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PREFACE

This book is a complete and self-contained introduction into computational
fluid dynamics and heat transfer, commonly abbreviated as CFD. The text
addresses this subject on the very basic level suitable for a first course of
CFD taught to beginning graduate or senior undergraduate students. No
prior knowledge of CFD is assumed on the part of the reader.

To appreciate the purpose and flavor of the book, we have to consider
the major shift that currently occurs in the scope and character of CFD
applications. From being a primarily research discipline just 20 years
ago, CFD has transformed into a tool of everyday engineering practice. It
would be safe to say that, worldwide, tens of thousands of engineers are
directly employed to run CFD computations at companies or consulting
firms. Many others encounter CFD at some stages of their work.

Unlike solution of research problems, CFD analysis in industrial
environment does not, typically, involve development of new algorithms.
Instead, one of the general purpose codes is used. Such codes, nowadays,
tend to provide a fusion of all the necessary tools: equation solver,
mesh generator, turbulence and multiphysics models, and modules for
post-processing and parallel computations. Two key factors contribute
to the success in applying such codes: (1) Understanding of physical and
engineering aspects of the analyzed process; and (2) Ability to conduct
the CFD analysis properly, in a way that guarantees an accurate and
efficient solution.

I recognized the need for a new textbook when I was teaching the
graduate and senior undergraduate courses in CFD at the Department
of Mechanical Engineering of the University of Michigan–Dearborn.
The majority of our graduate students are either working engineers or
researchers in applied engineering fields. The undergraduate students
tend to pursue industrial employment after graduation. Potential future
exposure of our students to CFD is often limited to the use of general
purpose codes. To respond to their needs, the instruction is focused on

xv



xvi PREFACE

two areas: the fundamentals of the method (what we call the essential
CFD) and the correct way of conducting the analysis using readily
available software. A survey of the existing texts on CFD, although
revealing many excellent research-oriented texts, does not reveal a book
that fully corresponds to this concept.

A comment is in order regarding the bias of the text. All CFD texts
are, to some degree, biased in correspondence to the chosen audience
and research interests of the authors. More weight is given to some of
the methods (finite difference, finite element, spectral, etc.) and to some
of the fields of application (heat transfer, incompressible fluid dynamics,
or gas dynamics). The choices made in this book reflect the assumption
of mechanical, chemical, and civil engineering students as the target
audience rather than aerospace engineering students, and the intended
use of the text for applied CFD instruction. The focus is on the finite
difference and finite volume methods. The finite element and spectral
techniques are introduced only briefly. Also, somewhat more attention is
given to numerical methods for incompressible fluid dynamics and heat
transfer than for compressible flows.

The text can be used in combination with exercises in practical CFD
analysis. As an example, our course at the University of Michigan–
Dearborn is divided into two parts. The first part (about 60 percent of
the total course time) is reserved for classroom instruction of the basic
methods of CFD. It covers Part I, “Fundamentals,” and Part II, “Methods.”
It includes a simple programming project (solving a one-dimensional heat
or wave equation). The remainder of the course includes exercises with
a CFD software and parallel discussion of the topics of Part III, “Art of
CFD” dealing with turbulence modeling, computational grids, and rules of
good CFD practice. This part is conducted in a computer laboratory and
includes a project in which students perform a full-scale CFD analysis.

Acknowledgments: It is a pleasure to record my gratitude to many
people who made writing this book possible. This includes generations of
students at the University of Michigan–Dearborn, who suffered through
the first iterations of the text and provided priceless feedback. I wish
to thank friends and colleagues who read the manuscript and gave their
insightful and constructive suggestions: Thomas Boeck, Dmitry Krasnov,
Svetlana Poroseva, Tariq Shamim, Olga Shishkina, Sergey Smolentsev,
Axelle Viré, and Anatoly Vorobev. The first serious attempt to write the
book was undertaken during a sabbatical stay at the Ilmenau University
of Technology. I appreciate the hospitality of Andre Thess and support by
the German Science Foundation (DFG) that made this possible. Finally,
and above all, I would like to thank my wife, Elena, and my children,
Kirill and Sophia, for their understanding and support during the many
hours it took to complete this book.



1

WHAT IS CFD?

1.1 INTRODUCTION

We start with a definition:

CFD (computational fluid dynamics) is a set of numerical methods applied to obtain
approximate solutions of problems of fluid dynamics and heat transfer.

According to this definition, CFD is not a science by itself but a way to
apply the methods of one discipline (numerical analysis) to another (heat
and mass transfer). We will deal with details later. Right now, a brief
discussion is in order of why exactly we need CFD.

A distinctive feature of the science of fluid flow and heat and mass
transfer is the approach it takes toward description of physical processes.
Instead of bulk properties, such as momentum or angular momentum of
a body in mechanics or total energy or entropy of a system in thermody-
namics, the analysis focuses on distributed properties. We try to determine
entire fields such as temperature T (x , t) velocity v(x , t), density ρ(x , t),
etc.1 Even when an integral characteristic, such as the friction coefficient
or the net rate of heat transfer, is the ultimate goal of analysis, it is derived
from distributed fields.

The approach is very attractive by virtue of the level of details it pro-
vides. Evolution of the entire temperature distribution within a body can

1Throughout the book, we will use x = (x , y , z ) for the vector of space coordinate and t
for time.

1



2 WHAT IS CFD?

be determined. Internal processes of a fluid flow such as motion, rotation,
and deformation of minuscule fluid particles can be taken into account.
Of course, the opportunities come at a price, most notably in the form of
dramatically increased complexity of the governing equations. Except for
a few strongly simplified models, the equations for distributed properties
are partial differential equations , often nonlinear.

As an example of complexity, let us consider a seemingly simple task of
mixing and dissolving sugar in a cup of hot coffee. An innocent question
of how long or how many rotations of a spoon would it take to completely
dissolve the sugar leads to a very complex physical problem that includes
a possibly turbulent two-phase (coffee and sugar particles) flow with a
chemical reaction (dissolving). Heat transfer (within the cup and between
the cup and surroundings) may also be of importance because temperature
affects the rate of the reaction. No simple solution of the problem exists.
Of course, we can rely on the experience acquired after repeating the
process daily (perhaps more than once) for many years. We can also
add a couple of extra, possibly unnecessary, stirs. If, however, the task
in question is more serious—for example, optimizing an oil refinery or
designing a new aircraft—relying on everyday experience or excessive
effort is not an option. We must find a way to understand and predict the
process.

Generally, we can distinguish three approaches to solving fluid flow
and heat transfer problems:

1. Theoretical approach —using governing equations to find analytical
solutions

2. Experimental approach —staging a carefully designed experiment
using a model of the real object

3. Numerical approach —using computational procedures to find a
solution

Let’s look at these approaches in more detail.
Theoretical approach. The approach has a crucial advantage of provid-

ing exact solutions. Among the disadvantages, the most important is that
analytical solutions are only possible for a very limited class of problems,
typically formulated in an artificial, idealized way. One example is the
Poiseuille solution for a flow in an infinitely long pipe (see Figure 1.1).
The steady-state laminar velocity profile is

U (r) = r2 − R2

4μ

dp

dx
,
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x
r

U(r)

Figure 1.1 Laminar flow in an infinite pipe.

where U is the velocity, R is the pipe radius, dp/dx is the constant
pressure gradient that drives the flow, and μ is the dynamic viscosity of the
fluid. On the one hand, the solution is, indeed, simple and gives insight into
the nature of flows in pipes and ducts, so its inclusion into all textbooks of
fluid dynamics is not surprising. On the other hand, the solution is correct
only if the pipe is infinitely long,2 temperature is constant, and the fluid is
perfectly incompressible. Furthermore, even if we were able to build such
a pipe and find a useful application for it, the solution would be correct
only at Reynolds numbers Re = URρ/μ (ρ is the density of the fluid) that
are below approximately 2,000. Above this limit, the flow would assume
fully three-dimensional and time-dependent turbulent form, for which no
analytical solution is possible.

It can also be noted that derivation of analytical solutions often requires
substantial mathematical skills, which are not among the strongest traits
of many modern engineers and scientists, especially if compared to the
situation of 30 or 40 years ago. Several reasons can be named for the dete-
rioration of such skills, one, no doubt, being development of computers
and numerical methods, including the CFD.

Experimental approach. Well-known examples are the wind tunnel
experiments, which help to design and optimize the external shapes of
airplanes (also of ships, buildings, and other objects). Another example
is illustrated in Figure 1.2. The main disadvantages of the experimen-
tal approach are the technical difficulty (sometimes it takes several years
before an experiment is set up and all technical problems are resolved)
and high cost.

Numerical (computational) approach. Here, again, we employ our abil-
ity to describe almost any fluid flow and heat transfer process as a solution
of a set of partial differential equations. An approximation to this solution
is found in the result of a computational procedure. This approach is not
problem-free, either. We will discuss the problems throughout the book.

2In practice, the solution is considered to be a good approximation for laminar flows in
pipes at sufficiently large distance (dependent on the Reynolds number but, at least few
tens of diameters) from the entrance.
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Figure 1.2 The experiment for studying thermal convection at the Ilmenau
University of Technology, Germany (courtesy of A. Thess). Turbulent convection

similar to the convection observed in the atmosphere of Earth or Sun is simulated
by air motion within a large barrel with thermally insulated walls and uniformly

heated bottom.

The computational approach, however, beats the analytical and experi-
mental methods in some very important aspects: universality, flexibility,
accuracy, and cost.

1.2 BRIEF HISTORY OF CFD

The history of CFD is a fascinating subject, which, unfortunately, we
can only touch in passing. The idea to calculate approximate solutions of
differential equations describing fluid flows and heat transfer is relatively
old. It is definitely older than computers themselves. Development of
numerical methods for solving ordinary and partial differential equations
started in the first half of the twentieth century. The computations at
that time required use of tables and dull mechanical work of dozens,
if not hundreds, of people. No wonder that only the most important
(primarily military-related) problems were addressed and only simple,
one-dimensional equations were solved.

Invention and subsequent fast development of computers (see
Figure 1.3) opened a wonderful possibility of performing millions—and
then millions of millions—of arithmetic operations in a matter of
seconds. This caused a rapid growth of the efforts to develop and apply
methods of numerical simulations. Again, military applications, such as
modeling shock waves from an explosion or a flow past a hypersonic
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Figure 1.3 Development of high-performance computers. The speed measured as
the number of floating operations per second grows approximately tenfold every

five years.

jet aircraft were addressed first. In fact, development of faster and
bigger computers until 1980s was largely motivated by the demands of
military-related CFD. First simulations of realistic two-dimensional flows
were performed in the late 1960s, while three-dimensional flows could
not be seriously approached until the 1980s.

In the last 20 to 30 years, the computer revolution has changed the field
of CFD entirely. From a scientific discipline, in which researchers worked
on unique projects using specially developed codes, it has transformed
into an everyday tool of engineering design, optimization, and analysis .
The simulations are routinely used as a replacement of or addition to
prototyping and other design techniques. The problem-specific codes are
still developed for scientific purposes, but the engineering practice has
almost entirely switched to the use of commercial or open-source CFD
codes. The market is largely divided between a few major brands, such as
FLUENT, STAR-CD, CFX, OpenFOAM, and COMSOL. They differ in
appearance and capabilities but are all essentially the numerical solvers of
partial differential equations with attached physical and turbulence models,
as well as modules for grid generation and post-processing the results.
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1.3 OUTLINE OF THE BOOK

This book is intended as a brief but complete introduction into CFD.
The focus is not on development of algorithms but on the fundamental
principles, formulation of CFD problems, the most basic and common
computational techniques, and essentials of a good CFD analysis. The
book’s main task is to prepare the reader to make educated choices while
using one of the ready CFD codes. A reader seeking deeper and more
detailed understanding of specific computational methods is encouraged
to use more advanced and more specialized texts, references to some of
which are presented at the end of each chapter.

A comment is in order regarding the bias of the text. All CFD texts
are, to some degree, biased in correspondence with the chosen audience
and personal research interests of the authors. More weight is given
to some of the methods (finite difference, finite element, spectral, etc.)
and some of the fields of application (heat transfer, incompressible fluid
dynamics, or gas dynamics). The preferences made in this book reflect
the choice of mechanical, chemical, and civil engineers as the target
audience and the intended use for applied CFD instruction. The focus is
on the finite difference and finite volume methods. The finite element and
spectral techniques are introduced, but only briefly. Also, more attention
is given to numerical methods for incompressible fluid dynamics and
heat transfer than for compressible sub- and supersonic flows.

The book contains 13 chapters. We are already at the end of Chapter 1.
The remaining chapters are separated into three parts: “Fundamentals,”
“Methods,” and “Art of CFD.” Part I deals with the basic concepts of
numerical solution of partial differential equations. It starts with Chapter
2 introducing the equations we are most likely to solve: the governing
equations of fluid flows and heat transfer. We consider various forms
of the equations used in CFD and review common boundary conditions.
Necessary mathematical background and the concept of numerical approx-
imation are presented in Chapter 3. Chapter 4 discusses the basics of the
finite difference method. We also introduce the key concepts associated
with all CFD methods, such as the truncation error and consistency of
numerical approximation. The principles and main tools of the finite vol-
ume method are presented in Chapter 5. Chapter 6 is devoted to the
concept of stability of numerical time integration. Some popular and
important (both historically and didactically) schemes for one-dimensional
model equations are presented in Chapter 7. The material summarizes the
discussion of the fundamental concepts and can be used for a midterm
programming project.
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Part II, which includes Chapters 8 through 10, contains a compact
description of some of the most important and commonly used CFD tech-
niques. Methods of solution of systems of algebraic equations appearing
in the result of the CFD approximation are discussed in Chapter 8. Chapter
9 presents some schemes used for nonsteady heat conduction and com-
pressible flows. The discussion is deliberately brief for such voluminous
subjects. It is expected that a reader with particular interest in any of them
will refer to other, more specialized texts. Significantly more attention
is given to the methods developed for computation of flows of incom-
pressible fluids. Chapter 10 provides a relatively broad explanation of
the issues, presents the projection method, and introduces some popular
algorithms.

Part III consists of Chapters 11 to 13 and deals with subjects that
are not directly related to the numerical solution of partial differential
equations, but nevertheless are irreplaceable in practical CFD analysis.
They all belong to a somewhat imprecise science in the sense that the
approach is often decided on the basis of knowledge and experience rather
than exact knowledge alone. The subjects in question are the turbulence
modeling (Chapter 11), types and quality of computational grids (Chapter
12), and the complex of issues arising in the course of CFD analysis, such
as uncertainty and validation of results (Chapter 13). The discussion is, by
necessity, brief. A reader willing to acquire truly adequate understanding
of these difficult but fascinating topics should consult the books listed at
the end of each chapter.

REFERENCES AND SUGGESTED READING

http://www.top500.org/—Official Web site of the TOP500 project providing
reliable and detailed information on the world most powerful super-
computers.

http://www.cfd-online.com/—A rich source of information on CFD: books,
links, discussion forums, jobs, etc.
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2
GOVERNING EQUATIONS

OF FLUID DYNAMICS
AND HEAT TRANSFER

The methods of CFD can, at least in principle, be applied to any set of
partial differential equations. The main area of application, however, has
always been the solution of the equations describing processes of fluid
flow and heat transfer. This chapter provides a brief description of the
equations and can be skipped by a reader familiar with the matter. The
material is included for the sake of completeness and is not intended as
a replacement of the complete account found in comprehensive texts on
fluid dynamics. Several such texts are listed at the end of the chapter.

2.1 PRELIMINARY CONCEPTS

From the physical viewpoint, the equations describing fluid flows and heat
and mass transfer are simply versions of the conservation laws of classical
physics, namely:

• Conservation of chemical species (law of conservation of mass)
• Conservation of momentum (Newton’s second law of motion)
• Conservation of energy (first law of thermodynamics)

In some cases, additional equations are needed to account for other phe-
nomena, such as, for example, entropy transport (the second law of ther-
modynamics) or electromagnetic fields.

Our starting point is the concept of the continuous media (solid or
liquid) consisting of elementary volumes that are infinitesimal from the

11



12 GOVERNING EQUATIONS OF FLUID DYNAMICS AND HEAT TRANSFER

macroscopic viewpoint but sufficiently large in comparison with the typ-
ical distance between molecules so they can themselves be considered
as continua. In the case of a fluid flow, the elementary volumes, also
called fluid elements , move around, rotate, and deform under the action
of the forces acting in the flow and are defined as consisting of the same
molecules at all times.

The conservation laws must be satisfied by any such fluid element. This
can be mathematically expressed in two different ways. We can follow
the so-called Largangian approach, where the equations are formulated
directly in terms of properties of a given elementary volume moving
in space. This approach is rarely used in CFD. Much more common is
the Eulerian approach, in which the conservation principles applied to
an elementary volume are reformulated in terms of distributed properties
such as density ρ(x, t), temperature T (x, t), or velocity v(x, t) considered
as vector or scalar functions of space x and time t .

Our next step is to introduce the material derivative. Let us consider
an element moving with the velocity V(x , y , z , t) in the fluid with density
ρ(x , y , z , t) as shown in Figure 2.1 (any other scalar field can be used
instead of density without the loss of generality). The position vector
of the element in the Cartesian coordinate system varies with time as
R(t) = (x(t), y(t), z (t)).

Differentiation of ρ with respect to time gives the rate of change of
density within the element .

∂ρ

∂t
+ ∂ρ

∂x

dx(t)

dt
+ ∂ρ

∂y

dy(t)

dt
+ ∂ρ

∂z

dz (t)

dt
= ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
,

(2.1)
where we have identified the time derivatives of the components of the
position vector as the correspondent components of the local velocity
V = ui + vj + wk. The right-hand side of the equation bears the name of

R(t + dt)

z

x
y

R(t)
r (x,y,z,t)

Figure 2.1 Elementary volume of fluid (fluid element) moving
in a variable density field.
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the material derivative and has special notation

Dρ

Dt
≡ ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= ∂ρ

∂t
+ V · ∇ρ. (2.2)

Similarly, the rate of change of temperature is given by

DT/Dt ≡ ∂T/∂t + V · ∇T ,

while for the velocity component u we have

Du/Dt ≡ ∂u/∂t + V · ∇u.

The formulas clearly show that the rate of change of any distributed
property consists of two parts, one due to the time variation of the property
at a given location and another due to the motion of the element in a
spatially variable field of this property.

Another important concept is associated with the fact that, while the
mass of an element is conserved, its volume continuously changes as it
moves and transforms in the flow. It can be viewed as the change of
volume that occurs because the velocity field is space-dependent and so
the velocity values at opposite sides of the element are different. Let
us consider the two-dimensional situation illustrated in Figure 2.2. The
element has the sizes dx and L, volume δV = Ldx. The velocity field is
purely one-dimensional V = ui, but x -dependent with u = u(x). During
the time interval dt , the right-hand side boundary moves together with
fluid molecules by the distance u(x + dx)dt. The corresponding increase
of volume is Ldtu(x + dx). At the same time, the volume decreases by

L

x x + dx

u(x) u(x + dx)

u(x)dt u(x + dx)dt

Figure 2.2 Change of the volume of fluid element because
of spatial variability of velocity.
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Ldtu(x) due to the motion of the left-hand side boundary. The time rate
of volume change per unit volume is

1

δV
d(δV)

dt
= 1

Ldx
lim

dt→0

Lu(x + dx)dt − Lu(x)dt

dt

= (Lu(x + dx) − Lu(x))

Ldx
= u(x + dx) − u(x)

dx
.

Taking the limit of an infinitely small element dx → 0 we find

1

δV
d(δV)

dt
= du

dx
.

In the general case of a three-dimensional velocity field V = (U , V , W ),
this formula generalizes to

1

δV
d(δV)

dt
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= ∇ · V. (2.3)

2.2 MASS CONSERVATION

We are now prepared to write down the first of the governing equations of
the fluid motion. It expresses the law of conservation of mass. In a flow
with density ρ(x, t) and velocity V(x, t), we consider a fluid element of
volume δV. Since, according to the definition, the element consists of the
same molecules at all times, its mass δm = ρδV must remain constant:

d(ρδV)

dt
= δVDρ

Dt
+ ρ

d(δV)

dt
= 0.

Note that material derivative is used to represent the rate of change of
density within the fluid element. Dividing by δV and applying (2.3) we
obtain the continuity equation:

Dρ

Dt
+ ρ∇ · V = 0, (2.4)

which can be rewritten using (2.2) as

∂ρ

∂t
+ V · ∇ρ + ρ∇ · V = ∂ρ

∂t
+ ∇ · (ρV) = 0. (2.5)

In many flows, the compressibility of the fluid can be neglected (fluid
dynamics textbooks provide the exact criteria). If this is the case, we can
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assume that ρ = const and reduce (2.4) or (2.5) to the incompressibility
equation

∇ · V = 0. (2.6)

2.3 CONSERVATION OF CHEMICAL SPECIES

Let us now assume that the fluid is a composition of several chemical
species, which can transform into each other by chemical reactions. A
good example is the flow in a combustion chamber, where a mixture of a
hydrocarbon fuel and air is burned to produce exhaust gases and energy.
The law of conservation of mass still holds, of course, but the equations
(2.4) and (2.5) have to be modified to account for chemical reactions and
interspecies diffusion.

The diffusion is, to put it simply, a process of self-induced transport
of chemical species from the location where their relative concentration
is high to the location where the concentration is lower (see the books
listed at the end of the chapter for an appropriately detailed and rigorous
description). The transport is quantified by the vector field Ji (x, t) of the
flux of a species i , which denotes the direction and the rate of the mass
flux of the species per unit area at the point x. In the same manner as in
the derivation of (2.3) we can find that the rate of change by diffusion of
the mass content of species i in a fluid element of unit volume is ∇ · Ji .

The concentration of species can be expressed in terms of the mass
fraction mi (x, t), which is the ratio of the mass of species i to the total
mass of the mixture in the same small volume. Another possibility is to
use the concentration of species Ci = miρ defined as the mass of species
i per unit volume. The conservation law is

∂

∂t
(ρmi ) + ∇ · (ρmi V + Ji ) = Ri , (2.7)

where we introduced the source term Ri that accounts for the produc-
tion/consumption of the species by chemical reactions.

The next step is to apply the Fick’s law of diffusion, which is an
empirical relation shown in experiments to be valid when variations of
concentration are not very strong:

Ji = −�i∇mi . (2.8)

The conservation equation becomes

∂

∂t
(ρmi ) + ∇ · (ρmi V) = Ri + ∇ · (�i∇mi ). (2.9)
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If the Fick diffusion coefficients �i are approximated as constants, the
equation simplifies to

∂

∂t
(ρmi ) + ∇ · (ρmi V) = Ri + �i∇2mi . (2.10)

2.4 CONSERVATION OF MOMENTUM

The underlying physical principle is Newton’s second law, which states
that the rate of change of momentum of a body is equal to the net force
acting on it:

d

dt
(mV) = F. (2.11)

For a fluid element of unit volume moving within a flow, the left-hand
side of (2.11) is replaced by the material derivative

ρ
D

Dt
(V) = ρ

[
∂

∂t
(V) + (V · ∇)V

]
. (2.12)

In the Cartesian coordinates, (2.12) is

ρ
Du

Dt
= ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
ρ

Dv

Dt
= ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
(2.13)

ρ
Dw

Dt
= ρ

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
.

We can distinguish between two kinds of forces acting on a fluid ele-
ment:

1. Body forces . They act directly on the mass of the fluid and origi-
nate from a remote source. The examples are the gravity, electric
(Coulomb), magnetic, and Lorentz forces. Fictitious centrifugal and
Coriolis forces, which appear when the flow is described in a rotating
reference frame, also belong to this list. The total body force acting
on a fluid element is proportional to its mass. In the following, we
will assume that the body forces are lumped together into a net force
of strength f per unit mass, so that the force per unit volume is ρf.
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2. Surface forces . They are the pressure and friction forces acting
between neighboring fluid elements and between a fluid element
and an adjacent wall. It is shown in the fluid dynamics books that
the vector field of surface forces can be represented as divergence of
a symmetric 3 × 3 tensor called the stress tensor τ . Its component
τij can be seen as the i -component of the surface force acting on
a unit area surface, which is normal to the j -axis of the Cartesian
coordinate system. Here and in the rest of the book we assume that
the values 1, 2, and 3 of indices i and j correspond to the Cartesian
coordinates x , y , and z . The diagonal elements τii cause exten-
sion/contraction of the fluid element, while the off-diagonal elements
are responsible for its deformation by the shear (see Figure 2.3).

The Newton’s second law can be written for a fluid element of unit
volume as

ρ
Du

Dt
= ρfx + ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

ρ
Dv

Dt
= ρfy + ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
(2.14)

ρ
Dw

Dt
= ρfz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
.

The stress tensor can be separated into the isotropic pressure part, which
is always present, and the viscous (friction) part, which exists only in
flowing fluid and must be zero if the fluid is at rest:

τij = −pδij + σij, (2.15)

y

x

t11

t12

Figure 2.3 Illustration of normal (left) and shear (right) stresses
acting on a fluid element.
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where

δij =
{

1 if i = j
0 if i �= j

is the Kroneker delta-tensor.
For the equations to fully describe the flow, a model for the viscous

stresses σij has to be introduced. Newton was first to suggest that the
shear stress must be proportional to the velocity gradient. This was later
developed by Stokes into the linear model for the stress tensor:

σij = λδij(∇ · V) + μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.16)

where μ and λ are the first and second viscosity coefficients and we
used ui with i = 1, 2, 3 for the velocity components u, v, w. Note that
in an incompressible fluid with ∇ · V = 0, the term with the second
viscosity disappears. For compressible fluids, it is generally believed
that λ = −2

3μ is an accurate approximation except for interior of shock
waves in hypersonic flows and for absorption and attenuation of acoustic
waves.

The model (2.16) does not have a fully satisfactory theoretical justifica-
tion. It has, however, being validated in experiments and simply in every-
day practice of applying the resulting equations. The fluids whose behavior
satisfies the model are called Newtonian. There are non-Newtonian fluids
that behave quite differently (e.g., polymer melts and solutions, human
blood at high shear stress, etc.).

After substituting (2.16) into (2.14) and using the second viscosity
assumption we obtain the final form of the momentum conservation
equations, the Navier-Stokes equations:

ρ
Du

Dt
= ρfx − ∂p

∂x
+ ∂

∂x

[
μ

(
−2

3
∇ · V + 2

∂u

∂x

)]
+ ∂

∂y

[
μ

(
∂v

∂x
+ ∂u

∂y

)]
+ ∂

∂z

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
ρ

Dv

Dt
= ρfy − ∂p

∂y
+ ∂

∂y

[
μ

(
−2

3
∇ · V + 2

∂v

∂y

)]
(2.17)

+ ∂

∂x

[
μ

(
∂v

∂x
+ ∂u

∂y

)]
+ ∂

∂z

[
μ

(
∂w

∂y
+ ∂v

∂z

)]
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ρ
Dw

Dt
= ρfz − ∂p

∂z
+ ∂

∂z

[
μ

(
−2

3
∇ · V + 2

∂w

∂z

)]
+ ∂

∂x

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
+ ∂

∂y

[
μ

(
∂w

∂y
+ ∂v

∂z

)]
.

The equations can be written in a shorter form if we introduce the rate of
strain tensor with components

Sij ≡ 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.18)

and use the Einstein summation convention, according to which repeated
indices in a term imply summation over all their possible values (1, 2, 3
in our case):

ρ
Dui

Dt
= ρfi − ∂p

∂xi
+ ∂

∂xj

[
2μSij − 2

3
μ(∇ · V)δij

]
(2.19)

For the special case of an incompressible fluid with constant viscosity
coefficient μ, the Navier-Stokes equations become

ρ
DV
Dt

= −∇p + μ∇2V + ρf. (2.20)

Another special case is that of an inviscid fluid with μ = λ = 0, for
which the so-called Euler equations are valid:

ρ
DV
Dt

= −∇p + ρf. (2.21)

Of course, both (2.20) and (2.21) must be understood as idealizations,
strictly speaking, achievable only as asymptotic limits of flows with very
low compressibility and very small viscosity, respectively. This does not
prevent them from being widely used as approximations.

2.5 CONSERVATION OF ENERGY

The energy conservation principle can be formulated for a fluid element
in the manner similar to the mass and momentum conservation (see the
books listed at the end of the chapter for a derivation) as

ρ
De

Dt
= −∇ · q − p(∇ · V) + Q̇ , (2.22)
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where e(x , t) is the internal energy per unit mass, q(x , t) is the vector field
of the heat flux by thermal conduction, and Q̇ is the rate of internal heat
generation by the effects such as, for example, viscous friction or radiation.
The conduction heat flux can be described by the Fourier conduction law

q = −κ∇T , (2.23)

where T (x , t) is the temperature field and κ is the coefficient of thermal
conductivity.

The energy conservation equation can also be written in the enthalpy
form

ρ
Dh

Dt
= Dp

Dt
+ Q̇ − ∇ · q , (2.24)

where h = e + p/ρ is the specific enthalpy. Yet another possibility is the
equation for the total (internal plus mechanical) energy E

ρ
DE

Dt
= −∇ · q − ∇ · (pV) + Q̇ + ρf · V. (2.25)

The energy equation has more complex form if extra effects such as
exo- and endothermal chemical reactions, radiation heat transfer, or Joule
dissipation are explicitly shown in the right-hand side. In some cases, the
equation can be brought into much simpler form. This is, in particular,
true when the internal heat generation can be neglected and the fluid
can be considered incompressible (the Boussinesq approximation). For an
incompressible fluid or a solid, the specific internal energy is e = CT ,
where C = Cp = Cv is the specific heat. The energy equation becomes

ρC
DT

Dt
= −∇ · q . (2.26)

Substituting (2.23), we obtain the equation of convection heat transfer

ρC
DT

Dt
= ρC

(
∂T

∂t
+ V · ∇T

)
= ∇ · (κ∇T ) , (2.27)

which, in the case of a quiescent fluid or a solid and constant conduction
coefficient κ , reduces to the classical heat conduction equation

ρC
∂T

∂t
= κ∇2T . (2.28)



2.7 EQUATIONS IN INTEGRAL FORM 21

2.6 EQUATION OF STATE

To close the system of governing equations, we have to add an equation of
state, which connects the thermodynamic variables p, ρ, and T . We also
need an expression for the internal energy in terms of the thermodynamic
variables. The simplest and most widely used are the ideal gas model

p/ρ = RT , e = e(T ), (2.29)

and the model of incompressible fluid

ρ = const , e = CT , (2.30)

although many other models are possible and often necessary.
If the physical coefficients, such as viscosity μ or conductivity κ , are

not assumed constant, we have to include formulas giving values of these
coefficients as functions of temperature and other variables.

2.7 EQUATIONS IN INTEGRAL FORM

A different approach to the derivation of governing equations can be
taken, in which the conservation principles are applied not to a fluid
element moving with the flow but to a control volume fixed in space.
Instead of analyzing the effect of moving boundaries as, for example, in
Figure 2.2 we have, in this case, to take into account the fluid flow through
the boundaries of the element and the associated transport of conserved
quantities.

Let us start with the conservation of mass. The total mass of fluid
in a control volume 
 (see Figure 2.4) is M = ∫



ρd
. By virtue of

Ω

n

V

S

Figure 2.4 Control volume for derivation of equations in integral form.
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conservation of mass, M can only change because of transport of mass
into or out of the control volume by the flow. The correct term is the
flux of mass. We are only interested in the flux component normal to the
boundary S of 
, since the tangential component does not change the
mass inside 
. The magnitude of this component per unit time and unit
surface area is V · nρ, where n is the normal vector of unit length shown
in Figure 2.4. It is conventional to use an outward facing normal, so a
positive flux means mass flow out of the control volume. Integrating over
the boundary, we obtain the equation for the net mass balance

d

dt

∫



ρd
 +
∫

S
ρV · ndS = 0. (2.31)

This is the mass conservation equation in the integral form. It is important
to realize that the control volume 
 can be of arbitrary size and shape.
For example, it can be the entire flow domain or a small elementary cell
of a finite volume grid (see Chapter 5).

The integral equation of conservation of momentum is derived similarly
to (2.31). The fluxes are defined for the three momentum components as
ρuV, ρvV, and ρwV. Formulating the balance, we have to include the
body forces within the control volume 
 and the surface forces at the
surface S . The equations are

d

dt

∫



ρud
 +
∫

S
ρuV · ndS =

∫
S

t x · ndS +
∫




ρfx d


d

dt

∫



ρvd
 +
∫

S
ρvV · ndS =

∫
S

t y · ndS +
∫




ρfyd
 (2.32)

d

dt

∫



ρwd
 +
∫

S
ρwV · ndS =

∫
S

t z · ndS +
∫




ρfz d
,

where t x , t y , and t z are the vectors with the first, second, and third rows
of the stress tensor τij as components. The stresses should be expressed
through the velocity components. For the Navier-Stokes model (2.15),
(2.16), we obtain, for the i -component of momentum,

d

dt

∫



ρui d
 +
∫

S
ρui V · ndS

=
∫

S

⎡⎣(−p + λ∇ · V)ni +
∑

j

μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
nj

⎤⎦ dS +
∫




ρfi d
.

(2.33)
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For the energy balance, we remember that energy flow in or out of

 can be accomplished in two ways: by heat conduction and by motion
of matter through the boundary surface S . Accordingly, we consider the
normal conduction and convection fluxes q · n and ρEV · n at the bound-
ary. Taking into account the work by body and surface forces, the integral
analog of (2.25) is formulated as

d

dt

∫



ρEd
 +
∫

S
q · ndS +

∫
S

ρEV · ndS

=
∫

S
−pV · ndS +

∫



Q̇d
 +
∫




ρf · Vd
. (2.34)

When the fluid is incompressible and the energy generation by internal
sources is negligible, we obtain the integral analog of the equation of
convection heat transfer (2.27)

d

dt

∫



ρCTd
 +
∫

S
ρCT V · ndS =

∫
S

κ∇T · ndS . (2.35)

The integral equations (2.31)–(2.35) all have similar mathematical
structure, which reflects conceptual similarity of the physical processes
they describe. Each equation contains a term with time derivative of a
volume integral, which gives the rate of change of the amount of the con-
served quantity within the control volume. The rate of change is balanced
by several volume and surface integrals, each corresponding to a certain
factor responsible for the change. The integrals are of the following types:

• Convective flux integrals . The surface integrals that do not contain
derivatives of the conserved field. They represent the transport by the
velocity V through the boundary of the control volume. The examples
are

∫
S ρV · ndS in (2.31),

∫
S ρui V · ndS in (2.33), and

∫
S ρCT V ·

ndS in (2.35).
• Diffusive flux integrals . The surface integrals that contain first deriva-

tives of the conserved field. These integrals represent the transport
through the boundary by diffusion, heat conduction, or viscosity.
The derivatives are typically multiplied by the corresponding trans-
port coefficients. The example are

∫
S μ
(
∂ui/∂xj + ∂uj /∂xi

)
nj dS in

(2.33) and
∫

S κ∇T · ndS in (2.35).
• Volume source integrals . The volume integrals corresponding to dis-

tributed sources or sinks of the conserved quantity within the control
volume, such as

∫



ρfi d
 in (2.33) or
∫



Q̇d
 and
∫



ρf · Vd


in (2.34).
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• Surface force integrals . The surface integrals representing the work
by normal surface forces on the boundary of the control volume.
Only one example is present in our equations, the pressure term∫

S (−p)ndS in (2.33).

It is convenient for future use, especially for development of finite
volume schemes (see Chapter 5), to leave the pressure term for sepa-
rate consideration and combine the other three types in a formal integral
conservation equation for an arbitrary scalar field �:

d

dt

∫



�d
︸ ︷︷ ︸ +
∫

S
�V · ndS︸ ︷︷ ︸ =

∫
S

χ∇� · ndS︸ ︷︷ ︸ +
∫




Qd
.︸ ︷︷ ︸
Rate of change Convective flux Diffusive flux Volume source

(2.36)

2.8 EQUATIONS IN CONSERVATION FORM

Since the integral equations describe the same physical processes as the
differential governing equations such as (2.4), (2.14), and (2.25), they
have to be equivalent mathematically. Let us try to derive the differential
equations from the integral ones. We will do it for the formal conserva-
tion law (2.36). The procedure is very simple and consists of two steps.
First, we convert the surface integrals into volume integrals by using the
divergence theorem:∫

S
�V · ndS =

∫



∇ · (�V)d
,
∫

S
χ∇� · ndS =

∫



∇ · (χ∇�)d
,

(2.37)
which is true for any vector field (�V and χ∇� in our case) with continu-
ous first derivatives and any volume 
 with a piecewise smooth boundary
S . The equation (2.36) can be rewritten as∫




(∂�/∂t + ∇ · (�V) − ∇ · (χ∇�) − Q) d
 = 0.

We now remember that it is satisfied for an arbitrary volume 
, which is
only possible if the integrand itself is zero, which leads to

∂�

∂t
+ ∇ · (�V) = Q + ∇ · (χ∇�). (2.38)
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Similar procedures applied to the mass and momentum conservation
equations (2.31) and (2.32) result in

∂ρ

∂t
+ ∇ · (ρV) = 0, (2.39)

∂(ρu)

∂t
+ ∇ · (ρuV) = ρfx + ∂τxx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z

∂(ρv)

∂t
+ ∇ · (ρvV) = ρfy + ∂τxy

∂x
+ ∂τyy

∂y
+ ∂τzy

∂z
(2.40)

∂(ρw)

∂t
+ ∇ · (ρwV) = ρfz + ∂τxz

∂x
+ ∂τyz

∂y
+ ∂τzz

∂z
.

The integral equation for energy conservation (2.34) transforms into

∂(ρE )

∂t
+ ∇ · (ρEV) = −∇ · q − ∇ · (pV) + Q̇ + ρf · V. (2.41)

The equations (2.39)–(2.41) are in the conservation form also called
conservation-law form , conservative form , or divergence form. Their
defining property is that each term corresponds directly to a term of
the integral equation: the time derivative to the rate of change of the
conserved quantity in a fixed control volume, nonderivative terms to
the volume integrals of sources, and divergence terms to the surface
integrals of fluxes. The derivative terms have coefficients, which are
either constant or, if variable, not appearing elsewhere in the equations
under a derivative sign.

It can be easily shown that the equations in the conservation form
(2.39)–(2.41) are mathematically equivalent to the original equations
(2.4), (2.14), and (2.25). When, however, the equations are solved
numerically on a computational grid, the approximations are not
necessarily equivalent and the results of calculations can be different.

An important feature of the numerical schemes based on the approxi-
mation of the equations in their conservation form is that such schemes,
if properly arranged, conserve the quantities (mass, momentum, energy,
etc.) exactly and in the global sense, that is for the entire computational
domain.

2.9 EQUATIONS IN VECTOR FORM

It is sometimes convenient for development and analysis of computational
algorithms to present the governing equations in a compact vector form.
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We can easily do this for the equations in conservation form (2.39)–(2.41).
Let us introduce the vector fields

U =

⎡⎢⎢⎢⎢⎣
ρ

ρu
ρv

ρw

ρE

⎤⎥⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎢⎣
0

ρfx
ρfy
ρfz

Q̇ + ρ(f · V)

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
ρu

ρu2 + p − σxx

ρuv − σxy

ρuw − σxz

(ρE + p)u + qx

⎤⎥⎥⎥⎥⎦ ,

(2.42)

B =

⎡⎢⎢⎢⎣
ρv

ρuv − σxy

ρv2 + p − σyy
ρvw − σyz

(ρE + p)v + qy

⎤⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎣
ρw

ρuw − σxz
ρvw − σyz

ρw2 + p − σzz
(ρE + p)w + qz

⎤⎥⎥⎥⎦ . (2.43)

The system (2.39)–(2.41) abbreviates to

∂U
∂t

+ ∂A
∂x

+ ∂B
∂y

+ ∂C
∂z

= Q (2.44)

or, when the body forces and internal heat sources are negligible, to

∂U
∂t

+ ∂A
∂x

+ ∂B
∂y

+ ∂C
∂z

= 0. (2.45)

2.10 BOUNDARY CONDITIONS

In principle, one can say that all parts of the universe are connected to
each other by fluxes of heat and mass and, thus, must be included into a
good CFD solution. Since such an enterprise is hardly feasible, we have
to compromise and formulate CFD problems for finite domains limited
by boundaries . Such boundaries often appear naturally. For example, they
can follow rigid walls. Sometimes, however, the choice is, by necessity,
artificial. Several examples of such artificial boundaries are considered
in sections 2.10.2 and 2.10.3. In any case, a correctly formulated CFD
problem should include a set of proper boundary conditions for velocity,
temperature, and other variables.

The importance of setting appropriate boundary conditions should not
be underestimated. No correct CFD solution can be obtained without them.
In practical CFD, when one of the general purpose codes is used, setting
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Exit

Uv

Inlet

Figure 2.5 Example of a solution domain requiring boundary conditions at solid
walls, inlet, and exit.

the boundary conditions is one of the key “creative” acts performed by
the user.

The exact meaning and detailed discussion of appropriate boundary
conditions for particular problems and physical models can be found in
the books on fluid dynamics and heat transfer. Here, we give only a
brief review of the most common types using simple examples. In the
first example shown in Figure 2.5, a car is moving within a tunnel. The
task is to calculate the air flow and temperature distribution around the
car. The flow in the entire tunnel is impossible to simulate (the reasons of
which will be discussed throughout the book) so we use the computational
domain in the form of a tunnel segment extending few meters ahead and
behind the vehicle.1

2.10.1 Rigid Wall Boundary Conditions

At the rigid walls, the velocity boundary conditions are different for vis-
cous (μ �= 0) and inviscid (μ = 0) flows. For viscous flows, the no-slip
conditions are applied:

V = U wall at the wall. (2.46)

In our example, if we use a reference frame moving with the car, the
conditions are

V = 0 at the surface of the vehicle

V = −UV at the walls of the tunnel.

For inviscid flows, the impermeable wall conditions are applied, according
to which only the velocity component normal to the wall is required to

1The nature of this particular flow requires a rather short (few meters) distance before
the vehicle, while the distance behind it has to be larger if we want to analyze the wake
behind the car.
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match the corresponding component of the wall velocity. The tangential
component can slip:

V · n = U wall · n at the wall. (2.47)

We will assume that the normal n faces outward with respect to a fluid
element and into the wall.

For temperature, two asymptotic limits can be used. One is the condition
of known wall temperature Twall (imagine a wall in the form of a large
copper slab kept at this temperature):

T = Twall at the wall. (2.48)

Another is the condition of known normal heat flux into the wall qwall:

∂T

∂n
= ∇T · n = − 1

κ
qwall at the wall. (2.49)

The special case of the latter is a perfectly insulating wall:

∂T

∂n
= ∇T · n = 0 at the wall. (2.50)

The Newton’s cooling law can be used as a more realistic boundary con-
dition when neither of the two asymptotic limits is acceptable. The heat
flux is taken to be proportional to the difference between the temperatures
on two sides of the boundary:

qwall = h(T − Twall), (2.51)

where h is an empirical cooling constant.2 A combination of (2.49) and
(2.51) results in the boundary condition

κ∇T · n + h(T − Twall) = 0. (2.52)

For our example of a car in a tunnel, the tunnel walls can be assumed per-
fectly insulating (2.50) while (2.49) or (2.52) can be used for the vehicle
surface.

2A common problem with this approximation is that the coefficient h , which is determined
by properties of often turbulent thermal boundary layer, cannot be given a reliable and
accurate quantitative estimate.
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2.10.2 Inlet and Exit Boundary Conditions

If the computational domain has open boundaries, such as the inlet and
exit in our example, special boundary condition must be set at them. The
common choice for the inlet is to prescribe velocity and temperature:

V = U inlet, T = Tinlet, at the inlet. (2.53)

Parameters of turbulent fluctuations should also be prescribed if the flow
is turbulent (see Chapter 11).

At the exit, any boundary condition would be artificial since we arti-
ficially cut off a part of the flow generated in the car-tunnel system and
have no possibility to predict what happens there and how this can affect
the flow inside the computational domain. One commonly used approx-
imation is that of zero streamwise gradient (gradient in the direction of
the flow x )

∂V
∂x

= 0,
∂T

∂x
= 0, at the exit. (2.54)

2.10.3 Other Boundary Conditions

In many situations, we can make more or less plausible assumptions about
the nature of the solution before it is actually computed. This can help
to reduce the size of the computational domain, computational grid, and,
thus, the amount of computations. An illustration is given in Figure 2.6.
A flow in a circular pipe with a series of equidistant ringlike obstructions
is calculated. Two assumptions can be made, especially if our interest is
in the mean (average) state of a turbulent flow: that the flow is axially
symmetric and that its structure is periodic, repeating itself in every groove
between the obstructions.

Relying on the first assumption allows us to consider a two-dimensional
solution with all variables depending on the axial z and radial r coordi-
nates of the cylindrical coordinate system instead of the general three-
dimensional solution. The computational domain lies in the r-z plane and
is limited by the solid walls and the symmetry axis. Special boundary
conditions that guarantee regularity of solution have to be imposed at
r = 0. The engineering CFD codes usually provide such conditions as an
option.

The assumption of periodicity allows us to reduce the computational
domain in the axial direction. Since the flows in the grooves are identical,
only one of them needs to be computed. We can introduce periodic (cyclic)
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Walls

Periodic (cyclic)
boundaries

Symmetry axis
Flow z

r

z = z1 z = z2

Domain of
computations

Figure 2.6 Flow in a circular pipe with periodic obstructions as an example of
setting symmetry and cyclic boundary conditions.

boundaries as shown in Figure 2.6 and require that the solution variables
are reproduced on such boundaries periodically:

V(r , z1) = V(r , z2), T (r , z1) = T (r , z2). (2.55)

The geometry-based simplifying assumptions like those just illustrated
are useful. They allow us to reduce the size of the computational domain
and to consider two-dimensional flows instead of three-dimensional. As a
result, solutions can be obtained more accurately, on a finer computational
grid, and at lower computational cost. The assumptions should, however,
be used with caution. The actual flow structure does not necessarily follow
the symmetries suggested by the geometry. For example, hydrodynamic
instabilities and other effects would, in many cases, transform the flow in
Figure 2.6 into a three-dimensional and nonperiodic form.
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PROBLEMS

1. Write the formula for the material derivative of concentration C of
salt in a flow of salt solution. What does it represent?
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2. What is Newtonian fluid?
3. What are the models of incompressible fluid and ideal gas?
4. Verify that the Navier-Stokes equations (2.17) reduce to the equations

(2.20) in the case of a flow with constant density and viscosity.
5. Following the procedure described in section 2.8, derive the continuity

equation (2.5) from the integral mass conservation equation (2.31).
6. Verify that the Poiseuille solution for a laminar flow in an infinitely

long circular pipe discussed in Chapter 1 satisfies the mass and
momentum conservation equations for a steady flow of an incompre-
ssible Newtonian fluid. Refer to fluid dynamics books for the
equations expressed in cylindrical coordinates.

7. Define the computational domain and write the full system of
governing equations and boundary conditions for the following
situations. In all of them, consider a long straight duct with smooth
walls and uniformly distributed circular pipes crossing the duct in the
direction perpendicular to the duct axis and parallel to one set of walls:

a) There is a flow of air along the duct. Air can be assumed
incompressible and having constant temperature equal to the
temperature of the duct walls and pipes.

b) The same as in (a), but now temperature varies. The cylinders
are maintained at constant temperature Tc , which is significantly
higher than the air temperature Ti at the duct inlet. The duct
walls are thermally perfectly insulating. Air is still assumed
incompressible.

c) The duct is now filled with a solid material of density ρ, specific
heat C , and conductivity κ . Temperature of the cylinders is Tc
and the temperature of the walls is Tw.



3

PARTIAL DIFFERENTIAL
EQUATIONS

From the mathematical viewpoint, the equations of fluid flows and heat
transfer are partial differential equations (PDE). Before we actually start
solving them and see the difficulties, we need to consider their math-
ematical properties. The reason for that will be illustrated in this and
the following chapters. Certain properties of the equations have profound
effect on the behavior of solutions and, significantly for us, on the choice
of numerical method.

The full governing equations, such as (2.39)–(2.41), are complex. Exact
analytical solution can only be found in a few strongly simplified sit-
uations. It should not, therefore, be surprising that the analysis of the
mathematical issues and the initial development of numerical methods
are usually conducted for the simple model equations, for which ana-
lytical solutions are available, and which possess principal mathematical
properties of the original equations.

We will follow this approach and start by presenting model partial
differential equations for a scalar field u(x , t). These equations will be
used throughout the Part I of the book to illustrate the basic principles
of numerical methods. In this chapter, the model equations will help us
to present the elements of a well-posed PDE problem and to discuss
the mathematical classification of PDE, its consequences for the solution
properties, and relevance to fluid dynamics and heat transfer. At the end
of the chapter, we will introduce the concept of numerical discretization
of a PDE problem and review the main discretization techniques.

32
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3.1 MODEL EQUATIONS; FORMULATION OF A PDE PROBLEM

3.1.1 Model Equations

We begin with the list of all the model equations used in our discussion.

Heat Equation: The heat equation was derived in section 2.5. It
expresses the energy conservation principle in the case of conduction
heat transfer with constant physical properties and absent sources of
internal heat generation:

∂u

∂t
= a2∇2u, (3.1)

where u(x , t) is the temperature field and a2 = κ/ρC is the temperature
diffusivity coefficient. In fact, the same equation can be used to describe
many other processes, such as, for example, diffusion of an admixture in
a quiescent fluid or evolution of an initially sharp velocity gradient in a
viscous flow. In the one-dimensional case, the equation reduces to

∂u

∂t
= a2 ∂2u

∂x2
. (3.2)

Wave Equation: The wave equation

∂2u

∂t2
= a2∇2u (3.3)

describes wavelike phenomena such as sound propagation or oscillations
of a string or membrane. In the one-dimensional case, the equation is

∂2u

∂t2
= a2 ∂2u

∂x2
. (3.4)

Linear Convection Equation: Another, even simpler, equation can be
used as a representative of the equations with wavelike solutions. This is
the so-called linear convection equation

∂u

∂t
+ c

∂u

∂x
= 0, (3.5)

where c is a positive constant.
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Laplace and Poisson Equations: The Laplace equation

∇2u = 0 (3.6)

can be considered as a version of the heat equation (3.1) when ∂u/∂t = 0.
An important generalization is the Poisson equation

∇2u = f (x), (3.7)

where f is a known function of spatial coordinates. The simplest PDE
form of (3.7) is for the two-dimensional case u = u(x , y):

∂2u

∂x2
+ ∂2u

∂y2
= f (x , y). (3.8)

Burgers and Generic Transport Equations: The Burgers equation
is

∂u

∂t
+ u

∂u

∂x
= μ

∂2u

∂x2
, (3.9)

where u = u(x , t) and μ ≥ 0 is a constant coefficient. The equation was
suggested by J. M. Burgers in 1948 as a one-dimensional model for the
Navier-Stokes dynamics, and, presumably, for turbulence in fluid flows.
The terms of the equation can be considered as counterparts of unsteady,
convective, and viscous terms of the momentum conservation equation of
the Navier-Stokes system.

A modification of (3.9) often considered in the literature is the one-
dimensional generic transport equation:

∂φ

∂t
+ u

∂φ

∂x
= μ

∂2φ

∂x2
, (3.10)

where φ is a transported and diffused scalar field (e.g., temperature) and
u(x , t) is a known function acting as a velocity-like transporting agent.

It has become clear with time that turbulence is an essentially three-
dimensional phenomenon and cannot be modeled by (3.9). Similarly,
(3.10) is not a good model for the majority of heat and mass transfer
processes, which are either two- or three-dimensional. It has also become
clear that the equations (3.9) and (3.10) serve as excellent benchmarks for
development and testing of CFD methods.
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3.1.2 Domain, Boundary, and Initial Conditions

The main entity of the PDE analysis is not a separate equation but a
complete PDE problem consisting of an equation, domain of solution,
boundary and initial conditions. The problem has to be solved in a spatial
domain 
 and, in the case of time-dependency, in a time interval between
t0 and tend (see Figure 3.1). tend can be a finite number or infinity. Sim-
ilarly, the domain 
 may have a finite size or extend to infinity in one
or several directions. In numerical simulations, the infinite limits of the
spatial or time domain are replaced by sufficiently large finite numbers.

Boundary conditions have to be imposed at the boundaries of the spa-
tial domain ∂
. This is necessary not only to account for the effect of
real physical boundaries but also from a purely mathematical viewpoint.
Only a problem with properly set boundary conditions is well-posed (i.e.,
consistent and having a unique solution).

According to our discussion in Chapter 2, the physical boundary condi-
tions are usually expressed in terms of the boundary values of the unknown
field u or its normal derivative. Mathematically, the possibilities are: the
Dirichlet boundary condition:

u(x , t)|∂
 = g at t0 < t < tend, (3.11)

the Neumann boundary condition

∂u(x , t)

∂n

∣∣∣∣
∂


= g at t0 < t < tend, (3.12)

Ω
∂Ω

y

x

t

tend

t0

Figure 3.1 Solution domain.
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the Robin (mixed) boundary condition(
a1

∂u(x , t)

∂n
+ a2u(x , t)

)∣∣∣∣
∂


= g at t0 < t < tend, (3.13)

and the periodicity condition

u(x , t)|x0
= u(x , t)|x0+L at t0 < t < tend. (3.14)

In equations (3.11)–(3.14), g is a known function of space and time
defined at the boundary, and L is the length of periodicity, which we, as
an example, assume to be in the x -direction. It is mathematically allowed
and sometimes required by the physics that the boundary conditions of
different types are applied at different parts of the boundary.

If the domain 
 is infinite, special boundary conditions have to be
applied at infinity. For example, if the domain extends to ∞ in the
x -direction, the conditions may be

u → 0 or u → A = const or u is bounded at x → ∞.
(3.15)

In the problems where the solution is a function of time, initial condi-
tions have to be imposed at t = t0. Depending on the type of the equation,
one or two conditions are necessary. The most common situations are
when the solution itself is known:

u(x , t0) = h(x) in 
, (3.16)

and when its first time-derivative is known:

∂u

∂t
(x , t0) = f (x) in 
. (3.17)

Among our model equations, the heat equation (3.2), linear convection
equation (3.5), Burgers equation (3.9), and generic transport equation
(3.10) require the initial condition (3.16), while the wave equation (3.4)
needs both (3.16) and (3.17).

3.1.3 Equilibrium and Marching Problems

In principle, all fluid flow and heat transfer processes evolve with time.
From the practical viewpoint, it is, however, desirable to classify them into
two groups: equilibrium (time-independent) and transient (time-evolving).



3.1 MODEL EQUATIONS; FORMULATION OF A PDE PROBLEM 37

The classification is determined by the nature of the process and by
the purpose of the analysis. The equilibrium problems appear when our
interest is in a steady state of the system, where the properties do not
significantly change with time. For example, such a situation arises when
we want to know the air resistance coefficient of an airplane cruising
with constant speed and latitude or the temperature distribution within
a bioreactor operating in a steady-state mode. As an approximation, we
assume that the distributed properties are functions of space but not time
and replace the time derivatives in the governing equations by zeros.

In other cases, the evolution toward the equilibrium state is of interest or
the equilibrium state does not exist even as an approximation. Returning to
our examples, this would correspond to an airplane taking off or landing,
or to a change in the regime of operation of a bioreactor. Full transient
equations should be solved in such cases.

There are special situations in which the PDE problem is formulated as
transient even though the underlying physical process is steady-state. This
is done when the solution is known to evolve in one particular direction
in a timelike manner. The coordinate in this direction assumes the role of
a new time line. A prominent example of such behavior is the solution of
the approximate equations derived for steady-state boundary layer flows.
We will further discuss properties of such systems in section 3.2.3.

Among our model equations, the Laplace (3.6) and Poisson
(3.7) equations correspond to equilibrium problems, while the heat
equation (3.1), wave equation (3.3), linear convection equation (3.5),
Burgers equation (3.9), and generic transport equation (3.10) describe
transient evolution of time-dependent systems.

CFD can be applied to both kinds of processes, but different numerical
approaches are required. For equilibrium problems, the equation has to
be solved numerically only once to determine an approximation to the
time-independent solution u(x) in 
. For transient processes, the so-called
marching problems must be solved. Starting with initial conditions, which
give the state at t = t0, the solution is advanced or marched forward in
time to determine approximations to u(x , t) at t > t0.

3.1.4 Examples

Let us illustrate the formulation of PDE problems using simple examples.

One-dimensional Heat Equation: We invoke the classical example
and consider (3.2) as an equation describing the temperature distribution
in a thin long rod with thermally insulated sidewalls (see Figure 3.2).
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u(x,t)

L

t = 0

t = ∝

T1

T2

T = T2T = T1

Figure 3.2 Temperature distribution in an one-dimensional rod as an example of a
physical system described by the heat equation (3.2).

In this case, we disregard temperature variations across the rod and assume
that the temperature T is a function of the coordinate x and time t .

The solution domain consists of the space interval [0, x ] and the time
interval, which can be finite [t0, tend] or extended to infinity [t0, ∞). Differ-
ent kinds of boundary conditions are possible. The situation when the ends
of the rod are kept at constant temperature corresponds to the Dirichlet
boundary conditions

u(0, t) = a0, u(L, t) = a1 at t > t0. (3.18)

Constant heat flux at the ends is described by the Neumann boundary
conditions:

∂u

∂x
(0, t) = a0,

∂u

∂x
(L, t) = a1 at t > t0. (3.19)

Periodic boundary conditions are also possible:

u(0, t) = u(L, t) at t > t0. (3.20)

Initial temperature distribution u0(x) is used for the initial conditions:

u(x , t0) = u0(x) at 0 < x < L. (3.21)

The complete PDE problem is of marching type and includes the PDE
(3.2), the computational domain, one boundary condition, such as (3.18),
(3.19), or (3.20) on each end, and the initial condition (3.21).

Laplace Equation: The Laplace equation (3.6) can be obtained as an
equation that describes a steady-state temperature distribution in a domain

. For example, let us assume that we consider a heat transfer problem in
a body with fixed boundary temperature or fixed boundary heat flux and
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are not interested in transients. We only want to know the final equilibrium
distribution of temperature. Setting the time-derivative of temperature to
zero transforms (3.1) into (3.6). The boundary conditions can be u|∂
 = g
or ∂u/∂n|∂
 = g .

If internal heat sources are present within 
, their intensity being
defined by the function f (x), the final steady-state temperature distribution
is a solution of the Poisson equation (3.7).

Another situation described by the Laplace equation is the irrotational
flow, in which velocity is a gradient of a scalar potential V = ∇φ(x). If
the fluid is incompressible, the continuity equation becomes

∇ · V = ∇2φ = 0.

It should be stressed that, in this case, the Laplace equation does not
imply the steady-state character of the process. An important example of
a similar situation is the behavior of pressure in incompressible flows. As
discussed in Chapter 10, the pressure field satisfies a Poisson equation
with a time-dependent right-hand side.

Despite the fact that it can describe time-dependent behavior, the
Laplace or Poisson PDE problem is formally of equilibrium type. It
consists of the equation (3.6), domain 
, and one boundary condition
(Dirichlet or Neumann type) at each point of the boundary.

One-dimensional Wave Equation: As derived in the textbooks of
applied mathematics, the shape of a one-dimensional perfectly elastic
string is a solution of the one-dimensional wave equation (3.4). The string
motion is frictionless and limited to the x -y plane. The displacement from
the line y = 0 is defined as y = u(x , t) (see Figure 3.3). The solution
domain includes the space interval [0, L] and the time interval [t0, tend].
The boundary conditions at x = 0 and x = L can be, for example, those
of a fixed end

u(0, t) = u0 at t > t0,

or a freely moving end

∂u

∂x
(L, t) = 0 at t > t0.

The initial conditions must include both the shape and velocity of the
string at t = t0:

u(x , 0) = f (x),
∂u

∂t
(x , 0) = g(x) at 0 < x < L. (3.22)
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L

Figure 3.3 Oscillations of a one-dimensional elastic string described by the wave
equation (3.4).

The PDE problem is of transient type. A correct formulation includes
the equation (3.4), the solution domain, one boundary condition at each
boundary, and the two initial conditions (3.22).

3.2 MATHEMATICAL CLASSIFICATION OF PDE
OF SECOND ORDER

Partial differential equations of fluid dynamics and heat transfer belong
to the class of quasilinear PDE, which means that they are linear in their
highest-order derivatives, but perhaps not in other terms. Inspection of
the governing equations in Chapter 2 and of the model equations in the
previous section shows that this is, indeed, the case. The quasilinear PDE
can be classified into three types according to the existence and form of
their characteristics , the special lines in the solution domain. As usual,
we leave the exact definition and detailed discussion to specialized texts,
this time on the mathematical theory of PDE. One aspect is, however,
very important for us: The information in the solutions tends to propagate
along the characteristics if they exist. This has deep implications not only
for the mathematical properties of the solution but also for the choice of
numerical methods. To put it simply, different numerical methods must be
used for equations of different types .

3.2.1 Classification

The classification is applicable to a broad range of systems of quasilinear
PDE. For simplicity, we will limit the discussion to a single linear equation
of second order for a function of two variables φ(x , y). The most general
form of such an equation is

Aφxx + Bφxy + C φyy + Dφx + Eφy + Fφ = G , (3.23)
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where A, B , C , D , E , F , and G are known coefficients that can be either
constants or functions of x and y . Our choice of (3.23) is not as arbitrary
as it may seem. Many equations of fluid dynamics and heat transfer are
of the second order, for example, the Navier-Stokes equations (2.17) or
the heat transfer equation (2.27). Their highest-order derivatives have the
same general form as the highest-order derivatives of (3.23). The lower-
order terms are quite different, but, as we will learn imminently, they are
of little importance for the classification.

The characteristics of (3.23) can be defined as curves, on which the
second derivatives φxx , φyy , and φyy are not uniquely determined by the
other terms of the equation. It can be shown that, if a characteristic curve
y = y(x) exists, its slope is given by

h(x) = dy

dx
= B ± √

B2 − 4AC

2A
. (3.24)

The classification is based on this relation, more specifically, on the value
of B2 − 4AC . The characteristics at the point (x , y) can be of three pos-
sible forms:

1. B2 − 4AC > 0. There are two real characteristics intersecting at this
point. The equation is called hyperbolic.

2. B2 − 4AC = 0. There is one real characteristic. The equation is
called parabolic.

3. B2 − 4AC < 0. No real characteristics exist at this point. The
equation is called elliptic.

If A, B , and C are constants, the classification holds in the entire domain

. If A, B , or C are functions of x and y , the classification must be done
separately for each point (x , y). The equation may be of a different type
in different parts of 
.

Examples Let us determine the types of the model equations con-
sidered in the previous section. For the one-dimensional heat equation
(3.2), we replace t by y and obtain A = a2, B = 0, and C = 0, so
B2 − 4AC = 0 and the equation is parabolic. For the one-dimensional
wave equation (3.4), the same substitution gives A = a2, B = 0, and
C = −1, which gives B2 − 4AC = 4a2 > 0, so the equation is of
hyperbolic type. The two-dimensional Laplace and Poisson equations
(3.6) and (3.7) have A = 1, B = 0, C = 1, and B2 − 4AC = −4 < 0.
Both the equations are elliptic.
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The situations are more complicated for the remaining model equations.
The linear convection equation (3.5) is of the first order and does not
belong to our classification. Nevertheless, as discussed in section 3.2.2,
it has essential features of a hyperbolic system. The classification of the
Burgers equation (3.9) and the generic transport equation (3.10) depends
on the value of the coefficient μ. At μ> 0, the equations are parabolic.
If μ = 0, they look as variations of the linear convection equation, in
which the constant c is replaced by a variable, and can be considered
hyperbolic. We will discuss this matter further when we consider the
hyperbolic equations.

Classification can also be applied to systems of linear or quasilinear
PDE of the first order. The simplest example is the system

∂q
∂t

+ R
∂q
∂x

= 0, (3.25)

where q(x , t) is an unknown vector function and R(x , t) is a square matrix
of known coefficients. The system is classified as hyperbolic if all the
eigenvalues of R are real and distinct. The eigenvalues determine the
slopes of the characteristic curves. Another identifiable case is when all
the eigenvalues are complex. Such systems are called elliptic.

The classification of first-order systems plays an important role in gas
dynamics, acoustics, and other fields, where the governing equations are
expressed in the form of such systems. Further details can be found in
the books listed at the end of the chapter. Here, we only mention that
the two classifications produce identical results if they are applied to
mathematically identical cases. For example, the one-dimensional wave
equation (3.4) and the Laplace equation (3.6) can be rewritten as two-
equation systems (3.25). Analyzing the eigenvalues we find that the sys-
tems should be classified as hyperbolic and elliptic, respectively. This is
in full agreement with the classifications of the original PDEs of second
order.

3.2.2 Hyperbolic Equations

To illustrate typical properties of hyperbolic systems, we will analyze
solutions of the one-dimensional wave equation (3.4). From (3.24), we
find the slope of the characteristics as

h = dt

dx
= 0 ± √

0 + 4a2

2a2
= ± 1

a
.
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There are two families of characteristics: left-running x + at = const and
right-running x − at = const .

It can be shown that the general solution of (3.4) can be represented as

u(x , t) = F1(x + at) + F2(x − at), (3.26)

where F1 and F2 are functions determined by initial and boundary
conditions. If we ignore the effect of boundaries, the solution for the
specified initial conditions u(x , 0) = f (x), ∂t u(x , 0) = g(x) can be
written explicitly in the d’Alembert form

u(x , t) = f (x + at) + f (x − at)

2
+ 1

2a

∫ x+at

x−at
g(τ )dτ. (3.27)

The first part of the solution can be interpreted using the illustration in
Figure 3.4a. The initial perturbation of u(x , 0) = f (x) around the point
x0 (e.g., a localized deformation of a string) is split into halves, which
propagate without changing their shape along the characteristics x + at =
x0 and x − at = x0.

The second part of the solution (3.27) represents the response to the
initial perturbation of ‘velocity’ ∂t u. If, for example, the initial velocity
is a delta function g(x) = δ(x − x0), the solution evolves as illustrated in
Figure 3.4b. u(x , t) is a constant equal to 1/2a within the cone between the
left-running and right-running characteristics and zero outside this cone.

An important feature of the hyperbolic systems is illustrated by (3.27).
The perturbations propagate in space with a finite speed. Let us consider
the situation, when a source of perturbations suddenly appears at the time
moment t0 and space location x0 (point P in Figure 3.5). An observer
located at the distance L from the source will not notice the perturbations

x

t

x0

x − at = x0x + at = x0

u(x,t)

(b)

g(x)

x

t

x0

x − at = x0x + at = x0

f(x)

u(x,t)

(a)

Figure 3.4 D’Alembert solution (3.27) of the hyperbolic equation (3.4): (a) effect of
the initial perturbation of u; (b) effect of the initial perturbation of ∂tu.
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x − at = x0x + at = x0

x

t

t0
L

L/a

Observer
Domain

of dependence

Domain
of influence

P

x0

Figure 3.5 Characteristics and domains of influence and dependence of the
hyperbolic equation (3.4).

until the time t0 + L/a. In general, the state of the solution at the point P
only affects the solution within a cone between the left-running and right-
running characteristics intersecting at P. The cone is called the domain of
influence. Similarly, the solution at P itself is affected only by the solution
within the domain of dependence (see Figure 3.5).

The behavior described by hyperbolic equations and, thus, determined
by characteristics appears in many physical systems—for example, in
supersonic flows, propagation of acoustic and electromagnetic waves, and
flows in stratified systems such as waves on water surface of internal
waves in the ocean. All these processes involve wavelike motions along
the characteristics or discontinuities across them (e.g., shock waves in
supersonic flows). The Navier-Stokes equations have some features of a
hyperbolic system due to the presence of the nonlinear (material deriva-
tive) terms.

We now return to the linear convection equation (3.5) and explain why
it was classified as hyperbolic. It is easy to check by direct substitution
that the equation has the exact solution in the form of a wave propagating
along the right-running characteristic

u(x , t) = F (x − ct), (3.28)

where F is a function determined by the initial and boundary conditions.
In the case of zero diffusivity coefficient μ, the Burgers and generic

transport equations become

∂u

∂t
+ u

∂u

∂x
= 0 (3.29)
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and

∂φ

∂t
+ u

∂φ

∂x
= 0. (3.30)

Their only difference from the linear convection equation is that the con-
stant coefficient c is replaced by the unknown solution in the case of
(3.29) or by a variable coefficient in the case of (3.30). This does not
change the hyperbolic, characteristic-determined nature of the solution,
except that now the characteristics are not straight lines but curves in the
(x , t) space.

3.2.3 Parabolic Equations

The parabolic equations of second order have only one family of real
characteristics. For example, for the one-dimensional heat equation (3.1),
the slope is

h = dt

dx
= 0 ± √

0 + 0

2a2
= 0.

The characteristics are lines t = const (see Figure 3.6a). The perturba-
tion that occurs at the space location x0 and time moment t0 (point P in
Figure 3.6a) affects the solution in the entire space domain 0 < x < L,
although the effect becomes weaker with the distance to P. The domain of
influence of the point P includes the domain 0 < x < L and times t > t0.
Accordingly, the domain of dependence of P includes all points 0 < x < L
and all moments of time prior to the time of P.

In the physical systems described by parabolic equations, the perturba-
tions are usually propagated by diffusion. The interaction occurs at infinite

(b)

x

Domain
of influence

Characteristic

Py
of dependence

Domain

Boundary layer

Flow

x

t

t0
P

L

Domain
of dependence

Domain
of influence

Characteristic

x0

(a)

Figure 3.6 (a) Characteristics and domains of influence and dependence of the
parabolic equation (3.2); (b) Parabolic behavior of viscous boundary layer.
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speed but relaxes with distance. For example, in the problem of conduction
heat transfer in a one-dimensional rod, increase of temperature at a single
point is initially felt only slightly at other points (weaker signal for larger
distances). With time, however, the effect gradually becomes stronger and
the nonuniformity of the temperature field is diffused or smoothed out.

Similar diffusive processes occur in other physical systems. For
example, viscous terms in the Navier-Stokes equations (2.17) lead to
diffusion of gradients of the velocity field, thus giving the equations
parabolic properties. The nonlinear parts of the material derivatives and
the pressure effects can be neglected for some flows. The remaining
equations such as

∂u

∂t
= μ

ρ
∇2u

are of purely parabolic type.
Yet another example of the parabolic behavior is the steady-state vis-

cous boundary layers. The reduced Navier-stokes equations that describe
the flow within a boundary layer are of the parabolic type. The characteris-
tics are perpendicular to the wall, and the flow evolves along the boundary
layer similarly to the time evolution of solutions of other parabolic systems
(see Figure 3.6b).

3.2.4 Elliptic Equations

The elliptic equations do not have real characteristics at all. Effect of any
perturbation is felt immediately and to full degree in the entire domain of
solution. There are no limited domains of influence or dependence.

As opposite to the hyperbolic and parabolic systems that involve time
evolution (or evolution along a spatial direction as in the case of a bound-
ary layer flow) and have to be treated as marching problems in CFD, the
elliptic PDE problems are always of equilibrium type. The solution has
to be found at once in the entire domain 
.

Physically, the elliptic systems describe equilibrium distributions of
properties in spatial domains with boundary conditions. As examples, we
name the steady-state heat transfer, electrostatics, and irrotational fluid
flows. We will also learn in Chapter 10 that pressure field in incompress-
ible flows is a solution of an elliptic Poisson equation.

3.3 NUMERICAL DISCRETIZATION: DIFFERENT KINDS
OF CFD

In the rest of the book, we shall assume that the analytical solution of a
PDE is unavailable or cannot be used for some reason. The equation has
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to be solved numerically. This section introduces the key concept of the
numerical solution—the concept of discretization. We also briefly review
the main discretization techniques.

Discretization can be understood as replacement of an exact solution
of a PDE or a system of PDEs in a continuum domain by an approximate
numerical solution in a discrete domain. Instead of continuous distribu-
tions of solution variables we find a finite set of numerical values that
represent an approximation of the solution.

The discretization can be implemented in different ways. The majority
of the methods used in the computational fluid dynamics and heat transfer
follow one of the three general approaches: finite difference, finite element,
or spectral.

3.3.1 Spectral Methods

Conceptually, the spectral methods are similar to the technique of sepa-
ration of variables used to solve PDE analytically. The solution is repre-
sented by a series of linearly independent and, in many cases, orthogonal
functions (cos, sin, Bessel functions, orthogonal polynomials, etc.) with
unknown coefficients. The principal difference is that the series is infinite
in the analytical method, and we try to find the coefficients such that the
series converges to the exact solution of the PDE. In the numerical spec-
tral method, the series is finite and the coefficients are chosen so that they
minimize the error of approximation.

Let us consider a simple example. The modified one-dimensional heat
equation

∂u

∂t
= a2 ∂2u

∂x2
+ sin 5x (3.31)

is solved at 0 < x < π and 0 < t < T with the boundary conditions
u(0, t) = u(π , t) = 0 and initial conditions u(x , 0) = x(π − x). We will
use the Galerkin method, which is a version of the general spectral
approach. First, we have to find a set of orthogonal functions that sat-
isfies the boundary conditions (the so-called trial functions). An obvious
possibility is

sin x , sin 2x , sin 3x , . . .

The solution is sought in the form of a series of trial functions

ũ(x , t) =
N∑

n=1

An(t) sin nx , (3.32)
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where we use the notation ũ for the numerical approximation in order
to distinguish it from the exact solution u. The number of trial functions
N determines the accuracy of the solution. Substituting (3.32) into the
equation (3.31), we obtain the error of approximation

ε(x , t) = ∂ ũ

∂t
− a2 ∂2ũ

∂x2
− sin 5x = − sin 5x +

N∑
n=1

[
A′

n + (na)2An
]

sin nx .

(3.33)
In order to minimize ε, we require that its projection on the functional
subspace spanned by N orthogonal functions (the test functions) is zero.
In other words, we require that the inner product of the error with each
test function is zero:

〈ε, φm〉 =
∫ π

0
ε(x , t), φm(x)dx = 0, m = 1, . . . , N . (3.34)

In the Galerkin method, the same set of functions serves as a test and trial
set (different approach may be taken by other spectral methods). Using
the orthogonality∫ π

0
sin nx sin mxdx =

{
0 if m �= n
π/2 if m = n,

we obtain, from (3.33) and (3.34), a system of N ordinary differential
equations for An(t):

A′
n = −(na)2An + δ5n , n = 1, . . . , N . (3.35)

The initial conditions are found by multiplying each side of the expression
ũ(x , 0) = x(π − x) by sin nx and integrating from 0 to π . The results is

An(0) = 2

π

∫ π

0
x(π − x) sin nxdx = −4(cos(nπ) − 1)

πn3
, n = 1, . . . , N .

The system can be solved numerically using any of the methods devel-
oped for ordinary differential equations—for example, the Runge-Kutta
method.

The spectral methods have one strong advantage over the other numer-
ical methods. Their approximation error reduces quickly with increase of
the number of expansion terms N . Typically, a moderate number of trial
functions is sufficient to achieve good accuracy.

Naturally, there are also bad news. One of them is that the series such
as (3.32) can only be developed for multidimensional PDE if the solution
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domain has simple geometry, such as a rectangle, sphere, or cylinder.
This strongly limits the application of the method to practical engineering
problems, which typically have complex, three-dimensional geometry. On
the contrary, the fundamental research problems can often be simplified to
model geometries. It is, therefore, not surprising that the spectral methods
have found widespread use in the theoretical fluid mechanics, especially
in investigations of turbulence. We will show an example in section 11.2.

3.3.2 Finite Element Methods

The finite element methods are widely applied in many areas of
engineering—for example, in structural analysis and conduction heat
transfer. They are also used for simulating fluid flows, although not as
widely as the finite difference and finite volume methods. The basic
concept is similar to that of the spectral methods. The main difference is
that the decomposition (3.32) is done not in the entire solution domain
but within each of many small elements, into which the domain is
subdivided. A small number of trial functions is used. The functions are
chosen so that they are zero outside the element. Projecting the residuals
in a manner similar to the Galerkin procedure and performing summation
over all elements results in a system of ordinary differential equations
not unlike (3.35).

3.3.3 Finite Difference and Finite Volume Methods

The focus of this book is on the finite difference approach (which also
includes the finite volume methods in our classification). The discretiza-
tion is achieved by approximating the continuous solution at discrete grid
points and time layers of a computational grid .

The general strategy is summarized in Table 3.1 and illustrated in
Figure 3.7. The domain of solution 
 is covered by a grid of points with
coordinates (x , y , z )i , where the index i is used to number the points.
If a marching problem is solved, the time range [t0, tend] should also be
covered by discrete points (time layers) t n .

Our goal is to find the set of numbers un
i that approximates the exact

solution u(x , t) at points (x , y , z )i and layers t n . This is achieved by
approximating the original PDE using finite differences and solving the
resulting system of algebraic equations.

We will discuss in the following chapters how the finite difference grids
are designed and how the equations are approximated by finite difference
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Table 3.1 Relation between Elements of a Mathematical PDE
Problem and Its Finite Difference Approximation

PDE Problem Finite Difference Approximation

Partial differential equation System of algebraic discretization
equations

Exact analytical solution Approximate finite difference
solution

Domain 
 and time-interval [t0, t1] Computational grid—set of
points (x , y , z )i and time layers
t n

Exact solution—function
u(x , y , z , t)

Approximate solution—set of
values un

i approximating u at
(x , y , z )i and t n

Ω

∂Ω

y

x

t

tend

t0

(x,y)1

(x,y)1

(x,y)1

(x,y)N

(x,y)N

(x,y)N

(x,y)2

(x,y)2

(x,y)2

(x,y)3

(x,y)3

(x,y)3
t1

t2

tM

tM−1

t4

t3

Figure 3.7 Finite difference discretization of the solution domain.

formulas. For now, as a preliminary example, we consider the same PDE
problem as in the discussion of spectral methods in section 3.3.1:

∂u

∂t
= a2 ∂2u

∂x2
+ sin 5x , 0 ≤ x ≤ π , 0 < t < T ,

u(0, t) = u(π , t) = 0, u(x , 0) = x(π − x).
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x
L

tend

Δx xN−1 xNx0 x2x1

tM

t0

t1

t2

Δt

Figure 3.8 Computational grid used to solve the one-dimensional heat equation.

The computational grid is illustrated in Figure 3.8. It includes N + 1
equally spaced points xi = i�x with i = 0, 1, 2, . . . , N and �x = L/N ,
and M + 1 equally spaced time layers t n = n�t with n = 0, 1, 2, . . . , M
and �t = tend/M . Note that there is a grid point at each boundary x0 =
0 and xN = π and a time layer t0 = 0 at the initial moment of time.

The terms of the PDE can be approximated, for example, as

∂u

∂t

∣∣∣∣
xi ,tn

≈ un+1
i − un

i

�t
,

∂2u

∂x2

∣∣∣∣
xi ,tn

≈ un
i−1 − 2un

i + un
i+1

(�x)2
. (3.36)

The approximations (3.36) are substituted for the terms of the PDE at
every inner discretization point. The result is

un+1
i − un

i

�t
= a2 un

i−1 − 2un
i + un

i+1

(�x)2
+ sin 5xi (3.37)

for i = 1, 2, . . . , N − 1 and n = 1, 2, . . . , M − 1. The boundary and initial
conditions are approximated as

un
0 = 0, un

N = 0 at n = 1, 2, . . . , M , (3.38)

u0
i = xi (π − xi ) at i = 0, 1, . . . , N . (3.39)

(3.37)–(3.39) represent a system of linear algebraic equations. It is impor-
tant to realize that the equations are coupled with each other. For example,
the finite difference equations (3.37) written for the four adjacent points
(xi , t n−1), (xi , t n), (xi−1, t n), (xi+1, t n) have a common unknown un

i . The
boundary and initial conditions are coupled with the finite difference
equations at the internal points next to the boundary. The result of the
coupling is that, in general, all the finite difference equations have to be
solved simultaneously as an algebraic system. One of the tasks of CFD is
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to formulate such systems in a way that allows efficient solution. This is
easy in the case of (3.37)–(3.39). Regrouping the terms in (3.37) as

un+1
i = un

i + a2�t

(�x)2

(
un

i−1 − 2un
i + un

i+1

)
and using the boundary conditions (3.38), we can calculate all the values
un+1

i at the (n + 1)st layer, provided the values un
i at the nth layer have

already been found. We already have the values of u0
i at the zeroth time

layer from (3.39). Starting with it, we can advanced to the layer t1, then
t2, and so on in a marching procedure and solve the problem in no time.
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PROBLEMS

1. Formulate complete PDE problems (specify the equation, space
domain, time interval, boundary, and initial conditions) for the
following model situations:

a) Conduction heat transfer occurs in a thin rod of length L with
insulated side walls (see Figure 3.2). Temperature is initially
constant T (0) = T0. We are asked to find the temperature dis-
tribution in the time period 0 < t < t1, during which the left
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end of the rod is kept at the temperature T0, and the right end
is subject to cooling with the constant heat transfer rate q .

b) We are asked to find equilibrium temperature distribution in a
rectangular metal plate 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly . The boundaries
x = 0 and x = Lx are kept at constant temperatures T1 and T2.
The boundaries y = 0 and y = Ly are thermally insulated.

c) One-dimensional string stretched between the points (x , y) =
(0, 0) and (x , y) = (Lx , 0) oscillates elastically during the time
period 0 < t < t1 (see Figure 3.3). At the initial moment t = 0,
the deviation of the string from the horizontal and its velocity
are given by function f (x) and g(x), respectively.

2. What are the characteristics of a quasilinear equation of second order?
How are they determined?

3. Classify (determine the type of) the following PDEs of second order:

∂2u

∂x∂y
= 0

(x2 − 1)
∂2u

∂x2
+ 2

∂2u

∂y2
= 25(x3 − 1)

∂u

∂x

∂2u

∂t2
+ ∂2u

∂x2
+ ∂u

∂x
= cos(5t)

4. Transform the one-dimensional wave equation (3.4) into a system
of PDE of the first order (3.25). Find the eigenvalues of matrix R
and determine the type of the system. Does it agree with the type of
(3.4) as an equation of second order? Hint : Introduce new variables
v = ∂u/∂t and w = a∂u/∂x

5. Conduct the same analysis as in the previous problem, but for the
Poisson equation (3.8).

6. Define the domain of dependence and domain of influence of a point
P in a solution of a PDE? How are these domains determined for each
type of the PDE of second order?

7. Verify coupling of the linear algebraic equations of the system
(3.37)–(3.39) by writing the discretization formulas (3.37) for the
interior grid points (xi , t n), (xi+1, t n), and (xi , t n−1) and the points
(x0, t n) and (x1, t n) near the boundary.
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Programming Exercise Develop the algorithm for solution of the heat
equation problem (3.31) using the Galerkin spectral method. Use a = 0.5
and T = 50. Apply the Runge-Kutta scheme of the second order with
the time step �t = 0.02 to solve the ordinary differential equations for
the coefficients (3.35). Compute the solution 5, 10, 50, and 100 test and
trial functions. Compare the results. Analyze, how the amplitudes of the
coefficients An(t) change with n and t .



4
BASICS OF FINITE

DIFFERENCE
APPROXIMATION

The simple example at the end of the last chapter only illustrates the finite
difference method. There is much more to the method than a few simple
formulas. We begin a thorough discussion in this chapter. The goal is to
introduce the main concepts and answer the questions:

• How do we construct the finite difference schemes?
• How close is the numerical approximation to the exact solution?
• How can we reliably achieve desired accuracy of the approximation?

4.1 COMPUTATIONAL GRID

The first step toward a finite difference approximation is to cover the
solution domain together with its boundaries by a computational grid.

4.1.1 Time Discretization

The grid covering the time interval [t0, tend] of the solution consists of
time layers t n = t0 + n�t . They can be distributed uniformly that is with
constant time step �t , or nonuniformly , with varying �t . The second
approach is called the variable time step method and can be applied to
accelerate solution of marching problems by increasing �t , where pos-
sible. We stress the word possible since, as discussed in this and the
following chapters, there are upper limits on �t set by requirements of
accuracy and numerical stability.

55
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4.1.2 Space Discretization

If the space domain 
 is one-dimensional (an interval), the computational
grid is a one-dimensional set of points xi = x0 + i�x , with �x being
either constant (uniform grids) of a function of x (nonuniform, also called
clustered or stretched grids).

In the multidimensional case (
 is a two-dimensional or three-
dimensional domain), the choice is much richer. We review the main
options here, but postpone the thorough discussion until Chapter 12. One
can choose between structured and unstructured grids. In an unstructured
grid, the nodes are placed irregularly (as illustrated in Figure 3.7).
Such grids are never used with the classical finite difference methods
considered in this chapter. They, however, have become a powerful tool
of modern practical CFD analysis in combination with the finite volume
discretization, which we discuss in Chapter 5 and later in Chapter
12. The main advantage of the unstructured grids is their geometric
flexibility. Any geometric shape can be covered by the grid, with some
nodes placed exactly at the boundaries.

The structured grids have traditionally been used with finite differ-
ence discretization. They are simpler to work with than unstructured grids
and, thus, represent a better tool for developing numerical schemes and
for learning. In such grids, the nodes are placed at the intersections of
the lines of a coordinate system. The nodes of a structured grid do not
have to be numbered throughout by one index. Instead, two (in the two-
dimensional case) or three (in the three-dimensional case) indices can be
assigned to every node, so that each index represents the node’s location
along the corresponding coordinate. As an example, Figure 4.1 shows
two-dimensional structured grids built along the lines of a Cartesian and
a polar coordinate systems. The point A in Figure 4.1 numbered as (i , j )
has Cartesian coordinates (xi , yj ) or polar coordinates (θi , rj ). The point
immediately to the right of A, which has coordinates (xi + dx , yj ) in part
(a) of Figure 4.1, is marked by indices (i + 1, j ), etc.

A multidimensional structured grid can be uniform with constant grid
steps �x , �y , and �z or nonuniform (clustered), in which the grid steps
vary in space.

Throughout this chapter and in much of the following discussion, we
predominantly use uniform structured grids. The two-dimensional rectan-
gular Cartesian grid shown in Figure 4.1a is our favorite. The value of a
function u at point (xi , yj ) and time layer t n is written as

un
i , j ≈ u(xi , yj , t n), (4.1)
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i + 1, j

i + 1, j + 1i, j + 1i – 1, j + 1

(a)

A

Figure 4.1 Structured discretization grids built along the lines of Cartesian (a) and
polar (b) coordinate systems.

or, if time is not involved, as

ui , j = u(xi , yj ) (4.2)

4.2 FINITE DIFFERENCES AND INTERPOLATION

4.2.1 Approximation of ∂u/∂x

The concept of a finite difference approximation of a partial derivative is,
in fact, familiar to us from elementary calculus. The partial derivative of
a function u(x , y) with respect to x taken at the point (x0, y0) is defined
as

∂u

∂x

∣∣∣∣
x0,y0

≡ lim
�x→0

u(x0 + �x , y0) − u(x0, y0)

�x
. (4.3)

In a numerical solution, we do not have access to the function u(x , y)

itself. Only the approximate values of u at the grid points (xi , yj ) are
available. Let x0 = xi and y0 = yj . The closest available approximation
of (4.3) is

∂u

∂x

∣∣∣∣
i , j

≈ u(xi+1, yj ) − u(xi , yj )

�x
= ui+1, j − ui , j

�x
, (4.4)

which, of course, makes sense only if �x is “sufficiently small.”
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More rigorously, we have to prove that the expression in the right-
hand side of (4.4) approximates the partial derivative and to determine
the error of the approximation. This can be easily done using the Taylor
series expansion of u(x , y). We shall assume that the function is suffi-
ciently smooth, so the Taylor series converges, and use one-dimensional
expansion with respect to x at constant y

ui+1, j = ui , j +
(

∂u

∂x

)∣∣∣∣
i , j

�x +
(

∂2u

∂x2

)∣∣∣∣
i , j

(�x)2

2!
+
(

∂3u

∂x3

)∣∣∣∣
i , j

(�x)3

3!

+ · · · +
(

∂n−1u

∂xn−1

)∣∣∣∣
i , j

(�x)n−1

(n − 1)!
+
(

∂nu

∂xn

)∣∣∣∣
ζ ,j

(�x)n

n!
, (4.5)

where ζ is some point between xi and xi+1. We now rearrange the formula,
moving the term with the partial derivative ∂u/∂x into the left-hand side
and everything else into the right-hand side and dividing by �x :(

∂u

∂x

)∣∣∣∣
i , j

= ui+1, j − ui , j

�x
−
(

∂2u

∂x2

)∣∣∣∣
i , j

(�x)

2!

− · · · −
(

∂nu

∂xn

)∣∣∣∣
ζ ,j

(�x)n−1

n!
. (4.6)

The formula provides all the necessary information. We see that the
finite difference approximation (4.4) includes only the first term of the
expansion (4.6). All the other terms in the right-hand side are dropped.
The error of the approximation is the sum of these dropped terms. We
also see that the error decreases with decreasing �x and vanishes in the
limit �x → 0.

4.2.2 Truncation Error, Consistency, Order of Approximation

The formula (4.6) can be rewritten as(
∂u

∂x

)∣∣∣∣
i , j

= ui+1, j − ui , j

�x
+ T.E., (4.7)

where we used the notation T.E. for the truncation error of discretization
of a partial derivative. It contains the rest of the series dropped in the
finite difference approximation and, thus, shows the difference between
the exact expression (4.6) and the finite difference approximation (4.4).
The truncation error is a key characteristic of the accuracy of a finite
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difference scheme. Although it cannot be explicitly evaluated without
a-priori knowledge of function u, it provides vital information about how
fast the error of approximation decreases with decreasing grid step.

At this point, we need to review some facts of basic calculus. The
notation f = O(α) (f is of the order of α) means that f remains smaller
than Kα with some constant K as α → 0. In other words, f decreases
with α not slower than α itself.

In our case, the small parameter is �x . Each term of the truncation
error is of the order of a certain power of �x :(

∂2u

∂x2

)∣∣∣∣
i , j

(�x)

2!
= O(�x),

(
∂3u

∂x3

)∣∣∣∣
i , j

(�x)2

3!
= O((�x)2),

. . . ,

(
∂nu

∂xn

)∣∣∣∣
ζ

(�x)n−1

n!
= O((�x)n−1).

As �x decreases, the higher-order terms become negligible in comparison
with the first-order term, and the entire truncation error is evaluated as

T.E. = O(�x).

We can rewrite equation (4.6) again, this time as(
∂u

∂x

)∣∣∣∣
i , j

= ui+1, j − ui , j

�x
+ O(�x). (4.8)

We see that only the lowest-order term of the truncation error is important.
Its order is called the order of truncation error or the order of approx-
imation of the finite difference scheme. It defines how fast the error of
approximation decreases with the grid step.

Another important concept is that of consistency of a finite difference
approximation. It is obvious that the approximation makes sense only if
the truncation error vanishes at �x → 0; that is, if the scheme has, at least,
the first order of approximation. A scheme satisfying this requirement is
consistent .

One consideration should be taken into account in practical computa-
tions, where the limit �x → 0 is never attained. In addition to the order
of approximation and the size of grid step, the magnitude of the trunca-
tion error is determined by the amplitudes of derivatives ∂u/∂x , ∂2u/∂x2,
and so on. This means that the behavior of the approximated function is
a factor affecting the accuracy of the approximation. If the function has
strong gradients, the amplitudes of derivatives are large and the truncation
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v

u

∂u/∂x

∂v/∂x

xi–1 xi
x

u,v

Figure 4.2 Effect of strong gradients of function on truncation error. The finite
difference approximation (4.4) (slope of dashed line) accurately reproduces ∂v/∂x

but not ∂u/∂x.

error can be significant even when the consistency is satisfied and �x is
not particularly large.

A simple view on this phenomenon is illustrated in Figure 4.2. On the
same computational grid, the derivative of function u characterized by
strong variations over small distances is approximated with lower accu-
racy than the derivative of v. The figure also shows that the rather poorly
defined term small distances should be understood as “small in com-
parison with the grid step.” It is clear that accurate approximation of
derivatives requires a grid with steps smaller—desirably, several times
smaller—than the smallest distance on which the function experiences
significant variation.

4.2.3 Other Formulas for ∂u/∂x: Evaluation of the Order
of Approximation

The forward difference formula (4.4) is not the only possible approxima-
tion for ∂u/∂x . In fact, infinitely many approximations can be developed.
For example, we can use backward difference:

∂u

∂x

∣∣∣∣
i , j

≈ ui , j − ui−1, j

�x
(4.9)

or central difference:

∂u

∂x

∣∣∣∣
i , j

≈ ui+1, j − ui−1, j

2�x
. (4.10)

Each of the formulas has clear meaning as an approximation of the slope of
the curve u(x , y = const). It is obvious from the illustration in Figure 4.3
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x

u(x,y = const)

xi xi + 1

Exact

Forward difference

xi – 1

Central difference

Backward difference

Figure 4.3 Approximation of the partial derivative ∂u(x, y)/∂x by finite difference
formulas (4.4), (4.9), and (4.10).

that the approximations approach the exact value of the slope as �x → 0.
In some other cases, a graphic representation is insufficient. We need a
formal procedure that verifies that the finite difference formula is consis-
tent. We also have to determine the order of approximation. The best way
to do it is to apply the Taylor series expansions around the point (xi , yj )

at which the derivative is approximated. For example, we can substitute

ui−1, j = ui , j − ∂u

∂x

∣∣∣∣
i , j

�x + 1

2!

∂2u

∂x2

∣∣∣∣
i , j

(�x)2 + O((�x)3)

into (4.9) to obtain

∂u

∂x

∣∣∣∣
i , j

= ui , j − ui−1, j

�x
+ O(�x). (4.11)

Substitution of the same expression for ui−1, j and

ui+1, j = ui , j + ∂u

∂x

∣∣∣∣
i , j

�x + 1

2!

∂2u

∂x2

∣∣∣∣
i , j

(�x)2 + O((�x)3)

into (4.10) results in incidental cancelation of the first-order term (pro-
portional to (∂2u/∂x2)

∣∣
i , j ) and in the formula

∂u

∂x

∣∣∣∣
i , j

= ui+1, j − ui−1, j

2�x
+ O((�x)2). (4.12)

Let us see what we have. First, all three schemes—forward, backward,
and central differences—are consistent since the truncation errors vanish
as �x → 0. Second, the schemes have different orders of approximation:
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first order for the forward and backward differences (4.4) and (4.9) and
second order for the central difference (4.10). This is of fundamental
importance, since it shows that the T.E. of the central difference scheme
decreases faster with �x than the T.E. of the backward and forward
schemes. For example, if �x is reduced from 10−2 to 10−3, the error
decreases by a factor of 10 for a first-order approximation, but by a factor
of 100 for a second-order approximation. The exact evaluation of T.E.
is rarely possible, since the values of partial derivatives of u included in
the T.E. are normally a-priori unknown. We can, however, say that the
central difference scheme (4.10) inevitably becomes more accurate than
the forward and backward schemes (4.4) and (4.9) at sufficiently small
grid steps �x .

Two other finite difference formulas for the first derivative ∂u/∂x are

∂u

∂x

∣∣∣∣
i , j

= −3ui , j + 4ui+1, j − ui+2, j

2�x
+ O((�x)2) (4.13)

and

∂u

∂x

∣∣∣∣
i , j

= 3ui , j − 4ui−1, j + ui−2, j

2�x
+ O((�x)2). (4.14)

They are often used at the boundaries, where values of u on only one
side of the (i , j ) point are available, but the second order of accuracy is
desired.

4.2.4 Schemes of Higher Order for First Derivative

Schemes of the order higher than second are possible and, sometimes,
desirable. On the one hand, such schemes are accurate. On the other hand,
the discretization schemes based on higher-order approximations are more
difficult to program and may require larger amount of computations. They
also tend to have more stringent numerical stability requirements on the
time step (the numerical stability is discussed in Chapter 6).

As an example, the central fourth-order scheme is

∂u

∂x

∣∣∣∣
i , j

= −ui+2, j + 8ui+1, j − 8ui−1, j + ui−2, j

12�x
+ O((�x)4). (4.15)

A separate class of finite difference approximations is the so-called
Padé or compact schemes. In these schemes, the approximation of the
derivative at (i , j )-point is not explicitly expressed in terms of the values
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of u at neighboring nodes, but is found as a part of the solution of a
system of coupled linear algebraic equations. As an example, we give the
fourth-order scheme, where the values of ∂u/∂x at different grid points
are found as a solution of

1

3

∂u

∂x

∣∣∣∣
i+1, j

+ 4

3

∂u

∂x

∣∣∣∣
i , j

+ 1

3

∂u

∂x

∣∣∣∣
i−1, j

= ui+1, j − ui−1, j

�x
, i = 1, . . . , N .

(4.16)

4.2.5 Higher-Order Derivatives

Similarly to ∂u/∂x , numerous finite difference approximations exist for
the higher-order derivatives. The following examples are given for the
x -derivatives. The same formulas can be applied for the derivatives with
respect to y , z , and t after trivial substitution of, say, y and j for x and i .

Particularly important are the three-point forward, backward, and cen-
tral schemes for the second derivative:

∂2u

∂x2

∣∣∣∣
i , j

= ui , j − 2ui+1, j + ui+2, j

(�x)2
+ O(�x) (4.17)

∂2u

∂x2

∣∣∣∣
i , j

= ui , j − 2ui−1, j + ui−2, j

(�x)2
+ O(�x) (4.18)

∂2u

∂x2

∣∣∣∣
i , j

= ui−1, j − 2ui , j + ui+1, j

(�x)2
+ O((�x)2) (4.19)

Some other schemes are

∂2u

∂x2

∣∣∣∣
i , j

= −ui+3,j + 4ui+2, j − 5ui+1, j + 2ui , j

(�x)2
+ O((�x)2) (4.20)

∂3u

∂x3

∣∣∣∣
i , j

= ui+2, j − 2ui+1, j + 2ui−1, j − ui−2, j

2(�x)3
+ O((�x)2) (4.21)

∂4u

∂x4

∣∣∣∣
i , j

= ui+2, j − 4ui+1, j + 6ui , j − 4ui−1, j + ui−2, j

(�x)4
+ O((�x)2)

(4.22)

∂2u

∂x2

∣∣∣∣
i , j

= −ui+2, j + 16ui+1, j − 30ui , j + 16ui−1, j − ui−2, j

12(�x)2
+ O((�x)4).

(4.23)
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The consistency and the order of approximation of the schemes can be
verified in the same way as in the previous sections: by developing the
Taylor series expansions around (xi , yj ) and substituting them into the
right-hand sides of (4.17)–(4.23).

More complex finite difference formulas can often be considered as
results of repeated application of the elementary forward, backward,
and central schemes (4.4), (4.9), and (4.10). As an example, let us derive
the central difference approximation of the second derivative (4.19) from
the central scheme (4.10). Using the shorthand notation f = ∂u/∂x , we
write the second derivative as ∂2u/∂x2 = ∂/∂x (∂u/∂x) = ∂f /∂x , and
apply (4.10) to approximate ∂f /∂x at (xi , yj ). The formula is modified
a little. We use the step �x/2 instead of �x and the values of f at the
half-integer points xi−1/2 = xi − �x/2 and xi+1/2 = xi + �x/2. These
are fictitious grid points. As will be seen very soon, we do not need
values of u at them. The result is

∂2u

∂x2

∣∣∣∣
i , j

≈ fi+1/2, j − fi−1/2, j

�x
= (∂u/∂x)i+1/2, j − (∂u/∂x)i−1/2, j

�x
.

(4.24)
Derivatives ∂u/∂x can be again discretized using the central difference
formula (4.10) with half-step as

∂u

∂x

∣∣∣∣
i+1/2, j

≈ ui+1, j − ui , j

�x
,

∂u

∂x

∣∣∣∣
i−1/2, j

≈ ui , j − ui−1, j

�x
. (4.25)

Substitution into (4.24) gives the central difference formula (4.19), which,
as we see now, is a result of repeated use of (4.10).

4.2.6 Mixed Derivatives

The mixed derivatives can be approximated by applying the formu-
las already given, first in one direction and then in the other. For
example, let us approximate the mixed derivative ∂2u/∂x∂y on the
two-dimensional uniform structured grid shown in Figure 4.1a. We
rewrite it as ∂ (∂u/∂y) /∂x and approximate the x -derivative by the
forward difference (4.4):

∂

∂x

(
∂u

∂y

)∣∣∣∣
i , j

= (∂u/∂y) |i+1, j − (∂u/∂y) |i , j

�x
+ O(�x).
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Each y-derivative also has to be approximated. Let us apply the backward
difference (4.9):

∂u

∂y

∣∣∣∣
i+1, j

= ui+1, j − ui+1, j−1

�y
+ O(�y),

∂u

∂y

∣∣∣∣
i , j

= ui , j − ui , j−1

�y
+ O(�y).

Substituting into the previous expression we obtain

∂2u

∂x∂y

∣∣∣∣
i , j

= 1

�x

(
ui+1, j − ui+1, j−1

�y
− ui , j − ui , j−1

�y

)
+ O(�x , �y),

(4.26)
where O(�x , �y) stands for a combination of the truncation errors of the
orders of �x and �y . Other combinations of finite-difference formulas
lead to different approximations. For example, backward differentiation
in x and forward in y results in

∂2u

∂x∂y

∣∣∣∣
i , j

= 1

�x

(
ui , j+1 − ui , j

�y
− ui−1, j+1 − ui−1, j

�y

)
+ O(�x , �y),

(4.27)

while taking forward formula in x and central in y we obtain

∂2u

∂x∂y

∣∣∣∣
i , j

= 1

�x

(
ui+1, j+1 − ui+1, j−1

2�y
− ui , j+1 − ui , j−1

2�y

)
+ O(�x , (�y)2). (4.28)

At last, the approximation of the second order in both directions is gen-
erated if we use central differences in both x and y :

∂2u

∂x∂y

∣∣∣∣
i , j

= 1

2�x

(
ui+1, j+1 − ui+1, j−1

2�y
− ui−1, j+1 − ui−1, j−1

2�y

)
+ O((�x)2, (�y)2). (4.29)

Verification of these formulas requires two-dimensional Taylor series or
sequential application of Taylor expansion in the x - and y-directions. The
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accuracy of the approximation is determined by the terms of the lowest
order with respect to both �x and �y . The truncation error is, therefore,
expressed as a function of �x and �y , and the order of approximation is
defined as, for example, “first in x , second in y” for (4.28) or “second in
x and y” for (4.29).

4.2.7 Truncation Error of Linear Interpolation

In addition to the approximation of partial derivatives, development of
many finite difference and finite volume methods requires approximate
evaluation of variables at points that do not belong to the computational
grid. This is usually done using linear interpolation from neighboring grid
points. The operation introduces truncation error of the second order.

Let us prove the order of approximation for the one-dimensional
example, in which the function f (x) has to be estimated at the half-integer
point xi+1/2 = xi + �x/2. The proof can be easily generalized to the
case of arbitrary and even multidimensional interpolation.

The linear interpolation formula in our example is

fi+1/2 ≈ fi + fi+1

2
. (4.30)

We use the Taylor series expansions around the point (xi+1/2):

fi+1 = fi+1/2 + ∂f

∂x

∣∣∣∣
i+1/2

(
�x

2

)
+ 1

2!

∂2f

∂x2

∣∣∣∣
i+1/2

(
�x

2

)2

+ O
(
(�x)3) ,

fi = fi+1/2 − ∂f

∂x

∣∣∣∣
i+1/2

(
�x

2

)
+ 1

2!

∂2f

∂x2

∣∣∣∣
i+1/2

(
�x

2

)2

+ O
(
(�x)3) .

Adding the two formulas together, dividing by 2, and rearranging, we
obtain

fi+1/2 = fi + fi+1

2
− 1

2

∂2f

∂x2

∣∣∣∣
i+1/2

(
�x

2

)2

+ O
(
(�x)3) = fi + fi+1

2
+ O

(
(�x)2) . (4.31)
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4.3 APPROXIMATION OF PARTIAL DIFFERENTIAL
EQUATIONS

4.3.1 Approach and Examples

A finite difference representation of a PDE is obtained by replacing each
term of the equation by its finite difference approximation. It is imperative
that the approximations of all terms are derived at the same grid point and
the same time layer . Let us consider, as an example, the modified heat
equation

∂u

∂t
= a2 ∂2u

∂x2
+ f (x , t), (4.32)

and derive, in a more educated manner, the scheme introduced at the end
of Chapter 3.

The scheme is developed on a uniform grid with steps �x and �t (see
Figure 3.8). We write the approximation at the point xi and time layer t n .
A forward difference of the first order is used for the time derivative:

∂u

∂t

∣∣∣∣n
i

= un+1
i − un

i

�t
+ O(�t).

The central difference of the second order is used for the x -derivative:

∂2u

∂x2

∣∣∣∣n
i

= un
i+1 − 2un

i + un
i−1

(�x)2
+ O((�x)2).

The nonderivative term in the right-hand side is represented by its value at
the discretization point as f n

i = f (xi , t n). Substitution into the PDE yields

un+1
i − un

i

�t
+ O(�t) = a2 un

i+1 − 2un
i + un

i−1

(�x)2
+ O((�x)2) + f (xi , t n),

or
un+1

i − un
i

�t
= a2 un

i+1 − 2un
i + un

i−1

(�x)2
+ f (xi , t n) + T.E., (4.33)

where the truncation error is a combination of the truncated terms in
formulas for ∂u/∂t and ∂2u/∂x2:

T.E. = O(�t) + O((�x)2) = O(�t , (�x)2). (4.34)
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This is the truncation error of discretization of a partial differential
equation. Its order, which is also called the order of the finite difference
scheme is defined by the lowest order truncated terms with respect to �t
and �x . As seen in (4.34), the forward in time, central in space scheme
for the heat equation is of the first order in time and second order in
space.

The finite difference schemes are often illustrated by the difference
molecules . This is particularly convenient for describing the schemes
applied to model equations, such as the heat equation, with only two inde-
pendent variables, for example, x and t . A difference molecule shows all
the grid points that are involved into the finite difference approximation of
the equation at the point (xi , t n). The difference molecule for the scheme
(4.33) is shown in Figure 4.4a.

The next example shows how to discretize a PDE with variable coef-
ficients. We consider one-dimensional heat transfer with variable thermal
conductivity κ(x). The PDE is derived from (2.27) by setting the velocity
V to zero and assuming that the temperature field T depends only on x
and t :

ρC
∂T

∂t
= ∂

∂x

(
κ

∂T

∂x

)
. (4.35)

The new issue is how to correctly approximate the spatial derivative term
in the right-hand side. The finite difference formula approximating the
external derivative should be written for the entire expression under the
derivative, including the variable coefficient κ(x). Let us, for example,
derive a scheme of the second order in x and first order in t based on the
difference molecule shown in Figure 4.4a. We apply the procedure similar
to the derivation of the central difference formula (4.19) for the second

t n+1

xxi xi+1

t n

tn−1

t

xi−1(a)

t n+1

xxi xi+1

t n

t n−1

t

xi−1(b)

Figure 4.4 (a) Difference molecule for the scheme (4.33) for heat equation.
(b) Difference molecule for the upwind scheme (4.41) for linear convection equation.
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derivative ∂2u/∂x2 by repeated application of the approximation (4.10)
of the first derivative (see (4.24) and (4.25)). The external derivative is
approximated at (xi , t n) using the values at the half-integer grid points
xi−1/2 = xi − �x/2 and xi+1/2 = xi + �x/2:

∂

∂x

(
κ

∂T

∂x

)∣∣∣∣n
i

= κi+1/2(∂u/∂x)i+1/2 − κi−1/2(∂u/∂x)i−1/2

�x
, (4.36)

where κi±1/2 stands for the values of κ(x) at xi±1/2. We now approximate
∂u/∂x at (xi±1/2, t n) by the central differences to obtain

∂

∂x

(
κ

∂T

∂x

)∣∣∣∣n
i

= 1

�x

[
κi+1/2

un
i+1 − un

i

�x
− κi−1/2

un
i − un

i−1

�x

]
. (4.37)

If κ is a known function of x , its values at the half-integer points can be
calculated directly. If not, for example when κ depends on the solution u
(conductivity coefficient varies with temperature), only the integer-point
values of κ are available. In this case, we have to apply the linear inter-
polations

κi−1/2 ≈ κi + κi−1

2
, κi+1/2 ≈ κi + κi+1

2
. (4.38)

This operation is of the second order of accuracy and, thus, the accuracy
of the entire scheme is not compromised.

For the time derivative, we use the same forward scheme of the first
order as before. The final finite difference approximation of the PDE is

(ρC )n
i

un+1
i − un

i

�t
= 1

�x

[
(κi+1 + κi )(un

i+1 − un
i )

2�x

−(κi−1 + κi )(un
i − un

i−1)

2�x

]
. (4.39)

The truncation error is of the first order in t and second order in x .
The last example is the approximation of the linear convection equation

∂u

∂t
+ c

∂u

∂x
= 0, (4.40)
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where c > 0 is a constant. We approximate the equation at the grid point
(xi , t n) and apply the forward difference for the time derivative and back-
ward difference for the x -derivative. The result is the upwind scheme:

un+1
i − un

i

�t
+ c

un
i − un

i−1

�x
= 0. (4.41)

Both finite difference approximations of the derivatives are of the first
order. The truncation error of discretization of the equation is, therefore,
O(�t , dx). The difference molecule for the upwind scheme is shown in
Figure 4.4b.

4.3.2 Interpretation of Truncation Error: Numerical Dissipation
and Dispersion

The consistency and the order of the truncation error are the main char-
acteristics of a finite difference approximation. Further information about
the truncation error and its possible effect on the solution can be obtained
from the modified equation as is briefly discussed here using the example
of the upwind scheme (4.41). A more detailed discussion can be found in
the books listed at end of this chapter.

To interpret the truncation error, we substitute the Taylor series expan-
sions

un+1
i = un

i +
(

∂u

∂t

)∣∣∣∣n
i , j

�t +
(

∂2u

∂t2

)∣∣∣∣n
i , j

(�t)2

2
+ · · ·

un
i−1 = un

i −
(

∂u

∂x

)∣∣∣∣n
i , j

�x +
(

∂2u

∂x2

)∣∣∣∣n
i , j

(�x)2

2
+ · · ·

into (4.41). After rearranging, we obtain

ut + cux = −�t

2
utt + c�x

2
uxx − (�t)2

6
uttt − c

(�x)2

6
uxxx + · · · ,

(4.42)
where we use the abbreviations ut , ux , and so on for the partial derivatives
of u taken at the grid point (xi , t n). The equation (4.42) is quite remark-
able. The left-hand side is the original PDE and, thus, would be equal
to zero, if u were the exact solution of the original PDE. Since u is an
extension of the finite difference solution, it satisfies not the original PDE
but the modified equation (4.42). The nonzero right-hand side of (4.42)
represents the truncation error.
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The composition and behavior of the truncation error can be better
understood if we replace the time derivatives utt and uttt by spatial deriva-
tives. It can be done by differentiating (4.42) with respect to x and t and
performing algebraic operations with the resulting equations. The final
equation is

ut + cux = c�x

2
(1 − ν)uxx − c

(�x)2

6
(2ν2 − 3ν + 1)uxxx

+ O((�x)3, (�x)2�t , �x(�t)2, (�t)3), (4.43)

where ν = c�t/dx .
Let us analyze the right-hand side of (4.43). The lowest-order term

(c�x/2)(1 − ν)uxx looks familiar. The second spatial derivative multi-
plied by a constant can be found in the right-hand sides of heat, diffusion,
or Navier-Stokes equations. On all occasions, it represents the physical
processes of diffusion or dissipation—that is, smoothing of gradients of
the solution. In our case, the diffusion has numerical rather than physical
character. The commonly used name is numerical dissipation. The con-
stant coefficient at uxx is called numerical viscosity or artificial viscosity .

The effect of numerical dissipation is illustrated in Figure 4.5. Let the
initial condition for the linear convection equation (4.40) has the form of
a sharp front, as in Figure 4.5a. The exact solution of the PDE retains
the shape and travels to the right with the constant speed c. Due to the
presence of numerical dissipation, the computed solution does not behave
in this manner. The front is gradually smoothed out and takes the form
illustrated in Figure 4.5b.

(a)
x

u(x,t)

Exact With dispersion

x

u(x,t)

(c)

With dissipation

x

u(x,t)

(b)

Figure 4.5 Effect of numerical dissipation and dispersion on wavelike solutions:
(a) exact solution, (b) numerical solution with strong dissipation, (c) numerical

solution with strong dispersion.
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Another type of truncation error is associated with the second term
c((�x)2/6)(2ν2 − 3ν + 1)uxxx in the right-hand side of (4.43). It can also
be identified as an artificial pseudo-physical effect. A third-order spatial
derivative is known to lead to dispersion, which is the phenomenon of
dependence of the wave speed on the wavelength. The exact solution of
a PDE, such as, for example, the solution shown in Figure 4.5a, can
be represented as a superposition of Fourier harmonics with different
wavelengths λ. The presence of the dispersion term in (4.43) makes them
propagate with different speeds rather than with the common speed c.
With time, the harmonics separate in phase and form a solution illustrated
in Figure 4.5c. The dispersion, when it is caused by the truncation error,
is called numerical dispersion .

The numerical dissipation and dispersion are common in finite differ-
ence solutions. Generally, any term with an even-order space derivative
in the right-hand side of the modified equation creates numerical dissipa-
tion, while any term with an odd-order space derivative creates numerical
dispersion. Of course, only the terms of the lowest order in �x and
�t are important. For example, the truncation error of the first-order
scheme (4.41) is clearly dominated by the numerical dissipation term
c�x(1 − ν)uxx/2. Such schemes are called predominantly dissipative, or
simply dissipative. We should expect the behavior illustrated in Figure
4.5b, rather than Figure 4.5c. Other schemes, some of which are discussed
in the following chapters, have the lowest-order term of T.E. proportional
to the odd derivative. They are predominantly dispersive or dispersive.

We have discussed the modified equation and numerical dissipation
and dispersion on the example of a hyperbolic equation. The analysis can
also be applied to parabolic systems. This can sometimes produce quite
interesting results (one example is given in Chapter 7 in the discussion of
the simple explicit method for the heat equation). In general, however, the
composition of the truncation error is less important for parabolic system
than for hyperbolic ones.

The reason is the different nature of the physical phenomena repre-
sented by parabolic and hyperbolic equations. The hyperbolic equations
often describe wave propagation in media with low natural dissipation
and diffusion. Good examples are the supersonic aerodynamic or acous-
tic flows. Viscosity and heat diffusivity do not play important roles in
these phenomena, except within the boundary layers and shock waves
in high-speed flows. Therefore, the waves propagate in an almost ideal,
nonviscous and nondiffusive manner. For such waves, the numerical dis-
persion and dissipation, if left unchecked, can result in strongly distorted
solutions. Obviously, evaluation and control of both dispersive and dissi-
pative errors are not just desirable but necessary.
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In the systems described by parabolic equations, strong natural dissi-
pation is typically present as a part of the described physical process.
In general, schemes of second or higher orders in space are used for
parabolic equations. For such schemes, assuming that the grid steps are
sufficiently small to accurately resolve the space and time gradients of the
solution, the physical diffusion is likely to dominate over the numerical
diffusion. The dispersive errors are either small or avoided completely by
the schemes used for parabolic equations.

4.3.3 Boundary and Initial Conditions

The finite difference approximation of the PDE is applied only at internal
grid points of the computational domain. At the grid points lying at the
boundaries, the scheme should approximate the boundary and initial con-
ditions. Usual finite difference formulas can be employed with the obvious
limitation that they can only use the values of the unknown function at
the points within the domain, that is on only one side of the boundary.

There is one important requirement. The order of approximation of the
boundary conditions should not be lower than the order of the scheme
used to approximate the PDE. The reason is that the order of the approxi-
mation of the entire solution is equal to the lowest order of approximation
of any of its parts. If a lower-order scheme is used for the boundary con-
ditions, the larger truncation error propagates into the solution domain and
compromises otherwise higher accuracy of computations.

Let us consider the example of the modified heat equation (4.32) with
the Dirichlet and Neumann boundary conditions

u(0, t) = a(t),
∂u

∂x
(L, t) = b(t), at t0 < t < tend,

where a and b are known functions of time, and the initial condition

u(x , t0) = g(x) at 0 ≤ x ≤ L.

Let the grid points x0 and xN correspond to the boundaries x = 0 and
x = L, and let the time layer t0 correspond to the initial moment of time
t = t0.

Approximation of the Dirichlet boundary condition is easy. We assume
that

un
0 = a(t n) = an , n = 1, . . . , M , (4.44)
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which is an exact (no error is introduced) representation. For the Neumann
condition, care must be taken to approximate the partial derivative by
a formula of second order so as not to compromise the second order
accuracy of the entire scheme. If, for example, we use the backward
difference

∂u

∂x
(L, t) = un

N − un
N −1

�x
+ O(�x),

the error O(�x) will quickly propagate into the interior of the domain and
the entire solution will have the truncation error T.E. = O(�t , �x). The
proper course of action is to apply one of the one-sided finite difference
formulas of the second order, for example, (4.14), and write

3un
N − 4un

N −1 + un
N −2

2�x
= b(t n) = bn , n = 1, . . . , M . (4.45)

This can be used to compute un
N after the values of un

i at the interior grid
points have already been found:

un
N = 1

3

(
2�xbn + 4un

N −1 − un
N −2

)
.

At last, the initial condition is represented exactly by

u0
i = g(xi ), i = 1, . . . , N . (4.46)

There exists a technique of imposing boundary conditions that does not
require the grid points lying at the boundary. The ghost points located
symmetrically on the outer side of the boundary are used instead. Two
examples are presented in Figure 4.6. In one, shown in Figure 4.6a, the
Dirichlet boundary condition u|∂
 = a is approximated with the second
order of accuracy by assigning the value of u at the ghost point xN +1 to
un

N +1 = a − (un
N − a). The second example shown in Figure 4.6b illus-

trates how one can approximate the Neumann condition ∂u/∂x |∂
 = b by
choosing the un

N +1 = un
N + 2b�x so that the slope of the line connecting

un
N and un

N +1 is equal to b.

4.3.4 Consistency of Numerical Approximation

We have seen that the truncation error introduced by the finite difference
approximation of a PDE problem is a combination of the errors of approx-
imation of all derivative and nonderivative terms and boundary conditions
at all grid points and time layers.
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Figure 4.6 Setting boundary conditions using ghost points: (a) Dirichlet boundary
condition u|∂
 = a; (b) Neumann boundary condition ∂u/∂x|∂
 = b.

The necessary (but not sufficient) condition for the accurate finite differ-
ence solution is the generalization of the consistency condition introduced
earlier for partial derivatives. The truncation errors of the finite difference
approximation of the equation and boundary and initial conditions should
vanish as all the grid steps approach zero:

lim
�x ,�y ,�z ,�t→0

T.E. = 0. (4.47)

If this is the case, the finite difference scheme is called consistent . Obvi-
ously, the consistency is achieved if the truncation error is at least of the
first order in every coordinate and time at all points and time layers of
the computational grid. The scheme has to be at least of the first order to
be consistent .

4.3.5 System of Difference Equations

The approximations of the PDE written for all internal grid points and
approximations of boundary and initial conditions form a system of alge-
braic equations called difference equations or, in more general terms,
discretization equations . The system has to be solved to find the values
of the unknown functions at the grid points.

As a rule, all the equations of the discretization system are coupled
with each other. The system is irreducible to smaller independent systems
and should be solved as a whole. This can be a difficult and computa-
tionally intensive task. It is not uncommon for a CFD analysis to use
grids consisting of millions of nodes. We should also take into account
that several variables usually have to be calculated at every node, each
variable requiring a separate equation. For example, computing a flow
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of an incompressible fluid with heat transfer would require at least five
variables: three velocity components, pressure, and temperature.

The need to solve huge systems of algebraic equations has always
been a critical aspect, even a bottleneck of CFD analysis. The available
computing power limits the size of the system that can be solved in
reasonable time and, thus, the type of the flow and heat transfer processes
that can be accurately analyzed.

Significant efforts have been invested over the years to develop effective
methods of solving large systems of discretization equations. The most
important of them are discussed in this book. The first, rather simple idea
appears in the next section.

4.3.6 Implicit and Explicit Methods

Let us consider a finite difference scheme applied to a time-dependent
problem . The natural and commonly used approach to solution of dis-
cretization equations for such problems is illustrated in Figure 4.7. We
start with the initial conditions at the time layer t0, use the discretization
equations approximating the PDE and boundary conditions to find the
unknowns at the time layer t1, then at t2, and so on, moving or marching
ahead one layer at a time. Each such time step requires solution of a sys-
tem that consists of equations for all space grid points. Albeit still large,
such systems are much smaller than the cumulative system that includes
all the time layers.

With respect to the marching procedure, there are two types of the
discretization schemes: explicit and implicit . The types are presented here

t n+1

t n

t2

t1

t0

Finite difference
scheme for PDE

Finite difference
schemes for 

boundary conditions

t

L
Initial conditions

x

T
im

e Steps

Figure 4.7 Illustration of the marching procedure.
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using the example of a finite difference solution of the modified heat
equation (4.32). It will be clear from the discussion that the concepts
equally apply to other equations and other discretization methods, for
example, finite element or spectral.

Explicit Schemes: Let us first consider the already introduced scheme

un+1
i − un

i

�t
= a2 un

i+1 − 2un
i + un

i−1

(�x)2
+ f n

i . (4.48)

The difference molecule is shown in Figure 4.4a. The difference equation
includes only one value of u from the (n + 1)st time layer. The transition
from layer t n to layer t n+1 is easy. One has to rewrite (4.48) as

un+1
i = un

i + �t

(
a2 un

i+1 − 2un
i + un

i−1

(�x)2
+ f n

i

)
, (4.49)

that is, to rewrite the difference equation so as to explicitly express the
unknown quantity un+1

i at the layer t n+1 through the quantities un
i at the

layer t n known from the previous time step. The schemes for which this
is possible are called explicit schemes.

Implicit Schemes: Another scheme for the heat equation can be devel-
oped if we, for example, approximate the PDE at the point (xi , t n+1) using
backward difference of the first order for the time derivative and central
difference of the second order for the space derivative. The result is the
scheme

un+1
i − un

i

�t
= a2 un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2
+ f n+1

i (4.50)

with truncation error T.E. = O(�t , (�x)2). The difference molecule is
shown in Figure 4.8. If we now move all the terms needed to be calculated
at the new time layer into the left-hand side, we obtain

un+1
i − a2 �t

(�x)2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
= un

i + �t f n+1
i . (4.51)

We see that a time step of the marching procedure cannot be completed
as easily as before. No explicit formula exists that expresses the unknown
un+1

i through the known values such as un
i , un

i−1, un
i+1. Coupled equations

(4.51) for i = 1, . . . , N − 1 together with the equations approximating the
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t n+1

xxi xi+1

t n

tn−1

t

xi−1

Figure 4.8 Difference molecule of the implicit scheme for the heat equation (4.50).

boundary conditions at i = 0 and i = N must be solved as a system of
linear algebraic equations. Scheme (4.51) is an example of an implicit
scheme.

One time step of an implicit scheme requires larger amount of com-
putational work than one step of an explicit scheme, since a system of
algebraic equations has to be solved. The implicit methods are, neverthe-
less, in wide use for the reason of their better stability properties. The
issues are further discussed in section 6.3. For now, we only mention that
larger time steps can be used with an implicit scheme, so the solution can
be computed in a smaller number of steps.

We also have to mention that efficient numerical methods have been
developed for solution of large algebraic systems. One of them, the
Thomas algorithm suitable for 1D problems, is presented in Chapter 7,
while the general discussion is postponed until Chapter 8.

4.4 DEVELOPMENT OF FINITE DIFFERENCE SCHEMES

How do we develop finite difference schemes? The simplest and, proba-
bly, most efficient way is to look up the desired scheme in a CFD book.
If this solution is satisfactory, the reader can skip this section without
much harm for future understanding. If this is not the case, one of the
two methods considered here can be used. There is the third method based
on the principles of finite volume approximation. Recognizing its impor-
tance for modern CFD, we describe it separately and in more detail in
Chapter 5.

The general task is formulated as follows: To develop a finite difference
approximation of a given order of accuracy for a partial derivative using
a given set of grid points .
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4.4.1 Taylor Series Expansions

This method is a generalization of the procedure applied in section 4.2 to
develop our first finite difference formulas.

As a demonstration example, we will use the one-dimensional heat
equation

∂u

∂t
= a2 ∂2u

∂x2
+ f (x , t) (4.52)

and develop a scheme of the second order in space and first order in time.
The scheme will be explicit and based on the finite difference molecule
shown in Figure 4.4a.

For the space derivative, we have to develop a formula that uses un
i−1,

un
i , and un

i+1 and approximates ∂2u/∂x2 at the point (xi , t n). The trunca-
tion error should be O((�x)2). We start with the Taylor series expansions
for un

i−1 and un
i+1 around (xi , t n):

un
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i − ∂u
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(�x)4) .

The series are truncated at the fourth-order term. In general, the truncation
limit is determined experimentally, but it should be not lower than the
sum of the order of approximated derivative and the desired order of the
truncation error.

The equations are solved for ∂2u/∂x2 in terms of the values of u at
the grid points. Dividing by (�x)2 we get

un
i−1(�x)−2 = un

i (�x)−2 − ∂u
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∂3u
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(
(�x)2) .
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We now sum the first and second equations multiplied by arbitrary con-
stants a and b. After rearranging, we find

a + b

2

∂2u

∂x2

∣∣∣∣n
i

= (�x)−2 [aun
i−1 + bun

i+1 − (a + b)un
i

]+ (�x)−1

×
[

∂u

∂x

∣∣∣∣n
i
(a−b)

]
+�x

[
1

6

∂3u

∂x3

∣∣∣∣n
i
(a−b)

]
+O

(
(�x)2) .

(4.53)

It is obvious now that the needed finite difference formula can be obtained
if we find the values of a and b, which provide zero coefficients at
∂u/∂x and ∂3u/∂x3 and the coefficient equal to 1 at ∂2u/∂x2. This can
be expressed as a system {

a + b = 2
a − b = 0

(4.54)

In the general case, we would have different cancelation conditions for
terms with ∂u/∂x and ∂3u/∂x3. The system of three linear algebraic
equations for two unknowns could be inconsistent (have no solution).
In that case, the initial task would have to be reconsidered by allowing
use of more than three grid points. In our particular case, however, the
cancelation conditions are identical as a result of the symmetric shape of
the difference molecule and the use of constant �x . The solution is given
by a = 1, b = 1. The resulting finite difference approximation

∂2u

∂x2
= un

i−1 − 2un
i + un

i+1

(�x)2
+ O

(
(�x)2) , (4.55)

is already known to us as the central difference of second order.
For the time derivative ∂u/∂t , we use un

i and un+1
i to develop a for-

mula of the first order in �t . The procedure is simple. From the Taylor
expansion

un+1
i = un

i + ∂u

∂t

∣∣∣∣n
i
�t + O

(
(�t)2) (4.56)

we find that
∂u

∂t
= un+1

i − un
i

�t
+ O(�t), (4.57)

which completes the derivation. The truncation error O
(
(�x)2, �t

)
was

determined in the process.
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There is no simple universal rule for the number and distribution of
the grid points that have to be included into the difference molecule in
order to achieve the desired accuracy. As a rule of thumb, the number is
equal to the order of the derivative plus the order of the truncation error.
For example, a derivative of the third order in x can be approximated
by a formula of third order of accuracy on a molecule that includes six
points. Quite often, however, formulas are developed using fewer (as in
our example for ∂2u/∂x2) or more points.

As another example, we consider a function u(x , y) and derive a one-
sided formula that approximates ∂u/∂x on three grid points with the
truncation error O

(
(�x)2

)
. Such formulas are useful for Neumann bound-

ary conditions. The approximation is done at (xi , yj ) using ui−2, j , ui−1, j ,
and ui , j . Again, we start with the Taylor series expansions for ui−2, j and
ui−1, j around (xi , yj ):

ui−2, j = ui , j − 2
∂u

∂x

∣∣∣∣
i , j

�x + 2
∂2u

∂x2

∣∣∣∣
i , j

(�x)2 + O
(
(�x)3) (4.58)

ui−1, j = ui , j − ∂u

∂x
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i , j

�x + 1

2

∂2u

∂x2

∣∣∣∣
i , j

(�x)2 + O
(
(�x)3) . (4.59)

We form the linear combination a(4.58) + b(4.59) with arbitrary constants
a and b

aui−2, j + bui−1, j = (a + b)ui , j + (−2a − b)
∂u

∂x

∣∣∣∣
i , j

�x

+ (4a + b)

2

∂2u

∂x2

∣∣∣∣
i , j

(�x)2 + O
(
(�x)3) (4.60)

and require that the coefficient at ∂u/∂x is 1 and the coefficient at ∂2u/∂x2

is zero. This results in a system{−2a − b = 1
4a + b = 0

,

which has the solution a = 1/2 and b = −2. Substitution into (4.60) and
rearranging produces the required formula

∂u

∂x

∣∣∣∣
i , j

= ui−2, j − 4ui−1, j + 3ui , j

2�x
+ O

(
(�x)2) . (4.61)
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Nonuniform Grids: For nonuniform grids (variable grid steps), the
same technique can be applied, although this typically results in more
complex formulas. As we discuss in Chapter 12, there is a more effi-
cient way to deal with nonuniform grids based on the use of mapping
(coordinate transformation).

4.4.2 Polynomial Fitting

The basic idea of the method is to assume that, locally, the unknown
function is approximated by a polynomial of a certain order. The polyno-
mial is “fitted” to the function’s behavior by determining its coefficients
so that the polynomial is equal to the function exactly at the grid points
of a finite difference molecule.

As an example, we consider the Neumann boundary condition

∂u

∂x

∣∣∣∣
x=0

= q at 0 < t < 1. (4.62)

To preserve the accuracy of a finite difference scheme, the boundary con-
dition should be approximated with, at least, the same order of accuracy
as the partial differential equation itself. Let us assume that the scheme
has the truncation error ∼ O

(
(�x)4

)
, so we have to develop a one-sided

finite difference approximation for (∂u/∂x)|x=0 of the fourth order of
accuracy. We use the same uniform grid as before and assume that the
boundary is at the grid point x0 = 0. The neighboring points are x1 = �x ,
x2 = 2�x , and so on.

First, we locally represent u(x , t) as a polynomial of third degree:

u(x , t n) = a + bx + cx2 + dx3. (4.63)

Obviously, the boundary condition (4.62) applied to (4.63) means

b = q . (4.64)

What remains is to find a, c, and d such that the polynomial fits the values
of u at the grid points adjacent to the boundary. The number of points to
be taken must be equal to the number of the still-unknown coefficients.
Calculating (4.63) at the three nearest points, we obtain the system⎧⎪⎨⎪⎩

un
1 = a + q�x + c(�x)2 + d(�x)3

un
2 = a + 2q�x + 4c(�x)2 + 8d(�x)3

un
3 = a + 3q�x + 9c(�x)2 + 27d(�x)3

,
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which can be solved for a, c, and d . Doing that and calculating the
polynomial at the boundary x0, we find the approximation of (4.62):

un
0 = 1

11

(
18un

1 − 9un
2 + 2un

3 − 6q�x
)+ O

(
(�x)4) . (4.65)

Note that the order of the truncation error does not follow directly from the
derivation. It has to be determined separately in a Taylor series analysis.
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PROBLEMS

1. Consider the function u = sin x . Apply the forward difference (4.4),
backward difference (4.9), and central difference (4.10) to evaluate
the derivative du/dx at x = 1.0. Use the uniform grids with steps
�x = 1.0, 0.5, 0.1, and 0.01. Compare the results with the exact
value of the derivative. Determine which grid steps give accurate
results (e.g., with the error less than 0.01) for each scheme. Discuss
why the central scheme is more accurate than the two others.

2. Write the schemes similar to (4.4), (4.9), and (4.10) for (∂u/∂y)|i , j .
3. Write the schemes similar to (4.17), (4.18), and (4.19) for

(∂2u/∂y2)|i , j .
4. Write the central finite difference formulas of the second order for

∂u/∂x and ∂2u/∂x2 at the grid point (xi+1, yj , t n+1).
5. Verify the consistency and order of the schemes (4.13) and (4.14)

using the Taylor series expansions.
6. Verify the consistency and order of the scheme (4.20) using the

Taylor series expansions.
7. Consider the generic transport equation φt + uφx = μφxx , where u is

a known function of x and t and μ is a constant coefficient. Assume
that the computational grid is uniform with steps �x and �t . Write
the finite difference schemes satisfying the following requirements:

a) Explicit scheme of the first order in time and second order in
space. Use central differences for the space derivatives.
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b) Follow the requirements in (a), but the scheme is implicit.
c) Scheme of the first order in time. Use implicit central differ-

ence approximation for the diffusion term μφxx and explicit
backward difference approximation for the convection term
uφx .

8. A finite difference scheme was developed to solve the heat equation.
Testing in comparison with a known exact solution showed that the
error is of the same order of magnitude as the solution itself and
does not tend to zero as the grid steps decrease. Assuming there
was no coding errors in the computer program, what was the reason
for such behavior?

9. The modified equations of certain finite difference schemes are given
below. In each case, determine the order of approximation and find
whether the dominant error is due to numerical dissipation or numer-
ical dispersion.

ut + cux =
(

1

2
c2�t

)
uxx −

(
1

6
c(�x)2 + 1

3
c3(�t)2

)
uxxx + · · ·

ut + cux = 1

6
c(�x)2(ν2 − 1)uxxx

− 1

120
c(�x)4(9ν4 − 10v2 + 1)uxxxxx + · · · .

ut − a2uxx =
[

1

2
a4�t + (a�x)2

12

]
uxxxx +[

1

3
a6(�t)2 + 1

12
a4�t(�x)2 + 1

360
a2(�x)4

]
uxxxxxx + · · ·

10. The Neumann boundary condition ∂u/∂x = a at x = 0 has to be
implemented in a finite difference scheme for the heat equation. The
grid is uniform with step �x . Among the finite difference formulas
discussed in this chapter, select one to approximate the boundary
condition if the scheme’s order of approximation in x is

a) First
b) Second
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11. Using the method of Taylor series expansion or polynomial fitting,
develop the following finite difference schemes:

a) (4.13)
b) (4.17)
c) (4.25).

Programming Exercises Calculate the finite difference solution of the
equation (4.32) with a = 0.5 and f (x , t) = sin 5x in the domain 0 < x <

π , 0 < t < 50 with initial condition u(x , 0) = x(π − x) and boundary
conditions u(0, t) = 0, u(π , t) = 0. Use the fully explicit scheme (4.48).
Try two grids, one with 100 space points and 100 time layers and another
with the number of time layers increased to 100,000. Compare the profile
of u at t = t end = 20 with the exact solution of the steady-state problem
uexact = (25a2)−1 sin 5x . Do not be surprised by the difference between
the two numerical solutions. The matter is further discussed in Chapter 6.
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FINITE VOLUME METHOD

5.1 INTRODUCTION AND INTEGRAL FORMULATION

This chapter is entirely devoted to one class of discretization schemes,
the finite volume method. Such attention is fully warranted by the special
place this method occupies within the field of applied CFD. Many general-
purpose codes for fluid flows, including the majority of commercial CFD
programs, are based on the finite volume approach. The reasons for pop-
ularity will become clear in the discussion that follows. Right now, we
only mention the main two: convenience of use with unstructured grids
and the global conservation property.

The finite volume schemes are principally different from the classi-
cal finite difference schemes in the way they are derived. Instead of
discretizing the partial differential equations, we start with the physi-
cal conservation laws in the integral form, such as those presented in
section 2.7. Discretization is applied directly to the integral equations writ-
ten for small control (finite) volumes. In this regard, the method resembles
the finite element technique. The distinctive character of the finite volume
method is sometimes taken as far as claiming it to be a completely sepa-
rate approach unrelated to the finite difference approximation. We adhere
to a more moderate view, according to which the finite volume method
is, albeit special, still a type of the general finite difference technique.

In the following discussion, the method will be illustrated using the
formal conservation equation introduced in section 2.7:

d

dt

∫



�d
 = −
∫

S
�V · ndS +

∫
S

χ∇� · ndS +
∫




Qd
. (5.1)

86
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It is written for an arbitrary control volume 
 with surface S and outward-
facing unit normal to the surface n (see Figure 2.4), and expresses the
‘conservation’ of the scalar field � within 
. Each term in (5.1) has
counterparts in the integral equations of conservation of mass, momen-
tum, and energy. The left-hand side represents the rate of change of the
total amount of � within 
. Each integral in the right-hand side represents
a certain typical way by which this amount can be changed. The surface
integral − ∫S �V · ndS shows the convective flux through the boundary
of the control volume S . It appears due to the transport of � by velocity
V. The integral

∫
S χ∇� · ndS has the form typical for cross-boundary

transport by diffusion mechanisms, such as viscous friction or heat con-
duction. χ is a constant or variable coefficient of diffusion. This term
gives the diffusive flux through the boundary S . At last, the volume inte-
gral

∫



Qd
 represents the rate of change of the amount of � caused by
internal sources of intensity Q per unit volume.

Let us identify the control volume 
. In the finite volume method, the
computational domain is divided into small, nonoverlapping subdomains
called cells . A finite volume scheme is derived by applying integral bal-
ance equation, such as (5.1), to every cell. The next step discussed in
sections 5.2 and 5.3 is to approximate the integrals, so that each integral
equation is replaced by an algebraic discretization equation. Taken for all
cells, the discretization equations form a system that has to be solved in
the same way as in the case of a standard finite difference scheme.

Special consideration has to be given to the cells adjacent to the bound-
aries of the computational domain. Surface integrals need to be changed
on the part of ∂
 coinciding with the boundary so as to incorporate the
boundary conditions. The procedure is discussed in section 5.4.

Note that the following discussion concerns only spatial discretization.
The time discretization in the finite volume schemes is not different from
the time discretization applied to the finite difference schemes or other
discretization schemes in general.

5.1.1 Finite Volume Grid

Examples of finite volume grids are shown in Figure 5.1. Although they
do not include a three-dimensional grid, it should be understood that the
principles of finite volume approximation are valid in the general three-
dimensional case.

The simplest finite volume grid is for one-dimensional problems. The
control volumes are intervals. For example, Figure 5.1a presents a finite
volume grid with cells 
i = [xi−1/2, xi+1/2]. The outward-facing normal
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Figure 5.1 Examples of finite volume grids. (a) One-dimensional grid; (b)
Two-dimensional Cartesian structured grid; (c) Two-dimensional curvilinear

structured grid; (d) Two-dimensional unstructured grid.

vector n is in the negative x -direction on the left-hand boundary xi−1/2
and in the positive x -direction on the right-hand boundary xi+1/2.

In the two-dimensional and three-dimensional cases, we have a choice
between structured and unstructured grids. In the structured grids, the cells
are quadrilateral (in the two-dimensional case) or hexahedral (in the three-
dimensional case) and arranged in a structured pattern along the lines of a
Cartesian (as in Figure 5.1b) or curvilinear (as in Figure 5.1c) coordinate
system. In unstructured grids, the cells may have various shapes, such as
prisms, tetrahedra, hexahedra, or pyramids, in three dimensions and plane
figures, such as triangles, quadrilaterals, or other convex polygons, in two
dimensions. As an example, Figure 5.1d shows a grid with triangular cells.

The finite volume schemes can be designed entirely in terms of the
cell-related quantities, such as the cell-averaged variables |
|−1

∫



�d
,
where |
| is the volume of the cell. It is, however, customary and conve-
nient to introduce a grid point within each cell and write the schemes in
terms of approximate values of variables at these points. One commonly
used approach is the cell-centered arrangement illustrated in Figure 5.1.
In each example, one grid point is shown and marked by the letter P. The
grid point location coincides with the cell’s center, so that the value of �
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or another variable taken at the grid point serves as a good approximation
of the mean value of this variable in the cell.

There are other possible arrangements. In some of them, the grid points
are positioned so that the faces of the control cell are located midway
between the two neighboring grid points. In others, the so-called cell-
vertex schemes, the grid points are at the vertices of the cell boundaries.
Our discussion will be limited to cell-centered arrangements. A broader
and more detailed description can be found in the books focused on the
subject of finite volume method—for example, in the books listed at the
end of the chapter.

5.1.2 Global Conservation Property

The finite volume schemes possess one important property. Let us first
illustrate it on the example of a one-dimensional problem. The conser-
vation equation (5.1) is solved in the interval 0 ≤ x ≤ L. The boundary
conditions are set in the form of prescribed net fluxes q0 at x = 0 and qL

at x = L. As discussed in section 5.4, such form of boundary conditions
is convenient to use with the finite volume methods. The conservation of
� in the entire solution domain can be expressed as

d

dt

∫ L

0
�dx =

∫ L

0
Qdx + q0 − qL. (5.2)

Note that this is an exact relation, according to which the total amount
of � in the domain changes due to the internal sources and the fluxes
through the boundaries.

The problem is solved using the finite volume grid consisting of N
cells [xi−1/2, xi+1/2] with i = 1, . . . , N , x1/2 = 0, and xN +1/2 = L (see
Figure 5.2a). The conservation equation (5.1) is expressed for the one-
dimensional cell 
i as

d

dt

∫ xi+1/2

xi−1/2

�dx = − �V |i+1/2 + �V |i−1/2 + χ
∂�

∂x

∣∣∣∣
i+1/2

− χ
∂�

∂x

∣∣∣∣
i−1/2

+
∫ xi+1/2

xi−1/2

Qdx . (5.3)

The equation has to be modified for the cells 
1 = (0, x3/2) and 
N =
(xN −1/2, L) adjacent to the boundaries of the computational domain. The
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Figure 5.2 Illustration of the global conservation property of finite volume
methods.

total (convective plus diffusive) fluxes are replaced by q0 at x = 0 and
by qL at x = L. The integral equations for the boundary cells are

d

dt

∫ x3/2

0
�dx = − �V |3/2 + χ

∂�

∂x

∣∣∣∣
3/2

+
∫ x3/2

0
Qdx + q0 (5.4)

and

d

dt

∫ L

xN −1/2

�dx = �V |N −1/2 − χ
∂�

∂x

∣∣∣∣
N −1/2

+
∫ L

xN −1/2

Qdx − qL. (5.5)

Let us see how the global conservation relation (5.2) is reproduced
by the finite volume scheme. We add the equations for all cells ((5.3)
with i = 2, . . . , N − 1, (5.4), and (5.5)) together. The left-hand terms add
up to (d/dt)

∫ L
0 �dx (remember that the cells do not overlap and cover

the entire domain). The internal source terms give
∫ L

0 Qdx . It is easy to
see that the flux terms at the internal cell-to-cell boundaries cancel out,
since each of them appears with opposite signs in the equations for two
neighboring cells. The only fluxes that remain are the fluxes q0 and qL

through the boundaries of the computational domain.
We see that the summation of the finite volume equations over all

cells results in (5.2) without any additional discretization-related terms.
The principle of conservation is reproduced exactly and for the entire
computational domain. This is the global conservation property shared by
all finite volume schemes.

One can easily verify that the global conservation property is valid
for two-dimensional and three-dimensional finite volume grids. A two-
dimensional illustration is given in Figure 5.2b. Two neighboring cells
marked by the grid points P and F have the common face S1. The values
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Figure 5.3 Illustration of the approximation of volume and surface integrals.

of the solution variables, such as � or V, on S1 are the same for both
the cells. At the same time, the outward-facing unit normals denoted
as nP and nF have opposite directions. The contributions of the surface
integrals over S1 in the integral equations for the cell P and the cell
F are, therefore, equal in magnitude and opposite in sign. They cancel
each other, when the equations are added together. Similarly, adding the
equation for the cell marked G results in the cancelation of the surface
integrals over the face S2. If the sum over all cells is taken, only the
surface integrals corresponding to the faces lying on the boundary of the
computational domain remain and we obtain the exact replication of the
global conservation principle

d

dt

∫
�

�d
 = −
∫

∂�

(q · n)dS +
∫

�

Qd
, (5.6)

where � is the computational domain, ∂� is its boundary, and q is the
flux of � through the boundary.

5.2 APPROXIMATION OF INTEGRALS

The algebraic discretization equations that constitute a finite volume
scheme are derived by approximating the integral equations written for
the finite volume cells. The main elements of the approximation are
discussed in this section. The discussion is general and valid for all
kinds of finite volume cells. As illustrations, two-dimensional structured
Cartesian and unstructured grids shown in Figure 5.3 are used.

5.2.1 Volume Integrals

The simplest way to approximate a volume integral is to replace it by the
product of the cell’s volume (in the three dimensional case) or area (in
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two dimensions) |
| and the mean value of the integrand �̄ approximated
through the grid point values. If the cell-centered arrangement of the grid
points is used, we can replace the mean by the value at the central grid
point (see Figure 5.3). ∫




�d
 = �̄|
| ≈ �P|
|. (5.7)

This approximation generates the truncation error, which has the second
order of magnitude in terms of the size of the cell. For example, for the
structured grid in Figure 5.3a, the dimensions of the cell are (�x , �y),
and the truncation error is O((�x)2, (�y)2). If a finite volume scheme of
the second order of accuracy is designed, (5.7) is sufficient and should
be used. If, however, a scheme of a higher order is desired, �̄ has to be
replaced by a more accurate approximation that uses the values of the
integrand at other points within the cell, such as the vertex points A, B,
C, and D or the midpoints of the cell faces, such as e. If these points do
not belong to the grid (as is the case in a cell-centered arrangement), the
values of the solution variables at them have to be interpolated from the
neighboring grid points. The order of accuracy of the interpolation should,
of course, not be lower than the desired order of the scheme. Interpolation
techniques are discussed in section 5.3.

5.2.2 Surface Integrals

The surface ∂
 of the cell 
 consists of several faces, which are curves
in the two-dimensional and surfaces in the three-dimensional case. Their
shape and number vary with the design of the grid. For example, in
the two-dimensional quadrilateral cell of the structured grid shown in
Figure 5.3a, the faces are the four intervals AB, BC, CD, and DA, while
the cell in Figure 5.3b has three faces: AB, BC, and CA. Every surface
integral in the cell equation (5.1) breaks down as a sum of integrals over
the faces, which are computed separately. We will use the face AB for the
demonstration. The procedure can be easily generalized to other faces,
other shapes of the cell, and to the three-dimensional case.

The key component of the surface integral approximation is the mid-
point rule. The integral is evaluated as a product of the area of the face
and the mean value of the integrand. The mean is approximated by the
value of the integrand at the midpoint of the face. In our example, this is
expressed for an arbitrary integrand f as∫

AB

fdS = f̄ SAB ≈ feSAB, (5.8)
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where SAB is the area (length if the cell is two-dimensional) of the face,
and the overline stands for the mean value on the face. The approximation
generates the error ∼ O((SAB)2), which is the error of the second order in
terms of the size of the cell.

Applied to the convective and diffusive flux integrals in (5.1), the
approximations are∫

AB

�V · ndS = �V · nSAB ≈ (�V · n)eSAB (5.9)

and ∫
AB

χ∇� · ndS = χ∇� · nSAB ≈ (χ∇� · n)eSAB, (5.10)

where e is the midpoint of the face AB.
The surface integrals contain projections of the solution vectors, such as

V and ∇�, on the direction of the normal vector n. If the grid is structured
and the cell boundaries follow the lines of a Cartesian or curvilinear
coordinate system, taking the projection is simple. For example, for the
face AB in Figure 5.3a, we have n in the direction of the positive x -axis,
and the projections are

(�V · n)e = (�Vx )e, (χ∇� · n)e = (χ∂�/∂x)e. (5.11)

In many cases, the normal vector is not aligned with an axis of a global
coordinate system. This is, in particular, true for unstructured grids as
illustrated in Figure 5.3b. The evaluation of the projections requires both
(or all three in three-dimensional problems) components of the solution
vectors. For example, using the global Cartesian coordinate system shown
in Figure 5.3b, we can write:

(�V · n)e = �e(Vx nx + Vyny)e, (5.12)

(χ∇� · n)e = χe((∂�/∂x)nx + (∂�/∂y)ny)e. (5.13)

The orientation of the normal vector n is defined by the orientation
of the corresponding cell face. This can be formalized by introducing
the vector S connecting the end vertices of the face and defining n as
the vector that is perpendicular to S and has unit length. In the two-
dimensional examples in Figure 5.3, S = AB = Sx i + Sy j, where i and j
are the base vectors of the Cartesian coordinate system. The outward-
facing normal vector of unit length is

n = 1

SAB
(Sy i − Sx j). (5.14)
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This allows us to rewrite the approximations (5.9) and (5.10) in a compact
form ∫

AB

�V · ndS ≈ �e(Vx eSy − VyeSx ) (5.15)

and ∫
AB

χ∇� · ndS ≈ χe((∂�/∂x)eSy − (∂�/∂y)eSx ). (5.16)

5.3 METHODS OF INTERPOLATION

As we have discussed in the previous section, the approximation of surface
integrals requires knowledge of solution variables and their derivatives at
the midpoints of the cell faces. These points are usually not part of the
grid, and the values have to be obtained by interpolation from the grid
points. Among the numerous possible schemes, we will only consider
several, which are simple and commonly used. Further information can
be found in the specialized texts on finite volume methods.

For simplicity, the methods of interpolation will be introduced using the
two-dimensional Cartesian grid shown in Figure 5.4a. More specifically,
we will show how the values of � and ∇� · n at the face midpoint e can
be approximated using the values of � at the grid points P, E, W, N, S, EE
and so on of a cell-centered grid. As even simpler examples, schemes for
the one-dimensional linear convection and heat equations will be derived
using the one-dimensional finite volume grid shown in Figure 5.4b. The
principles of interpolation on nonorthogonal and unstructured grids will
be briefly discussed in section 5.3.4.
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Figure 5.4 Two-dimensional Cartesian and one-dimensional grids used to
illustrate interpolation methods.
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5.3.1 Upwind Interpolation

The simplest method of approximation of �e is to use the value at a
neighboring grid point. In our example, this means approximating by
either �P or �E. In the upwind interpolation, the choice, P or E, is dictated
by the direction of the flow

�e =
{
�P if (V · n)e > 0
�E if (V · n)e < 0

. (5.17)

The value at the nearest upwind (upstream) grid point is taken. The choice
seems natural since the upwind value is convected by the flow toward the
point e. In agreement with this logic, the upwind schemes are usually
considered in connection with hyperbolic problems, in which the con-
vection velocity V determines the direction and speed of propagation of
information in the solution.

When applied to hyperbolic problems, the schemes based on the upwind
interpolation demonstrate valuable properties. In particular, the schemes
satisfy the boundedness criterion, meaning that spurious oscillations never
evolve in the solutions for propagating waves of sharp fronts. Another
useful property is that the time integration of such schemes is numerically
stable if the time step is sufficiently small. (The numerical stability is
defined and discussed in Chapter 6.)

On the other hand, the procedure of upwind interpolation has one
very significant drawback. It is of only the first order of accuracy. The
truncation error of the upwind-based schemes contains strong numeri-
cal dissipation (see section 4.3.2 for definition and discussion). The sharp
variations in the solution are artificially smeared out. This becomes a seri-
ous issue in predominantly hyperbolic problems, where there is no natural
strong diffusion, and the sharp variations easily develop and persist. Very
fine grids are needed to obtain accurate solutions of such problems using
the upwind schemes.

Let us now derive an upwind interpolation scheme for the linear con-
vection equation

∂u

∂t
+ c

∂u

∂x
= 0, c > 0. (5.18)

The example seems appropriate, since the solutions of the linear convec-
tion equation are characterized by purely hyperbolic behavior. Integrating
(5.18) over the cell 
i (see Figure 5.4b), we obtain

d

dt

∫ xi+1/2

xi−1/2

udx + cue − cuw = 0.
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This integral form shows that the linear convection equation can be
considered as a one-dimensional version of the general conservation
equation (5.1) with constant velocity c in the positive x -direction
and zero diffusion flux and volume sources. The volume integral is
approximated according to (5.7) as∫ xi+1/2

xi−1/2

udx ≈ uP�x .

The upwind interpolation is used for the midpoint values ue and uw. At
the cell boundary e = xi+1/2, the normal n is in the positive x -direction,
and (5.17) gives

ue ≈ uP.

At the boundary w = xi−1/2, the normal is in the direction of negative x .
We should take the value at the nearest grid point west of the cell:

uw ≈ uW.

The finite volume approximation of (5.18) is

d

dt
(uP�x) + cuP − cuW = 0.

The last step is to introduce the time layers t n = t0 + n�t and apply the
explicit time discretization of the first order. The result is

un+1
i − un

i

�t
+ c

un
i − un

i−1

�x
= 0. (5.19)

The scheme is identical to the upwind finite difference scheme (4.41).

5.3.2 Linear Interpolation

Another commonly used approximation is based on linear interpolation
between two neighboring grid points. In terms of our example illustrated
in Figure 5.4, this means

�e = γ�P + (1 − γ )�E, (5.20)

where γ = |eE|/|PE| is the interpolation factor. This interpolation is of the
second order of accuracy (see section 4.2.7). If the cells adjacent to the
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face e are of the same size, the point e is exactly in the middle between
P and E, γ = 0.5, and (5.20) turns into the simple averaging formula

�e = �P + �E

2
. (5.21)

The linear interpolation can also be applied to approximate the normal
derivative (∇� · n)e. In our example, n is in the positive x -direction, so
the derivative can be evaluated as ∂�/∂x . Using the underlying assump-
tion that the function behaves linearly around e, we find(

∂�

∂n

)
e

≈ �E − �P

|PE| = �E − �P

xE − xP
. (5.22)

Let us analyze the order of approximation of this formula. Using the
Taylor series expansion of �P and �E around the point e we find that the
truncation error is

T.E. = (xe − xP)2 − (xe − xE)2

2(xE − xP)

(
∂2�

∂x2

)
e

(5.23)

− (xe − xP)3 + (xE − xe)3

6(xE − xP)

(
∂3�

∂x3

)
e

+ · · ·

The first term in the right-hand side is of the first order with respect to
the typical grid step, which we can estimate as the distance |EP| between
the neighboring grid points. The interpolation scheme is formally of the
first order. If the cells adjacent to the face e are of the same size, and e
is in the middle of the interval PE, the first term is zero and the scheme
acquires the second order of accuracy. In this case, (5.22) becomes the
familiar central difference approximation of the first derivative. For this
reason, the linear interpolation method is also called the central difference
(CD) interpolation.

In the general case, when the cells are nonuniform, the first-order term
in the truncation error is nonzero but becomes small when |Pe| and |eE|
are close to each other. The CD scheme can be considered a scheme of
nearly the second order on nonuniform grids if the variation of the grid
size is not very strong.

In order to illustrate the application of the linear interpolation, we will
develop a finite volume scheme for the purely parabolic one-dimensional
version of (5.1):

∂u

∂t
= a2 ∂2u

∂x2
, (5.24)
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which is, of course, the heat equation. Integrating over the finite volume
cell 
i of the grid in Figure 5.4b, we obtain

d

dt

∫ xi+1/2

xi−1/2

udx = a2
(

∂u

∂x

)
e

− a2
(

∂u

∂x

)
w

.

The volume integral is approximated by uP�x , while the x -derivatives
are approximated using the linear interpolation as(

∂u

∂x

)
e

≈ uE − uP
�x

,

(
∂u

∂x

)
w

≈ uP − uW
�x

.

Adding the explicit first order time discretization, we obtain

un+1
i − un

i

�t
�x = a2 un

i+1 − un
i

�x
− a2 un

i − un
i−1

�x
.

The formula can be rearranged so that it becomes identical to the familiar
finite difference scheme for the heat equation (see, e.g. (4.33)):

un+1
i − un

i

�t
= a2 un

i+1 − 2un
i + un

i−1

(�x)2
. (5.25)

The fact that the finite volume schemes for the one-dimensional heat and
linear convection equations coincide with the simple schemes developed
following the finite difference approach is not at all surprising. The rea-
son is the one-dimensionality of the problems and the obvious analogy
between the finite volume grid shown in Figure 5.4b and the uniform finite
difference grid used in Chapter 4. The unique character of the finite vol-
ume schemes usually appear when multidimensional problems are solved
using unstructured grids.

5.3.3 Upwind Interpolation of Higher Order

A popular higher-order scheme for interpolation of �e is the Quadratic
Upstream Interpolation of Convective Kinematics , or QUICK. It has the
third order of accuracy and is obtained by fitting a parabola through the
values of the interpolated function at two grid points upstream and one
point downstream of e. The resulting formulas are quite complex in the
general case of nonorthogonal grids. In our example, however, the grid
points are arranged along the coordinate lines, and the QUICK inter-
polation can be expressed by a simple formula. Let (V · n)e > 0, which
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n

E

P

Ωi
S

e

Figure 5.5 Effect of grid nonorthogonality on interpolation techniques.

means that the convective transport is in the direction of grid point E (see
Figure 5.4a). Fitting a parabola through the values of � at the upstream
points P and W and the downstream point E, we obtain

�e = �P + c1(�E − �P) + c2(�P − �W), (5.26)

where

c1 = (xe − xP)(xe − xW)

(xE − xP)(xE − xW)
, c2 = (xe − xP)(xE − xe)

(xP − xW)(xE − xW)
.

Other interpolation schemes can be used, some having the order of
accuracy higher than three. Details can be found in the specialized liter-
ature. The schemes based on the high order interpolation often become
excessively complex when used with nonuniform unstructured grids, and,
therefore, are rarely applied in such cases.

5.3.4 Interpolation on Nonorthogonal Grids

The interpolation techniques become complex when the geometry of
the problem requires curvilinear or unstructured grids. The complexity
increases quite dramatically with the order of the approximation. For this
reason, the finite volume schemes of the second order remain the most
widely applied. The schemes of the orders higher than third are almost
never used.

The main difficulty is illustrated in Figure 5.5. The line connecting the
neighboring grid points P and E does not pass through the face midpoint
e. Among the interpolation schemes just discussed, only the first-order
upwind interpolation can be applied without modification. The formula
(5.17) remains valid and accurate up to the discretization error of the
order of the size of the cell.
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As soon as the interpolation uses more than one grid point, the mis-
alignment becomes a problem. For example, the linear interpolation (5.20)
of �e acquires an additional error and becomes formally an approxima-
tion of the first order. Various improvements of the method have been
developed, description of which is available in the books listed at the end
of the chapter. We mention one popular technique, according to which the
piecewise-linear character of the line PeE is simply ignored. The linear
interpolation formula (5.20) is applied in its original form. The additional
first-order error is present, but it is small if the angle between eP and eE
is close to 180◦. Luckily, this situation is rather common in CFD, where
it is a matter of good practice to maintain the neighboring cells at close
size and aspect ratio.

Another problem appears when we attempt to approximate diffusive
fluxes. The simple central difference formula (5.22) does not generate a
second-order approximation of (∂�/∂n)e even when |Pe| and |eE| are
close, since the line EP is, in general, nonparallel to the normal n (see
Figure 5.5). Similarly, since EP is nonparallel to the axes of the Cartesian
coordinate system, we cannot use central differences to find second-order
approximations of (∂�/∂x)e and (∂�/∂y)e and use them in (5.16).

Various methods have been developed to deal with the problem. One
interesting approach is to evaluate the gradient at the cell-centered grid
points and interpolate the results to the face midpoints. The grid-point
gradients can be effectively estimated using the divergence theorem.
For example, let us approximate (∂�/∂x)P. We apply the second-order
approximation (

∂�

∂x

)
P

≈
∫


(∂�/∂x)d


|
| (5.27)

and transform the integral in the right-hand side using the divergence
theorem:∫




(∂�/∂x)d
 =
∫




div(�i)d
 =
∫

S
(�i · n)dS =

∫
S

�nx dS

=
∑

j

∫
Sj

�nx dS ,

where j is the index that marks the cell’s faces. The surface integral over
every face is replaced by the second order approximation∫

Sj

�nx dS ≈ �ej nx Sj ,
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where �ej is the value of � at the corresponding midpoint. The final
formula is (

∂�

∂x

)
P

≈
∑

j �ej nx Sj

|
| . (5.28)

Note that, typically, the midpoint values �ej have to be calculated anyway
to approximate the convective fluxes.

5.4 BOUNDARY CONDITIONS

Near the boundary of the computational domain, the boundary conditions
should be incorporated into the integral balance equations for the cells
and, thus, into the finite volume discretization. The special treatment con-
cerns only the surface integrals over the faces lying on the boundary. The
cumulative (convective plus diffusive) flux should be determined on the
basis of the boundary conditions.

Let us consider the two-dimensional example shown in Figure 5.6. One
face lying on the boundary is AB. We have to replace the surface integrals
− ∫

AB
�V · ndS + ∫

AB
χ∇� · ndS by an integral that gives the flux due to

the boundary conditions. For the Neumann condition, when the normal
component of the boundary flux q is prescribed, this can be done in a
straightforward manner. We simply replace the surface integrals by

−
∫
AB

(q · n)dS = −
∫
AB

qndS ≈ −qneSAB. (5.29)

For the Dirichlet and Robin conditions, the flux is unknown and has to be
approximated using the boundary conditions and values of � at interior
points. For example, in the case of the Dirichlet condition, when � at the

Boundary of solution domain

P

B

A

n

q

W

e

Figure 5.6 Treatment of boundary conditions in finite volume methods.
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face AB is prescribed, we assume that the flux is provided by a diffusive
mechanism activated by the gradient of � at the boundary. The boundary
flux is ∫

AB

(q · n)dS = −
∫
AB

χ∇� · ndS ≈ −χ

(
∂�

∂n

)
e

SAB. (5.30)

To approximate the gradient of � we can use the scheme of the first order(
∂�

∂n

)
e

≈ �e − �P

|Pe| (5.31)

or the interpolation of higher order, which uses values of � at more than
one interior grid points.
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PROBLEMS

1. Transform the following equations into the integral form similar to
(5.1). For each equation, identify, if present, the rate of change term,
volumetric source term, convective flux term, and diffusive flux term.

a) Linear convection equation ut + cux = 0, where c > 0 is a con-
stant

b) One-dimensional heat equation ut = a2uxx + f (x)

c) Three-dimensional heat equation ut = ∇2u + g(x) (Hint: Use
the identity ∇2u = div(∇u) and the divergence theorem.)

d) Three-dimensional Poisson equation ∇2u = g(x)

e) One-dimensional Burgers equation ut + uux = μuxx , where
μ> 0 is a constant

2. A finite volume scheme is developed using a two-dimensional struc-
tured Cartesian grid with constant steps �x and �y (see Figure 5.4a).
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Write the following approximations using the values of the function
u at the grid points, such as P, E, EE, and W:

a) Approximation of the second order for the volume integral∫

i

ud


b) Upwind approximation for the surface integral
∫

Se
uV · ndS ,

where Se is the face containing the point e, V is the constant
velocity V = (1, 0.5), and n is the outward-facing unit normal
to Se

c) Central difference approximation of the second order for the
surface integral

∫
Se

(∂u/∂x)dS

3. The Burgers equation ut + uux = μuxx is solved by the finite vol-
ume method on a one-dimensional grid with constant step �x (see
Figure 5.4b). Develop the schemes based on the following principles:

a) Upwind interpolation for convective flux, linear interpolation
for diffusive flux

b) Linear interpolation for convective and diffusive fluxes

4. The conservation equation (5.1) is solved by the finite volume method
on a two-dimensional structured Cartesian grid with constant steps
�x and �y (see Figure 5.4a). Develop the schemes based on the
following principles:

a) Upwind interpolation for convective flux, linear interpolation
for diffusive flux

b) Linear interpolation for convective and diffusive fluxes.
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STABILITY OF TRANSIENT
SOLUTIONS

6.1 INTRODUCTION AND DEFINITION OF STABILITY

Numerical stability is an essential ingredient of a successful computational
solution of any marching problem. The absence of this ingredient renders
the solution completely useless, as illustrated by the following example.

Example We return to our first finite difference scheme introduced at the
end of Chapter 3 and further discussed in Chapter 4. The PDE problem
for the inhomogeneous heat equation with Dirichlet boundary conditions

∂u

∂t
= a2 ∂2u

∂x2
+ sin 5x , u(0, t) = 0, u(L, t) = 0, u(x , 0) = x(π − x)

(6.1)
is solved in the domain 0 < x < L = π , 0 < t < 50 with a = 0.5. The
uniform grid xi = i�x , t n = n�t with i = 0, . . . , N = 100, n = 0, . . . , M
is used. The steps are �x = L/N and �t = 0.01 or �t = 10−4. The
finite difference scheme is explicit and based on the first-order forward
difference in time and second-order central difference in space:

un+1
i = un

i + �t

(
a2 un

i+1 − 2un
i + un

i−1

(�x)2
+ f n

i

)
at i = 1, . . . , N − 1, n = 1, . . . , M − 1. (6.2)

104
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The boundary and initial conditions are discretized as

un
0 = 0, un

N = 0, at n = 1, . . . , M

u0
i = xi (π − xi ) at i = 0, . . . , N .

The problem has an analytical solution, according to which u(x , t) differs
from the equilibrium solution by less than 10−5 at t = 50. We accept this
error and consider the equilibrium solution at t = 50 as the exact solution
of the problem. The solution can be easily found by assuming ∂u/∂t = 0,
which leads to

a2 ∂2uexact

∂x2
= − sin 5x ,

so

uexact(x) = 1

25a2
sin 5x = 0.16 sin 5x . (6.3)

We can evaluate the accuracy of the numerical solution by calculating
absolute errors

εabs(xi ) = ∣∣uexact(xi ) − uM
i

∣∣ , i = 0, . . . , N (6.4)

and relative errors

εrel(xi ) = εabs(xi )

umean
, where umean =

(
1

N + 1

N∑
i=0

(uM
i )2

)1/2

. (6.5)

The results are presented in Figure 6.1. The computed u is shown as a
function of time at x = x50 = L/2 in Figure 6.1a,c and as a function of x
at a fixed time in Figure 6.1b,d.

Let us first consider the solution obtained with �t = 0.01. The results
presented in Figure 6.1a,b are obviously incorrect. Soon after the start,
the solution begins to grow rapidly and reaches the upper limit set by the
computer’s memory. In the state calculated at t = 2 (see Figure 6.1b), we
see wild oscillations that have nothing in common with the exact solution
(6.3). The apparent amplitude of 1036 is, in fact, the limit allowed by the
plotting software.

By contrast, when the solution is repeated with the same �x but the
time step reduced to �t = 10−4, the behavior is much more reasonable
(see Figure 6.1c,d). The numerical solution closely follows the analytical
exact solution. At t = 50, the relative error (6.5) is less than 10−4.
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Figure 6.1 Solution of problem (6.1) using finite difference scheme (6.2). Grid step
is �x = 0.01π . Time step is �t = 0.01 in (a), (b) and �t = 10−4 in (c), (d).

Why does the size of the time step have such a dramatic impact on the
solution? The simple explanation that we observe loss of accuracy because
of larger truncation error does not stand the critique. The truncation error
of time discretization at �t = 0.01 is O(�t) ∼ 10−2, which is very far
from 1036. The real answer is the unbounded growth of the round-off
errors of computer calculations, as discussed in the rest of this chapter.

6.1.1 Discretization and Round-off Error

Let us consider more carefully the errors that are generated in the process
of numerical solution of a PDE problem. The following discussion is
general in the sense that it applies to all kinds of discretization and all time-
dependent PDE, although we will use the finite difference approximation
(6.2) of the heat equation (6.1) as an example.
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There are two kinds of numerical error. First, the numerical approxi-
mation differs from the PDE and boundary conditions by the truncation
error. We learned in the previous chapters that its amplitude depends on
the approximation scheme and the size of the grid steps. For example, the
finite difference scheme (6.2) represents the heat equation with the trun-
cation error of the magnitude O(�t , (�x)2). The truncation results in the
error of the numerical solution called the discretization error . It is defined
as the difference between the exact solution of the system of algebraic
equations generated by the numerical scheme and the exact analytical
solution of the PDE problem.

Another source of error is the inability of a computer to solve the
algebraic equations, such as (6.2), exactly. There are always round-off
errors associated with the fact that any computer performs arithmetic
operations using a finite number of digits. The number varies depending
on the computational platform and programming instructions, but it is
always finite. The corresponding round-off errors are normally very small.
If, however, they accumulate as a marching procedure advances in time,
the effect can be quite dramatic.

Let us introduce the notation:

ua is the exact analytical solution of the PDE problem such as (6.1).
ud is the exact solution of the system of discretization equations such

as (6.2).
un is the actually computed solution of the system of discretization

equations.

The discretization error is ud − ua, and the round-off error is
ε = un − ud. The actually computed solution differs from the exact
solution of the discretized problem as

un = ud + ε. (6.6)

The discretization error has the same order of magnitude as the truncation
error of the scheme. In our example, this means O(�t , (�x)2). We can
conclude that the discretization error cannot be the reason of enormous
inaccuracy illustrated in Figure 6.1a,b. The next step is to analyze the
round-off error.

6.1.2 Definition

Let us consider one time step of a marching procedure. It advances the
solution from the time layer t n to the time layer t n+1. We disregard the
details for the moment and view the procedure as a black box illustrated in
Figure 6.2. It takes the numerical solution at t n as an input and generates
the solution at t n+1 as an output.
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Numerical solution

OutputInput

unn+1unn

Advancement
from tn to t n+1

Figure 6.2 A time step of a marching scheme considered as a black box.

The main question is, what happens to the round-off errors as they pass
through the black box? If they amplify, their growth and accumulation are
likely to bring failure to the solution. This situation is called instability .
If they decay or stay limited, their effect can be neglected. In this case,
we have stability .

The formal definition of stability can be done in several ways. One pos-
sibility is to define weak stability. According to this definition, a marching
scheme is unstable if the amplitude of the round-off error ε increases at,
at least, one grid point as the solution passes from the time layer t n to
the time layer t n+1. Otherwise, the scheme is called stable. Let us use the
notation εn

i for the round-off error at time layer t n and grid point xi . The
scheme is stable if ∣∣∣∣∣εn+1

i

εn
i

∣∣∣∣∣ ≤ 1 (6.7)

at every point xi and is unstable if there is a point where the condition is
violated.

Another definition is that of strong stability, which requires that the
overall round-off error in the entire space domain does not grow with
time. This can be expressed in terms of the vector norm of the error

‖εn‖=
(

N −1∑N
i=1(ε

n
i )2
)1/2

as

‖εn+1‖
‖εn‖ ≤ 1. (6.8)

6.2 STABILITY ANALYSIS

6.2.1 Neumann Method

Among the methods used to analyze the stability, the Neumann method
based on Fourier expansions is the most widely used. The basic idea is to
assume the actual numerical solution in the form (6.6), feed it as the input
stream into the black box in Figure 6.2, and use the Fourier expansion to
analyze the behavior of ε.
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We will employ the scheme (6.2) for demonstration. First, note that
both the actually computed (rounded-off) un and the exact solution of the
numerical problem ud satisfy the finite difference equation (6.2). Writing
(6.6) at every grid point

unn
i = udn

i + εn
i , (6.9)

and substituting into (6.2) we obtain

udn+1
i + εn+1

i − udn
i − εn

i

�t

= a2 udn
i+1 + εn

i+1 − 2udn
i − 2εn

i + udn
i−1 + εn

i−1

(�x)2
+ f n

i . (6.10)

The exact solution ud also satisfies (6.2):

udn+1
i − udn

i

�t
= a2 udn

i+1 − 2udn
i + udn

i−1

(�x)2
+ f n

i . (6.11)

Subtraction of (6.11) from (6.10) yields the equation for the round-off
error

εn+1
i − εn

i

�t
= a2 εn

i+1 − 2εn
i + εn

i−1

(�x)2
. (6.12)

The particular form (6.12) of the error equation is for the particular PDE
(heat equation (6.1)) and finite difference scheme (simple explicit scheme
(6.2)) used in our example. The principal procedure, substitution of un
into the finite difference equation and subtraction of the equation for ud
is, however, universal. In general, the final equation may contain ud and
variable coefficients, but contains only ε if the finite difference scheme is
linear.

Note that the inhomogeneous term in the right-hand side of (6.1) does
not appear in the equation for the error (6.12) and, thus, does not affect
the stability. Our analysis would be the same if we considered any other
inhomogeneous term or the homogeneous heat equation. In general, the
inhomogeneous sourcelike terms can be neglected in the stability analysis
if they are completely independent of the solution u. They, however,
should be taken into account in the opposite case.

The equation (6.12) can be considered as a finite difference represen-
tation of the linear PDE

∂ε

∂t
= a2 ∂2ε

∂x2
, (6.13)
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which can be solved analytically using the method of separation of vari-
ables. We will follow this approach, neglect the effect of boundary con-
ditions, and write the general solution as

ε(x , t) =
∑

m

bm(t)eıkmx + c.c, (6.14)

where c.c stands for complex conjugate of the first term in the right-hand
side. Formula (6.14) allows some interpretation. The round-off error at
a given time layer t n is an irregular function of x like that shown in
Figure 6.3. The series (6.14) is the decomposition of this function into
Fourier harmonics. We know from the theory of Fourier series that such a
decomposition is possible for any piecewise continuous function and that
the wavenumbers are

km = 2πm

L
, m = 1, 2, 3, . . . . (6.15)

One correction of the classical Fourier theory is needed. In the numer-
ical solution we deal not with a continuous function ε(x , t) but, rather,
with its values at discrete points xi separated from each other by the dis-
tance �x . As illustrated in Figure 6.4, the harmonics with the wavelength
smaller than 2�x cannot be identified on the grid. We have to limit the
series (6.14) by the maximum discernable wavenumber

kmax = 2π

2�x
= π

�x
= 2π

L

N

2
, (6.16)

where N is the number of the grid points. The set of the wavenumbers
in (6.15) is, therefore, limited by m = N /2. The corrected decomposition
formula is

ε(x , t) =
N /2∑
m=1

bm(t)eıkm x + c.c, km = 2πm

L
. (6.17)

0 xL

e(x,tn)

Figure 6.3 Round-off error as a function of x.
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xi + 1xi−1 xi

Δx

Figure 6.4 Solid curve illustrates the shortest Fourier wave discernable on a grid
with step �x. It has the wavelength 2�x. The waves with smaller wavelengths

cannot be identified on the grid. For example, presence of the harmonic with the
wavelength �x shown by the dashed curve remains unrecognized since the
harmonic has the same values at the grid points as the long-wave harmonic.

The growth or decay of the round-off error is determined by the behav-
ior of the coefficients bm(t). If, for at least one Fourier mode εm(x , t) =
bm(t)eıkm x , the amplitude grows with time, the entire error grows, and the
scheme is unstable. In the case when the PDE and the numerical approx-
imation equation are linear, the behavior of bm(t) can be determined
analytically, since the error equations, such as (6.12) and (6.13), are also
linear. Substitution of (6.17) into (6.13) shows that the PDE equation can
be separated into N /2 equations, one for every Fourier mode and its con-
jugate. Furthermore, each of these separate equations has an exponential
solution

εm(x , t) = ecm t eıkm x , (6.18)

where cm is a yet unknown complex coefficient. We will analyze the
behavior of cm using the finite difference approximation (6.12) of the
error equation.

The stability criterion (6.7) says that the scheme is stable if there are no
grid points where ε is amplified. We translate this as a requirement that
none of the Fourier modes εm is amplified and see immediately that the
coefficient cm provides all the necessary information. The amplification
of the mode εm is the same at all grid points and is given by∣∣∣∣∣εn+1

i

εn
i

∣∣∣∣∣ =
∣∣∣∣∣εcm (tn+�t)eıkm xi

εcm tn eıkm xi

∣∣∣∣∣ = ∣∣ecm�t
∣∣ . (6.19)

This quantity is called the amplification factor :

Gm = ∣∣ecm�t
∣∣ . (6.20)
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The stability criterion can be reformulated as follows: The scheme is
stable if the condition

Gm = ∣∣ecm�t
∣∣ ≤ 1, (6.21)

is satisfied for all m = 1, . . . , N /2.
We will now return to our example and do some algebra. At the grid

points, the solution (6.18) is

εn
i = ecm tn

eıkm xi , εn+1
i = ecm (tn+�t)eıkm xi (6.22)

εn
i−1 = ecm tn

eıkm (xi −�x), εn
i+1 = ecm tn

eıkm (xi +�x), (6.23)

and the finite difference equation for the mth mode of the round-off
error is

ecm (tn+�t)eıkm xi − ecm tn
eıkm xi

�t
=

a2 ecm tn
eıkm (xi −�x) − 2ecm tn

eıkm xi + ecm tn
eıkm (xi +�x)

(�x)2
. (6.24)

Dividing by ecm tn
eıkm xi we obtain

ecm�t − 1

�t
= a2 e−ıkm�x − 2 + eıkm�x

(�x)2
, (6.25)

which can be regrouped as

ecm�t = 1 + a2�t

(�x)2

(
e−ıkm�x − 2 + eıkm�x

)
. (6.26)

We use the identity

cos(km�x) = eıkm�x + e−ıkm�x

2
, (6.27)

so (6.26) becomes

ecm�t = 1 + 2a2�t

(�x)2
(cos(km�x) − 1) = 1 − 4a2�t

(�x)2
sin2

(
km�x

2

)
.

(6.28)
It is convenient to introduce the fictitious angle β = km�x and use it

instead of the wavenumber index m . With the wavenumber km running
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from 2π/L to N π/L and �x = L/N (see (6.15) and (6.16)), the angle is
always within the limits

2π

N
≤ β ≤ π. (6.29)

The stability criterion is formulated in terms of β as

G(β) ≤ 1 for all β. (6.30)

The rest is easy. We use (6.21) and (6.20) with the abbreviation

r = a2�t

(�x)2
(6.31)

to express the stability criterion as∣∣∣∣1 − 4r sin2
(

β

2

)∣∣∣∣ ≤ 1, or − 1 ≤ 1 − 4r sin2
(

β

2

)
≤ 1,

or

{
4r sin2 (β/2) ≥ 0

4r sin2 (β/2) ≤ 2

Since r is always positive and 0 ≤ sin2 (β/2) ≤ 1, the first condition is
satisfied automatically. The second condition gives the stability criterion
for the simple explicit scheme (6.2) for the heat equation:

r = a2�t

(�x)2
≤ 1

2
. (6.32)

We are now prepared to answer the question of what was wrong with
the first of the numerical solutions shown in Figure 6.1. At �x = 0.01π ,
a = 0.5, and �t = 0.01, we have r ≈ 2.54, which is far above the stability
limit. What is seen in the top two plots of Figure 6.1 is the typical example
of a numerically unstable solution. For the second simulation, we use
�t = 10−4, which corresponds to r ≈ 0.025, The solution is stable, and
accurate results are obtained as shown in the other two plots of Figure 6.1.
We can evaluate the maximum time step at which the scheme is stable
as

�tmax = (�x)2

2a2
≈ 1.97 · 10−3.
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It is not always possible to find an analytical estimate of the upper
bound of G(β), as we did in (6.32). Numerical evaluation may be needed.
Furthermore, the information on the amplification of the round-off error
at different wavelengths—that is, the information on the behavior of the
function G(β)—can be useful for understanding the properties of a finite
difference scheme. It is, therefore, convenient and customary to plot the
entire G(β) in Cartesian or, as illustrated in Figure 6.5, in polar coordi-
nates. In the latter case, β and G serve as the polar angle and radius,
respectively. A scheme is deemed stable if the entire curve G(β) at
0 < β < π lies within the unit radius circle G = 1. For example, curves
in Figure 6.5 show that the simple explicit scheme (6.2) applied to the
one-dimensional heat equation is stable at r = 0.4 and unstable at r = 0.6.

The stability results (6.28) and (6.32) are only valid for the particular
example when the scheme (6.2) is applied to the heat equation, but the
procedure we used to arrive at these results is universal and can be used
for other schemes and other equations. Let us reiterate the main steps:

• The equation for round-off error is derived by substituting the expres-
sion (6.9) into the finite difference scheme.

• Fourier decomposition (6.14) is assumed for the round-off error.
• The error equation is solved for separate Fourier modes to find the

amplification factor G(β).
• The stability criterion such as, for example (6.32), is derived.

The comment is in order concerning whether we can apply the methods
and results of the Neumann stability analysis developed for simple model

b/p

G
0 1 2

Unstable

Stable

Simple explicit method
for heat equation

r = 0.4

r = 0.6
0.5

1

Figure 6.5 Amplification factor G for simple explicit scheme applied to heat
equation (6.1).
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problems, such as (6.1), to significantly more complex equations such as
the full Navier-Stokes system. The mathematically rigorous answer is no.
Most importantly, the model equations are linear with constant coeffi-
cients. Only for such systems the exponential solution (6.18) exists. On
the contrary, the realistic equations of fluid flows and convective heat
transfer are almost always nonlinear and, often, include variable coeffi-
cients. We will return to this question in the following chapters and show
that the stability of time integration of complex equation can be analyzed
in approximate sense using the criteria derived for model systems.

Let us consider another example—the fully implicit scheme for the
heat equation (6.1). The scheme was introduced in Chapter 4. It reads

un+1
i − un

i

�t
= a2 un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2
+ f n+1

i . (6.33)

Following the procedure of the Neumann stability analysis (see
(6.9)–(6.12)), we derive the equation for the round-off error

εn+1
i − εn

i

�t
= a2 εn+1

i+1 − 2εn+1
i + εn+1

i−1

(�x)2
. (6.34)

Substituting (6.22) and (6.23) and dividing by ecm tn
eıkm xi we obtain

ecm�t − 1

�t
= a2ecm�t e−ıkm�x − 2 + eıkm�x

(�x)2
, (6.35)

which can be rewritten as

ecm�t
[
1 − r

(
e−ıkm�x − 2 + eıkm�x

)]
= 1, (6.36)

or, with (6.27),

ecm�t [1 + 2r − 2r cos β] = 1. (6.37)

Using the trigonometric identity we find the amplification factor as

G(β) = 1

1 + 4r sin2(β/2)
. (6.38)

The plot of G(β) is shown in Figure 6.6. It illustrates the fact that the
stability condition G(β) ≤ 1 is satisfied for any r ≥ 0. This conclusion is
typical for implicit schemes. Many of them (but not all!) are uncondition-
ally stable (i.e., stable for any choice of the time and space discretization
steps).
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b/p

G
0 1 2

Unstable

Stable

Simple implicit method
for heat equation

r = 0.4

r = 10
0.5

1

Figure 6.6 Amplification factor G for simple implicit scheme applied to heat
equation (6.1).

6.2.2 Matrix Method

The matrix method is another approach to the stability analysis. It can be
used for two-layer schemes, i.e. for the schemes with equations containing
values of u at not more than two consecutive time layers. The equation
for the round-off error, such as, for example, (6.12) can be expressed in
the matrix form:

εn+1 = A · εn or εn+1 = A · A · · · A︸ ︷︷ ︸
n+1

·ε0 = An+1 · ε0, (6.39)

where A is a square matrix N × N . In our example of a simple explicit
scheme (6.2) applied to the heat equation, the matrix has zero elements
except for the three main diagonals:

A =

⎛⎜⎜⎜⎜⎝
(1 − 2r) r 0 . . . . . . 0

r (1 − 2r) r 0 . . . 0
0 r (1 − 2r) r 0 . . .
. . . . . . . . . . . . . . . . . .
. . . . . . 0 r (1 − 2r) r
0 . . . . . . 0 r (1 − 2r)

⎞⎟⎟⎟⎟⎠ ,

where r = a2�t/(�x)2. In the cases when the boundary conditions affect
the stability, their approximation is included into the matrix.

It can be shown that the vector norm ‖εn+1‖ of the round-off error
evolving according to (6.39) remains bounded if the eigenvalues of A are
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all different and have absolute values less or equal than 1:

|λm | ≤ 1, ∀ m = 1, . . . , N . (6.40)

In our example, the tridiagonal form of the matrix simplifies the task of
finding the eigenvalues. There is a direct formula

λm = 1 − 4r sin2
[

mπ

2(N + 1)

]
.

In more general cases, when the analytical formulas do not exist, the eigen-
values can be found using one of the approximate numerical methods. The
stability criterion (6.40) leads to

−1 ≤ 1 − 4r sin2
[

mπ

2(N + 1)

]
≤ 1.

The right-hand condition is always satisfied, while the left-hand condition
gives

r sin2
[

mπ

2(N + 1)

]
≤ 1

2
.

The inequality is true for any m if

r ≤ 1

2
. (6.41)

The Neumann and matrix methods deal with the same subject, the
round-off error, and have the same purpose, to establish conditions under
which the error remains bounded. There are some differences, which are
briefly discussed here.

The stability criteria produced by the two methods can, in general, be
different. This is not a serious concern for us because they coincide in
almost all practically important cases.

There is a difference in the range of applicability. The matrix method
just described can only be applied to two-layer schemes. The limitation
is quite strong since, as we will see in the next chapters, there are many
powerful and popular multilevel schemes, in which the finite difference
equations connect values of u at three or more time layers. On the contrary,
the Neumann method can be applied, at least theoretically, to schemes with
any number of layers.

The matrix method has an advantage that it can include the boundary
conditions of Dirichlet and Neumann type into the stability analysis. The
Neumann method disregards the boundary conditions.
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6.3 IMPLICIT VERSUS EXPLICIT SCHEMES—STABILITY
AND EFFICIENCY CONSIDERATIONS

We saw on the example of the two schemes for the heat equation that the
implicit and explicit methods have very different stability characteristics.
For the explicit schemes, the time-step limitation can be quite severe,
requiring small �t and, thus, large number of time steps. For example, a
solution using the simple explicit method (6.2) with �x = 0.01π is stable
only if �t < 1.97 · 10−3, which means that about 2.5 × 104 time steps are
needed to cover the interval 0 < t < 50. On the contrary, many implicit
methods, such as the simple implicit method (6.33), are unconditionally
stable. The solution can be completed in much fewer time steps, say 103

or even 102.
At first glance, the implicit methods are much more efficient and have

to be invariably used. A more careful consideration, though, shows that
the situation is complex and case-specific.

Two important factors have to be considered. The first is that, although
we can choose the time step of an implicit scheme as large as desired,
caution must be exercised. If �t is too large, the numerical solution,
albeit stable, can suffer from large truncation errors. For example, the
simple implicit method (6.33) has T.E. = O(�t , (�x)2) and selecting,
say, �t = 1 would not be a good idea, if one is looking for an accurate
representation of the time evolution of u.

The situation is different when we are interested only in the final
equilibrium state and not in the transient process leading to it. In this
case, using an implicit method with large �t is justified. As illustrated in
Figure 6.7, the numerical solution obtained with a large time step does
not accurately represent the evolution of the system. The final state, how-
ever, is a solution of a steady-state equation. The accuracy of numerical
approximation depends on �x and order of spatial approximation, but not
on �t .

The second factor is the computational cost. As opposite to the explicit
schemes, where the time advancement is a relatively simple and com-
putationally inexpensive task (see (6.2)), the implicit approach requires
us to solve a system of coupled linear algebraic equations at every time
layer. The total number of equations is equal to the number of unknowns
multiplied by the number the space grid points, which can be quite large.

Table 6.1 summarizes the advantages and disadvantages of the implicit
and explicit approaches. They were illustrated in this section on the
example of just two schemes for the heat equation, but apply to the
solution of all marching problems in general.
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Large time step

t

u

Equilibrium state

Exact solution

Small time step

Figure 6.7 Effect of time step on solution by an implicit unconditionally stable
scheme. Small �t guarantees accurate representation of the entire solution,

including the transient part. Accuracy is low for the transient part if �t is large, but
the final equilibrium state is reached faster.

Table 6.1 Comparison between Implicit and Explicit Approaches to
Solution of Marching Problems

Explicit Schemes Implicit Schemes

Advantages • Small amount of com-
putations is needed for
one time step.

• Accurate solution is
generated if stability
criteria are satisfied and
sufficiently small �x ,
�t are used.

• Easy to program.

• No or low stability con-
straints. Large �t can be
used to achieve the equilib-
rium state in shorter time.

• Accurate solution is gen-
erated if sufficiently small
�x , �t are used.

Disadvantages • Stability constraints.
Often, very small �t
must be taken, which
may lead to large total
amount of computa-
tions.

• Larger amount of compu-
tations is needed for one
time step, which may lead
to large total amount of
computations.

• More difficult to program.
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PROBLEMS

1. Can the numerical instability be avoided by using higher precision
(larger number of decimal digits) in the computations, thus reduc-
ing the round-off error? If not, what would be the effect of higher
precision?

2. Verify your answers to problem 1 in a simple computational exper-
iment. Use the simple explicit scheme (6.2) to compute the solution
of the example problem discussed in the beginning of the chapter.
Take r = 0.6 and run computations with different levels of precision,
for example, with simple and double precision in FORTRAN.

3. Consider the heat equation (6.1) with a = 0.1 solved in the interval
0 < x < 0.1 using the simple explicit method (6.2). The number of
grid points in the x -direction is N = 101 including the two points
at the boundaries of the interval. What is the maximum time step
�t that allows us to avoid instability?

4. Consider the same question as in the previous problem, but for the
simple implicit method.

5. Use the Neumann analysis to determine stability properties of the
scheme

un+1
i − un

i

�t
+ c

un
i − un

i−1

�x
= 0

applied to the linear convection equation ut + cux = 0, where c is
a positive constant.

6. Answer the same question as in the previous problem but for the
scheme

un+1
i − un

i

�t
+ c

un
i+1 − un

i−1

2�x
= 0.
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APPLICATION TO MODEL
EQUATIONS

In this chapter we present a few selected schemes for one-dimensional
unsteady model equations. Heat and linear convection equations are con-
sidered as the simplest examples of parabolic and hyperbolic systems. We
also solve the Burgers equation to demonstrate the difficulties brought by
nonlinearity and the possible approach to resolving them. Our goal is not
to provide an extensive review of numerous schemes developed over the
decades of existence of CFD. On the contrary, the number of the dis-
cussed schemes will be limited to the minimum needed to illustrate the
distinctive features, pitfalls, and successive strategies typical for each type
of PDE. The one-dimensional model equations are particularly helpful in
this regard, since they provide the advantages of simplicity and existence
of exact analytical solutions. As the last comment, since the equations
are one-dimensional, there is no or little difference between the results of
the finite difference and finite volume approaches. The schemes discussed
in this chapter can be developed following either of these techniques of
spatial discretization.

7.1 LINEAR CONVECTION EQUATION

The one-dimensional wave equation, a representative of the hyperbolic
equations of second order, is

∂2u

∂t2
= c2 ∂2u

∂x2
. (7.1)
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The solution can be described as a combination of two waves propagating
in the opposite directions:

u(x , t) = F (x + ct) + G(x − ct), (7.2)

where F and G are functions defined by initial and boundary conditions.
Although (7.1) is simple already, the principal features of the finite differ-
ence schemes for hyperbolic equations can be investigated on the example
of an even simpler linear convection equation:

∂u

∂t
+ c

∂u

∂x
= 0, c > 0. (7.3)

Our interest in this equation is also justified by the direct similarity
between its structure and the structure of the material derivative Du/Dt ≡
∂u/∂t + (V · ∇)u present in the governing equations of fluid mechanics
and heat transfer.

The linear convection equation has the solution in the form of a single
wave

u(x , t) = F (x − ct) (7.4)

propagating in the positive x -direction with the constant speed c (see
Figure 7.1). The solution can be easily found, if we know the initial
condition

u(x , 0) = F (x) (7.5)

and the boundary condition at the low-x boundary of the computational
domain. Note that, since the equation is of the first order, only one bound-
ary condition is needed. It has to be on the left end in agreement with the
wave propagation to the right.

u(x,t)

x

x = ct

Figure 7.1 A solution of the linear convection equation (7.3).



7.1 LINEAR CONVECTION EQUATION 123

7.1.1 Simple Explicit Schemes

We start with the simplest possible schemes. Equation (7.3) is approxi-
mated at the grid point (xi , t n) using the first-order forward difference for
the time derivative and the first-order forward, backward, or second-order
central formula for the space derivative. This results in three different
schemes illustrated in Figure 7.2:

un+1
i − un

i

�t
+ c

un
i+1 − un

i

�x
= 0, T.E. = O(�t , �x), (7.6)

un+1
i − un

i

�t
+ c

un
i − un

i−1

�x
= 0, T.E. = O(�t , �x), (7.7)

un+1
i − un

i

�t
+ c

un
i+1 − un

i−1

2�x
= 0, T.E. = O(�t , (�x)2). (7.8)

The same schemes can be developed with the finite volume approach.
The upwind scheme (7.7) was, in fact, derived in section 5.3.1 using the
upwind interpolation (5.17) of the convective fluxes ui+1/2 and ui−1/2 at
the boundaries of the cell 
i = [xi−1/2, xi+1/2]. Using the linear inter-
polation (5.21), we would obtain the scheme (7.8). In order to obtain
the scheme (7.6), we would have to use the downwind interpolation
ui+1/2 ≈ ui+1, ui−1/2 ≈ ui .

Let us analyze the stability of the derived schemes using the Neumann
algorithm (see section 6.2.1). Since the PDE under consideration is linear,
the same difference equations (7.6)–(7.8) hold for the round-off error ε.
Dividing the equations by εn

i , we obtain, for the ratio ea�t = εn+1
i /εn

i :

ea�t − 1

�t
+ c

eıβ − 1

�x
= 0, (7.9)

ea�t − 1

�t
+ c

1 − e−ıβ

�x
= 0, (7.10)

ea�t − 1

�t
+ c

eıβ − e−ıβ

2�x
= 0, (7.11)

where 2π/N ≤ β ≤ π stands for km�x , and km is the wavenumber of the
Fourier harmonics constituting the error.
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Figure 7.2 Finite difference molecules and amplification factors of the simple
explicit schemes applied to the wave equation (7.3): (a) forward scheme (7.6);

(b) upwind scheme (7.7); (c) central scheme (7.8).

The amplification factors G = |ea�t | are, respectively,

G = ∣∣1 − ν(eıβ − 1)
∣∣ = ∣∣1 + ν − νeıβ

∣∣ , (7.12)

G = ∣∣1 − ν(1 − e−ıβ)
∣∣ = ∣∣1 − ν + νe−ıβ

∣∣ , (7.13)

G = ∣∣1 − ν(eıβ − e−ıβ)
∣∣ = |1 − νı sin β| , (7.14)
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where we use the Courant coefficient

ν = c
�t

�x
. (7.15)

The Courant coefficient plays a special role in the stability of schemes
for hyperbolic equations, similarly to the coefficient r for parabolic
equations (see (6.31)). The amplification factors (7.12)–(7.14) are
plotted in Figure 7.2 as functions of β. We see that the forward and
central schemes (7.6) and (7.8) are unconditionally unstable (unstable
for any choice of time and space discretization steps), which makes
them worthless. By contrast, the scheme (7.7) is stable if ν satisfies the
Courant-Friedrichs-Lewy (often abbreviated to CFL) stability condition:

0 ≤ ν = c
�t

�x
≤ 1. (7.16)

The scheme (7.7) is called the first-order upstream or upwind method.
The modified equation for the upwind scheme is

ut + cux = c�x

2
(1 − ν)uxx − c(�x)2

6
(2ν2 − 3ν + 1)uxxx

+ O((�x)3, (�x)2�t , �x(�t)2, (�t)3). (7.17)

The leading term of the truncation error is a numerical dissipation term.
The fact that this term is of the first order means that the numerical
dissipation is strong, unless a very fine grid is used. This is a serious
problem, not only for the particular scheme (7.7), but, in general, for the
schemes based on the upwind interpolation.

The last comment concerns a remarkable simplification of the upwind
scheme, which is achieved if ν = 1 is chosen. As one can see in (7.17),
coefficients at dominating dissipation and dispersion errors become zero.
In fact, the entire truncation error can be shown to vanish, and the scheme
reduces to the so-called shift method

un+1
i = un

i−1, (7.18)

which is an exact solution obtained by the method of characteristics.

7.1.2 Other Schemes

Simple Implicit Scheme: The simple implicit scheme for (7.3) is
obtained by approximating the equation at (xi , t n+1) using backward
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t n+1

xxi xi+1
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xi−1(b)

t n+1

Figure 7.3 Finite difference molecules of schemes applied to the wave equation
(7.3). (a) Simple implicit scheme (7.19); (b) Leapfrog scheme (7.21).

difference for the time derivative and central difference for the space
derivative:

un+1
i − un

i

�t
+ c

un+1
i+1 − un+1

i−1

2�x
= 0. (7.19)

The finite difference molecule is shown in Figure 7.3a. This method is
unconditionally stable and has the truncation error O(�t , (�x)2). The
modified equation

ut + cux =
(

c2�t

2

)
uxx −

(
c(�x)2

6
+ 1

3
c3(�t)2

)
uxxx + · · · (7.20)

shows that, as typical for the first-order methods, the truncation error is
dominated by numerical dissipation. The dissipation is particularly strong
if one relies on the unconditional stability and uses large time steps �t .

Leapfrog Scheme: The methods just discussed are of the first order
in time. Their accuracy is low, and the solutions are distorted by strong
numerical dissipation, unless very small grid steps are used. As the first
example of the second-order schemes, we present the leapfrog method.
This method is also the first scheme we consider that involves the values of
u on more than two time layers (see Figure 7.3b). For the linear convection
equation (7.3), the leapfrog scheme is

un+1
i − un−1

i

2�t
+ c

un
i+1 − un

i−1

2�x
= 0. (7.21)

The formula can be designed by approximating the space and time deriva-
tives at (xi , t n) by central differences. The method is explicit with the
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truncation error O((�t)2, (�x)2). It is stable at ν ≤ 1. The modified
equation is

ut + cux = c(�x)2

6
(ν2 − 1)uxxx − c(�x)4

120
(9ν4 − 10ν2 + 1)uxxxxx + · · · .

(7.22)
It can be seen that numerical dispersion dominates the truncation error.
This is common for the methods of the second order in time. A remarkable
feature of the leapfrog scheme is that the right-hand side of the modified
equation does not contain the even-order derivatives of u at all. The
method generates no numerical dissipation! This is both good and bad
news. Some amount of numerical dissipation is needed to suppress the
round-off errors. The leapfrog method is a nice illustration of this state-
ment. In the absence of numerical dissipation, the method is neutrally
stable. The amplification factor is

G = ∣∣±(1 − ν2 sin2 β)1/2 − iν sin β
∣∣ . (7.23)

It is larger than 1 if ν > 1. An interesting behavior is observed when
ν ≤ 1. The amplification factor is G ≡ 1 for all such ν. The round-off
errors introduced at every time step neither grow nor decay as the solution
advances.

Being, historically, one of the first second-order methods, the leapfrog
scheme was quite popular during the early years of CFD (1960s and
1970s). It has lost popularity to other methods, partially because of one
serious drawback associated with the leapfrog nature of the solution. It can
be seen in the equation (7.21) and Figure 7.3b that the scheme connects
un+1

i with un
i−1, un

i+1, and un−1
i , but not with un

i , un−1
i−1 , or un−1

i+1 . These
other values are connected with each other and with un−2

i by the finite
difference equation

un
i − un−2

i

2�t
+ c

un−1
i+1 − un−1

i−1

2�x
= 0,

which is the approximation of the PDE at the grid point (xi , t n−1). The
system of discretization equations consists of two uncoupled subsystems,
one with equations at “square” grid points in Figure 7.3b and another with
equations at “circular” points. If no extra precaution is taken, the solutions
to the two subsystems can deviate from each other (split) with time.

Lax-Wendroff Scheme: This explicit method is given by the formula

un+1
i = un

i − ν

2
(un

i+1 − un
i−1) + ν2

2
(un

i+1 − 2un
i + un

i−1), (7.24)
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where ν = c�t/�x is the Courant coefficient. At first glance, the scheme
does not look at all as an approximation of the equation (7.3). This is,
however, a consistent approximation with T.E. = O((�x)2, (�t)2). This
can be verified by the Taylor expansion method. Except for the extra term
in the right-hand side, the scheme is identical to the unstable simple central
difference scheme (7.8). This extra term is designed so as to cancel the
dominating numerical dissipation term in the modified equation for the
scheme (7.8) and, as it happens, to stabilize the scheme. The modified
equation for the Lax-Wendroff scheme is

ut + cux = −c(�x)2

6
(1 − ν2)uxxx − c(�x)3

8
ν(1 − ν2)uxxxx + · · · .

(7.25)
The truncation error is predominantly dispersive. The scheme is stable if
|ν| ≤ 1. It reduces to the shift scheme (7.18) when ν = 1.

MacCormack Scheme: This method, developed by MacCormack in
1969 is important for us as an example of the two-step predictor-corrector
methods. For the wave equation (7.3), the scheme is

Predictor: u∗
i = un

i − ν(un
i+1 − un

i )

Corrector: un+1
i = 1

2

[
un

i + u∗
i − ν

(
u∗

i − u∗
i−1

)]
. (7.26)

Although the particular form of the method can be different for different
equations, the principal approach is always the same: We calculate an
intermediate predicted solution and, then, “correct” it to achieve desired
accuracy and stability. For the MacCormack method, the truncation error
is O((�x)2, (�t)2) and the stability criterion is ν ≤ 1.

7.2 ONE-DIMENSIONAL HEAT EQUATION

As before, we employ the one-dimensional heat equation

∂u

∂t
= a2 ∂2u

∂x2
(7.27)

as the simplest representative of the parabolic family. An inhomogeneous
part f (x , t) can be added to the right-hand side without the loss of gen-
erality. We have already solved this equation in sections 4.3.6 and 6.2.1
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using the simple explicit and implicit methods. In this section, we extend
the analysis by adding another scheme and investigating the modified
equations.

7.2.1 Simple Explicit Scheme

The simple explicit method

un+1
i − un

i

�t
= a2 un

i+1 − 2un
i + un

i−1

(�x)2
(7.28)

has the truncation error O(�t , (�x)2) and is stable when the stability
parameter satisfies

r = a2�t

(�x)2
≤ 1

2
. (7.29)

Additional information can be extracted from the modified equation

ut − a2uxx =
[
−a4�t

2
+ (a�x)2

12

]
uxxxx

+
[

a6(�t)2

3
− a4�t(�x)2

12
+ a2(�x)4

360

]
uxxxxxx + · · · .

(7.30)
There are no odd-derivative terms in (7.30). This means that the truncation
error has no dispersive part. This feature is common for the finite differ-
ence schemes of second order in space applied to parabolic equations.

Another interesting feature of the modified equation (7.30) is that we
can greatly reduce the dissipation error and improve the accuracy of the
scheme by choosing �t and �x such that r = 1/6. The first term of
the truncation error vanishes, and the error becomes O((�t)2, (�x)4). To
illustrate the effect, we solve the heat equation for

0 < x < π , a = 2, u(0, t) = u(π , t) = 0, u(x , 0) = sin(5x). (7.31)

The solution can be compared with the exact solution uexact =
sin(5x) exp(−(5a)2t). The calculations are performed at deliberately low
space resolution with just N = 15 grid points. Two time steps are used,
one corresponding to r = 0.4 and another to r = 1/6. It is clearly visible
in Figure 7.4 that the solution with r = 1/6 has much higher accuracy.



130 APPLICATION TO MODEL EQUATIONS

t

u
(8

p
/1

5,
t)

0 0.05 0.1 0.15
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

(a) t

e
(8

p
/1

5,
t)

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

(b)

Figure 7.4 Solution of the heat equation problem (7.27), (7.31) by simple explicit
method. Space resolution is �x = π/15. The time step is such that r = 1/6 (solid

lines) or r = 0.4 (dashed lines). (a) Solution at x = x8 = 8π/15 as a function of time.
The curve for the exact solution practically coincides with the curve for r = 1/6.

(b) Relative error ε = |(ucalculated − uexact)/uexact| at x = 8π/15.

7.2.2 Simple Implicit Scheme

The simple implicit method is

un+1
i − un

i

�t
= a2 un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2
. (7.32)

The method is unconditionally stable and has the truncation error
O(�t , (�x)2). Analysis of the modified equation

ut − a2uxx =
[

a4�t

2
+ (a�x)2

12

]
uxxxx

+
[

a6(�t)2

3
+ a4�t(�x)2

12
+ a2(�x)4

360

]
uxxxxxx + · · ·

(7.33)
shows that the truncation error is purely dissipative.

Let us compare (7.33) with the modified equation (7.30) for the simple
explicit method. The amplitude of the dominating part of the truncation
error is determined by the coefficient at uxxxx . In the explicit scheme, the
terms in this coefficient are of different signs so they cancel each other,
either completely at r = 1/6 or partially at other values of r . No such
cancelation occurs in the implicit scheme. This means that, at the same
�x and �t , the explicit method is more accurate than the implicit one.
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Figure 7.5 Difference molecule for the Crank-Nicolson scheme (7.34).

7.2.3 Crank-Nicolson Scheme

Implicit and explicit approaches can be mixed together in one scheme,
sometimes providing remarkably good results. An important example is
the Crank-Nicolson scheme:

un+1
i − un

i

�t
= a2 1

2

(un
i+1 − 2un

i + un
i−1) + (un+1

i+1 − 2un+1
i + un+1

i−1 )

(�x)2
.

(7.34)
The scheme is illustrated by the difference molecule in Figure 7.5. We
can obtain this scheme by approximating the PDE at the point (xi , t n+1/2)

located at the imaginary half-integer time layer t n+1/2 = (t n + t n+1)/2.
The central difference formula (4.10) with the grid step �t/2 is applied
to the time derivative ∂u/∂t at t n+1/2:

∂u

∂t

∣∣∣∣n+1/2

i
= un+1

i − un
i

�t
+ O((�t)2). (7.35)

For the space derivative, we use the second-order central difference (4.19)

applied to the result of the interpolation un+1/2
i =

(
un

i + un+1
i

)
/2:

∂2u

∂x2

∣∣∣∣n+1/2

i

= 1

2

(
un

i+1 − 2un
i + un

i−1

(�x)2
+ un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2

)
.

As discussed in section 4.2.7, the interpolation procedure generates
the error of the order of O

(
(�t)2

)
. The cumulative truncation error

of (7.34) is T.E. = O
(
(�t)2, (�x)2

)
. The time discretization by the

Crank-Nicòlson scheme (7.34) is more accurate than the discretizations
by the fully explicit and implicit schemes (7.28) and (7.32).
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Applying the Neumann stability analysis, we find that the amplification
factor of (7.34) is

G =
∣∣∣∣1 − r(1 − cos β)

1 + r(1 − cos β)

∣∣∣∣ . (7.36)

With positive r , this means that the scheme is unconditionally stable.

7.3 BURGERS AND GENERIC TRANSPORT EQUATIONS

We consider the Burgers equation

∂u

∂t
+ u

∂u

∂x
= μ

∂2u

∂x2
(7.37)

and the generic transport equation

∂φ

∂t
+ u

∂φ

∂x
= μ

∂2φ

∂x2
(7.38)

introduced in section 3.1.1. Each of them combines three important fea-
tures of the Navier-Stokes equations: unsteadiness, nonlinear convection,
and dissipation (diffusion). The equations are hyperbolic at μ = 0. They
are formally parabolic at μ> 0, although they may be viewed as of mixed
hyperbolic-parabolic type. In the latter view, the hyperbolic character is
given by the combination of the first and second terms, while the parabolic
character is due to the combination of the first and third terms.

We will consider one scheme for the Burgers equation (7.37). It can be
easily modified for the generic transport equation. The scheme uses central
differences of the second order for the space derivatives and forward
difference of the first order for the time derivative:

un+1
i − un

i

�t
+ un

i

un
i+1 − un

i−1

2�x
= μ

un
i+1 − 2un

i + un
i−1

(�x)2
. (7.39)

The scheme is explicit with the truncation error T.E. = O(�t , (�x)2).
The stability analysis of (7.39) is nontrivial, primarily because the

equation is nonlinear. The standard Neumann stability analysis cannot,
strictly speaking, be applied because it assumes existence of exponential
solutions of the equations for the round-off error, which is true only for
analysis of linear PDE with constant coefficients. The common approach
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in the presence of nonlinearity is to “freeze” the coefficient, such as u in
(7.37) and (7.38); that is, to act as if it were a constant. For the scheme
(7.39), this means conducting the stability analysis for the linearized dis-
cretization equation with un

i replaced by a constant c. Such analysis leads
to two stability constraints:

c2�t ≤ 2μ, which can be rewritten as ν2 ≤ 2r , and r ≤ 1/2, (7.40)

where, as before, ν = c�t/�x and r = μ�t/(�x)2.
This must be true for any u. This means that we must evaluate the

maximum amplitude of the solution

umax = max



|u|

and rewrite the stability criteria as

(umax)
2�t ≤ 2μ, and r ≤ 1/2. (7.41)

The same criteria should be satisfied by the scheme (7.39) applied to the
generic transport equation.

Another aspect of the stability analysis of (7.39) and other more com-
plex equations, such as the Navier-Stokes system, concerns the possibility
of using the stability criteria derived for the model linear convection and
heat equations (7.3) and (7.27). One may be tempted to consider (7.39)
as a combination of the central difference scheme (7.8) and the simple
explicit scheme (7.28) applied, respectively, to the convective and dif-
fusive parts of the Burgers equation. It seems logical that the stability
conditions for (7.39) should be a result of combining the criteria devel-
oped for the corresponding model schemes (7.8) and (7.28). Quite often,
the logic works. We can assume that a scheme is stable if the criteria
derived for the schemes used for the convective and diffusive parts are
satisfied and, then, verify the assumption in test calculations.

Sometimes, however, the approach results in excessively restrictive
conditions. For example, applying it to (7.39) would lead to the conclusion
that the scheme is unconditionally unstable since the scheme (7.8) used to
approximate the convective part is unconditionally unstable (see section
7.1.1). A more accurate stability analysis of (7.39), however, shows that
the scheme is stabilized by the presence of the diffusion term, provided
the diffusion coefficient is large enough, as specified by the first condition
in (7.40).
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7.4 METHOD OF LINES APPROACH

The schemes considered so far were based on simultaneous discretization
of time and space derivatives. This approach has the advantage that the
scheme is formulated in its final form from the very beginning. Its order
of approximation and stability properties can be fully analyzed. Further-
more, some schemes can be optimized in such a way that certain terms
of truncation error cancel each other, so that the accuracy is improved
(the optimization of the simple explicit scheme for the heat equation at
r = 1/6 is a good example).

There is an alternative approach called method of lines , according to
which the operations of spatial and time discretization are separated. The
method of lines can be applied to any PDE or a system of PDEs, which
can be represented in the form that includes one time derivative of the first
order in each equation. The spatial discretization is performed first, and
the resulting system of equations is written down as a system of ordinary
differential equations

ut = R[u], (7.42)

where u(t) is the vector of spatially discretized variables (grid points val-
ues in the case of finite difference schemes or amplitudes of trial functions
in the case of spectral methods) and R[u] is a differential operator that
includes approximations of spatial derivatives of u and other terms.

The system (7.42) is solved using one of the time-integration methods
developed for the ordinary differential equations. We have already used
this approach when we illustrated the spectral methods in section 3.3.1.

The numerical stability to round-off errors is determined by the type
of the time-integration scheme and by the properties of the operator R[u].
Obtaining the detailed information including the amplification factor and
exact stability criteria typically requires analysis of a complete discretized
system, although some tendencies can often be predicted on the basis of
the time-integration scheme alone.

Many methods of time integration of the general equation (7.42) are
available. We will consider two families of multilevel schemes: Adams
and Runge-Kutta methods. They can be effectively applied, in the way
just outlined, to PDE of both hyperbolic and parabolic types.

7.4.1 Adams Methods

The Adams methods are derived by polynomial fitting over several con-
secutive time layers. They can be explicit (Adams-Bashforth) or implicit
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(Adams-Moulton) methods. The general formulas are

un+1 = un + �t
q∑

j=0

Aj Rn−j Adams-Bashforth, (7.43)

un+1 = un + �t
q−1∑

j=−1

Aj Rn−j Adams-Moulton, (7.44)

where un is the spatially discretized vector of solution at the time layer
t n and Rn−j = R

[
un−j

]
. The scheme coefficients Aj are determined by

assuming polynomial behavior of u(t). The number q of terms in the
right-hand side determines the order of accuracy. For example, at q = 0,
we obtain the well-known explicit and implicit Euler methods with T.E. ∼
O(�t):

un+1 = un + �tRn , (7.45)

un+1 = un + �tRn+1. (7.46)

Formulas with q = 1 and q = 2 give schemes of the second and third
order, respectively:

un+1 = un + �t

2

(
3Rn − Rn−1)+ O

(
(�t)2) , (7.47)

un+1 = un + �t

2

(
Rn+1 + Rn)+ O

(
(�t)2) , (7.48)

un+1 = un + �t

12

(
23Rn − 16Rn−1 + 5Rn−2)+ O

(
(�t)3) , (7.49)

un+1 = un + �t

12

(
5Rn+1 + 8Rn − Rn−1)+ O

(
(�t)3) . (7.50)

7.4.2 Runge-Kutta Methods

Generally, there exists an infinite number of the multistep Runge-Kutta
schemes, which can be formulated with an arbitrary order of accuracy.
For example, one method of the second order is

Step 1: u(1) = un + �t

2
Rn

Step 2: un+1 = un + �tR(1), (7.51)
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where Rn = R [un ] and R(1) = R
[
u(1)
]

are the spatial operators calculated
for the solution at previous time layer un and the intermediate solution
u(1). A popular method of the fourth order is

Step 1: u(1) = un + �t

2
Rn

Step 2: u(2) = un + �t

2
R(1)

Step 3: u(3) = un + �tR(2) (7.52)

Step 4: un+1 = un + �t

6

(
Rn + 2R(1) + 2R(2) + R(3)

)
.

As an example, we can solve the linear convection equation (7.3) using
the Runge-Kutta scheme of the second order (7.51) and applying central
differences for spatial discretization:

Rn = −c
un

i+1 − un
i−1

2�x
+ O((�x)2),

R(1) = −c
u(1)

i+1 − u(1)
i−1

2�x
+ O((�x)2).

The resulting scheme has T.E. = O((�x)2, (�t)2).
The main advantages of the Runge-Kutta methods are their flexibility

(a scheme of any order in time can be developed) and good stability prop-
erties. They are not unconditionally stable, but the largest allowed time
step is typically large in comparison with steps required by other explicit
methods. The most serious disadvantage is the necessity to calculate the
operator R[u] several times on every time step.

7.5 IMPLICIT SCHEMES: SOLUTION OF TRIDIAGONAL
SYSTEMS BY THOMAS ALGORITHM

Any implicit scheme requires solution of a system of linear algebraic
equations at every time step. Typically, this is a computationally challeng-
ing task, since the system is very large. Its size in a three-dimensional
CFD analysis can be ∼ 106 or even larger. There exists a variety of meth-
ods for solving such systems. Some of them are discussed in Chapter 8.
Here, we consider the special case when the solution of a one-dimensional
PDE is calculated. We assume that the time discretization involves only
two subsequent time layers and the space discretization is done using a
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finite difference scheme based on not more than three neighboring points.
The resulting system of linear equations has a tridiagonal matrix and can
be solved using the very efficient form of the Gauss elimination called
double sweep or Thomas algorithm. The technique is credited to L. H.
Thomas, who published it in 1949, although the idea is simple and, prob-
ably, occurred independently to other specialists dealing with the same
problem.

Let us illustrate the method on the example of the simple implicit
scheme

un+1
i − un

i

�t
= a2 un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2
+ f n+1

i

written for the modified heat equation

∂u

∂t
= a2 ∂2u

∂x2
+ f (x , t).

We assume that the solution is sought in the interval 0 ≤ x ≤ L on a
uniform grid xi = i�x , i = 0, . . . , N , with x0 = 0 and xN = L. To demon-
strate some variations of the method, we impose the Dirichlet boundary
condition u(0, t) = g0 at x = 0 and the Neumann boundary condition
(∂u/∂x)(L, t) = g1 at x = L.

The finite difference formula for the interior points can be rewritten as

ai u
n+1
i+1 + di u

n+1
i + bi u

n+1
i−1 = ci , i = 1, 2, . . . , N − 1, (7.53)

where we used the abbreviations for the constant coefficients:

ai = −a2�t/�x2, bi = −a2�t/�x2, di = 1 + 2a2�t/�x2,

ci = un
i + �tf n+1

i .

The boundary condition at x = 0 can be expressed as

a0un+1
1 + d0un+1

0 = c0, with a0 = 0, d0 = 1, and c0 = g0. (7.54)

The boundary condition at x = L must be approximated by a one-sided
finite difference formula. It is important to maintain the second order of
accuracy, so as not to compromise the accuracy of the entire solution. We
employ the formula (4.14), which results in

3

2
un+1

N − 2un+1
N −1 + 1

2
un+1

N −2 = �xg1.
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For future use, we have to combine this equation with the equation (7.53)
written for the point xN −1

aN −1un+1
N + dN −1un+1

N −1 + bN −1un+1
N −2 = cN −1

and use the system of two equations to exclude the unknown un+1
N −2 and

obtain a linear relation between un+1
N −1 and un+1

N

bN un+1
N −1 + dN un+1

N = cN , (7.55)

where bN = dN −1 + 4bN −1, dN = aN −1 − 3bN −1, and cN = cN −1−
2�xbN −1g1.

The entire system of equations can be written as

⎛⎜⎜⎜⎜⎜⎜⎝

d0 a0 0 . . . . . . . . . 0
b1 d1 a1 0 . . . . . . 0
0 b2 d2 a2 0 . . . 0
0 0 ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗ 0
0 . . . . . . 0 bN −1 dN −1 aN −1
0 . . . . . . . . . 0 bN dN

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u0
u1
u2
...
...

uN −1
uN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
...
...

cN −1
cN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(7.56)
where ui is substituted for un+1

i for brevity.
We see that the coefficient matrix in the left-hand side is, indeed, tridi-

agonal. Its elements are zeros except for the main diagonal and adjacent
sub- and super-diagonals.

The Thomas algorithm includes two stages, or sweeps . During the first
stage, the forward sweep, the elementary row operations are applied to
transform the coefficient matrix into upper triangular form. As known
from linear algebra, an elementary row operation applied simultaneously
to the coefficient matrix and the right-hand side does not affect the solution
of a matric equation. First, we multiply the row 0 by −b1/d0 and add to
the row 1 in order to remove b1:

d ′
1 = d1 − b1

d0
a0

b ′
1 = b1 − b1

d0
d0 = 0 (7.57)

c ′
1 = c1 − b1

d0
c0.
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Similar operation with the transformed row 1 is then used to remove b2
in row 2. The procedure continues with rows 3, 4, and so on. The general
formula is

d ′
i = di − bi

d ′
i−1

ai−1

b ′
i = bi − bi

d ′
i−1

d ′
i−1 = 0 (7.58)

c ′
i = ci − bi

d ′
i−1

c ′
i−1, i = 1, 2, . . . , N .

Atthe end of the forward sweep, the matrix equation becomes⎛⎜⎜⎜⎜⎜⎜⎝

d0 a0 0 . . . . . . . . . 0
0 d ′

1 a1 0 . . . . . . 0
0 0 d ′

2 a2 0 . . . 0
0 0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗ 0
0 . . . . . . 0 0 d ′

N −1 aN −1
0 . . . . . . . . . 0 0 d ′

N

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u0
u1
u2
...
...

uN −1
uN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c0
c ′

1
c ′

2...
...

c ′
N −1
c ′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.59)
It now has an upper triangular coefficient matrix in the left-hand side.

In the backward sweep, the transformed system is used to find ui . First,
we determine

uN = c ′
N /d ′

N . (7.60)

Then, the value of uN and the (N − 1)st equation are used to find uN −1:

uN −1 = (c ′
N −1 − aN −1uN )/d ′

N −1.

The procedure continues backward to find the entire solution according to

ui = (c ′
i − ai ui+1)/d ′

i , i = N − 1, N − 2, . . . , 1,

u0 = (c0 − a0u1)/d ′
1. (7.61)

The Thomas algorithm effectively utilizes the tridiagonal structure
of the matrix and completes the solution of the linear system (7.56)
in only O(N ) arithmetic operations. This is in sharp contrast with
the standard Gauss elimination procedure that would require O(N 3)

operations. Obviously, the Thomas algorithm should be used wherever
possible.
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PROBLEMS

1. Compare the schemes introduced in section 7.1 for the linear convec-
tion equation:

a) Simple explicit schemes (7.6–7.8)
b) Simple implicit scheme (7.19)
c) Leapfrog scheme (7.21)
d) Lax-Wendroff scheme (7.24)
e) MacCormack scheme (7.26).

For every scheme, describe its stability properties (write the stability
criterion, where appropriate) and order of approximation. Determine,
where data are available, whether the numerical dissipation or numer-
ical dispersion dominates the truncation error. Summarize the discus-
sion stating, for every scheme, how appropriate is it in your opinion
for solution of the linear convection equation. Does the scheme accu-
rately reproduce the traveling wave solution shown in Figure 7.1?
What are the main advantages and disadvantages of the scheme?

2. Repeat Problem 1 for the following schemes applied to the one-
dimensional heat equation:

a) Simple explicit scheme (7.28)
b) Simple implicit scheme (7.32)
c) Crank-Nicolson scheme (7.34).

3. Modify the scheme (7.39) for the Burgers equation by changing the
central difference approximation of the convective term to the upwind
approximation. Assume that u is always positive. How does this mod-
ification change the order of approximation and the character of the
truncation error?
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4. One-dimensional heat equation is solved using the method of lines
scheme based on the central difference for space derivative and the
Adams-Bashforth scheme of second order (7.47) for time discretiza-
tion. Write the full set of discretization equations solved on one time
step.

5. Repeat Problem 4 for the scheme based on the Runge-Kutta method
of second order (7.51).

6. Consider the application of the Thomas algorithm to the simple
implicit scheme used to solve the one-dimensional heat equation
(section 7.5). Modify the algorithm for other sets of boundary
conditions:

a) Dirichlet conditions on both ends: u(0, t) = g0, u(L, t) = g1

b) Neumann conditions on both ends: (∂u/∂x)(0, t) = g0,
(∂u/∂x)(L, t) = g1.

Programming Exercises Develop the following algorithms. Test in com-
parison with exact solutions, where available:

1. Thomas algorithm for solution of a linear system with tridiagonal
matrix.

2. Upwind and leapfrog solutions of the linear convection equation
∂u/∂t + c∂u/∂x = 0 at 0 ≤ x ≤ 10 and 0 ≤ t ≤ 2, with c = 1,
the boundary condition u(0, t) = 0, and the initial condition
u(x , 0) = sin(x) if x ≤ π and u(x , 0) = 0 if x > π . Use the exact
solution of the form (7.4) for verification.

3. Simple explicit, simple implicit, and Crank-Nicolson solutions
of the one-dimensional heat equation ∂u/∂t = 4

(
∂2u/∂x2

)
at 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.1 with boundary conditions
u(0, t) = u(1, t) = 0 and initial condition u(x , 0) = sin(5πx).
Use the exact solution u(x , t) = sin(5πx) exp((−10π)2t) for
verification.
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METHODS





8

STEADY-STATE PROBLEMS

In this chapter, we consider methods that can be used to solve a system
of linear algebraic equations (a matrix equation)

A · v = c (8.1)

or a system of nonlinear algebraic equations

F(v) = 0. (8.2)

8.1 PROBLEMS REDUCIBLE TO MATRIX EQUATIONS

The matrix equation (8.1) is very common, almost unavoidable in CFD
analysis. In the case of nonlinear PDE, solution of a matrix equation
appears as a part of the iteration procedure that involves linearization.
This is discussed in section 8.4.2. If PDE are linear, (8.1) follows directly
from discretization. Several examples are considered in this section.

8.1.1 Elliptic PDE

As we discussed earlier, a typical elliptic equation describes steady-state
physical processes or processes with zero adjustment time, such as the
final temperature distribution in a body or pressure distribution in a flow
of an incompressible fluid. The simplest model equations representing the
class of elliptic PDE are the Laplace equation

145
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∂2u

∂x2
+ ∂2u

∂y2
= 0 (8.3)

and the Poisson equation

∂2u

∂x2
+ ∂2u

∂y2
= f (x , y). (8.4)

From the computational viewpoint, we deal with a steady-state equation
that has to be solved in a spatial domain 
 subject to certain boundary
conditions at the boundary S (see Figure 8.1). The boundary conditions are
typically of Dirichlet, Neumann, or Robin types. Due to the elliptic nature
of the problem, the system of discretization equations always connects
together the values of u at all grid points within 
 and at the boundary.

Five-Point Formula: For simplicity, we use a uniform rectangular
grid xi = i�x , yj = j�y with constant grid steps �x and �y . The com-
mon approach is to approximate the partial derivatives of (8.3) and (8.4)
at internal points (xi , yj ) using central differences of second order. The
finite difference molecule consists of five grid points (xi−1, yj ), (xi+1, yj ),
(xi , yj ), (xi , yj−1), and (xi , yj+1) (see Figure 8.1). For example, the dis-
cretization of (8.4) is

ui+1, j − 2ui , j + ui−1, j

(�x)2
+ ui , j+1 − 2ui , j + ui , j−1

(�y)2
= fi , j . (8.5)

To complete the system of equations, we have to add finite difference
approximations of boundary conditions at all grid points lying at the
boundary S .

xi+1xi−1 xi

yj

x

y

Ω

S

yj+1

yj−1

Figure 8.1 Features of the finite difference solution of Laplace and Poisson
equations: computational domain 
, its boundary S, rectangular grid, and

difference molecule for the five-point formula.
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Let us rewrite the system of finite difference equations in the compact
matrix form (8.1). v is now the solution vector consisting of unknowns ui , j

ordered in a single file, c is the similarly ordered vector of the right-hand
sides, and A is the coefficient matrix. Vectors can be ordered in differ-
ent ways. For example, in a rectangular domain with i = 1, . . . , Nx , j =
1, . . . , Ny , we can choose

v1 = u1,1, v2 = u2,1, . . . , vNx = uNx ,1, vNx +1 = u1,2, . . . ,

c1 = f1,1, c2 = f2,1, . . . , cNx = fNx ,1, cNx +1 = f1,2, . . . ,

which is expressed by the formulas

v(j−1)Nx+i = ui , j , c(j−1)Nx +i = fi , j , i = 1, . . . , Nx , j = 1, . . . , Ny . (8.6)

The finite difference equation (8.5) becomes one of the equations of the
matrix system (8.1):

a�,�−Nx v�−Nx + a�,�−1v�−1 + a�,�v� + a�,�+1v�+1 + a�,�+Nx v�+Nx = c�,
(8.7)

where � = (j − 1)Nx + i is the number of the grid point (xi , yj ), for which
the approximation is written, and the coefficients of the �th row of matrix
A are zero except for

a�,�−Nx = a�,�+Nx = 1

(�y)2
,

a�,�−1 = a�,�+1 = 1

(�x)2
, (8.8)

a�,� =
(

− 2

(�x)2
− 2

(�y)2

)
.

The structure of the system is illustrated in Figure 8.2. We see that
the matrix A consists mostly of zeros. The nonzero elements are a�,� on
the main diagonal, a�,�−1 and a�,�+1 on the sub- and super-diagonals, and
a�,�−Nx and a�,�+Nx on the diagonals distanced by Nx from the main.

Five-point discretization can be applied to other two-dimensional ellip-
tic equations of second order. For example, let us approximate the PDE

b(x , y)
∂2u

∂x2
+ c(x , y)

∂2u

∂y2
+ d(x , y)

∂u

∂x
+ f (x , y)u = g(x , y), (8.9)
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=

x x .. .. x .. .. .. .. .. .. ..

x x x .. .. x .. .. .. .. .. ..

.. x x x .. .. x .. .. .. .. ..

.. x .. .. x x x .. .. x .. ..

.. .. x .. .. x x x .. .. x ..

.. .. .. x .. .. x x .. .. .. x

x .. .. .. x x .. .. x .. .. ..

.. .. x x .. .. .. x .. .. .. ..

.. .. .. .. x .. .. .. x x .. ..

.. .. .. .. .. x .. .. x x x ..

.. .. .. .. .. .. x .. .. x x x

.. .. .. .. .. .. .. x .. .. x x

Nx

Nx

v12

v11

v9

v10

v8

v7

v6

v5

v4

v3

v2

v1

c12

c11

c9

c10

c8

c7

c6

c5

c4

c3

c2

c1

Figure 8.2 Structure of the matrix equation for the five-point discretization (8.5) of
two-dimensional Poisson equation. For simplicity, we show the equation for an
unnaturally crude grid with Nx = 4 and Ny = 3. In the coefficient matrix, only the
elements marked by x are nonzero. The boundary condition are not taken into

account. Doing so would replace some nonzero elements in the rows
corresponding to the boundary grid points by zeros.

where b, c, d , f , and g are known variable coefficients and the elliptic-
ity condition ac > 0 is satisfied throughout the domain 
. Using central
differences for derivatives, we obtain

bi , j
ui+1, j − 2ui , j + ui−1, j

�x2
+ ci , j

ui , j+1 − 2ui , j + ui , j−1

�y2
+

di , j
ui+1, j − ui−1, j

2�x
+ fi , j ui , j = gi , j . (8.10)

The difference molecule and the structure of the matrix equation evidently
remain the same, as in Figures 8.1 and 8.2. The only change is in the
expressions for the nonzero elements of matrix A.

Three-dimensional Case: The approach based on the approximation
of derivatives by central differences can be easily extended to the three-
dimensional case (or to the case of arbitrary dimension, should the need
arise). As an example, we develop the three-dimensional version of the
central difference formula (8.5) for the Poisson equation

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z 2
= f (x , y , z ). (8.11)
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Again, we assume for simplicity that the computational grid is uniform
and rectangular. In the z -direction, the grid step is �z and the grid points
are zk = k�z . The approximation of u at (xi , yj , zk ) is denoted as ui , j ,k .
The finite difference scheme of the second order in all three coordinates is

ui+1, j ,k − 2ui , j ,k + ui−1, j ,k

�x2
+ ui , j+1,k − 2ui , j ,k + ui , j−1,k

�y2
+

ui , j ,k+1 − 2ui , j ,k + ui , j ,k−1

�z 2
= fi , j ,k . (8.12)

Obviously, we can order the variables ui , j ,k and the right-hand sides into
one-dimensional vectors and express (8.12) as the matrix equation (8.1).

8.1.2 Implicit Integration of Nonsteady Equations

We know from section 7.5 that a matrix equation has to be solved at
every time step if an implicit scheme is used for solution of a nonsteady
one-dimensional PDE. The situation remains the same in the case of a
multidimensional problem. For example, let us consider two-dimensional
heat conduction described by the heat equation

∂u

∂t
= κ

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ Q̇ , (8.13)

and apply the Crank-Nicolson method with central differences for spatial
derivatives:

un+1
i , j − un

i , j

�t
= k

2

(un
i+1, j − 2un

i , j + un
i−1, j

(�x)2
+ un

i , j+1 − 2un
i , j + un

i , j−1

(�y)2

+ un+1
i+1, j − 2un+1

i , j + un+1
i−1, j

(�x)2
+ un+1

i , j+1 − 2un+1
i , j + un+1

i , j−1

(�y)2

)
+ Q̇i , j .

(8.14)
This can be rewritten as

un+1
i−1, j

[
− κ

2(�x)2

]
+ un+1

i+1, j

[
− κ

2(�x)2

]
+ un+1

i , j−1

[
− κ

2(�y)2

]
+

un+1
i , j+1

[
− κ

2(�y)2

]
+ un+1

i , j

[
1

�t
+ κ

(�x)2
+ κ

(�y)2

]
= ci , j , (8.15)
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where indices i and j cover all internal points of the computational grid
and

ci , j = un
i−1, j

[
κ

2(�x)2

]
+ un

i+1, j

[
κ

2(�x)2

]
+ un

i , j−1

[
κ

2(�y)2

]
+ un

i , j+1

[
κ

2(�y)2

]
+ un

i , j

[
1

�t
− κ

(�x)2
− κ

(�y)2

]
+ Q̇i , j (8.16)

is the coefficient known from the previous time step. Equations for bound-
ary conditions have to be added to the system, but we disregard them for
simplicity. Ordering the variables un+1

i , j and the right-hand sides into one-
dimensional arrays, for example, as in (8.6), we obtain the matrix equation
(8.1) for the unknowns un+1

i , j .
Another example is the solution of the Navier-Stokes equations for

nonsteady flows of incompressible fluids. The widely used projection algo-
rithms, which are discussed in Chapter 10, require solution of a Poisson
equation for pressure at every time step. The equation is mathemati-
cally equivalent to (8.11), and its finite difference approximation can be
expressed as (8.1).

We have already considered in section 7.5 the special case of one-
dimensional transient problems, where the matrix A is tridiagonal and
(8.1) can be easily solved using the Thomas algorithm. Unfortunately,
this case is an exception. In the majority of CFD problems, A is not
tridiagonal, as illustrated by the example in Figure 8.2. More complex
and computationally expensive methods have to be used. Some of these
methods are reviewed in this chapter.

It is important to mention that the more efficient methods tend to be
those utilizing the special structure of matrix A. In finite difference and
finite volume schemes, A is practically never dense —that is, densely
filled with nonzero elements. Much more often, we deal with a sparse
matrix, the majority of elements of which are zeros. Furthermore, the
nonzero elements can be clustered around the main diagonal, forming
either bands or square blocks. Such matrices are called band-diagonal or
block-diagonal, respectively.

8.2 DIRECT METHODS

From elementary linear algebra, we know two direct methods of solution
of matrix equations: the Cramer’s rule and the standard Gauss elimination.
Unfortunately, these methods, while working quite well for small matrices,
are practically useless for CFD purposes. The reason is the huge amount
of computations they require. Let the order of matrix A—that is, the total
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number of unknowns—be N . This can be a fairly large number in CFD.
For example, in a three-dimensional problem with 100 grid points in each
direction, N would be 106 multiplied by the number of variables—for
example, four (three velocity components and pressure) in the case of sim-
ple incompressible flows. The situation with the Cramer’s rule solution is
particularly hopeless, since it would require calculation of N determinants,
which means ∼ (N + 1)! operations. The Gauss elimination procedure is
more efficient, but still requires about 2N 3/3 multiplications and additions.

Cramer’s rule cannot be effectively modified for large matrices and is,
therefore, never used. By contrast, modified Gauss elimination procedures
have found some limited application.

8.2.1 Band-Diagonal and Block-Diagonal Matrices

The Gauss elimination can be greatly accelerated if the matrix A has band-
diagonal or block-diagonal structure. Importantly for the band-diagonal
matrices, the elimination operations can be arranged so that the zeros
outside the filled band remain unchanged during the elimination. One can
disregard these elements completely and conduct operations only on the
nonzero elements. This results in the total count of arithmetic operations
∼ N . The Thomas algorithm is an example of such algorithm suitable
for tridiagonal matrices. Similar, albeit more complex, methods exist for
matrices with five or more filled diagonals. Detailed description can be
found in books on methods of numerical algebra, including the books
listed at the end of this chapter.

The Thomas algorithm can be easily generalized to the case of a
block-tridiagonal matrix, which is a matrix that has the same tridiago-
nal structure as (7.56), but with the number elements replaced by square
submatrices (blocks) of size M > 1. We split the vectors of unknowns and
right-hand sides into subvectors of length M as v = (V1, . . . , VN )T and
c = (C1, . . . , CN )T and write the matrix equation (8.1) as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 A0 0 . . . . . . . . . 0
B1 D1 A1 0 . . . . . . 0
0 B2 D2 A2 0 . . . 0
0 0 ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗ 0
0 . . . . . . 0 BN −1 DN −1 AN −1

0 . . . . . . . . . 0 BN DN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0
V1
V2
...
...

VN −1
VN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0
C1
C2
...
...

CN −1
CN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.17)
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As an example, the coefficient matrix in Figure 8.2 is block-tridiagonal
with the block size M = Nx . The blocks, which are separated by dashed
lines, form Ny rows and columns, each corresponding to a layer yj of
the computational grid. We will leave it as an exercise for the reader to
develop the actual form of the block submatrices in the case of five-point
approximation and other schemes. Our focus is on the general approach
to solving the matrix equation (8.17).

Each step of the forward sweep of the generalized Thomas algorithm
consists of inverting a diagonal submatrix and performing matrix opera-
tions on two subsequent block-rows to eliminate the subdiagonal blocks.
Each such matrix operation is equivalent to a series of elementary row
operations and, therefore, does not affect the solution. The first step is
(compare with (7.57))

D′
1 = D1 − B1 · D−1

0 · A0

B′
1 = B1 − B1 · D−1

0 · D0 = 0 (8.18)

C′
1 = C1 − B1 · D−1

0 · C0.

The following steps are given by the general formula

D′
i = Di − Bi · (D′

i−1

)−1 · Ai−1

B′
i = Bi − Bi · (D′

i−1

)−1 · Di−1 = 0 (8.19)

C′
i = Ci − Bi · (D′

i−1

)−1 · Ci−1.

At the end of the forward sweep, the matrix equation transforms into
the one with upper block-triangular coefficient matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 A0 0 . . . . . . . . . 0
0 D′

1 A1 0 . . . . . . 0
0 0 D′

2 A2 0 . . . 0
0 0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗ 0
0 . . . . . . 0 0 D′

N −1 AN −1

0 . . . . . . . . . 0 0 D′
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0
V1
V2
...
...

VN −1
VN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0
C′

1
C′

2
...
...

C′
N −1
C′

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.20)
The backward sweep is trivial. We invert the diagonal submatrices of

the transformed system D′
i and calculate first

VN = (D′
N

)−1 · C′
N (8.21)
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and then the rest of the solution according to

Vi = (D′
i

)−1 · (C′
i − Ai · Vi+1

)
, i = N − 1, . . . , 1,

V0 = D−1
0 · (C0 − A0 · V1). (8.22)

8.2.2 LU Decomposition

Another variation of the Gauss elimination found its use in the CFD
applications, where the matrix A is not sparse, for example, in spectral
methods. It is based on factorization (decomposition) of A into a product
of a lower-triangle matrix L and upper-triangular matrix U. The procedure
of factorization, a description of which can be found in the books on
numerical linear algebra, is a version of the Gauss elimination and requires
∼ N 3 operations. Here, we only discuss the consequences. Rewriting (8.1)
as

L · U · v = c (8.23)

and introducing a new vector w = U · v we can split the equation (8.1)
into two:

L · w = c (8.24)

and
U · v = w. (8.25)

The equations are solved sequentially, first (8.24) and then (8.25). Since
the matrices L and U are triangular, the solution can be easily obtained
by backward substitution (operation count ∼ N 2). A nice feature of the
method is that the only computationally expensive part, the decomposi-
tion of A, does not use the right-hand side vector c. This becomes useful
if (8.1) has to be solved many times with the same matrix A but differ-
ent right-hand sides. One can perform the decomposition once and apply
(8.24)–(8.25) as many times as required.

8.3 ITERATIVE METHODS

Unlike direct methods, iterative methods are not designed to find an exact
(up to the computer round-off error) solution of the matrix equation (8.1).
Instead, the methods rely on successive iterations to obtain a sufficiently
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accurate approximation of v. One important consideration justifies this
approach in CFD. The matrix equation is generated by discretization, so
its solution inevitably contains some discretization error. We can allow
ourselves an additional error of an iteration procedure without significant
drop of the overall accuracy provided this error is much smaller than the
discretization one. Furthermore, the iterative methods can be arranged so
that they utilize the sparse character of matrix A. This greatly reduces the
computational cost of the solution and makes iterative methods especially
attractive for finite difference and finite volume applications.

The main characteristics of an iterative method are the ability to con-
verge (to achieve an approximation accurate within a given tolerance) and
the computational cost of the procedure. The cost is determined by the
number of iterations needed for convergence (speed of convergence) and
the amount of computations required to complete a single iteration. Both
should be small or, at least, not very large for the iteration procedure to
be effective.

Numerous iterative methods have been developed over the last decades.
We will consider some algorithms that, albeit simple, possess the principal
features of the commonly used techniques.

8.3.1 General Methodology

The general iteration procedure used to solve the matrix equation (8.1) is
as follows:

1. Guess an initial approximation v(0) of the solution.
2. Use A, c, and the already-achieved approximation to find the next,

more accurate approximation v(k).
3. Repeat Step 2 iteratively until the convergence criterion is satisfied.

A few comments are in order concerning the definition and realization
of the convergence criterion. The definition of the error is

ε(k) = v − v(k), (8.26)

where v is the exact solution of (8.1) and v(k) is the approximation
obtained after the k th iteration. Since v is typically unavailable during
the solution, the error cannot be found by direct application of (8.26).
Instead, we can find the difference between successive approximations
and evaluate its norm as

δ(k) = ‖v(k+1) − v(k)‖ = max
�

|v(k+1)
� − v

(k)
� | (8.27)
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or

δ(k) = ‖v(k+1) − v(k)‖ =
[

N∑
�=1

(
v

(k+1)
� − v

(k)
�

)2
]1/2

. (8.28)

If the iterative procedure converges, v(k) and v(k+1) both tend to the exact
solution v, so the norm of the difference tends to zero. The magnitude of
δ(k) is often used as a convergence criterion. The iterations are stopped
when it becomes smaller than the desired tolerance ε0. Note that deter-
mining ε0 that guarantees the desired accuracy of the solution is, by itself,
a nontrivial problem. We discuss this issue in section 13.2.1.

Another approach is to monitor the norm of the residual vector

r(k) = c − A · v(k). (8.29)
It is easy to see that

A · ε(k) = A ·
(
v − v(k)

)
= c − A · v(k) = r(k) (8.30)

so the residual vanishes with ε(k), as v(k) converged to the exact solution
v. The criterion of convergence is ‖r(k)‖ < ε0.

The initial guess v(0) can, in general, be an arbitrary vector. For the
sake of faster convergence, however, v(0) should be chosen as close to
the exact solution as possible.

8.3.2 Jacobi Iterations

We start with the simplest method, the Jacobi iteration algorithm. The
method is rather inefficient and is presented here solely to illustrate the
basic approach. First, we rewrite the equations of the system (8.1) so that
the first equation is an expression of v1 through v2, v3, . . ., the second
equation is an expression of v2 through v1, v3, . . ., and so on. In general,
the �th equation becomes

v� = 1

a��

⎛⎝c� −
�−1∑
j=1

a�j vj −
N∑

j=�+1

a�j vj

⎞⎠ , � = 1, . . . , N . (8.31)

The exact solution v satisfies this equation exactly. In the Jacobi method,
we use the results of the previous iteration to compute the right-hand side
and assign the left-hand side as the new approximation:

v
(k+1)
� = 1

a��

⎛⎝c� −
�−1∑
j=1

a�j v
(k)
j −

N∑
j=�+1

a�j v
(k)
j

⎞⎠ . (8.32)
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This formula shows why the iteration methods are particularly effective
if the matrix A is sparse. Only few terms of the sums in the right-hand
side of (8.32) are nonzero. For example, let us write the Jacobi iteration
formula for the five-point discretization of the Poisson equation (8.7):

v
(k+1)
� = 1

a�,�

(
c� − a�,�−Nx v

(k)
�−Nx

− a�,�−1v
(k)
�−1 − a�,�+1v

(k)
�+1 − a�,�+Nx v

(k)
�+Nx

)
.

(8.33)
There are only five nonzero terms in the right-hand side. Computing only
them and explicitly omitting the others reduces the computational cost of
each iteration from ∼ N 2 to ∼ N operations.

8.3.3 Gauss-Seidel Algorithm

The Gauss-Seidel method is an improvement of the Jacobi algorithm,
which results in faster convergence. The right-hand side of (8.32) is con-
stantly updated using already found v

(k+1)
j . If a new approximation is cal-

culated for the number of equation � going from 1 to N , the iterations are

v
(k+1)
� = 1

a��

⎛⎝c� −
�−1∑
j=1

a�j v
(k+1)
j −

N∑
j=�+1

a�j v
(k)
j

⎞⎠ . (8.34)

For the Laplace and Poisson equation (8.3) and (8.4), solution by the
Gauss-Seidel algorithm requires approximately two times fewer iterations
than the solution by the Jacobi algorithm.

As an example, let us solve the two-dimensional Poisson equation using
the five-point scheme. Each iteration can be arranged so that we begin at
the lower-left corner of the computational domain and move to the right,
covering one row after another (see Figure 8.3). The Gauss-Seidel version
of the Jacobi iteration (8.33) is

v
(k+1)
� = 1

a�,�

(
c� − a�,�−Nx v

(k+1)
�−Nx

− a�,�−1v
(k+1)
�−1 − a�,�+1v

(k)
�+1 − a�,�+Nx v

(k)
�+Nx

)
,

(8.35)
or, in terms of the grid point values,

u(k+1)
i , j = 1

(2/(�x)2 + 2/(�y)2)

(−fi , j +

1

(�y)2
u(k+1)

i , j−1 + 1

(�x)2
u(k+1)

i−1, j + 1

(�y)2
u(k)

i , j+1 + 1

(�x)2
u(k)

i+1, j

)
.(8.36)
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x

y

Figure 8.3 A Gauss-Seidel iteration for the five-point scheme (8.5) applied to a
two-dimensional elliptic equation. Arrows illustrate the order in which the grid point

values are updated. A difference molecule is also shown.

8.3.4 Successive Over- and Underrelaxation

Successive over- and underrelaxations are the techniques that can be
applied to accelerate convergence of the iterative methods such as the
Gauss-Seidel algorithm. The principal idea is to determine the direction
in which the approximate solution v(k) evolves with k and correct the
solution between the iterations so as to accelerate this evolution. The
correction is achieved by performing the simple operation

v∗ = v(k) + ω
(
v(k+1) − v(k)

)
(8.37)

and using v∗ as a more accurate new approximation instead of v(k+1). The
technique is schematically shown in Figure 8.4.

The difference between the over- and underrelaxation is in the value of
the coefficient ω. For the problems, where, as illustrated in Figure 8.4a, the
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Figure 8.4 Over- and underrelaxation improvements of an iteration procedure.
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approximations converge to the exact solution monotonically , the conver-
gence can be accelerated by using 1 < ω < 2, which enhances the step in
the right direction. This method is called overrelaxation. When, as shown
in Figure 8.4b, the iterations lead to nonmonotonic behavior, the overre-
laxation would compromise the convergence. Acceleration can, however,
be achieved if a value 0 < ω < 1 is used thus reducing the overshoot.
This method is called underrelaxation. The underrelaxation is sometimes
used to achieve convergence of otherwise diverging iteration procedures.

Optimal values of ω that provide the fastest convergence have been
found theoretically for simple model problems, such as the Laplace or
Poisson equations in rectangular domains. For complex CFD problems,
there are no rigorous theoretical results, but the estimates based on expe-
rience and extrapolation of theoretical data are usually available.

8.3.5 Convergence of Iterative Procedures

The question left out so far is that of convergence. Can we be sure, when
we start the computations, that the iterations will converge to a final
equilibrium point? What is the speed of convergence?

The answer to the first question for the Gauss-Seidel procedure is given
by the following sufficient condition. The Gauss-Seidel procedure applied
to a system of linear equations converges if the system is irreducible
(cannot be separated into smaller decoupled systems, in other words, rear-
ranged in such a way that some unknowns can be found without solving
the entire system) and if the following is true for the coefficient matrix:

|a��| ≥
N∑

j=1,j �=�

|a�j | for all � and |a��|>
N∑

j=1,j �=�

|a�j | for some �. (8.38)

The condition (8.38) is referred to as the diagonal dominance of matrix A.
If the system of finite difference equations does not satisfy the conver-

gence condition (8.38), it can often be rearranged by changing the order
of unknowns so that the largest coefficients lie on the diagonal of A. The
new system may satisfy the condition. The diagonal dominance is not
a necessary condition. Quite often, the Gauss-Seidel iterations converge
even though (8.38) is not satisfied.

As an example, let us again consider the five-point scheme for the Pois-
son equation, rewritten as (8.36). We see that no rearranging is required.
The diagonal coefficient a�,� = [(2/�x)2 + 2/(�y)2

)]
is the largest ele-

ment in each row. It is exactly equal to the sum of all the other coefficients.
The first condition in (8.38) is, thus, satisfied. The second condition that,
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at least in one row, |a��| is greater than the sum of the other coefficients, is
normally satisfied by the rows of A corresponding to the boundary points
of the computational domain. For example, if the Dirichlet boundary con-
dition u = g is imposed at the point (x0, yj ) of the grid, the equation is

u0,j = gj

The corresponding row matrix A has only one non-zero element, and this
element is on the main diagonal.

The rate of convergence varies with the type of the problem, method,
and the grid size. There is no general theory that would be valid for
CFD computations. The conclusions are often made based on numerical
experiments. There are several well-established trends, though.

As an illustration, we solve the two-dimensional Poisson equation

∂2u

∂x2
+ ∂2u

∂y2
= sin(πx) sin(πy)

in the square domain [0, 1] × [0, 1] with homogeneous boundary condi-
tions u = 0 at all boundaries. The equation is discretized on a uniform grid
using the five-point scheme (8.5). The matrix equation is solved by three
simple iterative methods: Jacobi (8.33), Gauss-Seidel (8.35), and Gauss-
Seidel with successive overrelaxation with ω = 1.5. To illustrate the effect
of numerical resolution on convergence, the solution is computed using
three grids: with Nx = Ny = 10, Nx = Ny = 30, and Nx = Ny = 100. The
initial guess u(0)

i , j = 0 is used for all cases. The convergence is monitored

by the norm ||rk || =
[∑

i , j

(
r (k)

i , j

)2
]1/2

of the residual vector (8.29). The

calculations continue until the norm reduces below 10−6||r0||.
The results are shown in Table 8.1 and Figure 8.5. They illustrate the

commonly observed (although not absolute) trends:

1. Relaxation methods (with properly chosen ω) are faster than Gauss-
Seidel, which, in turn, is faster than Jacobi.

2. Finer grid (larger Nx and Ny ) requires a larger (sometimes much
larger) number of iterations to achieve the same reduction of
residual.

Considering the second trend, we should also remember that the compu-
tational cost of each iteration increases proportionally to the total number
of grid points. We see that using a finer grid requires larger, perhaps much
larger, amount of computational operations. In our example, the compu-
tational cost of the solution with Nx = Ny = 100 is about four orders
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Table 8.1 Example of Performance of Iteration Methods. Poisson
Equation is Solved in a Rectangular Domain Using the Finite
Difference Scheme of the Second Order on Three Different
Computational Grids. The Table Shows the Number of Iterations
Needed to Reduce the Norm of Residual ||r(k)|| Below 10−6||r(0)||
Method Nx = Ny = 10 Nx = Ny = 30 Nx = Ny = 100

Jacobi 276 2516 27992
Gauss-Seidel 139 1259 13997
SOR 90 837 9329
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Figure 8.5 Example of performance of Jacobi, Gauss-Seidel, and SOR iteration
methods (see Table 8.1 and text). Norm of residual ||r(k)|| (see (8.29) is shown as a
function of the iteration number k. Note that the abscissa scales in the two graphs

are different by about two orders of magnitude.

of magnitude higher than the cost of the solution with Nx = Ny = 10.
Solutions on fine grids are nevertheless often unavoidable, since solutions
computed on crude grids have unacceptably large discretization errors.

In general there is, typically, a need for a compromise between the
small discretization error achievable on fine grids and faster convergence
provided by crude grids. Even better would be a strategy that combines
the advantages of fine and crude grids. One simple approach is to start
computations on a crude grid, quickly reach convergence, and then inter-
polate the computed variables to a fine grid and use it as a good initial
approximation v(0) for a fine grid solution. A more advanced, efficient,
and widely used strategy based on the multigrid method is discussed in
the next section.
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8.3.6 Multigrid Methods

An important observation can be made regarding the error ε(k) = v(k) − v

of iteration solutions of matrix equations. The components of the error
having typical length scales comparable to the grid steps vanish quickly,
after just few iterations. These components will be referred to as small-
scale in the following discussion. On the contrary, the large-scale com-
ponents (with the length scales larger or much larger than the grid steps)
decrease slowly, require a larger number of iterations, and are, in general,
responsible for slow convergence on finer grids.

We can now conjecture the main idea of the multigrid method. The
large-scale error can be accurately represented on a coarser grid. Itera-
tions on such a grid can be performed with lower computational cost.
Furthermore, the components of the error, which are large-scale on a fine
grid, are small-scale on a coarser grid. Their removal occurs faster if
iterations are performed on a coarser grid. Why not use several grids of
different degrees of coarseness interpolating solutions between them and
allowing each grid to take care of the respective length scales?

We will give a sketch of a simple version of the strategy. As an example,
we will solve a two-dimensional elliptic problem expressed in the general
matrix form (8.1). Two uniform structured grids shown in Figure 8.6 will
be used. One is the fine grid with steps �x and �y , on which the actual
solution is to be found. We also introduce a coarse grid that includes only
every second grid point in each direction. Its steps are 2�x and 2�y .

y2j

x2i+2x2ix2i−1

y2j−1

y2j+2

x2i+1

y2j+1

Δy

Δx

Figure 8.6 Example of a multigrid approach. Fine (circles) and coarse (squares)
grids are used to solve a two-dimensional elliptic problem.
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The multigrid iteration procedure is as follows:

Step 1: Conduct k iterations on the fine grid. The result is the k -th approx-
imation v(k). Calculate the residual r(k) = c − A · v(k).

Step 2: The error of approximation ε(k) = v − v(k) cannot be calculated
directly, but we know that it satisfies the correction equation (see
(8.30))

A · ε(k) = r(k). (8.39)

We can also assume that, after the k iterations of Step 1 performed
on the fine grid, the error ε(k) mostly contains fluctuations with
length scales larger than �x and �y . Let us estimate the error
applying efficient coarse grid iterations to the correction equation
(8.39). For this purpose, we restrict (8.39) (both the coefficients of
matrix A and the right-hand-side r(k)) to the points of the coarse
grid. After several iterations, we obtain a coarse grid approxima-
tion of the error, which we denote as ε̃(k).

Step 3: Interpolate ε̃(k) onto the fine grid and update the solution as
ṽ(k) = v(k) + ε̃(k). If ε̃(k) is an accurate approximation of ε(k),
the updated field ṽ(k) is much closer to the exact solution than
the original v(k).

Step 4: Check convergence. If not achieved, repeat starting with Step 1
and using ṽ(k) as a new initial guess.

It is important to stress that the procedure outlined here is only a simple
example. Actual multigrid solvers are quite complex and diverse. They
are routinely applied to unstructured and nonuniform grids. Moreover,
the advanced multigrid solvers typically use several embedded grids of
various degrees of coarseness.

At least a brief discussion is needed of the methods used to transfer the
information between the fine and coarse grids. We will limit the discussion
to the example illustrated in Figure 8.6. The variables computed on the
fine grid will be denoted as u�

i , j , and their counterparts on the coarse
grid as u2�

i , j . Let the points used for the coarse grid be those with even
indices (x2i , y2j ) (see Figure 8.6). The restriction of a fine grid solution
onto the coarse grid can be achieved if we directly transfer the values at
the common grid points and discard the others:

u2�
2i ,2j = u�

2i ,2j , discard u�
i , j if i or j is odd. (8.40)
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A better method is the full weighting , in which we evaluate a coarse grid
value as an average of the fine grid solution over the surrounding area.
Numerical approximations of integrals are used to compute the averages.
The full weighting operation has several advantages over the direct trans-
fer. It can be applied to unstructured grids, in which the points of fine and
coarse grids do not necessarily coincide. It clearly makes better use of
the information available from the fine grid solution. At last, it commutes
with the linear interpolation procedure discussed next. In our example of
two-dimensional structured uniform grids shown in Figure 8.6, the full
weighting formula is (see Figure 8.7)

u2�
2i ,2j = 1

16

[
u�

2i−1,2j−1 + u�
2i−1,2j+1 + u�

2i+1,2j−1 + u�
2i+1,2j+1

+ 2
(

u�
2i ,2j−1 + u�

2i ,2j+1 + u�
2i−1,2j + u�

2i+1,2j

)
+ 4u�

2i ,2j

]
. (8.41)

The inverse operation of transformation from a coarse grid to a fine
grid is done by one of the interpolation methods. The most common is
the linear interpolation, which has the accuracy of the second order. In
the case of our two-grid example, the linear interpolation is

u�
2i ,2j = u2�

2i ,2j ,

u�
2i+1,2j =

(
u2�

2i ,2j + u2�
2i+2,2j

)
/2,

u�
2i ,2j+1 =

(
u2�

2i ,2j + u2�
2i ,2j+2

)
/2, (8.42)

u�
2i+1,2j+1 =

(
u2�

2i ,2j + u2�
2i ,2j+2 + u2�

2i+2,2j + u2�
2i+2,2j+2

)
/4.
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Figure 8.7 Full-weighting restriction on a two-dimensional uniform grid. The
coarse-grid value u2�

2i,2j is evaluated as a combination (8.41) of fine-grid values of a
nine-point stencil with weight coefficients as indicated in the figure.
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8.3.7 Pseudo-transient Approach

Another approach to solution of a steady-state problem is to introduce ficti-
tious “time” by adding “time derivative” to the equation. For example, the
elliptic equations (8.4) and (8.3) are replaced by the parabolic equations:

∂u

∂τ
= ∂2u

∂x2
+ ∂2u

∂y2
− f (8.43)

and
∂u

∂τ
= ∂2u

∂x2
+ ∂2u

∂y2
. (8.44)

Solutions of parabolic systems converge to steady states, unless they are
forced to do otherwise by time-dependent boundary conditions or source
terms. Evidently, convergence should be expected in the case of the
pseudo-transient approach. The resulting steady states correspond to the
solutions of the original elliptic equations. For example, the steady-state
solutions of (8.43) and (8.44) are the solutions of (8.4) and (8.3).

The parameter τ does not have a physical meaning. Its only purpose
is to facilitate the iteration procedure of finding a solution of a steady-
state problem. The iterations can now be considered as “time steps” of
a marching scheme. This allows us to use all the methods developed for
nonsteady problems. For example, (8.43) and (8.44) can be solved by the
simple explicit method with central differences for ∂2u/∂x2 and ∂2u/∂y2

or by the ADI method described in section 9.3.3.

8.4 SYSTEMS OF NONLINEAR EQUATIONS

We conclude the chapter by a discussion of methods used to solve non-
linear equations. At first glance, it might seem that this discussion should
have started the chapter. The equations describing convection heat trans-
fer and fluid flows are nonlinear, after all. Nonlinearity is always present
in the convective flux terms of the momentum, mass, and energy con-
servation equations. Even conduction heat transfer may require nonlinear
equations—for example, if variation of physical properties with tempera-
ture is nonnegligible. CFD solution of any such problem involves solution
of a system of nonlinear algebraic equations resulting from finite differ-
ence, finite volume, or other discretization.

We started this chapter by considering linear systems because direct
solution of nonlinear equations is, in fact, avoided by virtually all practical
CFD methods. The nonlinear systems are difficult and computationally
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expensive to solve. For this reason, the common approach is to rely on
linearization and/or multistep algorithms to reduce the task to the solution
of linear matrix equations.

This section provides a brief review of the three methods for nonlinear
systems: the Newton method included for the sake of completness and
the iteration procedures based on linearization and sequential iterations.

8.4.1 Newton’s Algorithm

We solve a general system of nonlinear equations

fj (v1, . . . , vn) = 0, j = 1, . . . , n, (8.45)

which is expressed in vector form as

F(v) = 0. (8.46)

The functions fj are assumed to have the needed differentiability and
smoothness properties.

Many methods used to solve such systems are based on the Newton’s
algorithm, also called the Newton-Raphson algorithm. The basis formula
is obtained by taking the multidimensional Taylor series expansion of
(8.46) and truncating all but the first-order terms. Let us assume that we
already have an approximation v(k) of the solution. Truncated expansion
around it gives, for the j th equation in (8.45),

fj (v1, . . . , vn) = fj (v
(k)
1 , . . . , v(k)

n ) +
n∑

i=1

∂fj
∂vi

(v
(k)
1 , . . . , v(k)

n )
(
vi − v

(k)
i

)
.

(8.47)
If v is a solution of (8.46), the left-hand side of (8.47) is zero and we
obtain a linear equation for v:

n∑
i=1

∂fj
∂vi

(v
(k)
1 , . . . , v(k)

n )
(
vi − v

(k)
i

)
= −fj (v

(k)
1 , . . . , v(k)

n ) (8.48)

or, in the matrix form,

J(k) ·
(
v − v(k)

)
= −F(v(k)), (8.49)

where J = {∂fj /∂vi } is the Jacobian matrix of F(v). Now we recall that
(8.47) is just a first-order approximation of (8.45), so v in (8.49) is not
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a solution but rather the next, better approximation. This leads to the
Newton’s iteration formula

J(k) ·
(
v(k+1) − v(k)

)
= −F(v(k)) (8.50)

and
J(k) · v(k+1) = J(k) · v(k) − F(v(k)) ≡ c(k), (8.51)

which is the familiar matrix equation.
The formulas (8.50) and (8.51) may look attractive on paper but are,

in fact, practically never applicable to CFD problems because of the sig-
nificant additional computational cost involved into the calculation of the
Jacobian J, which has to be done anew at every iteration. Furthermore,
the nature of functions fi may be such that their differentiation needed
to evaluate J is either impossible or very difficult. A variety of more
efficient methods based on modification of the Newton’s algorithm have
been developed. They, too, found no viable applications in CFD.

8.4.2 Iteration Methods Using Linearization

The iteration methods discussed in this chapter for the linear systems can
be utilized to solve systems of nonlinear equations. The commonly used
approach is to linearize the equations replacing the unknown coefficients
by their estimates taken from the previous iteration. For example, the
quadratic convection term vw (here, v and w are the velocity components)
in the momentum equation can be linearized at the (k + 1)st iteration as

vk+1wk+1 ≈ vkwk+1. (8.52)

We will illustrate the procedure on the example of the steady-state
conduction heat transfer in the situation, when the variation of temperature
is large, so the temperature dependence of physical properties cannot be
neglected. The heat conduction equation is

∇ (κ∇u) = Q̇ , (8.53)

where u is temperature, Q̇ is the intensity of internal heat sources, and
the conductivity is now not a constant, but κ = κ(u(x)).

Let us apply the central difference discretization similar to the dis-
cretization (4.39) derived for the one-dimensional heat equation. In two
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dimensions, we obtain for (8.53):

1

�x

(
κi+1, j + κi , j

2

ui+1, j − ui , j

�x
− κi , j + κi−1, j

2

ui , j − ui−1, j

�x

)
+

1

�y

(
κi , j+1 + κi , j

2

ui , j+1 − ui , j

�y
− κi , j + κi , j−1

2

ui , j − ui , j−1

�y

)
= Q̇i , j .

(8.54)
The entire system of equations can be symbolically written as

N(κ , u) = Q. (8.55)

The system is linearized by approximating κ by it estimate known from
the previous iteration. The system of linear equations

N(κ (k), u(k+1)) = Q (8.56)

is solved on the (k + 1)st iteration. Returning to the finite difference
formula, we can write the linearized equation as

1

�x

(
κ

(k)
i+1, j + κ

(k)
i , j

2

u(k+1)
i+1, j − u(k+1)

i , j

�x
− κ

(k)
i , j + κ

(k)
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�x
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+

1

�y
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(k)
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(k)
i , j

2

u(k+1)
i , j+1 − u(k+1)

i , j

�y
− κ

(k)
i , j + κ

(k)
i , j−1

2

u(k+1)
i , j − u(k+1)

i , j−1

�y

)
= Q̇ (k+1)

i , j .

(8.57)
The system of linearized equations can be solved by any of the direct or

iterative methods discussed earlier in this chapter. The solution is used to
evaluate κ (k+1) = κ(u(k+1)), which is employed at the next iteration. The
procedure continues until convergence to a sufficiently accurate approxi-
mation of the solution of the nonlinear problem (8.55) is achieved.

The nonlinearity complicates the issue of convergence, which typically
cannot be guaranteed a-priori and should be determined experimentally.
Another consequence of the nonlinearity is that the convergence of the
iteration procedures may require strong underrelaxation. The method typ-
ically needs a larger number of iterations than the Newton’s algorithm,
but each iteration is computationally less expensive to perform. The effi-
ciency can be further improved by applying optimized underrelaxation
and multigrid techniques.
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8.4.3 Sequential Solution

The linearized iterations procedure can be applied to solve steady-state
problems in fluid dynamics and convection heat transfer, but becomes
cumbersome and computationally expensive for multidimensional flows.
More efficient methods have been developed that utilize specific properties
of the PDE systems describing the flows.

One such property is that a dominant variable can be assigned to every
evolutionary equation in the sense that the equation describes transport
and conservation of this particular variable. For example, the momentum
component ρui is the dominant variable for the i th component of the
momentum equation, and internal energy e is the dominant variable of
the energy conservation equation (see Chapter 2).

The iteration approach is modified so that each PDE is solved sepa-
rately for its dominant variable as an unknown. The other variables in the
equation are replaced by the best currently available estimates and treated
as known. The procedure is conducted for the entire system but sequen-
tially, one PDE at a time. Of course, the result is not a correct solution,
since the coupling between the equations is disregarded. For this reason,
iterations are necessary. On every cycle, we solve the equations with the
results found at the previous cycle serving as the best available estimates
of non-dominant variables.

The algorithm, which has the name of sequential iteration method ,
consists of the two sets of iterations, one embedded into another. There
are two principal steps:

Step 1: Solve each PDE for the dominant variable with other variables
replaced by the best available estimates. Since the equations them-
selves are inaccurate, it is unnecessary to invest computational
resources to achieve very high accuracy at this step. Typically,
an iterative procedure with relatively few cycles is applied. These
cycles are called inner iterations.

Step 2: Verify convergence of the new approximation v(k), substituting it
into the nonlinear equations and computing the norm of residuals.
If the convergence is not achieved, repeat step 1 using v(k) as the
new estimate of the nondominant variables. The cycles form the
outer iterations.

REFERENCES AND SUGGESTED READING

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes . Cambridge, UK: Cambridge University Press.



PROBLEMS 169

L. N. Trefethen, and D. Bau III. Numerical Linear Algebra. Cambridge, UK:
Cambridge University Press, 1997.

PROBLEMS

1. If your course involves exercises with a CFD code, study the manual
to determine which methods are available for solution of linear and
nonlinear systems of algebraic equations. Does the code use any of the
algorithms discussed in this chapter—for example, iterative methods
with over- and underrelaxation, linearization, sequential solution of
coupled equations, or multigrid acceleration?

2. Develop a finite difference scheme of the second order for the
equation

∂

∂x

[
a(x , y)

∂u

∂x

]
+ ∂

∂y

[
b(x , y)

∂u

∂y

]
= g(x , y).

Assume that a, b, and g are known functions and use the five-point
difference molecule on a uniform Cartesian grid (see Figure 8.1).
Hint: Use the discretization approach applied to a one-dimensional
heat equation with variable conductivity in section 4.3.

3. Rewrite the scheme developed in Problem 2 in the matrix form.
Develop the row equation and expressions for coefficients as in (8.7),
(8.8).

4. Derive the expressions for submatrices Bj , Dj , Aj in the block-
tridiagonal form (8.17) of the matrix equation for the five-point dis-
cretization (8.5) of the two-dimensional Poisson equation. Consider
only the blocks corresponding to internal points of the computational
domain.

5. Consider the two-dimensional Poisson equation (8.4) in a rectangular
domain 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly . The boundary conditions are

∂u

∂x
(0, y) = g1(y), u(Lx , y) = g2(y),

∂u

∂y
(x , 0) = g3(x),

u(x , Ly) = g4(x).

The computational grid is uniform with steps �x = Lx/Nx and �y =
Ly/Ny . Develop the system of finite difference equations approxi-
mating the entire problem (PDE and boundary conditions) with the
second order of accuracy. Write the scheme in the matrix form similar
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to (8.7), (8.8). Take into account that the equations and expressions
for coefficients are different for internal and boundary grid points.

6. Develop a Gauss-Seidel algorithm (similar to (8.35)) for the central
difference scheme applied to the three-dimensional Poisson equation
(8.12).

7. Consider the steady-state version of the governing equations for an
incompressible flow and convection heat transfer (2.20), (2.27). Dis-
regard the incompressibility condition (2.6) and pressure field p for
the moment. Methods dealing with them will be discussed in Chapter
10. Can the sequential solution procedure be applied to the system?
For each equation, determine the dominant variable and write the
symbolic linearized systems similar to (8.56).

Programming Exercises
1. Implement the Jacobi, Gauss-Seidel, and Gauss-Seidel with over-

and underrelaxation iterative schemes for the five-point discretiza-
tion scheme of the two-dimensional Poisson equation. Conduct
computations to verify the data presented in Table 8.1. Perform
additional numerical experiments to determine the value of relax-
ation parameter ω optimal for this particular problem.

2. Implement the generalized Thomas algorithm for a block-
tridiagonal matrix. Use one of the freely downloadable matrix in-
version subroutines (e.g., a subroutine from the Lapack linear
algebra package at the www.netlib.org repository). Apply the
algorithm to solve the two-dimensional Poisson problem illustrated
in Table 8.1 and Figure 8.5.



9
UNSTEADY PROBLEMS OF

FLUID FLOWS AND HEAT
TRANSFER

9.1 INTRODUCTION

In the next two chapters, we extend the methods of finite difference and
finite volume solution to unsteady multidimensional flows and heat trans-
fer. It would be impossible to cover the entire variety of existing schemes
in a single book, especially if the book, like ours, is an introduction into the
subject. A large number of schemes, many of them rather complex, would
have to be described. Furthermore, there is a danger in embarking on a
painstakingly detailed discussion of particular algorithms. CFD is a rapidly
evolving field. An algorithm may become obsolete soon after the book is
published. For all these reasons, the following two chapters will focus on
common principles of widely used methods and on introduction of several
time-honored techniques that have formed the basis of modern CFD.

The main attention will be given to calculation of incompressible
flows. Chapter 10 is entirely devoted to this subject. The rest of this
chapter contains a brief review of the issues arising in computations
of unsteady multidimensional compressible flows and heat transfer.
Description of several schemes is included for the sake of completeness
and can be skipped with no loss of continuity. The reader interested in
these areas is encouraged to study the chapter and proceed to the books
listed at the end for a deeper and more detailed discussion.
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9.2 COMPRESSIBLE FLOWS

9.2.1 Overview and General Comments

We have finally arrived at the point where we can discuss the methods
used to solve actual fluid flow equations . The discussion starts with com-
pressible flows in this section and continues with incompressible flows in
the next chapter. The reasons for such a separation will be explained a
little later.

The system of equations to be solved always includes the continuity
(mass conservation) equation

∂ρ

∂t
+ ∂(ρuk )

∂xk
= 0 (9.1)

and the Navier-Stokes (momentum conservation) equations

ρ
Dui

Dt
= ρfi − ∂p

∂xi
+ ∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
μ

(
∂uk

∂xk

)
δij

]
, (9.2)

where, as usual, we assume summation over repeating indices.
If the flow is compressible, the system should also contain the

thermodynamic equation of state connecting pressure and density (e.g.,
the ideal gas equation (2.29)). If significant heat transfer occurs, the
energy conservation equation in some form (see section 2.5) should be
included.

We would like to stress that it is not always necessary to solve the full
system of conservation equations. In many applications, the system can
be replaced, with no significant loss of accuracy, by one of the asymptotic
approximations (e.g., an incompressible flow, inviscid flow, or boundary
layer). Moreover, use of an approximation is often a requirement. Only
in this way the specific properties of the solution can be utilized for
developing more accurate and efficient numerical algorithms. Significance
of this statement will be illustrated in the next chapter, when we discuss
the implications of incompressibility.

Mathematical Nature of the Navier-Stokes Equations: We know
that the partial differential equations of the second order can be classified
into three basic types: parabolic, hyperbolic, and elliptic equations. As
we have already demonstrated on the example of model one-dimensional
equations, the underlying physical phenomena and the methods of numer-
ical solution are different for different types. The classification with all its
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consequences remains valid for the full Navier-Stokes equations. The anal-
ysis is, however, complicated by the fact that the Navier-Stokes equations
are three-dimensional, nonlinear, and of mixed type. We shall discuss
this issue in simple terms rather than going into mathematical details.

First of all, the viscous dissipation terms render the Navier-Stokes
equations parabolic. The terms have the differential form (for simplicity,
we only consider the first part)

∂σi , j

∂xj
= ∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)]
and the integral form ∫

S

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)]
nj dS .

Leaving only these terms in the right-hand side of the momentum
equations and keeping only the time derivative terms in the left-hand
side, we obtain the truncated equations, which are clearly parabolic. This
can be illustrated by taking a one-dimensional version with ui depending
on only one coordinate and time

ρ
∂ui

∂t
= ∂

∂xj

[
μ

(
∂ui

∂xj

)]
and applying the classification criterion introduced in section 3.2.1. Iden-
tification of the equations as parabolic is also in agreement with the
diffusion nature of the process of viscous dissipation.

If we only keep the time derivative and convection terms such as

ρV · ∇u or
∫

S
ρuV · ndS ,

the truncated system becomes hyperbolic. This can be shown rigorously
using the theory of classification of systems of PDE, which is not consid-
ered in this book, but can be found in more specialized literature. We only
mention that each of the truncated equations looks exactly as a nonlinear
multidimensional version of the linear convection equation

∂u

∂t
+ c

∂u

∂x
= 0. (9.3)
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We should expect wavelike solutions. The analogy extends to the physical
nature of the phenomenon described by the convection terms, which is
the transport or propagation of fields by the flow velocity.

We see that the general Navier-Stokes equations for compressible flows
(9.1), (9.2) can be characterized as hyperbolic-parabolic. The classifica-
tion, however, changes when we apply the asymptotic approximations.
Let us consider the most prominent cases. If the effect of viscosity is
negligible, and the momentum equations are the Euler equations (2.21),
the unsteady system becomes purely hyperbolic. In the steady-state case,
the nature of the Euler system depends on the Mach number (the ratio
M = v/a between the typical flow velocity and the speed of sound).
The equations are elliptic for subsonic flow (M < 1) and hyperbolic
for supersonic flows (M > 1). At last, if we retain the viscosity and
assume that the fluid is incompressible, the unsteady Navier-Stokes system
retains its hyperbolic-parabolic character, but also acquires elliptic fea-
tures because of the new role of pressure, which is discussed in details in
Chapter 10.

Features of Compressible Flows: A flow is considered compressible
if the Mach number is sufficiently large, approximately larger than 0.3.
The effect of compressibility may need to be taken into account in many
areas, for example in high-speed aerodynamics, turbomachinery, and com-
bustion. Led by industrial and military applications, the CFD analysis of
compressible flows has long become an established discipline with its own
specialized methods.

Several features of compressible flows have to be kept in mind, since
they directly affect the choice of numerical approach. The first is, of
course, the general hyperbolic character of the equations. The numerical
schemes should be stable and accurate (without excessive numerical dissi-
pation and dispersion) for solutions dominated by waves. Our experience
of finding such schemes for the linear convection equation (see section
7.1) is evidently useful here.

The Reynolds number in compressible flows is usually very high. This
often means that the solution domain can be divided into thin boundary
layers, where viscosity, heat transfer, and turbulence are important, and
the outer domain, where the flow can be approximately considered ideal
(nonviscous and nonconductive) or even potential (with zero vorticity
ω = ∇ × v). The logical, historically established, and still used approach
is to combine the ideal flow equations in the outer domain with physically
justified models of the boundary layer behavior.
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In the flows or within the flow domains, where turbulence is present,
we have to apply turbulence models, some of which are discussed in
Chapter 11. The effects of heat transfer and temperature variability of
fluid properties are, often, important in turbulent compressible flows. The
energy conservation equation has to be solved.

Some compressible flows are supersonic (M > 1), which means exis-
tence of shock waves. This raises complex questions for CFD analysis.
The shocks are thin and characterized by very sharp gradients of flow
variables, strong dissipation, and generation of heat. Direct numerical reso-
lution of these processes is difficult or impossible in practical applications.
The CFD analysis is often only feasible if it relies on the idealized physical
models, in which shocks are treated as infinitely thin surfaces of solu-
tion discontinuity. Presence of such discontinuities completely changes
the landscape of available computational techniques. Many of them, in
particular those based on the second-order central differences popular in
other areas of CFD, cannot be used since they lead to strong numer-
ical dispersion and spurious oscillations around the shock. To address
this issue, specialized methods for flows with discontinuities have been
developed.

All these and other issues are discussed in depth in the books dealing
with the specific subject of CFD analysis of compressible flows. Several
references are listed at the end of this chapter. Our discussion is limited to
a few methods that illustrate common techniques and often encountered
difficulties.

It is customary and convenient to present the compressible Navier-
Stokes system in standardized vector form (see section 2.9)

∂U
∂t

+ ∂A
∂x

+ ∂B
∂y

+ ∂C
∂z

= 0. (9.4)

For simplicity and without loss of generality, we omit body forces and
internal heat sources. The formal representation (9.4) is convenient in the
sense that it is valid for all compressible flows. Details of a specific flow
are hidden in the expressions (2.42)–(2.43) for U , A, B , and C . A numer-
ical scheme designed and analyzed for (9.4) can be applied to any flow,
provided proper discretization of (2.42)–(2.43) have been developed. The
form (9.4) expresses the hyperbolic character of the equations (compare
with the model hyperbolic equation ut + cux = 0, which can be rewritten
as ut + vx = 0 with v = cu). We would like to stress that the seeming sim-
plicity of (9.4) does not change the complex three-dimensional nonlinear
character of the equations.
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9.2.2 Explicit MacCormack Method

The finite difference methods designed for the model one-dimensional
hyperbolic equations (see section 7.1) can be generalized to the case of
compressible flow equations (9.4). Some of them are, in fact, quite effi-
cient. An example of such a method is the explicit MacCormack scheme
introduced in section 7.1.2. Every time step is split into two substeps:

Predictor: U ∗
i , j ,k = U n

i , j ,k − �t

�x

(
An

i+1, j ,k − An
i , j ,k

)
− �t

�y

(
Bn

i , j+1,k − Bn
i , j ,k

)
− �t

�z

(
C n

i , j ,k+1 − C n
i , j ,k

)
,

(9.5)

Corrector: U n+1
i , j ,k = 1

2

[
U n

i , j ,k + U ∗
i , j ,k − �t

�x

(
A∗

i , j ,k − A∗
i−1, j ,k

)
− �t

�y

(
B∗

i , j ,k − B∗
i , j−1,k

)
− �t

�z

(
C ∗

i , j ,k − C ∗
i , j ,k−1

)]
.

(9.6)

We assume that the computational grid is rectangular and uniform with
grid steps �x , �y , and �z . The scheme has the truncation error T.E. =
O
[
(�x)2, (�y)2, (�z )2, (�t)2

]
.

To keep the second order of approximation, the partial derivatives
that appear in the viscous and diffusion terms of A, B , and C (see
(2.42)–(2.43)) must be approximated with, at least, the same order. In
the case of a simple one-step scheme, the task would be trivial. We would
simply have to use finite difference formulas of appropriate order. For
multistep schemes such as (9.5)–(9.6), the problem is more complex. The
order of approximation of the entire scheme can be higher than the orders
of approximation used at separate substeps. An example of such behavior
is given next.

For the MacCormack method, the second order of approximation is
conserved if the following rules are followed. For the x -derivatives in
A, we use one-sided differences in the direction opposite to the direction
of the difference used at this particular substep for ∂A/∂x . Central
differences are applied for the y- and z -derivatives. Similarly, one-sided
differences are used for the y-derivatives in B and z -derivatives in C .
The directions of these differences are opposite to the directions used for
∂B/∂y and ∂C /∂z , respectively. For the other derivatives in B and C ,
central differences are applied. As an illustration, we discretize the third
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component of C (see (2.43)):

C3 = ρvw − σyz = ρvw − μ

(
∂v

∂z
+ ∂w

∂y

)
.

In the predictor step, this term is approximated as

C n
i , j ,k = (ρvw)n

i , j ,k − μ

(
vn

i , j ,k − vn
i , j ,k−1

�z
+

wn
i , j+1,k − wn

i , j−1,k

2�y

)
,

while in the corrector step, the approximation is

C n+1
i , j ,k = (ρvw)n+1

i , j ,k − μ

⎛⎝vn+1
i , j ,k+1 − vn+1

i , j ,k

�z
+

wn+1
i , j+1,k − wn+1

i , j−1,k

2�y

⎞⎠ .

As it is typical for schemes applied to full Navier-Stokes equations, a
rigorous stability analysis of the MacCormack method is impossible. One
can, however, use the empirical formula (see Tannehill et al. 1997)

�t ≤ σ(�t)CFL

1 + 2/Re�

. (9.7)

Several important and interesting observations can be made in regard of
(9.7). We will use them to illustrate the common problems arising in the
time integration of the Navier-Stokes equations. First, the stability con-
dition is usually inexact. As a result, the scheme can sometimes become
unstable at �t close to the stability limit even if the condition is formally
satisfied. To deal with this problem and avoid the instability, the safety
factor σ is introduced. Although (9.7) is supposed to guarantee a stable
time step at σ = 1, it is common to use σ ≈ 0.9 or smaller.

Second, the stability condition is a combination of the inviscid
(Courant-Friedrichs-Lewy or CFL) limit and the viscous limit. This
reflects the fact that the equations combine hyperbolic (convective)
and parabolic (viscous) features. The CFL limit for the MacCormack
scheme is

(�t)CFL =
[

|u|
�x

+ |v|
�y

+ |w|
�z

+ a

(
1

(�x)2
+ 1

(�y)2
+ 1

(�z )2

)1/2
]−1

,

(9.8)
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where a is the local speed of sound. To account for the effect of viscosity
on stability, we multiply the time step limit by the coefficient that contains
the minimum mesh Reynolds number

Re� = min(Re�x , Re�y , Re�z ), (9.9)

with

Re�x = ρ|u|�x

μ
, Re�y = ρ|v|�y

μ
, Re�z = ρ|w|�z

μ
. (9.10)

Third, as can be seen in (9.8) and (9.10), the stability limits are derived
on the basis of the “freezing” assumption. The variable velocity compo-
nents u, v, and w are used as if they were constants. This means that
(9.7) provides a local stability criterion valid at a given space point and
a given moment of time. In calculations, the time step that provides sta-
bility for the entire solution is evaluated using some estimates of u, v,
and w. Alternatively, if the variable time-step approach is followed, the
lower bound of (9.7) is calculated after each time step on the basis of the
current velocity field and used to determine the stable �t n = t n+1 − t n .

The last comment concerns the limited applicability of the MacCor-
mack and many other explicit schemes to the aerodynamic flows at high
Reynolds numbers. Such flows are characterized by thin boundary layers
at solid walls, within which the flow has sharp gradients and, thus, the
computational grid must be refined (see Chapter 12 for a discussion of
refinement). The small grid steps would require small time step �t . This
can be easily seen. Let, for example, the requirements of the resolution
of boundary layers be such that �x � �y , �z . From (9.8) and (9.10)
we have (�t)CFL = O(�x) and Re� = O(�x). This means (see (9.7))
that for stability we have to use the time step �t < const(�xmin)

2. The
result can be an unacceptably large number of required time steps. The
problem is not unique and concerns other explicit methods. Having said
that we should also mention that in CFD applications the turbulent bound-
ary layers are often subject to physical modeling (see Chapter 11), and
excessively fine grids are not required.

9.2.3 Beam-Warming Method

The stability limit on the time step can be avoided if we apply an implicit
method. Such methods are usually unconditionally stable, so larger time
steps can be used. The downside is, of course, the higher complexity
of the schemes and larger amount of computations needed to complete
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each step. This is especially true since the governing equations (9.4) are
multidimensional and nonlinear (remember that the vector fields A, B ,
and C in (2.42)–(2.43) are quadratic in terms of the flow variables). The
high computational cost of a time step can make an implicit solution
completely unfeasible, unless we find a way to linearize the equations
and solve the resulting discretized system efficiently.

The historically first efficient implicit method was designed by Beam
and Warming (1976). A family of schemes following the same principles
was later developed. The common features of these schemes are that they
are noniterative (do not require iterations to complete one time step), use
a truncated Taylor expansion for linearization, and avoid dealing with
nontridiagonal matrices that appear in multidimensional problems using
approximate factorization .

We will give a brief description of the classical Beam-Warming scheme
for the case of two-dimensional compressible ideal (non viscous) flow.
The equations are written in the vector form:

∂U
∂t

+ ∂A
∂x

+ ∂B
∂y

= 0. (9.11)

An extension to the three-dimensional case is straightforward. A more
detailed discussion of the method can be found, for example, in Tannehill
et al. (1997).

The first step is to apply the implicit Crank-Nicolson time integration,
which results in the second order approximation:

U n+1 = U n − �t

2

[(
∂A
∂x

+ ∂B
∂y

)n

+
(

∂A
∂x

+ ∂B
∂y

)n+1
]

. (9.12)

The vectors U n , U n+1, An , Bn , An+1, and Bn+1 are the vector functions
of x and y , which are obtained after the time discretization, but before
we conduct the spatial one.

The terms in (9.12) that include An+1 and Bn+1 are nonlinear with
respect to the unknown elements of U n+1. Following Beam and Warm-
ing, we approximate them by local linearizations in the form of Taylor
approximations around the time level t n :

An+1 ≈ An + Fn · (U n+1 − U n) (9.13)

Bn+1 ≈ Bn + Gn · (U n+1 − U n) , (9.14)
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where Fn and Gn are the Jacobian matrices

Fn =
(

∂A
∂U

)n

, Gn =
(

∂B
∂U

)n

. (9.15)

The error introduced by the linearization can be easily estimated if we
consider that the reminders of the Taylor series omitted in (9.13) and
(9.14) are

∼ (U n+1 − U n)2 ∼
(

∂U
∂t

�t

)2

∼ (�t)2.

The additional error is, thus, of the second order in time.
Substituting the expansions (9.13)–(9.14) into (9.12) and rearranging

the equation so that the terms with the unknown U n+1 are in the left-hand
side and all the other terms are in the right-hand side, we obtain[

I + �t

2

(
∂

∂x
Fn + ∂

∂y
Gn
)]

· U n+1 =[
I + �t

2

(
∂

∂x
Fn + ∂

∂y
Gn
)]

· U n − �t

(
∂A
∂x

+ ∂B
∂y

)n

, (9.16)

where I is the identity matrix (the matrix whose elements are zeros except
for the elements on the main diagonal, which are all equal to one). The
equation (9.16) is written in the operator form. The operator

I + �t

2

(
∂

∂x
Fn + ∂

∂y
Gn
)

stands for the combination of matrix multiplications and additions, and
differentiations in x and y , such that the result of its action on a vector
field, for example on U n+1, is[

I + �t

2

(
∂

∂x
Fn + ∂

∂y
Gn
)]

· U n+1 =

U n+1 + �t

2

∂

∂x

(
Fn · U n+1)+ �t

2

∂

∂y

(
Gn · U n+1) . (9.17)

The equation (9.16) is linear for the unknown variables in U n+1. The
spatial discretization applied at this stage would result in a system of linear
algebraic equations (a matrix equation). Because of multidimensionality of
the problem, the coefficient matrix of the system would be nontridiagonal.
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This can be easily seen if we consider expressions for components of
matrices Fn and Gn and approximate (9.17) by a second-order scheme
on five-point difference molecule. The coefficients of the resulting system
of discretization equations would form a matrix with a nontridiagonal
structure similar to the structure shown in Figure 8.2.

The Thomas algorithm cannot be applied to a matrix equation with non-
tridiagonal matrix. One of the direct or, more efficiently, iterative methods
discussed in Chapter 8 should be applied. Another efficient approach is to
apply the approximation of the multidimensional operator by a sequence
of one-dimensional operators. There exist several versions, including the
approximate factorization method explained here.

The operator in the left-hand side of (9.17) is replaced (factorized) as[
I + �t

2

(
∂

∂x
Fn + ∂

∂y
Gn
)]

· U n+1 ≈
(

I + �t

2

∂

∂x
Fn
)

·
(

I + �t

2

∂

∂y
Gn
)

· U n+1. (9.18)

Direct matrix multiplication shows that the right-hand side and left-hand
side differ by the term(

�t

2

)2 (
∂

∂x
Fn · ∂

∂y
Gn
)

· U n+1,

which constitutes the error of the approximation. This error is ∼ (�t)2,
so it does not affect the second order of approximation set by the Crank-
Nicolson scheme. After a similar factorization of the operator in the right-
hand side, the equation (9.16) becomes(

I + �t

2

∂

∂x
Fn
)(

I + �t

2

∂

∂y
Gn
)

· U n+1 =(
I + �t

2

∂

∂x
Fn
)

·
(

I + �t

2

∂

∂y
Gn
)

· U n − �t

(
∂A
∂x

+ ∂B
∂y

)n

(9.19)

A simpler and computationally more efficient version is obtained if we
introduce the new vector field �U = U n+1 − U n and rewrite the equation
as(

I + �t

2

∂

∂x
Fn
)

·
(

I + �t

2

∂

∂y
Gn
)

· �U = −�t

(
∂A
∂x

+ ∂B
∂y

)n

(9.20)

The advantage of the factorized forms (9.19) and (9.20) in comparison
to the original form (9.16) is that now the left-hand side is a product of
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two operators, which are one-dimensional in the sense that each involves
a derivative with respect to only one coordinate. The time step can be
arranged as a sequence of substeps, which only require solution of matrix
equations with tridiagonal matrices if central differences of second order
are applied for discretization. For example, the sequence for (9.20) is:

Step 1: Solve (
I + �t

2

∂

∂x
Fn
)

· �̃U = −�t

(
∂A
∂x

+ ∂B
∂y

)n

Step 2: Solve (
I + �t

2

∂

∂y
Gn
)

· �U = �̃U

Step 3: Update the solution U n+1 = U n + �U .

The Beam-Warming algorithm presented here is unconditionally stable
and of the second order in time. The order in space is determined by
the scheme used for spatial discretization. Other versions of the method,
some with higher order of time integration, have been developed. They
are discussed, for example, in Tannehill et al. (1997).

9.2.4 Upwinding

We already saw an example of upwinding in section 7.1.1 when we solved
the linear convection equation

∂u

∂t
+ c

∂u

∂x
= 0, c > 0. (9.21)

It was found, perhaps surprisingly, that a simple explicit scheme is only
usable if it is based on the backward difference for the space derivative:

un+1
i − un

i

�t
+ c

un
i − un

i−1

�x
= 0. (9.22)

The other two schemes we analyzed, those based on forward and central
differences, were found unconditionally unstable.

The results can be generalized to the rule valid for arbitrary sign of
c. Considering the amplification factors (7.12)–(7.14), it is easy to see
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that the only meaningful simple explicit scheme is the upwind scheme, in
which the space derivative is approximated as

∂u

∂x

∣∣∣∣n
i

≈
{(

un
i − un

i−1

)
/�x if c > 0(

un
i+1 − un

i

)
/�x if c ≤ 0.

(9.23)

The same scheme is obtained if we follow the finite volume approach and
apply the upwind interpolation of the first order (5.17) (see section 5.3.1).
The upwind scheme is stable if the CFL condition |ν| = |c|�t/�x ≤ 1
is satisfied. On the contrary, central and downwind (one-sided and oppo-
site to upwind) approximations of ∂u/∂x create unconditionally unstable
schemes.

The clear advantage of the upwind approximation of spatial derivatives
(or, simply, upwinding) is associated with the physical properties of the
solutions of (9.21). The equation is the simplest representative of hyper-
bolic equations, solutions of which are dominated by waves propagating
along characteristics. In the case of (9.21), there is only one wave that
propagates to the right if c > 0 and to the left if c < 0 (see Figure 9.1).

The direction of the wave motion is also the direction in which infor-
mation propagates in the solution. At c > 0, the value of u at xi is affected
by the solution at xi−1, but absolutely insensitive to the solution at xi+1.
At c < 0, the direction of wave motion and, thus, the roles of xi−1 and
xi+1, are reversed. The upwind scheme reflects this behavior, while the
central and downwind schemes ignore it and introduce the artificial, phys-
ically impossible influence of the grid point, which is downstream (xi+1

at c > 0 or xi−1 at c < 0). As a result, the upwind scheme produces an
acceptable approximation, while central and downwind schemes do not.

(a) (b)
xi+1xi−1 xi xi+1xi−1 xi

u(x,t)

x

x = ct

u(x,t)

x

x = ct

Figure 9.1 Wavelike solutions of the linear convection equation (9.21) at (a) c > 0
and (b) c < 0.
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The idea of upwinding extends to many areas of CFD as a broad, nearly
philosophical concept: If a solution has strong wavelike features propa-
gating in certain directions, better stability and accuracy can be achieved
through the use of upwind differentiation or, in the case of finite volume
methods, upwind interpolation. The upwinding is understood here not as
a particular approximation, such as (9.23), but as the general approach,
according to which we design a difference or interpolation formula so
that it either uses only the grid points on the upwind side or gives to
these points larger weights than to the downwind points (the second
strategy is also called upwind-bias). It is important to mention that first-
order schemes, such as (9.23) have very strong numerical dissipation and
low accuracy (see section 4.3.2). For this reason, the modern upwind or
upwind-bias methods mostly use multipoint approximations of the second
order or higher.

One important situation, in which the upwinding can be helpful, is the
approximation of convection terms of the Navier-Stokes equations. The
analogy between these terms and the linear convection equation (9.21)
has already been discussed. For example, considering the x -momentum
equation in conservation form, which starts as

∂

∂t
(ρu) + ∂

∂x
(uρu) + ∂

∂y
(vρu) + ∂

∂z
(wρu) = . . . ,

we see that the solution should contain certain wave-like structures prop-
agated by the flow velocity with components u, v, and w.

Of course, the Navier-Stokes equations are not purely hyperbolic.
The waves are affected by viscosity and pressure and do not have
clearly defined domains of influence and dependence. In many cases,
schemes with central difference approximation of convection terms
produce good results. Still, there are cases in which the hyperbolic
effects are quite strong. This happens, in particular, in the convection-
dominated flows, in which the amplitude of the convection terms
is much larger than the amplitude of viscous terms. The central
difference formulas are known not to work in an optimal way in such
flows. The situation becomes even worse when symmetric formulas
of high order (fourth of higher) are applied. The main troubles are
the low stability limit and spurious small-scale oscillations in the
numerical solution. Adding a certain amount of upwinding usually
eliminates or reduces these effects and makes the computational
schemes more robust. There are various techniques of doing that.
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Typically, an upwind-bias discretization or interpolation formula can be
considered as a combination of weighted symmetric and purely upwind
formulas.

9.2.5 Methods for Purely Hyperbolic Systems

The need for special treatment is more severe in the case of purely hyper-
bolic systems. In CFD, such systems are often associated with inviscid gas
dynamics and with supersonic flows, although hyperbolic equations may
describe processes in many other areas: acoustics, optics, electrodynam-
ics, population balance dynamics, and so on. The difficulty of numerical
analysis of purely hyperbolic systems is often increased by the presence
of discontinuities in the solution. The shock waves in supersonic flows
provide the best known, but not unique, example. A numerical scheme
should be able to reproduce the shape and the motion of a shock correctly
and to maintain its structure as a discontinuity.

Using inappropriate discretization schemes, for example, the schemes
that involve downwind grid points can lead to serious troubles. In partic-
ular, spurious oscillations appear in the areas of strong gradients of the
solution and around the discontinuities. As an example, consider a shock
wave solution of the linear convection equation (9.21). The exact solution
shown in Figure 9.2a is a step-wave moving without changing its shape
to the right (we assume that c > 0). Approximation by a stable, but not
purely upwind scheme—such as, for example, the Lax-Wendroff method
(7.24)—would lead to the unphysical behavior illustrated in Figure 9.2b.

x = ct x = ct

x

u(x,t)

x

u(x,t)

x = ct

u(x,t)

(a) (b) (c)
x

Figure 9.2 Discontinuous solution of the linear convection equation (9.21) at c > 0.
(a) exact solution; (b) non-TVD numerical solution with spurious oscillations;
(c) numerical solution with smearing due to the first order of approximation.
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A useful property of a solution of a hyperbolic system is its total
variation. In the one-dimensional case, the total variation is defined as

TV (u) ≡
∫




∣∣∣∣∂u

∂x

∣∣∣∣ dx (9.24)

or, in terms of numerical solution,

TV (u) ≡
N∑

i=1

|ui+1 − ui |. (9.25)

The integration and summation are over the entire solution domain and all
grid points, respectively. In a solution consisting of propagating waves,
the shape of u does not change, so the total variation TV (u) remains
unchanged in time. A good numerical scheme should, ideally, reproduce
this property. In practice, we require that the scheme does not allow the
total variation to grow. The schemes satisfying the condition

TV
(
un+1) ≤ TV

(
un) (9.26)

are called total-variation-diminishing , or TVD. The importance of the
TVD requirement becomes clear if we consider the illustration in Figure
9.2b. The schemes that generate spurious oscillations around a shock
increase the total variation. They are not TVD and would be banned
if the TVD requirement were imposed.

Let us now focus on purely upwind TVD schemes. One example is the
first-order scheme (9.23) for the linear convection equation. Other first
order methods have been developed over the years to calculate solutions
with discontinuities in simple and in multidimensional complex systems.
They all, however, have a serious flaw. The first-order approximation
means very strong numerical dissipation. The sharp-gradient features of
the solution, including the shocks, are smeared out. This is illustrated in
Figure 9.2c.

The undesirable smearing can be avoided if we use the schemes of
second order of accuracy, which have much lower numerical dissipation.
An obvious way to do so, while maintaining the upwind character, is
to apply the second-order one-sided differences or interpolation schemes.
For example, instead of (9.23) we can use

∂u

∂x

∣∣∣∣n
i

≈
{(

3un
i − 4un

i−1 + un
i−2

)
/2�x if c > 0(−3un

i + 4un
i+1 − un

i+2

)
/2�x if c ≤ 0.

(9.27)
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The problem of this approach is that it brings back the spurious oscilla-
tions around the discontinuities. One popular way to improve the situation
is to modify the schemes so that they become TVD, thus preventing the
oscillations. The modifiers (also called limiters) are specifically design
so as to limit the possible variations of the solution. The second order
of approximation can be lost near a discontinuity, but maintained in the
areas where the solution is smooth. The approach is very effective. It is,
in fact, so effective that it allows us to avoid oscillations in nonupwind
schemes—such as, for example, the Beam-Warming or the Lax-Wendroff
method. A detailed discussion of these high-resolution schemes for hyper-
bolic systems goes far beyond the modest scope of our text, but can be
found elsewhere—for example, in Leveque 2002.

9.3 UNSTEADY CONDUCTION HEAT TRANSFER

We solve the equation
∂u

∂t
= a2∇2u, (9.28)

which describes the process of diffusion of field u(x , t) with constant
diffusivity a2. The physical nature of the diffusion can vary, although the
most common applications are the conduction heat transfer and molecular
diffusion of an admixture in a motionless medium.

There are various techniques, numerical and analytical, to solve the
equation. The finite element method is, in particular, efficient, versatile,
and popular. Many widely used engineering finite element tools have the
heat transfer capability, which provides a relatively simple and straight-
forward solution. The more academic Green’s function approach can also
be mentioned. We focus exclusively on the finite difference technique. A
reader interested in other methods is urged to consult more comprehensive
or more specialized books. Some references are provided at the end of
the chapter.

We have already considered finite difference schemes for (9.28), but
only in the special cases of a steady-state problem (in Chapter 8) or
one-dimensional unsteady problem (in Chapter 7). Here, we address the
general unsteady-state multidimensional form of the equation. For sim-
plicity, the schemes are presented on the example of the two-dimensional
equation discretized on a uniform Cartesian grid with steps �x and �y .
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9.3.1 Simple Methods for Multidimensional Heat Conduction

The schemes derived earlier for the one-dimensional heat equation can
be easily generalized to the two-dimensional case. The five-point central
difference approximation can be used for spatial derivatives. The simple
explicit, implicit, and Crank-Nicolson methods become

un+1
i ,j − un

i ,j

�t
= a2

[un
i+1,j − 2un

i ,j + un
i−1,j

(�x)2
+ un

i ,j+1 − 2un
i ,j + un

i ,j−1

(�y)2

]
,

(9.29)

un+1
i ,j − un

i ,j

�t
= a2

[
un+1

i+1,j − 2un+1
i ,j + un+1

i−1,j

(�x)2
+ un+1

i ,j+1 − 2un+1
i ,j + un+1

i ,j−1

(�y)2

]
,

(9.30)

and

un+1
i ,j − un

i ,j

�t
= a2

2

[
un+1

i+1,j − 2un+1
i ,j + un+1

i−1,j

(�x)2
+ un

i+1,j − 2un
i ,j + un

i−1,j

(�x)2

+ un+1
i ,j+1 − 2un+1

i ,j + un+1
i ,j−1

(�y)2
+ un

i ,j+1 − 2un
i ,j + un

i ,j−1

(�y)2

]
. (9.31)

The truncation error of these schemes is of the same order as the error of
the one-dimensional version: O(�t , (�x)2, (�y)2) for the simple explicit
and implicit methods and O((�t)2, (�x)2, (�y)2) for the Crank-Nicolson
method.

Generalization of stability results obtained for one-dimensional
equations to the multidimensional case must be done with caution.
Implicit schemes (9.30) and (9.31) remain unconditionally stable. For the
explicit scheme (9.29), the Fourier analysis gives the stability condition

a2�t

(
1

(�x)2
+ 1

(�y)2

)
≤ 1

2
, (9.32)

which is more restrictive than the condition r ≤ 1/2 for the one-
dimensional equation derived in section 7.2.1. For example, if we take
�x = �y , it is easy to mistakenly assume that

r = a2�t

(�x)2
= a2�t

(�y)2
≤ 1

2
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is sufficient in the two-dimensional case. In fact, according to (9.32), we
must use r ≤ 1/4. Similarly, if the simple explicit method is applied to
the three-dimensional heat equation, the stability condition changes to

a2�t

(
1

(�x)2
+ 1

(�y)2
+ 1

(�z )2

)
≤ 1

2
. (9.33)

9.3.2 Approximate Factorization

The stability requirements of explicit methods, such as (9.32) and (9.33),
often impose severe limitations on the size of the time step �t . This
typically happens because at least one of the grid steps �x , �y , �z
should be small, at least in some areas, to resolve strong variations of the
solution. The implicit schemes, such as (9.30) and (9.31), do not have
this disadvantage, since they are unconditionally stable and allow us to
take arbitrarily large time steps. In the multidimensional case, however,
the implicit schemes present the difficulty of having to solve a matrix
equation with nontridiagonal matrix. The simple and effective Thomas
algorithm cannot be used.

We have already encountered this situation when we discussed the
Beam-Warming scheme applied to compressible flows. We learned that,
in addition to iteration methods, there is an efficient approach based on
approximate factorization. Every implicit step is split into two or more
substeps, each requiring solution of a tridiagonal system.

We will show how the approximate factorization method is applied
to the heat equation. The basic technique is the same as in the Beam-
Warming method, but the realization is simpler and can be presented in
terms of discretization equations. We will work with the increments of
solution variables at grid points

�ui ,j = un+1
i ,j − un

i ,j . (9.34)

Similar increments were used by the Beam-Warming scheme, although
we introduced them close to the end of the derivation.

The finite difference operators approximating the second derivatives of
u are:

Lx un
i ,j = un

i+1,j − 2un
i ,j + un

i−1,j

(�x)2
, Ly un

i ,j = un
i ,j+1 − 2un

i ,j + un
i ,j−1

(�y)2
.

(9.35)
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The scheme can be developed on the basis of an arbitrarily weighted
implicit-explicit scheme. As in our earlier discussion of the Beam-
Warming method, we will use the Crank-Nicolson scheme. The finite
difference formula (9.31) can be rewritten as

1

�t
�ui ,j = a2

2

(
Lx un+1

i ,j + Lx un
i ,j + Lyun+1

i ,j + Lyun
i ,j

)
. (9.36)

Replacing un+1
i ,j by un

i ,j + �ui ,j we obtain

1

�t
�ui ,j = a2

2

(
Lx�ui ,j + Ly�ui ,j + 2Lx un

i ,j + 2Lyun
i ,j

)
. (9.37)

Moving the terms with the unknowns �ui ,j into the left-hand side and all
the other terms into the right-hand side produces(

1 − a2�t

2
Lx − a2�t

2
Ly

)
�ui ,j = a2�t

(
Lx + Ly

)
un

i ,j . (9.38)

The system of such equations can be written as a matrix equation with
nontridiagonal matrix and is as costly to solve as the system associated
with the traditional Crank-Nicolson scheme. To be able to use the Thomas
algorithm, the procedure of approximate factorization is applied. Similarly
to (9.18), we approximate the left-hand side as(

1 − a2�t

2
Lx − a2�t

2
Ly

)
�ui ,j ≈

(
1 − a2�t

2
Lx

)
(

1 − a2�t

2
Ly

)
�ui ,j . (9.39)

The approximation introduces the error (1/4)a4(�t)2Lx Ly�ui ,j , which is
of the second order in �t and can, therefore, be tolerated.

Algorithmically, the factorized operator is a consecutive application
of the central difference operators (9.35) in the x - and y-directions. We
introduce the intermediate increment

�̃ui ,j =
(

1 − a2�t

2
Ly

)
�ui ,j , (9.40)

which can be found as a solution of(
1 − a2�t

2
Lx

)
�̃ui ,j = a2�t

(
Lx + Ly

)
un

i ,j . (9.41)
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The procedure can be summarized as follows: Solve, using Thomas algo-
rithm, (9.41) for �̃ui ,j and then (9.40) for �uij , use the calculated �ui ,j

to find un+1
i ,j according to (9.34). The scheme is of the second order in

time and space and unconditionally stable. These properties are retained
by the three-dimensional version, which requires factorization into three
substeps.

9.3.3 ADI Method

The approximate factorization concept was, in fact, originally developed
for the transient multidimensional heat equation. The first scheme was
published more than 50 years ago by Peaceman and Rachford (1955)
under the name of ADI (alternating directions implicit) scheme. We will
briefly describe its simplest version.

In the ADI method, the solution for the implicit values un+1
i ,j is split into

two successive substeps. On the first, an intermediate solution is found
using the scheme, which is implicit for the x -derivative term and explicit
for the y-derivative term:

ũi ,j − un
i ,j

�t/2
= a2

[
ũi+1,j − ũi ,j + ũi−1,j

(�x)2
+ un

i ,j+1 − un
i ,j + un

i ,j−1

(�y)2

]
. (9.42)

On the second substep, the solution is updated using the scheme, which
is implicit for the y-term and explicit for the x -term:

un+1
i ,j − ũi ,j

�t/2
= a2

[
ũi+1,j − ũi ,j + ũi−1,j

(�x)2
+ un+1

i ,j+1 − un+1
i ,j + un+1

i ,j−1

(�y)2

]
.

(9.43)

Rearranging the equations so that the quantities unknown at each particular
substep are in the left-hand side and the known quantities are in the
right-hand side, we obtain two systems, which are expressed in terms of
one-dimensional differential operators as(

1 − a2�t

2
Lx

)
ũi ,j =

(
1 + a2�t

2
Ly

)
un

i ,j , (9.44)(
1 − a2�t

2
Ly

)
un+1

i ,j =
(

1 + a2�t

2
Lx

)
ũi ,j . (9.45)

Clearly, the system (9.44) can be separated into Ny independent subsys-
tems, one for every j . Each such subsystem has a tridiagonal coefficient
matrix. Similarly, the system (9.45) consists of Nx subsystems with tridi-
agonal matrices, one for every i . The subsystems can be solved efficiently
using the Thomas algorithm.
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The ADI method has the truncation error O
[
(�t)2, (�x)2, (�y)2

]
.

The scheme is unconditionally stable when applied to a two-dimensional
problem. Its extension to three dimensions, which would include three
substeps, each implicit in one direction, retains the second-order accuracy
and efficiency but becomes only conditionally stable. It requires that rx ,
ry , and rz = a2�t/(�z )2 are all smaller than 3/2.

An important aspect of the approximate factorization methods is that
the intermediate solution, such as ũi ,j , should be viewed as a preliminary
approximation of un+1

i ,j . Generally, it does not represent the solution at
some intermediate time level, say at t n+1/2 = tn + �t/2. This has a sig-
nificant implication that the intermediate solution does not have to satisfy
the physical boundary conditions imposed on the solution u(x , y , t) of the
PDE problem. Moreover, imposing such conditions may introduce addi-
tional truncation error and compromise the accuracy of the entire scheme.
For example, imposing physical boundary conditions on ũi ,j in the ADI
method may result in a truncation error ∼ O(�t).

The loss of accuracy can be avoided if special numerical boundary
conditions are designed from the factorized equations themselves. As an
example, to obtain the necessary conditions on ũ in the ADI method, we
should subtract (9.43) from (9.42) and evaluate the resulting equation at
boundary point, while substituting the physical boundary conditions for
un and un+1.

As a last comment, the approximate factorization methods can also be
used to solve the steady-state elliptic problems. The application is based
on the pseudo-transient approach. The elliptic problem is converted into
a parabolic problem through a fictitious time-derivative term (see section
8.3.7).
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PROBLEMS

1. For a two-dimensional compressible flow of a Newtonian viscous
fluid with all variables depending on (x , y , t), the equations are writ-
ten in vector form as

∂U
∂t

+ ∂A
∂x

+ ∂B
∂y

= 0.

Rewrite the expressions (2.42), (2.43) of the vector fields U , A, and
B for this case.

2. Can the incompressible flow equations be written in the vector form
(9.4)? What are the expressions for the vector fields U , A, B , and
C in this case?

3. For the two-dimensional compressible flow equations in Problem 1,
write the complete MacCormack scheme of second order in space
and time. Follow the rules described in section 9.2.2 to derive the
discretization of internal derivatives in A and B .

4. A three-dimensional flow of air is modeled using the MacCormack
scheme. The flow velocity is estimated to be between 0 and 200 m/s.
The computational grid has �x = �y = 10−2 m and variable step
in the z -direction 10−3 ≤ �z ≤ 10−2 m. Taking the air properties as
ρ = 1.2 kg/m3, μ = 1.81 × 10−5 kg/m s, and a = 340 m/s (approx-
imately the properties at 20◦ C), find the maximum time step that
guarantees numerical stability of solution.

5. Considering that the Beam-Warming scheme is unconditionally sta-
ble, would it be justified to use very large time steps?
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6. For the Beam-Warming scheme, what is the order of error introduced
by linearization and by approximate factorization? Does the accuracy
of the scheme deteriorate in the result of using these approximations?

7. A rectangular bar of dimensions Lx × Ly × Lz , constant material
properties κ , ρ, C , and initial temperature T0 is immersed in cold
water maintained at constant temperature Tw < T0.

a) Write the complete PDE problem (heat equation, initial and
boundary conditions) for conduction heat transfer within the
bar. For the boundary conditions, use Newton’s cooling law
(2.52) with constant heat transfer coefficient h.

b) Develop the simple explicit and Crank-Nicolson schemes.
Include the finite difference approximations of the boundary
conditions.

c) What are the truncation error and stability conditions for each
scheme?

8. Rewrite the finite difference approximations developed in Problem
7 for the case when the material properties κ , ρ, C are functions of
temperature.

9. Rewrite the approximate factorization method of section 9.3.2 for
the case of three-dimensional heat conduction equation.

10. Compare the properties of the approximate factorization method,
Crank-Nicolson method (9.31), and simple explicit method (9.29),
all applied to solution of two-dimensional heat conduction problems.
Discuss relative advantages and disadvantages of each method.

11. Show that the ADI scheme for two-dimensional heat equation can
be obtained from the Crank-Nicolson scheme (9.31) by approximate
factorization. Find the factorization error.

12. The two-dimensional heat equation is solved in a rectangular domain
0 < x < A and 0 < y < B with Dirichlet boundary conditions u(x =
0, y , t) = f (y , t), u(x = A, y , t) = g(y , t), u(x , y = 0, t) = h(x , t),
u(x , y = B , t) = p(x , t). The ADI scheme is applied. Derive the
numerical boundary conditions for the intermediate solution ũ. See
the text for a hint on how this can be done.
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Programming Exercises
1. Implement the simple explicit algorithm for two-dimensional heat

equation and apply it to solve unsteady heat conduction in a rect-
angular plate of dimensions Lx × Ly = 0.1 × 0.1 m. The initial
temperature is uniform and equal to 293 K. The boundary con-
ditions are constant temperature of 293 K at x = Lx and y = 0,
perfectly insulated boundary at x = 0, and constant heat flux of
1000 W/m2 into the plate at y = Ly . Use the material properties
of pure aluminum (ρ ≈ 2.7 kg/m3, C ≈ 900 J/kg·K, κ ≈ 204
W/m·K). Conduct the solution until the asymptotic steady state
is found. Use uniform grids of 10 × 10, 50 × 50, and 100 × 100
points. Compare the results.
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INCOMPRESSIBLE FLOWS

10.1 GENERAL CONSIDERATIONS

10.1.1 Introduction

No fluid can be considered perfectly incompressible. Even in the most
carefully controlled situations, minute variations of density are present
because of inevitable variations of temperature and for other reasons. The
incompressible fluid model is, therefore, only an approximation. However,
the approximation is quite accurate for flows, in which the local velocity
is much smaller than the local speed of sound.

In this section, we consider methods developed specifically for the
equations that describe flows in the approximation of incompressible fluid.
In addition to constant density, we assume that the fluid properties, such
as viscosity or heat conductivity, are constant.

The governing Navier-Stokes and continuity equations simplify to

ρ
DV
Dt

= −∇p + μ∇2V + ρf (10.1)

∇ · V = 0, (10.2)

where f is an external body force.

DV
Dt

≡ ∂V
∂t

+ ∂(uV )

∂x
+ ∂(vV )

∂y
+ ∂(wV )

∂z
≡ ∂V

∂t
+ N (V , V ) (10.3)
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is the material derivative in conservation form, with N being the shorthand
notation for the nonlinear term. The energy equation can be reduced to
the equation of convection heat transfer with, possibly, a heat source due
to viscous dissipation and other effects:

ρC
DT

Dt
= κ∇2T + Q̇ . (10.4)

In the incompressible fluid model, the heat equation is decoupled from the
momentum and incompressibility equations and can be solved separately.1

We will focus on schemes designed to compute fluid flows—that is, to
solve (10.1)–(10.2).

10.1.2 Role of Pressure

The incompressible flow model has certain distinctive mathematical and
physical properties that require special computational techniques. The
most important is the new role adopted by the pressure field. In compress-
ible flows, pressure is defined by the equation of state as a function of
other variables (e.g., density and temperature), which, in turn, are found
as solutions of evolutionary equations. When a flow is incompressible,
the situation is entirely different. There is no equation of state, except for
ρ = const . The pressure, which still remains a function of space and time
and has to be computed at every time step, is now determined as a part
of the general solution of the momentum and incompressibility equations
(10.1), (10.2).

The main difficulty arises here. We cannot find the pressure field by
simple advancement of a marching scheme or by evaluating a function of
other thermodynamic variables. Furthermore, the mass conservation con-
dition (10.2) is not an independent evolutionary equation for density, as
in the case of compressible flows, but a kinematic constraint on velocity.
How can we find a velocity field, which follows the evolution prescribed
by the momentum equation (10.1) and satisfies the incompressibility con-
dition (10.2) at the same time?

The answer to these questions is to construct the pressure field in such
a way that its gradient in (10.1) enforces the incompressibility. Let us

1An exception is the Boussinesq model of natural thermal convection, in which the incom-
pressibility condition is relaxed to allow for buoyancy forces caused by temperature
variations. Evidently, the heat and momentum equations are coupled in that case. We
mention the Boussinesq model here because, apart from the buoyancy force, the momen-
tum and incompressibility equations are the same as in the purely incompressible flow.
They can be solved by the numerical methods described in this chapter.
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see how this can be done. We apply the divergence operator (∇·) to the
momentum equation. Requiring that ∇ · V = 0 and taking into account
that the operator (∇·) commutes with ∂/∂t in the time-derivative term
and with ∇2 in the viscous term we find that the pressure field satisfies
the Poisson equation

∇ · (∇p) ≡ ∇2p = ρ∇ · [f − N(V, V)] = ρ∇ · F, (10.5)

where we used the notation F = f − N(V, V).
From the mathematical viewpoint, this means that the incompressible

flow equations have some features of an elliptic system. We can say that
the equations are of the mixed hyperbolic (convective terms), parabolic
(viscous terms), and elliptic (pressure and incompressibility) type. The
elliptic nature of the pressure solution has a physical meaning. It shows
that, in an incompressible flow, the pressure field in the entire flow domain
adjusts instantaneously to any, however localized, perturbation. This is in
perfect agreement with the fact that weak perturbations, for example sound
waves, propagate at infinite speed in incompressible fluids.

The special features of incompressible flows require special computa-
tional tools. We cannot dismiss the peculiar role of pressure as a mere
technicality and apply the methods developed for compressible flows. An
attempt to do so is likely to lead to disappointing results. For example,
let us assume that we could adapt the MacCormack method (9.5)–(9.6)
to the case of an incompressible flow. The CFL stability criterion (9.8)
would require zero time step �t since the speed of sound a is infinite. In
fact, many established explicit schemes for compressible flows fail when
compressibility is weak (the Mach number M is much smaller than 1).
The required time step becomes too small when M → 0.

The pressure equation poses new questions that have to be answered
by any scheme designed for incompressible flows. Some of them are of
familiar kind and refer to discretization of (10.5). The others are quite
unique. They concern the organization of steps of a time-marching or
iteration procedure. Every such step should combine solutions of two
equations: the momentum equation (10.1) and the pressure equation (10.5).
As we show in this Chapter, the task is nontrivial.

10.2 DISCRETIZATION APPROACH

We start with general comments concerning the discretization approach.
Finite difference approximations of the momentum and pressure equations
can be obtained using the formulas derived earlier for model equations. For
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example, in the momentum equations, we can use central or upwind-bias
schemes for convective terms and central differences for viscous terms.
The pressure gradient term in (10.1) can be approximated by various
schemes, not necessarily coinciding with the schemes used for the other
terms and not necessarily on the same set of grid points (we will discuss
this later).

In finite volume methods, the surface integrals corresponding to con-
vective and viscous terms of the momentum equation are interpolated as
convective and diffusive flux integrals, respectively (see section 5.2.2).
The pressure gradient in the momentum equation is usually treated as a
surface force. For example, for the x -momentum equation, we use∫




∂p

∂x
d
 =

∫
∂


pex · ndS =
∫

∂


pnx dS (10.6)

and apply one of interpolation schemes to approximate the surface integral.
The pressure equation in the integral form is∫




∇ · (∇p)d
 =
∫




∇ · Fd
. (10.7)

The volume integrals are transformed into surface integrals using the
divergence theorem: ∫

∂


∇p · ndS =
∫

∂


F · ndS (10.8)

and approximated by interpolation formulas.
One important aspect of the system should be taken into account if

a numerical scheme with exact conservation of mass is desired. The
discretization schemes for the Laplace operator in (10.5), the pressure
gradient term in the momentum equation (10.1), and the divergence oper-
ator in the right-hand side of (10.5) cannot be chosen independently of
each other. Mathematically, the Laplace operator and the right-hand side
of (10.5) are the results of application of the divergence operator to the
pressure gradient and to the rest of the momentum equation (10.1). If the
scheme resulting from the sequential application of the schemes used to
discretize ∇p and ∇ · F is equivalent to the scheme used for ∇2p, the
computed velocity field is exactly (up to the computer round-off error)
incompressible: ∇ · V = 0. If, however, the equivalency is absent, the
divergence of the computed velocity field deviates from zero. The error
has the order of magnitude of the truncation error of the scheme. The
effect is as if a source (positive or negative) of mass were created by the
numerical scheme. However small, this artificial mass source is, in many
cases, undesirable, since its effect may accumulate with time and lead
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to significant mass imbalance and to poor conservation of kinetic energy
by the solution. There is an additional rather unpleasant effect. In many
cases, the errors of the energy balance are not strictly dissipative, which
results in numerical instability.

10.2.1 Colocated and Staggered Grids

When designing a finite difference or finite volume scheme, we have to
choose whether to use the same or different sets of grid points for velocity
and pressure. The obvious choice seems to have a single set of points, at
which all the variables and all the equations are discretized. Such a grid
has the name of a colocated or regular grid . Albeit simple and easy in
operation, the colocated grids were out of favor for long time because of
their tendency to generate spurious oscillations in the solution.

Let us understand the origins of the oscillations. The phenomenon itself
is quite general. It appears for colocated variable arrangements on two- and
three-dimensional, structured and unstructured, uniform and nonuniform
grids. For simplicity, we illustrate it on the example of a finite volume
grid with uniform rectangular cells shown in Figure 10.1. The grid points
are the cell midpoints marked by capital letters: P, E, N, etc. The same
points can be considered as forming a rectangular finite difference grid. It
will be clear from the following discussion that the discretized equations
resulting from the two approaches are equivalent.

We start by approximating the divergence operator. The finite volume
approach gives, by the divergence theorem,∫




∇ · V d
 =
∫

∂


V · ndS . (10.9)
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Figure 10.1 Finite volume colocated grid.
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On each of the faces marked by e, w, s, and n, the outward-facing normal
n is given by a positive or negative unit vector in the x - or y-direction.
Using the mean value theorem, we represent the surface integral in (10.9)
using the Cartesian velocity components u and v as∫

∂


V · ndS ≈ ue�y − uw�y + vn�x − vs�x . (10.10)

Dividing by the cell volume �x�y , we obtain the approximation of the
second order

1

�x�y

∫



∇ · V d
 ≈ ue − uw
�x

+ vn − vs

�y
= δu

δx

∣∣∣∣
P

+ δv

δy

∣∣∣∣
P

, (10.11)

where we used the symbolic expressions δu/δx and δv/δy to denote
discretizations of partial derivatives ∂u/∂x and ∂v/∂y . The velocities u
and v are only defined at the grid points. Their values at the face points
have to be obtained by interpolation. Willing to retain the second order
of accuracy, we use the linear (CD) interpolation:

ue ≈ uE + uP
2

, uw ≈ uW + uP
2

, vn ≈ vN + vP

2
, vs ≈ vS + vP

2
. (10.12)

Substitution into (10.11) gives the familiar formula

δu

δx

∣∣∣∣
P

+ δv

δy

∣∣∣∣
P

= uE − uW
2�x

+ vN − vS

2�y
, (10.13)

which could be obtained as a finite difference approximation by direct
application of central difference formulas to the derivatives.

The next step is to find an approximation of the pressure gradient ∇p.
The second-order approximation of integrals of pressure derivatives, such
as (10.6), can be derived similarly to (10.10) and (10.11):

1

�x�y

∫
∂


pnx dS ≈ pe − pw
�x

= δp

δx

∣∣∣∣
P

, (10.14)

1

�x�y

∫
∂


pny dS ≈ pn − ps
�y

= δp

δy

∣∣∣∣
P

, (10.15)

where we, again, use symbolic notation for approximations of pressure
derivatives.
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The values at the face points are obtained by linear interpolation as in
(10.12), which results in the formulas

δp

δx

∣∣∣∣
P

= pE − pW
2�x

,
δp

δy

∣∣∣∣
P

= pN − pS
2�y

. (10.16)

This could also be obtained as central difference approximations of the
components of ∇p|P on a finite difference grid.

We now consider the pressure equation in the form of (10.5) or (10.8)
and recall that the exact mass conservation by a numerical solution
requires two conditions: (i) that the divergence operators in the left-hand
and right-hand sides are approximated by the same scheme and (ii) that
the gradient operator in the left-hand side is approximated by the same
scheme as the pressure gradient in the momentum equation. Applying
the approximation of divergence (10.13) to the components of ∇p and
F , we obtain

(δp/δx)E − (δp/δx)W

2�x
+ (δp/δy)N − (δp/δy)S

2�y

= Fx E − Fx W

2�x
+ Fy N − Fy S

2�y
. (10.17)

The pressure derivatives are approximated as in (10.16), except that the
formulas should be taken for the cells with the grid points E, W, S, and N
instead of P. For example, we should use

δp

δx

∣∣∣∣
E

= pEE − pP
2�x

.

The final approximation of the pressure equation is

pEE − 2pP + pWW
(2�x)2

+ pNN − 2pP + pSS
(2�y)2

= Fx E − Fx W

2�x
+ Fy N − Fy S

2�y
.

(10.18)

The expression on the left-hand side is the familiar five-point operator,
which has the second order of accuracy in x and y . It has a strange
feature, however, that grid steps of double size 2�x and 2�y are taken.
Albeit not especially troubling at first glance, this may lead to dangerous
behavior in the form of spurious oscillations of the pressure field. The
reason is the splitting of the system of discretization equations into four
subsystems, which are only coupled with each other in weak sense via the
right-hand sides. Each such subsystem contains the equations that connect
the pressure values at cells marked by only one of the numbers 0, 1, 2,
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or 3 in Figure 10.1. For example, it is easy to see that the left-hand side
of (10.18) connects the values of p at the 0 cells. Any equation written
for any other 0 cell connects only 0 cells. Similarly, equations for a 1 cell
connect 1 cells but not the others, and so on.

As a particularly striking example of the splitting effect, let us assume
that the numbers 0, 1, 2, and 3 in Figure 10.1 represent actual values
of pressure in the corresponding cells. Such a bizarre distribution would
be a solution of the pressure equation with zero right-hand side. The
approximations (10.16) would ignore the pressure variations and show
the gradient ∇p as identically zero.

The source of trouble is, of course, the use of double grid steps 2�x
and 2�y in the approximations of the first derivatives in the gradient and
divergence operators. Can this be avoided? The positive answer was first
given by Harlow and Welch in 1965 in the form of a staggered grid .

The idea is simple and based on understanding that we do not have to
use the same set of grid points for all variables. In particular, we avoid
double step differences, such as (10.13) and (10.16) by evaluating velocity
components directly at the corresponding face points instead of the grid
points located at the centers of the cells. The u-component is calculated
at the midpoints e and w of the eastern and western faces of each cell,
while the midpoints n and s of the northern and southern faces are used
for the v-component.

The same arrangement is used for the components of vector F . The
grid points at the cell centers are still used for the pressure. The formulas
(10.11) can now be applied directly without need for an interpolation.
The main benefit, however, is removing the splitting problem. If we use
(10.11) instead of (10.13) as an approximation of the divergence operator,
the consistent approximation of the pressure equation becomes, instead of
(10.17),

(δp/δx)e − (δp/δx)w

�x
+ (δp/δy)n − (δp/δy)s

�y

= Fx e − Fx w

�x
+ Fyn − Fys

�y
. (10.19)

The partial derivatives of pressure at the face points can be approximated
by single step differences:

δp

δx

∣∣∣∣
e

= pE − pP
�x

,
δp

δx

∣∣∣∣
w

= pP − pW
�x

,

δp

δy

∣∣∣∣
n

= pN − pP
�y

,
δp

δy

∣∣∣∣
s

= pP − pS
�y

.
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Substitution into (10.19) results in the standard five-point scheme

pE − 2pP + pW
(�x)2

+ pN − 2pP + pS
(�y)2

= Fx e − Fx w

�x
+ Fyn − Fys

�y
. (10.20)

Equations for every grid point are now strongly coupled by the left-hand
sides. Unphysical oscillations like those shown in Figure 10.1 are regis-
tered by the pressure gradient and reacted upon by the velocity field.

To be able to evaluate the components of u and F directly at the face
points we have to introduce additional sets of grid points or, in finite
volume methods, cells. This leads to the staggered grid arrangements
illustrated by two-dimensional examples in Figure 10.2. Generalization to
the three-dimensional case is trivial.

In finite difference methods (see Figure 10.2a), we evaluate pressure
and approximate the pressure equation (satisfy the incompressibility con-
dition) at the integer grid points (xi , yj ) shown by solid circles. These
points are also used for other scalar fields (e.g., temperature). The velocity
components are evaluated and momentum equations are solved at points
of half-integer grids obtained from the integer grid by shifting in the x or
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(b)

(d)
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Figure 10.2 Examples of two-dimensional staggered grids. (a) finite difference
grid. (b)– (d) finite volume grid; Separate figures present cells used to satisfy mass

balance (b), x-momentum balance (c), and y-momentum balance (d).
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y direction by half a grid step. The points (xi+1/2, yj ) shown by hollow
circles are used to evaluate u, while v is computed at points (xi , yj+1/2)

shown by squares.
In the finite volume method, additional sets of cells are created.

Examples of cells used to solve the pressure or other scalar equation,
u-momentum equation, and v-momentum equation are shown in Figure
10.2b, c, and d , respectively.

The staggered arrangement increases complexity of a scheme. Program-
ming becomes more difficult, since it requires accounting for three (or four
in the three-dimensional case) indexing systems. Interpolations must be
used to compute nonlinear terms of momentum equations. Further compli-
cations arise when the grid is nonuniform. All these difficulties, however,
can be relatively easily handled in computations with structured grids such
as those shown in Figure 10.2. For this reason and because of the benefit
of removing the splitting problem, the staggered arrangement was by far
the most popular choice during early years of CFD.

The difficulties of handling a staggered arrangement increase signif-
icantly when unstructured grids are used. When such grids started to
be broadly applied in general-purpose codes in recent years, colocated
arrangements returned to favor. This area of CFD is still evolving and,
in general, requires discussion on a more advanced level than appropri-
ate for this book. We only mention that methods have been developed to
cure the splitting problem. Some of them are based on filtering out the
oscillating component of pressure field or periodic averaging of pressure
values at neighboring points. Others avoid the problem by fully or par-
tially neglecting the requirement that ∇2p in the pressure equation, ∇ · V
in the incompressibility condition, and ∇p in the momentum equation are
discretized consistently. The property of exact mass and kinetic energy
conservation is lost if this approach is taken. It was, however, shown, for
example by Morinishi et al in 1998, that the schemes can be arranged so
that the error is relatively small and does not induce numerical instability.

10.3 PROJECTION METHOD FOR UNSTEADY FLOWS

In this section, we consider the procedure commonly used to compute
time-dependent flows of incompressible flows. The procedures for steady-
state equations, which we review in the next section, follow the same basic
principle, although they are implemented differently. The details of spatial
discretization are of little importance at this moment and are, therefore,
omitted. We assume in the following discussion that spatial derivatives
are discretized using a finite difference, finite volume or, perhaps, spectral
scheme.
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The problem of pressure calculation in unsteady solutions is for-
mulated as follows: Given the solution pn , V n at the previous time
layer tn find the next time-layer pressure pn+1 and velocity V n+1 such
that they together satisfy the momentum equation, and the velocity is
divergence-free ∇ · V n+1 = 0 and satisfies the boundary conditions.

A widely used and well-developed approach is based on the pressure-
correction or projection method. The general strategy is to decompose
each time step into two substeps. On the first substep, the momentum
equation is solved for the velocity components. The pressure gradient is
either removed from the equation or approximated by an estimate. The
obtained velocity field cannot be considered a solution at the new time
level since it does not satisfy the incompressibility condition. The second
substep is, therefore, needed, at which the correct pressure distribution is
found and the correction of velocity is made. The term projection reflects
the fact that we find a preliminary solution, which is not divergence-free,
and then project it onto the space of divergence-free vector functions.
Versions of the projection method were proposed by Harlow and Welch
in 1965 (the marker-and-cell method), Chorin in 1968, Temam in 1969,
and Yanenko in 1971 (the fractional-step method) and further developed
in 1980s and 1990s.

10.3.1 Explicit Schemes

As the first illustration, we solve a marching problem using the simple
explicit scheme

V n+1 − V n

�t
= − 1

ρ
∇pn+1 + [−N (V , V ) + ν∇2V + f

]n =

− 1

ρ
∇pn+1 + F n , (10.21)

∇ · V n+1 = 0, (10.22)

where F n is the shorthand notation for the combination of all terms of
the right-hand side except the pressure gradient. The pressure term is
marked as belonging to the time layer t n+1 to stress its role in ensuring
incompressibility at that time layer.

As we already saw, the incompressibility condition is fulfilled if the
pressure field satisfies the Poisson equation (10.5). In the case of the
simple explicit scheme (10.21)–(10.22), the equation takes the form

∇2pn+1 = ρ∇ · F n , (10.23)
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which can be easily derived by applying the divergence operator directly
to the discretized momentum equation (10.21) and requiring that ∇ · V n =
∇ · V n+1 = 0.

The solution procedure is as follows. Instead of the original system
(10.21), (10.22) we solve the equivalent system (10.21), (10.23). To
advance from the time layer t n to the layer t n+1, we first calculate F n .
It is based on the known velocity V n and does not include the pressure
term. We then solve the pressure equation (10.23) and use ∇pn+1 and
F n to update the velocity according to (10.21).

The procedure can be transformed into a two-step cycle of the form
common for all projection methods. To do so, we split the velocity update
into two substeps. On the first, F n is taken into account to produce the
intermediate velocity field V ∗:

Predictor:
V ∗ − V n

�t
= F n or V ∗ = V n + �tF n . (10.24)

The pressure gradient is added at the second substep to satisfy the incom-
pressibility constraint:

Corrector:
V n+1 − V ∗

�t
= − 1

ρ
∇pn+1 or V n+1 = V ∗ − �t

ρ
∇pn+1.

(10.25)

It is easy to verify that summing (10.24) and (10.25) generates the original
scheme (10.21). The pressure equation is solved either in the beginning
of the cycle or between the substeps. It can be rewritten as

∇2pn+1 = ρ

�t
∇ · V ∗, (10.26)

which follows from (10.23) and (10.24) or from direct application of the
divergence operator to (10.25).

An interesting and important question arises as to what boundary con-
ditions should be used for the pressure field. Such conditions are required
at every point of the boundary for the Poisson problem (10.23) or (10.26)
to be well posed. The conditions, however, do not naturally follow from
the flow physics for the boundaries between a fluid and solid walls, unless,
of course, a full fluid-structure interaction problem is solved. Since the
latter option is, in most cases, an unnecessary complication, we have to
find a way to derive the pressure boundary conditions from the equations
themselves.
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To do so, we observe that the velocity field should satisfy the imper-
meability condition V · n|∂
 = 0, where n is the normal to the solid wall
boundary ∂
. In the case of an explicit scheme, this results in a simple
boundary condition for pressure. Taking the projection of the momentum
equation (10.21) on n we find

(
− 1

ρ
∇pn+1 · n + F n · n

)
∂


= 0 or
∂pn+1

∂n

∣∣∣∣
∂


= ρF n · n
∣∣
∂


= ρ

�t
V ∗ · n

∣∣∣
∂


. (10.27)

The wall-normal component of F n is, generally, nonzero. For example, let
us consider a solid wall located at x = 0. The wall-normal component is

F n
x

∣∣
x=0 =

(
ν
∂2un

∂x2
+ f n

x

)
x=0

�= 0.

In deriving these formulas we have used the no-slip condition satisfied by
the velocity field: un = vn = wn = 0 at ∂
.

Note that, for an explicit method, the no-slip conditions for the wall-
tangential components of velocity V n+1 are not enforced by the procedure
and have to be imposed after every time step.

The scheme outlined here remains valid for other fully explicit methods
based, for example, on the Adams-Bashfort or Runge-Kutta time inte-
gration algorithms. The only modification is in the organization of the
predictor step (10.24).

Solving the Poisson equation for pressure is a computationally expen-
sive part of the solution. This is particularly true in the case of explicit
methods, where the Poisson equation requires up to 90 percent of the total
number of computer operations. Realizing that and taking into account that
the Poisson equation is often solved by one of the iterative methods (see
Chapter 8), we immediately see a way to improve efficiency of the pro-
jection algorithm. The number of iterations needed to achieve the desired
accuracy is reduced, if a good initial guess of pressure distribution is
employed as a starting point. In our case, the guess is readily available
in the form of the pressure field from the previous time step p0 = pn or
an interpolation from several previous steps, such as p0 = 2pn − pn−1. It
can be used in two different ways. First, we can directly apply p0 to start
the first iteration. Alternatively, we can include the effect of p0 into F n .
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The two-step version of the algorithm (10.24)–(10.25) is modified as

Predictor: V ∗ = V n + �tF n − �t

ρ
∇p0 (10.28)

Corrector: V n+1 = V ∗ − �t

ρ
∇(δp), (10.29)

where δp = pn+1 − p0 is the pressure correction. The Poisson equation
and boundary conditions for δp are expressed in terms of V ∗ in the same
way as in (10.26) and (10.27), but the right-hand sides are closer to zero
in terms of an appropriate norm. One can expect (and in many cases the
expectations are fulfilled) that the number of iterations needed to solve
the Poisson equation decreases.

10.3.2 Implicit Schemes

Talking about implicit methods, one has to distinguish between two
approaches: the fully implicit approach, according to which all terms
including the nonlinear term are approximated at the new time layer
t n+1, and the semi-implicit approach, in which the implicit treatment is
limited to the viscous term and pressure.

The fully implicit approach leads to a system of nonlinear discretiza-
tion equations, which has to be solved at every time step. Such systems
have already been discussed in section 8.4. We have found that their
direct solution, for example by the Newton’s method, is inefficient. Effi-
ciency can be achieved using an iteration procedure and linearization. The
same general approach can be applied, after some modification, to fully
implicit schemes for incompressible flows. Because of importance and
certain peculiar features (primarily related to the role of pressure), it is
worthwhile to present a detailed description of the method.

As an illustration, we consider the simple implicit method with time-
discretized equations written as

V n+1 − V n

�t
= − 1

ρ
∇pn+1 − N (V n+1, V n+1) + ν∇2V n+1 + f n+1

(10.30)

∇ · V n+1 = 0. (10.31)

As before, some kind of spatial discretization is assumed but not shown.
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The formal Poisson equation for pressure (10.5) can be easily rewritten
for the implicit scheme. Applying the divergence operator to (10.30) we
obtain, assuming that ∇ · V n = 0 and requiring that ∇ · V n+1 = 0,

∇2pn+1 = ρ∇ · [−N (V n+1, V n+1) + f n+1] = ρ∇ · F n+1. (10.32)

We see the problem now. Unlike the explicit version (10.23), the right-
hand side of the pressure equation now uses velocity V n+1, which should
already include the pressure correction ∇pn+1. The momentum and pres-
sure equations (10.30), (10.32) are fully coupled and have to be solved
simultaneously. The matter is further complicated by nonlinearity of the
discretized momentum equation. We have to apply iterations and lineariza-
tion to solve the system.

The iterative procedures are discussed in the next section. Here we
consider the version of the method valid in the case of sufficiently small
�t . Convergence of iterations is not required in this method. In fact,
we only perform one iteration at a time step. This introduces additional
error, which we will estimate later. The method uses linearization about
the solution obtained at the previous time layer and is arranged as a
predictor-corrector procedure similar to the procedure introduced earlier
for the explicit method.

We address the linearization first. The unknown velocity and pressure
are represented as sums of the known values at t n and perturbations:

V n+1 = V n + δV , pn+1 = pn + δp. (10.33)

The nonlinear term is quadratic in velocity components. It can be rewrit-
ten as

N (V n+1, V n+1) = N (V n , V n) + N (V n , δV )

+ N (δV , V n) + N (δV , δV ). (10.34)

If the time step �t is small, the velocity perturbations can be estimated as

δV ∼ ∂V
∂t

�t .

The last term in the right-hand side of (10.34) is quadratic in δV and,
thus, is of the order of O

(
(�t)2

)
. It can be neglected in comparison

with other terms that are either O(1) or O(�t). Dropping the quadratic
term resolves the issue of nonlinearity at the price of introducing the
error ∼ O

(
(�t)2

)
into the solution. The price is fair, since the error is of
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the higher order than the truncation error of the simple implicit formula
(10.30). The linearization would still be justified if we used a second-order
time discretization scheme.

The linearized version of (10.30), (10.31) is

V n+1 − V n

�t
= − 1

ρ
∇pn − 1

ρ
∇δp − Ñ (V n , V n+1) + ν∇2V n+1 + f n+1,

(10.35)

∇ · V n+1 = 0, (10.36)

where Ñ (V n , V n+1) = N (V n , V n) + N (V n , δV ) + N (δV , V n) is the
linearized convection term. We assume that the body force is a constant,
a function of space and time, or a linear function of V .

We still have to deal with the problem of coupling between momen-
tum and pressure equations. The solution follows the predictor-corrector
scheme. On the predictor substep, the linear system (10.35) is solved with
∇pn used as an estimate of the pressure gradient. The perturbation δp is
omitted. This produces the intermediate velocity field V ∗.

On the corrector substep, the velocity field is updated as V n+1 =
V ∗ − ρ−1�t∇δp. The requirement of incompressibility of V n+1 gives
the compact form of the pressure equation:

∇2δp = ρ

�t
∇ · V ∗. (10.37)

Note that this equation has to be solved between the predictor and cor-
rector substeps.

The predictor part of the procedure is computationally costly, signif-
icantly more so than in the case of explicit methods, since it requires
solution of a large linear system (the matrix size is three times the total
number of grid points). Methods have been developed to achieve compu-
tational efficiency—for example, the methods based on the approximate
factorization approach (see Chapter 9) or the efficient direct and iterative
techniques for solution of matrix equations (see Chapter 8).

An alternative to the fully implicit schemes is the semi-implicit
approach. In this approach, we treat the nonlinear term explicitly so
no linearization is needed. The simple semi-implicit time discretization
scheme is

V n+1 − V n

�t
= − 1

ρ
∇pn+1 − N (V n , V n) + ν∇2V n+1 + f n+1 (10.38)

∇ · V n+1 = 0. (10.39)
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The projection procedure is organized as a sequence of the predictor sub-
step, on which we solve the momentum equation with ∇pn or without
pressure at all, solution of the pressure equation (10.37) or (10.26), and
the correction substep. Similarly to the fully implicit linearized solution,
the predictor substep requires solving a large linear system for the com-
ponents of the intermediate velocity V ∗.

One important difference between the fully implicit and semi-implicit
methods is in their stability characteristics. The fully implicit schemes
are typically unconditionally stable, while semi-implicit schemes have
stability limits on the time step. This does not necessarily mean that
the fully implicit schemes are more efficient. The time step should be
reasonably small anyway in order to keep the linearization and truncation
errors under control.

The linear elliptic problems for V ∗ encountered in both versions of the
implicit method need boundary conditions on the boundaries ∂
 of the
computational domain. Correct formulation of these conditions and of the
boundary conditions for pressure is a nontrivial matter, which is discussed
in the research literature and cannot be adequately addressed here.

10.4 PROJECTION METHODS FOR STEADY-STATE FLOWS

There is a strong similarity between steady-state problems and transient
problems solved by fully implicit methods. In both cases, the spatial dis-
cretization is conducted in terms of unknown variables. Almost identical
systems of nonlinear discretization equations have to be solved, once for
steady-state problems and at every time step for transient problems.

We learned in the last section that the solution can be simplified in
the case of transient problems if time steps are small. We now turn our
attention to the general case, in which a nonlinear system is actually
solved using iterations and linearization. The problem under consideration
is either a steady-state problem or a transient problem integrated with large
time steps. The same numerical procedure is applied in both cases.

We will give an overview of several popular methods. For the sake of
consistency with other textbooks (e.g., Patankar (1980) and Ferziger and
Perić (2001)) and with documentation of many CFD codes, the discus-
sion will use equations written in spatially discretized form. This should
not obscure the fact that the methods are based on the same basic prin-
ciples as the schemes described in the previous sections: projection and
linearization of convection term.
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The discretized momentum equation is written as

aP(u)ui ,P +
∑

�

a�,P(u)ui ,� = QP(u) −
(

δp

δxi

)
P

, (10.40)

where ui is the velocity component and, as before, we use symbolic
expressions, such as δp/δxi , for discretized partial derivatives. The
equation is a result of spatial discretization of the fully implicit formula
(10.30) or of a steady-state momentum equation. The difference between
the two cases is in the form of aP(u) and QP(u). The discretization is
conducted for the grid point P (in finite difference methods) or cell P

(in finite volume methods). The left-hand side represents the discretized
nonlinear and viscous terms. The summation index � runs over all
neighboring nodes used by the discretization formulas. The equation is
written in the general way, which does not imply any particular grid or
any particular method of discretization. Since the methods discussed here
are commonly applied by the general purpose CFD codes, however, it
is useful to view (10.40) as a result of discretization on an unstructured
finite volume grid.

Note that, as a result of the quadratic nonlinearity in the momentum
equations, the coefficients aP and a�,P in the left-hand side of (10.40) are
functions of velocity u . The body force and other terms, which are linear
functions of u , are lumped together into the source Q . The last term in
the right-hand side is the spatially discretized pressure gradient.

The solution has to satisfy the incompressibility condition

δui

δxi

∣∣∣∣
P

= 0, (10.41)

where summation over repeating indices is assumed.
The system of coupled equations (10.40), (10.41) is solved in a

sequence of converging approximations, the so-called outer iterations .
An iteration is based on the projection method and linearization, and
consists of the following principal substeps:

Step 1: Use the best currently available approximations of velocity u(m)
i

and pressure p(m) to evaluate the coefficients aP and a�,P and the
terms QP and (δp/δxi )P in the right-hand side of (10.40).
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Step 2: Solve the linearized momentum equations

aP(u(m))u∗
i ,P +

∑
�

a�,P(u(m))u∗
i ,� = QP(u(m)) −

(
δp(m)

δxi

)
P

.

(10.42)

This is a linear system usually characterized by a sparse coef-
ficient matrix. It can be efficiently solved by the method of
sequential iterations. The steps of this procedure are called inner
iterations . At the end, we obtain the intermediate velocity field
u∗

i , which does not satisfy the incompressibility condition.
Step 3: Solve the pressure equation to find the new pressure field

p(m+1). The exact form of the pressure equation varies with the
implementation of the method. Several forms are presented in
sections 10.4.1 and 10.4.2.

Step 4: Use the new pressure field to update velocity. The result is the
new approximation u(m+1)

i .
Step 5: Test convergence. If desired accuracy is not achieved, repeat the

procedure, starting at Step 1.

Several variations of this general procedure have been developed. They
are widely used today. We will discuss the most popular among them.

10.4.1 SIMPLE

One of the first versions of the method is SIMPLE (Semi-Implicit Method
for Pressure Linked Equations) (see Caretto et al. (1972) and Patankar and
Spalding (1972)). The method was originally designed for finite volume
approximation with staggered grid arrangement but can be straightfor-
wardly extended to other discretization techniques. Our description is not
tied to any particular discretization.

In the method, the new values of velocity and pressure are repre-
sented as

u(m+1)
i = u∗

i + u ′
i , p(m+1) = p(m) + p ′, (10.43)

where u∗
i is the solution of the linearized momentum equation (10.42)

with p(m) used as an estimate of pressure.
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To find the relation between u ′
i and p ′ we require that u(m+1)

i and p(m+1)

satisfy the linearized momentum equation

aP(u(m))u(m+1)
i ,P +

∑
�

a�,P(u(m))u(m+1)
i ,� = QP(u(m)) −

(
δp(m+1)

δxi

)
P

.

(10.44)

Subtracting (10.42) from (10.44), we find

aP(u(m))u ′
i ,P +

∑
�

a�,P(u(m))u ′
i ,� = −

(
δp ′

δxi

)
P

. (10.45)

This is, again, a linearized system, which, at the moment, cannot be solved
for either u ′

i or p ′, since both fields are yet unknown. We formally repre-
sent the solution as

u ′
i ,P = ũ ′

i ,P − 1

aP(u(m))

(
δp ′

δxi

)
P

, (10.46)

where ũ ′
i ,P is an unknown function defined by (10.46).

We are now in a position to formally derive the pressure equation. Sub-
stituting the first expansion of (10.43) into the incompressibility condition

δu(m+1)
i

δxi

∣∣∣∣∣
P

= 0 (10.47)

and using (10.46), we obtain(
δu∗

i

δxi

)
P

+
(

δũ ′
i

δxi

)
P

− δ

δxi

(
1

aP(u(m))

δp ′

δxi

)
P

= 0

or

δ

δxi

(
1

aP(u(m))

δp ′

δxi

)
P

=
(

δu∗
i

δxi

)
P

+
(

δũ ′
i

δxi

)
P

. (10.48)

We see a familiar problem. The equation contains ũ ′
i and p ′, both of

which are unknown. In the SIMPLE method, the problem is resolved
in a bold move. The unknown terms with ũ ′

i are simply removed from
(10.46) and (10.48). There is no fully satisfying justification of such a
drastic simplification except that the SIMPLE schemes have been found to
converge in many cases. It has to be noted, however, that the convergence
is slower than with more sophisticated methods discussed next.

To summarize, an outer iteration of the SIMPLE method consists of
the following substeps:
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Step 1: Evaluate the coefficients aP and a�,P and the terms of the right-
hand side of the linearized momentum equation (10.42) using the
velocity and pressure fields from the previous iteration.

Step 2: Solve (10.42) to find the intermediate velocity u∗
i

Step 3: Solve the approximate pressure equation (note the difference with
the full equation (10. 48)):

δ

δxi

(
1

aP(u(m))

δp ′

δxi

)
P

=
(

δu∗
i

δxi

)
P
. (10.49)

Step 4: Update velocity and pressure fields as

u ′
i ,P = − 1

aP(u(m))

(
δp ′

δxi

)
P

, u(m+1)
i ,P = u∗

i ,P + u ′
i ,P,

p(m+1)
P = p(m)

P + p ′
P. (10.50)

Step 5: Check convergence and start the next iteration if needed.

The convergence of SIMPLE algorithm can be accelerated by using
successive underrelaxation; that is, by updating pressure and velocity as

u(m+1)
i ,P = u∗

i ,P + αuu ′
i ,P, p(m+1)

P = p(m)
P + αpp ′

P,

where 0 < αu ≤ 1 and 0 < αp ≤ 1 are underrelaxation coefficients. Rather
small value of αp is recommended on the basis of empirical studies. It
can be shown that the fastest convergence is obtained when αu = 1 − αp .

10.4.2 SIMPLEC, SIMPLER, and PISO

The drastic simplification of completely neglecting the terms with ũ ′
i

results in slow convergence of SIMPLE. Improved versions of the algo-
rithm have been developed and are widely applied in modern CFD codes.

One such version is SIMPLEC (SIMPLE Consistent) proposed by van
Doormal and Raithby in 1984. The unknown terms with ũ ′

i are approxi-
mated rather than neglected. To derive the approximation, we start with
formally expressing ũ ′

i in terms of u ′
i . From (10.45), we obtain

u ′
i ,P = −

∑
� a�,P(u(m))u ′

i ,�

aP(u(m))
− 1

aP(u(m))

(
δp ′

δxi

)
P

.

In combination with (10.46), this leads to

ũ ′
i ,P = −

∑
� a�,P(u(m))u ′

i ,�

aP(u(m))
. (10.51)
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As a next step, we approximate u ′
i at every grid point by a weighted

average of the values at neighboring points as

u ′
i ,P ≈

∑
� a�,P(u(m))u ′

i ,�∑
� a�,P(u(m))

(10.52)

or ∑
�

a�,P(u(m))u ′
i ,� ≈ u ′

i ,P

∑
�

a�,P(u(m)).

Substitution of the last expression into the right-hand side of (10.51) gives
the desired approximation of ũ ′

i

ũ ′
i ,P ≈ −u ′

i ,P

∑
� a�,P(u(m))

aP(u(m))
. (10.53)

It can be used in the velocity correction formula (10.46) and in the pressure
equation (10.48), which become, respectively,

u ′
i ,P = − 1

aP(u(m)) +∑� a�,P(u(m))

(
δp ′

δxi

)
P

(10.54)

and
δ

δxi

[
1

aP(u(m)) +∑� a�,P(u(m))

(
δp ′

δxi

)]
P

=
(

δu∗
i

δxi

)
P

. (10.55)

The iteration strategy remains the same as in SIMPLE.
Another approach is to add extra corrector substeps to the SIMPLE rou-

tine. One such method called SIMPLER (SIMPLE Revised) was proposed
by Patankar in 1980. Every outer iteration is implemented as follows.

Steps 1 and 2: Evaluate the coefficients and solve the approximate
momentum equation, which is obtained by deleting the
pressure gradient term

(
δp(m)/δxi

)
P

from (10.42). The

result is the intermediate velocity û(m+1)
i different from

u∗
i .

Step 3: Solve the pressure equation

δ

δxi

(
1

aP(u(m))

δp(m+1)

δxi

)
P

=
(

δû(m+1)
i

δxi

)
P

. (10.56)

The solution is the pressure field at the next iteration level,
so no further pressure correction is necessary.
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Step 4: Substitute p(m+1) into the momentum equation (10.42) and
solve them to obtain new intermediate velocity u∗

i .
Step 5: Solve yet another pressure equation for p ′ identical to

equation (10.49) of SIMPLE.

Step 6: Use p ′ to update velocity u∗
i to u(m+1)

i as in (10.50). Pres-
sure is not updated.

Every iteration of SIMPLER requires roughly twice the number of
operations of the original SIMPLE algorithm, since two Poisson pressure
equations and two sets of momentum equations have to be solved. This
disadvantage is typically outweighed by significantly faster convergence,
so SIMPLER is, in general, more efficient.

The last version to be reviewed is PISO (Pressure Implicit with Splitting
Operators) algorithm (Issa 1986). It is also based on the use of additional
corrector steps. The first two substeps are the same as in SIMPLE. We
solve the momentum equation (10.42) to find u∗

i and the Poisson pressure
equation (10.49) for p ′. As in SIMPLE, ũ ′

i is neglected at this stage. As
a next step, we make the second correction, which takes into account the
effect of ũ ′

i . It uses the full correction formula (10.46) modified as

u ′′
i ,P = ũ ′

i ,P − 1

aP(u(m))

(
δp ′′

δxi

)
P

, (10.57)

where we can calculate ũ ′
i on the basis of already found u ′

i using the rela-
tion (10.51). The incompressibility condition leads to the Poisson equation
for the second pressure correction

δ

δxi

(
1

aP(u(m))

δp ′′

δxi

)
P

=
(

δũ ′
i

δxi

)
P

. (10.58)

10.5 OTHER METHODS

10.5.1 Vorticity-Streamfunction Formulation for
Two-Dimensional Flows

The methods discussed so far can be applied to arbitrary incompressible
flows. If the flow is two-dimensional, with velocity and pressure fields
being functions of only two space coordinates and time, V = u(x , y , t)i +
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v(x , y , t)j , p = p(x , y , t), the problem can be simplified and solved in a
completely different way. The governing equations become

∂u

∂x
+ ∂v

∂y
= 0 (10.59)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ν∇2u (10.60)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+ ν∇2v. (10.61)

Formulation: The simplification is achieved if instead of primitive vari-
ables V and p we use streamfunction and vorticity . The streamfunction of
an incompressible two-dimensional flow is a function ψ(x , y , t) such that

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (10.62)

The name of ψ is related to the fact that the velocity vector at every point
of space and every moment of time is tangential to the line ψ = const
passing through this point. The lines ψ = const thus represent the
streamlines of the flow.

Vorticity is a vector field (in general, three-dimensional) ω = ∇ × V .
For a two-dimensional flow in the x -y-plane, only the z -component of
vorticity is nonzero:

ω = ∂v

∂x
− ∂u

∂y
. (10.63)

An important result of using the streamfunction instead of velocity com-
ponents is that the incompressibility condition (10.59) is satisfied auto-
matically. This is easy to verify by substitution of expressions (10.62) for
u and v.

We can now transform the system of governing equations (10.59)–
(10.61). Applying the operator (∇×) to the momentum equation and
taking into account the incompressibility (10.59) and the mathematical
identity

∂

∂y

(
∂p

∂x

)
− ∂

∂x

(
∂p

∂y

)
= 0,

we obtain the so-called transport equation for vorticity

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
(10.64)
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or, in a short form,
Dω

Dt
= ν∇2ω. (10.65)

The second equation is obtained by substituting expressions (10.62) for
u and v into (10.63). This results in a connection between vorticity and
streamfunction:

∇2ψ = −ω. (10.66)

Note that the equations (10.65) and (10.66) form a coupled system. The
coupling occurs via appearance of velocity components in the left-hand
side of (10.65).

We have replaced the original system of three partial differential
equations (10.59)–(10.61) by just two equations (10.65) and (10.66).
Such a reduction in the number of equations to be solved is a remarkable
result. The incompressibility condition is satisfied automatically by the
velocity field. The pressure field does not explicitly appear in (10.65)
and (10.66) and, in principle, is not needed for the solution. If, for some
reason, knowledge of pressure field is required, p can be evaluated after
the velocity field is found by solving the pressure equation (10.5).

The system (10.65)–(10.66) requires boundary conditions on ψ and ω.
For the streamfunction, imposing physically plausible conditions is not
difficult. One has to write the proper boundary conditions for the velocity
components and use (10.62) to represent them as conditions for ψ and its
derivatives. The situation is more difficult in the case of vorticity. There
are no natural conditions on ω. They can, however, be derived from the
conditions on ψ applying the equation (10.66) at the boundary. Since
this typically results in expressions containing second derivatives, special
numerical treatment is required.

Methods of Solution: The vorticity transport equation (10.65) and
Poisson equation (10.66) can be discretized using the schemes already
presented in previous Chapters. For example, we can apply finite differ-
ence discretization on a uniform grid and use the simple explicit scheme
for (10.65):

ωn+1
i ,j − ωn

i ,j

�t
= −un

i ,j

ωn
i+1,j − ωn

i−1,j

2�x
− vn

i ,j

ωn
i ,j+1 − ωn

i ,j−1

2�y
+

ν

[
ωn

i+1,j − 2ωn
i ,j + ωn

i−1,j

(�x)2
+ ωn

i ,j+1 − 2ωn
i ,j + ωn

i ,j−1

(�y)2

]
.(10.67)
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For (10.66), the standard five-point scheme of the second order gives

ψn+1
i+1,j − 2ψn+1

i ,j + ψn+1
i−1,j

(�x)2
+ ψn+1

i ,j+1 − 2ψn+1
i ,j + ψn+1

i ,j−1

(�y)2
= −ωn+1

i ,j .

(10.68)

We also need discretized expressions for u and v. Keeping the second
order of approximation, we use

un+1
i ,j = ψn+1

i ,j+1 − ψn+1
i ,j−1

2�y
, vn+1

i ,j = −ψn+1
i+1,j − ψn+1

i−1,j

2�x
. (10.69)

The system of coupled equations (10.67)–(10.69) can be solved by a
multistep procedure conceptually similar to the projection method devel-
oped in section 10.3 for explicit methods. Each time step consists of the
following substeps:

Step 1: Use the known values of velocity, vorticity, and streamfunction
at t = t n to solve (10.67) and find ωn+1

i ,j at the interior points of
the computational domain.

Step 2: Solve the Poisson equation (10.68) together with the boundary
conditions on ψ to find ψn+1

i ,j . This can be done by a direct or
iterative method.

Step 3: Find values un+1
i ,j and vn+1

i ,j of the velocity components at the new
time layer using (10.69) and velocity boundary conditions.

Step 4: Update ωn+1
i ,j at the boundary points using ψn+1

i ,j and the
discretization of the vorticity boundary conditions derived from
(10.66).

The scheme (10.67)–(10.69) has the truncation error T.E. = O[(�x)2,
(�y)2, �t] and is stable if

�t ≤ 1

2ν

[
1

(�x)2
+ 1

(�y)2

]−1

and �t ≤ 2ν

(u2
i ,j + v2

i ,j )
. (10.70)

The second of these conditions must be satisfied at all grid points
(xi , yj ). This means that the maximum of u2 + v2 must be either estimated
a-priori or evaluated at every time layer with subsequent corresponding
adjustment of �t .
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Of course, the algorithm just described is only one of many possible
solutions. Other methods may use implicit schemes for the vorticity trans-
port equation or a pseudo-transient representation of the Poisson equation
(10.66).

If the flow is steady-state, the vorticity equation becomes

V · ∇ω + ν∇2ω = 0. (10.71)

We can solve the resulting system (10.66), (10.71) as an equilibrium prob-
lem. Iterative methods for systems of coupled nonlinear equations, such
as the method of sequential iterations discussed in section 8.4.3, can be
applied.

10.5.2 Artificial Compressibility

Yet another approach to solution of incompressible flow equations is to
modify them so that the methods developed for compressible flows can
be applied. The approach can be used to compute steady-state flows.
Introducing fictitious time τ and adding the term ∂V /∂τ to the left-hand
side of the momentum equation, we also replace the incompressibility
condition

∇ · V = 0 (10.72)

by
∂p

∂τ
+ a2∇ · V = 0. (10.73)

Because in the limit τ → ∞ p converges to a steady field independent of
τ , (10.73) converges to (10.72). The incompressibility is, thus, satisfied
for the final steady state. Equation (10.73) reminds the continuity equation
in the case of isentropic compressible flows, with a playing the role of
the speed of sound. For this reason, this method introduced by Chorin in
1967 bears the name of the artificial compressibility approach.
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PROBLEMS

1. What is the difference between colocated and staggered grid arrange-
ments? Discuss the comparative advantages of each approach.

2. If your course involves exercises with a CFD code, study the manual
to determine whether the discretization uses staggered or colocated
grids. Does the manual say anything about the exact mass and energy
conservation when the schemes are applied to incompressible flows?

3. Derive the approximations (10.14) and (10.15) of the pressure gra-
dient terms.
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4. Describe the staggered grid arrangement of finite difference and
finite volume structured grids in the three-dimensional case.

5. The simple explicit scheme and the projection method (see section
10.3.1) are applied to compute the flow of an incompressible viscous
fluid in a rectangular box 0 < x < A, 0 < y < B , 0 < z < C . All
boundarie are solid walls. Write the boundary conditions for pres-
sure. Why do we need them? Would we still need them if the flow
were compressible?

6. Modify the predictor-corrector formulas (10.24)–(10.27) for the
method that uses the second order Adams-Bashfort time integration
scheme (see section 7.4.1) instead of the simple explicit scheme.

7. Show that the decomposition (10.34) of the nonlinear term is cor-
rect. Use direct substitution of (10.33) into the expression for one
component of vector N .

8. Consider the explicit, fully implicit, and semi-implicit methods dis-
cussed in section 10.3. Order them by the amount of computations
required at every time step. Explain your answer.

9. Develop the formula (10.40) for the case of the x -momentum
equation of a two-dimensional incompressible flow discretized on
a structured uniform finite difference grid. Use central differences
of the second order and staggered grid arrangement. Derive
expressions for all the coefficients: aP(u), a�,P(u), QP(u).

10. If your course involves exercises with a CFD code, study the manual
to determine which of the projection schemes discussed in section
10.4 (SIMPLE, SIMPLEC, SIMPLER, PISO) are implemented. Are
there other schemes available for incompressible flows? Does the
manual provide any recommendations concerning the choice of the
scheme?

Programming Exercise The lid-driven cavity flow has long been used
as a benchmark for numerical methods. The simplest version is the two-
dimensional flow of an incompressible fluid in a square cavity x < 0 < L,
0 < y < L. The walls at x = 0, x = L, and y = 0 are stationary, while the
wall at y = L (the lid) is moving with constant velocity U in the tangential
direction. If your course involves exercises with a CFD code, calculate the
flow at several values of the Reynolds number Re = UL/ν. For example,
try Re = 10, 100, and 1,000. Experiment with different projection schemes
and different grid sizes. Compare your results with the results available
in literature (e.g., Ghia et al. 1982).
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TURBULENCE

11.1 INTRODUCTION

Most flows around us are turbulent. This is true for what we observe in
nature, technology, and everyday life. Among the possible examples, we
name, quite arbitrarily, flows in the earth atmosphere (the weather) and
liquid core (this flow causes the terrestrial magnetic field by the dynamo
effect), wakes behind moving bodies, such as airplanes and automobiles,
a flow within a cylinder of an internal combustion engine, and a flow in a
cup of coffee, to which stirring by a spoon is applied to facilitate mixing
and dissolution of sugar. These flows are generated by different mecha-
nisms and have sizes ranging from the size of a coffee cup to the size of the
earth, but they have one feature in common. The Reynolds number Re ≡
UL/ν is sufficiently large, so that the flow can only exist in turbulent form.
In the definition of the Reynolds number, U and L are the typical velocity
and length scales and ν = μ/ρ is the kinematic viscosity of the fluid.

11.1.1 A Few Words About Turbulence

A complete, rigorous, and short definition of turbulence seems impossible.
The usual approach is to define turbulence by its following main traits:

Irregularity, Time-dependence, and Three-dimensionality: A
turbulent flow field may have a component with smooth large-scale
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regular structure. It is usually identified as the mean flow with velocity
〈u〉, where brackets stand for statistical averaging or some form of time
or space averaging (a more precise definition of the mean flow is given
in section 11.3). In addition to the mean component, however, the flow
field necessarily contains fluctuations

u ′ = u − 〈u〉, (11.1)

which are irregular, time-dependent, and essentially three-dimensional.
Figure 11.1 shows an example of an irregular turbulent flow field, as well
as the corresponding mean flow.
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Figure 11.1 Example of a computed turbulent flow in a channel (courtesy of
D. Krasnov, Ilmenau University of Technology). The Reynolds number based on the

channel width and the channel-averaged velocity is 13,333. x, y, and z are the
nondimensional coordinates obtained from the physical coordinates by scaling with
the half of the channel width. Top from left to right: Instantaneous snapshots of the

x-component of vorticity ω = ∇ × u in the channel cross-section and of the
x-component of velocity in the wall-parallel plane at z = 0.95. Bottom from left to

right: profiles of horizontally and time-averaged characteristics: mean flow 〈u〉,
turbulent Reynolds stress 〈u′w′〉, and root-mean-square amplitude of velocity

fluctuation component 〈u′2〉1/2.
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(Pseudo-)chaoticity: A seemingly obvious conclusion can be obtained
from a plain visual observation of a turbulent flow. The flow behaves
chaotically.1 The change of flow pattern in space and time seems ran-
dom. However, a turbulent flow is still a solution of the Navier-Stokes
equations, which do not contain any stochastic terms. The flow should fol-
low a fully predictable evolution determined by the equations, boundary,
and initial conditions. The reason for the observed pseudo-randomness is
that small perturbations that are constantly added to a turbulent solution
are enhanced exponentially in time. In this sense, the turbulent flows are
called constantly unstable. Practical CFD analysis usually disregards the
subtleties and treats the turbulent fluctuations as truly chaotic.

Broad Range of Length and Time Scales: A turbulent flow consists
of motions with typical length and time scales that continuously fill a very
broad range. This phenomenon can be explained by the nonlinearity of
the Navier-Stokes equations or, from another viewpoint, by hydrodynamic
instabilities and interaction between flow structures. It is formalized using
the concept of energy cascade introduced by L. F. Richardson in 1922.
According to the concept, large flow structures (also called eddies or vor-
tices to stress the role of vorticity in their dynamics) constantly generated
by the hydrodynamic instability of the flow are unstable themselves and
generate smaller eddies. The smaller eddies are also unstable and break
into even smaller ones. The kinetic energy is thus constantly transferred
from large-scale to small-scales motions. The cascade stops at the level
where the structures are so small that strong velocity gradients lead to
complete dissipation of transferred kinetic energy into heat. The pattern
is schematically represented in Figure 11.2.

The cascade concept and certain physical assumptions led A. N. Kol-
mogorov in 1941 to develop the phenomenological picture of turbulence,
which remains one of the most profound results of the turbulence the-
ory. Essentially for us, the Kolmogorov phenomenology also provides the
basis for understanding the numerical methods used to compute turbulent
flows. In particular, it allows us to estimate the ranges of active scales of
the flow. The estimates are strictly valid for isotropic homogeneous tur-
bulence, but are qualitatively correct in general case. The typical length
and time scales of the smallest eddies η and τ are related to the typical
length and time scales of the largest eddies as

η/L ∼ Re−3/4, τ/T ∼ Re−1/2. (11.2)

1Drawings indicating attempts to make such observations were made by Leonardo da
Vinci. This drawings have been heavily used by the turbulence research community in a
bid to add age and respectability to the discipline (see e.g. Frisch 1995).
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Figure 11.2 Schematic representation of the distribution of energy of velocity
fluctuations over the length scales in a turbulent flow. L is the typical size of the

largest and most energetic fluctuations. η is the Kolmogorov scale, the typical size
of the smallest fluctuations, in which the viscous dissipation into heat

primarily occurs.

The kinetic energy is distributed very unevenly over the active length
scales. As illustrated in Figure 11.2, the small-scale fluctuations have
much lower (orders of magnitude lower) energy than the large-scale ones.

Strong Mixing: The turbulent fluctuations provide a much more effi-
cient mechanism of mixing than molecular diffusion. This concerns all
kinds of mixing: of momentum, internal energy (in flows with heat trans-
fer), or dissolved admixture. The actual mixing—that is, the transport
of any of these fields between two neighboring fluid particles—is still
accomplished by molecular diffusion. The role of turbulent fluctuations is
to add intensive stirring action that brings particles with different concen-
trations of the mixed field into contact with each other.

Coherent Structures: One of the significant recent advances of the
turbulence research is the understanding of the role played by localized
coherent structures , which have well-defined shapes, are repeatedly gen-
erated by the flow, and persist for relatively long time. The structures
have typical sizes in a wide range and take various forms, such as regions
of strong vorticity or high- or low-velocity streaks (see the top two plots
in Figure 11.1 for an illustration). They play an important, sometimes
dominant, role in turbulent mixing. We should note that the existence
of coherent structures does not annul the pseudostochastic nature of tur-
bulence. Size, time of occurrence, location, and shape of the structures
follow the pseudorandom pattern.
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This description of the traits of turbulence is deliberately brief. Our
intention is merely to introduce the concepts needed for the following
discussion of computational methods and to draw the reader’s attention
to the fascinating and challenging subject of turbulence. Several of the
many good books available for a thorough study of the subject are listed
at the end of the chapter.

11.1.2 Why Is the Computation of Turbulent Flows Difficult?

Before we answer this question, it is necessary to say that, so far, nobody
has found a way to describe and predict turbulent flows mathematically
in the form of explicitly written solutions of Navier-Stokes or some other
equations. A complete characterization of a turbulent flow by experimen-
tal techniques is also impossible. The situation with numerical methods
seems more promising. Here, at least, we can rely on constantly growing
computational power. The optimism is, unfortunately, not fully justified,
as shown by the following simple analysis.

Let us estimate the size of the computational grid needed to accurately
calculate a turbulent flow. It is obvious that the grid step should not be
larger than the size of the smallest turbulent eddy η. If this condition is not
satisfied, the fluctuations “fall through the gaps” between the grid points.
They are not detected and their effect on the flow is ignored. We assume,
for simplicity, that the grid step is about the same in every direction and
�x ∼ �y ∼ �z ∼ η.

The computational domain does not have to cover the entire flow
domain. Using artificial boundary conditions, we can limit computations
to a fraction of the flow (see the discussion in section 2.10). However,
to reproduce the flow dynamics, the computational domain has to be
at least several times larger than the largest turbulent eddies. For sim-
plicity, we assume that the dimensions of the computational domain are
Lx ∼ Ly ∼ Lz ∼ L. The number of the grid points in every direction is
estimated using the Kolmogorov scaling (11.2) as

Nx ∼ Ny ∼ Nz ∼ N = L/η ∼ Re3/4. (11.3)

In three dimensions, the total size of the computational grid is

N 3 ∼ Re9/4. (11.4)

This appears a stunningly large number if we consider that the Reynolds
number is usually large, anywhere between 104 and 1012 or higher. Even
at the lower end, the required grid consists of 109 points or cells.
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An estimate of the required computational effort should also take into
account that the time step has to be not larger than the time scale of the
smallest turbulent eddies τ . The result, discussed, for example, in Pope
(2000), is that even in the simplest case of an incompressible flow without
boundary layers, the product of the number of grid nodes and the number
of time steps needed to simulate a typical evolution of a turbulent flow is
approximately 160Re3.

The number of floating point operations per node per time step varies,
depending on the effectiveness of the method, but is unlikely to be less
than 100. Assuming this lower bound, we obtain the final estimate that
the total number of floating point operations needed for a meaningful
simulation of a turbulent flow is, in any case, not smaller than ∼ 104Re3.
To complete the discussion, we consider an example of a moderately
high Reynolds number Re = 106 (exceeded in many common flows). The
total number of operations is, at least, ∼ 1022. Assuming that we work
on a hypothetical multiprocessor workstation with performance of 100
Gflops (1011 floating point operations per second—a decent number at
the moment of writing this book), the computations would take at least
1011 seconds, or about 3,000 years.

The example illustrates the main difficulty of numerical simulations of
turbulent flows. The requirement of computational accuracy leads to unre-
alistically large computational grids. Even if we adopt the most optimistic
predictions of the future growth of computational power, direct computa-
tions of realistic turbulent flows will remain unfeasible for a long time.

11.1.3 Overview of Numerical Approaches

There are different ways to overcome the computational challenge and
acquire useful information on turbulent flows from numerical solutions.
Let us overview the landscape before moving to descriptions of particular
methods.

The approaches to numerical analysis of turbulence can be divided into
two groups: simulations and modeling . In simulations , we calculate an
actual realization of the flow (simulate it). The methods of this group are
the direct numerical simulation (DNS) and large eddy simulations (LES)
methods. The DNS, which we discuss in section 11.2, is the most honest
approach. We solve the Navier-Stokes equations without any modifications
or modeling assumptions. The result is a complete picture of the evolution
of a time-dependent flow field u(x , t), p(x , t). This is the approach we
have assumed to follow so far in this book. The disadvantage of this
approach in the case of turbulent flows is that, as discussed above, the



11.1 INTRODUCTION 233

requirement of accurate approximation of flow features at small length
scales leads to unrealistically large grids.

In the LES approach introduced in section 11.4, we solve the equations
for spatially filtered variables u(x , t), p(x , t) representing time-dependent
behavior of flow features with large and moderate length scales. The effect
of small-scale fluctuations appears in the form of additional terms of the
equations, which cannot be calculated directly and have to be substituted
by model approximations.

In modeling , we do not try to compute an actual realization of the
flow. Instead, the problem is recast as a system of equations for mean
flow quantities, such as mean velocity and pressure 〈u〉, 〈p〉, Reynolds
stresses 〈ui uj 〉, and so on. The results correspond to our expectations of
the flow characteristics that would be obtained after averaging over many
realizations. This approach is called the Reynolds-averaged Navier-Stokes
(RANS) method. As discussed in section 11.3, the method is computation-
ally very efficient. However, the results are often inaccurate because of
the large error introduced by the approximations included into the RANS
equations.

Which of the three methods (DNS, LES, or RANS) should we use?
The answer depends on the purpose of the analysis and the kind of the
flow. There are several factors to consider:

Accuracy: Extra terms that appear in the LES and RANS equations
have to be approximated. As we discuss in sections 11.3 and 11.4, the
turbulence models used for the approximation are inherently imprecise
and based on rather weak physical assumptions. They introduce the model
error, whose magnitude varies depending on the type of the model, grid
step, and flow characteristics. In general, 0 = εmodel,DNS < εmodel,LES <

εmodel,RANS.

Level of Description: The three approaches describe the flow on dif-
ferent levels. In DNS, we find a complete flow field u(x , t), p(x , t), which
can be used to find all the desired characteristics related to behavior at all
length scales. LES also produces a flow field, but the computed variables
u(x , t), p(x , t) do not provide information on motions at small scales. At
last, RANS methods only produce the mean flow 〈u〉, 〈p〉. Characteristics
of turbulent fluctuations remain unknown, except for the basic properties,
such as their kinetic energy and dissipation rate, which are estimated (with
an error) by the turbulence models.

Computational Cost: The computational cost is highest for DNS and
lowest for RANS. This is in accordance with the size of structures that
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have to be resolved by a computational grid: the smallest turbulent eddies
in DNS and large-scale features of mean flow in RANS. The computa-
tional cost of LES varies with the model and the desired accuracy. In
general, it lies between the costs of DNS and RANS.

It is easy to see that the three methods are optimal for applications in
different areas. The ability of DNS to accurately simulate the complete
flow behavior makes it a powerful and irreplaceable tool for fundamental
turbulence research. Of course, high computational cost means that DNS
analysis is limited to flows with simplified domains and small-to-moderate
Reynolds numbers. The majority of existing flows are beyond reach for
DNS.

The practical engineering analysis is traditionally conducted using
RANS models. The advantages are obvious. Mean flow characteristics
are often sufficient for engineering problems. The computations can
be conducted in a few hours or even minutes. Unfortunately, RANS
provides no data on turbulent fluctuations and predicts the mean flow
with significant error.

The LES approach occupies an intermediate position between DNS and
RANS. It can be used for fundamental science, albeit with due awareness
of the model error it introduces. The trend of modern CFD development is
the growing role of LES in practical engineering computations. Although
more expensive to conduct than RANS (this problem is being gradually
taken care of by increasing computer power), LES analysis adds important,
sometimes crucial, information on large- and moderate-scale fluctuations
and is more accurate than RANS in predicting mean flow properties.

11.2 DIRECT NUMERICAL SIMULATION (DNS)

In principle, any numerical method—for example, finite difference or
finite volume—can be used in DNS. The most popular choice is, however,
the spectral methods (see section 3.3.1). The reasons for that become clear
when we recall that spectral methods, while limited to domains of simple
geometric shapes, such as a rectangular box, a cylinder, or a sphere, are
computationally very efficient. DNS are typically conducted in studies
of fundamental turbulence properties, where the choice of simple flow
domains is allowed and even commendable.

11.2.1 Homogeneous Turbulence

The first DNS of a flow with realistic turbulent features appeared in the
paper by Orszag and Patterson in 1972. The numerical approach pioneered
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in that paper still serves, with some modifications, as an important tool of
fundamental turbulence research. The method is based on the assumption
that turbulent fluctuations are spatially homogeneous , which means that
their statistically averaged properties are the same at every point of the
flow domain. The assumption excludes flows with solid walls and other
realistic boundaries but still leaves plenty of interesting behavior to look
at. The situation nearest to homogeneous is achieved in wind tunnel exper-
iments, where turbulence is generated by a uniform grid perpendicular to
the mean flow direction. As an approximation, the state of turbulence in
many other flows can be considered homogeneous, if we consider a small
zone far from the walls.

In DNS, a homogeneous turbulent flow is simulated by a flow in a rect-
angular box of dimensions Lx × Ly × Lz with periodic (cyclic) boundary
conditions in all three directions:

u(x , t) = u(x + Lx ex , t) = u(x + Lyey , t) = u(x + Lz ez , t).

The periodicity allows us to apply the efficient Fourier spectral method
introduced by Orszag and Patterson and later developed by others, most
notably by Rogallo in 1981. The flow fields are approximated by three-
dimensional Fourier series

u(x , t) =
∑
k

û(k , t)eık ·x , (11.5)

where k = kx ex + kyey + kz ez are the wavenumber vectors and û(k , t)
are complex-valued expansion coefficients. The exponential term is the
shorthand notation eık ·x ≡ eıkx x eıky yeıkz z , where, for example, eıkx x =
cos(kx x) + ı sin(kx x).

The wavenumbers are related to the dimensions of the box, which are
also periodicity lengths, as

k x = 2πmx

Lx
, k y = 2πmy

Ly
, k z = 2πmz

Lz
,

where mx = −Nx/2, . . . , Nx/2, my = −Ny/2, . . . , Ny/2, and mz =
−Nz /2, . . . , Nz /2 are integer indices. Since u(x , t) is real, the complex
Fourier expansion coefficients must satisfy the conjugate symmetry
û(k , t) = û∗(−k , t).

An important and nontrivial question concerns the values of Nx , Ny

and Nz . How many terms of the expansion (11.5) should we use in a
simulation? One necessary condition is that (11.5) accurately reproduces
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the turbulent fluctuations of the smallest length scale, which is the Kol-
mogorov scale η. The numerical resolution of a spectral method based on
(11.5) approximately corresponds to the resolution on a grid with steps

�x ∼ Lx

Nx
= π

kx ,max
, �y ∼ Ly

Ny
= π

ky ,max
, �z ∼ Lz

Nz
= π

kz ,max
,

where kx ,max = 2π (Nx/2) /Lx = πNx/Lx , etc. are the maximum
wavenumbers in the expansion. The small-scale resolution requirement
is �x ∼ �y ∼ �z ∼ η, which implies kx ,max ∼ ky ,max ∼ kz ,max ∼ π/η.
Numerical studies have shown that this formula is a slight overestimation.
Unless the dynamics of turbulent fluctuations with the length scales
approaching η is of special interest, the resolution requirement can be
relaxed to

kx ,max ∼ ky ,max ∼ kz ,max ∼ 1.5

η

There is another numerical resolution requirement that is related to
the fact that the periodic box is an artificial construction. The periodicity
introduces unphysical perfect correlations over the distances Lx , Ly , and
Lz . Meaningful flow dynamics can, therefore, only be observed if the box
dimensions are significantly (at least seven to eight times) larger than the
size of the largest turbulent flow structures.

Combining the two requirements and using the Kolmogorov scaling
L/η ∼ Re3/4, we see that the numerical resolution is fully determined
by the Reynolds number. The first periodic box DNS were conducted by
Orszag and Patterson in 1972 using Nx = Ny = Nz = 32 for a flow with a
very low Reynolds number. At the moment of writing this book, the most
ambitious simulations have used Nx = Ny = Nz = 4,096 (see Ishihara et
al. 2009) and achieved the Reynolds numbers comparable to those in
high-Re laboratory experiments.

A peculiar aspect of the periodic box turbulence is that the flow does not
have a mechanism to sustain itself. The energy is constantly transferred
into small-scale structures and dissipated into heat, so the flow experiences
decay. The decay is a legitimate and interesting situation, which is similar
to the situation in wind tunnel experiments, except that the distance from
the grid in a wind tunnel plays the role of time in DNS. Alternatively,
we can maintain the flow in a statistically steady state by adding energy
to large-scale motions. This can be done in a purely artificial way (the
artificial forcing) or by imitating a natural mechanism, for example, by
imposing a mean flow with constant shear.
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The implementation of the Fourier spectral method in the case of a
periodic box flow is not difficult and, in its main features, is similar
to the procedure outlined in section 3.3.1 for a one-dimensional model
equation. We substitute the expansion (11.5) and the similar expansion for
pressure into the Navier-Stokes equations and derive a system of ordinary
differential equations for the Fourier coefficients û(k , t). The equations are
solved using one of the established time integration schemes, for example,
the Runge-Kutta or Adams-Bashfort method.

The main difficulty and computational challenge of the procedure are
due to the nonlinearity of the momentum equation. To see the problem,
let us consider one product in the nonlinear term, for example, uv. After
substituting the Fourier expansions for u and v, we obtain∑

k 1

∑
k 2

û(k 1, t)v̂(k2, t)e
ı
(
k 1·x+k 2·x

)
, (11.6)

which should be rewritten as a series∑
k

f̂ (k , t)eık ·x ,

with f̂ being expressed in terms of û and v̂. This can be done by direct
calculation of the convolution sums in (11.6), but at the cost of approxi-
mately N 6 operations, where N is an estimate of Nx , Ny and Nz . Much
more efficient way is to compute the sums (11.5) for u and v at certain
grid points, calculate the product uv at these points, and use the resulting
field to compute its Fourier coefficients f̂ (k , t). With appropriate choice
of grid points, the evaluation of grid point values and Fourier coefficients
can be performed using direct and inverse Fast Fourier Transforms. Each
transform requires approximately N 3 log N operations. The linear part of
the equations requires ∼ N 3 operations per time step. The total number
of operations per time step is, thus, estimated as ∼ N 3 log N .

There are other nontrivial aspects of the procedure, which we do not
consider here. An interested reader can find a detailed description of the
method in research literature, for example, in the papers listed at the end
of this chapter.

11.2.2 Inhomogeneous Turbulence

If turbulence is inhomogeneous in one or several directions—for example,
if the flow domain has realistic boundaries, such as solid walls—the spec-
tral method based on the three-dimensional Fourier expansion cannot be
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used. We can apply finite difference or finite volume methods. High-order
schemes are desirable in this case, since strong numerical dissipation of
low-order schemes leads to unphysical suppression of small-scale fluctu-
ations.

Another approach is possible if the flow is inhomogeneous in only one
or two directions and homogeneous in the others. A classical example
is the fully developed turbulent flow in a channel (see Figure 11.1). We
can assume homogeneity and apply periodic boundary conditions in the
streamwise (x ) and spanwise (y) directions. This means that the Fourier
spectral scheme can be used for discretization in x and y . The Fourier
expansion becomes

u(x , y , z , t) =
∑
kx ,ky

û
(
kx , ky , z , t

)
eı(kx x+ky y). (11.7)

Upon substitution into the Navier-Stokes equations and performing the
standard spectral method transformations in the x - and y-coordinates,
we obtain a system of partial differential equations for coefficients
û
(
kx , ky , z , t

)
considered as functions of z and t . The discretization

in the inhomogeneous (z ) direction can be achieved using a finite
difference scheme with proper grid clustering near the walls (we discuss
clustering in Chapter 12) or by a different version of spectral method.
The expansion over Chebyshev polynomials Tmz (z ) = cos(mz arccos z )

is particularly convenient for the latter, since the polynomials satisfy
the no-slip boundary conditions at the walls, provide good resolution of
boundary layers, and their series can be computed and inverted by a Fast
Fourier Transform.

The first high-resolution DNS of the channel flow published in 1987
by Kim, Moin, and Moser used the Fourier-Chebyshev spectral method.
The results have had strong and lasting impact on the turbulence research
and CFD in general by creating a complete and reliable set of flow char-
acteristics. The flow presented in Figure 11.1 were also computed using a
version of this method. The number of the expansion terms in the series
was Nx = Ny = 512 and Nz = 256.

11.3 REYNOLDS-AVERAGED NAVIER-STOKES (RANS)
MODELS

RANS is the oldest method of turbulence modeling, which still remains a
primary tool of practical CFD analysis. Its advantages are simplicity, low
computational cost (relative to DNS and LES), a broad selection of models
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readily available in general purpose CFD codes, and significant experi-
ence accumulated in application to different kinds of turbulent flows. Its
disadvantages are the low level of description (no information is available
beyond the mean flow characteristics), necessity to fine-tune the models
to specific features of the flow, and relatively large modeling error. The
first disadvantage is often acceptable in engineering analysis. The second
and third, however, should be taken very seriously. Two questions should
always be asked when applying a RANS model: How well does the model
capture the flow physics, and how accurate are the quantitative predictions
obtained in the analysis?

We begin with a precise definition of the mean flow fields. The univer-
sally applicable definition is the ensemble-averaged field

〈u〉(x , t) = lim
M →∞

1

M

M∑
m=1

u(m)(x , t), (11.8)

where u(m) are the realizations of the flow in M identical experiments.
If the flow conditions are time-independent, the mean flow can be

considered a result of time averaging:

〈u〉(x) = lim
T→∞

1

T

∫ t+T

t
u(m)(x , t). (11.9)

If the flow experiences slow nonturbulent variations, but the typical vari-
ation time TV is much large than the typical time scale Tt of the largest
and slowest turbulent fluctuations, the time averaging definition remains
valid in the form

〈u〉(x , t) = 1

T

∫ t+T

t
u(m)(x , t), (11.10)

where Tt � T � TV .
The operations (11.8)–(11.10) are linear and commute with space

derivatives. They also commute with time derivative, which is obvious
for (11.8)–(11.9) and can be derived for (11.10) as an approximation that
assumes T as the new infinitesimal time step. Other relevant properties
include

〈〈f 〉〉 = 〈f 〉, 〈f 〈g〉〉 = 〈f 〉〈g〉, (11.11)

where f and g are arbitrary functions.
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The flow fields can be seen as sums of mean and fluctuating parts:

u(x , t) = 〈u〉(x , t) + u ′(x , t), p(x , t) = 〈p〉(x , t) + p ′(x , t). (11.12)

Taking the mean of the left-hand and right-hand sides of this formula
immediately shows that

〈u ′〉 = 0, 〈p ′〉 = 0. (11.13)

11.3.1 Reynolds-Averaged Equations

Applying the averaging operation to the Navier-Stokes system results in
the Reynolds-averaged equations for the mean fields. We will show the
derivation for the incompressible and Newtonian flow equations in con-
servation form:

ρ
∂ui

∂t
+ ρ

∂

∂xj

(
ui uj

) = − ∂p

∂xi
+ μ∇2ui ,

∂ui

∂xi
= 0, (11.14)

where, as usual, we assume summation over repeating indices. The result
of averaging is

ρ
∂〈ui 〉
∂t

+ ρ
∂

∂xj
〈ui uj 〉 = −∂〈p〉

∂xi
+ μ∇2〈ui 〉, ∂〈ui 〉

∂xi
= 0. (11.15)

Using the linearity and properties (11.11) of the averaging operation, we
find that

ρ〈ui uj 〉 = ρ〈(〈ui 〉 + u ′
i )(〈uj 〉 + u ′

j )〉 = ρ〈ui 〉〈uj 〉 + ρ〈u ′
i u

′
j 〉. (11.16)

The second term in the right-hand side is the Reynolds stress tensor

τij ≡ ρ〈u ′
i u

′
j 〉 = ρ〈ui uj 〉 − ρ〈ui 〉〈uj 〉. (11.17)

Using the new notation, we rewrite the RANS (Reynolds-averaged
Navier-Stokes) equations (11.15) as

ρ
∂〈ui 〉
∂t

+ ρ
∂

∂xj

(〈ui 〉〈uj 〉
) = −∂〈p〉

∂xi
+ μ∇2〈ui 〉 − ∂τij

∂xj
,

∂〈ui 〉
∂xi

= 0.

(11.18)
The system is not closed because the components of the Reynolds stress

tensor are unknown and cannot be expressed as functions of 〈u〉 and 〈p〉.
There are more variables than equations. The system can only be solved
numerically after we find a way to approximate τij in terms of the mean
flow quantities. The closure models providing such approximations are
discussed in the rest of this section.
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11.3.2 Eddy Viscosity Hypothesis

There is an apparent similarity between the momentum transport by
molecular viscosity and by turbulent fluctuations. One can hypothesize
that the similarity also exists on the level of functional relations and
assume that the turbulent transport depends on the mean velocity
gradients in the same way as molecular transport depends on the
gradients of the full velocity field.2 This is formalized as the eddy
viscosity hypothesis . The Reynolds stress tensor is assumed to satisfy

τij ≡ ρ〈u ′
i u

′
j 〉 = −2μt 〈Sij 〉 + 2

3
ρδij k , (11.19)

where

〈Sij 〉 = 1

2

(
∂〈ui 〉
∂xj

+ ∂〈uj 〉
∂xi

)
is the rate of strain tensor of the mean flow, μt (x , t) is the eddy viscosity ,
and

k ≡ 1

2
〈u ′

i u
′
i 〉 = 1

2
〈u ′

x u ′
x + u ′

y u ′
y + u ′

z u ′
z 〉 (11.20)

is the kinetic energy of turbulent fluctuations (the turbulent kinetic
energy).

The justification of the eddy viscosity hypothesis is questionable at
best. There is no theoretical explanation beyond the generally unfounded
analogy between the motion of molecules and motion of turbulent eddies.
Experiments and DNS studies show that the alignment between the ten-
sors in the left-hand and right-hand sides of (11.19) is good in simple
parallel shear flows but disappears in flows of more complex structure.
Nevertheless, the eddy viscosity model is widely applied in CFD analy-
sis. The main reasons seem to be tradition, model’s simplicity, and the
fact that reasonably accurate results can be obtained with appropriately
defined μt (x , t).

On the simplest level of description, turbulence is fully characterized
by kinetic energy of fluctuations k or their root-mean-square velocity

2The hypothesis has two components. One is the assumption of local equilibrium, accord-
ing to which the local production and dissipation of turbulence are balanced, and the stress
tensor depends solely on the local turbulence conditions. Another component is the actual
functional form (11.19) of the dependency.
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q ≡ (2k/3)1/2 and by a certain typical length scale �. Dimensionality
analysis shows that in this case

μt = Cμρq�, (11.21)

where Cμ is a dimensionless proportionality constant.

11.3.3 Algebraic Models

The simplest closure models are the algebraic models, in which the tur-
bulent eddy viscosity is approximated by an algebraic function of space,
time, and simple characteristics of the mean flow. We will consider the
models based on the Prandtl’s mixing length theory.3 Such models were
successfully applied to parallel shear flows: attached boundary layers, mix-
ing layers, jets, and wakes. In these flows, there is one dominant mean
velocity component 〈u〉, which depends on only the cross-flow coordinate
y . It can be hypothesized that the length scale � and velocity scale q of
(11.21) are estimated as

� ≈ �m , q ≈ �m

∣∣∣∣d〈u〉
dy

∣∣∣∣ , (11.22)

where �m is the Prandtl mixing length. Substituting into (11.21) and
neglecting the proportionality constant, we obtain

μt = ρ�2
m

∣∣∣∣d〈u〉
dy

∣∣∣∣ . (11.23)

This expression for the eddy viscosity can be used in (11.19). The turbu-
lent kinetic energy k = 3q2/2 can be estimated as in (11.22) or, for an
incompressible fluid, included into the modified pressure field. To fully
close the RANS equations, however, we need an approximation of the
mixing length �m . Such approximations were proposed and fine-tuned for
various types of parallel shear flows. For example, for a wake, mixing
layer, or jet, the approximation is �m ≈ αδ(x), where x is the coordinate
in the direction of the flow, δ(x) is the flow width, and α is the nondimen-
sional adjustment coefficient, which takes a special value in each case.
In the attached boundary layer, the mixing length can be approximated

3The mixing length theory was proposed by L. Prandtl in 1925. The theory introduces
the so-called mixing length �m , an analog of the mean free-path in the kinetic theory of
gases. The mixing length can be viewed as the typical maximum distance over which a
lump of fluid particles moving in a turbulent flow retains its momentum.
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on the basis of properties of the logarithmic layer, which we discuss in
section 11.3.5, as �m ≈ κy , where κ = 0.41 is the von Karman constant
and y is the wall-normal coordinate.

There exist advanced versions of the mixing length model, which use
more accurate approximations of �m (see, e.g. Wilcox 2006). The model
can also be nominally extended to the general three-dimensional flow con-
figuration. For example, the version proposed by Smagorinsky (1963) is

μt = ρ�2
m

(
2〈Sij 〉〈Sij 〉

)1/2
.

Such extended models reduce to models of the form (11.23) in parallel
shear flows.

The algebraic models are very attractive because of their simplicity
and computational efficiency. Their applicability, however, is limited to
parallel shear flows. In all other cases, acceptably accurate prediction of
the mixing length �m and, thus, of the eddy viscosity is impossible.

11.3.4 Two-Equation Models

In the two-equation models, the velocity and length scales of turbulence
(q and � of the eddy viscosity expression (11.21)) are determined as
solutions of two additional partial differential equations. The advantage of
this approach in comparison to the algebraic models is that no specification
of �m is required as a precondition. The velocity and length scales are
evaluated as functions of space and time on the basis of the local flow state.
As a result, the two-equation models are applicable, at least theoretically,
to any flow configuration.

We will consider the most commonly used k − ε model. The equations
of this model are the transport equations for the turbulent kinetic energy
k(x , t) and the rate of viscous dissipation (the rate at which the kinetic
energy of small-scale fluctuations is converted into heat by viscous fric-
tion, see Figure 11.2) ε(x , t). The velocity scale is defined as

q = k1/2. (11.24)

To determine the length scale we employ properties of turbulent energy
cascade. The kinetic energy of fluctuations with characteristic length scale
� is related to this scale and to the total rate of dissipation as

ε ≈ k3/2

�
. (11.25)
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In the model, we apply this relation at the length scale of the largest
fluctuations, which are known to contain a dominant part of turbulent
kinetic energy. Assuming that � gives the length scale of the eddy viscosity
formula, we obtain

μt = Cμρ
k2

ε
. (11.26)

Starting with the momentum conservation equation, we can derive the
equation for k :

ρ
∂k

∂t
+ ρ〈uj 〉 ∂k

∂xj
= −τij

∂〈ui 〉
∂xj

− ρε + ∂

∂xj

[
μ

∂k

∂xj

]
− ∂

∂xj

[ρ
2
〈u ′

i u
′
i u

′
j 〉 + 〈p ′u ′

j 〉
]
. (11.27)

The terms in the left-hand side form the material derivative of k , which
is the rate of change of k in a fluid particle transported by the mean flow.
The terms in the right-hand side represent the mechanisms, by which the
energy within a particle can be changed. The first term is the rate of
energy production (the rate, at which energy is transferred to fluctuations
from the mean flow). It can be approximated using the eddy viscosity
hypothesis (11.19)

Pk ≡ −τij
∂〈ui 〉
∂xj

= −ρ〈u ′
i u

′
j 〉

∂〈ui 〉
∂xj

= 2μt 〈Sij 〉∂〈ui 〉
∂xj

. (11.28)

Note that the second term in the right-hand side of (11.19) disappears in
incompressible flow, since summation over i and j gives δij (∂〈ui 〉/∂xj ) =
∂〈ui 〉/∂xi = 0.

The second term in the right-hand side of (11.27) represents the effect of
viscous dissipation at small scales. The rate of dissipation ε is found as a
solution of the second partial differential equation (see (11.31)). The third
term corresponds to molecular diffusion of k . It does not need any approx-
imation. The last term also represents diffusion, but by turbulent motions.
It evidently needs an approximation, the common choice of which is the
gradient diffusion model:

ρ

2
〈u ′

i u
′
i u

′
j 〉 + 〈p ′u ′

j 〉 ≈ −μt

σk

∂k

∂xj
, (11.29)
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where σk is the new parameter, which is called the turbulent Prandtl
number and usually assumed to be unity.

The final form of the k -equation is

ρ
∂k

∂t
+ ρ〈uj 〉 ∂k

∂xj
= 2μt 〈Sij 〉∂〈ui 〉

∂xj
− ρε + ∂

∂xj

[(
μ + μt

σk

)
∂k

∂xj

]
.

(11.30)
The equation for the dissipation rate ε is also derived from the Navier-

Stokes equation and then transformed in a series of drastic simplify-
ing assumptions. The assumptions are, in fact, strong and unfounded to
the degree that the final equation can be considered only loosely con-
nected to the dynamics of averaged fields determined by the Navier-Stokes
equations. Anyway, the final equation for ε is

ρ
∂ε

∂t
+ ρ〈uj 〉 ∂ε

∂xj
= Cε1Pk

ε

k
− Cε2ρ

ε2

k
+ ∂

∂xj

[(
μ + μt

σε

)
∂ε

∂xj

]
,

(11.31)
where Pk is the rate of turbulent kinetic energy production determined by
(11.28) and Cε1, Cε2, and σε are model constants.

Let us summarize. The k − ε model consists of two partial differential
equations (11.30) and (11.31) and the algebraic expression (11.26) for the
eddy viscosity. The equations for k and ε have to be solved simultaneously
with the momentum and mass conservation equations for the mean flow
(11.18) as parts of one PDE system. The model contains five constant
parameters, which have little theoretical footing and have to be determined
through comparison with DNS and experimental results in the process of
fine-tuning the model. The most commonly used set of values is:

Cμ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3. (11.32)

Numerous other two-equation models have been proposed and tested
during the long history of RANS development. Many of them use the k -
equation to determine the velocity scale, while the choices of the second
equations and of the modeling approximations of the equation terms vary.
The k − ε model remains most broadly used. The second place in the
popularity contest belongs to the k − ω model, in which an equation for
the field ω = ε/k is used instead of the ε-equation. A detailed description
of this and other models, as well as an excellent in-depth discussion of
various aspects of RANS modeling can be found in the book of Wilcox,
reference to which is provided at the end of the chapter.
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11.3.5 Numerical Implementation of RANS Models

Since numerical implementation of algebraic models is trivial, we will
focus on models that require solution of additional PDEs. The k − ε model
will serve as an example.

The RANS equations, such as (11.30) and (11.31), are solved on the
same computational grid as the mean flow. The numerical methods pre-
sented in the previous chapters of the book are applied directly to the
extended system. For example, a steady-state problem for incompressible
fluid is likely to be solved using a projection algorithm, iteration approach,
linearization, and either finite volume or finite difference method (see
Chapters 4, 5, 8, and 10). Several modifications are recommended in the
RANS case to make the solution more efficient and robust.

One modification is related to the fact that turbulence has shorter
response time than the mean flow. This means that the extended PDE
system is numerically stiff (parts of the solution evolve at strongly differ-
ent time scales), which usually leads to slow convergence of an iteration
procedure. The convergence can be accelerated if the iterations for the
mean flow and turbulence properties are separated in the manner similar
to the sequential iterations discussed in section 8.4.3. Every iteration is
divided into two substeps. On the first, an outer iteration for the mean
flow is performed with the eddy viscosity taken from the previous itera-
tion. On the second, the obtained approximation of the mean flow is used
to conduct an outer iteration of the k and ε equations.

An important fact to be kept in mind is that, by definition, k and ε

cannot be negative. Violation of this condition may lead to a bizarre situ-
ation, in which the eddy viscosity and the turbulent stress tensor have the
wrong signs and the work of turbulent stresses τij 〈Sij 〉 acts as a source of
energy for the mean flow instead of a sink. Even if this occurs locally and
at an intermediate stage of the solution, for example after an intermediate
iteration, there is a danger of numerical instability. We should take into
account that the small response time of turbulence properties makes an
overshoot into negative values of k and ε a likely event. The natural and
efficient way to avoid the troubles is to apply successive underrelaxation
(see section 8.3.4). The relaxation parameter ω about 0.6 to 0.8 is typically
recommended.

The RANS equations require boundary conditions for computed turbu-
lent fields, such as k and ε. Setting them and arranging near-wall treatment
involve interesting and not always easy questions. We will briefly discuss
some of them.
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The first question concerns the actual formulation of the boundary con-
ditions. At solid walls, we require

kwall = 0. (11.33)

The dissipation rate does not have to be zero. Exact boundary conditions
on ε are impossible in the RANS framework, but we can use approxima-
tions such as, for example,

εwall = ν

(
∂2k

∂n2

)
wall

or εwall = 2ν

(
∂k1/2

∂n

)2

wall
. (11.34)

The conditions at symmetry and periodic boundaries and at exits are
typically set in the same way as for other flow variables (see section 2.10).
The situation is more difficult at the inlets, where we often do not know
the state of the flow. The common approach is to assume a certain level
of turbulence and prescribe the turbulent kinetic energy as a fraction of
the kinetic energy of the mean flow. This is done in terms of turbulence
intensity defined as the ratio between the root-mean square velocity of
turbulent fluctuations and the absolute value of mean velocity:

I ≡ (2k/3)1/2(〈ux 〉2 + 〈uy〉2 + 〈uz 〉2
)1/2

. (11.35)

Recommended values of I vary, depending on the specific situation. I ≈
10−2 is used for weakly turbulent inlets—for example, in computations
of flows past moving bodies. Strongly turbulent inlets, such as the inlets
into segments of heat exchangers or turbomachinery, require I ≈ 10−1

or even higher. To determine the inlet values of ε, we apply the relation
(11.25). A plausible assumption is used to estimate the turbulence length
scale �, typically as a fraction of the inlet width.

A comment should be made about the initial conditions applied in a
marching problem or initial guess of the iteration procedure in a steady-
state problem. The general advice to choose the initial fields as close to the
actual state of the flow as possible fully pertains to the turbulence fields k
and ε. There is another important rule. The initial values of k and ε should
never be zero. The danger is easy to see if we inspect the right-hand sides
of the eddy viscosity equation (11.26) and k and ε equations (11.30) and
(11.31). Taking k = ε = 0 leads to μt = 0 and to zero right-hand sides of
(11.30) and (11.31). k and ε would remain zero. No turbulence would be
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generated in the flow. This is a reflection of the fact that, unlike nature, the
RANS models are unable to produce turbulence from a laminar high-Re
flow. Moreover, calculations starting from such initial conditions would,
most likely, lead to numerical instability.

On first glance, there should be no special resolution requirements in
RANS computations. After all, we only compute averaged turbulence
properties, which have approximately the same typical length scale as the
mean flow. Certain requirements are, however, imposed by the behavior
of turbulence near solid walls. As illustrated in Figure 11.1, amplitudes of
turbulent fluctuations have strong and narrow peaks near the wall. Mean
flow velocity has strong gradient in the immediate vicinity of the wall,
in the so-called viscous sublayer. The typical length scale of the flow
characteristics computed by a RANS model, therefore, decreases near the
walls. This requires reduction of the grid steps, especially the steps in the
wall-normal direction.

There is another feature of near-wall turbulence that requires special
treatment. The actual turbulent eddy viscosity defined by (11.19) becomes
smaller as the wall is approached. This phenomenon is poorly reproduced
by the RANS models. Even at an adequate numerical resolution, use of an
unmodified RANS model near the wall would result in overprediction of
turbulent stresses. The error would not be limited to the near-wall zone.
Inaccurate estimate of the near-wall flux of momentum would inevitably
lead to an incorrect picture of the entire flow. Various algorithms have
been developed to deal with this so-called low Reynolds number effect4

by appropriately reducing the turbulent stresses in the near-wall zone. A
review and discussion can be found in Wilcox (2006).

In high Reynolds number flows, the viscous sublayer is so thin that it
becomes inefficient or even unfeasible to resolve it by a fine grid. An alter-
native approach can be used, in which computations are performed on a
relatively coarse grid, and turbulence modeling is only applied up to a cer-
tain distance to the wall. Near the wall, the solution is “patched up” by the
so-called wall functions , which imply universal boundary layer behavior
and imitate the effect of a solution corresponding to that behavior.

The wall functions are based on two assumptions: the flow is in a local
equilibrium, so turbulence production and dissipation are nearly equal,
and the wall-parallel mean velocity satisfies the logarithmic law

〈u〉P = uτ

[
1

κ
ln
(uτ zP

ν

)
+ B

]
. (11.36)

4The term refers to the fact that near a wall the behavior of a turbulent flow is dominated
by molecular viscosity and the intensity of turbulence decreases to zero as in the case of
low Reynolds number flows.
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In this formula, uτ is the wall shear velocity defined as uτ = (|τw|ρ−1
)1/2

,
where τw is the viscous shear stress at the wall, and zP is the wall-normal
coordinate of the wall-nearest grid point. The two constants are the von
Karman constant κ = 0.41 and the empirical constant B , which is about
5.5 at a smooth flat plate but may take different values in other cases. For
the logarithmic law to be correct, the distance to the first grid point zP
should approximately satisfy 30 < uτ zP/ν < 300.

The logarithmic law can be used to find the wall shear stress τw as a
function of 〈u〉P. After that, the local equilibrium assumption allows us
to find the turbulence properties at zP. For the k -ε model, we have

kP = u2
τ

C 1/2
μ

, εP = C 3/4
μ k3/2

P

κzP
. (11.37)

The wall function approach is strictly valid for an attached unidirec-
tional boundary layer. Its generalization to the case of a more complex pat-
tern of wall-parallel mean flow is straightforward. The situation becomes
more difficult when the boundary layer experiences separation. The loga-
rithmic layer ceases to exist in the separation zone and the wall functions
become invalid. Other approaches must be used: RANS with near-wall
resolution and low Reynolds number modification, or LES.

11.4 LARGE-EDDY SIMULATION (LES)

In LES, we directly calculate the mean flow and the unsteady large-scale
and intermediate-scale motions. The effect of small-scale fluctuations on
the rest of the flow is modeled. This introduces a modeling error, which,
although generally smaller than in RANS, should not be disregarded.
Avoiding the requirement of accurate resolution of small-scale motions
significantly reduces the computational cost in comparison to DNS and
makes it possible to simulate flows in realistically complex geometries at
realistically high Reynolds numbers. On the other hand, the computational
cost of LES is much higher than the cost of the RANS methods. Current
use of LES in practical engineering analysis is limited to the flows for
which representation of large-scale turbulent fluctuations, and not just the
mean flow, is essential, although the area of applicability is expanding
rapidly following the growth of computing power.

In this section, we provide an outline of the LES approach and introduce
some popular models. A broader and more thorough discussion can be
found in specialized texts and research literature.
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Figure 11.3 Box and Gaussian filters.

11.4.1 Filtered Equations

The key concept of LES is that of filtering. Instead of actual flow, we
simulate the behavior of fields obtained in the result of application of a
low-pass filter. In the formal way, the filtered velocity is

ū(x , t) ≡
∫

G(r , x)u(x − r , t)dr , (11.38)

where the integral is over the flow domain. G is a filter function that
satisfies the normalization condition

∫
G(r , x)dr = 1 and is nearly zero

at r = |r |> �/2. The parameter � is called the filter width.
Various specific forms of the filtering function have been suggested.

We will present two popular versions for the simple case when the filter
is uniform (G does not depend on x ) and isotropic (the dependence on r
is limited to the dependence on its absolute value r). Figure 11.3 shows
the box filter

G(r) =
{

1/� if r < �/2
0 if r > �/2

and the Gaussian filter

G(r) =
(

6

π�2

)1/2

exp

(
−6r2

�2

)
.

Evidently, the isotropic filtering operation is simply a weighted and
localized (in a sphere of diameter �) averaging. Fluctuations with length
scales significantly smaller than � are smoothed out. This is illustrated
in Figure 11.4 using a one-dimensional example. The smallest scales
remaining in the filtered signal are of the order of �. This explains the
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Figure 11.4 Effect of filtering on a turbulent signal. Bold curve shows the result of
box filtering with filter width �.

computational efficiency of LES in comparison with DNS. Since the fluc-
tuations with scales smaller than � are absent, it is sufficient to use a
computational grid with steps approximately equal to � rather than to the
much smaller Kolmogorov scale η.

Sometimes, the relation between the filter width and grid steps is taken
as far as assuming near identity between them. The filtered fields, such as
ū , are called resolved fields, and the term subgrid-scale is used for the
filtered out fluctuations

u ′ = u − ū. (11.39)

We will follow the less restrictive approach, in which the possibility that
the grid steps are a different size than the filter width is not rejected. The
appropriate terms in this case are filtered fields for ū and residual fields
for u ′.

Our next step is to apply the filtering operation to the Navier-Stokes
equations. The filtering operation is linear and commutes with partial
derivatives. For example, applying it to ∂u/∂t , we obtain(

∂u

∂t

)
=
∫

G(r , x)
∂u

∂t
(x − r , t) dr

= ∂

∂t

∫
G(r , x)u (x − r , t) dr = ∂ ū

∂t
.

For the Navier-Stokes system (11.14), the result of filtering is

ρ
∂ ūi

∂t
+ ρ

∂

∂xj

(
ui uj

) = − ∂ p̄

∂xi
+ μ∇2ūi ,

∂ ūi

∂xi
= 0. (11.40)
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The main challenge of LES appears in these equations. The reason is the
nonlinearity of the momentum equation. The filtered product ui uj cannot
be expressed as a function of filtered velocity. In particular,

ui uj �= ūi ūj .

The filtered equations are usually rewritten as

ρ
∂ ūi

∂t
+ ρ

∂

∂xj

(
ūi ūj

) = − ∂ p̄

∂xi
+ μ∇2ūi − ∂τR

ij

∂xj
,

∂ ūi

∂xi
= 0, (11.41)

where

τR
ij ≡ ρui uj − ρūi ūj (11.42)

is the residual stress tensor .
Despite the similarity in appearance, there is a significant difference

between this tensor and the Reynolds stress tensor (11.17) of RANS. The
Reynolds stresses show the momentum flux due to all turbulent fluctu-
ations, while the residual stresses only include the effect of fluctuations
with length scales smaller than the LES filter width.

Further transformation is made by expanding τR
ij as a sum of anisotropic

and trace parts:

τR
ij = τ r

ij + 1

3
δij τ

R
ii

and introducing the modified pressure field

p̄∗ = p̄ + 1

3
τR

ii .

The final system of LES equations is

ρ
∂ ūi

∂t
+ ρ

∂

∂xj

(
ūi ūj

) = −∂ p̄∗

∂xi
+ μ∇2ūi − ∂τ r

ij

∂xj
,

∂ ūi

∂xi
= 0. (11.43)

The trace part of the residual stress tensor is now a part of the modified
pressure field that can be found by a projection technique described in
Chapter 10 (this would not work for LES of a compressible flow, in which
case a special model of the trace part is required). The anisotropic residual
stress tensor τ r

ij remains in the equation in any case. It is unknown and
cannot be reduced to a function of ū and p̄∗. The system of LES equations
(11.43) is not closed. Its numerical solution is impossible unless we find
a way to model τ r

ij in terms of the filtered flow fields.
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Figure 11.5 Schematic representation of the energy distribution and cascade in
LES. L is the typical size of the largest and most energetic fluctuations. � is the filter

width.

11.4.2 Closure Models

The models used to approximate τ r
ij are called closure or subgrid-scale

models. The first name is evidently due to the fact that the models close
the LES equations (11.43) and allow them to be solved numerically. The
second name reflects the fact that τ r

ij represents the effect of residual
(subgrid-scale) fluctuations on the filtered part of the flow.

What should we require from a model? One obvious requirement is
that, to be a true closure, an approximation of τ r

ij should depend only on
filtered flow fields and known parameters, such as the filter width. There is
a geometric requirement that a model is invariant to principal coordinate
transformations. From the physical viewpoint, a model should represent
the effect of residual fluctuations as accurately as possible. Yet another
view of the role of a closure model is illustrated in Figure 11.5. Since
the small-scale fluctuations are not simulated in LES, the turbulent energy
cascade cannot proceed in its natural way, as shown in Figure 11.2. A
closure model should provide an energy sink of appropriate strength at
the length scale approximately equal to the filter width.

Among the numerous existing closure models, we describe the simplest
and oldest—the Smagorinsky model. Proposed in 1963, the model has
become the most popular choice of LES analysis and served as a basis
for many other, more advanced models.

The Smagorinsky model uses the eddy viscosity hypothesis:

τ r
ij = −2μt S̄ij , (11.44)
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where μt (x , t) is the turbulent eddy viscosity and

S̄ij ≡ 1

2

(
∂ ūi

∂xj
+ ∂ ūj

∂xi

)
is the rate of strain tensor of the filtered flow. The eddy viscosity is
modeled, on the basis of the Prandtl’s mixing length theory, as

μt (x , t) = ρ�2
S |S̄ | = ρ (CS �)2 |S̄ |. (11.45)

In this formula, |S̄ | = (2S̄ij S̄ij
)1/2

(summation over i and j is assumed).
The characteristic length scale �S is approximated as a product of the filter
width � and the empirical Smagorinsky constant CS . The rate of energy
sink by the closure model is

Pt = −τ r
ij S̄ij = 2μt S̄ij S̄ij = μt |S̄ |2.

The numerical implementation of the Smagorinsky model is not dif-
ficult. We use the filtered flow computed at the previous time step or
extrapolate from several previous time steps to evaluate S̄ij and |S̄ |. The
results are substituted into (11.45) and (11.44) to compute the eddy vis-
cosity and residual stress tensor. Note that the filtering operation (11.38)
does not appear in the Smagorinsky algorithm. We only use the filter
width �, which is usually assumed to correspond to the typical size of
the grid cell estimated as � = (�x�y�z )1/3.

The popularity of the Smagorinsky model is fully justified by its sim-
plicity and computational efficiency. The model, however, has significant
drawbacks that make it less accurate and flexible than its more complex
counterparts. The main problem is the empirical Smagorinsky constant
CS . There is no theoretical derivation that would justify a single opti-
mal value or a functional dependency of CS . The Kolmogorov theory of
isotropic homogeneous turbulence leads to the estimate CS ≈ 0.17. This
becomes an overestimate in flows with strong mean shear—for example,
in the channel flow shown in Figure 11.1. The optimal value of the chan-
nel flow CS providing the closest agreement with DNS and experiments
was found to be about 0.1.

In general, the optimal value of CS depends strongly and in a complex
fashion on flow characteristics (strength of mean shear, Reynolds num-
ber, presence of density stratification, etc.). There is always the danger
of using the wrong constant and, as a result, getting inaccurate results.
One striking example is the model behavior in simulations of laminar
flows. The residual stress τ r

ij is practically zero in such flows, while the
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filtered strain rate S̄ij is not. The Smagorinsky model applied to a laminar
flow would predict nonzero residual stress term and add a false dissi-
pation mechanism leading to an incorrect flow picture. This feature of
the model makes particularly dangerous its application to the flows that
evolve between laminar and turbulent states or have laminar and turbulent
zones.

Advanced LES models provide higher accuracy and flexibility, although
at the cost of higher complexity and larger amount of computations. Some
of them are improved versions of the Smagorinsky model, while others
follow different approaches (e.g., not based on the concept of eddy vis-
cosity). A detailed discussion of these models is beyond the scope of this
book but available in monographs and research papers, some of which are
listed at the end of the chapter.

We only mention the dynamic Smagorinsky model proposed by Ger-
mano et al. (1991) and extended by Lilly (1992). The method remedies
the drawbacks of the original Smagorinsky model by providing an ele-
gant and effective mechanism of automatic adaptation of CS to the local
conditions of the flow. After every time step, the filtered flow field is
subjected to an additional test filter, which has the width �̃ = 2�. The
Smagorinsky constant CS , which becomes a function of space and time,
is estimated using the algebraic identities based on the assumption that
the formulas (11.44) and (11.45) remain true at both filter widths.

11.4.3 Implementation of LES in CFD Analysis: Numerical
Resolution and Near-Wall Treatment

Discussing the resolution requirements and, correspondingly, computa-
tional cost of LES analysis, we have to consider separately the inner part
of the flow and the near-wall zone. For the inner part, the Kolmogorov
description of turbulence can be adopted, at least in its most essential
aspects: the energy of turbulent fluctuations decreases rapidly with the
length scale, and the small-scale motions serve as a nearly passive receiver
of the energy cascading from the large-scale motions (see Figures 11.2
and 11.5). A plausible conclusion is that an LES model gives an accu-
rate prediction of the filtered flow dynamics if the filtered flow contains a
larger portion, say, 80 percent of the total flow energy. The effect of the
residual fluctuations on the filtered flow is inevitably predicted with some
error by the closure model, but, since the residual fluctuations are weak,
the error is probably not very significant.

Theoretical analysis and computational studies have shown that the
requirement of 80 percent of flow energy in the filtered velocity is not
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especially strict. The needed computational grids are, of course, much
finer than the grids needed for laminar flows or for turbulent flows com-
puted using RANS models. They are, however, much cruder than in DNS.
Of the key importance is the fact that the size of LES grids for inner zones
of fully turbulent flows is practically independent of the Reynolds num-
ber. The amount of computations, of course, varies with the complexity
of the computational domain and large-scale features of the flow. In gen-
eral, however, the computations are feasible on modern computers. As
an example, we mention the simplest turbulent flow without walls, the
isotropic turbulence in a periodic box. It can be shown (see, e.g., Pope
(2000)) that the necessary grid consists of only about 40 points in each
direction.

Simulation of near-wall zones is more difficult and, typically, requires
special treatment. The difficulty is not in the boundary conditions them-
selves. Applying the filtering operation to the no-slip boundary condition
(2.46) we obtain the condition for the filtered velocity field

ū = Uwall at the wall. (11.46)

The special treatment is necessary because of the nature of turbulent
boundary layers developing near the solid walls. The small-scale fluc-
tuations cannot be treated as mere passive receivers of energy. The flow
properties are largely determined by the dynamics of small-scale coherent
structures. The flow is very anisotropic. It is also strongly inhomogeneous.
As illustrated in Figure 11.1, the intensity of turbulent fluctuations has a
strong peak at some short distance to the wall. In the close vicinity of the
wall (in the viscous sublayer), turbulent motions vanish, so the residual
stress must disappear, while strong viscous stress is caused by the gradient
of the mean flow.

Because of these features, simple extension of an LES model and com-
putational grid suitable for the internal flow into the near-wall zone would
generate significant error. As we already discussed in the previous section,
the error is not limited to the near-wall zone, but leads to an incorrect pic-
ture of the entire flow. For example, the inner part of the channel flow in
Figure 11.1 could be accurately reproduced by the standard Smagorinsky
model with CS ≈ 0.1 and the grid consisting of several tens of cells or
points in every direction. The errors of the near-wall approximation would,
however, lead to unacceptable inaccuracy in estimation of wall friction
and strongly distorted distributions of mean flow, turbulent fluctuation
intensity, and other flow properties.

A part of the solution is to reduce the grid steps near the wall. There
is, however, a problem that persists even when the grid resolution of
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Figure 11.6 Approaches to near-wall treatment in LES.

near-wall zones is adequate. Many closure models become inaccurate and
require modification in this zone. In particular, the Smagorinsky model
(11.44), (11.45) significantly overestimates the residual stresses. One pos-
sible remedy is to artificially reduce the turbulent eddy viscosity using the
van Driest damping

C 2
S = C 2

S 0

[
1 − exp (−(uτ z/ν)/25)

]2
, (11.47)

where CS 0 is the Smagorinsky constant in the core flow, and uτ is the
wall shear velocity defined in section 11.3.5.

There are three principally different ways to treat the near-wall problem.
One of them, schematically illustrated in Figure 11.6a is to use a com-
putational grid, in which steps decrease in the near-wall zone providing
a nearly DNS-like resolution. This guarantees an accurate approximation
of boundary layers, but the computational cost goes up significantly. The
required number of floating point operations increases with the Reynolds
number as ∼ Rek , where the exponent k varies depending on the situa-
tion, but, typically, is around 2. Evidently, this approach is unfeasible in
practical CFD analysis of high-Re flows.

Another approach, illustrated by the scheme in Figure 11.6b is to model
the effect of boundary layers instead of simulating their internal dynamics.
Artificial boundary conditions are imposed in the form of model approxi-
mations for the shear components of the residual stress. These conditions
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replace the no-slip conditions on tangential velocity components and imi-
tate the momentum transport across the boundary layers. This approach
works well when we can be certain that the flow has a unidirectional
attached boundary layer. The artificial boundary conditions have the form
of relations between the wall shear stress and the inner flow velocity at
the grid point nearest to the wall. They are derived on the basis of the
assumption of the logarithmic law behavior (11.36).

In the bilayer approach, illustrated in Figure 11.6c, the flow domain is
divided into the core and the near-wall layer. The filtered flow in the core is
simulated using LES. The near-wall flow is found using a less accurate, but
computationally more efficient approach. Matching conditions are satisfied
at the interface between the two zones. The popular and practical way to
treat the near-wall layer is to apply a RANS model based on full Navier-
Stokes or boundary layer equations. This approach has the special name
detached eddy simulations (DES). It is implemented in many modern
engineering CFD codes.
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PROBLEMS

1. For the following hypothetical CFD tasks, compare DNS, LES, and
RANS approaches. Discuss which of them is feasible and which is
likely to produce desired accuracy and level of description.

a) Find flow rate and drag in a rectangular duct of a residential
air-conditioning system. Assume that the duct cross-section is
a square of side 25 cm, and the average velocity is 1 m/s.

b) Find turbulent drag on a slender body of length 2 m moving
at zero attack angle in the air with speed 10 m/s.

c) Predict motion of a hurricane.
d) Analyze flow around a swimming fish. Assume the fish is

20 cm long and moves with speed of 40 cm/s.
e) Try to understand how the local properties of turbulent fluctu-

ations created in a cup of coffee by spoon movements affect
the rate of sugar dissolution.

f) Analyze dynamics of a solar protuberance.

2. Does the steady-state formulation of a CFD problem make sense in
DNS, LES, or RANS?

3. For DNS in a periodic box, it was estimated that the typical
size of large-scale eddies is 1000 larger than the Kolmogorov
dissipation scale η. What are the resolution requirements? Is the
analysis feasible?
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4. Prove that the averaging operations (11.8)–(11.10) are linear and
commute with space and time derivatives.

5. Prove the relations (11.11), (11.13), and (11.16).
6. RANS is applied to a turbulent flow with convection heat transfer.

Apply the averaging operation to (2.27) to derive the RANS equation
for temperature. Are there any terms that need modeling?

7. If your course involves exercises with a CFD code, study the docu-
mentation to determine which RANS models are implemented. What
approach is taken to the near-wall treatment?

8. Prove that the LES filtering operation (11.38) is linear and commutes
with space and time derivatives.

9. What determines the adequate grid step in LES far from the walls?
10. LES is applied to a turbulent flow with convection heat transfer.

Apply the filtering operation to (2.27) to derive the LES equation
for temperature. Are there any terms that need modeling?

11. If your course involves exercises with a CFD code, study the doc-
umentation to determine whether the LES option is implemented.
Which closure models are used? What approach is taken to the
near-wall treatment?

12. Consider the primitive LES or RANS model, in which the eddy
viscosity formulas (11.19) or (11.44) are applied with constant eddy
viscosity μt . What is the drawback of this model? Should we expect
accurate results?
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COMPUTATIONAL GRIDS

12.1 INTRODUCTION: NEED FOR IRREGULAR
AND UNSTRUCTURED GRIDS

A well-constructed computational grid is an essential ingredient of CFD
analysis. Having such a grid is a necessary and significant step toward an
accurate, efficient, and robust numerical solution. On the contrary, as any
CFD practitioner would confirm and illustrate by spectacular examples,
a poorly designed grid leads to low accuracy, slow convergence, and,
sometimes, numerical instability.

Our discussion has so far largely ignored the questions of grid design.
For the sake of simplicity and transparency, we have presented CFD tech-
niques on the example of a structured, uniform, and orthogonal grid,
in which grid points or finite volume cells are formed by intersections
of coordinate lines of a Cartesian coordinate system. Non-Cartesian and
unstructured grids have been addressed (for example, in the discussion of
finite volume methods in Chapter 5), but only briefly.

The general principles of CFD approximation discussed in the previ-
ous chapters remain valid if the grid is nonorthogonal, nonuniform, or
unstructured. On the other hand, certain new questions arise. They, in
particular, concern the effect of the type and properties of the grid on
the numerical solution, methods of grid generation, and methods of solu-
tion of CFD problems on irregular grids. The issues are too complex to
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(a)

(c)

(b)

Δx

Δy

Figure 12.1 A case for irregular grids—complex geometry: (a) a non-rectangular
geometry approximated poorly by a regular Cartesian grid; (b) the same geometry

approximated by a boundary-fitting curvilinear structured grid; (c) the same
geometry approximated by a boundary-fitting unstructured grid.

be fully addressed in this book. For a detailed discussion, the reader is
referred to specialized texts, some of which are listed at the end of the
chapter. Here, we only discuss the most basic concepts and provide a few
recommendations.

There are two often coexisting features of practical engineering flows
and heat transfer processes that make the use of a uniform Cartesian grid
a poor choice. One is illustrated in Figure 12.1. The solution domain may
have complex, possibly curvilinear boundaries, which cannot be fit with
a Cartesian grid.

There are several ways to address this problem. The simplest one is
to ignore it and employ a regular Cartesian grid anyway. This is illus-
trated in Figure 12.1a. The boundary conditions have to be set at the
grid points nearest to the boundary. This means that the boundary itself
is replaced by a staircase-like shape. The approach is not recommended,
primarily because of the significant error it introduces into the solution.
Furthermore, programming a CFD algorithm on such a grid is challeng-
ing, since the number of grid points is different for different grid lines
and the approximation of Neumann and mixed boundary conditions is
complicated.
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The commonly used and recommendable approaches are illustrated in
Figure 12.1b and 12.1c. As shown in Figure 12.1b, a curvilinear coor-
dinated system can be introduced such that the boundaries coincide with
certain coordinate lines. The grid points can be positioned directly at the
boundary, which preserves accuracy. The programming difficulties are
also successfully resolved. Another possible and commonly used approach
is illustrated in Figure 12.1c. We use a boundary-fitting unstructured grid.

Sometimes, the boundaries of the computational domain are moving
(imagine waves on the ocean surface or a flow around rotating blades of
a mixer in a chemical processor). In this case, a boundary-fitting moving
grid can be designed and used.

The second common reason for the use of non-uniform grids is that
gradients of solution variables may be of strongly different amplitudes
in different areas of solution domain. For example, mean velocity and
turbulence variables experience large gradients in boundary layers near
solid walls. On the contrary, far from walls, the gradients are small (see
Figure 12.2). In all such cases, it seems reasonable to use smaller grid steps
or cells in the areas, where the solution variables have strong gradients and
reduce computational effort by using larger steps or cells in other areas,
where the gradients are weak. This technique is called the grid stretching
or clustering . As illustrated in Figure 12.2b, this can be achieved through

(c)

(a)

Δx

Δy

(b)

Figure 12.2 A case for irregular grids—strong spatial variability of gradients of
solution: (a) A flow with strong velocity gradients near the wall approximated poorly
on a uniform grid; (b) The same flow approximated on a stretched grid adapted to
solution gradients; (c) The same flow approximated on an unstructured grid refined

in the area of strong gradients.
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the use of a structured grid designed on the lines of a coordinate system
compressed and stretched as necessary. Alternatively, as illustrated in
12.2c, we can build an unstructured grid refined in the areas of strong
gradients.

12.2 IRREGULAR STRUCTURED GRIDS

The structured grids is the only realistic choice for finite-difference and
spectral methods. They can also be used in combination with finite volume
discretization, although unstructured grids discussed in the next section are
more common in that case.

12.2.1 Generation by Coordinate Transformation

Grid points of a structured irregular grid can be generated as points of
intersection of coordinate lines of a non-Cartesian coordinate system.
For simplicity, we will illustrate the method using the two-dimensional
grid configurations shown in Figure 12.3. Generalization to the
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Figure 12.3 Coordinate transformation associated with irregular grids: (a) and (b)
irregular coordinate systems in the physical space; (c) corresponding Cartesian

coordinate system in the computational space.
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three-dimensional case is straightforward. For our discussion, we will
assume that the Cartesian (x , y) and non-Cartesian (ξ , η) coordinates are
related as

ξ = ξ(x , y , t), η = η(x , y , t) (12.1)

and

x = x(ξ , η, t), y = y(ξ , η, t). (12.2)

The relation between the two coordinate systems can be viewed as a
mapping (transformation) between the solution domains in the physical
space shown in Figures 12.3a and 12.3b and a rectangular computational
domain in the space of Cartesian coordinates (see Figure 12.3c).

The transformation should satisfy certain mathematical properties that
guarantee that the correspondence between the points of physical and
computational spaces is one-to-one, the irregular coordinate lines of the
same family (for example lines η = const in Figure 12.3a or 12.3b) do not
cross, and any two lines of different families do not cross more than once.

After a proper coordinate transformation has been found, we replace
the equations by their discretization approximations and solve them. The
discretization is conveniently performed in the transformed space, since
the coordinates are Cartesian. One extra step is to be done, though. We
have to express the partial derivatives with respect to the physical coor-
dinates in terms of partial derivatives with respect to the coordinates of
the computational domain.

For example, let the unknown function be u(x , y , t). In the transformed
coordinates, it becomes u = u

[
ξ(x , y , t), η(x , y , t), t

]
. The first derivatives

we obtain using the chain rule:

ux = uξ ξx + uηηx (12.3)

uy = uξ ξy + uηηy (12.4)

ut = uξ ξt + uηηt + ut . (12.5)

Formulas for second derivatives can be obtained by differentiating
(12.3)–(12.5) and applying the chain rule again. For example,

uxx = ∂
(
uξ ξx + uηηx

)
/∂x

= ξx∂
(
uξ

)
/∂x + uξ ξxx + ηx∂

(
uη

)
/∂x + uηηxx

= ξx
(
uξξ ξx + uξηηx

)+ uξ ξxx + ηx
(
uηξ ξx + uηηηx

)+ uηηxx

= uξξ ξ
2
x + 2uξηξxηx + uηηη

2
x + uξ ξxx + uηηxx . (12.6)
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After rewriting, the partial differential equations are discretized in the
transformed coordinates. For example, in the finite-difference discretiza-
tion, we can approximate

ux |(ξi ,ηj )
= (uξ ξx + uηηx

)
(ξi ,ηj )

using cental differences, which gives

ux |(ξi ,ηj )
= un

i+1,j − un
i−1,j

2�ξ
ξx + un

i , j+1 − un
i , j−1

2�η
ηx , (12.7)

where un
i , j = u(ξi , ηj , t n) and ξx , ηx are computed at the point (ξi , ηj ).

The formula (12.7) illustrates the fact that the discretization equations
do not require the explicit algebraic expressions (12.1) and (12.2). The
only information needed is the set of values of the partial derivatives ξx , ξy ,
ηx , etc. at the grid points (ξi , ηj ). They can be calculated using analytical
derivatives of (12.1) or numerically. Another method useful when the
only available analytical expressions for the coordinate transformation
are (12.2) is to apply Jacobian-based mathematical identities, such as

ξx = −∂(f , g)

∂(x , η)

/
∂(f , g)

∂(ξ , η)
, (12.8)

where the coordinate transformation is represented by

f = x − x(ξ , η, t) = 0 and g = y − y(ξ , η, t) = 0.

12.2.2 Examples

We shall give two examples of coordinate transformation. In the first
example, the need for a non-Cartesian grid arises because of the nonrect-
angular shape of the boundary. Conduction heat transfer problem is solved
in a domain that has the form of a circular ring with inner and outer radii
Ri and Ro (see Figure 12.4). The steady-state temperature distribution is
governed by the Laplace equation

Txx + Tyy = 0.

The boundary conditions are of the von Neumann type (known heat flux)
with the normal derivative ∂T/∂r equal to g(r) and f (r) at, respectively,
r = Ri and r = Ro .
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Figure 12.4 Heat transfer in a ring as an example of boundary fitting coordinate
transformation.

The boundary-fitting coordinates are obviously polar coordinates r and
θ , such that x = r cos θ and y = r sin θ . The computational domain in
these coordinates is the rectangle (see Figure 12.4)

Ri ≤ r ≤ Ro , 0 ≤ θ ≤ 2π.

The Laplace equation in the new coordinates is

∂2T

∂r2
+ 1

r

∂T

∂r
+ 1

r2

∂2T

∂θ2
= 0. (12.9)

It is discretized as

Ti+1,j − 2Ti , j + Ti−1,j

(�r)2
+ 1

ri

Ti+1,j − Ti−1,j

2�r

+ 1

r2
i

Ti , j+1 − 2Ti , j + Ti , j−1

(�θ)2
= 0. (12.10)

Indices i and j refer to the grid point (ri , θj ). The boundary conditions
at r = Ri and r = Ro remain the same. At θ = 0 and θ = 2π , periodic
boundary conditions are imposed.

In the second example, the coordinate transformation is used to improve
the numerical resolution in the zone of strong gradient. For the boundary
layer flow illustrated in Figure 12.2, the grid should be stretched in the
wall-normal y direction so that the step �y decreases near the wall and
remains large far from it. There are many coordinate transformations that
achieve this effect. For example, we can use exponential, logarithmic,
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polynomial, or hyperbolic functions. The logarithmic transformation is
(we assume that the wall is at y = 0)

ξ = x and η = ln(y + 1). (12.11)

Differentiating the second expression, we find the relation between the
grid steps

�η = 1

y + 1
�y or �y = (y + 1)�η.

Taking into account that �η is constant, we see that �y has the minimum
value equal to �η at the wall and increases linearly with the distance to it.

12.2.3 Grid Quality

We have to mention that not any coordinate transformation produces an
acceptable computational grid. Sometimes, numerical solution of the trans-
formed equations leads to large discretization errors, slow convergence, or
numerical instability. The reasons of this behavior and the mathematical
apparatus needed to describe it are discussed in specialized texts. We will
only list the properties that combine into a general characteristic that can
be called grid quality , and give some rules of good computational practice.

Distortion: This term refers to the deviation from orthogonality
between the intersecting lines of the non-Cartesian coordinate system.
The best results are provided by orthogonal grids. If the grid needs to
be nonorthogonal, the distortion angles should be possibly close to 90◦.
There are no universal limits, but grids with angles smaller than 45◦ or
larger than 135◦ are usually considered dangerously distorted.

Ratio of Adjacent Cell Sizes: We have to avoid strong variations of
grid steps. As a general guideline, it is usually accepted that the ratio
between the typical sizes of any two adjacent grid cells should not exceed
two. This requirement often needs enforcing when we construct stretched
grids for flows with boundary layers and other zones of strong gradient.
The transition from the fine grid within such a zone to a crude grid in the
outer flow should be gradual.

Cell Aspect Ratio: We have to avoid strongly anisotropic grids. In
general, it is recommended that the ratio between the grid steps in different
directions is neither large or small. The specific limits on the aspect ratio
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231

4

Figure 12.5 Example of a block-structured grid: A two-dimensional flow past two
cylinders in a channel is computed using a grid consisting of four blocks marked by

numbers 1 to 4.

vary with the nature of the flow and the type of the computational scheme.
One particular case when high aspect ratio cells are acceptable is the
boundary layer flows. Such flows are characterized by high velocity in
one direction (let it be x ) and strong velocity gradients in the other two
directions. In that case, it is possible to use �x significantly larger than
�y and �z . In any case, the cells with aspect ratios higher than five have
to be avoided.

Block-Structured Grids: Our last comment concerns the possibility
of block-structured grids. They can be used in the geometries, which are
too complex to be meshed by a single structured grid, but can be subdi-
vided into several zones of relatively simple shapes. Within each block,
a structured grid is constructed. Special matching conditions are imposed
at the interfaces between the blocks. As an example of a block-structured
arrangement, Figure 12.5 shows a grid build for a two-dimensional flow
past an array of two cylinders in a channel.

12.3 UNSTRUCTURED GRIDS

One can easily imagine a complex geometry, in which a structured or
block-structured grid is either impossible or very difficult to build. Our
only practical choice in this case is to cover the domain with an unstruc-
tured grid and apply finite element or finite volume discretization.1 As a
typical example, Figure 12.6 shows the grids built to solve the problems

1Finite difference discretization on an unstructured grid is possible in principle, but has
never been seriously tried because of the difficulties involved and the existence of a much
simpler alternative—the finite volume method.
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Figure 12.6 Examples of unstructured grids in complex solution domains
(courtesy of Y. Wang and P. Mohanty, University of Michigan - Dearborn). The grids
are automatically generated using GAMBIT 2.3, part of FLUENT 6.3. Both pictures
show nozzles of plasma spray systems. On the top: the grid used for preliminary

analysis of axisymmetric flow within the nozzle of SG100 plasma torch by Praxair.
On the bottom: the three-dimensional grid for analysis of the novel torch design

combining HVOF (High-Velocity-Oxy-Fuel) and twin-wire arc spray systems.

of turbulent gas flow and heat transfer within the nozzles of two thermal
plasma spray systems used to generate special coatings.

In this section, we discuss the unstructured grids in context of their
application with the finite volume method. This type of solution has
become the prevalent tool of practical CFD analysis implemented in many
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widely used commercial and noncommercial CFD codes. There are three
main reasons for the popularity of unstructured grids:

1. Possibility of application to arbitrarily shaped computational
domains

2. High level of flexibility and control of grid parameters such as cell
shape and size

3. Existence of automated algorithms of grid generation and solution
of discretized equations

The combination of these factors creates an attractive situation for a
CFD practitioner. The same code can be used to solve a wide range of
problems with different geometries, flow types, discretization accuracies,
and so on.

The disadvantages of the unstructured grid approach are primarily
related to the complexity of the grid description. The grid points and
cells cannot be identified through a simple system of two or three
indices. Instead, the information on location, shape (typically determined
through locations of all vertices), and connectivity to neighbors should
be specified and stored for every cell. Luckily for us, the arduous task
of handling these data is usually taken care of by a CFD code. There
are, however, consequences of the complex and irregular data structure
that cannot be ignored. Most importantly, the matrices of the systems of
discretization equations no longer have band-diagonal or block-diagonal
form. This leads to slower convergence and higher computational cost
of iterations. In general, solutions on unstructured grids have lower
computational efficiency than solutions on structured grids of the same
size. It is, therefore, recommended to use structured grids any time it is
allowed by the geometry of the computational domain.

The issues involved in the solution of partial differential equations
on unstructured grids and generation of such grids are complex. Taking
into account that ready-to-use algorithms accomplishing these tasks are
typically available in engineering CFD tools, we will limit our discussion
to basic facts and a few practical recommendations.

12.3.1 Grid Generation

The common practice of modern engineering CFD is to use automated
grid-generation algorithms. Commercial codes usually offer such algo-
rithms as parts of the software packages. The task of grid buildup, which
used to require days or even weeks of a CFD practitioner’s time, is now
accomplished with relatively low effort within hours or minutes. At the
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same time, the user retains substantial control over the grid properties. This
includes setting the topology and typical size of the cells and determining
the areas where grid refinement is needed. It is also the user’s responsi-
bility to verify that the grid contains no “bad” cells (the characteristics of
grid quality are discussed in section 12.3.4).

In the most common approach to grid generation, the process is initiated
by the user, who specifies the mesh points at the boundaries of the domain.
The user can exert control over the future distribution of cell sizes at this
stage. The automated grid generator uses the mesh points to build the first
layer of cells adjacent to the boundary. The second layer of cells is then
built on the top of the first, and so on, converging toward the center of
the computational domain in the manner of an advancing front.

After the grid has been built, the control is returned to the user, who
checks the quality of the cells and modifies them, if necessary. Many CFD
codes assist the user by providing information on essential cell character-
istics and offering automated tools for fixing the cells.

12.3.2 Finite Volume Discretization on Unstructured Grids

Before we discuss the grid properties, we have to recall certain features of
the finite volume discretization. The basic principles of the discretization
presented in Chapter 5 fully apply in the case of unstructured grids. The
integral balance equations leading to the discretization obviously remain
the same. The volume and surface integrals are usually approximated by
the midpoint formulas of the second order (see (5.7) and (5.8)).

The major modifications caused by the grid irregularity concern the
methods of interpolation applied to approximate solution variables at the
midpoints of cell faces. We will summarize the main issues, some of which
have already been discussed in section 5.3.4. For convenience, Figure 12.7
reproduces the illustration of Figure 5.5.

S

n
P

E

e

Ω
d

Figure 12.7 Difficulties of finite volume interpolation on unstructured grids.
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A serious problem arises if we try to use interpolations of high order
based on more than two grid points. As a rule, any three neighboring grid
points of an unstructured grid do not form a straight line. The interpo-
lation formulas become more complex than in the Cartesian grid case.
Moreover, the complexity increases dramatically with the number of grid
points involved. As a result of this, schemes of the second order remain
most popular, and the schemes of the order higher than third are very
rarely used.

Other problems appear even if we apply the second-order interpola-
tion. As illustrated in Figure 12.7, the line connecting two neighboring
grid points (which we identify with the cell centers such as P and E in
Figure 12.7) does not necessarily pass through the face midpoint e. The
linear interpolation

�e = γ�P + (1 − γ )�E,

where γ = |eE|/|PE| and � is a solution variable, reduces its order of
approximation from second to first. The additional first-order error is pro-
portional to |ed|, where d is the point of intersection of the line PE with
the face. This error, can be neglected if the angle between |eP| and |eE|
is close to 180◦.

Yet another difficulty illustrated in Figure 12.7 is that the line |PE|
can be nonparallel to the normal n . The simple central difference
formula (

∂�

∂n

)
e

≈ �E − �P

|PE| .

does not generate a second-order approximation of the normal deriva-
tive of �. One method of dealing with this problem is described in
section 5.3.4. Various other methods have been developed. None of them
is entirely free from drawbacks in the form of loss of accuracy or reduction
of computational efficiency. The drawbacks become more pronounced in
grids with larger misalignment angles.

Reliable second-order accuracy and maximum computational efficiency
are provided by the grids in which the lines connecting centers of neigh-
boring cells are perpendicular to the faces separating the cells and cross
these faces at their midpoints. The unstructured grids possessing this prop-
erty are called orthogonal unstructured grids . Interestingly, the cells of
such grid do not have to be rectangular. For example, as illustrated in
Figure 12.8, a two-dimensional grid consisting of rectangles and equilat-
eral triangles belongs to the class.
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n
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Figure 12.8 Example of a two-dimensional orthogonal unstructured grid.

12.3.3 Cell Topology

In theory, cells of arbitrary convex polygonal (in 2D) or polyhedral (in
3D) shape can be used in finite volume computations. In practice, how-
ever, the CFD codes usually limit the choice to few basic shapes shown
in Figure 12.9. In the two-dimensional case, we can use quadrilateral
(Figure 12.9a) or triangular (Figure 12.9b) cells. In three-dimensional
grids, the most common elements are hexahedra (Figure 12.9c) and tetra-
hedra (Figure 12.9d), although prisms and pyramids (Figure 12.9e, f) are

(a)

(d) (e) (f )

(b) (c)

Figure 12.9 Typical shapes of unstructured grid cells. (a) and (b), quadrilateral and
triangular cells used in 2D grids; (c)– (f), hexahedra, tetrahedra, prisms (wedges),

and pyramids used in 3D grids.
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also used. Many CFD codes allow combination of cells of different types
(e.g., quadrilateral and triangular) within one grid.

The basic cell shapes are sufficient to build unstructured grids of great
geometric flexibility. Any computational domain can be covered by such
a grid. In many cases, this can be done relatively easily by applying
an automated grid-generation code. Figure 12.6 shows two examples
of automatically generated grids: a two-dimensional grid consisting of
quadrilateral cells and a three-dimensional grid in which the cells are
tetrahedral.

12.3.4 Grid Quality

The grid quality is a complex characteristic that determines the overall
accuracy of solution at a given number of grid points and a given dis-
cretization scheme. We have already discussed the quality of structured
grids in the previous section. In the case of unstructured grids, new aspects
appear because of larger diversity and flexibility of cell shapes. In general,
the matter of quality requires closer attention, since grids are generated
automatically. Typically, an unstructured grid needs quality control and
optimization after it has been built.

Some parameters of the grid quality are evident. For example, the cell
sizes should not exceed the limits set by the numerical resolution require-
ments, which, in turn, are determined by the features of the computed
solution. Other parameters are less evident and do not allow precise def-
initions. Furthermore, importance of various quality criteria varies with
the flow type and the kind of analysis. In the result of all this, determining
the grid quality is often a matter of experience and empirical knowledge
rather than theoretical arguments.

We will briefly review the basic aspects of quality of unstructured grids.
More detailed and specific information is available in specialized mono-
graphs, CFD research literature, and online resources (the latter should
be, of course, treated with caution).

Near-orthogonality: As discussed, the best accuracy is provided for
the second-order finite volume schemes if the unstructured grid is orthog-
onal. Building a perfectly orthogonal grid is not always feasible. The
recommended strategy is to design a grid that is as close to orthogo-
nal as possible. An example of a near-orthogonal arrangement can be
seen in Figure 12.10a. On the contrary, the cell combinations shown in
Figure 12.10b,c are far from orthogonal. If included into a grid, they are
likely to compromise the accuracy of the entire solution and, therefore,
should be avoided.
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Figure 12.10 Examples of nearly orthogonal and strongly nonorthogonal (and
therefore undesirable) cell combinations. In the near-orthogonal case (a), the line EP

that connects grids points of two neighboring cells is nearly parallel to the normal n
to the face separating the cells and crosses the face at the point d close to the

midpoint e. In the strongly nonorthogonal cases (b) and (c), the angle between EP

and n and the distance between d and e are large.

Undesirable Cell Shapes: Certain cell shapes have to be avoided,
since they may cause large approximation errors, spurious oscillations,
slow-down of convergence, or even numerical instability. One common
danger is the cells of unacceptably large aspect ratio. The recommended
criterion is the same as in the case of structured grids. The ratio between
cell dimensions in any two orthogonal directions should not be smaller
than 0.2 or larger than 5. Also, similarly to structured grids, we have to
avoid strong (approximately larger than two-fold) differences between the
sizes of neighboring cells.

Undesirable topological distortions may occur to nontetrahedral cells
of three-dimensional unstructured grids. The list includes strongly warped
and strongly sheared cells, and cells with centroids located outside the
cell body. The automated grid-generation algorithms usually provide an
opportunity of grid check operation, during which the topological quality
of each cell is assessed and distortions are detected. It is a requirement of
good CFD practice to always perform this operation and modify the grid
in accordance to its results.

Choice of Cell Topology: We will consider the most common
dilemma, the choice between quadrilateral and triangular cells in 2D
and between tetrahedral and hexahedral cells in 3D. The triangular and
tetrahedral cells provide certain geometric advantages. The automated
generation of grids consisting of such cells is relatively easy. It can
be accomplished for arbitrarily shaped domains at low risk of creating
undesirable cell shapes. By contrast, generating a grid of quadrilateral
or hexahedral elements often creates a number of topologically bad
cells, especially in the cases of complex domains. Another advantage
of triangular and tetrahedral cells is that we can generate a nearly
orthogonal grid by simply requiring that the cell shape does not deviate
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too far from equilateral and that sizes of any two neighboring cells do not
differ too much. Near-orthogonality of grids consisting of quadrilateral
or hexahedral cells requires that the cells are nearly rectangular, which
cannot be achieved for all cells if the domain has a curvilinear boundary.

The arguments in favor of quadrilateral and hexahedral cells are related
to the fact that the second-order finite volume schemes based on the mid-
point approximation of cell and face integrals, linear interpolation, and
central differences are most widely used with unstructured grids. The
accuracy of these schemes is, in general, higher if the cells are quadri-
lateral or hexahedral. The reason is the partial canceling of the errors of
discretization of diffusive terms at opposite cell faces. The approximation
of convective terms is also achieved with higher accuracy on quadrilat-
eral and hexahedral cells, if the computed flow is predominantly in one
direction and the cells are oriented with one set of opposite faces paral-
lel or nearly parallel to the flow. An important and commonly observed
situation of this kind is within the boundary layers at solid walls.

It is recommended for flows with attached boundary layers that the
grid includes a layer of thin quadrilateral (in 2D) or hexahedral (in 3D)
cells adjacent to the wall. The rest of the domain can be filled with cells
of any kind chosen in accordance with domain geometry and accuracy
considerations. Illustrations of such arrangements can be seen in Figure
12.1c and 12.2c.

Example: To illustrate the discussion of grid quality let us visually
analyze the grids in Figure 12.6. Both grids are generated automatically
using the code GAMBIT 2.3. The upper two-dimensional and lower three-
dimensional grids are built of quadrilateral and tetrahedral cells, respec-
tively. The grids do not contain topologically bad cells (it was confirmed
to the author that the grids had passed the examination by a grid-checking
algorithm). The near-orthogonality is evident for the upper grid that con-
sists of nearly rectangular cells. The lower grid can be assumed nearly
orthogonal, since the tetrahedral cells are nearly equilateral and approxi-
mately of the same size.

Both grids in Figure 12.6 can be criticized.2 The numerical resolution
of the upper grid is inadequate. Four cells used across the channel are
unlikely to be sufficient to accurately resolve the flow. In the lower grid,

2It should be mentioned that the grids shown in Figure 12.6 exemplify the situation when
the accuracy of the CFD solution is not of the highest priority. Figure 12.6 shows only
parts of the solution domains. The parts outside the nozzle, which are not shown, play
more important role in the analysis of the spraying process. The error of approximation
of the flow within the nozzle, albeit possibly large by CFD standards, is definitely smaller
than the error introduced by the physical model of electric discharge arc and plasma
formation.
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the boundary layer treatment, which would insert a layer of hexahedral
cells between the wall and the tetrahedral mesh, is not applied.
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PROBLEMS

1. For each of the following flows, determine whether it is better to use
a regular Cartesian, irregular structured, or unstructured grid. Provide
arguments supporting your answer.

a) Flow in a gap between two concentric spheres rotating with dif-
ferent velocities around a common axis (the so-called spherical
Couette flow)

b) Flow of air past a car moving in a tunnel (see Figure 2.5)
c) Flow of ocean water around the supporting structure of an off-

shore oil drilling platform
d) Fully developed turbulent flow in a plane channel between two

parallel walls (see Figure 11.1)

2. For each of the flows in Problem 1, for which an irregular structured
grid has been found necessary and possible, suggest a coordinate
transformation.

3. For the coordinate transformation (12.1)–(12.2), derive the formula
for uxy .

4. For the coordinate transformation (12.1)–(12.2), develop the second-
order finite difference approximations of uy , uxx , and uxy at (ξi , ηj ).
Apply central differences for discretization of derivatives with respect
to ξ and η.

5. If your course involves exercises with a CFD code, study the manual
to determine which types of cell shapes are available for unstruc-
tured grids. Does the software allow combination of cells of different
types within the same grid? Which characteristics of grid quality are
measured by the software?
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6. If your course involves exercises with a CFD code, try automated grid
generation for several simple shapes: a pipe of circular cross-section,
a spherical ball, a duct of rectangular cross-section, a 2D channel
with a backward-facing step, and so on. In each case, create a grid
with clustering near the walls. Try different cell shapes and different
algorithms of grid generation, if available. Analyze the quality of
each grid.
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CONDUCTING CFD
ANALYSIS

In this chapter, we consider the issues that belong to the realms of both
common sense and CFD as a scientific discipline. The main question is
formulated as follows: Given the available tools (discretization methods
and algorithms for solution of discretization equations and grid gener-
ation), how should we conduct the CFD analysis to obtain reliable and
useful results?

13.1 OVERVIEW: SETTING AND SOLVING A CFD PROBLEM

A CFD analysis usually involves much more than simply generating a grid
and running an available CFD code. As illustrated in Figure 13.1, there
are other essential steps. The actual path of the analysis is usually quite
convoluted, full of loops and bifurcations. Nevertheless, the following key
stages are always present in some form.

Setting the Physical Model: With the exception of few simple cases,
which are rarely encountered outside the classroom, the subject of analy-
sis is usually too complex for a direct CFD approach. Let us, for example,
consider the area of more recent application of CFD, the human blood cir-
culation system. Parts of the system, such as arteries, capillaries, and heart
muscles, are all connected to each other and with the other organs within
the body. The system’s behavior involves complex and not always well
understood effects: elastic and moving walls, complex blood rheology,

280
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Figure 13.1 Key stages of a CFD analysis.

varying oxygen concentration, and so on. Also, since no two human bod-
ies are the same, each blood circulation system is unique.

Let us now take a position of a researcher trying to understand a certain
pathological condition. A numerical simulation of the entire blood circu-
lation system of a sick person is technically impossible. It would also be
not very useful, because the critical information on the pathology could
easily be lost in the sea of data produced by such a model. Furthermore,
the results would correspond to the state of a specific body in a specific
period of time. It is not at all certain that this state would reveal the
behavior typical for the pathology.

The proper approach to the analysis is to set a simplified and generalized
physical model . In our example, setting the model starts with locating
the particular part of the system, where the pathology—for example, a
partially blocked artery—occurs, and limiting the analysis to this part.
The influence of rest of the body is reproduced by, hopefully, plausible
models implemented in the form of boundary conditions.

The next step is to decide which physical effects have to be included
into consideration and which have to be neglected. For example, we can
include the complex rheology of blood and the dynamics of plaque buildup
or consider a simple flow of an incompressible fluid with constant viscos-
ity and smooth solid walls. In CFD, where the physical model is usually
set in terms of partial differential equations expressing the conservation
laws, the selection of physical effects is equivalent to the selection of a
certain form of the equations.

Quite often, the physical phenomena are important, but cannot be
directly addressed in the computations. The most obvious example is
turbulence. We can also name multiphase flows and flows with chemical
reactions. The approximations used in such cases, for example, the LES
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and RANS closure models of turbulence considered in chapter 11, are
parts of the general physical model.

One has to assign the values of physical parameters, such as fluid vis-
cosity and density. Furthermore, the CFD analysis has to be conducted for
certain ‘typical conditions’. In our example, this may mean generalizing
the geometry and choosing the regime of operation of the blood system
(pulsation frequency and flow rate) critical for the pathology.

The main point of the discussion above is that setting a physical model
is unavoidable, often difficult, requires good understanding of the subject
of analysis, and can be a significant source of error.

Selecting Numerical Approach: On this stage, we select compo-
nents and features of the numerical model. This includes discretization
method (finite volume, finite difference, etc.), order of approximation,
discretization scheme, type of the problem (transient or steady state), type
and parameters of the grid (typical space and time steps, clustering, cell
shape, etc.), and boundary conditions. Evidently, it is important to make
correct choices, since they determine the accuracy of the future solution
and the amount of computational work this solution will require.

Developing Numerical Model: In the earlier years of CFD, this was
the most difficult and time-consuming part of the analysis. Many thousand
lines of code had to be written, tested, and debugged, which took, depend-
ing on the qualification of the author and difficulty of the task, from several
days to several years. Development of a new algorithm to solve a partic-
ular problem still occurs nowadays, but mostly in fundamental research.
Practical CFD analysis is predominantly conducted using readily available
general-purpose algorithms.

This still leaves serious responsibilities to the user. One of them is the
choice of the method to be applied to solution of discretization equations.
For example, educated choice of one of the many available iterations
methods usually has to be made to achieve reliable and rapid convergence.

Another responsibility appears when the physical model contains fea-
tures, for which no numerical approximation is available in the CFD code.
For example, in the analysis of a blood circulation system, such feature
can be the dependence of the apparent viscosity of blood on the diameter
of the vessel and flow rate. It is normally possible to implement a new
physical feature in the form of a “user-defined” subroutine, an additional
segment of the code, which has to be supplied and tested by the user.

Conducting Computations: This is the easiest part of the process.
We let computers do the work.
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Verification and Validation: There are many possible sources of error
in CFD analysis. The only way to increase confidence in the results is
thorough testing (verification and validation) discussed in detail in the
next section. For now, we only mention that the absence of proper testing
is a common and grave mistake leading to sloppy CFD analysis.

Modifications: The CFD analysis rarely succeeds on the first try. Usu-
ally, the first results are either absent (convergence is not achieved or the
computed fields look physically impossible) or do not pass the verification
and validation tests. Modifications of the physical and numerical models
have to be made and the computations repeated. This is an iterative pro-
cedure, which, if the person conducting the analysis is skillful and lucky,
eventually leads to acceptable results. Virtually the only kind of situation
in which the modifications can be unnecessary is when the same system
is repeatedly analyzed for slightly different regimes of operation.

13.2 ERRORS AND UNCERTAINTY

In theory, we should separate between errors and uncertainty. For example,
we can say that the error is a deficiency that occurs not because we do not
know something, but because of limitations of our technical (e.g., com-
puter power) capacity. The uncertainty is then characterized as a deficiency
occurring because of luck of knowledge. In the following discussion, we
use a simplified, albeit theoretically imperfect, approach. We ignore the
difference and use the term error for all inaccuracies of a CFD analysis.

13.2.1 Errors in CFD Analysis

It is clear from our discussion throughout the book that a CFD solution
inevitably contains errors. How can we be confident that the errors are
not so large as to render the solution meaningless? Are there ways to
estimate and reduce the errors? An attempt to answer these questions is
provided next. We start by discussing the types of errors and possible
ways to estimate them.

The errors appearing in a CFD analysis can be classified into the fol-
lowing four types:

1. Errors of physical model
2. Discretization errors
3. Errors of solution of discretization equations (iteration errors)
4. Programming errors

Let’s look at these error types in more detail.
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Errors of Physical Model: As we discussed in section 13.1, a CFD
analysis generates an approximate description of the behavior of a physical
model , rather than of a real physical system. This substitution is inevitably
a source of error. We can symbolically write that the values of a property
u in the real system and the model differ by

εmodel = ureal − umodel. (13.1)

There are many reasons why a physical model may behave differently
from reality. We will name several of them, which are almost always
present.

The partial differential equations that usually constitute a physical
model are themselves only imprecise models of real behavior. This does
not concern the underlying principles of mass, momentum, and energy
conservation, which are exact. The problem is that the Navier-Stokes
and heat transfer equations contain the Newton’s law (2.16) for viscous
stresses and the Fourier law (2.23) for heat flux, both of which are
empirical, albeit in many cases quite accurate, approximations. Another,
typically much larger source of error, is the modeling approximations
we have to use in the equations when dealing with complex phenomena
unsuitable for direct numerical analysis. The list is long. It certainly
includes turbulence, multiphase flows, and flows with chemical reactions.

Properties of real liquids and gases (e.g., density or viscosity) depend
in a complex and not always well documented way on temperature, pres-
sure, and concentration of admixtures. This is often neglected in CFD
analysis, and the properties are assumed constant. In the cases where this
assumption is abandoned, the error is still introduced, since the properties
are approximated by imprecise empirical functions.

Spatially, the physical model often reproduces only a part of a real
system. The influence of the rest is imitated by boundary conditions.
The imitation is unavoidably artificial and imperfect. One good example
is a computational flows domain with an inlet. The inlet conditions are
important but usually unknown except, perhaps, for general characteristics,
such as the flow rate and average temperature. In the absence of a better
alternative, we assume an idealized form of the inlet flow (e.g., constant
mean flow and temperature, certain turbulence intensity and dissipation
rate) that probably has little in common with reality. Another example
of approximate boundary conditions is the temperature conditions (2.48)
and (2.50) at perfectly conducting and perfectly insulated walls. Neither
of these conditions is realistic. They are only used to avoid solving the
conjugate heat transfer problem in the walls.

There is no systematic way to fully predict the magnitude of error pro-
duced by physical modeling. Preliminary estimates can, however, be made
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on the basis of understanding the physics of the process. For example,
knowing the typical magnitudes of flow velocity and variations of tem-
perature and pressure, we can estimate the order of magnitude of density
variations and, thus, see if the incompressibility condition is justified.
More comprehensive and conclusive estimates are obtained through val-
idation, the process of comparison of computed results with data of real
system behavior.

Discretization Errors: In the CFD approach, we do not solve the
equations of the physical model exactly. Instead, an approximation is
found as a solution of a system of algebraic discretization equations. The
process introduces the discretization error . It is defined as the difference
between the exact solution of the model PDE and the exact solution of
the discretization equations

εdiscr = umodel − udiscr. (13.2)

The behavior of the error is determined by the order of the discretization
scheme. Let the order of the discretization in the x -direction is p. If the
solution of PDE is smooth and �x is sufficiently small, so that O((�x)p)

is the leading-order term of the truncation error, the discretization error
scales as

εdiscr = O((�x)p). (13.3)

We can rewrite it as

εdiscr = C (�x)p + O((�x)p+1), (13.4)

where C is a generally unknown constant, which depends on the local
properties of the solution (C contains its derivatives), properties of the
discretization scheme, and design of the grid. Analogous formulas can be
written for other coordinates and for time.

Unfortunately, the scaling formulas do not measure the amplitude of
the discretization error. The only conclusion that can be made from (13.4)
is that the error reduces by approximately mp times when the grid step is
reduced m-fold.

Because of variations of C , the absolute value of the error varies
strongly, sometimes by orders of magnitude within the solution. Simi-
lar uncertainty exists for integral characteristics. Two schemes of nom-
inally the same order or two differently designed grids used with the
same scheme are likely to result in significantly different discretization
errors.
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The only way to obtain reliable quantitative measure of the amplitude of
the discretization error is to compare solutions on systematically refined
grids. The logic is simple. Let us assume that a scheme of order p is
applied on two grids, which are geometrically similar but have different
steps �x1 and �x2. The results are the two approximate solutions that are
related to the exact solution of the physical model as

umodel = udiscr,1 + εdiscr,1 = udiscr,1 + C (�x1)
p + O((�x1)

p+1)

umodel = udiscr,2 + εdiscr,2 = udiscr,2 + C (�x2)
p + O((�x2)

p+1).

Solving this as a system of linear equations for C and umodel, we obtain

C = udiscr,1 − udiscr,2

(�x2)p − (�x1)p
+ O(�x1, �x2) (13.5)

and

umodel = (�x2)
pudiscr,1 − (�x1)

pudiscr,2

(�x2)p − (�x1)p
+ O((�x1)

p+1, (�x2)
p+1).

(13.6)

The discretization error can be estimated, for example, for the solution on
the grid with �x1, as

εdiscr,1 = udiscr,1 − udiscr,2

(�x2)p − (�x1)p
(�x1)

p + O((�x1)
p+1, (�x2)

p+1)

≈ udiscr,1 − udiscr,2

(�x2)p − (�x1)p
(�x1)

p . (13.7)

The first term in the right-hand side of (13.6) can be used to obtain
an approximation of the exact solution umodel. Together with (13.7), this
constitutes the method known as Richardson extrapolation .

If the order of discretization p is a-priori unknown, it can be found by
conducting computations on yet another grid with step �x3 and solving
the system of three equations to find C , p, and umodel.

Albeit simple on first glance, the method based on the Richardson
extrapolation is difficult to implement. The reason is that it requires com-
putations on two or three increasingly fine grids. It is essential for the
accuracy of the method that the refinement is significant. The preferred
choice is �x2 = �x1/2. In 3D, this means that the second grid has eight
times more points or cells than the first grid. At the same time �x1 should
be small enough for the asymptotic formula (13.3) to be valid.
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Although difficult and time consuming, computations on systematically
refined grids have to be done every time the analysis is conducted of a new
problem or using a new scheme or new type of grid. The main purpose is
not so much to estimate the discretization error, but to determine the level
of refinement on which this error becomes smaller than a given tolerance.
This level is commonly (and somewhat incorrectly) referred to as the level
of grid independency of solution. The meaning of the term is that further
refinement would change the solution very little.

The grid independency is often determined using the simplified proce-
dure that does not explicitly rely on the Richardson extrapolation. Solu-
tions obtained on systematically refined grids are compared with each
other using integral properties and plots of essential characteristics. The
solution is declared grid-independent when further refinement does not
lead to visible changes.

Errors of Solution of Discretization Equations (Iteration Errors):
The algebraic discretization equations are unavoidably solved with errors,
which we define as the difference between the exact and actually computed
solutions

εiter = udiscr − ucomp. (13.8)

One component of εiter is the round-off error of computer operations. For-
tunately, it only becomes important if the scheme is numerically unstable
(see Chapter 6). If the scheme is stable, and the round-off errors do not
accumulate, their magnitude is typically several orders lower than the mag-
nitude of the errors of other types, for example, of the discretization errors.

Much more significant and constituting practically the entire εiter are
the iteration errors that appear when a linear or linearized system of dis-
cretization equations is solved by an iteration method (see section 8.3).
The iterations cannot be continued indefinitely. They should be stopped
when the estimated iteration error becomes smaller than a certain small
but nonzero tolerance level.

The two important questions concerning the iteration error are: what
tolerance threshold is acceptable, and how can we estimate the error. The
answer to the first question is case-specific, although we have to take into
account that the iteration errors occur on the background of unavoidable
discretization errors and, possibly, model errors. In general, there is no
need to continue the iterations to the round-off level of accuracy.1 The

1The only situation in which such ultra-precision may be necessary is the verification
testing of an iteration algorithm when it is applied for the first time to the problem. It is
desirable in that case to gain confidence that the algorithm does not have internal faults
that would prevent convergence below a certain level.
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commonly accepted criterion is that the iteration errors are at least one
order of magnitude lower than the discretization errors.

The second question is difficult because, as we have already discussed
in section 8.3.1, the error cannot be computed directly. Let us, for con-
sistency, return to the notation of Chapter 8 and consider the iteration
error ε(k) = v − v(k) of the solution of the matrix equation A · v = c.
Evidently, the error is impossible to compute since the exact solution v is
unknown. We can only compute indirect characteristics, such as the dif-
ference between the results of successive iterations δ(k) = v(k+1) − v(k)

or the residuals r (k) = c − A · v(k). The usual approach is to calculate the
norm ‖δ(k)‖ or ‖r (k)‖ (see (8.27) and (8.28) for definitions of possible
norms) and stop the iterations when ‖δ(k)‖ or ‖r (k)‖ becomes smaller
than a predetermined tolerance limit ε0.

How do we determine the value of ε0 that secures the desirable level
of iteration error? The question is nontrivial, since ‖δ(k)‖ or ‖r (k)‖ do
not represent the actual magnitude of ε(k). It can be shown theoretically
and confirmed in computational experiments that, after several initial iter-
ations, the dynamics of the error follows

‖ε(k)‖ ≈ A‖δ(k)‖ ≈ B‖r (k)‖, (13.9)

where A and B are the constant coefficients related to the largest eigen-
value of the iterations matrix. Simply setting ε0 to a small number, say
to 10−4, does not guarantee small iteration error, because A and B can be
large.

The only reliable fact at our disposal is that ‖ε(k)‖, ‖δ(k)‖, and ‖r (k)‖
are all reduced at approximately the same rate during the process of con-
vergence. According to (13.9), we can write

‖ε(k)‖
‖ε(0)‖ ≈ ‖δ(k)‖

‖δ(0)‖ ≈ ‖r (k)‖
‖r (0)‖ . (13.10)

The initial error ε(0) = v − v(0) is related to the exact solution v. ‖ε(0)‖
is equal to ‖v‖ if zero initial conditions v(0) = 0 are used and is of the
same order of magnitude as ‖v‖ if the initial conditions are attempted as
an approximation of v. Our final formula

‖ε(k)‖
‖v‖ ≈ ‖δ(k)‖

‖δ(0)‖ ≈ ‖r (k)‖
‖r (0)‖ (13.11)

shows that the norm of the iteration error relative to the amplitude of
the solution is approximately equal to the observed total reduction of
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the norms of differences δ(k) or residuals r (k). We have to define ε0 as
the level at which ‖δ(k)‖ or ‖r (k)‖ becomes a predetermined fraction of
‖δ(0)‖ or ‖r (0)‖. For example, we can stop the iterations when the norms
of residuals fall by four orders of magnitude and be confident that the
norm of the iteration error is probably 10−4, but definitely smaller than
10−3 of the norm of the solution.

We will complete the discussion by two comments. The sentence, “The
residuals are changing only little from one iteration to the next, so I can
stop the iterations,” is meaningless. The residuals may be changing slowly
because the convergence is slow, while the iteration error is still high.
The second comment is that the estimate ‖ε(0)‖ ≈ ‖v‖ becomes an over-
estimate when the initial conditions are close to v. This may happen,
in particular, when the results of previous computation, either under-
converged or conducted at slightly different parameters or on a slightly
different grid, are used as initial conditions. Smaller reduction of ‖δ(k)‖
or ‖r (k)‖ can be required in such cases.

Programming Errors: Programming errors are virtually inevitable and
omnipresent. There are many opportunities for a CFD practitioner to make
one. Even if a readily available general-purpose code is used, errors can
be made while setting the problem (determining the geometry, boundary
conditions, physical parameters, etc.) or preparing a user-defined code.

Another, somewhat disturbing fact should be kept in mind. Any CFD
code, commercial or noncommercial, contains a significant number of
algorithmic errors. The analysis of Hatton (1997) found on average about
10 faulty lines per 1,000 lines of code in more than 100 scientific and engi-
neering codes reviewed. There is no ground to assume that the situation
has significantly improved since then.

The programming errors can be roughly divided into two types. There
are fatal errors that prevent the code from executing or generate evidently
incorrect results. Another type includes “mild” or “sleeping” faults that
generate incorrect answers in certain circumstances that may or may not
appear in the course of code execution. The errors hidden in the ready-to-
use CFD codes usually belong to the second type. The resulting mild incor-
rectness is very dangerous, since it is usually not clearly visible (one may
be tempted to declare that everything is fine, seeing that the iterations have
converged and the plots of solution look plausible), but nevertheless real.

There is no systematic way to estimate and control the effect of pro-
gramming errors. Rather, we have to give full effort to detect as many
of them as possible and reach the maximum possible confidence in the
results of computations. The methods of verification and validation used
for this purpose are discussed in the following section.
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13.2.2 Verification and Validation

The previous discussion shows that results of a CFD analysis unavoid-
ably contain errors, the effect of which is either difficult or impossible to
determine before or in the course of computations. In this section, we will
talk about the additional tools available to detect the errors and evaluate
their magnitude. The ultimate goal is to increase the level of confidence
in the results.

We should say in the beginning that in CFD there is no universally reli-
able method of achieving absolute confidence. Rather, the process reminds
a criminal investigation (how it appears in books and movies). We collect
direct and indirect evidences and modify the assumed picture until a rea-
sonably high level of confidence is achieved that the picture accurately
represents reality.

There is a scientific discipline dealing with the general issues of accu-
racy and reliability of computational modeling. The methods of this dis-
cipline were formalized and developed primarily for high-consequence
systems, such as weapons or transportation systems or nuclear power
stations. Full-scale consistent application of these methods in CFD is a
relatively recent phenomenon still largely limited to a few specific areas,
such as military systems or weather prediction. However, the basic ele-
ments of the accuracy and reliability analysis, perhaps taken informally,
have always been considered an essential ingredient of CFD.

The two main tools are verification and validation. The difference
between them can be seen in the following definitions, which we quote
from the AIAA guidelines published in 1998.

• Verification: the process of determining that a model implementation
accurately represents the developer’s conceptual description of the
model and the solution to the model.

• Validation: the process of determining the degree to which a model
is an accurate representation of the real world from the perspective
of the intended uses of the model.

These definitions can be rephrased using our terminology, in
which model becomes physical model and implementation becomes
implementation of numerical model , basically, the code and the grid
we are using. Figure 13.1 provides an illustration. We can describe
verification as the way to ensure that the numerical model solves the
physical model accurately. Note that even a fully verified numerical
model may produce unrealistic results if the physical model is incorrect.
Correctness of the physical model is primarily tested in the course of
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validation, which we can describe as the way to test and ensure that the
results of a numerically adequate CFD analysis agree with reality.

Considering the types of the CFD errors, we can say that the iteration
errors are evaluated and controlled in the course of verification. Physical
model errors are addressed by validation. The algorithm errors are detected
by both processes. At last, the discretization errors are primarily assessed
through verification, although their part related to the effect of numerical
resolution on accuracy of turbulence and other closure models requires
validation.

Verification: A systematic verification of numerical model should be
conducted every time a new code is developed, an essentially new grid is
built, or a significant new feature is added to the model. The methodology
relies on availability of reference solutions , exact analytical or highly
accurate numerical solutions of certain benchmark problems. The logic
is simple. The best and often only way to find out where and how our
numerical model solves the partial differential equations incorrectly is to
apply it to a problem for which an exact solution is known and compare
the numerical and exact results.

To separate different sources of error, it is recommended to conduct
the verification for separate modules of the model, starting at the most
elementary level and working way up. For example, developing a new
finite volume algorithm, we have to verify that each operation of integral
approximation and interpolation is coded correctly and has the desired
order of truncation error. This can be done by applying the operations to
simple functions (e.g., polynomials), for which integrals and interpolations
can be found analytically, and comparing these reference solutions with
the numerical results obtained using the values of the same functions at
grid points. Similarly, the iteration solver of the matrix equation can be
verified by substituting the matrix coefficients and the right-hand side, for
which an exact solution is known.

After all modules are verified and assembled or if a ready-to-use code
is applied, verification of the entire numerical model is conducted. Since
a reference solution is usually unavailable for the system for which we
plan to conduct the CFD analysis (the analysis would be unnecessary
otherwise), we have to use simplified test cases, in which geometry and
flow parameters are modified to make a reference solution possible. For
example, if we study a blood flow in an artery with a pathological wall
deformity, the good first test cases can be a steady and a pulsating flow
in a segment of a circular pipe.

Verification of a numerical model is a complex process characterized
by loops and bifurcations, many of which are needed to detect algorithmic
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errors. The first of the major steps not related to the algorithmic errors is
the analysis of iteration errors. A test case with steady reference solution
should be used for this purpose. After running the iterative procedure
to round-off accuracy, thus assuring convergence, the iteration error is
analyzed in its relation to residuals and differences between the results
of successive iterations. This helps to establish useful, albeit not fully
reliable, estimates of the convergence criteria.

Another important step is the analysis of discretization errors. This is
done by solving the test case equations on successively refined grids and
comparing the results with the reference solution. As the outcome of this
procedure, we learn whether the discretization errors are reduced at the
intended rate, estimate their amplitude as a function of the grid steps, and
make conclusions regarding the grid quality.

Validation: The validation is performed after we have gained confi-
dence that the numerical model sufficiently accurately reproduces the
behavior of the physical model (this practically means that the numerical
model has been successfully verified). The computed solution is compared
with the results of experiments. The main purpose of this comparison is
to determine the degree of accuracy with which the physical model repro-
duces the real world. We make the conclusion whether or not the physical
model is adequate and evaluate the errors introduced by the model assump-
tions and approximations, such as the choice of computational domain,
artificial boundary conditions, turbulence models, and so on.

Typically, experiments with the entire system considered in a CFD
analysis are impossible or impractical. It is, therefore, necessary to replace
the system by a simpler prototype or decompose its behavior into smaller
and experimentally accessible units. Our example of a blood flow in an
artery presents a good case for such benchmark experiments , since making
detailed measurements within a functioning human body is a difficult and
definitely undesirable task. The validation experiments can be conducted
in a laboratory using an artificial artery segment, in which flow is gener-
ated by a pump. Information on the flow behavior in typical regimes of
operation can be collected and compared with the results of computations.

Another difficulty of validation is that the experimental data are, them-
selves, not free from errors. Evidently, reliable validation is only possible
if the experimental uncertainty is known and sufficiently small.

As an additional complication, grid properties (quality and step or cell
size) affect the accuracy of certain aspects of the physical model. This
concerns, in particular, LES and RANS models of turbulence. The effect
cannot be analyzed in the framework of the verification procedure, where
the physical model is usually simplified (e.g., assuming that the flow is
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laminar) to be able to obtain an exact reference solution. On the contrary,
the accuracy of physical approximations on various grids can be assessed
in the validation tests through direct comparison with experiments.

13.3 ADAPTIVE GRIDS

We have already seen that the discretization error is, in fact, a local phe-
nomenon. There may exist zones in the solution domain, within which
the solution variables have particularly strong gradients. To maintain low
discretization error, particularly small grid steps are required within these
zones. In the rest of the domain, where the gradients are weak, the same
amplitude of the discretization error can be achieved on a cruder grid. Evi-
dently, for the sake of computational efficiency, we have to avoid using
a fine grid where it is unnecessary and employ local refinement.

This concept was introduced in section 12.1. We assumed that the
location of the refinement zone had been known before the problem was
solved. A steady attached boundary layer was used as an example. In this
situation, the necessary local refinement could be achieved by designing
a correspondingly clustered grid.

There are, however, situations, in which the location of the refinement
zone is a-priori unknown. It can only by found as a part of the solution. In
some cases, the solution is unsteady and the strong gradient zone changes
its location and shape with time.

We will name just two among many such configurations. In flows with
shock waves, refinement is required around the shocks, but the shock
location and structure are only determined in the course of the solution.
Another important and much researched type is that of flows with inter-
faces between two immiscible media: gas and liquid, two liquids, or liquid
and solid. Examples are the unpremixed combustion and solidification.
The interface dynamics is, as a rule, a complex, nonsteady, and nonlinear
phenomenon coupled with flows, heat and mass transfer in surrounding
media. The solution variables usually experience strong gradients near the
interface. We need a moving and deformable refinement zone that follows
the interface motion and deformation.

Evidently, in the situations such as those just described, a pre-built
clustered grid would be useless. We need a method, in which the refine-
ment is made in the course of computations in correspondence to computed
flow fields . Numerous techniques have been developed for this purpose
over the last 20 to 30 years. The common names of adaptive refinement
methods or adaptive grid methods can be used for them. A thorough dis-
cussion of these complex methods would only be possible on the level
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significantly more advanced than appropriate for our book. The reader
interested in the subject is invited to study the research literature. Some
useful references are provided at the end of the chapter. Here, we only
discuss the basic principles of the approach and briefly outline several
established techniques.

The sequence of key steps of an adaptive refinement procedure is
obvious:

1. Compute an approximate solution on a grid.
2. Analyze the discretization error and detect the zones where addi-

tional refinement is necessary.
3. Rearrange the grid, interpolate the solution onto the new grid, and

repeat computations.

In steady-state solutions, the procedure is repeated in iterative manner
until a desirably low level of discretization error is achieved throughout
the domain. In unsteady solutions with moving refinement zones, the error
analysis and grid rearrangement are done between the time steps.

It is the implementation of these obvious steps that makes the adaptive
refinement a challenging and advanced technique. One serious issue is
how to determine the new location of the refinement zone. We need a
sufficiently accurate and robust tool to estimate the local discretization
errors, the error estimator . This should be done by analyzing the computed
solution, although, in some cases, understanding of the physics of the
analyzed process can provide helpful indicators.

Perhaps the simplest, but not always reliable, error estimator is
the normalized amplitude of the solution gradient. Many estimators
have been proposed that evaluate the actual magnitude of the dis-
cretization error. Some of them are based on comparison between the
solutions on differently refined grids and the Richardson extrapolation
(13.7). In others, the necessary information is derived comparing the
values of the local solution properties, for example, convective and
diffusive flux integrals obtained using schemes of different orders of
approximation.

The second major issue is the actual grid refinement and handling solu-
tions on the resulting complex grids. Several distinct approaches have
been established. The classification popularized in finite element compu-
tations separates p- r- and h-methods. In the p-methods, which are used
exclusively in combination with finite elements, the grid remains unmod-
ified, but the order of approximation of the scheme (the number of terms
in the Galerkin expansion) is increased within the refinement zone. The
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r-methods keep the constant total number of grid points or cells but redis-
tribute them so as to achieve finer resolution within the refinement zone
and cruder resolution without it.

In the h-method, each cell within the refinement zone is split into a
number of smaller cells. For example, 2D quadrilateral cell are usually
split into two or four. Several levels of refinement can be used. The
traditional finite volume algorithms have to be modified to handle the
complexity of the resulting grids. In particular, some faces of larger cells
are in contact with faces of two smaller cells. In order to maintain the
conservation properties of the method, the face of the larger cell should
be treated as a combination of two faces, each representing an interface
to a smaller cell. This is possible, but the method should allow a grid
consisting of cells with the different numbers of faces.

If the h-method is used with a block-structured grid, the refinement is
performed block-wise.

A completely original method has been actively applied for solution
of hyperbolic systems, for example in supersonic gas dynamics or in
astrophysics. The refinement is accomplished through a sequence of over-
lapping patches. Each patch is covered by a structured and, typically,
orthogonal grid. In the solution, each patch is treated quasi-independently.
Coupling between the patches and the main grid is achieved using inter-
polation and other operations.
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A
Adams-Bashfort method, 135
Adams-Moulton method, 135
Adaptive grids (Adaptive

refinement), 293–295
ADI method, 191–192
algebraic models (RANS),

242–243
amplification factor, 111
approximate factorization

for Beam-Warming scheme,
181–182

for heat equation, 189–192
artificial compressibility, 222

B
Beam-Warming scheme

for compressible flows,
178–182

body forces, 16
boundary conditions, 26–30,

35–36, 101–102
Dirichlet, 35, 74
exit, 29
heat flux, 28
impermeable wall, 27–28, 208
inlet, 29, 284
Neumann, 35, 74
Newton’s cooling law, 28
no-slip, 27

periodic (cyclic), 30, 36, 235
Robin (mixed), 36
symmetry axis, 29
wall temperature, 28

boundary layer, 46
box filter, 250
Burgers equation, 34, 44–45,

132–133

C
CD interpolation, 97
CFD

definition, 1
history, 4–5

CFL condition, 125, 177
characteristics, 41–46
closure models, 253
coherent structures, 230
colocated grid, 200
compact schemes, 63
compressible flows, schemes for,

174–187
computational grid, 49–50,

55–57, 261–278
block-structured, 269
boundary fitting, 262–263,

266–267
generation, 271–272
local refinement, 263, 295
orthogonal unstructured, 273

297
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computational grid (continued)
quality, 268–269, 275–278
stretching (clustering), 56, 263,

267–268
structured and unstructured, 56,

88, 261–278
structured irregular, 264–269
uniform and nonuniform, 56
unstructured, 269–278

conservation laws
chemical species, 15–16
energy, 19–20
mass, 14
momentum, 16–19

conservation property for finite
volume schemes, 89–91

continuity equation, 14
convective flux, 23, 87
coordinate transformation for

irregular grids, 265–266
correction equation for multigrid

method, 162
Courant coefficient, 125
Crank-Nicolson scheme

for one-dimensional heat
equation, 131

for two-dimensional heat
equation, 188

D
DES (Detached Eddy

Simulations), 258
diagonal dominance of a matrix,

158
difference

backward, 60
central, 60, 146
for mixed derivatives, 64–66
for second derivative, 63–64
forward, 60
one-sided of second order, 62

difference equations, 75

difference molecule, 68
diffusion, 15
diffusive flux, 23, 87
discretization, 47
discretization equations, 75
discretization error, 107, 285
dispersive schemes, 72
dissipative schemes, 72
divergence theorem, 24
DNS, 232, 234–238
double sweep algorithm, 136–139
dynamic Smagorinsky model, 255

E
eddies (vortices) in turbulence,

229
eddy viscosity

in LES, 253–254
in RANS, 241–242

elementary volume, 11–12
elliptic equations, 41, 46
energy equation, 19–20
equation of state, 21
equations governing, 11–26

conservation form, 24–25
integral form, 21–24
vector form, 25–26, 175

equilibrium problem, 36–37
Euler equations, 16, 174
Euler method, 135
explicit scheme, 77, 118–119

F
Fick’s law of diffusion, 15
filter width, 250
filtered fields, 251
finite difference approximation

consistency, 59, 74–75
development, 78–83
of boundary conditions, 73–74
of derivatives, 57–66
of PDE, 67–68
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order, 58, 68
system of equations, 75–76

finite difference method, 49–50
finite element method, 49, 187
finite volume method, 24, 86–102

boundary conditions, 101–102
CD interpolation, 97
cell, 87
conservation property, 89–91
grid point, 88
grids, 87–89, 272–278
linear interpolation, 96–98
non-orthogonal grids, 99–101
QUICK interpolation, 98–99
surface integrals, 92–94

convective flux, 93–94
diffusive flux, 93–94

upwind interpolation, 95–96
volume integrals, 91–92

five-point scheme for Laplace
operator, 146–148, 188

fluid element, 11–12
Fourier law of heat conduction, 20
freezing coefficient assumption,

133, 178
full weighting, 163

G
Galerkin method, 47–48
Gauss-Seidel iterations, 156
Gaussian filter, 250
generic transport equation, 34, 46,

132–133
ghost point, 74
grid-independent solution, 287

H
heat equation, 20, 33, 37–38,

97–98, 104–106, 128–132,
187–192

high-resolution schemes for
hyperbolic systems, 187

hyperbolic equations, 41–45, 72,
185–187

domain of dependence, 44
domain of influence, 44

I
ideal gas, 21
implicit scheme, 77–78, 115,

118–119
incompressibility equation, 15
incompressible fluid, 15, 19, 21,

196–197
incompressible fluid flows

pressure calculation, 205–218
pressure equation, 197–198
schemes for, 198–218
steady-state problems, 212–218

initial conditions, 36
integral conservation equation, 24,

86
iteration errors, 154–155,

287–289
iterations

inner, 168, 214
outer, 168, 213, 246

iterative procedure, 154
tolerance limit, 288–289

J
Jacobi iterations, 155–156

K
k-ε model, 243–245
Karman constant, 243, 249
Kolmogorov’s estimates for

smallest scales of a turbulent
flow, 229

L
Laplace equation, 34, 38–39, 146
Lax-Wendroff scheme, 127–128
leap frog scheme, 126–127
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LES, 233, 249–258
filtering, 250–251
near-wall treatment, 256–258
resolution requirements,

255–258
linear convection equation, 33, 44,

69–70, 95–96, 122–128, 173,
182–183

linear interpolation
error of, 66
for finite volume method,

96–98
for multi-grid method, 163

linearization
for Beam-Warming scheme, 179
for nonlinear steady state

problem, 166–167
logarithmic law, 249
low Reynolds number effect in

turbulence modeling, 248
LU decomposition, 154–155

M
MacCormack scheme

for compressible flows,
176–178

for linear convection equation,
128

Mach number, 174
marching problem, 37, 76
material derivative, 12–13
matrix

band-diagonal, 150–151
block-diagonal, 150–151
sparce, 150

matrix equation
direct methods, 150–153
iterative methods, 153–163
problems leading to, 145–150

mean flow, 228, 239
method of lines, 134–136

model errors, 284–285
modified equation, 70
multi-grid method, 161–163

N
Navier-Stokes equations, 18–19

mathematical classification,
172–174, 198

Newtonian fluid, 18
nonlinear steady state problem,

164–168
linearization, 166–167
Newton method, 165–166
sequential iterations, 168

nonlinear unsteady problem,
stability analysis of, 133

numerical dispersion, 72
numerical dissipation, 71
numerical model, 282
numerical viscosity, 71

P
parabolic equations, 41, 45–46
partial differential equations, 1

classification, 40–46
finite difference approximation,

67
problem formulation, 35–37
quasi-linear, 40
well-posed problem, 35

physical model, 281–282,
284–285

PISO, 218
Poisson equation, 34, 39, 146,

148
polynomial fitting, 82
Prandtl mixing length, 242
predictor-corrector procedure,

128, 207, 211, 212
pressure correction method, 206
primitive variables, 219
programming errors, 289
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projection method, 206
explicit schemes, 206–209
implicit schemes, 209–212
steady-state problems, 212–218

pseudo-transient solution of
steady state problems, 164

R
RANS, 233, 238–249

boundary conditions, 247
equations, 240
initial conditions, 247–248
near-wall treatment, 248–249

rate of strain tensor, 18, 241, 254
reference solution, 291
residual fields, 251
residual of iteration procedure,

155
residual stress tensor, 252
resolved fields (in LES), see

filtered fields, 251
Reynolds averaging, 240
Reynolds number, 227
Reynolds stress tensor, 240
Richardson extrapolation, 286
round-off error, 106, 107, 287
Runge-Kutta method, 135–136

S
safety factor, 177
semi-implicit scheme, 211–212
sequential iterations, 168
SIMPLE, 214–216
SIMPLEC, 216–217
SIMPLER, 217–218
simple explicit scheme

for linear convection equation,
123

for one-dimensional heat
equation, 77, 129

stability analysis, 113

for two-dimensional heat
equation, 188

simple implicit scheme
for linear convection equation,

125–126
for one-dimensional heat

equation, 77, 130
stability analysis, 115

for two-dimensional heat
equation, 188

Smagorinsky constant, 254, 257
Smagorinsky model, 253–254
spectral method, 47–49

for DNS of homogeneous
turbulence, 235–237

stability of numerical solution
definition, 108, 112, 113
matrix method, 116–117
Neumann analysis, 108–115
nonlinear equation, of, 133

staggered grid, 203–205
streamfunction, 219
stress tensor, 17
subgrid-scale fields, see residual

fields 251
subgrid-scale models, see closure

models 253
successive over- and

under-relaxation, 157–158,
216, 246

surface forces, 17
surface force integral, 24

T
Taylor series expansion

for development of finite
difference schemes, 58,
79–82

for estimation of truncation
error, 58

Thomas algorithm, 136–139
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Thomas algorithm, (continued)
for block-diagonal matrix,

151–153
time discretization, 49–50, 55
total variation, 186
truncation error, 58–59, 67–68

effect of function gradient,
59–60

order, 59
turbulence

computational grid
requirements, 231–232

homogeneous, 235
properties, 227–231

turbulence intensity, 247
turbulent fluctuations, 228, 240
turbulent kinetic energy, 241
turbulent Prandtl number, 245
TVD schemes, 186

U
upwind scheme, 70, 95–96, 125,

183

upwind-bias, 184
upwind interpolation, 95–96
upwinding, 182–187
user-defined subroutine,

282

V
van Driest damping,

257
validation, 285, 290–293
variable time step, 55
verification, 290–292
vorticity, 219, 228
vorticity-stream function

formulation, 218–222

W
wall functions, 248–249
wall shear velocity, 249
wave equation, 33, 39–40,

121–128
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