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Preface 

Despite the fact that fluid dynamics and filtration through porous media 
are classical research areas in engineering, physics, and mathematics, there 
are still many industrial processes that require the study of new mathemat­
ical models for flows of particular complexity, due to the peculiar properties 
of the systems involved. 

The aim of this book is to provide a number of examples showing how 
frequently such situations arise in various branches of industrial technology. 
The selection of the subjects was motivated not only by their industrial rel­
evance and mathematical interest. What I had in mind was a collection of 
problems having a really distinctive character, thus bringing some fresh air 
into one of the oldest and most revered domains of applied mathematics. 
The incredible richness of nonstandard flow problems in industrial appli­
cations has always been, and still is, a constant surprise to me. Therefore 
I tried to offer a very large spectrum of subjects, with special attention 
devoted to those problems in which the modeling phase is far from being 
obvious, and the mathematical content is absolutely nontrivial. With such 
a view to diversity, topics have been selected from a variety of sources (such 
as glass industry, polymers science, coffee brewing, fuels pipelining), and 
contributors from different backgrounds (mathematics, physics, chemical 
engineering) have been included. Consequently, the mathematical nature 
of the problems formulated spans over a large range, so that their theoret­
ical investigation and numerical computation require a variety of different 
techniques. 

Chapters have been grouped in three classes: 

i) "Flows of nonlinear materials" is a generic title emphasizing peculiar 
rheological properties (polymeric flows, stability problems in extrusion, 
and coal-water slurries). 

ii) "Flows accompained by thermal processes" is a large class in which 
we have included specific problems such as phase change in polymers, 
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where the flow is thermally induced, various flow problems in the glass 
industry, and the flow fields that accompany mass and heat transfer in 
polymerization processes. 

iii) "Nonlinear flows in porous media" is another broad title we have cho­
sen for a group of very peculiar processes which are in reality quite 
loosely related to one another, namely: espresso coffee brewing, the 
manufacturing of composite materials, and the flow of liquid through 
porous media with hydrophile granules. However, they do have a com­
mon denominator, which is the interaction of the flow with the solid 
components of the system. 

Because of space constraints, we have chosen only a few illustrative 
examples. Many more problems of great relevance can be found in different 
areas. A remarkable case is the one of oil reservoir technology, a very 
rich source of important (and probably more widely known) mathematical 
problems, so large and fast developing that today we can consider it as a 
classical research field, for which an extensive literature exists, and that is 
in turn an inexhaustible collection of complex flow problems, whose size is 
out of the conceivable range of the present book. 

Thus we are not pursuing any idea of completeness, which would cer­
tainly be a hopeless goal. The material gathered here is just a sampling 
from a big boiling pot, which I hope can be stimulating to those who like 
real world applications of fluid dynamics treated with mathematical rigor. 
For this reason quite a few open problems deserving further investigation 
have been included in each presentation. 

I would like to thank Prof. Nicola Bellomo who encouraged me to be 
the editor of this book. Of course I am deeply grateful to all the authors 
who made the nontrivial effort to contribute a chapter on problems with 
such special characteristics. 

Firenze, Italy ANTONIO FASANO 
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1 
Molecular Theories of 
Polymer Viscosity 

G. MARRUCCI AND G. IANNIRUBERTO 

Dipartimento di Ingegneria Chimica 
Universitd Federico II 
Napoli, Italy 

ABSTRACT. The viscosity of polymeric liquids crucially depends on poly­
mer concentration c and molar mass M. These dependencies can generally 
be predicted from relatively simple theories, because what really matters 
is the chain-like structure of the polymer molecule rather than its de­
tailed chemistry. In this chapter we summarize the main concepts lead­
ing to these predictions throughout the concentration range, i.e., from 
dilute solutions up to polymer melts. However, only the so-called zero­
shear viscosity will be considered because the nonlinear effects arising 
from the coupling between flow and molecular "structure" are more com­
plex and fall outside the scope of this chapter. In dilute solutions the 
important concept is that of "intrinsic" viscosity which, through depen­
dence on M, reveals structural features of the polymer (flexible chain 
vs. rigid rodlike, for example) as well as the solvent quality. In semidi­
lute solutions of long polymers, the overall structure of the system be­
comes that of an impermanent network of entangled chains. The viscos­
ity is then related to the elasticity of the network and to the kinetics 
of chain disengagement. Typically, the viscosity scaling takes the form of 
power laws in both M and c. The M dependencies remain the same in 
the particularly relevant case of polymer melts. The chapter ends with a 
brief description of systems with localized interactions (or sticky points) 
in which the viscosity is particularly sensitive to the strength of such 
interactions. 

A. Fasano (ed.), Complex Flows in Industrial  Processes

© Springer Science+Business Media New York 2000



4 Complex Flows in Industrial Processes 

1.1 Introduction 

Viscosity is a property of liquids that, unlike other important properties 
like density, easily varies by many orders of magnitude. It is a common ex­
perience that some liquids are very mobile (water, alcohol, most solvents) 
while others are extremely viscous (thick oils, molten asphalt, glycerine, 
etc.). These differences are ultimately related to the different molecular 
structures of the various substances, and it would be nice if the viscosity 
of a liquid could be predicted by knowing the structure of the constituent 
molecules. For relatively "small" molecules, such as those just mentioned, 
a prediction of their viscosity in the liquid state does not seem possible, 
however; there are probably too many relevant structural features of the 
constituent molecules and their influence is too subtle. On the other hand, 
our inability to predict the viscosity of those substances is mostly irrele­
vant, as it can easily be measured once and for all. 

Polymeric substances are a different story. As we shall discuss in the 
following, the viscosity of polymeric liquids, both solutions and melts, is 
better understood. Also, understanding the viscosity of polymers can be 
much more useful. There are several reasons why the latter statement is 
true. One of them is that all synthetic polymers, and many natural poly­
mers as well, come in a range of molecular masses. For example, polystyrene 
can be produced with M ranging from a few thousand to several million, 
corresponding to proportionally different lengths of the molecule (most 
polymers are linear chains). Measuring the viscosity for each possible M 
value would clearly be cumbersome; however, the M -dependence of the 
viscosity of polymeric liquids can be very strong. It is useful, therefore, 
to understand why and how the M-dependence of viscosity comes about; 
even more so because polymers tend to show a "universal" behavior. Such 
universality is due to the chain-like structure of the polymer molecule, a 
feature that often dominates over other details of the chemical structure. 
As a consequence, so-called "scaling laws" can often be found that apply 
to a whole class of polymeric substances. 

Another aspect that makes the viscosity of polymers worth studying 
is their behavior in solution. When a polymeric substance is progressively 
added to a solvent, the viscosity of the solution soon becomes dominated by 
the polymer, sometimes even at very low concentrations. (Some polymeric 
additives are effective ''viscosizers.'') Thus it is important to understand 
why this is so and which are the scaling laws of viscosity with concentration. 
For the case of polyelectrolytes, i.e., polymers carrying ionizable groups all 
along the chain, the viscosity will also depend on other variables like the 
ionic strength of the solution and, possibly, pH. For some polymers, the role 
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played by local interactions can be particularly important. In most cases, 
these polymers are "block copolymers," made up by chemically different 
sequences linked in the same chain. Then it may happen that sequences 
that do not like the solvent tend to stick together, forming temporary 
bonds. The same can also occur in the melt, just because the different 
sequences do not like each other. The effect of these bonds on viscosity can 
be dramatic. 

In this chapter we briefly discuss some of these effects. We will start 
with dilute solutions, where the concept of "intrinsic" viscosity is encoun­
tered. The behavior of the viscosity in such a limit, though showing some 
intricacies, can be understood on the basis of classical hydrodynamics. 
Next we consider semidilute solutions, then concentrated solutions and 
melts. Here, in order to understand the viscosity, we need to first touch 
upon rubber-like elasticity and polymer viscoelasticity. The digression will 
be very brief, however; we will soon return to focus on viscosity. We will 
conclude by discussing one example of localized interactions. 

An important aspect of polymer viscosity will not be considered here 
however, because the corresponding theory would require too long a presen­
tation. We refer to the nonlinear behavior, i.e., to the fact that the viscosity 
of polymeric liquids (defined, as for all other substances, by the ratio of the 
shear stress to the velocity gradient) itself depends on the velocity gradient 
(or shear rate) in fast flows. In very general terms, the nonlinear behavior 
is brought about by the influence of flow on the "structure" of the poly­
meric liquid; for example, the material loses isotropy as the molecules align 
in the flow direction. The theory of the nonlinear behavior of polymeric 
liquids is an active research topic. 

1.2 Dilute Solutions and Intrinsic Viscosity 

In the limit of dilute solutions interpolymer contacts are infrequent so that 
we can consider only the interactions of the polymer molecules with the 
solvent. Let us first examine ordinary flexible polymers, the molecule of 
which is a ''random coil" in solution, i.e., the chain resembles the path of 
a random walk in 3D space (see Fig. 1.1). The overall appearance of the 
random coil is that of a soft ball which, because of thermal motion, fluctu­
ates in shape. On average, however, the shape can be taken as spherical, 
because no directions of space are preferred. 

We will then calculate the viscosity", of the polymer solution as if it 
were a dilute suspension of spherical particles, for which we can rely on 
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Figure 1.1 - In the liquid state the polymer chain is coiled up; the shape 
is spherical on average. 

Einstein's formula 

TI - TIs = 2.5¢ 
TIs 

(1.1) 

where TIs is the viscosity of the solvent and ¢ is the volume fraction occupied 
by the spherical particles. The latter can be written as the product vV of 
the number v of polymer molecules per unit volume of solution times the 
"effective" or "hydrodynamic" volume V of the polymer coil. Because v 
can itself be expressed through c (mass of polymer per unit volume of 
solution) and M (molar mass of the polymer) as v = Nc/M, (where N is 
Avogadro number), Eq. (1.1) can be rewritten in terms of the so-called 
"intrinsic viscosity" [TIl of the polymer as 

[TIl = lim ! 17 - 17s = K ~ 
c--+O c TIs M 

(1.2) 

where the numerical constant K incorporates both 2.5 and Avogadro 
number. 

The intrinsic viscosity is readily obtained from the experimental de­
termination of TI versus concentration, the limit in the definition of [TIl 
emphasizing the concept of dilute solutions (no interactions among poly­
mer molecules). Once [TIl has been measured, the rightmost part in Eq. 
(1.2) can be used to obtain useful information on the polymer, provided 
we can estimate V, itself determined by the "size" of the random coil. 
Though perhaps deserving a whole chapter of its own, the problem of the 
coil size can be summarized as follows. 
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A measure of the coil size is obtained from the end-to-end vector R 
through the ensemble average (R2). The simplest model for the coil is 
the "ideal" chain, which ignores the excluded volume repulsion between 
chain segments as well as any energetic effect arising from the quality of 
the solvent (see below). The chain then becomes entirely equivalent to a 
random walk, and the result is [9] 

ncxM (1.3) 

where b is the length of the statistical "monomer" (or Kuhn segment), and 
n is the number of steps in the random walk, i.e., the number of monomers 
in the chain. Although b depends on the chemical details of the polymer 
chain, being smaller for more flexible chains, Eq. (1.3) is "universal." As 
long as this simple model is applicable, it predicts that the size of the ran­
dom coil of whatever polymer "scales" with the square root of its molecular 
mass M. 

When the excluded volume interaction is accounted for, the coil is 
predicted to swell up somewhat. The calculations become much more com­
plex because the statistics are those of a self-avoiding walk (SAW). How­
ever, to a very good approximation, the following result holds true: 

(1.4) 

Eq. (1.4) applies to the case of good solvents, i.e., to the case where polymer­
solvent contacts have the same energy as contacts between two polymer 
segments. Conversely, if polymer-solvent contacts are energetically less fa­
vored, i.e., the solvent quality is poorer, then the coil size decreases and 
the prediction of Eq. (1.3) may be approached. 

A situation may arise where, by compensation of effects, Eq. (1.3) is 
obeyed exactly. This will occur in suitably poor solvents (called () solvents) 
at a temperature (called (), or Flory, temperature) at which the excluded 
volume effect and the energetic interactions (Van der Waals or otherwise) 
cancel one another. At the () condition, the statistics are virtually the same 
as the ideal chain. 

Eq. (1.3) is also exactly obeyed in a completely different, yet very im­
portant, situation: in polymer melts. Indeed, although a melt of identical 
chains is obviously a "good solvent" for anyone of them, excluded vol­
ume interactions are screened in the melt. The latter effect can be un­
derstood by considering that, in the melt, the self-uncross ability condition 
(which swells up the chain in a good solvent of small molecules) is indistin­
guishable from the condition that segments of different chains cannot cross 
each other either. A polymer segment hitting another polymer segment in 
the melt does not "know" if that segment belongs to the same chain. We 
will come back to this important property of the melt state later in this 
chapter. 
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Going back to the viscosity problem, we can in any event estimate 
the volume V in Eq. (L'2) as V ~ (R2 )3/2. Hence, the expression for the 
intrinsic viscosity becomes 

(1.5) 

Eq. (1.5) is fully consistent with the experiments. These show that [17] = 
K Ma, where the exponent a, which depends on the polymer-solvent pair, 
always falls in the interval 0.5 ::; a ::; 0.8. The limiting values correspond 
to () solvent and good solvents, respectively, in full agreement with the 
predictions of Eqs. (1.3) and (1.4). The () condition effectively represents 
a lower limit for the coil size in solution. Indeed, by further reducing the 
temperature below the ()-temperature, the coil shrinks to a globule and 
precipitates from the solution. For practical purposes, the intrinsic viscosity 
of a polymer is used to determine in a simple way its molar mass M. For 
such a use, a suitable solvent is chosen (and a suitable temperature), and 
the parameters K and a are empirically determined once and for all by 
using polymer samples of known M value. 

The intrinsic viscosity, however, is also a basic ingredient of the theory 
of polymers. Among other things, it shows the "effectiveness" of polymers 
in generating large viscosities. To prove this point we start by considering 
that Eq. (1.2), just like Eq. (1.1), applies in general to a suspension of 
spherical particles. However, if the particles are solid (e.g., glass beads), 
both equations show that the size ofthe beads is irrelevant. In Eq. (1.1), the 
volumetric fraction ¢ is clearly insensitive to bead size; the same applies to 
the ratio volume/mass in Eq. (1.2). Conversely, for the case of polymers, the 
intrinsic viscosity becomes sensitive to the molecular size M, and it grows 
with increasing M. Where does the difference originate? The answer is 
found in the concept of volume spanned by the molecule as opposed to that 
literally occupied. The former is the volume of the sphere containing the coil 
in Fig. 1.1 and is obviously much larger than the latter. On the other hand, 
it is the former that constitutes the relevant volume in hydrodynamics, 
hence appropriately entering Eq. (1.2) as V. In its motion, the solvent 
interacts hydrodynamically with the coil as a whole, almost as if it were a 
solid sphere of volume V. 

To better understand the interplay of these factors, let us perform the 
following ''thought'' experiment. A Maxwell demon enters the solution and 
cuts all polymer molecules in half. Obviously the polymeric mass concen­
tration has not been changed, and yet the polymer contribution to viscosity 
drops (by a factor J2 in a () solvent). Indeed, although the particles have 
doubled in number, their individual hydrodynamic volume has been more 
than halved (in () solvents it is reduced by the factor 23/2). 

The ''viscosizing'' efficiency of polymers (large viscosities with little 
mass) is further amplified if the polymer molecules are rigid and rod-like 
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rather than flexible and coil-like. Indeed the hydrodynamic volume here 
becomes that of the sphere spanned by the rod-like molecule in its 
Brownian rotation, hence growing with M3. The ratio VIM, i.e., the 
intrinsic viscosity [17) (see Eq. (1.2) or (1.5)), then grows with as much 
as the second power of M. The same conclusion is reached, in fact with 
better precision, by arguing as follows. The friction coefficient of a rod (in 
the Stokes regime) is given by [10) 

(1.6) 

where Land d are rod length and diameter, respectively, and the omitted 
numerical front factor is of order unity. (In fact that factor depends on the 
rod orientation with respect to fluid velocity; yet the difference between 
the extreme cases of orthogonal and parallel orientation is ~nly by a factor 
of 2.) The friction coefficient times the square of the rod-solvent relative 
velocity gives the energy dissipated by the rod per unit time. Now, because 
the relative velocity (for any assigned velocity gradient) scales with L, 
we deduce that the dissipation per rod scales with the rod geometry as 
£3 Iln(Lld). The last quantity is the equivalent of the hydrodynamic 
volume of the rod. Indeed, multiplying the dissipation per rod by the 
number of rods per unit volume gives the dissipation per volume, hence 
the viscosity. As the number of rods decreases inversely with increasing L 
(at fixed rod concentration by weight c), the intrinsic viscosity scales as 

L2 
[17)rod oc In(Lld) oc M a (1.7) 

where we mean that for L large enough the power law with a = 2 repre­
sents just a slight overestimation. Experimental values of the exponent for 
rigid polymers confirm this prediction. Of course, a value of the exponent 
less than 2 can also come from a partial flexibility of the chain. 

The concept of hydrodynamic volume for a polymer chain can be 
profitably used to understand, for example, the viscous behavior of poly­
electrolytes. The viscosity of these polymers is observed to increase sig­
nificantly with decreasing ionic strength. The explanation is that, at low 
ionic strengths, the counter-ions of the polyelectrolyte are dispersed in the 
solvent and far away from the chains; hence, like charges of the same chain 
are no longer electrically screened by the counter-ions and will repel each 
other. The chains become longer and more rigid (see Fig. 1.2), and the 
viscosity correspondingly increases. 

It may be instructive to conclude this section by comparing the friction 
coefficient of an extended chain to that of the same chain when coiled up. 
Let us then consider a chain of n monomers of length b. When the chain is 
coiled up its friction coefficient is that of a sphere of size (R2 }1/2; hence, 
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Figure 1.2 - A polyelectrolyte carrying negative charges along the chain: 
(a) at high ionic strength (obtained by adding NaCI, for example) the 
chain is coiled up; (b) at low ionic strength the chain extends because of 
repulsion of the negative charges bound to the chain. 

depending on the solvent, we may write (see Eqs. (1.3) and (1.4)) 

v = 0.5 () solvents 

v = 0.6 good solvents 
(1.8) 

On the other hand, when the chain is fully extended, Eq. (1.6) holds true 
with L = nb. Hence 

nb nb 
(extended ~ l1s ln n + In(bjd) ~ l1s ln n (1.9) 

Notice finally that the isolated monomer would have a friction coefficient of 
order l1sb. Therefore, under no circumstances the friction is additive along 
the chain, i.e., we never obtain that the chain friction is equal to n times 
l1sb. However, Eq. (1.9) shows that in the extended conformation the cor­
rection with respect to simple additivity is only given by In n. This occurs 
because the hydrodynamic intemctions among the monomers of the chain 
are rather weak in the extended chain. In the general case, the friction co­
efficient becomes much smaller in the coiled state because the monomers 
get closer to one another and, correspondingly, the hydrodynamic interac­
tions become stronger. In the coiled state, the monomers in the inside of 
the coil are "shielded" by those on the outside. 

In some cases, however, the difference in friction between the coiled and 
the extended chain is minor. This will occur for wormlike persistent chains 
(bjd» 1) in good solvents if n is not too large. For example, for n = 100 
and bjd = 10, Eq. (1.8) gives 100°·6 = 16, which is even slightly larger than 
the prediction of Eq. (1.9), i.e., 100j In 1000 = 14.5. It seems that some 
recent data by Chu and coworkers on DNA [12] can be interpreted in this 
way, i.e., by properly accounting for hydrodynamic interactions. 
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Figure 1.3 - A permanent network; the cross-links are represented as black 
dots. 

1.3 Polymeric Networks 

In the previous section we only invoked concepts of classical hydrody­
namics. Here, jumping to a sort of opposite extreme, we focus on rubber 
networks where the polymer behavior is purely elastic. The network (see 
Fig. 1.3) consists of polymer chains permanently linked at junction points 
(called cross-links) so that the whole rubber sample consists of a single gi­
ant molecule. Rubber cannot flow but can deform to a considerable extent. 

The large deformability is due to the fact that rubber elasticity is en­
tropic in nature, Le., it is due to the thermal motion of the polymer chains. 
As a consequence, the shear modulus G is given by [15] 

G~vkT (1.10) 

where v is the number of chains (a chain goes from a cross-link to the next) 
per unit volume and kT is thermal energy. One should notice the analogy 
with the volume elasticity of gases, which is also entropic in nature and 
generates the well-known law for the pressure p = vkT, with v the number 
of molecules per unit volume. In the case of gases, the thermal motion of the 
molecules is translational, and the pressure arises from the force exerted 
by the molecules hitting the wall of the container. In the rubber case the 
thermal motion is conformational: chains continuously explore different 
conformations. Because all conformations are energetically equivalent, the 
most probable state of the chain is that obtained with the largest number 
of conformations (the coiled state). When deforming a piece of rubber, we 
extend chains, pulling them toward less favorable conditions (in terms of 
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available conformations). A reaction force will then arise (proportional to 
thermal energy kT) that attempts to restore the previous shape. 

The concept of rubber-like elasticity is fundamental in polymer physics. 
It can readily be extended to polymer viscoelasticity. Indeed, consider again 
the network depicted in Fig. 1.3, and assume that the cross-links are not 
permanent; rather, assume that they have a finite lifetime T. With a mean 
frequency l/T, all chains of the network detach from it, relax their defor­
mation (if any is present), and then re-attach to the network. 

Such a temporary, or impermanent, network describes a liquid rather 
than a solid. Indeed, because the chains periodically relax the deforma­
tion by detaching from the network, the material can be macroscopically 
deformed without limit, i.e., it can flow. The crucial parameters of the im­
permanent network are the relaxation time T and the instantaneous elastic 
modulus G, which is still given by Eq. (1.10). (Although in this case chains 
detach and re-attach continuously, /J in Eq. (1.10) is the number of chains 
per unit volume which, at any instant, are attached to the network.) We 
shall soon prove that the viscosity is given by the product of these two 
constitutive parameters, i.e., that 

(1.11 ) 

To obtain Eq. (1.11) let us first recall that, by definition of elastic modulus, 
we may write 

a = G'Y (1.12) 

where a is the shear stress and 'Y is the shear deformation. Eq. (1.12) applies 
as such to the permanent network of a rubber. For the temporary network 
subjected to a shear flow, the macroscopic deformation is obviously un­
defined, but an internal microscopic deformation can still be recognized. 
Indeed, the chains deform progressively while remaining attached to the 
network for a time T. Hence, if 1 is the shear rate, we can estimate the 
average deformation stored in the network at any instant as 'Y = 1T. The 
shear stress in the flowing system is then obtained from Eq. (1.12) as: 

(1.13) 

On the other hand, because from the macroscopic viewpoint we define the 
viscosity 'T] through the ratio a Fr, Eq. (1.11) remains (heuristically) proved. 

To be precise, we should point out that Eq. (1.11) strictly applies to 
the case of a single relaxation time. Polymeric systems often show a set 
(or a continuous spectrum) of relaxation times, in which case Eq. (1.11) 
is replaced by a summation (or an integral) [7]. In many significant cases, 
however, one of the relaxation times is dominant, so that Eq. (1.11) can 
be used with good approximation. In the following sections, our estimates 
for the viscosity will invariably be based on Eq. (1.11). 
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(a) (b) (c) 

Figure 1.4 - A (a) dilute solution (c < c*); (b) solution at the overlap 
concentration (c ~ c*); (c) semidilute entangled solution (c ~ c*). 

1.4 Semidilute Solutions in Good Solvents 

In the section on intrinsic viscosity we examined the case where the 
polymer molecules are so far apart in the solution that the interactions 
among them can be ignored. With increasing concentration, polymer­
polymer encounters become more and more frequent. In good solvents 
these interactions are repulsive in nature, due to excluded volume, imply­
ing that the coil-containing spheres avoid overlapping (see Fig. 1.4a). A 
concentration is reached, however, at which overlapping cannot be avoided 
(see Fig. l.4b). Such a critical concentration c* is readily calculated from 
the condition that the spheres just touch, i.e. (in terms of hydrodynamic 
volume fraction ¢) from the condition ¢* ~ 1. Then, using Eqs. (1.1) and 
(1.2), we estimate c· ~ [7]t1. At concentrations c > c· the coils interpen­
etrate considerably (see Fig. l.4c), but because the critical concentration 
c· is very small (for large M), there exists a concentration range in which 
the solution can still be considered dilute, in the sense that the polymer 
segments are still in contact mostly with the solvent. In such a range, the 
solution is therefore called semidilute. 

As first suggested by de Gennes [3J, semidilute solutions in good sol­
vents enjoy simple "scaling laws." The reason for the (relative) simplic­
ity is that the whole behavior of semidilute solutions can be described 
through the concept of screening length~. The meaning of this quantity is 
illustrated in Fig. 1.5. Because the chains interpenetrate, there are many 
contacts between them. The screening length ~ defines the average distance 
between consecutive contacts, and the chain segments spanning consecu­
tive contacts are called "blobs" because the shape of the space they span 
is spherical on average. Within a blob, the excluded volume interaction 
remains important because, at that scale, the chain only interacts with the 
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Figure 1.5 - The mesh size (or blob size) e for interpenetrating coils. 

solvent (and with itself), not with other chains. Conversely, for distances 
larger than e, the excluded volume interaction is effectively screened be­
cause interacting blobs cannot distinguish whether they belong to the same 
chain or to different ones. 

The lengthe as a function of the concentration c can be estimated as 
follows. From pure dimensional analysis we may write: 

e = Rof(clc·) (1.14) 

The reference length Ro is the mean size of the isolated coil, i.e., Ro = 
J(R~), where the average under the square root is given by Eq. (1.4). 
The unspecified function f in Eq. (1.14) is then required to become unity 
for c ::; c·, i.e., in dilute solutions. In the semidilute range, i.e., for c > c·, 
the unknown function is determined by the requirement that e becomes 
independent of chain length (or molar mass M). Now, because Ro is pro­
portional to MO. 6 (see Eq. 1.4), there follows that f(clc*) must be a power 
law of appropriate exponent, such that the M -dependence of c* cancels the 
M-dependence of Ro. From c· ~ [1]J-1 ex M-o.8 , the following scaling law 
for semidilute solutions in good solvents is therefore obtained: 

(1.15) 

As mentioned earlier, all relevant quantities in semidilute solutions with 
good solvents will soon be obtained from the screening length. Also, all 
functional dependencies take the form of power laws, i.e., they obey scaling 
rules similar to that just derived for e. In particular the concentration 
dependence will always appear through the nondimensional ratio clc· or, 
equivalently, through the product c[1]J. 

The first quantity we now consider, which is relevant for estimating the 
viscosity, is the modulus G of the impermanent network that the semidilute 
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solution forms at values of c somewhat larger than c*. Indeed, when each 
chain is in contact with many other chains all along its contour length (as 
it certainly does for c » CO), the chains become entangled to one another. 
The bundle of entangled chains permeates space and is equivalent to one of 
the networks considered in the previous section. The network is temporary 
in nature because the chains are not permanently attached to one another 
and can slide one past another. Such sliding motions will in fact determine 
the relaxation time T, which is to be calculated. For the moment, however, 
let us concentrate on the elastic modulus of this impermanent network. 

Following Eq. (1.10), in order to calculate G we need to know the 
number v of elastically active chains per unit volume of the network (i.e., 
of the semidilute solution in our case). We expect that each polymer chain, 
insofar as it experiences many contacts with other chains, will generally 
contain more than one elastically active chain segment. In fact, it is sensible 
to assume that one elastically active segment corresponds to some definite 
number of contacts. Hence, because there is one contact per blob, the 
number of active segments per unit volume is proportional to the number of 
blobs per unit volume lie. The following scaling for G is then immediately 
obtained: 

kT 
G ~ - ex C2.25 

~3 
(1.16) 

The concentration dependence of the elastic modulus predicted by Eq. 
(1.16), i.e., a power law with an exponent slightly larger than 2, is well 
confirmed experimentally [13]. Also, because (for any given c) ~ is M­
independent, G is predicted to be independent of M as well. The M­
independent G value is called the "plateau" modulus and is observed by 
plotting either G(t) vs. logt or G'(w) vs. logw, where G(t) and G'(w) are 
typical material functions of linear viscoelasticity [7]. They are obtained 
from experiments of stress relaxation following step deformations or from 
the frequency response of the material, respectively. In both cases (see 
Fig. 1.6), there is a "window" of either time or frequency in which G stays 
constant, and such a plateau value is molecular weight-independent. 

To proceed with the other factor that (together with G) determines 
the viscosity, i.e., with the relaxation time T, we first need to consider the 
diffusive motion of an entangled chain. Because chains cannot cross one 
another, the diffusive motion can only take place along the chain itself. 
Except for this longitudinal motion, the entangled chain can explore the 
surroundings only over a very limited distance. Conversely, by a sequence 
of diffusive steps along its own contour length, it can eventually move over 
long distances. The diffusive motion along the contour length was called 
reptation by de Gennes, as it reminds of the motion of the snakes [2]. The 
restriction in lateral motion owing to chain uncross ability was represented 
by Edwards [6) in terms of a tube constraining the chain all along its contour 
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logG(t) logG'(ro) 

logt lagro 

(a) (b) 

Figure 1.6 - (a) Shear modulus relaxation after a step deformation and 
(b) storage modulus G' as a function of frequency w. In both cases there 
is a "plateau" region extending in length with increasing M; the plateau 
value itself is independent of M. 

(see Fig. 1.7). The tube diameter is a measure of the short distance that the 
chain is able to explore in its lateral motion. In our semidilute solutions, 
the diameter of this constraining tube is expected to be somewhat larger, 
but not much larger, than ~ itself. 

In order to estimate the diffusion coefficient D of the chain in its motion 
along the contour length we can resort to another famous Einstein formula, 
namely, 

(1.17) 

which links D to the friction coefficient. In our case, we must consider 
the friction coefficient of the whole chain (chain. In its turn, (chain can be 
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Figure 1.7 - A polymeric chain in a grid of topological obstacles made of 
other chains (the dots in the figure); each chain is then effectively confined 
in a tubelike region. 
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estimated as follows. The chain segment forming a single blob, taken by 
itself, would have a friction coefficient (blob given by the Stokes expression 
(the blob behaves hydrodynamically as a sphere of size ~) 

(LIS) 

where "'8 is, we recall, the solvent viscosity. On the other hand, the 
friction of the whole chain is obtained by summing up the contribution 
of the blobs forming that chain. Indeed, because of the polymer-polymer 
contacts, the hydrodynamic interactions are screened for distances larger 
than ~. Hence the friction becomes additive over the blobs of the same 
chain. We may then write 

(1.19) 

where N is the number of blobs per chain. 
From D, which describes the diffusion of the chain along its own tube of 

constraints, the relaxation time T of the impermanent network is obtained 
through the following argument. Consider a step deformation of the net­
work. As a consequence of the deformation, the system becomes anisotropic 
and a stress arises. In order for the elastically active segments of a chain to 
relax the anisotropy, it is required that the chain diffuse along its tube of 
constraints. Indeed, in so doing, it will abandon the anisotropic tube and 
create a new isotropic one. This occurs because, in the longitudinal diffu­
sion process (reptation), the advancing chain end is free to choose its direc­
tion randomly. If we call L the curvilinear length of the tube, we can esti­
mate T as the time required for the chain to diffuse longitudinally a distance 
L. Indeed, when such a time has elapsed, the whole chain (hence all its seg­
ments) will have renewed orientation and regained isotropy. We then obtain 

T ~ L2 ~ !!!..(N~)3 
D kT 

(1.20) 

where the last (approximate) equality makes use of Eq. (1.19) for D, as 
well as of L ~ N~. 

To be precise, we should account for the fact that not all segments of 
the chain have the same relaxation time. Clearly, segments closer to chain 
ends will renew their orientation sooner than segments deeper inside. The 
exact treatment of reptation dynamics [2] shows, however, that Eq. (1.20) 
provides the dominant relaxation time. Up to SO% of the stress will relax 
according to T, while the other 20% only will relax with faster modes. 
Further refinements of the basic theory are also required due to fluctuation 
in tube length L, as well as to account for constraint release (with regard 
to the test chain) brought about by reptation of the surrounding chains 
(so-called "double reptation"). Some of these refinements marginally alter 
the scaling laws (see below). Here we shall continue, however, with the 
basic simple treatment. 



18 Complex Flows in Industrial Processes 

Let us combine the two factors that make up the viscosity. From Eq. 
(1.16) for G and Eq. (1.20) for r, the formally simple result is obtained: 

(1.21) 

The problem now becomes that of determining how N, the number of 
blobs per chain, scales with either M or c. Regarding the first scaling, the 
answer is immediate. At fixed c, the blob size ~ is fixed also; hence N 
must be proportional to M, and from Eq. (21) the following scaling for "., 
is obtained: 

(1.22) 

The dependence of "., on c requires a little more work. We first need to 
calculate the number of chain monomers contained in a blob, called nblob. 

Within a blob, the excluded volume interaction typical of good solvents is 
active; hence we may write {see Eq. (1.4)): 

~ ~ ngi~bb => nblob ~ {~/b)5/3 (1.23) 

Then, because the total number of monomers is n, we find 

N = n/nblob ~ nb5/3~-5/3 ~ nb5/3 R~5/\C/C*)5/4 ~ {C/C*)5/4 (1.24) 

where we have used Eq. (1.23) for nblob, then Eq. (1.15) for ~, and finally 
Eq. (1.4) for Ro. In conclusion, Eq. (1.21) becomes 

(1.25) 

Needles to say, Eq. (1.25) also contains the proportionality expressed by 
Eq. (1.22) because c* ~ [".,]-1 ()( M-O.8. 

Experiments show a dependence of "., on M and c somewhat stronger 
than that predicted by Eq. (1.25). In particular the typical dependence of 
"., on M is with a power somewhere between 3.3 and 3.5 instead of 3. We 
shall comment on this discrepancy soon. However, the experiments fully 
confirm the basic scaling insofar as data obtained for different values of c 
and M fall on a single curve if plotted vs. c[".,], i.e., vs. c/c* [11]. 

The explanation for the discrepancy on the M3 prediction was provided 
by Doi [4] and is based on the role played by fluctuations of the tube length, 
which were neglected in the basic theory. The argument is that the power of 
3 would be reached asymptotically for very large M, i.e., when fluctuation 
becomes negligible. For all M values of practical interest, fluctuations are 
important, more so when M is smaller. They determine that the chain 
renews orientation at a faster rate than is predicted by reptation at fixed 
tube length L. The dependence on M is then more complex but essentially 
equivalent to a power law with an exponent of about 3.3. 

With increasing polymer concentrations further complications arise be­
cause the friction is no longer only between polymer and solvent. Friction 



1. Molecular Theories of Polymer Viscosity 19 

between polymer segments becomes increasingly important as we go from 
semidilute solutions to concentrated solutions, all the way up to the neat 
polymer, i.e., to the polymer melt. For their importance in applications, 
in the following section we will briefly discuss polymer melts. 

1.5 Polymer Melts 

In polymer melts the only relevant variable (for a given chemistry of the 
chain) is, of course, the chain length or chain mass M. Polymer melts 
behave differently depending on M. At low M-values the molecules do 
not form a network. They behave "individually," and the viscosity grows 
moderately with increasing M. Above a critical value Me, the behavior 
becomes that of an entangled network, and the viscosity starts growing 
with M much more steeply [7). 

For M > Me the entangled network exhibits, as expected, a plateau 
modulus G independent of M. The plateau modulus of molten polymers 
typically falls in the range 0.1 -;- 1.0 MPa, depending on the "chemistry" 
of the chain. However, because the local interactions among chains should 
not directly contribute to the rubber-like modulus of the network, the 
"chemistry" should influence the modulus only indirectly through some 
basic chain properties. One of these basic properties is related to the chain 
statistics. In the section on the intrinsic viscosity we already mentioned 
that the statistics of the chain in the melt are ideal because the excluded 
volume interaction is screened. This implies (cf. Eq. (1.3» that (R2 ) is pro­
portional to M. Hence, the "chemistry" enters the chain statistics through 
the characteristic ratio (R2) j M, which is independent of M. The other 
important parameter of a polymer melt influenced by the chain chemistry 
but independent of M is the mass density p, which specifies how much 
chain length can be packed in the unit volume. The "structure" of the 
temporary network formed by the entangled chains should therefore be 
determined only by these two parameters, p and (R2) j M. 

For what was said earlier, the plateau modulus G of a molten polymer 
is expected to depend on p and (R2) j M. More specifically, because a 
rubber-like modulus is in any way proportional to kT (cf. Eq. (1.10», we 
expect that 

G 
kT = f (p, ( R2 ) j M) (1.26) 

where f is some function. From here on, simple dimensional analysis pro­
vides the desired scaling law for the plateau modulus. Indeed, because 
GjkT is dimensionally a reciprocal volume, the mass should disappear 
from the relationship. Hence p and (R2) j M cannot appear separately 
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but only through their product p( R2 ) / M. Moreover, because the latter 
grouping defines a reciprocal length, we must have 

(1.27) 

which, to within a constant numerical factor, completely specifies the 
function j, i.e., the scaling of the plateau modulus of a polymer melt. 

The scaling of Eq. (1.27) is well confirmed by experiments [8]. Minor 
deviations are probably due to energetic factors that were ignored in the 
preceding argument. From the same scaling, we also obtain the critical 
molecular mass Me, which marks the onset of the entangled behavior. 
Indeed, because from Eq. (1.1O) G = vkT, where v is the number of elas­
tically active chains per unit volume, we may also write Eq. (1.10) for our 
case as 

(1.28) 

where Me is the molecular mass of the elastically active chain, i.e., of the 
chain segment between consecutive entanglements. Comparison of Eqs. 
(1.27) and (1.28) shows that 

Me rx p-2((R2 )/Mr3 (1.29) 

The scaling defined by Eq. (1.29) for Me obviously applies to Me as well. 
This concludes the scaling laws of the M-independent quantities. 

Regarding the other factor that determines the viscosity, i.e., the relax­
ation time T, the situation for M > Me is similar to that already discussed 
for the entangled semidilute solutions. The chains must reptate to relax the 
stress. Hence, T, and consequently the viscosity 'T], is predicted to scale with 
M3 (see Eq. (1.22)) or, accounting for fluctuations, approximately with 
M 3.4 • Fig. 1.8 shows a typical log-log plot of melt viscosity vs. M. Above 
Me the slope is about 3.4, while below Me the slope is 1. For M < Me the 
network of entangled chains no longer exists, and the observed behavior is 
well described by the classical Rouse model [5, 14]. In such a model the 
chain dynamics is simply that of a chain in a viscous solvent without hydro­
dynamic interactions between chain segments. Indeed, in the melt, hydro­
dynamic interactions (just as excluded volume interactions) are screened 
at all length scales. Because of this screening effect the friction is additive 
along the chain. Hence the melt viscosity comes out proportional to M in 
the Rouse regime. This behavior should be contrasted with that in dilute 
solutions where the intrinsic viscosity of a flexible polymer always comes 
out less than proportional to M because of the hydrodynamic interactions. 

The diagram in Fig. 1.8 is "universal," i.e., it remains the same for all 
flexible polymers independent of their specific chemistry. The horizontal 
scaling in Fig. 1.8 is dictated by Me, i.e., by Eq. (1.29). The vertical scaling 
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Figure 1.8 - Typical plot of melt viscosity as a function of molecular mass. 

cannot be anticipated from theory because it involves a basic friction co­
efficient (between monomers of the polymeric chains) that is determined 
by the chemistry in a complex way (cf. the discussion in the Introduction 
for the case of small molecules). However, a single experimental value of 
the viscosity (either in the Rouse regime at low M or in the entangled 
regime at high M) is sufficient to set the vertical scale for any specific 
chain chemistry. 

1.6 Localized Interactions 

In this last section we will briefly examine some special effects due to 
localized interactions. A typical example of such interactions is provided 
by polymeric chains to which segments have been added (two or more 
segments per chain) having a "different" chemistry. These segments are 
called sticky points because for energetic reasons they like to stick together 
to form aggregates. Examples are essentially of two types. In one case, the 
polymer is water soluble (hydrophilic) and the special segments are hy­
drophobic. Thus in an aqueous solution the hydrophobic segments want to 
segregate from water, forming clusters. The other case is somehow oppo­
site: The polymer is insoluble in water and sticky points are strongly polar 
or even ionic (like in the "ionomers"). In either case, above the critical 
concentration c·, the polymeric chains will form a network in which the 
junctions are aggregates of the sticky points (see Fig. 1.9). 

The "stickiness" is related to the energy by which the segments are held 
together in the aggregates. This energy E must be larger than thermal 
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Figure 1.9 - A network of "telechelic" chains; the chains carry sticky 
points at the ends only (the empty circles). The sticky points cluster to­
gether to form the nodes of the network. 

energy kT, but not much larger. Indeed, if E is of order kT, thermal 
motions do not allow aggregates to be stable; the points are not sticky 
enough, and the chains interact in the normal way, i.e., by friction only. 
At the opposite extreme, if E » kT, the aggregation process becomes 
irreversible; the junctions, once formed, are permanent, and the system 
becomes a solid (a gel). In a suitable window of E/kT values the stickiness 
is such that the network is impermanent (the chains can detach by thermal 
motion, if not too frequently) and the behavior remains liquid-like. 

As always, the viscosity of the system can be calculated through Eq. 
(1.11). The new aspect here is that the relaxation time T is no longer 
related to a friction process; rather, it is determined by the stickiness of the 
j unction, i.e., by E / kT. More specifically, calling Wo the basic frequency (of 
order 108 s-1) of Brownian motion (which "attempts" to detach the sticky 
point from the aggregate), the frequency w of successful detachments is 
related to wo, through the Boltzmann factor: 

w = Wo exp( -E/kT) (1.30) 

Clearly w is much less than Wo if E/kT is of order 10 or more. 
If the relaxation time of the chain due to friction is much less than 

l/w, i.e., if the chain without sticky points would relax faster than l/w, 
then detachment becomes the controlling mechanism for relaxation. The 
relaxation time T of the impermanent network is then just equal to 1/ wand 
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is entirely determined by the energy E of the sticky points. In some cases 
the energy E can itself be easily tuned. For example, during preparation 
of the polymer, E can be modified by changing the length of the special 
segment which provides the localized interaction [1]. Alternatively, for a 
fixed chemistry, E can be altered by adding to the solution trace amounts 
of a solvent that selectively goes inside the aggregates. 

The possible changes in the relaxation time mentioned earlier can be 
used to modify the viscosity even by orders of magnitude. In particular, we 
can obtain a very large viscosity with a very small mass of polymer. To this 
end, it is sufficient that the network is made up of very few chains (c ~ c*) 
of large M (c* small) carrying at their extremities sticky points with a 
large E value (T large). Thus, although the elastic modulus (~c* kT / M) 
will be very small, the viscosity will remain as large as we wish. This 
example shows again the enormous efficiency of polymers as viscosizers. It 
also shows the posl'!ibility of gaining good control over the viscosity and 
more generally over the rheology, of polymeric liquids. 
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ABSTRACT. In this chapter we present an overview of recent investigations 
on the problem of sedimentation related to the pipelining of a coal-water 
slurry. The two main aspects of the problem are the determination of 
the sedimentation velocity and the understanding and modeling of the 
dynamics of the sedimentation bed that accumulates on the bottom of 
the pipe. The analysis is carried out using a combination of suggestions 
dictated by experimental evidence and suitable mathematical techniques. 
The result is a model that appears to be both easily manageable and 
flexible. Predictions of the model are compared with experiments finding 
a remarkable agreement with the available data. 

2.1 Slurry Handling and Pipeline Transport: A Brief 
Outlook on Hydrotransport 

The idea of transporting solids using a carrier fluid is rather old and intu­
itive. Indeed according to Apollodorus and Pausanias (first century B.C.) 
this transportation technique, now known as hydrotransport, was first used 
by Herakles, who in one day cleaned up thirty years' worth of accumulated 
filth left by thousands of cattle in King Augeas's stables by diverting two 
rivers to form an open-channel hydrotransport system [42]. Despite the 
mythological nature of this tale, known as Herakles' fifth task, any kind of 
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solid can in principle be moved from one place to another that is hundreds 
of miles away using a liquid as the transportation tool. 

The modern stage of slurry pipeline technology began, more or less, 
forty years ago. A slurry is essentially a suspension of solid particles in a 
carrier fluid; we are interested in these suspensions because by using an 
appropriate technology, they can be pipelined very far from their produc­
tion site. Generally the required technology depends on the chemical and 
physical nature of the suspended particles. This area of investigation is 
so important that scientists and industries involved in this field meet al­
most every year at highly specialized international meetings such as the 
Hydrotransport Conferences (there have been thirteen through 1999) or 
the International Conferences on Slurry Technology. The underlying idea 
is that hydrotransport may, in many cases, be an attractive alternative to 
other modes of transport (rail, ships, etc.). It also has several advantages, 
such as a moderate environmental impact, relatively little infrastructure 
work needed, and possible low operation and maintenance costs. 

For a long time, especially in the early stage of the development of this 
technology, it was generally thought that the only operational regime to 
prevent particle settling was the turbulent one; indeed the primary duty 
when designing a slurry pipeline is to ensure that it will not be blocked 
because of sediment accumulation on the pipe lower wall. However, the 
cost of maintaining a turbulent regime must also be considered. For 
this reason recent studies on slurries have addressed the possibility of 
controling settling within the laminar regime (which requires less pumping 
power and is therefore less expensive). If the sediment buildup process 
could be modeled accurately, then designers would be able to predict the 
conditions that lead to blockage, and thereby design systems so that the 
possibility of a blockage is avoided. 

The engineering approach to the problem of designing a slurry pipeline 
is a remarkable combination of basic fluid mechanics and chemical 
concepts, phenomenological laws, empirical laws, and intuitions guided 
by specific pilot plant data. The blockage problem is certainly the most 
focused but many others are related to it; the interested reader may look 
at the papers published on this subject in the proceedings of the last 
hydrotransport conferences (see the References). However, it is not easy 
for people not specifically trained in this area to read those contributions 
and find, when looking at a specific problem, a common point of view 
among different writers. For these reasons, we try to present an approach 
to the problem of sediment buildup and evolu.tion of the growing bed that 
is, to a reasonable extent, as self-consistent and readable as possible, even 
for people not expert in this area. 

In this chapter we report the main results of a research work on the 
problem of sedimentation in the pipelining of concentrated coal-water slurry 
(CWS). This subject has involved our group in industrial mathematics at 
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the University of Florence for several years. The problem was researched 
in cooperation with the engineering team of Snamprogetti, an Italian com­
pany that is well-known among those designing and selling technology for 
fuel energy production and transportation. Snamprogetti has fully inves­
tigated all problems related to CWS technology (see Terenzi et al. [36]) 
both at their pilot plant in Fano (Italy) and in the field, using an indus­
trially operating pipeline.! The pilot plant is equipped with sophisticated 
measuring devices (for example, a gamma-densimeter) that provide direct 
evidence and sufficiently clear data on the growth of the bed with time. 

Although the model and the approach presented here are dependent on 
the particular type of slurry under investigation, we believe that the basic 
ideas can be easily adapted to other similar physical systems. 

The CWS mixture considered here enters into the category of concen­
trated slurries because it consists of about 70% (by weight) ground coal 
such that the size distribution has two peaks around 10 {lm and 100 {lm. 

The remaining 30% is water with a small percentage (0.5%) of chemical 
additive needed to fluidize the suspension. This fluid is perfectly stable 
at rest even after years, i.e., particle concentration remains constant in 
time everywhere. This stability is completely ascribed to the action of the 
chemical agent; indeed, additive molecules, being highly polar, coat the 
coal particles with positive charges so that mutual repulsive forces prevent 
natural sedimentation. 

The rheological behavior of concentrated CWS at low shear rates can 
be reasonably described by the Bingham model, that is (in laminar flows 
with simple geometry), 

(2.1) 

where T, TO, ryE, and 1 denote the shear stress, yield stress, plastic viscosity 
and shear rate, respectively, and (.)+ means the positive part of (.). Of 
course, more complicated models can be used but (2.1) is sufficient for 
our purposes. 

When a CWS is stirred in a vessel or pumped through a pipeline, the 
action of shear dramatically modifies this picture through a phenomenon 
called rheological degradation, which has also been deeply investigated and 
fully explained (see, for example, ([9]' [10]' [11J, [15]' [21J, [22], [23]' [24], 
[26]' [32]). However, the time scale of this phenomenon is many orders 
of magnitude larger than that of sedimentation, so that if we focus on 
the latter problem, the time dependency of rheological parameters can 
be neglected. Therefore we can consider a CWS as a time-independent 
Bingham fluid. 

1 Snamprogctti built a 250-Km-long operating pipeline connecting Belovo to Novosibinsk 
(Siberia). 
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The solid fraction does not generally consist only of pure coal; even 
after a suitable treatment (beneficiation), ground coal from the mill hardly 
contains less than about 6% of other micronized minerals and steel residues 
due to beneficiation itself. 

Impurities generally have a size comparable to or higher than that of 
the top size of coal particles; the inner structure of a CWS provided by 
the residual adhesion forces among the coal particles (which is responsible 
for the yield stress) is sufficient to prevent settling at rest. This is no 
longer true when a CWS experiences a shear rate, as if it is stirred in a 
viscometer or pumped in a pipeline. Indeed while the tendency of the pure 
coal particles to settle is prevented by the action of the chemical stabilizer, 
this is not true for impurities that, having a different chemical structure, 
do not react with the additive. Therefore the settling of these particles 
cannot be controlled, leading to a sediment buildup at the bottom of the 
pipe when the CWS is pipelined at long distances. This phenomenon can 
also be observed if the CWS is placed in a rotating bob-cup viscometer. In 
the pipe flow the reduction of the hydraulic diameter due to the sediment 
buildup leads either to increase the pressure gradient (assuming that we 
can) to maintain the discharge or to decrease the latter if we cannot. Both 
cases are either unsafe or economically disadvantageous. Therefore what 
is needed is a model to predict the evolution of the growing bed in order 
to choose the optimal discharge and plan the periodical (unavoidable) 
shutdown of the pumps and cleaning of the first portion of the pipeline 
(the only one interesting to the settling phenomenon). 

The aim of this chapter is to describe the investigative work and results 
about the described problem conducted at the facilities of Snamprogetti. 

2.2 Some General Facts about Sedimentation 

Consider a single spherical rigid particle settling with constant velocity 
v s in a Newtonian viscous liquid at rest that extends to infinity in all di­
rections. The uniform motion of the falling particle results from the equi­
librium of three forces: the particle's own weight ~1T(53psg, Archimedes' 
lifting force -~7l'83pIg, and the viscous force exerted by the fluid on the 
sphere. For small Reynolds numbers (say Re ~ 1) Stokes [35] proved that 
the viscous force exerted by the fluid (drag force) is parallel (and oppo­
site in direction) to v s and of magnitude 67l'8"lvs' Then a force balance 
immediately yields the well-known formula 

Vs = 2g(ps - PI) 82 

9"l 
(2.2) 

It is common practice to express the forces exerted on moving bodies by 
the fluid in terms of a dimensionless parameter CD called drag coefficient 
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obtained by dividing the drag force 67r8TJvs by (1/2)psv~ and by the area of 
the body projected on a plane normal to vs; thus the drag coefficient is here 

CD = ~, with 'Re = 26v.p. 
'Re 1/ 

(2.3) 

For a particle of sand falling through water at room temperature, the 
hypothesis 'Re «: 1 is satisfied provided that 8 «: 0.006 cm. From the 
mathematical point of view, the Stokes hypothesis ('Re «: 1) is equivalent 
to a suitable linear approximation of the nonlinear N avier-Stokes equation. 
This approximation (and thus the Stokes solution) contains various draw­
backs and physical inconsistencies (the most famous one is probably the so­
called Stokes paradox (see, for example, [25]). Oseen ([30),[31]) proposed a 
different linearization that yields, instead of (2.3), the following expression 

CD=- 1+-'Re 24 ( 3 ) 
'Re 16 

(2.4) 

However, in many cases of practical interest, neither (2.3) nor (2.4) is 
in agreement with measured values. Based on experimental evidence, a 
variety of ad hoc formulas for the terminal velocity of the particle have 
been suggested; a relatively recent state of the art can be found in [13) 
and [14). Research in this field, based almost exclusively on sophisticated 
experiments and numerical simulations, is still very active. 

In a typical sedimentation problem we have a situation rather different 
from that considered theoretically; the host fluid may be non-Newtonian 
and sheared, particle's may settle within a dense population of similar 
particles, particles' shape and volume may be irregular and randomly dis­
tributed, the particle surface may change its electrical charge distribution 
interacting with chemical additives in the host fluid, wall effects on falling 
particles may not be negligible, and so on. 

Cases in which the host fluid is non-Newtonian have been extensively 
studied in recent years. Several theoretical and/or experimental approaches 
have been used, and suggestions have been made to correct the correlation 
(2.3) for the different rheological behaviors. For fluids without yield stress 
(in particular, the power law fluids), one can refer to Acharya et al. [1), 
Leal [27), and the review papers of Chhabra ([12), [13]), where a rather 
complete bibliography can be found. 

For Bingham fluids the situation is more complicated; here we give a 
short account of the previous investigation, referring to [13) for further 
information and details. 

First the yield stress TO can prevent settling of particles up to a critical 
radius which, if !:l.p:= Ps - PI, is given by 

TO 80 =0-­
g!:l.p 

(2.5) 



30 Complex Flows in Industrial Processes 

as can be seen, simply assuming that the force due to the yield stress is 
proportional to it and to the area of the spherical particle. 

Concerning the numerical value of the proportionality constant a, there 
is no agreement among authors; a ranges from 1.5 to 10. These differences, 
however, can be mainly ascribed to possible different (experimentally very 
delicate) determinations of TO. 

The study of the motion of a spherical particle in a Bingham plastic 
fluid has also been investigated from both a theoretical and an experimental 
point of view; we recall the papers by Tyabin [38] and Andres [3], where 
the drag force is expressed as 

FD = a82TO + f3TJBvs8 (2.6) 

where the coefficients a and f3 are either experimentally fitted or theoret­
ically calculated in terms of the quantity k := (3To/(8gf).p))1/2. In subse­
quent chapters a correlation between CD and a modified Reynolds number 
was outlined (the interested reader may consult the papers of Ansley and 
Smith [4] and Dedegil [19]). Other interesting contributions on this subject 
are due to [39]' [40], and [41]. 

A very good fit with these experimental results was obtained by Beris 
et al. [6] integrating the equation of motion by finite elements, thus also 
recovering the lower and upper estimates previously obtained by Yoshioka 
et al. [43]. 

In all the papers listed here, the motion of a single sphere with a suf­
ficiently large radius in an unsheared environment was considered. In the 
paper by Thomas [37]' an experiment of sedimentation in a sheared fluid 
was described. 

As we have seen, the general picture concerning sedimentation is rather 
involved, and there is no conclusive theory flexible enough to be adapted 
to a variety of settling phenomena in pipeline flows. 

In [15] and [17] we presented some new ideas about the problem of 
determining Vs in a sheared fluid (not necessarily Newtonian), when the 
particle belongs to a large settling population. Of course in a sheared en­
vironment, the particle velocity is now expected to depend on the local 
value of the shear rate. The novelty of our approach consists mainly in 
looking at the problem of finding the effective viscosity experienced by a 
population P of particles as an inverse problem. 

A possible alternative approach to the problem of finding the correct 
form of Vs could be the following: to collect data (generally a discrete set) 
from some suitably designed experiment on the base of some formula of 
type 

(2.7) 

where F is determined by geometry and type of experiment. If we 
don't make any a priori assumptions about the form of Vs, (2.7) is an 
inverse problem with discrete data to which we could apply the technique 
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developed by Bertero, De Mol, and Pike some years ago (see [7] and [8]). 
In the appendix, we give a short presentation of this functional method. 
We tested this approach against available experimental data and found 
encouraging conclusions. However, the method is specifically designed 
for laboratory tests and cannot be directly applied to a Bingham flow in 
a pipeline. Nevertheless, we can derive useful indications to deduce the 
settling velocity of a particle as a function of the radial coordinate of the 
pipe, if the flow is stationary. 

In the next section we present the derivation of Vs with particular ref­
erence to CWS. 

2.3 Sedimentation in a CWS Sheared in a 
Rotating Viscometer 

The CWS used in the experiments considered to collect our data was pre­
pared with a Polish coal according to the SP REOCARB process (a Snam­
progetti patent). 2 

The geometry we considered is that of a rotational bob-cup viscometer 
(designed on purpose with a widened gap), where the settling of particles is 
transverse to the direction of shearing (exactly as in the pipeline flow). The 
viscometer was filled up with CWS in which a population P of sand parti­
cles with density Ps > Pews has been initially homogeneously dispersed. 

Then we pointed our attention to a cross-sectional cell Cz of the vis­
cometer of thickness h, with top and bottom bases placed, respectively, at 
z - hand z, the z-axis being directed as the gravity vector g. The quantity 
to be measured is the net mass variation in Cz due to the settling of P. 

Let us first notice that there may be a fraction of P that does not settle, 
depending on the steady laminar shearing motion generated by a uniform 
rotation of the inner cylinder. This circumstance has to be ascribed to the 
internal structure of the CWS (responsible for the yield stress), which is 
partially or totally modified by the shearing conditions. Indeed in Bingham 
fluids at rest the yield stress may be able to sustain suspended particles 
(see, for example, [36]). 

For a fluid in laminar motion in a rotational viscometer, 'Y denotes the 
absolute value of the only significant component ~~ (with u = (0, u(r), 0)) 
of the strain rate tensor. 

We do not postulate the existence of a relationship of the type (2.5) 
nor do we enter the debate about the dimension and shape of the 
unsheared envelope surrounding the particles hypothized by some authors 
(see [2]'[4]'[6]'[14] for a review of this topic). 

2 All laboratory experiments concerning the settling of particles in a rotating viscometer 
were performed and monitored by Snamprogetti. 
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Better references for experimental details concerning the theory we are 
going to illustrate are [15J and [36J. We confine ourselves to reporting only 
the main conclusions. 

In a Bingham plastic there can be, in principle, a fraction of P that 
does not settle, depending on the particle size, TO, and -y. If we call 60 the 
critical value of 6 below which particles do not settle, the critical mdius­
shear mte curve can be evaluated from experimental data by measuring 
the fraction of P that remains in the upper cell of observation at the latest 
shearing time. The function 60 (-y} can be determined using the law 

(Dob) 
Jo 0(6} d6 

(2.8) 

where Moo is the mass of particles retained in C l (the highest observation 
cell) for t --+ 00, 0(6} is the particle radius distribution function per unit 
mass of P, and Mo is the mass of particles present in Cl at t = o. 

Dimensional analysis shows that particles starting with zero velocity 
reach the stationary settling regime almost instantaneously. Thus each 
cell Cz will experience an emptying wave starting from the moment in 
which the heaviest particle, which left the level z = 0 at t = 0, has reached 
the level z - h. 

The settling velocity of a particle of radius 6 is assumed to be of the 
form 

where f(6,60 } is an increasing function of 6 (6;::: 60 ), such that f(60 ,60 } = 
0, and the parameter a has to be determined as a function of-Y. 

In the spirit of Stokes' formula (2.2), we can introduce an effective 
viscosity for sedimentation: 

1 
'T]e!f:= -

a 

In the classical Newtonian case we would have 60 = 0, f(6} = 62, and 
'T]e!f is just, up to a proportionality constant, the fluid bulk viscosity 'T]. 

As far as the choice of the function f is concerned, we follow Dedegil 
[19], who proposed 

(2.9) 

however we think of 60 as given by the experimental formula (2.8), better 
than (2.5). 
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Via an elementary mass balance it is easy to see that the mass variation 
experienced by Cz is given explicitly by 

M(a; t, i') = Mo + Ps'ElC roo n(8)4>[vs(8); t] d8 
160 

(2.10) 

where 'E is the cross-sectional area of Cz , lC is the volume fraction of P to 
the mixture (CWS plus p)3, and 

4>[vs(8); t] = min{vs(8)t, z - h} - min{vs(8)t, z} (2.11) 

For every cell C and every fixed pair shear rate i' - shearing time t, 
the left-hand side of (2.10) is a number given by the experimental data, 
and the right-hand side of (2.10) is just an implicit function of a. Solving 
such equations numerically we obtain the corresponding values of the pa­
rameter a. We expect, within the limits of the experimental errors, that 
such a parameter a does not depend on the cell of observation or on the 
shearing time t. Therefore we can define a function 'T/eff = 'T/(1'). Using 
equation (2.9), we can compare the experimental data with the empty­
ing wave (2.10), and we obtain the corresponding values of a as a func­
tion of i' (see Figure 2.1). In all experiments done at the Snamprogetti 
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Figure 2.1 - Experimentally determined values of a(1') for i' = {0.001, 
1.35,2.51,4.64,11.64} in S-1; the solid line is the graph of 12.4103 -
12.3487e-x / 2, a nonlinear fit of these data via the least square method. 

3 By definition IC = ~ Iooo 63 N(6) d6 where N denotes the size distribution function of P 
per unit volume of mixture (P + CWS). Therefore N(6) = p.lCfl(6). 
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laboratories, 80 ( i') turned out to be practically zero. Therefore we definitely 
set f(8) = 82, and consequently 

(2.12) 

The knowledge of the function a( i') is crucial to develop the model for the 
evolution of the sedimentation bed in a pipeline, which will be presented 
in the next section. 

2.4 Buildup and Evolution of the Sedimentation Bed 
in a Pipeline 

The argument of this section is largely based on the ideas presented in [16]' 
[20], [28], and [29]. Let us first specify the geometry (see Figure 2.2) and 
symbols. 

If * denotes the constant pressure gradient « 0) and Vx (r) the ve­
locity profile of the main flow, i' = i'( r) = I ~ I is the shear rate; as we 
said in Section 2.1 the CWS behaves as a Bingham fluid, so we still as­
sume (7-70)+ = 'TJBi'. Then, by coupling the Navier-Stokes equations with 
boundary conditions, one easily gets 

{ 

_~ dp (1-~) _ 70R (1- 2:.) for r > R 
4'TJB dx R2 'TJB R ' -

Vx(r) = 
1 dp A A 

---(R - R) for r < R 
4'TJB dx' -

(2.13) 

where r = R is the interface bounding the rigid core. The momentum 
balance equation implies 7 = ~ I * I, so that 

Moreover, 

R = .,--2_70_ 

I dp/dx I 

. 1 dp A 

'Y(r) = -I-I(r - R)+ 
2'TJB dx 

(2.14) 

(2.15) 

A key assumption of the current model is that the sediment thickness h 
is sufficiently small compared to the pipe radius R so that the flow geometry 
will never be significantly affected by the sedimentation bed growing at 
the bottom of the pipe. Bearing in mind that for values of h close to 2% 
of the pipe diameter a precautional shutdown and cleaning operation is 
mandatory, the above assumption does not sound as a limitation. 

The trajectory of a particle P = P(8, Ps, [0, Yo, zo]) of radius 8 and den­
sity Ps entering the pipe at the initial position (0, Yo, zo) is fully described 
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Figure 2.2 - Longitudinal (top) and transversal (bottom) cross sections 
of the pipe; the function h(x, t, ¢) describes the bed profile (the indicated 
profile is only for illustration purposes). 

by the system 

{ 
i: = Vx(r) 
z = -vs(b, r) 

r = J z2 +Y5 
(2.16) 

Recalling the analysis of Section 3, we assume the settling velocity Vs 

to be vs(b, r) = a(i"(r))b2 . The function o{y), determined experimentally,4 
is that shown in Figure 2.1. 

4 We have a numerical code that gives a{"'!) on the basis of laboratory tests in which the set­
tling phenomenon is suitably monitored in a bob-cup viscometer, as described in Section 2.3. 
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Figure 2.3 - Transverse cross section of the pipe with contributing and 
noncontributing regions to the dynamics of the bed. In the darker central 
region particles do not settle since 'Y = 0, while in the white region above 
they settle but never reach the bed; only particles settling in the shaded 
region contribute to the growing of the bed. 

It is evident from the system just described that particle motion re­
mains confined in the vertical plane y = Yo. Moreover experiments defi­
nitely show that a(O) = 0 and a ~ o. As a consequence, only particles 
coming into the pipe through the gray-shaded region shown in Figure 2.3 
contribute to the growing sediment. 

Any particle P coming in through the gray-shaded region of the initial 
cross section {x = O} ends its trajectory at the point (x*, Yo, z*) defined 
via 

{

Z*=- JR2_ Y5 
x* = to Vx(r) dz 

}z vs(r , 8) 

with r = J""'Z2"--+-y""'Z 

(2.17) 

From (2.17) it can easily be proved that, for any fixed x*, the locus r(x*, 8) 
of points on {x = O} formed by those particles with radius 8, ending their 
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Figure 2.4 - Some r(x*, 8) graphs for Q = 250 m3 jh, 8 = 0.0067 cm; 
the slopes of the U-shaped curves increase with x*. The steepest U-shaped 
curve corresponds to x* = +00. 

trajectories on the pipe wall at x = x*, is actually a graph (see Fig. 2.4), 
which we denote by 

Zo = Z(Yo;x*,8) 

The settling rate per unit length at distance x from the initial cross 
section due to particles with radii between 8 and 8 + d8 is given by 

4 j+YM / 
S(x;8)d8 = 37r83psN(8)d8 -YM Vs (yY6 + (Z)2,8)dyo (2.18) 

where Z = Z(Yo; x, 8), N(8) d8 is the number of settling particles with 
radii between 8 and 8 + d8 per unit volume of mixture (P + CWS), and 
the endpoints ±YM of r(x, 8) are implicitly defined by 

Because N vanishes outside [8min,8max], the overall settling rate (per unit 
length of the pipeline) will be given by 

10M 

ST(X) = S(x; 8) d8. 
0", 

(2.19) 
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Figure 2.5 - Size distribution of sand particles used for experiments; the 
continuous line is a spline fit of data points (0, 03 N (0)) . 

Analysis shows that ST is a rapidly decreasing function of x and is 
practically zero if x is sufficiently large.5 

Equation (2.19) provides the source term balancing the rate of change 
of the cross-sectional area a(x, t) of the bed. However, a precise and com­
plete description of the actual dynamics of the bed appears to be rather 
complex. Indeed there are infinitely many different profiles h( c/J, x, t) that 
correspond to the same function a(x" t) and there is no "natural"equation 
to describe the evolution of h. However, such a level of sophistication is 
absolutely not needed in our case, because for the particular nature of the 
problem, experimental observations cannot be that accurate. Indeed the 
best equipment available (a gamma-densimeter) provides only a reasonable 
measure of the average thickness of the bed as a function of time where 
the monitoring device is placed. The only clear experimental indication is 
that pure settling cannot be, the only driving mechanism in the dynamics 
of the bed. Indeed, were this the case, the. bed would grow continuously, 
filling the pipe in a finite time. Therefore pure settling (fully described by 
ST(X)) needs to be coupled with a tmnsport action, which consists of a 

5 In our simulations with a known population of sand particles (6min = 0.0035 em, 6max = 
0.0113 em; see Figure 2.5), P. = 2.67 g/cm3 and with a CWS with known rheological 
characteristic parameters (TO = 8.89 P, "IB = 0.16 Ps), we found ST ~ 0 at x = 10 Km 
for a flow rate Q of ~ 100 m3h- i and at x = 60 Km for a flow rate Q of ~ 450 m3h- i 

(pipe radius R = 25 cm). 
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partial mass removal in the horizontal direction due to the action of the 
main flow. The idea is that, during a first stage, the whole bed flows in the 
pipe; then, when the bed has reached a critical thickness ~, a static layer 
begins to grow just below the dynamic one (see Fig. 2.6). The value of ~ 
depends on the main volumetric flow rate Q. 

To be more precise, the model is based on the following hypotheses: 

(i) the radial thickness h(</J, x, t) of the bed (see Fig. 2.7) is proportional 
to its cross-sectional area a(x, t) via 

h(</J, x, t) = C(</J)a(x, t) 

Pure Settling 

z ... , 

Sediment Transport 

, 
z : x 

- -- -- ----- ----------- --------.----.-----------. o Static layer 

-Dynamic Layer 

Figure 2.6 - The settling (top) and transport (bottom) actions driving 
the dynamics of the bed; when the dynamic layer has reached the critical 
thickness ~, the static sublayer begins to develop below it. 
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Figure 2.7 - Function h(¢, x, t) describes the radial thickness of the bed; 
¢ is the azimuthal coordinate. 

(ii) The cross-sectional area of the bed always remains small enough so 
that the flow geometry of the main flow is not significantly modified 
(in [33], it is partially relaxed); in other words 

a(x, t) ~ 7rR2 

(iii) The cross-sectional profile is sufficiently regular and physically consis­
tent in the sense that C( ¢) must satisfy the following constraints: 

1. C(O) = C(7r) = 0, 

2. C'(¢) > 0, for all ¢ E [0,7r/2), 

3. C(¢) = C(7r - ¢), for all ¢ E [0, 7r/2), and 

4. C'(¢) :::; [a(~,t) - C(¢)] cot(¢), for all ¢ E (0,7r/2). 

(iv) The volumetric flow rate in the x direction due to the moving layer of 
the bed is described by the function 

where 

q(x, t) = 21t ij(x, t, ¢) d¢ 

_ {AIRh(X, t, ¢), 
q(x, t, ¢) = A2(a(x, t))R6., 

for h(x,t,¢) < 6. 

for h(x, t, ¢) 2: 6. 

(2.20) 

(2.21) 
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in such a way that ij(x, t, ¢) d¢ is just the volume of sediment passing 
through a section of width d¢ per unit time consistently with the 
hypotheses h «: Rand !:::. «: R. The parameter >'t and the function 
>'2(a) have to be chosen so that ij(x, t, ¢) is continuous. 

Obviously C(¢) takes its maximum at ¢ = 7r/2; therefore (2.4) is 
satisfied if, for example, C'(¢) ~ [a(~t) - C(7r/2)] cot(¢) provided that 
a(x, t) < R/C( 7r /2). Condition 4 can be easily interpreted: the z-coordinate 
of a point on the bed profile is given by 

z(¢,x,t) = -(R- C(¢)a(x,t))sin¢ 

Provided that a(x, t) is sufficiently small, condition 4 is equivalent to 
saying that az/a¢ < 0 for all ¢ E [0, 7r /2). 

Assumptions on h are justified by the fact that in the absence of ex­
perimental information it is convenient to choose working hypotheses that 
are simple and meaningful. 

Let us define g(2¢/7r)=C(¢)/C(7r/2) with ¢ E [0,7r/2]. Because of 
the hypotheses made on C, 9 is invertible on [0,1]; let us also set G(s) = 
f; g(u) duo The cross-sectional area a(x, t) is described by f fA r drd¢, 
where 

A = {(r, ¢)/¢ E [0,7r], R - C(¢)a(x, t) ::; r ::; R} 

neglecting higher-order terms (recall (ii)), this yields C(7r/2) = 1/ 
[7rRG(I)]. Moreover, for given a(x,t), we have 0 ::; h(¢,x,t) ::; 
C(7r/2)a(x,t); thus if a ::; ao := !:::'/C(7r/2) then h(¢,x,t) ::; l:l. for all 
¢ E [0, 7r /2]. In this case, by recalling the definition of q(x, t) in hypothesis 

(iv), we immediately obtain q(x, t) = 2>'tR fo"'/2 h(¢, X, t) d¢ = >'ta(x, t), 

being 2Rfo"'/2C(¢)d¢ = 1. If, instead, a(x,t) > ao, then there exists 

¢(a) E [0, 7r /2] such that h(¢, x, t) = !:::.. Notice that ¢(a) = (7r /2)g-t(a/ao) 
and that ¢, < o. Therefore, for all cross sections x and instants t for which 
a(x, t) > ao, we have 

[l~(a) 1"'/2 1 q(x,t) = 2 >'tRh(¢,x,t)d¢+ ~ >'2(a)R!:::.d¢ 
o ~(a) 

= 7rR!:::. >'t-G( -¢(a)) + >'2(a)(1 - -¢(a)) [ a 2~ 2~ ] 
ao 7r 7r 

Notice that q(at) = q(ao); indeed ¢(ao) = 7r/2 and 
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The simplest choice for A2(a) is the linear one: A2(a) = Al +AI(a-ao), 
with ~l > o. 

The preceding analysis shows that we can write q(x, t) as an explicit 
function of a(x, t); in particular we have 

{
AI, fora<ao 

q'(a) = 1TRLl{~G(~¢(a)) 

+~1(1- ~¢(a)) - (~AI(a - ao)¢'(a)} , 

(2.22) 

for a 2: ao 

It is not difficult to check thatq'(a) > 0; thus q(a) is invertible in [0, qoo) 
being qoo = lima--->oo q. If lima--->at(a - ao) d:,g-l(ao/a) = 0, then q'(a) is also 
continuous for all a > o. For future purposes it is also useful to notice that 

{ 
0, for a < ao 

q"(a) = A ~ ~ ~ ~ 
1TRLl[(7 - 2Ad¢'(a) - AI(a - ao)¢"(a)] , 

(2.23) 
for a 2: ao 

We are now ready to write the dynamic equation for the evolution of 
the bed; a simple mass balance over a portion of the pipe of unit length 
yields 

aa , (. ) aa - ( ) 
at + q a ax = ST x (2.24) 

where we set BT(X) .- P.d_e:)ST(X), Ps and e being the density of the 
settled material and the porosity of the bed, respectively. The conversion 
factor (1 - e) is needed because the rate of change of the cross-sectional 
area due to the settled material depends on its degree of porosity. 

We complete equation (2.24) with the following initial-boundary con­
ditions 

a(x, 0) = a(O, t) = 0 (2.25) 

System (2.24)-(2.25) can be solved by the method of characteristics. 
Within the class of regular solutions, condition (2.25) implies that a(x, t) :::; 
ao in a neighborhood A = Al U A2 of the initial lines x = 0 and t = O. If 

1 roo 
Al io BT(u) du < ao (2.26) 

then this neighborhood covers the whole region A = {(x, t)/x 2: 0, t 2: O}, 
equation (2.24) is linear everywhere in A, and the solution is 

_ { 11 foX BT(U) du, for (x, t) E Al := {(x, t)/O < x < Alt} 

a(x, t) - 11 f:-Al t BT(u) du, for (x, t) E A2 := {(x, t)/O < Alt < x} 

(2.27) 
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First Case: 

1000 BT(V)dv < Alao 
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t 

f 
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43 

Figure 2.8 - The region Al UA2 in the simplest case; the balance equation 
is linear and the characteristics are straight lines. At any instant t, a(x, t) 
takes its maximum at x = Alt. 

Thus the solution is globally defined, grows below the line t = 11 x, takes its 
maximum along t = 11 x, and remains stationary for t > 11 x (see Fig. 2.8). 

If (2.26) does not hold, the situation is much more complicated: Besides 
regions Al and A2 we have two further regions, A3 and A4 , to consider. 
Indeed let us define Xo > 0 such that 

1 (XO 
Al io BT(u) du = ao 

We now have 

Al = {(x,t)/O ~ x ~ xo, t ~ {) 

A2 = {(x, t)/O ~ x, 0 ~ t ~ t-y(e), e ~ O} 

where the line 'Y(e) := (x-y(e), t-y(e» is defined by 

{ 
ao = 11 Jt..,(~) BT(U) du 

t-y(e) = 11 (x-y(e) - e) 

e ~ 0, x-y(O) = Xo, t-y(O) = 11 Xo 

(2.28) 

(2.29) 
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Region A3 is covered by all characteristics coming out from the line 
{x = xo, t ~ t}. These characteristics never intersect each other; the 
line 

Xo lx du 
tCT(X) = - + (( )) , Al Xo q' q-l 1011 ST(U) du 

x ~ Xo (2.30) 

bounds region A3 from below. Region A4 is finally defined as follows 

In region Al U A2 system (2.24) is still linear, and the solution is as before. 
In region A3 U A4 system (2.24) is fully nonlinear. In A3 the solution is 
stationary (as in Ad; it is 

~~ > 0, a(x, t) is increasing in Al U A3 . In region A4 the analysis is more 
complicated because characteristics may intersect each other (see Fig. 2.9). 
Global existen£.e of a solution in this case is guaranteed only if q"(a) < 0 
and qoo > 1000 ST(U) duo If q"(a) > 0 the existence is guaranteed only for 
t < t, where t can be explicitly determined as a function of ST and b. (see 
[28] for details). 

For qoo ::; 1000 BT(u) du this conclusion continues to be true but the def­
inition of q( a) needs to be slightly modified; indeed the model is physically 
significant only as long as a(x, t) remains small. Therefore we can always 
think of q(a) as defined by (2.20) until a exceeds some upper bound and 
extend q(a) (for example, linearly) to get qoo = +00. After that, condition 
qoo > 1000 BT(U) du is always satisfied. 

Actually q" (a) > 0 means that the transport mechanism is rather effi­
cient; this could lead to the formation of a shock front along the bed pro­
file. Thus a classical solution no longer exists and weak solutions should be 
considered, although it seems unrealistic that the moving bed can really 
exhibit any jump, due to its incoherence. In region A4 we have g~ < 0; 
moreover ~~ is continuous except along the curve t = tCT(X) where a(x, t) 
takes its maximum for each t. For a given t > 0, let x(t) be defined by 
tCT(X(t)) = t. Then we can write 

ma~a(x, t) = a(x(t), t) 
t<t 

and prove that the estimate 

holds everywhere in the existence domain of a(x, t). 
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Figure 2.9 - The region Al U A2 U A3 U A4 when the balance equation is 
nonlinear. In this case the characteristic lines may intersect in region A4; 
as long as t :::; xo/>\} the picture is the same as in Figure 2.8. For t > XO/>"l, 
a(x,t) takes its maximum along tu(x); at Xl, a(x,t) decreases below the 
value ao again. 

2.5 Numerical Simulations 

The function g( 'IjJ) assigns a predefined geometry to the cross-sectional 
profile of the bed. We choose g(u) = u(2 - u) but more general choices are 
possible such as g(u) = uk(2 - u)k; for k > 1 the bed shows thinner edges 
(see Fig. 2.10). 

For k = 1 we get ¢(a) = I(l- J1- ~), and so 

2 ' 
"(a) = w(¢) := trR aO(3)''l aO - 2>"1) (2.31) 

q 8a3 J1- ~ 
Moreover condition (iii,4) reads 

tr3R2 

a(x,t):::; 6(tr-2¢)tan¢+¢(tr-¢) 

which is satisfied for any ¢ E [0, trJ if a(x, t) :::; minq,E[o,7r) w(¢) = 24~~7r2trR2. 
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Cross Sectional Profiles 

Forbidden profiles 

A llowed profiles 9("') = ",k (2 _ ", )k 

Figure 2.10 - Nonadmissible (top) and admissible (bottom) cross-sec­
tional bed profiles; the forbidden profiles violate the hypotheses (iii,4) we 
made on function C( ¢). 

The parameter >'1 has the physical meaning of a "velocity,"namely the 
mean velocity of the dynamic layer of sediment. We decided to set Al = 
Vx (R - ~) (though other choices are possible) so identifying the velocity 
of the moving layer with that of the main flow of CWS ~ units away from 
the bottom pipe wall. 

If we choose ~1 = 0, then A2(a) = Al and (2.20) yields a finite value of 
qoo; thus we need to modify the definition of q(a) as explained before in 
order to avoid critical conditions in the existence proof. Because of (2.31), 
~1 = 0 implies q" < 0 and the solution is globally defined. 

In the case ~1 i=- 0, the dynamic layer moves with mean velocity Al 
for h < b. and grows linearly as a - ao for h > b.. This case is more 
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Table 2.1 

Q (m3 /h) 100 150 250 450 

~ (cm) 0.7 1.0 1.8 3.2 

complicated because, as we said before, the existence of a classical solution 
cannot be guaranteed for all times. All simulations to be shown next have 
been carried out (for simplicity) for Al = o. Therefore, from now on, we 
definitely assume A2(a) = AI. 

The analysis developed in Section 2.4 shows that the value of the quan­
tity Soo = Jooo BT(U) du (which we assume to be finite, consistent with the 
real situation) plays a central role in discriminating two distinct situations. 
If Soo < AlaO then the bed never reaches the level ~; therefore it remains 
fully dynamic and never develops a static sublayer. If, on the contrary, 
Soo > Al aD, a static layer definitely develops, which keeps growing below 
the dynamic one as shown in Figure 2.6. 

Given a point a distance x from the origin, a(x, t) reaches its maximum 
value amax(x) at that point, at time t<7(x); it turns out that 

amax(x) = a(x, t<7(x)) = Q-I(lx BT(U) du) (2.32) 

Once a(x, t) has reached its maximum value at a given point, the graph 
of a for x < x remains stationary, i.e., independent of t, for all t 2: t<7 (x); in 
other words the bed "crest" moves ahead toward infinity just like a wave, 
leaving a stationary "frozen" profile behind. 

The choice of ~ is a very delicate matter. This is truly the key pa­
rameter of the model (as is evident from the choice of AI). On the other 
hand, direct experimental indications about ~ seem actually inaccessible 
for several reasons. First of all ~ is essentially a dynamical parameter, i.e., 
it cannot be measured at rest. Secondly, accurate dynamical measurements 
are not actually available, even with sophisticated instruments. Last but 
not least, CWS is an opaque substance and direct optical measurements 
are out of discussion. 

For all these reasons we were forced to identify ~ indirectly as follows: 
We focused on the richest set of experimental data available, namely, those 
obtained at the flow rate Q* = 250 m3/h- l . Once these are fixed as "refer­
ence" data, we select ~ in such a way that numerical simulation based on 
our model, must fit the experimentally observed behavior. Then we assume 
that ~ depends linearly on Q with ~(O) = o. This approach led us to set 
~ = 1.8.g. cm and so to the values in Table 2.1 for the other flo~ rates 
used in our simulations. 

Let us now define ter as the time instant at which the thickness h of the 
bed reaches a given critical level her. We know that t = t<7(x) is the steady 
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Table 2.2 

Q (m3jh) ~ (cm) Gap (cm) ter(days) Xer (Km) 

100 0.7 3.5 0.4 0.48 

150 1.0 4.2 0.5 1.24 

250 1.8 5.4 00 ~100 

450 3.2 7.1 00 ~100 

curve "drawn" by the maxima of a(x, t) as long as time elapses and the 
bed keeps growing. If (x, t.,.(x)) is a point on this curve in the (x, t)-plane 
then, bearing in mind (i) in Section 2.4, (2.32), and the fact that t.,.(x) is 
invertible (see [28]), we get 

I t ;;l(tcrl 
her = q-l( BT(U) du) max C(</J) . ° q,E[O,'11"/2] 

Let us come now to numerical simulations. The rheological parameters 
of CWS are those mentioned at the end of Section 2.2. The size distribution 
of the settling material is described in [15] and [18]. 

The pipe radius R and length L are set equal to 25 cm and 100 
km, respectively. Figure 2.11 shows the curves BT(X) at all flow rates we 
considered. 

Table 2.2 shows critical times and distances needed by the static sedi­
ment to reach 2% (= 1 cm) of the pipe diameter. 

For Q = 250 and 450 m3 jh, ter and Xer are out of the computational 
range. Table 2.3 shows, just for these flow rates, both time and distances 
for which the dynamic layer rises up to 1.5 cm (no static layer develops in 
these cases). 

However 100 m3 jh is generally considered a very low regime (for 
R = 25 cm) from the point of view of economical convenience, because 
industrial pumps actually allow much higher regimes. For high values of 
Q the gap between the rigid core and the pipe wall is large enough for 
her = 2Rj100 to continue to be a very significant parameter. A more inter­
esting choice might be the time Ter needed by the whole system to reach a 
state in which the thickness of the static layer is above her = 2Rj100 over 

Table 2.3 

Q (m3 jh) ~ (cm) t (days) x (Km) 

250 1.8 0.39 4.3 

450 3.2 0.38 10.1 
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Figure 2.11 - Function ST(X) at various flow rates. 

a longitudinal section of the pipe with length Lcr ~ L/I00 (= 1 Km) (L = 
total length of the pipeline). From the industrial point of view (at flow 
rates ~ 250 m3/h) this may be just the time after which a pipe shutdown 
and cleaning for sediment removal is highly recommended. Table 2.4 shows 
tcn Xcn and Tcr for Q = 250 m3/h and L = 100 Km for various values 
of ~. It was just this analysis to suggest the value 1.8 cm as the one for 
which our simulations fit better available data. 

Table 2.4 

~ (cm) tcr (days) Xcr (Km) Tcr (days) 

1.4 0.71 3.57 1.01 

1.5 0.97 4.99 1.35 

1.6 1.51 7.5 2.08 

1.7 3.20 14.2 3.85 

1.8 00 00 00 

1.9 00 00 00 

2.0 00 00 00 



50 Complex Flows in Industrial Processes 

2 

" 
, ' ~ , , 

1.5 , 

-1 day (static) 

E 
·····1 day (dynamic) 

u 
0.5 , , , , 

. 
0 '--A .. -... 

-0.5 -'-r---.-...-,...........,.-.--.--.-.....-...-..r-"T-.-........ -r-.....-,........,--T-.-........ -r-... 

o 20 40 60 80 100 120 

Km 

Figure 2.12 - Static (solid line) and mobile (dotted line) sediment profile 
after one day at 250 m3 jh. 

Figures 2.12, 2.13, and 2.14 show the static and dynamic bed profiles 
for Q = 250 m3 jh and Do = 1.8 cm when t = 1 day, t = 5 days, and t = 10 
days. As can be seen, the static sediment is still below the critical level of 
1 cm even after 10 days. 

2.6 Conclusions and Open Problems 

In this review chapter we tried to report some of the results obtained 
in modeling the problem of particle sedimentation in a sheared slurry. 
Among other things, we developed a functional method to determine Vs 

(described in the appendix). However, this approach has been applied only 
to the simple Newtonian case. For a Bingham fluid this method appears 
rather complicated and has not yet been developed. This forced us to follow 
the more traditional approach based on the assumption that Vs has some 
preassigned dependence on the radius of the particle. 

As far as we know, the model for evolution of the bed is totally new 
and, despite its simplicity, seems capable of predicting the critical values 
to operate an industrial pipeline under safe conditions. The numerical code 
developed by A. Mancini is the property of Snamprogetti. 
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Figure 2.13 - Static (solid line) and mobile (dotted line) sediment profile 
after five days at 250 m3/h. 
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Figure 2.14 - Static (solid line) and mobile (dotted line) sediment profile 
after ten days at 250 m3/h. 
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Although the assumptions we made for industrial designers are rather 
reasonable and make the model easy to handle, there are still some side 
questions that deserve further investigation. We list some of them here. 

The model presented here does not consider the sliding motion of par­
ticles once they have touched the wall. This would add better information 
about the cross-sectional profile of the bed, which in the model is assigned 
a priori. This is certainly a very difficult problem because very little ex­
perimental information is available. 

The existence proof for equation (2.24) guarantees global existence in 
time if q" < O. If this condition is not fulfilled, a shock develops and it seems 
more reasonable to switch to a different transport model. This analysis is 
not expected to be very hard but is still missing. 

2.7 Appendix: A Functional Approach to Settling 
Velocity of Particles in a Finite Container 

We considered a liquid container V that can be either a cylinder or a rota­
tional viscometer. The container is filled with a liquid £. whose constitutive 
law we do not need to specify now. Therefore V is characterized by its 
height l and the radii Rl ~ 0 and R2 > Rl of the inner and outer cylin­
ders, respectively. Indeed our approach bypasses not only the rheological 
nature of C but also a detailed description of some intricate aspects of 
sedimentation such as fluid-particle and/or particle-particle interactions, 
wall effects, particle shape effects, and so on (see [12]'[15],[34]). Let us sup­
pose that a population 'P of particles is uniformly distributed in £. at time 
t = O. If the particle density pP is greater than the liquid density Pc, 'P is 
expected to settle toward the bottom of V. If £. has a yield stress there 
may be a fraction of 'P that never settles, although the unsettled fraction 
generally changes according to the shearing condition. 

The family 'P is supposed to be represented by a rather large number 
N (say ~ 105) of particles with random shape and very small size. 

Let us direct our attention over a cross-sectional cell C of the container 
V of thickness h with the top and bottom bases placed, respectively, at 
z - h (z > h) and z ~ 0, the z-axis being directed as the gravity vector 
(z = 0 denotes the top of V). The quantity to be measured is the net mass 
variation in C due to the settling of 'P. 

As we already said in Section 2.2, the stationary settling regime is 
generally reached almost instantaneously, and the observation cell C will 
experience an emptying wave starting from the moment the heaviest par­
ticle that left z = 0 at t = 0 reaches the level z - h. 

Let us recall equation (2.10): For given 7, M measures the mass due 
to'P present in C at time t. 
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It is more convenient to write (2.10) as follows 

M*(v;t,-y) = A !u n(8)~[v(8);t]d8 (2.33) 

where 

M* = 1- M/Mo , A = -ppEK/Mo , U = supp n n [80 (-Y), 00) 

and 80 is a possible critical radius defined by (2.8). 
For {z, h,-y} given,6 the right-hand side of (2.33) defines a (formal) 

nonlinear operator N that maps v( 8) into the function 

Nv(t) ='A !u n(8)~[v(8); t] d8 (2.34) 

The function 1 - M*(t) measures the percentage of P present in Cat 
time t. Because M*(t) is a measurable data, the functional equation 

Nv=M* (2.35) 

can be used, in principle, to determine v. 
As emphasized in [34] the fully nonlinear problem is rather complicated. 

In this case it is possible and reasonable, on the basis of a suitable phys­
ical approximation, to linearize the problem. This leads to the functional 
equation 

Aw=g (2.36) 

where A is a linear operator. In particular, (2.36) turns out to be a 
Fredholm equation of the first kind, which, as is well known, is ill-posed in 
the sense of Hadamard. 

The choice of solution (which will be called "reference" solution) to be 
used as the zeroth order approximation of (2.35) depends mainly on the 
physical situation. For example, if the fluid £. is almost Newtonian it may 
be reasonable to linearize (2.35) around (2.2), while for a Bingham plastic 
other choices are more suitable. 

Let us decompose the unknown u into the reference solution v plus a 
"perturbation" w due to all effects mentioned at the beginning of Section 
2.2. Then 

Nu ~ (N'[v],w) + Nv (2.37) 

where N'[v] is the Frechet derivative of N calculated in v and (.,.) is a 
scalar product to be specified. To calculate N'[v] explicitly we shall make 
some assumptions on the class of reference solutions v. It is quite natural to 

6 From the experimental point of view, this means to have definitely fixed C and the shearing 
condition for C. 
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ask that v> 0 in (Do, +00), v = 0 in [0, Do), and that dvjdo > 0 in (Do, +00). 
Here Do ;::: 0 as a function of i is supposed to be known. Consequently there 
exists the inverse v of v defined over [0, +00), and we can write 

(2.38) 

where Cl(t) = z~h and C2(t) = t. Then an elementary calculation shows 
that 

(N'[v] , w) = -,X L to(o)XJ(t)(o)w(o) do (2.39) 

where XJ(t)(o) is the characteristic function of I(t) = [01(t),02(t)] and 
oi(t) = V(Ci(t)). The formal structure of our problem is thus the following 

Aw := (N' [v] , w) = M* - ,XNv (2.40) 

In other words, the right-hand side of (2.39) denotes the difference between 
the effective emptying wave S (observable) and a reference emptying wave 
corresponding to v. If v is assigned, equation (2.40) is the explicit form 
of equation (2.36) in the unknown w we were looking for. However, in 
a typical experiment S is available only over a finite set of time values 
ti=l, ... ,n. Thus g := M* - ,XNv is a vector in Rn rather than a function of 
t and so equation (2.40) is actually a Fredholm equation of first kind with 
discrete data. It is quite natural therefore to discretize the kernel k(o, t) := 
'xtO(o)XJ(t)(o)w(o) by putting ki(o) := k(o, ti), the operator A by putting 
AiW := Ju ki(o)W(o) do, and to consider just the discretized problem 

(2.41 ) 

It is easy to see that each Ai is bounded in L2(U) being 

(2.42) 

where C i = ,Xti(maxU O)J(meas U), and 11·11 = J(.,.) denotes the usual 
L2-norm. By the Riesz theorem there exists a set of functions {¢di=, ... ,n 

in L2(U) such that 

(2.43) 
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The precise formulation of the problem is thus the following: Given the 
set {cPih=l, ... ,n in L2(U) and the data g E Rn, find a function w E L2(U) 
such that 

(2.44) 

Problems like these have been deeply investigated by Bertero et al. 
in [7] and [8], where the concept of solution is generalized in such a way 
as to overcome the following intrinsic difficulty of (2.44); this equation 
provides information only about a finite number of components of w, which 
in turn implies a lack of uniqueness and, if n is large, also that of numerical 
stability. These unpleasant features have to be related to the ill-posedness 
of the original infinite-dimensional problem (2.40) as is known from the 
theory of Fredholm equations of the first kind. 

To proceed further let us denote by A : w E L2(U) ---> g E Rn the 
mapping defined according to the rule 

(AW)i=(W,cPi), i=l, ... ,n (2.45) 

where (AW)i denotes the ith component of Aw; of course (AW)i = AiW. 
The mapping A is onto when the cPi are linearly independent (a circum­
stance that is hard-if not impossible-to check in practice); otherwise 
the range of A has dimension n' < n. Let us denote by X the subspace 
of L2(U) spanned by the cPi. Regardless of whether the cPi is independent, 
the orthogonal complement X-L of X is just the null space N(A) of A. 
The adjoint A* of A, defined by (Aw, g)Rn = (w, A*g)u(u) transforms g 
into an element of X because if wE X-L then (w, A*g)u(u) = O. Evidently 
A*g = E~=l gicPi. Therefore it is clear that, given g ERn, the problem of 
finding awE L2(U) such that 

Aw=g (2.46) 

when the cPi are not linearly independent, has a solution if and only if 
g E X. If g rJ. X one defines a pseudo-solution of equation (2.46) as any 
w E X such that 

IIAw - gllRn = minimum (2.47) 

This definition is well-motivated from the physical point of view; the min­
imum (2.47) is just the norm of the component of g orthogonal to Rn', 
and this component is purely an effect of the experimental errors (see 
[7]). Because the set of pseudo-solutions is closed and convex, there exists 
a unique pseudo-solution of minimal norm called the generalized solution 
and denoted by w t. This solution always depends continuously on the data. 

To obtain an explicit representation of wt E X we need to construct 
the set {Ai, Ei, e;} (called the singular system of A) by solving the problem 
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Afi = Aiei, A*ei = Aifi. This set can be computed with standard tech­
niques (see [7] for more details); in particular it turns out that the numbers 
A; are the eigenvalues ofthe Gram matrix associated with the functions (/>i, 
which are all positive, and their number is equal to the number n' :::; n of 
linearly independent ¢i. Bearing this in mind, the representation formula 
for w t is the following: 

(2.48) 

Clearly, if there are only n' < n linearly independent ¢i, we have only n' 
terms in equation (2.48). 

The maximum eigenvalue AM and the minimum eigenvalue Am have 
an important meaning; the ratio c(A) = AM/Am is called the "condition 
number" of A. If c(A) » 1, the problem of computing w t, although well­
posed, is "ill-conditioned." This circumstance is due to the ill-posedness of 
the related infinite-dimensional problem and could lead to large numerical 
errors. The situation does not improve by increasing the number n of avail­
able data 9i, because in this case the finite-dimensional problem becomes 
"closer" to the infinite-dimensional one. 

The preceding method was applied to a population of sand particles 
uniformly dispersed in glycerine:7 sand is 12% by weight and 9% by vol­
ume, with a density of 2.67 g/cm3 and diameter distribution between 100 
and 150 p.m. The container is just a static cylinder with diameter 2.64 cm 
and height 14 cm held at a temperature of 4°C. At this temperature the 
glycerine viscosity is ~ 6.13 Pa x s, and the calculated coefficient 29 (Pg7j-Pz) 

in (2.2) turns out to be ~ 5.0 cm-1 x S-1. The chosen observation cell lies 
between z = 4.5 cm and z + h = 5.88 cm. Measures are taken every hour 
starting at time T1 = 6 h seven times. We found 

g = - (.524, .429, .345, .264, .195, .181, .168) (2.49) 

We solved the singular system and found in particular that c(A) = AM lAm 
~ 4.932, which is quite acceptable. The generalized solution w t of the in­
verse problem (the solid line in Figure 2.15 looks rather irregular, being 
essentially a linear combination of characteristic functions. The dashed 
curve is obtained by "smoothing" w t around a (302-type curve with 
(3 ~ 2.2cm-1 x s-1; a comparison between the latter and (2.2) (the dot­
ted line) reveals the presence of retarding effects (due, for example to the 
nonspherical shape of particles and mutual interactions). 

7 All experiments to collect the necessary data were conducted at the Snamprogetti research 
facility in Fano (Italy). 
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3 
Problems of Nonlinear Fluid Dynamics 
in Industrial Plants 

ALESSANDRO TERENZI, E. CARNIANI, E. DONATI, AND D. ERCOLANI 

Snamprogetti S.p.A. 
Fano, Italy 

ABSTRACT. Pipeline transportation of complex fluids generally involves 
an analysis of nonlinear fluid dynamic phenomena, especially during tran­
sient phases. Snamprogetti has developed some models for predictions of 
pipeline flow characteristics relevant to both non-Newtonian solid-liquid 
suspensions and compressible fluid transport. This chapter is divided into 
two parts: 

• CWS Pipeline Flow: Homogeneous and Heterogeneous Conditions, de­
scribing the properties of coal-water slurries considered both in their 
homogeneous flow conditions (transient motion influenced by complex 
rheological behavior) and with respect to prediction of unstable flow 
caused by settling processes. 

• Transient Compressible Flow at High Mach Numbers: A Conservative 
Method for Pipeline Flow, describing the development of a code for 
simulation of transient phenomena associated with gas pipeline flow at 
high Mach numbers. 

Part A: CWS Pipeline Flow: Homogeneous and 
Heterogeneous Conditions 

ABSTRACT. Fluid mechanical properties of high concentrated coal-water 
slurries (CWS) are quite complex and involve different kinds of scientific 

A. Fasano (ed.), Complex Flows in Industrial  Processes
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branches. Depending on chemical additives used and the industrial prepa­
ration process, these mixtures mayor may not be stable with respect to 
settling phenomena. Often they exhibit non-Newtonian thixotropic rheolog­
ical properties producing special behavior during pipeline flow, even if they 
can be considered homogeneous. Snamprogetti developed computer programs 
to simulate steady-state and transient flow conditions (startup, shutdown) 
of stable suspensions, based on Cheng-Evans rheological theory. Owing to 
the presence of impurities inside the coal (ash content, iron fragment, etc.) 
in certain fluid mechanical conditions, heterogeneous flow occurs and the 
settling process must be analyzed. 

The movement of each solid particle is affected by interactions with 
other particles, with the fluid, and with the pipe wall. Snamprogetti devel­
oped computer codes that allow the prediction of critical settling conditions 
both in static columns and during pipe flow. By using experimental data of 
settling velocity vs. shear rate, the dynamic program calculates the growth 
rate and final evolution of a bed composed by heavier particles at the pipe 
bottom, through integration of continuity equations for the fluid and for the 
bed. 

By using these codes, Snamprogetti can lead the industrial preparation 
selecting suitable CWS properties and preventing unstable conditions. Ex­
perimental data obtained in Snamprogetti facilities are also presented. 

3.A.1 Introduction 

A coal-water fuel (CWF) is a dense suspension of coal particles in water 
(also called CWS, coal-water slurry). Suitable optimization ofthe coal par­
ticle size distribution and the use of appropriate fluidizing and stabilizing 
additives allow us to produce highly concentrated suspensions (up to 70% 
by weight) that are pump able in long pipelines and burnable directly in 
power plants without previous dewatering. 

The technology of coal-water fuels has received a great deal of atten­
tion, especially after the oil crisis of the 1970s. At the end of the 1970s, 
Snamprogetti, the engineering company of ENI Group, developed a propri­
etary technology, named REOCARB, for production, pipeline transporta­
tion, and combustion of CWF. 

To obtain the maximum allowable slurry concentration, the Snam­
progetti REOCARB technology is based on a bimodal particle size dis­
tribution of the coal particles obtained by two milling stages: the first in 
a micronizing ball mill (especially developed and designed by SP) to pro­
duce the fine fraction and the second in a finishing rod mill to produce the 
coarse one. 

Specific low-cost stabilizing and fluidizing additives patented by Snam­
progetti are used to obtain fluid and stable suspensions that satisfy the 
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specifications requested for pipeline transportation, handling, storage, and 
combustion. 

The first integrated CWF transportation and combustion system was 
designed and constructed by Snamprogetti in Siberia (Russia) from 1986 
to 1989. The system consists of one production plant located in the Belovo 
district, near the coal mines, with a design capacity of 3 MTA of slurry as 
dry coal and a 262-km 20" pipeline to transport CWF to the Novosibirsk 
power plant. 

A second important industrial CWF plant was realized by Snampro­
getti in Porto Torres, Sardinia (Italy). This plant, with a capacity of 
500,000 t/y of CWF, represents the first application of the complete tech­
nological cycle including coal beneficiation, preparation, and combustion 
of cleaned coal-water fuels. 

In Section 3.A.2 we will present a description of slurry rheological be­
havior and its influence on pipe flow, more evident during transient oper­
ations (startup, shutdown), developed under the assumption of homoge­
neous fluid (see also [17], [20]' [21]). 

In Section 3.A.3 the microscopic model of rheological degradation will 
be presented. In Section 3.A.4 a general discussion about settling of solid 
particles in fluids, with special attention to suspensions of solids in non­
Newtonian liquids, will be presented. 

In Section 3.A.5 computer codes developed at Snamprogetti represent­
ing heterogeneous fluid behavior in both static and dynamic conditions 
will be described, considering the flow pattern modification caused by the 
growing of a bed of heavier particles at the pipe bottom. 

3.A.2 Homogeneous CWS Model: Rheology 
and Fluid Mechanics 

The rheological behavior of CWS can be described by the Cheng-Evans 
model (see [4], [5], [6]), taking care of their non-Newtonian and thixotropic 
properties: 

T = TOO + .A(TOI - TOO) + [Ko + .A(KI - Ko)hN (3.A.l) 

All symbols are explained at the end of this part. This is a Herschel-Bulkley 
model, in which the parameters depend on a structure factor .A in a linear 
way. 

This factor .A represents the internal state of CWS; it can vary between 0 
and 1, where .A = 0 means minimum structuration state (minimum viscos­
ity, low interaction forces between particles), while.A = 1 means maximum 
structuration state (maximum viscosity, strong interaction forces). 
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A kinetic equation describes the >. time evolution, allowing the deter­
mination of CWS state during transient phases: 

d>' = a(l - >.) - bi'>' 
dt 

(3.A.2) 

where a represents the velocity of the structure construction process, while 
bi' is the velocity of the destruction process, depending on the flow con­
ditions. The flow of CWS in pipelines can be studied by coupling the 
rheological equations (3.A.1), (3.A.2) to the momentum and flow balance 
equations: 

dU ap 2 
p-=----T 

dt ax r 
(3.A.3) 

au . - -"( ar (3.A.4) 

R 

Q(t) = J u(r, t)21l"r dr. (3.A.5) 

o 

In Figures 3.A.1 and 3.A.2 the inlet pressure and flow rate time evolutions 
are shown, referring to transient tests carried out in the Snamprogetti 
test-loop (170 m long, branch with 4" internal diameter). The rheological 
parameters of tested slurries A and B are reported in Table 3.A.1. 

In these transient tests, a startup followed by a steady-state condition 
and a shutdown are represented. The pressure curve shows all the various 
aspects of CWS fluid mechanics. 

In fact, during startup the initial pressure rise is necessary to over­
come the yield stress, which has its maximum value due to CWS static 
permanence for a long time; the flow rate begins to increase only after 
the pressure threshold has been exeeded. When the steady-state flow rate 
value is reached, the pressure achieves a peak value (inertial effects are 
present in this phase) and then it decreases in time for CWS thixotropy. 

During the shutdown phase, the inertial term appearing in the motion 
equation (3.A.3) provides a negative contribution to total pressure, due to 
decelerating conditions; in this case negative relative pressures could be 

Table 3.A.1. Slurry Rheological Parameters 

Slurry TOO (Pa) T01 (Pa) Ko (Pa.sN ) K1 (Pa·sN ) N a (min-I) b (s/min) 

CWS A 0.51 

CWS B 3.53 

CWS C 3.55 

1.05 

6.89 

8.55 

0.73 

4.42 

1.08 

0.85 

4.54 

1.48 

0.85 

0.5 

0.58 

0.36 

1.65 

0.53 

0.2 

0.17 

0.29 
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achieved. At the end of shutdown a residual pressure can occur, due to 
plastic fluid behavior. The situation is symmetrical to the restart phase: 
When the flow rate decreases, the pressure gradient also decreases, causing 
a progressive increase in central plug dimensions; when the flow rate van­
ishes, the pressure does not become null, but it assumes a value balancing 
the yield stress the fluid has at that moment. Successively, the pressure 
holds this value, because a static condition is realized. 

Following [6], we introduce this notation, valid for describing startup: 

IF = incoming fluid, that is fresh fluid coming from the tank. 

OF = outgoing fluid, that is, fluid that has been in static conditions in the 
pipe, for a certain time. 

The shutdown can be accomplished in two ways: 

• it could occur before OF has completely left the pipe; in this case, the 
whole yield stress in the duct is defined by structural conditions of 
both fluids (OF and IF) present; . 

• it could occur after OF has left the pipe; the yield stress is determined 
by IF only. 

In the first situation, the total pressure drop at a given moment shall be 
the summation of the losses for the two regions: 

DoPtot = Dop(IF) + Dop( OF) + inertial term 

in the second situation, (3.A.6) becomes: 

DoPtot = Dop( IF) + inertial term 

(3.A.6) 

(3.A.7) 

The residual pressure is determined by (3.A.6) or (3.A.7) at the moment in 
which the flow rate vanishes. Concerning steady-state conditions, in Fig­
ures 3.A.3 and 3.A.4 comparisons between experimental volume-averaged 
velocities measured on pipe section transverse chords by a magnetic veloc­
ity meter and theoretical values obtained by a steady-state computer code 
are presented (see [18]). 

The rheological parameters of tested slurry C are shown in Table 3.A.1. 
Steady-state tests have been carried out on a 6" branch of the test-loop, 
in which the velocity meter is installed. Both transient and steady-state 
comparisons show good agreement between theory and experiments. 

3.A.3 Microscopic Model of Rheological Degradation 

One of the most important problems, encountered in developing the CWF 
technology was the degradation of the rheological properties of the slurries, 
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Figure 3.A.3 - Comparision between calculated and experimental volume­
averaged velocity values at Q = 4 m 3 /h. 

with a dramatic increase of their viscosity, when subjected to intense stir­
ring in batch or recirculated through a pump in a test loop. 

The basic idea to explain this phenomenon was to link the rate of 
change of rheological parameters to the power supplied to the fluid by the 
stirring systems or the pump (see [13]). 

Such a conjecture was confirmed by experiments. Indeed, plotting rhe­
ological parameters vs. the total supplied energy (i.e., assuming energy as 
a new time scale) the curves related to different experiments are basically 
coincident, as shown in Figure 3.A.S. 

A mathematical model was developed to describe the influence of mi­
croscopic dynamics on the evolution of the macroscopic rheological param­
eters. 

This model was developed in cooperation with Eniricerche, the research 
company of the ENI Group, and the Departments of Chemistry and Math­
ematics of the University of Florence. A crucial point is to model the dy­
namics of the fluidizing agent. Basically we can say that it can exist in two 
states: 

• dissolved in water (with concentration A); 

• adsorbed on coal particles. 

10 
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Figure 3.AA - Comparision between calculated and experimental volume­
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However, not all the substance adsorbed exerts a fluidizing action. There 
can be a fraction of it that is not efficient, depending on how it is linked 
to the particle. 

We shall denote by B the concentration of the dispersant adsorbed in 
the active way and by C the concentration ofthe inert fraction. Apparently, 
for reasons not yet completely understood, internal friction can cause the 
transition B --+ C. Also a temperature increase seems to produce a similar 
effect (or the direct transition A --+ C), but we will not consider this point 
for the sake of simplicity. 

On the other hand, a transition A --+ B can occur to replace the dis­
persant becoming inert. The dynamics of the three "populations" can be 
described by the system: 

A' = -wA(Bo - B) 

B' = wA(Bo - B) - f(Po)B 

C' = f(Po)B 

(3.A.8) 

(3.A.9) 

(3.A.1O) 

where f(Po) is a function of the power dissipated Po, Bo is an initial condi­
tion, and I means time derivative. The solution of this system is described 
in [13J for different rheological models. 

10 
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Figure 3.A.5 - Batch and loop CWS rheological degradation tests. 

3.A.4 Suspensions Settling 

As specified in Section 3.A.l, several parameters can affect the stability 
of a solid-liquid mixture, namely, chemical additives, coal concentration, 
grain size distribution, percentage and composition of mineral matter, rhe­
ological behavior, and flow configuration (see also [19]). 

Settling is more likely to occur in slurries with high mineral matter con­
tent because these materials are noticeably denser than coal and coal-water 
mixtures; a suitable industrial process should provide a beneficiation for 
withdrawing these heavier particles from the coal matrix as much as pos­
sible. In any case a certain amount of mineral matter is still present, even 
if beneficiation has been effected, and other parameters must be assessed 
to ensure stability. 

Chemical additives, coal concentration, grain size distribution, and 
amorphous mineral matter all influence the rheological properties, which 
are very important in defining one of the main interactions at which solid 
particles are submitted, i.e., the fluid-particle interaction. 

700 
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It is assumed that only the crystalline mineral matter characterized by 
high density and large diameter are interesting in sedimentation. In fact, 
as shown by previous studies [2J, amorphous mineral matter acts in the 
opposite direction as a CWS stabilizer by swelling and adhering to the 
coal particles. 

The thixotropic fluid behavior is responsible for the different value of 
the drag force exerted by the fluid in static and dynamic conditions because 
of the viscosity variations (especially the yield stress). Thus a slurry can 
be stable when stationary in a vessel and can become unstable during pipe 
flow. The vessel and the pipe are also different with respect to another 
fundamental interaction, i.e., wall-particle interaction. 

Experimental evidence shows an original phenomenon concerning high 
concentrated CWS: It is more stable in big tanks than in small containers; 
this means the wall effect increases the settling velocity, unlike Newtonian 
suspension where the wall influence acts in the opposite way. 

The third interaction concerning the particle settling motions is with 
the other particles, producing the so-called "hindered settling." 

Let us consider the particle-fluid interaction in more detail. The motion 
equation of a solid particle moving through a fluid, in "creeping flow" 
conditions (Rep < 0.1) is: 

(3.A.ll) 

By solving the motion equation (3.A.ll), with appropriate boundary condi­
tions, the velocity and pressure fields are obtained. The drag force exerted 
by the fluid on the particle is: 

(3.A.12) 

where the surface integral is calculated on the particle surface. For New­
tonian fluids, the constitutive equation in tensor form is: 

l' = 11J3.. (3.A.13) 

In this case an analytical solution of (3.A.ll) exists (see [14]), and the drag 
force for a spherical particle is given by: 

(3.A.14) 

For non-Newtonian fluids, usually an analytical solution for the motion 
equation does not exist, and it is necessary to resort to numerical meth­
ods. Few attempts at numerical resolution are reported in the literature, 
and then for Bingham fluids only (see [1], [3]). As reported in Section 3.A.2, 
CWS is often described by a time-dependent Herschel-Bulkley model, 



74 Complex Flows in Industrial Processes 

which in its time-independent tensor form is expressed by: 

{ 
N-I } 1 ~ - TO ~ 1 f~ K V,iY" , fl.) + I ~ ~ I fl. when-(f, 7) > rJ 

J~(t1 : t1) 2 

(3.A.15) 

E = 0 when ~(T: r) < T~ (3.A.16) 

For this kind of fluid, the yield stress provides a force that can sustain 
suspended solid particles, even in static conditions; settling can occur only 
if the resulting gravity force is greater than the yield stress force, consti­
tuting a threshold value: . 

7rD3 (7rD)2 
-6-(Ps - PI)g > 2 TO· (3.A.17) 

The yield stress force explains the static stability of CWS (Newtonian 
suspensions cannot be stable in this condition); it gives account also of 
stability during flow because the CWS pipe motion is laminar and the 
turbulent suspending force is absent. Referring to the other fundamental 
interactions, they can be treated analytically with the "reflection method" 
(see [14]): 

(3.A.18) 

Vo = Up onP 

VI = -Vo on S 

V2 = -VI onP 

V3 = -V2 on S 

where P represents the particle surface and S the boundary surface. By ap­
plying the reflection method, the perturbed velocity field for a Newtonian 
suspension due to particle-particle interaction is (hindered settling): 

v = Up (l- .-L)ll< 
<Pmax 

(3.A.19) 

where a = 2 for highly concentrated suspensions. 
The drag force acting on a spherical particle settling in a Newtonian fluid 
in the presence of a wall is: 

(3.A.20) 

where f3 = constant (>1). 
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3.A.5 Heterogeneous CWS Model: Static and 
Dynamic Stability 

Calculation of the settling velocity in unstable solid-liquid suspensions is 
complicated by the simultaneous action of several factors, as outlined in 
Section 3.AA. 

A first step in the study of this phenomenon in highly concentrated 
CWS was the elaboration of a computer program simulating the sedimen­
tation in a static vessel, developed in cooperation with the University of 
Karlsruhe (Germany) (see [10]). 

Given a CWS with solid volume concentration ¢ and a certain grain size 
distribution (but constant solid density Ps) filling a static sedimentation 
column of height H, this code assumes a discretization procedure shown in 
Figure 3.A.6. The continuous grain size curve is divided in n groups (with 
average particle diameter di , i = 1, ... , n) and the vessel is subdivided in 
m elements. 

In unstable suspensions, the mixture will have a uniform concentration 
at the initial time and will develop a concentration profile as a function of 
height at successive instants. For continuity reasons, if a certain amount 
of solid settles down, a corresponding quantity of liquid rises up. 

c: 
o 
~ 
+" 
c: 
~ 
c: 
8 
:'Q 
'0 
(J) 

t-----------

«Vi 
~- - - - - -r----I---:--

Particle diameter di 

k=m 

k=2 

k=1 

d 

Figure 3.A.6 - Consideration of suspended grain material in n = 6 groups 
of diameter di and division of the vessel into m = 5 elements. 
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The absolute velocities of the solid particles and the fluid are connected 
according to the following equation 

(3.A.21) 

The relative settling velocity of particles with diameter di , taking care of 
the hindered settling effect, is given by: 

Wi = WOi(l- ~)2 
<Pmax 

(3.A.22) 

where the settling velocity of a single spherical particle with diameter di 

in a still Newtonian unbounded fluid is: 

d2 
WOi = -' (Ps - Pf )g. (3.A.23) 

18J-tf 

In Figures 3.A.7, 3.A.8, and 3.A.9 some comparisons between volume con­
centration profiles calculated and measured in experiments are shown. 
Tests were carried out on Newtonian suspensions with mass concentration 
in the range 14.5%-32%. Their properties are reported in Table 3.A.2. 
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Figure 3.A.7 - Static settling test 1: initial coal mass concentration 
14.5%. 
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Table 3.A.2. Slurry Properties for Static Settling Tests 

Stating Settling Test 1 Stating Settling Test 2 Stating Settling Test 3 

J.LI = 0.001 Pa·s J.LI = 0.001 Pa·s J.L I = 0.001 Pa·s 

PI = 1000 kg/m3 PI = 1000 kg/m3 PI = 1000 kg/m3 

Ps = 1350 kg/m3 Ps = 1350 kg/m3 Ps = 1350 kg/m3 

Initial mass Initial mass Initial mass 
concentration concentration concentration 
of coal = 14.5% of coal = 30.0% of coal = 32.0% 

Initial volume Initial volume Initial volume 
concentration concentration concentration 
of coal = 11.2% of coal = 24.1% of coal = 25.8% 

BO 

70 

,~ 
I ' Time 0, InHiaJ concentration , f..-60 , , 6\ • Meas. value alter 1500 s 
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, , .6 Meas. value alter 61200 s ~ \ .. , , 
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Figure 3.A.8 - Static settling test 2: initial coal mass concentration = 
30%. 
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Figure 3.A.9 - Static settling test 3: initial coal mass concentration = 

32%. 

The sedimentation column was of height H = 68 cm and 27 cm internal 
diameter (see [10]). The program also contains a correlation for Bingham 
suspensions, developed according to Dedegil theory (see [9]). On the basis 
of this option, the program correctly predicts the static stability of highly 
concentrated CWS having high values of yield stress. The simplified ap­
proach used for the static settling model cannot be used for the dynamic 
program that simulates settling during pipe flow. In fact it does not take 
account of wall effects or solid density distribution (remember, ash particles 
are the most subject to settling). 

But the main problem is the correct definition of the settling velocity 
as a function of rheological parameters because during pipe flow each fluid 
thread has a proper structuration state, i.e., a proper rheology with non­
Newtonian thixotropic properties. The analytical calculation of the settling 
velocity is a difficult task for this kind of mixture; Snamprogetti developed 
an experimental method for measuring this quantity in cooperation with 
a research group at the math department U. Dini of the University of 
Florence. The experiments were carried out on suspensions of sand particles 
with fixed density (of the same order of ash) and particle size distribution 
(100-150 mm) in clean CWS, filling a rotational viscometer working at 
different values of shear rate. 

9 
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The settling velocity of a particle with diameter D was determined in 
this form [7], [15]: 

v(o, D) = o(i') . f(D) (3.A.24) 

where the function 0(1') is the reciprocal ofthe effective viscosity perceived 
by the particle: 

1 
17eff = 0 (i' ) 

and the function f(D) is given by: 

f(D) = D(D - D*(i')) 

(3.A.25) 

(3.A.26) 

and D* (i') is the critical diameter for the mixture in the structuration 
state corresponding to the shear rate 1', i.e., particles with diameter less 
than this value do not settle because they are sustained by the mixture 
structure. 

The heterogeneous pipe flow has also been developed in cooperation 
with the University of Florence; it is described in [8]' [11], [12], [15] and 
[16]. We can conclude from these papers that the high flow rate conditions 
only ensure the absence of a static bed, and the worst situation occurs 
at low flow rates. Different opposite factors work at different flow rates, 
causing the resulting behavior of CWS with respect to dynamic stability; 
they are summarized in Table 3.A.3. 

Usually the increasing stability factors tend to be more efficient at high 
flow rates. To be sure of stability at low rates one should use a quasi-static 
condition, which is not convenient for practical applications. 

Increasing 
stability 

Decreasing 
stability 

Table 3.A.3. CWS Dynamic Stability 

Low Flow Rate 

High structuration 
state 

Low horizontal 
momentum 

Low efficiency 
of sediment transport 

High Flow Rate 

High horizontal 
momentum 

High efficiency 
of sediment transport 

Low structuration 
state 
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3.A.6 Conclusions 

Computer codes developed by Snamprogetti can describe all the possible 
pipeline flow configurations relevant to high concentrated CWS transporta­
tion. The homogeneous flow model can handle the complex rheological 
behavior, allowing the prediction of high inlet pressures realized during 
different startup phases. 

The heterogeneous dynamic flow model can follow the formation of a 
sediment bed on the pipe bottom, describing the time evolution at different 
pipe locations. It can define the stability flow condition range for a certain 
suspension, and it can drive the pigging operations in case of unstable flow 
regime occurrence. 

Notation 

T: 
TOO, TO!: 

K o,K1 : 

N: 
1': 
p: 
p: 
u: 
U: 
r: 
x: 
Q: 
R: 
A: 
B: 
C: 
Po: 
Bo,w: 
Rep: 

Pp: 
Up: 
D: 
JLf: 
T: 

n: 
dS: 

shear stress (Pa) 
Cheng-Evans shear stress parameters (Pa) 
Cheng-Evans consistency parameters (Pa.sN ) 

Cheng-Evans exponent 
shear rate (S-l) 
CWS density (kg/m3 ) 

pressure (Pa) 
fluid thread velocity (m/s) 
mean flow velocity (m/s) 
radial coordinate (m) 
longitudinal coordinate (m) 
volume flow rate (m3 Is) 
pipe radius (m) 
concentration fluidizing agent dissolved in water 
concentration of the dispersant adsorbed in the active way 
concentration of the inert fraction 
dissipated power in the degradation model 
microscopic degradation model's constants 
settling particle Reynolds number = ppUpD 

1-'1 
settling particle density (kg/m3 ) 

settling particle velocity (m/s) 
settling particle diameter (m) 
fluid dynamic viscosity (Pa·s) 
viscous stress tensor (Pa) 
drag force on settling particle (N) 
unit vector normal to surface S 
surface integration element (m2) 
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TO: 

N: 
V,V: 
¢: 
¢max: 
Ps: 
pr 
Vi: 

settling particle surface (m2) 
shear rate tensor (s-l) 
shear rate double tensor product (s-2) 
time-independent Herschel-Bulkley consistency index (Pa·sN ) 

time-independent Herschel-Bulkley yield stress (Pa) 
time-independent Herschel-Bulkley exponent 
perturbed velocity field (m/s) 
solid volume concentration 
maximum packing solid volume concentration 
solid density (kg/m3) 

fluid density (kg/m3 ) 

absolute settling velocity of particles belonging to grain size 
group with mean diameter di (static settling program) (m/s) 
fluid velocity (stating settling program) (m/s) 
relative settling velocity of particles belonging to grain size 
group with mean diameter di (static settling program) (m/s) 
mean diameter of ith grain size group (static settling program) 
relative settling velocity of a single particle with diameter di in 
a still unbounded fluid (static settling program) (m/s) 
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Part B: Transient Compressible Flow at High Mach 
Numbers: A Conservative Method for Pipeline Flow 

ABSTRACT. A computer code called Machnet has been developed to predict 
phenomena occurring during transient phases associated with gas pipeline 
flow at high Mach numbers. Rapid depressurization of vessels and pipelines 
is a representative example of this fluid mechanical condition. The code 
is based on a one-dimensional conservative approach derived from the 
Godunov scheme, with a first-order explicit time integration. It includes a 
treatment of friction and heat exchange effects and a description of valves 
and orifices installed in the pipes. Section changes are also analyzed, and 
the boundaries are simulated considering their real shape within the nu­
merical method used for the interior cells, without resort to characteristics. 
The adopted thermodynamic model refers to the perfect gas scheme with 
correction factors taking care of real behavior. 

Comparisons are shown between Machnet simulations and analogous 
calculations from other programs or with available experimental data. 

3.B.l Introduction 

A design procedure for gas transporting systems should include an analy­
sis of transient phenomena occurring during blowdown operations, which 
could generate critical flow conditions at high Mach numbers (>0.2). The 
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designer should be able to predict the pressure of shock waves traveling in 
the pipeline and to evaluate their strength and effect on the entire system 
and on devices and fittings installed in the tube. Furthermore, very low 
temperatures can be reached in downstream valves and orifices, due to 
gas expansion, and pipe wall material may overcome the brittle-fracture 
point. Three-dimensional codes integrating the full set of motion equa­
tions can simulate such kinds of flow problems, but they should require 
a dense calculation grid to handle complex piping systems with size typ­
ical of gas compression stations, causing very large calculation times and 
difficulty with input operations. Therefore the codes are suitable for rep­
resenting small parts of plants, provided appropriate closure relationships 
are selected (e.g., realistic turbulence models). Thus the need for a one­
dimensional "user-friendly" code becomes apparent; nevertheless in this 
case information relevant to multidimensional flow configurations must be 
added to this simpler calculation scheme. 

A computer program of this kind called Machnet has been developed 
(see [19]), and the three-dimensional code FLUENT version 4.4 has 
been used to supply complex motion definitions in fitting and boundary 
areas. This code was used to simulate several transient flow conditions 
referring to the schematic system reported in Figure 3.B.l; the vessel can 
be considered either as a static region where total and static quantities 
coincide or as a pipe with a larger size than the venting downstream tube 
where gas motion occurs. 

A discharge process can be divided in two parts: First a "strong wave 
period," during which large-amplitude waves propagate across the piping 
system, is followed by a "quasi-steady period" when quasi-steady configu­
rations are generated after the mutual interaction and boundary reflection 
of traveling waves, which eventually achieve a final equilibrium state. Be­
cause possible shock waves and contact discontinuities can be present in 
the flow field, a conservative form of the equations has been considered. 

vessel 

Figure 3.B.l - Schematic system simulable by Machnet. 

external 
ambient 

I 
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In fact, the discretization of the nonconservative form gives rise to inter­
nal sources; for continuous flows, these numerical source terms are of the 
same order as the truncation error and hence can be neglected. However, 
numerical experiments and comparisons consistently show that noncon­
servative formulations are generally less accurate than conservative ones, 
particularly in the presence of strong gradients. 

For discontinuous flows, such as transonic flows with shock waves, these 
numerical source terms can become important across the discontinuity and 
they give rise to large errors. This is indeed the case, and the discretization 
of the nonconservative form will not lead to the correct shock intensities. 
Therefore in order to obtain, in the numerical computation, the correct 
discontinuities (such as the Rankine-Hugoniot relations for the Euler equa­
tion) it has been shown by Lax [12] that it is necessary to discretize the 
conservative form of the flow equations. 

The numerical reference scheme selected is the Godunov method, based 
on the introduction of physical properties in the discretization process. In 
Godunov's method, the solution is considered a piecewise constant over 
each mesh cell at a fixed time, and the evolution of the flow to the next 
time step results from the wave interactions originating at the bound­
aries between adjacent cells. The cell interfaces separate two different fluid 
states, U L on the left side and U R on the right side, and the resulting local 
interaction can be exactly resolved because the initial conditions at time 
t = nAt corresponds to the Riemann or shock tube problem. 

This problem has an exact solution that is generally composed of a 
shock wave, a contact discontinuity, and an expansion fan separating re­
gions of uniform flow conditions. The solutions to the Riemann problem at 
each cell interface produce a perturbation of the piecewise constant fluid 
state, resulting from the propagating waves over the time interval At. 

Each wave carries information in an upwind manner; hence the result­
ing state will only depend on the local physical properties. In order to 
define completely the interaction between adjacent cells, the time interval 
over which the waves are allowed to propagate should be limited by the 
condition that the adjacent Riemann problems do not interfere. This leads 
to a form of CFL condition. This fundamental stability condition of most 
explicit schemes for wave and convection equations expresses that the dis­
tance covered during the time interval At by the disturbances propagating 
with speed c, should be lower than the minimum distance between two 
mesh points. 

This means that the mesh ratio At/Ax has to be chosen in such a 
way that the domain of dependence of the differential equation should 
be contained in the domain of dependence of the discretized equation. In 
other words, the numerical scheme defining the approximation in each mesh 
point must be able to include all the physical information that influences 
the behavior of the system at the same point. 
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The new piecewise constant approximation at time t = (n + l)~t is 
then obtained by averaging, over each cell, the fluid states resulting from 
the perturbation waves. This produces an explicit conservative scheme, 
which is, however, of first-order accuracy as will be shown next. Actually 
Godunov's scheme was the first successful conservative upwind scheme. 

Because the exact solution of the Riemann problem requires the resolu­
tion of a nonlinear algebraic equation, which can be quite time-consuming, 
approximate Riemann solutions could be considered, reducing the compu­
tation work at each interface. The approximate solver selected in this work 
is Roe's method. 

3.B.2 Governing Equations 

The most general flow conditions representing compressible flow are de­
scribed by the Navier-Stokes equations, including spatial area change, 
friction, and thermal exchange terms, which in their one-dimensional form 
are [8]: 

8p 8(pu) 1 dB 
at + --a;;- = -8 dxPU (3.B.l) 

8(pu) 8(pu2 + p) 1 dB 2 

----at + 8x = -8 dx Pu + T 
(3.B.2) 

8(pE) + 8(puH) = _.!. dB puH + qH 

at 8x B dx 
(3.B.3) 

where p is the density, u the velocity, p the pressure, B the pipe internal 
cross section, and E and H the total energy and enthalpy per unit mass, 
respectively, given by the following: 

u2 
E = e + - (3.B.4) 

2 

p u2 
H=e+-+­

p 2 

where e is the internal energy per unit mass. 

(3.B.5) 

T and qH are the source terms due to friction and thermal exchange 
between gas and pipe wall, given by: 

T = _Lpu2 (3.B.6) 
Rp 

(3.B.7) 

where f is the Fanning friction factor, Rp the pipe internal radius, hi 
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the surface corrected internal heat transfer coefficient, and Taw and Twall 

the adiabatic wall and internal pipe wall temperatures, respectively. The 
adiabatic wall temperature (cfr. [13], [18]) is defined on the basis of the 
recovery factor n, which is a measure of the fraction ofthe local free stream 
dynamic temperature rise recovered at the wall; as a function of the bulk 
gas temperature T and its specific heat at constant pressure Cp it is: 

(3.B.8) 

In this work the Colebrook-White correlation for the friction factor cover­
ing both smooth and rough pipes is assumed ([1], [9]): 

1 [€ 2.51 ] 
m = -2log 3.7Dp + Rem (3.B.9) 

where Re is the pipe Reynolds number based on diameter Dp and € is the 
pipe roughness. 

Friction and heat exchange effect, in a negligible way, the flow field dur­
ing the "strong wave period," thus the Euler system of equations should be 
a reasonable approximation in this condition. The Navier-Stokes equations 
in conservative form result in: 

(3.B.1O) 

where the conservative variables vector U is: 

(3.B.ll) 

and the flux vector F is: 

(3.B.12) 

The source vector Q is the summation of the area change plus friction and 
thermal exchange terms: 

(3.B.13) 

(3.B.14) 
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o 
f u~ ---

Qfq = Rp U1 (3.B.15) 

-hi [('k;11) (U3 - ~ g~) (1 + ~ ~:) -Twall] 

where X is the area change term ~ ~~ and the gas temperature in the 
thermal convective flux has been expressed using the perfect gas assump­
tion 

(3.B.16) 

(3.B.17) 

where R is the gas constant and 'Y the isentropic coefficient given by the 
specific heat ratio. 

3.B.3 Heat Transfer 

Concerning the heat transfer process for the gas flowing along the pipe, 
the Sieder-Tate correlation has been assumed to define the internal heat 
transfer coefficient by forced convection ([2], [17], [20]): 

(3.B.18) 

where the symbols are Nusselt, Reynolds, and Prandtl numbers, respec­
tively. In case of internal convection for still gas the heat transfer coefficient 
is defined according to Ford approach (see [4]). The radial conduction pro­
cess through the pipe layers is described by solving the Fourier equation 
in cylindrical geometry: 

(3.B.19) 

where PI, Cpl, and kl are the layer density, specific heat at constant pres­
sure, and thermal conductivity, and r is the radial coordinate. The external 
heat transfer coefficient is calculated by using referenced correlations for 
different environments (see [10]). 
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3.B.4 Numerical Method 

In order to define the solution at time t = (n + l).6.t of the system (3.B.1O) 
from the known solution at t = n.6.t, the Godunov method builds up a 
piecewise constant approximation of the last one. Because the piecewise 
constant approximation is an average of the solution over the cell of size 
.6.x, the spatial error is of the order .6.x, and hence the resulting scheme will 
be first-order accurate in space. Note that the approximation corresponds 
to a finite volume representation whereby the discrete values represent the 
average of the state variables over the cells. 

Exact relations for the average cell values can be obtained from the 
integral conservation laws. Integrating the scalar conservation equation 
au / at + a F / ax = Q over x in the domain (a, b) gives the general relation: 

b b 

! J U(x,t)dx = F(a,t) - F(b,t) + J Qdx (3.B.20) 

and if further integrated in time, from t = n.6.t to t = (n + 1 ).6.t, we obtain 
the exact relation: 

b b 

J Uli+l(x) dx - J Un(x) dx = -.6.t [F(U(b)) - F(U(a))] 

a a 
(n+l)Llt b 

+ J dt J Qdx (3.B.21) 

nLlt a 

where F is the time average of the physical flux between n.6.t and 
(n + 1) .6.t. Defining the average state variable over the cell (i - !, i + !) as: 

i+l/2 

- 1 J Ui = .6.x U(x, t) dx (3.B.22) 

i-l/2 

the integral conservation relation (3.B.21) becomes 

(3.B.23) 

This is an exact relation in conservation form. It expresses the variation, 
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over the time interval !:it, of the cell-averaged state variables as resulting 
from the balance of time-averaged fluxes at the boundaries of the cell. The 
numerical flux of the scheme is to be considered as an approximation to 
the time average of the physical flux at the cell interfaces and the mesh 
point variables Ui as a representation of the cell averages. 

For the friction and heat transfer source terms the following statement 
can be written: 

Q = Q(U). (3.B.24) 

The spatial average over the calculation cell can be made in a way that is 
similar to state variable averaging: 

i+l/2 

Q = ~x J Q(Ui) dx = Q(Ui) 
i-l/2 

(3.B.25) 

considering U = U i over the cell. The time average can be carried out 
considering the friction and heat transfer contributions become noticeable 
during the quasi-steady period only: 

(n+1)6t 

J Q(Ui) dt = !:it· Q(Ui)· (3.B.26) 

n6t 

That is, the source term is evaluated on the basis of the state variable at 
time n!:it. For the area change source term concerning the mass and energy 
conservation equations, the spatial average is 

;; 

-J F(U). Xdx = -Fi(U)X!:iX (3.B.27) 

with 

Fi(U) = ~ [F(a, t) + F(b, t)] . (3.B.28) 

The time average of (3.B.27) can be carried out on the basis of (3.B.28), 
considering the time average of physical flux: 

(n+l)6t 

J !:it [~ ~ ] Fi(U)X dt = -XT F(Ui+l/2) + F(Ui - 1/ 2) . (3.B.29) 

n6t 

This is the final expression for the area change source term appearing in 
the integrated conservation equations. For the momentum equation the 
flux term F must be replaced by: 

iP = F - p. (3.B.30) 
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Following the procedure outlined by (3.B.27) to (3.B.29) the corresponding 
integrated source term is: 

(3.B.31) 

The following assumption on the area change spatial rate has been made: 

x = constant. (3.B.32) 

This means the area changes in an exponential way inside each cell. The 
solution for the local Riemann problem at cell interfaces represents the 
physical step of the whole procedure. The discontinuities at the interfaces 
are resolved in a superposition of waves satisfying locally the conservation 
equations. A description of different configurations giving the complete 
solution of the Riemann problem is reported in Appendix A. 

Because the exact solution of the Riemann problem requires resolu­
tion of a nonlinear algebraic equation, which can be quite time-consuming, 
approximate Riemann solutions have been considered, and Roe's method 
has been selected. The approximate Riemann solver developed by Roe [16J 
is based on ~ characteristic decomposition of the flux differences. While 
ensuring the conservation properties of the scheme, Roe's approach is an 
ingenious way of extending the linear wave decomposition, which is the 
exact linear solution to Riemann's problem, to nonlinear equations. 

In this method the following expressions for the interface fluxes referred 
to cell i results: 

Ft+l/2 = Fi + 1-(UH1 - Ui) 

Ft-l/2 = Fi - l+(Ui - Ui-d 

(3.B.33) 

(3.B.34) 

The matrix 1 represents the local Jacobian expressed as a function of 
the variables e, u, H reJ?laced by an average weighted by the square root 
of densities; A + and A-are built by negative and positive eigenvalues 
contributions. 

The resulting expression of the first-order explicit upwind Roe method 
for the Navier-Stokes equations is: 

U;-+l - U;- = - ~: [Ft+l/2 - Ft-l/2] + (source term) (3.B.35) 

where the interface flux difference based on (3.B.33) to (3.B.34) is: 

(3.B.36) 

The source term definition developed for the basic Godunov scheme re­
mains valid with this approach. 



92 Complex Flows in Industrial Processes 

Table 3.B.1 

Subsonic Supersonic 

Inlet p,p p,p,u 

Outlet p 

3.B.5 Boundary Conditions 

The classical treatment of boundaries in one-dimensional flows is based on 
the characteristic boundary method, which adds the Riemann invariants 
for the outgoing characteristics to the imposed physical boundary condi­
tions. Referring to the primitive variables p, p, u the physical boundary 
conditions are imposed depending on the type of boundary flow, on the 
basis of Table 3.B.1. 

A first application of the characteristic method was based on the 
space extrapolation of the characteristic variables within the actual scheme 
founded on conservative variables and boundary conditions imposed on the 
primitive variables; this method was adopted by Yee et al. [21]. 

However, the interaction of propagating shock waves with this kind 
of boundary was found to generate a nonphysical solution with spurious 
excess energy generation in the boundary cells; this numerical error has 
been explained by the wrong extrapolation of characteristic variables across 
a shock because in this case they should not remain constant. 

Therefore a new treatment of boundary conditions has been used, on 
the basis of the complete physical definition of corresponding flow regions. 
If a pipe connecting a vessel to atmosphere is considered, the pipe inlet can 
be outlined through a convergent variable area region from the cell having 
the static vessel state to the first cell of the pipe where flow with a velocity 
relevant to its cross section occurs. At the pipe outlet an exit jet is located, 
with a generally divergent cross section passing from the last cell of the 
pipe to external ambient conditions. In this way the use of characteristics is 
avoided, and all flow regions are calculated by the same numerical method. 
In the following the modeling of the exit jet is described. 

3.B.6 Exit Jet 

If the model of pipe connecting a vessel to atmosphere is analyzed with 
the assumption of isentropic flow, its fluid mechanical configuration can 
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be referred to as the isentropic nozzle scheme, which narrows continually 
toward its end, so that the minimum cross-sectional area is at that end. 
If we indicate with pv and Pe pressure values relevant to vessel static 
conditions and external ambient, respectively, the flow inside the tube is 
subsonic only if the following condition is verified: 

Pe > (_2_)'Y/b- l ) 

pv 7 + 1 
(3.B.37) 

In this case, in steady flow, the pressure in the pipe is equal to Pe, and the 
whole of the pressure drop pv to Pe occurs in the inlet convergent section. 
If Pe = p., that is, if 

_ • _ ( 2 ) 'Y/b-l) 
Pe -P - -- pv 

7+ 1 
(3.B.38) 

the pipe flow velocity becomes equal to the local velocity of sound, and 
the discharge reaches its maximum. When the external pressure decreases 
further, the pipe pressure remains constant at p., and the fall of pressure 
from p. to Pe occurs outside the tube, in the surrounding medium. In other 
words, the pressure drop along the tube cannot be greater than from pv 
to p., whatever the external pressure. 

The exit jet definition introduced in Machnet has been carried out in 
order to reproduce the correct sonic/subsonic flow configurations and to 
generate the correct boundary behavior concerning wave reflection. Refer­
ring to the exit jet shape, direct observation of jets of pipes discharging to 
atmosphere suggests this flow region can be divided in two parts: 

• a first regular conical jet with a fixed span angle; 

• a second irregular section where gas passes from the flow conditions to 
the infinite ambient state. 

The last transition has been defined through a large area change, and 
a friction factor is calculated in a such a way that the gas loses all its 
kinetic energy. The first jet section must be described more accurately in 
order to satisfy the above requirements. For the span angle the Schlieren 
photographs of flow from a supersonic nozzle at different back pressures 
reported by Liepmann and Roshko [14] have been used to fix its dependence 
on the flow parameters. 

Machnet can run using an outlet characteristic method when shock 
waves are absent, as an alternative to the jet model. While the jet model 
is built in such a way as to reproduce all flow configurations, with the 
characteristic method the sonic/subsonic transition must be determined 
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performing the following test: 

Pe (2) "lIb-I) 
IF YES: use subsonic characteristics 

-> -- ::::} 
Pout 'Y + 1 IF NO: use sonic characteristics 

(3.B.39) 

where Pout is the total pressure of the fluid element leaving the end of the 
tube. 

3.B.7 Orifices and Valves 

The presence of an intermediate orifice has been provided in Machnet. The 
streamlines trend near this fitting consists in a convergent region before it 
that is followed by a divergent jet extending for a certain length until the 
full section flow is reached. In this way it assumes the shape of a nozzle. 
The total length of the orifice divergent region L D has been identified as 
the length of the steady shock wave region downstream a nozzle as defined 
by Shapiro [18]. 

The following correlation of Shapiro's experimental data results: 

LD D = 5.3015 In(Mu) + 5.2925 
p 

where Mu represents the Mach number preceding shock. 

(3.B.40) 

The orifice friction factor is defined according to the correlation between 
mass flow rate and pressure drop, relevant to compressible steady flow 
through orifices, reported by Crane [3]: 

W = 0.0003512(YC)diJ b.PUDPU (3.B.41) 

where Y and C are the net expansion factor and the flow coefficient for 
square edge orifices, dl is the orifice diameter, Pu the gas density 1 diameter 
upstream of the orifice, and b.PUD the pressure drop between points 1 
diameter upstream and 0.5 diameter downstream of the orifice. 

The presence of large variations of physical quantities near the orifice 
location involves the use of an irregular grid with narrowing spatial steps 
near high gradient regions. Machnet can simulate the opening process of a 
valve in a finite time, in addition to the instantaneous opening of an ideal 
valve or a rupture diaphragm. In the region surrounding the valve a time 
area changing term is present in the equations of motion; the energy and 
mass conservation equations, when expressed with the flow cross section 
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factor S yield 

By putting 

aU aF UaS 
-+-+--+Fx=Q at ax Sat 

Q=Q-Fx 

(3.B.42) 

(3.B.43) 

the discretized expression for the equation of motion (3.B.42) in the con­
servative variable U = U i , is: 

Un+1 = [1 + In sn_ < In S >] un _ !:l.t [F(Ui+l/2) - F(Ui-l/2)] 
[1 + InSn+L < InS >] !:l.x [1 + InSn+L < InS >] 

1 ffQdxdt + - ]. (3.B.44) 
!:l.x [1 + InSn+L < InS> 

where < In S > means time averaged value. For the momentum equation 
the only variation to this analysis is in the formulation of the source term Q: 

(3.B.45) 

3.B.8 Different Boundaries and Gas Models 

Machnet can simulate other kinds of boundaries not included in the sim­
plified scheme reported in Figure 3.B.I, namely, a closed wall and a second 
pipe instead of a static vessel. The closed wall boundary is treated using 
the symmetry model, relating the conservative variables of the "hidden" 
cell behind the wall (subscript h) to the variables of the cell interior to the 
pipe adjacent to the wall (subscript a): 

(Ul)h = (Ul)a 

(U2 )h = -(U2 )a (3.B.46) 

The pipe replacing the vessel in Figure 3.B.I can be used when the ap­
proximation of static gas in the depressurizing ambient is not more valid; 
the flow is treated like the venting pipe, considering a variable area region 
connecting the two pipes. Furthermore a second pipe with a different di­
ameter can be added downstream of the venting pipe; it can be closed end 
or discharging full bore to the exterior. 

Referring to the gas thermodynamic model, a perfect gas scheme with 
correction factors has been used; these factors are the compressibility Z 
and the isentropic coefficients "Iv, "IT (s means constant entropy) defined 
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in this way (efr. [15]): 

mT 
"(T=--­

mT-l 

(3.B.47) 

(3.B.48) 

with mT = ~(*)s. Averaged values of these factors in the range of pres­
sures and temperatures considered are used. 

3.B.9 Results and Discussion 

A complete procedure to validate Machnet should require the availabil­
ity of experimental profiles relevant to physical quantities measured dur­
ing transient flow in gas pipelines, and these are very difficult to obtain. 
Therefore only one test case is presented in conjunction with experimental 
data; it concerns the blowdown of a vessel containing nitrogen initially at 
150 bar (a) and 17°C (efr. [7]). Other test cases have been simulated with 
FLUENT 4.4 and PRO II 3.32, providing a comparison with referenced 
calculation schemes. In the following, a full description of examined test 
cases is presented. Steady tests calculated by Machnet are limiting results 
of transient calculations. 

Test Case No.1: Riemann Problem 

This test case is the simulation of a Riemann problem for which the an­
alytical solution can be obtained by applying the theory exposed in Ap­
pendix A. It refers to a perfect gas with the following properties: 

Molecular mass = 18 kglkmol 

Isentropic coefficient = 1.4 

and to an initial discontinuity given by (efr. Appendix A for notation): 

Pl = 20.26· 105 Pa 

P4 = 101.3· 105 Pa 

Tl =T4 =300K 

Ul = -400 mls 
U4 = -200 m/s. 

The solution is composed of a rarefaction wave propagating in the high­
pressure side and a shock wave in the low pressure region. The flow direc­
tion in the intermediate region is negative, i.e., the gas moves toward the 
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high-pressure side. From the iterative solution of (3.B.53) the intermediate 
pressure is about 58.4 . 105 Pa. 

In Figure 3.B.2 pressure and density trends relevant to a 10-m-Iong 
tube with the initial discontinuity at 5 m are shown; in the density profile 
the contact wave is manifest. Due to first-order spatial approximation, 
waves are more smeared in the numerical solution with respect to the 
analytical one, but the magnitude of pressures, densities, and other physical 
properties are predicted in the intermediate regions. 

Test Case No.2: Shock Reflection from a Closed End 

This test case concerns the interaction of a shock wave with a boundary, 
namely, a rigid wall. This situation could occur during pipeline flow if a 
propagating shock is incident on a closed valve. 

Let us consider a semi-infinite pipe with an initial discontinuity at 5 m 
from the wall, located on the low-pressure side. The gas is perfect with the 
same properties of test case no. 1. 

The initial conditions are: 

PI = 20 . 105 Pa 

P4 = 100.105 Pa 

TI = T4 = 300 K 

UI = U4 = 0 m/s. 

The solution of this Riemann problem consists of a shock wave propagating 
in the low pressure region, with the following properties upstream its front: 

P2 = 42.5.105 Pa 

T2 = 375 K 

U2 = 250 m/s. 

Shock velocity = -J '"Y~I ~ = 595 m/s. 

Following Shapiro [18] the ratio of reflected wave pressure Pref to the inci­
dent pressure P2 is given by: 

( 1 + 2 1 - 1) P2 _ 1 - 1 

Pref = 1 + 1 PI 1 + 1 ~ 1.97. 
P2 1- 1 P2 +1 

1 + 1 PI 

Formula (3.B.49) implies Pref = 83.7.105 Pa. 

(3.B.49) 

Figure 3.B.3 represents pressure profiles at different times; the reflected 
wave has a pressure in perfect agreement with the prescribed value. At 
successive instants, this pressure level is modified by interaction with the 
contact wave. 
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Figure 3.B.2 - Comparison between Machnet numerical solution and an­
alytical solution for a Riemann problem. (a) Pressure waves propagation. 
(b) Density waves propagation. 
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Figure 3.B.3 - Pressure pattern at different times caused by the shock 
wave reflection process from a closed end. 

Test Case No.3: Pipe with Intermediate Orifice 
and Large Pressure Jump 

In this test case a pipe with an orifice having area ratio 0.25 in an interme­
diate position has been analyzed. Boundaries are represented by infinite 
vessels at fixed pressures, and the flow is assumed adiabatic. The fluid 
considered is natural gas treated as perfect gas with: 

Molecular mass = 18 kgJkmol 

Isentropic coefficient = 1.3 

Geometrical and physical conditions are: 

Pipe diameter = 0.2 m 

Pipe length = 10 m 

Pipe roughness = 25 J.tm 

Orifice position = 4.5 m 

Orifice diameter = 0.1 m (area ratio = 0.25) 

Upstream vessel pressure = 200· 105 Pa 

Downstream vessel pressure = 1.013· 105 Pa 

Upstream vessel temperature = 273 K 
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Downstream vessel temperature = 273 K 

Gas viscosity = 0.0109 m Pa·s 

In Figure 3.B.4 the steady pressure and temperature profiles as calculated 
by Machnet and FLUENT are shown, providing good agreement between 
the two codes, considering the different flow description (one or three di­
mensions). 

Test Case No.4: Double Orifice 

In Figure 3.B.5 steady profiles of pressure, temperature, and Mach number 
relevant to a pipe with two orifices installed along it are shown. The gas is 
a perfect "corrected" gas with: 

Molecular mass = 19.4 kgjkmol 

I'V = 1.3 

I'T = 1.3 

Viscosity = 0.012 m Pa·s 

Z = 0.8 

The boundary conditions, referring to infinite vessels, are: 

Upstream vessel pressure = 66 . 105 Pa 

Downstream vessel pressure = 1.013.105 Pa 

Upstream vessel temperature = 293 K 

Downstream vessel temperature = 293 K 

The pipe characteristics are: 

Pipe diameter = 0.2086 m 

Pipe length = 58.5 m 

Pipe roughness = 40/Lm 

The orifice diameters are: 

First orifice diameter = 0.062 m 

Second orifice diameter = 0.1 m. 

A second pipe with a larger diameter is connected to the principal pipe 
downstream of the second orifice. Its properties are: 

Pipe diameter = 0.34 m 

Pipe length = 4 m 

Pipe roughness = 40/Lm. 

Diagrams show that sonic conditions occur in four points: the first orifice, 
second orifice, the section change between two pipes, and the pipe outlet. 
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The steady mass flow rate value calculated by Machnet is 35.9 kg/s, in 
good agreement with the mass flow rate calculated on the basis of Crane 
[3] methods. 

Test Case No.5: Opening of a Valve in a Finite Time 

An actual blowdown process occurs through the opening of a valve in 
a finite time; the associated Riemann problem corresponding to a sudden 
opening is obviously idealized. A typical opening velocity is 1 inch/s, which 
is a very long time compared to the time scale of wave propagation in a 
Riemann problem. 

Figure 3.B.6 represents pressure profiles realized during the complete 
opening of a valve installed in a pipe with the same characteristics of 
test case no. 3, containing the same gas and with the following boundary 
conditions: 

Upstream vessel pressure = 1.93.105 Pa 

Downstream vessel pressure = 1.013.105 Pa 

Upstream vessel temperature = 300 K 

Downstream vessel temperature = 300 K 

The valve position corresponds to orifice location. The system evolution is 
determined by the propagation of small amplitude waves; at each instant 
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Figure 3.B.6 - Complete opening of a valve with velocity I" Is. Pressure 
profiles at different times calculated by Machnet. 

the pressure profile seems quasi-steady. In this case the complete opening 
time is 7.87 s and the pressure profile at 7.97 s is almost the final result 
of the transient phase. During the opening process the quasi-steady shock 
wave downstream of the orifice extends in length because of the progressive 
increase in How rate. 

Test Case No.6: Adiabatic Blowdown of Vessels 

Three calculations are presented here concerning the adiabatic depressur­
ization of vessels, simulated with PRO II to obtain reference results. 

Case 6.1: Helium Vessel Venting at 40 Bar 

This test is relevant to a vessel of 10 m3, discharging to the atmosphere 
through an orifice with a 0.26-m diameter, containing helium initially at 
40 . 105 Pa and 473 K. In Figure 3.B. 7 pressure, temperature, and mass 
How rate time trends are shown. Helium is represented by a perfect gas 
model with: 

Molecular mass = 4 kg/kmol 

Isentropic coefficient = 1.66 

A good agreement between Machnet and PRO II is observed. 
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Figure 3.B. 7 - (Continued) (c) Mass flow rate time evolution. 

Case 6.2: Methane Vessel Venting at 65 Bar 

1.2 

This test is relevant to a vessel of 10 m3 , discharging to the atmosphere 
through an orifice with a 0.26-m diameter, containing methane initially at 
65· 105 Pa and 500 K. In Figure 3.B.8 pressure, temperature, and mass 
flow rate time trends are shown. Methane is represented by a corrected 
perfect gas model with 

Molecular mass = 16 kg/kmol 

IV = 1.26 

"IT = 1.2475 

Z= 1 

A good agreement between Machnet and PRO II is observed, apart from 
a deviation of temperature prediction at the end of blowdown, probably 
caused by an incomplete reproduction of real gas effects by the corrected 
perfect gas model. 

Case 6.3: Methane Vessel Venting at 150 Bar 

In this test the blowdown of a vessel of 50 m3 , discharging to an external 
medium at 20 bar through an orifice with a 0.3-m diameter, containing 
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3 

methane initially at 150· 105 Pa and 273 K is analyzed. In Figure 3.B.9 
pressure, temperature, and mass flow rate time trends are shown. Methane 
is represented by a corrected perfect gas model with 

Molecular mass = 16 kgjkmol 

')'v = 1.74 

')'T = 1.39 

Z = 0.76 

Pressure and mass flow rate time trends are in good agreement with PRO II 
predictions; temperature deviations at the end of the blowdown are caused 
mainly by liquid formation. 

Test Case No.7: Nitrogen Vessel Venting 

This test case refers to a blowdown experiment described in [7]. A vertical 
vessel with length 1.524 m, inside diameter 0.273 m, and wall thickness 
0.025 m, discharging through an orifice with a diameter of 0.00635 m, 
containing nitrogen initially at 150· 105 Pa, 290 K, was used for testing. 
Surrounding medium was still air at 290 K. 
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Experimental values of pressure and wall and fluid temperatures are 
available for comparison. In Figure 3.B.10 experimental and predicted (by 
Machnet) values are shown as time functions. The simulation has been car­
ried out considering heat transfer phenomena, both from the still internal 
gas to the vessel wall and from the vessel external wall to the exterior. 

Test Case No.8: Pipeline Flow with Combined Friction and 
Heat Transfer 

In the following, two examples of gas flow with combined effects of heating 
and friction in a pipe with constant wall temperature are presented, along 
with comparison to referenced calculations. 

The calculations refer to the steady flow of a gas in a constant-area tube 
supplied by an infinite vessel and discharging to atmosphere. The inlet to 
external pressure ratio is chosen in such a way as to have a Mach number 
of 0.5 at the pipe inlet. Each calculation is distinguished by a specific value 
of the ratio between the wall temperature and the gas inlet temperature. 
The wall temperature is held constant along the pipeline. The gas is air 
treated as perfect gas having: 

Molecular mass = 29 kg/kmol 

Isentropic coefficient = 1.4 
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Viscosity = 0.0161 m Pa·s 

Thermal conductivity = 0.0224 W /m/K 

0.6 

Limiting steady flow profiles are obtained as a result of frictional and wall­
fluid heat transfer processes. In Figure 3.B.ll pressure, temperature, and 
Mach number distributions calculated by Machnet as function of the quan­
tity 4fx/ Dp are shown, with similar profiles reported by Shapiro [18] re­
ferred to analogous calculations. Pressure and temperatures are normalized 
with respect to inlet conditions Pi, Ti . 

Test Case No.9: Blowdown of a Buried Pipeline 

This test case is concerned with the blowdown of a buried pipeline through 
a composed vent pipe caused by an instantaneous valve opening. The fluid 
is a perfect "corrected" gas with 

Molecular mass = 18.1 kg/kmol 

I'V = 1.33 

I'T = 1.33 

Viscosity = 0.0124 m Pa.s 
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Thermal conductivity = 0.037 W /m/K 

Z = 0.85 

The initial and boundary conditions are: 

Pipe pressure = 64.5· 105 Pa 

Pipe temperature = 286 K 

External pressure = 1.013.105 Pa 

External temperature = 286 K 

The pipe characteristics are: 

Pipe diameter = 0.4888 m 

Pipe length = 2700 m 

Pipe roughness = 25 J.lm 

The pipe wall properties are: 

Layer 1 

Thickness = 0.0096 m 

Thermal conductivity = 45 W /m/K 

Density = 7850 kg/m3 

Thermal capacity = 445 J /kg/K 

Layer 2 

Thickness = 0.03 m 

Thermal conductivity = 0.04 W /m/K 

Density = 100 kg/m3 

Thermal capacity = 837 J /kg/K 

The external ambient is ground at 286 K, and the pipe depth is 1 m. The 
venting pipe is composed by two sections with: 

Section 1 

Pipe diameter = 0.0794 m 

Pipe length = 250 m 

Pipe roughness = 25 J.lm 

Layers are of the same material as buried pipeline, but the first layer 
thickness is 0.0103 m. 

Section 2 

Pipe diameter = 0.742 m 

Pipe length = 790 m 

Pipe roughness = 25 J.lm 
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Figure 3.B.12 - Blowdown of a buried pipeline. (a) Pressure time evolution 
inside the buried pipeline. (b) Fluid and wall temperatures time evolution 
in the area change region of the venting pipe. 
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Figure 3.B.12 - (Continuecl) (c) Mass flow rate time evolution. 

Layers are of the same material as buried pipeline, but the first layer 
thickness is 0.0048 m. 

The external ambient of venting pipe is air at 286 K and flowing around 
it at 4.7 m/s. In Figure 3.B.12 pressure inside the buried pipeline and mass 
flow rate time evolutions are shown, along with fluid and wall temperature 
time trends in a point located in the region of area change between section 1 
and section 2 of the venting pipe. 

3.B.I0 Conclusions 

The program Machnet can be used for simulation of thermal and hydraulic 
transients in gases undergoing rapid blowdown processes. It is especially 
concerned with wave propagation during the "strong-wave period," and 
with temperature predictions along a pipeline with fittings (valves, ori­
fices). The adopted thermodynamic model (corrected perfect gas) can be 
considered an acceptable approximation unless liquid formation occurs (be­
cause liquid formation delivers latent heat and causes an increase in the 
fluid temperature). 

Calculation tests are in good agreement with referenced results, and 
the code can be considered validated. 
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Appendix A: The Riemann Problem 

The shock tube problem represents the limit case of a depressurization 
process, in which two ambients at different pressures are connected through 
a valve opened in a finite time; in the Riemann problem a long tube is 
initially divided into two parts by a diaphragm, on the left-hand side of 
which there is high-pressure stagnant gas, and on the right-hand side low­
pressure stagnant gas. 

If viscous effects can be neglected along the tube walls and if an 
infinitely long tube is considered, avoiding reflections at the tube ends, the 
exact solution to the Euler equations can easily be obtained on the basis 
of simple waves separating regions of uniform conditions. At the bursting 
of the diaphragm, at time t = 0, the pressure discontinuity propagates 
to the right in the low-pressure gas and simultaneously an expansion fan 
propagates to the left in the high-pressure gas. In addition, a contact 
discontinuity separating the two gas regions propagates to the right in the 
tube. 

We will distinguish the following regions (see Fig. 3.B.I3). Region 1 
contains the undisturbed gas at the low pressure Pl. It is separated by 
a shock wave from region 2, which represents the disturbed low-pressure 
gas. The contact discontinuity separates region 2 from the disturbed high­
pressure gas in region 3, which in turn has been influenced by the expansion 
fan propagating to the left into the undisturbed high-pressure region 4. 

The pressure in regions 2-3 can be derived by combining the Rankine­
Hugoniot relations that are valid across a shock with the rarefaction wave 
equations; the implicit equation for II = P2/PI, to be solved by an iterative 
method, is: 

J ~(~ -1)(1 ~ ~IT~'/2 - ~: 1 : [ 1- (IT :t'l/"'j ~ 0 

r= ,),+1 
')'-1 

(3.B.50) 

The flow configuration depends on the initial pressure ratio across the 
diaphragm (pt/P4). If it assumes a critical value given by (for CI = C4): 

( PI) (2 )2"Y/b- l ) 1 
P4 CR = ')' + 1 [1 (1 + v'5) ] 

+ ,),+1 ')' 

(3.B.5I) 

the flow acceleration through the expansion fan reaches sonic conditions 
at the original diaphragm position, which remain blocked in this state for 
infinite time. 
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Figure 3.B.14 - Pressure distribution for different initial pressure ratios 
in the shock tube problem. 

If (p!/P4) > (p!/P4)CR, the rear part of the wave travels to the left, 
while for (p!/P4) < (p!/P4)CR it travels to the right. 

If p!/ P4 = 0 (expansion in empty space) the rarefaction wave accelerates 
the gas to the escape speed Umax : 

2 
Umax = --C4 

1'-1 
(3.B.52) 

The situation can be represented by Figure 3.B.14, valid for I' = 1.4 when 
(p!/P4)CR = 0.097. 

The Riemann problem includes all possible initial discontinuities, giv­
ing different flow configurations from the shock-tube scheme. Considering 
that left and right states can have initial velocity U4 and U1 and nonho­
mogeneous properties (')'1 =I- 1'4), the pressure of intermediate regions 2-3 
between extreme waves is the solution of the following equation: 

(3.B.53) 

with 

for P ~ 1 

for P < 1 (3.B.54) 

P = P2 k = 1,4. 
Pk 
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By putting 

(3.B.55) 

according to Godunov et al. [5] the following quantities can be defined: 

(P4) 1 

( P4) ~ Pt-
Ushock = J P4 = PI = c1Y ~ ( 71 + 1 P4)1/2 

1+---
71 - 1 PI 

Urar-J H-- ---- 1- -_ ( _ PI) _ 2C4 [ (PI ) hr1)/(2"1~)l 
P4 74 - 1 P4 

2C1 2C4 
Uyoid = J(P = 0) = --- - --. 

71 - 1 74 - 1 

(3.B.56) 

(3.B.57) 

(3.B.58) 

Based on the value of initial relative velocity between the left and right 
states, four configurations can be realized; following Landau and Lifshitz 
[11] notation, in which S indicates shock wave, T indicates tangential or 
contact discontinuity, R indicates rarefaction wave, and I is the initial 
discontinuity, configurations are: 

1) U4 - U1 > Ushock 

In this case, which we write I ---+ S +-- TS ---+, the initial discontinuity I 
gives two shock waves S, propagated in opposite directions, and a tangen­
tial discontinuity T between them. This case occurs when two masses of 
gas collide with a large relative velocity. 

2) Urar < U4 - Ul < Ushock 

In this case I ---+ R +-- T S ---+ a shock wave is propagated on one side of the 
tangential discontinuity, and a rarefaction wave R on the other side. This 
case occurs, for example, if two masses of gas at relative rest (U4 - Ul = 0) 
and at different pressures are brought into contact at the initial instant. 
Of all the cases considered, the second is the only one in which gases 1 and 
4 are moving in the same direction, so the equation U4 = Ul is possible. 

3) Uyoid < U4 - Ul < Urar . 

In the third case (I ---+ R +-- T R ---+) a rarefaction wave is propagated on 
each side of the tangential discontinuity. 

4) U4 - Ul < Uyoid . 

Two rarefaction waves are generated, but gases 1 and 4 separate with a 
sufficiently great relative velocity so as to form a vacuum between waves. 

An interesting feature of the Riemann problem (cfr. [6]) is that the 
flow direction may be determined without computing the full solution by 
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iteration. This can be accomplished rather simply by introducing an ar­
tificial stationary boundary or wall between the left and right states and 
calculating the pressures that would act on the left and right sides of this 
boundary. The flow direction will then be from the side with higher pres­
sure to the side with lower pressure. If the flow at the left state is positive 
(U4 > 0) a shock will be reflected from the left side of this boundary. 
On the other hand, if the flow is away from the left side of the boundary 
(U4 ::; 0), a rarefaction wave will be reflected instead. The procedure may 
be repeated for the right side of the boundary. If we indicate by P Land 
PR the artificial pressures with respect to the stationary boundary, and 
introduce 

M _ U4 
4 -­

c4 

M _ Ul 
1- -

Cl 

_ 2C4 
U4 =U4+--

1'4 - 1 
_ 2Cl 
Ul = Ul---

1'1 - 1 

(3.B.59) 

the flow direction, represented by the sign of U2 can be obtained by applying 
the flow chart reported in Figure 3.B.15. 

Using equation (3.B.53), which considers gases with different values of 
1', the critical ratio (Pt!P4)CR producing sonic conditions at the diaphragm 
position in configuration 2 is given by: 

(3.B.60) 

with 

For example, with 1'1 = 1.2, 1'4 = 1.4, Cl = C2, equation (3.B.60) 
gives (12.)cR = 0.109. Configuration 3, with two rarefaction waves, IS 

P. 
characterized by two critical ratios relevant to the two waves. 

Rarefaction Wave in Region 4 

[N + G + H - GX~R]I/01 
(3.B.61) 
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Figure 3.B.15 - Flow chart for determination of the flow direction in the 
Riemann problem. 

where 

XCR = critical pressure ratio at sonic point = 

N = U4 - Ul 

G=~ 
')'4 -1 

H=~ 
')'1 -1 

')'1 -1 (h=--
2')'1 

')'4 -1 
04 =--

2')'4 

[1 _ ')'4 - 1 .11 _ U41J 1/(J~ 
')'4 + 1 C4 

(3.B.62) 

(3.B.63) 
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Rarefaction Wave in Region 1 

(3.B.64) 

where 

YCR = critical pressure ratio at sonic point = [1 _ ~~ ~ ~ .1 1 + ~~ I] I/O! 

(3.B.65) 
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4 
Spurt in the Extrusion of Polymeric 
Melts: Discrete Models for Relaxation 
Oscillations 

A.A.F. VAN DE VEN 

Eindhoven University of Technology 
Eindhoven, The Netherlands 

ABSTRACT. In the extrusion of polymer melts, several types of flow in­
stability can occur. One example of this is spurt. Spurt is manifested by 
periodic oscillations in the pressure and volumetric flow rate. These os­
cillations are of relaxation type. An extrusion through a cylindrical die is 
considered. A discrete model to describe spurt or relaxation oscillations is 
constructed. This model is based on observations from three-dimensional 
theory. When spurt occurs, the shear rates very near the wall of the die 
(Le., in the spurt layer) are much higher than those in the kernel of the ex­
truded polymeric melt. Therefore, the viscosity in the spurt layer is taken 
much smaller than in the kernel. In both regions a linear Newtonian fluid 
model is used. A no-slip boundary condition at the wall is maintained. 
The model developed here is compared to an analogous model, allowing 
for slip at the wall of the die. It is shown that corresponding results can be 
obtained from both models. Application of the model to a piston-driven 
extrusion flow shows the occurrence of spurt oscillations for a restricted 
range of prescribed inlet flow rates. The found oscillations are qualitatively 
in correspondence with experimental results. 

A. Fasano (ed.), Complex Flows in Industrial  Processes
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4.1 Introduction 

The manufacturing of plastic products from polymer melts is an industrial 
branch of strongly increasing economic importance. Many large compa­
nies are occupied with this kind of production process. Polymers are fre­
quently used in industrial applications because of their excellent material 
and mechanical properties, and their range of applications is extremely 
wide (from daily products as plastic bags to very advanced applications 
in the automotive and aerospace industry). Industrial manufacturing of 
plastic products from polymer melts can be performed by processes such 
as extrusion, injection molding, film-blowing, spinning, or cable-coating; 
the final products were plastic household goods, sheets, wires or fibers, 
and coated cables, among others. Increase of operational profits requires 
higher production rates, however, without distorting the quality of the final 
product. Qualitative requirements on the final product concern strength, 
homogeneity, transparency, visual aspects, and the like. The often contra­
dictory requirements mentioned earlier have inspired both the rheological 
world and scientists from applied mathematical physics and continuum 
mechanics to produce an immense amount of literature (see, for example, 
journals such as the Journal of Non-Newtonian Fluid Mechanics and the 
Journal of Rheology). In this area of research both material aspects, such 
as constitutive behavior of highly nonlinear viscoelastic fluids, and descrip­
tion of flow patterns (inclusive boundary conditions, e.g., slip or no-slip, 
and entrance and exit effects in dies or molds) playa role. In many of these 
investigations, stability comes into sight. Owing to the nonlinearity of the 
problems concerned, mostly numerical methods can lead to quantitative 
results, but several analytical approaches have also been published. It is 
evident that all the results obtained should ultimately be compared with, 
or supported by, experimental data, which are extensively reported in the 
literature. 

In an extrusion process, molten polymer is pressed through a die, which 
can be cylindrical, plane, or annular. In injection molding, molten polymer 
is pressed through a die into a mold, having the shape of the desired prod­
uct (e.g., cups, spoons, or complete dashboards for cars). In fiber spinning, 
molten polymer is pressed through a small hole and stretched to a fiber. 
Finally, in cable-coating, molten polymer is extruded from an annular die 
on a solid (e.g., copper) wire traveling at high speed, thus covering the 
wire with a thin shield of polymer (e.g., for electric insulation). 

In all the processes described here, distortions can show up when raising 
the production rate. These distortions always show up at the surface of the 
final product. In addition to the smoothness of the surface, they diminish 
qualitative requirements regarding strength and transparency. Therefore, 
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Figure 4.1 - Stationary flow curve with (in)stability regimes. 
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these distortions are highly unwished-for and should be avoided at all cost. 
It is an important subject of research to find the origins of these distortions 
and to discover how to improve the polymer and/or geometry of the process 
in order to get rid of them. 

In this case, we concentrate on the extrusion of polymeric melts through 
a cylindrical capillary. The industrial aim of the process is to produce, at 
as high a rate as possible, great lengths of smooth plastic wires. How­
ever, when the production rate is increased above a certain critical level, 
distortions show up at the surface of the wire, making the final product 
worthless. These distortions are collected under the general name extrusion 
instabilities. The distortions can be of several types, with names such as 
sharkskin (small periodic surface distortions), spurt (larger periodic sur­
face and volume distortions), or gross-melt fracture (a complete nonperi­
odic global distortion). As shown in Figure 4.1, all ofthese types have their 
own specific regime of flow rates. In Figure 4.1 a typical flow curve (i.e., the 
stationary pressure in the extrusion barrel as a function of the stationary 
flow rate through the die) for an extrusion process is drawn. Four regimes 
are distinguished in this figure: 

• Regime I: the flow is regular here, yielding a smooth extrudate. 

• Regime II: the sharkskin regime; small periodic disturbances show up 
at the surface of the layer. 

• Regime III: the spurt regime, showing alternate smooth and disturbed 
extrudate. 

• Regime IV: gross melt fracture, a strongly distorted spiral-shaped ex­
trudate. 

Here, we restrict ourselves to spurt-type instabilities. When an extrusion 
process is in the spurt regime, the extrudate shows alternating smooth and 
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distorted regions. In this regime, the volumetric flow rate Q periodically 
jumps between a lower value (:::} smooth surface: classical flow) and a much 
higher value (:::} distorted surface: spurt flow). In addition, the pressure, 
driving the capillary flow, shows oscillations. These oscillations are often 
observed in experiments; they look like relaxation oscillations (cf. [10]). 
Therefore, we shall refer to them as spurt or relaxation oscillations. 

In spurt, as is understood here, the flow profile looks strongly different 
in two regions: 

• In the inner region (the kernel) the velocity gradient is small and the 
flow profile is flat, looking very much like cork flow; in this inner region 
the flow is similar to classical Poiseuille flow. 

• In a very small region near the wall the velocity profile is very steep, 
yielding very large values for the velocity gradient, or shear rate; this 
region is called the spurt zone. 

In the literature, spurt flow is explained in two different ways: 

• as a result of slip at the wall of the capillary; in this explanation, the 
spurt zone is in fact reduced to a surface layer in which slip takes place. 
The velocity at the wall is then no longer zero ([6], [11], among others). 

• as a result of nonmonotone constitutive behavior ([1], [2], [9]). 

Here, we shall adhere to the second explanation in which spurt is called 
a constitutive instability and in which the no-slip boundary condition is 
maintained. 

4.2 Extrusion Model 

The extrusion device we consider here is modeled as a capillary rheometer, 
consisting of a huge barrel filled with polymeric melt, closed at one side by a 
movable plunger, and on the other side connected to a narrow capillary (see 
Figure 4.2). The plunger moves with velocity Vo and has an area A, whereas 

-
P(t) 

Qi p(t) ez 2R Q(t 
)i - )i 

) 

I 

l(t) L 
I 
I 

-
Figure 4.2 - Capillary rheometer. 
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the barrel has length I (I = l(t) = lo- Vt). Due to the plunger movement, a 
pressure P is built up inside the barrel, and the melt is forced to leave the 
barrel and flow into the capillary, with volumetric flow rate Q. At the end 
of the capillary, the melt leaves the capillary and the extrudate is formed. 
Because the flow in the barrel and in the capillary are of essentially different 
types, the two flows are also modeled in different ways. In the main part of 
the barrel the flow is an almost uniform compression flow (plug flow). The 
pressure becomes very high here due to the narrow inlet of the capillary, 
but the velocity is rather low because the barrel is very wide (compared 
to the capillary). Hence, in the barrel the flow is compression dominated, 
and shear is negligible here. Thus, the compressibility of the melt inside 
the barrel must be taken into account, and the melt density p is variable. 
Because the flow in the barrel is uniform, P and p are only time-dependent, 
i.e., P = P(t) and p = p(t). On the other hand, the flow in the capillary is 
strongly shear dominated, due to the no-slip condition, which is assumed 
at the wall, and the relatively high velocity compared to that in the barrel. 
Then the influence of compressibility is small, and the melt flowing through 
the capillary may be assumed to be incompressible. Hence, the melt flows 
through the whole capillary with uniform volumetric flow rate Q = Q(t). 

We first model the flow inside the barrel. The unknowns here are the 
density p(t), the pressure P(t), and the volumetric flow rate Q(t) flowing 
from the barrel into the capillary. The relations to be used are: 

• a global balance law for the total melt in the barrel: 

d . 
dt (pAL) = -pA Va + pAL = -pQ 

where i = -Va . 
• a constitutive (linearly elastic) compressibility law, relating the pres­

sure to the density: 

1 dp 1 dP 
pdt K dt 

where K is the compression or bulk modulus of the polymer melt. 

From these two laws the following relation between Q and P can be derived 

( 4.1) 

Here, Qi = AVo, the rate of volume displaced by the plunger, and X = 
Al / K, a material coefficient related to the compressibility. 

For the shear dominated flow in the capillary (length L, radius R, 
1fR2 « A) we assume (r and z are cylindrical coordinates defined in the 
capillary): 
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• laminar incompressible flow: 

v = v(r, t)ez 

• pressure linear in z and equal to P(t) at the inlet (z = 0) and zero at 
the outlet (z = L) of the capillary; this yields 

8p P(t) 
8z L 

• body force and inertia term are negligible (piJ ~ 0) in the equation of 
motion; this reduces this equation to its stationary version: 

• constitutive equation for the stress of the (general) form 

T = -pI + 21/s V + S 

1 
(V = 2(V'v + (V'vf)) 

where 21/sV represents a small Newtonian viscous component (which 
can be due to a small-molecule solvent, but just as well can represent 
the contribution due to a higher relaxation rate (cf. [1, section 2.6J or 
[3]), which becomes apparent for high shear rates), while S is the extra 
viscoelastic stress characterizing the polymer contribution. For moder­
ate shear rates the viscoelastic stress S dominates the Newtonian term 
21/sV, but for higher shear rates (as in the spurt zone), the opposite is 
true. 

Using the four points listed earlier, it turns out that only the equation of 
motion in the axial z-direction is not trivially zero. This equation reads 

~.!(1/W - Srz) = 8p = _ P(t) 
r8r 8z L 

where w=w(r,t)=-8vj8r; the shear rate, and Srz=Srz(r,t). After one 
integration with respect to r, where (8vj8r) (0, t) = Srz(O, t) = 0, this 
equation can be evaluated to 

P(t) 
1/w(r, t) - Srz(r, t) = 2L r. 

Equations (4.1) and (4.2) must be supplemented by 

(4.2) 

• a constitutive equation for the extra shear stress Srz (see Section 4.3) 

• the no-slip boundary condition at the wall of the capillary (r = R): 

v(R,t) = 0 (4.3) 
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• a relation for the volumetric flow Q(t) reading 

Q(t) = 211' loR rv(r, t) dr = 11' loR r2w(r, t) dr (4.4) 

where the latter result is derived after one integration by parts in which 
the no-slip boundary condition is used. 

We proceed by making the basic equations (4.1) to (4.2) dimensionless. 
For the normalization of the shear stress, we use its initial viscosity TJo and 
its first relaxation rate >., both representative for small shear rates (see 
Section 4.3). That is, we take Srz = -7]0>'8, where 8 is the dimensionless 
shear stress. As we shall see in the next section, TJo :» 7]s' The radial 
coordinate r is normalized on R (f = r I R), the velocity on >'R (v = v I >.R), 
and the shear on >. (tV = wi>'). The dimensionless flow rate and pressure 
are defined as 

respectively. Finally, a time scale T, such that i = tiT, is chosen as 

T= 8TJoX~ 
11' R4 

making the time derivative in (4.1) of 0(1). Note the dependence of Ton 
the geometry of the die by the factor L I R4. This factor is often encountered 
in experiments. 

This normalization leads to the following set of equations (omitting the 
hats): 

d~~t) = Qi - Q(t) 

eW(r, t) + S(r, t) = 4P(t)r 

Q(t) = 101 
r 2w(r, t) dr 

v(l, t) = 0 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

In (4.6), e = 7]slTJo « 1 is a small parameter, relating the (very small) 
viscosity at high shear rates to the viscosity at moderate shear rates. 

4.3 Constitutive Model for the Shear Stress 

In [1], [2], and [9], several constitutive models (JSO, KBKZ, with one 
or more relaxation rates) are studied, all having one common feature: a 
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Figure 4.3 - (a) A nonmonotone stationary shear curve; (b) the steady­
state velocity profile v(r) in spurt flow showing a kink at r = r* (from [1]). 

nonmonotone stationary shear curve (total stationary shear stress versus 
shear rate). An example of such a shear curve is shown in Figure 4.3(a). For 
our consideration, the most important consequence of this nonmonotonic­
ity is that the apparent viscosity for very high shear rates, as they occur in 
the spurt zone, is much smaller than the viscosity for the moderate shear 
rates in the kernel. 

To visualize this, we consider a stationary solution of the system de­
scribed in the preceding section. Let w(r) = limt->oo w(r, t) be the station­
ary value of the shear rate and F(r) = limt->oo(4P(t)r), r E [0,1]' the 
stationary value of the total shear stress. Then, as shown in [2, section 
3]' for small enough e-values, the stationary shear curve is nonmonotone. 
This implies that for certain values of F the stationary solution of (4.6) 
is not unique. More relevant for our considerations, however, is the follow­
ing observation: If F(l) is large enough, there is a jump in w(r) from a 
branch with rather low w-values to a branch with much higher w-values (see 
Figure 4.2). We refer to a stationary solution on the first branch as classical 
flow and to one on the latter branch as spurt flow. 

To distinguish between classical flow (moderate shear rates) and spurt 
flow (high shear rates) we propose the following (simplified) discrete model: 

• In the classical flow zone we assume S = wand we neglect eW with 
respect to w. In that case (4.6) reduces to (here S(r) and. F are the 
stationary values of Sand P) 

S(r) = w(r) = 4Fr 

This corresponds to Branch I in Figure 4.3(a) . 

(4.9) 

• In the spurt zone, we neglect (motivated by the very low values of the 
viscosity at these high shear rates) S with respect to eW, and then (4.6) 
yields 

eW(r) = 4Fr (4.10) 

corresponding to Branch II. 
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Figure 4.4 - The pressure P(t) and the volumetric flow rate Q(t) as 
functions of time t, showing persistent oscillations (from [1]). 

From the three-dimensional theories presented in [1] and [3], we mention 
the following results (which will form the basis for our discrete model to 
be presented in the next section): 

1. For a certain range of prescribed inlet flow rates Qi (piston-driven flow), 
spurt is found to occur. Spurt is manifested by a kink in the velocity 
profile ([1, figure 2.2], or Figure 4.3(b)); a narrow zone of very high 
shear rates is developed at the capillary wall. This results in a sudden 
increase in the outgoing flow rate Q(t). This kinked velocity profile can 
be obtained by integration with respect to r of (4.9) and (4.10) (with 
w(r) = -8v/8r). 

2. For a certain range of prescribed inlet flow rates Qi periodic oscillations 
in both the pressure and the flow rate are found ([1, figure 4.11], or 
Figure 4.4). 

3. The transition from classical to spurt flow, and vice versa, is always 
very fast ([1, figure 3.3], or Figure 4.5). During this fast transition the 

f(t) w(l, t) ,.....~~~~~~~..----, 

1 1 

-t -t 

Figure 4.5 - The pressure gradient f(t) = P(t)/L and the velocity gra­
dient w(l, t), directly related to Q(t), for spurt flow (from [1]). Notice the 
very fast increase of w(l, t) or Q(t) at the transition to spurt (t ~ 5.5), 
and the rather flat behavior of f(t) or P(t) at the same instance of time. 
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pressure remains (approximately) constant, whereas the flow rate sud­
denly jumps. The transition classical ---> spurt (loading trajectory) takes 
place at a higher pressure than the reverse transition spurt ---> classical 
(unloading trajectory) ([1, section 4.5]). This difference between loading 
and unloading explains hysteresis, a phenomenon that is observed in ex­
periments by Kissi and Piau [7]. A constitutive model in which loading 
and unloading trajectories coincide excludes hysteresis, and is therefore 
in our view inappropriate to our purposes. 

4. During spurt the thickness of the spurt zone remains constant. This 
result is referred to as shape memory ([1, sections 4.3 and 4.5] or [9]). 

In the next section we construct, on the basis of these observations, from 
three-dimensional constitutive theories a simplified discrete model. This 
mathematically simple model will be able to predict relaxation oscillations 
in pressure and flow rate that are, at least qualitatively, similar to experi­
mentally observed relaxation oscillations, reported in [4], [5] and [8]. 

4.4 Discrete Model 

The starting point for our discrete model is the possible existence of a 
spurt zone in capillary flow. During spurt, the spurt zone reaches from, 
say, r = r* < 1 to r = 1 (1 - r* « 1), whereas in classical flow no spurt 
zone exists (r* = 1). Hence, in accordance with (4.6), (4.9) and (4.10) we 
take 

w(r, t) = 4rP(t), 

w(r,t) = 4rP(t) , 
I:: 

OS; r < r* 

r* < r S; 1. 
(4.11) 

With use of (4.11) in (4.7) the volumetric flow rate can be evaluated into 

Q(t) = 11 r2w(r,t)dr 

= P(t) ((r*)4 + (1 - y*)4)) 

~P(t)(l+~(l-r*)) 
because (1 - r*) « 1. Assuming that (1 - r*) 
normalized thickness of the spurt zone by 

R(t) = (1 - r*)/I::. 

(4.12) 

0(1::), we define the 

( 4.13) 
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Substitution of (4.13) into (4.12) yields 

Q(t) = (1 + 4R(t))P(t). (4.14) 

To make the model complete, we need an evolution equation for R(t). 
This equation must match the four points listed in Section 4.3, especially 
points 3 and 4. On the analogy of the slip model proposed by Greenberg 
and Demay in [6], which is also used in [8], we introduce the following 
evolution equation for the normalized thickness of the spurt zone, 

dR dt = ->.[R(t) - aH(P - B(Q))] (4.15) 

with>' and a material parameters, H the Heaviside function, and B(Q) a 
switch curve, defined by 

(4.16) 

where Q1 and Q2 are two fixed values, such that Q2/(1 + 4a) < Q1 < Q2' 
This accounts for the fact that the transition spurt ~ classical takes place 
at a lower pressure than the transition classical ~ spurt, in accordance 
with point 3 in Section 4.3. It follows from (4.15) (see Section 4.6) that 
R( t) = 0 in classical flow, and that R( t) = a( = constant) in spurt flow, in 
accordance with point 4. 

The switch curve B(Q) is depicted in Figure 4.6. Because by assumption 
the transition from classical to spurt flow, and vice versa, is very fast, we 
have >. » 1 in the normalized time scale used here. 

B 

Phase 2 
Ql~------~~-------~--------~-,: .... 

Phase./ : Phase a.,k 
.......... .,J-.-":' - - -~ - - - -~~.--"'---- B( Q) 

I : Phase 4 ...... 
I· .' 

I : 
I . 

I .. ;-
I 

I . 

Figure 4.6 - The switch curve B(Q) (bold line); the dashed line represents 
the relaxation loop. 
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Recapitulating, we have the following discrete model for the unknowns: 
P(t), Q(t), and R(t): 

d~?) = Qi - Q(t) 

Q(t) = (1 + 4R(t))P(t) ( 4.17) 

d~~t) + )"R(t) = a)"H(P - B(Q)). 

Assuming that the process starts from rest, we have as initial conditions 

P(O) = R(O) = O. (4.18) 

This system can be solved either numerically (see [5]) where results show 
relaxation oscillations in P(t) and Q(t) or analytically (see Section 4.6). 

4.5 Comparison with Slip Model 

Our discrete model presented in the preceding section will now be 
compared with a more or less analogous discrete slip model derived by 
den Doelder et al. [5]. They used a model for slip at the capillary wall 
in agreement with a slip law first proposed by Greenberg and Demay [6]. 
In this slip model, v(l, t) can be either larger than zero or equal to zero, 
depending on whether slip occurs. When slip starts, the flow rate sud­
denly increases. The slip velocity at the wall is taken proportional to the 
maximum shear stress at the wall, which in its turn is proportional to the 
pressure P(t). The appearance of slip is governed by an evolution equation 
of the same type as the one for R(t). Thus, 

v(l, t) = G(t)P(t) 

where G(t) satisfies (4.15) with R(t) replaced by G(t). 
When slip occurs, the volumetric flow rate equals (instead of (4.7)) 

Q(t) = 211 rv(r, t) dr = v(l, t) + 11 r 2w(r, t) dr. 

In [5], the fluid is assumed to be Newtonian everywhere in the flow region, 
yielding 

S(r, t) = w(r, t) = 4r P(t), VrE [O,lj' 

Substitution of this relation for w into the equation for the flow rate leads 
to 

Q(t) = (1 + G(t))P(t). 
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Hence, by comparing the latter relation with (4.14), we see that if 

G(t) ~ 4R(t) 

exactly the same model follows. Thus we conclude that in this approach, 
and in a mathematical sense, no difference between the two models based 
on either no-slip, spurt zone or slip, no spurt zone exists. 

4.6 Analytical Calculations 

The nonlinear system (4.17) can be solved analytically if we make use 
of asymptotics that are based on ,\ » 1 (fast transitions)(see also [12]). 
For this, we distinguish four phases, of which phase 1 represents classical 
flow, phase 3 spurt flow, and phases 2 and 4 are transition phases from 
classical to spurt flow and vice versa, respectively. In phases 1 and 3 the 
evolution equation (4.15) yields constant values for R(t) (the very fast 
exponential evolution (ex exp( -,\t), ,\» 1) takes place in the transition 
phases). Hence, in phase 1, R(t) = 0, whereas in phase 3, R(t) = 0. 

During very short (0(,\-1)) phases 2 and 4, R(t) jumps from 0 ~ 0 and 
from 0 ~ 0, respectively. Because R(t) is constant during phases 1 and 3 
(shape memory), the system (4.17) is linear and can be easily solved. On 
the other hand, the transition phases are so short (0(,\-1)) that the changes 
in pet) according to (4.17) are also of (0(,\-1)) and, hence, negligible in an 
approximation for ,\ » 1. Thus, pet) may be taken constant during these 
phases, and again the system (4.17) is linear and easy to solve. 

Therefore, we distinguish the following four phases. 

Phase 1. 0 < t < tl: Classical Flow 

In this initial phase P < B(Q) and hence H(P - B(Q)) = o. Then (4.17; 
eq. 3), with R(O) = 0, yields R(t) = o. This reduces (4.17) and (4.18) to 

dP 
dt = Qi - Q(t), P(O) = 0 

(4.19) 

Q(t) = pet) 

the solution of which reads 

(4.20) 

The end of phase 1 is at t = tI, where tl is the time where pet) reaches for 
the first time the switch curve B(Q). Hence (see Figure 4.6), P(tI) = Ql, 
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yielding 

(4.21) 

provided Qi > Ql. We note that tl = 0(1), which justifies our time scaling. 

Phase 2. tl < t < t2: Transition from Classical to Spurt Flow 

Because P(t) crosses B(Q) from below at t = tl, we assume that during 
this phase P > B(Q), so H(P - B(Q)) = 1. For this phase we introduce a 
new time scale: T = )..(t - tJ), such that (4.17) becomes (R = R(T), etc.) 

dR 
dT + R(T) = a, R(O) = 0 

dP 1 1 
dT = >:(Qi - Q(T))(= O(),,- )) P(O) = Ql (4.22) 

Q(T) = (1 + 4R(T))P(T). 

The solution of this system reads 

P(T) = P(O)(l + 0()..-1)) ~ Ql 

R(T) = a(l- e-T)(~ a) (4.23) 

Q(T) = [1 + 4a(1 - e-T)lQl(~ (1 + 4a)Ql). 

We define the end of phase 2 as T = T2, such that e-T2 = )..-1. This yields 

So, indeed, T2 = 0(1), implying that the time that phase2 lasts is very 
short (0()..-1)) compared to phase 1. 

Phase 3. t2 < t < t3: Spurt Flow 

In this phase we assume P > B(Q) (see Figure 4.6), so H(P - B(Q)) = 1. 
Because (4.23 eq. 3) yields R(t2 ) = a(l + 0()..-1)) ~ a, for )..-1 ~ 0, (4.17 
eq. 3) renders R(t) = a, for all t E (t2, t3). 

With the new time scale T = (t-t2)' (4.17) reduces to (P = P(T), etc.) 

dP 
dT = Qi - Q(T), P(O) = Ql 

(4.25) 

Q(T) = (1 + 4a)P(T). 
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The solution of this system reads 

P(T) = Q(T) = ~ + [Ql _~] e-(1+4a)T. (4.26) 
1+40: 1+40: 1+40: 

Because phase 3 always runs along the line P = Qj(l + 40:) in a P - Q­
diagram, it must be so that if this line crosses the switch curve B(Q) this 
happens in the point P = B(Q2) = Q2/(l + 40:). According to (4.26), 
Q(T) --+ Qi, for T --+ 00. As Q --+ Qi, there are now two possibilities: 

1. If Qi > Q2, then P(T) --+ Qd(l + 40:) > B(Qi) = Q2/(l + 40:). In this 
case no transition takes place, and phase 3 tends to a final stationary 
spurt state, in which (P(T), Q(T)) --+ (Qd(l + 40:), Qi)), for T --+ 00. 

2. If Qi < Q2( < (1 + 40:)Ql, see (4.16)), then a transition to classical 
flow takes place when Q(t) reaches Q2 > Qi, and phase 4 starts at 
t = t3( < 00). Here, t3 is such that Q(t3) = Q2, yielding 

(4.27) 

We assume case 2 holds, and we proceed with phase 4. We shall see that 
in this case relaxation oscillations occur. 

Phase 4. t3 < t < t4: Transition from Spurt to Classical Flow 

At t = t3, P(t) crosses the switch curve coming from above, so during this 
phase we assume P < B(Q), and thus H(P - B(Q)) = O. With the new 
time scale T = >.(t - h), (4.17) reduces to (R = R(T), etc.) 

dR 
dT + R(T) = 0 R(O) = 0: 

dP 1 
- = -(Qi - Q(T))(=O(>.-l)) dT >. . P(O) = Q2/(l + 40:) (4.28) 

Q(T) = (1 + 4R(T))P(T). 

The solution of this system reads 

R(T)=o:e-T (--+0) (4.29) 

Q(T) = (12~0:) (1 + 40:e-T
). 
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Analogous to phase 2, phase 4 ends at t = t4 = t3(1 + O(A-I)). At t = t4, 
phase 1 starts anew, not from P(O) = Q(O) = 0, but from 

P=Q=Q2/(1+4a) 

This brings us to the fifth phase. 

Phase 5. t4 < t < t5: Classical Flow 

Analogous to phase 1, the solution now reads 

P(t) = Q(t) = Qi + C 2~a -Qi) e-(t-t~). (4.30) 

This phase ends at t = t5 when Q(t5) = QI, yielding 

t = t + I (Q i - Qz/ (1 + 4a) ) 
5 4 n Qi - QI (4.31) 

after which a phase identical to phase 2 follows. 
Thus, a loop is followed as depicted by the dashed line in Figure 4.6. 

Because this dashed line is a closed loop, it represents a periodic phe­
nomenon. Its behavior is of relaxation type, because phases 2 and 4 are 
extremely short. Therefore, we call this a relaxation oscillation. The period 
of one oscillation is (t3 - t2) + (t5 - t4), or 

Tos = In ((1 + 4a)QI - Qi)((l + 4a)Qi - Q2) 
(1 + 4a)(Q2 - Qi)(Qi - QI) 

(4.32) 

for A-I ~ O. The behavior of the pressure P(t) and the volumetric flow 
rate Q(t) during these relaxation oscillations is depicted in Figure 4.7. 

Hence, the conclusion is that the obtained analytical results clearly 
predict relaxation oscillations. These relaxation oscillations occur if 

(4.33) 

p Q 

t t 
Figure 4.7 - Relaxation oscillations for the pressure P(t) and the volu­
metric flow rate Q(t) (QI = 1, Q2 = 3, Qi = 2, a = 1, and A = 1000). 
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A relaxation loop consists of four distinct phases: in phase 1 the flow is 
classical, whereas in phase 3 spurt occurs; phases 2 and 4 are relatively 
short transition phases. 

4.1 Results 

Our model described by the system (4.17) is characterized by the parameter 
set {Ql, Q2, a, -X} plus the prescribed inlet flow rate Qi. In the preceding 
section we have seen that dependent on the value of Qi different types 
of capillary flow can occur. We distinguish three regimes for Qi, knowing 
Qi < Ql, Ql < Q2 < Ql, and Qi > Q2' For the numerical results in this 
section, the following fixed values for the parameters are used: 

Ql = 1,Q2 = 3,a = 1,-X = 1000 . 

• In the first regime, Qi < Ql, the flow is classical, like a Poiseuille flow. 
Because there is no spurt zone, the velocity profile is smooth. The 
pressure and flow rate tend monotonically to their stationary values, 
according to (4.20). This behavior is depicted in Figure 4.8. 

• In the second regime Ql < Qi < Q2, persistent relaxation oscillations 
occur. The flow periodically jumps from classical to spurt and vice 
versa, and large jumps in the pressure and, especially, the flow rate are 
found. The value of the flow rate is relatively high during spurt, and 
low during classical flow. Typical relaxation oscillations in P(t) and 
Q(t) in the case where Qi = 2 are depicted in Figure 4.7. 

P,Q 

1 

Qi ...................................................................................................... . 

. 2 

o 1 2 3 4 t 
Figure 4.8 - The pressure P(t) and the flow rate Q(t) as a function of 
time t for Qi = 0.8 < Ql (classical flow). 
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Figure 4.9 - The pressure P(t) and the flow rate Q(t) as a function of 
time t for Qi = 4 > Q2 (spurt flow). 

• In the third regime Qi > Q2, the flow again tends to a stationary state, 
but now to one in which spurt occurs. The spurt zone is fixed to R = a, 
and the pressure and flow reach the stationary values P = Qd(l +4a), 
and Q = Qi, respectively, according to (4.26). In this regime we can 
further distinguish between Qi < (1 + 4a) and Qi > (1 + 4a). If 
Qi < (1 + 4a), an overshoot in both P(t) and Q(t) occurs, before they 
reach their final state. This overshoot at t = tl is depicted in Figure 4.9, 
for the case when Qi = 4. If Qi > (1 + 4a), no overshoot occurs; in 
this case the steady state is reached in a monotone way. 

4.8 Conclusions 

In this case study, we have presented a discrete model for the capillary 
flow of a polymeric fluid, allowing for the occurrence of spurt flow. In 
spurt flow a very thin layer of very high shear rates exists near the wall 
of the capillary, while in the kernel the flow is almost uniform (like plug 
flow). Our model was built on the assumption that the flow in both the 
kernel and the spurt layer can be described by linear Newtonian fluid laws, 
however, with quite distinct viscosities: The viscosity in the spurt layer is 
taken to be much smaller (O(c1),O < c« 1) than the one in the kernel. 
At the wall of the capillary, a no-slip condition is maintained. 

Our model is based on the fundamental concepts of: 

• global mass balance for the compressible fluid in the barrel. 

• equation of motion for the shear flow in the capillary. 
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Figure 4.10 - The pressure P(t) as a function of time t for a loading 
process in which Qi is stepwise increased at time steps T, with T = 2.1, 
according to the sequence {0.4, 0.8, 1.2, 1.8, 2.4, 3.6, 4.8}. 

• a global relation for the total flow rate through the capillary . 

• a postulated evolution relation for the thickness of the spurt layer (in­
cluding a switch relation describing the forming or vanishing of a spurt 
layer). 

We have shown that the model thus obtained was able to describe the 
distorted extrusion flow phenomenon called spurt. Spurt is manifested by 
relaxation oscillations in both the pressure in the barrel and the flow rate 
through the capillary or die of the extruder. The relaxation oscillations 
found here are of the type depicted in Figure 4.7. Moreover, a finite range 
of prescribed inlet flow rates Qi was found for which relaxation oscillations 
can occur. This was shown by the simulation of a realistic loading process, 
depicted in Figure 4.10, in which only for a restricted range of Qi-values 
spurt oscillations show up. For Qi-values below this range (Qi < Qd the 
flow tends to a stationary classical (Poiseuille) flow, whereas for values 
beyond this range (Qi > Q2) the flow tends to a stationary spurt flow 
(having a fixed spurt layer). 

We consider it important to note here that the discrete model presented 
in Section 4.4 satisfies each of the four points listed in Section 4.3, which 
emanate from a three-dimensional theory (from [1]): 

1. According to (4.33) spurt only occurs for a restricted range (Qi E 
(Ql, Q2)). The sudden increase in flow rate Q at the time spurt starts, 
mentioned in Section 4.3, is clearly depicted in Figure 4.9. 

2. For the range (Ql, Q2) mentioned in 1, relaxation oscillations are found 
as in Figures 4.7 and 4.10. 

3. The very fast transition from classical to spurt flow and vice versa is 
manifested by the high numerical value for>. in the evolution equation 
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(4.15). In Section 4.6, it is shown that during transition phases 2 and 
4 the pressure remains constant, but the flow rate makes large jumps. 
The transition from classical to spurt flow takes place at a normalized 
pressure value P = Q1, and that from spurt to classical flow at the lower 
value P = Q2/(l + 4a) < Q1. 

4. During the spurt phase (i.e., phase 3 in Section 4.6) the normalized 
thickness of the spurt layer remains R( t) = a, hence constant (shape 
memory). 

Hence, so far our discrete model is in accordance with the three­
dimensional theory of [1]. 

In Section 4.5, we have shown that our discrete no-slip model renders 
exactly the same results as the discrete model of [5], which is based on a 
model with slip at the capillary wall (and without an internal spurt layer). 
Hence, in a mathematical sense, no differences between these two models 
exist. 

Relaxation oscillations in extrusion are often observed in experiments 
and in the literature. A lot of experimental data, especially on extrusion 
instabilities, can be found in the new book by Koopmans and Molenar, [8]. 
Comparison of our analytical results as depicted in Figures 4.7 to 4.10 with 
experimental results as they can be found in, e.g., [9, figure 9]' [4, figure 3]' 
and [8] indicates a good qualitative agreement. However, for a quantitative 
agreement, further modifications of the model presented here are needed. 
As shown in [4], at least a nonlinear evolution equation is needed. That this 
can lead to an essentially improved quantitative agreement is shown by den 
Doelder et al. [4], where, among others, a nonlinear slip relation, relating 
the slip velocity to the square of the wall shear stress, is used. 'Translated to 
our model, this would imply that relation (4.14) must become nonlinear (in 
that P(t) must be replaced by P 2(t)). It remains a point for further research 
to investigate what are the consequences of this modification. Moreover, it 
again stresses the fact that a theoretical basis for the (empirical) evolution 
equation for R(t) is still missing. A further analysis of the results of the 
three-dimensional theory of the thesis of Aarts [1] could render some new 
insights in this aspect. 
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ABSTRACT. Crystallization of polymers is an extremely complex process 
exhibiting several peculiar properties that makes it substantially different 
from usual transitions from liquid to solid state. Starting from the ex­
perimental data on isobaric crystallization of polypropylene provided by 
Montell (Ferrara, Italy), we illustrate a mathematical model based mainly 
on the papers [18), [30), and [31) that leads to a correct physical description 
of the process. 

5.1 Introduction 

The determination of pressure-volume-tempemture diagrams for polymers 
in ranges including solidification processes presents experimental and the­
oretical difficulties because of the particular complexity of the chemical 
structure of polymers. On the other hand, knowing the behavior of poly­
mers during cooling from a molten to solid state is of fundamental impor­
tance, for example, in injection molding processes. This explains the abun­
dance of experimental literature on the subject (see, e.g., [5], [16), [17]). 

There is also a great deal of literature about mathematical modeling of 
polymer crystallization (see, in particular, the survey papers [5) and [17) 
as well as [2), [3)' [4), [6)' [10)' [14), [19), [20], and [23]) with an impressive 
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variety of proposed models. Due to the complexity of the phenomenon 
all models have been formulated on a heuristic basis, although crystal­
lization models are often inspired by the well-known Avrami-Kolmogorov 
phase change model ([7]), which has been given a rigorous justification by 
Kolmogorov, grounded on a probabilistic argument [24]. The effort of us­
ing probability as the basic tool for the mathematical description of crystal 
growth and nucleation over a range of temperature has been successfully 
undertaken in recent years by V. Capasso and coworkers ([11], [33]). The 
study of the thermodynamics of nucleation has been performed in [1], [21], 
[39], [40]' [41], [42], and [43]. 

A discussion of phase change models for polymers is out of the scope 
of this chapter, and for this reason we refer to the survey papers. Let us 
just recall the main features of polymer solidification. Crystallization takes 
place over a relatively large temperature interval, depending on pressure, 
and is a two-step process (nucleation and growth) proceeding at a rate that 
depends on pressure, temperature, and the crystal volume fraction already 
in the system. The influence of the last factor must be attributed to the 
so-called impingement phenomenon with a twofold mechanism: (1) The 
presence of crystals reduces the volume available (and thus the probability) 
for nucleation (this is the essential core of Kolmogorov's argument), and 
(2) the collision between two growing crystals stops their radial growth in 
all directions of contact points (as a consequence, there are sharp interfaces 
among crystals that are clearly observable). 

Remark 5.1. This situation is not peculiar to polymer crystallization; it 
occurs in other processes, like solid-solid transitions in steel, for which 
A vrami and Kolmogorov theories have been developed. 

What is really typical of polymer crystallization is that what we have so 
far called crystals are in fact crystal aggregates with amorphous inclusions. 
The really crystalline components of such complexes are thin laminar ele­
ments (lamellae) growing approximately along radii from the nucleus (with 
possible branching) and giving rise to a structure called spherulite, having 
typical dimensions ranging from several microns to ten and hundreds of 
microns. 

Clearly the density and size distribution of spherulites at the end of the 
process depend on the time spent in the phase change temperature range 
and are going to critically influence the mechanical properties of the sys­
tem. Even when spherulites occupy the entire available volume, an amor­
phous fraction will be present and the crystal volume fraction never reaches 
unity. 

It is usually assumed that for any given temperature in the crystal­
lization range there is a known amount of residual amorphous phase. This 
leads to the definitions of an experimental function: the maximum (or 
equilibrium) crystal volume fraction weq(T), whose properties will be dis­
cussed later. 
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As we said, phase change occurs when the absolute temperature T 
ranges in some pressure-dependent interval (Tg1ass , Tmelt). For T 2:: Tmelt 
(melting point) the system is liquid (in the thermodynamical sense; the 
rheology of polymers is another wide and fascinating research field with 
many still-open questions), while for T approaching Tglass (glassy transition 
temperature) the viscosity of the amorphous phase increases to a point that 
the mobility of the polymer chains is no longer sufficient to arrange them 
according to a crystalline pattern, so that phase change stops completely. 

To this already complex picture we should add other peculiar effects, 
like secondary crystallization, effects of nucleation seeds (owing, e.g., to 
impurities), memory effects (in melting-solidification cycle sites occupied 
by crystals prior to melting are more likely to become nucleation sites 
during the next cooling stage), the influence on nucleation rate by the 
stress history experienced by the molten phase, thermally induced flows, 
and the like. Such an extremely complex scenario is in itself an explanation 
of the diversity of models proposed in the literature. 

The obje~tive of this chapter is quite specific: investigating a model 
that correctly describes the solidification process of a polymer sample un­
der a prescribed pressure, taking into account the shrinking flow induced 
by thermal contraction and crystal growth. We refer explicitly to the ex­
perimental data on polypropylene provided by Montell Italia SpA. 

This is the experimental procedure that, carried out for several values 
of the pressure, leads to the determination of P-V-T diagrams. The model 
is designed according to the experimental apparatus in use at Montell's 
laboratories (see Fig. 5.1). 

Although we adopt a specific crystallization kinetic law, from a mathe­
matical point of view such a choice is not critical, in the sense that it could 
be replaced by another with similar mathematical characterization. The 
paper summarizes the results of research based on the experimental data 
obtained at Montell, which has gone through several steps: 

• analysis of the most important features of the measurement device; 

• formulation of a mathematical model coupling the thermal problem 
and the flow problem; 

• numerical simulation of the process, indicating the admissibility of 
some substantial simplifications; 

• theoretical investigation of the simplified model, aimed at showing ex­
istence and uniqueness of a classical solution; and 

• physical conclusions. 

We will follow this plan in our exposition. The main reference is [18J. 
The model helps us to better understand the development of the cooling 

process, in particular for what concerns the role of the function weq(T), 
acting as a constraint for the crystallization kinetics. It has been shown, for 
example, that for polypropylene the switch from the unconstrained kinetics 
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Figure 5.1 - The measurement device. 

to the crystallization stage fully described by the function weq(T) occurs at 
temperatures very close to the melting point. Information like this has an 
obvious practical relevance: The kinetic law for the crystallization does not 
have to be specified over the whole phase change interval. On one hand, 
this saves a great deal of heavy, difficult, and costly experimental work; on 
the other it explains the flexibility in choice of the kinetic law by various 
authors. 

The material presented here is based on [15], [18], [27], [28]' [29]' [30], 
and [32]. 

5.2 The Experiments 

The development of the model stems from the experimental data ob­
tained at Montell's laboratories. The basic equipment consisted of a device 
providing simultaneous measurements of temperature and average specific 
volume and ensuring a constant pressure during the entire cooling process. 
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5.2.1 Measurement Device 

The device can be roughly described as follows: a cylindrical chamber 
(radius R ~ 0.5 cm) with a thermocouple, on the cylinder axis, supported 
by a metallic rod, and a piston on the top side to maintain the pressure con­
stant at the desired value. The chamber is surrounded by a thick metallic 
heat dissipator. The device measures the temperatures at the thermocou­
ple, the heat-dissipator, and the piston, and the height of the sample at 
the same time. 

5.2.2 Measurements 

Experiments for different pressures in the range of 1 to 1600 bars have been 
performed. The modus operandi is as follows. The chamber is filled with 
a fixed quantity of polymer (the mass m is known) and pressure is kept 
constant at the chosen value during the whole experiment. The temper­
ature of the material is initially about 250°C (the polymer is completely 
molten and crystallinity is absent). The material is observed for about an 
hour until it approaches a temperature near room temperature (20-30°C). 
At this temperature the polymer is solid and the crystallization process 
is not active, from a practical point of view, because we are outside the 
crystallization interval. 

During each experiment the following quantities are plotted as functions 
of time: the temperature measured by the thermocouple, the temperature 
of the heat dissipator, and the height of the sample (thus the specific 
volume). 

In Figure 5.2, results obtained for some "typical" values of the pressure 
(p) are shown. 

5.3 Analysis of Experimental Data 

The first part of the model is a careful analysis of the experimental data to 
set up a background. What is important here is to obtain information about 
the state equation and the crystallization kinetics observed for different 
values of the pressure and for a large range of temperatures. 

5.3.1 Analysis of PVT Diagrams 

5.3.1.1 The State Equation (S. C.M.) 

The qualitative analysis of PVT diagrams of semicrystalline polymers 
shows some general characteristics that can be useful in applications [31 J. 



154 Complex Flows in Industrial Processes 

Speclllc Volume (Jig) VB Temperature (I<) 

1.360 r-------r-----""'T"-------.-----..---------. 

. . . ·····································i· .. ·············· ........... ' .. ' .. ' ... '~ ............................ ' .. ········r······················· ·······1·········.····················, ..... . 
: : : <i. 

1.300 

~ 1.250 

1 
..................................... i!:: ........................................ i!::.......... : .. .. ~::::;;:'"F--"--

j 1200 

I 1.150 

1.100 

•. ! ! ! P=140 Kg/em~ _ 
! ! ! P=350 Kg/em ---te---
! ! ! P=700 Kg/em 2 ....... 1.050 '--____ -'-____ .....L. ____ --' _____ ....... ____ ...J 

300 360 400 450 500 
Temperature (K) 

Figure 5.2 - P - V - T diagrams from experiments. 

In a typical V-T diagram (see Fig. 5.2) for a fixed pressure P, the 
behavior of the isobaric curves is linear for relatively high temperatures. 
Then we have the liquid-solid phase transition with a relevant decreasing 
of the specific volume, but this phenomenon interests a small temperature 
range (1O-15°C). After phase transition, the isobaric curve tends to resume 
a linear behavior. 

The experimental data can be thus described using the semi-empirical 
law (S.G.M.): 

1 (1 - w) R*(T rp ) p = Ve + P + 71" -.Lo (5.1) 

where Ve , 71", R*, To are parameters of the material; w is the crystal volume 
fraction of the polymer, T the temperature, P the pressure, and p the vol­
umetric density. This relation is in agreement with the linear behavior for 
high temperatures (when the crystallinity is zero) and for low temperatures 
(crystallinity having reached a constant value). 

The S.G.M. law is a generalization of the Spencer-Gilmore state equa­
tion, modified to take into account the crystallinity by means of the term 
(l-w) ([31]). 

550 
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5.3.1.2 Shift of the Phase Transition Temperature Range 

The range of temperature where phase change is active depends on pres­
sure; more exactly, it shifts to higher temperatures and shrinks when pres­
sure increases. 

This behavior can be incorporated in the model as follows: 

• The Clausius-Clapeyron equation ([25]'[35]) can describe the variation 
of T melt. This relation for polypropylene can be estimated from Figure 
5.2, obtaining: 

dTmelt 1 K 
---;[jJ = 40 kg/ cm2 

(5.2) 

• the Ehrenfest equation ([13],[22],[35]) is used to predict the shift of 
T glass ' Its estimate, from Figure 5.2, gives rise to: 

dTglass 1 K 
dP = 27kg/cm2 ' 

(5.3) 

Figure 5.3 shows the functions Tmelt and Tglass used in our simulations. 
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Figure 5.3 - Tmelt and T glass vs. pressure. 
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5.3.1.3 Crystallization Kinetics: Generalized Tobin Law 

The kinetics used in our model is the one proposed in [15J, because it seems 
to provide the best fit of the experimental data. On the other hand the 
model is mathematically flexible from this point of view and most of the 
results concerning existence and uniqueness remain valid for a large class of 
kinetic laws. The specific choice made here is the following generalization 
of Tobin's law [38J 

dw _ K(T P) a( )(3 1-a-(3 dt - , W Weq - W Weq (5.4) 

where 

[ -u/R ] [Kg(Tmelt(P)+T)] 
K(T, P) = Ko exp T _ Tglass(P) exp - 2T2 (Tmelt (P) _ T) (5.5) 

and Weq is the equilibrium crystallinity that depends on temperature; a, (3, 
and Ko are positive parameters (with a + (3 < 1) obtained by experiments 
([15]); u is the viscosity activation energy; R the gas constant; and Kg the 
nucleation constant. 

5.3.1.4 Modeling weq(T) 

All the tests carried out experimentally and numerically have shown that 
an essential feature needed to produce a reasonable model for nonisother­
mal crystallization is the dependence of Weq on temperature. In our experi­
ments (and in some ad hoc numerical simulations and qualitative analysis) 
we compared three different models for this dependence. 

The first is the Malkin model [9J, already known in the literature, and 
the other two are new empirical models that have been proposed to better 
understand the influence of this parameter. 

A plot of the three models is shown in Figure 5.4, together with a curve 
representing the average crystallinity observed in a typical experiment, 
while values of the constants a, TM , TIl, c, and TJ used, respectively, in 
(5.6), (5.7), and (5.8) can be found in Table 5.1; of course discrepancies in 
regions when Weq > ware of little interest. 

• Malkin's law: 

Weq = aJTM-T (5.6) 

(it underestimates crystallinity by a large extent) . 

• Our first empirical guess is the piecewise linear law (5.7): constant 
(= 70%Wmax ) for T in an interval of about 70 K near Tmelt> then 
growing linearly up to Wmax , and finally again constant (= Wmax ). 
The value of Wmax used is the same obtained experimentally and 
used in [12J (=0.456). This simple choice of Weq produces surprisingly 
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Table 5.1. weq(T) 

Malkin Model 

a 5.124 

TM 471.2 K 

Piecewise Linear Model 

TIl Tmelt -70 K 

Rational Model 

TJ 474.5 K 

A 1/75.0 

c 8 

w_eq vs Temperature(K) [P=I40.000000 Kglcm"2] 
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Figure 5.4 - Different models for Weq compared with the measured mean 
crystallinity. 
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good agreement with the data. 

{
0.7 Wmax 

weq(T) = . Tll-T 
Wmax [0.7+mm (0.3, TII-Tg, ... )] 

T E (TIl, Tmelt ) 

T E (Tglass , TIl) 
(5.7) 

• Formulating a relation between Weq and the temperature as a rational 
fitting allows us to obtain the best representation of the measured data 
for low temperatures. For the data at hand the result is the following 
(see 1rable 5.2) 

[A(T/ -TW 
weq(T) = wmax1 + [A(T/ - TW (5.8) 

In what follows, until the end of this section, we compare the results 
obtained using the three models, and we present the qualitative analysis 
developed for a simplified model that shows the importance of Weq for 
the understanding of the nonisothermal crystallization phenomenon (see 
Figures 5.5, 5.6 and 5.7). 

1rhe influence of Weq as a constraint for W can be emphasized by the 
following argument. Let us consider the simple case of a spatially uniform 
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Figure 5.5 - Low pressure (140 Kg/cm2). 
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Specific Volume (cm 3/9) vs Temperature (K) [P=350.000000 Kg/cm 2] 
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cooling process, governed by the ODE 

tV = K(T(t))wOt(weq - w)f3w!;Ot-f3 (5.9) 

where W = w(t) and we suppose to know T(t) as a function of time t. We 
can assume a linear behavior of T(t) = Tme1t - wt and Weq = constant = 
0.456, where ~ s~c < w < i s~c' as in the experimental situation. 

The differential equation is solved by separation of variables: 

lW (t) ds wl-Ot-f3iTmelt 
-----=f3 = eq K (v) dv 

Wo sOt(weq - s) W Tmel,-wt 
(5.10) 

which holds until w(t) < Weq' 
With the help of this equation we want to show two facts: 

1. The crystallinity Weq is actually reached during experiments. 
Substituting in (5.10) the data found in [15) we get: 

W l weQ ds i Tmel' 
Ot( _ )f3 < w!;Ot-f3 K(v) dv 

Wo S Weq S Tgl ... 

In fact, for T f/. [TglasS! Tme1t ) we have K(T) = O. This implies that the 
crystal volume fraction of the material reaches Weq before T reaches 
Tglass ' We observed this behavior in simulations; in fact 

while 

l weQ ds 
--''''''--'''''''''''f3 ~ 6.2 

Wo sOt(weq - s) 

i Tmel' w!;Ot-f3 K(v) dv ~ 14.7 
Tgl"", 

With this kind of data we can get regions with Woo < Weq only with 
cooling rates larger than 2 K/sec, i.e., about one order of magnitude 
larger than the cooling rates in our experiments. 

2. Weq is reached very fast. 
The equation 

lweQ ds wl-0t-f31Tmel' 
----,--....,...".f3 = eq K (v) dv 

Wo sOt(weq - s) w Trnelt-wt 

is solved by t ~ 265 sec with w = 1/3, t ~ 486 sec for w = 1/6. 
In other words, the kinetic law (5.4) is active only in a temperature 
range close to T melt. This feature is confirmed by the experiments. Of 
course the evolution of crystallinity after the constraint Weq comes into 
play is correctly described only by taking into account the temperature 
dependence of Weq. 
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Figure 5.8 - Fraction of the crystallization temperature range where the 
effect of the kinetics (5.4) is operative (dashed zone). 

We may conclude that it is possible to distinguish two different regions 
in the crystallization kinetics: first where the behavior is controlled by (5.4) 
and second, for lower temperatures, where the crystallinity is exactly the 
maximum attainable crystal volume fraction (weq ). 

It is interesting to note that in the first region, near Tmelt, we observe a 
fast growth of w, following the equation tV = K W O (weq - W ),8w!~o-,8. Here 
we remark that the choice of Weq has very little influence (see Figs. 5.5 to 
5.7) on the short range of temperatures in which W experiences a sharp 
variation. In conclusion, roughly speaking, for each fixed pressure the crys­
tallization process is governed by (5.4) only for a relatively small temper­
ature interval near T melt . Therefore the kinetic constant K(T, P) must be 
accurately measured only in such an interval. Figure 5.8 shows the regions 
in which (5.4) is active. 

5.4 Formulation of the Mathematical Model 

From analysis of the experimental data we obtained information concerning 
the kinetics and the state equation (the law relating pressure and density 
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of the material). Now we want to develop a suitable model for the evolution 
of the following quantities: 

• the thermal field T, 

• the crystal volume fraction w, and 

• the velocity V of displacement of the material. 

The first attempt at modeling was a full system including the fluid dy­
namics (with some approximation). Using this model we proved that some 
effects are negligible, and we formulated a second simpler model. For the 
latter model we developed a complete well-posedness theory proving the 
existence and uniqueness of a regular (classical) solution. 

5.4.1 The Velocity Field-V 

We are in the presence of a velocity field produced in the material due 
to thermal contraction and phase change. The velocity measured in ex­
periments is the velocity of the piston, Le., the global contraction of the 
material. Of course the Reynolds number is very low because of the high 
value of the viscosity and the low velocityl (Re ~ 10-6). Thus it is largely 
justified to simplify the equation of motion neglecting the inertia terms, 
although we must consider that the viscosity is not constant but depends 
on temperature (T) and crystallinity (w). Remembering that div V i= 0, we 
write the simplified Navier-Stokes equation for a compressible Newtonian 
fluid ([8],[34]): 

[ - -T 2 -] div 7J(\7V + \7V ) - "37J1 div V = \7 P (5.11) 

with the coupled continuity equation 

Pt + \7 P . V = - P div V. (5.12) 

From (5.12) we get an equation for div V (neglecting the influence of pres­
sure variation on p): 

ap ap 
. _ aT(T,w)DtT+ aw(T,w)Dtw 

dlvV=- p(T,w) (5.13) 

with 

a -D t = 8t + V . \7. 

1 The maximum velocity attained in the system is at the piston surface. In experiments, this 
quantity does not exceed 1 - 2 cm/h. 
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The movement of the piston is obtained by imposing conservation of 
the total mass. If h(t) is the coordinate of the piston (i.e., the height of 
the sample), we have 

t(t) (R 
211" 10 10 rp(r, z, t) dr dz = m (5.14) 

and we denote by ho the initial value of h. Differentiating with respect to 
t we get 

. (R t(t) (R op 8T op ow 
h(t) 10 rp(r, h(t), t) dr = - 10 10 r( 8T at + ow at )I(r,z,t) dr dz. 

(5.15) 

Boundary data for the dynamical problem must be written. We denote by 
u, v the radial and longitudinal components of V, respectively. Then we 
write the conditions 

u(r, h(t), t) = 0, v(r, h(t), t) = h(t) 

u(r, 0, t) = 0, v(r, 0, t) = 0 

while on the lateral wall we have 

u(R, z, t) = 0, 0 < z < h 

v(R,z,t) = v (h;t)) h(t), 0 < z < h 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

with v(l) = 1 and v(() decreasing to zero in (0 < ( < 1 for a fixed (0 ~ o. 
Equation (5.19) introduces a slip at the boundary near the piston regu­

larizing the velocity field at corner points. Of course this choice is artificial, 
but it greatly simplifies our analysis, and it is largely justified by the not­
crucial role played by V. 
Remark 5.2. It is interesting to note that if there is a part of the lateral 
boundary of a nonzero measure with a no-slip condition, then we cannot 
have a completely longitudinal flow (that is, with u = 0). This can be 
proved trying to solve (5.11) with u = o. 

5.4.2 Crystallinity-w 

The crystal volume fraction obeys a first-order partial differential equation. 

Wt + 'iJw· V +w divV = W(P,T,w) (5.20) 

where W describes the crystallization kinetics (crystal diffusion is neglec­
ted). Equation (5.20) is solvable, integrating along characteristic curves, 
that is, along the flow lines of V. 

It is easy to see that V is pointing inward only on the surface of the pis­
ton z = h(t), where we can obtain the value of w integrating the following 
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ordinary differential equation 

wt(r,h(t),t) = W(w,T,Po)lz=h(t), w(r,h(O),O) = O. (5.21) 

As already observed, (5.4) produces a crystallization field that, when we 
reach sufficiently low temperatures, is coincident with Weq. We think that 
this is an important feature of the crystallization of polypropylene, and we 
prefer to write (5.20) stressing the presence of this constraint: 

Wt + Vw· if + W div if = W(P, T, w) if w < weq(T) (5.22) 

W = weq(T) otherwise. (5.23) 

5.4.3 The Thermal Field-T 

The important phenomena for a correct formulation of the thermal problem 
can be grouped as follows: 

• The presence of the flow produces a thermal convection that we have 
to consider (at least in the first instance). 

• The phase change process involves the release of latent heat. 

• The piston and the support of the thermocouple (metallic bodies and 
thus a thermal conductivity much larger than the one of the polymer) 
are better described as "concentrated capacities," i.e., with spatially 
uniform temperature. 

All the preceding produces: 

pC(Tt + VT . if) = k!:::.T + Vk . VT + Pc11wt (5.24) 

where Pc is the density of the pure crystal Pc = p(T, P, 1) and 11 is the 
latent heat. To solve (5.24) we need two equations for the evolution of 
temperatures Tp and Tc of the piston and thermocouple supporting rod, 
respectively. If we use the symbol Cp for the thermal capacity of the piston, 
the evolution of Tp(t) is described by 

CpTp(t) = -kp loR Tz(r, h(t), t) 27rr dr (5.25) 

with a condition on the heat exchange between the polymer and the contact 
surface of the type: 

-kpTz(r, h(t), t) = 'Pp(T(r, h(t), t) - Tp(t)) (5.26) 

with 'Pp(') a known smooth, increasing function, with 'Pp(O) = O. A similar 
equation is valid for the rod (of length I) on the axis of the chamber. Let 
Cc be its heat capacity and Tc(t) its temperature; then 

CcTc(t) = -kc 27rrc 101 Tr(O, z, t) dz (5.27) 
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where rc is the radius of the rod and heat exchange through the endpoints 
is neglected. Similarly we have the flux condition 

-kcTr(O, z, t) = ipc(T(O, z, t) - Tc(t)) , 0 < z < l 
where ipc is analogous to ipp. 

5.4.4 The Complete Model 

Collecting the previous equations, we have the following system: 

Wt + 'iJw· V +W divV = W(p,T,w) 

Tt + 'iJT· V = ~tl.T + '!!"'1f.Wt 
p Pc 

{}p {}p 
{}T (T, w)DtT + {}w (T, w)Dtw 

divV = 
p(T,w) 

[ - -T 2 -] div 7J('iJV + 'iJV ) - 3171 div V = 'iJ P 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

for t > 0 in [0, R] x [0, h(t)] and for w < Weq. In addition we have the 
following ordinary differential equations on the boundary 

k(t) 11 rp(r, h(t), t) dr 

rh(t) r R {}p aT {}p {}w 
= - 10 10 r( aT {it + {}w {it) I(r,z,t) dr dz 

CcTc(t) = -kc 27rrc 11 Tr(O, z, t) dz 

CpTp(t) = -kp foR Tz(r, h(t),t) 27rr dr. 

In Figure 5.9 all boundary and initial conditions are shown. 

(5.33) 

(5.34) 

(5.35) 

The first approach to the study of this model was numerical. Simula­
tions, as described in the next section, provided sufficient clues for some 
significant simplifications: 

1. The influence of convective terms in equations (5.30) and (5.29) is negli­
gible because the velocity field is quite modest and mainly longitudinal 
while the crystallization and thermal gradients are predominantly ra­
dial (see Figs. 5.10 to 5.14). On the contrary, we remark that -div V 
(the relative volume contraction rate) has some influence in (5.29) dur­
ing some stage of the process. However, in our approximation, div V is 
predicted by (5.31) with no need of solving the fluid dynamic problem. 
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Initial Condil ions 

V(T,Z,O) = (0,0) 

h(O) = ho 

Te(O) = To 

Tp(O) == To. 

w(r,z,O) = wo 

T(r, z,O) = To 

w, = W(w , T , PO)l .:h( 'j 

P = Po 
kT. = - '(Jp(T - Tp) 
V = (0, h(t» 

z 

kT. = - '(Je(T - Te) 

if = (O,X (h(t») h(t» 

T. = 0 
if = (0,0) --

T 

Figure 5.9 - Initial and boundary conditions. 

2. According to the previous assumption, Lagrangian derivatives D t are 
identified with their Eulerian counterpart %t. 

3. Pressure gradients are so small that we can safely neglect this variation 
assuming a constant pressure (equal to the imposed pressure on the 
piston surface) throughout the sample. 

5.4.5 The Reduced Model 

After the simplifications discussed, the system of partial differential equa­
tions we are going to consider is the following: 

pCTt = kb.T + Pc1iWt 

Wt +wdivV = W(P,T,w), w < weq(T) 

. - 1 [op op] 0 ( p ) 
dlv V = - p(T, w) oTTt + Ow Wt = - ot In Po 

with Po a reference density (e.g., Po = p(P, Tm, 0)). 

(5.36) 

(5.37) 

(5.38) 

Remark 5.3. Since we are considering isobaric cooling processes, from now 
on we will drop the symbol P in all formulas. 

(continued on page 172) 
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Equations (5.36) to (5.38) must be solved in the moving domain 

Ro = {(r,z,t) E ~31 (r,z,t) E nt, 0 < t < o} 

with nt the cylinder defined by the conditions 

( {
re < r < Rand 0 < z < l 

r,z)Entiff o < r < Rand l < z < h(t) 

where R, l, and re known quantities (R radius of the cylindrical sample, l, 
r e height, and radius of the thermocouple support) and h( t) is unknown. 

5.4.6 Boundary and Initial Conditions for 
the Reduced Model 

As we said, the initial conditions are 

T(r, z, 0) = To > Tm everywhere in no. (5.39) 

At the bottom surface rb (where the presence of the thermocouple can 
be disregarded) we take 

Tz(r, 0, t) = 0, on rb,o < t < O. (5.40) 

On the lateral surface r e we have 

-kTr(R, z, t) = ¢e(T - Te), 0 < z < h(t), 0 < t < 0 (5.41) 

where Te < Tg is the outside temperature and ¢e is a positive constant. 
On the piston surface r p we write 

-kTz(r, h(t), t) = ¢p(T - Tp(t)), 0 < r < R, 0 < t < 0 (5.42) 

where Tp(t) is the still unknown temperature of the piston and ¢p > 0 is 
constant. 

A similar condition holds on the boundary r e of the thermocouple 
support (radius re « R, length l ~ ho/3). 

Because the heat exchange through the tip of the thermocouple is neg­
ligibly small in comparison with the whole heat flow through the support, 
we may smooth the support boundary roc to r6e in some arbitrary way. 
So we write the following boundary condition 

ii being the outside normal to the boundary f6e, 

{
(re , z), 

rge = (p,(z), z), 
(0, z), 

O<z<l-£ 
l-£~z~l+£ 

l + £ < z < h(t) 

(5.43) 
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and 

O<z<l-c 
l-c:S.z:S.l+c 
l + 10 < z < h(t) 
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for some smooth monotone functions p(z)(p(l-c) = re , p(l +10) = 0), and 
cPo(z) (cPo(l- c) = cPe, cPo(l + c) = 0). 

The evolution of temperatures Tp, Te is determined by the balance equa­
tions 

CpTp(t) = -k 1R 27rrTz(r, h(t), t) dr, 0 < t < () 

Cc1e(t) = k27rre 11 Tr(re,z,t)dz, 0 < t < () 

(5.44) 

(5.45) 

with the initial conditions Tp(O) = Te(O) = To; Cp, Ce are the respective 
heat capacities. 

Note that in (5.45) we have neglected the heat exchange through the 
endpoint of the thermocouple. 

Inserting (5.42) in (5.44) we obtain a linear ordinary differential equa­
tion for Tp that gives: 

·th A _ 27r¢pR2 
WI P - C p • 

Likewise we get 

Te(t; T) = e-Act [To + ~e 1t (e ACS 11 T(re, z, s) dZ) dS] (5.47) 

withAe = 27r6,!c l • 

Equations (5.46) and (5.47) must be put back into (5.42) and (5.43). 

Remark 5.4. In the thermal problem we have taken, k and C constant for 
the sake of simplicity, but it would not be too difficult to let them depend 
on T and w. Another possible generalization is to replace (5.41) to (5.43) 
with nonlinear radiation laws. 

Introducing the functions <P and Text defined on the boundary of Do as: 

{

cP6e 

<P(r, z, t) = ~e 
cPP 

on f6e 
on fb 

on fe 

on fp 

(5.48) 



174 Complex Flows in Industrial Processes 

{

Te on feUfo 
o on fb 

Text(r, z, t; Te, Tp) = T.e 
on fe 

Tp on fp 

(5.49) 

we can write the boundary condition for the thermal field in the following 
compact form 

-k'VT· ii = cP(T - Text) on f. (5.50) 

Remark 5.5. The elimination of the term 'Vw . if in the equation for w 
reduces it to an ordinary differential equation, although quite nontrivial 
due to the presence of div if. We shall see how to deal with (5.37). The 
only data we need to know are for t = 0: 

w(r, z, 0) = 0, in Do. (5.51) 

Remark 5.6. The regularization procedure is in the spirit of the general 
framework of the model, which incorporates several approximations. How­
ever, it may not look elegant from a mathematical point of view. It is not 
essential, and it could be removed replacing the Holder norms used in the 
existence proof (Section 5.6.3) by the weighted norms and the correspond­
ing estimates to be found in [36]. Such a remark has been suggested by 
V.A. Solonnikov. 

5.5 Numerical Simulations 

We will briefly describe the numerical integration procedure used in our 
simulations referring to [28] for a complete justification and evaluation of 
this approach. 

Actually we approximate the solution of "the complete model" (see 
Section 5.4.4) by means of a sort of time splitting procedure advancing 
each variable separately. 

More precisely, let us use the symbols 

Tn(r, z), wn(r, z), if n(r, z), Pn(r, z), hn' kn, (Tp)n, (Te)n 

for the known quantities for t = tn and dtn+l for a chosen time step such 
that 

Idtn+lkl < h Toll 

(for a given tolerance h Toll). The integration is based on the assumption 
that for t E [tn' tn+lj, tn+l = tn + dtn+1 we can write 

(5.52) 
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and 

V(r, z, t) == V(r, z, tn), p(r, z, t) == p(r, z, tn) (5.53) 

We can thus compute scalar fields T~~l' w~oll integrating (5.29) and (5.30) 
for t E [tn' tn+lJ by means of a transformation of the free domain in a 
cylindrical one. Substituting T~~l' w~oll in (5.33) we get k~ll. Finally, 
with the help of (5.34) and (5.35), we can get (Tp)n+l and (Tc)n+l. 

Remark 5.7. Knowing k~ll ~e try to verify if the hypothesis on (5.52) is 
too stringent, causing Idtn+lhl > h Toll, approximating, for example, h(t) 
linearly. In this case we divide the step size and restart the process. 

Using T~~l' w~ll in (5.~3) we compute div V~~l. Then with (5.32) and 
the already known value of hn+l we integrate equations for the velocity field 

~(O) 

obtaining V n+l. 
A projection-like process allows us to refine the velocity field. 

Remark 5.8. Knowing V~~l' P~ll is possible to estimate the error caused 
~(O) ~ 

by (5.53): We can impose IIV n+l - V nil < v Toll for a fixed tolerance v Toll, 
otherwise reducing the step size. 

Now we can iterate our process obtaining T~i) (r, z), w~)(r, z), V~) (r, z), 
p~)(r,z), h~), and k~), for i = O, ... ,v until some chosen convergence 
criterion is satisfied. Finally we obtain the desired quantities at t = tn+l as: 

( ) ._ (v) ~ ._ ~(v) 
Tn+1(r,z) :=Tnv (r,z), wn+l(r,z) .-wn (r,z), Vn+1(r,z).- Vn (r,z), 

P (r z) · p(v)(r z) h .- h(v) h· .- h· (v) n+l, .= n , , n+l·- n' n+l·- n 

Remark 5.9. In our experiments we obtained every time p ~ constant, and 
we actually removed completely the variable p assuming p == Po. 

Remark 5.10. The proposed scheme requires for t = 0 the values of Vo = 
V(r,z,O), Po = p(r,z,O), and ko = k(O), which is not in agreement with 
the kind of equations under consideration but is just a requirement of the 
numerical approach. We can prove that with the hypothesis T(r, z, 0) ~ 
Tmelt (that implies W(Po, To, wo) = 0 [12]) and ~T = 0 (an equilibrium 
temperature distribution), the choice Vo = (0,0), ko = 0 is the right one. 

5.5.1 Input Data 

In Tables 5.2, 5.3 and 5.4 numerical values of the parameters used in simu­
lations are listed. Simulations are performed for 3600 seconds with an ini­
tial time step chosen between 0.5 and 3 seconds, depending on the spatial 
discretization and the problem. We considered many different partitions of 
the (r, z) domain (in any case we observed that partitions with step size 
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Table 5.2. Rheological parameters 

Value Unit 

Viscosity TJ 1.0E3 Pa/sec 

Thermal diffusivity k 1.6E - 3 W/(cmOK) 

Thermal capacity C 2.093E3 J/(OK *Kg) 

Latent heat 1-£ 1.0E5 J/Kg 

Table 5.3. Parameters of S.G.M. 

Value Unit 

w 1.0245 cm3/g 
7r 1730.0 Atm 

To 114.0 OK 

R* 1.393 cm3 * Atm/ g * OK 

Table 5.4. Crystallization kinetics 

Value Unit 

Q (2.0/3.0) 

f3 (0.765) 

u/R (6280.0/8.314) 

Kg 4.87E5 

Ko (1.6E9) 

dx ~ 0.01 cm are largely sufficient for our purposes. It is important to 
note that spatial refinements have little influence on the obtained PVT 
diagrams. This allows us to use a relatively fine spatial discretization when 
we were interested in spatial distributions of quantities. 

5.5.2 Some Results 

Numerical simulations can produce more information (Le., spatial distri­
butions of temperature, crystallinity, and velocity field in the sample) that 
is impossible to measure directly. 
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Cryslalinily vs Temperature (K) 

aoooo 
300 300 3~ 300 3ro 400 400 4~ 400 4ro 500 sro 

Temperalure (K) 

Cryslalllnllyvs TIme (s) 
a~~~--'-~~~--T-~--~~ 

1000 I SOD 2000 2SDD !lOOO 3500 ~O 
Time(s) 

Figure 5.15 - Average crystallinity as a function oftemperature (left) and 
as a function of time. 

Remark 5.11. Knowing the velocity field in the sample could be useful 
to better understand the effects of dynamical stresses on nucleation and 
crystal growth. 

As already said, the agreement with experimental data is quite satis­
factory (see Figures 5.5, 5.6, and 5.7). In Figures 5.10, 5.11, 5.12, 5.13, and 
5.14 we show the output obtained for a pressure of 140 Kg/cm2 in different 
instants. 

In Figure 5.15 the average crystallinity for high pressures (up to 
4000 Kg/cm2) is shown. In all tests the initial temperature was T = 500 K 
and the final was T = 300 K. 

In the same range of temperatures/pressures, the PVT diagrams are 
shown in Figure 5.16. 

Specific VoIlIII8 (cm'/g) VI T emperatUit (K) hIt) (em) VI Time (s) [PoIymtr Mass 3.483 g] 
6.6000 r-----r---.--,------,---,---y----,..--, 

'. ; , \ 

::: ·S:l:;;:~~_. 
: I 

1.0000300 320 340 360 3ro ~ 420 440 460 480 500 620 5.00000 500 1000 1500 2000 2500 3000 3600 4000 
Temperatlle (K) Tine (s) 

Figure 5.16 - PVT (left) and kinetics of piston displacement. 



178 Complex Flows in Industrial Processes 
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Figure 5.17 - Temperatures for different pressures. 

Finally, in Figure 5.17 we show the temperatures of the piston and the 
thermocouple support for different pressures. Note the shift of the crystal­
lization interval to higher temperatures as pressure increases, emphasized 
by the corresponding shift of the temperature plateau. 

5.6 Well-Posedness of the Mathematical Model 

5.6.1 Statement of the Problem 

Problem. (P) Find a triple (T, w, h) satisfying equations (5.36), (5.39), 
(5.43), (5.46), and (5.33) in some time interval (0, B) in the classical sense. 
By solution to (5.37) we mean a maximal solution. 
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A condition on p(T,w) that plays an important role is that for some 
K: < 1 

Pww:::; K: < 1, Vw E [0,1], T E [Te,To] 
p 

which is indeed satisfied in our case. 

(5.54) 

We will show that problem P has one unique solution in a suitable time 
interval (0,0) in the Holder space H2+a,1+a/2 (see Theorem 5.1). Next we 
will extend the solution for all times. 

Remark 5.12. The existence theorem refers to the modified model illus­
trated in Section 5.3, which differs from the one just stated only by some 
convective terms whose contribution, consistently with the approximations 
adopted so far, is immaterial (see Remark 5.14). 

5.6.2 Reformulation of the Problem and Some 
a Priori Results 

First, we eliminate Wt from (5.36). This step is necessary to find the con­
dition guaranteeing the parabolicity of (5.36), because Wt is linked to Tt 
through (5.37), and (5.38). 

Let us first suppose W < Weq. Let us rewrite (5.36) to (5.38) in the form 

(
pC -p/H 
o 1 

PT Pw 

0) ( Tt) (ktl.T) W ~t_ = W(T,w) 
P dlVV 0 

from which we deduce 

Tt = Ao(T, w)tl.T + A1(T, w)W(T, w) (5.55) 

with 

A (T ) - (1 - wpw) k 
o ,w - Z ' (5.56) 

Z C [ A pch1i] =P 1-wpw--CW (5.57) 

A Pw A PT 
pw=-, PT=-· 

P P 
(5.58) 

Therefore parabolicity is guaranteed by (5.54). When w = weq(T), 
the source term in (5.36) becomes Pc1iweqTt and the equation remains 
parabolic because Weq :::; O. Thus we can state the following. 

Proposition 5.1. Equation (5.55) is uniformly parabolic if (5.54) holds. 
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From now on, we replace (5.36) with (5.55) as long as W < Weq. Now 
we transform (5.37), eliminating div V and writing it in the form 

a W a-l b 
!lln-/- = Bw (Weq - W) 
ut P Po 

(5.59) 

from which we deduce the following integral equation for W 

1 

W = p(T, w) {(I -a) lot pa-l(T, w)B(T)(weq _ w)b dt} r=a (5.60) 

An a priori result can be obtained as a consequence of the maximum 
principle for the thermal problem. 

Proposition 5.2. During the whole process we have Te :::; T :::; To. 

We conclude this section by introducing some minor changes in the 
model. First, we remark that it is convenient to deal with a domain 
that does not depend on time. For this reason, given a smooth function 
1/;((, h(t)) ~ 0 such that 1/; == 0 for ( :::; 0 and 1/;(h(t) - ~,h(t)) = 1, we 
introduce the change of variable 

ho 
y = z + (ho - h(t))1/;(z - 2' h(t)) (5.61) 

which leaves the domain unchanged for z :::; ~ and maps the remaining 
part onto the cylinder 0 < r < R, ~ < y < ho, 0 < t < O. In this way the 
new boundary is fixed in time. We will denote the new domain by DB. 

Therefore defining the unknowns 

T(r, y, t) = T(r, z, t), w(r, y, t) = w(r, z, t) 

equation (5.55) becomes (T ::::: Tt , see Remark 5.13) 

where 

1 a ( a) 2 flh = -- r- + 1/;(. 
rar or 

(5.63) 

Remark 5.13. When applying transformation (5.61), we neglect the terms 
in h appearing in the differential equation, consistently with the approxi­
mation of suppressing convection. 
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In the same spirit we keep the form (5.37), i.e., (5.59) for the equation 
to be satisfied by w implying (by means of (5.60)) 

I 

W = p(T, w) {(1 -a) lot pa-l(T, w)B(T)(weq _ w)b dt} J=;; 

The equation for the free boundary becomes 

2n lho lR rp(T,w)(l + (ho - h)'lj;ddr dy = m 

and the boundary condition for l' has the form 

-HhT· ii = iiJ(r, y, t)(T - Text(r, y, t; Te , Tp)) on 

r = aDII\{(r,z,t)1 t = 0, t = B} 

with obvious definitions of the functions iiJ, Text. fe, and Tp. 

(5.64) 

(5.65) 

(5.66) 

Remark 5.14. Equations (5.62) and (5.64) do in fact replace equation 
(5.36), i.e., (5.55), and (5.37), i.e. (5.60). 

Remark 5.15. A final change introduced in the model is that the domain 
Do n {t = const.} is approximated in a standard way by a set with a smooth 
boundary, say Do. This implies that we have to define a new couple of 
functions <I>c, T:xt defined on the new smooth boundary and approximating 
smoothly <I>c and Tecxt . 

5.6.3 Local Existence and Uniqueness Theorem 

Theorem 5.1. Under the regularity assumptions specified for p(T, w) for a 
suitably small B there exists a unique solution (1', W, h) of (5.62), (5.64), 
and (5.65) with the boundary condition (5.66) and the initial condition 

T(r, y, 0) = To (5.67) 

Under these conditions the function l' belongs to the Holder space 
1t2+a,l+!f . 

Remark 5.16. In (5.66) the functions Te and Tp are defined by means of 
(5.46) and (5.47). 

Remark 5.17. The proof of the theorem is performed assuming a smooth 
domain with smooth boundary conditions in the sense of Remark 5.15. 
Here we keep the simpler notation Do (instead of Do) but we mean that 
aDo is smooth. 

Proof of Theorem 5.1. The proof of Theorem 5.1 is based on a fixed-point 
argument. 
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Let us first define the set 

B = {(T,W, X) IIITIIHa,tt ::; Ml , IITIIHI+a,!+tt ::; M2 , IITIIH2+a,l+tt ::; M3 , 

1 
T(r, y, 0) = To, Tt(r, y, 0) = 0, '2Te ::; T ::; 2To 

sup lV'wl ::; N l , sup IWtl ::; N2 , w(r, y, 0) = 0, 
DB De 

w(r, y, t) ::; weq(T) - 8, IIXIlH!+tt (0, 0) ::; Q, 

m ho m } 
X(O) = ho = R2 (1) 0)' l < -2 < hmin = R2 ::; X ::; ho 

7r P 0, 7r Pmax 

(5.68) 

where the constants Mi have to be chosen and 8 is given less than the inf 
of Weq(T) in the range of T, 

Now we define the functions 

Tp(t) = e-Apt [To + ~: It (eAPslR rT(r, ho, s) dr) dS] (5.69) 

r,(.; h) ~ e-A.' [To + ~' 1,' (eA._/,'/h r(r" z, ,) dZ) d'l (5.70) 

and for a given (T,W,X) E B we state the problem 

f t = AO(T,W) [~hf + Ty(ho - h)1/J(d + Al(T,W)W(T,W) (5.71) 

-kV' hf . ii = ~(r, y, t) (T - Text(r, y, t; Te, Tp)) on f. (5.72) 

Existence and uniqueness of a solution in 1f.2+o.,'¥ of problem (5.71) to 
(5,72) is now assured by Theorem 5,3 pag, 320 [26]. 

For such a problem it is possible to obtain a chain of inequalities that 
define the constants M l , M2, M2 and the time interval (0,0) so that the 
function f(r, z, t) satisfies the same requirements on T specified in the def­
inition of the set B. The proof is technical and we refer to [18] for the 
details, 

Now we define the second element of the triple (f, w, X): 

I 

W = p(T,W) {(1- a) It pa-l(T,W)B(T)(Weq - w)b dt} i=a (5.72) 

and we compute 

'( )w ,...2... a-lB( )b Wt = fJTTt + pwWt - + W I-a p Weq - W 
P 

(5.73) 
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from which we get 

(5.74) 

where C i denote uniform constants. 
Likewise we get 

(5.75) 

Putting together these estimates we realize that we can select the constants 
Ni and 0 so that w satisfies the same inequalities as w, including the con­
straint W :'S w eq ( f) -E. Next we complete the mapping (T, w, X) -> (f, w, X) 
by means of 

rhO rR 
27r io io rp(f, w)(l + (ho - h)'l/Jr:) dr dy = m (5.76) 

from which we realize that Ilxll,d+'r is estimated in terms of the Holder 
coefficients of f(·, t), w(·, t), which as we have seen can be made as small 
as desired by reducing O. Therefore we obtain the last estimate 

(5.77) 

with arbitrary Q. 
The last step of the proof consists in showing that the mapping 

(T, w, X) -7 (f, w, X) is contractive with respect to the sup-norm of the 
three elements. Denoting such a norm by II(T,W,x)lls we have to show 
that for any pair (T1,W1,X1),(T2,W2,X2) E 13, we have 

for some positive A < l. 
Writing equation (5.76) for (f1 , WI) and (f2 , W2) and subtracting we get, 

using the regularity of p and F, the estimate 

sup IX1 - x21 :'S Cx sup {If 1 - f21 + IW1 - w21} (5.79) 
DB De 

where by means of the boundedness of p, B, and Weq in (5.72), we obtain 

sup IW1 - w21 :'S t Cw sup {iT! - T21 + IW1 - W21}· (5.80) 
DB De 

Finally Theorem 2.2 pg. 15 of [26] applied to the parabolic equation we can 
obtain for f1 - f2 (which has zero initial data), guarantees that we can esti­
mate from above the sup-norm of if1 -f21 with sup De {IT1 - T21 + IW1 - w21} 
times an increasing function of time. 

sup if1 - f21 :'S F(O) sup {IT1 - T21 + IW1 - w21} (5.81 ) 
De DB 

with F(O) = O. 
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Putting back (5.80) and (5.81) in (5.79) we obtain that (5.78) can be 
satisfied for () sufficiently small. This concludes the proof thanks to the 
Banach-Caccioppoli contraction lemma. 0 

5.6.4 Continuation of the Solution 

As it is formulated, the model cannot produce a sufficiently regular so­
lution. Indeed when W crosses the value weq(T), then Wt jumps from 
Weq div V to W - Weq div V, producing a discontinuity of the latent heat 
release rate. Such a discontinuity derives from a crude representation of the 
switch of the crystallization mechanism. The physics of such a change are 
not completely clear, and it may be that it occurs only in a cooling regime 
(Tt < 0), due to secondary crystallization within the spherulites. Therefore 
it seems quite reasonable to slightly modify the model to eliminate that 
artificial singularity. This can be done redefining Wt for values of W in the 
interval (weq -c,weq ). Setting 

Fe(T) = -(Weq -c) divV + W(T,weq -c) (5.82) 

and 

) Weq - W ( ) [ 1 ze(T,w = , Ze T,w E 0,1 
c 

(5.83) 

for all W in the preceding interval, we write the following evolution equa­
tion: 

cZet + z~ [Fe(T) - ! Weq(T)] = 0, ze(t*) = 1 

(t* being such that w(·, to) = weq(T(·, to)) - c), which gives 

(5.84) 

{ 1- b [it ]}6 Ze = 1 - -c- t* Fe(T(·, r)) dr - (weq(T(., t)) - weq(T(·, to))) 

(5.85) 

as long as Z > 0 (note that Z = 0 is reached in a finite time), and finally 

W(·, t) = weq(T(., t)) - c 

{ 1- b [it ]}6 1 - -c- t. Fe(T(·, r)) dr - (weq(T(., t)) - weq(T(·, to))) 

The source term in the heat balance equation is proportional to 

Wt = ! weq(T) - c: = w~q(T)Tt 

(5.86) 

+ {1- 1 ~ b [it Fe(T(., r)) dr _ (weq(T(., t)) _ weq(T(., t*)))]} 6 

(5.87) 
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Note that A3 E [0,1]' and W~q < 0, so that the equation replacing (5.67) 
remains parabolic. 

In conclusion, the heat balance equation has the form (5.67) as long as 
W < Weq - c:; otherwise the evolution of the temperature field is given by 
(5.36) with Wt replaced by (5.87). 

At this point is not difficult to get the continuation of the solution for 
all times by means of obvious modifications of the proof of Theorem 5.l. 
Thus we can state the following. 

Theorem 5.2. The problem with a modified model for the switch from 
growth regime to the constrained regime W = weq(T) has a unique classical 
solution in any time interval. 

5.7 Physical Implications 

A basic feature of this chapter is the introduction of an empirical equation 
of state able to describe the pressure-volume-temperature (PVT) data 
during polypropylene crystallization under isobaric conditions [31]. 

Equation (5.1), proposed by one of the authors (S.M.), is an exten­
sion from amorphous to semicrystalline polymers of the Spencer-Gilmore 
equation by adding the effects of both thermal contraction and overall 
crystallinity developed during polymer phase change. 

The evaluation of the actual crystallinity requires the solution of a 
mathematical model for the crystallization process. 

In this chapter, on the basis of the analysis performed in [18] it is shown 
that accurate fitting to the experimental data is the result of two key pieces 
of information: the kinetics of crystallization (5.4) and the equilibrium 
crystallinity Weq (5.7) or (5.8) as a function of temperature. 

The phenomenology described by the chosen model is the following: 
The kinetics of crystallization (5.4) act as a switch that starts the phase 
change process during cooling~ However, caused by the fast growth of the 
kinetic constant (5.5) as the temperature decreases (Figure 5.8), very soon 
the equilibrium crystallinity Weq is reached and crystallization kinetics (5.4) 
are switched off. From this instant on, the attainable crystallinity coincides 
with the equilibrium crystallinity Weq. 

Finally, the new state equation (5.1) suggests the possible existence of 
a critical triple point (P*V*T*) where, by analogy with real fluids, phase 
change takes place without volume contraction. This effect can be fore­
seen from the behavior of the kinetic constant K(T, P) at high pressures 
(Figure 5.18). 

For pressures higher than 7000 Kg/cm2 the kinetic constant be­
comes vanishingly small, and consequently crystallization is no longer al­
lowed. In practice, phase change from liquid to solid takes place without 
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crystallization. From a technological point of view, this effect may have 
formidable implications in the future when such ultra-high pressures will 
be accessible in commercial machines; processing of polymers in "near crit­
ical" conditions may become the key to solving such problems as shrinkage 
warping during injection molding and, in general, all problems where the 
dimensional stability is an issue. 

The technology of ultra-high pressures during phase change is actively 
being investigated for the generation of nanostructures in semicrystalline 
polymers [37]. 
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6 
Mathematical Modeling of Some 
Glass Problems 

K. LAEVSKY AND R.M.M. MATTHEIJ 

Eindhoven University of Technology 
Department of Mathematics and Computer Science 
Eindhoven, The Netherlands 

ABSTRACT. In studying glass morphology one often uses models, which 
describe it as a strongly viscous Newtonian fluid. In this chapter we shall 
study two types of problems encountered in glass technology. One is deal­
ing with so-called sintering, which plays a role in producing high-quality 
glasses, for example, and the other with producing packing glass by so­
called pressing. We give a Stokes model to describe these processes and 
discuss various aspects of the evolution of both forming problems. The sin­
tering problem is solved by a boundary element method, for which we use 
an interesting analytical tool to avoid numerical instabilities. The pressing 
problem actually deals with the morphology of a bottle or jar. Here we 
focus on simulating the glass flow. We first show how to deal with the tem­
perature separately, by a suitable dimension analysis. Then we consider 
the flow of the glass in a domain with a partially free and partially moving 
boundary. We give a number of numerical examples to sustain our result. 

6.1 Introduction 

For many years, glass technology has been a craft based on expertise and 
experimental knowledge, reasonably sufficient to keep the products and 
production competitive. Over the last twenty years mathematical modeling 
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of the various aspects of production has become increasingly decisive, how­
ever. This is induced in part by fierce competition from other materials, 
notably polymers, which, for example, have found their way into the food 
packing industry. This is also a consequence of environmental concerns. 
It is not so much the waste (glass is 100% recyclable, a strong advantage 
to most competitors) as the energy consumption. One should realize that 
the melting process of sand to liquid glass makes up the largest cost fac­
tor of the product. For the relative importance of the current industry, 
look at some figures: In the European Union about 25 megatons of glass 
is being produced, which represents 30 billion ECU worth. The industry 
employs more than 200,000 people. Two-thirds of the glass production is 
meant for packing (j ars and bottles). Float glass (used for panes) makes 
up most of the other quarter. The rest is for special products like CRTs 
and fibers. 

Production of glass forms goes more or less along the following lines: 
First grains and additives, like soda, are heated in a tank. This can be a 
device several tens of meters long and a few meters high and wide (width 
being larger than height). Gas burners or electric heaters provide the heat 
necessary to heat the material to some 1400°C. At one end, the liquid glass 
comes out and is either led to a pressing or blowing machine or it ends up 
on a bed of liquid tin, where it spreads out to become float glass (panes, 
windshields, etc.). In the latter case the major problems are the need for 
a smooth flow from the oven on the bed and controlling the spreading and 
flattening. The pressing and blowing process is used in producing packing 
glass. To obtain a glass form a two-stage process is often used: First a 
blob of hot glass is pressed into a mould to form a so-called parison. It 
is cooled down (the mould is kept at 500°C) such that a small skin of 
solid glass is formed. The parison is then blown into its final shape. Such 
pressing/blowing machinery can produce a number of products at the same 
time; as a result a more or less steady flow of glass products is coming out 
on a belt. The products then have to be cooled down in a controlled way 
such that the remaining stresses are as small as possible (and thus the 
strength is optimal). 

Sometimes only pressing is needed. This is the case in the production 
of CRTs, where a stamp is pressed into liquid glass and after being lifting, 
a certain morphology should have been transferred onto the glass screen. 

As a final application of glass we may mention fibers. Glass fibers are, 
e.g., used to produce insulation material. A modern application is for trans­
mitting optical signals. These optical fibers need to consist of very pure 
glass and have a low porosity. One of the processes to produce this is 
through a so-called sol-gel process, which amounts to chemical purifica­
tion. The result of this is pure, strong glass particles. Through heating 
they melt together to a larger compact, a process called sintering. The 
eventual outcome of this is should be a dense glass compact [9J. 
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All these processes involve the flow of the (viscous) glass in combination 
with heat exchange. Although these two are closely intertwined we shall 
show in this chapter that they can often be decoupled, thus effectively 
leading to isothermal flow problems on one hand and temperature problems 
on the other. For some overviews, see, e.g., [2], [10]' [10] and [13]. 

This chapter is written as follows. In Section 6.2 we shall derive the 
basic flow equations that will play a role in our models. Section 6.3 is 
devoted to the sintering problem. We shall explain how we can describe 
the sintering of two cylinders (circles) numerically. This is typical for a more 
general compact of glass particles, which, however, is too complicated to 
deal with. Section 6.4 also gives an analytical method that can even handle 
the touching of two such cylinders. Then, in Section 6.5, we discuss the 
second problem, the pressing of glass in a mould. We describe the model 
and pay special attention to the heat exchange problem. In Section 6.6 
the evolutionary process of the glass flow is considered numerically. An 
important practical problem here is the numerical conservation of mass, 
which is discussed in Section 6.7. 

6.2 Modeling 

Glass may be viewed as a frozen liquid, i.e., it has an amorphous structure. 
At sufficiently high temperatures (higher than 600°C) it behaves like an 
incompressible Newtonian fluid, which means that for a given dynamic 
viscosity 1/, a velocity v and a pressure p, the stress tensor T is given by 

T = -pI + 1/(grad v + grad v T) (6.1) 

This constitutive relation should be used to close the equations that actu­
ally describe the motion of a glass blob, the momentum equation (2) and 
the continuity equation (3): 

p( 0;; + (grad V)Tv) = pf + divT (6.2) 

where p denotes the mass density, f the volume forces on the blob, and 

divv = o. (6.3) 

Using (6.1) in (6.2) we obtain 

p( ~: + (grad v?v) = pf - gradp + div (1/(grad v + grad vT)). (6.4) 

In the two problems we shall study in this chapter we anticipate the viscous 
forces (div T) to dominate in (6.2). To see this we shall reformulate our 
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equations in dimensionless form, for which we need some characteristic 
quantities. 

First we remark that the only acting volume force in the process is 
gravity, so Ilfll ~ 10m/s2. We define 

- 1 
f:= Wilf. (6.5) 

The viscosity "I is assumed to be constant, say 'T]o ~ 104 kg/ms. Normally 
there is no need to introduce a dimensionless viscosity, but we shall do 
this. Thus, because it may be highly temperature-dependent, let 

_ 1 
"1:= -"I. 

'T]o 
(6.6) 

A typical average velocity Yo (which is 10-1 m/s or much slower), say Yo ~ 
10-1 mis, can be used as a characteristic velocity. As a characteristic length 
scale we take L( ~ 10-2 m or smaller). We now define the dimensionless 
quantities 

_ x 
x:=I' 

_ v 
v:= Yo' 

_ L 
p:= 'T]oV/· (6.7) 

A proper choice of characteristic time scale is the ratio L/Yo(~ 10-1 s). So, 
let us finally define 

- Yo 
t:= Lt. (6.8) 

Substituting all dimensionless quantities into (6.3) and (6.4) yields 

Re( a;; + (grad y)Ty) = ;~f -gradj) + div (ij(grad y + grad yT)), 

divy = O. (6.9) 

All spatial derivatives in (6.9) have to be taken with respect to the dimen­
sionless variable x. In (6.9) two dimensionless numbers appear, namely, 
the Reynolds number (Re) and the quotient of the Reynolds number and 
the Froude number (Re/Fr), defined by 

Re:= YoLp, 
"10 

Re pllfllL2 

Fr:= 'T]o Yo . 

The Reynolds number indicates the ratio between inertial forces, and vis­
cous forces and the quotient of the Reynolds number and the Froude num­
ber indicates the ration between volume forces (Le., gravity) and viscous 
forces. The two numbers are estimated by 

Re ~ 10-3 
Fr ~ . (6.10) 
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From this we conclude that the viscous forces indeed dominate. Thus, the 
flow describing the equations are (rewritten in their dimensionless form) 

grad p = div (1J(grad v + grad v T)) 

divv = O. 
(6.11) 

These equations are the Stokes creeping flow equations. They require fur­
ther boundary conditions in order to solve the vector v. Actually they will 
be kinematic constraints, changing with time t, describing the evolution of 
the blob. We shall specify these boundary conditions for the two situations 
in the subsequent section. They have in common that at least one part of 
the boundary is free. Hence, besides finding the velocity v( t) we then need 
to find this free boundary. The actual displacements x satisfy the ordinary 
differentional equation 

dx 
dt = v(x). (6.12) 

Numerically we shall deal with these problems in a two-stage sweep: Sup­
pose we have a domain Q(t) describing the glass blob. Then solve (6.11) 
(approximately) and use velocity field on the boundary to compute a new 
domain Q(t + ~t) using (12) and the boundary conditions. 

6.3 Viscous Sintering 

Sintering is the process of bringing a powder of metals, ionic crystals, or 
glasses (a compact) to such a high temperature that there is sufficient mo­
bility to release the excess free energy of the surface of the powder, thereby 
joining the particles together. The driving force arises from the excess free 
energy of the surface of the powder over that of the solid material. For a 
survey of the most important papers about sintering we refer to the book 
edited by Somiya and Moriyoshi [12]. 

We are interested in the case of sintering glasses; see also [9] and [11]. 
There the material transport can be modeled as a viscous incompressible 
Newtonian volume flow, driven solely by surface tension (viscous sinter­
ing), i.e., the Stokes creeping flow equations hold. The geometry of such a 
sintering compact is usually very complex. Because of this it is impossible 
to give a deterministic description of the flow in such a compact as a whole. 
We shall therefore investigate simple geometries in two dimensions only. 
For more general compacts see, e.g., [8], [15]' and [16]. 

Let us denote the compact (blob) at time t by Ot and its boundary by 
r t ; see Figure 6.1. Then the driving force of the boundary movement is a 
tension in the direction of the normal n; the latter is proportional to the 
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Figure 6.1 - Compact domain at time t. 

local curvature, K. of the boundary. Thus we obtain 

Tn = (divn)n = K.n. (6.13) 

Our only interest is the movement of the boundary r, i.e., only the 
velocity at the boundary is required (from which we can calculate the 
shape evolution of the body directly). Therefore this problem is ideally 
suited to be solved numerically by a boundary element method (BEM). 
To do this, we have to reformulate the problem as an integral equation 
over the boundary. This is done in terms of a boundary distribution of 
hydrodynamic single- and double-layer potentials: see also Ladyzhenskaya 
[7]. 

When the boundary is sufficiently smooth, the integral formulation that 
can be derived for the Stokes equations at a point, say x, reads in matrix 
notation (see also [6]) 

Cv(x) + 1r Q(x,y)vdry = 1r U(x,y)bdry . (6.14) 

Here C,Q(x,y), and U(x,y) are 2 x 2 matrices with coefficients Cij,qij, 
and uij,i,j = 1,2, respectively: 

(6.15) 

(6.16) 

(6.17) 

where Dij is the Kronecker delta, Ti := Xi - Yi, i,j = 1,2, and the vector b 
is the boundary curvature in the normal direction, i.e., 

b=K.n (6.18) 
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The integral equation (6.14), which has to be solved for a fixed bound­
ary, does not ensure a unique solution v. Clearly, we need to add three 
extra conditions (equations) to account for the degrees of freedom with 
respect to translation and rotation. 

We follow the approach of Hsiao, Kopp, and Wendland [5] to make 
the integral equation (6.14) uniquely solvable for a fixed boundary. This 
is done by adding three additional variables Wi to this integral equation, 
which prescribe the translation and rotation, i.e., 

Cv(x) + t Q(x,y)vdI'y + V(x)w = t U(x,y)bdry 

where V is a 2 x 3 matrix defined by 

o 
1 

(6.19) 

(6.20) 

Three additional equations have to be given to ensure that the bound­
ary velocity is defined uniquely. In order to prescribe the translation free­
dom, we formulate the problem to be stationary at a (reference) point in 
the fluid, say x T • With regard to this reference point the velocity of the 
boundary points is computed. The most natural choice for this reference 
point is the center of mass: the point where the gravity forces would grip 
the body, thus: 

(6.21) 

Using this, we derive from the integral formulation (6.14) and x = x T the 
following equation 

t Q(xV',y)vdry = t U(xV',y)bdry. (6.22) 

Furthermore we assume the tangential component of the velocity at the 
boundary to be zero, i.e., 

t(v,T)dr = 0 (6.23) 

where T is the tangential vector of the boundary. Combining this with 
the Stokes formula, it follows from equation (6.23) that the flow in n is 
irrotational. 

In a practical implementation we have to determine the grid on r in 
an appropriate way; for more see [16]. Special care has to be taken with 
respect to the computation of the curvature. Indeed, if we use finite differ­
ences to approximate differential quotients we are facing problems when 
the distance between grid points is too small. In Figure 6.2 we illustrated 
this for the coalescence of two circles (actually cylinders in a three di­
mentional setting) a time after the actual touching took place. At this 
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Figure 6.2 - Two sintering cylinders with equal diameters. The same mesh 
is used through the entire simulation. 

touching point a so-called neck is developing, at which the curvature is 
still extremely high. The results show numerical instability. To cure this 
problem, we shall invoke some analytical tools first. 

6.4 The Analytical Solution for the Coalescence 
of Two Equal Circles 

In this section we give the analytical solution for the coalescence of two 
equal circles and we introduce some notation for the main properties of 
this solution. These are the initial radii R of both circles, the measure of 
contact between both circles, and the boundary curvature at the contact. 

The analytical solution for the evolution of two equal coalescing circles 
was derived by Hopper [4]. He described the evolution of these circles in 
terms of a time-dependent mapping function z = x + iy = n(~, t) of the 
unit circle, conformal on I~I :::; 1. The time evolution of the map was given 
in parametric form. In these papers, the equations derived are valid for the 
coalescence of two circles with initial radius 1. Here it turns out that we 
may take 

v'2(1 - v2)e!iII 
z = ----"--:-:--;::::== 

1 - ve2iO VI + v 2 
(6.24) 

where eiO describes the contour ofthe unit circle and v = v(t) is a function 
with values E [0, 1]. For v -+ 1 we have a touching of the two circles. 
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Following Hopper [3], we can derive parametric equations for the evolu­
tion of two coalescing circles both with initial radius R and centers (R,O) 
and (-R, 0) respectively (R = 1 follows from (6.24)) 

x((), v) = (1 - v2)(1 - v)RJ2 cos () 
(1 - 2v cos 2() + v2)JI + v2 

y((}, v) = (1 - v2)(1 + v)RJ2 sin () 
(1 - 2v cos 2() + v2)VI + v2 

and for the time t (as a function of v) 

7rR r1 dk 
t(v) = J2 Jv kJI + k2K(k) 

(6.25) 

(6.26) 

Here K(k) is the complete elliptic integral of the first kind defined by 

(6.27) 

The degree of coalescence is specified by the parameter v, which decreases 
from 1 to 0 if time increases (t is going to infinity as v - 0), and the 
boundary curve is specified by the parameter (), which is varying from 0 to 
27r. Of course, at t = 0, both circles are making contact at the origin. 

Of special interest is the region where the circles are touching. In our 
example, the line of contact is the y-axis during the evolution. Let r be the 
contact radius between both circles and denote the point on the boundary 
at the line of contact in the positive direction by xn, i.e., xn = (0, r). Recall 
that we called this point the neck. 

In the analytical solution (6.25) the neck is occurring at () = 7r /2 during 
the evolution. Thus for the contact radius r, as a function of the parameter 
v, the following holds 

( ) _ (7r ) _ (1 - v)RJ2 rv- y -2 ,v- ~. 
vI +v2 

(6.28) 

Note that as v - 0, i.e., t _ 00, r - RJ2, which is theradius of the circle 
the shape evolution is approaching as time increases. 

By solving for the parameter v as function of the contact radius r, we 
obtain from (6.28) 

2R2 - rv4R2 - r2 
v = v(r) = 2R2 _ r2 (6.29) 

For the curvature of the neck, say /'i,n, we can derive from the parametric 
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equations (6.25) 

() XeeYe - XeYee 
Kn V = 3 

(X~ + y~)2 
(1 - 6v + v2).Jf+V2 

(1 - vp RV2 (6.30) 

Remark that as v ----t 0, i.e., t ----t 00, Kn ----t -1/ RV2, as assumed. The 
derived neck curvature (6.30) can be written as a function of the contact 
radius r; from equations (6.29) and (6.30), we obtain 

4R2 3 
Kn(r) = -3 - -. (6.31) 

r r 

Using this formula, rather than a numerical derivation of the curvature, 
gives satisfactory results, see Figure 6.3. 

We can now also analyze the effect of a small perturbation of the initial 
contact radius r, r + €, say, both circles having initial radius R (see Figure 
6.4). Although depicted in one graph they may represent the boundaries 
at different time points. So consider the parametric equations (6.25) as a 
function of Rand t (i.e., v). A measure for the difference between both 
shapes is given by the derivative of x, Y with respect to R. 

Using (6.27), the parametric equations (6.25) can be written as 

() r(1 - v2 ) cos () 
x( ,v) = 1 + v2 _ 211 cos 2() 

y(() v) _ r(1 +1I2)sin() 
, - 1 + 112 - 211 cos 2() 

(6.32) 

1.0 

0.5 

o 

-1.0 

-1.5 -1.0 -0.5 o 0.5 1.0 1.5 

Figure 6.3 - Two sintering cylinders with equal diameters. A mesh veri­
fication is done at each time step. 
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-R R 

Figure 6.4 - The coalescence of two equal circles. 

We have to consider equations (6.25) as a function of r (and t). The 
derivative of x and y with respect to r will then be a measure for the 
deviation between the two curves. 

For the derivative of v with respect to r, we obtain after squaring, 
taking the derivative of equation (6.28) and using the relation (6.29) 

av 2R2(1 - v)2 

ar r2v'4R2 - r2 

Now define a normalized radius 

f := r/(RV2) 

then derive the following relation between v and f (so r) 

I-v f 
= --=== 1 + v v'2 - f2· 

If we then write 

~ = cosO 

(6.33) 

(6.34) 

we find, by taking the derivatives of (6.31) with respect to r, and restricting 
ourselves to the first quadrant, using (6.32), 

ax 
8r 

ay 

8r 
(l-v)\/~ 
(1 + v)2 - 4v~2 

4(1 + v)(1 - v)3e~ 

fJ2 - f2((1 + v)2 - 4ve)2· 

(6.35) 

Again our interest is mainly the neck region, i.e., ~ is small. Using (6.31) 
and (6.33) we derive for (6.24) 

ax y~ + y2~J2[(1 + v)2 - 2(1 + v2)~2l 
ar RJ2(1 - e)(2 - f2) R(1 - ~2)(1 + v)2(2 - f2)~ 

(6.36) 

ay y 2J2xy~ 
ar r rR(2 - f2)~· 
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Using 0 :::; f < 1, one may check that maximum absolute values in (6.36) 
are given by 

I ax I y~ (1 2Y ) or :::; RJ2(1-e) + ~ , 

In the neck region Y is O(~) and x is small, i.e., from (6.31) we conclude 
that a small change of the contact radius r of the coalescing circles will 
not perturb the shape of the neck region, even when r is small. 

The relation (6.31) for the (exact) neck curvature also gives information 
about the effect of a change of the contact radius r on this curvature. From 
(6.31) it follows that the derivative of the neck curvature, with respect to 
r, is given by 

o"'n 12R2 3 -=---+-. or r 4 r2 
(6.38) 

Thus a small change of the radius r has an O( w.) effect on the neck 
curvature, i.e., when the contact radius is small the curvature is changed 
dramatically. Conversely, we also have 

i.e., a change of the neck curvature gives only an O(~~) effect on the 
contact radius r. 

A measure for the time difference between the shapes at time t and t 
is given by the derivative of t with respect to r, i.e., taking the derivative 
of equation (6.26) and using (6.26), (6.32), we derive 

at rrJI+V2 
oR = 2vK(v)V2 - f2' 

(6.39) 

Using asymptotic expansions for K(v) one can show that I :~ I is small 
when the time t is not too large. We conclude that neck evolution is a 
smooth function of time. 

The preceding analysis shows that a small change of the contact radius 
is hardly perturbing the global shape of the neck region. Only the curvature 
of the neck (a local effect) is changed dramatically when r is small. 

We finally remark that the curvature approximations here can be used 
more generally in the computation of rather complicated blobs. For more 
details see [16]. 
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6.5 PresSIng of Glass-

As stated in Section 6.1, there is a large variety of applications of glass 
products. Previous sections dealt with particles of millimeter size. In this 
section we consider viscous flows arising in the production of packing glass, 
such as bottles and jars, which are of order of 10 cm size. Typically this 
is a two-stage process. First a blob of glass is pressed in a mould by a 
plunger to a certain preform, the so called paris on (see Figure 6.5), which 
is then blown into the finally desired shape (see Figure 6.6). Here we will 
only consider the first stage, i.e., the pressing. Because the mould and the 
plunger are axisymmetric we shall assume the entire problem to be so. In 
practice, the initial form of the glass blob may not be axisymmetric, but 
it will not deviate too much from this form in a well-controlled production 
process. 

Thus we can study an essential two-dimensional flow jenergy problem 
in a time-varying domain nt as depicted in Figure 6.7. 

In cylindrical coordinates the Stokes equations (6.11) can be written 
as 

(6.40) 

(6.41 ) 

Here u and v are the velocities in the z and r directions, respectively. 
In contrast to the sintering problem we do not have an isothermal 

situation here, at least not in principle. As a consequence the viscosity 1J 

Figure 6.5 - The pressing phase. 
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Figure 6.6 - The blowing phase. 

may not be constant, and in fact it may vary wildly as a function of the 
temperature. Note that the temperature T and the viscosity TJ of glass are 
related through the Vogel-Fulcher-Tamman relation [10] 

TJ = K exp(Eo/(T - To)). (6.42) 

Here K is some constant, Eo the viscosity activation energy, and To a fixed 
temperature. 

In dimensionless quantities (Section 6.2) the velocity and temperature 
are coupled through the energy equation, written for the axisymmetric case 
for an incompressible stationary flow with constant heat conductivity and 

Figure 6.7 - 2-D problem. 
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heat capacity as (ct lIl) 

( aT aT) 1 (a2T 1 aT a2T) 
v or + u az = Pe ar2 +;: or + az2 

+ Ec (2 (au)2 + 2 (au) (av) 
Re az or az 

(av)2 (aV)2 (aU)2) 
+2 or + az + or . 

Here Ec is the Eckhard number, defined as (cf Section 6.2) 

U2 

Ec:= cp t1T 

205 

(6.43) 

(6.44) 

where cp is the specific heat and t1T the temperature drop. Pe is the Peclet 
number, defined as 

Pe:= pUtcp (6.45) 

where k is the thermal conductivity. For glass we obtain 

1 6 2 10-4 ERec = 1.2 . 10-4 . Pe = .. , 

Both are very small, so we can ignore the heat conduction and thermal 
production terms (the second and third terms in equation (6.42)); thus 
the energy equation simplifies to: 

aT aT 
u az + v or = o. 

This equation is solved by the system 

dz dr 
dt = u, dt = v, 

dT =0 
dt 

(6.46) 

(6.47) 

from which we see that the temperature remains constant along the stream­
lines. If we start with a uniform temperature field, it will remain uniform 
everywhere. 

If we include the cooling of the wall we can do the following: Let 
Op,Og, and Om denote the plunger (p), glass (g), and mold (m) do­
mains, respectively (see Figure 6.8) and ki' i E {p, g, m}, their thermal 
diifusitivity. One can estimate the numerical values of these to find 
km = kg = 6.2 .1O-7 [m2 jsJandkp = km = 1.7 . 10-5 [m2 jsJ. We observe 
that kp = km » kg, and this implies that when the heat process of the 
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Figure 6.8 - 2-D domain. 

glass starts, the heat processes of the plunger and the mould are already 
in the steady state. This means that the temperature Tp = Tp(O) and 
Tm = Tm(O). Hence the three heat processes are not coupled. 

We therefore conclude that we may actually compute the temperature 
from the simple heat equation 

~aTg = AT. . n 
k &t U 9 lllHg 

9 

subject to the boundary conditions 

~ = 0 on r 9 U r ga, 

kg~ = hgp(Tg - Top) on r gp , and 

kg~ = hgm(Tg - Tom) on r gm. 

(6.48) 

Here hgp is the contact conductance between the glass and the plunger 
and hgm is the contact conductance between the glass and the mold. 
The contact conductance depends on the surface roughness, the inter­
face pressure and temperature, the thermal conductivities of the con­
tacting materials and the type of fluids or gas in the gap, and is about 
hgp = hgm = 2.103 [W 1m2 j.c]. 
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On the two boundaries r gp and r gm we have a temperature drop, de­
pending on the contact conductances, and a boundary layer, depending 
on the thermal diffusivity of the glass. One can prove that the asymptotic 
behavior of the boundary layer is the error function erfc(r / J4kg t). 

6.6 Computation of the Flow 

Because we may now assume the flow to be isothermal after all, we can 
concentrate on solving the Stokes equation, subject to kinematic boundary 
conditions. Consider the configuration in Figure 6.9. Let r t = ant be the 
boundary of nt . It is easy to see that r t consists of four parts: 

r t =rmurfurpurs 

corresponding to the mold, free boundary, plunger, and symmetric part, 
respectively. Because glass during the process is assumed to be a fluid, no­
slip boundary conditions can be assumed for correspondent parts of the 
boundary r t: 

V= Vp 

V=O 

where Vp is the velocity of the plunger. 

z 

Figure 6.9 - 2-D domain. 

(6.49) 

r 
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A symmetry boundary condition is required for r s: 

Vn = 0 

avs = 0 
an 
ap 
an = o. 

(6.50) 

Here we have denoted by Vn and Vs the normal and tangential components 
of v respectively. 

At the free boundary the normal stress must be equal to the external 
pressure Po, which is assumed to be constant. The tangential stress must 
be equal to zero. Hence: 

aVn 
p - 2TJ an = Po 

aVn + avs = o. 
as an 

(6.51) 

One should note that (50) provides for kinematic boundary conditions. 
Indeed, the domain Ot, corresponding to the region occupied by the glass 
at time t, is time-dependent and changes during the process. The method 
of solution is now to use a Stokes solver (we actually use a finite element 
method) on the domain Ot, and we use the found velocity field to simulate 
the evolution. 

Let x : [0, T] x 0 0 --+ IR2 be a mapping such that: 

x(O) = 0 0 , x(t) = Ot 

where Ot is the problem domain as defined before. Then the relation be­
tween the velocity field and the domain geometry can be described by the 
initial value problem: 

dx(t) 
~ = v(x(t)) t E [0, TJ, 

(6.52) 
x(O) = 0 0 • 

The velocity field v(x(t)) can be obtained by solving the Stokes equations 
in Ot. However, one should realize that the geometry of Ot depends on 
that velocity field. 

To overcome this problem we will use the following strategy. Let us 
define 

tn =nlit, n= 1, ... ,N 

such that to = 0, tN = T. After discretization and solving the Stokes equa­
tions with correspondent boundary conditions in Otn (which are assumed 
to be defined), we obtain the velocity field v n • Instead of (6.53) we solve 
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the initial value problem: 

dx(t) n 
----;It = v, t E [tn' tn+lJ (6.53) 

x(tn ) = Otn · 

At a particular time tn for any point xi on the free boundary r f we may 
consider this as a Lagrangian displacement, which we may, e.g., discretize 
by the explicit Euler method: 

(6.54) 

The local error for this algorithm is of the first order in ~t. 
The geometry of Otn+1 can be obtained now, and hence the boundary 

conditions required for solving the flow equations at tn+l can be defined. 
The same procedure is repeated until the final geometry OtN and corre­
sponding flow quantities have been computed. Instead of Euler explicit it 
is possible to use more sophisticated integration schemes. For our problem 
it turns out to be one of the most important aspects. 

Consider first in more detail the deformation of the free boundary dur­
ing a time step. Applying formula (6.54) for a point xi at the boundary 
rr; (Le., the boundary r f at time tn ) with corresponding velocities vi, we 
see that some of the points x~+1 don 't belong to the domain as defined by 
the mould and the plunger. Let us denote the latter by 8tn +l. This config­
uration is changed explicitly by moving the plunger at each time iteration. 
We now simply clip displacement outside this 8tn +l; see Figure 6.10. So the 
position of x~+1 is defined by the intersection of X~+l +span{vr} and 8tn +1 

(6.55) 

Here O!i is chosen such that 

n til 

Figure 6.10 - Clip algorithm. 
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We shall call this the clip algorithm. Note that for the local error in (6.55) 
we have 

Ilxi (tn+l) - x~+lll 
flt 

Ilxi(tn) + fltXi(t~t - xf - Oifltvfll + O(flt) 

IIXi(tn) + fltXi(tn) ~~i(tn) - OifltXi(tn)11 + O(flt) 

= (1 - Oi)llxi(tn)11 + O(flt). 

For the velocities that must be clipped (Oi < 1) the error is apparently 
O( 00), although their contribution to the global error is still O((). The 
actual values of 0i depend on the characteristics of the process, flt, and 
the mesh size h. In a practical implementation the term (1 - oi)llxi(tn)11 
should be of order flt. 

6.7 Mass Conservation 

In the previous section we described one step of the actual solution pro­
cess, i.e., solving Stokes, doing one Euler step, and clipping "nonphysical" 
values. Clearly the latter procedure leads to the question of whether mass 
is still conserved. The finite volume of glass (which can be associated with 
the mass because of incompressibility) is given a priori and equal to BtN, 
i.e., the volume of the mold-plunger system in its final position, when the 
final domain is filled with glass. Numerically we may find the mass decreas­
ing or increasing. If this is significant (say more than 1 %) the simulation 
process is useless. For example, in the case of mass decreasing we can see 
that there is space left in BtN and BtN \DtN i= {0}. 

To solve this problem we can perform the process with a smaller time 
step, which requires more computational time to solve the flow equations 
or increase accuracy of numerical integration by using a scheme of higher 
order. Increasing mass (Figure 6.11) arises because of Euler explicit, as it 
is not a conservative scheme. Instead of (6.52) we shall use the following 
trapezoidal-like algorithm: 

(6.56) 

where vf now is the velocity at yf. The advantage of this explicit 
predictor-corrector scheme is that the velocity field has to be calculated 
only once each time step. It is still not conservative but at least of higher 
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Figure 6.11 -- Volume graph using Euler explicit and different time steps. 
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Figure 6.12 -- Volume graph for second-order scheme and different time 
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Figure 6.13 - Velocity magnitude. 

Figure 6.14 - Pressure. 
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order. With respect to mass conservation, simulation using the combination 
of the clip algorithm and (6.54) is illustrated by Figure 6.12. The mass 
still increases for 6.t = 0.01 because the scheme is still explicit. The local 
error in (6.54) is of second order with respect to 6.t, the discretization 
error in the clip algorithm is of lower order; hence, for a smaller time step 
(6.t = 0.0025) we can see that the clip algorithm, which decreases mass by 
clipping the velocities, dominates. The graph for 6.t = 0.005, which gives 
almost mass conservation, is a case where Euler explicit and clip algorithm 
errors more or less cancel. 

Using a FEM method to solve the Stokes equations and (6.57) to obtain 
the changing geometry of nt we can run numerical simulations up to the 
final stage. The final results are depicted in Figures 6.13 and 6.14. 

References 

1. Chandra, T.D., and Rienstra, S. W., Analytical approximation to 
the viscous glass flow problem in the mould-plunger pressing process, 
RANA 97-08, Technical University of Eindhoven (1997). 

2. Doyle, P.J., Glass Making Today, RA.N. Publisher, Ohio (1994). 

3. Hopper, RW., Plane Stokes flow driven by capillarity on a free sur­
face, J. Fluid Mech., 213, (1990), 349-75. 

4. Hopper, RW., Plane Stokes flow driven by capillarity on a free sur­
face, 2: Further developments, J. Fluid Mech., 230, (1991),355-64. 

5. Hsiao, G.C., Kopp, P., and Wendland, W.L., Some applications of a 
Galerkin-collocation method for boundary integral equations of the 
first kind, Math. Methods in the Appl. Sciences, 6, (1984),280--325. 

6. Kuiken, H.K., Mattheij, RM.M., and van de Vorst, G.A.L., A bound­
ary element solution for 2-dimensional viscous sintering, J. Comput. 
Phys., 100 (1992), 50-63. 

7. Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incom­
pressible Flow, Godon and Beach, New York (1963). 

8. Mattheij, RM.M., van de Vorst, G.A.L., Mathematical modelling and 
numerical simulation of viscous sintering processes, Surv. Math. Ind., 
7 (1998), 255-81. 

9. Mulder, C.A.M., van Lierop, J.G., and Frens, G., Densification of 
Si02-xerogels to glass by Ostwald ripening, J. Noncryst. Solids, 82 
(1986), 92-6. 

10. Rawson, H., Properties and applications of glass, Glass Sci. and Tech., 
3, Elsevier (1980). 



214 Complex Flows in Industrial Processes 

11. Reed, J.S., Introduction to the Principles of Cemmic Processing, 
Wiley-Interscience, Chichester (1988). 

12. S6miya, S., and Moriyoshi, Y., Eds., Sintering Key Papers, Elsevier 
Applied Science, London (1990). 

13. Stokes, Y.M., Very viscous flows driven by gravity, with particular 
application to slumping of molten glass, Ph.D. Thesis, University of 
Adelaide (1998). 

14. Uhlmann, D.R., and Kreidl, V.J., eds., Glass Science and Technology, 
Academic Press, London (1986). 

15. van de Vorst, G.A.L., Integral method for a two-dimensional Stokes 
flow with shrinking holes, applied to viscous sintering, J. Fluid Mech., 
257 (1993). 667-89. ' 

16. van de Vorst, G.A.L., Modelling and numerical simulation ofaxisym­
metric viscous sintering, Ph.D. Thesis, Eindhoven (1994). 



7 
Mathematical Problems in the 
Ziegler-Natta Polymerization Process 

DANIELE ANDREUCCI 

Universita di Roma "La Sapienza" 
Dipartimento M etodi e M odelli M atematici 
Roma, Italy 

AND 

RICCARDO RICCI 

Universita di Milano 
Dipartimento di Matematica "F.Enriques" 
Milano, Italy 

ABSTRACT. Some models describing the Ziegler-Natta polymerization are 
reviewed, and their mathematical aspects are discussed. A model for the 
heterogeneous polymerization is developed assuming a continuous approx­
imation of the catalyst site distribution. Some mathematical results about 
these models are presented. 

7.1 Introduction 

This chapter is concerned with mathematical models for the industrial 
process known as Ziegler-Natta polymerization. 

Polymerization is the process in which polymer chains are generated 
as sequences of identical elements, provided by the molecules of a given 
substance (the monomers). For a large class of polymers the presence of a 
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catalyst is required to make it possible for a monomer to join the chain. In 
Ziegler-Natta-type polymerization the catalyst is a metal (titanium in the 
form of a titanium halide), and the monomer is gaseous. Much technological 
ingenuity has been required to develop an efficient and versatile way to 
manage this process. The article by Cecchin [3] and the book by Moore [10] 
give a complete historical account of the quest for the best support for 
Ziegler-Natta polymerization. 

The current technology is based on the so-called fourth-generation sup­
ported catalyst, which has proved to be the most efficient way to achieve 
a very good balance between the two most impelling requests made on the 
process: the conversion factor (Le., the ratio of weights of produced poly­
mer to catalyst material) and the control of the spatial form of the product 
(known in the literature as replica). However, most of the changes from the 
first-generation supported catalyst to the fourth-generation one are in the 
materials used in preparation of the porous support and the catalyst metal, 
belonging therefore to the domain of the chemical-physical investigations. 
The general physical structure of the process remains basically the same 
throughout the different "generations" and can be described as follows. 

The catalyst particles are fixed on the surface of a porous matrix formed 
by a crystallite. The monomer, in the form of a gas, diffuses through this 
porous pellet to reach the catalyst sites, where polymerization takes place. 
After a rather short time the small stress generated by the polymer so 
accumulated is enough to start a fragmentation of the support into a large 
number of very small particles, which are kept together by the entangled 
growing chains of polymer. In the next stage of polymer growth, monomer 
molecules have to reach the catalyst particles diffusing through the growing 
polymer. This very rough description is the base for the models used in 
the literature. 

Let us quote from the paper by Nagel, Kirillov, and Ray [11]: "Poly­
merization is heterogenous and proceeds by a coordination mechanism. It 
is thought that the growing polymer is directly attached to an active tita­
nium atom on the catalyst surface, and propagation occurs by insertion of 
monomer between the metal atom and the growing chain." 

This point needs some clarification. The growing polymer surrounds 
the catalyst site so that after a small time the catalyst surface is coated 
by the polymer. At this stage, the porous pellet supporting the process is 
no longer the original crystallite but is formed by the entangled polymer 
chains where the catalyst sites are now scattered. The situation presents 
two natural scales. From an "external" observation, the system looks like 
a growing porous medium, through which the monomer gas has to diffuse. 
A closer "internal" observation reveals the structure of closely entangled 
polymer chains coating the catalyst particles that have been trapped by 
the polymer during fragmentation. Then a monomer molecule, which can 
join a chain only if it reaches the catalyst surface, has to "travel" through 
the polymer coating as well, before becoming available for polymerization. 
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Catal st Particle 

-.,::::-__ +-____ ~ Rpoly, y=s(t) 

y 

Polymer Shell 

Figure 7.1 - The solid core model. 

It is then convenient to separately analyze the neighborhood of a cat­
alyst site and the global process in the whole pellet. 

7.2 The Solid Core Model 

A well-accepted approach consists in describing the process in the vicinity 
of a single catalyst particle using the so-called solid core model for poly­
merization Figure 7.1. Let us quote again from [11]: "The solid core model 
for polyolefin polymerization is simply based on a spherical catalyst parti­
cle with a spherical shell of polymer growing around it . .. . Growth of the 
polymer shell results directly from the rate at which polymer is produced. 
The kinetics depend on both the temperature at the surface of the cat­
alyst and the monomer concentration at that point. Particle growth, the 
kinetics, and mass and heat transfer are all interrelated." 

According to this description the newly formed polymer surrounds the 
catalyst, and the polymer shell has to expand to accommodate the new 
inner layer. However, this picture poses a number of nontrivial problems 
when we try to translate it into a coherent mathematical model. The first 
question is: How does the polymer shell move? Even if we assume a priori 
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a simple spherically symmetrical geometry, i.e., that the catalyst particle 
is a sphere and that the polymer shell is a growing sphere at any time, 
the equations determining the velocity field should include the structural 
assumptions about the mechanical behavior of the polymer shell itself. 
Moreover, this velocity field generates a convection term in the monomer 
diffusion equations through the shell, which is usually not negligible. 

None of these considerations are taken into account in the relevant 
literature on the subject. In [11] the diffusion equation for the monomer 
gas in the shell, which contains the accumulation term, has no convection, 
and the whole question of the expansion of the polymer shell is not given 
specific attention. 

A much more clearly stated mathematical problem can be found in [8]' 
which is a standard reference for the so-called multigrain model. In that 
paper, the solid core model is the basic ingredient of what is called the 
"microproblem" (we will return to this later). Here the rate of expansion 
of the external radius of the particle formed by the polymer shell is directly 
related to the amount of momomer reacting at the catalyst surface, giving 
(equation (22) of [8]) 

(7.1) 

where R indicates the external radius of the particle, Rc is the catalyst 
radius, M(r, t) is the monomer concentration, and C1 > 0 is a conversion 
constant. 

Equation (7.1) says that all the polymerized material (according to 
a first-order reaction law for polymerization) produces a volume increase 
of the shell at a constant rate not depending on the mechanical state 
of the shell itself. This, however, is correct only if the porosity (i.e., the 
ratio polymer/void) of the coating forming the shell remains constant. This 
assumption can be reformulated into an equation for the expansion velocity 
field vp , namely, 

(7.2) 

The constant porosity assumption seems reasonable if the polymer chains 
in the shell are free to rearrange with virtually no mechanical effort. 

Equation (7.2) is sufficient to determine the expansion velocity field 
inside the shell only if spherical symmetry of the shell is assumed a priori. 
In a more general situation where this assumption is not realistic, this 
single equation is not sufficient to determine the three components of the 
velocity field, and some specific mechanical assumptions on the behavior 
of the shell have to be made. 

A convection term will be present in the diffusion equation, which takes 
into account the effect of the velocity field in a Eulerian frame of reference. 
Summing up these remarks, we can formulate a consistent problem for the 
solid core model in the hypothesis of spherical symmetry [2]. 
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The model has the form of a "free boundary problem" for the diffusion­
convection equation, exhibiting the peculiarity that the free boundary 
condition, i.e., the differential law for the increase of the external radius 
of the particle, involves the process occurring at the fixed boundary (the 
catalyst surface). This means that the free boundary condition is nonlocal, 
i.e., it depends on the complete spatial distribution of the concentration 
within the shell. 

Let us pass to a description of the detailed mathematical setting of the 
model. 

We denote by y the radial coordinate in the polymer shell (we call it 
microsphere in the following). 

The catalyst is a small sphere of radius Yo > o. At time t > 0 the poly­
meric microsphere has radius s(t) > 0, i.e., the growing polymer occupies 
the region between y = Yo > 0 and y = s( t). This region is assumed to 
be a porous medium where the monomer molecules diffuse to reach the 
catalyst. Here the polymer is produced, which pushes apart the outer 
polymeric shell. 

We indicate by m(y, t) the monomer concentration in the pores. 
The monomer flux inside the microsphere is given by a diffusive term 

and a convective term due to expansion. As we said earlier, in order to de­
termine the form of the convective term we have to stipulate some assump­
tions on the mechanical behavior of the microparticle. A simple choice is to 
assume that the polymerization does not affect the porosity (or the diffu­
sivity) inside the microsphere. Then the convective velocity is divergence­
free, i.e., it satisfies (7.2). Equation (7.2) can be easily integrated, giving 
vp(Y, t)y2 constant with respect to y so that vp can be determined at any 
point in terms of its value at the surface of the catalytic particle. In turn, 
vp at y = Yo is related to the monomer concentration in the vicinity of the 
catalyst (mathematically at y = Yo) according to a first-order reaction law. 
In other words, the polymerization rate is proportional to the monomer 
concentration at the catalyst surface. In this way the rate of increase of the 
particle radius, s(t) = vp(s(t), t) depends on the monomer concentration 
at y = Yo. 

Finally, the monomer concentration at the external boundary y = s(t) 
is assumed to be known at this modeling level. In a more complete model, 
the "multigrain" model, which we will discuss later, the value of the 
monomer concentration at y = s(t) is determined by the "macroscopic" 
monomer concentration in the porous matrix formed by a large number of 
microspheres. 

Then the resulting mathematical problem we have to study is the fol­
lowing free boundary problem. 

PBP 
Find (m(y, t), s(t), t) with t > 0, s E el[O, tj, s(O) = Yo> 0, mE e 2,I(Qf)n 
el,O(Ql), Qf = {(y, t) : Yo < y < s(t),O < t < t} such that the following 
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equations are satisfied: 

ep ! m + (:y +;) ( -d :y m ) + ep ~22 :y m = 0, (y, t) E Qt (7.3) 

8 
d 8y m(yo, t) = )..m(yo, t) [v + epm(yO, t)] , 0 < t < f (7.4) 

m(s(t), t) = M(t), 0 < t < f (7.5) 

2 

S(t) = ).. /:(t) m(yO, t), ° < t < f (7.6) 

where M(t) > ° is a given function and ep,).., v, and d are positive constants 
(d indicates the diffusivity in the porous medium). 

Problem FBP has been analyzed in [2], where existence and uniqueness 
of solution has been proved for M(t) in a suitable class. 

The proof is based on a fixed-point argument for a family of approxi­
mating problems obtained by solving the diffusion problem (7.3) to (7.5) 
with a moving boundary u(t), determined by integrating the ordinary dif­
ferential equation (7.6) with a trial function f(t) replacing m(yo, t). The 
resulting value of m(yo, t) is then taken as the new trial function j(t). We 
find a solution of the problem if j coincides with f. 

In [2] the map f --+ j is proved to be a contraction in the norm of 
CO([O, t'D, for a suitably small time interval [0, t']. However it is only defined 
in a closed subset of the space CO([O, t'D formed by functions that are 
uniformly Holder continuous of class 1/2 in any time interval [7, t'], 7 > O. 
Estimates are given showing that the subspace is mapped into itself and 
that the map is actually a contraction in the CO norm, obtaining uniqueness 
and existence of the solution. 

Notice that each of the approximating problems is also nonstandard 
because of the vanishing of the spatial domain as t decreases to zero. The 
solution of this problem is obtained by an extra approximation procedure, 
solving the diffusion equation in domains of the form {yo < y < u(t), tn < 
t < t'} with tn --+ 0, with appropriate initial conditions. The sequence of 
approximating solutions tends to the solution of our problem by virtue of 
a compactness argument and noting that uniqueness follows directly from 
the maximum principle. 

A considerable mathematical simplification is obtained assuming a 
quasi-stationary approximation, i.e., dropping the accumulation term 
e %t m and the convection term ep~ ty m from (7.3). This approach is fol­
lowed in [13]. Equation (7.3) then reduces to the assertion that the diffu­
sive flux -d ty m is divergence-free; then the quantity y2 ty m is constant 
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in space, i.e., 

(7.7) 

where C1(t) is an unknown function of time to be calculated from the 
boundary conditions. Integrating (7.7) once more with respect to y and 
using (7.4) and (7.5) we can find a close expression for m and tym in 
terms of y, the front location 8(t), and the boundary value M(t), namely, 

m(y, t) = M(t) (7.8) 

[) 1 M(t) 
-;:;-m(y, t) = 2" [ ] . uy Y d 1 1 

)o.vy5 + y;; - s(t) 

(7.9) 

Finally inserting these expressions into (7.6), we find an ordinary dif­
ferential equation for 8(t) involving only M(t), namely, 

[;:5 + ~ (:: - 8) ] S = M (t). (7.10) 

Equation (7.10) can be explicitly solved in terms of rational powers of 
J; M(r) dr, but its solution is more readable in the implicit form 

[ 1 l/ ] 3 l/ 2 Yo l/Y5 r 
g(8) == 3...\Y5 + 3dyo 8 (t) - 2d 8 (t) = 3...\ - 6d + io M(r) dr (7.11) 

where we used the initial condition 8(0) = Yo. A qualitative description of 
the solution is deduced from the inspection of Figure 7.2, observing that 
Yo is larger than the value where g(8) attains its minimum and that 8(t) 
is obtained as the abscissa of the only intersection of the cubic z = g( 8) 
with the line z = i1- ~ + Jot M(r) dr = g(yo) + J(t) at the right of Yo. 
It follows immediately that 8(t) is monotonically increasing, recalling that 
M(t) > o. 

7.3 The Multigrain Model 

The solid core model is too simple to account for all the features of the poly­
merization process. A considerable improvement consists in the so-called 
"multigrain" model, introduced in [8] and [11] (see also [5], [6]' and [9]) and 
describing the process after fragmentation. The inclusion of fragmentation 
leads to the introduction of a new free boundary (the fragmentation front) 
with Stefan-type conditions, whose presence influences the velocity field of 
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z 

x,=s(O) 
O~~------------~--~~-----­s 

Figure 7.2 - 9(s) = [3,1 2 + 3% ]S3 - {dS2. 
"Yo Yo 

the whole system. The initial pellet of crystallite with catalyst metal par­
ticles is penetrated by the monomer gas, which starts to build up polymer 
chains as soon as it reaches the catalyst. When enough polymer has been 
produced, the stress against the porous matrix breaks the catalyst struc­
ture. However, entangled polymer molecules attached to different active 
sites keep the growing microparticles together in a system that can be 
reasonably considerd a porous medium. 

The catalyst phase is not continuous any longer, but each catalyst 
microparticle is surrounded by a polymer layer that remains in contact 
with similar layers. Then the overall pellet can be considered a cluster of 
such microparticles. 

The multigrain model describes the process, from the macroscopic point 
of view, as a collection of individual processes based on the "solid core" 
model. The growing layer surrounding the catalyst will be referred to as 
the "microparticle" and the corresponding mathematical description as the 
"microproblem." 

The pellet itself is a porous aggregate of such microparticles in which 
the monomer gas diffuses. At this level the mathematical model is based 
on a diffusion equation (Fick's law) for the monomer gas. We refer to it as 
the "macroproblem." 

The interaction between the macro- and microproblems occurs through 
various factors. 
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Postponing the discussion of thermal interactions, a first coupling of the 
two problems comes from mass exchange: The local gas concentration in 
the macroproblem provides the outer concentration for the equations of the 
microproblem; see (7.5), and it is generally assumed that the microparticle 
is small enough to justify the assumption that the monomer concentra­
tion is constant all around its surface. In turn, the influx of monomer gas 
into microparticles gives the sink term for the diffusion problem in the 
macroparticle. 

A more complex coupling comes from the growth of the particles, in­
ducing the global expansion of the system. Indeed, as we noticed in the 
previous section, in the solid core model each microparticle grows according 
to the solution of the free boundary problem we described in the previous 
section. The buildup of local swelling produces an expansion of the aggre­
gate. Here again the correct description of this phenomenon is complex, 
and so far not fully investigated. 

The expansion model proposed in [8] can be pictorially represented by 
Figure 7.3. It assumes that the sphere representing the macroparticle is 
made of layers of microparticles disposed in spherical annuli. Each annulus 
grows according to the growth law for the microparticle . 

.•......... 

\ 
.. "" M,icroparticJe ~ayer 

//' 

/~@@) 

"'" 

Figure 7,3 - The multigrain modeL 
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Although suggestive, Figure 7.3 can be misleading, if taken literally, 
because we must allow some local transversal motion (not seen on the 
average), so that the spheres can rearrange themselves according to some 
given (ideal) scheme. 

This description is widely accepted as a reasonable scheme for a quali­
tative interpretation of the phenomenon and as a numerical scheme, based 
on the spherically symmetric "layered" growth of the particles; see [8]. 

In the chemical literature, it is generally assumed that the expansion 
of the macroparticle is such that no significant change in the porosity 
of the macroparticle is present; see [3]. This is (almost) achieved if we 
suppose that the microparticles rearrange during the expansion according 
to a packing mode as closed as possible. Although the microparticles at 
different distances from the center of the aggregate have different radii, 
we can assume that layers of particles in a thin spherical shell do not 
deviate much from the ideal packing of equal spheres, so that porosity 
can be considered constant throughout the agglomerate. (Remember that 
microparticles have different radii, depending on their expansion history.) 

To overcome the geometrical difficulty implicit in the packing problem, 
a "continuum" approach to the problem has been developed [4] based on 
the fact that the number of catalyst sites is very large and each micropar­
ticle has a small dimension compared to the whole pellet. The catalytic 
site distribution is then approximated with a continuous distribution char­
acterized by a density function p representing the number of sites per 
unit of volume in the pellet. Because the total number of catalytic sites is 
preserved, the site density will decrease in time, as a consequence of the 
swelling of the porous matrix. 

The assumption of constant porosity of the pellet is then transformed 
into an equation for the expansion (velocity) field. However, as we noticed 
for the microproblem, this is not enough to determine the velocity unless 
some a priori geometrical assumptions are made on the velocity field itself. 
Again a possible solution is to assume that the expansion is spherically 
symmetric. 

This gives a coherent mathematical framework, which is described later, 
under the assumption of spherical symmetry. 

Four relevant macroscopic variables are found in the model: the mono­
mer concentration M in the porous channels of the matrix, the site den­
sity p, the velocity field v induced by the matrix swelling, and the tempera­
ture T (in the preceding discussion we purposely decided not to discuss the 
role of temperature for the sake of simplicity, although it plays a crucial 
role in the catalyst process). Other variables are needed when we look at 
the growth of polymer around each microscopic particle, that is, those in­
troduced in the discussion of the solid core model. However, we now have 
a continuous family of micro problems parameterized by an appropriate 
microparticle "label" (Le., a Lagrangian coordinate). 
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Let us first clarify the following difficulty. As we said, the macro particle 
exchanges matter with the microparticles: The monomer flux entering the 
microparticles located at a distance r from the center is related to the sink 
term in the diffusion equation for the monomer concentration M in the 
pellet; on the other hand, M(r, t) is the boundary condition for the solid 
core model describing the expansion of the microparticle which, at time t, 
occupies the position r in the pellet. However, different microparticles will 
occupy this position at different times (of course this is strictly true for the 
idealized continuum approximation, but it is also true, with an appropri­
ate time delay, in the real situation). This is important when writing the 
correct form of the sink term, because the quantity of monomer absorbed 
by the microparticles depends on their history. So we have to label each 
microparticle (for example) by its initial location, and we have to follow the 
motion of every microparticle to know which is occupying a given position 
at a given time. 

This is the peculiarity ofthe model. Moreover, the model, being a double­
scale scheme coupling micro- and macroproblems, is better described in a 
mixed Eulerian-Lagrangian approach. 

Temperature is also important in this process. Polymerization is exo­
thermic, and latent heat is released when monomers attach to the polymer 
chains. Moreover the rate of polymerization is temperature-dependent, and 
this has to be taken into account in the microproblem equations. An addi­
tional, even more dramatic, thermal effect is the possible change from the 
almost crystalline structure to the rubber phase. If the polymer coating 
of the catalyst changes its state from crystalline to rubber, the poros­
ity almost vanishes and the catalyst remains impervious to the incoming 
monomer. As a consequence the site is not active in the polymerization. 

It is then necessary to include an equation for the temperature evolution 
in the pellet according to Fourier's law. Temperature of the microparticle 
is generally considered to be uniform (it changes only in time) and equal to 
the temperature in the pellet at the location occupied by the microparticle. 

Accordingly, the equation for the temperature has the same mathe­
matical structure as the one determining monomer diffusion in the pellet. 
However, a source term, rather than a sink, must be introduced to account 
for the heat released by polymerization. 

7.4 The Mathematical Model 

Following the arguments in the previous section we can write the math­
ematical problem for the continuous version of the multigrain model. Let 
us first write the equations in Eulerian form, i.e., in a frame ofreference at 
rest with respect to the initial location of the catalyst pellet (disregarding 



226 Complex Flows in Industrial Processes 

a possible "rigid" motion of the pellet). We denote by M the monomer 
concentration inside the pores of the macrosphere, by v the expansion field 
velocity (which we assume to be radial), and by p the density ofthe catalyst 
particles. Then we have 

a (a 2) -p + - + - (pv) = 0, 
at ar r 

in ~ (7.12) 

~(cM) - (~+~) (D~M - cMV) = -pQ, in ~ (7.13) 
at ar r 8r 

(! +~) v = 14(1 - c)-I, in ~ (7.14) 

where ~ is the moving domain ~ = {O < r < R(t), t > O}. In turn, R(t) 
must be found by solving the ordinary differential equation 

R = v(R,t). (7.15) 

Equation (7.12) expresses the conservation of the number of catalytic 
sites. Equation (7.13) is almost self-explanatory except for the sink term 
-pQ, where Q accounts for the decrease of monomer concentration in 
the pellet, due to the polymerization process in a single microparticle. 
Equation (7.14) relates the local expansion rate of the pellet (in the radial 
direction, by assumption) with the growth rate of the microparticles via 
the quantity Q, representing the contribution of a single microparticle. A 
precise definition of Q and Q is given in the sequel (see (7.30) and (7.27)). 

We must also prescribe initial and boundary data as follows: 

M(r,O) = Mo(r), 0 < r < Ro 
a 
arM(O,t) = 0, 0 < t 

M(R(t), t) = Ml(t), 0 < t 

p(r,O) = po(r), 0 < r < Ro 

R(O) = Ro > o. 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

The choice Mo(r) == 0 and po(r) == constant is natural in view of the 
physical meaning of the model. See also (7.26). 

We assume that the microparticles are so small that the temperature 
T can be considered uniform across each of them, so that heat diffusion 
is relevant only at the macroscopic scale. Then the heat balance equation 
takes the form 

aT (a 2) A 

Cm - ar +;: (k'VT - cTv) = J1.Qp, in ~ (7.21) 
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where the source IlPQ accounts for the heat released by polymerization; 
the latent heat Il > 0 is assumed to be constant. The heat source term is 
proportional to the local expansion rate of the pellet, because the latter is 
proportional to the quantity of monomer that polymerizes (per unit time), 
having chosen a first-order polymerization dynamics in the microproblem 
(see Section 7.2). 

Of course, (7.21) must be complemented with suitable initial and 
boundary data, e.g., 

T(r, 0) = To(r) , 0 < r < Ro 
a ar T(O, t) = 0, 0 < t 

a 
-k ar T(R(t), t) = h(T(R(t), t) - T1(t)) , 0 < t 

h > 0 is a (constant) heat exchange coefficient. 

(7.22) 

(7.23) 

(7.24) 

Problem (7.21) to (7.24) is coupled with the macroscopic gas diffusion 
problem, and with the microscopic free boundary problem described in 
Section (7.2), through the term pQ in (7.21). In the following, we neglect 
the possible dependence of the coefficients on temperature, which seems 
to be reasonable, at least in a first stage of the process. For large times, 
different temperature-driven phenomena, like the possible change of the 
polymer from crystalline to rubber should be taken into account. We also 
recall that R is a free boundary to be found as the solution of (7.15) and 
(7.20). 

Finally, we give an explicit form for the quantities Q and Q appearing 
in the equations for v and M. Here is where the Lagrangean-Eulerian 
coupling comes into play. In fact, the quantities Q and Q are related to the 
growth rate of a microparticle and to the monomer sorption by a micro­
particle, respectively, but their values depend on which micro particle is 
actually passing through the point r. Let us indicate from now on by x the 
initial location of a microparticle (i.e., at the time t = 0 of the first exposure 
of the system to the monomer). This will be the Lagrangian coordinate 
(label) of our particle, and we refer to this particle as the particle x. Let 
us also indicate by O"(x, t) the position of the particle x at a time t :::: 0; 
of course O"(x,O) = x (in the following we shall drop the dependence of 
0" on x when no ambiguity is possible). Moreover s(x, t) (or simply s(t)) 
indicates the radius of the particle x, Yo is the radius ofthe catalyst particle 
(which we assume to be the same for every microparticle) and vp the 
expansion velocity of the microparticle at the catalyst surface, according 
to the scheme in Section 7.2. 

As for the microparticle, a structural assumption on the way the pellet 
expands is necessary to have a closed set of equations. A reasonable consti­
tutive law for it is that the porosity e remains unchanged during expansion; 
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see [3]. Assuming that s inside the macrosphere stays constant, and that 
locally we can describe the macroparticle as a closely packed sphere, we 
get the following relation between the radius s(x, t) of the microsphere and 
the density of the sites p(a(x, t), t) 

4 
1 - s = "37rp(a(x, t), t)s3(x, t). (7.25) 

Equation (7.25) determines the evolution of the radius of the microsphere 
as a function of the local site density. Also note that the radius of the 
catalytic particle Yo > 0 and the initial density po(r) = p(r,O) must be 
connected by 

4 3 
1 - s = "37rpoYo . (7.26) 

Then we can give an expression for the quantity Q in terms of the mi­
crop article radius 

pQ(a(x, t), t) = p47rY5vp(Yo, t) = p47rs2 s = 3(1 - s)s/s. (7.27) 

Therefore we replace (7.14) with 

in E (7.28) 

and we recover (7.25) a posteriori, as a consequence of (7.26),(7.12), and 
(7.28). 

Notice that the expansion velocity v(r, t) of the macroparticle is related 
to the position a(x, t) of it microparticle by 

a 
at a(x, t) = v(a(x, t), t) (7.29) 

so that (7.28) can be used to construct a closed expression for a, which is 
given later. 

The sink term -pQ in the diffusion equation for the monomer in the 
macrosphere equals the flux of monomer entering the microspheres, i.e., Q 
is given by 

2 am 
Q(a(x, t), t) = 47rs (x, t))day(s(x, t), t; x) (7.30) 

which has to be substituted into (7.13). In (7.30) we indicate by m(y, t; x) 
the concentration in the pores of the microparticle x. 

Finally it remains to relate the value of the concentration M(r, t) of 
the monomer gas diffusing in the pellet with the microparticle surface 
concentration m(s(x, t), t). We simply assume that 

m(s(x, t), t) = M(a(x, t), t). (7.31 ) 
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The preceding equations, coupled with the family, parameterized by x, 
of equations (7.6) to (7.13) are the complete mathematical model describ­
ing the continuous multigrain model. 

We can simplify the set of equations by expressing a in terms of the 
function s(x, t). According to equation (7.29), a can be found as the solu­
tion of the integral equation 

a(x, t) = x + It v(a(x, 1"), 1") d1" . (7.32) 

The function a can be explicitly calculated by means of the following ar­
gument; let ec t) be the inverse function of a(·, t) at a given t > o. Then 

v(r, t) = at(e(r, t), t) . (7.33) 

Thus, using (7.28), 

3s _!..-( (C)) ~ (c ) _ axt(e, t) 2at(e, t) - a at <", t + at <", t - (c) + (c) s r r ax<",t a<",t 
(7.34) 

where e = e(r, t). Passing to the variable x, 

3s(x, t) axt(x, t) 2at(x, t) 
---.,..'---";- = + . 
s(x, t) ax(x, t) a(x, t) 

(7.35) 

Let us remark that, in fact, s(x, t) is the partial derivative with respect 
to t of the function (x, t) ~ s(x, t); we keep this notation for reasons of 
consistency with the previous part of the paper. Integrating this equality 
with respect to t, after trivial calculations we get 

(7.36) 

for a function A to be determined. But, at time t = 0, a(x,O) == x and 
s3(x,0) == y3. Then 

x2 
A(x) = 3". 

Yo 
(7.37) 

Substituting in (7.36) and integrating with respect to x, we find, using the 
initial condition a(O, t) = 0 for all t > 0, 

[ l x s3(z t) ] 1/3 
a(x, t) = 3 z2_-3-' - dz . 

o Yo 
(7.38) 

By differentiating with respect to t, (7.38) and substituting r for a(x, t) 
we get 

31e(r,t) z2s2(z, t)s(z, t) 
v(r, t) = 2" 3 dz. 

r 0 Yo 
(7.39) 
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These expressions allow us to restate the problem in a more compact 
way. Indicating by LM[V] and LT[v] the linear parabolic differential oper­
ator on the left-hand side of (7.13) and (7.21), respectively (here we have 
stressed their dependence on the velocity v; in fact the operators are lin­
ear once v is given: In our problem v actually depends on the solution of 
the equation (7.41), so this is not a linear equation), the problem can be 
summarized as follows. 

Problem 7.1. Find four real valued functions M, T, m, and s with M(r, t) 
and T(r, t) defined in {(r, t) IrE [0, R(t)]] ,t ~ O}, and s(x, t) defined in 
{(x,t) E [O,~] x {t ~ O}} and m(y,t;x) in ((y,t;x) lyE [YQ,s(x,t)] ,t ~ 
0, x E [O,~]} solving, respectively, 

LM[V]M= 
3(1 - c) a 
(e( ) ) d-a m(s(e(r, t), t), t; e(r, t)) s r, t ,t y 

LT[v]T = 3(1 - c)s(e(r, t), t) 
s(e(r,t),t) 

(7.40) 

(7.41) 

and FBP of Section 7.2 for each x E [O,~], with boundary condition 
(7.31), where R(t) = a(~, t), a is given by (7.38), e(r, t) is the inverse 
function of a, and v(r, t) is defined by (7.39). 

In order to complete the mathematical formulation of the problem, we 
have also to specify what kind of solution we are looking for, i.e., what 
regularity we require for the solutions of Problem 7.1. There are many 
difficulties related to the unusual coupling of parabolic partial differential 
equations with the same time variable but different space domains. A sim­
ilar two-scale problem is found in a model for polymer crystallization [12], 
where the macroscale was related to heat conduction and the microscale 
was one of the aggregation dynamics of chain segment clusters, described 
by a Fokker-Planck-type equation in a suitable parameter space; see [14]. 
In [12] existence of solution in the classical sense (i.e., the c2+a,1+a/2 theory 
of parabolic partial differential equations) was proved. 

Here again it seems that the problem has to be dealt with in the classical 
framework. In fact the FBP has no weak formulation, as far as we know. 
This implies that the boundary value on the free boundary has to be a 
suitably regular function of time (C1+.B regularity is required in [2]). The 
latter is, in turn, the solution of the diffusion problem in the macroparticle, 
i.e., the concentration M(r, t), so we must look for a classical solution of 
equation (7.40) as well ((7.41) does not pose additional regularity problems 
if we neglect the possible dependence on temperature of the coefficients, 
as we did earlier). Thus we need smooth coefficients in equation (7.40), 
according to the classical theory of parabolic partial differential equations 
see [9]. Such a remark is indeed quite critical. The convection coefficient, 
as well as the free term in (7.12), depend on the solution of free boundary 
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problem. In particular, any estimate of the Holder regularity with respect 
to the radial variable r of those terms involves a delicate study of the 
dependence of the solution of free boundary problem on the boundary 
data (remember that in fact free boundary problem is now a family of free 
boundary problems parameterized, essentially, by the spatial variable r). 

7.5 Some Mathematical Results 

A considerable simplification of the mathematical problem stated in the 
previous section can be obtained if we assume the validity of the quasi­
steady approximation for the diffusion problem in the microparticle. In 
this case, all the relevant quantities from the microproblem entering the 
coupling term in equations (7.40) and (7.41) can be expressed in terms of 
the monomer gas concentration in the pellet, M(r, t). A different approxi­
mation has been considered in [1]. 

In fact, as we observed in Section 7.2, s(x, t) is now the solution of an 
ordinary differential equation in which the monomer concentration M is 
the free term. Things are a little more complex now because the value of 
M entering (7.10) is calculated at the actual location of the microparticle. 
So the precise form of the equation for s(x, t) is 

s(x, 0) = Yo (7.42) 

with a(x, t) defined by (7.38), so that, even if we regard M as a given 
function, (7.42) is actually an integral-differential equation for s(x, t). 

We can also substitute cfy m(s(x, t), t) into (7.40) using equation (7.9). 
In this way we obtain a new problem where any reference to the concen­
tration m in the microspheres has disappeared. 

Problem for Quasi-Steady System (PQS) 

Find three real valued functions M, T, and s with M(r, t) and T(r, t) 
defined in {(r, t) IrE [0, R(t)]] ,t ~ O}, and s(x, t) defined in {(x, t) E 
[0, Ro] x {t ~ O}} solving, respectively, 

e~M - D (~+~) (~M) +ev~M = _e 3s(e(r,t),t) M 
at ar r ar ar s(e(r, t), t) 

3d(1- e)yo M 

s2(e(r, t), t) [1 + Aiyo] s(e(r, t), t) - Yo 
(7.43) 

c~T _ k (~ + ~) (~T) + cv~T = 3(1 - e - c)s(e(r, t), t) (7.44) 
at ar r ar ar s(e(r, t), t) 
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together with boundary and initial conditions (7.16) to (7.18), and (7.22) 
to (7.24), and equation (7.42) for each x E [0, Ro), where R(t) = a(Ro, t), 
a is given by (7.38), ~(r, t) is the inverse function of a and v(r, t) is defined 
by (7.39). 

The rest of this chapter is devoted to the proof of the existence and 
uniqueness of a solution of problem PQS (see also [1) for a similar ap­
proach). We proceed as follows: First we solve the problem for a modified 
version of equations (7.43) and (7.44), with initial and boundary data in 
the domain {(r, t) IrE [0, R(t))] ,t ;::: a}, for a given function s(x, t) (and 
the associated a and ~). Then we construct a new function S solving the 
ordinary differential equation (7.42) with M provided by the previously 
solved diffusion problem (and the function a defined using the "old" s, in 
such a way that (7.42) is a genuine ordinary differential equation). The 
solution of PQS will result from the proof that the mapping s -+ S has a 
unique fixed point. For the sake of simplicity we neglect the temperature 
equation in the following. Solving the problem with the inclusion of tem­
perature does not introduce any additional mathematical difficulty if the 
coefficients in the problem are not temperature-dependent, because in this 
case the temperature equation can be solved a posteriori once the function 
s(x, t) has been determined. 

7.5.1 Auxiliary Problem 

Let s(x, t) be a given function in the space 

x = {s E Lip([O,Ro) x [O,t*)) I s(x,O) = Yo,O::; s::;.x, Ilsx(·,t)lIoo::; H} 
(7.45) 

and define as(x, t) according to (7.38), Rs(t) = a(Ro, t), and ~s(r, t) the 
inverse function of as with respect to x. The auxiliary problem consists in 
solving the following modification of (7.43) 

in ~s,t. = {O < r < Rs(t) , 0< t < t*} with the initial and boundary con­
ditions (7.16) to (7.18), where the function s is to be understood as calcu­
lated at the point (~s(r, t), t) and with a, R, and ~ substituted by as(x, t), 
Rs , and ~s. Here Vs is given by 

31~(r,t) z2s2(z, t)M(a(z, t), t) 
vs(r,t) = '2 3J( ()) dz r 0 Yo a z, t 

(7.47) 

where 

[ z2 1/ (z2 )] J(z) = - + - - - z 
.xy~ d Yo 

z;::: Yo . 
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Finally, we denote 

G [ ] _ 3d(1 - e)yo 1 
a s - 2 [ ] S 1+_d_ s-Yo 

AVYO 

(7.48) 

and 

(7.49) 

Note that both Ga[s] and Gb[S] are positive functions once s is chosen in 
the space X. Moreover, we have 

1 [1 v] 2 X ~ f(s(x, t)) ~ >"Y5 + dyo (Yo + >..t) (7.50) 

for any sEX. 
The auxiliary problem so defined can be solved using standard results 

on the linear parabolic equation from [7]. In fact, the equation is nonlinear 
because of the functional coupling due to the definition of vs, and of the 
quadratic term M2. The sign of the latter, however, allows us to use the 
maximum principle for positive solutions, so that the equation can be easily 
solved by a fixed-point argument. Because of our assumption on the func­
tion s, all the coefficients in the operator are Holder-continuous functions, 
so we can apply the results about linear parabolic equations with smooth 
coefficients in Chapter IV of [7]. Those results are stated for cylindrical 
domains, while our domain Es,t* is not a cylinder; however, a standard 
rectangularization procedure can be used (Le., a change of variable from 
r to r I Rs (t)), without any regularity reduction of the coefficients of the 
resulting parabolic equation (the most delicate coefficient appearing in the 
transformed equation is Rsl R~ = vs(a(Ro, t), t))/(a(Ro, t), t))2). 

It follows that the resulting solution Ms(r, t) belongs to c2+a,1+a /2 
(Es,t*) for any a E (0,1), and its norm is controlled by a constant depend­
ing only on a, the initial and boundary data, and the ca ,a/2 norms of 
the coefficients of the equation, which in turn are controlled by the cor­
responding norm of s. In particular it follows that Ms(as(x, t), t) has the 
same regularity as the function as and that 

(7.51) 

where M is a constant depending only on the space X and on the initial 
and boundary data. 

Moreover, a direct application of the maximum principle gives 

o ~ Ms(r,t) ~ 1 

throughout the domain Es,t*. 

(7.52) 
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Now we define S(x, t) to be the solution of the ordinary differential 
equation 

[::5 + ~ (~: - S)] S = Ms (CTs (x, t), t) (7.53) 

with initial condition S(x,O) = Yo for any x. 
As we observed in Section 7.2, (7.53) can be explicitly solved in terms 

of an algebraic function of the time integral Is(x, t) = J; Ms(CTs(X, r), r) dr 
involving only quadratic and cubic roots. Let us call this function Q(I). 
Then S(x, t) = Q(Is(x, t)) would be, at least, as regular as the free term, 
unless some of the quantities under a root in the expression of Q vanish 
for some (x, t). An investigation of the regularity of S based on its explicit 
expression would be rather tedious because of the complicated form of Q. 
But we can easily show that S is a regular function directly from the 
differential equation. 

In fact, because S(x, 0) = Yo, we have [-& + ~ (~: - S)] (x, 0) = t > 0; 

then (7.52) implies that S is a monotone increasing continuous function. 
Consequently, its time derivative S is bounded from above by A. 

To estimate the space derivative Sx, we can differentiate (7.53) with 
respect to x. It turns out that Sx(x, t) is the solution of a linear ordinary 
differential equation (still parameterized by x) 

Sx + a(x, t)Sx = (3(x, t) (7.54) 

where 

( ) S(x, t)(2aS(x, t) - b) 
a x t - ---'-=-:"'-'-~-'-:--:::-7---':-'-, - aS2(x, t) - bS(x, t) 

(7.55) 

( ) aa Ms(CTs(X,t),t)aa CTs(X,t) (3xt- r x 
, - as(x, t)2 - bS(x, t) 

(7.56) 

and a = h+-dv , b = ~d. Moreover we have the initial condition Sx(x, 0) = 0, 
"Yo Yo 

because S(x,O) == Yo, so that 

Sx(x, t) = lot (3(x, r) exp (-loT a(x, B) dB) dr. (7.57) 

Now we observe that a(x, t) ~ o. Moreover, from (7.38) and the definition 
of the space X, it follows that 0 :::; %xCT(X, t) :::; 1 + ~t3, which, together 
with (7.51), gives 1{3(x, t)1 :::; tM(l + ~t3). Inserting this estimate into 

(7.57) we obtain 

(7.58) 
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This implies that the operator 8 - 8 maps the space X into itself if 
the time t* is sufficiently small. 

7.5.2 Existence and Uniqueness for Short Time 

We now want to show that the map 8 - 8 has a unique fixed point. 
Because the space X is a closed subspace of the space of continuous function 
00([0, RoJ x [0, to]) it is enough to prove that the map is a contraction in 
the sup norm. 

Let 81 and 82 be two given functions in X. We denote by S = 81 - 82 
the difference between the two solutions of (7.53) corresponding to 81 and 
82, respectively (and of course containing the corresponding solutions M1 
and M2 of problem (7.46)). Let us also indicate by 

fi=f(8i)= [8l2+~(8l_8i)]' i=1,2. 
>"Yo d Yo 

Then S is given by 

yielding 

s = (ft - h)M1 + h(M1 - M2) 
fth 

I ~ I 2 2 8 :::; >.. (1ft - 121 + C(l + t) IM1 - M21) 

where C is an appropriate constant. 
The difference 1ft - 12 I is easily dominated by 

1ft - 121 < C(l + t)181 - 821 :::; C(t + t2) sup lSi· 

(7.59) 

(7.60) 

(7.61) 

A more delicate estimate is needed to dominate the term IM1 - M21 
because the two functions Mi are calculated at two different points, namely, 
M1 (0"1 (x, t), t) and M2 (0"2 (x, t), t), where again O"i = O"S;. Define j = j(t) 
such that O"j(t)(Ro, t) = maxi=1,2 O"i(Ro, t), k = k(t) such that O"k(t)(Ro, t) = 
mini=1,2 O"i(Ro, t), and ~j,t = ~sl,t U ~s2,t' ~k,t = ~slot n ~s2,t. 

Let us start from the case in which one of the points O"i(X, t) belongs 
to ~j,t \ ~k,t. Without loss of generality, assume that (x, t) is such that 
0"2 (x, t) > R1 (t) = 0"1 (Ro, t) > 0"1 (x, t). In this case we write the difference 

M2(0"2(X, t), t) - M1(0"1(X, t), t) = M2 (0"2 (x, t), t) - MR(t) 

- M1(0"1(X, t), t) + MR(t) 

and use the fact that MR(t) = M2(0"2(Ro, t), t) = M1(0"1(Ro, t), t). Then 

1M2 (0"2 (x, t), t) - MR(t)1 :::; M (0"2(Ro, t) - 0"2 (x, t)) 

:::; M (0"2 (Ro , t) - 0"1(Ro, t)) 



236 

and 

Complex Flows in Industrial Processes 

IMR(t) - Ml (0"1 (X, t), t)1 ::; M (0"1(~' t) - 0"1 (X, t)) 

::; M (0"2 (X, t) - 0"1 (X, t)). 

We can estimate the Loo norm of the difference 0"1 - 0"2 using the finite 
increment formula for the function [.p/3 in (7.38) 

1 lx z2 10"1 (x, t) - 0"2 (x, t)1 ::; (( ))2 3Is~(z, t) - s~(z, t)ldz 
z x, t 0 Yo 

(7.62) 

where z(t) > x is an appropriate value between 0"1 (x, t) and 0"2 (x, t). 
In order to estimate the term IIMI - M21100,Ek,t we need to bound 

IMI -M21 on the curve r = O"k(t)(t). Clearly one of the Mi equals MR(t) on 
r = O"k(t)(t). The other function can be bounded in terms of its Lipschitz 
norm and of (7.62), giving 

IMI (O"k(t) (t), t) - M2(O"k(t) (t), t)1 ::; CIIs! - s21100,t. (7.63) 

Now we can write the equation for the difference u = Ml - M2 in the 
domain Ek,t 

€! u - D (:r +~) (:r u) +€V1:r u + Ga [SI]U + Gb[SI](M1 + M2)u 

= -€M 2r (Vl - V2) - M2(Ga [SI] - Ga [S2]) - Mi(Gb[SI] - Gb[S2]). 

(7.64) 

The differences (Ga [SI] - Ga [S2]) and (Gb[SI] - Gb[S2]) can be expanded in 
terms of 0"1 - 0"2 because the functions Ga and Gb are both Lipschitz con­
tinuous in s. The only delicate point is that Ga [SI] and Ga [S2] (and Gb[SI] 
and Gb[S2]) are calculated at the points 6 (r, t) and 6(r, t), respectively. 
This problem is removed observing that, for any C > 1, 

C-2/3 ::; O"x(x, t) ::; C so that C-1 ::; ~r(r, t) ::; C2/3 (7.65) 

at least if t ::; (Cl/3 - l)yo/>", implying s3(x, t)/Y5 ::; C3. Indeed, we only 
have to use x ::; O"(x, t), and Yo ::; s(x, t) ::; Yo + >..t in 

x2 x2s3(x, t) s3(x, t) 
~---,- < O"x(x, t) = 3 < 3 (7.66) 
0"2(x, t) - 0"2(x, t)yo - Yo 

Because ~i is the inverse function of O"i (for any fixed t), from (7.62) and 
(7.65) it follows that (in the common r domain) 

1~I(r, t) - 6(r, t)1 ::; C2/3~(YO ~ >..t)2 IIsl - s21100,t. (7.67) 
Yo 
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Finally we estimate VI - V2 

IVl(r, t) - v2(r, t)1 

< ~ rf.l(r,t) z2\ si(z, t)M1(al(z, t), t) _ s~(z, t)M2(a2(z, t), t) \ dz 
- r2 Jo y~ !(al(z, t)) !(a2(z, t)) 

+ ~ rf.2(r,t) z2 s~(z, t)M2(a2(z, t), t) dz 
r2 Jf.J(r,t) Y6 !(a2(z, t)) 

(7.68) 

assuming, without loss of generality, that 6 (r, t) ~ 6(r, t). Again the sec­
ond term of the sum in (7.68) is easily bounded by a function that depends 
only on time (and is bounded as t --> 0) times the difference 6 - 6, while 
the first term, splitting the product s; Md Ii, is dominated by two terms 
bounded by Iisl - s211 and a final term dominated by IMI - M21. Then, 
recalling (7.67), we have 

(7.69) 

Finally we can use the maximum principle in (7.64) and get 

(7.70) 

where again C(t) stays bounded as t --> O. 
We can now go back to (7.60) and get 

(7.71) 

from which the contractive character of the map follows for a sufficiently 
small t* in the definition of X. 
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The Espresso Coffee Problem 
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ABSTRACT. We review the results of a long research project on the espresso 
coffee brewing process, carried out jointly by the industrial mathematics 
research group at the Department of Mathematics "U. Dini" of the Uni­
versity of Florence and the Italian company illycaffe s. p. a. ('Irieste). 

We describe the main experimental steps of the research and present 
the mathematical models developed in order to interpret the data correctly. 
The models are of increasing complexity, the first being confined to the 
mechanical phenomena (experiments performed with cold water), while 
the most comprehensive includes the influence of dissolution. Particular 
emphasis is put on the fact that the process deviates significantly from 
usual filtration in standard porous media, although the classical Darcy's 
law is assumed as the fundamental flow mechanism. 

8.1 Introduction 

8.1.1 Percolation in the Espresso Coffee Machine 

It is well known that there are several different ways of preparing a cup of 
coffee. Espresso coffee is the favorite in Italy and is becoming increasingly 

A. Fasano (ed.), Complex Flows in Industrial  Processes

© Springer Science+Business Media New York 2000
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popular in other countries. An espresso coffee machine is a rather sophisti­
cated device designed to supply water with constant values of temperature 
and pressure (95°C and 9 bars at the typical operating conditions), forcing 
it through a layer of ground coffee in the form of a compact cake inside 
a container that allows the beverage to drip out while retaining the solid 
particles. 

The corresponding flow (percolation) is a remarkably complex process, 
accompanied by at least two important chemical effects: the extraction 
of soluble substances in water and the emulsification of insoluble liquids. 
More than 1500 chemical compounds have been identified in coffee: Some 
of them are expected to be more or less polar and may exhibit such an 
affinity with water as to become water soluble. Moreover, the flow also 
exerts a mechanical action on the ground coffee cake. 

The cake commercialized by illycaffe s. p. a., an Italian company based 
in Trieste, for home espresso machines consists of nearly 7 grams of ground 
coffee, pressed in a cylindrical form between two filters of permeable paper. 
The size of the particles forming the main body of the cake is in the 
range 100-200 /1, but much smaller particles are also produced during the 
grinding process, which normally adhere to the larger grains. A fraction 
of such smaller particles can be removed by the flow, according to the 
mechanism that will be illustrated later, and are transported through the 
pores. A slight compression of the coffee cake can be exerted by the flow, 
although this effect seems unimportant in normal conditions. 

It should be mentioned that the mechanical and chemical aspects we 
pointed out are strongly coupled: Actually, extraction affects the properties 
of the liquid (density, viscosity) and to a much larger extent those of the 
porous medium (porosity, permeability). On the other hand, the filtration 
velocity plays a fundamental role in the extraction kinetics. 

In recent years illycaffe s. p. a., with the help of ECMI promoted a 
theoretical and experimental research program, the aim of which was to 
understand the mechanical and chemical processes taking place during 
the filtration of water through the compact cake of ground coffee in the 
espresso coffee machine. The corresponding problem exhibits a number of 
peculiar features deriving from the mutual interaction between the flow 
and the evolution of the porous matrix. Such a complexity is reflected in 
the mathematical models we are going to discuss, which, roughly speaking, 
consist in systems of partial differential equations of various types, with 
the presence of a free boundary. 

8.1.2 The Experimental Approach 

The first attempt to set up a mathematical model for the espresso brew­
ing process dates back to the early sixties ([7]). As a naive approximation, 
it is likely to assume that the percolation process can be hydraulically 
defined by an equation associating five variables, sufficient to character­
ize the process in its macroscopic physical aspect, in agreement with the 



8. The Espresso Coffee Problem 243 

traditional rule stating: To prepare an espresso cup correctly, it is neces­
sary to set the right temperature and the right pressure, then the hydraulic 
resistance must be adjusted (by grinding and compacting) until the right 
volume of beverage is obtained in the right time. 

In order to model the phenomenon theoretically, a semi-empirical ap­
proach uses flow, pressure, and temperature continual sensors to obtain 
discharge curves as a function of time ([27]). The steady-state prediction 
of Darcy's law (with no gravity) gives simply 

p=Rq (8.1) 

where p is the injection pressure, q the volumetric velocity, and R the 
hydraulic resistance of the cake. 

But two observations that lie in evident contradiction with this equation 
emerge from the experimental curves (see Fig. 8.1): 

1. Flow is not constant for constant injection pressure, but it displays 
an initial transient in which a sharp maximum is reached and then 
decreases in time toward an apparently asymptotic value (dependent 
on temperature and pressure). 

2. E\fen the asymptotic value is not proportional to the injection pressure 
(as we would expect from Darcy's law), but it increases until a cer­
tain value and then remains constant or decreases for larger values of 
pressure, thus exhibiting a nonmonotone behavior. 

This situation occurs not only during the ordinary espresso coffee brew­
ing procedure, but also in the case in which water is injected at low temper­
ature, clearly pointing out the mechanical origin of this surprising effect. 

discharge (mIls) 

25 

20 

15 

10 

5 

time (5) 
2 4 6 8 10 12 

Figure 8.1 - Pressure dependence of flow during percolation. 
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Figure 8.2 - Microstructure of ground coffee particles. 

Such anomalous and clearly nonlinear behavior cannot be explained by 
just modifying Darcy's law in one of the ways suggested by the literature 
(see, e.g. [4]) . On the contrary it must be attributed to other phenomena 
accompanying the flow, while Darcy's law can still be used as the basic 
flow equation. 

The following equation (see [1]) approximates the experimental behav­
ior of q as a function of time, excluding the initial transient peak (which 
is simply due to the way the apparatus builds up the required pressure): 

q = a + be-ct (8.2) 

where the values a, b, and c are deducible from the data. The flow expo­
nential dependence on time suggests that the ground coffee particles may 
exhibit a progressive rearrangement under the action of the flow. 

Electronic microscopy (see Fig. 8.2) shows that ground coffee contains 
a component of fine particles, fragments of the cell membranes, which 
become so fragile after roasting that it is not possible to keep the size 
of all the particles produced in the grinding operation within the desired 
range. 

In such a setting, the fines are expected to migrate and eventually 
to accumulate in some part of the bed, typically at the outflow surface 
(Fig.' 8.3). 

An indirect convincing confirmation of this theory comes from a series 
of tests in which the direction of percolation can be reversed. Such tests 
are performed by percolating water through an over-turnable extraction 
chamber designed on purpose. The direct flow has the described behavior, 
and once the asymptotic discharge has been reached the cake seems to 
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Figure 8.3 - A simplified scheme of the ground coffee layer: the cylinder 
is the coffee cake, and the lower rectangle is a transversal section of it. 

behave like an ordinary porous medium (if the pressure is switched off and 
then applied again, the discharge immediately resumes the same value). 

However, as the percolation chamber is rotated, the flow surprisingly 
goes through the exponential decay once more (see Fig. 8.4). This effect 
can be explained by assuming that the fine particles can be removed and 
transported by the flow; after the flow inversion the particles that accu­
mulated first in a lower section of the cake (causing an increase of the 
hydraulic resistance) now counter-migrate, with an initial increase of the 
hydraulic conductivity in the opposite direction, subsequently leading the 
system to the previous steady state. 

discharge (mIls) 

6 

4 

2 

2 4 6 8 10 12 14 16 18 20 22 24 time (s) 

Figure 8.4 - Direct/inverse discharge curve. 
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8.2 Modeling the Percolation Process 

A shortcut to formulating a model for a flow process through a progres­
sively modified medium can be based on a black box philosophy, that is, 
establishing laws from a series of experimental data and disregarding the 
phenomena occurring at the microscopic scale. Such a semi-empirical ap­
proach, which has been used, for example, in approximation (8.2), has the 
advantage of simplicity, although it is of no help in investigating the real 
mechanism that governs the process. 

A finer approach, which is more complex but more interesting, consists 
in looking at the real nature of the process and studying the local inter­
actions between the flow and the porous matrix, in order to formulate a 
model providing a theoretical basis to the observed phenomena. 

The rest of this chapter is devoted mainly to reviewing and discussing 
the mathematical models based on the second approach. We will not deal 
with space-independent models; we refer to [1] for an overview on the semi­
empirical models and to [20] and [2] for further generalizations. 

The complexity of the problem requires a separate analysis of the vari­
ous aspects of the process. We will first introduce a simpler model (part I) 
that contains most of the peculiar features, focused on the consequences 
of removal and transport of a single species of fine particles. Next, (parts 
II and III), we will remove some simplifying assumptions and incorporate 
some generalizations (such as the deformability of the medium, the multi­
species composition of the system, and the diffusion of some components). 

In our conceptual model, the ground coffee layer will be saturated with 
the fluid. As a matter of fact, the first stage of the process, corresponding 
to the initial penetration of water through the dry cake, is not considered 
in this context. On the other hand, invasion problems with the specific fea­
tures of filtration through ground coffee have been extensively investigated 
in [12], [13], [14], [15], and [23]. In principle, the two different processes of 
imbibition and filtration can be connected by considering the initial condi­
tions of the latter as the state determined at the end of the invasion process. 

We also assume, as a common feature, that the process is described 
by a one-dimensional model. Actually, the physical problem suggests that 
filtration can be considered in a good approximation predominant in the 
axial direction; the nozzle supplying water is designed to make the flow 
one-dimensional for a uniform exploitation of the ground coffee. 

Finally, the liquid flowing through the porous medium is assumed to 
be incompressible. 

For the sake of brevity we will not deal with other techniques that have 
been used to describe the process, although at a lower level of complexity. 
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We mention the approach based on the use of cellular automata ([3]' [6]) 
and a first attempt to use homogenization techniques ([18]) and variational 
formulations, which allows us to describe the invasion process and looks 
susceptible of further developments. 

The paper ([17]) reconsiders the problem in ([18]), adding a mass ex­
change kinetics between the grains and flowing liquid. 

8.3 Part I: Single Species of Fine Particles, No 
Dissolution (References: [16], [20], [22]) 

As we said, the phenomena that at a microscopic level playa crucial role 
in the deviation of the studied process from the classical Darcyan filtra­
tion are the transport of fine particles of the porous medium by the flow 
and dissolution of substances. The latter process is virtually eliminated 
by percolating cold water. In this first approach we refer precisely to this 
situation, adding the further simplifying assumption that only one species 
of identical particles is present. Not all the fine particles are free to move; 
part of them are bound to the porous skeleton for various reasons. Nev­
ertheless, some of the bound particles can be detached by the flow and 
subsequently transported by the flow. 

If L is the thickness of the porous layer, we take a spatial coordinate 
x,O < x < L, such that x increases in the direction of the flow. In such 
a frame of reference, the boundaries x = 0 and x = L correspond to the 
inflow and outflow surfaces, and we assume that the overall deformation 
of the medium is negligible. 

We use two different symbols to denote the concentration (i.e., mass per 
unit volume of the total system) of fine particles when they are bound to 
the porous matrix (b) and when transported by the flow (m). The following 
equation expresses the mass balance for the moving fine particles (cfr. [29]): 

am a ab _. + - (mY: ) = --
at ax m at 

(8.3) 

where Vm is the particle velocity and the term on the right-hand side 
denotes the production rate of mobile particles, due to the action of the 
flow. 

The velocity Vm can be related to the velocity of the fluid V = q/€ 
by assuming reasonably that the fine particle average motion is in the 
direction of the flow: 

Vm = aV, 0 < a::;: 1 (8.4) 
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where a is introduced to take account of possible slowing effects due to the 
shocks of the particles with the porous matrix during their motion. 1 

A crucial point in the model is to describe the release rate of fine 
particles. The predominant factors in such a process are the intensity of 
the flow q and the concentration of the particles susceptible to removal. 
For a specified value of q, we may suppose that not all the fine particles 
can be removed, just the fraction whose bonds are weak enough. 

Such a behavior is modeled by introducing a threshold function (3(q) 
such that the particle removal process occurs only as long as the concen­
tration b exceeds the value of (3. Hence, the release kinetics of fine particles 
is summarized in the following equation: 

ab at = -')'q[b - (3(q)J+. (8.5) 

By [-J+ we denote the positive part of [.J. Note that the threshold (3 de­
pends on q; actually, a more intense flux operates on a larger population 
of particles. For this reason (3 is a decreasing function of q. 

We will prove that the threshold effect is essential in explaining the non­
monotone behavior of the asymptotic discharge on the injection pressure. 
Generalizations of the removal equation (8.5) will be considered in Sec­
tion 8.4. Moreover, (3 may also depend on the concentration b (efr. Section 
8.4.1). 

In a first modeling stage, it can be assumed that the porosity of the 
medium is not significantly affected by the removal process. Such an as­
sumption, together with the incompressibility of the liquid, makes the flow 
intensity q depend on time only: 

aq =0 ax . (8.6) 

We shall see that dropping this assumption leads to a more complicated 
problem. As we said in Section 8.1, the moving particles accumulate in the 
proximity of the outflow surface x = L due to the presence of a paper filter 
retaining the fine particles. As a consequence a low conductivity layer grows 
and a free boundary x = s(t) (the layer top) appears in the problem. In 
other words, the porous layer is split into the two regions 0 < x < s(t), the 
removal-transport zone, and s(t) < x < L, the compact layer. Assuming 
that the fine particles are not compacted in any part of the layer at the 
initial time t = 0, we have s(O) = L. 

1 In some technical applications there are transported particles that are able to follow the 
paths of maximum velocity in the microscopic flow so that their average speed is larger 
than that of the fluid. 
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The flow is driven by the pressure gradient in each of the two regions: 

ap 
q = -K(b,m) ax 0 < x < s(t) 

ap 
q = -Kc ax set) < x < L. 

(8.7) 

The hydraulic resistance in the compact layer is much higher than in the 
rest of the medium: 

Kc « K(b, m). 

We denote by M the concentration of fine particles in the compact layer. 
In the packing configuration the fine particles are assumed to occupy the 
maximum volume at their disposal, so that M is a given constant. 

Arguing as in [28], the mass balance at the boundary x = set) is given 
by the condition 

lIm + b]] set) - [[mVm ]] = 0 (8.8) 

where (here and in the sequel) [[X]] denotes the jump of X at set): 

[[X]] = lim X(x, t) - lim X(x, t) (8.9) 
x-->s(t)+ x-->s(t)-

Because the fine particles are at rest in the region set) < x < L, we find 
from (8.8) and (8.4) the following equation, which describes the growth 
rate of the compact layer: 

o 
(M - (m(s(t)-, t) + b(s(t)-, t)))s(t) = -q(t)m(s(t)-, t). 

c 
(8.10) 

The physical meaning of (8.10) is evident: the number of particles needed 
per unit surface to complete the packed configuration, that is, the product 
-sCM - (m+b)), is provided by the incoming flux of particles oqm/c. At 
the interface set), we impose that p and q are continuous: 

[[q]] = 0, [[P]] = 0 at x = set). (8.11) 

It has to be remarked that the correct jump condition for q would be 
[[q - cs]] = O. However, the ratio between clsl and q on both sides of the 
interface is typic'\lly very small, so that (8.11) is justified as a first approx­
imation. The model is completed by prescribing the initial conditions 

b(x,O) = bo > 0, m(x, 0) = mo ::; 0 (8.12) 

which give the distribution of fine particles at t = 0, and the boundary 
conditions 

{ 
p(O, t) = Po 
p(L,t) =0 
m(O,t) = 0 

injection pressure, 
atmospheric pressure, (8.13) 
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Note that a constraint for the initial concentrations is given by M > 
bo + mo. The third condition in (8.13) states that there is no injection 
of particles at the boundary x = O. We also remark that the initial value 
of the flux q can be deduced from (8.7), (8.12), and (8.13): 

Po q(O) = KoL , Ko = K(bo,mo) 

8.3.1 The Mathematical Investigation of the Model 

The mathematical analysis we will perform is based on the following as­
sumptions: 

( a) The threshold function f3( q) is continuously differentiable and 

f3'(q) ~ 0 

(b) mo ~ 0 and Po > 0 are constant. 

(c) The initial concentration of bound particles bo > 0 is constant. 

(8.14) 

Before commenting on assumptions (a) to (c), we will summarize the com­
plete mathematical model. After rescaling the variables as follows 

x =x/L, 
b = b/bo, 

i3(ij) = f3(ijqo)/bo, 

f = t'Yqo, 
in = m/bo, 

s(f) = s(fhqo)/L, 

ij = q/qO, 

M=M/bo, 

K = K/Ko, 

P=p/po 

ino = mo/bo 

Kc = Kc/Ko 

we define 

aL 
J.L=-

e'Y 

and we put the complete model (namely, eqs. (8.3), (8.4), (8.5), (8.7), 
(8.10), (8.11), (8.12), and (8.13» in nondimensional form, omitting the 
bars to keep notation simple: 

am am ob 
7ft + J.Lq(t) ax = - at' 0 < x < s(t), t > 0 

: = -q(t)[b - f3(q)]+, 0 < x < s(t), t > 0 

op 
q = -K(b, m) ax' 0 < x < s(t), t > 0 

op 
q=-Kcox ' s(t)<x<L,t>O 

(M - (m(s(t)-, t) + b(s(t)-, t)))s(t) = J.Lq(t)m(s(t)-, t), 

[[-K~:]] = 0, [[p]] = 0, x = s(t), t > 0 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

t>O (8.19) 

(8.20) 
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b(x, 0) = 1, m(x,O) = mo, 0 < x < 1, s(O) = 1 (8.21) 

p(O, t) = 1 p(l, t) = 0 m(O, t) = 0, t > O. (8.22) 

We now revert to assumptions (a) to (c) introduced at the beginning of 
this section. We have already discussed the meaning of property (a) of the 
threshold f3 with respect to flux q (cfr. the comment just below (8.5)). 
Point (b) is introduced to simplify the mathematical presentation. 

The assumption that produces a significant simplification is (c). Actu­
ally, in that case b depends on time only (cfr. (8.5)) and b(t) is nonincreas­
ing. The essential advantage is that we can write the mass balance for the 
fine particles as a conservation equation: 

a( m + b) ( ) a( m + b) _ 0 
at +p.qt ax -. (8.23) 

An important consequence of (8.23) is that m + b remains constant along 
the characteristic curves of the transport equation (8.23). The character­
istic line a(t) originating at (0,0) bounds the region 

Qi = {(x, t)la(t) < x < s(t),O < t < to} (8.24) 

where t* is the (finite) time at which x = a(t) intersects x = s(t). The 
characteristic curves starting from points (0, t), t > 0, lie in the region 

Qb = {(x, t)IO < x < a(t), t > O} U {(x, t)IO < x < s(t), t ;:::: to} 

The regions Qi and Qb are sketched in Figure 8.5. Note that if mo > 0 the 
origin is a discontinuity line for m(x, t). 

By introducing the resistivity R(b, m) = 1/ K(b, m) and recalling (8.17) 
and (8.20) we obtain the following expression for the flux: 

( ret) )-1 
q(t) = 10 R(b, m) dx + Rc(1- s(t)) (8.25) 

t 
z = set) 

Qb 
t* 

1 x 

Figure 8.5 - The regions Qb and Qi. 
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where Re = 1/ Ke. Consistent with the physics of the problem we assume 
that two positive constant values Rm and RM exist such that 

0< Rm ::; R(m, b) ::; RM < Re. (8.26) 

Lemma 8.1. (a priori bounds). For any solution of (8.15) to (8.22), we have: 

l+mo 
s(t) ::::: Sm = 1 -~' t::::: 0 (8.27) 

qm == (RMsm + Re(1- sm))-l ::; q(t) ::; R:;;.l == qM, t::::: 0 (8.28) 

o < b(t) ::; 1, t ::::: 0, 0::; m(x, t) ::; 1 + mo, (x, t) E Qi U Qb (8.29) 

0< -s(t) < p,qM~1 + mo) t ::::: O. 
- - M - 1 +mo) 

(8.30) 

Furthermore, the function O(x, t) defined by 

x = it J.Lq(r) dr 
t-9(x,t) 

(8.31) 

corresponding to the time needed to transport particles across the distance 
x from the inflow surface is such that 

O<O<~ 
- - J.Lqm 

00 1 
0<-<­

ax - J.Lqm 

II ~: /I ::; 1 + :: . 

(8.32) 

The detailed proof of Lemma 8.1 is in [16]. We just mention the fact, 
physically expressive, that (8.27) comes from the global mass balance 

ret) 
10 (m+b)dx+M(I-s(t))=I+mo (8.33) 

obtained by integrating (8.15) separately in Qb and Qi and by taking 
account of (8.19) (note that iT = p,q). In (8.33) the partition of the global 
amount of particles 1 + mo between the compact layer and the residual 
medium is in evidence. Balance (8.33) provides the least possible value Sm 

of S by setting m + b = 0: 

(1 - sm)M = 1 + mo. 

This proves (8.27). 
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On the other hand, (8.28) simply follows from (8.25), while (8.29) is a 
consequence of the following formula: 

{ 
m(x, t) + b(x, t) = mo + 1 if (x, t) E Qi 

m(x, t) = b(t - (}(x, t)) - b(t) if (x, t) E Qb (8.34) 

where () is defined in (8.31). Note that (8.30), which easily follows from 
(8.28) and (8.29), provides an estimate for the time t* introduced in (8.24). 
Finally, (8.32) comes from differentiating (8.31). In order to avoid the triv­
ial problem that gives the stationary solution q == 1, S == 1, b, m constant 
(corresponding to the absence of the release process), we introduce the 
assumption 

,6(1) < 1. (8.35) 

Lemma 8.2. (asymptotic behavior). For any solution of (8.15) to (8.22) 
existing for t E [0, +00), we have 

Moreover 

s(t) ::; 0, lim s(t) = Soo E [Sm, 1) 
t--++oo 

(8.36) 

b(t) ::; 0, lim b(t) = boo E [0,1) 
t--++oo 

(8.37) 

lim m(x, t) = 0 uniformly in (0, soo) (8.38) 
t--++oo 

Sm 
Soo = b' 

1-~ 
M 

(8.40) 

Proof. Eqs. (8.36) and (8.37) are evident (recall (8.19), (8.16), and (8.27)). 
Note that boo < 1 because of (8.35). On the other hand, (8.38) is proved 
by observing that for (x, t) E Qb m(x, t) + b(t) = b(t - (}(x, t)) (cfr. (8.34)) 
and t - () -+ 00 for t -+ 00 because of the first estimate in (8.32). The 
boundedness of () also provides the uniformity of the limit m -+ O. The 
asymptotic flux (8.39) is obtained simply by passing to the limit in (8.25). 
Finally, the value for Soo (8.40) comes from (8.33) (for t -+ 00) and from 
(8.27). 0 

The following results are aimed at showing that model (8.15) to (8.22) 
can predict the nonstandard behavior of the observed phenomena we 
described in Section 3. For this purpose, we need some additional assump­
tion on the resistivity R. 
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Lemma 8.3. (nonincreasing flux). Assume that 

R(m, b) = R(m + b) (8.41) 

with 

R(e) E Cl[O, 1 + ma), 0 < Rm ::; R(e) ::; RM < Rc, R'(e) < Rc ~RM. 
(8.42) 

Then the flux q(t) satisfies 

{ 
q(t) > 0 as long as m(s(t), t) > 0 

q(t) = 0 otherwise 

Proof. From (8.25), by differentiating we get 

(8.43) 

q(t) ~ _q2(t) { s(t) [R (e( s( t), t» - Rol + !,*) R' (e(x, t)) ! ( m +b) dx }. 

(8.44) 

Recalling the free boundary condition (8.19) and noting that, thanks to 
(8.41) and (8.23), the term containing the integral in (8.44) is -J.Lq(t) 
[R(e(s, t)) -R(e(O, t))], we obtain 

q(t) = J.Lq3(t)m(s(t), t) {R(e(s(t), t)) - Rc + R'W)} (8.45) 
M - e(s(t), t) 

from which (8.43) follows. Note that e(s, t) - e(O, t) = m(s(t), t), due to 
(8.21). 0 

Corollary 8.1. 

(i) The function b(t)-f3(q(t)) is nonincreasing (recall 13' ::; 0), thus imply­
ing that b(t) tends to zero at infinity. The positive part (b(t)-f3(q(t)))+ 
decreases from the initial value 1- f3( 1) > 0 (cfr. (8.35)) to zero, which 
is reached at infinity or at some finite time. 

( .. ) aIJ > 0 
11 at-

(iii) q(t) ::; 1 

Property (ii) is a consequence of 

of) = 1 _ q(t) 
ot q(t - f)) 

which in turn comes from differentiating (8.31) with respect to t. In order 
to analyze the asymptotic behavior of the flux with respect to the applied 
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pressure, we further specialize to the case 

R = constant = 1. (8.46) 

Under such an assumption, (8.25) and (8.39) simplify, respectively, to 

q(t) = (s(t) + Rc(l - S(t))-1 

qoo = (soo + Rc(l - soo))-1 . 

(8.47) 

(8.48) 

The fact that (b - f3(q))+ vanishes either at infinity or at a finite time (as 
we pointed out in Corollary 8.1, (i)) makes the corresponding qualitative 
behavior of the system very different, as is shown in next proposition. 

In order to investigate the dependence on injection pressure, we need 
to revert to the original variables, which we now denote by Po, qo, etc. 
Any quantity without a tilde will still denote the nondimensional scaled 
variable. 

Proposition 8.1. 1£ 

b(t) - f3(q(t)) > 0, Vt > 0 (8.49) 

then the asymptotic value of the flux qoo is an increasing function of the 
applied pressure Po. 

Proof. The main consequence of (8.49) is that 

(8.50) 

Note that (8.50) is equivalent to boo = /3(qoo)' Recalling (8.40), i.e., 

(8.51 ) 

we obtain from (8.48): 

000 ~ q.L (L :: _ 500 (:: -1) ) -I 
Ko 8m Ko_ 

( 
- ) -1 ( ( _)) -1 

= Kc 1- L(l-/3(qoo)jM 1- Kc qo· 
(8.52) 



256 Complex Flows in Industrial Processes 

Now we differentiate with respect to Qo: 

Because fj'(Qoo) < 0, we get ~d--'" > o. 0 
qo 

Corollary 8.2. Under assumption (8.46), a necessary condition for violating 
the nonmonotone dependence of Qoo on Po is that (b - (3(q)) vanishes at a 
finite time. 

In Section 8.1.2 we discussed the experimental evidence of a possible non­
monotone dependence of the asymptotic flux velocity on the injection pres­
sure. It is then of some interest to investigate whether the quantity b-(3(q) 
will vanish. This is the aim of the next section. 

8.3.2 Reaching the Steady State in an Infinite or Finite Time 

For a deeper analysis of the qualitative behavior of the solution, we keep 
the simplifying assumption (8.46). A simple case in which the occurrence 
of (8.49) takes place when 

(3(q) == (3o < 1. (8.54) 

Indeed, by setting 

A(t) = b - (3(q) (8.55) 

we can write (8.16) as 

dA d dt + qA(t) = - dl(q), A(O) = 1 - (3(1) > 0 

which, under assumption (8.54), gives A(t) > 0 Vt > o. Moreover, the 
asymptotic solution is given by coupling (8.48) with (cfr. (8.27), (8.40), 
and (8.50)) 

M - (1 +mo) 
800 = M - (3(qoo) 

(8.56) 

We are now going to prove that the solution can also reach the steady 
state in a finite time. First, we observe that if b - f3(q) vanishes at some 
time f> 0, then (b - (3(q))+ == 0 for t > f, because b(t) is nonincreasing 
and (3(q(t)) ~ (3(q(f)) for t > f (Lemma 8.3). It follows that the solution 
of (8.16) for t > f is b(t) == b(f). 
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If we consider the characteristic x = o-(t) of (8.15) starting at (0, i), 
i = max(f, to), we immediately have 

m(x, t) == ° for (x, t) E Qb n {(x, t)lx E (0,1), t > f}. 

Therefore, the system reaches the steady state when a-(t) hits the free 
boundary s(t) (and this will occur in a finite time after i). We now prove 
the following. 

Theorem 8.1. A function f3(q) can be found such that system (8.15) to 
(8.22) reaches the steady state in a finite time. 

Proof. Take any f3(q) with properties (8.14) and (8.35) and any positive t' 
such that A(t') > 0. By virtue of (8.35), we can suppose that s(t') < 0. 

Now we freeze b at the value b' = b(t') and solve the following problem 
for m', q', and s': 

8m' 8m' ---at + ,4 8x = 0, m'(O, t) = 0, t ~ t' 

(M - (m' + b'))s(t) = j-tq'm' t > t' 

(8.57) 

(8.58) 

Passing to the limit in the mass balance (8.33), which for t > t' takes the 
form 

rs'(t) 
Ja m'(x, t) dx + M(l - s'(t)) = 1 + ma - b's'(t) 

we get (cfr. also (8.56)) 

s'oo(M - b') = M - (1 + rna). (8.59) 

Recalling (8.14), (8.48), and (8.56) we have 

b' > boo =} s'oo > Soo =} q'oo > qoo =} f3(q'oo) ::::: f3(qoo). (8.60) 

We also note that s;,., (hence q;"') depends on b' only, i.e., not on the choice 
of f3( q) for values of q ::::: q', because f3 plays no role in the modified system 
(8.57) to (8.58). At this point, two cases can occur: 

(i) f3( q;"') ~ b', 

(ii) f3( q;"') < b'. 

Owing to (8.60), case (i) means f3(qoo) > boo, so A has to vanish in a finite 
time. In case (ii) we modify the function f3(q) for q ::::: q(t') taking ffi(q) with 
the properties (8.14) and ffi(q;"') > b'. In this way, the original problem with 
the modified f3 reaches the steady equilibrium at a finite time. 0 

We remark that the theorem does not state that qoo may indeed be non­
decreasing with the applied pressure. Actually, the vanishing of b - f3(q) is 
a necessary condition for such a behavior, as pointed out in Corollary 8.2. 
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Figure 8.6 - Asymptotic discharge vs. applied pressure for different 
threshold functions (31 and (32 and /-L = 0.5 (normalized quantities). 

Such an occurrence must be proved by an example. Some numerical simu­
lations exhibiting the nonmonotone dependence of the asymptotic flux on 
the applied pressure have been provided in [22]. 

Figures (8.6) and (8.7) have been obtained by T. Suski ofIeM, Warsaw. 

8.3.3 Existence and Uniqueness of the Solution 

The well-posedness for problem (8.15) to (8.22) is guaranteed by the fol­
lowing result, which is valid for the general case R = R(m, b). 

Theorem 8.2. Suppose that R = R(m, b) is a C1 function for mE [0, mo + 
1], b E [0,1] satisfying (8.26). Then problem (8.15) to (8.22) has exactly 

/31 (q) /32(q) 
1 1 

~ 
0.8 0.8 ~ 
0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 \. 

0.1 0.2 0.3 0.4 q 0.1 0.2 0.3 0.4 q 

Figure 8.7 - Threshold concentrations (31 and (32. 
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one solution (m, b, q, 8, p) globally in time. Moreover, if R( m, b) is Coo, the 
same is true for q(t) and 8(t), except at t = t* (defined in (8.24)), where 
if ma > 0, Ii and s have a discontinuity (although bounded on both sides) 
and possibly at the time (if it exists) at which b - f3(q) vanishes, where 
some higher-order derivatives can be discontinuous. 

The proof of this theorem is omitted; we refer to [16] and [20] for all 
details. We mention that the existence proof is based on a fixed-point 
procedure (which will also be used for the more general results quoted in 
the rest ofthis chapter), namely, taking an arbitrary T > 0 and introducing 
the set of functions 

X(T) = ((q,8) E C([O, T]) x C([O, T])lq(O) = 1,8(0) 

. l+ma } 
= 1, qm ::; q ::; qM 8m ::; 8 ::; 1,8 !, LIP 8 ::; J.LQM M _ (1 + rna) 

(8.61) 

where Lip 8 is the Lipschitz constant of 8. For each (q,8) E X(T) we solve 
the problem for band m in [0,1] x [0, Tj, then we use the right-hand sides 
of (8.25) and of (8.19) to determine a new pair (q*, 8*). It can be seen that 
(q*, 8*) E X(T) and the mapping (q,8) --+ (q*, 8*) is precompact in it and 
Lipschitz continuous. Hence Schauder's fixed-point theorem can be used. 
The same techniques can be used to show the continuous dependence on 
the data (see [20]). 

8.3.4 Numerical Calculation 

Under the assumption Rc ~ R the thickness of the compact layer is ex­
pected to be very small, i.e., 1 - 8 « 1. In this context a reasonable 
approximation of the model consists in calculating the functions band m 
in the whole domain 0 < x < 1, t > 0 and the right-hand side of (8.19) for 
x = 1. For this problem, existence and uniqueness can be proved (see [5]). 

The simplified model we introduced can be approximated by the nu­
merical approach sketched later, based on the retarded argument method. 
Choose a time 7 and set s = 1, ij = 1 for 0 ::; t ::; 7. Then solve (8.15) 
and (8.5) and define a new q with the help of (8.20) and a new 8 with 
(8.19) (calculated for x = 1). Consider the interval 7 ::; t ::; 27 and take 
s(t) = 8(t - 7), ij(t) = q(t - 7), and apply the same procedure to define 
q(t) and 8(t) in (0,27), imposing that m, b, and 8 take at t = 7 the values 
found in the previous step. 

It is not difficult to show that the family (8, ij) indexed by 7 is compact 
and that taking, e.g., 7 = lin, we get a sequence converging to the solution 
of the modified problem. 
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8.4 Part II: Several Species of Moving Particles and 
Deformation (References: [16], [19]) 

We now consider the simultaneous removal of several species, letting the 
porosity change, because of the mass loss from the porous matrix and 
the deformations induced by the friction of the incompressible fluid on 
the grains. The macroscopic deformation of the medium will be neglected, 
although it is supposed that a substantial variation in porosity can be 
produced by movement of the grains at a micrometric scale. 

Contrary to this analysis, we allow all the transported particles to flow 
out from the medium, thus avoiding the difficulties due to the presence of 
an internal free boundary. This is because we will concentrate on the mass 
removal process and the combined influence of such a process and the flow 
on the porous medium. In some sense this analysis is complementary to 
the previous one, because the attention is shifted toward more complex 
mechanical phenomena, disregarding the formation of the compact layer. 

In Part III the two aspects (interaction processes and formation of a 
compact layer) will be combined, including diffusion processes. 

8.4.1 Statement of the Model 

In order to describe the various species (either solid particles or soluble 
substances) we introduce two vectors of concentrations: b = (bl , ... , bn ) 

for the species in the solid and m = (ml, ... , mn ) for those in the liquid. 
The transport equation for each species is written in the same way as 

(8.3) and (8.4): 

ami + ~ (a. 2m.) = _ abi i-I n at ax • c' at ' -, ... , (8.62) 

where ai, i = 1 ... , n are slowing factors. Typically ai = 1 for solutes 
and ai ::; 1 for solid particles. The porosity c is no longer constant (as in 
part I); it is an unknown function of x and t. Thus, the incompressibility 
condition (8.6) is replaced by the following: 

Be aq _ 0 
at+ax- . (8.63) 

In writing (8.63) we neglect the rate of change of the specific volume occu­
pied by the soluble substances in the porous matrix. This situation occurs 
when the volume made available for the flow by dissolution is large in 
comparison to the volume of substances in the porous matrix undergo­
ing dissolution (for a discussion on this aspect see ([18]). The complete 
statement of the volume balance will be presented in the next section. 
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The removal rate is modeled in analogy with (8.5): 

Obi Ft = -Fi(q, b)Gi (b - f3i(q, b)), i = 1, ... , n. (8.64) 

The functions Fi are bounded and vanish for q = O. The functions Gi(() 
are zero for ( ~ 0, bounded, and positive for ( > O. The dependence of 
Fi and f3i on the whole vector b is explained by the possible interactions 
between different species (for example, the presence on the larger grains 
of a coating of fat substance can affect the dissolution of some underlying 
components) . 

The constitutive equation expressing the combined effects of mass re­
moval and friction of the flow on the porous matrix is the following (the 
symbols introduced are explained next): 

: = - t {j/~i - g(q)6(e - e*(q, b)) + h(q)6(e*(b) - e). 
i=l 

(8.65) 

In (8.65) {ji are nonnegative constants. The corresponding terms represent 
the porosity increase rate due to mass loss. The second term on the right­
hand side of (8.65) represents the flow-induced reduction rate of porosity. 
The function 9 vanishes for q = 0 and is increasing, e1 is zero when its ar­
gument is negative and bounded positive otherwise and increasing, e*(q, b) 
is a lower limit for the porosity corresponding to the local values of q and b. 
The last (positive) term describes an elastic response of the medium. Here 
h is nonnegative and need not vanish for q = 0, 6 has the same behavior 
as 6. The function e* is an upper limit for e. The functions e* and e* are 
bounded away from 0 and 1. Finally, we write Darcy's law as 

op 
q = -K(m, b, e) ax (8.66) 

in which we take into account that the porosity changes may also affect 
permeability. 

After introducing a set of dimensionless quantities in the same way as 
in part I (for the nonconstant initial data we divide by some average value), 
we can write down the set of governing equations ((8.62), (8.64), (8.63), 
(8.65), and (8.66)) in the following way: 

ami +!... (~.'l.m.) = _ Obi ,; -1 n 
8t ax .... • e' 8t'. - , ... , (8.67) 

(8.68) 

oe ~ Obi * 
8t = - ~ {jiFt - g(q)6(e - e*(q, b)) + h(q)e2(e (b) - e) (8.69) 

.=1 



262 Complex Flows in Industrial Processes 

ap 
q = -K(m, b, e) ax 

(8.70) 

(8.71) 

to be satisfied in the classical sense in (0, L) x (0, T) for some given T > 0 
(L is the thickness ofthe medium), together with the initial and boundary 
conditions: 

b(x,O) = bo(x) > 0, m(x,O) = mo(x) ~ 0, 0:::; x :::; L (8.72) 

m(O, t) = 0, 0:::; t :::; T (8.73) 

e(X,O) = eo(X) = e*(bo), 0:::; x:::; L (8.74) 

p(O, t) = po(t), p(L, t) = 0, 0:::; t :::; T. (8.75) 

The unknown quantities of system (8.67) to (8.75) are the concentrations 
band m, the flux q, the porosity e, and the pressure p. The given functions 
Pi, Gi , i = 1, ... , n, g, h, 6, 6, eo, e*, and {3i and all the data in (8.72) 
to (8.75) are assumed to be C1 with Lipschitz derivatives, as well as the 
threshold functions {3i, i = 1, ... , n, for which we assume (in the same way 
as in (8.14)) {3~ :::; o. Note that the initial value bo in (8.72) is not constant, 
as it was in part I (efr. assumption (c) in Section 8.3.1). 

As we will see, the mathematical character of (8.67) to (8.75) differs 
substantially from the problem studied in the previous section. To begin, 
the initial flux q(x, 0) is not given and is not easily computable. 

8.4.2 Determination of the Initial Flux 

We start from the following. 

Lemma 8.4. The initial flux q(x, 0) is determined in a unique way by the 
given initial conditions bo(x), mo(x), eo(X), and p(O, 0), p(O, L). 

Proof. By combining (8.68), (8.69), and (8.70) we get the following ordi­
nary differential equation for q: 

aq 
ax =r(q,e,b) (8.76) 

with 

n 

r(q, e, b) = - L, t5iFi(q, b)Gdb - (3i(q, b)) 
i=1 

+ g(q)e1(e - e*(q, b)) - h(q)6(e*(b) - e). (8.77) 
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However, we miss the condition for x = o. For t = 0, the right-hand 
side of (8.76) is a prescribed function of q and x, by virtue of (8.72) and 
(8.74) (note that the last term in (8.77) vanishes for t = 0). Thus, for 
t = 0 (8.76) is a nonlinear ordinary differential equation for the unknown 
q(x,O). The initial condition q(O,O) = qo > 0 must be determined in such 
a way that the corresponding solution q(x, 0; qo) is compatible with (8.71). 
Recalling that Po(O) = 1, p(1, 0) = 0 (cfr. (8.75)), and integrating (8.71) we 
have 

(l q(x,O;qo) dx= 1 
io J((bo,~o,€o) 

(8.78) 

We are now going to prove that equation (8.78) determines qo uniquely. 
Indeed, we first observe that 

lim q(x, 0; qo) = +00 
qo~+OO 

uniformly in (0,1), because r is bounded, and that q(x, 0; 0) = 0, because 
g(O) = 0 and either Fi(O) = 0 or we assume that (bi - ,Bi(O))+ = o. Next 
we define 

which satisfies 

Q(x,qo) = aa.q(x,O;qo) 
qo 

aQ _ Qar - , Q(O, qo) = 1, \:Iqo· 
ax aq 

Therefore Q > 0, Le., q(x, 0; qo) increases with qo, \:Ix. Consequently the 
integral in (8.78) increases monotonically from 0 to 00 as qo goes from 0 
to +00. We conclude that (8.78) has exactly one positive solution qo and 
q(x,O) is uniquely determined. D 

8.4.3 The Fixed-Point Argument 

Although we are not going to reproduce in all details the proof of global 
existence and uniqueness for system (8.67) to (8.75), we will briefly sketch 
the argument on which it is based. We first remark that for a given q(x, t) 
the quantities b, ~, and € can be calculated by using (8.68) to (8.67), and 
(8.70) together with the corresponding data (8.73) to (8.75). Then Darcy's 
law (8.71) can be used to construct a mapping on q in such a way that 
any possible fixed point of it corresponds to a solution of problem (8.67) 
to (8.75). 
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More specifically, this procedure goes through the following steps: 

(i) For any T > 0 define the set 

Xl = {q E C([O, 1] x [0, T])lq(x, 0) = qo(x), 0 < qm ::; q ::; qM 

Iq(Xl> t) - q(X2' t)1 < A .../.. t E [0 T] 
I I _X' Xl r x2, , 
Xl -x2 

(8.79) 

where qm and qM are positive constants that depend on the norms 
of the given data and on T. The initial flux qo(x) = q(x,O) is com­
puted using the method illustrated in Lemma 8.4. Note that it is very 
important to keep distinct the two Lipschitz constants Ax and At. 

(ii) Compute b(x, t) by means of (8.68) and the initial condition in (8.72). 

(iii) Calculate e(X, t) by integrating 

ae 
at = -r(q, b, e), e(X, 0) = eo(X) (8.80) 

with r defined by (8.77). 

(iv) Compute m(x, t): This step is more complicated because (8.67) re­
quires the definition of the spatial derivatives of e and q, which at this 
stage are not known to exist. To avoid such a difficulty, we use the 
modified system 

ami qami 1 q - + a--- + a--r(q e b) - a--Em-
at • e ax • e " • e2 • 

where r is a natural replacement for ~. The function E(x, t), tak­
ing the place of g!, is obtained by integrating the following ordinary 
differential equation, which comes from differentiating formally (8.80) 
with respect to x: 

~~ =-rqr-r-eE-vT·B 

E(x, 0) = e~(X), 0::; x ::; 1. 

(8.82) 

The function B(x, t) appearing in (8.82) plays the role of g! and is 
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the solution of the system 

oB, (OP ) Ott = - Oqtr - ''\hFi' B Gdbi - f3i(q, b)) 

+ Fi(q, b) (Bi - r:i -"'ihf3i . B ) G~ (bi - f3i(q, b)) (8.83) 

Bi(X,O) = b~,o(x), i = 1, ... , n. 

Once the function E(x, t) has been found, equations (8.81) can be 
integrated with the appropriate initial and boundary conditions. 

(v) Calculate the new guess q*(x, t) by first defining 

q(x,tjX(t)) = X(t) + 11 r(q,e,b)dx (8.84) 

and determining X(t) corresponding to q* so that (8.84) is consistent 
with (8.71), i.e., 

rl q(x, tj X(t)) dx = Po(t). 
10 K(b,m,e) 

(8.85) 

Existence and uniqueness of X(t) satisfying equation (8.85) is estab­
lished using the same argument as in Lemma 8.4. Thus the operator 
Fq = q*, where q*(x, t) = q(x, tj X(t)), is well defined for any q E Xl' 

The existence of a unique fixed point q* = Fq in Xl is proved using 
Banach's theorem, i.e., showing that F is a contraction in a suitably small 
time interval. Global existence follows from Schauder's fixed-point theo­
rem. The main difficulty is to select the constant At so that it bounds the 
Lipschitz constants of both q and q* with respect to t. The crucial point is 
to prove that the Lipschitz constant of b, m, and e are independent of At. 

It is important to remark that getting estimates of this kind allows us 
to avoid imposing other limitations that would certainly not be physical. 

On the other hand, we must say that a condition that appears in a 
natural way in the proof is the following: 

n n 

Fo L oillbi,oll + Fo L Oif3~ + (11g'11 + 1ih'1!) 
i=l i=l 

(8.86) 

where 0 < em < eM < 1 are, respectively, lower and upper limits for both 
e* and e*, Km and KM lower and upper limits for K, the norm is the 
sup-norm and E* is a suitable constant such that 

Oe* 
-E* 5, aq 5, o. 
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Condition (8.86) does not seem purely technical; from a physical point of 
view, we may say that it expresses that the variation with q of the physical 
coefficients entering the model must be sufficiently slow. A possible expla­
nation could be that violating such conditions could be in contrast with the 
requirement that saturation of the medium is maintained. In this aspect 
such a behavior seems related to the physical assumption underlying the 
volume balance equation (8.63). The final result can be stated as follows. 

Theorem 8.3. Under the assumptions listed in Section 8.4.1, problem 
(8.67) to (8.75) has one unique solution for all T, provided the derivatives 
with respect to q of the coefficients appearing in the model are sufficiently 
smal1. 

8.5 Part III: A Comprehensive Model 
(References: [22], [29]) 

Our aim is now to join together the various aspects of the problem analyzed 
separately in the previous sections. In other words, we want to combine 
the model presented in Part I, focused on the buildup of the compact layer 
by a single species of moving particles, with the model discussed in Part II, 
where several species are transported by the flow but they are allowed to 
leave the system. 

In the model we are going to formulate, the removed components are 
both fine solid particles, which are transported convectively by the flow, 
and other substances, which may also diffuse in the liquid. Moreover, the 
porosity is affected by the removal process, but here we neglect the ad­
ditional effects of flow-induced compression and elastic response of the 
medium described by equation (8.65). As a matter of fact, the elimination 
of deformability simplifies the exposition but is not a critical mathematical 
simplification. On the other hand, we will not introduce any approximation 
in the overall volume balance. 

8.5.1 The Governing Equations 

In addition to the concentrations bi , mi, i = 1, ... , n defined in the same 
way as in Part II, we will use the following dimensionless quantities corre­
sponding to the specific volumes of each species: 

{ 

/ (b) 
(}i = bi Pi , 

"Ii = md p~m) , 

"Iw = mw/pw 

i = 1, ... ,n 

i = 1, ... ,n 

water 

(8.87) 

where p~l), l = b, m are the densities of each species. 
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We introduce the following distinction among the species: 

• the indexes i = 1, ... , k < n refer to fine solid particles, either when 
bound to the porous matrix (bi ) or when moving in the flow (mi), 

• the indexes i = k + 1, ... , n refer to substances in the porous matrix 
that once removed are dissolved in the fluid as solutes or droplets (bi for 
the substances attached to the porous matrix and mi for the dissolved 
substances). 

In terms of the volumetric variables (8.87), the porosity is 

n 

e = 'TJ(k) + 'TJw porosity, 'TJ(k) = L'TJi. (8.88) 
i=k+l 

If we denote by V mi and Vw the molecular velocities of the species mi 

and of the water, respectively, we find for the volumetric flux the following 
expression: 

n 

q = 'TJwVw + L 'TJiVmi· 

i=k+l 

We also define the cumulative volume fractions 

k k n 

'TJ(k) = L'TJi' 
i=1 

{}(k) = L {}i, {}(k) = L {}i 

i=1 i=k+l 

(8.89) 

(8.90) 

and {}o = (}o(x) as the volume fraction (with respect to the unit volume 
of the total system) of the rigid porous skeleton. The part of unit volume 
complementary to (8.88) and occupied by solid components is partitioned 
as follows: 

1 - e = 'TJ(k) + {}o + {}(k) + {}(k). (8.91) 

Before writing the complete mathematical model, we are going to model 
the two aspects that have been neglected in the previous model (part II), 
i.e., diffusion and formation of the compact layer with several species of 
particles. In order to write the balance equation for the diffusive species 
i = k + 1, ... ,n, we start from the usual balance (8.3) (written for mi, 
bi ). However, the molecular velocities Vmp i = k, ... , n are not purely 
convective as in (8.4), but they are related to the average velocity V = q/e 
in the following way (we refer to [29] for the detailed derivation of the 
formula): 

i = k+ 1, ... ,n. (8.92) 

Note that in (8.92) interdiffusion effects are neglected. 
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Concerning the migrating particles, we assume, as is natural, that they 
are no longer mobile in the compact layer. We call Mi , i = 1, ... , k, the con­
centration of the i-species in the compact layer s(t) < x < 1. The functions 
Mi(X) are not known. The structure of the compact layer, corresponding 
to a sequence M I , ... M k , depends on the history of the process, because 
it depends on the incoming flux of particles. 

This represents a nontrivial difference between the current situation 
and the case of a single species of particles (part I): in the latter model 
the concentration M is known a priori. Modeling the formation of the 
compact layer means to prescribe a constraint for the concentrations Mi , 

i.e., to prescribe a packing configuration: 

(8.93) 

A simple but reasonable way to prescribe the packing configuration (8.93) 
is the following, which refers to the specific volumes of the species: 

(8.94) 

where Pi is the density of the ith species and e is a known quantity. Equa­
tion (8.94) means that the layer is compact when the incoming particles 
occupy the maximum specific volume at their disposal, represented bye. 
A possible distribution of specific volumes at t = 0 is drawn in Figure 8.8. 

At this point we define the two regions, which are outlined in Figure 8.9. 

DT = {(x, t) : 0 < x < s(t), 0 < t < T} 

RT = {(x, t) : s(t) < x < 1,0 < t < T} 
(8.95) 

We write the complete set of the governing equations, which will be com­
mented on next (for more details we refer to ([22]): 

ami + !... (o.m.~) = - abi i - 1 k (x t) E DT at ax "c at' -, ... ", (8.96) 

Figure 8.8 - The volume distributions at the initial time t = OJ the poros­
ity c is partitioned as in (8.87), while the complementary volume 1 - cas 
in (8.91). The lower strip shows a possible value for the critical specific 
volume e (defined by (8.94)), which must be between O(k),O + 7J(k),O and 
O(k),O + 7J(k),O + c (cfr. (8.120)). 
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t 

x = set) 

DT 

269 

t=T 

1 x 

Figure 8.9 - The regions DT (active region) and RT (compact layer). 

(8.97) 
i = k + 1, ... , n, (x, t) EDT U RT 

ap 
q = -K(b, m, c) ax' (x, t) EDT U RT (8.98) 

~i = -Fi(q, b)G;[bi - (3i(q, b)J+, i = 1, ... , k, (x, t) EDT (8.99) 

ab· 
at' = -Hi(q, b), i = k + 1, ... , n, (x, t) E DT U RT (8.100) 

8c aq a (k) - + - = - -() (x t) E DT U RT at ax at ' , 
k 

aq a" ( q) ax + ax ~ (Xi'f/i"€ = 0, (x, t) E DT U RT. 
i=l 

The initial and boundary conditions are the following: 

mi(x,O) = mi,o(x), i = 1, ... , n, x E [O,lJ 

c(x,O) = co(x), x E [O,lJ 

bi(x,O) = bi,o(x), i = 1, ... , n, x E [O,lJ 

mi(O, t) = 0, i = 1, ... ,k, ° S t S T 

(8.101) 

(8.102) 

(8.103) 

(8.104) 

(8.105) 

(8.106) 

D. (0 )ami(O ) = q(O,t)mi(O,t) 
,c ,t ax ,t c(O, t) , i = k + 1, ... , n, 0< t < T 

(8.107) 
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[[P]] = 0, x = s(t), 

[[:i]] =0, X=S(t), i=k+1, ... ,n 

[[Di6"a: :iJ] =0, X=S(t), i=k+1, ... ,n 

k 

(8.108) 

(8.109) 

(8.110) 

(9 - ('TJ(k) + O(k»)) s = -~ L ai'TJi, x = s(t), 0::::; t ::::; T (8.111) 
i=l 

() mi 
J:l-(l,t) =0, i=k+1, ... ,n 
vX 6" 

p(O, t) = po(t) > 6, p(l, t) = 0, 0::::; t ::::; T 

s(O) = 1. 

(8.112) 

(8.113) 

(8.114) 

The unknown quantities for system (8.96) to (8.114) are the concentrations 
bi(x, t), mi(x, t), i = 1, ... , n (or the specific volumes Oi, 'TJi, i = 1, ... , n, 
see (8.87)), the liquid flux q(x, t), the porosity 6"(x, t), the liquid pressure 
p(x, t) and the free boundary s(t). The balance (8.97) is written according 
to (8.92)). Note that the removal process (species i = 1, ... , k) occurs only 
in the region DT , while the extraction process (species i = k + 1, ... , n) 
may also take place in the compact layer RT. 

Equations (8.100) regulate the extraction of soluble substances from 
the porous matrix. Contrary to the fine particles, we assume that there is 
not a threshold concentration that interrupts the process. 

The global conservation laws (8.101) and (8.102), introduced and dis­
cussed in [29] under the hypothesis p~b) = p~m) = Pi (which will be assumed 
from now on), i = 1, ... , n, are found by rearranging the balance equations 
(8.96) and (8.97). Equation (8.101) describes the rate of change of poros­
ity. Note that the quantities corresponding to the fine particles i = 1, ... , k 
are not present in this evolutive equation, because they are computed in 
the complementary volume 1 - 6", both if they are bound to the porous 
medium and if they are transported by the flow. The formula (8.102) is 
the conservation of the total volume of all the moving components (water 
and species 'TJi, i = 1, ... , n). 

The initial and boundary conditions (8.103) to (8.106), (8.108), (8.113), 
and (8.114) need no comment. Eq. (8.107) corresponds to assuming that 
the velocity Vi, i = k+ 1, ... , n vanishes for x = 0, while (8.109) means that 
the concentrations of the i-species, i = k + 1, ... , n in the flowing liquid 
are continuous across the boundary x = s(t). The boundary condition 
(8.110), expressing the continuity of the diffusive flux at the interface, is a 
consequence of (8.8) (written for the species i = k + 1, ... , n). The latter 
equation, together with (8.94) and written for the species i = 1, ... , k also 
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gives the free boundary condition (8.111). Finally, by condition (8.112) we 
assume that the effect of diffusion is negligible at the outflow surface x = 1. 

Remark 8.1. The function Oo(x), which gives the volume fraction of the 
porous skeleton (cfr. (8.91)), can be calculated by means of (8.103) to 
(8.105): 

Oo(x) = 1 - (eo(X) + 7J(k),O(X) + O(k),O(X) + 7J~k)(x)). (8.115) 

Obviously, the initial data on the right-hand side of (8.115) are physically 
consistent only if 0 < 00 (x) < 1. 

Remark 8.2. The water volume fraction 7Jw and the water velocity Vw can 
be computed a posteriori by means of (8.88) and (8.89), once problem 
(8.96) to (8.114) has been solved. 

Remark 8.3. From (8.8) written for i = k+ 1, ... , n the following condition 
at x == s(t) can be obtained (cfr. (8.11) and the comment that follows it): 

[[ell s(t) = [[q]]. (8.116) 

8.5.2 List of Assumptions 

We assume that the given functions K(b, m,e), Fi(q, b), Gi (7J), (3i(q, b), 
i = 1, ... ,k, Hi(q, b), i = k + 1, ... ,n, eo(X), mi,o(x), bi,o(x), i = 1, ... ,n, 
and Po(t) are nonnegative Cl-functions of their respective arguments and 
each first derivative is Lipschitz continuous. Moreover, we will assume that 
there exist positive constants Km, KM, PiJ', pfj1, and mo such that: 

0< Km ::; K(b,m,e) ::; KM V b,m,e 

o < piJ' ::; Po(t) ::; pfj1, t ~ O. 

The initial distribution of the various species must satisfy 

mi,o(x) ~ 0, bi,o(x) ~ 0, x E [0,1] 

7J(k),O(X) + O(k),O(X) < e < 1 - (Oo(x) + O~k)(x)), x E [0,1]. 

(8.117) 

(8.118) 

(8.119) 

(8.120) 

Condition (8.120) means that the initial concentration of particles is below 
the packing configuration in any point of the medium. On the other hand, 
the critical specific volume e cannot exceed the space at disposal at the 
initial time. 

We remark that combining (8.120) with (8.91) and recalling (8.115) we 
get the following constraint for the initial porosity: 

1 - (e + Oo(x) + O~k)(x)) < eo(X) < 1 - Oo(x), x E [0,1]. (8.121) 
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Setting 

cO' = min (1 - (9 + Bo(x) + B~k)(X))), crt = max (1 -Bo(x)) 
XE[O,l] XE[O,l] 

(8.122) 
(note that 0 < cO' < crt < 1), we deduce from (8.121) and (8.122): 

0< cO' < co(x) < crt < 1, x E [0,1]. (8.123) 

8.5.3 The Fixed-Point Procedure for Local Existence 
and Uniqueness 

The proof of existence and uniqueness for problem (8.96) to (8.114) consists 
of two steps. First, the result is shown locally with respect to time. Then, 
by showing that the local solution fulfills some special properties, we can 
extend the result with no limitation in time by an iterative procedure. 

The proof is based on a fixed-point argument. In the same spirit of 
the procedure we illustrated in Part II, we observe that if a pair (q, s) is 
known to solve the problem, we can calculate all the remaining quantities 
as follows: 

• Calculate bi(x, t), i = 1, ... , n, from (8.96). 

• Solve the ordinary differential equation (8.101), (8.104) with respect to 
c(x, t). 

• Find mi(x, t), i = 1, ... , k from the hyperbolic problems in RT (8.96), 
(8.103) (i = 1, ... , k), (8.106), find mi(x, t), i = k + 1, ... , n from 
the parabolic problems of diffraction type in RT U DT (8.97), (8.103) 
(i = k + 1, ... , n), (8.107), (8.109), (8.110), and (8.112). 

• Calculate p(x, t) from (8.98) and (8.113). 

At this point, we use (8.102) and (8.111) to find the new guesses ij and s, 
respectively. Formally, we define the closed convex set of functions 

t'T(U17U2,Ay,At,My,Mt,so,As,Ms) = {(u(y,t),s(t)) I u E Cl,l(BT) 

(8.124) 

u(y,O) = qo(Y), 0:::; Y :::; 1,0 < Ul :::; u(y, t) :::; U2 

1~:(y,t)l:::; Ay, 1:(y,t)l:::; At, (y,t) E BT 

l:yU(Yl,t)- :yU(Y2,t)I:::;MyIYl-Y21, VYl,Y2E[0,1] 
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s E Cl [0, TJ, s(o) = 1, ° < So :::; s(t) :::; 1 

-As:::; s(t) :::; 0, 0:::; t :::; 1 

IS(tl) - s(t2)1:::; Ms It 1 -t21 Vtl,t2 E [O,T]}. 
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Taking a pair (u,s) E C, we set q(x,t) = u(x/s(t),t), (x,t) E D(T), and 
we define the map :F( u, s) = (ii, s) with 

_ 1 
u(y, t) = f(t) 1 + l(s(t)y, t)' (y, t) E BT 

s(t) = 1- r l(s(r),r)q(s(r),r) dr, t E [O,T] 
10 e - (TJ(k) (s(r), r) + B(k)(s(r), r)) 

where l = TJ(k)/e and 

f( t) - (0 t) _ Po(t) 
- q , - r(t) 1 1 d~ + 1 - s(t) 

10 1 + l(~, t) K(~, t) Ko 

(8.125) 

Then define ij(x, t) = ii(x/s(t), t) in {(x, t) : x E [0, s(t)], t E [0, T]}. 
If (u, s) is a fixed point of :F in CT, then ij = u(x/s, t) and sand 

the corresponding calculated functions (6, in, €, p) fulfill system (8.96) to 
(8.114). We do not reproduce here the proof of existence and uniqueness; 
we refer to [23] for all details. We just mention the fact that in the current 
case the initial flux qo(x) can also be computed: by integrating (8.98) and 
setting lo = '1(k),O we can find 

EO ' 

(8.126) 

We also remark that the partial differential equation problems for mi(x, t) 
require, once again, the spatial derivative of e. In order to avoid such 
difficulty, we use (8.102) to replace Oe/OX with the following expression 

~ (Oq _ q ((0 + t(i)) 
q ox e + TJ(k) i=l 

where (i, i = 1, ... , n play the role of oBi/ox and solve appropriate ordi­
nary differential equations, which can be found in the same way as (8.83). 
We are going now to state the main result. 

We first define (cfr. (8.99)) <Pi(q, b) = Fi(q, b)Gi(q, b) i = 1, ... , k and 
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Moreover, we introduce the following quantities: 

(3 = 1I~IIKMPtt, M m II ()(k) II /:2 = eo +eo + 0 eO 
(8.127) 

where the norm is the sup-norm. We also take C1 as a constant such that 

( IITl(k),oll + (3) (1 _ (3)-1 < C1 < 1I()(k),oll. 
eo /:2 

In order to simplify the mathematical presentation of the proof, it can be 
assumed that the dependence of K on mi occurs through q (in other words, 
K = K(q,b,e)). Even if we are going to make such an assumption, it must 
be said that it plays a very marginal role in the proof of the main result, 
which is stated soon. 

Theorem 8.4. System (8.96) to (8.114) has exactly one solution for any 
t ::; ° provided that: 

(i) (3 < 1, '~~i IITl(k),oll + 1I()(k),oll + /:21~f3 < e, 
(ii) ptt(I+Cl)21~~1 < 1, and 

(iii) the Lipschitz constants with respect to x of the given functions eo, 
Tl(k),O, Tlak), e~, Tl(k),O' the Lipschitz constants L~i' Lt, i = 1, ... ,n of 
the removal functions are sufficiently small. 

As we said earlier, the first step in proving existence and uniqueness for 
(8.96) to (8.114) consists of showing that the result is true in a suitable 
interval (0, T). In order to extend the proof globally in time, it is crucial 
to show that the local solution has the following properties: 

(1) the interface s(t) is bounded by the quantity Smin, which depends only 
on the initial distribution of the fine particles: 

mo [1 
Smin = 1 - e' mo = io (Tl(k),O + O(k),O) dx 

(2) the total specific volume of the fine particles is below the critical value 
e in any point of the region DT: 

Tl(k) + O(k) < e, (x, t) E DT 

(3) the porosity calculated at the time t = T is bounded by the same 
quantities appearing in (8.122): 

e~ < e(X, T) < ett, x E [0, s(T)]. 

We now revert to Theorem 8.4 to comment briefly on the assumptions 
stated there. Condition (i) is especially important: It is more restrictive 
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than the following one (cfr. (8.120)) 

111J(k),oll + IIO(k),oll < 8. (8.128) 

In the model examined in Part I, condition (8.128) is sufficient to guarantee 
that the concentration of particles is below the critical value at any point 
of the region where the removal process occurs. In the current case, in 
which we allow for nonuniform initial distribution of particles and space­
dependent volumetric flux, (8.128) is no longer sufficient. It is not difficult 
to exhibit examples of processes in which (8.128) is valid at the initial 
time but violated at some point in DT. This kind of problem is indeed 
more complex; it is necessary to introduce a second free boundary for the 
developing new compact layer. It is worth noticing that condition (i) in 
Theorem 8.4 involves not only the initial distribution of particles but also 
the removal rate through the norm of ci>. 

Conditions (ii) and (iii) require that the variation of the given functions 
with respect to their arguments is sufficiently slow. This is in the same spirit 
as the corresponding conclusions of part II, despite the different choice of 
the evolutive equation for the porosity. 

We conclude with some qualitative properties of the solution. We have 
to say that in the current case the complexity of the problem does not 
allow us to develop as deep a qualitative analysis as the one performed in 
Part I. An immediate property coming from the study of the characteristic 
curves of (8.96) is showed in Figure 8.10. Referring to the global solution, 
we omit the index T in (8.95) and call (cfr. also (8.99)) 

S = ((x,t) ED I bi(x,t) 5, (3i(q,b), i = 1, ... ,k} n = DIS 

It is easy to see that: 

• if a characteristic curve of (8.96) r is such that r n n =f 0 (curves r 1 

and r 2 in Figure 8.10), then 8(7) =f 0, where 7 is the time when r 
intersect the boundary s . 

• if r belongs entirely to S (curve r3 in Figure 8.10), then 8(7) = O. 

Calling Sl = {r c Sir u n = 0} (in Figure 8.10 Sl is the region bounded 
by the t-axis, the curve /3, and x = s(t)), we have 

oq 
1J(k) = 0, O(k) constant, ox (x, t) = 0, 8(t) = 0 (x, t) E Sl 

and 

( 1J(k)) qc(t) = q 1 + ~ Ix=s (x, t) E Sl. (8.129) 

The (constant) value of s is obtained by solving the equation (cfr. (8.125)) 

( 1-srI ) 
qc(t) Ko + Jo K(~, t) d~ = Po(t). 
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s 

Figure 8.10 - The characteristic curves fl and f2 are totally or partially 
contained in n, hence 8(71) and 8(72) are negative; f3 is contained in S, 
hence 8(73) = o. The curve i3 separates S from n, while the curve f i is 
the lower boundary of the region SI. For t ~ 7i we have 8(t) = O. 

We notice that, if (x,t) E SI, then K(x,t) = K(b(x,t),m(x,t),e(x,t)) 
changes with respect to t only if e varies. From (8.101) we get 

oK oK O(}(k) 

ot = - oe {it' (x, t) E SI. 

We conclude that 

• if oK/oe ~ 0, then the water flux qc(t) increases if Po(t) increases and 
the removal process may restart (8 < 0) (this occurrence is actually 
not predictable by the model discussed in part I, cfr. Section 8.3.2) . 

• if oK/oe ::; 0 and po(t) does not increase, then qc(t) is a nonincreasing 
function and the removal process cannot occur again. 

In particular, in the simpler case K = K(b, m), we have that qc(t) increases 
(hence a second removal process can occur) if and only if Po(t) increases. 
Such a property is consistent with the results obtained in Part I, where Po 
is constant. 
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8.6 Open Questions and Related Problems 

• As we saw in Parts II and III, the initial conditions are actually nonuni­
form, but the complexity of the corresponding problems do not allow us 
to perform a detailed qualitative analysis as in the current case. Thus, 
the asymptotic analysis with nonuniform initial distributions and more 
general functions R( m, b) in the simpler context of single species of 
particles and constant porosity is a nontrivial generalization of the 
problem. 

• We have confined our attention to cases in which the removed compo­
nents of the porous medium go into the flow and there is no adsorption 
on the solid matrix. However, it also makes sense to consider a more 
general model of mass exchange (e.g., sorption-desorption processes), 
taking into account the possible influence of the reaction products. In­
teresting references about flows accompanied by chemical reactions are 
[8], [9], [10], [11], [24], [25], [26]' and [30]. 

• The analysis performed so far refers to a simpler situation in which 
the temperature of the system is constant. It could be very interesting 
to consider the influence of a coupled thermal field, which entails the 
presence of heat diffusion and heat convection and the dependence of all 
the coefficients on the temperature. Such problems are very complex. 
They are found, for example, in processes for the manufacturing of 
composite materials (see chapter 9 by A. Farina and 1. Preziosi). 

• The hydraulic circuit external to the system can be quite complicated, 
including hydraulic resistances in series. Also the effect of the possible 
presence of gas bubbles in the supplying circuit is an important and 
difficult question to be analyzed. 
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ABSTRACT. This chapter deals with those composite materials manufac­
turing processes, e.g., resin transfer molding and structural resin injec­
tion molding, consisting in the injection of a liquid into a porous medium 
made of reinforcing elements. In these processes the infiltration is coupled 
with phenomena affecting both the rheological properties of the liquid 
(thermal variation and curing) and the mechanical properties of the solid 
(deformations). We illustrate the general model and the analytical results 
obtained so far. 

9.1 Introduction 

Many composite materials are manufactured using some industrial pro­
cesses, usually named resin transfer molding, structural resin injection 

A. Fasano (ed.), Complex Flows in Industrial  Processes

© Springer Science+Business Media New York 2000



282 Complex Flows in Industrial Processes 

molding, or squeeze casting, which consist in injecting a polymeric, metal­
lic, or ceramic melt into a porous preform of reinforcing elements. At the 
end, or during the production cycle, the liquid, which should uniformly 
fill the whole preform, solidifies, holding the reinforcing elements together 
and enabling the transfer of major stresses and loads to the solid preform. 

It appears from the literature that the identification of the production 
cycle parameters to be used in practice is still more an art than a science 
(see, for example, [41], [52]), and it has to be developed every time on a 
trial-and-error basis. 

From an industrial viewpoint it is important to have a model that 
allows us to foresee: 

• the deformations of the solid preform; 

• the stress evolution, in order to reveal in advance the possibility of 
damages in the reinforcing network, which may lead to material failure; 

• the thermal state, in order to identify the regions undergoing premature 
solidification or curing; 

• the position of the infiltration front, in order to establish the correct 
location of air vents and avoid the formation of dry spots; and 

• the position of the preform border, in order to prevent race-tracking 
phenomena, i.e., the formation of an easier path for the infiltrating 
liquid that should fill the mold from the injection port to the air vents. 

Modeling this process has drawn more and more attention. Most of the 
papers modeling injection molding processes assume that the solid preform 
is rigid ([5], [10], [11], [14], [15]' [28], [29], [31]' [35], [53]' [54], [55]) and that 
the liquid matrix is Newtonian. This is a good approximation in some cases. 
In fact, the solid preform is compressed between the molds. A normal force 
acting on the molds and a friction force between the fiber mats and the 
mold face then develop, which hamper displacement and compression of 
the reinforcing elements during injection. 

Many authors, however, observed deformation of the solid preform ([IJ, 
[44], [46J, [48]) stimulating the formulations of models without the rigidity 
assumption, thus considering a flow in a deformable porous medium (see 
[20], [27], [49]). 

This chapter is based on a model, presented in [18J, aimed at simulating 
nonisothermal injection molding processes and reviews some analytical 
results related to it. In detail, the chapter studies a nonisothermal flow of 
a resin undergoing an exothermic crosslinking chemical reaction (usually 
referred to in the literature as curing cycle) through a deformable porous 
preform. 

The problem presents the formation of three time-dependent domains; 
the first occupied by the liquid only, the second by the solid preform wet by 
the infiltrating resin, and the third consisting of the uninfiltrated region. 
It is assumed that sharp fronts divide the three domains. 
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The mathematical problem originated by the model is a free boundary 
problem. The general problem, i.e., the one obtained considering the whole 
coupled nonisothermal flow/deformation model, is extremely complicated, 
being constituted by a set of parabolic and hyperbolic nonlinear equations 
defined in two time-varying interfaced domains. At the moment the only 
results available concern two problems obtained from the general model 
performing some simplifications, namely: 

1. one-dimensional nonisothermal infiltration in a rigid porous preform 
with resin polymerization ([7], [8]) and 

2. one-dimensional isothermal infiltration in a deformable porous preform 
([9]). 

This chapter develops as follows. Section 9.2 focuses on the modeling part, 
illustrating a general 3-D nonisothermal model describing the injection 
molding process. Section 9.3 is devoted to the analysis of the 1-D non­
isothermal problem in a rigid preform. Section 9.4 deals with the mathe­
matical problem obtained considering the 1-D isothermal infiltration in a 
deformable porous medium. Finally, Section 9.5 will address some of the 
questions about modeling and theoretical investigation on the structure of 
the mathematical problems, which are still open and deserve to be thor­
oughly explored. 

9.2 The Mathematical Model 

Consider a deformable porous medium that att = 0 starts being infiltrated. 
Referring to Figure 9.1, one can identify two time-varying domains VW and 

..................... ..... .............. .. ..... ............... . 

.. Liquid U::: 
;~l ~~ ~ ~~ ~~ ~~~~~ ~ ~~~ ~ ~ 
::::::::::::::::::::: ..................... ..................... ... ....... ..... ..... ... ........ ............ 
:::::::::::::::::::: I I 

I 

i I Wet Region 
!I!I!!!!!!!!II 

D W 

Figure 9.1 - A schematic representation of the infiltration process. 
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v d corresponding, respectively, to the part of the solid preform wet by the 
infiltrating resin and the one not yet reached by the liquid. 

If capillary phenomena can be neglected, as in most of the production 
processes, VW and V d are divided by a sharp interface ()"i that represents 
the infiltration front. 

The mathematical model consists in the evolution equations for the 
state variables in both the wet and dry regions and in those for the inter­
faces ()"i and ()"e. 

9.2.1 Wet Region 

The dependent variables describing the state of the system are: 

• ¢ volume fraction occupied by the solid constituent. Assuming satura-
tion the volume fraction occupied by the liquid is 1 - ¢; 

• v s, VI velocities of solid and liquid constituents; 

• P pore liquid pressure; 

• u temperature of the mixture. We are going to assume that solid and 
liquid constituents are locally in thermal equilibrium; and 

• {j degree of cure of the resin. It is defined as the ratio between the 
amount of heat released by the exothermic polymerization reaction and 
the total heat of reaction. So {j is a dimensionless parameter ranging 
between 0 and 1. 

Working in Eulerian formalism, the equations that can be written (see [39] 
and references therein for further details) are: 

• Mass conservation of solid and liquid constituents 

~~ + \1. (¢vs) = 0 

- a¢ + \1 . [(1 - ¢) vd = 0 at 

(9.1) 

(9.2) 

where we have assumed that the densities of the solid Ps and liquid 
PI are constant. This means that thermal expansion phenomena that 
may occur in nonisothermal processes are neglected. In some cases this 
cannot be done because the difference in thermal expansion coefficients 
may generate stresses in the composite during the solidification process, 
which may also generate microcracks in the reinforcing network. 

• Stress equilibrium equation for the mixture as a whole 

(9.3) 

where T is called excess stress. We remark that in writing (9.3) we 
have implicitly neglected the body forces and inertial terms. Both are 
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usually very small. In particular, in previous papers ([2], [3], [40]) that 
considered inertia, it was noticed that the dimensionless form of the 
equations presents in front of the inertial term a coefficient that is usu­
ally negligible. Actually, it is known that inertia may play an important 
role only during the very initial stage of infiltration . 

• Darcy's law 

(9.4) 

where K is the permeability tensor that depends on the deformation 
gradient F s of the solid constituent and J.L is the viscosity of the resin. 
Because we are considering nonisothermal processes with resin cure, 
the viscosity J.L depends on both the temperature u and the degree of 
cure 6 

J.L = J.L (u,6). (9.5) 

• Degree of cure of the resin 

(9.6) 

where f is an experimentally determined function describing the 
reaction. 

• Energy equation for the mixture 

PmCm (: + vm · vu) = V· (AmVu) + ~KVP. VP 

+ (1 - ifJ) He! (u, 6) 

PsPlifJ (1 - ifJ) ( ) (- -) t"7 - CI - Cs VI - Vs • v u 
Pm 

(9.7) 
where Pm = ifJps + (I - ifJ) PI is the mixture density; Cm is the specific 
heat of the mixture modeled as 

(9.8) 

where Cs and CI are the specific heats of the solid and liquid; vm is the 
velocity of the mixture 

_ PsifJvs + pd1 - ifJ) VI 
Vm=~----~~~~-

Pm 
(9.9) 

Am is the thermal conductivity tensor of the mixture as a whole; 
J.L-1 K V P . V P is the heat produced by the internal friction between 
solid and liquid; (I - ifJ) He! (u, 6) represents the heat supplied by the 



286 Complex Flows in Industrial Processes 

exothermic curing reaction of the resin (He is the total heat of reac­
tion); and the last term represents the heat diffusion due to the relative 
motion. 

We have to remark that these equations are based on a certain num­
ber of physical assumptions that must be recalled. We have neglected, 
as mentioned, all the inertial terms and body forces. Moreover, consider­
ing Darcy's law we have implicitly assumed that the liquid is Newtonian 
and that the Reynolds number characterizing the flow through the pores 
is much less than 1 (see [37] for a critical discussion of the hypotheses 
underlying Darcy's law). 

Equation (9.7) is obtained assuming an elastic constitutive equation 
for the porous solid and no thermal deformations of the solid and liquid. 
We refer to [12], [13], [42] for the rigorous procedure to obtain the energy 
equation in the most general case. 

Obviously these assumptions limit the applicability of the model. This, 
however, can still describe in a correct way a fairly large class of industrial 
processes. 

9.2.2 Dry Region 

We can proceed in a way similar to the one outlined earlier. However, 
in the dry region, due to the fact that air density and viscosity are very 
small, some simplifications can be done. First, because the air is easily 
expelled from the preform one can assume that its pressure is everywhere 
equal to the atmospheric pressure. Moreover the gas contribution to the 
global stress may be neglected. Finally, the average velocity is equal, in 
practice, to the velocity of the solid constituent, the composite density is 
Pm ~ ¢>Ps, and, of course, there is no chemical reaction because no resin 
is present in the dry region. 

Summarizing all these assumptions, the state variables in the dry region 
reduce to: 

• ¢> solid volume fraction, 

• V s solid velocity, and 

• u temperature. 

The fundamental equations are, respectively, mass, momentum, and ther­
mal energy balance 

: + V· (¢>vs) = 0 

V·T=O 

Ps¢>cs (~~ + Vs . Vu) = V . (As Vu) 

where As is the thermal conductivity of the solid. 

(9.10) 

(9.11) 

(9.12) 
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To complete the model we still have to specify the constitutive equation 
for the stress tensor T. We assume that the wet and dry solids have the 
same constitutive equation, which is of elastic type, coherently with the 
assumptions at the basis of the energy equation (9.7). 

9.2.3 Interface and Boundary Conditions 

Referring to Figure 9.1, consider the interface a i between VW and V d as 
given by the surface 'l/Ji (x, t) = O. As ai is a material surface for the liquid, 
its evolution equation is 

a'I/Ji - ( i) n./. 0 at + Vi a . v 'f/i = (9.13) 

where Vi (a i ) is the liquid velocity on ai . 

Another boundary is the contact surface a e between the pure liquid 
and the wet solid. Let it be given by 'l/Je (x, t) = O. As the resin, pushed 
by the pressure gradient, penetrates the porous solid through a e , this is a 
material surface for the solid, and therefore its evolution equation is 

a~e + Vs (ae) . V''l/Je = 0 (9.14) 

where V s (a e ) is the solid velocity on a e . 

Following [32] and taking into account that inertial terms have been 
neglected, these jump conditions can be imposed 

[Pm (Vm - Va)]' nO' = 0 

[-PI + T] nO' = 0 

(9.15) 

(9.16) 

[Ps¢UCS (vs - va)' nO' +Pi (1- ¢)UCi (Vi - Va)' nO'] = [AmV'u]· nO' 
(9.17) 

where [.] denotes the jump across the surface a and Va and nO' are, 
respectively, the surface velocity and the outside normal. In addition, as 
usual, we assume 

[Un = o. (9.18) 

As the surface a i is a material surface for the liquid, following [32] one has 

[P] = o. (9.19) 

Using (9.19), equation (9.16) entails 

[T] nai = 0 (9.20) 

which, assuming the same constitutive equation of elastic type for wet and 
dry solids, implies, in 1-D problems, the continuity of ¢ across a i and, 
from (9.15), the continuity of vS' Moreover if the specific heat of the solid 
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is continuous across (Fi, then equation (9.17) rewrites as 

Am'Vu- . neT; = As'Vu+ . neT; (9.21) 

where u+ and u- are the temperatures on the dry and wet sides of (Fi, 
respectively. 

Consider now the boundary condition on (Fe. If the superscript - de­
notes the quantities evaluated in the pure liquid region, one has 

T- neT" = 0, P- = Po 

where Vin is the inflow velocity of the resin and Po the pressure driving the 
flow. 

From (9.16) and (9.19) one gets the following conditions 

P=Po 

TneT" = 0. 

(9.22) 

(9.23) 

Assuming that the thermal field in the pure liquid region is known, on (Fe 
the only condition to impose on the temperature is equation (9.18), which 
rewrites as 

U=Uin (9.24) 

where Uin is the temperature of the infiltrating liquid. 
The boundary condition to impose on the hyperbolic curing equation 

is 

(9.25) 

on that part of (Fe where the liquid enters the preform, i.e., where (VI - Vs)' 
neT" < 0, where neT" is directed outside the preform. 

9.3 Nonisothermal Injection in a Rigid Preform 

This section focuses on the analytical results obtained for the 1-D non­
isothermal injection in a rigid preform, i.e., Vs = ° and the solid volume 
fraction ¢ is constant and uniform. From (9.2) such assumptions imply 
that 

aVI = 0, 
ax (9.26) 

where VW = [0, Si (t)] is the wet region and x = 0, x = Si (t) are, respec­
tively, the inflow surface and the penetration front. The liquid velocity in 
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'Ow is uniformly equal to the velocity of the infiltration front 

VI (x, t) = Si (t) , Vx E V W , t > O. (9.27) 

Denoting by K the xx component of K, the constitutive assumption 
K = K (F s) means, in this case, that K is a function of ¢, i.e., 

K = K(¢) (9.28) 

which, in the rigid case, implies that K is constant in space and time. 
Using equations (9.2) and (9.4) one can easily show that 

8 [ 1 8P] _ 0 x E VW (9 29) 
8x R (u, 8) 8x - , . 

where 

R (u, 8) = JL (~ 8) (9.30) 

is defined hydraulic resistivity and depends on the temperature u and the 
degree of cure 8. We remark that in isothermal problems with no curing, 
by virtue of (9.29), P is a harmonic function. 

Darcy's law (9.4) and equation (9.26) then state that in 'Ow the liquid 
velocity VI is constantly equal to 

1 8P 
vdt) = - (1 - ¢) R 8x 

In particular, the evolution equation of the infiltration front is 

(l-¢)sdt) = _(~ 8P) . 
R 8x X=Si(t) 

Integrating (9.32) over the wet domain VW one gets 

{ }

-l 
Si(t) 

sdt ) = 1 ~ ¢ [R(U,8) dx 

(9.31) 

(9.32) 

(9.33) 

where conditions (9.19) and (9.22) have been used and the atmospheric 
pressure has been scaled to o. 

At the interface x = Si (t), conditions (9.18) and (9.21) rewrite as 

(9.34) 

(A 8U) I - (A 8U) I 
m 8x X=Si(t)- - S 8x X=Si(t)+ 

(9.35) 

where Am and As are, respectively, the xx components of Am and As. The 
other boundary conditions on x = 0 and x = L are (see equations (9.18) 
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and (9.24)) 

u (0, t) = Uin (t) 

U (L, t) = UL (t) 

while the initial conditions are 

U(x,O) =Uo(X) 

Si (0) = b E (0, L) . 

9.3.1 Nonisothermal Infiltration without Curing 

(9.36) 

(9.37) 

(9.38) 

(9.39) 

The nonisothermal problem without curing has been studied in [7]. In order 
to discuss the results, it is useful to introduce 

c = ¢Pscs + XW (1 - ¢) czpz 

A = ¢As + XW (1 - ¢)Az 

(9.40) 

(9.41 ) 

where XW is the characteristic function of the wet region and AZ is the xx 
component of the liquid heat conduction tensor Az. The heat equations 
(9.7) and (9.12) can be summarized by 

au . au a ( au) c- + (1- ¢) SiPZCZXw- - - A- = ° at ax ax ax (9.42) 

to be solved in the wet region (x E VW = [0, Si (t)] , t > 0, Xw = 1) 
and in the dry region (x E Vd = (Si (t) ,L], t > 0, Xw = 0). We remark 
that in writing (9.42) the heat source due to the internal friction has been 
neglected. 

Existence and uniqueness of the solution (in the classical sense) of the 
free boundary problem (9.42), (9.33) to (9.39) has been proved in [7] under 
suitable assumptions on the data (the case b = ° is treated separately). 

The demonstration technique uses a fixed-point argument based on the 
following steps: 

1. Define the set 

s = {Si E C ([0, T]) : S (0) = b, Iisill" ::; M} (9.43) 

where M and T are constants to be selected later, 'Y is chosen arbitrarily 
in (!, 1), and II . II" is the corresponding Holder norm. 

2. For any Si E S the thermal problem (9.42), (9.34) to (9.39) is solved. 
The determination of the corresponding temperature field is reduced to 
the solution of a system of four integral equations of Volterra type with 
weakly singular kernels. 
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3. The function u (x, t) just found is used to define the mapping T : Si t-----7 

srew in the following way 

{ }

-1 
Si (t) 

srw = 1 ~ ¢ [R (u (x, t)) dx (9.44) 

so that a fixed point of T corresponds to a solution of the original free 
boundary problem. 

4. The constants T and M in the set (9.43) are chosen in such a way 
that s?ew E S and the continuity of the mapping T in the topology of 
C ([0, T]) is proved. Schauder's theorem guarantees the existence of at 
least one fixed point. 

5. A finer analysis in the C1 ([0, T]) topology shows that T is in fact a 
contraction in a sufficiently small time interval and uniqueness follows. 

9.3.2 Nonisothermal Flow with Curing 

In the current case the infiltrating resin also undergoes a polymerization 
process (curing). The thermal coefficients of the resin will be, in general, 
different according to whether the resin is polymerized or not. Therefore 
in [8] it is assumed that 

Cl = c5cr + (1 - 0) c7P 

Al = OAf + (1 - op7P 

(9.45) 

(9.46) 

where cr, c7P represent, respectively, the specific heats of the polymerized 
and nonpolymerized resins and Af, A7P the thermal conductivities of resin 
in the polymerized and nonpolymerized states. The coefficients c and A 
have to be redefined in the following way 

c = ¢Pscs + Xw (1 - ¢)Pl [ocf + (1 - 0) c7P ] 

A = ¢PsAs + Xw (1 - ¢)Pl [oAf + (1 - 0) A?]. 

(9.47) 

(9.48) 

We remark that the densities of the cured and uncured resins are equal. 
This implies that the volume changes accompanying polymerization have 
been neglected. Exploiting equation (9.27), one again has that the liquid 
velocity is ~ (t) in the whole wet preform and is given by (9.32) or (9.33). 
So the curing equation rewrites as 

(9.49) 
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Billi in [8] works under the assumption that the curing degree of the in­
jected resin is null 

8 (0, t) = 0. (9.50) 

Actually, if Si (0) = b > 0, he considers 

8 (x, 0) = 0, ° < x < b. (9.51) 

Finally the energy equation modifies to 

ca;; = :x (\::) -(1-¢)siPd8cr+(1-8)c~P]xw:: 

+ (1 - ¢) He! (u, 8) Xw' (9.52) 

We point out that the derivatives that appear in (9.52) are meant in the 
distributional sense, because the fluid does not invade the whole porous 
matrix and then the function 8 is discontinuous, jumping to zero when 
passing from the wet to the dry region. 

A slightly simplified version of this problem has been considered in [8]: 
Zero temperature boundary data and the last term on the right-hand side 
of (9.52) replaced by a given function h (x, t). 

Denoting by V = (0, L) and Q = (0, L) x (0, T), a weak formulation is in­
troduced for equation (9.52). Considering a generic cP E L2 (0, T; H~ (V)), 
cP (', T) = 0, CPt E L2 (Q) equation (9.52) is multiplied by cp and integrated 
over Q. Taking into account condition (9.38), the result is 

f {-cucpt + ).uxCPx - (1 - ¢ )SiPI [8cj + (1 - 8) c~P] Xwucpx} dx dt 

Q 

L 

= J hcpdxdt + J U o (x)(ccp)t=o dx 
Q 0 

+ J {Ct + (1 - ¢ )siPdXw (8cf + (1 - 8) c~P) ]x} ucp dx dt . (9.53) 

Q 

Let us focus on the last term on the right-hand side of (9.53). Recalling 
(9.45), taking into account (9.49) and the fact that Xwt + SiXwx = 0, it 
can be easily proved that 

Ct + (1- ¢)siPdXw (8cj + (1 - 8) c~P)]x = (1- ¢)PIXw (cj - c~P)! (u, 8). 

(9.54) 
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Summing up, the weak formulation for the thermal balance equation is 

J {-cuCPt + >'uxCPx - (1- if»SiPl [8ci + (1- 6) c~PJ Xwucpx} dxdt 

Q 
L 

= J (ru+ h)cpdxdt + J uo(x)(ccp)t=odx (9.55) 

Q 0 

where u E £2 (0, T; H~ (V)) and the coefficient r is defined as 

r = (1 - if»P1Xw (ci - c?) f (u, 6). (9.56) 

Again the following fixed-point argument is used: 

1. A set of C1 functions with x = Si (t) prescribed, and a set of Lipschitz 
continuous functions with 6 (x, t) prescribed are selected. 

2. The existence and uniqueness results known in the literature [30J are 
used to find the solution u (x, t) of (9.55). Observing that u is conti­
nuous in x for almost .all t and that>. (., t) U x (-; t) E Hl (V) for almost 
all t, one has that the conditions (9.34), (9.35) are valid in an almost 
classical sense. 

3. Introducing a mollified sequence 6V of 6, defined throughout Q one 
can consider the corresponding classical version of (9.55). Estimates 
of lIu (-, t)llu(v), Ilux IlL2(Q) independent of v are obtained by.means 
of standard arguments. Much more difficult are the estimates on 
Ilux (., t)lIu(v) and IlutIlL2(Q)' obtained in [8J. 

4. Using these estimates, it is possible to prove that if a sequence {sn} 
converges in Cl ([0, T]) and a sequence {6n } of uniformly Lipschitz 
continuous functions converges uniformly in Q, then the corresponding 
sequence {un} of solution of (9.55) converges uniformly in Q. 

5. On the basis of the preceding results, it can be shown that the operator 
F: (6, Si) t---+ (6new , s~ew) defined by 

{

Si(t) }-l 
s~ew = 1 ~ if> I R(u,6)dx 

!.'l~new !.'l~new T + s~ewTx = f (u,6new ) 

s~ew (0) = b, 

6new (x, 0) = 0, 0 ~ x ~ b 

6new (0, t) = 0, t > 0 

has a fixed point. 
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It must be remarked that this procedure requires uniform estimates of 
118~ewIID"'(Q) and 118rewIID"'(Q)' which are quite delicate. 

9.4 Isothermal Injection in a Deformable Preform 

In the preceding section we considered the complication arising in the injec­
tion problem owing to nonisothermal conditions and possible occurrence of 
curing. However, deformation of the porous matrix (as a result of the high 
injection pressure) may also be important. Starting from [49], in [9] the 
isothermal problem has been studied assuming that the porous medium is 
deformable with a nonlinear elastic behavior. 

Let ¢r be the solid volume fraction in the nonstressed configuration 
and L the relative length. At t = 0 a constant and known pressure Po is 
applied on one end of the solid, which immediately compresses, reducing 
its length to Lc and acquiring a solid volume fraction ¢c corresponding to a 
stress that balances the applied pressure. In [49] the evolution of the system 
in this short initial transient is not considered. In fact, during it, inertial 
terms playa dominant role (this effect is studied in detail in [3]). The 
initial configuration is then the one in which the solid is fully compressed 
under the applied load but still not infiltrated (the one denoted "reference 
configuration" in Figure 9.2). 

Denoting by T the xx component of T counted as positive in compres­
sion, equations (9.1) to (9.4) rewrite as 

a¢ a 
at + ax (¢vs ) = 0 

a¢ a 
at - ax ((1 - ¢) VI) = 0 

ap + aT =0 
ax ax 

K(¢) ap 
VI - Vs = - /-L (1 - ¢) ax 

(9.57) 

(9.58) 

(9.59) 

(9.60) 

where /-L is constant and K is a nonlinear C 1 function of the solid volume 
fraction ¢. 

The elasticity assumption means that the stress tensor T is a function of 
the deformation gradient of the solid which, in one dimension, is given by 

(9.61) 

where (see Figure 9.2) ~ is the solid material coordinate, i.e., it labels 
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Figure 9.2 - A schematic representation of the I-D infiltration process in 
a deformable porous solid. 

the solid particle in the reference configuration. We assume, as already 
mentioned, that the wet and dry solids satisfy the same stress-strain 
relation that, according to the elasticity assumption, is 

7 = 7(¢) (9.62) 

where 7 (¢) is taken as a C2 function. Under such hypotheses 

(9.63) 

where 7-1 is the inverse function of 7 and Po, as mentioned, is the applied 
pressure. 
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The time-varying subdomains, corresponding to the wet and dry solids, 
are (see Fig. 9.2) 

VW = [Se (t) , Si (t)] 

V d = (Si (t) , L] 

(9.64) 

(9.65) 

The boundary Si is, in fact, the interface between the wet and dry parts 
and Se is the border of the porous preform. 

Summing (9.57) and (9.58) one can prove that the so-called composite 
velocity 

(9.66) 

is space-independent because 

avc = O. (9.67) ax 
Combining in a suitable way (9.57) to (9.60) one obtains, in the wet 

region, the following equation 

(9.68) 

where 

~ (<p) = d:~) > o. (9.69) 

On the other hand, it can easily be proved that in the dry region the solid 
does not move and stays at a constant volume fraction <Pc. 

Note that in equation (9.68), the coefficient Vc is still unknown. In order 
to complete the mathematical model, one has not only to find vc , but also 
to specify the boundary conditions on Se, Si, and their evolution equations. 

The boundary condition on Se is deduced from (9.23) and corresponds 
to a stress-free condition 

<P (se (t), t) = <Pr. (9.70) 

On the boundary Si the continuity of stress and pressure, together with the 
assumption that wet and dry solids satisfy the same constitutive equation, 
imply 

<P (Si (t) ,t) = <Pc. (9.71) 

As the composite velocity is continuous across both material interfaces (see 
(9.15)) one has 

Vc = [1 - <P (Si (t), t)] VI (Si (t), t) == (1 - <Pc)Si (t) (9.72) 

which links Vc to Si. 
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As far as the evolution equations for the free boundaries Si and Se are 
concerned, using Darcy's law (9.60) and equations (9.59) and (9.69) one 
has the following Stefan-type condition for Si 

(9.73) 

Evaluating Ve on Se and joining Darcy's law with (9.72) and (9.73), one 
has the evolution equation for Se 

(9.74) 

In conclusion, in the Eulerian formalism, the dynamics of the whole 
system is governed by a nonlinear free boundary problem defined in DW. 
In particular, the equations that define the problem are (9.68) with Ve 

given by (9.72), (9.70), (9.71), (9.73), and (9.74) with the initial condition 
Si (0) = Se (0) = L - Le. 

Let us make some comments on the structure of such a double free 
boundary problem. 

Mathematically, the pair (9.71), (9.73) coincides with the well-known 
Stefan condition for the one-phase solidification problem. On the other 
hand, condition (9.74) involves the derivative ~: evaluated at both bound­
aries. Another peculiarity is the presence of the term Ve (t) in the governing 
differential equation. 

The tools applied in [19] can provide an existence theorem. The quoted 
paper [9] is devoted to the determination of self-similar solutions. 

The problem stated earlier is highly nonlinear and characterized by the 
presence of two free boundaries, which give rise to several mathematical 
difficulties. In order to reduce them, in [9] the material coordinate ~ fixed 
on the solid is introduced. In this framework the boundary Se is fixed, so 
one has a nonlinear one-phase Stefan problem. In fact, using Lagrangian 
coordinates the wet domain becomes DW = {O :::; ~ :::; ~s (t)}, where ~s (t) 
denotes the solid particle just wet by the infiltration front, i.e., it locates 
the free boundary between the wet and dry domains. The image of the 
boundary Se is simply ~ = 0 (see Figure 9.2). 

Instead of ¢, appearing in the Eulerian formulation, it is more conve­
nient to consider as a dependent variable the so-called void ratio defined 
as 

1-¢ 
e= -¢-. (9.75) 

Without loss of generality, it is also useful to consider T and K as a function 
of e, i.e., K = K (e) and T = T (e) and to introduce the function ~ (e) 



298 Complex Flows in Industrial Processes 

defined as 

E (e) = dr (e) . 
de 

The free boundary problem rewrites then as 

ae a [ ae] 
at = ae F (e) ae ' 

1- ¢r 
e(O,t) = er =~' 

1- ¢c 
e(es (t) ,t) = ec =~' 

t>O 

t>O 

~s (t) = _ F (ec ) ae I ' t > 0 
ec ae ~=~B(t) 

where 

(ec +l)2 -
F(e) = - J.L(e+l)K(e) E(e). 

Defining 

one looks for a solution of (9.77) in the form 

e (e, t) = 0 (() , 0«<1. 

Because of (9.77)4, es must satisfy 

(9.76) 

(9.77) 

(9.78) 

(9.79) 

(9.80) 

(9.81) 

so that the infiltration front in the Lagrangian reference has to evolve as 
..fi (note, however, that 0' (1) is still unknown). Going back to (9.77), one 
has the following boundary value problem for a nonlinear second order 
o.d.e. 

F (ec ) 0' (1)(0' - [F (0) 0'], = 0, 
ec 

0(0) = er 

0(1) = ec . 

0«<1 

(9.82) 
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Note that the differential equation contains the unknown boundary value 
0' (I). 

The existence and uniqueness theorem proved in [9] is based on a shoot­
ing technique. Setting ()' (I) = a one can study the family of Cauchy prob­
lems 

F (ec ) a(()' _ [F {()) ()']' = 0 
ec 

o (I) = ec (9.83) 

()'{l)=a 

looking for the a such that () (O) = er • By integrating the differential 
equation between ( and 1, one obtains 

()' = aF (ec ) [(() + /1 () (y) dY] 
ecF {()) , 

()' (I) = ec • 

(9.84) 

Accordingly, the problem is equivalent to that of finding a unique a ~ 0 
such that the solution ()o. of (9.84) satisfies 00. (O) = er . The demonstration 
is based on the following steps: 

1. Chosen arbitrarily a < 0, one shows that ()o. is strictly decreasing in 
[0, I]. 

2. For any a, Oi such that a < Oi one proves that ()o. (() > ()(j, (() V( E [0,1). 

3. Considering the application a f-+ ()o. (0) a straightforward analysis shows 
that it is continuous and that ()o. (0) ----+ 00 when a ----+ -00. 

By putting all these ingredients together, the result is that the application 
a f-+ ()o. (0) is continuous, monotone, and unbounded when a E (-00,0]. 
Therefore there exists a unique value of a such that ()o. (0) = er . 

9.5 Open Problems 

The studies mentioned in this chapter are motivated by the necessity, en­
countered in the technological literature, of developing mathematical mod­
els for injection molding processes and of obtaining qualitative results, 
which can help in identifying the process parameters and improving the 
processes themselves. 
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Even if some results have been obtained, they remain a first step toward 
a complete study of injection molding. Many questions are still open and 
many areas deserve to be explored. In particular, we will point out some 
possible developments that should be carried out on modeling aspects and 
on qualitative analysis. 

9.5.1 Modeling 

From the modeling point of view one of the phenomena that has been 
neglected but may play an important role in some cases is the resin 
flux between the mold walls and the preform, the so-called race-tracking 
problem ([16], [21]). In liquid composite molding, the preforms are placed 
in the mold cavity. The mold is then closed and the thermoseting resin 
is injected. Because it is difficult to precisely cut the fiber preform to the 
exact shape of the mold, sometimes a gap exists between the preform and 
mold edge. This gap, although small (1 or 2 mm), can create a preferential 
flow path. This may give rise to a nonuniform impregnation of the porous 
preform and even to dry spots. In some cases these preferential channels are 
opened by the flow itself, which displaces the preform ([22], [51]). In order 
to foresee such phenomena one has to build more detailed models, joining, 
say, Stokes equation in the fiber-free region with deformable porous media 
models. This problem is linked to the analysis of the correct boundary 
conditions when the impinging flow is not perpendicular to the border 
of the preform. It is known that in the rigid case and for flows parallel 
to the porous material Beavers-Joseph conditions [6] can be used. These 
conditions were modified by Saffman [47] and lately deduced, on the basis 
of homogenization theory, by Jager and Mikelic [25] (see also section 3.5 
of [23]). It is not known, however, how to proceed in the deformable case. 

Another thorny problem, when we come to mixture theory, is the inabil­
ity to prescribe boundary conditions for traction boundary value problems. 
One has to increase the number of boundary conditions. This can be done 
in more than one way: continuity of chemical potential, saturation condi­
tion, mechanical splitting of traction, etc. (see, for example, [32], [36], [42], 
[43], [50]). The point, which deserves to be explored, is the research of a 
unitary theory in order to avoid possible inconsistencies. 

Particular attention should also be addressed to the constitutive equa­
tions of the solid preform, in conjunction with suitable experimental proce­
dures to determine the mechanical behavior of the solids and their typical 
parameters (e.g., elastic constants, retardation time, and relaxation time). 
As a matter of fact, the whole modeling process suffers from the lack of 
precise measurements. Several researchers have found evidence of viscoelas­
tic properties of the wet preforms with nonnegligible relaxation time [22], 
[27], [38], [49]. On the basis of such experimental observations and on the 
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fact that the solid and liquid constituents cannot deform independently 
but have to carry the load by joint deformation, the wet preform has been 
already modeled in [3] and [18] as a standard linear solid (the correspond­
ing equation is a White-Metzner-type constitutive equation [26]). In the 
developed models, the velocity appearing in the convective derivative is the 
one related to the solid. This choice is based on heuristic arguments and 
the physical meaning of the boundary conditions required by the math­
ematical problem. However, the issue of which is the correct convective 
velocity to be used is still an open question in the literature, and it should 
be deeply analyzed. 

In addition, one should take into account that the materials used are 
not isotropic but have characteristic directions, e.g., aligned fibers, so that 
a transversely isotropic or orthotropic constitutive equation would describe 
more accurately the behavior of the material. 

As already mentioned in Section 9.2, the models presented here do not 
take into account thermal expansion and volume changes due to polymer­
ization. These phenomena can have dramatic consequences. For example, 
in ceramic matrix composites the preform may be fragile and the thermal 
expansion can generate microcracks in the preform during cooling. 

Another process for the production of composite materials that de­
serves to be studied is the so-called compression molding. In such a process 
a number of fibers are preimpregnated ("prepreg") with a certain quantity 
of liquid matrix (for example, epoxy resin that might be partially cured 
to facilitate handling), distributed in piles in a one-directional or multidi­
rectional fashion and then placed in a possibly porous mold. The mixture 
of solid and liquid is then heated and compressed. The compression, oper­
ated by a piston, increases the solid volume fraction and produces a flow 
in a deformable porous media squeezing the exceeding liquid out of the 
pile ([24], [33], [45}). The whole process is rather complex because it has 
to be fast enough to reduce fabrication costs and control resin cure and, at 
the same time, accurate enough to avoid generating damages of the solid 
preform. In [17] a model for the 1-D isothermal process has been developed. 
It could be extremely interesting to improve such a model considering a 
more realistic 3-D geometry and including thermal effects. 

9.5.2 Mathematical Analysis of the Existing Models 

From the analytical point of view, one of the problems that should be in­
vestigated is the I-D nonisothermal flow/deformation model. The study 
of the mathematical structure of such a model would complete the work 
concluding the theoretical analysis of the I-D injection molding process. 
A first step in doing that could be a generalization of Billi's results, con­
sidering a constant in time but nonuniform in space solid volume fraction 
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and nonhomogeneous initial and boundary conditions. Another hypothe­
sis that should be dropped is the one on the uncured injected resin, as in 
some practical cases the resin penetrating the preform is already partially 
cured, i.e., 0 (Se (t) ,t) > O. It would also be important to check what the 
minimal hypotheses need to be imposed on the heat capacity and thermal 
conductivity as the actual relations can be much more complex than those 
already used in [34]. 

A very interesting problem is also the study of the I-D isothermal 
model when different constitutive equations for the wet and dry solids are 
used. As a matter of fact, when dealing with deformations, it has been 
found that stress-strain relations in the wet and dry domains are different 
([2], [18]' [27]). We are confident that results similar to the one obtained 
in [9] can be proved in this more general case. One could also analyze the 
correct formulation of the problem with Voigt-Kelvin constitutive equation 
for the wet solid. Such a problem is, in fact, highly nonlinear and presents 
nonstandard boundary conditions on the infiltration front. 

The effects of the inertial terms have been studied, performing a sharp 
scaling, in [2], [3]' and [40]. It has been shown, as mentioned earlier, that 
inertial terms playa dominant role only in the first instants of infiltration. 
From an analytical point of view it would be very interesting to study this 
initial transient using singular perturbation methods. Such an analysis can 
also have a fairly technological application allowing us to describe what 
happens during the initial stages of the process. 

The general 3-D isothermal flow/deformation problem is completely 
open. Even if some 3-D simulations are available [4], to our knowledge there 
are no qualitative results on it. This, in fact, is a 3-D free boundary problem 
that presents two coupled equations: the stress equilibrium equation and 
the evolution equation for the pressure field in the liquid. 

Finally, the mathematical problems generated by the I-D compression 
molding model are open. They are essentially nonlinear parabolic problems 
with nonlinear boundary conditions. Actually, if one considers the pressure­
driven dynamic model, one gets a free boundary problem of Stefan type. 

This short list of possible future developments of the research is not ex­
haustive, not only for obvious reasons of conciseness, but also because these 
studies are more at the beginning than at the conclusion. This area is devel­
oping fast and is an incredible source of interesting mathematical problems. 

Acknowledgments 

The authors are grateful to the Italian Ministry for the University and 
Scientific Research (M.U.R.S.T.) and to the National Research Council 
(C.N.R. Contract 96.03858.ctOI on Multicomponent Flows) for funding 
this research. 



9. Infiltration Processes in Composite Materials Manufacturing 303 

References 

1. AI-Hamdan, A., Rudd, C.D., and Long, A.C., Dynamic core move­
ments during liquid moulding of sandwich structures, Composites A, 
29A, 273-82 (1998). 

2. Ambrosi, D., and Preziosi, L., Modelling matrix injection through 
elastic porous preforms, Composites A, 29A, 5-18 (1998). 

3. Ambrosi D., and Preziosi 1., Modelling injection moulding processes 
with deformable porous preform, SIAM J. Appl. Math., in press. 

4. Antonelli, D., and Farina, A., Injection moulding: Mathematical mod­
elling and numerical simulations, Composites A, in press. 

5. Baichen, L., Bickerton, S., and Advani, S.G., Modelling and simu­
lation of resin transfer moulding (RTM)-Gate control, venting and 
dry spot prediction, Composites A, 27 A, 135-41 (1996). 

6. Beavers, G.S., and Joseph, D.D., Boundary conditions at a naturally 
permeable wall, J. Fluid Mech., 30, 197-207 (1967). 

7. Billi, L., Incompressible flows through porous media with temperature 
variable parameters, Nonlinear Analysis, Theory, Math and Appl., 31, 
363-383 (1998). 

8. Billi, L., Non-isothermal flows in porous media with curing, EJAM, 
8, 623--637. 

9. Billi, 1., and Farina, A., Unidirectional infiltration in deformable 
porous media: Mathematical modelling and self-similar solution, 
Quart. Appl. Math., in press. 

10. Blest, D.C., Duffy, B.R, McKee, S., and Marshall, P., A model of the 
fluid dynamics of resin-film infusion, Strathclyde Mathematics Re­
search Reports, N. 3 (1995). 

11. Blest, D.C., Duffy, B.R, McKee, S., and Zulkifle, A.K., Curing sim­
ulation of thermoset composites, Strathclyde Mathematics Research 
Reports, N. 37 (1998). 

12. Bowen, RM., Incompressible porous media models by use of the the­
ory of mixtures, Int. J. Engng. Sci., 18, 1129-48 (1980). 

13. Bowen, RM., Theory of mixtures, in Continuum Physics, 3, edited 
by A.C. Eringen, Academic Press (1976). 

14. Bruschke, M.V., and Advani, S.G., A finite element control volume 
approach to mould filling in anisotropic porous media, Polymer Com­
pos., 11, 398-405 (1990). 

15. Bruschke, M.V., and Advani, S.G., A numerical approach to model 
non-isothermal viscous flow through fibrous media with free surfaces, 
Int. J. Num. Meth. Fluids, 19, 575-603 (1994). 



304 Complex Flows in Industrial Processes 

16. Calhoun, D.R, Yalva<;, S., Wetters, D.G., Wu, C.H., Wang, T.J., Tsai, 
J.S., and Lee, 1.J., Mold filling analysis in resin transfer molding, 
Polymer Compos., 17, 251-64 (1996). 

17. Farina, A., Cocito, P., and Boretto, G., Flow in deformable porous 
media: Modelling and simulations of the compression moulding pro­
cess, Mathl. Comput. Modelling, 26, 1-15 (1997). 

18. Farina, A., and Preziosi, 1., Non-isothermal injection moulding with 
resin cure and preform deform ability, Composites A, submitted. 

19. Fasano, A., and Primicerio, M., Free boundary problems for nonlinear 
parabolic equations, J. Math. Anal. Appl., 72, 247-73 (1979). 

20. Gonzalez-Romero, V.M., and Macosko, C.W., Process parameters es­
timation for structural reaction injection moulding, Polym. Engng. 
Sci., 30, 142-6 (1990). 

21. Hammami, A., Gauvin, R, and Trochu, F., Modelling the edge effect 
in liquid composites molding, Composites A, 29A, 603-9 (1998). 

22. Han, K., Lee, 1.J., and Liu, M.J., Fiber mat deformation in liq­
uid composite moulding. II: Modelling, Polymer Compos., 14, 151-60 
(1993). 

23. Hornung, U., Homogenization and Porous Media, Springer (1996). 

24. Isayev, A.I., Injection and Compression Moulding Fundamentals, 
Marcel Dekker (1987). 

25. Jager, W., and Mikelic, A., On the boundary conditions at the 
contact interface between a porous medium and a free fluid, An­
nali della Scuola Normale Superiore di Pisa, Serie IV, 23, 403-65 
(1996). 

26. Joseph, D.D., Fluid Dynamics of Viscoelastic Liquids, Springer­
Verlag (1990). 

27. Kim, Y.R, McCarthy, S.P., and Fanucci, J.P., Compressibility and re­
laxation of fiber reinforcements during composite processing, Polymer 
Compos., 12, 13-9 (1991). 

28. Lacoste, E., Aboulfatah, M., Danis, M., and Girot, F., Numerical 
simulation of the infiltration of fibrous preforms by pure metal, Me tall. 
Trans., 24A, 2667-78 (1993). 

29. Lacoste, E., Danis, M., Girot, F., and Quennisset, J.M., Numer­
ical simulation of the injection moulding of thin parts by liquid 
metal infiltration of fibrous preform, Mater. Sci. Eng. A, 135, 45-9 
(1991). 

30. Ladyzenskaja, O.A., Solonnikov, V.A., and Ural'ceva, N.N., Linear 
and Quasilinear Equations of Parabolic Type, AMS 'Iranslations of 
Mathematical Monographs 23 (1968). 



9. Infiltration Processes in Composite Materials Manufacturing 305 

31. Lin, M., Hahn, T., and Huh, H., A finite element simulation of resin 
transfer molding based on partial nodal saturation and implicit time 
integration, Composites A, 29A, 541-50 (1998). 

32. Liu, 1.S., On chemical potential and incompressible porous media, J. 
Mech., 19, 327-42 (1980). 

33. Mallik, P.K., Fiber-Reinforced Composites: Materials Manufacturing 
and Design, Marcel Dekker (1988). 

34. Markov, K., and Preziosi L., eds., Heterogeneous Solids: Microme­
chanics, Modelling Methods and Simulations, Birkhauser (1999). 

35. Mortensen, A., Masur, L.J., Cornie, J.A., and Flemings, M.C., Infil­
tration of fibrous preforms by a pure metal: Part 1. Theory, M etall. 
Trans., 20A, 2535-47 (1989). 

36. Muller, 1., Rational thermodynamics of mixtures of fluids, in Thermo­
dynamic and Constitutive Equations, Lecture Notes in Physics 228, 
edited by G. Grioli, Springer-Verlag (1985). 

37. Munaf, D., Wineman, S., Rajagopal, K.R, and Lee, D.W., A bound­
ary value problem in ground water motion analysis-Comparison of 
the prediction based on Darcy's law and the continuum theory of 
mixtures, Mat. Models Methods Appl. Sci., 3, 231-48 (1993). 

38. Parker, K.H., Metha, RV., and Caro, C.G., Steady flow in porous, 
elastic deformable materials, Trans. ASME E: J. Appl. Mech., 54, 
794-800 (1987). 

39. Preziosi, L., The theory of deformable porous media and its appli­
cations to composite materials manufacturing, Surv. Math. Ind., 6, 
167-214 (1996). 

40. Preziosi, 1., Joseph, D.D., and Beavers, G.S., Infiltration in initially 
dry, deformable porous media, Int. J. Multiphase Flows, 22, 1205-22 
(1996). 

41. Puslow, D., and Child, R., Autoclave moulding of carbon-fiber rein­
forcing epoxies, Composites, 17, 127-36 (1986). 

42. Rajagopal, K.R, and Tao, 1., Mechanics of Mixtures, World Scientific 
(1995). 

43. Rajagopal, K.R, Wineman, A.S., and Gandhi, M.V., On boundary 
conditions for a certain class of problems in mixture theory, Int. J. 
Eng. Sci., 24, 1453-63 (1986). 

44. Rudd, C.D., and Kendall, K.N., Towards a manufacturing technology 
for high-volume production of components, Proc. Inst. Mech. Eng., 
206, 77-91 (1992). 

45. Rudd, C.D., Long, A.C., Kendall, K.N., and Mangin, C.G.E., Liquid 
moulding Technologies, Woodhead Publishing Limited (1997). 



306 Complex Flows in Industrial Processes 

46. Rudd, C.D., Owen, M.J., and Middleton, V., Effects of process vari­
ables on cycle time during resin transfer moulding for high volume 
manufacture, Mater. Sci. Tech., 6, 656-65 (1990). 

47. Saffman, P.G., On the boundary condition at the interface of a porous 
medium, Studies in Appl. Math., 1, 93-101 (1971). 

48. Saunders, RA., Lekakou, C., and Bader, M.G., Compression of fiber 
plain woven cloths in the processing of polymer composites, Compos­
ites A, 29A, 443-54 (1998). 

49. Sommer, J.1., and Mortensen, A., Forced unidirectional infiltration 
in deformable porous media, J. Fluid Mech., 311, 193-215 (1996). 

50. Tao, 1., and Rajagopal, KR, On boundary conditions in mixture 
theory, in Recent Advances in Elasticity and Viscoelasticity, edited 
by KR Rajagopal, World Scientific (1994). 

51. Trevino, L., Rupel, K, Young, W.B., Liu, M.J., and Lee, 1.J., Anal­
ysis of resin injection moulding in moulds with preplaced fiber mats. 
I: Permeability and compressibility measurements, Polymer Compos., 
12, 20-9 (1991). 

52. Upadhyay, RK, and Liang, E.W., Consolidation of advanced compos­
ites having volatile generation, Polymer Compos., 12, 417-29 (1991). 

53. Yoo, Y.E., and Lee, W.I., Numerical simulation of resin transfer mold 
filling process using the boundary element method, Polymer Compos., 
11, 368-74 (1996). 

54. Young, W.B., Three-dimensional non-isothermal mold filling simula­
tions in resin transfer moulding, Polymer Compos., 15,118-27 (1994). 

55. Young, W.B., Han, K, Fong, L.H., Lee, L.J., and Liu, M.J., Flow 
simulation in molds with preplaced fiber mats, Polymer Compos., 12, 
391-403 (1991). 



10 
Porous Media with Hydrophile 
Granules 
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Firenze, Italy 

ABSTRACT. A diaper is a porous medium with water-absorbing grains. The 
flow of a liquid in the presence of such absorption is studied taking Darcy's 
law as the basic equation for the liquid motion. The swelling of the gran­
ules, which obeys a given kinetic law, produces a progressive reduction of 
porosity. The mass balance leads to a nonlinear partial differential equation 
(parabolic in the unsaturated region and elliptic in the saturated region) 
with history-dependent coefficients. Here we present a careful analysis of 
the boundary conditions, which can be selected in various ways, accord­
ing to the specific physical situations, on both the injection surface and 
the penetration front. We illustrate in some detail the one-dimensional 
case for unsaturated and saturated flows, and we point out the main open 
problems. 

10.1 Introduction 

The present study originates from a research performed at the University 
of Kaiserslautern [9] in cooperation with a German company. 

The physical system (a baby's diaper) is a porous medium (made of 
cellulose fibers) whose pores contain granules that can absorb water up to 
60 to 70 times their original volume. Absorption, of course, slows down the 
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penetration process, but the consequent reduction of porosity must not be 
too severe or the system becomes unable to accept liquid at the required 
rate (gel-blocking). As we shall see, in our approach such a condition will 
appear in a natural way. 

The basic assumption in the model proposed in [9] was that the lead­
ing transport mechanism in the porous medium is diffusion. After a brief 
summary of that model we will point out the advantage of using the clas­
sicallaws of filtration through porous media and we will shift to the model 
that is the real subject of this chapter. 

Denoting by u, v the water concentrations in the porous medium and 
in the granules, respectively, the governing equations according to [9] are 

au 1 
at = 8(x) \7. (8(x)d(u)\7u) - A(u,v), x E Q C R 3 , 0 < t < T (10.1) 

av 
at = A(u, v) (10.2) 

where the diffusivity d(u) is taken as 

d(u) = aebu (10.3) 

where a and b are positive constants. The function A represents the ab­
sorption rate 

A(u, v) = ,(uvoo - vUoo ) (10.4) 

with, > 0, and uoo , Voo denoting the maximum concentrations. 
The role of the strictly positive function 8(x) is to describe a kind of 

microstructure for interstitial diffusion. 
The boundary data are 

on part of the boundary and 

au = 0 
an 

au 
8(x) d(u) an = k(t)(uoo - u) 

(10.5) 

(10.6) 

on the complementary part (supposed to be a convex domain). Here k(t) 
is a step function. 

Existence and uniqueness of a classical solution of (10.1) to (10.6) with 
prescribed initial data uo(x), vo(x) have been proved in [8]' assuming 8 E 

C1, Vo E C1, Uo E H 2+cx in Q. 
The fact that equation (10.1) never degenerates implies that even if 

Uo == 0, water will be present everywhere in Q after the injection time (i.e., 
the time at which k becomes positive), because linear absorption is not 
strong enough to generate propagation fronts. 
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If, on the contrary, we want to describe the evolution of a wetting front, 
it is better to use the most natural law for the flows through porous media, 
i.e., Darcy's law. 

Starting from this viewpoint, a completely different mathematical 
model has been formulated in [4] as a free boundary problem. 

In the next section we will illustrate the general multidimensional model 
based on Darcy's law. The only mathematical results available [3] are about 
the first stage of the one-dimensional version and will be dealt with and 
extended in Section 10.3. 

Although largely based on the material of [3] and [4], this chapter con­
tains some new contributions, performing a much deeper analysis of the 
model and presenting more general cases of the one-dimensional problem. 

However, the main scope of the chapter is not to refer to the partial 
results obtained so far, but to point out that this is indeed an extremely 
rich research field with a number of open problems. 

10.2 The General Multidimensional Model 

10.2.1 The Governing Differential Equations 

According to Darcy's law, the volumetric velocity of the flowing liquid is 

q = -k{S, ¢)(Vp - g) (10.7) 

where g is the gravity acceleration, k is the hydraulic conductivity of the 
system, depending on the saturation S and the porosity ¢. 

The medium is saturated (S = 1) when the pressure exceeds the sat­
uration pressure Ps, while for p < Ps it is related to p due to capillarity 
effects: 

S = S{p), P ~ Ps (1O.8) 

with S(ps) = 1, S'{p) > 0 for p < ps. 
In [4] gravity was neglected. Another generalization we introduce here 

is to allow the hydrophile granules to be nonuniformly distributed in the 
system. Because we consider the system as a continuum, we can define 
a concentration of granules p{x) so that if Vg{x, t) is the volume of each 
of the granules in a volume element centered at x, the volume fraction 
occupied by the granules at x will be 

V{x, t) = p{x)Vg{x, t). (1O.9) 

An important feature of the system is that the granules are free to swell in 
the pores, so that they do not impinge the neighboring grains nor deform 
the porous matrix. 
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The increase of V occurs at the expense of porosity, because 

¢(X, t) + V(x, t) = ¢o(x) + Vmin(X) (10.10) 

¢o, Vmin being the initial data for ¢ and V. The right-hand side represents 
the porosity of the medium with no V swollen grains and Vmin = p( x) Vgmin. 

Denoting by vgmax the maximum volume attainable by the granules (of 
course we are supposing just one family of identical granules) and putting 
Vmax(x) = p(x)VtaX, the (irreversible) absorption kinetics can be described 
by the equation 

av at = f(Vmax(x) - V)(S - So)+ (10.11) 

where f is a C1 function such that l' 2: 0, f(O) = 0, f(~) > 0 for ~ > o. 
In (10.11) we have introduced the residual moisture content So> 0 at at­
mospheric pressure and (S - So)+ denotes the positive part. We suppose 
that the medium is initially dry (or the moisture content is in any case 
negligible) and that once it is wet it cannot release water to the granules 
if saturation is not larger than So. The liquid mass balance equation is 

a(s¢) + divq = _ av 
at at (10.12) 

which because of (10.7) and (10.10) becomes 

¢ as + (S _ 1) a¢ _ div (k(S ¢)\7p) _ g ak(S, ¢) = 0 (10.13) 
at at ' Ox3 

where X3 is the upward vertical coordinate. 
In the saturated region equation (10.13) reduces to 

div(k(l,¢)\7p)+gak~l,¢) =0 
X3 

(10.14) 

as long as there are active granules. Granules mayor may not reach the 
maximum size ~max in a finite time (depending on the structure of the 
function 1). In a region where the granules have been saturated, k becomes 
constant and (10.14) simplifies to the standard equation for incompressible 
saturated flows 

b..p = o. (10.15) 

In the unsaturated region equation (10.13) is a parabolic partial differ­
ential equation for the pressure (remember (10.8)). The boundary condi­
tions require a careful analysis. 
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10.2.2 Initial Conditions 

Our porous medium occupies a bounded domain n c R 3 , which we may 
suppose initially dry at the atmospheric pressure 

S = 0, P = Patrn :::; Po in n for t = o. (10.16) 

Remark 10.1. Of course we mean that t = 0 is the time at which injection 
starts. The two conditions (10.16) are not compatible with the relationship 
(10.S) between Sand P established by capillarity, because the medium has 
not been wet previously. In the not-penetrated material the ideal initial 
condition S = 0, Vg = Vgrnin may be slightly altered by the exposure to air 
moisture, with corresponding nontrivial modifications of the free boundary 
problem we are going to deal with. 

10.2.3 Conditions on the Outer Boundary 

As in [9] we must say that an is the union of two regular surfaces r 1, r 2 

with r 2 impermeable (to prevent outflow) 

q. n = 0 on r 2 for t > O. (10.17) 

Clearly (10.17) comes into play only when the wetting front has reached 
r 2• 

Injection occurs through the surface r 1. A typical condition is 

-q. n = X(ro)qo(t) on r 1 on t > 0 (10.18) 

(n is the outer normal unit vector) where X(ro) is the characteristic func­
tion of a simply connected convex smooth subset of r 1 and qo(t) is the 
volume injection rate per unit surface through the injection surface roo 

However, it may not be possible in practice to impose the flux condition 
(10.18) if the required injection rate over the "natural" injection area ro 
is too large (in the typical case diamro «diamr1). 

A more correct boundary condition should contain some constraint. At 
this point the choice of the boundary condition becomes quite delicate. 

1 O. 2. 3.1 Discharge Constrained Inflow 

The real information we have at the boundary is the cumulative volume 
injection rate Qc(t). A simplified way of introducing a constraint is via the 
inequality 

-q . n :::; qrnax on r 1 (10.19) 

where qrnax > 0 is a prescribed upper bound. Thus we can define qo(t) = 
rn~~!~o if qo(t) :::; qrnax, while in the opposite case we modify (10.18) as 
follows 

-q. n = X(r(t))qrnax (10.20) 
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where X(r(t)) is the characteristic function of a new set r(t) such that 
r l ::J r(t) ::J ro satisfying the requirement 

Qc(t) 
measr(t) = --. 

<Imax 
(10.21) 

Of course there is arbitrariness in the definitions of r(t). For example, it 
can be constructed by imposing that all points of or(t) have the same 
distance from ro (in this way r(t) will also be convex). 

10.2.3.2 Pressure Constrained Inflow 

It is well known that, particularly in the early stage of penetration, we can 
have a large pressure gradient at inflow surface even if injection pressure 
is relatively small. For this reason, the constraint (10.19) may be artificial 
and it seems more appropriate to introduce a constraint on pressure. The 
latter approach is, however, much more complicated. First, the constraint 
is applied to an unknown quantity 

P:S Pmax on r l , Pmax > Ps (10.22) 

and it can be checked a posteriori. As long as (10.22) is fulfilled, the bound­
ary condition to be used is (10.18). 

When the constraint comes into play the condition to be imposed con­
tains the boundary of the "coincidence set" r p(t) = {p = Pmax}, which is 
not necessarily included in roo 

After the onset of r p(t) the set ro becomes insufficient for the required 
total discharge Qc(t), and again we must introduce the larger inflow region 
r(t), which is no longer defined simply as (10.21). A correct boundary 
condition would be 

Qc(t) 
-q. n = X(r(t) \ rp(t))qo(t), qo(t) = r . 

meas 0 
(10.23) 

Again, we can require that the points of or(t) have the same distance from 
ro, but this time the definition of measr(t) is implicit 

meas {r(t) \ r p(t)}qo(t) + Qp(t) = Qc(t) (10.24) 

where Qp(t) is the (unknown) volumetric flux through the coincidence set 
r p(t); here, of course, we have the condition 

P =Pmax· 

Again the inclusion r(t) c r l implies a bound on Qc(t). 

Remark 10.2. In all conditions (10.17) to (10.20), (10.23) q is given by 
(10.7) and therefore it contains the unknown S(p) as well as ¢, which is 
actually a function of S and the unknown wetting front (see Section 10.3). 
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Therefore the boundary conditions are in any case nonlocal and history­
dependent. 

Remark 10.3. The no flux condition in the complement of the inflow region 
ofr 1 is taken for simplicity. The wetting front will certainly expand over r 1 

making the pressure raise because of capillarity. However, such a condition 
may become unsuitable if the saturation front expands beyond the inflow 
region, and it certainly does if pressure exceeds the constraint Pmax. In that 
case the model should allow for a seepage free boundary. However, outflow 
situations should be avoided and we will not deal with such a possibility. 

In the same spirit we say that the form of the constrained inflow con­
ditions we have proposed are in fact a shortcut to avoid the study of the 
impact of the liquid over the surface (which can generate complex situa­
tions depending on the volume input rate and the medium permeability). 
However, in the specific case of diapers it is very reasonable to assume that 
basically no tangential motion takes place over the injection surface and 
that the conditions suggested are close to reality. 

10.2.4 The Interior Free Boundaries 

Besides the one or two free boundaries associated with the constrained flow 
conditions, the problem has two main moving unknown boundaries: 

(i) the wetting front r w(t), and 

(ii) the saturation front rs(t). 

Both boundaries are absent for t = O. 

10.2.4.1 The Wetting Front 

The interface between the wet and dry regions is a material surface and 
therefore it moves according to Darcy's law. We may conjecture different 
scenarios for the advancing mechanism of the front. 

It is reasonable to assume that while the wetting front proceeds, the 
value of the saturation is at least 80 , i.e., the minimum moisture content 
of the wet medium. If it is precisely 80 the conditions on r w(t) are 

(10.25) 

(Po is a reference pressure) 

(10.26) 

where n is the outer normal to r(t) and Vn is the normal component of the 
front speed. In (10.26) <Po is obviously evaluated on r w. However, we can 
also suppose that on r w 8 can be larger than 80 if the penetration process 
is fast enough. The phase change analog to (10.25), (10.26) is represented 



314 Complex Flows in Industrial Processes 

by the Stefan conditions, if instead we replace Po by a function Pw(vn) we 
have conditions similar to the so-called kinetic undercooling: 

P = Pw(vn) :?: Po 
ap 

cPoSw(vn)vn = -k(Sw(vn), cPo) an 

(10.27) 

(10.28) 

where Sw(vn) is a nondecreasing function with values between So and 1 
and Pw(vn) is such that S(Pw(vn)) = Sw. 

If Sw(vn) becomes equal to 1, then the unsaturated region disappears 
(locally). The limit case is to eliminate the capillarity effect completely (a 
reasonable approximation for fast penetration). We will deal with this case 
in the one-dimensional case (Section 10.4). 

Remark 10.4. If initially the medium is not perfectly dry and there is some 
moisture Sd, the change to be introduced in (10.26) consists in replacing 
the saturation multiplying Vn by the saturation jump across r w(t). 

In doing so we suppose that the time scale of the wetting process is 
much shorter than the evolution time of S in the not-penetrated region. 
Also we keep cP = cPo because we assume that Sd ~ So. 

10.2.4.2 The Saturation Front rs 
Unlike r w, the saturation front is not a material surface, but is simply the 
level set defined by the equality 

P = Ps on both sides of rs. (10.29) 

The second condition to be imposed on r s is the continuity of volumet­
ric velocity. Because both Sand cP are continuous across r s, the latter 
condition amounts to 

[ap ] = 0 
an rs 

(10.30) 

where [Jrs denotes the jump. 

10.2.5 Summary of the Initial and Boundary Conditions 

As we have seen, we have a problem with multiple free boundaries resulting 
from the combination of the following alternatives. 

Initial Conditions. For t = 0, we may have: 

(il) the perfectly dry medium, or 

(i2) the partially moisturized medium. 

External Boundary Conditions (r1). On the pervious part of the external 
boundary, we may have: 
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(eb1) the unconstrained inflow condition (no additional free boundaries), 

(eb2) the discharge-constrained inflow (contains one additional free bound­
ary af(t)), or 

(eb3) the pressure-constrained inflow (contains two additional free bound­
aries af p(t), af(t)). 

Free Boundary Conditions (f w). On the wetting front f w, we may have 
the options: 

(f wS) the Stefan-like conditions with two options-(f wSO) the saturation 
on f w coincides with the threshold saturation for absorption So or 
(f wS1) the saturation for penetration is S1 =f. So, or (f wU) the kinetic 
undercooling analog. 

Instead we have no alternatives for external boundary conditions (f2): 

(ebO) no flux through f2 

Free Boundary Conditions (fs). 

(f s) conditions (10.29) and (10.30) on the saturation front. 

The easiest combination is, of course, (i1), (ebl), (f wSO), but even 
in that case the problem is open due to the complexity of the differential 
system (10.8) to (10.13), which we are going to analyze in the next section. 

Remark 10.5. Distinguishing between the saturation threshold for absorp­
tion and the one for penetration in the dry region is not a trivial change, 
particularly if it implies that f w is no longer the set where absorption 
starts. 

Remark 10.6. Although the device is not conceived for such an extreme 
use, we may envision the situation in which saturation zones are formed 
near the impervious boundary f 2. In other words, the saturated region 
may be disconnected. 

10.3 Statement of the General Problem 

We want to find a more compact form of equations (10.13) and (10.14), 
emphasizing the fact that the coefficients are functionals of p and the 
wetting front. This can be done by integrating equation (10.11) and using 
(10.10). In the following, we refer explicitly to the option (f wSO) for the 
conditions on f w. 
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Let us define 

v 

<I> (V, x) = J dy 

f(Vrnax(x) - y)' 
Va(x) ::; V < Vrnax(x) (10.31) 

Vo(x) 

and for any x E n 
B(x) = sup{t I S(x, t) < So}. (10.32) 

Clearly B(x) is the time at which the wetting front r w reaches the point 
x, thus triggering the absorption process. 

The integration of (10.11) leads to 

<I> (V, x) = 8(S, B, t) (10.33) 

with 

t 

8(S, B, t) = J [S(x, r) - Sol dr, V t > B(x). (10.34) 

Ii(x) 

Because <I> is invertible with respect to V, setting 'IjJ = <I>-l we have 

V(x,t) = 'IjJ(8,x) (10.35) 

and from (10.10) 

¢(x, t) = ¢o(x) + Va(x) - 'IjJ(8). (10.36) 

It is now clear that 

a¢ a'IjJ 
at = - a8 (S(x, t) - So) ::; 0, V t > B(x) (10.37) 

where we have used ~~ ~ 0 and S ~ So in the wet region. Moreover, 

t 

a¢ = _ a'IjJ J as dr _ a'IjJ + ~(¢o + Va) 
aXi a8 aXi aXi aXi 

(10.38) 

Ii(x) 

(if, e.g., the function B(x) is differentiable). 
Equations (10.36), (10.37), and (10.38) must be used in (10.13) (to­

gether with S = S(p)) and in (10.14) in order to obtain the final partial 
differential equations to be solved in the wet region. 

At this point the classical formulation of the problem can be stated 
as finding the continuously differentiable free boundaries r w (t), r s (t), the 
pressure p(x, t) with the obvious regularity requirement, satisfying (10.13) 
in the unsaturated region, (10.14) in the saturated region (with the replace­
ments shown earlier), and one of the possible sets of initial and boundary 
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conditions illustrated in the previous section (which may involve additional 
free boundaries). 

Some of the basic assumptions that must be satisfied and that will be 
kept in the sequel are 

(HI) ¢o E c1(n), 0 < ¢m ~ ¢o(x) ~ ¢M < 1j 
(H2) YO E C1(0), 0 < v2) ~ Vo(x) ~ vZ), ¢M + vZ) < 1j 

(H3) Vrnax E C1(0), 0 < Vm ~ Vrnax(x) ~ VM, viJ) < Vm, ¢m + v2) -
VM == ¢min > OJ 

(H4) k E C3([0, 1] x [0,1]),0 < km ~ k(S,¢) ~ kM, ~; > OJ and 

(H5) S E C3([po,ps]), S'(p) > 0 in (Po,Ps). 

Remark 10.7. Assumptions (HI) to (H3) ensure that ¢ 2: ¢min > 0, so that 
(10.13) is parabolic (possibly degenerate). 

10.4 The One-Dimensional Problem with 
No Capillarity 

The absence of capillarity eliminates the unsaturated region. The wetting 
front and the saturation front coincide. Saturation is either 0 or 1. In this 
situation our problem is a generalization of the well-known Green-Ampt 
model [7]. 

Setting Po = 0, we have to solve equation (10.14), where for simplicity 
we neglect gravity, Le., 

![k(l,¢)~:] =0, O<x<s(t), t>O 

with the boundary condition 

ap 
-k(l,¢) ax = qo(t) > 0 for x = 0, t > o. 

The curve x = s(t) is the penetration front, where we impose 

p(s(t), t) = O. 

(10.39) 

(10.40) 

(10.41) 

An immediate consequence of (10.39) is that (10.40) holds not only for 
x = 0 but also for any x E [0, s(t)]. Moreover the equation 

¢o(s)s(t) = qo(t) (10.42) 

together with the initial condition s(O) = 0 defines the penetration front 
in the form 

s(t) = E-1(L(t)) (10.43) 
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where E-1 is the inverse function of 

s 

E(s) = J ¢o(a)da (10.44) 

o 

and 
t 

L(t) = J qO(T) dT. (10.45) 

o 

Not only s(t) is known, but also ¢(x, t), because putting S = 1 in (10.34), 
we get from (10.36) 

¢(x, t) = ¢o(x) + Vo(x) - ~[(t - B(x))(l - So), x] (10.46) 

where B(x) is the inverse function of s(t). 
Thus k(l, ¢) becomes a known function K(x, t, B(x)), and we can finally 

obtain the expression of pressure 

s(t) 

J qo(t) 
p(x, t) = K(~, t, B(~)) d~. (10.47) 

x 

The problem is completely solved unless some constraint is imposed. 
The assumptions on the data are very mild. If we accept (10.43) and 

(10.47) as a solution in a weak sense all we need is qo > 0 bounded, ¢o, Vo 
continuous, and k bounded, continuous, and strictly positive. 

Of course for 1-D problems the constraint on discharge can be imposed 
only directly on qo(t). More interesting is the pressure constrained inflow 
condition on p(O, t) ::; Pmax, which comes into play if the inequality 

s(t) 

qo(t) J K(~,:, B(~)) d~ ::; Pmax (10.48) 

o 

is violated out of some finite interval [0, to]. 
Beyond t* we have the switch from the boundary condition (10.40) to 

P = Pmax, t > t*. (10.49) 

The volumetric velocity q(t) is now unknown and the pair of equations 

ap 
-k(l, ¢) ax = q(t) 

¢o(s)s(t) = q(t) 

(10.50) 

(10.51 ) 
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leads to the following integro-differential equation 

s(t) 

319 

Pmax = <p(s)s(t) J K(~, t~ 0(0) d~, s(t* +) = s(t* -) == s* (10.52) 

o 

which involves s(t) and its inverse 0(0. 
Let us sketch the proof of the following theorem. 

Theorem 10.1. Under assumptions (Hl) to (H4) of Section 10.3 and the 
assumptions made on the absorption kinetics (10.11), there exists a unique 
solution of (10.52), V t > O. 

Proof. Taken T > t*, define the set 

a(t') - a(t") 
~ = {a E C([t*,TJ) 1 a(t*) = so, AI::; t'- til ::; A2} (10.53) 

with Al (T), A2(T) uniquely determined by the system 

A - Pmax km A _ Pmax kM (10.54) 
1- <PM s*+A2[T-t*], 2- <Pm S*+AdT - t*] 

It is easy to see that the mapping iJ = Ma such that 

a( t) 

diJ_Pmax(J 1 d)-1 
dt - <po(a) K(~, t, O(~)) ~ , 

iJ(t*) = s* (10.55) 

o 

where 0 = a-I satisfies the property M(~) C ~. 
The proof of the theorem consists in showing that M is continuous in 

the selected topology and contractive if T - t* is sufficiently small (note 
that ~ is closed, convex, and compact in the same topology). 

The main step in this analysis is evaluation of the integral 

O'lIIill (t) 

f 101(~) - 02(~)1 d~ (10.56) 

o 

with amin(t) = min(al(t),a2(t)), 01 = a11, O2 = ail, for any pair al,a2 E 

~. 

It is easy to realize that (10.56) is dominated by 

t 

J lal(7) - a2(7)1 d7. (10.57) 

t· 

The other terms in the estimate of liJ1 - iJ21 are standard. 0 

Theorem 10.1 provides the solution of the constrained problem as long as 
inequality (10.48) is not valid. If such a situation is reversed beyond some 
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interval [t*, t**], then we have to introduce the flux condition (10040), and 
so on. 

Remark 10.8. In the one-dimensional version, the impervious boundary 
r 2 is a plane situated a given distance from the inflow surface. In the 
case we have considered, when the wetting front reaches r 2 the solution is 
terminated. 

10.5 The One-Dimensional Problem with Capillarity 

Here we will deal only with the first stage of penetration, Le., before the 
appearance of the saturated region, and with no constraints on the inflow 
condition. So far the only known result is an existence theorem, confined 
to the options (il), (eb1), and (r wSO) of Section 10.2. 

In addition to (HI) to (H5), we need the following simplifying assump­
tions 

S'(p) > 0 in [O,ps], 
S" 
S,2 (S - So) ::; 1 in [O,ps] (10.58) 

where p = 0 is the reference value on the free boundary, and 

ok 
oS = O. (10.59) 

More conditions will be added later to deal with the case S" -:f. O. Particu­
larly the latter condition is a strong limitation from the physical point of 
view (see, e.g., page 143 in [2]). It has been removed in a very recent paper 
[6]. 

Besides the linear case S(p) = So + (1 - So)#;, a less trivial choice of 
S(p) satisfying (10.58) is 

,-~, (p) S(p) = -- - --(1- So)exp - -log" V, E (1,2]. 
,-I ,-I Ps 

To avoid formal complications we replace (HI) to (H3) by the simpler 
conditions cPo = constant, Vo = constant, p = constant, and 

cPm = cPo + YO - Vmax > O. (10.60) 

Concerning the dependence of k on cP we impose 

(10.61) 

Specific examples in the literature agree with (10.61). For example, the Fair 
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and Hatch formula (see page 134 in [1]) gives the following dependence 

cP3 

k= (l-cP)2 

for which the left handside of (10.61) is larger than 3. 

(10.62) 

One more condition is about the absorption kinetics (10.11). Besides 
the assumptions already made on the function f, we impose the following 
condition on the function <I> defined in Section 10.3: 

cP~ 1f;/~ + 1f;" :s o. (10.63) 

This inequality is equivalent to :: :s ,tL. It arises in a very natural way 
during the course of the existence proof. It is not difficult to discover its 
physical meaning, choosing a power absorption law, Le., setting 

which gives 

1f;(8) = Vrnax - [(Vrnax - Vo)l-n - A(1 - n)ejI/(l-n) 

for n i= 1, and 

1f;(8) = Vmax - (Vrnax - Vo)e-Ae 

for n = 1, so that (10.63) takes the form 

Vrnax - V < 
cPn - n 

(note on the other hand that :: = Vm.~-V)' which requires 

Vmax - Vo cPo - cPm ----= <n 
cPm cPm-

and finally 

(10.64) 

(10.65) 

(10.66) 

(10.67) 

(10.68) 

In other words, (10.63) expresses the physical requirement that once the 
granules have reached their maximum admissible volume, the correspond­
ing reduction of porosity must not be too large (also it links cPm to the 
order Le., the speed, of the reaction). As we said in the introduction, this 
condition is necessary to prevent the gel-blocking effect. Once more, we 
neglect gravity for simplicity and impose no constraints on the inflow rate. 
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Thus the problem reduces to finding the pair (Sj p) satisfying 

¢S'(p): + (1 - S)1jJ'(8)(S(p) - So) - :x (k(¢) ~~) = 0 

o < x < s(t), 0 < t < ts (10.69) 

ap 
-k(¢) ax = qo(t), x = 0, 0 < t < ts (10.70) 

s(O) = 0 (10.71) 

p(s(t), t) = 0 (10.72) 

s(t) __ k(¢o) ap I 
- ¢oso ax x=s(t)' 

0< t < ts (10.73) 

where ts is the time at which the saturation front appears, ¢ is given by 
(10.36), and 8 is given by (10.34). 

Theorem 10.2. Under the assumptions listed earlier and if qo(t) is con­
tinuously differentiable and strictly positive for t 2:: 0, problem (10.69) to 
(10.73) has at least one classical solution, provided that if S" =1= 0, the 
additional conditions (10.93) and (10.95) are satisfied. If S" =1= 0, the result 
is local in time. 

The proof is rather complex; we just summarize it here. 
Our aim is not just to reproduce the results of [3] (derived in the simpler 

case S' = constant), but to present some generalization and comment on 
the peculiar characteristics of this class of problems. 

The general scheme is as follows: 

(i) Choose a boundary x = s(t) in the set 

~ = {s E C([O,T]) I s(O) = 0, s(t) > 0 for t > 0 

s(t') S(t") 
o :S t' = til :S A, O:S t' < til :S T} (10.74) 

with A > 0 to be defined (T > 0 is for the moment generic) and look 
for a solution p(x, t) of the problem (10.69), (10.70), (10.72), (10.34), 
and (10.36). 

(ii) Show that the solution so obtained can be used to define a new bound­
ary x = a(t) such that 

a(t) = - k~ aap I ,a(O) = 0, ko = k(¢o). 
So '1-'0 x x=s(t) 

(10.75) 
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(iii) Show that the mapping Ms = (J has at least one fixed point in (J for 
a suitable selection of the Lipschitz constant A. 

Because the functions in ~ are not strictly increasing, we have to extend 
the validity of (10.34) and (10.36) to the case of nondecreasing boundaries. 

If s(t) is constant over an interval [tl, t2] (and s(t) < s(to) for t < tl, 
s(t) > S(t2) for t > t2)' then 8 = 80 :::} e = 0 :::} ¢ = ¢o along that part of 
the boundary. Trivially ~~ = 0, while 

tz 

o¢ I = -1f;'(0)8'(0) J op I dr 
ox x=s(td ox x=s(td 

tl 

where 1f;'(0) is nothing but f(Vrnax - Yo). 
The advantage of dealing with nondecreasing boundaries is that we do 

not have to estimate a positive lower bound for -k~, which would not be 
as easy as in the saturated flow. 

We omit all the details of the steps (i) and (ii), which contain two 
difficulties: the fact that the coefficients in (10.60) are functionals and 
the degeneracy of the domain for t = o. The problem is facilitated by 
assumption (10.58), which guarantees the uniform parabolicity of (10.60). 
The existence and uniqueness proof of such auxiliary problem is sketched 
in [3]. 

It is more interesting to outline the most relevant points in (iii), because 
they are peculiar to the specific problem we are considering. Let us list the 
key results. 

(J) Bounds on p: 

0< p(x, t) < Ps in {O < x < s(t), 0 < t < ts} = D (10.76) 

In order to obtain positivity we have to write equation (10.60) more 
appropriately with the positive part (8 - 80)+ replacing (8 - 80 ). In­
deed, the corresponding term expresses (8 -1) ~~ , and clearly !fit = 0 
in the negativity set of p (where 8 is under threshold for absorption). 
Therefore p satisfies a homogeneous parabolic equation in its nega­
tivity set. 

Because the negative minimum must be taken inside (if it exists), 
because of the boundary conditions, then the strong maximum prin­
ciple would extend the negativity set up to the boundary, producing 
a contradiction. 

The inequality p < Ps is an immediate consequence of the maxi­
mum principle. 

(II) The volumetric velocity is positive in D. We set 

op 
-q=w=k(¢)­ox (10.77) 
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and differentiate ~1O.60) with respect to x. Using the known expres­
sions for ~: and af and observing that 

t 

a2p =.!. [aw + k' w'l/J'(8) J S'(p) ap dr] 
ax at k at k ax 

O(x) 

we obtain the following parabolic partial differential equation for w: 

¢S' aw (S" 1 1 ) aw a2w 1 {(¢k') kat + S'"kw - "¢'l/J'(8)2 ax - ax2 + "k'l/J'(8)S' k- 1 

x (S - So) + (1 - S) (1 - (S - So) ;:: )}w 

= -(1 - S)(S - So)2( ~'l/J'2 + 'l/J") (10.78) 

where 

t 

J w(x, r) '( ( )) 
k(¢(x,r)/ p x,r dr. (10.79) 

O(x) 

Because 'l/J' > 0, conditions (10.58) and (10.61) ensure that the coef­
ficient of w is positive. Moreover, condition (10.63) implies that the 
source term in (10.78) has the same sign as 2. 

The boundary conditions are such that w(O, t) < 0, w(s(t), t) :=:; 0 
because of (I), and w < 0 in some neighborhood of the origin. 

Now we show that w < 0 through the following steps: 

(a) Let the positivity set of w be nonempty and have a positive 
distance from the parabolic boundary of D. This means that 
there is a first positive time l at which w vanishes at some point 
x and (x, t) is an inner point. Furthermore w(x, t) < 0 for t < t. 
Hence 2 < 0 at least up to t = t and the maximum principle 
leads to a contradiction. 

((3) The positivity set of w is nonempty and its boundary has points 
in common with the curve x = s(t). Then we introduce a family 
of solutions W C (x, t) of (10.78) with the only change that on x = 
s(t) we impose WC(s(t), t) = min{ w(s(t), t), -8}, where 8 > o. It 
is possible to show that for any 8 sufficiently small W C exists and 
W C -+ W uniformly as 8 -+ o. The argument under (a) applies for 
wC, so that WC < 0 in D. Passing to the limit we obtain w :=:; o. 
Because w < 0 near the origin, we conclude that 2 < 0, which 
implies the strict inequality w < O. 
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Remark 10.9. A consequence of (II) is ~ > 0 in the wet region (recall 
10.38). 

(III) A bound on pressure gradient on x = s(t). This is, of course, a ba­
sic estimate. It can be obtained by comparing p(x, t) with a linear 
barrier. For any to > 0 set 

z(x, t) = p(x, t) - A(to)[s(to) - xl (10.80) 

where A(to) = k~ sUPo<t<to qo(t). 
Clearly we have z(s(t),t) < 0, kg~lx=o 2::: 0 for t < to. The equa­

tion satisfied by z in D n {t < to} is 

¢8'~; - :x (k(¢) ==) = -(1-8)1f;'(8)(8-80 )-k'A(to) =~. (10.81) 

Therefore, recalling Remark 10.9, we conclude that the right-hand 
side is negative, whence it is easy to get the desired estimate 

8p I 1 02::: !'l 2::: --k sup qo(r). 
uX x=s(t) m O<T<t 

Remark 10.10. Inequality (10.82) allows us to select A 
(10.74). 

(10.82) 

~lIqoll in 

(IV) Bound on the volumetric velocity. Preliminarly we note that setting 

IIWllt=supw(x,r) forO<x<s(r),O<r<t 

the right-hand side of (10.78) is larger than -!::n N J~ II W liT dr, 
where 

M = sup 8'(p), 
O<P<Ps 

N = sup I; 1f;,2(9) + 1f;"(9) I· 
0<9<T 'iJn 

Now divide both sides of (10.78) by 1f and write the resulting equa­
tion in the form 

£'w = _ (¢:') -1 (1 _ 8)(8 _ 80):=:( ~1f;'2 + 1f;") (10.83) 

where the parabolic operator £, has an obvious definition. At this 
point it is easy to see that w 2::: W, where W solves the equation 

(10.84) 
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with m = info<p<ps 8' (p) > 0 (because of (10.58)), with data 

W(O, t) = -II qo liT, kM 
W(s(t), t) = - km II qo liT. 

Note that implicitly we have supposed T ::::: ts, where ts (the satura­
tion time) still has to be estimated. Moreover, the maximum principle 
yields the inequality 

t 

kM J II Wilt ::::: km II qo liT + Q II w Ilr dT (10.85) 

o 

and eventually 

(10.86) 

so that 

(10.87) 

Remark 10.11. All the preceding estimates could also be obtained if g~ >0. 

(V) Bounds on !J!t and fx;. These are the most delicate estimates. We 
have to distinguish two cases: 

(a) 81/(p) = 0, and 

(b) 81/(p) # o. 
Let us derive the equation for !J!t in the general case by differentiating 
(10.69) with respect to time: 

,,{( ) (kl)( )}ap l/(ap )2 + 't/J 8 1 - 8 + cjJk - 2 8 - 80 at + cjJ8 at 

= -(1 - 8)(8 - 80 )2't/J1/ + ~~ (8 - 80 )3{kl/'t/J12 + k''t/JI/ + ~'t/J12} 

- k' 't/J' 8 ' ( ~~ r· (10.88) 

What we know on the boundary is 

a ap I k' acjJ I 
-k(cjJ(O, t)) ax at x=O = qo(t) + kqo(t) at x=O (10.89) 
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apl =_8(t) ap l . 
at x=s(t) ox x=s(t) 
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(10.90) 

Here 8 is just Loo, but we can adopt a smoothing procedure to get the 
final result, taking 8(0) = Jo qo(O), so that 

ap q5(0) 
at (0,0) = k(¢o)¢o· (10.91) 

At this point we see that in case (a), assumption (10.61) is enough to 
obtain the estimate of II ~ liT in terms of already-known quantities. 

Passing to case (b), we note that as long as 

( k') ¢S" ap 
(1- S) + ¢T - 2 (S - So) + 1/J'S' at > 0 (10.92) 

we are allowed to apply the maximum principle. 
Now we strenghten condition (10.61), assuming, e.g., 

k' 
¢T? 3 (10.93) 

(still satisfied by the physical case (10.62)), so that instead of (10.92) 
it is enough to require 

¢S" ap 
1 - So + 1/J'S' at > o. (10.94) 

Now we impose the additional condition 

¢M S" Q5(0) 
inf1/J'suP S' k(¢o)¢o > -(1- So) (10.95) 

which satisfies (10.94) near the origin, thanks to (10.91). 
The possibility of applying the maximum principle to (10.88) near 

the origin enables us to estimate the time T for which (10.94) is valid 
just in terms of a general bound on the source term, which is already 
available. 

Remark 10.12. In (10.95) we tacitly assume that 1/J' > 0 (always true if 
the grain swelling is not completed, and in any case can be obtained by 
reducing T in a known way). However, such limitations are not needed 
if S" ? o. The same argument applies to the ratio ~~ (we stop before p 
reaches ps). 

The conclusion is the following. 
In case (a), II ~~ liT is estimated in terms of known quantities for any 

T < ts. In case (b), the analogous estimate is obtained under the additional 
requirements (10.93) and (10.95) for T less than a known constant. 
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Remark 10.13. Tbese estimates allow us to obtain a lower bound for ts. 
In addition, once II ?if liT bas been estimated, tbe same is true for II f,;; liT. 

(VI) Continuity of the mapping M. Integrating (10.69) written in its 
original form 

a a ( ap ) -[(1 - S)¢J + - k(¢)- = 0 
at ax ax 

over 0 < x < 8(t), 0 < T < t, we get 

t s(t) 

¢oSo(a(t) - 8(t)) = J qO(T) dT + J (¢(x, t) - ¢o) dx 
o 0 

s(t) -J ¢(x, t)S(x, t) dx. 
o 

(10.96) 

(10.97) 

Remark 10.14. Note tbat if a = 8, i.e., if a is a fixed point of M, (10.97) 
gives tbe mass balance 

s(t) t s(t) 

J ¢(x, t)S(x, t) dx = J qo( T) dT + J (¢(x, t) - ¢o) dx (10.98) 

o 0 0 

expressing tbe fact tbat tbe amount of liquid in tbe medium at time t 
equals tbe amount of liquid injected minus tbe cumulative reduction of 
pore volume (wbicb is tbe liquid absorbed). 

Taking a pair 81,82 in ~, by means of (10.97), we can compare aI, a2: 

art) 

a1(t) - a2(t) = 81(t) - 82(t) + ¢o~o J (¢l(X, t) - ¢2(X, t)) dx 
o 

art) 

- ~s J (¢l(X, t)Sl(X, t) - ¢2(X, t)S2(X, t)) dx 
¢o 0 

o 
f3(t) 

1 (-lY J - -(81 (t) - 82(t)) - -- ¢j(x, t) dx 
So So¢o 

art) 

f3(t) 

(-l)j J + So¢o ¢j(x, t)Sj(x,t) dx 
art) 

(10.99) 
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where o:(t) = min(81(t), 82(t)), (3(t) = max(81(t), 82(t)), j = i if (3 = 8i, 
and the other symbols are obvious. 

The critical point of the proof is now to find an estimate for SI - S2, 
i.e., S(pt} - S(P2) in terms of 81 - 82. However, this objective is surprisingly 
difficult. Let us explain why. 

Putting 

U=PI-P2 (10.100) 

the equation for u is 

, au a ( au) <P2S (p2)- - - k2-
at ax ax 

+ {(<PI - <P2)S'(Pl) + <P2[S'(Pl) - S'(P2)]} O~1 
+ (SI - S2){(1 - S2)'I/;'(82) - (SI - So)'I/;'(81)} 

+ (1 - S2)(SI - So)['1/;'(81) - '1/;'(82)]- :x [(k1 - k2):] = o. 

(10.101) 

We will soon come to the estimate of 8 1 - 8 2 . The term in (10.101) that 
really makes it difficult to obtain an estimate of the sup-norm of lui is the 
one containing tx (kl - k2 ), which leads to the analysis of 

t 

!...-(<Pl - <P2) = -['1/;'(81) - '1/;'(82)] J S'(Pl) OPI dr 
ax ax 

1I,{x) 

t 1]{x) , [J a . J' OPj ] - 'I/; (82 ) ax (SI - S2) dr - (-1)1 S (Pj) ax dr 

1]{X) €(x) 

(10.102) 

where ~(x) = min(fh(x), B2(x)), TJ(x) = max(B1(x), B2(x)) and j is the same 
as in (10.99). The delicate term appearing in (10.102) is J;(xl S'(P)~~ dr 
where p(x, t) is between PI and P2. 

Integrating (10.96) over the rectangle (0, x) x (TJ(x), t) and subtract­
ing the result for the two solutions, we can obtain the expressions of 
J;(x) ki ~~ dr, i = 1,2. Because we cannot control the sign of ~~, the corre­
sponding estimates are of no use in (10.102), except for the artificial case 
S' = constant, k = constant (note, however, that k = constant violates 
(10.61)). 

This is an important obstacle in the search for an estimate of u that is 
strong enough to infer uniqueness. 
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Because of this difficulty, we look for a weaker estimate, namely, 
a(t) t ! u2(x, t) dx :s; C ! II 81 - 82 liT dr (10.103) 

o 0 

with C > 0 a known constant. 
Multiplying (10.101) by u and integrating over 0 < x < a(t), 0 < r < t 

we obtain 

aCt) t aCT) 2 

~ j ¢2S'(pz)U2(x, t) dx + j dr j dx k2 (:~) 
000 

t t 

= -21 j¢2S'(pz)u2(a(r) , r)a(r) dr + ju(a(r), r)[k1 ~1 -k2 ~2] dr 
vX vX x=a(T) 

o 0 

t aCT) 

+ j dr j dxu2(x,r){~[a~2S'(P2)+¢2SII(pz)~2] 
o 0 

- S'(p)[(1 - S2)'Ij;'(62) - (SI - So)'Ij;'(91) - ¢2S"(p) ~2 } 

t aCT) 

+ j dr j dx u(x, r){ ['Ij;(6t} - t/J(62)1[S'(P1)~1 - (1- S2)(SI - So)] 
o 0 

t aCT) 

-jdr j dx(k l _ k2)au apl . 
ax ax 

o 0 

(10.104) 

In this way we have eliminated precisely the critical term containing the 
expression (10.102). What remains to be estimated in (10.104) is the dif­
ference 

t 'I(x) 

9 1 -92 = j S'(P)ud~- (-l)i j Sj(x,r) dr. (10.105) 

'I(x) e(x) 

The way of using (10.104) is to construct an inequality of Gronwall type 

for the quantity Joa(t) SUPO<T<t u2(x, r) dx. 
For example, we have to write 

!91(x,r) - 9 2(x,r)!:S; {M sup !u(x,r')! + l}(ry(x) -~(x». (10.106) 
O<T'<T 

Observing that JoD«t)(ry(x) - ~(x» dx :s; J; !81(r) - 82(r)! dr and using all 
the estimates, we finally obtain (10.103). 
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At this point we return to (10.99), and we see that we can write 

t 

1001(t) - 0"2(t) 1 ::; c1I s1(t) - s2(t)1 + C2 J IS1(7) - S2(7)1 d7 
o 

(10.107) 

which proves the continuity of the mapping M and, eventually, the exis­
tence of at least one fixed point. 

Remark 10.15. The question of uniqueness bas been solved in a paper still 
in preparation [5J, wbicb uses a different tecbnique. 

Remark 10.16. Also open is tbe problem of tbe unsaturated flow in a finite 
layer, wbose second boundary is impermeable, as well as tbe problem in 
wbicb saturated and nonsaturated regions coexist. 

10.6 Conclusions 

We have presented a model for incompressible flows through porous media 
with hydrophile granules. Such a model leads to the formulation of sev­
eral different free boundary problems, depending on how one selects the 
initial data, the boundary conditions (which may introduce additional free 
boundaries), and the conditions on the wetting front. 

We have discussed in more detail the one-dimensional problem, which, 
except for the extreme case of no capillarity (Section 10.4), is solved only 
very partially. 
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