


Surveying Fundamentals and Practices
SIXTH EDITION

Jerry Nathanson, M. S., P. E.
Professor Emeritus, Engineering Technology
Union County College
Cranford, New Jersey

Michael T. Lanzafama, P. E., P. L. S., P. P.
Adjunct Instructor, Surveying
Union County College
Cranford, New Jersey

Philip Kissam, C. E.
Late Professor Emeritus
Princeton University
Princeton, New Jersey

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo



Editor in Chief: Vernon R. Anthony
Acquisitions Editor: David Ploskonka
Editorial Assistant: Nancy Kesterson
Director of Marketing: David Gesell
Marketing Manager: Derril Trakalo
Senior Marketing Coordinator: Alicia Wozniak
Marketing Assistant: Les Roberts
Project Manager: Holly Shufeldt
Senior Art Director: Jayne Conte
Cover Designer: Karen Salzbach
Cover Photo: iStock
Full-Service Project Management/Composition: Integra Software Services, Ltd.
Printer/Binder: Edwards Brothers
Cover Printer: Demand Production Center
Text Font: 10/12, Minion

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on appropriate page within text.

Copyright © 2011, 2006 Pearson Education, Inc., publishing as Prentice Hall, Upper Saddle River, New Jersey and
Columbus, Ohio. All rights reserved. Manufactured in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Nathanson, Jerry A.
Surveying fundamentals and practices / Jerry Nathanson, Michael T.

Lanzafama, Philip Kissam.––6th ed.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-13-500037-3 (alk. paper)
ISBN-10: 0-13-500037-8 (alk. paper)

1. Surveying. I. Lanzafama, Michael T. II. Kissam, Philip III. Title.
TA545.N28 2011
526.9––dc22

2009050875

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-500037-8
ISBN 13: 978-0-13-500037-3

www.pearsonhighered.com


Dedication

To the courageous men and women who are serving or have served in the 
armed forces of the United States of America, for the defense of

freedom and democracy at home and abroad.



This page intentionally left blank 



PREFACE

v

Surveying Fundamentals and Practices is an
introductory textbook for use in colleges or tech-
nical schools where a basic but practical approach

to surveying is desired. It is of value primarily to students
in civil and civil/construction technology programs. It is
also useful for self-instruction and for on-the-job training
of surveying technicians. Others who may find this a useful
book are students and practitioners of architecture,
geology, geography, forestry, real estate, and related sub-
jects in which the measurement and mapping of natural
land features, boundary lines, buildings, roads, and other
infrastructure on the ground are important aspects.

This textbook is written in a clear and easy-to-read
style, presenting the fundamentals of surveying at a level
quickly grasped by most beginning students. In some
colleges, the traditional field of surveying may now be called
geomatics, or geometronics, largely due to the changes in both
field and office practice resulting from computer technology
applications, and the infusion of GNSS (global navigational
satellite systems) and GIS (geographic information systems)
into the topic. But the basic concepts remain the same. A
technician in this discipline who lacks a firm grasp of the
fundamentals of its scientific and mathematical underpin-
nings is working on shaky ground. This book provides the
necessary solid foundation.

In this textbook, the subject matter is organized into
three major sections: Part 1, Basic Concepts in Surveying;
Part 2, Surveying Equipment and Field Methods; and Part 3,
Surveying Applications. A review of basic mathematics,
including geometry and trigonometry, is included in Part 1,
rather than in the appendix, because of the importance of
these topics for technicians. Without a firm understanding
of the underlying mathematics, all the computer technology
in the world will be of little use to a practitioner in surveying
technology. The acronym GIGO (garbage in, garbage out) is

of great significance with regard to the many coordinate
geometry (COGO) and computer-aided design (CAD) pro-
grams that are commercially available. It is essential that
technicians working on tasks related to surveying know the
basic concepts related to the operation of surveying instru-
ments, and the analysis (reduction) of surveying data, to
avoid major blunders. Appendix A provides information on
the use of traditional survey equipment and methods.

NEW TO THIS EDITION
� Chapter objectives at the beginning of each chapter
� Coverage of construction layout techniques that use elec-

tronic equipment, current computer software, and RTK
(real-time kinematic) field procedures

� Description of computer modeling of data files
� Updated descriptions of GPS (global positioning system),

GLONASS (global navigation satellite system), and
Galileo (Galileo radio navigation satellite system)

In short, this textbook is designed as a reliable point of
beginning for those who will work with surveyors or who
will have to use or interpret surveying data in their careers,
as well as for those who may choose to continue their acade-
mic study of surveying at a more advanced level. It includes
both examples and practice problems using Systéme Inter-
national (SI) metric units as well as U.S. Customary units of
measurement, reflecting the current state of practice in the
United States. Appendix B summarizes units and conver-
sions often used by the surveyor. End-of-chapter review
questions are provided and practice exercises are arranged
in pairs of similar problems, with answers to the even-
numbered problems given in Appendix F and answers to the
odd-numbered problems in a solutions manual available
from the publisher to instructors teaching a course.
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CHAPTER ONE

This textbook is intended to serve as an introduction to
the fundamentals of surveying. The purposes of this
chapter, and the following two chapters of Part 1, are

to present a broad overview of the surveying method, to
discuss the importance of surveying as a profession, and to
cover some basic concepts regarding measurement, computa-
tion, and surveying mathematics. This will give the beginning
student a foundation for effective study of the traditional and
modern surveying instruments, field and office procedures,
and surveying applications that are presented in the following
parts of the book.

1-1 THE ART AND SCIENCE
OF SURVEYING

Simply stated, surveying involves the measurement of
distances and angles. The distances may be horizontal or
vertical in direction. Similarly, the angles may be measured
in a horizontal or vertical plane. Usually distances are
measured on a slope, but they must eventually be converted
to a corresponding horizontal distance. Vertical distances are
also called elevations. Horizontal angles are used to express
the directions of land boundaries and other lines.

There are two fundamental purposes for measuring
distances and angles. The first is to determine the relative posi-
tions of existing points or objects on or near the surface of the
earth. The second is to lay out or mark the desired positions of
new points or objects that are to be placed or constructed on or
near the earth’s surface. There are many specific applications
of surveying that expand upon these two basic purposes; these
applications are outlined in Section 1-3.

Surveying measurements must be made with precision to
achieve a maximum of accuracy with a minimum expenditure

of time and money. (We will discuss the terms precision and
accuracy in more detail in Section 2-4.)

The practice of surveying is an art because it is depen-
dent upon the skill, judgment, and experience of the
surveyor. Surveying may also be considered an applied
science because field and office procedures rely upon a sys-
tematic body of knowledge, related primarily to mathematics
and physics. An understanding of the art and science of
surveying is, of course, necessary for surveying practitioners,
as well as for those who must use and interpret surveying
data (architects, construction contractors, geologists, and
urban planners, as well as civil engineers).

Basis of Surveying
Surveying is based on the use of precise measuring instru-
ments in the field and on systematic computational procedures
in the office. The instruments may be traditional or electronic.
The computations (primarily of position, direction, area, and
volume) involve applications of geometry, trigonometry, and
basic algebra.

Electronic handheld calculators and digital computers
are used to perform office computations. In the past, sur-
veyors had to perform calculations using trigonometric and
logarithmic tables, mechanical calculators, and slide rules.
Today, the availability of relatively low-cost electronic
calculators, desktop computers, and surveying software
(computer programs) relieves the modern-day surveyor
from many hours of tedious computations. But it is still
very important for the surveyor to understand the underly-
ing mathematical procedures and to be able to perform the
step-by-step computations by applying and solving the
appropriate formulas.

INTRODUCTION

CHAPTER OUTL INE

1-1 The Art and Science
of Surveying

Basis of Surveying
Importance of Surveying

1-2 The Surveying Method
Defining Horizontal and Vertical

Directions
Measuring Distances and

Angles: An Overview
Plane and Geodetic Surveying

1-3 Surveying Applications
Property Survey
Topographic Survey
Construction Survey
Control Survey
Route Survey
Other Types of Surveys

1-4 Historical Background

1-5 The Profession of Surveying

The Licensed Professional
Land Surveyor

1-6 Field Notes
Field Notebooks
Rules for Field Notes
Electronic Data Collectors

1-7 Geographic Information
Systems (GIS)

Questions for Review
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The traditional measuring instruments used in the field
are the transit or theodolite (to measure angles), the level and
level rod (to measure vertical distances or elevations), and
the steel tape (to measure horizontal distances). They are
illustrated in Figure 1-1. The use of these types of instru-
ments is described in detail in subsequent chapters.

Electronic measuring devices have largely replaced
traditional instruments in surveying field work. One of the
most advanced of these modern instruments is the electronic
recording tacheometer, or total station, as it is also called (see
Figure 1-2a). It comprises an electronic distance measuring
(EDM) device, an electronic theodolite to measure angles,
and an automatic data recorder. Many companies provide a
“field-to-finish” system (Figure 1-2b), complete with the

computer hardware and software needed to analyze and plot
the survey data.

The total station and other modern instruments will be
discussed again later on in the text. But the fundamental prin-
ciples of surveying remain the same, whether the electronic or
the more traditional instruments are used. The beginning
student must still learn these basic principles before using
sophisticated modern instruments. In any event, the steel tape,
the transit, and the level are still used for many construction
and small-scale surveys. In fact, we shall see later on that the
steel tape is more accurate than most electronic devices when it
comes to measuring relatively small horizontal distances.

With skillful use of surveying instruments and with
proficient application of field and office procedures, almost

FIGURE 1-1. Traditional surveying instruments: (a) Theodolite (Courtesy of
CST/Berger, Illinois), (b) level, (c) a level rod, and (d) a steel tape.

(a)

FIGURE 1-2. (a) An electronic total-station surveying instrument that can be used to measure
and record distances and angles and compute coordinates. (Courtesy of Leica Geosystems, Inc.)
(b) In a field-to-finish system, data may be stored electronically. The data can be “dumped” into
the office desktop computer for computations and plotting or printing.

(a)

(b)

(c)(d)

(b)
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any measurement problem can be solved. Conversely, it is
difficult to solve any problem requiring relatively large and
accurate measurements without resorting to proper survey-
ing methods and instruments.

Importance of Surveying
Surveying plays an essential role in the planning, design,
layout, and construction of our physical environment and
infrastructure. The term infrastructure is commonly used to
represent all the constructed facilities and systems that allow
human communities to function and thrive productively.

Surveying is the link between design and construction.
Roads, bridges, buildings, water supply, sewerage, drainage
systems, and many other essential public-works projects could
never be built without surveying technology. Figure 1-3 shows
a bird’s-eye view of a typical urban environment that depends
on accurate surveying for its existence. Nearly every detail
seen on that photograph was positioned by surveying
methods.

In addition to its customary applications in construction
and land-use projects, surveying is playing an increasingly
important role in modern industrial technology. Some
activities that would be nearly impossible without accurate
surveying methods include testing and installing accelerators

for nuclear research and development, industrial laser
equipment, and other sensitive precision instruments for
manufacturing or research. The precise construction of
rocket-launching equipment and guiding devices is also
dependent on modern surveying.

Without surveying procedures, no self-propelled missile
could be built to the accuracy necessary for its operation. Its
guiding devices could not be accurately installed; its launch-
ing equipment could not be constructed; it could not be
placed in position or oriented on the pad; and its flight could
not be measured for test or control. Moreover, its launch
position and the position of its target would be a matter of
conjecture. Surveying is an integral part of every project of
importance that requires actual construction.

1-2 THE SURVEYING METHOD
The earth, of course, is spherical in shape. This fact, which
we take for granted today, was an issue of great debate only a
few hundred years ago. But despite the unquestionable
roundness of the earth, most surveying activities are per-
formed under the tacit assumption that measurements are
being made with reference to a flat horizontal surface. This
requires some further explanation.

FIGURE 1-3. Practically every line
recorded on this photograph was
laid out with a transit, a steel tape,
and a level—the primary equip-
ment of the surveyor. (Courtesy
of New Jersey Department of
Environmental Protection)
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Defining Horizontal and Vertical Directions
The earth actually has the approximate shape of an oblate
spheroid, that is, the solid generated by an ellipse rotated on
its minor axis. Its polar axis of rotation is slightly shorter
than an axis passing through the equator. But for our pur-
poses, we can consider the earth to be a perfect sphere with a
constant diameter. In fact, we can ignore, for the time being,
surface irregularities like mountains and valleys. And we can
consider that the surface of the sphere is represented by the
average level of the ocean, or mean sea level.

By definition, the curved surface of the sphere is termed
a level surface. The direction of gravity is perpendicular or
normal to this level surface at all points, and gravity is used
as a reference direction for all surveying measurements. The
direction of gravity is easily established in the field by a freely
suspended plumb line, which is simply a weight, or plumb

bob, attached to the end of a string. The direction of gravity
is different at every position on the earth’s surface. As shown
in Figure 1-4, the direction of all plumb lines converge at the
center of the earth; at no points are the plumb lines actually
parallel.

The vertical direction is taken to be the direction of gravity.
Therefore, it is incorrect to define vertical as simply “straight
up and down,” as many beginning students tend to do. The
vertical direction varies from point to point on the earth’s
surface. The only common factor is the direction of gravity.

By definition, the horizontal direction is the direction
perpendicular (at an angle of 90°) to the vertical direction of
gravity. Because the vertical direction varies from point to
point, the horizontal direction also does. A horizontal length
or distance, then, is not really a perfectly straight line. It is
curved like the surface of the earth. This is illustrated in
Figure 1-5.

FIGURE 1-4. The vertical direction
is defined as the direction of the
force of gravity.

FIGURE 1-5. A true horizontal
distance is actually curved, like
the surface of the earth.
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Measuring Distances and Angles: An
Overview
As shown in Figure 1-5, a horizontal distance or length is
measured along a level surface. At every point along that
length, the line tangent to the level surface is horizontal.
Horizontal distances may be measured by stretching a steel
tape between a series of points along a horizontal line. Elec-
tronic distance meters, which use infrared light waves and
measure very long distances almost instantaneously, are also
used. For most surveys, the curvature of the earth can be
neglected, as will be discussed in more detail in the next
section. Taping and the use of EDM instruments are
discussed in Chapter 4.

A vertical distance is measured along the direction of
gravity and is equivalent to a difference in height between
two points. When the height is measured with reference to a
given level surface such as mean sea level, it is called an
elevation.

Vertical distances are usually measured with wooden or
fiberglass rods held vertically and graduated in centimeters
or hundredths of a foot. An instrument called a level is used
to observe the rod at different points. A level consists of a
telescopic line of sight, which can be made horizontal by
adjusting an attached sensitive spirit bubble. The instrument
can be turned in various directions around a stationary
vertical axis. As shown in Figure 1-6, the difference in the
readings on the rod at two points is equivalent to the differ-
ence in height or elevation between the points.

The relative vertical positions of several points sepa-
rated by long distances can be determined by a continuous
series of level rod observations, as illustrated in Figure 1-7.
This procedure is called leveling. The line of sight of the level
is horizontal at each observation. Because most level rod
observations are made with relatively short line-of-sight dis-
tances (less than about 300 ft or 90 m), the effect of the
earth’s curvature is not at all noticeable. This is explained
more thoroughly in the following discussion of plane
surveying. In any case, proper leveling methods will com-
pensate for the effects of curvature, as well as for possible
instrumental errors. Leveling theory and field procedures are
discussed in detail in Chapter 5.

A horizontal angle is measured in a plane that is
horizontal at the point of measurement, as illustrated in
Figure 1-8. When a horizontal angle is measured between
points that do not lie directly in the plane, like points A and
B in Figure 1-8, it is measured between the perpendiculars
extended to the plane from those points. (Actually, angles
are measured between lines, not points. We will discuss
this more thoroughly in the part of the book on angular
measurement.)

A vertical angle is measured in a plane that is vertical at
the point of observation or measurement. Either the hori-
zontal direction (horizon) or vertical direction (zenith) may
be used as a reference line for measuring a vertical angle. In
Figure 1-8, V1 is the vertical angle between the horizon and
the instrument line of sight to point A, and V2 is the vertical
angle between the horizon and the line of sight to point B.
Both vertical and horizontal angles are discussed in more
detail in Chapter 6.

Horizontal and vertical angles are measured with an
instrument called a transit or theodolite. This type of instru-
ment consists essentially of an optical line of sight, which is
perpendicular to and is supported on a horizontal axis.

FIGURE 1-6. Measuring a difference in height between a rail
and a platform. The difference here is 5.82 - 1.71 = 4.11 ft.

FIGURE 1-7. The relative vertical
positions of two or more points are
determined by leveling.
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Theodolites are generally finer in quality and performance
(and are more expensive) than transits.

As shown in Figure 1-9, the horizontal axis of the instru-
ment is perpendicular to a vertical axis, about which it can
rotate. Spirit levels are used to make the vertical axis coincide
with the direction of gravity. Modern instruments use an
electronic leveling system. In older instruments, graduated
metal circles with verniers or glass circles with micrometers
are used to read the angles. In modern theodolites, the circles

are scanned electronically, and the value of the angle is
displayed digitally.

Plane and Geodetic Surveying
We mentioned in the preceding section that most surveying
measurements are carried out as if the surface of the earth
were perfectly flat. In effect, this means that we make our
measurements as if the lines of force due to gravity were
everywhere parallel to each other, and as if underneath the
irregular ground surface there existed a flat, horizontal refer-
ence plane. This is illustrated in Figure 1-10.

The method of surveying based upon this assumption is
called plane surveying. In plane surveying, we neglect the
curvature of the earth, and we use the principles of plane
geometry and plane trigonometry to compute the results of
our surveys.

The use of plane surveying methods simplifies the work
of the surveyor. And for surveys of limited extent, very little
accuracy is lost. Within a distance of about 12 mi, or 20 km,
the effect of the earth’s curvature on our measurements is so
small that we can hardly measure it. In other words, a hori-
zontal distance measured between two points along a truly
level (or curved) line is, for practical purposes, the same
distance measured along the straight chord connecting the
two points. In fact, over a distance of about 12 mi, the differ-
ence between the length of arc and the chord length is only
about 0.25 in.

This textbook is designed primarily as an introduction
to plane surveying, which, for the reason described previ-
ously, is suitable for surveys extending over distances less
than about 12 mi. But as it turns out, the vast majority of
ordinary private surveys are performed well within these
limits. Certain public surveys, however, are conducted by
federal or state agencies and cover large areas or distances.

FIGURE 1-8. Measurement of
horizontal and vertical angles.

FIGURE 1-9. Transit essentials. Schematic diagram of an
alidade, which is the upper part of a transit.
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Such large-scale surveys must account for the true shape of
the earth so that the required degree of accuracy is not lost in
the results.

A survey that takes the earth’s curvature into account is
called a geodetic survey. These types of surveys are usually
conducted by federal agencies such as the U.S. Geological
Survey and the U.S. National Geodetic Survey. Various river
basin commissions and large cities also perform geodetic
surveys. Such surveys generally use very precise instruments
and field methods and make use of advanced mathematics
and spherical trigonometric formulas to adjust for curva-
ture. In some cases, the instruments and field methods used
in a geodetic survey do not differ from those used in a plane
survey, but spherical trigonometry must always be used to
reduce the geodetic survey data.

The geometry and trigonometry of figures on a curved
surface differ considerably from the geometry and
trigonometry of plane or flat figures. For example, in a
plane triangle, the interior angles always add up to 180°. But
this is not the case with a triangle on a curved surface. The
triangle shown on the sphere in Figure 1-11, for instance,
must contain more than 180°. The sides of that triangle
change direction by 90° at each corner, A and B, on the
equator. With angle C added to A and B, the sum is clearly
more than 180°. Spherical trigonometry, then, takes into
account the properties of geometric shapes on curved
surfaces.

Geodetic surveying methods are generally used to map
large areas and to establish large-scale networks of points on
the earth for horizontal and vertical control. The relative
positions of these points are measured with a high degree of
precision and accuracy, both in longitude and in latitude,* as
well as in elevation. They are used as points of reference for
many other local surveys that require a lower degree of
accuracy.

1-3 SURVEYING APPLICATIONS
As we mentioned at the beginning of this chapter, the two
fundamental purposes for surveying are to determine the
relative positions of existing points and to mark the posi-
tions of new points on or near the surface of the earth.

Within this framework, many different kinds of surveys
are performed. Some specific applications or types of surveys
are outlined briefly in this section and are discussed in more
detail in Part 3 of the text. Generally, these different types of
surveys require different field procedures and varying degrees
of precision for carrying out the work.

Property Survey
A property survey is performed to establish the positions of
boundary lines and property corners. It is also referred to as a
land survey, title survey, or a boundary survey. Property surveys

FIGURE 1-10. In plane surveying,
the curvature of the earth is
neglected and vertical distances are
measured with reference to a flat
plane.

FIGURE 1-11. On a curved surface, the sum of the angles in
a triangle is more than 180°.

*Longitude is the angular distance of a point on the earth’s surface, measured
east or west of the prime meridian at Greenwich, England. Latitude is the
angular distance of a point on the earth’s surface, measured north or south
of the equator.
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are usually performed whenever land ownership is to be
transferred or when a large tract of land is to be subdivided
into smaller parcels for development. Also, before the design
and construction of any public or private land-use project can
get under way, it is necessary to accurately establish the legal
boundaries of the proposed project site. Constructing a struc-
ture on what later is found to be property that belongs to
someone else can be a very expensive mistake.

Any survey for establishing or describing land bound-
aries must be performed under the supervision of a licensed
land surveyor. Land surveys in urban areas must be con-
ducted with particular care because of the very high cost of
land. In rural areas, less accuracy may be acceptable. Land
surveys done to actually mark property corners with perma-
nent monuments are sometimes informally referred to as
“stakeout,”“outbound,” or “bar job” surveys. The results of a
property survey may be written into a deed or may be pre-
pared as a drawing called a plat, as illustrated in Figure 8-2.

Topographic Survey
A topographic survey is performed to determine the relative
positions (horizontal and vertical) of existing natural and
constructed features on a tract of land. Such features include
ground elevations, bodies of water, vegetation, rock out-
crops, roads, buildings, and so on.

A topographic survey provides information about the
“shape of the land.” Hills, valleys, ridges, and the general
slope of the ground can be depicted graphically. The data
obtained from a topographic survey are plotted and drawn
as a suitably scaled map, called a topographic map, or topo
map. Figures 9-1 and 9-2 are examples of topo maps.

The shape of the ground is shown with contours, or lines
of equal elevation. Because a topo map is always needed
before the engineering and architectural design of any build-
ing or other project can begin, a topo survey may also be
referred to as a preliminary survey. Of course, an accurate
property survey must always precede the topo survey to
establish the boundaries of the project site.

Construction Survey
A construction survey, also called a layout or location survey,
is performed to mark the position of new points on the
ground. These new points represent the location of building
corners, road centerlines, and other facilities that are to be
built. These positions are shown on a site plan, which is
essentially a combination of the property survey and topo
survey, along with the newly designed facilities. This may
also be called a plot plan.

A site plan shows the location dimensions that are to be
measured with reference to boundaries or other control
points. Vertical heights are given by elevations. Sometimes
horizontal positions may be given by coordinates. Wooden
stakes are used by the surveyor to mark the positions of the
buildings, roads, and other structures. An example of a draw-
ing that includes location dimensions is shown in Figure 1-12.

The wooden stakes serve as reference points for the con-
struction contractor who actually builds the project. They
may be centerline stakes, offset stakes, or grade stakes.
Carpenters, masons, and other skilled trades transfer mea-
surements directly from the survey points. The procedure of
placing the markers is called staking out. Another term used,
especially for pipelines and roads, is giving line and grade.

Control Survey
There are two kinds of control surveys: horizontal and vertical.
In a horizontal control survey, several points are placed in the
ground by the surveyor, using wooden stakes or more perma-
nent markers such as iron bars and concrete monuments. These
points, called stations, are arranged throughout the site or area
under study so that they can be easily seen and surveyed.

The relative horizontal positions of these points are
established, usually with a very high degree of precision and
accuracy; this is done using traverse or global navigation
satellite systems (GNSS) survey methods.

In a vertical control survey, the elevations of relatively
permanent reference points are determined by precise leveling
methods. Marked or monumented points of known elevation
are called elevation benchmarks (BMs).

The network of stations and benchmarks provides a
framework for horizontal and vertical control, upon which
less accurate surveys can be based. For example, boundary
surveys or construction surveys can be tied into nearby con-
trol survey stations and benchmarks. This minimizes
the accumulation of errors and the cost of making all the
measurements precise.

Existing topographic features and proposed points or
structures are connected to the control network by surveying
measurements of comparatively low precision. A steel tape
and a builder’s level may be used in some cases. An example
of a control survey network is shown in Figure 1-13. When
local surveys are tied into a control survey, a permanent ref-
erence is established that can be retraced if the construction
stakes or property corners are obliterated for any reason.

Large-scale or geodetic control surveys must account
for the curvature of the earth in establishing relative hori-
zontal and vertical positions. Geodetic control surveys
include astronomic observations to determine latitude and
longitude and the direction of astronomical north. Modern

FIGURE 1-12. Typical location dimensions found on
engineering or architectural plans, for use during 
a stakeout survey.
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geodetic control surveys can be performed using signals
from satellites, which are received by instruments called
global navigation satellite systems (GNSS).

Route Survey
A route survey is performed to establish horizontal and ver-
tical control, to obtain topographic data, and to lay out the
positions of highways, railroads, streets, pipelines, or any
other “linear” project. In other words, the primary aspect of
a route survey is that the project area is very narrow com-
pared with its length, which can extend up to several kilome-
ters or miles. An example of the results of a route
survey—the plan and profile of a proposed road—is shown
in Figure 1-14. Plane geometry is used to compute the hori-
zontal and vertical alignment of the road.

Other Types of Surveys
A hydrographic survey is a preliminary survey applied to a
natural body of water. It serves to gather data for mapping
the shoreline and for charting the water depths of a river,
lake, or harbor. In effect, an underwater topo map is pre-
pared from a hydrographic survey. Navigation and water
resources planning projects depend upon data obtained
from hydrographic surveys.

A reconnaissance survey is a preliminary survey conducted
to get very rough data regarding a tract of land. Distances may
be approximated by pacing, and spot elevations may be
obtained with the use of only a hand level. Examination of
aerial photographs may also serve as part of a reconnaissance
survey. Photogrammetric surveying uses relatively accurate
methods to convert aerial photographs into useful topographic
maps. A control survey on the ground is still necessary when
utilizing photogrammetry to produce accurately scaled maps.

A cadastral survey is a boundary survey applied specifi-
cally to the relatively large-scale rectangular U.S. Public
Lands Survey system. It also refers to the surveying and iden-
tification of property in political subdivisions.

Other types of specialized surveys include mine surveys,
bridge surveys, tunnel surveys, and city surveys. Surveying
applications also range from monitoring very small move-
ments of the earth over long periods of time (such as earth-
quakes and other geological studies) to tracking the orbits of
satellites and space vehicles.

Surveying, an activity with roots in antiquity, is now a
modern and continually evolving technical discipline and
profession.

1-4 HISTORICAL
BACKGROUND

Surveying probably has its origins in ancient Egypt, as far
back as 5000 years ago. Some type of systematic measure-
ments must have been made, for example, to accurately and
squarely lay out the Great Pyramid with respect to the true
meridian (the north-south direction line). And the annual
floods of the Nile River, which obliterated land boundary
markers used for taxation purposes, made it necessary for
ancient surveyors to relocate and replace the lost boundaries.

Those early surveyors used ropes that were knotted at
uniform intervals to measure distance; the surveyors were,
appropriately enough, called rope stretchers. The interval
between the knots, called a cubit, was taken to be the length
of the human forearm. The cubit, which, of course, could
vary depending on whose forearm was used to establish it,
was the basic unit of length used at that time.

It is likely that the subject of geometry (which means
“earth measurements”) developed primarily because of the
need to conduct surveys of the land. Since ancient times, his-
torical records show the development of surveying as an
applied science, one that evolved as measuring instruments,
as well as computational methods, gradually improved. It is
of value for the beginning student of surveying to have at
least a general perspective of this historical development.
Students may wish to go to www.surveyhistory.org for images
and explanations of ancient surveying tools.

FIGURE 1-13. A horizontal control
survey network showing traverse
and triangulation stations (points)
and courses (lines).

www.surveyhistory.org
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FIGURE 1-14. A typical plan and profile of a section of roadway, prepared from route survey data. (Courtesy of Casey & Keller, Inc.)
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Perhaps the earliest device used to establish a level line
was a triangular A-frame with a plumb line and weight sus-
pended from the apex, called the libella. A mark at the center
lower bar indicated the proper position of the plumb line for
the bar to be horizontal. The position of the mark on the bar
could also have been “calibrated” by aligning it with a free
water surface.

Ancient Roman engineering accomplishments include
roads, aqueducts, and buildings. One of the instruments
used by Roman surveyors, who were called agrimensores
(“land measurers”), was the groma. It comprised a pair of
crossarms attached at right angles to each other and sup-
ported on a vertical staff. Plumb lines suspended from the
end of each arm were used to establish perpendicular or
right-angle lines of sight. The Romans also used a device
called a chorobate, a timber beam with a narrow groove on
top to hold water, as a leveling instrument; the water surface
established a level line of sight.

The magnetic compass was first used as a surveying
instrument in the thirteenth century to establish the direc-
tions of boundary lines. By the beginning of the sixteenth
century, a sighting device similar to the transit, with gradu-
ated scales to measure vertical and horizontal angles, was in
use. It was improved considerably, in the middle of the
seventeenth century, with the addition of the telescope and
cross hairs for establishing a line of sight. Also around that
time, a device for reading small subdivisions of a graduated
scale was invented by Pierre Vernier. The vernier, as it is
called, is still used today to increase the accuracy of reading
angles on most traditional engineering transits.

The development and gradual improvement of survey-
ing instruments continued through the eighteenth century,
and the nineteenth century was one of continuing refine-
ment in field methods as well as in instrumentation. It was at
the end of the eighteenth century that a systematic survey of
the entire public domain in the United States was begun.
This large-scale public land survey, as well as the construc-
tion of railroads and canals throughout the nation, led to
many advancements in surveying procedures.

Several famous Americans, including George Washington,
Thomas Jefferson, Daniel Boone, and the writer-philosopher
Henry David Thoreau, earned their living as surveyors for a
while. George Washington was licensed as a land surveyor by
the College of William and Mary. Even Abraham Lincoln
served briefly as a “deputy surveyor.”And the main character in
the symbolic novel The Castle, by Franz Kafka, was portrayed
as a land surveyor.

The surveying profession, then, has some notable associ-
ations with literature and famous personalities. Of course, the
study or practice of surveying will not guarantee us fame or
fortune. But it is such a practical and down-to-earth subject
that knowledge of its basic principles can only serve an indi-
vidual well, irrespective of his or her future career path.

Since the twentieth century, surveying has emerged as a
dynamic and modern technical discipline. The two world
wars, as well as the military conflicts in Korea, Vietnam, and
the Middle East, have led to significant developments in

surveying technology. In fact, the use of electronics and
computers in surveying is largely an offshoot of what were,
initially, military reconnaissance and mapping applications.

Nonmilitary needs for the inventory and management of
natural resources, such as surface water and timberland, have
also been a catalyst for advancements in surveying. And the
increasing use of aerial photography, GNSS, and photogram-
metric surveying is attributable to military as well as peacetime
needs for large-scale and accurate surveys.

In the 1980s, the application of space-age technology to
surveying practice began to accelerate rapidly, in what may
be characterized as a technological revolution. Electronic
instruments for distance and angular measurement, auto-
matic data-recording devices, microprocessors for data
reduction and computer mapping, laser-leveling devices,
remote sensing and surveying of the earth by satellite pho-
tographs, and GNSS have all become a part of contemporary
surveying practice.

But for now and for many years to come, the study of
surveying must begin with the application of traditional
instruments, field methods, and computational procedures.
These are still in use today. In any case, an understanding of
traditional methods using the steel tape, the level and level

LAND
SURVEYING

   Of  all  kinds,   according   to  the  
best methods known; the necessary 
data supplied, in order that the 
boundaries of Farms may be accurately 
described in Deeds; Woods lotted off 
distinctly and according to a regular 
plan; Roads laid out, &c., &c. Distinct 
and accurate Plans of Farms furnished,
with the buildings thereon, of any size, 
and with a scale of feet attached, to 
accompany the Farm Book, so that the 
land may be laid out in a winter 
evening.
  Areas warranted accurate within 
almost any degree of exactness, and the
Variation of the Compass given, so that 
the lines can be run again.  Apply to

Henry D. Thoreau

Facsimile of a Handbill announcing Thoreau’s availability
as a surveyor, circa 1850.
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rod, the transit, and the handheld electronic calculator will
provide a solid foundation for keeping up with the latest
technological developments in the surveying profession.

1-5 THE PROFESSION
OF SURVEYING

A profession may be defined simply as a career activity that
requires specialized training in a particular discipline or sub-
ject matter. A “professional” must acquire knowledge and
skill beyond those of the craftsperson. For the so-called
learned professions, such as medicine and law, an academic
training comprising many years of college education is
generally required. Engineering, engineering technology,
and surveying are also learned professional disciplines,
although the extent of required college preparation is gener-
ally less than that for medicine or law.

Professionals in any discipline must follow a code of ethi-
cal conduct that places regard for the safety, health, and welfare
of the public above and beyond monetary considerations.

Surveying has long been associated with the profession
of civil engineering. The planning, design, and construction
of buildings and public-works facilities depend so heavily
upon surveying activities that civil engineers and techni-
cians, architects, and construction managers have always had
to be skilled and knowledgeable in surveying principles and
methods. And they will still have to be so in the future. But in
recent years, surveying has emerged as an independent pro-
fessional discipline, and the requirements for an appropriate
college education in surveying are gradually increasing in
the United States.

The Licensed Professional Land Surveyor
In addition to the requirement for specialized training, one
of the hallmarks of a true profession is that it provides a
unique service for people and for society as a whole. To
protect the public from possible harm when supposedly
“professional” services are offered by unqualified persons,
a system of professional Licensure laws has been established
in each state of the nation. These laws are meant to safeguard
the public welfare by ensuring that only qualified persons
engage in offering professional services to the public.

To engage in the practice of land surveying in any state,
it is necessary to become licensed by the appropriate board
of professional engineers and/or land surveyors in that state.
(In most states, licensure requirements for engineers and
surveyors are encompassed under the same law.) A surveyor
is then licensed to offer his or her services to the public as a
professional land surveyor, or LS, in that state. A person who
practices land surveying without a valid license can be fined
or even put in jail.

It is important to note that these Licensure laws apply
only to the practice of land or boundary surveying, and not
to construction surveying or any other activity that does not
involve the marking or description of property lines.
According to the New Jersey State Board of Professional

Engineers and Land Surveyors, for example, the practice of
land surveying includes “surveying of areas for their correct
determination and description, and for conveyancing, and
for the establishment or reestablishment of land boundaries
and the plotting of lands and subdivisions thereof, and such
topographic survey and land development as is incidental to
the land survey.”

Employment as a surveyor, then, does not depend upon
acquiring a license, as long as the work does not involve
setting or measuring the positions of property corners. Only
a licensed LS, however, has the authority to sign and affix a
seal to survey plats, plot plans, or other boundary descrip-
tions. Most surveyors gain their first years of experience
working under the supervision of a professional land sur-
veyor. Anyone who intends to establish a private surveying
firm must, of course, have an LS license.

The level of education and work experience required to
become licensed as an LS varies from state to state. It is
generally necessary to have several years of surveying experi-
ence and an appropriate college degree, but many states
allow the applicant to substitute additional years of work
experience for the formal educational requirements. In an
effort to upgrade the status of the surveying profession,
there is a trend in some states to make the bachelor’s degree
a definite and formal educational requirement.

Meeting the state requirements for education and expe-
rience qualifies the surveyor to sit for a written examination.
The LS license is awarded upon the successful completion of
the exam. Many states are adopting a uniform national LS
examination. Most of the exam covers basic surveying prin-
ciples, but a portion of it focuses upon local land-surveying
practice and laws, which vary from state to state. A surveyor
who becomes an LS in one state can, depending on state law,
obtain a license in many other states by the principle known
as reciprocity, without the need to take another written
examination.

1-6 FIELD NOTES
All surveys must be free from mistakes or blunders. A potential
source of major mistakes in surveying practice is the careless
or improper recording of field notes. Blunders in field records
can and must be avoided. The art of eliminating blunders is
one of the most important elements in surveying practice.

Naturally, a blunder in either a boundary or a layout
survey may result in high costs for altering, or removing and
rebuilding, finished construction. One of the most impor-
tant rules for avoiding costly blunders in surveying work is
to be neat, thorough, and accurate in recording the results of
field measurements, sketches, and related observations. Also,
the quality and appearance of the field notes are a direct
reflection of the entire surveying effort.

The proper taking of field notes, then, is a very important
skill for the surveyor, one that cannot be overemphasized. It
may sound like a trivial task to an inexperienced surveying
technician or student, but it generally is one of the more
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elusive skills for the beginner. It takes much practice, patience,
and concentration to be able to write legible notes and to
record meaningful sketches in a handheld notebook, espe-
cially if the weather conditions are not the best.

It may seem easier to quickly jot down some figures and
rough sketches on a scrap of paper in the field and, later on
or the next day, in the comfort of the office, to copy the
information neatly into a notebook. But this is just what must
be avoided! Not only is the copying of notes a waste of valu-
able time but also it increases the chance for blunders to
occur. A legitimate set of survey field notes must contain the
original data that were recorded at the time and place of
measurement. (Sometimes, though, certain data may be
copied from one set of notes for use in another survey, but
the copied notes must be clearly marked as such.)

A survey party or crew might include three or four
members, although two-person crews are more common
with the use of electronic equipment. Even one-man crews
are now possible with robotic or reflectorless total station
instruments. Generally, one member of the field crew,
usually called the party chief, is responsible for coordinating
the survey and for recording the field notes.

An experienced party chief fully appreciates the need
for neat, accurate, and thorough field notes. The notes are
later used as the basis for office computations and plat or
map preparation, often by a technician or engineer who was
not at the project site during the survey. The notes obviously
must be in a legible and organized form that allows for a
clear and definite interpretation.

Often, field notes from one job are referred to, months
or years later, in reference to a new job in the same vicinity. If
the data were not properly recorded at the time of survey, it
is most unlikely that the party chief or other crew members
would remember the important facts and figures. And once
in a while, the surveyor must present field notes in court, if,
for example, there is a dispute over property lines. Obvi-
ously, incomplete, illegible, altered, copied, or otherwise
improper field notes would not be suitable, or even accept-
able, as legal evidence.

Field Notebooks
Most surveyors use a pocket-size, bound field notebook.
These surveying field books have appropriate column and
grid lines to guide the organized recording of measurements.
Field notes must be taken in a consistent and orderly form,
as illustrated in Figure 5-23c; other illustrations of typical
field book records for distance and angular measurements
are presented in appropriate sections of the textbook.

Some surveyors prefer to use small loose-leaf notebooks
(particularly for relatively small surveys) so that the field
records can be removed and kept in a single file folder for
that particular job. A few surveyors may even use a pad and
clipboard. The use of loose-leaf notebooks or pads may
present problems, though, with respect to lost sheets or to
validity as evidence in court (since “cooked-up” notes can
easily be inserted into the record).

Rules for Field Notes
1. Record all field data carefully in a field book at the

moment they are determined. The note keeper must
never allow any member of the field party to call out
numbers faster than they can be accurately and neatly
written down.

2. All data should be checked at the time they are recorded.
If possible, two members of the field crew should take
the same reading independently. The note keeper
should call out the recorded number so that the field
party can hear it for verification.

3. An incorrect entry of measured data should be neatly
lined out and the correct number entered next to or
above it. This is particularly important if the notes ever
have to be used in court as legal evidence.

4. Field notes should not be altered, and even data that are
crossed out should still remain legible. Some surveyors
will erase mistakes in descriptions or numerical compu-
tations (but not measurements) and neatly rewrite the
correct information. In general, though, it is best never
to erase a field book entry.

5. Original field records should never be destroyed, even if
they are copied for one reason or another. It is unpar-
donable to lose a field book.

6. A well-sharpened medium-hard (2H to 4H) pencil
should be used for all field notes. All entries should be
neatly printed.

7. Sketches should be clearly labeled, including the
approximate north direction. Do not crowd sketches
together on a page. Although not drawn to scale, free-
hand sketches should be proportional to what is
observed in the field. When possible, use a straightedge
and circle template.

8. Show the word VOID on the top of pages that, for one
reason or another, are invalid; put a diagonal line across
the page. Show the word COPY on the top of copied pages.

9. The field book should contain the name, address, and
phone number of the owner, in ink, on the cover. At
least one page at the front of the book is reserved for a
table of contents. Pages should be numbered through-
out the field book.

10. Each new survey should begin on a new page. The left-
hand pages of the book generally are used for columns
of numerical data. The right-hand pages generally are
used for sketches and notes.

11. For each day of work, the project name, location, and
date should be recorded in the upper corner of the
right-hand page. The names of the crew members and
their duties should also be recorded.

12. It is good practice to record the instrument type and
serial number, as well as the weather conditions on the
day of the survey. This information can be helpful when
it is necessary to adjust for instrumental or natural
errors or to judge the accuracy of the survey.
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FIGURE 1-15. Tripod Data Systems’
Ranger data collector. (Courtesy of
Tripod Data Systems, Inc.)

FIGURE 1-16. One-person crew
using a robotic instrument and 
data recorder. (Courtesy Leica
Geosystems, Inc.)

In summary, it is important to remember that good field notes
must be neat and legible, complete and clear, and accurate. The
quality of the field notes reflects the quality of the whole survey.

Electronic Data Collectors
Electronic desktop computer technology has added an
entirely new dimension to the recording and processing of

survey data. Electronic recording devices, such as the one
shown in Figure 1-15, are used to automatically collect,
store, and display the data acquired by the electronic survey-
ing instruments to which they are attached. This helps to
eliminate possible blunders that may occur when data are
manually transcribed into a field book. Measurements can
also be entered manually via the keyboard, as shown in
Figure 1-16. These data collectors, as they are called, serve as a
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direct link between the electronic total station and the office
computer used for data reduction. The reduced or processed
data can then be automatically printed, and/or survey plats
or maps can be plotted (see Figure 1-2b).

A so-called electronic field book is illustrated in
Figure 1-17. Data can be stored directly from appropriate
electronic survey instruments, and they can also be entered
manually via the keyboard. In addition, descriptive notes
or written text can be keyed in by the operator, displayed,
and stored in this electronic device.

The use of data collectors and electronic field books
will not completely replace the conventional field book. The
surveyor must still make sketches and record descriptive obser-
vations that are not entered into the electronic record (e.g.,
“Station 5 in the NE corner of lot 27”). Also, as unlikely as it
may be, there is a chance that the stored data can inadvertently
be lost in a “puff of electronic smoke.” Conventional field
books, then, will be used by most surveyors for some time to
come, at least to record backup information and field sketches.

1-7 GEOGRAPHIC INFORMATION
SYSTEMS (GIS)

A geographic information system (GIS) is a configuration
of computer hardware and software capable of storing,
manipulating, analyzing, and displaying (mapping) a large
amount and wide variety of geographically referenced data.
It is a valuable tool in environmental projects, planning
studies, infrastructure analysis, and public safety. It
provides a rapid way of mapping, modeling, and analyzing
all types of data. Locations for various features can be given

x, y, and z coordinates of longitude, latitude, and elevation.
It is here, in the location of physical features, that the
surveyor plays a key role. The database that makes up the
GIS is constructed from the United States Geological Survey
(USGS) maps, aerial photographs, and other sources of vec-
tor-based maps. These maps are developed from survey
lines and measurements and “fit” to aerial images. Any qual-
ity GIS must be based upon data on geographic locations
prepared to accuracy standards, which only the surveying
profession can provide. In addition to location data, physi-
cal attributes that describe various characteristics of the
network components and other geographical features are
included as part of the database stored in the GIS.

One of the key features of a GIS is its ability to layer several
kinds of information on top of each other, at the same location.
The layers can be viewed as a set of “transparencies” that can be
depicted individually or in combination. For example, one
layer could simply be a street map. Another layer could depict
property boundaries. Yet another layer could show various
land uses. These layers can be viewed separately or together,
with the dwellings superimposed on the street map. Multiple
layers can be superimposed, and the GIS user can manipulate
the order in which they appear. A set of GIS layers is depicted
schematically in Figure 1-18.

In a GIS, all objects shown on a map (features) can have
information associated with them (attributes). In a municipal
taxation map, for example, the individual lots and neighbor-
hoods are the features. The number of dwellings, type of land
use, the taxes paid, and the assessed value are some of the
attributes associated with the corresponding features. Each
type of feature can be stored and displayed as a layer. Clicking
on a particular feature will display its unique attributes.

FIGURE 1-17. An electronic field
book that collects and stores
information from surveying instru-
ments; notes that identify stations
can also be entered or displayed.
The stored information can be
“dumped” into an office computer
for computations. (Courtesy of
Tripod Data Systems, Inc.)
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15. What is the basic purpose of statewide professional
licensure laws?

16. Is licensure as an LS necessary for all types of surveying
work? Explain.

17. Contact the board of examiners that has jurisdiction
over the practice of surveying in your state. Find out
what the education and experience requirements are for
admission to the LS examination.

18. Why is the proper recording of field notes a very impor-
tant part of surveying practice?

19. What is one of the most important rules with regard to
survey field notes? Why is it so important? List three
other important rules.

20. Give two disadvantages of using loose-leaf notebooks
for recording surveying data.

21. What general information should a field book contain?

22. What is the basic advantage of using a data collector or an
electronic field book for recording surveying measure-
ments? Will these devices completely replace conventional
field books?

23. Explain how GIS helps communities plan for the future.

24. Explain the difference between a “feature” and an
“attribute” in a GIS.

FIGURE 1-18. Schematic illustration
of mapping layers used in GIS
technology.

Questions for Review

1. Give a brief definition of surveying and describe its two
fundamental purposes.

2. Briefly describe why surveying may be characterized as
both an art and a science.

3. Why is surveying an important technical discipline?

4. Define and briefly discuss the terms vertical and horizontal.

5. What is a plumb line?

6. Is a horizontal distance a perfectly straight line? Why?

7. What is meant by the term elevation?

8. What is meant by the term leveling?

9. What surveying instruments are used to measure
angles?

10. What is the basic assumption for plane surveying?

11. How does geodetic surveying differ from plane survey-
ing? Under what circumstances is it necessary to
conduct a geodetic survey?

12. Give a brief description of the following types of
surveys: property survey, topographic survey, construc-
tion survey, control survey, and route survey. List six
other types of specific surveying applications.

13. Briefly outline the historical development of surveying.

14. Is surveying an independent profession? Why?
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CHAPTER TWO

Measurement of distances and angles is the
essence of surveying. One of the purposes of
this chapter is to discuss the appropriate units

of measure for those, and for other related quantities (such
as area and volume). Surveyors in the United States must
now be able to work with both U.S. Customary units and
metric units.

Computation (or data reduction) is also an essential
part of surveying; the surveyor must understand the concept
of significant figures in the computed, as well as in the
measured, quantities. These subjects, as well as the use of
modern tools for computation, are discussed in this chapter.
We will also discuss the basic types of mistakes and errors
that a surveyor must eliminate or minimize in field work.
And because no measurement is perfect, we must clarify the
meaning and use of the terms accuracy and precision.

2-1 UNITS OF MEASUREMENT
Most countries of the world use SI metric units of measure-
ment; SI stands for “Système International.” In the United
States, a gradual transition from the English or U.S. Custom-
ary units to SI units is still in progress. This transition will
have a continuing impact on surveying practice. Surveyors
in the United States must be able to work in both systems
and readily convert from one to the other.

Most measurements and computations in surveying are
related to the determination of angles (or directions), dis-
tance, area, and volume. The appropriate units of measure
for these quantities are discussed here briefly.

Angles
An angle is simply a figure formed by the intersection of two
lines. It may also be viewed as being generated by the rota-
tion of a line about a point, from an initial position to a

terminal position. The point of rotation is called the vertex
of the angle. Angular measurement is concerned with the
amount of rotation or the space between the initial and
terminal positions of the line.

In surveying, of course, the lines do not actually
rotate—they are defined by fixed points on or near the
ground. It is the line of sight of a transit or theodolite that is
rotated about a vertical (or horizontal) axis, located at the
vertex of the angle being measured. Angles must be identi-
fied properly and labeled clearly, as illustrated in Figure 2-1,
to avoid confusion.

Degrees, Minutes, and Seconds There are several
systems of angular measurement. The most common is the
sexagesimal system, in which a complete rotation of a line (or
a circle) is divided into 360 degrees of arc. In this system,
1 degree is divided into 60 minutes, and 1 minute is further
divided into 60 seconds of arc.

The symbols for degrees, minutes, and seconds are °, �,
and �, respectively. Some theodolites can measure an angle
as small as 1 second of arc. An angle measured and expressed
to the nearest second would, for example, be written as 35°
17� 46� (35 degrees, 17 minutes, 46 seconds). A right angle,
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FIGURE 2-1. The designation A-BC or A-CB shows which of
the two angles at point A is being measured or referred to.
Clockwise rotation is generally assumed. To simply write
“angle A” is usually not sufficient.
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the space between two perpendicular lines, is equal to
exactly 90° 00� 00�.

If two angles such as 35° 17� 46� and 25° 47� 36� are to
be added together, the degrees, minutes, and seconds are first
combined separately, resulting in 60° 64� 82�. But this must
be converted to 61° 05� 22� because 82� = 01� 22� and 65� =
1° 05�. When subtracting angles, it may be necessary to first
“borrow” 60 minutes from a degree and 60 seconds from a
minute. For example, to subtract 35° 17� 46� from 90° 00�
00�, we must write

Some handheld calculators accept angular values expressed
directly in degrees, minutes, and seconds. With many calcu-
lators, however, it is necessary to convert degrees, minutes,
and seconds to degrees and decimal parts of a degree, or vice
versa. For example, an angle of 35° 30� is equivalent to 35.5°,
since 30�/60� = 0.5°. Likewise, an angle of 142.125° is equiva-
lent to 142° 07� 30�, since 0.125° = 0.125 * 60� = 7.5� and 0.5 =
0.5� * 60� = 30�.

Grads The centesimal system of angular measurement is
used in some countries. Here, a complete rotation is divided
into 400 grades, or grads, written as 400g. The grad is subdi-
vided into 100 parts called centigrads (1g = 100c), and the
centigrad is further subdivided into centi-centigrads (1c =
100cc). A right angle (90°) is equivalent to 100g. For an angle
expressed as 139.4325g, the first two digits after the decimal
point are centigrads (0.43g = 43c), and the second pair of
digits represents centi-centigrads (0.0025g = 25cc).

Modern scientific handheld calculators can work with
angles expressed in degrees or grads; the mode of angle
measurement is usually displayed by the calculator as DEG
or GRAD. It is most important, of course, to preset the
appropriate mode of angle when using the calculator for
computations. For conversions, 1g = 0.9°.

Another mode of angular measurement programmed
into most calculators is the radian, or rad. By definition, one
radian is equivalent to the angle formed between two radii in
a circle, when the arc length between the radii is the same as
the radius. Since the circumference of a circle is equal to 2πR
(see Section 3-2), there must be 2π (about 2 * 3.14 = 6.28)
rad in a circle. Therefore, 6.28 rad = 360° and 1 rad = 57.3°.
Radians are used primarily in mathematical formulas and
certain surveying computations, but not in field work.

There are other systems for angular measurement that
find use in astronomy, navigation, and military applications.
In astronomical observations, for example, angles may be
measured in terms of hours, minutes, and seconds of time
(as a function of the rotation of the earth). This is of signifi-
cance to the surveyor when “shooting” the sun, or the North
Star, and making measurements to determine astronomical
north. For military use, the mil is used, where one full
circumference is equal to 6400 mils.

89°59¿ 60–
-35°17¿ 46–
 54° 42¿ 14–

Distance
In the U.S. Customary system, the basic unit for distance or
length is the foot, abbreviated as ft. A foot is divided into
inches and fractions of an inch (1 ft = 12 in), but when the
U.S. Customary system is applied in surveying practice,
decimal fractions of a foot are typically used instead of
inches and fractions of an inch. A distance of 75 ft 3 in, for
example, would be expressed by a surveyor as 75.25 ft, since
3 in = 0.25 ft. (There is a distinction between the U.S. Survey
foot and the international foot, discussed below.)

In the international or SI system of units, the basic unit of
length or distance is the meter, abbreviated as m. Divisions of
the meter include the decimeter (dm), which equals 0.1 m, the
centimeter (cm), which equals 0.01 m, and the millimeter (mm),
which equals 0.001 m. Decimal fractions of a meter are typi-
cally applied in surveying practice, rather than the units of
decimeters and centimeters. For example, a distance would be
expressed as 26.75 m rather than 27 m 75 cm. Relatively large
distances are typically expressed in units of kilometers, abbrevi-
ated as km (1 km = 1000 m). A distance of 123,400 m, for
example, may be expressed as 123.4 km (see Appendix B on
units and conversions).

The international meter was originally defined in 1791
by the French Academy of Sciences as being equivalent to
one ten-millionth (1/10,000,000) of the distance from the
Earth’s equator to the North Pole. With improvements in
technology, the definition of the meter has evolved over
time. In 1983, the meter was officially defined by scientists
to be the distance traveled by light in a vacuum in
1/299,792,458 second; this provides a very precise, constant,
and universal standard of length for scientists as well as
surveyors.

In the United States, the SI system of units is mandatory
only for the design of federal government facilities and for
geodetic surveys conducted by federal agencies such as the
National Geodetic Survey. Many states also use the SI system
for highway design and construction layout, but by and
large, switching from Customary units to SI units is a volun-
tary process by surveying and mapping practitioners in the
U.S. Because of this, it is often necessary for surveyors to
convert distances and coordinates from one system of units
to another.

Originally, the conversion relationship between the
foot and the international meter was 1 ft = 1200/3937 m =
0.03048006096 m. That is called the U.S. Survey foot. In
1959, the relationship was redefined to be 1 ft = 0.3048 m
(exactly). That is called the international foot. The difference
between the two standards is very small (about 2 parts per
million or 8 inches in 60 miles), and is of little or no conse-
quence for ordinary plane surveys. Although this textbook is
primarily concerned with plane surveying methods, it is
important for students to be aware of these refinements in
standards of linear measure.

They must be taken into account when making unit
conversions related to the coordinates and elevations of
points in horizontal and vertical control surveys.



One of the disadvantages of the U.S. Customary system
of units is the wide variety of terms used for linear measure.
The Gunter’s chain, for example, has long been used as a unit
of linear measure for land surveys in the United States. One
chain is equivalent to 66 ft. One quarter of a chain is called a
rod, perch, or pole; each is equivalent to 16.5 ft. The chain
contains exactly 100 links.

In the past, the standard width of public roads was set at
2 rd, or 33 ft. Many old deeds state the distances of land
boundaries in terms of chains and its fractions, and the
entire U.S. Public Land Survey is based on Gunter’s chain
(see Section 8-1). And in the southwest part of the United
States, another unit, called the vara (equivalent to about 33 in),
was used in many past surveys.

Following are the relationships among several units of
distance in the U.S. Customary system. (These, along with
other metric relationships and conversions, are also tabulated
in Appendix B for easy reference.)

1 foot (ft) = 12 inches (in.)

1 yard (yd) = 3 feet

1 mile (mi) = 5280 feet = 80 chains (ch)

1 chain = 66 feet

1 rod (rd) = 0.25 chain = 16.5 feet

1 link (lk) = 0.01 chain = 7.92 inches = 0.66 feet

Metric Prefixes In the SI metric system, certain prefixes
are used along with the meter to define different lengths. For
example, the prefix kilo stands for 1000 and the prefix milli
stands for 1/1000, or 0.001. The following SI relationships
are useful in surveying practice:

1 kilometer (km) = 1000 meters (m)

1 millimeter (mm) = 0.001 meter

1 centimeter (cm) = 0.01 meter

1 decimeter (dm) = 0.1 meter

1 m = 10 dm = 100 cm = 1000 mm

Area
The unit for measuring area, which expresses the amount of
two-dimensional space encompassed within the boundary
of a closed figure or shape, is derived from the basic unit of
length. In the U.S. Customary system, this is the square foot
(sq ft or ft2). For land areas, the more common U.S. term for
area is the acre (ac), where 1 ac = 43,560 ft2.

An acre is also equivalent to 10 sq ch, that is, the area
encompassed in a rectangle that is 1 ch wide and 10 ch long
(66 ft * 660 ft = 43,560 ft2). Very large areas are generally
expressed in terms of square miles (sq mi or mi2). The
square yard (sq yd or yd2) may be used to express areas for
earthwork computations.

In SI metric units, the basic unit for area is the square
meter (m2). Large land areas may be expressed in terms of
either square kilometers (sq km or km2) or by hectares (ha),
where 1 ha is equivalent to 10,000 m2. Another metric unit

for area is the are, where 1 are = 100 m2. The following is a
summary of the relationships pertaining to area:

1 square mile (mi2) = 640 acres (ac)

1 acre = 10 square chains (sq ch) = 43,560 square feet (ft2)

1 square yard (yd2) = 3 ft * 3 ft = 9 square feet (ft2)

1 hectare (ha) = 100 ares = 10,000 square meters (m2)

1 square kilometer (km2) = 100 hectares = 1,000,000
square meters (m2)

The following approximate conversions are useful in surveying
applications:

1 km2 = 0.386 mi2

1 ha = 2.47 ac

1 m2 = 1.2 yd2 = 10.76 ft2

In Figure 2-2, the relationship between the acre and the
hectare is shown to scale. For surveyors in the United States,
it is important to “think metric,” and to develop an ability to
quickly visualize such relationships between the two systems
of units. It is better to remember approximate relationships
between U.S. and SI units; the exact conversions can always
be looked up in a table.

Volume
The U.S. Customary unit of measure for the volume of a
solid is cubic feet (ft3), or, more often in surveying, cubic
yards (yd3). Volume is also expressed in terms of cubic
meters (m3) in the SI system. Measurement and computation
of earthwork volumes to determine the amount of excava-
tion (cut) and embankment (fill) needed for a roadway or
site development project constitute a common surveying
task. (When the expression “yards” of excavation or fill is
used, it really means cubic yards.) It is important to note
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FIGURE 2-2. Think metric! There are roughly 2.5 ac in 1 ha
of area.
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that 1 yd3 = 3 ft * 3 ft * 3 ft = 27 ft3. Many beginning
students make the mistake of using 9 as a volume conversion
factor from yards to cubic feet. Formulas for computation of
volumes are given in Section 3-1.

Conversion to SI Metric
In 1976 the U.S. Geological Survey (USGS) began to produce
topographic maps in SI units, and recently, the U.S. Bureau
of Reclamation used SI metric lengths, areas, and volumes
when it advertised for bids on a major construction project.
But the SI conversion recommendations are not yet being
followed by all public agencies or private surveyors.

There is still some resistance to the SI changeover by
many professional surveyors, as well as by some people in the
construction trades and legal and real estate professions.
Because past surveys have been done using conventional U.S.
units, that system can never really be completely abandoned.

Example 2-1
Convert an area of 125.55 ac to an equivalent area expressed
in hectares.

Solution

Note that because 1 ha = 2.471 ac, the ratio of 
1 ha/2.471 ac is equal to 1 or unity. All conversions can be
done by setting up appropriate ratios like this and then
multiplying by the given value. Also, the units of acres in the
numerator and denominator cancel out, leaving the desired
unit of hectares. By writing out the dimensions like this and
canceling, we can avoid mistakes such as multiplying acres
by 2.471 (when we really must divide) to get hectares.

The answer to this problem, 50.81 ha, was rounded off
from the answer displayed by an electronic calculator;
rounding off is discussed further in the next section.

2-2 COMPUTATIONS
Surveying practice involves both field work and office
work. Measurements are made in the field, and the data are
recorded in a field book and/or stored electronically. Usu-
ally, the data are used in the office to prepare a deed
description, a plat, or a topo map; to establish locations
(coordinates) of points; to determine land area; or to esti-
mate earthwork volume. The data must first be converted
into a form that will be suitable for the intended applica-
tion. This involves mathematical computations in a process
called data reduction.

In addition to presenting the fundamentals of surveying
field practice, a primary purpose of this book is to introduce
some of the basic computational methods for surveying data
reduction. Specific applications are covered throughout the
chapters of Parts 2 and 3. The objective of this particular
section is to lay the foundation for accurate computation
and problem solving by the beginning student.

125.55 ac *
1ha

2.471ac
=

125.55
2.471

ac * ha
ac

= 50.81 ha

Tools for Computation
Modern surveying computations are done with the aid of
handheld electronic calculators or with digital computers.
Desktop computers and handheld programmable calcula-
tors are readily available at reasonable prices. To remain
competitive, the professional surveyor must make efficient
use of these computational tools. The biggest difficulty is
usually choosing from among the wide variety of hardware
(calculators and computers) and software (programs or
internal instructions for the hardware) that are on the
market.

Calculators In addition to the four basic arithmetic
functions (+, -, *, ,), the scientific calculator includes keys
for trigonometric (trig) and inverse trig functions [sin (x),
cos (x), tan (x)]; natural and common logarithmic (log)
functions [ln (x) and log (x)]; exponential functions (ex, yx);
square root; and several other functions and constants. It is
expected that the beginning surveying student will own or
have access to a scientific calculator rather than to the
simpler “four-function” calculator.

A wide variety of handheld scientific calculators is
available. The algebraic-entry type allows data to be entered
just as they would be written in an algebraic expression. For
example, to subtract 5 from 9, the data are entered simply as
9 - 5 =, and the answer 4 is displayed immediately after the
equal (=) key is pressed. But in the RPN (reverse polish nota-
tion) type of calculator, there is no equal key. The 9 key is
pressed first and then a key marked ENTER is pressed,
followed by the 5. Finally, the minus (-) key is pressed and
the answer 4 is displayed.

Use of the algebraic-entry type of calculator may seem
more natural than the RPN type, but in many instances the
RPN type uses fewer keystrokes to solve problems and, in a
short time, a person becomes accustomed to its use. The
beginning student should experiment with both types before
purchasing a calculator.

Most scientific calculators have one or more memory
registers and some are actually programmable. With a hand-
held programmable calculator, it is possible to set up a
sequential set of instructions for computation that the
machine will “remember.” After the program has been
stored, keying in the data in the proper order is sufficient to
obtain the problem solution.

Some programmable calculators are available with
specialized surveying programs or Application Pacs, com-
prising plug-in modules or magnetic cards on which the
programs are stored. These kinds of programming packages
are sometimes referred to as canned software. The calcula-
tors can be used in the field or can be connected to printers
and other peripheral devices in the office, including a larger
computer.

Computers The development of high-speed personal
computers has provided the surveyor with a powerful office
tool for data reduction, plotting, and mapping.



Programs and data are stored magnetically in memory
in the form of binary digits (zeros or ones). Each binary
digit, or bit, is represented by the direction of magnetization
at the bit location on a tiny integrated circuit chip. Numbers
entered in the more familiar decimal system, which uses
digits from 0 to 9, are converted into the binary number
system by the computer. Letters of the alphabet are also
converted into a coded sequence of binary digits.

The central processing unit (CPU) of a computer includes
a master control unit, an arithmetic logic unit, and an input-
output (I/O) controller. Like memory, the CPU is contained
on small integrated circuit chips inside the computer case.
These miniaturized CPUs are also called microprocessors. In
microprocessor systems, memory may be in the form of
random access memory (RAM) or read-only memory (ROM).
The ROM is used to store operating systems (programs that
only coordinate or direct the interactions among the various
computer units), as well as fixed program subroutines,
common mathematical functions, and constants like π. ROM
data can only be read out, not entered, and they are a perma-
nent part of the computer system.

In RAM, new data can be either entered into or read out
of the unit. RAM is used to store new operating programs
and the data used in those programs. Memory retrieval in
RAM is faster than in ROM, but information stored in RAM
is not permanent. When the computer is turned off, the data
in RAM are lost.

Several high-level programming languages are used to
give instructions to the computer. A computer program
comprises a logical procedure for solving a particular prob-
lem, called an algorithm. The algorithm is generally written
out as a series of individual steps or program statements,
expressed in one of the high-level languages. These state-
ments are translated internally into machine language state-
ments and ultimately into binary numbers. The computer
“understands” these statements and carries out the given
instructions at lightning speed.

In addition to performing computations for data
reduction and problem solving, computers can display
images graphically. In fact, the computer can transmit data
and control a plotting machine that will produce a finished
plat or map. This is often referred to as computer-aided
drafting (CAD). An example of a CAD drawing is shown in
Figure 8-9.

Electronic calculators and desktop computers are pow-
erful, high-speed computational aids. They can significantly
improve efficiency and productivity in surveying practice.
But it is still necessary for the user of this equipment to have
a firm grasp of the underlying surveying concepts and
computational procedures.

In fact, it would be very difficult to interpret and under-
stand the instruction manuals for commercially available
software without having first done the computations manu-
ally, that is, by solving the appropriate formulas step by step.
It is also important to develop a sense of proportion and
judgment with regard to the quantities that are measured
and computed before relying completely on the output of a
programmed calculator or desktop computer.

Significant Figures
A measured distance or angle is never exact; the “true” or
actual value cannot be determined primarily because there is
no perfect measuring instrument. The closeness of the
observed value to the true value depends upon the quality of
the measuring instrument and the care taken by the surveyor
when making the measurement.

For example, a measured distance might be estimated
roughly as 80 ft “by eye,” 75 ft by counting footsteps or paces,
or 75.2 ft with a steel tape graduated in feet. With a sur-
veyor’s tape graduated in feet, tenths, and hundredths of a
foot, the same distance may be observed to be 75.27 ft. With
a little more care, a distance of 75.275 ft may be measured
with the same tape. With a finer measuring device, perhaps
75.2752 ft could be measured. But an exact measurement of
the true distance can never be obtained.

The number of significant figures in a measured quantity
is the number of sure or certain digits plus one estimated
digit. This is a function primarily of the least count or grad-
uation of the measuring instrument. For example, with a
steel tape graduated only in increments of feet, we can be
certain of the foot value, like 75, but we can only estimate the
one-tenth point.

An observed distance of 75.2 ft has three significant
figures. It would be incorrect to report the distance as 75.200
ft (which has five significant figures) because that would
imply a greater degree of exactness than can be obtained
with the measuring instrument. As illustrated in Figure 2-3,
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FIGURE 2-3. Because the smallest interval on the steel tape is one-hundredth of
a foot, a thousandth of a foot (the third decimal place) must be an estimated
digit. (In the United States, most surveyor’s tapes are graduated in decimals of a
foot—not in feet, inches, and fractions of an inch.)
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the observed distance of 75.275 ft using a tape graduated to
hundredths of a foot has four certain digits and one esti-
mated digit; that number has five significant figures.

Rules As mentioned earlier, the number 75.200 has five
significant figures. In general, zeros placed at the end of a
decimal number are counted as significant. Zeros between
other significant digits are also counted as significant. For
example, 17.08 has four significant figures and 150.005 has
six. But zeros just to the right of the decimal in numbers
smaller than unity (1) are not significant. For example, the
number 0.000123 has only three significant figures as does
the number 0.0123. Also, trailing zeros to the right of the
digits in a number written without a decimal are generally
not significant.

Here are some other examples of significant figures.

If the trailing zeros in the preceding 12,000 were actu-
ally significant digits, we could write 12,000.; the decimal
would indicate that the number has five significant figures
instead of two. But in cases like this, it is preferable to use
scientific notation, that is, 1.2000 * 104, to indicate the
significance of the trailing zeros.

When numbers representing measured quantities are
added, the sum cannot be any more exact than any of the
original numbers. The least number of decimals is generally
the controlling factor. For example,

4.52
+23.4     9: exact only to tenths—this controls

+468.321
Sum = 496.241 9: round off to 496.2, the nearest tenth

When subtracting one number from another, it is best
first to round off to the same decimal place. For example,
123.4 minus 2.345 may be computed as 123.4 - 2.3 = 121.1,
to the nearest tenth.

The rule for multiplication (or division) is that the
product (or quotient) should not have more significant fig-
ures than the number with the least amount of significant
figures used in the problem. For example,

9: rounded off to two
significant figures

The number 3.4, with two significant figures, controls
here.

= 0.18
1.2345 *  2.34 *  3.4

6.78 *  7.890
 

Rounding Off Numbers When doing the preceding
computation with a handheld calculator, the answer
displayed is 0.1836028, with seven significant digits after the
decimal. Many beginning students tend to report all
computed results using as many significant figures as are
displayed by their calculators. But this is often incorrect
because such an answer may imply more exactness than is
warranted or is even possible to be measured. Use of too
many significant figures is usually a sign that the surveyor
or technician is inexperienced and does not fully under-
stand the nature of the measurement or of the computation
being performed.

To round off 0.1836028 to two significant figures, we
simply dropped the extra digits after the 0.18 in the original
solution. In general, if the first extra digit is less than 5, we
drop it along with any additional digits to the right. But, if
the first extra digit is 5 or more, after we drop it we must add
1 to the last digit of our rounded solution. For example,
0.1836028 rounded off to three significant figures would be
0.184 because the first extra digit after the third is greater
than 5. Some additional examples are as follows:

3456 becomes 3500 rounded off to two significant figures.

0.123 becomes 0.12 rounded off to two significant figures.

4567 becomes 4570 rounded off to three significant
figures.

987.432 becomes 987 rounded off to three significant
figures.

234.545 becomes 234.5 rounded off to four significant
figures.

2-3 MISTAKES AND ERRORS
No measurement can be perfect or exact because of the
physical limitations of the measuring instruments as well as
limits in human perception. Even the finest and costliest
surveying instruments cannot be manufactured or adjusted
with absolute perfection. And there is a limit to how closely
any surveyor can read a graduated scale, no matter how good
his or her vision is.

The difference between a measured distance or angle
and its true value may be due to mistakes and/or errors.
These are two distinct terms. It is necessary to eliminate all
mistakes and minimize all errors when conducting a survey
of any type. All surveyors, and any user of surveying data,
must have a clear understanding of the nature and sources of
mistakes and errors.

Blunders
A blunder is a significant mistake caused by human error. It
may also be called a gross error. Generally, it is due to the
inattention or carelessness of the surveyor, and it usually
results in a large difference between the observed or
recorded quantity and the actual or true value. Blunders may
also be caused by a lack of judgment or knowledge; this type

25.35 Four significant figures

0.002535 Four significant figures

12034 Five significant figures

120.00 Five significant figures

12,000 Two significant figures



of mistake can be avoided only by a thorough understanding
of the principles of surveying. But even the most experi-
enced of surveyors must take care to eliminate blunders due
to occasional inattention to the work at hand.

A typical mistake or blunder is the misreading of a
number on the surveying instrument itself. For example, the
reading on a level rod may be taken as 4.90 when it actually
was 3.90. Even when the number is read correctly and called
out to the note keeper, it may be incorrectly recorded; a
common mistake is to transpose the digits, for example writing
5.30 instead of 3.50. Also, the number may be placed in the
wrong position in the field book or it may be incorrectly
labeled. Following the rules of good note keeping (Section 1-6)
will help to eliminate these types of blunders.

Mistakes may be caused by sighting on a wrong target
with the transit when measuring an angle or by taping to an
incorrect station. They may also be caused by omitting a
vital piece of information, such as the fact that a certain
measurement was made on a steep slope instead of on a hor-
izontal surface. And when measuring a distance with a tape,
there may be a miscount of the number of full tape lengths
in the measurement. A really embarrassing blunder for a
surveyor is to stake out the wrong lot on a block or even on
the wrong street.

The possibilities for mistakes are almost endless. But
they are only caused by occasional lapses of attention; they
can and must be eliminated by careful checking of the work
in progress. Unless they are negligible, or if two blunders
happen to cancel each other (a rare occurrence), mistakes
can be discovered at the time they are made. The surveyor
must be continually alert and constantly examine and check
the observed quantities to eliminate careless mistakes.

Systematic and Accidental Errors
An error is the difference between a measured quantity and
its true value, caused by imperfection in the measuring
instrument, by the method of measurement, by natural fac-
tors such as temperature, or by random variations in human
observation. It is not a mistake due to carelessness. Errors
can never be completely eliminated, but they can be mini-
mized by using certain instruments and field procedures and
by applying computed correction factors.

There are two basic types of errors: systematic errors and
accidental errors. A surveyor must understand the distinction
between these types of errors to be able to minimize them.

Systematic Errors Repetitive errors that are caused by
imperfections in the surveying equipment, by the specific
method of observation, or by certain environmental factors,
are systematic errors. They are also referred to as mechanical
or cumulative errors.

Under the same conditions of measurement, systematic
errors are constant in magnitude and direction or sign
(either plus or minus). They usually have no tendency to
cancel, and if corrections are not made, they can accumulate
to cause significant differences between the measured and
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actual or true quantities. The surveyor must carefully
consider the possible causes of systematic errors and take
appropriate steps to minimize their effects on the results of
the survey.

For example, suppose that a 30-m steel tape is the cor-
rect length at 20°C and that it is used in a survey when the
outdoor air temperature is, say, 35°C. Because steel expands
with increasing temperature, the tape will actually be longer
than it was at 20°C. The surveyor must decide whether or
not the error that will result is large enough to be important;
this depends on the purpose and extent of the survey. If it is
important, the surveyor must correct all the length measure-
ments accordingly. If the tape was used several times in the
course of measuring a single line, a seemingly small error in
one tape length could have accumulated into a more signifi-
cant overall error.

Measurements made with levels may be subject to vari-
ous systematic errors. For example, the axis of the spirit bub-
ble with which the instrument is leveled and the line of sight
through the telescope may not be parallel as they should be.
This will result in a constant error of vertical distance mea-
surement unless the instrument is adjusted or certain field
procedures are followed.

Transits, theodolites, and even electronic distance-
measuring instruments (EDMIs) are also subject to system-
atic errors. The horizontal axis of rotation of the transit, for
instance, may not be exactly perpendicular to the vertical
axis. And changes in barometric air pressure may affect the
electronic distance measuring (EDM) signal frequency,
thereby causing an error in the recorded distance. Systematic
errors related to the various pieces of surveying equipment
are discussed in more detail in the appropriate sections of
this book.

Accidental Errors An accidental or random error is the
difference between a true quantity and a measurement of
that quantity that is free from blunders or systematic errors.
Accidental errors always occur in every measurement. They
are the relatively small, unavoidable errors in observation
that are generally beyond the control of the surveyor. Greater
skill coupled with better-quality surveying equipment and
methods will, however, tend to reduce the magnitude and
overall effects of accidental errors.

These random errors, as the name implies, are not con-
stant in magnitude or direction (plus or minus). One mea-
surement may be slightly larger and the very next reading of
the instrument may be slightly smaller, but because the errors
are not of equal size, they do not cancel out completely. Acci-
dental errors follow the laws of chance and their analysis is
based on the mathematical theory of statistics and probability.

One example of a source of accidental errors is the slight
motion of a plumb-bob string, which occurs when using a
tape to measure a distance. The tape is generally held above
the ground and the plumb bob (simply a suspended weight
on a string) is used to transfer the measurement from the
ground to the tape.
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It is impossible to keep the string line from swaying
slightly, especially on a windy day. There will always be a
difference, then, between the distance measured with the
plumb bob and the actual, or true, distance. In a series of mea-
surements to the same point, these differences will vary in size
and direction. Sometimes the plumb bob will swing beyond
the true point and sometimes it will swing short of the point.

Most Probable Value If two or more measurements of
the same quantity are made, usually different values are
obtained due to random errors. As long as each measure-
ment is equally reliable, the average value of the different
measurements is taken to be the true or most probable value.
The average, or arithmetic mean, is computed simply by
summing all the individual measurements and then dividing
the sum by the number of measurements. For example, if a
distance was measured four times, resulting in values of
55.63, 55.78, 55.55, and 55.81 m, then the most probable
value of the distance would be taken as (55.63 + 55.78 +
55.55 + 55.81) , 4 = 55.69 m.

The 95 Percent Error Using appropriate statistical for-
mulas, it is possible to test and determine the probability of
different ranges of random errors occurring for a variety of
surveying instruments and procedures. The most probable
error is that which has an equal chance (50 percent) of either
being exceeded or not being exceeded in a particular mea-
surement. It is sometimes designated as E50.

In surveying, the 95 percent error, or E95, is a useful crite-
rion for rating survey methods. For example, suppose a
distance of 100.00 ft is measured. If it is said that the 95 percent
error in one taping operation, using a 100-ft tape, is ; 0.01 ft
(; is read as “plus or minus”), it means that the likelihood is 95
percent that the actual distance is within the range of 100.00 ;
0.01 ft. Likewise, there will remain a 5 percent chance that the
error will exceed 0.01 ft. The E95 is sometimes called the maxi-
mum anticipated error, but as was just pointed out, there is still
a 1-in-20 chance that it will be exceeded.

By using statistics and probability concepts in this man-
ner, it is possible to rate surveying instruments and proce-
dures with regard to anticipated or probable errors on the
basis of data from surveys previously performed. With this
information, a proper choice of instruments and procedures
can be made when a future survey is planned. Generally, a
survey should be planned so that 95 percent of the work will
be acceptable because it is less expensive to redo 5 percent of
the work than to attempt to reach perfection throughout.

The 95 percent error can be estimated from surveying
data using the following formula from statistics:

(2-1)

where Σ = sigma, “the sum of”

Δ = delta, the difference between each individual mea-
surement and the average of n measurements

n = the number of measurements

E95 = 1.96 * C
©(¢)2

n(n - 1)

Example 2-2
A distance was measured five times (by pacing) as follows:
75.3, 76.2, 75.7, 75.5, and 75.8 m. Compute the most prob-
able distance and the 95 percent error of that procedure.

Solution
The most probable distance is the average distance. The
average, or arithmetic mean, is computed as

The value of Σ (Δ2) may be computed by taking the dif-
ference between each measurement and the average,
squaring those differences, and summing:

From this and Equation 2-1, we get

We can now say that the maximum anticipated error from
this survey procedure is ; 0.30 m and that we are 95 percent
sure that the true distance is within the range of 75.7 ; 0.30 m.

How Accidental Errors Add Up Consider the problem
of measuring and marking a distance of 900 ft between two
points using a 100-ft long steel tape. Assume that the maxi-
mum probable error for measuring 100 ft was determined to
be ; 0.010 ft. What would be the maximum probable error
for measuring the total distance of 900 ft with the same tape
and the same procedure?

To measure the distance, we have to use the tape
several times; there would be 9 separate measurements of
100 ft, each with a maximum probable error of ; 0.01 ft.
It is tempting simply to say that the total error will be 9 *
(; 0.01) = ; 0.09 ft. But this would be incorrect. Because
some of the errors would be plus and some would be
minus, they would tend to cancel each other out. Of
course, it would be very unlikely that the errors would
completely cancel and so there will still be a remaining
error at 900 ft.

A fundamental property of accidental or random errors
is that they tend to accumulate, or add up, in proportion to
the square root of the number of measurements in which
they occur. (It is often assumed that the number of measure-
ments is directly proportional to the length of a survey.) This
relationship, called the law of compensation, can be
expressed mathematically in the following equation:

(2-2)E = E1 *  1n

E95 = 1.96 * C
0.46

5(5 - 1)
= ; 0.30  m

©  (¢)2 = 0.46

(75.8 -  75.7)2 = 0.01

(75.5 -  75.7)2 = 0.04

(75.7 -  75.7)2 = 0.00

(76.2 -  75.7)2 = 0.25

(75.3 -  75.7)2 = 0.16

75.3 + 76.2 + 75.7 + 75.5 + 75.8
5

 = 75.7  m



where E = the total error of n measurements

E1 = the error for one measurement

n = the number of measurements

Applying Equation 2-2 to the preceding problem, we get

In other words, we can expect the total accidental error
when measuring a distance of 900 ft to be within a range of
; 0.030 ft, with a confidence of 95 percent. Of course, we do
not know exactly what the error will be. And there is still a
5 percent chance that the error will exceed 0.030 ft.

It must be kept in mind that this type of analysis
assumes that the series of measurements are made with the
same instruments and procedures as for the single measure-
ment for which the maximum probable error is known.
Finer (and more expensive) instruments, along with better
(and more time-consuming) procedures, can reduce the size
of the maximum probable error for any measurement.

Overview of Mistakes and Errors The surveyor must
constantly be aware of the possibilities for mistakes and
errors in survey work. The following statements review the
basic principles:

1. Blunders can, and must, be eliminated.

2. Systematic errors may accumulate to cause very large
errors in the final results. They can be recognized only
by an analysis of the principles inherent in the equip-
ment and methods, and they must be eliminated by
applying computed corrections or by changing the field
procedure.

3. Accidental errors are always present, and they control
the quality of the survey. They can be reduced at a
higher cost by using better field equipment and more
time-consuming field procedures.

4. Accidental errors of the same kind accumulate in pro-
portion to the square root of the number of observations
in which they are found. This rule makes it possible to
rate past surveys and to select survey procedures for a
desired quality of survey. The number of observations is
proportional to the total distance of the survey.

2-4 ACCURACY AND
PRECISION

Accuracy and precision are two distinctly different terms
that are of importance in surveying. They require some dis-
cussion and clarification about their meaning and use.

Surveying measurements must be made with an appro-
priate degree of precision to provide a suitable level of accu-
racy for the problem at hand. In the preceding discussion of
accidental errors of measurement, it was said that the maxi-
mum anticipated error could be reduced with the use of
improved surveying instruments and procedures. This
implies the possibility of different levels of precision and

E = ;0.01019 = ;0.010 * 3 = ;0.030 ft
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accuracy in survey work. What is the difference between
accuracy and precision and how do we characterize the dif-
ferent levels?

Because no measurement is perfect, the quality of the
results obtained must be characterized by some numerical
standard of accuracy. Accuracy refers to the degree of perfec-
tion obtained in the measurement—in other words, how
close the measurement is to the true value. (In this regard,
we assume that all blunders have been eliminated and sys-
tematic errors have been corrected; the accuracy of a survey
depends only on the size of the accidental errors.)

When the accuracy of a survey is to be improved or
increased, we say that greater precision must be used. Preci-
sion, then, refers to the degree of perfection used in the
instruments, methods, and observations—in other words, to
the level of refinement and care of the survey. In summary,

Precision : Degree of perfection used in the survey

Accuracy : Degree of perfection obtained in the results

In a series of independent measurements of the same
quantity, the closer each measurement is to the average
value, the better is the precision. High precision is costly but
is generally necessary for high accuracy. The essential art of
surveying is the ability to obtain the data required, with a
specified degree of accuracy, at the lowest cost. The specified
degree of accuracy depends on the type and the purpose of
the survey.

For example, a geodetic control survey requires much
higher accuracy and, therefore, better precision in the instru-
ments and work than does a preliminary topographic survey
for a small building. Likewise, a construction survey for
locating a bridge pier requires higher accuracy and precision
than does a construction survey for a storm sewer.

Suppose that one surveyor measures a distance between
two points and obtains a value of 750.1 ft. Another surveyor
measures the same distance but obtains a value of 749.158 ft.
The second surveyor obviously used greater precision. But if
the true distance is known to be exactly 750.11 ft, the first
measurement of 750.1 ft is obviously more accurate than the
second. It would seem that there was a blunder or some
systematic error in the second measurement. High precision,
then, is not always a guarantee of high accuracy if blunders
and systematic errors have not first been eliminated from
the work.

To further clarify the distinction between accuracy and
precision, again consider the measurement of a distance
between two points. Suppose we know that the actual distance
is exactly 300.00 m and that three different survey crews are
to make the measurement using different instruments and
methods. Each crew measures the distance five times. The
results of their measurements are shown graphically in
Figure 2-4.

The work of the first crew shows good precision but
poor accuracy. The measurements are clustered together, but
the average value of those measurements would be signifi-
cantly different from the actual 300.00 m. The work of the
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second crew shows poor precision because of the wide scat-
ter of the measurement values. But the accuracy is good
because the average of the data, which is the best estimate of
the true value, will be pretty close to 300.00. Finally, the work
of the third survey crew demonstrates both good precision
and good accuracy. All their measurements are closely
clustered around the actual, or true, distance.

Error of Closure and Relative Accuracy
The difference between a measured quantity and its true, or
actual, value is called the error of closure or just closure. In
some cases, the closure can be taken simply as the difference
between two independent measurements. For example, sup-
pose a distance from point A to point B is first determined to
be 123.25 m. The line is measured a second time, perhaps
from B to A, using the same instruments and methods. A
distance of 123.19 m is obtained. The error of closure is
simply 123.25 - 123.19 = 0.06 m. It is due to accidental
errors, as long as blunders have been eliminated and system-
atic errors corrected.

Suppose the actual distance was known to be 123.30 m
from some other source, such as a previous governmental
control survey. The closure would be determined as the dif-
ference between the average measured value and the known
true value. In this example, the average measured value is
(123.25 + 123.19) , 2 = 123.22 m. The error of closure
would be 123.30 - 123.22 = 0.08 m.

Yet another way to determine closure, from a series of
independent measurements of the same quantity, is to use the
maximum anticipated error. For instance, in Example 2-2 we
could say that the error of closure for the average distance of
75.7 m was 0.  m. (But if we did know the true, or actual, dis-
tance from some other source, say 75.9 m, our closure would
be taken as the difference between 75.9 and 75.7, or 0.2 m.)

Relative Accuracy For horizontal distances, the ratio of
the error of closure to the actual distance is called the relative
accuracy. (In some other textbooks, it is also referred to as
the degree of accuracy, order of accuracy, accuracy ratio,
relative precision, or just plain precision. No matter what it is
called, the concept is essentially the same.)

Relative accuracy is generally expressed as a ratio with
unity as the first number or numerator. For example, if a dis-
tance of 500 ft were measured with a closure of 0.25 ft, we can
say that the relative accuracy of that particular survey is 0.25 ft
per 500 ft (0.25/500), or 1/2000. This is also written as 1:2000.
Basically, this means that for every 2000 ft measured, there is
an error of 1 ft. The relative accuracy of a survey can be com-
pared with a specified allowable standard of accuracy to
determine whether the results of the survey are acceptable.

Relative accuracy can be computed from the following
formula:

(2-3)

where D = distance measured

C = error of closure

Example 2-3
A distance of 577.80 ft is measured by a surveying crew.
The true distance is later found to be 577.98 ft from another
source. What is the relative accuracy of the measurement?

Solution
The error of closure is

577.80 - 577.98 = -0.18 ft

Using Equation 2-3, we get

Relative accuracy =

1:577.80
0.18

 = 1:3200

Relative accuracy = 1 :  
D

C

FIGURE 2-4. It is important to
understand the difference between
accuracy and precision in surveying
measurements.
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Note that we used the absolute value of the closure (no
minus sign) and that we rounded off the ratio (relative accu-
racy need not be computed with great precision). As we will
discuss in Chapter 4, ordinary surveys with a steel tape give
an accuracy of between 1:3000 and 1:5000.

A ratio with a large second number or denominator
implies better accuracy than a ratio with a small second
number or denominator. For example, a relative accuracy
of 1:6000 is better than that of 1:3000. In other words, an
error of 1 ft will be expected when measuring a distance of
6000 ft, as compared with an error of 1 ft in half that
distance. If a distance of 600 m was measured with a
relative accuracy of 1:6000, we could expect an error of
; (1/6000)(600) = ; 0.1 m; if the same distance were mea-
sured with an accuracy of 1:3000, we could expect an error
of ; (1/3000)(600) = ; 0.2 m.

As we have already discussed, accidental errors tend to
increase in proportion to the square root of the distance
measured (or the number of observations made) and not to
the actual distance itself. Therefore, when the same precision
(that is, equipment and care) is applied, the relative accuracy
of a long survey will be better than that of a short survey. In
Example 2-3, if the survey were four times as long, the esti-
mated error of closure would be

and the relative accuracy would be

1:(4 * 577.80)/0.36 = 1:6400

presumably twice as accurate.
In general, for a set of similar measurements, to double

the accuracy of a particular survey, four times the number of
original observations or measurements must be taken; to
triple the relative accuracy, nine times as many observations
must be made; and so on.

Distance measurements of very high precision, such as
are made with certain EDMIs, may be characterized in terms
of parts per million (ppm) of accuracy. For example, a relative
accuracy of 5 ppm is equivalent to the ratio 5:1,000,000, or

0.18 * 14 = 0.36 ft

1:200,000. In a distance of, say, 1 km, or 1000 m, an accu-
racy of 5 ppm would be caused by an error of 5 mm [i.e.,
1:(1000 m/5 mm) = 1:(1,000,000 mm/5 mm) = 1:200,000].

Standards of Accuracy In the United States, allowable
accuracies for control surveys have been specified by the
Federal Geodetic Control Subcommittee. For many years
these standards included three different levels, or orders:
first, second, and third order, for both horizontal and verti-
cal control surveys. The orders were further broken down
into classes. Three new orders of accuracy were added in
1985 for GPS surveys: AA, A, and B. In 1998 the Federal
Geodetic Control Subcommittee released new standards
that used a term called Relative Positional Accuracy. This
standard is independent of the method of survey and is
based upon a 95 percent confidence level. Relative posi-
tional accuracy is defined as a value that represents the
uncertainty of the location of a point in a survey relative to
any other point in the same survey at a 95 percent confi-
dence level. What this means is that if we measure a distance
of 1000 ft with a stated reliability of plus or minus 0.10 ft at
a 95 percent confidence level, we can be confident that a
measurement of that line will be between 999.90 ft–1000.10 ft
95 out of 100 times.

The accuracy of a particular survey may be characterized
according to the appropriate range of federal standards. A
summary of the standards, as well as a comparison of the ear-
lier standards to the current standards, is given in Table 2-1.

Choice of Survey Procedure The required relative
accuracy for a survey may be specified by the surveyor’s
employer or client, or it may be established by experience
and judgment. Sometimes the order of accuracy is speci-
fied. In any case, a maximum allowable closure can be
determined for a particular survey. The surveyor should
choose equipment and methods that have a rating or max-
imum anticipated error closely equal to that for maximum
allowable closure. For traverse surveys (discussed in more

Table 2-1.  Selected Federal Standards for Traverse Surveys

GPS Order Traditional Surveys Order and Class Relative Accuracy Required Between Points

Order AA 1 part in 100,000,000

Order A 1 part in 10,000,000

Order B 1 part in 1,000,000

First Order 1 part in 100,000

Second Order

Class I 1 part in 50,000

Order C Class II 1 part in 20,000

Third Order

Class I 1 part in 10,000

Class II 1 part in 5000
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detail in Chapter 7), the most convenient value to use for
rating the survey is the E95 for 1000 ft.

Example 2-4
A horizontal control traverse survey is required to close with
a 1:5000 accuracy. The total distance of the traverse is
about 10,000 ft. What is the required rating or maximum
anticipated error per 1000 ft for the survey method to be
used?

Solution
In 10,000 ft, the maximum error of closure is 1/5000 *
10,000 = 2 ft.

On the basis of the law of compensation (Equation 2-2)
and the fact that the number of measurements or observations

is proportional to the length of a survey, we can write the
following expression:

from which we get

From this, a survey procedure known to have a maxi-
mum anticipated error (E95) equal to or less than 0.63 ft in
1000 ft would be chosen.

Check: 0.63 * C
10000
1000

= 0.63 * 110 = 2 ft

E95  for1000ft =
2 * 11000
110000

=
2
110

=   0.63 ft

E95 for1000ft

11000
=

2
110000

Questions for Review

1. Briefly describe two different types of units for angular
measurement.

2. What is meant by the phrase data reduction?

3. Name two basic types of handheld scientific calculators.

4. What do the following abbreviations stand for: CPU,
RAM, ROM, CAD?

5. In a measured quantity, the number of certain digits plus
one estimated digit is called the number of _______.

6. Is it good practice always to report all the digits displayed
by a calculator in an answer to a problem? Why?

7. Define the term blunder, and give three typical examples
in surveying.

8. Define the term error as it pertains to surveying work.
How does it differ from a blunder?

9. What are the basic differences between a systematic
error and an accidental error?

10. Indicate by A (accidental), S (systematic), or B (blunder)
the type of error or mistake the following would cause:

a. Swinging plumb bob while taping
b. Using a repaired (spliced) tape
c. Aiming the transit at the wrong point
d. Recopying field data
e. Surveying with a transit that is not level
f. Reading a 9 for a 6
g. Reading the transit scale without a magnifying glass
h. Working in poor light
i. Not aiming the transit carefully
j. Not focusing the transit carefully

11. Indicate by an A, S, or B whether the following would
cause accidental errors, systematic errors, or blunders:

a. Using a level rod that is inaccurately graduated
b. Having too long a sight distance between the level

and level rod

c. Carelessly centering the bubble of the spirit level in a
level instrument when leveling

d. Using a level instrument that is out of adjustment so
that the line of sight is not horizontal when the bubble
is centered

e. Failing to check a reading
f. Failing to correct for temperature when measurements

are made with a steel tape on a very hot or cold day
g. Failing to hold the level rod on the correct point
h. Leveling when “heat waves” make it difficult to read

the level rod
i. Using the wrong end of the tape for measurement
j. Working without glasses if you normally wear them

12. What is meant by the 95 percent error?

13. Accidental errors accumulate in proportion to the
_______ of the _______.

14. What is the basic difference between accuracy and pre-
cision? Is good precision always a guarantee of good
accuracy?

15. Show by a sketch of the distribution of several rifle shots
on a bull’s-eye target the following results: (a) both
good precision and good accuracy, (b) poor precision
but good accuracy, and (c) good precision but poor
accuracy.

16. Define error of closure, and give three ways in which it
might be determined.

17. Define relative accuracy, and give two examples of how
it is expressed or written. Which of your examples rep-
resents better accuracy?

18. When the same precision is used, would the relative
accuracy of a long survey be the same as, better than, or
worse than the accuracy of a shorter survey? Why?

19. To double the accuracy of a particular survey, must the
number of observations or measurements be halved,



doubled, or tripled? What must be done to triple the
relative accuracy?

20. What does ppm refer to with respect to accuracy?

21. What is meant by standard of accuracy?

Practice Problems

1. Convert the following angles to decimal degree form:

a. 35° 20� (use two decimal places)
b. 129° 35� 15� (use four decimal places)

2. Convert the following angles to decimal degree form:

a. 00° 45� (use two decimal places)
b. 77° 23� 49.5� (use five decimal places)

3. Convert the following angles to degrees, minutes, and
seconds:

a. 45.75° (to the nearest minute)
b. 123.1234° (to the nearest second)

4. Convert the following angles to degrees, minutes, and
seconds:

a. 86.65° (to the nearest minute)
b. 27.54329° (to the nearest tenth of a second)

5. What is the sum of 25° 35� and 45° 40�? Subtract 85° 56�
from 137° 32�.

6. What is the sum of 45° 35� 45� and 65° 50� 22�? Subtract
45° 52� 35� from 107 °32� 00�.

7. Convert the angles in Problem 1 to centesimal units.

8. Convert the angles in Problem 3 to centesimal units.

9. Convert the following angles to the sexagesimal system:

a. 75g

b. 125.75g

c. 200.4575g

10. Convert the following angles to the sexagesimal system:

a. 23g

b. 75.245g

c. 150.7654g

11. Convert the following distances, as indicated:

a. 125.25 ft to meters
b. 75.525 m to feet
c. 35 ch 1 rd 10 lk to feet
d. 2.75 mi to kilometers

12. Convert the following distances as indicated:

a. 67.35 ft to meters
b. 246.864 m to feet
c. 75 ch 3 rds 20 lk to feet
d. 1.23 mi to kilometers

13. Convert the following areas as indicated:

a. 100,000 ft2 to acres
b. 5.75 ac to hectares
c. 5.75 ha to acres

d. 1000 ac to square miles
e. 3.5 mi2 to square kilometers

14. Convert the following areas as indicated:

a. 75,500 ft2 to acres
b. 10.5 ac to hectares
c. 10.5 ha to acres
d. 750 ac to square miles
e. 5.3 mi2 to square kilometers

15. Convert the following volumes as indicated:

a. 270 ft3 to cubic yards
b. 100 yd3 to cubic meters

16. Convert the following volumes as indicated:

a. 500 ft3 to cubic yards
b. 150 yd3 to cubic meters

17. How many significant figures are there in the following:

a. 0.00123
b. 1.00468
c. 245.00
d. 24,500
e. 10.01
f. 45.6
g. 1200
h. 1200.
i. 54.0
j. 0.0987

18. How many significant figures are there in the following:

a. 0.906
b. 2.468
c. 460.00
d. 42,710
e. 20.005
f. 1.23
g. 2400
h. 4500.
i. 504.0
j. 0.03570

19. Round off the sum of 105.4, 43.67, 0.975, and 34.55 to
the appropriate number of decimal places.

20. Round off the sum of 0.8765, 1.23, 245.567, and 34.792
to the appropriate number of decimal places.

21. Express the product of 1.4685 * 3.58 to the proper
number of significant figures.

22. Express the quotient of 34.67 , 0.054 to the proper
number of significant figures.

23. Round off the following numbers to the three significant
figures: 357.631, 0.97531, 14,683, 34.55, and 10.087.

24. Round off the following numbers to three significant
figures: 45.036, 245,501, 0.12345, 251.49, and 34.009.

25. A distance was taped six times with the following
results: 246.45, 246.60, 246.53, 246.35, 246.39, and
246.55 ft. Compute the 95 percent error for that survey.
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26. A distance was taped six times with the following
results: 85.87, 86.03, 85.80, 85.95, 86.06, and 85.90 m.
Compute the 95 percent error for that survey.

27. With reference to Problem 25, what would be the maxi-
mum anticipated error for a survey that was twice as
long if the same precision was used?

28. With reference to Problem 26, what would be the maxi-
mum anticipated error for a survey that was three times
as long if the same precision was used?

29. A distance of 345.75 ft is measured by a survey crew.
The true distance is known to be 345.82 ft. What is the
relative accuracy of the measurement?

30. A group of surveying students measures a distance twice,
obtaining 67.455 and 67.350 m. What is the relative
accuracy of the measurements?

31. With reference to Problem 29, what would be the relative
accuracy if a survey four times as long were done using
the same precision?

32. With reference to Problem 30, what would be the relative
accuracy if a survey three times as long were done using
the same precision?

33. Determine the accuracies of the following:

34. Repeat Problem 33 for the following:

35. What is the maximum error of closure in a measure-
ment of 500 m if the relative accuracy is 1:3000?

36. What is the maximum error of closure in a measure-
ment of 2500 ft if the relative accuracy is 1:5000?

37. A horizontal control traverse survey is required to
close with a 1:10,000 accuracy. The total distance of
the traverse is about 15,000 ft. What is the required
rating or maximum anticipated error per 1000 ft?

38. A horizontal control traverse survey is required to
close with a 1:10,000 accuracy. The total distance of
the traverse is about 3 km. What is the required rating
or maximum anticipated error per 100 m?

Error, ft Distance, ft

10.00 23,361

0.50 3005

1.27 14,000

0.09 1002

1.00 25,000

0.84 8400

Error, ft Distance, ft

8.00 30,560

0.07 2000

1.32 8460

0.13 1709

1.00 17,543

0.72 1800
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CHAPTER THREE

Surveying is an applied science that depends very
much on mathematics for solutions to many
problems. But most surveying problems do not

require the use of mathematics beyond the level of algebra,
geometry, and trigonometry. It is generally assumed that
surveying students have a good background in these subjects
and are prepared to apply that knowledge. Many, though,
can benefit from a brief review of fundamentals, particularly
those who may have been out of school for a while before
beginning their study of surveying.

This chapter is presented to serve as a refresher in
geometry and trigonometry. It is intended primarily for
review by self-study. Some users of this text may already be
well prepared and will want to skip directly to Chapter 4 in
Part 2 of the text. Others may want to review only certain
parts of the chapter. In either case, it is important that
beginners in surveying have a good understanding and
working knowledge of elementary mathematics before pro-
ceeding with their studies.

3-1 GEOMETRY AND
MENSURATION

Geometry (“earth measurement”) is perhaps the oldest branch
of mathematics, and as mentioned in Section 1-4, it originated
from the need to measure (or survey) the land in ancient times.
It is concerned with the properties of and relationships among
lines, angles, surfaces, and solids. Mensuration refers to the
process of measuring and computing lengths or distances,
surface areas, and volumes of solids. The practice of surveying,
of course, depends heavily on applications of geometry and
mensuration.

Several basic geometric properties, relationships, and
formulas that are used to solve surveying problems, and that
will be discussed further in later chapters, are outlined and

illustrated in the following sections. They are presented here
without proof. Students who are interested in seeing the
actual geometric proofs can refer to any introductory text-
book on plane geometry.

Lines and Angles
1. A straight line is the shortest line joining two points. If

two straight lines intersect, the opposite angles are equal
(Figure 3-1, j a = j c and j b = j d).

2. Two angles whose sum is equal to a right angle (90°) are
said to be complementary angles; that is, one is the
complement of the other. Two angles whose sum is equal
to the sum of two right angles are said to be supplementary
angles; that is, one is the supplement of the other. If two
adjacent angles are supplementary, their exterior sides are
in the same straight line; a straight line forms an angle of
180°, called a straight angle (Figure 3-2, j a + j b = 180°).

BASIC MATHEMATICS 

FOR SURVEYING

CHAPTER OUTL INE

3-1 Geometry and Mensuration
Lines and Angles
Some Properties of Polygons
Some Properties of the Circle
Volume

3-2 Trigonometry
Right-Angle Trigonometry

Trig Functions of Obtuse
Angles

Solutions of Oblique Triangles
Trigonometric Identities

3-3 Coordinate and Analytic
Geometry

Rectangular Coordinates

Polar Coordinates
The Straight Line
The Circle

Practice Problems

FIGURE 3-1. The opposite angles between intersecting
straight lines are equal.
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a

b

FIGURE 3-7. Angle A = angle B.

FIGURE 3-2. Angle a and angle b are supplementary angles.

FIGURE 3-3. The perpendicular distance PC from point P to
line AB is the shortest distance from P to AB. Line PC forms
two right angles (90°) at its intersection with AB.

FIGURE 3-4. Line DC is a perpendicular bisector of line AB.
The length of line AD equals the length of line BD.

FIGURE 3-5. Distance BD = distance DF.

FIGURE 3-6. Alternate interior angles between parallel lines
are equal.

3. A perpendicular line drawn from a point to another
given line forms two right angles at the intersection of
the two lines. It is the shortest distance from the point to
the given line (Figure 3-3).

4. A bisector is a line that divides another line (or an angle)
into two equal parts. Any point on the perpendicular
bisector of a line is equally distant from the two ends of
the line (Figure 3-4, AC = CB).

5. Any point on the bisector of an angle is equally distant
from the two sides of the angle (Figure 3-5, BD = DF).

6. Straight lines in the same plane that do not meet, no
matter how far they are extended, are parallel lines. If
two parallel lines are intersected by another straight
line, the alternate-interior angles are equal (Figure 3-6,
j a = j b; j c = j d). The two interior (and exterior)

angles on the same side of the intersecting line are
supplementary.

7. If the sides of two angles are perpendicular, each to
each, the angles are equal (Figure 3-7, j a = j b).

Some Properties of Polygons
A polygon is a closed plane figure with three or more straight
sides. The perimeter of a polygon is equal to the sum of the
lengths of each of the sides.
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FIGURE 3-8. The area of a triangle
can be computed by any of the
three formulas given here.

Triangles A triangle is a three-sided polygon that
encloses an area equal to one-half its base times its height
(Figure 3-8). As a formula, the area is expressed as follows:

(3-1)

Equation 3-1 may also be written as bh/2. (Remember,
in the product of algebraic symbols, the *, or times sign,
may be omitted so that the expression bh implies the
product b * h.)

The symbol b is the base, and h is the height, or altitude,
of the triangle. The height must be measured perpendicular
to the base, but it can be either inside or outside the trian-
gle. Any side of a triangle may be taken as the base.

If the sides of a triangle are given as a, b, and c, then its
area may also be expressed by the following formula:

A =
1

2
* b * h

(3-2)

where s is equal to half the sum of the sides, or s = (a + b + c)/2.

Example 3-1
Compute the area enclosed by a triangle with sides equal to
50, 120, and 130 m.

Solution

Using Equation 3-2, we get

= 39,000,000 =  3000 m2

= 3150(100)(30)(20)

A = 3150(150 - 50)(150 - 120)(150 - 130)

s =
50 + 120 + 130

2
= 150

A = 3s(s - a)(s - b)(s - c)

a b
c

Area = 1/2ab sin c
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FIGURE 3-11. j A = j D and j C = j F; therefore, triangles ABC and
DEF are similar.

The sum of interior angles of any plane triangle always
equals 180°, or a straight angle. A right triangle contains one
interior angle of 90° and two complementary acute (less
than 90°) angles. The side opposite the right angle, called
the hypotenuse, is always the longest side of the triangle
(Figure 3-9). The other two sides are called the legs of
the triangle. (The area of a right triangle is simply half the
product of its legs.) An oblique triangle does not have a right
angle (or a hypotenuse).

An equilateral triangle has three equal sides (and three
equal angles, each of 60°). If two sides of a triangle are equal,
but the third is different, it is called an isosceles triangle.

In an isosceles triangle, the angles opposite the equal
sides are equal. Also, the altitude drawn from the vertex of
an isosceles triangle bisects (divides in half) the vertex angle
as well as the base (Figure 3-10). If a line parallel to the base
of a triangle bisects one side, it also bisects the other side;
that line is half the base in length.

Two triangles are said to be congruent if the corres-
ponding parts (three sides and three angles) of each are
exactly equal. It is not necessary to know that all six parts of
the triangles are equal. If it is known that three parts of one,
including at least one side, are the same as three corre-
sponding parts of the other, then the two triangles must be
congruent, that is, identical.

If two angles of one triangle equal two angles of
another, the triangles have the same essential shape and are
said to be similar (Figure 3-11). The corresponding sides of
similar triangles are proportional; that is, the ratios of the
corresponding sides are equal (e.g., CB/AB and FE/DE
in Figure 3-11). This very important property of triangles is the
basis of trigonometry, which is discussed in the next section.

Example 3-2
How can the inaccessible distance AB, across the pond,
be measured by simple linear measurement using only a
surveyor’s tape?

Solution
Drive a stake to mark point X at some convenient location,
as shown in Figure 3-12, and measure the distances AX
and BX. Sight along lines AX and BX, and set stakes at
points Y and Z, so that distances AX = XY and BX = XZ.
Because the opposite angles at X are equal and the two
sides of each triangle are equal, the triangles XAB and
XYZ are congruent. Therefore, distance AB must be equal
to distance ZY, which is accessible and can be easily
measured.

Pythagorean Theorem One of the most famous (and
useful) formulas in mathematics is the Pythagorean theorem.
It applies only to right triangles. The theorem states that
the square of the hypotenuse equals the sum of the squares of
the other two sides, or legs. As a formula, it is written

c2 = a2 + b2 (3-3)

where c = the length of the hypotenuse

a and b = the lengths of the other two sides

From this, it also follows that

(3-4)

From Equation 3-4, it may easily be seen that triangles
with sides equal to (or in proportion to) 3, 4, 5 or 5, 12, 13
are right triangles. The longer side must be the hypo-
tenuse: 52 = 32 + 42 or 25 = 9 + 16; and 132 = 52 + 122

a = 2c2 - b2  and  b = 2c2 - a2

FIGURE 3-9. In a right triangle, the side opposite the right
angle is always the longest side and is called the hypotenuse.

FIGURE 3-10. In an isosceles triangle, the altitude, or height,
bisects the vertex angle C and the base AB.



Basic Mathematics for Surveying 37

FIGURE 3-12. Illustration for Example 3-2.

FIGURE 3-13. Illustration for Example 3-3.

FIGURE 3-14. Illustration for Example 3-4.

FIGURE 3-15. The area of a trapezoid is 
(a + b)

2
* h.

or 169 = 25 + 144. These right triangles were used by
ancient surveyors to lay out square corners.

Example 3-3
A tract of land has the shape of a right triangle, with road
frontage along the longer side, or the hypotenuse (Figure 3-13).
The other two sides are measured to be 75.55 and 95.25 m.
What is the length of road frontage for that tract?

Quadrilaterals and Parallelograms A quadrilateral is
a closed plane figure with four sides and four angles. The
sum of the interior angles in any quadrilateral is 360°, or one
complete rotation.

A trapezoid is a four-sided figure with only one pair of
opposite sides parallel (Figure 3-15). The two parallel
sides are the bases of the trapezoid. The area enclosed in a
trapezoid equals the average length (half the sum) of the
two bases, a and b, times the altitude, or perpendicular
distance, h, between them.

In equation form, the area of a trapezoid is expressed as
follows:

(3-5)A =
(a + b)

2
* h or c a 1

2
b * (a + b) * h d

Solution
Applying the Pythagorean theorem, we get

c2 = (75.55)2 + (95.25)2 = 14,780.365

Taking the square root of both sides, we get

(Note: The intermediate result of 14,780.365, as displayed
on a handheld calculator, does not actually have to be written
down and should not be rounded off; only the final answer is
rounded.)

Example 3-4
A guy wire that supports a telephone pole is 35.5 ft long and
is anchored to the ground at a distance of 16.5 ft from the
base of the pole (Figure 3-14). If the pole is perpendicular to
the ground, what is its height?

Solution
In reference to Figure 3-14, the pole height is represented as
a and the guy-wire length as c. Applying the Pythagorean
theorem, we can write

a = 2c2 - b2 = 235.52 - 16.52 = 1988 = 31.4ft

c = 314,780.365 = 121.6m  (rounded off)

Example 3-5
A parcel of land has the shape shown in Figure 3-16. The
value of the land is $50,000 per hectare. How much is the
parcel worth?

Solution
The parcel of land has the shape of a trapezoid because only
two sides are parallel. The altitude is 50.00 m and the two
bases are 116.90 and 60.00 m in length. Applying the formula
for the area of a trapezoid, we get the following:

A =
(116.90 + 60.00) 50.00

2
= 4422.50m2
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FIGURE 3-18. Three forms of a parallelogram: (a) oblique,
(b) rectangular, and (c) square.

Because 1 ha = 10,000 m2, we get the following:

A quadrilateral in which no two sides are parallel is called
a trapezium. The area of a trapezium can be determined
by drawing a diagonal line between two opposite vertices
and adding the areas of the two triangles that are formed
(Figure 3-17a). It can also be determined by using Equation 3-6
(Figure 3-17b). The trapezium shown in Figure 3-17b is the
basic shape of a roadway cross section. In practice, a device
called planimeter can be used to measure the area of a trapezoid
drawn to scale. The “coordinate method” may also be used
(see Section 10-7) and CAD systems can quickly compute the
area as well.

(3-6)A =
dh

2
+

(h¿ + h–)b

4

4422.50m2 *
1ha

10,000m2
*

$50,000
ha

= $22,112.50

A parallelogram is a quadrilateral with each pair of
opposite sides parallel (Figure 3-18). A rectangle is a parallelo-
gram with four right angles, and a square is a rectangle
with four equal sides. A line perpendicular to the parallel
bases of any parallelogram is called its altitude. In an oblique
parallelogram (not a rectangle or square), the altitude should
not be confused with a side.

The opposite sides of a parallelogram are always equal in
length and the diagonal (a line that joins opposite vertices of the
figure) divides the parallelogram into two congruent triangles.
Also, the two diagonals of a parallelogram bisect each other.

The area of a parallelogram equals the product of its
base and its altitude, or in equation form

A = bh (3-7)

where b = the base

h = the altitude of the figure

For a rectangle, the area is simply the product of its
dimensions, or length times width. For a square figure, it is
simply the algebraic square of a side.

Example 3-6
A rectangular parcel of land is sold for $10,000. The land is
652.55 ft long and 220.00 ft wide. What is the price per acre
of land?

Note that 652.55 * 220.00 = 143,561 ft2; however, the
product cannot have any more significant digits than the
least significant digits of what is being multiplied. Therefore,
652.55 * 220.00 = 143,560 ft2.FIGURE 3-17. Two different forms of a trapezium.

FIGURE 3-16. Illustration for Example 3-5.
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FIGURE 3-19. Any straight line with both ends on the circle
is a chord.

FIGURE 3-20. A radius drawn perpendicular to a chord
bisects the chord and the intercepted arc.

Solution
The area equals

The price per acre is

Sum of Interior Angles A polygon may have any
number of sides. A pentagon, for example, has five sides; a
hexagon has six sides. For any polygon, the sum of the interior
angles is the number of straight angles that is two less than the
number of sides. In formula form, we can write

Sum of interior angles = 180° * (n - 2) (3-8)

where n = the number of sides (or angles) of the polygon.

A triangle, for example, has n = 3 sides and, as we already
know, the sum of the interior angles is 180 * (3 - 2) = 180°.
A quadrilateral has four sides, and the sum of angles is 180 *
(4 - 2) = 180 * 2 = 360°. (What is the sum of interior angles
for a pentagon? For a hexagon?)

Some Properties of the Circle
The very familiar closed plane figure called a circle is formed
by a curved line, every point of which is equally distant from
a single point inside the figure. That point, of course, is
called the center, and a line from the center to any point on
the circle is called the radius of the circle.

Any straight-line segment that has its ends on the circle
is called a chord (Figure 3-19). A straight line that passes

$10,000
3.296 ac

= $3034 per acre

143,560 ft2 *
1ac

43,560 ft2
= 3.296 ac

652.55 * 220.00 = 143,560 ft2

through the center and has its two ends on the circumfer-
ence of the circle is called the diameter. The diameter, then, is
the longest chord of the circle; its length is equal to twice
that of the radius, and it bisects the circle into two equal
semicircles.

The portion of the circle between the ends of any chord
is called an arc of the circle (Figure 3-20). A chord is said to
intercept an arc, and an arc is said to subtend a chord, or a
central angle (an angle between two corresponding radii
with the vertex at the center). A radius that is perpendicular
to a chord bisects the chord and the arcs intercepted by it
(Figure 3-20).

An inscribed angle is formed between two chords that
meet at a point on the circle. The center of the circle may be
on one of the sides (Figure 3-21a), between the sides (Figure
3-21b), or outside the inscribed angle (Figure 3-21c). In
any case, the size of the inscribed angle is equal to half of
the central angle subtended by the intercepted arc. (Figure 3-21,
j A-BC = 1/2 j O-BC.)

A straight line which touches or meets the circle at only
one point is called a tangent to the circle. Any tangent is
perpendicular to the radius drawn to the point of tangency
on the circle (Figure 3-22). Two tangents from an external
point to a circle are equal in length and form equal angles
with the line joining the point to the center. (Figure 3-22,
AB = AC; j A-BO = j A-OC.)

An angle formed by a tangent line and a chord from
the point of tangency is equal to half of the angle subtended
by the intercepted arc of the chord. (Figure 3-23, j A-BC = 1/2
j O-AC.)

Circumference and Area The length of the curved
line that forms a circle is called the circumference of
the circle. (Imagine that the line was cut and straightened
out—the length of that straight line would be the
circumference.) It has long been known that, for any
circle, the ratio of its circumference to its diameter is a
constant number. That ratio is called π (pronounced
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FIGURE 3-22. A tangent intersects a circle at only one point.
FIGURE 3-23. Angle A-BC, between the tangent and the
chord, equals one-half central angle O-AC.

“pie”) and is approximately equal to 3.14, a dimension-
less number.

Because circumference/diameter = �, we can write

C = � D or C = 2π R (3-9)

where C = circumference

R = radius

D = diameter = 2R

� = a constant ratio for all circles

The area A enclosed by a full circle is computed
from either of the following formulas [note that R2 =
(D/2)2 = D2/4]:

(3-10)

Example 3-7
A circular concrete dance platform has a diameter of 50.0 ft.
A railing is to be constructed around its edge and the top of

A = pR2 or 
pD2

4

FIGURE 3-21. The size of an
inscribed angle is equal to half
the central angle subtended by 
the intercepted arc.
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FIGURE 3-24. Determining the arc length and the sector
area finds application in route surveying and boundary
surveying.

FIGURE 3-25. The area of a segment is equal to the area of
the corresponding sector minus the area of triangle AOB.

the platform is to be painted. How long is the railing, and
how many square feet of surface are to be painted?

Solution
The length of the railing is equal to the circumference of the
circle, or C = π (50.0) = 157 ft. The area of the platform is
computed as A = π (50.0)2/4 = 1960 ft2 (rounded off to three
significant figures).

Length of Arc and Area of a Sector A figure formed by
an arc of a circle and its subtended central angle is called a
sector of the circle (Figure 3-24).

The length L of the arc is proportional to the central
angle and may be computed from the following equation:

(3-11)

where Δ = the central angle subtended by the arc or chord.

The area A of the sector is also proportional to the cen-
tral angle and may be computed as follows:

(3-12)

A sector formed by a 90° central angle is a quarter of a
circle and is called a quadrant.

A segment of a circle is the area enclosed by a chord
and the arc intercepted by the chord (Figure 3-25). The
area of a segment may be computed by subtracting
the area of the triangle (formed by the two radii and the
chord) from the area of the corresponding sector, as
shown in Figure 3-25.

(3-13)

where Δ = the central angle subtended by the chord

R = the radius of the circle

Product of the area of the triangle

Area of segment =  
¢

360
 pR2

-

R2  (sin  ¢

2

A =  
¢

360
 * pR2

L =  
pR¢

180

(The term sin, pronounced sine, represents a trigonometric
function and is defined in the next section.)

Volume
A solid figure is one that occupies three-dimensional space,
the three dimensions being length, width, and height
(Figure 3-26). A rectangular solid (such as a box or a slab of
concrete) has six plane (flat) faces or sides, each of which is
a rectangle. The volume V of a rectangular solid is simply
the product of its three dimensions, or

V = LWH (3-14)

where L = length

W = width

H = height

A prism is a solid made up of several plane faces, two of
which are polygons (the bases or “ends”) and the remaining
sides are either parallelograms or trapezoids. The volume of
a prism that has identical and parallel bases is the product
of its base area and its length (or height), or V = AL.

A cylinder is a solid figure with circular bases and a
curved surface. Like the prism, its volume is simply the
product of its base area and its height h, or V = �hR2. A
cone is a solid figure with a circular base, an apex or
“point” opposite the base, and a curved surface. Its volume
is equal to one-third the product of its base area and
height, or V = �hR2/3.

A sphere is a perfectly round globe or ball, formed by a
curved surface every point of which is equally distant from
a single point called the center. Any straight line that
passes through the center and has its two ends on the
surface is the diameter of the sphere. The volume is equal
to 4�R3/3.

 )  

                          =andR2  (sin  ¢
2

 )  
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FIGURE 3-27. Nomenclature of the three sides with respect
to each acute angle.

3-2 TRIGONOMETRY
Trigonometry (or “trig”) is one of the most important
branches of mathematics for surveying. As an extension of
geometry, it is the link between linear distance measurement
and angular measurement.

Trigonometry is concerned with the relationships
among the lengths of the sides and the sizes of the angles of a
triangle. Along with basic algebra, it allows us to “solve a
triangle,” that is, to figure out some of the unknown sides
and angles in a given triangle. (Many practical problems can
be reduced to the solution of a triangle.)

Trigonometry may be applied to any shape of triangle,
but the basis for defining the six trigonometric functions is
the right triangle.

Right-Angle Trigonometry
Every right triangle has one 90° angle and two acute angles
(angles less than 90°), such as A and B in the identical trian-
gles shown in Figure 3-27. The trig functions may be defined
in terms of an “adjacent side” and an “opposite side,” with
respect to the acute angle under consideration.

In Figure 3-27a, angle B is selected; CB is its adjacent
side and CA is its opposite side. In Figure 3-27b, angle A is
selected; CB is now the opposite side and CA is the adjacent
side for that angle. It is important to remember that the
designation of which side is “opposite” and which side is
“adjacent” depends on the acute angle under consideration.
The side opposite the right angle, though, is always called the
hypotenuse.

Trig Functions From geometry, when two right trian-
gles have an acute angle of one equal to an acute angle of the

other, the triangles are similar and the lengths of their sides
are proportional (see Figure 3-11). In similar triangles, the
ratio of any one side divided by another side is the same, no
matter how long the sides may be. Six different ratios can be
written for a right triangle as follows:

For any given angle, these ratios take on constant values.
It makes no difference what the size of the triangle actually is.

Opposite

Adjacent
 

Adjacent

Opposite

Adjacent

Hypotenuse
 

Hypotenuse

Adjacent

Opposite

Hypotenuse
 

Hypotenuse

Opposite

FIGURE 3-26. Volume computation
is often applied by the surveyor in
the determination of earthwork
(cut and fill) quantities.
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FIGURE 3-28. If angles A and A� are
equal, the ratios among the sides of
both triangles are also equal.

Consider the example in Figure 3-28. The numerical value of
each ratio is seen to be the same for each of the similar
triangles. (Upon closer examination, it will be seen that this
is an example of the so-called 3-4-5 right triangle.) Keep in
mind that the computed ratios in this example apply only
for the given angle of 36°52�12�.

Each of the trigonometric ratios, then, has a fixed value
for any given angle; and for angles between 0° and 90°, once
the value of any one of these ratios is known, the size of the
angle is known. Because the values of these ratios depend on
the size of the angle, they are called trigonometric functions of

an angle. For convenience, they are given names. For exam-
ple, the ratio of the side opposite angle A to the hypotenuse
is called the sine of A, or simply sin A. The six different trig
functions are identified in Figure 3-29.

It can be noticed from Figure 3-29 that the cotangent,
cosecant, and secant functions are actually the reciprocals of
the tangent, sine, and cosine functions, respectively. That is:

cotangent = 1/tangent because b/a = 1/(a/b)

cosecant = 1/sine because c/a = 1/(a/c)

secant = 1/cosine because c/b = 1/(b/c)

FIGURE 3-29. Nomenclature 
of trigonometric functions.
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Table 3-1. Selected Values of Trigonometric
Functions

Angle, deg Sine Cosine Tangent Cotangent

0 0.00000 1.00000 0.00000 �

30 0.50000 0.86603 0.57735 1.73205

60 0.86603 0.50000 1.73205 0.57735

90 1.00000 0.00000 � 0.00000

FIGURE 3-30. Illustration for Example 3-8.

For this reason, scientific handheld calculators have keys
for only sine (sin), cosine (cos), and tangent (tan). The
values of the other three trig functions can easily be com-
puted by first taking either the sin, cos, or tan of the angle
and then taking the reciprocal of the displayed number
(using the 1/x key). As it turns out, most surveying problems
may be solved with only the three basic trig functions.

It should also be noted that every trig function of an
angle is equal to the cofunction of its complement. This follows
from the fact that in a right triangle with acute angles A and
B, B = 90° - A; that is, B is the complement of A. This may be
summarized as follows:

sin A = cos B sin B = cos A

tan A = cot B tan B = cot A

sec A = csc B sec B = csc A

Computing Trig Functions The numerical value of a
trigonometric function for a given angle may be determined
with sufficient precision using an electronic handheld 
calculator. In the past, slide rules or long tables of trigono-
metric and logarithmic functions were needed. Now, scientific-
type calculators can be used for this purpose, with angles
expressed in degrees, grads, or radians. The value of a trig func-
tion for any angle can be obtained almost instantaneously.

Generally, when a calculator is first turned on, it will be
in the degree mode; that is, it will interpret angles in units of
degrees. (Some calculators can handle degrees, minutes, and
seconds, while others use only degrees and decimal parts of a
degree.) In the degree mode, the symbol DEG will appear on
the calculator. If it is desired to enter angles in another unit,
say, grads, then an appropriate key (DRG on some calcula-
tors) must be pressed to change the mode setting; the
symbol GRAD will then appear on the calculator to indicate
that mode.

To compute the sin 30°, for example, simply enter 30
and then press the sin key; the calculator will display 0.5,
which is the value of the ratio of opposite side to hypotenuse
(opp/hyp) for any right triangle. To compute the tangent of
50°45�, key in 50.75 and then press the tan key; a value of
1.2239389 will be displayed. (Some calculators will interpret
50.45 as 50°45�.) The number 1.2239389 is the ratio of
opposite side/adjacent side in any right triangle with an
acute angle of 50°45�. Of course, the calculator must be set in
the DEG mode for these computations.

A very brief table of trig function values is presented in
Table 3-1 to give a perspective of the range of values and to
illustrate the cofunction and complementary angle relation-
ships. Check some of the given values with your own calcu-
lator for practice. The symbol � stands for “infinity”; this
means that as an angle approaches 0° (or 90°), the value of
its cotangent (or tangent) gets extremely large. Also note that
the maximum value of a sine or cosine function is 1.00000,
or unity.

Inverse Trig Functions In some surveying problems,
the numerical value of the trig function is known, but the

angle itself is unknown. The process of finding the angle is,
in effect, the inverse, or opposite, of computing a trig func-
tion, hence the name inverse trig function. With an electronic
calculator, it is simple to determine the value of the
unknown angle. The following terminology is used for
inverse trig functions:

Arcsin x means “an angle whose sine is equal to x.”

Arccos x means “an angle whose cosine is equal to x.”

Arctan x means “an angle whose tangent is equal to x.”

Other ways of writing these statements include sin-1 x,
cos-1 x, and tan-1 x, or invsin x, invcos x, and invtan x. On
many calculators, an INV key is used to compute the arc or
inverse trig functions.

For example, suppose we know that sin A = 0.5 and we
need to figure out the value of angle A. We can write A = arcsin
0.5, or “A is an angle whose sine is 0.5.” Enter 0.5 into the
calculator and press the INV key and then the sin key (or sin-1),
the calculator will display 30° in the DEG mode (or 33.33g in
the GRAD mode). Suppose that tan B = 1.0, what is the value
of angle B? Write B = arctan 1.0; enter 1.0, press the INV and
sin keys and read 45° or 50g.

Solving Right Triangles By using the previous
concepts, every right triangle can be solved if two of its
parts (including at least one side) are known. The following
examples illustrate typical solutions of right-angle trig
problems:

Example 3-8
In the right triangle shown in Figure 3-30, angle A is 35° and
the length of the hypotenuse AB is 125 m. Determine the
length of side BC.
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FIGURE 3-31. Illustration for Example 3-9.

Solution
In Figure 3-30, the unknown quantity is the side opposite
the given angle; because the length of the hypotenuse
is known, the ratio of opposite/hypotenuse can be used.
By definition, opp/hyp is the sine of the angle and we
may write

Because sin 35° = BC/125, multiplying both sides by
125 we get

BC = 125(sin 35°) = 125(0.5735) = 71.7 m

Example 3-9
Given the right triangle shown in Figure 3-31, with leg a =
156.74 ft and leg b = 240.38 ft, determine the angles A and
B and the length of side c.

Solution
We are given the lengths of both the opposite and adjacent
sides of angle A (or B). Because tan = opp/adj, we can write

From this we can write

A = arctan 0.6520509 = 33.106398°

After converting to degrees, minutes, and seconds, we get

A = 33°06�23�

We have several options for computing angle B and
side c. The simplest way to compute angle B is to use the
fact that it must be complementary to A; that is, A + B = 90°.
Therefore, B = 90 - A, or

89°59�60�

Note that to compute B = 56°53�37� by subtracting 
A from 90, we wrote 90° as the equivalent 89°59�60�; we
“borrowed” 1° from 90° and 1� from 60� to get the 60�.

Let us now check the solution for B using the tangent
function. We can write tan B = 240.38/156.74 = 1.5336226

-33°06¿23–
   56°53¿37–

tan A =
156.74
240.38

= 0.6520509

sin 35° =
opp

hyp
=

BC
AB

=
BC
125

and B = arctan 1.5336226 = 56.893602°. This converts to
56°53�37�, as computed previously.

The simplest method to compute side c is to use the
Pythagorean theorem (Section 3-2). Because c is the
hypotenuse of the triangle, we can write 

. We can check this using
the cosine function because cos A = adj/hyp and, therefore,
cos 33°06�23� = 240.38/c. From this, we get c = 240.38/cos
33°06�23� = 240.38/0.8376577 = 286.97 ft, as previously
computed. Whenever possible, check your work with alter-
native computations to avoid blunders.

Example 3-10
Three right triangles are shown in Figure 3-32, each with two
unknown sides. The steps for solving and checking these
triangles using basic trigonometry are given.

Example 3-11
A building casts a shadow 15.0 m long on level ground, as
shown in Figure 3-33. From the point on the ground at the
end of the shadow, the angle between the ground and
the line of sight to the top of the building is measured to be
72°30�. How tall is the building?

Solution
The problem is to solve the right triangle formed by the
ground, the building, and the edge of the shadow. We know
an angle and its adjacent side and we must find an opposite
side (the height of the building). We can use the tangent func-
tion and write tan 72°30� = opp/adj = height/15.0. From this
we get height = (15.0)(tan 72°30�) = 15.0 * 3.1716 = 47.6 m.

Example 3-12
A triangular parcel of land is bounded on two sides by roads
that are perpendicular. Another highway bounds the third
side at an angle of 35°, as shown in Figure 3-34. We are
informed that the owner recently fenced the boundary of the
property with a total of 1025.5 ft of fencing, but we do not
know the lengths of the individual sides. What is the area of
the land in acres?

Solution
The solution to this problem requires the use of both trig and
algebra. The lengths of the three sides, x, y, and z, are
unknown. But we can express the perimeter of the triangle
as x + y + z, and we can write

x + y + z = 1025.5 ft

We can also express the area A of the triangle as

It appears that we have two equations with four
unknowns. But we can also use the trigonometric relation-
ships to provide additional equations and then use the
method of substitution to solve them.

A =
xy

2

2156.742 + 240.382 = 286.97 ft
c = 2a2 + b2 =
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FIGURE 3-33. Illustration for Example 3-11.

FIGURE 3-34. Illustration for
Example 3-12.

From the definitions of sine and tangent, we get

sin 35 = y/z. Therefore, z = y/(sin 35) = 1.7434y

tan 35 = y/z. Therefore, x = y(tan 35) = 1.4281y

We now have the following four equations:

(1) A = xy/2 (2) x + y + z = 1025.5

(3) z = 1.7434y (4) x = 1.4281y

Substituting Equations 3 and 4 into Equation 2, we get

1.4281y + y + 1.7434y = 1025.5

FIGURE 3-32. Illustration for
Example 3-10.
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Now there is only one unknown, y, in this new equation.
Combining terms on the left and solving for y, we get

From this and Equations 3 and 4, we get

z = 1.7434(245.83) = 428.59 ft

x = 1.4281(245.83) = 351.08 ft

Now we can compute the area as follows:

Trig Functions of Obtuse Angles
An angle that contains more than 90° is called an obtuse
angle (Figure 3-35). It is sometimes necessary to evaluate
trigonometric functions for obtuse angles.

For our purpose in this brief review, we will only con-
sider angles between 90° and 180°. In this range of angles
(90° < A < 180°), we can write

sin A = sin B cos A = -cos B tan A = -tan B

where B = 180 - A (B is called a reference angle).

For example,

sin 120° = sin 60° = 0.8660

cos 140° = -cos 40° = -0.7660

tan 160° = -tan 20° = -0.3640

Check the preceding statements with your own cal-
culator. It is important to realize that the cosine and tangent
functions are negative (are preceded by a minus sign) for
any angle between 90° and 180°; your calculator will auto-
matically show the minus sign. (A thorough explanation of
the change in algebraic sign for certain trigonometric
functions of obtuse angles can be found in any standard
trigonometry textbook.)

Solutions of Oblique Triangles
A triangle that does not contain a right angle is called an
oblique triangle. In practical surveying applications, it is
sometimes necessary to solve problems involving oblique
triangles. Two useful formulas are derived from basic

A =
xy

2
=

(351.08)(245.83)

2
= 43,153 ft2 = 0.991 ac

y =
1025.5
4.1716

= 245.83 ft

4.1716 = 1025.5

trigonometry and geometry for this purpose. These are
called the law of sines and the law of cosines.

The conventional system for naming the parts of an
oblique triangle is shown in Figure 3-36. Capital letters A, B,
and C are used to designate angles (at their vertex), and the
side opposite each angle is given the same letter designation,
but in lowercase.

Law of Sines The law of sines states that the sides of any
triangle are proportional to the sines of the angles opposite
them. Using the nomenclature in Figure 3-36, this is
expressed in the following equation:

(3-15)

The law of sines is applied to problems in which either
(a) two angles and one side of the triangle are known or (b) two
sides and the angle opposite one of them is known. The
following examples are presented to illustrate solutions of
triangles using the law of sines:

Example 3-13
Referring to Figure 3-36 and given that A = 60°, B = 40°, and
side c = 247.8 m, solve for sides a and b and angle C.

Solution
First solve for angle C:

C = 180 - A - B = 180 - 60 - 40 = 80°

Applying the law of sines, we can now write

Again applying the law of sines, we get

(Note: We cannot use the Pythagorean theorem to
solve for the remaining side b because the triangle is
oblique; the Pythagorean theorem is valid only for right
triangles.)

b = (sin 40)a 247.8
 sin 80

b = (0.6428)a 247.8
0.9848

b = 161.7 m

b
 sin 40

=
247.8
 sin 80

a = (sin 60)a 247.8
 sin 80

b = (0.8660)a 247.8
0.9848

b = 217.9  m

a
sin60

=
247.8
sin80

a

 sin A
=

b

 sin B
=

c

 sin C

FIGURE 3-35. An obtuse angle exceeds 90°.

FIGURE 3-36. Nomenclature for the parts of an oblique
triangle.
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Example 3-14
Given A = 38°54�37�, a = 326.39, and b = 508.69 ft, solve the
triangle for angles B and C and side c.

Solution
Applying the law of sines, we get

Multiplying both sides by sin B, we get

508.69 = 519.64 (sin B)

Solving for sin B, we get

Now applying the inverse trig function, we get

B = arcsin 0.97892 = 78°.2147° = 78.12�53�

From this we get

C = 180 - A - B = 180 - (A + B) = 179°59�60�

- (38°54�37� + 78°12�53�) = 62°52�30�

Again applying the law of sines, we get

and

c = (sin 62.875°)(519.65) = 462.50 ft

(When the side opposite the given angle is shorter than
the other given side, as is the case in this example, there are
two possible solutions to the problem. In this case, angle B
can also equal 180° - 78°12�53� = 101°47�07�, because the
sine of 101°47�07� also equals 0.97892. Angle C would then
equal 39°18�16�, and side c would equal 329.16 ft.)

Law of Cosines In reference to Figure 3-36, the law of
cosines is written as follows:

a2 = b2 + c2 - 2bc(cos A) (3-16a)

b2 = a2 + c2 - 2ac(cos B) (3-16b)

c2 = a2 + b2 - 2ab(cos C) (3-16c)

The law of cosines is applied to problems in which
either (a) two sides and the included angle are known or
(b) only three sides are known. (When the included angle is
90°, the foregoing equations reduce to the Pythagorean
theorem because cos 90° = 0.) Any side of the triangle that
appears on the left half of the equation must be the side oppo-
site the angle used in the cosine function on the right half.

Example 3-15
Given a triangle with a = 45.0, b = 67.0, and angle C = 145°,
solve for side c and angles A and B.

c
sin C

=
a

sin A
= 519.65 (from previous)

sin B =
508.69
519.64

= 0.97892

508.69
sin B

=
326.39

sin 38.9103
= 519.64 ft

b
sin B

=
a

sin A

Solution
The law of sines cannot be applied here to begin with
because we do not know the length of the side opposite the
given angle. We must first apply the law of cosines to solve
for side c, as follows:

(Note that cos 145 is negative, and the product of two
negative numbers is a positive number.)

From the law of sines, we can now write

from which we get A = 14°
Finally, B = 180 - A - C = 180 - 159 = 21°

Example 3-16
Given a triangle with the sides a = 49.3 m, b = 21.6 m, and 
c = 42.6 m, determine the interior angles.

Solution
Applying the law of cosines to solve for angle A, we get

From the law of sines, we then get

B = 25°53�34.9� and C = 59°27�27.3�

Trigonometric Identities
A trigonometric identity is an equation that is true for any
angle. A short list of such identities that are often useful in
surveying is presented here for reference. [Note that when a
trig function is squared, such as (sin A)2, it is written as sin2 A.
First evaluate the trig function and then square the result; do
not square the angle before taking the trig function.]

Selected Trigonometric Identities for Surveying Applications

(1)

(2) sin2 A + cos2 A = 1

(3) tan2 A + 1 = sec2 A

(4) sin (A + B) = (sin A)(cos B) + (cos A)(sin B)

(5) sin (A - B) = (sin A)(cos B) - (cos A)(sin B)

(6) cos (A + B) = (cos A)(cos B) - (sin A)(sin B)

tan A =
 sin A

cos A

= 94°38¿ 57.4–
A = arccos (-0.08105655) = 94.6493°

cos A = -0.08105655

cos A =
(2430.49 - 466.56 - 1814.76)

(-1840.32)

2430.49 = 466.56 + 1814.76 - 1840.32 (cos A)

49.32 = 21.62 + 42.62 - 2(21.6)(42.6) cos A

107.0
 sin 145

=
45.0
sin A

c = 211,453.5 = 107.0

c2 = 2025 + 4489 + 4940 = 11453.5

c2 = 2025 + 4489 - 2(45.0) (67.0) (-0.8192)

c2 = 45.02 + 67.02 - 2(45.0) (67.0) (cos 145°)

c2 = a2 + b2 - 2ab (cos c)
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FIGURE 3-37. The rectangular, or XY, coordinate system.

(7) cos (A - B) = (cos A)(cos B) + (sin A)(sin B)

(8)

(9)

(10) sin 2A = 2(sin A)(cos A)

(11) cos 2A = cos2 A - sin2 A

(12)

(13)

(14)

(15)

3-3 COORDINATE AND
ANALYTIC GEOMETRY

One of the best ways to indicate the relative positions of survey
points (such as boundary markers, control survey stations, or
topographic features) is to assign a pair of coordinates to each
point. Coordinates are numbers that represent the distances
(or distance and angle) of a particular point from a fixed
reference position.

In plane surveying, the rectangular coordinate system is
most useful. The use of polar coordinates is also of interest to
the surveyor. The increasing use of computerized land-title
systems and survey data files makes the use of coordinates a
necessity for most surveying applications. Also, several of the
electronic total survey stations are equipped with desktop
computers and software for coordinate computations in
the field.

In certain surveying applications, it may be necessary to
compute the coordinates of intersection points between two
lines or between a line and a circle. The mathematical proce-
dure for computations of this type is called analytic geometry,
and it is basically a combination of algebra and geometry. It
is concerned with the algebraic equations that define lines,
circles, and other geometric shapes in the rectangular coordi-
nate system.

In this section, the basic concepts of coordinate and
analytic geometry are presented. This (along with the previ-
ous discussion of plane geometry and trigonometry) should
help prepare the beginning student for the applied and more
advanced topics covered in later chapters of the book.

Rectangular Coordinates
A rectangular coordinate system is shown in Figure 3-37. It
comprises two perpendicular lines called the x axis (the
horizontal line, or abscissa axis) and the y axis (the vertical
line, or ordinate axis).

tan aA

2
b =

(1 - cos A)

sin A

 cos aA

2
b =

(1 +  cos A)

2

 sin aA

2
b = C

(1 -  cos A)

2

tan2A =
2tan A

(1 - tan2A)

tan(A - B) =
(tan A -  tan B)

[1 + (tan A)(tan B)]

tan(A + B) =
(tan A + tan B)

[1 - (tan A)(tan B)]

The point of intersection of the two axes is called the
origin. Distances measured along the x axis to the right of
the origin are considered positive, while distances
measured to the left of the origin are considered negative.
(A negative distance has no physical meaning, except to
indicate direction from the origin of a coordinate system.)
On the y axis, distances above the origin are positive, while
those measured below the origin are considered to be
negative.

In surveying applications, as we shall see later in the
text, the y axis usually corresponds to the north–south
meridian. The north direction is represented by positive
y values and the south by negative y values. Positive x dis-
tances are measured in an easterly direction and negative 
x distances are measured in a westerly direction.

On the xy plane of the rectangular coordinate system,
the location of a point can be described simply by assigning
it a pair of numbers (x, y). The value of x represents the dis-
tance of the point from the origin, measured parallel to the x
axis (the abscissa); the value of y represents the distance of
the point from the origin, measured parallel to the y axis (the
ordinate).

The pair of numbers (x, y) are called the coordinates of the
point. For example, in Figure 3-37, point A has coordinates
(50, 100), point B has coordinates (75, -150), point C has
coordinates (-100, -100), and point D has coordinates (-100,
50). The coordinates of the origin are, of course, (0, 0).

If we are given the coordinates of two different points
that lie on the ends of a straight line, we can easily compute
the length of the line. This simple application of coordinate
geometry is most useful for solving many practical surveying
problems. It is illustrated in the following example.

Example 3-17
Points A and B define the endpoints of a straight line, as
shown in Figure 3-38. The coordinates of A and B are (125, 25)
and (155, 65), respectively. What is the length of line AB?

Solution
Consider the right triangle, which has AB as its hypotenuse.
The length of the side parallel to the x axis is simply the
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FIGURE 3-38. Illustration for
Example 3-17.

FIGURE 3-39. The location of a
point may be expressed in polar or
rectangular form. In polar form,
a distance (r) and an angle (A)
must be given.

difference in the x coordinates from A to B, or 155 - 125 =
30 units (feet, meters, etc.). This difference is often called Δx
(pronounced “delta x”). The length of the side parallel to the
y axis is the difference in the y coordinate values, or y = 65 - 25
= 40 units. Because AB is the hypotenuse of a right triangle,
we can use the Pythagorean theorem to solve for its length
as follows:

Polar Coordinates
In the polar coordinate system, a point may be located at a dis-
tance r from the origin and at an angle A from the horizontal
or x axis. This is illustrated in Figure 3-39. The coordinates are
expressed as (r, A). [Two numbers are always needed to locate a
point on a plane—either (distance, distance) as with rectangu-
lar coordinates or (distance, angle) as with polar coordinates.]

It is sometimes necessary to convert from rectangular to
polar, or from polar to rectangular, coordinates. Also, this
type of computation will be applied (with slightly different
terminology) in certain surveying problems discussed later
in the text. The transformation of coordinates from one
system to the other involves the application of right-angle
trigonometry and the Pythagorean theorem as follows:

Rectangular to polar:

(3-17)

Polar to rectangular:

x = r(cos A) and y = r(sin A) (3-18)

r = 2x2 + y2 and A = arctan ay

x
b

AB = 2¢x2 + ¢y2 = 2302 = 402 = 12500 = 50units

Example 3-18

a. A point has rectangular coordinates (60, 80). Determine
its corresponding polar coordinates.

b. A point has polar coordinates (130, 22.62°). Determine
its corresponding rectangular coordinates.

Solution

a. Applying Equation 3-17, we get

The polar coordinates are (100, 53.13°).

b. Applying Equation 3-18, we get

x = 130(cos 22.62) = 130(0.9231) = 120

y = 130(sin 22.62) = 130(0.3846) = 50

The rectangular coordinates are (120, 50).

The Straight Line
A straight line can be expressed algebraically in terms of the
(x, y) coordinates for any point on the line. The equation of
a straight line may be written as follows:

y = mx + b (3-19)

where x and y are the coordinates of any point on the line

m = the slope of the line (or Δy/Δx)

b = the y intercept (where the line crosses the y axis)

A = arctan a80
60
b = arctan1.333 = 53.13°

r = 2602 + 802 = 110,000 = 100
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FIGURE 3-40. In the rectangular coordinate system, a
straight line can be described by the equation y = mx + b.

FIGURE 3-41. Illustration for Example 3-19. FIGURE 3-42. Illustration for Example 3-20.

The straight line on an xy plane is illustrated in
Figure 3-40. [Because x is taken only to the first power 
(x = x1), Equation 3-19 is linear; that is, it plots as a
straight line on the xy plane.]

Example 3-19
Determine the equation of a straight line, which passes
through point A with (x, y) coordinates of (20, 10), and point
B, which has the coordinates (50, 40).

Solution
Each pair of coordinates on the line must satisfy Equation 3-19,
y = mx + b, and so we can write the following set of equations:

40 = 50m + b (1)

10 = 20m + b (2)

These two simultaneous linear equations in two
unknowns, m and b, can be solved as follows:

Subtract Equation 2 from Equation 1 to obtain

30 = 30m

from which m = 1
Now substitute m = 1 into either Equation 1 or 2:

40 = 50(1) + b

from which b = -10
The equation of the line, then, which passes through

the given points A and B is y = x - 10 (Figure 3-41); the

coordinates of any other points on that line must satisfy
this equation. For example, the coordinates of the point
where the line intersects the x axis must be (10, 0) because
y must be zero at that point.

Example 3-20
Line L is defined by the equation 3x - 5y = 10 and line P is
parallel to it. If line P passes through point (7, 7), what is its
equation?

Solution
The equation for line L (Figure 3-42) can be rewritten in the
y = mx + b form by transposing terms as follows:

Subtract 3x from both sides

-5y = -3x + 10

Divide both sides by -5

Therefore, for line L, the slope m = 0.6 and the y intercept
b = -2.

Now, because line P is to be parallel to line L, it must
have the same slope, or m = 3/5 = 0.6; also, we know one
point on line P with coordinates (7, 7). Applying these data,
we can write

7 = (0.6)(7) + b

from which b = 7 - 4.2 = 2.8
The equation of line P, then, must be y = 0.6x + 2.8.

Example
Line C has the equation y = 0.5x + 2 and line D has the equa-
tion y = -x + 8. Determine the coordinates of the intersection
point P between lines C and D.

Solution
Because the intersection point P lies on both lines, the
equations for both C and D are valid simultaneously when x

y = a3
5
bx - 2 or y = 0.6x - 2
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FIGURE 3-43. Any point on a circle satisfies the equation
r2 = (x - h)2 + (y - k)2

and y are the coordinates of point P. Solving the equations
for C and D, we get

from which y = 4

and because y = -x + 8 (line D), we get x = 4.
Therefore, the coordinates of the intersection point P

are (4, 4).

The Circle
A circle is defined geometrically in terms of its center and
its radius. The general form for the equation of a circle
(Figure 3-43) is

r2 = (x - h)2 + (y - k)2 (3-20)

where r is the radius of the circle and (h, k) are the coordinates
of its center. Any point on the circle with coordinates (x, y)
satisfies this equation.

Example
What is the equation of a circle that has its center at (-3, 5)
and that passes through a point at (4, 2)?

y = -x + 8 ¡
+ (y = -x + 8)

3y =           12

2(y = 0.5x + 2) ¡         2y = x + 4

Solution
The radius of the circle may be computed as follows:

(h, k) = (-3, 5)

(x, y) = (4, 2)

because h = -3 and k = 5 from the given data. The equation
of the circle, then, is

Example
Determine the points of intersection of the line y = x + 1 and
the circle 53 = (x + 3)2 + (y - 4)2

Solution
We can determine the points of intersection by solving the
equations of the line and the circle simultaneously as follows:

y = x + 1 (1)

53 = (x + 3)2 + (y - 4)2 (2)

By substitution of x + 1 for y, we get

From y = x + 1, we get

y = 4.18 + 1 = 5.18 and y = -4.18 + 1 = -3.18

The two points of intersection have the coordinates
(4.18, 5.18) and (-4.18, -3.18).

C
35
2

= x = ; 4.18

35
2

= x2

35 = 2x2

53 = 2x2 + 18

53 = (x2 + 6x + 9) + (x2 - 6x + 9)

53 = (x + 3) (x + 3) + (x - 3) (x - 3)

53 = (x + 3)2 + [(x + 1) - 4]2

58 = [x + 3]2 + [y - 5]2
115822 = [x - (-3)]2 + [y - (5)]2

r = 158 = 7.62

r2 = 58

r2 = 49 + 9

r2 = [7]2 + [-3]2
r2 = [(4) - (-3)]2 + [(2) - (5)]2

Practice Problems

1. Solve the following linear equations:

a. 5x - 2 = 13
b. 8 - 5t = 18
c. 3(y - 2) = -y
d. 5 - (n + 2) = 5n
e. 3 - 6(2 - 3x) = x - 5

2. Solve the following linear equations:

a. 6x - 5 = 13
b. 11 - 7t = 17
c. 4(y - 3) = -2y
d. 8 - (2n + 12) = 6n
e. 5 - 7(3 - 4x) = 2x - 15
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3. Solve the following quadratic equations:

a. 4x2 = 100
b. x2 + 3x - 10 = 0
c. 3x2 + 5x + 2 = 0
d. 8x2 = 5x + 2
e. 5y2 + 7y = 2

4. Solve the following quadratic equations:

a. 5x2 = 125
b. x2 + x - 12 = 0
c. 2x2 - 5x - 2 = 0
d. 3x2 = 2x - 2
e. 3y2 + 5y = 3

5. Solve the following sets of simultaneous equations:

a. x - 3y = 6
2x + 3y = 3

b. 3x - 2y = 4
x + 3y = 2

c. 2x + y = 1
5x - 2y = -11

6. Solve the following sets of simultaneous equations:

a. 3x - 2y = 6
2x + 2y = -1

b. 2x - 3y = -3
x + 2y = 2

c. x + 2y = 1
2x - 5y = -11

7. Determine the areas of the figures shown in Figure 3-44.

8. Determine the areas of the figures shown in Figure 3-45.

9. Solve the following right triangles for the parts not
given:

a. A = 40°10�13�, hypotenuse = 402.36 ft
b. A = 62°09�15�, hypotenuse = 338.74 m
c. A = 36°22�10�, adjacent side = 360.41 ft
d. Hypotenuse = 428.29 m, opposite side = 397.06 m
e. Hypotenuse = 409.31 ft, adjacent side = 274.82 ft
f. Opposite side = 375.82 m, adjacent side = 276.05 m

10. Solve the following right triangles for the parts not given:

a. A = 42°23�12�, hypotenuse = 437.25 ft
b. A = 61°28�47�, opposite side = 345.51 m
c. A = 35°46�17�, adjacent side = 358.17 ft
d. Hypotenuse = 432.89 m, opposite side = 398.24 m
e. Hypotenuse = 471.65 ft, adjacent side = 270.46 ft
f. Opposite side = 368.47 m, adjacent side = 274.61 m

11. Solve the following oblique triangles for the parts not
given (capital letter = angle; lowercase = opposite side):

a. A = 63°29�10�, B = 58°42�07�, b = 458.24 ft
b. A = 27°38�14�, B = 32°18�25�, c = 348.27 m

FIGURE 3-44. Illustration for 
Problem 7.
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c. A = 35°21�54�, a = 315.46 ft, b = 478.28 ft
d. A = 64°27�13�, a = 357.46 m, b = 295.87 m
e. A = 51°10�13�, b = 358.15 ft, c = 307.01 ft
f. A = 61°50�29�, b = 451.63 m, c = 197.17 m
g. a = 289.95 ft, b = 363.75 ft, c = 497.38 ft

12. Solve the following oblique triangles for the parts not
given (capital letter = angle; lowercase = opposite side):

a. A = 74°22�53�, B = 34°15�45�, a = 287.46 ft
b. A = 48°17�35�, B = 64°26�41�, c = 396.41 m
c. A = 25°04�16�, a = 228.71 ft, b = 517.09 ft
d. A = 59°17�23�, a = 451.14 m, b = 398.36 m
e. A = 55°42�35�, b = 426.82 ft, c = 411.28 ft
f. A = 67°04�41�, b = 475.74 m, c = 162.27 m
g. a = 305.13 ft, b = 485.27 ft, c = 572.16 ft

13. The vertical angle from level ground to the top of a
building is 40°. The angle is measured from a point that
is 25 m distant from the base of the building. How tall is
the building?

14. The vertical angle from level ground to the top of a
building 65°. The angle is measured from a point that is
100 ft distant from the base of the building. How tall is
the building?

15. A tract of land has the shape of a trapezoid, as shown in
Figure 3-46. The lengths of three sides and the sizes of
the two interior right angles are given. Determine the
two unknown interior angles and the length of the
fourth side.

16. A tract of land has the shape of a trapezoid, as shown in
Figure 3-47. The lengths of three sides and the sizes of
the two interior right angles are given. Determine the
two unknown interior angles and the length of the
fourth side.

17. A railroad embankment has the shape of a trapezoid,
with a horizontal top 25 ft across, sloping sides each
15 ft in length, and a height of 8 ft. Determine the width
at the base of the embankment.

18. A railroad embankment has the shape of a trapezoid
with a horizontal top 10 m across, sloping sides each
4 m in length, and a height of 3 m. Determine the width
at the base of the embankment.

FIGURE 3-45. Illustration for 
Problem 8.

FIGURE 3-46. Illustration for Problem 15.
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FIGURE 3-47. Illustration for Problem 16.

FIGURE 3-48. Illustration for Problem 19.

FIGURE 3-49. Illustration for Problem 20.

19. Determine the lengths of the three unknown sides of
the tract of land shown in Figure 3-48.

20. Determine the lengths of the three unknown sides of
the tract of land shown in Figure 3-49.

21. A triangular piece of land is bounded by 135 ft of
fencing on one side, 145 ft of stone wall on another side,
and 245 ft of road frontage on the third side. What are
the interior angles formed by the boundary lines?

22. A triangular piece of land is bounded by 42.5 m of
fencing on one side, 51.2 m of stone wall on another
side, and 85.7 m of road frontage on the third side.
What are the interior angles formed by the boundary
lines?

23. To determine the distance between points X and Y on
the opposite sides of a river, a surveyor measures a
distance of 300 m between points X and Z, where Z is
set on the same side of the river as X. Angle X-YZ is
measured to be 85°30� and angle Z-XY is measured to
be 35°45�. Compute the distance XY.

24. To determine the distance between points U and V on
the opposite sides of a river, a surveyor measures a dis-
tance of 750 ft between points U and W, where W is set
on the same side of the river as U. Angle U-VW is
measured to be 75°30�, and angle W-UV is measured to
be 45°15�. Compute the distance UV.

25. Two points on the opposite sides of a lake, A and B, are
355.5 and 276.2 ft, respectively, from a third point, C, on
the shore. The lines joining points A and B with point C
intersect at an angle of 81°15� (angle C-AB). What is
distance AB?

26. Two points on the opposite sides of a lake, D and E, are
355.5 and 276.2 ft, respectively, from a third point F on
the shore. The lines joining points D and E with point F
intersect at an angle of 71°45� (angle F-DE). What is dis-
tance DE?

27. Demonstrate the validity of the following trigonometric
identities (show that the left side equals the right side)
for an angle A = 30°:

a.

b. sin2 A + cos2 A = 1
c. sin 2A = 2(sin A)(cos A)

d.

28. Demonstrate the validity of the following trigonometric
identities (that the left side equals the right side) for
angles A = 10° and B = 20°:

a. sin (A + B) = (sin A)(cos B) + (cos A)(sin B)
b. cos (A - B) = (cos A)(cos B) + (sin A)(sin B)

c.

29. Determine the length of straight line AB, where point A
has xy coordinates (15, 10) and point B has coordinates
(60, 70).

30. Determine the length of straight line CD, where point C
has rectangular coordinates (–20, 30) and point D has
coordinates (50, -20).

tan(A + B) =  
(tanA + tan B)

[1 - (tan A)(tan B)]

tanaA

2
b =  

(1 - cosA)

sin A

tan A =  
sin A

cos A
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31. Determine the equation of a line that passes through
points at (0, 20) and (20, 60).

32. Determine the equation of a line that passes through
points (-50, 25) and (25, 25).

33. Determine the equation of line AB in Problem 29.

34. Determine the equation of line CD in Problem 30.

35. Line EF has the equation y = 2x - 4, and line GH has the
equation y = x. Determine the coordinates of the point
of intersection between EF and GH.

36. Line JK has the equation y = -0.5x + 5, and line LM has
the equation y = 1.5x - 5. Determine the coordinates of
the point of intersection between JK and LM.

37. What is the equation of a circle with its center at (0, 0)
and which passes through point (3, 4)?

38. What is the equation of a circle with its center at (3, 4)
and which passes through point (10, 4)?

39. Determine the intersection points between line y = x
and the circle of Problem 37.

40. Determine the intersection points between line y = 10
and the circle of Problem 38.
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CHAPTER FOUR

Most surveying data are eventually plotted and
drawn as a boundary plat, a topographic map, a
building site plan, a profile of the ground along

a route, or a series of route cross sections. With the exception
of the last two types of drawings, the lines shown on the
paper represent projections of points onto a flat and hori-
zontal surface. The drawing paper represents the level refer-
ence plane. The scaled length of any line on the drawing is
proportional to the actual horizontal distance between its
endpoints on the Earth.

The tasks of determining the horizontal distance between
two existing points and of setting a new point at a specified
distance from some other fixed position are fundamental
surveying operations. The surveyor must select the appropriate
equipment and apply suitable field procedures to determine
or set and mark distances with the required degree of accuracy.

Depending on the specific application and the required
accuracy, one of several methods may be used to determine
horizontal distance. The most common methods include
pacing, taping, and electronic distance measurement (EDM).

This chapter begins with a brief discussion of rough
distance measurement by pacing and by using a measuring
wheel. Both require that the line be traversed or walked by
the surveyor. Stadia, however, is an indirect method of
measurement (also called tacheometry) that makes use of a
transit, a leveling or stadia rod, and trigonometry the
surveyor does not actually have to traverse the line being
measured. Taping has been the traditional surveying method
for horizontal distance measurement for many years. It is a
direct and relatively slow procedure that requires much
manual skill on the part of the surveyors. In taping, unlike
electronic methods, a line to be measured must be completely
accessible to the surveyor. Although modern electronic

instruments are now replacing the tape for many measurement
applications, all surveyors must still be skilled with tape,
plumb bob, and other tape accessories. Taping equipment,
field procedures, and methods to increase the relative
accuracy of a taped distance are discussed in this chapter.

The use of electronic distance measuring instruments
(EDMIs) is also covered in this chapter. EDM, of course,
represents the latest technology for distance measurement. It
is fast, and it can be highly accurate over long distances. It is
unlikely, however, that EDM will entirely replace the tradi-
tional surveyor’s tape and plumb bob in the immediate
future. This is particularly true when measuring short
distances for ordinary construction surveys or other routine
survey applications where it simply does not pay to set up
and use an expensive piece of electronic equipment.

The latest evolution in surveying technology is to use a
series of satellites to determine the relative position of survey
points on the ground. This technology, known as global
positioning systems (GPS), has widespread applications. It
was developed by the Department of Defense for military
use; however, it has been adapted for a wide range of civilian
navigational needs. This technology is discussed more
thoroughly in Chapter 7.

4-1 ROUGH DISTANCE
MEASUREMENT

In certain surveying applications, only a rough approxi-
mation of distance is necessary; a method called pacing, or
the use of a simple measuring wheel, may be sufficient in
these instances. Locating topographic features during the
preliminary reconnaissance of a building site, searching for
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the property corners and other survey markers shown on a
plat, and checking measured distances to avoid blunders are
some examples of when only a rough distance measurement
is necessary.

Distances can be measured with an accuracy of about
1:100 by pacing. Although providing only a crude measure
of distance, pacing has the distinct advantage of requiring no
equipment. It is a skill every surveyor or construction tech-
nician should have.

Pacing simply involves counting steps or paces while
walking naturally along the line to be measured. The sur-
veyor’s unit pace length is then multiplied by the number of
paces counted. A unit pace is taken as the distance between
the left and right toes (or left and right heels) or vice versa of
two successive positions (see Figure 4-1). It is expressed in
terms of meters per pace (m/pace) or feet per pace (ft/pace).
(Some surveyors count full strides instead of paces; a stride
comprises two paces.)

Distance = unit pace * number of paces (4-1)

For example, if a surveyor has a unit pace of 2.7 ft/pace
and walks a line while counting 86.5 paces, the distance is
computed as

Distance = 2.7 ft/pace * 86.5 paces = 234 ft

It would be misleading to report the distance as 233.55 ft,
as displayed by an electronic calculator, because that would
imply more precision than is actually used in the measure-
ment. Paces may be counted to the nearest half pace; paced
distances should be rounded to no more than three significant
figures.

Depending on the skill and care applied, a paced
distance can be determined with a relative accuracy of
between 1:50 and 1:200. When pacing on sloping ground,
the accuracy would tend to be on the low end of that range,
unless the surveyor recalibrates his or her unit pace to
account for the slope.

Determining a Unit Pace
Some surveyors intentionally adjust the length of their pace
to a predetermined integer value, typically 3 ft or 1 m. Most
prefer to walk normally, however, and use the natural value
of their pace; of course, the average length of a pace varies
among individuals.

A unit pace can easily be determined by walking
normally along a line of known distance on level ground.
The number of paces taken to walk the distance is counted.
The unit pace is then computed as the ratio of known dis-
tance to the average number of paces.

Example 4-1
A surveying student walked along a given line that was
known to be 200.0 ft long to determine her average unit
pace. She paced the line five times, recording 78, 76.5, 77,
87, and 76 paces, respectively, in her field book.

a. Determine her average unit pace.
b. Compute the 95 percent error from the given data, and

determine the relative accuracy of her pacing method.
c. If the surveyor then counted an average of 123.5 paces

while pacing off a line of unknown distance, what is the
distance?

Solution
a. Upon first examining the recorded data, it should be

clear that a blunder was made in counting or recording
the value of 87 paces; it is too far off from the other
values. The way to handle this is simply to disregard
that value and compute the average number of paces
using the remaining four “good” data values.

b. Apply Equation 2-1 to compute the 95 percent error, as
follows:

Now applying Equation 2-3, relative accuracy = 1:D/C,
in which C, the error of closure, is taken as E95, and D is

E95 = 1.96 * C
2.19

4(4 - 1)
= 0.8 paces (from Equation 2-1)

©  ¢
2

= 2.19

(76 -  76.9)2 = 0.81

(77 -  76.9)2 = 0.01

(76.5 -  76.9)2 = 0.16

(78 -  76.9)2 = 1.21

Unit pace =  
distance

pace 
 =  

200.0
76.9

 = 2.6 ft/pace

= 76.9 paces

Average number of paces =  
78 + 76.5 + 77 + 76

4

FIGURE 4-1. Pacing provides a
simple yet useful way to make
rough distance measurements.
All surveyors and construction
technicians should know their
own personal unit pace value.



Measuring Horizontal Distances 61

taken as the average number (most probable value) of
paces, we get

c. Measured distance = 2.6 ft/pace * 123.5 paces = 320 ft

(When pacing relatively long distances, it is easy to lose
count of the number of paces. A small mechanical device called
a pedometer can be attached to the surveyor’s leg to auto-
matically count the number of paces or strides; it may also be
calibrated to display the distance paced, in meters or in feet.)

Using a Measuring Wheel
A simple measuring wheel mounted on a rod can be used to
determine distance by pushing the rod and rolling the wheel
along the line to be measured (see Figure 4-2). An attached

Relative accuracy = 1 : 
76.9
0.8

= 1 : 96

device called an odometer serves to count the number of
turns, or revolutions, of the wheel. From the known circum-
ference of the wheel and the number of revolutions, dis-
tances for reconnaissance can be determined with relative
accuracies of about 1:200. This device is particularly useful
for rough measurements of distance along curved lines, as
well as for quick checks of route survey measurements or
construction pay quantity measurements.

4-2 TAPING: EQUIPMENT
AND METHODS

Measuring horizontal distances with a tape is simple in
theory, but in actual practice it is not as easy as it appears at
first glance. It requires skill and experience for a surveyor to
be able to tape a distance with a relative accuracy between
1:3000 and 1:5000, which is a generally accepted range for
most preliminary surveys, ordinary property surveys, and
many types of construction layouts.

Using good-quality equipment and under normal field
conditions, an experienced surveyor can readily achieve a
1:3000 accuracy without having to correct for systematic
errors. Nevertheless, when handling a tape and plumb bob
for the first time, many students are quite surprised at the
time and effort required to achieve that degree of accuracy. It
takes much practice.

Tapes and Accessories
Most of the original surveys in the United States and Canada
were done using a Gunter’s chain for measurement of
horizontal distances. To this day, the term chaining is often
used to describe the taping operation. A Gunter’s chain has a
length of 66 ft and is subdivided into 100 heavy wire links. It
is the original unit of measurement used in the U.S. Public
Land Survey. A distance like 3 ch 75 lk, for example, may
still be seen on old property descriptions (3.75 ch * 66 ft/ch =
247.50 ft).

Steel Tapes Modern steel tapes are available in a variety of
lengths and cross sections; among the most commonly used
are the 100-ft tape and the 30-m tape, which are 1/4 in and
6 mm wide, respectively. Both lighter as well as heavier duty
tapes are also available. A steel tape is generally stored and car-
ried on an open-reel case when not in use (see Figure 1-1d).
Some steel tapes may have a white nylon coating for durability
as well as easy-to-read graduations. (Lightweight fiberglass
tapes are also available, but are generally not used for precise
work.)

A surveyor’s steel tape may be graduated in one of
several ways. It is most important for the surveyor to be
certain of the type of markings on the tape to avoid
blunders. It is preferable to work with a tape that is
graduated throughout its entire length in feet, tenths, and
hundredths (0.01) of a foot, or in meters and millimeters
(0.001 m). A section of a tape graduated in hundredths of a
foot is shown in Figure 4-3. (The beginning student must

FIGURE 4-2. A typical measuring wheel used for making rough
distance measurements. (Courtesy of Sokkia Corporation)
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remember that in the United States, distances are not sur-
veyed in feet, inches, and fractions of an inch; for construc-
tion, conversion from the decimal parts of a foot to inches
and fractions of an inch must be made by field construction
personnel, as required.)

Some tapes have the zero point at the very end of the
tape or hook ring; others have the zero mark offset from the
end of the tape (see Figure 4-4). Again, it is essential that
the surveyor knows exactly what type of tape is being used in
order to avoid blunders.

Cut Tapes Some older or less-expensive American tapes
are marked every foot, with only the first and last foot
intervals graduated in tenths and hundredths of a foot. A
metric tape may be marked every meter and decimeter, with
only the first and last decimeters graduated in millimeters.
These tapes are called cut tapes because a mental subtraction
must be made before recording the measured distance.

For example, if an even foot mark of 57 is held over
point B and 0.15 is read at the head of the tape (see Figure 4-5),
the 0.15 must be “cut,” or subtracted, from 57 ft to give the
distance of 56.85 ft. This can be confusing and may lead to
many serious blunders. The only benefit of a cut tape is that
it is cheaper than a fully graduated tape.

Add Tapes Some 100-ft tapes have graduations exten-
ding 0.99 ft beyond or in back of the zero mark, and
thus outside the 100-ft length. A metric tape may have
an extended decimeter beyond the zero, graduated in
millimeters. These graduations are numbered backward
(see Figure 4-6), and the tape is called an add tape because
the decimal fraction of a foot or meter must be added to
an integer value held over the opposite point. If the end
graduations are mistakenly used instead of the zero mark
(see Figure 4-6), a distance of 100.99 ft, or 30.1 m, would
be measured.

FIGURE 4-3. A steel tape in a
convenient reel and typical tape
markings. (See also Figure 1-1d.)

FIGURE 4-4. Some surveyors’ tapes have the zero mark at the endpoint of the tape, while others have zero offset from
the end. (Courtesy of The Lietz Company)
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Like the cut tape, an add tape tends to cause blunders in
the work. For most surveyors, it is well worth the small extra
cost of a fully graduated tape to eliminate this source of error.

Invar and Lovar Tapes For very precise measurements
and for checking or standardizing the length of ordinary
steel tapes, special tapes made from a nickel–steel alloy may
be used. Depending on the specific alloy, they are called
either Invar or Lovar tapes. These tapes are relatively insensi-
tive to temperature changes, thus eliminating systematic
errors due to expansion or contraction. But because they are
relatively expensive and must be handled with great care,
they are not used for ordinary surveying applications.

Accessories for Taping Accurate taping cannot be done
with the tape alone. When taping horizontal distances, the
tape very often must be held above the ground at one or

both ends. One of the most important accessories for proper
horizontal taping is the plumb bob (see Figure 4-7). It is a
small metal weight with a sharp, replaceable point. Freely
suspended from a cord, the plumb bob is used to project the
horizontal position of a point on the ground up to the tape,
or vice versa. This procedure, which requires much skill and
practice, is described later in this section.

When taping horizontal distances, it is necessary to hold
the tape as close to a horizontal position as possible. To
reduce errors caused by an excessively sloped tape, some sur-
veyors make use of a hand level. A horizontal line of sight
can be easily obtained by looking through the level toward
the surveyor at the higher end of the tape. This, along with
proper judgment, gives the surveyors an idea of how high to
hold their end of the tape.

Whenever possible, a spring-balance tension handle
should be attached to the forward end of the tape to indicate

FIGURE 4-5. A cut tape.

FIGURE 4-6. A 100-ft tape with graduations outside the 100-ft length. In use, the graduated end and the add mark are kept
forward, with the 100-ft mark at the rear. In laying out 100-ft intervals, the 100 mark and the zero mark are used. In measur-
ing distances less than 100 ft, for example, 64.32 ft, the head chainman stops when point B is reached and holds the zero
mark at that point. The rear chainman finds that the previous point marked on the ground comes between the 64- and the
65-ft mark. Choosing the smaller, he or she calls “holding 64” and holds the 64-ft mark over the ground mark. The head
chainman reads the value of the backward graduation, that is, 0.32 ft, at point B.
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FIGURE 4-7. A plumb bob is one of the simplest yet most
important accessories for accurate surveying. The vertical
cord transfers a position from the steel tape to the wooden
stake in the ground. (Courtesy of The Lietz Company)

FIGURE 4-8. A tape clamp handle. (Courtesy of The Lietz
Company)

FIGURE 4-9. A nonmetallic 15-m fiberglass tape. (Courtesy
of The Lietz Company)

whether or not the correct pull or tension is applied. Apply-
ing the correct tension is particularly important if a relative
accuracy of better than 1:3000 is required. All beginning stu-
dents should use the tension handle at least once to get a feel
for the correct pull on the tape; many beginners are sur-
prised, and a bit dismayed, at how hard they have to pull for
good taping results.

For precise taping with accuracies better than 1:5000,
temperature corrections must be made (in addition to
applying the correct tension) to account for the possibility of
tape expansion or contraction; a tape thermometer may be
used for this purpose. It is attached to the tape near one end;
the bulb should be in contact with the steel.

A tape clamp handle (see Figure 4-8) is used for provid-
ing a firm grip on the tape at any intermediate point, with-
out causing damage to the tape or injury to the surveyor
from the steel edge. Occasionally, however, a steel tape may
be accidentally damaged in the field. Tape repair kits are
available for splicing broken tapes; a spliced tape must first
be recalibrated or standardized before being put back in use
to avoid systematic errors.

Nonmetallic woven tapes made of synthetic yarn, or
tapes made of fiberglass, may be used for measuring dis-
tances when only low relative accuracy (less than 1:3000) is
required, such as in preliminary topo surveys. They are usu-
ally used in 50-ft or 15-m lengths and may be graduated on
both sides, one side in U.S. Customary units and the other in
metric units (see Figure 4-9).

Precautions to Avoid Damaging the Tape Although
most steel tapes used for surveying will withstand a direct
tension of 80 lb (360 N) or more, it is very easy to break
them by misuse. When a tape is allowed to lie on the ground,
unless it is kept extended so that there is no slack, it has a
tendency to form small loops like that shown in Figure 4-10.
When tension is later applied, the loop becomes smaller
until either it jumps out straight or the tape breaks, as
shown. If a tuft of grass or any object is caught by the loop,
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FIGURE 4-10. How a loop breaks a tape.

the tape almost always breaks or at least develops a perma-
nent kink.

To avoid this, the tape must be handled so that no slack
can occur. For measurements of less than a full tape length,
the tape should be kept on the reel. It should be reeled out to
the necessary length and reeled in as soon as possible. For
measurements greater than the tape length, when the tape is
off the reel, the tape should be kept fully extended in a
straight line along the direction of measurement. It may be
allowed to lie on the ground in this position, but when it is to
be moved, it must be dragged from one end only. If it is nec-
essary to raise the tape off the ground, the two surveyors
must lift the tape simultaneously and keep it in tension
between them.

When the end of the measurement is reached, where a
less-than-tape-length measurement is required, the surveyor
must not pull in the tape hand over hand. This creates a pile
of tape on the ground. This is safe only on a smooth surface.
Instead, he or she must do one of three things:

1. Carry the end of the tape beyond the point, lay it on the
ground, and walk back.

2. Or reel in the tape the requisite amount.

3. Or take in the tape, forming figure-eight loops hanging
from his or her hand.

Each length of tape must be laid in the surveyor’s hand
flat on the previous section and never allowed to change.
Later, to extend the tape, the surveyor must lay it out care-
fully, as he or she walks forward, by releasing one loop at a
time. This third method requires care and practice and
should not be attempted until after considerable practice
over a smooth floor where there is little danger.

If possible, no vehicle should be allowed to run over the
tape. If the tape is across a smoothly paved street, a pneu-
matic tire can pass over the tape without damaging it if the
tape is held flat and tightly pressed against the street surface
by the two surveyors.

When a tape is wet, it should be carefully cleaned and
oiled as soon as possible.

In general, it is good to remember that a tape is easily
damaged, but with care and thought, damage seldom
occurs.

Taping a Horizontal Distance
Taping may be used to determine the unknown distance
between two fixed points on the ground, or it may be used to
set marks at specified distances on a given line. The latter
operation is called setting marks for line and distance; it
requires the use of an instrument to “give line.” In this
section, a typical field procedure for taping an unknown
horizontal distance, over level or sloping ground, will be
discussed.

Clearly, at least two surveyors are needed to tape a
distance—a front, or head, chainman to hold the front end of
the tape and a rear chainman to hold the back of the tape.

In the following description, a distance is to be mea-
sured from point A to point B, each point being clearly
marked on the ground by a wooden stake and tack or a con-
crete monument. In this text, taping is described with the
zero mark of the tape kept to the rear. Some surveyors prefer
to keep the tape reversed. But because it seems more logical
to stretch out the tape with the numbers increasing in the
direction of taping, here we assign the rear chainman the job
of holding zero. (References to the position of the hands
with respect to the tape and plumb-bob string refer to right-
handed persons.)

In most taping operations, the tape must be held in a
horizontal position. Ideally, if A and B are at the same eleva-
tion with no obstacles between them, the tape can be laid
directly on the level ground and supported throughout its
entire length (see Figure 4-11a). More often than not, a
gradual slope makes it necessary to raise one end of the tape
above the ground to keep it horizontal. At that end, a vertical
plumb-bob string serves to line up the appropriate tape
graduation with the point (see Figure 4-11b). Sometimes
both ends of the tape must be raised above the ground,
making it necessary for both the head and rear chainman to
use plumb bobs (see Figure 4-11c).

Setting Out and Aligning the Tape To begin, the head
chainman unreels the tape by walking toward B with the
reel, while the rear chainman holds the zero end at A. The
zero mark of the tape must always be held exactly over point
A, using a plumb bob when necessary, even when only a pre-
liminary measurement is made. If not, the head chainman
will waste time clearing a place for an intermediate forward
mark, or may actually mark the point when the rear end of
the tape is being held incorrectly.

Frequently the head chainman will raise the tape to
clear obstacles and to straighten it. The rear chainman
should raise the tape at the same time, but still attempt to
keep the zero mark as nearly as possible over the point.

When the head chainman reaches the end of the tape, it
is removed from the reel; a tension handle or a leather thong
should be attached at that end. The rear chainman, sighting
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FIGURE 4-11. Methods of supporting
a tape.

FIGURE 4-12. Holding the plumb-bob cord on the tape.

point B, directs the head chainman by voice until the head
end of the tape is on line. The direction and estimated length
of tape movement may be called out as “west two-tenths,
east one-tenth,” etc.

Marking an Intermediate Station on Line The head
chainman pulls the tape straight and makes a rough mea-
surement, while the rear chainman checks the alignment.
The rear chainman should keep his or her eyes above the
point, and the head chainman should keep on one side of the
tape so that the rear chainman can see point B during this
process. The head chainman prepares a place to mark the
distance where the rough measurement fell. In grass, a small
spot is cleared; on pavement, a yellow keel mark is made.

Next, the lengths of the plumb-bob cords are adjusted
so that the bobs will swing just clear of the points (about 1/8
in. above the point) when the tape is in position. The tape
should be horizontal and should be as near the ground as
possible without touching intervening obstacles. With the
handles of the tape in their right hands, the surveyors should
face the tape (their left sides toward each other). The plumb-
bob cord is held on the far side of the tape, bent over the
tape, and held on the proper graduation with the thumb of
the left hand (see Figure 4-12).

While holding the plumb bob in this manner, the tape is
moved up and down slightly, gently tapping the point of the
bob to dampen the swinging motion. The stance must be
steady. Raising the tape to shoulder height should be avoided
(see the following discussion on breaking tape). When the
tape is waist-high, the surveyor’s feet should be spread well
apart along the line of the tape for good balance. When the

tape is low, one knee may be placed on the ground for extra
support.

The head chainman applies the tension gradually until
the spring-balance handle reads the correct tension (usually
about 20 lb). If a tension handle is not used, the surveyor
must estimate the proper tension. When the tension is
applied, the rear plumb bob may be pulled a short distance
off point A. The rear chainman must pull the tape back at
once with a smooth motion. When the zero mark is station-
ary over the point, the rear chainman calls out “mark” or
“good,” and so on. The surveyor should continue to call out
“mark” as long as the tape is in the correct position, and stop
calling it as soon as the tape moves off the point. When the
head chainman relieves the tension, the rear chainman may
stop calling out.
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At the forward end, when the tightly pulled tape and the
plumb bob become steady, the head chainman gently lowers
the tape so that the bob rests on its point. If the ground is
soft, the hole made by the point is sufficient for the time
being. The surveyor then releases the tape and places a tack
or a nail in the hole, through a piece of colored marking
tape, to make it easy for the rear chainman to find.

When working on a pavement or any other hard sur-
face, the head chainman gently lowers the bob so that the
point just touches the ground at the correct position. The
surveyor then releases the tape, reaches for the bob with
the right hand, and firmly marks the position of the point
(see Figure 4-13). Usually, this is done by making a scratch
with the point from the position it occupies; the beginning
of the scratch is the mark. A second scratch is made from
that mark, at right angles to the first, forming a V. The
surveyor then writes the number of tape lengths, called
stations, on the pavement with the keel. (Stationing is dis-
cussed later in this section.)

It is good practice to check the distance after it is
marked, before moving up the line. The rear chainman then
calls out the number of the station he or she occupies, and
the head chainman calls out the number he or she has
marked; an appropriate entry is made in the field book.

The head chainman moves forward toward B, dragging
the tape. The rear chainman also moves forward, but does
not pick up the end of the tape. When the zero mark comes
up to the mark, the rear chainman calls “chain,” or gives
some other signal for the head chainman to stop and get in
line. The procedure for measurement is then repeated.

An error in counting tape lengths is one of the chief
sources of blunder in distance measurement. When taping
long distances over unpaved surfaces, the rear chainman
must keep a count of full tape lengths.

Completing the Measurement Upon reaching point B,
a distance less than one full tape length will remain to be
measured. The head chainman either reels in part of the tape

or walks on past B carrying the head end forward. He or she
then returns to B to make the measurement.

While plumbing as previously described, the head
chainman slides the plumb-bob cord along the tape until the
bob is over the mark for point B. Then, holding the cord in
position on the tape, he or she reads the graduations silently.
The rear chainman comes forward and reads the graduations
out loud. If the readings agree, the value is recorded. (When
the tape is used with the 100-ft mark to the rear, the head
chainman holds the zero mark at B while the rear chainman
takes the reading, and the rear chainman holds it while the
head chainman moves back to check.)

To return the tape to the reel, the head chainman first
removes the tension handle or thong from the 100-ft end of
the tape and passes the end into the reel. The end ring is
attached to the spindle so that the graduated side of the tape
is up when the reel crank handle is on the right, facing the
tape; with the tape in this position, it can be used conve-
niently to measure less-than-tape-length distances.

Breaking Tape When the ground slope is excessive, it
may be difficult or impossible to hold the full tape in a hori-
zontal position by plumbing one end; when a surveyor tries
to hold a plumb bob and tape from shoulder height, or
higher, accidental errors tend to increase due to the unsteady
position. Over rough terrain, then, a process called breaking
tape should be employed (see Figure 4-14).

Breaking tape refers to the following procedure: After
unreeling the tape out to its full length, the head chainman
returns to a point where the tape can be held level in a
comfortable and steady position. He or she then selects an
integer footmark, say 60 ft, which is announced to the rear
chainman. After a temporary mark is set at that distance, the
rear chainman comes forward and holds the tape at that
exact footmark. The measurement proceeds without moving
the tape; using a clamp handle or “chain grip,” the rear
chainman holds the 60-ft footmark as if it were zero and the
head chainman sets a new mark at the 100-ft end of the tape.

FIGURE 4-13. Steps in marking a point on a pavement.
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FIGURE 4-14. Breaking tape over steeply sloping ground.

FIGURE 4-15. The positions along a measured line are called stations.

The process is repeated as required until the full distance is
measured. (For long distances, the use of EDM is preferable
to breaking tape.)

Setting Marks for Line and Distance
When a series of marks are set on a line at measured
distances, surveyors use a standard system for identifying the
marks; the marks are called stations. The stations may be
very temporary (as in the procedure described for measuring
an unknown distance), or somewhat more long-lasting, but
they are rarely meant to be permanent marks. Stationing is
particularly important when doing profile leveling, as well as
when setting marks for line and distance in a route survey,
and will be discussed again in subsequent chapters.

Identifying Stations A zero position is usually estab-
lished at the beginning of the survey or at the beginning of

the line to be marked out. This zero point is identified as
0 + 00. Each point located at intervals of exactly 100 ft or
100 m from the beginning point is called a full station and is
identified as follows: a point 100 ft from 0 + 00 is labeled
station 1 + 00, a point 200 m from the zero point is station
2 + 00, and so on (see Figure 4-15a).

Points located between the full stations are identified
as follows: a point 350 ft from the zero point is called 3 + 50
(“three plus fifty”), and a point 475 m from zero is called 
4 + 75. At a distance of 462.78 ft from zero, the station is
called 4 + 62.78. The + 50, + 75, and + 62.78 are called pluses.
The point 462.78 is said to have a plus of 62.78 from station 4.
The stationing of points in this manner is frequently carried
continuously throughout an entire survey (see Figure 4-15b).
Naturally, when interpreting stations, it must be known
beforehand whether U.S. Customary units or metric units
are being used; the symbols ft or m do not follow after the
station designations.
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Setting marks for line and distance typically involves the
use of a transit or theodolite to establish the proper direction
of the line and to help keep the marks set by the chainman
exactly on that line. In this section, the field procedure is
described from the perspective of the taping and staking
operation. The procedure for setting up an instrument over
a point is described in Chapter 6.

Field Procedure Usually the measurement starts at the
instrument, which is set up over the beginning point of the
line and locked in the proper direction. The rear chainman
holds the zero end of the tape near the instrument while the
head chainman carries all the equipment forward, holding
the reel so that the tape unwinds. When the proper distance
is reached, the head chainman stops and the rear chainman
gets in position below the instrument, with care to avoid
touching the tripod legs.

The zero mark of the tape is held directly on the begin-
ning point, if possible, while the tape is held in a horizontal
position. If the tape must be raised above the point to keep
it horizontal, the plumb-bob cord on the instrument is
loosened until about 20 cm, or 8 in, of slack is available; the
cord is then held taut by pressing it against the point with
one hand (see Figure 4-16). With the other hand, the
surveyor controls the tape so that the zero mark is lined up
with the cord.

At the other end of the tape, the head chainman bends
the plumb-bob cord over the tape at the proper graduation,
holding it in position by squeezing the cord and tape
together with one hand (see Figure 4-17). Tension is applied
with the other hand, holding the tape at the proper height to
keep it level.

When the plumb bob is steady, the head chainman calls
“line for stake.” The person at the instrument directs line
by signal or voice, giving the direction and amount of
movement. When the plumb-bob cord is brought nearly on
line, the instrument person calls or signals “good for stake.” At
this signal, the head chainman releases the plumb bob so that
it drops vertically, marking the ground slightly with its point.

Driving a Stake On unpaved ground, stations are usually
marked with a wooden stake (or hub) and tack. The longest
dimension of the top of the stake is kept in the direction of

the measurement, and the stake is first driven at the plumb-
bob mark to a depth of about 5 cm, or 2 in.

The position of the stake is then checked as follows. The
head chainman calls “distance,” and the rear chainman then
holds zero on the mark; the tape is stretched and the distance
checked. The head chainman then calls “line for stake” and
holds the bob as a target for the instrument person, moving it
as directed. If the position is correct, the stake is driven far-
ther into the ground by the head chainman; the surveyor at
the instrument watches it as long as it is visible. He or she will
call “keep it south” or “south one-tenth,” as the need arises.

It takes considerable skill to drive a stake so that the top
remains in position. Usually, the surveyors will make a
second check when the stake is partly driven home. The top
of the stake invariably moves toward the person driving it.
Slight corrections can therefore be made by driving it
from the position toward which the stake should move (see
Figure 4-18). When greater corrections are necessary, the
ground should be pounded beside the stake, or stones can
be driven into the ground beside it. Tapping the side of the
stake to align it merely loosens it and sometimes breaks it.

When the stake is driven well into the ground and found
to be out of position, the only recourse is to drive another
stake beside it. If instead it is withdrawn, it will follow the old
hole when redriven. A stake must be driven until it is firmly
in position, with the top not more than several centimeters,
or a few inches, above the ground surface.

FIGURE 4-16. Holding the plump-bob cord taut against 
the tack.

FIGURE 4-17. Plumb-bob cord bent over tape.

FIGURE 4-18. Driving a wooden stake (or hub) at a station.
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FIGURE 4-19. Setting a tack on 
a wooden hub.

Setting a Tack A pencil is placed on top of the stake, held
slanting away from the instrument or, preferably, balanced
on its point. The pencil point is directed exactly on line by
signals from the instrument person, and a pencil mark is
made on the stake. Usually, two marks are made near the
edges of the top of the stake, toward and away from the
instrument, and a pencil line is ruled between them (see
Figure 4-19).

If the instrument person cannot see the pencil, he or she
calls “raise it,” indicating to the head chainman that a plumb
bob should be used instead. The plumb-bob cord should be
held as close as possible to the bob without interfering with
the instrument person’s view (see Figure 4-20). The swing of
the bob can be dampened by tapping the point against the
top of the stake.

When the plumb bob is brought exactly in line by direc-
tions from the instrument person, the latter calls “good for
tack”; the head chainman then gently drops the bob to the
stake by slightly lowering one hand. While holding the cord
and bob in this position with one hand, the surveyor reaches
the bob with the other hand and marks the point by making
a hole in the stake with the point of the bob.

To mark the exact distance on the stake along the pencil
line, the tape is held on top of the stake along that line, ten-
sion is applied, and a tack is driven at the final mark. If this
is not possible, a plumb bob is used again (see Figure 4-21).
The cord is bent over the proper graduation, tension
applied, and the swing damped out by moving the tape up
and down so that the point of the bob taps the stake. The
bob is kept over the pencil line. The exact point is marked

FIGURE 4-20. Handling a plumb bob to set a tack. FIGURE 4-21. Measuring for a tack with a short hold.

with the point of the bob and checked if necessary, and the
tack is driven.

The station number is marked on the stake with keel, or
on a guard or witness stake set near it. The station number
should be checked; the head chainman calls “station,” and
the rear chainman calls out the number of the station where
he or she is standing. Frequent checking of the work, as
described in this procedure, is necessary to avoid serious
blunders. Generally, it is the responsibility of the head chain-
man to decide when the checks are necessary because he or
she actually sets the point and knows by experience whether
conditions were proper for an accurate result.

When the head chainman is finished, the rear chain-
man drops the end of the tape and walks forward to the
stake just set. In the meantime, the head chainman takes
the equipment forward and drags the tape. When the zero
end of the tape reaches the stake, the rear chainman calls
out its station number, the head chainman stops, and the
process of setting a stake is repeated. The rear chainman
now handles the tape in the same manner as the head
chainman, except that instead of applying tension, he or
she resists it.



Measuring Horizontal Distances 71

Making Marks on Other Surfaces When a wooden stake
strikes an obstruction before it is driven home, the earth is
cleared away and the mark is made on the obstruction.

When working on paved surfaces, wooden stakes are not
set, and the process is simpler. Pencil lines or scratches on the
pavement may be used for marks. In concrete, a cross can be
chiseled at the mark if it must be somewhat permanent.
Usually, the mark is circled with keel to make it easy to find.
Also, a heavy masonry (P-K) nail or a hardened steel spike
can be driven into concrete or asphalt as a mark. Often, a
small piece of colored ribbon or plastic is placed on the nail
to make it easy to find.

4-3 TAPING MISTAKES,
ERRORS, AND
CORRECTIONS

As in any kind of surveying operation, taping blunders must
be eliminated, and taping errors, both random and system-
atic, must be minimized to achieve accurate results. In this
section, some common sources of mistakes and errors are
discussed, and methods to compute correction factors, which
compensate for certain systematic errors, are explained and
illustrated.

Taping Mistakes or Blunders
There are several opportunities for careless taping mistakes
or blunders, which the surveyor must always be aware of.
Awareness is the first step in prevention. The common
sources of blunder include the following:

Misreading the tape, particularly reading a 6 for a 9, or
vice versa. For example, the distance 49.55 might be
incorrectly read as 46.55. To avoid this, the surveyor
should be in position facing the graduations when
reading the tape, and be in the habit of glancing at the
adjacent numbers on the tape before calling out the
reading.

Misrecording the reading, particularly by transposing
digits. For example, the note keeper may hear the
chainman call out a distance of 24.32 but erroneously
write down 23.42 instead. Or the chainman may call
out 40.75 as “forty (pause), seven, five,” which could
be interpreted and recorded as 47.5. To avoid blun-
ders of this nature, the note keeper should always call
out the recorded number, including the decimal
point, for verification by the chainman.

Mistaking the endpoint of the tape. As discussed in the
preceding section, tapes are manufactured and
graduated in several ways. The surveyor should
always be certain of which tape he or she is using on
any particular job, and where the beginning or zero
mark is for that tape. If the tape is not graduated
throughout its length, it is particularly important
that the surveyor know whether the tape is a cut
tape or an add tape.

Miscounting full tape lengths, particularly when long
distances are taped. Using taping pins for a tally or
calling out and checking station numbers for each
tape length helps to avoid this type of blunder. (Actu-
ally, the best way to avoid this mistake is to use an
EDMI for measuring a long distance.)

Mistaking station markers. Taping to or from an incor-
rect point is a serious blunder for any surveyor, but it
can happen. All survey crew members must be careful
to avoid this; the identity of the points, whether they
are iron bars, wooden stakes and tacks, concrete
monuments, or masonry nails, should be verified
before starting the taping operation.

In general, to avoid blunders it is good practice always to
check every reading or mark set on line. In fact, taping the
distance twice, once forward and once back, is an ideal way
to avoid serious mistakes. Pacing is also very useful to detect
major blunders in the work; if there is a large discrepancy
between the taped distance and the paced distance, the mis-
take can be found and corrected before moving forward. The
need to eliminate blunders in any surveying operation
cannot be overemphasized.

Taping Errors
Taping errors may be systematic or random. Unavoidable
random or accidental errors occur primarily when using
the plumb bob; setting chaining pins, tacks, or other
marks; and estimating readings to values less than the
smallest tape graduation. Random errors also occur in tape
tension, tape alignment, and temperature readings (when
computing corrections). It is because of these errors that
we say no measurement is perfect or exact. By definition,
random errors cannot be completely eliminated, but they
can be reduced by using good field methods and precision
in the work.

When the tape is not exactly horizontal or when it is
slightly off line, the measured distance will be too long
(Figure 4-22). But for most ordinary surveys, this is not
usually a significant problem with regard to the degree of
accuracy required. In a 100-ft distance, the tape would have
to be out of alignment by about 1.4 ft for the error to exceed
0.01 ft. (In a 30-m distance, the tape would have to be off line
by 0.5 m for the error to exceed 0.005 m, or 5 mm.)

With moderate care, the rear chainman should be able
to keep the head chainman on line well within 1.4 ft or 0.5 m
by eye, using a range pole. Using an instrument to establish
the line, of course, will eliminate any possibility of measur-
able error due to the tape being off line. And use of a hand
level will help to keep the tape level.

For a taping accuracy of 1:5000, it is necessary to keep
the tape level and on line within 1 ft/100 ft (or 0.30 m/30 m)
and to keep plumbing or marking errors less than 0.015 ft/
100 ft (or 0.05 m/30 m). This requires care and attention to
the work. Also, the actual tape length must be known within
; 0.005 ft (or ;0.0015 m), the temperature must be within
7°F (4°C) of the calibration or standard temperature, and the
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FIGURE 4-22. Accidental errors occur when the tape is (a) misaligned or (b) off-level. For
good accuracy, the tape should be on line and horizontal within 1 ft/100 ft (0.3m/100m).

FIGURE 4-23. A steel tape always tends to sag between supports, no matter how hard it is
pulled.

pull or tension on the tape must be within 5 lb (20 N) of the
normal tension for the tape.

Correction of Systematic Errors
Tape manufacturers make steel tapes that are very nearly
correct in length at 68°F (20°C) when supported throughout
and under a tension of 10 lb (50 N). When a tape is sup-
ported at only two points, as when taping a horizontal dis-
tance over sloping ground, it always tends to sag between the
points of support (see Figure 4-23). This, in effect, makes
the tape too short; the apparent “length of the tape” is the
straight-line distance between the supports.

Steel is an elastic material that will stretch temporarily
under moderate tension (at a certain tension or pull, how-
ever, the stretch or deformation will be permanent). A
medium-weight 100-ft (or 30-m) tape supported at its
beginning and endpoints under a tension of 20 lb (or 100 N)
is usually very nearly the same length as when it is fully sup-
ported throughout under a tension of 10 lb (or 50 N). In
other words, the extra tension tends to cancel out the effect
of sag.

The pull required so that systematic errors due to incor-
rect tension and sag cancel each other is called the normal
tension for the tape; in practice, it should be determined for
each individual working tape. For most ordinary taping sur-
veys of about 1:5000 accuracy, it is sufficient to apply normal
tension within ;5 lb (or ;20 N); a spring-balance tension
handle is useful for this purpose, but many surveyors rely on
a “feel” for the correct tension.

In more precise taping surveys, mathematical formulas
can be used to correct for tension and sag errors when other
than normal tension is applied. Generally, however, precise
long-distance measurement (more than 200 ft or 60 m) is
now done using electronic instruments rather than tapes.
For this reason, sag and tension formulas are not presented
here, but may be found in more advanced texts.

Common Tape Corrections In most ordinary taping
surveys using a properly standardized tape and normal ten-
sion, a correction for actual tape length and a correction for
temperature may be applied for good relative accuracy
(1:5000). Without these corrections, the relative accuracy of
the work may be only average (1:3000), or worse. This is
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because the errors are systematic; that is, they are repetitive
and they accumulate in proportion to the number of times
the tape is used to measure a distance.

Correction for Tape Length In use, tapes tend to
change length. They wear out and thus become thinner and
lighter; due to wear, they stretch more and sag less and thus
become longer. Also, when a tape becomes kinked or when
a broken tape is repaired by splicing, its length will change.
In other words, even though the endpoints still read as zero
and 100 ft or 30 m, the actual distance between those end-
points will be something other than what the graduations
indicate.

Sometimes the changes in length are quite small and of
little importance in many types of surveys. However, when
good relative accuracy is required, the actual tape length
must be known within 0.005 ft or 1.5 mm. The actual length
of a working tape, then, must be compared with a standard
tape periodically. When its actual length is known, the tape is
said to be standardized.

Some surveying firms keep a special standard tape
(Invar or Lovar) with which to compare and standardize
their working tapes. Or for a fee, working tapes can be sent
to the U.S. National Bureau of Standards to be standardized
for any specified tension or support condition; the Bureau
will return the tape with a certificate stating the tape length
at 68°F (20°C), to the nearest 0.001 ft (0.0003 m).

A correction must be added (or subtracted) to a mea-
sured distance whenever its standardized length differs from
its nominal or graduated length. The correction for one full
tape length is

CL = Ls - L (4-2)

where CL = the correction per single tape length

Ls = the actual or standardized length of the tape

L = the nominal tape length (i.e., 100 ft, 30 m, etc.)

Example 4-2
A 30-m tape was standardized and found to have an actual
length of only 29.985 m (between the 0 and 30.000-m tape
marks). What is the required correction per tape length?

Solution
Applying Equation 4-2, we get

CL = Ls - L = 29.985 - 30.000 = - 0.015 m

In this case, the tape is too short, by 15 mm. Note that
the correction carries a negative sign. This is a relatively
large tape length error; such a tape would probably be dis-
carded. In one tape length, a maximum relative accuracy of
only 1:30/0.015 = 1:2000 would be achieved (without apply-
ing an appropriate correction).

Use of CL for Correct Distance The total correction to
the measured distance D depends on the number of tape
lengths used to make the measurement. Thus,

Correct distance = D ; CL (D/L) (4-3)

where D/L is the number of tape lengths in the total
distance.

The Sign of the Tape Length Correction Whether to
add or subtract the value of CL may be confusing at first. In
general, when measuring an unknown distance, the correct
distance = D + CL (D/L); but when laying out a specified
distance, the correct distance = D - CL (D/L).

It is best, however, to understand and then memorize
the following set of rules:

1. When measuring an unknown distance, if the tape is
too short, subtract the correction; if the tape is too long,
add the correction.

2. When laying out a given distance, if the tape is too short,
add the correction; if the tape is too long, subtract the
correction.

Actually, it is only necessary to memorize the first rule;
the other rules can easily be remembered from that,
depending on the specific problem at hand. Keep in mind,
however, that when Equations 4-2 and 4-3 are used directly,
it is only necessary to add CL algebraically in case 1 and
subtract it in case 2.

Explanation When the tape is too short, too many tape
lengths will fit into the distance. Because of this, the
recorded or measured distance will be too great. (When a
distance is measured, the value read on the tape graduations
is recorded in the field book; that is, the value that must be
corrected to find the true length of the line.)

Assume that two monuments were known to be exactly
100.000 ft apart. Suppose this distance were measured with a
tape that was too short. For example, assume the tape’s
actual length to be 99.996 ft (see Figure 4-24).

The zero of the tape would be held at point A. The
100.000-ft graduation would reach to point M, where a mark
would be made and called 100.000 ft. An additional distance
to point B would then be measured and found to be 0.004 ft.
The total distance would be recorded as 100.004 ft. To obtain
the true distance, a correction of 0.004 ft would have to be
subtracted; thus

Correct distance = 100.004 - 0.004 = 100.000 ft

or

CL = 100.000 - 100.004 = -0.004

and

Correct distance = 100.004 + (-0.004) = 100.000 ft

This proves the rule that when the tape is too short, a
number must be subtracted from the recorded value to obtain
the true distance. It must be remembered that it is the recorded
distance that is corrected. Following the same reasoning, it
should be clear that when the tape is too long, a number must
be added to the recorded value to obtain a true distance.
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FIGURE 4-24. When measuring a
distance with a tape whose actual
length is shorter than its last mark-
ing, a correction must be subtracted
from the recorded distance.

When a specified distance is to be laid out, the rule is
reversed. Assume, for example, that exactly 30.000 m is to be
laid out with a tape that has a standardized length of 29.990 m.
Obviously, 0.010 m must be added to the length marked by the
tape. Therefore, a tape reading of 30.010 m should be used to
lay out the required distance with that particular tape. Thus,
for a layout problem, when the tape is too short, add a number
to obtain a correct distance.

Example 4-3
A distance between points A and B is measured and
recorded as 567.89 ft, using a tape that has a certified stan-
dard length of 99.96 ft. What is the true distance between
A and B? (Assume normal tension is used, and no tempera-
ture correction is required.)

Solution
Applying Equations 4-2 and 4-3, we get

CL = Ls - L = 99.96 - 100.000 = -0.04 ft

and

As a check, we know that the actual distance equals
the actual tape length times the number of tape lengths, or
99.96 * 5.6789 = 567.66 ft.

Example 4-4
It is necessary to lay out and mark a point D exactly 90.000
m distant from point C for a certain construction project. A
steel tape with a standardized length of 30.006 m is used.
What should be the distance measured with that tape from
C to accurately set the mark for point D?

Solution
Applying Equations 4-2 and 4-3, we get

CL = Ls - L = 30.006 - 30.000 = 0.006 m

and

As a check, consider the opposite problem: a distance
has been measured to be 89.982 m with a tape that is actu-
ally 90.006 m in length. The correct distance is 89.982 +
(0.006)(89.982/30) = 90.000 m.

= 90.000 - 0.018 = 89.982m

Correct distance = 90.000 - (0.006) *
90.000

30

= 567.89 - 0.2272 = 567.66 ft

= 567.89 + (- 0.04)(5.6789)

 Correct distance = 567.89 + (- 0.04)(567.89/100)

Correction for Temperature As mentioned before,
steel tapes are generally standardized at 68°F (20°C). But
steel expands with increasing temperature and contracts
with decreasing temperature. Therefore, when the tape is
warmer than the standard temperature, it will be too long;
when the tape is colder than the standard temperature, it will
be too short. In effect, then, an additional length correction,
one due to temperature differences, may have to be applied
to the tape to determine a true distance.

For every 1°F change in temperature, an ordinary steel
tape will change 0.0000065 ft per foot of original length. For
every 1°C change in temperature, the tape will change
0.0000116 m per meter of original length. These numbers,
0.0000065 and 0.0000116, are equivalent dimensionless con-
stants or ratios for steel, called the coefficient of linear expan-
sion (note that ft/ft = m/m = 1); the first is used with °F and
the second with °C.

(It is easy to lose count of the leading zeros in these
numbers. It may be preferable to express them using scien-
tific notation: we can write 0.0000065 as 6.5 * 10-6, and
0.0000116 as 1.16 * 10-5. The negative exponent in the first,
-6, tells us to move the decimal six places to the left; the neg-
ative exponent in the second, -5, tells us to move the decimal
five places to the left. Handheld scientific calculators will
accept data directly in scientific notation.)

From these very small coefficients of expansion, it may
seem that the effect of temperature on taped distances will
be negligible. Although this may be so for certain types of
surveys, it is not true where good accuracy is desired. For
example, a 15°F change in temperature will change the
length of a 100-ft steel tape by 0.01 ft, a measurable quantity.
And without correcting for temperature, a distance of 1 mi
measured in the winter at, say, 10°F, will be off by more than
3 ft when checked in the summer at 100°F. That would result
in a poor relative accuracy of 1:5280/3 = 1:1760.

Air temperature readings will give the temperature of
the tape when the day is hazy or cloudy, which is generally
the best condition under which to use a steel tape; partly
sunny conditions will cause frequent tape temperature
changes and thus will increase the random errors. When the
sun is shining, a tape thermometer is necessary. It should be
firmly attached with the bulb in contact with the tape near
the forward end; at that location, it creates little extra sag, it
is easily read by the head chainman, and it is off the ground
when the tape is dragged forward. The average temperature
for the measurement is determined by several readings,
sometimes every time the tape is used.
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The correction for temperature can be applied by the
formulas:

Ct = bD(T - Ts) (4-4)

where β = 6.5 * 10-6 (or 1.16 * 10-5 using SI metric units)

D = recorded distance, ft (or m using SI units)

T = tape temperature in °F (or °C using SI units)

Ts = standardization temperature, 68°F (or 20°C in SI
units)

Correct distance = D ; Ct (4-5)

where the rules for using either + or - are the same as
described above for tape length corrections.

Example 4-5
A distance was measured with a 30-m steel tape and
recorded as 96.345 m when the average tape temperature
was 5°C. What is the correct distance?

Solution
Applying Equations 4-4 and 4-5, we get

Ct = βD(T - Ts) = 1.16 * 10-5(96.345)(5 - 20) = -0.017 m

Correct distance = D + Ct = 96.345 + (-0.017) = 96.328 m

(In effect, “tape too short, subtract.”)

Example 4-6
Point A must be laid out and marked at a horizontal distance
of exactly 200.00 ft from point B, using a 100-ft steel tape.
The temperature is 98°F when the work is done. What dis-
tance should be measured with the tape?

Solution
Applying Equations 4-4 and 4-5, we get

Ct = βD(T - Ts) = 6.5 * 10-6(200.00) (98 - 68) = 0.04 ft

Correct distance = D - Ct = 200.00 - 0.04 = 196.96 ft

(In effect, for a layout problem, “tape too long, subtract.”)

4-4 ELECTRONIC DISTANCE
MEASUREMENT

Electronic distance measurement (EDM) is the measure-
ment method of choice not only for large-scale geodetic
surveys but also for ordinary plane surveys. Compared with
taping, EDM offers the advantages of increased speed, accu-
racy, and dollar economy when routinely determining or
setting relatively long horizontal distances.

After setting up the instrument, relatively long distances
can be measured and displayed automatically in a matter of
seconds. Except for very short distances, the excellent relative
accuracy of EDM far exceeds that of most taping operations
with little or no extra effort by the surveyor. And even though
an EDM instrument is considerably more expensive than a
tape, the size (and therefore salary cost) of a conventional
surveying crew can generally be reduced from three to two
persons, using EDM.

An additional advantage of EDM is that it can be used
very accurately to determine inaccessible distances over
lakes, rivers, swamps, busy highways, and other ground-level
obstacles.

Despite these advantages, the use of EDMIs will not
completely replace the steel tape. As was mentioned previ-
ously, there are many instances where it is more practical to
use a steel tape than to set up an expensive instrument. The
beginning surveyor must not lose sight of the need to
develop and maintain good taping skills even in this age of
electronic surveying.

Types of EDMIs
Many types of electronic distance-measuring devices are
commercially available. They may differ in certain specific
features or in precision. The general principle, however, of all
these EDMIs is much the same. Briefly, they generate and
project an electromagnetic beam of light waves from one
end of the line being measured to the other. The beam is
reflected back to the transmitting instrument (see Figure 4-25).
The difference in phase, that is, the shift in the relative posi-
tion of the electromagnetic waves, between the outgoing and
the returning signals is converted electronically into the slope
distance between the two stations. Several different signals
of known frequency or wavelength must be transmitted by
the instrument to resolve accurately the correct distance; this
is all done by the EDMI automatically, within only a few
seconds of time.

The physics and electronics of EDMI operation are
actually quite complicated. But as with many other modern
devices, the surveyor can use EDM equipment correctly and
productively without having to be an expert in the scientific
basis of its operation. There are, of course, many details
regarding the proper setup, calibration, and handling of the
instrument that the surveyor must be familiar with. Some of
these will be discussed briefly in this section. But for the
most part, it is necessary to study and make full use of the
detailed instruction manual supplied by the manufacturer
for each particular instrument.

EDMIs are classified either in terms of their type (actu-
ally wavelength) of carrier signal beam or in terms of their
measuring range. With regard to carrier signal, the two basic
types of EDMI used in surveying include electro-optical
instruments and microwave instruments. With regard to
measuring range, they are classified as either short-range,
medium- or intermediate-range, and long-range instruments.

Modern electro-optical instruments transmit either
low-power laser light or invisible infrared light. A special
reflecting prism set up over the opposite station returns the
transmitted signal to the EDMI, like a mirror. Most of the
newer EDMIs used in ordinary boundary or construction
surveys are short-range electro-optical instruments that use
infrared light. These are relatively compact, light, and
portable battery-operated instruments that are easy to use
for a wide variety of ordinary survey work. Depending on
the number of prisms used for signal reflection and on local
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FIGURE 4-25. EDM depends on the constant speed of electromagnetic waves (e.g., infrared
light). The measured slope distances must be converted to corresponding horizontal
distances.

FIGURE 4-26. A total station. Distances (and angles) are 
displayed digitally. (Courtesy of Leica Geosystems, Inc.)

weather conditions, short-range EDMIs may be used to
measure distances up to about 2 mi, or 3 km. Ordinarily,
however, the upper limit for most of these instruments is
about 1 mi, or 1.5 km.

Microwave distance instruments are sometimes used.
They require the use of a transmitter–receiver device at both
ends of the line being measured. They are generally used as
long-range instruments and are particularly useful for large-
scale hydrographic surveys (e.g., locating offshore oil-drilling
platforms) and similar applications. Microwave instruments
can be used in relatively poor weather conditions, but they
are much more sensitive to variations in humidity than are
the electro-optical devices; appropriate corrections must be
made to maintain accuracy.

Distances exceeding 40 mi can be measured with
EDMIs using long radio waves, but these are not used for
ordinary surveying work.

Today’s instruments are available with a combined
digital electronic theodolite and EDM device, as well as a
built-in microprocessor or computer; they can automatically
measure, process, and record horizontal and vertical dis-
tances, as well as station coordinates and elevations (see
Figure 4-26). The angles are “read” or sensed electronically;
they do not necessarily have to be read and then manually
keyed into the instrument by the surveyor. This type of
device is called an electronic tacheometer instrument (ETI) or
an electronic total station (see Figure 4-27).

ETI data can be held in storage and then transferred to an
office desktop computer or minicomputer and digital plotter;
the data can be adjusted by the office computer, and the
finished work can be printed out and/or shown graphically by
the plotter. ETI systems offer a maximum of speed and ease
for data collection and processing, and they eliminate many
sources of blunder and error. Needless to say, these powerful
instruments have revolutionized the practice of surveying.

Today’s total stations are also available as “prismless”
or robotic. That is, the instrument and all measurement
functions can be operated by a single individual (further
reducing salary costs).

The “prismless” instruments do not require a prism at
the other end of the length to be measured. The instrument
is merely focused on the object to be measured, such as a
building corner, and the distance is determined.
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(a)

(c)

(b)

FIGURE 4-27. (a–c) Electronic total stations. (Courtesy of Leica Geosystems, Inc.)
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The robotic instruments are equipped with a small
motor and gear system that allows the total station to
“track” a prism pole carried by the operator. The operator
moves from point to point of the distance to be measured
while the instrument follows along. Data are recorded at the
prism pole by a data recorder through telemetry with the
total station.

Reflecting Prisms The different measurement ranges
for EDMIs have been described. In general, the maximum
range of an electro-optical EDMI is doubled when the num-
ber of reflecting prisms is squared. For example, if four
prisms are used instead of two, the distance capability is
doubled; nine prisms instead of three, and the range is
tripled. Depending on the manufacturer, 12 prisms is about
the upper limit of the number that can be used to reflect the
light signal. (The number of prisms is not the only factor
affecting range capability. The light absorption and scattering
effect of fog, smoke, or dust particles can significantly reduce
the measuring range of an EDMI, possibly by a factor of 3.

Direct sunlight can also reduce the range and cause inconsis-
tent measurements; it is best to keep an electro-optical
instrument pointed away from the sun.)

The prisms used to reflect electro-optical EDM signals
are formed by cutting the corners off a solid glass cube. The
quality of the prism depends on how flat the glass surfaces
are and on the squareness of the corner. Cube-corner
prisms reflect light rays back to their source in exactly the
same direction they are received; this means that the
prism(s) can be slightly out of alignment with the EDMI
without reducing the effectiveness of the instrument (see
Figure 4-28).

The prism(s) may be mounted on a tripod and set up
directly over the station that marks the end of the line
being measured, or it can be held vertically over that point
using an adjustable-height prism pole with an attached
bull’s-eye level (see Figure 4-29). Mini or “peanut” prisms
attached to the string of a plumb bob can also be used.
These are good to get over the point in question with
better accuracy.

(a)

FIGURE 4-28. (a) A triple-prism assembly with sighting pole. (Courtesy of Sokkia Corporation) (b) The internal
reflecting surfaces of a corner prism, with the path of a single beam of light coming from any direction and
being reflected in a direction parallel to its original direction. (Philip Kissam, Surveying for Civil Engineers,
2nd edn, New York: McGraw-Hill Company, 1981. Reprinted by permission.)
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Prism on pole held
plumb over point

EDM

FIGURE 4-29. Instrument person pointing the line of sight at a prism pole held plumb 
on a point.

Accuracy of EDM As with any survey instrument or field
procedure, the surveyor must know the accuracy to be
expected with the use of EDM. EDMIs must be checked and
calibrated routinely. Even a carefully adjusted and precisely
calibrated EDM device will have a small but constant instru-
mental error, as well as an error that is proportional to the dis-
tance measured. Typically, the constant error is about ;0.02 ft
(or ;5 mm), and the proportional error is about 5 ppm.
Accordingly, the accuracy of a typical EDMI might be listed as
;(5 mm + 5 ppm), or in U.S. units as ;(0.02 ft + 5 ppm).

When measuring very short distances, the constant
error is of primary significance, while the proportional error
can be neglected. For example, over a distance of 20 ft the
relative accuracy of an EDMI might be only 1:20/0.02 =
1:1000, which is generally unacceptable for all but reconnais-
sance or preliminary topo surveys. This is why it is usually
best to use a standardized steel tape, rather than an EDMI,
when measuring such short distances.

The proportional part (ppm) of EDM instrumental
error becomes more important when measuring long dis-
tances. Using the same EDMI as shown, with a listed error of
;(0.02 ft + 5 ppm), for measuring a distance of 6000 ft, the
error of closure would be 0.02 + (5/1,000,000)(6000) =
0.02 ft + 0.03 ft = 0.05 ft, and the relative accuracy would
then be 1:6000/0.05 = 1:120,000, or first-order accuracy.

The electrical center of an EDMI and the back surface of
the prisms are not necessarily directly over their respective
station points when the instruments are set up with optical or
string plumb lines. For example, a typical prism off-center
constant is 0.12 ft, or 30 mm. The reported accuracies of
EDMI are based on the assumption that any off-center char-
acteristics of the EDMI and the reflecting prisms have been
compensated before measuring a line. An appropriate com-
pensation factor can be entered into the EDMI by the manu-
facturer or by the surveyor in the field.

The velocity of an electromagnetic wave through air is
affected by environmental factors such as atmospheric pres-
sure, temperature, and humidity (although humidity has little
effect on electro-optical devices). The operation and accuracy
of an EDMI, therefore, are also affected by atmospheric condi-
tions. Most manufacturers provide an atmospheric correction
chart or calculator so that a suitable correction factor can be
determined and keyed or dialed into the EDMI in the field at
the time of measurement. That factor depends on local
temperature, barometer, and humidity readings. After the
correction factor is entered, any distance displayed by the
EDMI will have first been automatically adjusted to account
for atmospheric conditions.

EDMI Operating Procedure
The EDMI must first be set up on a tripod directly over a
point that marks one end of the line being measured. A spe-
cial base called a tribrach supports the instrument on the tri-
pod and allows for leveling and centering operations. Once
the tribrach has been centered and leveled over the survey
point, other suitable instruments or accessories, such as
sighting targets and reflecting prisms, can easily be inter-
changed with the EDMI without having to relevel and recen-
ter over the point. The actual procedure for setting up,
centering, and leveling a tripod-mounted instrument over a
point is discussed in Chapter 6.

After the EDM/theodolite instrument is set up and lev-
eled over one point and after the prism(s) is set up or held
over the other point, the EDMI is turned on for a battery
check. Atmospheric and off-center correction factors can be
entered into the instrument at this time, if needed. The oper-
ating mode can be set with a switch to a fine, coarse, or
tracking mode (for layout work), depending on the require-
ments of the measurement and the type of instrument used.
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If an ETI is used, data such as the coordinates and elevation
of the instrument station, the height of the instrument, and
the height of the reflector (for horizontal and vertical dis-
tance computations) can also be entered.

The EDMI is then aimed at the prism(s) using the
theodolite telescope. On some EDMIs, an audible tone indi-
cates proper alignment with the prism(s). After alignment,
the return signal level is automatically optimized and dis-
played. Then a measurement can be made by simply press-
ing the appropriate button; on some instruments, the
measurement is made automatically when the return signal
is optimized.

The measured distance is displayed by either liquid
crystal or light-emitting diodes (LCD or LED) to the nearest
0.001 ft, or 0.001 m, in the fine mode and to the nearest 0.01 ft,
or 0.01 m, in the coarse or tracking mode. The distance-
measurement results are updated automatically and rapidly
redisplayed about every 1–3 seconds. A meter-feet selector
switch can be used at any time to change the displays from
meters to feet, or vice versa.

If the instrument is an electronic total station, all the
data are automatically recorded and stored electronically
except for the description of the point, which must be
manually entered into the data collection. The surveyor
does not have to key in the data. Appropriate buttons can
be pressed to display the horizontal distance between the
two points.

Setting a Mark with EDM In addition to measuring an
unknown distance between two existing points, it is often
necessary for the surveyors to lay out and mark the position
of a new point along a specific direction and at a specific dis-
tance from some point of beginning. This procedure was
described in some detail in Section 4-2, using a steel tape.
EDMIs can also be used for layout work, to set stations along
a route, or to set construction marks.

The so-called tracking mode of operation is particularly
useful for layout work with an EDMI. A prism pole can be
moved forward or back along the line of sight until the cor-
rect position is located and marked; in the tracking mode,
the EDM can update and display the distance to the prism
every second or so. Special tracking prism systems are also
available that help the prism pole operator to stay on line,
using audible tones or light signals. In some cases, voice
communication between the instrument person and the
prism pole operator is possible.

When using an EDMI that does not have a tracking
mode, an approximate distance can first be established on
line, using pacing, an initial measurement, and a tentative
mark set. The distance to the tentative point is measured
accurately with the EDM. Then with a steel tape or sur-
veyor’s rule held on line, the necessary correction is made to
accurately adjust and move the first point to the desired
distance. The adjusted point can be rechecked for line and
distance with the EDMI.

Questions for Review

1. List three surveying applications where rough distance
measurement is acceptable. What relative accuracy can
be expected when measuring distances by pacing?

2. What is the measuring wheel particularly suited for, and
with what relative accuracy?

3. What relative accuracy for distance measurement can be
achieved by an experienced surveyor using good-quality
taping equipment, under normal field conditions, with-
out correcting for systematic errors?

4. What is the meaning and origin of the term chaining?

5. Describe three different ways in which a surveyor’s steel
tape may be graduated. Which is preferable? Why?

6. What is an Invar or Lovar tape?

7. What is the function of a plumb bob in measuring dis-
tance with a tape? List and briefly describe the purpose
of two other taping accessories.

8. Describe the precautions that should be taken to avoid
damaging a steel tape.

9. Outline the procedure for taping a horizontal distance
over sloping ground, including how the tape is aligned,
how intermediate stations are marked, and how the
final length measurement is completed.

10. Describe what is meant by the term breaking tape.

11. What two mathematical relationships may be used for
slope reduction? What data are required for each?

12. A point on the ground is labeled by a surveyor as “3 + 00.”
What is that called, and what does it tell about the point?

13. Outline the field procedure for setting marks for line
and distance, including driving a stake and setting a
tack.

14. Briefly describe five different types of taping blunders.

15. List five sources of random taping errors.

16. List four sources of systematic errors. Which two sys-
tematic errors can effectively cancel each other by using
normal tension? Explain.

17. What two tape corrections should be applied to achieve
good relative accuracy of about 1:5000?

18. Fill in the word add or subtract in the following sen-
tences: When measuring an unknown distance, if the
tape is too short, _______ a correction; when the tape is
too long, _______ a correction. When laying out a given
distance, if the tape is too short, _______ a correction; if
the tape is too long, _______ a correction.

19. Briefly explain, by example and sketch, one of the cor-
rection rules you completed in Problem 18.
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20. Briefly describe the operating principle of EDM. What
are the advantages of EDM compared with taping?

21. Is taping obsolete because of EDM? Why?

22. What type of EDMI is used for most ordinary survey
work?

23. What is the measuring range of a short-range EDMI?

24. What external factors affect the measuring range of an
EDMI or ETI?

25. Give an example of how EDM measurement accuracy
would typically be listed by the equipment manufacturer.
Explain why EDM is not very accurate for short distances.

26. Outline the procedure for measuring an unknown dis-
tance with an EDMI.

27. Outline the procedure for setting a mark for line and
distance with an EDMI.

Practice Problems

1. A surveyor has a unit pace of 2.8 ft/pace. (a) He counts
43 paces while walking from point A to point B. What is
the distance between A and B? (b) How many paces
should the same surveyor count to lay out a line approx-
imately 300 ft long?

2. A surveyor has a unit pace of 0.9 m/pace. (a) She counts 37
paces while walking from point C to point D. What is the
distance between C and D? (b) How many paces should the
same surveyor count to lay out a line roughly 122 m long?

3. A surveying student walked along a 300-ft line on level
ground five times and counted 122, 121, 102, 123, and
121.5 paces each time, from the beginning to the end
of the line. (a) Determine her average unit pace, and
(b) compute the 95 percent error and determine the
relative accuracy of her pacing method.

4. A surveying student walked along a 100-m line on level
ground five times and counted 116.5, 96, 119, 116, and
117.5 paces each time, from the beginning to the end
of the line. (a) Determine his average unit pace, and
(b) compute the 95 percent error and determine the
relative accuracy of his pacing method.

5. The following distances were recorded on an old deed
for a parcel of land that is to be resurveyed; convert
them to their equivalent distances in feet and in meters.

a. 7.62 ch
b. 4 ch, 45 lk
c. 15 ch, 23 lk

6. The following distances were recorded on an old deed
for a parcel of land that is to be resurveyed; convert
them to their equivalent distances in feet and in meters.

a. 5.32 ch
b. 8 ch, 57 lk
c. 13 ch, 78 lk

7. A point along a road centerline is located 234.56 ft from
the point of beginning. What is its station designation?

8. A point along a road centerline is located 76.543 m from
the point of beginning. What is its station designation?

9. A distance between points A and B is measured and
recorded as 345.67 ft, using a tape that has a certified
standard length of 100.02 ft. What is the “true” distance
between A and B? (Assume normal tension is used, and
no temperature correction is required.)

10. A distance between points A and B is measured and
recorded as 123.456 m, using a tape that has a certified
standard length of 29.992 m. What is the “true” distance
between A and B? (Assume normal tension is used, and
no temperature correction is required.)

11. It is necessary to lay out and mark a point D exactly
150.00 m distant from point C for a construction project.
A steel tape with an actual length of 30.01 m is used.
What should be the distance measured from C to accu-
rately set the mark for point D? (Assume normal tension
is used, and no temperature correction is required.)

12. It is necessary to lay out and mark a point D exactly
250.000 ft distant from point C for a construction
project. A steel tape with an actual length of 99.990 ft is
used. What should be the distance measured from C to
accurately set the mark for point D? (Assume normal
tension is used, and no temperature correction is
required.)

13. A distance measured with a standard steel tape was
recorded as 234.56 ft when the temperature was 38°F.
What is the actual distance corrected for temperature?

14. A distance measured with a standard steel tape was
recorded as 65.432 m when the temperature was 28°C.
What is the actual distance corrected for temperature?

15. A steel tape with a standardized length of 30.009 m is
used to measure a distance on a slope, and a distance of
123.456 m is recorded. The average temperature at the
time of measurement is 25°C, and the vertical distance
between the endpoints of the line is 7.25 m. What is the
actual horizontal distance between the two points?
(Assume normal tension is used.)

16. A steel tape with a standardized length of 99.990 ft is
used to measure a distance on a slope, and a distance of
223.456 ft is recorded. The average temperature at the
time of measurement is 25°F, and the vertical distance
between the endpoints of the line is 17.25 ft. What is the
actual horizontal distance between the two points?
(Assume normal tension is used.)

17. A steel tape with a standardized length of 30.009 m is
used to lay out and mark a distance on level ground; the
required horizontal distance is 100.000 m. The average
temperature at the time of measurement is 25°C. What
distance should be laid out between the two points under
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those conditions so that the actual horizontal distance
will be 100.000 m? (Assume normal tension is used.)

18. A steel tape with a standardized length of 99.990 ft is used
to lay out and mark a distance on level ground; the
required horizontal distance is 300.00 ft. The average
temperature at the time of measurement is 95°F. What
distance should be laid out between the two points under
those conditions so that the actual horizontal distance
will be 300.00 ft? (Assume normal tension is used.)

19. An old and worn 50-ft woven cloth tape is used to lay out
and mark the corners of a 75.0 * 150.0 ft building. It is
later found that the actual tape length was 50.15 ft. What
dimensions were actually laid out for the building?

20. An old and worn 15-m woven cloth tape is used to lay
out and mark the corners of a 25.00 * 50.00 m building.
It is later found that the actual tape length was 15.005 m.
What dimensions were actually laid out for the
building?
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CHAPTER FIVE

The vertical direction is parallel to the direction of grav-
ity; at any point, it is the direction of a freely suspended
plumb-bob cord. The vertical distance of a point above

or below a given reference surface is called the elevation of the
point. The most commonly used reference surface for vertical
distance is mean sea level (MSL). (The words altitude and height
are sometimes used in place of elevation.) Vertical distances are
measured by the surveyor to determine the elevations of points,
in a process called running levels or, simply, leveling.

The importance of leveling cannot be overestimated;
with few exceptions, it must always be considered in every
form of design and construction.

The determination and control of elevations constitute a
fundamental operation in surveying and engineering projects.
Leveling provides data for determining the shape of the
ground and drawing topographic maps. The elevations of new
facilities such as roads, structural foundations, and pipelines
can then be designed. Finally, the designed facilities are laid
out and marked in the field by the construction surveyor. The
surveyors’ elevation marks (such as grade stakes) serve as refer-
ence points from which building contractors can determine
the proper slope (“rate of grade”) of a road, the first-floor ele-
vation of a building, the required cutoff elevation for founda-
tion piles, the invert elevation for a storm sewer, and so on.

The chapter covers the fundamentals of leveling, includ-
ing the types and proper use of leveling equipment, leveling
field procedures and field notes, benchmark and profile
leveling, and other related topics. Measuring vertical distances
for the specific purpose of determining and plotting ground
elevation contours is discussed in Chapter 9, “Topographic
Surveys and Maps.”

5-1 PRINCIPLES OF LEVELING
There are several methods for measuring vertical distances and
determining the elevations of points. Traditional methods
include barometric leveling, trigonometric leveling, and dif-
ferential leveling. Two advanced and sophisticated techniques
include inertial surveying and global positioning systems.

By using special barometers (altimeters) to measure air
pressure (which decreases with increasing elevation), the
elevations of points on the Earth’s surface can be determined
to within ;1 m, or ;3 ft. This method is useful for doing
a reconnaissance survey of large areas in rough country and
for obtaining preliminary topographic data.

Trigonometric leveling is an indirect procedure; the
vertical distances are computed from vertical angle and
horizontal or slope distance data. It is also applied for topo
work over rough terrain or other obstacles. (Trigonometric
leveling is discussed again in Sections 5-6 and 9-3.) Inertial
and global positioning methods, which depend on space-age
electronic technology, are applied for certain large-scale
geodetic control surveys; they are generally not used for
ordinary surveying. However, reductions in equipment costs
and refinements in the technology have made GPS a much
more practical tool for use in solving leveling problems.

By far the most common leveling method, and the one
most surveyors are concerned with, is differential leveling. It
may also be called spirit leveling because the basic instrument
used comprises a telescopic sight and a sensitive spirit bubble
vial. The spirit bubble serves to align the telescopic sight in
a horizontal direction, that is, in a direction perpendicular to
the direction of gravity.
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Before discussing the details of leveling equipment and
specific field procedures, it is best for the beginner to
become familiar with a general overview of differential spirit
leveling.

Differential Leveling
Briefly, a horizontal line of sight is first established with an
instrument called a level. The level is securely mounted on
a stand called a tripod, and the line of sight is made hori-
zontal. Then the surveyor looks through the telescopic
sight toward a graduated level rod, which is held vertically at
a specific location or point on the ground (called point A, for
example, in Figure 5-1a). A reading is observed on the rod
where it appears to be intercepted by the horizontal cross hair
of the level; this is the vertical distance from the point on the
ground up to the line of sight of the instrument.

Generally, the elevation of point A is already known;
otherwise, it is assumed. The rod reading on a point of
known elevation is termed a backsight (BS) reading. It is also
often called a plus sight (+S) reading because it generally
must be added to the known elevation of point A to deter-
mine the elevation of the line of sight. (An exception to this
may occur during a tunnel survey, for example, when the rod
may have to be inverted and held on the roof of the tunnel.)

For example, suppose the elevation of point A is 100.00 m
(above MSL), and the rod reading is 1.00 m. From Figure 5-1a, it
is clear that the elevation of the line of sight is 100.00 + 1.00 =
101.00 m. The elevation of the horizontal line of sight through
the level is called the height of instrument (HI).

Suppose we must determine the elevation of point B
(see Figure 5-1b). The instrument person (the surveyor
operating the level) turns the telescope so that it faces

FIGURE 5-1. Differential leveling to measure vertical distance and elevation. (a) Step 1:
Take a backsight rod reading on point A. (b) Step 2: Rotate the telescope toward point B
and take a foresight rod reading.
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point B and reads the rod now held vertically on that
point. For example, the rod reading might be 4.00 m.
A rod reading on a point of unknown elevation is called
a foresight (FS), or a minus sight (–S). Because the HI was
not changed by turning the level, we can simply subtract
the foresight reading of 4.00 from the HI of 101.00 to
obtain the elevation of point B, resulting here in 101.00 -
4.00 = 97.00 m.

The operation of reading a vertical rod held alternately on
two nearby points is the essence of differential leveling. The
difference between the two rod readings is, in effect, the vertical
distance between the two points. In the preceding example, the
vertical distance between A and B may be computed as either
100.00 - 97.00 = 3.00 m, or 4.00 - 1.00 = 3.00 m. Although it is
the vertical distance that is actually being measured, the results
are generally expressed as the elevations of points above a com-
mon reference plane or datum.

This basic cycle of differential leveling can be summarized
as follows:

Height of instrument = known elevation 
+ backsight or HI 

= ElevA + BS (5-1)

New elevation = height of instrument 
- foresight or ElevB

= HI - FS (5-2)

Running Levels
Often, the elevations of several points over a relatively long
distance must be determined. A process called running
levels is used to determine the elevations of two or more
widely separated points. It simply involves several cycles or
repetitions of the basic differential leveling operation previ-
ously described. More specific terms for this are benchmark,
profile, and topographic leveling.

Benchmarks and Turning Points Suppose it is neces-
sary to determine the elevation of point C relative to point
A (see Figure 5-2). But in this case, let us assume that it is not
possible to set up the level so that both points A and C are
visible from one position (due to either physical obstacles or
excessive distance). The line of levels can be carried forward
toward C by establishing a convenient and temporary
turning point (TP) somewhere between A and C. The
selected TP serves merely as an intermediate reference point;
it does not have to be actually set in the ground as a perma-
nent monument.

The elevation of the turning point is computed from
the first pair of BS and FS readings. The BS is on point A,
which is the point of known elevation. A secure and perma-
nent point of known elevation is called a benchmark (BM);
a leveling survey should always begin with a backsight on
a benchmark, such as benchmark A (BMA). The BS is added
to the elevation to give the HI at the first instrument
position.

The elevation of the turning point is obtained by
subtracting the FS from the HI. Once the elevation of the
turning point is known, the level instrument can be moved
to another location, one closer to C but still in sight of the
turning point. Then another backsight is taken, this time on
the turning point, to determine the new height of instru-
ment. Finally, a foresight is taken on point C, and its eleva-
tion is computed.

From a diagram like Figure 5-2, beginning students
sometimes get the impression that the level must be set up
directly in line with the two points for BS and FS readings.
This is not the case; as shown in a plan or top view in
Figure 5-3, the level may be set up off line. But it is still
good practice to keep the plus sight and minus sight dis-
tances about equal, for reasons that will be explained later
in this chapter.

Computations for leveling simply involve successive
additions and subtractions. But when running levels with

FIGURE 5-2. Temporary turning points are used to carry a line of levels from a benchmark
to some other station or benchmark; the process of differential leveling is repeated at each
instrument setup.
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several turning points (and twice as many rod readings), it is
necessary to keep a well-organized field book to keep track
of which numbers are added or subtracted from which. The
computations for the example of Figure 5-2 are set up in
a typical field book format, shown in Figure 5-4. The leveling
computations are simple, but it is important to record the
field data in a systematic manner. Note that the FS and BS
readings on the turning point are each listed on the single
line labeled TP (Figure 5-4b). A more complete set of level-
ing field notes is presented along with a discussion of bench-
mark leveling in Section 5-4.

5-2 LEVELING EQUIPMENT
There are several types of surveying levels and level rods.
Some are meant primarily for precise leveling work, and
others are much better suited for ordinary construction
layout work. The surveyor must be familiar with the basic
configuration and operation of the various types of leveling
equipment to be able to select and use the best instrument
for a particular surveying assignment.

Compared with a total station, the level is a relatively
simple instrument. It is required to give only a horizontal

FIGURE 5-3. A plan (top) view
of a short line of levels.

FIGURE 5-4. Field book format 
for leveling notes.
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line of sight in all directions of the compass, and this is easily
accomplished using basic optical and mechanical compo-
nents. Early surveyors, from Roman times up through the
Middle Ages, used chorobates for leveling; these simple
devices depended on the free surface of water in a trough to
establish a line of sight. Modern levels still depend primarily
on the surface of a liquid at rest (the spirit vial liquid) and on
the force of gravity.

Single-beam or rotating low-power laser beams are
being used by surveyors and construction technicians to
define horizontal reference lines or reference planes at con-
struction sites. The application of these modern laser levels
and beam detectors to facilitate construction layout work is
described in Chapter 11. In this section, traditional and
modern optical differential leveling equipment is described.

Types of Levels
As mentioned earlier, a surveying level basically consists of
a telescope and a sensitive spirit bubble vial. The spirit bubble
vial can be adjusted so that, when the bubble is centered, the
line of sight through the telescope is horizontal. The tele-
scope is mounted on a vertical spindle that fits into a bearing
in the leveling head. The leveling head has three leveling
screws. The telescope can be easily rotated about its standing
axis (or azimuth axis) and pointed toward any direction of
the compass (see Figure 5-5).

Two types of levels are described in this section—the
automatic level and the digital level. A simple hand level
may be used for determining elevations when a high degree
of accuracy is not required; this device is discussed in
Chapter 9.

The telescopic sight and the spirit bubble vial are
described here because they are common components of
several types of levels and other surveying instruments.

The Telescopic Sight The modern telescopic sight consists
of the following components (see Figure 5-5):

1. A reticle (or reticule), which provides the cross hairs,
near the rear of the telescope tube

2. A microscope or eyepiece that magnifies the cross hairs,
and that must be focused on them according to the
eyesight of the observer

3. An objective lens at the forward end of the telescope,
which forms an image of the sighted target within the
telescope tube

4. A focusing lens, which can be moved back and forth
inside the scope to focus the image on the cross hairs

Because the image formed by the objective lens is inverted,
the eyepieces of most instruments are designed to erect the
image. Telescopes that erect the image are called erecting
telescopes; the others are called inverting telescopes. When the
image is focused on the cross hairs, the cross hairs become part
of the image so that when the observer looks through the
eyepiece, the target (such as a level rod) appears magnified
(about 30 times) with the cross hairs apparently engraved on it.

To Focus a Telescopic Sight The following three steps,
illustrated in Figure 5-6, are required to focus a telescopic
sight for greatest accuracy:

1. Aim the telescope at a bright, unmarked object such as
the sky and regulate the eyepiece until the cross hairs are
in sharp focus. Because the eye can change focus itself,
there is always a short range in the movement of the
eyepiece within which this condition can be satisfied.

2. Aim the telescope at the object to be viewed and, while
keeping the eye focused on the cross hairs, regulate the
focusing lens until the object is clear. This should occur
only when the image is on the place of the cross hairs
because this is the only place where the eyepiece focus is
sharp. If the observer looks at the image instead of at the
cross hairs while regulating the objective focus, the eye
focus may change slightly so that the image is seen
clearly a short distance in front of or behind the cross
hairs. The cross hairs will then not be in perfect focus,
but the difference may not be noticeable. When the
image and the cross hairs are simultaneously in appar-
ently good focus, the plane of the image and the plane of
the cross hairs must be very nearly coincident.

When the image is not exactly on the plane of the
cross hairs, the cross hairs will move across the image
when the eye is moved left and right or up and down,
just as is the case when two objects at different distances
are observed with the naked eye. Under these conditions,
parallax exists, and the direction of the sight is not fixed.

FIGURE 5-5. A modern telescopic
sight with an internal focusing lens.
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3. Eliminate parallax. To accomplish this, move the eye up
and down or left and right. If the cross hairs appear to
move with respect to the object sighted, change the
focus of the objective until the apparent motion is
reversed. Continue focusing back and forth, reducing
the apparent motion each time until it is eliminated. It
may then be necessary to adjust the eyepiece slightly to
make the image and the cross hairs appear clear-cut.

Theoretically, the parallax should be eliminated by
this method each time the objective focus is changed.
However, when the eyepiece has been set for a particular
observer after the parallax has been once eliminated, it is
common practice to keep the eyepiece in this position
throughout the work and to rely on focusing the objec-
tive so that both the cross hairs and the object are in
sharp focus simultaneously, to eliminate parallax.

The Line of Sight A straight line from any point on the
image through the optical center of the objective lens will
strike a corresponding point on the object. A straight line
from the cross hairs through the optical center of the lens will
strike the point on the object where the observer sees
the cross hairs apparently located. Thus the line of sight of
a telescopic sight is defined by the cross hairs and the optical
center of the objective. As stated earlier, when a telescopic
sight is properly focused, the eye can move slightly without
changing the position of the cross hairs on the object. This
differs in principle from a rifle sight, when the eye must be
accurately aligned with the latter to determine where it is
pointing. The telescopic sight on a level also magnifies the
object about 30 diameters. The diameter of the field of view is
therefore very small.

The Spirit Bubble Tube or Circle A spirit bubble vial
consists of a glass container that is partly filled with a clear,
nonfreezing, very low viscosity liquid such as alcohol or
ether. For some instruments, a tube-shaped vial is attached
directly to the telescope and is adjusted so that when the
vapor bubble is centered, the line of sight is horizontal.
The inside of the vial is ground to a barrel-shaped surface
that is symmetrical with respect to a longitudinal axis. The
vial is mounted in a metal tube, as shown in Figure 5-7a.

Several uniform graduations at each end of the bubble
are placed near, or are etched on, the glass tube so that the
position of the bubble can be clearly observed. When the
bubble is centered within the marked graduations, the direc-
tion of the vial, and therefore the telescopic line of sight, is
horizontal (with a properly adjusted instrument). When the
bubble is centered, it is said to “read zero.”

The sensitivity of the spirit vial and, therefore, the pre-
cision of the instrument depends on the radius of
curvature established when grinding the glass vial. In gen-
eral, the larger the radius (i.e., the flatter the curvature of
the glass), the more sensitive the spirit bubble and the
more precise the level. But it takes more time to accurately
center the bubble in a very sensitive spirit bubble tube, and
this could be a disadvantage in certain types of surveys;
again, it is important for the surveyor to be aware of this so
that the proper instrument is selected for a particular job.

For digital levels and automatic levels, a spherically
shaped spirit bubble vial is used to set the standing axis of the
instrument approximately in a vertical position. These vials
appear as circles when viewed from above, and the bubble is
centered when it is positioned in the middle “bull’s-eye” circle
(see Figure 5-7b). A circular spirit vial is less sensitive than

FIGURE 5-6. Principle of focusing a telescopic sight.
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a tubular vial, but other internal optical components of the
level instrument can compensate for this.

The step-by-step procedures required to center a spirit
vial bubble and to level the instrument are described in
Section 5-3.

The Automatic (Self-Leveling) Level Automatic levels
are used for ordinary as well as precise surveying work. They
are typically accurate and easy to use, and they can be set up
and leveled relatively quickly (see Figure 5-8). The use of
a modern automatic level increases the productivity of a
surveying crew.

These instruments do not have a tubular spirit vial
attached to the telescope. Instead, the bubble in a circular
spirit vial (set on a three-screw leveling head) is centered to
get the instrument approximately leveled. After the bubble
is centered, an internal optical compensator automatically
takes over to set and maintain a truly level line of sight. No
further leveling is required at that particular instrument

location; the instrument, then, may be described as being
“self-leveling.”

The operating principle of a pendulum-type compen-
sator, which depends basically on the force of gravity, is illus-
trated in Figure 5-9. Sometimes the pendulum sticks. To
make sure that it is free, after the circular level is centered,
turn one of the leveling screws quickly in one direction and
back while looking through the telescope. If the line of sight
vibrates or suddenly shifts up and down once or twice, the
pendulum is free and the level is operative. (On some auto-
matic levels, the line of sight may even vibrate on a windy
day, making it difficult to read the rod accurately.)

Digital Levels A new generation of levels involves digital
electronic technology. Digital levels have been designed
to reduce human error that occurs in vertical distance
measurements. These instruments are particularly useful
in tunnel or mine surveys where light is limited and global
positioning systems (GPS) cannot be used. They are also

FIGURE 5-7. (a) Cross section of
a level tube showing the mounting
of the vial. The axis is horizontal
when the bubble is centered.
(Courtesy of CST/Berger, Illinois.)
(b) Circular (bull’s-eye) spirit level.

(a) (b)

FIGURE 5-8. Automatic (self-leveling) levels. (a, Courtesy of Leica Geosystems, Inc.; b, Courtesy of Wild Heerbrugg
Instruments, Inc.)
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becoming popular for route surveys and topographic surveys,
and may be used for leveling precise networks. Using a digital
level and a special bar-coded rod, instrument operators can
collect and store accurate backsight, foresight, and distance
data in as little as 3–4 seconds, without observation or calcula-
tion errors.

A digital level has an internal electronic “camera” called
a charge-coupled device (CCD) that accurately “sees” or
reads the bar-coded rod. The instrument’s CCD is located at
the image plane in the telescope. It converts the light–dark
pattern of the bar code into a pattern of pixels and binary
code, which then determines the location along the rod that
is being observed, as well as the horizontal distance to
the rod. This process requires the instrument operator to
carefully focus the rod image before taking a measurement
(i.e., pushing a button to capture the image).

Digital levels can process the data as the survey progresses,
or store the data “on-board.” (External data collectors may be
used with some models.) The data can be downloaded through
an appropriate interface connection to a desktop computer
back in the office, where they can then be processed, stored,
and printed in a traditional field book format. The instruments
and their bar-coded rods vary among manufacturers. There-
fore, a bar-coded rod from one manufacturer cannot be used
with a digital level from another manufacturer. A typical
instrument and rod is shown in Figure 5-10a and b.

Level Rods
There are many different types of level rods. Generally, the
body of the rod is either fiberglass or made of seasoned
hardwood; this acts as a rigid support for the rod face,
a strip of steel graduated upward starting from zero at the
bottom. The rod is held vertically by the rod person, on
a point of known elevation for a BS or on a point of

unknown elevation for an FS. The rod is then observed with
the level and read by the instrument person (or on target
rods, by the rod person).

The rod face may be graduated in feet, tenths, and hun-
dredths of a foot, or in meters, decimeters, and centimeters

FIGURE 5-9. Schematic diagram
showing the operation of an auto-
matic level. Part C is a compensator
that swings backward or forward as
the telescope is tilted and thus keeps
a level line of sight S on the cross
hairs H.

(a) (b)

FIGURE 5-10. (a) Digital level with rod. (b) Close-up of
bar-coded rod. (Courtesy of Leica Geosystems, Inc.)
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on metric rods (see Figure 5-11). The graduations are black
on a white background for high contrast and easy reading.
The dividing line between the black graduations and the
white face of the rod marks the exact hundredth of a foot
(or centimeter on a metric rod). The whole-foot, or whole-
meter, divisions are indicated with red numbers, and the
tenth, or decimeter, divisions are marked with smaller black
numbers. Small red foot numbers, or meter digit indicators,
are also stamped on the rod face at suitable points to help
avoid blunders when it is read directly by the instrument
person at close range (with a small field of view).

The rod may be read directly to the nearest hundredth
of a foot (0.01 ft), or to the nearest centimeter (0.01 m) for
a metric rod. By estimating the position of the horizontal
cross hair on the rod face, the instrument person may also be
able to estimate the rod reading to the nearest thousandth of
a foot (0.001 ft), or to the nearest millimeter (0.001 m).
Direct reading to 0.001 ft (or 0.001 m) will be difficult how-
ever, if the line of sight is relatively long.

A surveyor must be able to read a level rod quickly,
accurately, and without blunders. The reading on the rod
shown in Figure 5-12 is 3.837 ft. The first digit, 3 ft, is
inferred because the cross hair is somewhat below the large
(red) 4-ft mark. The second digit, 8 tenths, comes from the
black number just below the cross hair. (Note the little
point on the black interval next to the 8; these points
generally help to emphasize the tenths as well as the 0.05-ft
points.) The third digit, 3 hundredths, is obtained by
counting the full black and white intervals above the 8.
Finally, the last digit, which represents 7 thousandths of
a foot, is estimated by eye as that fraction or part of the
black interval (0.01 ft thick) of the rod in which the cross
hair falls. The general method for reading a metric rod is

FIGURE 5-11. Typical level rod faces. (Courtesy of The Lietz
Company.)

FIGURE 5-12. How to read a level rod.

the same as illustrated here except, of course, for the mean-
ing of the numbers and divisions.

Level rods that can be read directly by the instrument
person are sometimes called self-reading rods.

Types of Level Rods Many level rods are named after
cities. One of the most common is the Philadelphia rod,
which is a combination of self-reading and target rod. It is
made in two parts. The rear section can be slid upward
through two brass sleeves, and when fully extended, the front
face of the rod reads continuously from 0 at the bottom to
12 ft (or 13 ft on some models) on the top. The rod may be
used in the extended position when leveling over steeply
sloping terrain; this is called using high rod.

The top of the front face of the rod (from 6.75 ft upward
to about 7.20 ft) is attached to the back section. The back face
of the back section of the rod is graduated downward from
about 7 to 12 or 13 ft. As the back section is slid upward, it runs
under an index mark and vernier. The reading at the index
indicates the height of a certain mark, usually the 7-ft mark on
the front face. Thus, if the target is set at the proper mark and
the back section of the rod is partly raised, the height of the
target above the ground is indicated by the index on the rear
face. A clamp is provided to hold the back section in place.

A stop is provided to prevent the rod from coming apart
when it is extended too far. The stop is often placed so that it
stops the rod when the readings are continuous from bottom
to top. Sometimes it is not so placed, and sometimes it is
knocked out of position by long use. The rod person should
make sure that the index at the back of the rod reads exactly
12 or 13 ft (whichever applies) when he or she sets the rod in
its extended position. The stop should be used only when he
or she is certain that it stops the rod in the proper position.
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Other types of level rods include the Chicago rod, the
San Francisco rod, and the Florida rod. The Chicago rod and
the San Francisco rod consist of three sliding sections; when
unextended, they are somewhat more compact and portable
than the Philadelphia rod. The Florida rod consists of
one section, 10 ft long, graduated with alternating 0.10-ft-
wide red and white stripes.

A type of rod that is sometimes used for topographic
surveys or construction layout work is the direct elevation rod
(see Figure 5-13). It is made in two sections for extension up
to 10 ft. The front section carries a graduated, endless, 10-ft
steel band that runs over end rollers to bring any reading into
view. The back section has a clamp for holding the rod in
extension and has a latch for locking the band in any required
position. The numbers on the band are read downward from
the top of the rod. After properly setting the band position, all
rod readings will be elevations of the points on the ground
where the rod is held. An advantage is that no additions or
subtractions of backsight or foresight readings are necessary.

Telescoping fiberglass rods are being used more and
more, due to their light weight and low cost. They are available
in both metric and U.S. Customary graduations, and are man-
ufactured in lengths up to 7 m (25 ft). Specially, “bar-coded”
rods are employed with the new digital family of levels. These
are identical in construction to the conventional rods except
for the patterns imprinted on them (Figure 5-14).

5-3 LEVELING PROCEDURES
In the previous sections, the general principles of differen-
tial leveling were discussed, and several different types of
leveling instruments and level rods were illustrated and
described. In this section, the actual field procedures for
setting up an instrument and handling a level rod are
presented.

Setting Up and Leveling the Instrument
The level must be securely mounted on top of a three-legged
wooden or aluminum stand called a tripod (see Figure 5-15a).
Tripods have adjustable legs that make it convenient for setups
even on steeply sloping ground and is more easily transported
when closed. The instrument is either screwed directly onto
the tripod head or attached with a fastening-screw assembly
(see Figure 5-15b).

The friction of the tripod legs, at the tripod head, may be
adjusted so that the legs will fall slowly of their own weight
from a horizontal position. If a wide-framed tripod with
metal hinges is used, the friction should be adjusted so that it
is just possible to notice the friction when the legs are moved
by hand.

Each leg of a tripod has a pointed metal shoe at the end.
The tripod is set up with the legs well spread and pressed

FIGURE 5-13. (a) A direct elevation, or Lenker, rod. (b) How the direct elevation rod
works. (c) Setting the band at the benchmark. (Courtesy of Lenker Manufacturing
Company.)
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firmly into the ground (see Figure 5-16). If the surface is
hard or paved, each tripod leg should be placed in a surface
indentation or in a crack in the pavement; the log hinges
may also be tightened for extra friction. The legs should be
adjusted so that the head of the tripod is roughly horizon-
tal. For leveling work, the instrument need not be set up
precisely over a particular point or station; locating a good
spot for the instrument will be discussed again shortly.

Remove the instrument from its case, carefully lifting
it by the base, and immediately screw it firmly onto the
tripod head. Remove the dust cap (if any) from the
objective lens and replace it with a sunshade, if one is
provided. The sunshade improves the mechanical balance
of the telescope and prevents glare caused by sunlight strik-
ing the objective lens. It also improves visibility by helping
to eliminate unfocused light, which tends to dim the image.

When the level is to be moved to another position, it
need not be removed from the tripod (except perhaps for
very expensive and precise instruments). In a clear area, hold
the tripod in a vertical position.

Leveling a Three-Screw Instrument All digital and
automatic levels are first approximately leveled by three leveling
screws. The level position is indicated by the coincidence of a
spirit bubble and the “bull’s-eye” of a circular level vial. Any one
of the three screws can be rotated separately. The bubble will
move toward any screw turned clockwise.

It must always be kept in mind that turning any screw on
a three-screw level slightly changes the HI. Never turn a leveling
screw of a three-screw leveling head once a BS reading has been
taken and an HI established. This is not a problem with four-
screw levels because their main support is a fixed center bearing.

Most experienced surveyors can quickly level a three-
screw instrument and circular bubble by turning the three
screws simultaneously. But for beginners, it is best first to
adjust any two adjacent screws so that the bubble moves to
a position on an imaginary line perpendicular to a line
between those two screws (see Figure 5-17). Follow the old

(a) (b)

FIGURE 5-14. (a) Telescoping fiberglass rod. (Courtesy of
Sokkia Corporation.) (b) Polymer bar-coded staff. (Courtesy
of Leica Geosystems, Inc.)

66.322

(a) (b)

FIGURE 5-15. Tripod and tripod head (a) Adjustable-leg tripod (b) Tripod head adaptor. (Courtesy of
The Lietz Company.)



94 CHAPTER FIVE

rule: “Thumbs in, thumbs out, the bubble follows the left
thumb.” Then adjust the third screw alone to bring the
bubble directly under the bull’s-eye.

After Setup After any type of leveling instrument is set
up and leveled, the eyepiece must be focused on the cross
hairs (see Section 5-2) to suit the eyesight of the observer.
Take care not to touch the instrument except when and
where necessary for operating it. Never straddle the legs of
the tripod, but always stand between them. Do not lean on
or hold the tripod for balance when looking through the
telescope. Be particularly careful not to kick or touch the
tripod while walking around the instrument. Never leave the
instrument unattended, unless it is in a protected location
and can be observed at all times.

Handling the Level Rod
The task of the rod person is certainly not difficult, but
proper procedures must be followed if good results are
desired. The rod should be kept standing on the benchmark
or turning point at all times except when actually moving or
computing. It must be kept balanced in a vertical position,
with the front face turned toward the instrument.

When the instrument is set up in a position that
requires high rod, raise the rod all the way until the index on
the back of it reads exactly 12 ft or 13 ft (whichever applies),
and clamp it in position. If it is raised part way, the gradua-
tions are not continuous and a blunder will result. The rod

person should be watching the instrument person at all
times for signals and instructions.

An experienced surveyor can readily balance the rod in
a vertical position. On a windy day, or for precise work, it is
best to use a rod level. The rod level contains a circular
bull’s-eye bubble vial; if it is held flush against the edge of
the rod and the bubble is centered, the rod is in a vertical
position. If a rod level is not available, the instrument
person may ask that the rod be “waved” so that an accurate
reading can be obtained; this is explained shortly under
“Taking a Rod Reading.”

Needless to say, the rod is a precision instrument and
should be handled with care like any other piece of surveying
equipment. It should not be dragged on the ground; always
lower the rod to carry it. The metal base should not be
banged on rocks or pavement, nor should it be allowed to get
caked with mud; remember, the rod is graduated so that the
very bottom is 0 ft or 0 m.

Care also needs to be taken when the rod is fully
extended; it could get caught on overhead electrical wires,
possibly causing serious injury to the rod person.

Taking a Rod Reading
The instrument person sights over the top of the telescope to
direct it toward the rod. Then, looking through the
telescope, the rod is brought into focus with the vertical
cross hair on or near the rod. The clamp and tangent (slow-
motion) screw may facilitate this step if the instrument is
equipped with it. If an older type of level is used, the bubble
tube should be checked for proper centering. If it is slightly
off-center, relevel precisely with the pair of opposite screws
that most nearly point toward the rod.

The instrument person carefully reads the rod, rechecks
the bubble, and then records the rod reading in the field
book. (With an automatic or self-leveling instrument, the
constant checks of the bubble are not necessary.) The instru-
ment person gives the rod reading to the rod person by
voice or signal, naming all the digits and the decimal point
in the reading.

The rod person, while still balancing the rod vertically,
will point to the exact reading with a pencil point as a check.
The instrument person will note whether or not the pencil
coincides with the horizontal cross hair. If satisfied, he or she
calls or signals “all right,” and the rod person also records the
reading. If not satisfied, the rod is read again and a corrected
value obtained.

When reading to thousandths of a foot or millimeters
(as for benchmark or precise leveling), there will often be
a slight discrepancy between the first reading and the pencil
position. The first reading is the correct one if the difference
is 0.003 ft (or 1 mm) or less. If the difference is more, the
reading is repeated.

Waving the Rod To ensure that the reading is taken
when the rod is vertical, the instrument person may signal

FIGURE 5-16. The pointed metal shoe at the end of each
tripod leg must be pressed firmly into the ground.
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the rod person to slowly wave the rod back and forth
in the direction of the instrument (not sideways!). The
correct rod reading is the lowest reading observed when the
rod is being waved (see Figure 5-18). The lowest reading
always occurs when the rod just passes through the verti-
cal position.

As much as possible, communication between instru-
ment person and rod-person should be by voice. But on
construction sites or near heavy traffic, hand signals may be
necessary (unless, of course, radio communication is avail-
able). The best signal is often one that imitates the action
desired; suggested hand signals follow.

Suggested Hand Signals for Leveling

1. All right. Hands outstretched sideways and palms forward
and moved up and down together.

2. Plumb the rod. Hand over head, elbow straight, and
palm forward and inclined in the proper direction.

3. Wave the rod. Both hands over head and palms forward,
swung back and forth together.

4. High rod. Both hands extended outward to the sides,
palms up, and the arms moved up to vertical together.

5. Raise for red. When the footmark is invisible, the
instrument person reads and memorizes the tenths,

FIGURE 5-17. Leveling a three-screw
instrument with a circular, or
bull’s-eye, level vial.



hundredths, and thousandths and then calls “raise for
red” or extends one hand forward, palm up, and raises
it a little. The rod person lifts the rod slowly and exactly
vertically. The footmark is read when it appears.

6. Take, or this is, a turning point. One hand moved in
a horizontal circle over the head.

7. Kill the brass. Same signal as “high rod.” Sometimes the
brass strip that is attached to the rear half of the rod at the
bottom and fits around the front of the rod conceals
the reading. By partly extending the rod the brass is
moved upward out of the way. The rod person can always
judge by the relative positions of the instrument and the
rod whether “high rod” or “kill the brass” is meant.

8. Turn the rod around. A small horizontal circle made
with the forefinger. It is given when the back or side of
the rod is turned toward the instrument.

Leveling Mistakes and Errors
As with any surveying operation, blunders must be elimi-
nated and errors minimized while running levels. Misreading
the rod is a common blunder; it can be avoided by always
having the rod person check the reading with pencil point, as
previously described. And if the full footmark on the rod is
not visible to the instrument person for any reason, he or she
should always signal “raise for red” (see the preceding hand
signals).

Note-keeping mistakes can be particularly troublesome.
The computations of HI and turning point (TP) elevation
should be done in the field as the work progresses. A simple
arithmetic check at the end of the leveling run can be made
to avoid addition or subtraction errors; this is illustrated in
Figures 5-4 and 5-21c. For important benchmark leveling
work, both the instrument person and the rod person should
record data in a field book; the rod person keeps what is
called the peg book. (Not all surveyors follow this practice,
however.) The rod readings should be called out by each
surveyor as they are recorded, for confirmation of correct
values. Computations should be compared routinely to help
avoid arithmetic mistakes.

Blunders are sometimes made by the rod person at a TP.
This generally arises if a fixed, well-defined TP was not
selected and marked properly to begin with. The rod person
may hold the rod on one point for the foresight reading, and
then inadvertently place it on a different point when the

instrument person is ready to take a backsight. To avoid this,
a TP should be clearly marked before it is used. Another mis-
take with the rod occurs if it is not fully extended and
clamped in the proper position for high rod readings. The
rod person must also check to see that mud, snow, or ice has
not accumulated at the bottom of the rod.

Random Errors Unavoidable accidental or random errors
may occur when running levels for several reasons. For exam-
ple, the level rod may not be precisely vertical when the rod
reading is taken. Sometimes heat waves from the ground make
it difficult to read the rod, or the telescope may not be com-
pletely focused, causing parallax. On windy days, the slight
vibration of the cross hair can cause small errors in the reading.
And, finally, the instrument may be slightly out of level if the
spirit bubble is not perfectly centered; this may occur due to
slight settling of the tripod legs into the ground, or sun’s heat
may cause unequal expansion of instrument components.

Accidental errors can be minimized with a properly
maintained and adjusted instrument if the following steps
are taken:

1. Make sure the tripod legs are secure and firmly anchored
before leveling the instrument. Avoid setting up on asphalt
or frozen ground because the sharp legs may slowly sink;
this will change the HI. It is particularly difficult to notice
such movement with a self-leveling instrument.

2. Check to see that the bubble is centered before each
reading; recenter it if necessary. With an automatic level,
gently tap the instrument to make sure the internal
prism system is not stuck or broken.

3. Do not lean on the tripod legs when reading the rod.

4. Have the rod person use a rod level or wave the rod to
make sure it is held vertically.

5. Try to keep the line of sight about 0.5 m, or 1.5 ft, above
the ground when positioning the instrument, particu-
larly when leveling over pavement on a hot day.

6. Focus the eyepiece and objective lens properly before
reading the rod. It is best to get in the habit of keeping
both eyes open when sighting through the telescope.

7. Without actually rushing the work (which leads to
blunders), take as little time as possible between BS and
FS readings.

8. Do not use very long BS and FS distances.
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FIGURE 5-18. Waving the rod
(motion greatly exaggerated). The
rod reading is lowest at B because
length AB is smaller than length AD
or AC.



Systematic/Instrumental Error Leveling instruments
may occasionally get out of adjustment. With the level rod, it
is important that the extension mechanism is in proper
working order and that the rod is of the correct length.
When using a level, it is particularly important that the
bubble tube axis be perpendicular to the standing axis of
the instrument and that the line of sight of the telescope be
parallel to the bubble tube axis. Instrumental errors are
systematic because they tend to occur in the same direction
(plus or minus) and with the same magnitude each time
a reading is taken.

Although relatively simple methods for checking and
adjusting levels can be applied by the surveyor, it is always
good practice to follow field procedures that would
eliminate or cancel any residual instrumental errors. For
running levels, and in particular for benchmark leveling,
the most important rule in this regard is to always position
the instrument to keep the BS and FS distances equal for
a single setup (see Figure 5-3). This can be done by eye or
by pacing.

If the line of sight of a level is not exactly horizontal
when the bubble is centered, but slopes either up or down, it
will slope by the same amount for any direction of the
telescope. As long as the horizontal lengths of the BS and FS
are the same, from any given instrument position to the rod,
the line of sight will intercept the rod held on each point
with exactly the same error in height. But because one of
the sights is a plus sight (+) and the other a minus sight (-),
the two errors will cancel each other out in the leveling
computations.

This principle is illustrated with a numerical example in
Figure 5-19. In addition to canceling the instrumental error

in the level, natural errors caused by the effects of the earth’s
curvature and the refraction (slight bending) of the line of
sight in air will also be effectively eliminated. These effects
could be significant for precise leveling over long distances.
In fact, even if the level rod length were grossly inaccurate
(e.g., an inch of mud caked onto the bottom soleplate), the
error would cancel out when computing relative vertical dis-
tances or elevations as long as the BS and FS distances
between level and level rod were equal.

In some types of leveling surveys, particularly for
ground profile or topographic data, several rod readings will
be taken with unequal BS and FS distances. Any instrumen-
tal error in the work due to this is usually insignificant with
respect to the relative accuracy needed for the project. Profile
leveling and topo leveling are described later on.

Reciprocal Leveling
When it is necessary to run levels accurately over ravines,
rivers, or other obstacles where the BS and FS distances must
necessarily be different, a procedure called reciprocal leveling
may be used. This provides another way to cancel or average
out instrumental errors as well as the effects of refraction
and the earth’s curvature.

The procedure involves two instrument setups, one
nearby each point (see Figure 5-20). From each instrument
position, a BS on point A and an FS on point B is taken and
an elevation is computed for point B. This will result in two
different elevations for B due to the natural and instru-
mental errors. But by averaging the two elevations, the
effects of the errors are canceled out and the “true” or most
probable elevation is obtained.
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FIGURE 5-19. When the horizontal
lengths of the foresight (plus) and
backsight (minus) are the same, the
systematic error of adjustment of
the level is canceled.
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5-4 VERTICAL CONTROL
(BENCHMARK) SURVEYS

A vertical control survey establishes a series of fixed reference
monuments or points whose elevations are measured with a
relatively high degree of accuracy. These monuments, called
benchmarks, can then serve as the basis for starting and check-
ing ordinary surveys of lesser accuracy, such as for topographic
mapping or construction layout. Almost any fixed and perma-
nent object, natural or set by the surveyor, can serve as a bench-
mark. Generally, a benchmark should be easily recognized and
found, not likely to move, and set low with respect to the
surrounding ground; it should be clearly marked with an iden-
tifying number. Leveling for vertical control may be conducted
in a variety of ways depending on the required accuracy.

Benchmark Leveling and Field Notes
For ordinary mapping and construction projects, the sur-
veyor must frequently run levels from an “official” bench-
mark toward the project site and set new benchmarks to
control elevations at that site. A system of benchmarks is
always in demand from the moment any work is contem-
plated and throughout the life of the project. Benchmarks
should be established, if possible, well before leveling is
required for the original topo map. Sometimes a nail in
a tree, part of a fire hydrant, or even a wooden stake may
serve as a benchmark for a particular construction project.
At least three benchmarks should always be established for
any project so that if one is disturbed, the pair that check will
be known to be correct.

Field Procedure As previously mentioned, both the
instrument person and the rod person should have a field
book. The one kept by the instrument person is the level book;
the other is the peg book. The work begins at a previously
established benchmark in the vicinity of the project site; this
may be one of the official monuments set by a federal, state,
or county agency, or it may be some other point of known or

assumed elevation. In the illustration presented here, the
starting point is BM 5 (see Figure 5-21).

In the field notes, both the instrument person and the rod
person record BM 5 in the station (“Sta.”) column: the known

FIGURE 5-20. Reciprocal leveling over an obstacle such as a river.

FIGURE 5-21. (a) Plan of benchmark leveling.
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elevation, 30.476, is recorded in the elevation (“Elev.”)
column. That represents the vertical distance of BM 5 above
a specific datum, typically MSL. A description of the bench-
mark is recorded on the right-hand page of the field book on
the same line as BM 5 (see Figure 5-21c).

The instrument is set up where BM 5 can be clearly
observed, preferably not more than 150 ft (or 50 m) away.
The rod person holds the rod on BM 5. The reading of the
rod, 2.178, is taken using the target and vernier, checked, and
recorded by both surveyors on the same line as BM 5, in the “+”,
or BS, column. The rod person then paces the distance to the
level. An equal distance in the desired direction is paced, and
a TP (TP 1) is selected to carry the line of levels forward
(a turning point is a temporary benchmark). With experi-
ence, the rod person will be able to estimate a suitable dis-
tance to a TP without pacing.

The TP must have the following characteristics:

1. The rod, when held on it, will be visible from the level.

2. It must be securely fixed in the ground, preferably with
a rounded top on which to rest the rod.

3. If a satisfactory object cannot be found, a metal turning
pin or a wooden stake may be driven to serve as a TP. An
arbitrary, unmarked point on grass or soil should never
be used as a TP.

4. A TP on pavement should be marked with keel (lumber
crayon) and identified with an appropriate number
(such as “TP 1”) immediately after it is selected.

While the rod person is engaged in selecting and mark-
ing a suitable TP, the instrument person computes the HI by
adding the BS reading, 2.178, to the elevation of BM 5,
30.476, and records the result, 32.654, in the HI column right
next to the plus (BS) reading that gave it.

The rod person then holds the rod on TP 1; the FS reading
3.689 is observed and checked. It is recorded by both surveyors
in the minus (-), or FS, column on the next line down in the
field notes, a line that is marked with TP 1 in the “Sta.” column.
Always remember to record either a BS or an FS reading on the
line marked with the name of the point being observed.

The instrument person picks up the tripod and moves
forward with the level. Meanwhile, the rod person computes

FIGURE 5-21. (Continued) (b) Side view of the benchmark leveling run in (a). (c) Form
of field notes used with benchmark leveling.
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the HI and subtracts 3.689 from it to find the elevation of TP 1,
28.965, which is recorded in the “Elevation” column on line
with TP 1. The rod person should hold the rod on the turn-
ing point as soon as possible after the computation so that
the instrument person can choose a new location from
which the rod can be clearly observed.

A typically difficult operation for the inexperienced
instrument person is to choose the proper location for the
level when working on steeply sloping ground. When run-
ning levels downhill, there is a tendency to set up the level
too far downhill so that the line of sight is below the foot
of the rod (see Figure 5-22a). When working uphill, the
level may be set up too far uphill, where the line of sight is
above the rod, even when extended (see Figure 5-22b). Or
even while the BS reading may be observed, the distance of
the sight may be so great that the length of the following
FS cannot be made equal to it. It is often advantageous to
use a hand level for a quick but level line of sight from
a selected instrument position to avoid this time-wasting
situation.

After the instrument is set up in its new position, the
BS reading of 4.162 is observed, checked, and recorded by
both surveyors in the plus (+) column on line with TP 1
(remember always to record a rod reading on line with the
point being observed). It may also be helpful to remember
that the first reading after a new instrument setup is
always a backsight and will be entered in the second
column. The only time that data can be recorded in the
second column is from a first reading taken after a new
instrument setup. Second readings from the same instru-
ment setup location will be foresights and will be entered
in the fourth column. While the rod person then paces the
new distance to the instrument, the instrument person
computes and records the elevation of TP 1 and the new
HI of 33.127.

When the rod person reaches the instrument after pac-
ing the distance, both surveyors check their corresponding
values for the elevation of TP 1. If there is a discrepancy, the
blunder must be found before proceeding with the work.
Then the process of running levels continues, repeating the
steps already described.

Checking for Mistakes When the survey is complete,
an arithmetic check is done; this simply ensures that no
mistakes in addition or subtraction were made in the “HI”
and “Elev.” columns of the field notes. As illustrated in Figure
5-21c, the check consists of summing the BS (+) and FS (-)
columns and applying those sums to the starting elevation;
the same result, 30.483, is obtained for the final elevation of
BM 5, indicating no arithmetic error was made.

Note that in this example, the line of levels is run back to
BM 5, the starting point. This is called a closed level loop or level
circuit. Any leveling survey should close back either on the start-
ing benchmark or on some other point of known elevation in
order to provide a check against blunders. (The arithmetic
check alone will not reveal blunders, like misreading the rod.)

In the example of Figure 5-21, there is a discrepancy of
0.007 ft between the known elevation of BM 5, 30.476, and
the observed value for that point, 30.483. This difference is
small enough to effectively rule out the possibility of a blun-
der in the work; it is due to various unavoidable random
errors. As will be explained later, the order of accuracy of the
leveling survey will depend on the total horizontal distance
covered by the level circuit.

Error of Closure and Precise Leveling
There are about a half-million official benchmarks throughout
the United States, which constitute the National Vertical
Control Network. These benchmarks are established and main-
tained by U.S. federal agencies such as the National Geodetic
Survey (NGS) and the U.S. Geological Survey (USGS). The
elevations of these points are referenced to MSL data from
1929; that reference is called the National Geodetic Vertical
Datum of 1929 (NGVD29). An adjustment to account for
natural geological changes that slowly alter the elevations to
some degree has been completed; the adjusted elevations are
referenced to a new MSL datum called the North American
Vertical Datum of 1988 (NAVD88).

The relative accuracy required for a vertical control or
leveling survey depends on its purpose. A set of standards and
specifications has been prepared by the federal government
for the national control network; this also serves as a guide for

FIGURE 5-22. (a) Level set up too low. (b) Level set up too high.
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surveyors in private practice. There is a hierarchy of several
different orders and classes for vertical accuracy standards.
These standards are expressed in terms of an allowable error of
closure, as well as relative accuracy between points.

The allowable error of closure is a function of the length
or total horizontal distance of the leveling line or circuit.
The function is expressed in the following form:

The higher the order of
accuracy, the smaller the constant.

The latest standards for vertical control established by
the U.S. Federal Geodetic Control Committee are summarized
in Table 5-1. They apply primarily to precise leveling work
done by federal or state agencies. Benchmarks for extensive
construction projects may be established at third-order
accuracy, starting from an NGS or USGS second-order mon-
ument. But for most relatively small-scale local construction
projects, benchmarks are often set at an even lower level of
accuracy (what might be called “fourth-order”). The error of
closure has units of millimeters, with the distance given in
units of kilometers.

Consider, for example, a level circuit with a total length of
2000 m. At third-order accuracy, the maximum error of
closure would be In U.S. Customary units,
an error of closure equal to where M is the
distance leveled in miles, is equivalent to third-order accuracy.
For a level loop 2000 ft long, for example, the maxi-
mum error of closure would be 

Average leveling work done primarily for local
construction projects may have an error of closure equal to
about And the accuracy of what may be called
“rough” leveling, such as for ground profile and topo
mapping purposes, may be or less.

Precise Leveling High-accuracy leveling is generally
characterized as precise leveling. It requires the use of special
level instruments, level rods, and field procedures.

0.51M

0.11M  ft.

0.0510.379 = 0.03  ft.
0.0512000/5280 =

0.051M  ft,
1212 = 17  mm.

error = constant * 1distance.

A procedure called three-wire leveling has long been
applied for precise work. In most instruments, the reticles
are equipped with stadia hairs in addition to the regular
cross hairs. Stadia hairs are two short cross hairs equally
spaced above and below the longer central horizontal cross
hair. (Their use for tacheometry and topo surveys is
described in Section 9-3.) In three-wire leveling, the rod
readings are taken to the nearest 0.001 ft or 0.001 m at each
of the three cross hairs. The three readings are recorded and
averaged to give a more precise value than would be
obtained by reading only the center cross hair. Comparing
the average reading with the reading of the central cross hair
helps to avoid blunders, and the use of the stadia hairs also
helps to keep BS and FS distances equal.

To a large extent, the use of newer high-precision
instruments is replacing the time-consuming three-wire
leveling procedure for precise work. A modern precise tilting
level (see Figure 5-23) may be equipped with either an
attached or a built-in optical micrometer. Basically, this
allows the horizontal line of sight to be moved up or down
parallel to itself. The optical micrometer is calibrated to give
the vertical movement of the line of sight. The horizontal
cross hair is moved to match the nearest lower division on
the rod; the value of that division plus the reading of the
micrometer scale gives a very precise rod reading. On sunny
days, the level may even be shaded with an umbrella to
prevent unequal expansion of parts of the instrument.

Ordinary level rods are not generally used for precise
work, whether using three-wire leveling or a first-order
micrometer level. Instead, a precise level rod is used; it is
typically constructed in one solid section, with an attached
graduated Invar-steel strip and with a special solid-metal
foot piece called a rod shoe. A circular level is used to keep
the rod vertical; it may also be equipped with supporting legs
for added stability. The Invar scale is under constant spring
tension, and a thermometer is attached to allow corrections
to be made for temperature effects.

Table 5-1. Accuracy Standards for Vertical Control Surveys

Order
Maximum Allowable 
Error of Closure, mm

Relative Accuracy 
Required Between 
Benchmarks, mm Applications

First

Class I ; 31K ; 0.51K Provides basic framework for the
Class II ; 41K ; 0.71K National Control Network and precise

control of large engineering projects
and scientific studies

Second

Class I
Class II ; 81K

; 61K
; 1.31K

; 11K Adds to the basic framework for major
engineering projects

Third ; 121K ; 21K Serves as vertical reference for local
engineering, topo, drainage, and
mapping projects

Note: Error of closure is in millimeters, while K represents the total length of the level circuit in kilometers.
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Benchmark Monuments Any point intended to serve as
a benchmark must be properly constructed or monumented
so that it does not move during its period of intended use.
This is, of course, particularly important for points in the
national control network.

Most NGS and USGS benchmark monuments comprise
a 4-in-diameter bronze disk, securely embedded on top of a
concrete post that extends from the ground surface to below
the frost line. Some monuments use an iron rod driven
about 10 ft into the ground and capped with a brass tablet.

New federal monuments are now being set on stainless
steel rods that are driven into the ground and then encased
in a PVC pipe sleeve. The top of the rod, which is the refer-
ence elevation point, is set about 1 ft below the ground sur-
face; it is protected by an aluminum access cover that is
stamped with the federal agency’s name and the benchmark
identification number. A nearby witness post and sign
clearly mark the location of the point.

Adjusting Benchmark Elevations
The importance of running a line of levels back to the start-
ing benchmark, or to some other fixed point of known
elevation, was mentioned previously. There is really no way
to ensure that a blunder is not made in the work without
closing the level circuit one way or the other. It is much less
expensive to find and correct a blunder in the field by closing
the loop than to have to return and repeat the work at a later
date (or worse, pay for the demolition, removal, and recon-
struction of incorrectly placed structures).

When the line of levels or level circuit is completed,
there is usually some small difference between the given
fixed elevation of the benchmark and the observed elevation
arrived at in the leveling notes. If the arithmetic check works
out all right, then it may be assumed that the discrepancy is

due to random accidental errors. It is reasonable to expect
that any new intermediate benchmarks set while running the
levels are also in error to some degree.

Suppose a leveling survey closes within the desired
order and class of accuracy; in other words, there is an error
of closure, but it is acceptable. The problem now is to dis-
tribute that total error of closure among the various inter-
mediate benchmarks and to adjust the circuit so that it closes
exactly (i.e., so that the observed benchmark elevation
matches the given fixed elevation).

In doing this for a single level line or circuit, it may be
assumed that the elevation error at each point along the circuit
or line of levels (and therefore the required correction) is
directly proportional to the distance of the point from the start-
ing benchmark. The relationships for adjusting the leveling
line or circuit, then, may be summarized as follows:

Error of closure = given benchmark elevation -

observed benchmark elevation

Adjusted elevation = observed elevation + correction

(For precise benchmark-leveling work, multiple adjoin-
ing loops would be run, and a more mathematically
advanced adjustment by the method of least squares would be
applied.)

Example 5-1
Levels are run a total distance of 12.30 km from BM 10 to
BM 25 to set three other benchmarks along the route of
a proposed roadway construction project (see Figure 5-24).
The fixed and recorded elevations of BM 10 and BM 25 are

distance from starting benchmark 

total length of level run

Correction = error of closure *  

FIGURE 5-23. A precise level with parallel plate micrometer enables vertical displacement
to be measured to 0.1 mm. An accuracy of ;0.2 mm in 1 km of leveling (;0.001 ft/ml)
can be obtained. (Courtesy of The Lietz Company.)
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345.567 and 432.321 m, respectively. When closing the line
of levels on BM 25, an observed elevation of 432.286 m is
recorded in the field book. What is the accuracy of the
survey? Adjust the benchmark elevations.

Solution
The error of closure for the line of levels is

Using Table 5-1 we see that +/- 12 12.3 = 42mm. Since
35mm is less than 42 mm this is third order work.

Assuming that this accuracy for the work is acceptable,
an adjustment to the intermediate benchmark elevations
can be made as shown in Table 5-2. A typical computation,
for BM 102, follows:

Distance of BM 102 from BM 10 = 3.51 + 2.62 = 6.13 km

Adjusted elevation of BM 102 = 398.435 + 0.017 = 398.452
m

5-5 PROFILE LEVELING
Profile leveling is one of the most common applications of
running levels and vertical distance measurement for the
surveyor. The results are plotted in the form of a profile,
which is a drawing that shows a vertical section or “side
view” of the earth’s surface. Profiles are required for the
design and construction of roads, curbs, sidewalks, storm
drainage systems, water supply or sewer pipelines, and many
other types of public infrastructure.

Briefly, profile leveling refers to the process of determin-
ing the elevations of a series of points on the ground at
mostly uniform intervals along a continuous line. The line
may be straight, it may turn at sharp intersections or angle
points, or it may be a series of straight lines connected by

Correction = 0.035 * 6.13
12.30

= 0.017m

curves. For example, the line may be the centerline along the
path of a proposed storm sewer or highway. Points along the
line are typically identified by stations and pluses, as
described in Section 4-2 and shown in Figure 4-15; these
points may be set and marked temporarily on the ground
during the survey.

Field Procedure
Profile leveling is essentially the same as benchmark leveling
with one basic difference. At each instrument position,
where an HI is determined by a backsight rod reading on a
benchmark or turning point, several additional foresight
readings may be taken on as many points as desired. These
additional readings are called rod shots, and the elevations of
all those points are determined by subtracting the rod shot
from the HI at that instrument location.

Generally, however, rod-shot readings are not taken as
precisely as the benchmark or turning point readings,
primarily because of the limit in scale and precision to
which the points can actually be plotted on the profile.
If benchmarks have been set and recorded to the nearest
0.001 ft (or 0.001 m), for example, then rod shots may be
taken to the nearest 0.01 ft (or 0.003 m); on rough or
unpaved ground, rod shots are generally taken to the nearest
0.1 ft (or 0.03 m).

The benchmark and turning point readings constitute
a control survey for the work and for this reason they must
be read more precisely than the rod shots; before the profile
survey is complete, the line of levels should be carried back
to the starting benchmark or to some other benchmark for
a check against blunders.

Figure 5-25a illustrates the plan (or “top”) view for a line
of profile leveling, shown as the centerline of a street. Stations
and pluses are marked (with stakes, or with keel on paved
surfaces) at 50-ft intervals. Depending on the topography, the

FIGURE 5-24. Illustration
for Example 5-1.

Table 5-2. Adjusting (Closing) a Line of Benchmark Elevations

BM Elevation, m Distance, km Correction, m Adjusted Elevation*

BM 10 345.567 0 0 345.567†

BM 101 369.456 3.51 0.010 369.466

BM 102 398.435 6.13 0.017 398.452

BM 103 419.560 9.06 0.026 419.586

BM 25 432.286 12.30 0.035 432.321†

*Adjusted elevation = elevation + correction.
†Note that these are the given fixed elevations.
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intervals may be either longer (for uniform terrain) or
shorter (for irregular terrain). A profile of the street would be
required, for example, to design and construct a new subbase
and pavement for the road. The profile view is usually shown

directly under the plan view (see Figure 5-25b); drawing the
profile is discussed shortly.

The field notes for this profile-leveling example are
shown in Figure 5-26. It will be seen that the form is similar

FIGURE 5-25. Profile leveling; several rod shots are taken from each instrument position.

FIGURE 5-26. Example of profile-leveling field notes.
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to that for benchmark leveling, with an additional “Rod” col-
umn to record the rod shots. Although rod shots are treated
as foresights in the leveling computation for elevations, they
are not recorded in the FS, or “+,” column. They are, in
effect, isolated readings that are not used to carry elevations
forward in the direction of the work.

The level is set up near station 0 + 0, and a backsight
reading of 2.587 is taken on BM 5. This is added to the
benchmark elevation 30.476 to obtain the HI of 33.063.
Then the rod is held on station 0 + 0, and a rod-shot read-
ing of 4.2 is recorded in the “Rod” column. (In this survey,
the existing road surface can be assumed to be poorly
paved and irregular, and so the rod shots need only be read
to the nearest tenth of a foot; this helps to speed up the
field work.)

The rod shot is then subtracted (like a foresight) from
the HI to obtain the ground elevation at station 0 + 0 as
28.9 (again, it is rounded off to the nearest tenth). From
this same setup of the level, rod shots are taken until the
view is obstructed, or a sight distance over about 150 ft is
required. This includes shots on station and half-station
points as well as the top of the manhole frame at station
0 + 15.2.

At this time, a turning point is established so that the level
can be moved forward. In this example, TP 1 is shown to be
marked (with keel) on a curb. The rod is held on TP 1, and
a foresight of 3.782 is read, recorded in the FS, or “-,” column,
and subtracted from the HI elevation of 33.063. This gives an
elevation of 29.281 for TP 1. The instrument is now moved to
its second location near station 2 + 50 on the other side of the
street. (Note that the instrument does not have to be set up on
the profile centerline itself.) Before moving the instrument to
a new location, reshoot the backsight for that setup to confirm
the backsight reading. If there is a discrepancy, disregard all
data collected at that instrument setup. That portion of the
survey will have to be redone.

Now that the instrument has been moved, a new HI
must be determined before any additional rod shots can be
taken. One of the most common blunders for beginning
students is to forget to determine the new HI. In this exam-
ple, a backsight of 3.655 is taken on TP 1 and added to the
elevation of TP 1 to give the new HI of 32.936. The work
then proceeds as before. It ends with a foresight on a fixed
benchmark so that a check may be obtained. In this exam-
ple, the error of closure of 0.019 ft is typical of what may be
called fourth-order or average accuracy for profile leveling.
(Check this out yourself, assuming a total level run distance
of, say, 400 ft.)

As previously seen, the elevation at each station is
computed by subtracting the rod shot from the proper HI.
It is therefore essential that all the rod shots from one HI be
recorded before the foresight reading to the next TP. Also,
the foresight to that TP should be taken after all the
rod shots so that if the field check does not indicate a blun-
der, it is an immediate indication that the level was not

disturbed at any HI. These two considerations dictate the
order of procedure for profile leveling; that is, all the rod
shots shall be taken at any HI before the foresight to the next
TP is taken. Other than that, all the rules for benchmark
leveling apply.

Under no circumstances should leveling of any type
be performed without starting on, or setting, at least one
benchmark. If an official benchmark of known elevation
is not available, a secure point should be set and given
an arbitrary elevation. The benchmarks established on
the original profile are later used as starting points for the
leveling necessary to mark the proper elevations for
construction.

If a benchmark does not exist at the end of the work, it is
necessary to carry the levels back to the original benchmark to
obtain a field check. Often, it is advisable to establish several
benchmarks on the forward run. This can be accomplished by
merely recording the location and description of TPs. These
are useful for giving grades for construction. On the way
back for closure, they should be used as TPs again so that any
blunders can be isolated.

Plotting the Profile
The profile drawing is basically a graph of elevations, plot-
ted on the vertical axis, as a function of stations plotted on
the horizontal axis. A gridded sheet called profile paper is
usually used to plot the profile data from the field book.
Profile paper generally has light blue, green, or orange
lines uniformly spaced to represent the required distances
and elevations on the horizontal and vertical scales. When
both plan and profile views are to be shown, special sheets,
half plain on top and gridded profile on the bottom, are
used. All profile drawings must have a proper title block,
and both axes must be fully labeled with stations and
elevations.

The vertical or elevation scale is typically exaggerated;
that is, it is “stretched” in comparison to the horizontal scale.
For example, if the horizontal scale is set at 1 in = 100 ft, the
vertical scale might be 10 times as large, or 1 in = 10 ft.

The profile must always be plotted exactly to scale, and
the vertical scale may occasionally be as much as 20 times
as large as the horizontal scale. This causes a distortion,
making the slope of the ground appear much steeper on
paper than it actually is in the field. But it serves to make
the general shape of the ground, and the relative elevations,
easier to read and interpret; it also facilitates the design
process.

The horizontal line at the bottom of the profile does not
necessarily have to start at zero elevation. That line, which is
the origin for the vertical scale, is usually assigned the
highest elevation, in round numbers, that is still lower than
the lowest point in the profile. The shape of the profile
would not change; it would simply be positioned higher on
the profile paper.
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FIGURE 5-27. (a) Top view showing
the route centerline and the line
for cross-section leveling at station
1 + 50. (b) The cross section,
showing ground elevations at
points left and right of the
centerline.

A technician can also perform the profile plotting using
one of the many CAD programs currently available. The
data are inputted using x, y, and z coordinates, thereby
providing the three-dimensional data that are needed for the
computer to plot the profile.

Cross-Section Leveling
The term cross section generally refers to a relatively short
view of the ground that is drawn perpendicular to the
route centerline of a highway or other linear type of
project (see Figure 5-27). Cross-section drawings are
particularly important for estimating the earthwork
volumes needed to construct a roadway; they show the
existing ground elevations, the proposed cut or fill side
slopes, and the grade elevation for the road base. Earth-
work sections and computations are discussed in more
detail in Chapter 10.

There is really no difference in procedure between
profile and cross-section leveling except for the form of
the field notes. Cross-section rod shots are usually taken
during the route profile survey from the same instrument
positions used to take rod shots along the centerline.
Cross-section data are obtained at the same locations
along the route that are used for the profile rod-shot
stations.

For a given route profile, there are many cross sections;
a mile-long route, for example, would have more than 100

cross sections, 1 every 50 ft. The cross-section rod shots are
taken at specified lateral distances from the route center-
line stations, such as 15, 30, and perhaps 50 ft, to the left
and right. Cross-section rod shots would also be taken at
sudden changes in the ground slope on the line at right
angles to the route.

Some surveyors use the left-hand page of the field
book for centerline profile notes and the right-hand page
for cross-section notes. Others record both profile and
cross-section data on the same page, as illustrated in
Figure 5-28; the “#L” or “#R” indicates the distance to the
left or right of the centerline that the rod shot was taken. If
the cross-section rod shot is taken at the edge of an exist-
ing pavement (EP), or at some other identifiable point, it
should be so noted in the field book to facilitate drafting
of the section.

5-6 TRIGONOMETRIC
LEVELING

The difference in elevation between two points may be
obtained indirectly by measuring a vertical or zenith angle
and the horizontal or slope distance between the points. This
is called trigonometric leveling because the vertical distance is
computed using right-angle trigonometric formulas (see
Figure 5-29). The use of electronic distance measurement
(EDM) is making trigonometric leveling an increasingly
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FIGURE 5-28. Cross-section 
field notes.

Zenith angle

Reflector

Prism pole
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FIGURE 5-29. Trigonometric leveling.

popular procedure among surveyors because it greatly
increases both the accuracy and speed with which the
required horizontal or slope distances can be determined.

Trigonometric leveling is particularly useful for topo-
graphic work, and this application is discussed in more detail
in Chapter 9. The measurement of a vertical or zenith angle is
discussed in Section 5-1. For very precise trigonometric

leveling work with EDM, angles should be measured to
within ;6 in of arc (see Section 2-1) with a theodolite; when
the line of sight exceeds about 1000 ft (300 m), corrections
must be made to account for the refraction of light and the
curvature of the earth. In some cases, reciprocal vertical-angle
measurements are made at each point to minimize the effects
of refraction and curvature.
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Questions for Review

1. What does the term elevation mean?

2. What is the purpose of running levels?

3. List four different methods of leveling.

4. Briefly outline the process of differential leveling.

5. Define the following terms: backsight, foresight, height of
instrument, benchmark, and turning point.

6. Briefly describe the basic components and operation of
the telescopic sight of a leveling instrument. What is
parallax? What is the line of sight?

7. Briefly describe the configuration and use of a spirit vial.

8. How does an automatic level differ from a tilting level?

9. What is a coincidence bubble?

10. What is meant by automatic level? How does it work?

11. Briefly describe the configuration and use of a level rod.

12. Briefly describe the use of a direct elevation rod.

13. Outline the procedure for setting up a level.

14. What are some important factors regarding the use of
a level rod?

15. Briefly describe the procedure for taking a rod reading.

16. What is the purpose of waving the rod? Which rod
reading should be recorded—the highest or lowest?

17. Briefly describe three hand signals used by surveyors.

18. What are three possible sources of leveling blunders?
How can they be avoided?

19. List five sources of random errors in leveling.

20. List six rules for leveling that can minimize random errors.

21. What is the purpose of equalizing BS and FS distances?

22. Describe the purpose and procedure of reciprocal leveling.

23. What is meant by benchmark leveling?

24. List three important characteristics of a turning point.

25. What is meant by level circuit and arithmetic check?

26. What is the purpose of a vertical control survey? Briefly
describe the orders of accuracy established for vertical
control standards.

27. What do MSL, NGS, USGS, NGVD29, and NAVD88
stand for?

28. What are some distinctive aspects of precise leveling?

29. What is the basic assumption for adjusting a level circuit?

30. What is a profile? What is it used for?

31. Briefly describe the process of profile leveling. How does
it differ from benchmark leveling?

32. Should rod shots be taken with greater precision than
other rod readings? Why?

33. Why is the vertical scale of a profile exaggerated? How is
the starting value of the profile’s vertical axis selected?

34. What is a cross section? How are the data for it obtained?

Practice Problems

1. What are the rod readings at the horizontal lines in
Figure 5-30?

2. What are the rod readings at the horizontal lines in
Figure 5-31?

FIGURE 5-30. Illustration 
for Problem 1.
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3. Complete the benchmark-leveling field notes shown in
Figure 5-32 by computing and recording the HI and
elevation for each TP and benchmark. Do the
arithmetic check.

4. Complete the benchmark-leveling field notes shown in
Figure 5-33 by computing and recording the HI and
elevation for each TP and benchmark. Do the
arithmetic check.

FIGURE 5-31. Illustration 
for Problem 2.

FIGURE 5-32. Illustration for Problem 3.

FIGURE 5-33. Illustration for Problem 4.
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5. Repeat Problem 3 on the premise that all benchmarks
and TPs are located on the crown (ceiling) of a tunnel
and the level rod was held in an inverted position on
those points.

6. Repeat Problem 4 on the premise that all benchmarks
and TPs are located on the crown (ceiling) of a tunnel
and the level rod was held in an inverted position on
those points.

7. Plan-view sketches of benchmark leveling runs are
shown in Figure 5-34. Along each line representing a
sight is the value of the rod reading for that sight. The
numbering of the TPs shows the direction of the level
run. Place the data in the form of field notes. Include the
arithmetic check. Assuming that the average length of
each BS and FS is 125 ft, determine the accuracy of the
survey.

FIGURE 5-34. Illustration 
for Problem 7.

8. Plan-view sketches of benchmark leveling runs are
shown in Figure 5-35. Along each line representing a
sight is the value of the rod reading for that sight. The
numbering of the TPs shows the direction of the level
run. Place the data in the form of field notes. Include the
arithmetic check. Assuming that the average length of
each BS and FS is 40 m, determine the accuracy of the
survey.

9. Listed below are rod readings in the order in which
they were taken in benchmark leveling. The elevation
of the starting benchmark is given at the head of each
column; the last reading is taken on the starting
benchmark as a check. Give the complete form of field
notes, including the arithmetic check. If the average BS
and FS distance is 150 ft, what is the accuracy for each
level run?
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10. Following are rod readings in the order in which they
were taken in benchmark leveling. The elevation of
the starting benchmark is given at the head of each
column; the last reading is taken on the starting

FIGURE 5-35. Illustration 
for Problem 8.

(a)
74.36

(b)
67.428

(c)
59.27

6.48 8.562 11.36

5.72 4.077 5.32

1.06 9.714 1.87

2.38 2.394 10.24

8.67 4.758 2.65

9.22 11.645 6.23

0.27 2.625 4.68

8.13 6.755 5.27

6.42 8.481 8.41

1.75 9.262 7.59

5.23 10.36

0.90 4.71

(a)
12.000

(b)
26.34

(c)
27.934

2.300 2.58 0.528

1.110 2.93 2.827

2.088 2.25 1.290

1.652 1.99 2.508

2.506 1.63 1.684

1.833 2.52 1.408

3.257 2.81 2.762

2.666 3.14 1.904

0.497 1.94 2.549

3.384 2.26 0.170

2.81

1.18

benchmark as a check. Give the complete form of field
notes, including the arithmetic check. If the average BS
and FS distance is 50 m, what is the accuracy for each
level run?
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11. The following sets of field note data were taken in the
order given during profile leveling. Place each set of data
in standard field book form. On graph paper, draw the

profile to the following scales: horizontal 1 in = 100 ft;
vertical 1 in = 10 ft.

Elev. Point Rod Reading Point Rod Reading Point Rod Reading

(a) BM 20 BM 20 3.516 TP 1 4.280 7 + 00 8.3

50.312 0 + 00 2.0 4 + 00 3.9 8 + 00 9.9

1 + 00 7.3 5 + 00 1.4 9 + 00 9.7

BM 21 2 + 00 11.1 TP 2 1.201 BM 21 9.989

43.047 3 + 00 10.4 TP 2 3.016

TP 1 6.872 6 + 00 4.2

(b) BM 14 BM 14 4.674 TP 1 8.149 7 + 00 9.6

35.792 0 + 00 7.1 4 + 00 4.0 8 + 00 6.6

1 + 00 10.7 5 + 00 2.7 9 + 00 5.8

BM 15 2 + 00 12.3 TP 2 9.614 BM 15 7.167

34.680 3 + 00 7.8 TP 2 9.677

TP 1 6.842 6 + 00 6.8

Elev. Point Rod Reading Point Rod Reading Point Rod Reading

(a) BM 27 BM 27 2.860 TP 1 0.390 2 + 40 1.61

1 + 20 0.20

19.750 0 + 00 3.29 1 + 50 0.06 2 + 70 0.94

0 + 30 1.92 1 + 80 1.83 3 + 00 0.52

BM 48 0 + 60 0.67 2 + 10 2.80 BM 48 0.951

19.270 0 + 90 0.37 TP 2 1.990

TP 1 1.680 TP 2 0.887

(b) BM 16 BM 16 1.715 TP 1 1.144 2 + 40 1.83

1 + 20 4.15

19.885 0 + 00 3.90 1 + 50 3.90 2 + 70 1.65

0 + 30 2.47 1 + 80 3.23 3 + 00 3.54

BM 17 0 + 60 1.43 TP 2 2.475 BM 17 1.591

19.365 0 + 90 2.56 TP 2 1.914

TP 1 1.230 2 + 10 1.98

12. The following sets of field note data were taken in the
order given during profile leveling. Place each set of data
in standard field book form. On graph paper, draw the

profile to the following scales: horizontal 1:1000; verti-
cal 1:100 (units are meters).

13. Levels were run from BM 100 to BM 100A. An elevation
of 1234.567 ft was observed at BM 100A. It was later
discovered that the level rod was 0.025 ft too short. If
there were 14 TPs in the level run, what is the correct
elevation of BM 100A? Assume that each pair of BS and
FS distances was equal.

14. Levels were run from BM 10 to BM 10A. An elevation of
376.296 m was observed at BM 10A. It was later dis-
covered that the level rod was 5 mm too short. If there
were 14 TPs in the level run, what is the correct elevation
of BM 10A? Assume that each pair of BS and FS distances
was equal.



Measuring Vertical Distances 113

15. A level circuit is run a total distance of 7.5 mi from BM
20 to set three other benchmarks in the vicinity of a
construction project (see Figure 5-36). The given
elevation of BM 20 is 1418.013 ft. When closing the
level loop, its elevation is observed to be 1417.890 ft.
What is the accuracy of the survey? Adjust the bench-
mark elevations.

16. A level circuit is run a total distance of 10 km from BM
30 to set three other benchmarks in the vicinity of a
construction project (see Figure 5-37). The given
elevation of BM 30 is 456.78 m. When closing the level
loop, its elevation is observed to be 456.82 m. What
is the accuracy of the survey? Adjust the benchmark
elevations.

FIGURE 5-37. Illustration for Problem 16.

FIGURE 5-36. Illustration for Problem 15.
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CHAPTER SIX

One of the basic purposes of surveying is to
determine the relative positions of points on or
near the earth’s surface. Assigning coordinates to

a given point is a useful and common way to indicate its posi-
tion. Angles, as well as linear distances, are usually measured
to compute the coordinates of any particular point.

Angles are measured between two intersecting lines in
either a horizontal plane or a vertical plane (see Figure 1-8).
They are usually expressed in terms of degrees, minutes, and
seconds of arc, although other types of units may also be
used (see Section 2-1). The horizontal angle between a given
line and a specified reference line is called the direction of the
line. The reference line is called meridian. In addition to
serving for the computation of coordinates, angles are
measured so that the directions of lines (such as property
boundaries) can be established.

The relative positions of points on the ground are gen-
erally determined by a horizontal control survey, such as a
traverse network. Horizontal control surveys are discussed in
detail in Chapter 7. Briefly, a traverse survey consists of the
measurement of a series of horizontal lengths, called courses,
and the horizontal angles between these courses.

The final results of a horizontal control survey are gen-
erally expressed by rectangular coordinates (see Section 3-3).
One of the courses or sides is assigned a direction, usually
with respect to the north-south meridian, by measurement
or assumption. Then the directions of the other lines are
computed from the measured angles. The direction of north
thus fixes the orientation of the coordinate system with
respect to the survey courses (see Figure 6-1).

Vertical angles are frequently measured for slope dis-
tance reduction and trigonometric leveling. (The elevation
of a point as determined from differential or trigonometric
leveling is, in effect, its third or z coordinate in a three-
dimensional x, y, z coordinate system.) Angles may be mea-
sured indirectly using measured lengths or distances and
trigonometry, or they may be measured directly using appro-
priate surveying field instruments.

Measurement of both horizontal and vertical angles is a
most essential skill for any surveyor. Generally, the surveyor
will use either a total station or an instrument called a
theodolite for direct angular measurement. The magnetic
compass needle and transit were used extensively in the past
to determine magnetic north and to measure directions and
angles; transits may still be used on some construction sites
and the compass may still be used for making reconnais-
sance surveys, doing rough mapping, and retracing old
boundaries. In Appendix A, the configuration and field use
of the compass and transit will be discussed. In this chapter,
the total station and theodolite are described in detail.

The chapter begins with a discussion of vertical angles.
In the second section, we examine the various ways in which
horizontal angles and the directions of lines are defined and
computed. Following the next three sections on magnetic
declination, the theodolite, and the total station, a discussion
of accuracy, errors, and mistakes in angular measurement is
presented. The focus in this chapter is on measuring angles;
the layout of a given angle, along with other miscellaneous
field procedures with the total station or theodolite, is pre-
sented in Chapter 11.

MEASURING ANGLES 

AND DIRECTIONS
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6-1 VERTICAL ANGLES
A vertical angle between two lines of sight is measured in a plane
that is vertical at the point of observation. Sometimes the two
points sighted do not lie in the same plane (see Figure 1-8): the
total vertical angle measured from A to B is the sum of V1 and
V2, each of which, though, does lie in a vertical plane. Angle V1
is measured upward from a horizontal reference line and is con-
sidered a positive, or plus (+), angle; it may also be called an
angle of elevation. Angle V2 is measured downward from the
horizon and is considered to be a negative, or minus (-), angle;
it may also be called an angle of depression (see Figure 6-2). It is
very important to identify the type of vertical angle (i.e., plus or
minus) in the field notes.

In modern surveying instruments, the upward vertical
direction is usually used as a reference for measuring verti-
cal angles, instead of the horizon. That direction is called
the zenith direction, and an angle measured with respect to

it is called a zenith angle or a zenith distance. It may some-
times be necessary to convert plus or minus vertical angles
to zenith angles, and vice versa. For example, a vertical
angle of 8°45� is equivalent to a zenith angle of 89°60� -
8°45� = 81°15�. A vertical angle of -15° is equivalent to a
zenith angle of 90° + 15° = 105°. And a zenith angle of
95°25� is equivalent to an angle of depression of 5°25� (see
Figure 6-3).

6-2 HORIZONTAL ANGLES
AND DIRECTIONS

A horizontal angle may be described in one of several differ-
ent ways depending on how it is measured. The type of angle
must be clearly noted in the field book to avoid confusion
and a possible blunder in data reduction. An interior angle is
measured on the inside of a closed polygon: an exterior angle

FIGURE 6-2. Designation of vertical angles or zenith angles.

FIGURE 6-1. Method of establishing
a coordinate system: First, the coor-
dinates of station A and the direction
of line EA are assumed. Latitudes
and departures are added to the ordi-
nates and abcissas, respectively, of the
stations, to obtain their coordinates.



is measured outside of the closed polygon (see Figure 6-4).
At any point, the sum of the interior and exterior angles
must equal 360°. [The sum of all interior angles in a closed
polygon is equal to (180°)(n – 2), where n is the number of
sides (see Section 3-3); the sum of the exterior angles must
equal (180°)(n + 2).]

An angle turned (measured) in a clockwise direction,
from the “rear” to the “forward” point or station, is called an
angle to the right. Stations are commonly labeled consecu-
tively in the direction of the survey with numbers or letters.
For example, point 6 or F would be a rear station with
respect to point 7 or G, the forward station.

Pointing the instrument toward the rear station may be
called the backsight and toward the forward station, the
foresight; this terminology is similar to that used for leveling.

An angle turned counterclockwise from the rear to the
forward station is called an angle to the left. To avoid blun-
ders, it is best to adopt a consistent procedure for turning
angles; usually work proceeds in a counterclockwise direc-
tion around a closed polygon or traverse, and interior angles
to the right are measured.

A horizontal angle between the extension of a back or
preceding line and the succeeding or next line forward is
called a deflection angle (see Figure 6-5). Deflection angles
are always less than 180°; they must be clearly identified as
being turned either to the left (counterclockwise) or to the
right (clockwise), using the letters L or R, respectively.
Deflection angles are commonly measured during open tra-
verse or route surveys, such as for a highway. They are easily
visualized and plotted on a drawing, and their use simplifies
the computation of direction for succeeding lines.

Azimuth and Bearing of a Line
The direction of any line may be described either by its
azimuth angle or by its bearing. Azimuth directions are usu-
ally preferred by surveyors; they are purely numerical and
help to simplify office work by allowing a simple routine for
computations. Bearings, on the other hand, require two let-
ter symbols as well as a numerical value, and each bearing
computation requires an individual analysis with a sketch.
But because they are easy to visualize, bearings are almost
always used to indicate the direction of boundary lines in
legal land descriptions (deeds) and on most official survey
plats or subdivision maps.

Azimuths The azimuth of a line is the clockwise horizontal
angle between the line and a given reference direction or

FIGURE 6-3. Relationship between zenith angle and vertical angle.

FIGURE 6-4. A horizontal angle may be classified as an
interior angle, an exterior angle, an angle to the left, or an
angle to the right.
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meridian. Usually, north is the reference direction; south is
sometimes used as a reference for geodetic surveys that cover
large areas. An azimuth angle should be identified as being
measured from the north (AzimN) or from the south
(AzimS); north is generally assumed if no specific identifica-
tion is given. Any azimuth angle will have a positive value
between 0 and 360° (see Figure 6-6). Line AB, for example,
has an azimuth of 125°.

Bearings A bearing of a line is the angle from the north (N)
or the south (S) end of the meridian, whichever is nearest, to
the line; it has the added designation of east (E) or west (W),
whichever applies. The directions due east and due west are,
of course, perpendicular to the north–south meridian. A
line may fall in one of four quadrants: northeast (NE), south-
east (SE), southwest (SW), or northwest (NW), as shown in
Figure 6-7.

A bearing may be measured either in a clockwise or in a
counterclockwise direction, depending on which quadrant
the line is in. A bearing angle is always an acute angle, that is,
less than 90°. It must always be accompanied by the two
letters that indicate the quadrant of the line. For example, a
line may have a bearing of N 42°30� W; this is read as “north
42 degrees 30 minutes west,” or “northwest 42 degrees

30 minutes.” It is important to remember that the numerical
value of a bearing never exceeds 90°.

It is often necessary to convert directions from azimuths
to bearings, or vice versa. Although a systematic set of rules
can be used for this, it is usually best to first make a sketch of
the line and its meridian. In the NE quadrant, the numerical
values of bearing and AzimN are always identical. In the
other quadrants, the conversion involves either a simple
addition or subtraction with 180° or 360°, whichever applies,
as shown in Figure 6-8.

Directions Every line actually has two directions, a
forward direction and a back direction. The difference
depends, in effect, on which way the line is being observed.
Generally, the forward direction is taken in the same sense
with which the field work was carried out. For example, the
forward direction of line AB can be taken as the direction the
surveyor faces when occupying point A and sighting toward
point B (see Figure 6-9). The back direction of that line,
then, would be that which is observed when standing on B
and looking toward A. Calling the line “AB” implies its
forward direction; calling the line “BA” implies its back
direction. For connected lines, it is necessary to be consistent
in designating forward or back direction. For example, line

FIGURE 6-5. A deflection angle
must be designated as being either
an angle to the left (L) or an angle
to the right (R).

FIGURE 6-6. The azimuth of a line is usually referenced to the north end of the meridian.
That is, AzimN differs from AzimS by 180°.
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FIGURE 6-7. The bearing of a line is
measured from the north or from
the south (whichever is closer), in 
a clockwise or counterclockwise
direction (whichever applies).

FIGURE 6-8. Conversion between
azimuth and bearing is best done 
by examining a simple sketch of
the line and meridian.
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BC in Figure 6-9 should be considered a forward direction so
that it is consistent with the direction of AB.

The back azimuth of a line is determined simply by
adding (or subtracting) 180° to the forward azimuth; when
the forward azimuth is more than 180°, 180° is subtracted so
that the numerical value of the back azimuth does not
exceed 360°. To determine the back bearing of a line, though,
it is only necessary to reverse the letters; the numerical value
does not change. For example, the back bearing of N 47°10� E
is simply S 47°10� W.

Computing Angles, Azimuths, and Bearings
Many types of surveying problems involve the computation
of the azimuths or bearings of adjoining lines, given a start-
ing direction and a series of measured angles. These compu-
tations are particularly important for traverse surveys, as
demonstrated in Chapter 7. Another common type of prob-
lem involves the computation of an angle at the intersection
of two lines of known direction.

For problems involving angles and bearings, it is always
best to start with a neat, clearly labeled sketch of the lines.
Although azimuth computations can be systematized with a
formula or rule, it is also advisable to use a sketch as an aid in
their computation. The following examples serve to illus-
trate a basic visual approach to solving problems with
angles, azimuths, and bearings. At each point, the sketch
includes a reference meridian line representing the direction
of due north–due south. Later, in Section 6-3, a distinction
will be made between directions referenced to a “true”
meridian and those referenced to a magnetic meridian.

Example 6-1
The azimuth of side 1–2 is given for the three-sided traverse
shown in Figure 6-10. The three interior angles are also given.
Determine the azimuth direction for sides 2–3 and 3–1.

Solution
First, verify that the sum of the interior angles equals (n – 2)
180°. If not, adjust the angles accordingly. Next, make a
sketch of station 2, which includes lines 1–2 and 2–3, with
lightly drawn or dashed meridian lines through points 1 and
2; show the given angles in the proper location on the
sketch (see Figure 6-11a). The azimuth of line 2–1 (back
azimuth of 1–2) is simply 120° + 180° = 300°. The azimuth of
2–3 is then determined by adding the interior angle (and
subtracting 360°) as shown.

The procedure is repeated at station 3 to determine the
azimuth of line 3–1 (see Figure 6-11b). As a check, station 1 is
sketched, and the original azimuth of 120° is then observed.
In general, for the computation of a line’s azimuth in a closed
traverse, proceed in a counterclockwise direction around the
loop, adding the clockwise interior angle to the back azimuth

FIGURE 6-9. A line can be designated
by either its forward direction or its
back direction; back direction is
useful for computing the azimuth 
of an adjoining line.

FIGURE 6-10. Illustration for Example 6-1.
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of the preceding line. (Subtract 360° if necessary, to avoid
angles exceeding a full rotation.)

Example 6-2
In the traverse shown in Figure 6-12, the bearing of side
CA and angles A and B are given. Determine the bearings
of side AB and side BC. Check by recomputing the
bearing of CA.

Solution
Start with a sketch of sides CA and AB at station A, as
shown in Figure 6-13a. Examine and analyze the sketch to
determine the required bearing of AB as shown. Repeat the
procedure for BC, as shown in Figure 6-13b.

There is no systematic rule for computing bearings;
each sketch must be evaluated as a separate problem. It
may often be helpful to first identify the unknown bearing
angle with an asterisk (*) or some other symbol; then study
the sketch and the given angles to determine a sequence
of additions and/or subtractions that will result in the
bearing angle value. Finally, assign the appropriate let-
ters—NE, NW, SE, or SW—depending on which quadrant
the line is in.

Example 6-3
The bearings of two adjoining lines, EF and FG, are N 46°30� E
and S 14°45� E, respectively. Determine the deflection angle
formed at the point of intersection, station F.

Solution
Make a sketch of the two lines, as shown in Figure 6-14.
The angle between FE and the south end of the meridian

FIGURE 6-11. Solution for Example 6-1.

FIGURE 6-12. Illustration for Example 6-2.
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value of the deflection angle is the difference between a
straight angle (180°) and the sum of the two bearing
angles, or 118°45�. Because FG deflects in a clockwise
direction from EF extended, the deflection angle should be
designated as 118°45� R.

FIGURE 6-13. Solution for Example 6-2; the symbol (*) marks the bearing angle being
solved for.

is 46°30�. (This follows from the fact that either alternate
interior angles are equal or the back bearing of EF has the
same numerical value as its forward bearing.) The angle
between line FG and the south end of the meridian line is
the bearing angle of FG, or 14°45�. By inspection, the

FIGURE 6-14. Illustration for
Example 6-3.
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6-3 MAGNETIC DECLINATION
At the very beginning of this chapter, a meridian was
defined as a horizontal reference line for measuring direc-
tion. In the example azimuth and bearing problems given, a
“north–south” meridian was used as the reference direction.
At this time, it is necessary to be more specific with regard
to reference meridians. In particular, we must distinguish
between a true meridian and a magnetic meridian.

True Meridian
A true meridian at a point is an imaginary line that passes
through that point and the geographic north and south
poles of the earth; the poles, of course, lie on the axis of rota-
tion of the earth. At any given point, the direction of the true
meridian is fixed; it does not change over time.

True north may be established in the field by precise
instrument observations and angular measurements of the
sun, the North Star (Polaris), or any other bright star of
known position. A special gyroscope theodolite may also be
used to obtain true north. But establishing true north is not
a routine task for most surveyors in private practice. For this
reason, the National Geodetic Survey (NGS) has established
reference lines of known true direction throughout the
United States. It is always best to reference new surveys to the
true meridian, if possible and convenient.

Magnetic Meridian
A magnetic meridian is the direction taken by a pivoted,
freely swinging magnetic needle, suspended in a device
called a compass. The compass needle aligns itself with the
horizontal component of the earth’s magnetic field.

The magnetic field of the earth can be approximately
described as the field that would result if a huge bar mag-
net were embedded within the earth, with one end located
far below the surface in the Hudson Bay region and the
other end in a corresponding position in the southern
hemisphere. The lines of magnetic force follow somewhat
irregular paths, running from the south magnetic pole to
the north magnetic pole. They are approximately parallel
with the earth’s surface at the equator and dip downward
toward each of the poles.

Magnetic Declination
The earth’s magnetic poles are not at the same location as the
true geographic poles; they are separated by a significant
distance. In addition, the field slowly changes in general
direction over time, and it is slightly affected by the position of
the sun and changes in radiation from the sun. Consequently,
the magnetic meridian is not necessarily parallel to the true
meridian. A magnetic needle will therefore point exactly true
north only by chance.

At any given time, at any point on the earth’s surface, the
true geographic bearing of a freely suspended magnetic
needle is called the magnetic declination or, simply, the

declination. In other words, the declination is an angle east
or west of the true meridian. For example, when the needle
points 10° west of true north (N 10° W), the declination is
said to be 10° west (10° W). If the needle points N 5°30� E, its
declination is 5°30� E (see Figure 6-15).

The magnetic declination varies with location on the
earth’s surface. The USGS periodically publishes an isogonic
chart, which shows lines of equal declination. These charts
provide a means of determining the declination at any point
in the United States. The solid lines are the isogonic lines, that
is, lines of equal declination. The line of zero declination is
called the agonic line; at locations on that line, a magnetic
needle points true north.

At locations east of the agonic line, the compass needle
will point west of true north (i.e., have a westerly declination);
west of the agonic line, the needle points east of true north.
Overall, there is more than a 40° difference in declination
between the east and west coasts of the United States.

Changes in Declination At a given location, the magnetic
declination changes with time. Changes in the earth’s magnetic
field cause the following four types of variations in declination:
secular variation, annual variation, diurnal variation, and
irregular variation.

Secular Variation The secular variation is a long-term
change in declination, with a cycle of approximately 300
years. Its cause is not well understood and there is no precise

FIGURE 6-15. Examples of magnetic declination, the angle
between true north and magnetic north (that varies with
time and location).
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law or formula to predict it exactly. But average observations
over periods of time at different locations on the earth allow
approximate predictions of its value and direction using
tables and charts. In the United States, the maximum rate of
secular variation is about 7.5 minutes of arc per year.
This amounts to several degrees over the years, and over the
300-year cycle, the declination at a given location may vary as
much as 35° from east to west. Because of its large magnitude,
secular variation is of particular significance to the surveyor.

The lines on an isogonic chart are the lines of equal
annual change in declination. They give the yearly rate and
direction of movement of the north end of a compass needle.
These data, along with the isogonic lines of the chart, provide
the surveyor a means for estimating the declination at any
time as well as at any point in the United States. This may be
necessary when surveying land described in old deeds.

Other Variations The annual variation is a magnetic
meridian swing of at most 1 minute (01�) of arc, back and
forth, during the year. The diurnal or daily variation is a swing
of approximately 4–10 minutes of arc, depending on the
locality. At night the needle is quiescent in its mean position. It
swings east 2–5 minutes in the morning and west 2–5 minutes
in the afternoon. During some of the magnetic disturbances
associated with sunspots, there may also be significant irregu-
lar variations of declination.

Generally, the annual and daily variations are too small
to be detected in the field with a magnetic compass. Overall,
the secular variation is the most important type of variation
for the purposes of surveying and it must be accounted for
with appropriate adjustments to past records of direction.

Adjustments for Declination
It is sometimes necessary to convert magnetic bearings or
azimuths to true directions or to convert past magnetic
directions to magnetic directions at the present or some
other point in time. This may be the case when using a mag-
netic compass to obtain an estimate for the direction of a
line, or when resurveying a tract of land that was originally
surveyed using compass directions. An isogonic chart may
be used to obtain data regarding past and present declina-
tions. As demonstrated in the following examples, a large
and clear sketch is essential for solving these problems
without blunder.

Example 6-4
The magnetic bearing of a boundary line for a tract of land
was recorded as S 55°30� W in a deed dated 1905. It is
determined that the magnetic declination at that time
and location was 3°45� W. Determine the true bearing of
that line.

Solution
The first step is to make a clear sketch of the given data.
A heavy solid line drawn parallel to the side of the paper is
used to indicate true north; a dashed or lighter line with a
half-headed arrow may be used to indicate the direction of
magnetic north (see Figure 6-16). In this example, magnetic
north is sketched to the left of true north because of the
westerly declination; the declination angle of 3°45� is shown
(not to scale).

The boundary line, labeled AB, is shown in the SW
quadrant; the magnetic bearing angle of 55°30� is sketched

FIGURE 6-16. Illustration for
Example 6-4.
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General Features of a Theodolite
Theodolites differ from the transit in several ways
(Figures 6-18 and 6-19). In overall appearance, they are
noticeably lighter in weight and more compact than an
engineer’s transit. They generally do not have a built-in
compass box on the alidade plate. The telescopes are
shorter and are not usually equipped with spirit bubble
tubes. There is no circle or vernier window seen on the
alidade, but there is a small reading microscope eyepiece
attached next to the telescope through which the enclosed

from the south end of the magnetic meridian, as shown in
Figure 6-16. The true bearing angle is that measured from
the true meridian; an asterisk (*) labels that angle. It is clear
from the sketch that, in this particular problem, the declina-
tion angle must be subtracted from the magnetic bearing to
arrive at the true bearing angle: 55°30� – 3°45� = 51°45�. The
true bearing of line AB, then, is S 51°45� W.

Example 6-5
The magnetic bearing of line CD was recorded as N 11°45� E
in 1887, at which time the declination was 1°45� E. In 1985
the declination was 5°15� W. What reading of a compass in
1985 would be used to retrace the line?

Solution
The problem is sketched in Figure 6-17. From the sketch, it is
seen that the necessary computation for the 1985 magnetic
bearing is 11°45� + 1°45� + 5°15� = 18°45�. The 1985
magnetic bearing of line CD, then, is N 18°45� E.

6-4 THE THEODOLITE
A fundamental weakness of the American engineer’s transit
was the difficulty in reading the graduated circles precisely
with the verniers. As a result, many repetitions are required
to accurately measure or stake out an angle.

European manufacturers have, for many decades, been
producing precision instruments, called theodolites, for angular
measurement. These compact instruments have internal
optical devices that make it possible to read the circles much
more precisely than is possible with American instruments.
And they can be read more quickly with less chance for blun-
der. The precision varies from ±0.1 second of arc read directly
on some of the finer instruments to 0.1 minute (6 seconds)
read by estimation on others. Very high accuracies can usually
be achieved with any theodolite in considerably less time than
is required by the method of repetition used with the Ameri-
can-style transit. It is basically for this reason that theodolites
came into general use in the United States and Canada.

FIGURE 6-17. Illustration for
Example 6-5.

FIGURE 6-18. Example of a theodolite. (Courtesy of Sokkia
Corporation.)



Measuring Angles and Directions 125

graduated circle is read. Theodolites are also generally
characterized by an enclosed, dustproof, and moisture-
proof form of construction with a light-colored finish to
minimize the temperature effects of direct sunlight.

A theodolite is typically mounted on a three-screw level-
ing head instead of on a four-screw leveling head, which is
used for the American transit. A circular bull’s-eye bubble
vial is used for rough leveling; a more sensitive plate bubble
tube is mounted on the alidade for precise leveling. The base
of the instrument is called a tribrach. It is designed with a
release mechanism so that the theodolite can be easily
removed from the tripod and exchanged with an electronic
distance measuring instrument (EDMI), a target, or a reflec-
tor without disturbing the leveled and centered position of
the base over the survey station (see Figure 6-20). This is
called forced centering.

Another characteristic feature of the theodolite is the
optical plummet. This is a small telescopic sight mounted in
a vertical hole through the spindle and adjusted to coincide
with the azimuth or standing axis of the alidade. It is
viewed during instrument setup through a horizontal
eyepiece located at the side of the alidade or on the base of
the instrument.

After the theodolite is leveled, the optical plummet
shows the position of the standing axis with respect to the
tack or some other mark on the survey station. Because the
device does not swing, it is totally unaffected by wind. After
the theodolite has been placed in position with the ordinary
plumb bob and has been leveled, the position is checked and
precisely adjusted with the optical plummet. Some experi-
enced surveyors prefer to set up the theodolite with the
optical plummet alone; this procedure is described in the
next section.

A theodolite alidade generally fits into the leveling head
with a smooth steel cylinder and rotates freely about the
azimuth axis on precision ball bearings (see Figure 6-21).
The horizontal and vertical circles are constructed of glass;
they are precisely graduated with very thin, sharply defined
lines etched on their surfaces. An optical system, including a
microscope with prisms and/or mirrors, allows the circles to
be read quickly and accurately.

Repeating and Direction Instruments Many
different models of theodolites are available. Two general
types are the repeating theodolite and the direction theodolite.
Generally, the directional type is more precise than the
repeating type. The repeating theodolite, like the transit,
has two independent upper and lower motions with
corresponding clamps and tangent screws. Some repeating
instruments, though have only one clamp and tangent screw,
are equipped with a lever that can switch clamp and tangent
operation from one motion to the other. Angles are turned,
essentially, as they are with the transit.

The direction theodolite has only an upper motion,
with a single clamp and tangent screw that connects the
alidade to the leveling head. A little friction between the
circle and the leveling head keeps the circle from turning,
while the alidade can turn freely on the bearings. In some
directional instruments, the circle can be rotated and
oriented with respect to the leveling head using a special
finger-operated wheel. Ordinarily, though, the circle is
not set exactly to zero when turning or measuring an
angle.

With directional theodolites, angles cannot be measured
by the repetition method. A horizontal angle is usually mea-
sured as the difference between an initial and the final direc-
tion of the alidade and the two corresponding readings of
the circle. This procedure is explained in a subsequent sec-
tion. The internal optics are designed so that each reading
represents an average of two values on opposite sides of the
circle, compensating for any eccentricity errors. (This is
equivalent to averaging the readings of the A and B verniers
on the engineer’s transit.)

Setting Up and Leveling a Theodolite
The theodolite should be carefully removed from its case,
lifting it by taking hold of the attached carrying handle or by
grasping the standards. It must be securely mounted on the

FIGURE 6-19. Another example of a theodolite. (Courtesy of
Sokkia Corporation.)
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tripod (see Figure 6-22a). Attached underneath the tripod
head is a threaded centering screw with a knurled handle; the
instrument is placed on the center of the tripod head, and
the tripod centering screw is fastened tightly to its base.
When the screw is loosened slightly, the theodolite can be
shifted laterally on the tripod head for precise positioning
over the survey point.

If a plumb bob is used, the theodolite can be set up
over the station in a manner similar to that for an
engineer’s transit (see Appendix A). After the instrument is
leveled, the optical plummet is used to check the position
of the instrument (see Figure 6-22b). First, the optical
plummet eyepiece is focused. Then, if its cross hairs or
bull’s-eye circle is not exactly centered over the point, the
centering screw is loosened. While the point is viewed
through the optical plummet, the instrument is shifted
until it is exactly in position. This should be accomplished
without rotating the leveling head in azimuth because this
throws the instrument out of level.

When exactly over the point, the tripod centering screw
must be tightened to securely fasten the instrument on the
tripod. If releveling is then necessary, the optical plummet
should again be used to check centering. This centering and
leveling process is repeated until both are satisfactory. It is
important to remember that the optical plummet is accurate
only when the instrument is level.

When the work at a particular survey station is com-
pleted, some surveyors prefer to remove the theodolite from
the tripod and carry it to the next station in its case. They
usually set the tripod over the point before mounting the

FIGURE 6-20. Traverse set: adapter, sighting target, and tribrach.

FIGURE 6-21. Schematic drawing showing the arrangement
of the vertical axis of a theodolite. The bearings have been
opened up for clarity.
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instrument. A plumb bob is first used to center the tripod over
the point, with its head kept level by eye. Then the instrument
is lifted from its case and securely fastened to the tripod. The
plumb bob is removed from the tripod and the leveling and
centering process proceeds using the optical plummet.

Leveling the Instrument The theodolite is first leveled
roughly with the three leveling screws by centering the bubble
in the circular bull’s-eye spirit vial (see Figure 6-23). Then the
alidade is turned so that the tubular spirit vial on the top
plate is parallel to an imaginary line running through the
centers of any pair of leveling screws (see Figure 6-23). The
bubble in the tube is centered by adjusting those two screws
(“thumbs-in, thumbs-out, the bubble follows the left
thumb”). Next, the alidade is rotated 90° and the bubble is
centered in the tube with the one screw that was not used
before. (The bubble moves toward the screw when it is
turned clockwise, and vice versa.) This process with the plate
level vial is repeated for additional 90° revolutions of the
instrument until the bubble remains centered in all positions.

Setting up and Leveling a Theodolite or Total
Station without a Plumb Bob When the theodolite is
mounted on an adjustable-leg tripod, it is possible to set up
rapidly over a point without using an ordinary plumb bob at
all. One method relies only on the optical plummet. First,
the instrument is placed over the point by eye, with the
footplate kept approximately level (see Figure 6-24a). When
looking through the optical plummet, the instrument may
be several centimeters or about 0.1 ft off the point at this
time (see Figure 6-24b).

The optical plummet is then centered over the point by
adjusting the three leveling screws. But the circular vial
bubble will still be off-center. That bubble is now centered
by adjusting the lengths of the tripod legs (the bubble
will move away from a shortened leg and toward a length-
ened leg). Finally, the instrument is leveled precisely using
the tubular plate level vial, as described previously (see
Figure 6-24c).

Another method for setting up without a plumb bob
involves the use of a special telescopic centering rod, which

(a)

(b)

FIGURE 6-22. (a) Carefully place
instrument on tripod using handle.
(b) Adjust position using optical
plummet.
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can be attached directly to the leveling head. The rod is
clamped against the lower surface of the tripod head and
is attached above to a supporting plate. The tripod is set
over the station with the rod clamp loose, and the lower
end of the rod is placed directly on the survey point. A

FIGURE 6-23. The plate spirit bubble tube is used for precise leveling of the instrument.
(a) Align the tube with axis x–x running through any pair of screws, say, 1 and 2, and
then center the bubble. (b) Rotate the alidade 90° and center the bubble with the
remaining screw, 3.

(a) (b)

FIGURE 6-24. Setting up the instrument without a plumb bob.

circular bubble on the rod is centered by adjusting the
tripod legs; when the bubble is accurately centered, the
tripod plate is horizontal. The theodolite is then fastened
to the plate and leveled precisely with the tubular plate
bubble vial.
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(c)

6-5 ELECTRONIC
INSTRUMENTS

The use of electronic surveying instruments is discussed in
Section 4-4, with particular reference to the application of
EDMIs. As mentioned in that section, EDMIs are generally
used in conjunction with theodolites; vertical angles must be
measured so that the slope distances obtained by the EDMI
can be reduced to horizontal distances. The EDM devices
may be mounted on optical theodolites and the angles read
through the microscope eyepiece on the micrometer scale.

Electronic instruments are also available exclusively for
angular measurement. These are called electronic digital
theodolites. Some models closely resemble conventional
optical theodolites, except that the reading microscope
eyepiece is noticeably absent (see Figure 6-25). Instead,
horizontal or vertical angles are displayed digitally in an
external liquid crystal display (LCD) window, much like the
display of numbers on a hand-held calculator.

On the instrument shown in Figure 6-25a, angles are
displayed to the nearest 20 seconds; on some displays,
decimal points are used to separate degrees, minutes, and
seconds. For example, a display of the number 350.30.20
would stand for an angle of 350°30�20�. Letter symbols for
horizontal angles (H) vertical angles (V), and left (L) or
right (R) angles are also displayed in the LCD window to
indicate the type of angle. A battery voltage indicator is
displayed for a check on battery power.

An electronic theodolite is centered and leveled over a
survey point in the same manner as an ordinary theodolite.
Focusing and sighting on a station are also done in the same
manner as previously described. The telescope is aimed at
the backsight station of the angle and the upper- and lower-
motion clamps are tightened.

Zero is set by simply depressing the “set 0” button; the
number 00.00.00 is then displayed. Then the foresight is
taken by turning the angle to the right with the upper
motion and its tangent screw. The value of the angle is
displayed (see Figure 6-25b). If the angle is to be measured in
a counterclockwise direction, an appropriate button is
depressed once and L for “left” is displayed.

Some electronic theodolites are repeating-type instru-
ments; horizontal angles can be accumulated in the display
window up to 2000°. The procedure is basically the same as
described for the engineer’s transit. The average angle may
be computed by dividing the digital display value by the
number of repetitions. On some models, repeated angles are
stored and processed by a microprocessor and the average
angle is displayed.

Most modern instruments do not have a “set 0” button
for vertical angles. These instruments are indexed after setup
by rotating the scope in a vertical plane so that the horizon
can be determined automatically. Once the horizon has been
determined, the vertical readings are properly indexed and
vertical reference will not be changed over the series of shots.
The “set 0” function for these instruments is only for
horizontal angles.

The glass measuring circle in an electronic theodolite is
coated with a metallic film that forms a coded pattern of dark
and bright spaces. A beam of light is directed toward the
circle; the amount of light passing through varies with
the circle’s position because of the interfering pattern of the
metallic film coating. A set of several photodiodes on the
opposite side of the circle detects and converts the varying
intensity of light into small electric currents. A special micro-
processor decodes and converts the photocurrents into angles
for digital LCD (or LED) display.

FIGURE 6-24. (Continued)
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An electronic theodolite that displays measured angles
to the nearest 3 seconds is shown in Figure 6-26. The data
can be transmitted automatically to an attached recording
instrument for storage; the recording device can later be
connected to an office computer for data reduction. By
combining a theodolite with an EDMI, the theodolite can be
converted to a recording electronic tacheometer or total station
(see Figure 6-26). The instrument shown in Figure 6-26 is
accurate to 0.6 second of arc.

A special electronic transducer can sense horizontal and
vertical angles to within ±6 seconds, thus eliminating the
need for a theodolite with optical scales. The infrared EDM
beam has a range of 3000 m. An alphanumeric dot-matrix
readout allows the instrument to “talk” to the operator by
displaying questions and messages during operation. An
electronic data collection module can be interfaced with
several types of computer systems.

The total station with its on-board computer software
and data storage capabilities has brought the office into the
field. Survey crews can now download entire design projects
into the total station and, using radial stakeout techniques

(discussed in Section 11.5), can perform an extensive amount
of layout. The total station, for the most part, is the only
instrument the average land surveyor uses today.

6-6 MEASURING HORIZONTAL
AND VERTICAL ANGLES

Measuring a Horizontal Angle
The procedure described here is to measure an unknown
horizontal angle between two lines or courses by turning the
angle once. As will be explained in the next section, it is
usually best to measure an angle by repetition, that is, by
turning it two or more times. (A somewhat different field
procedure, for turning and laying out or marking a given
angle, is described in Section 11-1.)

The basic steps for measuring a horizontal angle are
summarized briefly as follows:

1. Set up and level the instrument directly over the point
where the angle is to be measured; that point is the
angle’s vertex.

(a) (b)

FIGURE 6-25. (a) An electronic digital theodolite. (b) Digital display of horizontal angle = 39°00�22� and vertical angle = 92°24�52�.
(Courtesy of Leica Geosystems, Inc.)
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2. Backsight: Aim at the point that marks the left-hand
side of the angle and lock the motion.

3. Set zero on the instrument.

4. Foresight: Free the motion and aim at the point that
marks the right-hand side of the angle.

5. Read the angle.

Step 1: Take the Backsight Looking over the telescope,
aim approximately at the initial point of the
angle. If the point is not directly visible (usually
it is not), a pencil or plumb-bob cord must be
held over the point as a target for the instrument
person (see Figure 6-27).

When the target is brought into the field of
view, tighten the motion clamp. Move the telescope
up or down until the horizontal cross hair is near
the target; then bring the vertical cross hair directly
on the target. Set zero by depressing the “set 0”
button on the keyboard.

Step 2: Take the Foresight Aim at the second
point, using the motion. This is done by first
unlocking the motion and then rotating the
alidade; the alidade may be turned either
clockwise or counterclockwise to aim at the
second point.

When the point or target is in the field
of view, the motion is tightened and the screw is
used for fine adjustment of the line of sight.

Read the digital readout and record the data
in the field book.

Field Records There are several different ways in which
horizontal angles can be recorded in a field book, depending
on the type of survey, the precision used, and the preference
of the surveyor. Electronic field books called data collectors
are employed with modern theodolites and total station
instruments. These are connected to office computers using
an RS-232 interface, and the data are produced using an
array of different software packages that are commercially
available.

FIGURE 6-26. An electronic total station with 
on-board data storage capabilities. (Courtesy 
of Trimble Navigation.)

(a)(a) (b)(a)

FIGURE 6-27. Targets for observation: (a) Balancing a pencil
for a target. (b) Target painted white and red attached to
plumb-bob cord.
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Closing the Horizon
Usually in triangulation networks, and occasionally in
traverse surveys, more than one angle is measured at a single
station. (Horizontal control surveys, including traverse and
triangulation, are discussed in Chapter 7.) A quick and useful
check on the work can be obtained at that station by measur-
ing the unused angle that completes the circle or, in other
words, that closes the horizon (see Figure 6-28a). Sometimes
this procedure is applied to traverse angles where only one
angle is measured (see Figure 6-28b). Closing the horizon is
also a good field exercise for students who are first learning
how to turn and read angles using a transit or theodolite.

When the horizon is closed and all the angles at the sta-
tion are added together, the sum should be exactly 360°, but
there is usually some error. If the error is large, a blunder
has been made; if it is small (equal to or less than the least
count of a single reading times the square root of the num-
ber of readings), the angles can be adjusted. The same
correction increment is generally applied to each angle at
the station (including the unused angle) because the chance
for error is the same for each angle, despite its size. This
procedure is called a station adjustment (see Figure 6-29).

Measuring Vertical Angles
The vertical circle of a theodolite is designed to give readings
of zenith angles (see Section 6-1). With the telescope
pointing vertically, toward the zenith, the scale would read

exactly zero. When the line of sight is horizontal, the reading
will be 90°00�00� (or 270°00�00� with the scope reversed). To
obtain a plus or minus vertical angle, that is, an angle of
elevation or depression, simply subtract the zenith angle

FIGURE 6-28. Horizon closures. Only the angles shown by
full lines are required. The angles shown by dotted lines
close the horizon so that station adjustments can be made.

FIGURE 6-29. Field notes for a horizon closure and station adjustment.
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Zenith Angle Vertical Angle

90° - 92°10�06� = -2°10�16�

90° - 87°32�17� = +2°27�43�

264°18�20� - 270° = -5°41�40�

281°17�46� - 270° = +11°17�46�

from 90°, or subtract 270° from the zenith angle, whichever
applies. For example:

Some older theodolites make use of an index level instead
of an automatic index. This basically is a sensitive spirit vial
attached to the vertical circle; split-bubble coincidence is
obtained by viewing the vial through an internal prism system.
When the split bubble is aligned (the bubble centered), the zero
reading displayed on the circle corresponds with true zenith.

6-7 ACCURACY, MISTAKES,
AND ERRORS

In most surveys, both angles and distances are measured. It is
good practice for the surveyor to balance the accuracy of the
angular and linear measurements. It makes little sense, for
example, to repeat and measure angles to the nearest second of
arc when distances are being measured with a relative accuracy
of only 1/500 (e.g., for stadia surveys). The extra effort and
time spent in repeating the angles would be wasted. Of course,
if a total station is being used, and no extra effort is required to
read the angle precisely, the surveyor would do so.

Angle–Distance Relationships
The location of a point can be defined with reference to a hori-
zontal angle from a given line and the linear distance from the
vertex of the angle (see Figure 6-30). Because no measurement
is perfect, there will be some error in both the angle and dis-
tance determined for the point. The accuracy of the linear
measurement is expressed as the ratio C/D, where C is the error
and D is the distance measured (see Section 2-4). The angular
and linear measurements may be considered to be “balanced”
or consistent when the “true” location of the point is in the
center of an approximate square with the side dimension of 2C.

From Figure 6-30b, it can be seen that, for relatively long
lengths and small errors, we can apply a trigonometric

89°59�60� Reading = 274°33�58�

Subtract reading = -85°26�10� –270°

Vertical angle = + 4°33�50� Vertical angle = + 4°33�58�

Average vertical angle = + 4°33�54�

FIGURE 6-30. Linear and angular
measurements are balanced when
point P is located in the center of the
shaded “square.” The tangent func-
tion relates the relative accuracies.

It is not necessary to apply an index correction to the
observed angles. Most modern theodolites have an
automatic index system, which ensures that all vertical circle
readings are referenced to the direction of gravity. This is
accomplished with either a built-in suspended prism appa-
ratus or a liquid compensator device, which reflects and
bends light in the optical path of the circle and its reading
scale. The optics are designed so that if the azimuth axis of
the instrument is not exactly vertical, the light rays are bent
an equal amount to compensate.

For accurate work, it is best to measure a vertical angle at
least twice, once direct and once reversed. The average of the
vertical angle readings is used to cancel instrumental error.
For example, assume that the two zenith angle readings are
85°26�10� and 274°33�58�. The average is determined as
follows:
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relationship to the linear accuracy C/D and the corresponding
angular error A. In effect, we can say that tan A = C/D. From
this we can compute either the angle that corresponds to a
given linear accuracy ratio or the ratio that corresponds to a
given angle. For example, if the accuracy ratio is 1/1000, the
corresponding angular error is A = invtan 0.001 = 0.0573° =
03�26�. If the angular error is 1 minute, then the matching
linear accuracy is or 1/3440.
Several angular errors are listed in Table 6-1, along with their
corresponding or “balanced” linear accuracy ratios.

C/D = tan( 1
60)° = 0.00029

Instrumental Errors In a new and properly adjusted
instrument, certain geometric relationships among the
principal axes and components of the instrument must hold
true. With frequent field use (or abuse), some surveying
instruments will occasionally get out of adjustment. And
even in the finest instrument, there will be a few inherent
imperfections due to the manufacturing process. Whatever
the cause, measuring angles with an instrument that is out of
adjustment will almost always give inaccurate results.

Many instrumental errors are systematic error; they will
occur in the same direction or sense (plus or minus) and with the
same magnitude for each measurement. Systematic instrumen-
tal errors can be eliminated by adjusting the instrument or by
following certain field procedures that cause them to cancel out
(e.g., reading both verniers, plunging the scope, and repeating the
angle). Several types of instrument adjustments can be made by
the surveyor in the field, particularly on the engineer’s transit
and level. Adjustments can also be made on theodolites and
total stations, but it is usually best to send precise and expensive
instruments to an expert for proper repair and maintenance.
Some common instrumental errors include the following:

1. Line of sight not perpendicular to the horizontal axis

2. Horizontal axis not perpendicular to the vertical axis

3. Telescope bubble axis not parallel to the line of sight

4. Plate bubble axis not perpendicular to the vertical axis

5. Eccentricity of markings on the graduated circles

6. Optical plummet not aligned with the vertical axis

7. Vertical cross hair not perpendicular to the horizontal axis

Personal Errors Personal errors include random or acci-
dental errors due to the limit on how accurately a surveyor
can set up and level an instrument, sight a target, and
observe a scale.

Error in Centering The vertical axis of the instrument must
be centered exactly over the survey station mark. As shown in
Figure 6-31, if there is centering error, any angle measured at
that station will also be in error. With careful use of a plumb
bob, centering to within 0.02 ft, or about 6 mm, is easily

FIGURE 6-31. One type of accidental
error in which the instrument is off-
center, over A� instead of exactly
over station A.

Angular Error Accuracy Ratio

5 minutes 1/688

1 minute 1/3440

30 seconds 1/6880

20 seconds 1/10,300

10 seconds 1/20,600

5 seconds 1/41,200

1 second 1/206,000

It can be seen from Table 6-3 that to achieve the accuracy
required for topographic mapping surveys, usually about 1/500,
it is sufficient to measure angles to the nearest 5 minutes.

Accurate target sighting and instrument centering
over a point are important. For a particular angular error,
the error in position increases with the line of sight dis-
tance; conversely, for a fixed error in position (or sight-
ing), the angular error decreases with sight distance. The
longer the sight distance, the better the relative accuracy of
the work.

Systematic and Accidental Errors
A surveyor must be aware of the common sources of error so
that precautions can be taken to minimize them. These errors
may arise from imperfections in the instrument; from natural
causes; or from human limitations in setting up and leveling
the instrument, sighting targets, and reading scales. Several
typical errors are listed and briefly described as follows:
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obtained. With an optical plummet or centering rod, posi-
tioning over a point to within 0.003 ft, or about 1 mm, is
possible. The longer the line of sight, the less the effect of
centering error.

Error in Sighting When turning an angle, the vertical
cross hair must be directly on the survey point for a proper
line of sight. The effect of error in sighting is similar to that
of inaccurate centering over the point.

When the point cannot be viewed directly through the
telescope, it is necessary for a signal person to hold a pencil point
or to suspend a plumb-bob cord over the point, which may
introduce some error. The use of a suitable red-and-white target
on the cord helps to minimize the error. Sometimes vertical
chaining pins or range poles are used as targets; it is important to
sight with the central portion of the cross hair onto the lower part
of the pin or rod to minimize error due to incorrect plumbing.

In general, for angular measurements, the effect of a
sighting error can be minimized by keeping sight distances
as long as possible.

Error in Focusing The eyepiece and objective lens of the
telescope must be properly focused to eliminate parallax
error (see Section 5-2).

Error in Leveling The plate bubble(s) on the alidade must
be centered in the vial tube to obtain accurate angles; the
plate must be perfectly horizontal. The effect of inaccurate
bubble centering is most significant when steeply inclined
lines of sight are observed. The bubble(s) should be checked
frequently during the survey. Level adjustments may be
made by recentering the bubble before the backsight or after
the foresight, but never in between the two.

Natural Errors Random errors not due to instrumental
or personal causes are often characterized as natural errors.
They are usually small. One such error that can significantly
affect the results, though, is setting of the tripod on soft
ground. The use of wooden stakes in boggy or thawing
ground, or a small wooden platform when working on
asphalt pavement, to provide support for the tripod legs, can
help to eliminate this type of problem.

Other sources of natural errors in transit and theodolite
work include vibration due to wind and unequal expansion
of parts due to temperature effects. They can be minimized
by properly shielding the instrument. Also, unequal bending
or refraction of light causes the observed target to shimmer;
this effect is commonly attributed to “heat waves.” It can be
minimized or avoided by keeping the line of sight as high
above the (hot) ground as possible.

Typical Mistakes
As described in Section 2-3, a gross mistake or blunder is
due to the personal carelessness and inattentiveness of the
surveyor; it is not accidental in the same sense as previously
described for personal errors. Personal errors can never be
completely eliminated, although they can be minimized.

But blunders, or “busts,” as they sometimes are called in the
field, can and must be eliminated. Common blunders made
in transit or theodolite work are listed as follows. Usually,
measuring all angles by repetition (at least doubling), and
closing the horizon, provides the best insurance against
blunders.

Using the wrong clamp and/or tangent screw.

This is perhaps the most common mistake made by survey-
ing students. A good way to avoid it is always to keep a mental
picture of the alidade and the horizontal circle when turning
the angle. Doubling the angle will generally reveal any gross
mistakes, but then the work has to be redone until the angles
check.

Forgetting to level the plate with the spirit bubble tube.

This is a possible mistake with the theodolite, which is first
leveled roughly with the circular bull’s-eye spirit vial.

Reading the wrong circle.

This is also a possibility with a theodolite when viewing
through the reading microscope eyepiece.

Additional blunders include the following:

Calling out or recording an incorrect value.

Forgetting to record a vertical angle as plus or minus.

Setting up over, or sighting on, the wrong survey point.

Care of Instruments
Complete directions for instrument care are beyond the
scope of this text. The following rules, plus a recognition of
the delicacy of the instrument, will usually prevent damage.
The most important rule is to prevent falls. A fall will always
result in the need for extensive repairs or will destroy the
instrument entirely. The rules apply to all tripod-mounted
instruments.

1. Handle the instrument by the base when not on the
tripod. This prevents deflecting the more delicate parts.

2. Never stand the tripod on a smooth surface. The legs may
slip outward.

3. Always stand the tripod up carefully. The legs must be
wide and firm even when the setup is not to be used for
observations. The wind or a slight touch may knock it
over.

4. Never leave the instrument unattended unless special
precautions are made for its protection.

5. Never subject the instrument to vibration, which ruins
the adjustments. Most instrument cases have large
rubber feet, which absorb vibration if the rest of the case
is free from contacts.

6. Never force the instrument. If the telescope or alidade
does not turn easily, do not continue to use the instru-
ment. Such use might damage a bearing.

7. Keep the instrument in its case when not in use. This usu-
ally guarantees protection.



136 CHAPTER SIX

Questions for Review

1. Define zenith angle. What is the distinction between a
plus and a minus vertical angle?

2. What is meant by angle to the right? What is a deflection
angle?

3. Explain the difference between the azimuth and the
bearing of a line. What is a back direction?

4. Explain the difference between a true meridian and a
magnetic meridian. What is meant by declination?

5. Outline the basic differences in construction and opera-
tion between an engineer’s transit and a theodolite.

6. List six important geometric relationships among the
components of a transit or theodolite.

7. Outline the basic steps in the procedure for measuring a
horizontal angle with an instrument.

8. What is meant by closing the horizon?
Outline a procedure for precise measurement of

vertical angles, using a transit. Also, outline a procedure
for leveling the transit precisely.

9. Define tribrach, forced centering, and optical plummet.

10. Briefly describe how to level and center a theodolite.

11. What is the basic difference between an optical theodo-
lite and an electronic digital theodolite? Briefly describe
how an angle is measured with an electronic theodolite.

12. What is a total station? What does EDMI stand for?

13. What is meant by saying that both angular and linear
measurements are “balanced”? Should they be? Why?

14. Does the effect of error in a measured angle increase or
decrease with increasing length of sight distance?

15. When measuring angles, is it best to keep the line-of-
sight distances as short as possible? Explain.

16. List six possible instrumental errors that may occur
during surveys with a transit or theodolite.

17. List and briefly discuss four personal errors that may
occur when working with a transit or theodolite.

18. List four natural errors that affect angle measurement.

19. List six typical blunders that can occur with a transit or
theodolite.

Practice Problems

1. Express the following vertical angles as zenith distances:

a. 20°10�
b. -6°20�
c. 60°40�
d. -7°10�

2. Express the following vertical angles as zenith distances:

a. -10°40�
b. 40°30�
c. 0°10�
d. -4°50�

3. Express the following zenith distances as vertical angles:

a. 82°45�15�
b. 88°05�55�
c. 102°40�30�

4. Express the following zenith distances as vertical angles:
a. 92°35�25�

b. 108°15�45�

c. 72°32�48�

5. Express the following directions by two other means; set up
and fill in a table with three columns, one for bearing, one
for azimuthN (AzimN), and one for azimuthS (AzimS):
a. N 20°10� E
b. AzimN 130°30�

c. AzimS 320°20�

d. N 10°30� W
e. AzimS 90°50�

f. S 20°30� E
g. AzimN 30°10�

h. AzimS 40°20�

i. AzimN 310°50�

j. AzimS 210°20�

k. S 40°10� W
l. AzimN 250°40�

6. Express the following directions by two other means; set
up and fill in a table with three columns, one for bearing,
one for azimuthN (AzimN), and one for azimuthS (AzimS):
a. N 30°40� E
b. AzimS 120°10�

c. AzimN 350°40�

8. Place it in the case so that the only contact is with the base.
Some manufacturers suggest keeping all three motion
clamps tight. This reduces chances for vibration. How-
ever, others suggest keeping the motor screws loose to
prevent stripping the threads.

9. Keep the instrument free from dust and rapid tempera-
ture changes. Dust ruins the finish and the bearings.
Temperature ranges introduce moisture into the

telescope tube. The moisture will fog the telescope,
and the telescope must be dismantled to remove it.

10. If the instrument is wet, let it dry. Do not dry it; this ruins
the finish and smears the glass and graduations.

11. Disassemble instruments and store them properly. Precise
theodolites and total stations are generally disassembled
from the tripod and moved in their protective case; they
are not carried to the next station attached to the tripod.
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FIGURE 6-32. Illustration for Problems 9 and 10.

(1) (2) (3)

A 20° 10° 16°

B 10° 15° -6°

a 100� 200� 300�

b 200� 100� 200�

(1) (2) (3)

A 18° -4° -6°
B -4° -2° -7°

A 100� 200� 200�

B 300� 100� 100�

FIGURE 6-33. Illustration for Problem 11.

FIGURE 6-34. Illustration for Problem 12.

d. N 40°20� W
e. AzimN 10°30�

f. S 0°30� E
g. AzimN 90°20�

h. AzimN 250°00�

i. S 20°40� W
j. AzimN 150°30�

k. AzimS 160°10�

l. AzimN 130°30�

7. Determine the back directions for the values given in
Problem 5.

8. Determine the back directions for the values given in
Problem 6.

9. From a single position O, vertical angles A and B were
measured to the tops of two flagpoles A� and B� (see
Figure 6-32). The distances from O to the flagpoles were
found to be a and b, as shown. Find the difference in ele-
vation between the tops of the two flagpoles, to the
nearest 0.01 ft, according to the following data. If A� is
above B�, call the difference plus, and vice versa.

10. From a single position O, vertical angles A andB were
measured to the tops of two flagpoles A� and B� (see
Figure 6-32). The distances from O to the flagpoles were
found to be a and b, as shown. Find the difference in ele-
vation between the tops of the two flagpoles, to the
nearest 0.01 ft, according to the following data. If A� is
above B�, call the difference plus, and vice versa.

11. Determine the unknown azimuths for the traverse
courses shown in Figure 6-33.

FIGURE 6-35. Illustration for Problem 13.

12. Determine the unknown azimuths for the traverse
courses shown in Figure 6-34.

13. Determine the unknown bearings for the traverse
courses shown in Figure 6-35.
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16. Determine the unknown interior and deflection angles
for the traverses shown in Figure 6-38.

FIGURE 6-37. Illustration for Problem 15.

FIGURE 6-36. Illustration for Problem 14.

14. Determine the unknown bearings for the traverse
courses shown in Figure 6-36.

FIGURE 6-38. Illustration for Problem 16.

15. Determine the unknown interior and deflection angles
for the traverses shown in Figure 6-37.

17. The magnetic bearing of a boundary line was recorded
as N 35°00� W in a deed dated 1903. At that time and
place, the magnetic declination was known to be 3°15� W.
Determine the true azimuth and bearing for the line.

18. The magnetic bearing of a boundary line was recorded
as S 55°30� E in a deed dated 1913. At that time and
place, the magnetic declination was known to be 5°45�
E. Determine the true azimuth and bearing for the line.

19. The magnetic bearing of a boundary line was recorded
as S 76°30� W in 1897, at which time the declination was
2°45� W. It is desired to retrace the line with a compass
today, when the declination is 5°35� E. What reading of
the compass should be used to retrace the line? What is
the true azimuth of the line?

20. The magnetic bearing of a boundary line was
recorded as N 86°00� W in 1918, at which time the
declination was 3°45� E. It is desired to retrace the line
with a compass today, when the declination is 6°35� E.
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22. Similar to Problem 21 but a five-sided traverse:

Compass Sta. Point Sighted Bearing

A F N 10°15� W

A B S 72°00� E

B A N 73°00� W

B C N 64°30� E

C B S 62°45� W

C D N 3°00� W

D C S 1°30� E

D E S 81°15� W

E D N 82°00� E

E F N 77°45� W

F E S 77°15� E

F A S 10°15� E

Compass Sta. Point Sighted Bearing

A E S 88°30� E

A B S 22°15� E

B A N 22°45� W

B C S 40°15� E

C B N 40°15� W

C D N 51°45� E

D C S 50°15� W

D E N 31°45� W

E D S 32°15� E

E A S 89°00� W

What reading of the compass should be used to
retrace the line? What is the true azimuth of the line?

21. A six-sided closed traverse was surveyed over the sta-
tions ABCDEF. At each station, the back bearing of the
previous course and the forward bearing of the next
course were observed, on a compass, with the following
results. Compute the forward bearings for all six
courses, corrected for local attraction.

23. What angular error corresponds to a relative accuracy of

a. 1/200
b. 1:5000

24. What angular error corresponds to a relative accuracy of

a. 1/3000
b. 1:6000

Suggestion: Draw a sketch of the traverse and, at each station, indicate
the direction of the magnetic meridian and the relative direction of
the compass needle as affected by local attraction.
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CHAPTER SEVEN

One of the first steps in a typical mapping, land
development, or construction project is to
establish a network of both vertical and hori-

zontal control points on or near the ground in the vicinity of
the project. The relative positions of all the points are accu-
rately determined in a control survey. The control points
serve as fixed reference positions from which other survey-
ing measurements are made later on to design and build the
project. Vertical control (benchmark) surveys are discussed
in Section 5-4; the basics of horizontal control surveys are
covered in this chapter.

More than 250,000 horizontal control monuments have
been established throughout the United States by the
National Geodetic Survey (NGS) and other agencies. These
survey stations form the National Spatial Reference System
(NSRS).

The framework of national and local control survey
points can provide a common datum or reference for almost
all mapping, design, and construction operations. Topo-
graphic features may be tied into the control network by
angle and/or distance measurements. The same control
points may then be reused as reference positions for layout
measurements during construction.

A horizontal control network may be established by one
or a combination of the following methods: traversing, tri-
angulation, and trilateration. Other methods make use of
photogrammetry, or of global positioning systems (GPS).

A traverse survey involves a connected sequence of lines
whose lengths and directions are measured. It is perhaps the
most common type of control survey performed by surveyors
in private practice or employed by local governmental

agencies. Triangulation involves a system of joined or overlap-
ping triangles in which the lengths of two sides (called
baselines) are measured; the other sides are then computed
from the angles measured at the triangle vertices. Trilateration
also involves a system of triangles, but only the lengths are
measured.

In years past, triangulation provided the best method
for establishing precise horizontal control over large areas
(see Figure 7-1). This was because precise angular measure-
ment was more feasible than precise distance measurement
by taping; only two baseline distances need be taped in a
triangulation survey. But now, with the use of electronic
distance measuring (EDM) devices, precise traverse surveys
are much more practical.

New control surveys now generally make use of a
combination of GPS technology and total surveys to
perform precise traversing. Coordinate geometry also plays
an important role in surveying computations related to
defining the relative positions of the control survey points;
computer programs now used both in the office and in
the field are based on the use of coordinate geometry
computations.

The primary focus of this chapter is on traverse surveys
and computations. The basics of triangulation surveys and
trilateration computations are also discussed, and typical
coordinate geometry applications are presented. Finally, the
application of sophisticated aerospace technologies such as
global positioning systems to large-scale or geodetic control
surveys is discussed at the end of the chapter. (The relation-
ship between aerial photogrammetry and horizontal control
is covered in Chapter 9.)

HORIZONTAL CONTROL

SURVEYS

CHAPTER OUTL INE

7-1 Traverses
Types of Traverses
Field Work
Data Reduction

7-2 Traverse Closure
Computations

A Loop Traverse
A Connecting Traverse
Plotting the Traverse
Inverse Computations
Computer Software

7-3 Traverse Area Computations
Area by Coordinates
Irregular and Curved

Boundaries
Offset Measurements
Segment of a Circle
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Side Shots
Intersection Problems
Coordinate Geometry

7-5 Elementary Triangulation
and Trilateration

Systems of Triangles

7-6 Global Navigational
Satellite Systems (GNSS)

Satellite Positioning Systems

Questions for Review

Practice Problems
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7-1 TRAVERSES
A traverse consists of an interconnected series of lines called
courses, running between a series of points on the ground
called traverse stations. A traverse survey is performed to
measure both the distances between the stations and the
angles between the courses. As discussed previously, the tra-
verse stations can serve as control points. From those points,
many less precise measurements can be made to features that
are to be located for mapping, without accumulating acci-
dental errors. When plans for construction are then drawn,
the traverse stations can again be used as beginning points
from which to lay out the work.

Traverses have generally been used for local horizontal
control over relatively small areas, or over areas where many
obstacles interfere with sight lines. They may now be used
for precise control over relatively large areas, due to the
advantage of EDM. In addition to application as a control
survey method, traversing may be applied to land or prop-
erty surveys. Unobstructed boundary lines form the traverse
courses, and the property corners are the traverse stations.

Types of Traverses
Traverses are classified as being either open or closed. An
open traverse neither forms a closed geometric figure nor
does it end at a point of known position. It cannot be
checked, then, for error of closure and relative accuracy.
Open traverses are not recommended, but they are some-
times used out of necessity. All open traverse measurements
must be repeated to avoid blunders.

There are two types of closed traverses—loop traverses
and connecting traverses. A loop traverse starts and ends at

the same point, forming a closed geometric figure called a
polygon (see Figures 6-1 and 7-6). (The boundary lines of a
tract of land, for example, form a loop traverse.)

A connecting traverse looks like an open traverse, except
that it begins and ends at points (or lines) of known position
(and direction) at each end of the traverse (see Figure 7-13).
A connecting traverse, then, is “closed” in the sense that it
can be checked mathematically for the error of closure and
the relative accuracy of the survey. Connecting traverses are
generally used for horizontal control in route surveys.

Field Work
The positions of control traverse stations are chosen so that
they are as close as possible to the features or objects to be
located, without unduly increasing the work of measuring
the traverse. Establishing too many points will increase the
time and cost of the survey, but too few points may not pro-
vide sufficient control for the project; the judgment of an
experienced surveyor is necessary when establishing traverse
stations.

The control traverse stations are usually marked by
wooden stakes with tacks, or by concrete monuments set nearly
flush with the ground, with a precise point marked on the top
by a chiseled cross, a drill hole, or a special bronze tablet.

Witnessing a Point It is frequently necessary to witness
or reference a control point. This serves as an aid to finding
the point when it is covered with snow, leaves, or soil, or as a
means to replace it if the point is accidentally disturbed (as
often happens during construction activities). The supple-
mentary points used for this purpose are called witness
marks, witnesses, or ties.

FIGURE 7-1. The triangulation control network used for the design and construction 
of the Delaware Memorial Bridge. (Courtesy of Professional Surveyor Magazine.)
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FIGURE 7-2. Two methods for referencing, or witnessing, a point: (a) straddle hubs and
(b) ties to existing fixed marks.

Two methods may be used to witness a point. In one
method, wooden stakes (sometimes called straddle hubs) may
be set near the point, so that the intersection of two strings
stretched between opposite pairs of hubs will mark the position
of the station (see Figure 7-2a). In the second method, a control
station may be tied in, by distance measurement, to nearby
existing points that can serve as witnesses (see Figure 7-2b). The
station can then be relocated by the intersection of arcs swung
at the measured distances from the witness marks.

For proper witnessing of a station, the following factors
should be noted:

1. At least three witnesses should be used.

2. Witnesses should be permanent and readily visible
points, situated somewhat above the ground surface.

3. Witnesses should not be more than 100 ft (or 30 m)
from the control station.

4. The ties should be roughly at right angles to each other.

5. Ties to trees (or poles) should be made to tacks or nails
marked with colored ribbon.

6. Distances of ties should be measured with an appropri-
ate degree of accuracy, depending on the purpose of the
survey.

7. A neat and legible sketch should be made in the field
book, showing recognizable landmarks as well as the
witnesses; a brief written description of the control
station location should accompany the sketch.

Measurements The angle and distance measurements
are made as described in Part 2 of the text. Steel tape and
transit have been, for the most part, replaced by the use of
the total station.

For a closed traverse, the length of each course is
recorded as a separate distance; the courses are identified by
the station labels (e.g., course BC or course 2-3). For an open
or connecting traverse, particularly that used for a route
survey, distances are often carried along the traverse courses
continuously from beginning to end, and expressed in terms
of stations (see Section 4-2).

For purposes of consistency, it is necessary to assume
the forward and the back direction for any traverse. The
direction or order in which the courses are measured is usu-
ally taken as the forward direction. Loop traverses should
generally be traversed or measured in a counterclockwise
direction around the loop (see Figure 7-3).

The field angles of a traverse should be measured clock-
wise (to the right), from the back direction of the preceding
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FIGURE 7-3. Loop traverses are best surveyed in a counter-
clockwise direction, with interior angles “turned” to the right.

FIGURE 7-4. Deflection angles must be identified as being
turned either clockwise, that is, to the right (R), or counter-
clockwise, to the left (L).

FIGURE 7-5. Error of closure in a loop traverse. Starting at
station A and following the measured distances and angles
around the traverse, you would be unlikely to wind up
exactly on point A again.

course to the forward direction of the next course. This is the
most rapid field method and the least likely to introduce
blunders. For a loop traverse, these should be the interior
angles. If for some reason an exterior angle is measured, it
should be clearly noted in the field record.

Some surveyors prefer to measure the deflection angles,
particularly for open or connecting traverses (see Figure 7-4). A
deflection angle is the angle between the forward prolongation
of the preceding course and the forward direction of the next
course (see Section 6-2). It can also be defined as the change of
direction of the traverse at a station. Unless the directions of the
deflection angles are properly recorded as angle left (L) or angle
right (R), a blunder will result. To determine the deflection
angle, simply measure the clockwise field angle at the station
(as described in the preceding paragraph) and subtract 180°. If
the difference is positive (+), it is a right deflection angle; if the
difference is negative (-), it is a left deflection angle.

For measuring deflection angles directly with a vernier
transit, the following steps are followed by many surveyors:

1. Set the vernier scale to zero.

2. Backsight with the telescope reversed (lower motion).

3. Foresight with the telescope direct (upper motion).

4. Record the clockwise or counterclockwise angle,
whichever is less than 180°. If clockwise, it is a right
deflection; if counterclockwise, it is a left deflection.

The preceding procedure introduces a systematic error of
the instrument. Repeat the angle to cancel the error, as follows:

1. Leave the vernier as it is after step 4; backsight with the
telescope direct (lower motion).

2. Foresight with the telescope reversed (upper motion).

3. Read the angle as in step 4, and take the average of the
two readings.

Data Reduction
The relative positions of control traverse stations are usu-
ally described mathematically by the rectangular coordi-
nates of the stations. The process of converting all the
distance and angle measurements into coordinates is called
data reduction. Although computer programs are available
to automatically reduce the raw field data, it is necessary
that the surveyor has a good understanding of all the com-
putational steps involved in the process. In fact, it would be
difficult, if not impossible, to read and interpret the soft-
ware documentation and to use the programs intelligently
without this basic knowledge and understanding.

Error of Closure Because no measurement is perfect, it
is most unlikely that the raw traverse data will “close” exactly.
This means, for example, that the given or assumed coordi-
nates of the starting point in a loop traverse will not be pre-
cisely the same as the position or coordinates of that point as
computed from the raw field data (see Figure 7-5).

If the discrepancy or error of closure exceeds some spec-
ified or acceptable limit, the field measurements will have to
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FIGURE 7-6. An example of a loop traverse showing the original 
(unadjusted) field data.

be repeated. But if the error of closure (or relative accuracy)
is acceptable, it is then necessary to adjust the traverse so that
it closes perfectly, with complete geometric consistency. For
example, in Figure 7-5, the field data would be adjusted so
that the traverse “closes” and position A� = position A. This
process of adjusting or closing the traverse ensures that the
station coordinates will be as accurate as possible. Traverse
adjustment is also important for land or boundary surveys
because legal descriptions of property must have no geomet-
ric inconsistencies.

7-2 TRAVERSE CLOSURE
COMPUTATIONS

The computations for adjusting and closing a traverse can be
summarized in six basic steps, as follows:

1. Compute the angular error and adjust the angles.

2. Compute course bearings or azimuths.

3. Compute course latitudes and departures.

4. Determine the error of closure and accuracy; if unac-
ceptable, then redo traverse or parts of traverse. If
acceptable, move to step 5.

5. Adjust course latitudes and departures.

6. Compute station coordinates.

In addition to these steps, a boundary traverse would
include computation of the enclosed area, as well as compu-
tation of the final bearings and lengths of the courses that
result from the adjustment of the traverse (in the preceding
step 5). The area, as well as the final boundary lengths and
directions, is needed for a legal property description.

In this section, the six basic steps of traverse computa-
tions are illustrated and discussed for a loop traverse, as
well as for a connecting traverse. Area determination and
related traverse computations are presented in subsequent
sections.

A Loop Traverse
Figure 7-6 illustrates a sketch of a loop traverse, along with the
raw, or unadjusted, field data. A sketch of a traverse should
always be drawn as a guide to computation, showing the names
of each of the traverse stations. If it is plotted to scale, it can
serve as a visual check against major blunders in the survey.

The step-by-step procedure for the computation and
closure of the traverse shown in Figure 7-6 is listed and
described as follows:

1. Compute the angular error and adjust the angles.

The sum of the interior angles in any loop traverse
must equal (n - 2)(180°) for geometric consistency; n is the
number of angles (or sides) in the traverse. For the given
five-sided traverse, the sum of angles should be exactly 
(5 - 2)(180°) = 3(180°) = 540°.

The sum of the unadjusted field angles for the given
traverse is actually 540°02�30� and the error per angle is
30 seconds. This is easily determined as follows:

Station Field Angles

A 64° 53� 30�

B 206 35 15

C 64 21 15

D 107 33 45

E 96 38 45

Sum = 537° 180� 150� = 540°02�30�

and therefore,

Error per angle =
2¿30–

5
=

150–
5

= 30– per angle

= 00°02¿30–
Total angular error = 540°02¿30– - 540°00¿00–
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Station Field Angles Correction Adjusted Angles

A 64°53�30� –30° 64°53�00�

B 206°35�15� –30° 206°34�45�

C 64°21�15� –30° 64°20�45�

D 107°33�45� –30° 107°33�5�

E 96°38�45� –30° 96°38�15�

Sum = 540° 00� 00�     (Check)

FIGURE 7-7. Bearing computations
for the traverse shown in Figure 7-6,
using adjusted interior angles.

In some cases, a larger correction may be applied to
particular angles if the chances for error were greater due to
poor observing conditions (or short sight lines) at those
stations. Generally, the applied corrections should not be less
than the least angular values that can be measured with the
instrument. They may be rounded off for ease of computa-
tion. In any case, the sum of the adjusted angles should always
check out to be (n - 2)(180°), for geometric consistency.

2. Compute course bearings or azimuths.

The direction of one side of the traverse must be
known or assumed; this is called the base bearing (or base
azimuth). In this example problem, the bearing of DE is
assumed to be S 81°42�15� E. Using the adjusted angles from
the preceding step 1, the bearings of the other courses are
determined, as shown in Figure 7-7. (The procedure for
computing bearings is also explained in Section 6-2.)

3. Compute course latitudes and departures.

The latitude of a traverse course is simply the Y
component of the line in a rectangular XY coordinate
system (see Figure 7-8a). In surveying, the Y axis is usually
taken as the north–south meridian axis. A latitude, then,
may also be defined as the projection of a traverse course

For average work with a 1-minute vernier transit, an
error of 1 minute per angle, or less, would generally be
allowed; we can assume, then, that the angular measure-
ment for this traverse is acceptable. (For precise work with
a transit, the total error should generally not exceed

where n is the number of angles.)

The angles of the traverse may be adjusted by applying
the same correction to each angle; the correction is the error
per angle, with the opposite sign. This procedure assumes that
the chance for error was the same for each measurement.
Because the sum exceeds 540° and the error is positive, a nega-
tive correction of 30 seconds should be used here, as follows:

; 30–1n,
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onto the north–south axis of the survey. From basic right-
angle trigonometry, it is computed as the product of the
course length L and the cosine of the bearing angle β:

(7-1)

The departure of a traverse course is simply the X
component of the line in a rectangular XY coordinate system
(see Figure 7-8b). The X axis is usually the same as the east–west
axis of the survey. A departure, then, may also be defined as the
projection of a traverse course onto the east–west axis. From
right-angle trigonometry, it is computed as the product of the
course length L and the sine of the bearing angle β:

(7-2)

Sign Convention If the traverse course has a northerly
(N) bearing, its latitude will have a positive sign (+); a posi-
tive latitude is sometimes called the northing of the line (see
Figure 7-9). If the course has a southerly (S) bearing, its lati-
tude will carry a negative (-) sign; it may also be called the
southing of the line.

If a line has an easterly (E) bearing, its departure will
have a positive sign; a positive departure may be called the
easting of the line (see Figure 7-9). If the line has a westerly
(W) bearing, its departure will be negative; it may be called
the westing of the line.

When computing a traverse using bearing angles, it is
necessary to “manually” apply the appropriate algebraic
signs to the latitudes and departures. A line with a SE

Dep = ¢x = L sin (b)

Latitude = ¢y = L cos (b)

bearing, for example, would be assigned a negative latitude
(-Δy) and a positive departure (+Δx).

The computations of latitudes and departures for the
traverse shown in Figure 7-6 are summarized in Table 7-1.
Note the format of this table—the data for each course are
listed on the lines between the station names. The values of
the trig functions are rounded to four decimal places for
display only.

FIGURE 7-8. Definition of the 
latitude and departure of a line.

FIGURE 7-9. Algebraic sign convention for latitude and
departure.



Table 7-1.  Computations for Latitude and Departure

cos β sin β L cos β L sin β

Station Bearing, β Length, L Cosine Sine Latitude Departure

A

S 79°49�00� W 690.88 0.1768 0.9842 -122.15 -679.99

B

N 73°36�15� W 616.05 0.2823 0.9593 +173.89 -591.00

C

S 9°15�30� E 677.97 0.9870 0.1609 -669.14 +109.08

D

S 81°42�15� E 971.26 0.1443 0.9895 -140.14 +961.10

E

N 14°56�00� E 783.32 0.9662 0.2577 +756.86 +201.86

A

Perimeter (P) = 3739.48 Sum of latitudes = �Δy = -0.68

Sum of departures = �Δx = +1.0

FIGURE 7-10. Error of closure is computed from the error
in departure and error in latitude, using the Pythagorean
theorem.

4. Determine the error of closure and accuracy.

Because a loop traverse begins and ends at the same
point, the sum of the latitudes and the sum of the departures
should both be equal to zero. In other words, the northings
should be equal to the southings (but opposite in sign), and
likewise, the eastings should equal the westings. But because
the field measurements are not perfect, it is unlikely that the
sum of latitudes, or the sum of departures, will be exactly
zero. As seen in Table 7-1, for the traverse of Figure 7-6 the
sum of latitudes �Δy = -0.68 ft, and the sum of departures
�Δx = +1.05 ft. These are the y and x components, respec-
tively, of the error of closure of the traverse (see Figure 7-10).

The total error of closure Ec is the horizontal distance
between the starting point, A, and the computed position of
that point, A�. It may be determined from the following
equation:

(7-3)

For this example,

Ec = 3(-0.68)2 + (1.05)2 = 1.25 ft

Ec = 3(©¢y)2 + (©¢x)2

The relative accuracy of the traverse is computed
from Equation 2-3 as follows, where P is the total traverse
length or perimeter:

For average land surveying with a vernier transit,
an accuracy of about 1:3000 is typical. An accuracy of at
least 1:5000 would be required for third-order control
traverse surveys. For this example, we will consider that
the accuracy is acceptable, and now proceed to adjust the
latitudes and departures so that the traverse will close
exactly.

5. Adjust course latitudes and departures.

There are several methods of traverse adjustment.
The simplest are “approximate” procedures called the
compass (or Bowditch) rule and the transit rule. With the
advent of numerous software packages, a method called
least squares adjustment can easily be applied. The least
squares method is most accurate. This allows the surveyor
to “weigh” the control points. In other words, the surveyor
can apply or apportion more, or less, correction to their
location, depending on the certainty of the specific mea-
surements. (The mathematics of least squares adjustment
is beyond the scope of this book. The various software
suppliers provide theory and application instruction with
their software.)

The Compass Rule In this method, corrections are
applied to the latitudes and departures in proportion to the
lengths of each of the courses. It is assumed that angles and
distances have been measured with equal precision (e.g.,
with transit and steel tape). Application of the compass rule
changes both the latitudes and departures in such a way that

Accuracy = 1:a P

Ec

b = 1:a3739.48

1.25
b = 1.2990
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Table 7-2. Compass Rule Corrections to Latitude and Departure

Unadjusted Corrections Adjusted

Station Latitude Departure Latitude Departure Latitude Departure

A

-122.15 -679.99 0.13 -0.19 -122.02 -680.18

B

+173.89 -591.00 0.11 -0.17 +174.00 -591.17

C

-669.14 +109.08 0.12 -0.19 -669.02 +108.89

D

-140.14 +961.10 0.18 -0.27 -139.96 +960.83

E

+756.86 +201.86 0.14 -0.22 +757.00 +201.63

A

� = -0.68 +1.05 0.68 -1.05 0.0 0.0

Check Check
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both the bearings and lengths of the courses are slightly
changed. A formula for this rule may be written as follows:

(7-4)

where �Δy and �Δx = the error in latitude or in departure

P = the total length or perimeter of the traverse

L = the length of a particular course

For example, the correction to the latitude of course AB
is -(-0.68)/3739 * 691 = + 0.13. Note that the corrections
will have the opposite sign as that of the errors. The correction
to the departure of course BC, for example, is computed as
-1.05/3739 * 616 = - 0.17. The compass rule corrections of
latitudes and departures, for the traverse in Figure 7-6, are
summarized in Table 7-2.

The Transit Rule In this method, corrections are applied
to the latitudes in proportion to the lengths of the latitudes
and to the departures in proportion to the lengths of the
departures. This rule is best used for traverse surveys in
which the angles have been measured with greater precision
than the distances. It changes the latitudes and departures in
such a way that the lengths of the courses are changed
slightly, but the bearings remain almost the same.

A formula for the transit rule can be written as follows:

(7-5)

where � Δy and � Δx = the error in latitude or in departure

� Lat and � Dep = the sum of latitudes and the sum of
departures, without regard to sign
(absolute values)

CL and CD = the length of the particular course
latitude or departure

Correction =
- ©¢y

©|Lat |
* CL   or

- ©¢x

©|Dep |
* CD

Correction =
- ©¢y

P
* L or 

- ©¢x

P
* L

For example, the correction to the latitude of course AB
is (-0.68)/1862 * 122 = +0.04. Again, note that the corrections
must have the opposite sign as that of the errors. The correction
to the departure of course BC, for example, is computed as
-1.05/2543 * 591 = -0.24. The transit rule corrections of
both latitudes and departures are summarized in Table 7-3.

The sums of the corrections must be equal to their
respective errors, with the signs changed. And the sums of
the adjusted latitudes and departures, for both the compass
rule and the transit rule, must be equal to zero for exact
closure of the traverse. This serves as a check on the computa-
tions. Be careful to add the corrections algebraically. For
example, for course AB, the (transit) adjusted latitude =
-122.15 + (+0.04) = -122.1; the (transit) adjusted departure =
-679.99 + (-0.28) = -680.27.

Because of rounding off the computed corrections, it is
sometimes necessary to change (fudge) one or two correc-
tions slightly so that the traverse will close exactly. Usually,
the changes are applied to the largest values. It can be seen
(from Tables 7-2 and 7-3) that this was done to the compass
rule correction for the departure of course EA, to the transit
rule correction for the latitude of course EA, and to the tran-
sit rule correction for the departure of course DE.

An adjustment method that is mathematically more
correct or rigorous than either the compass or transit rules is
the method of least squares. It is based on statistical theory
and results in the most probable positions for the stations.
Although it is a complicated and lengthy procedure when
done manually, it is now being applied by surveyors with
increasing frequency when canned computer programs are
used to adjust and close the traverse.

6. Compute station coordinates.

The relative positions of control stations are best
defined by their rectangular or XY coordinates. In most
surveying applications, the Y, or north (N), coordinate
precedes the X, or east (E), coordinate. For many computer or



FIGURE 7-11. The adjusted loop traverse plotted by coordinates.

programmable calculator solutions, for example, the N
coordinate (also called the northing) must be entered before
the E coordinate (also called the easting) of a station; the
order of coordinate data is (N, E), or (Y, X).

Usually, an arbitrary position is assigned to one of
the stations, in a manner that assures that all station coordi-
nates will be positive (+) (i.e., in the northeast quadrant).
Sometimes, only an X coordinate will be assigned to the
point closest to due west, and its corresponding Y coordinate

will be calculated. Also, only a Y coordinate to the point
closest to due south, and its corresponding X coordinate will
be calculated. All points will have two values (X, Y) to
accomplish the task of assuring positive values. In the traverse
adjusted earlier, the point closest to due south, station E, is
given a Y, or north, coordinate of 100.00 ft; and the point
closest to due west, station C, is given an X, or east, coordi-
nate of 100.00 ft (see Figure 7-11). Explanation of the
method for computing the other station coordinates follows.
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Table 7-3. Transit Rule Corrections to Latitude and Departure

Unadjusted Corrections Adjusted

Station Latitude Departure Latitude Departure Latitude Departure

A

-122.15 -679.99 +0.04 -0.28 -122.11 –680.27
B

+173.89 -591.00 +0.06 -0.24 +173.95 –591.24
C

-669.14 +109.08 +0.24 -0.04 -668.90 +109.04
D

-140.14 +961.10 +0.05 -0.41 -140.09 +960.69
E

+756.86 +201.86 +0.29 -0.08 +757.15 +201.78
A

� = -0.68 +1.05 +0.68 -1.05 0.0 0.0

Check Check

Absolute � |Lat|
= 1862

Absolute � |Dep|
= 2543
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Coordinates of a point may be computed by succes-
sive algebraic addition of the adjusted latitudes and depar-
tures to the assumed N and E coordinates, respectively. In
equation form, this is written as

(7-6a)

(7-6b)

where N2 and E2 = the Y and X coordinates of station 2

N1 and E1 = the Y and X coordinates of station 1

Lat1–2 = the latitude of course 1–2

Dep1–2 = the departure of course 1–2

An example is shown in Figure 7-12, and the computa-
tion of coordinates for the traverse shown in Figures 7-6
and 7-11 (using the compass rule adjustments) is summa-
rized in Table 7-4. An arithmetic check is obtained when the
computation is carried around to the starting point, which
should have the same coordinates as before. In Table 7-4,
the coordinate values are written in italics on the same line
as the station names. Usually, in practice, all the computa-
tions included in Tables 7-1–7-4 are combined into one
larger table.

E2 = E1 + Dep1-2

N2 = N1 + Lat1-2

A Connecting Traverse
Figure 7-13 illustrates a connecting (or link) traverse. It begins
at the known position of control station Dog. The fixed coor-
dinates of another nearby control station, Cat, are also known.
From those coordinates, it is possible to compute the length
and direction of line Dog–Cat, through a process called
inversing (which is explained in the next section). The traverse

FIGURE 7-12. Typical computation of coordinates for
Figure 7-11.

Table 7-4. Computation of Station Coordinates

Station N Coordinate* Latitude E Coordinate* Departure

A 857.00 1371.35

-122.02 -680.18 (Course lat. and dep.)

B 734.98 691.17

+174.00 -591.17

C 908.98 100.00 Start/return here for dep. check

-669.02 +108.89

D 239.96 208.89

-139.96 +960.83

E 100.00 1169.72 Start/return here for lat. check

+757.00 +201.63

A 857.00 1371.35

*Compass-adjusted coordinates.

FIGURE 7-13. Example of a connecting traverse showing
original (unadjusted) field data.



closes on the known position of station Cow, and the known
length and direction of line Cow–Ox. Clockwise field angles
are measured at Dog and at Cow and at each traverse station,
A, B, and C. The length of each new course is also measured.

The step-by-step procedure for the computation and
closure of the connecting traverse is described as follows:

1. Compute the angular error and adjust the angles.

Starting with the known direction of course Cat–Dog,
the directions of the new courses may be computed by apply-
ing the field angles successively (see Table 7-5). Either bearings
or azimuths may be used. A computation by azimuth using
deflection angles is also shown. The deflection angle is taken
as the difference between the field angle and 180°. By either of
the three methods shown, the clockwise angular error is
+1°30�, or +18 seconds per angle (90�/5 = 18�). If it is assumed
that an error of 30 seconds per angle would be allowed, then
the angular measurement for this traverse is acceptable.

To adjust the field angles, it is assumed that the
chance for error at each station is the same; a correction of
-18 seconds, then, is applied to each field angle as follows:

Adjust Angles Give the same correction to each angle;
the chance for error is the same.

Dog 271°38�00� - 18� = 271°37�42�

A 116°52�45� - 18� = 116°52�27�

B 93°46�15� - 18� = 93°45�57�

C 176°10�00� - 18� = 176°09�42�

Cow 237°08�45� - 18� = 237°08�27�

2. Compute course bearings or azimuths.

The bearings and azimuths are recomputed using
the adjusted angles, as shown in Table 7-6.
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Table 7-5. Computation of Angular Error

By Bearings with Angles By Azimuths with Angles By Azimuths with Deflection Angles

S  23°37�15� E Cat–Dog 156°22�45� 156°22�45�

+271°38�00� +271°38�00� + 91°38�00�

248°00�45� 428°00�45�

-180° -180°

S  68°00�45� W Dog–A 248°00�45� 248°00�45�

+116°52�45� +116°52�45� - 63°07�15�

184°53�30� 364°53�30�
-180° -180°

S 4°53�30� W A–B 184°53�30� 184°53�30�

+ 93°46�15� + 93°46�15� - 86°13�45�

98°39�45� 278°39�45�

-179°59�60� -180°

S  81°20�15� E B–C 98°39�45� 98°39�45�

+176°10�00� +176°10�00� - 3°50�00�

94°49�45� 274°49�45�

-179°59�60� -180°

S  85°10�15� E C–Cow 94°49�45� 94°49�45�

+237°08�45� +237°08�45� + 57°08�45�

151°58�30� 331°58�30�

-179°59�60� -180°

S  28°01�30� E Cow–Ox 151°58�30� 151°58�30�

-S  28°03�00� E Cow–Ox fixed 151°57�00� -151°57�00�

+ 1�30� Error + 1�30� + 1�30�

Table 7-6. Computation of Directions

By Bearings By Azimuths

S 23°37�15� E Cat–Dog 156°22�45�

+271°37�42� +271°37�42�

248°00�27� 428°00�27�

-180° -180°

S 68°00�27� W Dog–A 248°00�27�

+116°52�27� +116°52�27�

184°52�54� 364°52�54�

- 180° -180°

S 4°52�54� W A–B 184°52�54�

+ 93°45�57� + 93°45�57�

98°38�51� 278°38�51�

-179°59�60� -180°

S 81°21�09� E B–C 98°38�51�

+176°09�42� +176°09�42�

94°48�33� 274°48�33�

-179°59�60� -180°

S 85°11�27� E C–Cow 94°48�33�

+237°08�27� +237°08�27�

151°57�00� 331°57�00�

-179°60�00� -180°

S   28°03�00� E Cow–Ox 151°57�00�

S 28°03�00� E Cow–Ox fixed 151°57�00�
0 Check 0
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as shown in Table 7-8. The corrections are applied for each
course, as shown in Table 7-7.

6. Compute station coordinates.

Beginning with the fixed coordinates of station Dog
at the start of the traverse (N 1200.00/E 1000.00), the
coordinates of each station are computed by successive
algebraic addition of latitudes and departures (using
Equation 7-6). This is shown in the two columns on the right
of Table 7-7. An arithmetic check is obtained when the
computed coordinates of Cow agree with its fixed coordinates.
The plotted traverse is shown in Figure 7-14.

Plotting the Traverse In plotting traverses, a protractor
may be used to lay out the angles, and an engineer’s scale may
be used to lay out the course lengths or drawn using CAD
software. If the station coordinates have been computed,
much greater accuracy may be obtained when the stations are
plotted by coordinates. After the stations are plotted, they are
identified by name or letter, and the coordinates are printed
nearby; connecting lines should be drawn to represent the
traverse courses. The plotted traverse should then be checked
by scaling the lengths of the courses and by measuring the
traverse angles with a protractor. (The results should be
compared with the original field notes.)

Table 7-7. Computation of Coordinates

Corrected Bearings Unadjusted Corrections Adjusted

Latitude Departure

Station Lengths cos sin Latitude Departure Latitude Departure Coordinates

Dog S 68°00�27� W 0.37449 1200.00 1000.00
A 346.21 0.92723 -129.65 -321.02 -0.04 -0.08 - 129.69 - 321.10
A S 4°52�54� W 0.99637 1070.31 678.90
B 448.62 0.08510 -446.99 -38.18 -0.06 -0.11 - 447.05 -38.29
B S 81°21�09� E 0.15036 623.26 640.61
C 502.74 0.98864 -75.59 +497.03 -0.07 -0.12 -75.66 + 496.91
C S 85°11�27� E 0.08384 547.60 1137.52

Cow 270.86 0.99648 -22.71 +269.91 -0.04 -0.07 -22.75 + 269.84
Cow 524.85 1407.36

Sums 1568.43 -674.94 +407.74
Coord. Diff. -675.15 +407.36
Error +0.21 +0.38

Table 7-8. Computation of Corrections by Compass Rule

Course Correction to Latitudes Correction to Departures

Dog–A
-0.21
1568

 * 346 =  -0.04
-0.38
1568

 * 346 =  -0.08

A–B -0.21
1568

 * 449 =  -0.06
-0.38
1568

 * 449 =  -0.11

B–C -0.21
1568

 * 503 =  -0.07
-0.38
1568

 * 503 =  -0.12

C–Cow -0.21
1568

 * 271 =  -0.04
-0.38
1568

 * 271 =  -0.07

Sums -0.21 -0.38

3. Compute course latitudes and departures.

Latitudes and departures are computed using
Equations 7-1 and 7-2 for courses Dog–A, AB, BC, and
C–Cow. The results are listed in Table 7-7. The sum of the
computed latitudes is -674.94, and the sum of the
computed departures is +407.74.

4. Determine the error of closure and accuracy.

The difference between the N coordinate of station
Cow and the N coordinate of station Dog is 524.85 -
1200.00 = -675.15. In other words, station Cow is exactly
675.15 ft south of station Dog, according to the known
positions of those points. But the sum of computed
latitudes is only -674.94. This means that the N, or Y,
component of the error of closure is +0.21. Likewise, the
error in departure is determined to be +0.38.

Applying Equation 7-3, the total error

The total traverse 

length is 1568.43 ft. The accuracy of the survey, then, is
computed to be 1:(1568.43/0.43) = 1:3650.

5. Adjust course latitudes and departures.

In this example, the corrections for latitude and
departure are computed using the compass rule (Equation 7-4),

Ec = 2(0.212 + 0.382) = 0.43 ft.



Mapping Natural and/or constructed topographic fea-
tures are generally located by field measurements from the
traverse stations or from points set at known distances
along the traverse courses. The measurements may consist
of any convenient combination of angles and distances; any
two of these measurements will locate a point. The topics of
mapping and plotting traverses are covered in detail in
Chapter 9.

Inverse Computations
It is generally necessary to compute the new directions and
lengths of the traverse courses that result from the adjust-
ment of the traverse. The process is called inversing. This can
be done using either the corrected latitudes and departures or
the station coordinates. Inversing may also be used in con-
nection with side-shot computations, as will be explained in
the next section. In either case, the formulas that are used for
inversing are derived from right-angle trigonometry and the
Pythagorean theorem. They are as follows:

Inversing from corrected latitude and departure

(7-7a)

(7-7b)

where β = new bearing angle

Dep = corrected departure

Lat = corrected latitude

L = new course length

Recall that θ –1 is the inverse or arctangent function.
Also, the symbol “| |” stands for absolute (or positive) value.
To compute L, use the formula containing Lat when Lat is
larger than Dep, and vice versa. If either Lat or Dep is not
available, compute it from the final station coordinates, or
use the following formulas directly:

L =
|Lat |

cos B
=

|Dep |

 sin B
= 2Lat2 + Dep2

b = tan-1
|Dep |

|Lat |

Inversing from coordinates (station S to station T)

(7-8a)

(7-8b)

where ES and ET = the eastings (X coordinates) of station S
and station T, respectively

NS and NT = the northings (Y coordinates) of station S
and station T, respectively

It can be seen that Equations 7-7 and 7-8 are, in effect,
the same: the latitude of a course is equivalent to the differ-
ence in the Y coordinates of the stations, ΔY, and the depar-
ture is equivalent to the difference in the X coordinates, ΔX
(see Figure 7-15).

L = 3(ET - ES)2 + (NT - NS)2

b = tan-1
|ET - ES |

|NT - NS |
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FIGURE 7-14. Adjusted connecting
traverse plotted by coordinates.

FIGURE 7-15. Geometry for the process of inversing
between two points.
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Example 7-1
Compute the adjusted bearing and length for course AB of
the loop traverse shown in Figure 7-11, using its adjusted
latitude and departure.

Solution
The adjusted latitude and departure for AB are (see Table 7-2)

From Equation 7-7a, we get a new bearing angle as
follows:

Because both Lat and Dep are negative, the course is in
the SW quadrant and the corrected bearing of AB is S
79°49�47� W (as compared with S 79°49�00� W in Table 7-1).

From Equation 7-7b, we get a new length as follows:

(as compared with the measured length of 690.88 ft).
Alternatively, L = 680.18/sin 79.83° = 691.04 ft.

Example 7-2
Compute the adjusted bearing and length for course BC of
the loop traverse shown in Figure 7-11, using the computed
coordinates of stations B and C.

Solution
The coordinates for B and C are (see Figures 7-11 and 7-16)

Station B: N 734.98 E 691.17
Station C: N 908.98 E 100.00

Using Equation 7-8a, we get the new bearing angle as
follows:

It can be seen from Figures 7-11 and 7-16 that course
BC is in the NW quadrant and the bearing of BC, then, is N
73°35�57� W (as compared with N 73°36�15� W in Table 7-1).

From Equation 7-8b, we get a new length of BC as
follows:

(as compared with its measured length of 616.05 ft).

L = 3(100.00 - 691.17)2 + (908.98 - 734.98)2 = 616.25 ft

=  tan-11+ 3.39752872 = 73.599° = 73°35¿57–

b =  tan-1
ƒ100.00 - 691.17 ƒ
ƒ908.98 - 734.98 ƒ

L = 2122.022 + 680.182 = 691.04 ft

b = u-1a680.18
122.02

b = 79.83° = 79°49¿47–

Dep = - 680.17

Lat  = - 122.02

Computer Software Desktop computers and handheld
programmable calculators are being used by surveyors for
data reduction. Software (canned programs) that performs
all common surveying computations, particularly traverse
and other horizontal control applications, is readily available
at reasonable cost. It would be very difficult for a modern-
day surveyor to perform computations by hand (i.e., by
using all the formulas directly and making tables as we did in
the preceding examples) and still remain competitive in the
surveying business.

Computers and calculators are discussed briefly in
Section 2-2 and illustrated in Figure 1-2. As previously men-
tioned, computers are only computational tools. They are
helpful only when used by someone who thoroughly under-
stands the underlying concepts and principles of the prob-
lems being solved. And the fact that all surveying students
must first solve problems by hand to understand and develop
a feel for them cannot be overemphasized.

Because there are so many types of computer systems as
well as surveying software packages, it is impossible to cover
them all in an introductory textbook. However, if the student
first learns the basics, he or she should be able to read, interpret,
and apply the system documentation for most of the hardware
and surveying software packages on the market today.

7-3 TRAVERSE AREA
COMPUTATIONS

When the courses or sides of a loop traverse represent bound-
ary lines, it is usually necessary to compute the enclosed land
area for the deed description or plotted survey plat. Tradition-
ally, the area is expressed in terms of square feet (ft2), or acres
(ac) for relatively large parcels; in SI metric units, area is
expressed in terms of square meters (m2), or hectares (ha).
(Refer to Section 2-1 or Appendix B for conversion factors.)

When the tract of land is formed by straight lines only, it
is possible to divide up the tract into adjacent triangles, rec-
tangles, and trapezoids and to compute the sum of the areas
of all those regular geometric figures. Most surveyors, how-
ever, prefer to use the coordinate method to determine the
enclosed area of a traverse. This method is illustrated in this
section. Computational procedures for determining areas
enclosed by curved or irregular boundaries are also pre-
sented here.

Area by Coordinates
When the rectangular coordinates of each traverse station
are known, the coordinate method may be used to compute
the enclosed area. This method also finds application in
cross-section area calculations for route surveys, as discussed
in Section 11-2.

A formula for the coordinate method can be derived,
but for the purposes of this text, a convenient computa-
tional procedure will be outlined and illustrated here
instead. The areas of trapezoids are, in effect, being summedFIGURE 7-16. Illustration for Example 7-2.



with appropriate algebraic signs. The result of the computa-
tion is double the area, which must be divided by 2.

The first step is to list the N and E (or Y and X) coordi-
nates of all the stations in a systematic manner. One way to
do this is to write them as a series of N/E ratios, as follows:

The subscript n stands for the total number of stations
in the traverse. The coordinates for the first station are
repeated at the end of the sequence, but it really does not
matter which is considered the first station (previously, we
were using letter symbols—that is, A, B, etc.—instead of
numbers to represent the stations).

To perform the computation, first sum the products of
the adjacent diagonal terms in the northeast direction
(upward and to the right; i.e., E1N2, E2N3, etc.). Then sum
the adjacent diagonal terms in the southeast direction
(downward to the right; i.e., N1E2, N2E3, etc.). Finally, take
the difference between those two sums and divide that by 2;
the result is the area in either square feet or square meters,
depending on the system of units used. This procedure is
illustrated for the loop traverse ABCDE of Figure 7-11 and
Table 7-4. (Note: If the sequence of coordinate ratios follows
a clockwise path around the traverse, the northeast sum
must be subtracted from the southeast sum.)

Sum the products of diagonal terms upward to the right:

Sum the products of diagonal terms downward to the right:

Take the difference between the two sums

Divide by 2

Divide by 43,560 ft2/ac

Irregular and Curved Boundaries
Sometimes part of a tract of land may be bounded by an irreg-
ular line, such as stream shoreline. And many properties are
bounded by the curving portion of a road, that is, by the arc of
a circle. The surveyor must be able to compute the enclosed
area, even though direct traverse measurements cannot be
made to coincide exactly with the irregular or curved part of

Area =
704,991

43,560
=  16.18 ac

Area =
1,409,981

2
=  704,991 ft2

2,683,510 - 1,273,529 = 1,409,981 ft2

+ (239.96)(1169.72) + (100.00)(1371.35) = 1,273,529

(857.00)(691.17) + (734.98)(100.00) + (908.98)(208.89)

+ (208.89)(100.00) + (1169.72)(857.00) = 2,683,510

(1371.35)(734.98) + (691.17)(908.98) + (100.00)(239.96)

857.00

1371.35
      

734.98

691.17
      

908.98

100.00
      

239.96

208.89
     

100.00

1169.72
     

857.00

1371.35

N1

E1

  
N2

E2

  
N3

E3

Á
Nn

En

  
N1

E1

the boundary. A method that makes use of a scaled drawing,
and a device called a planimeter, is discussed in Section 10-7.
In this section, methods generally used to approximate or
compute these areas from field data are discussed.

Offset Measurements When part of a tract of land
includes an irregular boundary segment, a loop traverse may
be run along the straight-line segments and closed with a
straight line established in close proximity to the irregular
boundary (see Figure 7-17a). The position of the irregular
boundary can then be determined by making perpendicular
offset distance measurements (h), from the established tra-
verse line to the boundary, at regular intervals (d).

The coordinate method is used to calculate the area
enclosed within the looped straight-line courses. A method
called the trapezoidal rule may then be used to approximate
the area between the traverse line and the irregular bound-
ary. The sum of the two areas represents the total enclosed
area of the property. In the trapezoidal rule, it is assumed
that the boundary line is actually straight between each off-
set interval distance (see Figure 7-17b). The smaller the
interval d, the more accurate this assumption.

The area between the traverse line and the irregular
boundary is approximated by summing all the trapezoidal
areas formed by the boundary, the offset distances, and the
offset interval(s). The formula for the area of a trapezoid is
applied here as Equation 7-9. Because the constant offset
interval d forms one of the bases of each trapezoid, it can be
factored out, and the following formula can be written:

(7-9)

The triangular areas should also be included and are
shown at the end of the equation. The use of the trapezoidal
rule is illustrated in Example 7-3.

Example 7-3
Perpendicular offsets are measured at regular intervals of 5 m
from a traverse line to a curved boundary. The values of the
offset distances are given as follows: h1 = 3.5 m, h2 = 7.2 m,
h3 = 9.7 m, h4 = 12.4 m, h5 = 16.7 m, h6 = 13.5 m, h7 = 7.9 m,
and h8 = 3.2 m. The last interval is 2.7 m. Determine the area
between the traverse line and the irregular boundary line.

Solution
From Equation 7-9, the trapezoidal rule, we get

The area of the two end triangles is computed as

The total irregular area, then, is 354 + 13 = 370 m2 (rounded
off).

1
2

*  5 *  3.5 +
1
2

*  2.7 *  3.2 =  13 m2

A = 5 *
3.5 +  3.2

2+7.2+9.7+12.4+16.7+13.5+7.9
= 354 m2

+
h1d

2
+

hnd

2

Area = (d) c h1 + hn

2
+ h2 + h3 + h4 + Á + hn-1 d

158 CHAPTER SEVEN

≈R≈ R

RR RR RR RR RR

≈R≈ R ≈R≈ R



Horizontal Control Surveys 159

Segment of a Circle When one of the sides of a land
parcel is formed by the right-of-way (ROW) line of a
curving road, the curve is typically an arc of a circle (see
Figure 7-18). The radius of the circle, R, and the central
angle formed by the arc (and chord), Δ, are usually
known. (If R and Δ are not known, they can be computed
by measuring the length of the chord and the offset to the
arc from the middle of the chord; circular curve formulas
are covered in Chapter 10.)

The geometric figure formed by the chord and the arc is
called a segment of a circle; the formula for the area of the
segment may be written as (see Equation 3-13):

If a traverse is run around the straight boundaries of
the parcel with the chord of the arc closing the traverse, the
area of the loop traverse can be computed using coordinates.

Segment area =
¢

360
pR2 - R *

R sin ¢
2

FIGURE 7-17. Offset measurements
(hn) can be used to determine areas
enclosed by irregular boundary lines.

FIGURE 7-18. Illustration for
Example 7-4.
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The area of the segment is then added to or subtracted from
the traverse area, as required from the direction of the curve.
This is illustrated in Example 7-4. (The length of arc needed
for a deed description of the property may be computed from
Equation 3-11, L = πRΔ/180.)

Example 7-4
Determine the enclosed area of Lot 5, shown in Figure 7-18.
Also, compute the length of the curving boundary line BC.
The data for the curved boundary line BC are given: the
central angle Δ = 41.4° and the curve radius R = 200 ft.

Solution
In this illustration, it can be seen that the figure formed by
the property lines CD, DA, and AB and the chord BC is a
trapezoid (DC is parallel to AB). The area of that figure,
obtained from the formula for a trapezoid, is the height DA
(100 ft) times the average of the bases DC and AB (150 ft), or
area = 100 * 150 = 15,000 ft2.

It can be seen from Figure 7-18 that the area of the seg-
ment (shaded) must be subtracted from the area of the
trapezoid to obtain the enclosed area of Lot 5. The area of
the segment is

Segment area = 1225 ft2

Area of lot 5 = 15,000 - 1225 = 13,775 ft2 = 0.316 ac

7-4 MISCELLANEOUS
COMPUTATIONS

In addition to traverse closure and area computations, there
are several other related problems that must be solved by
surveyors on almost a routine basis as part of horizontal

Length of arc BC =  41.4p *
200
180

=  144.51 ft

Segment area  =
41.4
360

p(200)2 - 200 *
200 * sin 41.4

2

control or land surveying projects. These are presented and
illustrated in this section.

Side Shots
Sometimes it is necessary to locate one or more points in the
vicinity of a traverse station, but the points are not part of
the closed traverse. This is done by making side-shot (or radial)
measurements from the station. A side shot is simply an
extra measurement of both distance and direction to the
point in question, from the traverse station. The coordinates
of the point can be computed by adding the latitude and
departure of the side shot to the coordinates of the traverse
station. The distance and direction of a line between two
different side-shot or radial points can then be computed by
inversing.

Example 7-5
An existing roadway crosses course EF of a closed traverse
(see Figure 7-19). The known coordinates of station F are
N 1032.50 and E 789.12. The known azimuth of EF is 300°45�.
A side shot is taken from station F to the center of pavement
at P1: the horizontal distance is 98.76 ft, and the clockwise
angle from FE is 85°15�. Likewise, a side shot is taken from
F to P2: the resulting horizontal distance is 167.89 ft, and
the clockwise angle from FE is 310°30�.

Find the coordinates of P1 and P2 and the direction of
the road.

Solution
First, determine the azimuths of the side shots as follows:
Add the field angles to the back azimuth of EF.

(azimuth of F - P2)
120°45¿ + 310°30¿ = 431°15¿ - 360° = 71°15¿

120°45¿ + 85°15¿ = 206°00¿ (azimuth of F - P1)

300°45¿ - 180° = 120°45¿ (back azimuth of EF)

FIGURE 7-19. Illustration for
Example 7-5.
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Compute the latitude and departure of side shot 1.

Compute the coordinates of P1 (use Equation 7-6).

Compute the latitude and departure of side shot 2.

Compute the coordinates of P2.

Now compute the direction of the road (P1 – P2) by
inversing, using coordinates of the centerline points
(Equation 7-8).

The azimuth of the road, then, is 54°47�. (The distance
between P1 and P2 can also be determined, if necessary,
using Equation 7-8b: it is 247.56 ft.)

Intersection Problems
The coordinates of a new station or point can be determined
by a combination of measurements from two other points of
fixed (known) position. In effect, the position of the new
point is established at the intersection of the two lines of
sight taken from the known points toward the new station.
Three particular variations of this method include the
bearing–bearing intersection, bearing–distance intersection,
and distance–distance intersection problems. In addition, it is
possible to determine the position of a new point by measur-
ing only two angles, from the new point toward three other
points of known coordinates; this procedure is called
resection.

The formulas used to solve these problems are derived
from trigonometry, particularly from the law of sines and
the law of cosines (see Section 3-2). In this section, examples
of a bearing–bearing problem and a distance–distance prob-
lem are presented. In practice, most surveyors make use of
preprogrammed calculators or desktop computers to solve
these problems.

Bearing–Bearing Intersection In this type of prob-
lem, it is necessary to know the directions of the lines from
the two fixed points, A and B, to the new point, C. (A point is
“fixed” if we know its coordinates.) The angles at stations A
and B, then, must be measured in the field (see Figure 7-20);
no distance measurements are required.

b =  tan-1a 948.10 - 745.83
1086.47 - 943.74)

b = 54°47¿

EP2 = EF + DepF-P2 = 789.12 + 158.98 = 948.10

NP2 = NF + LatF-P2 = 1032.50 + 53.97 = 1086.47

Dep = (167.89)(sin 71°15¿) = 158.98 ft

Lat = (167.89)( cos 71°15¿) = 53.97 ft

EP1 = EF + DepF-P1 = 789.12 + (-43.29) = 745.83

NP1 = NF + LatF-P1 = 1032.50 + (-88.76) = 943.74

Dep = (98.76)(sin 206°) = - 43.29 ft

Lat = (98.76)(cos 206°) = - 88.76 ft

Example 7-6
With reference to Figure 7-20, suppose that the coordinates
of station A are N 450.00, E 350.00, and the coordinates of
station B are N 500.00, E 775.00. The interior angle at A is
measured to be 55°30�, and at B, the measured interior
angle is 35°45�. Determine the coordinates of station C.

Solution
First, the bearing and distance of line AB can be determined
by inversing from A to B, as described in Section 7-2 (using
Equation 7-8). From this, we get the following results:

Next, we can use the interior field angles at A and B,
and the known bearing of AB, to determine the bearings of
AC and BC.

From the law of sines, we can write formulas to solve
for distances AC and BC as follows:

(7-10)

and

(7-11)

from which we obtain C = 180 - 55.5 - 35.75 = 88.75°, and

We can now use Equations 7-1 and 7-2 to determine
the latitude and departure for AC and BC, using the appro-
priate bearing angles β:

Dep = 250.08(sin 27.7903°) = +116.60

Course AC: Lat = 250.08(cos 27.7903°) = +221.24

BC = (427.93) * a sin 55.50
 sin 88.75

b = 352.75 ft

AC = 427.93 * a sin 35.75
 sin 88.75

b = 250.08 ft

BC = (AB)a sin A
 sin C

b = (AB)a  sin A
sin(180 - A - B)

b

AC = (AB)a sin B
 sin C

b = (AB)a  sin B
sin(180 - A - B)

b

Bearing BC = N 60°577¿35– W (b = 60.9597°)

Bearing AC = N 27°47¿25– E (b =  27.7903°)

Distance AB = 427.93 ft

Bearing AB = N 83°17¿25– E

FIGURE 7-20. Format for a bearing–bearing intersection
problem.
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Using Equation 7-6, we compute the coordinates of C as
follows:

As a check on the coordinates, we can work from point B:

Distance–Distance Intersection In this type of prob-
lem, it is necessary to know the distances from the two fixed
points, A and B, to the new point, C; no angle measurements
are required.

Example 7-7
With reference to Figure 7-21, suppose that the coordinates
of station A are N 800.00, E 650.00, and the coordinates of
station B are N 1125.00, E 1250.00. The measured distance
AC is 334.56 m, and distance BC is 468.13 m. Determine
the coordinates of station C.

Solution
As in the previous example, we first determine the direc-
tion and distance of line AB by inversing. This results in
the following:

From the law of cosines, we can write the following:

BC2 = AC2 + AB2 - 2(AC)(AB)(cos A)

Distance AB = 682.37 m

Bearing AB = N 61°33œ25fl E

EC = EB + DepBC = 775.00 + (-308.40) = 466.60 O.K.

NC = NB + LatBC = 500.00 + 171.23 = 671.23 O.K.

EC = EA + DepAC = 350.00 + 116.59 = 466.60

NC = NA + LatAC = 450.00 + 221.24 = 671.24

Dep =  352.75(sin 60.9597°) = - 308.40 (west = minus)

Course BC: Lat =  352.75(cos 60.9597°) = +171.23 and therefore

(7-12)

Solving Equation 7-12 for angle A, we get

The bearing of line AC can now be determined to be

Computing the latitude and departure of AC, we get

Finally, the coordinates of C are determined to be

The work in Example 7-7 can be checked by using the
law of cosines to solve for angle B and then computing the
coordinates of C starting from station B.

Note that if the triangle ABC were flipped over on line
AB, there would be an entirely different solution for the
coordinates of station C. It is important to realize that there
are two possible solutions when solving this type of prob-
lem. The correct solution will be evident from the field
conditions.

Coordinate Geometry
Rectangular coordinates are used for most surveys as a
means of defining the relative positions of survey stations.
In this chapter, we have already seen several types of survey-
ing problems that involve the computation of coordinates.
In this particular section, we will look at some additional
problems that make direct use of coordinate geometry rela-
tionships and formulas. Generally, use of coordinate geom-
etry serves to facilitate computations; most surveying
software systems are structured around coordinate-based
computations.

Lines and Circles/Coordinate Form The equation of
a straight line is generally written as y = mx + b, where x and
y are rectangular coordinates of any point on the line, m is
the slope of the line (Δy/Δx), and b is the y intercept (see
Section 3-3).

Consider line AB shown in Figure 7-22; the coordinates
of A and B are known (recall that in surveying applications, N
stands for the y coordinate and E stands for the x coordinate).

It can be seen that the slope of the line may be expressed
using rectangular coordinates as follows:

m =
NB - NA

EB - EA

  ai.e., m =
Lat

Dep
b

EC = EA + DepAC = 650.00 + 132.21 = 782.21

NC = NA + LatAC = 800.00 + 307.33 = 1107.33

Dep = (334.56)(sin 23.276°) = 132.21

Lat = (334.56)(cos 23.276°) = 307.33

61°33¿25– - 38°16¿51– = N 23°16¿34– E

A =  cos-1(0.7849833) = 38.2809° = 38°16¿51–

A =  cos-1 c682.372 + 334.562 - 468.132

(2)(334.56)(682.37)
d

Angle A = cos-1 cAB2 + AC2 - BC2

2(AC)(AB)
d

FIGURE 7-21. Format for a distance–distance intersection
problem.
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Suppose there is some other station S along line AB.
Because the slope of the line is constant, we can also say that

(7-13)

It can also be seen from Figure 7-22 that the slope of the
line AB is the reciprocal of the tangent of its azimuth angle, �;
that is, m = 1/tan � = cot �. Now we can write the following:

(7-14)

Note that if � exceeds 90°, the slope is considered nega-
tive. A calculator will automatically display a negative value
for the tangent of any angle between 90° and 180°.

Sometimes a problem arises where it is necessary to
locate the intersection point of two straight lines, with mea-
surement of a single field azimuth from a fixed point on one
of the lines; the N and E coordinates of two points on the
other line must also be known. As shown in the next example,
the problem can be solved using the two coordinate formu-
las for a straight line, Equations 7-13 and 7-14, and solving
these two simultaneous equations.

Example 7-8
Determine the coordinates of station S, the point of intersec-
tion between lines AB and PQ. The coordinates of stations
A, B, and P are shown in Figure 7-23; the measured azimuth
of PQ is 50°.

Solution
First, use Equation 7-13: the slope of AB equals the slope
of AS.

This expression can be reduced to the following equation:

Now we can apply Equation 7-14 to line PS as follows:

cot 50° =
NS - 650

ES - 1050

NS + 0.60ES = 1540

700 - 1000
1400 - 900

=
NS - 1000

ES - 900

cot f =
NB - NA

EB - EA

=
NS - NA

ES - EA

NB - NA

EB - EA

=
NS - NA

ES - EA

This expression can be rewritten in the following form:

Now we have a pair of simultaneous equations in two
unknowns, which can be solved by the method of subtraction.

from which we get ES = 1230.669059, rounded off to 1231,
and NS = 802.033333, rounded off to 802.

Sometimes it is necessary to solve for the intersection
of a line and the arc of a circle. The equation of a circle can
be expressed as

(7-15)

where S is any point on the circle, O is the center, and R is
the radius of the circle (see Equation 3-18 in Section 3-3).

Example 7-9
Determine the coordinates of the intersection point S
between straight line AB and the arc of a circle shown in
Figure 7-24. The coordinates of A, B, circle center O, and
the radius are as shown.

Solution
First, write the expression for line AB as follows:

2000 - 1000
500 - 1100

=
NS - 1000

ES - 1100
 (from Equation 7-13)

(NS - NO)2 + (ES - EO)2 = R2

0 + 1.439099 ES = 1771.054612

- (NS - 0.839099 ES = -231.054612)

NS + 0.60 ES = 1540

NS - 0.839099 ES = -231.054612

FIGURE 7-22. Nomenclature for the equation of a straight
line expressed in coordinate form.

FIGURE 7-23. Illustration for Example 7-8.

FIGURE 7-24. Illustration for Example 7-9.
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This reduces to

Now write the expression for the circle as follows:

Substituting 2833.33333 - 1.666667 ES for NS, and then
reducing the terms, gives

This equation may be solved using the quadratic formula
as follows:

The coordinates of S, then, are N 1458/E 825.
It should be recognized that another solution (S�) can be

obtained for this problem (N 101, E 1639), by adding the
radical term in the quadratic formula rather than sub-
tracting. The extended straight line AB will intersect the full
circle at S� as well as at point S. But from an accurate sketch
or plot of the given coordinates for the line and the circle, it
can be seen that the second solution does not apply in the
given problem.

State Plane Coordinates To simplify horizontal control
computations, an arbitrary coordinate system is generally
used by the surveyor so that all the stations will be in the first
or northeast quadrant and all the coordinate values will be
positive. In other words, a reference origin and meridian are
assumed, neither of which necessarily has a fixed relation-
ship to any other survey in the same area. The disadvantage

(2 )

NS = 1457.95538, rounded off to 1458

NS = 2833.33333 - 1.666667 (825.22512)

NS = 2833.33333 - 1.666667 ES

= 825.22512 rounded off to 825

ES =
2464.70114 - 814.25089

2

ES =
2464.70114 -3-2464.701142 - (4)(1)(1,352,936.796)

(2)(1)

ES =
-b ; 2b2 - 4ac

2a

ES
2 - 2464.7011 ES + 1,352,936.796 = 0

3.77779 ES
2

3.77779
-

9311.12332 ES

3.77779
-

5,111,111.009
3.77779

= 810,000

(ES
2 - 3200 ES + 2,560,000) = 810,000

ES
2 - 1600 ES - 1600 ES + 2,560,000 = 810,000

(ES - 1600)(ES - 1600) = 810,000

(3,361,111.099 - 6111.12332 ES + 2.77779 ES)2 +

-  3055.56166 ES + 2.77779 ES
2 +

3,3361,111.099 - 3055.56166 ES

(1833.33333 - 1.666667 ES)(1833.33333 - 1.666667 ES) +

(1833.33333 - 1.666667 ES)2 + (ES - 1600)2 = 9002

(NS - 1000)2 + (ES - 1600)2 = 9002 (from Equation 7-15)

NS = 2833.33333 - 1.666667 ES

NS + 1.666667 ES = 2833.33333 or 

of this is that the survey is “isolated,” and it cannot be corre-
lated with other local surveys.

To overcome this problem, it is good practice to reference
to or tie a local control or boundary survey into the state plane
coordinate system (SPCS). In the United States, each individual
state has its own central meridian, origin, and rectangular
coordinate grid, which has been established by the NGS. The
grid is formed by projecting points from the spherical earth’s
surface onto a cone or cylinder, which can then be “flattened
out,” or developed into a plane. (The theory and mathematical
details of the projection are beyond the scope of this book.)

Within each state (or zone within a state), all north–south
grid lines are parallel to a central (true geographic) meridian,
and they are perpendicular to the east–west grid lines.
Normally, plane surveys are limited in scope due to the earth’s
curvature. But in the SPCS, the coordinate grid is flat and
rectangular, and the methods of plane surveying still apply to
work referenced or tied to the relatively large state system. It is
not necessary for the surveyor to apply more complicated
geodetic surveying methods.

The coordinates of all control stations in the NSRS, estab-
lished by the NGS and other federal agencies, are referenced to
the grid in each state. The data are published and made readily
available by the NGS. But not all states have officially adopted
the SPCS, and its use is voluntary. And some counties or large
cities use their own coordinate systems; these local systems are
discontinuous at county or city boundaries and are, therefore,
not as useful as the state system.

As surveyors learn more about the advantages of using the
SPCS instead of an arbitrary system, they will tend to make
more use of it. This use will accelerate as more states begin to
require the application of state plane coordinates in new subdi-
vision surveys and as the number of control stations grows.

Coordinate Transformations Sometimes it may be
necessary to convert the coordinates of points defined in an
assumed rectangular axis system to coordinates expressed
with reference to some other system (e.g., the SPCS or a local
system). Of course, the actual locations of the points do not
change; only the numerical values of the coordinates change
to reflect the relative position and orientation of the new sys-
tem of axes (see Figure 7-25).

The process of converting coordinates from one system to
another is called coordinate transformation. Generally, two
steps are involved in this transformation. Rotation of the axes is
related only to the difference in direction between the meridian
or north–south axes of each system; the origin may still be the
same for each. Translation of the axes is related to the shift or
relative displacement of the origins for each system, in the X
(east–west) and/or in the Y (north–south) directions.

To convert coordinates from the E, N system to the X, Y
system shown in Figure 7-25, it is necessary to know the rota-
tion angle θ and the amount of displacement along each axis,
Tx and Ty. It is generally necessary to know the coordinates of
at least two control stations as expressed in both coordinate
systems to determine the values of θ, Tx, and Ty and to trans-
form other survey stations. The student should refer to an
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advanced text for derivations and more detailed discussion of
transformations. In practice, for coordinate transformations,
the surveyor makes use of available software and a handheld
calculator or a desktop computer.

7-5 ELEMENTARY
TRIANGULATION 
AND TRILATERATION

Precise horizontal control surveys that cover relatively large
areas may be performed using triangulation and/or
trilateration methods. In both these methods, the control
stations typically form a network of interconnected or over-
lapping triangles.

In past years, triangulation by itself was the principal
method used to determine the positions of the survey sta-
tions. Triangulation is based primarily on the accurate mea-
surement of angles rather than distances. At the present
time, however, relatively long distances can be accurately and
quickly measured with EDM devices. Trilateration, there-
fore, which relies only on distance measurement rather than
on angular measurement, can now be done more easily.

Modern control surveys are now likely to use a combi-
nation of triangulation and trilateration, as well as traverse,
methods. A simple system of a few well-placed triangles will
greatly increase the overall accuracy of a traverse net with a
minimum expenditure of time and labor. Figure 7-26 illus-
trates a survey in which a connected network of triangles is

FIGURE 7-25. Transformation of
coordinates from one reference 
system to another.

FIGURE 7-26. A survey network for a plant extension, showing the scheme of triangulation
and traverse stations.
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used to control three traverse nets and to form the connec-
tions between them. Both triangulation and trilateration
typically provide a greater degree of accuracy for horizontal
control than does traversing by itself, due to the increased
number of routes or pathways along which coordinates can
be computed, checked, and adjusted.

Systems of Triangles
Although many types and shapes of networks are used, the
patterns of triangles for triangulation and trilateration are
generally similar. The control stations, which are usually very
far apart, must be clearly intervisible; they are placed around
the exterior of the area to be surveyed, on high ground or, if
necessary, on specially constructed observation towers.

The stations are arranged so that the triangles formed
are as nearly equilateral as possible, to give the overall net-
work maximum strength, and hence the most accurate
results for the survey. (Angular values between 30° and 150°
are acceptable in most cases.)

In a triangulation network, a minimum of two sides of
the system is measured, one to serve as a base and the other
to serve as a check base for closure. To a large extent, EDM
instruments have replaced Invar or Lovar tapes for measur-
ing the base distances with high precision.

The simplest network is a chain of single adjacent trian-
gles (see Figure 7-27a). Other systems include a chain of
quadrilaterals (Figure 7-27b) and a chain of central point
figures (Figure 7-27c). The quadrilateral system is the most

common for controlling long and narrow (i.e., route) sur-
veys, while the central point figures are best used to cover
wide areas (such as a city).

In triangulation, all angles are measured at each station.
Station adjustments are made by closing the horizon (see
Section 6-4), and the resulting angles are again adjusted so that
the sum of the angles in each triangle equals 180° (this is called
figure adjustment). Equal increments are applied to the three
angles of each triangle to obtain figure adjustment. The lengths
of the sides are computed using the law of sines (see Section 3-2),
beginning with the measured length of the base. This will result
in a computed as well as a measured length for the check base;
if the computed and measured values agree within the required
degree of accuracy, the results can be allowed to stand.

All the computed lengths of the network sides, including
the measured base, can be adjusted so that the final value of the
check base will be equal to the average of its original computed
value and the measured length. However, a more accurate
approach for network adjustment involves a mathematical
procedure called the least squares method. (Discussion of least
squares is beyond the scope and purpose of this text.)

In trilateration, only the distances between control
stations are measured (using EDM). Horizontal angular
measurements are unnecessary; the angles are computed
using the law of cosines (see Section 3-2).

The direction (bearing or azimuth) of one of the sides of a
triangulation or trilateration network is determined or
assumed; often, the network will start from a fixed point or line
in a previously established higher-order NGS control survey.
The directions of the other lines are computed using adjusted
angles. Station coordinates are computed by the same methods
that were used for traverses. Because the network is geometri-
cally consistent after adjustment, any route through the system
of triangles should give the same results for coordinates.

When the coordinates of the triangulation or trilatera-
tion stations have been computed, they are thereafter held
fixed. All traverses tied to those control stations are
adjusted to close on them, as described in Section 7-2
under “A Connecting Traverse.”

The following two examples serve to illustrate some
elementary concepts related to triangulation applications.
Triangulation network computations are, in essence, similar
to the distance–distance type of problem illustrated in
Example 7-7. The interested student should refer to more
advanced texts for additional details and theory.

Example 7-10
It is necessary to accurately determine the distance
between survey stations R and S, which are separated by a
body of water. An EDM device is not available. A baseline RT
is established and taped; the angles at the stations have
been measured and adjusted (see Figure 7-28). Compute
the required distance RS using the given data.

Solution
This problem illustrates the basic computation for triangula-
tion, that is, determining an unknown distance from angularFIGURE 7-27. Typical systems of triangular survey networks.
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measurements and a base length measurement. The law of
sines may be applied directly as follows:

and

from which RS = 196.05 ft

Example 7-11
Figure 7-29 shows the field data for the triangulation network
of Figure 7-26, after station adjustment (horizon closure).
Compute the final adjusted lengths of all the sides of the
network, and compute the coordinates of each station (the
assumed coordinates of station A are N 1000.00, E 1000.00).

345.67
0.9815559

 =  
RS

0.5566904

  
345.67

 sin 78.9786111°
 =  

RS
 sin 33.8272222°

 6 RST = 180° - 67°11¿39– - 33°49¿38– = 78°58¿43–
 6 RST = 180° - 6 SRT - 6 RTS

Solution
The figure adjustment and course distance computations are
summarized in Table 7-9. The angles of each triangle are
entered into the table in a special order. The angle opposite
the known side (the base) is entered first. Second is the angle
opposite the side that is not part of the following triangle, and
third is the angle opposite the side that is used as the known
side of the following triangle.

From Table 7-9, the computed value of check base DE is
found to be 0.04 ft less than its measured length. The most
probable length of DE can be taken to be equal to the average
of its measured and computed lengths, or 448.59 ft. It can
also be assumed that the original base and all the sides com-
puted from it are too small by half the ratio of 0.04 divided
by the measured length of the check base. Accordingly, each
side is adjusted by adding the product resulting from its
length multiplied by the ratio 0.02/448.568.

The bearings and coordinates are computed by using a
traverse that extends around the perimeter of the network as

FIGURE 7-28. Illustration for Example 7-10. FIGURE 7-29. Illustration for Example 7-11. The base values
given are the field measurements; the angles are the values
after station adjustment.

Table 7-9. Triangulation Computations

Angles Sines Formulas Sides Corrections Final Sides

AC 345.69 +0.015 345.70
B-CA 46°32�22� -1� 23� 0.72585 AC/sin B-CA 476.255

C-AB 67°29�31� +1 32� 0.92383 x sin C-AB AB 439.979 +0.020 440.00

A-BC 65°58�04� +1 05� 0.91332 x sin A-BC BC 434.973 +0.019 434.99

Sums 179°59�57� + 3� 60�

E-CB 37°58�43� -1� 42� 0.61536 BC/sin E-CB 706.859

B-EC 56°55�38� -1 37� 0.83798 x sin B-EC CE 592.334 +0.026 592.36

C-BE 85°05�42� -1 41� 0.99634 x sin C-BE BE 704.272 +0.031 704.30

Sums 180°00�03� -3� 00�

D-EB 101°42�31� -1� 30� 0.97919 BE/sin D-EB 719.239

E-BD 39°42�24� 0 24� 0.63886 x sin E-BD BD 459.493 +0.020 459.51

B-DE 38°35�06� 0 06� 0.62367 x sin B-DE DE 448.568 +0.020 448.59

Sums 180°00�01� -1� 00�

DE Computed 448.57 ft Correction +  
0.02

448.568
 = + 0.0000446 per ft

DE Measured Error 
448.61
-0.04

 ft
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summarized in Tables 7-10 and 7-11. The results would be
the same by any route; the traverse should close exactly.
Slight errors may appear due to rounding; they are elimi-
nated in this example by changing one latitude and two
departures, as shown in Table 7-11.

7-6 GLOBAL NAVIGATIONAL
SATELLITE SYSTEMS
(GNSS)

Triangulation, the traditional method for establishing
precise horizontal control, is a relatively time-consuming
process (possibly taking up to 6 months for completion of a
moderate-size project). Trilateration and electronic travers-
ing can reduce the total amount of time and personnel
needed for completion of the survey: total stations (or
recording electronic tacheometers) can be especially helpful in
this regard. But even these modern electronic positioning
methods are subject to interference and delays caused by
adverse weather or rough terrain conditions.

During the 1980s, a truly revolutionary development in
control surveying took place. This involved the use of instru-
ments that can establish the coordinates of survey stations
without measuring any distances or angles. These types of
instruments are an offshoot of space-age technology and at
the present time are most useful for large-scale geodetic
control surveys. However, such instruments are quickly
becoming of practical value to the average surveyor working
on relatively small and routine surveying projects.

Satellite Positioning Systems
Radio signals transmitted by orbiting earth satellites can be
used to determine the horizontal coordinates, as well as the

Table 7-10. Triangulation: Bearing Computation

Course Bearing Angles

AC - S 55°00�00� E 67°29�32�

152°35�13� 85°05�41�

-97°35�13� 152°35�13�

179°59�60�

CE S 82°24�47� E 37°58�42�

-77°41�06� 39°42�24�

ED -N 4°43�41� W 77°41�06�

101°42�30�

-96°58�49�

179°59�60�

DB -N 83°01�11� W 38°35�06�

142°03�06� 56°55�37�

BA S 59°01�55� W 46°32�23�

65°58�05� 142°03�06�

125°00�00�

180°00�00�

AC -S 55°00�00� E Check

Table 7-11. Triangulation: Computation of Coordinates

Bearings Cosine Coordinates

Station Lengths Sine Latitude Departure

A S 5°500�00� E 0.57358 1000.00 1000.00

C 345.70 0.81915 -198.29 +283.18
C S 82°24�47� E 0.13203 801.71 1283.18

0 8

E 592.36 0.99124 -78.21 +587.17
E N 4°43�41� W 0.99659 723.51 1870.36

D 448.59 0.08243 +447.06 - 36.98
D N 83°01�11� W 0.12153 1170.57 1833.38

0

B 459.51 0.99259 + 55.84 -456.11
B S 59°01�55� W 0.51456 1226.41 1377.28

A 440.00 0.85746 -226.41 -377.28
A 1000.00 1000.00

Final Coordinates

Station North East

A 1000.00 1000.00

B 1226.41 1377.28

C 801.71 1283.18

D 1170.57 1833.38

E 723.51 1870.36
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elevation, of any point on the earth’s surface. A small portable
antenna receiver and power source are set up over the survey
station to track the radio signals (see Figure 7-30). These
devices can operate day or night, under all weather conditions,
and a clear or unobstructed line of sight between stations is
not required. (A clear view of the sky, though, is needed.)
Greater than first-order accuracy in position (1:100,000) can be
achieved after about 2 hours of signal observation at a station.

The satellite system now used for geodetic control
surveys is called the Navstar Global Positioning System
(GPS). The 32 active GPS satellites provide 24-hour
receiving capability from any point on the earth. The
NGS has already begun to use GPS for upgrading and
densifying the national control network; other federal,
state, and private surveying organizations are also making
use of the system.

The cost of the GPS receiving equipment is high; however,
more and more surveyors in private practice are making use of
this technology. It is possible to lease the necessary equipment
and associated software on a daily basis and to receive training

in its use. Or a consulting firm specializing in GPS can be
retained to do the work. The total time for a control survey can
be significantly reduced with GPS (days instead of months),
and the total cost for a large network may be as little as 
25 percent of the total cost by traditional methods.

For remote stations that cannot be reached by car or
other vehicle, a compact battery-powered unit can be carried
to the site. This instrument can produce second-order accu-
racy within 30 minutes of radio signal observation at each
station; less-accurate positions can be determined in as little
as a few seconds of data acquisition. Data reduction can be
done using commonly available software and computers.

GPS offers extraordinary potential for surveying. It is
possible that the time and cost of determining the coordi-
nates of a point will be reduced to less than the cost of
monumenting the point; permanent control monuments
will then be unnecessary. Surveyors may be able to locate a
point with precision in only a few minutes of time. But they
will still have to have a good understanding of control
networks and traditional surveying theory.

FIGURE 7-30. Global Positioning
System. (Courtesy of Leica 
Geosystems, Inc.)

Questions for Review

1. What is the purpose of a control survey?

2. What is a traverse? What are the basic types?

3. What is the purpose of witnessing a point? What are two
basic methods?

4. List six factors regarding proper witnessing of a point.

5. What is meant by adjusting a traverse?

6. List the basic steps for closing a traverse.

7. For geometric consistency, what should the sum of the
adjusted interior angles in a traverse with n sides equal?

8. Briefly define the terms latitude and departure as they
pertain to traverse computations.

9. What is the sign convention for latitude and departure?

10. In an adjusted traverse, what should the sum of lati-
tudes or departures equal? Why?
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11. What are the compass and transit rules used for?

12. What is meant by the term inversing?

13. What is the trapezoidal rule used for?

14. What is meant by the term side shot?

15. A distance–distance type of intersection problem involves
the measurement of an angle and/or distance from each of
two stations of known position.

16. A bearing–bearing type of intersection problem involves
the measurement of an angle and/or distance from each
of two stations of known position.

17. What are state plane coordinates?

18. What is meant by coordinate transformation?

19. What is the difference between triangulation and trilat-
eration?

20. Briefly describe GPS technology.

Practice Problems

1–4. In each column of the following table is given the field
measurements of the interior angles of a loop traverse of
12 sides. First, adjust these angles. The bearing of one side
is given. With this bearing and the adjusted interior angles,
draw a sketch of the traverse. The alphabetical order of the
stations gives the forward, counterclockwise direction around
the loop. Looking forward around the loop, the interior
angles are on the left. Compute course bearings.

The lengths of the courses have no effect on the
results, and so they can be made any convenient lengths.

6. The course bearings and lengths of a traverse follow.
Determine the relative accuracy of the survey.

Interior Angles
Station 1 2 3 4

A 210°30� 303°30� 213°05� 54°08�

B 61°31� 89°33� 49°55� 216°54�

C 299°27� 56°27� 270°48� 56°55�

D 45°06� 144°17� 130°17� 127°28�

E 194°55� 279°07� 60°42� 263°17�

F 88°11� 152°13� 297°53� 55°02�

G 153°00� 58°03� 112°18� 150°07�

H 329°35� 226°07� 157°37� 117°35�

I 41°40� 44°16� 61°14� 308°06�

J 107°15� 304°22� 303°52� 60°07�

K 208°55� 84°38� 90°12� 88°57�

L 60°07� 57°51� 52°31� 301°12�

Bearings DE:
S 21°30� E

FG:
N 77°49� E

KL:
N 61°09� W

BC:
S 22°18� W

5. The course bearings and lengths of a traverse follow.
Determine the relative accuracy of the survey.

Course Length, ft Bearing

AB 254.91 S 11°18� E

BC 158.12 S 71°33� E

CD 447.23 N 26°33� E

DA 412.17 S 75°47� W

Course Length, m Bearing

1-2 77.69 N 16°48� W

2-3 48.19 N 77°03� W

3-4 136.31 S 32°03� W

4-1 144.96 N 77°55� E

Station Traverse Angle Length, ft

A 96°05� AB 560.27

B 95°20� BC 484.18

C 65°15� CD 375.42

D 216°22� DE 311.44

E 67°08� EA 449.83

7–12. The field data and the fixed data follow for each of six
traverses. The forward direction is given by the alphabeti-
cal order of the station names. Each angle is measured
clockwise from the back direction to the forward direction
so that they are on the left of the traverse looking forward.

In each problem, draw a sketch, compute the accuracy,
and compute the final coordinates. Adjust by the com-
pass rule.

7. Loop traverse.

Station Traverse Angle Length, ft

A 91°18� AB 554.09

B 94°28� BC 425.31

C 109°52� CD 426.05

D 102°26� DE 345.28

E 142°06� EA 322.21

Bearing BC: S 3°11� E

Coordinate B: N 1000.00, E 1000.00

8. Same as Problem 7, but bearing BC: N 9°17� W.

9. Loop traverse.

Bearing EA: S 10°14� E

Coordinate E: N 1000.00, E 1000.00

10. Same as Problem 9 but bearing EA: N 18°53� E.
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12. Same as Problem 11, except coordinate values:

20. Compute the area within the loop traverse of Problem 9
by the coordinate method.

21. Compute the area within the loop traverse of Problem
17 by the coordinate method.

22. Compute the area within the loop traverse of Problem
18 by the coordinate method.

23. Perpendicular offsets are measured at intervals of 50 ft,
from a traverse line to a curved boundary. The offset
distances are given as follows: 12.5, 27.6, 49.2, 87.5,
123.4, 159.0, 135.7, 102.4, 74.1, 32.5, 13.4, and 6.8 ft. The
last interval is 28.5 ft. Compute the area, in acres,
between the traverse line and the boundary line.

24. Perpendicular offsets are measured at intervals of 15 m,
from a traverse line to a curved boundary. The offset
distances are given as follows: 4.1, 8.9, 15.8, 28.4, 39.6,
47.2, 41.5, 31.8, 24.6, 9.1, 4.0, and 2.1 m. The last inter-
val is 8.7 m. Compute the area, in hectares, between the
traverse line and the boundary line.

25. Determine the area of Lot 15, shown in Figure 7-31, and
compute the length of the curved boundary line.

Station Angle
N

Coordinate
E

Coordinate Course
Length,

ft

Ash 1336.35 1050.47

Fir 86°33� 1000.00 1000.00 Fir-G 347.15

G 223°55� G-H 449.82

H 114°48� H-Oak 144.76

Oak 141°36� 670.23 1780.27

Pine 945.97 1975.74

13. Same as Problem 7, but adjust by the transit rule.

14. Same as Problem 9, but adjust by the transit rule.

15. Compute the final adjusted bearings and lengths for the
courses in Problem 7 by inversing.

16. Compute the final adjusted bearings and lengths for the
courses in Problem 9 by inversing.

17. The coordinates of loop-traverse stations follow. Com-
pute the bearing and length of each course.

18. The coordinates of loop-traverse stations follow.
Compute the bearing and length of each course.

FIGURE 7-31. Illustration for Problem 25.

26. Determine the area of Lot 25, shown in Figure 7-32, and
compute the length of the curved boundary line.

FIGURE 7-32. Illustration for Problem 26.

Station N Coordinate E Coordinate

Ash 1266.05 1211.88

Fir 1000.00 1000.00

Oak 324.28 1510.85

Pine 465.34 1818.00

Station Northing Easting

A 1000.00 1000.00

B 750.00 1750.00

C 1345.00 2255.00

D 1567.00 1345.00

Station Northing Easting

1 2345.67 3456.78

2 1357.91 2000.00

3 1075.31 2255.00

4 1000.00 3945.00

11. Connecting traverse (work to nearest minute).

19. Compute the area within the loop traverse of Problem 7
by the coordinate method.
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27. A side shot is taken from traverse station M to M1. The
measured horizontal distance is 235.7 ft. A clockwise
angle of 123°45� is measured at M, from point L to M1;
the bearing of course LM is N 55°15� W. The coordi-
nates of station M are N 1000.00/E 1000.00. Determine
the coordinates of point M1.

28. A side shot is taken from traverse station S to S10. The
measured horizontal distance is 148.35 m. A clockwise
angle of 233°15� is measured at S, from point R to S10;
the azimuth of course RS is 155°45�. The coordinates of
station S are N 500.00/E 500.00. Compute the coordi-
nates of point S10.

29. With reference to Figure 7-20, the coordinates of point A
are N 100.00, E 100.00 and the coordinates of point B are
N 400.00, E 500.00. The bearing of AC is N 12°30� E, and
the bearing of BC is N 45°00� W. Determine the position
of station C at the intersection of lines AC and BC.

30. With reference to Figure 7-20, the coordinates of point A
are N 500.00, E 500.00 and the coordinates of point B are
N 300.00, E 200.00. The bearing of AC is S 12°30� W and
the bearing of BC is N 75°00� E. Determine the position
of station C at the intersection of lines AC and BC.

31. With reference to Figure 7-21, the coordinates of point
A are N 2000.00, E 2000.00, and the coordinates of point
B are N 1750.00, E 2750.00. Distances AC and BC are
measured to be 468.55 ft and 642.08 ft, respectively.
Determine the coordinates of point C at the intersection
of lines AC and BC (north or to the left of line AB).

32. With reference to Figure 7-21, the coordinates of point A
are N 1000.00, E 1000.00, and the coordinates of point B
are N 1100.00, E 1250.00. Distances AC� and BC� are
measured to be 206.80 and 142.15 m, respectively. Deter-
mine the coordinates of point C� at the intersection of
lines AC� and BC� (south or to the right of line AB).

33. With reference to Figure 7-23, determine the coordi-
nates of intersection point S if the azimuth of PQ is 30°.

34. With reference to Figure 7-23, determine the coordi-
nates of intersection point S if the azimuth of PQ is 25°
and the coordinates of station B are N 800, E 1500.

35. With reference to Figure 7-24, determine the coordinates
of intersection point S between line AB and the circular
arc, if the radius of the circle is 850 instead of 1000.

36. With reference to Figure 7-24, the northing of point S is
to be N 1650. The northing of the circle center O is to
remain fixed at N 1000. What is the required easting of
the center point for an arc with radius 1000?

37. With reference to Figure 7-28, compute distance ST.

38. With reference to Figure 7-28, compute distance RS if
the baseline is 113.22 m in length.

39. Adjust the angles and compute the final lengths of the
sides of the triangulation network shown in Figure 7-33.

FIGURE 7-33. Illustration for Problem 39. Unadjusted 
field data.

FIGURE 7-34. Illustration for Problem 40. Unadjusted 
field data.

40. Adjust the angles and compute the final lengths of the
sides of the triangulation network shown in Figure 7-34.



173

CHAPTER EIGHT

Surveying originated primarily from the need for
demarcation of land boundaries in the communi-
ties of ancient civilizations. A boundary is a line

that identifies and separates adjoining tracts of privately (or
publicly) owned land. It is also called a property line, and the
term lot line may be used as well (generally with reference to
city or suburban land parcels). The need for precise location
and demarcation of property lines, of course, is still of great
social and economic importance in modern times.

Property lines are generally monumented, or marked, on
the ground at the points where they intersect; such points
are usually called property corners. Surveying operations that
are applied to the determination of the length and direction
of boundary lines, and the exact position of property
corners, may be referred to as either property surveying,
boundary surveying, or land surveying.

Specifically, a property survey may be performed to
accomplish one or more of the following objectives:

1. To locate and reestablish the boundaries of a land parcel
that has already been surveyed and legally described at
some time in the past; this is called a resurvey.

2. To determine the area of land enclosed within the
boundaries of the parcel, generally in terms of acres or
hectares.

3. To determine the position of buildings, driveways,
fences, and other constructed facilities situated on the
land parcel, in relation to the position of its boundary
lines.

4. To prepare an updated legal description (written and/or
drawn as a plat) of the land parcel.

5. To partition or subdivide the land into two or more
smaller parcels (called lots), and to delineate the posi-
tions of new public rights-of-way (e.g., roads), if any,
that are to be established within the land subdivision
that is formed.

A property survey is generally required whenever a
parcel of land (real estate) is transferred in ownership.
Naturally, it is necessary for a new owner to be certain of
the exact location, the size, and the shape of the land
parcel, as well as the position of any existing constructed
facilities. In some states, for real estate transactions that
involve bank loans or mortgages, the lending institution
almost always insists on a new property survey. Generally,
property surveys in urban areas must be done with great
care and precision due to the density of development and
the high dollar value of the land. Rural land surveys must
also be done with appropriate care and accuracy. In the
United States, property surveys may be done in accordance
with standards established jointly by the American Land
Title Association (ALTA) and the American Congress of
Surveying and Mapping (ASCM), known as “ALTA/ASCM
Standards.”

Property or land surveying is a highly specialized
branch of the surveying profession. In addition to having
basic surveying skills and knowledge, the surveyor must
have a thorough understanding of many related legal prin-
ciples. The land surveyor must also be familiar with local
city or township customs and practices regarding boundary
surveys. Throughout most of the United States, surveyors
who engage in any of the five activities previously listed
must be licensed by the state in which they work, or they
must work under the direct supervision of a licensed land
surveyor (LS).

Land surveying can be mastered only through many
years of field experience. In this chapter, only the fundamen-
tal concepts of land description and boundary surveying
procedures are presented. This will serve, however, as a
useful introduction for the student who may eventually
work in the field and/or office under the direction of a
licensed land surveyor, or who will occasionally have to read
and interpret land descriptions and survey plats.

PROPERTY SURVEYS

CHAPTER OUTL INE
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No matter how skillful a surveyor might be, he or she
should never attempt a property survey until after many
years of field and office experience under the direction of a
licensed land surveyor.

8-1 PROPERTY
DESCRIPTIONS

A land or property description is a necessary part of the legal
document (the deed) that transfers ownership of a specific
land parcel from one owner to another. The description
serves to positively identify the land and to state its size,
shape, and precise location in the community.

The identification must be crystal clear, and not subject
to varying interpretations by different people; it should be
thorough, but brief. The description must include complete
and accurate directions for finding and marking the bound-
aries, by making distance and angle measurements from
durable and readily visible landmarks called monuments.
Unfortunately, not all existing land descriptions fully comply
with these requirements, particularly older ones; this makes
the resurvey process an especially challenging task for a land
surveyor.

Metes and Bounds
One of the oldest methods for identifying a land parcel is
called description by metes and bounds. A metes-and-
bounds description may be presented verbally, in written
form, and/or graphically in a drawing called a plat.

In a metes-and-bounds description, a point of beginning
(POB) for the parcel must be clearly identified and described
and shown on the plat. It should be a permanent marker
located at one of the property corners and tied in or referenced
to some other permanent monument in the neighborhood.
The POB, in effect, establishes the precise location of the parcel
within the community.

Starting with the POB, a running description that gives the
direction and length of each boundary line is presented, in
sequence, as if walking around the parcel and finally returning
to the POB; it is customary to begin the running description
with the boundary along a public right-of-way (ROW) adja-
cent to the parcel (usually a main road). To complete the
description, the names of all the neighboring property owners,
called the adjoiners, are usually given: also, the enclosed area
should be noted.

It takes some practice to be able to visualize and sketch
or draw a tract of land from a written description, particu-
larly for irregularly shaped parcels with many sides. As a very
simple example, the following metes-and-bounds descrip-
tion for a so-called regular (or rectangular) lot, and its plat,
is presented (see Figure 8-1).

Example 8-1
Beginning at a point on the north side of Adam Road, 160 m
due west from a concrete monument at the corner formed
by the intersection of the west side of Ginger Lane and the
north side of Adam Road;

1. Thence, 30 m due west along the north side of Adam
Road to a concrete monument;

2. Thence, 60 m due north along the line now or formerly
of L.&T. Dunkin to an iron pipe;

3. Thence, 30 m due east along the line now or formerly of
S.&S. Franks to a wooden stake;

4. Thence, 60 m due south along the line now or formerly
of S.&F. Hershey to the point of beginning.

The directions of boundary lines are usually described
in terms of bearings. In the past, magnetic bearings were
usually used. It is generally difficult to accurately retrace
those lines in a resurvey, due to the questionable accuracy
of the magnetic declination determined for the time of the
original survey. But the angles between the lines of the
parcel can be computed from the bearings, to an accuracy
equal to that of the original work.

FIGURE 8-1. A simplified survey map,
or plat, for a “regular” (rectangular)
lot. The corresponding description in
the text depicts a “walk” along the lot
boundary, starting and ending at
the POB.
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Today, it is customary to assume a somewhat arbitrary
base bearing for one line of the parcel; this is often taken as
the known or recorded bearing of an adjacent right-of-way
from a previous deed or from some other source. The bear-
ings of the other property lines are then computed from the
measured angles. The bearings serve as a means of defining
the relative directions of the lines, but have little meaning by
themselves. Sometimes an astronomical observation is
made to determine the true bearing of one of the lines. When
state plane coordinates are used as part of the description,
“grid bearings” can be indicated for the boundary lines;
these can be independently established and provide reliable
evidence of the locations of the lines.

Generally, the preferred form of a land description is the
plat because the configuration of the parcel can be seen at a
glance; all the survey data, including the positions of buildings
and other facilities, are easily shown on the drawing. It is
important, however, that the plat be incorporated in the deed
by a carefully worded reference.

Some advantages of a written metes-and-bounds
description, as compared with a plat, are that no drafting is
required and the written description is incorporated directly
as a part of the deed; a reference to a separate drawing is
not required. In most cases, however, a plat is also prepared
along with a written description.

Two additional examples of a written metes-and-bounds
land description, and the corresponding plat, follow. In
Example 8-2, a garage is seen to be encroaching on the
parcel; this is explained further in Section 8-2. In Example 8-3,
one of the property lines is the arc of a circle; the necessary
descriptive data include the arc length L, as well as the length
and direction of the corresponding chord. In addition, the
radius R and the central angle Δ are given; these terms and
their relationships are explained in more detail in Section 10-2.

Example 8-2
Recommended form of metes-and-bounds description (as
seen in Figure 8-2) situated in the City of Blankville, County of

FIGURE 8-2. A survey plat show-
ing existing structures and other
information, as well as the prop-
erty lines. (Philip Kissam, Surveying
for Civil Engineers, 2e. New York:
McGraw-Hill Company, 1981.
Reprinted by permission.)
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Blank, State of Blank, being a part of the same tract conveyed
by Leslie Ware to Richard Roe by warranty deed dated June
15, 1907, and recorded in Book 100, page 100, June 20, 1907,
at the Blank County Clerk’s Office, and bounded as follows:

Beginning at a concrete monument in the northeasterly
line of Walnut Avenue, at the southerly corner of the land
hereby conveyed, said monument bearing N 42°24� W,
378.62 ft along the northeasterly line of Walnut Avenue from
the intersection of said northeasterly line of Walnut Avenue
and the northwesterly line of Oak Street, and running:

1. Thence, N 42°24� W, 95.75 ft along the northeasterly
line of Walnut Avenue to a concrete monument at the
southerly corner of the land of James Smith and the
westerly corner of the land hereby conveyed;

2. Thence, N 47°36� E, 207.69 ft along the southeasterly
line of the land of James Smith to an iron pin at the
northerly corner of the land hereby conveyed;

3. Thence, S 44°56� E, 108.84 ft along the southwesterly
line of the land of John Rich to a point at the easterly
corner of the land hereby conveyed, said point
bearing S 19°41� E, 29.00 ft from a cross chiseled on
a boulder on the land of John Rich and also bearing 
S 89°15� E, 13.95 ft from the easterly corner of the
face of the foundation of the garage on the land
hereby conveyed;

4. Thence, S 51°06� W, 212.90 ft along the northwesterly
boundary hereby established of the land of Richard Roe
to the point of beginning.

Example 8-3
The property of L. M. Jones, being Lot 7 situated in Elm Park
in the city of Blankville, County of Blank, State of Blank (see
Figure 8-3).

FIGURE 8-3. A plat of a land parcel
with a curved boundary. The area of
the segment formed by the arc and
the chord AB must be subtracted
from the area of the traverse ABCD.
(Philip Kissam, Surveying for Civil
Engineers, 2e. New York: McGraw-
Hill Company, 1981. Reprinted by
permission.)
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Beginning at a concrete monument in the northwesterly
section of the line of Locust Circle and the southerly corner
of the lot hereby conveyed:

1. Thence, along the said northwesterly line on a circular arc
curving to the right at a radius of 191.10 ft, a distance of
150.76 ft, and a central angle of 45°12�, to a concrete mon-
ument at the easterly corner of the lot hereby conveyed.
The chord of said arc running N 52°05� E, 146.88 ft;

2. Thence, along the line now or formerly of R. T. Smith
N 12°32� W, 232.70 ft to an iron pipe at the northerly
corner of the lot hereby conveyed (bearing base);

3. Thence, along the line of A. B. Realty Company S 55°10�

W, 226.52 ft to an iron pipe at the westerly corner of the
lot hereby conveyed;

4. Thence, along the line now or formerly of George Brown
et Ux S 32°40� E, 223.36� ft to the point of beginning.

As surveyed by Parker and Day Civil Engineers, in
April 1970.

Do you notice any deficiency with this description?
Where is the POB located? Is it properly referenced?

State Coordinate Systems
As described in Section 7-4, the National Geodetic Survey
(NGS) has established a system of plane coordinates for each
state. Rectangular coordinates have been determined for all
the monumented stations of the National Spatial Reference
System, to first- or second-order accuracy. Because there are
generally several monuments in any given area, the position of
the coordinate system is permanently fixed with considerable
precision. All the monuments serve as witnesses to each other.

The use of state coordinates in property descriptions is
strongly recommended by the American Congress for
Surveying and Mapping, the American Society of Civil
Engineers, and other professional organizations; every effort
to use the state plane coordinate system in the descriptions
should be made. The monuments are usually found in pairs
so that direction as well as position ties can be made to them.
From the measured ties, the state coordinates of each prop-
erty corner can be computed.

Property descriptions based on state coordinates have
the following advantages:

1. The unique identity and the precise position of the
property are positively established.

2. The property lines are permanently established and fixed.

3. Property corners can be easily and accurately relocated.

4. Accumulation of error due to the shape of the earth is
prevented.

A sample metes-and-bounds land description that also
makes use of state coordinates is given in Example 8-4. In
this example, “grid azimuths” from the south are used to
describe the boundary directions; these are the clockwise
angles measured from the southern end of the state’s coordi-
nate grid meridian. The description could be improved by
using grid bearings, or even grid azimuths from the north.

Example 8-4
“. . . situated in the Town of _____________, County of
_____________, State of _____________, and bounded as
follows (see Figure 8-4):

“Beginning at a drill hole in a stone mound which is set in
the corner of a stone wall on the north line of Farm Road at the

FIGURE 8-4. The POB of this survey plat is located and described in terms of state plane
coordinates. (Philip Kissam, Surveying for Civil Engineers, 2e. New York: McGraw-Hill
Company, 1981. Reprinted by permission.)
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southwest corner of land of Peter L. Prince and at the
southeast corner of land hereby conveyed, the coordinates of
which monument referred to the Massachusetts Coordinate
System, Mainland Zone, are: x = 417,603.29, y = 316,042.17.

“Thence, on an azimuth from South of 81°39�30�,
123.39 feet along the northerly line of Farm Road to an iron
pin at the southwest corner of the tract hereby conveyed;

“Thence, on an azimuth of 181°47�30�, 145.82 feet
along the easterly line of land of Arthur C. Hicks to an iron
pin in a stone wall at the northwest corner of the tract
hereby conveyed;

“Thence, on an azimuth of 276°32�00�, 62.04 feet along
a stone wall on the southerly line of land of Peter L. Prince to
a drill hole in a stone bound in the wall at the northeast
corner of land hereby conveyed;

“Thence, on an azimuth of 335°10�20�, 133.09 feet
along a stone wall on the westerly line of land of said Prince,
to the point of beginning.

“Zero azimuth is grid south in the Massachusetts Coor-
dinate System, Mainland Zone.

“This description was written June 1, 1939 from data
secured by survey made by Fred L. Connor, Land Surveyor,
in March and April, 1939.

“Together with all right, title, and interest in and to all
roads and ways adjoining the above-described premises.”

Despite the potential advantages of state plane coordi-
nates in property surveying, their use is not very common.
One of the reasons for this is that some areas do not have a
sufficient density of control monuments; it can be very time
consuming and costly to attempt tying in a property survey
to the state system.

The U.S. Public Land Survey System The U.S. Public
Land Survey System was created by the Congress about 200

years ago. Its basic purpose was to avoid the errors and
confusion regarding boundary lines and landownership
that were prevalent in the colonial states at the time. To be
able to manage, lease, or sell land in the public domain, the
government needed a uniform and consistent system for
dividing and marking the boundaries of relatively large
tracts of land.

To this day, federally owned territory is still being
surveyed under the Public Land Survey System, which is also
referred to as the U.S. System of Rectangular Surveys. The
work is done under the jurisdiction of the Bureau of Land
Management (BLM) in the U.S. Department of the Interior.
The Public Land Survey System covers almost three-quarters
of the United States, primarily the midwestern and far west-
ern states; it does not apply to the original colonial states on
the east coast. It serves as a particularly useful framework for
land description in the states where it is applied.

Boundary surveys conducted within the framework of
the U.S. System of Rectangular Surveys are also referred to as
cadastral surveys. Cadastral surveys are important for
regional planning and land management purposes. But they
are also necessary for transfer of title and the establishment
of ownership of relatively small land parcels. A 160-ac tract
of land and even a 0.625-ac lot, for example, are both
ensured an equally definite and unique description under
the national cadastral system. This basically simple rectan-
gular system is very efficient for land identification, and it
serves to reduce legal disputes over land titles.

The Framework Briefly, the cadastral system provides
for the subdivision of land into square quadrangles approxi-
mately 24 mi on a side (see Figure 8-5). The quadrangles are
subdivided into 16 smaller tracts called townships; each
township is about 6 mi on a side, and contains about 36 mi2

FIGURE 8-5. The basic framework of
the U.S. System of Surveys. The
smaller squares are townships. (Philip
Kissam, Surveying for Civil Engineers,
2e. New York: McGraw-Hill Company,
1981. Reprinted by permission.)
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(see Figure 8-6). The townships are further divided into
36 sections, which are each approximately 1 mi2 (640 ac) in
area. The sections are numbered sequentially as shown. (The
actual “squareness” and dimensions of the parcels are
approximate because of the gradual convergence of
the meridian lines toward the pole, and other factors.)

The U.S. government is responsible for monumenting
section corners, as well as quarter-section corners of public
lands. (A perfect quarter section is a 160-ac parcel; see
Figure 8-7.) The actual subdivision of a section is usually
done by local surveyors in private practice; monuments
must be set according to the regulations of the BLM. Gener-
ally, the minimum size parcel the government will sell or
lease public lands is the quarter–quarter section (40 ac). But
parcels as small as 0.625 ac can be described within the
framework of the rectangular survey system.

Land Description A cadastral survey begins at an initial
point (see Figure 8-5). The true meridian passing through
the initial point serves as the principal meridian (PM) for
the survey, and a name is given to each PM; for example, the
Willamette meridian is the PM for surveys in Oregon. The
meridian name serves as the first level of land identification
for parcels based on that survey. There are 35 different initial
points and principal meridians throughout the United
States, each of which has been established and precisely
located by astronomical survey observations.

At the initial point, an east–west baseline intersects the
PM at right angles and extends along a true parallel of lati-
tude. Guide meridians and parallels are established every 24 mi
(see Figure 8-5). Survey methods used for establishing this
rectangular system are described in the Manual of Instruc-
tions for the Survey of the Public Lands of the United States,
published by the BLM.

FIGURE 8-6. A township is subdivided into 36 sections.
(Philip Kissam, Surveying for Civil Engineers, 2e. New York:
McGraw-Hill Company, 1981. Reprinted by permission.)

FIGURE 8-7. Typical subdivisions of a section in the U.S. System of Rectangular Surveys.
The shaded parcel would be described as the “southwest quarter of the northeast quarter”
of the section; the section number would also be given.
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Within this framework, a row of townships extending east
and west is called a tier. Tiers are numbered north and south
from the baseline. For example, a township three tiers south of
the baseline would be identified as T 3 S (township 3 south).
A township four tiers north would be T 4 N, and so on.

A column of townships extending north and south is
called a range. Ranges are numbered east and west from the
principal meridian. For example, a township seven ranges east
of the meridian is identified as R 7 E (range 7 east). Each town
must be identified with both a tier and a range designation;
for example, the township labeled A in Figure 8-5 is identified
as T 3 S, R 7 E.

A section within a township is identified simply by its
number, such as Section 8 or Section 22 (see Figure 8-6).
Quarter sections, and smaller section subdivisions, are desig-
nated by their relative compass positions within the section
(see Figure 8-7). For example, the quarter–quarter section
indicated by the letter A in Figure 8-6 is the northeast quarter
of the southeast quarter of Section 8; this is written simply as
NE 1/4, SE 1/4, Sec. 8; it contains 40 ac. The parcel identified
by the letter B in Section 22, comprising two adjacent
quarters, is written E 1/2, NW 1/4, Sec. 22 (containing 80 ac).
On Figure 8-6, locate a parcel identified as SE 1/4, NE 1/4,
NE 1/4, Sec. 24 (how many acres does it contain?). Note that
each partial-section description begins with the smallest
quarter or half division.

The Public Land Survey System provides an optimum
method for identifying land parcels. No two parcels can have
the same description, nor can there be any doubt about the
location of the land parcel described. The BLM provides
instructions for the resurvey and resetting of corners in
the system.

The complete description of a parcel of land begins with
its position in a section and then includes the section
number, the tier and range identification for the township,
and, finally, the name of the PM. For example, a typical land
parcel may be described as follows:

Irregular and privately owned land parcels may be legally
described using a combination of the rectangular system and
metes and bounds. The rectangular system is usually used,
first, to identify the location of the POB within the system. For
example, “Beginning at a concrete monument 150 ft south of
the SE corner of the NW 1/4, NE 1/4, Sec. 11, T 4 N, R 2 W,
Willamette PM; thence, 34.56 ft east to an iron pipe  . . . ,” and
so on, back to the POB.

8-2 LEGAL ASPECTS
Land boundaries are created and defined by legal documents.
Property surveying, then, is very closely related to certain
principles of law. Two fundamental types of law pertain to
landownership and land use.

The most prevalent is common law, which is the body of
rules and principles that have been accepted in society by

SW 1/4, NE 1/4, SE 1/4, Sec. 30, T 2 N, R 15 E, Indian PM

custom and long usage (over “time immemorial”). In court
decisions handed down over the years, these principles have
become clear and definite, and have set legal precedents for
resolving similar cases or disputes. In most parts of the
United States, most principles of common law derive from
the body of rules, or jurisprudence, that was originally devel-
oped in England (and which stems largely from Roman
common law).

Another type of law that may affect land ownership and
land use is statutory law. This is a body of law that has been
written or “drafted,” then enacted or “passed,” and officially
adopted as law by a government. Local township zoning reg-
ulations and land subdivision ordinances are examples of
statutory laws that often pertain to the work of the surveyor.

A land surveyor must be knowledgeable about those
principles of common and statutory law that relate to the
performance and validity of a property survey. In particular, a
surveyor must be familiar with local factors and customs;
certain legal principles may vary from state to state. The
purpose of this section is to present some of the general prin-
ciples and terminology related primarily to common law.

The Surveyor’s Legal Authority
Property surveys are sometimes performed to resolve a dis-
pute between adjacent landowners regarding the position of
their boundary line. It is important for all parties involved to
understand that the surveyor does not have the power or
authority to legally establish land boundaries.

All the surveyor can do, essentially, is give an expert
opinion about the correct location of the boundary line,
based on his or her examination of previous land descrip-
tions of the parcel, field observations of occupancy and
existing property corners, and field measurements of
distances and angles. The boundary line can be legally fixed
only with the mutual consent of the parties involved, or by
official court action.

The surveyor should try to resolve boundary disputes by
persuading the landowners to agree to a compromise solution;
once they agree, the surveyor can prepare a new legal descrip-
tion and plat that would reflect the mutually acceptable
position of the line. The position of the boundary line will be
legally fixed only after the new deed description is formally
recorded in the appropriate public office. When a compromise
cannot be reached, the boundary will have to be defined by the
decision of a judge. In this case, the surveyor usually serves as
an expert witness in court and provides information about
where, in his or her opinion, the boundary line should be
located. The decision of the judge, not the surveyor, is final and
legally binding.

The Right to Enter Property Generally, a surveyor has
no legal authority to enter on private property for the
purpose of conducting a survey; however, many states have
now passed laws giving surveyors the right of entry to access
property corners. Permission from the owner must be
obtained to avoid being accused of trespass. Without proper
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permission, the surveyor (or the surveyor’s employer) can be
held liable for any damage to trees, fences, and so on. In
some cases, it is possible to traverse around the property
(and take appropriate side shots) when permission is not
granted. Aerial photographs of the property may also be
useful. Under some circumstances, a court order can be
obtained to gain access to the property for the surveyor.

Liability Surveyors can be held legally liable for damage
due to mistakes and inaccurate work, such as incorrectly
establishing a boundary and mislocating a house on a build-
ing lot. In many states, the discovery rule applies to the work
of the surveyor.

Under the discovery rule, the statute of limitations for
liability begins from the time that the error is discovered, not
from when the work was done. Say, for example, that the
statute of limitations was 3 years to be able to sue for dam-
ages. But if the property owner discovers an error 5 years after
the survey, he or she can still sue the surveyor, as long as it’s
done within the 3-year limit commencing at that time. Like
other professional practitioners, then, most land surveyors
find it necessary to purchase liability insurance.

Fundamental Legal Principles
Two fundamental principles of law pertain to the positions
of boundaries:

1. The position of a boundary line is determined by the
intent of the parties that establish the new boundary.
Their intent is judged primarily by the evidence of their
acts, as well as by their written documents and other
circumstances involved.

2. The basic evidence of the position of an old boundary is
the acceptance of that position over a period of years.
The longer the period of acceptance, the stronger the
evidence becomes in support of the boundary location.

Evidence of intent, or evidence of long acceptance, is
found in title transfer, transfer of rights (easements), adverse
possession, and, in particular, existing marks on the ground.

Existing Marks Existing marks actually on (or in) the
ground, which were intended to show the position of an
original boundary line, take precedence over a written or
drawn land description. The land surveyor must reestablish
property lines and corners in accordance with the obvious
intent of the parties who originally set the line. In effect, the
surveyor should try to “follow in the footsteps” of the origi-
nal surveyor. A problem with this, however, is that as time
goes by, it becomes more difficult to learn the original intent
of the parties involved by observing marks on the ground.

Title Transfer The title to land (land ownership) may be
transferred or conveyed from one owner to another, primarily
by a legal document called a deed. As discussed in the previ-
ous section, the deed must contain a suitable description of
the property, which must be tied or referenced to existing

marks on the ground. A deed becomes legally effective only
after it is officially recorded and filed in the proper public
office, usually located in the county courthouse. Deeds are
open to public inspection and are available for anyone to see.
They are the most common source of evidence for a
surveyor.

Easements An easement is a right to use someone else’s
land for a specific purpose. For example, a drainage easement
gives a municipality the right to build and maintain a storm
sewer that may cut across private property.

A right-of-way gives the right to pass across the land; a
public ROW (i.e., a road) gives the public the right to pass
across the land. Easements can be created by the owner by
deed or by dedication; for example, filing a subdivision plan
in the public records is generally assumed to be a dedication
of the new streets as public ROWs. Easements can also be
created by the public or by the state.

The government has the right of eminent domain. This
is the right to use private property for specific purposes.
The use must be for the public benefit and welfare, and the
owner of the land taken must receive fair compensation.
The process of taking land by eminent domain is called
condemnation proceedings. The most common purpose for
land condemnation is to establish an ROW for a street, a
road, or a highway.

Adverse Possession The process of gradually taking
possession of someone else’s land is called encroachment. It
may consist of a building or a fence constructed over a
boundary line. For example, the garage near iron pin C in
the plat of Figure 8-2 is seen to be encroaching on the prop-
erty of the land conveyed. The owner of the land that is
encroached upon can remove it up to the boundary, and
attempt to collect the cost of removal from the encroacher.
But if it remains in that position for a certain period of time,
the encroacher can claim title to the occupied piece of land
by adverse possession.

To acquire title to land under the doctrine of adverse
possession, the use or possession of the land must
be continuous for a statutory period of time, generally
15–21 years, depending on the state. The possession must be
open and notorious; that is, there must be visible evidence of
use of the land. The possession must also be hostile. This
simply means that there can be no prior knowledge of the
actual ownership condition, nor can there be any evidence
that permission was given at some time to use the land. In
some states, for the adverse possession to ripen to fee owner-
ship it may be necessary to pay taxes on the land. Adverse
possession cannot be claimed by a private citizen against
government land or public ROWs.

Riparian Rights The owner of property adjacent to a
body of water has riparian rights, that is, certain privileges
with respect to the use of the water. These privileges, which
can include the right to build a dock or a dam or to use the
water for irrigation, may be of particular economic value to
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the landowner. The laws that regulate these economic
possibilities vary from state to state. Generally, the rights are
not unconditional; many states, for example, require the
owner to apply for a special permit before taking any action
that would affect the body of water in any way.

The exact position of the line of ownership, that is, of
the riparian boundary, is usually defined by state law. The
terms stream, shore, and bank are often interpreted to mean
the line of ownership. For navigable waters, the actual
boundary may be the high-water mark, formed when the
body of water is full but not in flood. The state generally
retains title to the land under the water, between the lines of
ownership on each bank. For small, nonnavigable streams or
creeks, however, the boundary line is usually located at the
centerline or the thread of stream.

A land surveyor must be familiar with the local rules
and regulations concerning the determination of riparian
boundaries. Property surveys of land parcels bounded by
water can be especially complicated, due to the changeable
nature of a riparian boundary line.

When the shore of a stream or river changes in a gradual
and unnoticeable manner, the riparian property line is
considered to move along with the shore or bank. This is fine
for the owner if the process is that of accretion, due to the
gradual deposition of soil along the bank; the land area will
increase. The land area will also increase if a process called
reliction occurs; the water recedes as a lake or stream dries up.
But if the process is one of gradual soil erosion at the shoreline,
or a gradually rising water level, the land area will decrease.

When a sudden and very noticeable change in shoreline
occurs, the process is called avulsion. This may occur during
a flood, for example, when a large amount of soil is quickly
eroded from the bank. Under these circumstances, the prop-
erty line is not considered to change from its original posi-
tion, even though the shoreline has shifted considerably.

8-3 LAND SUBDIVISIONS
As the population of an urban community expands, a
demand is created for residential, commercial, and industrial
building lots in the surrounding neighborhood (i.e., the sub-
urbs). The surrounding area is generally occupied by rela-
tively large undeveloped tracts of land, such as old farms or
country estates. When one of those tracts is partitioned or
divided into two or more smaller parcels, for sale as separate
building lots, the process is called land subdivision. This typ-
ically includes a layout of new streets to provide access to the
newly created land parcels. The resulting neighborhood may
be called a real estate development or, simply, a subdivision.

The Subdivision Plat
It is necessary for the owner or developer of the land to file a
subdivision plat in the appropriate county office where deeds
are recorded. It must show the fixed monuments on the
ground and the survey data needed to locate all the lots and
streets from them (see Figure 8-8). Each lot is numbered for
easy identification. The plat must first be submitted to local

FIGURE 8-8. A typical subdivision plat. (Philip Kissam, Surveying for Civil Engineers, 2e.
New York: McGraw-Hill Company, 1981. Reprinted by permission.)
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officials for review and approval; it will be checked for proper
layout of lots and streets, storm drainage, and other factors.

The preparation of a subdivision plat should be done by
a licensed land surveyor. A subdivision plat typically depends
on the initial establishment of a precise control traverse. The
boundary survey for the tract is based on the control traverse.
Also, the traverse is used for laying out the street monuments.

After certain basic dimensions and directions are estab-
lished, the bearings and lengths of the lot and street lines,
and the lot areas, must be computed. This is now generally
done with the aid of an electronic computer or calculator,
using commercially available software. Computer-aided
drafting (CAD) systems are also used to automatically pro-
vide an accurate plot of the subdivision. A CAD-generated
subdivision plat is shown in Figure 8-9.

Land Partitioning Computations
Many types of mathematical problems are related to the par-
titioning or subdividing of tracts of land. It may be desired,
for example, simply to divide a tract into two smaller parcels
by creating a new lot line between two given points on the
existing boundary; the areas of the individual parcels, how-
ever, are not specified. Or it may be desired to subdivide a
tract into two parcels of specified areas, with additional
restrictions placed on the position and/or the direction of
the new boundary line. In both cases, it is generally necessary
to compute the length and direction of the new boundary to
provide a running description of each new parcel, and to
compute any unknown areas.

Some of the problems can be solved in a straightforward
manner using basic geometric and trigonometric relation-
ships. Others can be solved using trial-and-error methods.
In this section, three basic examples of typical land parti-
tioning problems are presented. Once the general approach
to solving these problems is understood, the student should
be able to apply his or her knowledge of surveying mathe-
matics to many other types of subdivision computations.

In each of the problems illustrated here, it should be
assumed that the boundary traverse survey for the initial tract
of land was already performed to an acceptable degree of
accuracy, and that it has been properly adjusted and closed.

Example 8-5
The owner of a tract of land (ABCDE in Figure 8-10a)
decides to divide it into two parcels for sale. One of the
newly created parcels, ABFE, is to have exactly 100.00 ft of
frontage on Scott Drive. Compute the length and the direc-
tion of the new boundary line, FE.

Latitude FE = 167.17 and Departure FE = - 34.35

Bearing FE = N 11°37œ W

=  tan-1 0.20608 = 11°37œ
Bearing angle FE =  tan-1 134.35/167.172

= 170.66 ft

Length FE = 3(167.17)2 + (-34.35)2

Table 8-1. Computations for Example 8-5

Station Bearing Length Cosine Sine Latitude Departure

E

S 56°11� W 156.23 0.5565 0.8308 -86.95 -129.80
A

S 33°46� E 118.42 0.8313 0.5558 -98.44 +65.82
B

N 79°30� E 100.00 0.1822 0.9833 +18.22 +98.33
F

“Errors” in Latitude and Departure = -167.17 +34.35

Solution
This is sometimes called an omitted measurement problem
because the new boundary, line FE in this case, can be con-
sidered to be a missing course of the loop traverse ABFE.
Assume, for example, that the tract is heavily wooded and
field measurements of FE cannot be made directly, due to an
obstructed line of sight. It is acceptable to compute the
direction and length of the missing line for the purposes of
describing the new lot. This can be done by assuming that
the smaller traverses formed are perfectly balanced or
closed.

Consider parcel ABFE (Figure 8-10b). When the lati-
tudes and departures of the three known lines (EA, AB, and
BF) are summed, they will obviously not add up to zero. The
“error of closure” is actually the missing line FE. The length
and direction of FE can then be computed by inversing
between stations F and E, using the computed “errors” in
latitude and departure (with the algebraic signs reversed).
This is illustrated in Table 8-1.

The area of the original tract ABCDE can be computed
to be 37,626 ft2, or 0.864 ac, using the DMD or coordinate
method. Also, the area of parcel ABFE may be found to be
17,784 ft2, or 0.408 ac.

Example 8-6
Suppose that it is desired to split off a 0.500-ac parcel of land
from the westerly portion of the original tract ABCDE shown in
Figure 8-10a; in addition, the new boundary line must pass
through point E. In this problem, the position of the new prop-
erty corner G must be determined so that the area of parcel
ABGE will be exactly 0.5 ac (see Figure 8-11a). To describe
the new parcel, it is necessary to compute the bearing and
length of line EG and the length of line BG.

Solution
The solution to Example 8-5 can be used as a basis for solving
this particular problem. We already know that the area of
parcel ABFE is 17,784 ft2, or 0.408 ac. The boundary line EF
should now be “swung” easterly to a new position, EG, to an
extent that would make up the difference between 0.408 and
0.500 ac. because 0.500 ac = 21,780 ft2, the area of triangle
EFG (see Figure 8-11b) will be equal to 21,780 ft2 - 17,784 ft2

= 3996 ft2.
The interior traverse angle at point F can be determined

to be 91°06�, from the bearings of lines BF and FE. The
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FIGURE 8-9. A subdivision plat generated automatically by a CAD system. (Courtesy of Maptech, Inc.)
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supplementary angle at F, in triangle EFG, must then be
88°54�. From right-angle trigonometry, the altitude of the
triangle from point E to base FG is (EF)(sin 88°54�), and EF is
known to be 170.66 ft.

Now, because the area of a triangle is equal to one-half
the product of its base and altitude (or height), we can write
the following expression:

Transposing and solving for the unknown length,
we get

The length of property line BG must then be 100.00 +
46.84, or

At this point, we are left with an omitted-measurement
type of problem, like that of Example 8-5. Line GE is the miss-
ing side of loop traverse ABGE. The bearing and length of the
new boundary line EG can be determined in the same manner
as for Example 8-5 (see Table 8-1). The results are as follows:

Bearing GE = N 26°53œ W Length GE = 177.85ft

BG = 146.84ft

FG = 46.84ft

3996 ft2 =
1
2

* FG * 170.66 * sin 88°54œ

Example 8-7
Suppose again that it is desired to split off a 0.500-ac parcel
from the west side of tract ABCDE, but in this case it is nec-
essary to establish the new boundary line HI parallel to line
AB (see Figure 8-12a). Determine the length of line HI, as
well as the lengths of BI and HA, which will provide the
required area.

Solution
Divide the parcel into a rectangle and two right triangles, as
shown in Figure 8-12b. The total area of the parcel is the
sum of the individual areas of those three shapes. The
angles at A and B are determined from the bearings of HA,
AB, and BI, and the angles in the triangles are obtained by
simply subtracting 90°. Note that the angle at point A hap-
pens to be almost a right angle, and that the triangles in
Figure 8-12b are not drawn to scale.

Consider the height of the triangles to be the unknown
length L. The bases are L(tan 03�) and L(tan 23°16�), as
shown. The total area of 21,780 ft2 can be equated with the
sum of the individual three areas as follows:

+
1
2

* L2 *  tan 23°16œ

21,780 ft2 = 118.42(L) +
1
2

* L2 *  tan 03œ

FIGURE 8-10. Illustration 
for Example 8-5.
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This reduces to the following quadratic equation:

Applying the quadratic formula to solve for L, we get

(Note that the negative solution has no meaning for this
problem.)

Now we can compute the length of HI as follows:

Also, the lengths of HA and BI may be determined as
follows:

 BI =
145.44

 cos 23°16œ = 158.31 ft

 HA =
145.44
 cos 03œ = 145.44 ft

HI = 181.08ft

HI = 118.42 + 145.44 1tan 03œ2 + 145.44 1tan 23°16œ2

= 145.44 ft

L =
-549.70 ; 3549.702 - (4) (1) (-101,102)

(2) (1)

L2 + 549.70 L - 101,102 = 0

FIGURE 8-11. Illustration 
for Example 8-6.

This completes the solution, because we now know the
lengths and directions of each side of parcel ABIH, which
encloses 0.500 ac.

8-4 PROCEDURE FOR 
A RESURVEY

A resurvey is a property survey performed with the specific
purpose of relocating boundary lines in their original posi-
tions, for land parcels that have already been surveyed,
legally described, and (possibly) monumented or staked out
at some time in the past.

The most common reason for a resurvey is the sale and
transfer of land ownership. The owner (as well as the mortgage
holder or title insurance company) needs a current description
and documentation of the land holdings, as well as an assur-
ance that there are no existing encroachments on the property.
Sometimes, a boundary line dispute between neighboring
property owners necessitates a resurvey and property corner
stakeout. Whatever the reason, the performance of a property
resurvey is one of the most frequent tasks for the land surveyor.
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5. The original property corners may not be easily located
in the field, or they may not be found at all; these are
said to be obliterated corners or lost corners, respectively.

6. It may be difficult or impossible to set up an instrument
over one or more of the existing corners, due to
obstructions such as trees or fence posts.

7. The line of sight along one or more of the boundaries
may be blocked by trees or other obstructions, thereby
interfering with a loop-traverse survey around the parcel.

Basic Field and Office Tasks
Every parcel of land is different with respect to these possi-
bilities. It follows, then, that every land survey project differs
in complexity and difficulty. Because of this, it is not really
feasible to describe in detail all the steps for a resurvey. But in
general terms, the tasks involved in a typical resurvey often
involve the following:

1. Collecting data and making a preliminary office study
of the parcel

2. Doing a field search for existing corner markers or
monuments

3. Conducting a traverse survey around or within the
property

4. Preparing a plat and a description of the parcel

5. Staking out or monumenting the property corners

Collecting Data In the preliminary study phase of the
work, the surveyor must collect all available deed and plat
descriptions of the property to be surveyed, as well as of all
adjacent parcels. These may be obtained from the client or
client’s attorney, from the lending (mortgage) institution, or
from a title company. The task may also involve a visit to the
county courthouse for a search through the deeds and plats
on record.

Once the data are assembled, the surveyor must study
them carefully, watching in particular for any omissions,
errors, and conflicts or discrepancies that may require addi-
tional investigation. Sometimes the data collection and
review phase of a resurvey takes as much as two-thirds or
more of the time for the whole job: the preliminary work
may take a few days, and the actual field work only a few
hours if corner markers are readily visible.

Finding Property Corners The first field activity typi-
cally involves a thorough and often time-consuming search
for any existing property corners (assuming that they were
marked by the previous surveyor). Even if the corners were
previously staked out, they may have been obliterated due to
the passage of time, or they may have been removed for some
reason. And all too often, some of the corners that are found
may not agree with the deed description as to exact location.

A modern property corner may be monumented with a
concrete post, with an iron pipe or steel reinforcing bar, or
with a wooden stake. A metal disk is generally set in the top of

FIGURE 8-12. Illustration for Example 8-7.

Typical Problems Encountered
To the layperson, a resurvey may seem to be a very easy job.
In fact, however, resurveys are often complicated, challeng-
ing, and time consuming. They require much experience,
skill, and knowledge; excellent judgment; and, all too often,
perseverance on the part of the surveyor. Following are some
of the difficulties that may be encountered in a resurvey:

1. The original survey and land description may be fairly
old. It may include faulty or erroneous measurements,
or it may be relatively inaccurate (by today’s standards),
due to the old surveying methods and equipment used
in the original work.

2. The point of beginning given in the original description
may be inaccurately or incorrectly referenced with
respect to a fixed and identifiable point within the
municipality.

3. The existing land description may be incomplete or
ambiguous, or it may actually conflict with other
descriptions or plats of the given parcel and/or adjoining
properties.

4. The meridian used to reference boundary directions
(i.e., true north, magnetic north, grid north, etc.) may
be unspecified.
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a concrete post, so that the point can be precisely marked;
likewise, a nail or tack is driven into the top of a wooden stake.
Permanent corner markers usually must be placed in the
ground to a depth of at least 18 in. (450 mm). They should
also be properly tied in or referenced to nearby features or
marks, which are called witness corners (see Figure 7-2).

In some states, wooden stakes are no longer allowed for
use as permanent property corners because they eventually
decay and become obliterated. (They may still be used to
mark intermediate points on line and for random traverse
stations.) Also, some states require that all monumented
corners be identified with a durable cap or disk marked with
the surveyor’s name and/or LS license number. They should
also be detectable with instruments used to find buried iron
or magnetic objects (see Figure 8-13).

Unfortunately, many land parcels in the past were not
staked out or monumented to today’s standards. Natural
features, such as large rocks or trees, may have been used to
mark and describe the original property corners. Fence posts
have also been used in the past to mark property corners.
The surveyor who takes the time to look carefully for exist-
ing corners will often find them, even though they are not
immediately evident. A shovel and a metal detector, like the
one shown in Figure 8-13, are important tools for the land
surveyor. By careful observation, even a decayed wooden
stake can be located by the noticeable difference in color
from the surrounding soil.

It is important to remember one of the most fundam-
ental legal principles of land surveying—that the position of a
boundary line is determined largely by the intent of the people
who originally create the boundary. The land surveyor’s basic
objective is to “retrace the footsteps” of the original
surveyor(s). He or she must leave or reestablish boundary
lines and property corners in their original positions, whether
or not those positions are in complete agreement with existing
deed descriptions or plat locations. Marks on the ground that
identify property corners and boundaries take precedence
over land descriptions as the legal evidence of original intent.

Many clients of surveyors take it for granted that all
their property corners will be staked out as part of a survey.
But this is generally the exception rather than the rule, due to
the additional time and expense of monumenting the
corners. Typically, the land surveyor’s basic objective has
been to satisfy the requirements of a title insurance company
or a bank with regard to a deed description and/or plat of
the parcel. Now, however, in some states, it is required that
suitable monuments be set by the surveyor at each
unmarked corner unless it is made clear in a written contract
that the corner monuments will be omitted from the work;
the plat must also have a notation to the effect that property
corners were not staked out, if that is the case.

Traversing the Property A traverse survey is conducted
around or within the property to confirm the existing land
description, possibly to stake out some or all of the property
corners according to that description, to establish the positions
of buildings and driveways with reference to the boundary
lines, and to prepare an updated description and plat.

It is necessary to begin the survey by tying in a selected
POB on the parcel boundary to one or more fixed control
monuments in the neighborhood. This may be accomplished
by occupying the POB (or a random traverse point) and mea-
suring the distances and directions to the control monuments.
If this is not done, the exact position of the property within the
municipality cannot be determined and described, although its
size and shape can still be established by the traverse.

Under the best of circumstances, all or most of the origi-
nal property corners will be found, and each corner will be
accessible; the lengths of the boundary lines and the angles
between them can be measured directly. The property corners
may then be considered as the stations of a loop traverse, the
courses or sides of which coincide with the property lines. The
adjusted bearings and lengths of the traverse can be checked
against the deed description. The coordinates of the property
corners can be computed, and a plat of the property can be
drawn and submitted to the client.

(a)

ID cap

Rebar

(b)

FIGURE 8-13. (a) Surveyor using a ferromagnetic locator to find a buried property
corner. (Courtesy of Fisher Research Laboratory.) (b) A “rebar” corner marker with
a cap for the surveyor’s ID. (Courtesy of Berntsen International, Inc.)
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More often than not, many of the property corners cannot
be located. Sometimes only two adjacent corners are found,
but the line between them is sufficient to serve as a reference
boundary for the traverse survey. Obliterated corners may be
reestablished based on the deed description and the field
measurements; it may first be necessary to adjust the distances
by proportion, based on comparison between the described
and the measured reference boundary line.

If only one corner is found, the surveyor must first
determine the true bearings of the lines described in the
deed, using the magnetic declination at the time of the orig-
inal survey. The traverse is then performed by following the
deed description, beginning at the found corner. Angles are
computed from the description. True north, the reference
meridian, must be established in the field by orienting the
transit in reference to nearby control monuments or by
making astronomical observations.

Under the worst of circumstances, none of the property
corners can be located in the field. If no corners at all are
found, the surveyor must rely largely on the descriptions of
adjacent parcels, and even on evidence given by local

residents. It may be necessary to call a field meeting of all the
involved property owners (by registered mail) to reach a
consensus on the location of one or more of the corners.
Once the corners have been determined by field evidence
and/or agreement, the surveyor can proceed to traverse the
property and prepare a plat.

Obstructed Corners or Boundary Lines Even when all or
most of the property corners can be located in the field, it is
not always possible to set up an instrument over them; fence
posts, trees, or shrubbery may be in the way. Also, there may
be obstructions along the boundary lines that block the line
of sight between adjacent corners. If this is the case, it is nec-
essary to run a control traverse inside the property, as close
to the boundary lines as possible, and to take side shots from
the control traverse stations to the property corners.
Coordinates of the corners can be computed; the bearings
and lengths of the actual property lines can be determined
by the method of inversing. This is illustrated in Figure 8-14a.
The control traverse can be checked for accuracy, and
adjusted if necessary.

FIGURE 8-14. (a) Side shots are taken
from traverse stations to property
corners. Here, stations PC1 and PC2
are accessible corners. (b) Stations
1–3 are random traverse points.
A backsight to fixed monument M1
would be used to orient the instru-
ment. At station 2, a backsight would
be taken to station 1, and so on.
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Sometimes the land surveyor will establish a connected
system of radial traverses near and on the property instead of
performing a control loop traverse. A radial traverse comprises
several distance and direction measurements (side shots) made
from a single station (see Figure 8-14b). Somewhat random
points are first established as traverse stations, in locations that
allow lines of sight to existing control monuments, the property
corners, building corners, and other points. One or more of the
property corners may occasionally serve as a traverse station.

At least two existing nearby monuments of known posi-
tion should be used, although the survey could be conducted
with a single backsight toward only one fixed monument.
The extra control station provides a check on the measure-
ments and computed coordinates. It is also best to take extra
sights on points from different instrument positions to pro-
vide a second set of coordinates. This helps to detect blun-
ders or systematic errors. If the duplicate coordinate values
at a point are in close agreement, the average of the coordi-
nates can be used to define its final position.

Using coordinate geometry (actually, computer software
based on coordinate geometry), the coordinates of all sighted
points can easily be computed; bearings and distances of
property lines are computed by inversing, and off-sets can be
computed automatically as well. The surveyor usually selects
an arbitrary coordinate reference system for convenience. A
coordinate transformation program may be used to translate
and rotate the assumed system so that it corresponds to that
in which the control monuments are located. The results are
then compared with the values given on the deed description,
and the relative positions of the control monuments can be
checked. This is important because the radial traverses do not
close in the same way that a loop traverse does.

Example 8-8
It is desired to determine the distance and direction of the
boundary line between property corners PC11 and PC12.
Side shots from a control traverse station, T5, were taken to
each corner (see Figure 8-15). The control traverse was
previously computed and adjusted, and the coordinates of
T5 are known. Compute the required bearing and length of
the boundary line PC11–PC12.

Solution

1. Compute the azimuths of side shot 1 and side shot 2:

2. Compute the latitude and longitude of side shot 1, 
T5-PC11:

3. Compute the latitude and longitude of side shot 2, 
T5-PC12:

4. Compute the coordinates of PC11:

5. Compute the coordinates of PC12:

6. Inverse between PC11 and PC12:

(Azim = 360° - 71°39œ53œœ
Bearing PC11 - PC12 = N 71° 39œ53œœ W

= - 71°39œ53fl
= tan-1(-3.0175) = -71.64828°

Bearing angle = tan-1a1185.62 - 1421.77
2431.29 - 2353.03

b

Easting = 1234.56 + 1-48.942 = 1185.62

Northing = 2345.67 + 85.62 = 2431.29

Easting = 1234.56 + 187.21 = 1421.77

Northing = 2345.67 + 7.36 = 2353.03

Dep = 98.62 sin 330°15œ = - 48.94

Lat = 98.62 cos 330°15œ = 85.62

Dep = 187.35 sin 87°45œ = 187.21

Lat = 187.35 cos 87°45œ = 7.36

= 330°15œ

Azim side shot 2 1T5 - PC122 = 126°30œ + 203°45

= 87°45œ

Azim side shot 1 1T5 - PC112 = 126°30œ + 321°15œ

 Back Azim 1T4 - T52 = 306°30œ - 180°00œ = 126°30œ

FIGURE 8-15. Illustration for
Example 8-8.

= 248.78ft
Length PC11 - PC12 = 3(1421.77 - 1185.62)2 + (2353.03 - 2431.29)2

= 288°20œ07œœ)
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Boundary Line Offsets One of the basic purposes of a
resurvey is to determine if there are any existing
encroachments on the property. It is also necessary to
check that all structures on the parcel are situated behind
the building (setback) line. (The setback is the minimum
required distance from the front property line to a build-
ing or house; it is generally specified in the local land-use
regulations. Minimum sideline and rear distances may
also be specified.)

Fences, houses, detached garages or storage sheds, and
other permanent structures are shown on the survey map or
plat, along with their respective offsets from the nearest
property line. An offset is the perpendicular distance from
the property line to the point in question. Six offsets are gen-
erally established to locate a house on the parcel: two
between the front house corners and the main road, and two
to each sideline.

Offsets can be determined by taking side shots from
property corners or traverse stations of known position to
the house corners or fence lines. Trigonometry or coordi-
nate geometry can be used to compute the location of the
observed point, as well as its distance at a right angle from
the property line. Computer programs are available to
solve for offset distances. In the following example, how-
ever, basic right-angle trigonometry is used in a “manual”
solution.

Example 8-9
A radial shot (side shot) is taken from traverse station PC5 to
the corner of a house, as shown in Figure 8-16a. Compute
the side and front offset distances.

Solution
To solve for the front offset distance FO, refer to the right
triangle shown in Figure 8-16b. From basic trig, we can write

To solve for the side offset distance SO, refer to the right
triangle shown in Figure 8-16c. First, the interior angle at PC5
is determined to be 54°45�. Using basic trig, we can write

Preparing the Plat The results of the property survey
are shown on a survey map or plat, usually drawn in ink on
Mylar or other high-quality drawing paper.

In general, the plat (or plan of survey) should include
the following information:

1. A suitable title block, with identification of the state,
county, and municipality in which the parcel is located.

2. Specific property identification, including the tax map
or filed map lot and block numbers, and the house
number if there is a dwelling on the parcel.

SO = 76.55 sin 54.75° = 62.51ft 1round off to 62.52

FO = 76.55 sin 75.25° = 74.03ft 1round off to 74.02

FIGURE 8-16. Illustration 
for Example 8-9.
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3. The surveyor’s name, LS state registration number, and
seal; the date of survey.

4. A north arrow and the reference meridian (i.e., true
north, magnetic north, grid north, etc.) or base bearing
used.

5. The scale used to prepare the drawing (e.g., 1 in = 50 ft).

6. The POB as described in the deed.

7. Metes and bounds, including bearings and lengths of
each line between property corners. If a line is curved,
the length and radius of the curve, along with the cen-
tral angle, should be shown (usually by the symbol Δ).
Distances should be shown to the nearest hundredth of
a foot, unless the line ends at a water boundary or some
other indefinite point.

8. Concrete monuments, iron pipes, or other markers
found or set at property corners. Existing markers that
are found in relatively close proximity to the described
corners should be so noted, along with their exact posi-
tions measured in reference to those corners.

9. Existing buildings and fences, with their offset distances,
and the location of streams, ditches, and similar features.

10. The names of adjoining property owners, streets, and roads.

11. Easements and utility lines that cross the property; also,
any encroachments of structures.

12. The computed area of the parcel, in square feet or acres.

A plat that lacks any of this information may be incom-
plete; this can cause difficulties and greater expense for the
property owner at a later date. If a surveyor seldom notes any
actual property markers on his or her plats, or rarely gives
offset distances to structures, it is a possible indication that
minimum effort and less than ideal survey work is being
done by that surveyor. An accurate, well-drawn, and
comprehensive plat is of great value to the property owner; it
can serve for much more than just the single purpose of
obtaining a mortgage from a bank.

In future years, it can be expected that more and more plats
will include metric as well as conventional units for distance
and area. In 1975, the American Congress on Surveying and
Mapping made some recommendations regarding use of the
metric system. Briefly, these were that plats and maps prepared
for filing should include the following:

1. Metric bar scales

2. Equivalent values for distance in meters, and area in
square meters or hectares, in parentheses next to the
English units

3. State plane coordinates in metric equivalents

Many American surveyors do not follow these recom-
mendations at the present time, largely due to difficulties
with lawyers and title insurance companies that insist on the
use of English units.

Questions for Review

1. What are the five specific objectives of a property survey?

2. What is a metes-and-bounds property description?

3. What is a POB? What information is required about it?

4. What are some advantages of using the state coordinate
system for property descriptions? Any disadvantages?

5. What is another name for the U.S. Public Land Survey
System? When and why was the system developed?

6. Briefly describe the framework of the U.S. Public Land
Survey System. What is a township? A section?

7. What is the difference between common and written law?

8. Briefly describe the legal authority of a surveyor.

9. What are the two fundamental principles of law that
control the positions of boundaries?

10. Briefly define the following terms: easement, ROW,
eminent domain, adverse possession, riparian boundary,
accretion, reliction, and avulsion.

11. What is a subdivision?

12. What is a resurvey? Why is it performed?

13. List six problems commonly encountered by the land
surveyor in the performance of a resurvey.

14. List five basic tasks or steps involved in a resurvey.

15. Briefly discuss some generally required characteristics
of property corner markers.

16. Which takes legal precedence as evidence of a boundary
line position—the deed description or the position of
undisturbed corner markers on the ground? Why?

17. How is a control or radial traverse used in a resurvey?

18. What is a setback line? An offset?

19. List the information to be included on a survey plat.

Practice Problems

1. Make a sketch plat (not necessarily to scale) of Robert
Smith’s property from the following metes-and-bounds
description. Include lengths, bearings, adjoiners, and so on:

Beginning at a stone bound in the northerly line of
Maple Street and marking the southwesterly corner of
the lands hereby conveyed, running:

1. Thence, along the northerly line of Maple Street 
N 84°15�47� E, 300.00 ft to a concrete monument
in the boundary of the lands of R. Roe;

2. Thence, along the lands of R. Roe N 5°44�13� W,
556.44 ft to a concrete monument in the lands of J.Doe;

3. Thence, along the lands of J. Doe S 81°46�34� W,
252.54 ft to a concrete monument in the boundary
of the lands of J. Jones;

4. Thence, along the lands of J. Jones S 00°44�19�E,
547.56 ft to the point of beginning.

What important data are missing in this description?
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2. Make a sketch plat (not necessarily to scale) of lot B-5
from the following metes-and-bounds description.
Include lengths, bearings, adjoiners, and so on: Lot B-5,
situated in Blankville, Blank County, State of Blank, and
bounded as follows:

Beginning at a point in the northerly line of Somer-
set Street at the south-westerly corner of the land hereby
conveyed, said point bearing N 72°04� E, 72.58 ft from a
concrete monument in the northerly line of Somerset
Street, said monument bearing N 58°04� E, 302.28 ft
measured along the northerly line of Somerset Street
from a concrete monument at the intersection of the
northerly line of Somerset Street and the northerly line
of Overville Street and running:

1. Thence, easterly on the arc of a circle 150 ft in radius
curving to the right an arc distance of 72.08 ft, along
the northerly line of Somerset Street, the chord of
said arc running S 80°10� E, 71.39 ft, to a point at the
southeasterly corner of the land hereby conveyed;

2. Thence, N 23°36� E, 212.60 ft along the westerly
line of the land of (here insert the name of the
owner of lot B-6) to a point at the easterly corner of
the land hereby conveyed;

3. Thence, N 44°56� W, 107.56 ft along the southerly line
of the land of John Stout to a concrete monument at
the northerly corner of the land hereby conveyed;

4. Thence, S 58°04� W, 109.92 ft along the southeast-
erly line of the land of Harry King to a point at the
westerly corner of the land hereby conveyed;

5. Thence, S 3°56� E, 201.10 ft along the easterly line
of the land of (here insert the name of the owner of
lot B-4) to the point of beginning.

All bearings are based on the stated direction of the
northerly line of Somerset Street.

This description was written on June 10, 1942, by
John Doe, Land Surveyor, from data secured by a survey
by said John Doe during March and April, 1942.

3. Make a sketch plat (not necessarily to scale) of the property
of Dan Bray from the following metes-and-bounds
description. Include lengths, bearings, adjoiners, and so on:

The property of Dan Bray located at the southwest-
erly corner of Roe Street and Marcus Avenue in Blank
Town, Blank County, State of Blank, more particularly
described as follows:

Beginning at a stone bound in the southerly line of
Roe Street and the westerly line of Marcus Avenue dis-
tant westerly 1081.66 ft from the westerly line of Jones
Avenue measured along the southerly line of Roe Street
and running:

1. Thence, along the southerly line of Roe Street
S 82°41� W, 425.31 ft to an iron pipe at the corner of
Jacob Wrenn.

2. Thence, along the line of the property of Jacob
Wrenn S 12°31� W, 426.05 ft to a corner marked
with an iron pipe.

3. Thence, still along Jacob Wrenn’s line S 65°05� E,
345.28 ft to a corner of the property of John Jones
marked by an iron pipe pin.

4. Thence, along the line of John Jones N 76°59� E,
322.21 ft to a corner marked by an iron pipe on the
westerly line of Marcus Avenue.

5. Thence, along the westerly line of Marcus Avenue
N 11°45� W, 554.09 ft to the point and place of
beginning.

Surveyed by George Kane, Civil Engineers, in October,
1907.

4. Make a sketch plat (not necessarily to scale) of Smith’s
property, from the following metes-and-bounds
description. Include lengths, bearings, adjoiners, and
so on:

The property of H. A. Smith known as 22 Elm
Street being lot 27 in the Green Hill development in
Blank City, County of Blank, State of Blank.

Beginning at the stone bound on the northerly
line of Elm Street distant easterly 561.82 ft from the
intersection of the northerly line of Elm Street and the
easterly line of Johnson Avenue marking the south-
westerly corner of the property hereby conveyed and
running:

1. Thence, S 85°03� E, 161.04 ft along the northerly
line of Elm Street to an iron pipe at the southeast-
erly corner of the lot hereby conveyed.

2. Thence, along the westerly line of Elmer Jones 
N 7°08� E, 260.68 ft to an iron pipe at the north-
easterly corner of the lot hereby conveyed. Thence
on three courses along the southerly line now or
formerly of J. M. Parker as follows:

3. S 60°36� W, 67.09 ft to an iron pipe.

4. N 58°18� W, 95.42 ft to an iron pipe.

5. S 67°25� W, 80.00 ft to an iron pipe at the westerly
corner of the property hereby conveyed.

6. Thence, along the easterly line of John Acker S 3°44�E,
231.80 ft to the place of beginning.

Bearing base: the northerly line of Elm Street.
From a survey of Parker and Day registered land

surveyors in January 1963.

5. Write a metes-and-bounds description of lot B-3,
shown in Figure 8-8.

6. Write a metes-and-bounds description of lot A-8,
shown in Figure 8-8.

7. Referring to the third section of township two north,
range three east, shown in Figure 8-17, write the
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abbreviated descriptions of the parcels labeled A to E.
How many acres are there in each?

8. Referring to the ninth section of township three south,
range two west, shown in Figure 8-17, write abbreviated
descriptions of the parcels labeled F to J. How many
acres are there in each?

9. Assume that the adjusted loop traverse shown in
Figure 7-11 represents the property lines of a land
parcel. It is desired to partition that parcel into two
smaller lots by establishing another boundary from
corner B to a new point F on line DE, exactly 400.00 ft
toward the east along DE. Determine the length and
direction of the new boundary FB and the area of lot
BCDF.

10. Referring to Figure 7-11, it is desired to partition that
parcel into two smaller lots of equal area by establish-
ing another boundary line from corner B to a new
point G on line DE. Determine the length and direc-
tion of the new boundary line GB and the length of
line DG.

11. Referring to the loop traverse shown in Figure 7-11, it
is desired to partition that parcel into two smaller lots
by establishing another boundary parallel to line CD.
The lot on the western side of the original parcel is to
have an area of 5.00 ac. Determine the length of the
new boundary line JK and the length of the lines DJ
and KC.

12. Referring to Figure 7-11, it is desired to partition that
parcel into two smaller lots by establishing another
boundary parallel to line EA. The lot on the eastern side
of the original parcel is to have an area of 5.00 ac. Deter-
mine the boundary lines of that new lot.

13. Assume that the courses of the adjusted loop traverse
from Problem 7 represent the property lines of a land
parcel. It is desired to partition that parcel into two
smaller lots by establishing another boundary from cor-
ner E to a new point F on line BC, 175.00 ft from point B.
Determine the length and direction of the new bound-
ary FE and the area of lot ABFE.

14. Referring to the loop traverse from Problem 7, it is
desired to partition that parcel into two smaller lots of
equal area by establishing another boundary from cor-
ner E to a new point, G, on line BC. Determine the
length and direction of the new boundary GE and the
length of line BG.

15. Referring to the loop traverse from Problem 7, it is
desired to partition that parcel into two smaller lots by
establishing another boundary parallel to line AB. The
lot in the southern part of the original parcel is to have
an area of 3.00 ac. Determine the length of the new
boundary line JK and the length of the lines JA and BK.

16. Referring to the loop traverse from Problem 7, it is
desired to partition that parcel into two smaller lots by
establishing another boundary parallel to line CD. The
lot in the southern part of the original parcel is to have
an area of 3.00 ac. Determine the boundaries of that lot.

17. It is desired to determine the distance and direction of
the boundary line between corners PC13 and PC14 (see
Figure 8-18). Side shots from control traverse station
T6 were taken to each corner. The control traverse was
previously computed and adjusted, and the coordinates
of T6 are known. Compute the bearing and length of
the boundary line PC13–PC14.

18. It is desired to determine the distance and direction of
the boundary line between corners PC15 and PC16 (see
Figure 8-19). Side shots from control traverse station 
T 7 were taken to each corner. The control traverse was
previously computed and adjusted, and the coordinates
of T7 are known. Compute the bearing and length of
the boundary line PC15–PC16.

19. A side shot is taken from station PC4, in Figure 8-16, to
the southwest corner of the house. The clockwise angle
from PC3 to the corner is measured as 35°35�, and the
distance from PC4 to the corner is determined to be

FIGURE 8-17. Illustration for Problems 7 and 8.
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FIGURE 8-18. Illustration 
for Problem 17.

FIGURE 8-19. Illustration for Problem 18.

89.12 ft. Determine the front and side offset distances of
the corner.

20. A side shot is taken from station PC4, in Figure 8-16,
to the northwest corner of the house. The clockwise

angle from PC3 to the corner is measured as 31°15�,
and the distance from PC4 to the corner is determined
to be 123.45 ft. Determine the side offset distance of
the corner.
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CHAPTER NINE

A topographic survey serves to establish the loca-
tions of existing features on the land. These
include natural features such as streams, lakes,

swamps, rock outcrops, large trees, and others. Cultural
features, such as existing roads, bridges, and buildings, are
also located in a topographic survey. One of the most impor-
tant characteristics of a topographic survey, however, is that
it provides information on surface relief, that is, on the over-
all “shape” of the land. Ground elevations are measured at
several selected points, and the positions of hills, ridges, and
valleys and the changing slopes of the ground surface are
determined.

Topographic survey data are plotted on a suitably scaled
drawing called a topographic map, or topo map. A topo map
serves as the basis for the planning, layout, and design of
most civil engineering (infrastructure) and architectural
projects; for this reason, a topo survey is also sometimes
called an engineering survey or a preliminary survey. Topo
maps are, of course, also used for other purposes such as for
military, geological, archeological, and related applications.

There are many types of maps, not all of which show
topographic relief. A planimetric map, for instance, is a draw-
ing that shows only the horizontal positions of natural and
cultural features: a road map is a familiar example. A survey
plat is a type of planimetric map that depicts the lengths and
directions of boundaries, as well as the relative horizontal
positions of any existing structures on a land parcel. Plani-
metric maps do not show the shape of the ground.

A plot plan or site plan is a special-purpose topo map
that shows all the buildings, roads, and other facilities pro-
posed for construction on an individual land parcel or lot. In
addition to showing the existing surface relief, it shows the
proposed (postconstruction) relief (Figure 9-1). Boundary
lines are usually included on the plan.

A plot plan (or site plan) is prepared by a civil engineer,
surveyor, or architect for a specific land development
project. Topographic surveys are accomplished by electronic
instruments. Most special-purpose topographic surveys are
preceded by both a property survey and a control survey to
locate the legal boundaries of the tract and to establish a
network of control stations.

Large areas, such as cities and towns, reservoir and dam
sites, as well as pipeline, power-line, or highway routes, are
typically surveyed by government agencies using aerial
photography and photogrammetric methods. The general-
purpose topo maps that are prepared from the photographic
data are made available to the public, as well as to design and
surveying professionals (see Figure 9-2); they may be used
for preliminary project planning and rough layout or for
location of roads, subdivisions, buildings, and other large
land-use projects.

A common feature of all topo maps is the graphical depic-
tion of surface relief by the use of contours, which are lines of
equal elevation. Contour lines are superimposed, in effect, over
the planimetric details of the map to give the impression of a
third dimension (elevation) on a two-dimensional drawing.
The basic rules for interpreting contour line patterns, the field
survey procedures for locating contour lines, and the office
procedures for drawing them on a map are the central topics of
this chapter.

Because the first step in preparing a topo map involves
drawing the horizontal control framework, the first section
of the chapter covers the common methods of plotting a
control traverse. (Field and office procedure for control
surveys are covered in Chapter 7.) General factors related to
scaling and drawing maps are also discussed here. In the last
section of the chapter, the basics of photogrammetry and
stereoscopic plotting of topographic maps are presented.

TOPOGRAPHIC SURVEYS 

AND MAPS

CHAPTER OUTL INE

9-1 Plotting a Traverse
Drawing Scales
Coordinate Method
Tangent-Offset Method
Protractor Method

9-2 Contour Lines
General Rules for Contours

Interpolation of Contours
Measuring Slope from Contours

9-3 Topo Survey Procedures
Types and Methods of Making

Ties
Radial Survey Field Methods
Drawing the Map

9-4 Basic Photogrammetry
Basic Principles
Stereoscopic Plotting of Topo

Maps

Questions for Review

Practice Problems
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FIGURE 9-1. A typical plot plan. Existing terrain is shown with dashed contour lines, and “finish grades” are shown with solid contour lines. (Courtesy of Michael
Lanzafama, Casey & Keller Inc.)
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FIGURE 9-2. General-purpose topographic map; a portion of a USGS quadrangle map at a scale of
1 in = 2000 ft (1:24,000). (Courtesy of USGS.)

9-1 PLOTTING A TRAVERSE
An accurately scaled topographic map cannot be hand
drawn without first plotting the control framework, or
“skeleton,” around which the natural and cultural features
are placed. Plotting involves the transfer of survey data from
the field book to the map sheet. The horizontal control
system is usually provided by a loop traverse that encom-
passes the area to be mapped. There are several methods for
plotting a traverse, the most accurate being the coordinate
method, which is used by CAD programs. The tangent-offset
method, as well as the protractor method, will be described
here. Before plotting the traverse, however, it is first neces-
sary to select an appropriate drawing scale.

Drawing Scales
The scale of a map refers to the ratio or relationship between
the length of a line on the drawing and the actual distance
that the line represents in the field. Map scales may be
expressed in the form of an equivalence, such as 1 in = 2000 ft;
this means that a length of 1 in on the map represents a dis-
tance of 2000 ft on the ground. This is sometimes called an
engineer’s scale.

The scale may also be expressed in terms of representative
fraction (RF) or as a ratio. The RF = map distance/actual dis-
tance. For example, a scale of 1/24,000 means that a 1-in
length on the map represents a distance of 24,000 in on the
ground. An RF of 1/24,000 may also be written as the ratio
1:24,000.

The unit of measure is not limited to inches. For example,
an RF or map scale of 1:24,000 can also be interpreted as mean-
ing 1 ft on the map equals 24,000 ft on the ground, or 1 m on
the map equals 24,000 m on the ground. The only requirement
is that the unit of measure for map and for ground distances

should be the same. It should be noted that an RF or scale ratio
of 1:24,000 is the same as a scale of 1 in = 2000 ft because 2000
ft equals 2000 ft * 12 in per foot, or 24,000 in.

In the metric system of units, scales are usually
expressed in terms of scale ratios instead of equivalences. For
example, instead of writing 1 mm = 0.001 m, it is better to
express the scale simply as 1: 1000 (since 1 m = 1000 mm);
likewise, a scale ratio of 1:25,000 is preferable to expressing
the scale as 1 mm = 25 m.

Map scales are often characterized as being large,
medium, or small. A large-scale map shows the existing and
proposed features in a bigger size than does a small-scale map;
RF values between 1/100 and 1/2000 would be considered
large scale (or roughly 1 in = 10 ft up to 1 in = 200 ft). Large-
scale maps are generally used as the basis for detailed layout,
design, and quantity estimating for engineering projects.
Medium-scale maps have RF values up to about 1/10,000.

Scale ratios of 1:10,000 up to 1:1,000,000 (roughly 1 in =
1000 ft or more) are considered small scale. For example, the
U.S. Government Survey (USGS) quadrangle map shown in
Figure 9-2, with an RF = 1/24,000, is considered to be a
small-scale map. Note that as the second number in the ratio
(representing the actual distance) gets larger, the scale gets
smaller. In other words, the actual distances are “squeezed”
into shorter lengths on the map. Small-scale maps are useful
for urban or regional land-use planning purposes and for
the planning and preliminary design of large-scale public
works projects.

A triangular engineer’s scale is the measuring device
most often used to plot distances on a map when U.S. units
are used. It may be made of wood or plastic, and its edges are
graduated and labeled with 10, 20, 30, 40, 50, and 60 spaces
per inch. Consider, for example, an engineer’s 10 scale; this
can be used for map scales such as 1 in = 10 ft, 1 in = 100 ft,
1 in = 1000 ft, and so on. Similarly, the 50 scale can be used
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FIGURE 9-3. Traverse stations may be plotted by scaling
distances from the nearest grid lines. For example, suppose
the coordinates of point D are N 2250/E 1750 and the scale
is 1 in = 100 ft. A distance of 2.5 in (250 ft) would be laid off
eastward from the 1500 grid line, and 2.5 in (250 ft) would
be laid off north of the 2000 grid line, to locate point D.

for maps based on 1 in = 50 ft, 1 in = 500 ft, 1 in = 5000 ft,
and so on. Triangular metric scales with various ranges of RF
or ratio graduations are also available.

Choice of Map Scale A map should be drawn on one
sheet, if possible. Drawing paper is available in standard sizes,
ranging from size A (8.5 in * 11 in) to size E (36 in * 48 in).
The map sheet should have a minimum border of 1/2 in
(12.5 mm) to protect the edges of the drawing, and room
should be reserved for an appropriate title block and legends.
If more than one sheet is required, match lines are used to
show where the map continues on the next map sheet.

The scale chosen for plotting a control traverse and topo
map should be the smallest at which the desired precision can
be obtained. It is generally assumed that distances or lengths on
a map can be measured to within ±1/50 of an inch (±0.5 mm).
If it is desired to be able to read map distances to the nearest 0.4 ft,
for example, a distance of 0.4 ft should be represented by 1/50 in
on the map; the map scale would then have to be 1 in = 20 ft
because 0.4 * 50 = 20. Similarly, if distances are required to be
read on the map only to the nearest 10 ft, the scale could be as
small as 1 in = 500 ft.

[For relatively large areas, the entire survey should be
planned according to the desired map accuracy. For example, if
the largest distance in the area covered is 5000 ft and it is neces-
sary to scale to the nearest foot, the maximum error allowed in
the survey would be ±0.5 ft. Accordingly, the control traverse
should have a minimum accuracy of 1:(5000 ÷ 0.5) = 1:10,000,
and ties to mapping features should be made to the nearest half
foot. Within small areas, however, it is difficult to perform a
well-planned survey that does not give a position within any
desired mapping accuracy.]

Coordinate Method
Plotting control stations by coordinates is the most accurate
and generally is the preferred method for starting the topo
map (refer to Figures 7-11 and 7-14). Each station is plotted
independent of the others, thereby avoiding any accumu-
lation of errors. Lines drawn between adjacent stations
represent the traverse courses. The course lengths and the
angles between them can be easily and quickly checked with
a scale and a protractor and then compared with the original
field notes to disclose possible blunders. (This check should
never be omitted.) If a mistake is found, its correction
usually involves replotting only one of the stations.

Ordinarily, the Y axis of the coordinate system cor-
responds to (is parallel to) the reference meridian, although
an arbitrary grid may sometimes be used. The required size
of the map sheet can be easily determined by examining
the extreme station coordinates. Suppose, for example, that
the most westerly station is E 1000.00 ft and the most easterly is
E 4000.00 ft, the difference is 3000 ft, and if a scale of 1 in =
100 ft is used, a map length of 30 in would be needed to
encompass the “width” of the traverse. A large-size paper, size
E, may be needed, then, to accommodate the east–west
dimension of the traverse with room to spare for mapping of

the surrounding topographic features and for a border. Of
course, the total distance between the most northerly and the
most southerly traverse stations would have to be examined
in the same manner. If a smaller map sheet is desired or
required, it may be necessary to use two or more sheets with
match lines or reduce the map scale.

To plot the station positions, a series of grid lines, called
a graticule, is drawn on a base sheet (usually the coordinate
system and traverse are not shown on the “final” map). The
origin does not have to be at N 0.00, E 0.00; it can roughly be
the coordinates of the most westerly and southerly traverse
station (using round numbers slightly smaller than the coor-
dinates of that point). Its position, typically in the lower left
portion of the map, can be established by scaling from the
border lines on the base sheet, so that the entire grid frame-
work will be centered on the paper.

Grid lines representing round-number coordinate
values may be spaced at 5- to 10-in intervals (125–250 mm);
each line is labeled with its corresponding coordinate value.
The actual spacing depends on the scale of the map. The
lines must be drawn accurately at right angles to each other,
with a sharp pencil, and the spacing must be thoroughly
checked with dividers. Each traverse station is plotted
according to its distance from the nearest grid line (see
Figure 9-3). It is important to remember to check the posi-
tion of each plotted station by scaling the distance between it
and the preceding point.

Instead of drawing grid lines, the working map sheet
can be placed over commercially available grid paper on a
light table. The grid will be visible, and the points can easily
be plotted. Of course, if computer-controlled plotters are
used, manual drafting of grid lines is not necessary at all;
computer plotting is discussed briefly later.

Tangent-Offset Method
A useful and reasonably accurate method for plotting a traverse
without having to draw a graticule and use station coordinates
is the tangent-offset method. It can be conveniently applied to



FIGURE 9-4. The tangent-offset method to plot a traverse.
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loop traverses using course length and bearing data, as well as to
open traverses with course length and deflection angle data.
Angles or directions are laid out using a scale and right-angle
trigonometry; it is not necessary to use a protractor to establish
angles. A distinct disadvantage, however, is that the position of
each station is dependent on the accuracy of the preceding
point; plotting errors can and do accumulate to some extent.

With Bearing Angles Suppose it is desired to plot the
simple traverse shown in Figure 9-4, using the tangent-offset
method. First, lay out a convenient length, say, 10 in (250 mm),
along a reference meridian that passes through station A; this
locates point a�.

Now multiply the tangent of the bearing angle for
course AB by the selected length of 10 in; the product is the

offset, that is, the distance to be laid off at a right angle from
point a� to point b�. The line from point A to b� establishes
the direction of course AB. The final step simply involves
scaling the recorded length of AB along the line that corre-
sponds to its direction, and marking point B. The process is
then repeated at station B, and so on, around the traverse.

With Deflection Angles The procedure is similar to
that previously described, except that the selected reference
length (e.g., 10 in) is laid off along the traverse course
prolonged, as shown in Figure 9-5.

In the tangent-offset method, using either bearings or
deflection angles, greater plotting accuracy with regard to
directions of the courses can be obtained by selecting the
reference length as long as possible (e.g., 20 in instead of
10 in). This reduces the effect of offset scaling inaccuracies
on the direction of the line.

Protractor Method
An easy way to plot a traverse is to simply lay out the angles
between the courses with a protractor and then scale the
course lengths directly onto the drawing along the estab-
lished directions. A protractor is a small (up to about 8 in, or
200 mm, in diameter) plastic circular or semicircular device,
with etched graduations in degrees and half degrees along its
circumference. It is used to measure or lay off angles directly
on a drawing.

A point that identifies the protractor center is placed on
the vertex of the angle, and the zero degree mark is lined up
with a previously established traverse course. The desired
angle is then noted along the edge of the protractor and a fine
point is marked at that position. A line drawn from the center
point (traverse station) to the marked position establishes the
desired angle or direction. The appropriate length of the line
can then be scaled off and marked. The protractor is moved to
the next position, and the process continues (see Figure 9-6).

The interior traverse angles can be taken from the field
notes or computed from the directions of adjacent courses.

FIGURE 9-5. Plotting a traverse
using deflection angles.
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FIGURE 9-6. Plotting a traverse with a protractor.

Deflection angles for an open traverse can also be plotted with
a protractor. Because a protractor angle cannot be read with a
great deal of precision, this method is generally not very accu-
rate; its only advantage is speed of plotting. It is a much more
appropriate tool for plotting the actual topo features within
and around the control network and for checking the direc-
tions of courses plotted by coordinates or tangent offsets.

9-2 CONTOUR LINES
The chief characteristic of a topo map is its graphical depiction
of surface relief. The most common way of showing the terrain
or the shape of the ground on a two-dimensional map is to use
a series of contour lines. A contour line is simply a horizontal
line that passes through points of equal elevation on a map.

The lines, of course, are only imaginary; they are not
really seen on the ground. They are drawn on the paper to
give the impression of a third dimension that shows hills,

ridges, and valleys, as well as steep or gentle slopes. The only
contour that would actually be visible from a “bird’s-eye” or
plan view of the ground would be an ocean or lake shoreline,
or the shoreline around an island, where water meets land.

Other than actual shorelines, contours can be visualized
as the intersection of several imaginary horizontal planes slic-
ing through the irregularly shaped earth at uniform intervals
above a reference datum (usually mean sea level). This is illus-
trated in Figure 9-7. The constant vertical distance between
the layered planes is called the contour interval. The contour
interval in Figure 9-7 is 20 ft, but only the index contours are
actually labeled with their respective elevations; the interme-
diate contours are not labeled to avoid cluttering the map
unnecessarily. Index contours (usually every fifth line) may be
drawn darker than the others, for easy visibility.

The contour interval for the site plan in Figure 9-1 is 
1 ft, and for the USGS quadrangle map of Figure 9-2 it is 20 ft
(only the index contours are labeled). The selected contour
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FIGURE 9-7. (a) Contour lines showing the shape of the ground (terrain) in plan (or top)
view. (b) Natural terrain shown in perspective view and as contour lines. (Courtesy of
USGS.)
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FIGURE 9-8. Typical characteristics
of contours.

interval generally depends on the “density” or the variation
of surface relief, as well as on the scale and the purpose of the
map. Small-scale maps tend to have large contour intervals,
while large-scale maps are often drawn with small contour
intervals. The smaller the contour interval, however, the
more precise (and costly) the required surveying work.

General Rules for Contours
The following facts about elevation contours are useful for
drawing or interpreting contour line patterns on a map:

1. Contour lines never end; they eventually must loop
around and close on themselves, either within or
beyond the mapped area.

2. The ground is assumed to slope, or change in elevation,
at a uniform rate between two adjacent contour lines.

3. The ground higher (or lower) than the contour elevation
is always on the same side of the contour line.

4. Closely spaced contour lines represent steeper slopes than
widely spaced contours of the same interval (see Figure 9-8a).

5. Contour lines never cross one another or branch into two
contours of the same elevation (see Figure 9-8b); they may
overlap and appear to meet only at a vertical wall or cliff.
(An exception to this is when both existing and proposed
contours are shown on a single map, as in Figure 9-1).

6. At any point, a contour line runs perpendicular to the
steepest ground slope; surface water flows downhill at
right angles to the contour lines (see Figure 9-8c).

7. Contour lines run roughly parallel to streams, and they
form Vs pointing upstream where they cross the stream
(see Figure 9-8d).

8. Contour lines form Us pointing downhill when they
cross over the crest or ridge of a hill.

9. Perfectly straight or uniformly curved contour lines,
with even spacing, generally pass through constructed
facilities such as highway or railway embankments,
dams and levees, canals, and other cultural features.

10. Depression contours enclose low ground, such as a hole
or excavation with no drainage outlet; the lowest contour
in the hole is marked with hachures (see Figure 9-8e).



Interpolation of Contours
In a topographic survey, data are collected regarding the
positions and elevations of a series of selected points on the
ground. These points may be grid points or control points.
The distinction between the two, along with the field pro-
cedures for obtaining the data, is described in the next
section. But whichever procedure is used, it is usually neces-
sary to interpolate the plotting positions of the index and
intermediate contour lines between the selected points.

The series of points observed in the field do not neces-
sarily lie exactly on the contour lines shown on the map; it is
not practical to locate and measure every point on a “round”
or whole-number contour. Interpolation refers to the
process of estimating intermediate values between observed
data points by assuming a uniform rate of change of ground
elevation (grade) between two adjacent points.

For contour work, the process is called linear inter-
polation because of the basic assumption that the ground
slopes evenly (in a straight line) between adjacent contour
lines. Because interpolation is used for almost all contour
line drawings, it is important to keep in mind that topo
maps are only close approximations of the actual shape of
the ground. Generally, the accuracy that can be expected is
that the elevation of any point shown on the map will be
correct to within one-half of the contour interval.

The interpolation can be done in several ways. In many
cases, the positions of the contours can simply be estimated
by eye. This is illustrated in Figure 9-9. Suppose it is desired
to show contour lines at 5-ft intervals. Because the elevation
of point A is 102 ft, and point B is at 107 ft, we must locate
the position where the 105-ft contour line will fall between 
A and B. The difference in elevation between A and B is 5 ft,
and the 105-ft elevation is 3 ft above A; because the contour
line is 3/5 of the way up from A toward B, it also must be 3/5 =
0.6 of the way horizontally, from A to B.

To understand the process of contour line interpolation
more thoroughly, consider two points on the ground called

A-1 and A-2, which are separated by a horizontal distance of
50 ft (Figure 9-10). Their known elevations are 54.5 and 56.2 ft,
respectively. Suppose a contour map that includes these two
points is to be drawn using a 1-ft contour interval. Contour
lines are always selected to pass through “round-number”
elevations; in this case we can expect to depict integer con-
tour values, such as 55 and 56. It should be clear that both
the 55- and 56-ft contour lines will pass somewhere in
between points A-1 and A-2.

It is seen that the difference in elevation between A-1 and
A-2 is 56.2 – 54.5 = 1.7 ft. Also, the desired 55-ft contour is
only 0.5 ft above A-1. By a simple proportion, the horizontal
distance of the 55-ft contour from A-1 must be 0.5/1.7 * 50 =
0.29 * 50 = 15 ft (rounded off). The 15 ft can be scaled off on
the line between A-1 and A-2. For practical purposes, how-
ever, it would be faster simply to estimate by eye and mark a
point slightly less than one-third of the way from A-1 to A-2
(because 0.29 is close to 0.33, or 1/3). In a similar manner, we
find that the 56-ft contour is located 1.5/1.7 * 50 = 0.88 * 50 =
44 ft from A-1; again, it is faster to mark a point by eye that is
just under nine-tenths (0.9) of the way from A-1 to A-2. This
same problem could be approached by locating the contour
lines with respect to point A-2; the ratios will differ, but the
relative positions of the contours will remain the same.

Computing some simple ratios on the basis of the rela-
tive elevations provides reasonably good accuracy, but it is
time-consuming. Some surveyors and civil technicians find
it more convenient to employ a graphical technique using a
drafting triangle and engineer’s scale. This is illustrated in
Figure 9-11.

For example, in Figure 9-11, to locate the 560 contour
line between A and B, use the last two digits of the elevation
to interpolate graphically (use the 55 of elevation 555 and 63
of elevation 563), and set the engineer’s scale so that the
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FIGURE 9-9. Interpolating the position of a contour line 
by eye.

FIGURE 9-10. Interpolating contours using simple ratios.
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FIGURE 9-11. Contours can be interpolated graphically.

9-3 TOPO SURVEY
PROCEDURES

There are several ways in which data can be collected in the
field for determining the elevations and horizontal positions
of points that are to be plotted on a map. The method used
depends primarily on the purpose of the survey, the required
accuracy and scale of the map, and the size of the area to be
covered.

In this section, two of the most common field methods
are discussed—the grid method and the radial method. For
relatively large land areas, photogrammetric mapping
methods are usually applied; this is discussed in Section 9-4.
First, a general discussion of basic types and methods for
making horizontal and vertical ties is presented.

Types and Methods of Making Ties
In general, there are two basic categories of topo maps—area
maps and strip maps. Area maps, such as a site plan, are essen-
tial for the planning and design of projects such as residential
subdivisions, airports, and reservoirs. Strip maps are needed
for the planning and design of linear transportation facilities
such as highways, railroads, and all kinds of pipelines.

Control for an area map usually consists of both a loop
traverse for horizontal positions and a network of benchmarks
for elevations. Control for a strip map usually consists of a long
connected traverse and a line of benchmarks, both usually run-
ning along the approximate centerline of the project.

As previously discussed, topo maps must show the posi-
tions and elevations of natural and cultural features such as
streams, ground contours, buildings, and roads. Accordingly,
it is necessary to make horizontal and vertical measurements
that connect, or tie, these features to the control system.

Horizontal Ties A complete horizontal tie must consist
of at least two measurements between the control and the
point to be located. These measurements always include
either of the following: (a) two distances, (b) an angle and a
distance, or (c) two angles. Figure 9-12 shows the various
combinations. Sometimes one or more redundant or extra
measurements are made for a check.

A Locus Each measurement establishes a line on which the
topographic point must be placed on the map. This line is a
locus of the point. The place where the two loci, or lines of
measurement, cross is the actual location of the point. Note
in Figure 9-12 that the loci are always either straight lines or
circles. They are created as follows:

1. A distance measurement from a point on the control
indicates that the topographic point is on a circle whose
center is at the control point and whose radius is the
distance measured.

2. A distance measurement from a line on the control
indicates that the topographic point is on a straight line
parallel to the control line and at the measured distance
from it.

55 mark is at B. With the triangle’s edge at 63, pivot the scale
until the edge of the triangle also passes through A. Slide the
triangle down to the 60 mark on the scale; the 560 contour is
located at the point where the scale intersects line AB.

This process of interpolation between points of known
elevation must be repeated many times to sketch a complete
topo map of even moderate size. The beginning student may
find it very time consuming and tedious. But as with any
other skill, proficiency and speed will come with practice. An
understanding of the “rules” for contours given in the first
part of this section will be of assistance in this regard. Of
course, several commercially available software packages
allow automatic computer plotting of the contours. But in
keeping with the approach stressed throughout this book,
the student must first do the work by hand to develop a true
understanding of the problem and the basic required
surveying skills. Examples of completed contour interpo-
lation problems are given in the next section (see Figure 9-22).

Measuring Slope from Contours
Slope can be defined as a ratio of the change in ground
elevation to the horizontal distance over which the change
occurs. This is often called rise over run. Slope can be
expressed in terms of degrees, but it is more common to
express it as a decimal or as a percentage. For example, if the
elevation changes 15 ft (the “rise”) over a distance of 100 ft
(the “run”), the slope could be expressed as either 15/100 =
0.15, or 0.15 * 100 = 15 percent. [From basic trigonometry,
the slope angle would be tan-1 (0.15) = 8.5°.]

The slope between two points can be measured from a
topo map by reading or interpolating the elevations of the
points and scaling the horizontal distance between them.

Slopes exceeding 15 percent are usually considered to be
steep and, in some communities, land-use ordinances
restrict residential subdivision and construction projects in
those areas. This is because steep slopes are susceptible to
excessive soil erosion and foundation problems. Also, limits
are placed on the maximum and minimum slope, or grade,
of new streets, roads, and highways; this is discussed in more
detail in the chapter on route surveying.
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3. An angle measurement made at a point on the control
indicates that the topographic point is on a straight
line that extends from the point where the angle was
measured and in the direction indicated by the value of
the angle.

4. An angle measurement made at the topographic feature
between the directions of two control points indicates
that the topographic feature is on a circle that passes
through the two control points and the topographic
point.

Strength of Horizontal Ties A horizontal tie is “strongest”
when the loci intersect at right angles (90°). The more the
angle departs from 90°, the “weaker” the tie. A weak tie is one
in which the location of the map will be in error by consider-
ably more than the error of measurement itself. Figure 9-13
shows some weak and strong ties and the effect that will be
caused by an error in the measurements.

Obviously, the measurements made for horizontal ties
should be chosen so that the loci will intersect at an angle as
close to 90° as possible. The ties in Figure 9-13 are shown in

FIGURE 9-12. Methods of making horizontal ties.



Topographic Surveys and Maps 207

FIGURE 9-13. Strong and weak ties.

the order of their importance. Tie 1 is the most useful for
an area map, and tie 2 for a strip map. These two types are
used almost exclusively; the others are used under special
circumstances.

Angle and Distance Ties Figure 9-14a shows the angle and
distance method used to locate two buildings. Two corners of
each building are located, and the building dimensions are
measured along the sides of the buildings. The field notes for

FIGURE 9-14. (a) Angle and distance measurements. (b) Field notes for (a).
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the building location are shown in Figure 9-14b. If other
buildings are to be built to connect these two existing struc-
tures, then the angles and distances must be measured very
accurately. If the purpose is only to depict the relative location
on a map, then the use of a woven cloth tape or stadia will pro-
vide sufficient accuracy for distance measurement. Stadia is a
good method of angle and distance measurement for area
maps of small areas; it is discussed in detail in the Appendix I.

Plus and Offset Ties Figure 9-15a illustrates the plus
and offset method of making ties for mapping. The tra-
verse line is first marked off in stations (see Section 4-2);
the stations are lined in with a transit or theodolite. The
rear chainman holds the zero of the tape at station 1 + 00;
the head chainman estimates the position on the traverse
line from which a perpendicular projected from the line
would meet the first building corner; in Figure 9-15, the
“plus,” or distance from station 1 + 00 for the corner, is
observed to be +70.

Next, the offset from the traverse line is measured,
usually with a cloth tape; in this example, it is observed to be
a left offset of 18.1 ft. (Left and right are determined by facing
forward, toward the increasing stations along the traverse
line.) For the next corner, the rear chainman holds zero at
2 + 00, and the process is repeated. The dimensions of the
building are also measured. A portion of typical field notes is
shown in Figure 9-15b.

FIGURE 9-15. (a) Plus and offset measurements. (b) Field notes.

Estimating the Perpendicular A reasonably good
estimate of the perpendicular direction from the traverse
baseline can be obtained by a trial-and-error method
called swinging the arms. The surveyor stands on the line
with arms outstretched, as shown in Figure 9-16a, and
swings his or her arms forward; if not pointing to the
building corner (or other feature), the surveyor moves as
required along the line and repeats the process until a
position is reached that lines up with the point to be
located. Figure 9-16b shows a somewhat more accurate
method, which makes use of a small optical device called
a double pentaprism. The observer moves forward
and back until the objects and the ends of the line are
aligned in the window of the pentaprism, and he or she
moves left and right until the point to be located is in
line with them.

When very accurate offsets are required, the swing-
offset method may be used. Assume, for example, that a
perpendicular distance must be measured from point P to a
line AB (see Figure 9-16c). Set up a transit at point A, and
sight on point B. Swing a tape or level rod as shown; the
instrument person will record the shortest distance
observed on the tape or rod. On the other hand, to establish
line at a certain perpendicular distance from P, the tape or
rod is swung as before; the instrument person sights at the
greatest angle reached while observing the proper mark on
the rod.
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FIGURE 9-16. (a) Estimating a perpendicular by swinging the arms. (b) The double
pentaprism for estimating right angles.
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Other Ties The other ties shown in Figure 9-12 are some-
times used under the following circumstances:

Tie 3. When it is too difficult to tape to the point, as when
the point is across a river, or on a road with heavy traffic.

Tie 4. For short distances between objects (see Figure 9-17).

Tie 5. When the point can be reached but distances to
control cannot be measured.

Tie 6 through 8. When the distance from control to the
point cannot be measured along the side of the
measured angle.

Tie 9. When both distance measurements are obstructed.

Accuracy The accuracy with which horizontal ties are
measured depends on the purpose of the survey and map.
When high accuracy is required, distances are measured with
a steel tape (or an electronic distance measuring instrument)
and the numerical values are placed on the map.

Vertical (Elevation) Ties Vertical ties for area maps are
measured by grid-method leveling or by radial/stadia survey
methods; these procedures are described in subsequent parts
of this section.

For strip maps, profile leveling and cross sectioning is
used almost exclusively, unless the project is extensive enough

FIGURE 9-16. (Continued) (c) Swing offset.

FIGURE 9-17. Locating one feature
from another.
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FIGURE 9-18. Form of field notes for a plot plan.

to use photogrammetric methods. First, a connecting
traverse and a line of benchmarks are established along the
approximate centerline of the project. Then a cross section
(a short profile) is measured at right angles to the traverse
line, usually at each station and half station. These are carried
out far enough on each side of the line to cover all possible
earthwork that will be required to build the project. Right
angles are often estimated by the swing-of-the-arms method.
Pluses and offsets to topographic features are also determined.

The elevations along the baseline, as well as the cross-
section elevations, can be measured using an automatic
level; at each instrument position, a backsight must first be
taken on a benchmark or turning point to establish the
height of instrument (HI).

Differential leveling is carried out in a manner similar to
profile leveling (see Section 5-5), except that more rod shots
can usually be observed from one instrument position. Rod
readings are taken at each stake and wherever a noticeable
break in ground slope exists between stakes. The positions of
breaks in slope, as well as other topo features, are located by
rectangular offset measurements from the nearest grid lines.
Breaks must not be omitted because in drawing the con-
tours, it is assumed that the slope is uniform between points
where elevations have been determined.

As shown in the field notes (Figure 9-18), the grid
intersections are identified by their column and row posi-
tions (A1, C 2, etc.). As with all leveling work, the first rod
reading must be a backsight (+) on a point of known ele-
vation; in this case, it is a city benchmark of elevation
58.791. The HI of the first instrument setup is determined

to be 59.86, and rod shots on all visible grid points are
taken from that position. In addition, rod shots are taken
on the sewer manholes (MH) in the street because those
data will be needed for designing the service connection
from any new house or building. (The invert elevations at
the bottom of the pipes are obtained; this is explained
further in Section 11-4.)

The solid black dots at the grid points of Figure 9-19
represent rod shots taken from the first instrument position.
When obstructions prevent sighting other points or when
the lines of sight become excessive, the level must be moved
to a more convenient position. A suitable turning point must
first be established before the instrument is moved. Then a
new HI is determined, and the work continues as before; the
open dots represent rod shots taken from the second instru-
ment position. In this example, it can be seen that two breaks
were observed, and their positions were noted in the field
record. Finally, a new benchmark is set at grid point D4, a
third and last instrument position is established, and the
work is closed back on the starting benchmark with a small
but acceptable error of closure.

In the office, the rectangular grid is drawn to a suitable
scale, and the grid intersections are labeled. The elevation of
each point is lettered in, frequently with the dot that marks
the grid station also serving as the decimal point in the
elevation value. An appropriate contour interval is selected,
and the contour lines are sketched in by interpolation
between the four sides of each grid square (as described in
Section 9-2). (Often, elevations interpolated along grid
diagonals do not agree with those interpolated on the sides,
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FIGURE 9-19. Leveling procedure
for a plot plan.

due to the “warped” shape of the terrain.) A complete sketch
of the contours located from the field notes shown in the
preceding example is presented in Figure 9-20a; the grid
elevation values would not be shown on the final plot plan.
The procedure is further clarified by showing the location of
only the 58-ft contour, in Figure 9-20b.

Radial Survey Field Methods
A radial survey typically begins with the establishment of a
control network, usually a loop traverse, on or around the
area to be mapped. Numerous side shots are taken from each
control station to establish the horizontal and vertical
positions of topographic features.

The locations of the traverse stations must be carefully
planned to reduce field time and improve the accuracy of the
survey. Adjacent stations must be intervisible. They should
be placed around the parcel to be mapped, so that all imp-
ortant topographic features can be readily observed. (Some-
times it may be necessary to run a short open traverse from
one of the loop-traverse stations to obtain additional details
for the map.)

The traverse stations should preferably be located not
more than about 500 ft (150 m) apart. It is generally best to
err on the side of having too many stations rather than

establishing too few. Although this requires more setups, the
shorter sight distances tend to reduce the field time and to
improve accuracy.

With the advent of new and less expensive technology,
surveyors have replaced the transit and level rod method
with the total station instrument. Using a prism pole,
typically 5 ft high and expandable up to 12 ft, the precision
of the survey can be increased while the time to complete it
is decreased. The procedures are basically identical; the
major difference occurs in field data records. The tradi-
tional field book has been replaced by an on-board data
collector, which is later connected to a desktop computer
system at the office. There, the information is downloaded
from the data collector, instantly reduced, and a map image
produced. The survey data are coded in the field so that the
computer recognizes the type of data point observed.
Simply put, the field crews are effectively drafting the map
in the field.

Choosing Points for Side Shots One of the advantages
of the stadia or radial method over the grid method of topo
surveying is that only certain key points need be observed
for locating contours. In general, these control points are the
points between which the ground has a reasonably uniform
slope.



Topographic Surveys and Maps 213

FIGURE 9-20. (a) Partially completed
plot plan showing interpolated
contour lines. (b) A detail of the plot
plan showing the interpolation of
the 58-ft contour line.
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Some of the most common topographic features that
are considered to be control points are listed as follows (see
Figure 9-21):

1. Summits

2. Saddles (low points in ridges)

3. Depressions

4. Valley profiles

5. Ridge profiles

6. Boundary and building corners

7. Profiles along buildings and boundaries

8. Profiles along toes (bottoms) of slopes

9. Profiles along brows of hills (tops of slopes)

10. Profiles along shoulders

Because the ground rarely slopes uniformly, the accu-
racy of the map depends on how small a change in slope is
considered significant for the contour interval desired. The
ability to recognize and select control points, so that the
desired map accuracy can be obtained with a minimum of
field work, is a skill that develops with experience.

Figure 9-21 illustrates the typical control points found
on a project site. The numbers in the small circles refer to the
preceding list. Although many of the points fall into more

than one classification, only one classification is indicated. In
Figure 9-22, a topo map plotted from a control point radial
survey is illustrated. When plotting contour lines from con-
trol point data, first interpolate the contours along stream or
valley lines; note the summits and saddles. Interpolate along
the shortest lines that connect adjacent elevations. Then
sketch in the contour lines freehand in the same manner as
for the grid method.

Drawing the Map
The features chosen to be included on the map depend, of
course, on its purpose and are usually specified before the
survey is begun. Ordinarily, all data obtained by the survey
are included because the cost of the survey is high, and the
map may eventually be used for purposes never considered
when it is first made. Occasionally, however, some data are
omitted to avoid clutter and confusion.

Before starting to plot the radial survey data, the general
layout or arrangement of the map must be planned. The
objective, of course, is to draw the map at a scale that will
allow it to be read and used for its intended purpose with the
desired accuracy. Usually, a rough sketch is made of the
perimeter of the control system along with the controlling

FIGURE 9-21. Key points for 
locating contours by stadia.
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FIGURE 9-23. Sketch map with
sheet arrangement completed.

external topographic observations (see Figure 9-23). This
serves as an aid in selecting a suitable scale so that the map
will fit on the drawing paper.

As described in Section 9-1, the first step in actually
drawing the map is to plot the control traverse at the chosen
or specified scale. Either the coordinate method, the tan-
gent-offset method, or the protractor method can be used. A
protractor should be used with great care because this is the
greatest source of error. Light construction lines are drawn at
right angles through the traverse stations to represent the 0°
azimuth and the quadrants; it is usually preferable to estab-
lish the 0° azimuth parallel to the side of the drawing paper,
if possible. Naturally, the last line drawn should close onto
the beginning station; if not, the stations should be shifted
proportionately to eliminate the error.

After the traverse has been plotted and closed graphically,
the elevation of each traverse station is marked on the paper.

The side shots are then plotted by protractor and scale from their
respective stations. The protractor is used to lay out the azimuth
of the shot (or the clockwise angle from the previous station),
and the scale is used to lay out its distance from the station. As
each side shot is plotted, its elevation is marked; often, the pen-
cil point that marks its position is used as a decimal point in the
marked elevation. As the plotting progresses, all topographic
details are drawn and identified, to avoid any questions about
which shots have been marked on the drawing.

Usually, the entire map must have a uniform standard of
accuracy so that data may be determined anywhere on it
with equally accurate results. When maps are used for
design, it should be possible to determine distances, eleva-
tions, and angles from them by scaling. Because the survey
on which a map is based can be readily made more accurate
than can any drafting procedure, map accuracy is limited
mainly by the accuracy of drafting.

FIGURE 9-22. Plotting topography from control point data. (Madsen, David A.; 
Shumaker, Terence M., Civil Drafting Technology, 1st Edition, © 1983. Reprinted by 
permission of Pearson Education, Inc., Upper Saddle River, NJ.)
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FIGURE 9-24. A graphical scale,
in feet.

Standard Map Features The following items should
always be included on a topo map, independent of its purpose:

1. A statement of scale and a graphical indication of scale

2. A suitable title block and legend

3. A north arrow

Scale The importance of a statement of scale, such as 1 in =
50 ft, or a representative fraction such as 1/600, should be
obvious, particularly if the map will be used to read mean-
ingful distance or location data. In addition, a graphical
representation of scale is useful in case the map sheet shrinks
or expands or is reproduced at an unknown scale. A grap-
hical bar scale (see Figure 9-24) will change length in
proportion to any change in the size of the drawing; distance
on the map can be determined by comparing the length
between two mapped points with the bar scale.

Title An appropriate title is required, of course, to com-
pletely identify the map. Generally, the title should contain the
following:

1. Identification and location of the area mapped

2. Name of the individual or company for whom the map
is made

3. Name of the surveyor or engineering firm making the
map, including license number

4. Names of the draftsperson and responsible engineer or
surveyor

5. Date of the survey and/or map preparation

The title may be placed in any suitable location on the
map, although the lower right-hand corner of the sheet is
most common. Often, the statement of scale and/or graphical
bar scale is included as part of the title. Examples of the same
title used for different purposes are shown in Figure 9-25.

Figure 9-25a shows the kind of title that might be used
by a consulting firm preparing the map for a manufacturing
company. The title block shown in Figure 9-25b may be
more typical of the form used by the manufacturing
company if the map was prepared by the company’s own
personnel. In general, a title should be designed to give the
maximum information at a glance, and should not be
embellished with ornate details. Certain items, however,
should be emphasized by larger and heavier letters so that
the map can be quickly selected from others in a file (i.e.,
the name of the client and the location of the survey).

FIGURE 9-25. Typical map title
blocks. The surveyor’s license 
number should be included.
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FIGURE 9-26. A typical north arrow for a map.

North Arrow For proper orientation when reading and
using a map, it must have a noticeable (but not excessively
ornate) north arrow, as shown in Figure 9-26. A note
should be placed next to the arrow stating whether it rep-
resents true, magnetic, grid, or assumed north. If there is
no note, it is generally assumed that the arrow points to
true north.

Topographic Symbols The use of consistent symbols
for representing small-scale topographic features is
important for the clarity of the map; on large-scale maps,
the features can usually be recognized and are easily
labeled. Symbols are useful for indicating the locations of
trees, for distinguishing between roads and paths, for out-
lining the limits of woods and swamps, and for accom-
plishing similar purposes. Some typical topographic
symbols are shown in Figure 9-27. A list or legend that
gives the meaning of these and any other symbols should
be included on the map.

Lettering Generally, vertical letters are more quickly read
than slant or inclined letters (although this is a matter of
personal preference). Special lettering devices that guide the
pen, such as the Leroy lettering device, are commonly used
for uniformity and neatness in the appearance of the
finished map.

Final Map The final map may be traced from the work-
ing drawing on which the traverse and radial shots were
plotted; the control system can be omitted from the final
drawing for clarity. Often, the work is done in ink. (Colored
inks may sometimes be used to improve the appearance of a
special-purpose map. Black ink might be used for buildings
and roads, blue ink for water, green ink for vegetation, and
brown ink for contour lines.)

Computer-Automated Plotting Topographic maps
can be prepared automatically, using a method commonly
called computer-aided drafting (CAD). Surveyors are using
modern CAD systems to produce high-quality maps, as well
as plats. (A computer-generated subdivision plat is illus-
trated in Figure 8-9.) Contour lines can be plotted automat-
ically (Figure 9-28) from X, Y, and Z coordinates that are
stored electronically in the computer. The array of data is
called a digital terrain model. The data can be collected in the
field using “total-station” equipment, including an electronic
field book.

A typical CAD workstation consists of a keyboard,
digitizer board, printer, plotter, and monitor for graphic
display. The graphic display screen can be used by the
surveyor for editing data, or even for subdivision design;
this process is called interactive graphics. Portions of large
drawings can be windowed, or viewed on the screen at
enlarged scales for interactive design. The finished map is
prepared on a drum plotter using vellum or Mylar sheets;
laser plotters provide the ability to produce different line
weights and colors.

9-4 BASIC
PHOTOGRAMMETRY

Topographic maps of relatively large land areas [i.e., roughly
75 ac (30 ha) or more] can usually be obtained in less time
and at lower cost using photogrammetry, rather than using
stadia or other field surveying methods. Photogrammetry
involves making precise measurements of images on aerial
photographs (photos taken from an aircraft) to determine
the relative locations of points and objects on the ground.
Distances and elevations can be accurately measured, and
both planimetric and topographic maps can be prepared
from the photos; map scales may vary from 1/1,000,000
to 1/250, and contour intervals as small as 1 ft (0.3 m) can
be plotted.

Photogrammetry is often used by government agen-
cies to prepare general-purpose topo maps. It is also a
particularly important tool for preparing special-purpose
maps that are used to plan and design highways, pipelines,
reservoirs, flood-control systems, land-use projects, and
other extensive infrastructure works. It can be useful in
property surveying to provide rough base maps for relo-
cating existing boundary lines. The point of beginning and
other property corners of a tract of land may be identified
and located with respect to identifiable features on the
photo to facilitate the subsequent ground survey of the
tract.

Although field surveying work is considerably reduced
when photogrammetry is used for mapping, it is not elimi-
nated completely. A number of clearly defined, well-distributed
control points must be selected on the photographs and
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located on the ground for horizontal position and elevation
by precise field survey methods. The positions are plotted on
the map sheet and serve as reference for locating features
from the photographs. The accuracy of a map prepared from
aerial photos depends to a large extent on the density and
accuracy of the ground control survey.

Photogrammetry is actually part of a more extensive
discipline called remote sensing. In addition to conventional
photography, remote sensing includes the use of data gath-
ered from infrared and thermal scanning devices; remote

sensing instruments can be carried in orbiting satellites as
well as in airplanes. In addition to providing quantitative
information for planimetric and topographic mapping
purposes, remote sensing images allow identification and
analysis of natural resources such as surface water, wood-
lands, soils, and farmland. Even water pollution can be
detected using remote sensing. The qualitative examination
and analysis of remote sensing data is called photographic
interpretation. It is particularly useful for regional planning
and resource management studies.

FIGURE 9-27. Typical map symbols.
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FIGURE 9-28. Contour lines generated automatically by 
a computer-controlled plotter. (B. A. Barry, Construction
Measurements, © 1973. Reprinted with permission of John
Wiley & Sons, Inc.)

FIGURE 9-29. Vertical aerial
photographs are most useful for
mapping. The axis of the camera 
is aligned with gravity.

shown in Figure 1-3 is an example of a vertical photo. In a
vertical photo, the photographic plane is parallel to the
horizontal reference plane or datum; vertical photos are
generally more useful for mapping purposes than oblique
photos.

Aerial photographs are taken along a series of over-
lapping paths, or flight strips, as shown in Figure 9-30. The
end lap, along the direction of flight, is about 60 percent;
each pair of the adjacent overlapping photos is called a
stereopair. By viewing stereopairs with special optical equip-
ment, it is possible to observe a three-dimensional image of
the overlap area, to discern ground relief, and to plot ground
contour lines on a map. The side lap between adjacent flight
strips is usually about 20 percent; two or more side-lapping
strips are called a block of photos. A block of photos can be
pieced together to form a composite photomap or mosaic. An
aerial mosaic can be used directly as a planimetric map of
the photographed area.

Vertical Photo Geometry To make meaningful mea-
surements on an aerial photograph, it is necessary to know
its scale. Figure 9-31 is a schematic diagram showing the
basic geometry of a vertical photo taken over horizontal
ground. The scale of the photo is, by definition, the ratio of
the photo distance ab to the corresponding distance on the
ground, AB. Because the ratios of corresponding sides of
similar triangles are equal, we can write

(9-1)

where f = image distance

H = object distance

The image distance is equal to the camera lens focal
length, that is, the distance from the plane in which light rays
are focused (converge to a point) to the center of the lens.
The object distance is the height of the camera lens above the
ground, or flying height.

It is seen from Equation 9-1 that, for a fixed camera
focal length, the scale of the photograph varies inversely with
the flying height; in other words, the greater the altitude of
the camera above the ground, the smaller the photo scale.
Also, for a fixed flying height, the photo scale increases with
increasing camera focal length. Because the ground is not

Scale =
ab

AB
=

f

H

Basic Principles
Aerial photography can provide either vertical photos or
oblique photos, depending on the orientation of the camera
axis. Vertical photos are taken with the camera (or optical)
axis aligned in the direction of gravity, whereas oblique pho-
tos are taken with the axis intentionally tilted away from a
vertical position (see Figure 9-29). The aerial photograph
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likely to be perfectly level over large areas, the photo scale
actually varies from point to point on the negative or print;
for many applications, however, it is acceptable to use an
average flying height for determining an average photo-
graphic scale.

Example 9-1
A camera with a 200-mm focal length is used to take a block
of vertical aerial photographs. The average camera height
above ground is 2000 m. Determine the photo scale.

Solution
Using Equation 9-1, we get

Example 9-2
It is required to obtain aerial photos of a large tract of land
at a scale of 1 in = 2000 ft, using a camera with a 6-in
focal length. What should the average flying height above
ground be?

Scale = 0.200m/2000m = 1/10,000 or 1:10,000

FIGURE 9-30. Aerial photos must
overlap so that every object is on at
least two, and sometimes as many
as four, photographs.

FIGURE 9-31. The scale of a vertical
photo.
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FIGURE 9-32. Side fiducial marks typically appear on an
aerial photograph. Rectangular coordinates of images on
the photo are measured from the principal point at the 
center of the photograph, located by the fiducial marks.

Solution
Using Equation 9-1, we can write

It is possible to determine the scale of an aerial photo
when the flying height or camera focal length is not known.
For example, suppose the length of an airport runway seen
on a vertical photo is measured to be 4.17 in. From ground
survey measurements, or from a map of known scale, the
actual length of the runway is found to be 1250 ft. The scale
of the photo, then, is simply 4.17 in/1250 ft, or 1 in = 300 ft
(1:3600). If the terrain is fairly level, it could be assumed that
the computed scale is reasonably accurate for scaling the
dimensions of other features on the photo.

Photo Coordinate System The positions of features
seen on a vertical photo can be measured in terms of rectan-
gular coordinates. The coordinate system has its origin at a
point called the center of collimation or principal point. This
point is, in effect, the true center of the photo, where the
light reflected from the ground strikes the photo negative at
a right angle. Most aerial cameras usually have fiducial marks
that photograph as silhouettes on the sides or in the corners
of the photo (Figure 9-32).

The intersection of fiducial lines that connect opposite
pairs of the fiducial marks is the center of collimation. The
fiducial marks are set at fixed distances across the photo-
graph so that any possible shrinkage or expansion of the
photographic paper can be detected and corrected for. The
location of any feature on the photo is defined by its X and
Y coordinates, measured from the center of collimation.
The X axis is usually the fiducial line parallel to the direc-
tion of flight. Distances and directions of lines located on
the photo can be computed from the basic coordinate
geometry formulas.

and Height = (6 in)(32,000ft/in) = 12,000ft
1 in/2000ft = 6in/height

Photocoordinates can be measured with an ordinary
engineer’s scale. For better accuracy, a special microrule may be
used; this micrometer device allows measurements to within
±0.0005 in. More sophisticated optical instruments, called
comparators, can be used to determine photocoordinates with
even greater precision.

Systematic errors due to lens distortion, refraction, and
other sources can be reduced by suitable methods. Photo-
coordinates can be transformed to the state plane coordinate
system if two or more ground “control” points of known
position are visible on the photo.

Relief Displacement The difference in the position of
an object or point on a vertical photo compared with its true
planimetric position is called relief displacement. It is caused
by the change in elevation of the various ground features
with reference to the datum plane (i.e., the average ground
elevation). This can be seen by considering the photographic
image of a tall vertical object, such as a smokestack, as shown
in Figure 9-33. The paths of light from the bottom and top of
the stack are different, causing the top of the stack to be seen
in a different position on the photo than the bottom of the
stack; in reality, of course, the top and bottom of the stack
have one and the same rectangular coordinate position on
the ground.

Relief displacement occurs in a radial direction, that is,
along lines emanating from the center of the photo. At the
center, there is no relief displacement at all; the farther the
object is from the photo center, the greater the relief
displacement is. From the geometry of a vertical photo-
graph, the relationship among the amount of relief displace-
ment, d, the flying height, H, the height of the displaced
point, h, and the radial distance to the point, r, can be deter-
mined. This relationship can be used to compute the vertical
heights of buildings and other objects seen on the photo,
using the following equation:

(9-2)

The amount of displacement and the radial distance can
be measured with a scale or microrule; the flying height
above the ground must be known.

Example 9-3
For the smokestack illustrated in Figure 9-33, it is known
that the camera height is 1000 ft above the base of the
stack. The relief displacement from the bottom to the top of
the stack is measured to be 1.95 in, and the radial distance
from the center of collimation to the top of the stack is mea-
sured to be 5.45 in. Determine the height of the chimney
above the ground.

Solution
Applying Equation 9-2, we get

h =
1.95 * 1000

5.45
= 358 ft

h =
d * H

r
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FIGURE 9-33. Because of relief
displacement, the top of the 
chimney (T) and the bottom 
(B) appear displaced by the distance
bt on the negative or photographic
print.

The locations of points on a vertical photo can be
adjusted with respect to relief displacement by laying off
distances along radial lines equal to d = rh/H; these cor-
rected positions can be used to determine true angles,
lengths, and areas. Also, special instruments can be used to
produce orthophotos from original vertical aerial photo-
graphs, using a process called differential rectification.

Rectification eliminates the relief displacements, effec-
tively raising or lowering every image on the photo to the same
horizontal plane. The resulting orthophoto is geometrically
equivalent to a planimetric map, which shows the true posi-
tions of objects and points; in other words, after rectification,
the top and bottom of the smokestack in Figure 9-33 would
appear at the same position on the orthophoto. A mosaic of
adjoining orthophotos can be constructed to form a large
orthophotomap. Contours can then be superimposed on it to
form a topographic orthophotomap. These maps are useful to
civil engineers, technicians, planners, surveyors, geologists,
foresters, and other professionals.

Stereoscopic Plotting of Topo Maps
One of the most significant applications of photogrammetry
is the preparation of topographic maps that show the shape
of the ground, as well as the positions of natural and cultural
features, for large land areas. Special instruments called
stereoplotters make it possible for an operator both to observe
a three-dimensional image of the ground by viewing overlap-
ping aerial photographs and to plot ground elevation
contour lines on a map sheet. These instruments use the basic
principles of stereoscopic depth perception in their operation.

Principles of Stereovision Depth perception is the
mental process of judging the relative distances of different
objects in the field of view. There are various visual clues that
enable a person to perceive depth or to see the world in three
dimensions. One of the most important factors is the ability
to use binocular vision, that is, the ability to see with two eyes.

Depth perception using binocular vision is called
stereoscopic viewing. With binocular vision, the optical axes
of the two eyes converge at a point when they focus on an
object. The angle at which the lines of sight intersect is called
the parallactic angle; the closer the object is to the viewer, the
larger is the parallactic angle, and vice versa. Most people
with normal vision have a remarkable ability to detect even
slight changes in the parallactic angle, thereby facilitating
accurate depth perception.

Another important clue used to perceive depth using
binocular vision is called retinal disparity. Because the two
eyes are located at different positions, the images they receive
of any given object are slightly different; this difference is the
retinal disparity. Because it is a function of the relative dis-
tance of the objects viewed, it provides an important visual
clue for depth perception. It is of particular significance in
photogrammetric stereoplotting applications.

A single vertical photograph represents the view seen by
one eye. When two photos of the same area are made from
slightly different positions, and arranged so that the left eye
sees only the left photo and the right eye sees only the right
photo, binocular vision is established; the viewer can then
distinguish depth or relief in what appears to be a three-
dimensional image. The two photographs are called a
stereopair, as previously mentioned. A device called a mirror
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FIGURE 9-34. A mirror stereoscope used for making measurements on aerial photographs.
(Courtesy of Topcon Instrument Corporation of America.)

stereoscope can be used to view a stereopair of aerial pho-
tographs in three-dimensional perspective (Figure 9-34).

There are many types of stereoscopic plotting instru-
ments that vary in accuracy and cost.

Ground Control and Project Planning
Photogrammetry requires ground control to provide a way of
orienting the photographic images to actual points on the
ground. This makes it necessary to conduct field surveys for
establishing a network of photogrammetric control points. The
points must be clearly identifiable on the photos. Their hori-
zontal and vertical positions on the ground (i.e., rectangular
coordinates and elevations) must be accurately determined by
control survey methods.

Usually, photogrammetric control surveys are con-
ducted after the aerial photos have been obtained. This
ensures that well-defined points at suitable locations on the
photos can be selected before field work begins. Typical
objects that provide suitable control positions are road inter-
sections, manhole covers, building corners, etc. In areas
where existing points suitable for control are not available,
artificial positions or targets called panel points may be
placed on the ground before the aerial photos are taken; this
process is called paneling. The size of the target depends on
the scale of the photo (Figure 9-35). It may be a painted
plywood or heavy cloth cross placed with its center over the
control position.

The cost of ground control work ranges from 25 to 50
percent of the total cost for a photogrammetric mapping
project. Because accurate ground control is directly related

to the accuracy of the finished map, the control survey
procedure should be very carefully planned. An appro-
priate degree of accuracy should be specified, and the
required field procedures and techniques must be selected.
Generally, the horizontal control points and elevation
benchmarks are monumented and witnessed. State plane
coordinates are best used for defining horizontal position,

FIGURE 9-35. Photogrammetric panel point. The target
dimensions depend on the photo scale. For example, at 
a scale of 1 in = 200 ft, L = 2 ft and T = 4 in; at a scale of
1 in = 2000 ft, L = 25 ft and T = 30 in.
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and elevations should be referenced to mean sea level
by differential leveling from National Geodetic Survey
benchmarks.

Because the accuracy of a photogrammetric map
also depends on the quality of the aerial photos used,
thorough flight planning is also a very important aspect
of a photogrammetric mapping project. A flight plan
includes an existing base map that shows the entire area to
be photographed, as well as written specifications related
to camera and film requirements, flying height, end and
side lap amounts, and so on. The flight plan depends

largely on the basic purpose of the project and the desired
scale of the finished map.

The number of overlapping flight lines should be min-
imized to reduce the expense of the photography; they are
generally oriented north and south or east and west. The
season of the year is also a factor in planning the project;
normally, the photos are not taken when the ground is
obscured by leaves on trees or deep snow. Consideration of
weather conditions is also important. The best condition,
of course, is a cloudless day with minimal atmospheric
haze or smog and little wind or air turbulence.

Questions for Review

1. What is the chief characteristic of a topographic map?

2. What is the difference between a plat and a plot plan?

3. Define scale as it pertains to a map. What is an RF?

4. Which is a larger scale, 1:200 or 1:2000?

5. What is the first step in drawing a topographic map?
List and briefly describe three methods to accomplish it.

6. Define contour line and contour interval.

7. What are five important rules for contour lines?

8. What is the basic assumption for contour line 
interpolation?

9. What is a horizontal tie? When is it strongest?

10. What is a double pentaprism used for?

11. Briefly describe the grid method of contour surveying.

12. Briefly discuss the basic principles of radial surveying.

13. What is trigonometric leveling?

14. What is the difference between HI and h.i.?

15. List five typical control points used for a topo survey.

16. List and briefly describe three items always shown on a
map.

17. What is photogrammetry?

18. What are end lap and side lap? What is a stereopair?

19. Briefly describe two different ways to determine the
scale of an aerial photograph.

20. What are fiducial marks?

21. What is relief displacement?

22. What is an orthophoto?

23. Briefly describe the basics of stereovision.

24. What is meant by ground control in photogrammetry?

Practice Problems

1. Convert a scale of 1 in = 50 ft to an RF.

2. Convert a scale of 1 in = 200 ft to an RF.

3. If a map scale is 1:10,000, what does a 1-in length represent
in terms of feet? What does a 10-mm length represent in
terms of meters?

4. If a map scale is 1:50,000, what does a 1-in length represent
in terms of miles? What does a 1-cm length represent in
terms of kilometers?

5. Using an engineer’s scale, determine the distances
represented by the following lines:

_______________________ 1 in = 20 ft

_________________________ 1 in = 200 ft

___________________________ 1 in = 50 ft

_____________________________ 1 in = 4000 ft

_________________________________ 1:24,000

6. Using an engineer’s scale, determine the distances repre-
sented by the following lines:

_____________________ 1 in = 10 ft

_______________________ 1 in = 1000 ft

_________________________ 1 in = 500 ft

___________________________ 1 in = 400 ft

_____________________________ 1:60,000

7. What should the scale of a map be if distances on it
must be read to the nearest 1 ft?

8. What should the scale of a map be if distances on it
must be read to the nearest 0.2 ft?

9. What should the RF of a map be if distances on it must
be measured to the nearest 1 m?

10. What should the RF of a map be if distances on it must
be measured to the nearest 1 dm?
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29.3 27.6 25.6 23.0 24.0 23.1 21.8

28.5 27.3 25.9 24.0 26.0 23.9 22.0

27.5 26.8 25.8 24.0 27.2 24.6 22.9

26.4 26.0 25.3 23.0 26.0 25.0 23.8

25.5 25.1 24.7 22.5 24.9 25.3 24.9

24.3 23.9 23.0 22.0 23.5 24.7 26.3

26.0 25.8 25.3 24.0 21.3 23.8 24.3

27.4 27.4 27.0 26.1 23.5 20.6 23.0

22 17 28 40 47 52 57

27 24 22 33 41 46 51

35 32 28 27 34 42 49

45 41 37 31 37 43 49

50 52 48 40 36 42 50

45 46 46 42 44 49 52

34 30 38 45 50 55 60

23 34 45 50 55 60 65

50.0 50.5 50.5 49.6 48.4 50.0 52.0

49.2 49.6 49.6 49.3 48.7 49.3 50.2

49.7 49.0 48.9 48.8 49.5 48.8 49.3

51.2 50.8 50.1 50.3 50.5 49.0 48.2

50.2 50.2 50.1 49.8 49.4 48.4 49.0

48.0 48.3 48.4 48.6 48.4 50.0 51.0

50.7 50.5 49.7 48.3 50.0 51.0 52.0

52.7 51.8 50.4 48.1 50.3 51.4 52.6

FIGURE 9-36. Illustration for Problem 13.

11. Draw a grid 6 in wide by 7 in long with 1-in intersec-
tions, and place the given elevations at the intersections
in the same arrangement as follows.

a. Draw the 5-ft contours. (No depression contours
needed.)

b. Draw the 1-ft contours. (No depression contours
needed.)

13. The data given in Figure 9-36 were taken in the order
shown in parentheses during a grid-method leveling
survey. The numbers along the lines of sight, next to the
parentheses, are the rod readings. Place the data in
standard field book form. Sketch the 1-ft contour lines
on an appropriate grid.

77.0 73.0 68.0 77.0 81.0 85.0 77.0

77.0 71.0 80.0 86.0 83.0 95.0 85.0

80.0 72.0 80.0 95.0 78.0 85.0 89.0

79.0 86.0 77.0 82.0 83.0 73.0 84.0

78.0 80.0 86.0 72.0 73.0 68.0 80.0

80.0 71.0 75.0 79.0 68.0 62.0 72.0

84.0 76.0 68.0 73.0 74.0 67.0 60.0

85.0 73.0 65.0 69.0 72.0 65.0 61.0
b. Draw the 1-m contours. (No depression contours

needed.)

12. Draw a grid 15 cm wide by 17.5 cm long with 2.5-cm
intersections, and place the given elevations at the inter-
sections in the same arrangement as follows.

a. Draw the 5-m contours. (No depression contours
needed.)
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14. Draw a sketch illustrating an actual example of field con-
ditions that make each of the following horizontal ties
the best tie to use: Figure 9-12, ties 3, 5, and 7. Show ties.

15. Draw a sketch illustrating an actual example of field con-
ditions that make each of the following horizontal ties the
best tie to use: Figure 9-12, ties 4, 6, and 8. Show ties.

16. (a) Draw a sketch of the locus of a point that is exterior to a
triangle and 10 ft from it. (b) Draw a sketch of the locus of
a point that is equidistant from the two sides of an angle.

17. Sketch the 5-ft contours based on the control point
elevations and stream location shown in Figure 9-37.

18. Sketch the 5-m contours based on the control point
elevations and stream location shown in Figure 9-38.

19. A camera with a 6-in focal length is used to take a block
of vertical aerial photographs. The average camera
height above the ground is 1000 ft. Determine the photo
scale.

20. It is required to obtain aerial photos of a large tract of
land at a scale of 1:24,000, using a 150-mm focal-length
camera. What should the average flying height above the
ground be?

21. The distance between two major road intersections
seen on a vertical photo is measured to be 6.54 in.
From ground survey measurements, the actual dis-
tance is found to be 1308 ft. What is the scale of the
photo?

22. The distance between two major road intersections seen
on a vertical photo is measured to be 125 mm. From
ground survey measurements, the actual distance is
found to be 375 m. What is the RF of the photo?

23. The relief displacement of a tall building is measured
to be 1.20 in from its base, as seen on a vertical photo
taken from a camera height of 1500 ft. The radial
distance from the center of collimation to the top of
the building is 6.00 in. Determine the height of the
building.FIGURE 9-37. Illustration for Problem 17.

FIGURE 9-38. Illustration for Problem 18.
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A frequent task for the surveyor is to stake out the
position of a transportation route. This is usually for
a new street or highway, but it could also be for a

railway, for a long pipeline, or for a power transmission line.
The “shape” or “geometry” of any transportation route is called
its alignment. This includes both its horizontal alignment (i.e., a
plan view) and its vertical alignment (i.e., a profile view). The
vertical alignment is also called the grade line.

A straight-line section of a road or railway alignment
is called a tangent. Naturally, as the horizontal or the
vertical direction of the route changes, the tangent
sections of its alignment must be connected by a series of
gradual and smooth curves for a safe and comfortable ride
(Figure 10-1). The shape of the curves must be computed
by the surveyor so that they can be located on the ground
for construction.

Surveyors are also called upon to compute the quanti-
ties of earthwork required to construct roadways. When
the grade line lies above the existing ground surface,
embankment (fill) is required; when the grade line lies
below the existing ground, excavation (cut) is necessary
(see Figure 10-1b).

This chapter focuses on horizontal and vertical curve
geometry, that is, on the basic mathematics required to
establish the location of curved sections of a roadway. It also
covers common methods used to compute cross-section
areas and earthwork volumes. Collecting the topographic
data needed for design of the alignment and earthwork
volume computations and doing the field work required
to stake out the alignment make up the activity called route
surveying.

10-1 ROUTE SURVEYS
Route surveying includes the field and office work required
to plan, design, and lay out any “long and narrow” trans-
portation facility. Most of the basic surveying concepts and
methods described in the previous chapters apply to route
surveying. Horizontal distances, elevations, and angles must
be measured, maps must be drawn, and profile and cross-
section views of the route must be prepared. Route survey-
ing operations, however, typically include a reconnaissance,
a preliminary, and a location survey.

The reconnaissance survey involves an examination of a
wide area, from one end of the proposed route to the other. It is
the first step in selecting alternative routes. For most projects,
this would be done using existing small-scale maps and aerial
photographs, although ground reconnaissance surveys may be
used for the relocation of short sections of existing routes. In
some cases, a complete topographic survey may be conducted
so that an appropriate map can be prepared.

Matching up aerial photos to form a strip mosaic is done
frequently to prepare the required map. For preliminary
reconnaissance and planning, this can be an uncontrolled
mosaic, that is, one in which reference to ground control
stations has not been made. In relatively flat areas, a planimetric
map is usually sufficient for this stage. Reconnaissance maps
are used for comparing alternative “paper routes” before the
actual survey or layout on the ground. Map scales range from
1 in = 2000 ft (1:24,000) to 1 in = 200 ft (1:2400).

The preliminary survey may be conducted on the
ground with surveying instruments, or in the office, using
aerial photogrammetry. Modern transportation routes are
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usually located using low-altitude photogrammetric maps
at a scale of 1 in = 50 ft (1:600) and 2-ft (0.5-m) contours.
The maps generally cover about 1300 ft (400 m) in width,
primarily along the alternate route corridor selected in the
reconnaissance survey operation. In effect, conducting the
preliminary survey using photogrammetry is a refinement
of the reconnaissance effort. The state of the art of modern
photogrammetry and computer applications is such that
even the required earthwork (cut-and-fill) computations
for roadway design can be done using data from aerial
photography.

The basic product of the preliminary survey is the loca-
tion of a baseline or connecting traverse. This is a series of
straight lines that run along or near what will be the center-
line of the final route. It is essentially the horizontal align-
ment of the route without the curves. Distances along the
traverse are marked as stations and pluses and run continu-
ously from the beginning point of the route. The angles at
intersection points where the baseline tangents change
direction are carefully measured by double centering. Data
for drawing a profile of the traverse line are also obtained.

The design of the horizontal curves that connect the
tangent sections of the baseline depends on several factors,
including the topography and the maximum speed of vehicles
using the route. After the curve computations have been made
and appropriate field notes prepared, the horizontal alignment
of the route can be laid out on the ground in a location survey.
This includes setting stakes along the tangents and the curves
of the route centerline (and often along an offset line as well).
Because the stations and pluses of the final centerline run along

the curves as well as the tangents, new stations have to be
computed for points on the final alignment. This is explained
further and illustrated in Section 10-2.

As the staking of the centerline progresses, topographic
data are collected, and property corners within the route
boundaries or right-of-way (ROW) are located. Profile and
cross-section data are obtained for final design, for prepara-
tion of engineering drawings, and for final estimates of
earthwork quantities. The final grade line (vertical align-
ment) is established to balance cut-and-fill (excavation and
embankment) quantities, as explained in Section 10-7. On
the engineering drawings, the final horizontal alignment is
shown in plan view, above the profile view of the vertical
alignment (see Figure 1-14).

The plan view should include the bearings of the
tangents, angles of intersection, stationing, and geometric
data for each horizontal curve. It should also include topo-
graphic data within and adjacent to the ROW lines and any
existing structures affected by the project. The profile view
should include the existing ground surface, proposed route
grade line, grades (slopes) of all the tangent sections, vertical
curve data, and other pertinent information.

10-2 HORIZONTAL CURVES
The most common type of horizontal curve is a single arc of
a circle, called a simple curve (Figure 10-2). Proceeding in
the forward direction along the route (i.e., the direction of
increasing station numbers), the curve connects the back
tangent to the forward tangent. The curve, or arc, of length L,

FIGURE 10-1. The route alignment for a road or railway line comprises a connected
series of tangents and curves.
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begins at the point of curvature (PC) and ends at the point of
tangency (PT). Another terminology is sometimes used to
describe the PC and PT, such as TC (tangent to curve) and
CT (curve to tangent). Whatever notation is used, it is
important to remember that the curve is literally tangent
to the straight-line sections of the route at those points.
Therefore, the radius of the curve (R), drawn from the center
of the arc to the PC or PT, forms a right angle with the
tangent section (see Section 3-1).

The tangent sections meet at a point of intersection (PI)
and form an intersection angle (Δ). From plane geometry, this
angle is also equal to the central angle between the two radius
lines drawn to the PC and PT. Also, a line drawn from the cen-
ter of the arc to the PI bisects Δ. The distance along that line
from the curve to the PI is called the external distance (E).
The distances from the PC to the PI and from the PI to the
PT are equal, and are called the tangent distance (T). The
straight line that connects the PC and the PT is called the long
chord (LC). The distance from midpoint of the curve to the
midpoint of the long chord is called the middle ordinate (M).

Computing the Curve
The equations that are used to compute the parts of a simple
curve are derived from plane geometry and right-angle
trigonometry. These equations are summarized as follows:

(10-1)

(10-2)

(10-3)

(10-4)

(10-5)

It should be noted that it is a good idea to use unrounded
answers when using that value to generate another variable

M = Ra1 - cos
¢
2
b

E = RP 1

cos
¢
2

- 1Q = T tan
¢
4

LC = 2R sin a¢
2
b

L =
pR¢
180

T = R tan a¢
2
b

in another formula. This eliminates cumulative round-off
errors.

Example 10-1
A simple horizontal curve of radius 300 ft connects two
tangents that form an intersection angle of 74°46�36�. Com-
pute the parts of the curve, including the tangent distance,
the length of arc, the long chord, the external distance, and
the middle ordinate.

Solution
First, convert the intersection angle Δ to decimal form.

and

Applying Equations 10-1 to 10-5 directly, we get

Example 10-2
A simple curve is to be laid out so that its middle ordinate is
30 m long. If the tangents intersect at an angle of 50°, what
is the minimum radius required?

Solution
Applying Equation 10-5, we can write

Example 10-3
The radius of a simple curve is half its tangent distance.
What is the angle of intersection between the tangents?

Solution
Applying Equation 10-1, we get

and ¢ = 2 *  tan -1 2 = 126.87° = 126°52œ12œœ

tan
¢
2

=
T
R

= 2

30 = Ra1 - cos
50
2
b   and  R =

30
1 - cos 25

= 320 m

M = 300 (1 -  cos 37.3883°) = 61.64 ft

E = 229.27 *  tan 18.6942° = 77.58 ft

LC = 2 * 300 * sin 37.3883° = 364.33 ft

L =
p * 300 * 74.7767

180
= 391.53 ft

T = 300 tan 37.3883° = 229.27 ft

¢
4

= 18.6942°
¢
2

=
74.7767°

2
= 37.3883°

¢ = 74°46�36� = 74.7767°FIGURE 10-2. The simple horizontal curve is an arc of a circle.

Degree of Curve The “sharpness” of a simple curve can
be defined by its degree of curve or curvature. The higher the
degree of curvature, the sharper the curve. Degree of curve,
Da, may be considered equal to the central angle subtended by
a 100-ft length of arc (Figure 10-3). This is called the arc defi-
nition. Because the circumference of a full circle comprising
360° is 2pR, we can write the proportion Da/360 = 100/2pR,
from which we get

(10-6)

where Da is expressed in degrees and R is expressed in feet.

Da =
18000

Rp
    and R =

18000

Dap
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Also, because any two arcs of a given circle are propor-
tional to the opposite central angles, we get ,
which is an alternate form of Equation 10-2.

The arc definition for degree of curvature is used pri-
marily for roadway design applications. There is one other
relationship for curvature called the chord definition, which
is based on a 100-ft chord length instead of a 100-ft arc
length (see Figure 10-3); it is used primarily for railway
applications. For the chord definition, the relationship
between the degree of curvature and the radius becomes

. For relatively flat curves, there is very lit-
tle difference between the arc and chord definitions for
degree of curve. For example, given a radius of 1000 ft, the
value of and thevalueof . Only the
arc definition is used in this text.

It can be seen from Equation 10-6 that the curve
radius varies inversely with the degree of curvature. In gen-
eral, a sharp curve has a small radius and a large degree of
curvature; a flat curve has a large radius and a small degree
of curvature (Figure 10-4). The allowable degree of curva-
ture for a road depends on the allowable vehicle speed and
the type of road; maximum values may vary from about
20° for a 30-mi/h (48-km/h) road to about 2° for a 70-mi/h
(112-km/h) highway.

Example 10-4
a. What is the degree of curve if the radius = 300 ft?
b. What would be the corresponding radius for a degree of

curve = 5°?

Solution
a. Simply apply Equation 10-6 in the following form:

b. Simply apply Equation 10-6 as follows:

R =
18,000

5p
= 1145.92 ft

Da =
18,000

Rp
=

5729.578
300

= 19.099°

Dc = 5.732°Da = 5.723°

R = 50/sin (Dc /2)

L = 100(¢/Da)

Stationing Along a Route
One of the goals of route design is to establish the sta-
tions of all the PCs and the PTs. The station of a PC is
computed by simply subtracting T from the station of
the PI. But to compute the station of the PT, the arc
length L must be added to the station of the PC. This is
because the final stationing along the route runs contin-
uously along the tangents and the curves. The stations
indicate the true centerline distances from the beginning
point of the project.

The following expressions summarize the method for
stationing along a simple curve:

(10-7)

(10-8)

Example 10-5
Consider the simple horizontal curve given in Example 10-1,
with a tangent distance T = 229.27 ft and an arc length 
L = 391.53 ft. If the station of the PI is established as 
7 + 47.64, find the stations of the PC and the PT.

Solution

PI = 7 + 47.64 station of the PI

-T = - (2 + 29.27) minus T distance (Equation 10-7)

PC = 5 + 18.37 station of the PC

+L = + (3 + 91.53) plus curve length (Equation 10-8)

PT = 9 + 09.90 station of the PT

Restationing After the first PT is established, the orig-
inal stationing along the rest of the preliminary centerline
traverse must be changed to reflect the difference between

Station PT = station PC + L

Station PC = station PI - T

FIGURE 10-3. The degree of curve may be determined by
the arc definition (Da) or by the chord definition (Dc).

FIGURE 10-4. A sharp curve and a flat curve.
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the straight-line distances and the length of the final
route with curves. The original PI values are first used to
compute the length of the following tangent section.
Next, the tangent distances at each end of the section are
subtracted from that length; the remaining length, S, is
added to the previous PT station to establish the next
PC. This procedure for restationing is illustrated in
Example 10-6.

Example 10-6
A 2500-ft roadway centerline is established during a prelim-
inary survey, as shown in Figure 10-5a. The three tangent
sections are to be connected by two simple curves, the first
with a radius of 700 ft and the second with a radius of 600 ft.
Determine the stations of the PCs and the PTs, the total

length of the centerline with curves, and the last station of
the final route.

Solution
First, compute the values of T and L for each curve, as follows:

Now apply Equations 10-7 and 10-8 to establish PC1
and PT1:

At this point, many students make the mistake of simply
subtracting the value of T2 from the station of PI2 to get the
station of PC2. This is incorrect because the original station-
ing along the tangent section from PI1 to PI2 has been
altered by the first curve.

Station PT1 = 279.29 + 427.61 = 706.90 = 7 + 06.90

Station PC1 = 500.00 - 220.71 = 279.29 = 2 + 79.29

L2 =
p * 600 * 25

180
= 261.80 ft

T2 = 600 *  tan a 25
2
b = 133.02 ft

L1 =
p * 700 * 35

180
= 427.61 ft

T1 = 700 *  tan a 35
2
b = 220.71 ft

FIGURE 10-5. Restationing along a route centerline.

The correct procedure is first to compute the dis-
tance S1 (see Figure 10-5b) by subtracting T1 and T2 from
the actual length of the tangent between the two PIs, as
follows:

Now S1 can be added to the station of PT1 to find the PC2:

By adding the length of the second curve to the station
of PC2 (i.e., by applying Equation 10-8), we get the station
of PT2:

Station PT2 = 1053.17 + 261.80 = 1314.97 = 13 + 14.97

Station PC2 = 706.90 + 346.27 = 1053.17 = 10 + 53.17

S1 = (1200.00 - 500.00) - 220.71 - 133.02 = 346.27 ft

Finally, the total length of the centerline, including tangents
and curves, is determined as follows:

It is seen, then, that the final centerline with the two
curves is shorter than the original combined lengths of
the straight tangent sections. The last station, originally 
25 + 00.00, becomes station 24 + 81.95. This relationship
is sometimes called the station equation orequation of
chainage.

10-3 LOCATING A CURVE
Except for a very sharp circular curve (i.e., with a small
radius), it is not practical to lay out the curve by simply swing-
ing an arc from its center. One method for field location of
a curve involves measurement of the deflection angles between
the tangent and the points along the curve and measurement
of the chord lengths between those points (Figure 10-6a). The
necessary field instruments include a transit or theodolite and
a steel tape or electronic data measuring instrument (EDMI).
Sometimes an offset method may be used, particularly when
there are short curves or when a transit is not available. It

Total length = PT2 + S2 = 1314.97 + 1166.98 = 2481.95 ft

S2 = (2500.00 - 1200.00) - 133.02 = 1166.98 ft
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involves measuring only horizontal distances—typically those
along the back tangent and those offset at right angles from
the tangent to stations on the curve (Figure 10-6b).

The most common method, which requires the use of an
electronic total station, involves measuring distances and
angles from a point near the curve. Rectangular coordinates of
stations along the curve are computed in the office. The instru-
ment is set up on a control point and backsights a second point
in the control survey to orient the instrument to the construc-
tion project. If no control points are accessible, a random point
can be set near the curve. The coordinates of the point over
which the instrument is set up are first determined in the field
by sighting on two nearby points of known position; this, in
effect, is a distance–distance intersection problem. The
required directions and distances to the coordinated points on
the curve may then be computed by the process of inversing
(automatically, by the “on-board” computer).

Deflection Angles and Chords
Because the deflection-angle and chord method is most
frequently used for curve layout, it is described here in detail.
A deflection angle, in the sense applied to a simple curve, is
the angle measured at the PC from the back tangent

(prolonged) to a desired point on the curve. A chord is
a straight line between two points on the curve. Briefly, the
method involves setting up a transit (or theodolite) at the PC
and orienting the circle by aiming at the PI with the scale set
at zero. Points on the curve, usually at half-station or 50-ft
intervals, are then staked out by measuring the computed
chord length from each previous point set and by taking line
from the transit when it is set at the proper deflection angle.

The deflection-angle method of curve layout is based
primarily on the following geometric principles:

1. The angle between a tangent and a chord, measured at
the point of tangency, is equal to one-half of the central
angle or angle of arc subtended by the chord. This is
illustrated in Figure 10-7a, where 
angle 

2. The angle between two chords that intersect on the
circumference of a circle is equal to one-half of the
central angle or angle of arc subtended between them.
This is shown in Figure 10-7b, where 

.

Deflection Angles For a 100-ft arc, the central angle is, by
definition, equal to the degree of curve, Da. The deflection
angle that corresponds to an interval of one full station
(100 ft) on the curve, then, must be equal to half the degree of
curve, Da/2. Likewise, the deflection angle for a half-station
(50-ft) interval on the curve is Da/4, and for a quarter-station
interval it is Da/8. A useful formula for computing the deflec-
tion angle of any given length of arc, expressed in minutes of
arc, may be written as follows:

(10-9)

where a = deflection angle, minutes of arc

R = radius of curve, ft

The deflection angle to any point on the curve is equal
to the sum of the incremental deflection angles for each
subdivision of the arc. It should be noted that the final
deflection angle measured at the PC, from the PI to the PT,
must be one-half of the intersection angle Δ (Figure 10-8).
This fact is always used as a check on the computation of
deflection angles because their sum must equal Δ/2.

a =
arc length

R
* 1718.87

NOP = 1>2 arc NP
MON, b = 1>2 angle MOP, and c = b - a = 1>2 angle

a = 1>2 angle

MON = 1>2 arc MN
a = aœ = aœœ = 1>2

FIGURE 10-6. Two methods to lay out a simple horizontal
curve.

FIGURE 10-7. Geometric principles for deflection angles.
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Chord Lengths Because the length of each chord is
slightly less than the length of arc it subtends, the actual
chord lengths to be laid out between the points set on the
curve must be computed. From right-angle trigonometry, it

can be shown that the length of a chord is equal to twice the
radius of the curve times the sine of half the angle subtended
by the chord (Figure 10-9). In equation form, we get

(10-10)

Field Procedure Usually, the tangents have already
been marked on the ground by POTs (points on tangent),
and the back tangent has been marked off in stations (see
Figure 10-10). The first step in curve layout is to set a stake
at the PI (assuming it is accessible). This involves a field
procedure that is described in Section 11-5. After the PI has
been staked out, the plus or station of the PI is determined
and the intersection angle is measured.

From a specified value of R or D, the parts of the curve
can be computed, including the tangent distance T and the
curve length L. Stations of the PC and PT are determined
(using Equations 10-7 and 10-8). Deflection angles for each
point to be set on the curve and chord lengths are also com-
puted and recorded in a field book (using Equations 10-9
and 10-10).

The PC and PT are staked out on the tangents by
measuring the distance T from the PI. The instrument is

Chord length = 2R sin a

FIGURE 10-8. The deflection angle
to any point on the curve is equal
to the sum of the incremental
deflection angles for each previous
subdivision of the arc.

FIGURE 10-9. The length of a chord is equal to twice the
radius times the sine of the chord’s deflection angle.

FIGURE 10-10. Beginning of a curve
layout procedure.
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set up over the PC and oriented by backsighting on the PI
with the horizontal circle set at zero. The first deflection
angle is turned, and the corresponding chord length is
laid out from the PC to the first station on the curve. The
second deflection angle is turned, and the appropriate
chord length is laid out between the first station and the
second station. This procedure is continued, setting off
each successive deflection angle and measuring out the
required chord length from the previous point, until the
PT is set.

Because no surveying measurement is perfect, it is
unlikely that the PT originally set by measuring the distance T
along the tangent from the PI will correspond exactly to the
PT set by the last deflection angle (Δ/2) and chord length. The
error of closure is measured, and the relative accuracy is com-
puted (in the same manner as for a traverse survey, using
Equation 2-3). The total length of the survey is taken to be

. Generally, the accuracy should be better than 1:3000.

Example 10-7
A simple curve has a and its PC at station 25 + 50.
What are the deflection angles for stations 26 + 00, 27 + 00,
and 28 + 00? What is the chord length from the PC to station
26 + 00 and from station 26 + 00 to station 27 + 00?

Solution
The deflection angle for a half-station interval is .
This would be the angle turned from the PC toward station
26 + 00, as shown in Figure 10-11. The chord length can be
computed from Equation 10-10. The value of R = 358.10,
and the chord length is .2 * 358.10 * sin 4° = 49.96 ft

Da /4 = 4°

Da = 16°

2T + L

The deflection angle for a full-station interval is .
The deflection angle for station 27 + 00, then, is equal to
the sum of that for the previous station and 8°, or 12° (see
Figure 10-11). The chord length subtended by an arc of 100 ft
is . In a similar manner, the
deflection angle for station 28 + 00 is 20°, and the chord
length from 27 + 00 to 28 + 00 is 99.68 ft.

Before staking out a curve, the surveying crew must
have a suitable set of field notes that identifies a deflection
angle and chord length for each point to be set on the
curve (see Example 10-8).

Example 10-8
Set up the field notes for staking out the following curve at
half-station intervals: , and the
station of the PI is 7 + 47.64 (same as in Examples 10-1
and 10-5). If the error of closure at the PT is 0.02 ft after
the curve is staked out, what is the relative accuracy of the
survey?

Solution
The first step is to compute the tangent distance, the length
of the curve, and the stations for the PC and PT. This
was done in Examples 10-1 and 10-5, and the results are
summarized here:

The next step is to compute the deflection angles for
each half station that is to be staked out along the curve.
Because the PC is at station 5 + 18.37, the first 50-ft-point

L = 391.53 ft    Station PT = 9 + 09.90

T = 229.27 ft    Station PC = 5 + 18.37

R = 300 ft, ¢ = 74° 46œ36œœ

2 * 358.10 * sin 8° = 99.68ft

Da /2 = 8°

FIGURE 10-11. Illustration for
Example 10-7.
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mark on the curve will be at station 5 + 50.00. The arc length
may be computed as follows:

Using Equation 10-9 to compute the first deflection
angle to station 5 + 50.00, we get

(to the nearest 15
seconds)

The second deflection angle (for station 6 + 00) equals
the first deflection angle plus the angle that subtends a 50-ft
interval along the arc. Again using Equation 10-9, we
get (to
the nearest 15 seconds). This value is added for each 50-ft
point until the point just previous to the PT (9 + 00) is
reached. The last length of arc to the PT (9 + 09.90) is equal
to 9.90 ft. The increment in the deflection angle for this
arc is (to the nearest
15 seconds).

The deflection angles for each station can now be com-
puted, as shown in Table 10-1. The deflection angle computed
for the PT should equal Δ /2, or .
The small discrepancy between that angle and the value
of computed in Table 10-1 is due to rounding off.
A large error would indicate a mistake in computation.

37°23œ30œœ

74°46œ36œœ/2 = 37°23œ18œœ

(9.90/300)(1718.87) = 56.72œ = 56œ45œœ

(50/300)(1718.87) = 286.48œ = 4°46.48œ = 4°46œ30œœ

a = 181.24œ = 3°1.24œ = 3°01œ15œœ

 =  
31.63
300

 * 1718.87 = 181.24œ

 a =  
length of arc

R
 * 1718.87

Length of first arc =         31.63 ft

Minus the plus of the PC =  5 + 18.37

First 50 - ft point = 5 + 50.00

Three different values of chord lengths are to be computed:
one for the chord subtended by the first arc of 31.63 ft, one for
the chords subtended by 50-ft arcs, and one for the last arc of
9.9 ft. These may be found using Equation 10-10, as follows:

The field notes for staking out the curve (see Figures 10-12
and 10-13) are usually set up with the stations increasing from
the bottom of the page upward, so that they can be read as
if facing forward along the curve. The total length of the survey
is and the relative
accuracy is .

Orientation on the Curve
It often occurs that some obstacle prevents sighting from the
PC to distant points on a curve, as shown in Figure 10-14.

The computed deflection angles for the stations to be
measured at the PC are as follows.

1:850/0.02 = 1:42500
2T + L = 2 * 229.27 + 391.53 = 850  ft,

 Last arc: Chord length = 2 * 300 *  sin 00°56œ45œœ = 9.90  ft

50-ft arc: Chord length = 2 * 300 *  sin 4°46œ30œœ = 49.95 ft

First are: Chord length = 2 * 300 * sin 3°01œ15œœ = 31.62 ft

Table 10-1. Deflection Angle Calculations

Station Deflection Angle

PC 5 + 18.37 0°00œ00œœ

+ 3 01 15 (deflection for first arc)

5 + 50 3 01 15

+ 4 46 30 (deflection for 50-ft arc)

6 + 00 7 47 45

+ 4 46 30

6 + 50 12 34 15

+ 4 46 30

7 + 00 17 20 45

+ 4 46 30

7 + 50 22 07 15

+ 4 46 30

8 + 00 26 53 45

+ 4 46 30

8 + 50 31 40 15

+ 4 46 30

9 + 00 36 26 45

+ 56 45 (deflection for last arc)

PT 9 + 09.90 37°23œ30œœ

Station Deflection Angles

PC 0

D A

E a + b
F a + b + c

When the obstruction interferes, as in the line PC to E,
the instrument is moved to station D. The telescope is
reversed, and set at the deflection angle of the PC, which is
zero, and the line of sight is aimed at the PC.

The telescope is then changed to direct so that it is sight-
ing along the line PC to D prolonged. To set E, it must be
turned through the angle a + b. But note that a + b is the
deflection angle computed for E. This is, of course, true for all
stations from D to E, or, for that matter, for all stations on the
curve, because E represents any station. Thus, with this proce-
dure, the same list of deflection angles can be used as those
originally computed. When this is the case, the instrument is
said to be oriented to the curve. It was oriented by sighting PC
with the deflection angle of PC (zero) set in the instrument.

To set stations beyond E, the instrument is moved to E.
How can it be oriented to the curve? The deflection angle of
D (angle a) is set in the instrument, and the line of sight is
aimed at D with telescope reversed.

The telescope is then changed to direct so that it now
aims along the prolongation of the line DE. Remember that
the instrument still reads the angle a.

To set F, the instrument must be turned through the
angle so that the total reading will be ,
which is the deflection angle of F. Evidently, the instrument
is now oriented to the curve. Thus, two rules can be stated.

To Orient to the Curve When the instrument is on the
curve, aim at any other station on the curve, with the telescope

a + b + cb + c
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FIGURE 10-12. Illustration for
Example 10-8.

FIGURE 10-13. Field notes for staking out the curve of
Example 10-8. FIGURE 10-14. Orientation on the curve.
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reversed for a point behind the instrument station or direct
for a point ahead of the instrument station and with the angle
set at the deflection angle of the station at which it is aimed.

When Oriented to the Curve When the instrument is
oriented to the curve, any station can be set on the curve by
setting the instrument at the deflection angle of the point to
be set, with the telescope reversed for points behind and
direct for points ahead. Also, after orientation, to establish a
tangent to the curve at the instrument station, turn to the
deflection angle of the instrument station.

When the PI Is Inaccessible Figure 10-15 shows what
to do when the PI cannot be reached. Points A and B are set
wherever convenient on the tangents. The distance AB and
the angles A and B are measured. Then,

The distance to be measured for setting PT by measur-
ing from B is computed from the preceding by using the
value for T, and PC to A is computed similarly.

Example 10-9
A simple horizontal curve, with , has an inac-
cessible PI (Figure 10-16). Point A is set at station 50 + 00 on

R = 1000.00ft

PI to B =
AB

sin ¢
sin A

PI to A =
AB

sin ¢
sin B

¢ = A + B

FIGURE 10-15. When the PI is inac-
cessible, random points A and B are
set on the tangents so that the PC
and PT can be located with reference
to them.

FIGURE 10-16. Illustration for Example 10-9.

the back tangent, and point B is set on the forward tangent.
The distance AB is measured as 752.50 ft; the angle at A is

, and the angle at B is . Determine the stations
of the PC and the PT.

Solution

Referring to Figure 10-16, we find the following:

Minus

To locate the PT, measure B to PT = 574.45 - 347.36 =
227.09 ft along the forward tangent.

Station PT   59 + 83.48

Plus L  10 + 42.83

Station PC = 49 + 40.65

       59.35

Station A = 50 + 00.00

L = pR¢/180 =
p * 1000 * 59.75

180
= 1042.83 ft

PC to A = 574.45 - 515.10 = 59.35 ft

PI to B =
752.50

 sin 59.75°
*  sin 23.50° = 347.36 ft

PI to A =
752.50

 sin 59.75°
*  sin 36.25° = 515.10 ft

T = R *  tan a¢
2
b = 1000 *  tan 29.875° = 574.45 ft

¢ = A + B = 23°30œ + 36°15œ = 59°45œ = 59.75°

36°15œ23°30œ
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10-4 COMPOUND AND
REVERSE CURVES

Under certain conditions, route tangents may be connected
by something other than the simple curve. A compound
curve, for example, may be used in mountainous terrain to
“fit” the route to the ground. This type of curve consists of
two different simple curves joined at a common point of
tangency (Figure 10-17a).

When two circular curves are joined together, but lie on
opposite sides of a common tangent, they constitute a reverse
curve, forming what is commonly called an S shape (Figure
10-17b). A reverse curve can serve as a means for shifting a
route alignment partly sidewise. Reverse curves may be used
on low-speed roadways in mountainous country, and they are
usually acceptable for collector streets in suburban residential
areas because of their pleasing appearance and tendency to
slow down traffic. They are not suitable, however, for major
arterial roads or highways.

A spiral or transition curve provides a gradual change in
curvature from a straight tangent to a circular curve or to
another tangent (Figure 10-17c). It is especially useful for
rapid-transit or railway routes, and for highway exit ramps,
to avoid a sudden and uncomfortable change in curvature.

A spiral is a curve with a constantly changing “radius” or
curvature; its radius decreases uniformly from infinity, at the
point on the tangent where it begins, to that of the circular
curve it meets. Superelevation—the raising or “banking” of
the outer edge of a highway pavement, or the rail of a track,
to resist the effect of centrifugal force when moving along a
curved path, can be gradually provided on the spiral. In
Figure 1-14, a spiral begins at the TS (tangent to spiral) and
ends at the SC (spiral to circle). A full discussion of spiral
curve geometry is beyond the scope of this text.

The Compound Curve
A compound curve comprising circular arcs with two differ-
ent radii is shown in Figure 10-18. Point P, where the arcs
join, is the point of compound curve (PCC). The dashed line
GH is a common tangent. Subscript 1 refers to the circular
curve of smaller radius.

The angle Δ is measured; R1 and R2 and either Δ1 or Δ2,
are given. To find the curve data for the two curves, the
following are computed:

From the figure:

To stake out the curve, the deflection angles and the
chords are computed for the two curves separately. When P
is reached, the transit is oriented to the second curve by
aiming it so that the vernier reads zero when pointed along
the imaginary common tangent GH. To accomplish this,
aim at any point on the first curve with the telescope
reversed and the vernier set to the right (if the first curve is a
left curve) at the deflection angle of the PCC on the first
curve minus the deflection angle of the point sighted. To

T2 = VB = VG + t2

T1 = AV = VG +  t1

VH = sin¢1

GH

sin¢

VG = sin¢2

GH

sin¢

GH (the common tangent) = t1 + t2

t1 = R1tan  1>2 ¢1 t2 = R2tan  1>2 ¢2

¢1 = ¢ - ¢2 or ¢2 = ¢ - ¢1

FIGURE 10-17. Different kinds of horizontal curves.
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prove this, in Figure 10-19, let C be any point on the first
curve. On the first curve,

Thus, if b is set off to the right and aimed at C, when the
transit is then turned to zero, the telescope will be on the
common tangent and the vernier will read zero. Accordingly,
once oriented in this way, the deflection angles computed for
the second curve can be used.

The Reverse Curve
A reverse curve that connects point A on the back tangent to
point B on the forward tangent is illustrated in Figure 10-20.

In the field, the distance AB and the angles a and b are
measured. Because it is always an advantage to use the largest
radius possible, the best method is to use equal radii.

Result = b

-Deflection angle of C = a

Deflection angle of P = a + b

But and sides perpendicular in the same
order. Substituting and dividing both numerator and
denominator by R,

The curves are computed separately. The first curve is
staked out and, at the PRC (point of reverse curve), the
transit is oriented to the second curve as in the compound
curve.

¢1 = a + c ¢2 = b + c

R =
AB

sin a + 2 sin c + sin b

AB = R sin a + 2R sin c + R sin b
cos c =  1>2 (cos a + cos b)

bœ = b,aœ = a

cos c =
SO2

O2O1

=
R cos a œ + R cos bœ

2R

FIGURE 10-18. Nomenclature for the compound curve.

FIGURE 10-19. To orient to the point of compound curvature.

FIGURE 10-20. Nomenclature for
the reverse curve.
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10-5 VERTICAL CURVES
The vertical alignment or profile of a roadway centerline is
also called the grade line. It consists of a series of straight
sections (tangents) connected by vertical curves. The grade
or gradient of the centerline is the slope of the line, that is,
the “rise over run” (see Section 9-2). A line that increases
in elevation in the forward direction of stationing has a
positive gradient (+g); a line that slopes downward in the
forward direction has a negative gradient (-g). The verti-
cal curves are segments of parabolas instead of circular
arcs. The geometry of the parabola is such that it provides
a constant rate of change in slope between two adjoining
tangents, which is desirable for passenger comfort and
safety.

A vertical curve may be either a crest (summit) curve
or a sag curve, depending on the tangent grades that it con-
nects (Figure 10-21). The change in grade is the algebraic
difference between the slopes of the forward and back tan-
gents, or . When the change in grade is negative, ag2 - g1

summit curve connects the tangents; when the change is
positive, a sag curve is used. If the change in slope is very
small (less than 1 percent), a vertical curve may not be
necessary.

The vertical alignment is determined by first drawing
the tangents on a profile of the ground along the final route
centerline. Several factors may control the location of the
grade line, but usually the tangents are located to balance the
required volumes of earthwork excavation (cut) and
embankment (fill); this is discussed briefly in Section 10-1
and is explained further in Section 10-7.

Distances along a vertical curve are measured horizon-
tally, and the length of a vertical curve is taken to be its
horizontal projection. Vertical curves for a road are designed
on the basis of minimum required stopping or passing
sight distances, rider comfort, drainage control, and gen-
eral appearance. On the basis of one or more of these
factors, a design curve length is usually specified. Mini-
mum curve lengths may be determined from the formula

, where the gradients are expressed inL min = K(g2 - g1)

FIGURE 10-21. Vertical curves: crest
and sag.
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percent and K depends on the design speed; typical values
of K are as follows:

The difference in elevation between two points on a
tangent of gradient g is equal to gX, where X is the distance
between the points. The elevations at full stations along the
three tangents in this example can be computed as shown
in Table 10-2.

Computing the Curve
The point where two tangents meet is called the point of ver-
tical intersection (PVI). The point on the back tangent where
the vertical curve begins is called the point of vertical curve
(PVC) or the beginning of vertical curve (BVC). The point
where the curve joins the forward tangent is called the point
of vertical tangency (PVT) or the end of vertical curve (EVC).
A vertical axis through the PVI bisects the curve length L
into two equal parts (Figure 10-23).

A straight line drawn between the PVC and the PVT is
called the long chord. From the geometry of a parabola, the
elevation of the curve at the station of the PVI is midway

g3 =  
714.50 - 732.00

1975 - 1700
 =  

-17.5
275

 = -0.06364 = -6.364%

g2 =  
732.00 - 720.00

1700 - 1400
 =  

12
300

 = 0.040 = 4.00%

Minimum Value of K

Speed, mi/h Summit Curve Sag Curve

40 50 50

50 80 70

60 150 100

For example, if the back tangent gradient is -3 percent and
the forward tangent gradient is +4 percent, for a 50-mi/h
roadway the minimum vertical curve length would be

. Usually, the length is
selected in full-station or half-station increments; a 500-ft-
long vertical curve may be selected in this case.

Elevations on Tangents
To mark the vertical alignment in the field (set gradestakes),
the surveyor must have field notes that list the elevations of
the grade line at each station along the route centerline.
(These may be “finish elevations” of the pavement, or they
may be elevations of the subgrade—the base of the roadway.)
It is necessary to apply the geometric properties of a para-
bolic curve to compute the elevations of stations along the
curve. The formulas and procedure for this are described in
the next part of this section. First, the procedure for simply
determining tangent gradients and a series of elevations
along a tangent is illustrated in Example 10-10.

Example 10-10
Three tangent sections of a grade line are shown in profile view
in Figure 10-22. Determine the gradient of each tangent section
and the elevation at each full station along the tangents.

Solution
The gradient or slope is equal to “rise over run.” From the
data shown in Figure 10-22, we get

g1 =  
720.00 - 738.50

1400 - 1000
 =  

-18.5
400

 = -0.04625 = -4.625%

(70)[4 - (-3)] = (70)(7) = 490 ft

FIGURE 10-22. Illustration for
Example 10-10: tangent elevations.

Table 10-2. Elevations on Tangents

Station Computations Elevation

10 + 00 = 738.50

11 + 00 738.50 + (- .04625)(100) = 733.88

12 + 00 738.50 + (- .04625)(200) = 729.25

13 + 00 738.50 + (- .04625)(300) = 724.63

14 + 00 738.50 + (- .04625)(400) = 720.00

15 + 00 720.00 + (0.040)(100) = 724.00

16 + 00 720.00 + (0.040)(200) = 728.00

17 + 00 720.00 + (0.040)(300) = 732.00

18 + 00 732.00 + (-0.06364)(100) = 725.64

19 + 00 732.00 + (-0.06364)(200) = 719.27

19 + 75 732.00 + (-0.06364)(275) = 714.50



between the PVI and the midpoint of the long chord. The
vertical distance between a tangent and the curve is some-
times called a tangent offset or tangent correction. The tan-
gent offsets are proportional to the squares of the distances
from the PVC, and the offsets from the back and forward
tangents are symmetrical with reference to the PVI.

There are several methods for computing grade-line ele-
vations at stations along a vertical parabolic curve. Although
they differ in the form of organizing the computations, they
are each based on the same fundamental geometric proper-
ties of the parabola.

Typically, the station and elevation of the PVI are first
located on a profile and the length of the curve, L, is selected
as previously described. Then the stations and the elevations
of the PVC and PVT are determined, using the following
relationships:

(10-11)

(10-12)

(10-13)

(10-14)

(Note: In Equations 10-12 and 10-14, use + for a sag curve
and - for a summit curve.)

A parabolic curve may be expressed as a quadratic equa-
tion. In surveying terminology (Figure 10-23), the equation
can be written as

(10-15)

where 

and Y = elevation of any point on the curve, ft (m)

YPVC = elevation of the PVC, ft (m)

X = horizontal distance of the point from the PVC, ft (m)
or stations

r =
g2 - g1

L

Y = YPVC + g1X +
r

2
X2

Elevation PVT = elevation PVI ; g2aL2b
Station PVT = station PVI +

L

2

Elevation PVC = elevation PVI ; g1aL

2
b

Station PVC = station PVI -
L

2

r = rate of change of grade

g1 = gradient of the back tangent, decimal or percent

g2 = gradient of the forward tangent, decimal or
percent

L = length of the curve, ft (m) or stations

The combined terms in Equation 10-15
give elevations along the back tangent (and the back tangent
prolonged); the term is, in effect, a vertical tangent
offset that, when added to the back tangent elevation, gives
the curve elevation. The sign of r will be negative (–) for a
summit curve and positive (+) for a sag curve. (Note:

in Figure 10-23.)

Example 10-11
The data for a summit vertical curve given on a roadway
plan and profile sheet are as follows: PVI station = 11 +
02.43, PVI elevation = 43.32 ft, back tangent grade g1 = + 6.00
percent, forward tangent grade percent, and
curve length L = 550 ft (Figure 10-24). Grade stakes are to
be set at the PVC, at the PVT, and at half-station intervals
along the curve. Set up a table to show curve elevations at
those points.

Solution
1. Compute the stations and elevations of the PVC and

PVT. Because L = 550, the horizontal distance to each
from the PVI is L/2 = 550/2 = 275 ft, or 2 + 75.00
stations. Applying Equations 10-11 to 10-14, we get

2. Compute the value of r/2.

r
2

=
(-0.02 - 0.06)

2 * 550
= - 7.2727 * 10-5

= 37.82

Elevation PVT = 43.32 - (0.02)(275) = 43.32 - 5.5

Station PVT = (11 + 02.43) + (2 + 75.00) = 13 + 77.43

= 26.82

Elevation PVC = 43.32 - (0.06)(275) = 43.32 - 16.5

Station PVC = (11 + 02.43) - (2 + 75.00) = 8 + 27.43

g2 = - 2.00

C = r/2

(r/2)X2

YPVC + g1X

242 CHAPTER TEN

FIGURE 10-23. Nomenclature for a
vertical parabolic curve.
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3. Set up a table for computing the curve (Table 10-3).
The distance from the PVC to the first point on the
curve is . Half-station points
are listed from 8 + 50 to 13 + 50, and the last point is
the PVT, at station 13 + 77.43.

In Table 10-3, the values of and are
rounded off to the nearest hundredth of a foot. The curve
elevation at each point is obtained by adding those val-
ues to the elevation of the PVC, 26.82 ft. For example, at
station 11 + 00, g1X = (0.06)(272.57) = 16.35, (r/2)X 2 =
(-7.2727 * 10-5)(272.57)2 = -5.40, and the curve elevation
equals 26.82 + 16.35 + (-5.40) = . Computations37.77 ft

(r/2)X2g1X

827.43 = 22.57 ft850 -

are facilitated by using a calculator that can store and
recall the values of g1 and r/2.

As a check on the curve computations, it should be
noted that the elevation of the PVT (37.82) computed using
Equation 10-15 matches that obtained from Equation 10-14.
Also, the elevation at the PVI is +

. This matches the
curve elevation at that station computed as being halfway
between the elevations at the middle of the long chord
and the PVI, as follows: ,
the elevation at the middle of the long chord, and

, the elevation on the curve.= 37.82  ft(43.32 + 32.32) /2

(26.82 + 37.82) /2 = 32.32 ft

(-7.2727 * 10-5)(275)2 = 37.82 ft
26.82 + (0.06)(275)

FIGURE 10-24. Illustration for
Example 10-11; a typical computa-
tion is shown for station 12 + 00.

Table 10-3. Elevations on a Summit Curve—Example 10-1

Station X g1X (r/2)X2 Curve Elevation

PVC 8 + 27.43 0.00 0.00 0.00 26.82

8 + 50 22.57 1.35 -0.04 28.13

9 + 00 72.57 4.35 -0.38 30.79

9 + 50 122.57 7.35 -1.09 33.08

10 + 00 172.57 10.35 -2.17 35.00

10 + 50 222.57 13.35 -3.60 36.57

11 + 00 272.57 16.35 -5.40 37.77

11 + 50 322.57 19.35 -7.57 38.60

12 + 00 372.57 22.35 -10.09 39.08

12 + 50 422.57 25.35 -12.99 39.18

13 + 00 472.57 28.35 -16.25 38.92

13 + 50 522.57 31.35 -19.86 38.31

PVT 13 + 77.43 550.00 33.00 -21.99 37.82
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Example 10-12
The data for a vertical curve in sag appearing on a roadway plan
and profile sheet are as follows: the PVI station = 21 + 25.00, the

, the back tangent grade 
percent, the forward tangent grade percent, and
the curve length L = 450 ft. Grade stakes are to be set at the
PVC, at the PVT, and at half-station intervals. Set up a table to
compute curve elevations at those points (see Table 10-4).

Solution
In this example, tangent gradients will be expressed as
given, that is, in percent instead of in decimal form, and dis-
tances will be expressed in stations. For instance, L/2 is
written as 2.25 stations instead of as 225 ft. Following the
procedure outlined in Example 10-11, we get

High or Low Point
It is sometimes required to find the station and the elevation of
the highest point on a summit curve, or the lowest point on a
sag. For example, it may be necessary to determine the clearance
beneath a bridge, the depth of cover over a buried pipeline, or
the required location of a storm-water drainage inlet in a sag
curve. These points, called vertical curve turning points, do not
occur at the station of the PVI unless the back and forward tan-
gent grades are equal. The following formula may be used to
compute the distance of the turning point X� from the PVC:

(10-16)X¿ =
g1L

g1 - g2

r
2

=
g1 - g2

[2L]
=

[3 - ( - 5)]

[(2)(4.5)]
= 0.88889

Elevation PVT = 82.79 + 3 * 2.25 = 89.54

Station PVT = (21 + 25.00) + (2 + 25.0) = 23 + 50.00

Elevation PVC = 82.79 + 5 * 2.25 = 94.04

Station PVC = (21 + 25.00) - (2 + 25.00) = 19 + 00.00

g2 = + 3.00
g1 = -5.00PVI elevation = 82.79 ft

The computed value of X� is used in Equation 10-15 to
determine the curve elevation at the turning point.

Example 10-13
The data given for a vertical sag curve on a roadway plan
and profile sheet are as follows: ,

, back tangent gradient 
percent, forward tangent gradient percent, and
length of curve . Determine the curve elevations
at half-station intervals along the curve, and compute the
station and elevation of the lowest point.

Solution
Following the general procedure outlined in the two pre-
vious examples, we get the following (see Figure 10-25 and
Table 10-5):

Station PVT = (32 + 11.61) + (3 + 00) = 35 + 11.61

Elevation PVC = 54.18 + 4 * 3.00 = 66.18 ft

Station PVC = (32 + 11.61) - (3 + 00) = 29 + 11.61

L = 600 ft
g2 = 7.00

g1 = - 4.00PVI elevation = 54.18 ft
PVI station = 32 + 11.61

Table 10-4. Elevations on a Sag Curve—
Example 10-12

Station X g1X (r/2)X2 Curve Elevation

PVC 19 + 00 0.00 0.00 0.00 94.04

19 + 50 0.50 -2.50 0.22 91.76

20 + 00 1.00 -5.00 0.89 89.93

20 + 50 1.50 -7.50 2.00 88.54

21 + 00 2.00 -10.00 3.56 87.60

21 + 50 2.50 -12.50 5.56 87.10

22 + 00 3.00 -15.00 8.00 87.04

22 + 50 3.50 -17.50 10.89 87.43

23 + 00 4.00 -20.00 14.22 88.26

PVT 23 + 50 4.50 -22.50 18.00 89.54

FIGURE 10-25. Illustration 
for Example 10-13.
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From Equation 10-16, the distance from the PVC to the low
point on the curve is 

stations

Station of the PVC = 29 + 11.61

+ 2 + 18.18

Station of the low point = 31 + 29.79

Applying Equation 10-15, we compute the elevation of
the low point to be

Y = 66.18 + (-4)(2.1818) + 0.91667(2.1818)2 = 61.81ft

- 24/ - 11 = 2.1818
Xœ = g1L/(g1 - g2) = (-4)(6)/(-4 - 7) =

r
2

=
g1 - g2

[2L]
=

[ 7 - ( - 4)]

[(2)(6.00)]
= 0.91667

Elevation PVT = 54.18 + 7 * 3.00 = 75.18

Example 10-14
Determine the location and elevation of the high point on the
curve given in Example 10-11.

Solution

10-6 CURVES THROUGH
FIXED POINTS

Sometimes it is necessary to design a curve that has estab-
lished tangents so that it passes through a predetermined
point or elevation. For example, a horizontal curve may have
to be laid out to cross a stream at a special location, or to pass
no closer than a certain distance from a particular building
or other feature. The grade line along a vertical curve may
have to meet the existing elevation of an intersecting road, or
a minimum amount of clearance may be specified for an
underground utility or an overhead structure at a particular
station along the route. The following examples illustrate
solutions to problems of this type.

Example 10-15
Determine the radius of a simple curve that will connect the
given tangents and pass through point P, which is located
from the PI by distance and angle measurements as shown
in Figure 10-26.

= 39.20 ft

Y = 26.82 + 0.06 * 412.50 + (-7.2727 * 10-5)(412.50)2
= 12 + 39.93

Station of the high point = (8 + 27.43) + (4 + 12.50)

Xœ =
0.06 * 550

[0.06 - (-0.02)]
=

33
0.08

= 412.50 ft

FIGURE 10-26. Illustration for
Example 10-15; designing a 
horizontal curve to pass through 
a fixed point.

Table 10-5. Elevations on a Sag Curve—
Example 10-13

Station X g1X (r/2)X2 Curve Elevation

PVC 29 + 11.61 0.00 0.00 0.00 66.18

29 + 50 0.3839 -1.54 0.14 64.78

30 + 00 0.8839 -3.54 0.72 63.36

30 + 50 1.3839 -5.54 1.76 62.40

31 + 00 1.8839 -7.54 3.25 61.89

31 + 50 2.3839 -9.54 5.20 61.84

32 + 00 2.8839 -11.54 7.63 62.27

32 + 50 3.3839 -13.54 10.50 63.14

33 + 00 3.8839 -15.54 13.83 64.47

33 + 50 4.3839 -17.54 17.62 66.26

34 + 00 4.8839 -19.54 21.86 68.50

34 + 50 5.3839 -21.54 26.57 71.22

35 + 00 5.8839 -22.54 31.74 74.38

PVT 35 + 11.61 6.0000 -24.00 33.00 75.18
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Solution
The angle and distance measurements from the PI allow
the computation of distances X and Y by trigonometry, as
follows:

Applying the Pythagorean theorem to right triangle
OPQ, we can write . And because

, we can also write
. After squaring

and combining terms, we get the following quadratic equation:
. Solving this with the quadratic

formula (Appendix C), with , and
, we get the following:

(The smaller root or solution to the quadratic equation,
70.86 ft, is not physically possible for this particular problem.)

Example 10-16
A vertical curve is to connect two tangents that intersect at
station 21 + 00, as shown in Figure 10-27. The elevation of
the curve at station 22 + 00 must be equal to or greater than
108.00 ft to provide adequate cover over an underground
pipeline. What is the required length of curve?

Solution
The distance (in stations) from the PVC to station 22 + 00
can be expressed as . Also, the elevation of
the PVC can be expressed as , and

Applying Equation 10-15 and substituting these expres-
sions for YPVC, X, and r/2, we can write the following equation:

Rearranging terms and simplifying the expression, we get

L2 - 9L + 4 = 0

+ (4/L)(0.5L + 1.0)2
108.00 = (100.00 + 2.5L) + (-5)(0.5L + 1.00)

r/2 = (g2 - g1)/[2L] = [3 - (-5)] /[2L] = 8/[2L] = 4/L
100.00 + 5(L/2)

X = L /2 + 1.00

R =
- (-1023.25) ; 31023.252 - 4(1.00) (67484)

(2) (1.00)

c = 67484
a = 1.00, b = -10023.25

R2 - 1023.25R + 67484 = 0

R2 = (0.5774 R - 51.30)2 + (R - 140.95)2
T = R tan (¢/2) = R tan 30 = 0.5774 R

R2 = (T - X )2 + (R - Y )2

Y = 150.00 * sin 70 = 140.95 ft

X = 150.00 * cos 70 = 51.30 ft

Solving with the quadratic formula, we get L = 8.53 sta-
tions (the smaller root, 0.47, is clearly not feasible for this
problem). For convenience in computing the curve, L could
be rounded off up to 9.00 stations or 900 ft; this would raise
the curve elevation at station 22 + 00 slightly above the
108.00-ft minimum.

10-7 EARTHWORK
COMPUTATIONS

The movement of soil or rock from one location to another
for construction purposes is called earthwork. A volume of
earth that is excavated, that is, removed from its natural loca-
tion, is called cut. Excavated material that is placed and com-
pacted in a different location is called embankment or fill.
The construction of the grade line for a new road or railway
typically involves much cut and fill (see Figure 10-1); the
grading, or reshaping, of the ground for a building site also
involves cut and fill. Surveyors are often called on to measure
earthwork quantities in the field and to compute the volumes
of cut and fill.

Earthwork quantities or volumes are measured in terms
of cubic yards (yd3) or cubic meters (m3). Generally, the
volume is computed as the product of an area and a depth or
distance. The area may be that of a roadway cross section or
that enclosed within a particular contour line; the distance
or depth is that between the cross-section stations, or the
contour interval. The first part of this section deals with
the computation of irregular areas; the second part covers
the computation of volumes and the balancing of cut-and-
fill quantities.

Cross Sections and Areas
As previously defined, a cross section is a short profile taken
perpendicular to the centerline of a roadway or other
facility (Section 5-5). The cross section at a station along a
road will typically show the profile of the original ground

= 108.44ft

Check: Y = 100 + (5)(4.5) + (-5)(5.5) + (8/18)(5.5)2

FIGURE 10-27. Illustration for
Example 10-16; designing a vertical
curve to pass through a fixed point.
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surface, the base of the roadway, and the side slopes of the
cut or fill. The base is the horizontal line to which the cut
or fill is first constructed; its width depends primarily on
the number of lanes and the width of roadway shoulders
(Figure 10-28).

A side slope is expressed as the ratio of a horizontal dis-
tance to a corresponding unit of vertical distance for the cut
or fill slope (Figure 10-29). This ratio depends largely on the
type of soil and on the natural angle of repose at which it
remains stable. A side slope of 1:1 is possible for some com-
pacted embankment sections, whereas a flatter ratio of 2:1 or
more is typical for a side slope in a cut section. Of course, a
vertical concrete retaining wall may be built to hold back the
soil where very flat side slopes would require excessively
wide right-of-way acquisition. (Note that the definition of
side slope is opposite that of gradient, which is “rise over run,”
as explained in Section 9-2.)

Plotting Cross Sections Route cross sections are usu-
ally plotted to scale on a special grid or “cross-section
paper”; a typical scale is 1 in = 5 ft (1:60) for both the
vertical and the horizontal axes. Sometimes the vertical
scale is exaggerated if the depth of cut or fill is very shallow.

For wide sections with flat side slopes, a horizontal scale as
small as 1 in = 20 ft (1:240) may be used to conserve space
on the paper. A cross section is usually drawn for each half-
station or quarter-station interval along the route, and the
station number is recorded just below the section view
(Figure 10-30).

To draw a section, a vertical line is first drawn to
represent the route centerline (the symbol CL is often used
to identify a centerline). Enough space must be left
between adjacent centerlines so that the cross sections do
not overlap on the drawing. The vertical scale is posi-
tioned individually for each section, and the existing
terrain elevations are plotted from the cross-section field
notes (see Figure 10-30). The base elevation is taken from
the proposed alignment profile drawing; it is drawn to the
appropriate scaled width as a horizontal line, bisected by
the centerline. The side slopes are then drawn at the speci-
fied inclination, from each end of the base to the existing
terrain line.

For preliminary earthwork computations, it is suffi-
cient to use a cross section with the simple horizontal base.
For more accurate work, a template section is superimposed
on each cross section. The template is a plastic or paper

FIGURE 10-28. Typical cross sections: (a) embankment or fill, (b) mixed or sidehill,
and (c) excavation or cut.

FIGURE 10-29. Designation of side slope, S:1.



248 CHAPTER TEN

form representing the constant shape of the finished section,
which includes the thickness, crown, and superelevation of the
pavement, shoulders, and drainage swales (Figure 10-31).
The template section increases the cross-sectional area of
earthwork in a cut section, and decreases the area in a fill
section. This, in turn, affects the respective earthwork
volumes.

Section Areas The area enclosed in a section by the nat-
ural terrain, the side slopes, and the base can be determined
in several ways. These include approximate methods such as
simply counting the number of enclosed grid boxes. In a
method called stripping, the section is divided into several
vertical strips, or “slices,” of constant width. The sum of the
altitudes of the strips is determined by placing a long strip of

FIGURE 10-30. Plotting a series of route cross sections.

FIGURE 10-31. Sidehill section with template. Areas numbered 1–7 constitute the
constant shape of the road surfacing.
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paper successively over each slice, as shown in Figure 10-32,
and marking the accumulated heights. The total length of
the paper strip is multiplied by the constant width (w) of a
section or slice to compute the area of the cross section.

Plane geometry may be used to compute a cross-section
area by first dividing the section into regular shapes, including

triangles and trapezoids. The dimensions of those figures can
be determined by scaling or from field note data, and their
areas computed from basic geometric formulas. The sum of
those areas is the area of the cross section.

Area by Planimeter A planimeter is an instrument that
will measure the area of a plane figure of any shape when the
tracer point of the instrument is moved around the perimeter
or edge of the figure. The planimeter is used by surveyors and
civil engineering technicians for determining storm drainage
basin areas, checking property survey areas, determining
areas of roadway cross sections, and performing other tasks.
It is particularly useful for measuring the areas of irregularly
shaped figures, and accuracies better than ±1 percent can be
obtained under most circumstances.

An electronic planimeter displays area measurements in
digital readout directly in square inches or square centimeters;
it can be instantly set on zero, and most models are designed
to facilitate the cumulative adding and averaging of areas
(Figure 10-33a). A mechanical planimeter includes a graduated

FIGURE 10-32. Cross-section area by stripping.

(a)

Display

Operation
keys

Tracer lens

Tracer arm

(b)

Anchor

Reading
dial and
vernier

Tracer arm

Tracer lens

FIGURE 10-33. (a) An electronic planimeter. (b) A conventional mechanical polar
planimeter. (Courtesy of Sokkia Corporation.)
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drum and a disk that is read to four digits with a vernier; most
have an adjustable tracer arm, making it possible to set the
instrument so that the drum and disk readings are related to
the area by a convenient ratio (Figure 10-33b). For some
electronic planimeters, and most mechanical planimeters, it is
necessary to convert the instrument reading to an area that is
related to the scale of the drawing used.

Some general requirements for the use of a planimeter
are to

1. Perform all work on a smooth, horizontal surface.

2. Select and mark a starting point on the perimeter of the
figure. Movement of the tracer arm around the figure
should begin and end exactly at that point. It is more
important to start and stop at the same point than to
precisely follow the perimeter.

3. Trace the perimeter in a clockwise direction (so that the
readings increase). If the tracer point strays slightly off
the perimeter, compensate by moving off to the other
side of the line to make the areas of the errors about
equal.

4. To avoid blunders, and for increased accuracy, trace the
figure until you get at least three consistent area read-
ings with the planimeter, and use an average reading to
compute the enclosed area. Compute the average of
only those consistent area readings.

Areas of polygons can also be determined by using a
digitizer tablet and CAD software. This is done by simply
marking each point defining the polygon with a mouse. The
computer software then determines a coordinate for the
points and automatically calculates the area by the coordi-
nate method.

Example 10-17
An electronic planimeter is used to trace a cross section that
was drawn to a scale of 1 in = 10 ft. The measured area is
34.56 in2. What is the scaled area of the section in square
yards?

Solution
Because 1 in = 10 ft, we can write (1 in)2 = (10 ft)2 and

The cross-section area, then, is

and

Example 10-18
An electronic planimeter is used to trace the shoreline of a
lake that was drawn to a scale of 1:2000. The measured
area is 123.45 cm2. What is the scaled area of the lake in
hectares?

3456 ft2 *
1 yd2

9 ft2
= 384 yd2

34.56 in2 *
100 ft2

1 in2
= 3456 ft2

1 in2 = 100 ft2

Solution
Because the drawing scale is 1:2000, we can write

and

The area of the lake, then, is

and

Example 10-19
A mechanical planimeter is used to trace the boundary of a
tract of land drawn to a scale of 1 in = 50 ft. The instrument
is calibrated so that 1 unit on the planimeter scale equals
0.02 in2 of area. When the tracer point is positioned over the
starting point on the perimeter, the initial planimeter scale
reading is 2345 units (the 2 is read on the drum, the 34 is
read on the disk, and the last digit, 5, is read on the vernier).
After tracing the perimeter once, the reading is 3855 units;
the final reading after tracing the figure three times around is
6845. What is the scaled area of the tract of land in acres
(1 ac = 43,560 ft2)?

Solution
For once around the figure, the area corresponds to 3855 –
2345 = 1510 planimeter units. The average for three times
around is

Because 1500 is close to 1510, a blunder is not likely.
The area is

Because 1 in = 50 ft, we get

The area of the tract, then, is computed to be

The Coordinate Method A method for computing the
area enclosed by a loop traverse using station coordinates is
described in Section 7-3. The same procedure is often
applied to determine the area of a cross section.

The “coordinates” for a point on the edge or perimeter of
the section are the depth of cut or fill, relative to the base, and
the distance of the point from a vertical axis, usually the
centerline. Depths above the base may be considered positive,

30 in2 *
2500 ft2

1 in2
*

1 ac

43 560 ft2
= 1.72 ac

1 in2 = 2500 ft2

1500 units *
0.02 in2

1 unit
= 30 in2

6845 - 2345
3

= 1500 units

49 380 m2 *
1 ha

10 000 m2
= 4.94 ha

123.45 cm2 *
400 m2

1 cm2
= 49 380 m2

(1cm)2 = (20  m)2 or 1cm2 = 400 m2

1 cm = 2000 cm *
1 m

100 cm
= 20 m
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and those below the base negative. Distances to the right of
the centerline are taken as positive, and those to the left are
negative. The pairs of numbers are arranged as a series of
ratios, and the area is computed as for a traverse. Selected
points generally include the ends and center of the base, the
points where the side slopes meet the ground surface, and any
terrain break points. The coordinates can be scaled from the
plotted cross section or can be computed from cross-section
field notes.

Example 10-20
The earthwork section shown in Figure 10-34 has six coordi-
nated points, expressed as the ratio of the depth of cut to
the horizontal distance of the point from the centerline (Y/X),
in feet. Compute the cross-sectional area, in square yards.

Solution
It is convenient to use the center of the base, with coordi-
nates 0/0, as a starting and ending point. First, arrange the
coordinates in a series by moving counterclockwise around
the cross section:

Pt. 1 Pt. 2 Pt. 3 Pt. 4 Pt. 5 Pt. 6 Pt. 7 Pt. 1

The sum of the products of diagonal terms upward to the
right is

The sum of the products of terms downward to the right is

The difference between the two sums is 
.778ft2

(-709) =69 -

(6.2)( - 28) + (8.5)( - 42) + (8.9)( - 20) = - 708.6

20 * 6 + 32 * 6.2 + (-28)(8.9) = 69.2

0
0

0
20

6
32

6.2
0

8.5
-28

8.9
-42

0
-20

0
0

Because 778 ft2 represents the double area (see
Section 7-3), we compute the cross-sectional area to be

Instead of using plus or minus signs for depths below or
above the base, sometimes the letter C is used to designate
cut and F to indicate fill (see Figure 10-3). Wooden slope stakes
or grade stakes would be labeled to indicate the amount of cut
or fill and the distance left or right of the centerline. For
instance, a stake at point 3 in Example 10-20 would be marked
C 6/32. (Slope staking and grade staking are described in
Chapter 11.)

Example 10-21
The following notes describe the ground at a section in fill:

The base is 50 ft wide. Sketch the section and label the
points with coordinates. Compute the area.

Solution
A sketch of the cross section is shown in Figure 10-35. The
area is computed as follows:

(-25)(-11.8) + (-42.5)(-14.3) + (-32.0)(-15.8) = 1408

(-11.8)(-32.0) + (-14.3)(0) + (-15.8)(65.4) +
(-16.3)(25) = -1063

Earthwork Volumes
Cross-section areas are computed for the purpose of deter-
mining the volumes of cut or fill between adjacent sections.
One of the most common methods for computing the volume
of cut or fill is to use the average end-area formula, expressed
as follows (Figure 10-36):

(10-17)

where A1, A2 = areas of adjacent sections, ft2 or m2

L = distance between stations, ft or m

Volume =
(A1 + A1) (L)

2

[1408 - (-1063)] /2 = 1236 ft2 = 137 yd2

0
0

0
-25

-11.8
-42.5

-14.3
-32.0

-15.8
0

-16.3
65.4

0
25

0
0

F 11.8
-42.5

  
F 14.3
-32.0

  
F 15.8

0
  

F 16.3
65.4

778 ft2

2
*

1 yd2

9 ft2
= 43.2 yd2

FIGURE 10-34. Coordinates of points on a section are
written as the ratio of height from the base to distance from
the centerline. For example, point 6 is 8.9 ft above the base
and 42 ft left of the centerline. (In a fill section, a point
below the base would have a negative sign.)

FIGURE 10-35. Illustration 
for Example 10-21.
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Although the average end-area formula gives only
approximate volumes, it is accurate enough for most practi-
cal applications. The accuracy can be increased, if necessary,
by using more sections (i.e., reducing L) or by using a more
precise prismoidal volume formula.

Example 10-22
Compute the volume of fill between station 4 + 00, where
the section area , and station 5 + 00, where

.

Solution
Applying Equation 10-17, we get

and

(Note: Cubic feet are divided by 27, not 9, to get cubic
yards!)

At a point where the grade line intersects the ground, a
transition from cut to fill, or from fill to cut, must occur; that
point is called the grade point. The cross section at the
grade point may be a sidehill section (see Figure 10-28b).
For preliminary earthwork computations, it is usually
acceptable to consider the net area at the grade point to be
zero. The station of the grade point can be taken from the
vertical alignment profile drawing. A net volume of cut or fill
can be computed between stations on each side of the
grade point.

Example 10-23
At station 6 + 00, the cross-section area is 100 ft2 of fill. At
station 7 + 00, the area is 150 ft2 of cut. The grade point is at
station 6 + 35. What is the net volume of cut or fill between
stations 6 + 00 and 7 + 00?

Solution
The volume of fill between station 6 + 00 and the grade point is

Fill =
100 + 0

2
* 35 = 1750 ft2

17 850 ft3 *
1 yd3

27 ft3
= 661 yd3

Volume =
123 + 234 * 100

2
= 17 850 ft3

A = 234 ft2
A = 123 ft2

The volume of cut between the grade point and station
7 + 00 is

The net quantity of earthwork between full stations 
6 + 00 and 7 + 00 is approximately 

of cut. (After slope stakes have been set and transi-
tion points have been more accurately located, more accu-
rate earthwork computations can be made if necessary.)

The Mass Diagram One of the objectives in vertical
alignment design is to balance the volumes of cut and fill.
This is to minimize the quantity of earth that must either be
“borrowed” from somewhere else and hauled to the site or
be disposed of off-site. The preliminary grade line can be
located on the profile so that earthwork appears to be
balanced, but this is difficult to do visually because of the
effect of shrinkage. Shrinkage refers to the decrease in
volume of soil due to compaction in an embankment. For
example, if 1 yd3 of soil is excavated from its natural position
and then compacted in a fill, it may occupy a volume of only
0.8 yd3. It would be characterized as having a shrinkage of
20 percent, or a shrinkage factor of 0.8.

A mass diagram may be used to determine the extent to
which cut and fill are balanced in a preliminary alignment
design. The mass diagram is also useful to evaluate haul dis-
tances and to plan the overall earthwork operation. It is sim-
ply a graph that depicts the accumulation of cut-and-fill
quantities along the route (Figure 10-37). Volumes of cut are
positive, and volumes of fill are negative. The fill volumes are
adjusted for shrinkage so that all volumes shown on the dia-
gram are equivalent to natural or “in situ” soil conditions.

The ordinates (y values) are the cumulative algebraic
sums of earthwork volume starting at station 0 + 00. The
abcissas (x values) are the stations. The ordinates are con-
nected by a smooth curve to form the mass diagram. Usually,
the mass diagram is plotted directly below the profile of the
grade line; this facilitates visualization of earthmoving activ-
ities. Some general characteristics of the mass diagram are
shown in Figure 10-37 and are summarized as follows:

1. The mass curve rises from left to right in areas of cut.

2. The mass curve falls from left to right in areas of fill.

116 yd3
(4875 - 1750) , 27 =

Cut =
0 + 150

2
* 65 = 4875 ft3

FIGURE 10-36. The average 
end-area method can provide a 
reasonable approximation of earth-
work volume along a route.
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3. Grade points on the profile correspond to the peaks of
crests and the low points in sags (or valleys) of the mass
diagram.

4. Peaks occur at transitions from cut to fill; low points
occur at transitions from fill to cut.

5. Any horizontal line that intersects the mass curve at two
points is a balance line; the volume of cut equals the
volume of fill between the stations of the balance points.

The amount of “unbalance,” that is, the extra cut or fill
along a route or section of a route, is seen as the ordinate
value of the mass diagram at the last station. If this is exces-
sive, the designer will adjust the position of the grade line
in an attempt to bring the volumes of cut and fill into
closer agreement; the mass diagram will then be replotted
to check the balance. Sometimes, however, balancing cut
and fill may be of secondary importance in alignment
design; for example, a fixed grade intersection elevation
may control the position of the grade line at a particular
section of the route.

Volume by the Grid Method When fill material must
be hauled to a jobsite from an outside source, such as for
embankment construction, the source is called a borrow
pit. Payment for borrow is generally on a unit price basis
(i.e., dollars per cubic yard or cubic meter), and the sur-
veyor is called on to measure the quantity of the material
excavated from the borrow pit. This is done by the grid
method (Figure 10-38). A set of permanent marks or stakes
are established just outside the borrow pit area to form a
grid of small squares; the squares are usually 50 ft (15 m) or
25 ft (7.5 m) in size.

Rod shots are taken at the intersections of the grid,
before and after excavation, and each change in elevation is
computed. For one square, the volume of borrow is approxi-
mately equal to the average of the elevation change at
the corners times the area of the square. For example, if
the changes in elevations at the corners of a 50-ft square are
3.5, 3.9, 4.7, and 5.2 ft, the excavated volume is simply (3.5 +
3.9 + 4.7 + 5.2)/4 * (50 ft)2 = 4.3 ft * 2500 ft2=10,800 ft3 =
400 yd3. (Quantities computed in cubic feet must be divided
by 27 ft3/yd3 to convert the volume to cubic yards.)

FIGURE 10-37. The mass diagram for evaluating earthwork quantities.

FIGURE 10-38. Grid method for computing volumes of
excavation at a borrow pit.
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Adjacent squares can be combined as a group,and the change
in elevation at each grid point can be multiplied by the number of
grid squares it touches, to avoid repetitive computations; this is
illustrated by the numbers at each grid point in Figure 10-38. The
sum of these results is divided by four and multiplied by the area
of one square.Volumes for the parts of the borrow pit not covered
by a full grid square may be computed by taking the product of the
figure area (e.g., a triangle) and the average depth of cut.

Example 10-24
For the borrow pit grid shown in Figure 10-39, compute the
excavated volume, in cubic yards. The numbers at the grid
points represent the depth of cut, in feet.

Solution
The grid figures can be grouped as six adjacent 50-ft
squares (1, 2, 4, 5, 6, and 9), three separate triangles (3, 8,
and 10), and a 50 × 25 ft rectangle.

For the group of squares, the sum of the corners is (1.8) +
(2 * 2.0) + (1.6) + (2 * 1.9) + (4 * 2.2) + (3 * 2.3) + (2.1) + (1.5) + (3 *
2.1) + (3 * 2.4) + (1.8) + (1.2) + (1.8) = 48.8 ft. The total volume
excavated within those grid squares is 
= 30,500 ft3.

For triangle 3, the average cut is 
= 2.0 ft. The area of the triangle is .
The approximate volume, then, is area * height = 2.0 ft *
1250 ft2 = 2500 ft3. For triangles 8 and 10, the volumes are
2000 ft3 and 2500 ft3, respectively.

For the rectangle, the average cut is 1.425 ft, and the
volume is . Summing the com-
puted volumes and dividing by 27, we get a total volume of
(30,500 + 2500 + 2000 + 2500 + 1781)/27 = 39,281 ft3/27 L
1450 yd3. For larger grids, especially when there are more
individual groups of areas, it is helpful to set up the com-
putations in tabular form.

1.425ft * 1250 ft2 = 1781ft3

1/2 * 50 * 50 = 1250 ft2
(1.6 + 2.3 + 2.1)/2

(48.8/4)(50 * 50)

FIGURE 10-39. Illustration 
for Example 10-24.

Questions for Review

1. Outline and briefly discuss the general procedure for
performing a route survey.

2. What kinds of curves are usually used to connect tan-
gents along the horizontal alignment of a roadway? What
kinds of curves are used along the vertical alignment?

Why are different types of curves used for the horizontal
and vertical alignments?

3. Make a sketch of a horizontal curve and label the key parts.

4. Make a sketch of a vertical curve and label the key parts.

5. Define degree of curve. How does it vary with the curve
radius?
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6. Briefly describe how to determine the station on the
back tangent where a horizontal curve begins, and the
station on the forward tangent where it ends.

7. What is meant by restationing a route baseline?

8. Briefly describe a common procedure for laying out a
horizontal curve and determining the relative accuracy
of the work.

9. Sketch and label a compound curve and a reverse curve.

10. Define the terms gradient, summit curve, and sag curve.

11. How are distances measured along the vertical align-
ment? How does the “length” of a vertical curve differ
from that of a horizontal curve?

12. What is a vertical curve turning point? Why is it some-
times necessary to compute its position?

13. Under what circumstances might it be necessary to
design a horizontal or vertical curve to pass through a
fixed point or elevation?

14. What are cut and fill?

15. What is a planimeter? Briefly describe how it is used.

16. Briefly describe the average end-area method for com-
puting earthwork quantities.

17. What is the mass diagram, and what is it used for?
Briefly describe its general characteristics.

18. Briefly describe the grid method for computing volume.

Practice Problems

1. A simple horizontal curve of radius 750 ft connects two
tangents that intersect at an angle of 66°30�. Compute
the parts of the curve, including T, L, LC, E, and M.

2. A simple horizontal curve of radius 125 m connects two
tangents that intersect at an angle of 105°40�. Compute
the parts of the curve, including T, L, LC, E, and M.

3. What is the degree of curve (arc definition) in Problem 1?

4. What is the degree of curve (arc definition) in Problem 2?

5. A simple curve is to be laid out so that its middle ordinate
is at least 75 ft. If the tangents intersect at an angle of 40°,
what is the highest degree of curve that can be used?

6. A simple curve is to be laid out so that its external
distance is 35 m or less. If the tangents intersect at an
angle of 80°, what is the smallest degree of curve that
can be used?

7. The radius of a simple curve is twice its tangent dis-
tance. What is the angle of intersection?

8. The radius of a simple curve is equal to the length of the
long chord. What is the angle of intersection?

9. For the simple curve in Problem 1, if the station of the
PI is 22 + 50, what are the stations of the PC and the PT?

10. For the simple curve in Problem 2, if the station of the
PI is 12 + 00, what are the stations of the PC and the PT?

11. Given:

Tangent to , azimuth = 

Tangent to , azimuth = 

Tangent to , azimuth = 

The tangents are to be connected by simple curves, each
with a degree of curvature = 8°. Determine the stations
of the PCs and the PTs along the final route, and deter-
mine the equation of chainage at the endpoint.

12. Given:

Tangent 1, to , bearing = 

Tangent 2, to , bearing = 

Tangent 3, to , bearing = 

The tangents are to be connected by simple curves, each
with a degree of curvature = 6°. Determine the stations
of the PCs and the PTs along the final route, and deter-
mine the equation of chainage at the endpoint.

13. A simple curve with Da = 18° has its PC at station
. What are the deflection angles for stations on

the curve of , and , from the
PC? What is the chord length from the PC to station

, and from station to station ?

14. A simple curve with has its PC at station
. What are the deflection angles for stations on

the curve of , , and , from the
PC? What is the chord length from the PC to station 16
+ 00, and from station 16 + 00 to station 16 + 50?

15. Given, for a simple curve:
and the station of the . Set up the field
notes for staking out the curve with deflection angles
and chords.

16. Given for a simple curve: ,
and the station of the PI = 48 + 25.32. Set up the field
notes for staking out the curve with deflection angles
and chords.

17. Given for a simple curve: ,
and the station of the . Set up the field
notes for staking out the curve with deflection angles
and chords.

18. Given for a simple curve: ,
and the station of the . Set up the field
notes for staking out the curve with deflection angles
and chords.

19. The PI of a simple horizontal curve with R = 750 ft is
not accessible. Point A is established on the back tan-
gent at station 75 + 00, and point B is set on the
forward tangent. The distance AB is measured as
322.33 ft, the angle at A is measured as 32°15�, and the
angle at B is determined to be 41°30�. Determine the
stations of the PC and the PT.

20. The PI of a simple horizontal curve with R = 1200 ft is not
accessible. Point A is established on the back tangent at
station 115 + 00, and point B is set on the forward tangent.

PI = 28 + 37.42
R = 600  ft,  ¢ = 42°34œ28œœ

PI = 38 + 17.25
R = 500  ft,  ¢ = 58°08œ40œœ

R = 400  ft,  ¢ = 66°18œ24œœ

PI = 22 + 41.64
R = 350ft,  ¢ = 72°34¿30–

17 + 0016 + 5016 + 00
15 + 25

Da = 12°

12 + 0011 + 0011 + 00

13 + 0011 + 00,  12 + 00
10 + 50

S14°30œ W38 + 0023 + 00

S49°00œ E23 + 0015 + 75

S33°30œ E15 + 750 + 00

24°30œ28 + 753, 19 + 00

79°00œ19 + 002,  12 + 50

53°30œ12 + 501,  0 + 00
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The distance AB is measured as 987.65 ft, the angle at A is
measured as 43°45�, and the angle at B is determined to be
39°30�. Determine the stations of the PC and the PT.

21. Given, for a compound curve: plus of
; the first radius ,

, . Compute the pluses of PC, PCC,
and PT and the length T2.

22. Given for a compound curve: plus of
, the first radius =

, . Compute the pluses of PC, PCC,
and PT and the length T2.

23. Given for a reverse curve: plus ,
, , . Com-

pute , plus PRC, and plus PT.

24. Given for a reverse curve: plus ,
, , . Com-

pute , plus PRC, and plus PT.

25. For a preliminary vertical alignment of a roadway, the
straight tangent sections are established as follows:

Station 0 + 00, tangent elevation = 1055.00
Station 23 + 00, tangent elevation = 1107.75
Station 40 + 00, tangent elevation = 1056.75
Station 65 + 00, tangent elevation = 1156.00

Determine the gradient of each tangent and the eleva-
tion at 1000-ft intervals along the tangents.

26. For a preliminary vertical alignment of a roadway, the
straight tangent sections are established as follows:

Station 0 + 00, tangent elevation = 73.00
Station 9 + 50, tangent elevation = 49.25
Station 22 + 25, tangent elevation = 93.00
Station 29 + 00, tangent elevation = 105.00

Determine the gradient of each tangent and the
elevation at 500-ft intervals along the tangents.

27. A vertical parabolic curve has its PVI at station 29 +
25.00 and elevation 87.52. The grade of the back tangent
is 2.5 percent, the grade of the forward tangent is 
–4.5 percent, and the curve length is 550 ft. Set up a
table showing curve elevations at the PVC, at the PVT,
and at half-station points along the curve. Compute the
station and elevation of the curve turning point.

28. A vertical parabolic curve has its PVI at station 14 +
75.00 and elevation 76.29. The grade of the back tangent
is 3.4 percent, the grade of the forward tangent is 
–4.8 percent, and the curve length is 450 ft. Set up a
table showing curve elevations at the PVC, at the PVT,
and at half-station points along the curve. Compute the
station and elevation of the curve turning point.

29. A vertical parabolic curve has its PVI at station 18 +
50.00 and elevation 69.32. The grade of the back tangent
is –2.8 percent, the grade of the forward tangent is 5.6
percent, and the curve length is 600 ft. Set up a table
showing curve elevations at the PVC, at the PVT, and at
half-station points along the curve. Compute the station
and elevation of the curve turning point.

¢1,  ¢2

b = 25°17œ20œœAB = 283.17œa = 44°32œ10œœ
PC = A = 1532.71

¢1,  ¢2

b = 22°34œ16œœAB = 276.82a = 47°29œ14œœ
PC = A = 1729.38

R2 = 600œ62°18œ34œœ
¢1R1 = 300¿,¢ = 98°32œ54œœ

PI = 12 + 87.93,

R2 = 800œ63°22œ18œœ
¢1=R1 = 400œ¢ = 97°35œ15œœ

PI = 14 + 29.31,

30. A vertical parabolic curve has its PVI at station 10 +
00.00 and elevation 54.71. The grade of the back tangent
is –3.2 percent, the grade of the forward tangent is 
5.8 percent, and the curve length is 500 ft. Set up a table
showing curve elevations at the PVC, at the PVT, and at
half-station points along the curve. Compute the station
and elevation of the curve turning point.

31. A simple curve is to connect two tangents with an
angle of intersection = 40°. The curve must pass
through a point that is located 125.00 ft from the PI, at
an angle of 70° from the back tangent, measured at the
PI. Determine the required degree of curvature (arc
definition).

32. A simple curve is to connect two tangents with an angle
of intersection = 80°. The curve must pass through a
point that is located 50.00 m from the PI, at an angle of
30° from the back tangent, as measured at the PI. Deter-
mine the required curve radius.

33. A vertical curve is to connect two tangents that intersect
at station 50 + 00 and elevation 500.00 ft. The back tan-
gent gradient is –4 percent, the forward tangent gradi-
ent is 2 percent, and the elevation of the curve at station
48 + 50 must be equal to at least 510 ft. What is the
required length of curve?

34. A vertical curve is to connect two tangents that intersect
at station 30 + 50 and elevation 800.00 ft. The back tan-
gent gradient is 3 percent, the forward tangent gradient
is –5 percent, and the elevation of the curve at station
32 + 50 must be equal to at most 785.00 ft. What is the
required length of curve?

35. A planimeter is used to trace a cross section that was
drawn to a scale of 1 in = 5 ft, and the measured area is
22.50 in2. What is the scaled area, in square yards?

36. A planimeter is used to trace the perimeter of a lake that
was drawn to a scale of 1 in = 500 ft, and the measured
area is 32.50 in2. What is the scaled area, in acres?

37. A planimeter is used to trace a cross section that was
drawn to a scale of 1:50, and the measured area is
122.50 cm2. What is the scaled area, in square meters?

38. A planimeter is used to trace the perimeter of a lake that
was drawn to a scale of 1:10,000, and the measured area
is 222.22 cm2. What is the scaled area, in hectares?

39. A mechanical planimeter is used to trace the boundary
of a tract of land drawn to a scale of 1 in = 100 ft. It is
calibrated so that 1 unit on the planimeter scale equals
0.025 in2 of area. When the tracer point is positioned
over the starting point on the perimeter, the initial read-
ing is 3456 units. After tracing the perimeter once, the
reading is 4970; the final reading after tracing the figure
four times is 9536. What is the scaled area of the tract,
in acres?

40. A mechanical planimeter is used to trace the boundary
of a tract of land drawn to a scale of 1 in = 2000 ft. It is
calibrated so that 1 unit on the planimeter scale equals
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0.03 in2 of area. When the tracer point is positioned
over the starting point on the perimeter, the initial read-
ing is 5678 units. After tracing the perimeter once, the
reading is 6233; the final reading after tracing the figure
two times is 6798. What is the scaled area of the tract, in
acres?

41. By the method of coordinates, determine the cross-
sectional areas of the sections shown in Figure 10-40.
Compute the volume of earthwork between the sections.

42. By the method of coordinates, determine the cross-
sectional areas of the sections shown in Figure 10-41.
Compute the volume of earthwork between the sections.

FIGURE 10-40. Illustration 
for Problem 41.

FIGURE 10-41. Illustration 
for Problem 42.
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43. Sketch a mass diagram for the roadway grade line
shown in Figure 10-42.

44. Sketch a mass diagram for the roadway grade line
shown in Figure 10-43.

FIGURE 10-42. Illustration 
for Problem 43.

FIGURE 10-43. Illustration 
for Problem 44.

45. For the borrow pit shown in Figure 10-44, compute the
excavated volume in cubic yards. The numbers at the
grid points represent the depths of cut, in feet.

46. For the borrow pit shown in Figure 10-45, compute the
excavated volume in cubic meters. The numbers at the
grid points represent the depths of cut, in meters.
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FIGURE 10-44. Illustration 
for Problem 45.

FIGURE 10-45. Illustration 
for Problem 46.
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CHAPTER 11

One of the most common tasks for the surveyor is to
mark on the ground the locations of buildings,
roads, pipelines, and other projects that are to be

built. The proposed locations are shown on a site plan by the
designer (a civil engineer or architect), generally by giving
appropriate distances and directions from the site boundary
lines or from horizontal and vertical control monuments.
The surveyor must transfer these given (or scaled) distances
from a drawing into the field, with a suitable degree of accu-
racy. Naturally, the accuracy required to temporarily mark
the position of a house for foundation excavation is not as
great as that required to mark the exact position of an
anchor bolt for securing a bridge girder to a pier.

This task of marking the positions of proposed infra-
structure is called construction surveying. It may also be
called location surveying or construction stakeout. The marks
placed by the surveyor typically are wooden stakes or hubs,
and they may serve as references for either horizontal
location, vertical location, or both. The vertical location or
elevation of future construction is called the grade. (This
should not be confused with the word gradient, which is the
equivalent of slope; sometimes the phrase rate of grade is
also used to express slope, that is, the ratio of a change in
elevation to a corresponding horizontal distance.) Placing
reference marks or stakes to establish the location and eleva-
tion of a project to be built is sometimes called giving line
and grade.

The stakes set by the surveyor serve as reference points for
the construction contractor who is responsible for actually
building the project. Carpenters, masons, and other skilled
craftspersons can make relatively short measurements from
the stakes to locate the exact position and height of concrete

formwork, a roadway curb, the depth of a foundation, or
other major components of the facility to be built.

The location survey process begins before the con-
tractor starts work, and usually continues throughout the
entire construction period. The surveyor must gauge her or
his work so that the necessary marks are always available to
the builder for each day’s operation, but never so far ahead
of the work that the marks might be destroyed in the rough
and tumble of the construction process.

Stakes for line or location are sometimes set at the actual
position called for in the plans, but these can serve only
temporarily because they are soon disturbed by the construc-
tion activity. For example, the actual corners of a house or
building may be staked out preceding excavation for the
foundation (see Figure 11-1). They will have to be replaced
when formwork for the concrete footings is to be built in the
excavation.

The actual field positions are best referenced by more
permanent marks that will not be disturbed and from
which construction can be located by short measurements
with a carpenter’s rule and level (see Figure 11-2). Stakes for
line are generally offset between 3 and 6 ft (1 and 2 m) from
the actual position of the facility for this purpose (see
Figure 11-3). An offset line parallels the actual construction
line, and is marked at full-station, half-station, or quarter-
station intervals, depending on the type and dimensions of
the project (see Figure 11-4). House corners are generally
staked out with 10-ft (3-m) offsets to avoid disturbance by
foundation excavation.

Construction surveying involves the application of
many of the basic techniques described earlier in this text. In
fact, the field procedure for marking line and distance, that is,
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FIGURE 11-1. One method for 
staking out the corners of a house,
showing stakes set and angles and
distances measured.

FIGURE 11-2. Setting pins to give
line and grade for curb.

setting stakes or other marks at certain distances on a given
line, was already described in Section 4-2. The process of
locating or staking out a horizontal curve, as described in
Section 10-3, is another example of a layout or construction
survey application. In this chapter, the basic procedures for
establishing line and grade using traditional instruments, as
well as modern electronic and laser devices, are discussed
and illustrated. Although it is not possible to cover all field
layout problems, some of which can get quite complex and
require special techniques, this chapter will serve as a useful
introduction to the very dynamic and challenging task of
construction surveying.

11-1 ESTABLISHING LINE
The process of giving line consists in establishing a direction
by turning a predetermined angle and placing a series of
marks along the line at predetermined distances. The angle
may be established with a transit or theodolite, and the dis-
tances are laid out with a steel tape or by electronic distance
measurement (EDM). As previously mentioned, the field
procedure for measuring the distances and setting the marks
is discussed in Section 4-2. In this section, the procedures for
setting a predetermined angle and establishing direction are
discussed.
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Setting a Predetermined Angle
An angle can be established by setting up an instrument at
the angle point, or vertex, and proceeding as follows:

1. Point at the reference mark and lock the instrument 
on line.

2. Set zero using the “set 0” button on the instrument.

3. Turn the instrument and accurately set the predeter-
mined value of the angle.

4. Set a stake or other mark on the new line (see Section 4-2).

When greater accuracy is required, the angle estab-
lished by one turn of the instrument must be measured
by repetition and the mark adjusted accordingly. The

FIGURE 11-4. Offset-line and grade
stakes for a sewer. (One set of stakes
may be used for both line and
grade.)

FIGURE 11-3. Staking out a curb.
Often only one set of stakes are
used for both line and grade.
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distance the mark must be shifted is computed by
trigonometry:

D = R tan δ (11-1)

where D = distance the mark is moved perpendicular to
the line

R = distance from the instrument to the mark

δ = difference between the predetermined angle
and the angle measured by repetition

Example 11-1
A mark is to be set at an angle of exactly 90°00�00� from a
given baseline and at a distance of 400.00 ft from the instru-
ment position. After setting the mark, the angle is measured by
repetition and determined to be 90°00�20� (see Figure 11-5).
What distance should the mark be shifted so that the angle is
exactly 90°00�00�?

The instrument can never be set up exactly over a point,
nor can the signal or target be placed exactly over its mark.
Obviously, the longer the line sighted, the less these errors
will affect direction (see Figure 11-6).

The instrument is always subject to possible motion.
Changes in temperature, settlement of the tripod, vibration,
and readjustment of stresses in the tripod are contributing
causes. Therefore, whenever a series of marks are to be set on
a line, the direction of the line of sight should be frequently
checked by pointing at the original mark, and should always
be checked after the last mark is set.

It is clear that the line of sight must be pointed repeat-
edly at certain marks. When these marks cannot be seen,
much time is wasted by sending someone with a plumb
bob or a range pole to them whenever a sight is necessary.
This can be avoided by establishing clearly visible fore-
sights for these points. For example, instead of a tack, a
finishing nail can be driven so that its head is about 1/4 in.
(6 mm) above the top of the original stake. Also, a plumb
bob, or some other device can be rigged over the mark (see
Figure 11-7).

In lieu of these, after taking line by pointing on a plumb
bob, look for an object that happens to be anywhere on line.
Letters on signboards are especially useful for this purpose.
If an object is not available, choose any flat vertical surface
on line. Set two pencil marks in line on this surface, one
about 6 in. (200 mm) above the other. Using a pencil and
yellow keel (lumber crayon), construct a target that is easily
found and identified, and that offers a precise line centered
on these marks (see Figure 11-8).

For major construction projects, important lines
should be permanently marked with monuments, and
permanent foresights should be built at each end of the
line.

11-2 ESTABLISHING GRADE
Marking elevations is usually called giving grade and grade
staking. It consists in setting marks such as tops of stakes,
nails in vertical surfaces, and keel marks at required ele-
vations. Marks may also be set at convenient elevations, with

FIGURE 11-5. Establishing an accurate angle for direction.

FIGURE 11-6. Using a long backsight reduces error.

Establishing Direction
When the direction of a line is to be established either by
turning an angle from a mark or by merely pointing at a
mark on a line, if more than one mark is available, the mark
at the greatest distance from the instrument should be used
to establish the original direction of the line of sight. In
general, the direction of a line should be established from a line
longer than itself.

Solution
The angular error is equal to 20 seconds. Applying
Equation 11-1, we get

(Note that 1° = 3600�.)

D = 400.00 tan a 20
3600

b = 400.00 * 0.000097 = 0.039ft
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indications of the vertical heights at which the actual grade is
to be established above or below them. As previously
mentioned, marks for grade are usually placed in the vicinity
of the work and transferred into position by carpenter’s lev-
els and rules. Grade can be transferred over relatively large
offset distances using a board or string line and level (see
Figure 11-9).

Three methods of giving grade, called setting grade
marks, shooting in grade, and indicating cuts and fills, are
discussed here.

Setting Grade Marks
When support is available at the proper elevation, it is possi-
ble to set marks exactly at the proposed grade. However, this
method is time consuming and not often utilized any longer.
Starting at a benchmark, a line of levels is carried to the
vicinity of the work. The instrument is thus brought into a

position at a known height of instrument (HI) from which
the rod held on the mark may be observed.

The grade rod (GR) is then determined. Grade rod is the
reading on the level rod that would be obtained from the
present instrument position if the bottom of the rod were
placed on the proposed grade. It is computed as follows (see
Figure 11-10):

GR = HI - grade (11-2)

where grade is the required or proposed elevation of con-
struction.

The rod target is set at the value of the grade rod. If the
top of a wooden stake is to be used for a mark, the stake is
driven down until, when the rod is placed on it, the target
appears on the line of sight. This is a trial-and-error process.
When the stake is driven to the proper depth, it may be cov-
ered with blue keel; these stakes are sometimes called blue
tops. Sometimes the letter G is placed on the stake to indicate

FIGURE 11-8. A type of foresight
that is easily established.

FIGURE 11-7. Typical foresights.
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FIGURE 11-9. Line and grade can 
be easily transferred from the 
surveyor’s stakes to the work, using
builder’s tools.

that the top is at the required grade. The station may be
marked on the side of a nearby guard stake.

When a grade mark is to be placed on a vertical surface
instead of the top of a stake or hub, the rod is held against
the surface and moved up or down until the target is on the
line of sight. A pencil mark or nail is then placed at the
bottom of the rod (Figure 11-11).

Obviously, several grades can be established from one
instrument position. The line of levels can then be carried to
other locations and more grades set. Finally, the line of levels
must be carried to the original or to another benchmark for
a check on the work.

Example 11-2
The HI of a level is 75.37 ft. A blue-top stake is to be set to
mark a required grade of 68.50 ft in a location where the
existing ground is only slightly lower than the required

grade. At what value should the rod target be set so that the
stake can be driven to the proper depth?

Solution
The target should be set at grade rod. Using Equation 11-2,

GR = 75.37 - 68.50 = 6.87 ft

The stake is driven, with frequent checking, until the
target at 6.87 is on the line of sight of the instrument. The
top of the stake, which may be an inch or 2 (25–50 mm)
above the ground surface, is then at the required grade.

Support not Available Very often, support is not available
in the vicinity of the work on which the actual grade can be
marked. For example, the actual grade for a foundation footing
that is meant to be 3 ft (1 m) below the ground surface cannot
be marked on the ground. Likewise, the grade for the first-floor

FIGURE 11-10. Setting a stake at grade. FIGURE 11-11. Setting a nail at grade.
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slab of a building that is designed to be 2 ft (600 mm) above
existing grade cannot be marked by a blue top because the
stake would protrude excessively above the existing ground.

Under these circumstances, it is customary to set grade
stakes, place the rod on top of the stakes, and take a reading
to determine the elevation of the stakes. The cut or fill is
then determined and the stakes (or guards) are marked
accordingly. When the required grade is above the grade
mark, the letter F precedes the amount of fill needed at that
point; for example, F 3�6� indicates that the required grade is
3.5 ft above the top of the grade stake or mark. The letter C
precedes the amount of cut required at the point, when the
required grade is below the grade mark; for example, C 2�0�
indicates that 2.0 ft of excavation is needed at that point to
reach the grade.

If the grade rod value is larger than the rod setting, the
grade will be below the top of the stake by the difference. In this
case, the stake will be marked cut, or C with the number of
feet and tenths. This may be stated as follows:

C = GR - rod (11-3)

If the grade rod value is less than the target setting on the
rod, the grade will be above the top of the stake by the differ-
ence. In this case, the stake will be marked fill, or F with the
number of feet and tenths. This may be stated as follows:

F = rod - GR (11-4)

Thus, when the ground is not at the right height for set-
ting a stake at grade, the problem is to determine how many
half feet to add to or subtract from the grade rod value. This
is clarified in the following examples.

Example 11-3
It is required to set a stake to mark a grade of 46.94 ft. The
HI is determined to be 55.28 ft, and the reading of the rod on
the stake is 3.34 ft. Determine the appropriate target setting
and the amount of cut or fill to be marked on the stake.

Solution
First, apply Equation 11-2 to compute grade rod as follows:

GR = HI - grade = 55.28 - 46.94 = 8.34 ft

Because the rod on the stake reads 3.34, it is clear that
the required grade is several feet below the ground (see
Figure 11-12).

In this case, the grade rod value is larger than the rod
setting. Applying Equation 11-3, we compute the amount of
cut to be

C = 8.34 - 3.34 = 5.0 ft = 5�0�

Example 11-4
It is required to set a stake to mark a grade of 42.27 ft. The
HI is determined to be 48.52 ft, and the reading of the rod on
the stake is 9.75 ft. Determine the amount of cut or fill to be
marked on the stake.

Solution
First, apply Equation 11-2 to compute grade rod, as follows:

GR = HI - grade = 48.52 - 42.27 = 6.25 ft

Because the rod on the stake reads 9.75, it is clear that
the required grade is several feet above the ground (see
Figure 11-13).

In this case, the grade rod value is less than the rod
setting. Applying Equation 11-4, we compute the amount of
fill to be

F = 9.75 - 6.25 = 3.5 ft = 3�6�

Indicating Cuts and Fills
The most rapid and, in many ways, the best method of
giving grade is to indicate the cuts or fills measured from
convenient objects near the work. Usually the tops of line
stakes (centerline or offset) or other line marks are used.

The elevations of the tops of the line stakes or of other
objects chosen are determined by profile leveling. The values
of the cuts or fills are computed by comparing the elevation
of each mark with the grade at that particular position.
They are computed in hundredths of a foot, reduced to
inches, and marked on the stakes or near the marks (see

FIGURE 11-12. Setting a grade stake when the supporting
ground is too high above grade.

FIGURE 11-13. Setting a grade stake when the supporting
ground is too far below grade.
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Table 11-1. Typical Cut Sheet

Sta.
Stake

Elevation
Proposed 
Elevation Difference Cut Fill Remarks

Inlet 8 411.40 398.61 -12.79 12� � 91⁄2� 7� off grate

411.40 394.93 -16.47 16� � 55⁄8� 7� off inv

411.39 398.61 -12.78 12� � 93⁄8� 12� off grate

411.39 394.93 -16.46 16� � 51⁄2� 12� off inv

Inlet 9 400.51 398.61 -1.90 1� � 103⁄4� 10� off grate

400.51 394.25 -6.26 6� � 31⁄8� 10� off inv in

400.51 394.00 -6.51 6� � 61⁄8� 10� off inv out

399.77 398.61 -1.16 1� � 17⁄8� 15� off grate

399.77 394.25 -5.52 5� � 61⁄4� 15� off inv in

399.77 394.00 -5.77 5� � 91⁄4� 15� off inv out

Inlet 10 376.38 375.50 -0.88 0� � 101⁄2� 10� off grate

376.38 373.45 -2.93 2� � 111⁄8� 10� off inv

375.54 375.50 -0.04 0� � 01⁄2� 15� off grate

375.54 373.45 -2.09 2� � 11⁄8� 15� off inv

Inlet 11 371.65 373.00 1.35 1� � 41⁄4� 10� off grate

371.65 371.50 -0.15 0� � 13⁄4� 10� off inv

371.33 373.00 1.67 1� - 8� 15� off grate

371.33 371.50 0.17 0� - 2� 15� off inv

FIGURE 11-14. Giving grade 
by indicating cut or fill.

Figure 11-14). The required “cuts and fills” are sometimes
provided in tabular form on a cut sheet. The cut sheet is
referenced to the grade stakes by either stationing or consec-
utive numbering (see Table 11-1).

When the required grade is above the grade of the stake,
the letter “F” precedes the amount of fill needed at that
point. For example, F 3�6� indicates that the required grade

is 3.5 ft above the top of the grade stake. The letter “C”
precedes the amount of cut required at the point when the
required grade is below the grade mark. For instance, C 2�4�
indicates that 2.33 ft of excavation is needed at that point to
reach grade. The tops of the stakes or other objects are
usually covered with keel to indicate that grade should be
measured from those points.

(Continued)



Table 11-2. Converting Hundredths to Inches

Inch
Quarter
Points Computations

Inch Values 
Hundredths 

of a Foot

0 0 0

1 0 + 8 8

2 25 - 8 17

3 25 25

4 25 + 8 33

5 50 - 8 42

6 50 50

7 50 + 8 58

8 75 - 8 67

9 75 75

10 75 + 8 83

11 100 - 8 92

12 100 100

As a convenience to the builder, cut or fill may be indi-
cated in feet, inches, and fractions of an inch because this is
the way most carpenter’s rules are graduated.

Because 1 in. equals 81/3 hundredths of a foot, for prac-
tical purposes 1/8 in. can be taken to be 1 hundredth of a
foot. The quarters of a foot can be expressed accurately in
inches and hundredths of a foot as follows:

0 in. = 0 hundredths, or 0.00 ft

3 in. = 25 hundredths, or 0.25 ft

6 in. = 50 hundredths, or 0.50 ft

9 in. = 75 hundredths, or 0.75 ft

12 in. = 100 hundredths, or 1.00 ft

By adding 8 to or subtracting it from the nearest quarter
point, the inch values in hundredths of a foot can be com-
puted to within one-third of a hundredth. This is shown in
Table 11-2.

To reduce hundredths to inches, choose the nearest inch
value and correct for the odd hundredths by calling them
eighths of an inch. The error is never greater than 0.0005 ft.
For example:

0.89 ft = 0.92 ft - 0.03 ft = 11 in. - 3⁄8 in. = 105/8 in.

0.44 ft = 0.42 ft + 0.02 ft = 5 in. + 2⁄8 in. = 51⁄4 in.
0.71 ft = 0.75 ft - 0.04 ft = 5 in. - 4⁄8 in. = 81⁄2 in.

Signals for Giving Grade The only signals used for giv-
ing grade that are not used for profile leveling are “up” and
“down.” Up is signaled by moving the hand upward from
shoulder height, usually with the index finger pointed up.
Down is signaled by lowering the hand from waist height,
with the index finger pointed down. Large, slow motions
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indicate large amounts, and vice versa. Usually, the estimated
distance is signaled immediately afterward in hundredths of
a foot.

11-3 SLOPE STAKING
The procedure for giving line and grade for the construction
of earthwork side slopes is called slope staking. It is most com-
monly used for locating the edges of highway cuts and fills
that exceed 3 ft (1 m) in depth. Slope stakes mark the line of
intersection of the side slope and the existing ground surface.

Table 11-1. Typical Cut Sheet (Continued)

Sta.
Stake

Elevation
Proposed 
Elevation Difference Cut Fill Remarks

Inlet 12 356.78 355.60 -1.18 1� � 21⁄8� 10� off grate

356.78 353.85 -2.93 2� � 111⁄8� 10� off inv in

356.78 351.65 -5.13 5� � 11⁄2� 10� off inv out

356.77 355.60 -1.17 1� - 2� 14� off grate

356.77 353.85 -2.92 2� - 11� 14� off inv in

356.77 351.65 -5.12 5� � 11⁄2� 14� off inv out

MH 1 382.84 384.00 1.16 1� � 17⁄8� 10� off rim

382.84 369.67 -13.17 13� - 2� 10� off inv in

382.84 369.30 -13.54 13� � 61⁄2� 10� off inv out

382.84 381.00 -1.84 1� � 101⁄8� 10� off inv in

383.13 384.00 0.87 0� � 101⁄2� 15� off rim

383.13 369.67 -13.46 13� � 51⁄2� 15� off inv in

383.13 369.30 -13.83 13� � 10� 15� off inv out

383.13 381.00 -2.13 2� � 11⁄2� 15� off inv in



Figure 11-16). For example, a stake marked F 15.1/58.1 R is
58.1 ft (m) to the right of the centerline and 15.1 ft (m)
below the finish grade of the base. Each stake is also marked
with the station number. Slope stakes are usually driven so
that they are inclined slightly outward from the embank-
ment or excavation, although some surveyors may incline a
stake inward for cut, toward the excavation. Generally, refer-
ence stakes are also driven about 10 ft (3 m) beyond the
actual slope intercepts (also called the catch points), out of
the way of the earthmoving machines.
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FIGURE 11-16. Marks on stakes for
slope staking. Note that C (cut) or 
F (fill) is not the cut or fill at the
stake, but the vertical distance from
the ground at the stake to the
elevation of the base. Generally, the
stakes are offset from the actual
catch points.

This line, called the toe of slope for embankment or the top of
cut for excavation, is usually an irregular line due to the
changing terrain and grade of construction (see Figure 11-15).
The earthwork contractor must know where these outer
limits of cut and fill are before construction can start.

A slope stake is placed on each side of every centerline
stake, usually at 50-ft (15-m) intervals along the route; each
slope stake is marked with both the horizontal distance (left
or right) of the centerline and the vertical distance from the
existing ground at the stake to the elevation of the base (see

FIGURE 11-15. Slope stakes mark
the line where cut or fill side slopes
intersect the original ground
surface. (The arrows in plan view
show the downward direction of
the slope.)
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The position of a slope stake depends on the

1. Elevation of the base

2. Width of the base

3. Slope of the sides

4. Elevation of the ground where the stake is placed

Slope intercepts can be located from plotted cross
sections by scaling the distances from the centerline to the
positions where the side slopes intersect the ground. Slope
intercepts can also be located in the field by a trial-and-error
process. Even when the intercepts are predetermined from
cross-section data, their position must be checked in the
field and adjusted, if necessary, by the trial-and-error
process. An error of up to 0.5 ft (0.15 m) in the distance from
the centerline is usually acceptable for rough grading.

Field Procedure
The trial-and-error field procedure for slope staking can be
outlined as follows:

1. Compute grade rod at the centerline (using 
Equation 11-2).

2. Compute cut (C) or fill (F) at the centerline (using
either Equation 11-3 or Equation 11-4).

3. Compute the distance D to the catch point that
would occur if the ground were level: D = B/2 + S (C
or F), where B is the width of the base and S is the side
slope.

4. Estimate the distance to the actual catch point.

5. Take a rod shot on the ground at the estimated distance
from the centerline, and compute the cut or fill at
that point. Using that value of cut or fill, recompute the
distance D.

6. If the difference between the computed distance and the
estimated distance is larger than ±0.5 ft (0.15 m), try
another value close to the computed distance and repeat
steps 4 and 5.

7. If the computed distance is within ±0.5 ft (0.15 m) of
the estimated distance, mark the stake with the amount
of cut or fill and the computed distance.

The first estimate (step 4) for the distance from the
centerline to the catch point may be based on the scaled
value from the plotted cross-section data, or it may be
based on the judgment of the surveyor. As a general rule,
when the direction of the side slope is opposite the slope
of the ground, the estimated distance should be less than
the computed distance (step 3); when the direction of
the side slope is the same as the slope of the ground, the
estimated distance should be more than the computed
distance. The number of trials needed may vary; in the
following examples, three trials are used to illustrate the
procedure. Once the first slope stakes are set, the trials for
slope stakes at the remaining stations become more
accurate.

Example 11-5
Locate the catch points by trial-and-error for the section in
cut shown in Figure 11-17.

FIGURE 11-17. Illustration for Example 11-5; a section in cut.
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For a 1 1⁄2: 1 Slope For a 2:1 Slope

Center cut 18.6 18.6

Plus 1⁄2 center cut (or plus 
center cut for 2:1 slope)

9.3 18.6

A offset 46.6 46.6

Calculated offset to stake L 74.5 83.8

Solution
In Figure 11-17, the first HI is located at E, and its eleva-
tion is found from previous leveling to be 95.72. The
scratch work is then started. A rod shot will be first taken
on the ground beside the center stake, hence the notation
zero for the rod position. See scratch work below the
drawing.

1. Compute the grade rod. This is the theoretical rod read-
ing that would occur if the rod were standing on the
desired grade elevation when read from a given HI.
In this case, the HI is 95.72, and the desired elevation
is that of the base, as shown on the plans, 71.9. The
formula is

GR = HI - grade
HI = 95.7

Less base = -71.9
GR = 23.8

Follow the first scratch-work column.

2. Read the rod when held on the ground beside the
center stake (reading, 5.2). Compute the cut at the
centerline. The formula is

Cut = GR - rod
GR = 23.8

-Rod = -5.2
Center cut = 18.6

This means that the base is 18.6 ft below the ground at the
center stake C.

When the grade rod, 23.8, and the centerline cut, 18.6,
are known, the first slope stake can be set.

To Set the Left Grade Stake L Estimate the offset to the
left grade stake (L). This may be a guess based on experience.
If the volumes have been determined on an electronic com-
puter or the cross sections have been plotted, a very close
estimate will be available from these sources. A practical field
method, shown in the scratch work, is as follows:

Compute the offset to L that would occur if the ground
were level. This would be the offset to AL (46.6) plus 11⁄2
times the center cut.

But the ground slopes downward, so that the cut at stake
L would be less than the center cut. Hence, the offset would
be somewhat less than 74.5 for the 11⁄2 :1 slope. Try, for
example, 55. The rod is held at offset 55, as shown on the
drawing at 1. The offsets are usually measured with a woven
tape.

The offset for this rod reading is computed in the second
column. Its value is 69.7.

The Key Procedure It is now known that the cut mea-
sured at 55 should occur at 69.7. This indicates that the rod
should be moved from its position at 55 toward 69.7. Should
it be moved more or less than the whole distance? To know
what to do is the key. Here are the rules:

1. When the slopes are opposite, move less.

2. When the slopes are the same, move more.

The two slopes are the slope of the ground and the side slope
of the earthwork. They are opposite when one slopes down
and the other up. They are the same when both slope up or
both slope down. In the example, they are opposite, so move
the rod less than called for.

For example, try 69 (2 in the drawing).
At 69, the calculated offset turns out to be 65.8. The rod

should be moved from 69 toward 65.8 but, as before, not all
the way. Try 66. Here the calculated distance is 66.4. This is
near enough to the actual rod position. A difference of 0.5 or
less is near enough.

Set the stake at the calculated offset (66.4), and
assume that the rod reading is the same as at 66. There-
fore, mark the stake C 13.2/66.4 L, as shown below the
scratch work.

To Set the Right Grade Stake R From the previous
work, the cut at the center is known to be 18.6; so with level
ground, the calculated offset is 74.5 as before. But here the
slopes are the same; therefore move more.

For example, try 88, shown at 3. The calculated offset is
95.7. Move from 88 toward 95.7 and more.

Try 102. The calculated offset is 100.0. Move from 102
toward 100.0 and more.

Try 99. The calculated offset is 98.7, which is near
enough.

Example 11-6
Locate the catch points by trial and error for the section in
fill, shown in Figure 11-18.

Solution

GR = HI - grade = 70.57 - 75.4 = -4.8
Fill = rod - GR = 13 -(-4.8) = 17.8
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Field Notes The last rod shot taken, where the slope stake
is to be set, is recorded in the rod column. The elevation
is computed, and the cut or fill is computed from this ele-
vation and the required grade elevation. The formula is as
follows:

Cut = ground elevation - grade elevation

(Minus indicates fill.)
These values should check with the cuts or fills com-

puted by the grade rod method.
On the right-hand side is the record of the marks placed

on the slope stakes (Figure 11-20).

Table 11-3

Rod Position Calculated Offset Move Try

0 67.3 Less 62 L

62 L 52.0 Less 55 L

55 L 57.4 Less 56 L

56 L 55.5 O.K.

0 67.3 More 90 R

90 R 83.7 More 80 R

80 R 79.1 More 78 R

78 R 78.4 O.K.

FIGURE 11-18. Illustration for Example 11-6; a section in fill.

The trials are shown in Table 11-3. Note that the center
cut and calculated offset were taken from HI at H as well as
from G as a check.

Example 11-7
Locate the catch points by trial-and-error for the sidehill or
mixed section shown in Figure 11-19.

Solution
Here the surveyor must use judgment. By observing the
ground, one must realize that, despite the fact that at the cen-
ter there is fill, at the left side the ground is so high that cut will
be required. Therefore, the slopes are the same and the move
is more, not less, and the cut offset for A (46.6) is used.

The trials are shown in Table 11-4.
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FIGURE 11-19. Illustration for Example 11-7; a mixed section.

FIGURE 11-20. Suggested field notes
for slope staking. Standard field
leveling notes are used except when
any position (HI) is reached from
which one or more slope stakes 
are set.

Table 11-4

Rod Position Calculated Offset Move Try

0 57.3 More 65 L

65 L 70.6 More 75 L

75 L 78.4 More 82 L

82 L 81.9 O.K.

0 53.3 More 95 R

95 R 88.3 More 75 R

75 R 80.3 More 81 R

81 R 81.5 O.K.



274 CHAPTER ELEVEN

11-4 BUILDING AND PIPELINE
STAKEOUT

In addition to giving line and grade for roadway tangents
and curves, two of the most common construction appli-
cations for the surveyor are the stakeout of new buildings
and underground pipelines. In this section, traditional
procedures for these applications, using baseline offsets and
batter boards, are described; procedures that make use of
EDM and lasers are discussed in Section 11-5.

Staking Out a Building
Naturally, a property survey must precede the stakeout of
any structure on a parcel of land to accurately locate bound-
ary lines. Constructing a building that encroaches on a
neighboring lot can be a very costly mistake. In addition to
the property boundaries, the building lines (or setbacks)
specified in the local building code must be located; a set-
back is the minimum required distance between a new
building and a front or side property line. For a single-family
suburban home, which usually does not require a very high
degree of accuracy in its location, the surveyor may only
stake out the building lines (Figure 11-21). The builder can
then locate the house anywhere within those lines. For most
projects, especially where land values are high and lots are
small, the layout must be more thorough; all the building
corners and column foundation positions must be accu-
rately located and referenced.

A common method for staking out a building makes use
of several perpendicular offsets measured from a predeter-
mined baseline. The baseline serves as a reference to control
the position of the proposed structure; it may be a property
line (see Figure 11-1), or it may be the centerline of a large
facility. The designer shows the position of the building on
the site plan in relation to the baseline.

As previously mentioned, stakes may first be driven at
the actual locations of the building corners, but these will
be destroyed as soon as construction begins. They are
useful, however, as an initial check on the position and
orientation of the building. Generally, the building cor-
ners must be referenced so that they can be easily relocated
after excavation, as well as periodically during the con-
struction process.

Batter Boards A standard method for temporarily
referencing the building corners, as well as the first-floor or
basement slab elevation, makes use of the batter board. A
batter board is simply a horizontal wooden plank fastened
to two vertical posts (see Figure 11-22). The land surveyor
retained by the owner may be required only to set offset
stakes at each corner of the building and to set a bench-
mark; the builder is then generally responsible for setting
up the batter boards using the land surveyor’s reference
marks.

A pair of batter boards are built offset from each cor-
ner so that opposite boards will support a wire, string, or
carpenter’s line; the line will delineate the exterior faces of
the building (Figure 11-23). The string lines are stretched
taut between two nails driven into the tops of opposite
boards, which are usually set at the same elevation so that
the line will be level. Sometimes all the boards are set at an
elevation that is a specific height above the basement floor
elevation. The string lines then establish both line and
grade. The carpenters and masons can readily make mea-
surements from the string lines using plumb bobs and

FIGURE 11-21. Minimum “yard setback” distances are
specified in most local land-use ordinances. The allowable
building limits or lines may be marked as shown by
surveyor’s stakes.

FIGURE 11-22. A batter board may be used by the builder 
to guide line and grade of the work. Nails support a string
stretched between opposite batter boards to give line. The
top of the batter board may be used as a reference for grade.
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FIGURE 11-23. String lines stretched between opposite
batter boards delineate or outline the faces of the walls 
or of the foundations for a proposed building.

folding rules to transfer the corners into the excavation, to
set concrete foundation forms, and to align the walls. The
intersection of two strings marks the position of a corner;
this position is easily transferred vertically with the plumb-
bob cord. The string lines can be removed so not to inter-
fere with the work, and then replaced as necessary to again
give line and grade.

Sometimes, the surveyor indicates the fill from each
corner stake up to the first-floor elevation. In this case,
the building contractor adjusts the wire using a plumb
bob to set the alignment and a rule to measure up from
the stake. The line marks may be transferred from the
stakes to the batter boards with a transit, and the grade of
the first floor may be marked directly on the batter board
(Figure 11-24).

The layout procedure for a simple rectangular structure,
shown in Figure 11-25 follows:

1. Set up an instrument at monument P; take line on Q; set
stakes at A and B.

2. Set up an instrument at A; backsight on Q; turn 90°; set
stakes at corners L and M; set batter boards and nails at
1 and 2.

3. Set up an instrument at B; backsight on Q; turn 90°; set
stakes at corners N and O; set batter boards and nails
at 3 and 4.

4. Measure diagonals LO and NM and check with length
computed using the Pythagorean theorem; restake if
necessary.

5. Set up an instrument at L; backsight on N; set nail 5;
plunge scope and set nail 6.

6. Set up an instrument at M; backsight on O; set nail 7;
plunge scope and set nail 8.

This is an example of only one possible approach to the
problem. Building stakeout can be time consuming, and
every effort should be made to plan the work in the office to
minimize the number of instrument setups. A procedure
based on the use of precalculated angle and distance
measurements made from a few selected points, instead of
baseline and offset measurements, may speed up the work;
this method is described in Section 11-5.

Column Footings In buildings of any appreciable size,
the structural frame may include steel columns that are
supported by concrete footings or piers (see Figure 11-26).

FIGURE 11-24. A plumb bob at the
intersection of two batter board
string lines locates the original
corner stake position.

FIGURE 11-25. Setting up batter boards for staking out 
a building.
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The center-to-center distances between adjacent columns
are generally shown by the designer on the building foun-
dation plan. The columns must be located with a high
degree of accuracy, generally to within a few hundredths of a
foot (a few millimeters) of the distances called for on the
plan. Baseline offsets and batter boards may be used to
locate, stake out, and build the forms for the concrete foot-
ings, as previously described for the building corners.

The columns are set in place on steel base plates, which
serve to spread the weight supported by the column uni-
formly over the surface of the concrete footing. The base
plates are fastened to the footing with several steel anchor
bolts. The anchor bolts must pass through holes punched or
drilled through the base plates. Because the bolts are usually

FIGURE 11-26. (a, b) The construction surveyor must accurately locate the footing and
column positions for a proposed structure. (c) Laser instruments are often used to
establish construction elevations. (Courtesy of Laser Alignment, Inc.)

set in the fresh concrete before it hardens, their proper
location and alignment are critical.

The elevations of the base plates are also critical for
achieving good-quality construction. The footings are built
so that their top surfaces are about 1–2 in. (250–500 mm)
below the required final elevation. The base plates are then
set on the anchor bolts and are shimmed to the correct
elevation. Traditional differential leveling methods are used
to set the elevation of the plate. When the plate is in final
position, cement grout is forced under the plate to fill the
space created by the shims.

In addition to locating the columns in plan and
elevation, the construction surveyor is also called on to
ensure that the columns are placed in a truly vertical
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FIGURE 11-27. The surveyor is often called on to give line
and grade for a sewer. Pipe invert elevations are usually
shown on the plans to the nearest 0.01 ft (3 mm).

position. This can be done by using a plumb bob or by
aligning the top of the column with its base, using an
instrument.

Line and Grade for a Sewer
Flow in a storm sewer or in a sanitary sewer is called open
channel gravity flow. The flow capacity of a given diameter
pipe depends primarily on the slope or gradient of the flow
line. The flow line is the bottom inside surface of the pipe or
drainage channel. Naturally, pipes or channels constructed
on steep slopes have greater capacities than those built on
shallow slopes. The determination of proper slope is one of
the major factors in sewer design. The slope is shown on the
engineering drawings so that the builder can excavate the
trench and place the pipe at the gradient needed to provide
its design flow capacity.

Whenever the pipeline changes in slope, diameter, or
direction, a manhole is built to provide access both for
sewage flow measurement and sampling and for pipeline
inspection and maintenance. The length of pipeline between
two manholes is called the reach of the sewer. The designer
shows the pipe invert elevation at each end of a reach to
guide the builder in placing the pipe at the required slope
(Figure 11-27). The invert is a point on the bottom inside
surface of a pipe or channel; the locus of inverts forms the
flow line. (The terms invert and flow line are often used syn-
onymously.)

Batter boards have traditionally been used to give line
and grade for a gravity flow pipeline. (Lasers are frequently
used in present-day construction—see Section 11-5.) The
pipe is first located by a series of stakes that are usually set at
50-ft (15-m) intervals and offset 3–6 ft (1–2 m) from the
pipe centerline (see Figure 11-4). These line stakes may also
be used to control grade or separate grade stakes may be set
by the surveyor. As the trench is excavated, its depth is

checked periodically by measurements from the grade
stakes. After a section of trench is opened to a depth slightly
greater than that required for the flow line, a series of batter
boards are placed across the trench at uniform intervals
(Figure 11-28).

The batter boards are set at a constant elevation above
the pipe flow line or invert (e.g., 7 ft—0 in.), and a string line
is run between the boards so that it is directly over the pipe
centerline. The string line will have a slope equal to that of
the pipeline. It is then simple for the workers to place the
pipe sections into the trench in the proper position on a bed
of sand and gravel, and to adjust the pipe invert while
making periodic measurements from the string line.

FIGURE 11-28. A batter board set
up across the trench for a pipeline.
Note: Wall bracing is required in
trenches greater than 5900 deep.
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Field Location Example Suppose that it is necessary
to build a new sewer from a house to an existing manhole
(Figure 11-29). It is assumed that the flow line (fl) must be at
least 3 ft (1 m) below the ground surface, and the minimum
slope should be 0.004.A manhole should be placed at any change
in gradient. The fl elevation at the house is given as 70.03 on
the plans. The invert elevation of the existing manhole must be
determined during the preliminary survey by opening the
manhole cover and observing a rod held on the flow line.

The data from a preliminary survey are plotted to give
a profile of the ground from the house to the manhole
(Figure 11-30). On the profile, a straight line representing a
possible flow line is drawn from the known elevation (70.03)
of the flow line at the house to any point not below the
manhole connection (60.52). It is discovered that such a line
comes too near the ground. Other flow lines are tried with
various locations and elevations for breaks in rate of grade,
the object being to find an arrangement that complies with
the specifications and requires a minimum quantity of exca-
vation and number of manholes. In this case, a break in the
rate of grade of the flow line located at about station 2 + 30
at an elevation of about 62.1 (as indicated by scaling) will
solve the problem. It will require one new manhole (at 2 + 30).
The existing connection at the street manhole can be used.
Its fl elevation is 60.52.

It is now necessary to compute grades for the inter-
vening points. The grades must be such that they will

produce absolutely straight slopes for the flow line. For this
purpose, an exact position and elevation must be assu-
med for the invert of the new manhole. Accordingly, sta-
tion 2 + 30 and elevation 62.10 are chosen, and the grades
are computed by proportion. This completes the plan (see
Figure 11-30).

It is decided to give grade by indicating the cut from the
top of the line stakes. It is to be remembered that cut is the
distance from the top of the line stakes down to the flow
line. It is not the excavation, which would be the distance
from the ground down to the bottom of the trench.

To indicate cuts, the elevations of the tops of the line
stakes must be found by leveling and the individual cuts
computed by subtracting the required grades.

It is also decided to place the line stakes at a 4-ft offset to
prevent disturbance when the trench is excavated.

With this in mind, the procedure (the location survey)
is planned to require a minimum of field work.

Field Procedure for Field-Location Problem The field
steps are the following:

1. Stake out a 4-ft offset line, placing stake 0 + 0 beside the
point in the house where the house connection is
located and a stake every 50 ft thereafter. Carry the
measurement to a point beside the manhole, and deter-
mine its plus.

FIGURE 11-29. Plan illustrating an
example for a pipeline location.
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FIGURE 11-30. Pipeline location example: computations and profile.

2. Find the elevation of the ground at each 50-ft point along
the true line and at all breaks in ground slope. The rod is
held on the ground at an estimated 4 ft from and opposite
to each offset stake. This places the rod at the true position
on the construction line. The rod is read to tenths.

3. At the same time, determine the elevation of the tops of
each of the offset-line stakes. On these, the rod is read to
hundredths.

4. Draw the profile of the ground elevations and deter-
mine the grade profile for the flow line.

5. Compute the cuts and mark the stakes.

6. Measuring along the offset line, place a stake for the new
manhole, find the elevation of the top of the stake set
and mark the cut for the invert.

The form of notes is shown in Figure 11-31.
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11-5 ADDITIONAL LAYOUT
PROCEDURES

Every construction project is different, particularly with regard
to the shape and topography of the construction site, and the
position of the proposed facilities thereon. The common
layout operations of giving line and grade have been described
in the preceding sections. The construction surveyor must be
thoroughly familiar with these basic procedures, and must also
have the ability to deal with other layout problems that may be
unique to a specific site or project. A few of the additional pro-
cedures that may be used by the surveyor to lay out a proposed
project are described in this section, including the use of random
control points and laser devices for grading operations.

Miscellaneous Alignment Methods
The field procedures described here are frequently used as
part of location survey operations. These include double
centering, bucking in, setting a very close point, and setting a
point of intersection.

Double Centering It is often necessary to extend or
prolong a straight line beyond a given endpoint. For example,
line AB must be prolonged from B to C by setting a mark at
C (Figure 11-32). One way to do this is to set up a transit or
theodolite at point A, sight point B, and then simply raise the
telescope slightly to set point C on line. But this method is
generally unsatisfactory for a long prolongation, due to

FIGURE 11-31. Field notes for the location of a pipeline (Figure 11-30).

FIGURE 11-32. The method of
double centering. Set a mark for 
C halfway between C� and C�.



Construction Surveys 281

FIGURE 11-33. Bucking in over 
a hill.

potential instrumental error. Also, gently rolling terrain may
interfere with the visibility of C from station A.

The preferred method for prolonging any straight line is
called double centering. Applied to line AB in Figure 11-33,
the instrument is set up over point B instead of point A. A
backsight is taken on A, the telescope is plunged or reversed
(transited) and point C� is set. If the instrument is in perfect
adjustment, this one operation will give correct results. But
if the instrument is out of adjustment, particularly if the
line of sight is not perpendicular to the horizontal axis, this
one step will not accurately set C� on the straight line AB
prolonged.

To prolong the line by double centering, the procedure
described here is repeated with the telescope in the opposite
positions. In other words, after setting point C� by plunging
the scope from direct to reverse, a second backsight is taken
on point A with the scope still in the reverse position. The
scope is then plunged again, and point C� is set. Any gap
between C� and C� is due to instrumental error. The final
point C is then set halfway between the two marks. Of
course, it is best to keep the instrument in proper adjust-
ment at all times. But it is also good practice to perform
surveying operations as though there still may be some
instrumental error, to maintain accuracy in the work and to
avoid blunders.

Bucking in Between Two Points It is sometimes
necessary to establish a point on a line between two given
marks when it is impossible to set up over either one of the
marks, or when the marks are not intervisible because of a
hill between them. The usual field procedure to solve this
problem is a trial-and-error method called bucking in (also
called balancing in or wiggling in).

In Figure 11-33, it is required to set point C between
marks at A and B by bucking in between the two given
marks. Set up the transit or theodolite at point C�, judged to
be approximately on line. Choosing the most distant mark,

say point A, backsight on A, transit the scope, and set B�.
Measure the distance from B to B�. Estimate the ratio of AC
to AB and move the instrument from C� to C after com-
puting the distance as follows: CC� = BB�(AC/AB).

Repeat the procedure until B� falls on B. When BB�
becomes small, the position B� must be established by
double centering. When the direct and reversed sights are
equally spaced on each side of B, the instrument is on line
and C can be set directly under the plumb bob or optical
plummet.

Setting a Point Close to the Instrument The tele-
scope cannot be lowered far enough or focused close enough
to set a point on line nearer the instrument than about 3 ft
(1 m). To set a point closer than that, the following procedure
may be followed (Figure 11-34): Set up at A and set point C
on line. Set up on C, point at A, and set B on line.

Setting a Point of Intersection It is often necessary to
establish a point at the intersection of two fixed lines. A com-
mon example of this is setting the point of intersection (PI)
of two route tangents, say, lines AB and CD (Figure 11-35).

Set up at C, and then set E by double centering. Set F on
line; E and F should be as close together as possible and yet

FIGURE 11-34. To set a point close to the transit.
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FIGURE 11-36. To measure over an obstacle.

FIGURE 11-37. A rectangular offset
to prolong a line.

FIGURE 11-38. An equilateral-triangle offset to prolong 
a line.

lie on opposite sides of AB prolonged. Tie a string from E to
F. Set up at B, and set a stake at G on line AB prolonged,
under the string line.

The stake should be driven down until the top is just
touched by the string when it is replaced between E and F.
Draw a pencil line on the top of the stake, just under the
string. Locate the PI accurately on the pencil line by double
centering from B.

Avoiding an Obstacle on Line
A property line or a construction survey baseline marked at
both ends may be blocked or obstructed between the marks
by buildings, trees, or other existing features. In some cases,
it may be possible to avoid the obstacle by setting a point on
high ground from which a line may be established over it, or
by setting a station on it (see Figure 11-36). Distance can be
carried over the obstacle by measuring slope distances with
tape or EDM.

Other methods for avoiding the obstacle on line include
using either a rectangular offset, an equilateral-triangle offset,
a parallel offset, a random line, or a random traverse.

Rectangular Offset Suppose it is required to carry line
and distance accurately from AB to CD across an obstacle such
as a small building (Figure 11-37). At point B, backsight on A,
turn 90°, and set point E at a whole number of feet (meters)
from B, but far enough to clear the obstacle. Set the instrument
over mark E, point toward a swing offset equal in length to BE
from A, and then set G by double centering (see Figure 9-16c

for a review of the swing-offset method). Aim at G, and then
set F at a convenient number of feet or meters from E such
that the obstacle is cleared. At point F, turn 90° and set point C
so that FC = BE. At mark C, point toward a swing offset from
G. Finally, set D at the required distance from C.

Although this method is simple and accurate, it may
take as much as 2 hours to complete. A quicker method
would be simply to turn four 90° angles at B, E, F, and C to
get back on line. But some accuracy will be sacrificed if the
sight distances are short.

Equilateral-Triangle Offset Set up at 2, backsight on 1,
and turn 120° to set point 3 at a convenient distance from 2
(see Figure 11-38). From point 3, backsight on 2, and turn
60° to set point 4 such that 3-2 = 3-4. From point 4, back-
sight on 3, and turn 120° to get back on line. Finally, set
point 5 at the required distance from point 4. From the
geometry of an equilateral triangle, 2-4 = 3-2 = 3-4.

Parallel Offset Sometimes the entire length of a line is
obstructed, and it is necessary to establish a new line parallel
to it, called a parallel offset line (see Figure 11-39). Set a mark
at C by estimating a position opposite point A. Point a swing
offset equal to AC at B, turn 90°, and measure a swing offset at
A (usually a very small distance). If the swing offset from A is
large, move C back to C� and repeat the process. If it is small,
add the value to measurements along the offset line from C.

Random Line When a parallel offset line cannot be used,
a random line can be used instead to establish points between

FIGURE 11-35. To set a PI.



Construction Surveys 283

FIGURE 11-39. To establish a line parallel to an obstructed
line.

FIGURE 11-40. To establish an obstructed line by a random
line.

FIGURE 11-41. To establish a line by a random traverse.

FIGURE 11-42. Offset curves.

and direction are computed by traverse computation tech-
niques, that is, by closing the loop with the missing side and
inversing between the endpoints of the line (see Section 7-2
to review traverse computations).

Circular Offsets and Curbs
The deflection angle procedure for staking out a circular
curve is described in Section 10-3. The construction of road
pavements and curbs generally requires the setting of stakes
offset from the route centerline, so that they will not be
disturbed during the construction process. The circular offset
lines are usually from 3 to 6 ft (1–2 m) beyond the location of
the edge of pavement or the back of curb. The stakes gener-
ally are set at either quarter-station or half-station intervals
along the offset curve, to the right and to the left.

The offset circular arcs are parallel to the arc of the
centerline; the central angle between any two radii is the
same for parallel arcs. The design radius is usually taken as
that of the route centerline. The stations of all the points of
curvature (PCs) and points of tangency (PTs) (i.e., for the
centerline, the right, and the left offset) are computed using
the design radius. But the PCs of the right and left offset
arcs lie on the same radial line; likewise for the PTs (see
Figure 11-42). Therefore, the stations of the offset PCs and PTs
are the same as for those on the centerline arc (the design
curve), even though offset curve lengths are not the same as
the centerline length.

Deflection angles computed using the design curve data
are the same for the offset curves. But because chord lengths
are a function of arc radius, the chord lengths used to lay out
an offset curve must be computed on the basis of the actual
radius to that curve. Field notes for stakeout would be set up
showing the common deflection angles and the different
chord lengths for each point on the offset curves.

Example 11-8
Set up the field notes for stakeout of circular curves offset 5 ft
from the edges of a 40-ft-wide pavement. The intersecting

the ends of an obstructed line (Figure 11-40). Set C at a ran-
dom spot but visible from A. Measure the angle ACB.
Compute any other desired positions, such as D and E, from
the proportions:

Stake out the required points by turning the same
angles, that is, AFD = AGE = ACB.

Random Traverse Any obstructed line can be replaced
with a random traverse (Figure 11-41). The obstructed line
is taken to be a missing side of a loop traverse, and its length

FD

AF
=

GE

AG
=

CB

AC
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angle of the curve is 45°, the centerline radius is 200.00 ft,
and the station of the PI is 23 + 64.48. Stakes are to be set at
the PCs and PTs and at quarter-station (25-ft) intervals along
the offset curves (see Figure 11-43).

Solution
First, compute the tangent distance T, the arc length L, and
the stations of the PCs and PTs, with centerline as the
design curve (see Sections 10-2 and 10-3 for a review of the
simple circular curve):

Now compute the deflection angles as follows:
For the quarter-station (25-ft) intervals along the curves,

The length of arc from the PC to the first quarter-station
point, 23 + 00.00, is 2300.00 - 2281.64 = 18.36 ft. The first
deflection angle from the PC to station 23 + 00.00 is then
computed to be

The length of arc from the last quarter-station point, 24 +
25.00, to the PT is 2438.72 - 2425.00 = 13.72 ft. The last

= 157.79œ = 2°38œ

a =
arc length

R
* 1718.87 =

18.36
200

* 1718.87

(rounded off to the nearest minute of arc)= 3.581° = 3°35œ

a =
arc  length

R
* 1718.87 =

25
200

* 1718.87 = 214.86

Station PT = 2281.64 + 157.08 = 2438.72  (or 24 + 38.72)

Station PC = 2364.48 - 82.84 = 2281.64  (or 22 + 81.64)

L =
pR¢
180

=
p * 200 * 45

180
= 157.08 ft

T = R tan 
¢
2

= 200 tan 
45
2

= 82.84 ft

deflection angle from the station 24 + 25.00 to the PT is
then computed to be

The radius of the inner curve is 200 - 40/2 - 5 = 175 ft
and the radius of the outer curve is 200 + 40/2 + 5 = 225 ft.
Chord lengths are computed with the formula

Chord length = 2R sin a

as follows:

a =
13.72
200

* 1718.87 = 117.91œœ = 1°58œ

FIGURE 11-43. Field notes for Example 11-8 and Figure 11-43.

Stations Inner Curve Chord Lengths

PC to 23 + 00 2 × 175 × sin 2.630° = 16.06 ft
23 + 00 to 23 + 25, etc. 2 × 175 × sin 3.581° = 21.86 ft
24 + 25 to PT 2 × 175 × sin 1.965° = 12.00 ft

Outer Curve Chord Lengths

PC to 23 + 00 2 × 225 × sin 2.630° = 20.65 ft
23 + 00 to 23 + 25, etc. 2 × 225 × sin 3.581° = 28.11 ft
24 + 25 to PT 2 × 225 × sin 1.965° = 15.43 ft

Field notes for curve stakeout are illustrated in Figure 11-43.

Curb Returns The circular arc formed by a curb at a
street intersection is called a curb return or a radius curb. The
radius of the circular arc depends on traffic volume and
speed and is usually specified by local building codes; typi-
cally, the radii may vary from about 25 ft (8 m) for local
streets to about 60 ft (18 m) for arterial roads. It is best for
streets to intersect at right angles, but angles ranging from
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60° to 120° are generally acceptable for modern design.
The curb returns for streets that intersect at 90° are quarter
circles.

Because the radius of a curb return is relatively small,
the curve can be laid out by swinging an arc from the circle
center (the radius point) with a tape. The radius point is eas-
ily located by finding the intersection of two straight lines,
each of which is parallel to one of the centerlines and distant
from it by the amount of the radius plus half the street width
(Figure 11-44).

Stations for the PCs and PTs of the curb returns are
computed with reference to the street centerlines; the design
radius is equal to half the street width plus the curb radius.
Stakes are offset 3–6 ft (1–2 m) from the back of each curb,
at its PC and PT. As a check on the work, the long chord (LC)
distance between the PC and PT offset stakes may be com-
puted and measured. The radius used to compute the LC is
not that of the centerline, but is the curb radius minus the
offset distance.

When the streets do not intersect at a right angle, the
curb returns are computed using the supplementary deflec-
tion angles. A uniform gradient along the curb from the PC
to the PT is usually established by the builder.

Example 11-9
Sycamore Drive intersects Beech Street at an angle of 70°,
at station 4 + 50 along the centerline of Beech and station
0 + 00 along the centerline of Sycamore (Figure 11-45). Both
roads are 30 ft wide, and each curb return radius is to be
40 ft. Determine the PC stations along Beech Street and the
PT stations along Sycamore Drive for the curbs, and com-
pute the LC distances if stakes are offset 5 ft from the back
of each curb.

Solution

Design R = 1/2 street width + curb radius 
= 30/2 + 40 = 55 ft

Now compute the PC stations along Beech Street as follows:

Compute the PT stations along Sycamore Drive as follows:

Station PT1 = (0 + 00) + 78.55 = 0 + 78.55

Station PT2 = (0 + 00) + 38.51 = 0 + 38.51

The long chords are computed as follows:

Radial Stakeout Surveys
The phrase radial survey is used to describe the process
of making several angle and distance measurements from a
single point or station of known position (i.e., coordinates).
A second coordinated station is necessary for a reference

LC2 = 2R sina ¢2

2
b = 2 * 35 * sina70

2
b = 40.15 ft

LC1 = 2R sin a ¢1

2
b = 2 * 35 *  sina110

2
b = 57.34 ft

R = curb radius - offset = 40 - 5 = 35

Station PC2 = (4 + 50) + 38.51 = 4 + 88.51

T2 = R tan 
¢2

2
= 55 tan 

70
2

= 38.51ft

¢2 = 180 - 110 = 70°       (supplementary angles)

Station PC1 = (4 + 50) - 78.55 = 3 + 71.45

T1 = R tan 
¢1

2
= 55 tan 

110
2

= 78.55 ft

¢1 = 110°

FIGURE 11-44. Curb returns for streets intersecting 
at a right angle.

FIGURE 11-45. Illustration for Example 11-9.
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backsight. A third fixed point is useful for checking the work
and for adjusting the data to minimize random errors. A
radial survey is particularly useful on open terrain where
there are few or no obstructions to the required lines of sight.

The use of an electronic total station greatly facilitates
the radial survey procedure because angle and distance
measurements can be quickly made with one pointing of
the line of sight. A radial survey can be used to determine
the positions of control traverse stations or of topographic
features. And it can be used to lay out the positions of
predetermined points such as the corners of a building,
slope stakes, or circular curve offset lines. When used for
construction layout, the process may be called a radial
stakeout survey.

Construction stakeout by radial survey techniques is
also called the angle and distance method. This procedure can
significantly reduce the total time required for a construc-
tion layout; much fewer instrument setups are required
compared with those generally used in the traditional base-
line-offset layout method (see Figure 11-46).

This survey operation is particularly useful when an
electronic tacheometer (a total station) is used. For many
construction projects, especially complex ones, the locations
of key points may be shown on the engineering drawings by
rectangular coordinates rather than by the traditional base-
line-offset distances. Of course, the coordinates are really
offsets from two perpendicular baselines, called the X and Y
(or N and E) coordinate axes. But this coordinate method of
construction location is very compatible with the radial
stakeout survey, as explained here.

The electronic tacheometer can be set up at a random
location, but one that gives unobstructed lines of sight over a
large portion of the project site. The instrument person has
to simply point on two established (and coordinated) con-
trol stations and observe and record the distances to them.
Then the on-board computer (or a programmable handheld
computer) is used to quickly solve for the coordinates of the
random control station (in effect, solving a distance–distance
intersection type problem—see Section 7-4). This is called
resectioning.

With the position of the instrument then known,
the surveyor simply inputs into the computer the design

coordinates of any point to be staked out. The computer
quickly solves the problem by inversing between that point
and the random control point (see Section 7-2), and
displays the required direction and distance from the
instrument to the stake position. A backsight on a control
station is taken, the proper angle is turned, and the com-
puted distance is set operating the EDM in its tracking
mode. The work can then be checked from a second instru-
ment setup, if necessary.

Use of Lasers for Line and Grade
A laser is a bright beam of monochromatic (single color)
light. The laser beam is generated in such a way that the light
waves are in step with each other; the beam therefore retains
its power over long distances and spreads out only very
slightly as it travels. An intense beam of laser light can be
made powerful enough to cut through steel. The beam can
also be generated with power levels low enough for safe use
in many applications. The straight beam of a low-power
laser is particularly useful as a tool for giving line and grade
in construction surveying.

A single-beam laser projects a narrow “string line,” easily
visible as a bright (red) dot on a flat surface or target, regard-
less of the lighting conditions. The laser instrument can be
mounted on a tripod and the laser beam oriented in a
horizontal direction: in this configuration, the instrument
can serve as an electronic level (Figure 11-47). An adjustable
column may be attached to the tripod so that the laser beam
can be accurately set at a specific height, or HI.

The single-beam laser can be used to give line. Once
aimed at a foresight, the position of the line can be found
without the need of a person at the instrument. It is there-
fore especially useful when many points must be set on line,
particularly when they are set at irregular location intervals.

With a fine-adjustment micrometer knob, the laser
beam can be inclined at a specific slope or gradient for
“shooting in grade.” Because the beam can be set at a pre-
determined slope, lasers are quite useful for aligning
pipelines such as sewers. A tripod-mounted laser can be set
up over a manhole, and the beam can be set at the design
slope of the flow line. This eliminates the need for batter

FIGURE 11-46. Radial stakeout of
building corners. Stations P1 and P2
are coordinated control points. In
this simple example, only one
instrument setup is required at P1.
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boards and string line. The laser beam could be used for
guiding trench excavation as well as for setting pipe inverts
at the proper grade.

Some laser devices are suitable for installation in the
manhole; the laser beam is set at the required gradient, and
the workers align the pipe sections by observing the beam on
a special target placed in the far end of the pipe section.
The horizontal alignment or location of the pipeline must
initially still be set using traditional methods with a transit
or a theodolite.

A rotating-beam laser is an especially useful construction
survey tool. This type of instrument has an internal optical
system that rotates the laser beam and thereby generates a flat
reference surface over an open area, instead of a single line.
The reference plane can be oriented in a horizontal, vertical,
or sloped position (Figure 11-48). In a horizontal position, it
can be used to level floor slabs; in a sloped position, uniform
grades for parking lot or airport pavements can be controlled.

When the beam is set to generate a vertical plane, it can be
used to align walls and columns.

Most modern rotating laser are “self-leveling” and are
equipped with a safeguard system that automatically turns
off the laser if it is accidentally knocked too much out of
level, to prevent inaccurate readings. The speed of rotation
of the beam can be controlled up to about 8 rev/second on
some models. A zero speed setting is usually provided, thus
allowing the instrument also to be used as a single-beam
laser. When rotating, the laser can typically provide a con-
stant reference plane for accurately controlling grade over
about 6.5 ac (2.5 ha) of the construction site (i.e., over about
a 300-ft, or a 100-m, radius). The beam diameter is only
about 3/8 in. (9 mm) at that distance.

The graduated level rod used in conjunction with a laser
device may be equipped with a sliding battery-powered laser
beam detector or sensor, allowing the rod to be read within
±0.01 ft (3 mm) at a distance of 100 ft (30 m) from the laser

FIGURE 11-47. (a, b) Self-leveling pipe-laying lasers that can be mounted in a manhole, on top of the
pipe barrel, or on a tripod over the pipe. (Courtesy of AGL Corporation.)

Establishing a vertical plane Establishing a horizontal plane

FIGURE 11-48. The rotating laser beam can be leveled horizontally (or plumbed vertically) to
establish a constant reference plane at a construction site. (Courtesy of CST/Berger, Illinois.)

(a) (b)
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device. On some models, the sensor will seek the beam and
give an audible signal or beep, thus indicating when the scale
can be read. This is useful for differential leveling, that is,
determining unknown elevations. The sensor can also be
clamped at a predetermined height on the level rod and used
for setting grade marks, controlling excavation depth, setting
forms, and executing many other construction layout tasks.

Projected upward in a vertical direction, a single laser
beam provides a long narrow column of light that can facili-
tate surveying operations. It is, in effect, an inverted plumb
bob, or a laser range pole. The beam is not visible to the eye,

but because it ionizes air particles in its path, it can be
detected by a special electronic receiving device. Using the
laser beam as a plumb line is particularly helpful for work in
rough terrain. Sighting on the vertical beam with a theodolite-
mounted electronic receiving device allows the surveyor to
establish a line between the laser and the receiver, even
though hills, trees, or buildings may prevent visual observa-
tions to be made.

The basic advantage of lasers in construction surveying
is that they provide rapid and accurate alignments with a
smaller field crew.

Questions for Review

1. What is construction surveying?

2. What is meant by giving line and grade?

3. What is an offset line used for?

4. Should the direction of a line be established from a line
longer than itself? Why?

5. Describe the use of a foresight for establishing direction.

6. Make a sketch showing how line and grade can be trans-
ferred from the surveyor’s marks to the construction
work using simple builder’s tools.

7. Describe the process of shooting in grade.

8. What is slope staking? What is a catch point?

9. Outline the field procedure for locating catch points.

10. Define the terms setback, building line, and baseline,
with regard to building stakeout.

11. What is a batter board? How is it used?

12. Outline the procedure for laying out a sewer line.

13. Briefly describe the procedures for double centering,
bucking in, setting a point very close to the instrument,
and setting a PI.

14. List and briefly outline five methods for avoiding an
obstacle on line.

15. What is a curb return? Briefly describe how it is laid out.

16. What is a radial stakeout survey?

17. Describe how a single-beam laser may be used in con-
struction surveying applications.

18. Describe how a rotating-beam laser may be used in con-
struction surveying applications.

Practice Problems

1. A mark is to be set at an angle of 70°00�00� from a given
line at a distance of 500 ft from the instrument. After
setting the mark, the angle is measured by repetition

and determined to be 69°59�30�. How far should the
mark be shifted so that the angle is set at 70°00�00�?

2. A mark is to be set at an angle of 80°00�00� from a
given line at a distance of 200 m from the instrument.
After setting the mark, the angle is measured by repe-
tition and determined to be 80°00�40�. How far
should the mark be shifted so that the angle is set at
80°00�00�?

3. Compute the grades at each half station and full
station for a uniform gradient between the positions
indicated:

Station: 0 + 00 6 + 73.41

Grade: 29.68 34.25

4. As in Problem 3 for

Station: 6 + 29.7 12 + 16.5

Grade: 51.26 72.49

5. The HI of a level is 567.89 ft. A blue top is to be set to
mark a grade of 558.12 ft. What is the value of grade
rod?

6. The HI of a level is 123.45 m. A blue top is to be set to
mark a grade of 121.87 m. What is the value of grade
rod?

7. It is required to set a stake to mark a grade of 45.49 ft.
The HI of the level is 53.56 ft and the rod on stake reads
4.32 ft. Determine the amount of cut (C) or fill (F) to be
marked on the stake.

8. It is required to set a stake to mark a grade of 53.72 ft.
The HI of the level is 60.05 ft and the rod on stake reads
10.93 ft. Determine the amount of cut (C) or fill (F) to
be marked on the stake.

9. Write out a set of notes for setting a grade stake at each
station, at a certain number of feet, or feet and half
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feet, above or below grade (as in Figure 11-14) for the
following:

10. Compute the cuts and fills to be written on the marks
for the following data:

11. Convert the following dimensions from feet and hun-
dredths to equivalent values in feet and inches:

(a) (b)

HI Station Grade Rod on Ground HI Station Grade Rod on Ground

37.28 0 + 0 32.61 8.2 81.29 0 + 0 80.32 1.4

0 + 50 33.01 5.4 0 + 50 81.32 1.0

1 + 0 33.41 2.3 1 + 0 82.32 0.6

1 + 50 33.81 1.7 1 + 50 83.32 1.7

39.46 2 + 0 34.21 3.5 2 + 0 84.32 1.9

2 + 50 35.61 4.7 92.42 2 + 50 85.32 2.8

3 + 0 36.01 5.6 3 + 0 86.32 3.2

3 + 50 36.41 7.2 3 + 50 87.32 4.2

4 + 0 36.81 9.7 4 + 0 88.32 6.7

4 + 50 37.21 10.6 4 + 50 89.32 7.8

(a) (b)

Station Grade Elevation Mark Station Grade Elevation Mark

0 + 0 35.64 35.27 0 + 0 47.28 46.17

0 + 50 39.42 0 + 50 41.62

1 + 0 46.25 1 + 0 45.10

1 + 50 Uniform 47.31 1 + 50 Uniform 40.83

2 + 0 Slope 46.22 2 + 0 Slope 36.15

2 + 50 47.38 2 + 50 42.14

3 + 0 55.20 3 + 0 34.75

3 + 50 59.71 3 + 50 35.29

4 + 0 59.64 4 + 0 32.67

4 + 50 62.64 64.28 4 + 50 29.28 33.48

(a) (b)

2.69 5.60 3.52 6.25

4.79 3.87 4.76 7.81

8.21 1.83 9.23 2.94

7.93 0.36 10.16 5.06

6.08 9.27 8.72 6.67

12. Convert the following dimensions in feet and inches to
equivalent values in feet and hundredths:

(a) (b)

7 ft 21⁄2 in. 3 ft 51⁄4 in. 2 ft 63⁄4 in. 4 ft 61⁄8 in.

4 ft 93⁄4 in. 8 ft 85⁄8 in. 1 ft 101⁄8 in. 7 ft 27⁄8 in.

5 ft 75⁄8 in. 9 ft 41⁄8 in. 3 ft 75⁄8 in. 5 ft 43⁄4 in.

6 ft 47⁄8 in. 2 ft 61⁄2 in. 6 ft 31⁄2 in. 8 ft 73⁄8 in.

4 ft 33⁄8 in. 10 ft 73⁄4 in. 9 ft 81⁄2 in. 10 ft 51⁄4 in.
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13. In the following, state whether the slopes are the same
or opposite and whether to move the rod more or less
than the distance computed as if the ground were level:
(a) downhill cut, (b) downhill fill, (c) uphill cut, and
(d) uphill fill.

Cut or Fill Ground Slope Rod Position Calculated Offset Try

C Up steep 70 55

F Up steep 75 85

C Down steep 80 90

F Down steep 75 60

F Up medium 70 55

C Up medium 75 85

F Down medium 80 90

C Down medium 75 60

14. In the following table, fill in the “Try” column. Assume
that the side slopes are 1.5:1.
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APPENDIX A

TRANSIT CONFIGURATION
Rapidly changing technology and the need to collect and
process data more quickly require today’s surveyors to use
field techniques and equipment that did not exist just 5 or
10 years ago. However, to be truly able to “retrace” the
footsteps of the surveyors that have come before us, it is
important to have an understanding of the equipment
and techniques they used in performing their surveys. This
understanding provides an insight into why there might be
discrepancies between field measurements performed 50 or
even just 20 years ago and today.

A full discussion of all the older instruments and field
methods is beyond the scope of this book. However, the
transit, an optical device used primarily for angular mea-
surement, was such a key instrument in nearly every type of
surveying activity in part of the nineteenth and most of the
twentieth centuries, that no land development or engineer-
ing project of any importance could be designed or con-
structed without its use. And knowledge of its configuration
and operation can provide an insight into the underlying
motions and operations of modern angular measurement
instruments.

The theodolite (described in Section 6.4) is an instru-
ment that largely replaced the transit for angular measure-
ment toward the latter part of the twentieth century.
(Although modern electronic total stations have now largely
supplanted the theodolite, it is still used in some surveying
tasks.) Transits evolved as American-style instruments that
were used most extensively in the United States. Theodolites
are primarily of European design. They have several features
in common and operate on the same fundamental princi-
ples. The key difference between the transit and the theodo-
lite is primarily that of precision; theodolites typically
provide greater precision in angular measurements than the
transits. Angle readings on theodolites are taken from

enclosed graduated glass circles and micrometer scales,
which are viewed through an internal magnifying optical
system. Transits have exterior graduated metal circles and
vernier scales that are used for angle readings.

When properly operated, transits can measure horizon-
tal angles to very high levels of accuracy, but angles must be
observed using certain repetitive and time-consuming
procedures. They can also measure vertical angles to about
;10 seconds. When equipped with stadia hairs (described
later), transits can also measure horizontal distances to the
level of accuracy required for topographic mapping. And
equipped with a compass, they can determine magnetic
bearings within ;15 minutes of arc.

A transit consists of three fundamental parts: the
alidade at the top, the horizontal circle in the middle, and
the leveling head at the base (Figure A-1). These three parts
are operated by two clamps, each equipped with a slow-
motion (tangent) screw. The upper clamp clamps the hori-
zontal circle to the alidade, and the lower clamp clamps the
horizontal circle to the leveling head. When a clamp has
been tightened, the appropriate tangent screw can be used
to make a fine setting.

The alidade is mounted on a tapered spindle called the
alidade spindle or inner center. The essential parts of the
alidade are the telescope, which is actually a telescopic line of
sight that rotates in a vertical plane on the horizontal eleva-
tion axis, and the A and B verniers, which act as indexes for
reading the horizontal circle. A vertical circle is mounted on
the telescope axis, which turns with the telescope, and verti-
cal angles are read with a vertical-circle vernier, which is
mounted on one standard. Two plate levels (spirit levels) are
mounted horizontally, at right angles, on or near the upper
plate. They are used to place the vertical or azimuth axis in
the direction of gravity. A telescope spirit level is attached to
the bottom of the telescope. Usually a compass is mounted
on the upper plate.

TRADITIONAL SURVEY

EQUIPMENT AND METHODS
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FIGURE A-1. Principle parts of the transit design.

The horizontal circle (lower plate) is mounted on a
hollow tapered spindle or outer center, the inner surface of
which acts as a bearing for the alidade spindle; the outer
surface turns in a bearing in the leveling head. This arrange-
ment is called the double center. The horizontal circle is grad-
uated in degrees and usually halves or thirds of a degree and
numbered throughout, every 10°, usually both clockwise and
counterclockwise, starting from a common zero. It is read to
varying degrees of precision from 1 minute to 10 seconds by
two verniers mounted on the alidade 180° apart.

The leveling head contains the tapered bearing for the
outer center. Four leveling screws are threaded into the arms
of the leveling head and press shoes down against the
footplate. This action tends to raise the leveling head and thus
pulls a half ball, attached to the end leveling-head bearing,
upward into a socket in the shifting plate, which in turn is
upward against the underside of the footplate. At the bottom
of the footplate are the threads by which the instrument is
screwed to the tripod. When the leveling screws are loosened,

the shifting plate drops and the whole upper assembly can be
shifted anywhere within a circle of about 3/8 in., or 10 mm, in
diameter, so that the instrument can be placed exactly in the
desired horizontal position.

A small chain, with a hook at the lower end to hold the
plumb-bob cord, hangs from a small half ring attached to a
cap that is screwed to the lower end of the leveling-head
bearing. In a well-designed instrument, the ring is placed at
the center of curvature of the half ball. In leveling the
instrument, the whole assembly above the footplate rotates
slightly around the center of curvature of the half ball. If, as
is often the case, the half ring is too low, the plumb bob is
moved horizontally when the instrument is leveled and
thus moved off the point where it had been originally
placed.

The alidade spindle, the outer center, and the leveling-
head bearing combine to form the vertical or azimuth axis.
This is also called the standing axis. Thus, the circle and the
alidade can turn in azimuth independently of each other.

1. A vernier
2. azimuth axis
3. x vernier
4. center of half ball
5. elevation or horizontal axis
6. footplate
7. graduations of horizontal circle
8. half ball
9. half ring

10. horizontal circle (lower plate)
11. inner center, or alidade spindle
12. leveling screw
13. lower clamp screw
14. lower clamp drum contact
15. lower tangent screw for 

slow motion
16. nub for lower clamp
17. nub for upper clamp
18. outer center
19. plate level
20. shifting plate
21. shoe
22. telescope
23. threads for triped
24. upper clamp screw
25. upper clamp drum contact
26. upper plate
27. upper tangent screw for slow motion
28. vertical circle
29. vertical-circle vernier
30. window, glass
31. telescope level
32. vertical tangent screw for 

slow motion
33. focusing screw for focusing 

on object sighted
34. eyepiece focusing ring
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Two journals, one at each end of the telescope axle (the
horizontal axle that supports the telescope), fit in bearings at
the tops of the standards and thus form the horizontal or
elevation axis. When the telescope is aimed up and down, it
turns on this axis, which is also called the tilting axis.

The Motions Three motions control the movements of
the transit. Each motion consists of a clamp and a tangent
screw. When the clamp is tightened, a gib is forced against a
drum on the circle assembly or on the telescope axle. The
tangent screw then becomes operative and provides a slow
motion between the two parts clamped together. The lower
motion joins the horizontal circle and the leveling head. The
upper motion joins the horizontal circle and the alidade. The
vertical motion joins the telescope axle with the standard and
thus controls the vertical angle of the telescope. Each tangent
screw acts on a nub between it and an opposing spring.
When a tangent screw is turned, the relative positions of the
two parts clamped together are changed very slightly.

The Telescopic Sight The telescopic sight of an engi-
neer’s transit is similar to that of the level (see Section 5-2).
The transit telescope generally has slightly less magnifying
power. Also, the transit telescope is supported by the stan-
dards so that the scope may be rotated or transited a full
360° around its horizontal axis.

As shown in Figure A-1, the telescope has an attached
spirit bubble tube that can be used to level the line of sight. It
may be used when the scope is in a direct or normal position
(with the spirit tube underneath the scope) or when it is in an
inverted or reversed position (i.e., “plunged” 180°, with the
tube on top of the scope). Although the engineer’s transit
may be used for leveling, its spirit bubble vial is less sensitive
than that on a level, and excellent accuracy is therefore more
difficult to obtain.

The telescopic sight of a transit is focused in the same
manner as that of the level (see Section 5-2).

The horizontal circle of a transit is divided and graduated
automatically on a large wheel. Modern dividing machines
can space the graduations very uniformly, but the circle can
never be exactly centered on the wheel. Therefore, the
graduations on one part of the circle may be slightly closer
together than the graduations on the opposite side of the
circle. This is called eccentricity of the circle.

As mentioned previously, the circle may be read by two
verniers (called A and B), which are mounted 180° apart on the

alidade. When an angle is determined by averaging the readings
of the two verniers, the effect of the circle’s eccentricity is elimi-
nated. This occurs because if the A vernier is used to read grad-
uations that are too close together, the B vernier will then be
used to read graduations that are proportionally too far apart.

By reading the two verniers and using an average value
instead of a single reading, the accuracy of the work may be
increased; for the most reliable and accurate results, then,
both verniers of the transit should be used. Generally, how-
ever, only the A vernier is read for ordinary surveying work.

Transit Verniers
The basic principle of a vernier was already described in
Section 5-2 with regard to level rod targets. Verniers, in gen-
eral, are devices for determining readings smaller than the
least division on the main scale with which they operate.
They consist of an auxiliary scale that is moved along the
main scale. On the level rod, the main scale is straight; on the
transit circle, it is curved. But the basic design and function
of a straight and a curved vernier are the same.

The 1-Minute Vernier When the horizontal circle of a
transit is graduated in half degrees, that is, divisions 30 min-
utes in length, the vernier is usually designed so that the
direction of the alidade can be read to ;1 minute of arc. In
this case, the vernier consists of a series of 30 uniform divi-
sions, each division being 1/30 shorter than a division on the
horizontal circle; the whole vernier scale of 30 divisions,
then, spans exactly 29 divisions of the horizontal circle.

The least count of a vernier is the ratio of the smallest
division on the main scale to the number of divisions on the
vernier. For the vernier previously described, the least count
is 30 minutes , 30 divisions = 1 minute per vernier division.
Because an angle or azimuth may be read directly to 1 minute
with this kind of vernier, it is called a 1-minute vernier. A
transit with this kind of vernier is called a 1-minute transit.

The Double Vernier An example of a double vernier,
the type commonly found on the engineer’s transit, is
shown in Figure A-2. A double vernier has a complete set of
divisions running both ways, right and left, from a com-
mon zero line or index (labeled A or B). With a double
vernier, an angle may be read either clockwise or counter-
clockwise, depending on whether the angle is turned to the
right or to the left.

FIGURE A-2. Double direct 
1-minute vernier.



294 APPENDIX A

Facing the double vernier, you would observe the index
to move to the left as an angle is turned clockwise; it would
move to the right as an angle is turned to the left. With this
in mind, it can be seen that, for a clockwise angle, the set of
divisions to the left of the index mark is used. For a counter-
clockwise angle, the divisions to the right of the index are
used. A rule to remember is that the vernier to be used (left or
right) is the one whose numbers increase in the same direction
as the numbers observed on the horizontal graduated circle.

Reading the Vernier Referring to Figure A-2, assume
that a clockwise angle has been turned. If the zero mark or
index of the A vernier coincided exactly with the 57°30�
graduation of the circle, the value of the angle would be just
that, 57°30�. But the index is beyond that value, to the left of
the half-degree mark.

If the alidade were turned only 1 minute (1/30 of a divi-
sion on the circle) beyond that half-degree mark, the next
graduation on the vernier to the left of the index would coin-
cide exactly with one of the graduations on the circle. The
reading would then be 57°30� plus 1 minute (as counted on
the vernier), or 57°31�. As it is, the seventh-minute gradua-
tion on the vernier coincides with a graduation of the circle.
The reading of the clockwise angle is, therefore, 57°30� plus 7�,
or 57°37�.

In general, a transit vernier is read as follows: Find
the vernier division that lines up exactly with any line on
the horizontal circle. Add the value of that vernier line to the
angle on the circle at the index mark, observed to the least
count of the circle (e.g., the nearest 30 minutes on a 1-minute
transit).

A counterclockwise angle can also be read on the
vernier shown in Figure A-2, using the set of divisions to the
right of the index. We first note that the angle is somewhat
more than 302°, but not quite 302°30�, because the index is
to the left of the half-degree mark. We then observe that the
twenty-third vernier division to the right coincides exactly
with a graduation on the circle. The value of the angle then
is 302°23�. Notice that the sum of both the clockwise angle
and the counterclockwise angle, 57°37� + 302°23�, equals
360°, as it must.

Measuring Vertical Angles Using a Transit
Angles are commonly measured in a vertical plane for
stadia and trigonometric leveling surveys, where the slope
distances must be reduced to horizontal distances. The
horizontal cross hair and the graduated vertical arc or
circle and its adjacent vernier are used for this purpose. It
should be noted that on most transits the vernier is on the
outside of the vertical circle, just the opposite of its inside
position on the horizontal circle. Care must be taken to
read the scale correctly.

On the engineer’s transit, vertical angles are measured
with reference to the horizon; when the telescope bubble

tube is centered, the vernier on the vertical circle should
read 0°00�. If it does not, the reading that is observed when
the bubble is centered is the index error of the vertical circle.
It is important to take note of its sign (plus if above the
horizon and minus if below the horizon). This value, with
its sign changed, is the index correction. It must be applied to
all vertical angles observed with that instrument. For exam-
ple, if the index error was –02�, and a vertical angle to a
given point was observed to be +16°43�, the corrected angle
would be +16°45�.

If the transit has a full vertical circle and the telescope
can be plunged, it is best to observe the vertical angle twice,
once with the scope direct and once reversed. In this way, an
index correction need not be applied. By averaging the two
readings, the index error in the position of the vernier is
eliminated; in one position it is positive and in the other it is
negative, so that in the average it cancels out.

Principles of Stadia Surveying
The traditional American transit is a versatile instrument. In
addition to measuring horizontal and vertical angles, it is
also capable of measuring horizontal and vertical distances
using the stadia method. When using the stadia method
(tacheometry), distance, direction, and elevation are all mea-
sured in essentially one operation. Taping of distances is
not required. This method was very useful for topographic
mapping small- or medium-sized parcels of land of variable
terrain before the advent of modern total stations. Stadia
surveying is not a very precise method of making field
measurement. Distances can be determined with an accuracy
of about 1/1000 at best. But this is sufficient for most
topographic surveys.

A transit (or theodolite) used for stadia work must have
a special reticle or set of cross hairs (see Figure A-3a). The
cross hairs consist of central horizontal and vertical cross
hairs, with two additional shorter stadia hairs that are
equally spaced above and below the horizontal one. The
geometric principle underlying stadia is that the corre-
sponding sides of similar triangles are proportional. The
stadia hairs are carefully placed in the reticle so that their
lines of sight separate at a rate of 1–100, from a point at
the center of a modern, internal-focus transit or theodolite
(see Figure A-3b).

Because the lines of sight diverge at the rate of 1–100,
the vertical length observed between the stadia hairs on a
level rod held 100 ft (or 100 m) away would be 1.00 ft (or 1.00
m). At a horizontal distance of 200 ft, the stadia intercept, as it
is called, would be 2.00 ft, and so on. Because the distance of
a vertical rod from the instrument is always 100 times the ver-
tical intercept observed on the rod, horizontal distances
between the rod and the instrument are easily determined
when the transit telescope is level. For example, if the bottom
stadia hair intercepts the rod at 2.00 ft, and 3.58 ft is observed
at the top stadia hair, then the horizontal distance is simply
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FIGURE A-3. (a) View through
transit telescope of stadia hairs
and level rod. (b) The distance to
the rod is equal to 100 times the
stadia intercept.

100 * (3.58 - 2.00) = 158 ft. The perpendicular distance D
between the rod and the instrument station is always 100 * S,
where S is the observed stadia intercept.

One of the chief advantages of stadia surveying is that
both horizontal and vertical distances can be measured

even when the telescope line of sight is not horizontal; it is
necessary, however, to determine the vertical angle for each
observation. The process of determining elevations by
measuring both a horizontal distance and a vertical angle is
called trigonometric leveling (see Section 5-6).
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LENGTH

UNITS AND CONVERSIONS

U.S. Customary System SI Metric System

1 foot (ft) = 12 inches (in) 1 meter (m) = 1000 millimeters (mm)

1 yard (yd) = 3 feet (ft) 1 meter = 100 centimeters (cm)

1 mile (mi) = 5280 feet 1 meter = 10 decimeters (dm)

1 chain (ch) = 66 feet 1 kilometer (km) = 1000 meters

1 chain = 100 links (lk) = 4 rods (rd) 1 millimeter = 0.001 meter

1 mile = 80 chains 1 centimeter = 0.010 meter

1 fathom (fm) = 6 feet 1 decimeter = 0.100 meter

1 inch = 25.4 millimeters* 1 meter = 39.37009 inches

1 foot = 0.3048 meter* 1 meter = 3.2808399 feet

1 mile = 1.609344 kilometers 1 kilometer = 0.62137119 mile

(Note: * denotes that an exact equivalence for U.S. survey foot conversion is 1200/3937 m.)

U.S. Customary and SI Metric Equivalences

Example Conversions:

1. Convert a distance of 567.89 ft to its equivalent in meters.

2. Convert a distance of 2.34 km to its equivalent in miles.

2.34  km *
0.62137119  mi

1  km
= 1.45  mi

567.89  ft *
0.3048  m

1  ft
= 173.09  m

APPENDIX B
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U.S. Customary System SI Metric System

1 square yard (yd2) = 9 square feet (ft2) 1 square kilometer (km2) = 105 square meters (m2)

1 cubic yard (yd3) = 27 cubic feet (ft3)

1 acre (ac) = 10 square chains 1 square kilometer = 100 hectares (hs)

1 acre = 43,560 square feet 1 hectare = 10,000 square meters

1 square mile (mi2) = 640 acres 1 hectare = 100 acres

1 acre = 100 square meters

1 square yard = 0.8361274 square meter 1 square meter = 1.19599 square yards

1 cubic yard = 0.764555 cubic meter 1 cubic meter = 1.30795 cubic yards

1 square meter = 10.76 square feet 1 square foot = 0.0929368 square meter

1 hectare = 2.4710538 acres 1 acre = 0.40468564 hectare

1 square kilometer = 0.3861 square mile 1 square mile = 2.59 square kilometers

AREA AND VOLUME

U.S. Customary and SI Metric Equivalences

Example Conversions:

1. Convert an area of 34.56 ac to its equivalent in hectares.

2. Convert a volume of 1234.5 m3 to cubic yards.

ANGLES
One complete revolution or a full circle contains:

360 degrees (°)

or 400 grads (also called gons)

or 2π radians (rads)

1 degree = 60 minutes (�)

1 minute = 60 seconds (�)

1 grad = 100 centigrads (°) = 100 centesimal minutes

1 centigrad = 100 decimilligrads (°°) = 100 centesimal
seconds

1234.5  m3 *
1.30795  yd3

1  m3 = 1614.7  yd3

34.56  ac *
1  ha

2.4710538  ac
= 13.99  ha

A right angle = 90 degrees = 100 grads = π/2 radians

1 degree = 1.1111111 grads = 0.0174533 radian

1 grad = 0.9 degree = 0.015708 radian

1 radian = 57.29578 degrees = 63.661949 grads

Convert 12°23�34� to degrees and decimals of a degree:

34�/60 = 0.5666667� 23.5666667�/60 = 0.3927778°

Therefore,

12°23�34� = 12.3928° (rounded to 1/10,000 degree)

Convert 56.5432° to degrees, minutes, and seconds:

0.5432 * 60� = 32.592� 0.592� * 60 = 35.52�

Therefore,

56.5432° = 56°32�36� (rounded to seconds)

See Chapter 2, “Measurements and Computations.”
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APPENDIX C

QUADRATIC FORMULA
To solve a quadratic equation in the form of ax2 + bx + c = 0,
apply the following formula:

RIGHT TRIANGLES

x =
-b ; 2b2 - 4ac

2a

FORMULAS

sin A = cos B = a/c cos A = sin B = b/c tan A = cot B = a/b

A = arcsin (a/c) A = arccos (b/c) A = arctan (a/b)

B = arccos (a/c) B = arcsin (b/c) cot A = tan B = b/a

Note: The inverse function arcsin may also be written as sin-1, etc.

a =2c2 - b2 b =2c2 - a2 c = a2 + b2

a = b tan A b = a tan B c = a/sin A

a = c sin A b = c cos A
c =

b

cos A

a = c cos B b = c sin B c =
a

cos B

a = b/tan B b = a/tan A
c =

b

sin B

FIGURE C-2. An oblique triangle does not include a right angle.

FIGURE C-1. A right triangle has one angle that equals 90°.

cosecant =
1

 sin 
or  acsc A =

1

 sin A
b

secant =
1

cosine
   or   asec A =

1

 cos A
b

cotangent =
1

tangent
aor cot  A =

1

tan A
b

Perimeter = a + b + c

OBLIQUE TRIANGLES

=
c2

4
 sin 2A

Area =
a2

2
  cot A =    

b2

2
  tan A =

c2

2
  sin A cos A

Area =
ab

2
= aa

2
b2c2 - a2 = ab

2
b2c2 - b2

C = A + B = 90°

Law of sines:

a

 sin A
=

b

 sin B
=

c

 sin C
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Law of cosines:

INTERSECTION FORMULAS
Intersection problems are introduced in Section 7-4; the
essential approach to evaluating those problems is to “solve
triangles,” that is, to apply the laws of sines, cosines, and right-
angle trigonometry. The formulas presented here are derived
from those laws, and they may be used directly to save time in
obtaining solutions. The most common source of error in
using formulas like these is in losing track of the proper alge-
braic signs of the various terms. It is most helpful to make a
clear sketch of the problem before attempting the solution.

Bearing–Bearing Problem
Known: Coordinates of points A and B

Bearings of lines AC and BC

Perimeter = a + b + c

Area =
a2 sin B sin C

2 sin A

Area = aab

2
b  sin C = abc

2
b  sin A = aac

2
b  sin B

where s =
a + b + c

2

Area = 3s(s - a)(s - b)(s - c)

C = 180° - A - B

A = 180° - B - C    B = 180° - A - C

C = arccos
a2 + b2 - c2

2ab

= 2a2 + b2 - 2ab cos C

c = a a sin C

sin A
b = b a sin C

sin B
b

B = arccos
a2 + c2 - b2

2ac

= 2a2 + c2 - 2ac cos B

b = a a sin B

sin A
b = c a sin B

sin C
b

A = arccos
b2 + c2 - a2

2bc

= 2b2 + c2 - 2bc cos A

a = b a sin A

sin B
b = c a sin A

sin C
b

c2 = a2 + b2 - 2ab  cos C

b2 = a2 + c2 - 2ac  cos B

a2 = b2 + c2 - 2bc  cos A

Unknown: Distances AC and BC
Coordinates of point C

where ΔE = difference in east coordinates 
from A to B = Ea - EA

ΔN = difference in north coordinates 
from A to B = Na - NA

= bearing angle of line CB
(CB is the back direction of BC)

C = intersection angle at station C

Note: The algebraic signs of the trig functions depend on the
quadrant of the bearing used, as follows:

Quadrant 1 (NE): sin is + and cos is +
Quadrant 2 (SE): sin is - and cos is +
Quadrant 3 (SW): sin is - and cos is -
Quadrant 4 (NW): sin is + and cos is -

Example C-1
Station A N450.00/E350.00
Station B N500.00/E775.00
Bearing AC = N 27°47�25� E
Bearing CB = S 60°57�35� E

Solution

Distance AC =
(775 - 350) (cos 60.96) - (500 - 450) (sin 60.96)

sin 88.75

C = 27°47¿25– + 60°57¿35– - 88°45¿00–

AC = bearing angle of line AC

CB

= easting B + BC cos BC

Easting C = easting A + AC sin AC

= northing B + BC sin BC

Northing C = northing A + AC cos AC

Distance BC =
(¢E) (cos AC) - (¢N) (sin AC)

sin C

Distance AC =
(¢E) (cos CB) - (¢N) (sin CB)

sin C

FIGURE C-3. Bearing–bearing intersection problem.
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Note: Compare the solution to this problem with that of
Example 7-6 and Figure 7-22 in Section 7-4.

Distance–Distance Problem
Known: Coordinates of points A and B

Distances AC and BC

Unknown: Bearings of AC and BC
Coordinates of C

where .S =
AB + BC + AC

2

Angle A = 2 arccos C
S(S - BC)

(AB)(AC)

Easting C = 350.00 + (250.08) (0.4662365) = 466.60

Northing C = 450.00 + (250.08) (0.8846601) = 671.24

= 352.76

Distance BC =
(425) (+0.8846601) - (50) (+0.4662365)

0.9997497

Distance BC =
(775 - 350) (cos 27.79) - (500 - 450) (sin 27.79)

sin 88.75

= 250.08

Distance AC =
(425) (+0.4854243) - (50) (-0.8742787)

0.9997497
Example C-2

Station A N800.00/E650.00
Station B N1125.00/E1250.00
Distance AC = 334.56
Distance BC = 468.13

Solution
First determine the direction and length of AB by inversing:

Bearing AB = N 61°33�25� E Distance AB = 682.37
Now solve for

Note: Compare this value of A to that obtained in
Example 7-7; the rest of the solution for this is identical to
that of Example 7-7.

Bearing–Distance Problem
Known: Coordinates of points A and B

Length of line AC
Bearing of line CB

Unknown: Bearing of line AC
Length of line CB
Coordinates of point C

where ΔE, ΔN, and are defined as for the preceding
bearing–bearing problem; the algebraic signs of the trig
functions depend on the quadrant the line is in.

Use angle C to solve for the bearing of AC; inverse
between points C and B to compute the length of CB.
Compute the coordinates of C by adding the latitude and
longitude of AC (or BC) to the coordinates of A (or B).

CB

Intersection  angle C = arcsin
¢E(cos CB) - ¢N(sin CB)

AC

= 38°16¿51–
= 2 cos-1 0.9447178 = 2(19.140431) = 38.2809°

Angle A = 2 arccos C
742.53(742.53 - 468.13)

(682.37)(334.56)

S =
(682.37 + 468.13 + 334.56)

2
= 742.53

FIGURE C-4. Distance–distance intersection problem 
(e.g., locate the intersection of two curves).

FIGURE C-5. Bearing–distance
intersection problem (e.g., traverse
or intersection of a curve and 
a line).
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FIGURE C-6. Areas of plane figures.

Areas of Plane Figures
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Most of the technical terms and abbreviations
related to the subject of surveying are new to the
beginning student. These terms are defined where

they are first introduced in the text. Sometimes, however,
students may read certain sections or chapters of the book
out of sequence. This glossary can then be useful in provid-
ing a quick and brief definition of an unfamiliar term. It can

also serve as a review and study aid. (The glossary term
cross-references are in italics.)

The definitions here are intentionally brief; further dis-
cussion of each term can be found in the appropriate sec-
tions of the text. A list of commonly used surveying
abbreviations follows these glossary definitions.

GLOSSARY AND

ABBREVIATIONS

GLOSSARY

A
Accidental Error A small, unavoidable, random measure-
ment error that is not caused by a blunder or systematic
errors.
Accretion Gradual deposition of soil along the bank of a
stream, gradually increasing the size of the adjacent property
along the shore.
Accuracy Degree of perfection obtained in the results of a
measurement, or, the closeness of the measured value to the
“exact” value.
Acre The U.S. Customary unit for land area; one acre is
equivalent to 43,560 sq. ft.
Acute Angle An angle less than 90 degrees.
Add Tape A steel tape that has the tenths- and hundredths-
of-a-foot marks (or millimeter graduations) only extending
beyond (or in back of) the zero mark, numbered backward.
Adjoiners Neighboring property owners identified in a
metes and bounds boundary description.
Adjusting a Level Circuit See Closing a Level Circuit.
Adjusting a Traverse See Closing a Traverse.
Adverse Possession The taking possession of someone
else’s property by open and continuous encroachment for a
statutory period of time.

Aerial Photograph A photograph taken from an aircraft in
flight for the purpose of photogrammetry.
Alidade The top or upper part of a transit or theodolite,
which includes the standard, telescope, vertical circle, compass,
and spindle.
Alignment of a Route See Horizontal Alignment and
Vertical Alignment.
Altitude See Elevation.
Analytical Stereoplotter An instrument that allows an oper-
ator to view pairs of aerial photographs in three-dimensional
perspective to plot contours.
Angle A plane figure formed by the intersection of two
straight lines, measured in units of degrees, grads, or radians.
Angle of Depression A vertical angle measured below a
horizontal reference line.
Angle of Elevation A vertical angle measured above a
horizontal reference line.
Angle to the Left An angle turned in a counterclockwise
direction.
Angle to the Right An angle turned in a clockwise direction.
Annual Variation Yearly changes in magnetic declination.
Arc The curved portion of a circle between the ends of any
chord in the circle.
Arc An SI metric unit of area, where 1 arc = 100 square meters.



Area The two-dimensional space encompassed within the
boundary of a closed figure.
Automatic Level A level with an internal optical compensator
that automatically takes over (using gravity’s effect), after
approximate leveling of the instrument, to set and maintain a
truly level line of sight.
Average End-Area Formula An equation for computing
the volume of earthwork (cut or fill) between adjacent cross-
sections of a highway or railway route.
Avulsion A sudden and very noticeable change in the location
of a shoreline that does not relocate the riparian boundary line.
Azimuth A direction of a line expressed as the clockwise
angle between the line and a given reference direction or
meridian.
Azimuth Axis The vertical axis of a transit, passing
through the alidade spindle and the leveling head; also called
the standing axis.

B
Back Azimuth Forward azimuth plus (or minus) 180 degrees.
Back Direction The direction opposite to which fieldwork
is carried out.
Back Tangent A straight-line section of a roadway or railway
alignment that precedes a connecting curve and subsequent
forward tangent.
Backsight In leveling, the rod reading on a point of known
elevation; also called a plus sight. Generally, a sight on a
preceding point.
Banking See Superelevation.
Barometric Leveling A method of determining land
elevations in preliminary surveys using barometers (called
altimeters) to measure air pressure.
Batter Boards Horizontal boards, each attached to two
vertical posts, used during the construction layout of the cor-
ners of a building.
Bearing Direction of a line expressed as the angle from the
north or the south end of the meridian, whichever is nearest,
to the line.
Benchmark A secure and permanent point of known
elevation, usually above sea level, used to establish elevations
of other points.
Bisector A line that divides another line (or angle) into two
equal parts.
Blue Top A wooden stake set in the ground so that the top
(painted blue) of the stake is at the required elevation or
grade of construction.
Blunder A significant but avoidable mistake in a surveying
measurement caused by human inattention or carelessness.
Borrow In earthwork calculations, the volume of soil or
rock that must be moved to a construction site from some-
where else.
Boundary Survey See Property Survey.
Bowditch Rule See Compass Rule.
Breaking Tape A field procedure to measure horizontal
distances over steeply sloping terrain, using one or more
intermediate marks on line.

Bubble Tube On a level or theodolite, a glass container filled
with liquid and shaped so that when the bubble is centered,
the direction of the telescopic line of sight is horizontal.
Bucking In A field procedure used to establish a point on a
line between two given marks when the points are not inter-
visible due to a hill and when it is impossible to set up over
either of the marks.

C
Cadastral Survey A boundary survey applied to the U.S.
Public Lands Survey System, or to identification of property
in political subdivisions.
Celestial Sphere The imaginary spherical shell formed by
the sky.
Centesimal System A system of angular measurement
used in some countries, in which a complete rotation (full
circle) is divided into 400 grades or grads.
Centi-centigrad A unit of angular measurement, where 
1 centigrad = 100 centi-centigrads.
Centigrad A unit of angular measurement, where 1 grad =
100 centigrads.
Central Angle The angle between two radii of a circle, with
the angle’s vertex at the center of the circle.
Chain A historical American unit of distance measure-
ment; one chain equals 66 feet; see also Gunter’s Chain.
Chaining A term sometimes used to describe the field proce-
dure of taping horizontal distances; derived from Gunter’s Chain.
Chicago Rod A type of level rod consisting of three sliding
sections; when the sections are unextended, it is more com-
pact and portable than a Philadelphia rod.
Chord A straight-line segment with its endpoints on the
perimeter of a circle.
Chorobate An ancient device used for leveling, from
Roman times through the middle ages, which depended on
the free surface of water in a trough to establish a line of sight.
Circle A closed plane figure formed by a curved line, every
point of which is equally distant from a single point inside
the figure.
Circumference The total length of the curved line that
forms a circle.
Class of Accuracy See Order of Accuracy.
Closing a Level Circuit A mathematical procedure to dis-
tribute the error of closure among the intermediate benchmarks
and to adjust the circuit so that the final observed benchmark
elevation matches correctly.
Closing a Traverse A mathematical procedure to eliminate
geometric inconsistency in traverse station coordinates due to
an error of closure.
Closing the Horizon A procedure for checking horizontal
angular measurements at a point by measuring the unused
angle that completes the circle.
Closure See Error of Closure.
Cloth Tape See Nonmetallic Tape.
Coincidence Setting See Index Centering.
Compass A pivoted, freely swinging magnetic needle that
rotates to align itself with the Earth’s magnetic field.
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Compass Rule A mathematical method of distributing
errors and adjusting the coordinates of a traverse so that it
“closes” on a known point.
Compass Variation See Magnetic Variation.
Complimentary Angles Two angles whose sum is equal to
a right angle.
Compound Curve A roadway curve consisting of two
simple curves with different radii, joined at a point of com-
mon tangency.
Connecting Traverse A traverse that begins and ends at
different points (or lines) of known position (or direction).
Construction Survey A survey performed to mark the
position on the ground of building corners, road loca-
tions, and other newly designed facilities and structures to
be built.
Contour Interval The constant vertical distance repre-
sented between successive contour lines on a topographic map.
Contour Line A line on a topographic map showing points
of equal elevation.
Control Survey See Horizontal Control and Vertical Control
Surveys.
Coordinate Geometry A branch of mathematics in which
geometric shapes are defined and studied algebraically in a
rectangular coordinate system.
Coordinate Method A computational method used to
calculate the enclosed area in a loop traverse when the
coordinates of each station is known.
Coordinate Transformation A mathematical procedure to
convert survey station coordinates from one reference system
to another, usually to an SPCS.
Coordinates See Rectangular Coordinates and Polar
Coordinates.
Cosecant In trigonometry, the reciprocal of the sine function.
Cosine In trigonometry, a function of an angle equal to the
ratio of the side adjacent to the angle to the hypotenuse of a
right triangle.
Cotangent In trigonometry, the reciprocal of the tangent
function.
Course The straight line between two traverse stations.
Course Departure The x-component of a traverse line in a
rectangular coordinate system.
Course Latitude The y-component of a traverse line in a
rectangular coordinate system. (Not to be confused with
Geographic Latitude.)
Crest Curve See Summit Curve.
Cross Hairs Two intersecting perpendicular lines seen
through a telescopic eyepiece of a surveying instrument to
establish a line of sight.
Cross Section In route surveys, a relatively short profile
view of the ground or pavement, drawn perpendicular to the
route centerline.
Cross-Section Leveling A field procedure for obtaining
relatively short profile views of the ground, perpendicular to
the main route centerline.
Cubit An ancient unit for distance measurement, equal to
the length of a human forearm.
Cumulative Error See Systematic Error.

Curb Return The circular arc formed by a curb at a street
intersection.
Curvature See Degree of Curve.
Cut and Fill In earthwork, excavation and embankment
sections along a transportation route that establish the
route’s vertical alignment.
Cut Sheet A table indicating depth of excavation or fill
required to reach grade on a construction project.
Cut Tape A steel tape marked every foot, with only the first
and last foot intervals graduated in tenths and hundredths of
a foot.

D
Data Reduction The mathematical procedure of convert-
ing all distance and angle measurements of a traverse into
station coordinates.
Datum See Horizontal Datum and Vertical Datum.
Decimal System A number system based on the number 10.
Declination See Magnetic Declination.
Declination Arc A scale on a compass that can be rotated to
mark the magnetic declination so the compass reads true (or
geographic) bearings.
Deflection Angle A horizontal angle between the extension
of a back or preceding line and the succeeding or next line
forward.
Degree (of Arc) A unit of angular measurement in which a
complete rotation is equivalent to 360 degrees and a right
angle equals 90 degrees.
Degree of Curvature An angle that describes the “sharp-
ness” of a simple curve; sharp curves have higher degrees of
curves than “flat” curves.
Depression Contour A contour line that encloses low
ground with no drainage path.
Diameter A straight line that passes through the center of a
circle and has its two ends on the circle; the longest chord of
a circle.
Differential Leveling See Leveling.
Direct Elevation Rod A type of level rod graduated to pro-
vide direct elevation readings, facilitating topographic or
construction surveys.
Direct Reading Scale A type of internal optical scale in a
theodolite, read by looking through a small eyepiece
mounted adjacent to the telescope.
Direction Theodolite A theodolite that has only an upper
motion with a single clamp and tangent screw, connecting the
alidade to the leveling head.
Distance See Horizontal Distance, Vertical Distance, and
Slope Distance.
Diurnal Variation Daily changes in magnetic declination.
Double Centering A procedure used to accurately extend
or prolong a straight line beyond a given endpoint using a
transit or theodolite.
Double Meridian Distance Method A computational
method used to calculate the enclosed area in a loop traverse
with adjusted latitudes and departures.
Double Sighting See Repeating the Angle.
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Double Vernier A vernier with a complete set of divisions
running both ways, right and left, from a common zero line
or index; angles may be read either clockwise (right) or
counterclockwise (left).
Doubling the Angle See Repeating the Angle.
Drawing Scale The ratio between the length of a line on a
drawing (or a map) and the actual distance that line repre-
sents in reality.
Dumpy Level An early type of level used in the United
States that has the bubble tube attached directly to a relatively
long telescope.

E
Earthwork The movement of soil or rock from one loca-
tion to another for construction, including excavation,
embankment, and fill.
Easement A legal right to use someone else’s land for a
specific purpose.
Electronic Data Collector An electronic recording device
that automatically collects, stores, and displays data acquired
by electronic surveying instruments to which it is attached.
Electronic Distance Measuring Instrument An instru-
ment that quickly and accurately measures distances using a
beam of electromagnetic waves (usually laser light).
Electronic Level An instrument that uses electronic digital
image processing and a special bar-coded level rod to deter-
mine, record, and display elevations.
Electronic Total Station A surveying instrument with a
combined digital electronic theodolite, an electronic distance
measuring device, and a built-in computer that can process
and record measurement data.
Elevation A vertical distance measured above or below a
benchmark or reference surface (usually mean sea level (MSL)).
Elevation Axis The horizontal axis around which a transit’s
telescope rotates in a vertical plane.
Embankment Excavated soil placed and compacted in a
different location for construction purposes; also called fill.
See also Earthwork.
Encroachment The process of using and gradually taking
possession of land belonging to someone else.
Engineer’s Scale A drawing scale in the form of an
equivalence, where a length of one unit on the scale is equiv-
alent to a specified number of other units in the field (e.g., 1
in. = 2000 ft).
Engineer’s Transit See Transit.
Equilateral Triangle A triangle that contains three sides of
equal length.
Equivalence Scale A type of a drawing scale, also called an
engineer’s scale.
Error The difference between a measured quantity and its
“exact” or “true” value, not due to blunders.
Error of Closure In leveling circuits and control traverses,
the error or difference between the observed final position
and the “true” position.
Excavation Removal of soil or rock from its natural loca-
tion for the purpose of construction. See also Earthwork.

Exterior Angle An angle measured on the outside of a
closed polygon.
Eyepiece A lens that magnifies the cross hairs in a telescope
and that must be focused on them according to the
observer’s eyesight.

F
Fiberglass Tape See Nonmetallic Tape.
Field Book A small notebook (or clipboard and pad) used
to record original data and sketches made at the time of
measurement in the field.
Fill See Embankment and Cut and Fill.
Florida Rod A type of level rod consisting of only one
section 10 ft long.
Focusing Lens A lens that can be moved back and forth
inside a telescopic tube to focus the image on the cross hairs.
Forced Centering The exchange of a target or reflecting
prism with a theodolite on a tribrach, maintaining a leveled
and centered position.
Foresight In leveling, a rod reading on a point of unknown
elevation; also called a minus sight. Generally, a sight on a
forward point.
Forward Azimuth See Azimuth.
Forward Direction The direction in which fieldwork is
carried out.
Forward Tangent A straight-line section of a road or railway
alignment that follows a connecting curve with the back tangent.
Full Station Stations marked at intervals of exactly 100 ft
(or 10 m in SI).

G
Geodetic Surveying A surveying method that takes Earth’s
curvature into account in measurements and data reduction.
Geographic Latitude The angular distance, north or south
from the Earth’s equatorial plane, of a point on the Earth’s
surface. (Not to be confused with Course Latitude.)
Geometry A branch of mathematics concerned with the
properties of and relationships among lines, angles, surfaces,
and solids.
Global Positioning System or Global Navigation Satellite
System A system of orbiting satellites that continuously
broadcast radio signals, used to determine the coordinates
and elevation of any point on the Earth’s surface.
Grad A unit of angular measurement in which a complete
rotation is divided into 400 grads, and a right angle equals
100 grads.
Grade The vertical position or elevation of a point.
Grade Line The vertical alignment or profile of the center-
line of a roadway or other type of transportation route.
Grade Rod The reading on a level rod that would be seen
from the given instrument position if the bottom of the rod
were placed at the required grade of construction.
Grade Staking Setting wooden stakes (or other marks) at
required elevations to serve as reference points for construction.
Gradient The slope of rate of change in grade or elevation
of a line.
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Gravity A physical property of mass, manifested by a force
of attraction directed toward the center of the Earth (i.e.,
vertical direction).
Grid-Method Leveling A field procedure used to determine
the topography of a small, uncluttered, gently sloping parcel
of land.
Gun A slang term for a transit, a theodolite, or a level
mounted on a tripod.
Gunter’s Chain A chain of 100 heavy wire links with a
length of 66 ft, used to measure distances until the introduc-
tion of modern steel tapes.

H
Hand Level A small metal or plastic tube with a horizontal
line across the open end, a small peephole in the front, a spirit
bubble, and a prism to reflect the split view of the bubble onto
the line of sight, used for rough elevation measurements, mak-
ing vertical ties, etc.
Hectare SI metric unit of area; one hectare equals 10 000
square meters.
Height See Elevation.
Height of Instrument The elevation or height of the
horizontal line of sight through the telescope of a level, transit,
or other surveying instrument.
High Rod A term describing the use of a level rod in its
extended position when leveling over steeply sloping
terrain.
Horizontal A direction perpendicular to the vertical direc-
tion (i.e., at a right angle to the direction of gravity).
Horizontal Alignment A connected series of straight lines
and curves projected onto a horizontal plane on a drawing,
locating the centerline of a route.
Horizontal Angle An angle between two lines of sight mea-
sured in a plane that is horizontal at the point of observation.
Horizontal Axis See Elevation Axis.
Horizontal Circle The middle part of a transit, between
the alidade and leveling head, graduated in degrees (of arc)
and fractions of a degree.
Horizontal Control Survey A very accurate survey per-
formed to establish a large network of fixed stations on the
ground from which other less-accurate surveying measure-
ments are made in the future.
Horizontal Curve Arcs of circles or spirals that connect
the straight-line sections (back and forward tangents) of the
horizontal alignment of a road or highway route.
Horizontal Datum A basis for horizontal control compris-
ing the coordinates of a point and the direction of a baseline
passing through the point.
Horizontal Distance A length measured along a level surface.
Horizontal Tie A horizontal distance measurement that is
used to locate the position of natural and cultural features to
be shown on a map.
Hydrographic Survey A survey performed to map the
shorelines and water depths of a river, lake, or harbor.
Hypotenuse The long side, opposite the 90-degree angle,
in a right triangle.

I
Index Centering A procedure followed when using a
theodolite to read an observed angle with high precision, by
manipulating a knob to center the circle degree graduation mark
between the double index lines; also called coincidence setting.
Index Error The reading observed on the vertical circle of a
transit when the telescope bubble tube is centered.
Inertial Positioning System An electromechanical device,
which can be used to determine coordinates of survey points.
Inscribed Angle The angle formed between two chords that
meet at a point on a circle.
Instrument Person In a surveying crew, the person using
the tripod-mounted level, transit, theodolite, or electronic total
station.
Instrumental Error A systematic error due to an imperfec-
tion or maladjustment of the measuring instrument.
Interior Angle An angle measured on the inside of a closed
polygon.
Interpolation of Contours The process of estimating inter-
mediate ground elevation values between observed data
points to sketch contour lines on a map.
Invar A steel alloy relatively insensitive to temperature
changes, used in some steel tapes and leveling rods for
increased precision.
Inverse Computations Surveying computations that result
in the direction and length of a line, starting with the
coordinates of the line’s endpoints.
Inverse Trig Function An expression relating an unknown
angle to a known value of one of its trig functions.
Invert Elevation The elevation of the bottom inside sur-
face of a sewer pipe or storm drain, established in the design
and layout of pipelines.
Isogonic Chart A map showing magnetic declination con-
tour lines and secular variation contour lines.
Isosceles Triangle A triangle that contains two sides of
equal length.

K
Keel A yellow lumber crayon used to make marks on paved
surfaces.

L
Land Survey See Property Survey.
Laser An intense narrow beam of light, used in electronic
distance measurement instruments and for establishing line
and grade.
Latitude See Course Latitude and Geographic Latitude.
Least Squares Method A mathematical procedure for
adjusting the coordinates of a traverse so that it “closes.” See
Closing a Traverse.
Lenker Rod See Direct Elevation Rod.
Level Horizontal. Also, the instrument used to make
leveling surveys.
Level Book One of two field books maintained when
running levels, kept by the instrument person.
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Level Circuit A leveling survey that ends on either the
starting benchmark, or another known benchmark, to check
for blunders and determine the error of closure and order of
accuracy.
Level Rod A graduated rod held vertically at a point to
measure elevation.
Level Surface A curved surface to which the direction of
gravity is normal, or perpendicular, at all points.
Leveling Measurement of the elevations of a continuous
series of points.
Leveling Head The lower part of a level, transit, or
theodolite, or EDMI on which the leveling screws operate; also
called the footplate.
Leveling Screws Three (or four) screws on the leveling
head of a level, transit, or EDMI, used to level the instrument
by rotating the screws.
Libella An ancient surveying instrument used to establish
a level line, using a triangular A-frame and a plumb-bob line
at the vertex.
Line and Grade Placing stakes or other reference marks in
the field to establish the location, direction, and elevation of
proposed construction.
Line of Levels See Level Circuit.
Line of Sight A straight line observed through a telescopic
eyepiece, defined by the cross hairs and the optical center of
the objective lens.
Linear Interpolation For drawing contour lines based on
the assumption that the ground slopes uniformly between
adjacent contour lines. See Interpolation of Contour Lines.
Link A historical American unit of distance; one link is
0.01 chain or 7.92 in. (See also Gunter Chain.)
Link Traverse See Connecting Traverse.
Local Attraction Disturbance of the direction of a compass
needle due to nearby magnetic materials or power lines.
Location Survey See Construction Survey.
Loop Traverse A traverse that starts and ends at the same
point or station, thus forming a polygon.
Lovar A steel alloy relatively insensitive to temperature
changes, used in some steel tapes and leveling rods for
increased precision.
Lower Motion A clamp and tangent screw that controls the
motion of the horizontal circle relative to the leveling head of
a theodolite.

M
Magnetic Azimuth An azimuth measured with reference
to a magnetic meridian.
Magnetic Bearing A bearing measured with reference to a
magnetic meridian.
Magnetic Declination The true bearing of a pivoted, freely
swinging magnetic needle (called a compass).
Magnetic Meridian An imaginary line parallel to the
direction taken by a pivoted, freely swinging compass needle.
Map See Planimetric Map and Topographic Map.
Map Scale See Drawing Scale and Representative Fraction.

Mass Diagram In earthwork calculations, a graphical tech-
nique used to balance cut-and-fill quantities along a pro-
posed transportation route.
Mean Sea Level A primary reference level or datum for
measuring elevations of points on land, determined by aver-
aging the hourly elevations of the sea over a long period of
time. Or, the position the ocean would take if tides and cur-
rents were eliminated.
Measuring Wheel A wheel mounted on a rod and attached
to an odometer, used for rough distance measurement by
rolling the wheel along the line to be measured.
Mechanical Error See Systematic Error.
Mensuration Measurement of distances, areas, and volumes.
Meridian A fixed reference direction. See True Meridian
and Magnetic Meridian.
Metes and Bounds A method for fully identifying and
describing a parcel of land, including boundary line dis-
tances, directions, and adjoiners.
Micrometer Scale A type of internal optical scale in a
theodolite, requiring use of a knob on the instrument for
index centering to read an angle.
Minus Sight See Foresight.
Minute (of Arc) An angular distance equal to one-sixtieth
(1/60) of a degree.
Mirror Stereoscope A device used to view a stereopair of
aerial photographs in three-dimensional perspective.
Monument See Benchmark.
Most Probable Value The average value of a series of
repeated measurements.

N
Natural Errors Random errors not due to instrumental or
personal causes.
Nonmetallic Tape Tapes made of fiberglass, synthetic
yarn, or cloth, for use when relatively low-accuracy distance
measurements are required.
Normal Position The position of the transit telescope with
the spirit bubble tube underneath the scope.
Normal Tension The pull on the tape required so that
systematic errors due to incorrect tension and sag should
cancel each other when taping.

O
Objective Lens A lens at the forward end of a telescope
that forms an image of the sighted target within the tele-
scopic tube.
Oblique Photo An aerial photograph taken with the optical
axis of the camera unaligned with the vertical direction.
Oblique Triangle A triangle that does not contain a right
(90%) angle.
Obtuse Angle An angle greater than 90°.
Odometer An instrument used for measuring distances by
relating the number of turns of a wheel to the linear distance
covered.
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Offset Line In construction surveying, a line located parallel
to the actual construction line, but offset 1 to 2 m so as not
to be disturbed.
Optical Compensator In an automatic level, a pendulum-
type of device that uses the force of gravity to set and maintain
a truly level line of sight.
Optical Micrometer A measuring device used with modern
precise tilting levels to improve precision.
Optical Plummet A small, vertical telescopic sight in the
spindle of a theodolite, used to set up the instrument directly
over a point or station.
Order of Accuracy A federal standard level of accuracy for
horizontal or vertical control surveys.
Orient to the Curve To set a transit on a curve with the
vernier set at the appropriate deflection angle to proceed
setting forward points on the curve.

P
Pace The length of one natural footstep while walking a
level line.
Pacing A procedure for approximate distance measure-
ment involving counting paces (single steps) while walking
along a line to be measured.
Parabola A curve used in the vertical alignment of a trans-
portation route, providing a constant rate of change of slope
between tangents.
Parallax Occurs when the image of a level rod is not
focused exactly on the plane of the cross hairs, causing the rod
reading to vary as the observer’s eye is moved up or down.
Parallel Lines Straight lines in the same plane, which do
not meet or intersect, no matter how far they are prolonged.
Parallel Plate Micrometer An optical device built in or
attached to a modern tilting level, allowing very precise
vertical displacements to be measured.
Parallelogram A quadrilateral with each pair of opposite
sides parallel.
Peg Book One of two field books maintained when running
levels, kept by the rodperson.
Perimeter The border or boundary of a two-dimensional
plane figure; also, the total length of the border.
Perpendicular Lines Lines intersecting to form a right angle.
Philadelphia Rod A type of level rod consisting of two
sliding sections; when the rod is fully extended, its front face
reads continuously from 0 at the bottom to 12 ft at the top.
(Metric rods are also available.)
Photogrammetry Making precise measurements of images
on aerial photographs to determine the relative locations of
points and objects on the ground.
Plane A perfectly flat (two-dimensional) surface.
Plane Surveying A method of surveying measurement
and computation methods that neglects the curvature of the
Earth’s surface.
Planimeter A mechanical or electronic instrument used to
trace perimeters of plane figures of any shape, thereby mea-
suring areas on maps.

Planimetric Map A drawing that shows the horizontal
positions of natural and cultural features on the land (but
does not show surface relief.)
Plat A drawing that shows the metes and bounds of a parcel
of land, along with any buildings, fences, adjoiners, and other
features.
Plot Plan See Site Plan.
Plumb In a vertical direction.
Plumb-Bob A small weight, freely suspended at the end of
a string, used to establish the vertical direction over a point
or survey station.
Plunge the Scope Turning the transit telescope 180°
around the elevation axis, from normal position to reversed
position.
Plus Sight See Backsight.
Point of Beginning A permanent marker on the boundary
of a parcel of land that is used to start a metes and bounds
description of the property.
Point of Curvature The intersection of a back tangent and
a horizontal curve along the alignment of a transportation
route; also called tangent to curve or beginning of curve.
Point of Intersection The intersection of the back tangent
and the forward tangent in the horizontal alignment of a road
or other transportation route.
Point of Reverse Curve The point where two reverse curves
meet.
Point of Tangency The intersection of a horizontal curve
and a forward tangent along the alignment of a transporta-
tion route; also called curve to tangent or end of curve.
Point of Vertical Curve The intersection of a back tangent
and a vertical curve along the vertical alignment of a trans-
portation route.
Point of Vertical Intersection The intersection of the back
tangent and the forward tangent in the vertical alignment of a
road or other transportation route.
Point of Vertical Tangency The intersection of a vertical
curve and a forward tangent along the vertical alignment of a
transportation route.
Polar Coordinates A pair of numbers (r, A) that describe
the location of a point at a distance r from the origin and at
an angle A from the x-axis.
Polygon A closed plane figure with three or more straight
sides.
Precise Level See Tilting Level.
Precise Level Rod A level rod constructed in one solid sec-
tion with an attached, graduated invar–steel strip, used for
precise leveling surveys.
Precise Leveling High order of accuracy leveling for vertical
control, requiring the use of special leveling instruments,
rods, and field methods.
Precision The degree of refinement or perfection used in a
measurement.
Preliminary Survey See Reconnaissance Survey.
Principal Meridian A meridian unique to each State for
reference of quadrangles, townships, and sections, in the U.S.
Public Land Survey System.
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Prism A solid made up of several plane faces; see Reflecting
Prism.
Prism Pole An adjustable height pole with attached bull’s-
eye spirit level and reflecting prisms for electronic distance
measurement.
Profile A drawing that shows a vertical cross section or “side
view” of the ground surface or roadway pavement along a
route survey.
Profile Leveling The process of determining the elevations
of a series of points on the ground, at mostly uniform inter-
vals along a continuous line or route.
Property Survey A survey performed to establish the loca-
tion of boundary lines and property corners on the ground.
Protractor A plastic circular or semicircular device with
graduations in degrees used to measure or draw angles on a
drawing.
Public Domain Land Land owned by the U.S. federal gov-
ernment.
Public Land Survey System In the United States, a rectangu-
lar framework created for surveying and describing large land
parcels, primarily in mid-western and far western states.
Pythagorean Theorem A mathematical formula which
states that in a right triangle, the square of the hypotenuse
equals the sum of the squares of the other two sides.

Q
Quadrangle The largest parcel of land subdivision in the
U.S. Public Land Survey System, approximately 24 miles on a
side, subdivided into 16 smaller tracts called townships.
Quadrilateral A closed plane figure with four sides and
four angles.

R
Radial Shot An extra measurement of distance and direc-
tion to a point in the vicinity of a control traverse station;
also called a Side Shot.
Radial Stakeout Radial survey methods used for
construction surveys.
Radial Survey Useful in open terrain, the process of mak-
ing several angle and distance measurements from a single
point or station of known position.
Radian A unit of angular measurement in which a complete
rotation is equivalent to 2π radians (1 radian is equivalent to
57.3°).
Radius A line from the center of a circle to any point on the
circle.
Random Error See Accidental Error.
Reciprocal Leveling A procedure for running levels accu-
rately over obstacles, where the backsight and foresight dis-
tances must be different, using two instrument setups.
Reconnaissance Survey A preliminary survey conducted to
get approximate or rough data regarding a tract of land.
Recording Electronic Tachometer See Electronic Distance
Meter.

Rectangle A parallelogram with four right angles.
Rectangular Coordinates A pair of numbers (x, y) repre-
senting distances of a point from the origin (intersection
point) of two perpendicular lines (axes) serving to describe
the location of the point.
Reflecting Prism The corner of a solid glass cube, used to
reflect laser light back to an electronic distance measurement
instrument.
Reflector See Reflecting Prism.
Refraction Slight bending of light (and a line of sight) in
the atmosphere.
Relative Accuracy For horizontal distance measurement,
the ratio of closure to the true distance.
Reliction Gradual receding of water in a lake or stream as
the water body dries up, moving the riparian boundary and
increasing the area of a parcel of land on the shore.
Relief Displacement In photogrammetry, the difference in
position of an object or point on a vertical photo compared
with its true planimetric position.
Repeating an Angle The process of measuring an angle
with a transit or theodolite more than once (an even number
of times), with the telescope reversed half of the time, to
increase precision, reduce the effect of systematic errors, and
eliminate blunders.
Repeating Theodolite A theodolite with two independent
upper and lower motions.
Representative Fraction A map scale expressed as a ratio
of map distance to actual distance, with the number 1 in the
numerator of the ratio.
Resurvey A property survey performed to relocate the orig-
inal boundary lines for previously described and monu-
mented land parcels.
Reticule (or Reticle) A component of a modern telescopic
sight that provides the cross hairs near the rear of the tele-
scopic tube.
Reverse Curve An “S-shaped” curve composed of two
opposite simple curves in the horizontal alignment of a trans-
portation route.
Reversed Position The “plunged” or “transited” position of
the transit telescope with the spirit bubble tube on top of the
telescope.
Right Angle An angle of 90° (or 100 grads, or π/2 radians).
Right-Angle Trig Trigonometric functions and relation-
ships among the sides and angles of a right triangle.
Right of Way An easement that gives the right to pass across
the land or use the land for other purposes (e.g., storm
drainage).
Right Triangle A triangle with one interior angle of 90°.
Riparian Boundary A land boundary line (either high
water mark or centerline of a stream) of property adjacent to
a body of water.
Riparian Rights Certain privileges the owner of property
adjacent to a body of water has with respect to the use of the
water.
Rod A historical American unit of distance; one rod equals
0.25 chain or 16.5 ft. See also Level Rod.
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Rod Reading A number observed through a level where
the level rod appears to be intersected by the horizontal cross
hair of the telescope.
Rod Shot In profile leveling, a series of foresights on the
level rod held at stations along the profile line to determine
ground elevations.
Rodperson In a surveying crew, the person who holds the
leveling rod in a vertical direction over the surveyed points.
Rotating-Beam Laser An instrument with an internal
optical system that continuously rotates a laser beam, gener-
ating a flat reference surface.
Rotation of Axes One of the steps in coordinate transfor-
mation involving a rotation of the meridian of the reference
coordinate system.
Route Survey A survey for the design and construction of
relatively “long and narrow” engineering projects (e.g.,
roads, railways, and pipelines).
Running Description A property survey description that
gives the direction and length of each boundary line in
sequence, starting at a POB.
Running Levels A procedure used to determine the
elevations of two or more widely separated points for vertical
control or profile surveys.

S
Sag A vertical distance between the horizontal and the
midpoint of a steel tape held horizontally between two points
on the ground.
Sag Curve A vertical curve in a route survey with a positive
change in grade between the forward and back tangents.
San Francisco Rod A type of level rod consisting of three
sliding sections; when the sections are unextended, it is more
compact and portable than a Philadelphia rod.
Scale See Drawing Scale.
Sea-Level Datum See Mean Sea Level.
Secant In trigonometry, the reciprocal of the cosine function.
Second (of Arc) An angular distance equal to one-sixtieth
(1/60) of a minute of arc.
Section A unit of land in the U.S. Public Land Survey System
about 1 square mile in area; there are 36 sections in a township.
Sector A figure formed by an arc of a circle and its
subtended central angle.
Secular Variation A long-term change in magnetic
declination.
Segment The figure formed by a chord and an arc of a
circle.
Self-Leveling Level See Automatic Level.
Self-Reading Rod Level rods that can be read directly by
the instrument person.
Setback The minimum required distance between a new
building and the front or side property lines, per local build-
ing codes.
Sexagesimal System A number system based on the num-
ber 60 in which a complete rotation (full circle) is divided
into 360 degrees of arc.

Shooting in Grade In construction surveys, setting a grade
mark wherever desired by holding a level rod at each point
and raising or lowering the rod until the target is on the line
of sight of the transit where the height of instrument is equal
to the target setting.
Shrinkage In earthwork calculations, the decrease in vol-
ume of soil due to compaction in an embankment.
Side Shot An extra measurement of distance and direction
from a traverse station to another point that is not part of the
traverse.
Side Slope In a route cross section, the ratio of a horizontal
distance to a corresponding unit of vertical distance for a cut
or fill slope.
Significant Figures The number of sure or certain digits in
a measurement, plus one estimated digit.
Simple Curves A single arc of a circle, the most common
type of a horizontal curve used in route surveys.
Sine In trigonometry, a function of an angle, equal to the
ratio of the side opposite the angle to the hypotenuse of a
right triangle.
Site Plan A special-purpose topographic map that shows
all buildings, roads, and other facilities to be constructed on
a parcel of land.
Slope The rate of change in grade or elevation of a line;
rise over run. See Gradient.
Slope Distance A distance measured in a direction other
than horizontal, which eventually will be reduced (con-
verted) to a horizontal distance.
Slope Stakes Wooden stakes that mark the line where cut
or fill side slopes intersect the original ground surface.
Slope Staking The procedure for giving line and grade for
the construction of earthwork side slopes or locating the edges
of roadway cuts and fills that exceed 3 ft (1 m) in depth.
Slow Motion Screw See Tangent Screw.
Spindle A tapered metal cylinder on the alidade of a
transit, also called the inner center, which fits into the hollow
outer center of the leveling head and allows rotation around
the azimuth axis.
Spiral Curve In horizontal alignment, it provides a gradual
change in curvature from a tangent to a curve or another tan-
gent; useful for railway routes or highway exit ramps to avoid
sudden changes in curve.
Spirit Leveling See Leveling.
Spirit Vial See Bubble Tube.
Square A rectangle with four equal sides.
Stadia Hairs Two short, horizontal cross hairs in the reticle
of a telescope, equally spaced above and below the central
horizontal cross hair.
Stadia Survey A procedure for measuring direction, dis-
tance, and elevation in one operation, using only a transit
and level rod, for mapping.
Standard A cast metal frame on the alidade of a transit
that supports the telescope and vertical circle, allowing rota-
tion of the telescope around the elevation axis.
Standard of Accuracy See Order of Accuracy.
Standing Axis See Azimuth Axis.
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State Plane Coordinate System A rectangular coordinate
grid with central meridian and origin unique to each State in
the United States for horizontal control surveys.
Station See Stationing.
Stationing A standard system for clearly identifying marks set
on a line of measured distances; the marks are called stations.
Steel Tape A narrow ribbon of steel, typically 100 ft (or 
30 m long), stored and carried on an open-reel case, gradu-
ated throughout its entire length in feet, tenths, and hun-
dredths of a foot (or in meters and millimeters), used to
measure horizontal (and slope) distances.
Stereopair A pair of overlapping aerial photographs for
viewing a three-dimensional image of the ground.
Stereoplotter An instrument that makes it possible both to
observe a three-dimensional image of the ground by viewing
overlapping aerial photographs and to plot contour lines on a
topographic map.
Straight Angle An angle of 180° (or 200 grads, or π radians).
Straight Line The shortest line joining two points.
Stride Two paces or steps. See Pacing.
Subdivision The division of a large tract of land into two
or more smaller parcels for sale as separate building lots.
Subtended Angle An arc subtends (forms) a central angle
between two radii from the center of the circle to the ends of
the arc.
Summit Curve A vertical curve in a route survey with a neg-
ative change in grade between the forward and back tangents.
Superelevation The raising or banking of the outer edge of
a roadway pavement or railway transportation route to resist
the effect of centrifugal forces along a curved path.
Supplementary Angles Two angles whose sum is equal to
the sum of two right angles.
Surface Relief The overall “shape” of the land (e.g., hills or
valleys), shown on a topographic map.
System of Rectangular Surveys See Public Land Survey
System.
Systematic Error An error caused by imperfections in the
measuring equipment, by the method of measurement, or
by certain natural conditions.

T
Tangent A straight line that touches or meets a curve at
only one point. See also Forward Tangent and Back Tangent.
Also, a trigonometric function of an angle equal to the ratio
of the opposite side to the adjacent side in a right triangle.
Tangent Screw A slow-adjustment screw on surveying
instruments, to provide fine control of the direction of the
telescope by turning a knob.
Tape See Steel Tape and Nonmetallic Tape.
Tape Clamp Handle A metal device used for providing a
firm grip on a steel tape at any intermediate point without
causing damage to the tape or injury to the surveyor from
the steel edge.
Tape Thermometer A special thermometer, attached to a
steel tape, to account for tape expansion or contraction when
high accuracy is required.

Taping The field procedure of measuring distances with a
steel tape.
Target A readily visible object with a clearly marked point
for setting a line of sight that can be centered over a point in
a tribrach on a tripod; see also Target Rod.
Target Rod A level rod with a movable target and vernier
scale that can be set by the rodperson at a position indicated
by the instrument person, and read with greater accuracy by
the rodperson.
Telescope On levels, transits, theodolites, and total stations
to magnify an image and obtain a line of sight on a rod, point,
or target.
Tension Handle A spring-balance and handle attached to
the forward end of a steel tape to indicate whether the correct
tension (pull) is applied to the tape.
Theodolite A compact instrument for measuring angles
accurately, with internal micrometer scales for precise reading
of the circles.
Three-Wire Leveling For precise leveling surveys, a proce-
dure that makes use of the central and stadia cross hairs; the
three readings are averaged.
Tilting Axis See Elevation Axis.
Tilting Level A modern level equipped with an attached
(or internal) parallel plate micrometer, used for precise level-
ing surveys.
Topographic Map A scale drawing (also called a topo
map) showing surface relief and the locations of all natural
and cultural features on the land.
Topographic Survey A survey performed to determine the
“shape” of the land and the locations of all existing natural
and cultural features (e.g., streams, lakes, and houses)
depicted on a topographic map.
Total Station See Electronic Total Station.
Township A tract of land in the U.S. Public Land Survey
System about 6 miles on a side, further subdivided into 36
sections.
Transit A traditional American-style optical surveying
instrument used primarily to measure horizontal and vertical
angles.
Transit Rule A mathematical method of distributing errors
and adjusting the coordinates of a traverse so that it “closes.”
Transit the Scope See Plunge the Scope.
Transition Curve See Spiral Curve.
Translation of Axes One of the steps in coordinate trans-
formation, involving a displacement of the origin of the
reference coordinate system.
Trapezium A quadrilateral in which no two sides are
parallel.
Trapezoid A four-sided plane figure with only one pair of
opposite sides parallel.
Trapezoidal Rule A mathematical method used to approx-
imate the area enclosed between a traverse line and an irreg-
ular natural boundary line.
Traverse An interconnected series of lines (courses) run-
ning between a series of points on the ground (stations) for
horizontal control.
Triangle A three-sided polygon.
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Triangulation The determination of the positions of hori-
zontal control stations covering large areas, relying primarily
on angular measurement.
Tribrach The base of a theodolite, with a special release
mechanism that allows the instrument to be easily
exchanged with a target or reflector without disturbing the
leveled and centered position.
Trigonometric Leveling A method used to determine the
difference in elevation between two points indirectly by mea-
suring a vertical or zenith angle and the slope distance between
the two points, and using trig.
Trigonometry (Trig) A branch of mathematics concerned
with the relationships among the sides and angles of a triangle;
abbreviated “trig.”
Trilateration The computation of rectangular coordinates
of survey stations using only distance measurements and
trigonometry.
Tripod A three-legged wooden or aluminum stand on
which levels, transits, theodolites, total stations, and so on are
securely mounted.
True Azimuth An azimuth measured with reference to a
true meridian.
True Bearing A bearing measured with reference to a true
meridian.
True Meridian An imaginary line that passes through a
point on the Earth’s surface and the Earth’s geographic north
and south poles.
Turning Point A temporary mark or point conveniently
located to serve as an intermediate reference when running
levels.

U
Unit Pace A person’s average pace length expressed as
ft/pace or m/pace.
Upper Motion A clamp and tangent screw that controls
motion of the horizontal circle relative to the alidade of a
theodolite.

V
Vernier Scale A short graduated scale mounted parallel to
the main scale to be read, used to provide more precise read-
ings of the main scale.
Vertex The intersection of two sides of a plane figure; high
point of a triangle.

Vertical The direction of gravity (i.e., toward the center of
the Earth).
Vertical Alignment A profile view of the final grade line of
a transportation route.
Vertical Angle An angle between two lines of sight mea-
sured in a vertical plane at the point of observation.
Vertical Circle A graduated metal disk on the alidade of a
transit used to measure vertical angles.
Vertical Control Datum A level surface, line, or point used
as a reference from which the elevations of other points are
determined.
Vertical Control Survey A very accurate survey performed
to establish a large network of benchmarks on the ground
from which other, less-accurate, surveying measurements
are made in the future.
Vertical Curve A segment of a parabola in a vertical plane,
used to connect the forward and back tangents of a highway
route.
Vertical Distance A length measured along the direction
of gravity.
Vertical Motion A clamp and tangent screw that controls
the vertical angle of a transit or theodolite telescope.
Vertical Photo An aerial photograph taken with the optical
axis of the camera aligned in the vertical direction.
Vertical Tie A vertical distance measurement for determin-
ing the elevation of a point to be shown on a topographic
map.

W
Waving the Rod A procedure used to assure that the level
rod is in the vertical direction when the rod reading is taken.
Witnessing a Point A field procedure for referencing or
locating a control point with horizontal ties so that it can be
relocated in the future.

Z
Zenith The point on the celestial sphere vertically above a
given point.
Zenith Angle A vertical angle measured using the zenith
direction as a zero reference line; also called zenith distance.
Zenith Direction The upward vertical direction, which is
used as a reference for measuring vertical angles with a
transit or theodolite.
Zenith Distance See Zenith Direction.

Glossary and Abbreviations 313



ABBREVIATIONS AND
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BLM Bureau of Land Management

BM benchmark

BS backsight

c centigrad

CAD computer-aided drafting

CADD computer-aided design and drafting

cc centi-centigrad

COGO coordinate geometry

CT curve to tangent

DMD double meridian distance

E east

EDM electronic distance measurement

EDMI electronic distance measuring instrument

ETI electronic tachometer instrument

FS foresight

g grad

GIS geographic information system

GPS global positioning system

GR grade rod

HI height of instrument

IPS inertial positioning system

LS land surveyor (or licensed surveyor)

MD meridian distance

MSL mean sea level

N north

NAVD88 North American Vertical Datum of 1988

NE Northeast

NGS National Geodetic Survey

NGVD29 National Geodetic Vertical Datum of 1929

NSRS National Spatial Reference System

NW northwest

° degree

PC point of curvature

PCC point of compound curve

PE professional engineer

PI point of intersection

POB point of beginning

PP professional planner

PRC point of reverse curve

PT point of tangency

PVC point of vertical curvature

PVI point of vertical intersection

PVT point of vertical tangency

RF representative fraction

ROW right of way

S south

SC spiral to curve

SE southeast

SI System International

SPCS state plane coordinate system

SW southwest

TC tangent to curve

TP turning point

US United States

USGS United States Geological Survey

W west

Δ delta
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(Rounded off to an appropriate number of significant figures.)

CHAPTER 2

2. a. 0.75° b. 77.39708°

4. a. 86°39� b. 27°32�35.8�

6. 111°26�07�; 61°39�25�

8. a. 45.75° × (1°/0.9°) = 50.83°
b. 123.1234° × (1°/0.9°) = 136.8038°

10. a. 23° × (0.9°/1°) = 21°
b. 75.245° × (0.9°/1°) = 67.721°
c. 150.7654° × (0.9°/1°) = 135.6889°

12. a. 67.35 ft × (0.3048 m/1 ft) = 20.53 m
b. 246.864 m × (1 ft/0.3048 m) = 809.921 ft
c. 75 ch 3 rds 20 lk - 75.95 ch = 5012.70 ft
d. 1.23 ml × (1 km/0.621 ml) = 1.98 km

14. a. 75 500 ft2 × (1 ac/43 560 ft2) = 1.73 ac
b. 10.5 ac × (1 ha/2.47 ac) = 4.25 ha
c. 10.5 ha × (2.471 ac/1 ha) = 25.9 ac
d. 750 ac × (1 mi2/640 ac) = 1.2 mi2

e. 5.3 mi2 × (1 km2/0.3861 mi2) = 14 km2

16. a. 500 ft2 × (1 yd2/27 ft2) = 18.5 yd2

b. 150 yd2 × (1 m2/1.30795 yd2) = 115 m2

18. a. 3 b. 4 c. 5 d. 4 e. 5
f. 3 g. 2 h. 4 i. 4 j. 4

20. 282.47

22. 640

24. 45.0; 246 000; 0.123; 261; 34.0

26. Average = 85.94 m;

28.

30. 1:640

32. 1:1100

E = 0.066 * 13 = 0.114  m

Eq = 1.96 * 10.0486/30 = ; 0.079  m

34. 1:3800; 1:28 000; 1:6400; 1:13 000; 1:17 000; 1:2500

36. C = 2500/5000 = 0.5 ft

38. E� for 100 m = 0.110 m

CHAPTER 3

2. a. x = 3; b. t = - 6/7; c. y = 2;
d. n = - 1/2; e. x = 1/26

4. a. x = ± 5; b. x = 3, x = - 4;
c. x = 2.851, x = -0.351; d. no real solution;
e. y = 0.4684, y = - 2.135

6. a. x = 1, y = - 3/2; b. x = 0, y = 1;
c. x = - 1.889, y = 1.444

8. a. 165 m2; b. 1400 ft2; c. 165 m2;
d. 2864 ft2; e. 1227 m2; f. 3474 ft2

10. a. opp = 294.76 ft, adj = 322.96 ft, B = 47°36�48�
b. hyp = 393.23 m, adj = 187.75 m, B = 28°31�13�
c. hyp = 441.45 ft, opp = 258.05 ft, B = 54°13�43�
d. A = 66°55�11�, B = 34°59�22�, adj = 169.71 m
e. A = 55°00�38�, B = 34°59�22�, opp = 386.40 ft
f. A = 53°18�15�, B = 36°41�45�, hyp = 459.54 m

12. a. C = 71°21�22�, b = 168.04 ft, c = 282.82 ft
b. C = 67°15�44�, a = 320.89 m, b = 387.77 m
c. B = 73°20�30�, C = 81°35�14�, c = 533.93 ft
d. B = 49°23�22�, C = 71°19�15�, c = 497.10 m
e. B = 64°09�12�, C = 60°08�13�, a = 391.82 ft
f. B = 93°00�26�, C = 19°54�53�, a = 438.79 m
g. A = 32°13�45�, B = 58°00�28�, C = 89°45�47�

14. Building height = 214 ft

16. 78°41�24�; 101°18�36�; 229.46 ft

18. 20 m

20. BC = 85.828 m; CD = 304.08 m; DA = 249.99 m

22. 26°19�14�; 21°35�43�; 132°05�03�

ANSWERS TO EVEN-NUMBERED

PROBLEMS
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24. 620 ft

26. 375.7 ft

28. a. sin (10 + 20) = sin 30 = 0.500
(sin 10)(cos 20) + (cos 10)(sin 20) = 0.500

b. cos (10 - 20) = cos (- 10) = 0.9848
(cos 10)(cos 20) + (sin 10)(sin 20) = 0.9848

c. tan (10 + 20) = tan 30 = 0.5774

30.

32. y = 25

34. y = -0.7143x + 15.7143

36. Intersection point: (5, 2.5)

38. (x - 3)2 + (y - 4)2 = 49

40. (x - 3)2 + 36 = 49

x2 - 6x + 9 + 36 = 49

x2 - 6x - 4 = 0

x = 6.6 and x = - 0.6

Intersection points: (6.6, 10) and (-0.6, 10)

CHAPTER 4
2. a. CD = 33.3 m b. 135.5 paces

4. a. Average unit pace = 0.85 m/pace (omit 96)
b. E95 = 1.3 paces; relative accuracy = 1:90

6. a. 351.12 ft (107.02 m);
b. 565.62 ft (172.40 m);
c. 909.48 ft (277.21 m)

8. +76.543

10. CL = 29.992 - 30.000 = -0.008 m

Correct distance = 123.456 - 0.033 = 123.423 m

12. CL = 99.990 - 100.000 = -0.010 ft

Correct distance = 250.000 + 0.025 = 250.025 ft

14. Ct = (1.116 × 10-3)(65.432)(28 - 20)
= 0.0058 m = 0.006 m

Correct distance = 65.432 + 0.006 = 65.438 m

16. CL = 99.990 - 100.000 = -0.010 ft/100 ft

Ct = (6.5 × 10-6)(100)(25 - 68) = - 0.028 ft/100 ft

Total correction per 100 ft = -0.038 ft

Slope distance = 223.456 + (-0.038)(2.23456)
= 223.371 ft

18. CL = 99.990 - 100.000 = -0.010 ft per 100 ft

Ct = (6.5 × 10-3)(100)(95 - 68) = 0.030 ft per 100 ft

Total correction per 100 ft = 0.02 ft

Distance to be laid out = 300.00 - 0.02 × 3 = 299.98 ft

= 222.70 ft

Horizontal distance = 2223.3712 - 17.252

CD = 2702 + 502 - 86.02 = 86

(tan 10 + tan 20)

1 - [( tan 10)( tan 20)] - 0.5774

CHAPTER 5
2. No. 1 (ft): a. 1.410 b. 1.326 c. 1.218

d. 1.064 e. 0.945

No. 2 (m): a. 1.010 b. 0.983 c. 0.950
d. 0.903 e. 0.868

No. 3 (ft): a. 1.580 b. 1.666 c. 1.779
d. 1.929 e. 2.040

(Note: For rod no. 3, the readings are the final digits of
elevation)

4. a.

b.

6. a.

Station BS HI FS Elevation

BM 10 3.45 756.65 753.20
TP 1 4.68 758.97 2.36 754.29
TP 2 6.85 764.59 1.23 757.74
TP 3 9.63 772.43 1.79 762.80
BM 20 2.46 769.97

Sum = 24.61 7.84

Station BS HI FS Elevation

BM 10 1.567 201.567 200.000
TP 1 1.345 199.333 3.579 197.988
TP 2 1.136 197.709 2.760 196.573
TP 3 0.987 196.121 2.575 195.134
TP 4 0.876 194.942 2.055 194.066
BM 20 1.579 193.363

Sum = 5.911 12.548

Check: Elevation BM 20 = 200.000 + 5.911 - 12.548
= 193.363 O.K.

Station BS (-) HI FS (+) Elevation

BM 10 3.45 749.75 753.20
TP 1 4.68 747.43 2.36 752.11
TP 2 6.85 741.81 1.23 748.66
TP 3 9.63 733.97 1.79 743.60
BM 20 2.46 736.43

Sum = 24.61 7.84

Check: Elevation BM 20 = 753.20 - 24.61 + 7.84 = 736.43 O.K.

20. CL = 15.005 - 15.000 = 0.005 m per 15 m

25.00 m + 0.005 × 25/15 = 25.01 m

50.00 m + 0.005 × 50/15 = 50.02 m
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b.

8. a.

b.

c.

10. a.

Station BS (-) HI FS (+) Elevation

BM 10 1.567 198.433 200.000
TP 1 1.345 200.667 3.579 202.012
TP 2 1.136 202.291 2.760 203.427
TP 3 0.987 203.879 2.575 204.866
TP 4 0.876 205.058 2.055 205.934
BM 20 1.579 206.637

Sum = 5.911 12.548

Check: Elevation BM 20 = 200.000 - 5.911 + 12.548 
= 206.637 O.K.

Station BS HI FS Elevation Error

BM 4 0.806 26.039 25.233
TP 1 1.454 25.176 2.317 23.722
BM 9 1.841 24.020 2.997 22.179
TP 2 2.298 25.206 1.112 22.908
TP 3 3.187 26.648 1.745 23.461
BM 4 1.418 25.230 0.003

Sum = + 9.586 - 9.589 0.003

Distance K = 40 m × 10 = 400 m = 0.4 km
3 mm accuracy

Station BS HI FS Elevation Error

BM 16 2.226 21.241 19.015
TP 1 0.536 19.267 2.510 18.731
TP 2 3.089 21.529 0.827 18.440
BM 40 2.814 21.707 2.636 18.893
TP 3 1.656 21.367 1.996 19.711
BM 16 2.417 18.950 0.065

Sum = + 10.321 - 10.386 0.065

Distance K = 40 m × 10 = 400 m = 0.4 km

65 mm

Station BS HI FS Elevation Error

BM 6 2.167 24.917 22.750

TP 1 1.459 25.444 0.932 23.985

TP 2 1.672 26.320 0.796 24.648

Station BS HI FS Elevation Error

BM 2.300 14.300 12.000
TP 1 2.088 15.278 1.110 13.190
TP 2 2.506 16.132 1.652 13.626
TP 3 3.257 17.556 1.833 14.299
TP 4 0.497 15.387 2.666 14.890
BM 3.384 12.003 0.003

Sum = + 10.648 - 10.645 0.003

Distance K = 50 m × 10 = 500 m = 0.5 km
3 mm

b.

Station BS HI FS Elevation Error

BM 2.58 28.92 26.34
TP 1 2.25 28.24 2.93 25.99
TP 2 1.63 27.88 1.99 26.25
TP 3 2.81 28.17 2.52 25.36
TP 4 1.94 26.97 3.14 25.03
TP 5 2.81 27.52 2.26 24.71
BM 1.18 26.34 0.00

Sum = +14.02 -14.02 0.00

c.

Station BS HI FS Elevation Error

BM 0.528 28.462 27.934
TP 1 1.290 26.925 2.827 25.635
TP 2 1.684 26.101 2.508 24.417
TP 3 2.762 27.455 1.408 24.693
TP 4 2.549 28.100 1.904 25.551
BM 0.170 27.930 0.004

Sum = + 8.813 - 8.817 0.004

Distance K = 50 m × 10 = 500 m = 0.5 km
4 mm

BM 11 1.470 24.851 2.939 23.381

TP 3 1.839 23.647 3.043 21.808

BM 6 0.906 22.741 0.009

Sum = + 8.607 - 8.616 0.009

Distance K = 40 m × 10 = 400 m = 0.4 km
9 mm
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b.

Station BS HI FS Rod Elevation

BM 27 2.860 22.610 19.750
0 + 00 3.29 19.32
0 + 30 1.92 20.69
0 + 60 0.67 21.94
0 + 90 0.37 22.24
TP 1 0.390 21.320 1.680 20.930
1 + 20 0.20 21.12
1 + 50 0.06 21.26
1 + 80 1.83 19.49
2 + 10 2.80 18.52
TP 2 0.887 20.217 1.990 19.330
2 + 40 1.61 18.61
2 + 70 0.94 19.28
3 + 00 0.52 19.70
BM 48 0.951 19.266

Sum = + 4.137 - 4.621

Check: Elevation BM 48 = 19.760 + 4.137 - 4.621
= 19.266 O.K.

Error = 19.270 - 19.266 = 0.004 m = 4 mm

12. a.

Station BS HI FS Rod Elevation

BM 16 1.715 21.600 19.885
0 + 00 3.90 17.70
0 + 30 2.47 19.13
0 + 60 1.43 20.17
0 + 90 2.56 19.04
TP 1 1.144 21.514 1.230 20.37
1 + 20 4.15 17.36
1 + 50 3.90 17.61
1 + 80 3.23 18.28
TP 2 1.914 20.953 2.475 19.039
2 + 10 1.98 18.97
2 + 40 1.83 19.12
2 + 70 1.65 19.30
3 + 00 3.54 17.41
BM 17 1.591 19.362

Sum = +4.773 -5.296

Check: Elevation BM 48 = 19.885 + 4.773 - 5.296
= 19.362 O.K.

Error = 19.365 - 19.362 = 0.003 m = 3 mm
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14. Elevation BM 10A = 376.296 (errors cancel out in BS
and FS shots)

16. Error of closure = 0.04 m = 40 mm

Adjusted elevations:

BM 30A: 567.89 - 0.415 × 0.04 = 587.87

BM 30B: 576.43 - 0.510 × 0.04 = 576.41

BM 30C: 543.21 - 0.685 × 0.04 = 543.18

CHAPTER 6
2. a. 100°40�

b. 49°30�
c. 89°50�
d. 94°50�

4. a. -2°35�25�
b. -18°15�45�
c. 17°27�12�

6.

22.

Computation by Interior Angles

Bearing AzimN AzimS

a. N 30°40� E 30°40� 210°40�

b. N 59°50� W 300°10� 120°10�

c. N 9°20� W 350°40� 170°40�

d. N 40°20� W 319°40� 139°40�

e. N 10°30� E 10°30� 190°30�

f. S 0°30� E 179°30� 359°30�

g. S 89°40� E 90°20� 270°20�

h. S 70°00� W 250°00� 70°00�

i. S 20°40� W 200°40� 20°40�

j. S 29°30� E 150°30� 330°30�

k. N 19°60� W 340°10� 160°10�

l. S 49°30� E 130°30� 310°30�

Interior Angles

A B C D E

88°30� 40°15� 40°15� 50°15� 89°00�

-22°15� -22°45� +51°45� +31°45� +32°15�

66°15� -17°30� 92°00� -82°00� 121°15�

179°60� 180°00�

162°30� 98°00�

A = 66°15� BC - S 40°15� E

B = 162°30� 92°00�

C = 92°00� CD N 51°45� E

D = 98°00� +98°00�

E = 121°15� -149°45�

Sum = 539°60� 179°60�

DE -N 30°15� W

180 121°15�

× 3 S 91°00� W
540 EA -N 89°00� W

66°15�

AB - S 22°45� E

162°30�

-139°45�

179°60�

8. a. S 30°40� W b. 300°10�

c. 170°40� d. S 40°20� E

e. 190°30� f. N 0°30� W

g. 270°20� h. 70°00�

i. N 20°40� E j. 330°30�

k. 340°10� l. 310°30�

10. (1) +53.47 ft; (2) -10.69 ft; (3) -8.74 ft

12. AzimN IH = 112°15�; AzimN HG = 185°00�;
AzimN GF = 292°15�

14. PQ: N 43°39� W; QR: S 77°50 W; RO: S 12°32� E

16. a. G = 118°01�; H = 31°32�; I = 30°27�
b. J = 108°30�; K = 37°45�; L = 33°45�

18. True Azim = 130°15�; true bearing = S 49°45�E

20. Compass bearing = N 88°50� W; True Azim = 277°45�
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24. a.

b.

CHAPTER 7
2.

0.0095° = 0.57° L 34–
0.0191° = 00°01¿09– L 01¿

Station Field
Correction,

minutes Adjusted Course Bearings

A 303°30� -2 303°28� FG N 77°49� E

B 89°33� -2 89°31� GH N 44°10� W

C 56°27� -2 56°25� HI N 1°55� E

D 144°17� -2 144°15� IJ S 46°09� W

E 279°07� -2 279°05� JK N 9°31� W

F 152°13� -2 152°11� KL S 75°05� W

G 58°03� -2 58°01� LA S 47°06� E

H 226°07� -2 226°05� AB S 76°22� W

I 44°16� -2 44°14� BC S 14°07� E

J 304°22� -2 304°20� CD N 42°18� E

K 84°38� -2 84°36� DE N 6°33� E

L 57°51� -2 57°49� EF S 74°22� E

1796°264� 1796°240�

+ 4°-240�

1800°24�

-1800°

Error +24�
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4.

Station Field
Correction,

minutes Adjusted Course Bearings

A 54°08� +1 54°09� BC S 22°18� W

B 216°54� +1 216°55� CD N 79°14� E

C 56°55� +1 56°56� DE N 26°43� E

D 127°28� +1 127°29� EF S 69°59� E

E 263°17� +1 263°18� FG N 14°56� W

F 55°02� +1 55°03� GH N 44°48� W

G 150°07� +1 150°08� HI S 72°48� W

H 117°35� + 1 117°36� IJ N 20°55� E

I 308°06� +1 308°07� JK S 81°03� W

J 60°07� +1 60°08� KL S 9°59� E

K 88°57� +1 88°58� LA N 68°46� W

L 301°12° +1 301°13� AB S 14°37� E

1795°288� 1795°300�

+ 4°-240�

1799°48�

-1800°00�
Error -12�
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6.

8.

Course Length, m Bearing Latitude Departure

1-2 77.69 N 16°48� W +74.37 -22.45

2-3 48.19 N 77°03� W +10.80 -46.96

3-4 136.31 S 32°03� W -115.53 -72.33

4-1 144.96 N 77°55� E +30.35 141.75

407.15 -0.01 0.01

Error of closure Ec = 20.012 + 0.012 = 0.014m

Relative accuracy = 1:(407.15/0.014) = 1:29000

Unadjusted Corrections Adjusted

Station Bearing Latitude Departure Latitude Departure N E

A 868.59 461.57

N 76°17� E +131.39 +538.29 +0.02 +0.14 +131.41 +538.43

B 1000.00 1000.00

N 9°17� W +419.74 -68.61 +0.01 +0.10 +419.75 -68.51

C 1419.75 931.49

N 79°27� W +78.01 -418.85 +0.01 +0.10 +78.02 -418.75

D 1497.77 512.74

S 22°57� W -317.95 -134.64 +0.01 +0.09 -317.94 -134.55

E 1179.83 378.19

S 14°59� E -311.25 +83.30 +0.01 +0.08 -311.24 +83.38

A 868.59 461.57

- 0.06 -0.51 +0.06 +0.51

0.51

2073
= 1:4100
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10.

Unadjusted Corrections Adjusted

Station Bearing Latitude Departure Latitude Departure N E

A 1425.55 1145.65

N 65°04� W +236.19 -508.05 -0.08 +0.08 +236.11 -507.97

B 1661.66 637.68

S 30°14� W -418.32 -243.79 -0.07 +0.07 -418.39 -243.72

C 1243.27 393.96

S 84°33� E -35.66 +373.72 -0.05 +0.05 -35.71 +373.77

D 1207.56 767.73

S 48°13� E -207.52 +232.23 -0.04 +0.04 -207.56 +232.27

E 1000.00 1000.00

N 18°53� E +425.62 +145.58 -0.07 +0.07 +425.55 +145.65

A _______ _______ _____ _____ 1425.56 1145.65
+0.31 -0.31 -0.31 +0.31

0.44

2181
= 1 :5000

12.
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Course Bearing Length

1-2 S 65°51�40� W 1760.08

2-3 S 42°03�40� E 380.64

3-4 S 87°26�54� E 1691.68

4-1 N 19°56�28� W 1431.50

Unadjusted Corrections Adjusted

Station Bearing Latitude Departure Latitude Departure N E

Ash

S 38°32� W
Fir 1000.00 1000.00 1000.00 1000.00

S 54°56� E -199.45 +284.14 -0.13 0.00 -199.58 +284.14

G 800.42 1284.14

S 11°02� E -441.51 +86.09 -0.17 +0.01 -441.68 +86.10

H 358.74 1370.24

S 76°15� E -34.41 +140.61 -0.05 0.00 -34.46 +140.61

Oak 324.28 1510.85

N 65°20� W
Pine

324.63 1510.84 -0.35 +0.01
Oak -324.28 -1510.85

+ 0.35 - 0.01

0.35

942
= 1 :2700

Transit Rule Corrections Adjusted Coordinates

Station Latitude Departure Northing Easting

E 1000.00 1000.00

+0.04 -0.03 -442.63 +79.89

A 557.37 1079.89

+0.00 -0.19 +40.87 +558.59

B 598.24 1638.48

+0.05 -0.00 +484.14 +9.44

C 1082.38 1647.92

+0.02 -0.11 -150.68 -343.96

D 931.70 1303.96

+0.01 -0.10 +68.30 -303.96

E 1000.00 1000.00
+0.12 -0.43

14. (Refer to Problem 9.)

16. (Refer to Problem 9.)

18.

Course Bearing Length, ft

EA S 10°13� E 449.79

AB N 85°49� E 560.17

BC N 1°06� E 484.21

CD S 66°20� W 375.48

DE N 77°20� W 311.50

20.

22.

= 18 353 284

+ (2255.00)(1000.00) + (3945.00)(2345.67)
©(up) = (3456.78)(1357.91) + (2000.00)(1075.31)

2345.67

3456.78

1000.00

3945.00

1075.31

2255.00

1357.91

2000.00

2345.67

3456.78

Area =
247 068 ft2

43 560 ft2/ac
= 5.67 ac

Area =
5 816 018 - 5 321 882

2
= 247 068 ft2

+ (931.69)(1000.00) = 5 321 882

+ (598.25)(1647.84) + (1082.37)(1303.92)

©(down) = (1000.00)(1079.83) + (557.35)(1638.50)

+ (1303.92)(1000.00) = 5 816 018
+ (1638.50)(1082.37) + (1647.84)(931.69)

©(up) = (1000.00)(557.35) + (1079.83)(598.25) +

1000.00

1000.00

931.69

1303.92

1082.37

1647.84

598.25

1638.50

557.35

1079.83

1000.00

1000.00
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+ (1075.31)(3945.00) + (1000.00)(3456.78)

= 15 452 305

24.

26.

28. Azim SR = 155°45� + 180°00� = 335°45�

Azim S-S10 = 335°45� + 233°15� - 569°00� = 209°00�

Latitude S-S10 = -148.35 cos 29°= -129.75

Departure S-S10 = -148.35 sin 29°= -71.92

Northing S10 = 500.00 - 129.75 = 370.25

Easting S10 = 500.00 - 71.92 = 428.08

Coordinates S10 are N 370.25/E 428.08

Total area = 43 200 - 8153 = 35 047 m2 L 3.5 ha

= 8153 m2

Area of segment =
60

360
 (p)(3002) - (3002)

(sin 60)

2

Area of trapezoid = a270 + 90

2
b * 240 = 43 200m2

Total area = 3850m2 *
1ha

10000m2 L 0.39 ha

- 40m2

Triangular end areas =
1

2
 (15 * 4.1 + 8.7 * 2.1)

= 3810m2 (from Equation 7.9)

+ 47.2 + 41.5 + 31.8 + 24.6 + 9.1 + 4.0b
Area = 15 a 4.1 + 2.1

2
+ 8.9 + 15.8 + 28.4 + 39.6

Area =
1 450 490

43 560
 ft2/ac = 33.30ac

Area =
18 353 284 - 15 452 305

2
= 1 450 490 ft2

©(down) = (2345.67)(2000.00) + (1357.91)(2255.00)
32.

Bearing AB = N 68°11�55� E

Bearing AC� = S 80°24�20� E

Latitude AC� = -206.80 × cos 80.406°
= -34.47 (south = minus)

Departure AC� = 206.80 × sin 80.406° = 203.91

Northing C� = 1000.00 - 34.47 = 965.53

Easting C� = 1000.00 + 203.91 = 1203.91

34.

36. Equation for line AB: Ns = 3000 - 2 Es

When Ns = 1650, Es = 675.00.

For the circle: (1650 - 1000)2 + (675 - Eo)2 - 10002

From which: Eo
2 - 1350 Eo - 121 875 = 0 and 

Eo = 1434.93

38. RS = 64.21 m

40.

Solution: Es = 1179.69and Ns = 928.12

cot  25° =
(Ns - 650)

(Es - 1050)
 and Ns - 2.1445Es = - 2901.73

from  which: Ns + 0.4Es = 1400

800 - 1000

1500 - 1000
=

Ns - 1000

Es - 1000

= 31.396° - 31°23¿45–

Angle A cos-1a269.262 + 206.802 - 142.152

2 * 206.80 * 269.26
b

b =  tan -1a250

100
b = 68.199° = 68°1155–

AB = 3(100)2 + (250)2 = 269.26

30.

Bearing AB = S 56°18�36� W

Angle A = 56°18�36� - 12°30� = 43°48�36� = 48.81�

Angle B = 75°00� = 56°18�36� = 18°41�24� = 18.69�

Angle C = 180°00� - 43°48�36� - 18°41�24�
= 117°30�00�

Latitude AC = -130.26 × cos 12.5 
= -127.17 (south = minus)

Departure AC = -130.26 × sin 12.5 
= -28.19 (west = minus)

Northing C = 500.00 -127.17 = 372.83

Easting C = 500.00 -28.19 = 471.81

BC = 360.56 *
 sin 43.81°

 sin 117.60°
= 281.40

AC = 360.5551 *
 sin 18.69°

 sin 117.50°
= 130.26

b =  tan -1a300

200
b = 56.3099° = 56°18¿36–

= 360.551AB = 3(500 - 300)2 + (500 - 200)2

Angles and Sides Final Sides

CA 375.42 375.40

B-CA 70°08�53� +2� 55�

C-AB 48°06�25� +2� 27�
AB 297.10

A-BC 61°44�36� +2� 38�

BC 351.56

179°58�114� +6� 120�

E-BC 82°36�08� +1� 09�

B-EC 48°31�21� +1� 22�

EC 265.61

C-BE 48°52�28� +1� 29�

BE 267.04

179°59�57� +3� 60�

D-EB 52°04�07� -1� 06�

E-BD 49°33�46� -1� 45�

BD 257.69

B-DE 78°22�10� -1� 09�

DE 331.62

180°00�03� -3� 60�
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CHAPTER 8
2. See lot B-5 in Figure 8-9 of the text.

4. See Figure Answer Problem 4.

6. Lot A-8, situated in Blankville, Blank County, Conn.,
and bounded as follows:

Beginning at a point in the southerly line of Somer-
set Street at the southwesterly corner of the land hereby
conveyed, said point bearing N 58°04� E. 183.05 ft mea-
sured along the southerly line of Somerset Street from a
concrete monument at the intersection of the southerly
line of Somerset Street and the northerly line of
Overville Street and running:

1. Thence, N 58°04� E, 108.15 ft along the southerly
line of Somerset Street to a concrete monument
in the northwesterly corner of the land hereby
conveyed:

2. Thence, easterly on the arc of a circle 90 ft in radius
curving to the right an arc distance of 124.93 ft,
along the southerly line of Somerset Street, the
chord of the said arc running S 82°10� E. 115.14 ft
to a concrete monument at the northeasterly corner
of the land hereby conveyed:

3. Thence, S 47°36� W, 180.00 ft along the north-
westerly line of the land of (here insert the name of
the owner of lot A-9) to a point at the southerly
corner of the land hereby conveyed:

4. Thence, N 42°24� W, 108.15 ft along the north-
easterly line of the land of (here insert the name of
the owner of lot A-7) to the point of beginning.

All bearings are based on the stated direction of the
northerly lines of Somerset Street and Overville Street.
(Note: NE/SW lot lines are assumed perpendicular to
Overville Street.)
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8. Public Land System Descriptions for Figure 8-17:

10. Area = 0.5 × 704 990 ft2 = 352 495 ft2 = 8.09 ac
Distance DG = 587.15 ft
Distance GB = 588.01 ft:
bearing GB = N 9°40�01� W

12. Partitioning boundary line HI: S 14°54�53� W, 678.53 ft;
IE: S 81°42�44� E, 299.97 ft; EA: N 14°54�55� E, 783.40 ft;
AH: S 79°49�47� W, 328.99 ft

14. Area = 0.5 × 285 443 ft2 = 142 722 ft2 = 3.28 ac;
BG = 182.84 ft; GE = 592.48 ft at S 83°57�02� E

16. Partitioning boundary line HI: N 73°20�50� W,
577.10 ft; IC: S 3°10�12� E, 276.98 ft;
CD: S 73°20�48� E, 425.96 ft; DH: N 29°02�14� E,
266.77 ft

18. Northing PC 15 = 610.10; easting PC 15 = 792.43

Northing PC 16 = 576.79; easting PC 16 = 820.49

PC 15-PC 16: S 40°06�38� E, 43.55 m

20. 63.86 ft

CHAPTER 9
2. RF = 1:2400
4. 1 in = 0.789 mi; 1 cm = 0.5 km
6. 18 ft: 2080 ft; 1200 ft; 15 300 ft
8. 1 in = 10 ft

10. 1:200
12. a. See Figure Answer Problem 12a

b. See Figure Answer Problem 12b

Parcel Description

F E 1/2, SE 1/4, Sec. 9, T 3 S, R 2 W (meridian name); 80 ac

G S 1/2, SW 1/4, Sec. 9, T 3 S, R 2 W (meridian name); 80 ac

H SE 1/4, NW 1/4, Sec. 9, T 3 S, R 2 W (meridian name); 40 ac

I NW 1/4, NW 1/4, Sec. 9, T 3 S, R 2 W (meridian name); 40 ac

J SW 1/4, NE 1/4, NW 1/4, Sec. 9, T 3 S, R 2 W (meridian name); 10 ac

a. b.
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14.

16.

18. See Figure 9-40 Answer Problem 18

20. 3.6 km

22. 1:3000
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CHAPTER 10

2.

4.

6.

8.

10. Station PC = (12 + 00) - (1 + 64.88) = 10 + 35.12

Station PT = (10 + 35.12) + (2 + 30.53) = 12 + 65.65

12.

Δ1 = 49°00� - 33°30� = 15°30�

T1 = 954.93 × tan 7.75° = 129.96

Δ2 = 49°00� + 14°30� = 63°30�

T2 = 954.93 × tan 31.75° = 590.93

PC1 = (15 + 75) - (1 + 29.96) = 14 + 45.04

PT1 = (14 + 45.04) + 258.33 = 17 + 03.37

S1 = (2300 - 1575) - 129.96 - 590.93 = 4.11

PC2 = (17 + 03.37) + 4.11 = 17 + 07.48

PT2 = 17 + 07.48 + (10 + 58.33) = 27 + 65.81

S2 = (3800 - 2300) - 590.93 = 909.07

Equation of chainage = (27 + 65.81) + (9 + 09.07) 

= 36 + 74.88

L2 = p * 954.93 *
63.5

180
= 1058.33

L1 = p * 954.93 *
15.5

180
= 258.33

R =
5729.578

6
= 954.93

¢ = 2 sin-1a1

2
b = 60°

1

2
= sin a¢

2
b

R = 2R * sin a¢
2
b

= 50° (subtended by 100 - m arc length)

D =
5729.578

114.60

R =
35

0.3054
= 114.60m

35 = R *
1

 cos a80

2
b - 1

= 45.8° (subtended by 100 - m arc length)

D =
5729.578

125

M = 125 * 1 -  cos a105.66°

2
b = 49.48  m

E = 125 *
1

 cos a 105.66°

2
b - 1

= 81.91  m

LC = 2 * 125 * sin a 105.66°

2
b = 199.22  m

L = p * 125 * a105.66°

180
b = 230.53  m 

T = 125 tan a 105.66°

2
b = 164.88 m 

14.

Chord PC 16 + 00: 2(477.46)(sin 4°30�) = 74.92 ft

Chord 16 + 00.16 + 50: 2(477.46)(sin 3°) = 49.98 ft

16.

For 17 + 00: a = 7°30¿ + 3°00¿ = 10°30¿

For 16 + 50: a = 4°30¿ +
12

4
= 7°30¿

= 270¿ = 4°30¿

For  16 + 00: a = a 75

477.46
b(1718.87)

R =
5729.578

12
= 477.46  ft

18.

Station Chord Deflection Curve Data

+50
+26.94 PT 26.94 33°09¿15– R = 400¿

50 + 0 49.97 31°13¿30–
Δ = 66°18¿24–

+50 27°38¿45–
Δ/2 = 33°09¿12–

49 + 0 24°03¿45–
= 33°09.2¿

+50 20°29¿00–
+25.32 Pl T = 261.29

48 + 0 16°54¿00–
L = 462.91

+50 13°19¿15–
47 + 0 9°44¿15–

+50 49.97 6°09¿30–
46 + 0 35.96 2°35¿00–

+64.03 PC 0
+50

Station Chord Deflection Curve Data

+50
+49.48 PT 49.45 21°17¿15– R = 600¿

30 + 0 49.97 18°55¿30–
Δ = 42°34¿28–

+50 16°32¿15–
Δ/2 = 21°17¿14–

29 + 0 14°09¿00–
= 21°17.23¿

+50 11°45¿45–
+37.42 Pl T = 233.78

28 + 0 9°23¿30–
L = 445.84

+50 6°69¿15–
27 + 0 49.97 4°36¿00–

+50 46.33 2°12¿45–
PC + 03.64 0

26 + 0
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20. Δ = 43°45� + 39°30� = 83°15�

Station PC = (115 + 00) = (1066.35 - 632.61)
= 110 + 66.26

Station PT = (110 + 66.26) + (17 + 43.58)
= 128 + 09.84

22. Plus PI = 1287.93

Less T1 = - 407.14

Plus PC = 880.79

Add L1 = + 326.26

Plus PCC = 1207.05

Add L2 = +379.49

Plus PT = 1586.54

24. Δ1 = 80°35�14�; Δ2 = 61°20�24�

Plus PC = 1532.71

Add L1 = +172.75

Plus PRC = 1705.46

Add L2 = +131.49

Plus PT = 1836.95

26.

g3 =
105.00 - 93.00

2900 - 2225
= 0.0178

g2 =
93.00 - 49.25

2225 - 950
= 0.0343

g1 =
49.25 - 73.00

950
= - 0.0250

PI to B =
987.65

 sin 83.25
*  sin 43.75 = 687.74 ft

PI  to A =
987.65

 sin 83.25
*  sin 39.5 = 632.61 ft

L = p * 1200 * a83.25

180
b = 1743.58 ft

T = 1200 *  tan a83.25

2
b = 1066.35  ft

Station Elevation Station Elevation Station Elevation

0 + 00 73.00 11 + 00 54.40 22 + 00 92.13
1 + 00 70.50 12 + 00 57.83 23 + 00 94.32
2 + 00 68.00 13 + 00 61.23 24 + 00 96.10
3 + 00 65.50 14 + 00 64.69 25 + 00 97.88
4 + 00 63.00 15 + 00 68.12 26 + 00 99.66
5 + 00 60.50 16 + 00 71.55 27 + 00 101.44
6 + 00 58.00 17 + 00 74.98 28 + 00 103.22
7 + 00 55.50 18 + 00 78.41 29 + 00 105.00
8 + 00 53.00 19 + 00 81.84
9 + 00 50.50 20 + 00 85.27

10 + 00 50.97 21 + 00 88.70

Station Tangent Elevation Curve Elevation

PVC 12 + 50 68.64 68.64
13 + 00 70.34 70.11
13 + 50 72.04 71.13
14 + 00 73.74 71.69
14 + 50 75.44 71.80
15 + 00 77.14 71.44
15 + 50 78.84 70.64
16 + 00 80.54 69.38
16 + 50 82.24 67.66

PVT 17 + 00 83.94 65.49

High point: Station 14 + 36.59, elevation 71.81

28.

30.

Station Tangent Elevation Curve Elevation

PVC 7 + 50 62.71 62.71
8 + 00 61.11 61.33

8 + 50 59.51 60.41

9 + 00 57.91 59.93

9 + 50 56.31 59.91

10 + 00 54.71 60.33

10 + 50 53.11 61.21

11 + 00 51.51 62.53

11 + 50 49.91 64.31

12 + 00 48.31 66.53

PVT 12 + 50 46.71 69.21

Low point: Station 9 + 27.78, elevation 59.87

32. R = 150.65 ft

34. L = 1162.35 ft

36. 186.52 ac
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38. 222.22 ha

40. 1542.70 ac

42. Station 39 + 50: area = 914 ft2

Station 40 + 00: area = 588 ft2

Volume = 1390 yd3

44.

46. 15 squares 15 m × 15 m: corner sum = 73.3

2 rectangles 7.5 m × 15 m: corner sum = 13.7

Volume =
13.7

4
* 7.5 * 15 = 385  m3

Volume =
73.3

4
* 15 * 15 = 4123  m3

2 five-sided figures: area = 196.88 m2

Total volume = 5576 m3

CHAPTER 11
2. D = 200.00 tan (40�/3600�) = 0.039 m = 39 mm

4.

0.203 * 3.6179 = 0.7344

0.50 * 3.6179 = 1.8090

0.165 * 3.6179 = 0.5970

21.23

5.868
= + 3.6179

Volume = 2 * 196.88m2 *
9.7 m

5
= 764m3

Station Grade Grade Used Station Grade Grade Used

6 + 29.7 51.26 51.26 + 50 62.8484 62.85
+ 50 51.9944 51.99 10 + 0 64.6574 64.66

7 + 0 53.8034 53.80 + 50 66.4664 66.47
+ 50 55.6124 55.61 11 + 0 68.2754 68.28

8 + 0 57.4214 57.42 + 50 70.0844 70.08
+ 50 59.2304 59.23 12 + 0 71.8934 71.89

9 + 0 61.0394 61.04 +16.5 72.4904 72.49

+ a15 * 7.5 *
4.9

3
b

Volume =
1

2
* c a15 * 15 *

1.9

3
b4triangles:

= 304 m3

+ (2)a7.5 * 7.5 *
7.5

3
b d
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7.21 3.44

4.81 8.72

5.64 9.34

6.41 2.54

4.28 10.65

2.56 4.51

1.84 7.24

3.64 5.40

6.29 8.61

9.71 10.44

6. GR = 123.45 - 121.87 = 1.58 m

8. GR = 60.05 - 53.72 = 6.33 ft

Rod reading = 10.93

F = 10.93 - 6.33 = 4.60 ft

10. a.

b.

b.

14. a. about 48 b. about 82.5
c. about 88 d. about 53

e. about 56.5 f. about 86.5

g. about 91 h. about 62

Station Grade
Elevation

Mark Cut or Fill
Write 

on Mark

0 + 0 35.64 35.27 F 0.37 F 0� � 41⁄2�

0 + 50 38.64 39.42 C 0.78 C 0� � 93⁄8�

1 + 0 41.64 46.25 C 4.61 C 0� � 73⁄8�

1 + 50 44.64 47.31 C 2.67 C 2� - 8�

2 + 0 47.64 46.22 F 1.42 F 1� - 5�

2 + 50 50.64 47.38 F 3.26 F 3� � 31⁄8�

3 + 0 53.64 55.20 C 1.56 C 1� � 63⁄4�

3 + 50 56.64 59.71 C 3.07 C 3� � 07⁄8�

4 + 0 59.64 59.64 G G

4 + 50 62.64 64.28 C 1.64 C 1� � 75⁄8�

Station Grade
Elevation 

Mark Cut or Fill
Write 

on Mark

0 + 0 47.28 46.17 F 1.11 F 1� � 13⁄8�

0 + 50 45.28 41.62 F 3.66 F 3� � 77⁄8�

1 + 0 43.28 45.10 C 1.82 C 1� � 97⁄8�

1 + 50 41.28 40.83 F 0.45 F 0� - 53⁄8�

2 + 0 39.28 36.15 F 3.13 F 3� - 11⁄2�

2 + 50 37.28 42.14 C 4.86 C 4� � 103⁄8�

3 + 0 35.28 34.75 F 0.53 F 0� � 63⁄8�

3 + 50 33.28 35.29 C 2.01 C 2� � 01⁄8�

4 + 0 31.28 32.67 C 1.39 C 1� � 45⁄8�

4 + 50 29.28 33.48 C 4.20 C 4� � 23⁄8�

12. a.
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A
Abbreviations, 314
Abscissa (x axis), 49
Accidental errors

angle measurement, 134
defined, 303, 310
how they add up, 26
most probable value and, 26
overview of, 27
running levels, 96–97
taping, 71–72

Accretion, 303
Accuracy

angular and linear measurements, 133
defined, 303
error of closure and, 28–30
horizontal ties, 210
practice problems, 31–32
precision compared with, 27–28
relative accuracy, 28–29
review questions, 30–31
standards of, 29
surveying measurement and, 3
survey procedure selection and, 29–30

Accuracy ratio. See Relative accuracy
Acre, 21–22, 303
ACSM (American Congress on Surveying

and Mapping)
metric conversion, 22
property survey standards, 173

Acute angles, 303
Add tapes, 62–63, 303
Adjoiners, 174
Adjoint, 303
Adjusting a level circuit, 303
Adjusting a traverse, 303
Adverse possession, 181, 303
Aerial photography. See also

Photogrammetry
advances in surveying, 13
basic principles, 219

defined, 303
large area maps, 196

Agonic line, of zero declination, 122
Agrimensores, 13
Alidade, 291, 303
Alignment methods, 280–282

bucking in between two points, 281
double centering, 280–281
setting point of intersection, 281
setting points close to the instrument, 281

Alignment of a route, 227, 303
ALTA (American Land Title Association), 173
Altimeters, 83
Altitude, 303. See also Elevations
American Congress on Surveying and 

Mapping (ACSM)
metric conversion, 22
property survey standards, 173

American Land Title Association (ALTA), 173
Amount of rotation, angle 

measurement, 19
Analytical geometry, 49. See also

Coordinate geometry
Analytical stereoplotter, 303
Anchor bolts, 276
Angle and direction measurements, 114–139

angle-distance relationships, 133–134
closing the horizon, 132
computing angles, azimuths,

and bearings, 119–121
horizontal angles, 115–121
magnetic declination, 122, 122–123
magnetic meridians, 122
measuring angles by repetition, 135
measuring horizontal angles, 130–131
measuring vertical angles, 132
mistakes and errors, 133–136
overview of, 114–115
practice problems, 136–139
precise angles, 128
review questions, 136

theodolite instruments for. See
Theodolites

true meridians, 122
vertical angles, 115, 294

Angle and distance method
construction stakeout, 286
horizontal ties, 206

Angle of depression, 115, 303
Angle of elevation, 115
Angle of repose, 247
Angles

computing, 119–121
defined, 303
geometry of, 33
measuring, 7–8, 19–20
setting predetermined angle in 

construction survey, 262–263
surveying as art of measuring distances

and angles, 3
trig functions for, 42–44
units and conversions, 296

Angle to the left, horizontal 
angles, 116, 303

Angle to the right, horizontal 
angles, 116, 303

Annual variation, 303
Annual variation, in declination, 123
Approximation, 59–60
Arc, 303
Area

computation in traverses, 157
defined, 304
measurement, 21
of plane figures, 301
of sections, 248–250
of sector of a circle, 41
units and conversions, 296

Area maps, 205, 210
Automatic levels, 89, 304
Average end-area formula, 251, 304
Avulsion, of shoreline, 182, 304
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Azimuth
back azimuth, 119
base azimuth, 148
compared with bearing, 116–119
computing, 119–121, 154
defined, 304
overview of, 116–117
transits and, 293

Azimuth axis, 304

B
Back azimuth, 304
Back directions

defined, 304
of a line, 118

Backsight reading (BS)
angle measurement, 122
defined, 304
double centering and, 280–281
measuring horizontal angles, 131
running levels and, 85

Back tangents, 304
Balancing in, 281
Banking. See Superelevation
Barometric leveling, 83, 304
Base azimuth, 148
Base bearing, 148, 175
Baselines, U.S. Public Land Survey 

System, 179
Base, of roadway, 247
Base plate, 276
Batter boards, 274–275, 304
Bearing

back bearing, 119
base bearing, 148
compared with azimuth, 116–119
computing, 119–121, 154
defined, 304
overview of, 117

Bearing angles, in tangent-offset 
method, 199–200

Bearing-bearing intersection, 161–162, 299
Bearing-distance intersection,

161, 300–301
Beginning of vertical curve (BVC), 241
Benchmark leveling, 85, 98–100
Benchmarks (BM)

adjusting elevations, 102–103
control surveys and, 10
corner locations, 187
defined, 304
known elevations in running levels, 85
monuments, 102
national vertical control network, 100
property lines, 173, 174

Binocular vision, 222
Bisector, of a line, 34, 304
Blue tops, 304
Blunders

angle measurement, 135
computation and measurement and, 25
defined, 304

field notes and, 14
running levels, 96
taping, 71

BM (benchmarks). See Benchmarks (BM)
Borrow pit, 253, 304
Boundaries

boundary line offsets, 191
irregular and curved, 158–160
law regarding, 181
obstructed, 189
property, 173
property surveys and, 9–10

Boundary surveys. See Property surveys
Bounds. See Metes-and-bounds
Bowditch (compass) rule, 150–151,

155, 304, 305
Breaking tape, 67–68, 304
Bridge surveys, 11
BS (backsight reading). See Backsight

reading (BS)
Bubble tube, 304
Bucking in, between two lines, 281, 304
Building lines, 191, 274
Building stake out, 274–280

batter boards, 274–275
column footings, 275–277
overview of, 274–277

BVC (beginning of vertical curve), 241

C
Cadastral surveys, 11, 178–179, 304
CAD (computer-aided drafting), 23, 183
Calculators

computation with, 22
computing trig functions, 44
data collection with, 16–17

CCD (charge-coupled device), 90
Celestial sphere, 304
Center, of a circle, 39
Centesimal system, of angle 

measurement, 20, 304
Centi-centigrad, 304
Centigrad, 304
Centimeters, distance measurement, 20
Central angle, 304
Central processing unit (CPU), 23
Chaining, 304
Chaining pins, 64, 304
Chains, 304
Charge-coupled device (CCD), 90
Chicago rod, level rods, 92, 304
Chord

chord definition, 230
of a circle, 39
curve layout, 232–235
defined, 304
long chord, 241
overview of, 232

Chorobate, 13, 304
Circle

coordinate form for, 162–163
defined, 304

equation of, 52
properties of, 39–41
segments of, 159

Circular offsets, construction surveys,
283–285

Circumference, 304
City surveys, 11
Class of accuracy, 304
Closed traverse, 144. See also Connecting

(link) traverses; loop traverses
Closing a level circuit, 303, 304
Closing a traverse, 304
Closing the horizon, 132, 304
Closing the traverse, 147
Closure. See Error of closure
Cloth tape, 304
Coincidence setting, 304
Column footings, 275–277
Common law, 180
Compass

angular measurement with, 114
defined, 304
historical use of, 11
magnetic meridian indicated by, 122

Compass (Bowditch) rule, 150–151,
155, 305

Compass variation, 305
Complimentary angles, 33, 305
Compound curves, 238–239, 305
Computation

angles, azimuths, and bearings, 119–121
basis of surveying, 3
calculators for, 22
connecting (link) traverses, 153–156
desktop computers for, 157
horizontal control surveys, 164
horizontal curves, 229
irregular boundaries, 158–160
land partitions, 183–186
loop traverses, 147–157
overview of, 22
practice problems, 31–32
review questions, 30–31
rounding off numbers, 24
section areas, 250
segments of a circle, 159
significant figures in, 23–24
tools for, 22–23
traverses, 157–158
trig functions, 44
vertical curves, 241–244
volume of cut or fill, 251

Computer-aided drafting (CAD), 23, 183
Computer-aided plotting, 217
Condemnation proceeding, eminent

domain, 181
Congruent triangles, 36
Connecting (link) traverses, 153–156,

305, 308
Construction surveys, 160–290

alignment methods, 280–282
avoiding obstacle on line, 282–283
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building layout, 274–280
circular offsets and curbs, 283–285
defined, 305, 310
establishing direction, 263
establishing grade, 263–264
indicating cuts and fills, 266–268
lasers for line and grade, 286–288
overview of, 10, 260–261
practice problems, 288–290
radial stakeout survey, 285–288
review questions, 288
setting grade marks, 264–266
setting predetermined 

angle, 262–263
sewer layout, 277–280
slope staking, 268–273

Contour interval, 201, 305
Contour lines

defined, 305
interpolation of, 204–205
overview of, 203
showing surface relief with, 196
slope determined from, 205
on topo maps, 10

Control points
radial surveys, 212–214
setting close to the instrument, 281
topographic surveys/maps, 204

Control surveys. See Horizontal 
control surveys

Coordinate geometry
circles, 52
defined, 305
overview of, 48–49
polar coordinates, 50
rectangular coordinates, 49–50
straight lines, 50–52

Coordinate method, 305
Coordinates. See also Rectangular 

coordinates
construction locations, 286
converting between systems, 164
defined, 305
horizontal control surveys, 162–165
photogrammetry and, 221–34
plotting traverses, 199
section areas, 251
state coordinate systems, 164, 177–180
straight lines and circles, 162
traverse area, 157–158
traverse stations, 153

Coordinate transformation, 305
Corner location, in property surveys

finding, 187–189
lost or obliterated, 187
obstructed, 189

Cosecants, 305
Cosines, law of, 48, 305
Cotangents, 305
Course departure, 305
Course latitude, 305
Courses

defined, 305
departure of traverse course, 149
latitude of traverse course, 155
sign conventions for traverse 

course, 149–150
in traverse survey, 114, 143

CPU (central processing unit), 23
Crest (summit) curves, 240, 244, 305
Cross hairs, 305
Cross-section leveling, 106, 305
Cross sections

area of, 248–249
defined, 305
overview of, 246
plotting, 247

Cubic feet/Cubic yards, volume 
measurement, 21

Cubit, 305
Cultural features, on topo maps, 196
Cumulative errors. See Systematic errors
Curb return, 284–285, 305
Curbs

construction surveys and, 283–285
staking out, 262

Curvature, 305
Curves, transportation routes

compound curves, 238–239
computing horizontal curves, 229–230
computing vertical curves, 241–244
curves through fixed points, 245–246
deflection angles and chords in curve

layout, 232–235
degree of curve, 229–228
high or low points of vertical 

curves, 244–245
horizontal curves, 228–229
locating curves, 231–232
orientation of curves, 235–237
PC and PT stations, 230–231
practice problems, 255–259
reverse curves, 238, 239
review questions, 254
route survey and, 227–228
vertical curves, 240–241

Cut (excavation), 227, 246, 266–268, 305
Cut-sheet, 267, 305
Cut tapes, 62, 305
Cylinder, volume of, 41

D
Data collection

electronic data collectors, 16–17
property surveys, 187

Data reduction
defined, 305
mathematical computation, 22
software, 157
traverses, 146–147

Datum, 305
Decimal system, 305
Declination. See Magnetic declination
Declination arc, 305

Deeds, property, 174
Deflection angle

curve layout, 232–235
defined, 305
horizontal angles, 115
measuring in traverses, 146
tangent-offset method, 200
traverses and, 145

Degree of accuracy. See Relative accuracy
Degree of arc, 305
Degree of curvature, 229–230, 305
Degrees, angle measurement, 19
Departure

compass rule corrections, 151
computing for connecting 

traverses, 148
transit rule corrections, 151
of traverse course, 148–149

Depression contour, 305
Desktop computers, 16–17, 23–24
Diameter, of a circle, 39, 305
Differential leveling

defined, 305
overview of, 84–85
topo maps, 211

Differential rectification, vertical 
photos, 22

Digital levels, 89–90
Digital terrain model, topo maps, 217
Direct elevation rods, 92, 305
Direction. See also Angle and direction

measurements
in construction surveys, 263
of a line, 114
setting predetermined angle, 262–263

Direction theodolites, 125, 305
Direct reading scale, 305
Discovery rule, 181
Distance

angle-distance relationships, 133–134
defined, 305
horizontal. See Horizontal distances
measuring, 7–8
urveying as art of measuring distances

and angles, 3
units of measurement, 20–21
vertical. See Vertical distances

Distance-distance intersection, 161,
162–, 300

Diurnal variation, in declination, 123, 305
Double centering, alignment methods,

280–281, 305
Double meridian distance method, 305
Double pentaprism, estimating the 

perpendicular, 210
Double sighting. See Doubling the angle

(double sighting)
Double verniers, 293, 306
Doubling the angle (double sighting),

135, 306
Drum plotters, 217
Dumpy level, 306
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E
Earth, shape of, 6
Earthworks, 246–254

areas of sections, 249–251
cross sections, 246–247
defined, 306
grid method for volumes, 253–254
mass diagram, 252–253
overview of, 246
practice problems, 255–259
review questions, 254–255
volumes, 251–252

Easements, property law, 181, 306
EDM. See Electronic distance-measuring

(EDM)
Electronic data collectors, 16–17, 306
Electronic digital theodolites, 129–130
Electronic distance-measuring (EDM)

accuracy of, 79
curve layout with EDMIs, 231
defined, 306
introduction to surveying, 5
measuring horizontal distances, 75
operating procedures for EDMIs, 79–80
reflecting prisms in EDMIs, 78
systematic errors and, 25
trigonometric leveling and, 106–107
types of EDMIs, 75–78

Electronic levels, 306
Electronic tacheometer instrument (ETI),

4, 76, 286. See also Total stations
Electronic total station, 76–77, 306
Electronic traversing. See Electronic

distance-measuring (EDM)
Electro-optical EDMIs, 75
Elevation axis, 306
Elevations

defined, 306
determining by running levels, 85
in giving grade, 263
vertical distances as, 3

Elevation ties, topo maps, 210–211
Embankments (fill), 227, 246, 266–268, 306
Eminent domain, 181
Encroachment, property law, 181, 306
End lap, aerial photography, 219
End of vertical curve (EVC), 241
Engineering surveys. See Topographic

surveys/maps
Engineer’s scale, 198, 306
Engineer’s transit. See Transits
Equation of chainage, 231
Equilateral-triangle offset, 282
Equilateral triangles, 36, 306
Equivalence scale, 306
Error of closure

connecting traverses, 156
defined, 306
leveling, 100
overview of, 28
traverses, 146, 150

Errors. See Mistakes and errors

ETI (electronic tacheometer instrument), 4,
76, 286. See also Total stations

EVC (end of vertical curve), 241
Excavation (cut), 227, 247, 266–268, 306
Existing marks, property law, 181
Exterior angles, horizontal angles, 116, 306
Eyepiece, 306

F
Federal Geodetic Control Committee, 29
Fiberglass tapes, 64, 306
Fiducial marks, vertical photos, 221
Field angles, of a traverse, 145–146
Field notes, 14–16

defined, 306
importance of, 14–15
notebooks for, 15
rules for, 15

Figure adjustment, triangulation 
and trilateration, 166

Fill (embankments), 227, 246, 266–268,
306, 454

Flatbed plotters, 217
Flight plans, photogrammetry, 224
Flight strips, aerial photography, 219
Florida rod, level rods, 92, 306
Flow line, sewers, 277
Focusing lens, 306
Foot/feet, distance measurement, 20
Footings, buildings, 275–277
Forced centering, theodolites, 125, 306
Foresight reading, 116, 131, 306
Formulas

areas of plane figures, 301
bearing-bearing intersection, 299
bearing-distance intersection, 300–301
distance-distance intersection, 300
intersection, 299
oblique triangles, 298–299
quadratic, 298
right triangles, 298

Forward azimuth, 306
Forward directions, of a line, 117, 306
Forward tangent, 306
Front (head) chainman, 65–68
Full station, 68, 306

G
Geodetic surveys, 9, 306
Geometry. See also Coordinate geometry

of curved surfaces, 9
defined, 306
lines and angles, 33–34
overview of, 33
plane geometry, 8

Giving grade
indicating cuts and fills, 266–268
overview of, 10, 263–264
setting grade marks, 264–266
signals for, 268
slope staking, 268–270

Giving line, 10

Global Positioning Systems (GPS)
advances in surveying, 14
control surveys and, 10
defined, 306
horizontal control surveys using, 143,

168–169
measuring horizontal distances, 59

GPS Land Surveyor, 169
Grade. See also Slope

compared with gradient, 260
defined, 306
establishing, 263–264
lasers for establishing, 286–288
setting grade marks, 264–266
of streets, roads, 205

Grade line
defined, 306
establishing final grade, 228
transportation routes, 227
vertical curves and, 240

Grade point, 252
Grade rod (GR), 264–266, 306
Grade stakes, 83
Grade staking, 251, 306
Gradient

compared with grade, 260
contrasted with side slope, 247
defined, 306

Grading, in earthwork, 246
Grads, angle measurement, 20, 306
Graticule, in coordinate method, 199
Gravity

defined, 307
establishing direction with 

plumb line, 6
GR (grade rod), 264–266, 306
Grid method

defined, 307
for estimating earthwork volumes,

253–254
field methods for topo maps, 205

Grid points, topographic 
surveys/maps, 204

Groma, 13
Gun, 307
Gunter’s chain, 21, 61, 307
Gyroscope theodolite, 122

H
ha (hectares), 21–22
Hand levels, 63, 307
Hand signals for leveling, 96
Hectares (ha), 21–22, 307
Height, 307
Height of instrument, 307
Hexagon, 39
High rod, level rods, 91, 307
Highway curves. See Curves,

transportation routes
Horizontal, 307
Horizontal alignment, transportation

routes, 227, 307
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Horizontal angles
defined, 307
measuring, 7, 130–131
overview of, 116–119

Horizontal axis, 307
Horizontal circle, of transit, 291, 307
Horizontal control surveys

coordinate geometry used in 
computing, 162–165

defined, 305, 307
global positioning systems 

(GPS), 168–169
intersection problems, 161–162
overview of, 10, 143–144
practice problems, 170–172
rectangular coordinates from, 114
review questions, 169–170
side shots, 160–161
techniques, 114
traverses. See Traverses
triangulation, 165–168

Horizontal curves
computing, 229–230
defined, 307
deflection angles and chords in curve

layout, 232–235
locating, 231–232
orientation of curves, 235–237
overview of, 228–229
PC and PT stations, 230–231

Horizontal datum, 307
Horizontal direction, on earth’s 

surface, 6
Horizontal distances, 59–82

accuracy of EDM, 79
approximation or rough 

measurement, 59–60
avoiding damaging tapes, 64–65
blunders, 71
correcting systematic errors, 275
defined, 307
defining, 6
EDM process, 75
Gunter’s chain, 61
measuring, 7
measuring wheels, 61
operating procedure for EDMIs, 79–80
overview of, 59
practice problems, 81–82
reflecting prisms in EDMIs, 78
review questions, 80–81
setting marks for line and 

distance, 68–71
steel tapes, 61–62
tape accessories, 63–64
taping a horizontal distance, 65–68
taping errors, 71
types of EDMIs, 75–79
unit pace determination, 60–61

Horizontal ties, topo maps, 205–210, 307
Hydrographic survey, 11, 307
Hypotenuse, of triangles, 36, 307

I
Index centering, 307
Index correction, 439
Index error, 439, 307
Inertial positioning system, 307
Inscribed angles, 307
Instrumental errors, angle measurement,

134, 307
Instrument person, 307
Instruments, care of, 135–136
Interior angles, horizontal angles, 116, 307
Interpolation, of contour lines,

204–205, 307
Intersection

bearing-bearing intersection, 299
bearing-distance intersection, 300–301
distance-distance intersection, 300
formulas, 299
intersection problems in horizontal

control surveys, 245–48
Invar tapes, 98, 307
Inverse computation, traverses, 156–157, 307
Inverse trig functions, 68, 307
Invert elevations, 307
Invert, of sewers, 416
Irregular boundaries, computing, 158–159
Irregular variation, in declination, 123
Isogonic chart, 122, 307
Isosceles triangles, 36, 307

J
Jurisprudence, 180

K
Keel, 307
Kilometers, area measurement, 21

L
Land or property description, 174
Land subdivision. See Subdivisions
Land surveyor (LS), 14. See also Surveyors
Land surveys. See Property surveys
Lasers, for line and grade, 286–288, 307
Latitude, 12

compass rule corrections, 151
computing for connecting traverses, 154
defined, 305, 307
transit rule corrections, 151
of traverse course, 148–149

Law of cosines, 48
Law of sines, 47–48
Law, property. See Legality
Layout surveys. See Construction surveys
Least squares method

defined, 307
traverse adjustment, 150, 152
triangular survey networks and, 166

Legality
fundamentals of property law, 181–182
property surveys, 180
surveyor rights and liabilities, 180

Length, units and conversions, 296

Lenker Rod. See Direct elevation rods
Lettering, topo maps, 217
Level book, 98, 307
Level circuit, 308
Leveling head, of transit, 87, 291, 308
Leveling (running levels)

benchmark leveling, 98–100
cross-section leveling, 106
defined, 308, 311
differential leveling, 83–84
error of closure and, 100–102
hand signals for, 96
mistakes and errors, 96–97
overview of, 7, 85–86
precise leveling, 101
profile leveling, 103–106
trigonometric leveling, 106–107

Leveling screws, 308
Level rods, 90–92

defined, 308, 310
handling, 95
overview of, 90–91
precise level rod, 101
readings, 95
sighting with level, 84
as traditional instrument for surveying, 3
types of, 91–92
verniers, 91–92
waving to ensure vertical reading, 95

Levels
automatic levels, 89
defined, 308
digital levels, 89–90
lasers as electronic level, 286
leveling four screw leveling 

instrument, 125
leveling three screw leveling 

instrument, 94–95
leveling two screw leveling 

instrument, 94
measuring vertical distances, 7
overview of, 87
setting up, 92–95
spirit bubble, 88–89
telescopic sight, 87
as traditional instrument for surveying, 4

Level surface, 308
Libella, 13, 308
Line. See also Straight line

establishing direction in construction
survey, 263

geometry of, 33–34
lasers for laying out, 286–288
predetermined angles in construction

surveys, 262–263
Line and grade, 308
Linear interpolation, 308
Line of levels. See Level circuit
Line of sight

angle measurement, 19
defined, 308
telescopic sights and, 88
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Lines of equal elevation. See Contour lines
Link, distance measurement, 21, 308
Link traverse. See Connecting (link)

traverses
Local attraction, 308
Location survey, 227
Location surveys. See Construction surveys
Long chord, 241
Longitude, 9
Loop traverses

counterclockwise direction 
of survey, 145–146

defined, 308
error of closure, 146
steps in computing, 147–153

Lost corners, property surveys, 187
Lot line, 173
Lovar tapes, 63, 308
Lower motion, 308
LS (land surveyor), 14. See also Surveyors

M
Magnetic azimuth, 308
Magnetic bearing, 308
Magnetic compass. See Compass
Magnetic declination, 122–123

adjustments for, 123–124
changes in, 122
defined, 305, 308
overview of, 122
true meridians vs. magnetic 

meridians, 122
Magnetic meridians, 122, 308
Manholes, sewers, 277
Maps. See also Topographic surveys/maps

defined, 308
drawing the map, 214–216
property survey, 191–192
traverses, 155–156

Map scale, 308
Marks. See Stations
Mass diagram, for estimating earthwork

volumes, 252–253, 308
Mathematics, 33–56

circles, 39–41, 52
coordinate and analytic geometry, 49
geometry and mensuration, 33
lines and angles, 33–34
obtuse angle trigonometry, 47
polar coordinates, 50
polygons, 34
practice problems, 52–56
Pythagorean theorem, 36–37
quadrilaterals and parallelograms, 37–39
rectangular coordinates, 49–50
right angle trigonometry, 42–47
straight line coordinates, 50–52
triangles, 35–36
trigonometric identities, 48
trigonometry, 42
volume, 41

Mean sea level (MSL), 6, 91–92, 308

Measurement
angles and directions. See Angle and

direction measurements
angles and distances, 7–8
area, 21
converting to SI metric, 22
distance, 20–21
horizontal distances. See Horizontal

distances
overview of, 19
practice problems, 31–32
review questions, 30–31
units of, 19
vertical distances. See Vertical distances
volume, 21

Measuring wheel, 61, 308
Mechanical errors. See Systematic errors
Mensuration, 33, 308
Meridians

defined, 308
of a line, 114
magnetic, 122
true, 122

Meters, distance measurement, 20
Metes-and-bounds, 174–177

examples, 174–177
overview of, 174

Micrometer scale, 308
Microwave EDMIs, 75–76
Mile, distance measurement, 21
Mine surveys, 11
Minus sight. See Foresight reading
Minute, of arc, 308
Minutes, angle measurement, 19
Mirror stereoscope, 222, 308
Misreading the rod, 96
Mistakes and errors

accidental errors, 25, 26
angle and direction measurements,

132–133
blunders, 24
defined, 306
field notes and, 14
leveling, 96–97
most probable value, 26
90 percent error, 26
overview of, 24, 27
practice problems, 31–32
review questions, 30–31
systematic errors, 25
taping distances, 71–72

Monuments. See Benchmarks (BM)
Mosaics, aerial photography, 219
Most probable value, 26, 308
MSL (mean sea level), 6, 91–92, 308

N
National Geodetic Survey (NGS)

benchmarks (BM), 100
horizontal control monuments, 143
lines of true direction, 122
state coordinate systems and, 177

National Horizontal Control Network, 164
National Vertical Control Network, 100
Natural errors, 308
Natural features, on topo maps, 196
Navstar global positioning system, 169
NGS (National Geodetic Survey). See

National Geodetic Survey (NGS)
90 percent error, 26
Nonmetallic tapes, 308
Normal position, 308
Normal tension, 308
North arrow, on maps, 216–217
Northing of the line, traverse course, 148
North Star (Polaris), 122
Note-taking mistakes, 96
Numbers

rounding off, 24
significant figures, 23–24

O
Objective lens, 308
Oblique photos, aerial photography,

219, 308
Oblique triangles

defined, 308
formulas, 298
overview of, 47–48

Obliterated corners, property surveys, 187
Obtuse angle, 47
Obtuse angle trigonometry, 47, 308
Odometer, on measuring wheel, 61, 308
Offset

boundary line, 191
calculating irregular boundaries, 158
circular, 283–285
equilateral-triangle, 282
parallel, 282
plus and offset method, 208
rectangular, 282
slope staking, 271
tangent-offset method, 199–200, 232

Offset line, 309
Omitted measurement problem, 183
Open channel gravity flow, sewers, 277
Open traverse, 144
Optical compensator, 309
Optical micrometer, 309
Optical plummet, theodolites, 125, 126, 309
Order of accuracy. See Relative accuracy
Ordinate (y axis), 49
Orientation of curves, 235–237, 309
Orthophotomaps, 222

P
Pace, unit pace determination, 60–61,

309, 313
Pacing, 309
Parabola, 309
Parallax error, 135, 309
Parallel lines, 34, 309
Parallel offset, 282
Parallelograms, 38–39, 309
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Parallel plate micrometer, 309
PC (point of curvature), 229, 230–231
PC (point of curve) stations, 230–231
Peg book, 98, 309
Pentagon, 39
Perch, distance measurement, 21
Perimeter, 309
Perpendicular

defined, 309
techniques for estimating, 208–209

Perpendicular lines, 34
Personal errors, angle measurement, 134
Philadelphia rod, level rods, 91, 309
Photogrammetric survey, 11
Photogrammetry, 217–224

defined, 309
ground control and project planning,

223–224
overview of, 217–219
photo coordinate system, 221
preliminary surveys using, 227–228
relief displacement, 221–222
stereoscopic plotting, 222–223
vertical photo geometry, 219–221

Photographic interpretation, 218
Photo-maps, 219
Piers, building, 275–277
Plane, 309
Plane figures, 301
Plane geometry, 8
Plane surveys, 8–9, 309
Plane trigonometry, 8
Planimeter

defined, 309
for irregular boundaries, 158
measuring area with, 249–250

Planimetric map, 196, 309
Plats

defined, 309
metes-and-bounds, 174
overview of, 10
property survey, 191–192
subdivision, 182

Plot plans, 10, 196–197, 309
Plotters

drum plotters, 217
flatbed plotters, 217
stereoplotters, 222

Plotting cross sections, 247
Plotting traverses

computer-aided, 217
methods, 198
overview of, 155–156
stereoscopic, 222–223

Plumb bob
accessories for taping, 63
defined, 309
establishing direction with plumb line, 6
historical uses of, 11
locating corner stake in building 

layout, 275
setting up theodolites, 126

Plunging (transiting) the scope, 309
Plus and offset method, 208, 209
Pluses, stations, 68
Plus sight reading (+S), 84, 309. See also

Backsight reading (BS)
PM (principal meridian), 179–180, 309
Point of beginning (POB), 174–177, 309
Point of compound curve (PPC), 238
Point of curvature (PC), 229,

230–231, 309
Point of intersection, 281, 309
Point of reverse curve (PRC), 239, 309
Point of tangency (PT), 229, 309
Point of vertical curve (PVC), 241, 309
Point of vertical intersection (PVI), 241
Point of vertical tangency 

(PVT), 241, 309
Polar coordinates, 50, 309
Polaris (North Star), 122
Polygons

connecting traverses forming, 144
defined, 309
number of sides, 39
properties of, 34
triangles, 35–37

PPC (point of compound curve), 238
PRC (point of reverse curve), 239
Precise level. See Tilting level
Precise leveling, 101–102, 309
Precise level rod, 101, 309
Precision

compared with accuracy, 27–28
defined, 309
surveying measurement and, 3

Preliminary surveys, 10, 227–228, 309. See
also Topographic surveys/maps

Principal meridian (PM), 179–180, 309
Prism pole, 310
Prism, volume of, 41, 310
Profile, 310
Profile leveling, 103–106. See also

Running levels
defined, 310
determining elevations, 85
field procedure for, 103–105
indicating cuts and fills and, 266
overview of, 103
plotting the profile, 105–106

Programming languages, 23
Property line, 173
Property surveys, 173–195

adverse possession, 181
boundary law, 181
corner locations, 187–188
data collection, 187
defined, 310
easements, 181
examples, 190–191
existing marks, 181
field and office tasks, 187
land or property description, 174
legal aspects of, 180

metes and bounds, 174–177
objectives of, 173
overview of, 9–10
plat or map preparation, 191–192
practice problems, 192–195
resurveys, 187
review questions, 192
riparian rights, 181–182
state coordinate systems and, 177–178
subdivisions, 182–186
surveyor legal rights and liabilities, 180
title transfers, 181
traversing the property, 188–189
U.S. Public Land Survey System, 178–180

Protractor method, 200–201, 215
defined, 310

PT (point of tangency), 228–229
Public domain land, 310
Public Land Survey System. See U.S. Public

Land Survey System
PVC (point of vertical curve), 241
PVI (point of vertical intersection), 241
PVT (point of vertical tangency), 241
Pythagorean theorem, 36–37, 50, 310

Q
Quadrangles, U.S. Public Land Survey 

System, 178, 310
Quadrant, of a circle, 41
Quadratic formula, 298
Quadrilaterals, 37–39, 310

R
Radial shots, 310
Radial stakeout survey, 285–286, 310
Radial surveys, 212–214

defined, 310
drawing the map, 214–216
overview of, 212–214
side shots, 160–161, 212–214

Radial traverses, 190
Radians (rad), angle measurement, 20, 310
Radius curb, 284–285
Radius, of a circle, 39, 310
Random access memory (RAM), 23
Random error. See Accidental errors
Random line, 282–283
Random traverse, 283
Range poles, for line of sight in 

taping, 63
Range, U.S. Public Land Survey 

System, 179
Reach, of sewers, 277
Read-only memory (ROM), 23
Real estate, 173
Real estate developments. See

Subdivisions
Rear chainman, 65–68
Reciprocal leveling, 97–98, 310
Reconnaissance survey, 11, 227, 310
Recording electronic tacheometer, 130, 310
Rectangles, 310
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Rectangular coordinates
converting to/from polar, 50
defined, 310
horizontal control survey, 114
mathematics of, 49
state coordinate systems and, 177
survey stations, 162
traverse stations, 146

Rectangular offsets, 282
Rectangular solids, volume of, 41
Referencing a point, traverses, 144–145
Reflecting prisms, in EDMIs, 78–79, 310
Reflectors. See Reflecting prisms, in EDMIs
Refraction, 310
Relative accuracy, 28–29, 310
Relative precision. See Relative accuracy
Reliction, 310
Relief displacement, photogrammetry,

221–222, 310
Remote sensing, 218
Repeating an angle, 132–133, 310
Repeating theodolites, 125, 310
Repetition instruments, 132. See also

Theodolites
Representative fraction (RF), scale in, 198
Resources

textbooks and web sites, 302
web sites, 302

Resurveys, 187
defined, 310
overview of, 186
problems encountered, 187

Reticules, 310
Retinal disparity, 222
Reverse curves, 238, 239, 310
Reversed position, 310
RF(representative fraction), scale in, 198
Right angles, 19, 310
Right angle trigonometry, 42–47

computing trig functions, 44
defined, 310
inverse trig functions, 44
overview of, 42–43
solving right triangles, 44–47

Right-of-way (ROW), 181, 310
Right triangles

defined, 310
formulas, 298
overview of, 36–37

Riparian boundary, 310
Riparian rights, 181–182, 310
Rod, distance measurement, 21, 310
Rod levels, 95
Rodperson, 90, 311
Rod reading, 311
Rod shoe, 101
Rod shots, 311
ROM (read-only memory), 23
Rope sketchers, 11
Rotating-beam lasers, 287–288, 311
Rotation of axes, 311

Rough measurement, 59–60
Rounding off numbers, 24
Route surveys, 11, 227–228, 311
ROW (right-of-way), 181, 310
Running description, metes-and-bounds,

174, 311
Running levels. See Leveling 

(running levels)

S
Sag, 311
Sag curves, 240, 244, 311
San Francisco rod, level rods, 92, 311
Satellite position systems. See Global

positioning systems (GPS)
Scale

defined, 311
drawing scale, 306
maps, 198–199, 216

Scientific calculators, 22
Sea-level datum. See Mean sea 

level (MSL)
Secants, 311
Seconds, angle measurement, 19, 311
Sections, U.S. Public Land Survey 

System, 179, 311
Sector, of a circle, 41, 311
Secular variation, in declination,

122–123, 311
Segments, of a circle, 41, 159, 311
Self-leveling levels, 311
Self-reading rods. See Level rods
Semicircles, 39
Setbacks, building layout, 191, 274, 311
Sewer, 277–280
Sexagesimal system, 19, 311
Shooting in grade, 311
Shrinkage, 252, 311
Side lap, aerial photography, 219
Side shots

defined, 311
horizontal control surveys, 160–161
plotting by protractor, 215
radial surveys, 160–161, 212–213

Side slopes, 247, 311
Sign conventions, for traverse course,

149–150
Significant figures, 23–24

defined, 311
overview of, 23
rounding off to, 24
rules for, 24

SI metric units
area measurement, 21
distance measurement, 20–21
as international standard, 19
units and conversions, 296–297
volume measurement, 21

Similar triangles, 36
Simple curves, 228–229, 311
Sines, law of, 47, 311

Single-beam lasers, 286–288
Site plans, 196, 311
Slope

defined, 311
determined from contour lines, 205
rate of grade, 260
showing with contour lines, 201

Slope distance, 311
Slope staking, 268–273

defined, 311
overview of, 268
positioning stakes, 269
setting offset to left grade stake (L), 271
setting offset to right grade 

stake (R), 271
trial and error procedure for, 270–271

Slow motion screw, 311
Software, data reduction, 157
Southing of the line, traverse course, 149
SPCS (state plane coordinate system), 164,

177–178, 312
Sphere, volume of, 41
Spindle, 311
Spiral (transition) curves, 238, 311
Spirit bubble, in levels, 87, 88–89
Spirit leveling. See Differential leveling
Spirit vial. See Bubble tube
S+ (plus sight reading ), 84
Square, 311
Stadia hairs, 311
Stadia intercept, 294
Stadia (radial) method, 205, 294–295. See

also Radial surveys
Stadia surveys, 311
Stakeout. See Construction surveys
Staking out, 10
Standard of accuracy, 311
Standards

accuracy, 29
defined, 311
tapes, 73

Standing azimuth. See Azimuth axis
State plane coordinate system (SPCS), 164,

177–178, 312
Station adjustment, 132
Station equation, 231
Stationing, 312
Stations, 68–71. See also Traverse stations

in control survey, 10
defined, 312
driving stakes, 69–70
identifying, 68–69
marking hard or paved surfaces, 71
marking intermediate stations 

on line, 66–67
PC and PT stations, 230–231
rectangular coordinates of, 162
setting a tack, 70–71
setting mark with EDM, 80
triangulation and trilateration, 166–167

Statutory law, landownership, 180
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Steel tapes. See also Taping
avoiding damage to, 64–65
defined, 312
overview of, 61–62
as traditional instrument for surveying, 3

Stereopair, aerial photography, 219,
222–223, 312

Stereoplotters, 222, 312
Stereoscopic plotting, 222–223
Stereoscopic viewing, 222
Straddle hubs, 145
Straight angle, 33, 312
Straight line. See also Line

coordinates, 50–52, 162–163
defined, 33, 312
prolonging by double centering, 281

Stride, 312
Strip maps, 205, 210–211
Stripping, section areas, 248
Subdivisions, 182–186

defined, 312
examples, 183–186
land partitioning computations, 183–185
overview of, 182
plats, 182

Subgrade, 241
Subtended angles, 312
Summit (crest) curves, 240, 244, 312
Superelevation, 312
Supplementary angle, 33, 312
Surface relief, 312
Surveying, introduction

art and science of, 3
basis of, 3–5
construction surveys, 10
control surveys, 10
defining horizontal and vertical

distances, 6
electronic data collectors, 16–17
field notes, 14–15
historical background, 11–13
importance of, 5
licensed land surveyor, 14
measuring distances and angles, 7–8
other types of surveys, 11
plane and geodetic surveying, 8–9
profession of surveying, 14
property surveys, 9–10
review questions, 18
route surveys, 11
topographic surveys/maps, 10

Surveyors
licensed land surveyor, 14
rights and liabilities, 180–181

Surveyor’s arrows, 63
Survey plat, 196
Swinging the arms

estimation of perpendicular, 208
estimation of right angle, 211

Swing-offset, 208
Symbols, 314

Symbols, topo map, 217
Systematic errors

angle measurement, 134
defined, 305, 308, 312
overview of, 25
running levels, 97

Systematic errors, taping, 72–75
common corrections, 72
overview of, 72–73
for tape length, 73–74
for temperature, 74–75

System of rectangular surveys. See Public
Land Survey System

T
Tangent

defined, 312
intersecting circle at one point,40
transportation route alignment, 227

Tangent-offset method, 200, 231
Tangent screw, 312
Tape clamp handle, 64, 312
Tape repair kits, 64
Tapes, 312
Tape thermometer, 64, 312
Taping, 312

accessories for, 63–64
add tapes, 62–63
avoiding damage to tapes, 64–65
blunders, 71
breaking tape,67–68
completing the measurement, 67
correcting systematic errors, 72–75
cut tapes, 62
errors, 71–72
invar and lovar tapes, 63
marking intermediate stations on 

line, 66–67
measuring horizontal distances, 65
setting marks for line and distance,

68–71
setting out and aligning tape, 65–66
steel tapes, 61–62

Taping pins, 312
Target, 312
Target rods, 90, 312. See also Level rods
Telescope, 312
Telescopic centering rod, 127
Telescopic sight, leveling equipment,

87–88, 293
Template sections, cross sections, 247
Tension handle, 63, 312
Terrain, 201
Textbook resources, 302
Theodolites

angular measurement with, 114
closing the horizon, 132
curve layout, 231
defined, 312
EDMI operating procedure, 79–80
electronic, 129–130

electronic tacheometer instrument 
(ETI), 76

features of, 124–125
gyroscope theodolite, 122
leveling, 127–129
measuring horizontal and vertical 

angles, 7
measuring horizontal angles, 130–131
measuring vertical angles, 132
overview of, 124, 291
repetitions, 135
setting up, 125–127
for stadia work, 294
systematic errors and, 25
as traditional instrument for 

surveying, 4
types of, 125

Three-wire leveling, 101, 312
Tilting axis. See Elevation axis
Tilting level, 312
Title, map, 216
Title surveys. See Property surveys
Title transfers, property law, 181
Topographic leveling, 85
Topographic orthophotomaps, 222
Topographic surveys/maps, 196–224, 312

computer-aided plotting, 217
contour lines, 203
coordinate method, 199
drawing the map, 214–216
horizontal ties, 205–210
interpolation of contours, 204–205
lettering on maps, 217
map features, 216–217
overview of, 10, 196–198
photogrammetry. See Photogrammetry
plotting traverses, 198
practice problems, 224–226
protractor method, 200–201
radial surveys, 212–216
review questions, 224
scale of, 198–199
slope determined from contours, 205
tangent-offset method, 199–200
topographic symbols on maps, 217
types of topo maps, 205–206
vertical ties, 210–212

Total stations
converting theodolite to, 130
defined, 312
horizontal control survey, 168
leveling without plumb bob, 127–128
measuring angles with, 114
as traditional instrument for 

surveying, 4
Townships, 312
Townships, U.S. Public Land Survey 

System, 178
TPs (turning points), 85, 99, 313
Transition (spiral) curves, 238, 312
Transit rule, 151–152, 312

Index 341



Transits
angular measurement with, 114
compared with theodolites, 124
configuring, 291–293
curve layout, 231
defined, 312
leveling head, 292
measuring horizontal and vertical 

angles, 7
measuring vertical angles, 294
motions of, 292
parts of, 291–292
stadia (radial) method, 294–295
for stadia work, 295
systematic errors and, 25
telescopic sight, 292–293
as traditional instrument for 

surveying, 4
verniers, 293–294

Transit the scope. See Plunging (transiting)
the scope

Translation of axes, 312
Transportation routes

curves. See Curves, transportation routes
earthworks. See Earthworks
practice problems, 255–259
review questions, 255

Trapezium, 38, 312
Trapezoid, 37, 312
Trapezoidal rule, 158, 312
Traverses, 144–160

area computation, 157–160
closure computation, 147
connecting traverse, 153–156
control surveys and, 10
data reduction, 146–147
defined, 312
horizontal control survey and, 114
inverse computation, 156–157
irregular and curved boundaries,

158–160
loop traverse, 147–153
measurements, 145–146
overview of, 143–144
plotting, 155–156
property surveys, 188–190
types of, 144
witnessing a point, 144–145

Traverse stations
coordinates, 151–153
courses and, 145
overview of, 143–144
rectangular coordinates of, 146
side shots, 160–161

Triangles, 35–37
defined, 312
overview of, 35–39
solving right, 44–47

Triangulation, 165–168
control surveys and, 10
defined, 313

examples, 166–168
horizontal control survey and, 114
overview of, 144, 165–166
systems of triangles, 166

Tribrach support
defined, 313
for EDMI, 79
for theodolites, 124

Trig functions, 42
computing, 44
inverse, 44
nomenclature of, 43
of obtuse angle, 47

Trigonometric leveling, 83, 106–107,
295, 313

Trigonometry
of curved surfaces, 9
defined, 313
oblique triangles, 47–48
obtuse angles, 47
overview of, 42
plane trigonometry, 8
right triangles. See Right angle 

trigonometry
Trigonometric identities, 48

Trilateration
compared with triangulation, 144
control surveys and, 10
defined, 313
horizontal control survey and,

114, 165
measuring distances between 

control stations, 166
Tripod-mounted instruments, care 

of, 135–136
Tripods, 84, 92–93, 313
True azimuth, 313
True bearing, 313
True meridians, 122, 313
Tunnel surveys, 11
Turning points (TPs), 85, 99, 313

U
Units of measurement, 19, 198
Upper motion, 313
U.S. Bureau of Reclamation, 22
U.S. Customary units

area measurement, 21
distance measurement, 20–21
overview of, 19
units and conversions, 296–297
volume measurement, 21

U.S. Geological Survey (USGS)
benchmarks (BM), 100
isogonic chart, 122
SI metric units used by, 22

U.S. Public Land Survey System, 178
defined, 310
framework of, 178–179
land descriptions, 179–180
overview of, 178

U.S. System of Rectangular Surveys.
See U.S. Public Land 
Survey System

V
Vernier, Pierre, 13
Verniers, 293–294

1-minute, 293
double, 293–294
reading, 294

Vernier scale
angle readings, 291
defined, 313
historical use of, 11

Vertex, angle measurement, 19, 313
Vertical, 313
Vertical alignment, transportation 

routes, 227, 313
Vertical angles

defined, 313
measuring, 7, 132
overview of, 114
relationship to zenith, 116

Vertical circles, 313
Vertical control datum, 313
Vertical control surveys, 313
Vertical curves

computing, 229–230
defined, 313
high or low points of, 244–245
overview of, 240–241

Vertical curve turning points, 244
Vertical direction, on earth’s surface, 6
Vertical distances, 83–113

adjusting benchmark elevations, 102–103
automatic levels, 89
benchmark leveling, 98–100
benchmark monuments, 102
cross-section leveling, 106
defined, 313
defining, 6
differential leveling, 84–85
digital levels, 89–90
error of closure, 100–101
handling level rods, 95
hand signals for leveling, 96
leveling equipment, 96–97
leveling four screw leveling 

instrument, 125
leveling mistakes and errors, 96–97
leveling three screw leveling 

instrument, 94–95
leveling two screw leveling instrument, 94
level rods, 90–92, 95
measuring, 7–8
overview of, 83
practice problems, 108–113
precise leveling, 101–102
profile leveling, 103–106
reciprocal leveling, 197–98
review questions, 108
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running levels, 85–86
setting up leveling instrument, 92–94
spirit bubble, 88–89
telescopic sight, 87–88
trigonometric leveling, 106–107

Vertical motion, 313
Vertical photo geometry, 219–221
Vertical photos, aerial photography,

219, 313
Vertical ties, topo maps, 210–212, 313
Volumes

earthworks, 251–254
grid method for, 253–254

of three dimension solids, 41
overview of, 21
units and conversions, 296

W
Waving the rod, 313
Web site resources, 302
Westing of the line, traverse course, 149
Wiggling in, 281
Witness corners, 188
Witnessing a point, 144–145, 313
Witness marks (ties), 144
Woven tapes, 64

X
x axis (abscissa), 49
xy plane, 49

Y
Yard, distance measurement, 20
y axis (ordinate), 49

Z
Zenith, 313
Zenith angle (or distance),

115, 132, 313
Zenith direction, 115
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