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Preface

From the very beginning, humans have lived together with the
cardinal laws of thermodynamics. Some of the laws—e.g., about
temperature, conservation of energy, and the irreversibility of

processes—were sensed intuitively since the days of ancient civiliza-
tions. However, according to our obtainable knowledge, only in the
nineteenth and the beginning of the twentieth centuries were these
three laws inspiringly articulated together with the other two laws
added later in the last century. Today, the cardinal laws of thermo-
dynamics are applied to more and more problems, on both the micro
and macro scales of specific objects, and they often are formulated,
sometimes unnecessarily, in a complex and sophisticated mathemati-
cal way—multidimensional, differential, vectorial, matrix, statistical,
etc. Through inventing ways the science mainly develops applications
of these old laws to explore newly arising problems or objects.

The reader should not expect to find any new cardinal discov-
eries described in the present book, but what will be found here is
only application of some old laws for exploration of one of the most
admirable natural phenomena—thermal radiation. In the continual
quest for new energy sources, solar radiation, or other radiation, grows
in significance and becomes more and more attractive because its uti-
lization does not pollute the environment. However, we should not
forget that besides solar radiation there are also other sources of ther-
mal radiation, e.g., hot walls radiating at a temperature not as high as
that of the sun but still significant enough to be considered in various
processes, mostly industrial.

Therefore, the aim of this book is to study radiation from any ar-
bitrary source. One specific case is cold radiation, well disclosed by
exergy, which comes from remote cosmic space and is represented by
the lower sky temperature which slightly differs from the tempera-
ture of bodies surrounding daily human existence on earth. However,
although such a source exists potentially, it is still not practically con-
sidered because of the relatively small power available at such a small
temperature difference.

xv



xvi P r e f a c e

It was the end of the 1950s when I tried for the first time to ap-
proach radiation from an exergy viewpoint. In those days exergy anal-
ysis was already relatively well advanced but applied only to the
thermodynamics of substance. The exchange of information between
researchers was not as good as it is today, and generally the com-
munication gap between thermodynamic physicists and engineering
thermodynamicists was visible.

For example, the works on entropy by Planck were not popular in
engineering circles, and some distinguished scientists in engineering
did not recognize the practical benefit of implementing entropy in the
analysis of engineering processes related to radiation. Also, the Second
Law of Thermodynamics was not commonly applied to radiation.

My own doctoral thesis in 1960, in which I derived the formulae
for the exergy of radiation, was met with astonishment mixed with
skepticism and only formally proceeded thanks to a few supportive
individuals (e.g., S. Och

↪
eduszko and J. Szargut). In 1964, I published

in ASME a brief overview of the thesis, but it did not awaken any
significant interest until years later in the late 1970s. Gradually, but still
very slowly, interest grew to the relatively large focus that is noticed
today due to the growth of the solar energy role.

My theory of radiation exergy seemed to me very simple and basic;
therefore, from the beginning I tried to incorporate it into textbooks on
either thermodynamics or heat transfer. But it was usually rejected as
not fitting, neither to substance thermodynamics nor to engineering
calculation of heat transferred by radiation. Time flew by, and only
recently I came to the conclusion that radiation exergy could be the
pivotal target in a new book defined around the area of the engineer-
ing thermodynamics of thermal radiation. Thus, the present book is
proposed as an introduction to such an area.

Writing my book was also inspired by the solar power chapter
in Bejan’s outstanding book, Advanced Engineering Thermodynamics,
which introduced thermodynamics in many new areas. The present
book, however, is focused mainly only on radiation, which is an im-
portant part of overall thermodynamics. I assume that the reader is
familiar with the fundamentals of engineering thermodynamics and
radiative heat transfer, and only a brief outline of these areas is dis-
cussed here, mostly for comparison of the substance and photon gas.
The book is addressed to the designers, users, and researchers of dif-
ferent devices or installations in which radiation—in particular, solar
radiation—plays a role in generating heat, power, or green plants.

I will be grateful to readers for any comments and suggestions
that could lead to improvement of the present book.

Ryszard Petela



C H A P T E R 1
Introduction

1.1 Objective and Scope of This Book
Heat transfer books consider mainly the heat rate during conduction,
convection, and radiation. However, radiation is distinguished from
convection and conduction by the fact that it is not a phenomenon but
a kind of matter and it has properties similar to a substance matter.
In contrast, thermodynamics books consider mainly processes with
substances, neglecting the presence of radiation.

The present book is not about radiant heat transfer, although it is
discussed, but about the thermodynamics of a nonsubstantial medi-
um—the radiation. Thus, the objective of the book is to fill the gap
between most heat transfer and thermodynamics books and explores
the thermodynamics of radiation matter, which recently has become
an attractive source of energy. All the laws and thermodynamic as-
pects of substances are reconsidered with including of radiation. The
working fluid in the considered thermodynamic systems can be either
the substance or a photon gas.

However, because the radiation and substance processes occur
mostly together, some brief background on the thermodynamics of
substances has also been included here. Some processes in which ra-
diation plays an important role, such as solar heating, a solar chim-
ney power plant, photosynthesis, and the photovoltaic effect are an-
alyzed as examples. Thermodynamic analyses of these processes are
developed from both the energy and exergy viewpoints. A new ele-
ment is introduced by including the exergetic influence of the terres-
trial gravity field, which contributes to the buoyancy driven by solar
heating.

An introduction to the present discussion of the thermodynamics
of radiation will be similar to any general introduction to thermo-
dynamics. Thermodynamics is a part of physics and addresses the
energetic phenomena occurring in a collection of sufficiently large
amounts of matter.

1



2 C h a p t e r O n e

The three categories of thermodynamics are the following:

� theoretical—as a part of theoretical physics;� chemical (founded by J. W. Gibbs)—concerning the interrela-
tions of heat and work with chemical reactions; and� engineering (considered in the present book)—concerning par-
ticularly the energy conversion processes occurring in numer-
ous thermal installations, usually on an industrial scale.

In engineering thermodynamics single atoms, molecules, electrons,
or photons are excluded from consideration. Engineering thermody-
namics intentionally gives up complete precision in order to make the
considerations simpler and more comprehensible.

The two methods for investigating energetic processes are called
phenomenological and statistical. Phenomenological thermodynamics
neglects the microstructure of matter, and the mechanisms are ana-
lyzed only on the basis of macroscopic results of experiments. Sta-
tistical thermodynamics, assuming the particle structure of matter,
applies the methods of statistical mechanics and probability. Statisti-
cal thermodynamics, based on the determined microstructure, allows
for the explanation and calculation of many thermodynamic macro-
concepts such as the pressure or specific heat of a substance. However,
the separate considerations of phenomenological and statistical ther-
modynamics are applied only in theoretical thermodynamics.

Energetic processes occur according to Nature’s rules, which are
known as the laws of thermodynamics. These laws are not, and can-
not be, derived, but they have been articulated based on experiments
and many years of observing Nature; never event discordant with the
thermodynamics law was noticed. The following laws of thermody-
namics can be articulated:

The zeroth law defines the concept of temperature.
The first law determines the conservation of energy, which is a fea-

ture of matter, whereas heat and work are examples of energy transfer.
The second law is quantitatively defined by entropy (R. Clausius’s

concept), which can be applied to determining the possible direc-
tion of any phenomenon. However, the application of the second
law is limited to the phenomena occurring in a very large amount of
matter.

The third law (Nernst’s theorem), relating to chemical reactions,
was formulated based on the second law and has no application to
radiation. Planck’s interpretation of the third law is used only in Para-
graph 5.9 for comparison of a substance and radiation depending on
the temperatures near absolute zero.

The rule often called the fourth law of thermodynamics con-
cerns nonequilibrium thermodynamics and can be explained in fur-
ther detail. Classical thermodynamics considers processes occurring
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through successive states of equilibrium. Instead of the name classical
thermodynamics, the name thermostatics was proposed (but it was not
accepted). In principle, application of the classical thermodynamic
laws to nonequilibrium phenomena is possible only if thermodynamic
equilibrium exists in the initial and final states. The increments of the
thermodynamic functions occurring during the phenomenon can be
then calculated because they depend only on these extreme states and
do not depend on the transition path. For nonequilibrium phenom-
ena, classical thermodynamics allows us to formulate only inequality
relations instead of respective equations.

Generally, in Nature and in engineering processes the states of
thermodynamic equilibrium do not occur and, moreover, the nonequi-
librium phenomena most often do not occur alone. Usually any phe-
nomenon, driven by any impulse, is reciprocated by other phenomena.
For example, the temperature gradient in a gas mixture generates not
only the heat conduction but also diffusion of gas components (due to
the density gradient), or, in another example, the gradient of electrical
potential causes not only the electric current but also the generation
of heat due to electrical resistance.

Nonequilibrium phenomena are irreversible and are accompanied
by energy dissipation that manifests itself by the growth of the over-
all entropy of the participating bodies. However, a reciprocated phe-
nomenon restrains the entropy growth. If this phenomenon were to
occur separately, then it would contradict the second law of thermo-
dynamics. For example, spontaneous generation of the concentration
gradient within a single-phase mixture of gases is not possible from
the viewpoint of the second law of thermodynamics. However, the re-
ciprocated phenomenon cannot occur separately but only in the pres-
ence of the other phenomenon. The joint phenomenon, comprised of
all reciprocated phenomena, is irreversible.

Thus, in contrast to classical equilibrium thermodynamics, which
is concerned with matter states in equilibrium, nonequilibrium ther-
modynamics is concerned with the thermodynamic systems of irrever-
sible transformation processes, when the systems are time-dependent,
usually not isolated, and continuously sharing energy with other sys-
tems. Consideration of such systems becomes difficult because, due
to the possibility of fluctuations, the concepts in equilibrium thermo-
dynamics such as entropy production, equipartition of energy, the
definition of temperature, or predicting the heat transfer cannot be
applied. The system behaves as a collection of component processes
that are mutually dependent of one another according to the fourth
law of thermodynamics described in the Onsager reciprocal relations.

One of the simplest examples of reciprocated processes is green
plant vegetation, which reciprocates with the phenomenon of irre-
versible solar energy transferred from sun to earth. The energy dis-
sipation is reciprocated by the accumulation of energy in the plants.
The overall effect of these two phenomena is irreversible because the
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accumulation of energy does not fully compensate the entropy growth
due to the irreversible solar energy transfer. However, the energy accu-
mulation in the plants would be impossible without the reciprocation
with the related phenomena of solar radiation.

In practice, recognition of the thermodynamic processes as being
in equilibrium is usually sufficient, and nonequilibrium thermody-
namics may not need to be considered. More information on nonequi-
librium thermodynamics can be found, e.g., in books by de Groot and
Mazur (1962, 1984) and Kuiken (1994).

The full scope of thermodynamics also embraces the law of con-
servation of substance (which is not valid for radiation and is applied
only in nonnuclear processes), the equation of state and thermody-
namic concepts such as parameters, functions, and so on.

Analysis of radiation problems, aside from knowledge of the ther-
modynamics laws, also requires specific assumptions and principles
for radiation. Thus, the subject of this book is the set of additional
rules applicable to typical processes involving both substantial and
nonsubstantial working fluids (the radiation product).

Optics is not considered in this book.
The ability to emit radiation is a feature of substance. Only thermal

radiation is considered in this book. Other types of radiation such as
emission of light by certain materials when they are relatively cool—
e.g., the phenomena of luminescence or chemiluminescence created
as a low-temperature emission of light by a chemical or physiological
process—are excluded from our analysis.

These types of radiation are in contrast to the radiation emitted
from the sun or by incandescent bodies such as burning wood or coal,
molten iron, or wire heated by an electric current. Luminescence may
be seen, e.g., in neon and fluorescent lamps, television, radar, and
X-ray fluoroscope screens. Luminescence can also be generated by
organic substances such as luminol or the luciferins in fireflies and
glowworms, or by natural electrical phenomena such as lightning or
auroras. The practical value of luminescent materials lies in their nat-
ural ability to transform invisible forms of energy into visible light.
In all these phenomena, light emission comes from the material at
about room temperature, and so luminescence is often called “cold
light.” However, the so-called cold radiation coming at a low temper-
ature (e.g., thermal radiation from the sky) belongs to the category of
thermal radiation considered in this book. Thermal radiation appears
when a substance has a temperature greater than absolute zero with
the exception of the model substance, which, regardless of its temper-
ature, is passive; it neither radiates nor absorbs radiation (a perfect
mirror).

The structure of this book is similar to traditional books on engi-
neering thermodynamics. After some description of the basic defini-
tions, properties of substance, and radiation matter, the conservation
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of mass, thermodynamics laws, and efficiency definitions are dis-
cussed.

Based on the discussed properties of the photon gas, Chapter 6
presents the key derivation of the fundamental concept, which is the
exergy of emission. The reference state for the calculation of radiation
exergy is determined as the temperature of the environment, and we
discuss the effects of variation in this temperature.

The exergy of any thermal radiation is the pivotal problem in radi-
ation thermodynamics. Chapter 7 presents the derivation of exergy of
arbitrary radiation characterized by an arbitrarily irregular spectrum.

Based on the discussion in earlier chapters, the reader is prepared
for Chapter 9 in which we discuss the existing literature on the exergy
of radiation and develop the critical analyses of theories given by other
authors.

Chapters 10–13 present examples of analyses of real thermody-
namic processes in which the substance and radiation take place
jointly. The examples show the possibility of drawing conclusions
both about the processes of solar radiation harvested by heating or
power in a solar chimney power plant and also about the simpli-
fied interpretations of the photosynthesis and photovoltaic processes.
Thermodynamic analyses are approached from the viewpoints of both
energy and exergy.

The considerations are illustrated by quantitative calculation ex-
amples in which only the SI (metric) system of units is used. Some
general data related to considered problems are presented in the Ap-
pendix. Nomenclature is given separately for each chapter at its end.
The book concludes with an index of names and subjects.

1.2 General Thermodynamic Definitions
Various situations can be the focus of thermodynamic considerations,
which, to be carried out, require the determination of the system rep-
resenting the problem. The system is the part of space separated by
an imagined shell called the system boundary. The system boundary is
sometimes identified the other way around, e.g., a control volume or
reference frame. The size and shape of the system space is arbitrary.
The system can change in size, shape, and location.

The precise establishment of the system boundary is necessary
for the correct balance of matter, energy, and exergy, as well as for
determination of the overall entropy growth for the system. All deter-
minations of the matter’s parameters and fluxes entering and exiting
the system should be determined at the place where they pass through
the system boundary.

A system is said to be closed if no matter flows through the system
boundary. The system is said to be open if matter flows through the
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system boundary. The rules of conservation of matter are discussed in
Chapter 4. The secluded system is the case when there is no exchange
of energy and matter through the system boundary.

The state of a system is determined by the values of the state pa-
rameters. These are the values of macroscopic magnitudes related to
the system, which can be determined based on measurement—with
no need, however, to know the history or future of the system. Exam-
ples of state parameters are temperature, pressure, volume, amount
of substance, component velocity, coordinates of location in a field of
external forces, and so on. To make sure that a magnitude is really
the state parameter, one has to judge if an increase in the considered
magnitude depends only on the initial and final state of this trans-
formative increase. If this increase depends on the mode of system
transformation, i.e., it depends on system history, then the considered
magnitude is not a state parameter (e.g., heat and work).

The state parameters can be intensive or extensive. The intensive
parameters (e.g., temperature, pressure, and specific volume of a sub-
stance) do not depend on the size of a system and do not change value
after division of the uniform system into parts. The extensive parame-
ters (e.g., volume, energy, entropy and exergy) depend on the system
size and have an additive quality, i.e., the extensive parameter of the
whole system is the sum of the extensive parameters of the system’s
parts (subsystems). Extensive parameters related to the unit amount
of a substance are usually identified by the adjective “specific,” e.g.,
specific enthalpy (J/kg), specific internal energy (J/kmol), and spe-
cific heat (J/kg K), although this latter, beside kg, is also related to the
temperature, K.

Not all the state parameters can vary independently from one
another. However, there can always be an established set of inde-
pendent parameters from which, if they are known, it is sufficient to
determine all other state parameters. The independent parameters can
be selected arbitrarily; however, their number is limited. The state pa-
rameter that does not belong to the independent parameters is called
the state function, e.g., the not directly measurable parameter of the
internal energy, entropy or exergy.

To analyze a system, only essential independent parameters
should be included in the consideration. The essential parameters for
thermodynamic systems can be the thermal parameters such as tem-
perature, pressure, or volume. Only in a special system should the
independent mechanical parameters be considered, e.g., for determina-
tion of component velocities or system coordinates. A uniform system
has the same value for intensive parameters at every point of the
system.

Thermodynamic equilibrium is achieved in a secluded system spon-
taneously after a sufficiently long time. In an equilibrium state
the state parameters are established as being constant. In general,
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thermodynamic equilibrium requires three equilibriums to be
fulfilled—mechanical (equilibrium of forces), thermal (equality of tem-
perature), and chemical (constant composition). In the state of thermo-
dynamic equilibrium the number of independent state parameters is
the smallest. If the system is not in thermodynamic equilibrium, then
the univocal determination of some state parameters may be impos-
sible. For example, in a system with intensive chemical reactions the
temperature in the system cannot be univocally determined. As ex-
plained in Paragraph 1.1, the engineering thermodynamics considers
only the states of equilibrium (thermostatics) and the phenomena of
transformations from one to another equilibrium state.
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C H A P T E R 2
Definitions and

Laws of Substance

2.1 Equation of State
Everything that has mass is called matter. Mass is a property of matter
that determines momentum and gravitational interactions of bodies.
Matter appears in substantial and nonsubstantial forms. Substance is
matter for which the rest mass is not zero. Thus, substance is the macro-
scopic body composed of elemental particles (i.e., atoms, molecules).
Matter for which the rest mass equals zero (e.g., a radiation photon)
appears in the form of different fields; e.g., the field of electromag-
netic waves (radiation), the gravity field, the surface tension field, and
so on.

The significance of substance in engineering thermodynamics is
that the substance amount expresses the number of particles partic-
ipating in thermodynamic processes. Units of substance amount can
be kg, kmol, or a standard cubic meter (defined by values of stan-
dard temperature and pressure). Substance can also be the object of a
conservation equation. Nonsubstantial matter (sometimes called field
matter) can also be considered as a component in processes of en-
ergy conversion; however, it does not fulfill the matter conservation
equation.

The thermal parameters of substance can be determined in nu-
merical value and units. The numerical value depends on the selected
units. To obtain an easily imaginable number, the units multiplied by
10n can be used, where n is an integer larger or smaller than 1. The
name of a multiplied unit is created with use of the proper prefix (see
Section A.1).

In practice, a gas that appears in nature consists of a large number
of particles that are in continual motion. The particles translate (linear
replacement), rotate, and can oscillate (the vibrations of atoms in the
molecule). The particles have a volume and they interact with mutual
attraction forces. Because the thermodynamic properties of real gases

9
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are complex, imagined models of gases are introduced to simplify the
calculation of the thermal parameters of the gas.

One model of an ideal gas is a hypothetical gas in which molecules
do not interact mutually, have a molecule volume equal to zero (i.e., the
atoms are considered as material points), and are rigid (i.e., there is no
oscillation within the molecules). A more general and less restricted
model of an ideal gas (sometimes called a semi-ideal gas) allows for
oscillation within the molecules. Thus, the atoms in the molecules of
semi-ideal gas are mutually bonded elastically.

The relatively simple dependence between gas parameters such as
pressure, temperature and volume can be derived for a semi-ideal gas,
which obviously is also valid for an ideal gas. For a gas that is not at
excessive density, the following experimentally established laws exist:� Boyle’s law, according to which, for a given mass of gas main-

tained at a constant absolute temperature T , the pressure p is
inversely proportional to the volume V;� Charles’ and Gay-Lussac’s law which states that for a given
mass of gas held at constant pressure, the volume is directly
proportional to the temperature.

These two experimental results conclude in the form of the relation
p × V/T = constant, for a fixed mass of gas. It can be interpreted that
the volume occupied by a gas, at a given pressure and temperature,
is proportional to its mass. Thus, the constant p × V/T has also to be
proportional to the mass of gas. Expressing mass � in kmol, the univer-
sal gas constant R can be experimentally determined and the equation
of state of an ideal gas or of semi-ideal gas at a not-excessive density
is established as follows:

pV = �RT (2.1)

The constant R has the same value for all gases, R = 8314.3 J/(kmol
K). If mass in equation (2.1) is expressed in kilograms, then R becomes
the individual gas constant which has individual values for different
gases. If the molar gas density �� = �/V is introduced to equation
(2.1), then the following formula is obtained:

p = �� RT (2.1a)

It clearly results from equation (2.1a) that the thermodynamic state
of a gas is determined completely by the arbitrarily chosen pair of
possibly three parameters, either p and ��, p and T, or Tand ��. The
presented considerations are later compared to the considerations of
the thermodynamic state of a photon gas.
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2.2 State Parameters of Substance

2.2.1 Pressure
Pressure is defined as the force exerted by a fluid (e.g., liquid, gas,
or radiation product) on an enclosed surface, divided by the area of
the surface. The total pressure is the sum of both static pressure and
dynamic pressure. Static pressure is measured by an apparatus that is
motionless relative to a flowing fluid. Static pressure can be the abso-
lute pressure when it is measured relative to a vacuum, or the relative
pressure when it is measured from any pressure reference level (e.g.,
measured as a surplus above the atmospheric pressure). The dynamic
pressure is equal to the kinetic energy of a fluid. As a principle, only
absolute static pressure is used in thermodynamic equations.

Pressure can be calculated based on the kinetic theory of an ideal
gas. Consider a gas in a cubical vessel (i.e., each edge has length L),
the walls of which are perfectly elastic. Consider an ith molecule of
velocity wi and of mass mi , which collides with the wall and rebounds
with the same velocity wi . Thus, the change �P in the particle’s
momentum is:

�P = mi wi − (−mi wi ) = 2 mi wi (2.2)

Assume that the particle reaches the wall without striking any
other particle on the way. The time required to cross the cube is L/wi

and the time required for the round trip is 2 ×L/wi . The number of
collisions of the particle with the wall per unit time is wi /(2 ×L), and
the rate at which the particle transfers momentum to the wall is:

2 mi wi
wi

2L
= mi w2

i

L
(2.3)

The particles in the cube are moving entirely at random. There is no
preference among the particles for motion along any one of the three
coordinate directions. The classical statistical mechanics involves the
equipartition theorem, which is a general formula of equal distribu-
tion and in relation to the gas parameters it concerns the different
components of gas energy. According to the theorem, in a thermal
equilibrium, energy is shared equally among its various forms and
orientation directions. The theorem allows for quantitative predic-
tions, and when applied to the molecules it states that the molecules
in thermal equilibrium have the same average energy associated with
each independent degree of freedom of their motion. To find the pres-
sure p imparted to the wall by all the gas molecules, but traveling only
perpendicularly to the wall, the momentum force represented, e.g., by
the right-hand side of equation (2.3), has to be divided by three, also
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divided by the wall area L2 and summed up for all the particles:

p = 1
3

m
L3

i=N∑
i=1

w2
i (2.4)

where N is the total number of particles in the vessel. Introducing the
number n of particles per unit volume, n = N/L3, one obtains from
(2.4):

p = 1
3

m n
∑i=N

i=1 w2
i

N
(2.5)

Taking into account that m × n is the gas density � , m× n = � ,
and that the sum divided by N is the average value w2 of the square
velocities w2

i , the following formula is received:

p = 1
3

�w2 (2.6)

The result (2.6) was derived by neglecting the collisions between
particles; however, it can be assumed that the result is true even when
such collisions are considered. Based on the probability viewpoint, it
is usually argued that despite the collision between particles during
the numerous exchanges of velocities in the entire system, there are
always certain molecules that collide with the considered wall, which
correspond to certain other molecules exiting the opposite wall with
the same momentum. In addition, the time spent during collisions
is negligible compared to the time spent between collisions. There-
fore, neglecting collisions between particles is only a convenience for
mathematical derivation. A vessel of any shape can be selected for
derivation. The cubic shape of the vessel above is also assumed to
simplify calculations. The pressure exerted only on one wall was cal-
culated; however, following Pascal’s law for fluids, the same pressure
is exerted on all walls and everywhere inside the vessel interior.

2.2.2 Temperature
Temperature is a state parameter that determines ability for heat trans-
fer. The temperature T ′ of a body is higher than the temperature T ′′ of
another body if after contact between the bodies the first one transfers
heat to the second one. However, if the heat transfer does not appear
between these bodies when separated from their surroundings, then
between these bodies there is a thermal equilibrium and the bodies
have the same temperature (T ′ = T ′′).

Maxwell formulated the following law regarding temperature,
known as the zeroth law of thermodynamics. If three systems A, B, and
C are in a state of respective internal thermal equilibrium, and systems
A and B are in thermal equilibrium with system C , then systems A
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and B are in mutual thermal equilibrium, i.e., they have the same
temperature. This law is the basis for using thermometers for the
measurement of temperature. Thus, thermometers allow for differ-
ent systems for measuring temperature. As a principle, in thermody-
namic equations the absolute temperature is given in kelvins (K). An-
other commonly used scale of temperature is the Celsius scale, where
t = T − 273.15, where T is the absolute temperature. The value 273.15
is the absolute temperature for the triple point of water, which is the
temperature at which the three phases (solid, liquid, and gas) of water
can exist in equilibrium.

The temperature of a gas can be also measured based on the kinetic
theory of an ideal gas. Each side of equation (2.6) can be multiplied
by the volume V, and the product V × � represents the gas mass m:

pV = 1
3

mw2 (2.7)

Equation (2.7) can be interpreted with the expression for kinetic
energy m × w2/2:

pV = 2
3

mw2

2
(2.8)

which reveals that the right-hand side of equation (2.7) represents two-
thirds of the total kinetic energy of the translation of the molecule. A
mass m (kg) can also be expressed as the mass � (kmol) according to
the relation � = m/M, where M is the molecular weight of gas. Thus
equation (2.8) changes to the form:

pV = 2
3

�Mw2

2
(2.9)

Combining the state equation (2.1) with (2.9):

1
2

Mw2 = 3
2

RT (2.10)

one obtains the result that the total translational kinetic energy per
kmol of the molecules of an ideal gas is proportional to the tem-
perature. Equation (2.10) can be considered as the definition of gas
temperature on a kinetic theory basis or on a microscopic basis.

Let us divide each side of equation (2.10) by Avogadro’s number
N0, which represents the number of molecules per kmol (N0 = 6.02283
× 1026):

1
2

(
M
N0

)
w2 = 3

2

(
R
N0

)
T (2.11)
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The ratio M/N0 is the mass of a single molecule and the left-hand
side of equation (2.11) represents the average translation kinetic en-
ergy of the molecule. On the other hand, the ratio R/N0 is equal to the
Boltzmann constant k:

k = R
N0

= 1.38053 × 10−23 J/K (2.12)

which plays the role of the universal gas constant of the molecule.

2.3 Energy of Substance
Generally, energy is the ability to perform work and is determined for
an arbitrarily chosen reference state, whereas exergy is also the ability
to perform work, however, when the environment is assumed as the
reference state. Work, heat, energy, and exergy are determined with
the same units. Energy, or exergy, are functions of the state and do
not depend on the history of matter for which energy, or exergy, is
considered. Work and heat are phenomena, lasting longer or shorter,
during which energy, or exergy, is transferred. Work and heat are
not a function of the matter state and depend on the history of such
phenomena.

In addition to the macroscopic components of energy, such as ki-
netic or potential, a substance has its internal energy, the components
of which are:� kinetic energy of translations and rotations of molecules� energy of oscillations of atoms in molecules� potential energy in the field of mutual attraction of molecules� inner energy related to the possibility of chemical restructur-

ing of molecules (called chemical energy)� energy of electrons states� nuclear energy

Internal energy does not depend on the velocity of the body and
its location. Most often only changes in internal energy play a role;
thus, the reference state for calculation of the internal energy has to be
assumed and such reference can be chosen arbitrarily. Usually not all
the mentioned components of internal energy vary in thermodynamic
processes; thus the nonvarying components can be neglected. In en-
gineering thermodynamics it is usually assumed that the considered
components of the internal energy depend only on temperature, pres-
sure, and volume, and only two of these three parameters can vary
independently from each other.
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Very convenient in engineering thermodynamic considerations is
the concept of enthalpy, which is the formally incorrect combination
of two different kinds of magnitudes—internal energy U and work
(p × V). This informality however, does not produce any erroneous
consequences. The enthalpy H is defined as:

H = U + pV (2.13)

The expression p × V represents “transportation” work required
during exchanging substance with the considered system through the
determined system boundary. One of the ways of exchanging energy
with a system is the stream of substance passing the system boundary.
The exchanged energy in such a way is determined by the enthalpy.
The enthalpy can be also interpreted as the sum of the internal energy
(U) of matter in a vacuum and of the required work (p × V) on the
environment to ensure the room for the matter.

In practice, especially important is the consideration of change in
internal energy U of a fluid that absorbs heat Q and, at the same time,
performs work W. The first law of thermodynamics applied to such
process, which starts at parameters with subscripts 1 and ends with
parameters with subscripts 2, takes the form:

Q1−2 = U2 − U1 + W1−2 (2.14)

Equation (2.14) illustrates well that, as mentioned, work and heat
are not forms of energy, because energy is a property of matter; thus,
energy is a function of the matter state, whereas work and heat are
phenomena that disappear. This—what is left after work or heat—is
the changed value of the energy (U2– U1) of the bodies that participated
in the phenomena. The values of work W1−2 or heat Q1−2 depend not
only on the initial and final states of the considered system but also
on the path of the transition between states 1 and 2. Work and heat are
not state functions, so, e.g., saying that a body contains heat would be
incorrect.

The work W1−2 in equation (2.14) is absolute work, and the heat
Q1−2 in the case of a real process occurring with friction comprises
the friction heat that is absorbed by a fluid. If the internal energy is
eliminated from equation (2.14) by using equation (2.13), then:

Q1−2 = H2 − H1 + Wt,1−2 (2.15)

where Wt,1−2 is the work interpreted as the technical work. Equa-
tions (2.14) and (2.15) can be presented, respectively, in differential
form and using the specific (related to the unit of mass) magnitudes,
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e.g., as follows:

dq = du + dw (2.16)

dq = dh + dwt (2.17)

2.4 Energy Transfer

2.4.1 Work
Work is one of the many ways of exchanging energy.

Mechanical work is defined as the scalar product of force and re-
placement. The force is taken as the projection on the replacement di-
rection. A force gives to a mass its acceleration. The force is expressed
in N (newton), which gives to 1 kg of mass the 1 m/s2 acceleration.
The force that is perceptible due to gravitational acceleration is called
weight. Power in W (watt) is the ratio of work and time. Thermal power
can be interpreted as a ratio of transferred heat and time.

The formula for the absolute work performed by a fluid is:

dW = p dV (2.18)

where p is the static absolute pressure of fluid and V is its volume.
The useful work Wu is defined in a case when the part of the

absolute work is used for compression of the environment at pressure
p0:

Wu,1−2 = W1−2 − p0(V2 − V1) (2.19)

The same performed work can be interpreted also as a technical
work:

dWt = −V dp (2.20)

However, a certain generalization of the concept of work is re-
quired because, beside mechanical work, there also are other forms of
work such as the work performed by an electrical current or a mag-
netic field, etc. In such cases, work has to be determined in a specific
way. If work is the only way of interaction between a system and its
environment, then the system is called adiabatic. Another case of the
adiabatic system occurs if there is no heat transfer between a system
and its surroundings.

Work performed by an adiabatic system causes a change in the
energy function of the system. This change is equal to the difference
of the system energy after and before performing work.
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Performing work is one of the ways of energy exchange between
systems. If the systems are closed then only two ways of energy trans-
fer can occur—work and heat. Heat exchange occurs when the tem-
peratures of the considered systems are different.

2.4.2 Heat
Heat as the process of exchanging energy with a system can be con-
sidered from different viewpoints. One viewpoint is the calculation
of heat exchanged between different objects and this is the subject of
many manuals on heat transfer, e.g., Holman (2009).

Another viewpoint, discussed shortly, is the calculation of heat
absorbed by a substance. Heat Q1−2 absorbed by a body, during a
change in its temperature from T1 to T2, is generally the sum of the
heat delivered from outside and the heat of friction occurring within
the body. The elemental amount of heat, dq, absorbed by the unit mass
of the body increases appropriately its temperature:

dq = c dT (2.21)

where c is the specific heat of the body. Equation (2.21) is solved either
for a given function c(T):

q1−2 =
T2∫

T1

c dT (2.22)

or for a known mean specific heat used as follows:

q1−2 = c
∣∣∣T2

T1
(T2 − T1) (2.23)

If during the heating process the substance changes its phase,
equations (2.22) and (2.23) cannot be applied directly because the
latent heat (at constant temperature) of the phase change has to be
included.

The specific heat depends also on the kind of the heating process.
Using (2.21) and (2.20) in (2.16):

c dT = du + p dv (2.24)

The total differential du of the function u(T, v), expressed as fol-
lows,

du =
(

∂u
∂T

)
v

dT +
(

∂u
∂v

)
T

dv (2.25)
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can be introduced to (2.24) and after division by dT,

c =
(

∂u
∂T

)
v
+

[(
∂u
∂v

)
T

+ p
] (

∂v
∂T

)
�

(2.26)

where the partial derivative for a given kind � of the considered pro-
cess is used. Generally, the specific heat c depends on the property of
the body, can vary during varying parameters of the body, and de-
pends also on the kind of process. For example, if the process occurs
at constant volume (v = constant) then the second term of equation
(2.26) is zero. Thus, the specific heat for constant volume is:

cv =
(

∂u
∂T

)
v

(2.27)

For a semi-ideal gas the internal energy u does not depend on
volume; thus: (

∂u
∂v

)
T

= 0 (2.28)

Interpreting (2.28) in (2.25):

u = cvdT (2.29)

Further derivations can lead to the formulae:

h = cpdT (2.30)

cp − cv = R (2.31)

The result is that specific heat at constant volume is used to cal-
culate the increase of internal energy, whereas the specific heat at
constant pressure allows for calculation of enthalpy. The difference
of these two specific heats is equal to the individual gas constant R
discussed earlier.

The ratio of specific heats

cp

cv
= � (2.32)

is equal to the isentropic exponent � in the equation representing
varying parameters during an ideal (no friction) adiabatic process
(called the isentropic process). For example, parameters p and V in the
isentropic process change according to the equation:

pV� = const. (2.33)
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The relations discussed above will be compared to similar rela-
tions for radiation.

2.5 Entropy of Substance
Entropy, expressed in J/K, is a measure of thermodynamic probability
of the system’s disorder. Entropy can be interpreted from a macro-
scopic viewpoint (classical thermodynamics), a microscopic view-
point (statistical thermodynamics), and an information viewpoint (in-
formation theory). The latter viewpoint differs from the concept of
thermodynamic entropy and contributes to the mathematical theory
of communication. The statistical definition of entropy is a basic def-
inition from which the other two can be mathematically derived, but
not vice versa. All properties of entropy, as well as the second law
of thermodynamics, follow from this definition. In statistical thermo-
dynamics the entropy S is defined as the number � of microscopic
configurations that are possible in the observed macroscopic thermo-
dynamic system:

S = k ln � (2.34)

where k is the Boltzmann constant discussed earlier.
In classical thermodynamics the entropy is derived from analysis

of the heat engine generating work according to the theoretical model
of the Carnot cycle, which is reversible and has the maximum possible
efficiency:

�C = TI − TII

TI
(2.35)

where TI and TII are the temperatures, respectively, of hot and cold
heat sources available for the cycle. In Section 4.6 it will be proven
that the Carnot efficiency expressed by formula (2.35) is independent
of the working fluid; therefore, it can be also applied for a photon gas.

The entropy is a function of the thermodynamic state, as any other
state function, with property depending only on the current state of
the system and independent of how the state was achieved. Entropy
S is defined as follows:

dS = dQ
T

(2.36)

where T is the temperature at which the elemental amount dQ of heat
is exchanged, whereas dS is a total differential of entropy. The inte-
gral of the total differential is the difference of function between the
initial and final state, whereas, for comparison, the elemental amount
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is determined by integrating based on knowledge of the history be-
tween initial and final state. Entropy, introduced by Clausius, allows
for quantitative application of the second law of thermodynamics.

Equation (2.36) can be developed by using, e.g., (2.1), (2.16), and
(2.20), for consideration of a gas with specific values of the magnitudes

ds = cp
dT
T

− R
dp
p

(2.37)

which after integration is

s2 − s1 = cp ln
T2

T1
− R ln

p2

p1
(2.38)

Equation (2.36) for entropy can be simply integrated for heat Q
taken from the heat source at constant temperature T :

S = Q
T

(2.39)

2.6 Exergy of Substance

2.6.1 Traditional Exergy
Exergy is one of several thermodynamic functions of state. The func-
tions make consideration easier, allow for interpretation of phenom-
ena, and (most of them) have practical application in thermodynamic
calculations. For example, enthalpy is used to determine the energy
of exchanged matter with the system considered. Internal energy ex-
presses the energy of the substance remaining within the system at the
time of consideration. Entropy determines the thermodynamic prob-
ability of a given matter state. Exergy was introduced to express the
practical energetic value of matter existing in the environment given
by nature. This practical value is determined by the ability of matter to
perform mechanical work. The work was selected as the measure not
only due to the human inclination toward laziness but also because
work represents the energy exchange at the unlimited level.

However, full utilization of the energetic value of matter to per-
form work within the determined environment could not occur with-
out cooperation from the environment. For example, to utilize the
energetic value of natural gas from its combustion, a certain amount
of oxygen contained in the environment air has to be taken. To fully
utilize compressed air at the temperature of an environment, depres-
surizing of the air has to occur at a constant temperature, and to keep
this temperature steady, heat from the environment has to be taken.
The full definition of exergy was given by Szargut as follows: Exergy
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FIGURE 2.1 Traditional exergy components.

of matter is the maximum work the matter could perform in a reversible pro-
cess in which the environment is used as the source of worthless heat and
worthless substances, if at the end of the process all the forms of participat-
ing matter reach the state of thermodynamic equilibrium with the common
components of the environment. The environment is the natural refer-
ence state in nature, which consists of an arbitrary amount of the
“worthless” components. The components in the environment that
have apparent energetic value, in limited amounts, are the exception,
and are recognized as natural resources, e.g. natural fuels. The matter
considered in the definition of exergy can be a substance or any field
matter, e.g., radiation.

The total exergy of a substance is composed of components as
shown schematically in Figure 2.1. Usually, only such components
are used, which vary during the consideration. Most often used is
the thermal exergy, which is the sum of physical and chemical exer-
gies. The physical exergy results from the different temperature and
pressure of the considered substance in comparison to its temperature
and pressure in equilibrium with the environment (i.e., dead state).
The chemical exergy results from the different chemical composition
of the considered substance in comparison to the common substance
components of the environment.

If the considered substance has significant velocity, then the ki-
netic exergy can be recognized as being equal to the kinetic energy
calculated for the velocity relative to the environment. Potential ex-
ergy is equal to the potential energy if it is calculated for the reference
level, which is the surface of the earth. The other possible components,
e.g., nuclear or interfacial tension, are rarely used and are excluded
from the present discussion. The sum of most important components
in engineering thermodynamics, physical exergy Bph and chemical
exergy Bch , is called thermal exergy B:

B = Bph + Bch (2.40)

The model shown in Figure 2.2 is used for derivation of the formula
defining the drop of exergy (–�B) of a substance medium. The thermo-
dynamic medium at enthalpy H1 and entropy S1 enters the machine,
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Wt, max

H2, S2H1, S1

Q0

Machine

System boundary
FIGURE 2.2 The
model for calculation
of the exergy drop.

which operates continuously, reversibly, and at a steady mode. The
medium at enthalpy H2 and entropy S2 leaves the machine. The ma-
chine utilizes the environment as a source of heat Q0which is worthless
because it is released at the temperature T0 of environment. Accord-
ing to the definition of exergy the maximum technical work Wt,max

performed by the machine is equal to the exergy drop; Wt,max= –�B.
The exergy balance equation for the system boundary, shown in Figure
2.2, is:

−�B = H1 − H2 − Q0 (2.41)

The maximum work can occur only in the reversible process and ac-
cording to the second law of thermodynamics when the overall en-
tropy growth for the considered system is zero:

S2 − S1 + Q0

T0
= 0 (2.42)

From equations (2.41) and (2.42) it results:

−�B = H1 − H2 − T0 (S1 − S2) (2.43)

If we interpret state 2 as the state of thermodynamic equilibrium
with the environment (H2 = H0, and S2 = S0), state 1, as representing
any state of the considered medium (H1 = H, and S1 = S), then, from
(2.43), the general formula for the exergy of substance, (B1 – B2 = B –
0 = B) is obtained as:

B = H − H0 − T0 (S − S0) (2.45)

where B is the thermal exergy of thermodynamic medium at enthalpy
H and entropy S, and H0 and S0 are the enthalpy and entropy, respec-
tively, of the medium in an eventual state of thermodynamic equilib-
rium within the parameters of the environment. The thermal exergy
B expressed by equation (2.45) is for a substance passing through the
system boundary. The exergy B of the substance can be positive or
negative (e.g., for each medium flowing through the pipeline one can
select the sufficiently low pressure at which thermal exergy is smaller
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than zero). However, the exergy Bs of any part of the system remaining
within the system boundary is always positive. It is possible to derive
that the exergy Bs of the substance remaining within the system is
calculated as:

Bs = B − V (p − p0) (2.46)

From (2.46) there results a particular case when the space of vol-
ume V is empty, thus p = 0, as well as B = 0 because there is no
substance. Then the exergy of the empty space is:

(B)P=0 = Vp0 (2.47)

A similar effect of the finite exergy of the empty vessel, as shown
later by equation (6.19), is observed also for a photon gas.

2.6.2 Gravitational Interpretation of Exergy
The purpose of the concept of exergy is to develop a particular in-
terpretation. However any interpretation is always characterized by a
certain freedom; thus some modification of exergy can be justified. For
example, consider the potential component of exergy. Among possible
potentials that act on a substance, the potential exergy, shown in Figure
2.1, takes into account only the effect of the gravitational field. How-
ever, to fully reflect the effect of the Earth’s gravity field, Petela (2008)
proposed application of a new component, “mechanical exergy,”
which replaces traditional physical and potential components of ex-
ergy. Mechanical exergy can be called eZergy.

The mechanical exergy concept bm is derived from the difference
between the density � of the considered substance and the density �0

of the environment. Regardless of the temperature T and the pressure
p of the substance under consideration, the substance instability and,
thus, ability to work in the environment at respective parameters T0

and p0 is sensed if either an anchor (� < �0) or a supporting basis
(� > �0) is removed. In the first case, the substance moves upwards;
in the other case, the substance sinks.

The altitude of the considered substance is measured from an
actual level x = 0. In both cases the substance tends to achieve an
equilibrium altitude (x = H), at which point the density of the local
environment �0,x is equal to the density of the considered substance,
� = �0,x . The substance motion (at constant T and p) to reach the
equilibrium altitude would generate work called the buoyant exergy,
bb . At level H the substance would be allowed to generate additional
work, denoted by bH , which would occur during the reversible pro-
cess of equalization of parameters T and p with the respective local
environment parameters, T0,H and p0,H .
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FIGURE 2.3 An ideal arrangement for discussing the exergy in a gravitational
field (from Petela, 2008).

For example, Figure 2.3 represents a theoretical model for deter-
mining the exergy of a gas in a gravitational field. The gas of a volume
V, a density � smaller than the density � S,0 of the surrounding air
(� < � S,0), a temperature T, and a pressure p exists within an imag-
ined ideal cylinder–piston system (system A), at an environmental
altitude (x = 0), i.e., at the locally common level of the earth’s surface.

The cylinder and piston walls at this stage provide perfect heat
insulation (i.e., they do not allow any heat exchange), are hermetic
(i.e., they do not allow exchange of substance), are rigid (i.e., they do
not allow for changing the volume V), and are perfectly weightless
(i.e., the mass of the cylinder and the piston is zero). System A is
connected by a system S1 of fixed pulleys and nonmaterial thread to
the system B, containing also a cylinder and piston, and remaining
always at the level x = 0. Due to buoyancy the considered gas lifts
the whole system A upward to position A′, at height H, at which the
density � , remaining unchanged, is now equal to the density � S,H of
the surroundings at the level H. During the lifting, work on system B
is performed.

After taking position A′ the system is now able to perform addi-
tional work during an ideal process of equalization of pressure p and
temperature T with the respective parameters of surrounding air at
the level H. Such equalization of parameters is possible because the
restricting assumptions at location A′ are now relieved and the con-
sidered substance can exchange worthless heat (at the surroundings
temperature level TS,0), and the piston can move within the cylinder
to change appropriately the initial volume V.
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Thanks to the system S2 of the ideal pulleys-and-thread, the work
is fully transferred to the cylinder–piston system C located at the
environment level (x = 0). The above two portions of maximum work
(in systems B and C) performed by the considered gas of initial vol-
ume V represent the full exergy of the gas as a result of the terrestrial
gravitational field and relative to the environment level (x = 0).

By an appropriate rearrangement of systems S1 and S2 used in
Figure 2.3, one can present also a scheme for consideration when the
density � of the considered substance is larger than the density � S,0

of the outside air (� > � S,0) and the volume V moves downward to
the imagined local crater. A liquid or solid substance usually has high
density (� � � S,0) and thus can represent the remarkable ability to
work when falling down into an imagined crater or sinking into a sea.
For example, theoretically, leveling a 3000-m high conical mountain
with a 45◦ slope, located by the sea, can take over 10 years, releasing
the power of about 1500 MW, with the additional benefit of acquiring
new land.

The buoyant exergy bb does not depend on the kind of substance.
During repositioning of the substance from actual altitude x = 0 to
x = H, the gravitational acceleration gx is changing, e.g., decreasing
with growing altitude x; thus:

bb =
x=H∫

x=0

gx

(
�0,x

�
− 1

)
dx (2.48)

Equation (2.48) is significant in the procedure of calculating the
eZergy.

Example 2.1 In practice, the integral in formula (2.48) can be determined as
follows. The formula is valid for any kind of considered substance determined
by density � , whereas �S,x and gx have to be determined for the atmospheric air.
Petela (2008) proposed using the literature data for calculation of any required
parameter (y) from the general linear approximation:

y = a + b H (a)

where H is the altitude in meters, and the coefficients values a and b are shown
in Table 2.1.

Thus, the height H can be calculated with appropriate substitution x = H
and �S,x = � in the approximation for the density with the respective coefficients
a and b:

H = 9.973 × 105(1.217 − � ) (b)

Integrating of equation (2.48) leads to the solution composed of the two
integrals, I1 and I2:

bb = I1 − I2

�
(c)
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Coefficients

Dependent variable y a b

TS,x (K) 288.16 −0.0065

pS,x (Pa) 100339.5 −9.699

�S,x (kg/m3) 1.217 −9.973 × 10−5

gx (m/s2) 9.7807 −3.086 × 10−6

TABLE 2.1 Data for Approximation Formula

where:

I1 ≡
x=H∫

x=0

gx�S,xdx = a1a3

a4
(� − a3) + a1a4 + a3a2

2 a2
4

(� − a3)2 + a2

3 a2
4

(� − a3)3 (d)

I2 ≡
x=H∫

x=0

gx� dx = a1

a4
� (� − a3) + a2

2 a2
4

� (� − a3)2 (e)

and where the coefficients (according to Table 2.1) are:

a1 = 9.7807 m/s2 the gravitational acceleration assumed at the level
x = 0,

a2 = –3.086·10−6 1/s2 the rate of growth of gravitational acceleration with
the growing level x,

a3 = 1.217 kg/m3 the density of environmental air assumed at the
level x = 0,

a4 = –9.973·10−5 kg/m4 the rate of growth of air density with growing x.

Introducing (d) and (e) to (c):

bb = − 1
a4�

[
a2

6 a4
(� − a3)3 + a1

2
(� − a3)2

]
J/kg (f)

The calculated bb from formula (f) is in J/kg. The values of bb , in the more
convenient unit kJ/kg, can be approximated by the third-order polynomial:

bb = 164.186 − 357.258 � + 253.398 �2 − 58.096 �3 kJ/kg (g)

Figure 2.4 shows the comparison of the values from formula (f) (points), to the
values from formula (g) (solid line), and the characteristic equilibrium altitude H
(dashed line) which is the linear function (b) of density � . With growing altitude
H the buoyant exergy bb decreases for heavy substances (� > �S,0) and grows
for light substances (� < �S,0). The approximation (g) is acceptable for practical
calculations although it is inconveniently imprecise in the vicinity of the density
�S,0 in which it can produce small negative values of bb (not truly representing
the real values which are always nonnegative). For example, for � = �S,0 exact
value from (f) is bb = 0 but from formula (g) the value bb = –0.00918 kJ/kg is
obtained.
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FIGURE 2.4 Specific exergy bb and altitude H as function of density � (from
Petela, 2008).

In case of a gas, during equalizing of the gas parameters T and
p with the parameters T0,H and p0,H at the altitude H, the following
work (exergy bH) can be done:

bH = cp (T − T0,H) − T0,H

(
cp ln

T
T0,H

− R ln
p

p0,H

)
(2.49)

where cp and R are specific heat at constant pressure and individual
gas constant, respectively.

On the other hand, the gas at the actual altitude (x = 0) has the
traditional physical exergy b, equal to the work that can be done by
the gas during equalizing its parameters, T and p, with respective
environment parameters T0 and p0:

b = cp (T − T0) − T0

(
cp ln

T
T0

− R ln
p
p0

)
(2.50)

The definition of exergy postulates it to be the maximum possible
work. Therefore, the larger work of the two, bb + bH or b, is the true
exergy, called the mechanical exergy; bm = max[(bb + bH), b].

For some considerations Petela (2008) introduces also the term of
gravitational exergy bg of substance:

bg = bb + (bH − b) (2.51)

which is the sum of the buoyant exergy and the difference be-
tween physical exergies for altitude x = H and x = 0. Therefore, the
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FIGURE 2.5 Exergy components including the mechanical exergy.

mechanical exergy can be expressed also as

bm = max[(bg + b), b] (2.52)

or in the form of analytical equation:

bm =
(

bg +
√

b2
g

) (
bg + b

) −
(

bg −
√

b2
g

)
b

2 bg
(2.53)

where bg �= 0. If bg ≤ 0, then bm = b.
Analogically to mechanical exergy, Petela (2008) proposed also

the correspondent concept of mechanical energy em. Including the
mechanical exergy (eZergy) into consideration, the scheme of the all
components of the exergy of substance can be shown in Figure 2.5.

The application of mechanical exergy in the classic exergy balance
equation has some implications that will be discussed in Section 4.5.4.
It is worth emphasizing that both exergy and eZergy are only inter-
pretative concepts. In contrast to exergy, eZergy allows introduction
of the additional factor of gravity into the considered process. There-
fore, disclosure of the gravity input requires application of the eZergy
concept, i.e., the mechanical exergy Bm. eZergy is applied only for
the substance (not for heat or radiation) and replaces the two tradi-
tional exergy components—physical (Bph) and potential (Bp). Thus,
Bm ≡ Z = f (Bph, Bp). To better distinguish exergy of substance from
eZergy of substance, different symbols will be used: B for exergy and
Z for eZergy (as shown in Chapter 11).

2.6.3 Exergy Annihilation Law
In realty, there is no exergy conservation equation. Exergy can be con-
served only in ideal processes (e.g., model processes), which are re-
versible because they occur without friction at infinitely small dif-
ferences of concentration and temperature. All real processes occur
irreversibly; the energy is dissipated and thus the processes are ac-
companied by unrecoverable exergy loss.

The exergy loss caused by irreversibility of the process can be
determined by comparison of operation of real and ideal installa-
tions for which the initial and final states of the driving medium are
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respectively the same. Figure 2.6 shows the scheme of thermal instal-
lation, the purpose of which is performing work W. The type of ana-
lyzed processes does not affect the results. The installation receives a
thermodynamic medium of enthalpy H1 and entropy S2, which leaves
the installation at the enthalpy H2 and entropy S2. The installation ab-
sorbs valuable heat Q from the source at temperature T , which differs
from environment temperature T0. At the same time the installation
extracts worthless heat Q0 to the environment.

If the installation is considered to be real, then the energy conser-
vation equation can be written as:

W = Q + H1 − H2 − Q0 (2.54)

To have the ideal installation comparable to the real one, the same
heat Q and enthalpies H1 and H2 should be considered. Work per-
formed by ideal installation is maximum, Wmax, and it requires chang-
ing the real heat Q0 to a value Q0,i for an ideal process. Thus, the energy
conservation equation for ideal installation can be used in the form:

Wmax = Q + H1 − H2 − Q0,i (2.55)

The exergy loss �B caused by irreversibility of the real installation
is equal to the loss of work (Wmax – W), and such loss can be determined
from equations (2.54) and (2.55) as follows:

�B = Wmax − W = Q0 − Q0,i (2.56)

According to the second law of thermodynamics, the overall en-
tropy growth � for all bodies participating in the considered process
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is larger than zero for real installation:

� = − Q
T

+ S2 − S1 + Q0

T0
(2.57)

and is zero (� = 0) for the compared ideal process:

0 = − Q
T

+ S2 − S1 + Q0,i

T0
(2.58)

From equations (2.57) and (2.58) is:

� T0 = Q0 − Q0,i (2.59)

Using equation (2.59) in (2.56) one obtains the formula:

�B = � T0 (2.60)

which is known as the Gouy–Stodola law expressing the law of exergy
annihilation due to irreversibility. Although the sum � depends on
temperature T0 the minimum of � corresponds to minimum �B.

The exergy loss expressed by formula (2.60) is called the internal
exergy loss, because it occurs within the considered system. This loss
is totally nonrecoverable. Internal loss of exergy for multicomponent
system is calculated by summing up the internal loss of exergy occur-
ring in the particular system components.

Each exergy loss contributes to an increase of the consumption of
the energy carrier that sustains the process or to the reduction of the
useful effects of the process. One of an engineer’s principal tasks is
operating the process in such a way that the exergy loss is kept at the
minimum. However, most often, the reduction of the exergy loss is
possible only by increasing capital costs of the process. For example,
the reduction of exergy loss in a heat exchanger is reachable by increas-
ing the surface area of the heat exchange. Therefore, the economy of
such a reduction of exergy loss can be verified by economic calcula-
tions. The exergy analysis explains the possibilities of improvement
of the thermal process; however, only economic analysis can finally
motivate an improvement.

Usually, the thermal process releases one or more waste thermody-
namic mediums (e.g. combustion products), of which the parameters
are different from the respective parameters of such medium being in
equilibrium with environment. The waste medium represents certain
exergy unused in the process. Such exergy, if released into the environ-
ment, is destroyed due to irreversible equalization of the parameters
of the waste medium with the parameters of the environmental com-
ponents. The exergy loss of the system, caused in such a way, is called
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external exergy loss and its numerical value is equal to the exergy of the
waste medium released by the system. External exergy loss is recov-
erable, at least in part, e.g., by utilization in another system.

2.6.4 Exergy Transfer During Heat and Work
By releasing heat Q the exergy of the heat source diminishes. The
exergy decrease BQ of the source at temperature T is measured by
the mechanical work that can be performed with the heat Q in the
reversible engine according to the Carnot cycle for which, as the other
required heat source, the environment at temperature T0 would be
utilized. Therefore:

BQ =
∣∣∣∣Q

T − T0

T

∣∣∣∣ (2.61)

where Q is the heat exchanged between the source and the considered
system. The value BQ can be recognized either as a positive input to
the system at T > T0 or a positive output from the system if T < T0.

For convenience, the acceptable jargon expression “exergy of heat”
can be used while having in mind the exact expression “change of
exergy of a heat source” (exergy is a function of matter state, whereas
heat is only a phenomenon; however, a heat source is recognized as
matter).

Obviously, exergy of any work is directly equal to the work, be-
cause exergy is measured by performed work.

2.7 Chemical Exergy of Substance
In this section we outline the significance of the concept of devalua-
tion reaction and the resulting concept of devaluation enthalpy used for
calculation of chemical energy. Based on this concept, as discussed,
e.g., by Szargut et al. (1988), the following quantities can be calcu-
lated: enthalpy devaluation of substance (appearing in the energy
conservation equation), standard entropy of devaluation reaction (in
the entropy considerations), and, consequently, chemical exergy of
substance (appearing in the exergy balance equation).

In a chemical process, in contrast to a physical process, substances
change and only the chemical elements remain unchanged. Therefore,
to calculate the chemical energy of substances the reference substances
have to be assumed.

Existing methods for determination of the chemical energy of sub-
stances differ mainly by the definition of reference substances. For
example, in the enthalpy formation method, the reference substances
are the chemical elements at standard temperature and pressure. In



32 C h a p t e r T w o

the devaluation reaction method the number of reference substances is
the same; however, they are not the chemical elements but the deval-
uated substances (compounds or chemical elements most commonly
appearing in the environment). For example, the reference substance
of C is gaseous CO2, for H it is gaseous H2O, and for O it is just O2.
In any particular case, when a substance is composed only of C, O,
H, N, and S, the devaluation enthalpy of the substance is equal to its
calorific value.

Contrary to the devaluation enthalpies, the values of the enthalpy
of formation are not practical. For example, the enthalpy of formation
for C is zero and the enthalpy of formation of CO2 is significantly dif-
ferent than zero (–394 MJ/kmol). However, the devaluation enthalpy
of C is equal to the calorific value ∼394 MJ/kmol, whereas the calorific
value of CO2 is zero (as it is the reference substance for C).

The reference substances for the devaluation enthalpy and chemi-
cal exergy are the same. Also, the reference temperature and pressure
are the same. Thus, only the devaluation enthalpy method, contrary
to the formation enthalpy method, allows for fair comparison of the
values of chemical energy and chemical exergy.

For comparison, the chemical exergy of C is ∼413 MJ/kmol and
devaluation enthalpy (calorific value) of C is only ∼394 MJ/kmol.
Only the devaluation enthalpy method should be used in thermody-
namic analysis, which simultaneously includes the energy and exergy
aspects.

Devaluation enthalpy is determined based on the stoichiometric
devaluation reaction for a substance. The devaluation reaction is a
combination only of the considered substance and the various refer-
ence substances. A good example of a devaluation reaction is reaction
of photosynthesis:

6 H2 O + 6 CO2 → C6 H12 O6 + 6 O2 (2.62)

in which, beside the considered substance of sugar (C6H12O6), only
the reference substances appear: CO2, H2O and O2.

The devaluation enthalpy, dn, is calculated from the energy con-
servation equation for the chemical process in which substrates are
supplied, and products are extracted, all at standard temperature and
pressure.

The physical exergy bph of a substance, at the state determined by
enthalpy H and entropy S, is calculated based on definition (2.45) in
which H0 and S0 are the enthalpy and entropy of this substance at
environment parameters T0 and p0,respectively.

However, calculation of the chemical exergy bch of a substance is
more complex, depending on its composition and based on the deval-
uation reaction. The calculation procedure is discussed by Szargut and
Petela (1965b) and Szargut et al. (1988), and the calculated standard
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values of the devaluation enthalpy and chemical exergy are tabulated.
If the environment temperature T0 differs from the standard environ-
ment temperature Tn, then, when using the standard data on dn and
bn, the formula for the chemical exergy of condensed substances (solid
or liquid) should be corrected as shown, e.g., for the specific chemical
exergy bch,SU of sugar:

bch,SU = bn,SU + Tn − T0

Tn
(dn,SU − bn,SU) (2.63)

where the chemical exergy of sugar is determined based on the stan-
dard tabulated value bn,SU= 2,942,570 kJ/kmol.

If a substance has a temperature different from the surrounding
environment, then a physical component of energy or exergy has to
be included as shown, e.g., again for the physical exergy b ph,SU of the
sugar:

b ph,SU = cSU (T − T0) − T0 cSU ln
T
T0

(2.64)

Note as well that based on the devaluation reaction, the so-called
standard entropy �n of the devaluation reaction can be determined.
For example, again for the photosynthesis reaction, based on equation
(2.62), the standard entropy of the devaluation reaction, �n,SU , is:

�n,SU = 6 (sH2 O + sCO2 )n − (sO2 )n − sn,SU (2.65)

where sH2 O, sC O2 , and sO2 are the absolute standard entropies of the
respective gases. The stoichiometric factor of six results from equa-
tion (2.62). The above formulae presented for sugar are utilized in the
consideration of the photosynthesis in Chapter 12.

Nomenclature for Chapter 2
A, B, C different cylinder–piston systems
a coefficient in Table 2.1
a1, a2, a3, a4 coefficients for calculation of bb

B exergy, J
b specific exergy, J/kg
b coefficient in Table 2.1
c specific heat of substance, J/(kg K)
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dn devaluation enthalpy, J/kg
e specific energy, J/kg
g gravitational acceleration, m/s2

H level height, m
H enthalpy, J
h specific enthalpy, J/kg
k Boltzmann constant, k = 1.38053 × 10−23 J/K
L length, m
M molecular weight, kg/kmol
m mass, kg
N number of particles
N0 Avogadro’s number, N0 = 6.02283×1026 molecule/kmol
n number of molecules per unit volume, molecule/m3

P momentum, kg m/s
p static absolute pressure, Pa
Q heat, J
q specific heat, J/kg
R universal gas constant, J/(kmol K)
R individual gas constant, J/(kg K)
S entropy, J/K
s specific entropy, J/(K kg)
T absolute temperature, K
Tn standard environment temperature, K
t temperature, C
U internal energy, J
u specific internal energy, J/kg
V volume, m3

v specific volume, m3/kg
W absolute work, J
w velocity, m/s
w specific work, J/kg
x vertical coordinate, m
y dependent variable
Z eZergy, J

Greek
� increment
� efficiency
� isentropic exponent
� mass of gas, kmol
� overall entropy growth, J/K
� mass density, kg/m3

�� molar mass density, kmol/m3

� entropy of the devaluation reaction, J/(K kmol)
� number of microscopic configurations
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Subscript
b buoyant
C Carnot
ch chemical
g gravitational
H level at x = H
i successive number
i ideal
m mechanical
max maximum
n standard
p potential
p constant pressure
ph physical
S system
S surroundings
SU sugar
S1, S2 different mechanical arrangements (systems)
T constant temperature
t technical
u useful
v constant volume
x coordinate
� any process
0 environment
1, 2 denotation
I, II denotation
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C H A P T E R 3
Definitions and

Laws of Radiation

3.1 Radiation Source
Radiation—caused only by the fact that a radiating body has a tem-
perature higher than absolute zero—can be considered from many
different viewpoints. According to its purpose, radiation can be con-
sidered to be electromagnetic waves or a collection of radiation energy
quanta, i.e., photons, which are the matter particles.

The photons constitute a so-called photon gas. Therefore, analo-
gously to a substance gas, a photon gas can be the subject of statistical
(microscopic) or phenomenological (macroscopic) consideration.

Energy supplied to a body, e.g., by heating, sustains oscillations of
atoms in molecules that then become like the emitters of electromag-
netic waves. At expend of internal energy or enthalpy of the body
substance the energy propagates from the body via the waves in a
process called thermal radiation. The terms radiation and emission are
two homonyms and can be used not only for the process but also for
the product of the radiation or emission process, respectively, i.e., the
collection of emitted energy quanta or photon gas. The product of ra-
diation is comprised of matter, the rest mass of which, in contrast to a
substance, is equal to zero.

According to the Prevost law, a body at a temperature greater than
absolute zero radiates energy that can differ depending on different
types of body substance, surface smoothness, and temperature. The
energy of this radiation does not depend on the parameters, proper-
ties, or presence of neighboring bodies.

The different bodies also absorb oncoming radiation in different
amount. Thus, energy exchange by radiation depends on the differ-
ence in emitted and absorbed radiation. For example, if the energy
emitted is greater than the energy absorbed, and the energy of the body
is not supplemented, then the temperature of the body decreases.

37
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Phenomenologically, heat exchange by radiation is interpreted
as a transformation of internal energy (or enthalpy) into the energy
of electromagnetic waves of thermal radiation, which then travels
through the surrounding medium to another body, at which point the
radiation energy transforms again to internal energy (or enthalpy).
Statistically, heat exchange by radiation is defined as the transporta-
tion of energy by photons that emit from excited atoms and move
until they are absorbed by other atoms.

Radiation energy is composed of electromagnetic waves of length
theoretically from 0 to ∞. The length � of the waves is correlated with
the oscillation frequency � and the speed of propagation c as follows:

�� = c (3.1)

The speed c0 of the propagation of electromagnetic waves in a
vacuum is largest: c0 = 2.9979 × 108 m/s. The ratio n of speed c0 to
the propagation speed c in a given medium

n = c0

c
(3.2)

is called the refractive index and is always larger than 1. For gases, n is
close to 1, but, e.g., for glass it is about 1.5.

In experimental investigations it is usually more convenient to
measure the wavelength. In theoretical investigations, however, it is
usually more convenient to use frequency, which does not change
when radiation travels from one medium to another at different
speeds.

The shorter are the wavelengths, the more penetrable are the
waves. Figure 3.1 shows approximately some characteristic regions
of the wavelengths. As the wavelength decreases, i.e., the frequency
increases, the penetration of the radiation within the matter grows
deeper and deeper. For example, X-rays at ∼1017 Hz (Hz ≡ 1/s) travel
through the human body, finding only slight difficulty in penetrat-
ing bones. Gamma rays at ∼1022 Hz have no problem penetrating
most substances including metals. Shields used against gamma rays
are made of dense metals, e.g., lead. However, natural cosmic waves
have far greater penetrating power than manmade gamma radiation
and can pass through a thickness even of 2 m of lead. With increasing
radiation frequency, the wavelength becomes very short in compari-
son to even the densest metal lattices. For extremely large frequencies

λ

0 1 km1 cm0.1 mm

Thermal radiation

γ-rays X-rays Ultraviolet Radio wavesInfraredVisible

0.8 μm0.4 μm10−2 μm10−4 μm

FIGURE 3.1 Scheme of the characteristic wavelength regions.
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even the heaviest metals lose their shielding ability and are not able
to reflect the radiation. With diminishing wavelengths the radiation
energy decreases significantly. The shortest possible wavelength limit
is equal to the so-called Planck’s length, which corresponds to a fre-
quency of 7.4 × 1042 Hz.

All the regions shown in Figure 3.1 overlap and, e.g., radiation
of wavelength 10–3 m, can be produced either by microwave tech-
niques (microwave oscillators) or by infrared techniques (incandes-
cent sources). All these waves are electromagnetic and propagate with
the same speed c0 in a vacuum. The properties of radiation depend
on their wavelengths. From the viewpoint of heat transfer, most es-
sential are the rays that, when absorbed by bodies, cause a noticeable
increase of energy of these bodies. The rays that indicate such prop-
erties at practical temperature levels are called thermal radiation.

An electromagnetic wave is said to be polarized if its electric field
oscillates up and down along a single axis. For example, polarized
radiation is comprised of the waves generated by a radio broadcast-
ing with a vertical antenna, which makes the electric field point either
up or down, but never sideways. The light from an electric bulb is
an example of nonpolarized radiation: the radiating atoms are not
organized. Such radiation arriving in the eyes can have, for a while
a vertical electric field, but then it rotates around to horizontal, then
back to vertical in random fashion. The radiation can be polarized,
e.g., with use of a material such as Polaroid that absorbs radiation in
one direction while transmitting radiation in the other direction. For
example, Polaroid sunglasses can absorb horizontally polarized radi-
ation emitted mostly from reflective surfaces such as glass, water, etc.

3.2 Radiant Properties of Surfaces
The principles of propagation, deflection, and refraction of visible rays
are valid for all rays, thus also for all invisible rays.

An energy portion E from any surface, striking the considered
body of finite thickness, splits into three parts as schematically shown
in Figure 3.2. Generally, part E� is reflected, part E� is absorbed, and
part E� can be transmitted through the body. The energy conservation
equation for the portion E comes in the following form:

E = E� + E� + E� (3.3)

The parts can be expressed in relation to the portion E . Thus we
have the definitions: reflectivity � = E�/E , absorptivity � = E�/E ,
and transmissivity � = E� /E, where:

1 = � + � + � (3.4)

The magnitudes � , �, and � are dimensionless and can vary for
different bodies from 0 to 1.
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E
Eρ

Eα
Eτ

FIGURE 3.2 Split of
emission energy E
arriving at the
considered body.

In practice, there are some bodies with different specific properties
that make the characteristic magnitudes of equation (3.4) take values
very close to 1 or 0. In order to systemize considerations, some ideal-
ized body models with extreme values of radiation are introduced.

If a body is able to totally absorb any radiation striking the body,
i.e. � = 1, and thus from equation (3.4) has the result � = � = 0,
then such a perfectly absorbing body is called perfectly black (i.e., a
blackbody).

If a body is able to totally reflect any radiation striking the body,
then in such a case � = 1 and � = � = 0, and the body is called perfectly
white. If, due to the perfect smoothness of the surface, the reflection is
not dispersed, i.e., the incident and reflection angles are identical (spec-
ular reflection), then the body is additionally called a mirror. However,
if reflected radiation is dispersed in many directions (diffuse reflection),
then the surface is called dull.

Monatomic gases (e.g., He, Ar) and diatomic gases (e.g., O2, N2)
are examples of bodies that practically transmit total radiation. Such
bodies can be considered as a model called perfectly transparent (� = 1),
and from equation (3.4) we get � = � = 0.

Some bodies are permeable only for waves of a determined length.
For example, a window glass transmits only visible radiation and
almost entirely does not transmit other thermal radiation. Quartz glass
is also practically nontransmittable for thermal radiation except for
visible and ultraviolet radiation.

Solid and liquid bodies, even of very small thickness, practically
do not transmit thermal radiation. They can be considered as a model
of perfectly radiopaque body for which � = 0 and:

� + � = 1 (3.5)

As the results from equation (3.5) show, the better a body reflects
radiation, the worse it absorbs, and vice versa. The reflecting ability of
thermal radiation can be significantly larger for smooth and polished
surfaces in comparison to rough surfaces.
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The body for which the reflecting and absorbing abilities are con-
stant for any wavelength, (i.e., �� = const and �� = const) is called
perfectly gray, and equation (3.5) is then:

�� + �� = 1 (3.6)

The bodies with �� �= const, which are commonly met, are some-
times called varicolored bodies.

Radiation occurring only at a certain value of frequency � or
wavelength �, i.e., within a narrow frequency band d� (or d�), is
called monochromatic, and the radiation occurring within some finite
frequency (or wavelength) band is called selective. In comparison to
monochromatic, the term panchromatic, rarely used, means relevancy to
all wavelengths.

In reality there are no bodies that ideally fulfill the assumptions
for the discussed models. Even black-looking soot has absorptivity
� = 0.9– 0.96, and thus is clearly smaller than 1. The perfectly gray
surface does not exist in nature. The absorptive ability of real bodies
is not constant for all wavelengths and temperatures. For example,
the reflectivity of polished metals (which are good electrical conduc-
tors) is large and grows with increasing wavelength. However, the
reflectivity of other technical materials (which are poor electrical con-
ductors) is large for short waves and small for long waves. In spite of
intense shining these materials have a significant ability for absorbing
radiation.

3.3 Definitions of the Radiation of Surfaces
Emission E of a surface is the energy radiated at the temperature of the
surface and emitted into the front hemisphere. The emission expressed
in watts (W), related to the emitting surface area A, is called the density
of emission:

e = E
A

(3.7)

and is expressed in W/m2.
However, generally, the radiation propagating from a considered

surface can be composed of both the emission from such a surface and
the radiation from other surfaces that are reflected by the considered
surface. The particular radiation components can differ depending on
their temperature. In energetic consideration of radiation, the temper-
ature of such components is not distinguished and the total radiation
(emission and reflected radiation) is called the radiosity, J. The radiosity
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is expressed in the same units as emission and, analogously, the ra-
diosity density j is related also to the surface area:

j = J
A

(3.8)

For a blackbody, which does not reflect radiation, the radiosity
equals the emission (J = E). Usually the general term radiation can
mean either emission or radiosity.

The exchange of radiation energy can occur between surfaces of
different size and configuration. In calculations of the exchange be-
tween any two surfaces n and m, generally only a part of the radiation
from surface n arrives at surface m. Therefore, one can use the view
factor �n−m, which is defined as the ratio of the radiosity Jn−m, arriving
from surface n at surface m, to the radiosity Jn leaving surface n:

�n−m = Jn−m

Jn
(3.9)

The factor value can be within the range from 0 to 1. If each of
the considered surfaces is uniform in terms of temperature and ra-
diative properties, i.e., the density of radiosity is constant at every
point of the respective surfaces, then the factor depends only on the
location of both the surfaces in space and is sometimes called the view
factor. However, if j is not the same at any point of the considered
surface area A, then the radiosity density has to be considered locally
( j = dJ/dA) as will be discussed later.

The density of emission e consists of the energy emitted at the
wavelength � from zero to infinity. The very small part de of the emis-
sion corresponds to the wavelength range d�. Therefore, for the given
wavelength the monochromatic density e� of emission is defined as
follows:

e� = de
d�

(3.10)

The monochromatic emission density e�, W/m3, depends on the
wavelength, temperature, and radiative properties of the emitting sur-
face. However, the model of a black surface has determined radiative
properties and the monochromatic density eb,� of emission of the black
surface

eb,� = deb

d�
(3.11)

is only a function of temperature and wavelength.
As shown in Figure 3.3, the total, i.e. panchromatic (for all wave-

lengths), emission density eb of the black surface is represented by the
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FIGURE 3.3 The
area representing
the elemental energy
of emission.

area under the eb,� spectrum, whereas the total panchromatic emis-
sion of the gray surface corresponds to the smaller area, under the e�

spectrum. The quantity eb can be determined based on equation (3.11)
by its integration over the whole range of wavelengths from 0 to ∞.

3.4 Planck’s Law
Figure 3.4 shows the theoretical model of a blackbody, called the cavity
radiator, which has played an important role in the study of radiation.
The analysis of the nascent radiation in the model led to the birth of
modern quantum physics.

The virtual model of the black surface (Figure 3.4) appears as a
small hole in the wall embracing a certain space. Any radiation por-
tion P entering the space through the hole is the subject of successive
multiple deflections. Each deflection attenuates the portion P , espe-
cially when the interior is lined up with material with high absorpti-
vity. It can be assumed that the portion P is entirely absorbed by the

Hole

P

FIGURE 3.4 Cavity
radiator.
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hole; therefore the hole behaves like a perfect blackbody (� = 1). The
radiosity of the hole does not contain any reflected radiation, but it
represents the density of the emission eb of a perfectly black surface.
Thus, the density of black radiosity jb of the hole is equal to the den-
sity of emission eb of the black surface, jb = eb . The cavity space does
not contain any substance; the refractive index n = 1. The emission
density eb expresses radiation energy emitted from the hole into the
front hemisphere, i.e., within the solid angle 2� sr.

In 1900, Planck announced his hypothesis with a detailed model of
the atomic processes taking place at the wall of the cavity radiator. The
atoms that make up the cavity wall behave like tiny electromagnetic
oscillators. Each oscillator emits electromagnetic energy into the cavity
and absorbs electromagnetic energy from the cavity. The oscillators do
not exchange energy continuously, but only in jumps called quanta
h�, where � is the oscillator frequency and h is Planck’s constant,
h = 6.625 × 10–34 J s.

Thus, in radiation processes there arise discrete quanta for which,
if the principle of quantum-statistical thermodynamics is applied, the
following expression can be derived for the energy density u�, J/m4,
of radiation per unit volume and per unit wavelength:

u� = 8�hc0

�
(

e
hc

�kT − 1
) (3.12)

where k = 1.3805 × 10−23 J/K is the Boltzmann constant.
In order to obtain the radiation energy flux, i.e., the energy emis-

sion eb,�, instead of the radiation energy remaining within a certain
volume, the energy density u� should be multiplied by the factor
c0/4 resulting from the geometrical considerations discussed, e.g.,
by Guggenheim (1957). Thus, based on the quantum theory, initially
empirically and later proven theoretically, the Planck’s formula for
the black monochromatic emission density eb,�, can be established as
follows:

eb � = c1

�5
(

e
c2
� T − 1

) (3.13)

where

c1 = 2�hc2
0 = 3.74 × 10−16 Wm2 and

c2 = hc0

k
= 1.4388 × 10−2 m K

are the first and the second, respectively, Planck’s constants and T
is the absolute temperature of black radiation. Figure 3.5 presents
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FIGURE 3.5 Monochromatic density of emission as a function of temperature
and wavelength.

the curves of the black monochromatic density of emission eb,� as a
function of wavelength � and for some different temperatures T . The
higher is the temperature T , the larger is the area between the �-axis
and the respective curve. The dashed line in Figure 3.5 represents
points of the maximum values of eb,� and it shows that the higher is
the temperature T the smaller is the wavelength �m corresponding to
the maximum.

For the model of a perfectly gray surface it is assumed that the
panchromatic emissivity ε, defined later by equation (3.22), is equal
to the monochromatic emissivity ε� as follows:

ε = e
eb

= ε� = e�

eb,�
(3.14)

For comparison, Figure 3.6 presents four examples of the different
surface spectra e� for the same temperature. The largest and always
the maximum values of the spectrum appear for the black surface
(dashed–dotted line). The real surfaces (solid line) have the smaller
values of the monochromatic emission e�, (always e� ≤ eb,�), which
can be represented by the regular averaged curve (dashed line) cor-
responding to the appropriately selected model of a perfectly gray
surface with a constant value of emissivity ε�. Thus, the spectra for
the models of black and gray surfaces reach the maximum for the
same wavelength. An entirely different type of spectrum can appear
for a gas. The gas spectrum can be irregular (e.g., dotted line) so that
application of the gray model is too inexact.
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FIGURE 3.6 Examples of spectra of three surfaces; black, gray (at ε = 0.6),
and real, compared to the spectrum of gas (H2O), at the same temperature.

For some cases the Planck’s formula (3.13) can be simplified to the
two forms; each giving an error smaller than only 1%. First, if � × T <
3000 	m K, then c2/(�T) � 1 and the following formula derived by
Wien, is obtained:

eb,� = c1

�5 e− c2
�T (3.15)

Second, if � × T � c2, i.e., if � × T > 7.8 × 10−5	m K, then expand-
ing the expression in brackets in the denominator of equation (3.13)
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FIGURE 3.7 Comparison of eb,� values for 2500 K.
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in series:

e
c2
�T − 1 = c2

�T
+ 1

2!

( c2

�T

)2
+ · · ·

and neglecting further terms, the Rayleigh–Jeans formula can be ap-
plied:

eb,� = c1

c2

T
�4 (3.16)

The precision of the Wien formula (3.15), in comparison to Planck’s
formula (3.13), is illustrated in Figure 3.7 for T = 2500 K. The conver-
gence for this temperature is better the smaller is the wavelength.
The Rayleigh-Jeans formula (3.16) for the shown range of wavelength
gives significantly inexact values.

The precision of the Rayleigh–Jeans formula (3.16) in comparison
to the Planck’s formula (3.13) is illustrated in Figure 3.8 for T = 1000 K.
The convergence for this temperature is better the larger is the wave-
length. The Wien formula (3.15) for the shown range of wavelength
gives significantly inexact values.

3.5 Wien’s Displacement Law
The wavelength �m, for which the spectrum of black emission reaches
maximum, can be determined by considering the derivative of equa-
tion (3.13) as equal to zero:

deb,�

d�
= 0 (3.17)
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Introducing a new variable x as follows:

� = c2

Tx
, d� = − c2

Tx2 dx

it could be written as:

d
dx

(
x5

ex − 1

)
= 0

which leads to the transcendental equation:

xex

ex − 1
= 5

with only one real solution, x = 4.965. Thus, the considered maximum
value in the spectrum appears for the condition, called the Wien’s
displacement law:

�mT = c3 (3.18)

where c3 = c2/x= 2.8976 × 10–3 m K.
Substituting (3.18) into (3.13), the value of the maximum of the

monochromatic intensity of the blackbody emission is:

eb�m = c4T5 (3.19)

where

c4 = c1

c5
3 (e4.965 − 1)

= 1.2866 × 10−5 W
m3 K 5

Equation (3.19) presents the hyperbole with asymptotes that are
the axes of the coordination system (�, eb,�) as shown in Figure 3.5
(dashed line).

3.6 Stefan–Boltzmann Law
In order to determine the emission density eb of a black surface, equa-
tion (3.11) can be applied in integrated form:

eb =
∞∫

0

eb�d� (3.20)

Applying Planck’s relation (3.13) into (3.20), with substitution
x ≡ c2/(�T), yields:

eb = c1

(
T
c2

)4 x=∞∫
x=0

x3 1
ex − 1

dx (a)
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The fraction in equation (a) can be represented as the sum of the
infinite geometric series:

1
ex − 1

=
m=∞∑
m=1

e−mx (b)

Using (b) in (a):

eb = c1

(
T
cc

)4 m=∞∑
m=1

∞∫
0

x3e−mxdx (c)

Then, combining consecutively the integration solution∫
xneaxdx = 1

a
xneax − n

a

∫
xn−1eaxdx (n > 0) (d)

given, e.g., by Korn and Korn (1968; integral #452, p. 966, with their
symbols n and a ), and after substitution for the present considerations:
n = m and a= –n, integral (3.20) comes finally to the following Stefan–
Boltzmann law:

eb = 
T4 = ac0

4
T4 (3.21)

where the Boltzmann constant for black radiation:


 = �4

15
c1

c4
2

= 5.6693 × 10−8 W
m2 K 4

and the universal constant:

a = 7.564 × 10−16 J
m3 K 4

are determined theoretically.
From the assumption for the gray surface model, expressed by

relations in equation (3.14), the emission density eb of the black surface,
given by equation (3.21), can be used for determination of the emission
density e of the gray surface as follows:

e = ε
T4 (3.22)

For convenience in practical calculations, equation (3.22) is some-
times applied in the form:

e = εCb

(
T

100

)4

(3.23)

in which the radiation constant for a black surface Cb = 108 × 
. The
experimental value is Cb = 5.729 W/(m2 K4), which is a little larger
than 
/108 = 5.6693.
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Surface Emissivity, Average
Surface material temperature, ◦C (�)�=0 emissivity, �

Gold 20 0.02–0.03 —

Silver, polished 20 0.02–0.03 —

Copper, polished 20 0.03 —

Copper, oxidized 130 0.76 0.725

Aluminum 170 0.039 0.049

Steel, polished 20 0.24 —

Steel, red rust 20 0.61 —

Steel, scale 130 0.60 —

Zinc, oxidized 20 0.23–0.28 —

Lead, oxidized 20 0.28 —

Bismuth, shining 80 0.34 0.366

Clay, burnt 70 0.91 0.86

Brick 20 0.93 —

Ceramics — — 0.85

Porcelain 20 0.91–0.94 —

Glass 90 0.94 0.876

Ice, liquid water 0 0.966 —

Frost 0 0.985 —

Paper 90 0.92 0.89

Wood 70 0.935 0.91

Soot — — 0.96

Asbestos 23 — 0.96

TABLE 3.1 Emissivity Values of Different Materials

In practice, the choice of a proper value of emissivity ε is difficult.
Some averaged values of ε for different materials are shown in Table 3.1
and more values can be found in related literature, e.g., Holman
(2009).

3.7 Lambert’s Cosine Law
The radiosity density j can be considered for a body surface or for any
cross section in a space. The radiosity density j determines the total
energy radiated in unit time, corresponding to the unit of surface area
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and in all directions into the front hemisphere, i.e., within the solid
angle 2� sr:

j =
�=2�∫

�=0

i�d� (3.24)

where i� is the directional radiation intensity, W/(m2 sr), expressing the
total radiation propagating within solid angle d� and along a direc-
tion determined by the flat angle � with the normal to the surface
(Figure 3.9).

Usually, the practical observations motivate the assumption that
a certain surface A (Figure 3.9), is seen at the same brightness under
any angle �. It means that for any direction determined by � the
radiation intensity is the same as is schematically represented by equal
spacing “x′′ of the normal rays (at � = 0) and for the rays propagating
from surface Aunder arbitrary angle �. Thus, the directional radiation
intensity i� of surface A along angle � can be replaced by the normal
radiation intensity i0 of equivalent surface A�:

A� = A cos � (3.25)

If the surfaces Aand A� have the same temperature and properties,
then the energetic equivalence of radiation of both surfaces leads to
the statement:

Ai� = A�i0 (3.26)

Substituting (3.25) into (3.26) the Lambert’s cosine law is obtained
which states that for the flat surface the radiation intensity i� along a
direction determined by angle � with the normal to the surface is:

i� = i0 cos � (3.27)
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where i0 is the normal radiation intensity. Equation (3.27) can be illus-
trated by a circular diagram shown in Figure 3.10. With the growing
angle � from 0 to �/2 deg, the intensity i� decreases respectively from
values i0 to 0 deg.

Based on Lambert’s cosine law the following consideration can be
developed. As shown in Figure 3.11, the solid angle d�, under which
a surface dA′ is seen from surface dA, is measured as a surface area dA′

divided by the square of distance rof this surface from the observation
point at surface dA:

d� = dA′

r2 (a)

where

dA′ = r d� 2�r sin � (b)

Substitute (3.27), (a), and (b) into (3.24):

j =�i0

�=�/2∫
�=0

2 sin � cos � d� = � i0

�=�/2∫
�=0

sin 2� d� = � i0
1
2

(− cos 2�)
∣∣∣�/2

0

r sinβ

r

β dω
(solid angle)

dβ

dA

dA'
n

FIGURE 3.11
Radiation of
element dA on
element dA′.
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and finally:

j = �i0 (3.28)

Based on equations (3.27) and (3.28):

i� = j
�

cos � (3.29)

For given values of the radiosity density j and angle �, formula
(3.29) allows for calculation of directional radiation intensity i�.

The result is that when Lambert’s law is fulfilled, the surface emit-
ting radiation has the same radiosity intensity regardless of the direc-
tion from which the surface is seen. For example, this is why heavenly
bodies make an impression like shining flat walls and not like a lump
body.

3.8 Kirchhoff’s Law
The relation between the absorptivity � and emissivity ε of the surface
can be derived with use of the model of heat exchange shown in Figure
3.12. There are two flat, infinite, and parallel surfaces facing each other;
one is perfectly gray (with any constant values of emissivity ε and
reflectivity � ), the other is perfectly black (εb= 1 and �b= 0). The same
and uniform temperature T prevails over both surfaces. Emission e =
ε × eb of the gray surface is totally absorbed by the black surface.
Emission eb of the black surface is partly absorbed (� × eb) and partly
reflected (� × eb). The system boundary (the dashed line in Figure
3.12) defines the considered system, which is the very thin layer next
to the gray surface.

System

boundary

e

eb

ρeb

α eb

Gray

surface

Black

surface

FIGURE 3.12
Scheme of energy
radiation balance.
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The energy conservation equation, applied for the system, yields:

eb − �eb = e (3.30)

After elimination of � and e from equation (3.30) by using, respec-
tively, equations (3.5) and (3.14), one obtains:

� = ε (3.31)

which is Kirchhoff’s law (also called Kirchhoff’s identity); the surface
emissivity is equal to the surface absorptivity at the same temperature.
In practice, equation (3.31) can be applied if ε > 0.5. For smaller values
of ε, Kirchhoff’s law can be inexact.

Derivation of the obtained result (3.31) did not require assump-
tions about any parameters, i.e., the result does not depend on the
wavelength �, temperature T , and the angle �; thus, for any wave-
length, temperature, or direction, we have also:

��T� = ε�T� (3.32)

Emissivities of real materials differ from the values for discussed
models, e.g., Lambert’s cosine law, especially for polished surfaces.
The directional emissivity ε�, in a direction determined by angle �, is
the following ratio of the respective directional radiation intensities

Bronze

Wood

Black

surface

0°

30°

60°

90°

β
1

10

εβ

εβ

FIGURE 3.13 Real directional emissivity ε�of bronze and wood as a function
of angle � (from Petela, 1983).
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i� and ib,� for gray and black surfaces:

ε� = i�

ib�
(3.33)

For example, Figure 3.13 shows the comparison of the directional
emissivities ε� for bronze and wood to the emissivity εb,� for a black
surface (εb,� = 1). There are different surfaces, e.g., bronze, for which,
in the significant range of angle �, the emissivity ε� can grow with
the increased angle �. However, for all materials, with the angle �
approaching 90◦, the directional emissivity ε� rapidly decreases to
zero. Table 3.1 presents some illustrative data on emissivity of different
surfaces, selected from data given by McAdams (1954) and Schmidt
(1963).

Nomenclature for Chapter 3
A surface area, m2

a universal radiation constant, a = 7.764 × 10–16 J/(m3 K4)
c speed of propagation of radiation, m/s
c0 speed of propagation of radiation in vacuum

c0 = 2.9979 × 108 m/s
c1 the first Planck’s constant, c1 = 3.74 × 10–16 W m2

c2 the second Planck’s constant, c2 = 1.4388 × 10−2 m K
c3 the third Planck’s constant, c3 = 2.8976×10–3 m K
c4 the fourth Planck’s constant, c4 = 1.2866 × 10–5 W/(m3 K5)
E emission of radiation, W
e density of radiation emission, W/m2

h Planck’s constant, h = 6.625 × 10–34J s.
i directional radiation intensity, W/(m2 sr)
J radiosity, representing a total radiation from a body, W
j radiosity density, W/m2

k Boltzmann constant, k = 1.3805 × 10–23 J/K
n refraction index
n, m denotation of different surfaces
r radius, distance, m
x auxiliary value

Greek
� absorptivity
� flat angle (declination), deg
ε emissivity of surface
ε� directional emissivity of surface in direction

determined by angle �
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� view factor
� reflectivity

 Boltzmann constant for black radiation,


 = 5.6693 × 10–8 W/(m2 K4)
� transmissivity
� wavelength, m
� oscillation frequency, Hz, (1/s)
� solid angle, sr

Subscripts
b black surface
m maximum
n, m denotation of different surfaces
0 for � = 0
� absorption
� flat angle
� wavelength
� frequency
� reflection
� transmission



C H A P T E R 4
The Laws of

Thermodynamic
Analysis

4.1 Outline of Thermodynamic Analysis

4.1.1 Significance of Thermodynamic Analysis
The significance of thermodynamic analysis is that it can be applied to
the investigations of all energy conversion phenomena. Such analysis
provides different (energy, entropy, and exergy) views of the same
phenomenon. Typical analysis is based on the material conservation
equations that are used for developing energy balances, calculation of
entropies, and, in recent decades, also for providing supplementary
exergy balances.

Energy balance, based on the First Law of Thermodynamics, is
developed to better understand any process, to facilitate design and
control, to point at the needs for process improvement, and to enable
eventual optimization. The degree of perfection in the energy utiliza-
tion of the process, or its particular parts, allows comparison with
the degree of perfection, and the related process parameters, to those
in other similar processes. Comparison with the currently achievable
values in the most efficient systems is especially important. Also, pri-
orities for the required optimization attempts for the systems, or its
components, can be established. Such priorities can be carried out
either based on the excessive energy consumptions or on the particu-
larly low degree of perfection.

However, the energy approach has some deficiencies. Generally,
energy exchange is not sensitive to the assumed direction of the pro-
cess, e.g., energy analysis does not oppose if heat is transferred spon-
taneously in the direction of the increasing temperature. Energy also
does not distinguish its quality, e.g., 1 W of heat equals 1 W of work or

57
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electricity. Energy analyses can incorrectly interpret some processes;
e.g., environmental air, when isothermally compressed, maintains its
energy (e.g., enthalpy) equal to zero, whereas the exergy of the com-
pressed air is larger than zero.

Entropy expresses the thermodynamic probability of a matter’s
state. According to the Second Law of Thermodynamics, the overall
entropy growth in a process is required always to be positive. This re-
quirement, applied even to an elemental step of any complex process,
determines the only possible direction in which the step can occur.
Entropy analysis allows for identification and location of the sources
of irreversibility contributing to the overall unavoidable degradation
of energy.

Entropy can be used for process optimization by minimization of
entropy generation. The overall or local irreversible exergy loss can be
calculated from the Guoy–Stodola law, equation (2.60), in which the
respective entropy growth is applied. However, the Second Law has
limited application for micro systems containing a countable number
of independent particles. The smaller the number of particles, the less
precisely the Second Law is fulfilled. For example, for any microbi-
ological system containing only a few components, the Second Law
may not be fulfilled.

The highest form of energy is mechanical energy, and work is the
most valuable method of energy transfer. Therefore, exergy is defined
as the maximum useful work obtainable from the considered matter
(substance or field matter) in known environmental conditions. Ex-
ergy alone, not the energy, expresses the real ability to do work. The
full classic definition of exergy, as a function of the states of matter
and environment, is discussed in Section 2.6.

Exergy is a concept derived from simultaneous application of the
First and Second Laws of Thermodynamics. Irreversibility destroys
the exergy. There is no exergy conservation law, and exergy balance is
completed with exergy loss; the greater the loss, the more irreversible
is the process. Exergy balance allows for the development of exergy
analysis according to a similar methodology for energy analysis. Ex-
ergy analysis applies to all applications mentioned for energy analysis.
Whereas thermodynamic probability is expressed in units of entropy,
exergy is expressed in units of energy. Consequently, exergy data are
more practical and realistic in comparison to the respective energy val-
ues. Thus, exergy analysis provides a more realistic view of a process,
which sometimes differs dramatically in comparison with the stan-
dard energy analyses. Exergy analysis can be compared to energy anal-
ysis, such as the second different projection in a technical drawing dis-
closing additional details of the subject seen from a different vantage.

Currently, there exist several different approaches to exergy anal-
ysis; see Moran and Shapiro (1992) or Bejan (1997). They all are
largely mutually consistent, equally valid, and contribute to a better
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understanding of exergy analysis. Recently, the significance of exergy,
used as a core thermodynamic variable for the investigation of bio-
logical systems, was presented by Jørgensen and Svirezhew (2004) in
“mathematical biology.”

However, the considerations in the present book are based on
earlier pioneering approach to exergy analysis, which is the origi-
nal monograph on exergy by Szargut and Petela (1965b, 1968), later
developed also by Szargut et al. (1988). They apply exergy analysis
to various processes, mostly to industrial processes. The analysis is
based on classical thermodynamics and considerations are verified
by numerous examples of applied engineering thermodynamics.

4.1.2 General Remarks and Definition of the
Considered Systems

Knowledge about the environment in nature is continually being
gained through many methods and observations. The scale of ap-
proach may be microscopic (e.g., a microscopic observation, or differ-
ential calculus) or macroscopic (phenomenological considerations, or
integral calculus). Usually, studies are organized by focusing attention
on a particular system that represents the targeted problem well.

Description and definition of the system is then a very impor-
tant stage in any investigative approach. Consideration not based on
a precisely defined system can lead to astonishing—but incorrect—
results. The system has to be precisely determined by separating those
elements included from those that are excluded. This is usually effec-
tively rendered by applying the imaginary system boundary that tan-
gibly separates the system from its surroundings. The best practical
way is to draw a scheme of contents of the system indisputably sep-
arated from the surroundings by the drawn system boundary. Some-
times the investigated problem can be solved easily by introducing
subsystems, also defined precisely.

The balance equations can be applied to each formulated system
or subsystem. Below are discussed conservation equations for mass
and energy. For the considered system one can also apply the equation
of entropy growth and the balance equation of exergy. Each equation
allows for determination of an unknown variable or for establishing
a relation between variables.

The mass and energy conservation equations can be the basis for
designing or exploiting the considered object. Complete data obtained
from mass and energy considerations allows for development of en-
tropy equations to verify the correctness of the mathematical model
of mass and energy results from the viewpoint of the Second Law. The
complete data can be also used to develop the exergy interpretation
of the energy conversion process and mass transformation from the
viewpoint of quality.
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As discussed, the variables obtained from mass and energy anal-
yses are very important; thus, they have to be prepared carefully. The
variables can be measured, assumed, or calculated. If the system is
over-determined, i.e., if the number of unknowns is smaller than the
number of available independent equations, then all variables can be
corrected based on the probability reconciliation calculus. For this rea-
son the principles of exemplary reconciliation method are outlined in
Section 4.7.

In practice, in the considered system the radiation processes are
usually accompanied by processing on substances; therefore the laws
of thermodynamics are considered below for systems in which radi-
ation and substance play a role together.

4.2 Substance and Mass Conservation
The human brain understands matter either in the form of substance
(material), i.e., as a collection of elementary chemical particles, or as
field matter that appears as a field force of various kinds. Whereas
substance is always connected with field matter (e.g., in the form of
gravity), the field matter can exist independently of substance (e.g.,
matter of electromagnetic fields). Mass is the property of matter and is
a measure of its inertia. The rest mass of field matter is zero, whereas
the rest mass of substance is different from zero. For this reason the
mass is commonly used as a measure of the amount of substance
whose mass determines a weight in a gravitational field.

The change �m of mass due to the increase �e of energy is deter-
mined by Einstein’s formula:

�m = �e
c2

0

(4.1)

where c0 is the speed of light in vacuum.
For example, based on equation (4.1) the estimated mass m of the

blackbody emission eb calculated from formula (3.21) is shown in Fig-
ure 4.1 as a function of the emission temperature T . Even for the high
temperatures T, the flux of the emission mass m of several mg/(km2 s),
as shown in Figure 4.1, is negligible in the common engineering mass
flow rates.

It results from equation (4.1) that conservation laws for mass and
energy are not independent and they both formulate differently the
general law called the law of matter conservation. Thus, the mass con-
servation law corresponds to the energy conservation law.

The energy conservation law is commonly used in engineering
considerations and calculations, whereas application of the mass
conservation law is unnecessary and sometimes even not possible to
apply. However, the substance conservation principle is commonly
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applied, which is independent of the conservation laws of mass and
energy.

The principle of conservation of substance claims that constant is
always the number of molecules in physical processes, or the number
of elements in chemical processes, or the number of nucleons in the
processes of splitting and synthesis of nuclei.

The substance conservation equation does not need to account
for radiation or any other form of matter except substance. Such an
equation is developed for the system defined precisely by the system
boundary. For an elementary process lasting very briefly:

dmin = dmS + dmout (4.2)

where min and mout, kg, is the elementary amount of substance deliv-
ered and extracted, respectively, from the system, and mS is the ele-
mentary increase of the amount of substance within the considered
system. Equation (4.2) can be appropriately modified for the steady
state (dmS = 0), or for certain instants with use of mass flow rates, or
for a certain period of time. The equation can be applied separately to
particular compounds (if there is no chemical reaction) or elements.
The amount unit can be kg, kmol, or the standard m3 of the considered
component.

The substance can be exchanged with the system by diffusion flux.
For example, for gases the diffusion flux can be determined with use
of Fick’s law in a laminar situation or, with use of an equation with
appropriately modified coefficients, in the case of turbulent diffusion.
Due to the diffusion fluxes the enthalpy of the diffusing substance is
carried out and the entropy effects occur, as discussed in Section 4.3.

A particular form of substance conservation equation can be the
equation summarizing fractions of components in the considered
composite material: ∑

i

fi = 1 (4.3)

where fi is the fraction of the ith component of the material.
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4.3 Energy Conservation Law

4.3.1 Energy Balance Equations
The energy conservation equation is the result of observations and
cannot be proved or derived. Throughout the long history of mankind
there has not been recorded any phenomenon that disagrees with the
First Law of Thermodynamics.

Energy balance based on the First Law of Thermodynamics is the
basic method for solving problems of thermodynamics. If one wants
to analyze any problem and helplessly does not know how, the general
advice is to try to make an energy balance of the system that would
represent the targeted problem. The First Law can be applied to a
variety of problems, which, however, require a well-defined system
for consideration. The system boundary should be the same for energy
and matter balances because the matter balance is the basis for balance
of energy. Sometimes only the specific definition of the system and
particular tracing of the system boundary allows for the solution of the
thermodynamic problem. In other cases the solution can be obtained
by defining more of the different subsystems.

Generally, the energy Ein delivered to a system remains partly
within the system as the increase �ES of the system energy, and the
rest is the energy Eout leaving the system. Thus, the general equation
of energy balance is:

Ein = �ES + Eout (4.4)

Usually, for better illustration of the balance equation, the par-
ticular terms of the equation are shown in the bands diagram. The
principle of such a diagram is shown by a simple example (Figure 4.2)
illustrating equation (4.4).

In principle, for energy considerations, the reference state for cal-
culation of the energy of the matter included in the consideration
can be defined arbitrarily; however, it is recommended to select this

Eout

ΔES

System boundary

Ein

FIGURE 4.2 Bands
diagram of energy
balance.
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reference the same as for the exergy consideration in order to make a
fair comparison of both the energy and exergy viewpoints.

Generally, application of the energy balance does not require anal-
ysis of processes occurring within the system boundary. It is sufficient
only to know (e.g., from measurements) the parameters determining
components of the energy delivered and leaving the system, as well as
the parameters determining the initial and final states of the system.
Obviously, if only the one unknown magnitude appears in the balance
equation, then the equation can be used to calculate this magnitude.

Energy balance can be tailored differently depending on the con-
sidered viewpoint and actual conditions. For example, there are possi-
bilities to categorize the case under consideration: (a) energy delivered
is spent entirely for an increase of system energy with no energy leav-
ing the system; (b) energy leaving the system comes entirely from
the decrease of energy of the system with no energy delivered to the
system; (c) there is neither delivered nor departing energy but only
energy exchange within the system; (d) energy delivered is equal to
energy leaving the system, with no change of the system energy. Other
possibilities are that some components of energy can be neglected ei-
ther due to relatively small changes or because they are not changed
at all. The balance equation can be written for the steady or transient
systems, for the system considered on a macro scale or a micro scale
for which differential equations are applied, etc.

For example, for the elemental process lasting an infinitely short
time, the balance equation (4.4) can take the form:

dEin = dES + dEout (4.5)

In equation (4.5), only dES is the total differential and in order to
demonstrate it clearly it is better to write equation (4.5) as follows:

Ėin(t)dt = dES + Ėout(t)dt (4.6)

where Ėin and Ėout are the respective fluxes (e.g., in W) of energy
delivered and extracted from the system, and t is the time.

Determination of dES requires not only accounting of the change
of the intensive parameters of the system state but also of the eventual
change of the substance amount in the system. If the considered system
contains only the homogeneous substance, then

dES = d(mS eS) = mS deS + eS dmS (4.7)

where mS and eS are, respectively, the amount of matter and its specific
energy contained within the system.

Sometimes the subject of consideration can be recognized as mov-
ing in space (e.g., solar vehicle, radiometer vane, etc.). The simplest
energy balance equation is then obtained by assuming that the coor-
dinates system determining velocity and location is moving together
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with the system boundary. However, there are some consequences
of such an assumption. Kinetic energy should be determined for the
velocity relative to the moving system. The useful work done by the
system does not appear in the energy balance because the forces acting
on the system do not make replacements relative to the coordinates
system. The useful work can be determined only for velocity and lo-
cation relative to the earth.

Energy and mass calculations are the basis for engineering de-
signs, whereas neither entropy nor exergy are. However, these latter
have interpretative significance, as will be shown in the following
chapters.

4.3.2 Components of the Energy Balance Equation
The energy of a system depends on its state. An increase �ES in the
energy system, changing from its initial to its final state, does not de-
pend on the transition manner between these states, and is a difference
between the final ES,fin and initial ES,inl energies of the system:

�ES = ES,fin − ES,inf (4.8)

Generally, the system energy can consist of macroscopic compo-
nents such as Emacr,i due to velocity (kinetic energy), surface tension
(surface energy), gravity (potential energy), or any other energy of
field nature (e.g., radiation). The remaining part of the system en-
ergy, containing microscopic components Uj , constitutes the internal
energy (discussed in Section 2.3):

ES =
∑

i

Emacri +
∑

j

Uj (4.9)

where i and j are the successive numbers of the macro and micro
components, respectively, of the system energy.

If the kind of substance before and after the process (e.g., physical
process) is the same, then the reference state for calculation of the
energy of the substance can be established with a certain degree of
freedom. For example, the reference state can be assumed to be the
state of the substance entering the system. Thus, the substance energy
entering the system is zero, whereas the energy of the substance exiting
the system is equal to the energy surplus relative to the reference state.

In addition, the components of negligible or constant value must
not be taken into account. For example, the energy of the surface ten-
sion can be included only in consideration of the fluid mechanics
process of liquid atomization or of the mechanical process of solid
material comminution. Both processes have been analyzed, e.g., by
Petela (1984a,b).

The energy exchange (Ein and Eout) with a system can occur in
different ways.
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Electrical energy can be delivered for heating the system, for driving
an electric motor, or for generating an electromagnetic effect within
the system (e.g., strong electric field effects combustion). In reverse
processes the electric energy can be obtained; e.g., with the use of an
electric generator, energy is obtained from the system. The energy flux
of electric energy (power) is measured by a wattmeter.

Mechanical work can be exchanged with the system by means of a
piston rod with reciprocal motion or with a rotating shaft.

The energy balance of a system should comprise mechanical work
performed by all forces acting on a system boundary. Therefore, if a
substance flux passes through the boundary, then the work performed
by the force acting in the place of passing should be taken into account.
Such transportation of a substance through the boundary is expressed
by enthalpy (discussed in Section 2.3). For some kinds of substance, the
enthalpy can be calculated with a specific formula; e.g., the formulae
for plasma are discussed by Petela and Piotrowicz (1977).

If the considered system is moving relative to the coordinate sys-
tem determining the location and velocity, then the work done by the
forces causing the system displacement has to be considered. The en-
ergy balance should also include the work done by deformation of the
system boundary if its shape changes during consideration.

Kinetic energy should be considered if the substance passes the
system boundary with significant velocity relative to the boundary.

The potential energy of the substance exchanged with the system
is included up to the energy balance if the substance has significant
elevation above the reference level. This energy component results
from the presence of the gravity field.

Energy transferred by heat occurs by direct contact of the system
with the body at a temperature different from the system tempera-
ture, or can occur without contact, via radiation. The effect of contact
during heat exchange appears in heat conduction as well as in heat
convection. The model of pure conduction occurs when the particles of
the contacted body do not change their location (solids). The energy is
then transferred by free electrons and oscillations of atoms in the crys-
tal lattice. Still, pseudo pure conduction can be recognized between
fluids of very laminar flow; conduction occurs in the direction perpen-
dicular to the ordered motion of particles at the component velocity
only in the flow direction. In such a case, excluding the possibility of
diffusion, there is no perpendicular substance flow and in spite of the
medium flow this heat is transferred by conduction.

The essence of heat convection is the motion of substance (fluids),
during which the mixing of hot and cold fluids occurs. However,
the micromechanism of this mode of heat transfer also depends on
the direct effective contacts (conduction) between the hot and cold
fluids portions being replaced. If mixing is caused by the nonuniform
distribution of density (temperature profile), then convection is called
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natural convection. In contrast, if the mixing is a result of the action of
a pump or ventilator, etc., then a forced convection occurs.

Energy can be also exchanged with the system due to a diffusive
substance flux. Then, the enthalpy of a diffusing substance has to be
taken into account. For example, consider a system boundary demar-
cated over the laminar zone of a mixture of gases of the nonuniform
temperature distribution. If it is assumed to be a laminar (no convec-
tion) mode of transparent gases (no radiation), then the energy EL ,
W, exchanged through the boundary due to the heat conduction and
enthalpy of the diffusing substance is composed of the two respec-
tive terms. The first term represents the heat conducted according
to Fourier’s law and the second term expresses the enthalpy of the
diffusing gas according to Fick’s law. Thus:

EL = −A
(

k
∂T
∂y

+ T
∑

c p,i DL ,i
∂ci

∂y

)
(4.10)

where A, m2, is the surface area; k, W/(m K), is the overall conductivity
of the gas mixture; T , K, is the temperature of the gas at the boundary;
y, m, is the space coordinate perpendicular to the system boundary
surface and perpendicular to the gas flow direction, c p,i , J/(kg K);
Di , m2/s, and ci , kg/m3, are, respectively, the specific heat at constant
pressure, the laminar diffusion coefficient, and the concentration of the
gas component, where i is the successive number of the gas mixture
component.

Heat exchanged with the system (by convection, conduction, and
radiation) is considered in related textbooks, e.g., by Holman (2009).

A friction work has to be spent in real processes which occur with
friction. The friction work increases the energy of the system due to
the absorption of heat in an amount equivalent to the friction work.
Friction causes dissipation of energy, which can be only partly re-
covered. The friction heat does not appear as a member of the energy
balance equation; however, it affects the final system energy and the
components of the exiting energy.

The enthalpy and internal energy generally include physical and
chemical components, both discussed in Chapter 2. Chemical energy,
discussed in Section 2.7, is assumed to be the same for the substance
considered as the component of the system and for the substance
component separately exchanged with the system.

4.4 Entropy Growth
There are many articulations of the Second Law of Thermodynamics.
They are based on various phenomena for which it has been noticed
that they can occur only in one determined direction. For example,
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heat can flow only in the direction of the negative temperature gradi-
ent; real processes with friction are irreversible; every process occur-
ring in nature is irreversible; a thermal engine cannot work without
having available at least two heat sources at different temperatures,
etc. These qualitative observations became possible for quantitative
formulation with the use of entropy introduced by Clausius. Using
entropy, the Second Law of Thermodynamics states that in nature
there are possible only such phenomena for which the overall en-
tropy growth, i.e., the sum d� of the elemental entropy increments
dSi of each ith matter participating in the considered phenomenon is
larger than zero:

d� =
∑

i

dSi > 0 (4.11)

For any theoretical model of reversible phenomenon d� = 0; if,
however, d� < 0 then the phenomenon is impossible. Equation (4.11)
expresses the overall entropy growth � in integral form as follows:

� =
∑

i

�Si (4.12)

where �Si = (Sfin − Sinl)i is the entropy increase of ith matter of the
considered system or surrounding participating in the considered
phenomenon.

Equation (4.11) expresses explicitly that the overall entropy
growth has to be positive even in the smallest step (d� > 0) in the
course of the process. For example, during the design of a heat ex-
changer, equation (4.12) for entering and exiting media can be fulfilled;
however, in some particular cases within the exchanger can occur an
unnoticed region, a so-called pinch point, for which locally d� <0, i.e.,
the whole process of heat exchange is impossible. Thus, entropy is very
useful in verifying the design of new processes. The larger is the over-
all entropy growth, the more irreversible is the considered process.

There are some special cases for calculation of the overall entropy
growth. If a certain substance remains unchanged during the pro-
cess (e.g., a physical process), then only the respective increases of
the substance entropy exiting and entering the system are taken into
calculation of �. In some cases one must take into account that the
system can exchange substance on either a macro or micro scale (diffu-
sion) as illustrated by equation (4.10). If a certain substance disappears
(e.g., in a chemical reaction) then its absolute entropy has to be used
with a negative algebraic sign. If a certain substance appears, then the
positive sign of entropy should be used.

A heat source is defined as the body at given temperature T
that can absorb or release infinitely large amounts of heat without
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a change in the heat source temperature T . Therefore, regarding the
heat sources, the appropriate term based on equation (2.36) for the
increase or decrease of entropy of the heat source should appear in
equation (4.11) and (4.12), respectively.

The radiation entering or absorbed into the considered system has
a negative sign of radiation entropy, whereas the radiation leaving the
system, or being emitted, has positive entropy. The radiation entropy
is recognized as absolute.

The components on the right-hand side of equation (4.12) can be
the entropy of the substance, heat source, or radiation. The overall
entropy growth � does not include entropies of work (mechanical
or electrical) nor the effect of fields such as the gravitational field or
the surface tension of a substance. These magnitudes, although they
contribute to the disorder, have no thermodynamic parameters and
act only indirectly by changing parameters of involved matters.

4.5 Exergy Balance Equation

4.5.1 Traditional Exergy Balance
The exergy balance equation is the basis of the exergetic part of ther-
modynamic analysis. Exergy analysis can be applied to a range of
problems that, like energy analysis, require an appropriately well-
defined system for consideration. The system boundary should be
the same as for the matter balance.

The exergy conservation equation can be applied only for re-
versibly occurring processes. For real processes the exergy conser-
vation equation is fulfilled only when the unavoidable exergy loss,
due to irreversibility of the process, is taken into account. Thus, cor-
respondingly to energy equation (4.4), the following exergy balance
equation is applied:

Bin = �BS + Bout + �B (4.13)

where Bin and Bout are the respective sum of exergy delivered and re-
leased from the system, �BS is the change in the exergy of the system,
and �B is the exergy loss due to the process irreversibility, calculated
from the Guoy–Stodola law, equation (2.60).

The bands diagram for exergy balance is shown in Figure 4.3. In
comparison with the respective diagram for energy balance (Figure
4.2), the exergy diagram shows the exergy �B that disappears within
the system.

Like the energy balance, the exergy balance can be tailored differ-
ently depending on the considered problem and the actual conditions.
For example, some components of exergy can be neglected either due
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FIGURE 4.3 Bands
diagram of the
exergy balance.

to relatively small changes, or because they are unchanged. The bal-
ance equation can be written for steady or transient systems, for a
system considered on either a macro or micro scale using differential
equations, etc. Obviously, for the calculation of exergies, there is no
freedom in defining the reference state, which is only the environment,
as determined by the definition of exergy.

In order to formulate the exergy balance it is required to know the
parameters determining components of exergy delivered and leaving
the system, the parameters determining the initial and final state of the
system, and the parameters determining the environment. As in the
energy balance equation, if only the one unknown magnitude appears
in the exergy balance equation, then the exergy equation can be used
to calculate this magnitude.

As discussed for the energy balance in Section 4.3, for the elemental
process lasting an infinitely short time, the exergy balance equation
can take the form:

Ḃin dt = dBS + Ḃout dt + �B (4.14)

where Ḃin and Ḃout are the respective fluxes of exergy delivered and
extracted from the system, and dBS is the total differential exergy
growth of the system.

The differential dBS should be determined analogously to equation
(4.7):

dBS = d(mS bS) = mS dbS + bS dmS (4.15)

where mS and bS are, respectively, the amount of matter and its specific
exergy contained within the system.

If the subject of consideration is moving in space, then the simplest
exergy balance equation is obtained by assuming, as for the energy bal-
ance equation, that the coordinates system determining velocity and
location is moving together with the system boundary. The assump-
tion of the moving system boundary requires some specific exergy
interpretation as shown, e.g., by the exergy balance for a jet engine
discussed by Szargut and Petela (1965, 1968).
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4.5.2 Components of the Traditional
Exergy Balance Equation

An increase �BS of the exergy system, changing from its initial to its
final state, does not depend on the path of change between these states
and is equal to the difference of the final and initial components:

�BS =
[∑

i

(B)fin, i −
∑

j

(B)inl, j

]
S

(4.16)

where the sum of the initial or the sum of the final components is:

(B)S = Bk + Bp + BS + Bb + · · · (4.17)

and where i and j are the successive numbers of the final and initial
exergy components, respectively, Bk is the kinetic exergy, Bp is poten-
tial exergy, BS is the thermal exergy of the system calculated with the
use of formula (2.46), and Bb is the exergy of the photon gas (black
radiation) calculated, e.g., based on equation (5.29). Also, the other
eventual components in equation (4.17), as shown in Figure 2.1, can
be added if necessary, e.g., the exergy of the surface tension which is
equal to the energy of surface tension, etc.

The reference state for calculation of the exergy cannot be estab-
lished arbitrarily as it can for the energy. The components of negligible
or constant value may be not taken in the calculations.

Exergy exchanged with the considered system can occur in differ-
ent ways described for the energy balance.

Electrical exergy is equal to electrical energy. Exergy of mechanical
work is equal to work. Exergy of substance flux is calculated with the
use of formula (2.45); however, kinetic exergy (calculated as the kinetic
energy for absolute velocity) and potential exergy (equal to potential
energy relative to the earth’s surface level) should be calculated sep-
arately. The exergy of heat exchanged with the system is determined
by formula (2.61).

Exergy can also be exchanged with the system by way of a diffusive
substance flux. The exergies of diffusing substances are then taken into
account as the exergy determined by formula (2.45) interpreted for
the partial pressure of the substances.

The exergy loss �BF caused by friction is determined by assump-
tion that the friction heat QF , equal to the friction work, is entirely
absorbed by the substance at temperature T . For the heat absorption
process, assuming the entropy growth �F = QF/T , the exergy loss
can be calculated from formula (2.60) as follows:

�BF = QF
T0

T
(4.18)
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The smaller is the exergy loss, the higher is the temperature of
the absorbing substance. The exergy loss �BF can be smaller or larger
than the friction heat QF depending on the temperature ratio T0/T .
This observation is particularly important for refrigerating processes
where often T < T0.

The chemical exergy, discussed in section 2.7, is assumed to be
the same for the substance considered as for the component of the
system and for the substance component separately exchanged with
the system.

4.5.3 Exergy Balance at Varying Environment Parameters
Exergy balance is usually carried out with an assumption of constant
parameters of the environment during the time of consideration. The
effects of varying environmental parameters are usually small, and
the assumption of the mean environmental parameters is sufficient
for the exergy analysis. The inclusion of the variations of the environ-
mental parameters would make analysis more difficult because the
considered exergy values should be taken for instantaneous environ-
ment parameters; i.e., the values used in the balance equation would
need calculations by integration over the assumed time period.

Moreover, the balance equation would usually need the introduc-
tion of an additional member without which the equation could not
be fulfilled. For example, such a need is shown by consideration of a
perfectly insulated container that has been closed while being filled
with a substance in equilibrium with the environment. Thus, the sub-
stance in the system (container) has zero initial exergy (BS,inl = 0). If,
meanwhile, the environment parameters are changed, then the en-
closed substance gains the positive exergy (BS,fin > 0) and the exergy
of the system �BS = BS,fin − BS,inl > 0.

However, during the change in the environment there were no
processes occurring, thus the overall growth of entropy � = 0, which
means �B = 0. No substance was exchanged with the system; Bin =
Bout = 0. The above statements show that in the considered example
the exergy balance equation (4.13) is not fulfilled; �BS �= 0, and the
environmental variation has generated a certain exergy (BS,fin). How-
ever in another example, it can happen that also due to variations in
the environment, there is no change in exergy or some exergy dis-
appears. For example, ice stored during the summer has significant
exergy, whereas the exergy of such ice in winter would be close to zero.

Therefore, generally, the exergy balance equation for the process
occurring at the varying environment should contain the compensa-
tion term �Be , which modifies equation (4.13) as follows:

fin∫
inl

Ḃin dt = �BS +
fin∫

inl

Ḃout dt +
fin∫

inl

�̇ T0 dt + �Be (4.19)
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where �Be is the exergy gain due to variation of environment from
initial state (inl) to the final (fin) state, Ḃ is the respective rates of ex-
ergy, and �̇ is the overall entropy growth. As mentioned, the �Be can
be positive or negative or zero. The bands diagram for the exergy bal-
ance at varying environment parameters is shown in Figure 4.4. Direct
calculation of �Be is not easy; thus, the best method is to calculate this
value as the completion of the balance equation.

The Gouy–Stodola law, represented by equation (2.60), was de-
rived for constant environment temperature T0. If T0 is varying, then
the law can be applied only for the infinitely short process expressed
by the presence of the appropriate integral term in equation (4.19).
The Gouy–Stodola law cannot be applied to the processes that occur
at the varying environment temperature if such variation is caused by
the considered process.

The variation of environmental parameters can instantaneously
generate or destroy exergy with no role in the internal processes of the
examined system. The processes, wherever possible, should be orga-
nized to utilize the instantaneous positive value of �Be . The effective
prediction of change in the environment parameters would be helpful.

The fluctuation of parameters in the environment is one of the nat-
ural low-value resources, such as, e.g., waste heat at low temperature,
etc. The fluctuation of these parameters has relatively insignificant
influence on the high-value natural resources, e.g., natural fuels.

It is also possible to consider the variation of environmental pa-
rameters with altitude. Such consideration leads to the concept of
mechanical exergy and to the determination of gravity influence on
the exergy balance equation discussed in the following section 4.5.

A particular problem related to the temperature of the
environment—with specific significance for radiation processes, es-
pecially occurring on the earth during night time—is the effective sky
temperature, which can be used, e.g., for determination of the radiant
heat lost from the earth’s surface. Related problems are discussed, e.g.,
by Duffie and Beckman (1974).

Note that the energy balance is traditionally not considered at the
varying reference states even if they are equal to the state determined



73T h e L a w s o f T h e r m o d y n a m i c A n a l y s i s

by the environment parameters. As a result, consideration of the pro-
cesses from an energy viewpoint does not show the interpretative fea-
tures of the exergy approach with regard to the varying environment.

A calculation example illustrating the effect of the varying envi-
ronment temperature is given in Section 6.9.

4.5.4 Exergy Balance with Gravity Input
Exergy analysis is an interpretative method for the study of energy
conversion processes. The interpretive feature of exergy tolerates cer-
tain freedom in exergy application for disclosing as many as possible
new viewpoints. Therefore, in some situations, the exergy balance
equation requires the introduction of a special term to fulfill the tra-
ditional equation. For example, in Section 4.5.3, we discussed how to
modify the traditional exergy balance equation for the situation where
varying environment parameters are used as the reference states for
the determination of exergy. The proposed solution in such a situation
introduces a new compensation term to the exergy balance equation.

In another situation, when mechanical exergy (eZergy) is applied,
the effect of gravity appears, which requires also an additional term
in the exergy balance equation. Petela (2009a) proposed to insert an
appropriate term, called gravity input G, as an additional exergy input
in the left-hand side of the exergy balance equation. Thus, equation
(4.13) for the constant environment parameters becomes:

Bin + G = �BS + Bout + �B (4.20)

The gravity input G can be positive, zero, or negative. The bands
diagram for the exergy balance with included gravity input is shown
in Figure 4.5. Usually the value of G is calculated from the exergy
balance equation.

Prediction of the algebraic sign of gravity input is not discussed;
however, interpretation of the sign from an exergy viewpoint can be
proposed as follows. The gravity input can appear only when a sub-
stance is considered in the exergy balance and if eZergy is applied to
the substance.

Bout

δB

ΔBS

System boundary
G

Bin

FIGURE 4.5 Bands
diagram of
exergy balance
interpretation,
including gravity
input, in the case
G > 0.
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In the case G < 0, as a result of the effect of the gravity field on
the considered process, the process product expressed by the total
exergy value of the right-hand side of the exergy balance equation
diminishes and has to be balanced by the negative gravity input G
added to the left-hand side of the equation. The considered process
can be recognized as opposing the effect of the gravity field.

In the case of G > 0, the presence of the gravity field during the
considered process generates a certain “surplus” of exergy disclosed
by the right-hand side of the exergy balance equation. This surplus has
to be balanced by a positive gravity input G added to the left-hand side
of the equation. The gravity field favors the process by contributing
some exergy input.

In the case of G = 0, there is no change in the traditional exergy and
this means that the work of the substance during theoretical expansion
at altitude H (to obtain the equilibrium of densities), considered in
Section 2.6.2, has no accountable importance.

Example 4.1 The gravity input significance is considered, e.g., by Petela (2009b).
A chimney removes the hot waste gas (assume dry air) from a certain installation.
The fresh air for installation is taken from the atmosphere at parameters T0, p0,
�0, and x = 0, where x is the altitude measured from the earth’s surface. The
parameters of air leaving the installation (the magnitudes at this point have
subscript 1) are the parameters at the chimney inlet (bottom): T1, p1, �1, and
x2 = 0. The air parameters at the chimney exit (the magnitudes at this point
have subscript 2) are T2, p2, �2, and x2 = H, where H is the chimney height.
The chimney is a cylindrical tube of constant inner diameter D; thus, the cross-
sectional area of the chimney is also constant.

For a given H, the chimney diameter D is determined from the assumed
ratio D/H. The hot air leaves the installation with velocity w1 = 10 m/s and
leaves the chimney at velocity w2 ≈ w1 × �1/�2. The pressure p1 at the chimney
bottom p1 = p2 + gx × H × (�1 + �2)/2, where gravitational acceleration gx is
determined to be the arithmetic average of the values for x = 0 and for x = H. For
the latitude assumed to be zero the approximation for gravitational acceleration
gx , m/s2, is:

gx = 9.780327 − 3.086 × 10−6x′ (a)

where x′ is the altitude above sea level.
Air is assumed as the ideal gas with the individual gas constant R = 287.04

J/(kg K) and with the specific heat at constant pressure, c p = 1000 J/(kg K). For
the considered air the state equation p = � × R × T can be applied. The density
of the atmosphere is �0 = 1.225 kg/m3. The same reference state is assumed
for calculations in analyses of energy and exergy; p0 = 101.325 kPa and T0 =
288.16 K.

Energy: Interpretation of the chimney process can be based on the following
energy conservation equation:

E1 + Ew1 + Eb1 = E2 + Ew2 + Eb2 + EQ (b)

where E1 and E2 are the enthalpies at the chimney bottom and top, respectively,
calculated as E = m × c p× (T − T0), and where m is the mass flow rate of air.
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Magnitudes Ew1 and Ew2 are the kinetic energies at points 1 and 2, respectively,
calculated as Ew = m × w2/2.

Heat transferred from the chimney wall to the environment is:

EQ = h
(
T ′ − T0

)
�DH (c)

where T ′ = (T1 + T2)/2 is the average temperature and h is the coefficient for
the convection heat transferred from hot air to the environment.

The potential energy Eb of air is calculated as the possible work performed
during the buoyant vertical replacement of the considered air from the actual
locality to a certain equilibrium height Hb . The replacement occurs until the
difference between the constant density, � (e.g., �1 or �2), of the actually con-
sidered air and the density of the atmospheric air, �b , achieves zero (� = �b ).
Such potential energy, which is equal to the respective potential exergy, can be
expressed from equation (2.48) as:

Eb = m

x=Hb∫
x=0

gx

(
�b

�
− 1

)
dx (d)

The reference altitude x = 0 is at the earth’s surface. Using the solution of
equation (d) in form of density �b as function of altitude H, according to equation
(f) (Example 2.1) is:

Eb = − m
a4 �

[
a2

6 a4
(� − a3)3 + a1

2
(� − a3)2

]
(e)

where a1 = 9.7807 m/s2, a2 = −3.086 × 10−6 1/s2, a3 = 1.217 kg/m3, and a4 =
−9.973 × 10−5 kg/m4 are the constant values.

If all values are expressed as fractions of E1 the normalized form of equation
(b) can be written as:

100 + ew1 + eb1 = e2 + ew2 + eb2 + eQ (f)

Exergy: balance equation for the considered chimney is:

B1 + Bw1 + Bb1 = B2 + Bw2 + Bb2 + BQ + �B (g)

The subscripts of exergy streams B in equation (g) are, respectively, the same
as in equation (b) and the additional term�B is the exergy loss due to irreversibil-
ity of the chimney process. According to the Gouy–Stodola law, equation (2.60),
the exergy loss is calculated as the product of temperature T0 and the overall
entropy growth (entropies of heat and air):

�B = T0

[
EQ

T ′ + m
(

c p ln
T2

T1
− R ln

p2

p1

)]
(h)

The exergy of heat EQ is calculated for the average temperature T ′ of air in
the chimney:

BQ = EQ

(
1 − T0

T ′

)
(i)

The exergy of the air (B1 or B2) is derived from the definition of the physical
exergy of a gas:

B = m
[

c p (T − T0) − T0

(
c p ln

T
T0

− R ln
p
p0

)]
(j)
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The potential exergy is equal to the potential energy, Bb = Eb , so that equation
(e) may be used.

The exergy balance can be normalized as well:

100 + bw1 + bb1 = b2 + bw2 + bb2 + bQ + �b (k)

Notice that, although Bw1 = Ew1, Bw2 = Ew2, Bb1 = Eb1 and Bb2 = Eb2, the
corresponding percentiles are not equal (bw1 �= ew1, bw2 �= ew2, bb1 �= eb1 and
bb2 �= eb2) because the respective dimensional reference values are different:
E1 �= B1.

The eZergy balance equation for the considered chimney is:

Z1 + Zw1 + G = Z2 + Zw2 + ZQ + �Z (l)

Equation (l) is used for calculation of G which supposedly is a measure of
the effect of terrestrial gravity field on the considered process.

In dimensionless form, the eZergy balance becomes:

100 + zw1 + zG = z2 + zw2 + zQ + �z (m)

Note again, that although Zw1 = Bw1 = Ew1, Zw2 = Bw2 = Ew2, ZQ = BQ
and �Z = �B, the correspondent percentiles are not equal (zw1 �= bw1, zw2 �=
bw2, zQ �= bQ, and �z �= �b) because the reference Z1 for percentage values is
generally different than B1 or E1, (Z1 �= B1). The terms corresponding to poten-
tial exergy do not appear in equations (l) and (m) because the potential exergy
is already interpreted by eZergy.

Computation Results: While preparing results for Table 4.1 it was observed that
moderate changes in T0, p0 or a similar kind of gas (varying R and c p) have a
negligible effect on the output data.

Reference Mono-variant changes of input
Quantity Units value parameters and resulting outputs

1 2 3 4 5 6 7
Input

T1 K 430 520 — — —

H m 300 — 400 — —

D/H — 0.07 — — 0.08 —

h W/m2 K 0.005 — — — 0.2

Output

D m 21 21 28 24 21

p2 Pa 97385 97385 96106 97385 97385

T2 K 428.85 518.58 428.46 428.86 428.72

�2 kg/m3 0.791117 0.654238 0.781451 0.791107 0.79136

TABLE 4.1 Output Trends Responsive to Change of Some Input Parameters; from
Petela (2009b)
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Reference Mono-variant changes of input
Quantity Units value parameters and resulting outputs

1 2 3 4 5 6 7
p1 Pa 99738 99326 99216 99738 99738

�1 kg/m3 0.808072 0.665458 0.803843 0.808072 0.80808

m kg/s 2798.94 2304.89 4949.68 3655.63 2798.85

Energy

e1 % 100 100 100 100 100

e2 % 99.192 99.387 98.912 99.196 99.098

ew1 % 0.035 0.022 0.035 0.035 0.035

ew2 % 0.037 0.022 0.037 0.0368 0.037

eb1 % 7.151 9.663 7.338 7.151 7.151

eb2 % 7.922 10.233 8.389 7.923 7.911

eQ % 0.035 0.043 0.035 0.031 0.141

Exergy

b1 % 100 100 100 100 100

b2 % 90.66 96.229 87.312 90.672 90.490

bQ % 0.0652 0.074 0.067 0.057 0.261

bw1 % 0.198 0.083 0.202 0.198 0.198

bw2 % 0.207 0.086 0.214 0.207 0.207

bb1 % 40.262 37.283 42.039 40.262 40.261

bb2 % 44.605 39.481 48.057 44.608 44.539

�b % 4.918 1.497 6.591 4.917 4.963

eZergy

z1 % 100 100 100 100 100

z2 % 101.161 100.573 101.566 101.166 101.036

zw1 % 0.063 0.033 0.063 0.063 0.063

zw2 % 0.066 0.034 0.067 0.066 0.066

zQ % 0.0208 0.0291 0.021 0.018 0.083

�z % 1.567 0.593 2.054 1.567 1.581

G % 2.751 1.196 3.644 2.753 2.703

N MW 5.4965 6.9208 12.9854 7.1791 5.4951

TABLE 4.1 Output Trends Responsive to Change of Some Input Parameters; from
Petela (2009b) (Continued)
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Column 3 of Table 4.1 represents an example of results for input data:
T1 = 300K , H = 300 m, D/H = 0.07 and h = 0.05 W/(m2 K). In the results, the
temperature drop in the chimney is relatively small (T1 − T2 = 1.15 K). The pres-
sure decreases from p1 = 99.738 kPa to p2 = 97.385 kPa. The densities at point 1
and 2 differ insignificantly from each other although they both are clearly smaller
than the density of atmosphere at x = 0, (�0). For the considered chimney dimen-
sions (H = 300 m and D = 21 m) the mass flow rate of air is m = 2.799 × 103 kg/s
and the power required for drawing air through the installation is N = 5.4965
MW.

For calculation of the percentage values for the balances of energy, exergy
and eZergy the 100% bases are E1 = 397 MW, B1 = 70.5 MW and Z1 = 221 MW,
respectively. These values also illustrate the estimation of waste loss, which is
the largest in terms of energy (397 MW), smaller in terms of eZergy (221 MW),
and only 70.5 MW as interpreted by exergy. Column 3 shows also the split of
the 100% input between other terms in the energy, exergy, and eZergy balances.

The terms representing the exit air differ a little from the terms for the inlet
air: e1 − e2 = 0.81% and b1 − b2 = 9.34% for energy and exergy, respectively,
whereas in the eZergy balance the difference is negative: z1 − z2 = −1.16%.

The respective values of the potential energy and exergy expressed in W are
equal, but their percentage values are different. As mentioned, in the eZergy
considerations the altitudinal potential of air is interpreted by the eZergy value.

Factors such as a large mass rate of air, relatively small surface of the chimney
wall, and low coefficient of heat transfer, all contribute to relatively small heat
loss. The value of this loss is below 0.1% for all three balances. Exergy of lost heat
(equal eZergy of this heat) is significantly smaller than the respective energy of
this heat, obviously, because of its relatively low temperature.

Irreversibility loss (�B = �Z = 3.47 MW) of chimney process is disclosed
obviously only in exergy and eZergy considerations; however, their percentiles
are different (�b = 4.918% and �z = 1.567%).

Gravity input, revealed only in eZergy considerations, is positive (2.751% or
6.09 MW), which reveals the extent to which the gravity field favors the chimney
process.

Columns 4–7 of Table 4.1 illustrate the trends of the output data in response
to changes in input parameters. The values in column 3 are considered as the
reference values for studying the influence of the varying input parameters on
the output data. Therefore, each of the next columns (4–7) corresponds to the
case in which the input is changed only by the value shown in a particular
column, whereas the other input parameters remain at the reference level.

Column 4 corresponds to a change in the air temperature T1, which increases
from 430 K to 520 K. The 90-K T1 increase causes, e.g., a gravity input decrease
from 2.752% to 1.196%. The change in temperature T1 causes also an increase of
T2 and decreases of p1, �1, �2, and m. The increase in T1 also remarkably changes
some terms of the exergy balance, e.g., b2 growing from 90.66% to 96.2%, �b
drops from 4.918% to 1.497%, and potential exergy grows from −4.343% to
−2.198%.

The results shown in other column (5–7) can be analyzed similarly.
Column 5 shows the effect of increasing the chimney height from 300 m to

400 m. That change causes, e.g., the increases of power (from 5.4965 to 12.9856
MW) and gravity input (from 2.751% to 3.644%).

Column 6 shows that the increase of the D/H ratio (from 0.07 to 0.08) causes,
e.g., growth of power (from 5.4965 to 7.18 MW).

Column 7 shows the influence of heat lost from chimney to the environment.
An increase of coefficient h from 0.05 to 0.2 W/(m2 K) (e.g., due to worsened
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FIGURE 4.6 Gravity input as a function of chimney height H and air tem-
perature T1 at the chimney bottom (D/H = 0.07 and k = 0.05 W m−2 K−1);
from Petela (2009b).

insulation or strong wind), causes, e.g., a drop of gravity input (from 2.751 to
2.703) and the decrease of power.

The gravity input is shown (Figure 4.6) as function of chimney height H
and air temperature T1 at the chimney bottom. Gravity input increases signif-
icantly with increasing height H and with decreasing temperature T1. Figure
4.6 takes into account very high chimneys, up to 1500 m, keeping in mind the
solar chimneys for which rather lower temperature T1 (e.g., ∼370 K) would be
considered.

In this example the three different thermodynamic interpretations (energy,
exergy, and eZergy) were applied to the chimney phenomenon. The positive
gravity input that represents the effect of the terrestrial gravity field was deter-
mined. The traditional exergy, contrary to eZergy, does not reveal the gravity
input (G).

Other examples of the calculation of gravity input—adiabatic ex-
pansion of air in a turbine and drawing air through a throttling valve
followed by a fan—are discussed by Petela (2009a). Further applica-
tion of gravity input interpretation is also discussed in Chapter 11.

4.6 Process Efficiency

4.6.1 Carnot Efficiency
Work, or the efficiency of its generation, is one of the principal
problems of technological progress being continually investigated by
researchers. Some findings come from observations of nature. The
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continuous generation of a useful effect (e.g., work or heat) or conver-
sion of energy is possible only in a situation when at least two heat
sources with different temperatures are available. (The heat source
has the feature that it can release or absorb an infinitely large amount
of heat without changing temperature.)

The main mechanism for utilizing heat sources is by way of a
working fluid, the parameters of which vary because the cyclical ab-
sorption of heat from the hotter source is followed by the release of
heat to the colder source. One of the required heat sources can ob-
viously be the freely available environment. Thus, practically, only
one valuable heat source, different from the environment, is required
for arranging the cyclic process. The parameters of the working fluid
vary in successive subprocesses in such a way that the final state of
the fluid cycle is identical to the initial state of the cycle. Illustration of
the parameters varying in the cycle is a closed curve in the coordinate
system of any two fluid parameters.

By searching for the most effective cycle process, which would
occur reversibly without any losses, the ideal model was established
by Carnot (1824). Real cycles can be designed close to this ideal model
by applying different “carnotization” efforts. The model cycle of re-
leasing and absorbing heat (at no entropy change) should consist of
only ideal (reversible) processes. Thus, the cycle processes should oc-
cur with an infinitely small temperature difference between the heat
source and the working fluid, and the flow of fluid should be friction-
less. The other cycle processes, during which work is generated or
consumed, should occur also reversibly (at constant entropy), which
is possible if the fluid does not exchange heat (i.e., it is adiabatic) with
its surroundings and, additionally, it expands or is compressed with
no friction (i.e., it is isentropic).

For example, the parameters changing in the Carnot cycle with a
photon gas as the working fluid is shown in the temperature–entropy
(T, S) coordinates system in Figure 4.7. It is worth noting that the con-
siderations of any cylinder–piston model system allows application
of the obtained conclusions generally; not only to the cylinder–piston
cases but also to the many other situations of the considered fluid
and in different geometrical configurations. The piston bottom and
the wall are generally mirrorlike except for the cycle phases during
which heat is transferred from the heat sources of temperatures TI

(hot) or TII (cold) to the photon gas within the cylinder. There is no
substance in the cylinder. The considerations below use relations be-
tween the parameters of black radiation introduced later in Chapter
5. The four component processes of the cycle occur successively:

Process 1–2
Figure 4.7 presents the situation at the beginning of the first process
1–2; the piston is in the extremely left-hand position and the heat
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source (TI) is in contact with the cylinder bottom, so the cylinder is
being gradually filled up with black emission of the cylinder bottom
radiating into the cylinder space. The filling process occurs at tempera-
ture TI equal to the photon gas temperature T1 (T1 ≈ TI) and, according
to equation (5.21), at constant pressure. During this process, the piston
moves to the right and performs work received through the piston rod.

Process 2–3
In the second process the piston moves continuously up to the extreme
right-hand position performing work during expansion of the photon
gas according to equation (5.26). In this process no heat source is in
contact with the cylinder bottom, and the bottom is assumed to be
mirrorlike inside.

Process 3–4
The heat source of TII is in contact with the cylinder bottom through
which heat transfer occurs at the infinitely small temperature drop
TII ≈ T3. Heat is released from the photon gas at a constant temperature
and constant pressure; however, the volume occupied by the gas is
decreasing until the gas state 4 is achieved.

Process 4–1
The cylinder bottom has no contact with any heat source and the
compression of photon gas occurs up to the state of point 1.

The net work W performed in the cycle results from the energy
conservation law:

W = QI − QII (4.21)

where QI and QII are the amounts of heat exchanged, respectively,
between the heat sources and the photon gas during processes 1–2
and 3–4. The efficiency �C of the considered Carnot cycle is the ratio of
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work W to the cycle input QI; �C = W/QI, where work W is expressed
by formula (4.21). Additionally, as the exchanged heat is changing the
energy of photon gas according to formula (5.13) and the processes at
varying volume occur according to equation (5.25), the following rela-
tion can be derived: QII/QI = TII/TI and thus the Carnot efficiency is:

�C = 1 − QII

QI
= 1 − TII

TI
(4.22)

The Carnot efficiency expressed by temperatures was already
mentioned as formula (2.35).

The commonly called Carnot efficiency is in fact the efficiency of
the Carnot cycle and is the most important efficiency in thermodynam-
ics. All other defined efficiencies are less general, mostly arbitrary or
specifically adjusted to the objects or situations.

One of the most significant properties of the Carnot efficiency is
that it is valid independently of the nature of the working fluid and
can be applied to any material or field matter used as the working
fluid. For example, consider the two machines cooperating in Carnot
cycles (Figure 4.8). In machine I the working fluid is photon gas and in
machine II the working fluid is the ideal material gas. Both machines
operate between the two heat sources at the constant temperatures
TI (hot) and TII (cold), respectively. The machines are linked together

P

x

P

x

Q4Q1

Q2 Q3

Machine IIMachine I

Heat source hot

TI

Heat source cold

TII

FIGURE 4.8 The two machines cooperating in two respective Carnot cycles.
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and the unit does not exchange work with the surrounding. The two
possibilities can be analyzed:

(i) Machine I is an engine whereas machine II plays the role of
a heating pump. The directions of the heat fluxes for this possibility
are shown in Figure 4.8. In the lower part of the figure the change of
parameters in the cycle process is illustrated by diagrams in the p,x
system of coordinates, where x is the distance of the piston motion
proportional to the volume of working fluid in a respective cylinder.
According to the Second Law of Thermodynamics, in the global effect
of operating both machines, the cold heat source cannot lose heat and
the hot heat source cannot gain. Thus the following inequalities result:

Q1 ≥ Q4 (a)

Q2 ≥ Q3 (b)

(ii) Machine I is a heating pump and machine II acts as an engine.
The directions of the heat fluxes are opposite to those shown in Figure
4.8. Due to the assumed reversibility (Carnot cycle) of both machines
the absolute amounts of heat remain unchanged. However, accord-
ing to the Second Law of Thermodynamics the following inequalities
result:

Q1 ≤ Q4 (c)

Q2 ≤ Q3 (d)

Relations (a) and (c) can be satisfied at the same time only when

Q1 = Q4 (e)

and from relations (b) and (d):

Q2 = Q3 (f)

Interpreting equation (4.21) for the Carnot efficiencies �C,I and
�C,II of the considered machines and taking into account equations (e)
and (f), one obtains:

�CI = 1 − Q2

Q1
= 1 − Q3

Q4
= �CII (g)

Equation (g) shows that the Carnot efficiency does not depend on
the nature of the working fluid and can be also applied for radiation.

The Carnot efficiency can be used as a reference value for calcu-
lation of exergy efficiency of a thermal engine. Consider the energetic
efficiency of an engine:

�E, eng = W
Q1

(h)
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and exergetic efficiency of the engine:

�B, eng = W
BQ1

(i)

Based on formulae (2.35) and (2.61) the ratio of energetic and
Carnot efficiencies is:

�E, eng

�C
= W

Q1

TI

TI − TII
= W

BQ1
= �B, eng (j)

The exergy efficiency of the engine demonstrates how much the
real energy efficiency departs from the ideal efficiency represented
by the Carnot efficiency. In the ideal case (�E, eng = �C ) the exergy
efficiency approaches 100%.

4.6.2 Perfection Degree of Process
Practically, process efficiency can be defined in different ways. For
example, energy or exergy can be used for expressing the numera-
tor and denominator of the efficiency. However, the best method for
reviewing the process seems to be the application of the degree of
perfection recommended by Szargut et al. (1988) for measuring the
thermodynamic perfection of a process.

The energy and exergy degrees of perfection are defined analo-
gously for convenient comparison. To determine the degree of per-
fection, all terms of the energy (or exergy) balance equation are cat-
egorized either as useful product, or process feeding, or loss. The
perfection degree is then defined as the ratio of useful product to the
process feeding. The loss is not disclosed in the perfection degree for-
mula because it is a compensation of the perfection degree to 100%.

The losses can be of two kinds. The first loss appears in most pro-
cesses during the unavoidable release of the waste heat or matter.
The thermodynamic parameters of the waste usually differ from the
respective parameters of the environment. Thus, the waste still has
certain energetic or exergetic values that are dissipated in the envi-
ronment unless utilized somehow beyond the considered system in
an additional process of “waste recovery.” The loss due to waste is
called the external loss and such loss can be partially recovered. The
second loss, noticed only in exergy analysis, appears within the sys-
tem due to thermodynamic irreversibilities of component processes
and such internal loss cannot be recovered even partially.

Energy balance can disclose only external loss, whereas the ex-
ergy balance can contain the terms of the external and internal losses.
Internal loss is calculated from the Guoy–Stodola law. External loss is
equal to the energetic or exergetic value of the waste. Internal losses
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in multiprocess systems can be summed in contrast to external losses,
which theoretically can still be utilized in one of the other subsystems.

The concept of perfection degree can include exergy change due
to the varying of environment parameters and the specific terms (e.g.,
gravity input). Thus, in the modified version it can be proposed that
the denominator of the degree of perfection represents the feeding
terms, gravity input, and exergy change due to the environment vari-
ation, whereas the numerator expresses the useful products. For ex-
ample, for the steady process in which numerous fluxes of energy
are exchanged, the exergy degree �B of perfection can be proposed as
follows:

�B =
∑

i
Buse,i + ∑

k
BQ,use,k + Wuse∑

j
Bfeed, j + ∑

m
BQ,feed,m + Wfeed + G − �Be

(4.23)

where

i is the number of useful exergy fluxes Buse obtained from the
process, including substance and radiation,

k is the number of useful exergy fluxes BQ,use of heat,
j is the number of entering exergy fluxes Bfeed, including sub-

stance and radiation,
m is the number of entering exergy fluxes BQ,feed of heat,
Wuse is the total work produced,
Wfeed is the total work consumed,
G is the gravity input, considered if eZergy is applied and
�Be is the exergy gain in case of variation of environment pa-

rameters.

Formula (4.23) can be applied also for combined processes in
which more than one intended product is obtained (e.g., the combined
generation of heat and power-cogeneration). A particular example of
application of the energy and exergy perfection degrees, with no work,
G and �Be , is discussed, e.g., in Chapter 12, for photosynthesis.

Contrary to the not discoverable internal energy loss, the inter-
nal exergy losses have particularly practical significance. The exergy
balance should be developed with possibly the most detailed distri-
bution of the internal losses in order to obtain the most exact informa-
tion about the possibility of perfection improvement of the considered
system. For example, the internal exergy loss can be divided into the
components corresponding to friction, heat transfer at a finite temper-
ature difference, radiation emission and absorptions, etc.

If, in any part of the considered system, several irreversible phe-
nomena occur, then, in principle, it is possible to calculate only the
overall internal exergy loss caused by the phenomena. The splitting of
the effects of these irreversible phenomena, occurring simultaneously
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at the same place and time, is impossible because these phenomena
interact mutually (as is mentioned in the discussion of the Fourth Law
of Thermodynamics). The splitting of the exergy loss in such a case can
be based only on the assumed agreement. For example, for the com-
bustion process the radiative heat exchange occurs between the flame
and the surrounding wall. In order to split the effects of irreversible
chemical reactions of combustion from the irreversible radiation ex-
change, it can be assumed that first combustion occurs and then heat
exchange takes place. However, with such an assumption the temper-
ature differences in the heat exchange are larger than they really are.

Therefore, it is better to split exergy losses according to the instant
and site of occurrence, instead of according to the causes, unless the
examined causes occur in different spots and different instants.

Theoretically, distribution of the exergy losses according to loca-
tion can be also carried out even in a more detailed way than the
common method. Application of the thermodynamic equation of the
irreversible processes allows for calculation of the rate of entropy gen-
eration at a given location of the system, i.e., for calculation of the so-
called entropy source. The entropy source can be used for calculation
of the local exergy loss due to irreversible phenomena occurring at
the given point of the system. However, the calculation of the local
exergy losses based on the entropy source method is difficult because
in practical cases the calculation of the entropy source of complex
irreversible phenomena is difficult.

4.6.3 Specific Efficiencies
Generally, the efficiency of a process can be arbitrarily defined to ex-
pose the most important aspect.

For example, the exergy of the hot water generated from solar
radiation can be related either to the exergy of heat Q at the sun’s
surface Tsun, Q × (1 − T0/Tsun), to the exergy bsun of the sun’s radia-
tion, or to the exergy of heat Q absorbed at the water pipe tempera-
ture TW, Q × (1 − T0/TW). The exergy efficiency increases successively
through the above three possibilities due to the decreasing values
of the denominators in the efficiency formulas: Q × (1 − T0/Tsun) >

bsun > Q × (1 − T0/TW). An exergy efficiency that relates the process
effect to the decrease of the sun’s exergy, Q × (1 − T0/Tsun), is unfair
because the exposed surface of the water pipe obtains only the so-
lar radiation exergy and the water pipe is independent of irreversible
emissions at the sun’s surface. Relating the process effect to the exergy
of heat absorbed, Q × (1 − T0/TW), favors the exposed surface by ne-
glecting its imperfectness during the absorption of heat Q. Thus, from
these three possibilities, comparing the heated water effect to the ex-
ergy bsun of the sun’s radiation is the best estimation in this analysis.

Other examples of variously defined efficiencies are applied and
discussed in the following chapters. However, from the comparative
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viewpoint of different processes, the best justified definition of the
efficiency seems to be equation (4.23).

4.6.4 Remarks on the Efficiency of Radiation Conversion
The following discussion focuses on thermal radiation; however,
among available sources of thermal radiation of significant value (high
temperature), first of all is solar radiation. Until today there have been
observed four possibilities of conversion of radiation (photon gas) into
other forms of energy.

The conversion of radiation to work, so far not well developed,
is one possibility. The theoretical efficiency of such a conversion is
discussed in Section 6.4.1. An example of such conversion is the idea
of sailing in space due to a photon wind. Another example is the
concept of the light-mill, which is also used for measurement of the
radiation pressure according to experiments by Lebedev (1901) as well
as by Nichols and Hull (1901). The light-mill with its spinning action
of a mirror placed on an arm and using the effect of radiation pressure
is described by Halliday and Resnick (1967). There are also likely other
photon devices or processes using the effect of radiation pressure that
have not been invented yet.

Work performed directly by the photon gas can be obtained also
within an enclosed space, which, e.g., explains the model considered
in Section 5.7. Besides these already-mentioned direct applications of
the photon stream, some indirect utilizations of solar energy to per-
form work can also be achieved. An example of indirect utilization of
radiation would be the effect combined with gravity and buoyancy
observed in the solar chimney power plant. In Chapter 11, such a prob-
lem will be analyzed in more detail, using the concept of gravity input.

The conversion of radiation into heat, which, e.g., can increase the
enthalpy of any working fluid, is based on the absorption of radiation
on a surface exposed to solar radiation. The harvesting of heat from
solar radiation is discussed in Chapter 10, which also discusses the
parabolic solar cooker as a typical example of a device that absorbs
solar radiation.

The conversion of radiation into chemical energy of substance oc-
curs during the process of photosynthesis, the simplified model of
which is discussed in Chapter 12.

The direct conversion of radiation into electrical energy occurs in
photovoltaic devices; the simplified analysis of such conversion is
discussed in Chapter 13.

4.6.5 Consumption Indices
Sometimes instead of efficiency, specially defined indices are used for
the estimation of processes. For example, there are some processes
that occur spontaneously due to interaction with the environment.
Drying, cooling, vaporization, and sublimation are examples of such
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processes in which the self-annihilation of exergy takes place. Often
these processes, especially in industrial practice, are accelerated with
the use of the appropriate input. Exergy application for estimation of
perfections of these processes reveals some problems.

For example, applying the common exergy efficiency definition—
effect and input ratio—leads to the negative or infinite value of the ef-
ficiency. Therefore, instead of efficiency some specially defined criteria
have to be used for the evaluation and comparison of processes perfec-
tion. For example, for drying processes the unit exergy consumption
index is defined as the ratio of the exergy of the drying medium used
to the mass of the liquid extracted in the form of vapor. In the case
of the application of solar energy for drying, the index would express
the exergy of absorbed radiation per mass of the vaporized moisture.

Another index can be used for the process occurring in a water
cooling tower. Szargut and Petela (1968) propose the evaluation of the
process with the index defined as the ratio of the sum of exergy lost
in the tower and the heat extracted from the water. The typical value
of the index for the cooling tower of a steam power station is about
0.088 kJ of exergy per kJ of heat.

Yet another example of processes which can occur spontaneously
in the natural environment is desalination of sea water. In result of such
desalination the separated salt and water vapor are obtained. How-
ever, desalination can be artificially accelerated, e.g. in a proper instal-
lation utilizing solar radiation, and the water vapor can be acquired in
form of a condensate. Exergetic evaluation of such combined process
can be based on a certain performance index taking into account the ex-
ergy input of utilized solar radiation. The exergetic effect of the process
is the difference in chemical exergy of the sea water and condensate.

Petela (1990) proposed a specific approach to the exergy annihila-
tion due to spontaneous processes. He considered the natural exergy
annihilation rate that expresses the ability of the environment to spon-
taneously reduce the exergy of the substance or radiation. The natural
wind velocity, the environment air temperature and composition, par-
ticularly humidity, as well as the solar radiation, the local surrounding
surfaces’ configuration, and its emissivities, all taken together into ac-
count can determine the available exergy effect for annihilation of
exergy in the spontaneous processes of drying, cooling, etc. The so-
called “wind chill factor” is an example of the concept expressing a
certain ability of the environment air.

Therefore, the exergy B of any considered matter not being in
equilibrium with the environment, exposed to interaction with the
environment, experiences a reduction in its exergy at the natural ex-
ergy annihilation rate:

r0(t) = −
(

∂B
dt

)
natural

(4.24)
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where t is time. The rate r0, always nonnegative (r0 ≥ 0), can be even
recognized in some specific problems as the additional property of the
environment together with environment temperature, pressure, etc.

Usually, for economic reasons, the natural approach to equilibrium
with the environment is enforced by applying the rate:

r (t) = −
(

∂B
dt

)
forced

(4.25)

which also is always nonnegative (r ≥ 0). Both rates can be used in the
definition of the instant value er of the exergetic index (dimensionless)
of process annihilation effectiveness:

er (t) = r (t) − r0(t)
Bin(t)

(4.26)

where Bin is the driving exergy input flux of the considered process.
The cumulative exergetic index ēr of the annihilation process ef-

fectiveness within the time period from t1 to t2 can be determined as
follows:

ēr
∣∣t2
t1 =

t2∫
t1

[r (t) − r0(t)] dt

t2∫
t1

Bin(t)dt
(4.27)

An example of the application of formula (4.27) is discussed by
Petela (1990) for the forced cooling of small balls that fill up the space
with air flow. For the spontaneous processes without any technical
input for acceleration of the process, the exergetic effectiveness er is
the maximum and is equal to infinity. The idea of the index er can
be developed further in some specific exergy problems related to the
spontaneous annihilation of exergy.

4.7 Method of Reconciliation of the Measurement Data
From the balance equations of mass, energy, and exergy one can
calculate some unknowns that, for different reasons, were not
measured. Number u of such unknowns cannot be larger than the
number r of available equations. If u = r, the solution obtained is
unique. However, the best situation is when u < r , i.e., the problem
is overdetermined, because there is the possibility of the introduc-
tion of new unknowns as the corrections to the measured values.
Unavoidable errors of the measurements may cause the equations
without introduced corrections to not be fulfilled accurately. Without
using the corrections, called the reconciliation, it appears that the
values of calculated unknowns depend on the calculation variant; i.e.,
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they depend on the selected equations for the calculation procedure,
whereas the not used equations are not fulfilled.

The purpose of the reconciliation of balance equations is also to
calculate the unique and most probable values of the unknowns, veri-
fication of the assumed precision of measurements, and the estimation
of real errors as well as their decrease. After the reconciliation the mea-
surement errors decrease the most for the larger errors.

The convenient reconciliation method is proposed by Szargut and
Kolenda (1968). The method theory is vast and only its outline is de-
scribed and illustrated here with a simple calculation example.

The first step of the method is proper preparation of the equations
set, called the conditions set, which is under consideration. The condi-
tion equations have to be independent and the unknowns have to be
calculable. Then the following denotation is assumed:

k = 1, 2, 3, . . . , r , is the successive number of total number r of
condition equations,

�i where i = 1, 2, 3, . . . , n, is the successive magnitude being
measured,

� j where j = 1, 2, 3, . . . , u, is the successive unknown.

Thus the condition equations are the set of functions:

Fk = Fk (�1, . . . , �n, �1, . . . , �u) (4.28)

where u < r < n + u. The next step is calculation of the approximate
values, xj, of unknowns from some condition equations or their com-
bination. Then the following substitutions to the condition equations
(4.28) are made:� measured values (observations) zi in place of �i ,� approximate values xj of unknowns in place of � j .

Obviously, the obtained equations are not fulfilled:

Fk = (z1, . . . , zn, x1, . . . , xu) = −wk (4.29)

where wk is the discrepancy of the kth condition equation. To obtain
the agreement of all the condition equations, i.e., to obtain wk = 0 for
every k, the following are introduced:� corrections vi for the observations,� corrections yj for the unknowns.

Thus from equations (4.29) is:

Fk = [(z1 + v1) , . . . , (zn + vn) , (x1 + y1) , . . . , (xu + yu)] = 0 (4.30)
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For linearization of equations (4.30) the Taylor’s series expansion
is applied in the neighborhood of experimentally measured values zi

and calculated values xj :

Fk = [(z1 + v1) , . . . , (zn + vn) , (x1 + y1) , . . . , (xu + yu)]

≈ Fk (zi , . . . , zn, xi , . . . , xu) +
(

∂ Fk

∂�1

)
0

v1 + · · · ,
(

∂ Fk

∂�n

)
0

vn

+
(

∂ Fk

∂�1

)
0

y1 + · · · ,
(

∂ Fk

∂�u

)
0

yu (4.31)

where (
∂ Fk

∂�i

)
0

≡ ak,i (4.32)

(
∂ Fk

∂� j

)
0

≡ bk, j (4.33)

are the partial derivatives of functions Fk for the measured magnitudes
�i and unknowns � j calculated at point (z1, . . . , zn, x1, . . . , xu).

Relation (4.29) and the abbreviations (4.32) and (4.33) are intro-
duced into (4.31) and the linearized equations are as follows:

i=n∑
i=1

ak,i vi+
j=n∑
j=1

bk, j yj = wk (4.34)

Relation (4.34) represents the set of r equations with number n of
unknown vi and number u of unknown yj , thus n + u > r . Therefore,
the number (n + u − r ) of additional conditions can be introduced
for determining the way to choose the corrections. The most logical
policy is the method of least squares applied to corrections vi with a
normalization factor of mi (the standard deviation of the experimen-
tal data) as the experimental uncertainty in the measurement of the
independent magnitudes yi . Thus:

i=n∑
i=1

(
vi

mi

)2

= min (4.35)

The minimum expressed by equation (4.35) is conditioned by
equations (4.34). The conditional minimization can be solved by the
method of Lagrange’s multipliers �k with the Hamiltonian H. Thus,
the simultaneous fulfilling of conditions (4.34) and (4.35) occurs when
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the following relations are fulfilled:

H =
i=n∑
i=1

(
vi

mi

)2

− 2
k=r∑
k=1

�k

(
i=n∑
i=1

ak,i vi +
j=u∑
j=1

bk, j yj − wk

)
= min

(4.36)
Applying the necessary conditions for the extreme:

∂ H
∂vi

= 0 and
∂ H
∂yj

= 0

one obtains:

vi

m2 =
k=r∑
k=1

ak,i �k (4.37)

k=r∑
k=1

bk, j �k = 0 (4.38)

The sets of linear equations (4.34), (4.37), and (4.38), whose number
is n + u + r , allow for calculations of the same amount of unknowns
which are vi , yj, and �k . Accuracy of measurements and the effect of
reconciliation of the balance equations can be estimated based on the
values of wk , vi , and yj . For example, the correction vi should not be
larger than the respective standard deviation mi ; (vi ≤ mi ).

Example 4.2 Heat is exchanged by radiation between two parallel, infinitely
large black surfaces with a vacuum between the surfaces. As shown in Table 4.2
measured were temperature T1 and T2 of the surfaces, heat flux q and tempera-
ture T0 of the environment. The exergy loss �b due to irreversible heat transfer
has to be calculated.

The considerations are based on the two equations, one determining the heat
flux q per 1m2, as:

q = 	
(

T4
1 − T4

2

)
(a)

Measured or
Symbol Units calculated value Calculated correction Corrected value

T1 K �1 = 720 v1 = 0.128958548 720.128959

T2 K �2 = 320 v2 = −0.01132146 319.988679

T0 K �3 = 291 v3 = 0 291

q kW/m2 �4 = 13.1 v4 = −1.5241912 11.5758088

�b kW/m2 �1 = 6.853 y1 = −0.76866431 6.08433569

TABLE 4.2 Data for the Considered Heat Exchange
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where 	 = 5.6693 × 10–11 kW/(m2 K4) is the Boltzmann constant for black
radiation, and another equation for exergy loss �b as:

�b =
(

q
T2

− q
T1

)
T0 (b)

The considered problem is overdetermined because two independent equa-
tions are available and only one unknown has to be calculated; there are two
condition equations (r = 2), one unknown (u = 1) and four measured values
(n = 4). Equation (a) and (b) are rewritten as function F1 with the use of mea-
sured data:

F1 = Cb�4
1 − Cb�4

2 − �4 = w1 = 1.53518618 (c)

and as function F2, from which the preliminary value of unknown �1 is calcu-
lated, thus the discrepancy w2 = 0:

F2 = �4�3

�2
− �4�3

�1
− �1 = w2 = 0 (d)

For reconciliation of the measurement data the following relations have to
be formulated. From equation (4.34), (k = 1):

Cb4 �3
1v1 − Cb4 �3

2v2 − v4 = w1 (e)

and for (k = 2):

�4�3

�2
1

v1 − �4�3

�2
2

v2 +
(

�4

�2
− �4

�1

)
v3 +

(
�3

�2
− �3

�1

)
v4 − y1 = w2 (f)

From equation (4.37) we have:
for i = 1, (�1):

v1

m2
1

= Cb4 �3
1�1 + �4�3

�2
1

�2 (g)

i = 2, (�2):

v2

m2
2

= −Cb4 �3
2�1 − �4�3

�2
2

�2 (h)

i = 3, (�3):

v3

m2
3

= 0 + �4

�2
�2 (i)

i = 4, (�4):

v4

m2
4

= −�1 +
(

�3

�2
− �3

�1

)
�2 (j)

From equation (4.38):

−�2 = 0 (k)
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Seven equations (e)–(k) contain seven unknowns: v1, v2, v3, v4, y1, �1, and �2.
For simplification the standard deviations are assumed to be equal: m1 = m2 =
m3 = m4 = m = 2. On the other hand, if standard deviations are equal, then they
eliminate themselves from calculations; thus their values are not important. The
corrected values of measured magnitudes are shown in the last column of Table
4.2. The Lagrange’s multipliers are �1 = 0.381047794 and �2 = 0.

Nomenclature for Chapter 4
A surface area, m2

a abbreviation, formula (4.32), in a reconciliation procedure
a1 = 9.7807 m/s2, constant
a2 = −3.086 × 10−6 1/s2, constant
a3 = 1.217 kg/m3, constant
a4 = −9.973 × 10–5 kg/m4, constant
B exergy, J
Ḃ exergy rate, W
b specific exergy, J/kg
b exergy percentile, %
b abbreviation, formula (4.33), in a reconciliation procedure
c concentration of component, kg/m3

c p specific heat at constant pressure, J/(kg K)
D diffusion coefficient, m2/s
D diameter, m
E energy, J
Ė energy rate, W
e emission density, W/m2

e specific energy of substance, J/kg
e energy percentile, %
er exergetic index of process effectiveness
ēr cumulative exergetic index of the annihilation process

effectiveness
F function in reconciliation procedure
f composition fraction,
G gravity input, J
g gravitational acceleration, m/s2

H height of chimney, m
H Hamiltonian
h convection heat transferred coefficient, W/(m2 K)
k thermal conductivity, W/(m K)
m mass, kg, or mass flow rate, kg/s
m standard deviation of the experimental data in reconciliation

procedure
N power, W
n number of measured unknowns in reconciliation procedure
p absolute static pressure, Pa
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Q heat, J
q heat flux per 1 m2, W/m2

R individual gas constant for air, R = 287.04 J/(kg K)
r number of available equations in a reconciliation procedure
r exergy annihilation rate, W
S entropy, J/K
T absolute temperature, K
t time, s
U internal energy, J
u number of unknowns in reconciliation procedure
V volume, m3

v correction of observation in reconciliation procedure
W work, J
w flow velocity, m/s
w equation discrepancy in a reconciliation procedure
x altitude measured from the earth’s surface, m
x distance, m
x approximate value in place of � in a reconciliation procedure
x′ altitude above sea level, m
y coordinate, m
y correction of unknown in a reconciliation procedure
Z eZergy, J
z eZergy percentile, %
z measured observation on � in a reconciliation procedure

Greek
� measure variable in reconciliation procedure
� unknown variable in reconciliation procedure
� increment
� loss
� efficiency
� Lagrange’s multiplier
� overall entropy growth, J/K
� density, kg/m3

	 Boltzmann constant for black radiation 	 = 5.6693 ×
10−11 kW/(m2 K4)

Subscripts
B exergetic
b black
b buoyant replacement
C Carnot
E energetic
e environment compensation
eng engine
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F friction
fin final
i successive number
j successive number
in inlet
inl initial
k successive number
L laminar
macr macroscopic
out outlet
p pressure
Q heat
S system
sun sun
w velocity
W water
x altitude
0 environment
1, 2, 3, 4 denotations
I, II denotations



C H A P T E R 5
Thermodynamic

Properties of
Photon Gas

5.1 Nature of Photon Gas
Modern physics is founded on two theories: general relativity and
quantum mechanics. Both theories are defined by Einstein’s postulates
and are supported experimentally. Although these theories do not
directly contradict each other theoretically, they are resistant to being
incorporated within one cohesive model. General relativity is the most
successful gravitational theory, whereas quantum mechanics has had
enormous success in explaining many of the features of our world.
The individual behavior of subatomic particles (electrons, protons,
neutrons, photons, etc.) appearing in all forms of matter can often be
described satisfactorily only by using quantum mechanics.

Radiation is one of the main phenomena appearing in surround-
ing nature and is described by quantum theory. During radiation of
substantial bodies (solids, liquids, and some gases) a part of their en-
ergy (e.g., internal energy or enthalpy) trasforms into the energy of
electromagnetic waves at a length theoretically from 0 to ∞. Radiation
does not require a medium for its propagation. The radiation energy is
noncontinuously emitted in the form of the smallest indivisible energy
portions, called photons. If the energy of a body is not simultaneously
supplemented from an external source, then the temperature of the
body decreases. The phenomenon of such radiation is called emission.

Electrons orbit the nucleus of an atom at fixed orbital distances
(called orbital shells) which for each atom are different and discrete.
In a certain atom the electrons can orbit only at particular distances
which are different from those for atoms of other chemical elements.
In a stable state the electrons remain at a so-called ground state, which
is the lowest energy level of an orbital distance.

97
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An orbital shell is associated with a certain energy level. The
greater the distance is from the nucleus, the greater is the energy
level. Electrons, when excited by the absorption of energy, jump to
a higher shell. Photons must have the exact amount of energy to re-
place electrons in the next shell and, e.g., a nonexact amount of energy
in the photons cannot move electrons part of the way between shells.
The excited atom stays in such an unstable state until the excessive
energy is taken out and then the electron returns to a ground state.
Because the amount of energy carried by a photon depends on the
wavelength, the atoms of gas can absorb, or emit, energy only at a
particular wavelength.

A theoretical model of a perfectly reflecting surface, discussed in
Section 2.2.2, reflects 100% of the incident radiation. This means that
the surface emits one photon of the same frequency and energy per
each such photon absorbed. If a system is surrounded by a boundary
with such a perfectly reflecting surface, then the system is radiatively
adiabatic. However, the perfectly reflecting surface can participate in
heat exchange by conduction and convection if the surface is in contact
with any substance.

According to quantum mechanics an arbitrary potential may be
approximated with the analogue of the classical harmonic oscillator
in which the potential oscillates at the vicinity of a stable equilibrium
point. In a one-dimensional harmonic oscillator the particle momen-
tum is specified by a single position coordinate. In an N-dimensional
analogue of an oscillator the momentum is considered for N position
coordinates.

From a theoretical consideration of oscillators it may be concluded
that the energies are quantized and may take only the discrete value
multiplied by 1/2, 3/2, 5/2, etc. The lowest achievable energy is not
zero but half of such a discrete value. This lowest energy is called the
zero point energy (or the ground-state energy). In the ground state an
oscillator performs null oscilations and its average kinetic energy is
positive, although this zero energy is not perceptible as a meaningful
quantity. Oscillators make no noise, probably because they have no
rest mass. The ground-state energy has many implications, particu-
larly in the quantum gravity problem.

Another conclusion is that the energy levels are equaly spaced,
unlike in the Bohr model of an atom (which is a positively charged
nucleus surrounded by electrons traveling in circular orbits around
the nucleus) or in the “particle in a box” problem of a particle moving
in a straight line, always at the same speed, until it reflects from a
wall. For a randomly behaving oscillator the ground-state probability
is concentrated at the origin. This means the particle spends most
of its time at the bottom of the potential well at the state of little
energy. When any energy is supplied, the probability density becomes
concentrated at the classical turning point, at which the energy coincides
with the potential energy.
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Electric field

Magnetic
field

Propagation
directionλ

FIGURE 5.1
Simplified scheme
of a polarized
electromagnetic
wave.

Thus, as noted, electromagnetic radiation consists of discrete pack-
ets of energy (photons). Each photon consists of both an oscillating
electric field component and an oscillating magnetic field component.
The electric and magnetic fields are perpendicular to each other; they
are also orthogonal to the direction of propagation of the photon.

Thermal radiation is a case of mathematical description by the
famous Maxwell equations for the general relation between electrical
and magnetic fields in nature. The main Maxwell’s equation, with
three equation terms, expresses a magnetic field, respectively, to set up:
(a) a changing electric field, (b) a current, and (c) the use of magnetized
bodies.

The photon electric and magnetic fields flip direction as the pho-
ton travels. Figure 5.1 shows the recorded hypothetical history of a
photon traveling over some distance and leaving a trail of electric and
magnetic fields. The number of flips, or oscillations, that occur in one
second is called the frequency (�) and is measured in hertz (1/s). The
distance in the direction of wave propagation over which the electric
and magnetic fields of a photon make one complete oscillation is called
the wavelength �, m, of the electromagnetic radiation. As mentioned
in Section 3.1, the radiation propagation velocity c is equal c = � × �.
The energy E ph of a photon depends on its frequency:

Eph = h� (5.1)

where h is Planck’s constant. The rest mass of a photon is zero. How-
ever, considering a photon as a relativistic particle, its energy can be
equalized as h × � = m × c0

2 and the mass m multiplied by speed c0

determines the particle momentum P as follows:

P = h�

c
(5.2)

The electromagnetic nature of all photons is the same; how-
ever, photons can have different frequencies. The record of energy
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corresponding to a particular frequency or wavelength is the elec-
tromagnetic spectrum of radiation. Radiation can be examined by a
spectrometer in which the radiation is dispersed by a spectrometer
prism into its intensities, which are then measured. The spectrum
represents the intensity components of radiation arranged in order of
wavelengths or frequencies.

Because of a dual nature assigned to the radiation, the product of
radiation can be considered either as the energy of photons or the en-
ergy of electromagnetic waves. The concept of the photon, introduced
in quantum theory, leads to a certain interpretation of the space be-
tween surfaces exchanging heat by radiation. A radiation process can
be understood either as a macroscopic effect of heat transfer consid-
ered in engineering thermodynamics or as a process of energy ex-
change by the energy carrier which are the photons. One can perceive
not only a radiative heat transfer between surfaces of different temper-
atures but also the radiation product (photon gas) existing between
the surfaces.

Therefore, the radiant heat transfer interpreted as the phe-
nomenon of the electromagnetic wave propagation, can be also de-
scribed as the behavior effect of a collection of particles (photons)
within the space between the surfaces. Such photonics perception al-
lows consideration of the thermodynamic properties of a radiation
product, recognizing this product as a collection of energy quanta sim-
ilar to a substance, which is recognized as a collection of molecules.
The quanta generated in the oscillating way can be described by the
theory of oscillation. The space with “photon gas” can be studied
analogously to a substantial gas and the properties of such a nonsus-
btantial working fluid (photon gas) and its behavior in space is one
of the subjects of this book on the engineering thermodynamics of
thermal radiation.

During emission of radiation by a body the absorption of radia-
tion can occur simultaneously. During absorption of electromagnetic
radiation the energy of photons is taken up by the electrons of a body
atom. The photon is destroyed when absorbed and its electromagnetic
energy is then transformed to other forms of energy, e.g., either electric
potential energy, or emission of radiation, or to heat the body and raise
its internal energy or enthalpy. It is also possible that due to absorp-
tion electrons can be freed from the atom as in the photoelectric effect
(photo electrochemical or photovoltaic, discussed in Chapter 12) or in
the Compton scattering of energy. The body absorptivity, discussed in
Section 3.2, quantifies how much of the incident radiation is absorbed;
the remaining amount of incident radiation can be reflected or trans-
mitted. The absorption of radiation during its propagation through a
medium is often called attenuation.

Usually the absorptivity of substances varies with the wavelength
of the radiation because the energy of the incident photon must be
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similar to an allowed electron transition. As a consequence, a sub-
stance can absorb radiation in a range of selected wavelengths. For
example, if a substance absorbs radiation in the wavelengths corre-
sponding to the colors blue, green, and yellow, then the substance ap-
pears red (i.e., in the unabsorbed radiation wavelength range) when
viewed under white light.

Absorption spectroscopy permits identification of a substance by
precise measurements of absorptivity at different wavelengths if a
substance is illuminated from one side and the intensity of the exiting
radiation from the substance is measured in every direction.

From the thermodynamic viewpoint the photon gas can be con-
sidered as black radiation. There is no such concept as the emissivity
of radiation because radiation is always black and emissivity is re-
lated only to the radiating surface, which emits black radiation at a
rate determined by the surface property such as the surface emissivity.
Therefore, the photon gas cannot have assigned properties such as the
emissivity, which should be applied only for surfaces.

This observation can be supported by the following consideration.
In the vacuum enclosed within white walls exists an elemental mass
dm of black substance. In an equilibrium state the space is filled up
with photon gas of black radiation. There is no possibility to exchange
energy between the space and outer environment. Therefore, based on
the energy conservation law, the energy of the gas will not change if,
theoretically, the emissivity of the elemental mass decreases. As a re-
sult, the same photon gas (black radiation) will exist in the space in the
presence of an elemental mass even at a very low value of emissivity.
The element dm of emissivity smaller than one will absorb and emit
radiation, but in the space the same black photon gas will always exist.

5.2 Temperature of Photon Gas
The key thermodynamic parameter is temperature, which has been
used already in previous considerations (Chapter 2), although in terms
of radiation it requires a more detailed interpretative discussion.

A photon is a modern physics model of a single energy quantum—
an electromagnetic wave—which appears as a disturbance in the geo-
metric properties of space. The concept of temperature does not apply
to a single energy quantum, because temperature is a macro property
of matter. The Boltzmann constant, which couples the kinetic energy
and temperature of a substance molecule (∼kT) in the suggestive re-
lation T = ∼h�/k, should not be applied for assigning a temperature
to a photon. The concept of temperature in radiation problems can be
applied only to a batch of photons.

Geometrically, the simplest model space for consideration of an
enclosed photon batch is the space between two flat, parallel, and
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infinitely large surfaces facing each other, separated by a distance that
is large enough to accommodate the radiation with the longest mean-
ingful wavelengths. In such a model space the history of reflections is
simple: the whole radiosity of one surface arrives at the other surface,
and vice versa. There is no need to involve the complex geometry of
surfaces because this does not affect the final results in consideration
of the radiation mechanism.

Thus, in such a simple model space the method of the test body
and the Zeroth Law of Thermodynamic, discussed in Section 2.1.2,
can be used for determination of the temperature of a certain photon
population. The temperature of thermal radiation can only be deter-
mined indirectly, i.e., by measuring the temperature of the substance
with which the radiation is in equilibrium.

There are three illustrative and instructive examples of equili-
birum radiation, as suggested by Bejan (1997). The surfaces of the
model space are perfectly white and initially the space does not con-
tain any substance. Thus, the system of any considered photon batch
within the space would be adiabatic.

First, assume that into the model space is inserted a substance I
with the property that it can emit and absorb only a certain single fre-
quency �I (to be exact, in a narrow frequency band from �I to �I + d�).
This means that if photons of many other frequencies are present in the
considered space, then substance I will behave as completely trans-
parent to those photons. After a sufficiently long time, the space will
fill with the monochromatic radiation of frequency �I and the system
(substance and photon gas) will achieve equilibrium at the initial sub-
stance temperature TI. Substance I does not lose its energy; thus, the
substance maintains a constant temperature, because any substance
emission is reflected back and no energy is lost to the outside of the
system. The initial emperature TI was measured and the radiation can
be determined as having temperature TI.

Second, substance I is replaced by substance II, which is perfectly
black. In time, the space fills with photons of all frequencies and the
state of equilibrium is achieved. Similar to case I, the considered sys-
tem with substance II also does not lose energy. The initially measured
temperature TII of substance II remains unchanged, and the radiation,
which is an instantaneous collection of photons, can be determined as
having tempetaturue TII.

Third, both substances I and II, with initially measured temper-
atures, respectively, TI and TII, are inserted into the space. At total
equilibrium, both substances achieve the same temperature, TIII. The
equilibrium at temperature TIII prevails also between substance I and
the monochromatic radiation in the space. Moreover, the equilibrium
between substance II and black radiation prevails also at temperature
TIII. Therefore, for temperature TIII, the monochromatic radiation (of
substance I) and the sample of photons in the frequency band (from �I
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FIGURE 5.2 Three considered cases (I, II, and III) of equilibrium.

to �I + d�) of the black radiation spectrum (of substance II) became the
same. Since the frequency �I was taken to be arbitrary, it is possible,
with the same result, to vary and analyze in a similar way, band-by-
band, the frequency dependence of blackbody radiation. The result
is that the batches of radiation, which contain photon collections of
different numbers and frequencies, achieve the same temperature at
the equilibrium state.

Summing up, the three considered cases are schematically shown
in Figure 5.2. In case I, the substance I and monochromatic photon
gas at the equilibrium state have the same temperature TI. In case II,
the substance II and the black photon gas at the equilibrium have the
same temperature TII. However, in case III, substance I, substance II,
and the black photon gas, all at the joint equilibrium state, have the
same equilibrium temperature TIII.

In practice, radiation temperature can be determined based on
the measured radiosity density. It is assumed that based on equations
(3.17), (3.20), (3.28), and (3.35) the radiosity density j can be inter-
preted as the emission density of the gray surface, j = e = ε × �× T4.
Therefore, based on measured value of j and assumed value of emis-
sivity ε of the examined surface, the temperature T can be determined
as follows:

T =
(

j
ε�

) 1
4

(5.3)

The idea of measured temperature based on equation (5.3) is ap-
plied in a pyrometer. The radiosity j of the target object is used to
deduce the object temperature T as the output signal. The pyrometer,
in very simple terms, consists of an optical system and detector. The
optical system focuses the energy radiated by an object onto the radia-
tion detector. The output of the detector is proportional to the amount
of energy radiated by the target object (decreased by the amount ab-
sorbed by the optical system), and to the response of the detector to
the specific radiation wavelengths.

For example, the infrared pyrometer measures the energy being
radiated from the target only in the 0.7–20 �m wavelength range. To
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increase the output and make it more readable, the detector can be
a thermopile consisting of a number of thermocouples connected in
series or parallel. The emissivity of the examined surface has to be
known because it is an important variable in converting the detector
output into an accurate temperature signal. There is no need for di-
rect contact between the pyrometer and the object. A pyrometer is also
suitable for measuring the temperature of moving objects. A cham-
ber such as the cavity radiator (Figure 3.4), submerged in a bath of
the known constant temperature, can be used for the calibration of
pyrometers.

The radiation temperature allows determination of the emitted
energy. For example, frequently considered is the radiation energy
only within a specified wavelength range. Such energy can be calcu-
lated in a fashion similar to the calculation of the mean specific heat,
equation (2.23). In the case of radiation, both sides of equation (3.29)
can be divided by T5:

eb�

T5 = c1 (�T)−5

exp
[ c2

(�T)

] − 1
(5.4)

Function (3.29) with two variables, � and T , is now changed into
function (5.4) of only one variable, (� × T). For the given temperature
T , the fraction of the total energy radiated between 0 and � can be
introduced:

(
eb, 0−�

eb, 0−∞

)
T

=

⎛⎜⎜⎜⎝
�∫

0
eb� d�

∞∫
0

eb� d�

⎞⎟⎟⎟⎠
T

= eb, 0−�,T

�T4 ≡ e�T (5.5)

The dimensionless values e�T are tabulated, e.g., by Holman
(2009). Table 5.1 shows some exemplary values of e�T for the (� × T)
ranging from 1000 to 50,000 �m K. For any wavelength range (�1, �2)

� × T Λ × T

�m K e�T �m K e�T

1000 0.321 × 10−3 6000 0.73777

2000 0.06672 7000 0.80806

3000 0.27322 8000 0.85624

4000 0.48085 10,000 0.91414

5000 0.63371 50,000 0.99889

TABLE 5.1 Radiation Function
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the energy radiated from the black surface is:

eb, (�1−�2), T ≡ ebT

∣∣∣�2

�1
= � T4 (e(�T)2 − e(�T)1 ) (5.6)

Example 5.1 A furnace interior, assumed to be a black surface at temperature of
2000 K, is viewed through a small window in the furnace wall. The window glass
plate has the surface area A = 0.006 m2. The emissivity ε and transmissivity �

of the glass are considered for different two wavelength ranges. For � < 3.5 �m:
ε = 0.3, � = 0.5; and for � > 3.5 �m: ε = 0.9, � = 0. Energy absorbed in the glass
and energy transmitted can be calculated as follows.

The values (� × T)1 = 0.2 × 2000 = 400 �m K and (� × T)2 = 3.5 × 2000 =
7000 �m K. From Table 5.1 (e�T )1 ≈ 0 and (e�T )2 = 0.8081. Using formula (5.6)
the energy of incident radiation within wavelengths from 0.2 to 3.5 �m is:

A� T4 (
e(�T)2 − e(�T)1

) = 0.006 × 5.6693 × 10−8 × 20004 × (0.8081 − 0)

= 4.398 kW

The energy radiation transmitted is: 0.5 × 4.398 = 2.199 kW. Radiation energy
absorbed within the wavelength from 0.2 to 3.5 �m is 0.3 × 4.398 = 1.319 kW
and within wavelength from 3.5 �m to ∞, is:

A� T4 (
1 − e(�T)2

) = 0.006 × 5.6693 × 10−8 × 20004 (1 − 0.8081) = 2.199 kW

The total absorbed radiation energy is 1.319 + 0.94 = 2.26 kW.

5.3 Energy of Photon Gas
Now, with knowledge of the radiation temperature, the energy of
the photon gas can be considered. As mentioned in Section 3.4, the
cavity radiator model shown in Figure 3.4 is usually the basis for
consideration of radiation. Now, it can be assumed that (a) the cavity
is filled only with radiation in the form of photon gas, i.e., there is no
substance within the cavity and the refractive index is n = 1; (b) under
conditions prevailing in the cavity the gas remains in thermodynamic
equilibrium; (c) the gas has the temperature of a blackbody surface;
and (d) the principle of classic phenomenological thermodynamics
can be applied to the photon gas. If the dimensions of the cavity are
significantly larger than the meaningful radiation wavelengths, the
radiation can be recognized as isotropic, i.e., the state of the gas is the
same at each cavity point.

A photon gas has rest mass equal to zero. Therefore, energy U, in
J, of the gas cannot be related to its mass but rather to its volume V.
Thus, the photon gas energy density u, J/m3, i.e., density of radiation
energy, is:

u = U
V

(5.7)

----·
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The normal radiation intensity i0 is discussed in Section 3.7. Now,
let us introduce into consideration the black normal radiation intensity
ib,0, W/(m2 sr), which is the product of u and the light velocity c0:

ib,0 = uc0 (5.8)

When considering radiation in a volume (not radiation flux emit-
ted from a surface), the intensity ib,0 can be interpreted as being free
to vary within the spherical solid angle � equal 4� sr; thus:

u = 1
c0

4�∫
0

ib,0d� (5.9)

Using equation (3.28) with interpretation of radiosity j as a black-
body radiation (emission) present in the cavity ( j = eb), one obtains:

u = 1
c0

4�∫
0

eb

�
d� (5.10)

Integrating (5.10):

u = �T4

�c0

4�∫
0

d� = 4�

c0
T4 (5.11)

and using (3.21), the internal energy of photon gas is:

u = a T4 (5.12)

Equation (5.12) leads us to the conclusion that if the temperature
T of the photon gas is held constant, then the radiation energy density
u also remains constant. The total energy U of the photon gas within
volume V can be calculated by using relations (5.12) and (5.7):

U = aVT4 (5.13)

Formula (5.12) can be derived also in a different fashion as shown
in Section 5.4. Radiation energy u is a similar quantity to the specific
internal energy of a substance.

5.4 Pressure of Photon Gas
Electromagnetic waves may transport linear momentum, i.e., it is pos-
sible to exert radiation pressure on an object by shining a light on it.
Obviously this pressure is relatively very small. The existence of ra-
diation was predicted theoretically by Maxwell, and was confirmed
experimentally by several researchers many years later. For example,
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solar radiation is so feebly weak that it can be detected only by allow-
ing the radiation to fall upon a delicately poised vane of metal of high
reflectivity (a Nichols radiometer). Thus, radiation pressure is a real
effect of exerting a positive force due to momentum given up during
the interaction of electromagnetic waves with substance matter. Using
quantum terminology, radiation pressure is an effect of the photons
hitting a target.

Electromagnetic radiation pressure is proportional to the energy
intensity of the electromagnetic field and inversely proportional to
the speed of light. The pressure acts in the same direction as the
wave propagation represented by the Poynting vector (which is the in-
stantaneous vector cross-product of the electric and magnetic fields).
While the electric and magnetic fields oscillate in transverse mode, the
Poynting vector oscillates in longitudinal mode. The vector can travel
through a vacuum, and the vector’s magnitude is always positive.

However, saying that electromagnetic waves are transverse waves
is not exactly true, because the electric and magnetic fields may ran-
domly alternate their polarity, although then the Poynting vector
varies its amplitude in at the unchanged vector direction. Thus, the
momentum transfer between a wave and a material target is only due
to the existence of this vector.

Radiation pressure in pascals (N/m2) is equal to the time-averaged
Poynting vector magnitude divided by the speed of light. The Poynt-
ing vector describes the rate of energy flowing through a surface and
has the dimensions of power per unit area. The pressure within the
electromagnetic field is considered here as being independent of the
properties of the target eventually hit. The nature of the Poynting vec-
tor can be considered as the radiosity density j . The radiation pressure
p of electromagnetic radiation can be defined either as the force F per
unit area A, or using momentum P , or by the radiosity density j , as
is shown by the following multi-equation:

p = F
A

=
d P
dt

A
= j

c
(5.14)

where t is time and c is the speed of light.
The above explanations suggest that the radiation mechanism re-

sponsible for the pressure effects can be analyzed from two view-
points. First, the pressure interaction between radiation and substance
can be considered, and second, the pressure effect only within the
internal structure of the radiation field can be examined. Both view-
points are outlined as follows.

The pressure exerted on an object by a given amount of radiation
depends on whether the radiation is absorbed, reflected, or transmit-
ted. If radiation is reflected, then the object that reflects must recoil
with enough momentum to stop the incoming wave and then send it
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Walls

Radiation

cr  = 0cr  = 1cr  = 2

α = 0 α = 1 τ = 0

FIGURE 5.3 Examples of walls of typical values cr of the radiation pressure
coefficient.

back out again. When radiation is absorbed, then the object must only
stop it. If radiation is transmitted through the object, then there is no
pressure effect on the object.

Consider a parallel beam within radiation that neighbors a wall
for a time t and that the incident radiation is totally absorbed by the
wall (i.e., the wall is perfectly black, 	 = 1). This means the momentum
P delivered to the wall is equal to energy divided by radiation speed,
P = U/c, where U is the radiation energy in J. However, if the radiation
energy is totally reflected (i.e., the wall is perfectly white, 	 = 0), the
momentum delivered to the wall is twice that given during absorption,
P = 2 × U/c. If the incident radiation is partly absorbed and partly
reflected (0 < 	 < 1), the delivered momentum lies between U/c and
2U/c. The transmission of radiation through the wall occurs without
momentum effect. Thus, generally, the momentum can be expressed
with use of the radiation pressure coefficient cr as follows:

P = cr
U
c

(5.15)

The value of cr can vary theoretically from 0 to 2. Typical examples
of momentum are shown schematically in Figure 5.3.

Example 5.2 A parallel beam of radiation with energy flux of 4 W/m2 falls for 10
s on a white surface (cr = 2) of 3 m2 area. The energy arriving at the surface is:

U = 4 × 10 × 3 = 120 J

From equation (5.15) the momentum delivered after 10 s of illumination (at c ≈
3 × 108 m/s) is:

P = cr
U
c

= 2
120

3 × 108 = 8 × 10−7 N s

Based on Newton’s law, the average force on the surface is equal to the average
rate at which momentum is delivered to the surface:

F = P
t

= 8 × 10−7

10
= 8 × 10−8 N
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whereas the pressure exerted by radiation on the surface is:

p = F
A

= 8 × 10−8

3
= 2.7 × 10−8 Pa

The radiation pressure within the electromagnetic radiation field, with
no material target, can be now considered for comparison.

In the quantum theory viewpoint, although photons have no mass,
they do have momentum and can transfer that momentum to other
particles upon impact. The pressure observed within the electromag-
netic field, regardless of any hit target—thus regardless of the prop-
erties of the target (	 or � )—can be considered, however, based on
the interaction of photons only with an exceptional wall, which is a
perfectly white wall.

Then, similar to substance, the equipartition theorem is also ap-
plied to the number N of the photons. Analogously to equation (2.6)
for a substance gas, the gas energy expression 
× w2 in this equation
can be substituted by the radiation energy density u, (J/m3), deter-
mined with use of equation (5.1):

u = NE ph = Nh� (5.16)

and according to the equipartition theorem, equation (2.6) changes
the interpretation respectively for black radiation as follows:

p = u
3

(5.17)

Using formula (5.12) in (5.17) to determine the internal energy u,
the pressure can be expressed as a function of temperature T .

However, the same result can be obtained if the internal energy u
is derived from one of the general mathematic relations applied for
thermodynamic functions, which are discussed in Section A.3. Taking
into account that u is independent of volume:(

∂u
∂v

)
T

= u

equation (A.16) is:

u = T
(

∂p
∂T

)
v
− p (5.18)

From equation (5.17) the derivative in (5.18) can be determined as:

(
∂p
∂T

)
v

= 1
3

(
∂u
∂T

)
v
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and, substituted together with (5.17), to (5.18):

u = T
3

du
dT

− u
3

(5.19)

After separating variables in (5.19) and rearranging to:

du
u

= 4
dT
T

one can integrate:

ln u = 4 ln T + ln C (5.20)

The integration constant in equation (5.20) can be interpreted as
the constant C = a , and thus, from (5.20), equation (5.12) can be ob-
tained.

Substituting (5.12) into (5.17) the pressure of the photon gas can
be expressed by temperature:

p = a
3

T4 (5.21)

The considerations of pressure from both viewpoints allow for
some additional comments and conclusions. For example, from equa-
tion (5.21) we obtain the result that if the temperature T of photon
gas is held constant, then the constant remains not only the radiation
energy density u, according to equation (5.12), but also the pressure
p. Thus, the thermodynamic state of the photon gas is completely de-
termined by arbitrarily choosing one of the possible parameters: u, T ,
and p. For comparison, determination of the thermodynamic state of
substance according to equation (2.1a) requires two parameters.

Radiation pressure can be extremely different in special situations.
For example, the solar radiation power incident on the earth’s surface
is about 1370 W/m2. Thus, from equation (5.15), at cr = 1, the radia-
tion pressure at the earth’s surface is only 1370/c0 = 4.57 �Pa. How-
ever, the flux density from the NOVA experiment laser beam is about
108 W/m2, which corresponds to the radiation pressure of the target,
3.3 GPa.

Interaction between solar radiation pressure and the earth’s grav-
ity can be observed for various dust particle sizes suspended in the air
at a small particle density—about 2 g/cm3. From the whole particle size
range only particles of diameter about 0.4–�.8 �m remain stably sus-
pended, whereas smaller and larger particles drop. For this particular
size range of particles the forces caused by gravity and solar radiation
pressure are equal. Explanation of this lies in the relation between
particle diameter and wavelength. The 0.5-�m-diameter particles re-
sult in the best momentum transfer from the 0.5-�m wavelength of
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the solar radiation spectrum (discussed in Chapter 7) for which the
peak of radiation intensity occurs. For this wavelength there appears
the maximum radiation pressure, lowest dissipation, and maximum
of radiation pressure coefficient (cr ≈ 2).

The radiation pressure for the condition of a particle diameter
equal to the wavelength is usually referred to as the Mie-scattering
regime of a maximum momentum transfer. The particle of a diameter
close to the wavelength of a single laser beam can levitate. The dimen-
sions of the actual body or its constituents are very important when
considering the radiation pressure coefficient that relates to proper-
ties such as absorptivity and transmissivity. A large body can have
a large surface area; however, if its diameter, or atomic diameter, is
not close to the incident radiation wavelength, then the body has a
lower radiation pressure coefficient, and thus a lower momentum is
imparted to the body. The Mie’s scattering mechanism describes the
problem of heating up or increase in mass, and, based on equation
(4.1), it explains the source of internal energy of matter that comes
from the relatively small difference in energy between the incoming
radiation wave and the outgoing reflected wave. The theory for deter-
mination of the conditions for radiation pressure coefficient to equal
the gravity is beyond the scope of the present book.

Two other examples of radiation pressure aspects are both the
radiation pressure used in the design of solar sails and that used in
analysis of the so-called Casimir effect.

Solar sails, or any light sails using sources other than the sun, are
considered for spacecraft propulsion with the use of mirrors with a
large surface area. Relatively small solar thrust can be powered by a
laser from the earth.

The Casimir effect appears as a small attractive force between the
two conducting uncharged plates, which are close to and parallel to
each other. According to modern physics, a vacuum is full of oscil-
lating electromagnetic waves of all possible wavelengths that fill the
vacuum with a vast amount of invisible energy. With a gradually nar-
rowing gap between the plates, the larger wavelengths are eliminated
and fewer waves can contribute to the vacuum energy, which falls
below the energy density of surroundings. As a result of the differ-
ent pressure, a tiny force pulls the plates together. The idea can be
developed for different applications.

The nature of the radiation pressure of a photon gas is that ra-
diation with an extremely high frequency can be confronted with the
gravity effect especially so that such radiation penetrates any material
and acts all over its constituent particles, not just over the material sur-
face. The shadow of a shower of such radiation, imparting impulses
of momentum to all bodies in space, can be imagined as the carriers
of the gravitational force assigned to the new theoretical concept of
gravitons.
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Whereas photons represent the luminance of electromagnetic ra-
diation, the gravitons represent shadowing and are considered to be
negative energy waves, i.e., having no photons or photon-holes. Such
considerations, not related to solar radiation, which does not affect
gravity, can be carried out for the source of rays in the upper gamma
region called cosmic radiation. Such considerations represent the sam-
ple of a new scientific avenue in which the concept of radiation ex-
ergy would be enigmatic. Many problems of radiation pressure can be
novel subjects for exergy analyses. It is also noteworthy that if radia-
tion propagates in space filled with substance, then the total pressure
in the space is the sum of radiation and substance pressures.

5.5 Entropy of Photon Gas
The concept of entropy, discussed in Secrion 2.5 for a substance and
heat, applies also to radiation. The entropy of heat transferred by
conduction or convection, in the case of fluids, is calculated as the
exchanged heat divided by the appropriate temperature; thus many
thermodynamic texts imply erroneously that the entropy of radia-
tion can be determined similarly, i.e., as the transferred radiant heat
divided by a surface temperature. However, such an interpretation
neglects the effects of the growth of entropy during the irreversible
processes of emission and absorption, which are unavoidable in the
mechanism of radiant heat transfer. Entropy of the photon gas is dif-
ferent from the entropy of exchanged heat.

Entropy can be derived in different ways. The simplest is the
derivation of the entropy density sS, J/(K m3), of a photon gas in an
equilibrium state residing in a system. Based on Maxwell’s relation
(A.11c):

sS = 1
v

∫ (
∂p
∂T

)
v

dv (5.22)

The derivative in equation (5.22) can be determined from
equation (5.21) and then, after calculation of the obtained integral, one
obtains from (5.22):

sS = 4
3

a T3 (5.23)

Analogously to the emission density e determined by formula
(3.22) for the gray surface of emissivity ε, the entropy of the emission
density s, W/(m2 K), can be introduced. The formula on s is obtained
by multiplying the entropy sS by the factor c0/4. Using relation (3.21):
a × c0/4 = �, as well introducing the surface emissivity ε, the entropy
s of the surface emission density can be determined as:

s = ε
4
3

�T3 (5.24)
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It is noteworthy that the emissivity ε, defined for the surface emis-
sion of energy is applied in formula (5.24) for determination of the
emission of entropy. Motivation of such application is discussed in
Section 8.1. The entropy of radiation can be used in analyses of the
irreversibility of different radiation processes.

5.6 Isentropic Process of Photon Gas
One of the possible processes of photon gas is the isentropic process
during which the photon gas does not exchange heat with its sur-
roundings. The isentropic process occurs reversibly and the entropy
in each elemental process stage remains constant. The entropy in J/K
of the gas occupying volume V is determined based on formula (5.23),
and the condition of constant entropy in the process is:

V
4
3

a T3 = const.

or also

VT3 = const. (5.25)

Eliminating temperature T by pressure p with use of formula
(5.21), the following condition for other pairs of parameters (V and p)
results:

pV
4
3 = const. (5.26)

Dividing side-by-side equations (5.25) and (5.26), the conditions
for the third possible pair of parameters, p and T , can be obtained:

pT4 = const. (5.27)

Relations (5.25)–(5.27) can be used for determining one of the un-
known parameters. For example, if the initial pressures p1 and T1 are
known, then at the end of the considered isentropic process of the pho-
ton gas at the known temperature T2, the unknown temperature p2 can
be determined based on relation (5.27) as follows: p2 = p1× (T1/T2)4.

5.7 Exergy of Photon Gas
In engineering thermodynamics, the exergy of radiation, like e.g., en-
ergy or entropy, is considered for macro objects that consist of multi-
element populations of photon gas. Traditionally, to make the con-
sideration easier, the model of the cylinder–piston system with the
considered medium is usually applied. The conclusions established
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FIGURE 5.4
Adiabatic process
of a photon gas
within the cylinder
with a piston.

with the use of such a model can have a general meaning and can be
applied to the medium in other appropriate situations.

Based on the cylinder–piston system (Figure 5.4), the formula
for the exergy of photon gas was first derived by Petela (1964).
The cylinder–piston system, from which work can be received
through the piston rod, is situated in a vacuum and contains only the
trapped black radiation at an equilibrium state at the initial absolute
temperature T1. Heat exchange by conduction or convection does not
occur because there is no substance. The cylinder walls and piston
base are white; thus there is no heat exchanged by radiation and
the process occurring in the cylinder is perfectly adiabatic. On the
outer side of the piston there is only black radiation in equilibrium
at the constant environmental absolute temperature T0. The initial
pressure p1 of the photon gas in the cylinder and the pressure p0

of the environment radiation are determined by formula (5.21). The
piston moves frictionlessly to the right if T1 > T0 or to the left if
T1 < T0, due to different pressures p1 and p0.

Hence it is evident that the system performs work regardless of
whether the considered photon gas has a higher or a lower tempera-
ture than the environmental temperature. In other words, for all tem-
peratures T1 different from the environmental temperature, the work
performed by the system is positive. The objective is to determine the
exergy bb,S of radiation enclosed within the system.

Consider the adiabatic (isentropic–frictionless) process (1-0) in
which the final pressures on both sides of the piston become equal
and the photon gas approaches the final state at pressure p0. The pro-
cess occurs according to equation (5.26), as shown in the p, V diagram
(Figure 5.4).

According to the definition of exergy the useful work w, J/m3,
performed in the considered process is equal to the exergy bb,S of the
photon gas (black radiation) at the initial state 1. The useful work
w ≡ bb,s , shown in Figure 5.4 by the shadowed area, is determined as
the absolute work with subtracted work p0 × (V0 − V1) spent on the
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FIGURE 5.5 Exergy of a photon gas as a function of temperature.

compression of the environment:

bb,S =
V=V0∫

V=V1

pdV − p0(V0 − V1) (5.28)

Assuming V1 = 1 m3 and using (5.21) and (5.26) in (5.28) the fol-
lowing formula for exergy bb,S of the photon gas within the system is
obtained:

bb,S = a
3

(
3 T4

1 + T4
0 − 4 T0T3

1

)
(5.29)

The exergy of the photon gas, calculated from formula (5.29) for
T0 = 300 K is shown in Figure 5.5. With growing temperature T1, equal
to any arbitrary temperature T , the exergy bb,S diminishes to the 0
value for environment temperature T0 and then continuously grows.

The correctness of the discussed model is confirmed by the fact
that the derived formula is exactly the same as the formula derived by
the method of exergy balance of the radiating surface. Such a method is
discussed in Chapter 6. Unfortunately, the authors ignore the method
of surface exergy balance for verification of their consideration.

Certain modification of the discussed cylinder–piston model is
possible in order to make it more realistic and convincing. For ex-
ample, the enclosed photon gas can be imagined as existing at the
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presence of the gaseous substance, which is nonradiative (i.e., not
emitting and not absorbing). The amount of this substance can be
continuously adjusted appropriately to maintain the substance pres-
sure constant and equal to the constant environment pressure. As the
substance pressures inside and outside the cylinder always counter-
balance, so work is performed only due to the isentropic expansion of
the photon gas.

5.8 Mixing Photon Gases
One of the possible processes to be considered is mixing n portions
of photon gas of different temperatures Ti and occupying respective
volumes Vi . Initially, the portions are separated and enclosed within
white walls. Then, the separating walls are removed and all the por-
tions are brought together within a white-wall enclosure of volume V
that is the sum of the volumes of the separated portions:

V =
i=n∑
i=1

Vi (5.30)

The energy conservation equation for the process of bringing the
portion together is:

Vu =
i=n∑
i=1

Vi ui (5.31)

where u is the energy density of the photon gas (black radiation) at
a resultant temperature T , determined by using equation (5.12) in
equation (5.31):

T = 4

√
ri T4

i (5.32)

where ri is the volume fraction ri = Vi/V. Using (5.21) in (5.31) the
formula for resultant pressure p can be also obtained as follows:

p =
i=n∑
i=1

ri pi (5.33)

where pi is the pressure of the ith separated portion.
The irreversibility of the mixing can be measured by the overall

entropy growth �, J/(m3 K), using formula (5.23) as follows:

� = 4
3

a

(
T3 −

i=n∑
i=1

ri T3
i

)
(5.34)

Formulation of the exergy balance equation is discussed in detail
in Chapter 4. In the considered case the exergy balance applied for
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Component Volume, Temperature, Energy, Pressure, Entropy, Exergy,
i m3 K J �Pa mJ/K J

1 30,000 400 0.5809 6.455 1.937 0.0613

2 40,000 600 3.9212 32.677 8.714 1.3888

3 55,000 350 0.6243 3.784 2.378 0.0231

Total 125,000 — 5.1264 — — —

Resultant — 482.5 — 13.670 14.165 1.1322

TABLE 5.2 Input and Output Data for Example 5.2

the considered mixing process of the photon gases consists only of
decreases of the exergy of photon gases, before (bb,S,i ) and after (bb,S)
mixing, and of the exergy loss �b due to process irreversibility:

bb,S =
i=n∑
i=1

ri bb,S,i − �b (5.35)

The exergy loss �b can be determined by formula (2.60) with ap-
plied formula (5.34). The exergy of radiation portions bb,S,i can be
determined from formula (5.29) used for respective temperature Ti .
The exergy bb,S of the radiation mixture results from formula (5.35)
but can be also determined from (5.29) in which temperature T is
determined by formula (5.32).

Example 5.3 Within the white walls the three portions of photon gas are mixed
together. The initial data were used in calculations according to formulae (5.29)–
(5.34), and the output data are shown in Table 5.2.

As shown in Table 5.2 the overall entropy growth is 14.165 – 1.937 – 8.714 –
2.378 = 1.136 > 0; thus the process is irreversible.

5.9 Analogies Between Substance and Photon Gases
Some analogies noticed in thermodynamics problems can be helpful
in better understanding and interpreting problems. One example is
the analogy amongst mass, heat, and momentum transfer. Obviously,
acknowledgment of the analogy is not necessary for effective con-
sideration. The manifestation of analogies originates from a certain
formalism, although consideration of the analogies provides a basis
for mutual verification of analogous processes and satisfaction. Ther-
modynamics of the gaseous phase of a substance and of the photon
gas also indicates some analogies. Some such analogies for the ideal
substance gas and the black radiation can be discussed as follows.
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One feature suggesting the analogy is that the substance consists
of small elements (molecules), whereas the photon gas is a population
of small indivisible portions of energy (photons).

Five typical reversible processes are considered in the thermodynam-
ics of substance. Each such process has a constant value of a charac-
teristic parameter: a temperature T for isothermal, a pressure p for
isobaric, a volume V for isochoric, entropy S for isentropic, and the
fifth process, polytropic, being a kind of process generalization, occurs
at the constant exponent n in the constant value expression p × Vn.
For a properly taken value of n the polytropic process becomes appro-
priately one of the four other processes.

The corresponding processes for the photon gas are trivial for
isotherm, isobar, and isochoric because only one parameter of the
possible three, T , p, and V, is required to be known in order to de-
termine the other two parameters. However, the isentropic process,
which for a substance is determined by equation (2.33), has its ana-
logical counterpart in the form of equation (5.26) for radiation.

The kind of process affects the specific heat of the processed matter.
The relations for radiation can be derived from the general thermody-
namic relations discussed in Section A.3. As for the unit of the amount
of matter, instead of kg for substance, the unit of m3 is applied for radi-
ation. The specific heat cv, J/(m3 K), of a photon gas at constant volume
is derived from relation (A.12) in which the derivative is calculated
from equation (5.23):

cv = T
(

∂s
∂T

)
v

= 4a T4 (5.36)

The radiation process at constant pressure occurs at constant tem-
perature; thus the isobar simultaneously is the isotherm and dp = dT
= 0. The specific heat c p of the photon gas at constant pressure is
determined from relation (A.13) as follows:

cp = T
(

∂s
∂T

)
T

= ∞ (5.37)

The specific heat cT of the photon gas, at constant temperature,
can be determined from relation (2.21) as follows:

cT =
(

dq
dT

)
T

= ∞ (5.38)

As mentioned in Section 2.3, in the thermodynamics of substance
the internal energy represents the ability to do work by the substance,
which remains during the consideration within the considered sys-
tem, even if the substance would be in a local motion. Engineering
thermodynamics of a substance introduces the concept of enthalpy,
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which expresses the energy exchanged with the system due to the
exchange of the substance. The energetic effect of transportation of
the substance through the system boundary is then included in the
enthalpy value. Thus, the enthalpy H is defined, according to equa-
tion (2.13), as the internal energy U with the added work term p × V
representing the transportation through the boundary system, H = U
+ p × V.

Equation (2.13) interpreted for V = 1 m3 of radiation at tempera-
ture T , and after using equation (5.17), is

hb = u + p = 4
3

u (5.39)

where hb and u are the enthalpy and energy of the black radiation,
respectively.

However, in practice, the energy brought into a system by black
emission would be eb expressed by formula (3.21), which, when using
(5.12), becomes:

eb = c0

4
u (5.40)

It results that for determination of energy exchanged with the sys-
tem, the enthalpy of radiation hb cannot be used as used is the enthalpy
h of substance (hb �= eb), not even mentioning that the dimensions of
eb and hb are different. Eventually, other possibilities can be examined.
The exchanged radiation energy, e.g., expressed as a certain radiation
flux fr , can be defined by the product of u/3 (division by 3 is according
to the equipartition theorem) and radiation speed c0:

fr = c0

3
u (5.41)

The obtained value fr is also different from eb , ( fb �= eb), as well as
is different from hb ; fb �= hb . In conclusion; only the energy u should
be used for expressing radiation within the system. and only emission
eb can be used to express energy of radiation exiting or entering the
system. There is no direct analogy between the enthalpy of substance
and any magnitude for radiation.

Searching for a radiation analogy to the state equation for a gas
(2.1), Bosnjakovic (1965) formulated the following state equation for
radiation:

pvB = 0.9 RT (5.42)

where p is the pressure, vB is Bosnjakovic’s concept of the specific
volume, m3/kmol, R is the universal gas constant, R=8316 J/(kmol K),
and T is the absolute temperature. Some numerical data are used in
Table 5.3 to illustrate the calculation with formula (5.42). For a given
temperature, the pressure is determined by formula (5.21) and then
vB is calculated from (5.42). With growing temperature the radiation
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T , K p, kPa 1/vB, kmol/m3 Comments

1000 2.52 × 10−9 3.37 × 10−11

5700 2.66 × 10−5 6.24 × 10−9 Approximate temperature
of sun’s surface

104 2.52 × 10−4 3.37 × 10−8

105 2.52 × 10−1 3.37 × 10−5

106 2.52 × 103 3.37 × 10−2

2 × 107 4.03 × 108 2.7 × 102 Approximate temperature
at the sun’s center

TABLE 5.3 Some Values of Temperature T, Pressure p, and the Bosnjakovic’s
Radiation Density (1/vB )

density represented by the value 1/vB also grows. In practice, equation
(5.42) can be considered as a simple function of a single variable, e.g.,
vB(T), determined as vB = 2.97 × 1019/T3.

A peculiar property of photon gas is the Gibbs free energy g, J/m3,
which in contrast to substance is equal to zero. This value can be
determined by expressing all the members of the formula on g:

g = u + p − Ts

by the temperature as follows:

g = a T4 + a
3

T4 − 4
3

a T4 = 0 (5.43)

Equation (5.43) is valid for either monochromatic or black radia-
tion. From equation (5.43) the chemical potential �r of the photon gas
is also zero:

�r =
(

∂g
∂ N

)
T

= 0 (5.44)

where N is interpreted as the number of photons in the considered
volume of 1 m3. The expression dN is mathematically informal be-
cause N is an integer. Another comment is that even if the photon gas
is perfectly isolated the number of photons is not conserved. Proper-
ties such as the Gibbs free energy, energy, or entropy are introduced
for statistically predicted amount of photons in a considered volume,
and these properties do not depend on the number of photons that
instantaneously exist in the volume.

The influence of temperature T on exergy of photon gas, shown
in Figure 5.5, can be compared to the physical exergy of substance
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varying with temperature. The specific physical exergy b, J/kg, based
on formula (2.45) is:

b = h − h0 − T0 (s − s0) (5.45)

where T0 is the environment temperature; h and s are the specific
enthalpy and entropy, respectively; and h0 and s0 are the specific en-
thalpy and entropy, respectively, of gas in equilibrium with environ-
ment. In order to examine the value b near absolute zero temperature
one can use the Third Law of Thermodynamics, which, according
to Planck, states that the specific heat and entropy of all substances
approaches zero for the temperature diminishing to absolute zero.
The quantum considerations have led Debye to the conclusion that the
specific heat c of crystals near absolute zero varies according to the
cubic parabola:

c = CDT3 (5.46)

where CD is constant. Thus, near to the zero temperature the specific
enthalpy is:

h = cT4 (5.47)

whereas the specific entropy is:

s =
T∫

0

c
T

dT = CD

3
T3 (5.48)

After inserting (5.46) and (5.47) into (5.45) the exergy of substance
near absolute zero becomes:

b = CDT4 − h0 − T0

(
CDT3

3
− s0

)
(5.49)

Thus, for the temperature T diminishing to absolute zero the phys-
ical exergy of substance approaches the finite positive value

lim (b)T→0 = T0s0 − h0 > 0 (5.50)

Figures 5.6 (left) shows how the substance temperature varies
with entropy s at constant pressure p. Exergy of such a substance,
as a function of temperature T, is shown in Figure 5.6 (right). The
straight parts of the plots in Figure 5.6 correspond to the phase
changes.
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FIGURE 5.6 The isobar (left) and exergy (right) of a substance (after Petela
1964).

Generally, the variation of the exergy of substance and radiation
with varying temperature is similar. Neglecting linear sections of the
plot in Figure 5.6 (right) the analogy in variation of exergy with tem-
perature can be noticed by comparison to Figure 5.5. In both cases
(substance and radiation) the exergy is positive for any temperature
different from T0. The exergies assume zero value for T = T0 and have
finite values for temperature approaching absolute zero. For T > T0

the exergies continuously grow with growing temperature. There are
characteristic temperatures for substance and for radiation, respec-
tively, for which the energy is larger than the exergy (for large tem-
perature T) and smaller (for small T). This consistent analogy can
be also recognized as a certain confirmation of the correctness of the
derived formula for radiation exergy.

Nomenclature for Chapter 5
A surface area, m2

b exergy of radiation, J/m3

b specific physical exergy of substance, J/kg
a = 7.564 × 10–16 J/(m3 K4), universal constant
CD constant, J/(kg K4)
c speed of light, m/s
c specific heat of solid, J/(kg K)
c0 speed of light in a vacuum, m/s
c1 = 3.743 × 10–16 W m2, the first Planck’s constant
c2 = 1.4388 × 10–2 m K, the second Planck’s constant
cr radiation pressure coefficient
cp specific heat of photon gas at constant pressure, J/(m3 K)
cT specific heat of photon gas at constant temperature, J/(m3 K)
cv specific heat of photon gas at constant volume, J/(m3 K)
E energy, J
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e density of emission energy, W/m2

F force, N
fr auxiliary concept of radiation flux, W/m2

g Gibbs free energy for radiation, J/m3

H enthalpy of substance, J
h = 6.62 × 10–34 J s, Planck constant
h specific enthalpy of substance, J/kg
ib,0 black normal radiation intensity, W/(m2 sr)
J radiosity, J
j radiosity density, W/m2

k = 1.3805 × 10–23 J/K, the Boltzmann constant
m mass, kg
N number of photons
N number of dimensions of the oscillator analogue
n refractive index
n integer number
n polytropic exponent
P momentum, kg m/s
p static absolute pressure, Pa
q heat, J/m3

r volume fraction
s entropy of emission density, W/(m2 K)
s specific entropy of substance, J/(kg K)
sS entropy of photon gas, J/(K m3)
T absolute temperature, K
T0 environment temperature, K
t time, s
U black radiation energy, J
U internal energy of substance, J
u density of radiation energy, J/m3

u specific internal energy of substance, J/kg
V volume, m3

vB Bosnjakovic’s concept of the specific volume of radiation,
m3/kmol

w work, J/m3

Greek
	 absorptivity of surface
ε emissivity of surface
� wavelength, m
�r “chemical potential” of the photon gas, J/m3

� oscillation frequency, 1/s

 mass density, kg/m3

� = 5.6693 × 10−8 W/(m2 K4), Boltzmann constant for
black radiation

� transmissivity of surface
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Subscripts
b black
i successive number
ph photon
S system
T temperature
1,2 different cases
I, II, III different cases
0 environment
0, ∞ zero or infinity
� wavelength



C H A P T E R 6
Exergy of Emission

6.1 Basic Explanations
A photon gas trapped in a space surrounded by mirrorlike walls was
considered in Section 5.7. The product of the emission process is the
photon gas, which is black radiation with a temperature equal to the
temperature of the emitter. Emissivity of the emitter, e.g., the emissiv-
ity of a solid surface, determines the surface ability measured by the
rate at which the black radiation is produced. Thus, e.g., the perfect
gray surface of the emissivity � emits black radiation in an amount
determined by the emissivity �. In other words, the density of emis-
sion eb expresses the amount of emitted black radiation energy from
1 m2 of black surface at ε = 1, whereas density e(e = ε × eb), deter-
mined by formula (3.22), expresses the amount of emitted black radi-
ation energy from 1 m2 of gray surface, at a rate reduced by ε ≤ 1.

For example, the measured emission of radiation from any body
allows for directly determining the temperature of the body only if it
is black, as discussed in Section 5.2. However, if the examined body is
gray, its real temperature can be determined if the emissivity ε of the
body is known or guessed. Since the emissivity is smaller than one,
the examined real temperature of the body is appropriately higher
than the temperature resulting from the measured emission.

The black emission eb has exergy bb; however, the rate of emis-
sion e of the gray surface is smaller (e = �× eb) and has exergy b of
emission e, also reduced by ε:

b = εbb (6.1)

If the exergy bb of the black surface emission at temperature T is
known, then the exergy b emitted from the gray surface at temperature
T and emissivity ε can be determined from equation (6.1).

The definition of exergy, given by equation (2.45), can be inter-
preted for the photon gas. Exergy is a function of an instant state of a
matter (e.g., a photon gas at the considered instant) and of the state of
this matter in the instant of equilibrium with the environment. Such
equilibrium is the basis for determination of the reference state for the
exergy of the photon gas.

125
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The environment consists of many bodies at different tempera-
tures and with different radiative properties (e.g., emissivities or trans-
missivities). The dominant temperature of the environmental bodies
can be assumed to be the standard (averaged) environmental tem-
perature T0. As discussed previously, the surface always emits black
radiation; thus the environment surface at temperature T0, regardless
of the surface properties, emits black emission at temperature T0. The
properties of the surface determine only the rate at which the emission
occurs. Thus, the environment space permanently contains the black
radiation at temperature T0 and this radiation is in equilibrium with
the environmental surfaces at T0.

Such reasoning leads to the conclusion that the exergetic reference
state for a photon gas (black radiation) is its state at temperature T0;
such a reference state depends only on temperature T0 and does not
depend on diversified values of emissivities of the environmental
bodies. All surfaces emit only black emission and the emissivities of
the surfaces (e.g., of any two surfaces x and y) determine only the
effect of exchange of emission energy (ex−y) or exergy (bx−y) between
the surfaces.

The black emission exergy bb, expressed by formula (6.1), is al-
ways a function only of temperature T of the considered surface
and of the environmental temperature T0, bb = f (T, T0). No pressure
has to be considered for establishing the exergy reference state for
radiation. The pressure of the environmental substance does not
affect the radiation, which is not a substance, whereas the pressure
of radiation is determined only by the radiation temperature.

It can also be stated that the concept of a perfectly black surface
plays a basic role in the exergetic considerations of radiation, and the
concept of emissivity is applied only for a surface but not for a
photon gas.

Consideration of the interaction between surfaces can be signifi-
cantly simplified in the case when the considered surfaces are models
of black surfaces. The obtained results of such a consideration, al-
though valid exactly only for the model surfaces, often allows for
obtaining practical qualitative information with acceptable accuracy
for situations with nonblack surfaces.

6.2 Derivation of the Emission Exergy Formula
Determination of the radiation exergy of surfaces is very important in
practice. Radiation exergy allows evaluation of energy resources rep-
resented by the hot radiation of the sun, or by any other hot radiation
(i.e., a surface hotter than the environment), and also by cold radiation
(i.e., a surface colder than the environment). Thus, the radiation exergy
of a surface is the pivotal problem in the engineering thermodynamics
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FIGURE 6.1 Radiating
parallel surfaces.

of thermal radiation and deserves particular attention. The formula
for exergy bb,S (J/m3) of the photon gas enclosed in a system was
derived in Section 5.7. Now, the exergy bb (W/m2) of the emission
density of a black surface, or any flux of propagating radiation, will
be determined.

Simple derivation of the emission exergy of a black surface, pub-
lished for the first time by Petela (1961b) in Polish and then repub-
lished in English, Petela (1964), is based on the balance of the emitting
surface according to the model shown in Figure 6.1. The two surfaces
A and A0 are black, flat, infinite, parallel, facing each other, and they
enclose the space without substance (vacuum) and interchange heat
by means of radiation. This model is often selected for consideration
because the space is enclosed by the simplest possible geometry in-
volving only two surfaces. Each surface is maintained at a constant
temperature due to the exchange of the compensating heat with the
respective external heat sources. Surface A0 at temperature T0 repre-
sents the environment, whereas surface A at arbitrary temperature T
emits the considered radiation. The simplicity of the model of black
surfaces is that there is no reflected radiation to be considered.

In order to derive the formula for the emission exergy density bb

of a black surface the following exergy balance for surface A, in the
steady state, is considered:

b0 + bq = bb + �b (6.2)

where the terms in equation (6.2) or in Figure 6.1, all in W/m2, are:

bb , b0 exergy of emission density of surfaces A and A0,
respectively;

bq , bq0 change in exergy of respective heat source;
�b, �b0 exergy loss due to irreversibility of simultaneous

emission and absorption on the respective surface.

From the definition of exergy, the radiation of a surface at the
environment temperature is:

b0 = 0 (6.3)
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The change in exergy of the heat source, based on formula (2.61), is:

�bq = q
T − T0

T
(6.4)

where q , W/m2, is the heat delivered by the heat source of tempera-
ture T . This is the amount of heat that allows surface A to emit and
maintain its constant temperature T . This is also the heat exchanged
by radiation between surfaces A and A0 and calculated from the
energy balance of surface A based on formula (3.21):

q = �
(
T4 − T4

0

)
(6.5)

The overall entropy growth � due to simultaneous emission and
absorption of heat taking place at surface A is:

� = − q
T

+ s − s0 (6.6)

where −q/T is the decrease in entropy of the heat source at tem-
perature T , based on formula (2.39); and s and s0 are the entropy of
emission densities from surface A and A0, respectively, determined
by formula (5.24) (at ε = 1).

Based on the Gouya–Stodola law (2.60), the exergy loss �b is:

�b = T0� (6.7)

Making use of (5.24) and (6.3)–(6.7) in equation (6.2), and after
some rearranging, the formula for the exergy of emission density bb ,
W/m2, of the black surface A is obtained:

bb = �

3

(
3T4 + T4

0 − 4T0T3) (6.8)

The term in parentheses in equation (6.8), characteristic for radia-
tion exergy, is discussed in Section 6.3.

The convenient form of equation (6.8) for practical calculation of
the total exergy Bb (W) of emission for the whole black surface area A
can be obtained by application of constant Cb , used already in formula
(3.23), as follows:

Bb = ACb

[
3

(
T

100

)4

+
(

T0

100

)4

− 4
(

T0

100

) (
T

100

)3
]

(6.9)

where Cb = 5.6693 W/(m2 K4).
Based on formula (6.1) as well as on formulae (6.8) and (6.9), the

exergy of the gray surface with emissivity ε can be determined as
follows:

b = ε
�

3

(
3T4 + T4

0 − 4T0T3) (6.10)

B = AεCb

[
3

(
T

100

)4

+
(

T0

100

)4

− 4
(

T0

100

) (
T

100

)3
]

(6.11)
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Formula (5.29), derived based on study of the expansion of a pho-
ton gas in the cylinder with a piston, also contains the characteristic
expression in parentheses in formula (6.8). The derivation of formula
(5.29) may give rise to some doubts because the work carried out by
the considered system during the filling of the cylinder with photon
gas was not taken into account. However, such filling is achieved by
means of emitting the radiation of a certain body, at the cost of energy
of that body, or of some heat that is conducted to that body. Therefore,
the process of filling cannot be taken into account if the exergy of a
photon gas, already existing within the cylinder, is considered. The de-
rived formula (6.8) confirms the correctness of the above discussion in
neglecting the filling cylinder in the derivation procedure of formula
(5.29). The exergy values from formulae (5.29) and (6.8) differ only by
a factor of c0/4, which results from purely geometrical consideration.

The method of exergy balance of radiation surface allowed for
undisputed derivation of formula (6.8) on the exergy of black emis-
sion. However, it is noteworthy that the possible application of such a
method to any considered exergy radiation problem is usually missed
by many authors. The exergy balance method may be used not only
for the surface of known temperatures and properties but also for any
arbitrary radiation reaching certain surfaces and coming from an un-
known source. For example, in Chapter 7 such a case is analyzed to
determine the exergy of arbitrary radiation of an irregular spectrum,
e.g., determined by measurement.

Finally, it can be shown that the exergy of the density of black
emission can be derived also based on the exergy definition equation
(2.45) in which enthalpy has to be interpreted as the emission density,
according to (3.21), and the respective entropy of the emission density,
according to (5.24). Substituting appropriately to formula (2.45) the
following equation is obtained:

bb = �T4 − �T4
0 − T0

(
4
3

�T3 − 4
3

�T3
0

)
(6.12)

which can be rearranged to the exact formula (6.8). This method of
derivation of bb , applied by Petela (1974), confirms again the correct-
ness of formula (6.8), although the correctness of this method was pre-
viously uncertain until it was disclosed that the substance enthalpy
and entropy in formula (5.24) can be replaced, respectively, by emis-
sion and its entropy of black radiation. The method is also applied for
any arbitrary radiation, as shown in Section 8.4.

6.3 Analysis of the Formula of the Exergy of Emission
Analysis is carried out on the exergy of emission from the perfectly
gray surface expressed by equation (6.10). As the subject of the fol-
lowing analysis, equation (6.10) is now rewritten:

b = ε
�

3

(
3T4 + T4

0 − 4T0T3) (6.13)
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where ε is the emissivity of the considered gray surface, T is the tem-
perature of this surface, and T0 is the environment temperature.

The mathematical analysis published for the first time by Petela
(1964) reveals first of all that exergy b determined by equation (6.13)
is always positive and has the lowest value zero when T = T0:

(b)T = T0
= 0 (6.14)

The above conclusions result even more explicitly after transfor-
mation applied by Planck for the entropy considerations. According
to this transformation the expression in brackets of equation (6.13) can
be presented in another form:

3T4 + T4
0 − 4T0T3 ≡ (T − T0)2 (

3T2 + T2
0 + 2T0T

)
(6.15)

The right-hand side of relation (6.15) is the product of two always-
positive expressions. For any different temperatures T �= T0, the ex-
ergy of radiation is positive.

The exergy b also reaches zero if the considered surface is white
(i.e., perfectly reflecting, ε = 0). From (6.13) it results:

(b)ε = 0 = 0 (6.16)

It results from formulae (6.13) and (3.22) that the exergy of emis-
sion, for the environment temperature approaching absolute zero, is
equal to the emission:

limT0→0 (b) = ε�T4 = e (6.17)

It is noticed that the characteristic term in brackets in formula
(5.29), appearing also in formula (6.13), was derived by Petela (1964)
from consideration of the work done by the cylinder–piston system
and without using the Stefan–Boltzmann law (3.21). The obtained
equation (6.13) can be recognized as being independent of equation
(3.21). Therefore, the energy of emission e can be interpreted as the
particular case of the exergy of this emission at the theoretical condi-
tion T0 = 0, or that the Stefan–Boltzmann law expresses the exergy of
emission when the environmental temperature equals absolute zero.

In the conditions of cosmic space, interpretation of the environ-
ment becomes specific and significantly different from the earth’s en-
vironment. The environmental temperature in such conditions, con-
sidered within the large range from zero to infinity (0 < T0 < ∞), is
justified, whereas under earth’s conditions the environmental temper-
ature ranges only a little.

As the surface temperature T approaches absolute zero, the exergy
of emission expressed by formula (6.13) approaches the finite value:

limT→0 (b) = ε
�

3
T4

0 (6.18)

This means that the so-called “cold” radiation (discussed also in
Section 6.8) emitted by the surface at temperature smaller than T0

represents a certain practical value.
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Equation (6.13) changes to the form of equation (5.29) if the photon
gas enclosed within a system is considered. Petela (1964) mentioned
for the first time that there is a peculiar theoretical case of the lack
of radiation in a so-called “empty tank.” It appears that the exergy
of radiation matter in the case when its amount is zero, which corre-
sponds also to the theoretical case of the photon gas temperature T = 0,
has an exergy value larger than zero, similarly to the exergy for the
substance matter.

We obtain this result from the following reasoning. Neglecting all
field matter (e.g., gravity) and neglecting interpretation of a ground-
state energy, discussed in Section 5.1, according to which even in a
vacuum there still exist the null oscillations (“idling” photon oscilla-
tions), one can imagine the empty tank, with all mirrorlike walls, as
the case of no radiation, thus no radiation temperature, T = 0 . For
such interpretation of the empty tank situation the exergy bET of the
radiation vacuum results from equation (5.29) for T = 0 as follows:

limT→0 (bb,S) = a
3

T4
0 ≡ bET > 0 (6.19)

Equation (6.19) expresses a certain exergetic value for the theoret-
ical situation in which the exergy of an “empty tank,” from the radi-
ation viewpoint, is proportional to the environment temperature in
the fourth power. This peculiarity of radiation exergy was mentioned
later also by Parrott (1979).

Based on equation (6.13), Figure 6.2 illustrates the exergy bb (solid
thick line) of emission density of a black surface (ε = 1) at the constant
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FIGURE 6.2 Emission eb, exergy bb, difference (eb − bb), and the exergy/
energy ratio � as a function of surface temperature T , at T0 = 300 K.
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FIGURE 6.3 Emission eb, exergy bb, difference (eb − bb), and the exergy/
energy ratio � as a function of surface temperature T in a very large range,
at T0 = 300 K.

value of the environment temperature T0 = 300 K. As shown, the ex-
ergy bb has its minimum at point D. There are the inflexions at points
A and C. For comparison, Figure 6.2 presents also energy eb (solid
thin line) of emission density according to equation (3.21). At point
B the energy emission equals the exergy of emission. Point B can be
determined by comparison of equation (6.13) and (3.21) (bb = eb). The
exergy of black emission is larger than the energy of such emission if
the radiation temperature T is small enough (T < TB), and the tem-
perature at point B is TB = T0/41/3.

Figure 6.2 presents also the exergy/energy radiation ratio (dotted
line) and the difference eb − bb (dashed line) which, together with
other peculiarities of radiation exergy, are discussed in the following.
Figure 6.3, in comparison with Figure 6.2, presents the considered
variables for the wide range of temperature T .

6.4 Efficiency of Radiation Processes

6.4.1 Radiation-to-Work Conversion
Thermal radiation can be converted by different processes. Work is a
process of energy transfer during which the energy does not degrade.
For this reason the work is used to define the exergy. A real energy
conversion efficiency, �E , of thermal radiation into work can be defined
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as the ratio of work W, performed due to utilization of the radiation,
to the energy e of this radiation:

�E ≡ W
e

(6.20)

In an ideal (reversible) process the maximum work Wmax can be
obtained from radiation energy. Then, such work is the exergy of the
radiation, Wmax ≡ b, and efficiency �E changes to the maximum con-
version efficiency �E,max which is equal to the so-called exergy/energy
radiation ratio � defined for the first time by Petela (1964):

b
e

= �E,max ≡ � (6.21)

If the emission density e from formula (3.22) and exergy b of emis-
sion density from formula (6.10) are used in (6.21), then:

� = 1 + 1
3

(
T0

T

)4

− 4
3

T0

T
(6.22)

where T is the temperature of the considered radiation.
Therefore, � represents the relative potential of maximum energy

available from radiation. This characteristic ratio � has the signifi-
cance similar to that of the Carnot efficiency for heat engines. The
term � is reluctantly called the efficiency because, as also Parrott (1979)
showed later, it can have values larger than unity.

The exergy conversion efficiency �B of thermal radiation into work
can be defined as the ratio of the work W, performed due to utilization
of the radiation, to the exergy b of this radiation:

�B = W
b

(6.23)

Introducing (6.20) to (6.23) to eliminate the work W, and then
using equation (6.21) to eliminate the exergy b, one obtains that the
exergy efficiency of conversion of radiation exergy to work is equal to
the ratio of the real and the maximum energy efficiencies:

�B = �E

�E,max
≤ 1 (6.24)

Using equation (6.21) in (6.24) to eliminate �E,max, the ratio � is
equal also to the ratio of energy-to-exergy efficiency of the radiation
conversion to work:

� = �E

�B
> 1, = 1, or < 1 (6.25)

which can be larger than, equal to, or smaller than unity.
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It is noteworthy that, in the consideration of the heat engine cycle
with a working fluid, an interpretation the same as in (6.25) can be
derived.

The ratio � is a function of the two temperatures

� (T, T0) =
(

b
e

)
T,T0

= 1 + 1
3

(
T0

T

)4

− 4
3

T0

T
(6.26)

Figure 6.2 presents the example of the ratio � (dotted line) for
T0 = 300 K. With the growing temperature T from zero to infinity the
value � decreases from infinity to the minimum value zero for T = T0

and then increases, with inflexion point E, to the unity:

limT→∞ (� ) = limT→∞

[
1 + 1

3

(
T0

T

)4

− 4
3

T0

T

]
= 1 (6.27)

However, in spite of � approaching unity for infinite temperature
T the difference (eb − bb) between energy e and exergy b does not
approach expected zero, but it does approach infinity:

limT→∞(e − b) = limT→∞

{
ε�

[
T4 − 1

3

(
3T4 + T4

0 − 4
3

T0T3
)]}

= ∞
(6.28)

The difference (eb − bb) from the growing temperature T of the
negative values grows indefinitely as shown (dashed line) in Figure
6.2. For the large values of temperature T , the influence on the differ-
ence and � is shown also in Figure 6.3.

The ratio � is dimensionless because energy and exergy are ex-
pressed in the same units; however, for some interpretations � can
be recognized as the amount of kJ of exergy per amount of kJ of en-
ergy for any radiation at given temperatures T and T0. The ratio �
has a certain practical significance: although the � was not defined
as efficiency, it can be recognized in the same way as the efficiency of
the maximum theoretical conversion of radiation energy to radiation
exergy. For example, for any arbitrary radiation of the known energy
and at certain presumable temperature T , the exergy of this radiation
can be approximately determined as the product of the considered en-
ergy and the value � taken for this temperature T . Table 6.1 presents
some data for the characteristic values of temperatures.

The ratio � can be expressed in a more general way as a func-
tion only of one variable, by using the temperature ratio x ≡ T/T0 in
equation (6.26) as follows:

� (x) = 1 + 1
3x4 − 4

3x
(6.29)



135E x e r g y o f E m i s s i o n

T eb bb eb − bb
Point in

K W/m2 � Fig. 6.2

0 0 153.1 –153.1 ∞ A

100 5.67 136.1 –130.4 24.0 —

189 72.3 72.3 0 1 B

200 90.7 62.4 28.3 0.6875 C

300 459.2 0 459.2 0 D

407 1556 179.8 1376 0.1156 E

1000 56,693 34,169 22,524 0.6027 —

3000 4,592,000 3,980,000 612,000 0.8667 —

6000 73,474,000 68,570,000 4,898,000 0.9333 —

∞ ∞ ∞ ∞ 1 —

TABLE 6.1 Some Data on eb, bb, (eb − bb), and � for Different T (T0 = 300 K)

Figure 6.4 shows that with growing x from 0 to 1 the ratio �
decreases from infinity to zero, and then with growing x from 1 to
infinity the ratio � increases asymptotically to 1.

Example 6.1 The value � = 0.2083 for a black emission at temperature T = 473
K (200◦C) can be calculated from formula (6.26) at T0 = 300 K and x = 473/300
= 1.577. In Section 7.3.5, Example 7.1, the �w� value for water vapor at 473 K
and T0 = 300 K is calculated as �w� = 0.185. The smaller value of ratio �w� for
water vapor, in comparison with black surface radiation (�w� < � ) results from

x = T/T0

0 2 4 6 8 10

Ψ
 =

 b
/e

0

1

2

3

4

FIGURE 6.4 Ratio � as a function of ratio x .
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significant difference in spectra of the water vapor and the black surface. In
Example 7.5 (Section 7.6.1) for solar radiation, the difference between calculated
�S = 0.9326 for the considered solar spectrum and the value � = 0.9333 for a
black surface at 6000 K is insignificantly smaller because the solar spectrum is
not much different from the black surface spectrum.

6.4.2 Radiation-to-Heat Conversion
Besides work, heat is another process of radiation conversion. For
example, such conversion can be considered based on a scheme de-
picting the absorption of incident radiation (Figure 6.5).

Figure 6.5 shows schematically the fluxes of energy, exergy, and
entropy. To simplify considerations it is assumed that the surface of
temperature T is black (ε = 1) and the emission e of this surface arrives
at the absorbing gray surface of temperature Ta and emissivity εa . The
heat receiver at temperature Ta absorbs the radiation heat q exchanged
between the surfaces:

q = εa (e − ea ) (6.30)

where e and ea are the black emission densities calculated, respectively,
for temperatures T and Ta . The energy conservation equation for the
balanced system (i.e., absorbing surface) is:

e = (1 − εa ) e + εa ea + q (6.31)

The energy conversion efficiency �E can be interpreted as an output-
to-input ratio q/e , and after using relations (6.30) and (3.21), is deter-
mined as:

�E ≡ q
e

= εa

[
1 −

(
Ta

T

)4
]

(6.32)

The energy efficiency does not depend on the environment tem-
perature T0. The higher is the emissivity εa of the absorbing surface,

Ta

Heat

receiver

e
(1-εa) e

Ta, εa T, ε

b
(1-εa) b

q

bq

s
(1-εa) s

ea

ba

sa
Balanced

system

FIGURE 6.5 Scheme
of emission and
absorption by the
surface at
temperature Ta

(from Petela, 2003).
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the higher is the efficiency. The highest efficiency is for the black ab-
sorbing surface (εa = 1). The smaller is the surface temperature Ta ,
the higher is the efficiency. For example, for temperature Ta = T0 the
efficiency is high, whereas the practical value of heat absorbed at T0

is zero.
In contrast to the work, heat is marked by temperature, which de-

termines the quality of the heat. A conversion of radiation energy into
heat occurs at the exergy loss during irreversible absorption accom-
panied by emission, and the value of the radiation matter is degraded
to the level marked by the temperature of heat.

The effectiveness of conversion of the incident radiation into heat q
can be evaluated by the exergy conversion efficiency �B . Again interpret-
ing appropriately the terms in the following exergy balance equation
for a balanced system (Figure 6.5), completed by exergy loss �b due
to irreversibility:

b = (1 − εa ) b + εa ba + bq + �b (6.33)

the exergy efficiency �B of conversion, as the ratio of the useful effect
expressed by the exergy bq of heat, and the exergy of incident radiation
b, is determined as follows:

�B ≡ bq

b
(6.34)

where exergy bq of the heat receiver is:

bq = q
Ta − To

Ta
(6.35)

Using equations (6.10), (6.30), and (6.35) in equation (6.34) and
expressing the energy density emissions with formula (3.22), one ob-
tains:

�B = 3εa

(
1 − T0

Ta

)
T4 − T4

a

3T4 + T4
0 − 4T0T3

(6.36)

In contrast to the energy efficiency, the exergy efficiency does de-
pend on environment temperature T0. The lower is the environment
temperature, the higher is the efficiency. The higher is the emissivity
εa of the absorbing surface, the higher is the efficiency, and the highest
efficiency is achieved for the black absorbing surface (εa = 1).

For the given emissivity εa of the absorbing surface, environment
temperature T0, and the temperature T of the arriving black emis-
sion exergy b, the efficiency �B depends on the temperature Ta of
the absorbing surface. The temperature Ta can be controlled in the
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FIGURE 6.6 Effect of varying temperature Ta of the adsorbing surface at
constant T = 6000 K, T0 = 300 K, and εa = 0.8.

determined range by a proper arrangement of the withdrawn heat
q , and it can be shown that the efficiency �B has its maximum. The
condition:

∂�B

∂Ta
= 0 (6.37)

allows for derivation of the following equation from which the tem-
perature Ta = Ta ,opt can be determined:

4T5
a ,opt − 3T0 T4

a ,opt − T4T0 = 0 (6.38)

For example, for (T/1000) = 6, and (T0/1000) = 0.3, one obtains
(Ta ,opt/1000) = 2.544 which corresponds to Ta ,opt = 2544 K.

The calculated results were used to illustrate (Figure 6.6) the val-
ues of some terms in equation (6.33). With the growing temperature
Ta of the adsorbing surface, the exergy ba of emission of this surface
increases, whereas the exergy loss �b that occurs on this surface de-
creases. Both the efficiency �B and the exergy bq of heat delivered to
the receiver have their maxima.

Therefore, the optimal utilization of any radiation arriving at the
absorbing surface occurs at the determined temperature of this sur-
face. This means that the heat extraction should be arranged in such
a way that the temperature of this surface would be maintained at
the level of the optimal (exergetic) temperature Ta ,opt. This conclusion
should be used for designing systems utilizing any hot radiation, e.g.,
solar radiation, by a device in which the exergy of solar radiation is
harvested by an adsorbing surface.

The exemplary comparison of the considered formulae for the en-
ergetic and exergetic radiation conversion efficiencies is summarized
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Efficiency Radiation to work conversion Radiation to heat conversion

Energetic �E �E = W

e
, �E ,max ≡ � = b

e
�E = e − ea

e
= 1 −

(
Ta

T

)4

Exergetic �B �B = W

b
�B = bq

b

TABLE 6.2 Comparison of Some Exemplary Radiation Conversion Efficiencies

in Table 6.2. The exergetic efficiency problems for various different
processes were discussed also in Section 4.6.

6.4.3 Other Processes Driven by Radiation
Besides processes of the conversion of radiation to work or heat, there
are also other various processes in which thermal radiation (not nec-
essarily solar radiation) is meaningful or plays the driving role. The
thermodynamic analysis and exergy efficiency for such processes,
mentioned already in Section 4.6.4, has to be considered individu-
ally according to the process specificity, although a certain general
methodology exists and can be applied. Examples of such other pro-
cesses can be the conversion of solar radiation energy to:

� heat, particularly from solar energy� power in process combined with the buoyancy effect� chemical energy of green plant substance� electricity

The methodology for these processes was outlined respectively in
Chapters 10–13.

Whereas Section 6.4.2 concerned mainly conversion of any ther-
mal radiation to heat, Chapter 10 presents analysis particularly for
solar radiation with its specific geometry and spectrum. and it also
discusses the strategic viewpoint about the example of a cylindrical–
parabolic cooker.

Chapter 11 develops exemplary thermodynamic analysis for the
conversion of solar radiation into power, but in contrast to the general
evaluation shown in Section 6.4.1, it presents more detailed aspects,
in particular including the effect of the gravitational field of the earth.

A simplified approach to the energy and exergy analyses of pho-
tosynthesis is outlined in Chapter 12 by considering the conversion of
solar energy into the substance of the green plant represented by the
model of a leaf.

Chapter 13 briefly outlines the photovoltaic in which, specifi-
cally for the photovoltaic, a conversion of solar radiation energy into
electricity has unavoidably to occur with simultaneous conversion of
part of this energy into heat.
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The energy and exergy analyses of these processes show the dif-
ferent values of energetic and exergetic magnitudes compared to each
other based on the common background of the same reference states.

6.5 Irreversibility of Radiative Heat Transfer
Whereas the irreversibility of processes with a substance is caused by
friction, diffusion, and heat exchange at a finite temperature, the irre-
versibility of radiation processes occurs due to basic phenomena such
as emission and adsorption. The irreversibility mechanism of many
radiation processes, e.g., the dilution or attenuation of propagating ra-
diation, can be explained based on the irreversibility of emission and
absorption. Obviously, in the combined processes in which substance
and radiation take place, all the sources of irreversibility should be
considered—those for substance as well as those for radiation.

The irreversibility of radiative heat transfer was considered by
Petela (1961b). Consideration of a radiation system can be carried
out conveniently based on a vacuum enclosed within solid surfaces.
Again, the simplest configuration is the system with two parallel flat
surfaces, x and y, infinitely large and facing each other as shown in
Figure 6.7. The system is in the steady state and the heat exchanged
by radiation between the surfaces occurs at constant rate q , W/m2. The
considered surfaces are black (εx = εy = 1) at the respective temper-
atures, Tx and Ty, uniformly distributed over these surfaces, and the
heat sources, at the respective temperatures Tx and Ty are in direct
contact with the respective surface x and y. The irreversibility will be
examined based on the second law of thermodynamics by determina-
tion of the overall entropy growth � for the examined object, which,
e.g., is surface x.

The heat q exchanged by radiation between surfaces x and y is
equal to the difference in the surfaces emission ex and ey, and with
use of formula (3.21):

q = ex − ey = �
(
T4

x − T4
y

)
(6.39)

x y

Tx

q q

Ty

εx εy

ex

eyx y

FIGURE 6.7 Radiative heat transfer between two surfaces, x and y.
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The respective entropies sx and sy of emissions are calculated from
formula (5.24) as follows:

sx = 4
3

�T3
x and sy = 4

3
�T3

y (6.40)

The overall entropy growth �x for surface x consists of the entropy
decrease (–q/Tx) of heat source x, entropy of the generated emission
(sx), and entropy of the disappearing emission (–sy); thus:

�x = − q
Tx

+ sx − sy (6.41)

Using equations (6.39) and (6.40) in (6.41):

�x = �

3

(
T3

x + 3
T4

y

Tx
− 4T3

y

)
(6.42)

The entropy growth is a function of temperatures: �x(Tx, Ty). To
find the extreme of the function the first partial derivatives are as-
sumed zero:

∂�x

∂Tx
= �

3

(
3T2

x − 3
T4

y

T2
x

)
= 0 and

∂�x

∂Ty
= �

3

(
12

T3
y

Tx
− 12T2

y

)
= 0

(6.43)
Both results of (6.43) indicate that the function reaches extreme

Tx = Ty at which �x = 0. The second derivative of function (6.42) at
the extreme point (Tx = Ty), e.g.:

∂2�x

∂T2
x

= �

3

(
6Tx + 6

T4
y

T3
x

)
Tx=Ty

= 4�Tx ≥ 0 (6.44)

is always nonnegative which means that the extreme is a minimum (at
Tx = Ty and �x = 0). Thus, for temperatures Tx ≥ Ty the heat transfer is
possible and irreversible, except the case of Tx = Ty when �x = 0 and
q = 0. Figure 6.8 illustrates function �x(Tx, Ty) for exemplary ranges
of Tx and Ty. The plane on the left-hand side from the line of �x = 0
represents the case when Tx < Ty. Such a case occurs also at �x = 0 (is
possible although irreversible); however, the effective heat exchange
is from surface y to surface x (q < 0).

Analogically, the considerations can be carried out also for surface
y and the overall entropy growth �y can be calculated as:

�y = − q
Ty

− sx + sy (6.45)
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from which:

�y = �

3

(
T3

y + 3
T4

x

Ty
− 4T3

x

)
(6.46)

The sum of the overall entropy growths �x and �y for both sur-
faces is equal to the overall entropy growth � for the whole process
of heat transfer:

� = �x + �y = q
(

1
Ty

− 1
Tx

)
(6.47)

Equation (6.47) confirms correctness of the consideration of irre-
versibility.

The entropy growth does not depend on the environment temper-
ature T0. However, any exergy loss due to irreversibility does depend
on and can be calculated according to formula (2.60) as the product of
T0 and the respective overall entropy growth. For example, the exergy
loss �bx at the considered surface x is:

�bx = T0�x (6.48)
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In conclusion, the process of simultaneous emission and absorp-
tion occurring on any surface during radiative heat transfer is possible
although irreversible. The irreversibility grows with the growing tem-
perature difference during transfer of radiative energy. The larger is
the irreversibility, the larger is the degradation of transferred energy.
The reversible process of simultaneous emission and absorption oc-
curs only in case of equal temperatures (Tx = Ty), but then the net heat
transferred is zero.

6.6 Irreversibility of Emission and Absorption
of Radiation
As previously mentioned, one of the possible methods of utilization of
the radiation exergy is application of any absorbing surface exposed to
this radiation. From the exergy viewpoint, the possible processes that
then occur on such a surface were first considered by Petela (1961b).
Due to the irreversibility of the processes of emission and absorption
of radiation, the loss �b of exergy appears, which can be calculated
according to the Gouy–Stodola law (2.60) as the product of the overall
entropy growth � and the environment temperature T0:

�b = �T0 (6.49)

Consideration can be based on the scheme (Figure 6.5) of the emis-
sion and the absorption of the surface of emissivity εa . It can be as-
sumed that the absolute temperature Ta of the considered surface is
constant due to the appropriate amount q of heat exchanged between
the surface and a heat sink or a heat source. (In the case of a source,
heat q in Figure 6.5 has the opposite direction.)

During alone emission (e = b = s = 0) it is assumed that the emitted
energy, due to heat q delivered from the heat source, according to the
energy conservation law for the steady state, is equal to this heat q
(ea = q ), and is calculated with the use of formula (3.22). The entropy
sa of this emission, based on formula (5.24), is:

sa = εa
4
3

�T3
a (6.50)

The overall entropy growth for the considered emission process
consists of the entropy drop (−) of the heat source and of the entropy
of the produced (+) emission:

� = − q
Ta

+ sa (6.51)
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Using equations (3.22) and (6.50) in (6.51), one obtains the expres-
sion for calculation of � which appears to be always larger than zero

� = εa
�

3
T3

a > 0 (6.52)

and this proves that the emission alone (not accompanied by any
adsorption) is possible; however, it is irreversible. An approximate
example of the emission without absorption is the radiation of the sun.
If one assumes, that the sun is surrounded by a vacuum at temperature
practically T0 ≈ 0 and emissivity ε0 ≈ 1, then no radiation comes to
the sun, and its surface represents the case of alone emission from the
surface at temperature Ta equal to the sun temperature TS (Ta = TS).
At the sun’s surface the conversion of heat transferred from the sun’s
interior to its radiative emission occurs at an exergy loss determined
by formula (6.49). The percentage value of the exergy loss can be
determined by the exergy loss divided by the sun radiation exergy.
Using equations (6.10), (6.49), and (6.52), one obtains:(

�b
b

)
sun

= 1

3
TS

T0
+

(
T0

TS

)3

− 4

(6.53)

As a result of equation (6.53), the larger is the environmental tem-
perature, the larger is the exergy loss. For T0 → 0, we obtain �b →0.
For example, for the sun’s surface temperature, TS = 6000 K and from
the viewpoint of the earth’s conditions (assuming, e.g., T0 = 300 K),
equation (6.53) gives �b/b = 1.786%. This conversion of heat from the
sun to its radiative energy is relatively very effective because it occurs
at a high temperature.

During alone absorption of any incident emission e by the surface
with temperature Ta (Figure 6.5), it is assumed that ea = ba = sa = 0
and the absorbed heat q (q = εa e) is transferred to the sink of tem-
perature Ta . Again, to simplify considerations the incident emission
is assumed to be black (ε = 1). The overall entropy growth for the
considered absorption process consists of the entropy increase (+) of
the heat sink and the entropy disappearing (−) during absorption:

� = q
T

− s (6.54)

Using equations (3.22) and (6.50) in (6.54), one obtains:

� = εa 4�T3
(

1
4

T
Ta

− 1
3

)
(6.55)

Analysis of the alone absorption phenomena should be carried out
at the same temperatures of the absorbing surface and of the incident
emission (T = Ta ). Otherwise, if T �= Ta , analysis takes into account
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not only the pure absorption process but also the consequences of the
degradation of energy. Thus, assuming the condition T = Ta in (6.55),
one obtains the expression on � that happens to be always smaller
than zero:

� = −εa
�

3
T3

a < 0 (6.56)

and this proves that the absorption alone, without accompanying
emission of the considered surface, is impossible. This conclusion is
in agreement with the Kirchhoff’s identity, stating that the emission
ability of any surface is equal to its absorption ability at the same tem-
perature. In contrast to this conclusion, De Vos and Pauwels (1986)
argue that the absorption without emission is irreversible.

The simultaneous emission and absorption can be considered based
also on the scheme depicted in Figure 6.5. An emissivity e of a black
radiation (ε = 1) from a surface of temperature T arrives at the con-
sidered surface of emissivity εa and temperature Ta . Between the two
surfaces the heat q is exchanged:

q = εa �
(
T4 − T4

a

)
(6.57)

The overall entropy growth in such a case consists of the entropy
increase (+) of the heat receiver, of disappearing (−) entropy of ab-
sorbed radiation, and of the entropy produced (+) due to emission of
the considered surface:

� = q
Ta

− εa s + sa (6.58)

where s, based on formula (5.24), is calculated as follows:

s = 4
3

�T3 (6.59)

Using equations (6.50) and (6.57)–(6.59) one obtains:

� = εa
�

3
T3

a

[
3

(
T
Ta

)4

− 4
(

T
Ta

)3

+ 1

]
≥ 0 (6.60)

The expression in the quadratic brackets is always nonnegative,
except for T = Ta when there is a minimum that amounts to zero.
This means that the simultaneous emission and absorption for T �=
Ta is always possible, although irreversible. If T = Ta the process is
reversible, but there is no heat exchange.

In conclusion, the exergy of radiation reaching any surface can be
reflected (i.e., re-radiated) and the reflected radiation has its exergy at
the temperature of the original radiation, which is not utilized by the
absorbing surface. If the reflection process does not change the radia-
tion temperature, then this process is reversible and does not generate
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any exergy loss. However, the radiation emitted by the absorbing sur-
face has its own exergy determined by the emissivity and temperature
of the absorbing surface. This is the problem of the efficiency of the
absorbing surface, or any other device utilizing the radiation some-
how, in how much of the whole incident exergy b the surface, or the
other device, can grasp and utilize. The efficiency of the absorbing
device or surface is an entirely different thing and does not depend
on the theoretical potential represented by b. Acceptance of such an
interpretation is very important in correct reasoning about the theory
of radiation exergy, because if not noticed by some researchers, this
can mislead to strange conclusions.

6.7 Influence of Surroundings on the Radiation Exergy
As mentioned earlier, the exergy of radiation matter, which is the emit-
ted photon gas, is a function of the instant state of the matter and of the
state of such a photon gas in the case of radiative equilibrium with the
environment. Such a function of radiation exergy does not depend on
the history of the considered matter or on the way in which the matter
was created. It can be shown that radiation exergy does not depend on
any external contemporary factors such as the environmental emis-
sivity, configuration of the emitting surfaces under consideration, or
the presence of any other surfaces at a temperature different from the
environment and radiating on the considered surface.

In other words, besides parameters of the considered radiation,
the only factor that counts in determination of the radiation exergy
is environment temperature T0. Except T0 there are no other environ-
mental characteristics (geometrical configuration, properties, or any
nonuniformity) that could influence the work used to measure the
exergy. This rule can be commonly experienced in practice.

Additionally, as mentioned in Section 6.1, the emissivity of the
considered surface does not affect the exergy of black emission radi-
ated from the surface at its temperature.

The same formula for exergy emission can be derived based on the
exergy balance of a surface of any temperature T or based on exergy
balance of any environment surface (at T0) at which arrives the exergy
emission of the temperature T .

The independence of the radiation exergy on some environmental
factors is discussed in the following section.

6.7.1 Emissivity of the Environment
As emphasized before, the practical observations reveal that any sur-
faces at different emissivities, facing each other, but at the same tem-
perature T0, remain in thermodynamic equilibrium, and the pres-
ence of such emissivities diversity does not demonstrate any practical
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(exergetic) significance, i.e., any possibilities to perform work. Even
in the case of the close neighboring surfaces of extreme emissivities,
such as white snow and black soot, the surfaces remain in thermal
equilibrium if their temperatures are remained equal to T0.

However, at temperature T �= T0, for any surface of arbitrary prop-
erties (gray surface) the properties of the considered surface and the
environment (e.g., ε and ε0) play a role in determining the exchanged
exergy of emission at temperature T .

In other words, from a radiation viewpoint, the diversified emis-
sivity values of the environment bodies have no exergetic significance.
However, if any environment body would change its temperature,
then the other bodies immediately disclose their diversified abilities
to affect the rate of exchange of emission exergy between bodies of
different temperatures.

It is noteworthy that the diversified emissivity of the bodies of the
environment can be compared to the problem of the reference sub-
stances applied in calculation of the chemical exergy of the considered
substance. At different locations in the environment the same refer-
ence substance can appear under a different concentration although
at the same temperature T0. There is the problem of which of the
concentration values should be chosen for exergy calculations as the
reference because in case of a substance, the difference of concentration
can be theoretically utilized to do work in an isothermal theoretical
process of equalization of the concentrations. However, as only one
concentration value can be taken for exergy calculations, thus, to solve
the problem for a substance, only one of the existing concentrations of
the reference substance in the environment, is defined as the standard
concentration reference. Such choice is based on the agreement or
any specific reasoning or just selecting the one that dominates.

The problem of choosing the reference emissivities of environmen-
tal bodies does not exist in the consideration of radiation. If we recog-
nize that the environment space contains the black radiation that is in
equilibrium with the environment surfaces, then the only problem left
is to establish the standard environmental temperature representing
the only sufficient reference for calculation of radiation exergy.

6.7.2 Configuration of Surroundings
Regarding the effect of the configuration on the radiation exergy, the
Prevost law (Section 3.1) can be quoted, according to which the surface
radiates independently of the presence of other surfaces existing in the
surroundings. Confirmation of this law for exergetic considerations
can be illustrated with the following example.

Consider the model shown in Figure 6.9. The two spherical sur-
faces A1 and A0, at thermodynamic steady state, are exchanging heat
Q by radiation through a vacuum. The constant temperatures T1 and
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FIGURE 6.9 Two
concentric surfaces.

T0 are maintained due to the connection of the surfaces with the re-
spective heat sources. The outer surface A0 simulates environment of
the temperature T0.

The concentric spherical shapes of the surfaces are assumed for
convenience of consideration in which the local view factors are uni-
form over the whole respective surfaces. The view factor was intro-
duced by formula (3.9) and is discussed with some more detail in
Section 7.5.1. The configuration of the surface is described by the
following values of the view factors: �1−0 = 1 (the whole radiation
of surface A1 arrives in surface A0), �1−1 = 0 (surface A1 is noncon-
cave), �0−1 = A1/A0 (based on the reciprocity rule), and �0−0 = 1 –
�0−1 (based on the complacency rule).

The value of the environmental surface emissivity ε0 has no in-
fluence on the exergy of the radiation of the considered surface A1;
thus, for convenience, it is assumed that ε0 = 1 and the consideration
of reflected radiation of surface A1 is avoided. Emissivity ε1 of the
considered surface A1 is arbitrary. Based on the exergy definition, the
radiation exergy of surface A0 is b0 = 0.

First, the exergy balance equation for surface A1 is considered. The
exergy balance input consists of the exergy of heat Q determined
by formula (2.61). The exergy output consists of the emission exergy
of surface A1 and of the exergy loss of irreversibility at surface 1,
determined by the Gouy–Stodola law (2.60). Thus:

Q
(

1 − T0

T1

)
= A1b1 + T0

(
A1s1 − A0�0−1s0ε1 − Q

T1

)
(6.61)

where b1 is the unknown in the consideration and represents the emis-
sion exergy of surface per 1 m2 of this surface. The entropies of the
emission densities s1 and s0, respectively, for surfaces 1 and 0, are
determined from formula (5.24).

Heat Q exchanged between the two surfaces can be determined
from the energy balance equation, e.g., for surface 1. The energy input
consists of heat Q and of the emission energy arriving from surface
A0 in surface A1 and absorbed at absorptivity equal to emissivity ε1.
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The energy output is represented only by the emission of surface 1,
entirely absorbed by surface A0. Thus:

Q + A0�0−1e0 ε1 = A1e1 (6.62)

where e1 and e0 are the emission density of surfaces A1 and A0, re-
spectively, and they are determined by formula (3.22).

After using (6.62) in solving equation (6.61) on b1, the exact formula
(6.10) is obtained. The geometrical magnitudes such as A1, A0, or shape
factor �0−1 have been cancelled out and do not appear in the derived
result, which means that these magnitudes of configuration have no
effect on the universal formula (6.10).

Now, the exergy balance of surface A0 will also be applied to
confirm correctness of the derived formula (6.10). The exergy balance
equation is:

A1b1 + A1�1−0ε1b0 + A0�0−0ε0b0 = A0ε0b0 + Q
(

1 − T0

T0

)
+ �B0

(6.63)

If all terms containing emission exergy of surface A0 (b0 = 0) are
neglected, as well as the exergy of heat Q at temperature T0, then the
exergy balance equation is reduced to A1b1 = �B0. Thus, expressing
the exergy loss �B0 at the surface A0 by formula (2.60), one obtains:

A1b1 = T0

[
Q
T0

− A1s1 + A0s0 − A0s0�0−1 (1 − ε1) − A0s0�0−0

]
(6.64)

After solving equation (6.64) on b1 again the exact formula (6.10),
containing no configuration parameters, can be obtained.

6.7.3 Presence of Other Surfaces
From interpretation of the Prevost law it results that the radiation
exergy of the considered surface in the system of other surfaces of dif-
ferent temperatures is not affected by the other surfaces. The Prevost
law for radiation exergy can be illustrated by the following example
of the four different surfaces of the system shown in Figure 6.10.

A very large flat surface of area A, split into two parts (1 and 2),
faces other flat parallel surfaces of area A that is also split into two
parts (3 and 4). All the four surfaces are black and remain in thermal
equilibrium at uniform and constant respective different temperatures
(T1, T2, T3, and T4). The areas of the surfaces are expressed with the
factors: a1 = A1/A, a2 = 1 − a1, a3 = A3/A, a4 = 1 − a3 where A =
A1 + A2 = A3 + A4.
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FIGURE 6.10 The
parallel surfaces.

The exergy balances are considered for the four surfaces. Each
surface receives the exergy of heat at the surface temperature and
the radiation exergies from the two opposite surfaces. The output of
the exergy balance equation consists of the radiation exergy from the
considered surface and of the exergy loss due to irreversibility at the
considered surface. Thus the four exergy balance equations are:

bq1 + a1a3b3 + a1a4b4 = a1b1 + T0�1 (i)

bq2 + a2a3b3 + a2a4b4 = a2b2 + T0�2 (ii)

bq3 + a3a1b1 + a3a2b2 = a3b3 + T0�3 (iii)

bq4 + a4a1b1 + a4a2b2 = a4b4 + T0�4 (iv)

where the values of heat delivered to surfaces:

q1 = a1 (e1 − a3e3 − a4e4) (v)

q2 = a2 (e2 − a3e3 − a4e4) (vi)

q3 = a3 (e3 − a1e1 − a2e2) (vii)

q4 = a4 (e4 − a1e1 − a2e2) (viii)

exergy of heat:

bq1 = q1

(
1 − T0

T1

)
(ix)

bq2 = q2

(
1 − T0

T2

)
(x)

bq3 = q3

(
1 − T0

T3

)
(xi)

bq4 = q4

(
1 − T0

T4

)
(xii)
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and the total entropy growth for the surfaces:

�1 = a1 (s1 − a3s3 − a4s4) − q1

T1
(xiii)

�2 = a2 (s2 − a3s3 − a4s4) − q2

T2
(xiv)

�3 = a3 (s3 − a1s1 − a2s2) − q3

T3
(xv)

�4 = a4 (s4 − a1s1 − a2s2) − q4

T4
(xvi)

Radiation energies e and entropies s are determined, respectively,
from formula (3.22) and (5.24) (for ε = 1).

The numerical solution of the system of equations (i)–(xvi) gives
the values of the emission exergies b1, b2, b3, and b4 identical with
the respective values obtained on the other hand from equation (6.8)
applied for temperatures T1, T2, T3, and T4 at given T0. This sameness
occurs independently on surfaces temperature values (T1, T2, T3, or
T4), areas factors (a1, a2, a3, or a4) and environment temperature T0.
Thus, it results that radiation exergy determined by formula (6.8) for
any considered black surface does not depend on the presence of other
surfaces of arbitrary temperatures, configuration of the surfaces, and
the level of environment temperature.

Example 6.2 The four very large black surfaces (Figure 6.10) have temperatures
T1 = 6000 K, T2 = 1200 K, T3 = T0 = 300 K, and T4 = 200 K. The surfaces areas
are determined by factors a1 = 0.1 and a3 = 0.7. From the system of equations
from (i)–(xvi) the following values of emission exergies can be obtained: b1 =
68.576 MW/m2, b2 = 78.525 kW/m2, b3 = 0, and b4 = 62.36 W/m2. Identical val-
ues are obtained from formula (6.8) used respectively. The obtained values do
not change with varying a1 and a2, but they do change at the changed surface
temperatures.

6.8 “Cold” Radiation
“Cold radiation” can be distinguished from “cold light” emitted by
luminescence, discussed in Section 1.1. By cold radiation one can un-
derstand radiation at temperature Tc smaller than the environment
temperature, Tc < T0. Exergy of cold radiation is positive and for suf-
ficiently low temperature is even larger than energy of this radiation
(e.g., Figure 6.2). However, the exergy of cold radiation is relatively
small. For example, the significance of the cold emission, relative to
the emission at a temperature larger than the environment, can be es-
timated based on formula (6.8), which is used to equate the exergy of
black emission at T > T0 to the exergy of black emission at Tc < T0:

3T4 + T4
0 − 4T0T3 = 3T4

c + T4
0 − 4T0T3

c (6.65)



152 C h a p t e r S i x

Tc K

T
 K

0 100 200 300 400
200

250

300

350

400

450

500

T0 = 250 K

T0 = 300 K

T0 = 350 K

FIGURE 6.11 Equivalent radiation temperature T (at T > T0) to the cold
radiation temperature Tc.

Figure 6.11 illustrates equation (6.65) for the three different en-
vironment temperatures T0 (250, 300, and 350 K). The higher is the
environment temperature T0, the higher is the equivalent tempera-
ture T .

Example 6.3 Based on Figure 6.11, it results that exergy of radiation at Tc = 200 K
(at T0 = 300 K) is equivalent to the exergy of radiation at T = 367.9 K. However,
for the unchanged Tc = 200 K but at the increased environment temperature to
T0 = 350 K, the equivalent temperature T = 442 K.

Generally, the exergy of the radiation flux at temperature T is, e.g., decreas-
ing as it travels through the environment at decreasing temperature T0 within
range T > T0. There could be mentioned the case, nowadays recognized as very
academic, in which, e.g., a human exists (obviously within a perfectly insulated
capsule), on the surface of Venus, thus in an environment with a temperature of
about 740 K. Such a human might recognize the exergy of emission of the Venu-
sian surface as being equal to zero; however, the exergy of emission of the earth’s
surface at about 300 K would be interpreted on Venus according to formula
(6.8) as: bb,Venus = (1/3) × 5.6693 × 10−8 × (3 × 3004 + 7404 − 4 × 740 × 3003) =
4.615 kW/m2. For comparison, a human on the earth’s surface might recognize
the exergy of emission of the surface of Venus as bb,Venus = (1/3) × 5.6693 ×
10−8 × (3 × 7404 + 3004 − 4 × 300 × 7403) = 7.964 kW/m2.

A similar comparative analysis for the earth and sun would give the val-
ues: bb,earth = (1/3) × 5.6693 × 10−8 × (3 × 3004 + 60004 − 4 × 6000 × 3003) =
24.48 GW/m2 and, respectively, bb,sun = (1/3) × 5.6693 × 10−8 × (3 × 60004 +
3004 − 4 × 300 × 60003) = 68.576 GW/m2.

In practice, the example of cold radiation can be radiation of the
sky, which can be determined by the effective temperature of the sky.
The concept of the sky temperature Tsky arises, e.g., when considered
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is a radiative heat transferred to space from objects (at temperature T0)
on earth. The characteristic difference T4

0 − T4
sky is a measure of such

heat, which can be sometimes negative if T0 < Tsky.
As mentioned by Duffie and Beckman (1991), many models of

the sky have been considered that take into account the beam and
reflected radiation. The sky is usually considered as a blackbody at
effective temperature Tsky. In fact, the atmosphere is not at a uniform
temperature and it radiates only in some wavelength bands. For ex-
ample, the atmosphere is practically transparent in the band from 8
to 14 �m, and beyond this range absorbs much of the infrared radi-
ation. Determination of temperature Tsky is proposed to be based on
the measured meteorological parameters such as water vapor content
or dew point temperature. For example, for a clear sky the Swinbank
(1963) formula, based on the environment temperature T0, is applied:

Tsky = 0.0552 T1.5
0 (6.66)

Obviously, the presence of clouds would increase the sky temper-
ature in comparison to a clear sky. Experiments show that the sky
temperature Tsky can be lower than the environmental temperature T0

by about 5 K in hot and humid conditions and by about 30 K in cold
and dry conditions.

Distinguishing between T0 and Tsky in thermodynamic processes is
illustrated, e.g., in Chapter 11 on the thermodynamic analysis of a
solar chimney power plant.

6.9 Radiation Exergy at Varying Environmental
Temperatures
Variation in the average environmental temperature T0 can appear,
e.g., for the local environment depending on time, or when different
climate zones are considered, or eventually when the radiation flux
travels through the remote environments of different temperatures.

The exergy of emission at constant temperature T varies with the
varying environment temperature T0 of which the effect of T0 can
be determined based on equation (6.10) by the partial derivative of
the exergy b in regard to T0:

(
∂b
∂T0

)
T=const

= ε
4
3

�
(
T3

0 − T3) (6.67)

The radiation exergy b, with the decreasing environment temper-
ature T0, proportionally to the third power of this temperature, grows
for T0 < T and diminishes at T0 > T .



154 C h a p t e r S i x

As mentioned already in Section 4.5.3, the exergy balance equation
for the process occurring at varying T0 should contain the appropriate
compensation term (�Be ) as is generally shown in equation (4.19) for
processes in which radiation together with substance take place.

Sensitivity of radiation exergy to the varying T0 can also be illus-
trated with the following example. An adiabatic tank of a volume 1
m3 is fulfilled with black radiation (ε = 1) at temperature T1 at the
initial environment temperature T0,1. After some time, the environ-
ment temperature changes to the value T0,2. If nothing more happens
(no work, no heat, no matter exchange so no exergy loss), then all
the components of exergy balance equation (4.19) are equal to zero
except the term �bS which expresses the system exergy increase due
to the change of environment temperature. The increase �bS can be
calculated by respective application of formula (5.29) as follows:

�bS = a
3

[
T4

0,2 − T4
0,1 − 4T3

1 (T0,2 − T0,1)
]

(6.68)

For T0,1 �= T0,2 the term �bS is different from zero and thus, as
shown by equation (5.19), the correction �Be has to be included to
complete the exergy balance equation for the radiation system con-
sidered at varying environment temperature.

In a particular case, when temperature T1 would be equal to T0,1,
(T1 = T0,1), e.g., some radiation at T0,1 would be trapped initially in
the tank; then after changing the environment temperature to a value
T0,2, the initially worthless radiation would gain the value determined
from (6.68) as follows:

(�bS)T1=T0,1
= a

3

(
3T4

0,1 + T4
0,2 − 4T0,2T3

0,1

)
(6.69)

Referring to a radiation flux, the varying environment tempera-
ture can occur, e.g., when the flux travels through different spaces
characterized by different local environment temperatures or when
the local environment temperature varies due to atmospheric changes.

Determination of radiation exergy during traveling through dif-
ferent environments (e.g., on earth or in cosmic space) is obvious. One
of the formulae discussed in Chapter 7 can be selected to fit the kind
of considered flux and change in environment temperature taken into
account. It is worth emphasizing that the energy of the considered
radiation traveling through various environments remains constant
and only exergy of this radiation expresses variation of the practical
thermodynamic values of the traveling flux.

However, considering the variation of the environment during
analysis of the determined system requires, as in the case of tank, the
appropriate correction term in the exergy balance equation (4.19). The
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term can be different from zero and calculated as the completion of
the balance equation.

When the environment temperature changes from T0,1 to T0,2, then
the exergy radiation flux, considered as a black at temperature T1,
changes its exergy by

�bb = �

3

[
T4

0,1 − T4
0,2 − 4T3

1 (T0,1 − T0,2)
]

(6.70)

The right-hand sides of formulae (6.70) and (6.68) differ only by
the algebraic sign and the constant (a and �, respectively).

It is worth noting that any variation in the environment tempera-
ture T0 can be interpreted as a certain form of natural exergy resource.
This variation can appear periodically, during a day, a month, or a
year, and the amplitude of variation can be taken as a certain measure
of this natural resource.

Example 6.4 The influence of varying environment temperatures can be illus-
trated by the following example. Consider a ball (Figure 6.12) with black sur-
face at temperature T and at conductivity close to infinity, which motivates the
consideration of the uniform distribution of temperature over the whole ball
volume. The ball cools down in a vacuum (i.e., no convection and conduction
beyond the ball) surrounded by a black wall of temperature T0.

The surface area of the ball is 1 m2; thus the ball diameter is D = (1/	)0.5 =
0.564 m and the ball volume is V = 	 × D3/6 = 0.094 m3. The density of ball
material is 
 = 7860 kg/m3 and the specific heat c = 452 J/(kg K). The ball mass
is m = V × 
 = 738.8 kg. The ball absorbs emission e0 = � × T4

0 of environment
and emits energy e = � × T4, where � = 5.6693 × 10−8 W/(m2 K4). Initial tem-
perature of the ball is Tinl = 400 K.

(A) Environment temperature T0 = 280 K is constant

For the system shown in Figure 6.12, the energy balance equation for an infinitely
short time period dt is:

e0 dt = mc dT + e dt (a)

Assume the solution for T in the form:

T = Tinl e AAt (b)

where AA is a constant for the considered case A. Dividing equation (a) by
m × c × dt, expressing e0 and e by respective temperatures T0 and T , and

T

e0 e

System

boundary
Ball

FIGURE 6.12 The
cooling ball.
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Tinl K AA 1/s

350 –4.2973 × 10−6

400 –8.2561 × 10−6

500 –1.9133 × 10−5

600 –3.493 × 10−5

1000 –1.6872 × 10−4

TABLE 6.3 Constant AA for the Considered Example as
a Function of Initial Temperature Tinl of the Ball

calculating the derivative dT/d� based on equation (b), equation (a) becomes
as follows:

Tinl AAe AAt = �

mc

(
T4

0 − T4
)

(c)

For the initial instant for which t = 0, the ball temperature is T = Tinl, thus
from (c):

AA = �

mc Tinl

(
T4

0 − T4
inl

)
(d)

Substituting data for the considered example to equation (d) one obtains
AA = −8.2561 × 10−6 1/s. However, as it comes from equation (d), the constant
AA depends on some parameters. For example, for m, c and T0 assumed constant
in the considered example the constant AA depends on initial temperature Tinl
of the ball as illustrated in Table 6.3.

Now, the emission terms e0 and e in equation (a) can be expressed by the
respective temperatures, whereas temperature T is given from (b). After inte-
grating from 0 to t:

�T4
0 t = mc (T − Tinl) +

t∫
0

�
(
Tinl e AAt)4

dt (e)

After calculating integral and rearranging, equation (e) yields:

T = Tinl + �

mc

[
T4

0 t − T4
inl

4AA
(e4AAt − 1)

]
(f)

For example, from formula (f), temperature T = 389 K is obtained when the
substitution is t = 3600 s.

Thus, consider other data for the cooling ball during the time period t =3600 s
from Tinl = 400 K to Tfin,A = 389 K. Based on calculated terms of equation (e)
the drop of the internal energy of the ball (assumed as basic 100%) is equal to
Eball,A = 3,671.5 kJ and the absorbed environment emission (34.17%) are spent
for the ball emission (–134.17%), as shown in column 2 of Table 6.4.
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Energy Exergy Energy Exergy
balance balance balance balance

Item % T0 = 280 K T0 = 280 K T0 �= const T0 �= const

1 2 3 4 5

Environment emission 34.17 0 44.20 0

Internal energy of ball 100 100 100 100

Emission of ball –134.17 –63.72 –144.20 –15.72

Irreversibility loss — –36.28 — –75.25

Effect (�be) of T0 �= — — — –9.03
const

Total 0 0 0 0

TABLE 6.4 Calculation Results from Example 6.4

For the considered system (Figure 6.12) the exergy balance equation for an
infinitely short time period dt is:

t∫
0

b0 dt = 0 = −bball +
t∫

0

b dt + �b (g)

where, based on the exergy definition: b0 = 0 and �b is the exergy loss due
to the irreversibility occurring during the considered time period. Interpreting
formula (2.64) for the ball, the ball exergy bball drop is:

bball = mc
(

Tinl − 389 − T0 ln
Tinl

389

)
(h)

To calculate the exergy b of the ball emission, formula (6.8) can be applied:

b = �

(
T4 − 4

3
T0T3 + 1

3
T4

0

)
(i)

Expressing the instantaneous ball temperature T from formula (b) the total
exergy emitted by the ball in the considered time t is:

t∫
0

b dt = �

⎛⎝ t∫
0

T4
inl e4AAtdt − 4

3
T0

t∫
0

T4
inl e3AAtdt + 1

3
T4

0 dt

⎞⎠
= �

[
T4

inl
4AA

(e4AAt − 1) − 4
3

T0T3
inl

3AA
(e3AAt − 1) + 1

3
T4

0 t

]
(j)

Based on the calculated terms of equation (g) the drop of the internal exergy
of the ball (assumed as basic 100%) equal Bball,A = 1065.5 kJ is spent for the
exergy of the ball emission (–63.72%) and on the exergy loss (–36.28%) due to
irreversibility, as shown in column 3 of Table 6.4.
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The same value 36.28% on the exergy loss can also be obtained based on
the Gouy–Stodola law, equation (2.60), according to which the overall entropy
growth � is multiplied by T0. The entropy growth � consists of entropy calcu-
lated according to formula (5.24) for the entropy at the environment temperature:

s0 = 4
3

�T3
0 t (k)

for the ball emission entropy:

s = 4
3

�

t∫
0

T3dt = 4
3

�

t∫
0

T3
inle

3AAtdt = 4
3

�T3
inl

3AA
(e3AAt − 1) (l)

and for the ball material entropy drop, calculated based on equation (2.38),
neglecting the pressure term:

sball = −mc ln
Tinl

T
(m)

Thus:

�b = T0 � = T0 (−s0 + sball + s) (n)

(B) Environment temperature T0 is varying in time t:
Assume now the environment temperature growing in time, e.g., as follows:

T0 = T0,inl e Att (o)

where At = 2.5 × 10−5 1/s is the assumed constant and T0,inl =280 K is the initial
value of the environment temperature which, for better comparison, is equal to
the environment temperature assumed to be constant in case A: T0,inl = (T0)A =
280 K.

Assume the solution for T in the form analogous to (b):

T = Tinle AB t (p)

where AB is a constant for case B.
Equation (a) has to be modified accordingly to the considered case (B) for

T0 �= const. Dividing equation (a) by m × c × dt, expressing e0 and e by respective
temperatures; T0 from equations (o) and T , and calculating the derivative dT/d�

based on equation (p), equation (a) becomes as follows:

Tinl AB e AB t = �

mc

(
T4

0,inle
4,Att − T4

)
(r)

Substitute the condition that for t = 0, the ball temperature has to be T = Tinl.
Then equation (r), with constant AB instead of AA, becomes exactly the same
as condition (d). Thus, AB = AA = 8.2561 × 10−6 1/s. Obviously, the deter-
mined value AB is valid only for m, c, and (T0)A = (T0,inl)B assumed to be like
case A.
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For the considered case B, equation (a) can be now used again; with the
emission e0 and e expressed by the respective temperatures from equations (o)
and (p). Integrating from 0 to t:

t∫
0

�
(
T0,inl e Att)4

dt = mc (T − Tinl) +
t∫

0

�
(
Tinle AB t)4

dt

and after calculations of integrals and rearranging:

T = Tinl + �

4 mc

[
T4

0.inl

At
(e4,Att − 1) − T4

inl
AB

(e4,AB t − 1)

]
(s)

For example, when substituting t = 3600 s in formula (s), the obtained tem-
perature is T = 389.77 K which is a little larger in comparison to values 389.00
K obtained in case A.

Further, consider the cooling ball during time period t = 3600 s from
Tinl = 400 K to Tfin,B = 389.77 K. Based on the calculated terms of equation
(a), interpreted for case B, the drop of the internal energy of the ball (assumed
as 100%) equal to Eball,B = 3416 kJ and the absorbed environment emission
(44.20%) are spent for the ball emission (–144.20%), as shown in column 4 of
Table 6.4.

For the considered case B (T0 �= constant), the exergy balance equation for an
infinitely short time period dt, is:

t∫
0

b0 dt = 0 = −bball +
t∫

0

b dt + �b + �be (t)

The drop of ball exergy:

bball = mc
(

Tfin,B − T0,fin − T0,fin ln
Tfin,B

T0,fin
− Tinl,B + T0,inl + T0,inl ln

Tinl,B

T0,inl

)
(u)

Based on equation (i) the exergy of the ball emission:

t∫
0

b dt =�

{
T4

inl
4AB

(e4AB t −1) − 4
3

T0,inlT3
inl

At + 3AB
[e (At+3AB )t − 1]+ 1

3

T4
0,inl

4At
(e4Att −1)

}
(w)

The exergy loss �b due to irreversibility can be presented by a formula with
three members corresponding to three entropy changes: negative (disappearing)
entropy of environment emission, negative (cooled ball) entropy change of the
ball, and positive (appearing) entropy of the ball emission:

�b = −
t∫

0

T0s0 dt +
t∫

0

T0s dt −
t∫

0

T0sball dt = − 4
3

� T4
0,inl

4At
(e4Att − 1)

+ 4
3

T0,inlT3
in

At + 3AB
[e (At+3AB )t − 1] − mcT0 inl ln

Tinl

Tfin,B
(e Att − 1) (x)
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The exergy loss �be due to increasing environment temperature is calculated
from equation (t). Based on the calculated terms of equation (t) the drop of
the internal exergy of the ball (assumed as basic 100%) equal Bball,B = 3,504.1
kJ is spent for the exergy of the ball emission (–15.72%), for the exergy loss
(–75.25%) due to irreversibility, and for the exergy loss (–9.03%) due to increased
environment temperature, as shown in column 5 of Table 6.4.

On the other hand, from equation (t) the following formula on �be for the
considered example can be derived:

�be = �

[
T4

0,inl

4At
(e4Att −1) −

T4
inl,B

4AB
(e4AB t −1)

]
+ mc[(T0,inl−T0, f in)−(Tinl,B − Tfin,B )]

+ mc
{

T0,inl

[
(e Att − 1) ln

Tinl,B

Tfin,B
+ ln

Tinl,B

T0,inl

]
− T0,fin ln

Tfin,B

T0,fin

}
(y)

Formula (y) shows that in the considered case B the value of �be with chang-
ing environment temperature is not simple. The effect of the varying environ-
ment temperature can be studied based on the exemplary numerical results
shown in Table 6.4.

6.10 Radiation of Surface of Nonuniform Temperature

6.10.1 Emission Exergy at Continuous Surface
Temperature Distribution

In practical engineering calculations, isothermal surfaces for which
the temperature distribution is uniform and expressed with a con-
stant value for the surface temperature at every point of the surfaces
are usually considered. In real situations the surfaces usually are not
isothermal and the surface temperature varies from point to point. The
conductive heat transfer within a body renders the temperature of
the body surface to be changing most continuously (smooth tempera-
ture distribution). For an elemental part dA of the considered surface
A, the emission exergy dB can be determined based on formula (6.10)
as follows:

dB = ε
�

3

(
3T4 + T4

0 − 4To T3) dA (6.71)

where the environment temperature T0 = const, the local surface tem-
perature T depends on location on surface; e.g., T = T(x, y), and
the emissivity ε can depend on the local temperature; ε = ε (T) =
ε [T (x, y)]. The element of area A is dA = dx × dy. The integration
of equation (6.71):

B =
∫
A

ε
�

3

(
3T4 + T4

0 − 4To T3)dA (6.72)
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can be difficult and the numerical interpretation of (6.72) would be as
follows:

B =
∑

i

[
ε

�

3

(
3T4 + T4

0 − 4To T3)]
i
�Ai (6.73)

where B (kW) is the total emission exergy radiating from the consid-
ered surface of area A.

Example 6.5 A flat ceramic surface has dimensions 10 × 9 m. In the considered
case, for rectangular coordinates x and y, (0 ≤ x ≤ 10) and (0 ≤ y ≤ 9) the surface
temperature T(x, y):

T = 400 + 2x1.6 + 0.5y2 (a)

and the surface emissivity ε(T):

ε = 0.86 + 0.153
(

1 − T
400

)
(b)

To calculate the emission exergy, equation (6.73) is applied as follows:

B =
i=10∑
i=0

j=9∑
j=0

ε(Ti, j )
(

3T4
i, j + T4

0 − 4T0T3
i, j

)
(�x �y)i, j (c)

If the constant increments �x = �y = 1 m are assumed, then (�x × �y)i, j =
1 and xi = i and yj = j . The temperature and emissivity are then calculated
based on equation (a) and (b), respectively, as follows:

Ti, j = 400 + 2i1.6 + 0.5 j2 (d)

εi, j = 0.86 + 0.153
(

1 − Ti, j

400

)
(e)

For example, based on equation (d), Figure 6.13 shows the temperature dis-
tribution over the considered surface.

Figure 6.14 presents two different distributions (for T0 = 303 K and T0 = 243
K) of the emission exergy b radiated from the considered ceramic surface. Exergy
values of the unchanged surface temperatures differs significantly and for high
temperature T0 = 303 K (30 ◦C), are smaller than those for T0 = 243 K (–30 ◦C).
The total emission exergy at T0 = 303 K is B303 = 44.211 kW, whereas at T0 = 243
K is B243 = 78.719 kW.

6.10.2 Effective Temperature of a Nonisothermal Surface
In some situations the considered surface, although nonisothermal,
has its temperature not significantly diversified. If high exactness is
not required in practical calculations, then, for better convenience and
simplification, the effective temperature of the surface can be introduced
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into consideration. Three different cases of energy analysis are possi-
ble. First, if only the convective heat transfer is considered, then the
energetic convective effective temperature Teff,E,h can be used. Second,
if only the radiation is analyzed, then the energetic radiative effective
temperature Teff,E,r can be applied. In the third case the convection
together with radiation is taken into account and then the energetic
effective temperature Teff,E can be considered. The definitions of these
temperatures take into account the equivalence based on the averaged
potential, which is the heat transfer coefficient h and surface temper-
ature (for the convection) and the surface temperature to the fourth
power (for the radiation).

For these three temperatures the definition equations for any sur-
face A, together with numerical interpretation, are:

Energetic Effective Temperature
Pure convection:

AhTeff,E,h =
∫
A

hT dA (6.74a)

or numerically:

AhTeff,E,h =
∑

i

hi Ti �Ai (6.74b)

pure radiation:

A�T4
eff,E,r = �

∫
A

T4dA (6.75a)

or numerically:

A�T4
eff,E,r = �

∑
i

T4
i �Ai (6.75b)

combined convection with radiation:

AhTeff,E + A�T4
eff,E =

∫
A

hT dA + �

∫
A

T4dA (6.76a)

or numerically:

A
(
hTeff,E + �T4

eff,E

) =
∑

i

hi Ti�Ai + �
∑

i

T4
i �Ai (6.76b)

Analogically for exergetic consideration the effective tempera-
tures for any surface A can be defined as follows:
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Exergetic Effective Temperature:
Pure convection:

AhTeff,B,h

(
1 − T0

Teff,B,h

)
=

∫
A

hT
(

1 − T0

T

)
dA (6.77a)

numerically:

AhTeff,B,h

(
1 − T0

Teff,B,h

)
=

∑
i

hi Ti

(
1 − T0

Ti

)
�Ai (6.77b)

only radiation:

A
�

3

(
3T4

eff,B,r + T4
0 − T0T3

eff,B,r

) = �

3

∫
A

(
3T3 + T4

0 − T0T3) dA

(6.78a)
numerically:

A
�

3

(
3T4

eff,B,r + T4
0 − T0T3

eff,B,r

) = �

3

∑
i

(
3T4

i + T4
0 − T0T3

i

)
�Ai

(6.78b)
including convection and radiation:

AhTeff,B

(
1 − T0

Teff,B

)
+ A

�

3

(
3T4

eff,B + T4
0 − T0T3

eff,B

)
=

∫
A

hT
(

1 − T0

T

)
dA+ �

3

∫
A

(
3T4 + T4

0 − T0T3)dA
(6.79a)

numerically:

AhTeff,B

(
1 − T0

Teff,B

)
+ A

�

3

(
3T4

eff,B + T4
0 − T0T3

eff,B

)
= ∑

i
hi Ti

(
1 − T0

Ti

)
�Ai + �

3

∑ (
3T4

i + T4
0 − T0T3

i

)
�Ai

(6.79b)

Example 6.6 The accuracy of the effective temperature of a surface can be eval-
uated as follows. A black surface has a linear temperature distribution that can
be approximated with three equal increments of a surface with three respec-
tive surface temperatures Ti , (i = 1, 2, 3). It is assumed that a constant value of
convection heat transfer coefficient h = 5 W/(m2 K) and an environmental tem-
perature T0 = 288.16 K. Table 6.5 demonstrates numerically calculated values of
the effective temperatures from respective equations. As a result, for a moderate
growth of surface temperature (from 320 to 340 K) all the effective temperatures
vary insignificantly. However, for the larger growth of surface temperatures,
e.g., from 320 to 720 K, except Teff,h all the other effective temperatures change
significantly. As might be expected, the effective temperature for radiation is
higher than the effective temperature for radiation together with convection.



165E x e r g y o f E m i s s i o n

Ti=1 Ti=2 Ti=3 Teff,E ,h Teff,E ,r Teff,E Teff,B,h Teff,B,r Teff,B

320 330 340 330 330.30 330.19 330 330.98 330.17

320 420 520 420 442.21 437.64 420 454.12 440.15

320 520 720 520 585.41 578.83 520 601.84 588.03

Applied equation (6.74b) (6.75b) (6.76b) (6.77b) (6.78b) (6.79b)

TABLE 6.5 Calculated Values of the Effective Temperatures of a Black Surface

Nomenclature for Chapter 6
A surface area, m2

A constant value, 1/s
A, B, C, D, E points in Figure 6.2
c specific heat, J/(kg K)
Cb = 5.6693 W/(m2 K), constant for black radiation
c0 speed of light in a vacuum, m/s
D diameter, m
e emission density, W/m2

b exergy of emission density, W/m2

h convective heat transfer coefficient, W/(m2 K)
i, j successive numbers
m mass, kg
q heat, W/m2

s entropy of emission density, W/(m2 K)
t time, s
T absolute temperature, K
V volume, m3

W work, J
x temperature ratio T/T0

x coordinate, m
y coordinate, m

Greek
�b exergy loss due to irreversibility, W/m2

�B exergy loss due to irreversibility, W
� increase
ε emissivity of surface
� view factor
� overall entropy growth, W/(m2 K), or W/K

 density, kg/m3

� = 5.6693 × 10−8 W/(m2 K4), Boltzmann constant for black
radiation

� ratio of emission exergy to emission energy
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Subscripts
A, B different cases
A, B, C, D, E points in Figure 6.2
a absorption
b black
B exergy
ball ball
c cold
E energy
e emission
ET empty tank
eff effective
h convection
inl inlet
0 environment
q heat
sky sky
S system
S solar
w� water vapor
x denotation
y denotation
1, 2 denotation



C H A P T E R 7
Radiation Flux

7.1 Energy of Radiation Flux
In Section 5.7, the energy u, J/m3, of trapped radiation within a space
was discussed. In practice, radiation can also be considered as a flux,
J/s, which originates from a surface of known properties. For example,
emission energy can be calculated for the black or gray surfaces with
equations (3.21) or (3.22), respectively. However, generally, the radi-
ation flux propagating in space can consist of many emissions from
unknown surfaces and with unknown temperatures. Such radiation
flux can be categorized as the radiosity of an arbitrary spectrum. The
radiosity can be calculated if the spectrum is determined, e.g., from
measurement.

The elemental radiation energy flux, J/s, expressed as an elemental
radiosity d3 J (the elemental order is selected based on the number of
component elementals) propagating within a bundle of rays within a
solid angle d� and passing through an elemental surface dA is calcu-
lated as:

d3 J = i0 cos � dA d� (7.1)

where � is the angle between the normal to the elementary surface
dA and the direction of the considered solid angle d�. The magnitude
i0, W/(m2 sr), is the normal radiation intensity and, as mentioned in
Chapter 3, expresses energy passing within a unitary solid angle, in
unit time and through a unitary surface area perpendicular to the
direction of propagation. Generally, when radiation is polarized:

i0 =
�=∞∫

�=0

(i0,�,min + i0,�,max) d� (7.2)

The quantities i0,�,min and i0,�,max depend on frequency �, 1/s, and
are the principal (smallest and largest) mutually independent (inco-
herent), polarized at right angles to each other, values of the monochro-
matic component of radiation intensity, J/(m2 sr).

167
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However, for nonpolarized radiation i0,�,min = i0,�,max = i0,� and
from (7.2):

i0 = 2

�=∞∫
�=0

i0, � d� (7.3)

or:

i0 = 2

�=∞∫
�=0

i0,� d� (7.4)

where i0,� and i0,� are the normal monochromatic radiation intensity
of the linearly polarized radiation depending on frequency, J/(m2 sr),
and wavelength, W/(m3 sr), respectively.

Equations (7.3) and (7.4) express the same amount of energy.
As mentioned already in Section 3.1, in experimental physics the
spectrum of this energy is considered to be a function of wavelength,
whereas for theoretical analysis it is more convenient using the
spectrum as a function of the frequency, which does not change
during propagation of radiation through different media. The rela-
tion between the wavelength and frequency (� = c0/�) is shown by
equation (3.1).

If the algebraic sign is assumed the same for the considered in-
tervals d� and d�, then, from (3.1), for propagation of radiation in
vacuum is:

d� = c0
d�

�2 (7.5)

Equating the right-hand sides of equations (7.3) and (7.4) and us-
ing (7.5), one obtains:

i0,� = c0i0,�

�2 (7.6)

The relation between the normal radiation intensity ib,0,�, and the
black monochromatic emission density eb,� expressed by equation
(3.13) is as follows:

eb,� = 2�ib,0,� (7.7)

where factor 2 appears because the two components shown in equa-
tion (7.2) are taken into account, and the value � results from equation
(3.28). Using the expressions for the constants c1 = 2 × � × h × c2

0 and
c2 = h × c0/k, equation (3.13) can be applied in the following form:

ib,0,� = c2
0h
�5

1

exp
( c0h

k�T

) − 1
(7.8)
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Combining relation � × � = c0 with equations (7.5) and (7.6), one
obtains the formula for the normal monochromatic (given frequency �)
radiation intensity of linearly polarized black radiation at temperature
T as a function of frequency:

ib,0,� = h�3

c2
0

1
exp

( h�
kT

) − 1
(7.9)

Expression (4.14) can be interpreted for calculation of any radia-
tion energy from a certain surface A′ arriving in the considered surface
A. Therefore, the radiosity density jA′ , W/m2, is considered as follows:

jA′ =
�=2�∫

�=0

i0 cos � d� (7.10)

where � is the solid angle under which surface A′ is seen from element
dA of surface Aas shown in Figure 7.1. The relation between distances
shown in this Figure 7.1 is r = R × sin �; thus the elemental solid angle
d� is:

d� ≡ dA′

R2 = (R d�) (r d�)
R2 = sin � d� d� (7.11)

The flat angles of � (called declination) and � (called azimuth) are
defined in Figure 7.1. For a polarized radiation, using equation (7.2)
and (7.11) in equation (7.10):

jA′ =
�= �

2∫
�=0

�=2�∫
�=0

�=∞∫
�=0

(i0,�,min + i0,�,max) cos � sin � d� d� d� (7.12)

r

R

dβ

dϕ

dA'

dA ϕ

β

FIGURE 7.1
Scheme for
calculation of
radiation flux (from
Petela, 1962).
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The monochromatic components i0,�,min and i0,�,max in equation
(7.12) depend on angles � and � (Figure 7.1), frequency �, and the
direction of polarization.

For nonpolarized radiation the components are equal, i0,�,min =
i0,�,max = i0,� and from (7.12) is:

jA′ = 2

�= �
2∫

�=0

�=2�∫
�=0

�=∞∫
�=0

i0, � cos � sin � d� d� d� (7.13)

To calculate the integral of equation (7.13), for each point P of
surface Aone has to know how the monochromatic radiation intensity
depends on the angles � and � (Figure 7.1) and on the frequency �:

i0,�,P = i0,�,P (�, �, �) (7.14)

When radiation is nonpolarized and propagates uniformly in all
directions, then the monochromatic radiation intensity depends only
on frequency, i0,�(�), and the density of radiosity of such radiation is:

jA′ = 2

⎛⎜⎝∫
�

∫
�

cos � sin � d� d�

⎞⎟⎠ ∫
�

i0,� d� (7.15)

Additionally, if from any point of surface A the surface A′ is seen
within the solid angle 2�, then the double integral in equation (7.15)
has value � and the density of radiosity is:

j = 2�

∫
�

i0,� d� (7.16)

and, in such a case, the density of radiosity is the same at any point of
the space between surfaces A and A′.

Another case to be considered is uniform radiation propagating
in an arbitrary solid angle. Then, using equation (7.3) in (7.15) one
obtains:

jA′ = i0

∫
�

∫
�

cos � sin � d� d� (7.17)

or, dividing side by side equations (7.15) and (7.16):

jA′ = j
�

∫
�

∫
�

cos � sin � d� d� (7.18)

For the black radiation of given temperature T, the energy spec-
trum is determined by formula (7.9). After substituting equation (7.9)
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into (7.16) and after integrating, we obtain:

jA′ ≡ jb = ac0

4
T4 ≡ eb (7.19)

Comparison of formulae (7.19) and (3.21) confirms that for black
radiation the radiosity is equal to the emission.

In conclusion, the formulae for radiosity presented in this section
can be applied to many possible cases of radiation.

7.2 Entropy of Radiation Flux

7.2.1 Entropy of the Monochromatic Intensity of Radiation
Formula (5.23) for the entropy density of a photon gas residing in a
system in an equilibrium state was derived in Section 5.5. However,
the radiation entropy in the general case can be discussed by the fol-
lowing historically first derivations by Planck. The derivations are still
recognized as leading to a sufficient approximation.

In analogy to equation (7.1) for radiosity, the elemental entropy of
radiation, W/K, expressed as the radiosity entropy d3S propagating
within a bundle of rays in a solid angle d� and passing through the
elemental surface dA, is:

d3S = L0 cos � dA d� (7.20)

where � is the angle between the normal to the elementary surface dA
and the direction of the considered solid angle d�. The symbol “L”
is assumed after Planck (1914); however, in the present consideration
the subscript “0” is added to emphasize the meaning of the symbol;
L ≡ L0, W/(K m2 sr). The magnitude L0 is the entropy of the direc-
tional normal radiation intensity, which is the entropy passing within
a unitary solid angle, in unit time, and through a unitary surface area
perpendicular to the direction of propagation. Generally, when radi-
ation is polarized:

L0 =
�=∞∫

�=0

(L0,�,min + L0,�,max) d� (7.21)

where L0,�,min and L0,�,max depend on frequency �, 1/s, and are the
principal (i.e., smallest and largest) mutually independent (incoher-
ent), polarized at right angles to each other, values of the monochro-
matic component of the entropy of radiation intensity, J/(K m2 sr).

For nonpolarized radiation, L0,�,min = L0,�,max = L0,� and from
(7.21) is:

L0 = 2

�=∞∫
�=0

L0,� d� (7.22)
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or

L0 = 2

�=∞∫
�=0

L0,�d� (7.23)

where L0,� and L0,� are the entropies of monochromatic intensity of
linearly polarized radiation dependent, respectively, on frequency,
J/(m2 K sr), and on wavelength, W/(m3 K sr). Equations (7.22) and
(7.23) express the same amount of entropy.

Now, the pivotal formulae derived by Planck for the entropy con-
siderations of black radiation are:

Lb,0,� = k�2

c2
0

[(1 + X) ln (1 + X) − X ln X] where X ≡ c2
0ib,0,�

�3h
(7.24)

or

Lb,0,� = c0k
�4 [(1 + Y) ln (1 + Y) − Y ln Y] where Y ≡ �5ib,0,�

c2
0h

(7.25)
where ib,0,� and ib,0,� are the monochromatic normal directional inten-
sity for black radiation.

7.2.2 Entropy of Emission from a Black Surface
The entropy s, W/(K m2), expresses the entropy density of radiation
emitted by the unit surface area of a body in all the directions of the
front hemisphere in unit time:

s =
�=2�∫

�=0

L0 cos � d� (7.26)

where L0, W/(m2 K sr), is the entropy of the directional normal radia-
tion intensity of the emitting surface. If the emission of the surface is
the same in all directions, then L0 is constant and after using equation
(7.11) in equation (7.26), is:

s = L0

�=2�∫
�=0

d�

�=�/2∫
�=0

cos � sin � d� = �L0 (7.27)

If at any point P the surface element dA emits energy only within
a solid angle � ≤ 2�, and if the emission within this solid angle is
uniform (L0 = constant), then the entropy of such emission from point
P is:

s� = L0

�=�/2∫
�=o

�=2�∫
�=0

cos � sin � d� d� (7.28)
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Another form of formula (7.28) can be obtained by division of
equations (7.27) and (7.28) side by side:

s� = s
�

�=�/2∫
�=o

�=2�∫
�=0

cos � sin � d� d� (7.29)

Equation (7.9) for the black emission of entropy can be inserted
into (7.24) and the other Planck’s formula is obtained:

Lb,0,� = h�3

c2
0T

1
exp h�

kT − 1
− k�2

c2
0

ln
(

1 − exp
−h�

kT

)
(7.30)

Now, the formula for entropy of the uniform emission sb from a
black surface at temperature T will be obtained. For a black surface
the entropy L0 of radiation intensity is denoted as Lb,0, (L0 = Lb,0).
Inserting equation (7.22) and (7.30) into (7.27), and integrating, as
shown, e.g., by Petela (1961a), the following relations are obtained:

sb = 8 �5k4

45 c2
0h3

T3 = ac0

3
T3 = 4

3
� T3 (7.31)

Similar to equation (3.22) for the emission density, the entropy
density of emission from a perfectly gray surface can be determined
as follows:

s = εsb = ε
ac0

3
T3 = ε

4
3

�T3 (7.32)

7.2.3 Entropy of Arbitrary Radiosity
Now, let us introduce the entropy flux, W/(K m2), which is the entropy
of radiosity density s j,A′ passing the unit control surface area A′ in a
space, in unit time, and falling on the element dA of the considered
surface A. Obviously, in certain particular case which is excluded for
the time being, such entropy can be also interpreted as the entropy of
emission in unit time and from the surface area of a body. The entropy
s j,A′ is:

s j,A′ =
∫
�

L0 cos � d� (7.33)

where � is the solid angle under which the surface A′ is seen from the
element dA of the surface A.

Further presentation of entropy formulae is analogous to the en-
ergy formulae discussed in Section 7.1. For polarized radiation, after
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using (7.21) in (7.33), we obtain:

s j,A′ =
�=�/2∫
�=0

�=2�∫
�=0

�=∞∫
�=0

(L0,�,min + L0,�,max) cos � sin � d� d� d�

(7.34)
The monochromatic components L0,�,min and L0,�,max in equation

(7.34) depend on angles � and � (Figure 7.1), frequency �, and on the
manner of polarization.

For nonpolarized radiation, the components are equal, L0,�,min =
L0,�,max = L0,� and from (7.34):

s j,A′ = 2

�=�/2∫
�=0

�=2�∫
�=0

�=∞∫
�=0

L0,� cos � sin � d� d� d� (7.35)

For calculation of the integral in equation (7.35) the function (7.14)
has to be known and used in (7.24).

If the entropy of radiosity density of surface A′ is the same for
all its points and in all directions, then the entropy of the radiosity
density coming from surface A′ to surface A is:

s j,A′ = 2

⎛⎜⎝∫
�

∫
�

cos � sin � d� d�

⎞⎟⎠ ∫
�

L0,� d� (7.36)

The entropy L0,� depends only on the frequency � and for calcu-
lation of this entropy from equation (7.24) the function i0,�(�) has to
be known.

For a radiation falling upon surface A within solid angle 2� the
double integral in equation (7.36) has the value � and the entropy of
radiosity density is:

s j = 2�

∫
�

L0,� d� (7.37)

and in such case the radiosity density s j is the same at any point of
the space between surfaces A and A′.

For uniform radiation arriving at a point P of surface A within
a solid angle � the entropy of radiosity density is obtained by using
equation (7.22) in (7.35):

s j,� = L0

∫
�

∫
�

cos � sin � d� d� (7.38)

or by division side by side of equations (7.35) and (7.22):

s j,� = s j

�

∫
�

∫
�

cos � sin � d� d� (7.39)
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where � and � are the coordinates of directions within the solid
angle �.

For uniform black radiation of given temperature T the energy
spectrum is determined by formula (7.9). After substituting equation
(7.24) and (7.9) into (7.36) and after integrating, we obtain:

s j,b = ac0

3
T3 ≡ sb (7.40)

Comparison of formulae (7.31) and (7.40) confirms that for uni-
form black radiation the entropy of radiosity is equal to the entropy
of emission.

In conclusion, the formulae presented in this section concerning
the entropy of radiosity can be applied in many possible cases of
radiation.

7.3 Exergy of Radiation Flux

7.3.1 Arbitrary Radiation
Often the temperature and properties (e.g., emissivity) of the radia-
tion source from which the considered radiation arrives are unknown.
Such radiation is categorized as arbitrary radiation, which is the radia-
tion of any irregular spectrum that is not expressible, e.g., by the ideal
black or gray model. The arbitrary radiation can be specified by the
radiosity calculated from the results of spectral measurement deter-
mining the solid angle of the arriving radiation and its components of
monochromatic intensity as a function of wavelength. The following
formulae for the calculation of exergy in various cases of arbitrary
radiation flux were derived for the first time by Petela (1961) and then
modified by Petela (1962, 1964).

As was explained in Section 6.1, the exergy of radiation is related
to black radiation (i.e., photon gas) at the environment temperature
T0 and does not depend on environmental emissivity; it also does not
depend on the emissivity or temperature of any other surrounding
surfaces that are not components of the environment. Thus, when
considering the exergy of arbitrary radiation arriving at a certain sur-
face, the properties of this surface do not affect the final results of
calculating the exergy. These properties can be assumed appropri-
ately to make the calculation simplest. Thus, it is further assumed
that a certain considered surface absorbing arbitrary radiation is the
environment surface for which within the solid angle � emissivity is
ε = 1 and beyond the angle � the emissivity is ε = 0.

In order to calculate the exergy b A′ of arbitrary radiation, at its
radiosity jA′ , originating from certain unknown surface A′ and arriv-
ing in the point P of surface A, one can consider the element dA at
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T0

T0 dA

ω

δbq

j
A'

jA→A'

b
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FIGURE 7.2 Scheme
of energy and
exergy balances
for arbitrary
radiation (from
Petela, 1962).

point P of the surface A (Figure 7.2). The elemental surface dA, due to
connection with a heat source, maintains a steady environment tem-
perature T0. Surface A is black (i.e., radiosity is equal black emission)
and able to emit and absorb radiation within the solid angle �. The
energy fluxes (solid arrows) and exergy fluxes (dashed arrows) shown
in Figure 7.2 are referred to 1 m2 surface. The energy balance equation
for the elemental surface dA is:

jA′ = q + jA→A′ (a)

where q is heat transferred from the considered elemental surface dA
to the heat source at environment temperature T0. Quantity jA→A′ is
the energy radiating from the element dA within the solid angle � and
can be determined by the following interpretation of formula (7.18):

jA→A′ = (eb)T=T0

�

∫
�

∫
�

cos � sin � d� d� (b)

where eb in formula (b) is the emission energy of the black surface at
temperature T0, determined by formula (3.21). Substituting (b) into (a)
the heat q can be determined as:

q = jA′ − (eb)T=T0

�

∫
�

∫
�

cos � sin � d� d� (c)

According to the definition of exergy, the change of exergy of the
heat source of the environmental temperatures is zero, and also zero is
the exergy of emission at the environmental temperature. Therefore,
the exergy bA′ of unknown arbitrary radiation can be calculated from
the following exergy balance equation (for 1 m2 surface):

bA′ = 	b (d)
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where 	b is the exergy loss caused by the irreversibility of simul-
taneous emission and the absorption of radiation occurring at the
considered surface dA. The exergy loss 	b is calculated from the
Gouy–Stodola law (2.60):

	b = T0� (e)

in which the overall entropy growth �, is:

� = q
T0

− sj,A′ + sj,A→A′ (f)

where s j,A′ is the entropy of radiosity of radiation arriving at the el-
emental surface dA. Quantity sj,A→A′ is the entropy of emission of
surface A within a solid angle �, determined from formula (7.39) as
follows:

s j,A→A′ = (sb)T=T0

�

∫
�

∫
�

cos � sin � d� d� (g)

where sb in formula (g) is the entropy of the emission of the black
surface at temperature T0, which can be determined based on formula
(7.32).

After using (f) and (g) in (e):

	b = q − T0

⎛⎜⎝sj,A′ − (sb)T=T0

�

∫
�

∫
�

cos � sin � d� d�

⎞⎟⎠ (h)

Substituting now (h) and (c) into (d) and expressing entropy sb

based on equation (7.32), and after rearranging, one obtains:

bA′ = jA′ − T0s j,A′ + � T4
0

3 �

∫
�

∫
�

cos � sin � d� d� (7.41)

Formula (7.41) can be used for any categorized case of radiation
for which radiosity jA′ and entropy sj,A′ have to be determined ap-
propriately. Total exergy BA′−A, W, of arbitrary radiation arriving at
surface A from the unknown surface A′ can be determined as:

BA′→A =
∫
A

bA′ dA (7.42)

Further, some typical formulae for categorized radiation cases are
developed based on formula (7.41).
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7.3.2 Polarized Radiation

Exergy of Arbitrary Polarized Radiation
The exergy bA′ , W/m2, of the arbitrary polarized radiation originating
from an unknown surface A′ and arriving at point P of the consid-
ered surface A per unit time and unit absorbing surface area, can be
calculated from the formula derived by substituting (7.12) and (7.34)
into (7.41):

bA′ =
∫
�

∫
�

∫
�

(i0,�,min + i0,�,max) cos � sin � d� d� d�

−
∫
�

∫
�

∫
�

(L0,�,min + L0,�,max) cos � sin � d� d� d�

+ � T4
0

3 �

∫
�

∫
�

cos � sin � d� d� (7.43)

In order to utilize formula (7.43) one has to determine the solid
angle � within which the surface A′ is seen from point P on surface A,
and to make measurements for determination of i0,�,min and i0,�,max as a
function of frequency � and direction defined by � and �. Dependence
(7.6) between i0,�,min and i0,�,max, and respective i0,�,min and i0,�,max can
be useful. The respective entropy components L0,�,min and L0,�,max are
determined based on formula (7.30). The total exergy of the considered
arbitrary radiation arriving at all the points of surface A is calculated
from formula (7.42).

7.3.3 Nonpolarized Radiation

Exergy of Arbitrary Nonpolarized Radiation
The formula for such radiation is obtained after substituting (7.13) and
(7.35) into (7.41):

bA′ =
∫
�

∫
�

∫
�

i0,� cos � sin � d� d� d�

−
∫
�

∫
�

∫
�

L0,� cos � sin � d� d� d�

+ � T4
0

3 �

∫
�

∫
�

cos � sin � d� d� (7.44)

In order to utilize formula (7.44) one has to determine the solid
angle � within which the surface A′ is seen from point P on surface
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A, and based on measurements, the i0,� as a function of frequency �
and direction defined by � and �, has to be determined. The formulae
(7.6), (7.30), and (7.42) can be also useful.

7.3.4 Nonpolarized and Uniform Radiation

Exergy of Arbitrary, Nonpolarized, and Uniform Radiation
The formula for such radiation is derived by substituting equations
(7.15) and (7.36) into (7.41):

bA′ =
⎛⎝2

∫
�

i0,� d� − 2 T0

∫
�

L0,� d� + �T4
0

3 �

⎞⎠ ∫
�

∫
�

cos � sin � d� d�

(7.45)

Before utilizing formula (7.45) the solid angle � within which the
surface A′ is seen from point P on surface A, has to be determined
and based on measurements the radiation spectrum as function of
frequency, i0,�(�), has to be given. Again, the formulae (7.6), (7.30),
and (7.42) can be useful.

7.3.5 Nonpolarized, Uniform Radiation in a Solid Angle 2�

Exergy of Arbitrary, Nonpolarized, and Uniform Radiation
Propagating Within a Solid Angle 2�
The formula for such radiation is derived by substituting equations
(7.16) and (7.37) into (7.41):

b = 2�

∫
�

i0,� d� − 2 �T0

∫
�

L0,� d� + �

3
T4

0 (7.46)

To utilize formula (7.46) the function i0,�(�), based on measure-
ments, is required. Formulae (7.6) and (7.30) can be useful. The total
exergy of the considered radiation arriving to all the points of the
surface A is calculated as follows:

B = bA (7.47)

Example 7.1 Figure 7.3 shows the measured monochromatic normal radiation
intensity i0,� (solid line) of radiation, as a function of wavelength �, for the water
vapor layer of the equivalent thickness 1.04 m at temperature 200◦C according to
Jacob (1957). The product of the thickness and the partial pressure for the vapor
is 10.4 m kPa. The monochromatic normal intensity ib,0,� for black radiation,
calculated from equation (7.8), is also shown for comparison (dashed line). For
approximate calculation, instead of the surface area under a solid line, the area of
seven rectangles (dotted line) is taken into account as the integral energy emitted
by the vapor upon the hemispherical enclosure. The areas of these rectangles
can be recognized as the absorption bands of width �� spread symmetrically
on both sides of wavelength �, the values of which are given in Table 7.1.
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FIGURE 7.3 Radiation of water vapor layer of thickness 1.04 m at
temperature 473.15 K and pressure 0.1 MPa (from Jacob, 1957).

Exergy of radiation arriving in 1 m2 of the enclosing hemispherical wall can
be calculated from formula (7.46), in which the frequency should be eliminated
by wavelength. Each integral in formula (7.46) can be replaced by the sum of
appropriate products:

b = �

3
T4

0 + 2�
∑

i0, � �� − 2� T0
∑

L0, ��� (7.48)

� Δ� i0,� × 10−6 i0,�×Δ� L 0,�× 10−4 L 0,�×Δ�

# � m
W

m3 sr

W

m2 K sr
1 2.69 0.66 5.0 3.3 1.07 0.0071

2 6.15 2.8 45.7 128.0 11.72 0.3282

3 7.95 0.8 17.2 13.8 5.41 0.0433

4 9.8 2.9 3.7 10.7 1.56 0.0452

5 14.8 7.1 6.4 45.4 2.38 0.1690

6 21.0 5.3 5.1 27.0 1.83 0.0970

7 26.8 6.3 2.2 13.9 0.78 0.0491

Total 242.1 — 0.7389

TABLE 7.1 Radiation of Water Vapor Layer of Thickness 1.04 m at
Temperature 473.15 K and Pressure 0.1 MPa
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For the assumed temperature T0 = 300 K formula (7.48) yields:

b = 5.6693 × 10−8

3
3004 + 2� × 0.2421 − 2� × 300 × 0.7389 × 10−3

= 0.153 + 1.521 − 1.393 = 0.281 kW/m2

The ratio of the exergy of radiation of the vapor to its energy emission is b/e
= 0.281/1.521 = 0.185. More details of the considered example are discussed by
Petela (1961a).

7.3.6 Nonpolarized, Black, Uniform Radiation in a
Solid Angle 2�

Exergy of Arbitrary, Nonpolarized, Black, and Uniform Radiation,
Propagating Within a Solid Angle 2�
The formula for such radiation is derived by substituting equations
(7.19) and (7.40) into (7.41):

bb = �

3

(
3T4 + T4

0 − 4T0T3) (7.49)

To utilize formula (7.49), only the temperature of the black radia-
tion is required. The total exergy arriving at surface Acan be calculated
from formula (7.47).

It is noteworthy that equation (7.49) is identical to equation (6.8)
derived for the black emission. Formula (7.49) is also as formula (6.30),
at ε = 1, derived from the exergy balance of a gray surface. This same-
ness is a confirmation that the exergy of the black radiation is equal to
the exergy of the emission of the black surface, consequently to this
that the radiosity of the blackbody is equal to its emission.

7.3.7 Nonpolarized, Black, Uniform Radiation Within a
Solid Angle �

Exergy of Nonpolarized, Uniform, Black Radiation Propagating
Within a Solid Angle �
The formula for such radiation can be established analogously to for-
mula (7.18) for radiosity:

bb,� = bb

�

∫
�

∫
�

cos � sin � d� d� (7.50)

where the solid angle � has to be determined by the appropriate ranges
of variation of the both flat angles � (declination) and � (azimuth).
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7.4 Propagation of Radiation

7.4.1 Propagation in a Vacuum
The radiation exergy formulae derived in Section 7.3 are for any radi-
ation arriving at certain surface. The surface can be recognized either
as a body surface, i.e., a certain cross section situated infinitely near
to this surface (abutted on it), or as any arbitrary plane imagined in
space. On its way, the propagating radiation flux can experience dif-
ferent energetic and optical adventures that can affect the radiation
energy, entropy, and exergy.

In the simplest case the radiation propagates in a vacuum or within
a neutral (nonradiating and nonabsorbing) and homogeneous (con-
stant density) medium. For example, such a medium can practically
be a monatomic gas (e.g., He, Ar, etc.) or a diatomic gas (e.g., pure
air, CO, etc.), or their mixture. However, even these gases in the vicin-
ity of any condensed body surface can affect the radiation process
by generating the convective heat transfer that influences the surface
temperature and thus the surface emission. Thus, only the vacuum is
a perfectly nonaffecting propagation of radiation. In a vacuum, dif-
ferent radiation fluxes can propagate independently, unless they are
trapped in the enclosed space lined up with the mirrorlike walls. Then
the equilibrium state of the black photon gas appears at a uniform
temperature. The trapped radiation was discussed in Section 5.2.

Although the intensity of propagating radiation decreases with
the distance to the second power, the directional intensity in the neu-
tral medium remains unchanged. The directional intensity has been
considered, e.g., by Petela (1984), in the situation shown in Figure 7.4.
A surface element dA is the source of the normal directional radiation
intensity i0, W/(m2 sr), which arrives within the cone of the solid an-
gle d� to the element dA′ of another surface. The consideration was
carried out under the assumption that the surface dA represented a
blackbody. Thus, the eventual radiosity of element dA is equal to the
emission of radiation of the determined spectrum corresponding to
the surface temperature. Consideration of radiosity would be more

dω' dω

dA
dA'

r

FIGURE 7.4 Irradiated surface elements.
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complex because it would generally require inclusion of a number of
fluxes of different temperatures and respective spectra.

The surface dA is irradiated by a certain normal directional inten-
sity i ′

0, which arrives within the solid angle d�′. The comparison of
the energy that leaves the element dA for dA′ with the energy arriving
in the element dA′ from dA leads to the following equation:

i0 d� dA = i ′
0 d�′ dA′ (7.51)

After determining the solid angles: d� = dA′/r2 and d�′ = dA/r2,
where r is the distance between dA and dA′, it yields i0 = i ′

0. This means
that the normal directional radiation intensity does not depend on the
distance from the source. It also means that temperature (determined
by spectrum) does not change; however, the amount of energy radi-
ated within the solid angle is changed. The temperature measurement
from a distance is based on such a rule.

A similar reasoning can be carried out with the entropy or exergy
of radiation and, respectively, the same result can be obtained. In the
considered propagation of radiation there is no irreversible process,
such as, e.g., absorption, and the distributed energy of radiation can
be theoretically reversibly concentrated by a perfectly (nonabsorbing)
optical device. Therefore, radiation propagation in a vacuum or in a
neutral medium is a reversible phenomenon and occurs without any
loss of exergy.

The aforementioned attenuation of radiation in space during prop-
agation can be considered as presented, e.g., by Petela (1983). Again,
for simplicity, instead of radiosity j , only the emission e of the black
surface element dA1 shown in Figure 7.5, is considered. The element
dA1 radiates into the front vacuumed hemisphere, but only a part of
the radiation arrives in an arbitrarily situated other surface element
dA2. The distance between the two elements is r .

The flat angles �1 and �2 are between the straight line linking
the surface elements, and the respective perpendicular straight lines
(normal) n1 and n2 to these elements (dA1 and dA2). From element dA1

the element dA2 is seen within a solid angle d�, and the element dA2

can be replaced for the considerations by dA′
2 determined as follows:

dA′
2 = dA2 cos �2 (7.52)

The element dA′
2 is a projection of element dA2 on the surface of

hemisphere of radius r . Therefore, the solid angle d� can be deter-
mined as follows:

d� = dA2 cos �2

r2 (7.53)

The directional radiosity density expressed by formula (3.29) can
be applied to the emission density ( j� = e�) of element dA1 in the
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FIGURE 7.5 Surface elements.

direction determined by angle �1:

e1,�1 = e1

�
cos �1 (7.54)

and the total energy emitted from dA1 and arriving in dA2 within d�
is:

EdA1→dA2 ≡ d2 E1−2 = e1,�1 dA1 d� (7.55)

Using (7.53) and (7.54) in (7.55):

d2 E1−2 = e1

�
cos �1 dA1

dA2 cos �2

r2 (7.56)

and after integration:

E1−2 = e1

�

∫
A1

∫
A2

cos �1 cos �2

r2 dA1 dA2 (7.57)

Formula (7.57) determines this part E1−2 of the emission E1 prop-
agating from the whole surface A1, which arrives at the surface A2.
There is the characteristic inverse square of distance (r2), which deter-
mines the energy attenuation of the radiation propagating in a neu-
tral medium. Based on the consideration in Section 7.5.3, by replacing
emission energy e1 with the exergy b1 of this emission in equation
(7.57), the calculation of the respective amount of exchanged exergy
B1−2 is possible.
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7.4.2 Some Remarks on Propagation in a Real Medium
It was shown in the previous section that, except for attenuation due
to the geometric divergence of flux, nothing happens to the radiating
beam if the beam travels through a vacuum or eventually through
a nonradiative (i.e., perfectly transmitting medium) gas. However,
in general, the radiation flux can fall partly, or totally, upon bodies,
e.g., a cloud of absorbing gas (CO2, H2O CH4, etc,), condensed par-
ticles (droplets, dust, etc.) dispersed in the gaseous medium through
which the beam is traveling. The radiation can weaken, which can
then result in a reduction of energy and a change in the radiation
spectrum.

The dispersed bodies can to some extent absorb, reflect, or trans-
mit the beam. An absorbing body emits its own radiation, at its own
temperature. Reflection can be specular or diffuse (see Section 3.2).
Both reflected and emitted portions can then fall again upon other
bodies, and thus the original radiation can be transformed in multiple
processes into radiation with less energy, a changed spectrum, and a
changed solid angle of propagation. In addition, e.g., in the case of
a solar radiation beam, some other beams from the sun initially not
aimed at the considered surface on the earth can be redirected to the
considered surface. Therefore, the surface at which received radiation
is considered can also receive emitted and reflected radiation redi-
rected from beyond the solid angle within which the radiation source
is seen from the considered surface.

Perfect transmission and specular reflection of radiation are re-
versible and do not change the exergy of radiation. Besides absorption
and emission, which are irreversible (due to temperature difference
as discussed in Section 6.6), radiation can also be subjected to dif-
fuse reflection, dispersion, refraction, and other simple or combined
phenomena that belong to the area of optics. To date, the energy, en-
tropy, and exergy analyses of these optical phenomena have not been
developed much—see, e.g., Candau (2003)—and are open for future
analyses not considered in the present book.

In comparison to energy, the calculation of exergy propagation
in a real medium is even more difficult because the newly emitted
radiation of a suspended body generally occurs at a different tem-
perature from the emitting body, and each absorption and emission
causes losses in exergy. The global exergy loss cannot be estimated
by comparison of the exergy from the radiation source aimed at the
considered surface when entering the medium, to the exergy esti-
mated based on the measured spectrum of exergy of the source radia-
tion arriving at the considered surface. This is because, as mentioned,
some undetermined exergy from the radiation source, initially not
aiming at the considered surface, can be redirected to the considered
surface.
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As an alternative to the approximate calculations of the real radia-
tion energy or exergy arriving at the considered surface is the method
of measuring the radiation spectrum and geometry directly at the
considered surface.

In summary, if the medium has the properties of a specular surface
of emissivity ε = 0—i.e., the medium does not absorb the radiation, but
at most is exposed only to the multiple reflections or refractions—the
annihilation process of the exergy of radiation does not occur. How-
ever, there can appear some geometric consequences, i.e., to the given
surface there can arrive the radiation of the directional distribution of
energy, or exergy, which differs from the case when between the radi-
ation source and given surface there is a vacuum or perfectly neutral
medium. In other words, the radiation can come within the changed
solid angle.

However, if the medium has even a small ability to absorb (ε > 0)
and so to emit, and the medium temperature differs from that of the
source surface, then radiation traveling through such a medium partly
loses its exergy and, due to reflections or refractions, its geometric pa-
rameters in respect to the given surface also change as in the previous
case.

An example of radiation traveling through a real medium is solar
radiation arriving at the earth through the atmosphere. This process
is particularly important for life on earth. The total radiation received
by the surface of the earth can consist of the direct solar radiation
arriving within the solid angle under which the sun is seen and of
the diluted radiation arriving usually under the solid angle of the
hemisphere. Radiation traveling through a real medium is considered,
e.g., by Landsberg and Tonge (1979). Recently, using the solar spectral
radiation databank developed by Gueymard (2008) and based on the
radiation exergy interpretation by Candau (2003), some new data on
the extraterrestrial and terrestrial solar radiation exergy were obtained
by Chu and Liu (2009).

With a clear sky, the surface of the earth receives direct solar radia-
tion at a high temperature and at high energy at a high exergetic value
within a small solid angle. With an overcast sky, the energy received
can be even larger than from a clear sky because the radiation arrives
within a large solid angle; however, such diluted radiation can have
a lower exergetic value.

Exact description of the fate of radiation penetrating a real medium
and the heat transfer through such a complex medium are both very
difficult. In the specialist books in this area, the formulated various
mathematical models, involving a number of simplifying assump-
tions, allow for calculation of energy propagation. However, the ob-
tained results are usually only a rough approximation. To date, the
exergetic interpretation of such real propagation of radiation has not
been considered.
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7.5 Radiation Exergy Exchange Between Surfaces

7.5.1 View Factor
Propagation of radiation from different surfaces results in energy ex-
change between the surfaces. The effect of such exchange is described
in textbooks on heat transfer. The exchange depends on the properties
of surfaces and on the view factor defined in Section 3.3. The same en-
ergy exchange process can be also interpreted by the respective exergy
exchange which, beside the surfaces, properties, and the view factor,
depends also on the environment temperature.

Generally, for any two surfaces 1 and 2, the view factor �1−2 for
surface 1 is defined as the ratio of radiosity J1−2 arriving from surface
1 to surface 2 to the total (in all directions) radiosity J1 of surface 1:

�1−2 = J1−2

J1
(7.58)

Interpreting formula (7.57) for the radiosity (E = J ) and taking
into account that J1 = A1 × j1, the average view factor results from
definition (7.58):

�1−2 = 1
� A1

∫
A1

∫
A2

cos �1 cos �2

r2 dA1 dA2 (7.59)

However, because the different elements dA1 and dA2 of surfaces
A1 and A2 can be differently situated, the local view factor �d,1−2 of
any element dA1 relating to the total surface A2 may be appropriately
defined:

�d,1−2 = d2 J1−2

dJ1
(7.60)

Assuming dJ1 = j1 × dA1 and introducing (7.56) to (7.60):

�d,1−2 = 1
�

∫
A2

cos �1 cos �2

r2 dA2 (7.61)

The significance of the local view factor is illustrated in Figure
7.6. The spherical surface 1 is surrounded by the spherical surface 2
with two elemental surfaces dA2 and dA′

2. Due to different solid angles
(�′ > �), there are significantly different respective view factors, �′

d,2−1
> �d,2−1. The uniform values of the view factor �d,2−1 = �2−1 = const
would be for the case of concentric surfaces 1 and 2.

To apply numerical interpretation of formula (7.61) the surface A1

can be divided into k finite elements �Ai in such a fashion that for each
surface element the constant value ��,1−2 = const can be assumed. To



188 C h a p t e r S e v e n

1

2

ω'

ω

dA'2

dA2

ϕ'd,2-1

ϕd,2-1

FIGURE 7.6 Two different local view factors.

determine the average value of the view factor, instead of formula
(7.59), the following formula can be used:

�1−2 =

i=k∑
i=1

(��,1−2)i�Ai

i=k∑
i=1

�Ai

(7.62)

where i is the successive number (i = 1, . . . , k) of the finite elements
of the surface and of the respective local view factor, whereas

i=k∑
i=1

�Ai = A1 (7.63)

A simple application of the view factors in calculation of ex-
changed energy or exergy between surfaces will be demonstrated later
in Example 7.2. Calculation of the view factor from formula (7.59) for
the complex configuration of considered surfaces can sometimes be
very difficult, and application of various graphical or optical methods
described in textbooks on heat transfer can often be useful.

As a result from formula (7.58), radiation energy J1−2 propagat-
ing from any surface 1 to surface 2 can be determined if we have the
radiosity J1 of surface 1 and the respective view factor �1−2. In order
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to determine radiation energy exchanged between many different sur-
faces enclosing a certain space, not only the radiosities of these sur-
faces but also the view factors for the given surfaces, configuration
have to be known. The real situation often is considered under the
assumptions that the enclosed space is a vacuum or filled up with
a neutral medium (with neglected eventual convection of heat), and
additionally, the surfaces are perfectly gray. In such a case the view fac-
tors represent only the geometry of the considered system of surfaces
embracing the space.

To calculate the set of required view factors for the system some
rules can be applied. One of them is the reciprocity rule applied for any
two surfaces. To derive the rule, the formula (7.59) can be interpreted
also for propagating radiation from surface 2 to surface 1 as follows:

�2−1 = 1
� A2

∫
A1

∫
A2

cos �1 cos �2

r2 dA1 dA2 (7.64)

Dividing equations (7.59) and (7.64) side by side one obtains:

�1−2 A1 = �2−1 A2

or for any ith and j th surfaces:

�i− j Ai = � j−i Aj (7.65)

which is the general reciprocity rule.
The complacency rule results from the energy conservation equation

applied for any of n surfaces, numbered from 1 to n, enclosing the
system space. The radiosity J1 of surface 1 distributes as follows:

J1 = J1−1 + J1−2 + J1−3 + · · · + J1−n (7.66)

Dividing equation (7.66) by J1 and applying the general definition
(7.58) of the view factor, equation (7.66) changes as:

1 = �1−1 + �1−2 + �1−3 + · · · + �1−n (7.67)

Formula (7.67) expresses the complacency rule. The view factor
�1−1 represents the possibility of a concave curved surface that may
radiate on itself.

In certain situations, the Polak’s rule of a “crossed-string,” de-
scribed, e.g., by Gray and Müller (1974), can be applied. The rule
can be applied to the two considered surfaces (i and j) when they
are the sides of parallel and infinitely long cylinders, not necessarily
circular but not concave. In practice, the rule can be applied also for
the finite but sufficiently long cylinders. The method introduces the
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FIGURE 7.7 The profiles of cylindrical surfaces i and j .

two lengths of imagined strings, shown in Figure 7.7, which cross (Lc)
or do not cross (Ln) when they gird the surfaces:

�i− j = Lc + Ln

Li
(7.68)

Figure 7.7 shows the cross-sections of the two considered cylinders
(i and j). The two tangents (n and m) to the surface profiles determine
the four tangency points A, B, C and D. The total length Ln of the
noncrossed string is measured from A to C and from B to D. The total
length of the crossed string is from A to D and from B to C . The length
Li is measured from A to B over the profile of surface i .

Sometimes Polak’s rule can be applied to certain two surfaces for
which it is difficult at first glance to recognize the crossed and non-
crossed lengths required for formula (7.68). In such a case, it is helpful
to apply imaginary displacement of the two surfaces as far from each
other until the lengths become easy to notice. Then, while displacing
the surfaces back to their original position, it can be noticed how the
lengths vary. For example, the system of a long circular cylindrical sur-
face laid along a plate is shown in Figure 7.8. In the original situation
(a), at first glance, it is not easy to identify the crossed and noncrossed

b) c)a)

FIGURE 7.8 Example of the strings interpretation.
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lengths. However, after replacement of the surface in situation (b), the
strings appear clearly. By restoring the initial situation (c) it is clearly
seen that, when approaching the surfaces, the right-hand side of the
noncrossed string disappears, whereas the crossed string consists of
the length of the cylinder profile and of the width of the plate.

In determination of the view factor the characteristic geometric
feature of the considered surface system can be additionally used. For
example, if any xth surface is flat, then �x−x = 0. If any xth surface is
entirely unseen from any yth surface, then �x−y = 0. If any surfaces,
e.g., surfaces 2, 4, and 6, are geometrically situated in the same way
regarding surface 1, then �1−2 = �1−4 = �1−6.

In order to increase the radiating flux from any gray surface of
emissivity ε the surface can be grooved, which increases the effective
emissivity εg according to Surinow’s formula:

εg = ε
1 − 
�

(7.69)

where 
 is the surface reflectivity and � is the view factor expressing
the depth of the grooves. If the grooves are very deep then the view
factor is close to unity (� ≈ 1). Then, from formula (7.69), using for-
mulae (3.5) and (3.31), the result is εg ≈ 1, which means that the effect
of the deep groove is similar to the model of a black surface shown in
Figure 3.4.

Example 7.2 A space (e.g., a vacuum or a space filled with a neutral medium
for which the convective effect is neglected) is enclosed with n different surfaces
( j = 1, . . . , n). Figure 7.9 shows the example in which n = 3 and the surfaces
belong to the long and parallel cylinders. The surface system is in the steady state
and each surface is at a constant and uniform temperature due to connection with
the heat sources of the respective surface temperatures. Radiative heat is positive
if delivered to the surface or negative when taken off the surface. The space
contains radiation (photon gas), which is not in an equilibrium state because the
radiating fluxes are traveling between the surfaces at different temperatures.

If the system, defined by the system boundary shown in Figure 7.9, is in
thermal equilibrium, then the algebraic sum of all the heat fluxes is zero:

j=n∑
j=1

Q j = 0 (7.70)

Referring to any ith surface selected from all n surfaces, the energy balance
can be considered for the subsystem which is a thin layer of the ith surface. The
input to such subsystem is heat Qi and the absorbed part of radiosity arriving
from all other surfaces to the considered ith surface. The part of radiosities
reflected from the ith surface may not be considered in the balance because it
cancels out. The subsystem output is the emission of the ith surface. The energy
conservation equation takes the form:

Qi + �i

j=n∑
j=1

� j−i J j = Ei (7.71)
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FIGURE 7.9 Space enclosed with three nonconvex surfaces 1, 2, and 3.

where i = 1, . . . , n is the successive number of considered surfaces selected from
n surfaces and �i is the absorptivity of the ith surface. The variables J j appearing
in formula (7.71) can be determined in a way as shown, e.g., for surface i = 1 (at
n = 3):

J1 = E1 + 
1 (�1−1 J1 + �2−1 J2 + �3−1 J3) (7.72)

In the general case of a multisurface system, formula (7.72) for the ith surface
takes the form:

J i = Ei − 
i

j=n∑
j=1

� j−i J j (7.73)

The surface emissions can be determined from equation (3.22), at valid re-
lation (3.5). If additionally the reflectivities and temperatures of the surfaces as
well as all the view factors are given, then equation (7.73) represents the set of n
equations with n unknowns, which are the radiosities of all the surfaces.

For numerical illustration there is further consideration of three surfaces
(n = 3). There are nine different view factors determining the configuration of
radiating surfaces; thus the nine equations are needed for calculations of the
factors. The three equations are obtained by assuming the surfaces to be flat;
�1−1 = �2−2 = �3−3 = 0. The other six equations follow from the complacency
rule (7.67):

1 = �1−1 + �1−2 + �1−3 (a)

1 = �2−1 + �2−2 + �2−3 (b)

1 = �3−1 + �3−2 + �3−3 (c)

and the reciprocity rule (7.65):
�1−2 A1 = �2−1 A2 (d)

�2−3 A2 = �3−2 A3 (e)

�1−3 A1 = �3−1 A3 (f)
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Assuming L1 = 10 m, L2 = 7 m and L3 = 8 m the view factors calculated
from relations (a) to (f) are �1−2 = 0.450, �1−3 = 0.550, �2−1 = 0.643, �2−3 = 0.357,
�3−1 = 0.688, and �3−2 = 0.312. The surfaces are very long and their emissions
Ei are calculated in relation to 1 m of the length. The surface areas are expressed
by the respective lengths Li of the surface profiles. All the surfaces are perfectly
gray with reflectivities at 
1 = 0.1, 
2 = 0.2, and 
3 = 0.3 and from (3.5) the
absorptivities are �1 = ε1 = 0.9, �2 = ε2 = 0.8 and �3 = ε3 = 0.7.

Ei = Li εi �T4
i (g)

For T1 = 400 K, T2 = 600 K, and T3 = 1000 K the calculated from (g) emissions
are: E1 = 13.06 kW/m, E2 = 41.15 kW/m, and E3 = 317.48 kW/m.

According to (7.73) the radiosities, also related to 1 m of surface length, are
calculated from the following set of three equations:

J1 = E1 + 
1 (�1−1 J1 + �2−1 J2 + �3−1 J3) (h)

J2 = E2 + 
2 (�1−2 J1 + �2−2 J2 + �3−2 J3) (i)

J3 = E3 + 
3 (�1−3 J1 + �2−3 J2 + �3−3 J3) (j)

Calculated values of radiosities, higher than respective emissions, are J1 =
40.03 kW/m, J2 = 65.44 kW/m, and J3 = 331.10 kW/m. Heat fluxes, related to 1
m of surface length, result from (7.71):

Q1 = E1 − �1 (�1−1 J1 + �2−1 J2 + �3−1 J3) (k)

Q2 = E2 − �2 (�1−2 J1 + �2−2 J2 + �3−2 J3) (l)

Q3 = E3 − �3 (�1−3 J1 + �2−3 J2 + �3−3 J3) (m)

and their values are Q1 = –229.67 kW/m, Q2 = −56.04 kW/m, and Q3 =
285.71 kW/m. According to (7.70) the sum of heat fluxes is zero: −229.67 −56.04 +
285.71 = 0.

The following calculations of exergy are simplified. All the considered sur-
faces are now assumed to be black (
i = 0, � i = 1). For the same temperatures of
surfaces (T1 = 400 K, T2 = 600 K, and T3 = 1000 K) and for unchanged configu-
ration of the surfaces (i.e., the same values of all the view factors), the calculated
emissions, equal to respective radiosities (Ei = J i ), are respectively smaller: E1
= 14.51 kW/m, E2 = 51.43 kW/m, and E3 = 453.54 kW/m. The heat fluxes
are significantly changed (Q1 = –330.36 kW/m, Q2 = –96.83 kW/m. and Q3 =
427.19 kW/m) and their sum is zero.

Exergy Bi radiating from the surface can be calculated based on formulas
(7.47) and (7.49) adjusted as follows:

Bi = Li
�

3

(
3 T4

i + T4
0 − 4 T0T3

i

)
(n)

Using equation (n) at T0 = 300 K yields: B1 = 1.53 kW/m, B2 = 18.22 kW/m,
and B3 = 273.35 kW/m. These calculated values can be used in the exergy bal-
ance equations for a particular surface. The exergy input considered for any ith
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surface consists of radiation exergy arriving from other surfaces and of exergy
of heat exchanged with the considered ith surface. On the output side of the
equation is exergy radiating from the considered ith surface and the irreversible
exergy loss due to absorption and emission occurring at the ith surface. Exergy
balance equations for the consecutive surfaces 1, 2, and 3 are:

�1−1 B1 + �2−1 B2 + �3−1 B3 + Q1

(
1 − T0

T1

)
= B1 + 	B1 (o)

�3−2 B3 + �2−2 B2 + �1−2 B1 + Q2

(
1 − T0

T2

)
= B2 + 	B2 (p)

�1−3 B1 + �2−3 B2 + �3−3 B3 + Q3

(
1 − T0

T3

)
= B3 + 	B3 (q)

The sum of the exergy loss terms from equations (o) to (q) expresses the ex-
ergy loss of the whole surface system: 	B = 	B1 + 	B2 + 	B3 = 115.52 + 19.48 +
33.03 = 168.03 kW/m. The same value of the global exergy loss 	B can be also
determined from the Guoy–Stodola law presented by equation (2.60):

	B = T0� = T0

(
Q1

T1
+ Q2

T2
+ Q3

T3

)
(r)

Obviously, the same value of the exergy loss for a particular surface can be
also determined from formula (2.60) which, e.g., for surface 1 can be used as
follows:

	B1 = T0

(
L1

4
3

� T3
1 − L1�1−1

4
3

�T3
1 − L2�2−1

4
3

�T3
2 − L3�3−1

4
3

�T3
3 − Q1

T1

)
(s)

7.5.2 Emission Exergy Exchange Between
Two Black Surfaces

The radiative exergy exchange based on formula (7.49) can be ana-
lyzed with more details. The simple example for considerations is as-
sumed. The model of two parallel surfaces 1 and 2, as determined in
Figure 6.5, is applied. The surfaces parameters are denoted with sub-
script 1 and 2. The surfaces are black (ε1 = ε2 = 1) and flat (�1−1 = �2−2

= 0 and �1−2 = �2−1 =1). Temperature T1 is constant whereas temper-
ature T2 varies from 0 to T2 = T1.

The exchanged exergy b1−2 per 1 m2 of surface is equal to the
difference b1 and b2 which are the exergy of emission densities of the
surfaces 1 and 2:

b1−2 = b1 − b2 (7.74)

where b1 and b2 are determined from formula (7.49). Heat q1−2 ex-
changed by radiation is equal to the difference e1 and e2 of emission
densities of the surfaces:

q1−2 = e1 − e2 (7.75)

where e1 and e2 are determined from formula (3.21). The changes
of exergy bq1 and bq2 for both the heat sources, according to
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FIGURE 7.10 Exchanged heat and exergy between black surfaces at
temperatures T1 and T2.

formula (2.61) are:

bq1 = q1−2

(
1 − T0

T1

)
and bq2 =

∣∣∣∣q1−2

(
1 − T0

T2

)∣∣∣∣ (7.76)

Figure 7.10 shows the emission densities, e1 and e2, exergy of
emission densities, b1 and b2, and the exergy change of the heat
sources, bq1 and bq2 as function of temperature T2 at constant tem-
peratures T1 = 1000 K and T0 = 300 K. With the growing temperature
T2 there grow the emission density e2 and the exergy of emission
density b2, whereas e1 and b1 remain constant due to the constant
temperature T1. The exchanged exergy b1−2 decreases from 34,016
W/m2 to zero and the exchanged heat q1−2 also decreases to zero
but from 56,693 W/m2. The exergy change bq1 of the heat source at
temperature T1 decreases from 39,685 W/m2 to zero (because q1−2

reaches zero). However, the exergy change bq2 of the heat source at
temperature T2 decreases from infinity to zero at T2 = T0 and then
it grows reaching the maximum (∼24,673 W/m2) for T2 = ∼600 K,
and then diminishes to zero. The appearing maximum is the effect
of the growing value of the exergy of heat due to growing its tem-
perature and, on the other hand, of the decreasing amount of this
heat.
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7.5.3 Exergy Exchange Between Two Gray Surfaces

7.5.3.1 Significance and Description of the Problem
One of the important problems of radiation is the practical calcula-
tion of the exchanged radiation energy or exergy between different
surfaces. Consideration of systems composed of black surfaces is rel-
atively easy because each black surface can only emit and absorb ra-
diation without any reflection. However, a system of gray surfaces
is more complex and the calculation accounts for the successive re-
flections of each emitted radiation. Simplification of the problem by
neglecting reflections to calculate the approximate value of the ex-
changed energy (heat) is eventually acceptable only in the case of the
surfaces with emissivities not much different than 1.

The calculation methods for exchanged radiation energy are rel-
atively well described in the heat transfer textbooks, e.g., Holman
(2009). However, calculation of exchanged exergy is not well discussed
and is more complex. Generally, each flux of radiation exergy, arriving
at a nontransmitting surface, can be partly absorbed, partly reflected,
and the remaining part is lost due to irreversibility. The exergetic con-
siderations have to account for many multiprocesses of absorption,
emission, reflection, and losses.

The mechanism principle of the exchange of exergy between two
gray surfaces can be sufficiently analyzed based on the simple system
of a vacuumed space (no heat transfer by conduction or convection)
enclosed only with the two surfaces, which are infinitely large, facing
each other, parallel, and flat as shown in Figure 7.11. Temperatures of
the surfaces are constant in time and at every place on the respective
surfaces (i.e., isothermal surfaces). The properties of surface 1, denoted

Surface 2 Surface 1 Surface 2 Surface 1
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e2,0

e1,2
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FIGURE 7.11 The scheme of exchange of radiation energy (a) and exergy (b)
between surfaces 1 and 2.
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with subscript 1, are temperature T1, emissivity ε1, absorptivity �1,
and reflectivity 
1. Analogically, the same properties (T2, ε2, �2, 
2) of
surface 2 are denoted with subscript 2.

7.5.3.2 Transfer of Radiation Energy
As mentioned, consideration of the net heat exchanged between the
surfaces is commonly known and here is briefly recalled only to give
a comparison background for consideration of exergy exchange. Fig-
ure 7.11(a) presents the scheme of the radiation emission from both
surfaces. The energy stream e, related to a 1 m2 surface area, is labeled
with the two number subscripts (n and m); the first number (n) deter-
mines the surface (1 or 2), whereas the second number (m) determines
the stage of the stream after successive happening.

For example, considering surface 1, energy stream e1,0 represents
heat transferred from the heat source at temperature T1 to surface 1.
The same energy is then emitted from surface 1 to surface 2 (e1,0 = e1,1).
Energy e1,1 arrives in surface 2 and is partly (e1,2) absorbed by surface
2 and partly (e1,3) reflected back to surface 1. The portion e1,3 arriv-
ing in surface 1 is again partly (e1,4) absorbed by surface 1 and partly
(e1,5) reflected into surface 2. In the same way the successive reflec-
tions and absorptions continue, and the energy streams are gradually
diminishing.

Analogously, the energy e2,0 of heat transferred from the heat
source at temperature T2 takes part in the successive happenings. The
values of successive streams of both surfaces are developed as follows:

e1,0 = ε1eb,1

e1,1 = ε1eb,1

e1,2 = �2ε1eb,1

e1,3 = 
2ε1eb,1

e1,4 = 
1
2ε1eb,1

e1,5 = 
1
2ε1eb,1

e1,6 = �2
1
2ε1eb,1

e1,7 = 
1
 2
2 ε1eb,1

etc.

where, the density of emission energy eb,1 of a black surface at tem-
perature T1 is:

eb,1 = �T4
1 (a)

and for the energy streams of surface 2:

e2,0 = ε2eb,2

e2,1 = ε2eb,2

e2,2 = �1ε2eb,2
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e2,3 = 
1ε2eb,2

e2,4 = 
2
1ε2eb,2

e2,5 = 
2
1ε2eb,2

e2,6 = �1
2
1ε2eb,2

e2,7 = 
2
 2
1 ε2eb,2

etc.

where, the density of emission energy eb,2 of a black surface at tem-
perature T2 is:

eb,2 = �T4
2 (b)

Surface 2 absorbs the sum e1 of the energy portions (e1,2, e1,6, etc.)
from surface 1 as follows:

e1 = �2ε1eb,1
(
1 + 
1
2 + 
 2

1 
2
2 + · · ·) = �2ε1eb,1

1
1 − 
1
2

(c)

The expression in the brackets is replaced by the sum of the terms
of the infinite geometric progression with the common ratio 
1 × 
2.
Absorbed energy e1 is transferred to the interior (heat source at tem-
perature T2) to maintain the steady state of radiating surfaces.

Analogously, surface 1 absorbs the sum e2 of the energy portions
(e2,2, e2,6, etc.) from surface 2 as follows:

e2 = �1ε2eb,2
(
1 + 
2
1 + 
 2

2 
2
1 + · · ·) = �1ε2eb,2

1
1 − 
1
2

(d)

Also, the absorbed energy e2 is transferred to the interior (heat
source at temperature T1) to maintain the steady state of radiating
surfaces. It is to emphasize that the processes occurring at both sur-
faces occur simultaneously; only for calculation purposes are they
considered separately.

The effective heat e1−2 transferred from surface 1 to surface 2 is:

e1−2 = e1 − e2 (e)

Taking into account that � + 
 = 1, � = ε, and substituting equa-
tions (a)–(d) to (e) the known formula is obtained:

e1−2 = ε1−2�
(
T4

1 − T4
2

)
(f)

where

e1−2 = 1
1
ε1

+ 1
ε2

− 1
(g)

Formula (g) is used for calculation of the net heat exchanged be-
tween surfaces 1 and 2.
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7.5.3.3 Transfer of Radiation Exergy
Analogously to the radiation energy exchange, the exchange of radi-
ation exergy streams between the same considered surfaces [Figure
7.11(b)] can be analyzed.

The exergy stream b, related to a 1 m2 surface area, is also denoted
with the two number subscripts (n and m); the first number (n) deter-
mines the surface (1 or 2), whereas the second number (m) determines
the stage of the stream after successive happening. For example, con-
sidering surface 1, stream b1,0 represents the exergy of heat transferred
from the heat source at temperature T1 to the surface 1. The surface 1
supplied by the exergy stream b1,0 is able to emit exergy b1,2 although
at the irreversible exergy loss b1,1.

Exergy b1,2 arrives in surface 2 and is partly (b1,3) absorbed by
surface 2, partly (b1,5) reflected back to surface 1 and the rest (b1,4) is
lost due to irreversibility occurring at surface 2. The exergy portion
b1,5 arriving in surface 1 is again partly (b1,6) absorbed by surface
1, partly (b1,8) reflected into surface 2 and the rest of exergy (b1,7) is
lost due to irreversibility occurring at surface 1. In the same way the
successive reflections and absorptions are continuing, and gradually
diminishing the exergy streams.

Analogically, the exergy b2,0 of heat transferred from the heat
source at temperature T2 takes part in the successive happenings.
The values of successive streams of both surfaces are developed as
follows:

b1,0 = ε1eb,1

(
1 − T0

T1

)
b1,1 = b1,0 − b1,2

b1,2 = ε1bb,1

b1,3 = �2ε1eb,1

(
1 − T0

T2

)
b1,4 = b1,2 − b1,3 − b1,5

b1,5 = 
2ε1bb,1

b1,6 = �1
2ε1eb,1

(
1 − T0

T1

)
b1,7 = b1,5 − b1,6 − b1,8

b1,8 = 
1
2ε1bb,1

b1,9 = �2
1
2ε1eb,1

(
1 − T0

T2

)
b1,10 = b1,8 − b1,9 − b1,11

b1,11 = 
1
 2
2 ε1bb,1

b1,12 = �1
1
2
2 ε1eb,1

(
1 − T0

T1

)
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b1,13 = b1,11 − b1,12 − b1,14

b1,14 = 
2
1 
 2

2 ε1bb,1

etc.

where the emission exergy bb,1 of a black surface at temperature T1 is:

bb,1 = �

3

(
3 T4

1 + T4
0 − 4 T0T3

1

)
(h)

and for the exergy radiation of surface 2:

b2,0 = ε2eb,2

(
1 − T0

T2

)
b2,1 = b2,0 − b2,2

b2,2 = ε2bb,2

b2,3 = �1ε2eb,2

(
1 − T0

T1

)
b2,4 = b2,2 − b2,3 − b2,5

b2,5 = 
1ε2bb,2

b2,6 = �2
1ε2eb,2

(
1 − T0

T2

)
b2,7 = b2,5 − b2,6 − b2,8

b2,8 = 
2
1ε2bb,2

b2,9 = �1
2
1ε2eb,2

(
1 − T0

T1

)
b2,10 = b2,8 − b2,9 − b2,11

b2,11 = 
2
1 
2ε2bb,2

etc.

where the emission exergy bb,2 of a black surface at temperature T2 is:

bb,2 = �

3

(
3 T4

2 + T4
0 − 4 T0T3

2

)
(i)

The portions of the radiation exergy of surface 1 delivered to sur-
face 2 are:

b1 = (b1,2 − b1,5) + (b1,8 − b1,11) + · · ·
= �2ε1bb,1

(
1 + 
1
2 + 
 2

1 
2
2 + · · ·) = �2ε1bb,1

1 − 
1
2
(j)

The portions of the radiation exergy of surface 2 delivered to sur-
face 1 are:

b2 = (b2,2 − b2,5) + (b2,8 − b2,11) + · · ·
= �1ε2bb,2

(
1 + 
1
2 + 
 2

1 
2
2 + · · ·) = �1ε2bb,2

1 − 
1
2
(k)
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The net radiation exergy b1−2 transferred from surface 1 to surface
2 is:

b1−2 = b1 − b2 (l)

After taking into account that � + 
 = 1, � = ε, and substituting
equations (h)–(k) into (l) the net radiation exergy transferred from
surface 1 to surface 2 is:

b1−2 = ε1−2 (bb,1 − bb,2) = ε1−2�

[
T4

1 − T4
2 − 4

3
T0

(
T3

1 − T3
2

)]
(7.77)

where ε1−2 is determined by formula (g) and in derivation of formula
(7.77), the formulae (h) and (i) were used.

7.5.3.4 Exergy of Heat Sources
Analysis of the streams of exergy can take different forms. For ex-
ample, following the history of the exergy streams in Figure 7.11(b),
the exergy decrease bq ,1,1 of the heat source 1, caused by radiation of
surface 1, can be determined as:

bq ,1,1 = b1,0 − b1,6 − b1,12 − · · ·
thus:

bq ,1,1 = ε1eb,1

(
1 − T0

T1

) [
1 − �1
2

(
1 + 
1
2 + 
 2

1 
2
2 + · · ·)]

= ε1eb,1

(
1 − T0

T1

) (
1 − �1
2

1 − 
1
2

)
(m)

The exergy increase bq ,1,2 of the heat source 1, caused by radiation
of surface 2 is:

bq ,1,2 = b2,3 + b2,9 + b2,15 + · · · = ε2eb,2
�1

1 − 
1
2

(
1 − T0

T1

)
(n)

Analogously, the exergy decrease bq ,2,2 of the heat source 2, caused
by radiation of surface 2, can be determined as:

bq ,2,2 = b2,0 − b2,6 − b2,12 − · · · = ε2eb,2

(
1 − T0

T2

) (
1 − �2
1

1 − 
1
2

)
(o)

The exergy increase bq ,2,1 of the heat source 2, caused by radiation
of surface 1 is:

bq ,2,1 = b1,3 + b1,9 + b1,15 + · · · = ε1eb,1
�2

1 − 
1
2

(
1 − T0

T2

)
(p)

The total exergy decrease bq ,1 of the heat source 1 is:

bq ,1 = bq ,1,1 − bq ,1,2 (q)
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and the total exergy increase bq ,2 of the heat source 2 is:

bq ,2 = bq ,2,1 − bq ,2,2 (r)

7.5.3.5 Exergy Losses
Another aspect of the exergy exchange mechanism shown in Figure
7.11(b) can be the analysis of exergy losses.

It is worth emphasizing that any partial exergy balance, e.g., equa-
tions expressing exergy streams b1,1, b1,7, b1,13,etc., are used only for
simplicity of calculations, and the losses determined by such equa-
tions can produce unrealistic negative values. However, real positive
values of the losses are always obtained if the partial exergy balances
are taken together appropriately for the processes occurring simul-
taneously. Thus, the applied simplification for calculation does not
violate the second law of thermodynamics according to which the
overall entropy growth should be nonnegative even in the elemental
step of the process.

After such an explanation, let us consider the calculative partial
exergy loss 	b1,1 caused only by emission of surface 1 and absorption
of the portions of this emission reflected from surface 2 and absorbed
on surface 1. Based on the partial exergy balances:

	b1,1 = b1,1 + b1,7 + b1,13 + · · ·
= (b1,0 − b1,2) + (b1,5 − b1,6 − b1,8)

+ (b1,11 − b1,12 − b1,14) + · · ·

the following formula can be derived:

	b1,1 = ε1eb,1

(
1 − T0

T1

) (
1 − ε1
2

1 − 
1
2

)
− ε2ε1bb,1

1 − 
1
2
(s)

The calculative partial exergy loss 	b1,2 caused only by emission
of surface 2 and absorption of the portions of this emission reflected
from surface 2 and absorbed on surface 1, can be defined as follows:

	b1,2 = b2,4 + b2,10 + b2,16 + · · ·
= (b2,2 − b2,3 − b2,5) + (b2,8 − b2,9 − b2,11)

+ (b1,14 − b1,15 − b1,17) + · · ·

from which:

	b1,2 = ε1

1 − 
1
2

[
ε2bb,2 − ε2eb,2

(
1 − T0

T1

)]
(t)

The joint exergy loss 	b1 on surface 1 is:

	b1 = 	b1,1 + 	b2,1 (u)
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By analogy the respective exergy losses can be derived for surface
2. The calculative partial exergy loss 	b2,1 caused only by emission
of surface 2 and absorption of the portions of this emission reflected
from surface 1 and absorbed on surface 2, is:

	b2,1 = ε2eb,2

(
1 − T0

T2

) (
1 − ε2
1

1 − 
1
2

)
− ε1ε2bb,2

1 − 
1
2
(w)

The calculative partial exergy loss 	b2,2 caused only by emission
of surface 1 and absorption of the portions of this emission reflected
from surface 1 and absorbed on surface 2, is:

	b2,2 = ε2

1 − 
1
2

[
ε1bb,1 − ε1eb,1

(
1 − T0

T2

)]
(x)

The joint exergy loss 	b2 on surface 2 is:

	b2 = 	b2,1 + 	b2,2 (y)

The correctness of the all presented considerations can be con-
firmed by fulfillment of the exergy balance equation for the global
process. The exergy decrease of the heat source 1 is spent for the ex-
ergy increase of the heat source 2 and for the irreversible exergy losses
occurring on both surfaces (1 and 2):

e1−2

(
1 − T0

T1

)
= e1−2

(
1 − T0

T2

)
+ 	b1 + 	b2 (z)

Interpretation of the radiative heat exchange between two gray
surfaces was analyzed in terms of energy and exergy viewpoints. The
significant differences in the viewpoints were disclosed, and Figure
7.11 particularly illustrated the difference in energetic and exergetic
interpretations of occurring mechanisms.

The simplified configuration was considered to clearly demon-
strate the method. In various complex situations the principle of the
method can be also be applied—however, together with appropriate
inclusion of the view factors.

Example 7.3 The presented considerations can be illustrated by the calculation
example for the two surfaces, shown in Figure 7.11 and having temperature
T1 = 1000 K, T2 = 500 K, and respective emissivities ε1 = 0.95 and ε2 = 0.9.
Environment temperature is T0 = 300 K.

The numerical values of the particular energy and exergy streams, respec-
tively, en,m and bn,m, are calculated according to formulae given in Sections
7.5.3.2 and 7.5.3.3 and are shown in Table 7.2. The subscript denotation of en-
ergy or exergy stream is given in column 1. Columns 2–4 illustrate the streams
of heat emitted, absorbed, and successively reflected between surfaces 1 and 2.
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Energy streams en,m, W Exergy streams bn,m, W

Surface 2 Surface 1
Subscript
n,m Surface 2 Space Surface 1 Heat Loss Space Heat Loss
1 2 3 4 5 6 7 8 9

Surface 1:

1,0 −53,858 −37,700

1,1 53,858 5240

1,2 48,473 32,460

1,3 5385 19,389

1,4 5116 9825

1,5 269 3246

1,6 242 3581

1,7 27 −497

1,8 25.7 162

1,9 1.3 97

1,10 1.2 48.8

1,11 0.12 16.2

1,12 17.9

1,13 −2.5

1,14 0.80
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Surface 2:

2,0 −3189 −1275

2,1 3189 499

2,2 3030 776

2,3 159 2121

2,4 −143 −1384

2,5 16 39

2,6 15.2 57.4

2,7 0.8 −22.3

2,8 3.9

2,9 10.6

2,10 −8.6

2,11 0.19

Total 45,671 — –45,671 18,269 10,352 — –31,970 3349

Symbol e1−2 — e1−2 bq,2 	b2 — bq,1 	b1

TABLE 7.2 The Calculated Streams of Energy (en,m) and Exergy (bn,m) Shown in Figure 7.11
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For example, from heat source 1 the amount e1,0 = –53,858 W/m2 (column 4) is
transferred to surface 1 and then the same amount e1,1 = 53,858 W/m2 (column
3) is emitted to surface 2. However, surface 2 absorbs only 90% (ε2 = 0.9), i.e.,
e1,2 = 48,473 W/m2 (column 2) of the arrived emission, and the rest is reflected
as e1,3 = 5385 W/m2 (column 3).

Analogously to the above energy consideration, the fate of heat e2,0 (column
2) transferred from heat source 2 to surface 2, and then, the further emissions
and absorptions, can be tracked.

The process of successive absorptions and reflections progresses to infinity
with gradually reduced values of the processed streams. The energetic effect in
the form of the net rate of transferred heat e1−2 is determined from formulae (f)
and (g):

e1−2 = 5.669 × 10−8 (
10004 − 5004)

1
0.95

+ 1
0.9

− 1
= 45.67kW/m2

Columns 5–9 illustrate the streams of exergy emitted, absorbed, and succes-
sively reflected between surfaces 1 and 2. Each step of emission or absorption is
accompanied by the respective exergy loss due to irreversibility. For example,
from heat source 1 the exergy amount b1,0 = –37,700 W/m2 (column 8) is trans-
ferred to surface 1 and then the reduced amount of exergy b1,2 = 32,460 W/m2

(column 7) is emitted to surface 2. The difference between b1,0 and b1,2 is the
exergy loss b1,1 = 5240 W/m2 (column 9). However, according to the emissivity
ε2 = 0.9, surface 2 absorbs only 90%, of the arrived emission, and the rest, at the
reflectivity 
2 = 0.1, is reflected as b1,5 = 3246 W/m2 (column 7). Meanwhile, the
absorption at surface 2 causes the exergy growth b1,3 = 19,389 W/m2 (column
5) of heat source 2 at the involved exergy loss b1,4 = 9825 W/m2 (column 6).

Analogously, to the above exergy consideration, the rate of exergy decrease
b2,0 = –1275 W/m2 (column 5) of heat source 2, transferred to surface 2, and then
the further emissions, absorptions, and losses can be tracked.

The process of successive absorptions, losses, and reflections is progressing
to infinity with gradually reduced values of the processed streams. The exergetic
effect in the form of the net rate of transferred exergy b1−2 is determined from
formulae (7.77) and (g):

b1−2 =
5.669 · 10−8

[
10004 − 5004 − 4

3
300 ×

(
10003 − 5003

)]
1

0.9
+ 1

0.95
− 1

= 28.62 kW/m2

The total exergy decrease bq ,1 of the heat source 1 can be determined from
formula (q):

bq ,1 = bq ,1,1 − bq ,1,2 = −34, 101 + 2131 = −31, 970 W/m2

and the total exergy increase bq ,2 of the heat source 2 from formula (r) is:

bq ,2 = bq ,2,1 − bq ,2,2 = 19, 486 − 1217 = 18, 269 W/m2

The joint exergy loss 	b1 on surface 1 from formula (u) is:

	b1 = 	b1,1 + 	b2,1 = 4740 − 1392 = 3349 W/m2
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bq1

bq2

b1–2

b2

b1

Surface 2 Surface 1

FIGURE 7.12 Scheme of the radiation exergy exchange considered in
Example 7.3.

The joint exergy loss 	b2 on surface 2 from formula (x) is:

	b2 = 	b2,1 + 	b2,2 = 447 + 9875 = 10352 W/m2

The correctness of the all presented calculations is confirmed by the complete
exergy balance equation (y) for the global process:

e1−2

(
1 − T0

T1

)
− e1−2

(
1 − T0

T2

)
− 	b1 − 	b2 = 31970 − 18269 − 3349 − 10352 = 0

It is also worth noting that the change in exergy sources is

∣∣bq ,1
∣∣ − ∣∣bq ,2

∣∣ = 31.97 − 18.269 = 13.701 kW/m2,

whereas the radiation exergy transferred from surface 1 to 2 is larger b1−2
= 28.43 kW/m2. The difference is caused by the two exergy losses occurring
on the surfaces 1 and 2, of which the loss on surface 2 is larger (	b2 > 	b1).
Figure 7.12 shows schematically the calculated values in the exergy balance of
the considered surfaces 1 and 2.

The consideration addressed was the case of two parallel infinite
surfaces facing each other as shown in Figure 7.11. In a real case, the
considered surfaces can usually be finite, relatively small, and arbitrar-
ily situated in regard to each other. In the calculations for such cases
the view factors should be involved for determination of the mul-
tireflected fluxes between surfaces. This necessity seemingly make
the consideration more complex; however, multiplying the consid-
ered fluxes by the view factors causes such quick weakening of the
exchanged fluxes that for practical purposes it is usually sufficient to
take into account only the first reflections or even to entirely ignore
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the reflections, especially in cases of low values for the view factors
and surface reflectivities.

Real systems are composed mostly of more than two surfaces and
the presented principles of determination of the radiation exergy ex-
change has to be appropriately applied taking into account all the
possible combinations of the mutually radiative interaction between
system surfaces.

7.6 Exergy of Solar Radiation

7.6.1 Significance of Solar Radiation
Solar energy is the most important renewable source of energy on the
earth. Solar energy is a high-temperature source; however, harvesting
occurs inefficiently due to extensive degradation of the energy. The
degradation of solar energy is well demonstrated by consideration of
exergy. Therefore the engineering thermodynamics of thermal radia-
tion addresses mainly exergy analyses of diversified problems for the
utilization of solar radiation. The potential for maximum work pro-
duced from radiation has been the subject of intensive research. For a
better understanding of possible utilization, some basics of solar ra-
diation are described in the following. More details are discussed by
Duffie and Beckman (1991).

Solar energy, although rich, is poorly concentrated, and thus it
requires a relatively large surface to harvest the sun’s radiation. From
this viewpoint, solar radiation is especially valuable for countries that
have large unused areas (e.g., deserts). The small concentration of
energy needs intensive theoretical studies in order to obtain acceptable
efficiency of energy utilization. Effective method for such purpose is
exergy analysis.

Solar radiation is the result of the fusion of atoms inside the sun.
Part of the fusion energy delivers heat to the outer layer of the sun (the
chromosphere), which is much cooler than the sun’s interior. Thus, the
solar radiation incident on earth is the chromosphere radiation, not
much different from the radiation of any surface at about 5800 K.

Extraterrestrial solar radiation is about 47% in the visible wave-
lengths (380–780 nm), about 46% in the infrared wavelengths (greater
than 780 nm), and about 7% in the ultraviolet wavelengths (below
380 nm). A large portion of the ultraviolet radiation is absorbed and
scattered by the atmosphere. For example, air molecules scatter the
shorter-wavelength radiation more strongly than the longer wave-
lengths, i.e., they scatter out more blue light, making the sky appear blue.

Generally, solar radiation passing through the atmosphere is ab-
sorbed, scattered, and reflected not only by air molecules but also
by water vapor, clouds, dust, pollutants, smoke from forest fires and
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Mar. 21

Dec. 22Jun. 21 Sun

23.45°

Greenwich
meridian

FIGURE 7.13
Orientation of earth
to sun.

volcanoes, etc. These factors cause diffusion (called also dilution) of
solar radiation. The portion of solar radiation that reaches the earth’s
surface without being diffused is called direct beam solar radiation. Thus,
global solar radiation (global irradiance) consists of the diffuse and di-
rect solar radiation. For example, during cloudy days the atmosphere
reduces direct beam radiation to zero.

If the considered surface is tilted with respect to the horizontal,
the global irradiance consists of the incident diffuse (dilute) radiation
of the normal irradiance projected onto the tilted surface and of the
ground-reflected irradiance that is incident on the considered surface.
The amount of direct radiation on an arbitrarily oriented surface can
be calculated from Lambert’s law and is based on direct normal irra-
diance.

The solar radiation incident outside the earth’s atmosphere is
called extraterrestrial radiation and its average value is 1367 W/m2. This
value varies ±3% as the earth revolves around the sun in an elliptical
orbit; the earth’s closest distance to the sun is on around January 4,
and it is the furthest from the sun on around July 5. The orientation of
the earth relative to the sun is schematically shown in Figure 7.13. The
earth’s axis always points in the same direction as it orbits around the
sun. The 23.45◦ tilt in the earth’s axis of revolution results in longer
days in the northern hemisphere from March 21 to September 22 and
longer days in the southern hemisphere during the other six months.
The solar angle varies at a given spot on earth throughout the year,
causing the year’s seasons and determining the length of daylight
each day.

At noon on a cloudless day about 25% of the extraterrestrial solar
radiation is scattered and absorbed by the atmosphere and only about
1000 W/m2 reaches the earth’s surface as direct normal irradiance
(beam irradiance).

To describe the sun’s path across the sky or to determine the instant
position of the sun in the sky as seen from the earth, one needs the
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values of two parameters, which are declination and azimuth shown,
e.g., in Figure 7.1 as � and �, respectively. Declination � is a flat angle
measured from the north–south axis and azimuth � is measured from
the 0 meridian (passing at Greenwich, England).

Because the earth is round, the sun’s rays arrive at the earth’s
surface at different angles ranging from the 0◦ declination (just above
the horizon) to the 90◦ declination (directly overhead). The vertical
rays supply the most possible radiation energy. The more slanted are
the rays, the longer are their path through the atmosphere, and the
sunlight is therefore more scattered and diluted.

Only a part of scattered sunlight reaches the earth because some
sunlight is scattered back into space. Also some radiation of the earth,
together with sunlight scattered off the earth’s surface, is re-scattered
into the atmosphere. This effect can be significant, e.g., when the
earth’s surface is covered with snow.

Solar radiation is difficult to calculate because, as discussed, the
radiation energy reaching the surface of the earth is composed of di-
rect and diluted radiation components, and depends on geographic
location, time of day, season of year, local weather, and even on lo-
cal landscape. One relatively effective method of determining solar
radiation is by spectral measurement and application of the obtained
results in the formulae derived in Section 7.3.

Example 7.4 Regarding the solar radiation as nonpolarized, black, uniform, and
propagating within a solid angle �, the exergy of the extraterrestrial solar radia-
tion may be approximately calculated by means of equation (7.50). The required
exergy bb of emission density can be calculated from (7.49) for the sun surface
temperature T = 6000 K and for the environment temperature T0 = 300 K as
follows:

bb = 5.6693 × 10−8

3

(
3 × 60004 + 3004 − 4 × 300 × 60003

)
= 68.5 MW/m2

(a)

Approximately, the radius of the sun is RS = 695,500 km and the mean
distance from the sun to the earth is L S = 149,500,000 km. The integral in formula
(7.50) expresses the solid angle � and is equal the area of circle of radius RS
divided by the square distance LS , thus :

∫
�

∫
�

cos � sin � d� d� = R2
S �

L2
S

= 2.16 × 10−5� sr (7.78)

By substitution of (a) and (7.78) into (7.50):

bb, � = 68, 500
�

2.16 × 10−5� = 1.48 kW/m2 (b)

From formulae (7.50) and (7.18), in which radiosity can be interpreted as
emission ( j = e), the ratio of exergy to energy of emission is bb,�/eb,� = 0.9333.
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Example 7.5 More exact computations of the exergy of solar radiation were
carried out by Petela (1961a) based on the extraterrestrial radiation spectrum
determined experimentally by Kondratiew (1954). Calculations are based on
equation (7.45) for nonpolarized and uniform radiation. Table 7.3 presents some
exemplary Kondratiew’s data on the intensity of radiation i0,� (column 2) as
a function of wavelength � (column 1). The part of the spectrum is shown in
Figure 7.14 together with three spectra (dashed lines), for comparison, for black
radiation at temperatures 6000, 5800, and 5600. The i0,� values in Table 7.3 are
assumed to be constant for the respective ranges of wavelengths �� (column 5).
Corresponding ranges of frequency �� calculated based on equation (7.5), for
c0 = 2.9979 × 108 m/s, are shown in column 6, whereas equation (7.6) was used
to determine i0,� in column 4. The � values in column 3 were determined from
equation (3.1). The L0,� values of column 8 are calculated from equation (7.30).
Columns 7 and 9 are calculated as respective products of columns 4 and 6;
(i0,� × ��), and 6 and 8; (L0,�× ��).

Formula (7.45) is applied in the following numerical form:

bA′ =
(

2
∑

i0,��� − 2 T0
∑

L0,��� + �T4
0

3 �

) ∫
�

∫
�

cos � sin � d� d� (7.79)

Assuming the environment temperature T0 = 300 K, substituting formula
(7.78) into (7.79) and using data from Table 7.3:

bA′ =
(

2 × 10, 079, 300 − 2 × 300 × 2263.3 + 5.6693 × 10−8 × 3004

3 �

)
× � × 2.16 × 10−5

= 1367.9 − 92.151 + 0.0033 = 1275.8 W/m2

The obtained result 1275.8 W/m2 is the exergy of the extraterrestrial solar
radiation arriving at the 1 m2 surface, which is perpendicular to the direction of
the sun. The obtained ratio of radiosity to exergy is 1275.8/1367.9 = 0.9326.

7.6.2 Possibility of Concentration of Solar Radiation
The possibility of concentrated radiation can be illustrated with use
of a simple model of two surfaces shown in Figure 7.15. The imag-
ined surface of area AS represents the black (εS = 1) solar irradiance
IR at constant temperature TS. The other surface of area A is gray
at emissivity ε, and its temperature T is controlled by the cooling
heat Q. The vacuum space between the two surfaces is enclosed by a
cone-shaped surface that is mirrorlike (ε0 = 0). The surface areas ratio
aS = AS/A. The energy balance of the cooled surface A is:

aSε IR = ε�T4 + k (T − T0) (7.80)

where k is the heat transfer coefficient at which heat Q is extracted
from surface A. The heat rate

q = k (T − T0) (7.81)
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� ×1010 i0,� ×10−10 � × 10−11 i0,� ×1012 Δ� ×1010 � ×10−12 i0,� ×Δ� L 0,� ×1013 L 0,� ×Δ�

m
W

m3sr

1

s

J

m2sr m
1

s

W

m2sr

J

m2s sr

W

m2K sr
1 2 3 4 5 6 7 8 9

2200 10 13,627 15 100 62.0 960 0.03 0.205

2300 26 13,035 47 100 56.7 2650 0.10 0.540

2400 31 12,492 59 100 52.1 3090 0.12 0.639

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
60,000 1 500 1765 10,000 0.714 1260 7.19 0.514

70,000 1 428 1201 10,000 0.535 640 5.48 0.293

Total 10,079,300 — 2263.306

TABLE 7.3 Spectrum of the Extraterrestrial Solar Radiation (from Petela, 1962)
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FIGURE 7.14 Spectrum of extraterrestrial solar radiation (from Petela, 1962).

can be used to express the total heat Q absorbed by surface A:

Q = AS

aS
q (7.82)

The energy efficiency �E of concentration of solar radiation can be
measured as the ratio of absorbed heat Q and the solar irradiance IR:

�E = Q
IR

(7.83)

For comparison also exergetic efficiency �B can be considered
based on the following definition:

�B = BQ

IR 
(7.84)

AS

ε0 = 0

IR

Q A, ε,T

FIGURE 7.15
Scheme of
concentrated
radiation.
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where  is the exergy energy ratio discussed in Section 6.4.1 and the
exergy BQ of heat absorbed by surface A is:

BQ = Aq
(

1 − T0

T

)
(7.85)

The reality of the discussed effect of concentration of solar radia-
tion can be evaluated by the calculated value of the overall entropy
growth �, which consists of the positive entropies of heat Q, of the
emission of surface A, and of the negative entropy of absorbed solar
radiation:

� = Q
T

+ Aε
4
3

�T3 − ASε SR (7.86)

where SR is the entropy of irradiance IR. The magnitude SR can be
evaluated from the assumed ratio SR/IR to be equal the ratio s/e of
the black emission entropy and emission energy, SR/IR = s/e. With
the use of formulae (3.21) and (5.24) the following relation can be
derived:

SR = 4
3

IR
TS

(7.87)

The overall entropy growth determined from equation (7.86)
should be positive (� > 0). If the overall entropy growth is nega-
tive (� ≤ 0), then the concentration of solar radiation is impossible
because it is against the second law of thermodynamics.

Example 7.6 The concentration of solar radiation can be considered, e.g., at IR =
800 W/m2 arriving at the imagined surface of area AS = 1 m2, as shown in Figure
7.15 (thin solid line). Assuming also that k = 3 W/(m2K) and the environment
temperature T0 = 300 K, equation (7.80) allows for determining temperature
T of surface A as a function of the surface ratio aS. With the growing aS the
temperature T grows; also, the heat rate q grows, determined by formula (7.81),
as is shown in Figure 7.16 by a long-dash line.

However, according to formula (7.82), with growing aS the total heat Q is
varying (short-dash line) with a maximum of about 134 W at about aS ≈ 2. The
maximum appears because with growing aS its effect becomes stronger than the
effect of the growing heat rate q .

The energy efficiency �E of the concentration of solar radiation, based on
definition (7.83), is varying as shown with the thick-dashed line in Figure 7.16.
The efficiency �E has a maximum of about 16.8% appearing also at about aS ≈ 2,
correspondently to the maximum of Q.

Exergy BQ of absorbed heat is determined by (7.85) and is shown in Figure
7.16 by a dotted line. The exergy BQ varies and has a maximum of about 45.8
W, which appears at the surface area ratio about aS ≈ 6. The maximum is a
result of two factors varying with growing aS: one is the growing exergy of heat
due to growing temperature T ; the other is due to a decrease of the absorbed
heat Q.
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FIGURE 7.16 Exemplary effects of the concentration of solar radiation.

Assuming  = 0.933, as for black radiation at temperature TS = 6000 K the
efficiency �B can be determined from formula (7.84) and shown in Figure 7.16
(thick solid line). The efficiency �B has a maximum of about 5.34%, which also
corresponds to a value of aS ≈ 6.

The overall entropy growth determined from equation (7.86) for the data
used in the example is always positive (� > 0) and with growing aS diminishes
to zero (� = 0) for aS = 91,843 corresponding to temperature T = 6000 K. For
further growing of aS the overall entropy growth becomes negative (� < 0), i.e.,
the further concentration of solar radiation is impossible.

Based on the calculations, the process of “deconcentration” of solar radiation,
which would correspond to reducing aS below 1, is irreversible and can occur
but heat absorbed by the surface A is negative which means that the surface
should be heated.

The data used in the present example were also used for the computation
of the results shown in Table 7.4. These data illustrate the trends of the output
data in response to changes in some input parameters. The values in column 3
of Table 7.4 are considered to be the reference values for studying the influence
of varying input parameters in the output. Therefore, each of the next columns
(4–6) corresponds to the case in which the input is changed only by the values
shown in a particular column, whereas the other input parameters remain at the
reference level.

For example, column 4 corresponds to a change in the emissivity ε, which
increases from 0.9 to 1. The 10% ε increase causes the increase of temperature
T from 517.8 to 519.9 K, q from 653.3 to 659.5 W/m2, Q from 108.9 to 109.9 W,
�E from 13.61% to 13.74%, BQ from 45.79 to 46.49 W, and �B from 5.34% to
5.42%.

Columns 5 and 6 can be similarly interpreted. For example, increasing the
heat transfer coefficient k from 3 to 5 W/(m2 K) causes an increase in the exergetic
efficiency from 5.34% to 8.04%, which is the result of increased heat rate q from
653.3 to 1021 W/m2.
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Reference Mono-variant changes of input
Quantity Units value parameters and resulting outputs
1 2 3 4 5 6

Input:

ε 0.9 1

k W/(m2 K) 3 5

T0 K 300 270

Output:

T K 517.8 519.9 504.2 514.8

q W/m2 653.3 659.6 1021 734.6

Q W 108.9 109.9 170.2 122.4

BQ W 45.79 46.49 68.94 58.23

�E % 13.61 13.74 21.28 15.30

�B % 5.34 5.42 8.04 6.79

TABLE 7.4 Responsive Trends of Output to Change of Some Input Parameters (for
IR = 800 W/m2, TS = 6000 K, � = 0.933, AS = 1 m2)

Nomenclature for Chapter 7
A surface area, m2

A′ comparable surface area, m2

a universal radiation constant, a = 7.764 × 10−16 J/(m3 K4)
aS surface area ratio
B exergy flux, W
b exergy emission density (rate), W/m2

c0 speed of propagation of radiation in vacuum
c0 = 2.9979 × 108 m/s

c1 the first Planck’s constant, c1 = 3.74 × 10−16 W m2

c2 the second Planck’s constant, c2 = 1.4388 × 10−2 m K
E energy emission, W
e energy emission density, W/m2

h Planck’s constant, h= 6.625 × 10−34J s.
IR solar irradiance, W/m2

i directional radiation density, W/(m2 sr)
i successive number
J radiosity, W
j radiosity density, W/m2

j successive number
k number of elements
k Boltzmann constant, k = 1.3805 × 10−23 J/K
k heat transfer coefficient, W/(m2 K)
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L0 normal entropy radiation intensity, W/(K m2 sr)
Lc length of crossed strings, m
Li length of profile of surface i , m
Ln length of not crossed strings, m
L0 normal entropy radiation intensity, W/(m2 K)
m successive number of happening
n successive number of the considered surface
n number of elements
P point on a surface
Q heat, W
q heat rate, W/m2

R radius, m
r distance, m
S entropy of radiosity or emission, W/K
SR entropy of solar irradiance, W/(m2 K)
s entropy of emission density, W/(m2 K)
s j entropy of radiosity density, W/(m2 K)
T absolute temperature, K
X expression in formula (7.24)
Y expression in formula (7.25)

Greek
� absorptivity
� flat angle, (declination), deg
� increment
	b irreversible loss of exergy, W/m2

	B irreversible loss of exergy, W
ε emissivity of surface
� view factor
� flat angle, (declination), deg
� efficiency of solar radiation concentration
� wavelength, m
� oscillation frequency, 1/s
� overall entropy growth, W/(m2 K)

 reflectivity
� Boltzmann constant for black radiation,

� = 5.6693 × 10−8 W/(m2 K4)
� solid angle, sr

Subscripts
A, A′ comparable surfaces
B exergetic
b black
d local
E energetic
j radiosity
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max maximum
min minimum
q heat
S solar
� local
� wavelength
� frequency
� solid angle
0 for � = 0
0 environment
1, 2 denotation



C H A P T E R 8
Radiation Spectra

of a Surface

8.1 Introductory Remarks
In the present chapter the analysis of spectra and emissivities of sur-
faces is developed according to Petela (2010).

The surface emission spectrum depends on the temperature and
properties of the emitting surface. Radiation reflected from a surface
affects neither the temperature nor the properties of the considered
surface. However, the radiation absorbed by the surface can affect
the surface temperature and thus can also affect the surface spectra
emission. A spectrum of surface radiosity is the effect of many different
spectra including the emission from the considered surface and all the
radiation fluxes reflected. The untainted radiation spectrum of a body
can be measured only if the body is not irradiated from other radiation
sources. In practice, such a pure spectrum of a body does not occur,
and consideration of such a spectrum has a rather theoretical meaning,
allowing for better understanding of radiation processes.

The following example illustrates the problem of a spectrum.
Snow that is strongly irradiated by the sun remains at a low tem-
perature because the solar radiation is mainly reflected, not absorbed.
The radiosity of the snow consists of the reflected solar radiation, the
reflected radiosities from other surfaces, and the emission of the snow.
Thus, the radiosity spectrum of snow consists of different spectra in-
cluding the spectrum of the snow’s emission, the spectrum of the sun,
and the spectra of other surfaces contributing to the snow’s radiosity.
On the other hand, because the emission of snow at a temperature
close to 0◦C is relatively small, and the emissions of other surfaces are
usually small also, the solar radiation dominates in the snow’s radios-
ity. Thus, any measurement of the snow’s radiosity spectrum will be
near the sun’s emission spectrum.

A body always emits black radiation, although the rate of this
black emission depends on the properties of the body. The emission

219
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ability is generally different for every wavelength � (range d�) or
respective frequency � (range d�). The possible maximum value of
any monochromatic emission appears in the theoretical model of a
black surface. The monochromatic emission of a real surface is al-
ways smaller, and the departure from the value for monochromatic
black emission is determined by the monochromatic emissivity (ε�)
of the real surface. For the model of a perfectly gray surface, it is as-
sumed that the monochromatic emissivity of the surface is smaller for
all wavelengths, by the same ratio as the respective monochromatic
emissivity of a black surface.

In order to emphasize the role of this property in further consid-
erations of emissivity ε, which determines the rate of black emission
from any nonblack surface, it can also be called the energetic emissivity
ε ≡ εE . Any real surface, e.g., a gray surface, in spite of its nonblack
emission rate, emits a photon gas that is black radiation. Correspond-
ingly, any real surface, e.g., a gray surface, emits black emission en-
tropy and emits the black emission exergy in spite of the nonblack
properties of the surface. The amount of the entropy or exergy of the
black energy emission, coming from a nonblack surface, is determined
also by the energetic emissivity ε.

The spectrum of an emitting surface should be distinguished from
the spectrum of the emitted photon gas, which is always black. The
concept of emissivity has application only for the surface.

Badescu (1988) proposed a formula for the exergy spectrum com-
ponent per volume unit, which is a function of the unclear reference
state determined by both the environment temperature and the atmo-
spheric pressure. The black photon gas has the exergy reference state
sufficiently defined only by temperature or pressure, since both these
are related. In spite of this, Moreno et al. (2003) developed the for-
mula alteration according to the reduction and splitting of the photon
quantum states.

The radiation exergy for an arbitrary energy spectrum has also
been considered, e.g., by Karlsson (1982) and Wright et al. (2002).
The formula for monochromatic radiation exergy was introduced by
Candau (2003); however, diagrams for spectra have not been consid-
ered.

Exergy is an interpretive concept that can be proposed for describ-
ing the properties of any matter. Thus, beside the rates of black emis-
sion energy and its entropy and exergy, the spectra of the surface ra-
diating the energy, entropy, or exergy can also be separately analyzed.
Consequently, since we have considered the energetic emissivity we
also will consider the respective entropic and exergetic emissivities.

8.2 Energy Radiation Spectrum of a Surface
The formula (7.8) for the monochromatic normal directional inten-
sity ib,0,�, for linearly polarized black radiation propagating within a
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unit solid angle and dependent on wavelength �, was established by
Planck (1914):

ib,0,� = c2
0h
�5

1

exp
(

c0h
k�T

)
− 1

(8.1)

where c0 = 2.9979 × 108 m/s is the speed of propagation of radiation
in vacuum, h = 6.625 × 10−34J s is the Planck’s constant, k = 1.3805 ×
10−23 J/K is the Boltzmann constant, � is the wavelength, and T is the
absolute temperature.

The energetic emissivity εE can be applied to the radiation inten-
sity and is defined as the ratio of the black radiation intensity emitted
by the gray surface to the black radiation intensity emitted by the black
surface at the same temperature. Therefore, the intensity represented
by formula (8.1) can be used as follows:

εE =

⎛⎜⎝
∫
�

εE,� ib,0,�d�∫
�

ib,0,�d�

⎞⎟⎠
T

≡ ε (8.2)

where εE,� is the monochromatic energetic emissivity of a surface.
For example, the spectrum of

i0,� = εib,0,� (8.3)

for the five values of emissivity ε and temperature T = 6000 K, is
shown in Figure 8.1 for the gray surface. The presented radiation
energy spectra are commonly known (and are shown here only for
the convenience of comparison to other spectra discussed later), have
smaller values the lower is the value of ε, and the spectrum maxima
appear for the same wavelength.

8.3 Entropy Radiation Spectrum of a Surface
Considerations on entropy are based on equation (7.25) established
by Planck (1914), which for the entropy of monochromatic directional
normal radiation intensity and for linearly polarized black radiation
propagating within a unit solid angle and dependent on wavelength
�, is:

Lb,0,� = c0k
�4 [(1 + Y) ln (1 + Y) − Y ln Y] where Y ≡ �5ib,0,�

c2
0h

(8.4)
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FIGURE 8.1 Examples of energetic spectra of surface at temperature 6000 K
and for five different values of emissivity ε.

If replacement of the black radiation intensity ib,0,� by the product
ε × ib,0,� is justified, then equation (8.4) can be interpreted for a gray
surface as follows:

L0,� = c0k
�4 [(1 + Yε) ln (1 + Yε) − Yε ln Yε] where Yε ≡ �5εib,0,�

c2
0h

(8.5)

Figure 8.2 shows examples of the entropic surface spectra calcu-
lated from equation (8.5) for a temperature of 6000 K and for five
different values of energetic emissivity ε. It can be noticed that the
ordinates of the spectra points are slightly larger than the values that
would correspond to the values determined by the respective ener-
getic emissivities. This means that for certain � the monochromatic
entropic emissivity εS,� would be larger than the monochromatic en-
ergetic emissivity ε� for the same temperature:

εS,� ≡ L0,�

Lb,0,�
> εE,� ≡ ε� ≡ i0,�

ib,0,�
(8.6)

The average entropic emissivity εS for the whole spectrum, in the
wavelength range from 0 to ∞, can be determined as the ratio of
the areas under the entropy spectrum curve for the considered gray
surface—equation (8.5), and under the entropy spectrum curve for the
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FIGURE 8.2 Examples of entropic spectra of a surface at temperature of 6000
K and for five different values of energetic emissivity ε (from Petela, 2010).

black surface—equation (8.4):

εS =

(
∞∫
0

L0,�d�

)
T,ε(

∞∫
0

Lb,0,�d�

)
T

(8.7)

Both the integrals in formula (8.7) can be solved analytically or
determined graphically (numerically) as the surface areas under the
respective spectra curves. After using formula (8.7) in the numerical
calculations of both integrals, the results are shown in Figure 8.3. The
entropic emissivity εS is always larger than the energetic emissivity
ε and differs more from ε with the decreasing value ε and with the
growing surface temperature.

The discussion in the present section was inspired by Candau
(2003). In his analysis of the entropy of a gray surface, he called atten-
tion to the fact that the entropic emissivity can be different from the
energetic emissivity.

8.4 Radiation Exergy Derived from Exergy Definition
Considerations of the exergy spectrum are convenient when they are
based on the radiation exergy formula derived in the shape resulting
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FIGURE 8.3 Ratio of the energetic emissivity ε to the entropic emissivity εS as
a function of temperature T (ε < εS) (from Petela, 2010).

from direct interpretation of the general exergy definition for a sub-
stance. The methods of obtaining of such a formula will now be out-
lined.

There are several methods for derivation of exergy of radiation,
some of them developed by Petela (2003). Historically, the formula for
exergy bb of a black surface emission density given by:

bb = �

3

(
3 T4 + T4

0 − 4 T0T3) (8.8)

where T and T0 are temperatures of the considered surface and
environment, respectively, and � = 5.6693 × 10−8 W/(m2 K4) is the
Boltzmann constant for black radiation, was derived for the first time
by Petela (1961) based on consideration of the exergy balance of radi-
ating surfaces. For an enclosed photon gas, independent derivation of
a formula with the characteristic expression shown in the brackets of
formula (8.8), was also shown by Petela (1964) through consideration
of the useful work performed by isentropic expansion of the photon
gas in the cylinder with a piston. Petela (1962) also derived for the
first time the formula (7.43) for exergy b of the arbitrary and polar-
ized radiation (as a function of frequency), which is equivalent to the
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following formula as a function of wavelength:

b =
∫
�

∫
�

∫
�

(i0,�,min + i0,�,max) cos � sin � d� d� d�

−
∫
�

∫
�

∫
�

(L0,�,min + L0,�,max) cos � sin � d� d� d�

+ �T4
0

3 �

∫
�

∫
�

cos � sin � d� d� (8.9)

where:

�, � -flat angle coordinates (declination and azimuth),
deg;

i0,�,max, i0,�,min - maximum and minimum monochromatic
directional (normal) radiation intensity,
W/(m2 m sr);

L0,�,max, L0,�,min - maximum and minimum monochromatic
entropy of directional radiation intensity,
W/(m2 m sr K).

In all these methods mentioned above, and in many other later
derivation methods, the mathematical definition (2.45) of exergy for-
mulated for a substance was not applied for radiation. The interpre-
tation of variables appearing in the definition was not obvious for
radiation, nor was the version (components of exergy to be included—
physical, chemical, kinetic, potential, etc.) of the substance formula to
be selected for interpreting radiation. The problem of corresponding
variables was already discussed in Section 5.9.

Now, when the shape of the formula of exergy of black radia-
tion is already known without doubt, it is possible to discuss another
derivation method, shown by Petela (1974), based on the analogy to
the definition formula for the thermal exergy B of a substance:

B = H − H0 − T0 (S − S0) (8.10)

where H, S, and H0, S0 are, respectively, the enthalpies and entropies
of the considered substance (H, S) currently, and (H0, S0) in the case
of equilibrium with an environment at temperature T0. The successful
interpretation of the analogy between the substance and the radiation
discloses that the substance enthalpy corresponds to the radiosity j,
and the substance entropy corresponds to the radiosity entropy s j .
The interpretation of B for the radiation exergy b (B → b), is based on
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the following analogies:

H → j =
∫
�

∫
�

∫
�

(i0,�,max + i0,�,min)T d2C d� (8.11)

H0 → j0 =
∫
�

∫
�

∫
�

(i0,�,max + i0,�,min)T0 d2C d� (8.12)

S → s j =
∫
�

∫
�

∫
�

(L0,�,max + L0,�,min)T d2C d� (8.13)

S0 → s j,0 =
∫
�

∫
�

∫
�

(L0,�,max + L0,�,min)T0 d2C d� (8.14)

where the abbreviation:

d2C ≡ cos � sin � d� d� (8.15)

and where:

j, j0 - radiosity density of considered radiation and environment,
W/m2;

s j , s j,0 - entropy of radiosity density of considered radiation and
the environment, W/(m2 K);

T, T0 - absolute temperature of the radiating surface and the
environment, K.

For nonpolarized radiation i0,�,max = i0,�,min, thus i0,�,max +
i0,�,min = 2 × i0,�. Additionally, L0,�,max = L0,�,min, thus L0,�,max +
L0,�,min = 2 × L0,�.

For example d2C used for the case of surface radiating to the for-
ward hemisphere is:

∫
�

∫
�

d2C ≡
�=�/2∫
�=0

�=2�∫
�=0

cos � sin � d� d� = � (8.16)

Substituting in formula (8.10) the formulae (8.11)–(8.15) and the
value (�) of the integral (8.16), the interpretation of the exergy b of a
nonpolarized radiation is:

B → b = 2�

⎧⎨⎩
∫
�

(i0,�)T d� −
∫
�

(i0,�)T0
d�

− T0

⎡⎣∫
�

(L0,�)T d� −
∫
�

(L0,�)T0
d�

⎤⎦⎫⎬⎭ (8.17)
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Formula (8.17) can be rearranged to a form identical to formula
(8.9), obtained by consideration of the exergy balance of the elements
of the radiating surface. Equation (8.17) confirms that the formulae for
the exergy of radiation can be derived from the formulae for the ex-
ergy of a substance. Additionally, the equation shows how the analogy
between the substance and the radiation allows for derivation of the
verified formula for the exergy of arbitrary (i.e., with nonregular spec-
trum) radiation. Studies have pointed out an analogy between such
variables as the specific energy of a substance (related to the unit of the
substance) and the density of radiation related to the units of the sur-
face area. However, such a derivation, derived after a long time from
other methods, has mainly didactic significance because it confirms
the general possibility of interpreting the variables of formula (8.10)
for eventual application to matter other than substance or radiation.

The general formula (8.17) for exergy of arbitrary radiation is es-
pecially convenient for analyzing the radiation spectrum. Because for-
mula (8.17) can be applied to any arbitrary case of radiation, it can also
be applied to different ranges of wavelengths. In particular, equation
(8.17) can be used to determine the monochromatic exergy, which was
discussed by Candau (2003).

8.5 Exergy Radiation Spectrum of a Surface

8.5.1 Spectrum of a Black Surface
Formula (8.17) is convenient to determine the exergy of the monochro-
matic radiation intensity. Any black radiation at the environment tem-
perature T0 is in thermodynamic equilibrium with the environment,
regardless of the diversified values of emissivities of the environment
surfaces, which all have temperature T0. Therefore, the reference state
for determination of the exergy of radiation is the black radiation at
the environment temperature T0.

Practical observations confirm that beside the fluctuation of the
environment emissivity, the variation of the solid angle or the wave-
length range of propagating radiation of the environment radiation
at temperature T0, can never be utilized in practice for obtaining use-
ful work, which is the measure of the exergy value. Such statements
determine a freedom of assumptions about all other parameters of
the environment except the environment temperature T0. This is in
accordance with the fact that the exergy is one of the thermodynamic
functions of the instant state, and such a state can be defined only by
the instant thermodynamic parameters, without the need of using any
geometric or other nonthermodynamic properties.

Based on formula (8.17) the exergy bb,�,� of black radiation prop-
agating within an elemental solid angle d� and within a wavelength



228 C h a p t e r E i g h t

range d� (monochromatic) can be derived. For this purpose, the exergy
b of equation (8.17), taken for black radiation, b = bb , can be related
to the unit solid angle of a hemisphere (bb,� = bb/2�), and the exergy
bb,� can be interpreted for the elemental wavelength range d�. Thus
the exergy spectral component bb,�,� is:

bb,�,� = ∂bb,�

d�
(8.18)

and from equation (8.17):

bb,�,� = (ib,0,�)T − (ib,0,�)T0
− T0{[Lb,0,� (ib,0,�)]T − [Lb,0,� (ib,0,�)]T0

}
(8.19)

where ib,�,� is the directional intensity of black monochromatic emis-
sion and Lb,0,� is the respective entropy of monochromatic radiation
intensity. The formula for monochromatic radiation exergy was intro-
duced by Candau (2003), and applied later by Chu and Liu (2009);
however, the spectrum diagrams have not been considered for per-
fectly gray surfaces.

The black radiation exergy/energy ratio 	 = bb/eb , expressed by
formula (6.22), is:

	 = 1 + 1
3

(
T0

T

)4

− 4
3

T0

T
(8.20)

and can be analogously used for the monochromatic exergy/energy
ratio:

	� = bb,�,�

ib,0,�
(8.21)

For comparison, Figure 8.4 shows the calculation results of the ra-
diation spectra of energy (dashed line) and exergy (solid line) for the
temperature T = 1000 K. In comparison to the energy spectrum, the
spectrum curve for exergy has a similar shape; however, it represents
smaller values. The ratio 	� (double dotted line) determined from
formula (8.21) is monotonically decreasing with the growing wave-
length. Figure 8.4 shows also the constant value of ratio 	 (dotted line)
defined by formula (8.20).

The wavelength �max,B , which corresponds to the maximum value
of bb,�,�,max, is smaller than the respective wavelength �max,E for which
the maximum energy value ib,�,�,max appears, as presented in Figure
8.5, e.g., for three different temperatures (1100, 1700, and 2000 K).
In comparison to the energetic spectra, the maxima of the exergetic
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energy ratios for a black surface at T = 1000 K and T0 = 300 K (from
Petela, 2010).

spectra at the same temperature, although smaller, appear displaced
toward the smaller wavelength. This could mean that based on the
exergy interpretation, the radiation at smaller wavelengths (or larger
frequencies) is more valuable.
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FIGURE 8.5 Different maxima of energy and exergy black spectra (from
Petela, 2010).
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In contrast to Wien’s displacement law (3.18):

�max,E T = 2.8976 × 10−3 m K (8.22)

the product of the temperature T and the wavelength �B,max is not
constant; it depends on temperature and is smaller than the respective
product for the energy spectrum:

T�max,B < T�max,E (8.23)

The ratio �max,B/�max,E grows with temperature T and tends to 1
(for T → ∞), for which the energy and exergy spectra overlap each
other. For example, Figure 8.6 shows the ratio values for the tempera-
ture range from 600 to 6000 K. However, Figure 8.7 for the temperature
range T < 350 K, shows that the ratio has the singular point of zero
for T = T0 = 300 K because for T = T0, regardless of the wavelength,
the exergy spectrum is always zero.

In comparison to Figure 8.4, Figures 8.8 and 8.9 present two ex-
amples of high (1500 K) and low (350 K) temperatures T , respectively.
With growing temperature T (Figure 8.8) the energy and exergy spec-
tra tend to overlap each other. However, with decreasing temperature
T and approaching T0 (Figure 8.9), the exergy spectrum gradually
disappears.

The energy and exergy spectra of radiation for T < T0 are shown
in Figures 8.10 and 8.11. They show the comparison of diagrams for
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FIGURE 8.6 Ratio �max,B/�max,E , as a function of temperature T in the range
from 600 to 6000 K (from Petela, 2010).
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the two different temperatures T (200 K and 100 K, respectively). It
can be observed that with decreasing T the components of the energy
spectrum decrease, whereas on the contrary, the exergy spectrum com-
ponents increase.
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Based on Figures 8.4 and 8.8–8.11, the comparison of the exergy/
energy ratio 	 , determined by formula (8.20), with the monochro-
matic exergy/energy ratio 	�, determined by formula (8.21), is possi-
ble. The ratio 	 is constant for a given temperature T ; however, the
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energy ratios for a black surface at T = 200 K and T0 = 300K (from Petela,
2010).



233R a d i a t i o n S p e c t r a o f a S u r f a c e

λ μm
0 20 40 60 80

i b
,0

,λ
, b

b,
ω,

λ M
W

/(
m

2
 m

 s
r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

20

40

60

80

100
T = 100 K

T0 = 300 K

bb,ω,λ

ib,0,λ

ψλ

ψ

ψ
, ψ

λ

FIGURE 8.11 Comparison of energy emission, exergy emission, and exergy/
energy ratios for a black surface at T = 100 K and T0 = 300 K (from Petela,
2010).

monochromatic ratio 	� varies significantly and decreases with the
growing wavelength �.

In comparison to the presented model spectra, the real curves of
energy and exergy radiation spectra would not be so smooth and regu-
lar. For example, the presented spectra of the perfectly black and gray
surfaces could be used as a theoretical comparative basis for analyses
of the results obtained from the Simple Model of the Atmospheric Ra-
diative Transfer of Sunshine (SMARTS), formulated and successively
improved by Gueymard (2008) for calculation of the sky spectral ir-
radiances. Chu and Liu (2009) applied SMARTS for calculation of the
exergy spectra of terrestrial solar radiation.

8.5.2 Spectrum of a Gray Surface
Formula (8.19) can be applied for determination of the monochromatic
exergy b�,� of the gray surface emission. The energetic emissivity ε
is used for determination of the energy and entropy, according to
equation (8.3), and the appropriately interpreted formula (8.19) is:

b�,� = (εib,0,�)T − (ib,0,�)T0
− T0

{
[Lb,0,� (εib,0,�)]T − [Lb,0,� (ib,0,�)]T0

}
(8.24)

The terms of the environment reference for energy and entropy
(being a function only of T0), in formulae (8.24) do not need any
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FIGURE 8.12 Exergy spectra for different T and ε (from Petela, 2010).

adjustment with ε, because, as mentioned before, the radiation ex-
ergy does not depend on the environment emissivity.

Some peculiarities disclosed by exergetic interpretation of the ex-
ergy emission spectra can be discussed. Based on the calculation with
formula (8.24), the black (dotted line) and gray (solid line) exergy spec-
tra are shown in Figures 8.12a–d for emissivity ε = 0.8 and for the four
different surface temperatures T , diminishing from 800 through 350
and 310 to 250 K.

Figures 8.12b–d illustrate the exergetic spectra of a gray surface
for temperature T, which is close to the environment temperature
T0 (T changes from 350 to 250 K). Figure 8.12c for temperature T =
310 K shows the two local maxima of the spectrum b�,�; one (left)
for the wavelength around 5 
m and another (right) for the larger
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wavelength—about 15.5 
m. With increasing temperature T (350 K),
Figure 8.12b, the right maximum gradually disappears and only one
(left) remains and grows, whereas with decreasing temperature T (250
K), Figure 8.12d, the left maximum disappears and the right one grows
even above the values for the black surface spectrum. As also results
from Figures 8.12b–d, in contrast to the gray spectrum, the black spec-
trum bb,�,� discloses always only one maximum.

For temperatures T < T0 the gray surface spectrum occurs above
the spectrum for the black surface at the respective temperature T .

Figures 8.12d–f illustrate the influence of decreasing surface emis-
sivity ε (from 0.8 to 0.2) at the same surface temperature T = 250 K. In
contrast to the unchanged spectrum of the black surface, the spectrum
of the gray surface is larger with smaller values of emissivity.

It can be observed that the diminishing ε corresponds to the di-
minishing surface ability to emit radiation, which is similar to the
case of extreme “cold” radiation or of an “empty tank” discussed in
Section 6.3.

8.5.3 Exergetic Emissivity
As shown in Section 8.5.2, the exergetic spectrum of a gray surface
differs significantly from the exergetic spectrum of a black surface.
Analogously to the entropic emissivity, the monochromatic exergetic
emissivity εB can be introduced:

εB,� = b�,�

bb,�,�
(8.25)

The average exergetic emissivity εB for the whole spectrum, in
the wavelength range from 0 to ∞, can be calculated as the ratio of
the areas under the exergetic spectrum curve for the considered gray
surface, equation (8.24), and under the exergetic spectrum curve for
the black surface, equation (8.19):

εB =

(
∞∫
0

b�,�d�

)
T,ε(

∞∫
0

bb,�,�d�

)
T

(8.26)

Similarly to entropic emissivity, both integrals in formula (8.26)
can be solved analytically or determined graphically as the surface
areas under the respective spectra curves. With the use of formula
(8.26) in the numerical calculations of both the integrals (for the wave-
length range from 0.01 nm to 10 
m) the example of obtained results
are shown in Figure 8.13. With the surface temperature T growing
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FIGURE 8.13 Some exemplary values of exergetic emissivity εB as a function
of temperature T and energetic emissivity ε (from Petela, 2010).

from zero, the exergetic emissivity εB grows initially rapidly from
value 1 to the values significantly larger from 1 (probably infinity) for
T = T0. However, for the temperature T growing further from val-
ues T = T0, the exergetic emissivity decreases again rapidly, passes
the minimum, and then approaches gradually the value of energetic
emissivity ε.

Based on the value of the exergetic emissivity εB the exergetic
spectrum bεB of the considered surface can be determined:

bεB = εBbb (8.27)

In spite of a dramatic variation of exergetic emissivity εB ,the exergetic
spectrum of the radiating gray surface varies smoothly as shown in
Figure 8.14. With growing temperature T the exergy bεB , from the finite
value ∼153 W/m2, decreases, passes the minimum, and then grows
significantly. The minimum value for the gray surface occurs at certain
temperature which is the larger the smaller is the energetic emissivity
ε. It is noteworthy that the values of bεB for T = T0 are indefinite,
because, as results from formula (8.26), bb = 0, and as shown in Figure
8.13, εB is infinity.

Example 8.1 Application of exergy to the exergetic spectrum of the radiating sur-
face can be illustrated by the following example. Emission of the element of the
surface at temperature T = 420 K and emissivity ε� = 0.6 (ε� = ε) is considered
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temperature T and energetic emissivity ε (from Petela, 2010).

within the wavelength range d� at � = 1 
m. Environment temperature T0 =
300 K.

The comparable basis for the main results of calculation can be the monochro-
matic normal directional intensity ib,0,� for linearly polarized black radiation of
the surface, expressed by formula (8.1). Formula (8.1) is used for calculations of
the intensities for T and T0:

(ib,0,�)T ≡ i = (2.9979 × 108)2 × 6.625 × 10−34

(1 × 10−6)5
1

exp
(

2.9979×108 ×6.625×10−34

1.3805×10−23×1×10−6 × 420

)
− 1

= 0.0791 W/(m3sr)

(ib,0,�)T0
≡ i0 = 1.939 × 10−4 W/(m3sr)

According to formula (8.4) the entropy Lb,0,� of monochromatic intensity of
linearly polarized radiation black radiation of the surface is:

(Lb,0,�)T ≡ L = c0k
�4 [(1 + Y) ln(1 + Y) − Y ln Y (i)

where

Y = �5i

c2
0h

(ii)

or for temperature T0:

(Lb,0,�)T0 ≡ L0 = c0k
�4 [(1 + Y0) ln(1 + Y0) − Y0 ln Y0] (iii)
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where:

Y0 = �5i0

c2
0h

(iv)

Substituting in equation (ii):

Y = (1 × 10−6)5 × 0.0791
(2.9979 × 108)2 × 6.625 × 10−34 = 1.328 × 10−15 1/sr

and substituting to equation (i):

Lb,0,� ≡ L = 2.9979 × 108 × 1.3805 × 10−23(
1 × 10−6

)4 [(1 + 1.328 × 10−15)

ln(1 + 1.328 × 10−15) − 1.328 × 10−15 ln 1.328 × 10−15] = 1.939 × 10−4 W/(m3K sr)

from equation (iv):

Y0 = 1.4889 × 10−21 1/sr

and from equation (iii):

L0 = 2.955 × 10−10 W/(m3K sr)

According to the discussion in Section 8.1, the gray surface emits black radi-
ation exergy at the rate bε,0,� determined by emissivity ε:

bε,0,� ≡ b = ε [i − i0 − T0 (L − L0)] (8.28)

whereas the radiation exergy bb,0,� of the considered surface, if the surface was
black (ε = 1), is:

bb,0,� ≡ bb = b
ε

(v)

Substituting to equation (8.28):

b = 0.6 × [0.0791 − 8.865 × 10−8 − 300 × (1.939 × 10−4 − 2.955 × 10−10)]

= 0.0126 W/(m3sr)

Substituting to equation (v):

bb = 0.0126
0.6

= 0.0210 W/(m3sr)

The obtained results can now be used for the main calculations. The
monochromatic exergetic spectrum component for � = 1 
m of the considered
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surface is interpreted for the surface emission determined by ε and for the ref-
erence state. which is the black radiation at environment temperature T0:

bSP,0,� ≡ bSP = εi − i0 − T0(L SP − L0) (vi)

where:

(L SP,0,�)T0 ≡ L SP = c0k
�4 [(1 + YSP ) ln(1 + YSP ) − YSP ln YSP ] (vii)

and

YSP = �5εi

c2
0h

(viii)

From equations (vi)–(viii), respectively, we obtain:

YSP = 7.973 × 10−16 1/sr

L SP = 1.1839 × 10−4 W/(m3K sr)

bSP = 0.0120 W/(m3 sr)

The exergetic emissivity εB,0,� for the considered surface is:

εB,0,� ≡ εB = bSP

bb
(ix)

and substituting to equation (ix):

εB = 0.012
0.021

= 0.5706 < ε

Also for comparison the entropic emissivity εS,0,� of the considered surface
can be calculated as:

εS,0,� ≡ εS = L SP

Lb,0,�
= 1.1839 × 10−4

1.939 × 10−4 = 0.611 > ε (x)

The calculation results show, e.g., that the considered surface, at T = 420 K, at
T0 = 300K (T > T0), � = 1 
m and ε = 0.6, emits the radiation exergy larger than
the respective exergetic surface spectrum component (b > bSP ). In comparison
to the energetic emissivity the respective entropic emissivity is larger (εS > ε),
whereas the respective exergetic emissivity is smaller (εB < ε).

8.6 Application of Exergetic Spectra for Exergy
Exchange Calculation
Application of surface exergy spectra, instead of surface radiating
products, in the calculation of exchanged radiative exergy can be
examined for comparison. The two surfaces exchanging exergy by
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radiation, analyzed in Section 7.5.3 based on Figure 7.11 with use of
the energetic emissivities ε, can be considered now with application of
the exergetic emissivities εB . Figure 7.11b can be used for the following
interpretation:

For surface 1:

b1,0 = ε1eb,1

(
1 − T0

T1

)
b1,1 = b1,0 − b1,2

b1,2 = εB,1bb,1

b1,3 = �2ε1eb,1

(
1 − T0

T2

)
b1,4 = b1,2 − b1,3 − b1,5

b1,5 = �2εB,1bb,1

b1,6 = �1�2ε1eb,1

(
1 − T0

T1

)
b1,7 = b1,5 − b1,6 − b1,8

b1,8 = �1�2εB,1bb,1

b1,9 = �2�1�2ε1eb,1

(
1 − T0

T2

)
b1,10 = b1,8 − b1,9 − b1,11

b1,11 = �1� 2
2 εB,1bb,1

b1,12 = �1�1�2
2 ε1eb,1

(
1 − T0

T1

)
b1,13 = b1,11 − b1,12 − b1,14

b1,14 = �2
1 � 2

2 εB,1bb,1

etc., where εB,1 is the exergetic emissivity of surface 1, and according
to formula (8.26):

εB,1 =
( ∫ ∞

0 b�,�d�∫ ∞
0 bb,�,�d�

)
T1

(a)

The emission exergy bb,1 of a black surface at temperature T1 is
determined from formula (h) in Section 7.5.3.3.

For the exergy radiation of surface 2:

b2,0 = ε2eb,2

(
1 − T0

T2

)
b2,1 = b2,0 − b2,2

b2,2 = εB,2bb,2
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b2,3 = �1ε2eb,2

(
1 − T0

T1

)
b2,4 = b2,2 − b2,3 − b2,5

b2,5 = �1εB,2bb,2

b2,6 = �2�1ε2eb,2

(
1 − T0

T2

)
b2,7 = b2,5 − b2,6 − b2,8

b2,8 = �2�1εB,2bb,2

b2,9 = �1�2�1ε2eb,2

(
1 − T0

T1

)
b2,10 = b2,8 − b2,9 − b2,11

b2,11 = �2
1 �2εB,2bb,2

etc., where the εB,2 is the exergetic emissivity of surface 2, and accord-
ing to formula (8.26):

εB,2 =
( ∫ ∞

0 b�,�d�∫ ∞
0 bb,�,�d�

)
T2

(b)

The emission exergy bb,2 of a black surface at temperature T2 is
determined from formula (i), Section 7.5.3.3.

The portions of the radiation exergy of surface 1 delivered to sur-
face 2 are:

bSP,1 = (b1,2 − b1,5) + (b1,8 − b1,11) + · · ·
= �2 εB,1bb,1

(
1 + �1�2 + � 2

1 �2
2 + · · ·) = �2εB,1bb,1

1 − �1�2
(8.29)

The portions of the radiation exergy of surface 2 delivered to sur-
face 1 are:

bSP,2 = (b2,2 − b2,5) + (b2,8 − b2,11) + · · ·
= �1 εB,2bb,2

(
1 + �1�2 + � 2

1 �2
2 + · · ·) = �1εB,2bb,2

1 − �1�2
(8.30)

The net radiation exergy bSP,1−2 transferred from surface 1 to sur-
face 2 is:

bSP,1−2 = bSP,1 − bSP,2 (8.31)

Substituting to equation (8.31) equations (h) and (i) from Section
7.5.3.3, (8.29) and (8.30), as well as taking into account relations at
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FIGURE 8.15 Comparison of exchanged radiation exergy for T1 = 600 K, T0 =
300 K, ε1 = 0.8, ε2 = 0.6, and εB,1 = 0.7272, for varying values of
temperature T2 and appropriate emissivity εB,2.

� + � = 1 and � = � , the net radiation exergy bSP,12 determined with
exergetic emissivities is:

bSP,1−2 = ε2εB,1 bb,1 − ε1εB,2bb,2

ε1 + ε2 − ε1ε2
(8.32)

Obviously if εB,1 = ε1and εB,2 = ε2, then equation (8.32) becomes
like (7.77). But, e.g., if only εB,1 = 1, then for T >> T0:

bSP,1−2 = ε2bb,1 − εB,2bb,2 > ε2 (bb,1 − bb,2) (8.33)

The comparison of the radiative exergy exchange determined by
exergetic emissivities, according to formula (8.33), and correctly de-
termined by the energetic emissivities, according to formula (7.77), is
illustrated in Figure 8.15. The following calculations were used T1=
600 K, T0 = 300 K, ε1 = 0.8, and ε2 = 0.6. Determination of exergetic
emissivity is based on the numerical calculation of the surface areas
under the curves for the gray and black spectra. The exergetic emis-
sivity εB,1 = 0.7272 for surface 1 is determined based on formula (a)
at T1= 600 K. The values of emissivities εB,2 are determined based on
formula (b) for varying T2. For the relatively small surface tempera-
tures the exchanged exergy bSP,1−2 can be slightly smaller or larger
than exchanged exergy b1−2.

However, as shown in Figure 8.16, for the larger surface temper-
atures, the difference between the values of bSP,1−2 and b1−2 becomes
negligible. In calculation for Figure 8.16, T2 = 500 K, T0 = 300 K,
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FIGURE 8.16 Comparison of exchanged radiation exergy for T2 = 500 K,
T0 = 300 K, ε1 = 0.8, ε2 = 0.6, and εB,2 = 0.4149, for varying values of
temperature T1 and appropriate emissivity εB,1.

ε1 = 0.8, and ε2 = 0.6. The exergetic emissivity εB,2 = 0.4149 for sur-
face 2 is determined based on formula (b) at T2 = 500 K. The values of
emissivities εB,1 are determined based on formula (a) for varying T1.

8.7 Conclusion
The topics considered in Chapter 8 contribute to the theory of ther-
mal radiation of a surface. In this chapter, the interpretative concept
of exergy was applied to emphasizing and distinguishing the sensi-
ble exergetic spectrum of the emitting surface from the spectrum ex-
ergy of the emitted product (photon gas). Consequently, the entropic
spectrum was also applied. The entropic and exergetic spectra were
analyzed in comparison to the common energetic spectrum.

This method, based on the analogy between substance and radi-
ation, was shown for the derivation of the radiation exergy formula,
which is convenient for spectra analyses. In comparison to the en-
ergy spectra, it was found that the maxima of the exergetic spectra are
smaller and displaced toward the smaller wavelengths, i.e., the larger
frequencies.

Following discussion of the existing common notion of emissiv-
ity, referred to in this book as energetic emissivity, both entropic and
exergetic emissivities were proposed. For example, it was shown that
for surfaces at the same temperature T , the energetic emissivity is not
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larger than the entropic emissivity (εS ≥ ε), whereas for temperature
T larger than the environment temperature, the exergetic emissivity
is not smaller than the energetic emissivity (εB ≤ ε). In the vicinity of
T0, (T ≈ T0), some singularities occur and for T < T0 is always εB ≥ ε.

The radiation entropy production from a gray surface, determined
based on the entropic emissivity εS is larger than the radiating entropy
determined based on the energetic emissivity ε. The opposite effect is
observed in the case of exergy. If excluded from consideration are the
low-temperature ranges in the vicinity of the environment tempera-
ture and the zero absolute temperature, then for a gray surface the
radiation exergy determined based on the exergetic emissivity εB is
smaller than the exergy determined by using energetic emissivity ε.

It was also emphasized that all the emissivities can be addressed
only at the considered surfaces, not at the emission product, which
is always black. None of the discussed conclusions have significant
meaning or practical applicability; however, they can contribute to
better understanding of the surface radiation nature. The discussion
of spectra of the perfectly black and gray surfaces can be also used,
e.g., as a theoretical comparative basis for analyses of the real-sky
spectral irradiances.

Nomenclature for Chapter 8
B exergy of substance, J
C abbreviation defined by formula (8.15), sr
c0 speed of propagation of radiation in vacuum

c0 = 2.9979 × 108 m/s
H enthalpy of substance, J
h Planck’s constant, h = 6.625 × 10−34 J s.
ib,0,� monochromatic normal directional intensity for

linearly polarized black radiation propagating
within a unit solid angle, dependent on �,
W/(m2 m sr)

j radiosity density, W/m2

k Boltzmann constant, k = 1.3805 × 10−23 J/K
Lb,0,� entropy of normal monochromatic directional

intensity for linearly polarized black radiation
propagating within unit solid angle and dependent
on wavelength �, W/(m2 K sr)

S entropy of substance, J/K
s j entropy of radiosity density, W/(m2 K)
SMARTS Simple Model of the Atmospheric Radiative

Transfer of Sunshine
T absolute temperature, K
Y expression in formula (8.4)
Yε expression in formula (8.5)
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Greek
� flat angle, (declination), deg
ε emissivity of surface
� flat angle, (azimuth), deg
� wavelength, m
� oscillation frequency, 1/s
� Boltzmann constant for black radiation,

� = 5.6693 × 10−8 W/(m2 K4)
	 ratio of emission exergy to emission energy

Subscripts
B exergetic
b black
E energetic
j radiosity
ε energetic emissivity
� wavelength
max maximum
min minimum
S entropic
SP spectrum
� solid angle
0 for � = 0
0 environment
1, 2 denotation
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C H A P T E R 9
Discussion of

Radiation Exergy
Formulae Proposed

by Researchers

9.1 Polemic Addressees
In the present chapter we analyze different formulae about exergy
proposed by many researchers, which have been selected based on
the significance of their contribution, according to Petela (2003). In
particular, we review the literature about radiation exergy. At the stage
in the book, after the discussion in previous chapters, the reader will
be sufficiently prepared to follow critically the presented viewpoints.

It was well observed by Bejan (1997) that any discussion of the
efficiency or economics of solar radiation utilization should be based
on understanding the potential of the radiation for maximum work
performance, and such potential is expressed by the exergy of the ther-
mal radiation. Researchers agree that thermal radiation received from
the sun is rich in exergy; however, their quantitative determination of
the radiation exergy often differs.

The formula discussed by various researchers is mainly that for
the exergy of blackbody emission. This formula basically determines
the general concept of radiation exergy, and any other versions for
different cases of radiation follow as a result.

To date, researchers have focused mainly on three radiation ex-
ergy formulae—as derived by Petela (1961a, 1961b), Spanner (1964),
and Jeter (1981). The following discussion is developed based on the
approaches of Spanner and Jeter, as well as the discussions by Bejan
(1987, 1997) and Wright et al. (2002). Also addressed are the aspects
of radiation exergy raised by some researchers such as Boehm (1986),

247
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Gribik and Osterle (1984, 1986), Landsberg and Tonge (1979), Fraser
and Kay (2001), and Badescu (2008), all of whom quote the work of
Petela (1964), as well as other researchers who do not, such as Spanner
(1964), Press (1976), Parrott (1978, 1979), and Wall (1993).

9.2 What Work Represents Exergy?
The First Law of Thermodynamics, applied to any medium (e.g., a
working fluid) undergoing the process within an enclosed system,
leads to the equation of energy conservation for a certain time period
between the beginning medium state, 1, and the end state, 2. The heat
Q1−2 delivered to the medium from external sources is spent on raising
the internal energy of the medium from U1 to U2, and on performing
the absolute work W1−2:

Q1−2 = U2 − U1 + W1−2 (9.1)

The radiation matter can be assumed to be the processed medium.
The absolute work W1−2 consists of the useful work Wu and the work
We spent for the “compression of environment”:

W1−2 = Wu + We (9.2)

where:

Wu =
2∫

1

(p − p0) dV (9.3)

and

We = p0 (V1 − V0) (9.4)

where p is the current radiation pressure and p0 is the radiation pres-
sure at the environment temperature T0.

Work We is unavailable, whereas work Wu represents the exergy B
of the medium at the state 1, Wu ≡ B, whenever this work Wu is maxi-
mum. This means the change 1–2 in the photon gas occurs at constant
entropy, and with Q1−2 = 0, according to the isentropic process equa-
tion (5.26), in which the pressure p of the photon gas is determined
by formula (5.21).

Spanner (1964) introduced the concept of maximum economic effi-
ciency �s , in which, instead of using the useful work Wu, he applied
absolute work W1−2 related to the initial internal energy Ul of the ra-
diation arriving to the considered leaf:

�s = W1−2

U1
= 1 − 4

3
T2

T1
(9.5)

where T1 and T2 are the absolute temperatures of the radiation matter
at the beginning and at the end of the process, respectively.
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However, if instead of the Spanner’s efficiency �s , one introduces
a rather more justified efficiency �′ defined with use of the useful work
as:

�′ = Wu

U1
(9.6)

then the efficiency �′ becomes just the exergy/energy radiation ratio
�, expressed by equation (6.22), where � = b1/U1, and is in agreement
with Petela (1961b, 1964):

�′ = 1 + 1
3

(
T0

T1

)4

− 4
3

T0

T1
≡ � (9.7)

The values of radiation exergy resulting from Petela’s and Span-
ner’s formulae can be compared. For example, the exergy of 1 m3 of
initial radiation at temperature T , according to Petela (bP ), is deter-
mined by formula (5.29):

bP = a
3

(
3T4 + T4

0 − 4 T0 T3) (9.8)

whereas Spanner’s result (bS) is based on equation (9.5), using formula
(5.13) for Ur and assuming the volume 1 m3. Constant a = 7.564 ×
10−16 J/(m3 K4). After using formula (5.13) and substituting T1 = T
and T2 = T0, Spanner’s result becomes as follows:

bS = a
3

(
3T4 − 4 T0 T3) (9.9)

Equations (9.8) and (9.9) are presented in Figure 9.1 for T0 = 300 K.
For the high values of radiation temperature T , both exergy values
approach each other, so that bS ≈ bP . For example, for solar radiation
(T ≈ 6000 K), bS = bP = 0.9149 J/m3. However, for the lower val-
ues of temperature T , as shown in Figure 9.1, both exergy values bS

and bP differ significantly not only by numbers but also by the alge-
braic sign—although according to the definition, the exergy should
be positive. Both exergy values bS and bP reach a minimum at T =
To however, the minimal values are bP = 0 and bS = −2.041 × 10−6

J/m3. For T → 0, they differ: bS = 0 and bP > 0; (bP = 2.0423 ×
10−6 J/m3).

Petela’s equation (9.8) is more justified, because the exergy is mea-
sured by the useful work, with bP ≡ Wu. However, Spanner’s exergy
is expressed by the absolute work, with bS ≡ W1−2, part of which is the
unavailable work used for compression of the environment. In prac-
tice, using Spanner’s equation (9.9), one does not incur any numerical
error when evaluating the exergy of radiation at high temperatures.
However, using this formula for the low-temperature radiation, the
error can be significant, as shown in Figure 9.1.
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FIGURE 9.1 Comparison of black radiation exergy determined by Spanner
(bS), Petela (bP ), and Jeter (bJ ).

9.3 Is Radiation Matter Heat?
In a system with the sun at surface temperature TS, and the earth’s
surface at environment temperature T0, work can be performed. The
three theories of solar energy utilization are schematically shown in
Figure 9.2. First, the sun and the environment are in direct contact with
an ideal heat engine that consumes heat QS, rejects Q01, and performs
work W1 at the Carnot efficiency of �C1 = 1 − T0/TS, with no exergy
loss.

Second, the solar radiation, by its radiation pressure, generates
work W2 with the use of any ideal mechanical engine. The energy
degradation, measured by exergy loss determined by equation (6.49),
appears during emission of the solar radiation. The energy or exergy
efficiency of this radiation-to-work conversion can be estimated, re-
spectively, with the use of equation (6.20) or (6.23).

Third, solar radiation is absorbed at the surface of temperature Ta .
An ideal heat engine (i) by direct contact with the surface, consumes
heat Qa , (ii) by direct contact with the environment, rejects heat Q03,
and (iii) performs work W3 at the Carnot efficiency of �C3 = 1 − T0/Ta .
The exergy losses appear during emission and absorption of the solar
radiation. These losses can be determined, respectively, by equations
(6.53) and (6.70), together with equation (2.60). The energy and exergy
efficiency of this radiation-to-heat conversion can be estimated with
the use of equations (6.20) and (6.23).
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FIGURE 9.2 Utilization of solar energy (from Petela, 2003).

Jeter (1981), considering utilization of solar energy, arrived at a
result corresponding to the first idea discussed above. The efficiency
�C1 proposed by Jeter for estimation of the solar radiation exergy is
unfair because this efficiency expresses the exergy not of the solar
radiation but of the heat arriving from the interior of the sun to its
surface. In addition, the idea of direct contact of the heat engine with
the sun and earth is not realistic.

As shown in Figure 9.2, utilization of heat originating from the
sun can be considered according to Jeter (first idea) or according to
Petela (third idea). The two ideas are compared based on the more
detailed scheme shown in Figure 9.3. The two situations correspond
to the utilization of the thermal solar radiation, coming directly to
the earth, with use of an ideal heat engine performing at the Carnot
efficiency. In Jeter’s situation (Figure 9.3a), the engine is supplied with
heat qJ at temperature TS, and this heat is equal to the energy eS� of
solar emission arriving within the solid angle �:

qJ = eS� (9.10)

The heat is converted to the work WJ at the Carnot efficiency �CS,
which is equal to the Jeter’s conversion efficiency �J :

�J = �CS = TS − T0

TS
= WJ

q J
(9.11)

and the heat q0J , at environment temperature T0, is rejected. Thus,
based on equation (9.11), e.g., the exergy of a 1 m3 enclosed black
radiation at temperature T can be expressed according to Jeter as bJ =
WJ = �C × q J . The exergy bJ calculated in such way as function of
temperature T is shown in Figure 9.1 for comparison with Spanner’s
exergy bS and Petela’s exergy bP . Jeter’s values bJ are always positive,
the largest (bJ > bP > bS), and also have the minimum at T = T0.
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FIGURE 9.3 Comparison of Jeter’s and Petela’s interpretations of a
conversion system (from Petela, 2003).

However, to obtain heat from solar radiation one has to first ab-
sorb the radiation and this absorption is not considered in Jeter’s case.
As indicated in Section 6.6, such absorption alone is impossible, by
equation (6.56), without simultaneous emission. However, according
to equation (6.70), the conversion of radiation into heat at simulta-
neous absorption and emission, when TS �= Ta , is possible although
irreversible. The appropriate interpretation by Petela is presented in
Figure 9.3b. The solar radiation, at temperature TS, energy eS� and
exergy bS�, is first absorbed at the surface of emissivity εa and tem-
perature Ta . Similarly to Figure 10.6 shown later, the absorbing surface
receives also energy εa e0 of zero exergy, as well as emits energy εa ea

of exergy εa ba . Then, heat q at temperature Ta , from the absorbing
surface, is used in the engine to perform work W, whereas heat q0

at temperature T0, is rejected. Again, an ideal engine is assumed for
which the Carnot efficiency �Ca is:

�Ca = Ta − T0

Ta
(9.12)

The exergy and energy conversion efficiencies for the considered
system, in Figure 9.3b, according to (6.23) and (6.20), respectively, are:

�B = W
bS�

(9.13)
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and

�E = W
es�

(9.14)

Using data, e.g., from Table 10.1 discussed later, for calculation of
solar radiation (TS = 6000 K, Ta = 350 K, T0 = 300 K, and εa = 0.8), the
bands diagrams of exergy and energy balances are shown in Figure 9.4.
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FIGURE 9.4 Jeter’s and Petela’s energy and exergy flow sheets for conversion
systems, es� = 1.59 kW/(m2 sr), bs� =1.48 kW/(m2 sr) (from Petela, 2003).
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The difference between the efficiencies � J (Figure 9.4a) and �B or �E

(Figure 9.4b) are significant (95% versus 9.2% or 8.6%, respectively).
The pessimistic result of relatively low efficiencies �B and �E can
change to the more optimistic result of increased efficiencies if solar
radiation is utilized with the use of a lens. However, the difference
between the efficiency concepts still remains essential.

9.4 Bejan’s Discussion
Bejan (1987, 1997) provides a creative review and discussion of the
radiation exergy problems. Regarding the approach by Petela (1964),
the two main issues of Bejan are (i) the source of the initial radiation
matter in the cylinder–piston system considered by Petela (1964), and
(ii) what happens to the radiation matter rejected during expansion
in the system. Directed with these issues, Bejan presented extensive
illuminating considerations, mostly about the radiation exergy phe-
nomena related to the cylinder–piston cycles.

The attempt by Petela (1961b) was to determine the formula for
calculation of the exergy of radiation, based on the assumed definition
of exergy. The exergy is a property of matter, like other properties
(e.g., enthalpy, internal energy or entropy, etc.), and depends only
on its instantaneous state determined by instantaneous parameters
(temperature, pressure, etc.).

Wright et al. (2002) correctly stated that the radiation exergy does
not depend on its source or fate. Therefore, the above two issues by
Bejan should not be understood as a negation of Petela’s radiation
exergy formulae but rather can be recognized as the initiation of cre-
ative discussion of the radiation exergy concept in some interesting
circumstances.

Bejan’s conclusion is that all three theories (Spanner’s, Jeter’s, and
Petela’s) concerning the ideal conversion of thermal radiation into
work, although obtaining different results, are correct. However, ac-
cording to Petela, these three different results on the limiting energy
efficiency of utilization of the radiation are correct but for the dif-
ferent and incomparable situations and only the Petela’s situation is
adequately representing the problem. All of the discussed efficien-
cies assume work as an output. However, Petela’s work is equal to
the radiation exergy; Jeter’s work is the heat engine cycle work; and
Spanner’s work is an unavailable absolute work. As input, both Petela
and Spanner assume the internal energy of radiation, whereas Jeter
assumes heat (Table 9.1). It should be emphasized that heat from the
sun is acquired not at the sun temperature but at the temperature of
absorbing surface. In fact, from the sun arrives at the earth a photon
gas of the exergy which should be accepted as the practical value of
the solar radiation resource.

The numerical illustration of the three limiting energy efficiencies,
as a function of radiation temperature T , is shown in Figure 9.5 for
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Unified efficiency
expression

Researcher Input Output (T2 = T0)

Spanner Internal energy
of radiation

Absolute work 1 − 4

3

T0

T

Jeter Heat Net work of
heat engine

1 − T0

T

Petelaa Internal energy
of radiation

Useful work =
radiation
exergy

1 − 4

3

T0

T
+ 1

3

(
T0

T

)4

a In equation (9.69) of Bejan (1997) there is a misprint: “1” should be added to the
right-hand side of this equation.

TABLE 9.1 Numerators (Output) and Denominators (Input) of the Limiting
Energy Efficiency of Radiation Utilization by Three Different Researchers (from
Petela, 2003)

Radiation temperature T, K
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FIGURE 9.5 Comparison of three limiting energy efficiencies: � J , �s, and �
(T0= 300 K) (from Petela, 2003).
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them (from Petela, 2003).

comparison. The efficiencies are calculated with � J from equation
(9.11), �s from equation (9.5) and � from equation (9.7).

It should be emphasized that in the analysis of radiation exergy
problems, besides the cylinder–piston model, there also can be other
models taken into account. To illustrate some possible operations with
the radiation exergy concept, the example of radiative heat transfer
with the screen between radiating surfaces (not necessarily involving
the sun) can be considered according to Figure 9.6. This is a geometrical
simple system of parallel planes, 1 and 2, at respective constant tem-
peratures T1 and T2, separated with the parallel screen of the two side
surfaces, heated (e ′) and cooled (e ′′). The screen is very thin so the con-
duction of heat across the screen can be neglected. Assuming simply
that all the considered surfaces are perfectly black, the screen temper-
ature Te can be calculated from the energy conservation equation (q1 =
q2), where q1 and q2 are heat fluxes supplied to surface 1 and rejected
from surface 2, respectively. The following equation can be derived:

Te = 4

√
T4

1 + T4
2

2
(9.15)

Heat q1 can be calculated based on the radiation energy e1 and ee ,
or e2, determined appropriately from equation (3.22), where q1 = e1–
ee . The radiation exergy values b1, be , and b2 result, respectively, from
equation (6.8). The exergy of heat is determined by equation (2.61)
and the exergy losses �b, separately, for all four surfaces 1, e ′, e ′′, and
2, are from appropriately interpreted equation (2.60). The exemplary
calculation results of the energy and exergy balances for the four sur-
faces are shown in Table 9.2 (for relatively low T1 = 1000 K) and Table
9.3 (for about the sun temperature, T1 = 6000 K). Input and output are
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1. Radiating 2. Heated screen 3. Cooled screen 4. Absorbing
surface surface surface surface

Variable T1 = 1000 K Te = 846 K Te = 846 K T2 = 400 K

Energy + – + – + – + –

Heat (q1) 100 100 100 100
Emitted radiation 205.25 105.25 105.25 5.25
Absorbed radiation 105.25 205.25 5.25 105.25
Energy loss

Total 205.25 205.25 205.25 205.25 105.25 105.25 105.25 105.25

Exergy

Heat (bq1) 100 92.21 92.21 35.71
Emitted radiation 176.72 80.08 80.08 0.79
Absorbed radiation 80.08 176.72 0.79 80.08
Exergy loss 3.36 4.43 12.92 43.58

Total 180.08 180.08 176.72 176.72 93.00 93.00 80.08 80.08

TABLE 9.2 Items (%) of the Four Energy and Exergy Balance Equations for the Low Temperature T1 = 1000 K (q1 = 27.61 kW/m2, bq1 =
19.33 kW/m2, T0 = 300 K) (from Petela, 2003)
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1. Radiating 2. Heated screen 3. Cooled screen 4. Absorbing
surface surface surface surface

Variable T1 = 6000 K Te = 5045 K Te = 5045 K T2 = 350 K

Energy + – + – + – + –

Heat (q1) 100 100 100 100
Emitted radiation 200.00 100.00 100.00 ∼0
Absorbed radiation 100.00 200.00 ∼0 100.00
Energy loss

Total 200.00 200.00 200.00 200.00 100.00 100.00 100.00 100.00

Exergy

Heat (bq1) 100 99.00 99.00 15.04
Emitted radiation 196.49 96.92 96.92 ∼0
Absorbed radiation 96.91 196.49 ∼0 96.92
Exergy loss 0.42 0.57 2.08 81.88

Total 196.91 196.91 196.49 196.49 99.00 99.00 96.92 96.92

TABLE 9.3 Items (%) of the Four Energy and Exergy Balance Equations for About the Sun Temperature T1 = 6000 K (q1 = 36.72 MW/m2,
bq1 = 68.55 MW/m2, T0 = 300 K) (from Petela, 2003)
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denoted, respectively, by the signs “+” and “−”. Tables 9.2 and 9.3 each
illustrate the two different, and both correct, viewpoints on the conver-
sion processes of radiation—the energetic or exergetic views. Again,
only the exergy approach demonstrates the degradation of energy.

9.5 Discussion by Wright et al.
The original interpretations and understanding of numerous aspects
of heat radiation exergy, as well as derivation of many construc-
tive conclusions, especially for engineers, were presented by Wright
et al. (2002). Their work analyzed many doubts and misinterpreta-
tions of researchers, whose viewpoint was that application of Petela’s
exergetic formulae for the conversion of heat radiation fluxes is dis-
cussible. They outlined three questions that are the foundation for
these misinterpretations. First: How can we define the environment
for heat radiation? Second: How is motivated the Petela’s assumption
that reversible conversion of black radiation is possible? Third: How
does the re-radiated emission affect the maximum work obtainable?

Referring to these three questions, Wright et al. (2002) presented
the correct definition (agreeable with Petela’s) of the environment and
its role in considerations of radiation exergy. They perfectly read the
intentions of Petela (1961, 1964) regarding determination of the en-
vironment for heat radiation exergy. Then they confirmed Petela’s
intention of formulating the principles of the reversibility of radiation
flux conversion, using an ingenious argument based on conversion de-
vices combined with a Carnot heat engine. Accordingly, with Petela,
they understood that the re-radiated emission reduced the device’s
efficiency; however, it did not change the exergy of incident radiation
and thus, did not change the limiting efficiency of theoretical utiliza-
tion of the incident radiation. Their viewpoint was based on resolving
fundamental questions such as the following problems: “inherent irre-
versibility, definition of environment, the effect of inherent emission,
and the effect of concentrating source radiation.”

Additionally, they rightly raised the necessity to restate any ex-
ergy balance equations involving radiative heat transfer, by introduc-
ing the available formulae for radiation exergy. In their own way,
they explained the meaning of Petela’s result for the nonzero value of
the radiation flux and for the enclosed radiation when the radiation
temperature approaches absolute zero. They evaluated the maximum
exergetic efficiency for some different conversion processes.

9.6 Other Authors
The exergy approach to thermal radiation was developed by many
other authors. Press (1976) analyzed diluted solar radiation, and for
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direct (undiluted) sunlight he derived his formula (4) which contains
the expression � in a form in accordance with Petela’s equation (6.22).
He rejected Jeter’s application of the Carnot efficiency (for solar ra-
diation of temperature about 6000 K and environment temperature
about 300 K) in a thermodynamic evaluation of direct sunlight.

Parrott (1978) obtained the obvious disagreement when compar-
ing his formula for solar radiation to the formula by Petela (1964)
derived for any direct radiation propagating within a solid angle 2�.
Parrott (1979) belongs to the authors who erroneously accept the state
function of exergy—to be exact, the radiation exergy/energy ratio—
as also being a function of geometrical parameters, e.g., the angle of
the cone subtended by the sun’s disc. However, using the availabil-
ity which was once one of the names of exergy, he obtained a result
confirming the results of Petela (1964).

Landsberg and Tonge (1979) developed the results of some other
researchers. They considered the photon density in diluted blackbody
radiation by introducing a new function X depending on the dilution
factor. Their final results were in agreement with the results by Petela
(1964). The emissivity ε used by Petela (1964), they misinterpreted
(their page 561) as the dilution factor. For any arbitrary (diluted, indi-
rect) heat radiation, Petela (1962) derived formulae that do not need
any emissivity but do require measured data on the radiation spec-
trum and angle of propagation.

Gribik and Osterle (1984), regarding the first discussion point,
correctly Petela’s derivation of formula (6.8), valid for any radiation
emission from a perfectly gray surface (not only for solar radiation) by
(a) calculating the useful work in the cylinder–piston system and (b)
applying availability (exergy). However, their argument runs against
the assumption that useful work represents the exergy of heat radi-
ation, and as a result, they agreed with a concept of “literally de-
stroyed radiation,” which means absorption. Such absorption, with-
out accompanying emission, as proved in Section 6.6, is impossible.
They disapproved of Jeter’s application of the Carnot efficiency for
determination of radiation exergy. Thus, from the arguments on the
maximum efficiency of the solar radiation utilization by Petela (1964),
Spanner (1964), Parrott (1978, 1979), and Jeter (1981), they approved
only of Spanner’s result.

Gribik and Osterle (1986), regarding the first discussion point,
correctly disagreed that radiation is heat. Radiation is the transport
of energy, which can occur even in a vacuum. This is not a feature
of other transport systems such as conduction or convection. To
exchange heat between a radiation field and a substance the phe-
nomena of emission and absorption have to occur. Both phenomena
involve irreversibility, which is manifested only by exergy analysis,
whereas energy analysis reveals no energy degradation. Therefore,
from an energy viewpoint, radiation is recognized as heat.
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Regarding the second discussion point, they do not agree that the
practical value (exergy) of radiation should be applied to the human
environment, which is filled with radiation at the environment tem-
perature. By referring the radiation value to the temperature of abso-
lute zero, they represented the energy viewpoint, which differs from
the exergy viewpoint. They did not take into account that, in con-
trast to the environment temperature, the absolute temperature is not
achievable and thus should not be taken into the consideration of
practical value of radiation.

Boehm (1986) pointed out that neglecting the environment com-
pression by Spanner is the cause of the difference between Petela’s
(1964) and Spanner’s (1964) formulae. Boehm recognizes as an appar-
ent flaw Spanner’s negative efficiency values for radiation tempera-
tures below the environment temperatures.

Badescu (2008) introduced exergy into the area of nuclear radi-
ation. He considered only blackbody radiation. Based on statistical
thermodynamics he discussed Petela’s exergy/energy radiation ra-
tio � (mistakenly called the Petela–Landsberg–Press ratio) as the one
resulting from the four possible interpretative solutions of exergy es-
timation of radiation flux. This one solution confirms the Petela �
formula; however, without knowing a priori the solution, e.g., based
on derivation of Petela’s exergy analysis of radiating surfaces, one
would not know which of the four equations is the correct solution.
Badescu’s considerations can be recognized as a creative approach
applying the exergy concept to nuclear technology. The rough estima-
tion of exergy efficiency of a nuclear power station was outlined by
Szargut and Petela (1965, 1968).

Recently, Fraser and Kay (2001) attempted to introduce the exergy
of solar thermal radiation into considerations of ecosystems. Inspired
by an environmental protection strategy, Wall (1993) suggested a “con-
sumption tax” for use of nonrenewable energy resources. This pollu-
tion tax would be determined based on the exergy value of utilized
resources. Obviously, a tax exemption for the use of solar radiation
would stimulate its wider utilization.

9.7 Summary
The present chapter has enhanced understanding and accuracy of the
exergy analysis of processes involving heat radiation. In the existing
literature in this field, the most discussed formulae for heat radiation
exergy are those derived by Petela (1961a), Spanner (1964), and Jeter
(1981). The discrepancy between formulae by Petela and by Spanner
arises because Spanner applied the absolute work instead of the use-
ful work to express the maximum practically available work (exergy).
The discrepancy between formulae by Petela and Jeter is because
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Petela applied the exergy analysis, whereas Jeter developed the en-
ergy analysis in which the degradation of heat to radiation at the same
temperature, is not revealed.

Based on analysis of all the available formulae for the exergy of
radiation, it was concluded by Petela and some other researchers that
for exergy of radiation matter existing at a certain instant, regardless
of from where the radiation originated and regardless of what will
happen to the radiation in the next instant, the only justified formulae
for estimation of radiation exergy are those derived by Petela for any
enclosed photon gas and for any arbitrary radiation flux.

The commonly known insensitivity of energy analysis to the qual-
ity of energy, in contrast to exergy, is one of the disadvantages of energy
analysis. Only exergy clearly discloses degradation of energy in the
processes of absorption and emission of radiation.

The traditional cylinder–piston model is often used in analyses of
various classical thermodynamic problems. However, although the
model can be used also in concepts of diversified radiation exergy,
more attention needs to be paid to the possibility of using other models
that involve the system of radiating surfaces on which the emission
and absorption occur. The results for both kinds of models have to
agree. Usually, the surface models do not raise doubts and thus can
often be used for verification of the results for the cylinder–piston
system.

Nomenclature for Chapter 9
B exergy of radiation, J
b radiation exergy, J/m3

e emission energy, W/m2

p radiation pressure or absolute static pressure of gas, Pa
Q heat, J
q heat rate, W/m2

s entropy of emission, W/(m2 s)
T absolute temperature, K
U internal energy, J
V volume, m3

W work, J or W/m2

Greek
�b exergy loss, W/m2

ε emissivity
� efficiency
�′ efficiency in a certain case
� ratio of emission exergy to emission energy
� solid angle within sun is seen from the earth, sr
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Subscripts
a absorbing surface
C Carnot
e compression of environment, or screen
J Jeter
P Petela
q heat
S Spanner or sun
u useful
� related to solid angle within sun as seen from

the earth
0 environment
1, 2, 3 denotations
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C H A P T E R 10
Thermodynamic
Analysis of Heat

from the Sun

10.1 Introduction
Solar radiation is the principal energy source for life on earth. This
radiation establishes the temperatures of both the atmosphere and
the earth’s surface. However, human activity changes the conditions
of the energy exchange between the sun and earth, and the observed
tendency is a gradual increase in these temperatures. In the present
chapter, the simplified explanation of the mechanism of such global
warming is discussed with some rough quantitative estimation of
the accounted parameters. The so-called greenhouse effect is described
based on the simplified model of a canopy applied to increase the
effectiveness of harvesting solar radiation, which, although rich, is
much diluted.

The most common devices for utilization of solar radiation are
cookers of different types. A simple solar parabolic cooker with the
cylindrical shape of a trough is analyzed from the viewpoint of exergy.
Supported by calculations, we discuss the methodology of detailed ex-
ergy analysis of the cooker, the distribution of exergy losses, and, for
the example of the cooker surfaces, explain the general problem of
how the exergy loss on any radiating surface should be determined
if the surface absorbs radiation fluxes of different temperatures. An
imagined surface is used to close the system of the cooker surfaces.
Optimization is needed to increase both the energy and exergy effi-
ciencies of the cooker.

Equations are derived for heat transfer between the three
surfaces—cooking pot, reflector, and imagined surface making up the
system. The mathematical model allows for theoretical estimation of
the energy and exergy losses due to unabsorbed insolation, convective

265
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and radiative heat transferred to the environment, and, additionally,
the estimation of exergy losses due to radiative irreversibilities on the
surfaces, as well as the irreversibility of the useful heat transferred to
the water.

The exergy efficiency of the cooker is determined to be relatively
very low (∼1%), and about ten times smaller than the respective en-
ergy efficiency, which is in agreement with experimental data from
the literature. The influence of input parameters (e.g., geometrical
configuration, emissivities of surfaces, heat transfer coefficients, and
temperatures of the water and environment) on output parameters is
determined, and the distribution of the energy and exergy losses is
described.

Generally, heat from absorbed solar radiation is available at rela-
tively low temperatures, which is comparable to the temperatures of
waste heat from many other sources, e.g., exhaust gases from indus-
trial boilers or other combustion installations. In the current world
situation with a growing shortage of energy resources, heating by
solar radiation, categorized as the recovery of such low-temperature
waste heat, is often considered. However, to obtain the economically
significant power of solar radiation, the accessibility of relatively large
geographical areas exposed to solar radiation is required.

10.2 Global Warming Effect
The atmosphere is a medium with very irregular properties. It absorbs
from solar radiation mostly visible wavelength energy (about 29%),
whereas from the earth’s radiation the atmosphere absorbs mostly
infrared radiation (about 92%).

The earth receives energy from the sun by radiation. The earth
reflects about one-third of the extraterrestrial solar radiation, and the
remaining radiation, assumed to be 100%, arrives at the atmosphere,
land, and oceans as shown in the approximate scheme of Figure 10.1a.
This radiation absorbed by the atmosphere and the earth, mostly in the
visible wavelengths, is re-radiated to space in an equal amount, mostly
in the infrared wavelengths, so that the global thermal equilibrium is
maintained. To this equilibrium also is contributed the heat exchanged
by convection between the atmosphere and earth; however, such con-
vection, for the simplicity of the discussion here, can be neglected.

The received energy can represent different absolute energy (in
W) because equilibrium can be maintained at different temperatures
on the earth’s surface. It is usually estimated that the annual average
temperature Tearth of the earth’s surface is about 14◦C (287 K), and at
this temperature the earth emits ∼192%. The atmosphere, at a certain
assumed effective temperature Tatm, emits energy to both the earth
(∼138%) and space (∼83%).
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FIGURE 10.1 Simplified scheme of radiation energy (a) and exergy (b).

The greenhouse effect is applied in gardening. A greenhouse is
built of glass walls; the solar radiation penetrating through the glass
heats the ground inside, and then the confined air is heated from the
ground. Based on this rough analogy, the term greenhouse effect is used
also for the process in which infrared radiation is exchanged between
the atmosphere the earth’s surface. These two processes differ because
air in a real greenhouse is trapped, whereas air in the environment,
when warmed from the ground, rises and mixes with cooler air aloft.
Such a difference can be practically demonstrated by opening holes
in the greenhouse roof or walls, which will cause air exchange with
the environment and thus cause a considerable drop in the air tem-
perature. The analogy can be followed in that the glass roof of the
greenhouse traps the infrared radiation to warm the greenhouse air,
whereas the thick layer of atmosphere plays the same role for the earth.

It is estimated that in the absence of the greenhouse effect the
earth’s surface temperature would be decreased from about 14◦C to
about –19◦C. It is believed that the recent warming of the lower atmo-
sphere is the result of enhancing the greenhouse effect by an increase
of the amount of gaseous, liquid, and solid ingredients of radiative
properties different from such properties of air.

The global warming effect is not effectively described by the con-
cept of exergy because exergy relates to environment temperature
with no regard to how high is this temperature. For example, for any
value of Tearth the exergy radiated from the earth’s surface shown in
Figure 10.1b will always be zero.

Example 10.1 For a very rough consideration of radiation processes related to
1 m2 of the earth’s surface, it can be assumed, e.g., that the yearly average solar
irradiance S = 100 W/m2 arrives in the atmosphere, which has transmissiv-
ity for solar radiation �S = 0.71 (Figure 10.1). The radiation energy S × �S is
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absorbed by the black surface of the earth at the yearly average temperature
T0 = 287.16 K (14◦C). The remaining part of the irradiance S× (1 – �S) is entirely
absorbed by the atmosphere. The energy emission e0 = � × T4

0 = S × �S from
the earth’s surface arrives at the same atmosphere for which transmissivity for
low-temperature radiation �0 = 0.17 (Figure 10.1). Thus, the atmosphere absorbs
the energy amount S reduced by the amount of the earth’s emission transmitted
through the atmosphere. The atmosphere can be assumed as a body of emis-
sivity (1 – �0) and emitting radiation to the black sky at temperature Tsky. The
energy balance equation for the atmosphere is:

S − S�S�0 = (1 − �0) �
(

T4
A − T4

sky

)
(10.1)

Assuming that the sky temperature is equal to the environment temperature
(T0 = Tsky) the resultant temperature TA of the atmosphere can be determined
from formula (10.1) as Tatm = 305.13 K. The global warming effect can be consid-
ered in terms of two characteristic factors describing pollution of the atmosphere,
such as the influence of �S and �0 on the change of environment temperature T0.
Based on equation (10.1) the two partial derivatives can be considered:

∂T0

∂�S
= �0

(1 − �0)
S

4�T3
0

= 3.813 · 10−2 K/% (10.2)

∂T0

∂�0
= S�S − �

(
T4

A − T4
0

)
4�T3

0 (1 − �0)
= −8.03 · 10−2 K/% (10.3)

For example, the increase from 0.71 to 0.72 of the transmissivity �S of the
atmosphere for solar radiation causes, based on formula (10.2), the increase in
environment temperature T0 from 287.16 to 287.198 K.

In another example, based on equation (10.3), if transmissivity �0 of the at-
mosphere for the low-temperature radiation increases from 0.17 to 0.18, then
from formula (10.3) the environment temperature T0 decreases from 287.16 to
287.08 K.

10.3 Effect of a Canopy
The global warming effect often is compared to the effect of a green-
house in which solar radiation is trapped by using a transparent
canopy over the earth’s surface absorbing solar radiation.

Approximate analysis of the effect of a canopy stretched above
certain surface and screening this surface from direct solar radiation
can be carried out for three typical situations presented schematically
in Figure 10.2.

A black horizontal plate of surface area A located on the earth’s
surface can be exposed to direct solar radiation as shown schematically
in Figure 10.2a. In the thermodynamic equilibrium state the irradiance
S is spent on heat Q extracted at constant plate temperature Tp and
on the convective (Ep−0) and radiative (Ep−sky) heat fluxes from the
plate to the surroundings. The plate temperature Tp is controlled by
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FIGURE 10.2 The three typical situations considered in a study of the canopy
effect.

the appropriately arranged heat Q. The energy balance equation for
the plate is:

S = Q + Ep−sky + Ep−0 (10.4)

where

Ep−sky = A�
(

T4
p − T4

sky

)
(10.5)

Ep−0 = Ah p−0
(
Tp − T0

)
(10.6)

and where h p−0 is the convective heat transfer coefficient. The harvest-
ing of solar energy can be determined by the energetic efficiency �E :

�E = Q
S

(10.7)

or by the exergetic efficiency �B :

�B = Q
� c S

(
1 − T0

Tp

)
(10.8)

where � c is the exergy/energy ratio discussed in Section 6.5. It
was shown there that, for direct radiation of the sun at its surface
temperature 6000 K, the theoretical value of the ratio is � = 0.933.
According to Gueymard (2004), the irradiance of the direct solar
radiation arriving at the earth is 1366 W/m2. Because the irradiance
values applied in the present canopy consideration are smaller than
the exergy/energy ratio, it can be assumed for a smaller irradiance
temperature, e.g., � c = 0.9.
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FIGURE 10.3 Plate exposed to solar radiation in the cases of S = 700 W/m2

(left) and S = 1000 W/m2 (right).

For example, assuming A = 1 m2, h p−0 = 5 W/(m2 K), and Tsky

determined by formula (6.66) in which T0 = 287.16 K (14◦C), Figure
10.3 shows the calculation results for the two different values of irradi-
ance, S = 700 W/m2 (left) and S = 1000 W/m2 (right). With increasing
plate temperature Tp, the energetic efficiency �E decreases, whereas
the exergetic efficiency �B has a maximum.

In the second situation, shown in Figure 10.2b, the plate of the
surface area 1 m2 is a fragment of a very large and flat surface of the
same uniformly distributed temperature Tp and radiative properties.
The plate is screened from solar radiation by a large, flat, and hor-
izontal canopy. Material of the canopy can transmit complete solar
radiation to the plate (i.e., canopy transmissivity �sol = 1), although
low-temperature emission from the plate is entirely absorbed by the
canopy (canopy transmissivity �pla = 0). The extreme values of these
two transmissivities are assumed to show better the effect of the
canopy on exchanged radiative heat. Due to the very small thickness
of the canopy, both its surfaces—that the one exposed to the sun and
the one exposed to the plate—have the same canopy temperature Tc .

In the thermodynamic equilibrium state shown in Figure 10.2b,
the irradiance S is spent on heat Q extracted at a constant plate tem-
perature Tp and on the convective (E p−a ) and radiative (E p−c) heat
fluxes from the plate to the canopy. The plate temperature Tp is con-
trolled by the appropriately arranged heat Q. The canopy temperature
Tc is constant for the given plate temperature Tp and is distributed uni-
formly over the surfaces of the canopy. The energy balance equation
for the plate is:

S = Q + E p−c + E p−a (10.9)

where

E p−c = �
(
T4

p − T4
c

)
(10.10)

E p−a = Ah p−a
(
Tp − Ta

)
(10.11)
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FIGURE 10.4 Plate under a canopy in the environment air in the cases of S =
700 W/m2 (left) and S = 1000 W/m2 (right).

and where h p−a is the respective convective heat transfer coefficient
and Ta is the temperature of air between the plate and the canopy.
Simplifying, it is assumed that Ta = T0. The energy balance of the
canopy is:

E p−c = Ec−sky + Ec−0 + Ec−a (10.12)

where

E p−a = Ec−0 = h p−a
(
Tp − T0

)
(10.13)

and where h p−a = hc−a are the respective convective heat transfer co-
efficients. The harvest of solar energy in the considered situation can
be determined by the energetic efficiency �E and exergetic efficiency
�B determined, respectively, from formulae (10.7) and (10.8).

For example, assuming h p−a = hc−a = 5 W/(m2 K), Figure 10.4
shows the calculation results for the two different values of irradiance,
S = 700 W/m2 (left) and S = 1000 W/m2 (right). As in situation (a),
also in situation (b): with increasing plate temperature Tp the energetic
efficiency �E decreases, whereas the exergetic efficiency �B has the
maximum.

The third possible situation, shown in Figure 10.2c, is the same as
the previous situation (b), except that between the plate and canopy
is a vacuum; thus, in this space, heat convection does not occur. The
energy balance equations for the plate and the canopy are thus:

S = Q + Ep−c (10.14)

E p−c = Ec−sky + Ec−0 (10.15)

The energetic efficiency �E and exergetic efficiency �B are deter-
mined, respectively, also from formulae (10.7) and (10.8). Figure 10.5
shows the calculation results for the two different values of irradiance,
S = 700 W/m2 (left) and S = 1000 W/m2 (right). As in situation (b),
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FIGURE 10.5 Plate under a canopy with a vacuum between the canopy and
the plate in the cases of S = 700 W/m2 (left) and S = 1000 W/m2 (right).

also in situation (c): with increasing plate temperature Tp,the ener-
getic efficiency �E decreases, whereas the exergetic efficiency �B has
the maximum.

To summarize the comparative discussion of the three models
(Figure 10.2): The irradiated black plate (a), the plate under the canopy
(b), and the plate under the vacuum and canopy (c) were all con-
sidered under simplifying assumptions of extreme values of surface
properties to better emphasize the canopy idea. The comparison of
Figures 10.3–10.5 illustrates the benefits of applying a canopy to in-
crease the effect of trapping solar radiation. The amount of exergy
(practical value) of absorbed heat grows gradually through the three
considered situations from (a) to (c).

10.4 Evaluation of Solar Radiation Conversion into Heat
Solar radiation can be converted to heat for various applications in-
cluding, e.g., cooking, driving a sterling engine, melting, etc. A simple
introduction to the potential of solar radiation for heating as well as
determination of heat temperature in possible applications can be out-
lined as follows.

Formula (6.8) can be applied for calculation of solar radiation ex-
ergy. However, the model of the two infinite surfaces (Figure 6.1) ap-
plied for derivation of formula (6.8) is inadequate for the earth–sun
configuration. Any absorbing surface on the earth, in relation to the
sun in zenith, can be considered according to the modified scheme
shown in Figure 10.6. From the sun, the black (ε = 1) radiation of ex-
ergy b�, energy e�, and entropy s�, within the solid angle �, arrives
at the absorbing surface. These three fluxes are absorbed on the earth
by the absorbing surface at temperature Ta and emissivity εa .

However, as was proven by equation (6.56), absorption alone is
impossible. Therefore, one has to take into consideration that the ab-
sorbing surface, in the solid angle 2�, emits its own radiation fluxes
of exergy ba , energy ea , and entropy sa , and obtains, in the solid angle
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FIGURE 10.6
Scheme of
radiation exchange
between sun and
absorbing surface
on earth (from
Petela, 2003).

2�–�, the radiation fluxes of exergy b0, energy e0, and entropy s0

from the environment at temperature T0 (assumed to be equal to the
sky temperature, Tsky = T0) and at assumed emissivity ε0 = 1. (It was
proven previously that the value of the environment emissivity does
not affect the results.)

In the present discussion, solar radiation is considered to be non-
polarized, uniform, and black at temperature T = 6000 K, arriving at
the earth within the solid angle �. Exergy b� of such radiation can be
calculated from formula (7.50) as follows:

b� = b
�

�=2�∫
�=0

d�

	∫

=0

cos 	 sin 	 d	 (a)

where b is determined from formula (6.8), and 	 and � are the an-
gle coordinates (i.e., azimuth and declination) of directions included
within the range of a solid angle � inside which from any point of the
adsorbing surface the sun’s surface is visible. After calculation of the
both the integrals in equation (a) one obtains:

b� = b
R2

L2 (b)

where the exergy b of the black radiation emitted by the sun within
the solid angle of 2� is calculated according to formula (6.8):

b = �

3

(
3T4 + T4

0 − 4T0T3) (c)
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The absorbing surface obtains also the black (ε0 = 1) radiation
energy eo from the environment at temperature T0 within a solid angle
2�–�, but only a portion determined by emissivity εa of the adsorbing
surface is absorbed by the surface:

e0 = εa �T4
0

(
1 − R2

L2

)
(d)

According to the definition, the exergy of environment radiation
is zero:

b0 = 0 (e)

The absorbing surface of emissivity εa and temperature Ta radiates
its own emission ea in the whole solid angle 2�:

ea = εa �T4
a (f)

The respective exergy ba of the absorbing surface, again according
to formula (6.8), is:

ba = εa
�

3

(
3T4

a + T4
0 − 4T0T3

a

)
(g)

The energy emission e� arriving from the sun at the absorbing
surface within the solid angle � is:

e� = e
R2

L2 (h)

where the sun emission e in the whole solid angle 2� is:

e = �T4 (i)

The temperature Ta of the absorbing surface remains constant be-
cause the heat q , at the heat source temperature Ta , from the absorbing
surface is extracted in the amount resulting from the emitted and ab-
sorbed flux from this surface. In other words, heat q is determined
from the following energy conservation equation for the absorbing
surface remaining at the steady state:

q = εa e� − ea + e0 (j)

The exergy bq of this heat q is determined by the Carnot efficiency
for the heat sources temperatures Ta (hot) and T0 (cold):

bq = q
Ta − T0

Ta
(k)

Based on definition (6.34), the conversion efficiency �B of the ex-
ergy b� of the sun’s radiation into the exergy bq of the heat source can
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be introduced:

�B = bq

b�
(l)

For further considerations, the entropy fluxes are also introduced.
Entropy s� of the solar radiation arriving at the absorbing surface:

s� = s
R2

L2 (m)

where the entropy s of solar radiation propagating within solid angle
2�, is:

s = 4
3

�T3 (n)

Other entropy fluxes, sa for the emission of the absorbing surface
and s0 for the absorbed environment radiation, are, respectively:

sa = εa
4
3

�T3
a (o)

s0 = εa
4
3

�T3
0

(
1 − R2

L2

)
(p)

The overall process occurring at the absorbing surface is irre-
versible and the respective exergy loss �b is determined according
to formula (2.60). The overall entropy growth � for all processes in-
volved consists of the entropy of generated heat (+), disappearing
entropy of solar radiation (–), emitted entropy of absorbing surface
(+), and disappearing entropy of environment radiation (–):

� = q
Ta

− εa s� + sa − s0 (r)

The correctness of the presented consideration can be verified by
checking if the exergy balance equation for the absorbing surface is
fulfilled. For the steady state, exergy input consists of the net exergy of
solar radiation and environment absorbed by the considered surface.
Exergy output is equal to both the exergy of emitted radiation from
the considered surface and to the exergy of heat. The conservation
equation is completed by the exergy loss:

b� − (1 − εa ) b� + b0 = ba + bq + �b (s)

To illustrate the problem of the exergy balance equation and to
compare it to the respective energy conservation equation:

e� − (1 − εa ) e� + e0 = ea + q (t)
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Item Comments % exergy % energy

Input Sun 100 100
Environment 0 23.1

Total 100 123.1

Output Reflection 20 20
Emission 1.70 42.8
Heat (efficiency) 9.23 60.3
Loss 69.07 0

Total 100 123.1

TABLE 10.1 Comparison of the Exergy and Energy Balances of a Surface
Absorbing Solar Radiation (εa = 0.8) (from Petela, 2003)

some data is shown in Tables 10.1 and Table 10.2, both for T0 = 300
K, Ta = 350 K, and T = 6000 K, and for b� = 1.484 kW/(m2 sr) and
e� = 1.59 kW/(m2 sr). Table 10.1 is for εa = 0.8, whereas Table 10.2 is
for εa = 1.0.

Analogously to the exergy efficiency �B , the energy efficiency �E

can also be used, according to formula (6.32):

�E = q
e�

(10.16)

Using equations (h)–(j), (d), and (f) in (10.16):

�E = εa

⎡⎢⎢⎣1 −
T4

a − T4
0

(
1 − R2

L2

)
T4 R2

L2

⎤⎥⎥⎦ (10.17)

This is to note that for R/L → 1 formula (10.17) comes to the for-
mula (6.32) which expresses the energy conversion efficiency �E for a
case of the two infinite parallel planes.

Item Comments % exergy % energy

Input Sun 100 100
Environment 0 28.88

Total 100 128.88

Output Reflection 20 0
Emission 2.12 53.50
Heat (efficiency) 11.54 75.38
Loss 86.34 0

Total 100 128.88

TABLE 10.2 Comparison of the Exergy and Energy Balances of a Surface
Absorbing Solar Radiation (εa = 1) (from Petela, 2003)
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For the case considered in Table 10.1, the values of efficiencies
can be interpreted as �B = 9.23% and �E = 60.3%, or, respectively, for
Table 10.2, as �B = 11.54% and �E = 75.38%. The values of the en-
ergetic and exergetic efficiencies differ significantly and, except for
reflected radiation by the absorbing surface, other items of both bal-
ances are also very different.

Using formulae (b)–(d) and (f)–(k) in (l), the exergy conversion
efficiency of solar radiation into heat can be determined as follows:

�B = 3 εa
Ta − T0

Ta

T4 − T4
0 − (

T4
a − T4

0

) L2

R2

3T4 + T4
0 − 4T0T3

(10.18)

It is worth noting again that for L/R → 1, formula (10.18) becomes
formula (6.36). The larger is the ratio L/R, the smaller is the efficiency.
The increased emissivity εa of the absorbing surface increases the ex-
ergy conversion efficiency �B . To determine the optimal temperature
Ta ,opt, the following condition is used:

∂�B

∂Ta
= 0 (10.19)

which leads to the equation:

4T5
a ,opt − 3To T4

a ,opt − T0 T4 R2

L2 − T5
0 + T5

0
R2

L2 = 0 (10.20)

For example, if the solar radiation is considered at T0 = 300 K, T =
6000 K, R = 6.955 × 108m, and L = 1.495 × 1011m, then Ta ,opt ≈ 369.9
K (96.9◦C). If the environment temperature drops to T0 = 273 K, then
Ta ,opt ≈ 352.8 K (79.8◦C).

The emissivity value εa has no effect on the optimal temperature
Ta ,opt of the surface. The Ta optimum, at the unchanged exergy b� of
solar radiation, results from the fact that with increasing Ta the heat q
decreases, whereas the Carnot efficiency, �C,a = 1 – T0/Ta , of this heat,
increases.

From equation (10.20) the optimal (exergetic) temperature of the
absorbing surface Ta ,opt can be calculated for a given configuration (R
and L) and the sun temperature T and environment temperature T0.
Analysis shows that the temperature Ta of the absorbing surface can be
considered practically only in the range T0 ≤ Ta ≤ Ta ,max. Temperature
Ta smaller than T0 requires additional energy to generate surround-
ings colder than the environment, whereas for Ta > Ta ,max the heat q
becomes negative because the radiation of the absorbing surface to
the environment is larger than the heat received from solar radiation.

For the sun–earth configuration shown in Figure 10.6, the calcu-
lated Ta ,opt is relatively low and so is the respective exergy conversion
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FIGURE 10.7 Effect of varying temperature Ta on the absorbing surface at
constant T = 6000 K, To = 300 K, and εa = 0.8.

efficiency, as shown in Figure 10.7. However, temperature Ta ,opt can be
significantly increased and the efficiency improved, e.g., by focusing
the solar radiation with a thin lens. For example, if we have a perfect
lens of diameter 2 ×R = 4 cm and the sun is seen from a focal dis-
tance of L = 0.5 m, then from equation (10.20) the calculated optimal
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6000 K and εa = 0.8.
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(exergetic) temperature is Ta ,opt = 741.5 K, for which, from equation
(10.17), �E = 43.8% at To = 300 K and T = 6000 K.

The desire of man to travel cosmically motivates consideration of
the environment temperature in a wide range, theoretically 0 < T0 < T .
This is shown in Figure 10.8. With decreasing environment tempera-
ture T0, the optimal temperature Ta ,opt of the absorbing surface con-
tinuously diminishes and the exergy conversion efficiency �B grows,
approaching 80% for T0 → 0. At the same time the Carnot efficiency
�C,a = 1 – To/Ta , also grows and reaches 100% for To → 0.

10.5 Thermodynamic Analysis of the Solar
Cylindrical–Parabolic Cooker

10.5.1 Introductory Remarks
In this section, we consider the cylindrical–parabolic cooker as an ex-
ample of how thermodynamic analysis can be developed for a process
in which radiation plays a role.

One of the most popular areas of the application of solar radi-
ation, especially in countries with an abundance of solar energy, is
cooking. The literature on solar cookers is extensive. For example,
Kundapur (1988) presents a detailed review of different types of so-
lar cookers. The performance of solar energy collectors based on ex-
ergy was analyzed by Fujiwara (1983). Maximization of solar energy
collection from an available geographical area and then cooling the
collector, including the problem of energy storage by melting phase-
changing materials, are discussed by Bejan (1997). Aspects of solar
cookers such as standard testing and performance evaluations were
reported by Funk (2000). Ozturk (2004) for the first time determined
experimentally the exergetic efficiency of a solar parabolic cooker of
the cylindrical trough shape. This type of cooker is discussed here as
exemplary for theoretical analysis.

A solar cylindrical–parabolic cooker (SCPC) is a device driven by
solar radiation, which generally, especially when compared to energy
efficiency, has very low exergy efficiency. There is practically little
one can do in order to improve its performance. The performance of
the SCPC can be enhanced only a little by appropriate design of the
geometrical configuration and optical properties of the surfaces used
to exchange heat by radiation.

The principles of radiative heat transfer can be found in many
textbooks on heat transfer, e.g., Holman (2009), so the present con-
sideration, according to Petela (2005), will focus on exergy analysis,
the methodology for which is outlined in Chapter 4. Analysis of the
conversion process of energy, which conserves itself totally regard-
less of its quality, serves well for design calculations, whereas exergy
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analysis, which takes into consideration the quality of energy, serves
mostly for practical estimation and analysis of the process.

The main reason for the low efficiency of devices driven by solar
radiation lies in the impossibility of full absorption of the real value of
insolation. To obtain high-quality energy, at a high temperature, the
absorbing surface has to be at a high temperature, at which a large
amount of energy would be emitted from the surface to the envi-
ronment. This factor influences both energy and exergy efficiencies.
The low-exergy performance efficiency of SCPC, and of other devices
driven by solar radiation, is caused by a significant degradation of
energy. The relatively high temperature (∼6000 K) of solar radiation
is degraded to a relatively low temperature, e.g., to the temperature
Tw of heated water, which is not much higher than the environment
temperature T0 (Tw ≈ T0).

The effect of such degradation, which causes a significant differ-
ence between energy and exergy efficiencies, can be illustrated, e.g.,
by simple consideration of the ratio r of the exergy growth to the en-
ergy growth of water when it is preheated from initial temperature
Tw to the higher temperature by �T . The definition of exergy from
formula (2.45) and the entropy of substance from (2.38) at constant
pressure can be used in the consideration. Referring to 1 kg of water
with specific heat c, the growth of the water exergy bw divided by the
growth of the water enthalpy hw is:

r = (bw)Tw+�T − (bw)Tw

(hw)Tw+�T − (hw)Tw

=
c(Tw + �T − T0) − T0c ln Tw+�T

T0
− c(Tw − T0) + T0c ln Tw

T0

c(Tw + �T − T0) − c(Tw − T0)

and after rearranging:

r = 1 − T0

�T
ln

(
1 + �T

Tw

)
(10.21)

For example for �T = 20 K, based on equation (10.21) and for Tw

smaller than the temperature for boiling water (100◦C), the values of r
are shown in Figure 10.9 for two different environment temperatures
T0 (280 and 320 K, respectively). The exergy/energy growth ratio r is
very small; however, it increases with the growing water temperature
Tw and with decreasing environment temperature T0.

For rough estimation, the ratio r multiplied by the exergy/energy
radiation ratio � can be recognized as the ratio of exergetic �B and
energetic �E efficiencies of utilization of solar radiation for heating,
�B/�E = � × r . For example, assuming � S = 0.933 for solar radiation
and taking into account the values of r from Figure 10.9, one can
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FIGURE 10.9 The exergy/energy growth ratio r for heated water as a function
of water temperature Tw and environment temperature T0 (�T = 20 K).

estimate the efficiencies ratio �B/�E ≈ 0.1. In the next section, exergy
analysis of the SCPC, including radiative, convective, and conductive
heat transfer, is developed to reveal the exergy losses distribution
causing the low exergy efficiency of the SCPC.

10.5.2 Description of the SCPC
An SCPC is schematically shown in Figure 10.10. The cylindrical cook-
ing pot filled with water is surrounded by the cylindrical–parabolic
reflector. The frame supporting the reflector and cooking pot is not
shown. The considered system of exchanging energy consists of three
long surfaces of length L . The outer surface 3 of the cooking pot has
an area A3. The inner surface 2 of the reflector has an area A2. The
system is made up of the imagined plane surface 1 of area A1.

The imagined surface 1, which represents the ambience and the
insolation supplied to the considered system, is defined by transmis-
sivity �1 = 1 (and thus reflectivity �1 = 0), absorptivity 1 = 0, and
emissivity ε1 = 0.

However, the effective emission of the imagined surface 1 can be
determined as the insolation I calculated as follows:

I = 2.16 · 10−5 A1εS�T4
s (10.22)

where 2.16 · 10−5 is the solid angle within which the sun is seen from
the earth, εS is the emissivity of the sun’s surface (assumed as εS = 1),
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FIGURE 10.10 The scheme of the SCPC (from Petela, 2005).

� is the Boltzmann constant for black radiation, and TS is the absolute
temperature of the sun’s surface (assumed as TS = 6000 K). Formally,
it can be assumed that the emission of surface 1 is E1 = I .

It is assumed that surfaces 2 and 3 have uniform temperatures
T2 and T3, respectively; uniform reflectivities, �2 and �3, respectively,
different from zero; and the emissivities of the surfaces, ε2 and ε3,
respectively, are:

ε2 = 1 − �2 (10.23)

ε3 = 1 − �3 (10.24)

Thus, the emissions of surfaces 2 and 3 are:

E2 = A2ε2�T4
2 (10.25)

E3 = A3ε3�T4
3 (10.26)

The geometric configuration of the SCPC can be described by the
value � i− j of the nine view factors for the three surfaces 1, 2, and 3.

10.5.3 Mathematical Model for Energy Analysis
of the SCPC

The calculations are carried out only for the 1 m section of the SCPC
length, which is significantly long (L >> 1). The following known
quantities are assumed as the input data:
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FIGURE 10.11 The scheme for calculation of the geometrical configuration of
both the SCPC surfaces and the view factors (from Petela, 2005).

� outer diameter D of the cooking pot and its location LD (shown
in Figure 10.11);� dimensions x2 and y2 of the parabolic reflector (shown in Fig-
ure 10.11);� heat transfer coefficients k2 and k3;� emissivities ε2 and ε3 of surfaces 2 and 3;� absolute temperature of the sun’s surface TS = 6000 K;� absolute water temperature Tw (average of the inlet and outlet
temperatures);� absolute environment temperature T0 = 293 K.

The equations below are introduced to determine the following un-
known quantities (output data):

� surfaces areas A1, A2, A3;� all view factors, �i− j ;� reflectivities �2 and �3 (from the assumed emissivities ε2 and
ε3, respectively);� emissions E2, E3, and insolation I (I = E1);� convective heat Q2,c from the reflector to the environment;� radiative heat Q2,r from the outer side of the reflector to the
environment;
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� convective heat Q3,c from surface 3 to the environment;� radiosity of the three surfaces J1, J2, and J3;� absolute temperatures T2 and T3 of surfaces 2 and 3, respec-
tively;� energy efficiency of the SCPC, expressed by the water en-
thalpy change Q3,u.

To derive mathematical equations describing the energy exchange
in the three-surface system of the SCPC at a certain instant in which
the SCPC remains in thermal equilibrium, the following energy con-
servation equations for each successive surface can be written:

J1 = �2−1 J2 + �3−1 J3 + Q2,c + Q2,r + Q3,c + Q3,u (10.27)

ε2 (�1−2 J1 + �2−2 J2 + �3−2 J3) = E2 + Q2,c + Q2,r (10.28)

ε3 (�1−3 J1 + �2−3 J2 + �3−3 J3) = E3 + Q3,c + Q3,u (10.29)

The magnitudes J1, J2, and J3 are the radiosity values for surfaces
1, 2, and 3, respectively, and the values of � i− j are the respective view
factors. The radiosity expresses the total radiation that leaves a surface
and includes emission of the considered surface as well as all reflected
radiation arriving from other surfaces of the system. The concept of
radiosity is convenient for energy calculation; however, it cannot be
used for exergy considerations because it does not distinguish be-
tween the temperatures of the components of the radiosity. The two
independent equations for radiosity are included in the calculation:

J1 = I (10.30)

J2 = E2 + �2 (�1−2 J1 + �2−2 J2 + �3−2 J3) (10.31)

The radiosity J1 of the imagined surface 1 equals the insolation I .
It is assumed that the reflector is very thin so the uniform tem-

perature T2 prevails throughout the whole reflector thickness as well
as on the inner and outer sides of the reflector. Thus, the heat Q2,c

transferred from both sides of the reflector is:

Q2,c = 2 A2h2(T2 − To) (10.32)

and the heat radiating from the outer side of reflector to the environ-
ment is:

Q2,r = A2ε2�(T4
2 − T4

o ) (10.33)

where h2 is the convective heat transfer coefficient and T0 is the envi-
ronment temperature.
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Heat Q3,c transferred by convection from surface 3 to the environ-
ment is:

Q3,c = A3h3(T3 − To) (10.34)

and the useful heat Q3,u transferred through the wall of the cooking
pot is:

Q3,u = A3k3(T3 − Tw) (10.35)

where h3 is the convective heat transfer coefficient, Tw is the absolute
temperature of water in the cooking pot, and k3 is the heat trans-
fer coefficient, which takes into account the conductive heat transfer
through the cooking pot wall and convective heat transfer from the
inner cooking pot surface to the water.

The equations system (10.22)–(10.35) can be solved by successive
iterations.

Energy analysis of the SCPC can be carried out based on evaluation
of the terms in the following energy conservation equation for the
whole SCPC:

�2−1 J2 + �3−1 J3 + Q2,c + Q2,r + Q3,c + Q3,u = I (10.36)

The first two terms in equation (10.36) represent radiation energy
escaping from the SCPC due to the radiosities of surfaces 2 (�2,1 J2) and
3 (�3,1 J3). Dividing both sides of equation (10.36) by I , the percentage
values 	 of the equation terms can be obtained, e.g., for heat Q2,c , the
corresponding 	2,c is:

	2,c = Q2,c

I
(a)

however, the term with Q3,u determines the energetic efficiency

�E = Q3,u

I
(10.37)

Therefore, equation (10.36) can be also written as:∑
	 + �E = 1 (10.38)

10.5.4 Mathematical Consideration of the Exergy Analysis
of an SCPC

Exergy analysis usually gives an additional basis for the quality in-
terpretation of the process being examined. For the considered SCPC,
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we calculate the exergy of radiating fluxes, the overall exergy effi-
ciency of the SCPC process, and the exergy losses during irreversible
component phenomena occurring in the SCPC.

It is convenient to determine an exergy B of radiation emission at
temperature T by multiplying its emission energy E by the character-
istic exergy/energy ratio � , defined by formula (6.22):

B = E� (10.39)

For example, the exergy efficiency �B of the SCPC is the ratio of
the exergy of the useful heat Q3,u, at temperature T3, and the exergy
of solar emission at temperature TS:

�B = 100
Q3,u

(
1 − T0

T3

)
I � S

(10.40)

where � S is the exergy/energy ratio for the solar emission of temper-
ature TS, which for TS = 6000 K and T0 = 293 K is � S = 0.9348.

Reflection and transmition of radiation are reversible, so the ex-
ergy losses in the SCPC are considered only for the following compo-
nent phenomena:� Simultaneous emission and absorption of radiation at surfaces

2 (�B2) and 3 (�B3). There is no exergy loss at the imagined
surface 1 (�B1 = 0) because neither absorption nor emission
occurs but only transmission of radiation, which is reversible.
Other surfaces, 2 and 3, are solid and thus produce the irre-
versible effects of radiation.� Irreversible transfer of convection heat Q2c from both sides of
surface 2 to the environment (�BQ2c).� Irreversible transfer of radiation heat Q2r from the outer side
of surface 2 to the environment (�BQ2r ).� Irreversible transfer of heat Q3u from surface 3 to water
(�BQ3u), due to the temperature difference T3 – Tw ,� Irreversible transfer of convection heat Q3c from surface 3 to
the environment (�BQ3c).� The exergy �B1 escaping through surface 1, resulting from
reflections from the SCPC surfaces to the environment. This
loss is sensed only by the SCPC and is not irreversible because
theoretically it can be used elsewhere. This loss consists of the
radiation exergies B1−1, B2−1, and B3−1 at the three different
temperatures (TS, T2, and T3):

�B1 = B1−1 + B2−1 + B3−1 (10.41)
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Analogously to the energy conservation equation, the exergy bal-
ance equation can be applied. When relating all the equation terms
to the exergy input, which is the exergy I × � S of solar radiation en-
tering the SCPC system, the following conservation equation can be
written:

�B11 + �B21 + �B31 + �B Q2c + �B Q2r + �Q3u + �Q3c + �B2 + �B3 + �B = 100

(10.42)

where any percentage exergy loss � is calculated as the ratio of the
loss to the exergy input, e.g., for the convection heat Q2,c one obtains:

�Q2c = �BQ2c

I � S
(b)

In the considered system of nonblack surfaces the energy striking
a surface is not totally absorbed, and part of it is reflected back to other
surfaces. The radiant energy can thus be reflected back and forth be-
tween surfaces many times. To simplify further considerations of such
a multi-reflections effect, it is assumed that surface 3 is black, (ε3 = 1).
Thus, as the imagined surface 1 was previously assumed to be black
(ε1 = 1), the only nonblack surface in the exergetic analysis of the SCPC
system is surface 2 (ε2<1).

The nine exergy losses appearing in equation (10.42) can be cate-
gorized into three groups. The first group contains the exergy losses
(external) related to heat transfer, (�B Q2c, �B Q2r , �Q3u, �Q3c). The sec-
ond group (�B11, �B21, �B31) determines the exergy fluxes (external
losses) escaping from the SCPC, and the third group contains the ex-
ergy losses (internal) due to irreversible emission and absorption on
surface (�B2, �B3)

Consider the losses of the first group. The exergy loss �BQ2c , due to
the convection transfer of heat Q2,c from the two sides of the reflector
to the environment is equal to the exergy of heat Q2,c :

�BQ2c = Q2,c

(
1 − T0

T2

)
(10.43)

The exergy loss �BQ2r due to the radiation transfer of heat Q2,r

from the outer side of the reflector to the environment is equal to the
exergy of heat Q2,r :

�BQ2r = Q2,r

(
1 − T0

T2

)
(10.44)

The external exergy loss �BQ3u due to the transfer of the useful
heat Q3,u from surface 3 through the cooking pot wall to water is
equal to the difference of the exergy of this heat at temperature T3 and
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at temperature Tw :

�BQ3u = Q3,u

(
T3 − T0

T3
− Tw − T0

Tw

)
(10.45)

The exergy loss �BQ3c , due to convective heat transfer from surface
3 to the environment, is determined similarly:

�BQ3c = Q3,c

(
T3 − T0

T3
− T0 − T0

T0

)
(10.46)

where, obviously, the second fraction in the brackets of equation
(10.46) is zero.

Consider the losses of the second group. As results from formula
(10.41) the external exergy loss �B1 is equal to the escaping exergy
of three unabsorbed emissions at temperatures T1 = TS, T2, and T3

reflected to the environment. By multiplying these emissions respec-
tively by the exergy/energy ratio the three losses can be expressed as
follows:

B1−1 = Q1−1� S (10.47)

B2−1 = Q2−1�2 (10.48)

B3−1 = Q3−1�3 (10.49)

where � S, �2, and �3 are calculated from formula (6.22) for TS, T2,
and T3, respectively, and Q1−1, Q2−1, and Q3−1 are the sums of the
unabsorbed portions of the respective emissions of surfaces 1, 2, and
3. Thus, heat Q1−1 represents energy portions from many reflections
of emission E1 of temperature TS, at the concave surface 2 and arriving
at surface 1:

Q1−1 = E1�1−2�2�2−1 + E1 �1−2�2�2−2�2�2−1

+ E1�1−2�2�2−2�2�2−2�2�2−1 + · · · (10.50)

The portions in equation (A3.2) can be expressed as the sum of
the terms of the infinite geometric progression with the common ratio
�2−2 × �2, thus:

Q1−1 = E1�1−2 �2�2−1
1

1 − �2−2�2
(10.51)

Heat Q2−1(T2) represents the portion E2 × �2−1 of emission E2 of
surface 2, which directly arrives at surface 1, as well as the portions
in results of many reflections of emission E2 at surface 2, arriving at
surface 1:

Q2−1 = E2�2−1 + E2�2−2�2�2−1 + E2�2−2�2�2−2�2�2−1 + · · ·
(10.52)
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and

Q2−1 = E2�2−1
1

1 − �2−2�2
(10.53)

Heat Q3−1(T3) represents the portion E3 × �3−1 of emission E3 of
surface 3 that arrives at surface 1 as direct radiation, as well as the
portions in results of many reflections of emission E3 at surface 2:

Q3−1 = E3�3−1 + E3�3−1�2�2−1 + E3�3−1�2�2−2 �2�2−1

+ E3�3−1�2�2−2�2�2−2�2�2−1 + · · · (10.54)

and

Q3−1 = E3

(
�3−1 + �3−2�2�2−1

1
1 − �2−2�2

)
(10.55)

Calculation of the internal exergy losses from the third group can
be based either on the determination of the overall entropy growth
used in the Guoy–Stodola equation (2.60) or determined from the
exergy balance equation for the considered surface in the steady state.
The latter method will be used here.

The considered surface and the imagined heat source connected
to the surface both have to be assumed. For each surface, 2 or 3, the
arriving emissions at three different temperatures need to be taken
into account. It is assumed that these emissions are absorbed by the
surface and transferred as heat to the imagined heat source. Then,
immediately, this heat is taken from the source to generate the emis-
sion of the surface at its temperature. Thus, e.g., the exergy balance
equation for surface 2 can be interpreted as including the following:

The input exergy entering surface 2, represented by terms due to:

� emission � S × Q1−2 arriving from surface 1;� emission �2 × Q2−2 arriving from surface 2;� emission �3 × Q3−2 arriving from surface 3;� heat E2(1 − T0/T2) needed for emission of surface 2 and de-
livered from the heat source.

The output exergy leaving surface 2, represented by terms due to:� emission Q1−2 × (1 − T0/T2) of surface 1 converted as the heat
absorbed by the heat source;� emission Q2−2 × (1 − T0/T2) of surface 2 converted as the heat
absorbed by the heat source;
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� emission Q3−2 × (1 − T0/T2) of surface 3 converted as the heat
absorbed by the heat source;� emission E2 × �2 of surface 2.

The exergy balance equation can be written in the form of exergy
loss �B2 equal to the difference of the exergy input and output:

�B2 = �3 Q3−2 + � S Q1−2 + �2 (Q2−2 − E2)

− (Q3−2 + Q1−2 + Q2−2 − E2)
(

1 − T0

T2

)
(10.56)

Analogically, the exergy loss �B2 is:

�B3 = �2 Q2−3 + � S Q1−3 + �3 (Q3−3 − E3)

− (Q1−3 + Q2−3 + Q3−3 − E3)
(

1 − T0

T3

)
(10.57)

Applying again the formula for the sum of the terms of the infinite
geometric progression, the values or required heat can be determined
as follows.

Heat Q1−2, at temperature TS, is the sum of the portions of emission
of surface 1 reaching surface 2, thus:

Q1−2 = E1�1−2ε2
1

1 − �2−2�2
(10.58)

Heat Q2−2 at temperature T2 is the sum of the portions of emission
of surface 2 reaching surface 2, thus:

Q2−2 = E2�2−2ε2
1

1 − �2−2�2
(10.59)

Heat Q3−2 at temperature T3 is the sum of the portions of emission
of surface 3 reaching surface 2, thus:

Q3−2 = E3�3−2ε2
1

1 − �2−2�2
(10.60)

Heat Q13, at temperature TS, which is the sum of the totally ab-
sorbed insolation that reaches surface 3 at view factor �1−3, and the
totally absorbed insolation parts reflected from surface 2, can be de-
termined as follows:

Q1−3 = I �1−3 + I �1−2�2�2−3
1

1 − �2−2�2
(10.61)
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Heat Q2−3 at temperature T2 is the sum of the portions of emission
of surface 2 reaching surface 3, thus:

Q2−3 = E2�2−3
1

1 − �2−2�2
(10.62)

Heat Q3−3 at temperature T3 is the sum of the portions of emission
of surface 3 reflected from surface 2 to surface 3:

Q3−3 = E3�3−2�2�2−3
1

1 − �2−2�2
(10.63)

As already shown in this section, the assumption of black surfaces
1 and 3 for exergetic consideration requires many more equations com-
pared to the energetic consideration developed in Section 10.5.3 for the
system in which only one black surface 1 was assumed. Obviously, ex-
ergetic consideration of a system with only one black surface 1 would
require significantly more equations compared to the consideration
presented in this section.

Example 10.2 Calculative analyses of the exemplary SCPC are performed in the
following steps.

i. Calculation of the surface areas. We consider the three surfaces (shown in
Figure 10.11) that take part in the heat exchange. The considerations are carried
out for a 1-m long section of the SCPC.

Surface 1. The imagined surface 1 has the area A1 determined by the coordi-
nate x2 of point 2:

A1 = 2x2 (a)

Surface 2. The surface A2 is equal to the length of the parabolic arc of the
reflector and using the coordinates x2 and y2 of point 2:

A2 =
√

4 x2
2 + y2

2 + y2
2

2 x2
ln

2 x2 +
√

4 x2
2 + y2

2

y2
(b)

If the distance Ls shown in Figure 10.11 is negative, Ls < 0, then, when
determining radiation heat exchange between surfaces 1 and 2, the length of the
parabolic arc, not seen from surface 1, has to be subtracted from A2. Thus, the
three unknowns xs , ys , and Ls , defined by Figure 10.11, have to be determined
from the following three relations. The proportionality:

x2

y2 − L S
= xS

ys − Ls
(c)

the equation of the circle written for point S:

x2
s + (ys − LD)2 =

(
D
2

)2

(d)
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and the equation of the straight line, tangent to the circle at point S, in which
one of the two derivatives of the circle equation for point S is used:

xs√( D
2

)2 − x2
s

= y2 − ys

x2 − xs
(e)

where D is the outer diameter of cooking pot, L D is the distance of the circle
center from the origin of the coordinate system, and xs and ys are the coordinates
of the tangency point S.

The considerations in the present example are carried out for Ls ≥ 0, and
this condition has to be watched when considering variation of the coordinates
x2 and y2.

Surface 3. The surface area A3 of the cooking pot is equal to the length of the
circle:

A3 = �D (f)

However, there is a circle arc on surface 3, between points S and S′ (location
of point S′ is symmetric to point S), which is not seen from surface 1. Thus, the
length Scir of this arc:

Scir = D arc sin
2 xs

D
(g)

has to be subtracted from A3 to obtain the surface area A31 really involved in
the radiation heat exchange between surface 1 and 3:

A31 = �D − Scir (h)

ii. View factors. For the considered system of surfaces shown in Figure 10.11,
it is assumed that:� The temperature of any surface is uniform over the entire surface area.

This is equivalent to the assumption that the conductivity of the surface
material is very large.� The view factor for any surface is uniform over the entire surface area.
This means that the surfaces are not too close to each other.

The view factor, for radiation transferred from any surface i to any surface j ,
is defined as the fraction �i− j of the total radiation leaving the surface i , which
reaches surface j . In the considered SCPC there are nine view factors �i− j , where
i = 1, 2, 3 and j = 1, 2, 3. From the energy conservation law the following three
equations can be derived: ∑

i

� j−i = 1 (i)

Making use of the reciprocity relations:

Ai �i− j = Aj � j−i (j)
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Surfaces 1 and 3 are not concave, thus:

�1−1 = �3−3 = 0 (k)

The ninth equation, to determine �1−3, is derived based on Polak’s crossed-
string method described in Section 7.5.1. The method can be applied when the
considered surfaces are the sides of parallel and infinitely long cylinders, not
necessarily circular but not concave. In practice the method can be applied not
only to infinitely long cylinders but also to finite cylinders that are sufficiently
long. The method introduces the two lengths of imagined strings, shown in
Figure 10.11, which cross (Lc ) or do not cross (Ln) when they gird the surfaces:

�1−3 = Lc − Ln

L1
(l)

The length Ln is the straight distance between points S and 2, and Lc is the
length of the girding string from point S′ to point 2. The length L1, representing
surface 1, is:

L1 = A1 (m)

As a result from Figure 10.11, the other lengths can be determined as follows:

Ln =
√

(x2 − xs )2 + (y2 − ys )2 (n)

Lc = Ln + � D
2

− Scir (o)

iii. Calculation for energy analysis. Based on the results of the mathemat-
ical model discussed in Section 10.5.3, the energy analysis can be carried out.
Table 10.3 illustrates the responsive trends of the output data to the change in
some input parameters. For comparison, the exergy efficiency �B of the SCPC,
determined by equation (10.40) in Section 10.5.4, is also shown in Table 10.3.

The values in column 3 of Table 10.3 are considered as the reference values
for studying the influence of varying input parameters on the output data for
the SCPC. Therefore, each of the next columns (4–14) corresponds to the case
in which the input is changed only by the value shown in a particular column,
whereas the other input parameters remain at the reference level.

The most interesting performance criteria of the SCPC are its capacity (Q3,u)
and the energy and exergy efficiencies (�E and �B ). For the assumed variation of
each of the input parameters shown in columns 4–14, the capacity Q3,u fluctuates
in the range of 89.46–149.77 W, whereas the energy efficiency ranges from 5.64%
to 9.23% and is always about ten times larger than the exergy efficiency ranging
from 0.54% to 0.83%.

Table 10.3 can serve as the basis for studying the significance of the SCPC
dimensions, surface properties, heat transfer coefficients, and operation temper-
atures. For example, reducing the heat transfer coefficient h2 (column 8), which
means, e.g., improving insulation of the outer surface of the reflector, has a rel-
atively small effect on the growth of the efficiencies, and the capacity of the
SCPC becomes only a little larger. Variation of the input value k3 simulates the
heat transfer condition for the useful heat Q3,u, which can be transferred to
the heated water flowing through the cooking pot at various speeds.



Reference
Quantity Units value Changed input

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input: At the reference
x2 m 0.5 0.6 data the perfect
y2 m 0.4 0.3 insulation of the
LD m 0.1 0.08 outer surface of
D m 0.1 0.08 the reflector is
h2 W/m2 K 6 10 applied
k3 W/m2 K 3500 4000
h3 W/m2 K 6 10
T0 K 293 303
Tw K 320 330
ε2 0.2 0.1
ε3 0.9 0.97

Output:
�31 0.376 0.397 0.41 0.40 0.380 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.439
�32 0.624 0.603 0.59 0.60 0.620 0.624 0.624 0.624 0.624 0.624 0.624 0.624 0.561
�13 0.094 0.086 0.11 0.10 0.077 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.123
�12 0.906 0.914 0.89 0.89 0.923 0.906 0.906 0.906 0.906 0.906 0.906 0.906 0.877
�22 0.178 0.147 0.12 0.19 0.195 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.134
�23 0.146 0.126 0.15 0.14 0.116 0.146 0.146 0.146 0.146 0.146 0.146 0.146 0.145
�21 0.676 0.727 0.73 0.66 0.689 0.676 0.676 0.676 0.676 0.676 0.676 0.676 0.721
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A1 m2 1 1.2 1 1 1 1 1 1 1 1 1 1 1
A2 m2 1.341 1.507 1.22 1.34 1.341 1.341 1.341 1.341 1.341 1.341 1.341 1.341 1.217
A3 m2 0.314 0.314 0.31 0.31 0.251 0.314 0.314 0.314 0.314 0.314 0.314 0.314 0.314
Q 1 W 416.8 466.1 412 415 390.6 423.0 416.5 416.5 403.3 399.2 323.5 427.4 396.8
−Q 2c W 215.0 250.7 199 215 220.7 230.9 215.0 215.0 199.0 217.7 120.1 213.4 213.5
−Q2r W 21.88 25.56 20.3 21.9 22.49 13.76 21.88 21.88 22.33 22.17 5.928 21.69 0
–Q3u W 128.5 138.8 141 127 106.5 127.2 128.5 94.53 149.8 89.46 146.4 141.2 132.2
–Q3c W 51.12 51.13 51.1 51.1 40.90 51.11 51.09 85.09 32.30 69.90 51.14 51.14 51.12
T3 K 320.12 320.13 320 320 320.12 320.11 320.10 320.09 320.14 330.08 320.13 320.13 320.12
T2 K 306.4 306.9 307 306 306.7 301.6 306.4 306.4 315.4 306.5 300.5 306.3 319.5
E2 W 133.9 151.5 122 168 134.5 125.7 133.9 133.9 150.3 134.2 61.92 133.7 158.4
E3 W 168.3 168.3 168 134 134.6 168.3 168.2 168.2 168.3 190.2 168.3 181.4 168.3
J1 W 1586 1904 1586 1585 1586 1586 1586 1586 1586 1586 1586 1586 1586
J2 W 1617 1862 1488 1617 1645 1607 1617 1617 1636 1630 1753 1609 1646
J3 W 206.9 208.1 208 207 166.0 206.9 206.9 206.8 207.2 229.1 208.9 192.9 207.3
� % 8.097 7.290 8.88 8.00 6.714 8.018 8.101 5.959 9.441 5.639 9.226 8.900 8.336
�B % 0.731 0.658 0.80 0.72 0.606 0.724 0.731 0.538 0.538 0.676 0.833 0.803 0.752

TABLE 10.3 Illustration of the Energy Analysis and the Trends Responsive to the Change of Some Input Parameters (TS = 6000 K,
I = 1586.39 W/m2) (from Petela, 2005)
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Growth of the environment temperature (column 10), which depends, e.g.,
on the time of day, causes the growth in energy efficiency and the capacity Q3,u,
whereas the exergy efficiency decreases significantly.

Temperature Tw (column 11) represents the stage of cooking; the later the
stage, the higher Tw can be expected. Growth in Tw causes a decrease in the ca-
pacity and in both energy and exergy efficiencies. It appears that with increased
specific exergy of water the emission E3 increases simultaneously, which reduces
the capacity Q3,u.

Column 15 represents the theoretical case of perfect insulation of the outer
surface of the reflector, (Q2,r = 0 and Q2,c is reduced by half). In this case both
the energy and exergy efficiencies increase reaching values of 8.34% and 0.752%,
respectively, whereas the capacity (Q3,u) reaches 132.2 W.

iv. Calculations for exergy analysis. Similar to the results of energy analysis
shown in Table 10.3, the exergy analysis for assumed ε3 = 1 shows all the terms
appearing in equation (10.42), as presented in Table 10.4.

Similar to the analysis of data in Table 10.3, the output data of Table 10.4
allows for estimating the responsive trends of the exergy losses and the energy
and exergy efficiencies, due to the change of the input quantities. Table 10.4
also presents how the exergy losses are distributed depending on the changes
in the input parameters. From the exergy viewpoint the largest loss is that of
the escaping exergy B1−1, which in the considered cases ranges from 57.069%
to 65.565% (�B11). The other reversible losses B2−1 and B3−1 are significantly
smaller—below 0.0282% (�B21) and below 0.2567% (�B31), respectively. As men-
tioned before, the quantities B1−1, B2−1, and B3−1 represent the exergy losses
of the considered SCPC; however, they are reversible and, potentially, might be
utilized somewhere else.

In the second place are the losses occurring due to the irreversible phenom-
ena at surfaces 2 and 3 caused by the simultaneous absorption and emission
of radiation of various temperatures. These losses �B2 and �B3, ranging from
10.587 to 21.144% (�B2) and from 16.817 to 22.254% (�B3), respectively, express
the degradation of radiation.

The irreversible loss �BQ2c occurs due to heat lost to the environment and
because the temperature T2 is relatively low, below 0.654% (�B Q2c ).

The loss �BQ3c , below 0.53% (�B Q3c ), is relatively small because heat from
surface 3 to the environment occurs at a small temperature difference.

The loss �BQ3u, below 0.0051%, (�B Q3u), is the smallest because the tempera-
ture difference T3– Tw is very small, and thus degradation of heat Q3,u, during
transfer from the cooking pot wall to water, can be neglected.

The exergy of the useful heat Q3,u is represented by the exergy efficiency �B ,
which ranges from 0.6038% to 0.9448%. For comparison, the values of the energy
efficiency of the SCPC, for the cases presented in Table 10.4, are also shown.

v. Discussion and comparison of the results of energy and exergy analyses.
As mentioned before, both energy and exergy analyses can be used together for
a full estimation of the considered process. The energy analysis serves mainly for
design purposes, whereas the exergy analysis presents an image of the process
quality.

Comparison of the energy and exergy balances for the considered SCPC, at
the assumed ε3 = 1, is presented in Table 10.5. In both analyses the radiation
escaping from the SCPC is estimated at a relatively high level (energy: 68.34
+ 4.43 = 72.77% and exergy 57.069 + 0.026 + 0.132 = 57.226%). The energy
analysis allows for splitting the escaping radiation loss according to the radiosity
of surface 2 and 3, whereas the exergy analysis makes this split according to the
temperature (TS, T2, and T3) of the escaping emissions.



Reference
Quantity Units value Changed input

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Input: At the reference
x2 m 0.5 0.6 data the perfect
y2 m 0.4 0.3 insulation of the
L D m 0.1 0.08 outer surface of
D m 0.1 0.08 the reflector is
h2 W/m2 K 6 10 applied
k3 W/m2 K 3500 4000
h3 W/m2 K 6 10
To K 293 303
Tw K 320 330
ε2 0.2 0.1

Output:
�B11 % 57.069 60.270 57.458 57.220 60.254 57.069 57.069 57.069 57.069 57.069 65.565 57.069
�B21 % 0.0257 0.0272 0.0249 0.0257 0.0282 0.0144 0.0257 0.0257 0.0234 0.0264 0.0040 0.0257
�B31 % 0.1316 0.1134 0.1355 0.1311 0.1075 0.1316 0.1314 0.1313 0.0538 0.2567 0.1418 0.1316
�B2 % 20.433 20.008 18.979 20.426 21.144 20.673 20.433 20.433 20.531 20.438 10.587 20.433
�B3 % 20.528 17.895 21.548 20.397 16.817 20.533 20.529 20.530 21.024 20.180 22.254 20.528
�BQ2c % 0.6189 0.6244 0.5852 0.6186 0.6540 0.4349 0.6189 0.6189 0.5151 0.6357 0.1963 0.3095
�BQ2r % 0.0629 0.0636 0.0596 0.0629 0.0666 0.0259 0.0629 0.0629 0.0575 0.0647 0.0097 0
�BQ3u % 0.0038 0.0037 0.0045 0.0037 0.0032 0.0037 0.0033 0.0022 0.0051 0.0018 0.0048 0.0038
�BQ3c % 0.2922 0.2438 0.2925 0.2923 0.1339 0.2923 0.2919 0.4861 0.1171 0.5298 0.2926 0.2923
�B % 0.8340 0.7506 0.9126 0.8238 0.6922 0.8262 0.8343 0.6409 0.6038 0.7980 0.9448 0.8340
� % 9.241 8.317 10.112 9.128 7.670 9.155 9.245 7.101 10.600 6.654 10.469 9.241

TABLE 10.4 Illustration of the Exergy Analysis and of the Trends Responsive to the Change of Some Input Parameters (TS = 6000 K,
I = 1586.39 W/m2, ε3 = 1) (from Petela, 2005)
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Energy Exergy

Description Expression % Expression %

Input:
Insolation (I = 1586.38 W) 100 (I · � S = 100

(radiosity J1 = I ) 1483.1W)

Total 100 100

Output:
Escaping radiosity 	�21J 2 68.34

from surface 2
Escaping radiosity 	�31J 3 4.43

from surface 3
Escaping fraction of �B11 57.069

emission E1 (E1 = I )
Escaping fraction �B21 0.026

of emission E2

Escaping fraction �B31 0.132
of emission E3

Radiation irreversibility �B2 20.433
on surface 2

Radiation irreversibility �B3 20.528
on surface 3

Transfer of convective 	Q2c 13.41 �BQ2c 0.619
heat from surface 2

Transfer of radiative 	Q2r 1.36 �BQ2r 0.063
heat from surface 2

Transfer of convective 	Q3c 3.22 �BQ3c 0.292
heat from surface 3

Irreversibility of �BQ3u 0.004
transferred
useful heat Q3u

Useful heat Q3u � 9.24 �B 0.834
delivered to water

Total 100 100

TABLE 10.5 Comparison of the Energy and Exergy Balance Terms for the
Considered SCPC (ε3 = 1) (from Petela, 2005)

According to the energy analysis the heat losses to the environment are rel-
atively high; by convection 13.41% (Q2,c ), 3.22% (Q3,c ), and by radiation 1.36%
(Q3,r ), whereas the exergy estimation of these losses is relatively very low—
0.619%, 0.292%, and 0.063 %, respectively.

As shown in Table 10.5, the energy analysis does not reveal any degradation
losses at surfaces 2 and 3 or during transfer of the useful heat, in contrast to
the exergy analysis which, respectively, estimates the first two losses as being
relatively high, 20.433% and 20.528%, and the third loss as very small, 0.004%.

vi. Some comments on the possible optimization of the SCPC surfaces
configuration. The characteristic dimensions of the SCPC can be discussed sep-
arately. Table 10.3 shows that separate variation of x2 and y2 is quite effective. As
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FIGURE 10.12 The influence of the reflector dimensions x2 and y2 on the
energy efficiency � and exergy efficiency �B of the SCPC (ε3 = 1) (from Petela,
2005).

shown, reducing the openness x2 and depth y2 of the reflector causes the growth in
energy efficiency �E of the SCPC, although the capacity Q3,u grows only as y2 is
increased. The increase in the efficiencies also comes with the increase of D or LD.

The problem of maximization of the energy efficiency as a function of four
dimensions, �(x2, y2, LD, D), is beyond the scope of this discussion. However, for
example, based on simpler analyses, �B (x2, y2) and �E = (x2, y2), the fragments
of the curves of the constant exergy and energy efficiencies in the coordinates
system (x2, y2), at constant values of dimensions D = 0.1 m and LD = 0.1 m, are
presented in Figure 10.12. The area of the greatest efficiency values corresponds
to the small values x2 and y2. However, x2 cannot be chosen to be too small (x2 ≥
x2min), because the characteristic distance L S becomes negative, which means
that the reflector surface is not fully utilized, as its lower part is not exposed to
the radiation of surface 1. Parameter y2 also cannot be too small (y2 ≥ y2min =
L D+D), because the assumed configuration of the three surfaces in the presented
example (the cooker does not stick out above the reflector rim) would not be
preserved. Additionally, for the x2 and y2 values close to their minimum values,
there is an increase in the significance of the distribution of local values of the
view factor, which weakens assumptions about the uniform distribution of this
factor, applied in the present consideration.

Optimal values of x2 and y2, at constant L D and D, can define the shape of the
cooker surface profile for which the energy efficiency is maximal. However, it is
worth emphasizing that based on some additional calculations, it has been found
that the optimal profile, when scaled proportionally, still ensures the same value
of the maximum efficiency, and the capacity of the SCPC increases by the scale-up
factor. For example, it can be concluded that the space (volume) occupied by one
big SCPC of surface area A1 can be reduced by the application of the cluster of
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number i of small SCPCs of which each has the surface area A1,i , where i ≈
A1/A1,i. However, due to the i-times decreased diameter D, to maintain the
same flow rate of the heated fluid, the flow velocity of this fluid also has to be
increased i times, which would result in a greater pressure drop of the fluid.
Thus, for example, the minimum summary cost of a reduced cooker size and
the increased cost of a pumping fluid can be optimized.

10.5.5 Conclusion Regarding the Solar
Cylindrical–Parabolic Cooker

The theoretical energy and exergy analyses and the distribution of
exergy losses for a solar cylindrical–parabolic cooker were presented.
Also shown was the exergy analysis of the radiating surface absorb-
ing many radiation fluxes of different temperatures. The imagined
surface was introduced into the analysis to close the considered sys-
tem of cooker surfaces. The optimization possibilities for the surface
configuration, to increase both energy and exergy efficiencies of the
cooker, were discussed.

It was shown that from the energy viewpoint the low efficiency
is mainly due to the escape of a large amount of insolation that is not
absorbed, and additionally due to heat loss to the environment. Exergy
efficiency is even lower than energy efficiency, mainly due to the large
exergy of the escaping insolation and additionally due to degradation
of the insolation absorbed on the surfaces of the reflector and the
cooking pot. The energy efficiency of the SCPC is relatively low, i.e.,
it ranges from 6% to 19%, and the exergy efficiency is even lower by
about ten times. The presented theoretically calculated values of the
efficiencies are relatively close to the values experimentally measured
by Ozturk (2004).

The influence of the geometric configuration of the cooker on its
performance was outlined. By applying variation only of the openness
(x2) and depth (y2) of the SCPC, it was shown that energy efficiency
above 18%, and exergy efficiency above 1.6% could both be reached. It
can be confirmed by calculation that the determined optimal surface
profile of the considered SCPC can be scaled up—at the unchanged
optimal efficiencies—to the SCPC with all the dimensions changed
proportionally. However, to maintain the same capacity, an appropri-
ate adjustment of the flow velocity of the heated fluids is required.
Optimization of the geometry of the cooker, including additional di-
mensional parameters, can be considered in the future.

Nomenclature for Chapter 10
A surface area, m2

B radiation exergy, W
b exergy of emission density, W/m2

c specific heat of water, W/(kg K)
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D outer diameter of cooking pot, m
E emission energy, W
e emission density, W/m2

h convective heat transfer coefficient, W/(m2 K)
I direct insolation, W
J radiosity, W
k heat transfer coefficient, W/(m2 K)
L SCPC length, m
L mean distance from the sun to the earth, L = 1.495 × 1011 m
Lc crossed string length, m
L D distance of cooking pot from the reflector bottom, m
Ln not crossed string length, m
Ls intersection ordinate, m
m water mass flow rate, kg/s
Q heat delivered or extracted from surface, W
q heat, W/m2

R radius of the sun, R = 6.955 × 108 m
r exergy/energy growth ratio
S solar irradiance, W/m2,
S, S′ tangency points
Scir length of circle arc, m
SCPC solar cylindrical–parabolic cooker
s entropy of the emission density, W/(m2 K)
xs, ys coordinates of tangency point S (Fig. 10.11) defining shape

and size of the reflector, m
x2, y2 coordinates of point 2 (Fig. 10.11), m
T absolute temperature, K
t temperature,◦C

Greek
 absorptivity
	 percentage energy loss
	 flat angle coordinates (azimuth), deg
�B exergy loss, W
�E energy efficiency of the SCPC, harvesting of solar radiation
�B exergy efficiency of the SCPC, harvesting of solar radiation
� view factor
� flat angle coordinate (declination), deg
ε emissivity
� maximum exergy/energy radiation ratio
� overall entropy growth, W/(m2 K)
� reflectivity
� Boltzmann constant for black radiation,

� = 5.667 · 10−8 W/(m2 K4)
� percentage exergy loss
� transmissivity
� solid angle, sr
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Subscripts
atm atmosphere
a air
a absorbing surface
c canopy
C Carnot
earth earth
i initial or successive number
j successive number
max maximum
opt optimum
pla exposed to the plate
p plate
Q heat
q heat
S solar
sol exposed to the sun
sky sky
w water
� solid angle
0 environment
1 imagined surface making up the SCPC surfaces system
2 inner surface of reflector
3 outer surface of cooking pot



C H A P T E R 11
Thermodynamic

Analysis of a Solar
ChimneyPowerPlant

11.1 Introduction
Analysis of a solar chimney power plant (SCPP) is presented in this
chapter according to Petela (2009). The SCPP is typical of many pos-
sible examples of power plants driven by solar radiation. The overall
process of power generation in the SCPP is very complex. Up to the
present date, only selected aspects have been studied. The present
study attempts to develop an analysis of the total SCPP process. The
complexity of such a thermodynamic object forces many simplifying
assumptions. This necessity for simplification should not seem dis-
couraging because, e.g., the efficiency of the Carnot cycle was also
derived with far-reaching simplifications and despite this has a fun-
damental significance in thermodynamics.

Although not easy to prove, it is supposed that the proposed math-
ematical thermodynamic model has enough information to determine
the effects of varying input parameters on the SCPP output parame-
ters, especially determining the trends for these effects.

The proposed model involves some magnitudes that, although
they do not precisely determine a real situation (e.g., the effective
temperature of a surface or the average convective coefficients of heat
transfer), they must, however, not be assumed constant, i.e. they have
a certain freedom to vary and respond to show their approximate
values and trends of variation.

We introduce the following characteristic elements:

� formulation of the energy balance of the total SCPP;� application of the exergy balance for interpretation of compo-
nent processes;

303
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� application of the eZergy balance for estimation of the effect
of gravity;� exchange of radiation energy and exergy between the chim-
ney and deck;� distinguishing the energy, exergy, and eZergy losses to the
environment and sky;� the concept of a convective–radiative effective temperature
for the surfaces.

The purpose of the present study is not to perform optimization
and only the optimum ratio rT = 2/3 for the relative pressure drop
in a turbine is assumed. Here we outline the methodology of exergy
analysis applied to the SCPP and develop possible different thermo-
dynamic interpretations of processes occurring within it. Based on the
energy and exergy balances, the distribution of solar input between
the SCPP components is determined. The applied concept of mechan-
ical exergy of air (air eZergy) permits additional interpretation. Based
on the eZergy of air, the positive gravity input is determined for all
the components in which air plays a role. Discussion of the meaning,
significance, and interpretation of the concept of gravity input, which
can be positive, negative, or neutral, remains still open.

Obviously, there are many more problems to study in the future,
preferably within the more complex thermodynamic model of the
SCPP.

11.2 Description of the Plant as the Thermodynamic
Problem

A typical SCPP consists of a circular greenhouse-type collector with
a tall chimney at its center. Air flowing radially inward under the
collector deck is heated from the collector floor and deck, and enters
the chimney through a turbine.

Figure 11.1 depicts an example of an SCPP selected for the present
study. Draft-driven environmental air (point 0) enters the collector
through the gap of height He . The collector floor of diameter Df is
under the transparent deck, which declines appropriately to ensure
the constant radial cross-sectional area for the radially directed flow
of the air. The assumption of a constant cross-sectional area in the
collector means that � × Df × He = � × D1 × H1 = � × D1

2/4, and
so the assumed value He allows for calculation of the inlet turbine
diameter D1 = (4 × He × Df )1/2 and height H1 = D1/4. The collector
floor preheats air from state 0 to state 1 (state 1 prevails in the zone de-
noted by a dashed line). The preheated air (state 1) then expands in the
turbine to state 2. The turbine inlet and outlet diameters are D1 and D2,
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FIGURE 11.1 Scheme of the considered SCPP (from Petela, 2009).

respectively. The height of the turbine is HT (H1 + HT = H2). Expanded
air leaves the SCPP (at point 3) through the chimney at height H3.

For the established geometrical parameters of the collector–
turbine–chimney system, and for the constant thermodynamic input
data such as solar radiation intensity and environment parameters,
the system spontaneously self-models itself in response to the actual
situation. This means that the buoyancy effect determines the flow
rate of air through the system as well as all the air parameters, tem-
perature, and pressure along the path of the air flow.

Exact thermodynamic consideration of the SCPP requires the in-
volvement of many different theoretical areas such as, e.g., thermo-
dynamics, heat transfer, and fluid mechanics. Exergy analysis espe-
cially requires taking into account the temperature distribution over
surfaces (e.g., floor, deck, or chimney), and requires complex expres-
sion of the exergy of nonequilibrium radiation emitted from these
surfaces—each element of the surface has a different temperature and
radiates different exergy.

Energy analysis is a little simpler because the energy of radiation
from a surface is calculated with a simpler formula, and the energy
fluxes need not be followed separately for each particular temperature
during successive reflections between gray surfaces. (The energy of
radiation, in contrast to exergy, does not distinguish between radiation
fluxes of different temperatures.)

Complex, irregular (i.e., selective) spectra of radiating bodies (e.g.,
air, floor, partly transparent deck, etc.) make consideration addition-
ally difficult. There are problems with a locally considered view factor
for radiation transfer: varying conditions for convective coefficients
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(e.g., the dependence of materials properties on thermodynamic pa-
rameters; specific heat of air, viscosity coefficient, etc.); distribution of
air flow velocity, in at least a two-dimensional space, including possi-
ble turbulent behavior of air; conservation of momentum; and energy
conversion from kinetic to potential forms.

The processes can occur in an unsteady mode, especially when
starting, restarting, or shutting down periods. The boundary condi-
tions and the environment conditions can vary significantly. All such
factors exacerbate the difficulties of calculations.

Generally, there are three methods for obtaining the solution in a
specific study of thermodynamic objects.

First, there is the analytical method, which is expected to produce
a solution of differential equations in an analytical form (usually suc-
cessful in a very simplified case). Then, from the solution of the differ-
ential problem, ordinary solvable equations can be obtained. Usually,
the introduction of many simplifying assumptions allows us to pass
over the stage of formulating differential equations and directly de-
velop regular algebraic equations that can be solved if the number of
unknowns is not larger than the number of derived equations. The
present study belongs in this category.

Second, there is the numerical method, which solves numerically by
developing differential equations into finite difference equations. This
allows for significantly fewer simplifying assumptions. However, the
numerical method as a replacement for the analytical approach brings
some inadequacy via the discrete use of variables.

Third, there is the similarity theory method. According to this
method the characteristic dimensionless simplexes (i.e., similarity cri-
teria) are extracted from differential equations. The criteria are used
for derivation of mutual relations based on experimental data from
the appropriately programmed measurements. The relations are frag-
mentary solutions, and have a specific meaning for a particular inte-
grals of a differential problem. In order to formulate an interpretative
model for a process the similarity theory may apply experimental data
obtained on a laboratory, pilot, or commercial scale. This method can
be applied to a SCPP.

SCPPs belong to the category of thermodynamic objects for which
the fully developed application of any of these three methods is prac-
tically very difficult, especially when exergy is involved. Therefore,
for engineering purposes certain simplified models of processes are
usually formulated. These models ignore some less important compo-
nent phenomena, providing a better chance for an achievable solution.
The purpose of even a simplified solution is to ensure the possibility
of measurable estimation of basic relations between process param-
eters, and also the possibility for the design and selection of optimal
versions, all without uncertain guesses.
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Obtaining a complete and exact mathematical description of the
SCPP from a thermodynamic viewpoint is very complex. Formulation
of the description based on mathematical analysis leads to differential
equations for mass, momentum, energy conservation, and exergy bal-
ance for which the more details of the processes that are included into
the analysis, the more difficult they are to solve. However, the more de-
tails that are considered, the higher is the significance of the obtained
solution. Therefore, the optimization problem depends on selection
of the optimal precision degree of the thermodynamic analysis.

Simplified models often need to be applied based on an assump-
tion eliminating many of the real features of the thermodynamics
problem. Some models simplify more than others. For each model,
the expectation of exact results diminishes with the growing number
of assumptions. However, simplified models usually describe at least
the trends and the intensity of the response from dependent object
parameters to the varying input parameters of the object. Such results
are often quite satisfactory for practical purposes.

The idea of an SCPP was initiated by Schlaich in the late 1970s.
The first 36-kW pilot SCPP plant began operation in Manzanares, near
Madrid, Spain. The chimney was 195 m high and the radius of the col-
lector was 120 m. Gradually, the SCPP concept was developed further
and many publications discussed various aspects of a solar plant in-
cluding complex processes of heat transfer and fluid mechanics. For
example, Pasumarthi and Sherif (1998a,b) developed the mathemati-
cal model of a collector for studying the temperature and flow veloc-
ity of heated air and determining the expected SCPP efficiency and
power. Padki and Sheriff (1992) considered the effects of geometrical
parameters on the chimney performance. The temperature and pres-
sure fields for flowing air were studied both analytically, e.g., by Ming
et al. (2006), and analytically and numerically, e.g., by Pastohr et al.
(2004), estimating also the varying temperatures of the ground and
heat transfer coefficients.

Many studies also focus on the pressure drop across the turbine
as a part of the total available pressure difference in the system.
The pressure drop was evaluated, e.g., by Haaf et al. (1983), Mullet
(1987), Schlaich (1995), Gannon and Backström (2000), Bernardes et al.
(2003), and recently by Von Backström and Fluri (2006). Thermo-
dynamic variables regarding the chimney dependent on wall fric-
tion, additional losses, internal drag, and cross-sectional area for
chimneys as tall as 1500 m were studied by Backtröm and Gannon
(2000). Exergy interpretation of the chimney process was analyzed
by Petela (2008d). However, it is worth noting that, due to the com-
plexity of the object, most existing publications consider certain se-
lected aspects of SCPP, but none consider the entire SCPP with all its
components.
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In the following sections, the methodology for full thermody-
namic analysis including eZergy is outlined by a simplified interpre-
tative mathematical model of the SCPP.

11.3 The Main Assumptions for the Simplified
Mathematical Model of the SCPP

In the existing literature there is no detailed, readily applicable, or con-
sistent data on all the SCPP parameters. Therefore, the required data
are generated by the proposed simplified model, which is considered
under the following main assumptions:

(i) The floor has no heat loss to the soil. It is perfectly insulated
and is perfectly black (emissivity εf = 1). Thus, there is no solar energy
reflected from the floor. It is worth noting that a further simplification,
not applied in the present consideration, could be the assumption that
the floor material be of almost infinitely large conductivity, which then
could motivate the assumption of a constant temperature of the floor
in the entire collector.

(ii) The deck material is prepared in such a way that it is almost per-
fectly transparent for solar radiation (transmissivity �d = 0.95) and the
remaining part (5%) of solar radiation arriving at the deck is reflected.
However, the deck material absorbs perfectly (absorptivity � = 1) any
low-temperature radiation, e.g., from the floor. Thus, consideration of
multi-reflected radiation fluxes is simplified. In addition, the deck is
thin enough that heat conducted through the deck occurs at a zero
temperature gradient. The properties of the deck are assumed so as to
better expose the effect of trapping solar radiation energy within the
collector.

(iii) Variation of floor temperatures with the radial coordinate r
was analyzed by Pastohr et al. (2004). Depending on the model used,
they received relatively significantly different distributions for the
temperature, though it was not clear why. The literature data on tem-
perature distribution at the deck surface is very limited. Therefore,
for the present study, a certain effective temperature Teff for the floor or
deck is applied, according to consideration in Section 6.10.2, which
includes potentials for the heat transfer by conduction and radiation:

A
(
haverage Teff + �T4

eff

) =
∫
A

hlocal T dA + �

∫
A

T4 dA (11.1)

where haverage and hlocal are the average and local convective heat trans-
fer coefficients, respectively, � is the Boltzmann constant for black
radiation, A is the surface area, and T is the local surface tempera-
ture. As some computation estimates indicate, the concept of effective
temperature can be applied only when the surface temperature varies
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within a not too large range, as in the case of the floor and deck con-
sidered.

(iv) Chimney material is perfectly black. The chimney wall is thin,
thus there is no temperature gradient along the wall thickness and
both sides of the chimney (inner and outer) have the same temperature
constant along the chimney height.

(v) Distribution of air temperature is represented by certain effec-
tive temperatures defined according to equation (11.1), however, with
excluded radiative heat transfer.

(vi) Air is considered to be an ideal gas, the parameters for which
fulfill the state equation p = � × R × T , equation (2.1a), and the spe-
cific heat is assumed to be constant (i.e., average, not varying with
temperature).

(vii) Air is almost perfectly transparent for radiation (transmis-
sivity �a ≈ 1 and emissivity εa ≈ 0). Air can exchange heat only by
convection or conduction.

(viii) Air flow in the entire SCPP is frictionless. The relative air
pressure drop rT during expansion inside a turbine is estimated dif-
ferently by many authors, as discussed by Backström and Fluri (2006).
The drop is considered in the range from 0.66 (e.g., by Mullet, 1987)
to 0.97 (by Bernardes et al., 2003). According to investigation by Back-
ström and Fluri (2006), “for maximum fluid power, the optimum ratio”
rT = 2/3. Therefore in the present consideration it is assumed that:

p1 − p2

p1 − p3
= rT = 2

3
(11.2)

As mentioned in Section 11.1, optimization of the SCPP is not the
objective of the present work and only the suggested optimum value
rT is assumed for analysis of the SCPP. For illustration purposes, based
on later calculation results (Table 11.1, column 4), the distribution of
the environment pressure and the pressure of air along its flow within
the SCPP are shown in Figure 11.2. The air pressure of the environment
(solid thin line) drops from p0 at the zero level, to p3 at the level H3

of the chimney exit. The air pressure inside the SCPP drops from p0

to p1 at the collector outlet (dashed line), and it is assumed that the
same pressure p1 prevails also at the inlet to the turbine. Then, within
the turbine, air pressure (thick solid line) drops from p1 to p2 during
adiabatic (isentropic) expansion generating power. Air from turbine
flows upward and its pressure (dotted line) achieves value p3 at the
chimney exit.

(ix) Using average values of gravitational acceleration and air den-
sity along the height H3:

p3 = p0 − g0 + g3

2
�0 + �0 3

2
H3 (11.3)
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FIGURE 11.2 Distribution of the absolute pressure in the considered SCPP
(from Petela, 2009).

where the following approximations, used by Petela (2008b), were
applied: gH3 = g0 − 3.086 × 10−6 × H3 and �H3 = �0 − 9.973 × 10−5 ×
H3. At the earth’s surface the atmospheric pressure p0 = 101.235 kPa
and gravitational acceleration g0 = 9.81 m/s2.

(x) The momentum conservation equation for the air flow within
the collector is derived as:

p0 − p1 = �a1w2
1 (11.4)

where �a1 and w1 are the density and flow velocity, respectively, of air
at point 1.

(xi) The deck and chimney radiate to the space of sky temperature
Tsky. Therefore, for a clear sky, formula (6.76) is applied.

(xii) In order to obtain the fair comparison basis, the reference
state for calculation of energy is the same as for exergy: environment
temperature T0 = 288.14 K, (15◦C), and environment pressure p0 =
101.235 kPa.

Additional assumptions are discussed in the following sections.

11.4 Energy Analysis
Energy analysis is based on the energy conservation equations. The
energies E are used in six equations written successively for: floor sur-
face, air in collector, collector (including floor, air, and deck), turbine,
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chimney, and chimney surface:

Es− f = E f −a + E f −d (11.5)

E f −a + Ed−a = Ea1 + Ew1 + E p1 (11.6)

Es− f = Ea1 + Ew1 + E p1 + Ed−sky + Ed−0 + Ed−ch (11.7)

Ea1 + Ew1 + E p1 = Ea2 + Ew2 + E p2 + EP (11.8)

Ea2 + Ew2 + E p2 + Ed−ch

= Ea3 + Ew3 + E p3 + Ech−0 + Ech−sky + Ech−gr (11.9)

Ea−ch + Ed−ch = Ech−0 + Ed−sky + Ech−gr (11.10)

Energies E have the following subscripts:

s–f - solar radiation arriving at the floor;
f–a - convection heat from floor to air;
f–d - energy exchanged by radiation between floor

and deck;
d–a -convection heat from deck to air;
d–sky - energy exchanged by radiation between deck

and sky;
d–0 - convection heat from deck to atmosphere;
d–ch - energy exchanged by radiation between deck and

chimney;
ch–0 -convection heat from chimney surface to atmosphere;
ch–sky - energy exchanged by radiation between chimney

surface and sky;
ch–gr - energy exchanged by radiation between chimney

surface and ground;
a–ch - heat transferred from chimney air to the chimney

surface;
1a , 2a , 3a - enthalpy of air at point 1, 2, and 3;
w1, w2, w3 - kinetic energy due to the air flow velocity w1, w2,

and w3;
p1, p2, p3 - potential energy of air at point 1, 2 and 3;
P - turbine power.

Kinetic energies are calculated as Ew = m × w2/2, where m is the
air mass flow rate, m = 0.25 × � × D1

2 × w1 × �a1. Enthalpy of the
air is Ea = m × cp × (Ta − T0), where cp is the specific heat of air at
constant pressure.

The potential energy of the considered air, at its constant density
� , depends on the altitudinal variation of atmospheric air density
and gravitational acceleration. The solution of differential formula on
potential energy E p, J/kg, equal to potential exergy, can be determined
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based on formula (f) in Section 2.6.2:

E p = m
{
− 1

a4�

[
a2

6 a4
(� − a3)3 + a1

2
(� − a3)2

]}
(11.11)

where a1, a2, a3, and a4 are constant values (see Nomenclature).
Total solar energy received by the floor is:

ES− f = �dε f SAd (11.12)

where S, W/m2, is the solar radiosity at the earth surface, �d is the
transmissivity of the deck, and εf is the floor emissivity, (εf = 1).

Energy exchanged by radiation between deck and chimney is:

Ed−ch = εd�d−ch
�

4

[
D2

f − (cD D2)2
]

�
(
T4

d,eff − T4
ch

)
(11.13)

where � = 5.6693 × 10−8 W/(m2 K4) is the Boltzmann constant for
black radiation, Td,eff is the effective temperature of the deck, and cD

is the factor to account on thickness of the chimney wall. The view
factor �d−ch can be calculated from the reciprocity relation:

�d−ch
�

4

[
D2

f − (cD D2)2
]

= �ch−d�cD D2 (H3 − H2) (11.14)

It can be derived that �ch−d = 0.5 × (90 – �)/90, where the angle
� is determined by tan � = 2 × H3/Df .

Energy exchanged by radiation between the floor and deck:

E f −d = Ad�
(

T4
f,eff − T4

d,eff

)
(11.15)

where Tf,eff is the effective temperature of the floor and surface area
Ad = � × (D2

f − D1
2)/4.

The following formulae are applied for convection heat transfer
from:

floor to air:

Ef−a = Ad hf−a
(
Tf ,eff − Ta,eff

)
(11.16)

deck to air:

Ed−a = Ad hd−a (Td,eff − Ta,eff) (11.17)

deck to environment:

Ed−0 = Ad hd−0 (Td,eff − T0) (11.18)

chimney to environment:

Ech−0 = Achhch−0 (Tch − T0) (11.19)
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and chimney air to chimney wall:

Ea−ch = �D2 (H3 − H2) ha−ch

(
Ta,2 + Ta,3

2
− Tch

)
(11.20)

where h is the respective coefficient and the chimney surface Ach = � ×
cD × D2 × (H3 − H2). The coefficient ha−ch is determined as ha−ch =
Nu × k/D2, where k = 0.0267 W/(m K) is thermal conductivity of
air and the Nusselt number Nu = 0.023 × Re0.8× Pr0.4; the Prandtl
number for air is Pr = 0.7; and the Reynolds number Re = w2 D2/	
(kinematic viscosity coefficient for air 	 = 1.6 × 10−5 m2/s).

In a similar way hf−a is the determined coefficient. Although the
air flow is driven by the buoyancy effect, the forced convection mech-
anism of the air flow is assumed. Thus, the calculations are based on
the Reynolds number instead of the Grashof number. In calculations
the average flow velocity of air is assumed. The effective diameter Deff

for the air flow was assumed as the average ratio of the respective flow
cross-sectional areas (A1) multiplied by four, to the respective perime-
ter lengths L0 or L1; Deff = 2 × A1/(1/L0 + 1/L1). It was assumed that
ha−d = hf−a.

The following formulae are applied for energy exchange by radi-
ation between:

floor and deck:

Ef−d = Ad�
(

T4
f,eff − T4

d,eff

)
(11.21)

deck and chimney:

Ed−ch = �d−ch Ad�
(
T4

d,eff − T4
ch

)
(11.22)

deck and sky:

Ed−sky = �d−sky Ad�
(

T4
d,eff − T4

sky

)
(11.23)

chimney and sky:

Ech−sky = �ch−sky Ach�
(

T4
ch − T4

sky

)
(11.24)

chimney and ground beyond the floor:

Ech−gr = �ch−gr Ach�
(
T4

ch − T4
gr

)
(11.25)

where the view factors fulfill the following relations:

�d−sky + �d−ch = 1 (11.26)

�ch−sky + �ch−d + �ch−gr = 1 (11.27)
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The view factors �ch−d and �d−ch are determined based on equation
(11.14), whereas the configuration of the chimney relative to the sky
determines the view factor �ch−sky = 0.5.

Calculation of temperature Ta ,2 is based on the equation for the
isentropic expansion in a turbine at an assumed isentropic exponent

 for air and the internal efficiency of the turbine � T . Conversion of
the energy of air into electric power occurs at an overall efficiency �o ,
which additionally includes mechanical and electric efficiencies of the
turbine–generator unit.

The energy calculations were carried out with additional as-
sumptions. The air temperature distribution in the collector was as-
sumed to be linear and thus Ta,eff = (T0 + Ta1)/2. The diameter ratio
D1/D2 = 0.95. Based on additional calculations the air temperature
drop in the chimney can be estimated as proportional to the chimney
surface and inversely proportional to the air mass rate, Ta,2 − Ta,3 =
0.154 × D2 × H3/m.

We explore an example of computation using the presented model
as follows. Applying the consideration to the pilot plant at Man-
zanares the floor diameter is Df = 240 m and the chimney height
is H3 = 195 m. Other data are as follows:

s = 800 W/m2 �T = 0.7 He = 0.3 m

 = 1.4 hd−0 = 5 W/(m2 K) cp = 1000 J/(kg K)
hch−0 = 7 W/(m2 K) cD = 1.015 HT = 1 m
Tgr = T0 R = 287.04 J/(kg K)

The model responses to the input parameters are presented in
Tables 11.1 and 11.2. Column 4 of the tables presents the basic input
case (i.e., reference case), the results for which are compared to the
results of other input cases represented by columns 5–10 and which
are discussed in Section 11.7. Column 4, with relatively low power,
presents the closest case to the power reported for the Manzanares
pilot plant. The energy results of this column are used for the respec-
tive bands diagram (Figure 11.3). The diagram shows how the solar
radiation energy arriving at the deck ES = 39.05 MW, reduced by 5%
reflection, is distributed between five SCPP components: collector air,
floor, deck, turbine, and chimney.

In the diagram the energy streams E , W, are represented by their
percentage values e related to the solar radiation energy ES. The floor
(blackbody) fully absorbs the solar radiation (95.00%) transmitted
through the deck and converts this radiation energy into the energy at
the level of temperature Tf ,eff. Part of this energy (ef−d = 77.19%) radi-
ates to the deck and the rest ef−a = 17.81% is transferred by convection
to heated air in the collector. The power performed by the turbine is
relatively small (EP = 0.23 MW) mostly due to the small mass flow
rate of air (m = 276 kg/s) and due to the small pressure drop during
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# Quantity Units Ref. value Mono-variant changes of input parameters and resulting output
1 2 3 4 5 6 7 8

2 Input

3 S W/m2 800 850 800 800 800

4 H3 m 195 195 200 195 195

5 Df m 240 240 240 250 240

6 He m 0.3 0.3 0.3 0.3 0.35

7 Output

8 p1 Pa 101,233.66 101,233.93 101,233.67 101,233.83 10,1231.82

9 p2 Pa 99,686.13 99,686.22 99,646.76 99,686.19 99,685.52

10 p3 Pa 98,912 98,912 98,853 98,912 98,912

11 w1 m/s 1.10 0.99 1.09 1.03 1.67

12 m kg/s 276 245 274 268 501

13 Tfeff K 388.3 394.5 388.4 389.3 381.7

14 Tdeff K 329.8 333.8 329.9 330.6 325.0

15 Taeff K 303.18 304.62 303.20 304.02 299.20

16 Ta1 K 318.19 321.08 318.24 319.89 310.25

17 Tch K 292.43 292.90 292.35 292.65 291.81

18 Energy

19 ea1 % 22.99 21.09 22.92 21.75 30.78

TABLE 11.1 Responsive Trends of Some Output Parameters to Changes of Some Input Parameters (from Petela, 2009)



316
C

h
a

p
t

e
r

E
le

v
e

n

# Quantity Units Ref. value Mono-variant changes of input parameters and resulting output
1 2 3 4 5 6 7 8

20 ea2 % 22.24 20.45 22.15 21.07 29.45

21 ea3 % 20.75 19.05 20.63 19.67 27.84

22 ew1 % 4.63e-4 3.11e-4 4.56e-4 3.64e-4 1.95e-3

23 ew2 % 1.93e-4 1.30e-4 1.91e-4 1.52e-4 8.12e-4

24 ew3 % 3.88e-4 2.61e-4 3.83e-4 3.05e-4 1.64e-3

25 ep1 % 0.3994 0. 4020 0.3988 0.3995 0.3871

26 ep2 % 0.5118 0.5046 0.5139 0.5055 0.5396

27 ep3 % 0.5278 0.5129 0.5300 0.5180 0.5951

28 efa % 17.81 16.23 17.76 16.89 23.73

29 efd % 77.19 78.77 77.24 78.11 71.27

30 eda % 5.577 5.259 5.562 5.258 7.435

31 ed0 % 26.05 26.82 26.07 26.52 23.05

32 edsky % 44.21 45.27 44.24 45.00 39.51

33 edch % 1.35 1.42 1.36 1.34 1.26

34 ech0 % 0.90 0.94 0.90 0.89 0.83

35 echsky % 1.70 1.64 1.74 1.61 1.78

36 echgr %| 0.230 0.241 0.235 0.224 0.212
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37 EP kW 229 203 234 222 423

38 eP (�E ) % 0.64 0.53 0.65 0.57 1.18

39 Exergy

40 ba1 % 1.2443 1.2439 1.2423 1.2393 1.2434

41 ba2 % 0.08 0.27 0.06 0.20 –0.83

42 ba3 % –0.61 –0.34 –0.65 –0.44 –1.95

43 bw1 % 5.148e-4 3.46e-4 5.07e-4 4.05e-4 2.16e-3

44 bw2 % 2.15e-4 1.44e-4 2.12e-4 1.69e-4 9.03e-4

45 bw3 % 4.31e-6 2.89e-6 4.25e-6 3.39e-6 1.82e-5

46 bp1 % 0.4438 0.4467 0.4431 0.4439 0.4301

47 bp2 % 0.5687 0.5607 0.5710 0.5617 0.5995

48 bp3 % 0.00586 0.00570 0.005889 0.00576 0.00661

49 bfa % 5.10 4.86 5.09 4.88 6.46

50 bfd % 17.24 18.58 17.26 17.62 14.89

51 bda % 0.783 0.798 0.782 0.750 0.937

52 bd0 % 3.657 4.072 3.664 3.781 2.907

53 bdsky % 2.237 2.640 2.242 2.343 1.623

54 bdch % 0.114 0.131 0.115 0.115 0.095

55 bch0 % 0.0145 0.0168 0.0144 0.0151 0.0115

TABLE 11.1 Responsive Trends of Some Output Parameters to Changes of Some Input Parameters (from Petela, 2009) (Continued)
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# Quantity Units Ref. value Mono-variant changes of input parameters and resulting output
1 2 3 4 5 6 7 8

56 bchsky % –0.044 –0.041 –0.046 –0.042 –0.049

57 bchgr % 0.182 0.215 0.189 0.176 0.143

58 �bf % 72.66 76.55 77.65 77.51 78.65

59 �ba % 4.20 3.97 4.19 3.94 5.73

60 �bd % 10.4496 10.9423 10.4600 10.6287 9.3263

61 �bT % 0.33 0.28 0.34 0.29 0.60

62 �bch % 1.21 1.10 1.23 1.16 1.70

63 bP (�B ) % 0.70 0.59 0.73 0.63 1.31

64 eZergy

65 za1 % 8.96 8.37 8.94 8.57 11.42

66 za2 % 8.82 8.25 8.79 8.44 11.11

67 za3 % 8.24 7.68 8.19 7.88 10.56

68 zGa % 7.28 6.68 7.26 6.89 9.75

69 zGT % 0.89 0.75 0.91 0.80 1.60

70 zGch % 0.673 0.593 0.675 0.632 1.160

TABLE 11.1 Responsive Trends of Some Output Parameters to Changes of Some Input Parameters (from Petela, 2009) (Continued)
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Mono-variant changes of input
# Quantity Units Ref. value parameters and resulting output

1 2 3 4 9 10

2 Input

3 S W/m2 800 850 800

4 H3 m 195 195 195

5 Df m 240 240 250

6 He m 0.3 0.35 0.35

7 Output

8 p1 Pa 101,233.66 101,232.6 101,232.3

9 p2 Pa 99,686.13 99,685.76 99,685.68

10 p3 Pa 98,912 98912 98912

11 w1 m/s 1.10 1.47 1.54

12 m kg/s 276 438 480

13 Tfeff K 388.3 388.5 383.2

14 Tdeff K 329.8 329.2 326.1

15 Taeff K 303.18 300.45 299.97

16 Ta1 K 318.19 312.75 311.79

17 Tch K 292.43 292.30 292.06

18 Energy

19 ea1 % 22.99 28.17 29.02

20 ea2 % 22.24 27.07 27.84

21 ea3 % 20.75 25.55 26.33

22 ew1 % 4.63e-4 1.24e-3 1.46e-3

23 ew2 % 1.93e-4 5.18e-4 6.10e-4

24 ew3 % 3.88e-4 1.04e-3 1.23e-3

25 ep1 % 0.3994 0.3975 0.3924

26 ep2 % 0.5118 0.5364 0.5357

27 ep3 % 0.5278 0.5802 0.5846

28 efa % 17.81 21.53 22.38

29 efd % 77.19 73.47 72.62

30 eda % 5.577 7.040 7.032

31 ed0 % 26.05 24.16 23.74

32 edsky % 44.21 40.92 40.59

33 edch % 1.35 1.35 1.26

TABLE 11.2 Responsive Trends of Some Output Parameters to Changes of Some
Input Parameters (from Petela, 2009)
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Mono-variant changes of input
# Quantity Units Ref. value parameters and resulting output

1 2 3 4 9 10

34 ech0 % 0.90 0.89 0.83

35 echsky % 1.70 1.71 1.69

36 echgr %| 0.230 0.227 0.209

37 EP MW 229 368 404

38 eP (�E ) % 0.64 0.96 1.03

39 exergy

40 ba1 % 1.2443 1.2614 1.2506

41 ba2 % 0.08 –0.45 –0.58

42 ba3 % –0.61 –1.40 –1.58

43 bw1 % 5.148e-4 1.38e-3 1.62e-3

44 bw2 % 2.15e-4 5.76e-4 6.77e-4

45 bw3 % 4.31e-6 1.16e-5 1.37e-5

46 bp1 % 0.4438 0.4416 0.4360

47 bp2 % 0.5687 0.5960 0.5952

48 bp3 % 0.00586 0.00645 0.00650

49 bfa % 5.10 6.18 6.17

50 bfd % 17.24 16.38 15.42

51 bda % 0.783 0.98 0.91

52 bd0 % 3.657 3.349 3.071

53 bdsky % 2.237 2.022 1.756

54 bdch % 0.114 0.112 0.098

55 bch0 % 0.0145 0.0139 0.0123

56 bchsky % –0.044 –0.045 –0.046

57 bchgr % 0.182 0.178 0.143

58 �bf % 72.66 77.44 78.41

59 �ba % 4.20 5.45 5.39

60 �bd % 10.45 9.91 9.58

61 �bT % 0.33 0.49 0.53

62 �bch % 1.21 1.50 1.58

63 bP (�B ) % 0.70 1.07 1.15

64 eZergy

TABLE 11.2 Responsive Trends of Some Output Parameters to Changes of Some
Input Parameters (from Petela, 2009) (Continued)
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Mono-variant changes of input
# Quantity Units Ref. value parameters and resulting output

1 2 3 4 9 10

65 za1 % 8.96 10.62 10.87

66 za2 % 8.82 10.38 10.61

67 za3 % 8.24 9.84 10.08

68 zGa % 7.28 8.92 9.19

69 zGT % 0.89 1.32 1.41

70 zGch % 0.673 1.00 1.06

TABLE 11.2 Responsive Trends of Some Output Parameters to Changes of Some
Input Parameters (from Petela, 2009) (Continued)

the air expansion. The percentage power of the turbine eP = 0.64%
represents the energy efficiency �E of the SCPP. The exhausted en-
ergy (enthalpy) of air from the chimney is ea3 = 20.75%, whereas the
exhausted potential and kinetic energies are small; e p3 = 0.52% and
ew3 = 3.87 × 10−4%, respectively. The other SCPP energy losses are by
radiation and convection heat transferred from the deck and chimney
to the sky and environment. Solar energy reflected from the deck is
assumed as eR = 5.00%.

11.5 Exergy Analysis
Data obtained from energy analysis can be used for the design, oper-
ation, and evaluation of the SCPP. However, the same processes, with
the same data, can be also interpreted based on exergy analysis with
the use of exergy balance equations. Exergy B in these equations has
subscripts corresponding to E in energy analysis. The five separate ex-
ergy equations can be written for floor, deck, air in collector, turbine,
and chimney.

These five exergy equations are analogous to five energy equations
(11.5)–(11.9) and differ by the additional members, �B, representing
the respective irreversible exergy losses:

BS−f = Bf−a + Bf−d + �B f (11.28)

Bf−d = Bd−a + Bd−sky + Bd−0 + Bd−ch + �Bd (11.29)

Bf−a + Bd−a = Ba1 + Bw1 + Bp1 + �Ba (11.30)

Ba1 + Bw1 + Bp1 = Ba2 + Bw2 + Bp2 + BP + �BT (11.31)

Ba2 + Bw2 + Bp2 + Bd−ch = Ba3 + Bw3 + Bp3 + Bch−0

+ Bch−sky + Bch−gr + �Bch (11.32)
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ep1 = 1.41

(ew2~0)

(ew1~0)

Floor

Turbine

Deck

Chimney

(ew3~0)

Air

eP = 0.64

230 kW

ea2 = 22.24

ep2 = 0.51

edch = 1.35

ea1 = 22.99

eR = 5.00

edsky = 44.21

ed0 = 26.05

95.00

39.05 MW

eS = 100

efd = 77.19

efa = 17.81

95.00

ea3 = 20.75

ep3 = 0.52

echgr = 0.23

echsky = 1.70

ech0 = 0.90

FIGURE 11.3 Energy balance of the SCPP according to Table 11.1, column 4
(the values are expressed in percent) (from Petela, 2009).

Exergy of solar radiation can be estimated for the radiation tem-
perature slightly smaller than 6000 K. According to data, e.g., in Table
6.1, the exergy BS can be assumed as being about 90% of radiation
energy, BS ≈ 0.9 ×ES.
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Generally, radiation exergy B of a surface at temperature T , emis-
sivity ε, and surface area A is determined based on formulas (6.10)
applied for the whole area A:

B = �Aε
�

3

(
3T4 + T4

0 − T0T3) (11.33)

where � is the view factor accounting for the geometrical configura-
tion of the considered surface in relation to a surface irradiated by the
considered surface. Based on the conclusion of Section 7.5.3, formula
(7.77), the exergy of radiation exchanged between any two different
surfaces at different temperature Tx and Ty, can be determined by ap-
plication of formula (11.33) for both considered surfaces, which leads
to the following formula:

Bx−y = Bx − By = �x−y Axεx−y
�

3

[
3

(
T4

x − T4
y

) − 4 T0
(
T3

x − T3
y

)]
(11.34)

where εx−y is the effective emissivity depending on emissivities εx and
εy of the respective surfaces and is calculated identically to radiation
energy exchange. The effective emissivity simplifies to εx−y = 1 when
the emissivities εx = εy = 1. Formula (11.34) is used appropriately for
calculations of the five radiation exergies: B f −d , Bd−sky, Bd−ch , Bch−sky,
and Bch−gr.

The physical exergy of air (Ba1, Ba2, and Ba3) is calculated based
on the common formula (2.50):

Ba = m
[

c p (Ta − T0) − T0

(
c p ln

Ta

T0
− R ln

P
P0

)]
(11.35)

where cp and R are the specific heat and individual gas constant,
respectively. Obviously, exergy of air entering the collector is zero,
Ba0 = 0, because air is taken from the environment.

Exergy B of convective heat transferred from a surface at temper-
ature T to air (environmental or heated) is calculated based on the
energy E of this heat from the common formula (2.61):

B = E
(

1 − T0

T

)
(11.36)

Formula (11.36) is used appropriately for calculations of the four
exergies Bf−a, Bd−a, Bd−0, and Bch−0. Potential exergies of air are equal
potential energies (Bp1 = E p1, Bp2 = E p2, and Bp3 = E p3). Kinetic ex-
ergies of air are equal kinetic energies (Bw1 = Ew1, Bw2 = Ew2, and
Bw3 = Ew3).

The results in column 4 of Table 11.1 concerning exergy are used
for the respective bands diagram (Figure 11.4). The diagram shows
how solar radiation exergy arriving at deck BS = 32.41 MW, reduced
by the 5% reflection, is distributed between five SCPP components:
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ba1 = 1.24

bT = 0.33

ba2 = 0.08

bp2 = 0.57
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bp3 = 0.01

bch0 = 0.01

bchgr = 0.18

ba3 = − 0.61

bdch = 0.11

95.00

32.41 MW

229 kW

bP = 0.70

FIGURE 11.4 Exergy balance of the SCPP according to Table 11.1, column 8
(the values are expressed in percent) (from Petela, 2009).

collector air, floor, deck, turbine, and chimney. In the diagram the ex-
ergy streams B, W, are represented by their percentage values b related
to the solar radiation exergy BS. Exergy considerations disclose large
degradation of solar radiation. The floor fully absorbs the received
high-temperature radiation exergy and converts it to the exergy at
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the lower temperature Tf ,eff. Part of this Tf ,eff exergy (bf−d = 17.24%)
radiates to the deck and another part b f −a = 5.10% is transferred by
convection to heated air in the collector. The remaining large part
(�bf = 72.16%) is lost during irreversible processes of absorption and
emission at the floor surface.

The power Bp performed by a turbine is the same as in the energy
balance, BP = EP = 0.23 MW (i.e., exergy of work is equal to the work).
Percentage power of turbine bP = 0.70% represents the exergy effi-
ciency �B of the SCPP. Exergy efficiency is slightly higher than energy
efficiency because the same power is related to radiation exergy, which
is smaller than radiation energy. The exhausted exergy of air from the
chimney is negative ba3 = –0.61%, whereas the exhausted potential
and kinetic exergies are small, b p3 = 0.01% and bw3 = ew3, respectively.
The SCPP loses exergy due to irreversibility and from radiation and
convection heat transferred from the deck and chimney to the sky and
environment. Solar exergy reflected from the deck is bR = e R = 5.00%.

The negative value of the physical exergy (ba ) of air can be stated
as follows. The possibility of negative exergy was mentioned in Sec-
tion 2.6.1. Exergy is a measure of the parameters of matter departing
from the equilibrium state with the human environment. Therefore,
exergy should always be positive whenever the parameters are dif-
ferent from the parameters of the environment. The exergy of matter
within the system (kind of certain “exergy of internal energy”) is really
always positive, whereas exergy of matter exchanged with the system
(kind of “exergy of enthalpy”) can be negative for certain combinations
of matter parameters. This can happen especially for air, e.g., when
the air temperature is not much higher relative to the environment,
and the air pressure is lower than atmospheric pressure.

11.6 Exergy Analysis Using the Mechanical Exergy
Component for a Substance

Another interpretation of the processes is possible by applying the
concept of mechanical exergy, which is one of the exergy components
of a substance. As explained in Section 2.6.2, mechanical exergy takes
into consideration the theoretical possibility that exergy (i.e., maxi-
mum possible work) of a substance can be executed not only at the
earth’s surface level but also at different altitudes to which the sub-
stance can be brought by way of the buoyancy effect. This effect occurs
when the density � of a considered substance differs from density �0

of the environment, � �= �0.
As discussed in Section 4.5.4, if mechanical exergy is applied, then

on the input side of the exergy balance equation the gravity input term
is introduced. Without such input the equation would not be com-
pleted. Thus, the gravity input is calculated from the exergy balance
equation in which mechanical exergy of the substance is used. In such
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an equation the exergy loss is the same as in the traditional exergy
balance, i.e., it is calculated from the Guoy–Stodola law.

It is presumed that the value of the gravity input (negative, pos-
itive, or zero) expresses the effect of the gravitational field on the
processes in which any substance takes part. In the SCPP, five compo-
nents are considered: floor, deck, air in collector, turbine, and chimney.
Exergy balance equations for floors and decks do not contain terms for
the substance. These equations contain only terms for radiation and
convection heat for which the gravitational effect has not been consid-
ered so far. Therefore, the exergy balances for floors and decks remain
unchanged. However, the three modified exergy balance equations
are considered for heating air in a collector, turbine, and chimney.

We call the mechanical exergy of a substance eZergy, denoted by Z,
W, or z, %, to easily distinguish it from traditional exergy (B or b), e.g.,
used in Section 11.5. (The only substance considered in the SCPP is air.)
Denotations of other exergy magnitudes remain in the present section
unchanged because their values are unchanged. However, eZergy of
air generally differs from exergy of air, Za ≥ Ba , which results from
the definition of mechanical exergy (eZergy):

Za = max
(
Bp + BH, Ba

)
(11.37)

where Bp is the potential exergy (Bp = Ep) and Ba is the traditional
physical exergy of air calculated from formula (11.35). Magnitude BH is
the physical exergy also calculated based on equation (11.35); however,
for the environment parameters (temperature TH and pressure pH)
prevailing at the altitude H:

BH = m
[

cp (Ta − TH) − TH

(
c p ln

Ta

TH
− R ln

P
PH

)]
(11.38)

In relation to the formula applied by Petela (2008) the approxima-
tions for wider ranges of the considered atmospheric parameters and
altitude are applied according to Petela (2009b) as follows:

H = 1.215485 · 106 − 1.214 · 106 � 6.02353·10−3

a (11.39)

and of the approximated atmospheric parameters at altitude H:

TH = 288.16 − 0.0093 H + 3.2739 · 10−7 H2 − 2.9861 · 10−12 H3

(11.40)

pH = 101,235 e1.322·10−4 H (11.41)

Except for three equations—(11.30)–(11.32)—the equations
(11.28)–(11.36) from the discussion of exergy in Section 11.5 also
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remain valid in this section. Equations (11.30)–(11.31) change,
respectively, as follows:

Ga + Bf−a = Z1a + Bw1 + Ba−d + �Ba (11.42)

GT + Z1a + Bw1 = Z2a + Bw2 + BP + �BT (11.43)

Gch + Z2a + Bw2 + Bd−ch = Z3a + Bw3 + Bch−gr + Bch−sky + Bch−0 + �Bch

(11.44)

where Ga , GT , and Gch are the gravity inputs in the eZergy balance
equations for the collector air, turbine, and chimney, respectively. Note
that in the eZergy balance equation the potential exergy does not
appear as a separate term because this exergy is interpreted by the
eZergy of substance.

The results in column 4 of Table 11.1 concerning exergy and eZergy
are used for the respective bands diagram (Figure 11.5). Again, the
diagram shows how the solar radiation exergy BS = ZS = 32.41 MW,
reduced by 5% reflection, arriving at the deck is distributed between
five SCPP components: collector air, floor, deck, turbine, and chimney
in the case of using substance eZergy. In the diagram (Figure 11.5)
the eZergy streams Z, W, are represented by their percentage values
z, related to the solar radiation exergy ZS. The part of the diagram
(Figure 11.5) related to the floor and deck is the same as in Figure 11.4,
because substance does not appear in the balances of the floor or deck.
Also, degradations of solar radiation and convective heat are the same
as shown in Figure 11.4, and the power performed by the turbine is
unchanged (0.23 MW). The percentage power of the turbine zP = bP =
0.70% represents the eZergy efficiency of the SCPP. Specificity of the
diagram (Figure 11.5) shows the relatively large eZergies of air za1 =
8.96%, za2 = 8.82%, and za3 = 8.24%. As a result, the gravity inputs
are zGa = 7.28% for air in the collector, smaller for the turbine zGT =
0.89%, and the smallest for the chimney zGch = 0.67%.

11.7 Trends of Response for the Varying
Input Parameters

The derived mathematical model of the SCPP responds to the input
data as shown by the computation results in Tables 11.1 and 11.2.
The results can be used to illustrate the trends of the output data in
response to changes in some input parameters. The values in column
4 of Table 11.1 are considered to be the reference values for studying
the influence of the varying input parameters on the output data.
Therefore, each of the next columns (5–8) corresponds to the case in
which the input is changed only by the value shown in a particular
column (bold type), whereas the other input parameters remain at the
reference level.
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Floor

Deck

ΔbT = 0.33

Δ

Δ

Δ

Δ Turbine

Air

Chimney

bw2~0

bw3~0

bw1~0

bfd = 17.24

bfa = 5.10

zGa = 7.28

95.00

bf = 72.65

ba = 4.20

95.00

za1 = 8.96

zGT = 0.89

bd = 10.45

bR = 5.00

bS = 100

32.41 MW

bdsky = 2.24

bd0 = 3.66

bdch = 0.11

229 kW

za2 = 8.82

zGch = 0.67

bchsky =  −0.04

za3 = 8.24bch0 = 0.01

bchgr = 0.18

bch = 1.21

bP = 0.70

FIGURE 11.5 eZergy balance of the SCPP according to Table 11.1, column 8
(the values are expressed in percent) (from Petela, 2009).

For example, column 7 of Table 11.1 corresponds to a change in
the floor diameter Df , which increases from 240 to 250 m. The 10-m
Df increase causes the 1-K increase of the effective temperature Tf ,eff

of the floor from 388.3 to 389.3 K. At the same time:

w1 decreases from 1.10 to 1.03 m/s
m decreases from 276 to 268 kg/s
EP decreases from 229 to 222 kW
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H3 = 195 m
Quantity Df = 240 m Quantity, S = 800 W/(m2 K)

INPUT

S, W/(m2 K) 800 850 850 Df, m 240 250 250

He, m 0.3 0.3 0.35 He, m 0.3 0.3 0.35

OUTPUT

eP, % 0.64 0.53 0.96 eP, % 0.64 0.57 1.03

TABLE 11.3 Analysis of the Influence of S and Df on the SCPP Energy Efficiency
(from Petela, 2009)

ba3 increases from –0.61 to –0.44%
b p3 decreases from 0.00586 to 0.00576%
zGa decreases from 7.28 to 6.89%, etc.

The model responses can also be the basis for deducing many other
observations. For example, it results from Table 11.1 that increased
solar radiation S from 800 (column 4) to 850 W/(m2 K) (column 2)
causes a seemingly unexpected decrease in energy efficiency from
0.64% to 0.53%. However, it can be deduced that increased S requires
an adjustment in the SCPP dimensions to better utilize the increased S.
Thus, it results from Table 11.2 that if with growing S (from 800 to 850),
at the same time the air entrance height He is adjusted, e.g., from 0.3
(column 4) to 0.35 (column 9), then the energy efficiency grows much
higher (e.g., reaches 0.96%) compared to the case of He growing to the
same value as in column 8 but at the unchanged S = 800 W/(m2 K).
Similar reasoning about adjusting the SCPP dimensions to the input
situation can also be carried out for the increasing floor diameter Df .

The reasoning for both input (S and Df ) is illustrated by Table 11.3.
It can also be noted that there is seemingly an unexpected negative

exergy of radiation exchanged between the chimney and sky (bch−sky).
Because exergy of radiation at a temperature below T0 is positive, this
effect, possibly disclosed only by exergy, occurs because Tsky and is
more below T0 than Tch is above T0.

Generally, as a consequence of many assumptions, the calculated
quantitative responses to varying SCPP input are of limited certainty.
However, perhaps better, certainty can be expected to determine the
direction of trends found in response to varying input parameters.
These trends result from Table 11.1 because the values and algebraic
signs of the partial derivative ∂ M/∂ N are interpreted by the finite
differences:

∂ M
∂ N

≈ �M
�N

= M (iM, jM = 4) − M (iM, jN)
N (iN, jN = 4) − N (iN, jN)

(11.45)
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where M and N are any output and input variables, respectively, iM =
8, . . . , 70 is a row number from column 1; iN = 3, . . . , 6 is a row number
from column 1; jM = 4, . . . , 8 is a column number from row 1; and jN =
4, . . . , 8 is the column number from row 1. For example, consider the
direction trend of a change in power EP (M) in response to a change
of diameter Df (N). Substituting into formula (11.45), respectively,
for iM = 37, iN = 4, and jN = 7, ∂ M/∂ N = ∂ EP /∂ Df = (229 – 222)/
(0.3 – 0.35) = –140 kW/m, where the minus sign means that power
EP decreases with growing diameter Df .

Nomenclature for Chapter 11
A surface area, m2

a1 = 9.7807 m/s2 , constant of equation (11.11)
a2 = –3.086 × 10−6 1/s2, constant of equation (11.11)
a3 = 1.217 kg/m3, constant of equation (11.11)
a4 = –9.973 × 10−5 kg/m4, constant of equation (11.11)
B exergy, W
b exergy, %
cD chimney wall thickness coefficient
c p specific heat at constant pressure, J/(kg K)
D diameter, m
E energy, W
e energy, %
G gravity input, W
g gravitational acceleration, m/s2

H height or altitude, m
He height of air inlet, m
HT height of turbine, m
h convective heat transfer coefficient, W/(m2 K)
i successive number of row in Table 11.1
j successive number of column in Table 11.1
k thermal conductivity W/(m K)
M output
m air mass flow rate, kg/s
N input
Nu Nusselt number
P power, W
Pr Prandtl number
p absolute static pressure, Pa
R 287.04 J/(kg K), individual gas constant (for air)
Re Reynolds number
r radial coordinate
rT relative pressure drop in turbine
S solar radiosity, W/m2

SCPP solar chimney power plant
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T absolute temperature, K
w flow velocity, m/s
Z mechanical exergy (eZergy), W
z mechanical exergy (eZergy), %

Greek
� absorptivity
� angle, deg
�B exergy loss, W
�b exergy loss, %
ε emissivity
� view factor
� efficiency
�T internal efficiency of turbine

 isentropic exponent
	 kinematic viscosity coefficient, m2/s
� density, kg/m3

� = 5.6693 × 10−8 W/(m2K4): Boltzmann constant for
black radiation

� transmissivity

Subscripts
a air
B exergetic
ch chimney
d deck
E energetic
eff effective
f floor
G gravity input
H altitude
M output
N input
P turbine power
p potential
R reflected
Q heat
S solar
sky sky
T turbine
w velocity (kinetic)
x, y different surface
0 environment
1, 2, 3 localities shown in Figure 11.1
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C H A P T E R 12
Thermodynamic

Analysis of
Photosynthesis

12.1 Objectives of the Chapter
The present chapter focuses on a successive example of how ther-
modynamic analysis can be developed for a process in which radia-
tion plays a role. The considered photosynthesis is also an example
of a chemical process involving two kinds of matter—substance and
radiation—that abides by the same thermodynamics equations of con-
servation. In a process composed of complex endothermic physical
and complex chemical subprocesses, nonorganic substances are con-
verted into the oxygen and solid organic substance of green plants.
In the presence of water, this process of photosynthesis, which is so
important for the life on earth, absorbs carbon dioxide from the envi-
ronment air and returns oxygen.

The green substance is the initial link in the carbonization process,
which at high temperature and pressure in a deposit layer occurs
during millions years and gradually converts the green substance,
through the stages of wood, pit, coal, anthracite which all are the nat-
ural fuels existing even to day. In such a long-term process, although
the calorific value and chemical exergy of these fuels grow, the ratio
of the chemical exergy to the calorific value diminishes, which means
that, from an exergy viewpoint, the chemical value is larger than the
energetic usability, e.g., for heating by combustion. For example, to
illustrate the problem, the Grout-Apfelbeck’s diagram of energetic
value, for the series of solid natural fuels, was supplemented by Pe-
tela (1966) with the lines of constant exergy.

Simplified analysis of photosynthesis is developed according to
Petela (2008a). Classic thermodynamic analysis of photosynthesis con-
sists of a threefold study that consists of (1) energy analysis (i.e., the

333
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energy conservation equation is developed to estimate the energy ef-
fects of the process); (2) entropy analysis (i.e., the changes of entropy
are used to estimate the irreversibility of the component processes);
and (3) exergy analysis (which is developed for thermodynamic eval-
uation of both kinds of matter).

We can demonstrate how the available radiation of the energy
spectrum can be utilized selectively by nature partly for driving chem-
ical reactions and partly for heat. Radiation makes possible the chem-
ical reactions due to the physical processes, from which the main
process can be the diffusion of gaseous substrates and products. The
growth of the green substance on a leaf surface is considered here as
the result of the photosynthesis mechanism utilizing solar radiation.
The rate of photosynthesis depends on the external thermodynamic
conditions that can be controlled based on the disclosed mechanism
of the photosynthesis.

Because photosynthesis is extremely complex, the problem of de-
termining the influence of the controlled thermodynamic input pa-
rameters, including CO2 fertilization, is approached with many sim-
plifications. The purpose of the thermodynamic analysis developed
here is to obtain or confirm preliminary conclusions and to inspire the
further development of thermodynamic analysis of photosynthesis,
in particular with the application of exergy. Application of eZergy is
meanwhile postponed.

12.2 Simplified Description of Photosynthesis
Photosynthesis is the process by which the energy of photosyntheti-
cally active radiation (PAR), i.e., within the wavelength range 400–700
nm, is used to split gaseous carbon dioxide and liquid water and re-
combine them into gaseous oxygen and a sugar called glucose. The
PAR range differs slightly from the radiation range (380–780 nm) re-
lated to the perception of light by the human eye; see CIE (1987) and
Gates (1980).

The photochemical reaction of photosynthesis cannot occur with-
out the presence of chlorophyll and is a complex two-stage process.
First, the radiation-dependent process (i.e., the photochemical reac-
tion) occurs. This requires direct radiant energy, which excites the
photoactive (i.e., energy-carrying) molecules used in the second
process—the light-independent process (i.e., dark reactions).

The overall process of photosynthesis is a series of complex reac-
tions. In simplified terms, first water and CO2 are consumed, and then
oxygen is released. During the second stage, intermediate carbon–
hydrogen molecules are consumed and sugar is generated. However,
for the present analysis only the following endothermic overall reac-
tion of photosynthesis is considered:

6 H2O + 6 CO2 → C6H12O6 + 6 O2 (12.1)
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Photosynthesis occurs commonly around us and is essential for
life on earth. Detailed aspects of photosynthesis are discussed in many
publications, for example, Borror (1960), Marchuk (1992), Vermaas
(1998), Campbell et al. (1999a, 1999b), and Purves et al. (2003). Of
course, photosynthesis occurs according to the Second Law of Ther-
modynamics, as is discussed, for example, by Brittin and Gamow
(1961), Yourgrau and van der Merve (1968), and, with more detail,
by Jurevic and Zupanovic (2003), who introduce their models for the
mechanisms of photosynthesis. Based on statistical thermodynamics,
Jørgensen and Svirezhev (2004) developed a thermodynamic theory
of ecological systems and also evaluated characteristic variables and
data for mathematical biology.

The present chapter approaches the analysis of photosynthesis
based on the application of classic engineering thermodynamics and
outlines the methodology of exergetic consideration of photosyn-
thesis. Analysis of the subject is complex due to the involvement of
many different scientific disciplines (e.g., chemistry, thermodynamics
with exergy analysis, radiation, heat and mass transfer, etc.). Based
on simplifying assumptions, a certain instantaneous model situation
is considered to obtain only preliminary energy, entropy, and exergy
viewpoints.

12.3 Some Earlier Work About Photosynthesis
From the viewpoint of classical thermodynamics, the literature on
photosynthesis is relatively poor. Classical thermodynamic analysis
seems to be too rough a tool to assess the complex chemical mech-
anisms of photosynthesis. Significantly more literature exists on the
problems underlying the chemical mechanisms of photosynthesis, but
this is beyond the scope of this book.

Energy analysis of green plants has been discussed previously.
For example, Spanner (1964) considered the leaf as a heat engine (Sec-
tion 9.2). His considerations of the “economic” efficiency of photosyn-
thesis led to the (inadequate) formula for the exergy/energy ratio of
radiation discussed later by Petela (2003).

However, the more precise approach of the exergy analysis of
photosynthesis became possible only after the theory of the exergy
of thermal radiation was developed by Petela (1962). Exergy analysis
of plants was applied for the first time by Szargut and Petela (1965a).
In their calculations, an exergy balance was carried out for 1 hectare
area of forest over a 1-year period. It was assumed that (1) the annual
average exergy of solar radiation arriving at the earth’s surface is 10%
of the exergy of extraterrestrial solar radiation (i.e., arriving at the
highest layer of the earth’s atmosphere), (2) the annual average water
precipitation is 0.7 m/year, (3) the calorific value of wood is 7635
kJ/kg, and (4) the wood mass increases by 1350 kg. The exergy of wood
was calculated from the ratio of chemical exergy to calorific value
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determined by the authors as 1.31. The exergy degree of perfection
(the concept discussed in Section 4.6.2) of the forest vegetation was
relatively very small (0.033%), and the respective energy degree of
perfection was 1.4 times smaller. The growth of wood mass was related
to the total radiation, not only to the PAR part of the whole spectrum.

Photosynthesis was later analyzed using the standard energy
approach. However, exergy analyses have seldom been applied. For
example, Bisio and Bisio (1998) discussed the approximate evaluation
of the exergy efficiency and exergy losses, whereas Reis and Miguel
(2006) analyzed the separate day and night processes. An approach to
photosynthesis, based on statistic thermodynamics and exergy, was
developed by Jørgensen and Svirezhev (2004).

In comparison to the approach of other researchers, the approach
presented here applies the exergy analysis of photosynthesis dis-
cussed in terms of classic engineering thermodynamics. The analy-
sis considers more details, involves more process parameters, and
assumes that the diffusion of gases controls the process.

12.4 Assumptions Defining the Simplified Mathematical
Model of Photosynthesis

Figure 12.1 presents a simplified scheme of photosynthesis. The sys-
tem is defined by the system boundary and contains a leaf surface layer
in which biomass is created at temperature T . Diffusion of gaseous
substances and convective heat transfer occurs through the gaseous
boundary layer at the leaf surface. The boundary layer is not consid-
ered for radiation fluxes because it is assumed that air in this layer is
transparent to radiation. The leaf surface absorbs part of the incident

T

T

FIGURE 12.1 Simplified scheme of substances and radiation fluxes in
photosynthesis (from Petela, 2008a).
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solar radiation and emits its own “leaf” radiation of temperature T .
The absorbed radiation is expended on the metabolism processes of
the leaf and on maintaining the leaf temperature T above the environ-
ment temperature T0.

Liquid water from the leaf body, at temperature T, enters the con-
sidered system. Only a relatively small amount of this water is active in
the assimilation of the CO2, which diffuses into the leaf from the exter-
nal environment. The excess of water is transpired in the form of vapor
diffusing from the leaf to the environment. Oxygen produced during
photosynthesis also diffuses into the external environment. The wa-
ter vapor and oxygen exiting the boundary layer, as well as the CO2

entering the boundary layer, have environment temperature T0 at the
respective environment mole concentrations zH2O,0, zO2,0, and zCO2,0.

Both the potential and kinetic components of exergy are neglected
because the flow velocities of these substances are very small, and the
leaf is insignificantly above the earth’s surface. Only the chemical and
physical components of the energy and exergy of the substances are
considered. The physical component reflects the physical parameters
of the substance (e.g., temperature and pressure). The chemical com-
ponent reflects the chemical composition of the substance and is de-
termined based on the devaluation reaction as discussed in Section 2.7.

The energy, entropy, and exergy of radiation are calculated based
on considerations in Sections 7.1–7.3, respectively.

The complex photosynthesis mechanisms occurring in the leaf
are not considered. Only the overall effects described by equation
(12.1) and the matter fluxes observed around the leaf (Figure 12.1) are
analyzed. The following conditions are also assumed:

i. Considered is a conventional horizontal unitary (1 m2) surface
of the leaf during a certain instant at the determined constant condi-
tions.

ii. To determine the actual energy arriving at the leaf’s surface,
the solar radiation energy of the spectrum measured at the highest
layer of the atmosphere is multiplied by a certain weakening factor
� . The larger is the � , the smaller is the weakening (� ≤ 1). In the
proposed simplified model the weakening factor is not studied, nor
is it concretely defined. Only certain possible values of � are used in
calculations. Some data, discussed, e.g., by Iqbal (1983), Muneer et al.
(2004), and Gueymard (2008) can contribute to determination of the �
factor.

iii. Cloudy situations are not analyzed.
iv. Solar radiation arrives directly from the sun at its zenith (solar

radiation is perpendicular to the horizontal surface of the considered
leaf), within the solid angle determined by the diameter of the sun and
its distance from the earth. The reduced effect due to the nonperpen-
dicular radiation can be expressed by the appropriate value of factor � .
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v. Sufficient chlorophyll necessary for photosynthesis is available.
Any change in the chlorophyll concentration during photosynthesis,
as well as the thermodynamic effect of such change, are neglected.

vi. The surroundings of the considered leaf consists only of the
surfaces at temperature T0 and of absorptivity �0 = 1 (the sun’s surface
area is neglected as being seen within a relatively small solid angle).

vii. Mixtures of substances in the system are ideal; the compo-
nents do not mutually interact. Therefore, mixture properties are
the respective sums of the component properties. For example, the
biomass contained within the leaf structure is an ideal solution of
solid C6H12O6 and water.

viii. The environment air contains only N2, O2, CO2, and H2O. The
dry environment air contains 79.07% N2, 20.9% O2, and 0.03% CO2.
The sum of all mole fractions of the air components is zN2,0 + zO2,0 +
zCO2,0 + zH2O,0 = 1, where zH2O,0 is determined by the relative humid-
ity �0 of the air and the saturation pressure ps0 for the environment
temperature T0: zH2O,0 = �0 · ps0. In terms of radiation it is assumed
that the diatomic gases have transmissivity 100% and the concentra-
tion of the triatomic components (CO2 and H2O) is relatively small
and they also have transmissivity 100%.

ix. The considered leaf has uniform temperature T ; there is no
heat transfer within the considered surface layer. According to the
evaluation by Jørgensen and Svirezhev (2004) there is a several degree
difference � between the leaf temperature and environment temper-
ature.

x. The liquid water required for photosynthesis is available in a
sufficient amount.

xi. In the considered conditions (as explained later, e.g., in Figure
12.8), the rate of sugar production is limited by the effectiveness of
diffusion of gases, not by the reaction kinetics depending on temper-
ature.

xii. The generated sugar has only chemical exergy bch resulting
from chemical reaction (12.1). The component of the sugar exergy
gained as a result of ordering is neglected. The ordering means the
structure of the biomass according to genetic plan, considered, e.g.,
by Jørgensen and Svirezhev (2004). Also neglected are any eventual
component exergies, e.g., exergy due to the presence and necessity of
chlorophyll as well as anything that would reflect a mystery factor
of life, etc. The inclusion of any of these additional exergy compo-
nents, some mentioned by Jørgensen and Svirezhev (2004), would
also require the inclusion of the respective component enthalpies in
the energy conservation equation from which the rate of the sugar
production is calculated. Without such adjustment the calculated rate
would be so large that the exergy efficiency, taking into account the
discussed exergy components, could be unfairly larger, possibly even
larger than 100%.
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Absorption means receiving radiant energy that is not necessar-
ily converted to heat. The terms absorb and absorptivity are interpreted
respectively to term of absorption. The term radiation means the “emit-
ting process” or “emitted product”—a photon gas.

Yet more assumptions, in particular on some properties of sub-
stances and radiation are discussed in the following Sections. Evalu-
ation of the significance of each simplification is not studied here in
detail. However, it can be expected that some simplifications will not
qualitatively affect the final conclusions, although the quantitative re-
sults will be affected remarkably. For example, the weakening factor
� can be determined through deep theoretical analysis, using precise
data about the diffusive loss of radiation energy with an accounting
of the complex time-dependent geometrical configuration of the leaf
relative to the sun. Thus, � can be finally estimated at the specific
value included in the range of possible values in the presented model.
In other words, the problem lies mostly not in the model effective-
ness but in determination of the actual value of � to be applied in
the model. Obviously, radiation arriving at the leaf can be accurately
determined by measuring the radiation spectrum directly at the leaf
surface.

12.5 Properties of Substance

12.5.1 Energy of Substance
The substances in the system (Figure 12.1) are gaseous CO2, O2,
and H2O (assumed to be ideal), liquid water, and the leaf substance
(biomass). The enthalpies of the gases are zero because at the system
boundary they have environment temperature T0. However, for the
liquid H2O the water vapor is the reference phase. Therefore, the en-
thalpy of liquid water is equal to the sum of the negative value of
the latent heat of vaporization at temperature T0 and the temperature
difference � = T − T0 multiplied by the specific heat of water.

The generated biomass is assumed to be a mixture of liquid water
and sugar. The enthalpy of this mixture is calculated as the sum of the
component enthalpies. (For liquid and solid bodies the enthalpy is
practically equal to the internal energy). The enthalpy of sugar is the
sum of the physical enthalpy and devaluation enthalpy. The physical
enthalpy of sugar is calculated for the temperature range from T0 to T
at the constant specific heat, csu = 430.227 kJ/(kmol K), assumed, e.g.,
for an oak according to data given by Wisniowski (1979).

The values of devaluation enthalpies dn for the standard param-
eters (pressure pn = 101.325 kPa and temperature Tn = 298.15 K) are
tabulated, e.g., by Szargut et al. (1988). Variation of the devaluation en-
thalpy within the considered temperature range is negligible. Due to
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a lack of data, the devaluation enthalpy dn,C6 H12 O6 ≡ dn,su = 2,529,590
kJ/(kmol of sugar) is assumed to be similar to that for �-d-galactose,
predicting that the devaluation enthalpy of the real substance gener-
ated in the leaf differs insignificantly. Such an assumption is supported
by the fact that the devaluation enthalpies tabulated for the substances
of the same chemical formula (�-d-galactose and l-sorbose) differ
insignificantly.

12.5.2 Entropy of Substance
In a chemical process some substances are created and some others are
consumed. Thus, the so-called absolute entropy of each substance, cal-
culated as the entropy increase from a temperature of absolute zero,
should be considered according to formula (2.38). The absolute en-
tropy values, stab, for gaseous CO2, O2, and H2O are tabulated as a
function of temperature at pressure ptab = 0.1 MPa; e.g., by Burghardt
(1982). To calculate actual entropy s at any pressure p, the correction R·
ln(p/ptab) is added, where R is the universal gas constant, R = 8.3147
kJ/(kmol K), and p is the partial pressure of gas in the environment.

Also, according to Burghardt (1982), the entropy of liquid water
at temperature Tn is 69.98 kJ/(kmol K). To calculate the entropy sw of
liquid water at temperature T the correction cw · ln(T/Tn) is added.

Due to a lack of data about the absolute entropy of sugar, such data
are calculated. Again, sugar generated in the leaf is assumed to be the
same as �-d-galactose. To calculate the required absolute standard
entropy sn,C6H12O6 , formula (2.65) on the standard entropy of devaluation
reaction �n is used as follows:

sn,C6H12,O6 ≡ sn,su = 6(sH2O + sCO2 )n − (sO2 )n − �n,su (12.2)

where sH2O, sCO2 , and sO2 are the absolute standard entropies of the
respective gases and the standard entropy of devaluation �n,su =
−979.71 kJ/(kmol K) is given by Szargut and Petela (1965b). From
equation (12.2) the calculated value of the absolute standard entropy
is sn,su = 2164.6 kJ/(kmol K). To calculate the absolute entropy ssu at
any temperature T , the correction csu · ln(T/Tn) is added.

12.5.3 Exergy of Substance
As mentioned in Section 12.4, from all possible exergy components
only the physical bph and chemical bch exergy are taken into account
to calculate the total exergy b = bch + b ph of a substance. The exergy
of each gas (CO2, H2O, and O2) is zero because in the considered case
their states are in full equilibrium with the environment.

The total specific exergy bw of liquid water is approximated in
Section A.7 as a function of temperatures T and T0, based on data
from the Szargut and Petela’s diagram (1965b).

The exergy of the generated biomass is the sum of the exergy
of the components (liquid water and sugar). The specific chemical
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exergy of sugar is determined based on the standard tabulated value
bn,su = 2,942,570 kJ/kmol, to which the correction for the difference of
temperatures Tn and T0 is added according to equation (2.63):

bch,su = bn,su + Tn − T0

Tn
(dn,su − bn,su) (12.3)

According to formula (2.64) the specific physical exergy of sugar is:

bph,su = csu (T − T0) − T0csu ln
T
T0

(12.4)

12.6 Radiation Properties

12.6.1 Energy of Radiation

12.6.1.1 Energy Radiation of the Sun
In general cases, the temperature and properties (e.g., emissivity) of
the source, from which the considered radiation arrives, can be un-
known. Energy of such radiation is considered to be arbitrary radiation
(i.e., radiation of any irregular spectrum not expressible by the ideal
black or gray model). This can be determined by radiosity calculated
based on the results of spectrum measurements. In the present con-
siderations the radiation arriving at the leaf surface is considered to be
arbitrary radiation arriving from the sun. The radiation is recognized
as nonpolarized and uniformly propagating within the solid angle
under which the sun is seen from the earth. To calculate the solid an-
gle the radius of the sun RS = 695,500 km and the mean distance from
the sun to the earth L S = 149,500,000 km have been assumed.

The formulae regarding radiation are derived based on the dis-
cussion in Chapter 7. The radiosity jS of the solar radiation of the real
spectrum can be calculated based on equation (7.15) written using
wavelength � instead of frequency �:

jS = 2

⎛⎜⎝∫
�

∫
�

cos � sin � d� d�

⎞⎟⎠ ∫
�

i0,�d� (12.5)

The double integral in the brackets of equation (12.5) was cal-
culated in Example 7.4, formula (7.78). However, because the single
integral in equation (12.5) can be solved analytically only for a black
radiation—thus for any radiation of arbitrary spectrum—a numerical
solution is applied. Using (7.78) the following form of equation (12.5)
can be applied:

jS = 4.329 · 10−5 	
∑

n

(i0,���)n (12.6)
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where i0,� is the measured monochromatic intensity of radiation de-
pending on the wave length �, and n is the successive number of the
wavelength intervals within the considered range of wavelengths. For
example, especially for green plants, a measurement method has been
patented by Obynochnyi et al. (2006). The observed spectra of global
direct and diffuse radiation were used, e.g., as in the numerical anal-
ysis by Jiacong (1995), and calculation of the sky spectral irradiances
were developed by Gueymard (2008).

The monochromatic intensity values i0,s� given by Kondratiew
(1954) have been used in the calculations. For the 0–∞ wavelengths
range, the sum in equation (12.6) has been calculated by Petela (1962)
and the respective radiosity is jS = 1.3679 kW/m2, as was used in
Example 7.5. The jS value so obtained is slightly smaller than the
newest value 1.3661 kW/m2 determined by Gueymard (2004). For the
PAR arriving from the sun in the highest layer of atmosphere within
the wavelengths range (400–700 nm):

∑
n (i0,���)n = 4013.105 kW/

(m2 sr). Thus, the radiosity of the PAR calculated from equation (12.6)
is jV = 0.5446 kW/m2.

12.6.1.2 Energy Radiation of the Leaf Surface
The radiation emitted by the leaf surface is recognized as the radiation
of the determined surface properties. The leaf emission propagates
in all directions of the hemisphere as well as the radiation from the
environment arrives at the leaf surface from all directions of the hemi-
sphere. Therefore, the energy eL exchanged between the leaf and the
environment is assumed to be:

eL = �L ,a �
(
T4 − T4

0

)
(12.7)

where �L ,a is the average absorptivity of the leaf surface, � is the Boltz-
mann constant for black radiation, and T0 is the environment temper-
ature. To simplify the consideration the sky temperature is assumed
to be equal to the environment temperature. At small temperatures
(T and T0) the energy of PAR is relatively small, e.g., in comparison
to the case of radiation at the temperature of the sun. Therefore, the
assumption that the average absorptivity �L ,a equals the leaf absorp-
tivity �L for the non-PAR wavelengths range �L ,a ≈ �L slightly affects
the value of the energy eL calculated from equation (12.7).

12.6.2 Entropy of Radiation

12.6.2.1 Entropy Radiation of the Sun
As mentioned in Section 12.6.1.1, the temperature and properties of
the surface from which the radiation arrives are unknown and the
considerations of Chapter 7 are applied.
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The radiosity entropy sS of the solar radiation of the real spectrum
can be calculated based on equation (7.36) written using wavelength
� instead of frequency �:

sS = 2

⎛⎜⎝∫
�

∫
�

cos � sin � d� d�

⎞⎟⎠ ∫
�

L0,�d� (12.8)

Again, the double integral in the brackets of equation (12.5) was
calculated in Example 7.4, formula (7.78). However, because the single
integral in equation (12.8) can be analytically solved only for a black
radiation, thus for any radiation of arbitrary spectrum, a numerical
solution is applied. Using (7.78) the following form of equation (12.8)
can be applied:

sS = 4.329 · 10−5	
∑

n

(L0,���)n (12.9)

where L0,� is the entropy of the monochromatic intensity of radiation
depending on the wavelength � and determined by equations (7.25).
It is noteworthy that the universal formula (7.25) can be used for any
radiation of an arbitrary spectral composition.

The monochromatic intensity values i0,�, given by Kondratiew
(1954), have been also used for entropy calculations. For the 0–∞
wavelengths range, the sum in equation (12.9) has been calculated
by Petela (1962) as sS = 0.307 · 10−3 kW/(K m2). Using formula (7.25)
for the PAR arriving in the highest layer of atmosphere, the value∑

n (L0,���)n = 0.83293 kW/(K m2 sr)has been calculated. Thus the
entropy of radiosity for the PAR calculated from equation (12.9) is
sV = 0.113 · 10−3 kW/(K m2).

12.6.2.2 Entropy Radiation of the Leaf Surface
Analogously to the discussion of radiation energy (Section 12.6.1.2),
and using formula (5.24) at emissivity equal to absorptivity, the en-
tropy sL of radiant energy exchanged between the leaf and the envi-
ronment is assumed to be:

sL = �L
4
3

�
(
T3 − T3

0

)
(12.10)

12.6.3 Exergy of Radiation

12.6.3.1 Exergy Radiation of the Sun
The calculation of exergy bS for nonpolarized, uniform, and direct
solar radiation arriving in the earth’s atmosphere is based on the an-
alytical formula (7.45) in a numerical form, such as formula (7.79) in
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Example 7.5 with accounting of formula (7.78). Additionally, by ap-
plication of the wavelength �, instead of frequency �, one obtains:

bS = 4.329 · 10−5 	

(∑
n

(i0,���)n− T0

∑
n

(L0,���)n + 9.445 · 10−12

	
T4

0

)
(12.11)

Using T0 = 293 K in equation (12.11), the exergy of total solar radi-
ation bS = 1.2835 kW/m2 and the exergy of PAR bV = 0.5155 kW/m2

are calculated.

12.6.3.2 Exergy Radiation of the Leaf Surface
By definition, the exergy of radiant emission for any surface at the
temperature of the local environment T0, is zero. Therefore, the ex-
ergy of environmental radiation arriving at the leaf surface is zero.
Assuming the leaf has emissivity equal to absorptivity, the exergy bL

of emission from the leaf surface at temperature T can be determined
by the formula (6.10) as follows:

bL = �L
�

3
(3T4 + T4

0 − 4T0T3) (12.12)

12.7 Balances Equations

12.7.1 Mass Conservation Equations
The mass fluxes, kmol/(m2 s) of CO2 and O2 are determined by the sto-
ichiometric factors of equation (12.1): nCO2 = 6nsu, nO2 = 6nsu, where
nsu is the amount (kmol) of sugar produced within a period of 1 s and
per 1 m2 of irradiated leaf surface.

The mass flux nw of water entering the leaf includes (a) water nwL

within the generated biomass, (b) 6 · nsu of water entering the chemical
reaction (12.1), and (c) water nH2O vaporized into the environment.
Thus, nw = nwL + 6nsu + nH2O where nwL = nsu(1 − zsu)/zsu and where
zsu is the mole fraction of sugar in the biomass composed of sugar and
water.

As discussed by Jørgensen and Svirezhev (2004), an important
factor in the determination of the effectiveness of photosynthesis is the
mole ratio r = nH2O/nCO2 of the water vapor and carbon dioxide rates.
Water vapor diffuses from the internal surface of the leaf, through the
stomata and intercellular space, toward the external surface of the leaf,
and then diffuses through the boundary layer to the atmosphere. The
water rate, nH2O, is proportional to the generalized coefficient DH2O

of diffusion and to the difference (zH2O,L – zH2O,0), where zH2O,L is the
initial mole concentration of vapor at the inner surface and zH2O,0 is



345T h e r m o d y n a m i c A n a l y s i s o f P h o t o s y n t h e s i s

the final mole concentration in the environment. Diffusion of carbon
dioxide occurs in the opposite direction and is also proportional to the
generalized CO2 diffusion coefficient DCO2 , as well as to the respective
difference of mole concentrations zCO2,0 and zCO2,L. Therefore the rates
ratio is:

r = DH2O

DCO2

zH2OL − zH2O,0

zCO2,0 − zCO2,L

MH2O

MCO2

(12.13)

where MH2O and MCO2 are the molecular masses of H2O and CO2, re-
spectively. The diffusion coefficients ratio was estimated by Jørgensen
and Svirezhev (2004) as DH2O/DCO2 ≈ 1.32 and according to Budyko
(1977):zCO2,0 − zCO2,L ≈ 0.1 zCO2,0.

It is also assumed that the concentration of water vapor within
the leaf corresponds to the saturation pressure ps,T at temperature
T, zH2O,L = ps,T/p0. Thus, equation (12.13) can be written as:

r = 5.4
ps, T − �0 ps, 0

p0zCO2,0
(12.14)

The ratio r is determined by the diffusion processes that control the
rate of reaction (12.1), accordingly to assumption (xi) in Section 12.4.

12.7.2 Energy Equation
The energy conservation equation was formulated for the system
shown schematically in Figure 12.1. The energy delivered consists of
absorbed solar radiation and the enthalpies of carbon dioxide and liq-
uid water. The energy increase of the system is determined by the rates
of the sugar substance and liquid water in the produced biomass. The
extracted energy consists of the enthalpies of oxygen and water vapor
as well as convective heat and emission exchanged by the leaf surface:

� [�V jV + �L ( jS − jV)] + nCO2 hCO2 + nwhw =
nsuhsu + nwL hw + nO2 hO2 + nH2OhH2O + qk + eL (12.15)

where � is the radiation weakening factor and �V and �L are the ab-
sorptivities of the leaf within and beyond the PAR wavelength range,
respectively.

According to assumption (vii), Section 12.4, the biomass is an ideal
solution of sugar and water. The total enthalpy of the biomass is the
sum of the respective components, nsu · hsu + nwL · hw .

The heat (qk) transferred by convection from the leaf surface to the
environment is qk = k(T − T0), where k is the heat transfer coefficient.
Equation (12.15) is used to calculate the unknown rate nsu. The leaf
temperature T is higher than the environment temperature T0 by the
difference �:

T = T0 + � (12.16)

as discussed in Section 12.4, assumption (ix).
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12.7.3 Entropy Equation
The irreversibility of photosynthesis can be evaluated using overall
entropy growth �, which comprises the entropy changes occurring
as a consequence of the process. For example, the sun emits radia-
tion regardless of the presence of the considered leaf, and the space is
filled with this radiation (e.g., photon gas) with its respective entropy.
When the considered leaf becomes exposed, then a portion of the in-
cident solar radiation from space is absorbed by the leaf. Thus, the
respective radiation entropy sS disappears and this needs to be taken
into account. Other consequences are the convective and radiative heat
transfer from the leaf to the environment of temperature T0. Added
consequences are the appearing and disappearing entropies of sub-
stances taking part in the chemical reactions of photosynthesis.

Therefore, entropy growth � consists of the positive (appearing)
entropies of generated sugar (ssu), liquid water (swL ) in the generated
biomass, released water vapor (sH2O), oxygen (sO2 ), net emission (sL )
of the leaf, and convective heat (sq ). The negative (disappearing) en-
tropies correspond to carbon dioxide (sCO2 ), water (sw), and absorbed
radiation (sS). Therefore:

� = nsussu + nwL sw + nH2OsH2O + nO2 sO2 + sL + sq

−nCO2 sCO2 − nwsw − � [�VsV + �L (sS − sV)] (12.17)

where sq = qk/T0.
As with enthalpy, the total entropy of the biomass is the sum of

the respective components, nsu · ssu + nwL · sw .

12.7.4 Exergy Equations
According to the scheme in Figure 12.1, the following exergy balance
equation can be written:

� [�V bV + �L (bS − bV)] + nCO2 bCO2 + nw bw =
nsu bsu + nwL bw + nO2 bO2 + nH2O bH2O + bqk + be L + 
b

(12.18)

where 
b is the total exergy loss due to all irreversible processes oc-
curring within the system. The exergy loss can be determined by the
Gouy–Stodola law expressed by formula (2.60):


b = �T0 (12.19)

Again as for enthalpy and entropy, the total exergy of the biomass
is the sum of the respective components, nsu · bsu + nwL · bw .



347T h e r m o d y n a m i c A n a l y s i s o f P h o t o s y n t h e s i s

12.8 Perfection Degrees of Photosynthesis
As was discussed in Section 4.6.2, to measure the thermodynamic
perfection of a chemical process, the energy and exergy degrees of
perfection, defined analogously for convenient comparison, can be
applied. To determine the degree of perfection, all terms of the energy
(or exergy) balance equation are categorized either as useful product,
process feeding, or loss. The denominator of the degree of perfection
represents the feeding terms, whereas the numerator expresses the
useful products. The loss is not included in the formula because it is
a compensation of the perfection degree to 100%.

In photosynthesis the produced sugar represents the useful prod-
uct and the feed is determined by radiation, CO2, and liquid water.
Other components of the balance equations are categorized as the
waste. Thus, based on equation (12.15), the energy degree of perfec-
tion �E of the considered photosynthesis is:

�E = nsuhsu

� [�V jV + �L ( jS − jV)] + nCO2 hCO2 + nwhw
(12.20)

whereas the exergy degree of perfection �B of the photosynthesis,
based on equation (12.18), is:

�B = nsubsu

� [�VbV + �L (bS − bV)] + nCO2 bCO2 + nwbw
(12.21)

Example 12.1 For the simplified analysis of photosynthesis, the following in-
put values have been used in the computations for the system presented in
Figure 12.1:� Environment temperature T0 = 293 K;� Temperature difference � = 5 K;� Relative humidity of environment air �0 = 0.4;� Environment pressure p0 equal to the standard pressure p0 = pn =

101.325 kPa;� Weakening radiation factor � = 0.7;� Leaf absorptivity within PAR wavelength range �V = 0.88;� Leaf absorptivity beyond the PAR range �L = 0.05;� Convective heat transfer coefficient k = 0.003 kW/(m2 K);� Mole fraction of sugar in biomass zsu = 0.08.

The results obtained using the mathematical model of photosynthesis are as
follows. From equation (12.16) the leaf temperature T = 298 K and from equation
(12.15) the sugar production rate nsu = 3.21 · 10−9 kmol/(m2 s). The percentage
terms of energy, entropy, and exergy equations—(12.15), (12.17), and (12.18),
respectively—are shown in Table 12.1 and in Figure 12.2. The 100% reference for
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Term Energy % Entropy % Exergy %

Input:

PAR 1459.8 11.06 87.76

Non-PAR 125.4 1.08 7.43

Liquid water −1485.2 87.0 4.81

CO2 0 0.86 0

Subtotal 100 100 100

Output:

Convection heat 65.3 8.16 0

Radiation of leaf surface 6.4 0.79 0.003

Liquid water in biomass −7.1 0.41 0.023

Water vapor 0 280.50 0

C6H12O6 35.4 1.113 2.608

O2 0 0.670 0

Irreversible loss — — 97.366

Subtotal 100 291.643 100

Total: 0 191.643 0

TABLE 12.1 Results of the Energy, Entropy, and Exergy Calculations (from
Petela, 2008a)

−

−

FIGURE 12.2 Bands diagram presenting energy and exergy balances of the
considered photosynthesis process shown in Figure 12.1.
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the output terms is assumed as the sum (input) of the absorbed radiation and
the substances input (CO2 and liquid water).

Thus. the perfection degree value �E = 35.4% is larger than �B = 2.608% (by
about 35.4/2.608 ≈ 14 times) mainly because of the denominators in equations
(12.20) and (12.21). The exergy of liquid water, in the denominator of equation
(12.21), is positive, whereas the energy of this water in the denominator of equa-
tion (12.20) is negative, (the water vapor is assumed as the reference phase for
enthalpy calculation).

The energy terms (Table 12.1 and Figure 12.2, energy balance) show that the
input consists of the positive radiation energy (1459.8 + 125.4 = 1585.2%) and
the negative (–1485.2%) liquid water enthalpy. The energy of the consumed car-
bon dioxide is zero because it enters the system at the reference temperature T0.
The output energy terms show no irreversible loss and the zero energy of both;
the produced oxygen and released water vapor leave the system at the reference
temperature. Heat transferred by convection and radiation are 65.3% and 6.4%,
respectively. The energy of liquid water contained in the produced biomass is
negative (–7.1%) because the vapor phase was assumed as the reference sub-
stance for water.

The exergy input terms (Table 12.1 and Figure 12.2, exergy balance) are the
absorbed radiation (87.76 + 7.43 = 95.19%) and the water’s positive value, 4.81%.
The exergies of the delivered CO2, released O2, and water vapor are zero because
these gases, at the external side of the system boundary layer, have parameters
equal to the environment parameters. The exergy of convective heat is zero be-
cause it is released to the environment. The exergy of the leaf radiation (0.003%)
is small due to the relatively low temperature of the leaf. It is significantly smaller
than the respective energy (6.4%). The exergy of liquid water contained in the
produced biomass is 0.023%, (positive). Unlike the enthalpy and energy analy-
ses, exergy analysis shows the irreversibility loss. In this case it is relatively very
large (97.366%).

Table 12.1 presents also the entropy terms of equation (12.17). The terms
show the agreement with the Second Law of Thermodynamics and illustrate
the role of the particular input or output fluxes in overall entropy growth.

12.9 Some Aspects Inspired by the Example Calculations

12.9.1 Trends Responsive to Varying Input Parameters
The model (Figure 12.1) was also used for computation of the results
shown in Table 12.2. These results illustrate the trends of the output
data in response to changes in input parameters. The values in column
3 of Table 12.2 are considered as the reference values for studying
the influence of the varying input parameters on the output data.
Therefore, each of the next columns (4–11) corresponds to the case in
which the input is changed only by the value shown in a particular
column, whereas the other input parameters remain at the reference
level.

Column 4 corresponds to a change in the environment tempera-
ture T0, which increases from 293 to 298 K. The 5-K T0 increase causes
a pressure increase, �0 · ps0, from 0.93 to 1.27 kPa. Note also that the
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Quantity Units Ref. value Mono-variant changes of input parameters and resulting outputs
1 2 3 4 5 6 7 8 9 10 11

Input:

T0 K 293 298

� K 5 3

�V 0.88 0.85

�L 0.05 0.07

� 0.7 0.75

k W/(m2 K) 3 6

�0 0.4 0.9

zCO2 0.03 0.06

Output:

�0 · ps,0 kPa 0.93 1.27 0.93 0.93 0.93 0.93 0.93 2.10 0.93

ps,T kPa 3.17 4.25 2.81 3.17 3.17 3.17 3.17 3.17 3.27

r 401 537 336 401 401 401 401 194 200

nCO2 · 108 kmol/(m2s) 1.93 1.46 2.33 1.87 1.99 2.07 1.85 3.88 3.76

nH2O· 106 kmol/(m2s) 7.74 7.82 7.82 7.48 7.98 8.32 7.40 7.35 7.54

nsu· 109 kmol/(m2s) 3.21 2.43 3.88 3.11 3.32 3.46 3.08 6.47 6.27

�E % 35.42 28.64 55.36 34.57 35.32 37.27 20.66 55.34 54.39

�B % 2.61 1.97 3.14 2.60 2.61 2.62 2.50 5.48 5.09

TABLE 12.2 Responsive Trends of Output to Changes in Some Input Parameters (from Petela, 2008a)



351T h e r m o d y n a m i c A n a l y s i s o f P h o t o s y n t h e s i s

5-K increase in temperature T , from 298 to 303 K, causes the pressure,
ps,T , to increase from 3.17 to 4.25 kPa. Consequently, the pressure dif-
ference, ps,T – �0 · ps,0, increases and thus the ratio r increases from 401
to 537 kmol H2O/kmol CO2. The increase of r occurs in conjunction
with the increase of nH2O from 7.74 · 10−6 to 7.82 · 10−6 kmol/(m2 s) and
with the decrease of nCO2 from 1.93 · 10−8 to 1.46 · 10−8 kmol/(m2 s).
The increased amount of water vaporized from the liquid to the va-
por state causes a decrease of the rate of sugar production, nsu, from
3.21 · 10−9 to 2.43 · 10−9 kmol/(m s). Consequently, the energy degree
of perfection, �E , decreases from 35.42 to 28.64%. The exergy degree
of perfection, �B , decreases from 2.61 to 1.97% due to the increased
amount of water in the vapor state.

The results shown in the other columns can be analyzed similarly.
Column 5 shows the effect of reducing the assumed temperature

difference � from 5 to 3 K. That change causes decreases of the diffu-
sive fluxes for both CO2 and H2O, as well as the sugar rate and both
degrees of perfection.

Column 6 shows that a 3% drop of �V (from 0.88 to 0.85) causes a re-
duction of the sugar rate nsu from 3.21 · 10−9 to 3.11 · 10−9 kmol/(m2s).
Both the energy and exergy degrees of perfection decrease respectively
from 35.42 to 34.57% and from 2.61 to 2.60%.

Column 7 shows that a 2% increase of �L (from 0.05 to 0.07) causes
a decrease in the sugar rate from 3.21 · 10−9 to 3.32 · 10−9 kmol/(m2 s).
The energy degree of perfection decreases from 35.42 to 35.32%, while
the exergy degree of perfection remains practically the same (2.61%).

Column 8 shows that for an increase of the weakening factor �
(e.g., by 5%, from 0.7 to 0.75), the sugar rate and both degrees of
perfection respond with appropriate increases.

Column 9 shows that when the heat transfer coefficient k increases
by a factor of 2 [from 0.003 to 0.006 kW/(m2 K), e.g., due to wind],
then the sugar rate and both degrees of perfection decrease.

Column 10 shows the effect of a change in the relative humid-
ity, �0, of the local environmental air. When �0 increases (from 40
to 90%) the partial pressure of water vapor in the environment in-
creases. This causes a decrease in the diffusion flux for the vapor,
as well as significant increases in sugar rate and of both degrees of
perfection.

As shown in column 11, the twofold increase in the concentration
of zCO2 causes a significant growth in sugar rate nsu (from 3.21 · 10−9 to
6.27 · 10−9 kmol/(m2 s). Both energy and exergy degrees of perfection
also grow significantly to 54.39% and 5.09%, respectively. The profiles
of the CO2 concentration in the boundary layers at the leaf surface are
discussed in Section 12.9.5.

It was also found that zsu has no significant affects on the output
parameters considered here.
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FIGURE 12.3 Influence of T0 on leaf temperature T and rate nsu of sugar
production (from Petela, 2008a).

12.9.2 Relation Between the Environment Temperature,
Leaf Temperature, and Rate of Sugar Generation

The photosynthesis model also enables studies of various interrela-
tionships. For example, based on the reference data listed in Exam-
ple 12.1, Figure 12.3 shows the leaf temperature T and the rate nsu

of sugar production as functions of the environment temperature T0.
With increasing environment temperature T0, the leaf temperature T
grows, whereas nsu decreases. Figure 12.4 shows how both the energy

T

η E
η B

ηB

ηE

FIGURE 12.4 Influence of T0 on the energy (�E ) and exergy (�B ) degrees of
perfection (from Petela, 2008a).
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degree of perfection �E and the exergy degree of perfection �B for pho-
tosynthesis decrease with the increasing environment temperature T0.

Note that the dashed parts of the curves in Figure 12.3 have only
a theoretical meaning. This is because it is supposed that for the low
values of T0, the rate nsu of sugar production is not controlled by
the diffusion of gases but by the reaction kinetics. Such a supposi-
tion can be derived from the statement by Jørgensen and Svirezhev
(2004) that the optimal temperature of photosynthesis is T ≈ 298 K.
This corresponds to an environment temperature T0 lower by �, i.e.,
T0,opt ≈ 293 K.

The statement of the optimum indicates that if on the right-hand
side (diffusive range) the rate nsu decreases with increasing T0, then on
the left-hand side from the optimum the rate nsu also has to decrease
(with decreasing T0). The latter happens due to the critical role played
by chemical reaction kinetics: Chemical reaction rates decrease with
decreasing temperature; this is not considered in the present analysis.
Therefore, the real curve nsu in Figure 12.3, instead of following the
dashed line, should bend down from the value for a certain optimal
environment temperature (T0,opt). This is shown subsequently as a
thick dashed line in Figure 12.8. The description of the dashed parts
of the curves in Figures 12.4–12.6 is the same.

12.9.3 Ratio of Vaporized Water and Assimilated
Carbon Dioxide Rates

Another example of the considered relations is the analysis of the
important photosynthesis parameter r . For the reference input data
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FIGURE 12.5 Influence of ratio r on the sugar rate nsu and the exergy degree
�B of photosynthesis perfection (from Petela, 2008a).
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FIGURE 12.6 Effect of varying T0 and �0 on ratio r (from Petela, 2000a).

listed in Example 12.1, Figure 12.5 shows how the rate nsu and degree
of perfection �B increase with decreasing r . Figure 12.6 shows that the
greater is the T0 and the smaller is �0, the greater is the r .

12.9.4 Exergy Losses in the Component Processes
of Photosynthesis

Categorizing or interpreting exergy losses is, to a certain extent, the
subject of agreement. Care should be taken to not overlap the losses
of component processes. It is proposed that the degradation of heat
from the leaf temperature T to temperature T0 of the environment, as
conducted through the boundary layer, can be considered separately.
It can be argued that, in fact, the convective heat leaves the leaf surface
at temperature T and then, beyond the leaf, degrades to environment
temperature T0. There is no exergy loss due to radiation through the
boundary layer which is transparent to radiation.

In the present simplified approach, the total exergy loss 
b = 97%
(Table 12.1) is assumed to be the sum of only four components: chem-
ical reaction (12.1), water vaporization, heat exchange by the leaf sur-
face, and convective heat transfer through the boundary layer. The
appropriately categorized terms of equation (12.17) can be used in
equation (12.19) to calculate the entropy growth in each of the partic-
ular component processes.

However, solar radiation absorbed at the leaf surface is expended
only on three processes: chemical reaction, vaporization, and heat
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exchange by the leaf surface. To calculate the three respective exergy
losses, the entropy of the absorbed radiation has to be split appropri-
ately in accordance with the split of energy. Based on equation (12.15),
each of the respective split fractions is the ratio (each specific energy
term divided by total energy of absorbed solar radiation). Therefore,
the incident radiation energy is distributed according to the following
three split fractions:

�ch = nsuhsu + nO2 hO2 − nCO2 hCO2 − (nw − nH2O − nwL ) hw

� [�V jV + �L ( jS − jV)]
(12.22)

�vap = nH2O (hH2O − hw)
� [�V jV + �L ( jS − jV)]

(12.23)

�surf = qk + eL

� [�V jV + �L ( jS − jV)]
(12.24)

where �ch + �vap + �surf = 1. It is assumed that the entropy of the ab-
sorbed incident solar radiation is split according to the above split
fractions.

Each exergy loss is determined according to formula (12.19).
Therefore, the exergy loss 
bchfor the overall chemical reaction of pho-
tosynthesis is equal to the environment temperature multiplied by the
respective entropy growth:


bch = T0{nsussu + nO2 sO2 − nCO2 sCO2 − (nw − nH2O − nwL )sw

−�ch� [�VsV + �L (sS − sV)]} (12.25)

Respectively, the exergy loss 
bvap for liquid water vaporization
is:


bvap = T0{nH2O(sH2O − sw) − �vap � [�VsV + �L (sS − sV)]} (12.26)

and the exergy loss 
bsurf, due to radiative and convective heat ex-
change between the leaf surface and the external environment, is:


bsurf = T0

{
sL + qk

T
− �surf� [�VsV + �L (sS − sV)]

}
(12.27)

The exergy loss 
bqk , due to convection heat qk transferred through
the boundary layer from the leaf surface to the external environment,
is:


bqk = T0 qk

(
1
T0

− 1
T

)
(12.28)
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Component process of the photosynthesis Loss %

Overall chemical reaction 0.2

Vaporization of liquid water 93.1

Radiative and convective heat exchange by the leaf surface 4.0

Convection heat transferred through boundary layer 0.1

Total 97.4

TABLE 12.3 Distribution of the Irreversible Exergy Losses (from Petela,
2008a)

Table 12.3 presents the distribution of exergy losses for the calcu-
lation in Example 12.1. The largest loss occurs during vaporization
(∼93.1%) and the next largest loss (∼4.0%) is due to heat exchange be-
tween the leaf surface and the environment. This latter loss includes
heat lost by convection from the leaf surface at temperature T . How-
ever, this heat loss causes successive exergy loss (∼0.1%) during the
transfer through the boundary layer to the environment at temper-
ature T0. The exergy loss during chemical reaction is relatively low
(∼0.2%), probably because of a relatively very small amount of cre-
ated biomass.

Future considerations can be developed to explain how, e.g., the
exergy loss 
bch is split amongst the exergy losses for chemical reaction
assimilating carbon dioxide (
bCO2 ) and the exergy loss due to the
release of oxygen (
bO2 ), 
bch = 
bCO2 + 
bO2 .

12.9.5 Increased Carbon Dioxide Concentration in the
Leaf Surroundings

This effect is considered on the basis of the simplified model of layer
zones in the vicinity of the leaf surface (Figure 12.7). Adjoining the leaf
surface is the boundary layer (Figure 12.1). Between the boundary
layer and the environment there exists a zone of mildly blown gas
(the blow layer). The blown gas can be, e.g., a cold waste combustion
product arising from combustion at a very large excess-air ratio. Thus,
the concentration of CO2 in the combustion product is not significantly
larger than the CO2 concentration in the environment. It is assumed
that the concentration of CO2 is relatively small and still does not affect
radiation arriving at the leaf surface. The profiles of CO2 mole fractions
are shown in Figure 12.7 for the case with a blowing gas, zCO2,B (solid
line), and for the case without a blowing gas, zCO2,0 (dashed line).
The blown gas has temperature T0. The mole fractions zH2O,B of the
water vapor in the blown gas and in the environment are the same,
zH2O,B = zH2O,0 = 0· ps/p0.
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FIGURE 12.7 Simplified theoretical model of the CO2 fertilization of
photosynthesis (from Petela, 2008a).

Due to differences in the respective concentrations, diffusive trans-
portation of species occurs: O2 out of the surface (not shown in Figure
12.7), H2O from the leaf to the environment, and CO2 in the oppo-
site direction into the leaf surface. The length of the diffusion path
for H2O is not significantly changed by the presence of the blown gas
zone. The slightly increased concentration of CO2 insignificantly de-
creases the relatively large oxygen concentrations zO2,B in the blow
layer, zO2,B ≈ zO2,0. Thus, the presence of the blown gas zone prac-
tically does not change the diffusion flux of O2. The diffusion rate
nCO2 grows due to the increased CO2 concentration difference, and,
contrary to the no-blow case, the exergy of the CO2 rate entering the
system boundary is different than zero. The presence of the blown gas
zone impacts formula (12.14) only by the increased CO2 mole fraction
from zCO2,0 to zCO2,B (Figure 12.7). The approximate quantitative ef-
fects of the increased CO2 concentration in the leaf surroundings are
shown in Table 12.2, column 11.

12.9.6 Remarks on the Photosynthesis Degree of Perfection
The considered degrees of perfection, �E and �B , are found to be rel-
atively small. They present the net values because, by neglecting the
radiation reflected from the leaf, only the net utilized solar radiation
is assumed as the input to the photosynthesis process. If the chemical
energy of sugar were related to the total radiation arriving in the leaf
surface, as proposed, e.g., by Szargut and Petela (1965a), the degrees
of the photosynthesis perfection would become even smaller.

The definition of efficiency is a matter of discussion and agree-
ment. For example, photosynthesis efficiency can be defined simply,
based on the ratio of the values for the generated sugar and the ab-
sorbed radiation. In such cases the exergy efficiency �b is always larger
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than the energy efficiency �e (�b/�e> 1). This is due to the fact that
the denominator in energy efficiency is larger than the denominator
in exergy efficiency, whereas the numerator in the energy efficiency
is smaller than the numerator in exergy efficiency (generally, deval-
uation enthalpy of the organic substance is smaller than its exergy).
For example, neglecting the terms for liquid water and CO2 as well as
non-PAR in equations (12.20) and (12.21), the efficiencies ratio is given
by �b/� e = (bsu/bV)/(hsu/ jV). For the data assumed in Example 12.1,
the ratio �b/� e = (2.94 · 106/0.516)/(2.53 · 106/0.545) = 1.22 at the
values �b = 2.74% and � e = 2.23%.

Unlike photosynthesis, the exergy/energy efficiencies ratio for
technical devices, such as those converting solar radiation to heat,
is smaller than unity �b/� e < 1. For example, for a solar cooker with
a cylindrical–parabolic profile, the energy efficiency is always larger
than the exergy efficiency. Thus the efficiencies ratio �b/� e , as deter-
mined experimentally by Ozturk (2004) and theoretically by Petela
(2005), is within the approximate range 0.03–0.16.

The degrees of perfection considered in the present analysis are
determined for favorable conditions. However, significantly smaller
degrees of perfection can be obtained for a vegetation system con-
sidered globally during a finite time period. In such a situation the
conditions fluctuate beyond favorable values. As mentioned earlier,
Szargut and Petela (1965a) obtained a small exergy degree of perfec-
tion (∼0.033%) from the approximate analysis of the forest vegetation
studied for one year in realistic conditions.

The efficiency values given by various authors are similarly small.
However, direct comparison of the values is difficult because of dif-
ferently assumed conditions.

12.10 Concluding Remarks
It is worthwhile commenting on some possible misinterpretations of
the entropy and exergy of radiation emitted by the sun’s surface. For
example, some researchers, instead of the solar radiation entropy sS,
erroneously introduce the smaller value of entropy calculated as heat
(exchanged between the sun and the leaf) divided by the sun’s tem-
perature (e.g. 6000 K).

In technical calculations of heat exchange the sun’s surface is as-
sumed to be at the equilibrium state (the sun’s surface receives energy
from the sun’s interior and emits this energy into the surrounding
space). The state of the sun’s surface is represented by its effective
temperature and the emitted radiation spectrum.

Any surface beyond the sun, exposed to radiation from the sun,
can also be at a stable temperature resulting from the energy of radi-
ation both absorbed and emitted. Using the temperatures of the sun
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and the exposed surface, the effect called exchanged radiation heat Q
can be calculated from the First Law of Thermodynamics. This effect
is real, and the energy efficiency of any device driven by an exposed
surface can be related to the exchanged heat.

However, when one examines the situation based on the Second
Law of Thermodynamics, the degradation of the exchanged heat Q
can be better understood. Note that the entropy of solar radiation
incident on the leaf is larger than the entropy of heat at the temperature
of the sun’s surface. The problem can be also illustrated by the simple
example of radiation emission from a surface—not necessarily from
the sun, but from any blackbody surface. In these cases the energy e =
� × T4 and entropy of the blackbody emission is s = (4/3) ×�× T3.
In contrast, the entropy serr, determined erroneously as the emission
divided by temperature, would be serr = e/T = �× T3 �= s.

From the exergy viewpoint, the leaf receives radiation exergy
smaller than the exergy of heat Q. Only the exergy of radiation should
be used in the fair exergy balance of the leaf surface.

One has to be aware that, as mentioned before, the exergy effi-
ciency can be defined by researchers in different ways and, e.g., the
explanation in Section 4.6.3 with respect to heating water by solar radi-
ation can be compared to the case of photosynthesis. The exergy of the
sugar produced can be related either to the exergy of heat at the sun’s
surface, Q × (1 − T0/TS), or to the exergy bS of the sun’s radiation,
equation (12.11), or to the exergy of heat absorbed on the leaf surface,
Q × (1 − T0/TL ). The exergy efficiency increases successively through
the above three possibilities due to the decreasing values of the de-
nominators in the efficiency formulas, Q × (1 – T0/TS) > bS > Q × (1
– T0/TL ). The exergy efficiency which relates the process effect to the
decrease of the sun’s exergy, Q × (1 – T0/TS), is unfair because the
exposed surface obtains only the solar radiation exergy, and the leaf’s
surface is independent of irreversible emissions at the sun’s surface.
Relating the process effect to the exergy of heat absorbed, Q × (1 –
T0/TL ), favors the exposed surface by neglecting its imperfectness
during the absorption of heat Q. Thus, from these three possibilities,
relating the photosynthesis process effect to the exergy bS of the sun’s
radiation is the possibility best justified in this analysis.

It is worth noting that the use of the exergy of heat at the sun’s
surface can be justified only in an unreal theoretical situation where
the exposed leaf surface would be entirely in direct contact with the
sun’s surface and the heat exchange would reversibly occur at a zero
temperature gradient.

However, from the comparative viewpoint of entirely different
processes, the best justified definition of the efficiency of photosyn-
thesis seems to be according to equation (12.21).

The methodology presented in this chapter for understanding the
exergy of photosynthesis outlines a preliminary study of the process



360 C h a p t e r T w e l v e

based on simultaneous analyses of energy, entropy, and exergy. The
study introduces the devaluation enthalpy (for the fair comparison
of energy and exergy balances), the formulae for arbitrary radiation
(convenient for the use of measurements of any actual radiation spec-
trum), and formulates the limiting diffusion range of the process. The
study determines the effects of the main process input parameters
and describes the model of CO2 photosynthesis. Multi-factored as-
pects of the problem are presented based on original computation re-
sults. However, the developed analyses cannot be directly compared
with literature data since the latter are relatively sparse and are based
usually on incompatible assumptions.

The interdisciplinary subject of photosynthesis is very complex
and involves many areas of knowledge including thermodynamics,
theory of exergy, transfer of radiation energy, heat convection, gas dif-
fusion, chemistry, thermochemistry, photochemistry, as well as data
dependent on time, day, month, season, weather conditions, geomet-
rical configuration, etc. To obtain even a preliminary understanding
of the energy, entropy, and exergy changes occurring during photo-
synthesis, only a certain model situation, determined with many sim-
plifying assumptions, has been considered. These assumptions can be
gradually reduced in the future.

It has been confirmed that plants absorb radiation on their surface,
which, due to the endothermic chemical reaction, remains at relatively
low temperature, only a little higher than the environment tempera-
ture.

In the introduced diffusive model of photosynthesis, the rate nsuof
global reaction (12.1) is limited by diffusing gases and is schemati-
cally presented in Figure 12.8 by the diffusion curve (solid part). The
other part (dashed) of the diffusion curve has no practical meaning.
The intersection of the diffusion and kinetics curves defines a certain

nsu

nsu, max

T0,opt T0

kineticsdiffusion

FIGURE 12.8 Schematic presentation of the optimum of the photosynthesis
reaction (from Petela, 2008a).
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Input variable N
Output
variable M T0 �0 Δ zCO2,0 � � V � L k

r – – + – 0 0 0 0

nsu – + – + + + + –

nw + – – – + + + –

nH2O + – – – + + + –

nCO2 – + – + + + + –

nO2 – + – + + + + –

�E – + – + + + – –

�B – + – + + + + –


b + – + – – + – +

TABLE 12.4 Algebraic Sign of the Partial Derivative ∂M/∂N (from Petela, 2008a)

optimal environment temperature T0,opt at which the rate is maxi-
mum, nsu,max. At low leaf temperatures, T < T0,opt, the photosynthesis
reaction is controlled by its kinetics and the rate nsu decreases with de-
creasing temperature T0, as shown in Figure 12.8 (dashed thick curve),
whereas the dashed thin part of this curve has no practical meaning.
The reaction kinetics can be considered in the future.

As a consequence of the many assumptions, the calculated quanti-
tative responses to the varying photosynthesis inputs are of a limited
certainty. However, improved certainty can be expected for the direc-
tion trends found in response to the varying input parameters. These
trends are shown in Table 12.4 by the algebraic signs of the partial
derivative ∂ M/∂ N, where M and N are any output and input vari-
ables, respectively. With growing N, M can grow (+), drop (–), or can
remain unchanged (0). For example if �0 grows, then r decreases (–),
nsu increases (+), nw decreases (–), etc.

Some parameters can be controlled (e.g., T0, k, �0, zCO2 ) and some
cannot. For example, the factor � (which depends on the weather
conditions, time of day, or year), �V and �L (which are the properties
of the plant, and self-modeling �), cannot be controlled. Regarding
controllable parameters, the presented diffusion model (T0 > T0,opt)
suggests striving for:� rather low temperature (T0) of the leaf surroundings;� low heat transfer coefficient k (e.g., avoid wind);� high humidity �0 to reduce diffusion of vapor; and� surroundings with increased concentrations of CO2 to inten-

sify diffusion.
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Some of the above effects, which are already known, are confirmed and
approximately estimated together with the effects newly disclosed.

The computation example discloses a dramatic difference in the
respective values of the terms of energy and exergy balances (Table
12.1 and Figure 12.2). Although both energy and exergy viewpoints
are true, the exergy interpretation seems to be more practical.

The observations formulated about the macro interpretation of
photosynthesis based on exergy can be confronted with the not con-
sidered descriptions of the component’s mechanisms of photosynthe-
sis at the micro level. As a result, some new ideas can be found to
improve the formulation of the exergy approach. Also, based on ex-
ergy, better interpretations of the micro mechanisms can be obtained.
For example, the exergy analysis can be applied separately to the light
and dark reactions, or different kinds of plants can be examined.

In the future, more detailed exergy investigations on factors such
as temperature, light intensity, photochemistry, CO2 concentration,
chlorophyll concentration/property data, and application of fertiliz-
ers supplied through air, water, and soil, can be developed for both
the diffusive and kinetic ranges of photosynthesis.

Nomenclature for Chapter 12
a universal constant, a = 7.561 · 10−19 kJ/(m3 K4)
b specific exergy of substance, J/kg, or exergy of radiation,

W/m2

c specific heat, J/(kg K), or speed of light, c = 2.998 · 108 m/s)
CIE Commission Internationale del’Eclairage (International

Commission on Illumination)
d devaluation enthalpy, J/kmol
D generalized coefficient of diffusion
e energy emission density of surface, W/m2

h specific enthalpy, kJ/kg
j radiosity, W/m2

k Boltzmann constant, k = 138.03 · 10−28 kJ/K
k convective heat transfer coefficient, W/(m2 K)
i� monochromatic intensity of radiation, depending on

�, W/(m3 sr)
i� monochromatic intensity of radiation, depending on

�, W/(m2 sr)
L entropy of the monochromatic intensity of radiation,

W/(m3 K sr)
L S mean distance from the sun to the earth, L S = 149,500,000 km
M molecular mass, or output variable
n successive number of the wavelengths interval
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n substance rate, kmol/(m2 s)
N input variable
p pressure, Pa
q convective heat, W/m2

Q heat, J
r mole ratio of evaporated water to assimilated carbon dioxide
PAR the photosynthetically active radiation within wavelength

400–700 nm
R universal gas constant, R = 8.3147 kJ/(kmol K)
RS radius of the sun, RS = 695,500 km
s specific entropy of substance, J/(kg K), or entropy of

radiation, W/(m2 K)
t temperature, ◦C
T absolute temperature or absolute temperature of the leaf, K
z mole fraction

Greek
� surface absorptivity
� azimuth angle, deg
� radiation weakening factor

b exergy loss, kW/m2

� difference between temperature of the leaf and environment, K
�B exergy degree of perfection of photosynthesis
�b exergy efficiency of photosynthesis
�E energy degree of perfection of photosynthesis
� e energy efficiency of photosynthesis
� wavelength, m
� vibration frequency, 1/s
� solar energy split fraction
� overall entropy growth, W/(m2 K)
� entropy of devaluation reaction, J/(kmol K)
� Boltzmann constant for black radiation, W/(m2 K4)
� relative humidity or declension angle, deg

Subscripts
a average
B blow layer
B exergetic
b exergetic
ch chemical
E energetic
e energetic
err erroneous
k convective
L leaf
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max maximal
n standard (normal), or successive number
opt optimal
ph physical
q heat transferred
s substance, or saturation
s sun
su sugar
surf surface
tab tabulated
vap vaporization
V PAR wavelengths range
w liquid water
0 environment or normal (directional radiation)
� wavelength
� vibration frequency



C H A P T E R 13
Thermodynamic
Analysis of the

Photovoltaic

13.1 Significance of the Photovoltaic
The present chapter outlines the photovoltaic effect and presents sim-
ple energy and exergy analyses of the simultaneous generation of heat
and power by photovoltaic (PV) technology. This double conversion
of radiation energy categorizes the PV technology to the systems of
cogeneration of power and heat. The specificity of the PV effect is that
it can generate electricity only as long as continuous light is avail-
able. Electrical energy can be stored for later retrieval during a period
when there is a lack of radiation. Devices based on the PV effect can
serve as power sources in remote terrestrial locations and for different
cosmic space applications. The PV effect can also power calculators
and other electronic products. In spite of the relatively small power
available from the PV effect, plans to utilize solar radiation to power
automobiles and aircraft are also being developed.

Usually the term solar cell is used for devices that use the PV effect
to capture energy from sunlight, whereas the term PV cell is used when
the light source is unspecified.

PV energy is considered to be the most promising form of solar en-
ergy because the energy of light can be converted directly into electric
energy without the use of any moving mechanical parts and without
the use of fuel. Manufacturing of solar cells and photovoltaic arrays
has been noticeably expanding in recent years.

The literature on solar cells has been extensive. For example, many
aspects of solar cells including the physics of energy conversion mech-
anisms and efficiency are presented by Würfel (2005). Badescu (2006)
studied the electrical output from the PV array involving latitude, cli-
mate, and PV module shape. Recently, e.g., Chow et al. (2009)—based

365
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on experimental data and validated numerical models—studied the
influence of the glass cover in photothermic and photovoltaic pro-
cesses and found that energy and exergy viewpoints differ. Based on
a short description of the PV effect, this significant difference between
energy and exergy evaluation of the PV process is discussed in the
following section.

13.2 General Description of the Photovoltaic
Some materials, called semiconductors, have the capacity for photo-
conductivity, which is electrical conductivity affected by exposure to
electromagnetic radiation (e.g., light). The capacity of semiconductors
for electrical conductivity lies between the abilities of conductors and
insulators. Examples of semiconductors applied in PV can be silicon
(Si), gallium arsenide (GaAs), copper sulphate (Cu2S), and different
organic substances (e.g., polymers).

The possibility of using sunlight to produce an electric current
in solid materials was discovered in 1839 by Becquerel. However, to
determine that the conversion of light into electricity occurs at the
atomic level took many years.

The photon of the incidental radiation can be absorbed by semi-
conductors if the energy of the photon is sufficiently high. The ab-
sorbed photons knock loose the electrons, negatively (n) charged from
their atoms. This allows the electrons to move freely in the semicon-
ductor. The electrons knocked loose leave their positions (so-called
holes), which behave as complimentary positive (p) charges.

The PV effect is arranged in the PV cell, which generally con-
sists of two regions, like sandwich layers, each as a nonhomogeneous
semiconductor with specially added impurities (dopants), such that
one region (n) has an excess of electrons (of negative charge) while
the other region (p) has an excess of positive holes. The structure of
these two regions (a p–n junction) generates an internal electric field.
If the photons create free electrons and holes in the vicinity of the p–n
junction, then the electric field makes the electrons move toward the
side n and the holes move in opposite direction toward the side p. The
generated tension between regions p and n is the electromotive force
and, using wires, both sides can be connected to any electric energy
receiver, e.g., a light bulb through which an electric direct current (DC)
runs.

PV cells, of typical size 120 mm × 120 mm, can be assembled
to obtain a PV module with an approximately 0.5 m2 surface area.
Several modules can be assembled to obtain a PV system. Connection
of modules in series and in parallel allows for high flexibility of the
system. The PV cells are connected with silver strips that play the
role of an ohmic contact. The PV system can be used stand-alone or



367T h e r m o d y n a m i c A n a l y s i s o f t h e P h o t o v o l t a i c

can be connected to the power grid or to batteries to store electric
energy. The continuous electric current generated by the cells can be
converted into an alternating current (AC) with use of an inverter.

Within the semiconductor material, the so-called recombination can
occur during which the free electron can become bound back to an
atom. The recombining electrons do not contribute to the produc-
tion of electrical current. Therefore, the energy conversion efficiency
should take into account only the effective power collected from the
solar cell. Photovoltaic efficiency, which is the ratio of electric power
generated by a photovoltaic cell at any instant to the power of the
sunlight striking the cell, for commercially available cells, does not
exceed about 18%.

Different construction of the photovoltaic cell can cover a vari-
ous range of frequencies of light to produce electricity; however, they
cannot cover the whole solar spectrum and, thus, much of incident
solar energy is converted to heat or is wasted. The modules can have
much higher efficiency if illuminated with monochromatic light. For
example, to increase the conversion efficiency the light can be split
into different wavelength ranges and the separated beams directed
onto appropriately designed PV cells.

An increase in the efficiency of PV cells can be achieved also by
a system using lenses or mirrors to concentrate sunlight; however,
such high-efficiency solar cells are more expensive than conventional
flat-plate photovoltaic cells.

In the future, it would be recommended to develop exergy analysis
for the above discussed PV cells irradiated with monochromatic light
or for PV cells with concentrated sunlight. However, such analyses
can be difficult, and the methodology of exergy analysis will be shown
here only for a simple solar cell.

13.3 Simplified Thermodynamic Analysis of a Solar Cell
The principle of a solar cell can be considered for an ideal simple sit-
uation in which the sun irradiates the flat surface of the solar cell on
earth. The energy streams exchanged by the solar cell are schemati-
cally shown in Figure 13.1. As there is no motion of substance in the

q
qr

qS

qk

qC

Tc

0 System

boundarySolar cell

E

FIGURE 13.1
Scheme of the
energy streams of
a solar cell.



368 C h a p t e r T h i r t e e n

gravitational field, the eZergy consideration has no application. The
representative temperature of the solar cell is TC . Generally, the heat
qS transferred from the sun’s surface at temperature TS to the outer
surface of the solar cell on the earth is distributed to the generated
electrical energy E , the reflected solar radiation qr , the useful heat qC

absorbed by the solar cell, and to the convection and radiation heat,
qk and q0, respectively, both transferred to the environment.

The energy balance equation for the considered system, defined
by the system boundary, can be written as follows:

qS = qr + qk + q0 + qC + E (13.1)

For simplicity, the variables in equation (13.1) are related to 1 m2

area of the solar cell. Calculation of solar energy should account for
both direct and diluted radiation. In the ideal case of a clear sky, and
assuming the sun as a black surface, heat qS can be calculated approx-
imately, accounting only for the direct radiation, e.g., as follows:

qS = 2.16 × 10−5 �T4
S (13.2)

where 2.16 × 10−5 is the configuration (sun–earth) factor and � =
5.6693 × 10−8 W/(m2 K4) is the Boltzmann constant of black surface.

The reflected solar radiation energy is:

qr = �C qS (13.3)

where �C is the reflectivity of the solar cell surface.
The convection heat is:

qk = k (TC − T0) (13.4)

and the radiation energy is:

q0 = εC �
(

T4
C − T4

sky

)
(13.5)

where k is the convective heat transfer coefficient and T0 is the environ-
ment temperature. The sky temperature Tsky is assumed to be equal
to the environment temperature; Tsky = T0. The solar cell surface is
assumed to be perfectly gray at emissivity εC .

The useful heat qC can be determined from equation (13.1) if the
electrical energy E is known, e.g., from the measurement.

The solar cell can be evaluated by the energy electrical efficiency:

�E,el = E
qS

(13.6)
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or by the energy cogeneration efficiency:

�E,cog = E + qC

qS
(13.7)

Interpreting the same process based on the Second Law of Thermo-
dynamics, i.e., including exergy, the degradation of heat is disclosed.
The exergy bS incoming to the considered surface from the sun is split
into the exergy br of reflected solar radiation, the exergy of heat b0

radiating to the environment, the exergy of heat bk transferred to the
environment by convection, the exergy of useful heat bC transferred
from the solar cell to its interior, the electric energy E, and the exergy
loss �b due to the irreversibility of the considered system. Thus, the
exergy balance equation for the system shown in Figure 13.1 is:

bS = br + bk + b0 + bC + E + �b (13.8)

Analogously to the energy of solar radiation determined by equa-
tion (13.2), the exergy of solar radiation for the simple case of a clear
sky is:

bS = 2.16 × 10−5 �

3

(
3T4

S + T4
0 − 4T0T3

S

)
(13.9)

The exergy of radiative heat is:

b0 = εC
�

3

(
3T4

C + T4
0 − 4T0T3

C

)
(13.10)

The reflected solar radiation exergy is:

br = �C bS (13.11)

The exergy of convective heat:

bk = qk

(
1 − T0

TC

)
(13.12)

The exergy of useful heat transferred by conduction or convection
is:

bC = qC

(
1 − T0

TC

)
(13.13)

The exergy loss �b can be calculated by completion of equation
(13.8). From the exergetic viewpoint the solar cell can be evaluated by
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the exergy electric efficiency:

�B,el = E
bS

(13.14)

or by the exergy cogeneration efficiency:

�B,cog = E + bC

bS
(13.15)

Because the solar radiation energy is always larger than the solar
radiation exergy, qS > bS, and the electrical exergy and electrical en-
ergy are equal, the energy electrical efficiency of the solar cell is always
smaller than the exergy electrical efficiency, �B,el > �E,el .

Example 13.1 Consider a 1 m2 surface of a polycrystalline silicon photovoltaic
cell that generates 152 W of electrical energy. The cell has temperature TC =
318 K, emissivity εC = 0.95, and reflectivity �C = 1 − εC = 0.05. Environment
temperature is T0= 288 K. The temperature of the sun is assumed as TS = 5800 K.
The convective heat transfer coefficient k = 3 W/(m2 K).

Applying equations (13.1)–(13.14) in the calculation procedure described in
Section 13.3, the results presented in Table 13.1 are obtained. The energy of
solar radiation eS = 1386 W/m2 and the exergy of solar bS = 1294 W/m2 were
respectively assumed as 100% in the energy and exergy balances.

The instant energy electric efficiency �E,el = 10.48% is smaller from the ex-
ergy electric efficiency �B,el = 11.16%; however, the energy cogeneration effi-
ciency �E,cog =10.48 + 65.88 = 76.36% is significantly larger than the exergy

Term Energy % Exergy %

Input:

Solar radiation 100 100

Subtotal 100 100

Output:

Reflection 5 5

Convection 6.21 0.62

Radiation 12.43 0.67

Useful heat 65.88 6.61

Electricity 10.48 11.16

Loss — 75.94

Subtotal 100 100

Total 0 0

TABLE 13.1 Results of the Energy and Exergy Calculations
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cogeneration efficiency �B,cog = 11.16 + 6.61 = 17.77%. Table 13.1 illustrates also
that the low temperature heat (convection, radiation, and useful heat) has small
exergy value.

Nomenclature for Chapter 13
AC alternate current
b exergy of emission, W/m2

DC direct current
E electric energy, W/m2

n negatively charged
p positively charged
PV photovoltaic
q heat flux, W/m2

T absolute temperature, K

Greek
ε emissivity
� efficiency
� Boltzmann constant for black radiation

Subscripts
B exergetic
C solar cell
cog cogeneration
E energetic
el electric
k convection
r reflection
s sun
sky sky
0 environment
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A.1 Prefixes to Derive Names of Secondary Units

Fractional units, n < 0 Multiplied units, n > 0

Prefix Symbol 10n Prefix Symbol 10n

deci d 10−1 deca da 10

centi c 10−2 hecto h 102

milli m 10−3 kilo k 103

micro � 10−6 mega M 106

nano n 10−9 giga G 109

pico p 10−12 tera T 1012

femto f 10−15

atto a 10−18

A.2 Typical Constant Values for Radiation and Substance

Radiation
a = 7.564 × 10−16 J/(m3 K4) universal constant
h = 6.625 × 10−34 J s Planck’s constant
� = 5.6693 ×10−8 W/(m2 K4) Boltzmann constant for black

radiation
Cb = 5.6693 W/(m2 K4) constant for black radiation
c0 = 2.9979 × 108 m/s velocity of light in vacuum
c1 = 3.743 × 10−16 W m2 first Planck-law constant (2� × h

× c2
0)

c2 = 1.4388 × 10−2 m K second Planck-law constant
c3 = 2.8976 × 10−3m K third Planck-law constant (in the

Wien displacement law)
c4 = 1.2866 × 10−5 W/(m3 K5) fourth Planck-law constant

Substance
k = 1.3805 × 10−23 J/K Boltzmann constant (general)
R = 8314.3 J/(kmol K) universal gas constant
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A.3 Application of Mathematics to Some
Thermodynamic Relations
In thermodynamics, especially significant is the case in which the con-
sidered system contains only the medium. Such a case is called a closed
system. It is assumed that the surrounding walls do not play a role and
that both the potential and kinetic energy of the medium are neglected.
In such a case the system energy is directly equal to the internal en-
ergy of the considered medium. The First Law of Thermodynamics for
a closed system considered on a unitary variable basis (i.e., calorific
properties are related to a unit of amount, e.g., unit mass, in case of ra-
diation to unit volume), states differentially that the delivered heat dq
is equal to the internal energy growth du and performed work p × dv:

dq = du + p dv (A.1)

If the considered process is reversible, then heat can be expressed
with temperature T and entropy s:

ds = dq
T

(A.2)

and using both equations:

du = T ds − p dv (A.3)

Enthalpy h is defined as h = u + pv and differentiating dh = du +
pdv + vdp. Thus:

dh = T ds + v dp (A.4)

Then, considering internal energy as a function of specific volume
and entropy, u = f(s,v), from a mathematical viewpoint:

du =
(

∂u
∂s

)
v

ds +
(

∂u
∂v

)
s

dv (A.5)

or analogously for a function h(s, p):

dh =
(

∂h
∂s

)
p

ds +
(

∂h
∂p

)
s

dp (A.6)

By comparison of equations (A.3) and (A.5):(
∂u
∂s

)
v

= T (A.7a)

(
∂u
∂v

)
s
= −p (A.7b)
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or comparing equations (A.4) and (A.6):(
∂h
∂s

)
p

= T (A.7c)

(
∂h
∂p

)
s
= v (A.7d)

Also another group of relations, called Maxwell’s relations, may
be developed. For example, differentiating (A.7a) and (A.7b):(

∂T
∂v

)
s
= ∂2u

∂v ∂s
(A.8)

−
(

∂p
∂v

)
v

= ∂2u
∂s ∂v

(A.9)

As:

∂2u
∂v ∂s

= ∂2u
∂s ∂v

(A.10)

thus: (
∂T
∂v

)
s
= −

(
∂p
∂s

)
v

(A.11a)

and in a similar manner other Maxwell’s relations may be derived:(
∂T
∂p

)
s
=

(
∂v
∂s

)
p

(A.11b)

(
∂p
∂T

)
v

=
(

∂s
∂v

)
T

(A.11c)

(
∂v
∂T

)
p

= −
(

∂s
∂p

)
T

(A.11d)

The specific heat cv at constant volume, defined as cv = (∂u/∂T)v,
and after using equations (A.7a), can be differentiated as follows:

cv =
(

∂u
∂s

)
v

(
∂s
∂T

)
v

= T
(

∂s
∂T

)
v

(A.12)

In a similar manner the specific heat c p at constant pressure, de-
fined as c p = (∂h/∂T)p, can be differentiated as follows:

c p =
(

∂h
∂s

)
p

(
∂s
∂T

)
p

= T
(

∂s
∂T

)
p

(A.13)
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Another example of a mathematical relation applied to thermo-
dynamics can be the formulae that use the measurable properties to
obtain nonmeasurable properties. For example, consider internal en-
ergy as function of temperature and specific volume, u = f (T , v). Dif-
ferentiating the function one obtains:

du =
(

∂u
∂T

)
v

dT +
(

∂u
∂v

)
T

dv (A.14)

Differentiating equation (A.3) at constant T yields:

T
(

∂s
∂v

)
T

=
(

∂u
∂v

)
T

+ p (A.15)

The Maxwell’s relation (A.11c) can be used to replace the entropy
derivative in (A.15), which after rearranging leads to the following
relation: (

∂u
∂v

)
T

= T
(

∂p
∂T

)
v
− p (A.16)

Equation (A.14), after taking into account (∂u/∂T)v = cv, and equa-
tion (A.16), becomes finally:

du = cv dT +
[

T
(

∂p
∂T

)
v
− p

]
dv (A.17)

In a similar manner the equation for calculation of enthalpy (only
for substance) can be derived as:

dh = c p dT +
[

v − T
(

∂v
∂T

)
p

]
dp (A.18)

A.4 Review of Some Radiation Energy Variables

Energy

# Variable Symbol Units Formula
1 Black radiation energy in a volume V,

e.g., formula (5.13)
U J VaT4

2 Density of black radiation energy in a
volume V, e.g., formula (5.12)

u J/m3 aT 4

3 Density of monochromatic radiation
in a volume V, depending on �

u� J/m4 (3.12)
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Energy

# Variable Symbol Units Formula
4 Energy emission of a surface area A,

which is radiation of temperature T

emitted into the forward hemisphere
from the surface at temperature T

and emissivity ε

E W Aε�T 4

5 Emission density, which is the
emission E related to the gray
surface area, e.g., formula (3.22)

e W/m2 ε�T 4

6 Emission density of a black surface,
e.g., formula (3.21)

eb W/m2 �T 4

7 Density of monochromatic emission
of a black surface into the front
hemisphere (within solid angle 2�)
depending on �, e.g., formula (3.13)

eb,� W/m3 c1

�5
(
exp c2

�T
− 1

)

8 Density of monochromatic emission
of any surface (e.g., gray) into the
front hemisphere (within solid angle
2�), e.g., formula (3.10)

e� W/m3 e� = de

d�

9 Radiosity, which is the total surface
radiation composed of emission and
reflected radiation of different
temperatures

J J (7.1)

10 Radiosity, density which is the
radiosity related to the surface area,
e.g., formula (3.8)

j W/m2 j = J

A

11 Directional radiation intensity, which
expresses the total radiation
propagating within a solid angle d�
and along a direction determined by
the flat angle � with the normal to the
surface, e.g., formula (3.27), (3.29)

i� W/(m2 sr)
j

�
cos �

12 Directional normal radiation intensity
at � = 0, e.g., formula (3.28)

i0 W/(m2 sr)
j

�

13 Directional normal (� = 0) black
radiation intensity

ib,0 W/(m2 sr) (3.28)

14 Directional black radiation intensity ib,� W/(m2 sr) (3.29)

15 Directional normal monochromatic
radiation intensity of nonpolarized
(linearly polarized) radiation,
depending on �

i0,� J/(m2 sr) (7.3)
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Energy

# Variable Symbol Units Formula
16 Directional normal monochromatic

radiation intensity of nonpolarized
(linearly polarized) radiation,
depending on �

i0,� W/(m3 sr) (7.4)

17 Principal (smallest and largest)
directional normal monochromatic
components of radiation intensity of
nonpolarized (linearly polarized)
radiation

i0,�,min

i0,�,max

J/(m2 sr) (7.2)

18 Directional normal monochromatic
intensity of black radiation linearly
polarized propagating within unit solid
angle, dependent on wavelength �

ib,0,� J/(m2 sr) (7.9)

19 Directional normal monochromatic
intensity of black radiation linearly
polarized propagating within unit solid
angle, dependent on wavelength �

ib,0,� W/(m3 sr) (7.8)

20 Any radiation energy arriving from a
certain surface A ′ in the considered
surface A, introduced for general
considerations

j A ′ W/m2 (7.10)

A.5 Review of Some Radiation Entropy Variables

Entropy

# Variable Symbol Units Formula

1 Radiosity entropy S W/K (7.20)

2 Entropy density of a photon gas in the
equilibrium state, residing in a system

sS J/(K m3) (5.23)

3 Entropy density of radiation emitted
by unit surface area of a body in all
the directions of the front hemisphere
in unit time

s W/(m2 K) (5.24)
(7.32)

4 Entropy of directional normal radiation
intensity, which expresses the entropy
passing within a unitary solid angle, in
unit time and through a unitary
surface area perpendicular to
propagation direction

L 0 W/(K m2 sr) (7.21)
(7.26)
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Entropy

# Variable Symbol Units Formula

5 Principal (smallest and largest)
mutually independent (incoherent),
polarized at right angles to each
other, values of the monochromatic
component of the entropy of radiation
intensity

L 0,�,min

L 0,�,max

J/(K m2 sr) (7.21)

6 Entropy of monochromatic intensity of
linearly polarized radiation dependent
on frequency

L 0,� J/(m2 K sr) (7.22)
(7.24)

7 Entropy of monochromatic intensity of
linearly polarized radiation dependent
on wavelength

L 0,� W/(m3 K sr) (7.23)
(7.25)

8 Entropy of emission emitted within
solid angle � ≤ 2� in which L 0 is
constant

s� W/(m2 K sr) (7.28)

9 Entropy of monochromatic directional
normal intensity of linearly polarized
black radiation propagating within unit
solid angle and dependent on
frequency

L b,0,� J/(m2 K sr) (7.24)
(7.30)

10 Entropy of monochromatic directional
normal intensity for linearly polarized
black radiation propagating within unit
solid angle and dependent on
wavelength

L b,0,� W/(m3 K) (7.25)

11 Entropy density of radiation emitted
by the unit black surface area of a
body in all the directions of the front
hemisphere in unit time

sb W/(m2 K) (7.31)

12 Entropy of radiosity density sj W/(m2 K) (7.37)

13 Entropy of radiosity density
propagating within solid angle �

sj,� W/(m2 K sr) (7.38)

14 Entropy of radiosity density passing
the unit control surface area A ′ in a
space and in the unit time and falling
upon the element dA of the
considered surface A, introduced for
general considerations

sj,A′ W/(m2 K) (7.33)
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A.6 Review of Some Radiation Exergy Variables

Exergy

# Variable Symbol Units Formula
1 Exergy of photon gas, i.e.,

exergy of black radiation
enclosed within a system

bb,S J/m3 (5.29)

2 Exergy density of emission from
a black surface

bb W/m2 (6.8)
(7.49)

3 Exergy density of emission from
a gray surface of emissivity ε

b W/m2 (6.10)
(6.13)

4 Exergy of radiosity density b ≡ bA ′ W/m2 (7.41)

5 Exergy of radiosity B ≡ BA ′→A W (7.42)

6 Exergy of nonpolarized, uniform,
black radiation propagating
within a solid angle �

bb,� W/(m2

sr)
(7.50)

7 Exergy of monochromatic black
radiation propagating within an
elemental solid angle d� and
within wavelength range d�

bb,�,� W/(m3

sr)
(8.18)

8 Exergy of monochromatic
radiation propagating within an
elemental solid angle d� and
within wavelength range d�

b�,� W/(m3

sr)
(8.25)

9 Incorrect exergy of enclosed
black radiation according to
Jeter, e.g., formula (9.11)

bJ J/m3 bJ = a
(
T 4−T 4

0

)(
1− T0

T

)
10 Incorrect exergy of enclosed

black radiation according to
Spanner, e.g., formula (9.9)

bS J/m3 bS = a

3

(
3T 4−4T0T 3

)

11 Exergy of enclosed black
radiation according to Petela,
e.g., formula (9.8)

bP J/m3 bP = a

3
(3T 4 + T 4

0 − 4T0T 3)

12 Exergy/energy ratio according
to Petela

	 (9.7)

13 Exergy/energy ratio according
to Jeter (incorrect)


 J (9.11)

14 Exergy/energy ratio according
to Spanner (incorrect)


S (9.5)
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FIGURE A.1 Approximated physical exergy of water (from Petela, 2008a).

A.7 Exergy of Liquid Water
Exergy of liquid water bw, kJ/kmol, is the sum bw = bph+ bch of the
physical part bph and chemical part bch, where bch = R · T0· ln (1/�0).
Using the Szargut and Petela (1965b) diagrams the approximation
formula for calculation of the physical exergy bph of liquid water is
bph = a+ bt + ct2, where a = –23.22 + 2.718 · t0+ 0.0675 · t2

0 , b = 2.689 –
0.5787 · t0+ 0.00767 · t2

0 , and c = 0.117 – 1.05 · 10−3 · t0+ 2.7 · 10−4 · t2
0 –

7.5 · 10−6· t3
0 and where t0 = T0– 273.

Acceptable accuracy of approximation, as shown in Figure A.1,
is obtained within the ranges of the water temperature t = 10 – 30◦C
and environmental temperature t0 = 10 – 30◦C. If t = t0, then precisely
b ph = 0. Any negative values of a calculated bph result from the imper-
fectness of the approximation and should be rounded up to zero. Im-
perfectness is illustrated, e.g., by the values of the most inconvenient
discrepancy, which occurs for the minimum of the curves. Instead
of the required zero, the interpolation formula gives –0.6 kJ/kmol.
However, the interpolation formula, even with such imperfectness, is
useful because it allows for significant simplification of the computa-
tions.
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