get by applying that theorem to this special
case. Thus, the proof proceeds a little differently and exploits the linearity
of the system.

As in the previous proof, we will use the �1 norm on R
n, i.e., for x ∈ R

n

‖x‖ =
n∑

i=1

|xi|.

Since each of the entries aij of the matrix A is a continuous function on
I = [r1, r2], there is a constant K such that

|aij(t)| ≤ K,

for all i, j = 1, . . . , n and t ∈ I. This constant K plays the same role here as
in the general existence and uniqueness theorem. Namely, we would like to
show that

‖X(x, t) −X(y, t)‖ ≤ nK‖x− y‖, (4.3)
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for all x, y ∈ R
n and t ∈ I (Lipschitz condition). This is easy to do since the

vector field X has the form: X(x, t) = A(t)x+b(t) and so X(x, t)−X(y, t) =
A(t)(x− y). Thus, inequality (4.3) results from the following:

‖A(t)(x − y)‖ =
n∑

i=1

∣∣∣∣ n∑
j=1

aij(t)(xj − yj)
∣∣∣∣

≤
n∑

i=1

n∑
j=1

|aij(t)||xj − yj|

≤
n∑

i=1

n∑
j=1

K|xj − yj |

= nK‖x− y‖

for all x, y ∈ R
n and t ∈ I. This is the inequality we need.

As before, the set C is a Banach space when endowed with the sup norm:

‖β‖ = sup{‖β(t)‖ | t ∈ I }.

We proceed to show that for any β ∈ C, the sequence {T k(β)}∞k=0 converges
to the solution we seek.

For this note that because of the special (affine) nature of the Picard
iteration map T , we have

T p(β)(t) − T p+1(β)(t) = T

(
T p−1(β)

)
(t) − T

(
T p(β)

)
(t)

=
∫ t

0
A(s)

[
T p−1(β)(s) − T p(β)(s)

]
ds,

for all p = 1, 2, . . .. We use this successively in deriving the following esti-
mates. For convenience we let

M = ‖β − T (β)‖.

Then for any t ∈ I with t ≥ 0, we have

‖T (β)(t) − T 2(β)(t)‖ =
∥∥∥∥ ∫ t

0
A(s)

[
β(s) − T (β)(s)

]
ds

∥∥∥∥
≤

∫ t

0

∥∥∥∥A(s)
[
β(s) − T (β)(s)

]∥∥∥∥ds
≤

∫ t

0
nK‖β(s) − T (β)(s)‖ds

≤
∫ t

0
nKM ds = nKM t.
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Next, use this in the following (similar) derivation:

‖T 2(β)(t) − T 3(β)(t)‖ =
∥∥∥∥ ∫ t

0
A(s)

[
T (β)(s) − T 2(β)(s)

]
ds

∥∥∥∥
≤

∫ t

0
nK‖T (β)(s) − T 2(β)(s)‖ds

≤
∫ t

0
nKnKM sds = n2K2M t2/2

Continuing in this fashion, it’s not hard to see that inductively we get

‖T k(β)(t) − T k+1(β)(t)‖ ≤ nkKkM
|t|k
k!
,

for any k and all t ∈ I with t ≥ 0. Similar reasoning gives the same inequality
for t < 0. Letting q = r2 − r1 and taking the sup over t ∈ I gives

‖T k(β) − T k+1(β)‖ ≤ nkKkM
qk

k!
,

for k = 1, 2, 3, . . .. Using this and the triangle inequality for the sup norm,
we easily get the following:

‖T k(β) − Tm(β)‖
= ‖T k(β) − T k+1(β) + T k+1(β) − T k+2(β) + · · · + Tm−1(β) − Tm(β)‖
≤ ‖T k(β) − T k+1(β)‖+ ‖T k+1(β) − T k+2(β)‖ + · · · + ‖Tm−1(β) − Tm(β)‖

≤ M
m−1∑
j=k

njKjqj

j!

= M(Sm−1 − Sk−1),

for all k < m. Here we have introduced SN to stand for

SN ≡
N∑

j=0

(nKq)j

j!
.

Now since limN→∞ SN = enKq, the sequence {SN}∞N=0 is Cauchy and hence
by the above inequality, the sequence {T k(β)}∞k=0 is Cauchy (exercise). But
then, since the latter sequence is a Cauchy sequence in the Banach space C
of curves, it is a convergent sequence. Thus, there exists an α ∈ C, such
that

lim
k→∞

T k(β) = α.
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That α is a fixed point: T (α) = α, and therefore is a solution of the IVP,
follows as in the proof of Theorem 3.1. That theorem also shows that α is
unique.

Exercises 4.1
1. Show that the nth-order linear system (4.1) can be rewritten as a 1st-order

system z′ = A(t)z + b(t), with A as in (4.2).

2. Show that there is no loss of generality in assuming that 0 is in the interval
I, which is the domain for the coefficient matrix: A : I → Mn and forcing
vector b : I → R

n. Hint: Let Ĩ = I − t∗, where t∗ ∈ I and define a new
coefficient matrix Ã and forcing vector b̃ on Ĩ. Make sure you formulate and
prove a precise result. See also Exercise 2, Section 3.4.

3. (Homogeneous, Constant Coefficient Systems) For systems x′ = Ax,
which are homogeneous with constant matrix A, the theory simplifies consid-
erably.

(a) Show that the Picard iteration map: T : C → C is

T (β)(t) = c+A

∫ t

0

β(s)ds.

(b) For the following matrices A and initial points c, compute, by hand,
the iterates: β1 = T (c), β2 = T (β1), . . . , β8 = T (β7). Use a computer
to plot these approximations βk, k = 1, . . . , 8, and the solution α to
x′ = Ax, on some appropriate time interval.

(i) A =
[

0 1
−1 0

]
, c = (1, 0). Based on your calculations, determine

a formula for βk and find the limit: limk→∞ βk(t).

(ii) A =
[

−1 1
−1 −1

]
, c = (1, 1).

(c) Use Part (a) to show that the 1st and 2nd iterates of the constant map
c are: T (c)(t) = c+ tAc, T 2(c)(t) = c+ tAc+ t2

2 A
2c. Then show that,

in general, the kth iterate is

T k(c)(t) =
[
I + tA+

t2

2
A2 + · · · + tk

k!
Ak

]
c.

4.2 The Fundamental Matrix and the Flow
The explicit formula for the integral curves of the general linear system
x′ = A(t)x+ b(t) involves a matrix known as the fundamental matrix G for
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the system (more precisely, for the coefficient matrix A). The definition of
G follows from the existence and uniqueness theorem above.

Definition 4.1 (The Fundamental Matrix) For each j = 1, . . . , n, let
γj : I → R

n be the solution of the IVP

x′ = A(t)x
x(0) = εj .

Here ε1 = (1, 0, 0, . . . , 0), ε2 = (0, 1, 0, . . . , 0), . . . , εn = (0, 0, 0, . . . , 1) are the
standard unit vectors in R

n. The fundamental matrix for A is the n × n
matrix G whose columns are γ1, γ2, . . . , γn. Symbolically we write this as

G = [γ1, γ2, . . . , γn].

More precisely, if γj = (γ1j , . . . , γnj), then G : I → Mn is the matrix-valued
function defined by

G(t) = {γij(t)} =

 γ11(t) · · · γ1n(t)
...

...
γn1(t) · · · γnn(t)

 . (4.4)

Example 4.4 Consider the system z′ = A(t)z with

A(t) =

[
0 1
−2

(t−1)2
2

t−1

]
.

How do we find the fundamental matrix G for this matrix A? Generally this
is difficult, but this system arose in Example 4.3 by reducing the DE

x′′ − 2
t− 1

x′ +
2

(t− 1)2
x = 0,

to 1st-order: z′ = A(t)z, with z = (x, v) and v = x′. Furthermore, this 2nd-
order DE is a Cauchy-Euler (equidimensional) DE and so we can determine
its general solution. It is (see your undergraduate DE book):

x = a(t− 1) + b(t− 1)2,
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where a, b are arbitrary constants. Then v = x′ is

v = a+ 2b(t− 1).

Consequently, the general solution of z′ = A(t)z is

z = (x, v) =
(
a(t− 1) + b(t− 1)2, a+ 2b(t− 1)

)
.

We need to find two solutions z1, z2 which satisfy z1(0) = (1, 0), z2(0) =
(0, 1). This is where the arbitrary constants a, b in the general solution come
in—we choose them to get z1, z2. Now in general

z(0) = (−a+ b, a− 2b) .

So to get z1 we must choose a, b to satisfy

−a+ b = 1
a− 2b = 0

This gives a = −2, b = −1 and thus

z1 =
(
−2(t− 1) − (t− 1)2, −2 − 2(t− 1)

)
=
(
1 − t2,−2t

)
.

To get z2 we must choose a, b so that

−a+ b = 0
a− 2b = 1

This gives a = −1, b = −1 and thus,

z2 =
(
−(t− 1) − (t− 1)2, −1 − 2(t− 1)

)
=
(
t− t2, 1 − 2t

)
.

The fundamental matrix is then formed by using these two vectors z1, z1 as
columns:

G(t) =

[
1 − t2 t− t2

−2t 1 − 2t

]
.

Note that the 2nd row of G comes from differentiating the first row, but
this occurs only because of the special nature of this system (it arises by
a reduction to first order). The other thing to note is that, as mentioned
earlier, the fundamental matrix is used in formulating the general solution
of linear systems of 1st-order DEs. But in this example the general solution
can be found by other means (i.e., by using the general solution of x′′ −

2
t−1 x

′ + 2
(t−1)2 x = 0 as we did above).
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The fundamental matrix G can be computed explicitly in many cases (for
instance, the last example), but for the most part it is only given theoretically
from the existence and uniqueness theorem for linear systems. Its primary
use, in either case, is to delineate the special nature of the solutions to linear
systems. The case n = 1, i.e., when the system consists of a single scalar DE

x′ = p(t)x+ q(t),

should be familiar to you from your undergraduate DE course. Recall that
the solution of this, which satisfies the initial condition: x(0) = c is

x = µ(t)
[
c+

∫ t

0
µ(s)−1q(s)ds

]
, (4.5)

where
µ(t) = e

∫ t

0
p(s)ds

is an “integrating factor” for the equation. Since µ satisfies µ′ = p(t)µ and
µ(0) = 1, it follows that µ is indeed the fundamental matrix for the case n =
1. You should see now why the fundamental matrix is not always explicitly
computable. In the 1-dimensional case here, the integral

∫ t
0 p(s)ds is only

given theoretically and while many examples and exercises are designed so
that the integrals are expressible in terms of standard elementary functions,
this need not always be the case.

Our goal in the next several theorems is to show that the form of the
above solution (4.5) for n = 1 is precisely the same for n > 1. Thus, the
fundamental matrix is analogous to the notion of an integrating factor.

Theorem 4.2 If G is the fundamental matrix for A, then G satisfies:

G′(t) = A(t)G(t) ∀t ∈ I (4.6)
G(0) = I, (4.7)

where I denotes the n× n identity matrix.

Proof: The proof is an easy application of the product rule for matrix
and vector-valued functions (see Appendix C) and the above existence and
uniqueness theorem. Thus, differentiating G columnwise and using the fact
that the columns, by definition, satisfy γ′j = A(t)γj , we get

G′(t) = [ γ′1(t), . . . , γ
′
n(t) ]

= [A(t)γ1(t), . . . , A(t)γn(t) ]
= A(t) [ γ1(t), . . . , γn(t) ]
= A(t)G(t),
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for all t ∈ I. Also that G(0) = I is clear since the columns of the identity
matrix I are εj = γj(0), j = 1, . . . , n.

Remark: An alternative way of defining the fundamental matrix G for A
is to just declare that it is the unique solution to the matrix differential
equation: G′ = A(t)G, which satisfies G(0) = I. It’s an easy exercise
to extend the existence and uniqueness theorem from above to the case of
matrix DEs and then to use elementary properties of matrix operations to
show that this way of defining G is equivalent to the first way (exercise).

Example 4.5 Consider the system x′ = A(t)x, where

A(t) =

[
−1 2t
−2t −1

]
.

The fundamental matrix for A is

G(t) = e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
.

To check this, first note that

G(0) = e0
[

cos(0) sin(0)
− sin(0) cos(0)

]
=

[
1 0
0 1

]
= I.

And more importantly we calculate

G′(t) = −e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
+ e−t

[
−2t sin(t2) 2t cos(t2)
−2t cos(t2) −2t sin(t2)

]

= e−t

[
− cos(t2) − 2t sin(t2) − sin(t2) + 2t cos(t2)
sin(t2) − 2t cos(t2) − cos(t2) − 2t sin(t2)

]

We compare this with

A(t)G(t) =

[
−1 2t
−2t −1

]
e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]

= e−t

[
− cos(t2) − 2t sin(t2) − sin(t2) + 2t cos(t2)
sin(t2) − 2t cos(t2) − cos(t2) − 2t sin(t2)

]
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This shows that G′(t) = A(t)G(t). Thus, G is the fundamental matrix for
A.

While this example serves to illustrate the previous theorem, you may
wonder how we got the fundamental matrix for A in the first place. Here’s
one way to do this. (This technique is discussed in the exercises for 2 × 2
and 3 × 3 coefficient matrices A in general.)

Start with the system written in the form:

x′1 = −x1 + 2tx2 (4.8)
x′2 = −2tx1 − x2 (4.9)

Rearrange this as

x′1 + x1 = 2tx2

x′2 + x2 = −2tx1

Now multiply both sides by et to get

etx′1 + etx1 = 2tetx2

etx′2 + etx2 = −2tetx1

This is the same as (
etx1

)′
= 2tetx2(

etx2

)′
= −2tetx1

Then if we let u1 = etx1 and u2 = etx2, the above system is

u′1 = 2tu2 (4.10)
u′2 = −2tu1 (4.11)

Now look for a solution of this system of the form

u1(t) = P (t2) (4.12)
u2(t) = P ′(t2), (4.13)

where P is a twice-differentiable function. We determine P by substituting
u1, u2 into (4.10)-(4.11). The first of these equations is satisfied for any
choice of P and the second equation reduces to

P ′′(t2) = −P (t2),
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for all t. Thus, any solution of P ′′(s) = −P (s) will give a solution of (4.10)-
(4.11) via definitions (4.12)-(4.13). One solution of P ′′ = −P is P (s) =
cos(s) and this gives a solution

(u1(t), u2(t)) =
(
cos(t2),− sin(t2)

)
of (4.10)-(4.11) whose value at t = 0 is (1, 0). Another solution of P ′′ = −P
is P (s) = sin(s) and this gives a solution

(u1(t), u2(t)) =
(
sin(t2), cos(t2)

)
of (4.10)-(4.11) whose value at t = 0 is (0, 1). Multiplying each of these by
e−t gives two solutions (x1, x2) of the original system (4.8)-(4.9). Finally, we
can use these to get its fundamental matrix:

G(t) = e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
.

An important fact about the fundamental matrix is that it is invertible,
i.e., G(t)−1 exists for all t ∈ I. This is equivalent to saying that det(G(t)) 
=
0, for all t ∈ I. This non obvious fact can be demonstrated using the
following formula, which relates the determinant of G and the trace of A:

Proposition 4.1 (Liouville’s Formula) If G is the fundamental matrix
for A, then

det(G(t)) = e
∫ t

0
tr(A(s)) ds,

for all t ∈ I.

Proof: If we view the matrix G = [R1, . . . , Rn] in terms of its rows Ri, then
the matrix differential equation that G satisfies, namely: G′ = AG, can also
be expressed as

R′
i =

n∑
j=1

aijRj,

for i = 1, . . . , n. Now since the determinant of a matrix is a multilinear
function of the rows of the matrix, it’s not hard to show that the derivative
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of det(G) satisfies a type of product rule (exercise). This is exhibited in the
first line of the following calculation:

d

dt
det(G) =

n∑
i=1

det([R1, . . . , R
′
i, . . . , Rn])

=
n∑

i=1

det([R1, . . . ,
n∑

j=1

aijRj, . . . , Rn])

=
n∑

i=1

n∑
j=1

aij det([R1, . . . , Rj , . . . , Rn])

=
n∑

i=1

n∑
j=1

aijδij det(G).

=
n∑

i=1

aii det(G)

= tr(A) det(G).

Note: In the first three equations, the quantities: R′
i,
∑n

j=1 aijRj, and Rj ,
occur in the ith row of the indicated matrix. In the above, δij is the Kro-
necker delta function, and we have used the fact that

det([R1, . . . , Rj , . . . , Rn]) = 0,

if j 
= i (since two rows of the determinant will be the same). Also, it is
clear that det(G(0)) = det(I) = 1. Thus, altogether, we have shown that
the real-valued function x = det(G(t)) satisfies the IVP

x′ = tr(A(t))x
x(0) = 1

But by the discussion prior to Theorem 4.2, we know that x = e
∫ t

0
tr(A(s))ds

is the unique solution of this IVP. Hence: det(G(t)) = e
∫ t

0
tr(A(s))ds.

Remark: You should note that in the case when n = 1,det(G(t)) = G(t)

and tr(A(t)) = A(t). Thus, the relationship G(t) = e
∫ t

0
A(s)ds in Liouville’s

formula is precisely what you would expect, based on the discussion prior to
the theorem.
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Example 4.6 An interesting homogeneous system which has periodic solu-
tions is the system x′ = A(t)x with coefficient matrix

A(t) =

[
− sin t cos t
cos t − sin t

]
.

You can use the technique described in the last example (or the general
results in Section 4.2, Exercise 2 below) to determine that the fundamental
matrix for A is

G(t) = ecos t−1

[
cosh(sin t) sinh(sin t)
sinh(sin t) cosh(sin t)

]
.

We check that Liouville’s formula holds in this example. First, using the
hyperbolic identity cosh2 u− sinh2 u = 1, we get

det(G(t)) =
(
ecos t−1

)2 [
cosh2(sin t) − sinh2(sin t)

]
= e2 cos t−2.

Also
tr(A(t)) = −2 sin t.

Thus,

e
∫ t

0
tr(A(s))ds = e

∫ t

0
(−2 sin(s))ds = e2 cos t−2 = det(G(t)).

It is an easy exercise to verify that matrices for the systems in Examples 4.4
and 4.5 also satisfy Liouville’s formula.

We next consider the nonhomogeneous system

x′ = A(t)x+ b(t),

and show how to express its general solution (i.e., the flow) in terms of
the fundamental matrix G for A. To motivate the formula, we provide the
following heuristic derivation of it. This should look similar to what you did
as an undergraduate in solving 1st-order, linear DE’s, since, indeed, that is
what the following reduces to when n = 1.

First we take the DE and rewrite it as

x′ −A(t)x = b(t).
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Then multiply both sides by G(t)−1, to get

G(t)−1x′ −G(t)−1A(t)x = G(t)−1b(t).

You can consider G(t)−1 as an “integrating factor” since the left side of
the last DE is now the exact derivative of G(t)x. To see this, just do the
calculation:

d

dt

[
G−1x

]
= G−1x′ +

[
d

dt
G−1

]
x

= G−1x′ −G−1G′G−1x

= G−1x′ −G−1AGG−1x

= G−1x′ −G−1Ax,

where we have used the product rule and the rule for differentiating the
matrix inverse (exercise). Thus, the DE becomes:

d

dt

[
G(t)−1x

]
= G(t)−1b(t).

Integrating both sides of this from 0 to t and using the Fundamental Theorem
of Calculus on the left side yields

G(t)−1x− x(0) =
∫ t

0
G(s)−1b(s)ds.

Let the generic initial condition be x(0) = c and solve the last equation for
x to get the solution of the initial-value problem expressed by

x = G(t)c+G(t)
∫ t

0
G(s)−1b(s)ds.

With this as the motivation, we now proceed to show that this is in fact the
solution of the general linear differential equation.

Theorem 4.3 (Solution of the Nonhomogeneous DE) If G is the fun-
damental matrix for A, then the general solution of the nonhomogeneous,
linear system x′ = A(t)x+ b(t) is

α(t) = G(t)
[
c+

∫ t

0
G(s)−1b(s)ds

]
, (4.14)

for t ∈ I and c an arbitrary constant (vector).
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Proof: We first show that for any c ∈ R
n, the α given by equation (4.14) is

a solution of the nonhomogeneous equation. This involves a straight-forward
calculation of the derivative of α using the product rule, the Fundamental
Theorem of Calculus, and the fact that G′ = AG. The calculation is as
follows:

α′(t) = G′(t)
[
c+

∫ t

0
G(s)−1b(s)ds

]
+G(t)G(t)−1b(t)

= A(t)G(t)
[
c+

∫ t

0
G(s)−1b(s)ds

]
+ b(t)

= A(t)α(t) + b(t)

Next we must show that formula (4.14) includes all solutions of the non-
homogeneous equation. More precisely: if β : J → R

n is a solution of the
nonhomogeneous equation, then there is a constant c ∈ R

n such that β = α
on J . To see this, choose any t0 ∈ J and let

c = G(t0)−1β(t0) −
∫ t0

0
G(s)−1b(s)ds. (4.15)

With this choice for c in (4.14), we get that α(t0) = β(t0). Hence by the
uniqueness part of the Existence and Uniqueness Theorem, it follows that
α = β on J .

Rewriting formula (4.14) slightly gives

α(t) = G(t)c+G(t)
∫ t

0
G(s)−1b(s)ds = αc(t) + αp(t),

and this expresses the general solution as the sum of two terms. The first
term

αc(t) = G(t)c,

is the general solution of the homogeneous equation, while the second term

αp(t) = G(t)
∫ t

0
G(s)−1b(s)ds, (4.16)

is a particular solution of the nonhomogeneous equation (exercise). Alter-
natively, let γj , j = 1, . . . , n denote the columns of G and c = (c, . . . , cn).
Then the expression for general solution is

α(t) =
n∑

j=1

cjγj(t) + αp(t).
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These are the familiar forms, which you studied as an undergraduate, of
expressing the general solution of the nonhomogeneous equation as the sum
of the general solution of the homogeneous equation and any one particu-
lar solution of the nonhomogeneous equation. The discussion here not only
generalizes the special case you studied as an undergraduate, but also gives
an explicit formula (4.16) for the construction of a particular solution. The
exercises will show how this formula contains the variation-of-parameters
method for constructing particular solutions of the nonhomogeneous equa-
tion.

The choice of the constant c in equation (4.15) in the proof above was
necessary in order to specialize the general solution (4.6) so that it passes
through the point q ≡ β(t0) at time t0. Substituting this value of c into
formula (4.14) gives

α(t) = G(t)
[
G(t0)−1q −

∫ t0

0
G(s)−1b(s)ds +

∫ t

0
G(s)−1b(s)ds

]
= G(t)

[
G(t0)−1q +

∫ t

t0
G(s)−1b(s) ds

]
.

From this we get the formula for the flow of the general linear system of
DEs:

Corollary 4.1 (The Flow for Linear Systems)
tem

x′ = A(t)x+ b(t),

the flow φ : I × I × R
n → R

n is given by

φu
t (x) = G(t)

[
G(u)−1x+

∫ t

u
G(s)−1b(s)ds

]
, (4.17)

for all u, t ∈ I, and x ∈ R
n. In particular, the flow for the homogeneous

system x′ = A(t)x is simply

φu
t (x) = G(t)G(u)−1x. (4.18)

For a fixed u, t ∈ I, it is easy to see that the map φu
t : R

n → R
n is a linear

map in the homogeneous case (when b = 0) and is an affine map in the
general nonhomogeneous case (b 
= 0). It is also easy to prove directly from
formula (4.17) that the semigroup property for the flow holds (exercise).

For the general linear sys-
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Example 4.7 We consider again the homogeneous system x′ = A(t)x in
Example 4.5 with

A(t) =

[
−1 2t
−2t −1

]
.

We found that the fundamental matrix for A is

G(t) = e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
.

To find the flow map for this system, first recall that det(G(u)) = e−2u, and
then use the formula for computing inverses of 2 × 2 matrices to get

G(u)−1 = eu
[

cos(u2) − sin(u2)
sin(u2) cos(u2)

]
.

Thus, the flow map is

φu
t (c) = G(t)G(u)−1c

= e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
eu
[

cos(u2) − sin(u2)
sin(u2) cos(u2)

] [
c1
c2

]

= eu−t

[
cos(t2 − u2) sin(t2 − u2)
− sin(t2 − u2) cos(t2 − u2)

] [
c1
c2

]

Recall that with u fixed, the curve t → φu
t (c) gives the integral curve which

starts at c at time u. For example, the integral curves that start at c =
(1, 0) at times u = 0, 1, 5 are shown in Figure 4.3. The figure indicates
that, regardless of the starting time, the integral curves spiral in toward
the origin. This is easily verified from the formula for the flow map given
above. Namely, since limt→∞ eu−t = 0, we see that limt→∞G(t)G(u)−1c = 0.
Note also that the flow lines for integral curves φ0

t (c), φ
1
t (c), φ

5
t (c) shown in

Figure 4.3 cross each other at various points. This is something that cannot
happen for autonomous systems—their flow lines cannot intersect. But for
nonautonomous systems, the intersection of flow lines is not prohibited. If
you look at the situation dynamically, with the nonautonomous flow lines
here representing the paths of three particles, you will see that these particles
are never at the same place at the same time. This intersecting of flow lines
is also exhibited in Figure 4.4 showing the paths traced from nine different
initial points, all starting at time u = 0. One further analysis that we can do
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Figure 4.3: Integral curves of x′1 = −x1 + 2tx2, x′2 = −2tx1 − x2 which start
at c = (1, 0) at times u = 0, 1, 5.

for this particular system is a study of how its direction field changes over
time. The vector field involved is

X(t, x1, x2) = (−x1 + 2tx2,−2tx1 − x2) .

The length of this vector is

|X(t, x1, x2)| = (1 + 4t2)1/2(x2
1 + x2

2)
1/2 = (1 + 4t2)1/2|x|.

Thus, the length of X tends to infinity as t → ∞, and the normalized
vector-field

X(x1, x2)
|X(t, x1, x2)|

=
( −x1 + 2tx2

(1 + 4t2)1/2|x| ,
−2tx1 − x2

(1 + 4t2)1/2|x|

)
,

tends to an autonomous vector-field Y (x1, x2):

lim
t→∞

X(t, x1, x2)
|X(t, x1, x2)|

=
(
x2

|x| ,
−x1

|x|

)
≡ Y (x1, x2).

The approach of X/|X| to Y is fairly rapid, the two being almost indistin-
guishable for t ≥ 2. Figure 4.5 shows three of the frames from such a movie,
e.g., direction-field plots for X(0, x),X(0.2, x) and X(1, x).

Example 4.8 (A Nonhomogeneous System) We conclude this section
with the solution and discussion of the nonhomogeneous system in this Chap-
ter’s first example. Namely,

x′1 = −x1 + 2tx2 + sin(t2)
x′2 = −2tx1 + x2 + cos(t2)
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Figure 4.4: Integral curves of x′1 = −x1 + 2tx2, x′2 = −2tx1 − x2 which start
at c = (i, j), i, j = 1, 2, 3, at time u = 0.

In vector form this system is x′ = A(t)x+ b(t), where

A(t) =

[
−1 2t
−2t −1

]
and b(t) =

[
sin(t2)
cos(t2)

]
.

The corresponding homogeneous system x′ = A(t)x was studied in the pre-
vious example, and its general solution is

αc(t) = G(t)c,

where

G(t) = e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

]
.

To get the general solution of the nonhomogeneous system, we have to add
to this a particular solution αp of the nonhomogeneous system. The theory
shows us that we can get one such particular solution by computing

αp(t) = G(t)
∫ t

0
G(u)−1b(u)du.
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Figure 4.5: Plots of the direction fields for the vector field X(t, x1, x2) =
(−x1 + 2tx2,−2tx1 − x2) at times t = 0, 0.2, 1.

For this, we first calculate

G(u)−1b(u) = eu
[

cos(u2) − sin(u2)
sin(u2) cos(u2)

] [
sin(u2)
cos(u2)

]
=

[
0
eu

]
.

Then

αp(t) = G(t)
∫ t

0
G(u)−1b(u)du = e−t

[
cos(t2) sin(t2)
− sin(t2) cos(t2)

] [
0

et − 1

]

= (1 − e−t)

 sin(t2)

cos(t2)

 .
It is clear from the above formula that the particular solution αp asymptot-
ically approaches the curve γ(t) =

(
sin(t2), sin(t2)

)
, which is a curve that

traces out a circle with radius 1, centered at the origin. The general solution
of the nonhomogeneous DE is

α(t) = αc(t) + αp(t) = G(t)c+ αp(t),

where c is an arbitrary constant vector. As we have seen limt→∞G(t)c = 0
for any c. Consequently, every integral curve of this nonhomogeneous system
approaches the circle with radius 1, centered at the origin. See Figure 4.6
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Figure 4.6: Integral curves of the system: x′1 = −x1 + 2tx2 + sin(t2), x′2 =
−2tx1 + x2 + cos(t2) which start at (2, 2) and (−0.5,−05) at time t = 0.

Exercises 4.2
1. For each of the following 2nd-order DEs do the following:

(i) Reduce the system to a 1st-order linear system: z′ = A(t)z.

(ii) Find the fundamental matrix G for A.

(iii) Verify that Liouville’s formula holds.

(a) x′′ − 1
2(t+ 1)

x′ +
1

2(t+ 1)2
x = 0, for t ∈ [−1,∞).

Hint: This DE has two linearly independent solutions of the form x =
(t+ 1)k for appropriate choices of k.

(b) x′′ − 3x′ + 2x = 0, for t ∈ R.

Hint: This DE has two linearly independent solutions of the form x =
ekt for appropriate choices of k.

(c) x′′ + (tan t)x′ = 0, for t ∈ (−π/2, π/2).

Hint: In the 1st-order system, solve the second DE for v.

(d) x′′ + p(t)x′ = 0, where p is continuous on an interval about 0.

Hint: In the 1st-order system, solve the second DE for v.
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2. In dimension n = 2 we can be more explicit about the fundamental matrix
G(t) for the coefficient matrix A(t). If we can compute the integrals involved
and find solutions of P ′′ = cP in closed-form, then we can write an explicit
closed-form expression for the fundamental matrix. This exercise shows you
how this is done.
For convenience we write the general homogeneous system as

x′1 = h1(t)x1 + f1(t)x2 (4.19)
x′2 = f2(t)x1 + h2(t)x2 (4.20)

where h1, h2, f1, f2 are continuous on an interval about 0. We also assume
that f1(0) 
= 0 (which is needed in the construction below).

(a) Let Hi(t) =
∫ t

0
hi(s)ds, and

ui(t) = e−Hi(t)xi(t),

for i = 1, 2. Show that x1, x2 are solutions of (4.19)-(4.20) if and only
if u1, u2 are solutions of

u′1 = α1(t)u2 (4.21)
u′2 = α2(t)u1 (4.22)

where
αi(t) = fi(t)e(−1)i[H1(t)−H2(t)], (i = 1, 2).

(b) Let β(t) =
∫ t

0
α1(s)ds. Then β′(0) = α1(0) = f1(0) 
= 0, and so by the

Inverse Function Theorem β is an invertible on a neighborhood of 0.
We assume it is invertible on the whole interval I and let

c(s) =
α2(β−1(s))
α1(β−1(s))

.

Show that if P is a solution of P ′′ = cP , then

u1(t) = P (β(t)) (4.23)
u2(t) = P ′(β(t)) (4.24)

is a solution of the system (4.21)-(4.22). The DE: P ′′ = cP is called the
fundamental equation for A (in the 2 × 2 case).
Next show that if P1 and P2 are solutions of P ′′ = cP which satisfy
P1(0) = 1, P ′

1(0) = 0 and P2(0) = 0, P ′
2(0) = 1, then[

P1(β(t)) P2(β(t))
P ′

1(β(t)) P ′
2(β(t))

]
(4.25)

is the fundamental matrix for[
0 α1(t)

α2(t) 0

]
(4.26)
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(c) Finally, with the notation from above, show that

G(t) =
[
eH1(t)P1(β(t)) eH1(t)P2(β(t))
eH2(t)P ′

1(β(t)) eH2(t)P ′
2(β(t))

]
(4.27)

is the fundamental matrix for

A(t) =
[
h1(t) f1(t)
f2(t) h2(t)

]
(4.28)

3. Use the results of Exercise 2 above to find the fundamental matrix G for each
of the following coefficient matrices A.

(a) A(t) =
[

1 1
0 −1

]
.

(b) A(t) =
[

1 1
3 −1

]
. Hint: The fundamental equation P ′′ = cP is a

Cauchy-Euler equation with c(s) = 3(1 − 2s)−2. It has solutions of the
form: P (s) = (1 − 2s)k. Find two values of k that work and then use
the general solution of the DE to find P1, P2.

(c) A(t) =
[

0 2
−2 0

]
.

(d) A±(t) =
[

h(t) f(t)
±f(t) h(t)

]
. Each choice of sign (±) gives a different G.

4. Use the results of Exercise 2 above to find the fundamental matrix G for
each of the following coefficient matrices A. Also, compute the flow matrix:
G(t)G(u)−1 and study the integral curves of the system as in Example 4.7.

(a) A(t) =
[

−1/4 − cos t
cos t −1/4

]
. Show that all the integral curves tend to 0

as t→ ∞.

(b) A(t) =
[

sin t 1
−1 sin t

]
. Show that all the integral curves are periodic

of period 2π. Indeed, with u ∈ [0, 2π] a given initial time, show that the
curve t → φu

t (c) traces out an oval with minimum radius rmin = ecos u−1

and maximum radius rmax = ecos u+1. Show that the symmetry axis for
the oval makes an angle u to the line from 0 to c.

(c) A(t) =
[

−1 1
t −1

]
. Hint: P ′′(s) = sP (s) is the fundamental equation

and will have to be solved by series methods: P (s) =
∑∞

n=0 ans
n. The

Airy functions Ai,Bi are two independent solutions, but not the ones
needed for G.
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5. A method for finding the fundamental matrix for any coefficient matrix A(t)
can, in principle, be developed along the lines of that indicated in Exercise 2
above (which is for 2 × 2 matrices A(t)). This exercise studies the situation
for 3 × 3 matrices:

x′1 = a11(t)x1 + a12(t)x2 + a13(t)x3 (4.29)
x′2 = a21(t)x1 + a22(t)x2 + a23(t)x3 (4.30)
x′3 = a31(t)x1 + a32(t)x2 + a33(t)x3 (4.31)

(a) Let Hi(t) =
∫ t

0
aii(s)ds, and

ui(t) = e−Hi(t)xi(t),

for i = 1, 2, 3. Show that x1, x2, x3 are solutions of (4.29)-(4.31) if and
only if u1, u2, u3 are solutions of

u′1 = α12(t)u2 + α13(t)u3 (4.32)
u′2 = α21(t)u1 + α23(t)u3 (4.33)
u′3 = α31(t)u1 + α32(t)u2 (4.34)

where

αij(t) = aij(t)eHj(t)−Hi(t), (i, j = 1, 2, 3, i 
= j).

(b) Part (a) reduces everything to the problem of finding the fundamental
matrix for the system (4.32)-(4.34). For this, we can assume that the
coefficients αij in one of the equations are not all zero. By reindexing if
necessary, we can assume this is the case for the first equation: one of
α12, α13 is not zero. Reindexing again if necessary, we can assume that
α12 
= 0 and that α12(0) 
= 0. Then β(t) ≡

∫ t

0
α12(s)ds is invertible on

a neighborhood of 0. Below we use the notation

f̄(s) = f(β−1(s)).

Now look for solutions of the system with u1(t) = P (β(t)), u1(t) =
Q(β(t)), where P,Q are two functions yet to be determined. The equa-
tions to determine P,Q are called the fundamental equations for A.
Substituting these assignments of u1, u2 into the first two equations of
the system gives

α12P
′(β) = α12Q(β) + α13u3 (4.35)

α12Q
′(β) = α21P (β) + α23u3 (4.36)

Show that eliminating u3 and then letting t = β−1(s) gives

ᾱ12ᾱ23(P ′ −Q) = ᾱ13(ᾱ12Q
′ − ᾱ21P ) (4.37)

This is fundamental equation 1. To get fundamental equation 2, divide
into three cases:
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(c) (CASE 1: α13 = 0, α23 = 0) In this case show that Q = P ′. Further,
show that

u1 = P (β) (4.38)
u2 = P ′(β) (4.39)

u3 =
∫

[α31P (β) + α32P
′(β)]dt (4.40)

is a solution of system (4.32)-(4.34) provided P satisfies

P ′′ =
ᾱ21

ᾱ12
P. (4.41)

This is fundamental equation 2 when α13 = 0, α23 = 0.

(d) (CASE 2: α13 = 0, α23 
= 0) In this case show that Q = P ′. Further,
show that

u1 = P (β) (4.42)
u2 = P ′(β) (4.43)

u3 =
α12

α23
P ′′(β) − α21

α23
P (β) (4.44)

is a solution of system (4.32)-(4.34) provided P satisfies

ᾱ2
12

ᾱ23
P ′′′ +

¯(
α12

α23

)′
P ′′ −

[
ᾱ32 +

ᾱ12ᾱ21

ᾱ23

]
P ′ −

[
ᾱ31 +

¯(
α21

α23

)′]
P = 0.

(4.45)
This is fundamental equation 2 when α13 = 0, α23 
= 0.

(e) (CASE 3: α13 
= 0) In this case show that

u1 = P (β) (4.46)
u2 = Q(β) (4.47)

u3 =
α12

α13
(P ′(β) −Q(β)) (4.48)

is a solution of system (4.32)-(4.34) provided P,Q satisfy

ᾱ2
12

ᾱ13
P ′′ +

[ ¯(
α12

α13

)′
− ᾱ2

12ᾱ23

ᾱ2
13

]
P ′ −

[
ᾱ31 +

ᾱ12ᾱ21

ᾱ13

]
P

=

[
ᾱ32 +

¯(
α12

α13

)′
− ᾱ2

12ᾱ23

ᾱ2
13

]
Q (4.49)

This is fundamental equation 2 when α13 
= 0.
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(f) Discuss the solutions of the fundamental equations (1)-(2) in each of
the cases and show the general solutions P,Q involve three arbitrary
constants a, b, c. These then give then general solution of (4.32)-(4.34)
as u1 = P (β), u2 = Q(β), and u3 = R(β), where

R =


ᾱ12
ᾱ13

(P ′ −Q) (Case 3)

ᾱ12
ᾱ23

P ′′ − ᾱ21
ᾱ23

P (Case 2)∫
[ᾱ31(s)P (s) + ᾱ32(s)Q(s)] ds (Case 1)

(4.50)

Show that by appropriate choices of a, b, c, there are solutions Pi, Qi, i =
1, 2, 3, so that the fundamental matrix for

Ã =

 0 α12 α13

α21 0 α23

α31 α32 0

 (4.51)

is

G̃ =

 P1(β) P2(β) P3(β)
Q1(β) Q2(β) Q3(β)
R1(β) R2(β) R3(β)

 (4.52)

Finally, use this to determine the fundamental matrix for A.

6. Use Exercise 5 above to (a) verify that the fundamental equations for A
are as indicated, (b) find the general solution P,Q (involving three arbitrary
constants) of the fundamental equations, and (c) find the fundamental matrix
G for A.

(a) A(t) =

 0 1 1
1 0 1
1 1 0

,
P ′ −Q = Q′ − P
P ′′ − P ′ − 2P = 0

(b) A(t) =

 0 1 −1
0 0 −1
0 1 0

,
P ′ −Q = Q′

P ′′ − P ′ = −2Q

(c) A(t) =

 0 1 −1
t 0 1
t 1 0

, Q′ −Q = tP − P ′

P ′′ + P ′ = 0

7. Use Exercise 5 above and series P (t) =
∑∞

n=0 ant
n to find the fundamental

matrix G for A.

A(t) =

 0 1 0
t 0 1
1 0 0

,
P ′ −Q = 0

P ′′′ − tP ′ − 2P = 0
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8. Use the results of Exercise 5 above to find the fundamental matrix G for the
following matrices A. DO NOT try to find P and Q explicitly. Rather just
express G in terms of P and Q and their derivatives. Then check that G has
the correct form by computing AG and comparing with G′.

(a) A(t) =

 0 1 1
1 0 t
−1 t 0

,
Q′ + tQ = tP ′ + P
P ′′ − tP ′ = 0

(b) A(t) =

 0 1 1
0 0 1
t 2 0

,
P ′ = Q′ +Q

P ′′ − P ′ − tP = Q

9. Suppose Ã is an n × n (constant) matrix and f : I → R is a continuous
function on an interval I. Define A : I → Mn by A(t) = f(t)Ã. Let
β(t) =

∫ t

0
f(s)ds. Show that if G̃ is the fundamental matrix for Ã then the

fundamental matrix G for A is given by G(t) = G̃(β(t)).

10. This exercise further studies the system x′ = A(t)x from Example 4.6 with
coefficient matrix

A(t) =
[

− sin t cos t
cos t − sin t

]
.

If you wish you can use the results in Exercise 2 above to show that the
fundamental matrix for A is

G(t) = ecos t−1

[
cosh(sin t) sinh(sin t)
sinh(sin t) cosh(sin t)

]
.

Do the following:

(a) Use Theorem 4.2 to verify that G is indeed the fundamental matrix for
A. That is, check that G′ = AG and G(0) = I.

(b) Verify that Liouville’s formula holds for this A and G.

(c) Show that the flow map is given by

φu
t (c) = ecos t−cos u

[
cosh(sin t− sinu) sinh(sin t− sinu)
sinh(sin t− sinu) cosh(sin t− sinu)

]
c

(d) Show that each integral curve (other than the fixed point at the origin)
is periodic of period 2π.

(e) The vector-field for this system,

X(t, x) = ((− sin t)x1 + (cos t)x2, (cos t)x1 − (sin t)x2)

is periodic of period 2π. So, to study its variation over time it suffices
to consider times t ∈ [0, 2π]. Do an animation of the direction field for
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X using 33 frames for the times t = jπ/16, j = 0, 1, . . . , 32. What
happens along the lines x1 = x2 and x1 = −x2? What does this imply
for the integral curves that start at points on these lines? (Prove your
assertions.)

(e) Let R+, R− : R
2 → R

2 be the maps defined by R±(x1, x2) = ±(x2, x1).
Geometrically, R+ (respectively R−) is the map that reflects points in
R

2 about the line x1 = x2 (respectively the line x1 = −x2). (Draw
some pictures to convince yourself of this.) Show that

φu
t (R±(c)) = R±(φu

t (c)),

for every c ∈ R
2. Interpret what this says about the integral curves of

the system. Specifically, the lines x1 = x2 and x1 = −x2 divide the
plane into fours sectors. If c is a point in one of these sectors, how does
the integral curve t → φu

t (c) relate to integral curves in the other three
sectors?

11. If g : I → R is a differentiable function on an interval I, then an important
special case of the quotient rule from calculus is

(g−1)′ = −g−2g′ = −g−1g′g−1.

Show that the generalization of this to matrix-valued functions holds. That
is, show that if G : I → Mn is differentiable, with det(G(t)) 
= 0 for all t ∈ I,
then G−1 : I → Mn, defined by G−1(t) ≡ G(t)−1 is differentiable and

(G−1)′ = −G−1G′G−1.

Note that G−1 and G′ will not commute, in general, and so the derivative
cannot be written as −G−2G′. What do you think the formula for the deriv-
ative (G−2)′ should be? What about (G−p)′, for a positive integer p? Prove
your conjectures.

12. Show that αc(t) ≡ G(t)c, for t ∈ I and c ∈ R
n, an arbitrary constant, is

the general solution of the homogeneous equation x′ = A(t)x. That is, any
solution of the homogeneous equation coincides with γc for some choice of c.
Show that αp(t) ≡ G(t)

∫ t

0 G(s)−1b(s)ds, for t ∈ I, is a particular solution of
the nonhomogeneous equation x′ = A(t)x + b(t).

13. Show, directly from formula (4.17), that the flow for x′ = A(t)x+b(t), satisfies
the semigroup property.

14. Consider the general 2nd-order, nonhomogeneous, linear DE

u′′ + p(t)u′ + q(t)u = r(t), (4.53)

for u : I → R. This problem is designed to show you how your undergrad-
uate study of this equation is related to the general theory in the text. In
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particular, you should first review how the above DE is solved by variation
of parameters in undergraduate DE books.

(a) Let x = u, y = u′ and write equation (4.53) as a system of 1st-order
DEs: [

x′

y′

]
= A(t)

[
x
y

]
+ b(t). (4.54)

(b) Let u1, u2, be the two solutions of

u′′ + p(t)u′ + q(t)u = 0,

which satisfy the initial conditions u1(0) = 1, u′1(0) = 0 and u2(0) =
0, u′2(0) = 1, respectively. Express the fundamental matrix G in terms
of these and show that

det(G(t)) = W (u1(t), u2(t)),

where the right-hand side is the Wronskian of u1, u2.

(c) Let f : I → R
2 be the particular solution of equation (4.54) given by

f(t) = G(t)
∫ t

0

G(s)−1b(s)ds. (4.55)

Compute the components f1, f2 of f explicitly. Discuss how f1 gives
the formula for the particular solution of equation (4.53) found by the
method of variation of parameters in undergraduate DE books.

(d) Show how the general solution

G(t)c+ f(t) = G(t)c+G(t)
∫ t

0

G(s)−1b(s)ds (4.56)

of equation (4.54) gives the general solution of equation (4.53).

15. Discuss the general analog of Exercise 14. That is consider the general, nth-
order, linear DE

x(n) + an−1(t)x(n−1) + · · · + a2(t)x′′ + a1(t)x′ + a0(t)x = r(t),

and write this in 1st-order linear form z′ = A(t)z+b(t), as in the first section.
Show how the fundamental matrix and the general solution (4.14) involve the
Wronskian and the method of variation of parameters.

16. (Variation of Parameters) Consider the general version of the variation
of parameters technique discussed in the last two exercises. Namely, look at
the problem of finding a particular solution of the nonhomogeneous system
x′ = A(t)x + b(t). (Here A(t) is general, not of the special forms in the last
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two exercises.) For this we need to know the fundamental matrix G for A
(i.e., we need to have n linearly independent solutions of the homogeneous
DE x′ = A(t)x). Then for any constant vector c, the curve α(t) = G(t)c is
a solution of the homogeneous DE. However, if we let c be a function of t
(i.e. a variable vector), then we can hope to find a particular solution of the
nonhomogeneous DE of the form αp(t) = G(t)c(t). Show that this is indeed
the case and that c is given by the integral: c(t) =

∫
G(t)−1b(t)dt. Compare

the result here with that in Formula (4.16).

17. Prove directly from formula (4.17) that the semigroup property: φt
u ◦ φs

t =
φs

u, for the flow holds.

18. (See worksheet: fmatrix.mws) Find the fundamental matrix G for the system

x′1 = −7x1 − 10x2 + et (4.57)
x′2 = 4x1 + 5x2 − e−t (4.58)

and use it to compute, explicitly, the general solution of the system (You
may use a computer algebra system if you wish). Determine solutions of the
homogeneous and nonhomogeneous problems that satisfy the initial condi-
tions x1(0) = 1, x2(0) = 1. Determine the solution of the nonhomogeneous
problem that satisfies x1(0) = 0, x2(0) = 0. Plot all three solutions using a
suitable range of t values.

19. (Floquet Theory) Many important linear systems have coefficient matrices
that are periodic, and this exercise deals with some basic results for such
systems (cf. [Wa 98, pp. 195-198], [Cr 94, pp. 93-105], for more discussion).

Suppose A : R → Mn is a continuous, matrix-valued function and that there
is a least positive number p, called the period of A, such that A(t+p) = A(t),
for all t ∈ R. Let G : R → M be the fundamental matrix for A.

(a) Show that G has the property

G(t+ p) = G(t)G(p),

for all t ∈ R. Hint: Define H(t) ≡ G(t + p)G(p)−1 and then show
that H is also a fundamental matrix for A. You may use the fact that
fundamental matrices (as we have defined them) are unique.

(b) The eigenvalues of the matrix G(p) are called the characteristic multipli-
ers of A. Show that µ is a characteristic multiplier if and only if the ho-
mogeneous system x′ = A(t)x has a solution α such that α(t+p) = µα(t)
for all t. (Hence, the system has a periodic solution (of period p) if and
only if µ = 1 is a characteristic multiplier.)
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4.3 Homogeneous, Constant Coefficient Sys-
tems

We now specialize the discussion of the general linear system to the case
where b(t) ≡ 0 (a homogeneous system) and A does not depend on t (a
constant coefficient system), i.e.,

x′ = Ax.

This is the simplest of all systems of DEs, linear and nonlinear, and is a type
of system for which complete and definitive theory exists. Such systems
also play a role in the study of autonomous, nonlinear DEs, as we will
see in the next chapter. As you might expect, the properties of A as a
linear transformation A : R

n → R
n, which you studied in linear algebra

(eigenvalues, eigenvectors, direct sum decomposition of R
n, etc.) will play a

role in the study of the corresponding system of DEs.
The fundamental matrix G has a particularly nice form when A does not

depend on t. To motivate what this form is, we consider the basic equation

G′(t) = AG(t)

which G satisfies and differentiate both sides of this successively to get:

G′′(t) = AG′(t) = AAG(t) = A2G(t)
G′′′(t) = A2G′(t) = A3G(t)

...
G(k)(t) = Ak−1G′(t) = AkG(t).

Thus, in particular, we get

G(k)(0) = Ak

for the value of the kth derivative of G at t = 0. Hence, heuristically, the
power series expansion of G, centered at t = 0 is

G(t) =
∞∑

k=0

G(k)(0)
tk

k!
=

∞∑
k=0

Ak t
k

k!

and consequently, we “conclude” that

G(t) = eAt. (4.59)

This motivates why the fundamental matrix is given by the matrix exponen-
tial, as the following theorem asserts.
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Theorem 4.4 (Constant Coefficient, Homogeneous Systems) The fun-
damental matrix for the system

x′ = Ax

(with A a constant matrix) is

G(t) = eAt,

and thus the general solution of the system is

α(t) = eAtc,

for t ∈ R and c ∈ R
n an arbitrary constant. Furthermore the flow φ :

R × R
n → R

n, for the system is simply

φ(t, x) = eAtx.

Proof: This follows from the discussion in Appendix C, which you should
read when time permits. All the basic theory for series of real numbers
extends to series of n×n matrices, and this enables one to extend most real-
valued functions of a real variable to corresponding matrix-valued functions
of a matrix variable. In particular, it is shown in Appendix C that for any
matrix B in Mn, the series of matrices

∞∑
k=0

Bk

k!

converges. This gives a function from Mn to Mn, called the matrix expo-
nential and denoted by

eB ≡
∞∑

k=0

Bk

k!
.

From this, we can define a function G : R → Mn by G(t) ≡ eAt. Since
G is given by a power series, we can compute G′(t) by differentiating the
power series term by term and we arrive at the result: G′(t) = AG(t) (see
Appendix C for details). Also it is easily seen that G(0) = I. Hence G is
the fundamental matrix for A and the other assertions in the theorem follow
from this.

Note that since the system x′ = Ax is autonomous, only the time zero
initial times are needed to describe the flow completely:

φt ≡ φ0
t .
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Also the flow gives a 1-parameter group: {φt}t∈R, of linear maps φt : R
n →

R
n. The fact that this set is an (Abelian) group follows from a property of

the matrix exponential:

φs ◦ φt = eAseAt = eAs+At = eA(s+t) = φs+t

(exercise).
Also notice how the 1-dimensional system x′ = ax, with well-known

solution x = ceat is nicely generalized to the n-dimensional system x′ = Ax
by the introduction of the matrix exponential.

Corollary 4.2 (Constant Coefficient, Linear Systems) The flow map
for the system

x′ = Ax+ b(t)

(with A a constant matrix) is

φu
t (x) = eA(t−u)x+

∫ t

u
eA(t−s)b(s)ds, (4.60)

for all t, u ∈ I, and x ∈ R
n. This gives a two-parameter semigroup {φu

t }t,u∈R
of affine maps φu

t : R
n → R

n.

For the homogeneous system x′ = Ax, the explicit form of the flow,
φt(x) = φ(t, x) = eAtx, gives us a wealth of information about the integral
curves and qualitative properties of the system. In the ensuing sections we
will explore these aspects and also develop techniques that will enable us to
explicitly compute eAt for a certain matrices A. If A is a 2 × 2 matrix, one
can always try to compute eAt directly from its power series definition.

Example 4.9 Suppose A is the upper triangular matrix

A =

[
1 1
0 3

]
.

The direct approach to computing eAt amounts to computing A2, A3, A4, . . .,
out to a sufficiently high power so that we can inductively determine the
general formula for Ak. Then we can ascertain what matrix the series∑∞

k=0A
ktk/k! converges to. This will be the matrix eAt. For the matrix

in this example, we easily find

A2 =

[
1 1 + 3
0 32

]
,
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A3 =

[
1 1 + 3 + 32

0 33

]
,

A4 =

[
1 1 + 3 + 32 + 33

0 34

]
,

and inductively we get

Ak =

[
1 1 + 3 + · · · + 3k−1

0 3k

]
=

[
1 1

2(3k − 1)
0 3k

]
.

Using this in the series we find

G = eAt =
∞∑

k=0

Aktk

k!

=
∞∑

k=0

[
1 1

2(3k − 1)
0 3k

]
tk

k!

=

[ ∑∞
k=0

tk

k!
1
2

∑∞
k=0(3k − 1) tk

k!

0
∑∞

k=0 3k tk

k!

]

=

[
et 1

2(e3t − et)
0 e3t

]

Note that the series summation sign in the second line above can be applied
to each of the four entries to give the matrix whose entries are the series
shown in the third line (see Appendix C).

We can check our work by computing

AG =

[
1 1
0 3

] [
et 1

2 (e3t − et)
0 e3t

]
=

[
et 3

2e
3t − 1

2e
t)

0 3e3t

]
,

and seeing that this is equal to

G′ =
d

dt

[
et 1

2(e3t − et)
0 e3t

]
=

[
et 3

2e
3t − 1

2e
t)

0 3e3t

]
.

With G = eAt determined, the general solution of the system

x′1 = x1 + x2

x′2 = 3x2
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can be expressed by

α(t) = eAtc

=

[
et 1

2 (e3t − et)
0 e3t

] [
c1
c2

]

=
(

(c1 − 1
2c2)e

t + 1
2c2e

3t, c2e
3t
)
.

Of course, we can arrive at the same solution in a more elementary way by
solving the second equation, x′2 = 3x2, of the system for x2, substituting
this in the first equation of the system and solving the resulting DE for x1.
This technique, however, relies on the special form of the system (A is upper
triangular) and so is only effective in that case.

Writing the general solution in terms of the matrix exponential eAt is the
more general technique, but the computation of eAt can be difficult (even
with the additional techniques developed below).

Exercises 4.3

1. As in Example 4.9, compute the fundamental matrix G(t) = eAt for the
system x′ = Ax and use this to write out explicitly the general solution
α(t) = eAtc for the system. Check your answer for G by (i) computing AG
and comparing to G′ and (ii) evaluating G(0).

(a) A =
[

−1 0
0 −2

]
. (b) A =

[
−1 1
0 −2

]
.

(c) A =
[

1 1
0 −1

]
. (d) A =

 −1 1 0
0 −2 0
0 0 5

.

(e) A =

 0 1 0
0 0 1
0 0 0

. (f) A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

(g) A =
[

1 1
1 1

]
. (h) A =

 0 0 1
0 1 0
1 0 0

.
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(i) A =

 0 0 1
1 0 0
0 1 0

. In this case show that the fundamental matrix is

G =

 f ′′ f f ′

f ′ f ′′ f
f f ′ f ′′

 ,
where f is the solution of f ′′′ = f , subject to the initial conditions:
f(0) = 0, f ′(0) = 0, f ′′(0) = 1. You will have to use series since f is not
a well-known function.

2. For the general 2 × 2, upper triangular matrix

A =
[
a b
0 c

]
,

compute eAt and use this to write out explicitly the general solution of the
system

x′1 = ax1 + bx2

x′2 = cx2.

Can you use the system of DEs directly to determine what eAt is, rather than
computing it from the power series?

3. The Maple worksheet matexpo.mws on the electronic component has a pro-
cedure for computing the approximations

G(t,N) ≡
N∑

k=0

Ak t
k

k!
,

to the fundamental matrix G(t) = eAt. Study this material and work the
exercises listed there.

4. (Nilpotent Matrices) An n× n matrix N is called nilpotent if Np = 0, for
some positive integer p. The least positive integer p for which this happens
is called its index of nilpotencey. Compute the form of eNt, where N is
nilpotent of index p. The matrices in Exercises 1(e) and 1(f) above are
standard examples of nilpotent matrices in dimensions 3 and 4, and these
are denoted by N3 and N4, respectively. Based on this, what would be the
corresponding form for the n× n, standard, nilpotent matrix Nn? Compute
eNn t.

5. There are many properties of the matrix exponential that are useful for com-
puting eAt and for other theoretical topics. Here are two properties that we
will need later in the text (all matrices are assumed to be n× n):
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(1) If P is invertible, then eP−1AP = P−1eAP .

(2) If A and B commute, i.e., AB = BA, then eA+B = eAeB.

Prove Property (1). This is easy to do directly from the series definition.
Property (2) is not so easy. There is a proof of this in the Matrix Analysis
section in Appendix C. By far, Property (2) is the most fundamental. It is
the basic law of exponents, but beware that it is only guaranteed to work for
commuting matrices. To see this do the following. Let

A =
[

1 0
0 3

]
, B =

[
0 1
0 0

]
.

Show that AB 
= BA. Compute eA+B (see Example 5.3), eAeB, and verify
that eA+B 
= eAeB.

6. Floquet’s theory for homogeneous systems x′ = A(t)x with periodic coeffi-
cient matrix A was introduced in Exercise 19, Section 4.2. We continue here
with that discussion, showing how it involves the matrix exponential. We
assume A : R → Mn is a continuous, matrix-valued function and that there
is a least positive number p, called the period of A, such that A(t+p) = A(t),
for all t ∈ R. Let G : R → M be the fundamental matrix for A.

(a) Exercise 19 of 4.2, Part (a), shows that the fundamental matrix G is not
necessarily periodic when A is (unless G(p) = I). However, Floquet’s
Theorem says that G can be written as

G(t) = R(t)eMt,

where R has period p, is invertible, and R(0) = I. Here M is a constant
matrix. Prove Floquet’s Theorem. You may use the fact that there is
a matrix M such that eMp = G(p). (Heuristically, M = 1

p ln(G(p)).)
Hint: Define R(t) ≡ G(t)e−Mt.

(b) To illustrate Floquet’s Theorem do the following. For each of the pe-
riodic matrices A: (a) find the fundamental matrix G (for this, see
Exercises 2 and 4(a) in Section 4.2), (b) verify that G(t) = R(t)eMt

for the given R and M , (c) find the characteristic exponents of the sys-
tem and determine if the system has periodic solutions (using Floquet
theory as well as the particular form of G).

(i) A±(t) =
[

sin t 1
±1 sin t

]
. In Floquet’s theorem:

R(t) = e1−cos tI, M± =
[

0 1
±1 0

]
,
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where I is the 2× 2 identity matrix. NOTE: Two famous formulas
for the matrix exponentials are

etM+ =
[

cosh t sinh t
sinh t cosh t

]
, etM− =

[
cos t sin t
− sin t cos t

]
.

Prove that these formulas are correct.

(ii) A(t) =
[

−1 − cos t
cos t −1

]
. In Floquet’s theorem:

R(t) =
[

cos(sin t) sin(sin t)
− sin(sin t) cos(sin t)

]
, M = −I,

where I is the 2 × 2 identity matrix.

4.4 The Geometry of the Integral Curves
Note: The remainder of this chapter is devoted to the study of the homo-
geneous, constant coefficient, linear system: x′ = Ax.

The theory so far has shown us that the integral curve of x′ = Ax that
starts at the point c ∈ R

n at time t = 0 is

φt(c) = eAtc.

While such curves can be quite complicated (especially for n > 3), there
are some simple, special cases that are easy to describe and visualize. The
general case can often be built from these special ones by the superposition
principle.

The simplest type of integral curve for any system, linear or nonlinear,
is a fixed point (or more precisely, the constant curve corresponding to the
fixed point). For the linear systems being considered here, the set of fixed
points is well-known.

Fixed Points: The collection of fixed points (equilibrium points) for the
system x′ = Ax, is precisely the kernel, or null space, of the linear transfor-
mation A:

ker(A) = { x ∈ R
n | Ax = 0 }.

Thus, 0 = (0, . . . , 0) is always a fixed point, and is the only fixed point,
called a simple fixed point, precisely when detA 
= 0. On the other hand
when detA = 0, there are infinitely many fixed points and any nonzero fixed
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point is also known as an eigenvector of A corresponding to eigenvalue zero.
We will use the alternative notation

E0 = ker(A),

when we want to emphasize that the kernel of A is also an eigenspace of A,
corresponding to eigenvalue 0.

Thus, E0 is a subspace of R
n, with dimension k, say, and geometrically

E0 is a single point 0 if k = 0, or is a line through the origin if k = 1, or is
a plane through the origin if k = 2, etc. An integral curve that starts at a
point v ∈ E0 remains there for all time: φt(v) = v for all t.

Other Eigenvalues: As we shall see the other eigenvalues of A play an
important role in the theory, and the corresponding eigenvectors v will pro-
vide us special types of integral curves φt(v), that are only slightly more
complicated than those for fixed points.

By definition, an eigenvalue of A is a number λ (real or complex) for
which there is a nonzero vector v, such that

Av = λv.

Note that v is a complex vector: v ∈ C
n, when λ is complex. You should

recall that the eigenvalues are the roots of the characteristic equation:

det(A− λI) = 0,

and that for a given root λ of this equation, the eigenvectors corresponding
to λ are the solutions of the system

(A− λI)v = 0.

In general there are infinitely eigenvectors corresponding to a given eigen-
value; indeed, they comprise the subspace: ker(A− λI).

Definition 4.2 For a real eigenvalue λ, the subspace:

Eλ = { v ∈ R
n |Av = λv }

= ker(A− λI)

is called the eigenspace of A corresponding to λ.
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The above definition applies to complex eigenvalues λ as well, except
that then the eigenspace is a subspace of C

n, i.e., consists of complex vec-
tors. Since we are just interested in solutions of x′ = Ax that are real (i.e.,
x1, . . . , xn are real-valued functions), we will have to modify the above defini-
tion in the complex case. It will simplify the discussion if we just concentrate
on real eigenvalues first, and deal with the complex case later.

4.4.1 Real Eigenvalues
Suppose λ is a real eigenvalue of A and v ∈ Eλ is an eigenvector. Then from
Av = λv, we get A2v = A(λv) = λ2v. Similarly we find that A3v = λ3v,
and generally that Akv = λkv, for any k = 0, 1, 2, 3, . . . . From this it follows
that

eAtv = eλtv,

for all t ∈ R
n (exercise). Consequently, the integral curve that starts at the

point v ∈ Eλ at time t = 0 is given by:

φt(v) = eλtv. (4.61)

Thus, this integral curve (when v 
= 0) is a half-line (or ray) in R
n, and as t

increases through positive times, φt(v) runs away from the origin if λ > 0,
and runs toward the origin if λ < 0. In either case the entire ray through the
origin, containing v, is traced out by this integral curve as t varies from −∞
to ∞. This ray is contained in the eigenspace Eλ and geometrically Eλ is
composed entirely of a bundle of such rays (straight-line integral curves) all
of which are directed away from the origin if λ is positive or directed toward
the origin if λ is negative. See Figure 4.7.

Thus, from the above discussion we see that the geometry of the integral
curve t → φt(c) is quite simple if the initial point c is in one of the real
eigenspaces: c ∈ Eλ. The integral curve (when c 
= 0) is either a point
(when λ = 0) or a ray through the origin.

The next simplest case is when c ∈ Eλ1 ⊕ Eλ2 is the sum of two eigen-
vectors from different eigenspaces

c = k1v1 + k2v2,

where vi ∈ Eλi
, i = 1, 2 and λ1 
= λ2 (Thus, v1 and v2 are linearly indepen-

dent). The integral curve starting at c at time zero is

φt(c) = eAtc = k1e
Atv1 + k2e

Atv2

= k1e
λ1tv1 + k2e

λ2tv2.
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Figure 4.7: The integral curve passing through a point c ∈ Eλ, is a half-ray,
contained completely in Eλ. The ray is directed toward the origin if λ < 0
and away from the origin if λ > 0. Eλ is comprised entirely of such rays.
The picture is for the case when Eλ is two-dimensional.

The nature of this curve is easily analyzed as follows (for simplicity we
assume that k1 ≥ 0, k2 ≥ 0). First note that it lies in the planeM determined
by v1 and v2. Next, if k1 
= 0, k2 = 0, or if k1 = 0, k2 
= 0, the integral curve
is a straight-line, integral curve along v1 or v2, directed toward/away from
the origin, as expected from the above analysis. In the case when neither
k1 nor k2 is zero, the curve φt(c) is a linear combination of the motions
along the two straight-line integral curves just mentioned. Thus, if λ1 and
λ2 are both negative, the motion of the curve is toward the origin (with
limt→∞ |φt(c)| = 0). If λ1 and λ2 are both positive, the motion of the curve
is away from the origin (with limt→∞ |φt(c)| = ∞). If λ1 and λ2 are of
opposite signs, with, say λ1 negative, the motion of the curve is away from
the origin and is asymptotic to the straight-line integral curve along v2 (i.e.,
limt→∞ |φt(c) − k2e

λ2tv2| = 0).
An easy way to visualize how the curve φt(c) looks is to consider the

canonical form of it (this foreshadows a technique discussed later in detail).
Thus, observe that (in the case at hand, but not in general):

φt(c) = Pβ(t),

where P is the n×2 matrix: P = [v1, v2], formed using the the vectors v1, v2
as columns of P , and β is the following curve in R

2:

β(t) = (k1e
λ1t, k2e

λ2t).

Since the linear transformation P : R
2 → M is 1-1 and maps the curve β

onto the integral curve in question, this latter curve will be similar to β.



4.4. The Geometry of the Integral Curves 165

Figure 4.8: Plots of the curves β(t) = (k1e
λ1t, k2e

λ2t) in the two cases: (left)
λ1 = −2, λ2 = −1 giving the ratio r = 1/2 and (right) λ1 = 3, λ2 = −1,
giving the ratio r = −1/3 .

However, the curve β lies on part of the graph of a power function y = m|x|r
(which part depends on the sign of k1). This is easily seen by taking the
component expression for β,

x1 = k1e
λ1t

x2 = k2e
λ2t,

and eliminating the parameter t (we assume k1 
= 0). We find that

x2 = m|x1|r,

where m = |k2|/|k1|r and r = λ2/λ1. Thus, the nature of the integral
curve φt(c) depends on the ratio r of the two eigenvalues. Also note that
β(0) = (k1, k2) and this helps locate the branch of x2 = m|x1|r that β lies
on. So, for example, the integral curve φt(c) will be similar to one of the
curves shown on the left in Figure 4.8 if r = 1/2 and will be similar to one of
the curves shown on the right if r = −1/3. The direction of flow along the
integral curve is determined by the signs of the two eigenvalues, as explained
above.

This analysis of β, then gives us a qualitative understanding of what the
integral curves φt(c) = Pβ(t) in the plane M , for several choices of c ∈ M ,
will look like. Note that β will change with c but P remains the same. In
all cases P is 1-1 and so φt(c) will be similar to β. Figure 4.9 illustrates two
possible phase portraits for the flow on the plane M ⊆ R

n.
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Figure 4.9: Plots of several integral curves φt(c) = Pβ(t) in the plane M =
span{v1, v2}. The integral curves that start at a point c on one of the axes
determined by v1 and v2 are straight-line integral curves and run toward
or away from the origin according to whether the eigenvalue is negative or
positive. The other integral curves have their form determined by the ratio
r = λ2/λ1. The figure shows the two cases: (a) r = 1/2 and (b) r = −1/3.

We can extend the above discussion to the case where A has p linearly
independent eigenvectors: v1, v2, . . . , vp,

Avj = λjvj for j = 1, · · · , p.

Note: We are not assuming here that the λj ’s are distinct. We are assuming,
however, that these eigenvalues, as well as the corresponding eigenvectors vj ,
are real. Then suppose the initial point c is in the span of these eigenvectors,
say

c = k1v1 + · · · + kpvp.

It is easy to see that the integral curve that starts at c at time zero is given
by

φt(c) = k1e
λ1tv1 + · · · + kpe

λptvp. (4.62)

The geometry of this integral curve can be analyzed as in the case above
where p = 2 and is found to depend on the signs (positive/negative) of the
eigenvalues and on the ratios: λ2/λ1, . . . , λp/λ1 (see the exercises). This
then gives us an understanding of all the integral curves that start at a
point c ∈ span{v1, . . . , vp}. In the special case when the span of the vi’s is
all of R

n, i.e., span{v1, . . . , vp} = R
n, then necessarily p = n and we obtain
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a description and understanding of every possible integral curve. This is
recorded in the following theorem:

Theorem 4.5 (Real Eigenbasis Theorem) Suppose A is an n × n ma-
trix, and suppose that R

n has a basis: {v1, . . . , vn}, consisting entirely of
eigenvectors of A, say Avi = λivi, with the λi’s being the corresponding
eigenvalues. Then for any c ∈ R

n, the integral curve of the system x′ = Ax,
that passes through c at time t = 0, is given by:

φt(c) = k1e
λ1tv1 + · · · + kne

λntvn, (4.63)

where the numbers: k1, . . . , kn are the components of c with respect to the
basis v1, · · · , vn. That is:

c = k1v1 + · · · + knvn.

Note: In the theorem the eigenvalues λ1, . . . , λn, need not all be distinct.
We also emphasize that the assumption of the theorem implies that all the
eigenvalues of A are real, but the converse need not be true. That is: if
all the eigenvalues of A are real, it does not follow that R

n has a basis of
eigenvectors of A. We shall encounter many examples of this later. The next
few examples illustrate the content of the eigenbasis theorem.

Example 4.10 Consider the system: x′ = Ax, where A is the 2× 2 matrix:

A =

[
1 2
2 −2

]
.

The equation to determine the eigenvalues of A (eigenvalue equation) is

det(A− λI) = det

[
1 − λ 2

2 −2 − λ

]
= (λ− 1)(λ + 2) − 4 = λ2 + λ− 6
= (λ− 2)(λ + 3) = 0.

Thus, the eigenvalues of A are λ = 2,−3. Corresponding eigenvectors can
be found as follows (they are not unique):
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(1) (λ = 2) The eigenvector equation (A− 2I)v = 0 is[
−1 2
2 −4

] [
x1

x2

]
= 0.

We can solve this system of equations by guesswork, i.e., clearly:

v1 =

[
2
1

]
,

is one vector that works.

(2) (λ = −3) The eigenvector equation (A+ 3I)v = 0 is[
4 2
2 1

] [
x1

x2

]
= 0.

Again by guesswork we get

v2 =

[
−1
2

]
,

is one possible solution.

You can readily verify that these two vectors v1, v2 are linearly independent,
and therefore constitute a basis for R

2. By the theorem, the general solution
of the DE: x′ = Ax, is given by the curve

γ(t) = k1e
2t

[
2
1

]
+ k2e

−3t

[
−1
2

]

=

[
2k1e

2t − k2e
−3t

k1e
2t + 2k2e

−3t

]
= (2k1e

2t − k2e
−3t, k1e

2t + 2k2e
−3t).

Note: We have written the column matrix in the second line as an ordered
pair (or vector in R

2) in the third line. We will use either notation inter-
changeably. In the above general solution, k1, k2 are arbitrary constants
which can be chosen so that the above solution γ satisfies an initial con-
dition: γ(0) = c. Of course, another way to express the general solution
is:

x1 = 2k1e
2t − k2e

−3t

x2 = k1e
2t + 2k2e

−3t.
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We can sketch, by hand, the phase portrait of this system as follows (see
Figure 4.10). Graph the basis eigenvectors v1, v2, with initial points at the
origin. In the general solution:

γ(t) = k1e
2tv1 + k2e

−3tv2,

take k2 = 0 to get a curve: γ(t) = k1e
2tv1 which is on the line through

the origin containing v1. This line is the eigenspace E2 and in fact γ is the
half-ray in this space in the direction of v1 (if k1 > 0), or in the direction
of −v1 (if k2 < 0). Note that γ(t) runs off to infinity as t → ∞. Similarly,
taking k2 = 0, we get a half-ray: γ(t) = k2e

−3tv2, in the eigenspace E−3

for the corresponding solution curve. In this case however limt→∞ γ(t) = 0.
These two special types of integral curves, along with several integral curves
for which k1 
= 0 and k2 
= 0, are shown in Figure 4.10.

Figure 4.10: Hand-drawn phase portrait for the linear system: x′1 = x1 +
2x2, x

′
2 = 2x1 − 2x2.

The sketches of the integral curves that are not straight lines come from
the general discussion above and Figure 4.8. In the example here, we can
write the general solution as

γ(t) = P

[
k1e

2t

k2e
−3t

]
,



170 Chapter 4. Linear Systems

where P is the 2 × 2 matrix:

P =

[
2 −1
1 2

]
.

Thus, the graph of the curve β(t) ≡ (k1e
2t, k2e

−3t), which coincides with
part of the graph of the function x2 = m|x1|−3/2, is mapped by P onto the
integral curve γ and so the graph of γ is similar to the graph of β.

Example 4.11 Consider the system x′ = Ax with

A =

 1 0 −1
0 1 −1
0 0 −1

 .
Clearly the eigenvalues are: λ = 1, 1,−1.

(1) (λ = 1) The eigenvector equation (A− I)v = 0 is 0 0 −1
0 0 −1
0 0 −2


 x1

x2

x3

 = 0.

This system of equations has two obvious solutions:

v1 =

 1
0
0

 , v2 =

 0
1
0

 ,
that are linearly independent. The eigenspace E1 =span{v1, v2}, is
clearly the x-y plane.

(2) (λ = −1) The eigenvector equation (A+ I)v = 0 is 2 0 −1
0 2 −1
0 0 0


 x1

x2

x3

 = 0.

Written out in non-matrix form, this system of equations is

2x1 − x3 = 0
2x2 − x3 = 0.
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Figure 4.11: Hand-drawn phase portrait for the linear system: x′1 = x1 −
x3, x

′
2 = x2 − x3, x

′
3 = −x3.

If we take x3 = 2, then x1 = 1, x2 = 1, and so

v3 =

 1
1
2

 ,
is an eigenvector corresponding to λ = −1. The eigenspace E−1, being
the subspace spanned by the vector v3, is geometrically the straight
line through the origin in the direction of v3.

The general solution of the system x′ = Ax in this example is

γ(t) = et(k1v1 + k2v2) + e−tk3v3

=
(
k1e

t + k3e
−t, k2e

t + k3e
−t, 2k3e

−t
)
, (4.64)

where k1, k2, k3 are arbitrary constants. The geometry of the integral curves
for this system is fairly simple and is easy to plot by hand.

Consider a given initial point c ∈ R
3, and let γ be the integral curve that

starts at c at time zero: γ(0) = c. If c lies in the eigenspace E1 = the x-y
plane, then we can write c as c = k1v1 +k2v2. Then γ(t) = et(k1v1 +k2v2) =
etc is just the ray from the origin through c, and γ(t) tends to infinity as
t → ∞. This is illustrated in Figure 4.11. If the initial point c lies in the
eigenspace E−1 = the line through the origin in the direction v3 = (1, 1, 2),
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then c is a multiple of v3, say c = k3v3. So γ(t) = k3e
−tv3 = e−tc, is just

a ray on this line, with limt→∞ γ(t) = 0. These two observations describe
what happens for integral curves starting in one of the eigenspaces, and also
enable us to discern what happens when c is not in one of the eigenspaces.
When this is the case, choose k1, k2, k3, such that c = k1v1 + k2v2 + k3v3.
Then the integral curve:

γ(t) = et(k1v1 + k2v2) + k3e
−tv3,

is a curve that lies in the plane containing the vectors k1v1 + k2v2 and v3.
Since limt→∞ k3e

−tv3 = 0, this curve becomes asymptotic to the x1-x2 plane
as t→ ∞. This is shown in Figure 4.11.

Note that because of the particular form of the system in this example
we can solve it directly by back substitution. It is perhaps instructive to
look at this. Writing the system out in non-matrix form gives:

x′1 = x1 − x3 (4.65)
x′2 = x2 − x3 (4.66)
x′3 = −x3. (4.67)

The last equation readily gives: x3(t) = a3e
−t, with a3 an arbitrary constant.

Substituting this in the first and second equations gives the DEs:

x′1 = x1 − a3e
−t

x′2 = x2 − a3e
−t.

The solutions of these are: x2(t) = k2e
t+a3e

−t/2 and x1(t) = k1e
t+a3e

−t/2,
which, if we relabel the constants by k3 = a3/2, is the same as before.
Of course, the eigenvector method provides us with the extra geometric
information needed to sketch integral curves. This would be difficult to do
just from the above solutions alone.

The above example exhibits the decomposition R
3 = E1 ⊕ E−1 of R

3

into a direct sum of the eigenspaces of A. Likewise in the very first example
we had the decomposition R

2 = E2 ⊕ E−3. Something like this always oc-
curs when R

n has a basis of eigenvectors of A. Furthermore, the geometric
analysis of the integral curves will be similar to the above examples, except
harder to visualize. Thus, suppose in the eigenbasis theorem above we re-
label the λ’s, just listing the distinct ones, say: µ1, . . . , µp, and relabel the
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eigenvectors, say: v1
1 , . . . , v

1
r1

is a basis for Eµ1 , etc., out to: vp
1 , . . . , v

p
rp

is a
basis for Eµp . Then (4.63) has the form:

φt(c) = eµ1t(k1
1v

1
1 + · · · + k1

r1
v1
r1

) + · · · + eµpt(kp
1v

p
1 + · · · + kp

rp
vp
rp

). (4.68)

This is the general solution of x′ = Ax under the assumption that R
n has a

basis of eigenvectors of A. We have the decomposition

R
n = Eµ1 ⊕ · · · ⊕ Eµp ,

of R
n into a direct sum of the eigenspaces of A. The geometric interpretation

of the integral curve (4.68), is difficult even in small dimensions. However
a special case of this is easy to visualize, and even though this has already
been mentioned, we reiterate it here in this setting for emphasis.

Suppose we consider an integral curve γ that starts at an initial point in
one of the eigenspaces, c ∈ Eµi say. Then we can write c as c = biiv

1
i + · · ·+

biri
v1
ri

and so

φt(c) = eµit(ki
iv

1
i + · · · + ki

ri
v1
ri

) = eµitc.

This integral curve is a ray from the origin in the direction of c and it tends
to infinity or to the origin as t → ∞ depending on whether µi is greater
than or less than zero. Geometrically, Eµi is either a line through 0, or a
plane through 0, or a higher-dimensional subspace of R

n, and is filled up
with (comprised of) integral curves which are all rays directed away from
or toward 0. This then is what the part of the phase portrait looks like on
Eµi . Note: The special case when A has 0 as an eigenvalue is included in
the above discussion. Then, as we have noted, the corresponding eigenspace
E0 = kerA, consists entirely of fixed points; the integral curve starting at a
point c ∈ E0 stays there for all time.

Warning: The discussion to this point has been very limited and should
not mislead you into thinking the general case will be similar. In general
we can not express the integral curves of x′ = Ax solely in terms of the
eigenvectors and eigenvalues of A, and we can not decompose R

n into a
direct sum of eigenspaces. One reason for this is that A may have some
eigenvalues that are complex (not real), or even when all the eigenvalues are
real there may not be enough linearly independent eigenvectors to form a
basis for R

n. Thus, we need to look at these other possibilities.
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4.4.2 Complex Eigenvalues

The geometry of integral curves that arise from complex eigenvalues is more
interesting, in some respects, than for real eigenvalues. The discussion in
the real case was based on the fact that the action of eAt on c is very simple
if c is an eigenvector or a sum of eigenvectors. This same simplicity holds
in the complex case except that the eigenvectors lie in C

n and not in R
n.

Transferring the integral curves from C
n back to R

n accounts for the only
complication in the discussion here.

One important observation about complex eigenvalues is that they come
in complex conjugate pairs, i.e., if λ = a + bi is an eigenvalue of A, then
so is its conjugate λ = a − bi. This is so since the eigenvalue equation
det(A − λI) = 0 is a polynomial equation with real coefficients. Another
useful observation is that if γ : R → C

n is a solution of the corresponding
system z′ = Az of complex DEs, then both its real part: α = Re γ, and
imaginary part: β = Im γ, are solutions of the original system x′ = Ax.
Thus, we could extend the discussion to the complex domain, obtain general
results there, and then reduce these back to the real domain. We do not
take this approach here (see [Arn 78a]), but rather proceed as follows.

Suppose λ = a + bi (with b 
= 0) is a complex eigenvalue of A, and v
is a corresponding eigenvector (obtained by solving (A − λI)v = 0). Then
necessarily v is a complex vector: v ∈ C

n, and we can write it as v = u+wi,
where u,w ∈ R

n. You can verify that u and w are linearly independent
(exercise). If we write out the equation Av = λv in terms of real and
imaginary parts, we get

Au+ iAw = A(u+ iw) = Av = λv = (a+ bi)(u+ iw)
= (au− bw) + i(bu+ aw)

Hence, if we equate real and imaginary parts of this, we obtain

Au = au− bw

Aw = bu+ aw.

This proves part of the following fundamental result:

Theorem 4.6 Suppose A is a real, n × n matrix, u,w ∈ R
n, and a, b ∈ R

with b 
= 0. Let v = u+iw and λ = a+bi. Then the following are equivalent:

(1) Av = λv.
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(2) u,w satisfy

Au = au− bw (4.69)
Aw = bu+ aw. (4.70)

(3) u,w satisfy

[(A− aI)2 + b2I]u = 0 (4.71)
w = −b−1(A− aI)u. (4.72)

If any one of these holds, then u and w are linearly independent.

Proof: This is left as an (easy but interesting) exercise.

Equations (4.71)-(4.72) suggest the following definition:

Definition 4.3 Suppose λ = a + bi, with b 
= 0, is a complex eigenvalue
of A. The corresponding pseudo-eigenspace for the complex conjugate pair
a± bi is defined as

Ea±bi = {u ∈ R
n | [(A− aI)2 + b2I]u = 0 }.

It is important to note that the vectors in Ea±bi are not eigenvectors of A,
but rather comprise a subspace of R

n that corresponds to the pair a± bi of
eigenvalues of A. In essence the characteristic polynomial p(x) = det(A−xI)
contains a quadratic factor, q(x) = (x− a)2 + b2, which is irreducible (over
R). As shown in Appendix C, the factorization of p(x) completely into linear
and irreducible quadratic factors is used to decompose R

n into a direct sum
of (generalized) eigenspaces. The relation between Ea±bi and the complex
eigenspace for λ = a+ bi is described in the following theorem.

Theorem 4.7 Suppose λ = a+ bi, with b 
= 0, is a complex eigenvalue of A
and let

Vλ = { v ∈ C
n |Av = λv }

be the complex eigenspace of A corresponding to λ. Define a map L : Ea±bi →
Vλ by

Lu = u− ib−1(A− aI)u.
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Then L is a real, linear isomorphism between the vector spaces Ea±bi and Vλ

considered as vector spaces over R. Furthermore, the inverse of L is given
by

L−1(u+ iw) = u.

Consequently, Ea±bi is a even-dimensional subspace (over the reals). In par-
ticular, if Vλ has dimension r as a complex vector space and has basis

u1 + iw1, u2 + iw2, . . . , ur + iwr,

then Ea±bi has dimension 2r and basis

u1, w1, u2, w2, . . . , ur, wr.

Proof: It is easy to see that L is linear and 1-1. By results in the last
theorem one can show that L is onto (exercise). The formula for L−1 is
clear. It is a general result from linear algebra that a complex vector space
V of dimension r has real dimension 2r and more specifically, if v1, . . . , vr

is a basis for V over the complex numbers, then v1, iv1, . . . , vr, ivr is a basis
for V over the real field (exercise). Applying this to Vλ, using the fact that
L is an isomorphism, and taking into account the formula for L−1, gives the
result (exercise).

Remark: The prescription for finding a basis for Ea±bi suggested by the
theorem is also the one that works best in practice. Namely, work in the com-
plex domain. For each complex eigenvalue λ, solve the eigenvector equation
(A−λI)v = 0 for a set of linear independent (over C) complex eigenvectors:
vj = uj + iwj , j = 1, . . . , r. Then take real and imaginary parts of these
vectors to get linearly independent real vectors: uj, wj , j = 1, . . . , r.

With all this linear algebra out of the way, we can now more easily
understand the nature of the integral curves φt(u) that start with initial
point in

u ∈ Ea±bi.

We shall see that these integral curves are either ellipses (when a = 0) or
spirals (when a 
= 0). Compare this with the situation where the initial point
is in one of the real eigenspaces of A. Then the integral curves are either
points (fixed points) or rays through the origin.

For a given u ∈ Ea±bi let

w = −b−1(A− aI)u.
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Then we can use equations(4.69)-(4.70) above to compute φt(u) = eAtu (and
also φt(w) = eAtw at the same time). This is rather lengthy and is relegated
to the exercises (since it is nevertheless interesting). A much shorter way
to get the same results is to work in the complex domain and use Euler’s
formula as follows.

We let v = u + iw and λ = a + bi. Then Av = λv and consequently, in
the complex domain, we get

eAtv = eλtv. (4.73)

Now all we have to do is express each side of this equation in terms of real
and imaginary parts. Using Euler’s formula on the right-hand side gives:
eλtv = eat+bti(u + wi) = eat[cos(bt) + i sin(bt)](u + iw) = eat[cos(bt)u −
sin(bt)w] + ieat[sin(bt)u + cos(bt)w]. The left-hand side of equation(4.73)
separates easily into real and imaginary parts since eAt is a real matrix.
Thus, eAtv = eAtu+ ieAtw is the separation into real and imaginary parts.
Consequently, by equating real and imaginary parts on both sides of equation
(4.73) we arrive at

φt(u) = eAtu = eat[cos(bt)u− sin(bt)w]
φt(w) = eAtw = eat[sin(bt)u+ cos(bt)w].

These are the formulas for the integral curves that start at u and w, re-
spectively, at time zero. More generally, from these we can get the explicit
formula for the integral curve that starts at any point in the plane:

M = span{u,w}

spanned by u and w. Thus, suppose that c ∈M and write c in terms of the
basis: c = ku+ hw. We easily get from the above pair of equations that

φt(c) = eAtc = keAtu+ heAtw

= eat[cos(bt)(ku+ hw) + sin(bt)(hu − kw)]
= eat[cos(bt)c+ sin(bt)d] (4.74)
= Pβ(t). (4.75)

Here d = hu− kw, P = [u,w] is the n× 2 matrix with columns u,w, and β
is the curve in R

2 defined by

β(t) = eat

[
cos(bt) sin(bt)
− sin(bt) cos(bt)

] [
k
h

]
.
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You can easily see that if a = 0, then β is a circle of radius (k2 + h2)1/2,
centered at the origin and if a 
= 0, then β is a spiral that winds either
toward the origin (if a < 0) or away from the origin (if a > 0). These two
cases are shown in Figure 4.12.

Figure 4.12: Plots of the curve β(t) = eatR(bt)(k, h) for the two cases a = 0
and a 
= 0 and for various choices of the initial point (k, h). The graphs are
for the case b > 0, so that the motion along the curves is clockwise. When
b < 0 the motion is counterclockwise.

In addition

β(0) = (k, h)
β(π/2b) = eaπ/2(h,−k)
β(π/b) = eaπ(−k,−h)

β(3π/2b) = e3aπ/2(−h, k),

gives four points on the circle or spiral which have position vectors that
make, in succession, angles of 90 degrees with each other. This should be
expected since the curve β involves the rotation matrix:

R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
.

By varying the initial point (k, h), we get either a series of concentric circles
(when a = 0) or spirals (when a 
= 0). To interpret the corresponding integral
curves in the plane M , consider P as a linear transformation P : R

2 → R
n.

Then P is 1-1 (since its columns u,w are linearly independent) and has M
for its range. Thus, the integral curve α(t) ≡ φt(c) is similar to the curve
β(t) in R

2. It is thus an ellipse (exercise) when a = 0 and otherwise is a
spiral.
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To learn how to sketch a number of the integral curves α for various
choices of c = ku+hw in M , we look first at the case a = 0. Then all the inte-
gral curves are concentric ellipses, so we first plot the basic one: k = 1, h = 0,
i.e., the initial point is u. This ellipse can be plotted easily by graphing the
vectors ±u,±w, and noting that α(0) = u, α(π/2b) = −w,α(π/b) = −u,
and α(3π/2b) = w. Figure 4.13 shows this graph, along with one going
through a generic initial point c = ku + hw. In the latter case the inte-
gral curve passes through the points c, d,−c,−d at times 0, π/2b, π/b, 3π/2b,
respectively. Note: If c = ku+ hw, then d ≡ hu− kw

Figure 4.13: Graphs of the curves φt(u) = cos(bt)u − sin(bt)w and φt(c) =
cos(bt)c + sin(bt)d in the plane M spanned by u and w. Note, in the latter
curve, if c = ku+ hw, then d = hu− kw.

This is the picture under the assumption that a = 0, i.e., the complex
eigenvalue λ = a+ bi = bi, is purely imaginary. If, however, a 
= 0, then the
exponential factor eat in the integral curve α(t) = eat[(cos bt)c + (sin bt)d]
causes the otherwise elliptical path of α to either spiral in toward the origin
(when a < 0) or spiral out away from the origin (when a > 0). This is
indicated in Figure 4.14.

Example 4.12 Consider the system x′ = Ax, where A is the 2 × 2 matrix:

A =

[
1 5
−1 −1

]
.

The eigenvalues of A are easily computed to be λ = ±2i. An eigenvector



180 Chapter 4. Linear Systems

Figure 4.14: Graphs of φt(u) = eat[cos(bt)u − sin(bt)w] and φt(c) =
eat[cos(bt)c+sin(bt)d], for a < 0. Note that if c = ku+hw, then d ≡ hu−kw.

corresponding to λ = 2i can be found by solving[
1 − 2i 5
−1 −1 − 2i

] [
x1

x2

]
= 0.

You can solve this system of equations by guesswork, i.e., clearly

v =

[
5

−1 + 2i

]
,

is one vector that works (check this!). Taking the real and imaginary parts of
v gives u = (5,−1) and w = (0, 2). Thus, we know from the above discussion
that the general solution of this is α(t) = Pβ(t), where P is the matrix

P =

[
5 0
−1 2

]

and β is the circle

β(t) =

[
cos(2t) sin(2t)
− sin(2t) cos(2t)

] [
k
h

]
.

To plot the approximate phase portrait by hand, we simply plot the vectors
±u,±w, sketch in an ellipse passing through the endpoints of these vectors,
and then draw a sequence of ellipses concentric to this one. The result is
shown in Figure 4.15.



4.4. The Geometry of the Integral Curves 181

Figure 4.15: Hand-drawn sketch of the phase portrait for the system x′1 =
x1 + 5x2, x

′
2 = −x1 − x2.

The above discussion for a single complex eigenvector v = u + iw can
easily be extended. Thus, suppose vj = uj + iwj , j = 1, . . . , p are linearly
independent complex eigenvectors of A corresponding to complex eigenvalues
λj = aj + bji (not necessarily distinct). Then u1, w1, . . . , up, wp are linearly
independent vectors in R

n and for any initial point

c =
p∑

j=1

(kjuj + hjwj)

in the span of these vectors, we get

eAtc =
p∑

j=1

eajt
[
cos(bjt)

(
kjuj + hjwj

)
+ sin(bjt)

(
hjuj − kjwj

)]
.

This yields the explicit form for the integral curve that starts at c at time
zero. To interpret it geometrically, we introduce the following extension of
the above notation. Define curves βj : R → R

2, and β : R → R
2p by

βj(t) = eajtR(bjt)(kj , hj) j = 1, . . . , p (4.76)

β(t) =
(
β1(t), . . . , βp(t)

)
. (4.77)

Also, for each j = 1, . . . , p, let Pj = [uj , wj ] be the n × 2 matrix with the
indicated columns, and let P = [u1, w1, . . . , up, wp] be the n×2p matrix with
the indicated columns. Then an alternative way of describing the integral
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curve with initial point c ∈M ≡ span{u1, w1, . . . , up, wp} is

φt(c) = Pβ(t) =
p∑

j=1

Pjβj(t).

Each of the curves Pjβj(t) is an ellipse/spiral in the planeMj = span{uj , wj}
and the overall integral curve φt(c) is comprised of the superposition of all of
these. The result is rather difficult to visualize except for p = 1 (which we did
above). The case p = 2 requires four dimensions for viewing (see Example
4.13 below). Nevertheless, the result gives us a qualitative understanding of
the nature of the integral curves originating in a complex eigenspace. In the
special case when n = 2p, this includes every possible integral curve.

Theorem 4.8 (Complex Eigenbasis Theorem) Suppose n = 2p and A
is an n×n matrix with real entries. If vj = uj+iwj , j = 1.. . . . , p are linearly
independent (over C) eigenvectors for A corresponding to the eigenvalues
λj = aj + bji, j = 1, . . . , p, then {u1, w1, . . . , up, wp} is a basis for R

n and
for any c ∈ R

n, the integral curve of the system x′ = Ax, which passes
through c at time t = 0, is given by

φt(c) =
p∑

j=1

eaj t
[
cos(bjt)

(
kjuj + hjwj

)
+ sin(bjt)

(
hjuj − kjwj

)]
(4.78)

where the real numbers kj , hj are the components of c with respect to the
basis, i.e.,

c =
p∑

j=1

(kjuj + hjwj).

Furthermore, R
n decomposes into a direct sum of planes

R
n = M1 ⊕ · · · ⊕Mp,

with Mj = span{uj , wj}, j = 1, . . . , p, and relative to this the integral curve
is expressed as a sum

φt(c) =
p∑

j=1

Pjβj(t) (4.79)

of curves Pjβj lying in Mj. Here

βj(t) = eajtR(bjt)(kj , hj)

is a standard circle (when aj = 0) or spiral (when aj 
= 0) in R
2 and Pj :

R
2 →Mj is the linear transformation determined by the n× 2 matrix Pj =

[uj , wj ]
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A primary example of the Complex Eigenbasis Theorem is the system of
masses coupled by springs as in Example 4.2.

Example 4.13 (Two Coupled Masses) For simplicity, assume that the
masses are the same, say m1 = m2 = 1, and that the spring constants are
all equal, say k1 = k2 = k3 = 1. Then, from Example 4.2, the 2nd-order
system for the displacements x = (x1, x2) of the masses from equilibrium is
x′′ = Kx, where

K =

[
−2 1

1 −2

]
.

The corresponding first-order system is z′ = Az, where A is the 4×4 matrix

A =


0 0 1 0
0 0 0 1

−2 1 0 0
1 −2 0 0

 .
The computation of the eigenvalues of A via det(A − λI) = 0 is not hard
if we use some properties of determinants and row reduce A − λI before
taking the determinant. (What we do here works in general for the case of
N coupled masses.) These properties are merely that the determinant is a
antisymmetric, multilinear function of its rows: (1) If P is an n × n matrix
and if each entry in one row of P is multiplied by a constant c to give the
matrix P̃ , then det(P̃ ) = cdet(P ), and (2) the determinant of P does not
change if one of its rows is added to another row.

With this understood, we multiply the 1st and 2nd rows of A−λI by λ.
In the resulting matrix we add the 3rd row to the 1st row and the 4th row
to the 2nd row. Now the resulting matrix is a block diagonal matrix and its
determinant is easy to compute. Here is the implementation of this:∣∣∣∣∣∣∣∣∣

−λ 0 1 0
0 −λ 0 1

−2 1 −λ 0
1 −2 0 −λ

∣∣∣∣∣∣∣∣∣ =
1
λ2

∣∣∣∣∣∣∣∣∣
−λ2 0 λ 0

0 −λ2 0 λ
−2 1 −λ 0

1 −2 0 −λ

∣∣∣∣∣∣∣∣∣
=

1
λ2

∣∣∣∣∣∣∣∣∣
−(λ2 + 2) 1 0 0

1 −(λ2 + 2) 0 0
−2 1 −λ 0
1 −2 0 −λ

∣∣∣∣∣∣∣∣∣
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=
1
λ2

∣∣∣∣∣ −(λ2 + 2) 1
1 −(λ2 + 2)

∣∣∣∣∣
∣∣∣∣∣ −λ 0

0 −λ

∣∣∣∣∣
= (λ2 + 2)2 − 1

From this it’s easy to see that the eigenvalues of A are λ = ±i,±
√

3 i. A
straight-forward calculation gives complex eigenvectors

v1 = (1, 1, i, i), v2 = (1,−1,
√

3 i,−
√

3 i),

corresponding to i and
√

3i, respectively. These are linearly independent
with respect to the complex number field C and so the Complex Eigenbasis
Theorem applies. Taking real and imaginary parts of these vectors gives

u1 =


1
1
0
0

 , w1 =


0
0
1
1

 , u2 =


1

−1
0
0

 , w2 =


0
0√
3

−
√

3

 ,
and these vectors form a basis for R

4. By the Complex Eigenbasis Theorem
(with aj = 0, j = 1, 2 and b1 = 1, b2 =

√
3) the general solution of z′ = Az

is

γ(t) = (cos t) (k1u1 + h1w1) + (sin t) (h1u1 − k1w1)
+ (cos

√
3t) (k2u2 + h2w2) + (sin

√
3t) (h2u2 − k2w2)

where the arbitrary constants k1, h1, k2, h2 are able to be chosen so that γ
satisfies any γ(0) = c for any given c ∈ R

4. One merely solves the algebraic
system

k1u1 + h1w1 + k2u2 + h2w2 = c.

In this example, the planes M1 = span{u1, w1} and M2 = span{u2, w2},
are perpendicular to each other in R

4 and the integral curves that start at
a point c ∈ M1 or c ∈ M2 are circles or ellipses, respectively. For a point
c ∈ R

4 = M1 ⊕M2, not in one of these planes, the integral curve through c
is more complicated.

Note that γ(t) gives the state of the system of two masses at time t
and this consists of the two positions and the two velocities. The first two
components of γ(t) give the positions and so the general solution of x′′ = Ax
is

α(t) =
(
k1 cos t+ h1 sin t

)[
1
1

]
+
(
k2 cos

√
3 t + h2 sin

√
3 t
)[

1
−1

]
.
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The two vectors

v1 =

[
1
1

]
, v2 =

[
1
−1

]
,

are called the normal mode vectors of the coupled mass system and the
numbers 1,

√
3 are called the normal frequencies of vibration. The reason

for this terminology is as follows. Suppose the masses are initially displaced
from equilibrium and released with no initial velocities. Then the motion of
the system is described by the curve

α(t) = k1 cos(t) v1 + k2 cos(
√

3t) v2.

The case k1 = 1, k2 = 0, corresponds to initial displacements x1 = 1, x2 = 1
and the curve:

η1(t) ≡ cos(t) v1,

is one of the normal modes of the system. In this mode of vibration the
masses move in unison (i.e., in the same way) about their equilibrium posi-
tions with frequency 1. This is illustrated in Figure 4.16.

Figure 4.16: The integral curves for the two normal modes are straight line
segments. In this example, a superposition of the two normal modes gives a
space-filling integral curve.

The case k1 = 0, k2 = 1, corresponds to initial displacements x1 = 1, x2 =
−1, and the curve:

η2(t) ≡ cos(
√

3t) v2,

is the second normal mode of the system. In this mode of vibration both
masses vibrate, oppositely, about equilibrium with frequency

√
3.
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As shown in Figure 4.16, the motion of the masses is quite simple for
either of the normal modes of vibration. However, the general motion of the
masses, being a superposition

α(t) = k1η1(t) + k2η2(t),

of the two normal modes of vibration, can be more complex and interesting.
A typical plot of the curve α is shown in Figure 4.16 for k1 = 1 = k2, so that
α(0) = (2, 0). There is additional study of this example and its generalization
on the Maple worksheet oscillate.mws on the electronic component.

Example 4.14 (N-coupled Masses) The techniques used in the last ex-
ample for 2-coupled masses generalizes. Here we derive the general equations
of motion x′′ = Kx and the corresponding 1st-order system z′ = Az. The
rest of the general study is left for the exercises.

Consider a system of N bodies with masses m1, . . . ,mN which lie on
a frictionless table, are aligned in a straight line, and are connected by
springs—in succession each body is connected by a spring to the preceding
and succeeding body. See Figure 4.17.

Figure 4.17: A system of N bodies coupled together by springs.

The first and the last bodies are attached by a spring to constraining
brackets, as shown, and so there are N + 1 springs. The system is shown at
rest in its natural equilibrium position with none of the springs extended or
compressed.

Consider a motion of the system whereby each body is displaced from
equilibrium and given an initial velocity, each either forward or backward in
the line of the system. Let xj(t), j = 1, . . . , N , be the position of the jth
body, relative to its equilibrium position, at time t. Newton’s 2nd Law gives
the differential equation that xj must satisfy: mjx

′′
j = Fj . All we have to

do is figure out what Fj is. This is entirely similar to what we did for the
case of two bodies. Figure 4.18 shows one possible position of the jth body
at time t. Also shown are possible positions of the two bodies on each side
of the jth body. For the situation depicted, you can see that each spring
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Figure 4.18: A hypothetical position of the jth body at time t.

attached to the jth body is stretched from its natural length—the jth spring
is stretched by amount xj − xj−1 and the (j + 1)st spring is stretched by
amount xj+1−xj. Each spring will attempt to contract to its natural length,
thereby exerting forces to the left and right, respectively, on the jth body.
Thus, from Hooke’s Law, we get the equation of motion for the jth body:

mjx
′′
j = −kj(xj − xj−1) + kj+1(xj+1 − xj). (4.80)

While the argument leading to this equation was based on the positions
shown in Figure 4.18, one can show that the same equation results regardless
of the positions of the (j − 1)st, jth, and (j + 1)st bodies (exercise). The
argument (and Figure 4.18) also assumes that the jth body is not the first or
the last. However one can show that when j = 1 or j = N , equation (4.80)
still results, provided we take x0 ≡ 0 or xN+1 = 0 (exercise). In summary,
after rearranging equation (4.80) slightly, we get the equations of motion for
the entire system of bodies:

Equations of Motion:

mjx
′′
j = kjxj − (kj + kj+1)xj−1 + kj+1xj+1, (4.81)

for j = 1, . . . , N . This is a linear system of 2nd-order differential equations
and can be written in matrix form as

x′′ = Kx,

where x = (x1, . . . , xN ) is the vector whose components are the displace-
ments of the individual bodies from equilibrium, and K is an N ×N matrix.
It will be convenient to express K as a product

K = µ−1B,
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where µ is the diagonal matrix

µ =


m1

m2

. . .
mn

 , (4.82)

called the mass matrix, and B is the tridiagonal matrix:

−(k1 + k2) k2 0
k2 −(k2 + k3) k3 0
0 k3 −(k3 + k4) k4 0

. . .
. . .

. . .

kn−1 −(kn−1 + kn) kn

0 kn −(kn + kn+1)


(4.83)

The matrix B is called a tridiagonal matrix because the only nonzero entries
are the entries on the diagonal, superdiadiagonal, and subdiagonal. Such
matrices arise in many other important applications and have been well-
studied (cf. [Par 80], [Fi 86]). We shall see later that B has many interesting
properties for the case when all the spring constants are the same, say kj = 1,
for j = 1, . . . , N .

As we did above with two bodies, we use the standard procedure to
reduce the 2nd-order system x′′ = Kx to a 1st-order system by introducing
the velocities v ≡ x′. This gives[

x′

v′

]
=

[
0 I
K 0

] [
x
v

]
, (4.84)

where I and 0 denote theN×N identity matrix and zero matrix, respectively.
In summary: the 1st-order linear system for the motion of the n-boies is
z′ = Az, where

A =

[
0 I
K 0

]
.

The special form of the matrix A, which is typical of systems that arise
in physical problems involving 2nd-order derivatives, will be studied in the
exercises.
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It’s important to note that the Complex Eigenbasis Theorem, when
slightly modified (in interpretation) is a theorem that contains both the
real and complex eigenbasis theorems.

Corollary 4.3 (Real and Complex Eigenbasis Theorem) Suppose A is
an n×n real matrix with real eigenvalues λj , j = 1, . . . , q and complex eigen-
values aj ± bji, j = 1, . . . , p. Suppose further that

n = q + 2p.

Assume that there are corresponding real eigenvectors vj, j = 1, . . . , q and
complex eigenvectors uj + iwj, j = 1, . . . , p, that are linearly independent
over R and C, respectively. Then

{v1, . . . , vq, u1, w1, . . . , up, wp},

is a basis for R
n and for any c ∈ R

n, the integral curve of the system x′ = Ax
that passes through c at time t = 0 is given by

φt(c) =
q∑

j=1

mje
λjtvj (4.85)

+
p∑

j=1

eaj t
[
cos(bjt)

(
kjuj + hjwj

)
+ sin(bjt)

(
hjuj − kjwj

)]
,

where the real numbers mj, kj , hj are the components of c with respect to the
basis, i.e.,

c =
q∑

j=1

mjvj +
p∑

j=1

(kjuj + hjwj).

When a system has real and complex eigenvalues, the geometry of its inte-
gral curves can be interesting and complicated. Combining the straight-line
motion in a real eigenspace with the elliptical or spiral motion in a complex
pseudo-eigenspace gives motions which are helical or spiraling-helical, as the
next example shows.

Example 4.15 Consider the system x′ = Ax where

A =

 −1 5 −2
−5 −3 −2
3 3 −2

 .
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To find the eigenvalues λ we compute the determinant

|A− λI| =

∣∣∣∣∣∣∣
−(λ+ 1) 5 −2

−5 −(λ+ 3) −2
3 3 −(λ+ 2)

∣∣∣∣∣∣∣

=


−(λ+ 1)

∣∣∣∣∣ −(λ+ 3) −2
3 −(λ+ 2)

∣∣∣∣∣
−5

∣∣∣∣∣ −5 −2
3 −(λ+ 2)

∣∣∣∣∣− 2

∣∣∣∣∣ −5 −(λ+ 3)
3 3

∣∣∣∣∣
= −(λ3 + 6λ2 + 48λ+ 80)

We can guess at one root of λ3 +6λ2 +48λ+80 = 0 (small integers) and get
λ = −2. Then dividing λ3 + 6λ2 + 48λ+ 80 by λ+ 2 gives the factorization

λ3 + 6λ2 + 48λ+ 80 = (λ+ 2)(λ2 + 4λ+ 40).

Using the quadratic formula on λ2 + 4λ + 40 = 0 gives the other two roots
λ = −2 ± 6i. The eigenvectors are found as follows.

For eigenvalue λ = −2, the eigenvector equation is

(A+ 2I)v =

 1 5 −2
−5 −1 −2
3 3 0


 x
y
z

 = 0.

This gives three equations, the third of which is 3x1 + 3x2 = 0. So we take
x1 = 1, x2 = −1. Using this in one of the other equations gives x3 = −2.
Thus, an eigenvector is

v =

 1
−1
−2

 ,
which you can easily check. A more systematic way of solving the above
system would be to use Gaussian elimination.

For eigenvalue λ = −2 + 6i, the eigenvector equation is

[A+ (2 − 6i)I]v =

 1 − 6i 5 −2
−5 −1 − 6i −2
3 3 −6i


 x
y
z

 = 0
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To find an eigenvector v, we use Gaussian elimination on the above matrix.
For this, we first divide the last row by 3 to get: 1 − 6i 5 −2

−5 −1 − 6i −2
1 1 −2i

 .
Now, using elementary row operations, we create zeros in the first column
where the entries −5 and 1 occur. We multiply the 2nd row by 1 − 6i and
add to it 5 times the first row. Then we multiply the 3rd row by 1− 6i and
add to it −1 times the first row. This gives the reduced matrix 1 − 6i 5 −2

0 −12 −12 + 12i
0 −4 − 6i −10 − 2i

 .
You will have to do some scratch work and complex arithmetic to verify this.
Now we divide the 2nd row by 12 and the 3rd row by 2, giving 1 − 6i 5 −2

0 −1 −1 + i
0 −2 − 3i −5 − i

 .
Finally, we multiply the 2nd row by 2 + 3i and add it to −1 times the 3rd
row to get  1 − 6i 5 −2

0 −1 −1 + i
0 0 0

 .
This is sufficiently reduced to get an eigenvector. The 2nd row of the above
matrix corresponds to the equation −x2 +(−1+ i)x3 = 0. So we take x3 = 1
and x2 = −1+i. Using this in the equation corresponding to the 1st row gives
(1−6i)x1 +5(−1+i)−2 = 0. Solving this gives x1 = (7−5i)/(1−6i) = 1+i.
In summary, we get an eigenvector

v =

 1 + i
−1 + i

1

 =

 1
−1
1

+

 1
1
0

 i,
with real and imaginary parts:

u =

 1
−1
1

 , w =

 1
1
0

 .
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From this, and the work above, we get that the general solution of the system
is

α(t) = ae−2tv + e−2t cos 6t (ku+ hw) + e−2t sin 6t (hu− kw)

= e−2t

 a
−a
−2a

+ e−2t cos 6t

 k + h
−k + h
k

+ e−2t sin 6t

 h− k
−h− k
h



=


ae−2t + (k + h)e−2t cos 6t+ (h− k)e−2t sin 6t)

−ae−2t + (−k + h)e−2t cos 6t− (h+ k)e−2t sin 6t)

−2ae−2t + ke−2t cos 6t+ he−2t sin 6t)


where a, k, h are arbitrary constants. This is a complicated expression, but
is easiest to analyze as written in the first line.

The vector v spans the eigenspace E−2 = span{v}, which is 1-dimensional
(a line through the origin) and integral curves that start in E−2 run toward
the origin on this line. The vectors u,w span the 2-dimensional pseudo-
eigenspace E−2±6i = span{u,w}, which is plane through the origin, and
integral curves that start in E−2±6i spiral toward the origin, with the rotation
determined by turning u onto −w.

For a general initial point c ∈ E−2⊕E−2±6i = R
3, the integral curve eAtc

will spiral about the line E−2 as it approaches the plane E−2±6i (and the
origin). This is shown in the sketch in Figure 4.19. In this particular example
the line E−2 = span{v} is perpendicular to the plane E−2±6i = span{u,w}
since v is perpendicular to both u and w (as is easily checked). This makes
the phase portrait easier to view. The worksheet linearDEplot.mws shows
how to study the system in this example using a computer.

In the above corollary (the Real and Complex EigenBasis Theorem) the
eigenvalues are not assumed to be distinct. If we relabel so that µ1, . . . , µr

is a list of the distinct real eigenvalues and p1 ± q1i, . . . , ps ± qsi is a list of
the distinct complex eigenvalues, then one can show, with the assumptions
in the corollary, that R

n decomposes into a direct sum of eigenspaces and
pseudo-eigenspaces:

R
n = Eµ1 ⊕ · · · ⊕ Eµr ⊕ Ep1±q1i ⊕ · · · ⊕ Eps±qsi.

Caution: The setting for the corollary is still very limited and, while it
does cover many important cases, you should not be misled into thinking
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Figure 4.19: A by-hand sketch of the phase portrait for a 3d-system x′ = Ax,
where A has eigenvalues λ = −2,−2 + ±6i

the general case will be similar. In general we can not express the integral
curves of x′ = Ax as in Formula (4.85), and we can not decompose R

n into
a direct sum of eigenspaces and pseudo-eigenspaces. What we can do is
decompose R

n into

R
n = GEµ1 ⊕ · · · ⊕GEµr ⊕GEp1±q1i ⊕ · · · ⊕GEps±qsi,

a direct sum of generalized eigenspaces and pseudo-eigenspaces, each of which
generally is a larger subspace containing the corresponding eigenspace or
pseudo-eigenspace. This decomposition is discussed in Appendix C.

Example 4.16 A simple example of a generalized eigenspace occurs in the
system x′ = Ax, where

A =

[
−3 1
−1 −5

]
.

The eigenvalue equation is

det(A− λI) =

∣∣∣∣∣ −(λ+ 3) 1
−1 −(λ+ 5)

∣∣∣∣∣ = (λ+ 4)2 = 0.

So λ = −4 is the only eigenvalue. This, by itself, does not give any infor-
mation about the eigenspace E−4, which could be two-dimensional if there
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were two linearly independent eigenvectors for this eigenvalue. To determine
whether this is the case, we look at the eigenvector equation

(A+ 4I)v =

[
1 1
−1 −1

] [
x1

x2

]
= 0.

One obvious eigenvector is

v1 =

[
1
−1

]
,

and all others are multiples of this. Thus, E−4 = span{v1} is one-dimensional
(a line). This gives part of the phase portrait. To understand the rest of
it, we look for a generalized eigenvector v2, i.e., a solution of the equation
(A+ 4I)v2 = v1. Written out explicitly, this equation is[

1 1
−1 −1

] [
x1

x2

]
=

[
1
−1

]
.

It is easy to see that

v2 =

[
0
1

]
,

is a solution of this. Note that v2 is not an eigenvector for λ = −4, since it
doesn’t satisfy (A + 4I)v = 0. However, from (A + 4I)v2 = v1, we do get
that v2 satisfies

(A+ 4I)2v2 = (A+ 4I)(A + 4I)v2 = (A+ 4I)v1 = 0.

This is why v2 is called a generalized eigenvector. The generalized eigenspace
is

GE−4 = {v ∈ R
2 | (A+ 4I)pv = 0, for some p }.

In this example, since v1, v2 ∈ GE−4 and are linearly independent, we have
that GE−4 = R

2.
To understand the geometry of the other integral curves in the phase

space, we compute eAtv2. For this, we start with

Av2 = v1 + λv2,

(where λ = −4) and apply A to both sides:

A2v2 = Av1 + λAv2 = λv1 + λ(v1 + λv2) = 2λv1 + λ2v2.
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Applying A to both sides of this gives

A3v2 = 2λAv1 + λ2Av2 = 2λ2v1 + λ2(v1 + λv2) = 3λ2v1 + λ3v2.

By induction we get
Akv2 = kλk−1v1 + λkv2,

for k = 1, 2, . . . Consequently

eAtv2 =
∞∑

k=0

tk

k!
Akv2

= v2 +
∞∑

k=1

tk

k!
(kλk−1v1 + λkv2)

= teλtv1 + eλtv2

= eλt(tv1 + v2)

The geometry of the integral curve α(t) = eλ(tv1 +v2) is analyzed as follows.
First note that the curve β(t) = tv1+v2 is the straight line through the point
v2 in the direction of the vector v1. This is shown in Figure 4.20.

Figure 4.20: The curves α(t) = eλt(tv1 + v2) and β(t) = tv1 + v2

Now view α(t) and β(t) as position vectors, with their tips directed
toward points on the respective curves as they are traced out. Both vectors
α(t), β(t) point to v2 at time t = 0, but for positive times the length of α(t)
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Figure 4.21: The phase portrait of the system x′1 = −3x1+x2, x
′
2 = −x1−5x2.

decreases rapidly because of the factor eλt (since λ = −4). For negative
times this factor rapidly increases the length of α(t). Thus, α(t) traces out a
curve like the dotted curve shown in Figure 4.20 above. This is the integral
curve that starts at v2 at time t = 0, and integral curves that start at a
multiple kv2 of v2 will be similar. Sketching these, along with the straight
line integral curves that arise from starting at point in E−4, gives the phase
portrait shown in Figure 4.21.

Exercises 4.4
1. Show that if Av = λv, then eAtv = eλtv.

2. Suppose v = u+iw is an eigenvector for the (real) matrixA which corresponds
to a complex eigenvalue λ = a+ bi, with b 
= 0. Show that u and w (the real
and imaginary parts of v) are linearly independent (over R).

3. Prove Theorem 4.6.

4. Do the exercises indicated in the proof of Theorem 4.7.

5. For each of the following linear systems, x′ = Ax, find the eigenvalues and
eigenvectors of A, and use these to write down the general solution of the
system. Also sketch (by hand) the phase portrait, showing the eigenspaces
Eλ, Ea±bi, and the directions along the integral curves. In each case draw
enough integral curves to display how the system is behaving.
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(a)
[

1 0
0 −1

]
, (b)

[
−1 2
2 −1

]
, (c)

[
−1 −2
2 −1

]

(d)
[

2 0
0 1

]
, (e)

[
−1 0
0 −2

]
, (f)

[
−1 0
0 −1

]

(g)
[

0 −2
2 0

]
, (h)

[
−3 −2
17 3

]
, (i)

[
1 3
2 6

]
.

(j)
[

−9 3
1 −11

]
, (k)

[
2 16
5 4

]
, (l)

 2 1 0
−1 2 0
0 0 3



(m)

 −3 −2 0
17 3 0
0 0 −1

 , (n)

 −1 −10 −8
2 2 7
4 −5 −4

 , (o)

 1 −3 −3
−5 −1 5
2 2 −4


Hints: For (n): One eigenvalue is λ = −3. Use a view [−45, 60]. Are the
eigenspaces perpendicular? For (o): The eigenvalues are λ = −2,−6, 4. Use
a view [−135, 45]. Do a sketch above the x1-x2 plane only. Sketch the integral
curves in the planes E−2 ⊕ E−6, E−2 ⊕ E4, and E−6 ⊕ E4.

6. For each of the systems x′ = Ax in Exercise 5 above, use a computer to
study and draw the phase portrait of the system. Make sure you draw all
the integral curves that are straight lines and sufficiently many other integral
curves to adequately delineate the main features of the phase portrait. On
the printouts of your studies, annotate and mark all the features (eigenspaces,
directions of flow on the integral curves, etc.)

7. Suppose K is any n×n matrix and let A be the matrix (given in block form):

A =
[

0 I
K 0

]
, (4.86)

where 0 and I denote the n×n zero matrix and identity matrix, respectively.
Use the technique from Example 4.13 to show that

det(A− λI) = (−1)n det(K − λ2I).

Hence conclude that the eigenvalues of A are λj = ±√
µj , j = 1, . . . , n, where

µj , j = 1, . . . , n are the eigenvalues ofK. Also show that if u is an eigenvector
of K corresponding to eigenvalue µ, then (u,

√
µu ) is an eigenvector of A

corresponding to λ =
√
µ. Show how these results give the eigenvalues and

eigenvectors in Example 4.13.
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8. (Two Coupled Masses) Use the work done in Example 4.13 to further
study the dynamics of the system of two equal masses coupled by three iden-
tical springs. In particular, suppose α is the curve:

α(t) =
(
k1 cos t+ h1 sin t

)
v1 +

(
k2 cos

√
3 t + h2 sin

√
3 t
)
v2,

that gives the two positions x1, x2 of each mass at time t.

(a) Use a computer to plot the curve α for each of the following sets of
initial conditions:

(i) x1(0) = .5, x2(0) = 1, x′1(0) = 0, x′2(0) = 0.
(ii) x1(0) = −.5, x2(0) = 1, x′1(0) = 0, x′2(0) = 0.
(iii) x1(0) = .5, x2(0) = 1, x′1(0) = 0.2, x′2(0) = 0.
(iv) x1(0) = 0, x2(0) = 0, x′1(0) = 0.5, x′2(0) = 1.

In each case use the following time intervals: [0, 10], [0, 50], [0, 100].

(b) For each of the ones assigned in part (a) plot, in the same figure, x1 as
a function of t and x2 as a function of t.

(c) Annotate and label your drawings and use these to analyze and describe
the motion of the system of masses. Also use the code on the worksheet
oscillate.mws to animate both the motion of α and the actual motion
of the two masses. This should help in writing your description.

9. (Three Coupled Masses) This exercise is to study the system of three
masses: mj = 1, j = 1, 2, 3, coupled by four springs with equal spring con-
stants kj = 1, j = 1, 2, 3. Using Example 4.13 as a guide, do the following
part in your study:

(a) Write done matrices K and A for the 2nd- and 1st-order systems x′′ =
Kx and z′ = Az, that govern the motion. Determine all the eigenvalues
and corresponding eigenvectors of K and then use the result in Exercise
9 above to find the eigenvectors/eigenvalues of A. Use this to write the
explicit formula for the general solution of both x′′ = Kx and z′ = Az.

(b) Determine the three normal modes η1, η2, η3 of vibration for the system
of masses. Plot each of these space curves and describe what each of
the corresponding motions of the three masses is like. Look at the
projections on the coordinate planes.

(c) Study the motion of the three masses that results from the initial dis-
placements x1(0) = 1, x2(0) = 0.5, x3(0) = −1, and initial velocities all
zero x′j(0) = 0, j = 1, 2, 3.

11. (N Coupled Masses) In the case of N equal masses, say mj = 1, j =
1, . . . , N , and identical springs, say kj = 1, j = 1, . . . , N + 1, it is possible to
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explicitly determine the formula for the general solution of the equations of
motion. This exercise shows you how. The crux of the matter is finding the
eigenvalues and eigenvectors of the tridiagonal matrix

K =



−2 1 0
1 −2 1 0
0 1 −2 1 0

. . . . . . . . .
1 −2 1
0 1 −2


. (4.87)

A direct approach to this will be difficult, so take the following indirect ap-
proach. First write K as

K = −2I +M,

where I is the N × N identity matrix and M ≡ K + 2I. Thus, M has the
same form as K except that it has zeros on its diagonal. To find eigenvalues
and eigenvectors for M is easier. For this show that the vector equation

Mv = µv,

is equivalent to the system of equations:

v2 = µv1 (4.88)
vp−1 + vp+1 = µvp (p = 2, . . . , N − 1) (4.89)

vN−1 = µvN , (4.90)

where v = (v1, . . . , vN ). To determine numbers µ, v1, . . . , vN that satisfy this,
we make the key observation that equation (4.89) has the same form as the
trig identity

sin(ψ + θ) + sin(ψ − θ) = 2 cos θ sinψ.

Use this to show that for any θ, the N + 1 numbers

µ = 2 cos θ (4.91)
vp = sin pθ, (p = 1, . . . , N), (4.92)

satisfy equations (4.88)-(4.89). Then show that in order for equation (4.90)
to be satisfied, it is necessary and sufficient that θ be a number of the form

θj =
jπ

N + 1
, (j = 1, . . . , N). (4.93)

Use all of this to complete the proof of the following theorem.
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Theorem 4.9 The eigenvalues µ1, . . . , µN of the N ×N , tridiagonal matrix

M =



0 1 0
1 0 1 0
0 1 0 1 0

. . . . . . . . .
1 0 1
0 1 0


are

µj = 2 cos θj , (j = 1, . . . , N), (4.94)

where

θj =
jπ

N + 1
, (j = 1, . . . , N). (4.95)

Furthermore, corresponding eigenvectors v(1), . . . , v(N) are given by

v(j) = ( sin θj , sin 2θj, . . . , sinNθj ), (4.96)

for j = 1, . . . , N .

Next since A = −2I +M , it is easy to see that

Mv = µv =⇒ Av = (−2 + µ)v.

Using this and the result in Exercise 9 above, prove the following theorem.

Theorem 4.10 Let K be the N ×N , tridiagonal matrix in equation (4.87).
Then the general solution of the system x′′ = Kx is

α(t) =
N∑

j=1

( kj cos bjt+ �j sin bjt ) v(j), (4.97)

where

bj =
√

2
(

1 − cos
jπ

N + 1

)1/2

, (4.98)

for j = 1, . . . , N , and

v(j) =
(

sin
jπ

N + 1
, sin

2jπ
N + 1

, . . . , sin
Njπ

N + 1

)
, (4.99)

for j = 1, . . . , N .
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12. Use the techniques from Exercise 11 to find the eigenvalues and corresponding
eigenvectors of the N ×N , tridiagonal matrix

K =



a b 0
c a b 0
0 c a b 0

. . . . . . . . .
c a b
0 c a


(4.100)

where a, b, c are real numbers and bc > 0. Hint: Write K = aI+M and write
out the equations like equations (4.88)-(4.90) for Mv = µv. Then look for
solutions of these equations of the form

µ = 2g cos θ (4.101)
vp = hp sin pθ, (p = 1, . . . , N), (4.102)

where θ, g and h are numbers to be determined.

13. (Generalized Eigenvectors) Suppose A is a 3 × 3 matrix with real eigen-
value λ of multiplicity three and corresponding eigenvector v1. Assume that
the eigenspace is one-dimensional, Eλ = span{v1}, and suppose that v2, v3
are vectors such that

(A− λI)v2 = v1

(A− λI)v3 = v2

As in Example 4.16, one can show that eAtv2 = eλt(tv1 + v2). Using this and
(A− λI)v1 = 0, show that

eAtv3 = eλt

(
1
2
t2v1 + tv2 + v3

)
.

Assuming v1, v2, v3 are linearly independent, find a formula for the flow
φt(c) = eAtc, where c = k1v1+k2v2+k3v3 is any point in R

3 = span{v1, v2, v3} =
GEλ.

4.5 Canonical Systems
One could argue that the chapter is closed on our study of the linear system
x′ = Ax, since, after all, we have explictly exhibited its general solution:
φ(t, c) = eAtc, constructed from the matrix exponential. However, this ma-
trix exponential is only given theoretically, and in most cases it is impossible
to compute the entries of the matrix eAt effectively. Even if one is satisfied
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that, in theory, eAt is known, and, in practice, is often computable, never-
theless there is a good deal more to understand and clarify about how these
solutions of x′ = Ax behave.

Additionally, as we have seen in the theorems from the previous section,
the qualitative nature of the phase portrait, consisting of straight-line, ellip-
tical, and spiral integral curves (and combinations thereof) was derived only
for the case where there enough linearly independent, complex eigenvectors
to get a (real) basis for R

n.
One important further object of study in this regard deals with canonical

systems y′ = Jy, and the theory for transforming a given system: x′ = Ax,
into one of the canonical systems. The motive here should be quite clear:
canonical systems y′ = Jy are particularly simple in form, and therefore we
can:

(1) easily compute eJt, and

(2) easily understand the qualitative nature of the canonical phase por-
trait.

Then, as we shall see, the phase portrait of the given system, x′ = Ax, will
be similar to the portrait of its corresponding canonical system, only just a
linear distortion of it. In essence, the idea is this: rather than studying all
possible systems x′ = Ax, we need only study a few of the simplest type:
the canonical systems y′ = Jy.

Before discussing what canonical systems are, we look at the transfor-
mation technique (not the general technique, but rather what we need here
for linear systems).

Definition 4.4 The linear system: x′ = Ax is called linearly equivalent to
the system y′ = By, if the matrix A is similar to the matrix B, i.e., if there
exists an invertible linear transformation P : R

n → R
n, such that

P−1AP = B. (4.103)

IfX(x) = Ax and Y (y) = By are the two vector fields associated with the
linear systems, then one can view (4.103) as a transformation law between
the respective vector fields. Later when we study nonlinear systems, we will
find that (4.103) is really a special case of a more general way of transforming
one vector field into another.
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The importance of this notion of linear equivalence is that linearly equiv-
alent systems have similar phase portraits. This is made precise by the fol-
lowing theorem which gives an alternative, more geometric, condition for
linear equivalence.

Theorem 4.11 The two systems x′ = Ax and y′ = By are linearly equiva-
lent if and only if there is an invertible linear transformation P that maps
the integral curves of the one system into integral curves of the other system.
More precisely: for every integral curve β : I → R

n of y′ = By, the curve α
defined by

α(t) = Pβ(t)

is an integral curve of x′ = Ax.

−1AP=
B for some invertible P . Then for any integral curve β : I → R

n of y′ = By,
the curve defined by α(t) = Pβ(t), for t ∈ I, is an integral curve of x′ = Ax.
This follows from the elementary computation:

α′(t) = Pβ′(t) = PBβ(t)
= PBP−1α(t) = Aα(t),

for every t ∈ I.
On the other hand, suppose P is an invertible linear transformation that

maps each integral curve β of y′ = By into an integral curve of x′ = Ax
according to the prescription: α(t) = Pβ(t). From this we wish to show
that P−1AP = B. To get at this, note that for any b ∈ R

n, the curve
α(t) ≡ PeBtb must be an integral curve of x′ = Ax, and in fact an integral
curve that satisfies α(0) = Pb. But this is also true of the curve φ(t) ≡ eAtPb.
Thus, by the Existence and Uniqueness Theorem: α(t) = φ(t) for all t, i.e.,

PeBtb = eAtPb,

for all t. Since this holds for all vectors b, it follows that

PeBt = eAtP,

for all t. Differentiating both sides of this identity gives

PBeBt = AeAtP,

Proof: Suppose first that the systems are linearly equivalent, so that P
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and taking t = 0 in this yields PB = AP , or equivalently B = P−1AP , as
desired.

The theorem gives us a reason to look for a matrix B in the similarity
class:

[A] = {P−1AP |P is invertible},

which has a particularly simple form. The study of the phase portrait of
x′ = Ax is reduced to the simpler case y′ = By, where B = P−1AP . The
correspondence between the respective phase portraits is given by

x = Py.

Also note that since A and B are related by A = PBP−1, results from
Appendix C give

eAtc = ePBP−1tc

= PeBtP−1c,

for every t ∈ R and c ∈ R
n. This gives us a way to compute the general

solution: φt(c) = eAtc, of x′ = Ax provided we know how to compute eBt.
Out of all the matrices similar to a given matrix A we will choose the

one known as the Jordan canonical form J for A. This is our choice of
simplest form in the similarity classes, even though one could use some other
choice as well. In this case the computation of eJt is quite simple and the
corresponding canonical system y′ = Jy is has the simplest possible phase
portrait.

The description of the Jordan canonical form for a matrix A is somewhat
complicated. As a motivation, we first discuss two special classes of matrices
where the description is easy.

4.5.1 Diagonalizable Matrices

When A is a diagonalizable matrix, its Jordan canonical form is, as we
shall see, an appropriate diagonal matrix J = D, with P−1AP = D. This
certainly seems desirable, since a diagonal matrix is most simple and the
corresponding dynamical system y′ = Dy is as simple as one can ask for.
Let’s look at this in more detail.

Suppose A is an n × n matrix satisfying the hypotheses of the Real
Eigenbasis Theorem, i.e., there is a basis: v1, . . . , vn, of R

n consisting of
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eigenvectors of A: say, Avj = λjvj . This of course implies that all the
eigenvalues of A, namely λ1, . . . , λn, are all real. Note, we are not assuming
all the eigenvalues are distinct. From such a basis of eigenvectors v1, . . . , vn,
we can form a matrix P whose columns are the respective vectors vj . We
indicate this by:

P = [v1, . . . , vn].

Note that P is an invertible matrix since v1, . . . , vn is a basis (exercise). Now
using properties of matrix multiplication, one sees that

AP = A[v1, . . . , vn] = [Av1, . . . , Avn]
= [λ1v1, . . . , λnvn] = [v1, . . . , vn]D
= PD, (4.104)

where D is the diagonal matrix

D = diag(λ1, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
0 0 · · · λn

 (4.105)

This shows that A is diagonalizable: P−1AP = D, and gives an explicit
construction for finding a matrix P that diagonalizes A. Conversely if A is
diagonalizable, i.e., if there exists an invertible matrix P such that P−1AP =
D, whereD is a diagonal matrix, then necessarily the columns of P constitute
a basis of eigenvectors of A, and the diagonal entries of D are precisely the
eigenvalues of A (convince yourself of this!).

The above discussion motivates the notion of the Jordan form in the very
special case when A is diagonalizable. The Jordan form is just a diagonal
matrix made up of the eigenvalues of A. Note, by not specifying how to
order the eigenvalues along the diagonal of D, we are being rather nebulous
about what D is, and in fact we get a different J = D for each ordering.
Otherwise said, in the diagonalizable case, a Jordan form (rather than the
Jordan form) for A is just any one of these diagonal matrices.

Example 4.17 The matrix

A =

[
11 −10
10 −14

]
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is diagonalizable, since its characteristic polynomial pA(λ) = λ2 + 3λ − 54
has two distinct real roots: −9, 6. Two corresponding eigenvectors are v1 =
(1, 2), v2 = (2, 1). It’s easy to verify that if we let

P =

[
1 2
2 1

]
,

then

P−1AP =

[
−9 0
0 6

]
≡ J.

The canonical system y′ = Jy is as simple as possible. Its phase portrait is
shown on the right in Figure 4.22. The phase portrait of the original system:
x′ = Ax is shown on the left in Figure 4.22 and is readily seen to be similar
to the canonical system.

Figure 4.22: (Left): Phase portrait for a linear system. (Right): Phase
portrait of the corresponding canonical system.

The linear transformation x = Py transforms the integral curves of the
canonical system into integral curves of the original system. The matrix
exponential for the canonical system is easy to compute since

Jk =

[
−9 0
0 6

]k

=

[
(−9)k 0

0 6k

]
for every k. From this we get

eJt =
∞∑

k=0

tk

k!
Jk
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=
∞∑

k=0

tk

k!

[
(−9)k 0

0 6k

]

=

[ ∑∞
k=0

(−9t)k

k! 0
0

∑∞
k=0

(6t)k

k!

]

=

[
e−9t 0
0 e6t

]
.

Now we can compute eAt, using: A = PJP−1 and an identity from the
Appendix:

eAt = ePJP−1t = PeJtP−1

=

[
1 2
2 1

] [
e−9t 0
0 e6t

] [
−1

3
2
3

2
3 −1

3

]

=

 −1
3e

−9t + 4
3e

6t 2
3e

−9t − 2
3e

6t

−2
3e

−9t + 2
3e

6t 4
3e

−9t − 1
3e

6t

 .
This computation is readily seen to generalize to the computation of eAt for
any diagonalizable matrix A. The general solution of x′ = Ax can now be
written as

φt(c) = eAtc

=
1
3

 (−c1 + 2c2)e−9t + (4c1 − 2c2)e6t

(−2c1 + 4c2)e−9t + (2c1 − c2)e6t

 .
Note: While it is instructive to write out the general solution in this form,
it is sometimes better to write the general solution as we did before in terms
of the eigenvectors. To see how this is actually contained in the above
computation, we relabel the arbitrary constants as b = (b1, b2) ≡ P−1c.
Then

γ(t) = eAtc = PeJtP−1c = PeJtb

= P

[
b1e

−9t

b2e
6t

]
= b1e

−9tv1 + b2e
6tv2
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4.5.2 Complex Diagonalizable Matrices
As the complex analog of what we did in the last section, suppose the hy-
potheses of the Complex Eigenbasis Theorem hold. That is, suppose n = 2p
and that A is an n × n real matrix with complex (nonreal) eigenvalues
λj = aj + bji, bj 
= 0, for j = 1, . . . , p and corresponding complex eigen-
vectors vj = uj + iwj , j = 1, . . . , p, which are linearly independent over C.
Then while it is possible to diagonalize A over the complex numbers (exer-
cise), it is not possible to find a real matrix P , so that P−1AP is a diagonal
matrix. However, what we can do is the following.

According to Theorem 5.6, the equations: Avj = λjvj , j = 1, . . . , p, are
equivalent to

Auj = ajuj − bjwj

Awj = bjuj + ajwj,

for j = 1, . . . , p. We can write this in matrix form as

A [uj , wj ] = [uj , wj ]

[
aj bj
−bj aj

]
(j = 1, . . . , p),

where [uj , wj ] is the n × 2 matrix with columns uj , wj . Thus, if we let
P = [u1, w1, . . . , up, wp] be the n × n matrix with the indicated vectors as
columns, then the matrix equations above can be combined into a single
matrix equation:

AP = A[u1, w1, . . . up, wp]

=

 | | | |
u1 w1 · · · up wp

| | | |




a1 b1
−b1 a1

. . .
ap bp
−bp ap

 .

For later use we let C(aj, bj) is the 2 × 2 matrix:

C(aj, bj) ≡
[

aj bj
−bj aj

]
.

Consequently, P is an invertible matrix such that

P−1AP = J,
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where J is the n× n, block diagonal, matrix

J =


C(a1, b1) 0 · · · 0

0 C(a2, b2) · · · 0
...
0 0 · · · C(ap, bp)

 ,

with the 2 × 2 matrices C(aj, bj) on the diagonal. While the matrix J is
block diagonal, it is not diagonal since the blocks are not 1 × 1 matrices.
But this is the best we can do with the assumptions on A, and so we take J
to be the Jordan canonical form for A.

Example 4.18 As we saw in Example 4.13 for two coupled masses, the 4×4
matrix

K =


0 0 1 0
0 0 0 1

−2 1 0 0
1 −2 0 0


has complex eigenvalues λ1 = i, λ2 =

√
3 i, with corresponding complex

eigenvectors v1 = (1, 1, i, i), v2 = (1,−1,
√

3 i,−
√

3 i), which are linearly in-
dependent over C. According to the above discussion, the matrix

P ≡


1 0 1 0
1 0 −1 0
0 1 0

√
3

0 1 0 −
√

3


can be used to bring A to Jordan form: P−1AP = J , where

J =

[
C(0, 1) 0

0 C(0,
√

3)

]
=


0 1 0 0
−1 0 0 0
0 0 0

√
3

0 0 −
√

3 0

 .
It is left as an exercise to compute P−1 and verify this result directly.

4.5.3 The Nondiagonalizable Case: Jordan Forms
We have just seen that when A is diagonalizable, a convenient choice for
a corresponding canonical system is y′ = Jy, where J the diagonal matrix
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obtained by diagonalizing A. In addition, when A is complex diagonalizable,
a sensible choice of canonical system involves a J which is block diagonal
with the special 2 × 2 matrices C(a, b) on the diagonal. To generalize these
results to other cases requires the theory of Jordan forms.

This theory says that (1) any given n×n matrix A is similar to a matrix
J with a very special form, a Jordan form, and (2) when A is diagonalizable,
J is a diagonal matrix obtained by diagonalizing A. In this subsection we
describe what an n × n Jordan form is. The association of a given matrix
with its corresponding Jordan form is more difficult to describe. This is done
in Appendix C.

Definition 4.5 (Jordan Forms) An n×n Jordan form (or Jordan canon-
ical form) J is a special type of n × n matrix which is built out of Jordan
blocks (which are matrices of smaller size). We first describe what a Jordan
block looks like. There are two types: real and complex. A real Jordan block
(of size k) is a k × k matrix of the form:

Jk(λ) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

. . . . . .
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 . (4.106)

The matrix indicated by (4.106) has λ’s down the diagonal and 1’s on the
supradiagonal. It’s not hard to see that Jk(λ) has λ as its only eigen-
value (repeated k times), and that the corresponding eigenspace Eλ is one-
dimensional, being spanned by the vector e1 = (1, 0, . . . , 0). Furthermore,
we can decompose Jk(λ) into a sum of commuting matrices:

Jk(λ) = λIk +Nk, (4.107)

where Ik is the k × k identity matrix, and Nk is a nilpotent matrix, i.e.,
some power of it is the zero matrix, in this case the kth power: Nk

k = 0. You
should verify these assertions.

On the other hand, a complex Jordan block is a matrix of the form

C2m(a, b) =


C(a, b) I2 0 0 · · · 0

0 C(a, b) I2 0 · · · 0
...

...
...

0 0 0 C(a, b) I2
0 0 0 0 C(a, b)

 (4.108)
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The matrix indicated by (4.108) is a 2m × 2m matrix, given in block form
in terms of the 2 × 2 matrices:

C(a, b) =

[
a b
−b a

]
, (4.109)

and I2 is the 2 × 2 identity matrix. In (4.108), the C(a, b)’s are arranged
along the diagonal, and the I2 on the supradiagonal. Note that in the above
notation C(a, b) = C2(a, b). You should verify the following properties of
the complex Jordan block C2m(a, b). It has only a± bi as eigenvalues (each
repeated m times). One can decompose it into a sum of commuting matrices:

C2m(a, b) = D2m(a, b) +M2m, (4.110)

where M2m is nilpotent: Mm
2m = 0.

With these preliminaries out of the way, we now define what is meant
by a Jordan canonical form, sometimes called a Jordan form, or a Jordan
matrix. It is a matrix which is either (1) a single real Jordan block Jk(λ), or
(2) a single complex Jordan block C2m(a, b), or (3) a matrix built up from
real and complex blocks (of varying size) arranged along the diagonal, viz.:

J =



Jk1(λ1)
. . .

Jkr(λr)
C2m1(a1, b1)

. . .
C2ms(as, bs)


. (4.111)

It is understood in this description of J that there might be no real Jordan
blocks, or there might be no complex Jordan blocks, but if both types are
present, the real ones are listed first along the diagonal. We also agree to
arrange the real blocks in order of decreasing size: k1 ≥ · · · ≥ kr, and
likewise for the complex blocks: m1 ≥ · · · ≥ ms. Further, the λ’s, a’s, and
b’s in (4.111) are not assumed to be distinct. Note that if the general Jordan
matrix J indicated in (4.111) is n× n, then

n = k1 + · · · + kr + 2m1 + · · · + 2ms.

Also it is clear that the eigenvalues of J are λ1, . . . , λr, and a1± b1i, . . . , as±
bsi.
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That concludes the definition of what a Jordan canonical form is. Note
that one possible Jordan form is a diagonal matrix. This is where there are
only real blocks in (4.111) and all these blocks are of size 1: J1(λ1), . . . ,J1(λn).

The major theorem concerning Jordan forms is the following:

Theorem 4.12 (Jordan Canonical Form) If A is any n×n matrix, then
there exists an invertible matrix P , such that:

P−1AP = J,

where J is a Jordan canonical form.

Example 4.19 (2 × 2 Jordan Forms) What are all the possible 2×2 Jor-
dan forms J? To enumerate these, consider the type (real/complex) and
number of Jordan blocks that J could be composed of. Thus, if J has any
complex blocks, there can be only one and this block must be all of J . So
J = C(a, b). The other possible forms of J then must consist entirely of real
blocks, and J can have either (a) one such block: J = J2(λ), or (b) two real
blocks: J = [J1(λ), J1(µ)]. Thus, we find only three possible 2 × 2 Jordan
forms:

(1)

[
λ 1
0 λ

]
, (2)

[
λ 0
0 µ

]
, (3)

[
a b
−b a

]
.

Note that λ, µ, a, b can be any real numbers (zero included) and that λ = µ
in form (2) is also a possibility. Of course b 
= 0. Thus, while we are only
listing three distinct Jordan forms in the enumeration, any one of the three
can have a drastically different phase portrait depending on the signs of the
constants λ, µ, a, b and whether some of them are zero or not. If we limit
ourselves to the cases where the origin is a simple fixed point, i.e., det(J) 
= 0,
so that 0 is the only fixed point, then necessarily λ 
= 0 and µ 
= 0. Figure
4.23 shows the phase portrait for Case (1), which is called an improper node.
This name is based on the fact the matrix of type (1) has only one eigenvalue
λ and the corresponding eigenspace is 1-dimensional.

The Jordan form (2), which is diagonal, has three different types of phase
portraits associated with it and these depend on the nature of the eigenvalues
λ, µ. See Figure 4.24. These possibilities are (2a) λ = µ equal, or (2b) λ 
= µ
and have the same sign, or (2c) λ 
= µ and have opposite signs.

The pictures for forms (1), (2a), and (2b) are for the case where λ, µ are
negative, and as you can see the flow is directed toward the fixed point at
the origin. For this reason the origin is called a stable fixed point (we discuss
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Figure 4.23: Canonical phase portrait for an improper node, with λ < 0.

Figure 4.24: Canonical phase portraits for a star node (µ = λ < 0), node
(µ < 0, λ < 0), and saddle point (µ < 0, λ > 0).

stability of systems later in more detail). The names improper node, star
node, and node are used to refer to the three different behaviors exhibited in
(1), (2a), and (2b). The fixed point that occurs in case (2c) (real eigenvalues
of opposite sign), is called a saddle (or hyperbolic) point. It is an unstable
fixed point since any integral curve starting near it will move away from it
off to infinity.

The remaining two canonical phase portraits, shown in Figure 4.25, are
for the complex eigenvalue cases (3a)-(3b). The fixed point in case (3a) is
called a focus and is stable in the picture shown, which is drawn assuming
a < 0. In the other case (3b), the fixed point is referred to as a center and
is stable regardless of whether b is negative (case shown in the picture) or
positive.
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Figure 4.25: The canonical phase portraits corresponding to complex eigen-
values are a focus (when a 
= 0) and center (when a = 0).

Summary: By the theory of linear equivalence any linear system in the
plane: x′ = Ax, with det(A) 
= 0, will have a phase portrait similar to one
of the six canonical phase portraits shown in Figures 4.23-4.25.

Example 4.20 In a previous example we saw that the matrix

A =

[
−3 −2
17 3

]
,

had eigenvalues λ = ±5i and a corresponding complex eigenvector v =
(−2, 3 + 5i). Taking the real part u = (−2, 3), imaginary part w = (0, 5),
and forming a matrix P with these vectors as columns gives

P =

[
−2 3
0 5

]
.

For this choice of P , it’s easy to compute that

P−1AP =

[
0 5
−5 0

]
= C(0, 5),

which shows that J = C(0, 5) is the Jordan form for A. Thus, we know
that the phase portrait for x′ = Ax will be similar to the center point phase
portrait in Figure 4.25.

Example 4.21 (3 × 3 Jordan Forms) To enumerate the possible 3 × 3
Jordan forms J , first consider the case where J consists entirely of real
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Jordan blocks. These blocks can have sizes ranging from 3 down to 1,
and thus the possibilities are: J = J3(λ), J = [J2(λ), J1(µ)], and J =
[J1(λ), J1(µ), J1(ν)]. Next, if J has any complex blocks it can have only
one and it must be a C(a, b) (since complex blocks come only in even sizes).
Thus, J = [J1(λ), C(a, b)] is the only such possibility. Our reasoning leads
us to conclude that J must have one of the following four forms:

(1)

 λ 1 0
0 λ 1
0 0 λ

 , (2)

 λ 1 0
0 λ 0
0 0 µ

 ,

(3)

 λ 0
0 µ 0
0 0 ν

 , (4)

 λ 0 0
0 a −b
0 b a

 .
In this enumeration the constants λ, µ, ν, a, b can have any real values with
the exception that b 
= 0. As in the last example, the four Jordan forms
listed here can have distinctly different phase portraits depending on the
values of these constants. We will not discuss here the various possibilities.

Final Remark: From a mathematical point of view, this section has shown
that understanding the types of behavior of a given linear systems x′ = Ax,
is reduced to understanding what can occur for any of the canonical systems
y′ = Jy. Knowing which of these canonical behaviors is exhibited by the
given system is another matter.

The determination of the Jordan canonical form J for a given matrix A
can be difficult, if not impossible, to do in practice. Since the eigenvalues
of A are needed in the Jordan form, the first step is to determine them.
Then R

n can be decomposed as a direct sum of generalized eigenspaces
and pseudo-eigenspaces (cf. Appendix C), and then an algorithm can be
developed for choosing bases of cyclic vectors for these subspaces. Maple
has a built-in procedure, based on this approach, for not only determining
J , but also a matrix P that brings A to Jordan form: P−1AP = J . See the
worksheet jorforms.mws on the electronic component. As with all computer
algorithms, there can be problems in using this procedure due to numerical
error, memory overload, and run times.
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Exercises 4.5
1. Show that the notion of similarity is an equivalence relation on the set Mn

of all n × n matrices. Thus, linear equivalence is an equivalence relation on
the set of all linear, homogeneous, constant coefficient systems.

2. Suppose v1, . . . , vn is a basis for R
n consisting of eigenvectors of A and let

P = [v1, . . . , vn] be the matrix formed with these vectors as columns. Show
that P is invertible. We used this result in showing that A is diagonalizable
when R

n has a basis of eigenvectors for A. Show that, conversely, if A is
diagonalizable, then R

n has a basis of eigenvectors of A.

3. (Complex Diagonalizability) Suppose n = 2p and that A is an n× n real
matrix with complex (nonreal) eigenvalues λj = aj + bji, bj 
= 0, for j =
1, . . . , p and corresponding complex eigenvectors vj = uj + iwj , j = 1, . . . , p,
which are linearly independent over C. Show that there is an n×n, complex
matrix P , which is invertible and

P−1AP = diag(λ1, λ1, . . . , λp, λp),

where the matrix on the right is the diagonal matrix with the λj ’s and their
complex conjugates on the diagonal.

4. For each of the possible 2 × 2 and 3 × 3 Jordan forms J :

(a) Compute eJt =
∑∞

k=0
tk

k! J
k explicitly. Hint: In some cases it will be

convenient to split J into the sum of two matrices: J = M +N , where
M and N commute.

(b) Write out the general solution: y = etJc, of the canonical system, y′ =
Jy, explicitly in the forms:

y1 = . . .
y2 = . . .

or
y1 = . . .
y2 = . . .
y3 = . . .

.

5. Write down all the possible 4 × 4 Jordan canonical forms J .

6. Calculate etJ , where J is the matrix:

J =



−1 2 1 0
−2 −1 0 1
0 0 −1 2
0 0 −2 −1

−3 1 0 0
0 −3 1 0
0 0 −3 1
0 0 0 −3


.
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7. In a previous exercise you drew the phase portrait for two of the 3×3 canonical
systems. Examples of the remaining two types of 3 × 3 systems are:

(a)

A =

 −1 1 0
0 −1 0
0 0 −1/2


(b)

A =

 −2 1 0
0 −2 1
0 0 −2


Use a computer to draw the phase portraits for these two examples. Use a
window size: −10 ≤ x, y, z ≤ 10. Mark the directions on the integral curves
and label the eigenspaces (if any). You will have to use your judgment on
how best to display the main features of the phase portrait.

8. For each of the following systems: x′ = Ax:

(i) Determine the Jordan form J for A.
(ii) Find a matrix P such that P−1AP = J . To check your answer, Com-

pute P−1 and then P−1AP .
(iii) Explicitly compute G(t) = eAt = PeJtP−1. Check your answer by (i)

computing AG(t) and comparing with G′(t) and (ii) evaluating G(0).
(iv) Draw, by hand and by computer, the phase portraits for the system

x′ = Ax and y′ = Jy.

(a) A =
[

7 −6
4 −7

]
(b) A =

[
1 −1
2 −1

]
(c)

A =

 4 −5 −5
4 −5 −2
1 1 −2


For this problem: find an equation for the plane in R

3, with the property
that all integral curves that start at a point in this plane, remain in
this plane for all time. Can you rotate so that your view is looking
perpendicularly down on this plane ?

(d)

A =

 5 −4 −4
4 −5 −2
0 0 −3
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9. Show that equation (4.107) holds and that the matrix Nk there is nilpotent:
Nk

k = 0. Do a similar thing for equation (4.110).

10. Explain why the eigenvalues of the matrix (4.111) are λ1, . . . , λr, and a1 ±
b1i, . . . , as ± bsi.

11. Study the material on the Maple worksheet jorforms.mws and work the
exercises listed there.

12. Read the material in CDChapter 5 on the electronic component that pertains
to linear, discrete dynamical systems and work the exercises there.

4.6 Summary
This chapter discussed the theory for linear systems of differential equations,
which in general have the form

x′ = A(t)x+ b(t),

where A : I → Mn and b : I → R
n are given continuous functions on

an interval I, which we can assume contains 0. The key ingredient for
understanding the integral curves and geometric properties of such systems is
the fundamental matrix G. This is the differentiable, matrix-valued function:
G : I → Mn, which satisfies

G′(t) = A(t)G(t) (for all t ∈ I),
G(0) = I.

In terms of the fundamental matrix, the general solution of the linear system
is given by the formula

α(t) = G(t)c +G(t)
∫ t

0
G(s)−1b(s) ds (for t ∈ I),

where c = (c1, . . . , cn) ∈ R
n is an arbitrary vector. The first term gives the

general solution β(t) ≡ G(t)c of the corresponding homogeneous equation
x′ = A(t)x, while the second term gives an integral curve γ which is a
particular solution of the nonhomogenous equation.

The chapter predominantly concentrated on the study of homogeneous,
constant coefficient, systems x′ = Ax. For such systems the fundamental
matrix is given by

G(t) = eAt =
∞∑

k=0

Ak t
k

k!
,
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and this is can be effectively computed either exactly, by using the Jordan
form for A (see Chapter 6), or approximately, by using the terms in its Taylor
series expansion (see the Maple worksheet matexpo.mws on the electronic
component).

The flow map for the system x′ = Ax is given simply by

φt = eAt,

and this formula indicates why properties of the matrix A are reflected in
corresponding properties for the integral curves φt(c) = eAtc of the system.
The formula φt(c) = eAtc for the general solution can be calculated by several
methods.

(1) The eigenvalue/eigenvector method: This requires decomposing c:

c ∈ R
n = GEµ1 ⊕ · · · ⊕GEµr ⊕GEp1±q1i ⊕ · · · ⊕GEps±qsi,

in terms of generalized eigenvectors and then determining the action of eAt

on the respective generalized eigenvectors. The chapter only pursued this
method for the case when A is diagonalizable over C. Even with this limited
setting, the derivation of the formula for eAtc in terms of eigenvectors and
eigenvalues helps one understand the basic geometry of the integral curves
and lays the foundation for the stability results in Chapter 6.

(2) The transformation method: This method computes the desired formula

φt(c) = eAtc = PeJtP−1c,

from the Jordan canonical form J for A and the matrix P that brings A
to Jordan form: P−1AP = J . This method actually is just the eigen-
value/eigenvector method in disguise: P is made up of all the (generalized)
eigenvectors and J contains the eigenvalues and basic structure of A (Cf.
Exercise 4 in Section 2 of Chapter 6).



Chapter 5

Linearization & Transformation

In this chapter we present two basic techniques that are useful for analyzing
nonlinear systems. One technique consists of linearizing about the fixed
points to obtain local, qualitative pictures of the phase portrait via the
corresponding linear systems. Thus, our previous work on linear systems
has direct bearing on nonlinear systems. The validity of this technique is
contained in the Linearization Theorem, which we present later on, after
first applying it in numerous examples and exercises.

The other technique studied here, which has broader significance, in-
volves the idea of transforming one system of DEs into another, perhaps
simpler, system. You have already studied this for linear systems where
the transformation was via a linear transformation and the resulting simpler
system was the linear system determined by the Jordan form. The general
technique uses nonlinear transformations and is motivated by the example
of transforming to polar coordinates which you studied in Chapter 2. The
transformation theory also motivates the notion of topological equivalence
of systems of DEs, which is the basis for the Linearization Theorem.

5.1 Linearization
The linearization technique is quite easy to describe. Thus, suppose

x′ = X(x)

is a given system of DEs, determined by a vector field X : O → R
n on

an open set O ⊆ R
n. By algebraic or numerical means we look for the

fixed points of the system: points c ∈ O where the vector field X vanishes:
X(c) = 0. These give us constant solutions: α(t) ≡ c,∀t ∈ R. Such solutions

© Springer Science + Business Media, LLC 2010
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are not per se very interesting, but the theory (with some exceptional cases)
is that near each fixed point c ∈ O, the phase portrait of the nonlinear
system resembles the phase portrait of the corresponding linear system:

y′ = Ay,

where A is the Jacobian matrix, or derivative, of X at c:

A ≡ X ′(c).

The precise nature of this similarity between the phase portraits will be
established shortly.

We emphasize that this is only a local similarity of phase portraits (namely,
similarity in a small neighborhood of the fixed point). Thus, if we find five
fixed points for a system, we get five corresponding linear systems, and a
rough idea of what the nonlinear system looks like near each fixed point.
When we back off and look at the global picture, the theory does not tell us
how to connect up the integral curves in the five local pictures to get the
global integral curves.

We also emphasize that some types of fixed points c form exceptional
cases to the linearization technique. That is, the phase portrait of the non-
linear system near c need not be similar to that of y′ = Ay, near zero. These
cases occur when either det(A) = 0 or when A has a purely imaginary eigen-
value. The following is some special terminology that is in common use for
the linearization technique:

Definition 5.1 (Hyperbolic and Simple Fixed Points) A fixed point
c of a vector field X : O → R

n is called a hyperbolic fixed point if each
eigenvalue λ = a+ bi, of the matrix

A ≡ X ′(c),

has nonzero real part: a 
= 0. If detA 
= 0, then c is called a simple fixed
point. Note that a hyperbolic fixed point is simple and that a nonhyperbolic
fixed point is either nonsimple or A has a purely imaginary eigenvalue. A
hyperbolic fixed point is further classified by the real parts of the eigenvalues
of A. If every real part is negative, it is called a sink; (2) if every real part
positive it is called a source; (3) if at least two of the real parts have opposite
signs, it is called a saddle.

We work through a number of examples illustrating the linearization
technique, before going into the theory in more detail.
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Example 5.1 (Predator-Prey) The general form for the predator-prey
system is

x′ = (a− by)x
y′ = (cx− d)y,

where a, b, c, d are parameters (nonnegative constants). With x representing
the number of prey (say rabbits) and y the number of predators (say foxes),
the interpretation of the form of the predator-prey system comes from the
observation that if there are only a small number of foxes (y ≈ 0), then
the first equation in the system is approximately: x′ = ax, so the rabbit
population increases exponentially. On the other hand for a relatively large
number of foxes (a−by) < 0, the first equation of the system is approximately
exponential decay of the rabbit population. Similarly, in the second equation
of the system, if there are only a small number of rabbits (x ≈ 0), then the
DE is approximated by: y′ = −dy, i.e., the fox population exponentially
decays to 0 (there is very little for them to eat).

For clarity in applying the linearization technique, we specialize to the
case where the parameters a = 10, b = 1, c = 1, d = 50 (see the exercises for
the general case):

x′ = (10 − y)x (5.1)
y′ = (x− 50)y, (5.2)

The vector field here is given by

X(x, y) =
(

(10 − y)x, (x− 50)y
)
,

and the fixed points are easily seen to be:

(0, 0), (50, 10).

Next, we compute the derivative of X and get

X ′(x, y) =

[
10 − y −x
y x− 50

]
.

Evaluating this at the two fixed points yields the matrices:

A = X ′(0, 0) =

[
10 0
0 −50

]
, B = X ′(10, 50) =

[
0 −50
10 0

]
.
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The point (0, 0) is a hyperbolic fixed point and the theory is that near the
point (0, 0), the nonlinear phase portrait looks like that of the linear system
v′ = Av at (0, 0), and thus should resemble a saddle point. This is why such
fixed points are called hyperbolic: the linearized system has integral curves
that are hyperbolas (and their asymptotes).

The other fixed point (50, 10) is nonhyperbolic and has a corresponding
linear system v′ = Bv, which has a center at the origin. As we shall see
the Linearization Theorem is not strong enough to guarantee us that the
nonlinear system looks like a center near (50, 10). However other techniques
tell us this is the case. Thus, to sketch the phase portrait by hand we draw a
small saddle portrait around (0, 0) and small center portrait around (50, 10)
and take a stab at joining the integral curves to form a global picture. This
is shown in Figure 5.1.

Figure 5.1: Rough sketch of a predator-prey phase portrait modeled by: x′ =
(10 − y)x, y′ = (x − 50)y, based on the calculations that (0, 0) is a saddle
point and (50, 10) is a center. The straight line integral curves (separatrices)
are also shown.

We have also shown integral curves in the sketch that are straight lines,
the separatrices for the saddle point, and which just happen to coincide
with coordinate axes. Otherwise said, the lines with equations x = 0 and
y = 0 are invariant lines for the system, since they are invariant under the
flow map φ for the system. For an initial point c on one of these lines,
the integral curve t → φt(c) remains on this line for all time, t ∈ Ic. The
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Figure 5.2: Computer-drawn sketch of the same predator-prey phase portrait
for x′ = (10 − y)x, y′ = (x− 50)y.

invariant lines for this system are easily determined by inspection of the
two DEs comprising the system (as was done in Chapter 2). For x = 0 the
first equation is automatically satisfied and the second equation reduces to
y′ = −50y. Thus, the flow on the y-axis is toward the origin. On the other
hand, for y = 0 the second equation is automatically satisfied and the first
equation reduces to x′ = 10x. Thus, the flow on the x-axis is away from the
origin.

A much more accurate sketch of the phase portrait is the computer drawn
picture shown in Figure 5.2. Note: Since the predator-prey model represents
population sizes, we normally are interested only in the part of the phase
portrait in the 1st quadrant (where x ≥ 0, y ≥ 0). However from just
a mathematical point of view the complete phase portrait for this system
covers the whole plane.

We emphasize that the linearization technique is a valuable tool espe-
cially if the system is very complex or in a higher dimensional phase space.

Example 5.2 Here’s an abstract dynamical system, not pertaining to any-
thing in particular:

x′ = xy3 + x3 + y − 4
y′ = x3y − y2 + 1.
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Figure 5.3: Approximate locations of the fixed points for the system in Ex-
ample 5.2 are obtained as the points of intersection of the curves xy3 + x3 +
y − 4 = 0 and x3y − y2 + 1 = 0.

The fixed points for X(x, y) = (xy3 +x3 +y−4, x3y−y2 +1) must be found
numerically. The plots of the curves xy3+x3+y−4 = 0 and x3y−y2+1 = 0
are shown in Figure 5.3 and illustrate the approximate locations of the three
fixed points. Using a computer, we find the fixed points, approximated to
ten decimal places, are:

c1 = (0.844104506, 1.344954022)
c2 = (1.618800027,−0.2239139508)
c3 = (−1.101303898,−1.870387369).

It is also convenient to use a computer to compute the values Aj = X ′(cj), j =
1, 2, 3 of the Jacobian matrix at the fixed points and then to find the eigen-
values of these matrices. Thus, for example, we find that

A1 = X ′(c1) =

[
4.570424558 5.580703340
2.874886902 −2.088473862

]
,

and that the eigenvalues of this matrix are

λ = 6.449537816,−3.967587120.

Hence the linear system has a saddle point at the origin, and so the phase
portrait of the nonlinear system will look qualitatively like a saddle point
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Figure 5.4: Hand-drawn sketch of the phase portrait for the system in Ex-
ample 5.2, based on the linearization about the three fixed points.

in a small neighborhood of c1. With a similar analysis we find that the
eigenvalues for the matrices A2 and A3 are

λ = 6.825189775, 5.715039601

and
λ = −9.132572544, 8.632951735,

respectively. Thus, in the nonlinear system the phase portrait is similar to
an unstable node in a neighborhood of c2 and is similar to a saddle point in
a neighborhood of c3. Figure 5.4 shows a qualitative sketch of the nonlinear
phase portrait. Note that we have drawn the three local portraits to resemble
their linear counterparts. However, unlike the last example, the separatrices
for the two saddle points cannot be expected to be straight lines in general.
These will be distorted in the similarity between the linear and nonlinear
systems. However, the stability/instability and type of fixed points will be
the same in both systems. Note also that knowing the qualitative look of
the phase portrait near each fixed point is often not enough to get a global
qualitative sketch of the entire phase portrait. In this example it’s not too
hard to connect the three local pictures to get a global picture as indicated
in Figure 5.4. A more exact representation of the global phase portrait is
shown in the computer-generated picture in Figure 5.5.
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Figure 5.5: Phase portrait of x′ = xy3 + x3 + y − 4 and y′ = x3y − y2 + 1.

Comment: For systems in the plane, the nature of the fixed points (saddle,
node, or center) and the stability can usually be discerned from the direction
field plots. Thus, the linearization analysis is not so useful in dimension two,
except in theoretical work (see the Exercises). However in higher dimensions,
linearization is an essential tool for determining the nature of the fixed points
in any particular example (and for the theory too). This is true even in
dimension three where the direction field plot is visualizable, but mostly
difficult to read and analyze for information on the fixed points. The next
example exhibits this.

Example 5.3 This example is of an abstract dynamical system in R
3.

x′ = x(1 − y2) (5.3)
y′ = (x+ 3)z (5.4)
z′ = y(z − 2). (5.5)

The fixed points are the solutions of the system:

x(1 − y2) = 0
(x+ 3)z = 0
y(z − 2) = 0
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Figure 5.6: A sketch of the phase portraits for the linear systems: v′ = Av
and v′ = Bv, that arise from linearizing the system (5.3)-(5.5) at the fixed
points (−3,±1, 2).

and are easily determined to be the three points

(0, 0, 0), (−3,±1, 2).

The derivative of the vector field for this system is

X ′(x, y, z) =

 1 − y2 −2xy 0
z 0 x+ 3
0 z − 2 y

 .
Evaluating this at the three fixed points gives the matrices for the corre-
sponding linear systems, which decompose into block submatrices. Thus,

A = X ′(−3,−1, 2) =

 0 −6 0
2 0 0
0 0 −1

 ,
has a 2 × 2 sub block corresponding to a center at the origin (since its
eigenvalues are ±2

√
3 i). The 1×1 sub block gives an eigenspace E−1 which

is the z-axis. The phase portrait for the linear system v′ = Av, with v =
(x, y, z), is familiar to us from our previous work. A sketch of the linear
system’s phase portrait is shown in Figure 5.6. Since A has pure imaginary
eigenvalues, the Linearization Theorem does not guarantee that the linear
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and nonlinear systems will look similar at this fixed point. However, other
investigations will reveal that this is the case.

Similarly, at the fixed point (−3, 1, 2), we find that

B = X ′(−3, 1, 2) =

 0 6 0
2 0 0
0 0 1

 .
Since the 2×2 upper sub block of B has eigenvalues ±2

√
3, the linear system,

v′ = Bv, has a saddle point at the origin and the integral curves in the x-y
plane are hyperbolic-like. The system also has straight line integral curves
along the z-axis. Figure 5.6 shows a sketch of this linear system’s phase
portrait.

Finally, examining the remaining fixed point we find:

C = X ′(0, 0, 0) =

 1 0 0
0 0 3
0 −2 0

 .
This is entirely similar to the first case: the upper 1×1 sub block of C gives
the eigenspace E1 which is the x-axis, with integral curve lying on this axis
directed away from the origin. The lower 2 × 2 sub block of C has purely
imaginary eigenvalues ±

√
6i, and gives that the integral curves starting in

the y-z plane are ellipses in this plane. Sketching the linear system’s portrait
gives the picture shown in Figure 5.7.

Figure 5.7: A sketch of the phase portrait for the linear system: v′ = Cv,
that arises from linearizing the system (5.3)-(5.5) at the fixed point (0, 0, 0).

To get a first, rough sketch of the nonlinear system’s phase portrait we
combine the three pictures shown in Figures 5.6-5.7 together into one picture
with the origins there located now at the respective three fixed points. In
doing this it is helpful to know that the nonlinear system has some invariant
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lines (straight-line integral curves) in its phase portrait. In fact, there are
four such lines and they can be determined by examining the form of the
system

x′ = x(1 − y2)
y′ = (x+ 3)z
z′ = y(z − 2).

If y = ±1 and x = −3, then the 1st and 2nd equations are automatically
satisfied and the 3rd equation reduces to z′ = ±(z−2). Thus, the two vertical
lines through the fixed points (−3,±1, 2) are invariant under the flow and
for y = +1, the flow is away from the fixed point, while for y = −1 the flow
is toward the fixed point. A third invariant line comes from y = 0 and z = 0.
Then the 2nd and 3rd equations are satisfied and the first equation becomes
x′ = x. This invariant line goes through the fixed point (0, 0, 0) and the flow
on it is away from the fixed point. A fourth invariant line, one that does
not pass through any of the fixed points, is the line x = 0, z = 2. On this
line the 1st and 3rd equations are satisfied and the 2nd equation is y′ = 6.
Thus, the flow on this line is uniformly in one direction.

Putting together all this information from the linearization and the analy-
sis of invariant lines gives the sketch shown in Figure 5.8.

Figure 5.8: Rough sketch of the phase portrait for the system: x′ = x(1 −
y2), y′ = (x+ 3)z, z′ = y(z − 2), near each of its three fixed points.
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Figure 5.9: The flow of the system (5.3)-(5.5) in the invariant plane x = 0
(on the left) and in the invariant plane z = 2 (on the right).

For this example there is also some additional information about the
phase portrait that comes from looking for invariant planes. These are
planes in R

3 that are invariant under the flow: if c is in the plane, then φt(c)
is in the plane for all t ∈ Ic. There are three such planes here and they can
easily be found by inspection of the system of DEs (5.3)-(5.5). Thus, for
x = 0 the 1st equation is automatically satisfied and the next two equations
reduce to the 2 × 2 system:

y′ = 3z
z′ = y(z − 2).

Thus, the plane x = 0 is invariant and the flow in this plane is governed by
the above 2× 2 system. This system has an invariant line z = 2, fixed point
at y = 0, z = 0, and corresponding linear system at this point, w′ = Mw,
where

M =

[
0 3
−2 0

]
.

Since the eigenvalues of M are ±
√

6 i, the origin is a center and we expect
that this is also the case in the nonlinear system. Figure 5.9 shows a com-
puter plot of the phase portrait for this system. The Figure also shows the
phase portrait for the system in the other invariant plane z = 2.
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Figure 5.10: Two views of the phase portrait.

In this plane the original system (5.3)-(5.5) reduces to

x′ = x(1 − y2)
y′ = 2(x+ 3),

which has fixed points at x = −3, y = 1 and x = −3, y = −1, with corre-
sponding linear systems w′ = Pw and w′ = Qw, where

P =

[
0 6
2 0

]
, Q =

[
0 −6
2 0

]
.

Thus, the two fixed points are a saddle and a center, respectively.
All of this analysis makes the study of the 3-D phase portrait somewhat

easier. Figure 5.10 shows the result.

Exercises 5.1
1. For each of the following nonlinear systems in the plane:

(i) Find all the fixed points and classify them by the Linearization Theorem
(saddle, node, possible center, etc.). Find all invariant lines, if any.
Make a sketch, by hand, of the phase portrait based on this information.
To help discern what the global picture is like, determine the direction
of the flow at a few selected points. On the finished sketch mark the
direction of flow on all integral curves.



234 Chapter 5. Linearization & Transformation

(ii) Use a computer to draw an accurate phase portrait which clearly ex-
hibits all the features you found in the first part of the problem. In
particular for the fixed points that are saddles try to draw in the sep-
aratrices by judiciously choosing the initial conditions. Mark the fixed
points clearly and show directions of flow on the integral curves. Note:
You should do part (i) before using the computer in this part. On tests
and examinations you may be expected to do the activities in part (i)
without a computer available.

(a)

x′ = (x− 2)(y + 2)
y′ = (x− 1)(y − 1)

(b)

x′ = (x− 2)(y + 2)
y′ = −(x− 1)(y − 1)

(c)

u′ = −u− 2v 1
2 (u2 − v2) − 3

v′ = −u+ 2v + 5

(d)

x′ = x(1 − y2)
y′ = (x2 − 1)y

(e)

x′ = (x+ y)/2 + x2

y′ = (3y − x)/2

(f)

x′ = (x− 1)(y − 2)
y′ = (y − x)(y + x)

(g) In this problem make two computer drawings: one with window size
about −3 ≤ x, y ≤ 3, and the other with a larger window size.

x′ = y2 − 3x+ 2
y′ = x2 − y2
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2. For the following systems use a computer to find the fixed points and the
eigenvalues of the Jacobian matrix at each fixed. Classify the fixed points
and make a rough sketch (by hand) of the phase portrait.

(a)

x′ = x3 − xy2 + y3 − 1
y′ = x3 − x− y2 + 1

(b)

x′ = x2y + x3 + xy3 + y + 1
y′ = x3y − x− x2y2 + 1

3. Consider the system

x′ = k(x− a)(y − b) (5.6)
y′ = m(x− c)(y − d), (5.7)

where k,m are nonzero constants and a, b, c, d are any constants with a 
=
c, b 
= d. Show that this system has two fixed points, two invariant lines, and
only two types of phase portraits. For the latter note that each of the two fixed
points could be a node, saddle, center, or focus, and so there technically could
be eight types of phase portrait possible when the constants m, k, a, b, c, d
are chosen appropriately. Show that in fact there are only two types and
determine what they are. Sketch each type and label the drawing with the
constants a, b, c, d.

Show that the system (5.6)-(5.7) can be transformed into a system of the
form:

u′ = ku(v − r) (5.8)
v′ = mv(u− s), (5.9)

by the change of variables (translation) u = x − a, v = y − d. Describe this
geometrically and explain the relation between the phase portraits for the
two systems.

4. Consider a system of the form

x′ = A(x)B(y) (5.10)
y′ = C(x)D(y), , (5.11)

where A,B,C,D are polynomial functions, with real roots {ai}α
i=1, {bj}

β
j=1,

{ck}γ
k=1, and {dm}δ

m=1 respectively.
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(a) Determine the fixed points, the invariant lines, and numbers of each in
terms of the roots of A,B,C,D.

(b) Show that a fixed point is nonsimple if and only if either A,C have a
common root or B,D have a common root, or one of A,B,C,D has a
repeated root.

(c) Determine which types of fixed points are possible (node, saddle, center,
or focus) and which combinations of these can occur in the phase por-
trait, e.g., is it possible to choose A,B,C,D so that the phase portrait
has two saddles and a node in it?

5. (Predator-Prey Model): For the general predator-prey model:

x′ = (a− by)x
y′ = (cx− d)y,

find all the fixed points and classify them according to the linearization theo-
rem. In the model one usually assumes the parameters a, b, c, d are all positive,
so you can assume this here.

6. For each of the following nonlinear systems in R
3:

(i) Find all the fixed points and classify them by the Linearization Theo-
rem. Find all invariant lines and invariant planes, if any. Make a sketch,
by hand, of the phase portrait based on this information.

(ii) Use a computer to draw an accurate phase portrait that clearly exhibits
all the features you found in the first part of the problem. If there are
invariant planes, create separate computer plots of the flow in these
planes.

(a)

x′ = (1 − x2)(z − 1)
y′ = x(y − 2)
z′ = (y + 1)z.

(b)

x′ = −y(z − 1)
y′ = x(z + 1)
z′ = z(y + 2).

(c)

x′ = y(z − 1)
y′ = x(z + 1)
z′ = (x− 1)z(y + 2).
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(d)

x′ = x(y − 4)(z − 2)
y′ = (x+ 2)y(z − 3)
z′ = (x+ 1)(y − 3)z.

7. The famous Lorenz system of DE’s is:

x′ = −sx+ sy

y′ = rx− y − xz

z′ = −bz + xy

where s, r, b are positive parameters. This system was introduced by E.
N. Lorenz in the paper: “Deterministic Nonperiodic Flow,” J. of the At-
mospheric Sciences, 20 (1963) 130-141. This exercise studies some aspects of
this system.

(a) Show that if r ≤ 1, then there is only one fixed point, while if r > 1
there are three fixed points. In each case linearize about the fixed point
and classify the fixed point.

(b) For the case r = 28, s = 10, and b = 8/3, sketch by hand the local
phase portrait near each fixed point and then use a computer to draw
the global phase portrait (or at least several integral curves which start
near each fixed point).

(c) Get a copy of Lorenz’s paper and (i) explain how he derives the Lorenz
system from a system of PDEs in Section 5, (ii) explain the details of
his analysis in Section 6, and (iii) use a computer to reproduce Figures
1 and 2 on page 137 of his paper.

5.2 Transforming Systems of DEs
The key idea behind the Linearization Theorem is the possibility of relating
the integral curves of two different systems: x′ = X(x) and y′ = Y (y), by
some sort of transformation. When this transformation has suitable proper-
ties, we can also directly transform one system into the other, which means
transforming the vector field X into the vector field Y (a much-used tech-
nique in differential geometry). The polar coordinate example discussed in
Chapter 2 and the transformation to canonical form for linear systems in the
last chapter are good motivations for the general technique we discuss here.
Before looking at the general technique, we return to the polar coordinate
transformation as a means of motivation.
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Transforming by the Polar Coordinate Map: We suppose

x′ = X1(x, y) (5.12)
y′ = X2(x, y), (5.13)

is any dynamical system in the plane (i.e., O ⊆ R
2). Transforming this

system by the polar coordinate map amounts to, in simplistic terms, looking
for solutions of the system that have the form

x = r cos θ (5.14)
y = r sin θ, (5.15)

where r = r(t) and θ = θ(t) are two unknown functions of t. To interpret
things geometrically we introduce the following definition.

Definition 5.2 The polar coordinate map is the map g : R
2 → R

2, defined
by:

g(r, θ) = (r cos θ, r sin θ),

for (r, θ) ∈ R
2.

Using this, we then assume that (x(t), y(t)) = g(r(t), θ(t)) is a solution of the
x-y system (5.12)-(5.13) and we derive a r-θ system of DEs that (r(t), θ(t))
must satisfy.

As we have seen before, differentiating both sides of (5.14)-(5.15) gives:

x′ = r′ cos θ − rθ′ sin θ (5.16)
y′ = r′ sin θ + rθ′ cos θ. (5.17)

Using these relations between the respective functions and their respective
derivatives, we can rewrite the original system entirely in terms of r and θ
to get

r′ cos θ − rθ′ sin θ = X1(g(r, θ)) (5.18)
r′ sin θ + rθ′ cos θ = X2(g(r, θ)). (5.19)

Solving these for r′ and θ′, as we did in Chapter 2, yields the desired form
of the polar version of the system:

Polar Coordinate Version:

r′ = cos θ ·X1(g(r, θ)) + sin θ ·X2(g(r, θ)) (5.20)

θ′ = − sin θ
r ·X1(g(r, θ)) + cos θ

r ·X2(g(r, θ)), (5.21)
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With the aim of generalizing the above procedure, we recast it in terms in
matrix form as follows. The solutions of the x-y system are related to the
solutions of the r-θ system by

(x, y) = g(r, θ).

By the chain rule, the respective derivatives are related by[
x′

y′

]
= g′(r, θ)

[
r′

θ′

]
,

where the Jacobian matrix of the polar coordinate map is

g′(r, θ) =

[
cos θ −r sin θ
sin θ r cos θ

]
.

Thus, the matrix form of the transformed system (5.18)-(5.19) is

g′(r, θ)

[
r′

θ′

]
= X(g(r, θ)).

Inverting the Jacobian matrix of the polar coordinate map, allows us to
rewrite this last equation as:

(r′, θ′) = g′(r, θ)−1X(g(r, θ)), (5.22)

which is the matrix version of (5.20)-(5.21). Thus, we see that the vector
field for the transformed system is

Y (r, θ) ≡ g′(r, θ)−1X(g(r, θ)).

This provides a motivation for the general method of transforming one vector
field into another, which is presented below. The definition, for technical
reasons, is phrased in terms of f ≡ g−1 rather than in terms of g.

The meaning, then, of the polar system (5.22) is this: Any solution curve
r = r(t), θ = θ(t), of the system gives rise to (is mapped onto) a solution
curve, (x, y) = g(r, θ), of the original system (5.12)-(5.13). Thus, if we can
plot the phase portrait in the r-θ plane of the polar system (5.22), then g
will transform this into the phase portrait of the original system in the x-y
plane. See Figure 5.11.

As with the canonical form for a linear system, the polar system is gener-
ally simpler than the original Cartesian system. However, it is important to
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Figure 5.11: The action of the polar coordinate map, transforming integral
curves of the polar system into integral curves of the original Cartesian sys-
tem.

note that the transformation to the polar system uses a nonlinear transfor-
mation and so the polar system will bear little resemblance to the Cartesian
system. Nevertheless, we can use the information in the polar system to
discern the features in the phase portrait of the original system. This, as
you learned in Chapter 2, relies upon interpreting θ as an angle and r as
a distance. Thus, in Figure 5.11, the integral curve β shows that r and θ
increase with time and so the corresponding integral curve α has a trajectory
that flows away from the origin in a counterclockwise movement.

With this as motivation, we now look at the general definition of trans-
forming vector fields by diffeomeorphisms.

Definition 5.3 (Transforming Vector Fields) We suppose that O and
O are open sets in R

n.

(1) A map f : O → O is called a diffeomorphism between O and O if it
is differentiable, 1-1, onto, and its inverse f−1 is also differentiable. In
the sequel we will often denote the inverse of f by g = f−1.

(2) If X : O → R
n is a vector field on O, and f : O → O is a diffeomor-

phism, then we get a transformed vector field: f∗(X) on O, defined
by

f∗(X)(y) = f ′(f−1(y))X(f−1(y)), (5.23)

for each y ∈ O. In differential geometry, this vector field is called
the push-forward of X by f . For y ∈ O, if we let x ≡ f−1(y), then
definition (5.23) says the value of the vector field f∗(X) at y is obtained
by transforming the vector X(x) by the Jacobian matrix f ′(x), i.e.,
f∗(X)(y) = f ′(x)X(x). Figure 5.12 shows an abstract picture of how
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Figure 5.12: Hypothetical picture of the transformation of the vector field X
into the vector field f∗(X) by a diffeomorphism f .

this transformation of the vector field works. We also mention a word
about the notation. As a transformation, or map, f transforms points
x ∈ O into points y = f(x) ∈ O, while f∗ denotes a different type of
transformation (one induced by f), which transforms vector fields X
on O into vector fields Y = f∗(X) on O.

(3) Suppose X : O → R
n and Y : O → R

n are two vector fields. We
say that the two systems: x′ = X(x) and y′ = Y (y), are differentiably
equivalent if there exists a diffeomorphism f : O → O, such that

Y = f∗(X).

We also say that the vector fields X and Y are differentiably equivalent
when this happens.

We consider a few examples to illustrate how this transformation works
and to verify it is the same as what we encountered previously.

Example 5.4 (Transforming by a Linear Transformation) SupposeQ
is an invertible n × n matrix, and let f : R

n → R
n denote the linear trans-

formation
f(x) = Qx,

(so that f−1(x) = Q−1x). The derivative of f at any x ∈ R
n is the same

matrix, namely Q:
f ′(x) = Q ∀x ∈ R

n.
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Thus, if X : O → R
n is any vector field, and we let O = f(O), then the

transformed vector field f∗(X) on O is given by

f∗(X)(y) = QX(Q−1y),

for every y ∈ O. A particular case of this, which we encountered in the
study of linear systems, is when

X(x) = Ax,

where A is an n× n matrix. Then the transformed vector field is

f∗(X)(y) = QAQ−1y.

As we saw in the chapter on linear systems, the matrix Q can be chosen so
that QAQ−1 = J is the Jordan canonical form for A. In this case the trans-
formed system is the canonical system, and according to the above definition,
the two systems x′ = Ax and y′ = Jy are differentiably equivalent. Thus,
the notion of differentiable equivalence is a generalization of the previous
notion of linear equivalence.

Example 5.5 (Polar Coordinate Transformation) While the polar co-
ordinate map g(r, θ) = (r cos θ, r sin θ), as a map from R

2 onto R
2, is in-

finitely differentiable, it is not a diffeomorphism (or even 1-1) unless we
restrict its domain. There are many possible restrictions, but suppose we
choose O = {(r, θ)|0 < r,−π/2 < θ < π/2} = (0,∞) × (−π/2, π/2). Then
one can check that g is 1-1 on O and has inverse:

f(x, y) =
(

(x2 + y2)1/2, tan−1(y/x)
)
,

defined on O = g(O) = (0,∞) × (−∞,∞). Thus, f (and also g) is a
diffeomorphism and

f ′(x, y) =


x

(x2+y2)1/2
y

(x2+y2)1/2

−y
x2+y2

x
x2+y2

 . (5.24)

Hence, the transformation formula for a vector field X on O is

f∗(X)(r, θ) = f ′(g(r, θ))X(g(r, θ))

=

[
cos θ sin θ
− sin θ
r

cos θ
r

] [
X1(r cos θ, r sin θ)
X2(r cos θ, r sin θ)

]
. (5.25)
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The corresponding transformed system of DEs is

(r′, θ′) = f∗(X)(r, θ),

and you can see this is the same as we found in equation (5.22) previously.

There are a number of interesting and useful transformations in R
3 that

are analogous to the polar coordinate transformation. First and foremost
is the spherical coordinate transformation which, as was the case for polar
coordinates, will enable us to sketch by hand the integral curves for some
systems in R

3 by looking at the corresponding system in spherical coordi-
nates. Visualization of phase portraits in R

3 is usually difficult and so any
additional aids like this are welcome.

5.2.1 The Spherical Coordinate Transformation

The transformation to spherical coordinates is traditionally given as

x = ρ sinφ cos θ
y = ρ sinφ sin θ
z = ρ cosφ.

As with the polar coordinate map, we formally get from this the spherical
coordinate map g : R

3 → R
3 defined by

g(ρ, θ, φ) = ( ρ sin φ cos θ, ρ sinφ sin θ, ρ cosφ ).

This map is differentiable with its derivative given by

g′(ρ, θ, φ) =

 sinφ cos θ −ρ sinφ sin θ ρ cosφ cos θ
sinφ sin θ ρ sinφ cos θ ρ cosφ sin θ

cosφ 0 −ρ sinφ

 . (5.26)

It is easy to calculate that det(g′(ρ, θ, φ)) = −ρ2 sinφ (exercise) and so, by
the Inverse Function Theorem, g has an inverse f = g−1 on a neighborhood
of any point (ρ, θ, φ) with ρ 
= 0 and φ not a multiple of π. It is also easy
to find some explicit formulas for f (exercise). There are several choices
depending on the choice of domain. Having a formula for f , we could use
this to explicitly compute the transformed vector field f∗(X) for any vector
field on the domain of f .
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However it is important to note that we can compute f∗(X) directly from
g without using f (and this works in general; see Exercise 2 below). Just
observe that by the formula for the derivative of an inverse function

f ′ (g(ρ, θ, φ)) = (g−1)′(g(ρ, θ, φ)) = g′(ρ, θ, φ)−1,

and thus

f∗(X)(ρ, θ, φ) = f ′(g(ρ, θ, φ))X(g(ρ, θ, φ))
= g′(ρ, θ, φ)−1X(g(ρ, θ, φ)).

Thus, all we need is the inverse of the Jacobian matrix of g. Applying
the formula for computing the inverse of matrix from its adjoint matrix
(A−1 = (A†)T ), we easily find that

g′(ρ, θ, φ)−1 =


sinφ cos θ sinφ sin θ cosφ

− sin θ
ρ sinφ

cos θ
ρ sinφ 0

cosφ cos θ
ρ

cosφ sin θ
ρ

− sinφ
ρ

 . (5.27)

Thus, with X given, we can define Y by

Y (ρ, θ, φ) = g′(ρ, θ, φ)−1X(g(ρ, θ, φ)),

and get the corresponding system of DEs in spherical coordinates:

(ρ′, θ′, φ′) = Y (ρ, θ, φ).

Alternatively, we could arrive at the same result by an argument like the
one we used for polar coordinates in deriving equation (5.22) (exercise)

In general the corresponding spherical coordinate system will be quite
complicated; however, there certain systems of differential equations that are
transformed into particularly simple spherical coordinate systems. These are
described in the following proposition.

Proposition 5.1 Suppose A,B,C : [0,∞) → R are differentiable functions.
Consider the system of DEs in R

3 of the following special form:

x′ = A(ρ)x−B(ρ)y + C(ρ)xz (5.28)
y′ = A(ρ)y +B(ρ)x+ C(ρ)yz (5.29)
z′ = A(ρ)z − C(ρ)(x2 + y2), (5.30)
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where, for convenience, we have let ρ ≡ (x2 + y2 + z2)1/2. Then this system
in Cartesian coordinates transforms into the following system in spherical
coordinates:

ρ′ = A(ρ)ρ (5.31)
θ′ = B(ρ) (5.32)
φ′ = C(ρ)ρ sinφ. (5.33)

Proof: Exercise.

It is easy to see that we could allow A,B,C to be more general expressions
of (x, y, z) and obtain an extension of the result in the proposition.

Example 5.6 Consider the case where A = 1 − ρ, B = 0, C = 1. Then the
Cartesian system in the proposition is

x′ = (1 − ρ)x+ xz (5.34)
y′ = (1 − ρ)y + yz (5.35)
z′ = (1 − ρ)z − (x2 + y2), (5.36)

and the corresponding spherical coordinate system is

ρ′ = (1 − ρ)ρ (5.37)
θ′ = 0 (5.38)
φ′ = ρ sinφ. (5.39)

Since the spherical coordinate system is quite simple, we can use it to analyze
and sketch, by hand, the original system (5.34)-(5.36). As with polar coor-
dinate systems we take advantage of what the spherical coordinates mean
geometrically in the Cartesian coordinate system.

Thus, suppose β(t) = (ρ(t), θ(t), φ(t)), for t ∈ I is a solution of the
spherical coordinate system (5.37)-(5.39). Then

α(t) ≡
(
ρ(t) sin φ(t) cos θ(t), ρ(t) sinφ(t) sin θ(t), ρ(t) cos φ(t)

)
, (5.40)

is a solution of the original system.
Now since θ′ = 0, it follows that θ(t) = θ0 is constant, and we conclude

that the integral curve α lies in the vertical plane through the origin that
makes an angle θ0 with the x-axis.
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Figure 5.13: Graphs of the solutions ρ of ρ′ = (1 − ρ)ρ.

The radial equation ρ′ = (1− ρ)ρ indicates how the distance ρ(t) of α(t)
from the origin is changing. This distance is increasing when 0 < ρ < 1
and is decreasing when ρ > 1. To be more specific, assume (without loss of
generality) that ρ(0) = ρ0 ≥ 0. Using the techniques from Chapter 4 (or by
just solving the radial equation directly) it is easy to see that the function ρ
has graph like one of those shown in Figure 5.13.

Case 1: (ρ0 = 0, 1) The two fixed points ρ0 = 0, 1 of the radial equation
give special solutions α of the original system. Corresponding to ρ0 = 0 is a
fixed point at the origin (0, 0, 0). However, for ρ0 = 1, we get that α remains
on the sphere of radius 1, centered at the origin. Since α is also on the plane
θ = θ0, it thus remains on the circle of radius 1, centered at the origin, in
this plane. If we take into account the polar angle equation φ′ = sinφ, then
we can conclude that α(t) → (0, 0,−1) as t → ∞, when ρ0 = 1, and φ0 is
not a multiple of π. See Figure 5.14.

The solutions φ in this figure (which are similar in form to those in
Figure 5.13) tend to π asymptotically as t → ∞. The exceptions are those
with φ(0) = 0, π, which correspond to fixed points, in the original system
(5.34)-(5.36), at the north and south poles (0, 0,±1) of the unit sphere.

Figure 5.14: Graphs of the solutions φ of φ′ = sinφ.
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Case 2: (ρ0 
= 0, 1) In this case the function ρ is either decreasing (if ρ0 > 1)
or increasing (if 0 < ρ0 < 1) and tends asymptotically to 1 as t → ∞. The
polar angle equation φ′ = ρ sinφ, will have solutions that are qualitatively
similar to those in Figure 5.14, and consequently

lim
t→∞α(t) = (0, 0,−1)

for all initial conditions except those with φ0 a multiple of π. When φ0 =
0, π, etc., α lies on the z-axis and approaches one of the three fixed points
(0, 0, 0), (0, 0,±1) of the original system. Figure 5.15 shows a sketch of the
integral curves in the plane θ0 = θ0 and a sketch of the phase portrait in
3-D.

Figure 5.15: Sketches of the integral curves of the system (5.34)-(5.36). The
sketch on the left shows the integral curves in a typical plane θ = θ0, which
is representative. The sketch on the right gives a spatial view of the phase
portrait.

Example 5.7 An interesting extension of the last example, but one that is
not too complex, arises from the choice of A = 1 − ρ,B = 1, C = 1. Then
the spherical coordinate version of this system is

ρ′ = (1 − ρ)ρ
θ′ = 1
φ′ = ρ sinφ.
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The only difference is that now the azimuthal angle equation θ′ = 1 has
solution θ(t) = t + θ0. So each integral curve α (cf. equation (5.40)) that
starts at a point not on the z-axis, will wind continually around the z-axis
as θ increases with t. At the same time α will approach the south pole of the
unit sphere: ρ→ 1, φ→ π (as before). Thus, α has a spiral-like appearance
and if ρ0 = 1, this spiral will lie completely on the unit sphere. If α starts
at a point on the z-axis, then it will remain on this axis and approach one
of the three fixed points (0, 0, 0), (0, 0,±1) of the system (just as before).
Figure 5.16 shows a hand-drawn sketch of the phase portrait together with
one drawn by Maple.

Figure 5.16: Sketches of the integral curves of the system with spherical
coordinate version ρ′ = (1 − ρ)ρ, θ′ = 1, φ′ = ρ sinφ. The sketch on the left
was done by hand while the one on the right was done by a computer.

5.2.2 Some Results on Differentiable Equivalence
An important interpretation of differentiable equivalence is contained in the
next theorem. It essentially gives an alternative definition of this concept,
namely two vector fields X and Y are differentiably equivalent if and only if
there is a diffeomorphism that maps the integral curves of X onto integral
curves of Y .

Theorem 5.1 (Differentiable Equivalence) Suppose X : O → R
n and

Y : O → R
n are vector fields on open subsets O and O of R

n, and suppose
f : O → O is a diffeomorphism. Then the following are equivalent:
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(a) f∗(X) = Y .

(b) For each integral curve α : I → R
n of X, the curve

β(t) = f(α(t)),

t ∈ I, is an integral curve of Y .

Proof: [(a) ⇒ (b)] Assume that (a) holds, and suppose that α : I → R
n is

an integral curve of X. To see that β(t) ≡ f(α(t)) is an integral curve of Y ,
we just use the chain rule, the definition of what f∗(X) = Y means, and the
assumption that

α′(t) = X(α(t)),

for all t ∈ I. Thus,

β′(t) =
d

dt
(f ◦ α)(t) = f ′(α(t))α′(t)

= f ′(α(t))X(α(t)) = f ′(f−1(β(t)))X(f−1(β(t)))
= f∗(X)(β(t)) = Y (β(t))

[(b) ⇒ (a)] Assuming (b) holds, we need to show that if y ∈ O then

Y (y) = f∗(X)(y) = f ′(f−1(y))X(f−1(y)).

For this, let x = f−1(y), and choose an integral curve α : I → O of X with
0 ∈ I and such that α(0) = x. The Existence and Uniqueness Theorem
guarantees that such a curve exists. Then assumption (b) says that β(t) ≡
f(α(t)), is an integral curve of Y . Note that β(0) = f(α(0)) = f(x) = y.
But then by the chain rule and the fact that α and β are integral curves, we
find

Y (y) = Y (β(0)) = β′(0) =
d

dt
f(α(t))

∣∣∣∣
t=0

= f ′(α(0))α′(0) = f ′(x)X(α(0))
= f ′(x)X(x) = f ′(f−1(y))X(f−1(y)).

This completes the proof.

The original definition of differentiable equivalence is most convenient to
use in any given example, where the form of the system x′ = X(x) be-
ing studied often suggests a transformation that will give a simpler sys-
tem: y′ = f∗(X)(y). The alternative definition of differentiable equivalence,
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Property (b) of the theorem, is more useful in geometrically interpreting the
relationship between the two systems. It just says the phase portraits of
the original system and the transformed system will look qualitatively the
same, one being a diffeomorphic distortion of the other (this distortion of-
ten is quite dramatic). Also note that since fixed points are integral curves,
Property (b) says that f establishes a 1-1 correspondence between the fixed
points of the original system and of the transformed system.

The other result we include here is rather straightforward to prove as
well, and is important and inherent in our terminology:

Theorem 5.2 The notion of differentiable equivalence is an equivalence re-
lation on the set of all vector fields X : O → R

n on open subsets of R
n.

The proof is left as an exercise. The theorem allows us to identify all
differentiably equivalent dynamical systems:

x′ = X(x), y′ = Y (y), z′ = Z(z), . . . ,

with one another, and think of them all as essentially the same.

Exercises 5.2
1. Prove that differentiable equivalence is an equivalence relation on the set of

all vector fields with domains in R
n. More particularly, prove that

(a) f∗(X) = Y =⇒ (f−1)∗(Y ) = X .

(b) f∗(X) = Y, g∗(Y ) = Z =⇒ (g ◦ f)∗(X) = Z.

These follow easily from the formula for the derivative of an inverse function
and the chain rule (see Appendix A).

2. As a generalization of the technique for transforming one vector field into
another, consider the following. Suppose X : O → R

n and Y : O → R
n are

two vector fields, and g : O → O is a differentiable map (we do not require g
to be a diffeomorphism). We say that g transforms Y into X if

g′(y)Y (y) = X(g(y)), ∀y ∈ O.

Based on this concept, do the following:

(a) Prove that the following statements are equivalent:

(1) g transforms Y into X ,
(2) g transforms each integral curve of Y into an integral curve of X .

That is: if β : I → O is an integral curve of Y , then α(t) ≡ g(β(t)),
for t ∈ I is an integral curve of X .
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(b) Suppose det(g′(y)) 
= 0, for every y ∈ O. Prove that for each vector
field X on O, there is a unique vector field Y on O that g transforms
into X . This vector field Y is called the g version of X and is defined
by

Y (y) = g′(y)−1X(g(y)), (5.41)

for y ∈ O. In addition, show that if g restricted to some open set U ⊆ O
is a diffeomorphism g : U → U and if f ≡ g−1 denotes the inverse map,
then

f∗(X) = Y.

As we have seen in the polar and spherical coordinate examples, it is
often easier to compute the transformed vector field Y using equation
(5.41) than it is to compute a local inverse f = g−1 and then transform
with that.

(c) A primary example that motivates the need for the generalization dis-
cussed in this exercise is the polar coordinate map:

g(r, θ) = (r cos θ, r sin θ).

As a map, g : R
2 → R

2 is not a diffeomorphism, since it is not even
1-1. By restricting the domain of g we can make it a diffeomorphism,
but this is often inconvenient. The best alternative is to use the results
from (a) and (b) above. Specifically let

O = { (r, θ) | r > 0 }.

Show that g : O → R
2 satisfies the condition in part (b), and explain

how this reduces the study of the phase portrait for a vector field X to
that of its g version (i.e., polar coordinate version) Y .

3. Suppose A,B : [0,∞) → R are differentiable functions, and consider the
planar system:

x′ = A(r)x −B(r)y (5.42)
y′ = B(r)x +A(r)y, (5.43)

where for convenience we have let r = (x2 + y2)1/2. Show that this system
transforms into the following system in polar coordinates

r′ = A(r)r (5.44)
θ′ = B(r) (5.45)

4. For each of the following systems (x′, y′) = X(x, y), in the plane:
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(i) Compute the polar coordinate version of the system:

r′ = Y 1(r, θ)
θ′ = Y 2(r, θ).

Here Y = f∗(X) is the vector field obtained by transforming to polar
coordinates.

(ii) Use the polar coordinate version of the system (its particular form and
its relation to the original system) to sketch by hand the phase portrait
of (x′, y′) = X(x, y).

(iii) Solve the polar coordinate system for r and θ as functions of t. (Hint:
In (d) you might want to use the identity: (1 − r)2 − 1 = r(2 − r)).

(a) X(x, y) = (x− y, x+ y).

(b) X(x, y) = (r−1x− y, x+ r−1y).

(c) X(x, y) = ((1 − r)x − y, x+ (1 − r)y).

(d) X(x, y) = ((1 − r)(2 − r)x − y, x+ (1 − r)(2 − r)y).

In the above: r = (x2 + y2)1/2. Hint: Each of the vector fields in (a)-(d) has
the form X(x, y) = (Ax− y,Ay + x), so you may use Exercise 3 if you wish.

5. Prove that det(g′(ρ, θ, φ)) = −ρ2 sinφ, where g is the spherical coordinate
map. Find an explicit formula for a local inverse f = g−1 of the spherical
coordinate map and specify the domain of f .

6. Prove Proposition 5.1.

7. (Spherical Coordinates) For each of the following systems: (i) transform
the system to spherical coordinates and use this to analyze the phase portrait
of the given system, (ii) find all fixed points, and (iii) sketch the phase portrait
showing all the pertinent features. (You should be able to do this easily by
hand, but you may augment the study by using the computer if you absolutely
must.)

(a) In the following system ρ = (x2 + y2 + z2)1/2.

x′ = (ρ− 1)x− y + xz

y′ = (ρ− 1)y + x+ yz

z′ = (ρ− 1)z − (x2 + y2),

(b) In the following system ρ = (x2 + y2 + z2)1/2.

x′ = (1 − ρ)x− y

y′ = (1 − ρ)y + x

z′ = (1 − ρ)z,
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(c) Here do both cases: B = 0 and B = 1.

x′ = (1 − ρ)(2 − ρ)x−By + xz

y′ = (1 − ρ)(2 − ρ)y +Bx+ yz

z′ = (1 − ρ)(2 − ρ)z − (x2 + y2),

8. (Cylindrical Coordinates) The cylindrical coordinate map g : R
3 → R

3 is

g(r, θ, z) = ( r cos θ, r sin θ, z ).

Suppose A,B,C,D : [0,∞) → R are differentiable functions. Consider the
system in Cartesian coordinates:

x′ = A(r)x −B(r)y + C(r)xz
y′ = B(r)x +A(r)y + C(r)yz
z′ = D(r)z,

where r = (x2+y2)1/2. Show that g transforms this system into the cylindrical
coordinate system:

r′ = A(r)r + C(r)rz
θ′ = B(r)
z′ = D(r)z,

Use this to study the following system:

x′ = (1 − r2)x− by

y′ = bx+ (1 − r2)y
z′ = (1 − r2)z,

In particular, do the following: (a) Show that the unit cylinder U x2 +y2 = 1
is invariant under the flow and, in fact, consists entirely of circular flows
γc(t) = (cos bt, sin bt, c), where c is any constant. (b) Show that, in the
cylindrical coordinate system, r(t), z(t) lie on the line z = (z0/r0)r in the r-z
plane and that limt→∞ r(t) = z0/r0. (c) Show that each integral curve α of
the Cartesian system with initial point (x0, y0, z0) having x2

0 + y2
0 
= 1, 0, will

spiral toward the circle γz0/r0 on the unit cylinder U while remaining on the
cone z2 = (z2

0/r
2
0)(x2 + y2). (d) Discuss what happens on the z-axis. (e)

Sketch, by hand, the phase portrait. Use this to construct a good computer
plot of the phase portrait.

9. (Hyperbolic Coordinates) As you know, polar coordinates are closely con-
nected with the geometry of the circle: for a fixed r ≥ 0, the polar coor-
dinate map g(r, θ) = (r cos θ, r sin θ) gives a parametrization of the circle
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Figure 5.17: Hyperbolic coordinates on the plane.

x2 + y2 = r2, and every point in the plane lies on one of these circles. In
an analogous, fashion we can introduce hyperbolic coordinates on the plane.
Note that every point in the plane lies on one and only one of the hyperbolas
with equation x2 − y2 = ±a2 (for a = 0, this is a pair of straight lines). See
Figure 5.17.
A hyperbolic coordinate map is (naturally enough) given by

g(a, u) = (a coshu, a sinhu),

and for a fixed a this parametrizes a branch of the hyperbola x2 − y2 = a2.
Note: On the other hand the map h(a, u) = (a sinhu, a coshu) parametrizes
the hyperbola x2 − y2 = −a2. If we restrict attention to the points in the
region {(x, y |x ≥ 0, |y| ≤ x } in Figure 5.17, then the hyperbolic coordinates
of such a point (x, y) are the numbers a, u for which

x = a coshu
y = a sinhu.

(a) Invert the above relationships, i.e., solve for a, u and thus get a locally
defined inverse map f to the map g. This map can be used to transform
a system (x′, y′) = X(x, y) into one in hyperbolic coordinates.

(b) Compute the derivative of f . For this, it is helpful to know that:

tanh−1
(y
x

)
= 1

2 ln |x+ y| − 1
2 ln |x− y|.

Use this to calculate the matrix f ′(g(a, u)). As in equation (5.23),
compute, the hyperbolic transformation of a vector field X in the x-y
plane into the vector field f∗(X) in the a-u plane.
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(c) Apply the results of Exercise 2 to g. Compute the derivative of g and
determine the largest domain O possible such that det(g′(a, u)) 
= 0, for
(a, u) ∈ O. Thus for each vector field X on O ⊆ R

2 there is a unique
vector field Y on O that g transforms into X . The vector field is the
hyperbolic coordinate version of X .

(d) A simple illustration of the hyperbolic transformation technique is the
basic saddle point system:

x′ = y

y′ = x.

The corresponding vector field is X(x, y) = (y, x). Show that the hy-
perbolic coordinate version of this system is

a′ = 0
u′ = 1.

The integral curves for this latter system are vertical lines as shown in
Figure 5.18.

Figure 5.18: The integral curves for x′ = y, y′ = x, and its version: a′ =
0, u′ = 1, in hyperbolic coordinates.

Of course such a high-powered technique is not needed for so simple an
example as this. However, this example serves to illustrate the content
of the Flow Box Theorem in the next section—in a neighborhood of a
nonfixed point there is a diffeomorphism f that transforms the integral
curves into straight lines. In this example f = g−1 is a local inverse of
the hyperbolic coordinate map. The hyperbolic flow lines between the
asymptotes in the saddle point system correspond to straight lines in
the hyperbolic coordinate version of that system.
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10. (Hyperboloidal Coordinates) A natural analog of spherical coordinates
is what arises when you replace each trig function by the corresponding hy-
perbolic function:

x = a sinh v coshu (5.46)
y = a sinh v sinhu (5.47)
z = a cosh v. (5.48)

Here a, u, v ∈ R are called the hyperboloidal coordinates of the point (x, y, z)
with Cartesian coordinates x, y, z. The corresponding hyperboloidal map g :
R

3 → R
3 is

g(a, u, v) = ( a sinh v coshu, a sinh v sinhu, a cosh v ). (5.49)

Analyze the nature of these coordinates and the corresponding transformation
of systems of DEs from Cartesian coordinates to hyperboloidal coordinates
by doing the following.

(a) For (a, u, v) ∈ R
3, with a ≥ 0, show that (x, y, z) ≡ g(a, u, v) lies on the

three surfaces with Cartesian equations

z2 − x2 + y2 = a2

y = mx

y2 +
k2

1 + k2
z2 = x2,

where m = tanhu and k = a2 sinh2 v. Identify these surfaces and
sketch their graphs. On these graphs indicate the parts of these sur-
faces corresponding to {g(a, u, v)|u, v ∈ R}, {g(a, u, v)|a, v ∈ R}, and
{g(a, u, v)|a, u ∈ R}, respectively. Determine the image g(R3) of R

3 un-
der the hyperboloidal map g. This will determine which points (x, y, z) ∈
R

3 can be assigned hyperboloidal coordinates.
(b) Calculate g′(a, u, v), g′(a, u, v)−1, and determine at what points (a, u, v)

the inverse of the Jacobian matrix fails to exist.
(c) State and prove an analog of Proposition 5.1 for hyperboloidal coordi-

nates.

11. When you studied homogeneous DEs and Bernoulli DEs in an introductory
differential equations course, the techniques you used to solve these involved
transforming the homogeneous DE into a separable DE and transforming the
Bernoulli DE into a linear DE. This is actually the same as the transformation
technique discussed in this chapter and this exercise is to illustrate this.

(a) (Homogeneous DEs) Recall that a homogeneous DE has the form

x′ = h

(
x

t

)
,
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where h is a given function. To apply the transformation theory in this
chapter, we must first write this as an autonomous system

t′ = 1

x′ = h

(
x

t

)
.

The corresponding vector field is X(t, x) = (1, h(x/t)), defined on B =
{(t, x)|t 
= 0, x/t ∈ U}, where U is the domain of h. Let

f(t, x) ≡
(
t,
x

t

)
,

which is defined for all (t, x) with t 
= 0. Show that f is a diffeomorphism
and compute a formula for its inverse g = f−1. Then show that

f∗(X)(t, y) =
(

1,
−y + h(y)

t

)
,

and so the transformed DE is the separable DE

y′ =
−y + h(y)

t
.

Compare this with the method for solving homogeneous DEs in your
undergraduate textbook.

(b) (Bernoulli DEs) A Bernoulli DE has the form

x′ = a(t)x+ b(t)xr ,

where a, b : I → R are continuous functions and r 
= 1 is any real num-
ber. (When r = 1, the equation is linear, so this case is excluded from
the discussion.) Reducing this nonautonomous DE to an autonomous
one gives a system with associated vector field X : I × O → R

2 given
by X(t, x) = ( 1, a(t)x + b(t)xr ). For simplicity we take O = (0,∞),
even though for certain exponents r, the vector field X can be defined
on a larger domain (see Chapter 4). Define f : I ×O → R

2 by

f(t, x) = (t, x1−r).

Show that f is a diffeomorphism and compute a formula for its inverse
g = f−1. Then show that

f∗(X)(t, y) =
(

1, (1 − r)
[
a(t)y + b(t)

])
,

and so the corresponding transformed DE is the linear DE

y′ = (1 − r)
[
a(t)y + b(t)

]
.

Compare this with the method for solving Bernoulli DEs in your under-
graduate textbook.
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5.3 The Linearization and Flow Box Theorems
Recall that in our study of linear systems y′ = Ay, the notion of linear
equivalence (of linear systems) led to the search among all the linear systems
equivalent to y′ = Ay for one that was particularly simple in form. This was
the canonical system: z′ = Jz, where J is the Jordan form for A. By analogy,
we would now like to do something similar for nonlinear systems x′ = X(x).
This is essentially what the Linearization Theorem does for us (which you
would well expect from all your work on applying it to specific examples).
There are, however, several new features (or difficulties) that arise in looking
for canonical forms for nonlinear systems:

• The canonical form for x′ = X(x) is only given locally on a neigh-
borhood of each fixed point and nonfixed point, and varies from point
to point. For fixed points c (with some exceptions to be explained
shortly), the canonical form is y′ = Ay, where A = X ′(c). To get the
equivalence we must restrict X to a neighborhood U ⊆ O of c. For
nonfixed points the canonical system is also a linear system and the
equivalence is local.

• The local equivalence between x′ = X(x) and y′ = Ay is not always dif-
ferentiable equivalence, but rather topological equivalence. This latter
notion is more general.

Definition 5.4 (Topological Equivalence)

(1) A map f : O → O is called a homeomorphism if it is continuous, 1-1,
onto, and its inverse f−1 is also continuous.

(2) The system x′ = X(x) is said to be topologically equivalent to the
system y′ = Y (y) if there exists a homeomorphism f : O → O, such
that: (i) for each integral curve α : I → O of X, the curve β =
f ◦ α : I → O is an integral curve of Y , and (ii) for each integral curve
β : I → O of Y , the curve α = f−1 ◦ β : I → O is an integral curve of
X.

We now come to the Linearization Theorem. We do not prove this here,
but refer the interested reader to Appendix B. The proof, while quite long,
has many interesting aspects to it and connections to other important topics
in analysis. Thus, it is worthy of your study and is highly recommended, if
you have time.
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Theorem 5.3 (Linearization Theorem) Suppose that X : O → R
n is

a vector field and c ∈ O is a fixed point of X. Let A = X ′(c), and let
Y (y) = Ay be the corresponding vector field. Assume that c is hyperbolic
fixed point (i.e., detA 
= 0 and A has no purely imaginary eigenvalues).
Then there exist neighborhoods U of c and U of 0, such that the restrictions
of X to U and Y to U are topologically equivalent.

To elaborate the content of the theorem, we mention that under the
stated conditions, we can find a homeomorphism f : U → U between neigh-
borhoods U,U of c, 0, that maps each integral curve α : I → U of X into an
integral curve f ◦ α : I → U of Y . The theorem is existential, and in any
particular example it might be impossible to construct the homeomorphism
that works. However, knowing that one exists allows us to study the linear
system y′ = Ay near its fixed point 0, with the confidence that each of its
integral curves will look similar to one of x′ = X(x).

The Linearization Theorem is based on an idea that occurs frequently in
mathematics. This idea is that the coefficients of the terms in the Taylor
series expansion

F (x) = F (0) + F ′(0)x+ 1
2F

′′(0)(x, x) + · · · ,

describe the geometric nature, or behavior, of a function F : U ⊆ R
n → R

n,
near x = 0 (cf. Appendix A). If we assume that the fixed point c for the
vector field X is the origin c = 0 (there is no loss of generality in this since
we can always transform X by a translation), then X(0) = 0, X ′(0) = A,
and the Taylor series expansion of X has the form

X(x) = Ax+R(x).

Heuristically R(x) stands for all the remaining terms in the Taylor series,
i.e., the remainder term. In reality, since X is usually only assumed to be
C1, one defines R by R(x) ≡ X(x) − Ax. This then is a motivation for the
Linearization Theorem and the starting point for its proof (see Appendix
B).

The two conditions on the fixed point c in the theorem: that it be simple
and hyperbolic, are necessary in its proof and when these conditions do not
hold then the theorem gives no information about the nature of the phase
portrait near c. Thus if c is nonsimple (det(A) = 0) or if A has a pure
imaginary eigenvalue, then the phase portrait may or may not resemble the
linear system. In some cases it does and in other cases it does not. Here are
two examples to illustrate what can happen.
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Example 5.8 (A Nonsimple Fixed Point) The nonlinear system

x′ = x2

y′ = y,

has (0, 0) as its only fixed point. The derivative of X(x, y) = (x2, y) is

X ′(x, y) =

[
2x 0
0 1

]
,

and so:

A = X ′(0, 0) =

[
0 0
0 1

]
.

Since detA = 0, the fixed point is nonsimple. As you can see from the
phase portraits in Figure 5.19 the global phase portraits for the nonlinear
and linear systems are not similar at all.

Figure 5.19: Phase portraits for the system x′ = x2, y′ = y, and its lineariza-
tion x′ = 0, y′ = y.

Locally on a small enough neighborhood of the origin, the phase portraits
are, however somewhat similar, even though quantitatively their behaviors
are quite different: the x-axis in the linear system is a line of fixed points,
but in the nonlinear system it consists of two straight-line integral curves
separated by the fixed point at the origin.
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Example 5.9 (A Nonhyperbolic Fixed Point) Consider the system

x′ = −y − x3 − xy2

y′ = x− y3 − x2y.

If we linearize about the fixed point (0, 0), we find that

X ′(x, y) =

[
−3x2 − y2 −1 − 2xy
1 − 2xy −3y2 − x2

]
and

A = X ′(0, 0) =

[
0 −1
1 0

]
.

Thus, the fixed point (0, 0) is nonhyperbolic. The corresponding linear sys-
tem is a center with the origin being stable but not asymptotically stable.
However the nonlinear system has a phase portrait (see Figure 5.20), where
the origin appears to be asymptotically stable, i.e., nearby integral curves
tend to the origin in the limit. Compare the results here with those in the
predator-prey example, where the linearized version was a center that did
correspond qualitatively to the phase portrait of the nonlinear system.

Figure 5.20: Phase portraits for the system x′ = −y−x3−xy2, y′ = x−y3−
x2y, and its linearization u′ = −w,w′ = u.

Near a point c that is not a fixed point of X, the phase portrait has a
standard (and rather uninteresting) look. This is described in the Flow Box
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Theorem below which says that, in a small box (neighborhood) about c, the
flow for X is differentiably equivalent to the straight-line flow for the system
y′ = Y (y), with Y : R

n → R
n the constant vector field:

Y (y) = (1, 0, 0, ..., 0) = e1,

for every y ∈ R
n. The flow for ψ for Y is as simple as possible, namely:

ψt(c) = (c1 + t, c2, . . . , cn),

which is just a uniform flow in the direction: e1 = (1, 0, 0, ..., 0). According
to the theorem the phase portrait for X on the box about c has a flow
pattern that is the “same” (up to a distortion caused by a diffeomorphism).
This is illustrated hypothetically in Figure 5.21, which illustrates the case
for planar flow.

Figure 5.21: The flow in a small box about a nonfixed point of x′ = X(x)
and its equivalence to the flow for the system y′ = e1.

Theorem 5.4 (Flow Box Theorem) Suppose X : O → R
n is a C1 vector

field, and that c is not a fixed point: X(c) 
= 0. Let Y be the constant vector
field:

Y (y) = (1, 0, 0, . . . , 0) = e1,

for every y ∈ R
n. Then there exist neighborhoods U of c and U of 0, and a

diffeomorphism f : U → U , such that

f∗(X) = Y.
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Thus the system x′ = X(x) is differentiably equivalent to the system:

y′1 = 1
y′2 = 0

...
y′n = 0,

on the respective neighborhoods.

Proof: Technically, it will be easier to construct a diffeomorphism g such
that g∗(Y ) = X, locally. Then we can take f ≡ g−1.

Let v1 = X(c) and V = { v ∈ R
n | v · v1 = 0 } be the subspace of R

n that
is orthogonal to v1. Choose any basis {v2, . . . , vn} for V and let φ : D → R

n

be the flow for X. Select any neighborhood I × B(c, r) ⊆ D of (0, c) and
define

W = { (a2, . . . , an) ∈ R
n−1 |

n∑
i=2

|ai||vi| < r }.

Then I ×W ⊆ R
n is a neighborhood of 0 ∈ R

n and it is easy to see that
if (a2, . . . , an) ∈ W , then c + a2v2 + · · · + anvn ∈ B(c, r). Thus, defining
g : I ×W → R

n by

g(t, a2, . . . , an) = φt(c+ a2v2 + · · · + anvn),

makes sense and will give us the transformation we need. Note that

g(0, 0, . . . , 0) = φ0(c) = c.

Geometrically, for fixed a2, . . . , an, the map t → g(t, a2, . . . , an) is an integral
curve passing through the point c+a2v2+· · ·+anvn on the hyperplane V +c.
This is illustrated in Figure 5.22 for n = 2 and indicates why we would expect
g to be a diffeomorphism locally on a neighborhood of 0 = (0, 0, . . . , 0).

To show this we appeal to the Inverse Function Theorem (Appendix A),
by showing that the Jacobian matrix g′(0) is invertible. First we calculate
the Jacobian at a general point (t, a2, . . . , an) ∈ I × W . For the ease of
notation we let p = c + a2v2 + · · · + anvn, be the corresponding point in
B(c, r). Now use the chain rule and the property

∂φ

∂t
(t, x) = X(φ(t, x)),
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Figure 5.22: The subspace V orthogonal to v1 = X(c) and its translate to a
hyperplane V + c through the point c.

of the flow to easily calculate that

g′(t, a2, . . . , an) =


X1(φ(t, p)) ∂φ1

∂xi
(t, p)vi

2 · · · ∂φ1

∂xi
(t, p)vi

n
...

...
...

Xn(φ(t, p)) ∂φn

∂xi
(t, p)vi

2 · · · ∂φn

∂xi
(t, p)vi

n

 . (5.50)

Here, we are using implied summation on repeated indices in order to shorten
the entries in the last n−1 columns. That is, ∂φk

∂xi
(t, p)vi

m ≡∑n
i=1

∂φk

∂xi
(t, p)vi

m.
Now note that since φ(0, x) = φ0(x) = x, for all x ∈ O, it follows that

∂φk

∂xi
(0, x) = lim

h→0

φk(0, x+ hei) − φk(0, x)
h

= δik,

where δik is the Kronecker delta function: δii = 1 and δik = 0 for i 
= k.
Thus, taking t = 0 in equation (5.50) will reduce the expression for the last
n − 1 columns to just v2, . . . , vn. Also p = c for a2 = 0, . . . , an = 0 and so
we get

g′(0, 0, . . . , 0) =

 X1(c) v1
2 · · · v1

n
...

...
...

Xn(c) vn
2 · · · vn

n


= [v1, v2, . . . , vn].

This is the matrix with v1, v2, . . . , vn as its columns. Since these vectors are
linearly independent, it follows that g′(0) is invertible. Thus, by the Inverse
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Function Theorem, there is a neighborhood U of 0 and a neighborhood U of
c, such that g : U → U is a diffeomorphism.

Now all that is left is to show that g∗(Y ) = X, where Y is the constant
vector field: Y (y) = e1 for all y ∈ U . But this is easy. If x ∈ U , then

x = g(t, a2, . . . , an) = φt(c+ a2v2 + · · · + anvn),

for some t ∈ I and a2, . . . , an ∈W . Then by definition of g∗(Y ) and equation
(5.50), we get that

g∗(Y )(x) = g′(g−1(x))Y (g−1(x))
= g′(t, a2, . . . , an) e1
= the first column of g′(t, a2, . . . , an)

= X

(
φt(c+ a2v2 + · · · + anvn)

)
= X(x)

The theorem is now complete if we take f = g−1 and use one of the results
from Exercise 1 in the preceding exercise set.

Exercises 5.3
1. Suppose X : O → R

n and Y : O → R
n are vector fields on open sets O,O

in R
n and that f : O → O is a homeomorphism between O and O. Denote

the flows for X and Y by φX and φY . Show that the following statements
are equivalent

(a) The systems x′ = X(x) and y′ = Y (y) are topologically equivalent via
the map f .

(b) For every y ∈ O and t ∈ Iy:

φY
t = f ◦ φX

t ◦ f−1. (5.51)

Thus, in particular, whenever f is a diffeomorphism and Y = f∗(X) is the
push-forward of X , the flows for X and Y are related by formula (5.51).

2. The following systems dramatically illustrate that the Linearization Theorem
does not apply at nonsimple fixed points. For each system, find all the fixed
points, write down the linear system at the fixed points, and use a computer
to draw the phase portrait for the nonlinear system.

(a)

x′ = x2 + 2xy
y′ = 2xy + y2
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(b)

x′ = x2 − 2xy
y′ = −2xy + y2

(c)

x′ = −5y5

y′ = x+ y2

3. The vector field:

X(x, y) =
(

−3y2

1 + 2y
,

1
1 + 2y

)
,

has no fixed points. As an illustration of the Flow Box Theorem, do the
following:

(a) Let f : R
2 → R

2 be the transformation defined by

f(x, y) = (x+ y3, y + y2),

and consider the open sets:

O = { (x, y) ∈ R
2 | y ≥ −1/2 },

O = { (u, v) ∈ R
2 | v ≥ −1/4 },

Show that f : O → O is a diffeomorphism. Find an explicit formula for
g(u, v) ≡ f−1(u, v). Show that f∗(X) = e2 = (0, 1).

(b) Use a computer to draw the phase portrait for (x′, y′) = X(x, y). Be
careful with the integral curves starting near y = −1/2

4. Read the material in CDChapter 5 on the electronic component that pertains
to the Linearization Theorem for discrete dynamical systems and work the
exercises there.



Chapter 6

Stability Theory

In this chapter we study the topic of stability for dynamical systems. There
are number of different concepts and definitions of stability and these apply
to various types of integral curves: fixed points, periodic solutions, etc., for
dynamical systems (cf. [Ha 82], [Rob 95], [RM 80], [AM 78], [Co 65], [Bel
53], [Mer 97]). This chapter provides an introduction to the subject, giving
first a few results about stability of fixed points and then a brief discussion
of stability of periodic solutions (also called cycles or closed integral curves).

The question of whether a given motion of a dynamical system is sta-
ble or not is a natural one, and we have already used the terminology—
stable/unstable fixed point—throughout the text in numerous examples.
The definitions of stability are given precisely below, but the basic idea
in these definitions is whether the integral curves starting near a given fixed
point (or more generally near a given integral curve) will stay near it (sta-
bility), and perhaps tend toward it asymptotically in time (asymptotic sta-
bility).

A classical example, studied in Chapter 1, is a ball rolling on a circular
hoop as shown in Figure 6.1. The 2nd-order system governing the motion
of ball, when reduced to a 1st-order system, gives

θ′ = v

v′ = −k sin(θ),

(this is assuming no frictional resistance). The geometry and physics of the
setup shown in Figure 6.1 suggest there are two fixed points of the system.
Placing the ball in the equilibrium position at the bottom of the hoop with
no initial velocity corresponds to a fixed point (0,0) of the system which,
from our experience with motion, should be a stable fixed point. That is, we

© Springer Science + Business Media, LLC 2010
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Figure 6.1: Ball on a hoop.

know that by placing the ball slightly to one side of equilibrium and releasing
it with some (small) velocity produces a motion (integral curve) whereby the
ball rolls back and forth about the equilibrium position.

If we add resistance due to frictional forces to the model, the correspond-
ing system becomes

θ′ = v

v′ = −k sin(θ) − bv,

and the equilibrium position becomes an asymptotically stable fixed point.
This is so since for small displacements of the ball from equilibrium and
small initial velocities, the ball rolls back and forth about the equilibrium
position, but the amplitude of its displacement becomes less and less over
time due to the friction. Eventually the motion ceases and the ball comes
to rest at the equilibrium position (in theory, it takes infinitely long for this
to occur). This type of motion is exhibited in the phase portrait shown in
Figure 6.2, where the asymptotic stability of the stable equilibrium points
is exhibited by the integral curves which spiral in toward the fixed points at
θ = 0,±2π, . . .. Compare this phase portrait with the one for motion with
no frictional resistance shown in Figure 1.6.

The ball on the hoop example also has an unstable fixed point, namely
the top of the hoop as shown in Figure 6.1. Placing the ball exactly on the
equilibrium position shown results in the ball remaining there, but placing it
slightly to one side or the other results in a motion away from the equilibrium
point. The instability here is well known from our experience of the difficulty
of balancing objects subject to the force of gravity.
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Figure 6.2: Phase portrait for the ball on the hoop example with frictional
resistance. Friction makes the stable equilibrium points into asymptotically
stable ones.

6.1 Stability of Fixed Points
For physical systems, like the ball in the hoop, and for systems in the plane, it
often easy to discern the stability or asymptotic stability of fixed points from
physical principles and pictures of the phase portraits. However, a formal,
precise definition of these concepts is needed to clarify exactly what the
concept is and to enable us to determine stability in more complex situations.

Recall: B(c, δ) = {x ∈ R
n | |x− c| < δ } is the ball about c of radius δ.

Definition 6.1 (Stability of Fixed Points) Suppose X : O → R
n is a

vector field on an open set O in R
n, and let φ be the flow corresponding

to the system x′ = X(x). Recall that for x ∈ O, the maximum interval of
existence for the integral curve passing through x at time t = 0 is denoted by
Ix and ax < bx denote the left- and right-hand endpoints of Ix, respectively.

A fixed point c is called stable if for each ε > 0 there exists a δ > 0, such
that for every x ∈ B(c, δ),

|φt(x) − c| < ε for all t ∈ [0, bx).

This definition tacitly assumes that δ is small enough so that B(c, δ) ⊆ O.

Figure 6.3 exhibits schematically what is involved in the definition. Gen-
erally if we are given an ε neighborhood of c as shown, then we will have to
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Figure 6.3: (Left): Illustration of the stability definition. (Right): A choice
of δ for a given ε in a particular example.

choose a smaller δ neighborhood for the initial points x. The necessity of
sometimes having to choose δ < ε is also illustrated in Figure 6.3.

A fixed point c is unstable if it is not stable, which is equivalent to saying
that there exists an ε > 0, a sequence {xk}∞k=1 of points in O, and a sequence
{tk}∞k=1, of times, with tk ∈ [0, bxk

), such that limk→∞ xk = c and

|φtk(xk) − c| ≥ ε

(exercise). Thus, no matter how close xk is to c, the flow φt(xk) will even-
tually, at time tk, carry it outside the epsilon neighborhood of c.

The definition of stability says, roughly, that we can make φt(x) remain
near c for all t ∈ [0, bx), if x is near c. The next proposition says that this
implies that bx = ∞, and thus we get a stronger definition of stability.

Proposition 6.1 Suppose c is a fixed point of X. Then c is stable if and
only if for every ε > 0 there is a δ > 0 such that for all x ∈ B(c, δ),

(1) bx = ∞, i.e., φt(x) is defined for all t ≥ 0, and

(2) |φt(x) − c| < ε for all t ≥ 0.

Proof: Suppose c is stable and ε > 0 is given. Choose ε0 < ε such that
B(c, ε0) ⊆ O. Then choose δ > 0 such that if x ∈ B(c, δ), then |φt(x)− c| <
ε0, for all t ∈ [0, bx). But this says the φt(x) remains in the compact, convex
set B(c, ε0) for all t ∈ [0, bx). Hence by Theorem 3.8, we have bx = ∞. Thus,
(1) and (2) hold. Conversely it is clear that the criteria in (1) and (2) imply
that c is stable.
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Henceforth, we will use conditions (1) and (2) from the proposition as
the criteria for stability. This makes it easier to state the condition for
asymptotic stability.

Definition 6.2 (Asymptotic Stability) A fixed point c is called asymp-
totically stable if it is stable and if there exists a δ > 0 such that

lim
t→∞φt(x) = c,

for every x ∈ B(c, δ). Note that because of the stability, there is a δ0 > 0
such that if x ∈ B(c, δ0), then φt(x) is defined for all t ≥ 0.

Applying the definition directly to determine stability in any particular
example can be difficult. Thus, we need some theorems that will reduce the
determination to checking other quantities—such as the eigenvalues of X ′(c)
at a fixed point c or the Hessian of a certain function Λ (Liapunov function)
on a neighborhood of c. We begin the description of these theorems in the
next section with some results on stability of the origin 0 for linear systems.

Exercises 6.1

1. Show that a fixed point c is unstable if and only if there exists an ε > 0,
a sequence {xk}∞k=1 of points in O, and a sequence {tk}∞k=1, of times, with
tk ∈ [0, bxk

), such that limk→∞ xk = c and

|φtk
(xk) − c| ≥ ε,

for all k.

2. For each of the following systems, determine the stability of the fixed point
(0, 0) and prove that your determination is correct by transforming the system
to polar coordinates and solving explicitly. In each case r2 = x2 + y2.

(a) x′ = (1 − r2)x− y

y′ = x+ (1 − r2)y

(b) x′ = (r2 − 1)x− y

y′ = x+ (r2 − 1)y
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6.2 Linear Stability of Fixed Points
For a linear, homogeneous, constant coefficient system x′ = Ax, with detA 
=
0, the origin 0 is the only fixed point and its stability is easy to determine
in theory (but is often difficult to do in practice). This determination comes
directly from the types of eigenvalues of the matrix A and a computation of
the matrix exponential in the flow

φt(c) = etAc,

for the system. The latter computation is facilitated by first computing
etJ , where J is the Jordan canonical form for A. This computation is a
generalization what you did in Exercise 4 from Section 4.5.

6.2.1 Computation of the Matrix Exponential for Jordan Forms
If J is a Jordan form, say

J =



Jk1(λ1)
. . .

Jkr(λr)
C2m1(a1, b1)

. . .
C2ms(as, bs)


, (6.1)

it is quite easy to compute etJ directly from its definition via the series

etJ =
∞∑

k=0

tk

k!
Jk.

This so because J has block matrix form with square blocks, Jordan blocks,
down its diagonal and zeros elsewhere. In addition, each Jordan block,
whether real or complex, has a special form that makes its matrix exponential
easy to compute. Most of the computations rely on the following basic result.

Proposition 6.2 (Block-diagonal Matrices) Suppose A and B are n×n
block-diagonal matrices with the same block structure, i.e.,

A =


A1

A2

. . .
Ap

 , B =


B1

B2

. . .
Bp

 , (6.2)
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where Aj, Bj are mj × mj matrices. Then the product AB has the same
block-diagonal structure and, indeed, is given by

AB =


A1B1

A2B2

. . .
ApBp

 . (6.3)

From this it follows that the matrix exponential of the block-diagonal matrix
A has the same block structure and is given by

eA =


eA1

eA2

. . .
eAp

 . (6.4)

Proof: First verify that the product AB has the stated form and then use
this in the series definition of eA when you compute A2, A3, . . .. The details
are left as an exercise.

Note that a special case of the proposition is when A is a diagonal matrix,
i.e., each of the blocks Aj is a 1× 1 matrix (a number). In particular, when
A = λI, is a multiple of the identity matrix I, we have

eλI = eλI.

The proposition applies directly to the Jordan form in equation (6.1) to
give the following:

Exponential of a Jordan Form:

etJ =



etJk1
(λ1)

. . .
etJkr (λr)

etC2m1 (a1,b1)

. . .
etC2ms (as,bs)


. (6.5)

Thus, to complete the explicit computation of etJ , we need to compute the
exact forms for the matrix exponentials of real and complex Jordan blocks,
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Jk(λ) and C2m(a, b), respectively. This involves decomposing Jk(λ) and
C2m(a, b) into a sum of commuting matrices, one of which is a nilpotent
matrix. We look at the real case first.

Suppose Jk(λ) is a real Jordan block

Jk(λ) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

. . . . . .
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 . (6.6)

In the Chapter 4 exercises you were asked to show that Jk(λ) decomposes
into a sum of commuting matrices

Jk(λ) = λIk +Nk, (6.7)

where Ik is the k × k identity matrix, and Nk is the k × k matrix with ones
on the superdiagonal and zeros elsewhere, i.e.,

Nk =


0 1

0 1
. . .

0 1
0

 . (6.8)

Further, Nk is a nilpotent matrix, i.e., some power of it is the zero matrix.
In this case it is the kth power: Nk

k = 0. If you did not already verify these
assertions, you should do this now. For example, when k = 4, the nilpotent
matrix N4 has the form

N4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,
and it is easy to see that

N2
4 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , N3
4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , N4
4 = 0.
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Because of the nilpotency of N4, the series giving its matrix exponential
terminates after the fourth term:

etN4 = I + tN4 +
t2

2!
N2

4 +
t3

3!
N3

4 =


1 t t2

2!
t3

3!

0 1 t t2

2!

0 0 1 t
0 0 0 1

 .

It is now easy to make an inductive guess about the case for a general k and
get the following result.

Proposition 6.3 (Exponential of Real Jordan Blocks) Suppose Jk(λ)
is a real Jordan block (see equation (6.6)). Then

etJk(λ) =



eλt teλt t2

2!e
λt · · · tk−2

(k−2)!e
λt tk−1

(k−1)!e
λt

0 eλt teλt · · · tk−3

(k−3)!e
λt tk−2

(k−2)!e
λt

...
. . . . . .

...

0 0 0 · · · eλt teλt

0 0 0 · · · 0 eλt


. (6.9)

Proof: We use a result from Appendix C which says that if matrices A and
B commute, i.e., AB = BA, then eA+B = eAeB . Then in the case at hand
we see that

etJk(λ) = eλtIk+tNk = eλtIketNk = eλtetNk

= eλt



1 t t2

2! · · · tk−2

(k−2)!
tk−1

(k−1)!

0 1 t · · · tk−3

(k−3)!
tk−2

(k−2)!

...
. . . . . .

...

0 0 0 · · · 1 t
0 0 0 · · · 0 1


Completing the above product gives the result (6.9) of the theorem.

The computation of the matrix exponential of a complex Jordan block
is similar in many respects, but now bear in mind that the block form will
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naturally involve 2 × 2 matrices. Thus, suppose

C2m(a, b) =


C(a, b) I2 0 0 · · · 0 0

0 C(a, b) I2 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · C(a, b) I2
0 0 0 0 · · · 0 C(a, b)

 (6.10)

is a 2m× 2m, complex Jordan block with I2 the 2 × 2 identity matrix and

C(a, b) =

[
a b
−b a

]
.

We can decompose C2m(a, b) into a the sum of commuting matrices:

C2m(a, b) = D2m(a, b) +M2m,

where D2m(a, b) is the block-diagonal matrix with 2× 2 blocks C(a, b) down
the diagonal and zeros elsewhere:

D2m(a, b) =


C(a, b) 0 0 0 · · · 0 0

0 C(a, b) 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · C(a, b) 0
0 0 0 0 · · · 0 C(a, b)

 (6.11)

andM2m is the block matrix with 2×2 identity matrices on the superdiagonal
and zeros elsewhere

M2m =


0 I2 0 0 · · · 0 0
0 0 I2 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 I2
0 0 0 0 · · · 0 0

 . (6.12)

It is easy to compute (exercise) that the matrix exponential of tC(a, b) is a
multiple of the 2 × 2 rotation matrix R(bt):

etC(a,b) = eat

[
cos bt sin bt
− sin bt cos bt

]
= eatR(bt).
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Consequently, by Proposition 6.2, we get that

etD2m(a,b) =


eatR(bt) 0 0 0 · · · 0 0

0 eatR(bt) 0 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · eatR(bt) 0
0 0 0 0 · · · 0 eatR(bt)

 .

The computation of the powers M2
2m,M

3
2m, . . . ,M

m
2m = 0 is similar to the

computation of the powers of Nk above. The form of these powers is exactly
the same and we get the following similar form for the corresponding matrix
exponential

etM2m =



I2 tI2
t2

2! I2 · · · tm−2

(m−2)!I2
tm−1

(m−1)!I2

0 I2 tI2 · · · tm−3

(m−3)!I2
tm−2

(m−2)!I2

...
...

. . . . . .
...

...

0 0 0 · · · I2 tI2
0 0 0 · · · 0 I2


. (6.13)

Putting these two results together and using etD2m(a,b)+tM2m = etD2m(a,b)etM2m

(by commutativity) we get the following result.

Proposition 6.4 (Exponential of Complex Jordan Blocks) If C2m(a,b)
is a 2m× 2m complex Jordan Block (cf. equation (6.10)), then

etC2m(a,b) = (6.14)

eatR(bt) teatR(bt) t2

2!e
atR(bt) · · · tm−2

(m−2)!e
atR(bt) tm−1

(m−1)!e
atR(bt)

0 eatR(bt) teatR(bt) · · · tm−3

(m−3)!e
atR(bt) tm−2

(m−2)!e
atR(bt)

...
...

. . . . . .
...

...

0 0 0 · · · eatR(bt) teatR(bt)
0 0 0 · · · 0 eatR(bt)


Proof: This is clear from the discussion prior to the proposition.

From the explicit form of etJk(λ) in equation (6.9), it is easy to see that if
λ < 0, then each entry in this matrix tends to zero as t tends to infinity and
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thus limt→∞ etJk(λ) = 0. Here the limit is with respect to a certain matrix
norm ‖ · ‖ on the collection Mn of all n × n matrices. For convenience we
will use the following norm. If B = {bij} is an n × n matrix, then its norm
is

‖B‖ = max{ |bij | | i, j ∈ {1, . . . , n} }. (6.15)

Using this norm on matrices, the usual (Euclidean) norm | · | on vectors
x ∈ R

n, and Schwarz’s inequality, it is easy to show that the following
identity holds:

|Ax| ≤ n‖A‖ |x|

(exercise). See the Appendix C for more details on matrix norms and matrix
analysis.

In a similar fashion, it’s easy to see from the form of etC2m(a,b) in equation
(6.14) that if a < 0, then limt→∞ etC2m(a,b) = 0.

In summary, these two results say the exponentials of the Jordan blocks
etJk(λ), etC2m(a,b) tend to zero as t tends to infinity, provided λ < 0 and a < 0.
This is the essence of the linear stability theorem.

Theorem 6.1 (Linear Stability) Suppose A is an n × n matrix, all of
whose eigenvalues have negative real parts. Then there are positive constants
t0,K,m such that

‖etA‖ ≤ Ke−mt, (6.16)

for all t ≥ t0. Consequently, with L = nK, it follows that

|etAx| ≤ Le−mt|x|, (6.17)

for all x ∈ R
n and all t ≥ 0. Hence, the origin 0 is an asymptotically stable

fixed point of the linear system x′ = Ax.

Proof: Let J be the Jordan form for A and suppose J has the structure
shown in equation (6.1). Then a list of the eigenvalues of A (with possible
repeats) is

λ1, . . . , λr, a1 ± b1, . . . , as ± bsi,

and by assumption: λ1, . . . , λr, a1, . . . , as < 0. Since these numbers are
negative, we can choose a small positive constant m > 0 so that also

m+ λ1, . . . ,m+ λr,m+ a1, . . . ,m+ as < 0.
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Next we choose t0 as follows. Using the computation of etJ in equations
(6.5), (6.9), and (6.14), we see that the entries of the matrix emtetJ are
either 0 or have one of the following forms

tp

p!
e(m+λj )t, ± t

p

p!
e(m+aj )t cos bjt, ± t

p

p!
e(m+aj )t sin bjt.

Since each of these types has limit zero as t → ∞, we can choose a t0 > 0
so that all the entries of emtetJ have absolute value less than 1, for all
t ≥ t0. Hence by definition of the matrix norm: ‖emtetJ‖ ≤ 1, for all t ≥ t0.
Otherwise said,

‖etJ‖ ≤ e−mt,

for all t ≥ t0. Now by the Jordan Canonical Form Theorem, there is an
invertible matrix P such that P−1AP = J . The constant K in the statement
of the theorem can be taken to be K = n2‖P‖‖P−1‖.

To get the required inequality (6.16), use the fact that A = PJP−1,
the identity ePBP−1

= PeBP−1 (see Chapter 4 and Appendix C), and the
property ‖BC‖ ≤ n‖B‖ ‖C‖ of the matrix norm (exercise). These together
with the above inequality give

‖etA‖ = ‖PetJP−1‖
≤ n‖P‖ ‖etJP−1‖
≤ n2‖P‖ ‖etJ‖ ‖P−1‖
≤ n2‖P‖ ‖P−1‖ e−mt

= Ke−mt,

for all t ≥ t0. This proves inequality (6.16).
We can use the above inequality to show that 0 is an asymptotically

stable fixed point of x′ = Ax. Thus, suppose ε > 0 is given, and let

δ =
ε

n2K‖e−t0A‖ .

If |x− 0| = |x| < δ, then for all t ≥ 0 we have

|etAx− 0| = |etAx| ≤ n‖etA‖ |x|
= n‖e−t0Ae(t+t0)A‖ |x|
≤ n2‖e−t0A‖ ‖e(t+t0)A‖ |x|
≤ n2‖e−t0A‖Ke−m(t+t0) δ

= εe−m(t+t0) < ε.
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This proves stability of 0 as a fixed point. It is easy to see that limt→∞ eAtx =
0, and so the origin is also asymptotically stable.

Corollary 6.1 (Linear Instability) Suppose A is an n× n matrix, all of
whose eigenvalues have positive real parts. Then there are positive constants
t0,K,m such that

Kemt|x| ≤ |etAx|, (6.18)

for all x ∈ R
n and all t ≥ t0. Consequently, limt→∞ |etAx| = ∞, for all

x 
= 0. Hence, the origin 0 is an unstable fixed point of the linear system
x′ = Ax.

Proof: Exercise.
The strong hypothesis in the above corollary is needed for the first two

results there, but the instability follows from the weaker assumption that A
have at least one eigenvalue with positive real part. For instance, suppose the
eigenvalue is real: λ > 0, and that v is a corresponding eigenvector: Av = λv.
Then φt(v) = eAtv = eλtv and so |φt(v)| = eλt|v| → ∞, as t → ∞. And
more generally, any multiple of v flows off to infinity: limt→∞ |φt(bv)| = ∞,
for any b. We can use this to prove that the origin 0 is unstable by taking
ε = 1 and letting xk = v/k, tk = ln(2k/|v|)/λ, for k = 1, 2, 3, . . . Then
limk→∞ xk = 0 and |φtk (xk)| = 2 > 1, for all k. This proves part of the
following proposition.

Proposition 6.5 (Linear Instability) Suppose A has at least one eigen-
value with positive real part. Then the origin 0 is an unstable fixed point of
the linear system x′ = Ax.

The standard example of this is in two-dimensions when the origin is a saddle
point, say,

A = J =

[
−1 0
0 3

]
.

And in three-dimensions one could consider

A = J =

 −1 2 0
−2 −1 0
0 0 3

 ,
where the eigenvalues are λ = −1±2i, 3. Integral curves in the eigenspace E3

(which is the z-axis) run off to infinity, while those in the pseudo-eigenspace
E−1±2i (which is the x-z plane) spiral in toward the origin.
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There are a few other results, based on the eigenvalues of A, that one can
derive about the stability/instability of the linear system x′ = Ax. However,
a total understanding knowledge of the system’s stability/instability requires
more that knowing its eigenvalues. One must know its Jordan form J . From
J we can construct the stable, unstable, and center subspaces for x′ = Ax.
This is described in the following exercise set.

Exercises 6.2
1. Prove Proposition 6.2.

2. Prove that if A is an n× n matrix, then

|Ax| ≤ n‖A‖ |x|, (6.19)

for every ∈ R
n. Here |x| = (

∑n
i=1 x

2
i )

1/2 is the Euclidean norm on vectors
and ‖A‖ is the maximum norm on matrices (as defined in the text). Hint:
Use the Schwarz inequality:

n∑
j=1

|vjxj | ≤ (
n∑

j=1

v2
j )1/2 (

n∑
i=j

x2
j )

1/2,

for all v, x ∈ R
n. Prove that the same inequality (6.19) results if we use the

�1 norm, ‖x‖ =
∑n

i=1 |xi|, on vectors.

3. Prove Corollary 6.1. Hint: Theorem 6.1 applies to the matrix −A.

4. (Stable, Unstable, and Center Subspaces) The results on stability of
the origin in Theorem 6.1 or on instability of the origin in Corollary 6.1 rely
on the eigenvalues of A having real parts that are either all negative or all
positive. In the general case, with only the restriction det(A) 
= 0 on A, it is
possible to extend these results as follows.

(a) By the Jordan Form Theorem, there is an invertible matrix P̃ such that
P̃−1AP̃ = J̃ is a Jordan canonical form with J̃ having the structure
shown in equation (6.1). Argue that by using permutation matrices,
it is possible to find an invertible matrix P , such that P−1AP = J ,
where J is the rearrangement of J̃ having all the Jordan blocks involving
eigenvalues with negative, positive, and zero real parts come first, second
and third in the ordering. That is, for a suitable P ,

P−1AP = J =

 J1 0 0
0 J2 0
0 0 J3

 ,
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where

Ji =



Jki
1
(λi

1)
. . .

Jki
ri

(λi
ri

)
C2mi

1
(ai

1, b
i
1)

. . .
C2mi

si
(ai

si
, bisi

)


,

(6.20)
for i = 1, 2, and

J3 =

 C2m3
1
(0, b31)

. . .
C2m3

s3
(0, b3s3

)

 . (6.21)

Here λ1
1, . . . , λ

1
r1
, a1

1, . . . , a
1
s1

are all negative, λ2
1, . . . , λ

2
r2
, a2

1, . . . , a
2
s2

are
all positive, and b31, . . . , b

3
s3

are nonzero.
For studying stability of differential equations, this ordering of the Jor-
dan blocks is more suitable than the standard ordering in (6.1) used in
linear algebra.

(b) The matrices Ji are square matrices, say �i × �i matrices, with �1 + �2 +
�3 = n. Partition the matrix P into three submatrices

P = [P1, P2, P3],

where Pi is an n×�i matrix. Show that, as a linear map Pi : R

i → R

n,
each Pi is 1-1 (i.e., injective). Use this to show that R

n is direct sum of
three subspaces

R
n = W1 ⊕W2 ⊕W3,

where
Wi ≡ Pi(R


i).

The subspacesW1,W2 and W3 are called the stable, unstable, and center
subspaces of A, respectively.

(c) Show that
APi = PiJi,

for i = 1, 2, 3, and thus each subspace Wi is invariant under A, i.e.,
A(Wi) ⊆Wi. Use this to show that

etAPi = Pie
tJi ,

for i = 1, 2, 3, and thus each subspace Wi is invariant under the flow for
x′ = Ax.
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(d) (Generalized Eigenbasis Theorem) Prove that for any c ∈ R
n, the

integral curve of the system x′ = Ax, which passes through c at time
t = 0, is given by

φt(c) = P1e
tJ1u1 + P2e

tJ2u2 + P3e
tJ3u3, (6.22)

where the vectors ui ∈ R

i are the parameters of c in its decomposition

c = P1u1 + P2u2 + P3u3,

into stable, unstable, and center components. This result can be con-
sidered as a generalization of the real/complex eigenbasis theorems in
Chapter 4.

(e) Use Theorem 6.1 and its corollary (applied to the Ji’s), to show that
if c 
= 0 is in the stable subspace W1 for A, then limt→∞ φt(c) = 0,
while if c 
= 0 is in the unstable subspace W2, then limt→∞ |φt(c)| = ∞.
Show that for some choices of c 
= 0 in the center subspace W3, the
integral curve φt(c) remains bounded for all t, while for other choices
φt(c) runs off to infinity as t → ∞. Note: We are assuming here that
�i 
= 0, i = 1, 2, 3.

5. Study the material in CDChapter 6 on the electronic component that pertains
to linear stability of discrete dynamical systems and work the exercises there.

6.3 Nonlinear Stability
For a simple fixed point c of a nonlinear system x′ = X(x), stability is easy
to determine whenever the Linearization Theorem applies, i.e., whenever
the matrix A = X ′(c) has no purely imaginary eigenvalues. Then the phase
portrait near c is similar to the phase portrait of the linear system y′ = Ay
near the origin 0, and thus the type of stability of c and 0 are the same. More
generally, the following proposition shows that fixed points in topologically
equivalent systems have the same type of stability.

Proposition 6.6 (Invariance of Stability) Suppose X : O → R
n and

Y : O → R
n are vector fields on open sets O,O in R

n. Suppose f : O → O
is a homeomorphism that makes the systems x′ = X(x) and y′ = Y (y)
topologically equivalent. If c ∈ O is a fixed point, let b = f(c). Then c is
stable if and only if b is stable, and c is asymptotically stable if and only if
b is asymptotically stable.

Proof: Let φX and φY denote the respective flows for X and Y . Then (by
Exercise 1, Section 5.3) for every y ∈ O, we have that Iy = If−1(y) and

φY
t (y) = f ◦ φX

t ◦ f−1(y),
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for all t ∈ Iy.
First suppose that c is stable. To show that b = f(c) is stable, let ε > 0

be given. Then choose ε0 > 0 such that

B(c, ε0) ⊆ f−1(B(b, ε)).

By stability of c, there is a δ0 > 0, such that

φX
t (B(c, δ0)) ⊆ B(c, ε0),

for all t ≥ 0. Now since f is a diffeomorphism, f(B(c, δ0)) is an open set, so
we can choose an δ > 0 such that B(b, δ) ⊆ f(B(c, δ0)). Thus, for all t ≥ 0,
we have

φY
t (B(b, δ)) = f

(
φX

t

(
f−1(B(b, δ))

))
⊆ f

(
φX

t (B(c, δ0))
)

⊆ f(B(c, ε0))
⊆ B(b, ε).

This establishes the stability of b. Conversely, assume that b is stable. Then
showing that c is stable is exactly the same as above (just interchange c with
b and f with f−1).

Next assume that c is asymptotically stable. Then c is stable and there
exists a δ0 > 0, such that B(c, δ0) ⊆ O and

lim
t→∞φX

t (x) = c,

for all x ∈ B(c, δ0). Now choose δ > 0 such that B(b, δ) ⊆ f(B(c, δ0)). Then
by continuity of f and the above relation between the flows for X and Y ,
we get that

lim
t→∞φY

t (y) = lim
t→∞ f(φX

t (f−1(y))) = f(c) = b,

for all y ∈ B(b, δ). This establishes that b is asymptotically stable. The
argument is entirely similar for showing that c is asymptotically stable when
b is.

Corollary 6.2 (Nonlinear Stability) Suppose c is a simple fixed point
of X. If all the eigenvalues of X ′(c) have negative real parts, then c is
asymptotically stable. If one of the eigenvalues of X ′(c) has positive real
part, then c is unstable.
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Proof: Let Y (y) = Ay, where A = X ′(c). By the Linearization Theorem in
Chapter 5, there are neighborhoods U of c and U of 0, such that x′ = X(x)
and y′ = Y (y) are topologically equivalent when restricted to U and U ,
respectively. By the last proposition, c and 0 have the same stability type.
Thus, by the Linear Stability Theorem and Proposition 6.5, the results here
follow.

Exercises 6.3
1. (Stable, Center, and Unstable Manifolds) For nonlinear systems there

is a generalization of the stability result in Corollary 6.2, to allow for the case
when the real parts of the eigenvalues of X ′(c) are partly negative, partly
positive, and some are zero. This is analogous to the extension for linear sys-
tems x′ = Ax, using stable, unstable, and center subspaces: W1,W2,W3 (see
Exercise 4 in the previous section). Now the respective spaces M1(c),M2(c),
and M3(c) are manifolds with W1,W2,W3 as tangent spaces (when translated
to c). The theory for this can be found in various sources in the literature
(cf. [AM 78, p. 525], [Ha 82, p. 238], [Irw 80, p. 151], [Per 91, p. 104]). This
exercise is to look at a very limited version of the theory.
Suppose that c ∈ O is a hyperbolic fixed point of X : O → R

n and let
A = X ′(c). Then by the Linearization Theorem from Chapter 5, there are
neighborhoods U of c and U of 0 such that the system x′ = X(x) on U is
topologically equivalent to the linear system y′ = Ay on U . If f : U → U is
a homeomorphism that establishes this equivalence, let

M1(c) ≡ f−1(W1 ∩ U) and M2(c) ≡ f−1(W2 ∩ U),

where W1,W2 are the stable and unstable subspaces for A introduced in
Exercise 4 in the previous section. The sets M1(c),M2(c) are called the
stable manifold and unstable manifold for X at c. Show that these manifolds
are invariant under the flow: If x ∈Mi(c), then φt(x) ∈Mi(c), for all t ∈ Ix.
Further show that if x ∈ M1(c), then |φt(x)| is bounded for all t ∈ [0, bx),
and thus bx = ∞. Then show that limt→∞ φt(x) = c, for all x in the stable
manifold M1(c).

2. Read the material in CDChapter 6 on the electronic component on nonlinear
stability of discrete dynamical systems and work the exercises there.

6.4 Liapunov Functions
Another valuable tool in analyzing the stability and asymptotic stability of
a fixed point c, especially when the Linearization Theorem fails to apply, is
the use of a certain real-valued function Λ : U → R, defined on a neighbor-
hood U of c, and having certain easily stated properties. Such functions are
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called Liapunov functions, and while there is not an algorithm for discerning
whether a Liapunov function exists for a given fixed point, when one does,
we are guaranteed stability for the fixed point.

Definition 6.3 (Liapunov Functions) Suppose X : O → R
n is a vector

field on O ⊆ R
n.

(1) If F : O → R is a scalar field on O, i.e., a real-valued, C1 function, its
covariant derivative along X is the scalar field ∇XF : O → R defined
by

∇XF (x) ≡ ∇F (x) ·X(x) =
n∑

j=1

Xj(x)
∂F

∂xj
(x). (6.23)

(2) Suppose c ∈ O is a fixed point of X. A real-valued, C1 function Λ
defined on a open set U ⊆ O with c ∈ U is called a Liapunov function
for c if it satisfies the following two conditions:

(a) Λ(c) < Λ(x), for all x ∈ U \ {c}
(b) ∇XΛ(x) ≤ 0, for all x ∈ U \ {c}.

If in addition Λ satisfies the strict inequality ∇XΛ(x) < 0, for all
x ∈ U \ {c}, then it is called a strict Liapunov function for the fixed
point c.

The covariant derivative operator ∇X is an important and fundamental op-
erator in differential geometry and it has extensions to actions on vector
fields Y and, more generally, on tensor fields T , giving vector and tensor
fields ∇XY and ∇XT , respectively. For a scalar field F , the covariant deriv-
ative ∇XF is geometrically interpreted in a number of ways. Let φ : D → R

n

be the flow generated by X. Then it is easy to see that

(∇XF )(φt(x)) =
d

dt

(
F (φt(x))

)
, (6.24)

for all x ∈ O and t ∈ Ix (exercise). This says that the covariant derivative
gives the rate of change of F along the flow φ. Taking t = 0 in the above
equation gives that ∇XF (x) is the directional derivative of F at x in the
direction of X(x). An auxiliary geometric interpretation involves the level
sets, or hypersurfaces, of F :

Sk
F = {x ∈ O |F (x) = k },
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k ∈ R. One can show that the gradient ∇F (x) at each point x is perpen-
dicular to the level hypersurface through x and points in the direction of
greatest increase of F . In addition,

(∇XF )(x) = ∇F (x) ·X(x) = |∇F (x)| |X(x)| cos(θ(x)), (6.25)

for all x ∈ O and t ∈ Ix, where θ(x) is the angle between ∇F (x) and X(x).
Thus, if Λ is a Liapunov function, then the condition ∇XΛ(x) ≤ 0, says

that the angle between X(x) and ∇Λ(x) is either a right angle (θ = 90) or
is obtuse (θ > 90). In the former case X(x) is tangent to the hypersurface
Sk

Λ (where k ≡ Λ(x)), and in the latter case X(x) points toward the “inside”
of this hypersurface. See Figure 6.4. The figure is for n = 2 and so each Sk

Λ

is a level curve of Λ. The sequence of level curves shown indicates how Λ
decreases in value toward the fixed point c. The plots of X at various points
indicate why each integral curve, when crossing a level curve, must either
remain tangent to the level curve or pass toward the inside of the curve (the
side on which c is on).

Figure 6.4: If Λ is a Liapunov function for a fixed point c of X, then
near c the integral curves of X are either tangent to the level hypersurfaces
Sk

Λ = {x ∈ O |Λ(x) = k } or cross these hypersurfaces toward their interiors
(direction of decreasing values of Λ).

For emphasis, we state again, in a slightly different way, the ideas in the
previous paragraphs. Condition (a) in the definition of a Liapunov function
Λ says that Λ has a local minimum value at the fixed point c. Condition
(b) of the definition says that for any x ∈ U , the values {Λ(φt(x))}t≥0 of
Λ along the forward flow through x decrease with increasing t (or strictly
decrease with increasing t, if Λ is a strict Liapunov function). This follows
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from the fact that the derivative of the function

g(t) ≡ Λ(φt(x)),

for t ∈ Ix, is given by

g′(t) =
d

dt

(
Λ(φt(x))

)
= (∇XΛ)(φt(x)) ≤ 0,

and so g is a decreasing function (or strictly decreasing when Λ is a strict
Liapunov function). This is the main idea used in the proof of the next
theorem.

The geometrical interpretation of a Liapunov function for a fixed point
c indicates why we would expect c to be a stable fixed point. The next
theorem gives the details of the proof of this fact.

Theorem 6.2 (Liapunov Stability Theorem) Suppose X : O → R
n is

a vector field on an open set O ⊆ R
n and c ∈ O is a fixed point of X.

Assume there exists a Liapunov function Λ : U ⊆ O → R for c. Then c is
a stable fixed point. If Λ is a strict Liapunov function for c, then c is an
asymptotically stable fixed point.

Proof: To prove stability of c, suppose ε > 0 is given. Choose a smaller
epsilon, ε0, if necessary, so that the closed ball B(c, ε0) with center c and
radius ε0 is completely contained in U . The boundary ∂B(c, ε0) of this ball
is then a compact subset of U and since Λ is continuous, it has a minimum
value µ on this subset:

µ ≡ inf{Λ(z) | z ∈ ∂B(c, ε0) }.

Since this value is attained at some point z0 ∈ ∂B(c, ε0), we have, using
condition (a) of the definition, that µ = Λ(z0) > Λ(c).

Now choose δ > 0 so that

B(c, δ) ⊆ {x ∈ B(c, ε0) |Λ(x) < µ } = B(c, ε0) ∩ Λ−1(−∞, µ).

See Figure 6.5. For an x ∈ B(c, δ), we have to show that (1) the maximal
integral curve t → φt(x), t ∈ Ix, remains in B(c, ε0) for all t ≥ 0, and (2)
the maximal interval of existence Ix = (ax, bx) has bx = +∞. For the rest
of the proof, x will be fixed.
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Figure 6.5: Choice of the δ, for the given ε0, necessary to prove stability of
the fixed point c.

Now Λ(x) < µ, by definition of µ and choice of x. Since Λ is a Liapunov
function we also have Λ(φt(x)) ≤ Λ(x), for all t ∈ [0, bx). Thus,

Λ(φt(x)) < µ, ∀ t ∈ [0, bx). (6.26)

For convenience, define a real-valued function f : Ix → R, by

f(t) ≡ |φt(x) − c|.

In terms of this notation, we would like to establish the following:

Claim: f(t) < ε0 for all t ∈ [0, bx).

To prove the claim, assume to the contrary that it is not true, say f(t1) ≥ ε0
for some t1 ∈ [0, bx). See Figure 6.6. We get a contradiction as follows.

Figure 6.6: Graph of the function f and application of the Intermediate Value
Theorem.
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By continuity of f , the Intermediate Value Theorem guarantees us a t0 ∈
[0, t1] such that f(t0) = ε0. Otherwise said, at time t0, we have |φt0(x)−c| =
ε0, i.e., φt0(x) ∈ ∂B(c, ε0). So by definition of µ, we have

µ ≤ Λ(φt0(x)).

But this contradicts inequality (6.26). Thus, the Claim must be true.
Writing the Claim out explicitly gives

|φt(x) − c| < ε0 ≤ ε, ∀ t ∈ [0, bx). (6.27)

This establishes stability once we show that bx = +∞. But this follows from
Theorem 3.8 in Chapter 3, since the above says that φt(x) remains in the
compact set B(x, ε0) ⊆ O for all t ∈ [0, bx).

Suppose that, in addition, Λ is a strict Liapunov function. We want to
show that, in addition to the above, we also have limt→∞ φt(x) = c. If this
were not the case, then there would exist an ε1 < ε0 and a strictly increasing
sequence {tj}∞j=1 of times such that

|φtj (x) − c| ≥ ε1, for j = 1, 2, 3, . . .. (6.28)

Since {φtj (x)}∞j=1 is a sequence in the compact set B(c, ε0), some subsequence
{φtjk

(x)}∞k=1 converges to a point z ∈ B(c, ε0). For convenience of notation
let sk = tjk

. Then
lim

k→∞
φsk

(x) = z, (6.29)

with {sk}∞k=1, a strictly increasing sequence of times. Then by (6.28), we
have |z − c| ≥ ε1, and so z 
= c.

Now let g(t) = Λ(φt(z)) for t ∈ Iz = (az,∞). Since Λ is a strict Liapunov
function, it follows that

g′(t) = (∇XΛ)(φt(z)) < 0,

for every t ∈ Iz. Thus, g is a strictly decreasing function. In particular this
says that z is not a fixed point (otherwise g would be a constant function).
Also, if we pick some s > 0, then

Λ(φs(z)) < Λ(z).

With s fixed, we note that the function y → Λ(φs(y)) is continuous at z.
and its value at z is less than Λ(z). Thus, there exists an 0 < r < ε0 such
that

Λ(φs(y)) < Λ(z),
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for all y with |y − z| < r. Now according to (6.29), we can choose a K such
that |φsk

(x) − z| < r for all k ≥ K. Consequently,

Λ(φs+sk
(x)) = Λ(φs(φsk

(x)) < Λ(z), (6.30)

for all k ≥ K. Now since {sk}∞k=1 is a strictly increasing sequence, we can
choose a subsequence {skj

}∞j=1, that is also strictly increasing and satisfies
skj

> s+ sj for all j. Then because f(t) = Λ(φt(x)) is a strictly decreasing
function, we get from (6.30) that

Λ(φskj
(x)) < Λ(z),

for every j. Taking j → ∞ gives

Λ(z) = lim
j→∞

Λ(φskj
(x)) < Λ(z),

which of course is a contradiction. This completes the proof.

Example 6.1 Consider the system in R
3 with vector field

X(x, y, z) =
(
y(z − 1), x(z + 1),−2xy

)
.

It is clear that c = (0, 0, 0) is a fixed point of X. However, the Jacobian
matrix of X is

X ′(x, y, z) =

 0 z − 1 y
z + 1 0 x
−2y −2x 0

 ,
and so at the fixed point c

X ′(0, 0, 0) =

 0 −1 0
1 0 0
0 0 0

 .
Thus, the Linearization Theorem does not apply (since c is not a simple
fixed point). However, we claim that the function Λ : R

3 → R, defined by

Λ(x, y, z) = 1
2(x

2 + y2 + z2),

is a Liapunov function for c. Because of its simplicity, a function like this is
often a standard choice, in all dimensions, for a Liapunov function. Namely,
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it is readily apparent that Λ(x, y, z) ≥ 0 = Λ(0, 0, 0) for all (x, y, z) ∈ R
3,

i.e., Λ has an absolute minimum at c. Also since ∇Λ(x, y, z) = (x, y, z), it is
easy to calculate that

∇XΛ = ∇Λ ·X = xy(z − 1) + yx(z + 1) − 2xyz = 0,

for all (x, y, z) ∈ R
3. Thus, Λ is a Liapunov function for c, and so by the

theorem c is a stable fixed point.

Finding and verifying that a function Λ is a strict Liapunov function
requires more work. In essence one must verify that Λ has a local minimum
at c and that ∇XΛ has a local maximum at c. The next example illustrates
this.

Example 6.2 For vector fields on the plane, stability and asymptotic sta-
bility of fixed points are usually easy to ascertain from a direction field plot.
However, this method is only an experimental conjecture and proof of the
actual stability only comes from applying the theory. Thus, for example,
consider the vector field

X(x, y) =
(
− y + xy − x3 − 1

2xy
2, −3y + xy + x2y − 1

2xy
2
)
,

which has the origin c = (0, 0) as a fixed point. Again the Linearization
Theorem does not apply, since

X ′(0, 0) =

[
0 −1
0 −3

]
.

However examining the phase portrait in Figure 6.7 leads us to conjecture
that the origin is asymptotically stable. Also shown in the figure are plots
of several level curves for the function

Λ(x, y) = 1
2(3x

2 − 2xy + y2).

The graphical evidence suggests that Λ is a strict Liapunov function for
c = (0, 0), since the angle between X(x, y) and ∇Λ(x, y) appears to be
always larger than 90 degrees. However we need to verify this analytically.

For this, first note that Λ can be written in the form

Λ(x, y) = 1
2

[
2x2 + (x− y)2

]
,
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Figure 6.7: Phase portrait for the system in Example 6.2 along with plots of
level curves of a strict Liapunov function for c = (0, 0).

from which it is obvious that Λ has an absolute minimum at c = (0, 0). Next,
the gradient of Λ is

∇Λ = ( 3x− y,−x+ y ),

and so

∇XΛ
= (3x− y)(−y + xy − x3 − 1

2xy
2) + (−x+ y)(−3y + xy + x2y − 1

2xy
2)

= 2x2y − 3x4 − 2y2

= −
[
(x2 − y)2 + 2x4 + 2y2

]
.

In the last line, we manipulated the expression for ∇XΛ, so that it has a form
that readily shows that ∇XΛ(x, y) ≤ 0 for all (x, y) ∈ R

2 and ∇XΛ(x, y) = 0
only for (x, y) = (0, 0) = c. Hence Λ is a strict Liapunov function. Note
that here we were able to use algebraic manipulation to discern that ∇XΛ is
strictly negative on R

2 \ {c}. In general, you might have to use the Hessian
(cf. Appendix A) to check that c is a local maximum of ∇XΛ.

Since Liapunov functions are not unique, you might wonder whether we
could use a simpler function like

F (x, y) = 1
2(x

2 + y2)
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Figure 6.8: Phase portrait for the system in Example 6.2 along with plots of
level curves of the function F (x, y) = 1

2(x
2 + y2).

as a Liapunov function in this example. The graphical evidence in Figure
6.8 suggests that F might be a strict Liapunov function. Clearly F has an
absolute minimum at c = (0, 0) and a straightforward calculation gives

∇XF = x(−y + xy − x3 − 1
2xy

2) + y(−3y + xy + x2y − 1
2xy

2)
= −xy + x2y − x4 − 3y2 + xy2

Now ∇XF (0, 0) = 0, and so to see if F is a strict Liapunov function, we
need to determine if c = (0, 0) is a local maximum of the function ∇XF .
Graphical evidence for this can always be obtained by graphing ∇XF on
a neighborhood of c. Figure 6.9 shows such a plot and seems to indicate
that ∇XF does have a local maximum at the origin. But, indeed, the
graphical evidence leads us to a false conclusion. You can prove that the
origin is not a local maximum for ∇XF by calculating the Hessian H∇XF and
using this to show that the origin is, in fact, a saddle point for the function
∇XF (exercise). This does not show in Figure 6.9 because we did not use
a small enough neighborhood of the origin. You can get a saddle-shaped
graph by using a smaller neighborhood. Also note that ∇XF (.05, .005) =
−.0003174375, while ∇XF (.05,−.005) = .0001575625. Each of these lends
evidence to the assertion that c = (0, 0) is not a local maximum for ∇XF ,
and thus F is not a Liapunov function for c.
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Figure 6.9: Graph of ∇XF = −xy+x2y−x4 − 3y2 +xy2 on a neighborhood
of (0, 0).

Exercises 6.4
1. Suppose φ : D → R

n be the flow generated by X . Show that

(∇XF )(φt(x)) =
d

dt

(
F (φt(x))

)
, (6.31)

for all x ∈ O and t ∈ Ix.

2. For each of the functions Λ and vector fields X assigned to you from the list
below, do the following:

(i) Prove that Λ is either a Liapunov function or a strict Liapunov function
for the fixed point c = (0, 0). Also show that the Linearization Theorem
does not apply.

(ii) (For planar systems only) Plot, in the same figure, the phase portrait
for the system and a number of level curves for the Liapunov function.
Mark directions of flow on the integral curves. For several points c of
intersection of an integral curve and a level curve, indicate approxi-
mately the directions of X(c) and ∇Λ(c) and label the angle between
these directions with its approximate degree measure (you may use a
protractor for this).

(a) Λ = x2 + 2y2 and
X = (−x+ 2xy2,−x2y ).

(b) Λ = 1
2 (x2 + x2y2 + y4 ) and

X = (−x3 − 2xy2, x2y − y3 ).
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(c) Λ = 1
2 (x2 + y2) and

X = (−y − x3 − xy2, x− y3 − x2y ).

(d) Λ = x2/(1 + x2) + y2 and

X =
(

−2x
(1 + x2)2

+ 2y,
−2(x+ y)
(1 + x2)2

)
.

(e) Λ = 1
2m (x2m + y2m), with m > 1 and

X = (−y2m−1, x2m−1 ).

Do the plots for two choices of m, say m = 2, 5.

(f) Λ = 1
2 (x2 + 2y2 + z2) and

X = (−2y + yz, x− xz, xy ).

(g) Λ = 1
2 (x2 + y2) and

X = −y(z + 2), x(z + 2), x(y − 1) ).

3. Show that c = (0, 0) is a saddle point for the function

∇XF = −xy + x2y − x4 − 3y2 + xy2,

by calculating its Hessian (Appendix A). Also verify this experimentally by
plotting its graph on a small enough neighborhood of c so that the graph has
saddle shape. See Example 6.2 and Figure 6.9.

6.5 Stability of Periodic Solutions
Stability is a concept that applies not only to fixed points of x′ = X(x), but
also to any integral curve in general. If γ : I → R

n is an integral curve of
X, we can always assume, without loss of generality, that 0 ∈ I.

Recall that for x ∈ O, the maximum interval of existence for the integral
curve passing through x at time t = 0 is denoted by Ix and ax < bx denote
the left- and right-hand endpoints of Ix.

Definition 6.4 (Stability of Integral Curves) Suppose X : O → R
n is

a vector field on an open set O in R
n and let φ be the flow corresponding to

the system x′ = X(x). Suppose γ : I → R
n is an integral curve of X and let

c = γ(0). Then γ is called stable if for each ε > 0 there exists a δ > 0, such
that B(c, δ) ⊆ O and if x ∈ B(c, δ), then
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(a) [0, bc) ⊆ [0, bx) and

(b) |φt(x) − γ(t)| < ε for all t ∈ [0, bc).

If in addition to (a) and (b), one has

lim
t→∞ |φt(x) − γ(t)| = 0,

then γ is called an asymptotically stable integral curve.

Figure 6.10 illustrates the definition of stability for an integral curve γ.

Figure 6.10: Stability for an integral curve γ requires that flow lines can be
made to remain in the moving ball B(γ(t), ε), for any ε > 0.

Note that the definition of stability for γ is, roughly speaking, more
stringent than just requiring that the flow lines through points x near to
γ(0) stay near γ for times t > 0. Rather, stability requires that φt(x) remain
in the ball B(γ(t), ε). Furthermore, in the case when bc = ∞, the definition
can be rephrased in the more geometrical way: for each ε > 0, there is a
δ > 0, such that bx = ∞ for all x ∈ B(γ(0), δ) and

φt (B(γ(0), δ)) ⊆ B(γ(t), ε),

for all t > 0. Also note that when γ is a constant function, i.e., a fixed point,
the above definition reduces to the prior one for fixed points.

While one can attempt to analyze the stability of any integral curve, good
results have, so far, only been obtained for fixed points (constant solutions)
and periodic solutions of the system. Limit cycles, as discussed in Chapter
2, are examples of the latter type of integral curve. To proceed with the
stability analysis, we need to make precise the concept of a “closed integral
curve” (or cycle).
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Definition 6.5 (Closed Integral Curves: Periodic Solutions)

(1) A function f : R → S is called periodic if there exists a positive number
p > 0 such that f(t+ p) = f(t), for all t ∈ R. The number p is called
a period of the function f .

(2) An integral curve γ of a vector field X : O ⊆ R
n → R

n, is called a
closed integral curve (or cycle) if it is defined on all of R, i.e., γ : R → O,
and is periodic. Otherwise said, γ is a periodic solution of the system
of DEs: x′ = X(x). In the sequel when we refer to periodic solutions,
we will assume they are non constant, i.e., not fixed points.

Note: If γ is a closed integral curve, then X(γ(t)) 
= 0, for all t ∈ R. This is
so because otherwise γ would pass through a fixed point of X and thus, by
uniqueness, γ would be a constant function.

The analysis of the phase portrait near any integral curve γ has many
aspects that are similar to, yet decidedly distinct from, the analysis of the
system’s behavior near a fixed point. Indeed, the Jacobian matrix X ′ of
the vector field X plays a prominent role, except now instead of evaluating
X ′ at a fixed point, we evaluate it at points along the curve, giving a time-
dependent matrix, which is periodic when γ is. The motivation for using
the Jacobian matrix here is the same as it was in the discussion of the
Linearization Theorem for fixed points.

Heuristically, we consider a Taylor series expansion of X:

X(x+ h) = X(x) +X ′(x)h+ · · · ,

and suppose that γ : I → R
n is some integral curve. Assume a “nearby”

integral curve α has the form α = γ + ξ, where ξ is the variation and is
thought of as being small in magnitude. See Figure 6.11. Using the fact that
α′(t) = X(α(t)) and the above Taylor series expansion, we get (heuristically)

γ′(t) + ξ′(t) = X(γ(t) + ξ(t)) = X(γ(t)) +X ′(γ(t))ξ(t) + · · · .

Hence neglecting the higher-order terms (indicated by the ellipsis · · ·) and
recalling that γ is an integral curve too, we get that the variation ξ satisfies

ξ′(t) = X ′(γ(t))ξ(t).

This is a linear system of equations, called the variational equations by
Poincaré, who also is responsible for first analyzing stability of periodic so-
lutions in this fashion (cf. [Po 57]).
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Figure 6.11: An integral curve α near a given integral curve γ.

Definition 6.6 (Characteristic Multipliers) Suppose γ : I → R
n is an

integral curve of X with 0 ∈ I. The matrix-valued function A : I → Mn

defined by
A(t) = X ′(γ(t)), (6.32)

is called the variational matrix for γ. In the literature this matrix is also
called the monodromy matrix. The corresponding linear system: x′ = A(t)x,
is called the system of variational equations for γ. The fundamental matrix
G : I → Mn for A is called the characteristic matrix for γ. If γ is a closed
curve with period p, then the characteristic multipliers of γ are defined to
be the eigenvalues of characteristic matrix at p, i.e., the eigenvalues of G(p).

Example 6.3 (A 3-Dimensional System) Consider the system

x′ = −y + xz

y′ = x+ yz

z′ = −z(x2 + y2)

with corresponding vector-field X : R
3 → R

3,

X(x, y, z) = (−y + xz, x+ yz,−z(x2 + y2) ).

Later we will analyze the integral curves of this system completely, but
for now observe that restricting X to the x-y plane (the plane z = 0) we get
X(x, y, 0) = (−y, x, 0) and so X is tangent to the x-y plane and the integral
curves that start in this plane satisfy

x′ = −y
y′ = x
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Thus, we get a plane full of circles for the integral curves. We choose one of
these, say

γ(t) = ( cos t, sin t, 0 ),

which is closed integral curve with period p = 2π. To illustrate the concepts
introduced so far, we compute the variational matrix A(t) = X ′(γ(t)), the
fundamental matrix G for A, and then the characteristic multipliers for γ.
An easy calculation gives

X ′(x, y, z) =

 z −1 x
1 z y

−2xz −2yz −(x2 + y2)

 ,
and so

A(t) = X ′(cos t, sin t, 0) =

 0 −1 cos t
1 0 sin t
0 0 −1

 .
While it is generally difficult to explicitly compute the fundamental matrix
G for a given time-dependent matrix A, we can do so in this case. The linear
system corresponding to A is

x′ = −y + (cos t)z
y′ = x+ (sin t)z
z′ = −z

Solving the last equation gives z = z0e
−t, and substituting this in the first

and second equations yields

x′ = −y + z0e
−t cos t

y′ = x+ z0e
−t sin t

The homogeneous part of this system has solution

αc(t) = R(t)v0 =

[
cos t − sin t
sin t cos t

] [
x0

y0

]
.

And with b(t) = (z0e−t cos t, z0e−t sin t), one can easily compute a particular
solution of the nonhomogeneous system:

αp(t) = R(t)
∫ t

0
R(s)−1b(s) ds =

[
z0(1 − e−t) cos t
z0(1 − e−t) sin t

]
.
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Using all of this gives the general solution of the linear system for A. Then
the fundamental matrix is determined to be

G(t) =

 cos t − sin t (1 − e−t) cos t
sin t cos t (1 − e−t) sin t
0 0 e−t

 .
This is the characteristic matrix for the curve γ. Since γ has period 2π, we
get

G(2π) =

 1 0 1 − e−2π

0 1 0
0 0 e−2π

 .
Hence the characteristic multipliers of γ, being the eigenvalues of the above
matrix, are 1, 1, e−2π . We will see later that these multipliers are connected
with the stability of γ.

Example 6.4 (A 2-Dimensional System) The following system has a
form that simplifies considerably when written in polar coordinates. In
Cartesian coordinates (with r2 = x2 + y2) the system is

x′ = (r2 − 1)x− by = −x− by + x3 + xy2

y′ = bx+ (r2 − 1)y = bx− y + x2y + y3.

Here b > 0 is a constant. It is easy to see that this system has a single cycle
(r = 1) which is the circle

γ(t) = (cos bt, sin bt, 0).

It has period p = 2π/b. The vector field for the system is

X(x, y) = ( − x− by + x3 + xy2, bx− y + x2y + y3 ),

and has Jacobian matrix

X ′(x, y) =

[
−1 + 3x2 + y2 −b+ 2xy

b+ 2xy −1 + x2 + 3y2

]
.

Then we get the variational matrix for γ is

A(t) = X ′(γ(t)) =

[
2 cos2 bt −b+ 2cos bt sin bt

b+ 2cos bt sin bt 2 sin2 bt

]
.
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It will be convenient to use some standard trig identities and write this as

A(t) =

[
1 + cos 2bt −b+ sin 2bt
b+ sin 2bt 1 − cos 2bt

]
.

Finding the fundamental matrix here involves a few tricks (see the Exercises).
We get

G(t) =

[
e2t cos bt − sin bt
e2t sin bt cos bt

]
,

as is easily checked. This is the characteristic matrix for the curve γ. Next,
since

G(2π/b) =

[
e4π/b 0

0 1

]
,

the characteristic multipliers of γ are e4π/b, 1. These values being ≥ 1 will
indicate the instability of γ according to the theory to be introduced. In this
example however, the instability is understood geometrically by using the
polar coordinate version of the system. We will return to this in a moment.

For the theory, we will need the concept of the deformation matrix:

Definition 6.7 (Deformation Matrix) If φ : D ⊆ R × R
n → R

n is the
flow generated by a vector field X, then the deformation matrix H is the
matrix-valued function H : D :→ Mn, defined by

H(t, x) = φ′(t, x) =


∂φ1

∂x1
(t, x) · · · ∂φ1

∂xn
(t, x)

...
...

∂φn

∂x1
(t, x) · · · ∂φn

∂xn
(t, x)

 . (6.33)

The deformation matrix H arises in continuum mechanics, where X rep-
resents the velocity vector field for a fluid, gas, or solid U that undergoes
motion and deformation via the flow φ, with φt(U) representing the position
of the continuum at time t. The connection between H and the characteristic
matrix is given in the next proposition and this will be helpful in describing
how G and the characteristic exponents transform under diffeomorphisms.

Proposition 6.7 Suppose γ : I → R
n is an integral curve of X, with 0 ∈ I,

and let c = γ(0). Then the characteristic matrix G of γ coincides with the
deformation matrix H at c. Specifically,

G(t) = H(t, c),
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for all t ∈ I. Furthermore,

G(t)X(c) = X(γ(t)), (6.34)

for all t ∈ I. Hence if γ is a closed integral curve with period p, then

G(p)X(c) = X(c),

i.e., G(p) has µ = 1 as an eigenvalue and X(c) as a corresponding eigen-
vector. Consequently, 1 is always a characteristic multiplier for any closed
integral curve.

Proof: It is a straightforward calculation to show that the deformation
matrix satisfies the matrix differential equation:

∂H

∂t
(t, x) = X ′(φ(t, x))H(t, x), (6.35)

for all (t, x) ∈ D and that H(0, x) = I, the identity matrix, for all x ∈
O. (Exercise). Now since γ(t) = φ(t, c), for all t ∈ I, it is clear G̃(t) ≡
H(t, c) is a fundamental matrix for A(t) = X ′(γ(t)) = X ′(φ(t, c)). However,
fundamental matrices (as we have defined them) are unique since they are
solutions of matrix initial value problems. Hence, we have G̃ = G, and the
first assertion of the proposition follows.

Next, γ is an integral curve of X and so

γ′(t) = X(γ(t)),

for all t ∈ I. Differentiating both sides of this equation and using the chain
rule and the above definitions gives

γ′′(t) = X ′(γ(t))γ′(t)
= A(t)γ′(t),

for all t ∈ I. This says the curve γ′ is a solution of the variational equations
x′ = A(t)x. Also γ′(0) = X(γ(0)) = X(c) and so γ′ satisfies the initial
condition x(0) = X(c). But since G is the fundamental matrix for A, we
can express the solution γ′ of this initial value problem in terms of it:

γ′(t) = G(t)X(c),

for all t ∈ I. However γ′(t) = X(γ(t)), for all t and so substituting this in
the last equation gives X(γ(t)) = G(t)X(c), for all t ∈ I. This proves the
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second assertion. It also easily yields the third assertion, since if γ is closed
integral curve of period p, then taking t = p in the last equation and using
γ(p) = γ(0) = c, gives X(c) = G(p)X(c).

The next proposition will be of use later when we will find it convenient to
translate and rotate the coordinate system to more easily study the stability
of γ. The proposition says, among other things, that the characteristic
multipliers of γ are invariant under these types of transformations.

Notation: Let φX denote the flow generated by X.

Proposition 6.8 (Invariance) Suppose f : O → O is a diffeomorphism
between two open sets O and O in R

n. For a vector field X : O → R
n on

O, let
Y = f∗(X),

be the push-forward of X to a vector field on O. Let HX and HY denote
the deformation matrices for the flows generated by X and Y , respectively.
Then

HY (t, y) = f ′
(
φX

t (f−1(y))
)
HX

(
t, f−1(y)

)
f ′
(
φX

t (f−1(y))
)−1

, (6.36)

for all (t, y) in the domain of the flow for Y . Consequently, if γ : I → R
n is

an integral curve for X and
β ≡ f ◦ γ,

is the corresponding integral curve for Y , then the characteristic matrices
GX , GY for γ, β are similar. Specifically

GY (t) = f ′(γ(t))GX (t) f ′(γ(t))−1, (6.37)

for all t ∈ I. In particular, if γ is a closed integral curve of period p, then β
is a closed integral curve of period p and the characteristic multipliers for γ
and β are the same.

Proof: By the result of Exercise 1, Section 6.3, the flows for X and Y are
conjugate

φY
t = f ◦ φX

t ◦ f−1,

for all t ∈ If−1(y). Equation (6.36) for the relation between the deforma-
tion matrices follows directly by taking derivatives of both sides of this last
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equation and using the chain rule. Now γ(0) = c and so β(0) = f(c). Also
γ(t) = φX

t (c), for all t ∈ R. Taking y = f(c) in equation (6.36) gives the
equation (6.37) relating the characteristic matrices for γ and β. For t = p
this equation shows that GY (p) and GX(p) are similar, and hence they have
the same eigenvalues.

Proposition 6.7 gives us a start on the analysis of the stability of a closed
integral curve γ. We know that one of its characteristic multipliers is µ1 = 1
and that X(c) is a corresponding eigenvector. As we shall see below, if the
remaining characteristic multipliers µ2, . . . , µn have modulus less than one:
|µj | < 1, j = 2, . . . , n, then the matrix G(p), viewed as a linear map, will
be a contraction when restricted to the subspace Vc perpendicular to X(c).
To motivate how this leads to the stability proof below, we return to the
heuristic argument prior to Definition 6.6.

Integral curves α that are initially near the periodic solution γ can be
written, to the first approximation, in the form α ≈ γ + ξ, where ξ, the
variation, is a solution of the variational equations and initially ξ(0) = v0 ∈
Vc. Here Vc = { v | v ·X(c) = 0 }, is the subspace orthogonal to X(c). Since
G is the fundamental matrix for the variational equations x′ = A(t)x, we
have ξ(t) = G(t)v0, and consequently

α(t) ≈ γ(t) +G(t)v0,

for all t. For instance, in Example 6.3, c = (1, 0, 0) and X(c) = (0, 1, 0).
Consequently, Vc is the x-z plane, and for v0 = (x0, 0, z0) in Vc, we have

ξ(t) = G(t)v0 =
(

[x0 + (1 − e−t)z0] cos t, [x0 + (1 − e−t)z0] sin t, z0e−t
)
.

Thus, the variation ξ asymptotically approaches

β(t) =
(

[x0 + z0] cos t, [x0 + z0] sin t, 0
)
.

So for |v0|, small we would expect α to remain near γ (but not approach it
asymptotically).

On the other hand, In Example 6.4, c = (1, 0) and X(c) = (0, 1). So Vc

is the x-axis, and for v0 = (x0, 0) in Vc, we have

ξ(t) = G(t)v0 =
(
x0e

2t cos bt, x0e
2t sin bt

)
.
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So the variation ξ spirals out to infinity and α does not remain near γ.
We can also use G to analyze the situation discretely, i.e., by looking

at the times t = p, 2p, 3p, . . . , where p is the period of γ. Since the varia-
tional matrix A is periodic: A(t+ p) = A(t), we can use the Floquet theory
(see Exercise 19, Section 4.2), to conclude that the characteristic matrix G
satisfies

G(t+ p) = G(t)G(p),

for all t ∈ R. By repeated application of this property we find that

G(kp) = G(p)k,

for k = 1, 2, 3, . . . Using these discrete time steps in the above and noting
that γ(kp) = γ(0) = c, for all k, we get

α(kp) ≈ c+G(p)kv0,

for k = 1, 2, 3, . . .. For instance, in Example 6.3, a short computation shows
that

G(2π)kv0 =

 1 0 1 − e−2kπ

0 1 0
0 0 e−2kπ


 x0

0
z0

 =

 x0 + z0 − z0e
−2kπ

0
z0e

−2kπ

 .
Consequently

lim
k→∞

α(kp) ≈ c+ lim
k→∞

G(p)kv0 =

 1 + x0 + z0
0
0

 .
On the other hand, in Example 6.4,

G(4π/b)kv0 =

[
e4kπ/b 0

0 1

] [
x0

0

]
=

[
x0e

4kπ/b

0

]
,

and
lim

k→∞
α(kp) ≈ c+ lim

k→∞
G(p)kv0 = does not exist.

since the latter quantity grows without bound.
However, if the restriction of G(p) to Vc is a contraction (which it is not in

k→∞G(p)kv0=
0 and α tends (discretely) to c, i.e., limk→∞ α(kp) = c (see Appendix B,
either of the above examples), then thevariation tends to zero lim
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Section 3). This rough argument indicates why we would expect γ to be as-
ymptotically stable when n−1 of its characteristic multipliers have modulus
less than 1.

To formulate a precise result, we need to first introduce another type of
asymptotic stability. The reason for this is that periodic solutions generally
cannot be asymptotically stable (exercise), but with suitable conditions they
can be “orbitally asymptotically stable.”

Definition 6.8 (Orbital Stability)

1. If M ⊆ R
n is a closed subset and x ∈ R

n, let

d(x,M) ≡ inf{ |x−m| |m ∈M },

denote the distance from x to the set M . A neighborhood of M is an
open set that contains M . One can show that the set

B(M,ε) ≡ {x ∈ R
n | d(x,M) < ε },

is a neighborhood of M . It consists of the points in R
n that have

distance to M less than ε.

2. Suppose γ : R → R
n is periodic solution of x′ = X(x) and let Γ ≡ γ(R)

be the image of R under γ. Then γ is called orbitally stable if for every
ε > 0, there is a δ > 0, such that

d(φt(x),Γ) < ε,

for all t ≥ 0 and all x with d(x,Γ) < δ. Equivalently, for each neigh-
borhood Ω of Γ, there is a (smaller) neighborhood Ω0 of Γ such that

φt(x) ∈ Ω,

for all x ∈ Ω0 and all t ≥ 0.

If in addition
lim
t→∞ d(φt(x),Γ) = 0,

then γ is called orbitally asymptotically stable.

In essence, orbital stability says that φt(x) will stay ε close to the set Γ, but
not necessarily keep pace with the motion along γ, i.e., stay in the moving
ball B(γ(t), ε), as shown in Figure 6.10.
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To prove the theorem below on orbital asymptotic stability of certain
periodic solutions, we need some additional results, the first of which in-
troduces the Poincaré map. The Poincaré map P is another tool to use in
conjunction with the characteristic matrix for γ. We shall see that the Jaco-
bian matrix P ′(c) coincides with a submatrix of G(p), and so its eigenvalues
coincide with n− 1 of the characteristic values of γ.

Proposition 6.9 (The Poincaré Map) Suppose γ : R → R
n is a closed

integral curve of period p for X. Let c = γ(0) and let

Mc = {x ∈ R
n | (x− c) ·X(c) = 0 }

be the hyperplane through c, perpendicular to X(c). Then there is a neigh-
borhood U of c and a C1 map τ : U → R, such that τ(c) = p and

φτ(x)(x) ∈Mc,

for all x ∈ U . The map P : U ∩Mc →Mc defined by

P (x) = φτ(x)(x), (6.38)

is called the Poincaré map for γ at c.

Proof: The proof is an easy consequence of the Implicit Function Theorem.
To apply it, define a function F : D → R, on the domain D of the flow map
by

F (t, x) = (φt(x) − c) ·X(c),

for (t, x) ∈ D. Then F is C1 and since γ(t) = φt(c) has period p, we get

F (p, c) = (φp(c) − c) ·X(c) = (c− c) ·X(c) = 0.

Further, since the flow satisfies dφt(x)/dt = X(φt(x)), we have

∂F

∂t
(t, x) = X(φt(x)) ·X(c),

for all (t, x) ∈ D. Hence in particular

∂F

∂t
(p, c) = X(c) ·X(c) = |X(c)|2 > 0.

Thus, the hypotheses of the Implicit Function Theorem apply and so we can
solve the equation

F (t, x) = 0
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explicitly for t as a function of x. More precisely, there is a C1 function
τ : U → R, defined on a neighborhood U of c, such that τ(c) = p and

F (τ(x), x) = 0,

for all x ∈ U . The latter equation is equivalent to saying φτ(x)(x) ∈Mc, and
this proves the result.

The Poincaré map P : U ∩Mc →Mc, is also called the first return map,
since for each x ∈ U ∩ Mc, the integral curve that starts at x at time 0
returns to intersect the hyperplane Mc at the point P (x) at time τ(x). See
Figure 6.12.

Figure 6.12: The Poincaré map P for the periodic solution γ.

The function τ is for this reason called the time of return function. The
figure also indicates why the Poincaré map is expected to play a role in the
stability analysis. The integral curve shown in the figure, which starts at
x ∈ U ∩Mc near c, appears to asymptotically approach the closed integral
curve γ. As it does so, it continually intersects the plane Mc, giving a
sequence of points P (x), P 2(x), P 3(x), . . ., that appear to approach c. If we
can show that P is a contraction on U ∩Mc, then we will know that indeed,
limk→∞ P k(x) = c for any x ∈ U ∩Mc. The general results in Appendix B
show that P will be a contraction if the eigenvalues of the matrix P ′(c) all
have modulus less than 1.
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Example 6.5 We return to the two-dimensional system discussed in Ex-
ample 6.4. The polar coordinate version of the system:

r′ = (r2 − 1)r
θ′ = b

provides a quick way to understand and sketch the integral curves. First
θ(t) = bt + θ0 and so the angle θ(t) between the x-axis and the position
vector to the point (x(t), y(t)) is positive and increases uniformly with t.
The radial equation, r′ = (r2−1)r, says that r decreases at times when r < 1
and increases when r > 1. The circular integral curve γ(t) = (cos bt, sin bt)
corresponds to r = 1. Based on these observations, we can do a quick sketch
of the phase portrait. See Figure 6.13.

Figure 6.13: A sketch of the phase portrait.

To get the Poincaré map for γ, we will need an explicit formula for the
flow φt(x, 0) starting at points x on the x-axis. For this we solve the radial
equation

r′ = (r2 − 1)r,

by separation of variables

1
(r2 − 1)r

dr = dt,
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or ( 1
2

r − 1
+

1
2

r + 1
− 1
r

)
dr = dt

Integration gives

1
2

ln |r − 1| + 1
2

ln |r + 1| − ln |r| = t+ c

or

ln

∣∣∣∣∣r2 − 1
r2

∣∣∣∣∣ = 2t+ 2c.

Equivalently
|r2 − 1|
r2

= ke2t,

where we have relabeled the arbitrary constant: k − e2c. To solve this for
r, assume first that r(0) = r0 > 1, then for t near zero, we will have r > 1
(and r2 − 1 > 0). Consequently the last equation is

r2 − 1
r2

= ke2t.

Taking t = 0 in the above equation gives k = r2
0−1

r2
0

. Then, solving the above

equation for r2 yields

r2 =
1

1 − ke2t
=

1

1 − r2
0−1

r2
0
e2t

=
1

1 − (1 − r−2
0 )e2t

.

Since r0 > 1, the denominator of the above expression can be zero. This
occurs when

t =
1
2

ln
(

r20
r20 − 1

)
≡ T (r0)

In summary, we have found that

r(t) = [1 + (r−2
0 − 1)e2t]−1/2 (6.39)

which has maximal interval of definition t ∈ Ir0 = (−∞, T (r0)). This is for
the case r0 > 1. In the case when r0 < 1, calculations like those above will
give the same formula for r(t) but now the maximum interval of existence
is Ir0 = R.
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The general integral curve for the Cartesian system has the form

φt(x0, y0) =
(
r(t) cos θ(t), r(t) sin θ(t)

)
,

and has a complicated dependence on (x0, y0) (i.e., r0 = (x2
0 + y2

0)
1/2 in the

formula for r(t) and θ0 = tan−1(y0/x0) in the formula for θ(t)). However,
for initial points on the positive x-axis (y0 = 0), we have r0 = x0 and θ0 = 0,
and

φt(x0, 0) =
(

[1 + (x−2
0 − 1)e2t]−1/2 cos bt, [1 + (x−2

0 − 1)e2t]−1/2 sin bt
)
,

Then

φ2π/b(x0, 0) =
(

[1 + (x−2
0 − 1)e4π/b]−1/2, 0

)
,

gives the point on the positive x-axis to which (x0, 0) first returns under the
flow. Note: The τ in Proposition 6.9 is a constant function for this example:
τ(x0) = 2π/b, for every x0 that returns. It is important to note in the case
x0 > 1, that the condition 2π/b ∈ Ix0 = (−∞, T (x0)) is required in order for
there any return at all. This condition is

2π
b
<

1
2

ln
(

x2
0

x2
0 − 1

)
.

Equivalently.
x0 < [1 − e−4π/b]−1/2 ≡ Lb.

In the case x0 < 1, there is no condition on returns, as you can readily
see from Figure 6.13. Consequently we can define the Poincaré map P :
(0, Lb) → R by

P (x) = [1 + (x−2 − 1)e4π/b]−1/2.

It is clear that P (1) = 1, so x = 1 is a fixed point of P . From the geometry
of how we got P it is clear that the iterates P k(x), k = 1, 2, 3, . . . get smaller
if x < 1 and larger if x > 1. You should also note that the number of
iterates is limited when x > 1. To quantify this, observe that for a given
x > 1, the time T (x) is when the radius goes to infinity (limt→T (x) r(t) = ∞).
The integral curve t → φt(x, 0), after wrapping around the origin a number
of times, heads off to infinity, becoming asymptotic to the ray with polar
equation: θ = θx = bT (x). The angle θx is the limiting angle (in radians)
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and the number of returns (the number of wraps) is the greatest integer less
than or equal to

θx/(2π) = bT (x)/(2π) =
b

4π
ln

(
x2

x2 − 1

)
.

For example, suppose the parameter b = 20 in the system of equations.
Then the right endpoint of the domain for P is L20 ≈ 1.464. Taking
x = 1.01 as an initial point gives θ1.01 ≈ 39.269 radians, and so the in-
tegral curve starting at (1.01, 0) will wrap around the origin 6 times be-
fore heading off to infinity at angle θ1.01 ≈ 1.57 ≈ π/2. This is shown in
Figure 6.14. Note that the sequence of iterates P k(1.01), k = 0, 1, . . . , 6 is

2.623260528, the last one being outside the domain of P .

Figure 6.14: An integral curve that eventually does not return, but rather
becomes asymptotic to the ray θ ≈ π/2.

The instability of the circular cycle γ is indicated by the Poincaré map P ,
and the behavior of the iterates of P near its fixed point x = 1 is controlled
by P ′(1). From the above formula for P , we get

P ′(x) = −1
2 [1 + (x−2 − 1)e4π/b]−3/2(−2x−3)e4π/b

Consequently P ′(1) = e4π/b. Thus, P is not a contraction since P ′(1) is
not less than 1. Also note that e4π/b, as seen in Example 6.4, is one of the
eigenvalues of the characteristic matrix G for γ.

1.01, 1.018994917, 1.036523531, 1.071971735, 1.149539859, 1.355769346,
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Example 6.6 For some systems the Poincaré map P for a cycle γ is not
explicitly computable, but the geometrical action of P is easy to describe.
This is the case for γ(t) = (cos t, sin t, 0) and the system in Example 6.3:

x′ = −y + xz

y′ = x+ yz

z′ = −z(x2 + y2)

Transforming to cylindrical coordinates (x = r cos θ, y = r sin θ, z = z) gives

r′ = rz

z′ = −r2z
θ′ = 1

(See Exercise 8 in Section 5.2.) The only part we can solve explicitly here is
θ(t) = t+ θ0, which says that each integral curve winds about the z-axis in
the positive direction. (A complete winding may not occur if r(t) → ∞ in a
finite time, as we saw in the last example, but in this example, we shall see
that the windings are continual.)

For integral curves that start z = z0 > 0, the radial equation r′ = rz
says that r(t) increases and the equation z′ = −r2z indicates that z(t)
decreases. On the other hand, it is just the opposite for integral curves
that start z = z0 < 0: the radial equation r′ = rz says that r(t) decreases
and the equation z′ = −r2z indicates that z(t) increases. To get additional
information how z an r vary, we do the following. Take the 2-dimensional
system

r′ = rz

z′ = −r2z

and multiply the 1st equation by r and then use the 2nd equation to get

rr′ = −z′, or
d

dt

(
1
2r

2 + z

)
= 0.

Hence we see that each solution (r(t), z(t)) of the system must satisfy

1
2r

2(t) + z(t) = 1
2r

2
0 + z0,

for all t in the maximum interval of existence. Otherwise said, the curve
t → (r(t), z(t)) lies on the graph of the parabola

z = −1
2r

2 + a0,



6.5. Stability of Periodic Solutions 315

Figure 6.15: The integral curve through (r0, z0) lies on the parabola z =
−1

2r
2 + a0 where a0 = 1

2r
2
0 + z0.

in the r-z plane, where a0 = 1
2r

2
0 + z0. See Figure 6.15.

Because of the geometric significance of r, the graph is only for r ≥ 0.
Note that when a0 ≥ 0, the r-intercept of this (half) parabola is (

√
2a0, 0).

While for a0 < 0, there is no r-intercept. Based on the above discussion
about the way r and z vary, we have marked the directions of flow of the
integral curves tracing out the (half) parabolas. Note that all points on the
z-axis are fixed points and that each integral curve with a0 ≤ 0 flows toward
the fixed point (0, a0). On the other hand, an integral curve with a0 > 0
will flow toward the point (

√
2a0, 0).

In the three dimensional system, each integral curve

α(t) =
(
r(t) cos(t+ θ0), r(t) sin(t+ θ0), z(t)

)
,

of the system lies on a paraboloid of revolution

z = −1
2(x2 + y2) + a0.

From our previous observations, this integral curve α, while remaining on
this paraboloid, will wind clockwise about the z-axis as z(t) → 0. The
limiting radius depends on a0 = 1

2r
2
0 + z0.

If a0 > 0, then r(t) →
√

2a0 as t → ∞. Thus, α asymptotically ap-
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Figure 6.16: For a0 > 0, the integral curves starting at points on the
paraboloid z = −1

2(x2 + y2) + a0 spiral toward the cycle x2 + y2 = 2a0

In the x-y plane.

proaches the circle

βa0(t) =
(√

2a0 cos t,
√

2a0 sin t, 0
)
,

in the x-y-plane. See Figure 6.16.
On the other hand, if a0 ≤ 0, then r(t) → a0, a fixed pont on the z-axis,

as t→ ∞.
While it is not possible to write an explicit formula for the Poincaré map

P in this example, it is possible to understand the action of P geometri-
cally. This is based on our qualitative understanding of the phase portrait
as discussed above.

Now γ(t) = (cos bt, sin bt, 0), c = γ(0) = (1, 0, 0), and X(c) = (0, 1, 0).
Thus, Mc is the x-z plane, and for a ball B(c,R) in R

3, the set W =
B(c,R) ∩Mc is a disk of radius R in Mc. Integral curves that start at a
point p0 = (x0, 0, z0) ∈ W (with z0 
= 0) will spiral around the z-axis while
remaining on the paraboloid z = −1

2(x2 + y2) + a0, where a0 = 1
2r

2
0 + z0.

Upon first return to the x-z plane this integral hits a point p1 on the parabola
z = −1

2r
2 + a0. The point p1 will be closer to the x-y plane that p0 was.

Continuing like this it is easy to see that the sequence of iterates p0, p1, p2, . . .
of the Poincaré map will approach (

√
2a0, 0) in the limit. See Figure 6.17

While P is not given explicitly in this example, we did find G(p) exactly.
We will see below that, in general, the Jacobian matrix P ′(c) coincides with
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Figure 6.17: A sequence of iterates p0, p1 = P (p0), p2 = P (p1), . . . of the
Poncaré map converges to the point (

√
2a0, 0).

a certain sub-matrix of G(p). Using that result in this example allows us to
conclude that

P ′(c) =

[
1 1 − e−2π

0 e−2π

]
.

We now turn to the general task of calculating the Jacobian matrix of P
at c. We proceed in a somewhat indirect route. This is mainly necessitated
by the fact that P is a map from W ≡ U ∩Mc into Mc and we have only
defined Jacobians of maps with domains that are open subsets of R

m. We
get around this technicality by identifying, via a translation and rotation,
Mc with R

n−1 and W with an open set of R
n−1. (If you are familiar with

the theory for derivatives (Jacobians) of functions between two differentiable
manifolds you can use this to directly calculate P ′(c)).

First, for convenience, we define the tensor product a⊗ b of two vectors
a, b ∈ R

n to be the operator: a⊗ b : R
n → R

n defined by

(a⊗ b)v ≡ (b · v) a,

for all v ∈ R
n. Identifying a⊗b with the n×n matrix that represents it with

respect to the standard basis for R
n, it is easy to see that the i-jth entry of

this matrix is
(a⊗ b)ij = aibj (6.40)

(exercise).
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Next note that while the Poincaré map P is defined on W = U ∩Mc, the
proposition above also gives a map P̃ : U → R

n defined by

P̃ (x) = φτ(x)(x) = φ(τ(x), x),

for x ∈ U . It is an easy exercise, using the chain rule and the property
d(φt(x))/dt = X(φt(x)) of the flow map, to show that

P̃ ′(x) = X(P̃ (x)) ⊗∇τ(x) +H(τ(x), x), (6.41)

for all x ∈ U . Thus, in particular, for x = c we get

P̃ ′(c) = X(c) ⊗∇τ(c) +G(p). (6.42)

Properly interpreted, this equation relates the characteristic matrix G(p) to
the Jacobian matrix of P at c and shows that, with the exception of µ = 1,
they have the same eigenvalues. Specifically:

Proposition 6.10 With the prior notation, assume that c = 0 and that
X(0) = εn = (0, 0, . . . , 0, 1). Then the characteristic matrix G(p) has the
form

G(p) =


b11 · · · b1,n−1 0
...

...
...

bn1 · · · bn,n−1 0
∗ · · · ∗ 1

 (6.43)

and the matrix P̃ ′(0) has the form

P̃ ′(0) =


b11 · · · b1,n−1 0
...

...
...

bn1 · · · bn,n−1 0
∗ · · · ∗ ∗

 . (6.44)

We identify the hyperplane M0 = { (x1, . . . , xn−1, 0) |xi ∈ R } with R
n−1,

and identify W = M0 ∩ U with an open set V in R
n−1. Then the Poincaré

map, considered as a map P : V → V , has Jacobian at 0 ∈ V given by

P ′(0) =

 b11 · · · b1,n−1
...

...
bn1 · · · bn,n−1

 . (6.45)

Hence if µ1 = 1, µ2, . . . , µn, are the characteristic multipliers of the closed
curve γ, then µ2, . . . , µn, are the eigenvalues of P ′(0).
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Proof: Since G(p)X(0) = X(0) and X(0) = εn, it follows that the nth
column of G(p) is εn. Thus, G(p) has the form (6.43). From equation (6.40)
and the fact that X(0) = εn, it is clear that X(0) ⊗ τ(0) has the form

X(0) ⊗ τ(0) =


0 · · · 0 0
...

...
...

0 · · · 0 0
∗ · · · ∗ ∗

 . (6.46)

From equation (6.42), we know that P̃ ′(0) = X(0) ⊗ τ(0) + G(p) and thus
P̃ ′(0) has the form shown in equation (6.45).

Let In−1 denote the (n − 1) × (n − 1) identity matrix and let B be the
(n − 1) × (n − 1) matrix given by B = {bij}n−1

i,j=1. Then because of the way
this square matrix enters as a submatrix of G(p), it is clear that

det(G(p) − µIn) = (1 − µ) det(B − µIn−1).

Thus, the characteristic multipliers are µ1 = 1, µ2, . . . , µn, where µ2, . . . , µn

are the eigenvalues of B.
All that remains is to show that P ′(0) = B. To be explicit about the

identifications we are making, let e : R
n−1 → R

n be the standard embedding:

e(x1, . . . , xn−1) = (x1, . . . , xn−1, 0),

and let ρ : R
n → R

n−1 be the projection

ρ(x1, . . . , xn−1, xn) = (x1, . . . , xn−1).

Then the Poincaré map is given by (or identified with) the composite map

P (v) = ρ
(
P̃ (e(v))

)
,

for v ∈ V ≡ ρ(W ) = ρ(M0 ∩ U). Hence by the chain rule we get

P ′(0) = RP̃ ′(0)E,

where R = [In−1, 0] is the (n − 1) × n matrix obtained by augmenting In−1

with a column of zeros and E = [In−1, 0] is the n×(n−1) matrix obtained by
augmenting In−1 with a row of zeros. Because of the forms of these matrices
it is easy to see that

RP̃ ′(0)E = B,
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and this completes the proof.

Comments: While the assumptions on c and X(c) in the proposition are
rather special, it is easy to see that when these assumptions do not hold we
can always translate and rotate the coordinate system so that the resulting
vector field does satisfy the assumptions. Specifically, let Vc = {v ∈ R

n|v ·
X(c) = 0} be the subspace orthogonal to X(c), and choose an orthonormal
basis {e1, . . . , en−1} for Vc. Let

Q = [e1, . . . , en−1,X(c)/|X(c)|2 ],

be the n × n matrix with rows e1, . . . , en−1,X(c)/|X(c)|2 . Then Q is an
orthogonal matrix and we can assume that det(Q) = 1 (otherwise permute
and relabel the ei’s so that this is so). Thus, Q is a rotation and the map
f : R

n → R
n defined by

f(x) = Q(x− c) (6.47)

is a diffeomorphism such that the vector field Y ≡ f∗(X) has the property:
Y (0) = εn (exercise). The proposition then applies to Y and the closed
integral curve f ◦ γ of Y .

We now come to the main theorem which shows how the characteristic
multipliers determine orbital asymptotic stability of closed integral curves.
The proof given here is an elaboration, with many more details, of the proof
given by Hartman (cf. [Ha 82, p. 254]).

Theorem 6.3 (Orbital Asymptotic Stability) Suppose γ : R → R
n is

a closed integral curve of the vector field X : O ⊆ R
n → R

n and let p be the
period of γ and c = γ(0). Suppose that n−1 of the characteristic multipliers
µ2, . . . , µn of γ have modulus less than 1. Then γ is orbitally asymptotically
stable. In addition, suppose a is a number such that |µj| < a < 1, for
j = 2, . . . , n. Then for each neighborhood Ω of Γ = {γ(t)|t ∈ R}, there exists
an L > 0 and neighborhood Ω0 ⊆ Ω of Γ, such that for every x ∈ Ω0, there
is a T ∈ R such that

|φt+T (x) − γ(t)| ≤ Lat/p, (6.48)

for all t ≥ p. The number T depends on x and is called the asymptotic phase
of x.

Proof: Assume that c = 0 ∈ R
n and X(0) = εn = (0, . . . , 0, 1). After

proving the theorem for this special case, we will easily be able to obtain the
general case.
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Suppose Ω ⊆ R
n is a neighborhood of Γ = { γ(t) | t ∈ R }. We can

assume, without loss of generality, that Ω is compact.
Note that we can choose an R > 0 such that [0, 2p] ×B(0, R) ⊆ φ−1(Ω).

To see this observe that (t, 0) ∈ φ−1(Ω), for all t ∈ R, and φ−1(Ω) is an open
set. Thus, for each t ∈ R, there are numbers at < t < bt, Rt > 0, such that

(at, bt) ×B(0, Rt) ⊆ φ−1(Ω).

Now {(at, bt)}t∈[0,2p] is an open cover of [0, 2p], and so there exists a finite
subcover {(ati , bti)}N

i=1 of [0, 2p]. Thus, choosing R > 0, such that R < Rti ,
for i = 1, . . . , N , gives

(ati , bti) ×B(0, R) ⊆ φ−1(Ω),

for i = 1, . . . , N . Hence [0, 2p] × B(0, R) ⊆ φ−1(Ω). This result says that
φt(x) ∈ Ω for all x ∈ B(0, R) and t ∈ [0, 2p], i.e., the flow through each
x ∈ B(0, R) remains in Ω for all t ∈ [0, 2p].

Next, by Proposition 6.8, there is an open set U ⊆ O and a time of return
map τ : U → R, which is C1, such that φτ(x)(x) is in the hyperplane M0 =
{z ∈ R

n|zn = 0}, for all x ∈ U . We can assume that B(0, R) ⊆ U (otherwise
choose a smaller R so that this is so). The crucial inequality we need is the
contraction map inequality for the Poincaré map P . Thus, let P̃ : U → R

n

be the map P̃ (x) = φτ(x)(x). We can assume that U = B(0, R). With
the notation used in the in the proof of Proposition 6.9, P = P̃ |B(0,R)∩M0

.
Identifying P with the map ρ ◦ P̃ ◦ e and using the results of that proposition
together with the supposition here, we have that the eigenvalues of P ′(0) all
have modulus less than a and a < 1 . By Theorem B.3 in Appendix B (with
f = P and c = 0), there is a norm ‖ · ‖0 on R

n and a δ > 0 such that

‖P (w)‖0 ≤ a‖w‖0, (6.49)

for all w ∈ B(0, R) ∩M0 ∩ B(0, δ). We can assume that δ < R and δ < 1
(otherwise choose a smaller δ). Thus, let W = B(0, δ) ∩M0. Then because
of the contraction property (6.49), we have P (W ) ⊆ W . Consequently, all
the iterates P k(w), k = 1, 2, 3, . . . exist for each w ∈ W . This is needed to
prove orbital stability. The fact that these iterates tend to zero figures in
the proof of orbital asymptotic stability.

Below, we will derive all the estimates we need using the norm ‖ · ‖0 and
then convert to the usual Euclidean norm | · | at the end of the proof. This
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we can do since all norms on R
n are equivalent and thus, in particular, there

exist positive constants K, K̄ such that

K|v| ≤ ‖x‖0 ≤ K̄|v|, (6.50)

for all v ∈ R
n.

We first show orbital stability. Recall that W = B(0, δ) ∩M0 and intro-
duce

Ω0 ≡ {φt(w) |w ∈W, t ∈ [0, τ(w)] }.
Since τ : W → R is continuous, we can assume (by choosing a smaller δ if
necessary) that |τ(x) − p| ≤ p/2 for all x ∈ W , i.e., τ(x) ∈ [p/2, 3p/2], for
all x ∈ W . In particular, τ(x) ≤ 2p. By this and the results in the third
paragraph of the proof, it follows that Ω0 ⊆ Ω.

Claim: φt(x) ∈ Ω0, for all x ∈ Ω0 and t ∈ [0,∞].

Proving the claim will establish orbital stability of γ. Note that part of the
claim is that [0,∞] ⊆ Ix.

Thus, fix x ∈ Ω0. Then, by definition, x = φt0(w0) for some w0 ∈ B(0, δ)
and t0 ∈ [0, τ(w0)].

Using the time of return map and the Poincaré map we get sequences
{tk}∞k=0 and {wk}∞k=0 of times and points when and where the flow through x
strikes the hyperplane: φtk(x) = wk ∈ M0. Specifically, with t0, w0, already
chosen, let

w1 = P (w0) and t1 = τ(w0) − t0,

Note that t1 is the time for x to reach the hyperplane M0, since φt1(x) =
φt1(φt0(w0)) = φτ(w0)(w0) = w1. The ensuing choices for the points and
times are:

wk = P (wk−1) and tk = τ(wk−1) + tk−1,

for k = 2, 3, 4, . . .. (Note the + sign in the definition of tk, k ≥ 2. Only t1
involves a − sign.) From the semigroup property (Theorem 3.7), it is easy
to show that tk ∈ Ix and

φtk(x) = wk, (6.51)

for all k (exercise).
From the definition of the tis and the fact that τ(y) ≥ p/2 for all y ∈

B(0, δ), it is easy to see that

tk = t1 +
k∑

j=1

τ(wj) ≥ t1 +
k∑

j=1

p

2
= t1 +

(k − 1)p
2

,
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for all k ≥ 2. Hence, limk→∞ tk = ∞. This shows that [0,∞) ⊆ Ix, i.e., that
φt(x) is defined for all t ≥ 0.

We can now prove the Claim by noting that if t ∈ [t0,∞], then there is
a k such that tk ≤ t < tk+1. Then

φt(x) = φt−tk (φtk(x)) = φt−tk (wk).

But this says that φt(x) ∈ Ω0, since wk ∈ W and t − tk ∈ [0, τ(wk)]. In
the exceptional case that t ∈ (0, t0) we have either that (1) t + t0 ≥ τ(w0)
or (2) t + t0 < τ(w0). In Case (1), it follows that t ≥ τ(w0) − t0 = t1
and this case is covered above. On the other hand, in Case (2) we have
φt(x) = φt(φt0(w0)) = φt+t0(w0). But this says that φt(x) ∈ Ω0, since
w0 ∈W and t− t0 ∈ [0, τ(w0)]. This proves the Claim.

Next, to prove orbital asymptotic stability, we continue with the above
assumptions and constructions based on the chosen x ∈ Ω0. We need three
estimates which are as follows.

First, since Ω is compact and X is continuous, there is a constant L1 > 0
such that

‖X(y)‖0 ≤ L1, (6.52)

for all y ∈ Ω.
Since the flow φ : D → R

n for X is C1, we can apply Proposition B.1
from Appendix B to get a constant L2 > 0 such that

‖φt(y) − φt(z)‖0 ≤ L2‖y − z‖0, (6.53)

for all y, z ∈ B(0, R) and all t ∈ [0, 2p].
Again applying Proposition B.1 from Appendix B to τ restricted to

B(0, R) gives a constant L3 > 0 such that

|τ(y) − τ(z)| ≤ L3‖y − z‖0, (6.54)

for all y, z ∈ B(0, R). With the constants L1, L2, and L3 thus selected, we
define L by

L ≡
(
L2 +

L1L3

(1 − a)

)
1
aK

.

As we shall see below, this is the constant needed to get inequality (6.48)
Using the contraction inequality (6.49), we get

‖wk‖0 = ‖P (wk−1)‖0 ≤ a‖wk−1‖0,
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for all k and so by induction

‖wk‖0 ≤ ak‖w0‖0,

for all k. We can use this to get a number T , called the time phase shift for
x, as follows.

Let Tk = tk − kp, for k = 0, 1, 2, . . .. Observe that for any k,

|Tk+1 − Tk| = |tk+1 − (k + 1)p − (tk − kp)| = |tk+1 − tk − p|
= |τ(wk) − p| = |τ(wk) − τ(0)|
≤ L3‖wk‖0 ≤ L3 a

k‖w0‖0

Using this inequality successively, we get for all 0 ≤ k < m

|Tm − Tk| ≤ |Tm − Tm−1| + · · · + |Tk+1 − Tk|
≤ L3(am−1 + · · · + ak)‖w0‖0 = L3a

k(1 − am−k)‖w0‖0/(1 − a)

≤ L3‖w0‖0

1 − a
ak (6.55)

Since a < 1, this shows that the sequence {Tk}∞k=0 is a Cauchy sequence.
Thus, there exists a real number T such that

lim
k→∞

Tk = T.

Now we prove Inequality (6.48. Suppose t ≥ p is given. Then there is a
k such that kp ≤ t < (k + 1)p. Let

s ≡ t− kp.

Then φs+tk(x) = φs(φtk(x)) = φs(wk) and φs(0) = γ(s). Since s ∈ [0, p] we
can apply inequality (6.53) to get

‖φs+tk(x) − γ(s)‖0 = ‖φs(wk) − φs(0)‖0

≤ L2‖wk‖0 ≤ L2a
k. (6.56)

Furthermore, by the Mean Value Theorem, for any two times s1 
= s2, there
is a time s∗ between s1 and s2, such that

φs2(x) − φs1(x)
s2 − s1

=
∂φ

∂t
(s∗, x) = X(φs∗(x)).
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But using inequality (6.52), we get from this that

‖φs2(x) − φs1(x)‖0 ≤ L1|s2 − s1|,

for all s1, s2 ≥ 0. Hence in particular, for s2 = s + tk and s1 = s + kp + T ,
we have s2 − s1 = Tk − T , and so the last inequality reads

‖φs+tk(x) − φs+kp+T (x)‖0 ≤ L1|T − Tk| ≤
L1L3

1 − a
ak.

Using this, inequality (6.56), and the Triangle Inequality gives

‖φs+kp+T (x) − γ(s)‖0 ≤
(
L2 +

L1L3

1 − a

)
ak = KLak+1.

Now rewrite this using the facts that s+kp = t and γ(s) = γ(s+kp) = γ(t).
The result is

|φt+T (x) − γ(t)| ≤ Lak+1 ≤ Lat/p.

The last inequality here follows from t/p < k + 1 and 0 < a < 1. Using
inequality (6.50) we can convert this into inequality (6.48) and establishes
orbital asymptotic stability of γ in the special case when c = 0 and X(0) =
εn.

To prove the same thing for a general c and X, we use the translation
and rotation map f(x) = Q(x − c) discussed in the comments prior to the
theorem. Letting Y = f∗(X), we get that the theorem is true for Y and f ◦ γ.
Let φX and φY denote the flows for X and Y , and for a given neighborhood
Ω̃ of Γ = { γ(t) | t ∈ R }, let Ω = f(Ω̃) be the corresponding neighborhood of
f ◦ γ. Then with all the constructions and notation in the first part of the
proof (relative to Y and f ◦ γ), we get that Ω̃0 ≡ f−1(Ω0) is the necessary
neighborhood of γ to establish orbital stability.

To establish orbital asymptotic stability, note that the theorem applied
to Y and f ◦ γ gives a δ > 0 and an L > 0 such that for every y ∈ B(0, δ)
there is a T ∈ R such that for all t ≥ p

Lat/p ≥
∣∣∣φY

t+T (y) − f ◦ γ(t)
∣∣∣

=
∣∣∣ f ◦ φX

t+T ◦ f−1(y) − f ◦ γ(t)
∣∣∣

=
∣∣∣Q(φX

t+T (f−1(y)) − c) −Q(γ(t) − c)
∣∣∣

=
∣∣∣Q (φX

t+T (f−1(y)) − γ(t)
) ∣∣∣

=
∣∣∣φX

t+T (f−1(y)) − γ(t)
∣∣∣
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Hence if we choose a δ̃ > 0, such that B(δ̃, c) ⊆ f−1(B(0, δ)), then for all
x ∈ B(δ̃, c), there is a T such that |φX

t+T (x) − γ(t)| ≤ Lat/p, for all t ≥ p.
This proves orbital asymptotic stability.

Corollary 6.3 (Orbital Stability) Suppose γ : R → R
n is a closed in-

tegral curve of the vector field X : O ⊆ R
n → R

n. Let c = γ(0) and let
P : U ∩Mc →Mc be the Poincaré map for γ. Suppose each neighborhood W̃
of c in U ∩Mc has a neighborhood W ⊆ W̃ of c in U ∩Mc such that

P (W ) ⊆W.

Then γ is orbitally stable.

Proof: The proof of orbital stability in the first part of Theorem 6.3 only
required what we are assuming in this corollary. There, the contraction
property of P was used to ensure that P (W ) ⊆W .

Example 6.7 (Spherical Coordinates) We end the section with a 3-D
system having cycles in its phase portrait which are orbitally stable. These
cycles comprise the sphere of radius 1 at the origin. The system is related
to a particularly simple one in spherical coordinates. For this, we use ρ as
the standard radial distance from the origin: ρ2 = x2 + y2 + z2. Also b > 0
is a constant. The system in Cartesian coordinates is

x′ = (1 − ρ2)x− by = x− by − x3 − xy2 − xz2

y′ = bx+ (1 − ρ2)y = bx+ y − x2y − y3 − yz2

z′ = (1 − ρ2)z = z − x2z − y2z − z3

Transforming this to spherical coordinates ρ, θ, φ

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ,

gives (see Proposition 5.1, Chapter 5)

ρ′ = (1 − ρ2)ρ
θ′ = b

φ′ = 0

This readily yields that θ(t) = bt + θ0 and that φ(t) = φ0, which say that
each integral curve winds uniformly, and counterclockwise, about the z-axis
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while remaining on the cone φ = φ0. The radial distance ρ from the origin
is governed by ρ′ = (1 − ρ2)ρ, which we will analyze further in a minute.

The particular solution ρ = 1, θ = bt + θ0, φ = φ0 gives a circular
integral curve on the unit sphere centered at the origin. This integral curve
lies on the intersection of the sphere ρ = 1 with the cone φ = φ0. See
Figure 6.18. Each of these circles is an orbitally stable cycle of the system.

Figure 6.18: A sketch of.

We will examine this for the one that lies in the x-y plane (φ0 = π/2):
γ(t) = (cos bt, sin bt, 0).

The vector field for the system is

X(x, y, z) =
(
x−by−x3−xy2−xz2, bx+y−x2y−y3−yz2, z−x2z−y2z−z3

)
,

and this has Jacobian matrix

X ′(x, y, z) =

 1 − 3x2 − y2 − z2 −b− 2xy −2xz
b− 2xy 1 − x2 − 3y2 − z2 −2yz
−2xz −2yz 1 − x2 − y2 − 3z2

 .
Therefore the variational matrix for γ is

A(t) =

 −2 cos2 bt −b− 2 cos bt sin bt 0
b− 2 cos bt sin bt −2 sin2 bt 0

0 0 0
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=

 −1 − cos 2bt −b− sin 2bt 0
b− sin 2bt −1 + cos 2bt 0

0 0 0


One can show that the fundamental matrix for A is

G(t) =

 e−2t cos bt − sin bt 0
e−2t sin bt cos bt 0

0 0 1

 .
Consequently, the characteristic matrix for γ is

G(2π/b) =

 e−4π/b 0 0
0 1 0
0 0 1

 ,
and the characteristic multipliers are µ = e−4π/b, 1, 1. Thus, we cannot
use the theorem to get orbital asymptotic stability of γ. In fact, γ is only
orbitally stable. This is easy to conclude from a qualitative analysis of the
system’s phase portrait as follows.

The flow on the z-axis is exceptional. The system of DEs reduces to
x′ = 0, y′ = 0, and z′ = (1 − z2)z. Thus, there are three fixed points:
(0, 0, 0), (0, 0, 1), (0, 0,−1). The flow on the positive z-axis is toward (0, 0, 1),
while the flow on the negative z-axis is toward (0, 0,−1).

From the spherical coordinate equations, we have seen that the flow
through an initial point (x0, y0, z0) on the unit sphere x2 + y2 + z2 = 1 will
be a circular cycle of radius R0 =

√
x2

0 + y2
0 , center (0, 0, z0) and period

p = 2π/b.
For any other initial point (x0, y0, z0) (not on the z-axis, not on the unit

sphere), the flow through (x0, y0, z0) will be a counterclockwise spiral which
will asymptotically approach the cycle on the unit sphere with radius

R0 =

√
x2

0 + y2
0√

x2
0 + y2

0 + z2
0

,

while remaining on the conical surface φ = φ0 = sin−1(R0). Figure 6.19
illustrates some of these features of the phase portrait.

It is clear from this qualitative analysis that the cycle γ is orbitally stable
(or, for that matter, each of the cycles on the unit sphere is orbitally stable).
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Figure 6.19: Computer plots of six integral curves spiraling toward three
different cycles on the unit sphere.

We just have to restrict to a neighborhood of c = (0, 1, 0) where all points
flow toward cycles that are near γ. To see how this fits in the above corollary,
we compute the Poincaré map.

First note that the solution of ρ′ = (1 − ρ2)ρ, with ρ(0) = ρ0 > 0 is

ρ(t) = [1 + (ρ−2
0 )e−2t]−1/2,

defined for all t ∈ [0,∞). The plane Mc is, in this case, the x-z plane. The
flow through a point (x0, 0, z0) ∈Mc (we assume x0 > 0, z0 > 0) is

Φt(x0, 0, z0) =
(
ρ(t)x0

r0
cos bt,

ρ(t)x0

r0
sin bt,

ρ(t)z0
r0

)
,

where r0 =
√
x2

0 + z2
0 . Then, the point of first return for (x0, 0, z0) to Mc is

Φ2π/b(x0, 0, z0) =
(
m(r0)x0

r0
, 0,

m(r0)z0
r0

)
,

where

m(r) = [1 + (r−2 − 1)e−4π/b]−1/2 =
re2π/b

[1 + (e4π/b − 1)r2]1/2
,
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which is defined for all r > 0. Using basic algebra, one can show that{
1 < m(r) < r if r > 1
r < m(r) < 1 if r < 1

The Poincaré map for γ is simply (for (x, z) with x > 0)

P (x, z) =
m(r)
r

(x, z),

where r =
√
x2 + z2. This says that P (x, z) is on the ray from (0, 0) to (x, z)

and has m(r) as its distance from the origin. See Figure 6.20.

Figure 6.20: Geometry of the Poincaré map P .

Thus, in the x-z plane, each sector of an annulus:

W = {(r, θ) | r1 < r < r2, θ1 < θ < θ2 },

( r1 < 1 < r2, −π/2 < θ1 < θ2 < π/2) is invariant: P (W ) ⊆ W under P .
Using this and Corollary 6.3, one can analytically prove the orbital stability
of γ (even though it’s rather obvious geometrically). It is also interesting to
compute directly the iterations of the map m : (0,∞) → (0,∞) and show
that the kth iterate is

mk(r) = [1 + (r−2 − 1)e−4kπ/b]−1/2.

Consequently limk→∞mk(r) = 1 for every r > 0. Of course, this also follows
from properties of the flow map, since that’s where m comes from.
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Exercises 6.5
1. Prove that if H is the deformation matrix for the flow φ, then

∂H

∂t
(t, x) = X ′(φ(t, x))H(t, x),

for all (t, x) ∈ D and that H(0, x) = I, for all x ∈ O.

2. Show that equations (6.40)-(6.41) hold.

3. For each of the systems x′ = X(x) and closed curves γ shown below (with
c = γ(0) and b > 0), do the following:

(i) Compute the variational matrix A(t) = X ′(γ(t)) and find the corre-
sponding characteristic matrix G (i.e., the fundamental matrix for A).
Determine the characteristic multipliers for γ.

(ii) Determine (where possible) an explicit formula for the Poincaré map
P for γ. Calculate (where possible) P ′(c), the eigenvalues of this, and
compare with the characteristic multipliers.

iii) Sketch, by hand, the phase portrait of the system. Use this and the work
in Parts (i)-(ii) to determine the orbital stability, orbital asymptotic
stability, or instability of γ. Fully justify your answers.

Note: In these systems: r2 = x2 + y2 and ρ2 = x2 + y2 + z2. Also, (1)
transform to polar coordinates in Parts (a)-(c), (2) transform to cylindrical
coordinates in Parts (d)-(f), and (3) transform to spherical coordinates in
Part (h).

(a) γ(t) = (cos bt, sin bt)

x′ = (1 − r2)x− by

y′ = bx+ (1 − r2)y

(b) γ(t) = (cos bt, sin bt)

x′ = (1 − r)x − by

y′ = bx+ (1 − r)y

(c) γ(t) = (cos bt, sin bt), γ(t) = (2 cos bt, 2 sin bt)

x′ = (2 − r)(1 − r)x − by

y′ = bx+ (2 − r)(1 − r)y

(d) γ(t) = ( cos bt, sin bt, 0 ).

x′ = −by + xz

y′ = bx+ yz

z′ = −rz
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(e) γ(t) = ( cos bt, sin bt, 0 ), γ(t) = ( 2 cos bt, 2 sin bt, 0 ).

x′ = −by + xz

y′ = bx+ yz

z′ = −4r2(1 − r2)z

(f) γ(t) = (cos bt, sin bt, 0)

x′ = (1 − r2)x− by

y′ = bx+ (1 − r2)y
z′ = −z

(g) γ(t) = (cos bt, sin bt, 0) (This one is easy, since it’s a canonical linear
system.)

x′ = −by
y′ = bx

z′ = −z

(h) γ(t) = (cos bt, sin bt, 0), γ(t) = ( 2 cos bt, 2 sin bt, 0 ).

x′ = (2 − ρ)(1 − ρ)x − by

y′ = bx+ (2 − ρ)(1 − ρ)y
z′ = (2 − ρ)(1 − ρ)z

5. As a generalization of Example 6.3 and Exercises (d) and (e) above, con-
sider the following system where V : [0,∞) → R is a twice continuously
differentiable function:

x′ = −by + xz

y′ = bx+ yz

z′ = −V ′(r)rz

Transform to cylindrical coordinates and show that the integral curves in the
r-z plane lie on the graph of z = −V (r) + a0 for some constant a0. Describe
the directions of flow on these graphs. Describe how the integral curves of the
original system lie on the surface of revolution obtained by revolving these
graphs about the z-axis. How do the critical points of V play a role in the
phase portrait. Select a V of your choice (one with at least one local maxima
and one local minima). From your selection, sketch a phase portrait for the
system.

6. Read the material in CDChapter 6 on the electronic component that pertains
to periodic points of discrete dynamical systems and work the exercises there.

7. Prove that equation (6.51) holds for all k.



Chapter 7

Integrable Systems

In this chapter we consider a special class of autonomous systems, x′ = X(x),
on open sets O ⊆ R

n, whose integral curves are completely “determined”
by n − 1 functions, F 1, F 2, . . . , Fn−1 : U ⊆ O → R, defined on an open
dense subset U of O. These functions are called first integrals, or constants
of the motion, and have, by definition, constant values along each integral
curve of X. In addition, there are conditions on F 1, F 2, . . . , Fn−1, so that
the level sets F i(x) = ki, i = 1, . . . , n − 1, intersect to give 1-dimensional
submanifolds or curves in R

n and these curves coincide, in a sense, with the
integral curves of X. Such systems are called integrable systems and will be
defined more precisely below.

Integrable systems are often called completely integrable systems in ac-
cordance with the terminology used in the more general subject of Pffafian
systems (see [BCG 91], [Sl 70], [Di 74]). However, in the study of Hamil-
tonian systems (Chapter 9), there is the well-accepted term of completely
integrable Hamiltonian system, which is related to but quite distinct from
the type of system studied here. Thus, we will use the terms “integrable”
and “completely integrable” to distinguish between the two distinct types
of the systems studied in this chapter and in Chapter 9, respectively. This
naming convention was suggested by Olver [Olv 96, p. 70].

While there are many important examples of integrable systems, like
Euler’s equations for rigid-body motion in Chapter 8, these systems are
rather exceptional. We study them here primarily to develop more geometric
intuition about phase portraits in dimensions three and higher. Indeed, the
phase portrait for an integrable system in R

3 is visualized as the collection
of curves that are the intersections of two families of level surfaces. In simple
cases these can be drawn by hand and in more complicated cases there is
some special Maple code on the electronic component to plot the curves of

© Springer Science + Business Media, LLC 2010
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intersection with a computer. Furthermore, even for dimensions larger than
three it is possible to visualize the integral curve that is the intersection of
the level sets F i(x) = ki, i = 1, . . . , n − 1, as the image of a level curve
gk1...kn−2(x1, x2) = kn−1 in the plane R

2. Thus, the study of the phase
portrait is reduced to the study of the level curves of a family {gk1...kn−2} of
functions of two variables.

7.1 First Integrals (Constants of the Motion)
There are several equivalent ways of defining what a first integral, or constant
of the motion, is for an autonomous system x′ = X(x). The following
definition is the easiest to check when presented with a candidate for a first
integral. The actual process of finding first integrals is considerably more
difficult.

Definition 7.1 (First Integrals: Constants of the Motion) Suppose
X : O → R

n is a vector field on an open set O in R
n. A first integral

(or constant of the motion) for the autonomous system x′ = X(x), is a dif-
ferentiable function F : U → R, defined on an open, dense subset U ⊆ O,
such that

∇F (x) ·X(x) = 0,

for every x ∈ U . Geometrically, this says that ∇F is perpendicular to X at
each point of U .

There are several alternative, and conceptually useful, ways of expressing
the orthogonality property: ∇F ·X = 0, for first integrals. All of these are
based on the following elementary result.

Proposition 7.1 Suppose F : U → R is a differentiable function defined
on an open, dense subset U of O. Then F is a first integral if and only if
for each integral curve α : I → R of X that lies in U , i.e., α(t) ∈ U for all
t ∈ I, there is a constant k such that

F (α(t)) = k,

for all t ∈ I.

Proof: The proof is an elementary consequence of the chain rule. The
details are left for an exercise.
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The proposition says that a first integral has a constant value along
each integral curve. Specifically, F has the same value at each point in the
set α(I) = {α(t) | t ∈ I}, whenever α is an integral curve. This is why
first integrals are also called constants of the motion. As we have seen for
particular systems arising from physics, the function F also gives rise to
a conservation law, usually expressed in the form F (α(t)) = k for all t,
where α is any motion of the system. The motion α in this context contains
the various positions and momenta of the objects constituting the system.
Chapters 8 and 9 contain more detailed studies of conservation laws.

There is a slightly different, more geometric way of expressing what a
first integral means for a system. If F is a first integral for x′ = X(x), then
each integral curve of X lies on one of the level sets of F , i.e., there is a
constant k, such that α(t) ∈ Sk

F , for all t ∈ I. Here

Sk
F = {x ∈ U |F (x) = k } = F−1({k})

is the level set of F corresponding to k. In dimension n = 2 this says that
each integral curve must lie on one of the level curves of F and thus, as we
shall see in the next section, the plots of the level curves of F give a complete
picture of the phase portrait for X. See Figure 7.1.

Figure 7.1: If F is a first integral, each integral curve of X lies on a level
set Sk

F of F . Geometrically ∇F is normal and X is tangential to the level
set Sk

F at each of its points. The figure displays the cases n = 2 and n = 3
where the level sets are curves and surfaces, respectively.

In dimension n = 3 the level sets of F are surfaces and so each integral
curve of X is constrained to lie completely on one of these level surfaces.
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Since phase portraits in R
3 are difficult to visualize, knowing a first integral

for the system often helps understand the behavior of the integral curves.
See Figure 7.1.

In general, the Submanifold Theorem from Appendix A gives us that the
level set Sk

F is an n−1 dimensional submanifold of R
n (assuming k is a value

of F at a point other than a critical point). The gradient ∇F is normal to
Sk

F at each of its points and if F is a first integral for X, then X is tangential
to Sk

F .
Expressing the above proposition in terms of the flow for X, we get the

following: F is a constant of the motion if an only if for each c ∈ U

F (φt(c)) = F (c),

for all t ∈ Ic. This latter statement is equivalent to saying that each level
set of F is an invariant set for the flow.

Example 7.1 Often it is possible to determine first integrals by the heuris-
tic method illustrated in this example. Consider the system:

dx

dt
= 4xz − 1 (7.1)

dy

dt
= −2x(1 + 2z) (7.2)

dz

dt
= −2x(1 + 2y). (7.3)

If we treat the derivatives formally as a fraction of differentials, then in
the second and third equations the ratio of the left-hand sides reduces to
(dz/dt)/(dy/dt) = dz/dy, and the ratio of the right-hand sides reduces to
(1 + 2y)/(1 + 2z). Thus, we get the single differential equation

dz

dy
=

1 + 2y
1 + 2z

,

which is a separable DE. We solve this by formally separating the variables

(1 + 2y)dy − (1 + 2z)dz = 0,

and integrating to get the (implicit) solution:

y + y2 − z − z2 = k.
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The claim is that this formal process actually gives us a constant of the
motion F . This is the function

F (x, y, z) ≡ y + y2 − z − z2,

which is defined on all of R
3. It is easy to see that

∇F (x, y, z) =
(

0, 1 + 2y,−(1 + 2z)
)

is perpendicular to

X(x, y, z) =
(

4xz − 1,−2x(1 + 2z),−2x(1 + 2y)
)
,

at each point (x, y, z), and thus F is a first integral.

The precise formulation and proof of the validity of the formal manipu-
lations in the example are contained in the following proposition.

Proposition 7.2 Suppose X : O → R
n is a vector field on O ⊆ R

n and
assume that for two indices i 
= j, the differential equation

−Xj +Xidxj

dxi
= 0 (7.4)

has an integrating factor. That is, assume that there is a function µ : U ⊆
O → R, defined on an open, dense subset of O such that −µXj, µXi depend
only on the variables xi, xj and such that

−µXj + µXi dxj

dxi
= 0, (7.5)

is an exact differential equation. Then there is a function F : U ⊆ O → R,
which depends only on xi, xj , and such that

∂F

∂xi
= −µXj (7.6)

∂F

∂xj
= µXi, (7.7)

on U . Thus, ∇F ·X = 0 on U .
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Proof: There is really not much to prove, once we agree upon what it means
for a function f : U → R to “depend only on the variables xi, xj .” To define
this, let Pij : R

n → R
2 be the projection: Pij(x) ≡ (xi, xj), and let Ũ ⊆ R

2

be the open set: Ũ ≡ Pij(U). Then saying that f depends only on the
variables xi, xj , means that f = f̃ ◦ Pij for some function f̃ on Ũ (which is
differentiable if f is).

Now by assumption there are functions M̃ = µ̃Xi, Ñ = µ̃Xj on Ũ such
that the differential equation

M̃ + Ñ
dxj

dxi
= 0,

is exact. Thus, by definition of exactness, there is a differentiable function
F̃ : Ũ → R, such that F̃xi = M̃ and F̃xj = Ñ on Ũ . Thus, we can let
F ≡ F̃ ◦ Pij , to get a function on O for which equations (7.6)-(7.7) hold.
But then

∇F = (0, . . . ,−µXj , . . . , µXi, . . . , 0),

is clearly perpendicular to X at each point of O.

The proposition just makes precise the heuristic process we usually use
in solving a first order DE. Thus, phrasing the above example in terms of
the proposition, we have that the associated DE (7.4) is

−2x(1 + 2y) + 2x(1 + 2z)
dz

dy
= 0,

and if we multiply this by µ = 1/2x, we get the exact DE

−(1 + 2y) + (1 + 2z)
dz

dy
= 0.

In this example, U = {(x, y, z) ∈ R
3|x 
= 0} and Ũ = {(x, y) ∈ R

2|x 
= 0},
are the domains used in the proposition.

Before defining and studying integrable systems in general, we discuss
this concept for systems in dimensions two and three, where its geometric
interpretation is visualized more easily. This is presented in the next two
sections.
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Exercises 7.1
1. Prove Proposition 7.1. You may use the fact that if a C1 function on an

interval has derivative that is identically zero, then the function is a constant
function.

2. Use the method from Example 7.1 and Proposition 7.2 to find a first integral
for each of the following systems. Be sure to specify the domain U for each
first integral (make it as large as possible). Where possible find additional
first integrals for the system, ones that are essentially “different” from the
first one you found.

(a)

x′ = x2y

y′ = x(1 + y)

(b)

x′ = y(z − 1)
y′ = −x(z + 1)
z′ = −2xy

(c)

x′ = y(z + 1)
y′ = −x(z + 1)
z′ = −2xy

3. Show that if F,G : U ⊆ O → R are first integrals for a system x′ = X(x),
then so are F +G,FG, and F/G (assuming G is never zero on U).

7.2 Integrable Systems in the Plane
Definition 7.2 Suppose X : O ⊆ R

2 → R
2 is a vector field on the plane.

The system (x′, y′) = X(x, y) is called an integrable system if it has a first
integral (or constant of the motion) F : U → R, such that ∇F (x, y) 
= 0, for
all (x, y) ∈ U .

For integrable systems in the plane, any first integral gives a more or
less complete description of the phase portrait for the system. Indeed, each
integral curve in U must lie on one of the level curves of F . Thus, a plot of
the level curves gives a picture of the phase portrait. The following examples
exhibit what is meant by this.
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Example 7.2 The linear system

dx

dt
= −x− y

dy

dt
= x− y,

has a phase portrait with integral curves that spiral toward the origin, which
is the only fixed point of the system. This is the canonical focus studied in
Chapter 5 and shown in Figure 4.25. To see that this system is integrable, we
construct a first integral using the method of Example 7.1 and Proposition
7.2. Namely, taking the ratio of the second equation by the first gives the
associated DE:

dy

dx
=
y − x

x+ y
.

This is a homogeneous (nonautonomous) differential equation and we can
solve it by elementary methods. We find that the general solution y is
defined implicitly as a function of x by the equation

1
2 ln(x2 + y2) + tan−1

(
y

x

)
= k.

Taking U = {(x, y) ∈ R
2|x 
= 0} and defining F : U → R by

F (x, y) = 1
2 ln(x2 + y2) + tan−1

(
y

x

)
gives a first integral for the linear system. Indeed,

∇F =
(
x− y

x2 + y2
,
x+ y

x2 + y2

)
,

and X : R
2 → R

2 is
X = (−(x+ y), x− y).

Thus, clearly ∇F · X = 0 on U and U is dense in R
2. Also, ∇F 
= 0 in U

and thus the system is an integrable system. Figure 7.2 shows a plot of the
graph of F and a plot of a number of its level curves.

Note that F approaches ±∞ as x → 0 and thus its graph is hard to
render near the line x = 0. Also, while each integral curve is a continuous
spiral, the corresponding level curve on which it lies is divided into infinitely
many pieces by the line x = 0 (exercise). Some of these can be discerned
from the figure, but most are too small to show up.
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Figure 7.2: Graph of the first integral F (x, y) = ln(x2 + y2)/2 + tan−1(y/x),
for the linear system x′ = −x− y, y′ = x− y.

It is easy to see that the integrability of the linear system in the above
example generalizes as follows.

Proposition 7.3 Any constant coefficient, linear system

dx

dt
= ax+ by

dy

dt
= px+ qy.

in the plane is an integrable system.

Proof: The proof is left as an exercise.

The above example of a linear system illustrates why we cannot generally
expect a first integral F : U → R to be defined on all of O. For this reason,
in dimension two, the level curves of F may not contain all the information
about the system. For instance, the origin (0, 0) is a fixed point in the
example, but is not in the domain U of F . However, in some examples such
as the following, the fixed points come from the critical points of a first
integral.

Example 7.3 Let X : R
2 → R

2 be given by

X(x, y) =
(

2xy e−x2−y2
, (1 − 2x2)e−x2−y2

)
.
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Figure 7.3: A plot of a collection of level curves for the function F (x, y) =
xe−x2−y2

. Note that the orientation of each curve is determined by evaluating
X at one of its points.

Then the function F : R
2 → R defined by

F (x, y) = xe−x2−y2

has gradient

∇F (x, y) =
(

(1 − 2x2)e−x2−y2
, −2xy e−x2−y2

)
,

and this is clearly perpendicular to X at each point. It is also easy to see
that the critical points of F and the fixed points of X coincide and there are
exactly two such points:

{ (1/
√

2, 0), (−1/
√

2, 0) }.

A plot of a collection of level curves of F is shown in Figure 7.3 and by
evaluating X at certain points on each level curve we get the directions as
shown. By the theory, each integral curve ofX lies on a level curve and so the
figure represents the phase portrait for the system. Note that in this example
O = R

2 and the first integral F is defined on all of R
2. To meet the condition

for integrability, we must restrict F to U = R
2 \ {(±1/

√
2, 0)}. However, as

mentioned, the fixed points in this example arise from the critical points of
the first integral.
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In examining Example 7.3 above, you might discover a method of manu-
facturing integrable systems in the plane. Namely, start with a differentiable
function F : O → R on an open set O in R

2, take its gradient ∇F = (Fx, Fy),
and then switch the partial derivatives, taking the negative of one of them,
to get a vector field

XF ≡ (−Fy, Fx),

on O that is perpendicular to ∇F and has fixed points that are the same as
the critical points of F . Thus, F is a first integral for XF . Furthermore, if
the subset U , obtained by deleting the critical points of F from O, is open
and dense, then (x′, y′) = XF (x, y) is an integrable system.

The construction of XF takes advantage of the normal operator on R
2.

Definition 7.3 The normal operator on R
2 is the linear map N : R

2 → R
2

given by
N(x, y) = (−y, x). (7.8)

This operator has the property that N(v) · v = 0 for every vector v ∈ R
2.

More generally, it is easy to see that N(v)·w = det(v,w), for every v,w ∈ R
2.

As a linear operator, N is represented by the 2 × 2 matrix −J , where

J =

[
0 1
−1 0

]
.

That is, N(v) = −Jv, for every v ∈ R
2. The matrix J is called the canonical

complex structure on R
2. There is such a structure on each even dimensional

Euclidean space R
2k. Note: We could have defined N slightly differently

so as to have N(v) = Jv, but our choice was motivated by the wish that
{v,N(v)} be a right-handed frame for each nonzero vector v.

Using the normal operator, we can phrase the above construction of an
integrable, planar system as

XF = N(∇F ),

where F is any differentiable function. The construction can be generalized
slightly by multiplying by a differentiable function ρ : O → R to get an
integrable system of the form

Xρ,F = ρN(∇F ).

By considering the geometry of the situation as shown in Figure 7.4, it is not
too hard to guess that every integrable system on O must be of this form.

The following theorem gives the proof of this conjecture.
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Figure 7.4: If F is a first integral for a planar vector field X, then, at each
point, X must be a multiple of N(∇F ).

Theorem 7.1 Suppose X : O → R
2 is a vector field on the plane. Then the

system (x′, y′) = X(x, y) is integrable if and only if there is an open, dense
subset U ⊆ O, on which X has the form

X = ρN(∇F ),

where ρ, F : U → R are differentiable functions and ∇F 
= 0 on U .

Proof: Assume the system is integrable, with first integral F : U → R,
such that ∇F 
= 0 on U . Let e1 = ∇F and e2 = N(∇F ). This gives an
orthogonal, moving frame {e1, e2} on U . The reciprocal frame {e1, e2} (cf.
Section 10.1) in this case is given simply by e1 = e1/a, e

2 = e2/a, where
a = e1 · e1 = F 2

x + F 2
y = e2 · e2. Since e1 ·X = a−1e1 ·X = 0, we can write

X in terms of this frame as

X = (e1 ·X)e1 + (e2 ·X)e2 = (e2 ·X)e2,

on U . Thus, we can take ρ = e2 ·X to get the desired form for X.

Exercises 7.2
1. Prove Proposition 7.3. Discuss all the cases depending on which of the coef-

ficients a, b, p, q are zero or not.

2. For each of the following functions F : R
2 → R, compute the vector field

XF = N(∇F ) on O = R
2. Use a computer to construct the phase portrait

of the system of DEs from the level curves of F . Mark the directions of flow
on the flow lines. Determine and classify all the fixed points for the system.
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(a) F (x, y) = (x2 + y)e−x2−y2
.

(b) F (x, y) = (x3 + y3 − 4x2y2)e−x2−y2
.

(c) F (x, y) = (1
3x

4 + 1
2y

4 − 4xy2 − 2x2 − 2y2 + 3)e−x2−y2
. Be sure to find

all the fixed points. Hint: there are seven of them.

7.3 Integrable Systems in 3-D
For a system in R

3, any first integral F 1 gives a family of surfaces Sk1

F 1 (the
level surfaces of F 1 in R

3) on which the integral curves of the system must lie.
If another first integral F 2 exists, then any integral curve of the system must
lie on two level surfaces Sk1

F 1, S
k2

F 2, one for each first integral. Consequently,
the integral curve coincides with part of the “curve” of intersection

Sk1k2

F 1F 2 ≡ Sk1

F 1 ∩ Sk2

F 2,

of these two level surfaces. See Figure 7.5.

Figure 7.5: If a system has two independent first integrals F 1, F 2, then each
integral curve lies on the curve of intersection of two particular level surfaces
F 1 = k1, F

2 = k2.

Otherwise said, the integral curve is part of the solution set Sk1k2

F 1F 2 of the
system of equations:

F 1(x, y, z) = k1

F 2(x, y, z) = k2.

Thus, in a sense, the two first integrals F 1, F 2 completely determine the
phase portrait for a system x′ = X(x) in dimension three. This discussion
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and the drawing in Figure 7.5 assume that the functions F 1, F 2 are different,
or independent, in some sense, so that the level surfaces intersect to give a
1-dimensional manifold. More specifically:

Definition 7.4 (Integrability in R
3) Suppose X : O → R

3 is a vector
field on an open set O in R

3.

(1) Two differentiable functions F 1, F 2 : U ⊆ O → R are called function-
ally independent on U , if ∇F 1(x, y, z) and ∇F 2(x, y, z) are linearly
independent for each (x, y, z) ∈ U .

(2) The system (x′, y′, z′) = X(x, y, z) on O ⊆ R
3 is called integrable

if it has two first integrals F 1, F 2 : U → R, which are functionally
independent on U .

Note that linear independence of two vectors ∇F 1(x, y, z),∇F 2(x, y, z)
means that neither is zero and they are not parallel. On the other hand
linear dependence means that either one of these gradient vectors is zero
or one is a nonzero multiple of the other. In the former case (x, y, z) is a
critical point of one of the functions F 1, F 2, while in the latter case (x, y, z)
is a point where the two level surfaces of F 1, F 2 are tangent to each other.
See Figure 7.6.

Figure 7.6: The level surfaces of F 1, F 2 are tangent at a point (x, y, z) for
which their gradient vectors ∇F 1(x, y, z),∇F 2(x, y, z) are parallel.

The two first integrals F 1, F 2 for an integrable system in R
3 satisfy

∇F 1 ·X = 0, ∇F 2 ·X = 0,

on O and we can interpret this as saying that the vector fields ∇F 1,∇F 2

give two directions that X must be perpendicular to at each point of U .
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This assertion is illustrated in Figure 7.7 and geometrically you can see that
it determines X up to a scalar multiple.

Figure 7.7: For an integrable system x′ = X(x) in R
3, the vector field X

must be perpendicular to the gradient vector fields ∇F 1,∇F 2 at each point
of U .

More precisely, we have the following theorem:

Theorem 7.2 Suppose X : O → R
3 is a vector field on an open set O in

R
3. Then the system (x′, y′, z′) = X(x, y, z) is integrable if and only if there

is an open, dense subset U ⊆ O on which X has the form

X = ρ(∇F 1 ×∇F 2), (7.9)

where ρ, F 1, F 2 : U → R
3 are differentiable functions with F 1, F 2 function-

ally independent on U .

Proof: It is easy to see that if X has the form (7.9), then (x′, y′, z′) =
X(x, y, z) is integrable (with F 1, F 2 as first integrals). Conversely, suppose
the system is integrable and let F 1, F 2 : U → R, be two first integrals that
are functionally independent on U . On U , define the vector fields

e1 = ∇F 1

e2 = ∇F 2

e3 = ∇F 1 ×∇F 2.

Then {e1, e2, e3} is an orthogonal, moving frame on U . The reciprocal
frame {e1, e2, e3} is given by ei =

∑3
j=1 g

ijej , where the gij ’s are the entries



348 Chapter 7. Integrable Systems

of the inverse matrix G−1 of the metric matrix G = {gij} = {ei · ej}. By
construction ei · ej = 0 for i 
= j, and ei · ei = 1, for all i, j. This latter
property allows one to easily write the coordinate expression of any vector
field Y relative to the frame {e1, e2, e3}. Namely,

Y = (e1 · Y )e1 + (e2 · Y )e2 + (e3 · Y )e3.

To apply this to X, first note that since e3 · ei = 0, for i = 1, 2, it follows
that G and G−1 have the forms

G =

 g11 g12 0
g21 g22 0
0 0 g33

 , G−1 =

 g11 g12 0
g21 g22 0
0 0 g−1

33

 .
Consequently, ei = gi1e1 + gi2e2, for i = 1, 2 and e3 = e3/g33. In particular,
we see from the first two relations that e1 ·X = 0 = e2 ·X. Thus,

X = (e1 ·X)e1 + (e2 ·X)e2 + (e3 ·X)e3
= (e3 ·X)e3
= (e3 ·X)(∇F 1 ×∇F 2),

at all points of U . Thus, taking ρ = e3 ·X gives the result (7.9).

3 and develop

respective level surfaces. The vector fields in these examples are manufac-
tured by taking X = ∇F 1 ×∇F 2, where F 1, F 2 are two functions for which
the level surfaces F 1 = k1, F

2 = k2 are fairly simple.

1 = k1 and F 2 = k2, of the functions

F 1(x, y, z) ≡ 1
2(x

2 + y2)
F 2(x, y, z) ≡ 1

2(x
2 + z2).

Defining X : R
3 → R

3 by X = ∇F 1 ×∇F 2, one easily calculates

∇F 1 = (x, y, 0)
∇F 2 = (x, 0, z)

X = ∇F 1 ×∇F 2 = (yz,−xz,−xy).

sketched by hand, involves two families of cylinders. These cylinders are the

several techniques for sketching the curves that are the intersections of the

Flevel surfaces

Example 7.4 (Two Cylinders) A simple example, one that is easily

We now look at some examples of integrable systems in R
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Thus, the corresponding system of differential equations is

x′ = yz

y′ = −xz
z′ = −xy.

Each integral curve of the system coincides with the curve obtained by in-
tersecting two cylinders x2 + y2 = 2k1, x

2 + z2 = 2k2 (with k1 ≥ 0, k2 ≥ 0).
To sketch the phase portrait we use the following strategy. Choose a

particular cylinder, say x2 + z2 = 1 (which has its axis along the y-axis).
Now try to visualize the curves obtained by slicing this cylinder with the
cylinders x2 + y2 = 2k1 = r2, with r varying from small to large. The z-axis
is the axis for each of these cylinders. See Figure 7.8.

Figure 7.8: Two views of the curves obtained by slicing the cylinder x2+z2 =
1 with a family of cylinders x2 + y2 = r2, for various values of r. On the
left is a sketch of how these curves look when projected orthogonally on the
x-y plane. On the right is a sketch of these curves in space.

Attempt to sketch the curves on the surface of the fixed cylinder x2 +
z2 = 1. Before doing this in space, try some sketches in two dimensions,
i.e., look down along the z-axis at the projection of the fixed cylinder onto



350 Chapter 7. Integrable Systems

the x-y plane. In projection, the curves of intersection with x2 + y2 = r2

are either circles (for r ≤ 1) or a pair of arcs of circles (for r > 1). By
evaluating X(x, y, z) = (yz,−xz,−xy) at various points, we can determine
the directions to mark on the curves in the planar projection.

The spatial view reveals four fixed pointsA± = (0, 0,±1), B± = (±1, 0, 0)
on the surface of the fixed cylinder. A± are stable center points and B± are
unstable saddle points. We see that when r < 1, the intersection of the cylin-
ders consists of two closed ovals, one on the top half and the other on the
bottom half of the fixed cylinder. These ovals are centered on the z-axis and
are oppositely directed. Each is an integral curve of the system. For r = 1,
the pair of ovals on the top and bottom of the fixed cylinder are pinched
into cusp points at B±. The intersection of the cylinders, while being one
”curve,” is actually a pair of circles (exercise) and is properly composed
of four distinct integral curves of the system. These are the separatrices
that flow toward or away from the saddle points B± (see the worksheet
spcurves.mws on the electronic component). For r > 1, each intersection
consists of a pair of closed curves on the fixed cylinder. These curves are
centered on the y-axis, are oppositely directed, and become more circular in
nature as r becomes larger.

We can find another first integral, in addition to F 1, F 2, that is also
helpful in understanding the origin of the saddle points B± in the phase
portrait. We use the method from Example 7.1, which was made rigorous
in Proposition 7.2. For the example here, consider the last two equations:

dy

dt
= −xz

dz

dt
= −xy,

in the system. Taking the ratio of each side leads to the associated DE

dz

dy
=
y

z
,

which is a separable DE. Separating variable and integrating gives

z2 − y2 = k3.

Thus, if we let
F 3(x, y, z) = z2 − y2,

then it is not hard to verify that F 3 is a first integral for the system and
that F 2, F 3 are functionally independent. Thus, we can use the level surfaces
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F 2, F 3 to describe the phase portrait. The level surfaces for F 3 are z2−y2 =
m2 and these are surfaces generated by translating the hyperbolas z2−y2 =
m2, in the y-z plane, along the x-axis. The exceptional case m = 0 is a pair
of planes (generated by translating the asymptotes z = ±y along the x-axis).
To visualize how these surfaces intersect the fixed cylinder x2 + z2 = 1, first
take a two-dimensional view by looking along the x-axis. Figure 7.9 shows
the resulting picture.

Figure 7.9: Sketch of the curves of intersection of the surfaces x2 + z2 = 1
and z2 − y2 = m2, for various values of m. The view is the orthogonal
projection of these curves onto the y-z plane.

Now this picture can aid in understanding the three-dimensional view of
the integral curves in Figure 7.8. Note that the discussion here illustrates
that the first integrals used in determining integrability of a system of DEs
are not unique, and often some choices are more convenient than others.

To analyze the fixed points ofX further, note that sinceX = ∇F 1×∇F 2,
the fixed points occur precisely at the critical points of F 1, or the critical
points of F 2, or at the points of tangency of the level surfaces of F 1, F 2. In
this example,

∇F 1 = (x, y, 0)
∇F 2 = (x, 0, z),

and so the z-axis, comprising the critical points of F 1, is a line of fixed
points which, as we have seen, are stable centers. The y-axis, comprising
the critical points of F 2 is a line of fixed points that are stable centers. On
the other hand the x-axis is comprised of points (x, 0, 0), where ∇F 1 = ∇F 2
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and these are points where two of the cylinders are tangent to each other.
This line of fixed points consists of unstable saddle points. The exceptional
point (0, 0, 0) lies on all three of the lines of fixed points and is neither stable
nor unstable.

In summary, we sketch a number of integral curves on the surface of a
several different fixed cylinders, as above, and obtain a representation of the
phase portrait in R

3. This is shown in Figure 7.10. Note the pairs of circles
intersecting at the fixed points along the x-axis.

Figure 7.10: Sketch of the phase portrait for the system x′ = yz, y′ =
−xz, z′ = −xy. The three coordinate axes are lines of fixed points. All
other integral curves shown lie on the surface of one of the cylinders
x2 + z2 = b2 and are obtained by intersecting these cylinders with the cylin-
ders x2 + y2 = r2.

The exercises in this section will give additional opportunities for you
to develop your ability to visualize and sketch the intersections of two fam-
ilies F 1 = k1, F

2 = k2 of level surfaces. Even for simple surfaces this can
be difficult and so use of a computer is often necessary. Using Maple’s
implicitplot3d command to plot a pair of level surfaces will give an in-
dication of what the curve of intersection looks like (see the worksheet
spcurves.mws on the electronic component). However, producing a clear
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picture of how one family of level surfaces intersects a fixed level surface in
the other family is usually difficult. For simple examples, like the one above,
one can solve the equations F 1 = k1, F

2 = k2 explicitly, obtaining formulas
for the curves of intersection, and then plot these curves with a computer.
Alternatively, one can use the following method, which will be most useful
in higher dimensions than three.

Consider the two equations for the level surfaces:

F 1(x, y, z) = k1 (7.10)
F 2(x, y, z) = k2. (7.11)

Solve the first equation for one of the variables x, y, z, say z, to get

z = h(x, y, k1).

Generally this is possible only for restricted values of x and y, but where pos-
sible, the above equation is equivalent to equation (7.10) and is an equation
for a surface that is the graph of the function h. Substituting z = h(x, y, k1)
into equation (7.11) gives

F 2(x, y, h(x, y, k1)) = k2.

This is an equation for a curve in R
2 and is in fact a level curve for the

function:
gk1(x, y) ≡ F 2(x, y, h(x, y, k1)).

The construction gives a function gk1 of two variables (and one parameter
k1) whose level curves can be “lifted” from the x-y plane to curves on the
level surface F 1 = k1 (using h) and these will be the curves of intersection
of the family F 2 = k2 with the fixed surface F 1 = k1 (see Figure 7.11).

More specifically, if (x, y) satisfies gk1(x, y) = k2, i.e., lies on a level curve
of gk1 , and we let z = h(x, y, k1), then (x, y, z) satisfies equations (7.10)-
(7.11), i.e., lies on the respective level surfaces of F 1 and F 2. This construc-
tion relies upon being able to solve the first equation, equation (7.10), for
one of the variables. Theoretically this is always possible locally (except at
fixed points) using the Implicit Function Theorem. This will be explained in
general later in this chapter. In the examples here and in the exercises, solv-
ing the equation for one of the variables will be easy. Note that we could also
do a similar construction by solving the second equation, equation (7.11),
for one of the variables. In any particular example, one or the other way
may be more advantageous.
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Figure 7.11: The curve of intersection of F 1 = k1, F
2 = k2 projects onto a

level curve of a function gk1 of two variables. Conversely, each level curve
of gk1 can be “lifted” to a curve of intersection.

Example 7.5 (Hyperbolic Paraboloids and Spheres) Here we consider
the two functions F 1, F 2 : R

3 → R given by:

F 1(x, y, z) = z − 1
2(x

2 − y2)
F 2(x, y, z) = 1

2(x
2 + y2 + z2).

The level surfaces for these are hyperbolic paraboloids and spheres, respec-
tively. Figure 7.12 shows a computer plot of two of the level surfaces. Even
though these are well-known surfaces, sketching the curves of intersection of
a family of spheres with a fixed hyperbolic paraboloid: z = (x2 − y2)/2 may
not be so easy for some students. However, applying the above method is
easy and then a computer can be used to plot the curves.

The equations for the level surfaces are

z − 1
2(x

2 − y2) = k1

1
2(x

2 + y2 + z2) = k2.

Solving the first equation for z gives

z = 1
2(x

2 − y2) + k1,

so that h is given by h(x, y, k1) = 1
2(x

2 − y2) + k1. Substituting this in the
second equation gives the family of functions gk1 :

gk1(x, y) = 1
2x

2 + 1
2y

2 + [12(x
2 − y2) + k1]2.
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Figure 7.12: Plots of the hyperbolic paraboloid z = 1
2(x

2 − y2) and the sphere
x2 + y2 + z2 = 1.

Taking a specific value for k1, the level curves of gk1 can be plotted on a
computer, as shown in Figure 7.13, and these curves can then be “lifted” to
curves on the surface of the hyperbolic paraboloid z − 1

2(x
2 − y2) = k1.

Examining the pictures of the level curves and their lifts to the surface
of the k1 = 0 hyperbolic paraboloid, we can more readily understand how
these are the lines of intersection with a series of spheres. The saddle point
for the hyperbolic paraboloid is at the origin (0, 0, 0) and near there the
surface is relatively flat (coinciding with its tangent plane: z = 0). Thus,
small spheres will intersect it in a series of nearly circular ovals, and this is
what Figure 7.13 illustrates.

For the value k1 = 3, the level curves of g3 and their lifts to the hyperbolic
paraboloid z = 1

2(x
2 − y2)+3 are quite different. In this case the hyperbolic

paraboloid has been shifted up three units to have its saddle point at (0, 0, 3).
Thus, small spheres about the origin will first begin to intersect the saddle on
the stirrups’ sides, giving a series of pairs of ovals. These eventually coalesce
to form a figure eight with crossing at the saddle point. Figure 7.14 should
help you visualize the curves of intersection.

The figures in both cases, k1 = 0, k1 = 3, show explicitly the integral
curves of the system x′ = X(x) that lie on the surface F 1 = k1 determined
by the constant of the motion F 1. Included in these pictures are fixed points
of the system as well. The spatial view in Figure 7.13 shows a stable center
point (0, 0, 0) on the surface of the k1 = 0 hyperbolic paraboloid. On the
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Figure 7.13: For k1 = 0, plots of the level curves g0(x, y) = k2 are shown
on the left for k2 = 0.3i, i = 1, . . . , 10. These curves lift to curves on the
hyperbolic paraboloid z = 1

2(x
2 − y2), giving the curves of intersection of this

surface with the family of spheres x2 + y2 + z2 = 2k2. This is shown on the
right.

other hand Figure 7.14 shows two stable center points and one unstable
saddle point on the surface of the k1 = 3 hyperbolic paraboloid. The figures
also display lines that are lines of fixed points for the system. These come
from looking at the explicit form for the vector field X. One easily calculates
from F 1 = z − 1

2(x
2 − y2) and F 2 = 1

2(x
2 + y2 + z2) that

∇F 1 = (−x, y, 1)
∇F 2 = (x, y, z)

X =
(
y(z − 1), x(z + 1),−2xy

)
.

Thus, the fixed points constitute a set comprised of three straight lines

{(x, 0,−1)|x ∈ R} ∪ {(0, y, 1)|y ∈ R} ∪ {(0, 0, z)|z ∈ R}.

These three lines of fixed points as well as a series of other integral curves
for X are shown in Figure 7.15. The first two lines are comprised of points
where the respective hyperbolic paraboloids and spheres are tangent to each
other. The third line is comprised of the critical points for F 1, F 2. You can
see from the figure that the lines {(x, 0,−1)|x ∈ R} and {(0, y, 1)|y ∈ R}
are comprised of fixed points that are stable center points, and the line
{(0, 0, z)|z ∈ R} consists of unstable saddle points.
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Figure 7.14: For k1 = 3, plots of the level curves g3(x, y) = k2 are shown
on the left for k2 = 0.3i, i = 1, . . . , 6. These curves lift to curves on the
hyperbolic paraboloid z = 1

2(x
2 − y2) + 3, giving the curves of intersection of

this surface with the family of spheres x2 + y2 + z2 = 2k2. This is shown on
the right.

Exercises 7.3
The first group of exercises studies integrable systems in R

3 with vector field XF 1F 2 ,
where F 1, F 2 are two given functions. In each exercise you are to compute the vector
field XF 1F 2 and write down the corresponding system of DEs. Determine all the
fixed points and classify their types. For the latter you should be able to compute,
by hand, the eigenvalues of X ′

F 1F 2(x, y, z) at a general fixed point. Study the phase
portrait of the system by drawing, by hand and by computer, a number of the curves
of intersections of the two families of level surfaces F 1 = k1, F

2 = k2. Mark the
direction of flow on the curves, label the lines of fixed points (if any), and generally
annotate your drawings.

1. [Cylinders and Hyperboloids] The system here has integral curves that
lie on the intersections of a family of cylinders and a family of hyperboloids.
Since a hyperboloid of 1 sheet is almost as simple to visualize as a cylinder,
this exercise is very similar to the families of intersecting cylinders in Example
7.6. The two functions are

F 1(x, y, z) = 1
2 (x2 + y2 − z2)

F 2(x, y, z) = 1
2 (y2 + z2).

Strategy: Sketch, by hand, the curves of intersection of a sequence of cylinders
F 2(x, y, z) = k (varying k) with the fixed hyperboloid x2 +y2−z2 = 1. Then
try to visualize the curves on several different hyperboloids. Find another
first integral F 3 by the method in Proposition 7.2 and then visualize the
intersections of its level surfaces with the cylinder. Produce at least three
good sketches (two planar and one spatial).
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Figure 7.15: Three lines of fixed points for the system x′ = y(z − 1), y′ =
x(z + 1), z′ − 2xy. The other integral curves shown lie on the hyperbolic
paraboloids z = 1

2(x
2 − y2) + k1, for k1 = −3, 0, 3.

2. [Cylinders and Circular Paraboloids] The system here is also similar
in complexity to that in Example 7.6 and so you should be able to do the
sketches by hand. The two functions are

F 1(x, y, z) = z − 1
2 (x2 + y2)

F 2(x, y, z) = 1
2 (x2 + z2).

Strategy: Sketch, by hand, the curves of intersection of the circular paraboloids
F 1(x, y, z) = k with the fixed cylinder x2 +z2 = 1. For this, you might find it
helpful to find another first integral F 3 by the method in Proposition 7.2 and
then visualize the intersections of its level surfaces with the cylinder. Hint:
You will need to complete the square to recognize the level surfaces of F 3

as obtained by translating a certain hyperbola. Produce at least three good
sketches (two planar and one spatial).

3. [Hyperbolic Paraboloids] Consider the system of DEs whose integral curves
lie on the intersections of two families of hyperbolic paraboloids, say the level
surfaces of the following two functions:

F 1(x, y, z) = z − 1
2 (x2 − y2)

F 2(x, y, z) = y − 1
2 (z2 − x2).

It is a real exercise in visualization to try to draw, by hand, the curve of
intersection for two such hyperbolic paraboloids. Thus, you probably should
use a computer and follow the work in Example 7.5. Also take advantage of
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the special Maple code on the electronic component for lifting level curves
onto a given surface. This is in the worksheet integrable3d.mws.

4. [Circular Paraboloids] Consider the system of DEs whose integral curves
lie on the intersections of two families of circular paraboloids, say the level
surfaces of the following two functions:

F 1(x, y, z) = z − 1
2 (x2 + y2)

F 2(x, y, z) = y − 1
2 (x2 + z2).

This one is tough to visualize too, but you should be able to do the work
by hand if you use another first integral F 3. Complete the square in the ex-
pression for F 3 to recognize that its level surfaces are obtained by translating
hyperbolas in the y-z plane along the x-axis. Visualize how these cut a fixed
circular paraboloid F 1 = k1. Note: In general, visualization is easier if one
of the surfaces is a surface of translation. Then it can be viewed as a “cookie
cutter” and the other surface as the “dough” when trying to determine the
curve of intersection.

7.4 Integrable Systems in Higher Dimensions
For higher dimensions, the definitions and theorems follow the pattern that
is exhibited for integrable systems in R

2 and R
3. We present this here in

general for R
n, along with some other results which were not mentioned

for n = 2, 3. In particular, the generalization of the normal operator to an
operator on R

n should be interesting to you.

Definition 7.5 (Integrable Systems in R
n) Suppose X : O → R

n is a
vector field on an open set in R

n. The system x′ = X(x) is called an inte-
grable system if it has n− 1 constants of the motion: F i : U ⊆ O → R

n, i =
1, . . . , n − 1, which are functionally independent on U . This latter require-
ment means that ∇F 1(x),∇F 2(x), . . . ,∇Fn−1(x) are linearly independent
for every x ∈ U .

To characterize the integrable systems, we need the generalization of the
normal operator:

Definition 7.6 (The Normal Operator) We will use the notation

(Rn)n−1 = R
n × R

n × · · · × R
n

for the Cartesian product R
n with itself n − 1 times. The normal opera-

tor on R
n is the map N : (Rn)n−1 → R

n defined as follows. For vectors
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v1, . . . , vn−1 ∈ R
n, the vector N(v1, . . . , vn−1) is the vector in R

n with com-
ponents

N(v1, . . . , vn−1)i = det(v1, . . . , vn−1, εi), (7.12)

for i = 1, . . . , n. Here εi is the ith standard unit vector in R
n and the deter-

minant is of the matrix which has v1, . . . , vn−1, εi as its rows (or columns, if
you prefer). We call N(v1, . . . , vn−1) the normal product of v1, . . . , vn−1, and
use the following alternative notation to suggest a product structure:

v1 × · · · × vn−1 ≡ N(v1, . . . , vn−1). (7.13)

As the name suggests v1×· · ·×vn−1 gives us a vector that is perpendicular
to each of the vectors v1, . . . , vn−1 and is the natural generalization the N
we used in dimensions 2 and 3. It is easy to see that N is a multilinear map.
This, as well as some of the more important properties of N listed in the
next proposition, follow easily from properties of determinants.

Proposition 7.4 Suppose v1, . . . , vn−1 ∈ R
n.

(1) For every w ∈ R
n,

(v1 × · · · × vn−1) · w = det(v1, . . . , vn−1, w), (7.14)

and consequently:

(2) v1 × · · · × vn−1 is perpendicular to v1, . . . , vn−1.

(3) v1 × · · · × vn−1 = 0 if and only if v1, . . . , vn−1 are linearly dependent.

(4) If P is an invertible n× n matrix, then

P (v1 × · · · × vn−1) = det(P )[P−T v1 × · · · × P−T vn−1]. (7.15)

(5) In dimension three N(v1, v2) = v1×v2, while in dimension two N(v1) =
−Jv1 (where J is the canonical symplectic matrix in dimension two).

Proof: We just prove (4) and leave the rest for an exercise. To prove it, we
use property (1). Suppose w is any vector in R

n. Then by (1) and properties
of determinants and the dot product we get

[P (v1 × · · · × vn−1)] · w = [v1 × · · · × vn−1] · P Tw

= det(v1, . . . , vn−1, P
Tw))

= det(P TP−T v1, . . . , P
TP−T vn−1, P

Tw))
= det(P T ) det(P−T v1, . . . , P

−T vn−1, w))
= det(P )[P−T v1 × · · · × P−T vn−1] · w.
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Since w was arbitrary, this gives equation (7.15).

In general, the computation of v1×· · ·×vn−1 for any given v1, . . . , vn−1 is
just like the computation of the cross product in dimension 3, but of course
involves more work. The examples and exercises will exhibit this.

We can now characterize the integrable systems in R
n in an identical way

to what was done for n = 2, 3. This gives us a standard way of producing
examples of integrable systems in any dimension.

Theorem 7.3 Suppose X : O → R
n is a vector field on an open set O in

R
n. Then the system x′ = X(x) is integrable if and only if there is an open

dense subset U ⊆ O on which X has the form

X = ρ(∇F 1 × · · · × ∇Fn−1), (7.16)

where ρ, F 1, . . . , Fn−1 : U → R
3 are differentiable functions with F 1, . . . , Fn−1

functionally independent on U .

Proof: The proof is essentially identical to that of Theorem 7.2, except now
we use properties of the normal product in R

n.
It is easy to see that if X has the form (7.16), then x′ = X(x) is inte-

grable (with F 1, . . . , Fn−1 as first integrals). Conversely suppose the system
is integrable and let F 1, . . . , Fn−1 be first integrals which are functionally
independent on an open, dense subset U ⊆ O. On U , define the vector fields:

e1 = ∇F 1

...
en−1 = ∇Fn−1

en = ∇F 1 × · · · × ∇Fn−1.

Then {ei}n
i=1 is an orthogonal, moving frame on U . The reciprocal frame

{ei}n
i=1 is given by ei =

∑n
j=1 g

ijej , where the gij ’s are the entries of the
inverse matrix G−1 of the metric matrix G = {gij} = {ei · ej}. One has, in
general, that ei ·ej = 0, for i 
= j, and ei ·ei = 1, for all i. This property allows
one to easily write the coordinate expression of any vector field relative to
the frame {ei}n

i=1. In particular, to express X, we note that from ei ·X = 0
for i = 1, . . . , n− 1, it follows that ei ·X = 0, for i = 1, . . . , n− 1 (exercise).
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Hence we get

X =
n∑

i=1

(ei ·X)ei

= (en ·X)en
= (en ·X)(∇F 1 × · · · × ∇Fn−1),

at all points of U . Thus, taking ρ = en ·X gives the result (7.16).

As mentioned in the lower-dimensional cases, there is often additional
information about the system contained in ρ, F 1, . . . , Fn−1. In particular,
if we start with differentiable functions ρ, F 1, . . . , Fn−1 : O → R and define
Xρ,F 1,...,F n−1 : O → R

n by

Xρ,F 1,...,F n−1 ≡ ρ(∇F 1 × · · · × ∇Fn−1), (7.17)

then we get an integrable system provided F 1, . . . , Fn−1 are functionally
independent on some open, dense subset of O. The extra information con-
tained in equation (7.17) is that the equation holds on all of O. Thus, the
fixed points of Xρ,F 1,...,F n−1 coincide the zeros of ρ and the points where
∇F 1, . . . ,∇Fn−1 are linearly dependent. From a property of the normal
product , we know that ∇F 1(x), . . . ,∇Fn−1(x) are linearly dependent if
and only if their normal product is zero

∇F 1x) × · · · × ∇Fn−1(x) = 0.

This extra information is often helpful.
Another important property of the construction is that the normal prod-

uct of gradient vector fields is always a divergence-free vector field:

Proposition 7.5 Suppose F 1, . . . , Fn−1 : O → R are differentiable func-
tions, and let

XF 1,...,F n−1 ≡ ∇F 1 × · · · × ∇Fn−1. (7.18)

Then XF 1,...,F n−1 is a divergence-free vector field on O,

div(XF 1,...,F n−1) = 0, (7.19)

identically on O.
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Proof: By definition, the ith component of XF 1,...,F n−1 is

Xi
F 1,...,F n−1 = det(∇F 1, . . . ,∇Fn−1, εi).

Using a property of derivatives of such determinential expressions, we get

div(XF 1,...,F n−1) =
n∑

i=1

∂Xi
F 1,...,F n−1

∂xi

=
n∑

i=1

∂

∂xi

[
det(∇F 1, . . . ,∇Fn−1, εi)

]

=
n∑

i=1

n−1∑
j=1

det
(
∇F 1, . . . ,

∂

∂xi
∇F j, . . . ,∇Fn−1, εi

)

=
n∑

i=1

n−1∑
j=1

det
(
∇F 1, . . . ,

n∑
k=1

∂2F j

∂xk∂xi
εk, . . . ,∇Fn−1, εi

)

=
n−1∑
j=1

[ n∑
i,k=1

∂2F j

∂xk∂xi
det(∇F 1, . . . , εk, . . . ,∇Fn−1, εi)

]
= 0.

The last equation comes from the observation that ∂2F j/∂xk∂xi is symmet-
ric in i and k, while det(∇F 1, . . . , εk, . . . ,∇Fn−1, εi) is antisymmetric in i
and k.

Example 7.6 (Paraboloids in R
4) Consider the vector field XF 1,F 2,F 3 on

R
4 generated by the functions:

F 1(x, y, z, w) = w − 1
2(x

2 + y2 + z2) (7.20)
F 2(x, y, z, w) = z − 1

2(x
2 + w2) (7.21)

F 3(x, y, z, w) = y − 1
2(x

2 + z2). (7.22)

The level sets F i = ki for these functions are “paraboloids” in R
4. The

calculation of XF 1,F 2,F 3 is fairly simple. First, the gradient vector fields are

∇F 1 = (−x,−y,−z, 1) (7.23)
∇F 2 = (−x, 0, 1,−w) (7.24)
∇F 3 = (−x, 1,−z, 0). (7.25)
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The normal product of these is then computed as

XF 1,F 2,F 3

= ∇F 1 ×∇F 2 ×∇F 3

=

∣∣∣∣∣∣∣∣∣
−x −y −z 1
−x 0 1 −w
−x 1 −z 0
ε1 ε2 ε3 ε4

∣∣∣∣∣∣∣∣∣
=

(
−
∣∣∣∣∣ −y −z 1

0 1 −w
1 −z 0

∣∣∣∣∣ ,
∣∣∣∣∣ −x −z 1

−x 1 −w
−x −z 0

∣∣∣∣∣ ,−
∣∣∣∣∣ −x −y 1

−x 0 −w
−x 1 0

∣∣∣∣∣ ,
∣∣∣∣∣ −x −y −z

−x 0 1
−x 1 −z

∣∣∣∣∣
)

=
(

1 − zw(y + 1), x(z + 1), x[w(y + 1) + 1], x(y + 1)(z + 1)
)
.

By the theorems, the vector field XF 1,F 2,F 3 is divergence-free, which is easy
to check directly, and gives an integrable system of DEs:

x′ = 1 − zw(y + 1) (7.26)
y′ = x(z + 1) (7.27)
z′ = x[w(y + 1) + 1] (7.28)
w′ = x(y + 1)(z + 1). (7.29)

The integrability follows from the construction, once we verify functional
independence of F 1, F 2, F 3 on a open, dense subset U of R

4. As mentioned
above, for u ≡ (x, y, z, w) ∈ U , the vectors ∇F 1(u),∇F 2(u),∇F 3(u) are
linearly dependent if and only if

XF 1,F 2,F 3(u) ≡ ∇F 1(u) ×∇F 2(u) ×∇F 3(u) = 0.

Thus, F 1, F 2, F 3 are functionally independent on the set U consisting of R
4

minus the fixed points of XF 1,F 2,F 3. The fixed points are easy to determine
from the above system of DEs. They are

{ (0, (zw)−1 − 1, z, w ) | z,w ∈ R } ∪ { (x,−w−1 − 1,−1, w) |x,w ∈ R }.

Each of the sets in the union is a 2-dimensional submanifold of R
4 and a

closed set. Thus, U is an open, dense set, as required.
The integral curves of the system lie on the curves of intersections of the

three level sets:

w = 1
2(x

2 + y2 + z2) + k1 (7.30)
z = 1

2(x
2 + w2) + k2 (7.31)

y = 1
2(x

2 + z2) + k3. (7.32)



7.4. Integrable Systems in Higher Dimensions 365

To visualize these curves, we use the technique explained prior to Example
7.5 and employed in that example. If we substitute the w from equation
(7.30) above into equation (7.31), the system reduces to

z = 1
2x

2 + 1
2 [

1
2(x

2 + y2 + z2) + k1]2 + k2 (7.33)
y = 1

2(x
2 + z2) + k3. (7.34)

Now, in this reduced system of equations, substitute the y from the second
equation into the first equation to get

z = 1
2x

2 + 1
2

[
1
2x

2 + 1
2

(
1
2x

2 + 1
2z

2 + k3

)2

+ 1
2z

2 + k1

]2
+ k2. (7.35)

The reasoning here is that if (x, y, z, w) is a solution of the system (7.30)-
(7.32), i.e., is a point on the intersection of the level sets, then (x, z) is a
solution of the equation (7.35), i.e., a point on the level curve of the function
gk1,k3 defined by

gk1,k3(x, z) = z − 1
2x

2 − 1
2

[
1
2x

2 + 1
2

(
1
2x

2 + 1
2z

2 + k3

)2

+ 1
2z

2 + k1

]2
. (7.36)

Conversely, if (x, z) satisfies gk1,k3(x, z) = k2, then defining y by equation
(7.34) and then w by equation (7.30) gives a point (x, y, z, w) that satisfies
the system (7.30)-(7.32). Geometrically, this means that the level curves of
gk1,k3 lift first to curves on the surface of the paraboloid

y = 1
2(x

2 + z2) + k3

in R
3, and then from there are lifted to integral curves on the surface of the

paraboloid
w = 1

2(x
2 + y2 + z2) + k1,

in R
4. While we cannot plot the latter curves, we can certainly plot the

level curves of gk1,k3 for various values of k1, k3 and visualize their lifts to
the corresponding paraboloids in R

3.
Figure 7.16 shows plots of the level curves of g0,0 and g0,−4. The figure

indicates that g0,0 has a single critical point at x = 0, z = 1.01595 (approx-
imately). Letting y = (x2 + z2)/2 + k3 = .5160 and then w = (x2 + y2 +
z2)/2 + k1 = .659245 (approximately), we get a point (x, y, z, w) on an in-
tegral curve in R

4. Indeed this point is a fixed point, since (zw)−1 − 1 = y
(approximately). The picture of the level curves of g0,0 lend credence to the
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Figure 7.16: Plots of the level curves of the function g0,0 (on the left) and
the function g0,−4 (on the right).

conjecture that this fixed point is a stable center. In a similar way the picture
of the level curves of g0,−4 reveals five critical points given approximately by

(0,−.0417), (0, 2.4957), (0,−2.4005), (±2.10595,−1).

These correspond to five fixed points in phase space, the first three appearing
to be stable centers and the latter two appearing to be unstable saddle points.

Figure 7.17 shows the lifts of the level curves of g0,−4 to curves on the
surface of the circular paraboloid y = (x2+z2)/2+k3. One would conjecture
from this analysis that the fixed points of the form (0, (zw)−1 − 1, z, w) are
stable centers, while those of the form (x,−w−1 − 1,−1, w) are unstable
saddles, except where these two forms coincide. This is left as an exercise.

While these plots of the level curves of gk1,k3, for two sets of choices for
k1, k3 enable us to understand some of the behavior of the system of DEs, it
does not enable us to understand totally all the features that may be present.
Further investigation is needed (exercise).

The technique used in the above and previous examples allows us to
discern information about the integral curves of an integrable system by an-
alyzing the level curves of a family {gk1···kn−2}, of functions of two variables.
The technique applies in general, but with some restriction on the domain
of gk1···kn−2 , which is necessary unless we have more particular information
about the system. In the following theorem we use the notation

Sk1···kr

F 1···F r ≡ Sk1

F 1 ∩ Sk2

F 2 ∩ · · · ∩ Skr
F r ,



7.4. Integrable Systems in Higher Dimensions 367

Figure 7.17: Lifts of the level curves of g0,−4 to the paraboloid y = (x2+z2)/2.
This is for clarity. The paraboloid should be translated by k3 = −4 to give
the true lifts.

for the intersection of the level sets (level hypersurfaces)

Ski

F i ≡ {x ∈ O |F i(x) = ki }.

Theorem 7.4 Suppose that F 1, . . . , Fn−1 : O → R are differentiable func-
tions on an open set in R

n and that c ∈ O is a point such that

∇F 1(c), . . . ,∇Fn−2(c)

are linearly independent. Let ki = F i(c), i = 1, . . . , n − 2. Then there is an
open set U ⊆ R

2, a neighborhood V ⊆ O of c, and differentiable functions
gk1···kn−2 : U → R, and h : U :→ R

n, such that

(1) h : U → S
k1···kn−2

F 1···F n−2 ∩ V is 1-1 and onto.

(2) h maps each level curve

gk1···kn−2(x1, x2) = kn−1,

onto the curve
S

k1···kn−2kn−1

F 1···F n−2F n−1 ∩ V.
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(3) A point (x1, x2) ∈ U is a critical point of gk1···kn−2 if and only if
h(x1, x2) is a fixed point for the system x′ = XF 1···F n−1(x).

Proof: A direct application of the Submanifold Theorem (see Appendix
A) gives the U, V and the differentiable map h with the property stated in
assertion (1). This just says that h is a parametrization of the 2-dimensional
submanifold Sk1···kn−2

F 1···F n−2. Now define gk1···kn−2 by

gk1···kn−2(x1, x2) = Fn−1
(
h(x1, x2)

)
,

for (x1, x2) ∈ U . Then it is easy to verify assertion (2) (exercise). Finally,
note that by the chain rule

∇gk1···kn−2(x1, x2) = ∇Fn−1
(
h(x1, x2)

)
h′(x1, x2),

for all (x1, x2) ∈ U . By the Submanifold Theorem, the n×2 matrix h′(x1, x2)
consists of two linearly independent columns, each of which is a vector in R

n

that is tangent to Sk1···kn−2

F 1···F n−2 at h(x1, x2). assertion (3) now follows (exercise).

The concept of integrability is preserved under diffeomorphisms, i.e., if
two systems are differentiably equivalent and one of the systems is integrable,
then the other system is also integrable.

Theorem 7.5 Suppose F 1, . . . , Fn−1, ρ : O → R
3 are differentiable func-

tions on an open set O in R
n and let Xρ,F 1,...,F n−1 : O → R

n be the vector
field

Xρ,F 1,...,F n−1 ≡ ρ(∇F 1 × · · · × ∇Fn−1).

If h : O → Õ is any diffeomorphism onto an open set Õ of R
n, then

h∗(Xρ,F 1,...,F n−1) = Xµ,G1,...,Gn−1 , (7.37)

where

µ = (ρdet(h′)) ◦ h−1 (7.38)
Gi = F i ◦ h−1 (for i = 1, . . . , n− 1). (7.39)

Consequently, integrability is preserved under transformations induced by
diffeomorphisms h and (7.39) gives the relationship between the respective
constants of the motion.
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Proof: To prove identity (7.37), fix y ∈ Õ and let P = h′(x), where x =
h−1(y). Using the definition of the transformation of a vector field by a
diffeomorphism and identity (7.15), we get

h∗(X)(y) = h′(x)X(x)
= ρ(x)P (∇F 1(x) × · · · × ∇Fn−1(x))
= ρ(x) det(P )(P−T∇F 1(x) × · · · × P−T∇Fn−1(x)).

Next note that we can consider the expression P−T∇F i(x) as a product of
matrices if the gradient vector ∇F i(x) is viewed as a n× 1 column matrix,
i.e., ∇F i(x) = ((F i)′)T . Then

P−T∇F i(x) = h′(x)−T (F i)′(x)T

=
(

(F i)′(x)h′(x)−1
)T

=
(

(F i ◦ h−1)′(y)
)T

= ∇(F i ◦ h−1)(y).

Note that we have used the identity: (h−1)′(y) = h′(h−1(y))−1, which comes
from the Inverse Function Theorem (see Appendix A). This shows that
h∗(X)(y) has the stated form. The rest of the assertions in the theorem
follow from the main relation (7.37).

An immediate corollary of the theorem is that locally, near any regular
point, the concept of integrability is not very special.

Corollary 7.1 (Local Integrability) If c ∈ O is not a fixed point of X,
then there is a neighborhood W of c in O such that X restricted to W gives
an integrable system on W .

Proof: By the Flow Box Theorem in Chapter 6, there is a neighborhood
W of c and a diffeomorphism h : W → W̃ , such that h∗(X) = Y , is the
constant vector field: Y (y) = εn for all y ∈ W̃ . Now the flow ψ for Y is
uniform flow in the last coordinate direction:

ψt(y) = (y1, y2, . . . , yn + t).

Thus, it is clear that the system y′ = Y (y) is integrable because the first
n− 1 coordinate projections: Gi(y) = yi, for i = 1, . . . , n− 1, are constants
of the motion. Hence by the theorem, X restricted to W is integrable.
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Exercises 7.4
1. Prove Properties (1), (2), and (3) for the normal product in Proposition 7.4.

2. In the proof of Theorem 7.2, we used the identities ei ·X = 0, for i = 1, . . . , n−
1. Show that these follow from the identities ei ·X = 0, for i = 1, . . . , n− 1.
Hint: first show that gin = 0 = gni, for i = 1, . . . , n− 1.

3. Continue the analysis of the system in Example 7.6. Study additional graphs
of the level curves of gk1k3 for other values of k1, k3. Do any new features
appear? The fixed points c are of two general types (see the discussion), but
it is somewhat tedious to compute the eigenvalues of X ′

F 1F 2F 3(c) by hand
and apply the Linearization Theorem. Try this and use Maple if necessary.

4. Complete the proof of Theorem 7.4.

5. In the following F 1, F 2, F 3 : R
4 → R are given functions on R

4 and you
are to study the system of DEs with vector field XF 1,F 2,F 3 . Calculate this
vector field explicitly and write down the corresponding system of differential
equations. Find all the fixed points c, calculate the eigenvalues of the Jacobian
matrix X ′

F 1,F 2,F 3(c) at a general fixed point, and classify its type. Use the
technique from Example 7.6 to study the integral curves of the system and
to help classify the fixed points.

(a)

F 1(x, y, z, w) = w − 1
2 (x2 + y2 − z2)

F 2(x, y, z, w) = z − 1
2 (x2 − w2)

F 3(x, y, z, w) = y − 1
2 (x2 − z2)

(b)

F 1(x, y, z, w) = w − 1
2 (x2 + y2 + z2)

F 2(x, y, z, w) = z − 1
2 (x2 − w2)

F 3(x, y, z, w) = y − 1
2 (x2 − z2)



Chapter 8

Newtonian Mechanics

In this chapter we discuss a few aspects of Newtonian mechanics for systems
of discrete particles. Such systems are the primary classical examples of
systems of differential equations and serve to illustrate many of the concepts
that have been developed for the study of systems of DEs.

The case for N = 2 particles (the two-body problem) was completely
solved, for forces of mutual attraction, in Chapter 2, and here we consider
the general N -particle case. The N -body problem has been studied in depth
for many centuries, and an enormous body of important and deep results
has accrued (cf. [Th 79, p. 176], [W 47, p. 233], and [Wh 65, p. 339]).
You should realize however that the general problem (even when the forces
are an inverse square law of attraction) is not solvable in closed form, as the
N = 2 case and certain special cases of the N = 3 problem are. However,
numerical methods are always available and we will see below that they are
quite effective in studying the complex motions of a system when the number
of particles is not too large.

It will be convenient, and customary as well, to denote the derivative
with respect to time by a dot rather than a prime. Thus,

ṙ =
dr
dt
, r̈ =

d2r
dt2

.

The prime will otherwise be used as before, e.g., X ′(c) denotes the Jacobian
matrix at c for a vector field X : R

n → R
n.

Philosophically, the discussion and development here is from a mathe-
matical point of view. Namely, we assume no physics background or prior
knowledge of such concepts as energy, momentum, etc., and show how these
concepts arise from the mathematical model for the motion of a system of
particles. Indeed, when Newton formulated his physical laws, the current
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ideas about (and names for) kinetic and potential energy, linear and angular
momentum, and total energy were still quite primitive. However, once New-
ton’s second law, F = ma, is viewed as a system of differential equations,
then all the physical concepts can be derived from an analysis of this system.

Indeed, Newton’s second law is in essence just the general form for a
2nd-order systems of DEs in normal form:

r̈ = G(t, r, ṙ).

This is so provided we ignore the requirements on the specific nature of the
forces, the way the masses enter as parameters, and the invariance under
Galilean transformations. The beauty of Newton’s conception is that when
these particulars are added, this system of DEs has, for three centuries,
successfully explained the mechanics of a vast range of phenomena.

After discussing a few aspects of the general problem and the Euler nu-
merical scheme for approximate solutions, we consider the special case of
systems undergoing rigid-body motions. While this will only give you a
modest introduction to the subject of Newtonian mechanics, it should nev-
ertheless make the previous abstract concepts more concrete. For treatments
of mechanics see [AM 78], [Ar 78b], [Go 59], [MT 95], [Th 78], [W 47], and
[Wh 65].

8.1 The N-Body Problem
Newton’s 2nd law is the quite reasonable postulate that the acceleration of
the motion of a body is directly due to whatever forces are acting on it.
Thus, in the absence of any force, there is no change in the velocity of the
body. It is also reasonable to assume that the acceleration produced by a
force is in the direction of the force and is inversely proportional to the mass
of the body (bodies with large mass are accelerated less by a given force than
bodies with small mass). These assumptions then explicitly give Newton’s
famous 2nd law for the motion of a single body:

ma = F.

For the motion of N bodies (ideally point particles) with masses mi, i =
1, . . . , N , and positions ri = (xi, yi, zi), i = 1, . . . , N , the 2nd law applies to
each of the bodies and gives the following system of differential equations:
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Newton’s Second Law:

m1r̈1 = F1(t, r1, . . . , rN , ṙ1, . . . , ṙN )
m2r̈2 = F2(t, r1, . . . , rN , ṙ1, . . . , ṙN )

...
mN r̈N = FN (t, r1, . . . , rN , ṙ1, . . . , ṙN ).

Here each ri is a curve in R
3, with ri(t) representing the position of the ith

particle at time t:
ri(t) = (xi(t), yi(t), zi(t)),

for i = 1, . . . , N and t in some interval I. See Figure 8.1. The force
Fi(t, r1, . . . , rN , ṙ1, . . . , ṙN ), depends in general on the positions and veloci-
ties of all the bodies in the system as well as the time t.

Figure 8.1: Motion of the ith body in the system based on Newton’s second
law.

Mathematically, a solution of this system of DEs is a curve in the space
R

3 ×R
3 × · · · ×R

3 = (R3)N ∼= R
3N and for convenience we will denote such

a curve by
r = (r1, . . . , rN ).

Thus, r(t) gives the configuration of the system at time t and

ṙ = (ṙ1, . . . , ṙN )

gives the configuration of velocities for the system. With this notation we
will often write the system as:

mir̈i = Fi(t, r, ṙ), i = 1, . . . , N. (8.1)
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These equations are also called the equations of motion. The system is
determined by the masses mi and the given forces Fi. Generally each Fi :
J×O → R

3 is a time-dependent function on an open set O ⊆ R
3N ×R

3N and
represents the force exerted on the ith particle. This force, as the notation
indicates, can in general depend on the positions and velocities of all the
particles, i.e., on the state (r, ṙ) of the system at time t. Often the phase
space has the form O = U × R

3N , when the nature of the forces preclude
certain configurations r = (r1, . . . , rN ) of the system. This was the case with
the two-body problem in Chapter 1 and occurs in the N -body problem with
gravitational (and other) force systems as well.

The momentum (or linear momentum) of the ith body is, by definition,

pi = miṙi.

In some respects the momentum is a more fundamental quantity than the
velocity in regards to the motion of a body. Newton actually phrased the
2nd law as saying that the change in a body’s momentum is equal to the
force acting on the body. This is equivalent to the expression for this law
given above provided the mass of the body is constant. Otherwise it is a
more general statement that allows situations like rockets which continually
lose mass due to the burning of fuel.

Newton’s 2nd law can be written as a 1st-order system in the customary
way by introducing additional functions: v = (v1, . . . ,vN ), with vi ≡ ṙi, for
i = 1, . . . , N , being the velocities of the respective particles. For convenience,
we let F : J × O → R

3N be the vector-valued function whose components
are the forces on the individual bodies:

F = (F1, . . . , FN ),

and let µ be the following 3N×3N diagonal matrix (called the mass matrix):

µ =


m1I3

m2I3
. . .

mNI3

 . (8.2)

Here I3 denotes the 3×3 identity matrix. Then Newton’s law, as a 2nd-order
system, is

r̈ = µ−1F (t, r, ṙ),



8.1. The N-Body Problem 375

and the corresponding 1st-order system is

ṙ = v

v̇ = µ−1F (t, r,v).

The vector field XF : J ×O → R
3N × R

3N for this 1st-order system is then
given by

XF (t, r,v) =
(
v, µ−1F (t, r,v)

)
.

8.1.1 Fixed Points

When the forces do not depend on the time, the fixed points of the vector
field XF are points (r,v) ∈ O such that

v = 0
F (r, 0) = 0,

that is, vi = 0, Fi(r, 0) = 0, for i = 1, . . . , N . In real space R
3 this amounts

to a configuration r = (r1, . . . , rN ) of N positions where the bodies could
be located at rest and experience no forces acting on them. Because of this
interpretation, a fixed point is traditionally referred to as an equilibrium
point.

The stability of a fixed point (r, 0) can be analyzed by using the Lin-
earization Theorem and Liapunov functions. Since XF is quite general (it is
the vector field associated with a general 2nd-order system in normal form),
there is little we can conclude about the stability. It is important to note,
however, that the derivative (Jacobian matrix) for XF has the special form

X ′
F =

[
0 I

µ−1 ∂F
∂r µ−1 ∂F

∂v

]
.

Here 0 and I denote the 3N × 3N zero and identity matrices, respectively,
and

∂F

∂r
=
{
∂F i

∂rj

}
i,j=1···N

,
∂F

∂v
=
{
∂F i

∂vj

}
i,j=1···N

,

are 3N × 3N matrices as well. The notation here is very natural, but at
first can be confusing. To be explicit, the above matrices are actually in
block form, with each block being a 3 × 3 matrix. For example, if F i has



376 Chapter 8. Newtonian Mechanics

component form F i = (f i, gi, hi) then

∂F i

∂rj
=


f i

xj
f i

yj
f i

zj

gi
xj

gi
yj

gi
zj

hi
xj

hi
yj

hi
zj
,

 , ∂F i

∂vj
=


f i

uj
f i

vj
f i

wj

gi
uj

gi
vj

gi
wj

hi
uj

hi
vj

hi
wj

 ,
where the subscripts denote partial derivative with respect to xj , yj and zj
and uj , vj and wj , respectively. With additional information on the nature of
the forces, we see below that conclusions can be made about the eigenvalues
of X ′

F (r, 0) and the stability of fixed points.

8.1.2 Initial Conditions
If we assume that the partial derivatives ∂F i/∂rj, ∂F

i/∂vj, for i, j = 1, . . . , N
are continuous on O, then the general Existence and Uniqueness Theorem
from Chapter 3 applies. In the N -body setting, this theorem says that if the
initial positions and initial velocities of all the bodies are known, then this
initial data uniquely determines the motion of the system for all time (or at
least for all the times in the maximum interval of existence).

Specifically, given an initial configuration of positions a = (a1, . . . ,aN )
and an initial configuration of velocities b = (b1, . . . ,bN ), with (a,b) ∈ O,
and an initial time t0 ∈ J , there is a unique solution r = (r1, . . . , rN ) : I →
R

3N of the equations of motion:

mir̈i = Fi(t, r, ṙ), i = 1, . . . , N,

defined on a maximal interval I = I(t0,a,b), and satisfying the initial condi-
tions:

ri(t0) = ai

ṙi(t0) = bi,

for i = 1, . . . , N . For each time t ∈ I, the state of the system r(t) =
(r1(t), . . . , rN (t)), is known completely and so the system is called determin-
istic. The evolution of the system over time, from state to state, is given by
the flow: t → φt0

t (a,b), which also explicitly exhibits the dependence of the
evolution on the initial state (a,b) of the system.

Definition 8.1 (System of Particles) For convenience of expression in
the ensuing discussions, the term system (or system of particles) will refer
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to a particular solution r = (r1, . . . , rN ) : I → O of the equations of motion
with given initial state (a,b). This is, of course, to be distinguished from
the system comprising the differential equations that model the motion.

8.1.3 Conservation Laws
Except for the structure of the configuration space O as a subset of R

3N×R
3N

and the appearance of the masses mi, the 2nd-order system of DEs:

mir̈i = Fi(t, r, ṙ), i = 1, . . . , N,

comprising Newton’s 2nd law, is quite general. Despite this generality, the
form of the system of differential equations does give us Galileo’s principle:

Newton’s First Law: If there is no force on the ith body of the system
(Fi = 0), then the ith body will either remain at rest or move in a straight
line with constant velocity.

In terms of differential equations this just says that the solution of r̈i = 0
is ri(t) = vi(0)t + ri(0).

Other than this, there is little we can conclude from Newton’s 2nd law
without specifying the nature of the forces acting on the system. All of the
conservation laws we derived for the two-body problem (for gravitational
attraction) extend to the N -body case, with more general systems of forces.
As with Newton’s 1st law, these conservation laws and other physical prin-
ciples follow directly from the form of the system of differential equations.
Before seeing how this is so, we introduce some standard terminology.

Definition 8.2 (Total Momenta and Center of Mass) For a system of
particles r = (r1, . . . , rN ) : I → O, the total mass of the system is

M =
N∑

i=1

mi.

Furthermore, let

P(t) =
N∑

i=1

miṙi(t) (8.3)

L(t) =
N∑

i=1

mi[ri(t) × ṙi(t)] (8.4)
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R(t) =
N∑

i=1

mi

M
ri(t), (8.5)

denote respectively, the total linear momentum, the total angular momen-
tum (about the origin), and center of mass of the system at time t ∈ I.
Additionally, let

F(t) =
N∑

i=1

Fi

(
t, r(t), ṙ(t)

)
(8.6)

T(t) =
N∑

i=1

[
ri(t) × Fi

(
t, r(t), ṙ(t)

)]
, (8.7)

denote the total force and total torque (about the origin) acting on the system
at time t.

Note: The total force F should not to be confused with the vector-valued
function F = (F1, . . . , FN ), comprised of the forces on the respective bodies.

In general, the linear and angular momenta of the system, P and L, are
not conserved, i.e., not constant in time, but rather evolve according to the
following relations:

Ṗ(t) = F(t) (8.8)
L̇(t) = T(t) (8.9)

MR̈(t) = F(t), (8.10)

(exercise). The first equation is interpreted as saying that the change in the
total linear momentum of the system is equal to the total force acting on
the system. Similarly, the second equation says that the change in the total
angular momentum, about the origin, is equal to the total torque, about the
origin, applied to the system. The last equation says that the center of mass
moves as if it were a body of mass M subject to the total force acting on
the system.

From these equations (8.8)-(8.10), it is easy to show (exercise) that the
following conservation laws hold
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N-Body Conservation Laws:

1. If the total force on the system is zero, F(t) = 0, for all t, then

(a) the total linear momentum is constant in time, and

(b) the center of mass moves in a straight line with constant velocity.

2. If the total torque on the system is zero, T(t) = 0, for all t, then the
total angular momentum is constant in time.

In terms of equations, these conservation laws, are expressed as follows.
The laws apply to each solution r : I → R

3N of the equations of motion.

1. (Conservation of Linear Momentum): If F(t) = 0, for all t, then

(a)
N∑

i=1

miṙi(t) = P0

(b)
N∑

i=1

mi

M
ri(t) =

t

M
P0 + R0,

for all t ∈ I.

2. (Conservation of Angular Momentum): If T(t) = 0, for all t,
then

N∑
i=1

mi[ri(t) × ṙi(t)] = L0,

for all t ∈ I.

Here P0 =
∑N

i=1miṙi(0) is the initial total linear momentum of the system,
R0 =

∑N
i=1

mi
M ri(0) is the initial position of the center of mass, and L0 =∑N

i=1mi[ri(0) × ṙi(0)] is the initial total angular momentum of the system
about the origin. Strictly speaking only 1(a) and 2 are conservation laws,
while 1(b) is a physical principle since the quantity

∑N
i=1miri(t)/M does not

remain constant in time. Generally, conservation laws, also called constants
of the motion, are expressions involving the positions and velocities that do
not change over time.

Another, more geometrical, way to express conservation laws 1(a) and 2
is to say that the curve t → (r(t), ṙ(t)) lies on each of the two submanifolds
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in phase space given by:

S1 =
{

(r,v) ∈ O
∣∣∣∣ N∑

i=1

mivi = P0

}

S2 =
{

(r,v) ∈ O
∣∣∣∣ N∑

i=1

mi[ri × vi] = L0

}

Here (r,v) = (r1, . . . , rN ,v1, . . . ,vN ) denotes a general point in phase space
O ⊆ R

3N × R
3N . In the description of S1, the system of equations is a

linear system of algebraic equations, so S1 is a flat submanifold of R
6N . In

S2, the system of equations is nonlinear and the submanifold S2 is “curved.”
The intersection S1∩S2, of these two submanifolds gives a lower-dimensional
submanifold in R

6N . Each additional conservation law, which is independent
in some sense of the above two, will give yet another submanifold on which
the curve t → (r(t), ṙ(t)) must lie. In this view, the combination of a number
of conservation laws will constrain the motion of the state (r(t), ṙ(t)) of the
system to the intersection S1 ∩S2 ∩ · · · ∩Sk, of a number of submanifolds in
phase space.

Many systems of forces have their total force F(t) = 0 and total torque
T(t) = 0, for all time t. A standard, and important, class of such a systems
are those where the forces arise from the interactions of each pair of bodies
and these forces of interaction obey Newton’s 3rd law. Mathematically, this
is described as follows.

Definition 8.3 (Forces of Interaction) Suppose J is an interval of times,
O is an open set in R

3N×R
3N , and Fij : J×O → R

3, for i, j ∈ {1, . . . , N}, i 
=
j, are given functions. For each i ∈ {1, . . . , N} define Fi : J ×O → R

3 by

Fi =
∑
j 	=i

Fij . (8.11)

Here the sum is over all indices j different than i, that is, j ∈ {1, . . . , N}\{i}.
The function Fij is the force of interaction between the ith and jth bodies.
More specifically,

Fij = the force exerted on the ith body by the jth body.

Thus, Fi is the sum of the forces of exerted on the ith body by all the other
bodies. Note that no body exerts a force on itself (i.e., there is no Fii in the
above sum). A system of forces {F1, . . . , FN} is said to arise from forces of
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interaction when each Fi has the form (8.11). Such a system is said to obey
Newton’s 3rd law if

Newton’s 3rd Law: Each body exerts a force on every other body that is
equal in magnitude and opposite in direction to the force that the other body
exerts on it. That is, Fji = −Fij , for all i 
= j.

The system of forces is said to obey the strong form of Newton’s 3rd law
if Fji = −Fij and Fij(t, r,v) is parallel to ri − rj, for all i 
= j, and all
(t, r,v) ∈ J ×O.

It is easy to construct quite arbitrary systems of forces arising from forces of
interactions that obey Newton’s 3rd law; just choose Fij , for i < j, arbitrarily
and then define Fji ≡ −Fij, for i < j. Similarly, to construct a system that
obeys the strong form of Newton’s 3rd law, choose any functions fij : J×O →
R, for i < j, take fji ≡ fij, for i < j, and define Fij : J ×O → R

3 by

Fij(t, r,v) = fij(t, r,v) (ri − rj),

for any i, j and (t, r,v) ∈ J ×O. An example of this latter construction is
the following:

Newton’s Law of Universal Gravitation: Every particle of mass in
the universe is attracted to every other particle of mass with a force directed
along the line joining the particles and with magnitude that is proportional to
the product of the masses and reciprocally proportional to the square of their
distance apart. The proportionally constant is the gravitational constant G.

For the N -body problem, with gravitational forces of attraction, the forces
of interaction are

Fij(t, r,v) =
Gmimj

r3ij
(rj − ri), (8.12)

where rij ≡ |ri − rj |.
The following proposition is an elementary consequence of the above

definition.

Proposition 8.1 If a system of forces {F1, . . . , FN} arises from forces of
interaction and obeys Newton’s 3rd law, then for any solution of the equations
of motion, the total force on the system is zero for all time. If in addition
the system obeys the strong form of Newton’s 3rd law, then the total torque
on the system is also zero for all time.
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Proof: Exercise.

A final, and perhaps the most important, conservation law for the N -
body system is the conservation of energy law. This requires a special system
of forces, called a conservative system of forces. The mathematical motiva-
tion for how this law arises from the form of the system of DEs is as follows.
Suppose that r : I → R

3N is a solution of the equations of motion:

mir̈i = Fi(t, r, ṙ), i = 1, . . . , N.

Taking the dot product of the ith equation with ṙi and then summing on i
gives

N∑
i=1

mir̈i · ṙi =
N∑

i=1

Fi(t, r, ṙ) · ṙi.

Now recognize that d
dt(

1
2 |ṙi|2) = r̈i · ṙi, for each i, and so the last equation is

d

dt

[ N∑
i=1

1
2mi|ṙi|2

]
=

N∑
i=1

Fi(t, r, ṙ) · ṙi.

The quantity in the square brackets here is known as the kinetic energy of
the system and the integral of the quantity on the right side of the equation
is called the work done by the system. Thus, the equation, when integrated
between two times, says that the change in kinetic energy is equal to the
work done on the system. We formalize this in the following definition.

Definition 8.4 (Work, Potentials, and Energy)

(a) Suppose r : I → R
3N is a solution of the equations of motion and

t1 < t2 ∈ I are two times. Then the work done by the system in going
from state (r(t1), ṙ(t1)) to state (r(t2), ṙ(t2)) is defined as

W (t1, t2) =
N∑

i=1

∫ t2

t1
Fi

(
t, r(t), ṙ(t)

)
· ṙi(t) dt. (8.13)

(b) The kinetic energy of the system at time t is

T (t) =
N∑

i=1

1
2mi|ṙi(t)|2.
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(c) The system of forces Fi, i = 1, . . . , N is said to be conservative if (i)
Fi depends only on r, (ii) the forces have a common domain Fi : U ⊆
R

3N → R
3, i = 1, . . . , N , and (iii) there is a differentiable function

V : U :→ R such that

Fi(r) = − ∂V

∂ri
(r) (8.14)

≡ −
(
∂V

∂xi
(r),

∂V

∂yi
(r),

∂V

∂zi
(r),

)
, (8.15)

for all r ∈ U . The function V is called a potential for the system for
forces. Note: The partial derivative in equation (8.14) is symbolic, or
just notation, for what is given in (8.15).

(d) For a conservative system of forces, with potential V , the total energy
for a motion of the system is

E =
N∑

i=1

1
2mi|ṙi(t)|2 + V (r(t)) (8.16)

= T (t) + V (r(t)). (8.17)

The second term V (r(t)) is called the potential energy of the system at
time t. Thus, the total energy E of the system is the sum of the kinetic
and potential energies, each of which will vary in time, in general.
However, as the notation above indicates the total energy is constant
in time. This is the content of the energy conservation law.

N-Body Conservation Law (Conservative Systems):

3. If the system of forces is conservative, then the total energy of the
system, for any choice of potential, is constant in time.

It is an easy exercise to prove this.
Since the total energy is constant throughout the motion, any increase

in the kinetic energy of the system must be compensated for by a decrease
in the potential energy, and vice-versa. While the total energy is constant
in time, it does depend on the solution of the equations of motion. Different
solutions can have different total energies. The value of the total energy for
a solution r : I → R

3N is determined from the initial conditions, i.e., the
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initial positions and velocities of the bodies in the system:

E = E0 =
N∑

i=1

1
2mi|ṙi(t0)|2 + V (r(t0)),

where t0 is the initial time.
Geometrically the conservation of energy means that each curve t →

(r(t), ṙ(t)), describing the evolution of a state of the system, lies on an energy
hypersurface:

S3 =
{

(r,v) ∈ O
∣∣∣∣ N∑

i=1

1
2mi|vi|2 + V (r) = E0

}
,

in phase space.

Example 8.1 (The 3-Body Problem) Suppose h12, h13, h23 : (0,∞) →
R, are differentiable functions. The general version of the classical 3-body
problem that satisfies the strong form of Newton’s 3rd Law is

m1r̈1 =
h12(r12)
r12

(r2 − r1) +
h13(r13)
r13

(r3 − r1) (8.18)

m2r̈2 =
h12(r12)
r12

(r1 − r2) +
h23(r23)
r23

(r3 − r2) (8.19)

m3r̈3 =
h13(r13)
r13

(r1 − r3) +
h23(r23)
r23

(r2 − r3). (8.20)

The classical 3-body problem is for an inverse square law of attraction, and
in this case the hij ’s are given by

hij(r) =
Gmimj

r2
. (8.21)

In the classical as well as the general case it is easy to see that the system of
forces arises from forces of interaction and obeys the strong form of Newton’s
3rd Law. Thus, the linear and angular momenta of the system are conserved.
It is also true that the system of forces is conservative. For the classical case,
with the hij ’s given by equation (8.21), it is easy to verify that a potential
for the system of forces is

V (r) = V (r1, r2, r3) = − Gm1m2

r12
− Gm1m3

r13
− Gm2m3

r23
. (8.22)

See the exercises for the form of the potential for the general hij case (and
for arbitrary N).
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8.1.4 Stability of Conservative Systems
A potential V : U ⊆ R

3N → R for a conservative system of forces is also
intimately connected with the stability of the motion. Indeed, the critical
points of V correspond to the fixed points of the N -body system and V
provides the essential part of an expression for a Liapunov function Λ. Thus,
define Λ : U × R

3N → R by

Λ(r,v) =
N∑

i=1

1
2mi|vi|2 + V (r). (8.23)

This is also known as the total energy function on phase space (it’s level sets
are the energy hypersurfaces). Recall that to be a Liapunov function for a
fixed point c = (r∗, 0), there must be a neighborhood W of c on which the
covariant derivative is nonpositive: ∇XF

Λ ≤ 0, and c must be the absolute
minimum value of Λ in W . In the situation at hand:

∇Λ =
(
∂V

∂r1
(r), . . . ,

∂V

∂rN
(r),m1v1, . . . ,mNvN

)
, (8.24)

and
XF =

(
v1, . . . ,vN ,−

1
m1

∂V

∂r1
(r), . . . ,− 1

mN

∂V

∂rN
(r)
)
, (8.25)

and so clearly
∇XF

Λ = ∇Λ ·XF = 0,

on O = U ×R
3N . That is the first requirement for Λ to be a Liapunov func-

tion. For the second requirement, note that c = (r∗, 0) is a local minimum
for Λ if and only if r∗ is a local minimum for V (exercise). Thus, points
r∗ where the potential has local minima give stable fixed points (r∗, 0) of the
system. This is part of the content of the next theorem.

Before stating this theorem, it is important to observe that from (8.24)
and (8.25) it follows that (r∗, 0) is a fixed point of XF if and only if r∗ is a
critical point of the potential V , if and only if (r∗, 0) is a critical point of Λ.
The usual analysis of the extrema of V employs the second derivative test,
involving the Hessian matrix:

HV =


∂2V
∂r2

1
· · · ∂2V

∂r1∂rN

...
...

∂2V
∂rN∂r1

· · · ∂2V
∂r2

N

 , (8.26)



386 Chapter 8. Newtonian Mechanics

of V . This is the 3N × 3N symmetric matrix consisting of all the 2nd-order
partial derivatives of V . Note that the matrix shown above is in block form,
each block being a 3 × 3 matrix. Specifically, the i-jth block is

∂2V

∂ri∂rj
=


∂2V

∂xi∂xj

∂2V
∂xi∂yj

∂2V
∂xi∂zj

∂2V
∂yi∂xj

∂2V
∂yi∂yj

∂2V
∂yi∂zj

∂2V
∂zi∂xj

∂2V
∂zi∂yj

∂2V
∂zi∂zj

 . (8.27)

The second derivative test says that if HV (r∗) is positive definite at a critical
point r∗ of V , then V has a local minimum at r∗ (see Appendix A).

Theorem 8.1 (Stability of Conservative Systems) Suppose V is a po-
tential for the system of forces in the N -body problem: (ṙ, v̇) = XF (r,v).

(1) If V has a local minimum at r∗, then (r∗, 0) is a stable fixed point for
the system.

(2) The Jacobian matrix X ′
F has the form

X ′
F (r,v) =

[
0 I

−µ−1HV (r) 0

]
, (8.28)

where 0, I are the 3N × 3N zero and identity matrices, HV is the
Hessian of V given by (8.26), and µ is the 3N × 3N diagonal, mass
matrix, given in equation (8.2). Hence the eigenvalues of X ′

F (r,v) are

±
√
λ1, . . . ,±

√
λ3N ,

where λ1, . . . , λ3N are the eigenvalues of −µ−1H(r). Therefore the
eigenvalues of X ′

F (r,v) are either purely imaginary, zero, or real, each
occuring in ± pairs.

(3) If (r∗, 0) is a fixed point of XF and if all the eigenvalues of X ′
F (r∗, 0)

are purely imaginary, then the Hessian HV (r∗) is positive definite, the
potential V has a local minimum at r∗, and the fixed point (r∗, 0) is a
stable center for the N -body system.

(4) If (r∗, 0) is a simple fixed point (i.e., det(X ′
F (r∗, 0)) 
= 0), and if at least

one of the eigenvalues of X ′
F (r∗, 0) is real, then (r∗, 0) is an unstable

fixed point of the system.
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Proof: The proof of (1) follows from the discussion before the theorem. It
is clear from the form of XF in (8.25) that its Jacobian matrix has the form
given in (8.28). It is an elementary exercise (see Chapter 4) to show that if
a matrix A has block form

A =

[
0 I
B 0

]
,

with B a k× k matrix and I the k× k identity matrix, then the eigenvalues
of A are ±√

µ1, . . . ,±
√
µk, where µ1, . . . , µk are the eigenvalues of B. This

gives the result (2) about the eigenvalues of X ′
F (r,v).

To prove (3) suppose (r∗, 0) is a fixed point of XF . If all the eigenvalues
of X ′

F (r∗, 0) are purely imaginary, then by part (2), all the eigenvalues of
−µ−1HV (r∗) must be negative, say: λ1 ≤ · · · ≤ λ3N < 0. (Note that
−µ−1HV (r∗) is a real, symmetric matrix and so its eigenvalues must be
real). Then by the Principal Axes Theorem (see Appendix C), the function

f(r) ≡ − HV (r∗)r · r
µr · r ,

which is the ratio of the indicated quadratic forms on R
3N , has maximum

value λ3N < 0. Thus, f(r) < 0, for all r 
= 0, and so HV (r∗)r · r > 0, for all
r 
= 0. Hence HV (r∗) is positive definite and thus V has a local minimum
value at r∗ (see Appendix A). By the discussion prior to the theorem this
makes the energy function Λ defined by (8.23) a Liapunov function for the
fixed point (r∗, 0) and hence it is a stable fixed point.

To prove (4), note that none of the eigenvalues of X ′
F (r∗, 0) can be zero

(since by assumption the fixed point is simple) and so if one of its eigenvalues
λ is real it must be either positive or negative. But −λ is also an eigenvalue
(by (2)) and so X ′

F (r∗, 0) has a negative eigenvalue. This makes (r∗, 0)
an unstable fixed point. (See Corollary 6.2, Exercise 4 in Section 6.2, and
Exercise 1 in Section 6.3.)

The theorem tells us what types of fixed points (equilibria) we can expect
to have for conservative systems. However, in practice it is often quite
difficult to determine if a potential V has a local minimum at a known critical
point. Using the second derivative test may not be easy since computing the
Hessian matrix HV can be very tedious and then determining if this matrix
is positive definite can be equally challenging.
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Example 8.2 (Hooke’s Law) Consider a two-body problem with forces
of interaction of the following form:

m1r̈1 =
f(r12)
r12

(r2 − r1) (8.29)

m2r̈2 =
f(r12)
r12

(r1 − r2). (8.30)

Here f : (0,∞) → R is a given function. It is easy to see that the fixed
points occur for positions r1, r2 of the two bodies such that their separation
r12 = |r1 − r2| is a zero of f , i.e., f(r12) = 0. For gravitational forces, f
has no zeros and so there are no fixed points. However, many other cases do
admit fixed points and a standard, relatively reasonable example is when f
has the form

f(r) = k(r − L),

where k and L are two positive constants, called the spring constant and
the unstretched length, respectively. Physically, we view the two masses
as attached to each other with a spring, which pushes them apart when
compressed and draws them together when extended. The model, which
assumes this linear relation between the change in length of the spring and
the resulting force, is known as Hooke’s Law.

Clearly, for Hooke’s Law, any two positions r1, r2 that do not require a
change in the length of the spring, r12 = L, result in an equilibrium point
for the system when the two bodies are released with no velocity. There
are thus infinitely many fixed points, {(r1, r2) ∈ R

6 | |r1 − r2| = L}, for this
system.

The system of forces is conservative, since it can easily be verified that

V (r1, r2) =
k

2
(r12 − L)2,

is a potential for the system. This also enables us to easily see that any fixed
point is stable. This is so since the form of V readily reveals that

V (r1, r2) ≥ 0,

for all r1, r2 ∈ R
3 and V (r1, r2) = 0 at a fixed point. Hence each fixed point

corresponds to an absolute minimum of V .
This example is related to the coupled springs example in Chapter 4,

except now the masses are not constrained to lie in a straight line and are not
attached by springs to the wall. The exercises in the this and the next section
contain some generalizations and connections to the Chapter 4 example.
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Exercises 8.1
1. Show that equations (8.8)-(8.10), for the rates of change of the total linear

and angular momenta and position of the center of mass, hold. Use these to
show that the Conservation Laws 1(a), 1(b), and 2 hold.

2. (a) Suppose r = (r1, . . . , rN ) : I → R
3N is a system of particles and a is a

point in R
3. Let ra

i (t) = ri(t) − a, denote the position of the ith particle
(body) at time t relative to a. The definitions of the total, linear and angular
momenta relative to a are

Pa(t) =
N∑

i=1

miṙa
i (t),

La(t) =
N∑

i=1

mi[ra
i (t) × ṙa

i (t)].

Show that
P0 = Pa,

that is, the total linear momentum of the system relative the origin is the
same as that relative to any point a. Also show that

L0 = La + a × Pa.

This relates the total angular momentum about the origin and to that about
a and shows that these are different in general. Under what conditions are
they the same ? Describe this geometrically.
(b) Show that there are functions P ,L,R,F , T : J×O → R

3 such that for any
solution r : I → R

3N of the equations of motion, the total linear and angular
momenta, center of mass, and total force and torque are given by P(t) =
P(r(t), ṙ(t)),L(t) = L(r(t), ṙ(t)),R(t) = R(r(t), ṙ(t)),F(t) = F(t, r(t), ṙ(t)),
and T(t) = T (t, r(t), ṙ(t)) respectively. The text uses P,L,R,F,T for these
respective quantities, which is the usual practice in the physics literature, but
P ,L,R,F , T are sometimes more useful mathematically and help display
more clearly how the various quantities depend on the particular motion
r : I → R

3N of the system.

3. Prove Proposition 8.1.

4. Give an example of a system of forces arising from forces of interaction that
satisfies Newton’s 3rd law but not the strong form of Newton’s 3rd law.
Compute the total torque for the system.

5. Suppose r : I → R
3N is a solution of the equations of motion and t1 < t2 ∈ I

are two times. Prove that the work done by the system in going from state
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(r(t1), ṙ(t1)) to state (r(t2), ṙ(t2)) is equal to the difference in the kinetic
energy of the system at times t1 and t2. Suppose r(t1) = r(t2), i.e., the system
returns to a state where all the positions of the bodies are the same. What
can be said about W (t1, t2), the work done? With the same assumption,
show that if the system of forces is conservative, then the work done is zero.

6. Prove the conservation of energy law for conservative systems. Note: As
mentioned in the introduction, our approach here is mathematically oriented.
Thus, you are not really being asked to prove a physical law, but rather to
prove that the mathematical model consisting of the differential equations
mir̈i = Fi(t, r, ṙ), i = 1, . . . , N , has solutions whose total energy is conserved
when the forces are derived from a potential.

7. (Inverse Power Laws of Attraction) The usual law of gravitational at-
traction is an inverse square law, but we could consider an inverse power
law for any power p. Thus, suppose that p is any real number and define
Fij : U → R

3, for i 
= j by

Fij(r) =
Gmimj

rp+1
ij

(rj − ri), (8.31)

where r = (r1, . . . , rN ) and rij ≡ |ri − rj |. Here the domain U is

U = {(r1, . . . , rN ) ∈ R
3N | ri 
= rj , ∀i 
= j },

if p > −1, and
U = R

3N
,

if p ≤ −1. This gives as large a domain as possible for the forces of interaction.
The inverse square law is p = 2. The corresponding system of forces for the
N -body problem is

Fi(r) =
∑
j �=i

Gmimj

rp+1
ij

(rj − ri). (8.32)

Clearly this system of forces obeys the strong form of Newton’s 3rd law and
so the total force and torque on the system are zero. In this exercise you are
to show, among other things, that this system of forces is conservative (for
any value of p). Specifically,

(a) Show that for any i 
= j and any q 
= 0,

∂

∂ri
(r−q

ij ) = q r
−(q+2)
ij (rj − ri).

(b) Let V : U → R be the function defined by

V (r) = −
∑
i<j

Gmimj

(p− 1)rp−1
ij

, (8.33)
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for p 
= 1, and
V (r) =

∑
i<j

Gmimj ln(rij), (8.34)

for p = 1. Note: The sum here is over all ordered pairs (i, j) with i < j.
Show that V is a potential for the system of forces, i.e. that

∂V

∂rk
= −Fk,

for all k, and thus the system of forces is conservative.

8. (Electrical Attraction and Repulsion Laws) The model for the force
system on charged particles, say protons with positive charge and electrons
with negative charge, is entirely similar to that for gravitational forces of at-
traction. Indeed, now each particle has a charge ei (which is either positive
or negative), in addition to a mass mi (which is always positive), and because
of this there is an electrical interaction between each pair of particles, as well
the gravitational interaction. Particles with like charges (either both posi-
tive or both negative) repel each other, while particles with opposite charges
(one positive, the other negative) attract each other. Coulomb established
by direct measurement that the magnitude of the repulsion or attraction is
inversely proportional to the square of the distance between the particles.
Thus, the electrical force Eij exerted on the ith particle by the jth particle is

Eij(r) = − eiej

r3ij
(rj − ri), (8.35)

and the electrical force on the i particle, due to all the other particles is

Ei(r) = −
∑
j �=i

eiej

r3ij
(rj − ri). (8.36)

If we combine the electrical forces Ei with the gravitational forces Fi from
equation (8.12), the equations of motion for a system of charged, massive
particles is

mir̈i =
∑
j �=i

Gmimj − eiej

r3ij
(rj − ri), (8.37)

for i = 1, . . . , N . For this model, do the following:

(a) Explain why the definition of Eij in equation (8.35) says that like
charges repel each other, while unlike charges attract each other.

(b) Show that the system of forces {E1, . . . , EN} is conservative, and there-
fore when combined with the system of gravitational forces gives a con-
servative system of forces in the equations of motion (8.37).



392 Chapter 8. Newtonian Mechanics

(c) The gravitational force is very weak in comparison with the electrical
force between two particles. For example, if m is the mass of a proton
and e the charge on the proton, then the two constants in the forces of
interaction compare approximately as

e · e ≈ 1036Gm ·m.

This being the case, explain, in a qualitative way, why gravity has such
a predominant effect in everyday life. Hint: since some of the products
eiej in the electrical force can be negative as well as positive, there can
be cancelation of electrical forces in the sum over all j 
= i in (8.37).

9. (3-Body, Hooke) Suppose in the 3-body equations (8.18)-(8.20), the func-
tions hij : (0,∞) → R are

hij(r) = kij(rij − Lij),

where kij ≥ 0 and Lij > 0 are constants and, as usual, rij = |ri − rj |. Also
assume the symmetry conditions kji = kij , Lji = Lij, for all i, j. Then the
equations of motion, written out explicitly, are

m1r̈1 =
k12(r12 − L12)

r12
(r2 − r1) +

k13(r13 − L13)
r13

(r3 − r1) (8.38)

m2r̈2 =
k12(r12 − L12)

r12
(r1 − r2) +

k23(r23 − L23)
r23

(r3 − r2) (8.39)

m3r̈3 =
k13(r13 − L13)

r13
(r1 − r3) +

k23(r23 − L23)
r23

(r2 − r3) (8.40)

and the system of forces is easily seen to satisfy the strong form of New-
ton’s 3rd Law. The model here is for three bodies coupled together with
three springs having spring constants k12, k13, k23 and unstretched lengths
L12, L13, L23. See Figure 8.2.

Figure 8.2: Three bodies coupled together with three springs.

For this model do the following:

(a) Show that the system of forces is conservative.
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(b) Find all the equilibrium points. For this you may assume that kij = 1,
for all i, j. Here are some suggestion for working the exercise:

(i) Simplify the work by introducing the following notation:

a =
r12 − L12

r12

b =
r13 − L13

r13

c =
r23 − L23

r23
.

Then (r1, r2, r3) is an equilibrium point if

a(r2 − r1) + b(r3 − r1) = 0
a(r1 − r2) + c(r3 − r2) = 0
b(r1 − r3) + c(r2 − r3) = 0.

To simplify this further, assume (without loss of generality) that
r2, r3 have the form

r2 = u2 + r1

r3 = u3 + r1,

and rewrite the last system of equations in terms of the new un-
knowns u2,u3. These are known as heliocentric coordinates (see
Exercise 6 in Section 2 below).

(ii) Divide into cases depending on whether all, some, or none of a, b, c
are zero. The case when a = 0, b = 0, c = 0 gives an obvious type
of fixed point for the system. Show that the case when a 
= 0, b 
=
0, c 
= 0, is the only other case for which there can be fixed points.
Further show that in this case, either u2 = 0,u3 = 0, or a, b, c must
satisfy

ab+ ac+ bc = 0.

Of course, u2 = 0,u3 = 0 is not possible (why ?). So this leaves the
above condition on a, b, c and this determines c in terms of a and
b. Now find two other equations that a, b must satisfy and solve
these to get the values of a, b. You should be led to the conditions

2L12 + L23 > L13

2L13 + L23 > L12,

as necessary and sufficient conditions for existence of fixed points
in this case. Interpret this and comment on how the fixed points
in this case make sense physically.
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10. Suppose V : U :→ R is any function on an open set U ⊆ R
3N and define

Λ : U × R
3N → R by

Λ(r,v) =
N∑

i=1

1
2mi|vi|2 + V (r).

Show that V has a local minimum at r∗ ∈ U if and only if Λ has a local
minimum at c = (r∗, 0) ∈ U × R

3N .

11. For i, j ∈ {1, . . . , N}, with i < j, suppose hij : (0,∞) → R is a given
continuous function. Define hji = hij . Let

U = { (r1, . . . , rN ) ∈ R
3N |ri 
= rj , ∀ i 
= j },

For each i define Fi : U → R
3 by

Fi(r1, . . . , rN ) =
∑
j �=i

hij(rij)
rij

(rj − ri).

It is clear that the system of forces {F1, . . . , FN} arises from forces of inter-
action and that it satisfies the strong form of Newton’s 3rd Law. Show that
this system of forces is conservative.

12. Show that the matrix ∂2V
∂ri∂rj

defined by equation (8.27) is, in general, for
i 
= j, not symmetric and

∂2V

∂ri∂rj

= ∂2V

∂rj∂ri
.

Show that, nevertheless, the HV , defined in terms of these matrices, is indeed
a symmetric matrix.

8.2 Euler’s Method and the N-body Problem
As a rudimentary first approach to obtaining numerical solutions of the N -
body problem, we discuss here Euler’s numerical method. This discrete
scheme directly exhibits, in its algorithm, how the forces alter the rectilinear
motion of each body and the graphical displays of the numerical solutions
enable us to understand more about this system of DEs, which is not ana-
lytically solvable.

For simplicity, we assume the forces do not depend on the time. The
discussion below can easily be altered to include time-dependent forces in
the numerical algorithm (exercise).
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The Euler method was discussed in general for 1st-order systems in Chap-
ter 2 and here we want to apply it to a 2nd-order system. Thus, we introduce
the velocities vi = ṙi, i = 1, . . . , N and write the system (8.1) as

miv̇i = Fi(r,v) (8.41)
ṙi = vi. (8.42)

To replace this system by a discrete, finite difference system, we divide the
time interval [0, T ] into K equal subintervals, each of length h = T/K.
Thus, h is the magnitude of the time step and its smallness is critical to the
goodness of the approximate solution.

The Euler scheme generates a discrete sequence

vk
i = (uk

i , v
k
i , w

k
i )

rk
i = (xk

i , y
k
i , z

k
i ),

of approximate positions r1
i , r

2
i , . . . , r

K
i and velocities v1

i ,v
2
i , . . . ,v

K
i for the

ith body at the times 0, h, 2h, . . . ,Kh = T . This is accomplished by replac-
ing the derivatives v̇i, ṙi at time kh by the approximating finite differences
(vk+1

i −vk
i )/h, (rk+1

i −rk
i )/h. Then the discrete analog of the system of DEs

(8.41)-(8.42) is the following system of difference equations:

mi

(
vk+1

i − vk
i

h

)
= Fi(rk,vk) (8.43)

rk+1
i − rk

i

h
= vk+1

i . (8.44)

Here rk = (rk
1 , . . . , r

k
N ) is the vector of the approximate positions of the

N bodies at time kh and vk = (vk
1 , . . . ,v

k
N ) is the vector of approximate

velocities.
A solution of the finite difference system is a sequence {(rk,vk)}k=1···K

of position and velocity vectors that satisfies equations (8.43)-(8.44). Given
the initial position and velocity vectors (r0,v0) for all the bodies, it is easy
to “solve” the system (8.43)-(8.44) of difference equations. That is, we can
easily manufacture a solution directly from the given initial data. This is
so because the system (8.43)-(8.44) can be rewritten in the following more
convenient form:

N-Body Euler Algorithm:

vk+1
i = vk

i +
h

mi
Fi(rk,vk) (8.45)

rk+1
i = rk

i + hvk+1
i , (8.46)
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Figure 8.3: Motion of the ith body governed by the discrete law of motion
(8.47).

for i = 1, . . . , N . This explicitly gives the algorithm for determining the ap-
proximate positions and velocities at each of the discrete time steps. Know-
ing vk, rk at the kth time step, equations (8.45)-(8.46) allow us to com-
pute vk+1, rk+1 at the next time step. Note that vk+1 must be computed
first in (8.45), so that its value can be used in computing rk+1 in (8.46).
Thus, from the initial positions and velocities, we can generate a solution
{(rk,vk)}k=1···K of the finite difference system.

It is instructive to note that the numerical algorithm (8.45)-(8.46) can
help us understand some of the physics behind Newton’s law of motion. This
is easy to see if we substitute vk+1

i from equation (8.45) into equation (8.46)
to get

rk+1
i = rk

i + hvk
i +

h2

mi
Fi(rk,vk). (8.47)

This gives the ith body’s next position in terms of its present position,
velocity, and force acting on it. Figure 8.3 shows an interpretation of the
motion based on this discrete law of motion. As shown, the ith body is at
point A at time k (the kth time step) and, in the absence of any force acting,
would move in a straight line in the direction of its present velocity vk

i to
reach point B at time k + 1. However, the small increment of acceleration
h2

mi
Fi(rk,vk), arising from the force, changes the body’s path, causing it to

end up at point B∗ at time k + 1. This continual alteration, by the force,
of the straight-line motion of the body is what causes the body’s curved
trajectory.

Using Maple (or other CASs), it is easy to program the above numerical
scheme and produce a graphical display of the positions of the bodies at
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the discrete time steps. You can find the code for this on the electronic
component, which has various Maple worksheets organized according to the
type of force system. For example, gravity2.mws contains the code for two
bodies attracting each other mutually with an inverse power law and with
motion in the x-y plane. The worksheet hooke2.mws is for a similar model,
but with forces arising from Hooke’s Law. You will note that there is little
difference between the worksheets gravity2.mws and hooke2.mws, except
the nature of the forces. We could have combined these worksheets, along
with the worksheets gravity3.mws and hooke3.mws for three bodies, into
one worksheet which could be altered as needed. Or we could have written
one interactive program for handling all cases based on the input parameters.
However, we have not done this because duplicating the code is no trouble
and keeping the cases separate seems to promote clarity and easy of use.

The following examples employ this code, which you will also use in
working some of the exercises.

Example 8.3 (2-Body, Inverse Square Law) Figure 8.4 shows the tra-
jectories of two bodies of equal mass under an inverse square law of mutual
attraction.

Figure 8.4: The trajectories of two bodies of equal masses, m1 = 1 = m2,
under an inverse square law of attraction. The initial positions are r1 =
(0, 0, 0), r2 = (0, 2, 0) and the initial velocities are v1 = (0.05, 0, 0),v2 =
(0.01, 0.5, 0). The Euler algorithm was used with K = 250 times steps and
step size h = 0.05
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The analytical, exact solution of the 2-body problem was given in Chap-
ter 2 and it was shown that, with the right initial conditions (like those
in the figure), the relative motion of each body is an elliptical orbit about
the other. This is not completely evident from Figure 8.4; however, the
figure does show the absolute trajectories of both bodies in a fixed coordi-
nate frame. On the other hand, you can perhaps visualize how the relative,
elliptical motion given by the analytic solution from Chapter 2, when com-
bined with the uniform motion of the center of mass, will give the absolute
trajectories shown in Figure 8.4.

Note also that the initial linear momentum of the system is

P(0) = m1v1 +m2v2 = (0.06, 0.5, 0),

while the initial center of mass is R(0) = (1, 0, 0). Since the system of
forces satisfies Newton’s 3rd Law, the conservation laws for the total linear
momentum: P(t) = P(0), and uniform motion of the center of mass: R(t) =
R(0) + tP(0)/M , hold for the system of DEs. We will see below that the
system of difference equations also has some of the same conservation laws.
In particular, the center of mass in this example moves uniformly along the
line through (1, 0, 0) in the direction of P(0)/M = (0.03, 0.25, 0). This can
perhaps be discerned from Figure 8.4.

You can use the code on the worksheet gravity2.mws to look at the
details of this motion and view several different types of animations of it.
You can also alter this worksheet to study other two-body problems with an
inverse power law of attraction. For such studies the worksheet enables you
to

• plot the static picture of the motion (like that shown in Figure 8.4),

• produce a movie of the actual motion,

• produce a movie showing the motion of line joining the two bodies
along with the motion of the center of mass, and

• produce a static and moving picture of the motion of one body relative
to another and display the coordinates versus time and separation
versus time of this relative motion.

The code for the Euler algorithm has a sensitivity to numerical error that is
most easily discerned from the movie for the relative motion of the situation
depicted in Figure 8.4. If the step size is not small enough, the relative
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Figure 8.5: The trajectories of three bodies of equal mass under an in-
verse square law of attraction. The initial positions are r1 = (0, 0, 0), r2 =
(0, 2, 0), r3 = (1, 1, 0) and the initial velocities are v1 = (0.05, 0, 0),v2 =
(0.01, 0.1, 0),v3 = (0,−0.2, 0). The Euler algorithm was used with K = 180
time steps and step size h = 0.01.

motion does not appear to be elliptical; indeed, the orbit is not even closed
(exercise). However, the theory says that for an inverse square law, and these
initial conditions, the relative motion must be elliptical. Thus, a careful
choice of step sizes is crucial when using this code.

Example 8.4 (3-body, Inverse Square Law) Unlike the two-body prob-
lem, the trajectories of three bodies under an inverse square law of attraction
generally will require all of R

3 and are not be confined to a single plane. How-
ever, with the right initial conditions, the motion of each body can be made
to take place in a single plane, say the x-y plane. This gives what is known
as the planar three-body problem and even this limited version of the gen-
eral problem is not solvable analytically. Nevertheless we can use the Maple
code on the worksheet gravity3.mws to study this planar motion. Figure
8.5 shows the motions (trajectories) of the three bodies for a particular set
of initial conditions. As you can see, the three bodies move toward a central
region where they interact more strongly and then move off to infinity. Two
of the bodies (bodies 1 and 3) orbit each other as they move off to infin-
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ity. It is hard to discern from the figure which of the two bodies undergo
this orbital motion, but this can be easily ascertained from the worksheet
gravity3.mws, where the paths are assigned different colors for clarity.

While the three trajectories shown are the absolute paths of the bodies
with respect to the fixed coordinate frame, the worksheet also studies the
motion of each body relative to another. For example, Figure 8.6 shows the
trajectory traced out by the vector r3−r1, which points from the 1st body to
the 3rd. Thus, as viewed from the 1st body, the 3rd body appears to move
in toward it, become captured by its gravitational field, and then begin to
orbit it with a nearly circular orbit.

Figure 8.6: The trajectory of the 3rd body relative to the 1st body.

The numerical calculations of the relative motion r3−r1 in the x-y plane
also allow us to view how the x and y coordinates of the relative motion, as
well as the separation r =

√
x2 + y2, between the bodies, vary in time. This

is shown in Figure 8.7. The figure actually gives the plots of x = xk, y = yk,
and r = rk, k = 1, . . . ,K, as discrete functions of the time step k. These
approximate the actual continuous graphs at the times t = kh, where h is
the step size. Thus, from the figure, we see that the orbital motion begins
at approximately t = 126 × 0.01 = 1.26 time units after the initial time.
The figure also shows the periodic variation in the x and y coordinates
of the relative motion, which always accompanies an orbital motion. The
period of the orbit can be estimated from the figure to be approximately
T = 35 × 0.01 = 0.35 time units.
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Figure 8.7: Time variation of the x and y coordinates in the relative motion
from Figure 8.6. Also shown is the time variation of the separation r =√
x2 + y2, between the bodies.

Example 8.5 (2-Body, Modified Hooke Law) A slight generalization of
the model for two bodies coupled by a spring is the model with the following
equations of motion:

m1r̈1 =
k(r12 − L)

r12
(r2 − r1) − ar1 (8.48)

m2r̈2 =
k(r12 − L)

r12
(r1 − r2) − br2. (8.49)

When the constants a, b are zero, the system is the spring model from Ex-
ample 8.2. Otherwise, in addition to the spring force, each body experiences
a force directed toward the origin and proportional to its distance from the
origin. This model will serve to illustrate several mathematical topics, but
should not be construed to be a physically relevant model for any system.

In general, except for certain values of a, b, the linear momentum of the
system is not conserved and the center of mass does not move in a straight
line. Indeed, one can prove that for a, b positive and such that

a

m1
=

b

m2
,

the center of mass traces out an elliptical path (exercise). This is shown
in Figure 8.8, which was drawn using the Maple code on the worksheet
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hooke2.mws. Other choices of a, b give center-of-mass motions that are more
complicated and impossible to determine analytically (see the exercises).
The exercises also discuss the fixed points of this system and their stability.

Figure 8.8: The trajectories of two bodies of equal masses, m1 = 1 = m2,
attached together by a spring and also attracted to the origin. The initial
positions are r1 = (0, 0, 0), r2 = (0, 2, 0) and the initial velocities are v1 =
(0.05, 0, 0),v2 = (0.01, 0.5, 0).

The worksheet hooke2.mws contains an animation of the movement of
the line joining the two bodies along with the path traced out by the center
of mass. Since the line joining the bodies coincides physically with the spring
between the bodies, this movie gives the best understanding of the motion of
the system. The spring follows the center of mass, rotating while expanding
and contracting during the motion.

The motion of the 2nd body relative to the 1st body is also rather inter-
esting, as shown in Figure 8.9. The figure lends experimental evidence for
the conjecture that the relative motion is a closed curve, but this needs to
be verified theoretically. Often, as we shall see in the next section, it can be
difficult to determine when the relative motion describes a closed a curve.
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Figure 8.9: Left: Motion of the 2nd body relative to the 1st body. Right:
Plots of the coordinates and the separation in the relative motion as functions
of the time step k = 1, . . . , 800.

8.2.1 Discrete Conservation Laws
In general, there is no reason to expect that the conservation laws for a
system of differential equations will also hold, or be present in, a discrete,
finite difference version of the system. Indeed, there are usually several ways
to build the numerical model out of finite differences and it is often the case
that one way preserves more of the physics, i.e., inherits more conservation
laws from the original system.

The following theorem shows that the numerical scheme (8.43)-(8.44)
for the N -body problem will inherit the laws for conservation of linear and
angular momentum as well as the law for the uniform rectilinear motion of
the center of mass.

Theorem 8.2 Suppose that in the N -body system

mir̈i = Fi(r, ṙ), i = 1, . . . , N. (8.50)

the total force F ≡∑N
i=1 Fi is zero. Let rk

i ,v
k
i , i = 1, . . . , N, k = 0, 1, . . . ,K

be a solution of the system of finite differences (8.43)-(8.44) discussed above.
Define

Pk =
N∑

i=1

mivk
i ,
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k = 0, 1, . . . ,K, to be the total, discrete, linear momentum at time step k,
and define

Rk =
N∑

i=1

mi

M
rk
i ,

to be the discrete, center of mass of the system at time step k. Then Pk is
constant and Rk lies on the line through R0 in the direction of P0. More
specifically, the following hold:

Pk = P0 (8.51)

Rk = R0 +
kh

M
P0, (8.52)

for all k = 0, 1, . . . ,K.

Proof: Since the finite difference solution satisfies equation (8.43), summing
both sides if this equation as i = 1, . . . , N gives

N∑
i=1

mi

(
vk+1

i − vk
i

h

)
=

N∑
i=1

Fi(rk,vk) = 0.

This says, after multiplying through by h and rearranging, that Pk+1 = Pk,
for all k = 0, 1, . . . ,K − 1. This leads directly to identity (8.51).

Next, if we multiply both sides of equation (8.44) by mi, then sum as
i = 1, . . . , N , and use the result just derived, we get

N∑
i=1

mi

(
rk+1
i − rk

i

h

)
=

N∑
i=1

mivk+1
i = Pk+1 = P0,

for each k = 0, 1, . . . ,K − 1. Dividing by M , multiplying by h, and rear-
ranging this gives

Rk+1 = Rk +
h

M
P0,

for k = 0, 1, . . . ,K − 1. Using this last identity successively, we get

Rk+1 = R0 +
(k + 1)h
M

P0,

for k = 0, 1, . . . ,K − 1. This proves (8.52).
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Exercises 8.2
1. (2-Body, Gravity) Study the motion of the two mutually attracting bodies

in Example 8.3 in more detail as follows. Execute the worksheet gravity2.mws
with the given values and view all the plots and animations. Note that for
the given step size h = 0.05, the motion of the 2nd body relative to the 1st
body is not a closed curve, in particular not an ellipse as the theory predicts it
should be. Choose a smaller step size h = 0.01 and re-execute the appropriate
parts of the code in order to do the following:

(a) Plot the motion of the 2nd body relative to the 1st body, confirming
that it is approximately an ellipse.

(b) Find (approximately from the plot in part (a)) the lengths of the ma-
jor and minor axes and the coordinates of the center. Determine the
pericenter and apocenter (points of closest and furthest approach of the
bodies) and the approximate time at which these occur. Find a good
approximation to the period of the relative elliptical motion.

(c) At what time (or times) does the relative position of the 2nd body make
a 45 degree angle with the x-axis.

2. (2-Body, Gravity) Consider the two-body problem in Example 8.3 and on
worksheet gravity2.mws, with the same initial data and parameters, but
now with v2 = (−0.3, 0.5). Do a complete study of the new motion of the
system, using the discussion in Example 8.3 and worksheet gravity2.mws
as a guide. Also extend the study as in Exercise 1, determining the extra
information about the relative motion. Be sure to include plots of (1) the
absolute trajectories of the bodies, (2) the path traced out by the center of
mass, (3) the path described by the motion of the 2nd body relative to the
1st body, and (4) the x and y coordinates and separation of the bodies in the
relative motion as functions of the time step.

3. (2-Body, Gravity) This problem is designed to develop some experience
with how the initial conditions and the masses affect the motion of two bod-
ies under an inverse square law of attraction. As in Example 8.3 and on
worksheet gravity2.mws, take G = 1, the initial positions r1 = (0, 0, 0), r2 =
(2, 0, 0), and the initial velocity of the 1st body to be v1 = (0.05, 0, 0). The
rest of the data is as follows:

(a) Take the masses to be m1 = 1,m2 = 1 and the initial velocity of the 2nd
body to be v2 = (0.01, b, 0), with b varying between b = 1.3 and b = 2.
The value used in Example 8.3, was b = 0.5 and clearly gives trajectories
where the bodies orbit each other. You should find that the bodies still
orbit each other for b = 1.3, but that for b = 2 they do not appear
to do so. Try to determine experimentally the critical value b0 such
that if b ≤ b0, the bodies orbit each other, and for b > b0, the bodies
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do not orbit each other. Also using the theory that was discussed in
Chapter 2, determine the exact value of b0. Produce some static plots of
the absolute trajectories and relative motions to document your studies.
CAUTION: You might have to use a large number of time steps to see
how the motion goes, so beware of memory overload if you want to look
at animations of the motion. You can do the whole exercise without
looking at the animations, but viewing them can add to your experience
with how bodies behave under the attraction of gravity.

(b) Take the masses to be m1 = 4,m2 = 1, and the initial velocity of the
2nd body to be v2 = (0.01, b, 0). Do a study like that in part (a). Note:
Use the default step size h = 0.05 on worksheet gravity2.mws for the
first plot. This will give trajectories that are not accurate. So use a
smaller step size, say h = 0.01. Compare the results here with those in
part (a) and comment on how the larger value for m1 affects the results.

4. (3-Body, Gravity) Consider the 3-body problem with inverse square law
of attraction. Assume G = 1, all the masses are the same, say m1 = m2 =
m3 = 1, and the initial positions of the three bodies are the vertices of an
equilateral triangle, say r1 = (0, 0, 0), r2 = (2, 0, 0), and r3 = (1,

√
3, 0).

Suppose the initial velocities have the form

v1 = (b, 0, 0)
v2 = (0, b, 0)
v3 = (−b, 0, 0).

Do a numerical study of the motion of this system for the following special
values of b.

(a) For b = 0, all three bodies collide after a finite amount of time T .
Verify this numerically and approximate the time of collision T . For this
use the code on the worksheet gravity3.mws, making the appropriate
alterations of the initial conditions. You will have to experiment to
determine good values to use for the step size h and number of time
steps nt. Do the bodies seem to “survive” the collision in the numerical
simulation, i.e., emerge and speed away from the collision point? How
can you explain this? Does this happen theoretically? For extra credit
prove, theoretically, that the bodies collide after a finite amount of time.

(b) For b = 0.1 and b = 0.2, show, numerically, that the bodies do not
collide, but after “near” misses, each body runs off to infinity. Estimate
the time of interaction, that is, the time before they are all separated
by more than, say, two units.

(c) For b = 0.5, show numerically that all three bodies initially orbit one
another. For this take the step size to be h = 0.1 and the number of
time steps to be nt = 1000. Next, for nt = 2000 and nt = 2200 and step
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size h = 0.005 (which give the same and slightly longer time intervals,
but greater accuracy) determine if two or more of the bodies appear
to collide. Numerically show that is not the case by using h = 0.001
and nt = 10, 000 and then nt = 11, 000. CAUTION: This requires a
decent computer. Show that two bodies leave the interaction orbiting
each other while the third body goes off to infinity. Plot the relative
motions.

5. (3-Body, Gravity) Consider the 3-body problem with inverse square law
of attraction. Assume G = 1, and the initial positions of the bodies are
r1 = (0, 0, 0), r2 = (2, 0, 0), r3 = (1, 1, 0). This exercise studies the nature of
several motions when two of the bodies have equal mass, say m2 = 1 = m3,
and the mass of the other body is relatively large, say m1 = 500. This
is a model for two small planets orbiting a large star, or sun. The theory
(see Exercise 6 below) says that we can almost treat the three-body problem
as if it decomposed into a couple of central force problems, one for each
planet orbiting the sun (which serves as the central of force). The numerical
studies should lend credence to this idea. The theory depends on how large
the magnitude of m1 is. So the exercise looks at two values, m1 = 50 and
m1 = 500.

(a) Suppose m1 = 50 and the initial velocities are v1 = (0, 0, 0),v2 =
(0,−5, 0), and v3 = (−5, 0, 0). Use a step size h = 0.001 and number of
time steps nt = 2800 (or more if you wish) to do a numerical study of
the motions of the three bodies.

(i) Plot the trajectories of the three bodies, all in the same figure. The
motion of the sun should be a small, wiggly (but almost straight)
line, while the motion of each planet should appear to be on a
“precessing” ellipse with one focus on the moving sun.

(ii) Plot the motion of each planet relative to the sun. Each of these
should appear to be an ellipse. Print each out (be sure to use the 1-
1 scale, so that angles are not distorted) and locate approximately
the center, the major axis, the minor axis, and the angle δ that the
major axis makes with the x-axis. Measure the appropriate quan-
tities and write an equation for the ellipse (in polar coordinates).
Approximate the closest and farthest approach of each planet to
the sun. Determine the approximate period of each planet (the
time for one orbit about the sun. Document your work with print-
outs of various plots and graphs, all of which should be properly
annotated.

(b) Suppose m1 = 500 and the initial velocities are v1 = (0, 0, 0),v2 =
(0,−20, 0), and v3 = (−20, 0, 0). Use a step size h = 0.001 and number
of time steps nt = 2800 (or more if you wish) to do a numerical study
like that in part (a) above.
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(c) Compare and contrast the results in parts (a) and (b).

6. (Heliocentric Coordinates) Consider a general type of N -body problem
of the form

mir̈i =
∑
j �=i

hij(rj − ri) (i = 1, . . . , N), (8.53)

where hij = hij(rij) is a function that depends only on the distance rij =
|ri−rj |, between the ith and jth bodies. Let u2, . . . ,uN denote the positions
of bodies 2, . . . , N relative to body 1, i.e., let

ui ≡ ri − r1 (i = 2, . . . , N).

Considering r1,u2, . . . ,uN as the basic unknowns for the problem, show that
the equations of motion (8.53) can be rewritten in the following form:

Heliocentric Equations of Motion:

r̈1 =
N∑

j=2

h1j

m1
uj (8.54)

üi = −
(
m1 +mi

m1mi

)
h1i ui +

∑
j∈{2,...,N}\{i}

[
hij

mi
(uj − ui) −

h1j

m1
uj

]
for i = 2, . . . , N . Here h1j = h1j(uj) and hij = hij(uij), for i 
= j, j 
= 1,
are functions of the distances uj = |uj | and uij = |ui − uj |. These equations
are often called the equations of motion in heliocentric coordinates. The
name comes from our solar system where the 1st body (with position r1)
represents the sun. In general, equations (8.54) are the most convenient form
of the equations of motion when the mass of the 1st body is overwhelmingly
larger than the masses of all the other bodies: m1 >> mi, for i = 2, . . . , N .
To see this do the following:

(a) Write out equations (8.54) explicitly, simplifying where possible, for the
case of gravity hij = Gmimj/r

3
ij .

(b) Show that for mi = 0, i = 2, . . . , N , the heliocentric equations of motion
reduce to the equations

r̈1 = 0

üi = − Gm1

u3
i

ui,

for i = 2, . . . , N . This system is the idealized limit of a system (like
our solar system) where the masses m2, . . . ,mN are very small relative
to m1. Discuss how the idealized system can be completely solved and
what types of solutions it has.
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7. (2-Body, Modified Hooke) This exercise studies the system

m1r̈1 =
k(r12 − L)

r12
(r2 − r1) − ar1

m2r̈2 =
k(r12 − L)

r12
(r1 − r2) − br2.

from Example 8.5.

(a) Determine all the equilibrium points of the system. Suggestions: Sup-
posing that (r1, r2) is an equilibrium point, let

c =
k(r12 − L)

r12
.

Assuming that a+ b 
= 0, show first that

c = − ab

a+ b

and then use this to show that

r12 =
kL(a+ b)

ab+ k(a+ b)
.

Now use this to construct the equilibrium points. Also: Comment on
the configuration of the masses that gives the equilibrium points (is the
spring extended or compressed?) and argue that such a configuration
seems physically reasonable.

(b) Show that the system of forces in this model is conservative. Are there
choices of a, b for which the total force is zero ? Does the system of
forces, for some choices of a, b satisfy Newton’s 3rd Law (either weak or
strong form)?

(c) Suppose a, b are such that

a

m1
=

b

m2
.

Call this ratio q. If q is positive let q = ω2, and otherwise let q = −ω2.
Show that the position vector R for the center of mass has the form

R = A cosωt+ B sinωt,

when q is positive and otherwise it has the form

R = A coshωt+ B sinhωt,
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when q is negative. Here A,B are constant vectors. Relate these vectors
to the initial data for the center of mass and then describe the curve
(trajectory) for the center of mass. Next let r = r2−r1, be the position
vector of the second mass relative to the first. Show that the relative
motion is governed by the equation

r̈ = −
[
q +

sk

r
(r − L)

]
r,

where s = (m1 +m2)/m1m2 and r = |r|.
(d) Use the Maple code on the worksheet hooke2.mws to study the mo-

tion of the masses and their center of mass in each of the following
choices of the parameters: (a, b) = (0.5, 0.5), (a, b) = (0.1, 0.5), (a, b) =
(0.1,−0.5), (a, b) = (−0.1, 0.5), and (a, b) = (−0.5, 0.1). In each case
take the masses to be m1 = 1 = m2, the spring constant k = 2, and the
initial conditions: r1(0) = (0, 0), r2(0) = (2, 0), ṙ1(0) = (0.01, 0), ṙ2(0) =
(0.01, 0.5).

8. (3-Body, Modified Hooke) As in the last exercise, modify the model for
the three masses coupled together with springs by adding attractive forces
toward the origin to each equation. The resulting model is

m1r̈1 =
k(r12 − L)

r12
(r2 − r1) +

k(r13 − L)
r13

(r3 − r1) − ar1

m2r̈2 =
k(r12 − L)

r12
(r1 − r2) +

k(r23 − L)
r23

(r3 − r2) − br2

m3r̈3 =
k(r13 − L)

r13
(r1 − r3) +

k(r23 − L)
r23

(r2 − r3) − cr3

Study this system as you did in Exercise 7. In particular, find conditions
on m1,m2,m3, a, b, c, so that you can exactly determine the position vector
R for the center of mass. Determining the fixed points is considerably more
difficult here and so this is left open-ended (do as much on it as you can).
Likewise, you can choose your own initial data for whatever numerical studies
you wish to do. The worksheet hooke3.mws can be used for this.

9. (Two Coupled Masses) Consider the system of two masses, coupled to
each other by a spring and also having each mass attached to a given point
by a spring. See Figure 8.10. The equations of motion for this system are

m1r̈1 =
k0(r01 − L)

r01
(r1 − r0) +

k1(r12 − L)
r12

(r2 − r1)

m2r̈2 =
k1(r12 − L)

r12
(r1 − r2) +

k2(r23 − L)
r23

(r3 − r2).

Here r0, r3 are the position vectors of the two given points to which the masses
m1,m2 are attached, respectively. For this system do the following:
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Figure 8.10: A system of two masses attached to each other by a spring and
also attached to given points P,Q with springs.

(a) Show that the system of forces is conservative but does not satisfy New-
ton’s 3rd Law. Note: Be sure to remember that r0, r3 are given vectors
(constants) and are not variable.

(b) Do a study of the fixed points (equilibrium points) and their stability.
For this, first show that, without loss of generality, one can assume that
r0 = 0 (Hint: Let ri = ui + r0, i = 1, 2). Also, if you wish, you can
restrict yourself to the special case when all the spring constants are the
same.

(c) Suppose r0 = 0 and r3 = (3L, 0, 0) and that the initial conditions are
such that the motion takes place along the x-axis, i.e., r1 = (x1, 0, 0), r2 =
(x2, 0, 0), for all time. See Figure 8.11.

Figure 8.11: A motion of the masses along the x-axis.

Let q1 ≡ x1 − L, q2 ≡ x2 − 2L, denote the deviations from the equilib-
rium positions. Write out explicity the system of DEs for q1, q2. Under
the assumption that the deviations are small:

|q1(t)| < L, |q2(t)| < L,

for all t, show the deviations also satisfy the following system of DEs:

m1q̈1 = −k0q1 + k1(q2 − q1) (8.55)
m2q̈2 = −k1(q2 − q1) − k2q2. (8.56)
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This system of DEs was studied in Example 5.7.

10. (N Coupled Masses) Generalize the results of the previous exercise (except
for the determination of the fixed points) by formulating the equations of
motion for N masses, each attached to the preceding and succeeding mass by
a spring, where for the first mass the “preceding mass” is a given point r0

and for the Nth mass the “succeeding mass” is a given point rN+1.

8.3 The Central Force Problem Revisited
We return to the two-body problem

m1r̈1 =
f(r12)
r12

(r2 − r1) (8.57)

m2r̈2 =
f(r12)
r12

(r1 − r2), (8.58)

which we studied in Chapter 2 for an inverse square law of attraction f(r) =
k/r2, with some extensions and generalizations mentioned in the exercises.
In essence the solution of this system of DEs reduces to the solution of the
system for one body when we introduce the vector r = r2−r1 for the position
of the 2nd body relative to the 1st body. Dividing equations (8.57)-(8.58)
by m1,m2, respectively, and then subtracting, we get

r̈2 − r̈1 =
(

1
m1

+
1
m2

)
f(r12)
r12

(r1 − r2).

Introducing the reduced mass m = m1m2/(m1 +m2) and rewriting the last
equation gives

mr̈ = − f(r)
r

r,

which models the motion of a single body of mass m, attracted (or repelled)
from the origin by a central force of magnitude |f(r)|.

The interest in the two-body problem, and its resolution via its reduction
to a central force problem, is based on several factors. First, it is the only
case of the N -body problem that we can completely “solve” by explicit
computation of certain integrals. Second, the techniques involved in the
resolution of the two-body problem help us understand the complexity of the
problem for N > 2 bodies. For example, suppose the masses m2,m3, . . . ,mN

are all quite small relative to the mass m1 of the 1st body. By introducing
heliocentric coordinates: ui = ri − r1, i = 2, . . . , N , rewriting the N -body
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equations for, say, the inverse square law, and taking the limit mi → 0, i =
2, . . . , N , we get the equations

r̈1 = 0

üi = − Gm1

u3
i

ui (i = 2, . . . , N)

(see Exercise 6 in the last section). Thus, the N -body problem is approx-
imated by this system consisting of N − 1 separate central force problems.
For this, and other reasons as well, it will be valuable to examine the central
force problem again, but now in more detail.

As we saw in Chapter 2, the form of the central force equation

mr̈ = − f(r)
r

r, (8.59)

leads to the result that the angular momentum L = r×mṙ is constant, and
thus the motion takes place in the plane perpendicular to L. We assume,
without loss of generality, that this plane is the x-y plane (exercise). Then
the central force equation (8.59) for r = (x, y) is the system

mẍ = −f(r)x/r
mÿ = −f(r)y/r,

with r = (x2 + y2)1/2. Transforming to polar coordinates: x = r cos θ, y =
r sin θ, gives the central force equation in polar coordinates:

Central Force Equations:

mr̈ = mrθ̇2 − f(r) (8.60)
2ṙθ̇ + rθ̈ = 0. (8.61)

The 2nd equation here leads to Kepler’s Second Law: r2θ̇ = c, where c is
a constant. Because of the assumption about the motion being in the x-y
plane, it is easy to see that L =(0, 0,mc), which gives the interpretation of
mc as the third component of the angular momentum.

Now we take a slightly different route than in Chapter 2 for the analysis
of this polar coordinate system. In essence we “decouple” the system of DEs
to get a separate DE for r that does not involve θ. For this we replace the
2nd equation (8.61) by Kepler’s law, θ̇ = c/r2, which is its consequence,
and also use Kepler’s law to eliminate θ̇ in the 1st equation (8.60). Thus,
solution of the central force problem reduces to the solution of the system
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Decoupled Central Force Equations:

mr̈ =
mc2

r3
− f(r) (8.62)

θ̇ =
c

r2
. (8.63)

It is important to note, before getting lost in the details below, that the
central force equations (8.62)-(8.63) involve the angular velocity c as a para-
meter. Thus, all the ensuing results implicitly involve c. Further, the appear-
ance of c makes the system (8.62)-(8.63), different than the system (8.60)-
(8.61), which does not involve c. The initial conditions r(0) = r0, ṙ(0) =
ṙ0, θ(0) = θ0, and θ̇(0) = θ̇0, determine a unique solution t → (r(t), θ(t)),
of the system (8.60)-(8.61), and this is also a solution of the system (8.62)-
(8.63), provided we take c = r20 θ̇0.

Also bear in mind that a solution r = r(t) of equation (8.62), gives the
radial variation, or distance from the origin, as a function of time, which
is shown in Figure 8.12. The differential equation (8.63) for the angular
deviation θ = θ(t) from the x-axis, says that this angle is increasing if
c > 0 (the orbit is counterclockwise) and is decreasing if c < 0 (the orbit is
clockwise).

Figure 8.12: Geometric meaning of the time variation of the radial distance
r and angular deviation θ.

Since the first equation, equation (8.62), in the central force equations
does not involve θ, its solutions can be analyzed separately. Each solution
r = r(t), as we shall see below, can be computed formally by integrating twice
and then inverting the equation found from the second integral. The first
integral used in constructing the solution is a special case of the more general
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concept of first integrals, or conservation laws for differential equations (see
Chapter 7). In general, two integrals are needed to construct a solution of a
2nd-order DE and this process historically came to be known as constructing
solutions by quadratures.

Knowing a solution r of the first equation allows us to determine θ from
the second equation simply by integration:

θ =
∫

c

r(t)2
dt.

This integral and the ones needed to find r explicitly are, in general, not
able to be calculated in closed form. However, some particular choices of f ,
such as an inverse square or inverse cube, give integrals that are computable
using various integration techniques. Nevertheless, we are still able to draw a
number of important conclusions about the general case when f is arbitrary.
The remainder of the section is devoted to this, with particular cases left to
the exercises.

8.3.1 Effective Potentials
In the system (8.62)-(8.63), we rewrite the first equation,

mr̈ =
mc2

r3
− f(r),

so that the right-hand side is an exact derivative. We can do this since
f : (0,∞) → R is C1, and so it has an antiderivative g,

g′ = f,

on (0,∞), for some C2 function g : (0,∞) → R. Using this and the standard
antiderivative of mc2/r3, we get a function V : (0,∞) → R, defined by

V (r) =
mc2

2r2
+ g(r), (8.64)

called an effective potential for the central force problem. The reason for
this designation is that, by definition,

−V ′(r) =
mc2

r3
− f(r),

and so equation (8.62) can be written as

mr̈ = −V ′(r). (8.65)
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Note that V implicitly involves the parameter c (as mentioned in the prior
discussion). V is not a “true” potential for the central force since it involves
the term mc2/(2r2), which corresponds to an additional centrifugal force.
However, equation (8.65) can be viewed as a differential equation for a one-
dimensional conservative system. Then, as its name suggests, V effectively
gives us a conservation law (or first integral) that each solution r : I → R

of equation (8.65) must satisfy. As in the customary conservation of energy
law, this law is derived by multiplying each side of equation (8.65) by ṙ to
get

mṙr̈ = −V ′(r)ṙ,

or
d

dt

(
1
2mṙ

2
)

=
d

dt

(
− V (r)

)
.

Since this holds for t ∈ I, we get that there exists a constant E such that

1
2mṙ

2 = E − V (r), (8.66)

for all t ∈ I. This conservation law provides two avenues of approach to
further analysis of the solution r of the radial differential equation. The
first avenue is a qualitative analysis of the integral curves, examination of
fixed points, and stability. We do this next and then pursue the second
avenue which consists of integrating the DE (8.66) one more time to obtain
an implicit relation between r and t.

8.3.2 Qualitative Analysis
We consider here the qualitative information about the solutions that arises
because the DE mr̈ = −V ′(r) has the conservation law (8.66). Indeed,
we show how to sketch, by hand, the phase portrait for the corresponding
1st-order system directly from a sketch of the effective potential V .

The corresponding 1st-order system is

ṙ = p/m (8.67)
ṗ = −V ′(r), (8.68)

and because of the conservation law (8.66), the integral curves t → (r(t), p(t))
of the 1st-order system lie on one of the curves in the r-p plane with the
equation

p2

2m
+ V (r) = E,
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Figure 8.13: Graph of an effective potential V and the graphs of E − V (r)
for various values of E.

for some value of E. These are called the (effective) energy curves for the
system and a plot of a number of them for various values of E will give the
phase portrait for the system. While the plot can be done by a computer,
a quick, rough sketch can always be done by hand using only a plot of the
graph of V and some additional information that comes from the form of
the equation for the energy curves.

For example, suppose the graph of a typical effective potential is as shown
in Figure 8.13. The figure is for the effective potential V (r) = mc2/2r2−k/r
corresponding to an inverse square law. Many other laws of attraction have
effective potentials with graphs similar to this (see the exercises). Also shown
in the figure are the graphs of E−V (r), for various values of E. These latter
graphs can be used to obtain the corresponding energy curves. Just note
that each energy curve splits into the graphs of two functions of r,

p = ±
√

2m
√
E − V (r),

one for each choice of ±. The domains DE = { r | E − V (r) ≥ 0 }, for each
of these functions depends on the value of E and can be discerned from the
graphs of E − V (r). For example, from Figure 8.13, we see that the domain
DE (for the type of potential shown) is either a bounded interval [r1, r2] or
an unbounded interval [r1,∞). The degenerate cases are DE = {mc2/k},
a single point, when E = −k2/(2mc2), and DE = ∅, the empty set, when
E < −k2/(2mc2).
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Generally, DE will consist of the union of finitely many intervals, as
shown, for example, in Figure 8.14.

Figure 8.14: A graph of E − V (r) for which DE consists of three bounded
intervals I1, I2, I3.

The graph of
√

2m
√
E − V (r) on its domain is similar to the graph of

E − V (r). Just delete the parts of the graph of E − V (r) where E − V (r) is
negative and on the intervals [r1, r2] where E − V (r) ≥ 0, adjust the shape
of the graph slightly to get the graph of

√
2m
√
E − V (r). The adjustment

is partly due to that fact that the square root decreases or increases the
magnitude of a number depending on whether it is larger or smaller than
1. Additional adjustment is a possible rounding of the corners of the graph
of E − V (r) at one or the other of the endpoints r1, r2 of the interval. The
rounding occurs when

√
2m
√
E − V (r) has vertical tangents at r1 or r2. To

see this note that since E − V (r) = 0 for r = r1, r2 and

d

dr

√
2m
√
E − V (r) =

−
√

2mV ′(r)
2
√
E − V (r)

,

a vertical tangent occurs at r1 only if V ′(r1) 
= 0, or at r2, only if V ′(r2) 
= 0,
that is, only if (r1, 0) or (r2, 0) is not a fixed point of the system. The
endpoints where

√
2m
√
E − V (r) has a vertical tangents are called turning

points because of their physical significance in the central force motion (as
we shall see).

Having the graph of
√

2m
√
E − V (r), the graph of −

√
2m
√
E − V (r) is,

of course, obtained by reflection about the x-axis. Using these observations,
we can easily sketch the energy curves. For the effective potential in Figure
8.13, the energy curves obtained by this method are shown in Figure 8.15.
The sketch gives a picture of the phase portrait for the system ṙ = p, ṗ =
−V ′(r), since each integral curve of the system lies on one of the energy
curves shown. In this example, we see that there is a fixed point (r∗, 0)
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Figure 8.15: A sketch of the energy curves p2/2m + V (r) = E, for various
values of E. Here V has graph as shown in Figure 8.13 and m = 1.

corresponding to the critical point r∗ of the effective potential V . The critical
point is where the potential energy is a minimum and the corresponding fixed
point is a center.

Figure 8.15 shows that some of the energy curves are closed (and bounded),
while others are not (and are unbounded). In terms of central force motion,
this indicates that if the initial radial distance r0 and radial velocity p0 = ṙ0
are such that E = mṙ20/2 + V (r0) corresponds to one of the closed energy
curves, then r = r(t) will periodically oscillate between a minimum distance
r1 and a maximum distance r2 from the origin. (We will prove that this
is indeed the case in the theorem below.) Note also the direction marked
on the energy curve. Thus, the corresponding orbit has the form shown in
Figure 8.16.

The figure is for initial data r0 = r1, ṙ0 = 0, so that the radius increases
from an initial minimum value r1, and for c > 0 (equivalently θ̇0 > 0),
so the orbit is counterclockwise. The figure indicates the orbit does not
close on itself when θ = 2π, but does not rule out the possibility that the
orbit will eventually close up. Below we will derive a condition that tells
us precisely when the orbit is closed or not. Note also that for an inverse
square law, the orbits are conic sections (as shown in Chapter 2) and so the
ones corresponding to closed energy curves must be ellipses (and close upon
themselves after one revolution).

The situation discussed here is typical in general (assuming the potential
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Figure 8.16: The actual orbit corresponding to a solution r = r(t) of (8.62),
when (r(t),mṙ(t)) lies on a closed energy curve.

V is not too wild). The plots of the effective energy curves give most of
the essential, qualitative information about the orbits in the central force
problem. The angular variation θ along an orbit is determined by equation
(8.63), which says that θ is either increasing or decreasing depending on the
sign of c. However, to make these observations and assertions rigorous, we
need to look at some of the analytical details. For this we begin with a
discussion of how linearization and stability analyses from Chapters 5 and 6
apply to the radial equation (8.62) in the central force problem.

8.3.3 Linearization and Stability

We assume that V : (0,∞) → R is defined on (0,∞), is twice continuously
differentiable, and has only finitely many critical points. Let X : (0,∞) ×
R → R

2 be the vector field

X(r, p) = (p/m,−V ′(r)),

for the system ṙ = p/m, ṗ = −V ′(r). Clearly the fixed points for X are the
points (r∗, 0), where r∗ is a critical point of V . The Jacobian matrix of X
at any (r, p) is easily seen to be

X ′(r, p) =

[
0 1/m

−V ′′(r) 0

]
,
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and has characteristic equation: λ2 + V ′′(r)/m = 0. Thus, its eigenvalues
are

λ = ±
√
−V ′′(r)/m.

Now it is possible to have fixed points that are not simple (which only
happens when V ′′(r∗) = 0), but many physical systems have only simple
fixed points. In that case the above shows that (r∗, 0) is a saddle point when
V ′′(r∗) < 0 (that is, when V has a local maximum at r∗) and is a possible
center when V ′′(r∗) > 0 (i.e., when V has a local minimum at r∗). In the
latter case, we are assured that the fixed point is actually a center, because
the energy function

Λ(r, p) ≡ p2

2m
+ V (r)

is in fact a Liapunov function for the system. To see this, note that

∇Λ(r, p) = (V ′(r), p/m),

and so ∇Λ(r, p) · X(r, p) = 0, for all (r, p). Thus, the first condition for a
Liapunov function is satisfied. The second condition on Λ requires that the
fixed point be a local minimum of Λ. This can be checked by looking at its
Hessian, which in this case is the 2 × 2 matrix

HΛ(r, p) =

[
V ′′(r) 0

0 1/m

]
.

Clearly this matrix is positive definite when V ′′(r) > 0, and thus at a possible
center (r∗, 0), the Liapunov function Λ has a local minimum. Hence the
possible center is an actual center.

Note: The above is a standard application of the fixed point and stability
analysis to the radial equation (8.62) when written in 1st-order form. You
should realize, however, within the setting of the central force problem, the
fixed points of the radial equation correspond to circular orbits of a body (or
particle) about the center of force. This is discussed in the next subsection.

8.3.4 Circular Orbits
The central force equations (8.62)-(8.63), written in terms of the effective
potential V , are

mr̈ = −V ′(r)

θ̇ =
c

r2
.
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The system is in polar coordinates and so solutions r, θ : I → R of it are
interpreted as a radial distance r from the origin and an angular displacement
θ from the x-axis. As we have seen in the last section, a critical point r∗ of
V gives a fixed-point solution of the first equation (with initial conditions
r(0) = r∗, ṙ(0) = 0). Then the second equation has solution θ(t) = ct/r2∗ +
θ0 = θ̇0t+ θ0 (note that c = r2∗ θ̇0). Thus, the corresponding solution of the
central force equation in Cartesian coordinates lies on a circle of radius r∗,
centered at the origin. Specifically, this solution is

α(t) =
(
r∗ cos(θ̇0t+ θ0), r∗ sin(θ̇0t+ θ0)

)
,

for t ∈ R. Note: We are assuming that θ̇0 
= 0, so that c = r2∗ θ̇0 
= 0. To
launch the body on such a circular orbit, we must place it at a distance
r0 = r∗ from the center of force, give it no initial radial velocity: ṙ0 = 0, give
it an initial angular displacement θ0, say θ0 = 0, and give it just the right
initial angular velocity. This initial angular velocity is θ̇0 = c/r2∗ .

The analysis of the stability of the fixed point (r∗, 0) in the previous
section was phrased in terms of the effective potential V . But since

V (r) =
mc2

2r2
+ g(r),

where g′ = f , we can make the discussion more specific to the central force
problem by expressing the derivatives of V in terms of the given function f :

V ′(r) = − mc2

r3
+ f(r)

V ′′(r) =
3mc2

r4
+ f ′(r).

Then in summary, we have the following:

Proposition 8.2 (Circular Orbits) A central force problem has circular
orbits if and only if the equation

mc2

r3
− f(r) = 0 (8.69)

has real roots r. In addition, if r is a real root of this equation, then the
corresponding circular orbit is stable if r satisfies

3mc2

r4
+ f ′(r) > 0. (8.70)
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One can apply these results, for example, to inverse power laws f(r) = kr−q,
for q ∈ R, to find that these central forces always admit circular orbits and
these orbits are stable if and only if q < 3 (exercise).

8.3.5 Analytical Solution

Here we consider, in detail, the analytical solution of the radial equation

mr̈ = −V ′(r).

We will show that the maximal interval of existence for any initial conditions
r0, ṙ0 is always R and that, depending on the value of the energy

E = 1
2mṙ

2
0 + V (r0),

the maximal solution r : R → R is either periodic or has limit ∞ as t→ ±∞.
Since t → (r(t), ṙ(t)) lies on an energy curve, as for instance shown in Figure
8.15, we would expect this type of behavior.

The rigorous argument is based on the following heuristic argument. As
we have seen above, any solution r : I → R satisfies the conservation of
energy law:

1
2mṙ

2 = E − V (r).

View this as a 1st-order differential equation that r must satisfy. To put
it in normal form, take square roots of each side of the equation to get the
separable DE:

dr

dt
= ±

√
2m
√
E − V (r). (8.71)

Heuristically this DE has solution

t = ±
∫ 1√

2m
√
E − V (r)

dr. (8.72)

This gives t as a function of r, but inverting will give r as a function of t
and thus a solution of the original separable differential equation.

To make this pedagogical argument precise, suppose V : (0,∞) → R is
twice continuously differentiable and has finitely many local extrema and
E is a real number. Theorem 8.3 below describes the precise nature of the
integral curve (or curves) that lie on the energy curve p2/2m + V (r) = E.
But, first we need the following lemma.
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Lemma 8.1 Suppose [r1, r2] is a subinterval of (0,∞) for which E−V (r) >
0 for r ∈ (r1, r2) and V (r1) = E = V (r2). Suppose H : (0,∞) → is
continuously differentiable. Then the improper integral∫ r2

r1

H ′(u)√
2m
√
E − V (u)

du, (8.73)

converges if V ′(r1) 
= 0 and V ′(r2) 
= 0.

Proof: Suppose first that V ′(r1) 
= 0. Note that necessarily −V ′(r1) > 0,
since r → E − V (r) is a positive function on (r1, r2) and is zero at r1. We
show that the improper integral∫ r0

r1

H ′(u)√
2m
√
E − V (u)

du, (8.74)

converges, for any r0 ∈ (r1, r2). To see this, let α : I → R, be a solution of
the initial value problem:

mα̈(t) = −V ′(α(t))
α(0) = r1

α̇(0) = 0,

for all t ∈ I. Then, as we have seen above, α satisfies the conservation law
m[α̇(t)]2/2 = E∗ − V (α(t)), for all t ∈ I and some constant E∗. But from
the initial conditions that α satisfies, it follows that

E∗ = 1
2m[α̇(0)]2 + V (α(0)) = V (r1) = E.

Using this in the conservation law and taking square roots, we get that

α̇(t) = ±
√

2m
√
E − V (α(t)), (8.75)

for all t ∈ I. The ± sign must in fact be a + sign. To see this recall
that α̇(0) = 0 and α̈(0) = −V ′(α(0)) = −V ′(r1) > 0. Thus, α has a local
minimum at t = 0 (see Figure 8.17).

As indicated in the figure, there is an interval [0, δ] on which α is strictly
increasing. Now without loss of generality in proving that the integral (8.74)
converges, we can assume that r0 ∈ α((−a, a)) (as shown in Figure 8.17).
Now, in the integral make the change of variables

u = α(t),
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Figure 8.17: Graph of the function α near t = 0.

so that the change in the differentials is

du = α̇(t) dt =
√

2m
√
E − V (α(t)) dt.

Using this gives

lim
ε→0

∫ r0

r1+ε

H ′(u)√
2m
√
E − V (u)

du = lim
ε→0

∫ α−1(r0)

α−1(r1+ε)
H ′(α(t)) dt

= lim
ε→0

(
H(r0) −H(r1 + ε)

)
= H(r0) −H(r1).

Thus, the improper integral converges.
An entirely similar argument shows that if V ′(r2) 
= 0, then the improper

integral ∫ r2

r0

H ′(u)√
2m
√
E − V (u)

du,

converges for any r0 ∈ (r1, r2).

The determination of the periodic and bounded nature (or aperiodic
and unbounded nature) of solutions is based on the behavior of the function
r → E−V (r) at the endpoints of the intervals where this function is positive.

There are four possibilities, as shown in Figure 8.18, which correspond
to whether V ′(r1), V ′(r2) are zero or not.

Theorem 8.3 Suppose [r1, r2] is a subinterval for which: E−V (r) > 0, for
r ∈ (r1, r2), and V (r1) = E = V (r2). Then there is a twice continuously
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Figure 8.18: Four possibilities for the behavior of the function E − V (r) at
the endpoints of an interval where it is positive.

differentiable function ρ : R → [r1, r2], which satisfies

mρ̈(t) = −V ′(ρ(t)),

for all t ∈ R and has one (and only one) of the following sets of properties
depending on the values of V ′ at r1, r2.

(1) If V ′(r1) 
= 0 and V ′(r2) 
= 0, then ρ is periodic with period 2T , where

T =
∫ r2

r1

1√
2m
√
E − V (u)

du, (8.76)

Furthermore, ρ(0) = r1, and ρ(T ) = r2.

(2) If V ′(r1) 
= 0 and V ′(r2) = 0, then r1 ≤ ρ(t) < r2 for all t ∈ R,
ρ(0) = r1, and

lim
t→±∞ ρ(t) = r2.

(3) If V ′(r1) = 0 and V ′(r2) 
= 0, then r1 < ρ(t) ≤ r2 for all t ∈ R,
ρ(0) = r2, and

lim
t→±∞ ρ(t) = r1.

(4) If V ′(r1) = 0 and V ′(r2) = 0, then r1 < ρ(t) < r2 for all t ∈ R, and

lim
t→∞ ρ(t) = r2, lim

t→−∞ ρ(t) = r1.

Proof: Suppose that V ′(r1) 
= 0 and V ′(r2) 
= 0. Define a time function
τ : [r1, r2] :→ R by

τ(r) =
∫ r

r1

1√
2m
√
E − V (u)

du, (8.77)
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for r ∈ [r1, r2]. By Lemma 8.1 this is well-defined: τ(r1) = 0 and τ(r2) is
finite. Let T = τ(r2). According to this theorem, T is the time it takes
for the radius to increase from r1 to r2. By the Fundamental Theorem of
Calculus: τ ′(r) = 1/(

√
2m
√
E − V (r)). Thus, τ ′(r) > 0, for r ∈ (r1, r2),

and τ ′(ri) = ∞, for i = 1, 2. Hence τ is strictly increasing on [r1, r2] and has
vertical tangent lines at the endpoints of the interval. See Figure 8.19.

Figure 8.19: Graphs of the functions τ and ρ∗ = τ−1.

By the Inverse Function Theorem, τ has an inverse ρ∗ ≡ τ−1 : [0, T ] →
[r1, r2]. This function, as shown in Figure 8.19 is strictly increasing on [0, T ],
has horizontal tangent lines at the end points, and ρ∗(0) = r1, ρ∗(T ) = r2.
Also by the formula for differentiating an inverse function, we get

ρ̇∗(t) = (τ−1)′(t)

=
1

τ ′(ρ∗(t))

=
√

2m
√
E − V (ρ∗(t)), (8.78)

for all t ∈ [0, T ]. From this it is easy to show that mρ̈∗(t) = −V (ρ∗(t)), for all
t ∈ [0, T ] (exercise). Next we extend ρ∗ to a function ρ∗∗ : [0, 2T ] :→ [r1, r2]
by

ρ∗∗(t) =

{
ρ∗(t) if t ∈ [0, T ]
ρ∗(2T − t) if t ∈ [T, 2T ]

Figure 8.20 shows the graph of this extension of ρ∗. From the figure, or by
direct calculation from the above defining formula, one can see that

ρ̇∗∗(t) = ±
√

2m
√
E − V (ρ∗∗(t)),
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Figure 8.20: Graphs of the extension ρ∗∗ of ρ∗ to the interval [0, 2T ].

for all t ∈ [0, 2T ]. The + sign is used if t ∈ [0, T ], while the − sign is
used if t ∈ [T, 2T ]. From this, by direct calculation, it follows that ρ̈∗∗(t) =
−V ′(ρ∗∗(t)) for all t ∈ [0, 2T ] (exercise). Finally, we extend ρ∗∗ periodically
to a function ρ defined on all of R, by

ρ(t) = ρ∗∗(t− 2iT ),

if t ∈ [2iT, 2(i + 1)T ], for i = 0,±1,±2, . . .. Then clearly ρ satisfies ρ̈(t) =
−V ′(ρ(t)), for all t ∈ R. Also ρ is periodic with period 2T , and ρ(0) =
r1, ρ(T ) = r2. This completes the proof of Case (1).

Next assume that V ′(r1) 
= 0 and V ′(r2) = 0. Define τ : [r1, r2) → R

by formula (8.77) above. Now however, we claim, τ is not defined at r2,
i.e., the improper integral τ(r2) is divergent. If not, then τ(r2) is finite,
say τ(r2) = T . Then, as in the first part of the proof, we can construct a
differentiable, periodic function ρ : R → [r1, r2], such that ρ̈(t) = −V ′(ρ(t)),
for all t ∈ R and ρ(0) = r1, ρ(T ) = r2. But the constant function β : R → R,
defined by β(t) ≡ r2, for all t ∈ R, also satisfies this same initial value
problem. Thus, ρ = β, which is contradiction since r1 
= r2. With this
established, it follows that τ has a vertical asymptote at r2 as shown in
Figure 8.21. As in the first part of the proof, we get that τ has an inverse
ρ∗ ≡ τ−1 : [0,∞) → R, which satisfies ρ̈∗(t) = −V ′(ρ∗(t)), for all t ∈ [0,∞),
and ρ∗(0) = r1, while limt→∞ ρ∗(t) = r2 (see Figure 8.21). Extending ρ∗ to
a function ρ : R → R by

ρ(t) =

{
ρ∗(t) if t ∈ [0,∞)
ρ∗(−t) if t ∈ (−∞, 0]

gives the function with the desired properties for Case (2) (exercise).
The proof of Cases (3) is similar to Case (2), except that the definition
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Figure 8.21: Graphs of the functions τ and ρ∗ = τ−1.

of τ is

τ(r) =
∫ r2

r

1√
2m
√
E − V (u)

du,

for r ∈ (r1, r2] (exercise). Case (5) can be proved in an analogous manner
(exercise).

Corollary 8.1 With the same assumptions as in the theorem, it follows that
the improper integral ∫ r2

r1

1√
2m
√
E − V (u)

du, (8.79)

converges if and only if V ′(r1) 
= 0 and V ′(r2) 
= 0.

Proof: Lemma 8.1 proved the “if” part. The “only if” part follows from the
proof of Case (2) of the theorem.

Figure 8.22 shows the energy curves p2/2m + V (r) = E corresponding
to each of the four graphs of E − V (r) shown in Figure 8.18.

To summarize the results of the above theorem:

• Case (1): Neither of the end points r1, r2 corresponds to a fixed point
of the system and the energy curve consists of one closed integral curve
that passes periodically through r1, r2 at times 2iT, (2i + 1)T, i =
0,±1,±2, . . ., respectively.
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Figure 8.22: Four energy curves corresponding to the graphs in Figure 8.18.

• Case (2) and Case (3): One of the endpoints r1, r2, corresponds
to a fixed point of the system, while the other does not. The energy
curves consists of one, nonclosed curve that “starts” at the fixed point
at time t = −∞ and “returns” again to the fixed point at time t = ∞.

• Case (4): Both of the endpoints r1, r2, correspond to fixed points of
the system. The energy curve consists of two integral curves, each of
which passes from one fixed point to the other as t runs from −∞ to
∞.

In Case (1), it is important to note that even though the radial solution
ρ : R → R of r̈ = −V ′(r) with initial conditions ρ(0) = r1, ρ̇(0) = 0, is
periodic, the corresponding solution t → (ρ(t) cos θ(t), ρ(t) sin θ(t)), of the
central force problem may not be a closed orbit about the center of force.
Figure 8.23 shows an example of a central force motion with a periodic radial
function ρ : R → [r1, r2].

Because ρ oscillates periodically between its maximum value r2 and min-
imum value r1, the orbit oscillates between two circles with radii r2 and
r1.

It is clear that the trajectory will close on itself (be a closed orbit) if and
only if there is a time t∗ such that ρ(t∗) = ρ(0) and θ(t∗) = θ(0) + 2kπ, for
some positive integer k. If such a t∗ exists, then since ρ has period 2T , it
follows that t∗ = 2nT for some positive integer n. Recalling that the angular
deviation θ is the solution of

θ̇(t) =
c

ρ(t)2
,
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Figure 8.23: An example of a central force motion with periodic radial func-
tion ρ .

that is
θ(t) = θ(0) +

∫ t

0

c

ρ(u)2
du,

for t ∈ R, we see that the condition for a closed orbit is the existence of two
positive integers n, k such that∫ 2nT

0

c

ρ(u)2
du = 2kπ.

Determining whether such integers k, n exist might, at first, seem to be a
difficult problem, but the next proposition shows that the problem is reduced
to the computation of a certain integral defining the apsidal angle.

Definition 8.5 (Apsidal Angle) With the notation and assumptions in
Theorem 8.3, Case (1), let ∆θ be the positive number defined by the integral

∆θ =
∫ r2

r1

cr−2

√
2m
√
E − V (r)

dr. (8.80)

By Lemma 8.1 this improper integral converges and so ∆θ, called the apsidal
angle, is well defined.

Proposition 8.3 Let ρ : R → R be the periodic, radial function with period
2T constructed in Case (1) in Theorem 8.3 above. Define Θ : R → R, by

Θ(t) =
∫ t

0

c

ρ(u)2
du, (8.81)
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for t ∈ R. Then for any positive integer n,

Θ(2nT ) = 2n∆θ, (8.82)

where ∆θ is the apsidal angle for ρ.

Proof: As in the proof of Theorem 8.3, let τ : [r1, r2] → [0, T ] be the time
function defined in equation (8.77) there and ρ∗ = τ−1 : [0, T ] → [r1, r2] be
its inverse. From the periodic construction of ρ from ρ∗, it follows that

ρ(u) =

{
ρ∗(u− 2iT ) for u ∈ [2iT, (2i + 1)T ]
ρ∗(2(i + 1)T − u) for u ∈ [(2i+ 1)T, 2(i + 1)T ]

for i = 0, . . . , n− 1. Thus, by a simple change of variables we have∫ (2i+1)T

2iT

c

ρ(u)2
du =

∫ (2i+1)T

2iT

c

ρ∗(u− 2iT )2
du

=
∫ T

0

c

ρ∗(u)2
du,

and ∫ (2(i+1)T

(2i+1)T

c

ρ(u)2
du =

∫ 2(i+1)T

(2i+1)T

c

ρ∗(2(i+ 1)T − u)2
du,

=
∫ T

0

c

ρ∗(u)2
du,

for i = 0, . . . , n− 1. Consequently,

Θ(2nT ) =
∫ 2nT

0

c

ρ(u)2
du

=
n−1∑
i=0

(∫ (2i+1)T

2iT

c

ρ(u)2
du+

∫ (2(i+1)T

(2i+1)T

c

ρ(u)2
du

)

= 2n
∫ T

0

c

ρ∗(u)2
du.

Thus, all we have to show is that the latter integral above is the same as the
integral (8.80) for the apsidal angle. But this is easily done by making the
change of variables:

u = τ(r),
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with the corresponding change of differentials:

du = τ ′(r) dr =
1√

2m
√
E − V (r)

dr.

This establishes the result.

Corollary 8.2 With the assumptions in the above discussion, the trajectory

t →
(
ρ(t) cos θ(t), ρ(t) sin θ(t)

)
,

is a closed orbit if and only if the apsidal angle ∆θ is a rational multiple of
π:

∆θ =
k

n
π,

for two positive integers k, n.

Exercises 8.3
1. Suppose V is the effective potential for which E − V (r) has the graph shown

in Figure 8.14, for a particular value of E. Based on this figure draw, by
hand, the corresponding energy curves p2/2m+ V (r) = E∗ in the r-p plane,
for various values of E∗. This latter drawing represents the phase portrait
for the system: ṙ = p/m, ṗ = −V ′(r). Thus, indicate the direction of flow,
the fixed points, and their type on the drawing.

2. For each of the following functions f compute the corresponding effective
potential V , plot (by hand or by computer) the graphs of E−V (r) for various
values of E, and use these to draw, by hand, the corresponding energy curves
p2/2m+V (r) = E in the r-p plane. This latter drawing represents the phase
portrait for the system: ṙ = p/m, ṗ = −V ′(r). Thus, indicate the direction
of flow, the fixed points, and their type on the drawing.

(a) f(r) = r−2.5.

(b) f(r) = r−3.

(c) f(r) = r−0.5.

(d) f(r) = r2.

(e) f(r) = 2(r − 1)

Comment on the various types of integral curves that occur and what type
of motion they represent in the central force problem.
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3. Suppose the central force is attractive with a magnitude that is an inverse
power law, i.e., f(r) = kr−q, for q ∈ R. Show that these central forces always
admit circular orbits and these orbits are stable if and only if q < 3. Show
that a central force obeying Hooke’s Law: f(r) = k(r−L), with k > 0, admits
stable, circular orbits

4. Add graphical evidence to what you proved in Exercise 3. Specifically, let
Vq denote an effective potential for inverse power law f(r) = kr−q. Take
m = 1 = k, and c = 0.5. Consider the following groups of values of q:

(i) q = −2,−1, 0.5, 0.8, 1,
(ii) q = 1.3, 1.5, 2, 2.2, 2.5,
(iii) q = 3, 3.2, 3.5, 4, 4.5.

For each group, plot the graphs of the effective potential Vq, all in the same
figure. Annotate the three figures appropriately, by identifying the specific
values of r that give circular orbits, specifying which are stable/unstable,
and describing why, based on the graph, the orbit is stable or unstable. Also
describe why the value of r that gives a circular orbit varies with q in the
way it does.

5. (Rigid-Body Motions) The theory discussed in the section above showed
how to solve the general 2-body problem:

m1r̈1 =
f(r12)
r12

(r2 − r1) (8.83)

m2r̈2 =
f(r12)
r12

(r1 − r2), (8.84)

in terms of the relative position vector r = r2 − r1 and the position vector
R for the center of mass. In particular, Proposition 8.2 gives the conditions
under which there is a solution of these equations such that r = |r| is constant.
Thus, the two bodies move so that their distance apart is always the same.
This is known as a rigid-body motion for the system and the next section
studies such motions for N bodies in detail. Here you are to study this
phenomenon for two bodies and for the following choices of f .

(i) (Hooke’s Law) f(r) = k(r − L).
(ii) (Gravity) f(r) = Gm1m2/r

2

(iii) (Inverse Cube) f(r) = Gm1m2/r
3

For each of these, which are assigned to you, do the following:

(a) Determine the values r∗ that are the roots of equation (8.69). These
correspond to a circular orbit of the 2nd body around the 1st body.
Note that r∗ will involve the c = r20 θ̇

2
0, as well as the other constants in

the problem.
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(b) Validate the theory by doing the following (numerical) experiments,
using the worksheets hooke2.mws and/or gravity2.mws. Assume the
masses are m1 = 1 = m2 and for (i) k = 1, L = 1, while for (ii)-(iii)
G = 1. Let the initial positions be r1 = (0, 0, 0), r2 = (r∗, 0, 0) and the
initial velocities be v1 = (0, 0, 0),v2 = (0, ν, 0), where r∗ is the value
you found in part (a), and ν is chosen so that the relative motion is
circular. Plot the relative motion to verify that it is circular. View the
animation of the motion of the line joining the two bodies and verify
that this line has length r∗ at all times. Plot the absolute motion, i.e.,
the curves traced out by each body. (For extra credit determine the
formula for each of these curves.) Explain, in your own words, why
the bodies always remain the same distance apart even though they are
drawn toward each other by the given force (with magnitude f(r∗)).

(c) Study the stability or instability of the circular motion of one body
around the other by varying, by small amounts, the initial conditions,
specifically the value of ν used in part (b). Produce plots of the relative
and absolute motions. Include any other graphics that you think will
help to display the stability/instability.

6. Using equation (8.78), show that mρ̈∗(t) = −V (ρ∗(t)), for all t ∈ [0, T ].

7. Show that mρ̈∗∗(t) = −V ′(ρ∗∗(t)) for all t ∈ [0, 2T ], where ρ∗∗ is the function
defined in the proof of Theorem 8.3.

8. Show that the function ρ defined by equation (8.3.5) has the properties re-
quired in Case (2) of Theorem 8.3.

9. Prove Cases (3) and (4) of Theorem 8.3.

10. (Apsidal Angle) For an inverse square law f(r) = k/r2, show by direct
calculation of the definite integral in (8.80) that the apsidal angle is

∆θ = π.

Recall that E is a value such that {r|E − V (r) > 0} is a bounded interval
with endpoints r1 < r2. This means (see Figure 8.13) that

− k2

2mc2
< E < 0,

and that E−V (r) = 0 for r = r1, r2. Hint: write out the integral in equation
(8.80) specifically for the inverse square law case and make the change of
variables u = 1/r to get

∆θ =
c√
2m

∫ r−1
1

r−1
2

du√
E − c2u2/2 + ku

.
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Note that the radicand in this expression vanishes at u = r−1
1 , r−1

2 . Complete
the square on this radicand and make another change of variables to show
that the above integral can be written as

∆θ =
∫ a

−a

dw√
a2 − w2

,

where a is a suitable constant positive constant.

8.4 Rigid-Body Motions
In this section we consider a system of particles which undergoes a special
type of motion known as a rigid-body motion. Such a motion preserves the
distance between any pair of particles in the system and is typical of the
motion of a system of particles comprising a continuum or solid body that
is “rigid” or not deformable. The constraints that this type of motion puts
on the system of DEs reduces it to a smaller system, indeed, one where the
number of unknowns is independent of the number of particles, and leads to
important physical and geometrical concepts such as angular velocity and
moments of inertia.

We use the general setup from the first section and assume there are N
particles and Fi : J ×O → R

3, i = 1, . . . , N , is a general system of position,
velocity, and time-dependent forces.

Definition 8.6 (Rigid-Body Motion) A curve in R
3N

r = (r1, . . . , rN ) : I → R
3N ,

is said to be a rigid-body motion if

|ri(t) − rj(t)| = |ri(0) − rj(0)|, (8.85)

for all i, j = 1, . . . , N and all t ∈ I.

Usually we will only be concerned with rigid-body motions that satisfy
the equations of motion mir̈i = Fi(t, r, ṙ). Thus, in addition to satisfying
the equations of motion, the ri’s must maintain their respective distances
apart (the same as their initial distances). See Figure 8.24. Clearly not all
systems of forces allow for rigid-body motions, but for those that do, the
motion r = (r1, . . . , rN ) has a very particular form, as the following theorem
shows.
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Figure 8.24: The distances between the bodies in the system remain constant
in a rigid-body motion.

The theorem is of fundamental importance to the theory (as we will see)
and while its proof is somewhat long, the concepts involved (such as orthog-
onal matrices, the Gram-Schmidt orthogonalization process, properties of
determinants) are interesting and elementary. In the theorem, M3 denotes
the set of all 3 × 3 real matrices.

Theorem 8.4 (Rigid-Body Motions) Suppose r = (r1, . . . , rN ) : I →
R

3N is a rigid-body motion. Then there is (1) a differentiable, matrix-valued
function Q : I → M3, with Q(t) an orthogonal matrix:

Q(t)TQ(t) = I = Q(t)Q(t)T , (8.86)

for each t ∈ I, with Q(0) = I, and (2) vectors ui ∈ R
3, i = 1, . . . , N , with∑N

i=1miui = 0, such that

ri(t) = Q(t)ui + R(t), (8.87)

for i = 1, . . . , N and for all t ∈ I. Here R(t) is the position of the center of
mass at time t.

Proof: Let wi = ri+1 − r1, i = 1, . . . , N − 1. Then it is easy to see that

|wi(t) − wj(t)| = |wi(0) − wj(0)|
|wi(t))| = |wi(0)|

for every t ∈ I and all i, j ∈ {1, . . . , N −1}. The first equation gives |wi(t)−
wj(t)|2 = |wi(0) − wj(0)|2, and expanding this in terms of the dot product
gives

|wi(t)|2 − 2wi(t) · wj(t) + |wj(t)|2 = |wi(0)|2 − 2wi(0) · wj(0) + |wj(0)|2.
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Reducing this by using the 2nd of the above identities leads to

wi(t) · wj(t) = wi(0) · wj(0), (8.88)

for every t ∈ I and all i, j ∈ {1, . . . , N − 1}. The constancy of the dot
products wi · wj is one of the essential elements needed for the proof.

We next use the Gram-Schmidt orthogonalization process to construct an
orthonormal basis {e1(t), e2(t), e3(t)} from {wi(t)}N−1

i=1 . We assume N ≥ 4
and point out below how the cases where N < 4 fit into the proof.

Let k ≤ 3 be the number of linearly independent vectors in {wi(0)}N−1
i=1

and relabel these vectors so that the linearly independent ones come first.
Let

B1 = w1 · w1

B2 =

[
w1 · w1 w1 · w2

w2 · w1 w2 · w2

]

B3 =

 w1 · w1 w1 · w2 w1 · w3

w2 · w1 w2 · w2 w2 · w3

w3 · w1 w3 · w2 w3 · w3

 .
Then by equation (8.88), the Bn’s are constant matrices

Bn(t) = Bn(0),

for all t ∈ I. From linear algebra, we know that w1(t), w2(t) are linearly
independent if and only if det(B2(t)) 
= 0, and w1(t), w2(t), w3(t) are linearly
independent if and only if det(B3(t)) 
= 0 (exercise). But since Bn(t) =
Bn(0), for any t ∈ I, it follows that the number of linearly independent
vectors in {wi(t)}N−1

i=1 is the same as that for t = 0, namely k.
The orthogonalization part of the Gram-Schmidt algorithm amounts to

introducing the vectors

ẽ1 = w1 (8.89)
ẽ2 = −(w1 · w2)w1 + (w1 · w1)w2 (8.90)
ẽ3 = a1w1 − a2w2 + a3w3, (8.91)

where the coefficients in the last expression are given by

a1 =

∣∣∣∣∣ w1 · w2 w1 · w3

w2 · w2 w2 · w3

∣∣∣∣∣ (8.92)
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a2 =

∣∣∣∣∣ w1 · w1 w1 · w3

w2 · w1 w2 · w3

∣∣∣∣∣ (8.93)

a3 =

∣∣∣∣∣ w1 · w1 w1 · w2

w2 · w1 w2 · w2

∣∣∣∣∣ . (8.94)

It is important to note that while the vectors ẽi vary with t, the coefficients
in the linear combinations on the left sides of their defining equations do
not depend on t. Using the well-known Laplace expansion of a determinant
about its last row, we get that, for any vector v

ẽ2 · v =

∣∣∣∣∣ w1 · w1 w1 · w2

w1 · v w2 · v

∣∣∣∣∣
ẽ3 · v =

∣∣∣∣∣∣∣
w1 · w1 w1 · w2 w1 · w3

w2 · w1 w2 · w2 w2 · w3

w1 · v w2 · v w3 · v

∣∣∣∣∣∣∣ .
In particular, since a determinant is zero when two rows are the same, we
find from the above that

ẽ2 · w1 = 0, ẽ3 · w1 = 0, ẽ3 · w2 = 0.

Using this, it is easy to see that the ẽi’s are mutually orthogonal

ẽ2 · ẽ1 = 0, ẽ3 · ẽ1 = 0, ẽ3 · ẽ2 = 0.

Also, we get that

ẽ2 · ẽ2 = (w1 · w1) det(B2), ẽ3 · ẽ3 = det(B2) det(B3) (8.95)

(exercise). We now divide into cases depending on the number of linearly
independent vectors.

If k = 3, then ẽ1, ẽ2, ẽ3 are nonzero for each t, so we can normalize them

ei ≡ ẽi/|ẽi|, i = 1, 2, 3, (8.96)

and thus, get an orthonormal set {e1(t), e2(t), e3(t)} for each t ∈ I. Let
E(t) = [e1(t), e2(t), e3(t)] be the 3× 3 matrix with the ei(t)’s as its columns
and similarly let W (t) = [w1(t), w2(t), w3(t)] be the 3×3 matrix formed from
the wi(t)’s as columns. Then E(t) is an orthogonal matrix for all t ∈ I. In
terms of this, let

Q(t) ≡ E(t)E(0)T .
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Thus, Q(t) is an orthogonal matrix as well (exercise).
With this notation, equations (8.89)-(8.91) can be rewritten, using (8.96),

to get in matrix form E(t) = W (t)A, for a certain invertible matrix A, not
depending on t (exercise). Inverting the relation gives

W (t) = E(t)P,

for all t ∈ I, where P = A−1. Next note that for i ∈ {1, . . . , N − 1} and
t ∈ I

E(t)Twi(t) = ATW (t)Twi(t)
= ATW (0)Twi(0)
= E(0)Twi(0).

This follows from the identities (8.88). Consequently, if we expand wi(t)
in terms of the orthonormal basis {e1(t), e2(t), e3(t)} and use some matrix
algebra, we get

wi(t) =
3∑

j=1

(
wi(t) · ej(t)

)
ej(t)

= E(t)

 wi(t) · e1(t)
wi(t) · e2(t)
wi(t) · e3(t)


= E(t)E(t)Twi(t)
= E(t)E(0)Twi(0)
= Q(t)wi(0),

for i = 1, . . . , N − 1. This is the key equation in the proof. We need to also
show that this holds for the cases k = 2 and k = 1.

Suppose k = 2. Then w1(t), w2(t) are linearly independent for each
t ∈ I, but w1(t), w2(t), w3(t) are not, i.e., det(B2(t)) 
= 0 and det(B3(t)) = 0.
Consequently, from equation (8.95), we see that ẽ3 = 0 and so from equation
(8.91) we get

w3 = b13w1 + b23w2,

where b13 = −a1/a3 and b23 = a2/a3, with a1, a2, a3 given by equations (8.92)-
(8.94) (note that a3 = det(B2) 
= 0). Thus, b13, b

2
3 do not depend on t.

Replacing w3 by any other wi, i = 4, . . . , N − 1, gives, in a similar fashion
that

wi = b1iw1 + b2iw2,
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where b1i , b
2
i do not depend on t. Note: Since wi = ri+1 − r1, the k = 2 case

occurs only when the bodies are initially coplanar (and therefore co-planar
for all time)(Exercise). Now let W (t) = [w1(t), w2(t)] be the 3 × 2 matrix
with w1(t), w2(t) as its columns and let E(t) = [e1(t), e2(t), e3(t)] be the 3×3
orthogonal matrix with columns formed from the time-dependent vectors:

e1 = ẽ1/|ẽ1| e2 = ẽ2/|ẽ2| e3 = e1 × e2.

Then it is easy to see that there is a 3 × 2 constant matrix P such that

W (t) = E(t)P, (8.97)

for all t ∈ I (exercise). Thus, in particular W (0) = E(0)P and so P =
E(0)TW (0). Using this to rewrite the above equation gives

W (t) = E(t)E(0)TW (0).

Letting Q(t) = E(t)E(0)T in the last equation and interpreting it in terms
of the columns of the respective matrices, we get

wi(t) = Q(t)wi(0),

for i = 1, 2, and all t ∈ I. From this we get the extension of this identity to
i > 2:

wi(t) = bi1w1(t) + bi2w2(t)
= bi1Q(t)w1(0) + bi2Q(t)w2(0)

= Q(t)
(
bi1w1(0) + bi2w2(0)

)
= Q(t)wi(0).

With this established for k = 2 and k = 3, we turn to the remaining possi-
bility, k = 1.

In the case k = 1, we have det(B2) = 0 and so (cf. equation (8.95)
ẽ2 = 0. Consequently, from equation (8.90), we see that w2 = b2w1, where
b2 = (w1 · w2)/(w1 · w1). Replacing w2 by wi, we get, in general,

wi = biw1,

where bi = (w1 ·wi)/(w1 ·w1) is a constant not depending on t. Note: Since
wi = ri+1 − r1, the k = 1 case occurs only when the bodies are initially
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collinear (and therefore collinear for all time). Now let

e1 = w1/|w1|
e2 = ė1

e3 = e1 × e2.

Then {e1(t), e2(t), e3(t)} is an orthonormal set for each t ∈ I and conse-
quently the matrix E(t) ≡ [e1(t), e2(t), e3(t)], formed with these vectors as
columns, is an orthogonal matrix for each t ∈ I. If we let P be the 3 × 1
matrix P = [|w1|, 0, 0], then clearly w1(t) = E(t)P for each t ∈ I. This gives,
in particular, that P = E(0)Tw1(0). Thus, if we let Q(t) ≡ E(t)E(0)T , then
we have

w1(t) = Q(t)w1(0),

for all t. From this and the result wi = biw1 from above, we get that

wi(t) = Q(t)wi(0),

for i = 1, . . . , N − 1 and for all t.
With all the cases established, we can now easily finish the proof. So

far we have established the existence of an matrix-valued map Q : I → M3,
such that Q(t) is an orthogonal matrix, Q(0) = I, and

wi(t) = Q(t)wi(0),

for all t ∈ I, and i = 1, . . . , N − 1.
Now change the notation slightly by letting

ũi = wi−1(0) = ri(0) − r1(0),

for i = 1, . . . , N . With this notation, the equation wi−1(t) = Q(t)wi−1(0)
becomes, after rearrangement, the following equation

ri(t) = Q(t)ũi + r1(t). (8.98)

Computing R(t) =
∑N

i=1
mi
M ri(t) from this and letting Ũ =

∑N
i=1

mi
M ũi gives

R(t) = Q(t)
( N∑

i=1

mi

M
ũi

)
+ r1(t)

= Q(t)Ũ + r1(t).
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Subtracting the left and right sides of the last equation from the left and
right sides of equation (8.98), gives

ri(t) − R(t) = Q(t)(ũi − Ũ).

Since Q(t) is an orthogonal matrix, this last equation leads directly to the
result that each body remains at the same distance from the center of mass:
|ri(t) − R(t)| = |ũi − Ũ| for all t. Finally, by introducing ui ≡ ũi − Ũ, the
above equation becomes

ri(t) = Q(t)ui + R(t),

for all i = 1, . . . , N and t ∈ I. Note that with this notation, it follows that

U ≡
N∑

i=1

mi

M
ui = 0.

This completes the proof.

The theorem says that, in a rigid-body motion, each particle of the body
follows the motion of the center of mass while rotating about this center of
mass. This is the content of the equations

ri = Qui + R, (8.99)

for i = 1, . . . , N , which express the position vectors of the particles in terms
of the position vector R = R(t) of the center of mass, the rotation matrix
Q = Q(t), and the (constant) vectors ui, which are the initial positions of
the bodies relative to the initial center of mass (since ri(0) = ui + R(0)).
See Figure 8.25.

8.4.1 The Rigid-Body Differential Equations
Theorem 8.4 shows that any rigid-body motion r : I → R

3N of N bodies
is completely determined by the motion of its center of mass R : I → R

3

and a certain a family {Q(t)}t∈I of orthogonal matrices. If we now require
that the rigid-body motion also satisfy the equations of motion (Newton’s
2nd Law), then this forces R and Q to satisfy a system of DEs, called the
rigid-body differential equations. In this section we derive these equations
and, along the way, explain the geometric and dynamical significance of Q.
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Figure 8.25: Positions of the ith and jth bodies at times 0 and t, showing
a general translational motion following the center of mass combined with a
rotational motion about the center of mass.

This derivation will take several pages because we need to introduce
some important concepts, like angular velocity and the moment of inertia
operator.

The individual forces Fi = Fi(t, r1, . . . , rN , ṙ1, . . . , ṙN ), can be rewritten
in terms of R, Q and their derivatives by using

ri = Qui + R,

and its consequence
ṙi = Q̇ui + Ṙ. (8.100)

Having done this, the total force F and torque T become functions of R, Q
and their derivatives as well. Then since, as we have already seen, the
position R of the center of mass satisfies

MR̈ = F,

we can interpret this equation as one part of the system of DEs for R and
Q that we are seeking.

The differential equations forQ involve its derivative Q̇ and since {Q(t)}t∈I

is a 1-parameter family of rotations, it is naturally compounded from a 1-
parameter family {Ω(t)}t∈I of skew symmetric matrices. The next proposi-
tion, which is a special case of the more general result in Exercise 5 below,
makes this precise.
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Proposition 8.4 Suppose Q : J → O(n) is a (smooth) 1-parameter family
of n × n orthogonal matrices. Then there exists a (smooth) 1-parameter
family Ω : J → o(n) of n× n skew symmetric matrices such that Q satisfies
the matrix differential equation:

Q̇ = QΩ.

Furthermore, if Q(0) = I, then det(Q(t)) = 1, i.e., Q(t) is a rotation matrix,
for each t ∈ J .

Conversely if Ω : J → o(n) is a given, 1-parameter family of skew sym-
metric matrices, then any solution Q of the initial value problem

Q̇ = QΩ
Q(0) = I,

is a 1-parameter family of rotation matrices.

Proof: To prove the first assertion, suppose {Q(t)}t∈J is a smooth 1-
parameter family of orthogonal matrices. Define Ω by

Ω ≡ −Q̇TQ.

Since Q(t) is an orthogonal matrix, Q(t)TQ(t) = I, for all t, and so differ-
entiating this we get

0 =
d

dt
(QTQ) = Q̇TQ+QT Q̇.

Rearranging gives
Q̇ = −QQ̇TQ = QΩ.

To show that Ω(t) is skew symmetric for each t ∈ J , differentiate the identity
QQT = I and use Q̇ = QΩ to get

0 =
d

dt
(QQT ) = Q̇QT +QQ̇T

= QΩQT +QΩTQT

= Q(Ω + ΩT )QT .

Hence Ω + ΩT = 0. This shows skew symmetry.
Next, suppose that in addition Q(0) = I. To show that det(Q(t)) = 0,

for all ∈ J , we use Liouville’s Formula from Chapter 4. For this, apply the
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matrix transpose to both sides of the equation Q̇ = QΩ and use ΩT = −Ω
to get

Q̇T = −ΩQT .

Also note that QT (0) = I. Then it is clear from the development in Chapter
4 (see Theorem 4.2) that QT is the fundamental matrix for the linear system
of DEs: ẋ = −Ω(t)x. Hence by Liouville’s Formula (Proposition 4.1) and
the fact that the trace of a skew symmetric matrix is 0, we get

det(Q(t)) = det(Q(t)T ) = e
∫ t

0
tr(−Ω(s))ds = e0 = 1,

for all t ∈ J . Hence each Q(t) is a rotation matrix. The proof of the rest of
the proposition is left as an exercise.

Returning to the rigid-body mechanics, we note that the above result
allows us to consider Q and Ω as interchangeable in terms of determining
the motion. Knowing one is equivalent to knowing the other. On the other
hand because of the skew symmetry condition, Ω is completely determined
by three functions: ω1, ω2, ω3 : J → R. That is, Ω has the form

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (8.101)

There is a reason for expressing Ω in terms of ω1, ω2, ω3 in this very particular
way. Namely, if we let ω be the vector

ω ≡ (ω1, ω2, ω3), (8.102)

then for any vector v = (v1, v2, v3), we have

Ωv = ω × v.

Thus, the action of the skew symmetric matrix Ω on vectors v is the same
as the cross-product action of ω on v. This relationship between Ω and
ω is true in general: any 3 × 3, skew symmetric B matrix has its action
v → Bv represented by a cross-product action v → b × v, with the fixed
vector b = (−B23, B13,−B12) (exercise). For mechanics, the cross prod-
uct representation of Ω is important for the geometric interpretation of the
motion.
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Definition 8.7 (Angular Velocity) For a rigid-body motion, the (time
dependent) vector ω in (8.102) is called the angular velocity vector and the
corresponding (time-dependent) skew symmetric matrix Ω in (8.101) is called
the angular velocity operator.

The point of view now is that ω is one of the fundamental unknowns in
the rigid-body motion and we seek the DEs that will determine it. With ω
determined, we get Ω and from this we get the rotations Q.

We can easily write the velocity of the ith particle in terms of the angular
velocity as follows. From

ri = Qui + R,

we get

ṙi = Q̇ui + Ṙ

= QΩui + Ṙ

= Q(ω × ui) + Ṙ

This expresses the velocity of the ith body as the sum of a translational
velocity Ṙ and a rotational velocity Q(ω×ui) = Qω×Qui. See Figure 8.26.

Figure 8.26: Illustration of the instantaneous translational and rotational
velocities, Ṙ and Qω ×Qui, of each particle in the rigid-body system.

The former is viewed as an instantaneous translation, in the direction Ṙ,
of all the bodies in the system, while the latter is viewed as an instantaneous
rotation of all the bodies in the system about the axis through Qω.
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Using the above expressions, we can also rewrite the total angular mo-
mentum L of the system. Note: A major simplification in L occurs because∑N

i=1miui = 0. Thus,

L =
N∑

i=1

miri × ṙi

=
N∑

i=1

mi

[
Qui + R

]
×
[
Q(ω × ui) + Ṙ

]

= Q

( N∑
i=1

miui × (ω × ui)
)

+MR × Ṙ

Here we have used the fact that rotation matrices distribute over cross prod-
ucts: Q(v×w) = Qv×Qw (exercise). If we denote by Aω the expression in
the large parentheses in the last line above, we get the following expression
for the total angular momentum of the system:

Rigid-Body Angular Momentum:

L = QAω +MR × Ṙ. (8.103)

The notation Aω introduces an important operator A into the theory. This
operator is defined by the following:

Definition 8.8 (The Inertia Operator A) Supposem1, . . . ,mN are given
positive numbers (the masses) and u1, . . . ,uN are given vectors (the particle
positions relative to the initial center of mass) with

∑N
i=1miui = 0. These

data comprise a “rigid body.” Associated with this rigid body is the linear
operator A : R

3 → R
3 defined by

Av ≡
N∑

i=1

miui × (v × ui), (8.104)

for v ∈ R
3. This operator is called the inertia operator or inertia tensor for

the rigid body.

The operator A is more than just convenient notation. It captures the geo-
metrical characteristics of the rigid body that are important for the nature
of its motion (as we shall see). Note that A does not depend on the time,
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but rather depends only on the initial (relative) positions u1, . . . ,uN and
masses of the particles.

The central differential equation for ω comes from rewriting the angular
momentum equation L̇ = T in terms of the above notation. First note that
differentiating both sides of equation (8.103) gives

L̇ = QAω̇ + Q̇Aω +MR × R̈

= Q(Aω̇ + ω ×Aω) +MR × R̈. (8.105)

Then calculating the total torque gives

T =
N∑

i=1

ri × Fi

=
N∑

i=1

(Qui + R) × Fi

=
( N∑

i=1

Qui × Fi

)
+ R × F. (8.106)

Substituting these expressions into L̇ = T and reducing each side using the
fact that mR̈ = F, gives

Q(Aω̇ + ω ×Aω) =
N∑

i=1

Qui × Fi,

i.e.,

Q(Aω̇ + ω ×Aω) = Q

( N∑
i=1

ui ×QTFi

)
.

Here the factorization of the Q on the left-hand side follows from the general
identity: Qv ×Qw = Q(v ×w). Canceling the Q in the last equation above
gives us the desired differential equation for ω. Putting all of the above
together we arrive at the following:

The Rigid-Body Equations of Motion:

MR̈ = F (8.107)

Aω̇ + ω ×Aω =
N∑

i=1

ui ×QTFi (8.108)

Q̇ = QΩ. (8.109)
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The unknowns here are R, ω, and Q (recall that Ω is an expression involving
ω as in (8.101)). Thus, the above is a system of 15 scalar DEs for the 15
unknowns Ri, ωi, Qij , i, j = 1, 2, 3. The initial conditions are (in terms of
the original unknowns)

R(0) =
N∑

i=0

mi

M
ri(0)

Ṙ(0) =
N∑

i=0

mi

M
ṙi(0)

Q(0) = I

Aω(0) = L(0) −MR(0) × Ṙ(0).

The last initial condition only determines the initial value of ω when the
inertia operator A is invertible. The case when A is not invertible occurs, as
we shall see, only when all the bodies initially lie on a straight line. This is
called the degenerate case.

The first differential equation (8.107) determines the motion of the center
of mass, while the DE (8.108) determines the angular velocity vector ω,
which in turn gives Ω and thus, via the last DE (8.109), the rotation Q of
the particles about the center of mass.

To be more specific about the actual motion, we will look at some special
cases and examples below. Before doing so we discuss a few additional results
for rigid-body motion in general.

8.4.2 Kinetic Energy and Moments of Inertia
The general rigid-body motion under consideration is characterized by the
initial configuration of the particles comprising the system, i.e., by the initial
positions u1, . . . ,uN (relative to the initial center of mass R(0)) and by the
masses m1, . . . ,mN , with

∑N
i=1miui = 0 and

∑N
i=1mi = M . This system

is the “rigid body” and moves as a unit following the center of mass while
rotating about it. While the system is a discrete system of finitely many
(though possibly large number of) particles, the discussion and concepts
extend to a continuum of infinitely many particles, which is what we typically
think of as a rigid body. This will be treated in the exercises.

The influence of the “shape” of the rigid body on the motion is encoded
in the inertia operator A and the next proposition describes the nature of
A and shows how it enters into the expression for the kinetic energy of the
system.
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Proposition 8.5 Let A be the inertia operator defined by

Av =
N∑

i=1

miui × (v × ui),

for v ∈ R
3. Then

Av · w =
N∑

i=1

mi(w × ui) · (v × ui), (8.110)

for all v,w ∈ R
3. In particular,

Av · v =
N∑

i=1

mi|v × ui|2 ≥ 0, (8.111)

for every v ∈ R
3.

Hence A is a symmetric, positive semidefinite matrix, and thus its eigen-
values I1, I2, I3 are nonnegative:

0 ≤ I1 ≤ I2 ≤ I3,

and three corresponding eigenvectors

Aei = Iiei, i = 1, 2, 3,

can be chosen so that they are orthogonal ei · ej = 0, for i 
= j.
If K = 1

2

∑N
i=1mi|ṙ|2 is the total kinetic energy of the system, then

K = 1
2Aω · ω + 1

2M |Ṙ|2. (8.112)

Thus, the kinetic energy splits into two parts. The first part, called the
rotational kinetic energy, is due to the instantaneous rotation, or spin,
about the axis determined by the angular velocity vector ω. The second part,
called the translational kinetic energy, is equivalent to the kinetic energy
of a particle of mass M located at and moving with the center of mass of the
system.

Proof: The identity (8.110) follows easily from the property

(a× b) · c = (c× a) · b,
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for the cross product. Thus,

Av · w =
N∑

i=1

mi

[
(ui × (v × ui)

]
· w

=
N∑

i=1

mi(w × ui) · (v × ui).

Next, since the expression on the right-hand side of identity (8.110) does not
change if we interchange v and w, it follows that

Av · w = Aw · v,

for all v,w ∈ R
3. Hence A is a symmetric matrix. If we take w = v

in identity (8.110), we get identity (8.111). Hence A is a positive definite
matrix. Identity (8.111) also shows that if Av = 0, then v × ui = 0, for
i = 1, . . . , N . Hence, either v = 0 or there are constants ci such that
ui = civ, for i = 1, . . . , N . This shows that if 0 is an eigenvalue of A, then
necessarily the ui’s lie on the same line through the origin. The converse of
this assertion is easy to show as well (exercise).

The other assertions about the eigenvalues/vectors of A are standard
results from linear algebra about symmetric, positive semidefinite matrices.

The calculation of the kinetic energy uses
∑N

i=1miui = 0, |Qv| = |v|,
and the identity |a× b|2 = (a× b) · (a× b) = [(b× (a× b)] · a. Thus, we find

K = 1
2

N∑
i=1

mi|ṙi|2 = 1
2

N∑
i=1

mi|Q(ω × ui) + Ṙ|2

= 1
2

N∑
i

mi

[
|ω × ui|2 + 2Ṙ · (ω × ui) + |Ṙ|2

]

= 1
2

N∑
i=1

mi[ui × (ω × ui)] · ω + 1
2M |Ṙ|2

= 1
2Aω · ω + 1

2M |Ṙ|2

This completes the proof.

As in the proposition, we will always label and order the eigenvalues of
A as I1 ≤ I2 ≤ I3 and we will select of three corresponding eigenvectors
e1, e2, e3, that are orthogonal, of unit length |ei| = 1, i = 1, 2, 3, and such
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that {e1, e2, e3} is positively oriented (a right-hand frame). When the eigen-
values are distinct this selection is unique. When there are only two distinct
eigenvalues, say I1 = I2 
= I3, the selection of two orthonormal vectors e1, e2
from the eigenspace EI1 can be done in infinitely many ways, but having
made one choice, then e3 is uniquely determined. When all the eigenvalues
are the same, the eigenspace EI1 is all of R

3 and so any positively oriented,
orthonormal basis {e1, e2, e3} for R

3 can be selected.
As is customary, we identify an operator on R

n with the n × n matrix
which represents it with respect to the standard unit vector basis for R

n. In
the present case n = 3 and the standard unit vector basis {ε1, ε2, ε3} for R

3

is
ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1).

Thus, the inertia operator A : R
3 → R

3 is identified with the 3 × 3 matrix
A = {Aij}i,j=1,2,3, where the i-jth entry of A is

Aij ≡ Aεj · εi.

Using the definition of A, it is easy to derive the following explicit represen-
tation of A.

Proposition 8.6 The inertia operator A = {Aij}i,j=1,2,3 has entries

Aij =
N∑

k=1

mk

[
|uk|2δij − ukiukj

]
, (8.113)

where δij is the Kronecker delta symbol (i.e., δij = 0, for i 
= j, δii = 1), and

uk = (uk1, uk2, uk3),

for k = 1, . . . N . Alternatively, without the use of the Kronecker delta symbol
this can be written as

Aii =
N∑

k=1

mk

[
|uk|2 − u2

ki

]
(8.114)

Aij = −
N∑

k=1

mkukiukj (for i 
= j). (8.115)

Proof: Exercise.
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Figure 8.27: A rigid body consisting of three particles with equal masses
mk = 1, k = 1, 2, 3, and the three principal axes of inertia e1, e2, e3.

Example 8.6 Suppose there are three particles with equal masses, say
mk = 1, k = 1, 2, 3 comprising the rigid body, and that the initial posi-
tions of these particles are

r1(0) = (0, 0, 0)
r2(0) = (1, 0, 0)
r3(0) = (0, 1, 0).

See Figure 8.27. To calculate the inertia tensor, we must first calculate the
relative positions uk, k = 1, 2, 3. For this note that the initial center of mass
is

R(0) = 1
3(0, 0, 0) + 1

3(1, 0, 0) + 1
3(0, 1, 0) = (1

3 ,
1
3 , 0).

Then we get

u1 = r1(0) − R(0) = (− 1
3 ,−

1
3 , 0)

u2 = r2(0) − R(0) = (2
3 ,−

1
3 , 0)

u3 = r3(0) − R(0) = (− 1
3 ,

2
3 , 0).

To compute the inertia operator A, we use formulas (8.114)-(8.115). Note
that formula (8.114) says that A11 =

∑N
k=1mk(u2

k2 + u2
k3) and so in this

example
A11 = 1

9 + 1
9 + 4

9 = 2
3 .

Similarly A22 involves the sum of the squares of the 1st and 3rd compo-
nents of uk, while A33 involves the sum of the squares of the 1st and 2nd
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components. Thus, we get

A22 = 1
9 + 4

9 + 1
9 = 2

3

A33 = 1
9 + 1

9 + 4
9 + 1

9 + 1
9 + 4

9 = 4
3 .

To calculate Aij for i 
= j, note that for this example uk3 = 0 for every k
and so

A13 = 0 = A23.

For A12 we find

A12 = −[u11u12 + u21u22 + u31u32] = −[19 − 2
9 − 2

9 ] = 1
3 .

Since the matrix A is symmetric, these are the only calculations we need.
Thus,

A =


2
3

1
3 0

1
3

2
3 0

0 0 4
3

 .
From this it is easy to compute the following eigenvalues and eigenvectors
of A:

I1 = 1
3 , e1 = 1√

2
(−1, 1, 0)

I2 = 1, e2 = 1√
2
(1, 1, 0)

I3 = 4
3 , e3 = (0, 0, 1).

Figure 8.27 shows the three eigenvectors plotted with their initial points at
the center of mass.

To interpret further the geometric significance of the eigenvalues and
eigenvectors of the inertia operator, we look at the concept of moments of
inertia for a rigid body.

As shown in Appendix A, each symmetric matrix B gives rise to a func-
tion f(v) ≡ (Bv · v)/(v · v) whose extreme values are respectively the largest
and smallest eigenvalues of B and these values are assumed at respective
eigenvectors v of B. In the present setting, the function f is known as the
moment of inertia function.
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Definition 8.9 (Moment of Inertia) The function I : R
3 \ {0} → R de-

fined by

I(v) =
Av · v
v · v ,

is called the moment of inertia function. The number I(v) is called the
moment of inertia of the system about the axis through the center of mass
and in the direction of v. Note that I(cv) = I(v) for all nonzero scalars c and
so I has the same value for all nonzero vectors in the line (axis) determined
by v. The eigenvalues I1 ≤ I2 ≤ I3 of A are called the principal moments of
inertia.

It follows from the general theory that the principal moments of inertia are
values of I at the eigenvectors of A:

Ii = I(ei),

i = 1, 2, 3, and that
I1 ≤ I(v) ≤ I3,

for every v 
= 0 in R
3. Thus, I1 is the minimum moment of inertia of

the system and it occurs as the system spins about the axis through e1.
Likewise, I3 is the maximum moment of inertia of the system and it occurs
as the system spins about the axis through e3.

This is illustrated by the elementary configuration in Example 8.6. Spin-
ning the configuration about the axis through e1 (see Figure 8.27) gives the
least moment of inertia I1 = 1/3, while a spin about the axis through e2
results in a larger moment of inertia I2 = 1. This corresponds to the fact
that the bodies are closer to the axis of revolution in the 1st case than in the
2nd case (and all the masses are the same). The greatest moment of inertia
I3 = 4/3 occurs for a revolution about the axis through e3, where the bodies
are furthest removed from the axis of revolution.

An alternative expression for the moment of inertia I(v) helps clarify
the idea alluded to in the last paragraph. This expression arises from the
observation that |v × ui| is the area of the parallelogram determined by v
and ui. This area is |v| di(v), where di(v) denotes the distance from the tip
of ui to the line through v. See Figure 8.28.

Thus, we find

Av · v =
N∑

i=1

mi|v × ui|2
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Figure 8.28: The moment of inertia of the system of particles about the axis
determined by v is the sum, over all particles ui, of the mass of the particle
times the square of the particle’s distance di(v) from the axis of revolution.

= |v|2
N∑

i=1

mi di(v)2.

This gives that the moment of inertia function is also expressed by

I(v) =
N∑

i=1

mi di(v)2. (8.116)

This is the traditional definition of the moment of inertia of the system about
an axis v. It is the sum, over all particles, of the mass of the particle times
the square of the particle’s distance from the axis of revolution. Note: In the
setup here, ui, i = 1, . . . , N , are the positions of the particles relative to the
initial center of mass and so the moment of inertia above is about an axis
through the center of mass.

The name for the moment of inertia arises from the way this quantity
enters into the expression for the kinetic energy of the system. Rewriting
the kinetic energy K from equation (8.112) in terms of I gives the following

Rigid-Body Kinetic Energy

K = 1
2I(ω)|ω|2 + 1

2M |Ṙ|2. (8.117)

Thus, with respect to the angular velocity ω of the body, I(ω) plays the same
role as mass does with respect to linear velocity. The greater the value of
I(ω), the harder it is to stop (bring to rest) the spinning of the body about
the axis through ω.
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Up to this point we have tried to develop an intuitive understanding of
the angular velocity ω and its role in the rigid-body motion. A more precise
understanding will come from solving the equations of motion in a number
of special cases.

8.4.3 The Degenerate Case
As mentioned above, the degenerate case for the motion of the system occurs
when A is not invertible, i.e., when 0 is an eigenvalue of A. With our
conventions, this case occurs when I1 = 0 and its exceptional nature warrants
a separate treatment from the nondegenerate case where all the principal
moments of inertia I1 ≤ I2 ≤ I3 are positive.

The case of a zero eigenvalue for A occurs only when the initial relative
positions of the bodies are collinear, i.e., ui, i = 1, . . . , N , lie on the same
line through the origin. To see this note that, in the previous notation, the
eigenvector e1 corresponding to I1 = 0 necessarily is in the null space of A,
i.e., Ae1 = 0. But then by identity (8.111), it follows that

0 = Ae1 · e1 =
N∑

i=1

mi|e1 × ui|2.

Consequently, e1 ×ui = 0 for each i = 1, . . . , N , and so there exist constants
c1, . . . , cN , such that

ui = cie1,

for i = 1, . . . , N (exercise). This says that all the bodies initially lie the line
through the center of mass in the direction of e1 (the 1st principal axis). See
Figure 8.29.

Note also that
∑N

i=1mici = 0. If we use this in the definition of the
inertia operator, we find that in the degenerate case it has the form

Av = c[e1 × (v × e1)] = c[v − (e1 · v)e1],

where c =
∑N

i=1mic
2
i . This says that A = cP , where P is the orthogonal

projection on the plane through the origin which is perpendicular to e1.
Not only are the bodies collinear initially in the degenerate case, but

they also remain collinear throughout the motion. This is so since

ri(t) = ciQ(t)e1 + R(t), (8.118)

for any t ∈ I, and so all the bodies lie on the line through R(t) in the
direction of Q(t)e1.
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Figure 8.29: In the degenerate case all the bodies initially lie on a line through
the center of mass.

In discussing the initial conditions for the rigid-body differential equa-
tions, we mentioned that the initial value ω(0) for the angular velocity vector
ω must be determined from the equation

Aω(0) = L(0) −MR(0) × Ṙ(0),

where L(0),R(0), Ṙ(0) are known. In the degenerate case A is not invertible
and so it is not clear immediately how to choose ω(0) so that this equation
holds. However, note that without loss of generality we can assume that
the initial center of mass is at the origin: R(0) = 0. Thus, from equation
(8.118), we get that ri(0) = cie1, for i = 1, . . . , N . In addition, the equation
for ω(0) reduces to

Aω(0) = L(0).

Furthermore, if we let h =
∑N

i=1miciṙi(0), which is a known vector, then
the initial angular momentum can be written as

L(0) =
N∑

i=1

micie1 × ṙi(0) = e1 ×
( N∑

i=1

miciṙ(0)
)

= e1 × h.

Hence taking
ω(0) = c−1e1 × h,

gives a solution of Aω(0) = L(0).

8.4.4 Euler’s Equation
Consider the case where the total force and torque on the system vanish:
F = 0 and T = 0. From T = 0, one gets that

∑N
i=1Qui × Fi = 0 (see
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equation (8.106). Thus, the rigid-body equations of motion (8.107)-(8.109)
reduce to

MR̈ = 0 (8.119)
Aω̇ + ω ×Aω = 0 (Euler’s Equation) (8.120)

Q̇ = QΩ. (8.121)

As expected the 1st equation gives that R(t) = Ṙ(0)t+ R(0), so the center
of mass moves in a straight line with constant speed. Equation (8.120) is
known as Euler’s equation and it’s complete solution and interpretation is
given as follows.

Euler’s equation is a 1st-order, nonlinear system of three equations for
three unknowns, the components of ω. As usual, the first part of the analysis
of a system of DEs consists of finding and classifying fixed points.

Fixed Points: The fixed points of Euler’s equation are constant angular
velocity vectors ω and they must satisfy the algebraic equation:

ω ×Aω = 0.

This is equivalent to saying that ω and Aω lie on the same line, i.e., that ω
is an eigenvector of the inertia operator A:

Aω = λω,

where λ = I1, I2, or I3. Hence if the principal moments of inertia Ii, i = 1, 2, 3
are all distinct, then the fixed points of Euler’s equation are precisely the
points on the three principal axes: span{ei}, i = 1, 2, 3. If two of the
moments of inertia (i.e., eigenvalues) are the same, say I1 = I2, then the
corresponding eigenspace EI1 = span{e1, e2} constitutes a plane of fixed
points and the remaining principal axis EI3 = span{e3} is a line of fixed
points perpendicular to this plane. Similarly, if I2 = I3. If all the principal
moments of inertia are the same I1 = I2 = I3, then the body is called
perfectly symmetric. In this case every point in R

3 is a fixed point of Euler’s
equation and thus fixed points are the only types of solutions. See Figure
8.30.

We will determine the stability of the fixed points later, but first we
examine what type of rigid-body motion corresponds to a fixed point of
Euler’s equation. When ω = (ω1, ω2, ω3) is a fixed point of the Euler equa-
tions (eigenvector of A), the corresponding rigid-body motion is particularly
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Figure 8.30: Three examples illustrating rigid bodies with (a) I1 < I2 < I3,
(b) I1 = I2 < I3, and (c) I1 = I2 = I3, respectively. In case (c) the body is
called perfectly symmetric.

simple. To see this, observe that since ω is a constant, the angular velocity
matrix

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (8.122)

is constant as well. Hence the solution of Q̇ = QΩ is simply

Q(t) = eΩt.

Using the techniques from Chapter 4 on linear systems, we can demonstrate
that, for each t, Q(t) is a rotation about the line through ω and that the
speed of rotation (angular speed) is |ω|. The details of this are as follows
and, of course, the discussion is valid for any 3 × 3, skew symmetric matrix
Ω.

We first determine the Jordan canonical form for Ω and use this to com-
pute eΩt.

With Ω expressed in the form (8.122), it is easy to calculate that

det(Ω − λI) = λ(λ2 + |ω|2),

and hence the eigenvalues of Ω are λ = 0,±|ω|i (exercise). Further, since
Ωω = ω × ω = 0, it follows that ω is an eigenvector corresponding to eigen-
value 0. One can verify that a complex eigenvector v corresponding to eigen-
value |ω|i is

v =

 ω1ω3 + |ω|ω2i
ω2ω3 − |ω|ω1i
−(ω2

1 + ω2
2)
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(exercise). Separating v into real and imaginary parts v = u+ qi and letting
P = [q, u, ω] be the matrix formed from q, u, ω as columns, we get from the
general theory (or direct calculation) that

P−1ΩP = J =

 0 −|ω| 0
|ω| 0 0
0 0 0


is the Jordan canonical form for Ω. Thus, for a point c ∈ R

3, let b = P−1c.
Then

c = Pb = b1q + b2u+ b3ω,

where b = (b1, b2, b3). Hence, as in Chapter 4, we find that

Q(t)c = eΩtc = eΩtPb = PeJtP−1Pb

= (b1q + b2u) cos |ω|t+ (−b2q + b1u) sin |ω|t+ b3ω. (8.123)

The motion of c described by equation (8.123) is a circular motion about
the axis: span{ω}, with constant angular speed |ω|. See Figure 8.31.

Figure 8.31: A fixed point ω of Euler’s equation corresponds to a rigid-body
motion where each point c in the body undergoes uniform circular motion
t → Q(t)c about the axis through ω.

Summary (Motion Corresponding to a Fixed Point): For a fixed
point ω of Euler’s equation, the corresponding motion of the rigid body is
one where each of its particles undergoes a uniform rotation, with constant
angular speed |ω|, about the axis: span{ω}. When all three moments of
inertia are distinct, then a constant spinning motion about one of the three
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principal axes e1, e2, e3 is a possible movement of the body subject to no total
force or torque. When two of the moments of the inertia are the same, say
I1 = I2, then the body can spin with constant speed about the axis e3 as well
as about any axis lying in the plane spanned by e1, e2. In the case when
all three principal moments of inertia are the same, i.e., when the body is
perfectly symmetric, then the only possible motion of the body, subject to no
external force and torque, is a constant spin about some fixed axis in space.

8.4.5 The General Solution of Euler’s Equation
The general solution to Euler’s equation is easier to describe if we write this
equation in terms of the axes for the principal moments of inertia.

Note: For convenience of notation we now use ω1, ω2, ω3 to denote the
components of ω relative to the eigenbasis for A:

ω(t) = ω1(t)e1 + ω2(t)e2 + ω3(t)e3. (8.124)

Hopefully this will not cause confusion with what we did above, where the
ωi’s were the components with respect to the standard basis for R

3 (and
were constants). Now since Aei = Iiei, i = 1, 2, 3, it follows that

Aω = I1ω1e1 + I2ω2e2 + I3ω3e3 (8.125)

and
Aω̇ = I1ω̇1e1 + I2ω̇2e2 + I3ω̇3e3. (8.126)

Using these and a direct computation of ω×Aω in terms of the ei’s, one can
easily compute Euler’s equation:

Aω̇ + ω ×Aω = 0,

in terms of the above expressions and get the following:

Euler’s Equation in Principal Axes Coordinates:

ω̇1 =
(
I2 − I3
I1

)
ω2ω3 (8.127)

ω̇2 =
(
I3 − I1
I2

)
ω3ω1 (8.128)

ω̇3 =
(
I1 − I2
I3

)
ω1ω2 (8.129)
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Note that, in each equation, the expression in the large parentheses is a
constant since the principal moments of inertia I1, I2, I3 are constants. We
are also assuming that Ik 
= 0, k = 1, 2, 3.

This system has a particularly nice form and, indeed, one can readily
discern two conservation laws that follow directly from it. These two laws
completely determine the solutions of the system, as we shall see.

Suppose, then, that ω : I → R
3 is a solution (integral curve) of Euler’s

equation. One conservation law comes about simply by multiplying the ith
equation in the system by Iiωi (for i = 1, 2, 3) and then adding all three
equations together. Thus,

I1ω1ω̇1 + I2ω2ω̇2 + I3ω3ω̇3 =
(I2 − I3)ω1ω2ω3 + (I3 − I1)ω1ω2ω3 + (I1 − I2)ω1ω2ω3 = 0.

Thus, there exists a constant k, which depends on the integral curve ω, such
that:

Conservation Law I (Rotational Kinetic Energy):

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 = 2k, (8.130)

for all t ∈ I.

A second conservation law results, somewhat less transparently, from multi-
plying the ith equation in the system by I2

i ωi (for i = 1, 2, 3) and then adding
all three equations together. One now gets the slightly different expression

I2
1ω1ω̇1 + I2

2ω2ω̇2 + I3
3ω3ω̇3 =[

(I2 − I3)I1 + (I3 − I1)I2 + (I1 − I2)I3
]
ω1ω2ω3 = 0.

Thus, there exists a constant a > 0, which depends on the integral curve ω,
such that:

Conservation Law II (Angular Momentum):

I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 = a2, (8.131)

for all t ∈ I.

It is easy to see from equations (8.124)-(8.125) that if Ṙ(0) = 0, then the
constant k = Aω · ω is the rotational kinetic energy of the system. If we
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also assume that R(0) = 0 (which is no loss of generality) then the constant
a = |Aω| = |L| is the magnitude of the angular momentum of the system.
Thus, the two equations (8.130)-(8.131) are the laws for the conservation of
rotational kinetic energy and angular momentum of the rigid body.

Equations (8.130)-(8.131) can be considered as the equations for two
ellipsoids in R

3 relative to the principal axes e1, e2, e3. Even though ω1, ω2,
and ω3 in these equations are time-dependent functions, we will, when there
is no danger of confusion, use ω1, ω2, ω3 to denote the coordinates of points
in R

3. Note that the three axes of each ellipsoid coincide with these principal
axes of inertia. These two ellipsoids are called the kinetic energy ellipsoid
and the angular momentum ellipsoid, respectively. Historically, the kinetic
energy ellipsoid is also called the Poinsot ellipsoid.

The content of the two conservation laws is that any integral curve ω :
I → R

3 of the Euler equation must lie on the surface of each ellipsoid and
hence on the curve of intersection of these two surfaces. Thus, the curves
of intersection are, except for the explicit time dependence, the same as the
integral curves themselves.

Visualizing the curves of intersection of these ellipsoids, and hence the
integral curves of Euler’s equation, is difficult to do by hand. However,
there are several ways of rewriting the conservation laws that lead to easier
visualization. One way is to multiply equation (8.130) by a2/2k and then
subtract equation (8.131) from it to get

I1

(
a2

2k
− I1

)
ω2

1 + I2

(
a2

2k
− I2

)
ω2

2 + I3

(
a2

2k
− I3

)
ω2

3 = 0. (8.132)

This equation describes a double cone in R
3 or a degenerate case depending

on the constants I1, I2, I3, k, a. The reasoning leading to this gives us that
each integral curve lies on this cone as well as the two ellipsoids. Since the
intersection of two of these surfaces suffices to determine the integral curves,
we will do the visualization with the cone C and kinetic energy (or Poinsot)
ellipsoid E. Describing the intersection C ∩E is considerably easier. Figure
8.32 shows a plot of one of the kinetic energy ellipsoids for a specific value
of k and its intersection with one of the cones (8.132). As the picture shows,
the axes of the ellipsoid coincide with the principal axes of inertia and the
longest axis, of length

√
2k/I1 corresponds to the smallest moment of inertia.

We fix this ellipsoid and consider how the cone in (8.132), for various values
of a, intersects this ellipsoid.

If we let bi = Ii(a2

2k − Ii), for i = 1, 2, 3, then each of these is negative
when a2

2k < I1 and each is positive when a2

2k > I3. Hence the equation for the
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Figure 8.32: A kinetic energy ellipsoid E and the curves obtained by inter-
secting it with a cone C.

cone
b1ω

2
1 + b2ω

2
2 + b3ω

2
3 = 0

has no solution in either of these cases, and so there is no cone. Another
way of saying this is the following: the magnitudes of angular momentum
and rotational kinetic energy, a, k of any motion corresponding to a solution
of the Euler equation must satisfy

I1 ≤ a2

2k
≤ I3. (8.133)

Thus, with k fixed, we restrict a so that a2

2k lies in the interval [I1, I3] and
look at the resulting family of cones C = Ca as a varies over this interval. We
divide into cases, since the description is different depending upon whether
the moments of inertia are all distinct or not.

(1) (Three Distinct Moments of Inertia) Suppose 0 < I1 < I2 < I3.
When a is the least that it can be, b1 = 0, i.e., a2

2k = I1. Then the
equation for the cone reduces to

b2ω
2
2 + b3ω

2
3 = 0,
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with b2 > 0, b3 > 0 and, of course, this means that ω2 = 0, ω3 = 0 and
the “cone” C reduces to a line along e1. Thus, C is the first principal
axis. Then C∩E = {(±

√
2k/I1, 0, 0)} is a pair of points that are fixed

points of the Euler equation.

Next, for a such that I1 < a2

2k < I2, we have b1 > 0, while b2 < 0, b3 < 0,
and so the equation for C can be written as

ω2
1 =

−b2
b1

ω2
2 +

−b3
b1

ω2
3.

Thus, C is an elliptic cone with its axis coinciding with the first princi-
pal axis. The intersection C ∩E is fairly easy to visualize—it consists
of a pair of circular-like curves centered about the first principal axis.
Figure 8.33 shows several of these pairs of curves.

Figure 8.33: Typical integral curves of Euler’s equation when I1 < I2 < I3.
The integral curves lie on a specific kinetic energy ellipsoid and are separated
into two sets. Each set consists of circular-like, or oval, curves, with one
set centered about the principal axis e1 and the other set centered about the
principal axis e3.

These pairs of curves increase in size as a increases, but then when
a reaches the value for which a2

2k = I2, the nature of C ∩ E changes.
For this value of a, the coefficients b1 > 0, b2 = 0, b3 < 0 and so the
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equation for C can be written as

ω1 = ±
√

−b3
b1

ω3.

Thus, C is a pair of planes, each of which is perpendicular to the plane
span{e1, e3}. Intersecting this pair of planes with the ellipsoid E is
easy to visualize and gives a crossing pair of curves as shown in Figure
8.33. This pair of curves separates the sets of other curves on the
ellipsoid from each other. The pair actually consists of four integral
curves, each of which runs from one of the fixed points on the e2 axis
to the other fixed point on this axis.

For a slightly larger value of a, so that I2 < a2

2k < I3, the coefficients
b1 > 0, b2 > 0, while b3 < 0. So the equation for the cone can be
written as

ω2
3 =

b1
b3
ω2

1 +
b2
b3
ω2

2.

Thus, the cone C is an elliptic cone with its axis along the third prin-
cipal axis. As before, the intersection of C ∩E is a pair of circular-like
closed curves, but now centered about the third principal axis. See
Figure 8.33.

Finally, when a is as large as possible, a2/2k = I3 and the cone C
degenerates into a straight line corresponding with the third principal
axis. Then C ∩E is a pair of points that are fixed points for the Euler
equation.

(2) (Two Distinct Moments of Inertia). Assume I1 = I2 < I3. The
other possibility: I1 < I2 = I3, has a similar analysis. First note that
the ellipsoid is a surface of revolution obtained by, say, revolving an
ellipse in the e2-e3 plane about the e3 axis. The analysis of how the
cone Ca intersects this ellipsoid is as follows. For a the least it can be,
we have a2/2k = I1 = I2, and so the “cone” C degenerates into the
plane w3 = 0. In fact, for this value of a,

C = span{e1, e2} = EI1

is the two-dimensional eigenspace corresponding to the eigenvalue I1 =
I2. Hence the intersection C∩E is a circle and each point on this circle
is a fixed point of the Euler equation. See Figure 8.34.
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Figure 8.34: Typical integral curves of the Euler equation when I1 = I2 < I3.
The integral curves lie on a specific kinetic energy ellipsoid and, except for
the fixed points, are circles with centers on the e3 axis. There are two stable,
fixed points on the e3 axis and a whole circle of unstable, fixed points lying
in the e1-e2 plane.

When a has a slightly larger value so that I2 < a2/2k < I3, the cone C
is an circular cone whose axis coincides with the third principal axis.
Thus, the intersection C ∩ E is a pair of circular-like closed curves
centered on the third principal axis. See Figure 8.34.

Finally, when a is such that a2/2k = I3, the cone Ca degenerates into a
straight line that coincides with the third principal axis. Hence C∩E is
a pair of points and these points are fixed points of the Euler equation.
See Figure 8.34.

As the figure indicates, each fixed point from the planeEI1 = span{e1, e2}
of fixed points is unstable, while each fixed point from the line EI1 =
span{e3} of fixed points is stable.

(3) (Only One Moment of Inertia) In the case where all three moments
of inertia coincide: I1 = I2 = I3, it is clear that there is only one value
of a for which C is not empty, i.e., for a =

√
2kI3, and that for this

value, C = R
3. In this case the entire space R

3 consists of (stable)
fixed points of the Euler equation. Then too, C ∩E = E is a sphere of
fixed points as well. See Figure 8.35. This is to be expected, since, as
we have mentioned, the rigid body is called perfectly symmetric when
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Figure 8.35: Typical integral curves of the Euler equation when I1 = I2 = I3,
i.e., when the body is perfectly symmetric. In this case all of R

3 consists of
fixed points and so C ∩ E is a sphere of fixed points.

all its principal moments of inertia are the same. The moments of
inertia about any axis are the same and the only possible motions of
the body (with total force and torque equal to zero) are spins about
such axes with uniform angular velocity.

Stability of the Euler Fixed Points: The stability of the fixed points of
the Euler equation is easily discerned from Figures 8.33-8.35 and depends
on the number of distinct principal moments of inertia.

When there are three distinct moments of inertia as in Figure 8.33, then
the fixed points on the axes e3, e3, corresponding to the least and greatest
moments of inertia I1 and I3 are stable. The fixed points on the axis e2 are
unstable saddle points.

When there are two distinct principal moments of inertia as in Figure
8.34, then the fixed points on the axis e3, corresponding to the greatest
moment of inertia, are stable. Each of the fixed points on the circle in the
e1-e2 plane is unstable.

When there is only one distinct principal moment of inertia, the fixed
points, which comprise all of R

3, are all stable.
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Exercises 8.4
1. Suppose v1, . . . , vp ∈ R

n and let B = {bij}p
i,j=1 be the p × p matrix formed

from the dot products of these vectors: bij ≡ vi · vj . Show that v1, . . . , vp are
linearly dependent if and only if det(B) = 0.

2. Prove the assertions marked “exercise” in the proof of Theorem 8.4.

3. Prove the remaining part of Proposition 8.4.

4. Use Proposition 8.4 from Chapter 8 to show that rotation matrices distribute
over cross products: Q(v × w) = Qv ×Qw.

5. (Matrix Lie Groups and Algebras) Suppose that G = {gij}i,j=1,..,n is a
symmetric, positive definite matrix. Consider the following two sets of n× n
matrices:

LG = {Q ∈ Mn |QTGQ = G } (8.134)
LG = {Ω ∈ Mn |ΩG+ ΩTG = 0 }. (8.135)

In many applications G is the matrix of components for a metric. The sets
LG,LG are then identified with the Lie group of isometries and Lie algebra
of infinitesimal isometries of the metric. In this exercise do the following.

(a) Show that LG is a group, i.e., (i) if Q1, Q2 ∈ LG, then Q1Q2 ∈ LG,
and (ii) if Q ∈ LG, then Q is invertible and Q−1 ∈ LG. Also show that
det(Q) = ±1, for every Q ∈ LG.

(b) Show that LG is an algebra with respect to the usual addition of matrices
and with respect to the Lie product (commutator product) of matrices:

[Ω1,Ω2] ≡ Ω1Ω2 − Ω2Ω1.

Recall, that to be an algebra of matrices LG must have the properties:
(i) if Ω1,Ω2 ∈ LG, then Ω1 + Ω2 and [Ω1,Ω2] are in LG, and (ii) if
Ω ∈ LG, then cΩ ∈ LG, for every c ∈ R.

(c) Define an inner product 〈·, ·〉G on R
n by

〈v, w〉G = Gv · w,

for v, w ∈ R
n. Show that each Q ∈ LG preserves this inner product,

i.e.,
〈Qv,Qw〉G = 〈v, w〉G,

for every v, w ∈ R
n. Let | · |G be the corresponding norm on R

n, i.e., for
v ∈ R

n define |v|G = 〈v, v〉1/2
G . Show that each Q ∈ LG is an isometry

of this norm, i.e.,
|Qv|G = |v|G,

for every v ∈ R
n.
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(d) Generalize Proposition 8.4 by proving the following:

(i) Suppose Q : I → LG is a differentiable matrix-valued map on an
interval I, with Q(t) ∈ LG for every t ∈ I. Then there exists a
continuous, matrix-valued map Ω : I → LG, such that

Q̇ = QG−1ΩG,

for every t ∈ I. Hint: Write the identity QTGQ = G as G =
Q−TGQ−1 and then differentiate both sides using the identity:
d
dt (Q

−1) = −Q−1Q̇Q−1. (Prove this latter identity too.)
(ii) Suppose Ω : I → LG is a continuous. Let Q : I → Mn be a

solution of the matrix differential equation

Q̇ = QG−1ΩG.

Then Q(t) ∈ LG for every t ∈ I.

Comment: In the special case when the given matrix G is the identity
matrix: G = I, then the LI = O(n) is the group of orthogonal ma-
trices and LI = o(n) is the Lie algebra of skew symmetric matrices.
Another important choice for G is the 4 × 4 diagonal matrix with di-
agonal entries 1, 1, 1,−1, respectively. Then LG is the group of Lorentz
transformations, which is important in special relativity.

6. Suppose B is a 3 × 3, skew symmetric B. Show that there exists a vector
b ∈ R

3 such that Bv = b× v, for all v ∈ R
3. Conversely, show that if b ∈ R

3

is any vector, then there is a 3 × 3, skew symmetric matrix B such that
Bv = b× v, for all v ∈ R

3.

7. Prove the property

u× (v × w) = (u · w)v − (u · v)w,

for cross products of vectors u, v, w ∈ R
3. Use this to prove that the inertia

operator A for masses and relative positions mk,uk, k = 1, . . . N , can be
expressed by

Av =
N∑

k=1

mk

[
|uk|2v − (uk · v)uk

]
, (8.136)

for all v ∈ R
3. Use this to show how formula (8.113) for the entries Aij of

the matrix A is derived.

8. (Animations of Rigid-Body Motions) By using the Euler numerical
method to discretize the rigid-body equations of motion, one can obtain fairly
good animations of a number of particular motions that are solutions of these
DEs. Some Maple code for this is on the worksheet rigidbody.mws on the
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electronic component. To understand more fully how the angular velocity
vector ω behaves during a motion and how the rotations Q are compounded
out of the angular velocity matrix Ω, study the material on this worksheet
and work the exercises listed there. The worksheet inertia.mws contains
some code for calculating the moment of inertia operator, principal moments
of inertia, and the principal axes. To understand more about how these influ-
ence rigid-body motions, read the material in CDChapter 8 on the electronic
component and work the corresponding exercises.

9. Show that if v × w = 0, for vectors v, w ∈ R
3, then there exists a constant c

such that w = cv.

10. (The Inertia Operator for a Continuum) It is important to note that
the inertia operator A does not depend on the number of particles comprising
the rigid body. While the discussion in the text was for a finite number
N of particles, the treatment of a rigid body made up of a continuum of
infinitely many particles is entirely analogous. Roughly speaking, we replace
the summation over finitely many particles by an integration over the region
in R

3 that the rigid body occupies. More precisely, for a suitable region
B ⊆ R

3 and mass density function ρ : B → (0,∞), we make the assumption
that ∫

B

ρ(u)u du = 0.

This means that the center of mass of B is located at the origin. Then the
inertia operator A : R

3 → R
3 is defined by

Av ≡
∫

B

ρ(u)
[
u × (v × u)

]
du

=
∫

B

ρ(u)
[
|u|2v − (u · v)u

]
du,

for v ∈ R
3. Here du = du1du2du3 and the integral is the Lebesgue integral

(triple integral) applied to each of the components of the vector expression.
You should verify that the second equation above follows from the first. Also
show that the entries Aij of the matrix A are given by the following formulas:

Aii =
∫

B

ρ(u)
[
|u|2 − u2

i

]
du (8.137)

Aij = −
∫

B

ρ(u)uiuj du (for i 
= j). (8.138)

The definitions of the principal moments of inertia and principal axes are the
same as before (namely the eigenvalues and corresponding eigenvectors of A).
Use formulas (8.137)-(8.138) to do the following.
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(a) Suppose B = [−a/2, a/2]× [−b/2, b/2]× [−c/2, c/2] is the box with its
center at the origin and sides of lengths a, b, c. Assume the mass density
ρ is constant. Show that the three principal moments of inertia (not in
any order) and corresponding principal axes are

I1 =
µ

12
(b2 + c2), e1 = (1, 0, 0)

I2 =
µ

12
(a2 + c2), e2 = (0, 1, 0)

I3 =
µ

12
(a2 + b2), e3 = (0, 0, 1),

where µ = ρabc is the total mass of B.

(b) Suppose B = { (x, y, z) |x2 + y2 ≤ R2, |z| ≤ h/2 } is the cylinder of
height h and circular base of radius R (and centered at the origin).
Show that the three principal moments of inertia (not in any order)
and corresponding principal axes are

I1 = I2 = µ

(
R2

4
+
h2

12

)
, e1 = (1, 0, 0), e2 = (0, 1, 0)

I3 = µ
R2

2
, e3 = (0, 0, 1),

where µ = ρπR2h is the total mass of B.

11. Suppose Ω is the skew symmetric matrix

Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
and let ω = (ω1, ω2, ω3). Show that

det(Ω − λI) = λ(λ2 + |ω|2).

12. Show that a = |L|, where a is the constant in equation (8.131).



Chapter 9

Hamiltonian Systems

A great many of the dynamical systems: x′ = X(x) that arise in applications
are Hamiltonian systems, and are important because of their special struc-
ture, as well as the fact that they are related to the dynamics of motion in
classical systems (through Newton’s second law). All of the previous theory
and techniques apply to Hamiltonian systems, but now there are many addi-
tional features of the system, like conservation laws, a symplectic structure,
and Poisson brackets, that enable us to study such systems in more detail.

This Chapter is independent of the chapters dealing with Newtonian
mechanics (Chapter 8) and with integrable systems of DEs (Chapter 7). As
a consequence there will be a certain amount of repetition here of ideas and
concepts from those chapters. If you have read those chapters, then the
material here should add to your understanding of the concepts. After all,
Hamilton’s approach is an alternative, in a sense equivalent, formulation of
Newton’s laws of motion for conservative systems.

Definition 9.1 (Hamiltonians) SupposeO is an open subset of R
n×R

n ∼=
R

2n. For historical reasons we denote a point in O by:

x = (q, p) = (q1, . . . , qn, p1, . . . , pn),

(1) A Hamiltonian on O is a differentiable function H : O → R. Usually,
physical considerations lead us to select particular types of functions
H on O, and these are distinguished from the rest with the designation
“Hamiltonian.” Most of the results we discuss later will require H to
be a least a C2 function.

(2) If H is a Hamiltonian, then the corresponding Hamiltonian vector field
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on O is the vector field XH defined by:

XH(q, p) =
(
∂H

∂p1
(q, p), . . . ,

∂H

∂pn
(q, p),−∂H

∂q1
(q, p), . . . ,−∂H

∂qn
(q, p)

)
=

(
∂H

∂p
(q, p),−∂H

∂q
(q, p)

)
.

The last line above uses a special notation that we will often find
convenient. Essentially ∂H/∂q and ∂H/∂p stand for the gradients of
H with respect to the q and p variables, respectively.

(3) If XH is a Hamiltonian vector field, the associated system of DEs is
called a Hamiltonian system. Thus,

(q̇, ṗ) = XH(q, p),

is the form for a typical Hamiltonian system. In terms of the definition
of XH , this system is

q̇ =
∂H

∂p
(q, p) (9.1)

ṗ = −∂H
∂q

(q, p). (9.2)

This is the form we will usually employ for a Hamiltonian system.
It is a system of 2n differential equations for 2n unknown functions.
Written out completely in component form it is

q̇1 =
∂H

∂p1
(q, p)

...

q̇n =
∂H

∂pn
(q, p)

ṗ1 = −∂H
∂q1

(q, p)

...

ṗn = −∂H
∂qn

(q, p).

The above exhibits clearly the special structure that Hamiltonian systems
have, but does little to motivate how such systems arise in physics and
what important additional features these systems possess by virtue of this
structure. Understanding of these latter things will come as we proceed.
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Example 9.1 Suppose n = 2, so that q = (q1, q2) and p = (p1, p2). Let
m,k be positive constants, and let H be the Hamiltonian defined by

H(q, p) =
|p|2
2m

− k

|q|

=
p2
1 + p2

2

2m
− k

(q21 + q22)1/2
.

The domain of H is O = (R2 \ {(0, 0)}) × R
2, and one easily computes:

∂H

∂p
(q, p) =

p

m

∂H

∂q
(q, p) =

kq

|q|3

Thus, the Hamiltonian system for this Hamiltonian is

q̇ =
p

m

ṗ = − kq

|q|3 . (9.3)

Using the first equation, we find that mq̈ = ṗ, and so from the second
equation we get the second-order system:

mq̈ = − kq

|q|3 . (9.4)

This is Newton’s second law for the motion of a particle of mass m attracted
toward the origin with a force of magnitude reciprocally proportional to
the square of the distance. The system (9.3) is Hamilton’s version of the
equations of motion and is (in a precise sense) equivalent to Newton’s 2nd
order system (9.4) (see the exercises).

As the above example and definitions show, Hamiltonian systems

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H
∂q

(q, p),
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are special is several respects. There are 2n equations for 2n unknown func-
tions: (q1, . . . , qn, p1, . . . , pn), and so Hamiltonian systems occur only in even
dimensions. In addition, a Hamiltonian system derives its particular form
from a Hamiltonian function: H : O ⊆ R

2n → R, and the phase space O
consists of points (q, p) with q = (q1, . . . , qn) ∈ R

n and p = (p1, . . . , pn) ∈ R
n.

As we shall see, in many important examples the q’s and p’s represent the
positions and momenta of a system of particles, while H is related to the
energy of the system. To explain this and also to motivate the techniques
to be used, we begin our study with 1-dimensional Hamiltonian systems (or
systems with 1-degree of freedom).

9.1 1-Dimensional Hamiltonian Systems
In the case when n = 1, the Hamiltonian H = H(q, p) is a function of two
variables (q, p) ∈ R

2 and the phase portrait for the corresponding Hamil-
tonian system is completely determined from the level curves of H in R

2 (as
we will see). In most physical examples, the integral curves, t → (q(t), p(t)),
represent a quantity connected with the motion of something. For example
q = q(t) can represent the position of a particle moving along a straight line,
or more generally a particle constrained to move on a given curve like the
ball in a hoop (pendulum) discussed in Chapter 1. For a ball in a hoop,
q(t) is the angular displacement of the ball from equilibrium at time t and,
even though the motion is in three dimensional space, the condition of being
restrained to the hoop reduces the description of the motion to the single
quantity q(t). Thus, the motion is said to have only one degree of freedom.
The quantity p = p(t) is usually either the rate of change of q (velocity) or
a multiple of this (momentum).

For the sake of concreteness, in this section q will represent the position of
a particle moving along a straight line and acted on by a force F directed also
along this line. Suppose the particle has mass m and let q(t) be its position
at time t. We start with Newton’s equations and derive the corresponding
Hamiltonian equations. You should realize that the resulting Hamiltonian
is not the most general type of Hamiltonian on R

2 but rather a special type
associated with conservative mechanical systems.

In the most general case for Newtonian motion, the force on the particle
depends on its position, its velocity, and the time: F = F (q, q̇, t), and the
motion is governed by:

mq̈ = F (q, q̇, t).
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In order to formulate this as a Hamiltonian system, we must restrict to the
special case where the force F is conservative. This, by definition, means
that it is independent of the time and velocities, and arises from a potential:

F (q) = −V ′(q).

The function V is called a potential function for F , and the minus sign in the
equation is inserted there for physical reasons. Note that the assumption that
F = −V ′ for some V , is equivalent to the assumption that F is continuous,
since then we can always construct a potential function by integration:

V (q) ≡ −
∫ q

q0

F (u)du,

where q0 is some point in the domain of F . This assertion is for 1-dimensional
systems only. In higher dimensions it is not true. In the 1-dimensional case
we get a Hamiltonian system for describing the motion as follows. Newton’s
equation is

mq̈ = −V ′(q),

and is second order, but if we introduce, or define, the momentum p of the
particle as being: p = mq̇, then we can rewrite Newton’s equation as a
first-order system:

q̇ = p/m (9.5)
ṗ = −V ′(q) (9.6)

These are Hamilton’s equations for the motion of the particle. Note
that going from Newton’s equation to Hamilton’s equations is similar to
the reduction-to-1st-order technique. This need not always be the case in
general. We see by inspection that (9.5)-(9.6) is a Hamiltonian system arising
from the Hamiltonian:

H(q, p) = p2/2m+ V (q),

since ∂H/∂p = p/m and −∂H/∂q = −V ′. The corresponding Hamiltonian
vector field on R

2 is:

XH(q, p) =
(
p/m, −V ′(q)

)
.

and the analysis of the phase portrait using the techniques from the previous
chapters is as follows.
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The fixed points (or equilibrium points) come from solving XH(q, p) = 0,
i.e.,

p = 0 zero momentum
−V ′(q) = 0 zero force

This is clear physically; if we start the particle with zero momentum (ve-
locity) from a point q where the force vanishes, then the particle will be
in equilibrium, i.e., remain there forever. Next we look at the linearization
technique. The Jacobian matrix of XH at any point (q, p) is:

A = X ′
H(q, p) =

[
0 1/m

−V ′′(q) 0

]
.

At a fixed point (q0, 0) there is in general no particular reduction in the form
of this matrix. The eigenvalues of A are determined from

det(A− λI) = λ2 + V ′′(q0)/m = 0.

Note that (q0, 0) is a nonsimple fixed point (i.e., det(A) = 0) if and only if
V ′′(q0) = 0. This case gives us no information. Otherwise, there are only
two possible type of simple, equilibrium points:

Fixed Points:

(1) (V ′′(q0) < 0). In this case the eigenvalues are λ = ±a (where a =
[−V ′′(q0)/m]1/2), and the fixed point is a saddle point and is unstable.

(2) (V ′′(q0) > 0). In this case the eigenvalues are λ = ±ai (where a =
[V ′′(q0)/m]1/2), and the fixed point is a possible center.

The possible center in Case (2) is an actual center because the Hamiltonian
H is a Liapunov function for the fixed point. To see this note that

∇H(q, p) =
(
V ′(q), p/m

)
,

and Thus, ∇H · XH = 0, everywhere on the domain of XH . Furthermore,
in Case (2), H has a local minimum at (q0, 0) since the Hessian of H:

HH =

[
V ′′(q0) 0

0 1/m

]
,
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is clearly positive definite. This establishes that the Hamiltonian is a Lia-
punov function for the fixed points where the potential V has local minima.

Based on this analysis, we can immediately determine the fixed points
and their type by looking at the graph of the potential function V . This is
illustrated in Figure 9.1.

Figure 9.1: Graph of the potential function V and determination of the fixed
points.

The fixed points occur along the q-axis (since p = 0 at a fixed point) at
positions q where V ′(q) = 0, i.e. where the tangent line to V is horizontal.
The type of fixed point, determined by the two cases above, depends on
whether V ′′(q) is negative (i.e. the graph of V is concave down at q) or
positive (i.e. the graph is concave up).

More complete information about the system and, in fact, an easy way
to sketch the phase portrait by hand, can be derived from the conservation
of energy principle.

9.1.1 Conservation of Energy

One way to derive the law for the conservation of energy in the 1-dimensional
Hamiltonian system is to go back to Newton’s version of the equation of
motion:

mq̈ = −V ′(q).

Supposing that q = q(t) is a solution of this and multiplying both sides of
the equation by q̇ gives

mq̈q̇ = −V ′(q)q̇.
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By the chain rule, this is the same as:

d

dt

(
mq̇2

2

)
=

d

dt

(
− V (q)

)
,

or
d

dt

(
mq̇2

2
+ V (q)

)
= 0.

Hence there is a constant E, such that:

mq̇2

2
+ V (q) = E.

This is the conservation of energy principle. To be more precise about it,
this principle says that if α : I → O ⊆ R is a solution of Newton’s equation
then there is a constant E such that:

m(α̇(t))2

2
+ V (α(t)) = E,

for every t ∈ I. The quantity m(α̇(t))2/2 is called the kinetic energy of the
particle at time t and is clearly always positive. The quantity V (α(t)) is the
potential energy of the particle at time t. The constant E is called the total
energy of the particle. Thus, as the particle moves about influenced by the
force F = −V ′, the kinetic and potential energies increase and decrease in
such a way as to have their sum always constant.

In addition to the physical significance of the conservation of energy
law, this law also gives us all the information we need to sketch the phase
portrait of the 1-dimensional Hamiltonian system. To see this we go over
to Hamilton’s point of view and rewrite the conservation of energy law with
q̇ = p/m to get:

p2/2m+ V (q) = E,

which you will recognize as being simply expressed in terms of the Hamil-
tonian by

H(q, p) = E.

To be more precise, if the curve: γ(t) = (α(t), β(t)), for t ∈ I, is a solution of
Hamilton’s equations (i.e., an integral curve of XH), then there is a constant
E such that:

H(α(t), β(t)) = E,
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for all t ∈ I. Of course since β(t) = mα̇(t), this last relationship is the same
as before, but now we have the important interpretation that each integral
curve of XH lies on one of the level curves of the Hamiltonian function H.
Thus, to get the phase portrait, it suffices to graph the level curves of H in
the q-p plane. Because of the special form of the Hamiltonian we are using
here, graphing these curves is actually quite easy. Thus, the level curves are
the graphs of the equation

p2/2m+ V (q) = E,

for various values of E. For a given value of E, we can rearrange this
equation and express p as a function of q. (Actually there are two functions
of q involved, depending on the choice of the ± sign.):

p = f±(q) ≡ ±
√

2m
√
E − V (q).

The domain of each of these functions is the set {q |V (q) ≤ E}, and the first
derivative is

dp

dq
=

±
√

2m
2

−V ′(q)√
E − V (q)

.

This shows that these functions have horizontal tangent lines at the same
positions q that −V does, and that they have vertical tangent lines for those
q such that V (q) = E and V ′(q) 
= 0. Using this, we obtain the graph of the
level curves as follows.

Suppose the potential V has graph as shown in Figure 9.1. The graph
of p = E − V (q) is obtained by flipping the graph of p = V (q) over and
translating it by the amount E.

The desired graphs of f+(q) =
√

2m
√
E − V (q) is qualitatively very

similar to that of p = E − V (q), except you must take into account the
restrictions on the domain of f+ and the introduction of vertical tangent
lines. The graphs of f± are shown in Figure 9.2 for one choice of E.

By repeating this process for several values of E we obtain the plots of
the level curves of H as shown in Figure 9.3.

The figure also shows the direction of flow of each integral curve on its
corresponding level curve. This direction can be determined from looking at
the direction of the vector:

XH(q, p) = (p/m,−V ′(q)),

at various points along the level curves. This vector is tangent to the level
curve through (q, p) and, according to the above formula, has its horizontal
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Figure 9.2: Graphs of the two branches f± of a level curve for H.

component pointing in the positive or negative direction depending whether
p is positive or negative.

It is important to interpret the integral curves shown above in terms of
the actual motion of a particle in 1-dimension, with q(t) giving its position
on the q-axis (the horizontal axis) at time t. For convenience, we take the
mass m = 1, so that p(t) = q̇(t) is the velocity of the particle. Figure 9.4
shows some selected points for the analysis.

Initial point A represents a particle that starts in a position just to the
left of the stable equilibrium point (the center point) with initial velocity
in the positive direction. The particle will oscillate periodically about the
equilibrium point, achieving its maximum separation from it when its veloc-
ity is zero and achieving its maximum velocity each time it passes through
the stable equilibrium. Initial point B gives a similar particle motion except
that it initially moves away from the equilibrium point and separates further
from it than the one for point A.

Point C is on a separatrix and represents a particle starting to the left
of the stable equilibrium and given just the right amount of velocity in the
positive direction so that it passes only once through that equilibrium and
thereafter approaches the unstable equilibrium with decreasing speed, taking
forever to reach it. By contrast, point D represents a particle that starts
further to the left of the stable equilibrium, but has sufficient initial velocity
so that it passes through both equilibrium points (once) and escapes to
infinity.
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Figure 9.3: Graphs of the level curves of H

Figure 9.4: Selected initial points for integral curves of the system.

Point E represents a particle that starts to the right of the unstable
equilibrium and has initial velocity in the positive direction. It moves directly
off to infinity. Point F is similar except that the corresponding particle
has initial velocity in the negative direction. It moves toward the unstable
equilibrium point, slows down, turns around (when q̇ = 0), and then moves
off to infinity.

In describing the motion as we did above it is often helpful to think in
terms of a “ball rolling on the potential curve.” This means that we view
the graph of the potential function V as a mountain slope on which a ball
is constrained to roll (with no friction). See Figure 9.5.

Placing the ball anywhere on the slope and giving it some (perhaps none)
initial velocity (uphill or downhill) will produce a rolling motion that is qual-
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Figure 9.5: A ball constrained to roll on the graph of V .

itatively similar to the particle motions described in the above paragraphs.
For example, placing the ball at position A on the slope and giving it a small
downhill velocity will make the ball roll back and forth through the valley,
with its maximum separation from the valley floor a little higher up than its
initial position A. In contrast, placing the ball in position F on the slope
and giving it a relatively small uphill velocity will make it roll up toward the
peak, losing speed as it goes before turning around and rolling all the way
back downhill.

With this “ball on a curve” analogy, it is easy to distinguish the stable and
unstable equilibrium points—they correspond, respectively, to the valleys
and peaks on the graph of V . It is also instructive to use the analogy to
explain the motion corresponding to integral curves that are separatrices
(remembering that there is no friction). This is left as an exercise.

All the results developed above for the special 1-dimensional Hamiltonian
system (9.5)-(9.6), also apply to the general 1-dimensional Hamiltonian sys-
tem:

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H
∂q

(q, p).

(Of course, the graphical techniques that rely on the potential function V do
not apply in the general case). The results for 1-degree of freedom also extend
to the general Hamiltonian system with n-degrees of freedom (except that
the visualization techniques are severely limited). We turn to a discussion
of this now.
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Exercises 9.1
1. (1-Dimensional Systems) Consider the Hamiltonian systems with Hamil-

tonian H(q, p) = p2/(2m) + V (q), where V : U → R is one of the potential
functions given below. For each of the ones assigned to you do the following:

(i) Graph V (q) and−V (q) versus q.

(ii) Sketch the phase portrait (by hand). Label and identify all fixed points
and mark the directions on the integral curves. Be sure to sketch the
separatrices (if any occur).

(iii) Describe the motions associated with the various types of integral curves
in the phase portrait. The motion is for a particle moving horizontally
on the q axis with q(t) representing its position at time t. You may take
m = 1. For the description, it helps to think in terms of the “ball on
the curve” analogy. Be sure to describe all the different sorts of motion,
especially those corresponding to separatrices (if any occur).

The potential functions are:

(a) V (q) = −2q + q4, on U = R.

(b) V (q) = 2q − q4, on U = R.

(c) V (q) = q−1, on U = (0,∞).

(d) V (q) = q3, on U = R.

(e) V (q) = −q3, on U = R.

(f) V (q) =
1

q(q − 1)
, on U = (0, 1).

(g) V (q) =
1

q(1 − q)
, on U = (0, 1).

(h) V as shown on the left in Figure 9.6.

(i) V as shown on the right in Figure 9.6. Note the horizontal and vertical
axes are suppose to be asymptotes for V .

2. Use a computer to graph the potential function V and the level curves of the
Hamiltonian H(q, p) = p2/(2m) + V (q). (Take m = 1.)

(a) V (q) = q + sin q, on U = R.

(b) V (q) = q + 4 sin q, on U = R.

(c) V (q) = 3q2 − 2q3, on U = R.

(d) V (q) = 6q + 3q2 − 2q3, on U = R.

(e) V (q) = sin q, on U = R.

(f) e−q sin(6q), on U = R.
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Figure 9.6: Graphs of two potential functions V

3. (Conservative N-body Systems) Consider a system of N bodies (or par-
ticles) with masses m1, . . . ,mN and positions r1(t), . . . , rN (t) at time t. Here
each ri(t) = (xi(t), yi(t), zi(t)) ∈ R

3, and for convenience we use the notation

r ≡ ( r1, . . . , rN ) ∈ R
3 × · · · × R

3 = R
3N
.

The general form of the equations of motion for the system, governed by
Newton’s 2nd law, was given and discussed in detail in Chapter 8. A special
case of this is when the forces acting on each body come from a potential
function V : U :→ R, where U is an open subset of R

3N . Then the equations
of motion have the form

mir̈i = − ∂V

∂ri
(r),

for i = 1, . . . , N . Note: The notation with the partial derivative above means

∂V

∂ri
(r) ≡ −

(
∂V

∂xi
(r),

∂V

∂yi
(r),

∂V

∂zi
(r),

)
.

This system of differential equations is known as a conservative N-body sys-
tem. Show that the corresponding 1st-order system of DEs is equivalent to
a Hamiltonian system. Suggestion: Introduce the momenta pi ≡ miṙi, i =
1, . . . , N , and let

q = r = (r1, . . . , rN ), p = (p1, . . . ,pN ).

Then determine an appropriate Hamiltonian H = H(q, p) on O = U × R
3N .



9.2. Conservation Laws and Poisson Brackets 489

9.2 Conservation Laws and Poisson Brackets
As we have seen the law for the conservation of energy was instrumental for
our understanding of 1-D Hamiltonian systems. For n-dimensional Hamil-
tonian systems this conservation law is also helpful, but because of the added
dimensions, additional conservation laws, as well as other information, are
needed to fully understand the system.

Recall that if H : O → R is a function (Hamiltonian) on an open subset
O ⊆ R

2n, then the corresponding Hamiltonian vector field on O is:

XH(q, p) =
(
∂H

∂p
(q, p),−∂H

∂q
(q, p)

)
=

(
∂H

∂p1
(q, p), · · · , ∂H

∂pn
(q, p),−∂H

∂q1
(q, p), · · · − ∂H

∂qn
(q, p)

)
We will almost always use the abbreviated form of XH given in the first equa-
tion above. It’s easy to see that XH can also be expressed in the following
form, which will be convenient to use from time to time:

XH = J∇H.

Here ∇H = ( ∂H/∂q, ∂H/∂p ) is the gradient of H (written in the previous
shorthand notation), and J is the 2n × 2n matrix:

J =

[
0 I
−I 0

]
. (9.7)

This gives J in terms of four blocks of sub matrices, with 0 being the n× n
zero matrix and I being the n × n identity matrix. J is called a symplectic
structure on R

2n.

Important Note: We have often identified the gradient ∇H with the Ja-
cobian matrix H ′. The latter, as defined in Appendix A, is a 1× 2n matrix.
However, to conform to the usage of ∇H in specific equations involving
matrix multiplication, we must use

∇H ≡ (H ′)T ,

as the definition of the gradient. Thus, XH = J∇H is a product of a 2n×2n
matrix and a 2n× 1 matrix.
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There is a standard bilinear form Ω : R
2n × R

2n → R associated with J .
It is called the canonical symplectic form on R

2n and is defined by

Ω(v,w) = v · Jw,
for v,w ∈ R

2n. This makes R
2n into what is known as a symplectic vector

space (and also a symplectic manifold). The ideas involved here have been
abstracted and generalized in many directions and have become an important
field of study in mathematics (cf. [LM 87], [ABK 92], [AM 78]). The material
below will give an indication of the main concepts, however for simplicity we
will, for the most part, not use Ω in the notation, but rather just write the
expressions with J and the standard dot product on R

2n

The first result we present is the basic conservation law associated with
any Hamiltonian system:

Proposition 9.1 (Conservation of Energy) Suppose t → (q(t), p(t)), for
t ∈ I is an integral curve of the Hamiltonian system (9.1)-(9.2). Then there
exists a constant E such that:

H(q(t), p(t)) = E,

for all t ∈ I.

Proof: The proof is elementary and just amounts to using the assumption
that t → (q(t), p(t)) is an integral curve. In terms of components this means
that for each j = 1, . . . , n, and t ∈ I:

q̇j(t) =
∂H

∂pj
(q(t), p(t))

ṗj(t) = −∂H
∂qj

(q(t), p(t)).

Now suppose F : O → R is any differentiable function, and suppose we
calculate the rate of change of F along the given integral curve. Using the
above and the chain rule we find:

d

dt
F (q(t), p(t)) (9.8)

=
n∑

j=1

∂F

∂qj
(q(t), p(t))q̇j(t) +

∂F

∂pj
(q(t), p(t))ṗj(t)

=
n∑

j=1

∂F

∂qj
(q(t), p(t))

∂H

∂pj
(q(t), p(t)) − ∂F

∂pj
(q(t), p(t))

∂H

∂qj
(q(t), p(t)).
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This is a general result that we will need later. For the case at hand, we see
that taking F = H in this identity gives:

d

dt
H

(
q(t), p(t)

)
= 0.

Thus, the composite function H(q(t), p(t)), t ∈ I is a constant function, say
= E, on I.

A geometrical interpretation of the proposition is this: each integral
curve of a Hamiltonian system lies on one of the level hypersurfaces of the
Hamiltonian, i.e., the trajectory traced out in phase space by an integral
curve t → (q(t), p(t)) lies in the set:

SE
H = {(q, p) ∈ O |H(q, p) = E}.

This hypersurface is called an energy hypersurface for the system, and gen-
erally has dimension 2n − 1 as a submanifold of R

2n. Since the image of
each integral curve is a 1-dimensional submanifold of R

2n, the conservation
of energy principle does not place enough restrictions on an integral curve
to fully determine it. The exception to this is of course for n = 1, where the
fact that each integral curve lies on a level curve of H fully determines all the
integral curves. This suggests that for n > 1 we should look for additional
conservation laws.

Because of the form of the conservation law: H(q(t), p(t)) = E for all
t ∈ I, the Hamiltonian H is called a constant of the motion (it has a constant
value along any integral curve). So the search for other conservation laws,
or constants of the motion, amounts to looking for such special functions.

Definition 9.2 (The Poisson Bracket) For a given Hamiltonian system
on O ⊆ R

2n:

(1) A constant of the motion is a differentiable function F : U ⊆ O → R,
defined on an open dense set U , with the property: for each integral
curve (q(t), p(t)), t ∈ I, that lies in U , there exists a constant K such
that

F (q(t), p(t)) = K,

for all t ∈ I. The above equation is called the conservation law cor-
responding to the constant of the motion F . The function F is also
known as a first integral for the Hamiltonian system. This concept is
discussed in general in Chapter 7.
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(2) For two functions F,G : U ⊆ O → R. the Poisson bracket of F and G
is the function {F,G} on U defined by:

{F,G} =
n∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
(9.9)

Based on the computation given in equation (9.8), we easily obtain the
results in the following corollary:

Corollary 9.1 Suppose H : O → R is a Hamiltonian and (q(t), p(t)), t ∈ I
is an integral curve of the corresponding Hamiltonian system. Then for any
differentiable function F : O → R, one has

d

dt
F (q(t), p(t)) = {F,H}(q(t), p(t)),

for every t ∈ I. From this it follows that F is a constant of the motion if
and only if

{F,H} = 0,

identically on O.

Proof: Exercise.

The corollary is the first indication of how important the Poisson bracket
is in the theory of Hamiltonian systems. Other results below will add more
weight to this assertion. From an algebraic point of view, the Poisson bracket
is interesting as well. It provides an exotic way of combining two functions
F,G, to produce a new function {F,G} and thus gives a product structure
on the set of functions.

Specifically, let C∞(O) be the set of all infinitely differentiable, real-
valued functions on O, endowed with the usual addition: F +G of functions,
and scalar multiplication: λF . Then the Poisson bracket

{ · , · } : C∞(O) ×C∞(O) → C∞(O),

gives a binary operation on this set and has the following properties:

For E,F,G differentiable functions on O, and any scalar λ one has:

(1) Antisymmetry: {F,G} = −{G,F}
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(2) Bilinearity:

(a) {E+F,G} = {E,G}+{F,G} and {E,F +G} = {E,F}+{E,G}.
(b) {λF,G} = λ{F,G} and {F, λG} = λ{F,G}.

(3) Jacobi Identity:

{E, {F,G}} + {F, {G,E}} + {G, {E,F}} = 0.

These properties make C∞(O) into a standard example of what is known as
a Lie algebra. (See the exercises in the next section for an abstract definition
of a Lie algebra.) More importantly, the subset

CH = {F | {F,H} = 0},

of all constants of the motion determined by the Hamiltonian H is a Lie
subalgebra of C∞(O). This is so because if F and G are constants of the
motion then so are F +G,λF , and {F,G} (exercise).

The criterion {F,H} = 0 in Corollary 9.1 for determining constants of
the motion can be interpreted as a partial differential equation:

n∑
j=1

(
∂F

∂qj

∂H

∂pj
− ∂F

∂pj

∂H

∂qj

)
= 0, (9.10)

that the constants of the motion F must satisfy. In the equation H is a given
Hamiltonian and the equation specifies a relation that the partial derivatives
of F must satisfy. Generally, constants of the motion are hard to determine,
primarily because of the difficulty of describing the general solution of (9.10).
However, the following formula, relating the Poisson bracket to the symplec-
tic structure, is often useful in this task.

Proposition 9.2 The Poisson bracket of H,F : O → R is given by

{F,H} = ∇F · J∇H = ∇F ·XH . (9.11)

Using the proposition, it is easy to see that finding solutions F of {F,H} =
0 is equivalent to finding functions F whose gradients are perpendicular to
the Hamiltonian vector field: ∇F ·XH = 0. This is often a convenient way
to view constants of the motion.
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Example 9.2 (Two Coupled Masses) Consider the system of two masses
from Example 4.7, where the masses are equal, m1 = 1 = m2, and the three
springs all have the same spring constant, ki = 1, i = 1, 2, 3. Newton’s
equations for the motion are

q̈1 = −2q1 + q2 (9.12)
q̈2 = q1 − 2q2. (9.13)

With q = (q1, q2) and p = (p1, p2), we let H : R
4 → R be the Hamiltonian

function defined by

H(q, p) = 1
2(p

2
1 + p2

2) + q21 + q22 − q1q2.

Then it is easy to calculate that the corresponding Hamiltonian vector field
is

XH =
(
p1, p2, −2q1 + q2, q1 − 2q2

)
.

Thus, the Hamiltonian system for XH is the equivalent 1st-order system for
Newton’s 2nd-order system. Define F1, F2 : R

4 → R, by

F1(q, p) = 1
4(p1 + p2)2 + 1

4(q1 + q2)2 (9.14)
F2(q, p) = 1

4(p1 − p2)2 + 3
4(q1 − q2)2. (9.15)

Then it is easy to check that {Fi,H} = ∇Fi · XH = 0, for i = 1, 2, and so
F1, F2 are constants of the motion (exercise). It is also easy to verify that
{F1, F2} = ∇F1 ·XF2 = 0, and that ∇F1,∇F2 are linearly independent (in
fact, perpendicular) at each point (exercise).

A more important interpretation of Corollary 9.1 (and Proposition 9.2)
involves the constraint that the conservation law imposes on the possible
motions of the system. From a geometrical standpoint, each constant of the
motion constrains the motion of the Hamiltonian system to lie on a level set
(also called a level hypersurface) in phase space. Thus, if F is a constant of
the motion and c is a number in the range of F , then the level set:

Sc
F = { (q, p) ∈ O | F (q, p) = c },

is a (2n − 1)-dimensional submanifold (with suitable conditions on F ) and
for each point (q, p) ∈ Sc

F , the integral curve through (q, p) lies entirely on
this submanifold: φt(q, p) ∈ Sc

F , for every t ∈ I(q,p). The assertion about Sc
F
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being a submanifold requires the proviso that the gradient of F be nonzero
at each point of Sc

F and follows from the Submanifold Theorem in Appendix
A.

If, in addition to the Hamiltonian F1 = H, the system has other con-
stants of the motion: F2, . . . , Fk, then each integral curve of the system is
constrained to lie on level sets Fi = ci, for i = 1, . . . k, and thus must lie on
the intersection of these sets:

Sc1···ck
F1···Fk

≡ Sc1
F1

∩ · · · ∩ Sck
Fk
.

If we assume that the functions F1, . . . , Fk are functionally independent, then,
the Submanifold Theorem says that the set Sc1···ck

F1···Fk
is a (2n−k)-dimensional

manifold. Thus, functionally independent constants of the motion constrain
the motion of the system to a particular lower dimensional manifold in phase
space. The definition of independence for functions is as follows.

Definition 9.3 (Functional Independence)

(1) Functions F1, . . . , Fk : O → R on phase space are called functionally
independent on an open set U ⊆ O if at each point (q, p) ∈ U , the
vectors:

∇F1(q, p), . . . ,∇Fk(q, p),

are linearly independent.

(2) The functions: F1, . . . , Fk are said to be in involution on U if

{Fi, Fj} = 0,

for every i, j = 1. . . . , k.

(3) If F : O → R is a function on phase space, with corresponding Hamil-
tonian vector field:

XF = J∇F = (
∂F

∂p
,−∂F

∂q
),

then, for convenience in the sequel, we will let the flow generated by
XF be denoted by φF
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While the notion of independence for functions applies quite generally,
in the Hamiltonian setting it is easy to see that F1, . . . , Fk are functionally
independent if and only if the vector fields XF1 , . . . ,XFk

are linearly inde-
pendent at each point (exercise). Also observe that for each i = 1, . . . , k, the
gradient vector ∇Fi is perpendicular to the level surface Sci

Fi
at each point

(we assume that the gradient is nonzero along this surface). But by formula
(9.11) for the Poisson bracket, we have

∇Fi ·XFi = {Fi, Fi} = 0,

and so it follows that XFi is tangent to the surface Sci
Fi

. Furthermore if
F1, . . . , Fk are in involution, we have in addition that

∇Fj ·XFi = {Fj , Fi} = 0,

for each i, j, and at each point. Thus, not only is each XFi tangent to Sci
Fi

,
but also is tangent to each S

cj

Fj
, for each j 
= i. Consequently, each XFi is

tangent to the submanifold Sc1···ck
F1···Fk

. Summarizing this discussion, we get:

Theorem 9.1 Suppose F1, . . . , Fk are constants of the motion for the Hamil-
tonian system: (q̇, ṗ) = XH(q, p), and suppose that on an open set U ⊆ O
these functions are

(1) functionally independent, and

(2) in involution: {Fi, Fj} = 0, ∀i, j = 1, . . . , k.

Then for values: c1, . . . , ck of these functions respectively, the set:

Sc1···ck
F1···Fk

= { (q, p) ∈ U |Fi(q, p) = ci, i = 1, . . . , k },

is a (2n − k)-dimensional submanifold of R
2n, which contains all the inte-

gral curves: φFi
t (q, p), t ∈ I(q,p), that start at points (q, p) ∈ Sc1···ck

F1···Fk
. In

particular, the Hamiltonian flow lies on this submanifold.
Furthermore, the vector fields XF1 , · · · ,XFk

are linearly independent and
tangent to Sc1···ck

F1···Fk
at each of its points. Consequently, k ≤ n (since k ≤

2n− k).

The theorem indicates that we can hope to obtain at most n functionally
independent constants of the motion that are in involution. This is the
optimum case and is exceptional enough to warrant a special name.
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Definition 9.4 (Completely Integrable Systems) For a given Hamil-
tonian H : O ⊆ R

2n → R, suppose F1 = H,F2, . . . , Fn are constants of the
motion which, on U ⊆ O, are functionally independent and in involution.
Then the corresponding Hamiltonian system is called completely integrable,
or more briefly: integrable.

Note that for n = 1, any Hamiltonian system is completely integrable.
The coupled springs model in Example 11.2 is a standard example of a
completely integrable Hamiltonian system. Each integral curve of the system
is constrained to move on a two dimensional submanifold of R

4 defined by
the equations

1
4(p1 + p2)2 + 1

4(q1 + q2)2 = c1 (9.16)
1
4(p1 − p2)2 + 3

4(q1 − q2)2 = c2. (9.17)

The name completely integrable system comes from a classical result of
Liouville that such systems can be “solved completely by means of quadra-
tures, i.e., integrations.” The term integrable systems is often used in the
literature for completely integrable systems. However, as noted in Chapter
7, the term integrable system is used in another (but related) way for gen-
eral systems of 1st-order equations. The result of Liouville (See Theorem
9.5 below) shows the extent to which a completely integrable Hamiltonian
system is integrable in the sense of Chapter 7.

In addition to the assertions in the above theorem and Liouville’s re-
sult, we discuss two other topics on completely integrable systems: invari-
ance of complete integrability under canonical transformations and Arnold’s
theorem, which says that for a completely integrable system, the manifold
Sc1···cn

F1···Fn
, if it is compact and connected, is diffeomorphic to the n torus Tn.

In general a diffeomorphism will not transform a Hamiltonian system
into another Hamiltonian system. However, there is a special class of diffeo-
morphism which do, and because of this they deserve a special name.

Definition 9.5 (Canonical Transformations) Suppose f : O → O is a
diffeomorphism between open sets O,O in R

2n. Then f is called a canonical
transformation (or a symplectic transformation) if

f ′(x)J f ′(x)T = J, (9.18)

for every x ∈ O. Here AT denotes the transpose of the matrix A and J is
the canonical symplectic matrix in (9.7).
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The more modern term for such transformations is symplectic transforma-
tion, or symplectomorphism, because they preserve the symplectic structure
(see the Exercises).

Example 9.3 (Symplectic Matrices) Suppose f : R
2n → R

2n is linear
transformation, f(x) = Ax, for some 2n× 2n matrix. Then since f ′(x) = A
for every x ∈ R

2n, it follows that the condition (9.18) reduces to the condition

AJAT = J,

for linear transformations. A matrix A that satisfies this is called a symplectic
matrix. It is easy to show that a symplectic matrix is invertible (see the
exercises) and thus a linear transformation is a canonical transformation if
and only if it is represented by a symplectic matrix.

A commonly occuring type of symplectic matrix is a block diagonal ma-
trix of the form

A =

[
B 0
0 E

]
, (9.19)

where B,E are n × n matrices and 0 is the n × n zero matrix. It is easy
to verify that a matrix of this form is symplectic if and only if BET = I
(exercise). Thus, in particular ifB = Q and E = Q, whereQ is an orthogonal
matrix, then A is a symplectic matrix.

The following theorem shows that symplectic transformations preserve
Poisson brackets as well as the Hamiltonian nature of Hamiltonian systems
(the latter being the motive for their definition).

Theorem 9.2 Suppose f : O → O is a canonical transformation between
open sets of R

2n. Then f transforms Hamiltonian vector fields into Hamil-
tonian vector fields. Specifically,

f∗(XH) = XH ◦ f−1 , (9.20)

for any differentiable function H : O → R. Furthermore f preserves the
Poisson bracket, i.e.:

{F ◦ f−1,H ◦ f−1} = {F,H} ◦ f−1, (9.21)

for any differentiable functions F,H : O → R.
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Proof: The proof will be an easy consequence of the chain rule and the
definitions. Note also that we use the definition of the gradient mentioned
above: ∇H ≡ (H ′)T .

First consider the push-forward of XH by f . A direct calculation gives

f∗(XH) = (f ′ ◦ f−1) (XH ◦ f−1)
= (f ′ ◦ f−1)J ((H ′)T ◦ f−1)
= (f ′ ◦ f−1)J (f ′ ◦ f−1)T (f ′ ◦ f−1)−T (H ′ ◦ f−1)T

= J (f ′ ◦ f−1)−T (H ′ ◦ f−1)T

= J
(
(H ′ ◦ f−1) (f ′ ◦ f−1)−1

)T

= J ((H ◦ f−1)′)T

= XH◦f−1

To prove the second assertion about the Poisson bracket, it will be convenient
to let g = f−1. Note that g is also a canonical transformation (exercise) and
so g′J(g′)T = J . Then using formula (9.11), we get

{F ◦ g,H ◦ g} = ((F ◦ g)′)T · J ((H ◦ g)′)T

= ((F ′ ◦ g) g′)T · J ((H ′ ◦ g) g′)T

= (g′)T (F ′ ◦ g)T · J (g′)T (H ′ ◦ g)T

= (F ′ ◦ g)T · g′J(g′)T (H ′ ◦ g)T

= (F ′ ◦ g)T · J (H ′ ◦ g)T

= {F,H} ◦ g

This proves the theorem.

Corollary 9.2 If f : O → O is a canonical transformation, then any Hamil-
tonian system ẋ = XH(x), is differentiably equivalent to the Hamiltonian
system ẋ = XH◦f−1(x). Furthermore, for any F

{F,H} = 0,

if and only if
{F ◦ f−1,H ◦ f−1} = 0,

and consequently the Hamiltonian system with vector field XH is completely
integrable if and only if the one with vector field XH ◦ f−1 is.
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As in the general theory for transforming differential equations, the mo-
tivation behind canonical transformations is to use them for transforming
Hamiltonian systems into simpler Hamiltonian systems.

Example 9.4 Consider the coupled masses system in Example 9.2. New-
ton’s equations of motion are r̈ = Lr, where

L =

[
−2 1
1 −2

]
,

and we can use L to write the Hamiltonian for the system as

H(q, p) = 1
2(p

2
1 + p2

2) + q21 + q22 − q1q2

= 1
2 (p · p) − 1

2(q · Lq),

This form of the Hamiltonian suggests transforming to principal axes (Ap-
pendix C), i.e., diagonalizing L. For this let Q be the 2 × 2 orthogonal
matrix

Q = 2−1/2

[
1 1
1 −1

]
,

formed from the normal mode vectors (cf. Example 5.7 in Chapter 5). Then
QTLQ = diag(−1,−3). Note also that Q−1 = QT = Q for this matrix.
Thus, if we let f : R

4 → R
4, be the linear transformation:

f(q, p) = (Qq, Qp ) =

[
Q 0
0 Q

] [
q
p

]
,

then f is a canonical transformation and f−1 = f . Hence we get a new
Hamiltonian

H̃(q, p) = H(Qq,Qp) = 1
2(p

2
1 + p2

2) + 1
2q

2
1 + 3

2q
2
2,

that has a much simpler form and is equivalent, in the sense of the above
corollary, to the original one. The two constants of the motion F1, F2 for H
used in Example 11.2, transform into constants of the motion for H̃:

F̃1 = 1
2p

2
1 + 1

2q
2
1

F̃2 = 1
2p

2
2 + 3

2q
2
2.

Of course if we had used the simpler Hamiltonian H̃ from the start, the
determination of these constants of the motion would have been easy.
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Exercises 9.2
1. Prove Corollary 9.1. Be precise. You will have to use the Existence and

Uniqueness Theorem from Chapter 3 at some point in your proof.

2. Prove that F1, . . . , Fk are functionally independent on U ⊆ O if and only if
XF1(q, p), . . . , XFk

(q, p) are linearly independent at each point (q, p) ∈ U .

3. Suppose F,G : U ⊆ O → R are constants of the motion and λ ∈ R. Use the
Poisson bracket and its properties to show that F + G, λF , and {F,G} are
constants of the motion.

4. For the Hamiltonian H and functions F1, F2 in Example 9.2, show that
{Fi, H} = ∇Fi ·XH = 0, for i = 1, 2. Also show that {F1, F2} = ∇F1 ·XF2 =
0, and that ∇F1,∇F2 are linearly independent.

5. (The Toda Molecule) Let H : R
6 → R be the Hamiltonian

H(q, p) = 1
2 (p2

1 + p2
2 + p2

3) + eq1−q2 + eq2−q3 + eq3−q1 .

Consider the following two functions on R
6:

F1(q, p) = p1 + p2 + p3,

and

F2(q, p) = 1
9 (p1 + p2 − 2p3)(p2 + p3 − 2p1)(p3 + p1 − 2p2)
− (p1 + p2 − 2p3)eq1−q2 − (p2 + p3 − 2p1)eq2−q3

− (p3 + p1 − 2p2)eq3−q1 ,

Show that the Hamiltonian system ẋ = XH(x) is completely integrable by
verifying that {F1, H} = 0, {F2, H} = 0, {F1, F2} = 0, and H,F1, F2 are
functionally independent. You can use Maple’s symbolic manipulations ca-
pabilities for this if you wish.

6. (N Coupled Masses) Generalize the result discussed in Example 9.4, by
considering a system of N masses, with identical mass: mi = 1, i = 1, . . . , N ,
coupled byN+1 springs, as shown in Figure 4.17, and ki = 1, i = 1, . . . , N+1.
The corresponding matrix A is the tridiagonal matrix discussed in Exercise 11
of Section 4.4. Use the results of that exercise to show that the Hamiltonian
system governing the motion of the masses is completely integrable. Give
the expressions for both Hamiltonians H, H̃, and the constants of the motion
F̃i, i = 1, . . . , N , that make H̃ completely integrable.

7. (Symplectic Matrices) Denote the set of all symplectic matrices by

Sp(n) = {A ∈ M2n |AJAT = J }.

Prove the following results.
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(a) J2 = −I and det(J) = −1.

(b) If A is symplectic, then detA = ±1. Thus, A is invertible and A−1 is
symplectic.

(c) A is symplectic if and only if ATJA = J . This is the customary defin-
ition. We used the one above since it was more convenient for proving
Theorem 9.2. Hint: Start with the assumption AJAT = J and multiply
each side on the left by J .

(d) A is symplectic if and only AT is.

These results say, among other things, that Sp(n) is a group, called the
symplectic group, under matrix multiplication.

8. Suppose A is a 2n× 2n matrix of the form

A =
[
B C
D E

]
,

where B,C,D, and E are n × n matrices. Show that A is symplectic if and
only if BTD and CTE are symmetric matrices and BTE −DTC = I. Note:
This is easiest if you use ATJA = J as the defining relation for a symplectic
matrix. See the previous exercise. It is important to note that in the case
n = 1, the matrix A is 2×2 and the above conditions say that A is symplectic
if and only if det(A) = 1.

9. Suppose f : O → O is a canonical transformation. Show that f−1 is also a
canonical transformation.

10. Let Ω(v, w) = v · Jw be the canonical symplectic form on R
2n. A linear

transformation A : R
2n → R

2n is said to preserve the symplectic structure
of the symplectic vector space (R2n

,Ω), if Ω(Av,Aw) = Ω(v, w), for every
v, w ∈ R

2n. Show that A preserves the symplectic structure if and only if A is
a symplectic matrix. More generally, a diffeomorphism f : O → O, between
two open subsets O,O of R

2n is said to preserve the symplectic structure if
f∗(Ω) = Ω. This latter condition means, by definition, that

Ω
(
f∗(X)(f−1(u)), f∗(Y )(f−1(u))

)
= Ω(X(u), Y (u)),

for any two vector fields X,Y : O → R
2n, and for all u ∈ O. Show that f

preserves the symplectic structure if and only if A = f ′(x) is a symplectic
matrix for all x ∈ O.

9.3 Lie Brackets and Arnold’s Theorem
The Lie bracket of two vector fields is an important type of operation (nonas-
sociative product) and occurs in several fields of study. The definition of this
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bracket is as follows. Suppose X,Y : O ⊆ R
n → R

n are two vector fields
with components: X = (X1, . . . ,Xn) and Y = (Y 1, . . . , Y n), respectively.
Then the Lie bracket of X with Y is the vector field [X,Y ] on O whose ith
component function is:

[X,Y ]i =
n∑

j=1

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
. (9.22)

One can verify that the Lie bracket has the following properties:

(1) Antisymmetry: [X,Y ] = −[Y,X].

(2) Bilinearity:

(a) [X + Y,Z] = [X,Z] + [Y,Z] and [X,Y + Z] = [X,Y ] + [X,Z].

(b) [λX, Y ] = λ[X,Y ] = [X,λY ].

(3) Jacobi Identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

With this bracket as a nonassociative product, the collection of all (smooth)
vector fields on O becomes a Lie algebra. This is what the above three
properties say. These properties are considerably easier to verify (especially
the Jacobi identity) if we make the following observations. Each vector field
X = (X1, . . . ,Xn) gives rise a differential operator, also denoted by X:

X =
n∑

i=1

Xi ∂

∂xi
. (9.23)

This operator acts on a differentiable function f : O → R, to give a new
function X(f) defined by:

X(f) =
n∑

i=1

Xi ∂f

∂xi
.

Using this association, or different way of viewing vector fields, it’s not hard
to show from the above definition that

[X,Y ](f) = X(Y (f)) − Y (X(f)). (9.24)
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Alternatively, this could be taken as the definition of [X,Y ], from which the
above component expression could be derived.

In terms of differential operators, we see that the Lie bracket [X,Y ] =
XY − Y X measures the extent to which these operators do not commute.
By definition, the operators X,Y commute when their Lie bracket vanishes:
[X,Y ] = 0. This is related to the commutativity of the corresponding flows
as the following theorem shows.

Theorem 9.3 Suppose X and Y are complete vector fields on O ⊆ R
n,

and let φt, ψt denote the corresponding flows generated by X,Y , respectively.
Then the following are equivalent:

(1) φt ◦ ψs = ψs ◦ φt, for every t, s.

(2) (ψs)∗(X) = X, for every s.

(3) [X,Y ] = 0.

Proof: Recall the notation: φt(x) = φ(t, x), ψs(x) = ψ(s, x), for the flows
and the fact that they satisfy:

d

dt
φt(x) = X(φt(x))

d

ds
ψs(x) = Y (ψs(x))

Using this and the chain rule gives the identity:

d

dt
ψs(φt(x)) = ψ′

s(φt(x))X(φt(x)) (9.25)

From these identities, we get the proof of the implications as follows.
(1) =⇒ (2). If we differentiate both sides of the equation: φt(ψs(x)) =
ψs(φt(x)) with respect to t, and use identity (9.25) we get

X(φt(ψs(x))) = ψ′
s(φt(x))X(φt(x)).

Taking t = 0 in this gives

X(ψs(x)) = ψ′
s(x)X(x).

Substituting: x = ψ−s(y) = ψ−1
s (y) shows that (2) holds.
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(2) =⇒ (3) An equivalent version of (2) is

ψ′
s(x)X(x) = X(ψs(x)),

for all x and s. In terms of components this is

n∑
j=1

∂ψi

∂xj
(x, s)Xj(x) = Xi(ψs(x)),

for all x and s. Differentiating both sides with respect to s and then taking
s = 0 gives

n∑
j=1

∂Y i

∂xj
(x)Xj(x) =

n∑
j=1

∂Xi

∂xj
(x)Y j(x).

This says that [X,Y ] = 0.
(3) =⇒ (1) This part is left as an exercise.

9.3.1 Arnold’s Theorem
Arnold’s theorem gives conditions under which the submanifold Sc1...cn

F1...Fn
, for

a completely integrable system, is diffeomorphic to an n dimensional torus.
Thus, before discussing the theorem, we need a motivating example and then
the definition of the standard n torus T n.

Example 9.5 (The Tori T 1, T 2, T 3) The usual torus is the surface in R
3

which looks like an inner tube or surface of a doughnut. The viewpoint in
this text is that curves, surfaces, and generally submanifolds in R

n are maps
f : U ⊆ R

d → R
n, for d = 1, 2, . . . However, we also view the image f(U)

as the geometric equivalent of a curve, surface, or submanifold. With these
dual viewpoints, a torus in R

3 can, on the one hand, be defined as a map
f : R

2 → R
3, of the form:

f(θ, φ) =
(

(a+ b cosφ) cos θ, (a+ b cosφ) sin θ, b sinφ
)
,

where 0 < b < a. This is the surface in R
3 obtained by revolving the circle

φ → ((a + b cosφ), 0, b sin φ) about the z-axis. On the other hand, we also
consider the image f(R2), which is a set of points in R

3, as a torus. In
particular, we define the standard 2-torus in R

3 as

T 2 ≡ f(R2),
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with b = 1, a = 2 as the choice of constants. In a similar fashion, the standard
1-torus in R

2 is the circle
T 1 ≡ f(R),

where f : R → R
2 is the map

f(θ) = ( cos θ, sin θ ).

It is important to note that the independent variables θ and φ in each of these
maps are angles. Thus, the three dimensional torus T 3 should come from a
map f involving three angles: θ, φ, ψ, and you would guess, by analogy, that
T 3 is a set of points in R

4. Some thought will convince you that a suitable
map f : R

3 :→ R
4 to define T 3 is

f(θ, φ, ψ) =
(
a1 cos θ, a1 sin θ, a2 sinφ, a3 sinψ

)
,

where

a1 = b1 + b2 cosφ+ b3 cosφ cosψ
a2 = b2 + b3 cosψ
a3 = b3.

Here b1 > b2 > b3 are constants. It is easy to see that θ → f(θ, 0, 0) is a
circle in the x-y plane, that φ → f(0, φ, 0) is a circle in the x-z plane, and
ψ → f(0, 0, ψ) is a circle in the x-w plane. With a fixed choice for the bi’s,
say b1 = 3, b2 = 2, b3 = 1, we define the standard 3-torus in R

4 as

T 3 ≡ f(R3).

Definition 9.6 (The Standard n Torus) The standard n torus in R
n+1

is the set T n ≡ f(Rn), where f : R
n → R

n+1 is the map defined as follows.
Denote the points in R

n, by θ = (θ1, . . . , θn) and suppose b1 > b2 > · · · > bn
are any numbers. Then

f(θ) =
(
a1(θ) cos θ1, a1(θ) sin θ1, a2(θ) sin θ2, . . . , an(θ) sin θn

)
,

where

ak(θ) = bk +
n∑

j=k+1

bj(
j∏

i=k+1

cos θi),

for k = 1, . . . , n− 1, and an(θ) = bn, for all θ.
The standard n torus in R

n+1 is T n ≡ f(Rn), where the choice of the bi’s
is bi = n+ 1 − i.
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Having defined the standard torus in each dimension, we need to now
adopt the topologist’s practice of calling any topological space S a torus if
S is homeomorphic to a standard torus. Indeed, topologists like to think of
tori as the spaces that arise from the following construction.

Definition 9.7 (The Decomposition Space) Suppose f : U → T is any
map. Define an equivalence relation on the set U by u1 ∼ u2 if and only if
f(u1) = f(u2). Then the decomposition space of f is the set

Kf = U/ ∼,

of all equivalence classes of U under this equivalence relation.

The basic result for decomposition spaces needed here is

Proposition 9.3 Suppose that U and T are topological spaces, with T com-
pact, and that f : U → T is a continuous, open map from U onto T . Then
the decomposition space Kf , endowed with the quotient topology, is homeo-
morphic to T .

Proof: See [Dug 66] for the proof as well as the definitions of an open map
and the quotient topology.

Example 9.6 It is easy to show that the standard n-torus T n is compact
(exercise), and because the sine and cosine functions have period 2π, it is
also easy to see that T n = f(U), where U is the Cartesian product of the
interval [0, 2π] with itself n times:

U = [0, 2π] × [0, 2π] × · · · × [0, 2π] = [0, 2π]n.

With a little work, one can show that f is an open map when restricted
to U . Hence by the proposition, the n-torus T n is homeomorphic to Kf =
[0, 2π]n/ ∼. For topologists, Kf is the standard model for the n-torus.

In particular, we can think of the circle T 1 as being the same as [0, 2π]/ ∼.
The latter space is what results when one takes the interval [0, 2π] and
“identifies” the two endpoints 0 ∼ 2π. These are equivalent since f(0) =
f(2π), and they are the only points in the interval [0, 2π] that get identified.
Pictorially, one views the circle as arising from the interval by curling the
interval around and joining its two endpoints.

In a similar fashion T 2 ∼= U/ ∼, where U = [0, 2π] × [0, 2π] is a square.
Note that in this case the map f = f(θ, φ) defining the torus, only identifies
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points on the boundary of the square. That is, f(θ, φ) = f(θ∗, φ∗) if and only
if either θ = θ∗ and φ, φ∗ ∈ {0, 2π} or φ = φ∗ and θ, θ∗ ∈ {0, 2π} (exercise).
Geometrically, one conceives of the torus as arising from curling the square
around so that the top and bottom sides are joined, thus forming a cylinder,
and then bending this cylinder around so that its two boundary circles are
joined, thus giving a torus.

Example 9.7 Consider the Hamiltonian system with the Hamiltonian H̃
from Example 9.4. Hamilton’s equations are

q̇i = pi

ṗi = −ω2
i qi,

for i = 1, 2 and ω1 = 1, ω2 =
√

3. For given initial displacements a, b of the
two masses and no initial velocities, the corresponding integral curve is

γ(t) =
(
a cosω1t, b cosω2t, −ω1a sinω1t, −ω2b sinω2t,

)
,

for t ∈ R. Thus, this integral curve lies on the 2-dimensional submanifold
(surface) of R

4 defined by the map

f(t1, t2) =
(
a cosω1t1, b cosω2t2, −ω1a sinω1t1, −ω2b sinω2t2,

)
,

for (t1, t2) ∈ R
2. It is easy to check that this surface is also the intersection

of the level sets of the two constants of the motion

F̃1 = 1
2(p2

1 + ω2
1q

2
1), F̃2 = 1

2 (p2
2 + ω2

2q
2
2)

found in Example 9.4. That is,

f(R2) = S
a2/2

F̃1
∩ Sb2/2

F̃2
.

In addition, by the above discussion and proposition, this surface is home-
omorphic to the decomposition space Kf = ([0, 2π/ω1] × [0, 2π/ω2])/ ∼, for
the map f . But Kf is homeomorphic to the standard torus T 2. With these
identifications, we get that the integral curve γ lies on the torus f(R2) ⊂ R

4.

We need one more fact, involving a relation between Lie and Poisson
brackets, before stating and proving Arnold’s theorem. For Hamiltonian
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vector fields XF ,XG, we have the following important relation between the
Lie bracket of the vector fields and the Poisson bracket of the underlying
functions:

[XF ,XG] = X{G,F}.

This follows from a straight-forward computation and is left as an exercise.
An easy consequence of this is that if {F,G} = 0, then [XF ,XG] = 0, and
therefore by the last theorem, the corresponding flows commute: φF

t ◦ φG
t =

φG
t ◦ φF

t . This is a key ingredient in the following theorem.

Theorem 9.4 (Arnold’s Theorem) Suppose (q̇, ṗ) = XH(q, p) is an in-
tegrable Hamiltonian system on O ⊆ R

2n, with F1 = H,F2, . . . , Fn being
constants of the motion that are functionally independent and in involution.
Suppose ci, i = 1, . . . , n are values of the Fi’s for which Sc1...cn

F1...Fn
is compact

and connected. Then Sc1...cn
F1...Fn

is diffeomorphic to the n torus T n.

Proof: For convenience of notation let M = Sc1...cn
F1...Fn

. Since each XFi is
tangent to M and by assumption M is compact, a standard result from
manifold theory says that XFi , restricted to M is complete, and so the flow
φFi

t on M is defined for all t ∈ R. Thus, each φFi
t is a 1 parameter group of

transformations of M . Putting all these flows together gives a n parameter
group of transformations defined by:

Ψ	t = φF1
t1 ◦ · · · ◦ φFn

tn ,

where we are using the notation:

�t = (t1, . . . , tn) ∈ R
n,

for the points in R
n. The coordinates t1, . . . , tn of these points �t are the n

parameters that parametrize the group. We consider R
n as a group with

vector addition being the group operation. To see that the group prop-
erty holds, note that because F1, . . . , Fn are in involution, the vector fields
XF1 , . . . ,XFn commute with each other, and thus their flows φF1

t1 , . . . , φ
Fn
tn

commute as well. From this, the verification of the group property is easy:

Ψ	s ◦ Ψ	t = φF1
s1

◦ · · · ◦ φFn
sn

◦ φF1
t1 ◦ · · · ◦ φFn

tn

= φF1
s1

◦ φF1
t1 ◦ · · · ◦ φFn

sn
◦ φFn

tn

= φF1
s1+t1 ◦ · · · ◦ φFn

sn+tn

= Ψ	s+	t
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Note also that Ψ	0 = I, the identity transformation, and because of this and
the group property, inverses are given by: Ψ−1

	t
= Ψ−	t.

Next we pick some point (q, p) ∈M and define a map: f : R
n →M by:

f(�t ) = Ψ	t (q, p).

We will argue that f is onto, is locally a diffeomorphism, and that its de-
composition space: Kf = R

n/ ∼, is diffeomorphic to the n torus T n.
For this first note that for any �t ∈ R

n, we have:

∂f

∂tj
(�t ) = XFj(Ψ	t (q, p)),

for j = 1, . . . , n. This follows by taking the partial derivative of the identity:

f(�t+ �s ) = Ψ	s

(
Ψ	t (q, p)

)
,

with respect to sj and then setting s = 0. Consequently, the Jacobian
matrix: f ′(�t ) has maximal rank, and so by the Inverse Function Theorem
(Appendix A), f is a diffeomorphism on a neighborhood of �t. Using this
and the fact that M is assumed to be both compact and connected, one can
show that f is onto.

Now consider the decomposition space Kf for f that arises from the
equivalence relation: �s ∼ �t if and only if f(�s ) ∼ f(�t ). If we let:

G = {�t ∈ R
n |Ψ	t (q, p) = (q, p) },

then, using the group property of Ψ	t, it’s easy to see that G is a subgroup of
R

n and that �s ∼ �t if and only if �s − �t ∈ G. Thus, the decomposition space
for f coincides with the factor group (cf. [Her 75, pp. 51-52]) of R

n by the
subgroup G:

Kf = R
n/G.

Now because f is locally a diffeomorphism about each point in R
n, one can

show that G must be a discrete subgroup of R
n. A result from algebra (Cf.

[Ar 78b, p. 276]) says that G must then be of the form:

G = { p1v1 + · · · + pkvk | the pi’s are integers },

where v1, . . . , vk are linearly independent vectors in R
n. Using this, one can

show that R
n/G is diffeomorphic to T k × R

n−k. However, since M , and
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therefore R
n/G, is compact, we must have k = n. This completes the proof.

The proof of Arnold’s theorem (which was adapted from that in [Ar 78b,
p. 271]) shows how the involution condition on the constants of the motion
F1, . . . , Fn is instrumental in determining the toroidal character of Sc1...cn

F1...Fn

(assuming the later is compact and connected). The involution condition is
also essential in showing that a completely integrable Hamiltonian system
is locally integrable in the sense of Chapter 7, i.e., that there exist n − 1
additional, independent constants of the motion A1, . . . , An−1. Before stat-
ing and proving this result, it will be convenient to introduce the following
notation.

Suppose W : U ⊆ R
2n → R is a differentiable function. We have already

used the notation
∂W

∂p
≡
(
∂W

∂p1
, . . . ,

∂W

∂pn

)
,

for the map ∂W/∂p : U → R
n. With p fixed, the Jacobian of this map, with

respect to q, is denoted by

∂2W

∂q∂p
=


∂2W

∂q1∂p1
. . . ∂2W

∂qn∂p1

...
...

∂2W
∂q1∂pn

· · · ∂2W
∂qn∂pn

 .
In addition we will use the notation

∂2W

∂p2
,

∂2W

∂q2
,

∂2W

∂p∂q
.

It is easy to see that the first and second of these matrices are symmetric,
while the third is not: (

∂2W

∂p∂q

)T

=
∂2W

∂q∂p
.

Theorem 9.5 (Liouville) Suppose (q̇, ṗ) = XH(q, p) is a completely in-
tegrable Hamiltonian system on O ⊆ R

2n, with F1, F2, . . . , Fn = H being
constants of the motion that are functionally independent and in involution.
Let F = (F1, . . . , Fn) and suppose (q0, p0) ∈ O is a point at which the matrix

∂F

∂p
(q0, p0) ≡

{
∂Fi

∂pj
(q0, p0)

}n

i,j=1
,
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is invertible. Then there exists a neighborhood U ⊆ O of (q0, p0) and a
differentiable function W : U → R, which has the following properties.

(1) For each integral curve t → (q(t), p(t)), t ∈ I of the system that lies in
U , there are constants c1, . . . , cn, b1, . . . , bn, such that

Fi(q(t), p(t)) = ci, (i = 1, . . . , n) (9.26)
∂W

∂pi
(q(t), c) = bi (i = 1, . . . , n− 1) (9.27)

∂W

∂pn
(q(t), c) = t+ bn, (9.28)

for all t ∈ I. Here c = (c1, . . . , cn).

(2) Let A1, . . . , An : U → R, be the functions defined by

Ai(q, p) =
∂W

∂pi
(q, F (q, p)). (9.29)

Then A1, . . . , An−1 are constants of the motion. Furthermore, the 2n
functions: F1, . . . , Fn, A1, . . . , An, are functionally independent.

(3) The map h : U → R
2n defined by

h(q, p) =
(
F (q, p), −A(q, p)

)
, (9.30)

where A ≡ (A1, . . . , An), is a canonical transformation such that

h∗(XH)(q, p) = (0, 0, . . . , 0,−1),

for all (q, p) ∈ h(U). Otherwise said, the transformed Hamiltonian
H̃ ≡ H ◦ h−1,is

H̃(q, p) = qn,

for all (q, p) ∈ h(U).

Proof: Define a map f : O → R
2n by

f(q, p) = ( q, F (q, p) ).

Then

f ′(q, p) =

[
I 0

∂F
∂q

(q, p) ∂F
∂p

(q, p)

]
.
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From the form of this and the hypotheses, this matrix is invertible at the
point (q0, p0), and so by the Inverse Function Theorem, there is a neighbor-
hood U of (q0, p0) on which f is a diffeomorphism. Let f−1 : V = g(U) → U
denote the inverse of f . Then f−1 has the form

f−1(q, p) = ( q, G(q, p) ),

and consequently we have the following identities for F and G:

F (q,G(q, p)) = p, (for (q, p) ∈ V ) (9.31)
G(q, F (q, p)) = p, (for (q, p) ∈ U) (9.32)

We let G = (G1, . . . , Gn) be the component expression for G. The involution
condition on the Fi’s enables us to establish the following claim.

Claim: On V , we have
∂Gi

∂qj
=
∂Gj

∂qi
,

for all i, j = 1, . . . , n. To show this, suppose (q, p) ∈ V . With this fixed,
choose r > 0 so that the ball B = B((q, p), r) is contained in V . Define maps
gi : B → R by

gi(q, p) = pi −Gi(q, p),

for i = 1, . . . , n. Then note that if (q, p) ∈ B ∩ Sp1···pn
F1···Fn

, i.e., if F (q, p) = p,
then

gi(q, p) = pi −Gi(q, p) = pi −Gi(q, F (q, p)) = pi − pi = 0,

for each i. Thus, the gi’s are identically zero on B ∩ Sp1···pn
F1···Fn

. By Theorem
11.1, the involution condition results in S

p1···pn
F1···Fn

being invariant under each

of the flows φFj

t : if (q, p) ∈ S
p1···pn
F1···Fn

, then φFj

t (q, p) ∈ S
p1···pn
F1···Fn

, for all t. Hence

gi

(
φ

Fj

tj (q, p)
)

= 0,

for all t. Differentiating this with respect to t and then taking t = 0 gives

{ gi, Fj } (q, p) = 0,

for all i, j and all (q, p) ∈ B ∩ Sp1···pn
F1···Fn

. But recall that {gi, Fj} = Xgi · ∇Fj .
Hence it follows that the vector field Xgi is tangent to the submanifold
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B ∩ S
p1···pn
F1···Fn

. From this it is not difficult to show that flow of Xgi leaves

B ∩ Sp1···pn
F1···Fn

invariant: if (q, p) ∈ B ∩ Sp1···pn
F1···Fn

, then φgi
t (q, p) ∈ B ∩ Sp1···pn

F1···Fn

for all t in an interval about 0 (exercise). Consequently, from the above
observations

gj (φgi
t (q, p)) = 0,

for all i, j, all t, and all (q, p) ∈ B ∩ Sp1···pn
F1···Fn

. This in turn, exactly as above,
leads to

{ gj , gi } (q, p) = 0,

for all i, j and all (q, p) ∈ B ∩ Sp1···pn
F1···Fn

. But an easy computation shows that

{ gj , gi }(q, p) =
∂Gi

∂qj
(q, p) − ∂Gj

∂qi
(q, p),

for all (q, p) ∈ B. In particular, for (q, p) = (q,G(q, p)), we have by identity
(9.31) that F (q, p) = p and hence

0 = { gj , gi }(q, p) =
∂Gi

∂qj
(q, p) − ∂Gj

∂qi
(q, p).

This establishes the claim.
From the claim we get the existence of a differentiable map W : V → R,

such that
∂W

∂qi
(q, p) = Gi(q, p),

for every i and all (q, p) ∈ V . Clearly the claim is a necessary set of conditions
for the existence of the function W . The sufficiency of these conditions,
however requires a topological condition on the set V (Cf. [Be 98, p. 232]).
Rather than work at this level of generality, we can, for our purposes, always
assume that V is an open ball in R

2n, centered at f(q0, p0). Then there is
an integral formula for the construction of W (See the exercises).

Next, to see that the Ai’s defined by (9.29) are constants of the motion,
suppose that t → (q(t), p(t)), for t ∈ I, is an integral curve of the Hamil-
tonian system that lies in U . Then there are constants c1, . . . , cn, such that
F (q(t), p(t)) = (c1, . . . , cn) = c, for all t ∈ I. But then by identity (9.32)

p(t) = G(q(t), F (q(t), p(t)) = G(q(t), c),
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for all t ∈ I. Using this we find that

d

dt

[
Ai(q(t), p(t))

]
=

d

dt

[
∂W

∂pi

(
q(t), F (q(t), p(t))

)]
=

d

dt

[
∂W

∂pi
(q(t), c)

]
=

n∑
j=1

∂2W

∂qj∂pi
(q(t), c) q′j(t)

=
n∑

j=1

∂Gj

∂pi
(q(t), c)

∂H

∂pj
(q(t), p(t))

=
n∑

j=1

∂Gj

∂pi
(q(t), c)

∂H

∂pj
(q(t), G(q(t), c))

=
∂

∂pi

[
H

(
q(t), G(q(t), p)

)]∣∣∣∣
p=c

=
∂

∂pi

[
pn

]
= δin

Thus, A1, . . . , An−1 are constants of the motion and An(q(t), p(t)) = t+ bn,
for some constant bn.

Next we show that the map h defined by (9.30) is a canonical transfor-
mation. For this, observe that because ∂W/∂qi = Gi and G satisfies (9.32),
we get the identity

∂W

∂q
( q, F (q, p) ) = p, (9.33)

for all (q, p) ∈ U . Also observe the map h, in terms of W is

h(q, p) =
(
F (q, p), − ∂W

∂p
( q, F (q, p) )

)
. (9.34)

Identity (9.33) and the form (9.34) of the definition for h are all that are
needed to guarantee that h is canonical. We calculate the Jacobian matrix
of h and show that this is a symplectic matrix at each point of V . The
Jacobian matrix has the block form

h′ =

[
B C
D E

]
, (9.35)
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where, by the Chain Rule,

B =
∂F

∂q
, C =

∂F

∂p
,

and

D = − ∂2W

∂q∂p
− ∂2W

∂p2

∂F

∂q
, E = − ∂2W

∂p2

∂F

∂p
.

In these expressions we have suppressed the dependence on q and p. Now
use Exercise 8 in Section 2, which says that a matrix of the form (9.35) will
be symplectic if BTD,CTE are symmetric matrices and if BTE−DTC = I.
To verify this we are going to need the identity (9.33), or more specifically
the following identities that arise by differentiating it:

∂2W

∂q2
+
∂2W

∂p∂q

∂F

∂q
= 0, (9.36)

∂2W

∂p∂q

∂F

∂p
= I (9.37)

Then we see, using (9.36) and the remarks before the theorem, that

BTD = −
(
∂F

∂q

)T ∂2W

∂q∂p
−
(
∂F

∂q

)T ∂2W

∂p2

∂F

∂q

= −
(
∂2W

∂p∂q

∂F

∂q

)T

−
(
∂F

∂q

)T ∂2W

∂p2

∂F

∂q

=
∂2W

∂q2
−
(
∂F

∂q

)T ∂2W

∂p2

∂F

∂q
.

This is clearly a symmetric matrix. Also

CTE = −
(
∂F

∂p

)T ∂2W

∂p2

∂F

∂p
,

is a symmetric matrix. Checking the last condition, using (9.37) and the
remarks before the theorem, we see that

BTE −DTC = −
(
∂F

∂q

)T ∂2W

∂p2

∂F

∂p
+
(
∂2W

∂q∂p
+
∂2W

∂p2

∂F

∂q

)T ∂F

∂p

=
∂2W

∂p∂q

∂F

∂p
= I
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This completes the verification that h′ is symplectic at each point of U . But
a symplectic matrix is invertible and thus, by the Inverse Function Theorem,
h is a diffeomorphism on U . Hence h is a canonical transformation.

To see that F1, . . . , Fn, A1, . . . , An are functionally independent on U ,
note that since h = (F1, . . . , Fn,−A1, . . . ,−An ), the Jacobian matrix of h,
expressed in terms of its rows, is

h′ = [∇F1, . . . ,∇Fn,−∇A1, . . . ,−∇An ].

As we have seen, this matrix is invertible at each point of U and so the rows
are linearly independent at each point of U . The functional independence
follows. It also follows from this and

∇Fi ·XH = {Fi,H} = 0, ∇Ai ·XH = {Ai,H} = 0,

that
h∗(XH)(q, p) = (0, 0, . . . , 0,−1),

for every (q, p) ∈ V . This completes the proof of the theorem.

The above proof is modeled on the one given by Whittaker in [Wh 65,
pp. 323-325]. However, the first edition of this text dates back to 1904
and so we have added modern notation and rigor to his arguments. The
theorem is attributed to Liouville and is often paraphrased as saying that the
solutions of a completely integrable system can be expressed by quadratures,
or integrals. This can be explained roughly as follows.

Knowing n first integrals, F1, . . . , Fn for the system, gives the equations

Fi(q(t), p(t)) = ci, (i = 1, . . . , n)

that an integral curve t → (q(t), p(t)) must satisfy. By the Implicit Function
Theorem, we can solve these equations to explicitly get the momenta in
terms of the positions and the constants

pi(t) = Gi(q(t), c), (i = 1, . . . , n)

Thus, if we can find a formula for q(t), then the formula for p(t) is given
by the above. Finding a formula for q(t) involves additional integrations
(quadratures) because this is the process whereby the additional constants
of the motion A1, . . . , An are constructed. Indeed, these come from the
function W that satisfies

∂W

∂qi
(q, p) = Gi(q, p), (i = 1, . . . , n)
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and heuristically W can be found by integrating:

W (q, p) =
∫ n∑

i=1

Gi(q, p) dqi.

Having constructedW by integration, then the other constants of the motion
give the following equations that q(t) must satisfy

∂W

∂pi
(q(t), c) = bi (i = 1, . . . , n− 1)

∂W

∂pn
(q(t), c) = t+ bn.

Inverting these gives q(t) explicitly in terms of the constants and the time

q(t) = α(t, c, b),

and from this we get the explicit formula for the momenta

p(t) = G(α(t, c, b), c).

This gives the “general solution” in that the formulas involve the 2n ar-
bitrary constants c1, . . . , cn, b1, . . . , bn. Of course in practice, being able to
calculate the integrals involved and then invert (solve) the resulting equa-
tions as indicated above can be an impossible task.

Also note that the theorem is local and is thus only a variation of Corol-
lary 7.1, which guarantees that any system is integrable on a neighborhood
of a nonfixed point (as (q0, p0) is here). And recall that Corollary 7.1 is a
special case of the Flow Box Theorem, which says that near a nonfixed point,
the flow is similar to a parallel flow in one direction. That is part of what Li-
ouville’s Theorem 9.5 says: XH is differentiably equivalent to X

H̃
= h∗(XH),

where H̃(q, p) = qn and the flow for X
H̃

is

φH̃
t (q, p) = (q1, . . . , qn, p1, . . . , pn−1, pn − t).

However, Theorem 9.5 is stronger than Corollary 7.1 and the Flow Box
Theorem since it gives a specific way to construct the diffeomorphism h
from the constants of the motion F1, . . . , Fn. Namely

h(q, p) =
(
F (q, p), − ∂W

∂p
( q, F (q, p) )

)
.

The examples below and the ensuing exercise problems will clarify what’s
involved in this construction.
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Example 9.8 (1-d Mechanical Hamiltonians) For the case n = 1 and
H(q, p) = 1

2p
2 +V (q), we have seen that the phase portrait and flow is easily

determined from the graph of the potential function V . It is instructive
to see how the construction in the proof of Theorem 9.5 works out in this
special case. The only constant of the motion is F = H. In the proof of the
theorem, the function G results from using the Implicit Function Theorem.
A slightly different way of phrasing this is to say that G arises from solving
the equation

F (q, x) = p

for x, giving
x = G(q, p).

For the special case in this example, the first equation is

1
2x

2 + V (q) = p,

and solving for x gives
x =

√
2
√
p− V (q).

(We will use just the positive square root.) So G(q, p) =
√

2
√
p− V (q). In

the proof of the theorem the function W is then determined from ∂W
∂q =

G(q, p). In the 1-d case, this amounts to letting W be an indefinite integral:

W (q, p) =
∫
G(q, p)dq =

∫ √
2
√
p− V (q) dq. (9.38)

This integral is explicitly computable for a few choices of potential func-
tion V (but in most other cases not). Doing this then gives the canonical
transformation h:

h(q, p) =
(

1
2p

2 + V (q), −∂W
∂p

(q, 1
2p

2 + V (q))
)
. (9.39)

which “straightens out” the flow.

Example 9.9 (A Harmonic Oscillator) Suppose V (q) = 1
2q

2, so that
H(q, p) = 1

2p
2+ 1

2q
2. Of course the level curves ofH are all circles, but Figure

9.7 shows how this also arises using the standard technique of sketching
the level curves from the graph of −V . For the sake of instruction, we
will explicitly compute the expression of the canonical transformation h in
Eq.(9.39).
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Figure 9.7: Integral curves for H = 1
2p

2 + 1
2q

2 (on the left) and H = q (on
the right).

First we need to calculate the integral that gives W :

W (q, p) =
∫ √

2
√
p− 1

2q
2 dq =

∫ √
2p− q2 dq.

For this use the trig substitution q =
√

2p sin θ to get

W (q, p) =
∫ √

2p − q2 dq =
∫

2p cos2 θ dθ = 2p
∫

(1
2 + 1

2 cos 2θ)dθ

= p(θ + 1
2 sin 2θ) = p(θ + sin θ cos θ)

= p

sin−1
(

q√
2p

)
+

q√
2p

√
1 − q2

2p


= p sin−1

(
q√
2p

)
+
q

2

√
2p− q2

From this we get

∂W

∂p
(q, p) = sin−1

(
q√
2p

)
+
p · q√

2
(−1

2p
−3/2)√

1 − q2

2p

+
q

2
· 1√

2p − q2

= sin−1
(

q√
2p

)
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Using this in Formula (9.39) for the canonical transformation h gives

h(q, p) =
(

1
2p

2 + 1
2q

2, − sin−1
(

q√
p2 + q2

) )
.

Next, let’s check directly that this is a canonical transformation and that it
does the required straightening. First we compute the Jacobian matrix of h
and, using a little calculus and algebra, see that it reduces to

h′(q, p) =

[
q p
−p

p2+q2
q

p2+q2

]

In 1-d, for h to be a canonical transformation the determinant of this matrix
must be identically 1, i.e., det(h′(q, p)) = 1 for all (q, p). (See Exercise 8 in
9.2.) But this is clearly the case. Finally, note that XH(q, p) = (p,−q) and
so

X
H̃

(q, p) = h′(q, p)XH(q, p) =

[
q p
−p

p2+q2
q

p2+q2

] [
p
−q

]
=

[
0
−1

]
,

which verifies the “straightening” of the flow for XH . We can also verify this
in another way. Namely, we compute h−1 (which is possible in this example)
and then H̃ = H ◦ h−1. To compute h−1 we write h as

q̄ =
1
2
(p2 + q2)

p̄ = − sin
(

q√
p2 + q2

)
,

viewing it as a transformation (q, p) → (q̄, p̄). Then h−1 is the transformation
(q̄, p̄) → (q, p) which comes from solving the above system of equations for
q and p in terms of q̄ and p̄. Using some standard algebra, we get

q = −
√

2q̄ sin p̄
p =

√
2q̄ cos p̄

Then clearly

H̃(q̄, p̄) = H(h−1(q̄, p̄)) = 1
2

(
−
√

2q̄ sin p̄
)2

+ 1
2

(√
2q̄ cos p̄

)2

= q̄.
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The proof Theorem 9.5 contains an important technique for constructing,
or generating, canonical transformations. This technique is very useful even
though it is often a local construction, so we record this as a separate result.

Corollary 9.3 (Generating Functions) Suppose W : V → R is a differ-
entiable function on an open set V of R

2n and F : U → R
n is a differentiable

map on an open set U of R
2n such that (q, F (q, p)) ∈ V and

∂W

∂q
( q, F (q, p) ) = p, (9.40)

for all (q, p) ∈ U . Then the map h : U → V , defined by

h(q, p) =
(
F (q, p), − ∂W

∂p
( q, F (q, p) )

)
, (9.41)

is a canonical transformation.

The above corollary doesn’t indicate where W and F come from. Of
course in Theorem 9.5, F = (F1, . . . , Fn) comes from knowing n constants
of the motion: F1, . . . , Fn, and W is constructed as a solution of ∂W

∂q = G,
where G results from solving F (q, x) = p for x = G(q, p).

Another way to get W and F is to start with a fairly arbitrary function
W : V ⊆ R

2n → R (conditions to follow) and then determine F from W ,
thereby resulting in a canonical transformation h via the corollary. This is
why W is called a generating function for the canonical transformation h.
Here’s how this situation works: Start with any twice continuously differen-
tiable function W for which you can

solve
∂W

∂q
(q, x) = p for x = F (q, p). (9.42)

Then condition (9.40) of the corollary is satisfied and so W generates a
canonical transformation h via Formula (9.41). The solvability condition
(9.42) requires that the map f : V ⊆ R

2n → R
2n given by f(q, x) =

(q, ∂W
∂q (q, x)) be invertible. Its inverse will have the form f−1(q, p) = (q, F (q, p)).

Of course, invertability is locally guaranteed by the Inverse Function Theo-
rem on a neighborhood of any point (q0, x0) in V where

det
(
∂2W

∂q∂x
(q0, x0)

)

= 0. (9.43)

Thus, any twice continously differentiable function satisfying (9.43) at a
point will generate a local canonical transformation.
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Example 9.10 Consider the function W (q, x) = 1
2q

2x3, defined on all of
R

2. We check that this can generate a canonical transformation h for 1-d
Hamiltonian systems and we explicitly compute h. From

∂W

∂q
(q, x) = qx3 and

∂2W

∂x∂q
(q, x) = 3qx2,

we see that ∂2W
∂x∂q (q, x) 
= 0 at all points except the origin and so W can

locally serve as a generating function. To find F we solve

qx3 = p,

for x, getting

x =
(
p

q

)1/3

= q−1/3p1/3.

So F (q, p) = q−1/3p1/3. Next

∂W

∂x
(q, x) = 3

2q
2x2

and
∂W

∂x
(q, F (q, p)) = 3

2q
2
(
q−1/3p1/3

)2

= 3
2q

4/3p2/3.

Consequently

h(q, p) =
(
F (q, p),

∂W

∂x
(q, F (q, p))

)
= ( q−1/3p1/3, −3

2q
4/3p2/3 ).

We check directly that this is a canonical transformation by computing the
Jacobian matrix of h:

h′(q, p) =

 −1
3q

−4/3p1/3 1
3q

−1/3p−2/3

−2q1/3p2/3 −q4/3p−1/3

 .
Then clearly det(h′(q, p)) = 1

3 + 2
3 = 1, for all (q, p) 
= (0, 0) and hence

h′(q, p) is a symplectic matrix.

Example 9.11 An example with 2-degrees of freedom will be instructive.
So consider the function

W (q, x) = q1x
2
1 + q2x

2
2,
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defined for all (q, x) = (q1, q2, x1, x2) ∈ R
4. We get

∂W

∂q
(q, x) = (x2

1, x
2
2 ) and

∂2W

∂x∂q
(q, x) =

[
2x1 0
0 2x2

]
,

and so det ( ∂2W
∂x∂q (q, x)) = 4x1x2 is nonzero except where either x1 or x2 is

zero. The equation ∂W
∂q (q, x) = p in this example is

(x2
1, x

2
2) = (p1, p2),

which is a simple system of equations to solve for x1, x2. This gives x1 =√
p1, x2 =

√
p2, and so

F (q, p) = (
√
p1,

√
p2 ).

Next
∂W

∂x
(q, x) = (2q1x1, 2q2x2)

and
∂W

∂x
(q, F (q, p)) =

(
2q1

√
p1, 2q2

√
p2

)
.

Consequently

h(q, p) =
(√

p1,
√
p2, −2q1

√
p1, −2q2

√
p2

)
.

To check directly that this is a canonical transformation, we compute the
Jacobian matrix

h′(q, p) =



0 0
1

2
√
p1

0

0 0 0
1

2
√
p2

−2
√
p1 0 =

q1
2
√
p1

0

0 −2
√
p1 0 =

q2
2
√
p2


=

[
B C
D E

]
.

Here we have represented the 4×4 Jacobian matrix in terms of 2×2 matrices
B,C,D,E. By the result in Exercise 8 in Section 9.2, h′(q, p) is a symplectic
matrix if and only if BTD and CTE are symmetric and BTE −DTC = I.
But it’s easy to see that BTD = 0 and CTE is a diagonal matrix and
BTE −DTC = 0 − (−I) = I.
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It should also be noted that (completely) integrable systems are rather
special. Wintner, in [W 47, pp. 143-144], gives a nice description of how
perplexing this was to mathematicians and scientists in the 18th and 19th
centuries when on the one hand the goal of solving differential equations
was to find formulas for their general solutions, while on the other hand
almost all of the important systems in physics failed to have sufficiently
many first integrals. Wintner remarks that maybe the concept (or definition
of) what integrability means is not right and concludes by saying: “All of
this lies along the line of Poincaré’s dictum, according to which a system
is neither integrable, nor nonintegrable, but more or less integrable.” (See
also the brief historical discussion of integrability in the article [KGT 97,
pp. 30-46]). Since Wintner’s time, the topic of integrability has taken on
renewed interest for a number of reasons. One of these is due to the KAM
theorem (by Kolmogorov, Arnold, and Moser) which describes properties
of Hamiltonian systems that are approximately integrable (see [Ar 78b, pp.
399-415], [HZ 94], [KLP 94] and the advanced text [Laz 93]).

Exercises 9.3
1. (Lie Algebras) A Lie algebra is a vector space A, over the real or complex

numbers, together with a binary operation

[ · , · ] : A×A → A,

called the Lie bracket, which satisfies

(1) Antisymmetry: [X,Y ] = −[Y,X ], for all X,Y ∈ A.

(2) Bilinearity:

(a) [X + Y, Z] = [X,Z] + [Y, Z] and [X,Y + Z] = [X,Y ] + [X,Z],
(b) [λX, Y ] = λ[X,Y ] = [X,λY ],

for all X,Y, Z ∈ A and all scalars λ.

(3) Jacobi Identity:

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0,

for all X,Y, Z ∈ A.

Prove that each of the following is a Lie algebra.

(a) A = Mn = the set of all n × n matrices (real or complex) with Lie
bracket defined by

[A,B] ≡ AB −BA.
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(b) A = the set of C∞ vector fields X : O → R
n on an open set O in R

n,
with Lie bracket defined by equation (9.22) in the text. Hint: Make
the identification of X with an operator on functions F ∈ C∞(O) as
suggested in the equation (9.23). With this identification, show that
equation (9.24) holds. Now prove the required properties (1)-(3) for the
Lie Bracket.

2. (Poisson Brackets) Consider the set C∞(O) of C∞ functions on an open
set O ⊆ R

2n. This set, endowed with the Poisson bracket { · , · } as its Lie
bracket, is another prime example of a Lie algebra. This exercise is to prove
this and some other related results.

(a) Show that the Poisson bracket is antisymmetric and bilinear.

(b) For F ∈ C∞(O), let XF denote the corresponding Hamiltonian vector
field defined by

XF = J∇F =
(
∂F

∂p
,
∂F

∂p

)
.

Show by direct calculation that

X{G,F} = [XF , XG],

where [ · , · ] is the Lie bracket of vector fields, as defined in the text.

(c) Show that the Poisson bracket satisfies the Jacobi identity. You could
try to do this directly, but here is an easier way.
As in the text, it is convenient to identify vector fields with differential
operators. In the present setting, we identify the Hamiltonian vector
field XF with the differential operator

XF =
n∑

i=1

(
∂F

∂pi

∂

∂qi
− ∂F

∂qi

∂

∂pi

)
.

With this identification, show that

{F,G} = XG(F ) = −XF (G).

Then use this to prove the Jacobi identity for the Poisson bracket.

3. In the proof of Theorem 9.5, we had differentiable functions G1, . . . , Gn :
V → R on an open set V in R

2n, such that

∂Gi

∂qj
(q, p) =

∂Gj

∂qi
(q, p), (9.44)

for every i, j and all (q, p) ∈ V . Assume that V = B(0, r) is the open ball of
radius r centered at the origin in R

2n. Show that the function W defined on
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V by

W (q, p) =
n∑

j=1

∫ 1

0

Gj(sq, p) qjds,

makes sense for any (q, p) ∈ V and that

∂W

∂qi
(q, p) = Gi(q, p),

for i = 1, . . . , n. Hint: Differentiate under the integral sign, use the conditions
(9.44), and then integrate by parts. Now generalize to the case where V =
B((q0, p0), r).

4. This exercise gives more examples of 1-d mechanical Hamiltonians: H =
1
2p

2 +V (q), for which we can directly verify the results of Liouville’s Theorem
9.5. NOTE: F = H is the constant of the motion in the 1-d case. For each of
the potential functions V below (which you are assigned) do the following.

(i) Compute (by hand): W (q, p) =
∫ √

2
√
p− V (q) dq.

(ii) Compute: h(q, p) =
(
F (q, p), −∂W

∂q (q, F (q, p))
)

.

(iii) Verify directly that h is a canonical transformation (for 1-d Hamiltonian
systems) by computing h′(q, p) and det(h′(q, p)).

(iv) Directly verify that h′(q, p)XH(q, p) = (0,−1) at all points (q, p) in
the domain of h. If possible, compute h−1. Then directly verify that
H̃(q̄, p̄) = q̄, where H̃ = H ◦ h−1.

(v) Use the graph of −V to sketch the phase portrait for the Hamiltonian
system corresponding to H . Compare this with that corresponding to
H̃ .

Potential Functions:

(a) V (q) = q. (b) V (q) = 0.

(c) V (q) = − 1
2q

2. Hint: For the integral use a hyperbolic sine substitution
q =

√
2p sinhx. The work should directly compare with that in Example

-, with x taking the place of the angle θ.

(d) V (q) = q−2. Hint: For the integral use the trig substitution q =
p−1/2 sec θ.

5. (Generating Functions) For the functions W below (which you are as-
signed) do the following: (i) Calculate the corresponding canonical transfor-
mation h that W generates. (ii) Directly verify that h is a canonical trans-
formation by calculating the Jacobian matrix h′(q, p) and showing that it is
a symplectic matrix.
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(a) W (x, q) = qx (b) W (q, x) = q2x

(c) W (q, x) = 1
2q

2x2 (d) W (q, x) = 1
k+1q

k+1xm

(e) W (q, x) = 1
2 sinx (f) W (q, x) = ln(q + x)

(g) W (q, x) = q1x1 + q2x2 (h) W (q, x) = 1
2q

2
1x1 + 1

2q
2
2x2

(i) W (q, x) = 1
2q

2
1x

2
1 + q22x

2
2 (j) W (q, x) = 1

k+1q
k+1
1 xm

1 + 1
a+1q

a+1
2 xb

2

9.4 Liouville’s Theorem
In this section we discuss another result of Liouville, which has become
known as “Liouville’s theorem” even though Liouville is responsible for nu-
merous other results in mechanics (for example, Theorem 9.5 above). Liou-
ville’s theorem says that volumes (or more precisely hypervolumes) in phase
space are preserved under the deformation induced by the flow of a Hamil-
tonian system. To be more specific, let φH denote the flow generated by the
Hamiltonian vector field XH . Recall that the domain of φH is an open set in
O× R and so for each point x0 ∈ O, there is a product neighborhood I ×U
of (0, x0) contained in the domain of φH . Then the set

φH
t (U)

represents the deformation of U under the flow at time t ∈ I. Liouville’s
theorem says that for any such t this set has the same volume as that of U .

Liouville’s theorem is essentially a special case of the transport theorem
from continuum mechanics. This theorem describes the time rate of change
of certain integral quantities associated with a continuum that is in motion.
Thus suppose that X : R ×O → R

n is a time dependent vector field on an
open set O in R

n, with corresponding flow: φ : D ⊆ R × R
n → R

n. The set
O is thought of as a vessel which contains the continuum, like a fluid, and
X(t, x) represents the velocity of the fluid flowing through the point x ∈ O
at time t. While in continuum mechanics n = 3, the transport theorem holds
for any n.

To prove the general transport theorem, we will need the change of vari-
ables formula and the concept of Lebesgue measure (see, e.g., [Ru 74], [Jo
96]). The Lebesgue measure, denoted by λ, is a function defined on a large
class of subsets B ⊆ R

n and its value λ(B) for any one of these subsets B is
interpreted as the “hyper-volume” of B. In particular, λ(B) is the area of
B if B ⊆ R

2, and λ(B) is the volume of B if B ⊆ R
3. In addition to giving

the hypervolume of sets in R
n, the Lebesgue measure is also used to define
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an integral, called the Lebesgue integral, which in some ways is an exten-
sion of, and more useful than, the Riemann integral. For suitable functions
f : R

n → R, the Lebesgue integral of f over B will be denoted by∫
B
f(x) dx,

where dx = dx1dx2 · · · dxn is heuristic notation standing for the “product” of
the differentials. It follows from the Lebesgue theory (indeed the definitions)
that the measure and the integral are related by

λ(B) =
∫

B
1 dx.

We can now state and prove the transport theorem.

Theorem 9.6 (Transport Theorem) Suppose f : R × O → R is a C1,
time-dependent, scalar field on O, and for U ⊆ O, open, and I an interval,
the product I × U is contained in the domain D of the flow φ generated by
X. Then:

d

dt

∫
φt(U)

f dx =
∫

φt(U)

[
∂f

∂t
+ ∇f ·X + div(X)f

]
dx. (9.45)

In particular for f = 1, the constant 1 function, formula (9.45) gives the
rate of change of the hypervolume of U as it is moved and deformed by the
flow:

d

dt
λ(φt(U)) =

d

dt

∫
φt(U)

1 dx =
∫

φt(U)
div(X) dx. (9.46)

Hence, if X is divergence free, i.e., div(X) = 0, then the hypervolume of U
remains constant (is preserved) under the flow generated by X:

λ(φt(U)) = λ(U),

for all t ∈ I.

Proof: The proof is rather elementary in that it is a direct application of
the change of variables formula, differentiation under the integral sign, and
several easy identities. Thus:

d

dt

∫
φt(U)

f(t, x)dx =
d

dt

∫
U
f(t, φt(u)) det(φ′t(u)) du (9.47)

=
∫

U

∂

∂t

[
f(t, φt(u)) det(φ′t(u))

]
du (9.48)
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In the above we have used the fact that det(φ′t(u)) must be positive for all
u and t. To complete the proof, we need to compute the time derivative of
the integrand in (9.48). For this note that:

∂

∂t
f(t, φt(u)) =

[
∂f

∂t
(t, x) +

n∑
j=1

∂f

∂xj
(t, x)

∂φj

∂t
(t, u)

]
x=φt(u)

=
[
∂f

∂t
(t, x) +

n∑
j=1

∂f

∂xj
(t, x)Xj(t, x)

]
x=φt(u)

=
[
∂f

∂t
(t, x) + ∇f(t, x) ·X(t, x)

]
x=φt(u)

.

We also need to compute the time derivative of the term involving the deter-
minant, and so we look at a general identity for derivatives of determinantal
quantities. Thus suppose A = {aij}i,j=1,...n is an n × n matrix with entries
aij being differentiable functions of t. Letting A be expressed in terms of its
rows as A = [R1, . . . , Rn], we have

d

dt
detA =

d

dt
det[R1, . . . , Rn] =

n∑
i=1

det[R1, . . . ,
dRi

dt
, . . . , Rn]. (9.49)

This identity is easy to prove using the definition of the determinant:

detA =
∑

σ∈Πn

(−1)σa1σ1a2σ2 · · · anσn.

(exercise).
An additional calculation needed below is

∇[Xi(φ(t, u))]

=
(
∂

∂u1
[Xi(t, φ(t, u))], . . . ,

∂

∂un
[Xi(t, φ(t, u))]

)
=

( n∑
j=1

∂Xi

∂xj
(t, φ(t, u))

∂φj

∂u1
(t, u), . . .

n∑
j=1

∂Xi

∂xj
(t, φ(t, u))

∂φj

∂un
(t, u)

)

=
n∑

j=1

∂Xi

∂xj
(t, φ(t, u))∇φj(t, u). (9.50)

Using this result and the identity (9.49) for differentiating a determinant
gives

∂

∂t
det(φ′t(u))
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=
∂

∂t
det
[
∇φ1

t (u), . . . ,∇φn
t (u)

]
=

n∑
i=1

det
[
∇φ1(t, u), . . . ,

∂

∂t
∇φi(t, u), . . . ,∇φn(t, u)

]

=
n∑

i=1

det
[
∇φ1(t, u), . . . ,∇ ∂

∂t
φi(t, u), . . . ,∇φn(t, u)

]

=
n∑

i=1

det
[
∇φ1(t, u), . . . ,∇[Xi(t, φ(t, u))], . . . ,∇φn(t, u)

]

=
n∑

i=1

det
[
∇φ1(t, u), . . . ,

n∑
j=1

∂Xi

∂xj
(t, φ(t, u))∇φj(t, u), . . . ,∇φn(t, u)

]

=
n∑

i=1

n∑
j=1

∂Xi

∂xj
(t, φ(t, u)) det

[
∇φ1(t, u), . . . ,∇φj(t, u), . . . ,∇φn(t, u)

]

=
n∑

i=1

∂Xi

∂xi
(t, φ(t, u)) det(φ′t(u)) (9.51)

= div(X)(t, φ(t, u)) det(φ′t(u)). (9.52)

The reduction to get (9.51) above comes from the property: the determinant
is zero if two rows are the same. Thus if we use these calculations of the
time derivatives, we see that the integral in (9.48) is∫

U

[
∂f

∂t
(t, x) + ∇f(t, x) ·X(t, x) + div(X)(t, x)f(t, x)

]
x=φt(u)

det(φ′t(u))du

=
∫

φt(U)

[
∂f

∂t
(t, x) + ∇f(t, x) ·X(t, x) + div(X)(t, x)f(t, x)

]
dx,

where we have used the change of variables formula again. This completes
the proof.

It is easy to see that any Hamiltonian vector field: XH = (∂H
∂p ,−

∂H
∂q ), is

divergence free:
div(XH) = 0.

Thus by the transport theorem we get:

Corollary 9.4 (Liouville’s Theorem) For a Hamiltonian vector field XH :
O → R

n, the flow φH preserves volumes in phase space. That is, if U ⊆ O
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is an open set and I is an interval of times for which I × U ⊆ D, where D
is the domain of φH , then

λ(φH
t (U)) = λ(U).

for all t ∈ I.

Liouville’s theorem leads to the general study of measure preserving maps
between two measure spaces and thus to ergodic theory (Cf. [Pa 81], [Pe
83]). All of these play a role in certain aspects of statistical mechanics.
We end the chapter with one application of the Transport Theorem which
pertains to these topics.

Theorem 9.7 (Poincaré Recurrence Theorem) Suppose X : O ⊆ R
n →

R
n is a complete vector field and is divergence free: div(X) = 0. Suppose

A ⊆ O is a set of finite measure: λ(A) <∞ and is also invariant under the
flow: φt(A) ⊆ A, for every t ∈ R. For a measurable subset B of A, let B∞
be the following subset of B:

B∞ =


∃ a sequence {tk}∞k=1 with

x ∈ B

∣∣∣∣ t1 < t2 < t3 < · · · → ∞
andφtk(x) ∈ B, ∀k

 . (9.53)

Then
λ(B∞) = λ(B). (9.54)

Thus, almost every point of B returns infinitely often to B under the flow
map.

Remark: Equation (9.54) is equivalent to λ(B \ B∞) = 0, i.e., the set of
points in B that do not return to B infinitely often has measure zero.

Proof: Let τ > 0 be any time increment and, relative to this fixed increment,
define sets Γk, k = 0, 1, 2, . . ., by

Γk ≡ {x ∈ A | ∃ j ≥ k � φjτ (x) ∈ B }

=
∞⋃

j=k

φ−1
jτ (B). (9.55)

Then clearly from (9.55), the Γk’s form a decreasing sequence of sets:

Γ0 ⊇ Γ1 ⊇ Γ2 ⊇ · · ·
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Also since φ0(x) = x, for every x, it is clear that B ⊆ Γ0. Let Γ∞ denote
the intersection of the Γk’s:

Γ∞ ≡
∞⋂

k=0

Γk

= {x ∈ A | ∀ k ∃ j ≥ k � φjτ (x) ∈ B }
= the set of points in A that return to B infinitely often.

It is easy to see that
B ∩ Γ∞ ⊆ B∞ ⊆ B, (9.56)

and thus to prove the theorem all we have to show is

λ(B ∩ Γ∞) = λ(B). (9.57)

A key ingredient in proving this is to show that all the Γk’s have the same
measure (or hypervolume) and for this, the Transport Theorem is instru-
mental. In order to use this theorem, we first prove the following

Claim: φτ (Γk) = Γk−1 (for all k).

To prove the claim, suppose that y ∈ φτ (Γk). Then there is an x ∈ Γk

such that φτ (x) = y. However, since x ∈ Γk, there is a j ≥ k such that
φjτ (x) ∈ B. But then, using the semigroup property of the flow gives

φ(j−1)τ (y) = φ(j−1)τ (φτ (x)) = φjτ (x) ∈ B.

But this means that y ∈ Γk−1. Conversely, suppose that y ∈ Γk−1. Then
there exists an i ≥ k − 1 such that φiτ (y) ∈ B. Let x ≡ φ−τ (y), so that
x ∈ A (since A is invariant under the flow) and φτ (x) = y. Thus,

φ(i+1)τ (x) = φ(i+1)τ (φ−τ (y)) = φiτ (x) ∈ B.

Hence x ∈ Γk. Since y = φτ (x), this gives that y ∈ φτ (Γk). This completes
the proof of the Claim.

The Claim says that φτ maps Γk into Γk−1. However, since X is diver-
gence free, the Transport Theorem guarantees that the hypervolume does
not change under this mapping. Thus,

λ(Γk−1) = λ(φτ (Γk)) = λ(Γk),
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for all k. This, together with a basic property of measures of hypervolumes,
gives

λ(Γk−1 \ Γk) = λ(Γk−1) − λ(Γk) = 0,

for all k. Thus, each of the annular rings Γk−1 \ Γk has measure zero.
However, since

Γ0 \ Γ∞ =
∞⋃

k=1

(Γk−1 \ Γk),

is a disjoint union, we have (by a basic property of measures) that

λ(Γ0 \ Γ∞) =
∞∑

k=1

λ(Γk−1 \ Γk) = 0.

Now since B \Γ∞ ⊆ Γ0 \Γ∞, the above also gives that λ(B \Γ∞) = 0. Using
this gives

λ(B) = λ

(
(Γ∞ ∩B) ∪ (B \ Γ∞)

)
= λ(Γ∞ ∩B) + λ(B \ Γ∞)
= λ(Γ∞ ∩B).



Appendix A

Elementary Analysis

This appendix includes some material from analysis that will serve to aug-
ment several topics in the text.

A.1 Multivariable Calculus
We will need some elementary facts and notation from multivariable calculus.
The space R

n is the set of all n-tuples:

x = (x1, . . . , xn),

of real numbers: xi ∈ R, i = 1, . . . , n. We will view R
n either as the canonical

n-dimensional Eucludean space, whose elements x ∈ R
n are points in this

space, or alternatively as an n-dimensional vector space, whose elements x
are vectors (position vectors).

Multivariable calculus is the study of properties of maps (or functions):

f : R
n → R

k,

between two Euclidean spaces. More generally, we will only assume that the
domain of f is some (open) subset O ⊆ R

n of R
n, and denote this by:

f : O ⊆ R
n → R

k.

Applying f to a point x = (x1, . . . , xn) ∈ O gives a point f(x) in R
k, and

we denote the component form of this point by:

f(x) = (f1(x), . . . , fk(x)).

Otherwise said, f : O → R
k, is given via k real-valued functions: f i : O →

R, i = 1, . . . , k of n variables. These functions are called the component

535



536 Appendix A. Elementary Analysis

functions of f . The map, or function, f is also called a transformation and
is thought of as transforming points x ∈ O into points y ∈ R

k. It’s action is
often denoted by:

y = f(x),

or in component form by:

y1 = f1(x1, . . . , xn)
y2 = f2(x1, . . . , xn)

...
yk = fk(x1, . . . , xn).

A important special case of such a transformation is when f : R
n → R

k is a
linear transformation:

f(x) = Ax,

where A is a k× n matrix, and x is written as a column vector in the above
notation. Thus, this linear transformation written in vector form is:

y = Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

ak1 ak2 · · · akn



x1

x2
...
xn

 .
With the usual matrix operations, this transformation in component form
is:

y1 = a11x1 + a12x2 + · · · + a1nxn

y2 = a21x1 + a22x2 + · · · + a2nxn

·
· (A.1)
·

yk = ak1x1 + ak2x2 + · · · + aknxn.

When k > 1, some alternative terminology for a map f : O → R
k is to

call f a vector-valued function on O. Then f(x), for x ∈ O, is considered a
vector in R

k, rather than as a point in R
k. A real-valued function f : O → R

is often called a scalar-valued function, or a scalar field on O. On the other
hand, as was discussed in the text, a vector-valued function f : O ⊆ R

n → R
n

is called a vector field on O.
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Definition A.1 (Level sets) For a real-valued function F : O → R on an
open set O ⊆ R

n and a real number k ∈ R, the set:

Sk
F = {x ∈ O |F (x) = k } = F−1({k}),

is called a level set of F . Of course this set is empty when k is not in the
range of F . For n = 2 the set Sk

F is called a level curve and for n = 3 the
set Sk

F is called a level surface. For functions F 1, . . . , F r on O and constants
k1, . . . , kr, the intersection of the respective level sets is denoted by

Sk1···kr

F 1···F r ≡ Sk1

F 1 ∩ Sk2

F 2 ∩ · · · ∩ Skr
F r .

Definition A.2 (Jacobian matrix) In the sequel unless specified other-
wise O will denote an open subset of R

n. A map f : O → R
k is is called

differentiable on O, if all the partial derivatives of the component functions
∂f i/∂xj exist on O. When this is the case the Jacobian matrix of f at x ∈ O
is the k × n mattrix:

f ′(x) =



∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

∂f2

∂x1
(x) · · · ∂f2

∂xn
(x)

...
...

∂fk

∂x1
(x) · · · ∂fk

∂xn
(x)


(A.2)

This matrix is also called the derivative of f at x. Thus, the derivative at x
of a map from R

n to R
k is a k × n matrix.

Example A.1 For the sake of definiteness, we look at a few specific exam-
ples.

(1) For n = 1 and k = 1, the map f is just a real-valued function of a real
variable, and its derivative, or Jacobian matrix, at x is just a 1 × 1
matrix, namely a number.

(2) Suppose f : R → R
2 is given by:

f(t) = (t3, t2).
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Then its Jacobian matrix at t is the 2 × 1 matrix:

f ′(t) =

[
3t2

2t

]
= (3t2, 2t).

Note: Generally, when there is no risk of confusion, we identify row
matrices and column matrices, thinking of them as vectors.

We can consider f as parametrizing a curve in R
2, with t as the para-

meter. In this case f ′(t) is a tangent vector at the point f(t) on the
curve parametrized by f . See Figure A.1.

Figure A.1: The curve f(t) = (t3, t2).

(3) For n = 2 and k = 3, suppose f : R
2 → R

3 is the map defined by the
formula:

f(x1, x2) =
(
x1 + x2

2, x
2
1 + x2, 1 + sin(x1x2)

)
.

Then f is differentiable on R
2, and its derivative at x is the 3 × 2

matrix:

f ′(x1, x2) =


1 2x2

2x1 1

x2 cos(x1x2) x1 cos(x1x2)

 (A.3)

In particular at the point x = (0, 0), the Jacobian matrix is:

f ′(0, 1) =

 1 0
0 1
0 0

 .
As in the last example, we can think of f as parametrizing a sub-
manifold in R

3, where x1, x2 are the parameters. In this case the
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Figure A.2: The surface f(x1, x2) = (x1 + x2
2, x

2
1 + x2, 1 + sin(x1x2)).

submanifold is a surface since there are two parameters. Figure A.2
shows a part of this surface corresponding to parameters (x1, x2) ∈
[−0.5, 0.5] × [0.5, 0.5].

For x = (0, 0), the figure also shows the two vectors

e1(x) =
∂f

∂x1
(x) =

(
∂f1

∂x1
(x),

∂f2

∂x1
(x),

∂f3

∂x1
(x)

)
= (1, 0, 0)

e2(x) =
∂f

∂x2
(x) =

(
∂f1

∂x2
(x),

∂f2

∂x2
(x),

∂f3

∂x2
(x)

)
= (0, 1, 0),

as well as the cross product of these vectors

n(x) =
∂f

∂x1
(x) × ∂f

∂x2
(x) = (0, 0, 1),

plotted at the point f(x) = (0, 0, 1) on the surface. The vectors
e1(x), e2(x) are tangent to the surface at x and determine the tan-
gent plane at this point. The vector n(x) is normal to the surface at
the point f(x). Note also that e1(x) and e2(x) are the two columns of
the Jacobian matrix

f ′(x) =
[
∂f

∂x1
(x),

∂f

∂x2
(x)
]

=
[
e1(x), e2(x)

]
.

(4) Suppose f : R
3 → R is given by:

f(x1, x2, x3) = x2
1 + x2

2 + x2
3,
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Then the Jacobian matrix is the 1 × 3 matrix:

f ′(x1, x2, x3) = [2x1, 2x2, 2x3],

Here we have identified column and row matrices, thinking of them as
vectors.

In this example, f ′(x) = ∇f(x) is just the gradient (vector) of f at
the point x = (x1, x2, x3). Geometrically ∇f(x) is normal to the level
surface of f

Sk
f = { y ∈ R

3 | f(y) = k },

which passes through the point x. In this case the level surface is a
sphere (when x 
= 0).

(5) Suppose f : R
3 → R

2 is given by:

f(x1, x2, x3) = (x1 − x2 + 5x3, 2x1 + x2 − 4x3).

Then the derivative of f at any point is the 2 × 3 matrix:

f ′(x1, x2, x3) =

[
1 −1 5
2 1 −4

]
.

In general, if f : R
n → R

k is given by matrix multiplication:

f(x) = Ax,

where A is an n× k matrix, then its derivative is a constant (matrix):

f ′(x) = A,

for every x ∈ R
n.

We will often need to require that the maps, or functions, f we deal with
have some specific degree of differentiablity and continuity. For this there is
some standard terminology:

Definition A.3 (Differentiability: Ck Maps) Suppose f : O ⊆ R
n →

R
k is a map. Then f is called continuous, or C0, if each of its component

functions f i, i = 1, . . . , n is continuous. If each of these component functions
is differentiable (i.e. has 1st-order derivatives existing on O), then f is
called differentiable. If in addition these 1st-order partial derivatives are
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continuous functions, then f is called a C1 function. More generally, f is
called Cr function (for r = 1, 2, . . .) if each of its component functions has
partial derivatives existing up to the rth-order and the rth-order derivatives
are continuous. The map f is called C∞ if each of its component functions
has derivatives existing to all orders. Often we will not particularly care
about the precise degree of differentiability of f and will call f a smooth
function if it is at least a C1 function.

A.2 The Chain Rule
We present here, for your convenience, the statement of the chain rule for
vector-valued functions f : O ⊆ R

n → R
k of several variables. It is a natural

extension of the chain rule studied in undergraduate calculus. In fact, with
the proper notation and with the concept that the dervative f ′(x) at x ∈ O
is a matrix, the general case looks identical to the undergraduate case.

Suppose that g : U ⊆ R
p → R

n and f : O ⊆ R
n → R

k are differentiable
maps, with domains U,O being open sets in R

p,Rn respectively. Assuming
the range of g is contained in the domain of f , i.e., g(U) ⊆ O, we can form
the composite function: f ◦ g : U → R

k. See Figure A.3.

Figure A.3: Composition of functions.

The chain rule simply says that the composite function is differentiable
and its derivative at z ∈ R

p is given by:

(f ◦ g)′(z) = f ′(g(z))g′(z) (A.4)

=


∂f1

∂x1
(g(z)) · · · ∂f1

∂xn
(g(z))

...
...

∂fk

∂x1
(g(z)) · · · ∂fk

∂xn
(g(z))




∂g1

∂z1
(z) · · · ∂g1

∂zp
(z)

...
...

∂gn

∂z1
(z) · · · ∂gn

∂zp
(z)
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This says that the Jacobian matrix (f ◦ g)′(z) (which is a k×p matrix) is the
product of the Jacobian matrix f ′(g(z)) (a k × n matrix) and the Jacobian
matrix g′(z) (an n× p matrix).

An important special case of this is when g is a curve in O. So suppose
α : I → O is a differentiable curve, then f ◦ α : I → R

k is a differentiable
curve, and

d

dt
(f ◦ α)(t) = f ′(α(t))α′(t) (A.5)

=


∂f1

∂x1
(α(t)) · · · ∂f1

∂xn
(α(t))

...
...

∂fk

∂x1
(α(t)) · · · ∂fk

∂xn
(α(t))




dα1

dt (t))
...

dαn

dt (t)

 (A.6)

This says that the time derivative of the ith component of the curve f ◦ α is
given by:

d

dt
(f i ◦ α)(t) =

n∑
j=1

∂f i

∂xj
(α(t))

dαj

dt
(t) = ∇f i(α(t)) · α′(t),

which is perhaps the more familar version of the chain rule in this case.

A.3 The Inverse and Implicit Function Theo-
rems

The Inverse Function Theorem is one of the most important results in the
multivariable calculus and is useful in proving a number of closely related
theorems, for example, the Submanifold Theorem and Implicit Function
Theorem. We provide proofs of these latter theorems here specifically for
the reason of showing how the Inverse Function Theorem is central to these
theorems. This is the real value of presenting the proofs and will perhaps
give you an understanding of how to derive other results in the literature.

We do not prove the Inverse Function Theorem, but refer you to [Ru 76]
for this.

Theorem A.1 (Inverse Function Theorem) Suppose f : O → R
n is a

C1 function on an open set O in R
n. If c ∈ O is a point at which the Jacobian

matrix f ′(c) is invertible, then f is locally invertible on a neighborhood of
c. Specifically, there is a neighborhood U ⊆ O of c and a neighborhood V of
f(c) such that

f : U → V,
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is 1-1, onto, and its inverse f−1 : V → U is C1. Furthermore the derivative
of the inverse function is given by

(f−1)′(y) = [f ′(f−1(y))]−1, (A.7)

for all y ∈ V .

The proof of the derivative formula (A.7) follows easily form the chain
rule (exercise). The form of this formula (and the proof of its validity) is
exactly the same as the 1-variable case in calculus, except now the expressions
involve matrices.

The next result is instrumental in developing the notion of what an ab-
stract manifold is. We do not discuss general manifolds (topological, dif-
ferentiable, or analytic) in this text, but rather work with concrete ones as
described in the next to the last section. All these manifolds, like curves
and surfaces, are, by definition, maps h : U → R

n, with suitable prop-
erties. An alternative description of such manifolds is as the intersection
of level sets. Thus, while a curve in R

3 is a map rather than a set of
points, we can alternatively consider the intersection of two level surfaces:
F 1(x, y, z) = k1, F

2(x, y, z) = k2, with appropriate conditions on F 1, F 2, as
being a “curve” as well. The next theorem gives the extent to which this
alternative view is the same as the original definition.

Theorem A.2 (Submanifold Theorem) Suppose F 1, . . . , F r : O → R

are smooth functions (C1 functions) on an open set O in R
n (with r ≤ n)

and k1, . . . , kr are constants. Let

Sk1···kr

F 1···F r = {x ∈ O |F 1(x) = k1, . . . , F
r(x) = kr },

be the intersection of the corresponding level sets. If c ∈ Sk1···kr

F 1···F r is a point
such that

∇F 1(c), . . . ,∇F r(c),

are linearly independent, then there is a neighborhood V ⊆ O of c, an open
set U ⊆ R

n−r, and a differentiable map

h : U → Sk1···kr

F 1···F r ∩ V,

that is 1-1 and onto. Furthermore h has the form

h(u) =
(
h1(u), . . . , u1, . . . , un−r, . . . , h

n(u)
)
, (A.8)
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i.e., there are indices �1 < · · · < �n−r ∈ {1, . . . , n}, such that h�i(u) = ui,
for i = 1, . . . , n − r. See Figure A.4. Hence the Jacobian matrix h′(u) has
rank n− r for all u ∈ U , and the inverse of h is given by projection:

h−1(x) = (x�1, . . . , x�n−r), (A.9)

for all x = (x1, . . . , xn) ∈ Sk1···kr

F 1···F r ∩ V .

Proof: For convenience of notation let F : O → R
r be the function

F (x) = (F 1(x), . . . , , F r(x)).

We can express the r × n, Jacobian matrix of F at c either in terms of its
rows or in terms of its columns as:

F ′(c) =

 ∇F 1(c)
...

∇F r(c)

 =
[
∂F

∂x1
(c), . . . ,

∂F

∂xn
(c)
]

This matrix has rank r, since it has r linearly independent rows (the gradient
vectors), and since the rank of a matrix is also the same as the number of
linearly independent columns, there are r linearly independent columns as
well. The proof is most clear in the case where the linearly independent
columns come last. So we do this case first and then show how to reduce
the general case to this special case.

Case (1): Assume the last r columns of F ′(c), i.e., the vectors:

∂F

∂xn−r+1
(c), . . . ,

∂F

∂xn
(c),

are linearly independent. Define ψ : O → R
n by

ψ(x) = (x1, . . . , xn−r, F (x)),

for x = (x1, . . . , xn) ∈ O. Then the Jacobian matrix of ψ at c is

ψ′(c) =



1 0 0 0
. . . . . .

0 1 0 0

∂F
∂x1

(c) · · · ∂F
∂xn−r

(c) ∂F
∂xn−r+1

(c) · · · ∂F
∂xn

(c)

 .
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This is a block diagonal matrix with the (n− r)× (n− r) identity matrix as
the upper lefthand block and the r×r matrix {∂F i(c)/∂xj}i=1···r

j=n−r+1···n as the
lower right-hand block. Thus, ψ′(c) is an invertible matrix. By the Inverse
Function Theorem, there is a neighborhood B of c and a neighborhood W
of ψ(c), such that ψ : B →W has a C1 inverse φ : W → B. See Figure A.4.

Figure A.4: The construction of the map h.

It is easy to show (exercise) that φ must have the form

φ(y) = (y1, . . . , yn−r, G(y)),

for each y = (y1, . . . , yn) ∈W , where

G(y) = (G1(y), . . . , Gr(y)),

and the functions Gi : W → R are differentiable functions. Furthermore
because φ = ψ−1, the function G satisfies the identities:

F i
(
y1, . . . , yn−r, G(y)

)
= yn−r+i, (i = 1, . . . , r) (A.10)

for each y ∈W . Now since ψ(c) ∈W and

ψ(c) = (c1, . . . , cn−r, F
1(c), . . . , F r(c)) = (c1, . . . , cn−r, k1, . . . , kr),

there exists a neighborhood U ⊆ R
n−r of (c1, . . . , cn−r) and a neighborhood

Q ⊆ R
r of (k1, . . . , kr) such that U × Q ⊆ W . See Figure A.4. Define
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h : U → B by

h(u1, . . . , un−r) = φ(u1, . . . , un−r, k1, . . . , kr)

=
(
u1, . . . , un−r, G(u1, . . . , un−r, k1, . . . , kr)

)
Then h is 1-1 and differentiable since φ is. Finally we take V = φ(U ×Q).

To show that the range h(U) of h is Sk1···kr

F 1···F r ∩ V , we use identity (A.10)
to first conclude that if (u1, . . . , un−r) ∈ U , then

F i(h(u1, . . . , un−r)) = F i(u1, . . . , un−r, G(u1, . . . , un−r, k1, . . . , kr))
= ki

for each i = 1, . . . , r. Thus, h(U) ⊆ Sk1···kr

F 1···F r ∩ V . On the other hand, if
x ∈ Sk1···kr

F 1···F r ∩ V , then since x ∈ V we have x = φ(y), for some y ∈ U × Q.
Then

y = ψ(x) = (x1, . . . , xn−r, F (x))
= (x1, . . . , xn−1, k1, . . . , kr)

Consequently,

x = φ(y) = φ(y1, . . . , yn−1, k1, . . . , kr)
= h(y1, . . . , yn−1).

Thus, h(U) = Sk1···kr

F 1···F r ∩V . It is clear that h has the form stated in equation
(A.8), and thus the proof of the theorem is complete in this case.

Case (2): In general we can only assume that there are indices j1 < . . . <
jr ∈ {1, . . . , n} such that

∂F

∂xj1

(c), . . . ,
∂F

∂xjr

(c),

are linearly independent. Let �1 < · · · < �n−r be the other n− r indices and
let P be the n× n permutation matrix such that

P (x1, . . . , xn) = (x�1 , . . . , x�n−r , xj1 , . . . , xjr),

for all (x1, . . . , xn) ∈ R
n. Note that P is obtained from the identity matrix

I by permuting its rows (or columns) in the same way as the xi’s. Also P
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is its own inverse. Let Õ be the open set Õ = PO and so also P Õ = O.
Define F̃ : Õ → R

r by
F̃ (x̃) = F (Px̃),

for x̃ ∈ Õ. If we let c̃ = Pc, then P c̃ = c, so F̃ (c̃) = F (c) and, by the chain
rule,

F̃ ′(c̃) = F ′(P c̃)P = F ′(c)P

=
[
∂F

∂x�1

(c), . . . ,
∂F

∂x�n−r

(c),
∂F

∂xj1

(c), . . . ,
∂F

∂xjr

(c)
]

Note that the last r columns of the matrix F̃ ′(c̃) are linearly independent,
and thus we can apply the theorem to F̃ since it satisfies the assumptions
in Case (1) above. Thus, there is a neighborhood Ṽ of c̃, an open set Ũ in
R

n−r, and differentiable map

h̃ : Ũ → Sk1···kr

F̃ 1···F̃ r
∩ Ṽ ,

that is 1-1, onto and has the form

h̃(ũ) = (ũ1, . . . , ũn−r, h̃
n−r+1(ũ), . . . , h̃n(ũ)),

for all ũ = (ũ1, . . . , ũn−r) ∈ Ũ . Now let V = Ṽ and define h : U → R
n by

h = P ◦ h̃.

Then it is easy to prove that

P

(
Sk1···kr

F̃ 1···F̃ r
∩ Ṽ

)
= Sk1···kr

F 1···F r ∩ V,

and that h has the properties stated in the theorem (exercise). With this
the proof is complete.

The Implicit Function Theorem is a direct corollary of the Submani-
fold Theorem. Indeed they are essentially the same result, phrased in two
different ways.

Suppose F 1, . . . , F r : O →
R are smooth functions (C1 functions) on an open set O in R

n (with r ≤ n)
and k1, . . . , kr are constants. Denote by F the function F : O → R

r

Corollary A.1 (Implicit Function Theorem)
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defined by F (z) = (F 1(z), . . . , F r(z)) and let k = (k1, . . . , kr). Suppose
c = (a, b) ∈ O, with a ∈ R

n−r and b ∈ R
r, satisfies the system of r equations

in n unknowns:
F (x, y) = k,

which is written in vector form, with with x ∈ R
n−r and y ∈ R

r. Suppose in
addition that the vectors

∂F

∂zn−r+1
(c), . . . ,

∂F

∂zn
(c), (A.11)

are linearly independent. Then there is a neighborhood U ⊆ R
n−r of the

point a = (c1, . . . , cn−r) and differentiable maps G1, . . . , Gr : U → O such
that

F

(
x,G(x)

)
= k,

for all x = (x1, . . . , xn−r) ∈ U . Here G(x) ≡ (G1(x), . . . , Gr(x)).

Proof: This is the result in Case (1) from the last proof.

In essence the Implicit Function Theorem gives conditions under which
we can solve the system of equations F (x, y) = k, for y as a function of x,
giving an explicitly defined function y = G(x) that satisfies the system of
equations. Note the theorem says nothing about how many explicit solutions
G there are.

A.4 Taylor’s Theorem and The Hessian
The multivariable version of Taylor’s Theorem can be expressed in two dis-
tinct ways, depending on the notation one prefers. Here we state the theorem
using the notation involving multilinear forms on R

n (See Appendix C for
the definition of multilinear forms).

Definition A.4 (Higher-Order Derivatives) Suppose f : O ⊆ R
n →

R
k is a vector-valued function on an open set O in R

n. Assuming that f has
partial derivatives to the rth-order, the rth derivative of f at x ∈ O, denoted
by f (r)(x), is the multilinear map f (r)(x) : (Rn)r → R

n defined by

f (r)(x)(v1, v2, . . . , vr) =
∑

i1,i2,...,ir

∂rf

∂xi1∂xi2 · · · ∂xir

(x) v1
i1v

2
i2 · · · v

r
ir .
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Here vj = (vj
1, . . . , v

j
n) ∈ R

n, for j = 1, . . . , r, and the sum is over all choices
of indices i1, . . . , ir ∈ {1, . . . , n}. Furthermore

∂rf

∂xi1 · · · ∂xir

(x) =
(

∂rf1

∂xi1 · · · ∂xir

(x), . . . ,
∂rfn

∂xi1 · · · ∂xir

(x)
)

∈ R
n,

for i1, . . . , ir ∈ {1, . . . , n}.

The definition includes the case of the 1st derivative, since we identify
matrices with linear maps. Thus, f ′(x) is the linear map f ′(x) : R

n → R
k

given by

f ′(x)v =
n∑

i=1

∂f

∂xi
(x) vi.

The expression on the right is a linear combination of the columns of the
Jacobian matrix of f .

For for the 2nd derivative, it is traditional to use the notation f (2)(x) =
f ′′(x). This is the bilinear map on R

n given by

f ′′(x)(v,w) =
n∑

i,j=1

∂2f

∂xi∂xj
(x) viwj ,

for v,w ∈ R
n.

Based on this notation, we can state Taylor’s Theorem in the following
form.

Theorem A.3 (Taylor’s Theorem) Suppose f : O ⊆ R
n → R

k is a
Cr+1, vector-valued function on an open set in R

nand that x ∈ O and
h ∈ R

n, with h small enough so that the line segment joining x and x+h lies
in O. Then there exists a point c on the line segment joining x and x + h
such that

f(x+ h) = f(x) + f ′(x)h + 1
2f

′′(x)(h, h) + · · · (A.12)

+ 1
r! f

(r)(x)(h, . . . , h) + 1
(r+1)! f

(r+1)(c)(h, . . . , h).

Furthermore, with the appropriate understanding that c depends on h, we
have

lim
h→0

|f (r+1)(c)(h, . . . , h)|
|h|r+1

= 0,

with | · | indicating the respective Euclidean norms on R
k and R

n.
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Proof: See [MH 93] for the case when k = 1. Then the k > 1 is an easy
corollary (exercise).

When f is C∞, then the following power series in h
∞∑

j=0

1
j!
f (j)(x)(h, . . . , h)j = f(x) + f ′(x)h+ 1

2f
′′(x)(h, h) + · · · ,

is known as the Taylor series for f at x. With suitable bounds on the partial
derivatives of f , one can use Taylor’s Theorem to prove that convergence of
the Taylor series to the value of the function:

f(x+ h) =
∞∑

j=0

1
j!
f (j)(x)(h, . . . , h)j .

If this happens for all x+h in a neighborhood of x, then f is called analytic
at x. If f is analytic at each point x ∈ O, then it is called an analytic
function on O.

Taylor’s Theorem is useful in many ways and in particular forms the
basis for the classification of the local extrema of a real-valued function.

Definition A.5 (Critical Points and the Hessian) Suppose f : O →
R is a real-valued function on an open set O in R

n.

(1) f has a local maximum value at a point c ∈ O if there is a neighborhood
U of c (c ∈ U ⊆ O) such that f(x) ≤ f(c) for every x ∈ U . Similarly,
f is said to have a local minimum value at c if there is a neighborhood
U of c such that f(c) ≤ f(x) for all x ∈ U . In either case, whether
f(c) is a local maximum or minimum value, the number f(c) is called
a local extreme value of f .

(2) Assume that the first order partials of f exist at each point in O. A
point c ∈ O is called a critical point of f if f ′(c) = 0.

(3) If the 2nd-order partials of f exist at x ∈ O, then the Hessian of f at
x is the n× n matrix

Hf (x) =


∂2f
∂x2

1
(x) · · · ∂2f

∂x1∂xn
(x)

...
...

∂2f
∂xn∂x1

(x) · · · ∂2f
∂x2

n
(x)

 .
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As in the one variable case, the local extreme values occur at critical points
and the Hessian can be used to determine whether the values are local max-
imum or minimum values. Note that in the one variable case, the Hessian
is the 1 × 1 matrix Hf (x) = [f ′′(x)] and the graph of f is concave up at x
if f ′′(x) is positive and is concave down at x if f ′′(x) is negative. Thus, the
test for a local minimum or maximum value at x is to check whether f ′′(x)
is positive or negative. Of course the test yields no information if f ′′(x) = 0.
For example, the function f(x) = x4 has a minimum value of 0 at x = 0,
but the second derivative test fails to tell us this.

In the multivariable case, the Hessian is a symmetric matrix, and as such
determines a bilinear form on R

n (see Appendix C for a brief discussion of
bilinear forms). Many texts define the Hessian as a bilinear form. In any
event, it is important to note that this bilinear form is just the 2nd derivative
of f at x as defined above. That is

f ′′(x)(v,w) = Hf (x)v · w.

Also see Appendix C for the definition of what it means for a bilinear form, or
symmetric matrix, to be positive (or negative) definite. This is the criterion
used in the 2nd derivative test in the following theorem.

Theorem A.4 (Local Maximum/Minimum Values) Let f : O → R

be a real-valued function on an open set O in R
n. Suppose f has a local

extreme value at c. If the 1st-order partials of f exist at c, then f ′(c) = 0.
Thus, the extreme values of f occur at critical points.

Suppose the 2nd-order partials of f exist at c and that f ′(c) = 0. If the
Hessian Hf (c) is positive definite, then f(c) is a local minimum value of f .
On the other hand if Hf (c) is negative definite, then f(c) is a local maximum
value of f .

Proof: Again see [MH 93] for the proof.

Intuitively, the use of the Hessian in determining whether an extreme
value is a local minimum or maximum is based on Taylor’s Theorem as
follows. If f has a local extrema at c (and is suitably differentiable), then
f ′(c) = 0 and so near c, the Taylor series expansion is

f(c+ h) = f(c) + 1
2Hf (c)h · h+ 1

3!f
′′′(c)(h, h, h) + · · · ,

for h sufficiently small. If the Hessian is positive definite, then Hf (c)h ·h > 0
for all h and so if all but the first two terms in the Taylor series are neglected,
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we get that f(c + h) > f(c). Similarly, we get an intuitive argument for
showing that f(c + h) < f(c), when the Hessian is negative definite, i.e.,
when Hf (c)h · h < 0 for all h.

In any particular example it is usually difficult to determine if the Hessian
matrix is positive definite, negative definite, or neither. Note that the last
option yields no information about the type of extreme value. From the
theory in Appendix C, we can always look at the eigenvalues of the matrix
(which are usually difficult to compute as well) to determine positive or
negative definiteness. Thus, if all the eigenvalues of Hf (c) are positive, then
Hf (c) is positive definite, and if all the eigenvalues are negative then Hf (c) is
negative definite. Otherwise Hf (c) is neither positive nor negative definite.
Thus, when Hf (c) is an invertible matrix, there is a famous third possiblity
for the type of critical point that can occur.

Definition A.6 (Saddle Points) Suppose f : O ⊆ R
n → R has 2nd-order

partial derivatives existing at c ∈ O and that c is a critical point (f ′(c) = 0).
Then c is called a saddle point of f if f(c) is neither a maximum or minimum
value of f and the Hessian Hf (c) is invertible.

By the theory in Appendix C, the point c is a saddle point whenever
the Hessian matrix Hf (c) has some positive eigenvalues and some negative
eigenvalues, but zero is not an eigenvalue (assuming f is twice differentiable).

A.5 The Change of Variables Formula
Theorem A.5 (Change of Variables) Suppose that U and V are open
subsets of R

n, and φ : U → V is a continuously differentiable function that
is 1-1, onto, and det(φ′(u)) 
= 0, for every u ∈ U . Then for any continuous
function f : V → R, we have:∫

φ(U)
f(x)dx =

∫
U
f(φ(u)) |det φ′(u))| du. (A.13)

Here: dx = dx1dx2 · · · dxn and du = du1du2 · · · dun represent the Lebesgue
measure λ on R

n, and the integrals in formula (A.13) are Lebesgue integrals.
In particular for f = 1, the constant 1 function, formula (A.13) gives:

λ(φ(U)) =
∫

φ(U)
1 dx =

∫
U
|det(φ′(u))| du, (A.14)

where λ denotes the Lebesgue measure. (See [Ru 76] for a proof.)
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Lipschitz Maps and
Linearization

For the sake of reference we collect together here a more detailed discus-
sion of some of the topics in the text. These topics, Lipschitz functions,
the contraction mapping principle, and the Linearization Theorem, were all
mentioned briefly in the main body of the text, but in the interest of pursuing
other subjects, many instructors will not wish to cover the additional details
discussed here. This is particularly true for the proof of the Linearization
Theorem, which is perhaps best left to independent study by the students.

As in the proof of the Existence and Uniqueness Theorem, and elsewhere
in the text, we find it convenient to use the �1 norm

‖x‖ =
n∑

i=1

|xi|,

on elements x = (x1, . . . , xn) of R
n, because we think the proofs are simpler

with this choice. Thus, on elements x in R
n, the notation ‖x‖ is used exclu-

sively for the �1 norm of x. Other norms on R
n will be denoted differently.

For example |x| = (
∑n

i=1 x
2
i )

1/2 will denote the Euclidean (or �2) norm of x
and below Theorem B.3 refers to a special norm on R

n denoted by ‖ · ‖0.
Similar comments apply to the norm

‖A‖ = max{ |aij | | i, j ∈ {1, . . . , n},

on the space Mn of n×n matrices A = {aij}n
i,j=1. While this norm is easy to

compute and work with, it has the disadvantage that the number n appears
in many of the inequalities we need. However, in the context of matrices,
the notation ‖ · ‖ will refer exclusively to this norm and other norms on Mn

will be denoted differently.
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B.1 Norms
In the context of abstract vector spaces V , we use the notation ‖ · ‖ for an
abstract norm on V . This concept is defined as follows.

Definition B.1 (Norm) A norm on a vector space V is map ‖ ·‖ : V → R,
that has the following properties. For all v,w ∈ V and scalars λ:

(1) ‖v‖ ≥ 0 and ‖v‖ = 0 iff v = 0.

(2) ‖λv‖ = |λ|‖v‖.

(3) ‖v + w‖ ≤ ‖v‖ + ‖w‖.

It is an important fact that all norms on a finite dimensional vector space
(like R

n and Mn) are equivalent in the following sense.

Definition B.2 (Equivalent Norms) Two norms ‖ · ‖1 and ‖ · ‖2 on a
vector space V are called equivalent if there are positive constants α, β such
that

α‖v‖1 ≤ ‖v‖2 ≤ β‖v‖1, (B.1)

for all v ∈ V .

It is well-known that equivalent norms determine the same topology on V
and thus certain analytical results, like convergence of sequences, are the
same with respect to either norm. In addition, it is easy to see that if an
inequality like

‖v‖2 ≤ K2‖w‖2,

holds for one norm, and ‖ · ‖1 is an equivalent norm with relations as shown
in (B.1), then

‖v‖1 ≤ K1‖w‖1,

whereK1 = βK2/α. Therefore, the definitions and results below that involve
norm inequalities with certain constants, which are stated for the �1 norm
on R

n, are independent of the norm, provided that the magnitude of the
constants does not matter. For example, the definition of a Lipschitz function
is independent of the norm, but the definition of a contraction map involves
a constant that must be less than 1 and so this concept does depend on
which norm is used. In addition, the result stated in Theorem B.3 involves
a special norm ‖ · ‖0 on R

n and is not true for all norms. The proof of this
result requires a special norm on matrices different from the one discussed
above. This norm is an operator norm.
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Definition B.3 (Operator Norm) If V is a finite dimensional vector space
with norm ‖ · ‖ and A : V → V is a linear operator, then the operator norm
of A is defined by

‖A‖∗ ≡ sup{ ‖Av‖
‖v‖ | v ∈ V, v 
= 0 }.

With regard to this norm, which depends on the given norm on V , one has

‖Av‖ ≤ ‖A‖∗‖v‖,

for all v ∈ V .

B.2 Lipschitz Functions
In the Existence and Uniqueness Theorem, we requiredX to be a C1 function
in the spatial variables x ∈ R

n. An alternative theorem can be obtained by
requiring that X be a Lipschitz function (relative to the spatial variables)
instead.

Definition B.4 (Lipschitz Functions) A function f : B → R
p on a sub-

set B ⊆ R
n is called Lipschitz on B if there is a constant k > 0 such that

‖f(x) − f(y)‖ ≤ k‖x− y‖ ∀x, y ∈ B. (B.2)

The inequality (B.2) is called a Lipschitz condition on f . Here ‖ · ‖ denotes
the �1 norm on R

p and R
n respectively. It is easy to show that if inequality

(B.2) holds for the �1 norms, then it holds, with possibly a different choice
of k, for any other norms on R

p and R
n respectively.

The least of all the constants k for which inequality (B.2) holds is called
the Lipschitz constant for f and is denoted by Lip(f). Thus,

‖f(x) − f(y)‖ ≤ Lip(f)‖x− y‖ ∀x, y ∈ B,

and Lip(f) is the least constant for which this is true. It is easy to see the
value of Lip(f) does depend on the choice of norms.

A function f : U → R
n is called locally Lipschitz on U if each point c ∈ U

has an open neighborhood B ⊆ U such that f is Lipschitz on B.

The following proposition is phrased in terms of the �1 norm on R
n, but

is clearly true for any norm on R
n.
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Proposition B.1 Suppose f : O → R
p is a C1 function on an open set

O ⊆ R
n. Then f is locally Lipshitz on O. More specifically, for each c ∈ O

and r > 0 such that B(c, r) ⊂ O, there is a constant k > 0 such that

‖f(x) − f(y)‖ ≤ k‖x− y‖,

for all x, y ∈ B(c, r).

Proof: The argument for the proof is almost exactly the same as the one
we gave in deriving inequality (3.8) in Theorem 3.1 for the vector field X
(except now X = f does not depend on the time and it has values in R

p).
Thus, the essential ingredient in getting the locally Lipschitz condition is the
Mean Value Theorem, which follows from the assumption that f is C1.

There is an easy extension of the above result if f : S × O → R
p also

depends continuously on a parameter s ∈ S, with S a compact subset of R
�.

Then one has
‖f(s, x) − f(s, y)‖ ≤ k‖x− y‖,

for all s ∈ S and x, y ∈ B(c, r), whenever B(c, r) ⊂ O.

Note that a Lipschitz function (or a locally Lipschitz function) need not
be differentiable, and so not C1 either. The standard example of this is the
absolute value function f : R → R, f(x) = |x|. This function is Lipschitz on
R, with Lipschitz constant Lip(f) = 1, but f is not differentiable at x = 0.

On the other hand the condition of being locally Lipschitz is all that is
required for obtaining and existence and uniqueness result exactly like that
in Theorem 3.1. The formulation of the result for the time depependent case
is left as an exercise, but the result for the autonomous case is easily stated
as follows.

Corollary B.1 Suppose X : O → R
n is a locally Lipschitz vector field on an

open set O ⊆ R
n. Then for each point c ∈ O, there exists a curve α : I → O,

with 0 ∈ I, that satisfies the initial value problem:

x′ = X(x)
x(0) = c.

Furthermore, if γ : J → O is any other solution for the initial value problem,
then

α(t) = γ(t) for every t ∈ I ∩ J. (B.3)
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Proof: It is easy to see that a locally Lipschitz function is continuous and
this is all that is needed to get inequality (3.7) in the proof of Theorem
3.1 (but now with X autonomous). We have already mentioned that the
other inequality (3.8) there is just the local Lipschitz condition. Thus, with
appropriate modifications of the proof there, we get the proof of the corollary
(exercise).

A rather nice result concerning Lipschitz vector fields is that they are
complete, as the next theorem below shows. To prove the theorem we need
an inequality known as Gronwall’s inequality. This inequality is quite re-
markable in that it is elementary to prove, but has some ingenious uses. Be-
sides being useful in proving the theorem below, we will find that Gronwall’s
inequality is instrumental in proving several aspects of the Linearization
Theorem as well.

Lemma B.1 (Gronwall’s Inequality) Suppose that m ≥ 0, b > 0, and
that u, h : [0, b] → [0,∞) are continuous, nonnegative functions that satisfy

u(t) ≤ m+
∫ t

0
h(s)u(s) ds, for all t ∈ [0, b] (B.4)

Then u satisfies the inequality

u(t) ≤ me
∫ t

0
h(s) ds, for all t ∈ [0, b]. (B.5)

Proof: The proof is actually quite simple if we let F be the function defined
by the right-hand side of inequality (B.4), i.e.,

F (t) ≡ m+
∫ t

0
h(s)u(s) ds,

for t ∈ [0, b]. Then F is a nonnegative function and, by the Fundamental
Theorem of Calculus, is differentiable, with

F ′(t) = h(t)u(t) ≤ h(t)F (t),

for all t ∈ [0, b]. To proceed further, we assume that m > 0. Then F (t) > 0
for all t ∈ [0, b], and so we divide the last inequality above by F (t) and
rewrite it as

d

dt
lnF (t) =

F ′(t)
F (t)

≤ h(t),
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for all t ∈ [0, b]. Using the second part of the Fundamental Theorem of
Calculus and the last inequality gives

lnF (t) − lnm =
∫ t

0

d

dt
lnF (s) ds ≤

∫ t

0
h(s) ds,

for all t ∈. Thus, since the natural exponential function is an increasing
function, we have

eln F (t)−ln m ≤ e
∫ t

0
h(s) ds,

Rearranging this gives Gronwall’s inequality (B.5).
Thus, we have finished the proof for the case that m > 0. In the case

that a = 0, let {mj}∞j=1 be sequence of positive numbers that converges to
0. Then clearly

u(t) ≤ mj +
∫ t

0
h(s)u(s) ds,

for all t ∈ [0, b],and all j. Consequently,

u(t) ≤ mje
∫ t

0
h(s) ds,

for all t ∈ [0, b] and all j. Letting t→ ∞ in the last inequality gives u(t) ≤ 0,
for all t ∈ [0, b]. This shows that Gronwall’s inequality (B.5) also holds when
m = 0.

Theorem B.1 If X : O → R
n is Lipschitz on O, then X is complete, i.e.,

for each c ∈ O, the maximal interval of existence Ic for the integral curve
passing through c at time 0 is Ic = R.

Proof: By assumption there is a positive constant k such that

‖X(x) −X(y)‖ ≤ k‖x− y‖ for all x, y ∈ O.

Supose c ∈ O and let αc : Ic → O be the maximal integral curve of X with
αc(0) = c. Suppose the maximal interval Ic = (ac, bc). We have to show
that bc = ∞ and ac = −∞.

Suppose, if possible, that bc < ∞. Then for t ∈ [0, bc), we get from the
Lipschits condition that

‖αc(t) − c‖ = ‖
∫ t

0
X(αc(s)) ds‖ = ‖

∫ t

0

[
X(c) + (X(αc(s)) −X(c))

]
ds‖

≤ ‖X(c)‖ bc +
∫ t

0
‖X(αc(s)) −X(c)‖ ds

≤ m+
∫ t

0
k‖αc(s) − c‖ ds.



B.3. The Contraction Mapping Principle 559

Here we have let m ≡ ‖X(c)‖ bc. We now apply Gronwall’s inequality with
h(s) = k and u(s) = ‖αc(s) − c‖ for s ∈ [0, b]. The result is that

‖αc(t) − c‖ ≤ me
∫ t

0
k ds = mekt ≤ mekbc ,

for all t ∈ [0, bc). If we let r = mekbc , then the above inequality says that
αc(t) ∈ B(c, r), for all t ∈ [0, bc). Since B(c, r) is compact and convex, Corol-
lary 3.2 applies to gives us that bc = ∞. This contradicts our assumption
that bc <∞.

In a similar fashion, if we assume that ac > −∞, then minor modifactions
of the above argument lead us to the contradiction that ac = −∞. It is an
exercise to fill in the details. This completes the proof.

B.3 The Contraction Mapping Principle
The proof of Theorem 3.1, on the existence and uniqueness of solutions to
initial value problems, exhibits one motivation for a principle that has be-
come known as the contraction mapping principle. While this principle was
initially identified with the method of successive approximations, or Picard’s
iterative scheme, it was soon elevated to the status of a principle because
of the large number of uses found for it in many other areas of mathemat-
ics. In particular, Theorem B.4 below, which is a central element in proving
the Linearization Theorem, uses the contraction mapping principle in two
different, and clever, ways (due to Hartman [Ha 82]).

The contraction mapping principle was stated and discussed from a very
general point of view in Exercise 2 from Section 3.2 (which you should read
and work through if you have the time). However, here we only need the
version of it for maps from a Banach space V to itself. A Banach space V
is a real vector space with a norm, ‖ · ‖ : V → [0,∞), which is complete
with respect to this norm, i.e., every Cauchy sequence in V converges to an
element of V .

Theorem B.2 (Contraction Mapping Principle) Suppose T : V → V
is a map from a Banach space V to itself and there is a constant 0 < q < 1
such that

‖T (x) − T (y)‖ ≤ q‖x− y‖, (B.6)

for all x, y ∈ V . Then T has a unique fixed point. That is, there is one, and
only one, point c ∈ V , such that T (c) = c.
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Proof: Imitate the latter part of the proof of Theorem 3.1.

If T is a contraction map as in the above theorem, with T (c) = c the
unique fixed point c ∈ V , then since

‖T (x) − c‖ ≤ q‖x− c‖, (B.7)

for any x ∈ V , it is easy to see that by iteration, we have

‖T k(x) − c‖ ≤ qk‖x− c‖, (B.8)

for all k = 1, 2, 3, . . . (exercise). Hence the sequence {T k(x)}∞k=1 of iterates
of T converges to c for any x ∈ V .

Condition (B.7) (or equivalently Condition (B.8)) is weaker than Con-
dition (B.6) for a T to be a contraction map. The former merely says that
T maps each point x closer to c than it was. The latter says that T maps
each pair of points closer together than they originally were. In the theory
of discrete dynamical systems (cf. Exercise 2 in Section 3.5), one often has a
map T that is not a contraction map but has known fixed points c. A prop-
erty like Condition (B.8) allows one to conclude that c is an asymptotically
stable fixed point for the discrete system. Corollary (B.2) below shows that
this condition follows from a simple assumption on the eigenvalues of the
Jacobian matrix A = T ′(c), namely that they all have modulus less than 1.
In the case where T is a linear map, the next theorem gives an even stronger
result.

To motivate this theorem and its proof, consider the 3 × 3 matrix

J = J3(λ) =

 λ 1 0
0 λ 1
0 0 λ

 ,
with 0 < λ < 1. Because of the ones above the diagonal, J is not a contrac-
tion relative to the Euclidean norm | · | in R

3. However, as noted in Chapter
5, we can write J = λI3 +N3, where N3 is the nilpotent matrix:

N3 =

 0 1 0
0 0 1
0 0 0

 .
If we let H(t) = λI3 + tN3, for t ∈ [0, 1], then H(0) = λI3 is a contraction
map (for any norm on R

3) and H(1) = J is the matrix we started with.
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Further note that H(t) and H(1) = J are similar matrices for all t > 0.
Indeed, it is easy to verify that Q−1

t H(1)Qt = H(t), where

Qt =

 1 0 0
0 t 0
0 0 t2

 .
It seems reasonable that by taking t close to 0, yet positive, we can guarantee
that H(t) is a contraction map. The next theorem makes this assertion
precise.

Theorem B.3 Suppose A is an n×n real matrix and that all the eigenvalues
of A have modulus ≤ 1. Let ρ ≤ 1 be the largest of all the moduli of the
eigenvalues. If q is any number with ρ ≤ q ≤ 1, then there exists a norm
‖ · ‖0 on R

n such that
‖Ax‖0 ≤ q‖x‖0, (B.9)

for every x ∈ R
n. In the special case when all the eigenvalues have modulus

strictly less that one, then we may choose q < 1.

Proof: Let P be an invertible matrix that conjugates A into its Jordan
form:

P−1AP = J =



Jk1(λ1)
. . .

Jkr(λr)
C2m1(a1, b1)

. . .
C2ms(as, bs)


Then λj , j = 1, . . . , r and µ±j = aj ± bji, j = 1, . . . , s, are the real and
complex eigenvalues of A and by assumption

|λj | ≤ ρ, |µ±j | = (a2
j + b2j )

1/2 ≤ ρ,

for all j. Let D and M be the following block-diagonal matrices:

D =



λ1Ik1

. . .
λrIkr

D2m1(a1, b1)
. . .

D2ms(as, bs)


(B.10)
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M =



Nk1

. . .
Nkr

M2m1

. . .
M2ms


(B.11)

Here Ik denotes the k× k identity matrix, D2m(a, b) is the 2m× 2m matrix
given in equation (6.11), Nk is the k× k matrix given in equation (6.8), and
M2m is the 2m× 2m matrix given in equation (6.12). Using these, we define

H(t) = D + tM,

for t ∈ R. Then it is easy to see that H(0) = D and H(1) = J .
Now D is essentially a diagonal matrix. If we decompose a vector v ∈ R

n

according to the block structure of D, say v = (v1, . . . , vr, w1, . . . , ws), then

Dv = D(v1, . . . , vr, w1, . . . , ws)
= (λ1v

1, . . . , λrv
r,D2m1(a1, b1)w1, . . . ,D2ms(as, bs)ws).

Thus, if we let | · | denote the Euclidean norm on R
p, for any value of p,

then one can verify that |D2m(a, b)w| = (a2 + b2)1/2|w|, for all w ∈ R
2m.

Consequently,

|Dv|
= [ |λ1|2|v1|2 + · · · + |λr|2|vr|2 + (a2

1 + b21)|w1|2 + · · · + (a2
s + b2s)|ws|2 ]1/2

≤ ρ [ |v1|2 + · · · + |vr|2 + |w1|2 + · · · + |ws|2 ]1/2

= ρ|v|,

for all v ∈ R
n. This gives, with respect to the operator norm ‖·‖∗ associated

to the Euclidean norm,
‖D‖∗ ≤ ρ.

Now choose t such that 0 < t < (q − ρ)/‖M‖∗. For this value of t, which is
fixed for the remainder of the proof, we get

‖H(t)‖∗ = ‖D + tM‖∗ ≤ ‖D‖∗ + t‖M‖∗
< ρ+ (q − ρ) = q.

Next note that there is an invertible, diagonal matrix Qt that will conjugate
J = H(1) into H(t):

Q−1
t JQt = H(t).
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To see this observe that B−1
t NkBt = tNk, whereBt =diag(1, t, t2, . . . , t−k+1).

Similarly C−1
t M2mCt = tM2m, for an appropriate diagonal matrix Ct and

from the Bt’s and Ct’s one can construct the matrix Qt (exercise).
Now let Rt = PQt, so that we have

R−1
t ARt = H(t).

We use Rt to define a new norm on R
n by

‖x‖0 ≡ |R−1
t x|,

where |x| is the usual Euclidean norm on R
n. The we easily get the following:

‖Ax‖0 = |R−1
t Ax|

= |R−1
t ARtR

−1
t x|

= |H(t)R−1
t x|

≤ ‖H(t)‖∗|R−1
t x|

≤ q‖x‖0,

for all x ∈ R
n. This completes the proof.

Corollary B.2 Suppose f : O → R
n is a C1 map with fixed point f(c) = c

at c ∈ O. Let A = f ′(c) and suppose all the eigenvalues of A have modulus
less than one. If ρ is the largest of these moduli, then for any q such that
ρ < q < 1, there is a norm ‖ · ‖0 on R

n and a δ > 0 such that

‖fk(x) − c‖0 < qk‖x− c‖0, (B.12)

for all x ∈ B(c, δ) ≡ {x | ‖x − c‖0 < δ } and all positive integers k. Hence
for every point x ∈ B(x, δ), the sequence {fk(x)}∞k=1 of iterates converges to
the fixed point c.

Proof: Choose q0 so that ρ < q0 < q and use the theorem above to get a
norm ‖ · ‖0 on R

n such that

‖Ax‖0 < q0‖x‖0,

for every x ∈ R
n. Now since f ′(c) = A and f(c) = c, it follows from the

definition of the derivative that

lim
x→c

‖f(x) − c−A(x− c)‖0

‖x− c‖0
= 0.
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(For some, this is the definition of the derivative at c). Hence if we let
ε = q − q0, the above limits says that we can choose δ > 0 so that

‖f(x) − c−A(x− c)‖0 < ε‖x− c‖0,

for all x ∈ B(c, δ). Now a general property for any norm is that

‖v‖ − ‖w‖ ≤ ‖v − w‖.

Applying this with the above gives

‖f(x) − c‖0 < ‖A(x− c)‖0 + ε‖x− c‖0

< q0‖x− c‖0 + ε‖x− c‖0

= q‖x− c‖0,

for all x ∈ B(c, δ). Since q < 1, the above inequality gives ‖f(x) − c‖0 <
qδ < δ, for x ∈ B(c, δ), and so f(x) lies in B(c, δ) as well. Then we can
apply the inequality to f(x) and get

‖f2(x) − c‖0 < q‖f(x) − c‖0 < q2‖x− c‖0.

Continuing like this, we inductively get the inequality (B.12).

Corollary B.3 Suppose A is an n × n real matrix and that all the eigen-
values of A have modulus greater than one. Let µ > 1 be the smallest of all
the moduli of the eigenvalues. If q is any number with 0 < q < µ, then there
exists a norm ‖ · ‖1 on R

n such that

‖A−1x‖1 < q‖x‖1, (B.13)

for every x ∈ R
n. Equivalently

q−1‖x‖1 < ‖Ax‖1, (B.14)

for every x ∈ R
n. Hence A is an expansion and the iterates {Akx}∞k=1, for

x 
= 0, diverge to infinity.

Proof: Note that A is invertible and for any λ 
= 0

Av = λv ⇐⇒ A−1v = λ−1v.

Thus, the eigenvalues of A−1 are the reciprocals of the eigenvalues of A.
Applying the above theorem to A−1 yields the result.
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B.4 The Linearization Theorem
The Linearization Theorem states that on a neighborhood of a hyperbolic
fixed point c of a vector field X, the nonlinear system x′ = X(x) is topo-
logically equivalent to the linear system y′ = Ay, where A = X ′(c). By
translating, we can assume, without loss of generality, that the fixed point
is the origin c = 0.

To prove this theorem, we first extend X to a vector field X̃ on all of R
n

whose flow differs from the linear flow by a family of Lipschitz maps (Lemma
B.2 and Theorem B.4). Then after proving a basic, and useful, result about
perturbations of a linear map by a Lipshitz map (Theorem B.5), we prove
the theorem itself. The techniques and approach here are derived from those
in Hartman’s book [Ha 82] and are variations of others in the more recent
literature (cf. [Per 91], [Rob 95]).

We should also mention that there is an analogous linearization theorem
for maps associated with discrete dynamical systems whose proof is entirely
similar. See the material on the electronic component for discrete dynamical
systems.

Lemma B.2 Suppose X : O → R
n is a C1 vector field on O ⊆ R

n with the
origin as a fixed point: X(0) = 0. Let A = X ′(0) and let R : O → R

n be
defined by

R(x) = X(x) −Ax,

for x ∈ O. If δ > 0 is given, then we can choose b > 0, with B(0, b) ⊆ O,
and a C1 vector field R̃ : R

n → R
n on R

n such that:

(1) R̃(x) = R(x) for ‖x‖ ≤ b/2 and R̃(x) = 0 for ‖x‖ ≥ b.

(2) ‖R̃(x) − R̃(y)‖ ≤ δ‖x − y‖ for all x, y ∈ R
n.

Thus, R̃ is Lipschitz on R
n, agrees with R on B(0, b/2), and vanishes outside

B(0, b).

Proof: Note that R(0) = X(0) − A0 = 0. Also R′(x) = X ′(x) − A for
every x ∈ O and so in particular R′(0) = 0. From this and the fact that
R′ is continuous at 0, we are assured the existence of a b > 0 such that
B(0, b) ⊆ O and ∣∣∣∣∂Ri

∂xj
(x)
∣∣∣∣ ≤ δ

8n
, (B.15)
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for all x ∈ B(0, b) and all i, j = 1, . . . , n. One can use this and the Mean
Value Theorem, exactly as in the proof of the Existence and Uniqueness
Theorem 3.1 ( see inequality (3.8)), to show that

|Ri(x) −Ri(y)| ≤ δ

8n
‖x− y‖, (B.16)

for all x, y ∈ B(0, b) and all i = 1, . . . , n. In particular, for y = 0 this gives
(since R(0) = 0) that

|Ri(x)| ≤ δ

8n
‖x‖, (B.17)

for all x ∈ B(0, b) and all i = 1, . . . , n. We construct R̃ by multiplying R by
a suitable function that is zero outside of B(0, b).

First we define a function µ : R → R by

µ(r) =


1 if r ∈ (−∞, b2/4]
1 − 1

27b6
[12(4r − b2)2(b2 − r) + (4r − b2)3] if r ∈ (b2/4, b2)

0 if r ∈ [b2,∞)
(B.18)

Then it is easy to see that 0 ≤ µ(r) ≤ 1 for all r and µ is differentiable on
R, with derivative µ′(r) = −24(4r − b2)(b2 − r)/27b6 for r ∈ (b2/4, b2) and
µ′(r) = 0 elsewhere. Thus, µ′ is continuous on R. It is also easy to calculate
that µ′ has a minimum value of −2/b2 at r = 5b2/8 and a maximum value
of 0. Thus,

|µ′(r)| ≤ 2
b2
, (B.19)

for all r ∈ R. Using this function, we now define R̃ : R
n → R

n by

R̃(x) =

{
µ(‖x‖2)R(x) if ‖x‖ ≤ b
0 if ‖x‖ > b

}
. (B.20)

Then clearly R̃ satisfies Property (1) of the theorem. Also R̃ is differentiable
with continuous first order partial derivatives:

∂R̃i

∂xj
(x) = µ′(‖x‖2) 2‖x‖ xj

|xj |
Ri(x) + µ(‖x‖2)

∂Ri

∂xj
(x), (B.21)

for x ∈ B(0, b). Thus, for ‖x‖ < b∣∣∣∣∂R̃i

∂xj
(x)
∣∣∣∣ ≤ |µ′(‖x‖2)| 2‖x‖ |Ri(x)| + µ(‖x‖2)

∣∣∣∣∂Ri

∂xj
(x)
∣∣∣∣

≤ 2
b2

· 2b · δ
8n

· b+
δ

8n
=

5δ
8n

<
δ

n
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Since
∂R̃i

∂xj
(x) = 0,

for ‖x‖ ≥ b, the last inequality holds in this case too, and we get that∣∣∣∣∂R̃i

∂xj
(x)
∣∣∣∣ < δ

n
,

for all x ∈ R
n and all i, j. From this and the Mean Value Theorem it follows

(as in the proof of the Existence and Uniqueness Theorem) that

‖R̃(x) − R̃(y)‖ ≤ δ‖x − y‖,

for all x, y ∈ R
n. This completes the proof of the lemma.

Theorem B.4 Suppose X : O → R
n is a C1 vector field on O ⊆ R

n with
the origin as a fixed point: X(0) = 0. Let A = X ′(0) and suppose that
τ > 0, ε > 0 are given. Then we can choose b > 0, with B(0, b) ⊆ O, and a
C1 vector field X̃ : R

n → R
n, which is Lipschitz on R

n, such that

X̃(x) = X(x) for ‖x‖ ≤ b/2 (B.22)
X̃(x) = Ax for ‖x‖ ≥ b. (B.23)

and such that the flow φ̃ for X̃ has the form:

φ̃t(x) = eAtx+ gt(x), (B.24)

for x ∈ R
n, t ∈ R. Furthermore, the function g(t, x) = gt(x) has the follow-

ing properties: (1) g is continuous on R×R
n, (2) gt(x) = 0 for ‖x‖ ≥ b and

for all t ∈ R (So in particular each gt is bounded), and (3) for all x, y ∈ R
n

and t ∈ [−τ, τ ]
‖gt(x) − gt(y)‖ ≤ ε‖x− y‖. (B.25)

Proof: Let R : O → R
n be the vector field defined by R(x) = X(x) − Ax,

for x ∈ O. Then R is the remainder term in the 1st-order Taylor polynomial
approximation of X at x = 0:

X(x) = Ax+R(x),

for x ∈ O. Choose δ > 0 such that

δeτδ < εe−2nτ‖A‖.
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By the last Lemma, we can choose b > 0 and a vector field R̃ : R
n → R

n

which is an extension of of R from the neighborhood B(0, b/2) to a vector
field on the whole plane having Lipschitz constant Lip(R̃) ≤ δ. Further R̃
vanishes outside B(0, b). Then the vector field X̃ : R

n → R
n defined by

X̃(x) = Ax+ R̃(x),

for x ∈ R
n, clearly satisfies the two conditions (B.22)-(B.23) in this theorem.

For convenience let K = n‖A‖ + δ. Then since X̃(x) − X̃(y) = A(x − y) +
R̃(x) − R̃(y), we get that

‖X̃(x) − X̃(y)‖ ≤ K‖x− y‖, (B.26)

for all x, y ∈ R
n. Thus, X̃ is Lipschitz on R

n and so by Theorem B.1, its
flow φ̃ is defined on all of R× R

n. Let φ : D → R
n be the flow generated by

X. Then because of conditions (B.22)-(B.23), we have

φ̃t(x) = φt(x) for ‖x‖ ≤ b/2 and t ∈ Ix (B.27)
φ̃t(x) = eAtx for ‖x‖ ≥ b and t ∈ R (B.28)

Thus, defining g : R × R
n → R

n by

gt(x) = φ̃t(x) − eAtx,

gives us a function for which gt = 0 outside the ball B(0, b), for all t ∈ R.
We have left to prove the Lipschitz estimate on the gt’s. This requires

several uses of Gronwall’s inequality. The details are as follows.
First note that the integral version of the system x′ = X̃(x) = Ax+R̃(x)

is precisely the statement that the flow φ̃ satisfies

φ̃t(x) = x+
∫ t

0
X̃(φ̃s(x)) ds = x+

∫ t

0
[Aφ̃s(x) + R̃(φ̃s(t))] ds. (B.29)

Thus, from the inequality (B.26), we get that

‖φ̃t(x) − φ̃t(y)‖ ≤ ‖x− y‖ +
∫ t

0
K‖φ̃s(x) − φ̃s(y)‖ ds,

for all x, y ∈ R
n and all t ≥ 0. Applying Gronwall’s inequality to this gives

‖φ̃t(x) − φ̃t(y)‖ ≤ eK|t|‖x− y‖, (B.30)
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for all x, y ∈ R
n and all t ≥ 0. Note: Since t was assumed to be nonnegative

in deriving the above inequality, we do not need the absolute value |t| in the
exponent on the right-hand side. However, if we repeat the above argument
for t < 0, use

∫ 0
t and −t = |t| we will get that inequality (B.30) holds for all

t ∈ R. Next we want to do a similar thing for gt, i.e., derive an estimate and
then use Gronwall’s inequality. For this note that

eAt(x− y) = x− y +
∫ t

0
AeAs(x− y) ds,

for all x, y ∈ R
n and all t ∈ R. This is just the integral version of x′ = Ax

applied to its flow. Using this and the definition of g, we get, for t ≥ 0,

gt(x) − gt(y) = φ̃t(x) − φ̃t(y) − eAt(x− y)

= x− y +
∫ t

0

(
A[φ̃s(x) − φ̃s(y)] + R̃(φ̃s(x)) − R̃(φ̃s(y))

)
ds

− eAt(x− y)

=
∫ t

0
[R̃(φ̃s(x)) − R̃(φ̃s(y))] ds

+
∫ t

0
A[φ̃s(x)) − φ̃s(y)) − eAs(x− y)] ds

=
∫ t

0
[R̃(φ̃s(x)) − R̃(φ̃s(y))] ds +

∫ t

0
A[gs(x) − gs(y)] ds

Hence for t ∈ [0, τ ], we have

‖gt(x)− gt(y)‖ ≤
∫ t

0
‖R̃(φ̃s(x))− R̃(φ̃s(y))‖ ds+

∫ t

0
n‖A‖ ‖gs(x)− gs(y)‖ ds.

(B.31)
In order to apply Gronwall’s inequality to this, we replace the first integral
by the following estimate∫ t

0
‖R̃(φ̃s(x)) − R̃(φ̃s(y))‖ ds ≤ δ

∫ t

0
‖φ̃s(x) − φ̃s(y)‖ ds

≤ δ

∫ t

0
eK|s|‖x− y‖ ds ≤ δτeKτ‖x− y‖.

Using this in inequality (B.31), we get

‖gt(x) − gt(y)‖ ≤ δτeKτ‖x− y‖ +
∫ t

0
n‖A‖ ‖gs(x) − gs(y)‖ ds,
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for all x, y ∈ R
n and all t ∈ [0, τ ]. Hence applying Gronwall’s inequality, and

recalling that K = n‖A‖ + δ, gives

‖gt(x) − gt(y)‖ ≤ δτeKτ‖x− y‖en‖A‖ |t|

≤ δτeKτ‖x− y‖en‖A‖τ

= δeτδe2nτ‖A‖‖x− y‖
< ε‖x− y‖,

In a similar way one can show that this inequality also holds for t ∈ [−τ, 0]
and thus it holds for all t ∈ [−τ, τ ]. This completes the proof.

Theorem B.5 Suppose L is an invertible n×n block-diagonal matrix of the
form

L =

[
B 0
0 C

]
,

with B an m×m matrix and C a p× p matrix. Let

a = max{m‖B‖, p‖C−1‖},

and assume that a < 1. Let c be a number such that a < c < 1 and let

ε = 1
2 · min{c− a,

c

n‖L−1‖}.

Denote by C0
b (Rn) the set of all bounded continuous functions g : R

n → R
n

on R
n and let

Lε ≡ { g ∈ C0
b (Rn) |Lip(g) < ε }.

Then the following results hold:

(1) If g ∈ Lε then L+ g is a homeomorphism of R
n.

(2) If g, h ∈ Lε, then there is a unique vgh ∈ C0
b (Rn) such that:

(L+ g) ◦ (I + vgh) = (I + vgh) ◦ (L+ h). (B.32)

Here I : R
n → R

n is the identity map.

(3) The map I + vgh in (2) is in fact a homeomorphism of R
n.



B.4. The Linearization Theorem 571

Proof:
(1) We use the contraction mapping principle to show that that L + g is a
1-1 and onto. Thus, suppose y ∈ R

n and let T : R
n → R

n be defined by
T (x) = L−1(y − g(x)). Then clearly, for any x ∈ R

n,

T (x) = x if and only if Lx+ g(x) = y.

Thus, if T has a fixed point then L + g is onto and if this fixed point is
unique then L+ g must be 1-1. But the following easy estimate shows that
T is a contraction:

‖T (u) − T (z)‖ = ‖L−1(g(u) − g(z))‖
≤ n‖L−1‖ · Lip(g) · ‖u− z‖
= < n‖L−1‖ · ε · ‖u− z‖ ≤ c‖u− z‖.

Hence, since R
n, with the norm ‖ ·‖, is complete, T has a unique fixed point.

Thus, L + g is a bijection. Clearly L + g is continuous. It is a well-known
result from topology that a continuous bijection on R

n is a homeomorphism
of R

n.

(2) To prove the second assertion, we again use the contraction mapping
principle, but now the contraction will be a map T : C0

b (Rn) → C0
b (Rn).

For the construction of T , we need to split, or decompose, the elements
v ∈ C0

b (Rn) into parts: v = (v1, v2), with v1 : R
n → R

m and v2 : R
n → R

p.
This decomposition is based on the block-diagonal decomposition of L. Since
we are using the �1 norm ‖ · ‖ on R

n, it is easy to see that for i = 1, 2,

‖vi(x)‖ ≤ ‖v(x)‖ = ‖v1(x)‖ + ‖v2(x)‖,

for all x ∈ R
n. Here ‖ · ‖ also is used to denote the �1 norm on R

m and R
p.

We use a norm on C0
b (Rn) that is the maximum of the two sup norms on

the elements in this decomposition: for v = (v1, v2) ∈ C0
b (Rn) define

‖v‖ ≡ max{ sup
x

‖v1(x)‖, sup
x

‖v2(x)‖ }.

With this norm, C0
b (Rn) is a Banach space. The decomposition of C0

b (Rn)
also carries over to Lipschitz maps g in Lε. Note that with the splitting
g = (g1, g2), each map g1, g2 is Lipschitz and since, for i = 1, 2,

‖gi(x) − gi(y)‖ ≤ ‖g(x) − g(y)‖ ≤ Lip(g)‖x − y‖,
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it follows that Lip(gi) ≤ Lip(g). Using these observations and definitions
about g, v, and the norms, it is easy to verify the following inequality, which
will be used in the proof below:

‖gi(x+ v(x)) − gi(x+ w(x))‖
≤ Lip(gi)‖v(x) − w(x)‖

= Lip(gi)
[
‖v1(x) − w1(x)‖ + ‖v2(x) − w2(x)‖

]
≤ 2Lip(gi)‖v − w‖
≤ 2Lip(g)‖v − w‖, (B.33)

for i = 1, 2, x ∈ R
n, and v,w ∈ C0

b (Rn). With these preliminaries out of the
way, we can proceed to the contstruction of the map T : C0

b (Rn) → C0
b (Rn).

Suppose g, h ∈ Lε. To prove the existence of vgh satisfying equation
(B.32), we expand that equation to give the equivalent equation:

L+ L ◦ vgh + g ◦ (I + vgh) = L+ h+ vgh ◦ (L+ h).

or
L ◦ vgh + g ◦ (I + vgh) − h = vgh ◦ (L+ h).

Now split this equation into two parts based on the decomposition of C0
b (Rn)

discussed above:

B ◦ v1
gh + g1 ◦ (I + vgh) − h1 = v1

gh ◦ (L+ h)

C ◦ v2
gh + g2 ◦ (I + vgh) − h2 = v2

gh ◦ (L+ h)

For convenience let f ≡ L+h, which by Part (1) is a homeomorphism. Now
rewrite the above two equations as

B ◦ v1
gh ◦ f−1 + g1 ◦ (I + vgh) ◦ f−1 − h1 ◦ f−1 = v1

gh

C−1
[
v2
gh ◦ f − g2 ◦ (I + vgh) + h2

]
= v2

gh

View this as the fixed point equation T (vgh) = vgh, where T : C0
b (Rn) →

C0
b (Rn) is the map defined by

T (v) =

[
B ◦ v1 ◦ f−1 + g1 ◦ (I + v) ◦ f−1 − h1 ◦ f−1

C−1
[
v2 ◦ f − g2 ◦ (I + v) + h2

] ]
.

Here in the notation, we have split the T (v) = (T (v)1, T (v)2) into parts and
written it as a column vector. It is clear that if v ∈ C0

b (Rn), then T (v) is a
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continuous function. T (v) is also bounded because, using the remarks above
about the norms, we easily see that

‖T (v)(x)‖ ≤
(
m‖B‖ + p‖C−1‖

)
‖v‖ +

(
1 + p‖C−1‖

)
(‖g‖ + ‖h‖),

for all x ∈ R
n. Thus, T (v) ∈ C0

b (Rn), for every v ∈ C0
b (Rn). The major

calculation is to show that T is a contraction.
For this, suppose v,w ∈ C0

b (Rn) and x ∈ R
n. For convenience let

y = f−1(x), z = f(x). Then, using inequality (B.33), we get the following in-
equalities for the first component in the decomposition of T (v)(x)−T (w)(x):

‖T (v)1(x) − T (w)1(x) ‖
≤ ‖B[v1(y) − w1(y)]‖ + ‖g1(y + v(y)) − g1(y + w(y))‖
≤ m‖B‖‖v1(y) − w1(y)‖ + 2Lip(g)‖v − w‖
≤ m‖B‖‖v − w‖ + 2Lip(g)‖v − w‖
≤ (a+ 2ε)‖v − w‖
≤ c‖v − w‖. (B.34)

In a similar fashion, for the second component we get

‖T (v)2(x) − T (w)2(x) ‖
≤ p‖C−1‖

[
‖v2(z) − w2(z)‖ + ‖g2(x+ v(x)) − g2(x+ w(x))‖

]
≤ +p‖C−1‖ [ ‖v −w‖ + 2Lip(g)‖v − w‖ ]
≤ a(1 + 2ε)‖v − w‖ = (a+ 2aε)‖v − w‖
≤ c‖v − w‖. (B.35)

Now take the sup over all x ∈ R
n in Inequalities (B.34)-(B.35) and use the

definition of the norm on C0
b (Rn), to get

‖T (v) − T (w)‖ ≤ c‖v − w‖.

This holds for all v,w ∈ C0
b (Rn), and since c < 1, we have that T is a

contraction. Thus, there exists a unique vgh ∈ C0
b (Rn) such that T (vgh) =

vgh.

(3) Suppose g, h, k ∈ Lε. The uniqueness assertion in Part (2) says that if
H : R

n → R
n is a continuous map that satisfies (L + g) ◦H = H ◦ (L + h)
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and has H−I bounded, thenH−I = vgh. We use this to derive the following
results. For convenience we let

Pgh = I + vgh.

Then it is easy to see that

(L+ g) ◦ Pgh ◦ Phk = Pgh ◦ (L+ h) ◦ Phk = Pgh ◦ Phk ◦ (L+ k).

Further

Pgh ◦ Phk − I = (I + vgh) ◦ (I + vhk) − I = vhk + vgh ◦ (I + vhk),

is clearly bounded (and continuous). Hence, by the initial comment above,
we get

Pgh ◦ Phk − I = vgk,

and this holds for all g, h, k ∈ Lε. Now it is clear that vgg = 0 for all g ∈ Lε,
and thus from the last equation above we get

Pgh ◦ Phg = I and Phg ◦ Pgh = I.

These show that Pgh is a bijection and has inverse P−1
gh = Phg. Hence I+vgh

is a homeomorphism.

Theorem B.6 (Hartman-Grobman Linearization Theorem) Suppose
X : O → R

n is a C1 vector field and that the origin 0 ∈ O is a hyperbolic
fixed point of X. Let A = X ′(0). Then there is a neighborhood U ⊆ O
of 0, a C1 vector field X̃ : R

n → R
n, which is Lipschitz on R

n, and a
homeomorphism f : R

n → R
n such that

(1) X̃ = X on U ,

(2) The flow φ̃ : R × R
n → R

n for X̃ satisfies

φ̃t(x) = f−1(eAtf(x)), (B.36)

for all x ∈ R
n and all t ∈ R.

Hence the system x′ = X(x), restricted to the neighborhood U is topologically
equivalent to the linear system y′ = Ay restricted to f−1(U).
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Proof: We first prove the theorem for the case when A is a Jordan form
with its real and complex Jordan blocks grouped according to the real parts
of their eigenvalues. Then we show how the general case can be reduced to
this. Thus, assume A has the form

A =

[
J1 0
0 J2

]
,

where J1 is an m×m Jordan canonical form with all its eigenvalues having
negative real parts and J2 is a p × p Jordan canonical form with all of its
eigenvalues having positive real parts. Apply the Linear Stability Theorem
to J1 and −J2 to get a time τ > 0 such that

n‖eτJ1‖ < 1, n‖e−τJ2‖ < 1.

Then let

L = eτA =

[
eτJ1 0
0 eτJ2

]
=

[
B 0
0 C

]
.

Consequently, a ≡ max{m‖B‖, p‖C−1‖ } < 1, and we can choose a c such
that a < c < 1. Further let

ε = 1
2 · min { a− c,

c

n‖L−1‖ }.

Now apply Theorem B.4 with these values for τ and ε to get the vector field
X̃ and neighborhood B(0, b) with the properties stated in that theorem. The
flow for X̃ has the form φ̃t(x) = eAtx + gt(x), for x ∈ R

n and t ∈ R. In
particular

φ̃τ (x) = eAτx+ gτ (x),

and by the choice of constants, gτ ∈ Lε, with L ≡ eAτ . Thus, Theorem B.5
applies (taking g = gτ and h = 0 in Part (2)) and gives a unique v ∈ C0

b (Rn),
such that

φ̃τ ◦ (I + v) = (I + v) ◦ eAτ . (B.37)

That theorem further guarantees that H ≡ I + v is a homeomorhism of R
n.

To finish the proof of this theorem, we take r = b/2 and prove that f = H−1

is the desired homeomorphism.
The crux of the matter now is to show that equation (B.37) holds for

any time t ∈ R, not just for time τ . For this suppose t ∈ R and let

w ≡ φ̃t ◦ (I + v) ◦ e−tA − I
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= φ̃t ◦ (e−tA + v ◦ e−tA) − I

= (gt + etA) ◦ (e−tA + v ◦ e−tA) − I

= gt ◦ (e−tA + v ◦ e−tA) + etA ◦ v ◦ e−tA (B.38)

From the definition of w in the first line above, we see that w = v if and
only if

φ̃t ◦ (I + v) ◦ e−tA = I + v.

This last equation is what we need, so it suffices to show that w = v. Now
since gt and v are bounded continuous functions, the last line in equation
(B.38), shows that w is also bounded and continuous (exercise). Further-
more, we have

φ̃τ ◦ (I + w) ◦ e−τA = φ̃τ ◦ φ̃t ◦ (I + v) ◦ e−tA ◦ e−τA

= φ̃t ◦ φ̃τ ◦ (I + v) ◦ e−τA ◦ e−tA

= φ̃t ◦ (I + v) ◦ e−tA

= I + w.

But v is the unique, bounded, continuous map such that φ̃τ ◦ (I+v) ◦ e−τA =
I + v. Hence w = v.

Finally, with H = I + v, we have shown that φ̃t ◦ H = H ◦ etA, on R
n

for all t ∈ R. Taking f = H−1 and rearranging gives the desired result:

φ̃t(x) = f−1(eAtf(x)), (B.39)

for all x ∈ R
n and all t ∈ R. Thus, we have proved Parts (1) and (2) of the

theorem hold for the case when A has the special form stated above.
To prove the theorem for the general case, note that there is an invertible

matrix P such that

P−1AP = J =

[
J1 0
0 J2

]
,

where J is a permutation of the Jordan form for A so that all the Jordan
blocks with eigenvalues having negative real parts come first. Use P to define
a vector field Y on O ≡ P−1O, by

Y (y) = P−1X(Py).

This is just the push-forward of X by the map P−1. Now since Y (0) = 0
and Y ′(0) = J , we can use the first part of the proof on Y . Thus, there is a
vector field Ỹ : R

n → R
n, a homeomorphism F : R

n → R
n, and an r > 0,

such that
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(1) Ỹ = Y on B(0, r),

(2) The flow ψ̃ : R × R
n → R

n for X̃ satisfies

ψ̃t(y) = F−1(eJtF (y)), (B.40)

for all y ∈ R
n and all t ∈ R.

If we let
X̃ = P ◦ Ỹ ◦ P−1 and f = P ◦ F ◦ P−1,

then, by Exercise 1, Section 6.3, and by equation (B.40), the flow φ̃ for X̃
satisfies

φ̃t(x) = Pψ̃t(P−1x)

= PF−1
(
etJF (P−1x)

)
= PF−1

(
P−1etAPF (P−1x)

)
= f−1(etAf(x)),

for all x ∈ R
n and all t ∈ R. It is also clear that X̃(x) = X(x) for all x in

U ≡ P (B(0, r)). This proves that Parts (1) and (2) of the theorem hold in
the general case.

Finally, we must show topological equivalence of the restricted systems.
Suppose first that α : J → U satisfies α′(t) = X(α(t)), for all t ∈ J . We can
assume 0 ∈ J . Let x = α(0). Then since α lies in U and X̃ = X there, we
also have α′(t) = X̃(α(t)), for all t ∈ J . Hence α(t) = φ̃t(x), for all t ∈ J .
Hence by equation (B.37), we have

f(α(t)) = f(φ̃t(x)) = etAf(x).

Thus, f ◦ α is an integral curve of the system y′ = Ay, restricted to f(U).
Conversely, suppose that β : J → f(U) satisfies β′(t) = Aβ(t) for every
t ∈ J . We can assume 0 ∈ J . Let y = β(0). Then β(t) = etAy for all t ∈ J ,
and consequently by equation (B.37), we have

f−1(β(t)) = f−1(etAy) = φ̃t(f−1(y)),

for all t ∈ J . Hence f−1 ◦ β is an integral curve of the system x′ = X̃(x)
restricted to U . Hence it is also an integral curve of the system x′ = X(x)
restricted to U . This completes the proof of the theorem.



Appendix C

Linear Algebra

In this appendix we collect together a number of definitions and results
from linear algebra that supplement the material in the text and provide
background material for readers not familar with these topics.

C.1 Vector Spaces and Direct Sums
We discuss here an important result connected with an n × n matrix (with
real entries), considered as a linear operator A : R

n → R
n. The result relies

on the concepts of direct sums of subspaces and invariance of subspaces,
which we now define.

Definition C.1

(1) Suppose V1, . . . , Vk are subspaces of R
n. We say that R

n is a direct sum
of these subspaces if each vector v ∈ R

n has a unique representation
as a sum of vectors from V1, . . . , Vk. That is, each v ∈ R

n can be
expressed as

v = v1 + · · · + vk,

with vj ∈ Vj , for j = 1, . . . , k, and this representation of v is unique in
the sense that, if also

v = v′1 + · · · + v′k,

with v′j ∈ Vj , for j = 1, . . . , k, then

vj = v′j , for j = 1, . . . , k.

It is not hard to see that this uniqueness criterion is equivalent to the
following condition: If

0 = v1 + · · · + vk,

579
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with vj ∈ Vj , for j = 1, . . . , k, then vj = 0, for all j, i.e., there is a
unique representation of 0 as a sum of vectors from the Vj ’s. Namely
as 0 = 0 + · · · + 0. To symbolize that R

n is a direct sum of these
subspaces we write

R
n = V1 ⊕ · · · ⊕ Vk.

(2) If A is an n × n matrix and V is a subspace of R
n, then, viewing

A : R
n → R

n as a linear transformation, we let

AV = {Av | v ∈ V },

denote the image, or range space of A. This is always a subspace of
R

n. The subspace V is said to be invariant under A if

AV ⊆ V.

The following proposition is very elementary, yet is of basic importance
for much of the theory in for linear operators in linear algebra. In partic-
ular when applied to the decomposition of R

n in terms of the generalized
eigenspaces of A, the proposition leads to the Jordan canonical form for A.

Proposition C.1 Suppose that

R
n = V1 ⊕ · · · ⊕ Vp

is a direct sum of subspaces Vj, each of which is invariant under A. For
each j suppose {vj

i }j=1,...,nj is a basis for Vj , and let P be the n× n matrix
formed by using these vectors as columns:

P = [v1
1 · · · v1

n1
· · · vp

1 · · · vp
np

].

Then P−1AP is a block diagonal matrix:

P−1AP =

 B1

. . .
Bp

 , (C.1)

where the blocks Bj are nj × nj matrices.



C.1. Vector Spaces and Direct Sums 581

Proof: Since AVj ⊆ Vj , for each j, it follows that for each basis vector vj
i ,

the vector Avj
i is in Vj and thus can be represented in terms of the basis,

say

Avj
i =

nj∑
k=1

bjkiv
j
k. (C.2)

The numbers bjki form the entries of a matrix: Bj ≡ {bjki}. Now all we have
to do is verify that P−1AP is a block diagonal matrix with these blocks. As
is customary, we let

[vj
1 · · · vj

nj
]

denote the matrix with vj
1, . . . , v

j
nj

as columns. Then by the way matrix
mutiplication works, we have

A[vj
1 · · · vj

nj
] = [Avj

1 · · ·Avj
nj

],

and

[vj
1 · · · vj

nj
]Bj = [

nj∑
k=1

bjk1v
j
k · · ·

nj∑
i=1

bjknj
vj
k].

Hence by (C.2), we get

A[vj
1 · · · vj

nj
] = [vj

1 · · · vj
nj

]Bj .

From this and the definition of the matrix P , it is easy to see that:

AP = P

 B1

. . .
Bp

 ,
and this gives the result of the theorem.

The transpose operation on matrices is a simple but important concept.
Thus, if A = {aij} is a matrix, then its transpose is the matrix AT = {aT

ij},
where aT

ij = aji, for each i and j. It is easy to verify following fundamental
relation between the dot product on R

n and the transpose operation:

Av · w = v ·ATw,

for all v,w ∈ R
n. In dealing with eigenvalues of A, since they can be complex

numbers, we will need the above identity for the dot product in C
n. Specif-

ically, we can think of the real matrix A as a complex n× n matrix and get
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an operator A : C
n → C

n, that operates on vectors v ∈ C
n in the natural

way: Av = A(u + iw) = Au + iAw, where v = u+ iw is the representation
of v in terms of its real and imaginary parts u,w ∈ R

n. Then it is not hard
to see that Av · ṽ = v · AT ṽ, for all v, ṽ ∈ C

n.
There are several important types of matrices, whose definitions involve

the transpose operation.

Definition C.2 An n × n matrix A is called symmetric if AT = A and is
called skew symmetric if AT = −A. An n×nmatrix Q is called an orthogonal
if QTQ = I. (Note that this implies that QQT = I as well.)

C.2 Bilinear Forms
There are several results concerning symmetric bilinear forms which are in-
dispensable in a number of areas of mathematics and which we have used
at various places in the text. A brief discussion of these is given here. We
begin with the more general notion of a multilinear map.

Definition C.3 (Multilinear Maps) Suppose V is a vector space and let
V r denote the Cartesian product of V with itself r times:

V r ≡ V × V × · · · × V.

A map β : V r → U , with range in another vector space U is called multilinear
if for all v1, . . . , vr, w ∈ V and all scalars a:

β(v1, . . . , vi + aw, . . . , vr) = β(v1, . . . , vi, . . . , vr) + aβ(v1, . . . , w, . . . , vr),

for each i ∈ {1, . . . , r}. Thus, β is a linear map with respect to any one of
its arguments, when all the other arguments are held fixed. In the special
case when r = 2, the map β is called bilinear.

When U is the field of scalars (for us, either R or C), then β is called a
multilinear form.

A bilinear map β is called symmetric if β(v,w) = β(w, v) for all v,w ∈ V .

There are many important examples of multilinear maps. Here are a few
that are important for the material in the text.
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Example C.1

(1) For a function f : O ⊆ R
n → R

k, with partial derivatives existing to
the rth order at x ∈ O, the rth derivative of f at x is a multilinear map
f (r)(x) : (Rn)r → R

k. See the definition in the section on Taylor’s
theorem in Appendix A.

(2) In Chapter 7, we defined a map N : (Rn)n−1 → R
n, called the nor-

mal operator, which generalizes the cross product operator. Namely,
N(v1, . . . , vn−1) is a vector in R

n that is orthogonal to each vi, for
i = 1, . . . , n− 1. The map N is a good example of a multilinear map.

(3) The dot product (or inner product) on R
n is a bilinear form

β(v,w) = v · w =
n∑

j=1

vjwj ,

which is clearly a symmetric bilinear form.

(4) If A = {aij} is any n× n matrix, then

βA(v,w) ≡ Av · w =
n∑

i,j=1

aijviwj ,

is the standard bilinear form associated with A. If A is a symmetric
matrix, then βA is a symmetric bilinear form. When A is the identity
matrix A = I, then βI is the dot product on R

n in Part (3).

(5) The inner product on C
n is the bilinear form

β(v,w) = v · w ≡
n∑

j=1

vjwj ,

where wj denotes the complex conjugate of the complex number wj .
For convenience we always consider R

n ⊂ C
n and then the dot product

of vectors in C
n reduces to the usual real dot product when restricted

to R
n.

Part (4) of the above example exhibits a relationship between n × n
matrices A and corresponding bilinear forms βA on R

n, which allows us to
identify any bilinear form β with a matrix A that represents it with respect
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to the standard unit vector basis {ε1, . . . , εn} for R
n. That is, if β is a given

bilinear form, then β = βA, where A = {aij} is the n×n matrix with entries

aij = β(εj, εi),

for i, j = 1, . . . , n. This representation allows us to identify properties of a
bilinear form with corresponding properties of the matrix that represents it.

Definition C.4 (Positive/Negative Definiteness) Suppose β : V×V →
R is a symmetric, bilinear form. Then β is called

(1) nondegenrate if v ∈ V and β(v,w) = 0, for every w ∈ V , imply that
v = 0.

(2) positive definite if β(v, v) > 0 for all v 
= 0 in V .

(3) negative definite if β(v, v) < 0 for all v 
= 0 in V .

(4) positive semi-definite if β(v, v) ≥ 0 for all v ∈ V .

(5) negative semi-definite if β(v, v) ≤ 0 for all v ∈ V .

A symmetric matrix A is called positive definite if the corresponding bilinear
form βA(v,w) = Av · w, is positive definite, i.e., if Av · v > 0 for all v 
= 0.
Similarly one calls A negative definite, positve semi-definite, or negative semi-
definite, if βA is. Note also that βA is nondegenerate if and only if A is
invertible (exercise). Also note that if β is positive or negative definite, then
it is nondegenerate.

C.3 Inner Product Spaces
The standard dot product (or inner product) v · w of vectors v,w ∈ R

n

determines the fundamental geometry of R
n and is essential in defining many

additional concepts connected with “orthogonality” in R
n. The abstract

notion of an inner product on a vector space is defined as follows

Definition C.5 (Inner Product Spaces) Suppose V is a vector space
over the reals. An inner product on V is a symmetric, positive definite
bilinear form β : V × V → R, on V . The pair (V, β) is called an inner
product space. Relative to the inner product β we can defined the following
concepts.
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(1) Vectors v,w ∈ V are called orthogonal (or perpendicular) if β(v,w) = 0.
If U is any subset of V , then the set

U⊥ = { v ∈ V |β(v, u) = 0, ∀u ∈ U },

is the set of vectors which are perpendicular to U .

(2) The norm associated with the inner product is |v| = β(v, v)1/2. The
number |v| is called the norm, or length, of the vector v.

(3) If V is finite dimensional, then an orthonormal basis for V is a basis
{e1, . . . , en}, consisting of mutually orthogonal vectors of unit length,
i.e., β(ei, ej) = δij , for every i, j.

(4) A linear map T : V → V is called an isometry if β(Tv, Tv) = β(v, v),
for every v ∈ V .

Comment: Throughout the rest of this section β will be a given inner
product on V and for notational convenience we will use a dot for the inner
product:

v · w ≡ β(v,w).

Also we assume V is finite dimensional.
A fundamental construction in inner product spaces is the following.

Proposition C.2 (Gram-Schmidt Orthogonalization Process)
Suppose v1, . . . vk are linearly independent vectors in an inner product space.
Then there exist orthonormal vectors e1, . . . , ek, with the same span, i.e.,

ei · ej = δij (for i, j = 1, . . . k),

and
span{e1, . . . , ek} = span{v1, . . . , vk}.

Proof: The Gram-Schmidt process is simply described as follows. First
normalize: e1 ≡ v1/|v1|. Then orthogonalize:

ẽ2 ≡ v2 − (v2 · e1)e1.

Normalize again: e2 ≡ ẽ2/|ẽ2|. Then orthogonalize

ẽ3 ≡ v3 − (v3 · e1)e1 − (v3 · e2)e2,
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and continue in this fashion to construct all the ei’s. At the ith step we have

ẽi = vi −
i−1∑
j=1

(vi · ej) ej .

and this is easily seen to be orthogonal to each ep, p = 1, . . . , i − 1. By
induction we can assume that

span{e1, . . . , ei−1} = span{v1, . . . , vi−1}.

From this we get that |ẽi| 
= 0. Otherwise we would have

vi =
i−1∑
j=1

(vi · ej) ej ∈ span{e1, . . . , ei−1} = span{v1, . . . , vi−1},

which contradicts the assumption that v1, . . . , vi−1, vi are linearly indepen-
dent. Thus, at any stage in the process, we can always normalize: ei ≡
ẽi/|ẽi|. It is not hard to now show that span{e1, . . . , ei} = span{v1, . . . , vi}.

We can always use the Gram-Schmidt process to construct an orthonor-
mal basis for V and, as the following proposition shows, we can also use it
to demonstrate that each subspace of V has an orthogonal complement.

Proposition C.3 (Orthogonal Complements) If U is any subspace of
a finite dimensional inner product space, then U⊥ is also a subspace and

V = U ⊕ U⊥.

Proof: It is not hard to show that U⊥ is a subspace of R
n. Furthermore,

if U itself is a subspace, then U⊥, called the orthogonal complement of U ,
allows us to express V as a direct sum V = U ⊕ U⊥. To see this, note that
we can always choose an orthonormal basis {e1, . . . , ep} for U . Then for any
v ∈ V , we can write

v =
p∑

j=1

(v · ej)ej + (v −
p∑

j=1

(v · ej)ej).

The first summand is clearly in U , and it is easy to check that the second
summand is orthogonal to each ek, and hence to each u ∈ U . This gives
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that U +U⊥ = V . To see that the above expression for v is unique, suppose
that v = u + w with u ∈ U and w ∈ U⊥. The u =

∑p
j=1 cjej , for scalars

c1, . . . , cp. However, by the orthogonality property of the basis for U , it is
easy to see that v · ek = (u+ w) · ek = u · ek = ck. From this it follows that
u =

∑p
j=1(v · ej)ej , and hence also that w = v −∑p

j=1(v · ej)ej .

The theorem below shows that in a finite dimensional inner product
space, any symmetric bilinear form can be represented by a diagonal matrix
with respect to some choice of an orthonormal basis. This is viewed by some
as the Principal Axes Theorem, but we reserve this name for the theorem
presented in the next section, which is actually the matrix version of the
theorem here (together with some extra details).

Theorem C.1 Suppose α : V × V :→ R is a symmetric, bilinear form on a
finite dimensional inner product space (V, β). Then there is an orthonormal
basis {e1, e2, . . . , en} for V and real numbers λ1, λ2, . . . , λn such that

α(ei, ej) = λi δij , (C.3)

for all i, j = 1, . . . , n.

Proof: If α(v, v) = 0, for all v ∈ V , then it follows that

0 = α(v + w, v + w) = α(v, v) + 2α(v,w) + α(w,w) = 2α(v,w),

for all v,w ∈ V . Hence α is identically zero and so any orthonormal basis
{e1, . . . , en} will do, if we choose λi = 0, for i = 1, . . . , n. Thus, we are done
in this case.

On the other hand, suppose there is a v1 ∈ V , such that α(v1, v1) 
= 0. Let
e1 = v1/|v1| and λ1 ≡ α(e1, e1). Letting E1 =span{e1}, we get V = E1⊕E⊥

1 .
Now restrict α to E⊥

1 ×E⊥
1 . Then we can repeat the argument above but

now with α|E⊥
1 ×E⊥

1
. That is, if α(v, v) = 0 for every v ∈ E⊥

1 , then α|E⊥
1 ×E⊥

1

is identically zero and so we can choose any orthonormal basis {e2, . . . , en}
for E⊥

1 , take λi = 0, for i = 2, . . . , n, and be done with the proof. On the
other hand, if there exists a v2 ∈ E⊥

1 such that α(v2, v2) 
= 0, then we can
let e2 = v2/|v2| and λ2 = α(e2, e2), to get α(ei, ej) = λiδij , for i, j = 1, 2.
Then let E2 = span{e1, e2}, so that V = E2 ⊕ E⊥

2 .
Restricting α to E⊥

2 ×E⊥
2 , we continue on with the same process, which

after a finite number of steps terminates: either α resticted to E⊥
k × E⊥

k is
identically zero for some k < n or after n steps, we get En = V .
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C.4 The Principal Axes Theorem
The Principal Axes Theorem is a basic result that we have used in several
places in the text. We phrase this theorem in the following way, which is
slightly different than some statements of it in the literature, but is more
general and convenient. Note: The dot product v · w is the usual inner
product on R

n and orthogonality is with respect to this inner product unless
otherwise specified.

Theorem C.2 (Principal Axes Theorem) Suppose H and G are sym-
metric n×n matrices, with G positive definite. Define a real-valued function
f : R

n \ {0} → R by

f(x) =
Hx · x
Gx · x ,

for x 
= 0 in R
n. Then

(1) All the eigenvalues of G−1H are real.

(2) Eigenvectors of G−1H corresponding to distinct eigenvalues are or-
thogonal with respect to the inner product βG, i.e., if G−1Hv = λv and
G−1Hw = µw, with λ 
= µ, then Gv · w = 0.

(3) c is a critical point of f if and only if f(c) is an eigenvalue of G−1H
with c as a corresponding eigenvector.

(4) f has a maximum and a minimum value on R
n \{0}, and these values

are the largest and smallest of the eigenvalues of G−1H.

(5) R
n has a basis {e1, . . . , en} of eigenvectors of G−1H:

G−1Hei = λiei (for i = 1, . . . , n),

that are orthonormal with respect to the inner product βG:

Gei · ej = δij (for i, j = 1, . . . , n).
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Proof:

(1) Suppose λ is an eigenvalue of G−1H and let v ∈ C
n be a corresponding

eigenvector: G−1Hv = λv and v 
= 0. Then Hv = λGv, and so

λ(Gv · v) = (λGv) · v = Hv · v = v ·Hv = v · (λGv) = λ(Gv · v).

However, since v 
= 0 and G is positive definite, we have Gv · v 
= 0.
Thus, the above equation forces λ = λ. Hence λ is real.

(2) If λ 
= µ are eigenvalues of G−1H and v,w are corresponding eigenvec-
tors, then Hv = λGv and Hw = µGw. From (1), λ and µ are real and
v,w ∈ R

n. As in the proof of (1) we get

λ(Gv · w) = Hv · w = v ·Hw = v · (µGw) = µ(v ·Gw) = µ(Gv · w).

Since λ 
= µ, this forces Gv · w = 0.

(3) From the definition of f we get the identity:

Hx · x = f(x)Gx · x,

for all x ∈ R
n. Otherwise said

n∑
i,j=1

hijxixj = f(x)
n∑

i,j=1

gijxixj.

Taking the partial derivative of both sides of this equation with respect
to xk gives

2
n∑

j=1

hkjxj =
∂f

∂xk
(x) (Gx · x) + 2f(x)

n∑
j=1

gkjxj.

Writing this in vector form gives

2Hx = (Gx · x)∇f(x) + 2f(x)Gx,

or
G−1Hx = f(x)x+ 1

2(Gx · x)G−1∇f(x).

Hence if c is a critical point of f , i.e., ∇f(c) = 0, the above gives
G−1Hc = f(c)c. Conversely if G−1Hc = f(c)c, then the above gives
that 1

2(Gc · c)G−1∇f(c) = 0 and hence ∇f(c) = 0.
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(4) It is easy to see from the definition of f that f(rx) = f(x), for every real
number r 
= 0 and every x 
= 0 in R

n. Hence the values of f on R
n\{0}

are the same as it values on the unit sphere S = {x ∈ R
n | |x| = 1 }.

But since S is compact, there are points c1, cn ∈ S, where f assumes
it minimum and maximum values. Thus, λ1 ≡ f(c1) ≤ λn = f(cn),
are the minimum and maximum values of f on all of R

n \ {0}:

λ1 ≤ f(x) ≤ λn,

for all x ∈ R
n −{0}. By Part (3), λ1 and λn are eigenvalues of G−1H.

Further, if λ is any eigenvalue of G−1H, say G−1Hv = λv, then Hv =
λGv and so

λ =
Hv · v
Gv · v = f(v).

Hence λ1 ≤ λ ≤ λn. So λ1 and λn are the minimum and maximum
eigenvalues of G−1H.

(5) If we let βH(v,w) = H ·w and βG(v,w) = Gv·w be the standard bilinear
forms associated with matrices H and G, then βH is symmetric and βG

is an inner product on R
n. Thus, we can apply Theorem – to βH , with

(Rn, βG) as the inner product space. Hence there is a basis {e1, . . . , en}
for R

n that is orthonormal with respect to βG, i.e.,

Gei · ej = δij , (C.4)

for all i, j, and real numbers λ1, . . . , λn such that

Hei · ej = λiδij , (C.5)

for all i, j. Now let P = [e1 · · · en] be the n× n matrix with e1, . . . , en
as its columns and D = diag(λ1, . . . , λn), be the diagonal matrix with
λ1, . . . , λn on the diagonal. Then P is invertible and equations (–)-(–)
say that

P TGP = I

P THP = D

From the first equation we get G−1 = PP T . Using this in the second
equation gives, with some rearrangement,

G−1HP = G−1P−TD = PP TP−TD = PD.

But this says that G−1Hei = λiei, for i = 1, . . . , n.
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Corollary C.1 (Spectral Theorem) Suppose A is an n × n symmetric
matrix (with real entries). Then all the eigenvalues λ1, . . . , λn of A are real,
and and eigenvectors corresponding to distinct eigenvalues are orthogonal.
Furthermore, R

n has an orthonormal basis {e1, . . . , en} consisting of eigen-
vectors of A:

Aei = λiei,

i = 1, . . . , n. Thus, A is diagonalizable by an orthogonal transformation:

P−1AP =

 λ1

. . .
λn

 ,
where P = [e1 · · · en] is the orthogonal matrix with e1, . . . , en as its columns.

In addition, if the labelling is done so that λ1 ≤ λ2 ≤ · · · ≤ λn, then λ1

and λn are the absolute maximum and minimum values of the function

f(x) =
Ax · x
x · x ,

on R
n \ {0}, and e1, e2, . . . , en are critical points of f , such that f(ei) =

λi, i = 1, . . . , n.

Note: In the Principal Axes Theorem and its corollary, we can assume the
vectors e1, . . . , en in the basis form a “right-handed system”, i.e., are such
that the matrix P = [e1 · · · en], formed with the ei’s as columns, has positive
determinant: det(P ) > 0. If this is not the case then we can always relabel
the ei’s (and the λi’s too) so that this is the case. Then the principal axes
are the lines through the origin determined by the vectors e1, . . . , en. In the
case of the corollary, these axes are mutually orthogonal in the Euclidean
sense. In general they are only orthogonal with respect to the inner product
βG.

There are numerous applications of the Principal Axes Theorem, two of
which in this text deal with moments of inertia in Chapter 9 and principal
curvatures in Chapter 10.

C.5 Generalized Eigenspaces
In this section we prove the Jordan Canonical Form Theorem. We prove
what is known as the real form of this theorem, which takes a little more effort
than the case where one works over the complex field C. In either case the
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proof is long, but worthy of study since it involves many important tools and
ideas from algebra and linear algebra. Most of this material directly extends
to operators on finite dimensional vectors spaces of other fields besides R or
C.

Definition C.6 (Minimal and Characteristic Polynomials) SupposeA
is an n× n matrix.

(1) A monic polynomial is one whose coefficient of its highest power is 1.
The minimal polynomial for A is the monic polynomial:

p(x) = a0 + a1x+ · · · + ak−1x
k−1 + xk,

of least degree such that:

p(A) = a0I + a1A+ · · · + ak−1A
k−1 +Ak = 0.

Note that polynomials f(x) for which f(A) = 0 always exist. To see
this, observe that the set Mn of all n×nmatrices is a finite dimensional
vector space with dimension n2. Because of this, the n2 + 1 vectors:
I,A, . . . , An2

cannot be linearly independent. Thus, there is a non-
trivial linear combination of these that gives the zero matrix. From
this we get a polynomial f such that f(A) = 0. Note: If f is a
polynomial such that f(A) = 0, then the minimal polynomial p for A
divides f . To verify this note that by the Euclidean division algorithm
there are polynomials q, r such that f(x) = p(x)q(x)+r(x), and either
r = 0 or the degree of r is strictly less than p. This forces r = 0,
because otherwise we would have r(A) = f(A)− p(A)q(A) = 0 and so
p would not be the minimal polynomial.

(2) The characteristic polynomial is the polynomial pA of degree n defined
by

pA(x) = det(A− xI).

This polynomial determines the eigenvalues of A and has many impor-
tant uses, however it is the minimal polynomial that plays the central
role in the decomposition theorem below.

To relate the characteristic and minimal polynomials, we must appeal
to the Cayley-Hamilton theorem which says that pA(A) = 0. Thus, from
the above remarks it follows that p(x) divides pA(x). Furthermore, it can
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be shown that the characteristic and minimal poynomials have the same
roots. Consequently, their respective factorizations into linear and irre-
ducible quadratic factors are the same except for multiplicities. Thus, if

p(x) = (x− λ1)k
′
1 · · · (x− λr)k

′
rq1(x)m

′
1 · · · qs(x)m

′
s , (C.6)

then

pA(x) = (−1)n(x− λ1)k1 · · · (x− λr)krq1(x)m1 · · · qs(x)ms , (C.7)

where k′1 ≤ k1, . . . , k
′
r ≤ kr,m

′
1 ≤ m1, . . . ,m

′
s ≤ ms. In the above, the

irreducible quadratic factors qj have the form

qj(x) = (x− aj)2 + b2j ,

and thus the roots of p(x) and pA(x) (which are the eigenvalues of A) are

λ1, . . . , λr, a1 ± b1i, . . . , as ± bsi.

It is implied that the numbers listed above are distinct and, since the char-
acteristic polynomial pA(x) has degree n, it follows that

n = k1 + · · · + kr + 2m1 + · · · + 2ms.

We will use the notation and factorizations shown in equations (C.6)-(C.7),
for p(x) and pA(x) throughout the rest of this section.

Definition C.7 (Generalized Eigenspaces) Suppose that a complete list
of the distinct eigenvalues of A is λ1, . . . , λr, a1 ± b1i, . . . , as ± bsi. The gen-
eralized eigenspaces for A are the subspaces:

GEλj
= { v ∈ R

n | (A− λjI)kv = 0 , for some k }

and

GEaj±bj i = { v ∈ R
n | [(A− ajI)2 + b2jI]

mv = 0 , for some m }

It is easy to show that the generalized eigenspaces are actually subspaces
and that they are invariant under A since A commutes with A−λjI and (A−
ajI)2+b2jI (exercise). It is also clear that Eλj

⊆ GEλj
for the real eigenvalues

λj . As we have seen, for some matrices, the generalized eigenspaces coincide
with the eigenspaces. In general, however, this will not be the case.

The following theorem is the fundamental tool for obtaining the Jordan
canonical form for the matrix A:
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Theorem C.3 (Primary Decomposition Theorem) Suppose that:

λ1, . . . , λr, a1 ± b1i, . . . , as ± bsi,

is a complete list of the distinct eigenvalues of A. Then R
n is the direct sum

of the generalized eigenspaces of A:

R
n = GEλ1 ⊕ · · · ⊕GEλr ⊕GEa1±b1i ⊕ · · · ⊕GEas±bsi, (C.8)

and each generalized eigenspace is invariant under A. Furthermore, the
minimal polynomials for A restricted to GEλj

and GEaj±bj i are

Fj(x) ≡ (x− λj)
k′

j , Gj(x) ≡ ((x− aj)2 + b2j)
m′

j , (C.9)

respectively. Here k′j and m′
j are the multiplicities of λj and aj + bji as roots

of the minimal polynomial p(x). On the other hand if kj ≥ k′j and mj ≥ m′
j

denote the multiplicities of these eigenvalues as roots of the characteristic
polynomial pA(x), then

dim(GEλj
) = kj

dim(GEaj±bj i) = 2mj .

Proof: The proof uses some interesting algebraic properties of the ring R[x]
of polynomials. Most of these have been abstracted to the more general
setting of ring theory in modern algebra.

Consider the minimal polynomial for A in factored form

p(x) = (x− λ1)k
′
1 · · · (x− λr)k

′
rq1(x)m

′
1 · · · qs(x)m

′
s ,

with irreducible quadratic factors qj(x) = (x− aj)2 + b2j . Define some asso-
ciated polynomials g1, . . . , gr, h1, . . . , hs, by

gj(x) =
p(x)

(x− λj)
k′

j

hj(x) =
p(x)

qj(x)
m′

j

.

Then it should be evident that g1, . . . , gr, h1, . . . , hs are relatively prime. This
means that no polynomial of positive degree divides each of these polynomi-
als. Now consider the following set of polynomials

I = {α1g1 + · · · + αrgr + β1h1 + · · · + βshs |αj , βj ∈ R[x] },
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i.e., I consists of all polynomials of the form f = α1g1 + · · ·+αrgr + β1h1 +
· · · + βshs, where the αj ’s and βj are any polynomials. This is an ideal of
R[x], which means it is a subset with the properties: (1) If f, g ∈ I, then
f + g ∈ I, and (2) If f ∈ I and γ is any polynomial then γf ∈ I. We
would like to show that I has an alternative expression. For this let f0 be
a monic polynomial in I with least degree. Then for any f ∈ I, we can use
the Euclidean division algorithm to write f = f0q+ r, where either r = 0 or
r has degree less than f0. But since r = qf0−f ∈ I, it must be the case that
r = 0. This proves that each element f in I is divisible by f0. Otherwise
said

I = { γf0 | γ ∈ R[x] }.
Now each gj and each hj is in I, so they are divisible by f0. Hence f0 is a
common factor of g1, . . . , gr, h1, . . . , hs. But since these are relatively prime,
f0 must be a constant, and indeed f0 = 1, since it was assumed to be monic.
We have thus shown that 1 ∈ I, and so by the original definition of I, there
exist polynomials α1, . . . , αr, β1, . . . , βs, such that

1 = α1(x)g1(x) + · · · + αr(x)gr(x) + β1(x)h1(x) + · · · + βs(x)hs(x), (C.10)

for all x. If we replace x in this identity by the matrix A, we get the following
matrix identity

I = α1(A)g1(A)+· · ·+αr(A)gr(A)+β1(A)h1(A)+· · ·+βs(A)hs(A). (C.11)

This is the fundamental identity that makes the decomposition theorem
work. Indeed, if v ∈ R

n, the identity gives

v = α1(A)g1(A)v + · · · + αr(A)gr(A)v + β1(A)h1(A)v + · · · + βs(A)hs(A)v
= v1 + · · · + vr + w1 + · · · + ws,

where vj = αj(A)gj(A)v and wj = βj(A)hj(A)v. Then vj ∈ GEλj
, since

(A− λjI)
m′

jvj = (A− λjI)
m′

jαj(A)gj(A)v = αj(A)p(A)v = 0.

Similarly wj ∈ GEaj±bj i. This shows that

R
n = GEλ1 + · · · +GEλr +GEa1±b1i + · · · +GEas±bsi

To prove that this sum is direct, we introduce the following subspaces

Vj = { v ∈ R
n | (A− λjI)

k′
j v = 0 }

Wj = { v ∈ R
n | qj(A)m

′
j v = 0 }.
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Then clearly Vj ⊆ GEλj
and Wj ⊆ GEaj±bji. We want to argue that equality

holds in both cases. So suppose v 
= 0 is in GEλj
. Then there is a k such

that (A− λjI)k v = 0. Assume that k is the least positive integer such that
this holds. If k ≤ k′j , then clearly

(A− λjI)
k′

jv = (A− λjI)
k′

j−k(A− λjI)k v = 0,

and so v ∈ Vj. On the other hand suppose k > k′j . Now by the minimality
of k, it follows that w = (A− λjI)k−1 is not zero. However, it is easy to see
that

w = α1(A)g1(A)w+· · ·+αr(A)gr(A)w+β1(A)h1(A)w+· · ·+βs(A)hs(A)w = 0,

since p(A) will be a factor in each of the above summands. This contradiction
shows that we must have v ∈ Vj . So Vj = GEλj

. Similarly Wj = GEaj±bj i.
With this established, we can easily prove the directness of the sum.

Thus, if
0 = v1 + · · · + vr + w1 + · · · + ws,

with vj ∈ GEλj
and wj ∈ GEaj±bj i, then applying gj(A) to the above

equation gives

0 = gj(A)[ v1 + · · · + vr + w1 + · · · + ws ] = gj(A)vj .

However, gj(x) and (x−λj)
k′

j are relatively prime polynomials. So (as above)
there are polynomials α, β, such that

1 = α(x)gj(x) + β(x)(x − λj)
k′

j ,

for all x. Replacing x by A gives the matrix identity

I = α(A)gj(A) + β(A)(A− λjI)
k′

j .

Hence
vj = α(A)gj(A)vj + β(A)(A − λjI)

k′
jvj = 0.

Similarly each wj = 0. This proves that the reperesentation of R
n as a sum

of the generalized eigenspaces is a direct sum.
We next prove that the minimal polynomials for A restricted to each of

the summands are given by the Fj ’s and Gj ’s in equation (C.9). For this
let F̃j and G̃j be the minimal polynomials for A restricted to GEλj

and
GEaj±bji respectively. Then since these subspaces are equal to Vj and Wj ,
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it is clear that Fj(A)v = 0, for every v ∈ Vj and Gj(A)w = 0, for every
w ∈Wj. Hence F̃j divides Fj and G̃j divides Gj . Thus,

F̃j(x) = (x− λj)k̃j , G̃j(x) = ((x− aj)2 + b2j)
m̃j ,

for integers k̃j ≤ k′j, m̃j ≤ m′
j. On the other hand, let p̃ = F̃1 · · · F̃rG̃1 · · · G̃s.

Then because of the direct sum decomposition, it is easy to see that p̃(A)v =
0, for every v ∈ R

n. Hence p divides p̃, and so k′j ≤ k̃j , m
′
j ≤ m̃j. Thus,

equality must hold.
We finally prove the assertions about the dimensions of the generalized

eigenspaces. Thus, let dim(GEλj
) = �j and dim(GEaj±bji) = nj. We need to

show that �j = kj and nj = 2mj . Because of the direct sum decomposition
of R

n into the generalized eigenspaces, Proposition C.1 and its proof say that
we can choose any bases for these subspaces, say {vj

i }i=1···�j
and {wj

i }i=1···nj

and get

P−1AP =



B1

. . .
Br

C1

. . .
Cs


. (C.12)

Here P = [v1
1 , . . . , v

1
�1
, . . . , ws

1, . . . , w
s
ns

] is the matrix formed with all the basis
elements as columns and the matrix on the left is block diagonal with the
Bj’s and Cj ’s on the diagonal. These latter matrices have dimensions �j × �j
and nj×nj respectively. We claim that the characteristic polymomial for Bj

is pBj (x) = (−1)�j (x− λj)�j . To see this let Pj = [vj
1, . . . , v

j
�j

] be the n× �j
matrix formed from the chosen basis for GEλj

. Then since APj = PjBj ,
and (A− λjI)

k′
j is identically zero on GEλj

, we get that

0 = (A− λjI)
k′

jPju = Pj(Bj − λjI)
k′

ju,

for all u ∈ R
�j . But since the columns of Pj are linearly independent, this

forces (Bj −λjI)
k′

ju = 0 for all u ∈ R
�j . Hence the characteristic polynomial

for Bj has the claimed form.
Similarly let Pj = [wj

1, . . . , w
j
nj

] be the n × nj matrix formed from the

chosen basis for GEaj±bj i. Then since APj = PjCj, and [(A−ajI)2 + b2jI]
m′

j
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is identically zero on GEaj±bji, we get that

0 =
[
(A− ajI)2 + b2jI

]m′
j
Pju = Pj

[
(Cj − ajI)2 + b2jI

]m′
j
u,

for every u ∈ R
nj . But this gives that Fj(Cj) = 0, where Fj(x) = [(x −

aj)2 + b2j ]
m′

j . So the minimal polynomial for Cj divides Fj(x). Thus, the
only eigenvalues of Cj are aj ± bji, from which it follows that the dimension
of Cj is even, say nj = 2tj. Then the characteristic polynomial for Cj must
be pCj(x) = [(x− aj)2 + b2j ]

tj .
Thus, from equation (C.12) and properties of determinants, we get

pA(x) = det(A− xI) = det(P−1(A− xI)P ) = det(P−1AP − xI)
= det(B1 − xI) · · · det(Br − xI) det(C1 − xI) · · · det(Cs − xI)
= pB1(x) · · · pBr(x)pC1(x) · · · pCs(x).

Comparing exponents involved in the polynomials on each side of this equa-
tion gives kj = �j and mj = tj for each j. This completes the proof.

The theorem shows that the block structure in equation (C.12) results
from any choice of bases for the generalized eigenspaces. In fact this structure
only requires a decomposition as a direct sum of subspaces that are invariant
under A. If we now exploit the fact that the subspaces are generalized
eigenspaces and pick the basis for each in a special way, we will get the
Jordan canonical form for A. The following discussion shows how these
bases are selected.

First consider the real eigenvalues λ ≡ λj and for convenience let V =
GEλ. Then N ≡ A− λI is nilpotent when restricted to V and has k′ ≡ k′j
as its index of nilpotency. This means that Nk′

v = 0 for every v ∈ V and
no lower power k < k′ has this property.

Lemma C.1 Suppose M is an n×n matrix and V ⊆ R
n is a subspace that

is invariant under M . If M is nilpotent on V , say Mkv = 0, for all v ∈ V ,
and if a 
= 0 is any real number, then aI −M , when restricted to V is 1-1
and onto. In particular, if (aI −M)v = 0, for v ∈ V , then v = 0.

Proof: Let Q = a−1M . Then clearly Q is nilpotent on V as well: Qkv = 0,
for all v ∈ V . Now let B be the following n× n matrix

B = I +Q+Q2 + · · · +Qk−1.
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Then B commutes with Q (and also M) and

BQ = Q+Q2 + · · · +Qk−1 +Qk.

Thus, B(I −Q) = B − BQ = I −Qk, and so B(I −Q)v = v for all v ∈ V .
Consequently,

a−1B(aI −M)v = v,

for all v ∈ V . This shows that aI − M is 1-1 and, since B and aI − M
commute, this equation also shows that aI −A is onto.

The lemma is instrumental in choosing the basis we need for V = GEλ.
Since N = A− λI has index k′, the matrix Nk′−1 is not identically zero on
V . So let v ∈ V be such that Nk′−1v 
= 0. Then the vectors

v,Nv,N2v, . . . ,Nk′−1v,

0 1 k′−1,
such that

0 = a0v + a1Nv + · · · + ak′−1N
k′−1v =

(
a0 + a1N + · · · + ak′−1N

k′−1
)
v.

Let ap be the first nonzero ai. Then the above expression reduces to

0 =
(
apN

p + · · · + ak′−1N
k′−1

)
v = (ap +M)Npv,

where M ≡ ap+1N + · · ·+ ak′−1N
k′−p−1. Now M is nilpotent on V since we

can write it as M = NB, where b commutes with N . Thus, by Lemma C.1,
ap+M is 1-1 on V , and so from (ap+M)Npv = 0, we conclude that Npv = 0.
But since p ≤ k′ − 1, we conclude that Nk′−1v = 0. This contradicts our
initial selection of v.

Now we label the linearly independent vectors v,Nv, . . . ,Nk′−1 in reverse
order

v1 = Nk′−1v, v2 = Nk′−2v, . . . , vk′ = v.

This gives us Nv1 = 0, Nv2 = v1, . . . , Nvk′ = vk′−1. But since N = A− λI,
we can write these equations as

Av1 = λv1

Av2 = λv2 + v1
... (C.13)

Avk′ = λvk′ + vk′−1

are linearly independent vectors in V . If not, there are constants a ,a ,...a
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In matrix form these equations are

A[v1, . . . , vk′ ] = [v1, . . . , vk′ ]


λ 1 0 0 · · · 0
0 λ 1 0 · · · 0

. . .
0 0 · · · 0 λ 1
0 0 0 · · · 0 λ

 . (C.14)

Otherwise said, AP1 = P1Jk′(λ), where P1 = [v1, . . . , vk′ ] is the n×k′ matrix
formed from the vj ’s as columns. Thus, we are done with the construction
of the desired basis if the span: V1 ≡ span{v1, . . . , vk′}, is all of GEλ. Note
that equations (C.13) give an algorithm that can be used to successively
compute the elements in the basis. Namely, first compute an eigenvector
v1 coresponding to λ. With this known, then compute a solution v2 of the
equation Av2 = λv2 + v1. Continue in this fashion, finally determining a
solution vk′ of the equation Avk′ = λvk′ + vk′−1.

If V1 
= GEλ, then one can show that GEλ = V1 ⊕W for some subspace
W that is invariant under N (Cf. [Her 75, Lemma 6.5.4, p. 295]). Let k′′

be the index of nilpotency of N when restricted to W (so that necessarily
k′′ ≤ k′). Then as above, there are linearly independent vectors w1, . . . , wk′′

in W , such that Nw1 = 0 and Nwj = wj−1, for j = 2, . . . , k′′. Letting P2 be
the n× k′′ matrix formed with these vectors as colunms, we get

A[P1, P2] = [P1, P2]

[
Jk′(λ) 0

0 Jk′′(λ)

]
.

Let V2 = sp{w1, . . . , wk′′}. If V2 = W then we are done, otherwise we
can continue the process. Since GEλ is finite dimensional, this process
must terminate after finitely many steps and we end up with sequences
{v1, . . . , vk′}, {w1, . . . , wk′′}, . . . , {u1, . . . , uk(p)}, of cyclic vectors for N that
span subspaces V1, V2, . . . , Vp, with dimensions k′ ≥ k′′ ≥ · · · ≥ k(p) and such
that GEλ = V1 ⊕ · · · ⊕ Vp. Then k′ + k′′ + · · · + k(p) = dim(GEλ) = k, and
we will have AP = P diag(Jk′(λ), Jk′′(λ), . . . , Jk(p)(λ)), where P is the n× k
matrix formed from all the cyclic vectors.

Now consider one of the subspaces Gaj±bji of R
n corresponding to a pair

of complex conjugate eigenvalues of A. To select the desired basis forGaj±bj i,
it will be convenient to make an excursion into the complex domain.

We can consider A as a complex matrix, A : C
n → C

n, and note that the
Primary Decomposition Theorem applies to complex matrices. The proof
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is the same. However, the key assumption in the proof is that the minimal
polynomial is factored completely into irreducible factors. But over C, the
quadratic factors split into linear factors[

(x− aj)2 + b2j

]m′
j = (x− µj)

m′
j (x− µj)

m′
j ,

where µj = aj + bji. If we let GEµ ≡ { v ∈ C
n | (A−µ)kv = 0, for some k },

then the primary decomposition of C
n is

C
n = GEλ1 ⊕ · · · ⊕GEλr ⊕GEµ1 ⊕GEµ1

⊕ · · · ⊕GEµs ⊕GEµs
.

Now consider one of the complex eigenvalues µ = a+ bi ≡ aj + bji, with
m′ ≡ m′

j being the multiplicity of this eigenvalue as a root of the minimal
polynomial and m = mj its multiplicity as a root of the characteristic poly-
nomial. Then by the Primary Decomposition Theorem, the dimension of
GEµ over the complex numbers is m and A − µI is nilpotent of index m′

on GEµ. Exactly as in the discussion for the real case above, we get vectors
v1, . . . , vm′ in GEµ, which are linearly independent over C and which satisfy

Av1 = µv1

Av2 = µv2 + v1
...

Avm′ = µvm′ + vm′−1.

If we split each of the complex vectors vj into its real and imaginary parts
vj = uj + iwj , then it is not hard to see that u1, w1, . . . , um′ , wm′ are 2m′,
linearly independent vectors in R

n and the above equations can be written
as

A[u1, w1] = [u1, w1]C
A[u2, w2] = [u2, w2]C + [u1, w1]

...
A[um′ , wm′ ] = [um′ , wm′ ]C + [um′−1, wm′−1],

where [uj , wj ] denotes the n× 2 matrix with uj, wj as columns and

C =

[
a b
−b a

]
.
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Combining all these into one matrix equation gives

A[u1, w1, . . . , um′ , wm′ ] = [u1, w1, . . . , um′ , wm′ ]


C I 0 0 · · · 0
0 C I 0 · · · 0

. . .
0 0 · · · 0 C I
0 0 0 · · · 0 C

 .

Now each vj ∈ GEµ and so (A− µI)k vj = 0, for some k. But then

0 = (A− µI)k(A− µI)k vj =
[
(A− aI)2 + b2I

]k
vj.

This shows that uj, wj ∈ Ga±bi for each j.
Continuing in this fashion, working in the complex domain and then

transferring the result to the real domain we get sequences

{v1
1 , . . . , v

1
m′}, {v2

1 , . . . , v
2
m′′}, . . . , {vp

1 , . . . , v
p
m(p)},

of complex, cyclic vectors for A − µI, which span subspaces V1, V2, . . . , Vp

of C
n, with dimensions m′ ≥ m′′ ≥ · · · ≥ m(p) and such that GEµ =

V1 ⊕ · · · ⊕Vp. Then m′ +m′′ + · · ·+m(p) = dimC(GEλ) = m. Decomposing
into real and imaginary parts: vk

j = uk
j +iwk

j , we get 2m linearly independent,
real vectors {uk

j , w
k
j } in GEa±bi, which therefore must be a basis for this

subspace. Using these vectors to form the columns of a n × 2m matrix P
gives

AP = P diag(C2m′(a, b), C2m′′ (a, b), . . . , Cm(p)(a, b)).

This is part of the Jordan canonical form that corresponds to GEa±bi. All
together the discussion shows how to choose bases for each of the generalized
eigenspaces so that if P denotes the n× n matrix formed from these bases,
appropriately ordered, then AP = PJ , where J is the Jordan canonical form
for A.

C.6 Matrix Analysis
We present here some background material on matrix analysis that is used
to define the matrix exponential eA in terms of a series. This analysis is
also useful in other respects and is a special case of the analysis on Banach
spaces and Banach algebras (or more generally complete, topologiacal vector
spaces and topologiical algebras).
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We let Mn denote the collection of all real n × n matrices. Recall that
Mn is a vector space under the usual addition and scalar multiplication
operations on matrices (It’s also an algebra as well, using matrix multiplica-
tion). In order to apply the familar notions of limits, sequences, series, etc.
to matrices we need to have a norm defined on Mn. There are many matrix
norms to choose from, but one that is convenient for us here is the following.

Definition C.8 For A ∈ Mn, the norm ‖A‖ of A is defined to be the largest
of all the absolute values of the entries of A. That is, if A = {aij} then:

‖A‖ = max{ |aij | | i, j ∈ {1, · · · , n} } (C.15)

It’s easy to verify, directly from the definition, that this function ‖·‖ : Mn →
R, has the following properties:

(1) ‖A‖ ≥ 0 and ‖A‖ = 0 iff A = 0

(2) ‖λA‖ = |λ|‖A‖.

(3) ‖A+B‖ ≤ ‖A‖ + ‖B‖.

(4) ‖AB‖ ≤ n‖A‖‖B‖.

The first three properties (1)-(3) are the general axioms for what is required
for any abstract function ‖ · ‖ to be an norm on a vector space. Property (3)
is known as the triangle inequality for a norm.

Using a matrix norm like this allows us to extend all the results on
sequences and series of real numbers to sequences and series of matrices.
Furthermore, we will see that these results look entirely like their real number
counterparts.

Suppose {Ak}∞k=0 = {A0, A1, A2, · · ·} is a sequence of matrices. In terms
of the entries, the kth matrix of this sequence looks like:

Ak = {ak
ij} =


ak

11 ak
12 · · · ak

1n

ak
21 ak

22 · · · ak
2n

...
...

...
ak

n1 ak
n2 · · · ak

nn

 (C.16)

The norm ‖ · ‖ gives us a way of measuring distances between the elements
in our space Mn of matrices, and this in turn leads to the natural notion of
the limit of a sequence of matrices:
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Definition C.9

(1) The distance between two matrices A,B ∈ Mn is ‖A−B‖.

(2) A sequence {Ak}∞k=0 of matrices, in Mn , is said to converge to the
matrix B (or have limit = B), if ∀ε > 0 ,∃ an N such that:

‖Ak −B‖ < ε, (C.17)

for every k ≥ N . When this is the case, we use the customary notation:

lim
k→∞

Ak = B.

(3) A sequence {Ak}∞k=0 of matrices is called a Cauchy sequence if ∀ε > 0 ,∃
an N such that:

‖Ak −Ap‖ < ε, (C.18)

for every k, p ≥ N .

The above definition gives us the abstract notion of when two matrices A
and B are close together, namely when the distance between them ‖A−B‖
is small. The notion of a Cauchy sequence of matrices is the same as for
sequences of real numbers: it is a sequence whose terms are as close together
as we wish if we go far enough out in the sequence. The following proposition
is easy to prove from the definitions, and is left as an exercise.

Proposition C.4 Suppose {Ak}∞k=0 is a sequence of matrices. Then

(1) The sequence converges to a matrix B:

lim
k→∞

Ak = B,

if and only if each of the sequences of entries converge to the corresponding
entries of B, i.e., ∀i, j:

lim
k→∞

ak
ij = bij.

(2) The sequence of matrices is Cauchy if and only if each of the sequences
of its entries is Cauchy.

(3) If the sequence of matrices is Cauchy then the sequence converges.
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Parts (1) and (2) of the proposition say, in essence, that we really do not
need a matrix norm to deal with limits of matrices. However, this is true
only in theory. In practice we will see that there are numerous occassions,
like the ratio and root tests discussed below, where the norm is most useful.

Part (3) is the completeness property: the vector space Mn is called a
complete normed vector space because of this property. Complete spaces are
convenient, since it is often easy to check to see if a sequence is a Cauchy
sequence. We will only need this concept briefly below in the discussion of
series.

Definition C.10 Suppose {Ck}∞k=0 is a sequence of n × n matrices. Then
the series of matrices:

∞∑
k=0

Ck, (C.19)

is said to converge to the matrix C, (or have sum equal to C), if the corre-
sponding sequence of partial sums converges to C. When this is the case we
write:

∞∑
k=0

Ck = C.

Recall that, just as for series of real numbers, the corresponding sequence of
partial sums for (C.19) is: {Sk}∞k=0, where:

S0 = C0

S1 = C0 +C1

S2 = C0 +C1 + C2 (C.20)
...

Sk = C0 +C1 + C2 + · · · + Ck

...

Note that any series
∑∞

k=0Ck of n× n matrices is comprised of n2 series
of real numbers:

∑∞
k=0 c

k
ij , formed from the entries of matrix series. Fur-

thermore, by the last proposition, it is easy to see that the series of matrices∑∞
k=0Ck converges to a matrix C if and only if for each i, j, the correspond-

ing series of i-jth entries
∑∞

k=0 c
k
ij converges to the i-jthe entry cij of C.
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Symbollically:

∞∑
k=0


ck11 · · · ck1n

ck21 · · · ck2n
...

...
...

ckn1 · · · cknn

 =


∑∞

k=0 c
k
11 · · · ∑∞

k=0 c
k
1n∑∞

k=0 c
k
21 · · · ∑∞

k=0 c
k
2n

...
...

...∑∞
k=0 c

k
n1 · · · ∑∞

k=0 c
k
nn

 . (C.21)

Despite the fact, just stated, that covergence of series of matrices is
equivalent to the convergence of all the series of i-jth entries, it is often quite
impossible to examine the series of entries effectively. In such circumstances
it is easier to apply various convergence tests, like the ratio and root tests,
directly to the matrix series, using the matrix norm. For example, given a
matrix series:

∑∞
k=0Ck, the ratio test goes as follows. Suppose

lim
k→∞

‖Ck+1‖/‖Ck‖ = ρ,

exists. Then the matrix series converges absolutely if ρ < 1, and diverges if
ρ > 1. The test gives no information if ρ = 1. By absolute convergence we
mean:

Definition C.11 The matrix series
∑∞

k=0Ck is said to converge absolutely
if the series:

∑∞
k=0 ‖Ck‖, of real numbers, converges.

The following proposition shows that absolute convergence is a stronger no-
tion than just ordinary convergence.

Proposition C.5 If the series
∑∞

k=0Ck converges absolutely then it con-
verges.

Proof: By assumption the series
∑∞

k=0 ‖Ck‖ of real numbers converges.
This means the corresponding sequence of partial sums: {σk}, with σk =∑k

j=0 ‖Cj‖ is a convergent sequence, and therefore is also a Cauchy sequence.
Thus, given ε > 0, we can choose K so that ∀k > p ≥ K:

|σk − σp| < ε.

But then, using the triangle inequality for the norm ‖ · ‖, it follows that
the sequence of matrix partial sums: {Sk}, with Sk =

∑k
j=0Cj, satisfies the
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following, ∀k > p ≥ K:

‖Sk − Sp‖ = ‖
k∑

j=p+1

Cj‖ (C.22)

≤
k∑

j=p+1

‖Cj‖ (C.23)

=
k∑

j=0

‖Cj‖ −
p∑

j=0

‖Cj‖ (C.24)

= |σk − σp| < ε (C.25)

This says that the sequence {Sk}∞k=0 of matrix partial sums is Cauchy, and
thus by part (3) of the last proposition, this sequence converges. Hence the
series

∑∞
k=0Ck converges.

Example C.2 An important application of the last proposition deals with
the series: ∞∑

k=0

1
k!
Ak = I +A+

1
2!
A2 +

1
3!
A3 + · · · (C.26)

where A is an n × n matrix, and I is the identity matrix. To see that this
matrix series converges for any matrix A, we use the ratio test, looking at
the ratio:

‖ 1
(k+1)!A

k+1‖
‖ 1

k!A
k‖

=
1

k + 1
‖AAk‖
‖Ak‖

≤ 1
k + 1

n‖A‖‖Ak‖
‖Ak‖ =

n

k + 1
‖A‖. (C.27)

Since the last expression on the right-hand side in (C.27) tends to zero as
k → ∞, we see that ρ = 0 in the ratio test. Hence the series (C.26) converges
absolutely, and therefore converges. The matrix that this series converges
to is denoted suggestively by:

Definition C.12

eA =
∞∑

k=0

1
k!
Ak. (C.28)

The matrix eA is called the matrix exponential, and A → eA, actually de-
fines a function with domain and codomain Mn. This function has many
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properties of the ordinary exponential function, as the following theorem
shows.

Theorem C.4 The matrix exponential defined by the series (C.28) has the
properties:

(1) If A and B commute: AB = BA, then eA+B = eAeB.

(2) For any A, the matrix eA is invertible, and has inverse given by:
(eA)−1 = e−A.

(3) If P is any invertible matrix, then eP
−1AP = P−1eAP .

(4) If Av = λv, then eAv = eλv. In particular this gives an association
between the eigenvalues/vectors of A and eA.

Proof: We prove property (1), and leave the others as exercises. We use
a result (without proof) about Cauchy multiplication of two series: If the
series:

∑∞
k=0Ck and

∑∞
k=0Dk are absolutely convergent series, converging to

C and D respectively:
∑∞

k=0Ck = C and
∑∞

k=0Dk = D, then the following
series converges to the product of C and D:

∞∑
k=0

 k∑
p=0

CpDk−p

 = CD. (C.29)

Intuitively, this result says, under the stated conditions, that the infinite
distributive law holds:

CD = (C0 + C1 + C2 + · · ·)(D0 +D1 +D2 + · · ·)

=


C0D0 + C0D1 + C0D2 + · · ·

+C1D0 + C1D1 + · · ·
+C2D0 + · · ·

...

(C.30)

If you add up the columns displayed in (C.30) you will arrive at the terms
in the parentheses in equation (C.29).

If we now apply this result to eA and eB , each of which is represented by
an absolutely convergent series (take Ck = Ak/k! and Dk = Bk/k!), we get

eAeB =
∞∑

k=0

 k∑
p=0

1
p!(k − p)!

ApBk−p

 . (C.31)
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On the other hand, since A andB commute, we can use the binomial theorem
on expressions like (A+B)k, to arrive at the following:

eA+B =
∞∑

k=0

1
k!

(A+B)k

=
∞∑

k=0

1
k!

 k∑
p=0

k!
p!(k − p)!

ApBk−p

 (C.32)

= eAeB . (C.33)

This completes the proof of property (1). Parts (2),(3), and (4) are left for
the exercises.

C.6.1 Power Series with Matrix Coefficients

The last bit of matrix analysis we will need deals with power series of the
form:

∞∑
k=0

(t− t0)kCk = C0 + (t− t0)C1 + (t− t0)2C2 + (t− t0)3C3 + · · · , (C.34)

where the Ck’s are given n× n matrices. These matrices are the coefficients
of the power series, and the way we have written the power series (C.34)
may look a little strange, but that’s because it is traditional to write the
scalars (t− t0)k to the left of the matrices Ck.

It turns out that most all the techniques and results you studied in
connection with power series with real coefficients carry over to the matrix
coefficient case here. For example, given the coefficents: {Ck}∞k=0, and the
time t0, one can ask for what values t in (C.34) does the series converge ?
Of course the series converges for t = t0, but to determine if it converges for
other values of t, one usually applies some version of the root test. Specif-
ically (just as in the real coefficient case), let 0 ≤ R ≤ ∞ be the number
determined by:

R =
(

lim
k→∞

sup ‖Ck‖1/k
)−1

. (C.35)

The lim sup in (C.35) is rather technical, but coincides with the ordinary
limit when this latter limit exists. The number R (which can be 0 or ∞
depending on the series involved) is called the radius of convergence for the
power series (C.34). It is often difficult to compute R, sometimes because
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(C.35) is difficult to work with. It is a theorem that R can also be computed
from:

R =
(

lim
k→∞

‖Ck+1‖
‖Ck‖

)−1

,

provided the limit in the parentheses exists.
The importance of the radius of convergence is that it helps describe the

largest set of times t for which the power series converges. The next theorem
makes this more specific, and also makes precise the assertion that a power
series may be differentiated term by term. Before stating the theorem, we
need a definition of what is meant by the derivative of a matrix-valued
function.

Definition C.13 Suppose C is a matrix-valued function: C : I → Mn,
defined on an open interval I, given in terms of its entries by:

C(t) = {cij(t)} =

 c11(t) · · · c1n(t)
...

...
cn1(t) · · · cnn(t)

 . (C.36)

Then C is said to be differentiable on I, if each of the real-valued functions
cij is differentable on I, and when this is the case, the derivative of C at
t ∈ I is defined to be the matrix:

C ′(t) = {c′ij(t)} =

 c′11(t) · · · c′1n(t)
...

...
c′n1(t) · · · c′nn(t)

 . (C.37)

Theorem C.5 Let R be the radius of convergence of the matrix coefficent
power series:

∑∞
k=0(t − t0)kCk. If R = 0, then the series converges only

for t = t0. On the other hand, if R > 0, then for each t in the interval
I = (t0 −R, t0 +R), the series converges absolutely, and therefore converges
to a matrix C(t):

C(t) =
∞∑

k=0

(t− t0)kCk, (C.38)

thus defining a matrix-valued function C : I → Mn. The convergence the
series (C.38) to C is uniform on compact subsets of I. If t is outside the
interval [t0 − R, t0 + R], the series

∑∞
k=0(t − t0)kCk diverges. Nothing can

be said in general about whether the series converges or not when t is one of
the end points of I.
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Furthermore, the matrix-valued function C defined by formula (C.38) is
differentiable on I, with derivative given by:

C ′(t) =
∞∑

k=1

k(t− t0)k−1Ck. (C.39)

The power series in the formula (C.39) has the same radius of convergence
R as the original power series.

The following proposition shows that the product rule holds for deriva-
tives when considering the following types of products.

Proposition C.6 Suppose that A,B : I → Mn are differentiable matrix-
valued functions on I, and that γ → R

n is a differentiable curve in R
n. Then

the matrix-valued function: (AB)(t) ≡ A(t)B(t) and the curve: (Aγ)(t) ≡
A(t)γ(t), are differentiable on I, and the product rule holds:

(AB)′(t) = A′(t)B(t) +A(t)B′(t) (C.40)
(Aγ)′(t) = A′(t)γ(t) +A(t)γ′(t), (C.41)



Appendix D

Electronic Contents

The electronic component consists of folders which contain Maple worksheets
(*.mws files) that supplement and complement the text material. There is

For example, the DE-MapleV folder

6. Otherwise the files in each folder are identical. To conveniently use the

hyperlinks to all the other files.

Electronic Component Table of Contents

CDChapter 0: Readme First
CD0.0 How to Use the CD-ROM material (useofCD.mws)

CDChapter 1: Introduction
CD1.1 Plotting Plane Curves in R

2 (plcurves.mws)
CD1.2 Plotting Space Curves in R

3 (spcurves.mws)
2

3

n

CD1.7 Examples of Flows Plotted Dynamically (flows.mws)
CDChapter 2: Techniques, Concepts and Examples

CD2.1 Gradient Vector Fields (gradvecfields.mws)
CD2.2 Fixed Points – Examples 2.5, 2.6 from the Book (fixedpts.mws)
CD2.3 Limit Cycles – Example 2.7 from the Book (limitcycles.mws)

CDChapter 3: Existence and Uniqueness – The Flow Map
CD3.1 Picard Iteration (Picard.mws)
CD3.2 Introduction to Discrete Dynamical Systems (introDDSs.mws)
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CD1.5 Plotting Integral Curves for Systems of DEs in R (deguide1c.mws)
CD1.6 Code for Plotting Integral Curves Dynamically (dynamicDEplot.mws)

one folder for each release of Maple.

CD1.4 Plotting Integral Curves for Systems of DEs in R (deguide1b.mws)

files, start Maple and open the table of contents file, CDtoc.mws, which has

(deguide1a.mws)CD1.3 Plotting Integral Curves for Systems of DEs in R

is for users of Maple V Release 5 and the DE-Maple6 is for users of Maple
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CDChapter 4: Linear Systems
CD4.1 The Fundamental Matrix (fmatrix.mws)
CD4.2 Nonautonomous Linear Systems (non-auto-linear.mws)
CD4.3 The Matrix Exponential Function eA (matexpo.mws)
CD4.4 Plotting Linear Systems of DEs (linear-DEplots.mws)
CD4.5 Systems of Coupled Masses – Examples 4.1, 4.7 in the Book

(oscillate.mws)
CD4.6 Jordan Canonical Forms (jorforms.mws)
CD4.7 Linear Discrete Dynamical Systems (linearDDSs.mws)

CDChapter 5: Linearization and Transformation
CD5.1 Transforming Planar Systems (transformDE.mws)
CD5.2 Linearization and Transformation of Discrete Dynamical

Systems (linearizeDDS.mws)
CDChapter 6: Stability Theory

CD6.1 Stability of Fixed Points for Discrete Dynamical Systems
(stableDDS.mws)

CD6.2 Periodic Points of Discrete Dynamical Systems
(periodicpts.mws)

CDChapter 7: Integrable Systems
CD7.1 Integrable Systems in R

3 – Example 7.5 from the Book
(integrable3d.mws)

CD7.1 Integrable Systems in R
4 – Example 7.6 from the Book

(integrable4d.mws)
CDChapter 8: Newtonian Mechanics

CD8.1 Numerical Studies of 2 and 3 Body Systems
CD8.1a Two Bodies with Inverse Power Laws of Attraction

(gravity2.mws)
CD8.1b Two Bodies with Hooke’s Law of Attraction (hooke2.mws)
CD8.1c Three Bodies with Inverse Power Laws of Attraction

(gravity3.mws)
CD8.1d Three Bodies with Hooke’s Law of Attraction (hooke3.mws)

CD8.2 Calculating the Inertia Operator (inertia.mws)
CD8.3 Animating and Studying Rigid Body Motions (rigidbody.mws)

CDAppendix: Special Purpose Maple Procedures/Code
CDA.1 Stair Step Diagrams for DDSs (orbit1d.mws)
CDA.2 Orbits of Maps on the Plane (orbit2d.mws)
CDA.3 Stair Diagrams for Time Dependent DDSs (TDorbit1d.mws)
CDA.4 Orbits of Time Dependent Maps on the Plane (TDorbit2d.mws)
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