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Preface

Quantitative Data Analysis for Accounting and Information Systems Research
guides postgraduate research students and early career researchers in choosing

and executing appropriate data analysis methods to answer their research questions.

It supports researchers when they are planning to collect data and when they have

data that they want to analyze. Using a variety of examples and lay language, this

book provides hands-on guidelines on (1) when to use which data analysis method,

(2) what kind of data and data structure are required for each of the methods,

(3) what each method does and how the methods should be used, and (4) how to

report results.

This book is not intended to provide an exhaustive overview of data-analysis

methods, nor does it explain the methods in depth. Instead, it guides researchers in

applying the right methods in the right way. More skilled researchers can also use

the book to refresh their knowledge or as a checklist to avoid skipping important

steps. It explains the most commonly used methods in an intuitive and hands-on

way, pointing out more advanced resources along the way. As such, it does not

aspire to compete with manuals like those of Stevens [1], Field [2], or Crawley [3].

We are not statisticians but researchers who apply statistics,1 so the book covers the

issues that commonly affect others like us, who are engaging in quantitative

empirical research.

Quantitative Data Analysis for Accounting and Information Systems Research is
the book we would have liked to have had as a support in our own research. Every

chapter provides an unintimidating starting point for building your data-analysis

skills, the information required to run the most common analyses and report them,

and pointers to more extensive resources. At the risk of saying things that may not

be entirely true in the purest statistical sense, we try to keep the language of this

book as simple as possible. As such, the book is brief and written in a language that

we hope everyone can understand—from students to researchers to people who

wish to study the organizations in which they work. Our goal is to help you conduct

academic research of high quality and do the right things right—not to make you a

1If you are a statistician or simply more observant than we are, we invite you to tell us if you

identify an error.
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statistics expert—so this book is not about statistics but about applying statistics to
the research questions that keep you awake at night. (We doubt these questions are

about collinearity, but if they are, this may not be the book you are looking for.)

In brief, this book is a software-independent starting point for answering the

question: What methods do I use to answer my research questions and how?

We hope you have fun!

Brisbane, QLD, Australia Willem Mertens

Padova, Italy Amedeo Pugliese

Jan Recker

References

1. Stevens JP (2009) Applied multivariate statistics for the social sciences. Taylor and Francis,

LLC, London

2. Field AP (2013) Discovering statistics using IBM SPSS statistics, and sex and drugs and rock

‘n’ roll, 4th edn. Sage, London

3. Crawley MJ (2013) The R book, 2nd edn. Wiley, West Sussex

vi Preface



Acknowledgments

Many people have contributed to the development of this book and its content. We

are grateful to everyone who helped us discover, explain, and write down our

understanding of what matters in using statistics for data analysis. Although there

are many of you out there, we would like to thank a few in particular.

First, we are grateful for the support of the QUT’s School of Management,

School of Accountancy and Information Systems School, for supporting us in the

development and conduct of the Advanced Data Analysis workshop series; this

book would not have been possible without it. Special thanks go to Professor

Michael Rosemann and Professor Peter Green for their inspiring entrepreneurial

spirit, flexibility, and support. Second, we are grateful that so many of our

colleagues and students attended these workshops and discussed and challenged

our understanding of data analysis methods and the way we taught them.

Finally, the ones that contributed—or perhaps suffered—most are our lovely

wives, Laura, Claudia, and Laura. Thank you for your support, your patience, and

for sharing some of our headaches. You make our lives 89% more enjoyable

(p< .001, [75–100]).

September 2016 Willem Mertens

Amedeo Pugliese

Jan Recker

vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction to the Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Navigating the World of Statistics—And This Book . . . . . . . . . . 3

1.3 What This Book Does Not Cover . . . . . . . . . . . . . . . . . . . . . . . 5

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Comparing Differences Across Groups . . . . . . . . . . . . . . . . . . . . . . 7

2.1 One or Two Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 More than Two Groups: One-Way ANOVA . . . . . . . . . . . . . . . . 10

2.3 More than Two Grouping Variables: Factorial ANOVA . . . . . . . 12

2.4 More than One Dependent Variable: Multivariate ANOVA . . . . 14

2.5 More Advanced Models: Covariance and Repeated Measures . . . 16

2.6 When to Use Group Comparisons . . . . . . . . . . . . . . . . . . . . . . . 17

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Assessing (Innocuous) Relationships . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 What Are Regression Models? . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 When Do We Use Regression Models? . . . . . . . . . . . . . . . . . . . 24

3.3 How Do We Examine Regression Models? . . . . . . . . . . . . . . . . 26

3.4 How Do We Report Regression Analyses? . . . . . . . . . . . . . . . . . 31

3.5 What If. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Models with Latent Concepts and Multiple Relationships:

Structural Equation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 What Are Structural Equation Models? . . . . . . . . . . . . . . . . . . . 37

4.2 When Do We Use Structural Equation Models? . . . . . . . . . . . . . 41

4.3 How Do We Examine Structural Equation Models? . . . . . . . . . . 43

4.4 How Do We Report Structural Equation Model Analyses? . . . . . 49

4.5 What If. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Nested Data and Multilevel Models: Hierarchical Linear Modeling . . . 61

5.1 What Are Hierarchical Linear Models? . . . . . . . . . . . . . . . . . . . 61

5.2 When Do We Use HLMs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



5.3 How Do We Investigate HLMs? . . . . . . . . . . . . . . . . . . . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Analyzing Longitudinal and Panel Data . . . . . . . . . . . . . . . . . . . . . 73

6.1 What Are Longitudinal and Panel Data? . . . . . . . . . . . . . . . . . . 73

6.2 Clustering as a Way to Deal with Nestedness . . . . . . . . . . . . . . . 77

6.3 Which Models Can We Use to Analyze Longitudinal Data? . . . . 81

6.4 Estimating and Reporting Fixed-Effects and Random-Effects

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 When to Use OLS, Fixed-Effects, and Random-Effects Models . . . 92

6.6 Final Remarks, Suggestions and Your Best Tool: Thinking! . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Causality: Endogeneity Biases and Possible Remedies . . . . . . . . . . 99

7.1 Your Research Question Is Causal: What Does that Mean? . . . . . 100

7.2 Self-Selection and Endogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Specifying OLS Models to Minimize Endogeneity Concerns . . . 107

7.4 More Complex Designs to Support Causal Claims . . . . . . . . . . . 111

7.5 Some Caveats and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 How to Start Analyzing, Test Assumptions and Deal

with that Pesky p-Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Structuring, Cleaning, and Summarizing Data . . . . . . . . . . . . . . 136

8.1.1 Structuring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.1.2 Cleaning Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.3 Exploring Data: Summary Statistics and Visualization . . . 142

8.2 Testing Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2.1 Independence of Observations . . . . . . . . . . . . . . . . . . . . 143

8.2.2 Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2.3 Homogeneity of Variance and Homoscedasticity . . . . . . . 148

8.2.4 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2.5 What if Assumptions Are Violated? . . . . . . . . . . . . . . . . 150

8.3 Mindfully Interpreting Statistics: The Case of the p-Value . . . . . 152

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9 Keeping Track and Staying Sane . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

x Contents



Introduction 1

Data, data, data. More data is available to us now than ever before. As work and

private activities are increasingly facilitated and enacted by our digital devices, we

leave traces that can be picked up and analyzed anytime and anywhere. Data

collected through surveys, archives, and experiments also remain relevant, as

digital traces do not necessarily reflect perceptions, attitudes, and intentions.

What also has not changed is that data is meaningless until it is analyzed. That is

what this book is about: analyzing data. More precisely: analyzing quantitative

data. Numbers.

Data analysis is an iterative process of manipulating and interpreting numbers to

extract meaning from them—answer research questions, test hypotheses, or explore

meanings that can be derived inductively from the data. This exploration is the first

step of any data analysis: we run a few basic manipulations and tests to summarize

the data in meaningful statistics, such as means and standard deviations; we

visualize the data; and we try to improve our understanding of the information in

the data.

Of course, before you can start analyzing, you need to obtain data and have a

rough idea of the meaning you want to extract through analysis. Therefore, every

chapter briefly discusses when and why you may want to use the methods discussed

in that chapter, including the type of questions typically answered and the type of

data analyzed using that method. We hope that this approach will help you

understand how theory, research designs, research questions, data, and analysis

depend on one another. The credibility of data is derived from the research design;

and the credibility of data analysis is derived from its grounding in theory.

Before we start discussing data analysis methods, we want to summarize the key

concepts used in this book and give you a roadmap for using the book and choosing

the right analysis method.

# Springer International Publishing Switzerland 2017
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1.1 Introduction to the Basics

Before we dive into the wonderful world of applied empirical research and quanti-

tative data analysis, there are a few basic words and rules we will summarize

quickly. Everyone reading this book may already have this knowledge, but it

never hurts to make sure we speak the same language.

Let’s start with the very basics:

A case is a person, team, organization, IT system, or any subject or object that is

the primary unit of analysis. What constitutes a case is not given but an important

decision that we discuss in detail in Chap. 8 of this book, when we talk about

structuring data. Many other terms can be used to refer to a case, such as a unit, a
subject, a respondent, or any relevant unit of analysis (e.g., store, board member).

A variable is an attribute of a case that can change into any one of a set of values.
It is called a variable because the values change—the meaning of the variable varies

(hence the name). One of the variables related to humans is age because our age

changes throughout our lives and because one human’s age is not the same as

another’s. That makes age different from, say, the speed of light, which Einstein

showed us to be a constant—it never changes.

There are several types of variables: Categorical variables do not make

assumptions about the distance between the values that the variable may assume,

so the values can be nominal (e.g., someone’s role as “librarian” or “scientist”),

dichotomous (the choice between two values, e.g., gender), or ordinal (e.g., a

ranking of intelligence, from normal to literate to smart). Continuous variables

can take on any value, although there is a difference between truly continuous

variables (like time and speed) and discrete variables that jump between whole

values without decimals (such as age when measured in years). This difference is

important because many sciences (especially the social sciences) measure

responses on a quasi-continuous scale, such as a 5-point Likert-type response

scale in which the respondent chooses among, for example, “strongly disagree,”

“disagree,” “neutral,” “agree,” and “strongly agree.” These sciences treat such

choices as continuous variables, and we do the same in this book.

Most research in social sciences is conducted based on samples, not the whole

population. A sample is that part of a population that is subjected to observation
(i.e., measurement), which we analyze to draw inferences (i.e., draw conclusions

based on observation) about the population. For example, if we want to say

something about the IT-savviness of Baby Boomers (the population), we could

find a representative sample of, say, 250 60-year-olds, let them fill out a survey or

complete a number of tasks using digital devices while measuring their efficiency

and effectiveness, and use the data collected from that particular sample to draw

conclusions about Baby Boomers in general. We often call the analysis tools we use

to that end inferential statistics, because our aim is to infer (i.e., conclude) some-

thing about the population from the sample data we have. A representative sample

means that the characteristics of the sample reflect the characteristics of the larger

population. For example, a representative sample of Baby Boomers would not be

made up only of men, carpenters, or gadget freaks.

2 1 Introduction
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Data refers to any set of values that measure a variable or the combination of all

variables for all cases in your study. Sometimes data is collected at several levels.
For example, we may measure certain attributes of individuals (level 1) or certain

attributes of the organizational department to which these individuals belong (level

2). Alternatively, we may measure the same attributes at several points in time.

Both scenarios lead to data that is nested—that is, the nested variables can have

multiple values for a single value of the variables within which they are nested.

(Hmmm. . .that was clear as mud, wasn’t it?) For example, multiple individuals are

nested within one department, so the variable “staff number” is be nested within

“department,” and one department will have multiple values for “staff number.”

Got it?

Data collected from cases that are part of your sample are used to test

hypotheses, which are theoretical statements or predictions that you make about

relationships between variables that you expect to occur in the population. For

example, a hypothesis about the relationship between the variables “tech savviness”

and “age” might be that tech savviness decreases as age increases.

Test statistics help you determine whether the hypotheses are valid by assessing

the observed relationships between variables in your sample in light of estimated

summary statistics, such as means and standard deviations.Means are the expected
values of the variables, while standard deviations are the average distance between
the other values you find and that mean. The p-value that is reported as part of the

test statistics usually refers to the probability that a test statistic’s value would be as

high or low if it were only chance that was at play. To conclude the significance of
an effect we compare the p-value to a predefined alpha value, which is the point at

which p is considered too small to be determined only by chance (usually 0.05 or

0.01). However, p-values and their corresponding statistics are meaningless without

context, as they are but one of many elements that make results relevant and

credible. Therefore, they should be reported only along with extensive information

about data distributions, effect sizes and the approaches that were used to collect

and analyze the data.

One of the many reasons that such is the case is that relying solely on p-values
exposes us to the risk of making Type I and Type II errors. A Type I error occurs

when you conclude that there is a significant effect when there is none (e.g., a doctor

finds that a male patient is pregnant); a Type II error occurs when you find no result

when there is one (e.g., a doctor finds that a woman in labor is not pregnant).

If that high-level review leaves you baffled, don’t give up! We will go into more

detail about each of these terms in the following chapters.

1.2 Navigating the World of Statistics—And This Book

This book is largely about finding the right method for your data and research

questions. Figure 1.1 presents a decision framework that is all you will require

to achieve just that. So why do you need to read the rest of the book? Proper

use of the framework requires a basic knowledge of its components. That is why

1.2 Navigating the World of Statistics—And This Book 3



we recommend using this book in an iterative way: use the decision tree to find the

method that seems appropriate, read about it, and then reassess your choice. We

hope that one such iteration will be enough to solve your most pressing questions,

but experience tells us that it will not.

Do you 
have data?

Do you 
understand 
your data?Yes

Do you 
study change 

over time?

No

Do you 
study latent 
concepts?

Do you 
study two 
or more 
groups?

No

No

No

No

Do you 
study how 

two or more 
variables 
relate?

No

Do you 
study relations 

that cross 
levels?

Yes
Chapter 6:

Longitudinal and 
Panel Data Analyses

Yes
Chapter 4:

Structural Equation 
Modeling (SEM)

Chapter 5:
Hierarchical Linear 

Models (HLM)

Yes
Chapter 3: Comparing 

Differences Across 
Groups

Yes
Chapter 2:

Assessing Innocuous 
Relationships

Yes

This book is
not for you!

Did you 
check relevant
assumptions?

Do you 
worry about 
causality?

Chapter 8:
Testing 

Assumptions

Chapter 7:
Endogeneity

No

No

Yes

Fig. 1.1 How to use this book
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Our recommendation to use the decision tree to determine which chapters to read

means that each of the chapters is written so it can be read independently of the

others. However, keep in mind that the chapters become increasingly complex,

reflecting the increasing complexity of the methods discussed throughout the book.

As Figure 1.1 shows, some of the fundamental challenges in quantitative data

analysis are discussed only toward the end of this book: Can I prove causality?
What exactly is contained in my data? What assumptions do I need to be aware of?
How do I deal with the ongoing discussion on the use of p-values? These topics can
be complex and tedious, so if you are very new to statistics, we recommend that you

browse through the book from start to finish (or answer “no” to every question you

do not understand). If you follow this approach and make it to the last chapter of the

book, we will reward you with some practical hints and tips on keeping track of

your analyses and keeping your mental health as you struggle with mastering

complex statistics. Based on how complex your questions and data are, the decision

tree takes you backward, step by step, from fairly complex analyses (evaluations

involving time, panels, levels, and latent concepts) to fairly simple analyses

(differences between groups and relationships between variables).

1.3 What This Book Does Not Cover

We should probably warn you about all the wonderful things you will not find in

this book. We start by reiterating that this is not a book about statistics; it’s a book

about using statistics. We use few equations and then only when we think they can

help you understand a method. This is not a manual either: for example, we do not

provide step-by-step recipes for the perfect regression using SPSS. Although we

provide guidance on how to apply methods, we will refer you to other resources for

more detailed help.

The book will also not help you design the perfect quantitative study or data

collection procedure. Although we provide some advice on both research design

and data collection, this advice is inspired by and structured around analysis. More

extensive, start-to-end advice on those topics can be found in Recker [4].

Another thing this book does not provide is an exhaustive overview of methods,

as we discuss only a selection of methods that are popular in the Accounting and

Information Systems research fields. Some analyses, such as discriminant analyses,

are too fancy for us to cover, while others, like Bayesian updating, are not very

popular in our fields. We also rely heavily on parametric and linear analyses and

steer mostly clear of non-parametric and nonlinear analyses.

Finally, in most of what we discuss we concentrate on simple and straightfor-

ward scenarios without discussing every little option, variant, or exception. Once

you understand the basis of a method, variants and exceptions will not be much of a

challenge.

And now on to the rest of the book!

1.3 What This Book Does Not Cover 5
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Comparing Differences Across Groups 2

Imagine you want to find out whether people who read statistics books are better at

analyzing data than those who do not. You could study this question in at least three

ways: (1) You set up an experiment with two groups, one of which you make read a

statistics book (a real cruelty), and then you make both groups analyze the same

data. (2) You run an experiment with one group only, test their analysis skills, make

them read a statistics book, and then test their skills again. (3) You find some people

who read statistics books and other people who do not and compare their analysis

skills by, for example, studying the number of their quantitative research

publications or their grades in statistics classes. All three ways would end up with

one variable that tells you whether a person reads statistics books or not—a

dichotomous variable that defines group membership—and one continuous variable

that summarizes people’s analysis skills (or statistics performance). Answering

your research question would require you to evaluate whether the analysis skills

of the group that read the book are better than those of the other group. This form of

group comparisons—comparing one variable score between two groups—is the

simplest. This chapter starts from this simple example and adds complexity by

adding more groups and variables of interest.

2.1 One or Two Groups

The research question concerning whether people who read statistics books are
better at analyzing data than those who do not, which requires comparing two

groups, is typically answered by using a t-test. A t-test takes the average score of

one group as a reference point and determines whether a second group’s average

score differs from that of the first one by estimating the distance between the two

means and comparing that distance to the variance in the data. Variance, a measure

of how spread out data points are, is calculated by summing up the squared

difference between the mean and every raw score (i.e., my skills minus the average,

your skills minus the average, then multiplying each of these differences by itself,

# Springer International Publishing Switzerland 2017
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which helps to get rid of “negative distances” when the score is smaller than the

mean. This process results in one measure of the average squared distance of data

points to the mean). A t-test calculates the difference between two group means and

compares it to the average distance of all data points to the mean.1

There are three kinds of t-tests, each fitting a certain research design. The first

kind is the independent-samples t-test, which you would use for the first (1) and

third (3) study outlined in the first paragraph of this chapter. The independent-

samples t-test compares the average scores of two independent samples, that is,
samples whose scores were derived from separate groups of people who were not

influenced by each other.2

A different situation exists in option (2), so it uses a second kind of t-test, the
paired-samples t-test. In the option (2) scenario, there is only one group, but the

group’s skills are tested twice, once before and once after reading a statistics book.

These two scores are not independent, as the later score depends to some extent on

the earlier score; both scores are for the same group at different points in time.

The third kind of t-test is the one-sample t-test. Although it still compares two

means, is does so based on data from one sample only. Imagine, for example, that

we are interested in the effect of one particular statistics book only, and that this

book has not been published yet. Imagine also that there is one widely accepted test

to measure analysis skills for which an overall average (a population average) is

available.3 In this case, we would let one group of people read the book, test their

skills using the standard skills test, and compare their average score with the

publicly available average score of all other people who have taken the skills test.

We are still comparing two groups, but we collect data from only one sample.

How to Analyze and Report Simple Group Comparisons
Imagine we collected the data shown in Table 2.1. A good first step is always to

calculate some descriptive statistics. Say that these descriptive statistics tell us that

the mean score of people who read statistics is higher (M1¼ 67.25) than that of

people who do not (M2¼ 55.75) and that the standard deviation (the square root of

the variance) for both groups is similar at first look (SD1¼ 19.47; SD2¼ 18.51).

As is the case with most of the tests discussed in this book, the significance of the

difference between group averages depends in part on the variance within both

groups. If these variances are large, a small difference between the two groups is

likely to be insignificant (in other words, it would not be unexpected to find a larger

difference). However, if the variances are small (meaning that the individuals in the

group have similar analytical skills), even a small difference in the average

1In fact, depending on the kind of t-test, the difference between the means is usually compared

only to the variance in part of the collected data.
2For more information on independence of samples, please refer to Sect. 8.2.
3A well-known example of a group of tests for which such reference scores are available is IQ

tests. Most common IQ tests have a population average of about 100, so it is easy to evaluate

individuals’ or groups’ scores against that average. A one-sample t-test would allow you to

compare a group average against the population average score of 100.
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analytical skills between the two groups—one that does and one that does not read

statistics books—could be considered significant.

Because variance plays such an important role, you have to test whether the

variances in the two groups are close enough to consider the two sets of data

homogenous. Homogeneity of variances is one of three assumptions that must be

checked. (See Sect. 8.2 to learn what assumptions are and how to check them.) In

normal circumstances, only the variance of one group is taken into account when

calculating the differences between groups. However, if the homogeneity of

variances is violated, the one group is not a good representation of the variance in

all of the data. In that case, we would have to specify that the variances are not

homogenous when calculating the t-test so both variances are taken into account.

The third assumption, alongside independence of samples and equality of

variances, is that scores are normally distributed. The t-test is pretty robust against

minor violations of this last assumption, but as always it is best to check.

Once these assumptions have been checked, it is time to specify your

hypotheses. The null hypothesis (H0) specifies the reference point—the absence

of an effect, while the alternative hypothesis (H1) postulates that there is a differ-

ence between means.

H0: The analytic skills of people who read statistics books are equal to those of
people who do not read statistics books.

H1: The analytic skills of people who read statistics books are superior to those of
people who do not read statistics books.

The alternative hypothesis (H1) shown here is an example of a hypothesis that

should be tested with a one-sided t-test, as we are interested only in whether there is
a positive difference between people who do read statistics books and those who do

not. If we did not care whether their skills are better or worse but only in whether

there is a difference at all, we could use a two-sided t-test.

Table 2.1 Analytic skills

test scores—example
Person ID Read stats books? Analytic skills

1 No 32

2 Yes 61

3 Yes 93

4 Yes 62

5 No 65

6 No 62

7 No 73

8 Yes 87

9 Yes 39

10 No 86

11 Yes 81

. . . . . . . . .
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Most statistical software packages allow t-statistics to be calculated in a few

straightforward steps. Typically, you specify whether you are interested in a

one-sided or two-sided t-test, the α (the threshold at which p is significant—

typically 0.05 or 0.01), the reference group, and the test group, and you run the

test. Executing these steps based on our fictional data would tell you that people

who read statistics books (Mdo¼ 67.25) do not have significantly better analytic

skills than people who do not (Mdo not¼ 55.75; t¼�1.48, p¼ 0.152). This example

also shows how t-tests are typically reported on: You report descriptive statistics

(at least the number of participants, the means, and the standard deviations), specify

whether it is a one- or two-sided test, present your hypothesis, and report the value

for the t-statistic and the level of p at which it was considered significant. If the

value was significant, it is customary to report the alpha at which it was significant

(e.g. p< 0.05), rather than the exact p-value. These guidelines also apply to group

comparisons with more than two groups and more than two variables, although a

larger number of statistics will be reported in such cases.

2.2 More than Two Groups: One-Way ANOVA

We now know that people who read a statistics book do not have significantly better

analytic skills than people who do not, but reading one statistics book may simply

not be enough. Would reading multiple books help? To test whether such is the

case, we could compare the analytic skills of a group that has never read a statistics

book, a group that has read one book, and a group that has read two or more books.

A t-test is not sufficient to evaluate the differences in skill among three groups, so

we use a one-way ANalysis Of VAriance (ANOVA).

Like t-tests, ANOVA models test differences among groups. A disadvantage is

that ANOVA tests are always two-sided, while an advantage is that they allow the

differences between more than two groups to be tested. As the name suggests, one-
way ANOVA models evaluate the differences between groups based on one group-

ing variable and an analysis of the mean and the variance. In doing so, it relies on

the F-statistic, which compares the amount of variance that can be explained by

group membership to the amount of variance that cannot be explained by the group.

Thus, if the F-statistic is low (indicated by a high p-value), splitting the sample into

groups does not help to clarify the data much. In our example, a low F-statistic
would mean that every group had comparable or seemingly random means and

variances, so reading statistics books is not related to people’s analytic skills.

Because both the mean and the variance are taken into account, ANOVA is pretty

robust against violations of the assumptions of homoscedasticity, independence of

observations, and normality of observations within the groups [1]. However,

regardless of its robustness, it’s always necessary to check (and it’s always

recommended that one correct) (see Sect. 8.2) for violations of the assumptions

that underlie the tests.

Similar to t-tests, the null hypothesis in ANOVA states that there are no

differences between groups; rejecting that null hypothesis in our example means
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that the number of statistics books someone reads does affect his or her analytic

skills. Note that the causality implied in this result is supported by the experimental

design only; if the design does not involve an experiment with random assignment

of participants to conditions, ANOVA does not allow conclusions to be drawn

about the direction of relationships. In that case, we would conclude that the

number of statistics books someone reads is related to his or her analytical skills,

rather than that reading statistics books causes better analytical skills. We don’t

know what causes what.

How to Run and Report on a One-Way ANOVA Table 2.2 shows an excerpt of

sample data for our example. We now have three groups of people divided

according to the number of statistics books they have read—none, one, or more

than one. Running a one-way ANOVA test based on this data is, again, pretty

straightforward. The variable that defines group membership—in this case, the

number of books read—is included as the “factor” or the independent variable.

The dependent variable in our example is the participants’ analytic skills. Most

statistical packages will return an output that includes some version of within-group

and between-group sums of squares, which represent the squared average distances

to the relevant mean and are used to calculate the F-statistic. Refer to Field ([2])4 if
you want to know the ins and outs of ANOVA, its sums of squares, and the exact

calculation of the F-statistic.
If we had a sample of 101 students, the result of the ANOVA test could be

reported as follows: “There was a significant relationship between the number of

books students read and their analytic skills [F(2,98)¼ 6.05, p< 0.01].” This result

suggests that there is a difference between at least two of the three groups. The

2 and the 98 are the degrees of freedom5 for the F-test. The first number, the 2, is

calculated based on the number of groups (k) that are compared, minus one (k� 1);

the second number, the 98, is the number of people in the sample (n), minus the

number of groups compared (n� k). Statistical computer programs will always

report these numbers alongside other results. Because the degrees of freedom affect

Table 2.2 Analytic skills

test scores—example with

three groups

Person ID # of statistics books read Analytic skills

1 2 76

2 1 83

3 1 56

4 0 51

. . . . . . . . .

4Field [2] is an excellent source of detailed guidelines and probably the most entertaining statistics

resource ever written.
5Although a discussion of degrees of freedom is outside of the scope of this book, the easiest way

to explain degrees of freedom is as the number of pieces of information that are taken into account

when estimating a statistic or a (set of) parameter(s). Therefore, degrees of freedom are usually

calculated based on the sample size and the number of parameters that are estimated.
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the calculation of the F-statistic and whether it is significant, you should always

include them when you report results.

The ANOVA test result (the F-statistic) tells you that there is a difference

between groups, but it does not tell you where the difference lies, how much it is,

or whether any two of the three groups differ more or less from the others. After

determining whether there is a difference between groups, researchers typically

want to know where that difference lies and how much of the variance in the

dependent variable is explained by group membership. Let’s look at finding where

the difference is first: Some statistical programs, such as SPSS, offer the option of

running contrasts that compare any two groups at a time according to a set order.

For example, a simple contrast compares each group with the first in pairwise

comparisons (so: group 1 with group 2, and then group 1 with group 3). While these

contrasts help researchers understand the results, they are not as strong as com-

monly accepted post hoc tests. Post hoc tests—after-the-fact tests—allow results to

be explored in more detail without abandoning the assumptions made in the main

test. For example, a common post hoc test for ANOVA is Fisher’s least significant

difference (LSD), which runs a set of t-tests between each of the groups but

compares differences in means with the overall standard deviation across all

groups. As such, it allows researchers to determine which groups score differently

without ignoring the fact that more than two groups are being compared.

The other important element in reporting ANOVA results is an estimation of

how much of the variance in the dependent variable is explained by the groups,

referred to as the effect size. The effect size is important because a significant effect

doesn’t necessarily mean that the effect is relevant. For example, consider a finding

that people who read two or more statistics books score 9 percent higher on the

analytic skills test than those who read none and that this difference is significant

(which is possible when the standard deviations in the groups are really small).

Would that small difference really be worth reading two or more statistics books?

Many people would say no.

We address the difference between significance and relevance further in Chap. 8,

but for now let’s go back to our ANOVA results. The most common statistics for

relevance are R squared and eta squared (η2), both of which represent the part of the
variance in the dependent variable (analytic skills) that the independent variable

(number of books read) explains. A useful summary of rules of thumb for when

effect sizes should be considered meaningful is in Kotrlik and Williams [3].

2.3 More than Two Grouping Variables: Factorial ANOVA

Our example explored whether people who read more statistics books have better

analytical skills than those who do not, but we may also be interested in the similar

effects of taking statistics courses. Now we have two grouping variables of interest:

one that defines how many statistics books people have read, and one that defines

whether people have taken statistics courses. We are still interested in one

12 2 Comparing Differences Across Groups

http://dx.doi.org/10.1007/978-3-319-42700-3_8


dependent variable, analytic skills, but two independent variables, statistics books

and statistic courses. In other words, we now have a 3� 2 factorial design, which
describes a comparison among six groups (Table 2.3).

The approach to running a factorial ANOVA is largely the same as that for a one-

way ANOVA, with two additional complexities: two factors have to be included as

independent variables and the option to explore an interaction effect between these

two independent variables. An interaction effect between two independent

variables is present when the effect of one independent variable on the dependent

variable differs as the other independent variable differs. In our example, an

interaction effect would be present if the analytic skills of people who have not

taken courses increases more with every extra book they read in comparison to

people who have taken courses. Figure 2.1 illustrates an interaction effect, an

example of no visible interaction effect, and a main effect for both taking courses

and reading statistics books, with both positively related to analytic skills.

To determine whether there is an interaction effect, the ANOVA model must be

specified so that the individual effect of each grouping variable (the main effects)

and the interaction effect are evaluated. Such specification is achieved by including

a third independent variable that is the result of the multiplication of the two

independent variables (# of books� courses, no or yes). An F-statistic will be

calculated for each variable and for the interaction effect. Again, a p-value lower

than the set threshold (e.g. 0.05 or 0.01) means that the variable or interaction has a

significant effect on the dependent variable. When the interaction term is signifi-

cant, it is a good idea to visualize average scores as illustrated in Fig. 2.1.

Results are reported in much the same way as one-way ANOVA results are

reported. The only differences are that F-statistics and significance for both

variables and the interaction term are reported, and the effect size is reported by

Table 2.3 Example of a

3� 2 factorial design
Number of statistics books read

0 1 More than 1

No courses taken Group 1 Group 2 Group 3

Courses taken Group 4 Group 5 Group 6

0 1 >1

# statistics books read

An
al

yt
ic

 sk
ill

s

0 1 >1

# statistics books read

An
al

yt
ic

 sk
ill

s

Courses taken

No courses taken

(a) Interaction effect (b) No interaction effect

Fig. 2.1 Illustration of an interaction effect in a 3� 2 design
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using the partial eta squared (e.g. partial η2¼ 0.176). As the name suggests, this

statistic describes how much of the variance in the dependent variable is explained

by one independent term, taking into account that the other independent terms also

explain their part.

2.4 More than One Dependent Variable: Multivariate ANOVA

We have discussed examples with one grouping variable and two groups and one

grouping variable with three groups, and an example with two grouping variables.

What happens if we are interested in more than one dependent variable? For

example, we may be interested in finding out whether reading statistics books and

taking statistics courses not only increase analytical skills but also affect one’s

attitude toward statistics. In such a case, where we have the same 3� 2 design as

presented in Table 2.3 (with two dependent variables), we turn to multivariate
ANOVA (MANOVA), which can test the effects of each independent variable and

their interaction term on the dependent variables, both together and separately.

Thus, MANOVA calculates both the univariate effects calculated in ANOVA and
one or more statistics that represent the multivariate effect of the independent

variables on the dependent variables. The multivariate test statistics take into

account that there may be a correlation between the two dependent variables

(e.g., if analytic skills are higher, one’s attitude toward statistics may be more

positive), so independent variables or their interaction term may have a significant

multivariate effect on the dependent variables but no univariate effect—or vice

versa.

Running and reporting MANOVA analyses is similar to other group

comparisons: You describe the groups by summarizing the number of respondents,

the mean, and the standard deviation for each group. Table 2.4 provides an example

that focuses on means for the groups that result when both grouping variables are

combined. An alternative is to show means for both variables separately. Either

Table 2.4 Example of a table with group sizes, means, and standard deviations

n

Analytic skill Attitude

M (SD) M (SD)

No courses taken 0 books read 18 66.33 (10.35) 2.91 (1.12)

1 books read 19 69.95 (9.79) 2.73 (1.09)

more books read 21 71.57 (11.30) 3.01 (0.97)

Courses taken 0 books read 21 69.49 (10.08) 3.54 (1.21)

1 books read 20 73.59 (12.30) 3.50 (1.13)

more books read 20 79.51 (9.72) 3.91 (1.06)

6Depending on the formatting standard that you use, values smaller than 1 will be reported with or

without a zero in front of the decimal point. For example, the APA style requires the leading zero

only when values can exceed 1.0.
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way, make sure to include means, standard deviations, and group sizes so readers

can calculate the combinations themselves if they wish.

Next, run the analysis using the two grouping variables as the independent

factors, including an interaction term and both dependents. In SPSS, MANCOVA

is (accurately) classified as a multivariate General Linear Model. Most statistics

programs will return F-statistics and partial eta squared values for all univariate

effects, and four multivariate statistics: Wilk’s lambda, Hotelling’s trace, Pillai’s

trace, and Roy’s largest root. Opinion is divided on which of the four multivariate

test statistics to report. In a commonly referenced source, Olson [4] expresses

a strong preference for the use of Pillai’s trace because it usually minimizes

the chance of making Type-I errors (i.e., establishing a significant effect when

there is none). However, Field [2] adds some nuance to the decision by considering

group compositions, sample sizes, and the relative support for assumptions. In most

situations, all four multivariate tests statistics will return similar results, so think

about why you choose a certain one but don’t worry too much about it. As we

discuss in Chap. 8, test statistics and their p-values alone do not provide enough

information to show meaningful results anyway. Table 2.5 provides an example of

how a reporting table might look.

Table 2.5 Example of a MANCOVA reporting table (based on a fictitious sample of n¼ 94)

Effect type Factor Statistic

Multivariate

effect

Univariate effects

Analysis

skills Attitude

Fixed

factors

Number of

statistics books

read

Pillai’s trace 0.20

F(4,174)�F(2,87)1 4.63** 7.27** 8.48**

Partial eta squared 0.10 0.14 0.16

Whether

statistics

courses were

taken

Pillai’s trace 0.01

F(2,86)�F(1,87) 0.33 0.65 0.42

Partial eta squared 0.19 0.01 0.01

Covariate Interest in

statistics

Pillai’s Trace 0.07

F(2,86)�F(1,87) 3.34* 0.37 2.12

Partial eta squared 0.07 0.01 0.02

Interaction

effects

Number of

statistics books

read� statistics

courses taken

Pillai’s trace 0.08

F(4,174)�F(2,87) 1.78 1.68 0.89

Partial eta squared 0.04 0.04 0.02

a The first F(df1, df2) refers to the multivariate F-test, and the second refers to the univariate tests
of between-subject effects. * p< 0.05.; ** p< 0.01
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2.5 More Advanced Models: Covariance and Repeated
Measures

(Multivariate) Analysis of Covariance
All of the models we have discussed thus far assume that only group membership

has an effect on the dependent variable, but such is rarely the case. Although

research always requires a trade-off between completeness and parsimony (being

simple and succinct), there is often at least one variable—a covariate7—that is not

the primary focus of study but that is expected to influence the result dramatically

by covarying with group membership and/or the outcome variables. A covariate is a

variable that is related to the independent variables, the dependent variables, or both

(hence the name—it co-varies). In our example, it is plausible that people with more

interest in statistics read more statistics books and take more courses, that they have

a more positive attitude toward statistics, and that they have better analytic skills.

Even if the whole study were based on a perfectly designed experiment with

random assignment to groups, it would be prudent to check for differences in

interest in statistics. Doing so calls for the use of Multivariate Analysis of Covari-

ance (MANCOVA).

MANCOVA works in the same way as MANOVA, but it adds a continuous

covariance term. It tests whether the grouping variables have an effect on the

dependent variables, controlling for potential differences between groups in the

covariate. By adding the covariate to the model, all of the variance it explains in the

dependent variables will be correctly attributed rather than being confounded with

the effect of group membership. You could say that, in our example, adding interest

in statistics as a variable avoids erroneously assigning any relationship it has with

skills or attitudes to reading statistics books or taking courses. As such, it will likely

decrease the effect of our independent variables, but it will rule out the plausible

rival theory that results are explained entirely by interest. Ruling out rival theories

is an important step in conducting credible research (see Chap. 4 in [5]). Running

and reporting a MANCOVA works in the same way as a MANOVA (Table 2.5),

although it is often useful to report the statistics for the regression parameters for the

covariate as well (e.g., β¼ 0.01, t¼ 0.23, p¼ 0.82, partial η2¼ 0.01).

Analysis of Dependent Groups: Repeated Measures (M)AN(C)OVA
A final variation of group comparisons is used when comparing groups for which

the assumption of independence is violated because measures for the dependent

variable(s) or covariates are collected from the same participants who have more

than one value for the independent grouping variable. For example, we could study

the analytic skills of one group of students before, during, and after completion of a

statistics course (or after they read zero, one, or all chapters of this book). This case

is common in within-subjects experimental designs (where our independent

7A thorough discussion of the role of covariates is presented Chap. 7’s discussion of causality,

causal claims, and endogeneity issues.
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variables measure changes in participants) or in longitudinal studies (where we

measure things over time). The primary goal of repeated-measures (M)AN(C)OVA

is typically not so much to compare groups of people but to compare how the same

people’s scores evolve over time.

The advantage of repeated-measures designs is that they usually allow stronger

claims of causality. We discuss causality extensively in Chap. 7, but for now let us

just say that repeated-measures designs allow the examination of causal

relationships because these designs are set up so the cause (reading statistics

books) precedes any effect (a change in analytic skills) and because the many

confounding factors that are related to the person can be controlled for by including

other independent factors or covariates. Controlling for these confounding factors

reduces endogeneity concerns (which we also discuss in Chap. 7), but the

disadvantages of doing so include the possibility of many other factors’

confounding the results in the time that passes between two measurement points,

and that participants have to take the same test at least twice. These disadvantages

may introduce all sorts of problems, including learning effects, fatigue, and drop-

out, all of which threaten the reliability of the results. Because the set-up and

analysis of longitudinal designs and within-subjects experiments is such a delicate

and complex endeavor, we give this topic only a brief look. We discuss other

methods for performing longitudinal analysis in Chap. 6, but if repeated-measures

(M)AN(C)OVA is what you need, we recommend more specialized resources, such

as Stevens [6] and Field [2].

2.6 When to Use Group Comparisons

Regardless of the differences between the various methods of comparing groups,

the use of t-tests and (M)AN(C)OVA models is generally recommended under the

following circumstances:

(a) When you are primarily interested in exploring differences between groups,
rather than relationships between variables. Although (M)ANCOVA models

allow linear relationships between continuous variables to be tested and are

classified as one of the general linear models, other members of this class—

such as regression and structural equation models—are better suited to

assessing linear relationships between variables when group comparisons are

not the primary concern.

(b) When exploring differences between groups based on manifest variables.
Manifest variables are variables that can be directly observed and measured.

Latent variables, on the other hand, cannot be directly observed and are

measured by means of multiple indicators. These indicators measure the facets

of a latent concept and together form the best possible approximation of the

concept. One example that we discuss further in Chap. 3 is the ease of use of an

IT artifact [7]. Because the ease of use refers to a personal experience, it cannot

be readily observed, so users of the artifact are typically asked a range of
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questions that—together—determine how easy a certain tool is to use.

Examples of such questions are It would be easy for me to become skillful at
using this tool, or Learning to operate this tool would be easy for me. These
questions are typically rated on a 7-point scale, and scores for the different

scales are aggregated to form one score for the latent variable, ease of use.
Although (M)AN(C)OVA models can be used to run analyses using these

aggregated scores, for latent variables, Structural Equation Models (SEM) are

recommended instead [8]. We discuss SEM in Chap. 4.

(c) When gathering data through experiments. Even when the focus of an exper-

iment is on assessing relationships rather than comparing groups, and even

when latent variables are used, (M)AN(C)OVA models are usually the

methods of choice for experiments because experiments typically separate

treatment groups from control groups. Therefore, we introduce grouping

variables (i.e., factors) to represent the experimental conditions.

Once you determine that a group comparison is the most appropriate way to test

your hypotheses or analyze your data, you must choose the right group-comparison

method, which depends on the number of independent (i.e., grouping) variables and

covariates, and the number of dependent variables captured in your design.

Table 2.6 summarizes the methods and when each of them should be used.

All of the methods discussed in this chapter are part of the family of General

Linear Models (GLM). GLM is an important group of models that also includes the

regression models we discuss in Chap. 3. The defining characteristic of GLMs is

that they are all based on the assertion that an outcome variable can be predicted by

a model that consists of one or more other variables, plus an error. GLM models

also assume that this prediction is a linear prediction—that is, the outcome variable

changes equally as a result of each equal change in the independent variables in the

model—and that the error is normally distributed. (See Chap. 8 to learn more about

the normal distribution.) This basic assertion is typically expressed in the form of

Table 2.6 A classification of available group comparisons

One dependent variable

More than one dependent

variable

One group One-sample t-test Multiple one-sample t-testsa

Two independent groups Independent samples t-test MAN(C)OVA

Two dependent groups Paired-samples t-test Repeated-measures MAN(C)

OVA

More than two independent

groups

AN(C)OVA MAN(C)OVA

More than two dependent

groups

Repeated-measures AN(C)

OVA

Repeated-measures MAN(C)

OVA
aConsiderable discussion surrounds the execution of multiple significance tests on the same data.

Typically, it is recommended that a Bonferroni correction be applied, which means dividing α (the

threshold at which p is considered significant) by the number of tests performed. Some argue that

clearly describing the procedure may be sufficient [9], but we recommend that you both clearly

describe your procedure and apply corrective measures for multiple tests.
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equations, such as Eq. 3.1, which we explain in the first part of Chap. 3. More

complex GLMs combine multiple such equations and use the outcome of one

equation as a predictor in another (set of) linear equations.

Although this is all very interesting (of course), we warned you that this book is

not about statistics, so let us move on to investigating why, when, and how we

should turn to regression models.
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Assessing (Innocuous) Relationships 3

Have you ever submitted a research paper to an academic conference and had

reviews come back? If so, you know that conference papers are scored on a range of

criteria, including originality, clarity, significance, and methodology. Have you

ever wondered which of these criteria really affects whether a paper is accepted or

rejected for presentation at the conference?

To answer this question, we examine the relationship between one or more

variables on the input side (in this case, originality, clarity, significance, methodol-

ogy, and any other review criteria) and a variable on the output side (in this case, the

acceptance/non-acceptance decision). This example is a case for a regression

model, that is, an analysis to assess the extent of a relationship between several
independent variables and a dependent variable. The difference from the group

comparisons in Chap. 2 is that we don’t look at how two or more groups differ from

each other based on some variables but at how two or more variables relate to each

other, taking into account the possible impact of additional variables, known as

“controls.”

This chapter introduces the most common forms of regression models as a way

to assess seemingly innocuous relationships between variables.

3.1 What Are Regression Models?

Regression models are a class of analysis technique that can reveal information

about the relationship between several independent or predictor variables and a

dependent or criterion variable. The computational problem to be solved in

regression analysis is to fit a straight line to a number of points such that:

Yi ¼ α0 þ β1X1 þ β2X2 þ � � � βnXn þ εi ð3:1Þ
In Eq. 3.1, Y is our dependent variable (the acceptance decision about a paper

submitted to a conference in our example). The terms x1, x2, . . ., xn denote one or
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more independent variables (the review criteria). The term α0 is the point where we
start, called the intercept. The terms β1 to βn are weights between 0 and 1 assigned

to each variable that determine their relevance or importance. e is the “error” that
denotes a part of the equation we cannot solve.

Regression analysis techniques or models reveal patterns or relationships in the

data by determining how two or more variables relate to each other, the basis of

many standard research questions. For example, if you are wondering whether

spending more money on marketing will increase sales, you need to relate market-

ing expenditure, as one variable, to sales revenue, as the other. It can get more

complex when, for example, you are wondering whether and how age, mileage,

engine size, and fuel consumption relate to the price of a second-hand car. In this

case, there are several predictor variables—age, mileage, engine size, and fuel

consumption—and one outcome variable, sales price.

Let’s have a (drastically simplified) look at how the car sales example relates to

our Eq. 3.1: The intercept in this example is the average price for any wreck of a car,

which we could say, for example, is $1000. Then, whether the car runs well, its age,

mileage, and so on will all influence the price at variable rates because every car is
different. However, we could assume that every mile subtracted from a set average

mileage will add a bit to the price, and that how much is added per mile is the same

for all cars. That amount is the meaning of the β coefficient, which will differ for

each variable—that is, how much the sales price is impacted by mileage, fuel

consumption, and so forth differs. Finally, because cars with exactly the same

mileage, fuel economy, and so on often sell for slightly different prices, we need

an error term to stand for the difference between cases that we cannot explain using

the variables in our model.

When there are pairs of variables, the relationship between them can be deter-

mined by plotting them. Figure 3.1 shows two “scatter plots” of hypothetical data,

which position the values for two pairs of variables as coordinates in a

two-dimensional graph.

The two variables in one of the scatter plots in Fig. 3.1 appear to be more closely

related than the pair of variables in the other because the data points are in more of a

straight line. However, scatter plots tend to be imprecise and their interpretation

depends on the presentation of the axes, so they cannot usually reveal the nature of a

relationship for certain. What’s more, they are restricted to pairs of variables, while

we may have three or more variables to relate.

Regression models allow more precise and robust estimations of relations. They

operate using a computational measure called correlation, which gauges the

strength of the relationship between two variables by measuring how closely the

points on a scatter plot lie to a straight line (as shown in Fig. 3.2). The correlation

coefficient r, which expresses this measure, falls in the range of �1 to 1. If the

points lie exactly on the straight line, and the line has a positive slope, r¼ 1. If the
points lie exactly on a straight line with a negative slope, r¼�1. The distances

between the points and the straight line illustrate the meaning of the error term e.
Now that we know that correlations are a measure of how closely points in a

scatter plot lie to a straight line, we can explain that regression models are attempts
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to fit a straight line to the data such that we can predict Y from the set of Xs we have

(remember Eq. 3.1). You can think of regression models as drawing the perfect

straight line into scatter plots such that it is as close as possible to all points in the

plot (which is very difficult, if not impossible, to do precisely for data that comes

nowhere near a straight line on a scatter plot). Regression models draw this line

automatically using an algorithm that fits the best straight line to the data.1 To

calculate which straight line best fits the data, regression models use the coefficient
of determination R2, which measures the straight line’s “goodness of fit” to the data

by calculating the proportion of the total sum of squares (i.e., the variance)

explained by the straight line. Since the variance is a proportion, it ranges from

0 to 1; you can think of it as a percentage between 0 and 100%, where a low

percentage shows that a straight line really doesn’t fit all that well to the data—that

is, the regression doesn’t work.

The predictive ability of regression models lies in its finding the equation that fits

the best straight line; once we have the equation, we can insert values for xi and
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Fig. 3.1 Two scatter plots showing, on the left, two pairs of percentage returns on ordinary shares
of two companies (one on the x-axis, the other on the y-axis) over 9 consecutive months and, on the

right, IQ score on the x-axis (as some measure of intelligence) and annual salary on the y-axis

(in $)
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Fig. 3.2 Two scatter plots with trend lines. The correlation of the points for the left-hand side is

r¼ 0.43, and for the right-hand side r¼ 0.99

1The usual way of fitting is by minimizing the least squares, that is, the squared distances of error
terms between any data point and the line, or the vertical distance between the line and a point,

multiplied by itself.
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solve the equation to predict Y (always remembering that there is the residual error

e, as we can never predict the value for all points perfectly).

Finally, as with any other statistical technique, regression models build on

several assumptions (that we will discuss in Chap. 8):

1. Linearity and additivity of the relationships between the dependent variable

and the independent variables:

(a) The expected value of dependent variable is a straight-line function of each

independent variable, holding the others fixed.

(b) The slope of that line does not depend on the values of the other variables.

(c) The effects of different independent variables on the expected value of the

dependent variable are additive.

2. Statistical independence of the errors

3. Homoscedasticity (constant variance) of the errors

Remember: Variance is equal in different (sub-)samples

(a) versus the predictions

(b) versus any independent variable

(c) versus time (in time series data)

4. Normality of the error distribution.

3.2 When Do We Use Regression Models?

We use regression models when we are interested in determining how one or more

input variables relate to one dependent variable. In simple terms: you use regression

models when you want to:

– predict a dependent variable based on a set of independent variables,

– determine whether a certain independent variable has an effect on a certain

dependent variable,

– determine which independent variables “matter” in predicting an independent

variable, or

– discriminate among independent variables in terms of how important they are to

predicting or explaining a dependent variable.

There are several variants of regression models, and their use depends on the

nature of the variables you are interested in. The most common model types are

summarized in Table 3.1.

For normal, hierarchical, and logistic regressions (Table 3.1), the following

conditions apply:

(a) Independent variables must be continuous (e.g., age, weight, salary) or a scale
(e.g., a review score from 1 to 10, a measure of agreement from not at all to

very much).
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(b) There is usually one dependent variable to explain or predict, but there could

be more, as is the case with variance models (Chap. 2).

(c) The dependent variable is a continuous or scale variable, so it is a metric
variable.

(d) An exception to point (c) is when the dependent variable is binary. In this case,
we can run a logistic regression, where the independent factors are evaluated

based on their ability to predict whether the dependent variable will be value a

or value b (say, male or female).

With these core features in mind, hierarchical regressions differ in that:

(e) It is possible and purposeful to group the independent variables meaningfully

into multiple categories, clusters, groups, or “blocks,” where possible means

that some variables are semantically related to each other, and purposeful

means that such a categorization is relevant to the question or objective of the

data analysis.

In the example of the paper submitted to a conferences, all review criteria belong

to the group of review criteria, so they form a meaningful category (i.e., “review

criteria”). We could have collected additional data, such as the age of the authors

and reviewers and the number of papers the authors and reviewers have submitted.

It would have been possible to cluster all these variables into the blocks “review

criteria,” “author criteria,” and “reviewer criteria”. While it would have been

possible to categorize the collected variables, but it wouldn’t have been purposeful
because the research questions asked did not demand a discrimination among or

examination of groups of potentially relevant variables.

Table 3.2 provides a different view on the question concerning when to use

which type of statistical model. The table shows how regression models, as one type

of model that is appropriate for some data, are related to the family of analysis-of-

variance models discussed in Chap. 2 and how they relate to more complex models

Table 3.1 the most common regression models and their core characteristics

Regression model Main characteristics

“Normal” regressiona One or more dependent variables that are continuous/scale variablesb

One or more independent variables that are continuous/scale variables

Hierarchical

regression

One dependent variable that is a continuous/scale variable

Multiple blocks with multiple independent variables that are

continuous/scale variables

Logistic regression One dependent variable that is a binary variable

One or more independent variables that are continuous/scale variables

Other complex

regressionsc
Multiple dependent variables that are continuous/scale variables

One or more independent variables that are continuous/scale variables
aA “normal” regression is also referred to as just “regression” or as “Ordinary Least Squares (OLS)

regression”
bSingle regressions have one dependent variable, and multiple regressions describe cases that have

multiple dependent variables
cComplex regressions are discussed separately in Chap. 4
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that are discussed later in the book. (We do not discuss log-linear analysis in this

book at all, but there is good guidance available elsewhere [1].)

3.3 How Do We Examine Regression Models?

As elsewhere in this book, we assume that the researcher has developed a research

model with hypotheses and created suitable measurement instruments (e.g.,

surveys) to measure all variables and collected data that are available. For the

purpose of this chapter, we consider the data from the conference paper example in

[2]. The data consists of an identifier for the papers submitted for review, a set of six

review criteria, an overall rating score for the quality of the paper (which could be

considered a seventh review criteria), and the final decision for acceptance or

rejection. An excerpt of the data is shown in Table 3.3.

All review criteria were scored on a scale from 1 (lowest score) to 7 (highest

score), so these variables are all metric, while the “Decision” variable is binary–
accept or reject. With this data in hand, we can explain how to execute linear

regression models (in this section) and logistic regression models (in Sect. 3.5).

Recall that the simplest case of regression models (OLS regressions) has a

metric dependent variable and one or more metric independent variables. With

the data we have (Table 3.3), we can ask the question: How do the review criteria

scores influence the overall evaluation score? In other words, which measure of a

paper matters most (or least) to receiving a high rating? Performing a regression

analysis to answer this question runs in three steps:

1. Examine descriptive statistics.

As with any other data analysis, we begin by examining descriptive statistics.

Since most of our variables are metric, examining the descriptive statistics

typically involves reporting means and standard deviations for each variable in

Table 3.2 Choice of statistical model for different types of variables

Number and type of

dependent variable
Number and type of

independent variable Preferred statistical model

1 2 or more

Non-metric Metric Logistic regression

Non-metric Log-linear analysis

Metric Metric Linear or hierarchical regression

Non-metric Analysis of variance

2 or more 2 or more

Non-metric Metric Multivariate multiple regression

with dummy variables

Non-metric Multivariate analysis of variance

with dummy variables

Metric Metric Multivariate multiple regression

Non-metric Multivariate analysis of variance
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order to get initial insights into the data, such as which review criterion scored

the highest or lowest and the overall level of scores given to papers (i.e., are they

viewed positively or negatively on average) For example, “relevance to confer-

ence” consistently scored higher than any other review criteria, so the confer-

ence paper submissions were generally viewed as being relevant to the

conference [2].

A second item we can evaluate through descriptive statistics is whether there

is sufficient variation in the data. The standard deviations provide such informa-

tion. If the standard deviation is reasonably high—often using the threshold of

more than 1.00—we can assume that the data has a sufficient number of papers

(in this example) that were scored high or a sufficient number that were scored

low. If the standard deviation is low, most papers were scored consistently and

similar to the reported mean, which could lead to problems in the statistical

testing because a variety of values in the independent variables is needed to

estimate and predict different values of a dependent variable. In other words, if

one variable behaved too much like a constant (i.e., all values are identical or

close to identical), it would not be a variable!
2. Screen the data for assumptions.

As with any other data analysis, regression models have a set of assumptions

that must be met. Here we focus on one assumption, which is the absence of

multicollinearity. The presence of multicollinearity indicates that two or more

predictor variables in a regression model are highly correlated such that one can

be linearly predicted from the others with a substantial degree of accuracy. In

regression we want to have high correlations (Fig. 3.2) but not too high!
Correlations that are too high (e.g., higher than 0.80) mean that you can infer

one variable from the other, as they are not sufficiently distinct from each other.

Multicollinearity does not reduce the predictive power or reliability of the

analyses, but it may affect the individual estimates for effect sizes and magnify

the standard errors [3]. If that is the case, the statistical metrics (such as the beta
and p coefficients) may not be as reliable as we would like them to be.

We screen for multicollinearity by examining the pairwise correlations

between all variables. The rule of thumb is to examine (and report!) correlations

between variables and, if some of the predictor (independent) variables are

pairwise correlated with a coefficient higher than 0.75, it means that in the

analysis that follows we should check for multicollinearity by including addi-

tional metrics that would normally not be estimated or reported, particularly the

tolerance level and Variance Inflation Factor (VIF) [3].

3. Estimate the regression model.

Assuming our assumptions are not violated, we then estimate a regression

model, specifying:

(a) our dependent variable—in our example, the variable “Overall rating”

(b) our independent variable(s)—in our example, the six variables Significance

of contribution, Theoretical strength, Methodology used, Presentation, Rel-

evance, and Appeal to audience (Table 3.2)
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(c) How the regression model estimation should be conducted—given more

than one independent variable, build the regressions in one of three ways:

(i) “Enter”—enter all variables at the same time into the model and run

the analysis.

(ii) “Step-wise forward”—enter variables into the model one at a time,

with one variable in the first regression model and additional variables

added one at a time until all variables have been added or a variable

entered does not significantly improve the model’s ability to predict

values for the dependent variable.

(iii) “Step-wise backward”—enter all variables into the initial model and

then remove them one at a time when they are irrelevant (i.e., insig-

nificant) predictors of the dependent variables until the model contains

only “relevant” variables.

A good rule of thumb is to try all three variants of estimation, typically in the

order suggested. It may also make sense to enter different combinations of variables

into the model in order to explore the results’ sensitivity relative to the variables

considered. This suggestion is good practice for all types of quantitative data

analyses even though it is not usually seen in papers, most of which report on one

analysis after spending countless hours trying different approaches. On the other

hand, trying enough combinations will eventually lead to a relationship that is

statistically significant but not necessarily meaningful. This kind of result is not

useful either, so make sure to keep your theory in mind while experimenting with

analyses. It is easy to find results in statistics, but the goal of analysis is extracting

meaning, not finding a coefficient that is above or below some threshold.

Independent from the model estimation, at least two sets of results should be

produced: overall model fit and parameter estimates.

Overall model fit is an omnibus (i.e., “everything”) test that determines whether

the regression model specified as a whole fits the data well—that is, whether the

regression model with the specified independent and dependent factors is a good

match to the observed correlations (i.e., the actual characteristics of your data). The

fit test contains two key measures: the R2 coefficient and an F statistic based on a

comparison between the estimated model and an ‘empty’ model.

The R2 coefficient measures the proportion of variance in the dependent variable

(in our example, the overall rating) that can be explained by the independent

variables (in our example, all six review criteria). R2 is an overall measure of the

strength of association but it does not reflect the extent to which any particular

independent variable is associated with the dependent variable. It ranges between

0 and 1, with the optimum score being as close to possible to 1.

Since even a high R2 value does not mean that the statistical model matches the

characteristics of the data very well—you might get a high R2 value by chance—the

omnibus test also compares the regression models against a second regression

model in which all coefficients are set to zero. In other words, it compares the
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predictors we assume affect the dependent variable against a model with no

predictors that tries to predict the values of the dependent variable by guessing.

The form of this test should sound familiar from Chap. 2, as it is an ANOVA test

between two groups: our regression model against the empty model. Like any other

ANOVA test, it examines variance (e.g., the sum of squares), degrees of freedom,

and the F statistic. If the F statistic is significant, the regression model is signifi-

cantly different from an empty model, so it provides a substantially better explana-

tion of the dependent variable than guessing does. If it does not, it’s time to look for

a better model.

Parameter estimates concern the computation of coefficients for all the variables

in our model. Remember Eq. 3.1? Parameter estimates reveal the values of the

terms β1–βn (between 0 and 1) so we can gauge each variable’s importance in

predicting the dependent variable.

Estimation of parameters computes several values:

(a) The value of the intercept αo, also called the constant—The constant is usually

not all that interesting to most studies, as it expresses the value of the

dependent variable when all predictors are set to 0, a rarity in reality.

(b) Unstandardized and standardized coefficients for our terms b1–bn—The

unstandardized coefficients B are the values of the terms b1–bn in our equation,

that is, the values for the regression equation in predicting the dependent

variable from the independent variable. However, we are usually interested

in the standardized coefficients Beta, the coefficients you would obtain if you

standardized all of the variables (both dependent and independent) in the

regression before estimating the model. Standardization normalizes them so

they are all measured on the same scale (say, from 0 to 100) because, in most

cases, the variables’ values, even though they are all metric, are not measured

on the same scale. For example, age is measured on a different scale than IQ or

height. By standardizing the variables before running the regression, you put

all of the variables on the same scale so they are comparable and you can see

which one has a larger effect. In other words, the standardized Beta
coefficients describe the importance of a variable in affecting the value of

the dependent variable.

(c) t-values and p-values (significance levels) for each variable—These are the

t-statistics and their associated 2-tailed p-values that are used to determine

whether a variable’s coefficient is significantly different from zero. We typi-

cally look for variables that have high t-statistics and low p-values (below the

typically recommended threshold of p< 0.05). Together, the t-statistics and

p-values describe a variable’s relevance (although a low p-value is not enough;
see Chap. 8 for a discussion on the use of p-values).
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3.4 How Do We Report Regression Analyses?

Reporting on regression models involves four elements:

1. Descriptive statistics about the distribution (e.g. means, median, standard

deviation, skewness) of all variables—We typically report at least means and

standard deviations, but if assumptions are even partially violated (see point

2 below), report statistics like skewness, median, and range.

2. Testing of assumptions—This reporting involves explaining the assumptions

that are violated (if any) and any measures taken to deal with the violation.

3. Overall model fit statistics, particularly the F statistics, including the associated

degrees of freedom and the R2 coefficient.

4. Parameter estimates for the independent variables and the constant—At mini-

mum, this reporting includes the standardized Beta, the t-value, and significance
levels. A good practice involves also reporting the 95% confidence interval

lower and upper bounds for the unstandardized B coefficients (if reported).

Let’s have a look at common reporting practices (from [2], pp. 293–294):

[. . .] we conducted a stepwise linear regression analysis [3], using the overall evaluation

score as the dependent variable and the review criteria as the independent variables. The

[. . .] stepwise regressions [. . .] showed that all of the review criteria scores were signifi-

cantly associated with the overall evaluation score. Therefore, all of the review criteria

entered the [. . .] final regression models shown [. . .].
[. . .]
We first examine collinearity statistics. Multicollinearity is present when tolerance is

close to 0 (Tolerance< 0.01; see [3]) or the VIF is high (VIF> 10), in which case the beta
and p coefficients may be unstable. The VIF and tolerance measures [. . .] suggest that
multicollinearity is not an issue in the data for any of our three conferences. The Appendix

further shows that the data also meet accepted criteria for the Condition Index (<30) and

proportions of variance between two or more variables (p< 0.50), both of which also

indicate that multicollinearity is not present.

This text excerpt shows how the reporting explains the type of regression model

estimation used (stepwise forward regression) and how a particular finding during

data screening (i.e., the potential bias stemming from multicollinearity) was

incorporated into the analysis and reported. (Recall that multicollinearity may

destabilize the parameter estimates.) To determine whether multicollinearity is

present because of high correlations among independent variables (above 0.75),

we estimate and report additional statistics (e.g., tolerance and VIF), as shown in

Table 3.4. A commonly used rule of thumb in interpreting VIFs involves determin-

ing whether any of the predictors has an associated VIF that is larger than 3. (Some

authors impose less stringent requirements and pose a VIF of 10 or above as a

warning threshold.) If VIFs are lower than the threshold, then we can assume that

multicollinearity does not plague our results. Even if such a bias were present,

reporting all relevant values would allow the reader to interpret the data for himself
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or herself, gauge the data’s conclusiveness and robustness, and determine the

resulting implications.

Table 3.3 summarizes all relevant output from the regression model estimation.

Table 3.3 gives the relevant statistics for overall model fit, particularly the F
statistic (which we can look up in an F distribution table like http://www.

danielsoper.com/statcalc3/calc.aspx?id¼4 to show that the statistic is significant)

and the R2 coefficient, which is reasonably high. Table 3.3 also shows the relevant

values for gauging relevance, viz., the standardized Beta coefficient and the p-value
associated with the variable’s t-statistic.

Note. In this example we reported the VIFs because the descriptive statistics

indicate some concerns about multicollinearity. As the VIFs and the other addi-

tional tests show, this concern was unfounded.

3.5 What If. . .

In the previous sections we assumed the dependent variable was metric and

independent could not be meaningfully grouped; what if this is not the case?

Then we turn two other variants of regression models: logistic regression and

hierarchical regression.

Logistic Regressions

Logistic regression models are linear regressions, except the dependent variable is

binary instead of metric. In our example, a suitable variable is the “Decision,”

which can take one of two values: accept or reject. To answer the question

concerning whether any of the review criteria is relevant (and if so, how important

it is) to the acceptance/rejection decision, we run a logistic regression. This

question makes good sense because the overall rating, which we can predict

reasonably well, does not guarantee a paper’s acceptance because, as the

conference’s submission guidelines state,

“program committee members and track chairs typically rank the papers based on the

overall evaluation score and consider the subjective, written reviews, in addition to the

objective scores. Written comments support the reviewer’s decision and also provide input

to the paper’s authors as to how the paper might be improved. [. . .] Other factors such as the

Table 3.4 Excerpt of regression analysis results reported in [2]

Review criterion Adjusted R2 F (df1, df2) Beta p-value Tolerance VIF

Significance/contribution 0.83 F (6, 573)¼ 476.44 0.36 0.00 0.24 4.14

Theoretical strength 0.22 0.00 0.31 3.26

Appeal to audience 0.16 0.00 0.24 4.16

Presentation 0.14 0.00 0.43 2.31

Methodology used 0.11 0.00 0.34 2.93

Relevance to conference 0.06 0.02 0.38 2.63
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number of submissions per track, and so on, may also influence the final acceptance

decision.” ([2], p. 289)

Logistic regressions estimate the probability of a binary response based on one or

more predictor (or independent) variables. Although logistic regressions run analo-

gous to linear regression, logistic regression assumes a different distribution of the

dependent variable given the independent variables. Logistic regression estimates

the probabilities of two outcomes, not the shared variance. There are several forms

of logistic regression, but the case we are discussing here is a simple binary logistic

regression.

The binary logistic regression converts a binary variable into a continuous

variable that can take on any real value (negative or positive) by means of the

logit function,2 which creates a continuous criterion as a transformed version of the

dependent variable. Then the logit-transformed dependent variable can fit to the

predictors in the same way that a linear regression would. Once we have the

parameter estimates, we convert the predicted value of the logit back into predicted

odds via the inverse of the natural logarithm (the exponential function).

Knowing the predicted odds then informs how the logistic regression is

conducted. When we “fit” the regression model to the data, we evaluate the success

of the logit function much in the same way that we evaluate overall model fit for a

linear regression: we statistically evaluate whether the logit model based on our

predictors is a better fit to the data (using Chi-square as the fit measure) than a

model with no predictor. Then we evaluate whether the model is any good at

explaining the outcome variable. In linear regression we would use the R2 coeffi-

cient, but in logistic regression we use a coefficient called Pseudo-R2. Logistic

regression does not have an equivalent to the R2 coefficient because there is no

shared variance that we can measure, although statisticians have tried to come up

with a similar measure. Unfortunately, there is a wide variety of Pseudo-R2

statistics, which can give contradictory conclusions. Therefore, the best practice

is to report on several of them and to interpret any or all of them with great caution.

Finally, the parameter estimates in logit regression differ somewhat from those

in linear regression: We examine estimates that describe the logit regression

coefficients. The standard interpretation of the ordered logit coefficient is that, for

a one-unit increase in the predictor, the response variable level is expected to

change by its respective regression coefficient in the ordered log-odds scale,

while the other variables in the model hold constant. In a way, then, the logit

coefficients are similar to the Beta coefficients, although the logit coefficients are

not normalized to the range [�1, 1]. However, because the change they describe is

related to the ordered log-odds scale (in other words, they are difficult to interpret),

we also report on the exponentiations of the estimate as Exp(B), which calculates

the odds ratios of the predictors and is easier to digest. Using the example of the

2The logit function computes the odds of the two binary outcomes happening for different levels of

each independent variable. Then it takes the logarithm of the ratio of those odds (which is

continuous but cannot be negative).
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conference paper, an odds ratio can be interpreted as “the change in the chance that

my paper is accepted (vs. rejected) if originality increases by 1.” This interpretation
differs from standardized regression coefficients in normal regressions, which

predict the magnitude of change in the dependent variable (e.g., overall quality

rating) if originality increases by 1. Another difference between linear regression

and logit regression is that, in logit regression, we examine the Wald-statistic

instead of the t-statistic to gauge the relevance of that odds change.

The reporting of logistic regression is fairly simple: You still provide a test of

assumptions and the measures for overall fit, but you report several Pseudo-R2

statistics instead of just one, and in describing parameter estimates you report the

Beta estimates as well as their exponentiation Exp(B) ([2], p. 295). Should you read

[2], you will see that the two review criteria “Methodology used” and “Relevance to

conference” that we found significant and important in estimating the overall rating

are not significant predictors of the probability of a paper’s being accepted!

Logistic regressions, that is, regressions that involve the logit function, are often
discussed with regressions that involve the probit function–probit regressions. Both
logit and probit regressions transform a completely linear model to yield a nonlin-

ear relationship in order to fit the predictors to the non-metric dependent variable.

The difference between logit and probit lies in how this transformation is computed:

The logit model uses the cumulative distribution function of the logistic distribution
(which looks like an S-shaped curve), while the probit model uses the cumulative

distribution function of the standard normal distribution (the bell curve). Both

functions can take any number and rescale it to fall between 0 and 1, then use that

new number as a predicted probability. Therefore, the key difference between logit

and probit lies in the underlying theory: what do we expect the distribution of the

transformed variable to look like?

Both logit and probit models yield similar results, so preferences often come

down to popularity. Probit models can be generalized to account for non-constant

error variances, so they are preferred in some advanced contexts, but if advanced

applications are not needed, it does not matter which method you choose.

Hierarchical Regressions

Finally, we examine hierarchical regressions as a variant of standard linear

regressions. Hierarchical regressions should not be confused with hierarchical

linear models, which are used for multilevel data (discussed in Chap. 5). Hierarchi-

cal regression models ask whether there are meaningful groupings of independent

variables, referred to as blocks. Technically speaking, hierarchical regression

models are a type of linear regression models in which the observations fall into

hierarchical or completely nested levels, as defined by the blocks. The question that

hierarchical regression models answer concerns not only whether any set of

variables is important and relevant to predicting an outcome variable, but also

whether any regression model that builds on another regression model improves it

in terms of overall model fit). That is, if there is a hierarchy of blocks of variables.

The advantage of hierarchical regression models is that they allow one to discrimi-

nate between categories or groups of variables. A good example is given in [4],
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which measures understanding (a metric dependent variable) and provides a model

with variables grouped into three categories: control, cognitive abilities, and

learning process.

You could just as easily hypothesize that performance, as a dependent variable,

is contingent on three other groups of variables: individual factors (e.g., experience,

knowledge, motivation), technological factors (e.g., information quality, useful-

ness), and organizational factors (e.g., culture, management support). Hierarchical

regressions clarify what you gain when you start with one group of variables and

then add the next and the next to build a hierarchy of nested regression models as

part of a larger model.

Hierarchical regression models work the same way as standard linear

regressions, with the defining characteristic that all variables are not entered

simultaneously into the model but in blocks, such that model 1 contains all

variables from one block (say, individual factors), model 2 contains variables

from the block in model 1 plus a new block (say, technological factors), model

3 contains model 2 plus a new block, and so on. The estimation then estimates all of

these regression models—model 1 in itself, then model 2 and then model 3. Thus,

we obtain values for overall model fit and parameter estimates for each model.

Since models 2 and 3 add upon the previous model (s), we increase the degrees

of freedom with each new model, as we add more and more variables to the

equation that we are estimating. In doing so, we hope that we improve the model

fit to the data: we hope that we increase our R2 coefficient as the measure of shared

variance explained. For each model change, we can evaluate whether the increase

in R2 is significant, given that we increased the complexity of the equation (i.e., we

increased the degrees of freedom). In simpler terms, we evaluate whether an added

explanatory power is worth the effort, given that increasing the explanation requires

more variables, and our explanation becomes more complex. Complexity is

Table 3.5 Excerpt of hierarchical regression analysis results

Term 1: Control 2: Cognitive abilities 3: Learning process

PDK-1 0.02 0.13 0.03

PMK 0.10 0.03 �0.07

SE 0.10 0.07 0.08

AA �0.21 �0.25*

SA 0.46** 0.56***

DM 0.01

SM �0.34**

DS 0.18

SS 0.29*

F 0.62 2.40* 3.04**

F change 0.62 4.97** 3.45**

R2 change 0.02 0.11* 0.13*

R2 0.02 0.13 0.26

Source: [4]
*p< 0.05; **p< 0.01; ***p< 0.001
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typically regarded a bad thing because, as Einstein said: “If you cannot explain it

simply, you do not understand it well enough.”

In evaluating and reporting hierarchical regressions, we perform the same steps

as in a linear regression, plus, in addition to the R2 coefficients and F-statistics for
each “block” model, we report on the R2 change between models (e.g., the R2 value

of model 2 minus the R2 value of model 1) and use the F statistics of each model

(which contain their relevant degrees of freedom) to determine whether these

changes are significant. Table 3.5 shows an example of the reporting for a hierar-

chical regression of a comprehension task score (called Comp-D1) ([4], p. 211).

In [4], each new model adds a new block of variables to the regression equation,

and the F statistic and R2 coefficients change. The “best” model achieves the

highest R2 coefficient and improves on the R2 coefficient and F-statistic over

previous models. In other words, adding new blocks of variables improves a

model’s fit with the data.
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Models with Latent Concepts and Multiple
Relationships: Structural Equation
Modeling

4

One of the best-known models in Information Systems research is the Technology

Acceptance Model (TAM), which postulates that users will intend to use a system if

they find it useful and easy to use, and that they will find a system useful if they find

it is easy to use. This model has been studied over and over again, typically by

surveying users (or even non-users) of some system with questions about the degree

to which they find the system useful and/or easy to use and whether they intend to

use it in the future.

The analysis of data to test the TAM is a good example of how data analyses can

become increasingly complex. The theoretical model and the example sound

simple, but the analysis is statistically: (1) we have multiple relationships between

variables, such as the link between perceived ease of use and intention to use but

also perceived usefulness; (2) variables such as usefulness, ease of use, and

intention to use are measured with multiple items/questions in a survey, so each

variable has multiple data points; and (3) usefulness, ease of use, and other concepts

are latent–we cannot measure them directly.

This chapter examines structural equation models, one of the most frequently

used ways to model data for latent concepts, and introduces structural equation

modeling’s main principles and most common variations.

4.1 What Are Structural Equation Models?

Structural equation models (SEMs) are multivariate regression models. Multivari-

ate simply means “multi-equation,” while the regression models discussed in

Chap. 3 are univariate (“single-equation”). The main differences between SEMs

and “simple” regression models are that (1) unlike regressions that typically have

one dependent measure or variable, SEMs can have several dependent measures

or variables, and (2) the dependent measures themselves can appear as predictors

for other dependent variables as intermediaries. Consider the example of the

TAM:
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Figure 4.1 shows the TAM’s postulates: Perceived ease of use supposedly

influences perceived usefulness—that is, the degree to which users deem a system

to be useful—and intention to use—that is, whether users intend to use the system

in the future. Perceived usefulness is a dependent (effect) variable for the relation-

ship with Ease of use, as well as an independent (cause) variable for the relationship

with Intention to use. In simple regression models, we would have to build three

equations in order to depict each of these relationships, but SEMs can run all

equations simultaneously (which is why they are often called simultaneous equa-

tion models). Running the equations simultaneously provides a significant advan-

tage because we can use the results from one equation (say, how much Ease of use

influences Perceived usefulness) directly and simultaneously in estimating the other

equations (say, how much Perceived usefulness influences Intention to use).

Another useful feature of SEMs is shown in Fig. 4.2.: SEMs support the use of

measurement items—sets of multiple data points used to estimate the variables in

the model. Often, each measurement item corresponds to a single survey question,

and unlike a normal regression there is usually more than one measurement item for

each variable in the model.

Imagine we have done what most researchers do and used a survey instrument to

gather data on the three variables in the model, with each measurement item for the

three variables corresponding to a survey question. Imagine the survey questions

are as follows (the example is taken from a real survey-based study of system use,

which you can read here [2]):

Please rate your agreement to the following statements on a scale from

1 (Strongly Disagree) to 7 (Strongly Agree):

Perceived Ease of Use

PEOU1: It has been easy for me to become skillful at using the Promotion Planning

system.

PEOU2: I find the Promotion Planning system easy to use.

PEOU3: Learning to use the Promotion Planning system has been easy for me.

Perceived Usefulness

PU1: I find the Promotion Planning system useful for my job.

PU2: Using the Promotion Planning system helps me accomplish work tasks more

quickly.

Perceived 
Usefulness

Perceived Ease of 
Use

Intention to Use

Fig. 4.1 Technology

Acceptance Model [1] as a

structural model
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PU3: Using the Promotion Planning system increases my productivity.

Intention to Use

ItU1: My intention is to continue using the system to organize planning of promo-

tional items.

ItU2: I plan to continue using the system to organize planning of promotional items.

ItU3: I will continue using the current system to organize planning of promotional

items.

After the survey, the data collected could look like that shown in Table 4.1, with

a score between 1 and 7 for each respondent and each survey question.

Structural equation modeling involves specifying the equations that involve all

the measurement items and the variables they represent and then running an

algorithm that seeks one or more solutions to the problem of finding parameters

that fit the set of equations. We provide details about how this works in Sect. 4.3

below.

When we do structural equation modeling, we first estimate the measurement

model, the statistical model that links the latent variables to their measurement

items but does not consider the structural relationships between the variables

themselves (which we call path modeling). In other words, the measurement

model allows us to determine whether a group of measurable items (e.g., a set of

survey questions) converge sufficiently to estimate underlying and hard-to-measure

Perceived
Usefulness

(PU)

Perceived Ease of
Use

(PEOU)

Intention to Use
(ItU)

ItU1 ItU2 ItU3

PEOU1 PEOU2 PEOU3

PU1 PU2 PU3

Fig. 4.2 Technology Acceptance Model [1] with measurement items in the smaller boxes
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latent variables (e.g., talent or happiness). A measurement model for the TAM

example could look like that shown in Fig. 4.3.

If the measurement model estimation is successful and we can clearly discern

and identify three latent constructs, we then proceed to estimate the structural

model—the relationships between the variables in the research model, that is, the

hypotheses. A typical result from this step for the TAM example is shown in

Fig. 4.4.

The example results shown in Fig. 4.4 indicate that the SEM can explain 31% of

the shared variance in Intention to use and 28% of the shared variance in Perceived

usefulness. We cannot explain Perceived ease of use because we have no equations

that involve this concept as a dependent variable; it is only a predictor in this model.

The model results also state that the influence of Perceived usefulness on Intent to

use is 0.57 units, the average amount by which the dependent variable (Intent to

use) increases when the independent variable (Perceived usefulness) increases by

one unit while all other independent variables are held constant.

Table 4.1 Excerpt of survey data for the example

Survey

respondent PU1 PU2 PU3 PEOU1 PEOU2 PEOU3 ItU1 ItU2 ItU3

1 7.00 7.00 7.00 3.00 2.00 3.00 5.00 5.00 4.00

2 2.00 3.00 1.00 2.00 2.00 1.00 2.00 4.00 3.00

3 6.00 6.00 5.00 7.00 7.00 7.00 7.00 7.00 7.00

4 4.00 5.00 5.00 6.00 6.00 6.00 6.00 4.00 6.00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Perceived
Usefulness

(PU)

Perceived Ease of
Use

(PEOU)
ItU1 ItU2 ItU3

PEOU1 PEOU2 PEOU3

PU1 PU2 PU3

Intention to Use
(ItU)

Fig. 4.3 Technology

Acceptance Model [1]

measurement model

40 4 Models with Latent Concepts and Multiple Relationships: Structural. . .



4.2 When Do We Use Structural Equation Models?

SEMs are statistical data analysis techniques that, like regression models and

ANOVAs, belong to the class of procedures called general linear model. Their

defining characteristic is the presence of multiple regression equations, such that the

outcome of one equation is used as a predictor in another (set of) regression

equations.

When are such models required? As with any other data analysis procedure, you

can use SEMs to analyze data gathered through any quantitative research method,

such as simulations, surveys, experiments, and archival data.

There are typically a number of conditions you can use to gauge whether to use

SEMs for data analysis:

(a) The objective of the study is confirmatory rather than exploratory in nature.

SEMs require one or more hypotheses, which they represent as a model,

operationalize by means of measurement items, and then test statistically.

The assumptions about “causal logic”1 embedded in the model often have

falsifiable implications that can be tested against the data. While the initial

hypotheses often require model adjustment in light of empirical evidence,

SEMs are rarely used for exploration only.

(b) The research model that specifies the hypotheses is complex, involving multi-

ple associations between multiple independent and multiple dependent

variables, and it usually has mediating and/or moderating variables (see

Sect. 4.5).

(c) The research model involves latent concepts, that is, concepts that are not

directly measurable abstractions from a phenomenon that relates to a real thing

but is not tangible. Latent concepts are common in social sciences and include

such examples as usefulness, time, satisfaction, and enjoyment. We all have

Perceived
Usefulness
(R2 = 0.28)

Perceived Ease of
Use

Intention to Use
(R2 = 0.31)

0.57***

0.25***

0.53***

Fig. 4.4 Technology

Acceptance Model [1] sample

SEM results. Source: [3]

1Causal logic should not be equated with causality. SEMs do not prove causality per se. At best,

causality can be approached using SEM if and when the design of the study is appropriate. We

discuss the issue of examining causality in data in more detail in Chap. 7.
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some understanding what is meant by these concepts but they are not real and

not tangible—we cannot grasp, or measure them directly. This typically means

that latent concepts are operationalized as multi-dimensional constructs—

constructs that have several dimensions of meaning, and thus require multiple

measurement items to capture.2

(d) Although this is a simplistic view, structural equation modeling is often

associated with explanatory survey research, largely because surveys are a

suitable research method to gather data on complex research models that

include latent variables. Structural equation modeling is also used in

experiments and other study designs.

It is useful to think about the type of research question you have in order to

determine whether to use structural equation modeling as a data analysis strategy.

SEMs can provide answers to three types of questions:

1. How much variance in the dependent variables does the model explain? The

ability to test how much variance independent variables explain is useful for

research questions like “what factors drive technology acceptance?” and “what

are antecedents of user satisfaction?”

2. What is the directionality of the independent variables’ effects on the dependent

variables? In other words, are the effects positive (e.g., the results in Fig. 4.4) or

negative? The ability to explain directionality is useful in answering research

questions like “what is the impact of resistance to change on process improve-

ment success?” and “how does information quality affect system success?”

3. What is the strength and the significance of the effects? The strength is expressed

in the path weight, a decimal ranging between 0.00 and 1.00, while the signifi-

cance is commonly expressed in the form of asterisks that denote certain p-
values. For example, *** usually means p< 0.001, ** indicates p< 0.01, and

* means p< 0.05. Paths that are not significant at least p< 0.05 are sometimes

marked with the denotation ns (not significant). The ability to determine effects’

strength and significance is useful in answering research questions like “do

personality variables affect systems’ implementation success more than organi-

zational variables do?”

Many studies contain hypotheses or questions that combine these three types.

For example, a hypothesis might read something like “Process modelers’ perceived

usefulness of a process modeling grammar is positively associated with their

intention to continue using the grammar” [8]. The corresponding SEM would be

expected:

(a) to explain much of the shared variance in intent to continue using a grammar

through a model that includes perceived usefulness (point 1 above);

2Information on the intricacies of construct development is available in [4–7].
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(b) to show that the path directionality between perceived usefulness and intent to

continue using a grammar is positive (point 2 above);

(c) to show that the path is significant at least at p< 0.05 (point 3 above).

4.3 How Do We Examine Structural Equation Models?

In what follows, as elsewhere in this book, we assume that you have developed a

research model with hypotheses, created suitable measurement instruments to

measure all variables, and collected data that is now available in a format similar

to that shown in Table 4.1. If that is the case, structural equation modeling usually

consists of a five-step process:

1. Model specification: Specification of an a-priori research model with theoreti-

cal constructs and hypothesized relationships between them (i.e., the structural

model)

2. Model identification: Estimation of unknown parameters (such as factor

loadings, path coefficients, and explained variance) based on observed

correlations or covariances

3. Model estimation: Finding of one set of model parameters that best fits the data

4. Model fit testing: Assessment of how well a model fits the data

5. Model re-specification: Improvement of either model parsimony or fit

Model specification, a conceptual task, relates to theory-building and construct

development [4, 5, 9, 10], rather than to statistical procedures or knowledge. Since

model specification is not the focus of this book, we assume that such a model was

specified in order to design a measurement instrument, a data collection protocol, or

gather any meaningful data to analyze. The outcome of this stage is a specified

structural model, which means that the latent variables are arranged in a nomologi-

cal network ([11], Chap. 4) and linked to their measurement items, as illustrated in

Fig. 4.2

Arranging the latent variables in a nomological network means providing a

graphic representation of the constructs in the research model and classifying

them as independent, dependent, mediating, or moderating variables (see

Fig. 4.5) based on the role they play in the research model.

Linking our latent variables to their measurement items, as illustrated in Fig. 4.2,

refers to operationalizing the constructs in a set of measurement items. The

challenge in this step is to guarantee shared meaning [12] between constructs and

measurement items (e.g., the survey questions). If you fail to ensure shared meaning

between the theoretical constructs and their operationalizations in the measurement

variables, you will be limited in your ability to measure the constructs empirically.

Model identification, the first structural equation modeling task, is done using

one of the many available structural equation modeling packages, such as

WarpPLS, SmartPLS, LISREL, AMOS, and R or any other statistical software
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A simple nomological net

Independent
Variable

Dependent
Variable

E.g.,
age

E.g.,
memory loss

A nomological net with mediator

Independent
Variable

Mediating
Variable

E.g.,age E.g.,
memory loss

Dependent
Variable

E.g.,
confusion

One
construct

Another
construct

One
construct

Another
construct

A third
construct

+

+ +

A complex nomological net

Independent
Variable

Mediating
Variable

E.g.,
age

E.g.,
memory loss

Dependent
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E.g.,
confusion

One
construct

Another
construct

A third
construct

+ +

Yet another
construct

+

Moderating
Variable

E.g.,
stress

Fig. 4.5 Independent, dependent, mediating, and moderating variables (adapted from [11])
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that supports structural equation modeling. We discuss some relevant implications

concerning tool choice in Sect. 4.5.

During model identification, we determine whether the statistical software can

“find” our specified model in the data we provide (e.g., a database such as that in

Table 4.1). The software tries to identify values for all unknown parameters (e.g.,

factor loadings, error terms, path weights, shared variance) by examining statistical

properties of the data provided. (Think of it as finding a theoretical model in a real

model of data.) The software usually identifies these values by computing the

correlations or covariances between all variables in the data and then relating

these “real” correlations or covariances to the hypothesized correlations or

covariances stipulated in the research model. For instance, in the TAM example,

the research model stipulates strong correlations between Perceived usefulness and

Intention to use. During model identification, the software searches for such

correlations based on the data provided for the specified variables.

Figure 4.6 shows a general specified model and signifies all unknown

parameters, including:

Fig. 4.6 Unknown parameters in model identification and estimation
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– Error terms associated with each measurement item (ϴ)

– Loadings for each measurement item on its latent construct (λ)
– Path weights between latent constructs (γ and β)
– Shared correlations between constructs (ϕ)
– The value of a latent independent construct (ξ)
– Shared variances of mediating and dependent constructs (η)
– Error terms of mediating and dependent constructs (ζ)
– Shared error terms between constructs (ψ)

The meaning of each of these parameters is well explained in books like [13], but

it suffices for our purposes to understand that the software tries to find any one
model where it can assign values (usually decimals between 0 and 1) to these

parameters, as if it cannot do that, it cannot identify any solution for the specified

model, and the specified model must be wrong. If that is the case, we have two

options: We can change the model specification by inserting or deleting variables,

inserting or deleting measurement items, changing the associations between mea-

surement items and variables, and/or changing the associations between variables

(viz., changing the nomological net). After each change, we can again try to identify

the model in the data, until it works (we hope). A second option is based on getting

the software to find the model in the data—that is, to find a needle in a haystack.

Sometimes the software will not find a model that relates to the data because it is

simply too hard to find. In such cases, the software usually allows users to alter the

parameters related to the model identification (the search) process, including

parameters concerning

– where to look (by promoting some variables as a starting point for a search),

– how long to look (how many iterations the algorithm should do before aborting),

and

– where not to look (through constraining the search space by fixing some of the

parameters to values like “1”). Constraining the search space reduces the number

of unknown parameters to estimate, but it can be dangerous because we are

making assumptions about relationships that may or may not be valid.

Clearly, SEM does not magically answer your research question; it is just an

algorithm trying to find a relationship between what is in the data (observed

correlations or covariance) versus what you said there would be (in your structural

model). SEM usually fails to identify a model when the structural model (and thus

our theory) does not make sense, that is, when it bears no resemblance to the

observed structure in the data. However, failure to identify a model could also stem

from other problems, all of which need inspection.

The first case, of course, is that the specified model is wrong and needs

adjustment: must all the paths between the latent concepts look as you have

specified, or could there be other paths between concepts? (The answer to this

question depends on theory, not on data.) Are there other possible interpretations or

theoretical arguments that suggest different linkages?
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The second case is that the specified structural model is plausible, but the

measurement model is too weak: the relationships between observable measure-

ment items and latent concepts are not strong enough to support the reasoning about

the relationships between the latent concepts. Here, the issue is empirical: the data

is not good enough to test the theory.

Model estimation is where the real magic happens. During model identification,

the software tries to find any one model that fits the data by identifying any one set of

values for all unknown parameters. Because model identification is an estimation

procedure (done using algorithms like maximum likelihood, partial least squares, or

weighted least squares), the resulting model may not be one that best fits the data.

Therefore, during model estimation, the software tries to find one set of model

parameters that best fits the data, given a particular fit function that states which global

variable to maximize (or minimize) in order to contrast multiple possible solutions.

The reason for this step is that structural equation modeling, much like the

process related to any other general linear model, is a procedure in which we

estimate a likely solution to a set of equations; we guess values for parameters

without having enough data to solve all the equations. Therefore, statistically, the

models are almost always under-specified, and any one set of structural equations

can yield multiple solutions that solve all equations. Model estimation seeks the

best model. A simple example that is quite common is that the fit function is based

on the shared variance of the key dependent variable (say, Intention to use in our

example), so the software runs an algorithm to “estimate all unknown parameters

such that R2 (Intention to use) is maximized.” Of course, the fit function is not at all

simple, which bring us to the next step.

Model fit testing involves the statistical software’s computing a number of

goodness-of-fit indices that serve as approximations for the question, “how well

does my model fit the data?” Given the “true” (unobservable) relationships in the

underlying population, the specified SEM estimates whether the sampled data gets

close to mimicking or explaining the “true” unobservable structure, expressed

through the covariance matrix that is estimated ex-ante. Measures of goodness of

fit typically summarize the discrepancy between observed values and the values

expected under the model in question. The rationale behind this step is the ambition

of a study to explain a phenomenon; in other words, we are trying to build and

evaluate theoretical models that explain real-world observations. Under the

assumption that the real-world data (say, our survey responses) are real and correct,

achieving this ambition requires finding a theoretical model that specifies equations

that can perfectly describe all the real data—which usually means correctly

estimating all the correlations or covariances between all of the variables.

As with any of the other steps, there are many ways to describe or evaluate

“model fit.” Measurements (or indices) for model fit have been developed that

describe some statistic or other to characterize how well a model fits a set of data.

Because these measurements, as any other statistic, have several advantages and

disadvantages, we are confronted with a variety of goodness-of-fit indices.3

3For more information on the various fit indices, see [14].
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Table 4.2 reports on some of the most common indices and contrasts them for three

types of specified theoretical models—TAM, Expectation-Confirmation Theory

(ECT), and a Hybrid model—that all explain a particular phenomenon (in this

case: continued usage intentions by some users of some tool). Table 4.2 provides

statistics with which to evaluate which of the models fits the reality it tries to

explain best. In this particular case, the Hybrid model is best, because:

– the dependent variable’s R2 value is highest,

– it meets the suggested threshold values for all fit indices (GFI, AGFI, NFI, NNFI,

CFI), and

– it meets the suggested threshold values for the residual error (SRMR, RMSEA).

Generally speaking, goodness of fit indices broadly fall into four classes of

indices [14]:

– Discrepancy functions, such as the χ2 test or the relative chi square test (which
divides χ2 by the degrees of freedom in the model). Discrepancy functions are

traditional, interesting, but also potentially misleading test statistics: they mea-

sure how close the model is to the underlying data. Rejecting the null hypothesis)

(“there is no difference between the estimated model and the real data”) implies

poor model fit, whereas failing to reject the null-hypothesis implies a good fit.

The latter is one of the rare instances in which we can celebrate lack of statistical

significance. As with any other statistic, the χ2 test is difficult to interpret and

potentially misleading, so we should report it only together with other tests of

model fit.

– Tests that compare the target model with the null model, such as the CFI, NFI,

GFI, and NNFI tests.

– Information theory goodness-of-fit measures, such as the AIC, BCC, BIC,

and CAIC.

– Non-centrality fit measures, such as the NCP.

Table 4.2 Goodness-of-fit indices with results for the models, as studied in [3]

Fit index Suggested value

Specified models

TAM ECT Hybrid

GFI >0.900 0.942 0.932 0.926

AGFI >0.900 0.933 0.913 0.901

NFI >0.900 0.956 0.932 0.915

NNFI >0.900 0.946 0.923 0.905

CFI >0.900 0.964 0.943 0.927

SRMR <0.050 0.0439 0.0489 0.0496

RMSEA <0.080 0.0731 0.0742 0.0784

χ2 (df, p) – 119.383

(24, 0.00)

292.705

(49, 0.00)

537.519

(81, 0.00)

R2 for ItU – 0.310 0.151 0.355
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The outcome of this stage indicates how well the model fits the data. Ideally,

we’ll have high values on our goal function (such as shared variance in our

dependent variables) and acceptable values for the goodness-of-fit indices, in

which case, we have completed the model specification. However, in most (if not

all) cases, these high values are unlikely to be achieved the first time we run

structural equation modeling, which leads us to the final step.

Model re-specification goes back to the first stage, model specification, to

specify a better model. “Better” may mean a model that fits the data better (i.e.,

that scores higher during model-fit testing), a model that achieves higher shared

variance results for dependent variables, or a more parsimonious model that

requires fewer variables, measurement items, and/or associations between variables

to achieve similar results and fit. This last part is based on the argument that more

parsimonious theoretical models are better, as they offer a simpler, more elegant

explanation for observations [10]. Re-specification requires redoing the entire

process of structural equation modeling until an acceptable solution is found.

Some statistical software (e.g., LISREL) provide modification indices that suggest

where and how to change a structural model to achieve better fit to the data.

Independent of whether the software you use provides such assistance, the key

challenge is conceptual rather than empirical: does the re-specified model make

sense—or make more sense than the old model—given what you are trying to

explain and how you are trying to explain it?

4.4 How Do We Report Structural Equation Model Analyses?

A number of guidelines exist that relate to the honest and faithful reporting of

structural equation modeling results in academic publications. In a nutshell, the idea

is to present sufficient information so readers can re-conduct or evaluate the steps

undertaken during the computation. In other words, it should be possible to com-

pute the same results without having access to the original data.

In most publications, reporting is done in two stages: measurement model results

and structural model results. In some cases, supplementary or post-hoc analyses are

also reported (typically in appendices) that provide even more insights into the data

or results based on additional statistical procedures.

Guidelines for reporting results vary over time—sometimes quite drastically—

so check for new reporting guidelines regularly. Currently, several guidelines

govern the reporting of measurement model and structural models [5–7, 15–20].

1. Measurement Model Reporting
Examinations of measurement models evaluate whether the model of what is

measured fits the properties of the data collected. The typical criteria are validity

and reliability, which are also called the psychometric properties of measurement

variables. Validity and reliability describe the benchmarks against which the

adequacy and accuracy (and, ultimately, the quality) of quantitative method

procedures are evaluated in scientific research. Reliability describes the extent to
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which a variable or set of variables is consistent in what it intends to measure, while

validity describes whether the data collected measure what the researcher set out to

measure. Tests that can demonstrate validity and reliability include:

– Uni-dimensionality: A construct is uni-dimensional if its constituent items

represent one underlying trait

– Reliability and composite reliability: Reliability refers to the degree to which

scale items (reliability) and constructs (composite reliability) are free from error

and, therefore, yield consistent results.

– Convergent validity: Convergent validity tests whether measures that should be

related are related.

– Discriminant validity: Discriminant validity refers to the degree to which the

items that measure different constructs are mutually exclusive.

Any of the available structural equation modeling software packages offers these

tests and others. Threshold values are constantly being updated, but they generally

conform to the norms described here [16].

Common practice is to include the following tables to summarize model mea-

surement results:

– Scale properties: a table that lists all measurement items, their means, standard

deviations, item loadings, and loading significances.

– Construct properties: a table that lists all variables (i.e., latent constructs), their

means, standard deviations, Cronbach’s α, composite reliability pc, and average

variance extracted (AVE).

– Construct and item correlations: tables that show all correlations between

(i) latent constructs and (ii) all measurement items. These tables are often placed

in appendices because they can be large.

2. Structural Model Reporting
Representations in reports on structural model results vary from tabular to graphic

models. Graphic results (as shown in Fig. 4.4) are often preferable because they

facilitate straightforward inspection of both the results and their implications

regarding the hypotheses expressed in the research model.

Common reporting practices include specifications of all shared-variance results

for all mediating or dependent variables, weight and significance for each path

between the constructs, and all common goodness-of-fit indices. Table 4.2 gives

one such example, but results can also be given in plain text, such as that shown in

[21]: “Goodness of fit statistics for the structural model (GFI¼ 0.81, NFI¼ 0.90,

NNFI¼ 0.91, CFI¼ 0.92, SRMR¼ 0.041, RMSEA¼ 0.07, χ2¼ 2807.65, df¼740,

χ2/df¼ 3.79) suggest acceptable approximate fit of the model to the [. . .] data set.”
In this example, the “best” structural model does not achieve all recommended

values for the various indices because the goodness-of-fit tests showed some

violations of the recommended thresholds (in this case, the guidelines [22]).
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The rule to follow in these cases is simple: report all results on the indices, even
if a threshold is not met. Empirical science is never perfect, and we should not

pretend otherwise. Good reporting means faithfully and openly reporting actual

results from a data collection and analysis effort so readers can gauge the quality of

the results (and the trustworthiness of any conclusions) for themselves. In the

absence of such results (e.g., for goodness-of-fit tests), readers do not know whether

results can be trusted, so they don’t trust them. Readers with at least some

familiarity with quantitative research know that the reality of data collection and

analysis does not always meet the standards set out in theory, so results and

implications are often found to be acceptable within the boundaries of their

limitations, but only when such “problematic incidents” are reported.

4.5 What If. . .

This section briefly addresses some advanced questions and topics around structural

equation modeling.

What If I Have Mediation Effects in My SEM?
Variables in a research model can be independent, dependent or mediating. A

mediating variable, in a sense, is both independent and dependent.

The challenge with mediating variables is knowing whether they do in fact

mediate anything. Figure 4.7 illustrates three alternative models for the TAM,

including two that show Perceived usefulness’s partial and full mediation of

Perceived ease of use’s effect on Intention to use.

All three models shown in Fig. 4.7 are theoretically and statistically possible,

and all three models make sense. Therefore, when testing SEMs that include

mediation between variables, it is good practice to examine the type of mediation

effect that is present using any of several procedures [23–25]. These procedures

estimate all three variants of relationships a, b, and c between three variables

(Fig. 4.7) and, using a fit function, determine which of the variants best explains

the data. At present, the recommended procedure is that by Zhao [25], which

distinguishes five types of mediation:

1. No effect: Neither the interaction term a� b nor the path c is significant, so there

is no effect whatsoever, direct or indirect.

2. Direct-only: The interaction term a� b is not significant, but the path c is

significant. There is no mediation, as only the direct paths are significant.

3. Indirect-only: The interaction term a� b is significant, but the path c is insignifi-

cant. This is a form of full mediation in which there are no direct effects (e.g., of

Perceived ease of use on Intent to use), but all effects are fully mediated (e.g.,

through Perceived usefulness).

4. Competitive: The interaction term a� b and the path c are significant, and the

term a� b� c is not positive. Therefore, there are both a mediated effect (a� b)

and a direct effect (c), but these two effects point in opposite directions. (For
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example, the direct effect of Perceived ease of use adds to Intent to use, but the

mediated effect through Perceived usefulness detracts from Intent to use.)

Complementary: The interaction term a� b and the path c are significant, and

the term a� b� c is positive. Therefore, there are both a mediated effect (a� b) and

a direct effect (c), and these two effects point in the same direction, complementing

each other (see Fig. 4.7).

The Zhao procedure [25] is a simple macro that can be run in standard statistics

software like SPSS and SAS [26] and downloaded from the web.4
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Perceived Ease of
Use

Intention to Use

Perceived
Usefulness

Perceived Ease of
Use

Intention to Use

b

a

c

Perceived
Usefulness

Perceived Ease of
Use

Intention to Use

Fig. 4.7 No mediation,

partial mediation, and full

mediation

4http://afhayes.com/spss-sas-and-mplus-macros-and-code.html
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What If I Have Moderation Effects in My SEM?
Moderation is a challenging effect conceptually and statistically. Consider the

model shown in Fig. 4.8, which can be read to suggest that Perceived usefulness

determines Intention to use (so far, so good) and that Perceived ease of use

moderates the strength of the relationship between Perceived usefulness and Inten-

tion to use. Thus, the effect of Perceived usefulness on Intention to use might be

stronger if the levels of Perceived ease of use are high, and weaker if the levels are

low. In other words, moderation occurs when the relationship between two

variables depends on a third variable or when the effect of one predictor on a

dependent variable differs at different values of the second predictor.

Moderation is a type of interaction effect that comes into play when we want to

learn how two variables A and B interact (A�B) in effecting a third, dependent

variable C. This is how moderations are analyzed in AN(C)OVA procedures. In

structural equation modeling, examining a potential moderation in a research model

typically involves testing and comparing two SEMs: one for the sub-sample in

which the values for the moderator are low against the sub-sample in which the

values for the moderator are high. The trick here is to split the research data into two

sub-samples based on the moderator’s values. For example, if the moderator were

“gender,” the two sub-samples would be all male and all female. If the moderator is

not a binary or categorical but, say, a continuous variable (such as ratings for

Perceived ease of use), two binary variables, “high” and “low,” can differentiate

the sub-samples. Then the same SEM is estimated for two data sets (the two

sub-samples).

The challenge is to identify the differences between the two models, which can

be tricky because many things differ in two SEMs: the shared variance in a

dependent variable, the path weights and significance, the factor loadings of

measurement items to variables, error terms, shared error terms, and so forth. We

want to determine, then, whether the differences between the two models are

differences in things we are interested in—particularly shared variance in a depen-

dent variable, path weights, and significance; differences in things that are prob-

lematic, particularly error terms and shared error terms; or both.

The procedure described in [27, 28] suggests five steps:

1. For each moderator, split the data sample into two groups (high/low) and

compare the SEMs across the two sub-samples.

Perceived
Usefulness

Perceived Ease of
Use

Intention to Use

Fig. 4.8 Example of a

moderation effect
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2. Once model 1 is identified, use the parameters from this model to constrain

model 2:

• Model 2a has factor loadings and error variances constrained to the

parameters of model 1.

• Model 2b has factor loadings free but error variances constrained to the

parameters of model 1.

• Model 2c has factor loadings and error variances free.
• Model 2d has factor loadings constrained to the parameters of model 1 but

error variances free.

Thus, we estimate five structural models and then evaluate the relative

chi-square by comparing the differences in chi-square to differences in degrees of

freedom (viz., Δχ2/Δdf):

3. Compare model 2b to 2c: if there is a significant difference it is caused by error

variances, so the differences between models 1 and 2 are caused by measurement

error, not a moderation effect.

4. Compare model 2a to 2b: if there is a significant difference it is caused by

different factor loadings and path coefficients, so the differences between

models 1 and 2 are caused by a moderation effect.

5. If the differences between models 2a and 2b and between 2b and 2c are both

significant, there is moderation and error variance. In this case, shared error

correlations (φ and ψ) must be set to invariant in another set of models (2e and

2f) to extract true moderation effects.

This procedure is precise but also cumbersome, so a second procedure that is

more popular because it is simpler to compute and interpret has been proposed:

multi-group analysis. This procedure works according to the same principle of

comparing the same SEM against two sub-samples based on levels of the moderator

(high versus low, or different categories of a nominal variable), but the analysis is

restricted to comparing the parameters for the paths in the structural model across

the models estimated for two groups. In other words, multi-group analysis tests

whether β(1) 6¼ β(2) for the paths in the various models. For example, imagine the

moderator is “experience with technology.” Assume we estimate the TAM for

experienced users get the results β (Perceived usefulness! Intention to use)¼
0.45 for the experienced group, and β¼ 0.14 for the inexperienced group. The

analysis then tests whether the difference β(1)� β(2)¼ 0.31 is significant given the

data (sample size, loadings, error terms). The procedure is implemented in many of

the current software packages (e.g., SmartPLS) and described in [18, 29–31].

What If I Have Formative Measurement Items in My SEM?
This chapter made a key assumption: that the relationship between variables in a

SEM (the constructs) and the measurement items is reflective, that is, that the

construct is reflected in its measures. In formative measurement, another way to
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measure constructs, the meaning of the construct is determined (“formed”) by its

empirical indicators.

Let’s take the variable “firm performance” as an example. We can create a

reflective scale that measures top managers’ views of how well the firm is

performing. These measurement items can be interchangeable so the researcher

can assess the measures’ reliability in reflecting the construct. Alternatively, we can

create a set of metrics for firm performance that measure elements like ROI,

profitability, return on equity, and market share. These items are not interchange-

able, so they are formative. Figure 4.9 illustrates the distinction.

Any construct can be measured reflectively or formatively, as constructs are not

necessarily (inherently) reflective or formative. However, the choice of measure-

ment has implications for structural equation modeling because it changes how we

can evaluate whether the measurement model is “good” (and, thus, how we can

identify a structural model).

Handling reflective and/or formative models is an intricate issue that is often

debated. However, some heuristics can help you identify which type of measure-

ment is most appropriate for a given construct [19]. For the constructs of your

choice, we recommend that you try to gain conceptual clarity on how your

indicators relate to the constructs, and then test your conceptions for direction of

causality, interchangeability of the indicators, covariation among indicators, and

variations in nomological nets.

Fig. 4.9 Formative and reflective measurement
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1. Direction of causality—In formative measurement, the indicators define the

construct such that a change in the indicator causes changes in the construct

(rather than the other way around).

2. Interchangeability of the indicators—In reflective measurement, the meaning of

the construct does not change if any of the indicators are changed or omitted. In

formative measurement, if you drop a formative indicator, the construct meaning

may be changed.

3. Covariation among indicators—Formative measures do not necessarily co-vary

with one another (e.g., the variables Market share and Productivity may not be

correlated in an Organizational performance construct) because they typically

cover distinct dimensions of meaning. However, in reflective measurement, a

high degree of covariation (e.g., in indices like Cronbach’s α) is expected.
4. Variations in nomological nets—For formative measures, the individual

indicators within the construct may vary in terms of their (other) antecedents

and consequences. For instance, in the firm performance example, the predictors

of Market share may differ from those for Productivity.

The choice of formative versus reflective measurement items has several

implications for structural equation modeling, as reliability is more difficult to

determine for formative constructs. Cronbach’s α as a measure becomes effectively

meaningless, and a multicollinearity assessment is required (e.g., on basis of VIFs).

In addition, during the specification of a model that includes formative constructs,

different models should be tested based on varying uses of exogenous items (i.e.,

the measurement items) and then compared to find the “best” model. Finally, model

fit indices often assume entirely reflective measurement models. In other words,

they may not be meaningful (or cannot be computed) for formative models, and

alternative measures will be required [32].

What If I Don’t Know Which Software to Use?
A final decision that is often challenging for researchers is the choice of software.

Obviously, the decision is influenced by availability, price, documentation, and so

forth, but in structural equation modeling, the choice of software is further compli-

cated by the availability of two classes of software packages that implement two

types of structural equation modeling: correlation-based versus covariance-based.

Most researchers equate this difference to the difference between partial least

squares (PLS) modeling versus covariance-based modeling. Covariance-based

modeling packages are older and thus more established, but PLS modeling

packages are not only newer and very popular, but often also available free or at

lower cost and are often more intuitive and easier to use. Table 4.3 summarizes

additional differences.

When a typical reflective measurement model is used, covariance-based struc-

tural equation modeling is usually preferred because its procedures, indices, and

tests are rigorous, well-developed, and precise. However, correlation-based

modeling should be used in several cases [20]:
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– When the data is non-normally distributed—Correlation-based modeling

imposes fewer restrictions on the distribution because correlation always implies

a standardization.

– When the model includes formative measures—Covariance-based modeling

packages are (so far) rather ill-equipped to compute or evaluate formative

models.

– When the research model is highly complex—Often in these cases, correlation-

based modeling is more stable, so the software does not crash as often.

– When the research objective is exploration or prediction—Some researchers

argue that the validation principles (and the strict quality criteria) of

covariance-based modeling are not fully applicable to these research objectives.
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Nested Data and Multilevel Models:
Hierarchical Linear Modeling 5

Most of the people and cases that are subject to research in business and information

systems are nested within hierarchies. A hierarchy attaches roles to certain levels

and typically makes higher-level roles responsible for lower-level roles. At all

levels of the organizational hierarchy, this approach translates into small clusters

of managers and larger clusters of team members (which may include managers of

lower-level teams). Such a hierarchy could range from a CEO and her team of

executives to a line manager and his team of operators, but the hierarchy even

continues beyond the organization, as organizations are nested within industries,

industries within countries, and so on. Sometimes we want to study effects that

cross these hierarchical layers. For example, we may be interested in the effect of

managers’ behavior on their team members’ behavior, or the effect of remuneration

policies at the level of the organization on individual performance and individual

turnover intentions. In other words, we may want to study the effect of a variable

that varies at the group level (i.e., between groups) on another variable that differs

for every individual (i.e., it varies within groups). This kind of investigation calls

for the use of hierarchical linear models.

5.1 What Are Hierarchical Linear Models?

Hierarchical linear models (HLMs) are models that allow relationships between

variables both within and acrossmultiple levels to be investigated. A level refers to

the layer of a hierarchy at which we measure a certain variable (e.g., the individual

level, the team level, the organizational level). Similar to the structural equation

models (SEMs) discussed in Chap. 4, HLMs are a form of multivariate regression

model. However, in addition to having (1) several dependent measures or variables

and (2) dependent measures that can also appear as predictors for some other

dependent variable, HLMs introduce (3) a way to study relationships between
data across multiple levels, which is HLMs’ defining feature.
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Because of the nature of hierarchies, investigating relationships that cross

multiple levels requires both regressing independent variables on dependent

variables and comparing groups so, in a way, we are combining regressions with

ANOVA. As you will see later in this chapter, HLM has elements of regression,

SEM, and ANOVA methods, and they can be used interchangeably with these

methods in many situations.

For the purposes of this chapter, we use a simple example of a hierarchy:

teachers and their classes of students. Imagine we want to study the effect of

(a) teachers’ expectations of how well their students will do at school, and

(b) student IQ on (c) student performance. Student performance and IQ are per-

sonal—variables that differ for every student—so they are individual-level

variables. Therefore, students are our level 1 units of analysis—the lowest hierar-

chical level in our data—and the effect of IQ on student performance has to be

studied at that level. Teachers’ expectations do not necessarily vary at the individ-

ual level, as students may have different teachers, and different teachers may have

their own expectations for all of their students. For the sake of simplicity, let us

assume that every class has a different teacher and that every teacher sets his own

expectations for all of the students in his class. For example, some teachers think all

students are dumb and will never achieve anything, while others think most of them

will grow up to be Einsteins. Figure 5.1 represents this example graphically: it

shows both the structure of the hierarchy and the hypothesized HLM.

Figure 5.1 also illustrates that hierarchical models deal with variables that differ

between all units of analysis (e.g., IQ), variables that differ between the groups
created by the hierarchy (e.g., teacher expectations), and variables that vary both
within and between groups (e.g., student performance). Another way to explain this

structure is that data is nested in terms of its units—students are nested in classes—

so the assumption of independence of observations is violated (see Chap. 8) because

Between-group

Class 1

Student xStudent 1 Student 2

Class 2

Student yStudent 1 Student 2

Level 2

Level 1

Within-group Within-group

Student IQ Student performance

Level 2

Level 1

Teacher expectation

Fig. 5.1 Illustration of a multilevel hierarchy (top) and model (bottom)
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units within the same group will be influenced by (upper-level) variables that differ

between groups. As a result, the scores of level-1 units (students) will be less

independent within groups than between groups.

Before HLMwas developed, researchers couldn’t deal well with this violation of

assumptions, so one of two approaches was typically employed [1]. (In fact, both

are still widely—and erroneously—employed.) The first approach was to aggregate

individual-level variables to the group level (e.g., taking the class means for IQ and

student performance) and to test the model at that group level (e.g., using a

regression or SEM). The problem with this approach was that individual-level

variance was lost—for example, we would lose the differences in IQ between any

pair of students—so the estimation of effects was biased and power was reduced

because the sample size (n) decreased (fewer classes than students). Apart from

these technical problems, losing individual-level variance usually also means losing

hard-earned and potentially useful data points and variance. Therefore, this

approach is desirable only when the theorized relationships of interest are defined

at an upper level of analysis (e.g., the effect of teacher expectations on average class

performance), not when the unit of analysis is at a lower level, as in our working

example.

The other approach was to assign group-level variables to individuals and

evaluate the model at the lowest level (i.e., at the level of the students, not the

class). Therefore, for example, all students in one class were assigned the same

value for teacher evaluation. The problem with this approach was that it caused

covariance between error terms, which again biased the estimation of effect sizes

and caused all manner of other problems (see Chap. 7). This approach also violated

the important assumption of independence that lends credibility to regression-based

statistical methods (see Chap. 8).

The main advantage of HLM is that it accounts for (error) variance at both the

individual level and the group level. It acknowledges that students in the same class

do not have the same IQ or performance but do have the same teacher. Therefore,

the assumption of independent error variances is not violated, but independent

variables are still estimated at the appropriate level of analysis, and interdepen-

dence between individuals that are part of the same group is accounted for [2].

5.2 When Do We Use HLMs?

Generally speaking, HLM is used in situations similar to those in which SEM is

used (see Chap. 4), with the important extra condition of studying nested data—that

is, data in which not all observations are independent. More precisely, HLM is used

to study how independent variables affect dependent variables within and across

levels of nestedness, taking into account how these effects differ between groups at

the lowest level of the nestedness hierarchy.

Nestedness can mean many things. This chapter focuses on hierarchically nested

data (e.g., in organizational hierarchies), but HLM is applicable in another situation

in which there is no full independence between units: longitudinal data. In
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longitudinal data, multiple measurements are taken from the same unit of analysis

over time. Therefore, observations within these units can be more dependent than

observations between the units over time. Although conceptually different, longi-

tudinal data technically has the same nestedness as hierarchical data, as

measurements are nested in units, and units are nested in groups of multiple units

[1]. We saw in Chap. 2 that we can also use repeated-measures ANOVA to study

this kind of data, and Chap. 6 introduces two models that are closely related to

hierarchical models: fixed effect and random effect models. We discuss the

differences between all these when we get into the nuts and bolts of HLM, but

you could say that HLM is a combination of fixed-effects models and random-effect

models [3].

Although the examples in this chapter have only one dependent variable and

mutually exclusive groups, variants of HLM can also be used to study multiple

dependent variables and data that contain “cross-classified” groups, where one unit

of analysis can be part of multiple groups. For example, certain students in one class

may attend selected courses in another class. In this case, some students, unlike

others, belong to two or more classes. In Fig. 5.1, this overlap between classes

would show certain students being linked to multiple classes. In such cases, since

the standard HLM assumes that every unit is part of only one class, variants of HLM

have to be used, to which researchers refer as cross-classified linear mixed

modeling, cross-classified multilevel measurement modeling, or cross-classified

random effects modeling. Garson [3] is an excellent starting point for learning

more about these methods and Huta [4] is another good source for learning about

when to use HLM.

5.3 How Do We Investigate HLMs?

The first step in investigating multilevel models is ensuring our data reflects the

correct level of analysis and is reliable. The second step is, ironically, determining

whether HLM is required using a simple ANOVA analysis. Then, if HLM is indeed

required, we can test the multilevel hypotheses. We discuss each step in turn.

Aggregation and Measurement Reliability
Although it may sound like a silly thing to do, it is often necessary—or perhaps just

preferable—to measure level-2 variables at level 1 and vice versa. For example, we

could ask students (level 1) about their teacher (level 2), or we could ask managers

(level 2) to rate the performance of each of their team members (level 1). Therefore,

we sometimes need to make sure we can reliably attribute data to the intended level

before evaluating whether the measurement itself is reliable. This check is neces-

sary only when we measure a variable at a level other than the level at which we

analyze it.

Attributing the data to the intended level may require aggregating the data to the
right level. Aggregation can take many forms because we compute an aggregate

statistic for individual data (e.g., taking the average of student performance per

teacher). Aggregation means losing important variance, but only if that variance sits
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at the appropriate level. Consider an example: We want to know how a teacher is

rated by her students. If we ask students to rate their teacher, and each of their

ratings differs only marginally, the variance between students is not very informa-

tive, and aggregation (e.g., to an average for the whole class) is appropriate.

However, if the students disagree about their teacher, the variance would be
informative and should be kept. As this example shows, we need to evaluate the

extent of agreement between students (i.e., to what degree their assessments of their

teacher are similar) and the extent to which their scores are reliable and consistent.

However, we may need to evaluate the extent of agreement, reliability, and

consistency either before or after we aggregate items and evaluate scales—and

this is where it can get a little confusing.

Peterson and Castro [5] described three aggregation strategies that we can use,

depending on (1) where we theoretically expectmost of the variation to lie (between

level-1 students or between level-2 teachers) and (2) the level at which a variable

was measured, that is, the level of the raters. These two conditions define the order

in which we evaluate agreement, combine indicators into scales, and aggregate

either the indicators or the scales to the appropriate level, depending on which

aggregation came first. While Chap. 4 discussed how multiple indicator variables

all represent one construct, HLM, much like regression, does not require variables

to be measured in this way since we could have just one reliable direct measure—

not a latent construct. However, if variables are measured using indicators we must

“build” the constructs first, which usually consists of taking the average of all

indicators. In Fig. 5.2, building a construct would mean taking the average of the

three indicators that are attached to one construct within one unit and level. Taking

the average of the construct measures of multiple units or the average of indicators

of multiple units is aggregating scores to a different level. For our student-teacher

example, we might assume that teacher expectations vary at the class level. In that

case, we need first to evaluate the degree of the students’ agreement about their

teacher’s expectations at the level of the indicators (the variables/items that mea-

sure teacher expectation), then take the average of all these student ratings (i.e.,

create one score per indicator/item per teacher), and only then combine the

indicators into one construct score per teacher (pictured on the right in Fig. 5.2).

This approach is the one of the three approaches that Peterson and Castro [5]

proposed that is most appropriate for our example. Other approaches (which

Level 2

Level 1

Fig. 5.2 Schematic illustration of aggregation across levels; each oval with three squares
represents one construct and three indicators measured for one unit of analysis at the respective

level of analysis
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basically consist of executing the three steps in another order) are more appropriate

in other circumstances.

Evaluating the agreement between students’ ratings of their teachers’

expectations ideally consists of evaluating within-group inter-rater agreement, the

consistency of raters, and the reliability of group means. Within-group inter-rater

agreement can be estimated using the r*wg coefficient, which indicates the degree to
which raters in each group (class) agree, compared to completely random ratings

[6]. The consistency of raters can be evaluated using a first variant of the Intraclass

Correlation, the “ICC1 coefficient” [7]. ICC1 provides an estimate of how much of

the variance in the data can be explained by the fact that there are groups. In other

words, it compares the between-group variance to the sum of between- and within-

group variance. This comparison can be calculated easily with an ANOVA proce-

dure. Finally, the reliability of group means can be evaluated using another variant

of Intraclass Correlations, the ICC2 coefficient [7]. ICC2 summarizes the amount of

variance between groups minus the variance within groups as a proportion of the

between-group variance. This calculation can also be done easily based on ANOVA

results. These three indices are just a frequently used sample of many available

indices and are by no means the only correct ones.

We realize that this explanation might be pretty confusing, so here is an excerpt

of one of our own studies that illustrates the approach and gives you another

example. This particular study measured leadership behaviors by asking team

members questions about their leaders. Here is how we reported the data analysis:

Before assessing the measurement reliability of the scales that measure leadership behav-

ior, we assessed whether there was enough agreement to allow aggregation of the leader-

ship behavior variables to the group level. Because measures of leadership behavior can

theoretically be expected to vary more at the group level than at the individual level, we

evaluated within-group agreement and intra-class correlations based on individual item

scores before aggregating the items and creating group-level scales from aggregated items;

that is, we used the CAS approach as described by Peterson and Castro [5]. We used the

r*wg coefficient to assess within-group interrater agreement [6], and we used ICC1 and

ICC2 to assess raters’ consistency and the reliability of group means, respectively [7]. The

ICC scores were derived from a one-way analysis of variance (ANOVA) on each of the

variables of each scale, with the F tests’ confirming that scores differed significantly

between groups.

Based on commonly accepted thresholds in multilevel research that relies on peer

ratings in managerial jobs [7–9] and in line with previous research [10–12], we found

good support for aggregating all items that measure the dimensions of empowering

leadership behavior (average r*wg¼ 0.71; average ICC1¼ 0.17 and ICC2¼ 0.44; F
(143, 435–440) ranging from 1.25 to 2.67 with all p< 0.05). Items were aggregated to

the group level to form one reliable scale of overall empowering leadership (CFA in SPSS

version 21, with one factor explaining 71% of the variance in items; all factor loadings

> 0.7; Cronbach’s α¼ 0.99).

However, we did not find good support for aggregating all items of the transactional

leadership scale (average r*wg¼ 0.41; average ICC1¼ 0.07 and ICC2¼ 0.25). Items that

measure non-contingent reward and punishment behaviors in particular showed very low

levels of agreement, with contingent reward and punishment just below acceptable levels.

Therefore, we decided to measure and analyze these behaviors at the individual level. Since

contingent and non-contingent behavior and reward and punishment can be expected to
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influence behavior in differing ways, we investigated the factor structure of these behaviors

before aggregating the items to scales. An exploratory factor analysis with varimax rotation

returned four factors, each a good representation of the four dimensions of contingent and

non-contingent reward and punishment behavior. Only one item for contingent reward

behavior was excluded because of a factor loading below 0.7 (“frequently does not

acknowledge my good performance”). All four scales formed reliable and

one-dimensional measures for the intended constructs (factor R2 ranging from 15 to

21%; all factor loadings > 0.73; Cronbach’s α > 0.84).

Much like many other measurement validation reports, this excerpt refers to

commonly used thresholds at which the indices for agreement, reliability, and

consistency were deemed acceptable. Although we did not find a “golden stan-

dard”, there is an unspoken consensus of a sort among researchers for thresholds of

0.7 for r*wg, about 0.2 for ICC1, and about 0.4 for ICC2. This use of arbitrary

thresholds as rules of thumb has been heavily criticized, and there is a rising call to

use alternatives and include significance tests for some of these measures

[13, 14]. Not surprisingly, as we discuss in Chap. 8, similar concerns have been

raised about the use of significance tests. Therefore, the rules of thumb are to choose

indices that seem most appropriate for the data and the particular study, to report all

indices transparently, to investigate further when the indices are far from the

accepted thresholds and explain why that may be the case, and to flank these

statistical calculations with theoretical considerations. Finally, it is always a good

idea to check recent literature to see whether any coefficient or threshold has been

updated. (Organizational Research Methods is a journal that is worth keeping track
of.) We elaborate further on some of these rules of thumb in Chap. 8.

Does the Data Require HLM?
HLM is required when studying nested data with variance at both the individual

level and the group level. Therefore, HLM is not required when all variables vary at
the same level of analysis—that is, when there is no clear grouping effect. In our

example, HLM would not be required if every teacher’s expectations for every

student differed and if, on average, teachers didn’t differ in what they expected of

students—that is, they all think that certain students will do well and others won’t,

so there is no foreseeable difference between classes. Although our conceptual

model and theoretical expectations reflect that we think teachers differ from each

other and are consistent toward their students (leading to differences between

classes), the data may tell us otherwise. In other words, in the unlikely event that

(1) all measures of reliability, consistency and agreement indicate that variables

should be analyzed at the individual level (as was the case for transactional

leadership in our example) or (2) there is no difference between groups, we do

not need HLM and can instead use normal regression or SEM. Therefore, the simple

“between-group difference” is the first model that is typically run in HLM. It is

unlikely to return insignificant results if all indicators of agreement, consistency,

and reliability are up to standard. When these indicators are up to standard and the

“between-group difference” (ANOVA) model is significant, we do need to run

a HLM.
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Understanding HLM
Returning to our example of students and their teachers, Fig. 5.1 illustrates our

interest in how students’ performance is affected by their IQ at the individual level

(level 1) and by their teachers’ expectations at the class level (level 2). We

hypothesize that, at the student level, IQ (x) is positively related to performance

(y). This simple effect, at the lowest level, could be estimated using the simple

regression function:

Level1 Yi ¼ β0j þ β1jXij þ ei

,which is the same function we discussed at the beginning of Chap. 3, with one key

difference: the j index. The j index represents the class students are in and, thus, the
teacher they have. (If there were only one teacher, we would not need the j.) We

also hypothesize that the teacher’s expectation is positively related to her students’

performance, an effect that we expect to manifest in a similar way for all the

students in the same class but differently for all students of other classes. We

could estimate a similar function as the one above (with x representing the teacher’s
expectations), but we would either lose individual-level variance or violate the

assumption of independent errors. The solution provided by HLM is to estimate two

second-level functions, one for each of the parameters of the level 1 function:

Level2 β0j ¼ γ00 þ γ01Zj þ r0j

β1j ¼ γ10 þ γ11Zj þ r1j;

where z represents teachers’ expectations. If we were to interpret these second-level

models, we could say that the average student performance per class (β0j
�
and the

extent to which every IQ point relates to an increase in performance (β1j ) is a

function of teacher expectations. This function, like the level 1 function, also has a

to-be-estimated intercept (γ00) and slope (γ11) and an unknown error (r1j). Figure 5.3
illustrates what level 1 equations may look like in different classes.

Figure 5.3 illustrates large level 1 differences in intercept (β0j) and slope (β1j)
between two classes. The level 2 equations represent an attempt to estimate how

much of and how that difference is influenced by the teachers’ expectations (for all

classes, not just two). The example suggests that the teachers’ expectations affect

Class 1 Class 2

Student IQ Student IQ

Student

Performance
Student 

Performance

Fig. 5.3 Simplified illustration of the meaning of β0j and β1j in HLM
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both the average student performance and the extent to which differences in

performance are explained by IQ.

However, depending on whether our hypotheses hold, three other types of

results are possible [1]. Figure 5.4a illustrates the (simplified) case in which

teacher performance does not make a difference since both intercept and slope
parameters are similar in every class. Therefore, mathematically, the level-2 slope

parameters (γ01 and γ11) will be 0, the level 1 slope and intercept will be affected

only by the level 2 intercepts (γ00 and γ10
�
; and any small difference between groups

is caused by the second-level error term (r1j).
Figure 5.4b shows the case where teacher expectations do cause differences

between groups in the intercept of the level 1 relationship. The example shown

represents the scenario in which higher expectations lead to better performance,

irrespective of the effect of IQ. This effect causes a shift in the location of the

function relative to the y-axis (which is what the intercept β0j represents), but no

shift in the angle or slope (β1j). This shift will translate into an equal shift of the

Student

Performance
Student 

Performance

Class 1 Class 2

Student IQ Student IQ

(A) 

Student

Performance
Student 

Performance

Class 1 Class 2

Student IQ Student IQ

Student

Performance
Student 

Performance

Class 1 Class 2

Student IQ Student IQ

(B) 

(C) 

Fig. 5.4 Simplified illustration of possible effects of level 2 estimations on level 1 intercept (b),
slope (c), and neither of both (a)
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mean: students in classes with teachers who have higher expectations do better on

average. Mathematically, then, the level 2 slope parameter in the function that

predicts the level 1 intercept (γ01) is different from 0, causing the level 1 intercept to

vary between groups. Finally, Fig. 5.4c illustrates an effect on the slope but not on
the intercept, showing that varying teacher expectations influence how much of

students’ performance is explained by their IQs. For example, one could imagine

that higher teacher expectations reduce the share of variance in performance that is

explained by differences in IQ.

Executing HLM
Now that we understand how HLM works, we can talk about how to run the

analysis. Different programs require different data structures and steps and use

different notations and approaches. STATA and SAS refer to mixed models rather

than HLM and express the second-level and higher-level equations as “variance

components.” This approach and notation is explained in Chap. 6, which introduces

fixed-effect and random-effect models for longitudinal data. These models are

conceptually close to hierarchical models but are typically applied to slightly

different problems. The explanation we have provided is more aligned with the

notation of HLM7,1 an easy-to-use, stand-alone application developed by

Raudenbush and Bryk [15] that is flexible in what it allows (e.g., latent variables,

dichotomous variables). Garson ([3], Chap. 3) provides an extensive, hands-on

introduction to running HLM using HLM7, including an overview of how to

prepare two data sets (one at level 1, one at level 2), how to feed the data sets

into the program, and how to ensure that the program “understands” the units of

analysis at both levels.

The first step in any HLM or mixed model analysis is to run a full fixed-effects

model, where no independent variables are introduced at level 1 or level 2. This

kind of analysis is the equivalent of an ANOVA analysis that analyzes whether

there is a difference between groups in the level 1 dependent variable. In HLM7,

this analysis returns a “reliability estimate” and a “final estimation of variance

component,” which represent the ICC1 and the significance of the between-group

variance, respectively. If the ICC1 is close to 0 or is negative, and the between-

group variance is insignificant, you are unlikely to need to continue using HLM and

can turn instead to other kinds of regression models (in this case they are likely to

yield very similar results).

Next, independent variables can be introduced into both level 1 and level 2. A

choice will have to be made concerning whether to introduce raw variable scores or

to use either “group mean centering” or “grand mean centering.” As the terms

suggest, group mean centering subtracts the group mean from raw scores, and grand

mean centering subtracts the mean for all individuals across all groups. Mean

centering provides an intercept that is more easily interpretable than when using

raw scores, as it represents the expected level of the dependent variable

1http://www.ssicentral.com/hlm/index.html
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(performance, in our example) for a person with an average score on the indepen-

dent variable (IQ). This average refers to either the average for their group (class) or

the average for all individuals (students) [1]. The disadvantage of mean centering is

that it can confound results, especially when the model contains multilevel media-

tion [16]. Zhang et al. [16] also explained an intuitive way of testing for mediation

in multilevel models, although top journals often require the use of more robust

methods (e.g., [17–19]).

Some researchers estimate each hypothesis separately by selectively introducing

variables and then reporting results for each hypothesis test, while others introduce

all variables at once. Either approach returns estimates for all intercept and slope

parameters in the model, including standard errors and t-ratios, degrees of free-
dom, and p-values. The parameter estimates can be interpreted in the same way as

those for regression and SEM (and as explained in the “Understanding HLM”

section). The t-ratio and p-values can help you to evaluate whether the regression

coefficients can be considered to differ sufficiently from 0 to be confident that there

is an effect (see Chap. 8 for a discussion on the use of p-values).
Some programs offer results of estimates for both robust and non-robust standard

errors. If these estimates differ markedly from each other, certain assumptions were

probably violated, so you should correct for them (Chap. 8) and/or use the robust

estimates. Whatever you decide to do, always transparently report all elements of

the output and specify whether you reported the robust or non-robust standard

errors, and why. The goal is for other researchers to be able to replicate your

findings, so be transparent.

Finally, most programs will also allow you to calculate more advanced fit indices

for your model, help you understand the explained variance in its components, plus

much more. In fact, HLM is a much more versatile and complex method than we

may have indicated in this chapter, the purpose of which was to provide first

insights into what HLM is, when you should use it, and how. For more detailed

information, consult Garson [3], Hofmann [1], or Chap. 5 of this book, which

explains similar statistical struggles in a different way. Triangulation is key.
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Analyzing Longitudinal and Panel Data 6

Data often comes from observations made at multiple points in time. Obtaining

repeated observations on the same units allows the researcher to access a richer

information set about observed units than would be possible with single

observations and to map the evolution of the phenomenon over multiple periods

for both individual units and overall as a trend. (For example, relationships between

two variables may strengthen, weaken, or even disappear over time.) Longitudinal

data can be gathered via survey instruments or archival databases that offer

repeated measures on the same variables at different times.

Longitudinal data differ from cross-sectional data in two important ways: There

are multiple observations for the same units, and there is a time dimension that can

be exploited because the phenomenon is observed at different points in time.

Therefore, data is nested across two dimensions: units and time. As a result, not

all observations are independent of each other, thus violating one of the

assumptions of multivariate data analysis. So, how do we deal with longitudinal

data? What kind of tests and tools are available to exploit such richness?

This chapter examines the key features of longitudinal and panel data analysis by

comparing it with the classic (OLS) regression models discussed in Chap. 3. The

chapter provides guidance on data structures with multiple observations for the

same units (N) at different points in time (T), on discerning between instances in

which panel-data estimations are preferred over pooled-OLS estimations, on run-

ning fixed-effects or random-effects models, and on interpreting and reporting

estimations from these models. Because these topics are complex, we discuss the

choice of the appropriate method toward the end of the chapter.

6.1 What Are Longitudinal and Panel Data?

Many research questions require us to obtain and analyze data on the observed units

at multiple points in time. Consider, for example, the question concerning whether

firms’ investments in research and development (R&D) affect profitability. If we
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simplify reality a bit, we can assume that firms plan the next year’s investment

based on past endeavors and forecasts about future prospects, threats, and

opportunities. Finding the answer to questions like whether firms’ investments in

R&D affect profitability differs from testing hypotheses across levels of treatment

at one point in time, as instead of levels, we are interested in analyzing the changes
over time that units undergo. Analyzing such longitudinal phenomena involves

dealing with data structures that differ from cross-sectional data [1].
The most important difference between longitudinal data and cross-sectional

data is that longitudinal data adds a time dimension such that variables change

across units (N) and time (T). As a result, researchers have data on individual units

(ni) observed across multiple dimensions at various points in time. In other words,

units differ across individuals (a “between-variation”) at the same point in time but

also internally across time (a “within-variation”).

Gathering Longitudinal Data

Gathering longitudinal data is often complex and expensive because it entails

obtaining information on the same variables in at least two waves. One example

of a successful longitudinal study is the Household, Income and Labour Dynamics

(HILDA) in Australia, which has is funded by the Commonwealth’s government

and made public to researchers and institutions.1

Panel data structures are a particular type of longitudinal data, where one can

collect information about the same variables and individuals at several points in
time [2]. Broadly speaking, panel data are of two types:

– Balanced panel data: All observed units i have data across all waves (t). For
example, if you survey 100 individuals (N¼ 100) at five points in time (T¼ 5),

balanced panel data will have 500 observations (i.e., N�T). Balanced panel

data are often difficult to obtain because of the challenge in retaining participants

over time (e.g., survivorship bias).
– Unbalanced panel data: These are the most diffuse form of longitudinal data, as

researchers do not have data about the same units in each wave. For example, the

HILDA survey is currently on its fourteenth wave (hence, T¼ 14) and covers an

average of 19,000 individuals (N¼ 19,000) in each wave. A few individuals

have been surveyed in all waves, but the majority has been included in five or

six, and some have been included only once. Therefore, HILDA is an example of

longitudinal unbalanced panel data.

One of the strengths of longitudinal data (particularly balanced panel data) is its

potential for supporting causal relationships because of its ability to deal with

observable and unobservable effects better than cross-sectional data can. However,

1The household, income and labour dynamics in Australia (Hilda) survey is maintained by the

Melbourne institute and all editions and addenda are available at https://www.melbourneinstitute.

com/hilda/
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if the units included in the sample vary from wave to wave (i.e., the data are

unbalanced), then the longitudinal data will resemble a set of cross-sectional data

sets measured at multiple points in time, and the benefits of having longitudinal data

will be reduced because only the time dimension, not the within-unit variation in

time, can be exploited. One type of longitudinal data is time series data, which are

characterized by a relatively small number of units (N) observed at multiple points

in time (T): In such cases, T is much larger than N. In spite of their popularity and

applications in financial economics and monetary policy,2 time series data have not

gained popularity in accounting and information systems research.

Several key decisions must be made when deciding how to collect longitudinal

data for analysis, one of which concerns the time interval: how often or at what

distance in time should data be gathered?While this decision may be relatively easy

in archival financial accounting research, as financial statements are released every

quarter, it is not so simple in other settings. Some things to bear in mind when

defining the time interval, especially when employing surveys, include:

– Attrition: Units that have been included in one wave of data collection may not

respond to or be available for subsequent waves. This problem is particularly

tricky if patterns of non-respondents emerge, creating a selection bias. Sample

size can shrink as a result of attrition.

– Length of Interval: The difference in time between waves can affect whether

changes are allowed to unfold; short intervals may not allow for sufficient

changes, whereas long intervals may introduce confounding factors that require

more data to be collected.

– Stratification: If a number of units or individuals drop out from one wave to the

next, new respondents must be selected to be part of the pool and replace

observed units that have dropped out. These replacements are necessary to

ensure the population remains sufficiently large to be representative.

Understanding Longitudinal Data and Its Variance

A key feature of longitudinal data structures is that the total variance of observed

variables can be split into within-variation and between-variation. Within-variation

refers to the variability induced by observing the same unit i at several points in
time. For example, individuals’ income levels may change from year to year

(Fig. 6.1). Between-individual variation relates to variability between subjects at

a single point in time. This variation is intuitive since cross-sectional data already

offer a degree of between-individual variation.

Figure 6.1 shows graphically a longitudinal data structure that contains data

about annual income (income_id) for three individuals (N¼ 3) at five points in time

(T¼ 5), so there are 15 individual-year observations nested within individuals

2Two examples of where the N is small compared to the data points are studies about changes in

exchange rates (one currency over multiple quarters) and high-frequency data on stock prices

(where observations come down to minutes or seconds).
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(obs_id) and years (wave). The average income across all observations (i.e., the

grand mean) is 29.13. Average income for each individual (income_group) is

reported for all three individual (21, 38.6, and 27.8, respectively).

Figure 6.1 also summarizes three aspects of the variance in the data of

income_id: total, within-individual, and between-individual variance. These parts

of the variance are usually referred to as Sums of Squares (SS) because of how they

are computed:

Within‐Individual Variance ¼ ΣiΣt Yit � Yi

� �2 ¼ 950:00

Between‐Individual Variance ¼ ΣiΣt Yi � Y
� �2 ¼ 787:73

Total Variance ¼ ΣiΣt Yit � Y
� �2 ¼ 1737:73

In other words, the variance components consist of the distance of individual scores

(in each wave) from individual means (within-variance), the distance of individual

means from the total mean (between-variance), and the average distance of indi-

vidual scores from the total mean (total variance). The three individuals differ, one

earning more than the others, and between-individual variation is large (45% of the

total variance). Individuals also differ internally because of the large variation in

their income at different times. As a consequence, within-individual variance also

accounts for a large portion of total variance (55% of the total variance). Variance

decomposition is the first step in assessing whether the data present patterns and can

be clustered. In this case, individual-level effects should be taken into account.

Fig. 6.1 Example of a longitudinal data structure
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6.2 Clustering as a Way to Deal with Nestedness

Another way of looking at longitudinal data is by focusing on the interpretation of

estimation coefficients, standard errors, and t-statistics. A number of issues should

be taken into account when the preferred estimation strategy is OLS, as in the

pooled-OLS approach, clustering of observations can result in biased estimates.

The main feature of longitudinal data is that the dependent variable (outcome, Y)

and the independent variables (treatment, X) can be correlated along a series of

dimensions known as clusters. The most frequent types of clusters are time-series

correlation and cross-sectional correlation.

Time-series (or serial) correlation occurs when the same units (e.g., individuals,

groups, firms) are correlated over time, so observations for firm i at time t are linked
with those for firm i at time t�1 or t + 1. Such correlations make intuitive sense as,

for example, corporations’ net income and governance variables tend to be sticky

and do not change much over time, so they are likely to be correlated at two

consecutive points in time. Likewise, individual-level attributes like talent, educa-

tion, and income have limited variability over time, especially when the observation

window is not large and t is not too distant from t�1. When observed values do not

change much over time, the individual-level homogeneity leads to clustering issues
within units. The time-series dependency is rarely accounted for in OLS

estimations.

Cross-sectional correlation, which is more intuitive and diffuse than time-series

correlation, occurs when units are correlated at the same point in time, such as when

firm i at time t is correlated with firm k at time t. This form of correlation can be

explained by temporal effects on economic or financial variables (e.g., stock prices)

or levels of technological development that change over time and affect all units in

the cross-section.

Failing to account for such clustering results in biased estimation coefficients,

systematic underestimation of standard errors, and overestimation of t-statistics
[2,3], and the likelihood of rejecting the null-hypothesis (of no effect) when it is

actually true increases markedly. Petersen [4] offered a thorough examination of

these issues through a simulation of the extent of the bias caused by failure to

account for either or both types of clustering effects in OLS estimations [4].

Table 6.1 offers a visual representation of clustering of N individuals over T time

periods in a panel-data setting. The variables included are stock returns (ret) during
the observation period, leverage (lev) at the end of each period t, and audit fees

( fees) in each period.

Table 6.1 reports identical data using two forms of clustering: by time and by

unit. Panel A shows the effects of cross-sectional dependency, where time is the

clustering variable. Cross-sectional dependence is relevant for some variables, but

not all. For example, the variable for reporting stock returns for firm i at time

t seems to have a strong time effect. Stock market returns are affected by an overall

macro-economic scenario and changes in monetary policy, so we would expect that

returns for each firm are correlated cross-sectionally in any given year. This is

evident in Panel A, where the average returns for the N observation in each year
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Table 6.1 Effects of clustering

Panel A: Clustering by time

Obs_id Year Ret Ret_yr_avg Lev Lev_yr_avg Fees Fees_yr_avg

1001 1 �2.50 �3.60 0.30 0.35 120 161.25

1002 1 2.00 �3.60 0.15 0.35 65 161.25

1003 1 �5.90 �3.60 0.38 0.35 160 161.25

100 N 1 �8.00 �3.60 0.55 0.35 300 161.25

1001 2 3.00 8.25 0.32 0.34 108 139.50

1002 2 4.00 8.25 0.10 0.34 60 139.50

1003 2 13.00 8.25 0.40 0.34 140 139.50

100 N 2 13.00 8.25 0.55 0.34 250 139.50

1001 3 12.00 10.50 0.31 0.33 116 178.00

1002 3 8.00 10.50 0.13 0.33 64 178.00

1003 3 6.00 10.50 0.35 0.33 152 178.00

100 N 3 16.00 10.50 0.52 0.33 380 178.00

1001 T 15.00 14.25 0.30 0.33 124 170.00

1002 T 14.00 14.25 0.14 0.33 70 170.00

1003 T 16.00 14.25 0.36 0.33 166 170.00

100 N T 12.00 14.25 0.50 0.33 320 170.00

Panel B: Clustering by unit

Obs_id Year Ret Ret_id_avg Lev Lev_id_avg Fees Fees_id_avg

1001 1 �2.50 6.88 0.30 0.31 120 117

1001 2 3.00 6.88 0.32 0.31 108 117

1001 3 12.00 6.88 0.31 0.31 116 117

1001 T 15.00 6.88 0.30 0.31 124 117

1002 1 2.00 7.00 0.15 0.13 65 64.75

1002 2 4.00 7.00 0.10 0.13 60 64.75

1002 3 8.00 7.00 0.13 0.13 64 64.75

1002 T 14.00 7.00 0.14 0.13 70 64.75

1003 1 �5.90 7.28 0.38 0.37 160 154.50

1003 2 13.00 7.28 0.40 0.37 140 154.50

1003 3 6.00 7.28 0.35 0.37 152 154.50

1003 T 16.00 7.28 0.36 0.37 166 154.50

100 N 1 �8.00 8.25 0.55 0.53 300 287.50

100 N 2 13.00 8.25 0.55 0.53 250 287.50

100 N 3 16.00 8.25 0.52 0.53 280 287.50

100 N T 12.00 8.25 0.50 0.53 320 287.50

Obs_id is the identifier for each unit observed; year indicates the time (year) when the observation

was made; Ret is the yearly buy-hold return for a given stock; ret_id_avg expresses the average

return for each unit across the different times; Lev is the firm’s leverage in a given year whereas

lev_id_avg is the firm’s average value of leverage during the observation period. Fees is the total

amount of audit fees paid to the external auditor; fees_id_avg indicates the average value of fees

paid by a firm in the observation period
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changes markedly across time. Specifically, in year 1 the variable for reporting

stock returns seems to be negative compared to years 2 and 3. The last year of

observation (T) has the strongest and more positive returns of all.

Table 6.1 reports no time effect for the “leverage” variable, as the average value

is stable over time (around 0.34). This result should be expected since firms do not

change their capital structure often. Last, the variable for audit fees shows a

significant time-clustering effect, which should also be expected since average

audit fees can change over time as a result of regulatory changes, litigation threats,

or increased risk in the audit market. As a result, time-clustering occurs because the

average value for the N observations change significantly over the 4 years the data

covers.

Table 6.1’s Panel B reveals potential time-series clustering. Given that the same

individuals are observed over multiple times, it is likely that observations will be

serially correlated. Contrary to the result in Panel A, the variable for returns does

not show individual-level clustering, as returns are affected by market-wide and

time effects. This result should be expected given that stock returns (unlike stock

price or earnings) are random, so they should not be related to the previous year’s or

the next year’s returns. (Otherwise, information would be plugged into price earlier

on.) The N observations are close in terms of average returns, and there is limited

firm-level effect, so time clustering is should be considered more in relation to the

variable for returns. The results for leverage in Panel B differ from those in Panel

A. Leverage is a highly stationary variable; it does not have a cross-sectional
correlation but a strong time-series correlation because firms choose their capital

structures and leverage amount and tend to stick to them over time. Units are

internally homogeneous over the T periods, whereas they differ markedly between

each other. In the case of leverage, time-series dependency is greater than cross-
sectional correlation.

Last, the variable for audit fees shows a certain degree of time-series correlation
since firms tend to be internally homogeneous across years. However, the firms tend

to be within a range of fees that changes between firms and with time. Fees is a
likely candidate to suffer both time-series and cross-sectional dependencies.

Tools and Remedies to Control for Both Types of Dependencies The literature

offers numerous tools, known as clustering procedures, to deal with correlations in
observations originating from panel data [1, 5, 6] and rule out concerns that are due

to potential double-clustering issues:

– OLS regression with white standard errors (Rogers): One of OLS’s

assumptions is that the observations are uncorrelated and the error term is

randomly distributed. In longitudinal data, observations are clustered along a

time dimension and/or individual dimension. In other words, OLS is not suited to

making correct inferences in longitudinal data and will produce mis-specified

test statistics when either form of correlation is present. The White [7] standard

errors correction [7], which is common in accounting studies, can address the

6.2 Clustering as a Way to Deal with Nestedness 79



heteroscedasticity issue—that is, the size or value of observed variables differs

between units—but not the time or cross-sectional dependence in the data3;

– Fama-MacBeth cross-sectional estimation: Fama and MacBeth [8] designed a

tool to address concerns about cross-sectional correlation [8]. In finance, time

exerts a strong effect on market prices, volatility, and risk. Fama-MacBeth’s

cross-sectional estimation (FMB-cs) results in a series of separate estimations

for each period. In essence, FMB-cs runs T separate regressions for each period t,
and the estimation coefficients and standard errors are weighted and averaged to

come up with a unique point estimate. FMB-cs estimations return consistent and

unbiased estimates when there is no time-series correlation (i.e., individual units
are not correlated over time), but they are not appropriate when both types of

dependencies are present. In relation to the example in Table 6.1, the returns
variable showed a cross-sectional correlation, but not a time-series correlation.

– Fama-MacBeth time-series estimation: The Fama-MacBeth time-series estima-

tion is a revision of the FMB-cs estimation process. Clustering is not on the time

dimension but at the unit level (FMB-ts), and the source of dependency comes

from within individuals. The estimation procedure is the same as that in FMB-cs,

but clustering changes through an estimation of N different regressions (one per

individual) and then the estimation coefficients and standard errors are averaged.

This revision of the original FMB-cs estimation is appropriate when there is

time-series correlation but time does not exert any influence on the variables. In

Table 6.1, the variable leverage showed consistency over time but no clear

patterns in yearly data. FMB-ts does not correct for both time and individual

clustering, so in the presence of both, it yields inconsistent estimates.4

– Newey-West estimation: the Newey-West estimation [9] is a refinement of the

White [7] standard errors because Newey-West takes into account the time-
series correlation—for example, individual observations are correlated over

time—but assumes cross-sectional independence [9]. While Newey-West

returns consistent estimates in the presence of serial dependence, it performs

poorly when time exerts an effect on the variables. Both Petersen’s [4] simula-

tion and Gow, Ormazabal, and Taylor’s review [2] discuss the limitations of the

Newey-West approach in the presence of both sources of dependencies [2].5

– One-way clustering: One-way clustering considers only one level of clustering

in the data. It allows clustering along one dimension (either time or individual),

so if one cannot rule out a second potential source of dependencies, an

3The STATA routine to estimate OLS with White-robust standard errors is regress y x, robust.
4The command to perform Fama-MacBeth [8] estimation is similar for both the FMB-cs and

FMB-ts types of regressions. Mitchell Petersen of Northwestern University posts the codes for a

series of popular software with which the FMB estimation can be performed at http://www.

kellogg.northwestern.edu/faculty/petersen/htm/papers/se/se_programming.htm
5We refer readers to Petersen’s webpage (please check footnote 7 in Petersen’s webpage), which

provides codes for the Newey-West routine.
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estimation will yield biased results that overestimate the rejection rate of the

null-hypothesis.6

– Two-way clustering: Two-way clustering is warranted when both time-series
and cross-sectional dependencies are present in the data. One example in

Table 6.1 is the variable fees, where the level of audit fees changes at both an

individual firm-level and between years. While two-way clustering is superior to

all of the estimation approaches seen before, it can reduce variation in the

variables, thus losing some valuable information [3,4]. For instance, when the

number of clusters is small, it can lead to issues in estimating the standard

errors.7

The choice of clustering should not be made ex-ante. All approaches have

advantages and downsides, and careful consideration and a thorough variance

decomposition analysis will suggest what is at stake and what one is trading off.

As so often occurs in empirical work, we should examine all analyses, compare the

findings, and choose the most suitable strategy to report. There are two important

caveats: first, the number of clusters can exceed two when industry or location is

taken into account. (This chapter does not cover these issues, but there are great

books and resources that can help! [6]) Second, one way to control for cross-
sectional (time) and time-series (individual) clustering is to employ indicator

variables for years and one-way clustering for individuals. This approach is espe-

cially suitable when T is small.

6.3 Which Models Can We Use to Analyze Longitudinal Data?

Now that we understand the differences between longitudinal and cross-sectional

data, we turn to how these differences affect the analysis of such data. Exploiting

the features of longitudinal data can be helpful in overcoming some of the issues

related to ensuring that changes in X causes changes in Y. (See Chap. 7 for a more

in-depth overview of endogeneity and causality issues.) Longitudinal data are

useful in capitalizing changes in status that occur at an individual level in order

to offer a cleaner setting in which to claim causality. Longitudinal data offer the

opportunity to use a broad range of estimation models that should be carefully

evaluated in order to select the most appropriate approach This section compares

three models: the pooled-OLS model, the fixed-effects model, and the random-

effects model.

6The routine in STATA to perform one-way clustering is simple: either (1) regress y x, cluster (id)
if time-series correlation is a concern, or (2) regress y x, cluster (time) if cross-sectional correla-
tion is the main problem.
7Petersen’s website offers a great deal of help in the estimation of OLS with two-way clustering.

The routine is simple: cluster2 y x, fcluster(id) tcluster(time).
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In the context of longitudinal data, a typical regression model is the pooled-OLS

regression, which can be employed if observations are independent. In essence,

pooling means treating all individual-year (or any combination of unit and time)

data as unique and independent observations, so one can resort to normal OLS

estimation8 as in a cross-sectional analysis. Hence, a researcher does not establish

that observations are clustered at an individual level. For example, if we had

repeated observations (five waves at different points in time) for 100 individuals,

pooled-OLS regression views these as 500 independent observations, which it uses

to estimate regression coefficients. Thus, the pooled OLS does not recognize

potential within-individual variation, and it treats all variability as between-varia-
tion (much as in a cross-sectional analysis). In other words, pooled OLS ignores the

fact that observations are nested within individuals and assumes independence of

observations. This assumption will likely result in inflated sample sizes, biased

coefficients, and underestimation of standard errors. Because of these biases, panel

data usually calls for the use of more appropriate models, the two most common of

which are fixed-effects models and random effects models.

Fixed-Effects (FE) Models

FE models are preferable to OLS models for analyzing longitudinal data because

FE models allow the researcher to control for unobservable time-invariant factors,
that is, factors that do not change over time. Some individual and organizational

traits, such as a person’s gender and ethnicity, are time-invariant by definition.

Other traits could vary over time but often do not change during the study, such as

the location of an organization’s headquarters and the political climate. Even

though these factors do not change over time, they diff for every unit of analysis.

Individuals in our study can have different genders, and different organizations can

have different locations. In “normal” OLS regression models, these individual

factors are typically captured in the error term, but OLS models assume that these

error terms are independent. This assumption is violated if observations are taken

from the same individual: gender at time 1 for person 1 will be the same as the

gender of that same person at time 2 (barring highly exceptional cases). FE models

do not assume this independence of errors within the same units across time, which

is why they lead to accurate estimations of effects in longitudinal data.

FE models are particularly useful when researchers do not have access to data

that captures these time-invariant variables. There are many elements of the people,

organizations, and context in which they operate (e.g., political climate,

regulations, reporting standards, personality) that are hard to capture in simple

variables or that are outside the scope of the study. However, these contextual or

personal variables can still influence the study. We discuss the problems related to

8To be consistent with a large body of literature in accounting and finance [3,4], we use the

expression “pooled-OLS regression” but refer to all types of regression approaches (e.g., logit or

probit, which are commonly used) wherein the regression model specified does not take into

account the fact that the data have a longitudinal structure.
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these omitted correlated variables in detail in Chap. 7; for now, just recognize that

FE models allow researchers to control for these unmeasured influencing variables.

Notwithstanding the important advantage of working well when researchers do

not have access to data that captures time-invariant variables, FE models do not

model the effect of time-invariant variables and FE-models do not control for

unobserved variables that do change over time. Random-effects (RE) models

solve at least part of this problem.

Random-Effects (RE) Models

RE models differ from FE models in their use of time-invariant variables in

estimations. The RE model makes more efficient use of the data than the FE

model does because the RE model exploits both the within-unit and between-unit

variability by weighting the relevance of the two sources of variability and

partitioning it, whereas FE models exploit only the within-unit variability. In the

extreme case, when the variability is entirely due to within-unit variation, RE

estimation is identical to FE estimation.

The key features of RE models are that they provide efficient estimations of

model parameters by using both between-unit and within-unit variance, allow for

the impact of time-invariant variables on Y (differently from FE), and provide

reliable estimates of the individual effects.

The use of RE models depends on the amount of unobservable time-invariant

factors that are left out of the estimation. If there are too many, then FE models are

more likely to provide unbiased estimates. Of course, the method and the diagnostic

tool cannot be substitutes for thorough assessment and knowledge of the underlying

data structure. The products of diagnostic tools, like p-values, should be interpreted
as indications, not as definitive answers to the research design issue we face in

answering research questions.

Notation

The importance of the time component also makes the notation of the models used

to analyze panel data important. The equation model is specified as:

Panel data notation:

Yit ¼ α0 þ β1X
1
it þ βnX

n
i þ υit ð6:1Þ

where Yit is the value of the outcome variable for unit i at time t, X1
it expresses the

value of the main predictor (X1) for unit i at time t, Xn
i is a covariate that takes the

same value for each individual i, and the error tem νit has two components—εit is
specific to the unit-time, so it changes across individuals and time, and μi is specific
to the units and does not change over time. Both Yit and Xit are time-variant
variables: they vary for the same unit over time. (For example, income and

education are likely to change over time.) Xn
i is also time-invariant. (For example,

the year of birth or ethnicity does not change for individuals, and the year of

foundation or the State of first incorporation does not vary for firms). Distinguishing
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between time-variant and time-invariant variables is important in understanding

longitudinal data.

6.4 Estimating and Reporting Fixed-Effects
and Random-Effects Models

This section explains how to estimate fixed-effects and random-effects models by

comparing the models with each other and with OLS to clarify the differences. The

research question we use to illustrate these models concerns whether R&D expenses
enhance a company’s market value.

Step 1: Understanding Your Data

We discussed the specifics of longitudinal data in Sect. 6.1; here we illustrate what

the data looks like for our example. Table 6.2 reports the structure of some data that

can be summarized as follows:

N¼ 20 individual firms (units).

T¼ 5 years, so data are collected over 5 years at 1-year intervals.

N�T¼ 100 firm-year observations.

Table 6.2 Snapshot of data on R&D expenses and market capitalization

Obs_id Year Ipo_year Mtk_cap Rd_exp_chg Bod_size Founder

10001 1 1980 260 4 18 1

10001 2 1980 280 4.8 18 1

10001 3 1980 248 �2 15 0

10001 4 1980 256 3 15 0

10001 5 1980 254 �0.5 15 0

10002 1 1983 280 1.9 17 1

10002 2 1983 276 2.1 17 1

10002 3 1983 268 1.1 15 0

10002 4 1983 270 2.2 15 0

10002 5 1983 274 2 15 0

. . . . . . . . . . . . . . . . . . . . .

10020 1 2015 12 1 3 0

10020 2 2015 16 3.2 5 1

10020 3 2015 14 �3 5 1

10020 4 2015 18 2.5 5 1

10020 5 2015 11 1.8 5 0

Obs_id is the identifier for each unit observed; year indicates the time (year) when the observation

was made; mkt_cap is the total market value of firm i at the end of the fiscal year t. rd_exp_chg

expresses the percentage change in R&D expenses from the previous year (t�1) to the current year

(t0); ipo_year indicates the year in which the company went public; bod_size is the number of

directors on the board at the end of the fiscal year; founder is a dummy variable that takes the

value of 1 if the founder still holds an executive position in the firm, and 0 otherwise

84 6 Analyzing Longitudinal and Panel Data



There are five variables employed in the example:

– Market Capitalization (mkt_cap) indicates the total market value of firm i at the
end of the fiscal year t. It is a time-variant dependent variable, given the research

question of interest (Yit).

– R&D expenses (rd_exp_chg) expresses the percentage change in R&D expenses

from the previous year (t�1) to the current year (t0) for each firm i. It is a time-

variant variable and the main predictor in the analysis (Xit).

– Year of IPO (ipo_year) indicates the year in which the company went public. This

is a time-invariant variable because it is stable for each firm i over the 5 years of

data. The extant literature suggests employing ipo_year as a control variable

because it can affect market value (Y) and the R&D expense policy for firm i (X);
– Board size (bod_size) is the number of directors on the board at the end of the

fiscal year. This is a time-variant variable, as it changes across firms and for each

firm across time. Prior evidence suggests that larger boards are associated with

larger market capitalization (Y) and a higher level of R&D expenses (X). Failing

to include this variable leads to an omitted correlated variable problem (Chap. 7).

– Active founder ( founder) is a dummy variable that takes the value of 1 if the

founder still holds an executive position in the firm, and 0 otherwise. Founder is
a time-variant variable, as founders may drop out of and re-join the firm in any of

the 5 years of observation.

Table 6.3 reports the summary statistics for the variables in the sample.

The main features of the data should be well understood before undertaking

more complex statistical analyses. Longitudinal data differ from cross-sectional

data because of the time dimension (T); Table 6.4 re-displays the data aggregated

by year.

Table 6.3 Summary

statistics
Variable Obs Mean Std. dev. Min Max

mtk_cap 100 164.85 82.59 11 280

rd_exp_chg 100 1.81 1.54 �3.0 4.8

ipo_year 100 2001 10.60 1980 2015

bod_size 100 9.18 4.17 1 18

founder 100 0.50 0.50 0 1

Table 6.4 Exploring the time dimension of data

Year

Mtk_cap Rd_exp_chg Bod_size Founder

Mean Sd Mean Sd Mean Sd Mean Sd

1 165.75 85.87 1.89 1.16 9.15 4.77 0.55 0.51

2 168.00 87.46 2.35 0.91 9.15 4.63 0.55 0.51

3 164.75 80.62 1.79 2.00 9.30 4.31 0.50 0.51

4 165.40 83.46 1.69 1.74 9.25 3.88 0.50 0.51

5 160.35 83.81 1.36 1.60 9.05 3.61 0.40 0.50
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A close inspection of Table 6.4 reveals changes over time across market
capitalization, R&D expenses, and the founder’s involvement into executive

positions. These changes indicate that time affects both Y (mkt_cap) and X

(rd_exp_chg): specifically, market capitalization and R&D expenses decline over

time, suggesting that macroeconomics conditions affect firms’ and markets’

behaviors. The variable ipo_year is not reported because it does not change

over time.

Step 2: Variance Decomposition

The next step is a variance decomposition analysis in order to ascertain whether the
variability of the outcome (mkt_cap) is due to firm-level changes over time

(within_var) or to differences across firms (btw_var). The grand mean of mkt_cap

is 164.85 (Table 6.3), but the individual means of each observation (Yi) range from

14.2 to 273.6.

The summary results for variance decomposition are as follows:

Total variance (market capitalization)¼ 675,346

Within-unit variance (market capitalization)¼ 6112

Between-unit variance (market capitalization)¼ 669,234

The results indicate that mkt_cap changes more between individuals than it does

for individual firms during the observation window. The F-statistic for between-

individual variation is high and significant (461.43; p< 0.001), suggesting that

individuals are internally highly homogeneous—the intra-class correlation coeffi-

cient is 0.99, so nestedness must be taken into account—and firms vary significantly

from one another.

Before moving to an analysis in a multivariate framework, we inspect the

correlation matrix to uncover existing relationships among the data (Table 6.5).

Table 6.5 reveals patterns in the data that include a positive and significant

relationship between mkt_cap and rd_exp_chg (0.28; p< 0.01), suggesting that

changes in the level of R&D and market capitalization are positively associated.

bod_size positively correlates with both market capitalization (0.88; p< 0.001) and

R&D (0.23; p< 0.05), so bod_size must be included as a covariate in the OLS or

panel data estimations. Similarly, founder is correlated with mtk_cap (�0.20;

p< 0.05) and only marginally with rd_exp_chg (0.16; p> 0.1). IPO_year nega-

tively correlates with both mkt_cap (�0.89; p< 0.01) and rd_exp_chg (�0.16;

p< 0.1), suggesting the possibility of including it as a covariate in the regression

model. Finally, year does not show significant correlations with any of the other

variables, with a partial exception of rd_epx_chg.

Step 3: Estimation of the Model, Option 1: Pooled OLS

Now moving to data analysis, consider that we used a “normal” pooled-OLS

regression to evaluate the relationship between the main predictor (rd_exp_chg)
and the outcome of interest (mkt_cap) by taking into account a series of covariates
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(or control variables) that help to improve estimation efficiency or reduce the extent

of a bias that may be due to omitted correlated variables (Chap. 7). Prior literature

has suggested that two additional variables are jointly correlated with market

capitalization and R&D expenses: CEO compensation and Tax incentives. These
two variables cannot be included in the analysis because of data unavailability, so

an omitted correlated variable (OCV) problem and biased estimations are triggered.

CEO compensation is time-variant (i.e., firms change CEO compensation at varying

times), whereas Tax incentives is time-invariant in the observed period (i.e., firms

either obtain or do not obtain tax incentives). This distinction is relevant insofar as

the panel data estimation (by both FE models and RE models) can deal with time-

invariant heterogeneity, while OLS regression cannot do much. (Because of unob-

servable factors, neither panel-data nor OLS can deal with unobserved time-variant

heterogeneity [10].) Pooled OLS regression does not take into account the fact that

observed firms (N¼ 20) are not independent but are repeatedly observed at various

points in time (T¼ 5).

For the sake of completeness and ease of comparison with panel-data estimation,

we present two OLS models: OLS_short, which includes only two time-variant

covariates (ipo_year and bod_size) and excludes founder (time invariant), and

OLS_long, which includes all three covariates.

OLS_short:

Mkt capi ¼ α0 þ β1rd exp chgi þ β2founderi þ β3bod sizei þ εi ð6:2Þ
OLS_long:

Table 6.5 Correlation matrix

Mtk_cap Rd_exp_chg Bod_size Founder Ipo_year

rd_exp_chg 0.28

0.01

bod_size 0.88 0.23

0.00 0.02

founder �0.20 0.16 �0.25

0.05 0.11 0.01

ipo_year �0.89 �0.16 �0.90 0.31

0.00 0.10 0.00 0.00

year �0.02 �0.16 0.00 �0.10 0.00

0.82 0.12 0.97 0.33 1.00

Values in italics indicate a significant coefficient at a 5% level.Mkt_cap is the total market value

of firm i at the end of the fiscal year t. rd_exp_chg expresses the percentage change in R&D

expenses from the previous year (t�1) to the current year (t0); ipo_year indicates the year in

which the company went public; bod_size is the number of directors on the board at the end of the

fiscal year; founder is a dummy variable that takes the value of 1 if the founder still holds an

executive position in the firm, and 0 otherwise
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Mkt capi ¼ α0 þ β1rd exp chgi þ β2founderi þ β3bod sizei
þ β4ipo yeari þ εi ð6:3Þ

Table 6.6’s results differ depending on the specified model. Both OLS_short and

OLS_long have high adjusted-R2 (0.77 and 0.83, respectively), highlighting the two

models’ significant predictive ability. Despite their predictive ability, the two

estimations differ along a number of dimensions:

– The coefficient on the main predictor rd_exp_chg is non-significant in

OLS_short (4.16; p> 0.10), whereas it becomes larger and statistically signifi-

cant in OLS_long (5.07, p< 0.05). This shift in OLS_long would prompt a

rejection of the null hypothesis)and indicate support for the theoretical

prediction.

– The coefficient on bod_size changes its magnitude and significance level.

Although remaining large and strongly positive, in model OLS_long the size

of the effect becomes nearly a third of the effect shown in OLS_short.

– The coefficient on founder becomes large (yet not statistically significant) in

OLS_long, whereas it is close to zero in OLS_short.

– The intercept becomes a meaningful predictor of market capitalization in

OLS_long (9483; p< 0.001), while it is not significant in OLS_short.

What drives these differences, and how do we interpret them? The inclusion of

ipo_year in OLS_long exerts a significant impact on the coefficient estimates, but—

perhaps more importantly—it reduces the threat of endogeneity and bias in the

estimations. Both theory and the correlation matrix in Table 6.5 suggest that

ipo_year (a time-variant variable) should be included in the regression model, but

what if we cannot gather data on this variable, as in Model OLS_short? This is when

panel-data estimation and FE-models save the day!

Step 3: Estimation of the Model, Option 2: Fixed Effects

Pooled-OLS estimation is not particularly helpful in establishing causal

relationships unless stringent assumptions can be met. One of these assumptions

relates to the absence of omitted correlated variables (OVCs). Unfortunately, in this

Table 6.6 Comparison of pooled-OLS estimations

DV: mkt_cap

Model OLS_short Model OLS_long

Coeff (se) T Coeff (se) t

rd_exp_chg 4.16 (2.78) 1.50 5.07 (2.36) 2.15

bod_size 16.96 (1.04) 16.32 6.41 (1.93) 3.33

founder 0.28 (8.50) 0.03 9.20 (7.37) 1.25

ipo_year �4.69 (0.76) �6.16

intercept 1.45 (11.71) 0.12 9483 (1539) 6.16

Adj-R2 0.77 0.83

F-test 107.02 (p< 0.001) 121 (p< 0.001)
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case, there are two unobservable variables because of lack of data or measurement

error. A way to overcome or at least minimize these issues is to employ FE

estimation. FE exploits the longitudinal nature of the data to control for unobserv-

able factors in regression models. FE is particularly suitable when the source of

heterogeneity is time-invariant–that is, it belongs to the same individual over time

and differs only between individuals (e.g., a person’s place of birth) [11]. In order to

perform an FE estimation to address the original research question, the model in

(Eq. 6.4: FE) is specified:

FE:

Mkt capit ¼ α0 þ β1rd exp chgit þ β2founderit þ β3bod sizeit
þ β4ipo yeari þ υit ð6:4Þ

The FE model differs from OLS_short and OLS_long pooled specifications in

the addition of a time component (t in the subscript), which indicates that the value

of observed variables changes between individuals but also within individuals over

time. In essence, FE models provide estimation coefficients that are the average of

the within-individuals effects on the outcome variable (in this case, N¼ 20, so

20 estimations are computed and averaged). Therefore, variables that do not change

at an individual level are not taken into account. ipo_year does not vary within units
but only between units, so β4 is not estimated. Likewise, the component of the error

term that is time-invariant (μi) has a mean that corresponds to the value of the

individual observations, so the between-units error is not taken into account. These

differences, although they border on abstract, are useful in assessing the differences

between FE and RE models.

Table 6.7 reports results from the pooled-OLS and FE estimations. Since FE

does not estimate any coefficient on the time-invariant variables, ipo_year is not
estimated. (FE models estimate within-unit changes, so if there is no change, no

estimation is returned.) The coefficients in the two models are different: The effect

of rd_exp_chg on market capitalization becomes much smaller (3.11 vs. 5.07) when

FE is employed than when OLS is used because FE estimation computes within-

individual changes and returns an average of these effects. bod_size does not affect
mkt_cap in the FE model, although it has a positive effect in OLS. Similarly, the

positive effect of founder on mkt_cap in OLS is smaller but statistically significant

in the FE model versus OLS (6.84 vs. 9.20). Therefore, we infer that estimates from

the pooled-OLS model on the three predictors were misleading, the product of their

correlation with unobserved firm-specific factors that also impact market

capitalization.9

The FE model accounts for unobserved heterogeneity that relates to time-invari-
ant variables, but this gain in terms of unbiasedness comes at a cost, as FE does not

9FE models control for all of the time-invariant factors that affect the relationship of interest,

whereas OLS takes into account only the covariates that are available. In this example, there are

unobservable variables that affect X and Y that FE estimation takes into account but OLS ignores.

Since FE estimation is always less biased than OLS, it is preferable.
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take into account variables that do not change at an individual level, so they

systematically underestimate the model. In fact the adjusted R2 for OLS2 is much

larger than the equivalent for the FE model (e.g., the within-R2¼ 0.53).

FE models offer a battery of diagnostic tests that allow researchers to make an

overall assessment of the estimation’s suitability. These tests are displayed in

Table 6.7. The conventional test-statistics reported in OLS estimation:

– The number of firm-year observations (N¼ 100) should be accompanied by an

indication of the number of groups (N¼ 20).

– Instead of reporting a unique indication of model fit, as in OLS regression

(Adjusted R2), FE models partition it into three components: an overall R2

(0.23) that rarely exceeds 0.60 unless within-variance is very high, a within-R2

(0.53) that is usually reported in FE models, and a between-R2 (0.51) that is of

limited usefulness in FE.

– An important diagnostic is corr (μ_i; Xb), which indicates the magnitude of the

correlation between omitted unobservable variables and the error term. It tests

the relevance of the individually specific heterogeneity in relation to the

variables in the model. In this case, the correlation is high (0.42), so

individual-level differences are relevant.

– The F-test (μ_i¼ 0) diagnoses whether individual effects are present. Rejecting

the null hypothesis implies that observations are nested, that firm-level

characteristics matter, and that panel data should be preferred to OLS. In this

case, the model returns a high value (214.92; p< 0.001), so the FE model should

be preferred.

Table 6.7 Comparison of OLS and FE models

DV: mkt_cap

Model OLS_long FE model

Coeff (se) t Coeff (se) T

rd_exp_chg 5.07 (2.36) 2.15 3.11 (0.54) 5.71

bod_size 6.41 (1.93) 3.33 0.81 (0.67) 1.33

founder 9.20 (7.37) 1.25 6.84 (1.71) 4.01

ipo_year �4.69 (0.76) �6.16 Omitted

intercept 9483 (1539) 6.16 148 (5.42) 27.33

Adj-R 0.83

F-test 121 (p< 0.001)

N 100

N (groups) 20

Overall-R2 0.23

within-R2 0.53

between-R2 0.51

corr (μ_i; Xb) 0.42

F-test (μ_i¼ 0) 214.92 (p< 0.001)

rho 0.99
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– The rho indicator is an intra-class coefficient that suggests whether the twenty

groups (each firm) are consistent internally. In this case, homogeneity is high

(rho¼ 0.99).

Step 3: Estimation of the Model, Option 3: Random Effects

We have discussed the FE model as a specific estimation for panel data. By ignoring

between-individual variation, FE attenuates concerns with time-invariant individu-

ally specific heterogeneity in the estimation of the X on Y. Despite this significant

advantage, FE models are limited because they ignore sources of variation and do

not offer estimations of the time-invariant variables on the outcome. Random-
effects models (RE models) are the main competitors of FE. The main difference

between these models and FE models lies in RE’s ability to take into account both

within- and between-individual variation, so it offers coefficient estimates for the

time-invariant variables (e.g., ipo_year in our current example).

In order to explain the logic of RE estimation and compare it with FE and OLS

models, we employ the same example in which our main question of interest

concerns whether R&D expenses affect market capitalization. Performing an RE
model estimation requires specifying the model in (Eq. 6.5: RE):

RE:

Mkt capit ¼ α0 þ β1rd exp chgit þ β2founderit þ β3bod sizeit
þ β4ipo yeari þ υit ð6:5Þ

(Eq. 6.5: RE) is identical to (Eq. 6.4: FE), given that both FE and RE models

belong to the family of panel-data estimation methods. However, there are two key

differences: unlike FE estimations, the RE models provide a coefficient estimate on

ipo_year (coefficient β4), and RE models make assumptions about the distribution

of the between-individual component of the error term (μi).
Table 6.8 reports results from an RE estimation of the model specified in

(Eq. 6.5: RE). As this example shows:

– RE models report a test of statistical significance in the form of Z-values rather
than t-values, but their interpretation is identical.

– RE estimates a coefficient for ipo_year that is missing in the FE estimation. This

coefficient is negative (�6.65; p< 0.001), so firms that list later (2014 vs. 2005)

display decreasing levels of R&D expenses.

– The overall R2 of the model is large, indicating that the inclusion of a time-

invariant covariate significantly improves the model estimation.

– The correlation between the between-individual portion of the error (μ1) and the
omitted covariates is assumed to be 0. This assumption was not considered in the

FE model estimation, where we estimated a value for this coefficient.
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6.5 When to Use OLS, Fixed-Effects, and Random-Effects
Models

Now that we have illustrated and discussed the mechanics of pooled-OLS models

and both FE and RE models, the next question of interest concerns which estimation
technique should be employed in which analysis. The chances of getting close to the
right choice lies more in a researcher’s knowledge of the theory and mechanisms

behind the variables of interest than in the data, let alone the choice of statistical

tool. The choice of the right model can be split into choosing between pooled OLS

on one hand and FE and RE models on the other, and if FE and RE models are

chosen, choosing between them.

Pooled OLS vs. Fixed- and Random-Effects Models

While panel-data estimations are better suited than the OLS to estimating

relationships in data sets that feature repeated observations, under certain

circumstances pooled-OLS estimations are a valid (and less costly) alternative to

RE and FE models. For example, in the (unlikely) event that we can gather data

such that a series of covariates are added to the model, we need not worry about the

potential for omitted correlated variables; in this instance, pooled OLS works just

fine. To help make this decision, we can determine whether our data allows us to

add a series of covariates to the model using the Breusch-Pagan Lagrange multi-
plier test (also known as the Breusch-Pagan test). This test evaluates the following

hypotheses:

H0: Var (μi)¼ 0
Ha: Var (μ1)> 0

Table 6.8 Random-

effects estimation
DV: mkt_cap

RE model

Coeff (se) z

rd_exp_chg 3.11 (0.55) 5.69

bod_size 0.91 (0.61) 1.49

founder 6.83 (1.71) 3.98

ipo_year �6.65 (0.79) �8.44

intercept 13464 (1578) 8.53

N 100

N (groups) 20

overall-R2 0.81

within-R2 0.53

between-R2 0.82

corr (μi; X) Assumed¼ 0

Wald-χ2 172.77 (p< 0.001)

rho 0.97
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The Breusch-Pagan test indicates whether variance in individual-level

observations is similar across the sample10; if this is the case, one can ignore the

nestedness of the data and see each observation as independent. Failing to reject the

H0 (e.g. p> 0.05) indicates that pooled OLS is a valid alternative to the panel-data

estimation, while rejecting the null hypothesis)indicates that individual variation

matters and panel-data models should be employed.

Running a Breusch-Pagan test in STATA involves two steps [12]: estimating an

RE model, including all the time-invariant variables, and using the xttest0 routine to
test theH0: Var (μi)¼ 0. In the ad-hoc example we are using (e.g., do R&D expenses
enhance a company’s market value?), the results follow:

Test: Var(u)¼ 0

X2¼ 164.84 Prob>X2¼ 0.0000

These values prompt a rejection of the null hypotheses (i.e., pooled-OLS and

panel-data are equivalent) because of the relevance of the within-unit variance. The

next step involves choosing between RE and FE models.

Fixed-Effects vs. Random-Effects Models

Once we have determined that we prefer panel-data estimation to pooled-OLS

estimation, the next question concerns whether we prefer fixed-effects or random-
effects estimation. Given that both approaches have their advantages and

limitations, an ex-ante suggestion should not be warranted in terms of one

approach’s being superior to the other. In order to be effective, both models must

meet underlying assumptions that can be verified by employing estimation routines

that statistical software embeds in their toolkits.11

One way to look at the decision is to consider that RE models are efficient in

estimation, whereas FE models are less biased than RE models. While both features

are desirable, it is difficult to achieve both. RE models have an advantage in their

employment of a richer information set than FE via the estimation of coefficients on

all variables, both time-variant and time-invariant, which improves model estima-

tion. In the previous example (see Table 6.8), the RE model returns an estimation

coefficient for ipo_year that is omitted in the FE model. Nevertheless, RE suffers

from a severe omitted correlated variable bias if between-individual variation in the

outcome variable is due to numerous unobservable factors. FE estimation eludes

these factors–at least the time-invariant ones–so it provides less biased results.

How do we determine whether RE or FE is more suitable? Given the impossi-

bility of observing the extent of the bias that is due to OCVs, we follow an empirical

strategy offered by the Hausman [13]. The Hausman test indicates whether the

coefficients of two models (RE and FE) differ. The null hypothesis)in Hausman

tests is that there are no systematic differences:

Test: H0: The difference in coefficients is not systematic.

10The key objective of the Breusch-Pagan test is understanding whether one cand discard the

clustering that is due to the same individuals being included multiple times.
11For the sake of consistency, will refer to the STATA estimation routines.
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Failing to reject the null hypothesis suggests that the coefficients are close

enough not to be considered different. In this situation, the RE model is preferred

because of the gain in efficiency without facing the risk of biasedness. By contrast,

rejecting the null hypothesis suggests that the differences are systematic, and FE

estimation should be employed.

Running a Hausman test in STATA involves four steps [12]:

1. Estimate the RE model, including all the time-invariant variables that will be

dropped in the FE model. Then store the coefficients in the memory using the

command estimates store (RE_model).

2. Estimate the FE model and store the coefficients in the memory using the

command estimates store (FE_model).

3. Employ the estimation command “hausman” as hausman FE_model RE_model.
4. Compare the test statistics to determine whether the null-hypothesis is rejected.

Table 6.9 provides the results from the data from our running example.

Table 6.9 shows that the RE model provides a negative coefficient on the time-

invariant variable ipo_year. Other coefficients are similar in terms of both magni-

tude and significance levels, a reassuring result because the estimations converge.

Nevertheless, the null hypothesis)of no differences between coefficients is rejected

in the Hausman test (χ2¼ 13.93, p< 0.0001), so given the closeness between

coefficients, the choice of one model over the other one would not make much

difference in this example.12

A Toolkit for Choosing the Most Appropriate Estimation Model

Figure 6.2 offers a graphic representation of the steps in choosing whether pooled-

OLS estimation or panel-data estimation is more suitable. First, the Breusch-Pagan

test reveals whether the pooled-OLS estimation is a valid estimation strategy. Then,

if panel-data estimation is preferable, the Hausman test indicates whether an RE

model or an FE model offers the more efficient and less biased strategy.

To wrap up our example, Table 6.10 compares the estimation results from three

models (OLS_long, FE, and RE). All models have a good overall fit with the data,

with R2 consistently larger than 0.50, but there are some notable differences: First,

OLS overestimates the magnitude of the effect of R&D expenses on market
capitalization relative to the FE and RE estimations. The Breusch-Pagan test

offered a clear indication that panel-data estimation should be preferred to

pooled-OLS estimation because of the within-firm variability that should be taken

into account and because of the presence of unobservable factors (both time-variant

and time-invariant).

12A note of caution when employing Hausman test: Results of the test are limited to the specific
models fitted with FE and RE. They are not intended as a definitive response to whether we should
employ FE or RE to answer the research question of interest. Changing the specification of FE or

RE models by adding different covariates will lead to different results. It is good practice to

re-estimate different models and compare them before making any statement or decisions.
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Table 6.9 Comparing RE and FE models with the Hausman test

DV: mkt_cap

FE model RE model

Coeff (se) t Coeff (se) z

rd_exp_chg 3.11 (0.54) 5.7 3.11 (0.55) 5.69

bod_size 0.81 (0.67) 1.33 0.91 (0.61) 1.49

founder 6.84 (1.71) 4 6.83 (1.71) 3.98

ipo_year Omitted �6.65 (0.79) �8.44

intercept 148 (5.42) 27.33 13464 (1578) 8.53

N 100 100

N (groups) 20 20

overall-R 0.23 0.81

within-R 0.53 0.53

between-R 0.51 0.82

corr (μ; Xb) 0.42 Assumed¼ 0

Wald-X 214.92 (p< 0.001) 172.77 (p< 0.001)

rho 0.99 0.97

Hausman test result: Differences in coefficients are not systematic.

X2¼ 13.93

Prob> χ2¼ 0.000

Fig. 6.2 A process for choosing the most appropriate estimation model
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Next, the Hausman test suggested a preference for the less efficient but less

biased estimation, the FE model, but a close look reveals that the estimation

coefficients in FE and RE models are very close in terms of magnitude and

statistical significance. Given that RE also employs time-invariant variables and

returns an estimation coefficient, in this case one could rely on the RE model

instead of FE-model (Table 6.11).

6.6 Final Remarks, Suggestions and Your Best Tool: Thinking!

Gathering longitudinal data is always preferable over observations made at a single

point in time (i.e., cross-sectional data). Having information about changes that

affect units over time or even just being able to map trends and trajectories of the

phenomena of interest adds value and insights to the analysis. On the other hand,

collecting longitudinal data is more costly and increases the complexity in

handling, manipulating, and analyzing data. Overall, however, the advantages of

dealing with longitudinal data outweigh the costs.

Once the data are there, the next issue to address concerns what estimation
strategy is best suited to answering the research question of interest. We hope this

chapter has provided you with all the necessary tools to make that choice. Keep in

mind, however, that there is no one superior estimation strategy a priori, as

choosing the best statistical technique is a function of the characteristics of the

data collected. Every choice—pooled-OLS models, FE models, or RE models—has

its shortcomings and limitations: The best strategy is to evaluate all of them and

make an informed decision for the specific case you are examining.

Table 6.10 Comparison of pooled-OLS, FE, and RE models

DV: mkt_cap

Model OLS_long FE model RE model

Coeff (se) t Coeff (se) t Coeff (se) z

rd_exp_chg 5.07 (2.36) 2.15 3.11 (0.54) 5.7 3.11 (0.55) 5.69

bod_size 6.41 (1.93) 3.33 0.81 (0.67) 1.33 0.91 (0.61) 1.49

Founder 9.20 (7.37) 1.25 6.84 (1.71) 4 6.83 (1.71) 3.98

ipo_year �4.69 (0.76) �6.16 Omitted �6.65 (0.79) �8.44

Intercept 9483 (1539) 6.16 148 (5.42) 27.33 13464 (1578) 8.53

Adj-R 0.83

F-test 121 (p< 0.001)

N 100 100

N (groups) 20 20

overall-R 0.23 0.81

within-R 0.53 0.53

between-R 0.51 0.82

corr (μ; Xb) 0.42 Assumed¼ 0

Wald-X 214.92 (p< 0.001) 172.77 (p< 0.001)

Rho 0.99 0.97
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When you are reporting the results, disclosing the chosen strategy and the

detailed decisions at length, together with the potential limitations of the choice,

will reassure the reader. Finally, it is a good idea to share results–or at least discuss

them–from all angles (i.e., model specifications). If there is convergence, the

reader’s concerns will be reduced, and if there is divergence (as in most of our

examples), a detailed discussion will strengthen the validity of your results.
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Causality: Endogeneity Biases and Possible
Remedies 7

Many, if not all, studies in accounting and information systems address causal

research questions. A key feature of such questions is that they seek to establish

whether a variation in X (the treatment) leads to a state change in Y (the effect).

These studies go beyond an association between two phenomena (i.e., a correlation

between variables in the empirical model) to find a true cause-effect relationship.

Moving from a simple association to a causal claims requires meeting a number of

conditions.

Consider the relationship between board independence and firm performance. A

recurrent question concerns whether increasing board independence (cause)

improves decision-making or firm performance (effect). Addressing this question

involves several methodological issues that, if ignored, hamper the ability to make

conclusive claims about the cause-effect relationship. In order to address this

question, the research design should take into account two issues: Firm perfor-

mance or expected performance may affect a board’s choice in appointing more or

less independent directors (an example of reverse causality), and the number of

independent directors varies with a number of other variables that jointly affect the

main predictor and the effect of interest (an example of omitted correlated

variables).

So far, we have introduced several statistical methods with which to investigate

relationships between variables. This chapter examines the conditions an empirical

study has to meet in order to support causal claims. In so doing, the chapter

compares an ideal state (e.g., a randomized experiment) with non-experimental

data and discusses the issues researchers encounter in dealing with observational

data. Then it offers a hands-on approach to a series of remedies to overcome the

potential shortcomings in designing or executing research that seeks to make causal

claims.
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7.1 Your Research Question Is Causal: What Does that Mean?

Imagine you have collected data that shows an increase in a technology’s perceived

usefulness and intent to use the technology. It would be tempting to state that

perceived usefulness caused that increase in intent to use (and that is often how

scholars report such results). However, there are at least three reasons that such a

conclusion is probably premature: First, that two things occur together or behave

similarly (i.e., co-vary) is not sufficient reason to conclude that one variable causes

another. They may have co-varied by chance or because of a third variable that

influenced both. Second, a causal conclusion like this is allowed only when cases

(people) are randomly assigned to different levels of the independent variable

(perceived usefulness), when that independent variable is manipulated in a con-

trolled environment (e.g., by assigning them to technologies that are, in fact, more

or less useful), and when the manipulation precedes the effect in time (i.e., when we

measure the intent to use after they developed their perceptions of usefulness. This

point is critical because most of our studies rely at least in part on self-selection or

are plagued by other selection biases; rarely include an opportunity to manipulate

the levels of an independent variable, let alone in controlled environments; and

often collect measures at one point in time rather than at multiple points in time

(most evident in cross-sectional surveys). Third, simultaneous measurements,

selection bias, and lack of controlled manipulation also mean that many other

variables vary between cases and co-vary with relevant variables, and some of

these influence the results.

For these three reasons, we must design studies so they avoid these problems,

understand the cause and size of these problems if they do emerge despite our

efforts, and deal with them accordingly while analyzing the data and reporting

results. This is what this chapter is about.

This chapter is especially relevant to you if you answer “yes” to two questions:

(1) Is your research question causal (i.e., you are investigating whether, by chang-

ing the quantity or state in X, a change in state or quantity in Y is expected)?

(2) Is your data non-experimental and non-randomly assigned to the conditions

(e.g., observational data from secondary sources, archival sources, or a survey

instrument)?

If you answered yes to both questions, you cannot simply compare the outcomes

(Y) across dimensions of X to establish a causal relationship (X affects Y). To put it

bluntly, you should not use data collected at one point in time to make statements

like “increases in perceived usefulness increases intentions to use.” If your research

question is causal but your units are not randomly assigned to the control and

treatment conditions or to different levels of treatment, then you need to think
before you act!

Most empirical issues that hamper researchers’ ability to make causal claims
stem from the fact that individuals/groups/firms can choose to adopt or follow

certain behaviors–our treatment of interest. In addition, their choice is driven by
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factors that affect the outcome variable as well [1]. For example, firms choose the
level of board independence , so a host of factors that affected the choice contem-

poraneously impact the outcomes [2]. Therefore, observed units that choose their

(level of) “treatment” are systematically different from those that do not, and if such

self-selection is based on attributes that affect the outcome variable (Y), then our

analyses will be biased. Furthermore, researchers often observe only the outcome of

the choice made but not the outcome that would have occur had an alternative

choice been made [3].
For example, imagine you wish to test whether board independence (X, the

treatment) affects the quality of financial information (Y, the effect). The choice of

having zero, a few, or many independent directors on the board is voluntary and not

randomly assigned. Firms choose to set up their own boards within the boundaries

of regulatory requirements according to a series of internal features and needs. In

empirical terms, firms across different levels of X (i.e., board independence) are not

equal in terms of the expected outcome (i.e., quality of financial information) prior

to their choice of the level of board independence. Large and highly profitable firms

tend to appoint more independent directors and deliver high-quality financial

information. Therefore, failing to take into account firm size in our empirical design

results in overestimating the effect of board independence on the quality of finan-

cial information. (For example, larger boards tend to be more independent, so the

two factors should be disentangled.)

The board example illustrates a causal question that many researchers have tried

to address with non-experimental data, as it is difficult to find a sufficient number of

boards that will allow their level of board independence to be manipulated for the

sake of research. While non-random data allows an association between board

independence and financial reporting quality to be claimed, the researcher is not

in a position to substantiate causality.

After identifying a relevant research question, we should identify the most

appropriate method or technique with which to address it. The nature of the claims

we seek to substantiate significantly affect our choices [4]. Seeking to establish an

effect or the impact of a treatment on an observable outcome entails a series of

choices in terms of data collection and analysis that minimizes the risk of alterna-

tive explanations (i.e., counterfactuals) and endogeneity issues [5]. Endogeneity
means that the values of the main predictor across units come from within the

model, so the estimated coefficients are biased because of a correlation of the error

term with the predictors. Planning is important to ensuring that the empirical

strategy allows the causal claims one seeks to substantiate to be supported or not.

A first step in such planning entails having a thorough look at the theoretical

predictions [6]. No empirical methods or techniques will (ex-post) suffice to

overcome methodological concerns without a sound (ex-ante) understanding of

the mechanisms that affect the relationships of interest. Theory dictates model

specification and, in turn, analysis: no statistics expert will find something mean-

ingful in the data without solid theoretical guidance.

The reminder of the chapter addresses these issues, with the intent of increasing

researchers’ awareness of the problems at stake identifying the right tools.
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Conditions for Drawing Causal Conclusions: The Ideal State(s)

When researchers seek to establish whether one variable (X) exerts an effect on

another variable (Y), they seek to make a causal claim. The challenge lies in

assessing whether, at different levels of X and with everything else held constant
the outcome variable (Y) changes and by how much. One of the most significant

hurdles in accounting and information systems is drawing valid conclusions based

on the observed phenomena [7]. Two issues are particularly important: internal

validity and external validity. Internal Validity refers to the unambiguity with

which we draw conclusions about the relationships and mechanisms identified in

our study by ruling out alternative explanations. Internal validity points to the

certainty with which we can claim that the changes in Y are due to the variation

of X. External Validity relates to the generalizability of the results beyond our

setting. Once we make sure that results are internally valid, we must determine

whether the conditions are specific and local to the setting or are applicable to other

contexts.

A rich literature offers detailed guidance in terms of making causal inferences in

the field of social science [8, 9]. Mills established three conditions for causal

inference: The cause (X) should precede the effect (Y) temporally; the change in

the treatment (X) should produce a change in the effect (Y); and the observed

change in the effect should be unequivocally attributed to the treatment (i.e., no

other potentially confounding causes).

The first condition—that the cause (X) should precede the effect

(Y) temporally—highlights the need for clear temporal sequencing: the treatment

must precede the effect such that the manifestation and measurement of X occurs

before Y. This requirement has consequences on studies that rely on survey

instruments, interviews, or questionnaires, where information about the main pre-

dictor and information the outcome are often (but not always) acquired at the same

time. One of the shortcomings of such data relate to the researcher’s limited ability

to discern the temporal logic through which the observed phenomena occurred.

The second condition—that a change in X produces a change in Y—means only

that individuals/groups/firms that are subject to a treatment should differ signifi-

cantly from otherwise similar units that are not subject to the treatment.

The third condition—that the observed change in Y should be unequivocally
attributed to the change in X—is the most difficult to ensure, as it requires that no

other concurrent factors exert an influence on the variation in Y, so the change can

be attributed to the hypothesized cause. In experimental research, this principle

rules out alternative hypotheses, but outside of experiments, the nature of the

phenomenon and the means of observation and measurement can make it difficult

to ensure that no other causes affect the outcome variable. For example, changes in

regulation at a macro level (e.g., the adoption of new accounting standards) or at a

micro level (e.g., a change in organizational structure) hardly come on their own but

are themselves influenced by many factors. Therefore, it is difficult to ensure that no

concurrent forces affect the variation in Y.

Bearing these three conditions in mind prior to the design of the study ensures

the data can support making causal claims. A good practice entails understanding
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the ideal state or conditions required to claim causality and benchmarking the ideal

state with the realistic conditions and data availability. An example is offered by

studies on the impact on firm value of granting stock options (SO) to the CEO

[10]. Finance theory suggests that alignment of interests between stockholders and

managers in publicly listed companies reduces agency costs by directing CEOs’

efforts toward maximizing shareholder value [11]. Whether and to what extent this

approach translates into positive gains for shareholders are empirical questions. In

an ideal state one would measure the effects of giving SO to CEOs as the difference

between the market value of company Alpha (MVA) under the two conditions:

(1) the CEO of Alpha is given a SO plan (SO1), or (2) the CEO of Alpha is not given

a SO plan (SO0). Hence:

EFFECT ¼ MVA

�� SO1

� � � MVA

�� SO0

� � ð7:1Þ
In this case, we compare two hypothetical states: the market value (MV) of Alpha at

T¼ 1 (MVA) once the SO plan has been granted at T¼ 0, and a counterfactual–the
market value of Alpha at time T¼ 1 if the SO plan had not been granted at T¼ 0. In

reality, Alpha either grants a SO plan or not, so we cannot observe both states. In

both conditions, we would miss a counterfactual so no causal claim is possible in

theory unless we have a time machine that enables us to observe one state (e.g., SO
is given to the CEO), measure market value, and then go back in time, modify the

treatment condition (e.g., the CEO is not given a SO), and measure market value.

We have to resort other solutions. The issue then becomes how to identify a valid

counterfactual.

Econometrics textbooks offer plenty of solutions [4, 12]. One involves

identifying a (group of) firms that resemble Alpha as much as possible (e.g., in

terms of size, industry, profitability, governance) and that differ uniquely in terms

of their choice of giving (or not) a SO plan to the CEO. The best route involves

employing randomized experiments that assign a group of companies to the treat-
ment condition (SO1) and another group of companies to the control condition
(SO0). A significant advantage of randomized experiments is that they minimize

self-selection bias; in other words, we would not let firms choose whether to give a
SO plan to their CEOs; instead, firms are assigned to either condition. If we were

able to do so, we would be able to assess the effects of granting stock option as:

EFFECT ¼ MV
�� SO1

� � � MV
�� SO0

� � ð7:2Þ
In this case, we observe both states and compare groups of similar firms

randomly assigned to the SO condition (treatment group) or not (control group).

Thus we can see the effect of the treatment by comparing the average MV of the

treatment and control groups. Since firms are randomly assigned to either of the two

conditions, there is no reason to suspect that the two groups are significantly

different (between-groups variation) along any dimension. Differences within the

two groups (within-group variation) do not affect or bias our conclusions.
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The gold standard for causal studies is an experimental condition in which all

factors are held constant [3]. Unfortunately, such a condition is difficult, if not

impossible, to achieve with observational data alone, so the strength and quality of

the claims we make are affected. Failing to isolate the effects of the main predictor

on the outcome of interest increases the risk of mis-attributing the effect to other

concurrent factors.

A Reality Check: Dealing with Observational, Non-Randomized Data

Understanding the conditions required to support causal claims and why

randomized experiments get us close to these conditions being realistic about the

nature of the data we deal with in a researcher’s domain and why they are

problematic. Unfortunately, manipulating the observed phenomena and the

confounds that cause the changes we see is difficult, and the time machines we

need remain remote. In general, accessing a limited set of the data while neglecting

other and perhaps more promising sources of information makes research bounded.

In these situations, one solution is to develop a study design that puts us in a

condition as if we were in a randomized experiment.

Going back to the previous question concerning whether granting SO to CEOs

affects a firm value, if you were to ask a large number of firms to grant their CEOs

SO plans (the treatment group) and a comparable group of firms to refrain from

giving their CEOs SO plans (the control group), you would be unlikely to gain

consent. Even if you did, you would have reason to doubt the quality of firms that

are willing to make such an important choice in support of research.

Some firms choose to grant SO plans to their CEO, while others do not. Since

this choice is voluntary, it depends on a number of factors, and it is these other

factors that constrain our ability to assign firms to the treatment or control

conditions. Two groups of firms that choose to grant or not grant SO to their

CEOs does not meet the equality in expectations condition that must be met to

allow causal claims.

For example, firms that grant SO plans to their CEOs are often wealthier and

more profitable than those who do not, so companies that offer SO plans tend to

have higher MV. Hence, analyses will be biased, resulting in overestimating the

effects of SO plans on MV, inflated by ex-ante differences in profitability. In

addition, some firms that are having difficulty may try to attract CEOs by ensuring

them more-than-proportional remuneration if they manage a turnaround. CEOs

may be willing to accept a SO plan if they foresee the opportunity to gain significant

remuneration. In such scenarios, analyses will be biased because of under-
estimating the effects SO plans exert on market valuation. Therefore, when com-

paring firms across levels of MV and without the possibility of random assignment

to the SO-plan or no-SO-plan conditions, estimation coefficients will either over- or

under-estimate the sign and magnitude of the relationships.

In order to clarify the types and sources of empirical issues in dealing with

non-randomized data, the next section provides an overview of the sources of

problems that relate to self-selection issues.

104 7 Causality: Endogeneity Biases and Possible Remedies



7.2 Self-Selection and Endogeneity

“Selection occurs when observations are non-randomly sorted into discrete groups,
resulting in the potential coefficient bias in estimation procedures such as OLS” [13].

The difficulty in getting close to the ideal state requires taking into account a

number of issues when dealing with observational data and the treatment is

non-randomly assigned to units. Two expressions are particularly important: self-
selection and endogeneity bias. The self-selection problem relates to the (violation

of) independence of observations. A condition of causal interpretation is that

observations are similar along a number of dimensions except on the treatment or

main predictor (X). Self-selection problems occur when observed units choose to

follow (adopt) certain rules (behaviors), and the self-selection is based on attributes

that affect the outcome variable. Thus, units that choose a certain behavior (the

treatment group) are systematically different from those that don’t (the control

group). If the selection is based on attributes that affect the outcome variable, then

analyses will be biased.

Self-selection leads to a series of endogeneity concerns that affect many of our

studies.1 We discuss four of these concerns: omitted correlated variables (observ-

able and unobservable), reverse causality, and simultaneity.

Omitted Correlated Variables

Omitted correlated variables (OCVs) describe situations in which a variable that

exerts an effect on both X and Y is omitted from the empirical model. A classic

example in economics is the relationship between levels of education and future

earnings, where parents’ wealth affects both the likelihood of getting additional

education and future earnings. OCVs arise in contexts wherein the treatment

(X) is non-randomly distributed across the units, as each unit chooses whether to

be treated (e.g., to hire a Big-4 auditing firm or not) and/or the level of the

treatment (e.g., the amount paid to the external auditor). Firms choose whether

to hire a Big-4 auditor and negotiate their audit fees because of own features and

needs (e.g., size, as larger companies tend to buy more assurance from auditors,

and level of financial risk). If firms that choose to hire a Big-4 auditor differ in

significant ways from those that do not, there is a risk of attributing the

differences in the dependent variables to a confounding factor. The extent of

the bias is a function of the magnitude of the correlation between the main

predictor (X) and the OCV, and the size of the relationship between the OCV

and the outcome variable (Y).

1Editors and reviewers are increasingly aware of the issues with observational data and causal

claims. Some of the leading journals in business and management fields suggest that authors deal

with endogeneity issues in the manuscript prior to the first submission of the study for consider-

ation: http://strategicmanagement.net/pdfs/smj-guidelines-regarding-empirical-research.pdf

7.2 Self-Selection and Endogeneity 105

http://strategicmanagement.net/pdfs/smj-guidelines-regarding-empirical-research.pdf


A key characteristic of potential OCVs is that the variable must jointly affect the
choice of X (and/or its level of) and the dependent variable (Y). OVCs can be of

two types: observable OVCs if the variable is available and data collection is

feasible and unobservable OVCs if the data for this variable are not accessible or

are subject to measurement flaws.

The two types of OCVs have differing statistical and econometric remedies.

Figure 7.1 provides an illustration of an OCV.

Consider this example of OCVs in accounting: Several studies in accounting

have sought to test whether hiring a Big-4 auditor affects the quality of accounting

information, measured as the probability of receiving a going-concern opinion

(GCO) or an internal control weakness (ICW) warning. Theory would predict that

a Big-4 auditor enhances accounting quality because Big-4 firms are well-equipped

to provide auditing assistance, and they face reputation costs in the case of audit

failure. In those accounting studies, an OCV is firm size (size), which affects both

the probability that a firm will hire a Big-4 auditing firm (e.g., large firms can afford

a more expensive service) while also reducing the probability that the firm will

receive a GCO, as larger firms tend to have more assets and be more established

than smaller firms. Thus, failing to account for ex-ante firm size will result in over-

estimating the effects of a Big-4 auditor on accounting quality [14]. In this instance,

data on firm size is relatively easy to collect. (Total assets, market capitalization,

number of employees, and turnover are all acceptable proxies for firm size.)

Unobservable OCVs could be any of many factors, including the personal

attitudes or characteristics of CEOs, top management team members, or auditors. A

classic example can be found in studies about the relationships between board quality

(gathered through attributes like competence, size, and background) and firm perfor-

mance [15]. One unobservable OCV is managerial talent, which affects both the

choice of board members and firm performance, as skilled managers hire high-

quality directors, thus leading to over-estimating the effect of boards on firm perfor-

mance, or (conversely) may opt for low-quality directors, as they do not feel the urge

for appointing others who may want to have a say in how the corporation is run, thus

leading to under-estimating the effect of boards on firm performance. In both cases,

OCVs affects the interpretation of coefficient estimates in the regression.2

Fig. 7.1 Omitted correlated

variables

2If a researcher could measure managerial skill with any confidence, the OCV would become

observable. By adding it as a covariate to the OLS model specification, the estimation would be

freed from the biasing effect of managerial skill.

106 7 Causality: Endogeneity Biases and Possible Remedies



Whether there are observable or unobservable OCVs depends on the information

set to which a researcher has access. Researchers focus only on observable OCVs

that can be included in the model, whereas extant theory dictates which variables

should be taken into account, whether they are available or not. If sources of

selection come from observable attributes, then the problems are limited, but issues

arise when sources of selection are unobservable [16].

Reverse Causality and Simultaneity

Another source of endogeneity in estimating coefficients is the reverse causality or
selection on outcome problem [17]. Reverse causality casts doubts on the direction

of the relationship: whether X affects Y or Y affects X (Fig. 7.2). An example is

whether corporate transparency affects firm performance or the other way around.

In accounting and information systems, managerial and firm decisions are voluntary

(X, the treatment) and might be affected by concurrent or expected levels of the

outcome (Y). Simultaneity occurs when both factors affect the other, hampering the

ability to draw causal claims about the relationships of interest.

Studies in auditing commonly face reverse-causality or simultaneity issues. For

example, the issue around the long-standing quest for mandatory auditor rotation

concerns whether rotating external auditors improves the quality of financial

reporting (e.g., by increasing auditor independence) or reduces it (e.g., by limiting

the auditor’s client-specific knowledge). Since auditor rotation is voluntary, as
firms choose to renew or replace the current auditor, the issue becomes how we

should interpret findings that financial-reporting quality declines with a change in

auditor. A plausible interpretation is that auditor rotation reduces reporting quality

because the incumbent auditor does not have the same client-specific knowledge as

the outgoing auditor, but an equally plausible interpretation is that the auditor is

more likely to be replaced when the financial reporting quality is low. In short, it is

difficult to make clear predictions because the causality between audit rotation and

the quality of financial reporting could run in either (reverse causality) or both

directions (simultaneity).

7.3 Specifying OLS Models to Minimize Endogeneity Concerns

As we learned in Chap. 3, regression models are used to estimate a relationship

between two or more variables. Building on the types and procedures of regression

models discussed earlier, we now explain how we can specify an Ordinary Least

Squares (OLS) model to minimize endogeneity concerns and get close to causal

interpretation.

Fig. 7.2 Reverse causality
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OLS models allow an unbiased and correct interpretation of the regression

coefficients if the source of endogeneity is attributable to observable variables.3

Understanding whether the model includes all observable variables or raises

endogeneity concerns derives from a thorough knowledge of the underlying theory

about what affects the main predictor and the dependent variables [18].

In regression analysis, we would normally interpret coefficient estimates on X

that are significantly associated with Y as a sign of a causal relationship. However,

if endogeneity exists, we cannot make such claim. This assessment does not depend

on the statistical tool employed but derives from our understanding of theory. By

construction, OLS estimation assumes that the error term and the predictors are not

correlated, but if an omitted-variable problem or reverse-causality issue is in place,

the coefficients will be biased.4

Take as an example a study that seeks to establish whether the ratio of outside

directors on the board affects company value. The level of outside directors on the

board is endogenous (i.e., a firm-level choice), which requires careful attention to

the specification of OLS regression. Without careful analysis, he model specified in

Eq. (7.3) is likely to return biased estimation coefficients.

Market Valuei ¼ α0 þ α1Ind boardi þ εi ð7:3Þ
Two steps must be undertaken to assess the extent of the bias in Eq. (7.3): the

main predictor (ind_board) and the outcome variable (market_value) should be

added to augment the regression model, and we should look carefully at the

correlation matrix and the correlation coefficients.

The following example mimics the available literature on board composition

and market valuation to answer our research question concerning whether board

independence affects firm value).5 The structure of the data is shown in

Table 7.1.

In addition to the outcome and predictor variables, a number of covariates

represent potential confounding factors on the relationship of interest. Getting

data on the three confounds allows us to minimize endogeneity concerns that

arise from the observable factors, but we cannot control for unobservable OCVs.

Given that the OLS model (Eq. 7.3) is inappropriate in light of theory, we can refine

the regression model to come up with a more meaningful specification. The

question is: which variables should be included and which ones can be left out

3Chapter 6 on approaches to longitudinal and panel data illustrates some additional remedies.
4A note of caution is warranted here. Even though OLS regression using cross-sectional data is not

the best tool and setting in which to rule out endogeneity concerns, in certain circumstances

researchers can still minimize endogeneity issues and rule out sources of concerns [19]. A note of

thanks goes to Stefano Cascino for highlighting this sometimes hidden truth.
5Data and codes are available upon request from authors and will be available on the book’s

companion website.
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without doing harm to the model? A correlation matrix is useful in answering this

question. Table 7.2 shows the correlation between the variables in Table 7.1.

The correlation matrix reveals patterns in the data: First, a strong positive

relationship between ind_board and market value (0.468; p< 0.001) lends initial

support to the hypothesis that the ratio of independent board members affects the

firm’s market value. Next, female positively correlates with market_value (0.337;

p< 0.01) but not with ind_board, while board_size does have a strong relationship

with ind_board (0.406; p< 0.001) but not with market_value. Last, acc_expert
positively correlates with both market_value and ind_board. We can draw three

primary conclusions regarding how to specify the OLS model from these patterns.

1. Accounting expertise must be included in the OLS model because it jointly

affects X (ind_board) and Y (market_value). Failing to include it will result in

overestimating coefficients and misattributing a positive effect of board inde-

pendence on market value, driven by accounting expertise.

2. Female should be included in the model. It improves the model’s estimation and

accuracy, as the R2 goes up and the errors become smaller. While excluding

female from the model does not trigger endogeneity issues, there are important

gains when it is taken into account;

3. Board size should not be included in the model. Board size positively correlates

with X, thus reducing the variation of the main predictor without adding much in

terms of the model’s explanatory power. Including it increases multicollinearity

because two highly correlated variables appear to be predictors of market value

(Y).

Figure 7.3 graphically depicts the variables that should be included (and not

included) in a regression model based on the estimation coefficients from the

correlation matrix. Equation (7.4) shows a correct OLS model for this example.

Table 7.1 Descriptive

statistics (board

independence and firm

value)

Variable Mean Std. dev. Min Max

mkt_value 267.25 134.12 40 500

ind_board 0.52 0.29 0.03 1.00

female 0.48 0.50 0 1

board_size 12.20 4.41 5 23

expert 3.03 1.40 1 5

Mkt_Valuei is the outcome variable, measured as the market capi-

talization at the end of the year; ind_boardi is the main predictor,

which reveals the ratio of independent directors on the board;

femalei is a dummy variable that indicates whether at least one

female director is on the board; board_sizei is the number of

directors on the board; and experti is the average level of directors’
expertise in the fields of accounting or finance

7.3 Specifying OLS Models to Minimize Endogeneity Concerns 109



Market Valuei ¼ α0 þ α1Ind boardi þ α2Experti þ α3Femalei þ εi ð7:4Þ
Table 7.3 compares five model specifications based on the variables included.

Model 1 includes only brd_indep as the main predictor, and the coefficient estimate

is positive and statistically significant. However, Model 1 is subject to severe

endogeneity issues because of the omission of OCVs.

Model 2 adds female as a covariate. The estimation improves the overall fit of

the model significantly (Adj-R2¼ 30%), and the standard errors shrink. Notwith-

standing the estimation improvement, Model 2 still suffers from potential

endogeneity issues because of the omission of OCVs.

Table 7.2 Correlation matrix

Mkt_Value ind_board female board_size

ind_board 0.468 1.000

0.000

female 0.337 0.041 1.000

0.008 0.754

board_size 0.132 0.406 0.139 1.000

0.316 0.001 0.290

expert 0.480 0.692 0.001 0.164

0.000 0.000 0.995 0.212

Mkt_Valuei is the outcome variable, measured as the market capitalization at the end of the year;

ind_boardi is the main predictor, which reveals the ratio of independent directors on the board;

femalei is a dummy variable that indicates whether at least one female director is on the board;

board_sizei is the number of directors on the board; and experti is the average level of directors’
expertise in the fields of accounting or finance

Fig. 7.3 Selection of

variables to be included in the

model
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Model 3 includes both female and board size. Model 3 shows a slightly worse

overall fit (Adj-R2¼ 29%). Adding board size to the model does not harm our

analysis, but multicollinearity concerns may arise. Adding covariates that do not

correlate with Y but do correlate with X reduces model parsimony and magnifies

standard errors.

Model 4 includes acc_exp because of its joint correlation with X and Y. Adding

acc_exp to the model changes the results in reducing the size of the previously

positive and significant coefficient on brd_indep to 109.11 and rendering it not

statistically significant. On the other hand the adjusted R2 improves to 34%.

Finally, Model 5 includes all three covariates. The results do not differ from

those of Model 4, with the exception of a reduction in the adjusted R2.

OLS allows the researcher to establish causal relationships under when the

source of endogeneity is due to observable factors that can be included in the

model, and there are no reverse-causality issues. Table 7.4 summarizes the

decisions we can make about OLS models.

7.4 More Complex Designs to Support Causal Claims

OLS regression with covariates offers limited support for researchers’ efforts to

address endogeneity concerns. OLS returns coefficients based on the lack of

correlation between the error term and the covariates, so it should be used only if

we are sure ex-ante to meet this condition. In order to overcome endogeneity issues,

researchers must use one of several ways to make the main predictor exogenous.

Table 7.3 Selecting covariates in OLS regression

Model Main predictor IV-Coeff (se) t-stat Covariates Adj-R2

1 Ind_board 216.47 (53.63) 4.04 – 0.21

2 Ind_board 210.38 (50.51) 4.16 Female 0.3

3 Ind_board 232.47 (55.25) 4.12 Female 0.29

Board size

4 Ind_board 109.11 (67.89) 1.61 Female 0.34

Expert

5 Ind_board 128.91 (74.77) 1.72 Female 0.33

Expert

Board size

Table 7.4 Selecting variables to be included in OLS model

Covariate Main predictor Dependent variable Include?

Expert Correlated Correlated Must be included

Brd_size Correlated Not correlated Should not be included

Female Not correlated Correlated Should be included
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The first technique requires employing instrumental variable estimation [20],

that is, using a set of variables (not correlated with Y) to predict X. This technique is

called first-stage regression. A first-stage regression is employed to parcel out the

exogenous portion of the main predictor prior to using it to predict the outcome of

interest. A convincing implementation requires the researcher to identify exoge-

nous predictors of X that can be excluded from the set of independent variables in

the second-stage regression without raising additional endogeneity concerns

[21]. This approach is employed in the Heckman two stage procedure and in

instrumental variable estimation [22, 23].

Another common way to address endogeneity concerns is through a matching
procedure called propensity score matching that identifies control firms that are as

similar as possible to the treated ones along a number of dimensions, excluding the

treatment [24].

These three approaches are explained in detail.

Instrumental Variable Estimation (IVE) and Two-Stage Least Square (2SLS)

We have shown that patterns that are evident in observational data are not definitive

evidence of causal relationships; they allow one to claim association but not the

direction of the association because units choose to be treated or not. As a result, X

(the main predictor) is affected by other factors (OCVs) or may simultaneously

change together with the outcome (Y). In both cases, endogeneity becomes a

concern.

To overcome endogeneity problems, we can use instrumental variable estima-
tion (IVE).When X is endogenous, IVE employs another variable (instrument) that

correlates with X but does not with the error term in the outcome model. In other

words, it carves out the exogenous part from the main predictor (X) to employ it in

the estimation model (second-stage regression). Employing the exogenous portion

of X estimated by the IV attenuates risks of endogeneity.6

Inst is the instrumental variable, which shares a common area with the endoge-

nous predictor (X) that is the portion of the predictor that is predicted by the

instrument. This area can be employed in modeling the outcome variable (Y).

Figure 7.4 offers a graphic representation of what an IVE approach does: The

instrumental variable and the endogenous predictor share a common area that is the

portion of the predictor that is predicted by the instrument. This area is exogenous
by definition—the instrument must not be endogenous—and can be employed in

modeling the outcome variable.7

An IVE approach can be used if two conditions are met:

1. Instrument must correlate with the main predictor (X) so the instrument can
carve out a part of the variation in X to be used as exogenous in predicting the

6IVE also helps in solving measurement error problems that are due to the inability to observing

and measure the best proxy for the underlying concept.
7The portion of X (Inst) that is non-overlapping with Inst (X) is likely to be endogenous (uncorre-

lated with Y ), so both must not be employed in estimating the outcome model.
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outcome (Y). If the instrument and X are unrelated, there will be no overlap

between the two variables that can be exploited.

2. Instrument must be uncorrelated with any other determinants of the dependent

variable (Y) and with the error term. This necessary condition is difficult to

maintain and justify: If theory suggests the instrument could be related to the

error term in the outcome model, then the IVE approach would be simply to shift

the endogeneity problem from the main predictor X to the instrument, thereby

failing to deal meaningfully with it.

Meeting these conditions allows one to carve out the exogenous portion of X to

approach a causal explanation of the effect of X on Y. Prior to selecting and

employing an instrument, the researcher must justify its choice, which requires

clarity and deep economic thinking. Ideally, the instrument should go beyond the

unit’s control so it can be used as a proxy for the main predictor. As a first step,

instrument allows the main predictor, X, to be estimated as shown in (Eq. 7.5: first-

stage regression).

First-stage regression:

Xi ¼ α0 þ α1Instrumenti þ ΣCOV þ δi ð7:5Þ
IVE is often used in the context of a two-stage least square(2SLS) estimation, in

which the endogenous regressor is “freed” from endogeneity so we can proceed

with an unbiased estimation. If the instrument is valid and it has predictive ability,

the fitted values of the main predictors ( bX ) will be employed in the second-stage

regression to estimate the outcome model, as shown in (Eq. 7.6: second-stage

regression).

Second-stage regression:

Yi ¼ β0 þ β1X̂ ι þ ΣCOV þ εi ð7:6Þ

In the second-stage regression, employing fitted values of the main predictor ( bX
�

attenuates endogeneity concerns in the estimation of Y.

While appealing and intuitive, it is difficult to find truly exogenous instruments.

However, failing to identify and justify the choice of an instrument will result in the

endogeneity problems faced with X. In this respect, the first-stage regression is

important in assessing the validity of the IVE approach.

Researchers are confronted with a series of issues related to justifying the

empirical model: First, the validity of the instrument must be assessed using any

of a number of tests to ascertain whether an IVE approach is needed and the

Fig. 7.4 Endogenous

regressor, instrumental

variable, and outcome
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suitability of the instrument. For example, theWu-Hausman test assesses the extent
of endogeneity threat and tests whether IVE is superior to OLS in returning

unbiased coefficients by comparing coefficient estimates in OLS and IVE models.8

A recurrent problem with IVE is the use of weak instruments (i.e., variables that
weakly correlate to the X), reducing the variability of the fitted values in the second-

stage model and challenging the suitability of the instrument as a substitute for the

predictor (X). One way to detect a weak instrument is if the F-test in the first-stage

regression is low.9 A weak instrument is not a valid substitute for the endogenous

regressor (X), so it should not be used.

Another issue with IVE relates to the instruments in the first stage that are

excluded from the second stage (i.e., exclusion restrictions). Identification tests

can determine whether the first-stage model is under- or over-identified and reveal

whether the first stage includes (or omits) variables that should be taken out of

(or included in) the estimation. Identification tests (e.g., Anderson’s LM or Sargan’s

test) should be conducted prior to theWu-Hausman test, as if the instruments are not

appropriate, there is no reason to proceed with an IVE approach and no need to

assess whether IVE is preferred over OLS.
Good instruments are offered by “natural experiments” [25], that is, events that

affect the treatment while leaving all other variables unaltered. Studies in the

governance field of sudden deaths of CEOs or unforeseen changes to regulations

are examples. For instance, Armstrong, Core, and Guay employ regulatory changes

that affect board composition–therefore, they are not firm-level decisions–to

answer the question concerning whether board independence improves firm trans-
parency [26]. Armstrong, Core, and Guay used the passing of the Sarbanes and

Oxley Act in the US in 2002 to carve out the exogenous portion of changes in board

independence and then used that portion to predict the effects in terms of firm

transparency.

Applying IVE Endogeneity issues are common in studies in which events occur

simultaneously. For example, an ad-hoc example similar to that in Armstrong,

Core, and Guay’s study [26] considers a research question that matters to account-

ing and governance: Does financial expertise on the board affect firm disclosure?
It is well established that the level of financial expertise on the board is a choice

and is non-randomly assigned to firms. As a result, the risk of having OCVs is high,

as is the threat of reverse causality since levels of financial expertise might be

affected by the actual or expected level of firm disclosure.

In this example, we exploit a natural experiment offered by a fictional change in

regulatory requirements (LAW) that requires that all firms have at least 50% of

8The Hausman test is employed in many contexts to compare the magnitude and significance of a

series of coefficients. The Hausman test is discussed in Chap. 6 to compare the results of fixed-

effects and random-effects model estimation.
9The econometrics literature offers rich guidance in terms of the F-test values that should be used as a
benchmark: If the number of instruments is 1, 2, or more than 5, the corresponding lower threshold of

F-values are 8.96, 11.59, or higher than 15 to rule out the risk of a weak instrument.
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directors with financial expertise from time T1 onwards. Some firms are already

compliant with the regulation, while others must adapt: Firms with less than 50% of

financial experts on their boards prior to T0 must change their board composition in

order to be compliant, while firms that already meet the requirement will not adjust.

Table 7.5 shows sample data.

Mef_ch is the dependent variable. The average value of Fin_exp_t0 is smaller

than the value of Fin_exp_t1 and the variability is higher. Given that changes in

board composition depend on a firm/board’s voluntary choices, the variable is

endogenous. Therefore, we employ Pred_chg_fin_exp to indicate the predicted

level of change in financial experts on the board required to meet the 50%

threshold. (For example, a board that is 22% financial experts prior to t0 has a

predicted value of change of 28%). This is a good candidate for an instrument
because it correlates with the actual change and does not correlate with the

dependent variable. The predicted change is exogenous because it stems from

regulation, so it is out of the firm’s direct control.

The two variables Headquarters and bus_school proxy for the availability of

directors with financial expertise. GCO proxies for the financial viability of the

business, and the literature suggests it is jointly correlated with board composition

and firm disclosures. Audit_fees proxies for the level of effort and insurance a

company buys outside; higher audit fees should indicate superior transparency.

Table 7.5 Financial

expertise: descriptive

statistics

Variable Mean Std. dev. Min Max

mef_ch 3.48 2.45 0.10 11

fin_exp_t1 0.68 0.15 0.50 1

fin_exp_t0 0.41 0.22 0 1

chg_fin_exp 0.27 0.24 �0.15 0.70

pred_chg_fin_exp 0.14 0.15 0 0.50

headquarters 0.54 0.50 0 1

bus_school 0.56 0.50 0 1

gco 0.32 0.47 0 1

owners_5pct 5.16 2.73 1 14

audit_fees 485.10 307.03 10 1300

Mef_ch is the difference between the average number of MEFs

issued before and after LAW. Fin_exp_t1 (Fin_exp_t0) is the per-

cent of financial experts on the board after (before) LAW was

passed. Pred_chg_fin_exp is the predicted level of change in finan-

cial experts on the board required to meet the 50% threshold.

Headquarters is an indicator variable: a firm’s headquarters is in a

state capital (1) or not (0). bus_school is an indicator variable to

proxy whether a business school is within 100 kilometers of a

company’s headquarters (1) or not (0). GCO indicates whether a

company was subject to external auditors’ issuing a going-concern

opinion (1) or not (0) in the last 5 years. Owners_5pct is the number

of owners with at least 5% stake in the equity. Audit_fees is the

amount of audit fees (in $) paid to external auditor
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Table 7.6 shows the differences between the two sub-samples of firms—those

that were compliant with the regulation and those that were not. The sub-samples

differ in terms of financial expertise prior to the regulation (68% vs. 30%, respec-

tively) of board members who were financial experts in the two sub-samples. While

firms in the compliant sample were not expected to change their level of financial

expertise—any change would be voluntary, and the predicted change in financial

expertise is 0—those in the non-compliant sample were expected to change their

level of financial expertise. Firms also differ in their disclosure behaviors (mef_ch),
as compliant firms did not alter their policies after the regulation as much as firms

that were forced to change board composition did (1.55 vs. 4.30, respectively).

Addressing the research question of interest through OLS estimation leads to

estimating the model in Eq. (7.7).

MEF chi ¼ β0 þ β1Chg fin expi þ ΣCOV þ εi ð7:7Þ
Changes in levels of financial expertise are usually endogenous, as it is a firm

choice rather than the result of random assignment. Iterations between theory and

data help us to identify possible remedies to endogeneity issues posited with the

model. IVE requires identifying one or more instruments that carve out the exoge-
nous portion of Chg_fin_exp to be used in the subsequent estimation of Mef_ch. A
correlation matrix is a necessary and useful first stopping point (Table 7.7).

The correlation matrix in Table 7.7 offers important insights into the

specifications of the first- and second-stage regression models. First, the outcome

Table 7.6 Financial expertise: breakdown by compliance

Change sample Compliant sample

Mean Std. err. Mean Std. err. t-test

mef_ch 4.30 0.41 1.55 0.29 �4.21

fin_exp_t1 0.66 0.02 0.70 0.03 0.62

fin_exp_t0 0.30 0.02 0.68 0.03 8.64

chg_fin_exp 0.37 0.03 0.02 0.02 �6.55

pred_chg_fin_exp 0.20 0.02 0.00 0.00 �5.73

headquarters 0.51 0.09 0.60 0.13 0.54

bus_school 0.57 0.08 0.53 0.13 �0.24

gco 0.34 0.08 0.27 0.12 �0.52

owners_5pct 5.48 0.48 4.40 0.62 �1.20

audit_fees 557.00 52.65 317.00 58.34 �2.69

Mef_ch is the difference between the average number of MEFs issued before and after LAW.

Fin_exp_t1 (Fin_exp_t0) is the percent of financial experts on the board after (before) LAW was

passed. Pred_chg_fin_exp is the predicted level of change in financial experts on the board

required to meet the 50% threshold. Headquarters is an indicator variable: a firm’s headquarters

is in a state capital (1) or not (0). bus_school is an indicator variable to proxy whether a business

school is within 100 kilometers of a company’s headquarters (1) or not (0).GCO indicates whether

a company was subject to external auditors’ issuing a going-concern opinion (1) or not (0) in the

last 5 years. Owners_5pct is the number of owners with at least 5% stake in the equity. Audit_fees
is the amount of audit fees (in $) paid to external auditor
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variable mef_ch is positively and significantly correlated with the main predictor

chg_fin_exp (.57; p< 0.001), which makes performing additional analyses worth-

while. Mef_ch also correlates with owners_5pct (.55; p< 0.001) and audit_fees
(.76; p< 0.001), so these variables should be added as covariates since they

improve the estimation of the dependent variable.

As expected, the main predictor, chg_fin_exp, negatively correlates with the

level of financial expertise prior to the new regulation (�0.80; p< 0.001). In fact,

changes to board composition are larger at lower levels of financial expertise prior

to T0. chg_fin_exp has a large and significant correlation with bus_school (.28;
p< 0.05) and a less significant correlation with gco (.24; p< 0.10) and with

headquarters (.24; p< 0.10). There is a high correlation between the main predictor

and pred_chg_fin_exp (.76; p< 0.001), which provides some confidence in terms of

the suitability of the instrument to be used in the IVE approach.

The first step in IVE estimation and 2SLS is defining the first-stage regression.
A prediction model for the main (endogenous) predictor is shown in (Eq. 7.8:

first-stage regression).

First-stage regression:

Chg fin expi ¼ α0 þ α1Instrumenti þ ΣExclusion Restrictions þ δi ð7:8Þ
The key issue in (Eq. 7.8: first-stage regression) is identifying the instrument and
exclusion restrictions (i.e., variables to be included in the first stage but excluded

from the second stage). Theory and the correlation matrix suggest a number of

possible routes: First, headquarters and bus_school are two variables that prior

studies–and the correlation analysis to some extent–indicate as predictors of

ch_fin_exp. Second, pred_chg_fin_exp appears to be a valid instrument because

of its strong correlation with the main predictor; it is difficult to argue that

pred_chg_fin_exp is endogenous given that the change has been imposed by a

regulatory innovation.

Table 7.8 presents three alternative and equally plausible (ex-ante) first-stage
regression models. All three models include the common covariates (gco,
audit_fees, and owners_5pct) [1]. A cursory inspection of Model 1, which relies

on headquarters and bus_school as the two sole predictors of chg_fin_exp, reveals
that it has limited explanatory power (Adj-R2¼ 8%) and that both the F-statistic
(3.34; p< 0.05) and Wald test (0.44; p> 0.1) indicate low predictive ability. Weak

instruments or just identified models render IVE approaches even more likely to be

biased than OLS estimations do. In Model 2, pred_chg_fin_exp is added as the only
instrument; no other covariates augment the model [27]. To determine which model

is superior in terms of predictive ability we can use the Wald test to compare the

model statistics and the severity of under-identification [14]. In our example, Model

2 has a much better fit with the data (Adj-R2¼ 56%); both the Wald test (25.42;

p< 0.001) and the F-statistic (65.01; p <0.001) suggest rejecting the null hypothe-

sis)of a weak instrument. Last, Model 3 includes all three instruments and appears

to be robust enough to allow an accurate prediction (Adj-R2¼ 60%); both theWald
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test (8.40; p< 0.001) and the F-statistic (25.39; p<0.001) suggest rejecting the null

hypothesis of a weak instrument.

As a result of our assessment of the potential instrument and exclusion
restrictions, the first-stage regression is shown in (Eq. 7.9: first-stage regression).

First-stage regression:

Chg fin expi ¼ α0 þ α1Pred chg fin exp þ α2Headquarter
þ α3bus school þ α4gco þ α5owners 5pct

þ α6audit fees þ δi ð7:9Þ
The next step involves estimating a second-stage regression by employing the

fitted values of the main predictor bX to assess the effects of financial expertise on

firm disclosure. The second stage includes covariates to improve model estimation:

In this case, both the extant literature and the correlation matrix indicate that gco,
audit_fees, and owners_5pct should be included in the model, as shown in

(Eq. 7.10: second-stage regression).

Second-stage regression:

Mef chi ¼ β0 þ β1 Chg f i
_

n expþ β2GCOi þ β3Owners 5pct
þ β4Audit fees þ μi ð7:10Þ

The two models in (Eq. 7.9: first-stage regression) and (Eq. 7.10: second-stage

regression) are estimated through a 2SLS approach.10

Prior to moving to the estimation results, it is worth exploring the nature of the

variables:

Table 7.8 Financial expertise—instrumental variables in first-stage regression

First-stage regression

DV: Chg_fin_exp

Model 1 Model 2 Model 3

Coeff (se) t Coeff (se) t Coeff (se) t

Exclusion restrictions

headquarters 0.10 (0.069) 1.61 0.45 (0.43) 1.06

bus_school 0.12 (0.064) 1.91 0.09 (0.042) 2.12

pred_chg_fin_exp 1.16 (0.14) 8.06 1.11 (0.14) 7.81

Intercept 0.14 (0.057) 2.48 0.10 (0.03) 3.39 0.03 (0.04) 0.85

Common covariates Included Included Included

Adj-R2 0.08 0.56 0.60

F-test (prob) 3.34 (p< 0.05) 65.01 (p< .001) 25.39 (p< 0.001)

Wald F-test 0.44 (p> 0.05) 25.41 (p< 0.001) 8.40 (p< 0.001)

10Statistical software (e.g. STATA, R, SAS) offers convenient routines with which to estimate

2SLS models.
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1. Endogenous predictor (first stage only)—The endogenous predictor is the main

predictor in the model (X, chg_fin_exp) and is subject to endogeneity issues.

2. Instrumental variable (first stage only)—pred_chg_fin_exp is the instrument

identified. It correlates with the main predictor, but we can rule out endogeneity

concerns because predicted change in financial expertise on the board is the

result of a natural experiment (e.g., a change in regulations), so it is substantially
independent of any firm choice.

3. Exclusion restrictions (first stage only)—Exclusion restrictions refer to two

variables, Headquarters and Bus_school, that are included in the first-stage

regression but not in the second-stage regression. Similar to the instrument, we
must justify the exclusion (e.g., the variables do not correlate with the error term

in the main model) because of IVE models’ sensitivity to the specifications of the

first-stage regression [14, 21].

4. Control variables (first- and second-stage models)—Control variables (gco,
owners_5pct, and audit_fees) are added to the second stage because they

increase the estimation model’s predictive ability, but they should be added to

the first-stage regression as well, as failing to do so may raise concerns about the

correlation with the first-stage model.

5. Outcome (second stage only)—Mef_ch is the initial dependent variable

estimated in the second stage.

Table 7.9 illustrates the results of the 2SLS model, in which we specify the first-

and second-stage regressions. Table 7.9 also lists the tests required when employing

an IVE approach via 2SLS and a comparison of the 2SLS model with the traditional
OLS regression in order to determine whether using IVE is warranted. Results from

the first-stage regression indicate that the instrument pred_chg_fin_exp positively

correlates with chg_fin_exp (the main predictor), as the estimation coefficient is

positive and statistically significant (1.07; p< 0.001). This result meets one condi-

tion required to employ an IVE approach. Next, the exclusion restrictions are

associated with the main predictor but to a lesser extent. Last, the control variables

(gco, owners_5pct, and audit_ fees) included in both the first and second stages do

not display significant associations with the endogenous regressor.

The results summarize a series of diagnostic tests that assess the validity and

suitability of the instrument and the overall first-stage regression in the context of a
2SLS. The results are somewhat in line with those presented in Table 7.8: The

F-statistic (20.20; p< 0.001) exceeds the suggested threshold and rules out the

hypothesis of weak instruments. Similarly, the under-identification test (Anderson’s
LM) rejects the null hypothesis)that relevant variables have been omitted from the

first stage ( χ2¼ 29.25; p< 0.001). A third diagnostic test relates to the over-
identification test (Sargan’s test or Hansen’s J); in this case, the concern is that

too many instruments have been included in the first stage and there is a risk of

redundancy. (For example, some of the variables are not needed and may correlate

with the error term in the outcome model.) Sargan’s test indicates that we fail to

reject the null hypothesis)that instruments are not redundant ( χ2 ¼ .396; p¼ 0.82).
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In addition to testing the suitability of the first stage, an important additional

diagnostic is the Wu-Hausman test for endogeneity, which compares the IVE and

OLS coefficients to determine whether they differ. If they are close, then there is no

evidence with which to reject the null hypothesis. Here, the test fails to reject the

hypothesis that OLS estimation is endogenous compared to the IVE (1.96;

p¼ .167), thus casting doubt on the need to employ a more costly and sensitive

estimation model if the advantages are not clear.

Once we have ascertained that the instrument is valid and the exclusion
restrictions are justified, we can turn to the results of the second-stage regression.

Overall, there is clear evidence that increases in the board’s financial expertise

Table 7.9 Financial expertise: comparison of OLS and the IVE approach

OLS IV & 2SLS estimation

First stage Second stage

Coeff

(se) t
Coeff

(se) t
Coeff

(se) z

Chg_fin_exp 4.15

(0.79)

5.23 5.03

(0.99)

5.04

First-stage Instruments

headquarters 0.46

(0.044)

1.04

business_school 0.097

(0.045)

2.13

pred_chg_fin_exp 1.07

(0.16)

6.50

Controls

gco 0.34

(0.39)

0.86 0.012

(0.05)

0.25 0.24

(0.38)

0.64

owners_5pct 0.159

(0.082)

1.94 �0.01

(0.001)

�0.03 0.15

(0.078)

2.01

adit_fees 0.004

(0.001)

5.96 0.001

(0.001)

0.40 0.004

(0.001)

5.96

Intercept �0.71

(0.42)

�1.68 0.014

(0.063)

0.23 �0.85

(0.42)

�2.02

Diagnostic Tests

Adj-R2 0.74 0.72

F-test: H0: Instruments are weak. 20.20 (p< 0.001)

Under-identification test

(Anderson’s LM)—H0:

Instruments have been excluded.

29.25 (p< 0.001)

Over-identification test (Sargan’s

test)—H0: Instruments are not

redundant.

0.396 (p¼ 0.82)

Wu-Hausman test—H0:

endogenous regressors

1.95 (p¼ 0.167)

VIFs (max) 1.67
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positively affect the disclosure policies and firm transparency, measured as the

change in the number of management earnings forecasts released (5.03; z< 0.001).

Given that we can maintain the hypothesis of the instrument’s exogeneity, we can
offer a causal interpretation to the coefficient: an increase in level of financial

expertise on the board improves a firm’s disclosure and overall transparency.

Finally, in order to address concerns related to endogeneity, we report results

from an OLS estimation, where the main predictor is chg_fin_exp, labeled as

endogenous in the first instance. OLS regression reports similar results for the

second-stage regression model: the coefficient on chg_fin_exp is still positive and

highly significant, although it is smaller than its instrumented version (4.15;

p< 0.001).

In spite of the striking similarity of the results offered by OLS regression and

IVE-2SLS, convincing instruments and a defensible first-stage regression will

attenuate the endogeneity concerns. If all the stringent conditions to ensuring

valid IVE and 2SLS estimations are met, then these approaches should be preferred

over an OLS approach. Nevertheless, presenting results from OLS regression will

allow a more direct comparison and assessment of the IVE estimation, given that

these estimations are highly sensitive to alternative specifications.

Addressing Self-Selection: The Inverse Mills Ratio or Heckman Selection

Procedure

The Inverse Mills Ratio (IMR) or Heckman selection procedure [28] is a technique

with which to address selection bias that is due to “unobservables” by estimating a

bias correction term (the Inverse Mills Ratio) that augments the number of

parameters in the second-stage regression model. The coefficient estimate offers

guidance in terms of the sign and extent of the bias. The IMR approach is employed

in two types of potential endogeneity concerns [14]:

1. Treatment effect model: The main predictor (X) is an endogenous dummy

variable (e.g., the decision to hire a Big-4 Audit Firm, to employ a more complex

costing model, to issue an IPO). In this case, the value of the treatment (1 or 0)

depends on whether the units choose to do something, as the drivers of their

choice may affect the outcome variable as well.

2. Sample selection model: The selection issue arises because the values of the

outcome variable (Y) are available only for a subset of observations. For

example, a researcher who wishes to explore the determinants of audit fees for

Big-4 auditors or the IPO premium for companies that go public would face a

condition in which the outcome variable is not available for all observations but

only for those units that hire a Big-4 auditor or choose to go public. In this case,

the potential for endogeneity arises as a consequence of the choice to hire or not

hire a Big-4 auditor or the choice to go public or stay private.

The implementation of the Heckman selection procedure follows the same steps

in both cases and allows similar interpretations of the regression models involved.
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Generally speaking, an IMR procedure is employed when we are trying to estimate

the outcome model shown in (Eq. 7.11: outcome model).

Outcome model:

Yi ¼ α0 þ α1Di þ ΣαCOV þ εi ð7:11Þ
In (Eq. 7.11: outcome model), Y is the outcome variable, D is a choice variable that
takes the value of 1 or 0, and COV represents a set of covariates that should be

included in the estimation model either because they will improve the overall model

fit or because of the potential for OCVs. (See section 5.3.) Given that D is

endogenous, a first-stage regression in the form of a probit model is specified as

shown in (Eq. 7.12: first-stage regression).

First-stage regression:

Di ¼ β0 þ β1Z1 þ βnZn þ ui ð7:12Þ
In (Eq. 7.12: first-stage regression), D is the treatment variable in the original model

and Z1 . . . Zn represent a set of exclusion variables that are employed in the

estimation of D but that will be excluded from the estimation of Y. The exclusion
restrictions must not be correlated with the outcome variable (Y). From the first-

stage regression, we estimate for each unit the values of IMR, which indicates the

likelihood that units will get the treatment (D¼ 1 or D¼ 0). Then, by plugging IMR

into the second-stage regression model, we test whether IMR affects the outcome

variable. Then the sign and significance of the coefficient on the IMR in the second

stage will reveal the extent of the bias on the main predictor in the outcome model.

The dependent variable in the original model (Y) is then estimated in a second-
stage regression that is similar to the outcome model, with the notable exception of
including the IMR coefficient that returns the extent of the bias. Hence:

Second-stage regression:

Yi ¼ α0 þ α1Di þ Σ COV þ α2IMR þ εi ð7:13Þ
As for the set of exclusion restrictions–the so-called Z variables–added in the

first stage model, they must be exogenous; otherwise the regression coefficients in

the first stage will be biased. In addition, the reasons for the exclusion of the Z

variables from the second-stage regression must be economically valid and justified

such that theory does not suggest any correlation between Z and Y. Overall, the

main challenge to the successful application of the IMR (Heckman selection test)

lies in identifying good Z variables.

To illustrate the application of the IMR estimation, consider an example that

follows the empirical tests proposed by Lennox et al. [14]. The example illustrates

the logic and the technical issues related to the application of the IMR approach.

The empirical question of interest concerns whether firms that engage in a seasoned
equity offering (SEO) experience an increase or a decrease in audit fees. The
economic rationale that underlies this question leads to either a potentially positive
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relationship (e.g., auditors incur more complexity and auditing costs) or a negative

relationship (e.g., raising additional equity capital strengthens the company and

reduces financial risk, as both factors are priced into audit-fee models). Let us

assume the collected data looks as Table 7.10 shows.

SEO, as the main predictor, requires more attention. Choosing to issue additional

equity on the financial market is voluntary and may depend on other factors that

jointly affect the outcome variable (audit_fees), so there is a threat of endogeneity

that should be taken into account. The literature suggests that a number of variables

can affect the relationship of interest, some of which are observable (e.g., firm age,

size), while others (e.g., volatility) are not. Unlike the previous case (independent

board directors), the source of endogeneity comes from both observable and

unobservable factors. The outcome model we would specify is shown in

(Eq. 7.14: outcome model).

Outcome model:

DV FEESi ¼ α0 þ α1SEOi þ Σ COV þ εi ð7:14Þ
The IMR approach is well suited to assessing the extent of endogeneity bias in

the relationship of interest. The first step involves modeling a first-stage regression,
where the main predictor of interest (SEO) becomes a function of a series of Z

variables that determine the choice to raise or not raise equity capital, but they must

not be related to audit fees. The extant literature and the correlation matrix are two

tools that can guide the specification of the first-stage regression. The correlation

matrix is particularly useful, as shown in Table 7.11.

Table 7.11 shows the positive and significant coefficient between DV_Fees and
SEO, suggesting an increase in audit fees in the case of SEO. The correlation matrix

also suggests that both age and size_asset are predictors of SEO but are uncorrelated

with the dependent variable of interest. Hence, these are two candidates to be the

exclusion restrictions in a first-stage model. In a similar fashion, Table 7.11 shows

Table 7.10 SEO and

audit fees: descriptives
Variable Mean Std. dev. Min Max

DV_FEES 216 97.75 50 540

SEO 1 0.51 0 1

gco 0 0.49 0 1

size_asset 2852 2046.38 120 8543

age 67 34.62 8.40 180

ROA 0.14 0.08 0.01 0.45

DV_Fees, the outcome variable, expresses the annual fees paid to

the auditor. SEO, the main predictor, is a dummy variable that

indicates whether a company has issued an SEO (1) or not (0).

GCO is a dummy variable that indicates whether the external

auditor has issued a GCO (1) or not (0). Size_asset proxies for

size, measured in terms of dollar amount of assets. Age indicates

the number of years the company has been listed on the stock

exchange. ROA is a profitability measure in the form of a ratio of

return on assets
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that GCO and ROA are positively and negatively correlated with the DV_Fees,
respectively, suggesting their inclusion in the second-stage model. Therefore, the

two models are as shown in (Eq. 7.15: first-stage regression:).

First-stage regression:

SEOi ¼ β0 þ β1AGEi þ β2ASSETi þ νi ð7:15Þ
The first-stage regression is estimated as a probit model (Table 7.12). We need

this model because it helps in assessing the model’s overall predictive ability in

relation to the main predictor (SEO) and it returns the IMR to be added to the

second-stage regression.

The first-stage model shows a good fit (pseudo-R2¼ 18.75 and

Log-likelihood¼�28.16), suggesting that IMR be included in the second-stage

regression, as shown in (Eq. 7.16: second-stage regression).

Second-stage regression:

DV FEESi ¼ α0 þ α1SEOi þ α2ROAi þ α3GCOi þ α4IMRi þ εi ð7:16Þ
The second-stage regression is similar to the outcome model but with the inclusion

of the IMR variable’s indicating the extent of the bias. The exclusion variables
(size_asset and age) are kept out of the model, whereas ROA and GCO are added to

improve the estimation and accuracy of the second stage.

The results shown in Table 7.13 offer three important indications regarding our

theoretical question: (1) The coefficient on SEO is positive and statistically signifi-

cant, suggesting that firms that offer equity on the market will experience higher

audit fees. (2) The coefficient on IMR is not statistically significant, indicating that

the selection problem is negligible. A positive or negative and significant

Table 7.11 SEO and audit fees: correlation matrix

DV_FEES SEO Age size_asset GCO

SEO 0.27

0.06

age 0.00 0.34

0.97 0.02

size_asset 0.08 0.28 �0.14

0.56 0.05 0.32

gco 0.26 �0.16 0.09 �0.18

0.07 0.26 0.51 0.20

ROA �0.31 0.20 0.36 �0.13 �0.17

0.03 0.17 0.01 0.37 0.24

DV_Fees, the outcome variable, expresses the annual fees paid to the auditor. SEO, the main

predictor, is a dummy variable that indicates whether a company has issued an SEO (1) or not (0).

GCO is a dummy variable that indicates whether the external auditor has issued a GCO (1) or not

(0). Size_asset proxies for size, measured in terms of dollar amount of assets. Age indicates the

number of years the company has been listed on the stock exchange. ROA is a profitability measure

in the form of a ratio of return on assets
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coefficient would instead suggest the existence of a potential selection problem that

would pose issues in relation to the interpretation of the results. (3) The VIF values

are small (maximum value¼ 1.38), suggesting that multicollinearity is not an issue

in the second-stage regression.

This example shows a relatively straightforward way to employ IMR to detect

the extent of the bias that is due to potential self-selection problems caused by the

voluntary nature of the main predictor (e.g., to issue or not issue an SEO). Still,

researchers should exercise caution in defining the first- and second-stage regres-
sion models because of the IMR approach’s sensitivity to model specifications

[21]. Therefore, there are several guidelines for executing and reporting the appro-

priate procedures:

1. Report OLS results (without IMR) to reinforce the credibility of results.

2. Define and justify a set of exclusion restrictions (the Z variables), going from

first- to second-stage regressions. While it is possible to estimate a first stage

without Z variables, doing so is not recommended, as it impairs the soundness of

the methodology and renders interpretation more difficult.

3. Report the full model specified in the first-stage probit model.
4. Specify alternative models using different Z variables and compare the consis-

tency of the results. IMR is highly sensitive to the changes in exclusion

restrictions on the estimated coefficients and their interpretation.

5. Report multicollinearity (VIFs) in the second-stage regression to attenuate

concerns about the presence of IMR and Z variables in the same model.

An example is shown in Table 7.14 and in Table 7.15.

Table 7.14 shows results from an OLS regression, where DV_fees is the depen-
dent variable and SEO is the main predictor. The OLS regression offers results that

are identical to those of the two-stage Heckman selection procedure, which

reinforces the credibility of conclusions. Although similar to the IMR approach,

the OLS regression results should be mentioned in the empirical section.

The next example shows the effects of failing to identify valid exclusion
restrictions in the first model. More specifically, it presents a case in which there

Table 7.12 SEO and

audit fees: first-stage

regression model

First-stage model of SEO choice

Coeff/se Z

Size_Asset 0.00026 2.40

0.00010

Age 0.018 2.68

0.006

Intercept �1.910 �3.12

0.614

Pseudo-R2 18.75

Log_likelihood �28.16
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are no exclusion restrictions and the predictors in the first-stage regression (age and
size_asset) are added as covariates in the second-stage regression.

Adding the same covariates (age and size_asset) to the second-stage regression

triggers a multicollinearity (max VIFs¼ 20.21) that significantly alters the inter-

pretability of the results. Even though the regression coefficient on SEO is substan-

tially the same, one cannot securely establish whether IMR offers a valid

assessment of the potential endogeneity in the model.

Examining Counterfactual Models: The Propensity Score Method

The propensity score method (PSM) is another way to address endogeneity

concerns when using non-experimental, observational data [3, 24]. The issue

researchers face is the lack of a counterfactual model for the treatment group that

fulfills the “everything else equal” condition. The treatment (X) is non-randomly

Table 7.13 SEO and

audit fees: second-stage

regression model

Second-stage treatment model

Coeff (se) T

SEO 76.61 2.74

27.95

ROA �409.24 �2.42

169.00

GCO 51.56 2.01

25.70

IMR 11.95 0.29

41.66

Pseudo-R2 21.15

VIF (max) 1.38

Table 7.14 SEO and audit fees: comparison of second-stage and OLS models

Model I Second-stage heckman model Model II OLS regression

Coeff/se t Coeff/se t

SEO 76.61 2.74 73.17 2.95

27.95 25.01

ROA �409.24 �2.42 �423.28 �2.64

169.00 160.22

GCO 51.56 2.01 51.14 2.01

25.70 25.40

IMR 11.95 0.29

41.66

Intercept 220.32 7.18

30.69

Observations 50 50

Pseudo-R2 21.15 21.15

VIF (max) 1.38 1.06
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assigned to the observed units, as it is a choice. PSM is particularly well suited for

identifying good counterfactuals from observational data, as it randomizes

(ex-post) units to the treatment and control conditions as would be done in an

experiment. PSM employs observational data to derive good comparable groups,

but if the source of selection is due to unobservable factors, its usefulness is

questionable.

PSM works with the idea of matching treated with non-treated (i.e., control)

units. Matching using covariates is ideal when the number of dimensions is limited

and manageable. PSM returns the probability that a unit is treated, regardless of

whether the unit has actually been treated. Each unit gets a score that indicates a

propensity for being treated. In a pool of similar units in terms of their score

researchers can then compare values on the outcome variable for units that have

been treated with those that have not been treated.

PSM uses characteristics for which data can be gathered to estimate propensity
scores that reflect the probability that a unit receives (or not) a treatment. This

process requires a certain level of abstraction because the units either have been

treated (treated) or not (control). While real choices are a reflection of endogenous

characteristics, the propensity score is based on a number of factors that determine

the choice (X). PSM’s effectiveness is based on how well the observable covariates

predict the scores of the units, rendering them comparable. PSM is helpful in

clarifying whether the units that receive the treatment (or a level of it) are compa-

rable across a number of dimensions (e.g., the observable covariates) to the units

that do not receive it. If there is no overlap between the groups or it is not possible to

identify matching firms, we would conclude that companies in the treatment and

control conditions are not identical across dimensions that affect the outcome, so

the endogeneity will result in biased estimation coefficients.

Table 7.15 SEO and

audit fees: alternative

identification of Z variables

Second-stage model alternative specifications of the first stage

Coeff/se T

SEO 77.33 2.66

29.04

ROA �409.24 �2.26

180.94

GCO 49.88 1.73

28.79

AGE 0.16 0.11

1.46

Size_Asset 0.01 0.09

0.02

IMR 24.16 0.19

126.50

Pseudo-R2 27.67

VIF (max) 20.21
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To illustrate the application of PSM estimation, we use an example from the

education field: data from the National Education Longitudinal Study [29] in the

US.11 The question of interest was whether enrollment in Catholic high schools

exerted a positive effect on students’ achievement. Consider, for example, the data

in Table 7.16 on a cohort of US high-school students.

The choice to attend or not attend a Catholic school is not random, as it depends

on a series of factors that can also affect a student’s achievement. Some of these

factors are observable (e.g., family income and pre-admission tests), whereas others

are not (e.g., a family’s attitude toward religion). A starting point for answering our

research question involves a two-sample t-test.
Results from a t-test reported in Table 7.17 suggest that attending a Catholic

school had a positive effect on achievement for the 592 students that attended a

Catholic school: The difference in the math12 test scores is large (�3.89 for those

who attended a non-Catholic school) and statistically significant. Even so, claiming

causality requires that the two groups must be equal and comparable across

dimensions that affect students’ achievement. To determine whether such is the

case, we start by inspecting a correlation matrix (Table 7.18).

The correlations reveal that family income (in year 8) positively and significantly
correlates with both the main predictor (catholic) and the outcome (math12). math8
also correlates with math12 and catholic.

Stratification, an important feature of PSM, marks its difference from the

regression approach. The two covariates that should be used to stratify the sample

are faminc8 and math8. Results are presented in Table 7.19.

Table 7.19 compares the scores on math12 across students who attend and

students who do not attend a Catholic high school. It shows that the positive effect

of attending a Catholic school diminishes at higher levels of family income

(Table 7.19: 3.76, 3.51 or 2.12). When stratifying on math8, the differences across
levels of math proficiency do not transfer to the two categories of attending or not a

Table 7.16 Education

example: descriptive

statistics

Variable Obs Mean Std. dev. Min Max

math12 5671 51.051 9.502 29.880 71.370

catholic 5671 0.104 0.306 0.0 1.0

math8 5671 51.490 9.683 34.480 77.200

faminc8 5671 9.526 2.218 1 12

Math12, the outcome variable (Y), indicates the score an individual

student obtained in a standardized test of mathematics in their high

school year 12. Catholic is the treatment (X) variable in the form of

a dummy that indicates attendance (1) or not (0) in a Catholic

school. Other covariates are Math8, the score obtained in a

standardized test of mathematics in their high school year 8. Last,

faminc8 refers to the student’s level of family income in year

8, from 1 (low income) to 12 (high income)

11This example is reported in Murnane and Willet [3] in much more detail. We refer the reader

directly to this valuable source for an in-depth assessment and understanding of the example.
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catholic school, and the Catholic school effect vanishes. (For example, scores on

math12 improve with increases in math8 but not as a result of attending a Catholic

school.) Overall, there are twelve possible groups because of the crossing of two

dimensions (math at year 8 and family income) with three ( faminc8) and four

(math8) categories, respectively. One would not be able to achieve this result using
a regression approach.

The stratification procedure (Fig. 7.5) is central to the PSM approach. PSM’s

attempt to identify the peers of the 592 students who attended a Catholic high

school so treatment and control groups can be identified is based on a propensity

score that returns the likelihood of each student’s being enrolled in a Catholic

school. PSM ignores whether students are actually enrolled in a Catholic school, at

least in the first phase. The stratification and correlation matrix suggest that math8
and faminc8 are relevant because students with higher scores in math8 and those

with higher faminc8 scores are more likely to attend a Catholic school.

PSM then allows a comparison of the twelve homogenous groups of students

that are similar in terms of the likelihood of enrolling in a Catholic school. For

instance, students included in the high_income and mid_math8 (or low_income and

Table 7.17 Education example: univariate comparison across groups

Variable Obs Mean Std. err. Std. dev. [95% Conf. interval]

no_cath 5079 50.645 0.134 9.534 50.382 50.907

yes_cath 592 54.540 0.348 8.463 53.856 55.223

Diff �3.895 0.409

t-test �9.51

Table 7.18 Education

example: correlation

matrix

math12 catholic faminc8

catholic 0.13

0.00

faminc8 0.31 0.13

0.00 0.00

math8 0.83 0.08 0.29

0.00 0.00 0.00

Table 7.19 Education

example: stratification
no_cath yes_cath Diff T

Stratification on income

Low_INCOME 46.77 50.53 3.76 3.46

Mid_INCOME 50.34 53.85 3.51 4.82

High_INCOME 53.59 55.71 2.12 4.02

Stratification on Math8

Low_Math8 36.8 36.3 �0.50 1.72

Mid_Math8 41.09 41.24 0.15 �0.82

High_Math8 47.49 47.92 0.43 �2.33

VeryHigh_Math8 60.01 59.48 �0.53 1.51
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veryHigh_math8) groups are equally likely to enroll in a Catholic school. There-

fore, students in each cluster are comparable and expected to be similar except for
whether they attend a Catholic school. The software employed to use a PSM

technique estimates propensity scores in the background and associates similar

units (students, in this case).

Table 7.20 reports a summary of the OLS regression coefficients and the

differences in math12 between students who attend a Catholic school and those

who do not in each group. Results from clustering into twelve groups offer a

different perspective from that of the t-test performed earlier. The differences in

terms of attendance in a Catholic school are much more attenuated and seem to

matter primarily at medium levels of income.

The next step involves estimation using PSM. Table 7.21 reports results from the

PSM model using psmatch2 in STATA 14. PSM involves estimating a probit

regression in the first step. In doing so, we test the suitability of the covariates in

predicting the treatment variable. The probit allows the estimation of propensity
scores for the identification of peer observations to be matched. The pseudo-R2

indicates the ability of the covariates in identifying proper matches. In this example,

the pseudo-R2 of 0.0319 shows a poor overall fit of the model and casts doubt on

PSM’s ability to identify suitable matches. Next, the average treatment estimation

offers indications in two hypothetical conditions: (1) the effect of attending Catho-

lic schools on the unmatched sample (e.g., students who the propensity scores

indicate should not attend Catholic school but did), and (2) the effect of attending

Catholic schools on the treated sample (e.g., students who the propensity scores

indicate should attend Catholic school and did).

Fig. 7.5 Education example—comparison across type of school
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7.5 Some Caveats and Limitations

Successful data analysis hinges on ex ante identifying and measuring all observable

factors that may bias in coefficient estimates. This requirement is a study-design

choice, so effort must go into data collection. The more successful this endeavor,

the easier substantiating claims during data analysis will be. Issues with

unobservables are even trickier to address [19].

Any empirical study that employs non-experimental and randomized data will

suffer from endogeneity issues. Even so, we should not stop conducting empirical

research but should explicitly address endogeneity issues and discuss how we have

sought to overcome them with logical arguments and empirical tests.

Mo statistical or econometric test or specification will help us state with certainty

that an estimated coefficient is unbiased and efficient. OLS, instrumental variables

and 2SLS, Heckman selection models, and PSM will all return results that are

subject to interpretation prior to making any claims or ruling out endogeneity

Table 7.20 Education example: stratification and comparison across income and math8 scores

Group faminc8 math8 no_cath yes_cath Coeff T

1 LOW LOW 36.8 42.56 5.76 1.42

2 LOW MED 40.99 41.061 0.071 0.62

3 LOW HIGH 47.12 48.65 1.53 0.95

4 LOW V_HIGH 56.11 56.157 0.047 0.41

5 MED LOW 37.98 39.81 1.83 0.45

6 MED MED 41.92 44.56 2.64 2.52

7 MED HIGH 47.94 50.13 2.19 2.57

8 MED V_HIGH 57.41 59.4 1.99 2.74

9 HIGH LOW 39.78 40.39 0.61 0.22

10 HIGH MED 42.74 44.22 1.48 1.49

11 HIGH HIGH 49.17 50.69 1.52 2.14

12 HIGH V_HIGH 58.93 59.65 0.72 1.59

Table 7.21 Education example, propensity-score matching

Probit regression—DV: catholic

Coefficient Std. err. z

math8 0.0077 0.0024 3.19

faminc8 0.115 0.013 8.8

intercept �2.79 0.16 �17.1

Log likelihood �1837.154

Pseudo-R2 0.0319

Avg. treatment estimation Treated Control Dif Std. err. t-stat

math12 unmatched 54.53 50.64 3.89 0.409 9.51

ATT 54.53 52.87 1.66 0.54 3.07
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concerns [30]. The ultimate test should be conducted in close connection with

economic theory and should compare the variables and models to be specified.12
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How to Start Analyzing, Test Assumptions
and Deal with that Pesky p-Value 8

This chapter discusses the steps to take before any of the analyses discussed in

earlier chapters. Although it may seem counterintuitive to put this information at

the end of this book, experience teaches us that these are things people do not want

to read first when they embark on their analysis journey. We all start out with a big

idea and full of courage, but all too often our courage is blown to bits because words

and terms like “homoscedasticity,” “skewness,” and “multivariate normality” make

our heads spin and our plans seem impossible. However, we hope that, after you

have gotten a kick from seeing first results with the method of your choice, you are

now ready to learn about all the things you should have done first—the things that

make your results credible.

No data is perfect, but understanding how imperfect your data is, correcting the

most important imperfections, or using a different method will help you to obtain

credible results from your imperfect data. The first step on the journey is to

structure your data in a way that best fits your research questions and analysis

plan. Then some thorough cleaningwill rid your data of imperfections in the details

before you start to understand the larger imperfections. These larger imperfections

and the relationships in your data are first explored by summarizing and

visualizing data. These are the topics of Sect. 7.1.

After that, we have a more thorough look at the possible larger imperfections by

discussing how to test the important assumptions with which your data must align.

The four groups of assumptions we discuss are independence, normality, homoge-

neity of variance, and linearity. We discuss how to test whether these assumptions

hold for your data and briefly introduce strategies for when they do not.

Finally, we share some of the latest thinking and our perspective on how to deal

with that pesky p-value. This issue of the correct use of the p-statistics is prevalent
and ubiquitous, and you are well served to follow the debate and stay current in this

regard.
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8.1 Structuring, Cleaning, and Summarizing Data

As we mentioned in the introduction to this book, analyzing data typically starts

with a phase of structuring, cleaning, and exploring. You could call this process

“sensemaking” of the data—working to understand what you have. Extracting

meaning from data requires it to be structured in a logical and consistent way and

ridding it of unreliable and invalid data. Once that is done, we can start exploring

and summarizing the data in statistics and graphs. Let’s discuss each of these steps

in turn.

8.1.1 Structuring Data

Step 1: Structure Cases in Accordance with Your Research Question(s) The

first step is to structure data in a format that allows you to run analyses easily and

that allows you to answer your research question(s). Most people do not realize at

first that surveys, experiments, and other kinds of data do not usually emerge in the

kind of organized structure we need to run our analyses.

The best structure for most statistical programs to operate well is to have one row

for each unique case and one column for each variable. In the social sciences, a case

is typically constituted of a person, a team, a business unit, or an organization—

whichever is the smallest relevant unit of analysis. Therefore, the case should be at

the level at which you measure your most detailed variable unless it makes your

data more detailed than necessary to answer your research question. For example, if

you want to investigate the effect of introducing a new IT tool by comparing

branches of a retail organization (e.g., some with and some without the tool), the

unit of analysis is the branch. Structuring data at the employee level would make the

data complex and would not contribute to answering your research question. If you

measure variables at both the individual and the team level, a row typically

represents one person, the smallest unit of analysis. Persons who are members of

the same team will have the same values for variables measured at the team level.

However, if you are interested only in team-level dynamics, you may want to

aggregate individual data so you have one value for each variable for each team.

If one person or team has multiple values for one variable, such as when that

variable is measured multiple times, each of these values will be captured in a

separate column (and, thus, act as a separate variable). Table 8.1 illustrates this

structure.

Structuring data this way usually solves the confusion surrounding nested
data—that is, “data within data” or multilevel data. For the example illustrated

in Table 8.1, we could say that the variable “role” is nested in the variable “case

ID,” and “case ID” is nested in the variable “team size”: one person can have

multiple roles, and one team can have multiple persons. (Refer to Chaps. 5 and 6

to learn more about nestedness.) In that sense, it could appear that “role” is the

smallest possible identifier; but if we use “role” as the identifier, we would have

more persons nested within each role than we have roles nested within persons.
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Variables that are uniquely related to one person could also be nested within

“role” (e.g., all professors are older and have a bigger team to care for), which

would increase the complexity of the data structure and interpretation. We would

consider such a data structure only if our research questions required analysis at

the level of roles, rather than persons, illustrating again that the case is as much a

theoretical choice as an empirical characteristic of the data.

Step 2: Structure Variables in Accordance with Your Research Question In

the next step in structuring data, nominal or categorical variables that have a limited

set of values are typically re-coded from words to numbers to ease their use in

analyses—for example, as a grouping variable in ANOVA. For example, female

and male become 1 and 2, or we identify the reference category (e.g., female) and

“no” and “yes” become 0 and 1. Make sure to take notes of how values were

recoded (e.g., by assigning labels in the data set)! Do not assume you will remem-
ber; you may want to reuse data or have to come back to your data months or even

years after you first structured it.1

A final step in structuring data consists of combining multiple variables into one

and/or deleting variables that are unnecessary for the analyses. Although it is

important to keep a version of the raw and complete dataset, most data sets have

variables that are irrelevant to a particular focus and variables that are fragmented

(e.g., when one of five boxes had to be ticked, resulting in five yes-no binary

variables). Ensuring that the data has enough information and detail for the

analyses, and no extraneous data, will save a lot of time.

8.1.2 Cleaning Data

Cleaning data means deleting invalid cases and dealing with unreliable data.

Invalid cases are cases that do not reflect the population you are studying. For

example, if you are studying small businesses and you define them as businesses

with 5–50 employees, businesses with 51 or 2 employees are invalid cases. If you

are studying lecturers, students are invalid cases. In short, invalid cases are cases

that should not be part of your sample. The easiest way to spot them is to study

Table 8.1 Example of structured data

Case ID Age Role 1 Role 2 Team Team size

Person 1 27 Lecturer Ethics advisor 1 19

Person 2 43 Professor Head of School 1 19

Person 3 37 Lecturer Tutor 2 12

. . . . . . . . . . . . . . . . . .

1As an example, software like STATA and SAS allow you to use text (or do-files, in STATA

terms) to record the steps taken to clean the data and run the analyses.
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frequencies and other descriptives of demographic data, armed with an understand-

ing of what a valid case looks like in your situation.

Unreliable Data is data in which the values obtained for certain variables do not

represent the actual values. In other words, there is nothing wrong with having the

case in the data, but the values recorded for the case do not reflect the real properties

of that case. An example is a reported age of 174, as it is currently impossible that

this is anyone’s real age. Cases often have multiple unreliable values, at which time

such a case becomes unreliable as a whole.

Five characteristics of your data that can help you to spot and deal with these

unreliable cases are missing data, inconsistent data, improbable response times,

extreme tendencies, and extreme scores or cases (i.e., outliers). We next discuss

strategies for finding and dealing with each of these, along with z-scores and normal

distributions, but first, a word of warning: Cleaning data requires dealing with

unreliable data and invalid cases, not deleting inconvenient cases. It is easy to get so
passionate about your hypotheses that you unintentionally start influencing the data.

Cases should be excluded only as a last resort, and doing so should not affect the

direction or significance of your results but should increase their credibility.

Credibility is derived in part from your study’s statistical power, which depends

in part on a sufficient number of cases in your data. Therefore, the credibility of

your results are at stake if you delete too many cases or any cases for the wrong

reason; delete only those for which you have strong reasons to believe that they

threaten the reliability or validity of your study. Other strategies (which we discuss

below) are often preferred. Whether you delete a case or replace a value with a

marker for missing data, any rule used should be used consistently and argued,

recorded, and reported thoroughly.

(a) Missing Data Missing data is a common problem that affects most data sets. In

panel data or other longitudinal data, it is common to lose cases between waves of

data collection as participants drop out or become unavailable. In cross-sectional

organizational data, it is common for some organizations not to have certain

metrics, where others do. In surveys, it is common for respondents to skip a few

questions, leading to missing data for selected variables.

If few cases have missing values, these cases are typically deleted from the

dataset entirely or deleted listwise (excluding a complete case from a group of

related analyses) or pairwise (excluding a case only for analyses that use the

missing values) during the analysis. In a multiple regression, for example, pairwise

exclusion would disregard a case from the computation of parameters only for the

variables where data is missing. For example, if you have a data set of 50 employees

and 5 cases have missing data for age, listwise deletion would exclude these

5 employees from all analyses, while pairwise deletion would exclude them only

from analyses in which age is included as an independent variable or covariate.

Despite its common use in dealing with missing data, research has shown that

simply excluding cases or values introduces bias and that there are better ways to

approach missing data. (For an extensive overview, see [1].) Especially when there

is a large amount of missing data, we should check to see whether the missing
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values follow a pattern, as if they do, there is “systematicity” in the missing data.

Systematicity often means that there is a good reason why the data is missing—not

just that someone forgot to answer a question or that some data is not available: the

empty data means something, so it contains or conceals important information that

would influence the findings if it were excluded pairwise or listwise. In an example

from our own research, we were interested in how much the bakery department in

retail stores contributed to the stores’ overall performance [2]. However, because

smaller stores often have fewer departments, we had many missing values for the

performance data of the non-bakery departments. This data was missing for a

reason: the departments did not exist. In such cases, missing values have to be

replaced with values computed based on the data that is available. In our example,

we weighed the bakeries’ contribution to sales by (1) calculating each type of

departments’ (e.g., seafood, deli, long-life) average contribution to sales across all

stores, (2) multiplying this average contribution with the focal store’s total sales for

each of the missing departments, (3) adding the resulting estimation of the contri-

bution of ‘missing’ departments to the focal store’s sales, and (4) dividing the focal

store’s bakery sales by the weighted total sales for that store. While this weighting

solution fit our specific case, there are other systematic approaches, such as least

squares and maximum likelihood estimations of missing values [1]. It is worthwhile

consulting at least the introductory chapter of Little and Rubin [1] to see whether

your data would benefit from applying these methods.

As a general rule, ensure you report the number of cases in your original data, the

number of cases excluded, and why they were excluded. Similarly, if you replace

missing data with other values, be sure to report why and how it was done. The final

sample that is left after cleaning data is often referred to as the “valid sample.”

(b) Inconsistent Data (e.g., Age<Tenure) A problem similar to missing data is

inconsistent data. For example, inconsistent performance data, such as when total

costs exceed revenue but a profit was recorded, could indicate that the data for that

case is not reliable. In surveys, instead of skipping questions, some respondents will

continue completing questions without thinking about the answer, which may lead

to extreme tendencies (discussed below) or improbable combinations of values. In

the bakery study discussed above, a number of respondents had a value for age that

was lower than the value for tenure or values for tenure in a position that were

higher than values for experience in related work. These inconsistencies are

indications that respondents either made a one-off mistake or lost interest in the

survey, which would suggest we cannot trust the data. While one of these

inconsistencies is not enough to exclude an entire case, they indicate the need for

further investigation of that case. Therefore, it is always a good idea to think about

the logical relationships that should hold between certain variables in your data,

track cases in which this logic does not manifest, and investigate these cases’ data

for other inconsistencies, tendencies, or outliers. The easiest way to perform such

an investigation is to create tables that combine each of the relevant categorical

variables (e.g., age� tenure) and histograms of all discrete variables.
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(c) Improbable Response Time In survey research, an exceptionally short

response time is often a symptom of loss or lack of interest as well. However,

since some people complete surveys faster than others, we should develop a

credible, conservative rule for excluding cases and apply it consistently. One

example is to exclude only cases with a response time that is significantly shorter

than expected. (See Sect. 8.1.2(e) Outliers for information on how to define a

threshold)

(d) Extreme Tendencies An extreme tendency occurs when the values for one

case and multiple variables are unexpectedly high, low, or invariable. In surveys

that use 7-point Likert-type response scales, this often takes the form of a series of

all ones or sevens, which could reflect the respondent’s loss of interest. It is often

difficult to establish whether such extreme tendencies reflect an unreliable response

(such as one that is due to loss of interest), a reliable response that is affected by a

tendency to respond consistently, or a reliable response that is an outlier. Therefore,

cases should be excluded only when tendencies are extreme, such as when more

than half of the variables have the same value. With surveys it is often helpful to

cross these extreme tendencies with response times, as when they indicate an

unreliable response, they will often have short response times as well.

(e) Outliers Another reason to exclude cases is an extreme score, an outlier, on one

or more of the variables. For example, a young, small firm with unusually high

profit should be investigated further, as should a 10-year-old with a perfect score on

an advanced physics exam. Outliers are cases’ values for one or more variables that

are so extreme that they influence the results of analyses or distort distributions

(leading to violation of assumptions) because they are not valid representations of

the population (e.g., a prime minister does not represent the average white collar

worker) or are the result of measurement error (e.g., a 174-year-old person). The

outlier cases may also be unique–a Mozart in a large classroom of music students. It

is not that the Mozart data is invalid or unreliable, but it distorts the view of the

general population of music students and skews what we can learn about “all

others.” When not marked by any of the more obvious issues, outliers are not

necessarily easy to spot, especially in large data sets.

One commonly used rule is to exclude cases that are a certain distance from the

mean [3], which is generally expressed in terms of the number of standard

deviations, or the z-score is. z-scores, which express where a value lies relative to

the other data in a sample, are calculated by (1) taking any measured value of a

variable, (2) subtracting the mean score of that variable, and (3) dividing this

difference by the standard deviation. In other words:

z ¼ x� x

s) x ¼ xþ s∗z
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The z-score is useful for a number of reasons. First, it tells us something

about where a value lies relative to the mean in a variable’s distribution,

expressed in a number that takes the spread of the distribution into account.

Taking the mean into account is important because it sets the reference point.

For example, in the US, a man who is a 185 cm tall at age 20 is not exceptional,

whereas the same body height is exceptional at age 14 [4]. Using the standard

deviation to measure the distance from the mean is also important because the

same distance from the mean can mean very different things in different

populations. For example, less than 10% of 2-year-olds are 4.5 cm taller than

the average body height at their age, whereas more than 25% of men are that

much taller than average at age 20. z-scores allow us to compare scores

across different data samples, which is why converting raw scores to z-scores
is called standardization: we convert the data to a common standard to make it

comparable.

z-scores are also useful because standardization entails forcing values into a

“normal distribution,” for which a number of handy rules apply. A normal distribu-

tion is a distribution for which the same number of cases can be observed to have

values above and below the mean (so it is symmetric) and for which the number of

observed cases per value of the variable follows a bell-shaped curve, such as that

pictured in Fig. 8.1.

The normal distribution attained by replacing all of a variable’s values with z-
scores has a mean ( x ) of 0, a standard deviation (s) of 1, and a predictable

distribution across the range. For example, we know that 95% of values will lie

between a standard deviation of �1.96 and 1.96. For 20-year-old men in the US,

these values correspond to roughly 163 cm and 190 cm. This, with a large D-tour,

brings us back to outliers.

We expect that 95% of all values lie between a z-score of �1.96 and 1.96, and

about 100% of cases lie between a z-score of �3.29 and 3.29. An observed value

outside of those boundaries is highly improbable and, therefore, can be considered

an outlier. The 83-year-old bowls player pictured in Fig. 8.2 shows how such an

outlier skews the distribution of the sample. Exploring, summarizing, and

visualizing data is another good way to find outliers.

Fig. 8.1 The standard normal distribution, its mean, and its standard deviation
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8.1.3 Exploring Data: Summary Statistics and Visualization

Once your data is structured intuitively and is clean, the extraction of meaning can

start. A first step in this process is exploring data by summarizing it into intuitive

statistics and visualizing it. The most common intuitive summary statistics are

means, medians (i.e., the middle score), and standard deviations (i.e., the average

distance of values to the mean). These values are so useful in understanding the data

that they are often reported as part of descriptive statistics to give readers a quick

view of the sample’s characteristics.

Basic descriptive statistics can be visualized in graphs like box plots, which we

read about in every statistics book but do not often see used in practice. If you are

interested, have a look at McGill, Tukey, and Larsen [5].

Histograms provide a bit more information about the distribution of the data in a

sample. Used primarily for variables with discrete values or a limited set of

intervals, histograms indicate the number of observations for each value and

interval. Figure 8.2 provides an example of a histogram, with a line plotted that

approximates the distribution of the data, which makes it easy to compare it to the

normal distribution we would expect to see in the population. This example shows

that a sample of senior league bowls players is positively skewed, as it has a

relatively higher proportion of younger players.

For categorical variables it is also useful to look at cross-tabulations that give

you an idea of frequencies of combinations of categories (e.g., men who dislike

cars). For linear relationships scatter plots are the most insightful place to start, as

they visualize data points based on an independent (x) and dependent (y) variable

(Fig. 3.1). In multiple regressions, similar plots can be made for all combinations of

independent and dependent variables, which can help you to spot multicollinearity

(see Sect. 8.2) or potential interaction effects (Fig. 2.1). Most statistical programs

allow you to add estimated lines to scatter plots (Fig. 3.2), giving you the opportu-

nity to determine quickly whether the best fit is obtained with linear or curvilinear

estimations. For example, SPSS allows you to plot an estimated line over the data

n

Age of senior league bowls players
65   66   67  68   69  70   71   72  73   74  75   76 …                83

Population of senior bowls players

Fig. 8.2 Example of a histogram and distributions of the sample and population
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and extract the explained variance (R2) easily. If the plot and explained variance

suggest that a linear estimation does not fit the data, there are other avenues to be

explored, including transforming the data, testing non-linear models, and turning to

non-parametric tests. Before we explore these options further, we investigate how

to test our data for violations of common assumptions.

8.2 Testing Assumptions

Statistical analyses work for certain (but not all) types of data, and every statistical

analysis has some assumptions about the data to which you will apply the analysis.

It is not just good practice, but fundamental to ensure that your data meets the

assumptions. Otherwise, the analysis will yield some numbers as results, but they

will carry no meaning.

Most of the analysis methods discussed in this book are based on parametric
tests, which make a number of assumptions about the data. If these assumptions are

violated, the results of the tests cannot be trusted. Therefore, before starting to

analyze your data, you must determine whether the assumptions hold or corrective

action or the use of non-parametric or other tests is required.

Although different tests are based on different assumptions, many analyses make

similar assumptions about “normal” data (i.e., data that occurs most often). Three

assumptions are common to most of the methods discussed in this book: indepen-

dence of observations, normality, and homoscedasticity (or homogeneity of vari-

ance). Regression-based models also assume that the relationship of interest is

linear. We discuss each of these assumptions and provide examples of tests that

can be conducted to determine whether they hold. Most statistical programs have a

few standard tests they rely on, and many of the examples we use are the standard

tests for SPSS, which is a relatively intuitive program for becoming familiar with

data analysis. Table 8.2 summarizes some of the key assumptions you need to check

for the less complex methods discussed in this book. HLM and the other methods

discussed in Chap. 7 are subject to more complex sets of assumptions, but they are

all combinations of the independence, normality, homogeneity, and linearity

assumptions we discuss here. In fact, the assumptions generally apply to different

methods in slightly different ways (e.g., homogeneity of group variance

vs. variance of error terms, independence of all observations or observations at

one level or within one group). Therefore, we discuss each of the assumptions

generically. However, once you understand the assumptions, it will be easy to find

the exact method to use in the manual or a relevant guide book for your chosen

statistics tool (e.g., [6, 7]).

8.2.1 Independence of Observations

Independence of observations refers to the requirement that each observation (each

value that was measured for a variable) is not influenced by other observations.
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Therefore, both the sources from which data were collected (e.g., respondents) and

the measurements (e.g., scoring of survey items) must be independent. Let’s talk

about the source of measurement first.

Independent Sources

If we were to study board members’ support for decisions, the assumption of

independence of sources would require that our sample consists exclusively of

board members that sit on different boards. If we have a few board members who

serve on the same board, it is fair to assume that their support for decisions as

recorded in the sample data is not independent, as they would be likely to have

exchanged arguments related to the decision first. In experimental research, the

assumption of independence requires that subjects be recruited and assigned to

conditions in a random fashion. However, in social sciences research, the assump-

tion of independence of sources is violated more often than not. It is simply too

difficult to find sources of measurement that are completely independent:

organizations from the same industries or geographic areas will be influenced by

similar forces and influence each other more than organizations from different

industries or areas, employees and systems from one organization will be

influenced by similar forces and influence each other more than employees and

Table 8.2 Primary assumptions for selected analyses

Analysis method Relevant assumptions

Independent group comparison (t, F,
ANOVA)

– Independence of source and measurement

– Normality of distribution of DVa within groupsb

– Homogeneity of variance of DV across groups

Dependent group comparisons (paired-

samples t, repeated-measures ANOVA)

– Independence of source and measurement

except between groups (i.e., within the unit of

analysis)

– Normality of distribution of DV within groups

– Homogeneity of variance of DV group

differences (i.e., sphericity; only when kc> 2)

Complex group comparisons (MANCOVA) – Independence of source and measurement

– Multivariate normality of distribution of DVs

within groupsa

– Homogeneity of covariance matrices of DVs

Regression – Independence of error terms and sufficient

independence of IVsd (i.e., no

multicollinearitymulticollinearity)

– Normality of error term distribution

– Homoscedasticity of errors (i.e., homogenous at

different values of the IV)

Structural equation modeling – Multivariate normality of data

– Independence of error terms
a Dependent variable
b All cases with the same value for the independent (grouping) variable(s)
c The number of groups
d Independent variable
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systems from different organizations, and so forth. Even more dependence between

sources is present in longitudinal research, where multiple measurements are

acquired from the same source. Therefore, the assumption of independence is

often factored in as “equal dependence.” For example, we either compare board

members who sit on the same board, or we compare board members who sit on

different boards of similar organizations, or we compare board members who sit on

different boards of equally dissimilar organizations, and so on. If such approaches

are not possible, either multilevel models must be used to analyze the data (See

Chap. 5), or the biasing effect of dependencies must be estimated and taken into

account in the model testing using the techniques for dealing with endogeneity

discussed in Chap. 7.

Independent Measurements

The second aspect of independence relates to the measurement itself and is often

discussed under the umbrella of common source bias or common method bias.

Common method bias is introduced by measuring multiple variables using the same

research method, while common source bias is introduced by measuring multiple

variables from the same source. Although we have discussed the independence of

different sources, here we focus on the independence of measurements from the

same or different sources. In social science, violations of independence are com-

monly caused by using cross-sectional surveys that measure independent and

dependent variables from the same source using the same method and at the same

point in time. As we discussed in Chap. 7, measuring independent and dependent

variables at the same time means we cannot claim a causal relationship between

them (because one must precede the other). Measuring independent and dependent

variables from the same source and using the same method also inflates the

relationship between them and between the indicators that measure the same and

different constructs. Podsakoff, MacKenzie, Lee, and Podsakoff [8] provided a

summary of the main problems that cause bias and Podsakoff, Scott, MacKenzie,

and Podsakoff [9] studied the size of the biases. These papers provided an extensive

list of biases that we recommend studying, but to summarize, common source bias

and common method bias generally emerge because of:

• respondents who are trying to be consistent, socially desirable, and/or “nice” to

each other or the researcher; who are trying to be smart about which variables are

related to one another (i.e., personal theories), or who are “in a mood”

• question wording that suggests that one answer is better than another, that is

unclear, that consistently uses the same response format (e.g., 7-point Likert-

type), that entails extremely positive or negative value judgments, or that

influences participants’ mood

• the order of questions, where early questions may influence responses to later

questions because of priming or suggested value judgments, survey length, and

effects of the grouping of related (or unrelated) items

• the measurement of the independent and dependent variable at the same time,

place, and/or using the same instrument.
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One final issue related to dependence that is caused by how variables are

measured occurs when there is too much overlap between what two variables

measure, which is commonly referred to as multicollinearity. As Chap. 3

discusses, multicollinearity refers to the case in which more than one of the

independent variables capture the same variance between cases, so they explain

the same part of the variance in the dependent variable.

While these problems should be taken into account when designing research

studies and surveys (see [9, 10]), they are also likely to affect data analysis. The

most common effects are that variance between cases that shouldn’t be related

becomes related (i.e., covariance in error terms), that variables that should not be

related become related, that measures for reliability and validity become inflated

(or deflated, such as when grouping items of different constructs), and that the

relationship between independent and dependent variables becomes inflated.

How to Test and Control for Independence

Several techniques can be used to investigate the extent of method bias and source

bias and to control for them statistically. These techniques help researchers to first

estimate the size of the bias by estimating relationships between variables or

constructs that, theoretically, should not be there. Then these relationships are

“subtracted” from the relationships in which the researcher is actually interested.

Good starting points if you want more information about these methods are Chap. 7

and Podsakoff et al. [9].

How can we control for independence of observations? For group comparisons

(Chap. 2), different methods need to be used when the groups of interest are

dependent vs. independent (Table 2.6). Independence is primarily an issue of design

when comparing groups, but for regression-based models (Chaps. 3–4) we have to

check whether the error terms are unrelated and whether the independent variables

are not too highly correlated before we analyze the data further.

The error terms, as explained in Chap. 3, are the “unsystematic” part of the

variance in an observation, so that part is assumed to be unrelated to any other

observations in the model. Whether error terms are related can be checked by

studying residual plots [which should look like Fig. 8.4a and not like Fig. 8.5a or b],

but most statistical programs also have a few standard tests that you can run. For

example, SPSS has the Durbin-Watson test, which should return a value close to

2 and between 1 and 3 [3]. If error terms are related, a relationship between cases or

measurements is present that is not accounted for in the model. If you can’t work

out theoretically what that missing relationship is, an extra “method” variable

should be applied to capture that variance and extract it from the error terms (see

Chap. 7).

In the case of multicollinearity (which is also discussed in Chap. 3), indepen-

dent variables will be highly correlated (i.e., r> 0.75), conceptually capturing the

same meaning. For example, multicollinearity is present when a dichotomous

variable in a model measures employment status (unemployed vs. employed) and

another categorical variable measures profession and includes a category for

“unemployed.” These very high correlations can usually be spotted by examining
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how variables are measured or inspecting the correlation matrix of all variables in

your model. A frequently used statistic for multicollinearity is the Variance Infla-

tion Factor or VIF, which should be lower than 3. There are no statistical remedies

for multicollinearity, so the best approach is to find its source by inspecting the

correlation matrix and the associated VIFs, and redesigning the measurements

and/or model accordingly. As with any assumption, the good practice is to report

the presence of multicollinearity should you violate the assumption that your model

is free of it.

8.2.2 Normality

The assumption of normality, the second cornerstone of all parametric statistics, is

based on the assertion that, in any sizeable population, the frequency with which the

values associated with a variable are observed will follow a normal distribution

(similar to the bell curve pictured in Fig. 8.1). Therefore, very low and very high

values will be less frequent than values closer to the median, so the probability of
observing extremely low or high values is small. Simplifying things dramatically

(at the risk of agitating statisticians), the test statistics discussed in Chap. 2 (i.e.,

t and F) give us an idea of the probability of observing the difference between the

means (t) or the means and variances (F) of two or more observed samples, if we

assume that these samples are randomly drawn from the same population. However,

these tests will provide a reliable assessment of that probability only if the popula-

tion is normally distributed, the sample data represents the population accurately,

and the sampling really was random (and would again return a normal distribution

if repeated indefinitely). However, since our sample is our best estimate of the

population and the only data we have, we test to determine whether the sample data

is normally distributed and use that as a proxy for everything else. To make matters

even more complex, in regression-based models (including SEM and HLM), this

assumption applies to the error terms, not the actual data, although testing for both

is done in roughly the same way.

Figure 8.3 illustrates a normal distribution and typical deviations from that

normal distribution, which are defined by their skew and kurtosis. Skew refers to

a “pull” toward one side, caused by a larger number of cases on one side of the

mean, with the other side having a larger spread. Typically, as in Fig. 8.2, skew is

caused by a few extreme values on one side of the distribution. Kurtosis is the

“pointiness” of a distribution. When all cases are close to the mean, the kurtosis is

positive, while negative kurtosis occurs when values are more spread out (i.e., the

curve is flat rather than pointed).

An intuitive way to check for normality is to compare the data to this distribution

by creating histograms or Q-Q plots. These plots compare the observed quantiles

(i.e., the relative positions of values) in your data to quantiles that would be

expected in perfectly normally distributed data. This means that, ideally, all points

in this graph lie on the diagonal line (Fig. 8.3). If points diverge from that line, the

data is not normally distributed—that is, they have skew or kurtosis. Q-Q plots can

8.2 Testing Assumptions 147

http://dx.doi.org/10.1007/978-3-319-42700-3_2


also be made for residuals in regression-based models, with the same diversions

from the diagonal indicating non-normality of residuals. Most statistical programs

can calculate values of skewness and kurtosis in your data or errors, and you can

determine whether these are problematic by converting them into z-values
(in which case they should be between�1.96 and 1.96) or by running, for example,

the Shapiro-Wilks test, which returns a significant result when your data is not
normally distributed.

8.2.3 Homogeneity of Variance and Homoscedasticity

Parametric statistical tests are based on an assessment of variable distributions,

which are primarily defined by means and variances. The assumption of homosce-

dasticity is concerned with these variances. In group comparisons (discussed in

Chaps. 2 and 6), the variance in the dependent variable should be homogenous (i.e.,

comparable) across the values of the independent variables (i.e., in different

groups). If the variance in one group is much smaller than that in another, it

would be difficult to compare the distance to the mean across both groups. There-

fore, we first have to determine whether the assumption of homogeneity of variance

holds. In simple group comparisons (e.g., t-tests or ANOVA), this check is com-

monly done using Levene’s test or Bartlett’s test for equality of variances. The null

hypothesis) in both is that variances are equal, so a significant result means that they

are not. If that is the case, non-parametric alternatives (e.g., Mann–Whitney or

Kruskal-Wallis tests) should be used to compare the groups.

As study designs and analysis methods become more complex, the assumption

of homogeneity of variance does too. The explanation we just gave applies in

simple group comparisons, but in MAN(C)OVA, for example, this assumption

applies to the covariance matrices and is commonly tested using Box’s Test.

In regression-based models, the assumption takes the slightly different form of

homoscedasticity, which focuses on the residuals (the distance of single points to

the estimated line through the data). In this case, we are interested in the spread of

residuals across the range of the independent variable(s), as homoscedasticity of

residuals means that the average distance to the estimated line is the same at

different values of the independent variable. In other words, if you plot the error

Kurtosis (+)

Skew (+)

Kurtosis (+)

Skew (+)

Fig. 8.3 Illustration of skew and kurtosis and how they appear in Q-Q plots
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terms, they should look like a reasonably “boxed” cloud. Figure 8.4 illustrates

homoscedastistity and heteroscedasticity, where the cloud of dots is not boxed or

reasonably straight but drops, rises, widens or narrows at some part of the line (i.e.,

for some values of the independent variable). Most statistical programs provide an

easy option to produce plots like those in Fig. 8.4 to check your data.

Sometimes residuals will not only vary in their distance to the expected line, but

also show a pattern (e.g., an increasing line or a U-shape, as illustrated in Fig. 8.5).

These patterns, or “trends,” suggest that there is some systematic variance in the

data that is not captured by the variables in the model, and/or that the trend is not

linear (which violates another assumption of regression-based models). In other

words, a variable is missing from the model that explains the common variance

between cases and that is related to the variables that are already part of model

(as discussed extensively in Chap. 7). This relationship could be a non-linear, that

is, a curvy one (e.g., quadratic). Although any of these trends may lead you to

despair, they are usually a sign of interesting things happening in your data that you

have not yet considered: they show that there is some systematicity in the data that

you can explore and explain even though you did not expect it. Take a step back, do

some more exploration, and find out where all that heterogeneous variance is

coming from. Many interesting discoveries have been made by exploring initially

unexplainable variance. (Think of Pavlov’s dogs, for example; [11]).

8.2.4 Linearity

The last assumption we discuss in this chapter, linearity, applies to all methods that

explore linear relationships between variables—surprising, isn’t it. Methods like

regression, structural equation modeling, and hierarchical linear modeling all

explore these linear relationships, and these methods are based on the assumption

that, if there is a relationship between variables in the models, it is linear—a straight

line. For example, when the scatter plot of an independent (x) and dependent (y)
variable looks like an inverse U-shaped cloud like shown in Fig. 8.5b, a linear

estimation would tell you that the two variables are unrelated, as the best fit would

be a horizontal line through the data such that β1 is 0. However, from the graph it

should be obvious that the variables have some relationship; it is just not a linear

(a) Homoscedasticity (b) Heteroscedasticity

Fig. 8.4 Illustration of homoscedasticity and heteroscedasticity
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one. Similar reasoning applies to residual plots, where (as 8.5b suggests) there is a

non-linear trend in the data that the model hasn’t captured. The next section

discusses what to do when you encounter one of these trends.

8.2.5 What if Assumptions Are Violated?

We have already discussed what to do when data is not independent, but what

should you do when your data is skewed or otherwise distorted, when variances are

unequal, or when relationships appear to be non-linear? The first step should always

be to determine why the assumptions are violated. The source of the violations can

often be found easily by calculating a few more descriptive statistics or visualizing

your data in new ways. Once you have found the source of the problem, you can

rectify your design or collect more data so you can address the problem at its source.

When doing so is not possible, four popular solutions are to transform the data, to

add variables to the model, to use robust and/or non-parametric tests, and to turn to

non-linear methods.

Transforming the Data

Transforming the data means computing new values for new variables based on the

values of the existing variables to generate a new set of data that more closely

follows some of the assumptions (e.g., a normal distribution). Transformations can

be linear or nonlinear. Linear transformations are the best way to go if the

assumptions of normality and/or homogeneity of variances are violated but the

data still resembles a normal distribution. A linear transformation subjects every

value of a variable to the same manipulation (e.g., taking the logarithmic function

Log(x) of every value). However, care must be taken that transformations do not

influence hypothesis testing or the interpretation of results. When measurements

include financial data or, for example, the number of middle managers, it will be

difficult or impossible to convert the effect sizes back into absolute values in order

to report that “with every additional middle manager the organization loses $47.35

in annual profits.” [3] provides an insightful overview of linear transformations and

how to conduct them.

(a) Linear (b) Curvilinear

Fig. 8.5 Illustration of linear and curvilinear trends in (residual) plots
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A common non-linear transformation is to convert a continuous variable into a

categorical one. For example, when an independent variable is not normally

distributed, you could use a logical cut-off point to split the cases into groups.

For example, you could study students who have IQs below vs. above the popula-

tion average of 100, or organizations that make a loss vs. those that make a profit.

Therefore, instead of linear relationships, you will be studying groups and using the

methods discussed in Chap. 2. If the dependent variable is the one to be split,

logistic regression can be used (Chap. 3), or you could transform the various IQ

scores into ordinal data: ordered categories such as very low (<50), reasonably low

(50–75), average (75–100), and so on. However, be aware of two drawbacks of

transformations into categories: First, you will lose information, as the categories

(“very low,” etc.) lose fine distinctions, such as the difference between an IQ score

of 65 and that of 73, as in the transformed variable they would both appear as

“reasonably low.” Second, the composition of the ordered categories is arbitrary, as

you may not agree that an IQ score of 75–100 is average.

Sometimes, for example when the assumption of linearity is violated, both linear

and non-linear transformations may have to be applied in order to conduct the best

possible analyses (e.g., [12]). Whichever way you transform, after applying

transformations, you will need to check again to ensure that all relevant

assumptions hold.

Adding Variables

Many of the violations in assumptions are caused by variance in the data that the

model does not account for. These violations include variances explained by

dependence between cases, the use of a common source or method, or the absence

of important variables from the models. Most of these problems can be resolved by

revising or extending the model so the sneaky variance that crept into other

variables is correctly attributed. To learn more, refer to the discussion of

endogeneity in Chap. 7 and Podsakoff et al. [9].

Using Robust and/or Non-Parametric Tests

There are alternatives for most of the parametric tests that we discuss in this book

for which the assumptions discussed in this chapter are less important. Some of

these tests can be used as direct non-parametric counterparts of parametric tests,

such as a Spearman correlation instead of a Pearson correlation, a Mann–Whitney

U instead of a t-test, or a Kruskal-Wallis test instead of an ANOVA. Discussing

these options in detail would fill another book, so suffice it to state that there are

many other methods. You can start an investigation of these methods by searching

“robust methods for [what you want to do].” You will be amazed at the number of

excellent resources available to you (e.g., [13–15]).

Non-Linear Analyses

When the assumption of linearity is violated, non-linear methods may explain more

variance in the data. Simple non-linear models are very similar to regression, for

8.2 Testing Assumptions 151

http://dx.doi.org/10.1007/978-3-319-42700-3_2
http://dx.doi.org/10.1007/978-3-319-42700-3_3
http://dx.doi.org/10.1007/978-3-319-42700-3_7


example, just adding a quadratic term. If you are interested in more complex

non-linear methods, we recommend Seber and Wild [16].

Now, let us see about the last remaining challenge: to p or not to p?

8.3 Mindfully Interpreting Statistics: The Case of the p-Value

“Good day, Amedeo. How are you today?”
“Hi, Will. I’m not too bad, although yesterday I spent all night running regressions: the
beta coefficient was high and in the hypothesized direction (3.87), but the p-value was
0.058. Damn it!”
“Don’t panic. Just see if you can include or add some more data.”
[The next day]
“Will, I followed your advice, and now my beta coefficient is high, in the hypothesized
direction (3.89), and the p-value is 0.048!”
“Ha! Awesome! I told you so! What are you doing now?”
“I’m formatting the manuscript and getting it ready for submission, of course. I owe you.”

We tend to think of statistics as a process of collecting and analyzing numerical

data, usually in large quantities, but statistics are also a way to represent large

collections of data in summary format (e.g., the mean instead of all individual

values). In this interpretation, statistics are the product, not the process. Both the

process and the product of statistics are themselves fields of research in which

scientists review, scrutinize, theorize, propose, counter-propose, evaluate, generate,

and abandon knowledge about processes and products of statistics. Therefore, any

finding about statistics and any guideline offered about the use of statistics, such as

those offered in this book, are relevant only within the window of time when they

were produced. Guidelines change over time.

Nothing illustrates the fallible, incomplete, and unstable nature of knowledge

about statistics (or anything else, for that matter) like the current discussion about

the use of the ominous p-value [17]. Remember that we use the p-value to indicate

statistical significance, not the effect size or importance of the hypothesized

theoretical relationship. You may have noticed in the preceding chapters that

p-values appear often. Many scholars naturally associate statistics with p-values:
“you are doing quantitative analysis? What is your p-value?”

In this section, we want to discuss the problems with this emphasis on the

p-value. In quantitative research, in the social sciences and elsewhere, the

thresholds commonly associated with p-values (typically 0.05, 0.01 or 0.001) are

laden with significance, to the point that entire careers can hinge on some data

analysis showing whether you “made” a particular level or not [18]. For many,

especially young scholars, the value of 0.05 is often the breakpoint between truth

and irrelevancy, between publishable result and the circular file, between failed and

successful study between a promotion or a failed application. As Bettis et al. [18]

put it, “Particular p-values (0.05, 0.01 or 0.001) have been endowed with almost

mythical properties.” The obsession with p-value has also led to some bad practices

[19], such as HARKing (Hypothesizing After Results are Known) and p-Hacking
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(manipulating, transforming, testing, and analyzing data until some statistically

significant result emerges). The so-called chrysalis effect [20] occurs when awful

results at the beginning become awesome as research and data analysis unfold.

There are several issues at hand here. The first is the all too common misinter-

pretation of what the p-value means. Most believe a p-value below a certain

commonly accepted threshold (e.g., < 0.05) implies that you can safely reject the

null hypothesis of no effect because the probability that the null hypothesis is
correct is p (e.g., smaller than 5%). This interpretation is simply wrong.

Imagine you just analyzed your data and found that p< 0.05 for some statistical

test you have done. Does this mean any of the following statements is true [21]?

1. You have disproved the null hypothesis (i.e., there is no difference between the

groups in the underlying population).

2. You have found the probability that the null hypothesis is true (i.e., there is a

smaller than 5% chance that there is no difference between groups in the

underlying population).

3. You have proved the experimental hypothesis (i.e., there is a difference between

the treatment and control groups).

4. You can deduce the probability that the experimental hypothesis is true (i.e.,

there is a less than 5% probability that there is a difference between population

means).

5. If you reject the null hypothesis, you know the probability (< 0.05) that you are

wrong.

6. You have a reliable experimental finding in the sense that if, hypothetically, the

experiment were repeated many times, you would obtain a significant result

95% of the time.

As a matter of fact, all six statements are incorrect. The first issue is that p-values
make statements about samples, not populations. The p-value does not express the
conditional probability that the null hypothesis) is true given the sample value, or

prob(H0 is true │ sample). It expresses the opposite conditional probability prob

(sample │ H0 is true), so the obtained sample value is at least as large (or small,

depending) as would be observed in the sample if the null hypotheses were true! For

example, based on a significant ANOVA, we could (erroneously) state that “given

the magnitude of the difference between the two samples we observed, the proba-

bility that they were drawn from one and the same population is smaller than 0.05,”

rather than (correctly) stating that “if both samples were drawn from the same

population and all other assumptions hold, the probability of observing a difference

between the two samples that is at least this large is 0.05.” This distinction is

fundamental because we cannot simply reverse conditional probabilities [22]: while

the probability that someone will die if he or she is hanged is large, the opposite—

the probability that someone will be hanged if he or she is dead—is small!

The second key issue is that all statistics are misleading or incomplete when they

are seen in isolation. This holds for the p-value just as much as for any other known

statistic. The average of a population isn’t very interesting or meaningful as a
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statement about a population, which is why we usually consider the average

together with other statistics, such as the standard deviation (the average distance

from the mean). As discussed in Chap. 2, a large difference between the mean

scores of two groups is much more meaningful if the standard deviation for both

groups is small.

The case of the p-value is similar: The p-value itself does not say much about a

finding or outcome of a statistical test because p-values can be manipulated (e.g., by

increasing the sample size or reversing hypotheses) and because a p-value expresses
only a probability of attributing a result to chance or randomness, not the magnitude

or importance of the observation itself. Unfortunately, it has become common

practice to rely only on the p-value to argue the relevance or importance of a

particular finding from data analysis.

The third issue is that the thresholds or cut-off values for what is a good or bad

p-value result are arbitrary. Simply put, p< 0.05 is a conventional threshold that

someone suggested some time ago. There is little theoretical or statistical reason

that the thresholds shouldn’t be 0.08, 0.0374, or any other value.

The good news is that these old views, and these three key issues, are being

challenged, literally as we write this book (in 2015 and 2016). In fact, while we

were writing these chapters, new guidelines, have slowly been forthcoming (e.g.,

[17]). While these guidelines, too, will be challenged, refined and evaluated, at this

time we can make one simple, general recommendation for scholars engaging in

quantitative analysis: Always use, interpret, and report p-values in context.

While statisticians continue to work on whether to keep the p-value and with

what to replace it, it appears that the most prudent possible way to deal with

p-values is to follow these guidelines:

1. Do not base scientific conclusions only on whether a p-value passes a specific
threshold: Do not argue that some result is better or worse only because some

test is under or over a p-value threshold (such as 0.05). Always report the exact

p-values (e.g., p¼ 0.049 or p¼ 0.051), as opposed to p< 0.01, 0.05 or some

other threshold. Do not use a conventional 5% level.

2. Proper inference requires full reporting and transparency: Always report

the p-value together with the standard error and the confidence interval (lower

and upper limit) of the estimation or test statistic. For example, if you compare

two means, include the confidence interval of the test statistic (e.g., the mean

difference). For coefficients, confidence intervals allow readers to evaluate the

distance from 0 or 1. A useful source for calculating confidence intervals is [23].

3. Do not use statistical significance to measure the size of an effect or the

importance of a result: Always report and discuss the effect size of an estima-

tion together with p-values. In an example from medicine, meta-analyses have

shown that antibiotics reduce the average duration of acute bronchitis (eight to

nine days) by half a day [24], which is a statistically significant, yet irrelevant

difference.

4. Always review your interpretation of the statistics in the text of the paper or

thesis, making sure that you interpret the values appropriately and carefully. In
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particular, do not use terminology such as “accepting” or “rejecting” hypotheses,

and try to calculate back the effect sizes to real differences in the variables (e.g.,

“a difference of 27 IQ points”).

At this point, you may have noticed that we ourselves do not closely follow these

suggestions in this book. In other words, we are also guilty of some of the bad habits

we discuss here. To some extent, this is normal; as science, knowledge, and

statistics evolve, so does our learning. Some of the articles, recommendations,

and statements on which we have based our discussion [17–19] have been

published (or accepted for publication) while we were writing this book. Many of

the examples we use (including calculation and reporting of statistics) were

performed and published long before these guidelines were available, and to

some extent even before researchers from our fields became aware of the discus-

sion. Also, we needed to make sure that we soundly introduced and explained the

key concepts and procedures of the different analyses. Clearly, debating some of the

key metrics at that time would not have been a very good pedagogical strategy.

However, at this point in the book, it is important to reinforce a key lesson: do not

repeat mistakes, and do not stick to habits just because they once were or remain

acceptable when you already know they are bad habits. For example, here and now

we advise you to always calculate, report and interpret confidence intervals—even

though we have omitted them from many of our examples in previous chapters.

With that, we have said about all we want to say about data, assumptions, and

p-values. A popular saying has it that “assumptions are the mother of all . . .” well,
problems. This statement is especially true when it comes to analyzing quantitative

data. If the relevant assumptions for the analysis method you use do not hold, the

results and conclusions drawn cannot be trusted, so you should check and correct or

change course.

Much in the same vein, the last word about p-values has not yet been written.

Keep track of developments communicated by influential sources for science (e.g.,

[25, 26]) and the top journals in your field. We certainly will.
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Here this books draws to a close, but your efforts in data analysis continue. As we

are sure you know, conducting data analyses can be long, tedious, and confusing.

Some of us enjoy digging around, trying new things, and looking at new software

and new ways of collecting, treating, and analyzing data, and we get excited about

results and what they might mean. On the other hand, the absence of good data,

good findings, clear outcomes, and a clear understanding of what they mean can

weigh heavily. Even so, rest assured that there are some tricks to get you going and

keep you going.

First, so you don’t lose too much time, your temper, or your mind, keep track of

what you are doing. Keeping track begins before you start analyzing and, ideally,

even before you start collecting data, and doing so is vital when you are doing the

analysis. Try keeping a log book. Which tests did you run? Which variables did you

use? Which transformations have you tried? This kind of record is useful not only

for yourself but also for journal editors and the scientific community, both of which

are increasingly scrutinizing the research process, not just the results.1

Second, when designing your study, try to think about the design for your data

analyses as well. Plan how you will structure your data, clean it, test assumptions,

and analyze it to obtain answers to your research questions. Thinking about these

issues before you gather data will ensure that you don’t overlook an important

variable or that you measure variables at the wrong level or in an unsuitable format.

An excellent source that will help you plan your study design is Chap. 5 in Recker

(2012).2 The key is to ask yourself during research design what the data you

generate will look like and whether it will be the data you need to answer your

questions.

1Check out this amazing service offered for free to the scientific community: http://

retractionwatch.com/
2Recker, Jan (2012) Scientific Research in Information Systems: A Beginner’s Guide. Heidelberg,

Germany: Springer.
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Third, go beyond the interface. Some statistical software packages allow you to

click your way through analyses, but most (like STATA, SAS, and Matlab) also

allow you to write the program or structure of commands (also called syntax) for the

analysis. Even the “what you see is what you get” programs allow you to see, store,

and edit the syntax behind every analysis—for example, just click “paste” instead

of “ok” in SPSS—and run analyses using syntax only. (Open a new one by clicking

file! new! syntax). It is helpful to look at the syntax, save it, and understand it, as

doing so gives you control over what you are trying to do. Therefore, once you start

analyzing, it is a good idea to store the syntax for each of the analysis steps,

including (notes about) the results, why you ran that analysis, whether it returned

the desired results and why (not), and on which assumptions you based the analysis.

Doing so will allow you to go back at any point to see why you made a certain

analysis choice or how you obtained your reported results. Here is an example from

a “cleaning” phase that was written in SPSS syntax. Note how the software

instructions (the capitalized statements) are interspersed with commentary (the

italicized statements that begin with an asterisk) to guide future readers of the

instructions about what is happening:

*Replaced all dates in the variable ‘time’ (time of starting survey) with the same date in the
style of the ‘SubmitDate’ variable, e.g. 2014-05-06 with 6-May-2014; then computed the
completion time by calculating time between both; then excluded bottom outliers only (they
were allowed to abandon and complete survey later).

*using “Compute Date and Time Wizard”: compute Start_time.
COMPUTE Start_time¼number(Time, DATETIME20).
VARIABLE LABELS Start_time ’Start Time’.
VARIABLE LEVEL Start_time (SCALE).
FORMATS Start_time (DATETIME20).
VARIABLE WIDTH Start_time(20).
EXECUTE.

*using “Date and Time Wizard”: calculate Completion_time.
COMPUTE Completion_time¼DATEDIF(SubmitDate, Start_time, "minutes").
VARIABLE LABELS Completion_time "Completion time in minutes".
VARIABLE LEVEL Completion_time (SCALE).
FORMATS Completion_time (F5.0).
VARIABLE WIDTH Completion_time(5).
EXECUTE.

*Exclude outliers based on completion time (pc 5¼ 10 min; computed based on Z-score)
DATASET ACTIVATE DataSet1.
FILTER OFF.
USE ALL.
SELECT IF (Completion_time>¼ 10).
EXECUTE.
*Note: AGGREGATE can be used to compute mean scores per store (break variable: store)

*to MATCH performance with survey data: first sort based on store_nr, then MATCH:
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Also keep track of the number of cases with which you began; how many you

excluded and why; how you recombined, transformed, or recoded variables (includ-

ing any labels you assigned); which variables you corrected because of violations of

assumptions and how; and how many times you opened the fridge or went for

another cup of coffee you didn’t finish. Because, you know, why not?

Fourth, apart from tracking what you do, writing it down, and planning, find a

buddy who is also analyzing data who can perform “common-sense checks” for

you—and you for him or her. Even if the methods you are using to analyze your

data differ, and whether you are using the same or different data, it is important to

have the opportunity to explain to someone else how you are analyzing your data

and why. Explaining will help you double-check your own assumptions and plan,

and while it can be difficult to spot faults in your own reasoning, it is often easy to

spot them in other peoples’ analyses. An added benefit is that you will learn a little

about your buddy’s methods. In fact, that is how this book started: by sharing

insights about new analysis methods with colleagues we met over coffee. Informal

chats turned into a seminar we held together, the seminar turned into a workshop

series, the series turned into a book, and here we are.

Just remember the adage from, perhaps, A.E. Houseman,3 especially if the data

just won’t do what you want it to do—“Statistics are used too much like a drunk

uses a lamppost: for support, not illumination”—and do not act like a drunk!

3http://www.brainyquote.com/quotes/quotes/v/vinscully205138.html?src¼t_statistics; http://

quoteinvestigator.com/2014/01/15/stats-drunk/
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