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Preface

Matrix algebra plays a very important role in statistics and in many other disci-
plines. In many areas of statistics, it has become routine to use matrix algebra in
the presentation and the derivation or verification of results. One such area is linear
statistical models; another is multivariate analysis. In these areas, a knowledge of
matrix algebra is needed in applying important concepts, as well as in studying the
underlying theory, and is even needed to use various software packages (if they
are to be used with confidence and competence).

On many occasions, I have taught graduate-level courses in linear statistical
models. Typically, the prerequisites for such courses include an introductory (un-
dergraduate) course in matrix (or linear) algebra. Also typically, the preparation
provided by this prerequisite course is not fully adequate. There are several rea-
sons for this. The level of abstraction or generality in the matrix (or linear) algebra
course may have been so high that it did not lead to a “working knowledge” of the
subject, or, at the other extreme, the course may have emphasized computations at
the expense of fundamental concepts. Further, the content of introductory courses
on matrix (or linear) algebra varies widely from institution to institution and from
instructor to instructor. Topics such as quadratic forms, partitioned matrices, and
generalized inverses that play an important role in the study of linear statistical
models may be covered inadequately if at all. An additional difficulty is that sev-
eral years may have elapsed between the completion of the prerequisite course
on matrix (or linear) algebra and the beginning of the course on linear statistical
models.

This book is about matrix algebra. A distinguishing feature is that the content,
the ordering of topics, and the level of generality are ones that I consider appro-
priate for someone with an interest in linear statistical models and perhaps also
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for someone with an interest in another area of statistics or in a related discipline.
I have tried to keep the presentation at a level that is suitable for anyone who
has had an introductory course in matrix (or linear) algebra. In fact, the book is
essentially self-contained, and it is hoped that much, if not all, of the material may
be comprehensible to a determined reader with relatively little previous exposure
to matrix algebra. To make the material readable for as broad an audience as pos-
sible, I have avoided the use of abbreviations and acronyms and have sometimes
adopted terminology and notation that may seem more meaningful and familiar to
the non-mathematician than those favored by mathematicians. Proofs are provided
for essentially all of the results in the book. The book includes a number of results
and proofs that are not readily available from standard sources and many others
that can be found only in relatively high-level books or in journal articles.

The book can be used as a companion to the textbook in a course on linear
statistical models or on a related topic through- it can be used to supplement
whatever results on matrices may be included in the textbook and as a source of
proofs. And, it can be used as a primary or supplementary text in a second course
on matrices, including a course designed to enhance the preparation of the students
for a course or courses on linear statistical models and/or related topics. Above all,
it can serve as a convenient reference book for statisticians and for various other
professionals.

While the motivation for the writing of the book came from the statistical applica-
tions of matrix algebra, the book itself does not include any appreciable discussion
of statistical applications. It is assumed that the book is being read because the
reader is aware of the applications (or at least of the potential for applications) or
because the material is of intrinsic interest through- this assumption is consistent
with the uses discussed in the previous paragraph. (In any case, I have found that
the discussions of applications that are sometimes interjected into treatises on ma-
trix algebra tend to be meaningful only to those who are already knowledgeable
about the applications and can be more of a distraction than a help.)

The book has a number of features that combine to set it apart from the more
traditional books on matrix algebra through- it also differs in significant respects
from those matrix-algebra books that share its (statistical) orientation, such as
the books of Searle (1982), Graybill (1983), and Basilevsky (1983). The cover-
age is restricted to real matrices (i.e., matrices whose elements are real numbers)
through- complex matrices (i.e., matrices whose elements are complex numbers)
are typically not encountered in statistical applications, and their exclusion leads
to simplifications in terminology, notation, and results. The coverage includes lin-
ear spaces, but only linear spaces whose members are (real) matrices through-
the inclusion of linear spaces facilitates a deeper understanding of various matrix
concepts (e.g., rank) that are very relevant in applications to linear statistical mod-
els, while the restriction to linear spaces whose members are matrices makes the
presentation more appropriate for the intended audience.

The book features an extensive discussion of generalized inverses and makes
heavy use of generalized inverses in the discussion of such standard topics as the
solution of linear systems and the rank of a matrix. The discussion of eigenvalues
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and eigenvectors is deferred until the next-to-last chapter of the book through- I
have found it unnecessary to use results on eigenvalues and eigenvectors in teaching
a first course on linear statistical models and, in any case, find it aesthetically
displeasing to use results on eigenvalues and eigenvectors to prove more elementary
matrix results. And, the discussion of linear transformations is deferred until the
very last chapter through- in more advanced presentations, matrices are regarded
as subservient to linear transformations.

The book provides rather extensive coverage of some nonstandard topics that
have important applications in statistics and in many other disciplines. These in-
clude matrix differentiation (Chapter 15), the vec and vech operators (Chapter 16),
the minimization of a second-degree polynomial (inn variables) subject to linear
constraints (Chapter 19), and the ranks, determinants, and ordinary and general-
ized inverses of partitioned matrices and of sums of matrices (Chapter 18 and parts
of Chapters 8, 9, 13 16, 17, and 19). An attempt has been made to write the book
in such a way that the presentation is coherent and nonredundant but, at the same
time, is conducive to using the various parts of the book selectively.

With the obvious exception of certain of their parts, Chapters 12 through 22
(which comprise approximately three-quarters of the book’s pages) can be read in
arbitrary order. The ordering of Chapters 1 through 11 (both relative to each other
and relative to Chapters 12 through 22) is much more critical. Nevertheless, even
Chapters 1 through 11 include sections or subsections that are prerequisites for
only a small part of the subsequent material. More often than not, the less essential
sections or subsections are deferred until the end of the chapter or section.

The book does not address the computational aspects of matrix algebra in any
systematic way, however it does include descriptions and discussion of certain
computational strategies and covers a number of results that can be useful in dealing
with computational issues. Matrix norms are discussed, but only to a limited extent.
In particular, the coverage of matrix norms is restricted to those norms that are
defined in terms of inner products.

In writing the book, I was influenced to a considerable extent by Halmos’s (1958)
book on finite-dimensional vector spaces, by Marsaglia and Styan’s (1974) paper
on ranks, by Henderson and Searle’s (1979, 1981b) papers on the vec and vech
operators, by Magnus and Neudecker’s (1988) book on matrix differential calculus,
and by Rao and Mitra’s (1971) book on generalized inverses. And, I benefited from
conversations with Oscar Kempthorne and from reading some notes (on linear
systems, determinants, matrices, and quadratic forms) that he had prepared for a
course (on linear statistical models) at Iowa State University. I also benefited from
reading the first two chapters (pertaining to linear algebra) of notes prepared by
Justus F. Seely for a course (on linear statistical models) at Oregon State University.

The book contains many numbered exercises. The exercises are located at (or
near) the ends of the chapters and are grouped by section through- some exercises
may require the use of results covered in previous sections, chapters, or exercises.
Many of the exercises consist of verifying results supplementary to those included
in the body of the chapter. By breaking some of the more difficult exercises into
parts and/or by providing hints, I have attempted to make all of the exercises appro-
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priate for the intended audience. I have prepared solutions to all of the exercises,
and it is my intention to make them available on at least a limited basis.

The origin and historical development of many of the results covered in the book
are difficult (if not impossible) to discern, and I have not made any systematic
attempt to do so. However, each of Chapters 15 through 21 ends with a short
section entitled Bibliographic and Supplementary Notes. Sources that I have drawn
on more-or-less directly for an extensive amount of material are identified in that
section. Sources that trace the historical development of various ideas, results, and
terminology are also identified. And, for certain of the sections in a chapter, some
indication may be given of whether that section is a prerequisite for various other
sections (or vice versa).

The book is divided into (22) numbered chapters, the chapters into numbered
sections, and (in some cases) the sections into lettered subsections. Sections are
identified by two numbers (chapter and section within chapter) separated by a
decimal point through- thus, the third section of Chapter 9 is referred to as Section
9.3. Within a section, a subsection is referred to by letter alone. A subsection in
a different chapter or in a different section of the same chapter is referred to by
referring to the section and by appending a letter to the section number through-
for example, in Section 9.3, Subsection b of Section 9.1 is referred to as Section
9.1b. An exercise in a different chapter is referred to by the number obtained by
inserting the chapter number (and a decimal point) in front of the exercise number.

Certain of the displayed “equations” are numbered. An equation number com-
prises two parts (corresponding to section within chapter and equation within
section) separated by a decimal point (and is enclosed in parentheses). An equa-
tion in a different chapter is referred to by the “number” obtained by starting
with the chapter number and appending a decimal point and the equation number
through- for example, in Chapter 6, result (2.5) of Chapter 5 is referred to as result
(5.2.5). For purposes of numbering (and referring to) equations in the exercises, the
exercises in each chapter are to be regarded as forming Section E of that chapter.

Preliminary work on the book dates back to the 1982–1983 academic year, which
I spent as a visiting professor in the Department of Mathematics at the University
of Texas at Austin (on a faculty improvement leave from my then position as a
professor of statistics at Iowa State University). The actual writing began after my
return to Iowa State and continued on a sporadic basis (as time permitted) until my
departure in December 1995. The work was completed during the first part of my
tenure in the Mathematical Sciences Department of the IBM Thomas J. Watson
Research Center.

I am indebted to Betty Flehinger, Emmanuel Yashchin, Claude Greengard, and
Bill Pulleyblank (all of whom are or were managers at the Research Center) for the
time and support they provided for this activity. The most valuable of that support
(by far) came in the form of the secretarial help of Peggy Cargiulo, who entered
the last six chapters of the book in LaTEX and was of immense help in getting the
manuscript into final form. I am also indebted to Darlene Wicks (of Iowa State
University), who entered Chapters 1 through 16 in LaTEX.

I wish to thank John Kimmel, who has been my editor at Springer-Verlag. He
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has been everything an author could hope for. I also wish to thank Paul Nikolai
(formerly of the Air Force Flight Dynamics Laboratory of Wright-Patterson Air
Force Base, Ohio) and Dale Zimmerman (of the Department of Statistics and
Actuarial Science of the University of Iowa), whose careful reading and marking
of the manuscript led to a number of corrections and improvements. These changes
were in addition to ones stimulated by the earlier comments of two anonymous
reviewers (and by the comments of the editor).
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1
Matrices

Matrix algebra is a branch of mathematics in which numbers are dealt with collec-
tively (as rectangular arrays of numbers called matrices) rather than individually, as
in “ordinary” algebra. The term matrix is formally defined in Section 1.1. Section
1.1 also includes an introduction to various basic terminology used in referring to
matrices. And, some basic matrix operations (scalar multiplication, matrix addi-
tion and subtraction, matrix multiplication, and transposition) are defined and their
properties discussed in Section 1.2 — not all of the properties of the multiplication
of ordinary numbers extend to matrix multiplication.

There are many different types of matrices that are sometimes singled out in the
literature for special attention. Some of the most basic of these are introduced in
Section 1.3. Various other types of matrices are introduced later in the book (as
the need arises). In addition, there are many types of matrices that have received
considerable attention in the literature but were regarded as too specialized to be
considered here.

1.1 Basic Terminology

A rectangular array of real numbers is called amatrix. That is, a matrix is a
collection of real numbers,a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn, arranged in
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the general form 

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


 .

For example, (
2 −3 0
1 4 2

)

is a matrix.
Our definition of a matrix is less general than that sometimes adopted. The

more general definition applies to any rectangular arrangement of elements, called
scalars, of a field. (A field is a set, whose elements can be added or multiplied in
accordance with rules that have certain properties.) For example, the more gen-
eral definition coverscomplex matrices, which are rectangular arrays of complex
numbers. Here, unless otherwise indicated, the use of the word matrix is confined
to real matrices, that is, to rectangular arrays of real numbers. Also, scalar is used
synonymously with real number.

A matrix havingm rows andn columns is referred to as anm×nmatrix, andm
andn are called thedimensions of the matrix. The scalar located at the intersection
of theith row and thej th column of a matrix is called theij th element or entry of
the matrix.

Boldface capital letters (e.g.,A) are used to represent matrices. The notation
A � {aij } is used in introducing a matrix, theij th element of which isaij .

Two matricesA and B of the same dimensions are said to beequal if each
element ofA equals the corresponding element ofB, in which case we write
A � B (and are said to be unequal otherwise, i.e., if some element ofA differs
from the corresponding element ofB, in which case we writeA �� B).

1.2 Basic Operations

a. Scalar multiplication

Scalar multiplication is defined for an arbitrary scalark and an arbitrarym × n

matrix A � {aij }. Theproduct of k andA is written askA (or, less commonly, as
Ak) and is defined to be them×nmatrix whoseijth element iskaij . For example,

4

(
2 −3 0
1 4 2

)
�
(

8 −12 0
4 16 8

)
.

The matrixkA is said to be ascalar multiple of A.
For any matrixA,

1A � A
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And, for any scalarsc andk and any matrixA,

c(kA) � (ck)A � (kc)A � k(cA) . (2.1)

It is customary to refer to the scalar product (−1)A of−1 andA as thenegative
of A and to abbreviate (−1)A to−A.

b. Matrix addition and subtraction

Matrix addition and subtraction are defined for any two matricesA � {aij } and
B � {bij } that have the same number of rows, saym, and the same number of
columns, sayn. Thesum of the twom × n matricesA andB is denoted by the
symbolA + B and is defined to be them×nmatrix whoseij th element isaij +bij .
For example,(

2 −3 0
1 4 2

)
+
(

6 1 −3
−1 0 4

)
�
(

8 −2 −3
0 4 6

)
.

Matrix addition is commutative, that is

A+ B � B+ A . (2.2)

Matrix addition is also associative, that is, takingC to be a thirdm× n matrix,

A+ (B+ C) � (A+ B)+ C . (2.3)

The symbolA+B+C is used to represent the common value of the left and right
sides of equality (2.3), and this value is referred to as thesum of A, B, andC. This
notation and terminology extend in an obvious way to any finite number ofm× n
matrices.

For any scalarc, we have that

c(A+ B) � cA+ cB , (2.4)

and, for any scalarsc andk, we have that

(c + k)A � cA+ kA . (2.5)

Let us writeA− B for the sumA+ (−B) or equivalently for them× n matrix
whoseij th element isaij − bij and refer to this matrix as thedifference between
A andB.

Matrices having the same number of rows and the same number of columns are
said to beconformal for addition (or subtraction).

c. Matrix multiplication

Let A � {aij } represent anm × n matrix, andB � {bij } ap × q matrix. When
n � p, that is, whenA has the same number of columns asB has rows, thematrix
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product AB is defined to be them× q matrix whoseij th element is

n∑
k�1

aikbkj � ai1b1j + ai2b2j + · · · + ainbnj .

For example,

(
2 −3 0
1 4 2

)  3 4
−2 0

1 2




�
(

2(3)+ (−3)(−2)+ 0(1) 2(4)+ (−3)(0)+ 0(2)
1(3)+ 4(−2)+ 2(1) 1(4)+ 4(0)+ 2(2)

)

�
(

12 8
−3 8

)
.

The formation of the matrix productAB is referred to as thepremultiplication of
B by A or thepostmultiplication of A by B. Whenn �� p, the matrix productAB
is undefined.

Matrix multiplication is associative. Thus, introducing a third matrixC,

A(BC) � (AB)C , (2.6)

provided thatp � n and thatC hasq rows so that the matrix multiplications
required to form the left and right sides of the equality are defined. The symbol
ABC is used to represent the common value of the left and right sides of equality
(2.6), and this value is referred to as theproduct of A, B, andC. This notation and
terminology extend in an obvious way to any finite number of matrices.

Matrix multiplication is distributive with respect to addition, that is

A(B+ C) � AB+ AC , (2.7)

(A+ B)C � AC+ BC , (2.8)

where, in each equality, it is assumed that the dimensions ofA, B, andC are such
that all multiplications and additions are defined. Results (2.7) and (2.8) extend in
an obvious way to the postmultiplication or premultiplication of a matrixA or C
by the sum of any finite number of matrices.

In general, matrix multiplication is not commutative. That is,AB is not neces-
sarily identical toBA. In fact, whenn � p butm �� q or whenm � q butn �� p,
one of the matrix productsAB andBA is defined, while the other is undefined.
Whenn � p andm � q, AB andBA are both defined, but the dimensions (m×n)
of AB are the same as those ofBA only if m � n. Even whenn � p � m � q, in
which caseA andB are bothn× n matrices and the two matrix productsAB and
BA are both defined and have the same dimensions, it is not necessarily true that
AB � BA. For example,(

1 0
0 2

)(
0 1
1 0

)
�
(

0 1
2 0

)
��
(

0 2
1 0

)
�
(

0 1
1 0

)(
1 0
0 2

)
.
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Twon×nmatricesA andB are said tocommute if AB � BA. More generally, a
collection ofn×nmatricesA1,A2, . . . ,Ak is said tocommute in pairs if AiAj �
AjAi for j > i � 1,2, . . . , k.

For any scalarc,m× n matrix A, andn× p matrix B, it is customary to write
cAB for the scalar productc(AB) of c and the matrix productAB. Note that

cAB � (cA)B � A(cB) (2.9)

(as is evident from the very definitions of scalar and matrix multiplication). More
generally, for any scalarc and saykmatricesA1,A2, . . . ,Ak (for which the product
A1A2 · · ·Ak is defined)c(A1A2 · · ·Ak) is typically abbreviated tocA1A2 · · ·Ak,
and we have that

cA1A2 · · ·Ak

� (cA1)A2 · · ·Ak � A1(cA2)A3 · · ·Ak � A1 · · ·Ak−1(cAk) . (2.10)

d. Transposition

The transpose of anm× nmatrixA, to be denoted by the symbolA′, is then×m
matrix whoseij th element is thejith element ofA. For example,

(
2 −3 0
1 4 2

)′
�

 2 1
−3 4

0 2


 .

Observe that the transpose of a matrix can be formed by rewriting its rows as
columns (or its columns as rows).

For any matrixA
(A′)′ � A (2.11)

and, for any two matricesA andB (that are conformal for addition),

(A+ B)′ � A′ + B′ , (2.12)

as is easily verified.
Further, for any two matricesA andB (for which the productAB is defined),

(AB)′ � B′A′ . (2.13)

To see this, observe that theijth element of (AB)′ equals thejith element ofAB,
which in turn equals ∑

k

ajkbki �
∑
k

bkiajk . (2.14)

Sincebki is theikth element ofB′ andajk thekj th element ofA′, theij th element
of B′A′, like that of (AB)′, equals expression (2.14).

By repeated application of result (2.13), we obtain the more general result that

(A1A2 · · ·Ak)
′ � A′

k · · ·A′
2A′

1 , (2.15)

for anyk matricesA1,A2, . . . ,Ak of appropriate dimensions.
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1.3 Some Basic Types of Matrices

a. Square matrices

A matrix having the same number of rows as columns is called asquare matrix.
An n× n square matrix is said to be oforder n.

Thosen elementsa11, a22 . . . , ann of ann× n square matrix

A �



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann




that fall on an imaginary diagonal line extending from the upper left to the lower
right corners of the matrix are known as the (first, second, etc.)diagonal elements.
The diagonal line itself is sometimes referred to simply as thediagonal. Those
elements of a square matrix other than the diagonal elements (i.e., those elements
that lie above and to the right or below and to the left of the diagonal) are called
theoff-diagonal elements.

Note that the productAA of a matrixA by itself is defined if and only ifA
is square. For a square matrixA, the symbolA2 is used to representAA, A3 to
representAA2 = AAA, and, more generally,Ak to representAAk−1 � AAAk−2 �
. . . � AAA · · ·A (k � 2,3, . . .).

b. Symmetric matrices

A matrix A is said to besymmetric if A′ � A. Thus, a symmetric matrix is a square
matrix whoseij th element equals itsjith element. For example,


 3 1 −4

1 0 2
−4 2 −5




is a symmetric matrix.

c. Diagonal matrices

A diagonal matrix is a a square matrix whose off-diagonal elements are all equal
to 0, that is, a matrix of the general form



d1 0 . . . 0
0 d2 0
...

...
0 0 dn


 ,
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whered1, d2, . . . , dn are scalars. The notationD � {di} is sometimes used to
introduce a diagonal matrix, theith diagonal element of which isdi . Also, we
sometimes write diag(d1, d2, . . . , dn) for such a matrix.

Note that, for anym×nmatrixA � {aij } and any diagonal matrixD � {di} (of
orderm), theij th element of the matrix productDA equalsdiaij . Thus, the effect
of premultiplying anm× nmatrixA by a diagonal matrixD is simply to multiply
each element of theith row ofA by theith diagonal element ofD (i � 1,2, . . . , m).
Similarly, the effect of postmultiplyingA by a diagonal matrixD (of ordern) is
to multiply each element of thej th column ofA by thej th diagonal element ofD
(j � 1,2, . . . , n).

Note also that the effect of multiplying anm × n matrix A by a scalark is the
same as that of premultiplying or postmultiplyingA by them×m orn×nmatrix
diag(k, k, . . . , k).

d. Identity matrices

A diagonal matrix

diag(1,1, . . . ,1)�




1 0 . . . 0
0 1 0
...

...
0 0 1




whose diagonal elements are all equal to 1 is called anidentity matrix. The symbol
In is used to represent an identity matrix of ordern. In cases where the order is
clear from the context, we may simply writeI for an identity matrix. Clearly, for
an arbitrary matrixA,

IA � AI � A . (3.1)

e. Matrices of ones

The symbolJmn is used to represent anm × n matrix whose elements are all
equal to 1. Or, when the dimensions are clear from the context or are to be left
unspecified, we may simply writeJ for such a matrix. Thus,

J �




1 1 . . . 1
1 1 . . . 1
...

...
...

1 1 . . . 1


 .

Also, Jn is sometimes written forJnn.
Note that

JmnJnp � nJmp . (3.2)
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f. Null matrices

A matrix whose elements are all equal to 0 is called anull matrix. A null matrix is
denoted by the symbol0. Thus,

0 �




0 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0


 .

Letting A represent an arbitrary matrix andk an arbitrary scalar, we find that

0A � 0, k0 � 0 ,

A+ 0 � 0+ A � A ,

A− A � 0 ,

0A � 0, A0 � 0

(where the dimensions of each null matrix0 can be ascertained from the context).

g. Triangular matrices

If all of the elements of a square matrix that are located below and to the left of the
diagonal are 0, the matrix is called anupper triangular matrix. Thus, the general
form of an upper triangular matrix is



a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n
...

...
...

...
0 0 0 ann


 .

Similarly, if all of the elements that are located above and to the right of the
diagonal are 0, the matrix is called alower triangular matrix. More formally, an
n × n matrix A � {aij } is upper triangular ifaij � 0 for j < i � 1, . . . , n, and
is lower triangular ifaij � 0 for j > i � 1, . . . , n. By a triangular matrix, we
mean a (square) matrix that is upper triangular or lower triangular. Observe that
a (square) matrix is a diagonal matrix if and only if it is both upper and lower
triangular.

The transpose of an upper triangular matrix is a lower triangular matrix — and
vice versa — as is easily verified. Further, the sum of two upper triangular matrices
(of the same order) is upper triangular and the sum of two lower triangular matrices
is lower triangular, as is also easily verified.

Some basic properties of the product of two upper or two lower triangular
matrices are described in the following lemma.
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Lemma 1.3.1. Let A � {aij } andB � {bij } representn× n matrices. IfA and
B are both upper triangular, then their productAB is upper triangular. Similarly,
if A andB are both lower triangular, thenAB is lower triangular. Further, ifA and
B are either both upper triangular or both lower triangular, then theith diagonal
element ofAB is the productaiibii of the ith diagonal elementsaii andbii of A
andB (i � 1, . . . , n).

Proof. By definition, theij th element ofAB is
∑n

k�1 aikbkj . Suppose thatA
andB are both upper triangular and hence thataik � 0, fork < i, andbkj � 0, for
k > j . If j ≤ i, then clearlybkj � 0 for k > i. Thus, forj ≤ i,

n∑
k�1

aikbkj �
i−1∑
k�1

(0)bkj + aiibij +
n∑

k�i+1

aik(0)� aiibij .

In particular,
n∑
k�1

aikbki � aiibii

and, forj < i,
n∑
k�1

aikbkj � aii(0)� 0 .

We conclude that theith diagonal element ofAB is aiibii (i � 1, . . . , n) and that
AB is upper triangular.

Suppose now thatA andB are both lower triangular, rather than upper triangular.
Then, sinceB′ andA′ are both upper triangular withith diagonal elementsbii and
aii , respectively,B′A′ is upper triangular withith diagonal elementaiibii , implying
thatAB � (B′A′)′ is lower triangular withith diagonal elementaiibii . Q.E.D.

An (upper or lower) triangular matrix is called aunit (upper or lower) triangular
matrix if all of its diagonal elements equal one. In the special case of unit triangular
matrices, Lemma 1.3.1 reduces to the following result.

Corollary 1.3.2. The product of two unit upper triangular matrices (of the same
order) is unit upper triangular, and the product of two unit lower triangular matrices
is unit lower triangular.

h. Row and column vectors

A matrix that has only one column, that is, a matrix of the form

a1

a2
...
am




is called acolumn vector. Similarly, a matrix that has only one row is called a
row vector. A row or column vector havingm elements may be referred to as an
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m-dimensional row or column vector. Clearly, the transpose of anm-dimensional
column vector is anm-dimensional row vector, and vice versa.

Lowercase boldface letters (e.g.,a) are customarily used to represent column
vectors. This notation is helpful in distinguishing column vectors from matrices
that may have more than one column. No further notation is introduced for row
vectors. Instead, row vectors are represented as the transposes of column vectors.
For example,a′ represents the row vector whose transpose is the column vectora.
The notationa � {ai} or a′ � {ai} is used in introducing a column or row vector
whoseith element isai .

The symbol1m is generally used in place ofJm1, that is,1m is used to represent
anm-dimensional column vector whose elements are all equal to 1. If its dimension
is clear from the context or is to be left unspecified, we may simply write1 for
such a vector. Note thatJ1n, or equivalently ann-dimensional row vector whose
elements are all equal to 1, may be written as1′n or simply as1′.

Observe that

1m1′n � Jmn . (3.3)

Null row or column vectors (i.e., null matrices having one row or one column)
are sometimes referred to simply as null vectors, and (like null matrices in general)
are represented by the symbol0.

i. 1× 1 matrices

Note that there is a distinction between a scalar, sayk, and the 1× 1 matrix (k)
whose sole element isk. For any column vectora,

a(k) � ka, (k)a′ � ka′ .

However, in general, the productkA obtained by multiplying anm× n matrix A
by the scalark is not the same as the product (k)A or A(k) of the two matrices
(k) andA. In fact, (k)A or A(k) is undefined unlessm � 1 orn � 1, whilekA is
defined for allm andn.

For convenience, we sometimes use the same symbol to represent both a 1× 1
matrix and the element of that matrix. Which use is intended is discernible from
the context.

Exercises

Section 1.2

1. Show that, for any matricesA, B, andC (of the same dimensions),

(A+ B)+ C � (C+ A)+ B .
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2. LetA represent anm×nmatrix andB ann×pmatrix, and letc andk represent
arbitrary scalars. Using results (2.9) and (2.1) (or other means), show that

(cA)(kB) � (ck)AB .

3. (a) Verify result (2.6) (on the associativeness of matrix multiplication); that is,
show that, for anym × n matrix A � {aij }, n × q matrix B � {bjk}, and
q × r matrix C � {cks}, A(BC) � (AB)C.

(b) Verify result (2.7) (on the distributiveness with respect to addition of matrix
multiplication); that is, show that, for anym×nmatrixA � {aij } andn×q
matricesB � {bjk} andC � {cjk}, A(B+ C) � AB+ AC.

4. LetA � {aij } represent anm× n matrix andB � {bij } ap ×m matrix.

(a) Letx � {xi} represent ann-dimensional column vector. Show that theith
element of thep-dimensional column vectorBAx is

m∑
j�1

bij

n∑
k�1

ajkxk (E.1)

(b) Let X � {xij } represent ann × q matrix. Generalize formula (E.1) by
expressing theirth element of thep × q matrix BAX in terms of the
elements ofA, B, andX.

(c) Let x � {xi} represent ann-dimensional column vector andC � {cij } a
q × p matrix. Generalize formula (E.1) by expressing theith element of
theq-dimensional column vectorCBAx in terms of the elements ofA, B,
C, andx.

(d) Let y � {yi} represent ap-dimensional column vector. Express theith
element of then-dimensional row vectory′BA in terms of the elements of
A, B, andy.

Section 1.3

5. LetA andB representm× n matrices. Show that

(A+ B)(A− B) � A2 − B2

if and only if A andB commute.

6. (a) Show that the productAB of twon×n symmetric matricesA andB is itself
symmetric if and only ifA andB commute.

(b) Give an example of two symmetric matrices (of the same order) whose
product is not symmetric.
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7. Verify (a) that the transpose of an upper triangular matrix is lower triangular
and (b) that the sum of two upper triangular matrices (of the same order) is
upper triangular.

8. Let A � {aij } represent ann × n upper triangular matrix, and suppose that
the diagonal elements ofA equal zero (i.e., thata11 � a22 � · · · � ann � 0).
Further, letp represent an arbitrary positive integer.

(a) Show that, fori � 1, . . . , n andj � 1, . . . ,min(n, i + p − 1), theij th
element ofAp equals zero.

(b) Show that, fori ≥ n− p + 1, theith row of Ap is null.

(c) Show that, forp ≥ n, Ap � 0.



2
Submatrices and Partitioned Matrices

Two very important (and closely related) concepts are introduced in this chapter:
that of a submatrix and that of a partitioned matrix. These concepts arise very
naturally in statistics (especially in multivariate analysis and linear models) and in
many other disciplines that involve probabilistic ideas. And, results on submatrices
and partitioned matrices, which can be found in Chapters 8, 9, 13, and 14 (and
other of the subsequent chapters), have proved to be very useful. In particular,
such results are almost indispensable in work involving the multivariate normal
distribution — refer, for example, to Searle (1971, sec. 2.4f).

2.1 Some Terminology and Basic Results

A submatrix of a matrixA is a matrix that can be obtained by striking out rows
and/or columns ofA. For example, if we strike out the second row of the matrix


 2 4 3 6

1 5 7 9
−1 0 2 2


 ,

we obtain the 2× 4 submatrix

(
2 4 3 6

−1 0 2 2

)
.
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Alternatively, if we strike out the first and third columns, we obtain the 3× 2
submatrix 

4 6
5 9
0 2


 ;

or, if we strike out the second row and the first and third columns, we obtain the
2× 2 submatrix (

4 6
0 2

)
.

Note that any matrix is a submatrix of itself; it is the submatrix obtained by striking
out zero rows and zero columns.

Submatrices of a row or column vector, that is, of a matrix having one row or
column, are themselves row or column vectors and are customarily referred to as
subvectors.

LetA∗ represent anr×s submatrix of anm×nmatrixA obtained by striking out
the i1, . . . , im−r th rows andj1, . . . , jn−s th columns (ofA), and letB∗ represent
the s × r submatrix ofA′ obtained by striking out thej1, . . . , jn−s th rows and
i1, . . . , im−r th columns (ofA′). Then,

B∗ � A′
∗ , (1.1)

as is easily verified.
A submatrix of ann × n matrix is called aprincipal submatrix if it can be

obtained by striking out the same rows as columns (so that theith row is struck
out whenever theith column is struck out, and vice versa). Ther × r (principal)
submatrix of ann × n matrix obtained by striking out its lastn − r rows and
columns is referred to as aleading principal submatrix (r � 1, . . . , n). A principal
submatrix of a symmetric matrix is symmetric, a principal submatrix of a diagonal
matrix is diagonal, and a principal submatrix of an upper or lower triangular matrix
is respectively upper or lower triangular, as is easily verified.

A matrix can be divided or partitioned into submatrices by drawing horizontal
or vertical lines between various of its rows or columns, in which case the matrix
is called apartitioned matrix and the submatrices are sometimes referred to as
blocks (as in blocks of elements). For example,

 2 4 3 6
1 5 7 9

−1 0 2 2


 ,


 2 4 3 6

1 5 7 9
−1 0 2 2


 ,


 2 4 3 6

1 5 7 9
−1 0 2 2




are various partitionings of the same matrix.
In effect, a partitionedm× nmatrix is anm× nmatrixA � {aij } that has been

reexpressed in the general form


A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
...

Ar1 Ar2 · · · Arc


 .
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Here,Aij is anmi×nj matrix (i � 1, . . . , r; j � 1, . . . , c), wherem1, . . . , mr and
n1, . . . , nc are positive integers such thatm1+· · ·+mr � m andn1+· · ·+nc � n.
Or, more explicitly,

Aij�



am1+···+mi−1+1, n1+···+nj−1+1 . . . am1+···+mi−1+1, n1+···+nj
...

...
am1+···+mi, n1+···+nj−1+1 . . . am1+···+mi, n1+···+nj


 .

(Wheni � 1 orj � 1, interpret the degenerate summ1+· · ·+mi−1 orn1+· · ·+
nj−1 as zero.) Thus, a partitioned matrix can be regarded as an array or “matrix”
of matrices.

Note that a matrix that has been divided by “staggered” lines, for example,
 2 4 3 6

1 5 7 9
−1 0 2 2


 ,

does not satisfy our definition of a partitioned matrix. Thus, if a matrix, say


A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
...

Ar1 Ar2 · · · Arc


 ,

is introduced as a partitioned matrix, there is an implicit assumption that each
of the submatricesAi1,Ai2, . . . ,Aic in the ith “row” of submatrices contains the
same number of rows (i � 1,2, . . . , r) and similarly that each of the submatrices
A1j ,A2j , . . . ,Arj in thej th “column” of submatrices contains the same number
of columns.

It is customary to identify each of the blocks in a partitioned matrix by referring
to the row of blocks and the column of blocks in which it appears. Thus, the
submatrixAij is referred to as theij th block of the partitioned matrix




A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
...

Ar1 Ar2 · · · Arc


 .

In the case of a partitionedm× n matrix A of the form

A �




A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
...

Ar1 Ar2 · · · Arr


 (1.2)
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(for which the number of rows of blocks equals the number of columns of blocks),
the ij th block Aij of A is called adiagonal block if j � i and anoff-diagonal
block if j �� i. If all of the off-diagonal blocks ofA are null matrices, that is, if

A �




A11 0 · · · 0
0 A22 0
...

...
0 0 Arr


 ,

thenA is called ablock-diagonal matrix, and sometimes diag(A11,A22, . . . ,Arr )
is written forA. If Aij � 0 for j < i � 1, . . . , r, that is, if

A �




A11 A12 · · · A1r

0 A22 · · · A2r
...

...
...

0 0 Arr


 ,

thenA is called anupper block-triangular matrix. Similarly, if Aij � 0 for j >
i � 1, . . . , r, that is, if

A �




A11 0 · · · 0
A21 A22 0

...
...

...
Ar1 Ar2 Arr


 ,

thenA is called alower block-triangular matrix. To indicate thatA is either upper
or lower block-triangular (without being more specific),A is referred to simply as
block-triangular.

Note that a partitionedm × n matrix A of the form (1.2) is block-diagonal if
and only if it is both upper block-triangular and lower block-triangular. Note also
that, ifm � n � r (in which case each block ofA consists of a single element),
saying thatA is block diagonal or upper or lower block triangular is equivalent to
saying thatA is diagonal or upper or lower triangular.

Partitioned matrices having one row or one column are customarily referred to
aspartitioned (row or column) vectors. Thus, a partitionedm-dimensional column
vector is anm× 1 vectora � {at } that has been reexpressed in the general form


a1

a2
...

ar


 .

Here, ai is anmi × 1 vector with elementsam1+···+mi−1+1, . . . , am1+···+mi−1+mi ,
respectively (i � 1, . . . , r), wherem1, . . . , mr are positive integers such that
m1+ · · · +mr � m. Similarly, a partitionedm-dimensional row vector is a 1×m
vectora′ � {at } that has been reexpressed in the general form (a′1, a′2, . . . , a′r ).
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2.2 Scalar Multiples, Transposes, Sums, and Products
of Partitioned Matrices

Let

A �




A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
...

Ar1 Ar2 · · · Arc




represent a partitionedm×nmatrix whoseij th blockAij is of dimensionsmi×nj .
Clearly, for any scalark,

kA �



kA11 kA12 · · · kA1c

kA21 kA22 · · · kA2c
...

...
...

kAr1 kAr2 · · · kArc


 . (2.1)

In particular,

−A �



−A11 −A12 · · · −A1c

−A21 −A22 · · · −A2c
...

...
...

−Ar1 −Ar2 · · · −Arc


 . (2.2)

Further, it is a simple exercise to show that

A′ �




A′
11 A′

21 · · · A′
r1

A′
12 A′

22 · · · A′
r2

...
...

...
A′

1c A′
2c · · · A′

rc


 ; (2.3)

that is, A′ can be expressed as a partitioned matrix, comprisingc rows andr
columns of blocks, theij th of which is the transposeA′

ji of thejith blockAji of
A.

Now, let

B �




B11 B12 · · · B1v

B21 B22 · · · B2v
...

...
...

Bu1 Bu2 · · · Buv




represent a partitionedp×q matrix whoseij th blockBij is of dimensionspi×qj .
The matricesA andB are conformal (for addition) provided thatp � m and

q � n. If u � r, v � c, pi � mi (i � 1, . . . , r), andqj � nj (j � 1, . . . , c),
that is, if (besidesA andB being conformal for addition) the rows and columns of
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B are partitioned in the same way as those ofA, then

A+ B �




A11+ B11 A12+ B12 · · · A1c + B1c

A21+ B21 A22+ B22 · · · A2c + B2c
...

...
...

Ar1 + Br1 Ar2 + Br2 · · · Arc + Brc


 , (2.4)

and the partitioning ofA andB is said to beconformal (for addition). This result
and terminology extend in an obvious way to the addition of any finite number of
partitioned matrices.

If A andB are conformal (for addition), then

A− B �




A11− B11 A12− B12 · · · A1c − B1c

A21− B21 A22− B22 · · · A2c − B2c
...

...
...

Ar1 − Br1 Ar2 − Br2 · · · Arc − Brc


 , (2.5)

as is evident from results (2.4) and (2.2).
The matrix productAB is defined provided thatn � p. If c � u andnk �

pk (k � 1, . . . , c) [in which case all of the productsAikBkj (i � 1, . . . , r; j �
1, . . . , v; k � 1, . . . , c), as well as the productAB, exist], then

AB �




F11 F12 · · · F1v

F21 F22 · · · F2v
...

...
...

Fr1 Fr2 · · · Frv


 , (2.6)

whereFij �
∑c

k�1 AikBkj � Ai1B1j+Ai2B2j+· · ·+AicBcj , and the partitioning
of A andB is said to beconformal (for the premultiplication ofB by A).

In the special case wherer � c � u � v � 2, that is, where

A �
(

A11 A12

A21 A22

)
and B �

(
B11 B12

B21 B22

)
,

result (2.6) simplifies to

AB �
(

A11B11+ A12B21 A11B12+ A12B22

A21B11+ A22B21 A21B12+ A22B22

)
. (2.7)

If A � (A1,A2, . . . ,Ac) is anm × n matrix that has been partitioned only by
columns (for emphasis, we sometimes insert commas between the submatrices of
such a partitioned matrix), then

A′ �




A′
1

A′
2

...
A′
c


 , (2.8)
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and further if

B �




B1

B2
...

Bc




is ann×q partitioned matrix that has been partitioned only by rows (in a way that
is conformal for its premultiplication byA), then

AB �
c∑
k�1

AkBk � A1B1 + A2B2 + · · · + AcBc . (2.9)

Similarly, if

A �




A1

A2
...

Ar




is anm× n matrix that has been partitioned only by rows, then

A′ � (A′
1,A′

2, . . . ,A′
r ) , (2.10)

and further ifB � (B1,B2, . . . ,Bv) is ann × q matrix that has been partitioned
only by columns, then

AB �




A1B1 A1B2 · · · A1Bv

A2B1 A2B2 · · · A2Bv

...
...

...
ArB1 ArB2 · · · ArBv


 . (2.11)

2.3 Some Results on the Product of a Matrix and a
Column Vector

Let A represent anm × n matrix and x an n × 1 vector. Writing A as
A � (a1, a2, . . . , an), where a1, a2, . . . , an are the columns ofA, and x as
x � (x1, x2, . . . , xn)′, wherex1, x2, . . . , xn are the elements ofx, we find, as a
special case of result (2.9), that

Ax �
n∑
k�1

xkak � x1a1 + x2a2 + · · · + xkak . (3.1)

Thus, the effect of postmultiplying a matrix by a column vector is to form a
linear combination of the columns of the matrix, where the coefficients in the
linear combination are the elements of the column vector. Similarly, the effect of
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premultiplying a matrix by a row vector is to form a linear combination of the rows
of the matrix, where the coefficients in the linear combination are the elements of
the row vector.

Representation (3.1) is helpful in establishing the elementary results expressed
in the following two lemmas.

Lemma 2.3.1. For any column vectory and nonnull column vectorx, there
exists a matrixA such thaty � Ax.

Proof. Sincex is nonnull, one of its elements, sayxj , is nonzero. TakeA to be
the matrix whosej th column is (1/xj )y and whose other columns are null. Then,
y � Ax, as is evident from result (3.1). Q.E.D.

Lemma 2.3.2. For any twom × n matricesA andB, A � B if and only if
Ax � Bx for everyn× 1 vectorx.

Proof. It is obvious that, ifA � B, thenAx � Bx for every vectorx.
To prove the converse, suppose thatAx � Bx for everyx. Takingx to be the

n × 1 vector whoseith element is 1 and whose other elements are 0, and letting
ai andbi represent theith columns ofA andB, respectively, it is clear from result
(3.1) that

ai � Ax � Bx � bi

(i � 1, . . . , n). We conclude thatA � B. Q.E.D.
Note that Lemma 2.3.2 implies, in particular, thatA � 0 if and only if Ax � 0

for everyx.

2.4 Expansion of a Matrix in Terms of Its Rows,
Columns, or Elements

An m × n matrix A � {aij } can be expanded in terms of its rows, columns, or
elements by making use of formula (2.9). Denote theith row ofA by r′i and theith
column ofIm by ei (i � 1,2, . . . , m). Then, writingIm asIm � (e1, e2, . . . , em)
andA as

A �




r′1
r′2
...

r′m




and applying formula (2.9) to the productImA, we obtain the expansion

A �
m∑
i�1

eir′i � e1r′1 + e2r′2 + · · · + emr′m . (4.1)

Similarly, denote thej th column ofA by aj and thej th row of In by u′j (j �
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1,2, . . . , n). Then, writingA asA � (a1, a2, . . . , an) andIn as

In �




u′1
u′2
...

u′n




and applying formula (2.9) to the productAIn, we obtain the alternative expansion

A �
n∑
j�1

aju′j � a1u′1 + a2u′2 + · · · + anu′n . (4.2)

Moreover, the application of formula (3.1) to the productImaj gives the expan-
sion

aj �
m∑
i�1

aijei .

Upon substituting this expansion into expansion (4.2), we obtain the further ex-
pansion

A �
m∑
i�1

n∑
j�1

aijUij , (4.3)

whereUij � eiu′j is anm × n matrix whoseij th element equals 1 and whose
remainingmn− 1 elements equal 0. In the special case wheren � m (i.e., where
A is square),uj � ej and henceUij � eie′j , and in the further special case where
A � Im, expansion (4.3) reduces to

Im �
m∑
i�1

eie′i . (4.4)

Note that, as a consequence of result (4.3), we have that

e′iAuj � e′i

(
m∑
k�1

n∑
s�1

akseku′s

)
uj �

m∑
k�1

n∑
s�1

akse′ieku
′
suj ,

which (sincee′iek equals 1, ifk � i, and equals 0, ifk �� i, and sinceu′suj equals
1, if s � j , and equals 0, ifs �� j ) simplifies to

e′iAuj � aij . (4.5)
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Exercises

Section 2.1

1. Verify result (1.1).

2. Verify (a) that a principal submatrix of a symmetric matrix is symmetric, (b) that
a principal submatrix of a diagonal matrix is diagonal, and (c) that a principal
submatrix of an upper triangular matrix is upper triangular.

3. Let 


A11 A12 . . . A1r

0 A22 . . . A2r
...

...
...

0 0 . . . Arr




represent ann × n upper block-triangular matrix whoseij th block Aij is of
dimensionsni × nj (j ≥ i � 1, . . . , r). Show thatA is upper triangular if and
only if each of its diagonal blocksA11, A22, . . . ,Arr is upper triangular.

Section 2.2

4. Verify results (2.3) and (2.6).



3
Linear Dependence and Independence

While short in length, the following material on linear dependence and indepen-
dence is of fundamental importance — so much so that it forms a separate chapter.

3.1 Definitions

Any finite set of row or column vectors, or more generally any finite set of ma-
trices, is either linearly dependent or linearly independent. A nonempty finite set
{A1,A2, . . . ,Ak} of m× n matrices is said to belinearly dependent if there exist
scalarsx1, x2, . . . , xk, not all zero, such that

x1A1 + x2A2 + · · · + xkAk � 0 .

If no such scalars exist, the set is calledlinearly independent. The empty set is
considered to be linearly independent. Note that if any subset of a finite set of
matrices is linearly dependent, then the set itself is linearly dependent.

While technically linear dependence and independence are properties of sets of
matrices, it is customary to speak of “a set of linearly dependent (or independent)
matrices” or simply of “linearly dependent (or independent) matrices” instead of
“a linearly dependent (or independent) set of matrices.” In particular, in the case
of row or column vectors, it is customary to speak of “linearly dependent (or
independent) vectors.”
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3.2 Some Basic Results

Note that a set consisting of a single matrix is linearly dependent if the matrix is
null, and is linearly independent if the matrix is nonnull. An elementary result on
the linear dependence or independence of two or more matrices is expressed in the
following lemma.

Lemma 3.2.1. A set{A1,A2, . . . ,Ak} of two or morem×nmatrices is linearly
dependent if and only if at least one of the matrices is expressible as a linear
combination of the others; that is, if and only if, for some integerj (1 ≤ j ≤ k),
Aj is expressible as a linear combination ofA1, . . . ,Aj−1, Aj+1, . . . ,Ak.

Proof. Suppose that, for somej , Aj is expressible as a linear combination

Aj � x1A1 + · · · + xj−1Aj−1 + xj+1Aj+1 + · · · + xkAk

of the otherk − 1m× n matrices. Then,

(−x1)A1 + · · · + (−xj−1)Aj−1 + Aj

+(−xj+1)Aj+1 + · · · + (−xk)Ak � 0 ,

implying that{A1,A2, . . . ,Ak} is a linearly dependent set.
Conversely, suppose that{A1,A2, . . . ,Ak} is linearly dependent, in which case

x1A1 + x2A2 + · · · + xkAk � 0

for some scalarsx1, x2, . . . , xk, not all zero. Letj represent any integer for which
xj �� 0. Then,

Aj � (−x1/xj )A1 + · · · + (−xj−1/xj )Aj−1

+(−xj+1/xj )Aj+1 + · · · + (−xk/xj )Ak .

Q.E.D.
Another, more profound result on the linear dependence or independence of two

or more matrices is expressed in the following lemma.
Lemma 3.2.2. A set{A1,A2, . . . ,Ak} of two or morem× n matrices, the first

of which is nonnull, is linearly dependent if and only if at least one of the matrices
is expressible as a linear combination of the preceding ones, that is, if and only
if, for some integerj (2 ≤ j ≤ k), Aj is expressible as a linear combination
of A1, . . . ,Aj−1. (Or, equivalently,{A1,A2, . . . ,Ak} is linearly independent if
and only if none of the matrices is expressible as a linear combination of its
predecessors, that is, if and only if, for every integerj (2 ≤ j ≤ k), Aj is not
expressible as a linear combination ofA1, . . . ,Aj−1.)

Proof. Suppose that, for somej , Aj is expressible as a linear combination
of A1, . . . ,Aj−1. Then, it follows immediately from Lemma 3.2.1 that the set
{A1, . . . ,Ak} is linearly dependent.

Conversely, suppose that{A1, . . . ,Ak} is linearly dependent. Definej to be the
first integer for which{A1, . . . ,Aj } is a linearly dependent set. Then,

x1A1 + · · · + xjAj � 0
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for some scalarsx1, . . . , xj , not all zero. Moreover,xj �� 0, since otherwise
{A1, . . . ,Aj−1} would be a linearly dependent set, contrary to the definition of
j . Thus,

Aj � (−x1/xj )A1 + · · · + (−xj−1/xj )Aj−1 .

Q.E.D.
It is a simple exercise to verify the following corollary of Lemma 3.2.2.
Corollary 3.2.3. Suppose that{A1, . . . ,Ak} is a (nonempty) linearly indepen-

dent set ofm × n matrices and thatA is anotherm × n matrix. Then, the set
{A1, . . . ,Ak,A} is linearly independent if and only ifA is not expressible as a
linear combination of the matricesA1, . . . ,Ak.

The following lemma gives a basic result on the linear dependence or indepen-
dence of linear combinations of matrices.

Lemma 3.2.4. Let A1,A2, . . . ,Ak representm × n matrices. Further, forj �
1, . . . , r, let

Cj � x1jA1 + x2jA2 + · · · + xkjAk

(where x1j , x2j , . . . , xkj are scalars), and letxj � (x1j , x2j , . . . , xkj )′. If
A1,A2, . . ., Ak are linearly independent and ifx1, x2, . . . , xr are linearly indepen-
dent, thenC1,C2, . . . , Cr are linearly independent. Ifx1, x2, . . . , xr are linearly
dependent, thenC1,C2, . . . , Cr are linearly dependent.

Proof. Observe that, for any scalarsy1, y2, . . . , yr ,

r∑
j�1

yjCj � (
r∑
j�1

yjx1j )A1 + (
r∑
j�1

yjx2j )A2 + · · · + (
r∑
j�1

yjxkj )Ak (2.1)

and
r∑
j�1

yjxj � (
r∑
j�1

yjx1j ,

r∑
j�1

yjx2j , . . . ,

r∑
j�1

yjxkj )
′ . (2.2)

Now, suppose thatx1, x2, . . . , xr are linearly dependent. Then, there exist scalars
y1, y2, . . . , yr , not all of which are zero, such that

∑r
j�1 yjxj � 0 and hence [in

light of equalities (2.2) and (2.1)] such that
∑r

j�1 yjCj � 0. Thus,C1,C2, . . . ,Cr

are linearly dependent.
Alternatively, suppose thatA1,A2, . . . ,Ak are linearly independent and

x1, x2, . . . , xr are linearly independent. And, lety1, y2, . . . , yr represent any
scalars such that

∑r
j�1 yjCj � 0. Then, in light of equality (2.1) (and the linear

independence ofA1,A2, . . . ,Ak),
∑r

j�1 yjxij � 0 (for i � 1,2, . . . , r) and hence∑r
j�1 yjxj � 0, implying (in light of the linear independence ofx1, x2, . . . , xr )

that y1 � y2 � · · · � yr � 0. Thus,C1,C2, . . . ,Cr are linearly indepen-
dent. Q.E.D.
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Exercises

Section 3.1

1. For what values of the scalark are the three row vectors (k,1,0), (1, k, 1), and
(0,1, k) linearly dependent, and for what values are they linearly independent?
Describe your reasoning.

Section 3.2

2. LetA, B, andC represent three linearly independentm×nmatrices. Determine
whether or not the three pairwise sumsA+ B, A+ C, andB+ C are linearly
independent. (Hint. Take advantage of Lemma 3.2.4.)



4
Linear Spaces: Row and Column Spaces

Associated with any matrix is a very important characteristic called the rank. The
rank of a matrix is the subject of Section 4.4. There are several (consistent) ways
of defining the rank. The most fundamental of these is in terms of the dimension
of a linear space.

Linear spaces and their dimensions are discussed in Sections 4.1 through 4.3.
Any matrix has two characteristics that are even more basic than its rank; these are
two linear spaces that are respectively known as the row and column spaces of the
matrix through- discussion of row and column spaces is included in the coverage
of Sections 4.1 through 4.3. It is shown in Section 4.4 that the column space of a
matrix is of the same dimension as its row space; the rank of the matrix equals this
dimension. The final section of Chapter 4 (Section 4.5) gives some basic results
on the ranks and row and column spaces of partitioned matrices and of sums of
matrices.

4.1 Some Definitions, Notation, and Basic
Relationships and Properties

a. Column spaces

The column space of anm × n matrix A is the set whose elements consist of
all m-dimensional column vectors that are expressible as linear combinations of
then columns ofA. Thus, the elements of the column space ofA consist of all
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m-dimensional column vectors of the general form

x1a1 + x2a2 + · · · + xnan ,
wherex1, x2, . . . , xn are scalars anda1, a2, . . . , an represent the columns ofA,
or equivalently of the general formAx, wherex is ann × 1 column vector. For
example, the column space of the 3× 4 matrix

 2 −4 0 0
−1 2 0 0

0 0 1 2




includes the column vector
 4
−2
−3


 � 2


 2
−1

0


+ 0


−4

2
0


− 3


0

0
1


+ 0


0

0
2


 ,

but not the column vector (1, 0, 0)′.

b. Linear spaces

A nonempty set, sayV, of matrices (all of which have the same dimensions) is
called alinear space if: (1) for every matrixA in V and every matrixB in V,
the sumA + B is in V; and (2) for every matrixA in V and every scalark, the
productkA is in V. [The definition of a linear space can be extended to sets whose
elements may not be matrices through- refer, for example, to Halmos (1958) for
a more general discussion.] IfA1, . . . ,Ak are matrices in a linear spaceV and
x1, . . . , xk are scalars, then it follows from the definition of a linear space that the
linear combinationx1A1 + · · · + xkAk is also inV.

Clearly, the column space of anym×nmatrix is a linear space (comprising var-
iousm×1 matrices). And, the set consisting of allm×nmatrices is a linear space.
Further, since sums and scalar multiples of symmetric matrices are symmetric, the
set of alln× n symmetric matrices is a linear space.

Note that every linear space contains the null matrix0 (of appropriate dimen-
sions), and that the set{0}, whose only element is a null matrix, is a linear space.
Note also that if a linear space contains a nonnull matrix, then it contains an infinite
number of nonnull matrices.

c. Row spaces

The row space of anm × n matrix A is the set whose elements consist of alln-
dimensional row vectors that are expressible as linear combinations of them rows
of A. Thus, the elements of the row space ofA consist of alln-dimensional row
vectors of the general form

x1a′1 + x2a′2 + · · · + xma′m ,
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wherex1, x2, . . . , xm are scalars anda′1, a′2, . . . , a′m represent the rows ofA, or
equivalently of the general formx′A, wherex′ is anm-dimensional row vector.
Clearly, a row space, like a column space, is a linear space.

d. Notation

The symbolC(A) will be used to denote the column space of a matrixA, andR(A)
will be used to denote the row space ofA. The symbolRm×n will be used to denote
the linear space whose elements consist of allm×nmatrices. The symbolRn will
often be used (in place ofRn×1 or R1×n) to represent the set of alln-dimensional
column vectors or, depending on the context, the set of alln-dimensional row
vectors. Note thatR(In) � Rn (whereRn is to be interpreted as the set of all
n-dimensional row vectors), andC(In) � Rn (whereRn is to be interpreted as the
set of alln-dimensional column vectors).

Sometimes,x ∈ S will be written as an abbreviation for the statement thatx is
an element of a setS (or to introducex as an element ofS). Similarly,x �∈ S will
sometimes be written as an abbreviation for the statement thatx is not an element
of S.

e. Relationship between row and column spaces

The following lemma relates the column space of a matrix to the row space of its
transpose.

Lemma 4.1.1. For any matrixA, y ∈ C(A) if and only if y′ ∈ R(A′).
Proof. If y ∈ C(A), theny � Ax for some column vectorx, implying that

y′ � (Ax)′ � x′A′ and hence thaty′ ∈ R(A′). An analogous argument can be used
to show that ify′ ∈ R(A′), theny ∈ C(A). Q.E.D.

f. A basic property of linear spaces

The following lemma gives a basic property of linear spaces.
Lemma 4.1.2. Let B represent anm × n matrix, and letV represent a linear

space ofm× n matrices. Then, for any matrixA in V, A + B ∈ V if and only if
B ∈ V.

Proof. If B ∈ V, then it is apparent from the very definition of a linear space
thatA+ B ∈ V. Conversely, ifA+ B ∈ V, then, sinceB � (A+ B)+ (−1)A, it
is clear from the definition of a linear space thatB ∈ V. Q.E.D.

4.2 Subspaces

A subsetU of a linear spaceV is called asubspace of V if U is itself a linear space.
Trivial examples of a subspace of a linear spaceV are: (1) the set{0}, whose only
element is the null matrix, and (2) the entire setV. The column spaceC(A) of
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anm × n matrix A is a subspace ofRm (whenRm is interpreted as the set of
all m-dimensional column vectors), andR(A) is a subspace ofRn (whenRn is
interpreted as the set of alln-dimensional row vectors).

Some additional terminology and notation are required in our discussion of
subspaces. For any two subsetsS andT of a given set (and, in particular, for any
two subspaces ofRm×n), S is said to becontained in T if every element ofS is
an element ofT . Subsequently,S ⊂ T (or T ⊃ S) is written as an abbreviation
for the statement thatS is contained inT . Note that, ifS ⊂ T andT ⊂ S, then
S � T , that is, the subsetsS andT are identical.

Some basic results on row and column spaces are expressed in the following
two lemmas.

Lemma 4.2.1. Let Arepresent anm × n matrix. Then, for any subspaceU of
Rm, C(A) ⊂ U if and only if every column ofA belongs toU . Similarly, for any
subspaceV of Rn, R(A) ⊂ V if and only if every row ofA belongs toV.

Proof. Let a1, . . . , an represent the columns ofA. If C(A) ⊂ U , then obviously
ai ∈ U (i � 1, . . . , n).

Conversely, suppose thatai ∈ U (i � 1, . . . , n). For y ∈ C(A), there exist
scalarsx1, . . . , xn such thaty � x1a1 + · · · + xnan, implying (sinceU is a linear
space) thaty ∈ U .

ThatR(A) ⊂ V if and only if every row ofA belongs toV can be proved in a
similar fashion. Q.E.D.

Lemma 4.2.2. For anym × n matrix A andm × p matrix B, C(B) ⊂ C(A) if
and only if there exists ann × p matrix F such thatB � AF. Similarly, for any
m × n matrix A andq × n matrix C, R(C) ⊂ R(A) if and only if there exists a
q ×m matrix L such thatC � LA.

Proof. Let b1, . . . ,bp represent the columns ofB. Clearly, there exists a matrix
F such thatB � AF if and only if there existp column vectorsf1, . . . , fp (of
dimensionn) such thatbi � Afi (i � 1, . . . , p), that is, if and only if (fori �
1, . . . , p) bi ∈ C(A). We conclude on the basis of Lemma 4.2.1 thatC(B) ⊂ C(A)
if and only if there exists a matrixF such thatB � AF.

ThatR(C) ⊂ R(A) if and only if there exists a matrixL such thatC � LA
follows from an analogous argument. Q.E.D.

The “if” part of Lemma 4.2.2 can be restated as the following corollary.
Corollary 4.2.3. For anym× n matrix A andn× p matrix F, C(AF) ⊂ C(A).

Similarly, for anym× n matrix A andq ×m matrix L, R(LA) ⊂ R(A).
As a further consequence of Lemma 4.2.2, we have the following result.
Corollary 4.2.4. Let A represent anm × n matrix, E an n × k matrix, F an

n× p matrix,L aq ×mmatrix, andT ans ×mmatrix. (1) If C(E) ⊂ C(F), then
C(AE) ⊂ C(AF); and ifC(E) � C(F), thenC(AE) � C(AF). (2) If R(L) ⊂ R(T),
thenR(LA) ⊂ R(TA); and ifR(L) � R(T), thenR(LA) � R(TA).

Proof. (1) If C(E) ⊂ C(F), then (according to Lemma 4.2.2)E � FB for
some matrixB, implying thatAE � AFB and hence (according to Lemma 4.2.2)
thatC(AE) ⊂ C(AF). Similarly, if C(F) ⊂ C(E), thenC(AF) ⊂ C(AE). Thus, if
C(E) � C(F) [in which caseC(E) ⊂ C(F) andC(F) ⊂ C(E)], thenC(AE) ⊂ C(AF)
andC(AF) ⊂ C(AE) and henceC(AE) � C(AF).
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(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
Finally, we have the following lemma, which can be easily verified by making

use of either Lemma 4.1.1 or Lemma 4.2.2.
Lemma 4.2.5. Let A represent anm× n matrix andB anm× p matrix. Then,

(1) C(A) ⊂ C(B) if and only if R(A′) ⊂ R(B′), and (2)C(A) � C(B) if and only
if R(A′) � R(B′).

4.3 Bases

a. Some definitions (and notation)

The span of a finite set of matrices (having the same dimensions) is defined as
follows: the span of a finite nonempty set{A1, . . . ,Ak} is the set consisting of all
matrices that are expressible as linear combinations ofA1, . . . ,Ak, and the span
of the empty set is the set{0}, whose only element is the null matrix. The span of
a finite setS of matrices will be denoted by the symbol sp(S); sp({A1, . . . ,Ak}),
which represents the span of the set{A1, . . . ,Ak}, will generally be abbreviated
to sp(A1, . . . ,Ak). Clearly, sp(S) is a linear space.

A finite setS of matrices in a linear spaceV is said tospan V if sp(S) � V. Or,
equivalently [since sp(S) ⊂ V], S spansV if V ⊂ sp(S).

A basis for a linear spaceV is a finite set of linearly independent matrices inV
that spansV. Note that the empty set is the (unique) basis for the linear space{0}.

Clearly, the column spaceC(A) of anm × n matrix A is spanned by the set
whose members consist of then columns ofA. If this set is linearly independent,
then it is a basis forC(A); otherwise, it is not. Similarly,R(A) is spanned by
the set whose members are them rows of A, and depending on whether this set
is linearly independent or linearly dependent, it may or may not be a basis for
R(A).

b. Natural bases for Rm×n and for the linear space of all n× n
symmetric matrices

For i � 1, . . . , m andj � 1, . . . , n, let Uij represent them×nmatrix whoseij th
element equals 1 and whose remainingmn − 1 elements equal 0. The set whose
members consist of themn matricesU11, U21, . . . , Um1, . . . , U1n, U2n, . . . , Umn

spans the linear spaceRm×n [as is evident from result (2.4.3)] and is linearly inde-
pendent (as can be easily verified) and hence is a basis forRm×n. The set{U11, U21,
. . . , Um1, . . . , U1n, U2n, . . . , Umn} is sometimes called thenatural basis for Rm×n.
Whenm � 1 or n � 1 (in which case the members ofRm×n aren-dimensional
row vectors orm-dimensional column vectors), the natural basis forRm×n is the
set whose members consist of then rows (1,0, . . . ,0), . . . , (0, . . . ,0,1) of In or
them columns ofIm.

For i � 1, . . . , n, let U∗
ii represent then× nmatrix whoseith diagonal element

equals 1 and whose remainingn2−1 elements equal 0. And, forj < i � 1, . . . , n,
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let U∗
ij represent then× nmatrix whoseijth andjith elements equal 1 and whose

remainingn2−2 elements equal 0. Then, for anyn×n symmetric matrixA � {aij },

A �
n∑
i�1

i∑
j�1

aijU∗
ij (3.1)

[as is readily apparent from result (2.4.3) or upon comparing the corresponding
elements of the left and right sides of equality (3.1)]. And, it follows that the
set whose members consist of then(n + 1)/2 matricesU∗

11, U∗
21, . . . , U∗

n1, . . . ,
U∗
ii ,U∗

i+1,i , . . . ,U∗
ni, . . . ,U∗

nn spans the linear space of alln × n symmetric ma-
trices. Moreover, this set is linearly independent (as can be easily verified). Thus,
the set{U∗

11, U∗
21, . . . , U∗

n1, . . . , U∗
ii ,U∗

i+1,i , . . . ,U∗
ni, . . . ,U∗

nn} is a basis for the
linear space of alln× n symmetric matrices.

c. Existence of a basis

It was determined in Subsection b that the linear spaceRm×n has a basis and that
the linear space of alln×n symmetric matrices has a basis. Does every linear space
(of m × n matrices) have a basis? This question is answered (in the affirmative)
as the culmination of a series of basic results through- presented in the form of
a lemma and two theorems through- on linearly independent sets and spanning
sets.

Lemma 4.3.1. Let A1, . . . , Ap and B1, . . . , Bq represent matrices in
a linear spaceV. Then, if the set{A1, . . . ,Ap} spansV, so does the set
{A1, . . . ,Ap,B1, . . . ,Bq}. Moreover, if the set{A1, . . . ,Ap,B1, . . . ,Bq} spans
V and if B1, . . . ,Bq are expressible as linear combinations ofA1, . . . ,Ap, then
the set{A1, . . . ,Ap} spansV.

Lemma 4.3.1 can be proved rather simply by showing that ifB1, . . . ,Bq are
expressible as linear combinations ofA1, . . . , Ap, then any linear combination
of the matricesA1, . . . ,Ap,B1, . . . ,Bq is expressible as a linear combination of
A1, . . . ,Ap and vice versa. The details are left as Exercise 6.

Theorem 4.3.2. Suppose thatV is a linear space that is spanned by a set ofr

matrices, and letS represent any set ofk linearly independent matrices inV. Then
k ≤ r, and ifk � r, S is a basis forV.

Proof. Let us restrict attention to the caser > 0. (The proof for the caser � 0
is trivial: if r � 0, thenV � {0}, and the only linearly independent set of matrices
in V is the empty set, which contains 0 members and is the basis forV.) Denote by
A1, . . . ,Ak thek matrices in the linearly independent setS, and let{B1, . . . ,Br}
represent a set ofr matrices that spansV.

To prove thatk ≤ r, assume through- with the intent of establishing a contra-
diction through- the contrary, that is, assume thatk > r.

Consider the set{A1,B1, . . . ,Br}, obtained by inserting the matrixA1 at the
beginning of the set{B1, . . . ,Br}. According to Lemma 4.3.1, this set spansV.
Moreover, sinceA1 is expressible as a linear combination ofB1, . . . ,Br , the set
{A1,B1, . . . ,Br} is (according to Lemma 3.2.1) linearly dependent, implying (in
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light of Lemma 3.2.2) that, among the matricesB1, . . . ,Br , there exists a ma-
trix, sayBp, that is expressible as a linear combination of the matrices that pre-
cede it in the sequenceA1,B1, . . . ,Br . Thus, it follows from Lemma 4.3.1 that
the set{A1,B1, . . . , Bp−1, Bp+1, . . . ,Br}, obtained by deletingBp from the set
{A1,B1, . . . ,Br}, spansV.

Consider now the set{A1,A2,B1, . . . ,Bp−1,Bp+1, . . . ,Br} obtained by insert-
ing the matrixA2 afterA1 in the set{A1,B1, . . . ,Bp−1,Bp+1, . . . ,Br}. This set
spansV. Moreover, this set is linearly dependent, so that, among the matrices
B1, . . . ,Bp−1,Bp+1, . . . ,Br , there exists a matrix that is expressible as a linear
combination of the matrices that precede it in the sequenceA1,A2,B1, . . . ,Bp−1,
Bp+1, . . . ,Br . Deleting this matrix from the set{A1,A2,B1, . . . ,Bp−1, Bp+1,
. . . ,Br}, we obtain a subset ofr matrices that spansV.

Continuing this process of inserting “A matrices” and deleting “B matrices,”
we eventually (after a total ofr steps) find that the set{A1, . . . ,Ar} spansV. It
follows that the matricesAr+1, . . . ,Ak are expressible as linear combinations of
A1, . . . ,Ar , which, sinceS is a linearly independent set, results in a contradiction.
We conclude thatk ≤ r.

If k � r, then by inserting “A matrices” and deleting “B matrices” via the same
algorithm employed in proving thatk ≤ r, we find that the setS spansV and
hence, sinceS is linearly independent, thatS is a basis forV. Q.E.D.

As discussed in Subsection b, the linear spaceRm×n (of all m× n matrices) is
spanned bymn matrices, and the linear space of all symmetric matrices of order
n is spanned byn(n+ 1)/2 matrices. Thus, we obtain, as a corollary of Theorem
4.3.2, the following result.

Corollary 4.3.3. The number of matrices in a linearly independent set ofm×n
matrices cannot exceedmn, and the number of matrices in a linearly independent
set ofn× n symmetric matrices cannot exceedn(n+ 1)/2.

Theorem 4.3.4. Every linear space (ofm× n matrices) has a basis.
Proof. LetV represent an arbitrary linear space ofm×nmatrices. The proof of

Theorem 4.3.4 consists of a description of a stepwise procedure for constructing a
(finite) setB of linearly independent matrices that spansV, that is, for constructing
a basisB for V.

If V � {0}, that is, if there are no nonnull matrices inV, then terminate the
procedure immediately and takeB to be the empty set. Otherwise, locate a nonnull
matrix A1 in V. If the linearly independent set{A1}, whose only member isA1,
spansV, then terminate the procedure, and takeB � {A1}. If this set does not
spanV, then locate a matrixA2 that cannot be expressed as a scalar multiple ofA1.
Necessarily (according to Corollary 3.2.3), the set{A1,A2} is linearly independent.
If the set{A1,A2} spansV, then terminate the procedure, takingB � {A1,A2}.
If {A1,A2} does not spanV, then locate a matrixA3 in V that is not expressible
as a linear combination ofA1 andA2. Necessarily, the set{A1,A2,A3} is linearly
independent.

Continuing, on thekth step, either we terminate the procedure, takingB �
{A1, . . . ,Ak}, or else we locate a matrixAk+1 in V such that the set{A1, . . . ,
Ak+1} is linearly independent. The stepwise procedure terminates after no more
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thanmn steps, since otherwise there would exist a set of more thnmn linearly
independent matrices, contradicting Corollary 4.3.3. Q.E.D.

d. Uniqueness of representation

Any particular basis for a linear space has the following property.
Lemma 4.3.5. A matrix A in a linear spaceV has a unique representation in

terms of any particular basis{A1, . . . ,Ak}; that is, the coefficientsx1, . . . , xk in
the linear combination

B � x1A1 + · · · + xkAk

are uniquely determined.
Proof. Let x1, . . . , xk and y1, . . . , yk represent any scalars such thatA �∑k
i�1 xiAi andA �∑k

i�1 yiAi . Then,

k∑
i�1

(yi − xi)Ai �
k∑
i�1

yiAi −
k∑
i�1

xiAi � A− A � 0 .

Since,A1, . . . ,Ak are linearly independent matrices, we conclude thatyi−xi � 0
or equivalently thatyi � xi (i � 1, . . . , k). Q.E.D.

e. Dimension

With the exception of the linear space{0}, for which the only basis is the empty
set, every linear space ofm×nmatrices has an infinite number of bases. However,
it follows from Theorem 4.3.2 that if two sets, one containingk1 matrices and the
other containingk2 matrices, are both bases for the same linear space, thenk1 ≤ k2

andk2 ≤ k1. Thus, we have the following result.
Theorem 4.3.6. Any two bases for the same linear space contain the same

number of matrices.
The number of matrices in a basis for a linear spaceV is called thedimension of

V and is denoted by the symbol dimV or dim(V). (Note that the term dimension
is used, not only in reference to the number of matrices in a basis, but also in
reference to the number of rows or columns in a matrix through- which usage is
intended can be determined from the context.)

As an essentially immediate consequence of Theorem 4.3.2, we obtain the results
expressed in the following three theorems.

Theorem 4.3.7. If a linear spaceV is spanned by a set ofr matrices, then
dimV ≤ r, and if there is a set ofk linearly independent matrices inV, then
dimV ≥ k.

Theorem 4.3.8. If U is a subspace of a linear spaceV, then dimU ≤ dimV.
Theorem 4.3.9. Any set ofr linearly independent matrices in anr-dimensional

linear spaceV is a basis forV.
A further, related result is expressed in the following theorem.
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Theorem 4.3.10. Let U andV represent linear spaces ofm × n matrices. If
U ⊂ V (that is, ifU is a subspace ofV) and if in addition dimU � dimV, then
U � V.

Proof. Let r � dimU , and letS represent any set ofr linearly independent
matrices that is a basis forU . Suppose thatU ⊂ V, in which case allr of the
matrices inS are inV. If dim U � dimV, then (according to Theorem 4.3.9)S is
a basis forV, implying thatV � sp(S) � U . Q.E.D.

It follows from the discussion of Subsection b that

dim(Rm×n) � mn . (3.2)

This result, together with Theorem 4.3.8, implies that

dim U ≤ mn (3.3)

for any linear spaceU of m × n matrices (as is also deducible from Corollary
4.3.3).

f. Extracting a basis from a spanning set

A basis for a linear space can be extracted from any spanning set, as indicated by
the following theorem.

Theorem 4.3.11. Any setS that spans a linear spaceV (of m × n matrices)
contains a subset that is a basis forV.

Proof. Assume thatS contains at least one nonnull matrix. (The proof for the
case whereS is empty or consists entirely of null matrices is trivial through- in
that case,V � {0}, and the empty set is a basis forV.)

Let A1, . . . ,Ak represent the matrices inS. DefineS∗ to be the subset ofS
obtained by successively applying to each of the matricesA1, . . . ,Ak the following
algorithm: include the matrix as a member ofS∗ if it is nonnull and if it is not
expressible as a linear combination of any matrices already included inS∗. It is clear
from Lemma 3.2.2 that the subsetS∗ formed in this way is linearly independent.
Moreover, every matrix inS either belongs toS∗ or is expressible as a linear
combination of matrices that belong toS∗, implying (according to Lemma 4.3.1)
thatS∗ spansV. We conclude thatS∗ is a basis forV. Q.E.D.

Given any particular set that spans a linear spaceV, the algorithm described
in the proof of Theorem 4.3.11 can be used to construct a basis forV and, in the
process, to determine the dimension ofV.

g. Inclusion of any particular linearly independent set in a basis

Any set of linearly independent matrices in a linear space can be augmented to
form a basis, as indicated by the following theorem, which generalizes Theorem
4.3.4.

Theorem 4.3.12. For any setS of r linearly independent matrices in ak-
dimensional linear spaceV, there exists a basis forV that includes allr of the
matrices inS (andk − r additional matrices).
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Proof. Assume thatr > 0. (In the special caser � 0, the theorem essentially
reduces to Theorem 4.3.4.)

Denote byA1, . . . ,Ar the matrices inS, and let{B1, . . . ,Bk} represent any basis
for V. An alternative basis forV can be extracted from the set{A1, . . . ,Ar , B1,
. . . ,Bk}, which (according to Lemma 4.3.1) spansV, by applying the algorithm
described in the proof of Theorem 4.3.11. It follows from Lemma 3.2.2 (and from
the method of extraction) that the alternative basis includes allr of the matrices
A1, . . . ,Ar . Q.E.D.

Given any particular set that spans ak-dimensional linear spaceV, the proce-
dure described in the proof of Theorem 4.3.12 can be used to construct a basis
that includes as a subset any particular set{A1, . . . ,Ar} of linearly independent
matrices. An alternative approach, not requiring knowledge of a spanning set, is
to adopt the procedure described in the proof of Theorem 4.3.4. In the alternative
approach, a basis is constructed ink−r steps, theith of which consists of locating a
matrixAr+i in V that is not expressible as a linear combination ofA1, . . . ,Ar+i−1.
Clearly, the set{A1, . . . ,Ak} is a basis forV.

4.4 Rank of a Matrix

a. Some definitions and basic results

Therow rank of a matrixA is defined to be the dimension of the row space ofA,
and thecolumn rank of A is defined to be the dimension of the column space of
A. A fundamental result on the row and column spaces of a matrix is expressed in
the following theorem.

Theorem 4.4.1. The row rank of any matrixA equals the column rank ofA.
Preliminary to proving Theorem 4.4.1, it is convenient to prove the following

result, which is of some interest in its own right.
Theorem 4.4.2. Let A represent anm × n nonnull matrix of row rankr and

column rankc. Then, there exists anm × c matrix B and ac × n matrix L such
that A � BL. Similarly, there exists anm × r matrix K and anr × n matrix T
such thatA � KT.

Proof. According to Theorem 4.3.4, there exists a set{b1, . . . ,bc} of c vectors
that is a basis forC(A). TakeB to be them×cmatrix whose columns areb1, . . . ,bc.
Then,C(B) � sp(b1, . . . ,bc) � C(A), and it follows from Lemma 4.2.2 that there
exists ac × n matrix L such thatA � BL. The existence of anm × r matrix K
and anr × n matrix T such thatA � KT can be established via an analogous
argument. Q.E.D.

Proof (of Theorem 4.4.1). Letr represent the row rank andc the column rank
of a matrixA. Assume thatA is nonnull. (The proof for the caseA � 0 is trivial:
If A � 0, thenr � 0 � c.) According to Theorem 4.4.2, there exists anm × c

matrix B and ac × n matrix L such thatA � BL, and similarly there exists an
m× r matrix K and anr × n matrix T such thatA � KT.

It follows from Lemma 4.2.2 thatR(A) ⊂ R(L) and C(A) ⊂ C(K). Thus,
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making use of Theorems 4.3.8 and 4.3.7 [and observing thatR(L) is spanned by
thec rows ofL andC(K) by ther columns ofK], we find that

r ≤ dim[R(L)] ≤ c

and similarly that
c ≤ dim[C(K)] ≤ r .

We conclude thatr � c. Q.E.D.
In light of Theorem 4.4.1, it is not necessary to distinguish between the row and

column ranks of a matrixA. Their common value is called therank of A and is
denoted by the symbol rankA or rank(A).

b. Restatement of results on dimensions

Our results on the dimensions of linear spaces and subspaces can be specialized
to row and column spaces and restated in terms of ranks. Result (3.3) implies that
the row rank of a matrix cannot exceed the number of columns and that its column
rank cannot exceed the number of rows, leading to the following conclusion.

Lemma 4.4.3. For anym× n matrix A, rank(A) ≤ m and rank(A) ≤ n.
Theorem 4.3.8 has the following implication.
Theorem 4.4.4. Let A represent anm× n matrix,B anm× p matrix, andC a

q×nmatrix. IfC(B) ⊂ C(A), then rank(B) ≤ rank(A). Similarly, if R(C) ⊂ R(A),
then rank(C) ≤ rank(A).

In light of Corollary 4.2.3, we have the following corollary of Theorem 4.4.4.
Corollary 4.4.5. For anym×nmatrixA andn×pmatrixF, rank(AF) ≤ rank(A)

and rank(AF) ≤ rank(F).
Theorem 4.3.10 has the following implications.
Theorem 4.4.6. Let A represent anm × n matrix, B anm × p matrix, and

C a q × n matrix. If C(B) ⊂ C(A) and rank(B) � rank(A), thenC(B) � C(A).
Similarly, if R(C) ⊂ R(A) and rank(C) � rank(A), thenR(C) � R(A).

Corollary 4.4.7. Let A represent anm × n matrix andF ann × p matrix. If
rank(AF) � rank(A), thenC(AF) � C(A). Similarly, if rank(AF) � rank(F), then
R(AF) � R(F).

c. Nonsingular matrices and matrices of full row or column rank

Amongm× nmatrices, the maximum rank is min(m, n), as indicated by Lemma
4.4.3. The minimum rank is 0, which is achieved by them× n null matrix 0 (and
by no otherm× n matrix).

An m × n matrix A is said to havefull row rank if rank(A) � m, that is, if its
rank equals the number of rows, and to havefull column rank if rank(A) � n.
Clearly, anm× n matrix can have full row rank only ifm ≤ n, that is, only if the
number of rows does not exceed the number of columns, and can have full column
rank only ifn ≤ m.
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A matrix is said to benonsingular if it has both full row rank and full column
rank. Clearly, any nonsingular matrix is square. By definition, ann× n matrix A
is nonsingular if and only if rank(A) � n. An n× n matrix of rank less thann is
said to besingular.

Anm×nmatrix can be expressed as the product of a matrix having full column
rank and a matrix having full row rank as indicated by the following theorem,
which is a restatement and extension of Theorem 4.4.2.

Theorem 4.4.8. Let A represent anm× n nonnull matrix of rankr. Then, there
exist anm× r matrix B and anr × n matrix T such thatA � BT. Moreover, for
anym×r matrixB andr×nmatrixT such thatA � BT, rank(B) � rank(T) � r,
that is,B has full column rank andT has full row rank.

Proof. The existence of anm × r matrix B and anr × n matrix T such that
A � BT follows from Theorem 4.4.2. Moreover, for any suchm× r matrixB and
r×nmatrixT, it follows from Lemma 4.4.3 that rank(B) ≤ r and rank(T) ≤ r and
from Corollary 4.4.5 that rank(B) ≥ r and rank(T) ≥ r, leading to the conclusion
that rank(B) � r and rank(T) � r. Q.E.D.

d. A decomposition of a rectangular matrix

The decomposition of a rectangular matrix given in Theorem 4.4.8 can be expressed
in an alternative form, as described in the following theorem.

Theorem 4.4.9. Let A represent anm× n nonnull matrix of rankr. Then, there
exist anm×m nonsingular matrixB and ann× n nonsingular matrixK such that

A � B
(

Ir 0
0 0

)
K .

Proof. According to Theorem 4.4.8, there exist anm × r matrix B1 of full
column rank and anr × n matrix K1 of full row rank such thatA � B1K1. Let
b1, . . . ,br represent the first,. . . , rth columns, respectively, ofB1 andk′1, . . . ,k′r
the first. . . , rth rows, respectively, ofK1. Clearly,b1, . . . ,br are linearly indepen-
dent, andk′1, . . . ,k′r are linearly independent. Then, according to Theorem 4.3.12,
there existm − r vectorsbr+1, . . . ,bm such thatb1, . . . ,br ,br+1, . . . ,bm form
a basis forRm, and, similarly, there existn − r vectorsk′r+1, . . . ,k′n such that
k′1, . . . ,k′r ,k′r+1, . . . ,k′n form a basis forRn.

TakeB � (B1,B2) andK �
(

K1

K2

)
, whereB2 � (br+1, . . . ,bm) andK2 �


k′r+1

...
k′n


 . Then, clearly,B andK are nonsingular, and

A � B1K1 � (B1,B2)

(
Ir 0
0 0

)(
K1

K2

)
� B

(
Ir 0
0 0

)
K .

Q.E.D.
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e. Some equivalent definitions

The following theorem can be used to characterize the rank of a matrix in terms
of the ranks of its submatrices.

Theorem 4.4.10. Let A represent anym× nmatrix of rankr. Then,A contains
r linearly independent rows andr linearly independent columns, and, for anyr
linearly independent rows andr linearly independent columns ofA, the r × r

submatrix, obtained by striking out the otherm − r rows andn − r columns, is
nonsingular. Moreover, any set of more thanr rows or more thanr columns (ofA)
is linearly dependent, and there exists no submatrix ofA whose rank exceedsr.

Proof. Since them rows andn columns ofA spanR(A) andC(A), respectively,
it follows from Theorem 4.3.11 thatA containsr linearly independent rows andr
linearly independent columns. Moreover, it follows from Theorem 4.3.7 that any
set of more thanr rows or more thanr columns is linearly dependent.

Consider now ther × r submatrixB of A obtained by striking out all of the
rows and columns ofA other thanr linearly independent rows, say rowsi1, . . . , ir ,
respectively, andr linearly independent columns, say columnsj1, . . . , jr , respec-
tively. Letting aij represent theij th element ofA, the tsth element ofB is by
definition

bts � ait js .

Let U represent them× r matrix whose columns are columnsj1, . . . , jr of A.
According to Theorem 4.3.9, rowsi1, . . . , ir of A form a basis forR(A), implying
that every row ofA is expressible as a linear combination of rowsi1, . . . , ir or,
equivalently, that

atj �
r∑
k�1

ftkaikj (j � 1, . . . , n)

for some scalarsft1, . . . , ftr (t � 1, . . . , m). Thus, thetsth element ofU is

uts � atjs �
∑
k

ftkaikjs �
∑
k

ftkbks

(t � 1, . . . , m; s � 1, . . . , r), so that

U � FB ,

whereF is them× r matrix whosetkth element isftk. Since (according to Lemma
4.4.3 and Corollary 4.4.5) rank(B) ≤ r and rank(B) ≥ rank(U) � r, we conclude
that rank(B) � r or, equivalently, thatB is nonsingular.

It remains to show that there exists no submatrix ofA whose rank exceedsr.
Let H represent a matrix obtained by striking out all of the rows and columns ofA
except rowst1, . . . , tk and columnss1, . . . , sp. DefineW to be them× p matrix
whose columns are columnss1, . . . , sp of A. It is clear thatC(W) ⊂ C(A) and
(since the rows ofH are rowst1, . . . , tk of W) thatR(H) ⊂ R(W). Thus, applying
Theorem 4.4.4,

rank(H) ≤ rank(W) ≤ r .
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Q.E.D.
As applied to symmetric matrices, Theorem 4.4.10 has the following implica-

tion.
Corollary 4.4.11. Any symmetric matrix of rankr contains anr×r nonsingular

principal submatrix.
The rank of a matrix was defined in terms of the dimension of the row and

column spaces. Theorem 4.4.10 suggests some equivalent definitions. The rank
of a matrixA is interpretable as the size of the largest linearly independent set
that can be formed from the rows ofA. Similarly, it is interpretable as the size
of the largest linearly independent set that can be formed from the columns ofA.
The rank ofA is also interpretable as the size (number of rows or columns) of the
largest nonsingular (square) submatrix ofA.

Clearly, anm × n matrix has full row rank if and only if allm of its rows are
linearly independent and has full column rank if and only if alln of its columns
are linearly independent. Ann × n matrix is nonsingular if and only if all of its
rows are linearly independent; similarly, it is nonsingular if and only if all of its
columns are linearly independent.

f. Some elementary equalities

Let A represent an arbitrary matrix. Then, it is a simple exercise to show that

rank(A′) � rank(A) (4.1)

and that, for anynonzero scalark,

rank(kA) � rank(A) . (4.2)

As a special case of result (4.2), we have that

rank(−A) � rank(A) . (4.3)

4.5 Some Basic Results on Partitioned Matrices and on
Sums of Matrices

In what follows, the symbolC(A,B) is used as an abbreviation forC[(A, B)]

andR
(

A
C

)
as an abbreviation forR

[(
A
C

)]
. Thus,C(A,B) represents the column

space of a partitioned matrix (A,B) comprising two blocksA andB arranged in a

row, andR
(

A
C

)
represents the row space of a partitioned matrix

(
A
C

)
comprising

two blocksA andC arranged in a column.
The following five lemmas (and two corollaries) give some basic results on the

ranks and row and column spaces of matrices that have been partitioned into two
blocks.
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Lemma 4.5.1. Let A represent anm × n matrix, B anm × p matrix, andC a
q × n matrix. Then,

C(A) ⊂ C(A,B) , C(B) ⊂ C(A,B) ,

R(A) ⊂ R
(

A
C

)
, R(C) ⊂ R

(
A
C

)
.

Moreover,

C(A) � C(A,B) ⇔ C(B) ⊂ C(A), C(B) � C(A,B) ⇔ C(A) ⊂ C(B),

R(A) � R
(

A
C

)
⇔ R(C) ⊂ R(A), R(C) � R

(
A
C

)
⇔ R(A) ⊂ R(C) .

Proof. ThatC(A) ⊂ C(A,B), C(B) ⊂ C(A,B), R(A) ⊂ R
(

A
C

)
, andR(C) ⊂

R
(

A
C

)
follows from Lemma 4.2.2 upon observing that

A � (A,B)

(
I
0

)
, B � (A,B)

(
0
I

)
,

A � (I, 0)

(
A
C

)
, C � (0, I)

(
A
C

)
.

Suppose now thatC(B) ⊂ C(A). Then, according to Lemma 4.2.2, there exists a
matrixF such thatB � AF and hence such that (A,B) � A(I,F). Thus,C(A,B) ⊂
C(A), implying [sinceC(A) ⊂ C(A,B)] thatC(A) � C(A,B).

Conversely, suppose thatC(A) � C(A,B). Then, sinceC(B) ⊂ C(A,B), C(B) ⊂
C(A). Thus, we have established thatC(A) � C(A,B) ⇔ C(B) ⊂ C(A).

That C(B) � C(A,B) ⇔ C(A) ⊂ C(B), that R(A) � R
(

A
C

)
⇔ R(C) ⊂

R(A), and thatR(C) � R
(

A
C

)
⇔ R(A) ⊂ R(C) can be established via similar

arguments. Q.E.D.
Corollary 4.5.2. Let A represent anm× nmatrix,B anm× p matrix, andC a

q × n matrix. Then,
(1) rank(A) ≤ rank(A,B), with equality holding if and only ifC(B) ⊂ C(A);
(2) rank(B) ≤ rank(A,B), with equality holding if and only ifC(A) ⊂ C(B);

(3) rank(A) ≤ rank

(
A
C

)
, with equality holding if and only ifR(C) ⊂ R(A);

(4) rank(C) ≤ rank

(
A
C

)
, with equality holding if and only ifR(A) ⊂ R(C).

Proof. Since (according to Lemma 4.5.1)C(A) ⊂ C(A,B), it follows from The-
orem 4.4.4 that rank(A) ≤ rank(A,B). Moreover, ifC(B) ⊂ C(A), then (according
to Lemma 4.5.1)C(A) � C(A,B) and, consequently, rank(A) � rank(A,B). And,
conversely, if rank(A) � rank(A,B), then, sinceC(A) ⊂ C(A,B), it follows from
Theorem 4.4.6 thatC(A) � C(A,B) and hence (in light of Lemma 4.5.1) that
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C(B) ⊂ C(A). Thus, Part (1) of the corollary is valid. The validity of Parts (2), (3),
and (4) can be established in similar fashion. Q.E.D.

Lemma 4.5.3. For anym× n matrix A,m× p matrix B, andq × n matrix C,

C(B,A) � C(A,B), rank(B,A) � rank(A,B),

R
(

C
A

)
� R

(
A
C

)
, rank

(
C
A

)
� rank

(
A
C

)
.

Proof. Since

(B,A) � (A,B)

(
0 In
Ip 0

)
, (A,B) � (B,A)

(
0 Ip
In 0

)
,

we have (as a consequence of Lemma 4.2.2) thatC(B,A) ⊂ C(A,B) andC(A,B) ⊂
C(B,A) and hence thatC(B,A) � C(A,B) [which implies that rank(B,A) �
rank(A,B)]. That R

(
C
A

)
� R

(
A
C

)
[and that rank

(
C
A

)
� rank

(
A
C

)
] follows

from an analogous argument. Q.E.D.
Lemma 4.5.4. For anym× n matrix A,m× p matrix B, andn× p matrix L,

C(A,B) � C(A,B− AL), rank(A,B) � rank(A,B− AL) .

Similarly, for anym× n matrix A, q × n matrix B, andq ×m matrix L,

R
(

A
B

)
� R

(
A

B− LA

)
, rank

(
A
B

)
� rank

(
A

B− LA

)
.

Proof. To establish the first part of the lemma, observe that

(A,B− AL) � (A,B)

(
I −L
0 I

)
, (A,B) � (A,B− AL)

(
I L
0 I

)
,

implying (in light of Lemma 4.2.2) thatC(A,B− AL) ⊂ C(A,B) andC(A,B) ⊂
C(A,B−AL) and, consequently, thatC(A,B) � C(A,B−AL) and rank(A,B) �
rank(A,B − AL). The second part of the lemma can be established in similar
fashion. Q.E.D.

Lemma 4.5.5. (1) If A is anm × n matrix andE anm × q matrix such that
C(E) ⊂ C(A) and if B is anm × p matrix andF anm × r matrix such that
C(F) ⊂ C(B), then

C(E,F) ⊂ C(A,B), rank(E,F) ≤ rank(A,B) .

(2) Similarly, if A is anm×nmatrix andE ap×nmatrix such thatR(E) ⊂ R(A)
and if B is aq × n matrix andF anr × n matrix such thatR(F) ⊂ R(B), then

R
(

E
F

)
⊂ R

(
A
B

)
, rank

(
E
F

)
≤ rank

(
A
B

)
.
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Proof. (1) Suppose thatC(E) ⊂ C(A) andC(F) ⊂ C(B). Then, according to
Lemma 4.2.2, there exist matricesK andL such thatE � AK andF � BL. Thus,
(E,F) � (A,B)diag(K,L), implying thatC(E,F) ⊂ C(A,B) and further (in light
of Theorem 4.4.4) that rank(E,F) ≤ rank(A,B).

(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
Corollary 4.5.6. (1) If A is anm × n matrix andE anm × q matrix such that

C(E) � C(A), and if B is anm × p matrix andF anm × r matrix such that
C(F) � C(B), then

C(E,F) � C(A,B), rank(E,F) � rank(A,B) .

(2) Similarly, if A is anm×nmatrix andE ap×nmatrix such thatR(E) � R(A),
and if B is aq × n matrix andF anr × n matrix such thatR(F) � R(B), then

R
(

E
F

)
� R

(
A
B

)
, rank

(
E
F

)
� rank

(
A
B

)
.

Proof. (1) Suppose thatC(E) � C(A) andC(F) � C(B). Then, as a consequence
of Lemma 4.5.5, we have thatC(E,F) ⊂ C(A,B) andC(A,B) ⊂ C(E,F). Thus,
C(E,F) � C(A,B), and further, rank(E,F) � rank(A,B).

(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
Lemma 4.5.7. For anym× n matrix A,m× p matrix B, andq × n matricC,

rank(A,B) ≤ rank(A)+ rank(B) , (5.1)

rank

(
A
C

)
≤ rank(A)+ rank(C) . (5.2)

Proof. For purposes of establishing inequality (5.1), assume that bothA andB
are nonnull through- if eitherA or B is null, then, clearly, inequality (5.1) holds
as an equality. LetA∗ represent anm× r matrix whose columns form a basis for
C(A) andB∗ anm× s matrix whose columns form a basis forC(B). Then, clearly,
C(A∗) � C(A) andC(B∗) � C(B). Thus, in light of Corollary 4.5.6 and Lemma
4.4.3, we have that

rank(A,B) � rank(A∗,B∗) ≤ r + s � rank(A)+ rank(B) ,

which establishes inequality (5.1). Inequality (5.2) can be established via an anal-
ogous argument. Q.E.D.

By repeated application of result (5.1), we obtain the more general result that,
for any matricesA1,A2, . . . ,Ak havingm rows,

rank(A1,A2, . . . ,Ak) ≤ rank(A1)+ rank(A2)+ · · · + rank(Ak) . (5.3)

Similarly, by repeated application of result (5.2), we find that, for any matrices
A1,A2, . . . ,Ak havingn columns,

rank




A1

A2
...

Ak


 ≤ rank(A1)+ rank(A2)+ · · · + rank(Ak) . (5.4)
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The following lemma establishes a basic relationship between the rank or the
row or column space of a sum of two matrices and the rank or the row or column
space of a certain partitioned matrix.

Lemma 4.5.8. For anym× n matricesA andB,

C(A+ B) ⊂ C(A,B), rank(A+ B) ≤ rank(A,B) , (5.5)

R(A+ B) ⊂ R
(

A
B

)
, rank(A+ B) ≤ rank

(
A
B

)
. (5.6)

Proof. We have that

A+ B � (A,B)

(
I
I

)
� (I, I)

(
A
B

)
,

implying (in light of Lemma 4.2.2) thatC(A+B) ⊂ C(A,B) andR(A+B) ⊂ R(
A
B

)
and further (in light of Theorem 4.4.4) that rank(A + B) ≤ rank(A,B) and

rank(A+ B) ≤ rank

(
A
B

)
. Q.E.D.

In light of Lemma 4.5.7, we have the following corollary of Lemma 4.5.8.
Corollary 4.5.9. For anym× n matricesA andB,

rank(A+ B) ≤ rank(A)+ rank(B) . (5.7)

By repeated application of results (5.5) through (5.7), we obtain the more general
results that, for anym× n matricesA1,A2, . . . ,Ak,

C(A1 + A2 + · · · + Ak) ⊂ C(A1,A2, . . . ,Ak) , (5.8a)

rank(A1 + A2 + · · · + Ak) ≤ rank(A1,A2, . . . ,Ak) , (5.8b)

R(A1 + A2 + · · · + Ak) ⊂ R




A1

A2
...

Ak


 , (5.9a)

rank(A1 + A2 + · · · + Ak) ≤ rank




A1

A2
...

Ak


 , (5.9b)

rank(A1 + A2 + · · · + Ak) ≤ rank(A1)+ rank(A2)+ · · · + rank(Ak) . (5.10)

A further result on the row and column spaces of a sum of matrices is given by
the following lemma.

Lemma 4.5.10. Let A andB representm × n matrices. Then, for anym × p

matrix E such thatC(A) ⊂ C(E),

C(A+ B) ⊂ C(E) ⇔ C(B) ⊂ C(E) .



Exercises 45

And, similarly, for anyq × n matrix F such thatR(A) ⊂ R(F),

R(A+ B) ⊂ R(F) ⇔ R(B) ⊂ R(F) .

Proof. According to Lemma 4.2.2,A � ER for some matrixR. Further, if
C(B) ⊂ C(E), B � ES for some matrixS, implying thatA+ B � E(R+ S) and
hence (in light of Lemma 4.2.2) thatC(A+B) ⊂ C(E). Conversely, ifC(A+B) ⊂
C(E), thenA + B � ET for some matrixT, implying thatB � (A + B) − A �
E(T− R) and hence thatC(B) ⊂ C(E).

It can be established in similar fashion thatR(A + B) ⊂ R(F) if and only if
R(B) ⊂ R(F). Q.E.D.

The following lemma gives the rank of a block-diagonal matrix in terms of the
ranks of the diagonal blocks.

Lemma 4.5.11. For any matricesA andB,

rank

(
A 0
0 B

)
� rank(A)+ rank(B) . (5.11)

Proof. Suppose that bothA andB are nonnull through- ifA or B is null, then
equality (5.11) is clearly valid. LetA∗ represent anm× r matrix whose columns
form a basis forC(A) andB∗ anm × s matrix whose columns form a basis for
C(B). Then,C(A∗) � C(A), andC(B∗) � C(B), implying (in light of Lemma 4.2.2)
thatA∗ � AK andB∗ � BL for some matricesK andL and hence that(

A∗ 0
0 B∗

)
�
(

A 0
0 B

)(
K 0
0 L

)
.

Moreover, for anyr × 1 vectorc ands × 1 vectord such that(
A∗ 0
0 B∗

)(
c
d

)
� 0 ,

we find thatA∗c � 0 andB∗d � 0, implying (since the columns ofA∗ are linearly
independent) thatc � 0 and, similarly, thatd � 0. It follows that the columns of
diag(A∗,B∗) are linearly independent. Thus,

rank

(
A 0
0 B

)
≥ rank

(
A∗ 0
0 B∗

)
� r + s � rank(A)+ rank(B) . (5.12)

Further, it follows from Lemma 4.5.7 that

rank

(
A 0
0 B

)
≤ rank

(
A
0

)
+ rank

(
0
B

)
≤ rank(A)+ rank(B) . (5.13)

Together, inequalities (5.12) and (5.13) imply equality (5.11). Q.E.D.
Repeated application of result (5.11) gives the following formula for the rank

of an arbitrary block-diagonal matrix:

rank[diag(A1,A2, . . . ,Ak)]

� rank(A1)+ rank(A2)+ · · · + rank(Ak). (5.14)

Note that result (5.14) implies in particular that the rank of a diagonal matrixD
equals the number of nonzero diagonal elements inD.
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Exercises

Section 4.1

1. Which of the following two sets are linear spaces: (a) the set of alln×n upper
triangular matrices; (b) the set of alln× n nonsymmetric matrices?

Section 4.2

2. Verify Lemma 4.2.5.

3. LetA, B, andC represent three matrices (having the same dimensions) such
thatA+ B+ C � 0. Show that sp(A,B) � sp(A,C).

4. LetU andW represent subspaces of a linear spaceV. Show that if every matrix
in V belongs toU or W, thenU � V or W � V.

Section 4.3

5. Let A1, . . . ,Ak represent any matrices in a linear spaceV. Show that
sp(A1, . . . ,Ak) is a subspace ofV and that, among all subspaces ofV that
containA1, . . .Ak, it is the smallest [in the sense that, for any subspaceU (of
V) that containsA1, . . . ,Ak, sp(A1, . . . ,Ak) ⊂ U ].

6. Prove Lemma 4.3.1.

7. Suppose that{A1, . . . ,Ak} is a set of matrices that spans a linear spaceV but
is not a basis forV. Show that, for any matrixA in V, the representation ofA
in terms ofA1, . . . ,Ak is nonunique.

Section 4.4

8. Let

A �




0 1 0 −3 2
0 −2 0 6 2
0 2 2 5 2
0 −4 −2 1 0


 .

(a) Show that each of the two column vectors (2, through1, 3, through4)′ and
(0, 9, through3, 12)′ is expressible as a linear combination of the columns
of A [and hence is inC(A)].

(b) Find a basis forC(A) by applying the algorithm described in the proof of
Theorem 4.3.11. (In applying the algorithm, take the spanning set to be
the set consisting of the columns ofA.)

(c) What is the value of rank(A)? Explain your reasoning.

(d) Find a basis forC(A) that includes the two column vectors from Part (a).
Do so by applying the algorithm described in the proof of Theorem 4.3.12.
(In applying the algorithm, take the spanning set to be the set consisting
of the columns ofA.)
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9. Let A represent aq × p matrix, B ap × n matrix, andC anm × q matrix.
Show that (a) if rank(CAB) � rank(C), then rank(CA) � rank(C) and (b) if
rank(CAB) � rank(B), then rank(AB) � rank(B).

10. LetA represent anm× n matrix of rankr. Show thatA can be expressed as
the sum ofr matrices of rank 1.

Section 4.5

11. LetA represent anm× n matrix andC aq × n matrix.

(a) Add to the proof of Lemma 4.5.1 by confirming that

R(C) � R
(

A
C

)
⇔ R(A) ⊂ R(C) .

(b) Add to the proof of Corollary 4.5.2 by confirming that rank(C) ≤
rank

(
A
C

)
, with equality holding if and only ifR(A) ⊂ R(C).
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5
Trace of a (Square) Matrix

The primary subject of this relatively short chapter is a basic characteristic of a
square matrix called the trace. There are many areas of statistics in which the trace
of a matrix is encountered. For example, in the design of experiments, one of the
criteria (A–optimality) that is used for comparing designs involves the trace of a
matrix (Fedorov 1972).

The trace of a matrix is defined and its basic properties described in Section
5.1. Some very useful results on the trace of a product of matrices are covered
in Section 5.2. One of these results gives rise to some very useful mathematical
equivalences, which are presented in Section 5.3. That the results on the trace of
a matrix and the related equivalences are placed in a separate chapter is indicative
not only of their importance but of the fact that they don’t fit particularly well into
any of the other chapters.

5.1 Definition and Basic Properties

The trace of a square matrixA � {aij } of ordern is defined to be the sum of the
n diagonal elements ofA and is to be denoted by the symbol tr(A). Thus,

tr(A) � a11+ a22+ · · · + ann .
In particular,

tr(In) � n, tr(Jn) � n , (1.1)

and, in the case of a 1× 1 matrix (k), whose only element is the scalark,

tr[(k)] � k . (1.2)
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Clearly, for any scalark and anyn× n matricesA andB,

tr(kA) � k tr(A) , (1.3)

tr(A+ B) � tr(A)+ tr(B) , (1.4)

tr(A′) � tr(A) . (1.5)

Further, for anyr scalarsk1, k2, . . . , kr and for anyr matricesA1,A2, . . . ,Ar of
dimensionsn× n,

tr

(
r∑
i�1

kiAi

)
�

r∑
i�1

ki tr(Ai) , (1.6)

as can be easily verified by, for example, the repeated application of results (1.4)
and (1.3).

If the diagonal blocksA11,A22, . . . ,Akk of the partitioned matrix

A �




A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
...

...
Ak1 Ak2 · · · Akk




are square (in which caseA itself is square), then, clearly,

tr(A) � tr(A11)+ tr(A22)+ · · · + tr(Akk) . (1.7)

5.2 Trace of a Product

Let A � {aij } represent anm × n matrix andB � {bji} an n × m matrix.
Then,

tr(AB) �
m∑
i�1

n∑
j�1

aij bji , (2.1)

as is evident upon observing that theith diagonal element ofAB is
∑n

j�1 aij bji .
Thus, since thejith element ofB is the ij th element ofB′, the trace of
the matrix productAB can be formed by multiplying theij th element ofA
by the corresponding (ij th) element ofB′ and by then summing (overi and
j ).

It follows from results (1.5) and (1.2.13) that, for anym×nmatrixA andn×m
matrix B,

tr(AB) � tr(B′A′) . (2.2)

A further, very basic result on the product of two matrices is expressed in the
following lemma.

Lemma 5.2.1. For anym× n matrix A andn×m matrix B,

tr(AB) � tr(BA) . (2.3)
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Proof. Letaij represent theij th element ofA andbji thejith element ofB, and
observe that thej th diagonal element ofBA is

∑m
i�1 bjiaij . Thus, making use of

result (2.1), we find that

tr(AB) �
m∑
i�1

n∑
j�1

aij bji �
n∑
j�1

m∑
i�1

aij bji �
n∑
j�1

m∑
i�1

bjiaij � tr(BA) .

Q.E.D.
Now, let A � {aij } and B � {bij } representm × n matrices, and letaj �

(a1j , . . . , amj )′ andbj � (b1j , . . . , bmj )′ represent thej th columns ofA andB.
Then, since thejith element ofB′ is the ij th element ofB and sinceb′jaj �
a′jbj �

∑m
i�1 aij bij , it follows from results (2.3) and (2.1) that

tr(AB′) � tr(B′A) �
n∑
j�1

b′jaj �
n∑
j�1

a′jbj �
m∑
i�1

n∑
j�1

aij bij . (2.4)

In particular,

tr(AA′) � tr(A′A) �
n∑
j�1

a′jaj �
m∑
i�1

n∑
j�1

a2
ij ≥ 0 . (2.5)

Thus, both tr(AA′) and tr(A′A) equal the sum of squares of the elements ofA (and
both are nonnegative).

As special cases of results (2.4) and (2.5), we have that, for anym-dimensional
column vectorsa � {ai} andb � {bi},

tr(ab′) � b′a � a′b �
m∑
i�1

aibi , (2.6)

tr(aa′) � a′a �
m∑
i�1

a2
i ≥ 0 . (2.7)

Note that, together, results (2.2) and (2.3) imply that for anym × n matrix A
andn×m matrix B,

tr(AB) � tr(B′A′) � tr(BA) � tr(A′B′) . (2.8)

Thus, in evaluating the trace of the product of two matrices, the matrices can be
permuted or replaced by their transposes or both.

Consider now the trace of the productABC of anm × n matrix A, ann × p

matrix B, and ap × m matrix C. SinceABC can be regarded as the product of
the two matricesAB andC or, alternatively, ofA andBC, it follows from Lemma
5.2.1 that

tr(ABC) � tr(CAB) � tr(BCA) . (2.9)
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More generally, for anyk matricesA1,A2, . . . ,Ak for which the matrix product
A1A2 · · ·Ak is defined,

tr(A1A2 · · ·Ak) � tr(Aj+1 · · ·AkA1 · · ·Aj ) (2.10)

(j � 1, . . . , k − 1).
Results (2.9) and (2.10) indicate that, for purposes of evaluating the trace of a

product of matrices, the matrices can be permuted. However, aside from special
cases, they can be permuted only in a certain way. For example, even if the three
matricesA, B, andC are square and of the same order so thatBAC, like ABC, is
defined and square, tr(BAC) is not necessarily equal to tr(ABC).

5.3 Some Equivalent Conditions

The following lemma gives a basic equivalence.
Lemma 5.3.1. For anym×nmatrixA � {aij }, A � 0 if and only if tr(A′A) � 0.
Proof. If A � 0, then obviously tr(A′A) � 0. Conversely, if tr(A′A) � 0, then

it follows from result (2.5) thata2
ij � 0 and hence thataij � 0 (i � 1, . . . , m; j �

1, . . . , n) or equivalently thatA � 0. Q.E.D.
As an essentially immediate consequence of Lemma 5.3.1, we have the following

corollary.
Corollary 5.3.2. For anym× n matrix A, A � 0 if and only if A′A � 0.
The following corollary generalizes Corollary 5.3.2.
Corollary 5.3.3. (1) For anym × n matrix A andn × p matricesB andC,

AB � AC if and only if A′AB � A′AC. (2) Similarly, for anym × n matrix A
andp × n matricesB andC, BA′ � CA′ if and only if BA′A � CA′A.

Proof (of Corollary 5.3.3). (1) IfAB � AC, then obviouslyA′AB � A′AC.
Conversely, ifA′AB � A′AC, then

(AB− AC)′(AB− AC) � (B′ − C′)(A′AB− A′AC) � 0 ,

and it follows from Corollary 5.3.2 thatAB − AC � 0 or, equivalently, that
AB � AC.

(2) To establish Part (2), simply take the transpose of each side of the two
equivalent equalitiesAB′ � AC′ andA′AB′ � A′AC′. [The equivalence of these
two equalities follows from part (1).] Q.E.D.

Note that, as a special case of Part (1) of Corollary 5.3.3 (the special case where
C � 0), we have thatAB � 0 if and only if A′AB � 0, and, as a special case of
Part (2), we have thatBA′ � 0 if and only if BA′A � 0.
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Exercises

Section 5.2

1. Show that for anym× n matrix A, n× p matrix B, andp × q matrix C,

tr(ABC) � tr(B′A′C′) � tr(A′C′B′) .

2. LetA, B, andC representn× n matrices.

(a) Using the result of Exercise 1 (or otherwise), show that ifA, B, andC are
symmetric, then tr(ABC) � tr(BAC).

(b) Show that [aside from special cases like that considered in Part (a)] tr(BAC)
is not necessarily equal to tr(ABC).

Section 5.3

3. LetA represent ann× n matrix such thatA′A � A2.

(a) Show that tr[(A− A′)′(A− A′)] � 0.

(b) Show thatA is symmetric.
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6
Geometrical Considerations

This chapter provides an introduction (at a somewhat general level) to some rather
fundamental geometrical ideas and results. Some knowledge of this material is an
important prerequisite for assimilating ideas in several areas of statistics, including
linear statistical models and multivariate analysis.

Among those who teach and write about the more theoretical aspects of linear
statistical models, there is a considerable difference of opinion about the extent
to which geometrical ideas should be emphasized (relative to “algebraic” ideas).
Those who prefer a “geometrical approach” (e.g., Scheffé 1959, Christensen 1996)
argue that it is more general, more elegant, and (perhaps most important) more
intuitive. Those who prefer a more algebraic approach (e.g., Searle 1971) find it to
be more rigorous, more concrete, more palatable to those with a limited mathemat-
ical background, and (perhaps most important) more suggestive of computational
approaches.

6.1 Definitions: Norm, Distance, Angle, Inner Product,
and Orthogonality

Certain definitions from plane and solid geometry can be extended in a natural way
to an arbitrary linear space and can be otherwise generalized, as is now discussed.
Let us begin by reviewing the usual definitions in the familiar settings ofR2 and
R3.
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a. Usual definitions in R2 and R3

Each point in the plane can be identified by its coordinates (relative to a horizontal
line and a vertical line — known as the coordinate axes — labeled so that their
point of intersection — known as the origin — has coordinates of zero). A vector
x � (x1, x2)′ in R2 can be regarded as representing a point in the plane; namely,
the point whose coordinates arex1 andx2. Similarly, each point in 3-dimensional
space can be identified by its coordinates (relative to three mutually perpendicular
axes whose intersection, called the origin, has coordinates of 0); and a vector
x � (x1, x2, x3)′ in R3 can be regarded as representing the point in space whose
coordinates arex1, x2, andx3. (For definiteness, it is supposed thatR2 � R2×1

andR3 � R3×1, so that the members ofR2 andR3 are column vectors rather than
row vectors.)

In addition to representing a point, a vector inR2 orR3 is also used to represent
the directed line segment that starts at the origin and ends at that point. The intended
usage can be ascertained from the context.

The usual definition of thenorm ‖x‖ (also known as thelength or magnitude)
of a vectorx � (x1, x2)′ in R2 is

‖x‖ � (x2
1 + x2

2)1/2 .

Thedistance δ(x, y) between two vectorsx � (x1, x2)′ andy � (y1, y2)′ in R2 is
usually taken to be

δ(x, y) � ‖x− y‖ � [(x1 − y1)2 + (x2 − y2)2]1/2 .

Similarly, the norm‖x‖ of a vectorx � (x1, x2, x3)′ in R3 is usually defined to be

‖x‖ � (x2
1 + x2

2 + x2
3)1/2 ,

and the distanceδ(x,y) between two vectorsx � (x1, x2, x3)′ andy � (y1, y2, y3)′

(in R3) to be

δ(x, y) � ‖x− y‖ � [(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2]1/2.

Clearly, for any vectorx in R2 or R3,

‖x‖ � (x′x)1/2 ,

and‖x‖ � δ(x, 0), that is, the norm ofx is the distance betweenx and0.
Consider now the angle that two nonnull vectorsx andy in R2 andR3 form

with each other. There are actually two such angles, as depicted in Figure 6.1.
The first angleθ1 is that determined by rotating the directed line segmentx in
a counterclockwise direction (about the origin and within the plane containingx
andy) until the directed line segmenty is encountered. The second angleθ2 �
2π − θ1 is that determined by rotatingy in a counterclockwise direction untilx is
encountered. (Unless otherwise indicated, angles are to be expressed in radians.)
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Clearly, for any two vectorsx andy in R2 or R3,

x •y � x′y .

Note that the norm of a vectorx in R2 or R3 is expressible as

‖x‖ � (x •x)1/2 ,

and the cosine of the angleθ between two nonnull vectorsx and y in R2 is
expressible as

cosθ � x •y
‖x‖‖y‖ �

x •y
(x •x)1/2(y •y)1/2

.

Two vectorsx andy in R2 or R3 are said to beorthogonal (or perpendicular)
if x •y � 0. Clearly, nonnull vectorsx andy are orthogonal if and only if the angle
between them isπ/2 (90◦) or, equivalently, the cosine of that angle is 0.

b. General definitions

The usual definitions of norm, distance, angle, inner product, and orthogonality can
be extended, in a natural way, fromR2 andR3 to an arbitrary linear space and can
be otherwise generalized, though — except for linear spaces of 2- or 3-dimensional
row or column vectors — the extended definitions have no obvious geometrical
interpretations. To do so, it suffices to extend and generalize the definition of inner
product. The other definitions can then be extended and generalized by supposing
that the concepts of norm, distance, angle, and orthogonality are related to each
other and to the concept of inner product in the same way as (under the usual
definitions) inR2 andR3.

The usual definition of theinner (or dot) product x • y of two n-dimensional
(column) vectorsx � (x1, x2, . . . , xn)′ andy � (y1, y2, . . . , yn)′ in Rn, or, more
generally, in a subspace ofRn, is

x •y � x′y � x1y1 + x2y2 + . . .+ xnyn . (1.4)

Formula (1.4) is the natural extension of formulas (1.2) and (1.3) for the usual
inner product of two vectors inR2 or R3.

More generally, the usual definition of theinner (or dot) product A • B of two
m× n matricesA andB in a linear spaceV of m× n matrices is

A •B � tr(A′B) (1.5)

or, equivalently [in light of result (5.2.8)],

A •B � tr(AB′) . (1.6)

In the special case of twon-dimensional row vectorsx′ � (x1, x2, . . . , xn) and
y′ � (y1, y2, . . . , yn), formula (1.6) for the usual inner product simplifies to

x′ •y′ � x′y � x1y1 + x2y2 + · · · + xnyn ,
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which is the same as formula (1.4) for the usual inner product of the corresponding
column vectorsx andy.

The usual inner productA • B of two matricesA andB in a linear spaceV of
m × n matrices can be regarded as the value assigned toA andB by a function
whose domain consists of all (ordered) pairs of matrices inV. As is evident from
results (5.1.3), (5.1.4), (5.2.3), and (5.2.5) and from Lemma 5.3.1, this function
has the following four basic properties:

(1) A •B � B •A;

(2) A •A ≥ 0, with equality holding if and only ifA � 0;

(3) (kA) •B � k(A •B);

(4) (A+ B) •C � (A •C)+ (B •C)

(whereA, B, andC represent arbitrary matrices inV andk represents an arbitrary
scalar).

It is sometimes useful to adopt a different definition for the inner product. Sub-
sequently, we define theinner product of two matricesA andB in a linear space
V (ofm× nmatrices) to be the valueA •B assigned toA andB by any designated
functionf (whose domain consists of all pairs of matrices inV) having Properties
(1) – (4). The term inner product is applied to the functionf , as well as to its
values. Whenf is chosen to be the function whose values are given by formula
(1.5) or (1.6), we obtain the usual inner product.

Other properties of the inner product can be derived from the four basic prop-
erties. We find, in particular, that (for anyA in V)

0 •A � 0 , (1.7)

as is evident from Property (3) upon observing that

0 •A � (0A) •A � 0(A •A) � 0 .

Further (for any matricesA1, . . . ,Ak, andB in V and any scalarsx1, . . . , xk),

(x1A1 + · · · + xkAk) •B � x1(A1 •B)+ · · · + xk(Ak
•B) , (1.8)

as can be readily verified by the repeated application of Properties (3) and (4).
Note that if a functionf qualifies as an inner product for a linear spaceV of

m × n matrices, thenf also qualifies as an inner product for any subspace ofV
— or, more precisely, the function obtained by restricting the domain off (which
consists of pairs of matrices inV) to pairs of matrices in the subspace qualifies as
an inner product. In fact, iff is the designated inner product for a linear spaceV,
then (unless otherwise indicated) it is implicitly assumed that the same functionf

is the designated inner product for any subspace ofV.
Thenorm ‖A‖ of a matrixA � {aij } in a linear spaceV of m× n matrices is

‖A‖ � (A •A)1/2 ,
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which, in the case of the usual inner product, gives

‖A‖ � [tr(A′A)
]1/2 �

(
m∑
i�1

n∑
j�1

a2
ij

)1/2

. (1.9)

If V is a linear space ofm-dimensional column vectors, then, lettingx � {xi}
represent any vector inV, formula (1.9) can be restated as

‖x‖ � (x′x)1/2 � (x2
1 + · · · + x2

m)1/2 . (1.10)

The norm defined by formula (1.10) or more generally by formula (1.9) is called
theusual norm.

Letting A represent an arbitrary matrix in a linear spaceV andk an arbitrary
scalar, it is clear that

‖A‖ > 0, if A �� 0 , (1.11a)
� 0, if A � 0 , (1.11b)

and that
‖kA‖ � |k|‖A‖ . (1.12)

As a special case of equality (1.12) (that wherek � −1), we have that

‖ − A‖ � ‖A‖ . (1.13)

Thedistance δ(A,B) between two matricesA andB in a linear spaceV is

δ(A,B) � ‖A− B‖ . (1.14)

If V is a linear space ofn-dimensional column vectors, then, lettingx � {xi}
represent any vector inV, formula (1.14) simplifies, in the case of the usual norm,
to

δ(x, y) � [(x− y)′(x− y)]1/2 � [(x1 − y1)2 + · · · + (xn − yn)2]1/2 . (1.15)

For two nonnull vectorsx � {xi} and y � {yi} in a linear spaceV of n-
dimensional column vectors, theangle θ (0 ≤ θ ≤ π ) betweenx andy is defined
(indirectly in terms of its cosine) by

cosθ � x •y
‖x‖‖y‖

or equivalently, in the case of the usual inner product and norm, by

cosθ � x1y1 + · · · + xnyn
(x2

1 + · · · + x2
n)1/2(y2

1 + · · · + y2
n)1/2

.

More generally, the angleθ (0 ≤ θ ≤ π ) between two nonnull matricesA andB
in a linear spaceV of m× n matrices is defined by

cosθ � A •B
‖A‖‖B‖ .
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The Schwarz inequality, which is to be introduced in Section 6.3, implies that

−1≤ A •B
‖A‖‖B‖ ≤ 1 (1.16)

and hence insures that this angle is well-defined.
Two vectorsx andy in a linear spaceV of n-dimensional column vectors are

said to beorthogonal if x •y � 0. More generally, two matricesA andB in a linear
spaceV are said to be orthogonal ifA •B � 0. The statement that two matricesA
andB are orthogonal is sometimes abbreviated toA ⊥ B.

Clearly, two nonnull matrices are orthogonal if and only if the angle between
them isπ/2 or, equivalently, the cosine of that angle is 0. Whether two matrices
are orthogonal depends on the choice of inner product; that is, two matrices that
are orthogonal with respect to one inner product (one choice for the functionf )
may not be orthogonal with respect to another.

6.2 Orthogonal and Orthonormal Sets

A finite set of matrices in a linear spaceV is said to beorthogonal if every pair
of matrices in the set are orthogonal. Thus, the empty set and any set containing
only one matrix are orthogonal sets, and a finite set{A1, . . . ,Ak} of two or more
matrices inV is an orthogonal set ifAi

•Aj � 0 for j �� i � 1, . . . , k. A finite set
of matrices inV is said to beorthonormal if the set is orthogonal and if the norm
of every matrix in the set equals 1. In the special case of a set of (row or column)
vectors, the expression “set of orthogonal (or orthonormal) vectors,” or simply
“orthogonal (or orthonormal) vectors,” is often used in lieu of the technically more
correct expression “orthogonal (or orthonormal) set of vectors.”

Note that ifA is any nonnull matrix in a linear spaceV, then the norm of the
matrix

B � ‖A‖−1A (2.1)

equals 1. The expression “normalizing a (nonnull) matrix” is often used in referring
to the conversion — via formula (2.1) — of the matrix into a matrix whose norm
is 1.

If {A1, . . . ,Ak} is an orthogonal set of nonnull matrices in a linear spaceV, then
the matrices

B1 � ‖A1‖−1A1, . . . ,Bk � ‖Ak‖−1Ak

form an orthonormal set. Thus, any orthogonal set of nonnull matrices can be
converted into an orthonormal set by normalizing each of the matrices.

There is a relationship between orthogonality and linear independence, which
is described in the following lemma.

Lemma 6.2.1. An orthogonal set of nonnull matrices is linearly independent.
Proof. If the orthogonal set is the empty set, then the result is clearly true

(since, by convention, the empty set is linearly independent). Suppose then that
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{A1, . . . ,Ak} is any nonempty orthogonal set of nonnull matrices. Letx1, . . . , xk
represent arbitrary scalars such that

x1A1 + · · · + xkAk � 0 .

For i � 1, . . . , k, we find that

0� 0 •Ai � (x1A1 + · · · + xkAk) •Ai

� x1(A1 •Ai)+ · · · + xk(Ak
•Ai)

� xi(Ai
•Ai) ,

implying (sinceAi is nonnull) thatxi � 0. We conclude that the set{A1, . . . ,Ak}
is linearly independent. Q.E.D.

Note that Lemma 6.2.1 implies in particular that any orthonormal set of ma-
trices is linearly independent. Note also that the converse of Lemma 6.2.1 is not
necessarily true; that is, a linearly independent set is not necessarily orthogonal.
For example, the set consisting of the two 2-dimensional row vectors (1,0) and
(1,1) is linearly independent but is not orthogonal (with respect to the usual inner
product).

6.3 Schwarz Inequality

The following theorem gives a famous inequality, known as the Schwarz inequality.
Theorem 6.3.1 (Schwarz inequality). For any two matricesA andB in a linear

spaceV,
|A •B| ≤ ‖A‖‖B‖ , (3.1)

with equality holding if and only ifB � 0 or A � kB for some scalark.
Proof. Suppose first that‖B‖ � 0 or equivalently thatB � 0. Then,|A • B| �

0� ‖A‖ ‖B‖, and inequality (3.1) holds as an equality.
Now, suppose that‖B‖ > 0. Then (repeatedly making use of the basic properties

of inner products), we find that, for any scalarsx andy,

0 ≤ (xA− yB) • (xA− yB)

� x2‖A‖2 − 2xy(A •B)+ y2‖B‖2 .

Choosingx � ‖B‖ andy � (A •B)/‖B‖, we obtain the inequality

0 ≤ ‖B‖2‖A‖2 − (A •B)2 ,

which is equivalent to the inequality

(A •B)2 ≤ ‖A‖2‖B‖2

and hence to inequality (3.1).
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If A � kB, then‖A‖ � |k| ‖B‖, so that

|A •B| � |k|(B •B) � |k|‖B‖2 � ‖A‖‖B‖ .

Conversely, suppose that|A •B| � ‖A‖ ‖B‖. Then, lettingC � ‖B‖2A−(A •B)B,
we find thatC •C � 0, implying thatC � 0, that is, that

‖B‖2A � (A •B)B .

We conclude that eitherB � 0 or

A � [(A •B)/‖B‖2]B .

Q.E.D.
As a special case of Theorem 6.3.1, we have that, for any twon-dimensional

column vectorsx andy,

|x′y| ≤ (x′x)1/2(y′y)1/2 , (3.2)

with equality holding if and only ify � 0 or x � ky for some scalark.
Note that the result of Theorem 6.3.1 can be reexpressed as follows.
Corollary 6.3.2. Let V represent a linear space ofm × n matrices. Then, for

any matrixB in V,

max
{A∈V:A ��0}

|A •B|
‖A‖ � ‖B‖ .

Moreover, if B � 0, the maximum is attained at every nonnullA ∈ V; and if
B �� 0, the maximum is attained at every nonnullA ∈ V that is proportional toB.

6.4 Orthonormal Bases

An orthonormal basis for a linear spaceV is an orthonormal set of matrices inV
that is a basis forV. The technique of Gram-Schmidt orthogonalization, which is
described in Subsection a below, is used in Subsection b to establish the existence
of an orthonormal basis.

a. Gram-Schmidt orthogonalization

A nonempty linearly independent set of matrices can be transformed into an or-
thogonal or orthonormal set of matrices by applying the results of the following
theorem and corollary.

Theorem 6.4.1. Let {A1, . . . ,Ak} represent a nonempty linearly independent
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set of matrices in a linear spaceV. Then, there exist unique scalarsxij (i < j �
1, . . . , k) such that the set comprising thek matrices

B1 � A1,

B2 � A2 − x12B1,
...
Bj � Aj − xj−1,jBj−1 − · · · − x1jB1,
...
Bk � Ak − xk−1,kBk−1 − · · · − x1kB1

is orthogonal. Further,B1,B2, . . . ,Bk are nonnull, and (fori < j � 1, . . . , k)

xij � Aj
•Bi

Bi
•Bi

. (4.1)

Proof. The proof is by mathematical induction. The theorem is obviously true
for k � 1. Suppose now that the theorem is true for a set ofk − 1 linearly
independent matrices. Then, there exist unique scalarsxij (i < j � 1, . . . , k − 1)
such that the set comprising thek−1 matricesB1, . . . ,Bk−1 is orthogonal. Further,
B1, . . . ,Bk−1 are nonnull, and (fori < j � 1, . . . , k − 1)

xij � Aj
•Bi

Bi
•Bi

.

And, for i � 1, . . . , k − 1, we find that

Bk
•Bi � Ak

•Bi − xk−1,k(Bk−1 •Bi)− · · · − x1k(B1 •Bi)

� Ak
•Bi − xik(Bi

•Bi)

and thus thatBk
•Bi � 0 if and only if

Ak
•Bi − xik(Bi

•Bi) � 0

or, equivalently (sinceBi is nonnull), if and only if

xik � Ak
•Bi

Bi
•Bi

.

We conclude that there exist unique scalarsxij (i < j � 1, . . . , k) such that the
set comprising thek matricesB1, . . . ,Bk is orthogonal. We further conclude that
B1, . . . ,Bk are nonnull and that (fori < j � 1, . . . , k) xij is given by formula
(4.1). (The matrixBk � Ak−xk−1,kBk−1−· · ·−x1kB1 is nonnull since, by repeated
substitution, it can be rewritten as a nontrivial linear combination of the linearly
independent matricesA1, . . . ,Ak.) Q.E.D.

Corollary 6.4.2. Let {A1, . . . ,Ak} represent a nonempty linearly independent
set of matrices in a linear spaceV. Then, the set comprising thek matrices

C1 � ‖B1‖−1B1, . . . ,Ck � ‖Bk‖−1Bk ,
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obtained by normalizing thek matricesB1, . . . ,Bk defined in Theorem 6.4.1, is
orthonormal.

Corollary 6.4.2 is an essentially immediate consequence of Theorem 6.4.1. The
process of constructing an orthonormal set{C1, . . . ,Ck} from a linearly inde-
pendent set{A1, . . . ,Ak} in accordance with the formulas of Theorem 6.4.1 and
Corollary 6.4.2 is known asGram-Schmidt orthogonalization.

b. Existence of orthonormal bases and a basic property of
orthonormal bases

According to Theorem 4.3.4, every linear space (ofm × n matrices) has a basis.
The basis of the linear space{0}, whose only member is them × n null matrix
0, is the empty set, which is an orthonormal set. The basis of any other linear
spaceV is a nonempty (linearly independent) set, say{A1, . . . ,Ar}. By applying
Gram-Schmidt orthogonalization to the set{A1, . . . ,Ar}, we can construct an
orthonormal set{C1, . . . ,Cr} of r matrices inV. It follows from Lemma 6.2.1 that
this set is linearly independent and hence — in light of Theorem 4.3.9 — that it is
a basis forV. Thus, we have the following theorem.

Theorem 6.4.3. Every linear space (ofm × n matrices) has an orthonormal
basis.

The following theorem describes a basic property of orthonormal bases.
Theorem 6.4.4. LetA1,A2, . . . ,Ar represent matrices that form an orthonormal

basis for a linear spaceV. Then, for any matrixA in V,

A � (A •A1)A1 + (A •A2)A2 + · · · + (A •Ar )Ar .

Proof. There exist (unique) scalarsx1, x2, . . . , xr such thatA � ∑r
i�1 xiAi .

And, for j � 1, . . . , r,

A •Aj �
(

r∑
i�1

xiAi

)
•Aj �

r∑
i�1

xi(Ai
•Aj ) � xj .

Thus,A �∑r
i�1(A •Ai)Ai . Q.E.D.

c. Inclusion of any particular orthonormal set in an orthonormal
basis

Suppose that{A1, . . . ,Ar} is an orthonormal set of matrices in ak-dimensional
linear spaceV. Then, in light of Lemma 6.2.1, the matricesA1, . . . ,Ar are linearly
independent, and it follows from Theorem 4.3.12 that there exists a basis forV that
includesA1, . . . ,Ar ; that is, there existk−r additional matrices, sayAr+1, . . . ,Ak,
such that the set{A1, . . . ,Ar , Ar+1, . . . ,Ak} is a basis forV.

Does there exist an orthonormal basis forV that includesA1, . . . ,Ar? This
question can be answered (in the affirmative) by observing that an orthonormal
set{C1, . . . ,Cr , Cr+1, . . . ,Ck} of k matrices inV can be constructed by applying



66 6. Geometrical Considerations

Gram-Schmidt orthogonalization to the set{A1, . . . ,Ar , Ar+1, . . . ,Ak}. Since the
subset comprising the firstr of the matrices in the set{A1, . . . ,Ar , Ar+1, . . . ,Ak}
is orthonormal, the matrices in this subset are not altered by the Gram-Schmidt
orthogonalization; that is,

Ci � Ai (i � 1, . . . , r) .

Moreover, it follows from Lemma 6.2.1 and Theorem 4.3.9 that the orthonormal set
{C1, . . . ,Cr , Cr+1, . . . ,Ck} is a basis forV. Thus, we have the following theorem.

Theorem 6.4.5. For any orthonormal setS of r matrices in ak-dimensional
linear spaceV, there exists an orthonormal basis forV that includes allr of the
matrices inS (andk − r additional matrices).

d. QR decomposition

Let A represent anm×kmatrix of full column rank, that is, of rankk. And, denote
the first,. . . , kth columns ofA by a1, . . . , ak, respectively. Then, according to
Theorem 6.4.1, there exist unique scalarsxij (i < j � 1, . . . , k) such that thek
column vectorsb1, . . . ,bk defined recursively by the equalities

b1 � a1,

b2 � a2 − x12b1,
...
bj � aj − xj−1,jbj−1 − · · · − x1jb1,
...
bk � ak − xk−1,kbk−1 − · · · − x1kb1

or, equivalently, by the equalities

a1 � b1,

a2 � b2 + x12b1,
...
aj � bj + xj−1,jbj−1 + · · · + x1jb1,
...
ak � bk + xk−1,kbk−1 + · · · + x1kb1

form an orthogonal set. Further,b1, . . . ,bk are nonnull, and (fori < j � 1, . . . , k)

xij � aj •bi
bi •bi

.

Now, let B represent them × k matrix whose first,. . . , kth columns are
b1, . . . ,bk, respectively, and letX represent thek× k unit upper triangular matrix
whoseij th element is (fori < j � 1, . . . , k) xij . Then,

A � BX , (4.2)
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as is evident upon observing that the first column ofBX is b1 and that (forj �
2, . . . , k) thej th column ofBX is bj + xj−1,jbj−1 + · · · + x1jb1.

Thus,A can be expressed as the product of anm × k matrix with (nonnull)
orthogonal columns and of ak × k unit upper triangular matrix. Moreover, this
decomposition or factorization ofA is unique; that is, ifB∗ is anm × k matrix
with orthogonal columns andX∗ is ak × k unit upper triangular matrix such that
A � B∗X∗, thenB∗ � B and X∗ � X. To see this, denote the first,. . . , kth
columns ofB∗ by b∗1, . . . ,b∗k , respectively, denote theij th element ofX∗ by x∗ij ,
and observe that (by definition)a1 � b∗1 and (forj � 2, . . . , k)

aj � b∗j + x∗j−1,jb
∗
j−1 + · · · + x∗1jb∗1 ,

or, equivalently, thatb∗1 � a1 and (forj � 2, . . . , k)

b∗j � aj − x∗j−1,jb
∗
j−1 − · · · − x∗1jb∗1 .

Then, it follows from Theorem 6.4.1 that (fori < j � 1, . . . , k) x∗ij � xij and, as
a consequence, that (for allj ) b∗j � bj , so thatX∗ � X andB∗ � B.

A variation on decomposition (4.2) can be obtained by definingQ � BD,
whereD � diag(‖b1‖−1, . . . , ‖bk‖−1), andR � EX, whereE � diag(‖b1‖, . . . ,
‖bk‖); or equivalently by definingQ to be them × k matrix with j th column
qj � ‖bj‖−1bj andR � {rij } to be thek × k matrix with

rij �


‖bi‖xij , for j > i ,

‖bi‖, for j � i ,

0, for j < i .

Then, clearly, the columns ofQ are orthonormal (they are the orthonormal vectors
obtained by applying Gram-Schmidt orthogonalization to the columns ofA), R is
an upper triangular matrix with positive diagonal elements, and

A � QR . (4.3)

Moreover, decomposition (4.3) is unique; that is, ifQ∗ is anm× k matrix with
orthonormal columnsq∗1, . . . ,q∗k , respectively, and ifR∗ � {r∗ij } is ak × k upper
triangular matrix (with positive diagonal elements) such thatA � Q∗R∗, then
Q∗ � Q andR∗ � R. To see this, letB∗ � Q∗E∗, whereE∗ � diag(r∗11, . . . , r

∗
kk),

and letX∗ � D∗R∗, whereD∗ � diag(r∗−1
11 , . . . , r∗−1

kk ); or, equivalently, letB∗

represent them × k matrix with j th columnb∗j � r∗jjq
∗
j , and letX∗ represent

the k × k matrix with ij th elementx∗ij � r∗−1
ii r∗ij . Then, the columns ofB∗ are

orthogonal,X∗ is unit upper triangular, andA � B∗X∗. Thus, in light of the
uniqueness of decomposition (4.2),B∗ � B andX∗ � X, so thatr∗jjq

∗
j � b∗j �

bj � ‖bj‖qj (for all j ) andr∗−1
ii r∗ij � x∗ij � xij � ‖bi‖−1rij (for all j andi < j ),

implying that

r∗jj � (r∗2
jj q∗

′
j q∗j )

1/2 � (‖bj‖2q′jqj )
1/2 � ‖bj‖(� rjj ) .
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(for all j ), and hence thatqj � q∗j (for all j ) andr∗ij � rij (for all j andi ≤ j ),
or, equivalently, thatQ∗ � Q andR∗ � R.

Note that decompositions (4.2) and (4.3) depend on the choice of inner product
(with respect to which the columns ofB and the columns ofQ form orthogonal or
orthonormal sets). Let us refer to the version of decomposition (4.3) corresponding
to the usual inner product as theQR decomposition — for that version,Q′Q � Ik.
This usage of the term QR decomposition conforms to that of Stewart (1973, p.
214) and Lancaster and Tismenetsky (1985, p. 111), but differs somewhat from
that of Golub and Van Loan (1989, sec. 5.2), who refer to decomposiiton (4.3) as
the “skinny” QR decomposition.

In principle, the QR decomposition of the matrixA could be computed by
Gram-Schmidt orthogonalization. However, as a computational algorithm, Gram-
Schmidt orthogonalization is numerically unstable. Numerically more stable al-
gorithms for computing the QR decomposition are discussed by Golub and Van
Loan (1989, sec. 5.2) — one such algorithm is a variant on Gram-Schmidt orthog-
onalization calledmodified Gram-Schmidt orthogonalization.

Exercises

Section 6.3

1. Use the Schwarz inequality to show that, for any two matricesA andB in a
linear spaceV,

‖A+ B‖ ≤ ‖A‖ + ‖B‖ ,
with equality holding if and only ifB � 0 or A � kB for some nonnegative
scalark. (This inequality is known as the triangle inequality.)

2. LettingA, B, andC represent arbitrary matrices in a linear spaceV, show that

(a) δ(B,A) � δ(A,B), that is the distance betweenB andA is the same as that
betweenA andB;

(b) δ(A,B) > 0, if A �� B ,
� 0, if A � B ,

that is, the distance between any two matrices is greater than zero, unless
the two matrices are identical, in which case the distance between them is
zero;

(c) δ(A,B) ≤ δ(A,C)+ δ(C,B), that is, the distance betweenA andB is less
than or equal to the sum of the distances betweenA andC and betweenC
andB;

(d) δ(A,B) � δ(A+C,B+C), that is, distance is unaffected by a translation
of “axes.”
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[For Part (c), use the result of Exercise 1, i.e., the triangle inequality.]

Section 6.4

3. Letw′
1,w′

2, andw′
3 represent the three linearly independent 4-dimensional row

vectors (6, 0, –2, 3), (–2, 4, 4, 2), and (0, 5, –1, 2), respectively, in the linear
spaceR4, and adopt the usual definition of inner product.

(a) Use Gram-Schmidt orthogonalization to find an orthonormal basis for the
linear space sp(w′1,w′

2,w′
3).

(b) Find an orthonormal basis forR4 that includes the three orthonormal vectors
from Part (a). Do so by extending the results of the Gram-Schmidt orthog-
onalization [from Part (a)] to a fourth linearly independent row vector such
as (0, 1, 0, 0).

4. Let {A1, . . . ,Ak} represent a nonempty (possibly linearly dependent) set of
matrices in a linear spaceV.

(a) Generalize Theorem 6.4.1 by showing (1) that there exist scalarsxij (i <
j � 1, . . . , k) such that the set comprising thek matrices

B1 � A1,

B2 � A2 − x12B1,
...
Bj � Aj − xj−1,jBj−1 − · · · − x1jB1,
...
Bk � Ak − xk−1,kBk−1 − · · · − x1kB1

is orthogonal; (2) that, forj � 1, . . . , k and for thosei < j such thatBi is
nonnull,xij is given uniquely by

xij � Aj
•Bi

Bi
•Bi

;

and (3) that the number of nonnull matrices amongB1, . . . ,Bk equals
dim[sp(A1, . . . ,Ak)].

(b) Describe a procedure for constructing an orthonormal basis for
sp(A1, . . .,Ak).

5. Let A represent anm × k matrix of rankr (wherer is possibly less thank).
Generalize result (4.3) by using the results of Exercise 4 to obtain a decompo-
sition of the formA � QR1, whereQ is anm × r matrix with orthonormal
columns andR1 is anr × k submatrix whose rows are ther nonnull rows of a
k× k upper triangular matrixR havingr positive diagonal elements andk− r
null rows.
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7
Linear Systems: Consistency and
Compatibility

In many instances, the solution to a problem encountered in statistics (or in some
other discipline) can be reduced to a problem of solving a system of linear equa-
tions. For example, the problem of obtaining the least squares estimates of the
parameters in a linear statistical model can be reduced to the problem of solving
a system of linear equations called the normal equations or (if the parameters are
subject to linear constraints) a system of linear equations sometimes called the
constrained normal equations (e.g., Searle 1971).

The focus in this chapter is on questions about the existence of (one or more) so-
lutions to a system of linear equations — questions about the solutions themselves
(when solutions exist) are deferred until Chapter 11. Such questions of existence
arise in the theory of linear statistical models in determining which parametric
functions are estimable (i.e., which parametric functions can be estimated from
the data) and in the design of experiments (e.g., Searle 1971). The results of Sec-
tions 7.2 and 7.3 are general (i.e., applicable to any system of linear equations),
while those of Section 7.4 are specific to systems of linear equations of the form of
the normal equations or constrained normal equations — some of the terminology
employed in discussing systems of linear equations is introduced in Section 7.1.

7.1 Some Basic Terminology

Consider a set ofm equations of the general form

a11x1 + a12x2 + · · · + a1nxn � b1
...

am1x1 + am2x2 + · · · + amnxn � bm ,
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where a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn and b1, . . . , bm represent fixed
scalars, andx1, x2, . . . , xn are scalar-valued unknowns or variables. Each of these
equations is linear in the unknownsx1, x2, . . . , xn. Collectively, these equations
are called asystem of linear equations (in unknownsx1, x2, . . . , xn) or simply a
linear system (in x1, x2, . . . , xn).

The linear system can be rewritten in matrix form as

Ax � b , (1.1)

whereA is them × n matrix whoseij th element isaij (i � 1, . . . , m; j �
1, . . . , n), b � (b1, . . . , bm)′, andx � (x1, x2, . . . , xn)′. The matrixA is called the
coefficient matrix of the linear system, andb is called theright side. Any value of
the vectorx of unknowns that satisfiesAx � b is called asolution to the linear
system, and the process of finding a solution (when one exists) is called solving
the linear system.

There may be occasion to solve the linear system for more than one right side,
that is, to solve each ofp linear systems

Axk � bk (k � 1, . . . , p) (1.2)

(in vectorsx1, . . . , xp, respectively, of unknowns) that have the same coefficient
matrix A but right sidesb1, . . . ,bp, respectively, that may differ. By forming an
n× p matrixX whose first,. . . , pth columns arex1, . . . , xp, respectively, and an
m×p matrixB whose columns areb1, . . . ,bp, respectively, thep linear systems
(1.2) can be rewritten collectively as

AX � B . (1.3)

As in the special case (1.1) wherep � 1, AX � B is called alinear system (in X),
A andB are called thecoefficient matrix and theright side, respectively, and any
value ofX that satisfiesAX � B is called asolution.

In the special case
AX � 0 ,

where the right sideB of linear system (1.3) is a null matrix, the linear system is
said to behomogeneous. If B is nonnull, linear system (1.3) is said to benonho-
mogeneous.

7.2 Consistency

A linear system is said to beconsistent if it has one or more solutions. If no solution
exists, the linear system is said to beinconsistent.

Every homogeneous linear system is consistent — one solution to a homoge-
neous linear system is the null matrix (of appropriate dimensions). A nonhomoge-
neous linear system may be either consistent or inconsistent. Some necessary and
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sufficient conditions for a linear system to be consistent are given by the following
theorem.

Theorem 7.2.1. Each of the following conditions is necessary and sufficient for
a linear systemAX � B (in X) to be consistent:
(1) C(B) ⊂ C(A);
(2) every column ofB belongs toC(A);
(3) C(A,B) � C(A);
(4) rank(A,B) � rank(A).

Proof. That Condition (1) is necessary and sufficient for the consistency of
AX � B is an immediate consequence of Lemma 4.2.2. Further, it follows from
Lemma 4.2.1 that Condition (2) is equivalent to Condition (1), from Lemma 4.5.1
that Condition (3) is equivalent to Condition (1), and from Corollary 4.5.2 that
Condition (4) is equivalent to Condition (1). Thus, each of Conditions (2) through
(4) is also necessary and sufficient for the consistency ofAX � B. Q.E.D.

A sufficient (but in general not a necessary) condition for the consistency of a
linear system is given by the following theorem.

Theorem 7.2.2. If the coefficient matrixA of a linear systemAX � B (in X)
has full row rank, thenAX � B is consistent.

Proof. Letm represent the number of rows inA, and suppose thatA has full
row rank or, equivalently, that rank(A) � m. Then, making use of Lemma 4.4.3,
we find that

rank(A,B) ≤ m � rank(A) .

Moreover, sinceC(A) ⊂ C(A,B), it follows from Theorem 4.4.4 that rank(A,B) ≥
rank(A). Thus, rank(A,B) � rank(A), and the consistency ofAX � B follows
from Theorem 7.2.1. Q.E.D.

7.3 Compatibility

A linear systemAX � B (in X) is said to becompatible if every linear relationship
that exists among the rows ofA also exists among the rows ofB. That is,AX � B
is compatible ifk′B � 0 for every row vectork′ (of appropriate dimension) such
thatk′A � 0.

Compatibility is equivalent to consistency as indicated by the following theorem.
Theorem 7.3.1. A linear systemAX � B (in X) is consistent if and only if it is

compatible.
Proof. Suppose that the linear systemAX � B is consistent. Then, there exists

a matrixX∗ such thatAX∗ � B, and, for every row vectork′ such thatk′A � 0,
we have that

k′B � k′AX∗ � 0 .

Thus,AX � B is compatible.
To prove the converse, leta′1, . . . , a′m andb′1, . . . ,b′m represent the rows ofA

andB respectively, and observe that if a value ofX is a solution to allm of the
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equations
a′iX � b′i (i � 1, . . . , m) ,

then it is a solution toAX � B.
According to Theorem 4.3.11, there exists a subsetS � {k1, . . . , kr} of the first

m positive integers such that the set{a′k1
, . . . , a′kr } is a basis forR(A). TakingA1

to be a matrix whose rows area′k1
, . . . , a′kr andB1 to be a matrix whose rows are

b′k1
, . . . ,b′kr , it follows from Theorem 7.2.2 that the linear systemA1X � B1 (in X)

is consistent. Thus, there exists a matrixX∗ such thatA1X∗ � B1 or, equivalently,
such that

a′kj X
∗ � b′kj (j � 1, . . . , r) .

To complete the proof, it suffices to show that ifAX � B is compatible, then
a′iX

∗ � b′i for i �∈ S. For eachi �∈ S, there exist scalarsλi1, . . . , λir such that

a′i �
r∑
j�1

λija′kj

or, equivalently, such that

a′i −
r∑
j�1

λija′kj � 0.

If AX � B is compatible, then, for eachi �∈ S,

b′i −
r∑
j�1

λijb′kj � 0

or, equivalently,

b′i �
r∑
j�1

λijb′kj ,

in which case

a′iX
∗ �

r∑
j�1

λija′kj X
∗ �

r∑
j�1

λijb′kj � b′i .

Q.E.D.

7.4 Linear Systems of the FormA′AX � A′B

a. A basic result

Theorem 7.3.1 can be used to establish the following result.
Theorem 7.4.1. For anym× nmatrixA andm×p matrixB, the linear system

A′AX � A′B (in X) is consistent.
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Proof. To prove Theorem 7.4.1, it suffices (in light of Theorem 7.3.1) to show
that the linear systemA′AX � A′B is compatible.

Let k′ represent any row vector such thatk′A′A � 0. Then, according to Corol-
lary 5.3.3, we have thatk′A′ � 0 and hence thatk′A′B � 0. Thus, the linear
systemA′AX � A′B is compatible. Q.E.D.

In the special case whereB � I, Theorem 7.4.1 reduces to the following result.
Corollary 7.4.2. For any matrixA, the linear systemA′AX � A′ (in X) is

consistent.

b. Some results on row and column spaces and on ranks

Corollary 7.4.2 can be used to establish the following result.
Theorem 7.4.3. For anym×nmatrixA andn×smatrixT,C(T′A′A) � C(T′A′)

andR(A′AT) � R(AT).
Proof. According to Corollary 7.4.2, there exists a matrixX such thatA′AX �

A′. Thus, making use of Corollary 4.2.3, we find thatC(T′A′) � C(T′A′AX) ⊂
C(T′A′A) and also thatC(T′A′A) ⊂ C(T′A′), implying thatC(T′A′A) � C(T′A′)
and further (in light of Lemma 4.2.5) thatR(A′AT) � R(AT). Q.E.D.

One implication of Theorem 7.4.3 is given by the following corollary.
Corollary 7.4.4. For anym× n matrix A andn× s matrix T, rank(T′A′A) �

rank(T′A′) and rank(A′AT) � rank(AT). In the special case whereT � I, the
results of Theorem 7.4.3 and Corollary 7.4.4 reduce to the results given by the
following corollary.

Corollary 7.4.5. For any matrixA, C(A′A) � C(A′),R(A′A) � R(A), and
rank(A′A) � rank(A).

One implication of Corollary 7.4.5 is described in the following, additional
corollary.

Corollary 7.4.6. For any matrixA of full column rank,A′A is nonsingular.
In light of Corollary 4.5.6, the following theorem is an immediate consequence

of Theorem 7.4.3 (and Corollary 7.4.4).
Theorem 7.4.7. Let A represent anm × n matrix,T ann × s matrix, andK a

q × s matrix. Then,

C(T′A′A,K′) � C(T′A′,K′) , rank(T′A′A,K′) � rank(T′A′,K′) ,

R
(

A′AT
K

)
� R

(
AT
K

)
, rank

(
A′AT

K

)
� rank

(
AT
K

)
.

c. Extensions

The following theorem extends Theorem 7.4.1.
Theorem 7.4.8. For anym× n matrix A,m× p matrix B, andn× q matrix L

and for anyq × p matrix C such thatC(C) ⊂ C(L′), the linear system(
A′A L
L′ 0

)(
X
Y

)
�
(

A′B
C

)
(4.1)
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(in X andY) is consistent.
Proof. It suffices (in light of Theorem 7.3.1) to show that linear system (4.1) is

compatible.
Let k′1 andk′2 represent anyn× 1 andq × 1 vectors such that

(k′1,k′2)

(
A′A L
L′ 0

)
� 0 .

Then,

k′1A′A � −k′2L′ , L′k1 � 0 , (4.2)

implying that

(Ak1)′Ak1 � k′1A′Ak1 � −k′2L′k1 � 0

and hence (in light of Corollary 5.3.2) that

Ak1 � 0 . (4.3)

Moreover, there exists a matrixF such thatC � L′F, implying — in light of results
(4.2) and (4.3) — that

k′2C � k′2L′F � −k′1A′AF � −(Ak1)′AF � 0 . (4.4)

Together, results (4.3) and (4.4) imply that

(k′1,k′2)

(
A′B
C

)
� (Ak1)′B+ k′2C � 0 .

Thus, linear system (4.1) is compatible. Q.E.D.
Theorem 7.4.8 is generalized in the following corollary.
Corollary 7.4.9. For anym× nmatrixA,m×p matrixB, n× q matrixL, and

q × p matrix R, and for anyq × p matrix C such thatC(C) ⊂ C(L′), the linear
system (

A′A L
L′ 0

)(
X
Y

)
�
(

A′B+ LR
C

)
(4.5)

(in X andY) is consistent.
Proof. According to Theorem 7.4.8, the linear system

(
A′A L
L′ 0

)(
X
Y

)
�
(

A′B
C

)

(in X andY) has a solution, say

(
X∗
Y∗

)
. Then, clearly, the matrix

(
X∗

Y∗ + R

)
is a

solution to linear system (4.5). Thus, linear system (4.5) is consistent. Q.E.D.
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Exercise

Section 7.4

1. (a) LetA represent anm× nmatrix,C ann× q matrix, andB aq ×p matrix.
Show that if rank(AC) � rank(C), then

R(ACB) � R(CB) and rank(ACB) � rank(CB)

and that if rank(CB) � rank(C), then

C(ACB) � C(AC) and rank(ACB) � rank(AC) ,

thereby extending the results of Corollary 4.4.7, Theorem 7.4.3, and Corol-
lary 7.4.4.

(b) LetA andB representm×nmatrices. (1) Show that ifC is anr×qmatrix and
D aq×mmatrix such that rank(CD) � rank(D), thenCDA � CDB implies
DA � DB, thereby extending the result of Part (1) of Corollary 5.3.3.{Hint.
To show thatDA � DB, it suffices to show that rank[D(A− B)] � 0.} (2)
Similarly, show that ifC is ann × q matrix andD a q × p matrix such
that rank(CD) � rank(C), thenACD � BCD impliesAC � BC, thereby
extending the result of Part (2) of Corollary 5.3.3.
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8
Inverse Matrices

Corresponding to any nonsingular matrix is another nonsingular matrix that is
referred to as the inverse of the first matrix. Inverse matrices are introduced and
defined in Section 8.1 and are discussed in the subsequent sections of this chapter.
Inverse matrices are of interest because there is a close relationship between the
solution to a linear system having a nonsingular coefficient matrix and the inverse
of the coefficient matrix — this relationship is described in Section 8.2a. Moreover,
there are many situations in statistics and in other disciplines that give rise to inverse
matrices that are of interest in their own right.

8.1 Some Definitions and Basic Results

A right inverse of anm× n matrix A is ann×m matrix R such that

AR � Im .

Similarly, aleft inverse of anm× n matrix A is ann×m matrix L such that

LA � In

or, equivalently, such that
A′L′ � In .

A matrix may or may not have a right or left inverse, as indicated by the following
lemma.
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Lemma 8.1.1. Anm×nmatrixA has a right inverse if and only if rank(A) � m

(i.e., if and only if A has full row rank) and has a left inverse if and only if
rank(A) � n (i.e., if and only ifA has full column rank).

Proof. If rank(A) � m, then it follows from Theorem 7.2.2 that there exists a
matrixR such thatAR � Im, that is, thatA has a right inverse. Conversely, if there
exists a matrixR such thatAR � Im, then

rank(A) ≥ rank(AR) � rank(Im) � m

implying [since, according to Lemma 4.4.3, rank(A) ≤ m] that rank(A) � m.
Thus,A has a right inverse if and only if rank(A) � m. ThatA has a left inverse if
and only if rank(A) � n is evident upon observing thatA has a left inverse if and
only if A′ has a right inverse [and that rank(A′) � rank(A)]. Q.E.D.

As an almost immediate consequence of Lemma 8.1.1, we have the following
corollary.

Corollary 8.1.2. A matrix A has both a right inverse and a left inverse if and
only if A is a (square) nonsingular matrix.

If there exists a matrixB that is both a right and left inverse of a matrixA (so
thatAB � I andBA � I), thenA is said to beinvertible andB is referred to as an
inverse of A. Only a (square) nonsingular matrix can be invertible, as is evident
from Corollary 8.1.2.

The following lemma and theorem include some basic results on the existence
and uniqueness of inverse matrices.

Lemma 8.1.3. If a square matrixA has a right or left inverseB, thenA is
nonsingular andB is an inverse ofA.

Proof. Suppose thatA has a right inverseR. Then, it follows from Lemma 8.1.1
thatA is nonsingular and further thatA has a left inverseL. Observing that

L � LI � LAR � IR � R

and hence thatRA � I, we conclude thatR is an inverse ofA.
A similar argument can be used to show that ifA has a left inverseL, thenA is

nonsingular andL is an inverse ofA. Q.E.D.
Theorem 8.1.4. A matrix is invertible if and only if it is a (square) nonsingular

matrix. Further, any nonsingular matrix has a unique inverseB and has no right or
left inverse other thanB.

Proof. Suppose thatA is a nonsingular matrix. Then, it follows from Lemma
8.1.1 thatA has a right inverseB and from Lemma 8.1.3 thatB is an inverse ofA.
Thus,A is invertible. Moreover, for any inverseC of A, we find that

C � CI � CAB � IB � B ,

implying thatA has a unique inverse and further — in light of Lemma 8.1.3 —
thatA has no right or left inverse other thanB.

That any invertible matrix is nonsingular is (as noted earlier) evident from Corol-
lary 8.1.2. Q.E.D.
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The symbolA−1 is used to denote the inverse of a nonsingular matrixA. By
definition,

AA−1 � A−1A � I .

For ann× n nonsingular diagonal matrixD � {di},
D−1 � diag(1/d1,1/d2, . . . ,1/dn) . (1.1)

(Clearly, the diagonal elements of a nonsingular diagonal matrix are nonzero.)
For any 2× 2 nonsingular matrix

A �
(
a11 a12

a21 a22

)
,

A−1 � (1/k)

(
rr a22 −a12

−a21 a11

)
,

(1.2)

wherek � a11a22 − a12a21, as is easily verified. [Necessarily,k �� 0. To see
this, assume — for purposes of establishing a contradiction — the contrary (i.e.,
assume thatk � 0). Then, ifa11 � 0, we find thata12a21 � 0, or, equivalently,
thata12 � 0 ora21 � 0, and hence thatA has a null row or column. Ifa11 �� 0, we
find thata22 � a12a21/a11 and hence that (a21, a22) � (a21/a11)(a11, a12), so that
the second row ofA is a scalar multiple of the first. Thus, in either case (a11 � 0
or a11 �� 0), the assumption thatk � 0 leads to the conclusion thatA is singular,
thereby establishing the sought-after contradiction.]

8.2 Properties of Inverse Matrices

a. Relationship of inverse matrices to the solution of linear sys-
tems

There is an intimate relationship between the inverseA−1 of a nonsingular matrixA
and the solution of linear systems whose coefficient matrix isA. This relationship
is described in the following theorem.

Theorem 8.2.1. Let A represent anyn × n nonsingular matrix,G anyn × n

matrix, andp any positive integer. Then,GB is a solution to a linear system
AX � B (in X) for everyn× p matrix B if and only if G � A−1.

Proof. If G � A−1, then, for everyn× p matrix B,

A(GB) � AA−1B � IB � B .

Conversely, suppose thatGB is a solution toAX � B (i.e., thatAGB � B) for
everyn× p matrix B and, in particular, for everyn× p matrix of the form

B � (0, . . . , 0, b, 0, . . . , 0) .

Then,AGb � b � Ib for everyn×1 vectorb. We conclude (on the basis of Lemma
2.3.2) thatAG � I and hence (in light of Lemma 8.1.3) thatG � A−1. Q.E.D.
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b. Some elementary properties

For any nonsingular matrixA and any nonzero scalark, kA is nonsingular and

(kA)−1 � (1/k)A−1 , (2.1)

as is easily verified. In the special casek � −1, equality (2.1) reduces to

(−A)−1 � −A−1 . (2.2)

It is easy to show that, for any nonsingular matrixA, A′ is nonsingular, and

(A′)−1 � (A−1)′ . (2.3)

In the special case of a symmetric matrixA, equality (2.3) reduces to

A−1 � (A−1)′ . (2.4)

Thus, the inverse of any nonsingular symmetric matrix is symmetric.
The inverseA−1 of ann× n nonsingular matrixA is invertible, or, equivalently

(in light of Theorem 8.1.4),

rank(A−1) � n , (2.5)

and

(A−1)−1 � A , (2.6)

that is, the inverse ofA−1 is A (as is evident from the definition ofA−1).
For any twon× n nonsingular matricesA andB,

rank(AB) � n , (2.7)

that is,AB is nonsingular, and

(AB)−1 � B−1A−1 . (2.8)

Results (2.7) and (2.8) can be easily verified by observing thatABB−1A−1 � I
(so thatB−1A−1 is a right inverse ofAB) and applying Lemma 8.1.3. (If either or
both of twon×nmatricesA andB are singular, then their productAB is singular,
as is evident from Corollary 4.4.5.) Repeated application of results (2.7) and (2.8)
leads to the conclusion that, for anyk n×n nonsingular matricesA1,A2, . . . ,Ak,

rank(A1A2 · · ·Ak) � n (2.9)

and

(A1A2 · · ·Ak)
−1 � A−1

k · · ·A−1
2 A−1

1 . (2.10)
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8.3 Premultiplication or Postmultiplication by a Matrix
of Full Column or Row Rank

Lemma 8.1.1 is useful in investigating the effects of premultiplication or postmul-
tiplication by a matrix having full column or row rank. In particular, it can be used
to establish the following two lemmas.

Lemma 8.3.1. LetA andB representm×nmatrices. Then, for anyr×mmatrix
C of full column rank (i.e., of rankm) and anyn × p matrix D of full row rank
(i.e., of rankn), (1) CA � CB impliesA � B, (2) AD � BD impliesA � B, and
(3) CAD � CBD impliesA � B.

Proof. Parts (1) and (2) are special cases of Part (3) (those whereD � I and
C � I, respectively). Thus, it suffices to prove Part (3).

According to Lemma 8.1.1,C has a left inverseL and D a right inverseR.
Consequently, ifCAD � CBD, then

A � IAI � LCADR � LCBDR � IBI � B .
Q.E.D.

Lemma 8.3.2. LetA represent anm×nmatrix andB ann×p matrix. If A has
full column rank, then

R(AB) � R(B) and rank(AB) � rank(B) .

Similarly, if B has full row rank, then

C(AB) � C(A) and rank(AB) � rank(A) .

Proof. It is clear from Corollary 4.2.3 thatR(AB) ⊂ R(B) andC(AB) ⊂ C(A).
If A has full column rank, then (according to Lemma 8.1.1) it has a left inverseL,
implying that

R(B) � R(IB) � R(LAB) ⊂ R(AB)

and hence thatR(AB) � R(B) [which implies, in turn, that rank(AB) � rank(B)].
Similarly, if B has full row rank, then it has a right inverseR, implying that
C(A) � C(ABR) ⊂ C(AB) and hence thatC(AB) � C(A) [and rank(AB) �
rank(A)]. Q.E.D.

As an immediate consequence of Lemma 8.3.2, we have the following corollary.
Corollary 8.3.3. If A is ann×n nonsingular matrix, then, for anyn×p matrix

B,
R(AB) � R(B) and rank(AB) � rank(B) .

Similarly, if B is ann× n nonsingular matrix, then, for anym× n matrix A,

C(AB) � C(A) and rank(AB) � rank(A) .

A further consequence of Lemma 8.3.2 is described in the following additional
corollary.
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Corollary 8.3.4. Let A represent anm× n nonnull matrix, and letB represent
anm × r matrix of full column rankr andT an r × n matrix of full row rankr
such thatA � BT. Then,r � rank(A).

Proof (of Corollary 8.3.4). In light of Lemma 8.3.2, we have that

rank(A) � rank(BT) � rank(T) � r .

Q.E.D.

8.4 Orthogonal Matrices

a. Definition and basic properties and results

A (square) matrixA is said to be anorthogonal matrix if

A′A � AA′ � I

or, equivalently, ifA is nonsingular andA−1 � A′. To show that a (square) matrix
A is orthogonal, it suffices (in light of Lemma 8.1.3) to demonstrate thatA′A � I
or, alternatively, thatAA′ � I.

The 2× 2 matrix

(1/
√

2)

(
1 1

−1 1

)
is an example of an orthogonal matrix. More generally, for any angleθ , the 2× 2
matrix (

cosθ sinθ
− sinθ cosθ

)
is an orthogonal matrix. Further, then × n identity matrix In is an orthogonal
matrix.

Clearly, for ann × n matrix A, A′A � I if and only if the columnsa1, . . . , an
of A are such that

a′iaj � 1, for j � i � 1, . . . , n,

� 0, for j �� i � 1, . . . , n .

Thus, a square matrix is orthogonal if and only if its columns form an orthonormal
(with respect to the usual inner product) set of vectors. Similarly, a square matrix
is orthogonal if and only if its rows form an orthonormal set of vectors.

Note that ifA is an orthogonal matrix, then its transposeA′ is also orthogonal.
If P andQ are bothn×n orthogonal matrices, then it follows from results (2.7)

and (2.8) thatPQ is nonsingular and that

(PQ)−1 � Q−1P−1 � Q′P′ � (PQ)′. (4.1)

Thus, the product of twon×n orthogonal matrices is an (n×n) orthogonal matrix.
Repeated application of this result leads to the following extension.
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Lemma 8.4.1. If each of the matricesQ1,Q2, . . . ,Qk is ann × n orthogonal
matrix, then their productQ1Q2 · · ·Qk is an (n× n) orthogonal matrix.

A further result on orthogonal matrices is given by the following lemma.
Lemma 8.4.2. Let A represent anm× n matrix. Then, when the norm is taken

to be the usual norm,
‖PAQ‖ � ‖A‖ (4.2)

for anym×m orthogonal matrixP and anyn× n orthogonal matrixQ.
Proof. Making use of Lemma 5.2.1, we find that

‖PAQ‖2 � tr[(PAQ)′PAQ]

� tr(Q′A′P′PAQ)

� tr(Q′A′AQ) � tr(A′AQQ′) � tr(A′A) � ‖A‖2 .

Q.E.D.
Note that, as special cases of result (4.2) (those obtained by settingQ � In or

P � Im), we have that (for anym×m orthogonal matrixP) ‖PA‖ � ‖A‖ and (for
anyn× n orthogonal matrixQ) ‖AQ‖ � ‖A‖.

b. Helmert matrix

Let a′ � (a1, a2, . . . , an) represent any row vector such thatai �� 0 (i �
1,2, . . . , n), that is, any row vector whose elements are all nonzero. Suppose
that we require ann × n orthogonal matrix, one row of which is proportional to
a′. In what follows, one such matrixP is derived.

Let p′1, . . . ,p′n represent the rows ofP, and take the first rowp′1 to be the row
of P that is proportional toa′. Take the second rowp′2 to be proportional to the
n-dimensional row vector

(a1,−a2
1/a2,0,0, . . . ,0) ,

the third rowp′3 proportional to

[a1, a2,−(a2
1 + a2

2)/a3,0,0, . . . ,0] ,

and more generally the second throughnth rowsp′2, . . . ,p′n proportional to

(a1, a2, . . . , ak−1,−
k−1∑
i�1

a2
i /ak,0,0, . . . ,0) (k � 2, . . . , n) , (4.3)

respectively.
It is easy to confirm that then − 1 vectors (4.3) are orthogonal to each other

and to the vectora′. To obtain explicit expressions forp′1, . . . ,p′n, it remains to
normalizea′ and the vectors (4.3). Observing that the (usual) norm of thekth of
the vectors (4.3) is

k−1∑
i�1

a2
i +

(
k−1∑
i�1

a2
i

)2/
a2
k




1/2

�
[(

k−1∑
i�1

a2
i

)(
k∑
i�1

a2
i

)/
a2
k

]1/2

,
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we find that

p′1 �
(

n∑
i�1

a2
i

)−1/2

(a1, a2, . . . , an) , (4.4)

and that, fork � 2, . . . , n,

p′k �
[

a2
k

(
∑k−1

i�1 a
2
i )(
∑k

i�1 a
2
i )

]−1/2

× (a1, a2, . . . , ak−1,−
k−1∑
i�1

a2
i /ak,0,0, . . . ,0) . (4.5)

Whena′ � (1,1, . . . ,1), formulas (4.4) and (4.5) simplify to

p′1 � n−1/2(1,1, . . . ,1) ,

p′k � [k(k − 1)]−1/2(1,1, . . . ,1,1−k,0,0, . . . ,0)

(k � 2, . . . , n), andP reduces to a matrix known as theHelmert matrix (of ordern).
(In some presentations, it is the transpose of this matrix that is called theHelmert
matrix.) For example, the Helmert matrix of order 4 is




1/2 1/2 1/2 1/2
1/
√

2 −1/
√

2 0 0
1/
√

6 1/
√

6 −2/
√

6 0
1/
√

12 1/
√

12 1/
√

12 −3/
√

12


 .

c. Permutation matrices

A permutation matrix is a square matrix whose columns can be obtained by permut-
ing (rearranging) the columns of an identity matrix. Thus, lettingu1,u2, . . . ,un
represent the first, second,. . ., nth columns, respectively, ofIn, ann × n permu-
tation matrix is a matrix of the general form

(uk1,uk2, . . . ,ukn ) ,

wherek1, k2, . . . , kn represents any permutation of the firstn positive integers
1,2, . . . , n. For example, one permutation matrix of ordern � 3 is the 3× 3
matrix

(u3,u1,u2) �

0 1 0

0 0 1
1 0 0


 ,

whose columns are the third, first, and second columns, respectively, ofI3.
It is clear that the columns of any permutation matrix form an orthonormal (with

respect to the usual inner product) set and hence that any permutation matrix is an
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orthogonal matrix. Thus, ifP is a permutation matrix, thenP is nonsingular and
P−1 � P′.

Clearly, thej th element of thekj th row of then × n permutation matrix
(uk1,uk2, . . . ,ukn ) is 1 and its othern − 1 elements are 0. That is, thej th row
u′j of In is thekj th row of (uk1,uk2, . . . ,ukn ) or equivalently thej th columnuj
of In is thekj th column of (uk1,uk2, . . . ,ukn )

′. Thus, the transpose of any permu-
tation matrix is itself a permutation matrix. Further, the rows of any permutation
matrix are a permutation of the rows of an identity matrix, and conversely any
matrix whose rows can be obtained by permuting the rows of an identity matrix is
a permutation matrix.

The effect of postmultiplying anm × n matrix A by ann × n permutation
matrix P is to permute the columns ofA in the same way that the columns ofIn
were permuted in formingP. Thus, ifa1, a2, . . . , an are the first, second,. . . , nth
columns ofA, the first, second,. . . ,nth columns of the productA(uk1,uk2, . . . ,ukn )
of A and then × n permutation matrix (uk1,uk2, . . . ,ukn ) are (ak1, ak2, . . . , akn ),
respectively. Whenn � 3, we have, for example, that

A(u3,u1,u2) � (a1, a2, a3)


0 1 0

0 0 1
1 0 0


 � (a3, a1, a2) .

Further, the first, second. . . ,nth columnsa1, a2, . . . , an of A are thek1,k2, . . . ,knth
columns, respectively, of the productA(uk1,uk2, . . . ,ukn )

′ of A and the permutation
matrix (uk1,uk2, . . . ,ukn )

′. Whenn � 3, we have, for example, that

A(u3,u1,u2)′ � (a1, a2, a3)


0 0 1

1 0 0
0 1 0


 � (a2, a3, a1) .

Similarly, the effect of premultiplying ann× m matrix A by ann× n permu-
tation matrix is to permute the rows ofA. If the first, second,. . . , nth rows ofA
area′1, a′2, . . . , a′n, respectively, then the first, second,. . . , nth rows of the prod-
uct (uk1,uk2, . . . ,ukn )

′A of the permutation matrix (uk1,uk2, . . . ,ukn )
′ andA are

(a′k1
, a′k2

, . . . , a′kn ), respectively; anda′1, a′2, . . . , a′n are thek1, k2, . . . , knth rows,
respectively, of (uk1, uk2, . . ., ukn )A. Whenk � 3, we have, for example, that

(u3,u1,u2)′A �

0 0 1

1 0 0
0 1 0




a′1

a′2
a′3


 �


a′3

a′1
a′2




(u3,u1,u2)A �

0 1 0

0 0 1
1 0 0




a′1

a′2
a′3


 �


a′2

a′3
a′1


 .

Letting e1, e2, . . . , em represent the first, second,. . . , mth columns ofIm and
letting r1, r2, . . . , rm represent any permutation of the firstm positive integers
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1,2, . . . , m, theij th element of the matrix

(er1, er2, . . . , erm )′A(uk1,uk2, . . . ,ukn ) ,

obtained by premultiplying and postmultiplying anm×nmatrixA by the permu-
tation matrices (er1, er2, . . . , erm )′ and (uk1,uk2, . . . ,ukn ), respectively, is therikj th
element ofA. And, theij th element ofA is therikj th element of the matrix

(er1, er2, . . . , erm )A(uk1,uk2, . . . ,ukn )
′ ,

obtained by premultiplying and postmultiplyingA by the permutation matrices
(er1, er2, . . . , erm ) and (uk1,uk2, . . . ,ukn )

′, respectively.
Note that the product of two or moren×n permutation matrices is anothern×n

permutation matrix.

8.5 Some Basic Results on the Ranks and Inverses of
Partitioned Matrices

a. A lemma

The following lemma is useful in deriving results on the ranks of partitioned
matrices.

Lemma 8.5.1. LetT represent anm×p matrix,U anm×q matrix,V ann×p
matrix, andW ann× q matrix. Then,

rank

(
T U
V W

)
� rank

(
U T
W V

)
� rank

(
V W
T U

)
� rank

(
W V
U T

)
. (5.1)

Proof. Lemma 8.5.1 is obtained by successively applying Lemma 4.5.3 to(
U T
W V

)
[takingA �

(
U
W

)
andB �

(
T
V

)
], to

(
V W
T U

)
[takingA � (V, W)

andC = (T, U)], and to

(
W V
U T

)
[taking A �

(
W
U

)
andB �

(
V
T

)
or taking

A � (W,V) andC � (U,T)]. Q.E.D.

b. Block-diagonal matrices

Let T represent anm × m matrix andW ann × n matrix. Then, the (m + n) ×
(m+ n) block-diagonal matrix

(
T 0
0 W

)
is nonsingular if and only if bothT and

W are nonsingular, as is evident from Lemma 4.5.11. Moreover, ifT andW are
nonsingular, then (

T 0
0 W

)−1

�
(

T−1 0
0 W−1

)
, (5.2)

as is easily verified.
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More generally, for any square matricesA1,A2, . . . ,Ak, the block-diagonal
matrix diag(A1,A2, . . . ,Ak) is nonsingular if and only ifA1,A2, . . . ,Ak are all
nonsingular [as is evident from result (4.5.14)], in which case

[diag(A1,A2, . . . ,Ak)]
−1 � diag(A−1

1 ,A−1
2 , . . . ,A−1

k ). (5.3)

c. Block-triangular matrices

Consider now block-triangular matrices of the form

(
Im 0
V In

)
or

(
In V
0 Im

)
, where

V is ann×m matrix. Note that for anym× p matrix A andn× p matrix B,(
Im 0
V In

)(
A
B

)
�

(
A

B+ VA

)
, (5.4a)

(
In V
0 Im

) (
B
A

)
�

(
B+ VA

A

)
(5.4b)

and similarly that, for anyp ×m matrix A andp × n matrix B,

(A,B)

(
Im 0
V In

)
� (A+ BV,B), (5.5a)

(B,A)

(
In V
0 Im

)
� (B,A+ BV) . (5.5b)

Further, recalling (from Theorem 8.1.4) that an invertible matrix is nonsingular,
and observing that (

I 0
−V I

) (
I 0
V I

)
�

(
I 0
0 I

)
,(

I −V
0 I

) (
I V
0 I

)
�

(
I 0
0 I

)
,

we obtain the following result.
Lemma 8.5.2. For anyn × m matrix V, the (m + n) × (m + n) partitioned

matrices

(
Im 0
V In

)
and

(
In V
0 Im

)
are nonsingular, and

(
Im 0
V In

)−1

�
(

Im 0
−V In

)
, (5.6a)

(
In V
0 Im

)−1

�
(

In −V
0 Im

)
. (5.6b)

Formula (4.5.11) for the rank of a block-diagonal matrix can be extended to
certain block-triangular matrices, as indicated by the following lemma.
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Lemma 8.5.3. Let T represent anm × p matrix, V ann × p matrix, andW
an n × q matrix. If T has full column rank orW has full row rank, that is, if
rank(T) � p or rank(W) � n, then

rank

(
T 0
V W

)
� rank

(
W V
0 T

)
� rank(T)+ rank(W) . (5.7)

Proof. Suppose that rank(T) � p. Then, according to Lemma 8.1.1, there exists
a matrixL that is a left inverse ofT, in which case(

I −VL
0 I

) (
W V
0 T

)
�
(

W 0
0 T

)
.

Since (according to Lemma 8.5.2)

(
I −VL
0 I

)
is nonsingular, we conclude (on

the basis of Corollary 8.3.3) that

rank

(
W V
0 T

)
� rank

(
W 0
0 T

)

and hence (in light of Lemmas 8.5.1 and 4.5.11) that

rank

(
T 0
V W

)
� rank

(
W V
0 T

)
� rank(T)+ rank(W) .

That result (5.7) holds if rank(W) � n can be established via an analogous
argument. Q.E.D.

The results of Lemma 8.5.2 can be extended to additional block-triangular ma-
trices, as detailed in the following lemma.

Lemma 8.5.4. Let T represent anm × m matrix, V ann × m matrix, andW

ann × n matrix. Then, the (m + n) × (m + n) partitioned matrix

(
T 0
V W

)
, or

equivalently

(
W V
0 T

)
, is nonsingular if and only if bothT andW are nonsingular,

in which case (
T 0
V W

)−1

�
(

T−1 0
−W−1VT−1 W−1

)
, (5.8a)(

W V
0 T

)−1

�
(

W−1 −W−1VT−1

0 T−1

)
. (5.8b)

Proof. If

(
T 0
V W

)
is nonsingular, then, making use of Lemmas 4.5.7 and 4.4.3,

we find that

m+ n � rank

(
T 0
V W

)
≤ rank(T, 0)+ rank(V,W)

≤ rank(T)+ rank(0)+ rank(V,W)

≤ rank(T)+ n ≤ m+ n ,
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implying thatm ≤ rank(T) ≤ m and hence that rank(T) � m or, equivalently, that

T is nonsingular. It can likewise be shown that if

(
T 0
V W

)
is nonsingular, then

W is nonsingular.
Suppose now that bothT andW are nonsingular. Then,

(
T 0
V W

)
�
(

Im 0
0 W

)(
Im 0

W−1VT−1 In

)(
T 0
0 In

)
,

as is easily verified, and (in light of Lemma 8.5.3)

(
I 0
0 W

)
,

(
I 0

W−1VT−1 I

)
,

and

(
T 0
0 I

)
are nonsingular. Thus, it follows from result (2.9) that

(
T 0
V W

)
is

nonsingular and from results (2.10), (5.2), and (5.6) that

(
T 0
V W

)−1

�
(

T 0
0 I

)−1( I 0
W−1VT−1 I

)−1(
I 0
0 W

)−1

�
(

T−1 0
0 I

)(
I 0

−W−1VT−1 I

)(
I 0
0 W−1

)

�
(

T−1 0
−W−1VT−1 W−1

)
.

The second part of result (5.8) can be derived in similar fashion. Q.E.D.
The following theorem extends the first part of Lemma 8.5.4.
Theorem 8.5.5. Let

A �




A11 A12 . . . A1r

0 A22 . . . A2r
...

...
...

0 0 Arr


 , B �




B11 0 . . . 0
B21 B22 0

...
...

...
Br1 Br2 . . . Brr




represent, respectively, ann×nupper block-triangular matrix whoseij th blockAij

is of dimensionsni×nj (j ≥ i � 1,2, . . . , r) and ann×n lower block-triangular
matrix whoseij th blockBij is of dimensionsni×nj (j ≤ i � 1,2, . . . , r). Then,A
is nonsingular if and only if its diagonal blocksA11,A22, . . . ,Arr are all nonsingu-
lar. Likewise,B is nonsingular if and only if its diagonal blocksB11,B22, . . . ,Brr

are all nonsingular.
Proof. Observe that the transposeA′ of the upper block-triangular matrixA is

lower block-triangular with diagonal blocksA′
11,A′

22, . . . ,A′
rr , that rank(A′) �

rank(A) and rank(A′
ii) � rank(Aii) (i � 1,2, . . . , r), and that, as a consequence,

it suffices to prove the part of the theorem pertaining to the lower block-triangular
matrix B.

The proof is by mathematical induction. Lemma 8.5.4 implies that the theorem
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is valid for r � 2. Suppose then that the theorem is valid forr � k − 1. Defining

T �




B11 0 . . . 0
B21 B22 0

...
...

...
Bk−1,1 Bk−1,2 . . . Bk−1,k−1


 , V � (Bk1,Bk2, . . . ,Bk,k−1) ,

we need to show that

(
T 0
V Bkk

)
is nonsingular if and only if the matrices

B11,B22, . . . ,Bkk are all nonsingular.
If B11,B22, . . . ,Bkk are nonsingular, then, by supposition,T is nonsingular and,

based on Lemma 8.5.4, we conclude that

(
T 0
V Bkk

)
is nonsingular.

Conversely, if

(
T 0
V Bkk

)
is nonsingular, then, according to Lemma 8.5.4,T

andBkk are both nonsingular. Moreover, ifT is nonsingular, then, by supposition,
B11, . . . ,Bk−1,k−1 are nonsingular. Q.E.D.

In the special case of a triangular matrix (i.e., the special case wherer � n),
Theorem 8.5.5 can be restated as follows.

Corollary 8.5.6. A triangular matrix is nonsingular if and only if its diagonal
elements are all nonzero.

Certain of the results given in Lemma 8.5.4 on the inverse of a block-triangular
matrix with two rows and columns of blocks are extended in the following theorem
to a block-triangular matrix with an arbitrary numberr of rows and columns of
blocks.

Theorem 8.5.7. Let

A �




A11 A12 . . . A1r

A21 A22 . . . A2r
...

...
...

...
Ar1 Ar2 . . . Arr




represent a nonsingular partitioned matrix whoseij th blockAij is of dimensions
ni × nj (i, j � 1, . . . , r). PartitionA−1 as

F �




F11 F12 . . . F1r

F21 F22 . . . F2r
...

...
...

...
Fr1 Fr2 . . . Frr


 ,

whereFij is of the same dimensions asAij (i, j � 1, . . . , r). If A is upper block-
triangular, thenA−1 is upper block-triangular; that is, ifAij � 0 for j < i �
1, . . . , r, thenFij � 0 for j < i � 1, . . . , r. Similarly, if A is lower block-
triangular, thenA−1 is lower block-triangular. Further, ifA is (lower or upper)
block-triangular, thenFii � A−1

ii ; that is, theith diagonal block ofA−1 equals the
inverse of theith diagonal block ofA (i � 1, . . . , r).
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Proof. The proof is by mathematical induction. Lemma 8.5.4 implies that the
theorem is valid forr � 2. Suppose then that the theorem is valid forr � k − 1.
Define

T �




A11 A12 . . . A1,k−1

A21 A22 . . . A2,k−1
...

...
...

...
Ak−1,1 Ak−1,2 . . . Ak−1,k−1


 , U �




A1k

A2k
...

Ak−1,k


 ,

andV � (Ak1,Ak2, . . . ,Ak,k−1), so that

(
T U
V Akk

)
�




A11 A12 . . . A1k

A21 A22 . . . A2k
...

...
...

...
Ak1 Ak2 . . . Akk


 ,

and partition

(
T U
V Akk

)−1

as

(
T U
V Akk

)−1

�




B11 B12 . . . B1k

B21 B22 . . . B2k
...

...
...

...
Bk1 Bk2 . . . Bkk


 ,

whereBij is of dimensionsni × nj (i, j � 1, . . . , k). It suffices to show that if
Aij � 0 for j < i � 1, . . . , k, thenBij � 0 for j < i � 1, . . . , k; if Aij � 0 for
i < j � 1, . . . , k, thenBij � 0 for i < j � 1, . . . , k; and if eitherAij � 0 for
j < i � 1, . . . , k or Aij � 0 for j > i � 1, . . . , k, thenBii � A−1

ii (i � 1, . . . , k).
If Aij � 0 for j < i � 1, . . . , k, thenV � 0, so that (according to Lemma

8.5.4)Bkj � 0 for j � 1, . . . , k − 1, Bkk � A−1
kk , and




B11 B12 . . . B1,k−1

B21 B22 . . . B2,k−1
...

...
...

...
Bk−1,1 Bk−1,2 . . . Bk−1,k−1


 � T−1 ;

and T �




A11 A12 . . . A1,k−1

0 A22 . . . A2,k−1
...

...
...

0 0 Ak−1,k−1


 is upper block-triangular, so that (by

supposition)Bij � 0 for j < i � 1, . . . , k− 1 andBii � A−1
ii (i � 1, . . . , k− 1).

Similarly, if Aij � 0 for i < j � 1, . . . , k, thenU � 0, so that (according to
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Lemma 8.5.4)Bik � 0 for i � 1, . . . , k − 1, Bkk � A−1
kk , and


B11 B12 . . . B1,k−1

B21 B22 . . . B2,k−1
...

...
...

...
Bk−1,1 Bk−1,2 . . . Bk−1,k−1


 � T−1 ;

and T �




A11 0 . . . 0
A21 A22 . . . 0

...
...

...
Ak−1,1 Ak−1,2 . . . Ak−1,k−1


 is lower block-triangular, so that

(by supposition)Bij � 0 for i > j � 1, . . . , k − 1, andBii � A−1
ii (i �

1, . . . , k − 1). Q.E.D.
In the special case of a triangular matrix (i.e., the special case wherer � n),

Theorem 8.5.7 can be restated as follows.
Corollary 8.5.8. Let A � {aij } represent ann × n nonsingular matrix. IfA

is upper triangular, thenA−1 is also upper triangular. Similarly, ifA is lower
triangular, thenA−1 is lower triangular. Further, ifA is (lower or upper) triangular,
then theith diagonal element ofA−1 is the reciprocal 1/aii of the ith diagonal
elementaii of A (i � 1, . . . , n).

In the special case of a unit triangular matrix, Corollary 8.5.8 reduces to the
following result.

Corollary 8.5.9. The inverse of a unit upper triangular matrix is unit upper
triangular. Similarly, the inverse of a unit lower triangular matrix is unit lower
triangular.

d. A recursive algorithm for finding the inverse of a (nonsingular)
triangular or block-triangular matrix

Let

A �




A11 A12 . . . A1r

0 A22 . . . A2r
...

...
...

0 0 Arr




represent ann × n upper block-triangular matrix whoseij th block Aij is of
dimensionsni × nj (j ≥ i � 1,2, . . . , r). Suppose that the diagonal blocks
A11,A22, . . . ,Arr of A are all nonsingular, or, equivalently, (according to Theo-
rem 8.5.5) thatA itself is nonsingular.

We now describe a procedure, derived by repeated application of result (5.8),
for building up the inverse ofA one “row” of blocks at a time, or in the special
case of an upper triangular matrix, one row (of elements) at a time. According to
result (5.8), the inverse of the submatrix(

Ar−1,r−1 Ar−1,r

0 Arr

)
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is expressible as (
Fr−1,r−1 Fr−1,r

0 Frr

)
,

whereFrr � A−1
rr and

Fr−1,r−1 � A−1
r−1,r−1, Fr−1,r � −A−1

r−1,r−1Ar−1,rFrr .

By using this representation in an obvious way, the inverse of the submatrix(
Ar−1,r−1 Ar−1,r

0 Arr

)
can be generated from that of the sub-submatrixArr .

More generally, result (5.8) indicates that the inverse of the submatrix


Aii Ai,i+1 . . . Air

0 Ai+1,i+1 . . . Ai+1,r
...

...
...

0 0 Arr




can be generated by bordering the inverse matrix


Fi+1,i+1 Fi+1,i+2 . . . Fi+1,r

0 Fi+2,i+2 . . . Fi+2,r
...

...
...

0 0 Frr


 (5.9a)

�




Ai+1,i+1 Ai+1,i+2 . . . Ai+1,r

0 Ai+2,i+2 . . . Ai+2,r
...

...
...

0 0 Arr



−1

(5.9b)

with the matrices

Fii � A−1
ii , Fij � −A−1

ii

j∑
k�i+1

AikFkj (j � i + 1, . . . , r) , (5.10)

to form the matrix 


Fii Fi,i+1 . . . Fir
0 Fi+1,i+1 . . . Fi+1,r
...

...
...

0 0 Frr


 (5.11)

(i � r − 1, r − 2, . . . ,1). Note that formulas (5.10) are in terms of the entries of
the inverse matrix (5.9) and of the submatricesAii ,Ai,i+1, . . . ,Air belonging to
theith “row” of A. Note also that, fori � 1, matrix (5.11) equalsA−1.

These observations suggest an algorithm for computingA−1 in r steps. The first
step is to compute the matrixFrr � A−1

rr . The (r − i + 1)th step is to compute
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the matricesFii ,Fi,i+1, . . . ,Fir from formulas (5.10) (i � r − 1, r − 2, . . . ,1).
Note that if the matricesFi,i+1, . . . ,Fir are computed in reverse order, that is, in
the orderFir , . . . ,Fi,i+1, then, once the matrixFij (j ≥ i) has been computed, the
submatrixAij is no longer needed (at least not for purposes of computingA−1),
a feature that allows us to save storage space in implementing the algorithm on a
computer. The savings is achieved by storing the elements ofFij in the locations
previously occupied by those ofAij . Then, at the completion of the algorithm, the
locations that were previously occupied by the elements ofA are occupied by the
corresponding elements ofA−1.

A possible variation on this algorithm is to use formulas (5.10) to build-upA−1

one “column” at a time, rather than one “row” at a time. As a first step, we could
compute the diagonal blocksFrr , Fr−1,r−1, . . . ,F11. As the (r − j + 2)th step,
we could compute in succession the submatricesFj−1,j ,Fj−2,j , . . . ,F1j (j �
r, r−1, . . . ,2). Note that this alternative scheme, like the original, is such that the
elements ofFij can share storage locations with those ofAij .

For purposes of illustration, we apply the algorithm to the 3×3 upper triangular
matrix

A �

8 1 6

0 5 4
0 0 2


 ,

which has an inverse of the form

F �

f11 f12 f13

0 f22 f23

0 0 f33


 .

On the first step of the algorithm, we compute

f33 � 1/2� 0.5 ;

on the second step,

f22 � 1/5� 0.2, f23 � −(0.2)(4)(0.5)� −0.4 ;

and, on the third (and final) step,

f11 � 1/8� 0.125, f13 � −(0.125)[(1)(−0.4)+ (6)(0.5)] � −0.325,

f12 � −(0.125)(1)(0.2)� −0.025 ;

giving

A−1 � F �

0.125 −0.025 −0.325

0 0.2 −0.4
0 0 0.5


 .

Let us now switch our attention from the upper block-triangular matrixA to a
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lower block-triangular matrix

B �




B11 0 . . . 0
B21 B22 0

...
...

...
Br1 Br2 . . . Brr


 ,

whoseij th blockBij is of dimensionsni×nj (j ≤ i � 1, . . . , r). Suppose that the
diagonal blocksB11,B22, . . . ,Brr of B are all nonsingular, or, equivalently,thatB
itself is nonsingular.

According to result (5.8), the inverse of the submatrix


B11 0 . . . 0
B21 B22 0

...
...

...
Bi1 Bi2 . . . Bii




can be generated by bordering the inverse matrix


G11 0 . . . 0
G21 G22 0

...
...

...
Gi−1,1 Gi−2,2 . . . Gi−1,i−1


 (5.12a)

�




B11 0 . . . 0
B21 B22 0

...
...

...
Bi−1,1 Bi−1,2 . . . Bi−1,i−1



−1

(5.12b)

with the matrices

Gii � B−1
ii , Gij � −B−1

ii

i−1∑
k�j

BikGkj (j � 1, . . . , i − 1) , (5.13)

to form the matrix 


G11 0 . . . 0
G21 G22 0

...
...

...
Gi1 Gi2 . . . Gii


 . (5.14)

We see that formulas (5.13) are in terms of the entries of the inverse matrix (5.12)
and of the submatricesBi1, Bi2, . . . ,Bii , belonging to theith “row” of B. We see
also that, fori � r, matrix (5.14) equalsB−1.

These results suggest an algorithm for computingB−1 in r steps. The first step is
to computeG11 � B−1

11 . Theith step is to compute the matricesGi1,Gi2, . . . ,Gii
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from formulas (5.13) (i � 2, . . . , r). Note that ifGi1,Gi2, . . . ,Gi,i−1 are com-
puted in the order listed, then, once the matrixGij (j ≤ i) has been computed, the
submatrixBij is no longer required and hence, in implementing the algorithm on
a computer, storage can be saved by “overwriting” the matrixBij with the matrix
Gij .

e. Matrices partitioned into two rows and two columns of
submatrices

The ranks and inverses of block-diagonal and block-triangular matrices were con-
sidered in Subsections a through d. In this subsection, we consider the ranks and
inverses of partitioned matrices that are not necessarily block-diagonal or block-
triangular.

The following theorem can (when applicable) be used to express the rank of a
partitioned matrix in terms of the rank of a matrix of smaller dimensions.

Theorem 8.5.10. Let T represent anm × m matrix, U anm × q matrix, V an
n×mmatrix, andW ann× q matrix. If rank(T) � m, that is ifT is nonsingular,
then

rank

(
T U
V W

)
� rank

(
U T
W V

)
� rank

(
V W
T U

)

� rank

(
W V
U T

)
� m+ rank(W− VT−1U). (5.15)

Proof. Suppose that rank(T) � m. Then, in light of Lemma 8.5.1, it suffices to
show that

rank

(
T U
V W

)
� m+ rank(W− VT−1U) .

It is easy to verify that(
Im 0

−VT−1 In

)(
T U
V W

)
�
(

T U
0 W− VT−1U

)
.

Thus, since (according to Lemma 8.5.2)

(
I 0

−VT−1 I

)
is nonsingular, it follows

from Corollary 8.3.3 and Lemma 8.5.3 that

rank

(
T U
V W

)
� rank

(
T U
0 W− VT−1U

)
� rank(T)+ rank(W− VT−1U)

� m+ rank(W− VT−1U) .
Q.E.D.
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Result (5.8) on the inverse of a block-triangular matrix can be extended to other
partitioned matrices, as detailed in the following theorem.

Theorem 8.5.11. LetT represent anm×mmatrix,U anm×nmatrix,V ann×m
matrix, andW ann× n matrix. Suppose thatT is nonsingular. Then,

(
T U
V W

)
,

or, equivalently,

(
W V
U T

)
, is nonsingular if and only if then× n matrix

Q � W− VT−1U

is nonsingular, in which case

(
T U
V W

)−1

�
(

T−1 + T−1UQ−1VT−1 −T−1UQ−1

−Q−1VT−1 Q−1

)
(5.16a)

�
(

T−1 0
0 0

)
+
(−T−1U

In

)
Q−1(−VT−1, In) , (5.16b)

(
W V
U T

)−1

�
(

Q−1 −Q−1VT−1

−T−1UQ−1 T−1 + T−1UQ−1VT−1

)
(5.17a)

�
(

0 0
0 T−1

)
+
(

In
−T−1U

)
Q−1(In,−VT−1) . (5.17b)

Proof. That

(
T U
V W

)
is nonsingular if and only ifQ is nonsingular is an

immediate consequence of Theorem 8.5.10.
Suppose now thatQ is nonsingular, and observe that(

T 0
V Q

)
�
(

T U
V W

)(
I −T−1U
0 I

)
. (5.18)

Then (in light of Lemma 8.5.4),

(
T 0
V Q

)
, as well as

(
T U
V W

)
, is nonsingular.

Premultiplying both sides of equality (5.18) by

(
T U
V W

)−1

and postmultiplying

both sides by

(
T 0
V Q

)−1

and making further use of Lemma 8.5.4, we find that

(
T U
V W

)−1

�
(

I −T−1U
0 I

)(
T 0
V Q

)−1

�
(

I −T−1U
0 I

)(
T−1 0

−Q−1VT−1 Q−1

)

�
(

T−1 + T−1UQ−1VT−1 −T−1UQ−1

−Q−1VT−1 Q−1

)
,
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which establishes formula (5.16). Formula (5.17) can be derived in an analogous
fashion. (As an alternative to deriving these formulas from results on the inverse
of a block-triangular matrix, which is the approach taken here, their validity could
be established simply by verifying that the product of expression (5.16) or (5.17)

and

(
T U
V W

)
or

(
W V
U T

)
, respectively, equalsIm+n.) Q.E.D.

WhenT is nonsingular, the matrixQ � W−VT−1U, which appears in formulas
(5.16) and (5.17) for the inverse of a partitioned matrix and also in formula (5.15) for

the rank of a partitioned matrix, is called theSchur complement of T in

(
T U
V W

)

or

(
W V
U T

)
, respectively. Moreover, when the context is clear, it is sometimes

referred to simply as the Schur complement ofT or even more simply as the Schur

complement. Note that if

(
T U
V W

)
or

(
W V
U T

)
is symmetric (in which case

T′ � T, W′ � W, andV � U′), then the Schur complement ofT is symmetric.
Among other things, the following corollary (of Theorem 8.5.11) expresses the

inverse of a diagonal block of a partitioned matrix in terms of the inverse of the
partitioned matrix.

Corollary 8.5.12. LetT represent anm×mmatrix,U anm×nmatrix,V ann×m
matrix, andW ann× n matrix. Suppose that the partitioned matrix

(
T U
V W

)
is

nonsingular, defineB �
(

T U
V W

)−1

, and partitionB asB �
(

B11 B12

B21 B22

)
, where

the dimensions ofB11,B12,B21, andB22 are the same as those ofT, U, V, andW,
respectively. IfT is nonsingular, thenB22 is nonsingular,

T−1 � B11− B12B−1
22 B21 (5.19)

(i.e.,T−1 equals the Schur complement ofB22),

T−1U � −B12B−1
22 , VT−1 � −B−1

22 B21 , (5.20)

and
W− VT−1U � B−1

22 (5.21)

(i.e., the Schur complement ofT equalsB−1
22 ). Similarly, if W is nonsingular, then

B11 is nonsingular,
W−1 � B22− B21B−1

11 B12 (5.22)

(i.e.,W−1 equals the Schur complement ofB11),

W−1V � −B21B−1
11 , UW−1 � −B−1

11 B12, (5.23)

and
T− UW−1V � B−1

11 (5.24)

(i.e., the Schur complement ofW equalsB−1
11 .
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Proof. Suppose thatT is nonsingular, and letQ � W−VT−1U. Then, it follows
from Theorem 8.5.11 thatQ is nonsingular, thatB22 � Q−1, implying [in light of
results (2.5) and (2.6)] thatB22 is nonsingular andB−1

22 � Q, and that

−B12B−1
22 � −(−T−1UQ−1)Q � T−1U ,

−B−1
22 B21 � −Q(−Q−1VT−1) � VT−1 ,

and

B11− B12B−1
22 B21 � T−1 + T−1UQ−1VT−1 + T−1U(−Q−1VT−1) � T−1 .

The second part of the corollary can be established via an analogous argu-
ment. Q.E.D.

Suppose that we wish to find the rank of a matrixA; or if A is nonsingular, that
we wish to findA−1 or a submatrix ofA−1, or that we wish to find the inverse
of a nonsingular submatrix ofA. Then, depending on the nature ofA, Theorems
8.5.10 and 8.5.11 and Corollary 8.5.12 can be helpful, as will now be discussed.

Let A �
(

A11 A12

A21 A22

)
represent an arbitrary partitioning ofA into two rows

and columns of submatrices. IfA11 or A22 is nonsingular, then, by making use of
Theorem 8.5.10, the problem of finding the rank ofA can be replaced by that of
(1) invertingA11 or A22, (2) forming the Schur complementA22−A21A−1

11 A12 or
A11−A12A−1

22 A21, and (3) finding the rank of the Schur complement. This can be
advantageous if the inverse ofA11 or A22 is known — as would be the case, for
example, ifA11 or A22 were a (nonsingular) diagonal matrix — and ifA11 or A22,
respectively, is of relatively large order. Thus, whether Theorem 8.5.10 is helpful
in finding the rank ofA depends on whether the partitioning ofA can be carried
out in such a way thatA11 or A22 is a relatively large order, nonsingular matrix
with a known inverse.

Now, suppose thatA is nonsingular, letB � A−1, and partitionB as B �(
B11 B12

B21 B22

)
, where the dimensions ofB11, B12, B21, andB22 are the same as those

of A11,A12,A21, andA22, respectively. IfA11 orA22 is nonsingular, then, by making
use of Theorem 8.5.11, the problem of constructingA−1 can be reformulated as
one of (1) findingA−1

11 or A−1
22 , (2) forming and inverting the Schur complement

A22 − A21A−1
11 A12 or A11 − A12A−1

22 A21, and (3) determining, based on formula
(8.16) or (8.17), respectively,B11, B12, B21, andB22. This can be advantageous
if A11 or A22 has a known inverse and is of relatively large order and/or if only
the lower-right or upper-left part (B22 or B11) of A−1 is of interest. Thus, whether
Theorem 8.5.11 is helpful in constructingA−1 depends on whetherA can be
partitioned in such a way thatA11 or A22 is a relatively large order matrix with a
known inverse and possibly on whether only part ofA−1 is of interest.

Finally, suppose that the upper-left or lower-right part (A11 or A22) of A is
nonsingular and that we wish to constructA−1

11 or A−1
22 . If A itself is nonsingular,

then, by making use of Corollary 8.5.12, we can computeA−1
11 or A−1

22 from A−1,
which can be advantageous ifA−1 is known and ifA11 or A22, respectively, is of
relatively large order.
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f. Use of permutation matrices to extend results on partitioned ma-
trices

One important use of permutation matrices is to extend results on partitioned ma-
trices. Consider, for example, result (5.16) on the inverse of a partitioned matrix.
This result gives the inverse of an (m+ n)× (m+ n) matrix, sayA, in terms of a
submatrixT formed from the firstm rows and columns ofA, a submatrixU formed
from the firstm rows and lastn columns ofA, a submatrixV formed from the lastn
rows and firstm columns ofA, and a submatrixW formed from the lastm rows and
columns ofA. Takingi1, i2, . . . , im+n andj1, j2, . . . , jm+n to be any two (not nec-
essarily different) permutations of the firstm+n positive integers 1,2, . . . , m+n,
result (5.16) can be extended to the case where the submatrixT is formed from rows
i1, . . . , im, respectively, and columnsj1, . . . , jm, respectively (ofA), U is formed
from rowsi1, . . . , im, respectively, and columnsjm+1, . . . , jm+n, respectively,V
from rowsim+1, . . . , im+n, respectively, and columnsj1, . . . , jm, respectively, and
W from rowsim+1, . . . , im+n, respectively, and columnsjm+1, . . . , jm+n, respec-
tively. In fact, result (5.17) can be viewed as one particularly simple extension of
this type.

To present explicitly a version of result (5.16) that would be applicable to
arbitrary permutationsi1, i2, . . . , im+n and j1, j2, . . . , jm+n would require very
elaborate and cumbersome notation. However, by explicitly or implicitly mak-
ing use of appropriately chosen permutation matrices, result (5.16), which is
for the special case where bothi1, i2, . . . , im+n andj1, j2, . . . , jm+n are the se-
quence 1,2, . . . , m+n, can be applied to any other choice fori1, i2, . . . , im+n and
j1, j2, . . . , jm+n.

Lettingu1,u2, . . . ,um+n represent the first, second,. . . , (m+ n)th columns of
Im+n, define

B � PAQ ,

where
P � (ui1,ui2, . . . ,uim+n )

′ and Q � (uj1,uj2, . . . ,ujm+n ) .

PartitionB as

B �
(

T U
V W

)
,

whereT ism×m, U ism×n, V isn×m, andW isn×n. Note thatT is the matrix
formed from rowsi1, . . . , im, respectively, and columnsj1, . . . , jm, respectively,
of A; the submatricesU, V, andW have analogous interpretations.

Suppose that we invertB by, for example, making use of result (8.16) or (8.17)
(assuming thatA, and henceB, is invertible). Then, to obtainA−1 from B−1, we
observe that

A � P′BQ′

and, consequently, that
A−1 � QB−1P . (5.25)

Thus, to formA−1 from B−1, it suffices to permute the rows ofB−1 so that its first
row becomes thej1th row, its second row becomes thej2th row, and, in general,
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its rth row becomes thejr th row, and to then permute the columns so that the first
column becomes thei1th column, the second column becomes thei2th column,
and, in general, thesth column becomes theis th column. Or, combining the row
and column operations, we can formA−1 from B−1 simply by rearranging the
elements ofB−1 so that thersth element becomes thejr is th element.

Consider, for example, the matrix

A �




0 1 0 1
−6 2 4 8

0 5 1 0
1 3 0 0


 .

Observe that the 3× 3 matrix formed from the fourth, third, and first rows, re-
spectively, and the first, third, and fourth columns, respectively, ofA is the 3× 3
identity matrix, whose inverse is known. Suppose then that we take

B � (u4,u3,u1,u2)′A(u1,u3,u4,u2)

�




1 0 0 3
0 1 0 5
0 0 1 1

−6 4 8 2


 .

Applying result (5.16) withT � I3, U′ � (3,5,1), V � (−6,4,8), andW �
(2), we find easily that

B−1 �




3.25 −1.5 −3 0.375
3.75 −1.5 −5 0.625
0.75 −0.5 0 0.125

−0.75 0.5 1 −0.125


 .

Rearranging the elements ofB−1 in accordance with formula (5.25), we obtain

A−1 �



−3 0.375 −1.5 3.25

1 −0.125 0.5 −0.75
−5 0.625 −1.5 3.75

0 0.125 −0.5 0.75


 .

Exercises

Section 8.1

1. Let A represent anm × n matrix. Show that (a) ifA has a right inverse, then
n ≥ m and (b) ifA has a left inverse, thenm ≥ n.

2. An n× n matrix A is said to beinvolutory if A2 � I, that is, ifA is invertible
and is its own inverse.
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(a) Show that ann×nmatrixA is involutory if and only if (I−A)(I +A) � 0.

(b) Show that a 2× 2 matrix A �
(
a b

c d

)
is involutory if and only if (1)

a2 + bc � 1 andd � −a or (2)b � c � 0 andd � a � ±1.

Section 8.3

3. LetA represent ann×n nonnull symmetric matrix, and letB represent ann×r
matrix of full column rankr andT anr × nmatrix of full row rankr such that
A � BT. Show that ther × r matrix TB is nonsingular. (Hint. Observe that
A′A � A2 � BTBT.)

Section 8.4

4. Let A represent ann× n matrix, and partitionA asA � (A1,A2).

(a) Show that ifA is invertible andA−1 is partitioned asA−1 �
(

B1

B2

)
(where

B1 has the same number of rows asA1 has columns), then

B1A1 � I, B1A2 � 0, B2A1 � 0, B2A2 � I , (E.1)

A1B1 � I− A2B2, A2B2 � I− A1B1 . (E.2)

(b) Show that ifA is orthogonal, then

A′
1A1 � I, A′

1A2 � 0, A′
2A1 � 0 A′

2A2 � I , (E.3)

A1A′
1 � I− A2A′

2, A2A′
2 � I− A1A′

1 (E.4)

5. Let A represent anm × n nonnull matrix of rankr. Show that there exists an
m×m orthogonal matrix whose firstr columns spanC(A).

Section 8.5

6. Let T represent ann × n triangular matrix. Show that rank(T) is greater than
or equal to the number of nonzero diagonal elements inT.

7. Let

A �




A11 A12 . . . A1r

0 A22 . . . A2r
...

...
...

0 0 Arr


 , B �




B11 0 . . . 0
B21 B22 0
...

...
...

Br1 Br2 . . . Brr




represent, respectively, ann×n upper block-triangular matrix whoseij th block
Aij is of dimensionsni × nj (j ≥ i � 1, . . . , r) and ann × n lower block-
triangular matrix whoseij th block Bij is of dimensionsni × nj (j ≤ i �
1, . . . , r).
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(a) Assuming thatA andB are invertible, show that

A−1 �




F11 F12 . . . F1r

0 F22 . . . F2r
...

...
...

0 0 Frr


 , B−1 �




G11 0 . . . 0
G21 G22 0

...
...

...
Gr1 Gr2 . . . Grr


 ,

where

Fjj � A−1
jj , Fij � −

(
j−1∑
k�i

FikAkj

)
A−1
jj (i < j � 1, . . . r) , (E.5)

Gjj � B−1
jj , Gij � −

(
i∑

k�j+1

GikBkj

)
B−1
jj (i > j � 1, . . . r) . (E.6)

Do so by applying the results of Section 8.5d toA′ andB′ [as opposed to
mimicking the derivations of formulas (5.10) and (5.13)].

(b) Describe how the formulas in Part (a) can be used to deviser-step algorithms
for computingA−1 andB−1, and indicate how these algorithms differ from
those described in Section 8.5d.
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9
Generalized Inverses

In statistics (and in many other disciplines), it is common to encounter linear
systems whose coefficient matrices are square but not nonsingular (i.e., they are
singular) and hence are not invertible (i.e., they lack inverses). For a linear system
that has a nonsingular coefficient matrix, there is an intimate relationship — refer
to Section 8.2a — between the solution of a linear system and the inverse of
the coefficient matrix. What about a linear system whose coefficient matrix is
not nonsingular? Is there a matrix comparable to the inverse (i.e., that relates
to the solution of the linear system in a similar way)? The answer is yes! In
fact, there are an infinite number of such matrices. These matrices, which are
called generalized inverses, are the subject of this chapter. Over time, the use
of generalized inverses in statistical discourse (especially that related to linear
statistical models and multivariate analysis) has become increasingly routine.

There is a particular generalized inverse, known as the Moore-Penrose inverse,
that is sometimes singled out for special attention. Discussion of the Moore-
Penrose inverse is deferred to Chapter 20. For many purposes, one generalized
inverse is as good as another.

9.1 Definition, Existence, and a Connection to the
Solution of Linear Systems

A generalized inverse of anm× n matrix A is anyn×m matrix G such that

AGA � A .
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(The use of the term generalized inverse to refer to any such matrix is widespread,
but not universal — among the alternative names found in the literature are pseu-
doinverse and conditional inverse.) For example, each of the two 3× 2 matrices

1 0
0 0
0 0


 and


−42 −1

5 3
2 2




is a generalized inverse of the 2× 3 matrix(
1 3 2
2 6 4

)
.

For a nonsingular matrixA, it is clear thatAA−1A � A and that ifG is a
generalized inverse ofA, thenG � A−1AGAA−1 � A−1AA−1 � A−1. Thus, we
have the following lemma.

Lemma 9.1.1. The inverseA−1 of a nonsingular matrixA is a generalized inverse
of A, and a nonsingular matrix has no generalized inverse other than its inverse.

There is an intimate relationship between any generalized inverse of anm× n
matrix A and the solution of linear systems whose coefficient matrix isA. This
relationship is described in the following theorem, which generalizes Theorem
8.2.1.

Theorem 9.1.2. Let A represent anym× nmatrix,G anyn×mmatrix, andp
any positive integer. Then,GB is a solution to a linear systemAX � B (in X) for
everym× p matrixB for which the linear system is consistent if and only ifG is
a generalized inverse ofA.

Proof. Suppose thatG is a generalized inverse ofA. Let B represent anym×p
matrix for whichAX � B is consistent, and takeX∗ to be any solution toAX � B.
Then,

A(GB) � (AG)B � AGAX∗ � AX∗ � B .

Conversely, suppose thatGB is a solution toAX � B (i.e., thatAGB � B) for
everym × p matrix B for which AX � B is consistent. Lettingai represent the
ith column ofA, observe thatAX � B is consistent in particular for

B � (ai , 0, . . . , 0)

— for this B, one solution toAX � B is the matrix (ui , 0, . . . , 0), whereui is the
ith column ofIn (i � 1, . . . , n). It follows that

AG(ai , 0, . . . , 0) � (ai , 0, . . . , 0)

and hence thatAGai � ai (i � 1, . . . , n), implying thatAGA � A. Q.E.D.
Let us now consider the existence of generalized inverses. Does every matrix

have at least one generalized inverse? The answer to this question is yes, as can
be shown by making use of the following theorem, which is of interest in its own
right.
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Theorem 9.1.3. Let B represent anm× r matrix of full column rank andT an
r × n matrix of full row rank. Then,B has a left inverse, sayL, andT has a right
inverse, sayR; andRL is a generalized inverse ofBT.

Proof. That B has a left inverseL and T a right inverseR is an immediate
consequence of Lemma 8.1.1. Moreover,

BT(RL)BT � B(TR)(LB)T � BIIT � BT ,

that is,RL is a generalized inverse ofBT. Q.E.D.
Now, consider an arbitrarym × n matrix A. If A � 0, then clearly anyn × m

matrix is a generalized inverse ofA. If A �� 0, then (according to Theorem 4.4.8)
there exist a matrixB of full column rank and a matrixT of full row rank such
thatA � BT, and hence, according to Theorem 9.1.3,A has a generalized inverse.
Thus, we arrive at the following conclusion.

Corollary 9.1.4. Every matrix has at least one generalized inverse.
The symbolA− is used to denote an arbitrary generalized inverse of anm× n

matrix A. By definition,
AA−A � A .

9.2 Some Alternative Characterizations

a. A generalized inverse in terms of the inverse of a nonsingular
submatrix

For anm× n matrix A of the general form

A �
(

A11 0
0 0

)
,

whereA11 is anr × r nonsingular matrix, and ann×m matrix

G �
(

G11 G12

G21 G22

)

(whereG11 is of dimensionsr × r), we find that

AGA �
(

A11G11A11 0
0 0

)
,

implying thatG is a generalized inverse ofA if and only if

A11G11A11 � A11 ,

or equivalently (in light of Lemma 9.1.1) if and only ifG11 � A−1
11 , and hence that

G is a generalized inverse ofA if and only if

G �
(

A−1
11 X
Y Z

)
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for some matricesX, Y, andZ (of appropriate dimensions). This result can be
generalized as follows:

Theorem 9.2.1. Let A represent anm× n matrix of rankr, and partitionA as

A �
(

A11 A12

A21 A22

)
,

whereA11 is of dimensionsr× r. Suppose thatA11 is nonsingular. Then, ann×m
matrix G is a generalized inverse ofA if and only if

G �
(

A−1
11 − XA21A−1

11 − A−1
11 A12Y− A−1

11 A12ZA21A−1
11 X

Y Z

)
(2.1)

for some matricesX, Y, andZ (of appropriate dimensions).
To prove Theorem 9.2.1, we require the following lemma, which is of interest

in its own right.
Lemma 9.2.2. Let

A �
(

A11 A12

A21 A22

)
represent anm×n partitioned matrix of rankr, whereA11 is of dimensionsr × r.
If rank(A11) � r, then

A22 � A21A−1
11 A12 .

Proof (of Lemma 9.2.2). Suppose that rank(A11) � r. Then, applying Theorem
8.5.10 (withT � A11, U � A12, V � A21, andW � A22), we find that

r � rank(A) � r + rank(A22− A21A−1
11 A12) ,

implying that
rank(A22− A21A−1

11 A12) � 0

and hence that
A22− A21A−1

11 A12 � 0

or equivalently that
A22 � A21A−1

11 A12 .

Q.E.D.
Proof (of Theorem 9.2.1). It follows from Lemma 9.2.2 that

A �
(

A11

A21

)
A−1

11 (A11,A12) .

By definition, G is a generalized inverse ofA if and only if AGA � A, or,
equivalently, if and only if(

A11

A21

)
A−1

11 (A11,A12)G
(

A11

A21

)
A−1

11 (A11,A12)

�
(

A11

A21

)
A−1

11 (A11,A12) . (2.2)
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PartitionG as

G �
(

G11 G12

G21 G22

)
(whereG11 is of dimensionsr × r). It is clear that

rank

(
A11

A21

)
� r and rank(A11,A12) � r

and hence (in light of Lemma 8.3.1) thatG satisfies condition (2.2) if and only if

A−1
11 (A11,A12)G

(
A11

A21

)
A−1

11 � A−1
11 ,

or, equivalently, [since

A−1
11 (A11,A12)G

(
A11

A21

)
A−1

11

� G11+ A−1
11 A12G21+G12A21A−1

11 + A−1
11 A12G22A21A−1

11 ]

if and only if

G11 � A−1
11 − A−1

11 A12G21−G12A21A−1
11 − A−1

11 A12G22A21A−1
11 .

Q.E.D.
Any m× n matrix A of rankr can be partitioned as

A �
(

A11 A12

A21 A22

)
,

whereA11 is of dimensionsr × r. [If m � r or n � r, thenA22 andA21 or A12,
respectively, are regarded as degenerate, that is

A � (A11,A12) or A �
(

A11

A21

)
,

respectively.] Theorem 9.2.1 describes (for the special case whereA11 is nonsin-
gular) the general form of a generalized inverse ofA (in terms of the submatrices
A11, A12, andA21). [If m � r or n � r, then, in Theorem 9.2.1,Z andX or Y,
respectively, are regarded as degenerate, and — assuming rank(A11) � r — we
have respectively thatG is a generalized inverse ofA � (A11,A12) if and only if

G �
(

A−1
11 − A−1

11 A12Y
Y

)

for someY, or thatG is a generalized inverse of

A �
(

A11

A21

)
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if and only if
G � (A−1

11 − XA21A−1
11 ,X)

for someX.] Note that Theorem 9.2.1 implies, in particular, that, ifA11 is nonsin-
gular, then one generalized inverse ofA is then×m matrix

G �
(

A−1
11 0
0 0

)
.

Ther × r submatrixA11 may be singular. For example, if

A �

1 0 5

0 0 0
5 0 2


 ,

thenr � 2 and

A11 �
(

1 0
0 0

)
.

If A11 is singular or equivalently (in light of Theorem 4.4.10) if the firstr rows or
first r columns ofA are linearly dependent, then the expression given by Theorem
9.2.1 for the general form of a generalized inverse is not applicable toA. The
following theorem, which generalizes Theorem 9.2.1, gives an expression for the
general form of a generalized inverse of anm× nmatrixA that is applicable even
if the first r rows or columns ofA are linearly dependent.

Theorem 9.2.3. Let A represent anm × n matrix of rank r. Let i1, . . . , ir
represent integers, chosen from the firstm positive integers 1, . . . , m in such a
way that thei1, . . . , ir th rows ofA are linearly independent, and letj1, . . . , jr
represent integers, chosen from the firstn positive integers 1, . . . , n in such a way
that thej1, . . . , jr th columns ofA are linearly independent. TakeP to be anym×m
permutation matrix that has as its firstr rows thei1, . . . , ir th rows of them × m
identity matrix, andQ to be anyn × n permutation matrix that has as its firstr
columns thej1, . . . , jr th columns of then×n identity matrix. LetB � PAQ, and
partitionB as

B �
(

B11 B12

B21 B22

)
,

whereB11 is of dimensionsr×r. Then, ann×mmatrixG is a generalized inverse
of A if and only if

G � Q
(

B−1
11 − XB21B−1

11 − B−1
11 B12Y− B−1

11 B12ZB21B−1
11 X

Y Z

)
P (2.3)

for some matricesX, Y, andZ (of appropriate dimensions).
With regard to Theorem 9.2.3, it follows from Theorem 4.4.10 thatA contains

r linearly independent rows andr linearly independent columns. Furthermore, if
i1 < · · · < ir and j1 < · · · < jr , thenB11 is a submatrix ofA, namely, the
r × r submatrix obtained by striking out all of the rows and columns ofA except
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thei1, . . . , ir th rows andj1, . . . , jr th columns — more generally,B11 is anr × r
matrix obtained from that submatrix by permuting its rows and columns. That
B11 is invertible is a consequence of Theorem 4.4.10. If the firstr rows and firstr
columns ofA are linearly independent, theni1, . . . , ir andj1, . . . , jr can be chosen
to be the firstr positive integers 1, . . . , r, andP andQ to be identity matrices, in
which case Theorem 9.2.3 reduces to Theorem 9.2.1.

It is convenient, in proving Theorem 9.2.3, to make use of the following lemma,
which generalizes result (8.2.8) and is of interest in its own right.

Lemma 9.2.4. Let B represent anm× n matrix andG ann×m matrix. Then,
for anym × m nonsingular matrixA andn × n nonsingular matrixC, (1) G is a
generalized inverse ofAB if and only if G � HA−1 for some generalized inverse
H of B, (2) G is a generalized inverse ofBC if and only if G � C−1H for some
generalized inverseH of B, and (3)G is a generalized inverse ofABC if and only
if G � C−1HA−1 for some generalized inverseH of B.

Proof (of Lemma 9.2.4). Parts (1) and (2) are special cases of Part (3) (those
whereC � I andA � I, respectively). Thus, it suffices to prove Part (3).

By definition,G is a generalized inverse ofABC if and only if

ABCGABC � ABC

or, equivalently (in light of Lemma 8.3.1), if and only if

BCGAB � B .

Thus,G is a generalized inverse ofABC if and only if CGA � H for some
generalized inverseH of B or, equivalently, if and only ifG � C−1HA−1 for some
generalized inverseH of B. Q.E.D.

Proof (of Theorem 9.2.3). SinceP andQ are permutation matrices, they are
orthogonal. Thus,

A � P′PAQQ′ � P′BQ′ ,

and it follows from Lemma 9.2.4 thatG is a generalized inverse ofA if and only
if G � QHP for some generalized inverseH of B. Moreover, it follows from
Theorem 9.2.1 that ann×m matrix H is a generalized inverse ofB if and only if

H �
(

B−1
11 − XB21B−1

11 − B−1
11 B12Y− B−1

11 B12ZB21B−1
11 X

Y Z

)

for some matricesX, Y, andZ. Q.E.D.
By setting the matricesX, Y, andZ in expression (2.3) equal to null matrices,

we find that one generalized inverse of anm× n matrix A of rankr is

G � Q
(

B−1
11 0
0 0

)
P (2.4)

(whereB11, P, andQ — andi1, . . . , ir andj1, . . . , jr — are as defined in Theo-
rem 9.2.3). Note that this generalized inverse can be formed by carrying out the
following 5-step procedure:
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(1) Find the rankr of A (by, e.g., determining the size of the largest linearly
independent set that can be formed from the rows or columns ofA).

(2) Determine values fori1, . . . , ir andj1, . . . , jr ; that is, locater linearly inde-
pendent rows ofA andr linearly independent columns.

(3) Form a submatrix ofA by striking out all of the rows and columns ofA except
thei1, . . . , ir th rows and thej1, . . . , jr th columns — this matrix is the matrix
B11.

(4) Form the inverseB−1
11 of B11.

(5) Write out the generalized inverseG of A, taking thejsit th element ofG to be
the st th element ofB−1

11 (for s � 1, . . . , r andt � 1, . . . , r) and taking the
other elements ofG to be zero.

Suppose, for example, that

A �

−6 2 −2 −3

3 −1 5 2
−3 1 3 −1


 .

The first and second rows ofA are linearly independent (as is easily verified), and
the third row is the sum of the first two, so thatr � 2. Let us choosei1 � 1, i2 � 3,
j1 � 2, andj2 � 4 — clearly, the first and third rows and the second and fourth
columns ofA are linearly independent. Then,

B11 �
(

2 −3
1 −1

)
.

Applying formula (1.2) for the inverse of a 2× 2 nonsingular matrix, we find that

B−1
11 �

(−1 −3
−1 2

)
.

Thus, one generalized inverse ofA is

G �




0 0 0
−1 0 3

0 0 0
−1 0 2


 .

How many generalized inverses does anm × n matrix A of rankr possess? If
A is nonsingular, then (according to Theorem 8.1.4) it has a unique generalized
inverse, namelyA−1. Suppose thatA is not nonsingular (i.e., thatA is either not
square or is square but singular). Then, in expression (2.3) for the general form of a
generalized inverse, at least one of the three matricesX, Y, andZ is nondegenerate,
and it follows from Lemma 8.3.1 that distinct choices forX, Y, andZ produce
distinct values ofG, that is, distinct generalized inverses. Since there are an infinite
number of choices for these matrices, we conclude thatA has an infinite number
of generalized inverses.
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b. Generalized inverses of symmetric matrices

The expression given by Theorem 9.2.3 for the general form of a generalized
inverse of anm × n matrix A of rank r is, of course, applicable to a symmetric
matrix. If thei1, . . . , ir th rows of a symmetric matrixA are linearly independent,
then clearly the corresponding (i1, . . . , ir th) columns ofA are likewise linearly
independent. Thus, for symmetric matrices, we have the following special case of
Theorem 9.2.3.

Theorem 9.2.5. Let A represent ann × n symmetric matrix of rankr. Let
i1, . . . , ir represent integers chosen from the firstn positive integers 1, . . . , n in
such a way that thei1, . . . , ir th rows ofA are linearly independent, and takeP to
be anyn× n permutation matrix that has as its firstr rows thei1, . . . , ir th rows of
then× n identity matrix. LetB � PAP′, and partitionB as

B �
(

B11 B21

B21 B22

)
,

whereB11 is of dimensionsr× r. Then, ann×nmatrixG is a generalized inverse
of A if and only if

G � P′
(

B−1
11 − XB21B−1

11 − B−1
11 B12Y− B−1

11 B12ZB21B−1
11 X

Y Z

)
P (2.5)

for some matricesX, Y, andZ (of appropriate dimensions).
As indicated in Section 8.1b, the inverse of any nonsingular symmetric matrix

is symmetric. Is a generalized inverse of a singular symmetric matrix necessarily
symmetric? To answer this question, observe that the generalized inverses of an
n×n symmetric matrixA of rankr consist of all matrices of the formG � P′CP,
where

C �
(

B−1
11 − XB21B−1

11 − B−1
11 B12Y− B−1

11 B12ZB21B−1
11 X

Y Z

)

and the matricesX, Y, andZ are arbitrary. (Here,P andB — and the submatrices
B11, B12, B21, andB22 of B — are as defined in Theorem 9.2.5.) SinceG′ � P′C′P,
it is clear from Lemma 8.3.1 thatG′ � G (i.e., thatG is symmetric) if and only if
C′ � C.

Observing thatB′ � PA′P′ � PAP′ � B, that is,B is symmetric (so thatB11 is
symmetric — and consequentlyB−1

11 is symmetric — andB′
21 � B12), we find that

C′ �
(

B−1
11 − B−1

11 B12X′ − Y′B21B−1
11 − B−1

11 B12Z′B21B−1
11 Y′

X′ Z′

)
.

It follows thatC′ � C if and only if Y′ � X andZ′ � Z. We conclude that, ifn >
r > 0 (in which caseA is singular and the matricesX, Y, andZ are nondegenerate),
thenA has both symmetric and nonsymmetric generalized inverses. For example,
if we takeX, Y, andZ all to be null, thenG is symmetric; however if we takeX to
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be null butY to be nonnull, thenG is nonsymmetric. In conclusion, we have the
following lemma.

Lemma 9.2.6. Every singular symmetric matrix (of order two or more) has both
symmetric and nonsymmetric generalized inverses.

c. Every generalized inverse in terms of any particular generalized
inverse

The general form of a generalized inverse of anm× nmatrixA can be expressed
in terms of any particular generalized inverse ofA, as described in the following
theorem.

Theorem 9.2.7. Let A represent anm× n matrix, andG any particular gener-
alized inverse ofA. Then, ann×mmatrixG∗ is a generalized inverse ofA if and
only if

G∗ � G+ Z−GAZAG (2.6)

for somen×m matrix Z. Also, G∗ is a generalized inverse ofA if and only if

G∗ � G+ (I−GA)T+ S(I− AG) (2.7)

for somen×m matricesT andS.
Proof. It is a simple exercise to verify that any matrixG∗ that is expressible in

the form (2.6) or the form (2.7) is a generalized inverse ofA. Conversely, ifG∗ is
any generalized inverse ofA, then

G∗ � G+ (G∗ −G)−GA(G∗ −G)AG

� G+ Z−GAZAG ,

whereZ � G∗ −G, and

G∗ � G+ (I−GA)G∗AG+ (G∗ −G)(I− AG)

� G+ (I−GA)T+ S(I− AG) ,

whereT � G∗AG andS � G∗ −G. Q.E.D.
All generalized inverses of them×nmatrixA can be generated from expression

(2.6) by lettingZ range over alln × m matrices. Alternatively, all generalized
inverses ofA can be generated from expression (2.7) by letting bothT andS range
over alln × m matrices. Note that distinct choices forZ or for T or S may not
result in distinct generalized inverses.

d. Generalized inverses of matrices having full column or row rank

The following lemma extends the results of Lemma 8.1.3.
Lemma 9.2.8. Let A represent a matrix of full column rank andB a matrix of

full row rank. Then, (1) a matrixG is a generalized inverse ofA if and only if G
is a left inverse ofA. And, (2) a matrixG is a generalized inverse ofB if and only
if G is a right inverse ofB.
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Proof. Let L represent any left inverse ofA — that A has a left inverse is
guaranteed by Lemma 8.1.1. Then,ALA � AI � A, so thatL is a generalized
inverse ofA. And, the proof of Part (1) of Lemma 9.2.8 is complete upon observing
that

A−A � IA−A � LAA−A � LA � I

and hence thatA− is a left inverse ofA. The validity of Part (2) can be established
via an analogous argument. Q.E.D.

If a matrix A has full column rank, then (according to Corollary 7.4.6)A′A is
nonsingular, and similarly ifA has full row rank, thenAA′ is nonsingular. Further,
if A has full column or row rank, then, by making use of the following (easily
verifiable) lemma, a generalized inverse ofA can (in light of Lemma 9.2.8) be
obtained from the ordinary inverse ofA′A or AA′.

Lemma 9.2.9. If a matrix A has full column rank, then the matrix (A′A)−1A′

is a left inverse ofA. Similarly, if A has full row rank, thenA′(AA′)−1 is a right
inverse ofA.

9.3 Some Elementary Properties

Let us begin by considering the extension (to generalized inverses) of various
elementary properties of inverse matrices. It is easy to verify the following lemma,
which is a generalization of result (8.2.1).

Lemma 9.3.1. For any matrixA and any nonzero scalark, (1/k)A− is a gener-
alized inverse ofkA.

Settingk � −1 in Lemma 9.3.1, we obtain the following corollary, which
generalizes result (8.2.2).

Corollary 9.3.2. For any matrixA,−A− is a generalized inverse of−A.
For any matrixA, we find that

A′(A−)′A′ � (AA−A)′ � A′ .

Thus, we have the following lemma, which generalizes result (8.2.3).
Lemma 9.3.3. For any matrixA, (A−)′ is a generalized inverse ofA′.
While (as discussed in Section 9.2b) the transpose (A−)′ of a generalized inverse

A− of a singular symmetric matrixA is not necessarily the same asA−, Lemma
9.3.3 implies that (A−)′ has the following weaker property.

Corollary 9.3.4. For any symmetric matrixA, (A−)′ is a generalized inverse of
A.

For a nonsingular matrixA, we have (by definition) thatAA−1 � A−1A � I.
The following two lemmas describe, for an arbitrary matrixA, some properties of
AA− andA−A.

Lemma 9.3.5. Let A represent anm× nmatrix. Then, for anym×p matrixB,
C(B)⊂C(A) if and only ifB � AA−B, or, equivalently, if and only if (I−AA−)B �
0. And, for anyq × n matrix C, R(C) ⊂ R(A) if and only if C � CA−A, or,
equivalently, if and only ifC(I− A−A) � 0.
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Proof. If B � AA−B, then it follows immediately from Lemma 4.2.2 thatC(B)
⊂ C(A). Conversely, ifC(B) ⊂ C(A), then, according to the same lemma, there
exists a matrixF such thatB � AF, implying that

B � AA−AF � AA−B .

Thus,C(B) ⊂ C(A) if and only if B � AA−B. ThatR(C) ⊂ R(A) if and only if
C � CA−A follows from an analogous argument. Q.E.D.

In the special case wherep � 1 andq � 1, Lemma 9.3.5 reduces to the
following corollary.

Corollary 9.3.6. LetA represent anm×nmatrix. Then, for anym-dimensional
column vectorx, x ∈ C(A) if and only if x � AA−x, and, for anyn-dimensional
row vectory′, y′ ∈ R(A) if and only if y′ � y′A−A.

Lemma 9.3.7. For any matrixA,

R(A−A) � R(A) and C(AA−) � C(A) .

Proof. It follows from Corollary 4.2.3 thatR(A−A) ⊂ R(A) and also, since
A � A(A−A), thatR(A) ⊂ R(A−A). Thus,R(A−A) � R(A). ThatC(AA−) �
C(A) follows from an analogous argument. Q.E.D.

As an immediate consequence of Lemma 9.3.7, we have the following corollary.
Corollary 9.3.8. For any matrixA,

rank(A−A) � rank(AA−) � rank(A) .

It follows from this corollary, together with Corollary 4.4.5, that, for any matrix
A,

rank(A−) ≥ rank(A−A) � rank(A) .

Thus, we have the following lemma, which extends result (8.2.5).
Lemma 9.3.9. For any matrixA,

rank(A−) ≥ rank(A) .

The following two lemmas give some elementary results on generalized inverses
of partitioned matrices.

Lemma 9.3.10. Let A andB representm × n partitioned matrices of the form

A � (T, 0) andB �
(

W
0

)
. Then, ann×m partitioned matrixG �

(
G1

G2

)
(where

the number of rows inG1 equals the number of columns inT) is a generalized
inverse ofA if and only if G1 is a generalized inverse ofT. Similarly, ann × m

partitioned matrixH � (H1,H2) (where the number of columns inH1 equals the
number of rows inW) is a generalized inverse ofB if and only ifH1 is a generalized
inverse ofW.

Proof. The lemma becomes obvious upon observing thatAGA � (TG1T, 0)

andBHB �
(

WH1W
0

)
. Q.E.D.
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Lemma 9.3.11. Let A represent anm × n matrix, B anm × p matrix, andC

a q × n matrix. Then the (n + p) × m matrix

(
A−

B−

)
is a generalized inverse of

the partitioned matrix (A, B) if and only if AA−B � 0 andBB−A � 0. Similarly,
then× (m+ q) matrix (A−,C−) is a generalized inverse of the partitioned matrix(

A
C

)
if and only if CA−A � 0 andAC−C � 0.

Proof. The proof becomes obvious upon observing that

(A,B)

(
A−

B−

)
(A,B) � (AA−A+ BB−A, AA−B+ BB−B)

� (A+ BB−A, AA−B+ B)

and that(
A
C

)
(A−,C−)

(
A
C

)
�
(

AA−A+ AC−C
CA−A+ CC−C

)
�
(

A+ AC−C
CA−A+ C

)
.

Q.E.D.

9.4 Invariance to the Choice of a Generalized Inverse

Suppose that a generalized inverseA− of a matrixA is premultiplied by a matrixB
and postmultiplied by a matrixC. Under certain conditions, the productBA−C is
invariant to the choice ofA−. These conditions are given by the following theorem.

Theorem 9.4.1. Let A represent anm × n matrix, B a p × n matrix, andC
anm × q matrix. If R(B) ⊂ R(A) andC(C) ⊂ C(A), thenBA−C is invariant to
the choice of the generalized inverseA−. Conversely, ifBA−C is invariant to the
choice ofA− and if in additionC is nonnull, thenR(B) ⊂ R(A); and, ifBA−C is
invariant to the choice ofA− and if in additionB is nonnull, thenC(C) ⊂ C(A).

Proof. Suppose thatR(B) ⊂ R(A) andC(C) ⊂ C(A). Then, there exist matrices
L andR such thatB � LA andC � AR, in which case

BA−C � LAA−AR � LAR .

Thus,BA−C is invariant to the choice ofA−.
Conversely, suppose thatBA−C is invariant to the choice ofA−. Then, letting

G represent any particular choice forA−, it follows from Theorem 9.2.7 that

BGC � B[G+ (I−GA)T+ S(I− AG)]C

for all n×m matricesT andS, or equivalently that

B(I−GA)TC+ BS(I− AG)C � 0

for all T andS, and hence that

B(I−GA)TC � 0
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for all T and
BS(I− AG)C � 0

for all S.
Suppose further thatC is nonnull. Then, some column, say thekth columnck, of

C is nonnull. And, lettingui represent theith column ofIn, there exists ann×m
matrix Ti such thatTick � ui (i � 1, . . . , n).

We have (fori � 1, . . . , n) thatB(I−GA)TiC � 0. Moreover, thekth column
of B(I−GA)TiC is B(I−GA)Tick � B(I−GA)ui , which is theith column of
B(I−GA). Thus, theith column ofB(I−GA) is null (i � 1, . . . , n). We conclude
thatB(I−GA) � 0 and (in light of Lemma 9.3.5) thatR(B) ⊂ R(A).

ThatC(C) ⊂ C(A) if B is nonnull (andBA−C is invariant to the choice ofA−)
can be established in similar fashion. Q.E.D.

Theorem 9.4.1 has the following implication.
Corollary 9.4.2. Let A represent aq × p matrix, B ap × n matrix, andC an

m× q matrix. If rank(CAB) � rank(C) � rank(B), thenB(CAB)−C is invariant
to the choice of the generalized inverse (CAB)−.

Proof. Suppose that rank(CAB) � rank(C) � rank(B). Then, it follows from
Corollary 4.4.7 thatR(B) � R(CAB) andC(C) � C(CAB). Based on Theorem
9.4.1, we conclude thatB(CAB)−C is invariant to the choice of (CAB)−. Q.E.D.

9.5 A Necessary and Sufficient Condition for the
Consistency of a Linear System

According to Theorem 7.2.1, a linear systemAX � B (in X) is consistent if and
only if C(B) ⊂ C(A). In light of Lemma 9.3.5, this result can be restated as follows:

Lemma 9.5.1. A linear systemAX � B (in X) is consistent if and only if

AA−B � B

or, equivalently, if and only if

(I− AA−)B � 0 .

According to Lemma 9.5.1, either of the two matricesAA− or I − AA− can
be used to determine whether any linear system havingA as a coefficient matrix
is consistent or inconsistent. If the right side of the linear system is unaffected by
premultiplication byAA−, then the linear system is consistent; otherwise, it is in-
consistent. Similarly, if the premultiplication of the right side byI−AA− produces
a null matrix, then the linear system is consistent; otherwise, it is inconsistent.

Consider, for example, the linear systemAx � b (in x), where

A �

−6 2 −2 −3

3 −1 5 2
−3 1 3 −1


 .



9.6 Some Results on the Ranks and Generalized Inverses of Partitioned Matrices 121

As determined in Section 9.2a, one generalized inverse ofA is

G �




0 0 0
−1 0 3

0 0 0
−1 0 2


 .

Clearly,

AG �

 1 0 0
−1 0 1

0 0 1


 .

If b � (3,2,5)′, then
AGb � (3,2,5)′ � b ,

in which case the linear systemAx � b is consistent. However, ifb � (1,2,1)′,
then

AGb � (1,0,1)′ �� b ,

in which caseAx � b is inconsistent.

9.6 Some Results on the Ranks and Generalized
Inverses of Partitioned Matrices

a. Basic results

Consider the partitioned matrixA �
(

T U
V W

)
. In the special case whereT is

nonsingular, Theorem 8.5.10 gives rank(A) in terms of the Schur complement
Q � W − VT−1U, which is of smaller dimensions thanA. Moreover, in the
special case whereA, as well as,T is nonsingular, Theorem 8.5.11 givesA−1 in
terms ofT−1 andQ−1 (andU andV). The following theorem extends the results
of Theorems 8.5.10 and 8.5.11 to a larger class of partitioned matrices.

Theorem 9.6.1. Let T represent anm × p matrix, U anm × q matrix, V an
n× p matrix, andW ann× q matrix, and defineQ � W−VT−U. Suppose that
C(U) ⊂ C(T) andR(V) ⊂ R(T). Then,

rank

(
T U
V W

)
� rank

(
W V
U T

)
� rank(T)+ rank(Q) . (6.1)

Further, the partitioned matrices(
T− + T−UQ−VT− −T−UQ−

−Q−VT− Q−

)
(6.2a)

�
(

T− 0
0 0

)
+
(−T−U

Iq

)
Q−(−VT−, In) (6.2b)
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and(
Q− −Q−VT−

−T−UQ− T− + T−UQ−VT−

)
(6.3a)

�
(

0 0
0 T−

)
+
(

Iq
−T−U

)
Q−(In,−VT−) (6.3b)

are generalized inverses of

(
T U
V W

)
and

(
W V
U T

)
, respectively.

In the special case of a block-triangular matrix, Theorem 9.6.1 can be restated
as the following result, which generalizes results (8.5.7) and (8.5.8).

Corollary 9.6.2. Let T represent anm× p matrix,V ann× p matrix, andW
ann× q matrix. If R(V) ⊂ R(T) or C(V) ⊂ C(W), then

rank

(
T 0
V W

)
� rank

(
W V
0 T

)
� rank(T)+ rank(W) ,

and the block-triangular matrices(
T− 0

−WVT− W−

)
and

(
W− −W−VT−

0 T−

)

are generalized inverses of

(
T 0
V W

)
and

(
W V
0 T

)
, respectively.

As a special case of Corollary 9.6.2, we obtain the following generalization of
result (8.5.2).

Corollary 9.6.3. For any matricesT andW, the partitioned matrix

(
T− 0
0 W−

)

is a generalized inverse of the block-diagonal matrix

(
T 0
0 W

)
.

To prove Theorem 9.6.1, let us first prove the following result, which is of some
interest in its own right.

Theorem 9.6.4. LetT represent anm×p matrix,R ap×q matrix,L ann×m
matrix, andW ann× q matrix, and defineQ � W− LTR. Then,

rank

(
T TR

LT W

)
� rank

(
W LT
TR T

)
� rank(T)+ rank(Q) . (6.4)

Furthermore, the partitioned matrices(
T− + RQ−L −RQ−

−Q−L Q−

)
�
(

T− 0
0 0

)
+
(−R

Iq

)
Q−(−L, In) (6.5)

and (
Q− −Q−L

−RQ− T− + RQ−L

)
�
(

0 0
0 T−

)
+
(

Iq
−R

)
Q−(In,−L) (6.6)
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are generalized inverses of

(
T TR

LT W

)
and

(
W LT
TR T

)
, respectively.

Proof (of Theorem 9.6.4). Observe that(
I 0
−L I

)(
T TR

LT W

)(
I −R
0 I

)
�
(

T 0
0 Q

)
(6.7)

and that (according to Lemma 8.5.2) the matrices

(
I 0
−L I

)
and

(
I −R
0 I

)
are

nonsingular. Thus, making use of Corollary 8.3.3 and Lemma 4.5.11, we find that

rank

(
T TR

LT W

)
� rank

(
T 0
0 Q

)
� rank(T)+ rank(Q) ,

which (in light of Lemma 8.5.1) establishes result (6.4).
Equality (6.7) further implies that

(
T TR

LT W

)
�
(

I 0
−L I

)−1(T 0
0 Q

)(
I −R
0 I

)−1

.

Observing that (
T 0
0 Q

)(
T− 0
0 Q−

)(
T 0
0 Q

)
�
(

T 0
0 Q

)

and hence that

(
T− 0
0 Q−

)
is a generalized inverse of

(
T 0
0 Q

)
, we conclude, on

the basis of Lemma 9.2.4, that the matrix(
I −R
0 I

)(
T− 0
0 Q−

)(
I 0
−L I

)
�
(

T− + RQ−L −RQ−

−Q−L Q−

)

is a generalized inverse of

(
T TR

LT W

)
. That matrix (6.6) is a generalized inverse

of

(
W LT
TR T

)
follows from a similar argument. (An alternative way of estab-

lishing that matrices (6.5) and (6.6) are generalized inverses of

(
T TR

LT W

)
and(

W LT
TR T

)
, respectively, is by direct verification; that is, by premultiplying and

postmultiplying matrix (6.5) by

(
T TR

LT W

)
and premultiplying and postmulti-

plying matrix (6.6) by

(
W LT
TR T

)
and by verifying that the resultant products

equal

(
T TR

LT W

)
and

(
W LT
TR T

)
, respectively.) Q.E.D.



9.7 Extensions to Ssytems of the FormZXC � B 125

Proof. Let A �
(

T U
V W

)
, and takeG to be the generalized inverse ofA given

by expression (6.2). Then, according to Theorem 9.2.7,

B � G+ Z−GAZAG

for some (p + q)× (m+ n) matrix Z. Thus, partitioningZ as

Z �
(

Z11 Z12

Z21 Z22

)

(where the dimensions ofZ22 areq × n) and observing (in light of Lemma 9.3.5)
thatU � TT−U andV � VT−T, we find that

B22 � Q− + Z22− (−Q−VT−,Q−)AZA
(−T−UQ−

Q−

)

� Q− + Z22− (0,Q−Q)Z
(

0
QQ−

)
� Q− + Z22−Q−QZ22QQ−

and hence that

QB22Q � QQ−Q+QZ22Q−QQ−QZ22QQ−Q � Q .

We conclude thatB22 is a generalized inverse ofQ. That C11 is a generalized
inverse ofQ can be established via an analogous argument. Q.E.D.

9.7 Extension of Some Results on Systems of the Form
AX � B to Systems of the FormAXC � B

It was established in Section 9.5 that a linear systemAX � B (with anm × n

coefficient matrixA, m × p right sideB, andn × p matrix of unknownsX) is
consistent if and only ifAA−B � B, in which caseA−B is a solution toAX � B.
Consider now the generalization of this result to a system of the formAXC � B,
whereA is anm×nmatrix,C ap× q matrix,B anm× q matrix, andX ann×p
matrix of unknowns. A system of this form (like one of the formAX � B) is said
to beconsistent if it has one or more solutions.

The desired generalization is given by the following theorem.
Theorem 9.7.1. The systemAXC � B (in X) is consistent if and only if

AA−BC−C � B, or equivalently if and only ifAA−B � B andBC−C � B,
in which caseA−BC− is a solution toAXC � B.

Proof. If AA−BC−C � B, then clearlyA−BC− is a solution to the system
AXC � B, and this system is consistent.

Conversely, suppose that the systemAXC � B is consistent. Then, by definition,
this system has a solution, sayX∗. Thus,

AA−BC−C � AA−AX∗CC−C � AXC � B .
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It remains to show thatAA−BC−C � B if and only ifAA−B � B andBC−C �
B. If AA−B � B and BC−C � B, then clearlyAA−BC−C � BC−C � B.
Conversely, ifAA−BC−C � B, then clearly

AA−B � AA−AA−BC−C � AA−BC−C � B

and similarly

BC−C � AA−BC−CC−C � AA−BC−C � B .
Q.E.D.

In light of Lemma 9.3.5, we have the following corollary, which generalizes
Part (1) of Theorem 7.2.1.

Corollary 9.7.2. The systemAXC � B (in X) is consistent if and only if
C(B) ⊂ C(A) andR(B) ⊂ R(C).

Exercises

Section 9.1

1. Let A represent anym × n matrix andB anym × p matrix. Show that if
AHB � B for somen × m matrix H, thenAGB � B for every generalized
inverseG of A.

2. (a) LetA represent anm× nmatrix. Show that anyn×mmatrixX such that
A′AX � A′ is a generalized inverse ofA and similarly that anyn × m

matrix Y such thatAA′Y′ � A is a generalized inverse ofA.

(b) Use Part (a), together with Corollary 7.4.2, to arrive at the same conclusion
as Corollary 9.1.4.

3. Let A represent anm × n nonnull matrix, letB represent a matrix of full
column rank andT a matrix of full row rank such thatA � BT, and letL
represent a left inverse ofB andR a right inverse ofT.

(a) Show that the matrixR(B′B)−1R′ is a generalized inverse of the matrix
A′A and that the matrixL′(TT′)−1L is a generalized inverse of the matrix
AA′.

(b) Show that ifA is symmetric, then the matrixR(TB)−1L is a generalized
inverse of the matrixA2. (If A is symmetric, then it follows from the result
of Exercise 8.3 thatTB is nonsingular.)
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Section 9.2

4. Use formula (2.3) to find a generalized inverse of the matrix

A �




0 0 0
0 4 2
0 −2 −1
0 3 3
0 8 4


 .

5. Let A represent anm × n nonnull matrix of rankr. Take B and K to be
nonsingular matrices (of ordersm andn, respectively) such that

A � B
(

Ir 0
0 0

)
K (E.1)

(the existence of which is guaranteed by Theorem 4.4.9). Show (a) that an
n×mmatrixG is a generalized inverse ofA if and only if G is expressible in
the form

G � K−1

(
Ir U
V W

)
B−1

for somer × (m− r) matrix U, (n− r)× r matrix V, and (n− r)× (m− r)
matrix W, and (b) that distinct choices forU, V, and/orW lead to distinct
generalized inverses.

Section 9.3

6. LetA represent anm×nmatrix,B anm×pmatrix, andC aq×nmatrix, and
let k represent a nonzero scalar. Generalize Lemma 9.3.1 by showing (a) that,

for any generalized inverse

(
G1

G2

)
of the partitioned matrix (A, B) (whereG11

is of dimensionsn × m),

(
G1

k−1G2

)
is a generalized inverse of (A, kB) and

(b) that, for any generalized inverse (H1,H2) of the partitioned matrix

(
A
C

)
(whereH1 is of dimensionsn × m) (H1, k

−1H2) is a generalized inverse of(
A
kC

)
.

Section 9.6

7. LetT represent anm× p matrix andW ann× q matrix.

(a) Show that, unlessT andW are both nonsingular, there exist generalized

inverses of

(
T 0
0 W

)
that are not of the form

(
T− 0
0 W−

)
. [Hint. Make

use of result (2.7)].
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(b) TakeU to be anm×q matrix andV ann×pmatrix such thatC(U) ⊂ C(T)
and R(V) ⊂ R(T). Generalize the result of Part (a) by showing that,
unlessT and the matrixQ � W−VT−U are both nonsingular, there exist

generalized inverses of

(
T U
V W

)
that are not of the form (6.2). [Hint. Use

Part (a), together with Lemma 9.2.4.]

8. LetT represent anm× p matrix,U anm× q matrix,V ann× p matrix, and

W ann× q matrix, takeA �
(

T U
V W

)
, and defineQ � W− VT−U.

(a) Show that the matrix

G �
(

T− + T−UQ−VT− −T−UQ−

−Q−VT− Q−

)

is a generalized inverse of the matrixA if and only if

(1) (I− TT−)U(I−Q−Q) � 0,

(2) (I−QQ−)V(I− T−T) � 0, and

(3) (I− TT−)UQ−V(I− T−T) � 0.

(b) Verify that the conditions [C(U) ⊂ C(T) andR(V) ⊂ R(T)] of Theorem
9.6.1 imply Conditions (1) – (3) of Part (a).

(c) Exhibit matricesT, U, V, andW that (regardless of how the generalized
inversesT− andQ− are chosen) satisfy Conditions (1) – (3) of Part (a) but
do not satisfy (both of) the conditions of Theorem 9.6.1.

9. (a) Suppose that a matrixA is partitioned as

A �

A11 A12 A13

A21 A22 A23

A31 A32 A33




and thatC(A12) ⊂ C(A11) andR(A21) ⊂ R(A11). TakeQ to be the Schur
complement ofA11 in A relative toA−

11, and partitionQ as

Q �
(

Q11 Q12

Q21 Q22

)

(whereQ11,Q12,Q21, andQ22 are of the same dimensions asA22,A23,A32, and
A33, respectively), so thatQ11 � A22−A21A−

11 A12, Q12 � A23−A21A−
11A13,

Q21 � A32− A31A−
11A12, andQ22 � A33− A31A−

11A13. Let

G �
(

A−
11+ A−

11A12Q−
11A21A−

11 −A−
11A12Q−

11
−Q−

11A21A−
11 Q−

11

)
.
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DefineT �
(

A11 A12

A21 A22

)
, U �

(
A13

A23

)
, andV � (A31,A32), or equivalently

defineT, U, andV to satisfy

A �
(

T U
V A33

)
.

Show that:

(1) G is a generalized inverse ofT;

(2) the Schur complementQ22−Q21Q
−
11Q12 of Q11 in Q relative toQ−

11
equals the Schur complementA33− VGU of T in A relative toG;

(3) GU �
(

A−
11A13− A−

11A12Q−
11Q12

Q−
11Q12

)
, andVG� (A31A−

11 − Q21Q
−
11

A21 A−
11, Q21Q

−
11).

(b) Let A represent ann × n matrix (wheren ≥ 2), letn1, . . . , nk represent
positive integers such thatn1 + · · · + nk � n (wherek ≥ 2), and (for
i � 1, . . . , k) let n∗i � n1 + · · · + ni . Define (for i � 1, . . . , k) Ai

to be the leading principal submatrix ofA of ordern∗i and define (for
i � 1, . . . , k− 1) Ui to be then∗i × (n− n∗i ) matrix obtained by striking
out all of the rows and columns ofA except the firstn∗i rows and the last
n − n∗i columns,Vi to be the (n − n∗i ) × n∗i matrix obtained by striking
out all of the rows and columns ofA except the lastn− n∗i rows and first
n∗i columns, andWi to be the (n− n∗i )× (n− n∗i ) submatrix obtained by
striking out all of the rows and columns ofA except the lastn− n∗i rows
and columns, so that (fori � 1, . . . , k− 1)

A �
(

Ai Ui

Vi Wi

)
.

Suppose that (fori � 1, . . . , k− 1) C(Ui) ⊂ C(Ai) andR(Vi) ⊂ R(Ai).
Let

B(i) �
(

B(i)
11 B(i)

12

B(i)
21 B(i)

22

)

(i � 1, . . . , k − 1) andB(k) � B(k)
11, whereB(1)

11 � A−
1 , B(1)

12 � A−
1 U1,

B(1)
21 � V1A−

1 , andB(1)
22 � W1 − V1A−

1 U1, and where (fori ≥ 2) B(i)
11,

B(i)
12, B(i)

21, andB(i)
22 are defined recursively by partitioningB(i−1)

12 , B(i−1)
21 ,

andB(i−1)
22 as

B(i−1)
12 � (X(i−1)

1 ,X(i−1)
2 ), B(i−1)

21 �
(

Y(i−1)
1

Y(i−1)
2

)
,

and B(i−1)
22 �

(
Q(i−1)

11 Q(i−1)
12

Q(i−1)
21 Q(i−1)

22

)
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(in such a way thatX(i−1)
1 hasni columns,Y(i−1)

1 hasni rows, andQ(i−1)
11

is of dimensionsni × ni) and (usingQ−(i−1)
11 to represent a generalized

inverse ofQ(i−1)
11 ) by taking

B(i)
11 �

(
B(i−1)

11 + X(i−1)
1 Q−(i−1)

11 Y(i−1)
1 −X(i−1)

1 Q−(i−1)
11

−Q−(i−1)
11 Y(i−1)

1 Q−(i−1)
11

)
,

B(i)
12 �

(
X(i−1)

2 − X(i−1)
1 Q−(i−1)

11 Q(i−1)
12

Q−(i−1)
11 Q(i−1)

12

)
,

B(i)
21 � (Y(i−1)

2 −Q(i−1)
21 Q−(i−1)

11 Y(i−1)
1 ,Q(i−1)

21 Q−(i−1)
1 ) ,

and B(i)
22 � Q(i−1)

22 −Q(i−1)
21 Q−(i−1)

11 Q(i−1)
12 .

Show that:

(1) B(i)
11 is a generalized inverse ofAi (i � 1, . . . , k);

(2) B(i)
22 is the Schur complement ofAi in A relative toB(i)

11 (i � 1, . . . ,
k − 1);

(3) B(i)
12 � B(i)

11Ui , andB(i)
21 � ViB

(i)
11 (i � 1, . . . , k − 1).

[Note. The recursive formulas given in Part (b) for the sequence of matrices
B(1), . . . , B(k−1), B(k) can be used to generateB(k−1) in k − 1 steps or to
generateB(k) in k steps — the formula for generatingB(i) from B(i−1)

involves a generalized inverse of theni × ni matrix Q(i−1)
11 . The various

parts ofB(k−1) consist of a generalized inverseB(k−1)
11 of Ak−1, the Schur

complementB(k−1)
22 of Ak−1 in A relative toB(k−1)

11 , a solutionB(k−1)
12 of the

linear systemAk−1X � Uk−1 (in X), and a solutionB(k−1)
21 of the linear

systemYAk−1 � Vk−1 (in Y). The matrixB(k) is a generalized inverse of
A. In the special case whereni � 1, the process of generating the elements
of then × n matrix B(i) from those of then × n matrix B(i−1) is called a
sweep operation — see, e.g., Goodnight (1979).]

10. Let T represent anm × p matrix andW an n × q matrix, and letG �(
G11 G12

G21 G22

)
(whereG11 is of dimensionsp × m) represent an arbitrary

generalized inverse of the (m + n) × (p + q) block-diagonal matrixA �(
T 0
0 W

)
. Show thatG11 is a generalized inverse ofT andG22 a generalized

inverse ofW. Show also thatTG12W � 0 andWG21T � 0.
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11. LetT represent anm× p matrix,U anm× q matrix,V ann× p matrix, and
W ann× q matrix, and defineQ � W−VT−U. Suppose thatC(U) ⊂ C(T)
andR(V) ⊂ R(T). Devise an alternative proof of the first part of Theorem
9.6.5 by showing that(

I 0
−VT− I

)(
T U
V W

)(
I −T−U
0 I

)
�
(

T 0
0 Q

)

and by then using Lemma 9.2.4 and the result of Exercise 10 to show that,

for any generalized inverseG �
(

G11 G12

G21 G22

)
of the partitioned matrix(

T U
V W

)
, the (q × n) submatrixG22 is a generalized inverse ofQ.

12. LetT represent anm× p matrix,U anm× q matrix,V ann× p matrix, and

W ann× q matrix, and takeA �
(

T U
V W

)
.

(a) DefineQ � W − VT−U, and letG �
(

G11 G12

G21 G22

)
, whereG11 �

T−+T−UQ−VT−,G12 � −T−UQ−, G21 � −Q−VT−, andG22 � Q−.
Show that the matrix

G11−G12G−
22G21

is a generalized inverse ofT. {Note. If the conditions [C(U) ⊂ C(T) and
R(V) ⊂ R(T)] of Theorem 9.6.1 are satisfied or, more generally, if Condi-
tions (1) – (3) of Part (a) of Exercise 8 are satisfied, thenG is a generalized
inverse ofA.}

(b) Show by example that, for some values ofT, U, V, andW, there exists a

generalized inverseG �
(

G11 G12

G21 G22

)
of A (whereG11 is of dimensions

p × m, G12 of dimensionsp × n, G21 of dimensionsq × m, andG22 of
dimensionsq × n) such that the matrix

G11−G12G−
22G21

is not a generalized inverse ofT.
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10
Idempotent Matrices

This chapter is devoted to a very important class of matrices called idempotent
matrices. It provides coverage of some basic properties of idempotent matrices and
also of some basic results pertaining to idempotent matrices. Idempotent matrices
play an important role in the theory of linear statistical models (especially in
connection with the theory of least squares and the analysis of variance) and (not
coincidentally) appear prominently in several of the ensuing chapters of this book
(including Chapters 12 and 17). Making idempotent matrices the subject of a
separate chapter (even though this results in a very short chapter) is convenient
and serves to emphasize their importance.

10.1 Definition and Some Basic Properties

A square matrixA is said to beidempotent if

A2 � A .

Examples ofn× n idempotent matrices are the identity matrixIn, then× n null
matrix 0, and the matrix (1/n)Jn, each element of which equals 1/n.

As indicated by the following lemma,n× n idempotent matrices are, with one
exception, singular.

Lemma 10.1.1. The onlyn×n idempotent matrix of rankn is then×n identity
matrix In.

Proof. Suppose thatA is ann× n idempotent matrix of rankn. Then,

A � InA � A−1AA � A−1A � In .
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Q.E.D.
If a square matrixA is idempotent, then

(A′)2 � (AA)′ � A′

and
(I− A)2 � I− 2A+ A2 � I− 2A+ A � I− A .

Thus, upon observing thatA � (A′)′ andA � I− (I−A), we have the following
lemma.

Lemma 10.1.2. Let A represent a square matrix. Then, (1)A′ is idempotent
if and only if A is idempotent, and (2)I − A is idempotent if and only ifA is
idempotent.

For any idempotent matrixA, we have thatAAA � (AA)A � AA � A, giving
rise to the following lemma.

Lemma 10.1.3. If a (square) matrixA is idempotent, thenA is a generalized
inverse of itself (i.e., ofA).

10.2 Some Basic Results

Suppose thatA is a square matrix such that

A2 � kA

for some nonzero scalark. Or, equivalently, suppose that

[(1/k)A]2 � (1/k)A ,

that is, (1/k)A is an idempotent matrix (so that, depending on whetherk � 1 or
k �� 1, A is either an idempotent matrix or a scalar multiple of an idempotent
matrix). Then, in light of the following theorem,

rank(A) � (1/k) tr(A) ,

and consequently the rank ofA is determinable from the trace ofA.
Theorem 10.2.1. For any square matrixA such thatA2 � kA for some scalar

k,
tr(A) � k rank(A) .

Proof. Let us restrict attention to the case whereA is nonnull. [The case where
A � 0 is trivial — if A � 0, then tr(A) � 0� k rank(A).]

Let n denote the order ofA, and letr � rank(A). Then, according to Theorem
4.4.8, there exists ann × r matrix B and anr × n matrix L such thatA � BL.
Moreover, rank(B) � rank(L) � r. We have that

BLBL � A2 � kA � kBL � B(kI)L ,
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implying (in light of Lemma 8.3.1) that

LB � kI .

Thus, making use of Lemma 5.2.1, we find that

tr(A) � tr(BL) � tr(LB) � tr(kI) � k tr(Ir ) � kr .

Q.E.D.
In the special case wherek � 1, Theorem 10.2.1 can be restated as follows.
Corollary 10.2.2. For any idempotent matrixA,

rank(A) � tr(A) .

Upon observing that only a null matrix can be of rank zero, we obtain the
following, additional corollary (of Theorem 10.2.1).

Corollary 10.2.3. If the trace of an idempotent matrixA equals 0, thenA � 0.
Making use of Lemma 10.1.2 and Corollary 10.2.2, we find that, for anyn× n

idempotent matrixA,

rank(I− A) � tr(I− A) � tr(In)− tr(A) � n− rank(A) ,

thereby establishing the following lemma.
Lemma 10.2.4. For anyn× n idempotent matrixA,

rank(I− A) � tr(I− A) � n− rank(A) .

For any matrixA, A−AA−A � A−A andAA−AA− � AA−. Thus, we have
the following lemma.

Lemma 10.2.5. Let A represent anm× nmatrix. Then, then× nmatrixA−A
and them×m matrix AA− are both idempotent.

Note that this lemma, together with Corollary 9.3.8 and Corollary 10.2.2, implies
that, for any matrixA,

rank(A) � rank(A−A) � rank(AA−) � tr(A−A) � tr(AA−) . (2.1)

In light of Lemma 10.2.4 [and of result (2.1)], a further implication of Lemma
10.2.5 is as follows.

Lemma 10.2.6. Let A represent anm× n matrix. Then,

rank(I− A−A) � tr(I− A−A) � n− rank(A) , (2.2)

rank(I− AA−) � tr(I− AA−) � m− rank(A) . (2.3)

The following theorem expands on the results of Lemma 10.2.5 and Corollary
9.3.8.

Theorem 10.2.7. LetA represent anm×nmatrix andB ann×mmatrix. Then,
B is a generalized inverse ofA if and only if BA is idempotent and rank(BA) �
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rank(A). Similarly,B is a generalized inverse ofA if and only if AB is idempotent
and rank(AB) � rank(A).

Proof. In light of Lemma 10.2.5 and Corollary 9.3.8, it suffices to show thatB
is a generalized inverse ofA if BA is idempotent and rank(BA) � rank(A) or if
AB is idempotent and rank(AB) � rank(A).

Suppose thatBA is idempotent and rank(BA) � rank(A). Then, according to
Corollary 4.4.7,R(A) � R(BA), and it follows from Lemma 4.2.2 thatA � SBA
for some matrixS. Thus,

ABA � SBABA � SBA � A .

Alternatively, suppose thatAB is idempotent and rank(AB) � rank(A). Then,
according to Corollary 4.4.7,C(A) � C(AB), and consequentlyA � ABT for
some matrixT. Thus,

ABA � ABABT � ABT � A .

Q.E.D.

Exercises

Section 10.1

1. Show that if ann× n matrix A is idempotent, then

(a) for anyn× n nonsingular matrixB, B−1AB is idempotent;

(b) for any integerk greater than or equal to 2,Ak � A.

2. Let P represent anm × n matrix (wherem ≥ n) such thatP′P � In, or
equivalently anm × n matrix whose columns are orthonormal (with respect
to the usual inner product). Show that them × m symmetric matrixPP′ is
idempotent.

3. Show that, for any symmetric idempotent matrixA, the matrixI − 2A is
orthogonal.

4. LetA represent anm× nmatrix. Show that ifA′A is idempotent, thenAA′ is
idempotent.

5. LetA represent a symmetric matrix andk an integer greater than or equal to
1. Show that ifAk+1 � Ak, thenA is idempotent.

6. LetA represent ann× nmatrix. Show that (1/2)(I +A) is idempotent if and
only if A is involutory (where involutory is as defined in Exercise 8.2).

7. Let A andB representn × n symmetric idempotent matrices. Show that if
C(A) � C(B), thenA � B.

8. LetA represent anr ×m matrix andB anm× n matrix.
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(a) Show thatB−A− is a generalized inverse ofAB if and only if A−ABB−

is idempotent.

(b) Show that ifA has full column rank orB has full row rank, thenB−A− is
a generalized inverse ofAB.

Section 10.2

9. LetT represent anm× p matrix,U anm× q matrix,V ann× p matrix, and
W ann× q matrix, and defineQ � W − VT−U. Using Part (a) of Exercise
9.8, together with result (2.1), show that if

(1) (I− TT−)U(I−Q−Q) � 0,

(2) (I−QQ−)V(I− T−T) � 0, and

(3) (I− TT−)UQ−V(I− T−T) � 0,

then

rank

(
T U
V W

)
� rank(T)+ rank(Q) .

10. LetT represent anm × p matrix, U anm × q matrix, V ann × p matrix,

andW ann × q matrix, takeA �
(

T U
V W

)
, and defineQ � W − VT−U.

Further, let

ET � I− TT−, FT � I− T−T, X � ETU, Y � VFT , EY � I−YY−,

FX � I− X−X, Z � EYQFX, and Q∗ � FXZ−EY .

(a) (Meyer 1973, Theorem 3.1). Show that the matrix

G � G1 +G2 , (E.1)

where

G1 �




T− − T−U(I−Q∗Q)X−ET

−FTY−(I−QQ∗)VT− FTY−(I−QQ∗)
−FTY−(I−QQ∗)QX−ET

(I−Q∗Q)X−ET 0




and

G2 �
(−T−U

Iq

)
Q∗(−VT−, In) ,

is a generalized inverse ofA.
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(b) (Meyer 1973, Theorem 4.1) Show that

rank(A) � rank(T)+ rank(X)+ rank(Y)+ rank(Z) . (E.2)

[Hint. Use Part (a) together with result (2.1).]

(c) Show that ifC(U) ⊂ C(T) andR(V) ⊂ R(T), then formula (E.2) for
rank(A) reduces to formula (9.6.1), and formula (9.6.2) for a generalized
inverse ofA can be obtained as a special case of formula (E.1).



11
Linear Systems: Solutions

The subject of this chapter is linear systems. This subject was considered previously
in Chapter 7. The emphasis in Chapter 7 was on whether the linear system is
consistent, that is, whether it has solutions, whereas the emphasis in the present
chapter is on the solutions themselves. The presentation makes heavy use of the
results of Chapters 9 and 10 (on generalized inverses and idempotent matrices).

11.1 Some Terminology, Notation, and Basic Results

The collection of all solutions to a linear systemAX � B (in X) is called the
solution set of the linear system. Clearly, a linear system is consistent if and only
if its solution set is nonempty.

Is the solution set of a linear systemAX � B (in X) a linear space? The answer
depends on whether the linear system is homogeneous or nonhomogeneous, that
is, on whether the right sideB is null or nonnull.

Consider first the solution set of a homogeneous linear systemAX � 0. Since a
homogeneous linear system is consistent, the solution set ofAX � 0 is nonempty.
Furthermore, ifX1 andX2 are solutions toAX � 0 andk is a scalar, thenA(X1+
X2) � AX1+AX2 � 0, andA(kX1) � k(AX1) � 0, so thatX1+X2 andkX1 are
also solutions toAX � 0. Thus, the solution set of a homogeneous linear system
is a linear space. Accordingly, the solution set of a homogeneous linear system
AX � 0 may be called thesolution space of AX � 0.

The solution space of a homogeneous linear systemAx � 0 (in a column vector
x) is called thenull space of the matrixA and is denoted by the symbolN (A).
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Thus, for anym× n matrix A,

N (A) � {x ∈ Rn×1 : Ax � 0} .
Note that, for anyn× n matrix A,

N (A) � {x ∈ Rn×1 : (I− A)x � x} ⊂ C(I− A) , (1.1)

N (I− A) � {x ∈ Rn×1 : Ax � x} ⊂ C(A) . (1.2)

The solution set of a nonhomogeneous linear system is not a linear space (as
can be easily seen by, e.g., observing that the solution set does not contain the null
matrix).

11.2 General Form of a Solution

a. Homogeneous linear systems

The following theorem gives an expression for the general form of a solution to a
homogeneous linear system in terms of any particular generalized inverse of the
coefficient matrix.

Theorem 11.2.1. A matrix X∗ is a solution to a homogeneous linear system
AX � 0 (in X) if and only if

X∗ � (I− A−A)Y

for some matrixY.
Proof. If X∗ � (I− A−A)Y for some matrixY, then

AX∗ � (A− AA−A)Y � (A− A)Y � 0 ,

so thatX∗ is a solution toAX � 0. Conversely, ifX∗ is a solution toAX � 0, then

X∗ � X∗ − A−(AX∗) � (I− A−A)X∗ ,

so thatX∗ � (I− A−A)Y for Y � X∗. Q.E.D.
According to Theorem 11.2.1, all solutions to a homogeneous linear system

AX � 0 can be generated by setting

X � (I− A−A)Y

and allowingY to range over all matrices (of the appropriate dimensions).
As a special case of Theorem 11.2.1, we have that a column vectorx∗ is a

solution to a homogeneous linear systemAx � 0 (in a column vectorx) if and
only if

x∗ � (I− A−A)y

for some column vectory. Thus, we have the following corollary of Theorem
11.2.1.

Corollary 11.2.2. For any matrixA,

N (A) � C(I− A−A) .
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b. Nonhomogeneous linear systems

The following theorem relates the solutions of an arbitrary (consistent) linear
systemAX � B to those of the linear homogeneous systemAZ � 0 (in Z) having
the same coefficient matrix. (To avoid confusion, the matrix of unknowns in the
homogeneous linear system is now denoted byZ, rather thanX.)

Theorem 11.2.3. Let X0 represent any particular solution to a consistent linear
systemAX � B (in X). Then, a matrixX∗ is a solution toAX � B if and only if

X∗ � X0 + Z∗

for some solutionZ∗ to the homogeneous linear systemAZ � 0 (in Z).
Proof. If X∗ � X0 + Z∗ for some solutionZ∗ to AZ � 0, then

AX∗ � AX0 + AZ∗ � B+ 0 � B ,

so thatX∗ is a solution toAX � B. Conversely, ifX∗ is a solution toAX � B,
then definingZ∗ � X∗ − X0, we find that

X∗ � X0 + Z∗

and, since
AZ∗ � AX∗ − AX0 � B− B � 0 ,

thatZ∗ is a solution toAZ � 0. Q.E.D.
The upshot of Theorem 11.2.3 is that all of the matrices in the solution set of

a consistent linear systemAX � B can be generated from any particular solution
X0 by setting

X � X0 + Z

and allowingZ to range over all the matrices in the solution space of the linear
homogeneous systemAZ � 0.

It follows from Theorem 9.1.2 that one solution to a consistent linear system
AX � B is the matrixA−B. Thus, in light of Theorem 11.2.3, we have the following
extension of Theorem 11.2.1.

Theorem 11.2.4. A matrixX∗ is a solution to a consistent linear systemAX � B
(in X) if and only if

X∗ � A−B+ (I− A−A)Y

for some matrixY.
As a special case of Theorem 11.2.4, we have that a column vectorx∗ is a

solution to a consistent linear systemAx � b (in a column vectorx) if and only if

x∗ � A−b+ (I − A−A)y (2.1)

for some column vectory.
Consider, for example, expression (2.1) as applied to the linear system

−6 2 −2 −3
3 −1 5 2

−3 1 3 −1


 x �


3

2
5


 , (2.2)
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whose consistency was established in Section 9.5. TakingA andb to be the coef-
ficient matrix and right side of linear system (2.2), choosing

A− �




0 0 0
−1 0 3

0 0 0
−1 0 2


 ,

and denoting the elements ofy by y1, y2, y3, andy4, respectively, we find that

A−b+ (I− A−A)y �




y1

12+ 3y1 − 11y3
y3

7− 8y3


 . (2.3)

Thus, the members of the solution set of linear system (2.2) consist of all vectors
of the general form (2.3).

11.3 Number of Solutions

a. Homogeneous linear systems

What is the dimension of the solution space of a homogeneous linear system
AX � 0 (in X)? The following lemma answers this question in the special case of
a homogeneous linear systemAx � 0 (in a column vectorx).

Lemma 11.3.1. Let A represent anm× n matrix. Then,

dim[N (A)] � n− rank(A) .

That is, the dimension of the solution space of the homogeneous linear system
Ax � 0 (in ann-dimensional column vectorx) equalsn− rank(A).

Proof. Recalling (from Corollary 11.2.2) thatN (A) � C(I−A−A) and making
use of Lemma 10.2.6, we find that

dim[N (A)] � dim[C(I− A−A)] � rank(I− A−A) � n− rank(A) .

Q.E.D.
The solution space of a homogeneous linear systemAx � 0 (in ann-dimensional

column vectorx) is a subspace of the linear spaceRn of all n-dimensional col-
umn vectors. According to Lemma 11.3.1, the dimension of this subspace equals
n − rank(A). Thus, if rank(A) � n, that is, if A has full column rank, then the
homogeneous linear systemAx � 0 has a unique solution, namely, the null vector
0. And, if rank(A) < n, thenAx � 0 has an infinite number of solutions.

Consider now the dimension of the solution space of the homogeneous linear
systemAX � 0 (in an n × p matrix X). Clearly, a matrixX∗ is a solution to
AX � 0 if and only if each of its columns is a solution to the homogeneous linear
systemAx � 0 (in then-dimensional column vectorx).
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Suppose that rank(A) � n. Then, the only solution toAx � 0 is the n-
dimensional null vector, and hence the only solution toAX � 0 is then × p

null matrix.
Alternatively, suppose that rank(A) < n. Let s � n − rank(A), and take

x1, . . . , xs to be anys linearly independent solutions toAx � 0. (According
to Lemma 11.3.1, the solution space ofAx � 0 is s-dimensional.) Then, it is
a straightforward exercise to show that theps n × p matrices (x1, 0, . . . , 0),
. . . , (xs , 0, . . . , 0), . . . , (0, . . . , 0, x1), . . . , (0, . . . , 0, xs) form a basis for the so-
lution space ofAX � 0 and hence that the dimension of the solution space of
AX � 0 equalsps. Thus, we have the following generalization of Lemma 11.3.1.

Lemma 11.3.2. The dimension of the solution space of a homogeneous linear
systemAX � 0 (in ann× p matrix X) equalsp[n− rank(A)].

The solution space of a homogeneous linear systemAX � 0 (in ann×pmatrix
X) is a subspace of the linear spaceRn×p of all n × p matrices. According to
Lemma 11.3.2, the dimension of this subspace equalsp[n − rank(A)]. Thus, if
rank(A) � n, then the homogeneous linear systemAX � 0 has a unique solution,
namely, the null matrix0. And, if rank(A) < n, thenAX � 0 has an infinite
number of solutions.

b. Nonhomogeneous linear systems

Consider the size of the solution set of a possibly nonhomogeneous linear system
AX � B (in ann× p matrix X). If AX � B is inconsistent, then, by definition, it
has zero solutions.

If AX � B is consistent, then it follows from Theorem 11.2.3 that there is
a one-to-one correspondence between solutions toAX � B and solutions to the
corresponding homogeneous linear systemAZ � 0. Thus, in light of the discussion
of Subsection a, we conclude (1) that if the linear systemAX � B (in then × p
matrix X) is consistent and if the coefficient matrixA has full column rank (i.e.,
rankn), thenAX � B has a unique solution, and (2) that ifAX � B is consistent
but A is of less than full column rank, thenAX � B has an infinite number of
solutions.

Moreover, on the basis of Theorem 7.2.2, we reach the following, additional
conclusion.

Theorem 11.3.3. If the coefficient matrixA of the linear systemAX � B (in
X) is nonsingular, thenAX � B has a solution and that solution is unique.

11.4 A Basic Result on Null Spaces

The following lemma gives a basic result on null spaces.
Lemma 11.4.1. Let A represent anm × n matrix andX ann × p matrix. (1)

If AX � 0, thenC(X) ⊂ N (A). (2) If AX � 0 and rank(X) � n− rank(A), then
C(X) � N (A).
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Proof. (1) Suppose thatAX � 0. Then, for anyn×1 vectorx in C(X), x � Xr
for somep × 1 vectorr, and consequentlyAx � AXr � 0, so thatx ∈ N (A).
Thus,C(X) ⊂ N (A).

(2) Suppose thatAX � 0 and that rank(X) � n − rank(A). Then, in light of
Part (1) and Lemma 11.3.1, we have thatC(X) ⊂ N (A) and{since dim[C(X)] �
rank(X)} that dim[C(X)] � dim[N (A)]. Thus, it follows from Theorem 4.3.10
thatC(X) � N (A). Q.E.D.

11.5 An Alternative Expression for the General Form of
a Solution

It follows from Theorem 9.1.2 that one solution to a consistent linear system
AX � B (in X) is A−B. If X∗ is a solution toAX � B, is it necessarily the case
thatX∗ � GB for some generalized inverseG of A? That is, can all solutions to
AX � B be generated by settingX � GB and lettingG range over all generalized
inverses ofA? The answer to this question depends onA andB.

Consider, for example, the special case of a consistent linear systemAx � b
(in ann × 1 column vectorx). If rank(A) < n andb � 0, then (as discussed in
Section 11.3a)Ax � b has an infinite number of solutions; however, only one of
them is expressible in the formGb for some generalized inverseG of A, namely,
then× 1 null vector0.

The following theorem gives conditions onA andB under which every solution
to AX � B is expressible in the formGB for some generalized inverseG of A.

Theorem 11.5.1. Suppose thatAX � B is a consistent linear system (in an
n × p matrix X) such that rank(A) � n or rank(B) � p. Then, a matrixX∗ is a
solution toAX � B if and only if

X∗ � GB

for some generalized inverseG of A.
In the special case wherep � 1, Theorem 11.5.1 reduces to the following result.
Corollary 11.5.2. Suppose thatAx � b is a consistent linear system (in an

n-dimensional column vectorx) such that rank(A) � n or b �� 0. Then,x∗ is a
solution toAx � b if and only if

x∗ � Gb

for some generalized inverseG of A.
Proof (of Theorem 11.5.1). IfX∗ � GB for some generalized inverseG of A,

thenX∗ is a solution toAX � B, as is evident from Theorem 9.1.2.
Conversely, suppose thatX∗ is a solution toAX � B. By assumption, rank(A) �

n or rank(B) � p.
Assume that rank(A) � n. Then,AX � B has a unique solution (as discussed

in Section 11.3), and hence (since — according to Theorem 9.1.2 —A−B is a
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solution toAX � B) X∗ � A−B; that is,X∗ � GB for any generalized inverseG
of A.

Alternatively, assume that rank(B) � p. According to Theorem 11.2.4, there
exists a matrixY such that

X∗ � A−B+ (I− A−A)Y ,

and, since the matrixB′ is of full row rank (i.e., rankp), there exists (in light of
Theorem 7.2.2) a matrixK such that

B′K � Y′ .

Furthermore, according to Lemma 9.5.1,

AA−B � B .

Thus,

X∗ � A−B+ (I− A−A)(B′K)′ � A−B+K′B− A−AK′B
� (A− +K′ − A−AK′AA−)B ,

and hence, in light of Theorem 9.2.7,X∗ � GB for some generalized inverseG
of A. Q.E.D.

Theorem 11.5.1 gives an expression — alternative to that given by Theorem
11.2.4 — for the general form of a solution to a consistent linear systemAX � B
(in ann×pmatrixX). However, Theorem 11.5.1 is applicable only if rank(A) � n

or rank(B) � p, whereas Theorem 11.2.4 is applicable to any consistent linear
system.

11.6 Equivalent Linear Systems

If two linear systems have the same solution set, they are said to beequivalent.
The linear systemCAX � CB obtained by premultiplying both sides of a linear

systemAX � B (in X) by a matrixC may or may not be equivalent toAX � B. The
following two lemmas, which are immediate consequences of Lemma 8.3.1 and
Corollary 5.3.3, respectively, give sufficient conditions for the two linear systems
to be equivalent.

Lemma 11.6.1. Let A represent anm × n matrix andB anm × p matrix. If
C is anr ×m matrix of full column rank (i.e., of rankm), then the linear system
CAX � CB is equivalent to the linear systemAX � B (in X).

Lemma 11.6.2. For anym× nmatrixA andn× p matrixF, the linear system
A′AX � A′AF is equivalent to the linear systemAX � AF (in X).

Note that, as a special case of Lemma 11.6.2 (the special case whereF � 0), we
have that the linear systemA′AX � 0 is equivalent to the linear systemAX � 0.
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11.7 Null and Column Spaces of Idempotent Matrices

It was noted earlier [in results (1.1) and (1.2)] that, for any square matrixA,
N (A) ⊂ C(I−A) andN (I−A) ⊂ C(A). Is it possible forN (A) to equalC(I−A)
and/or forN (I − A) to equalC(A)? And, if so, under what condition(s)? These
questions are answered in the following theorem and corollary.

Theorem 11.7.1. Let A represent ann× n matrix. Then,

N (A) � C(I− A)

if and only if A is idempotent.
Proof. Suppose thatA is idempotent. Then, since (according to Lemma 10.1.3)

A is a generalized inverse of itself, it follows from Corollary 11.2.2 that

N (A) � C(I− AA) � C(I− A) .

Conversely, suppose thatN (A) � C(I − A). Then, for everyn × 1 vector
x, (I−A)x ∈ N (A) or equivalentlyA(I−A)x � 0. Thus, in light of Lemma 2.3.2,
we have thatA− A2 � A(I− A) � 0 and hence thatA2 � A. Q.E.D.

Corollary 11.7.2. Let A represent ann× n matrix. Then,

C(A) � N (I− A)

if and only if A is idempotent.
Proof. According to Theorem 11.7.1,

N (I− A) � C[I− (I− A)]

if and only if I − A is idempotent. The proof is complete upon observing that
I− (I− A) � A and further (in light of Lemma 10.1.2) thatI− A is idempotent
if and only if A is idempotent. Q.E.D.

11.8 Linear Systems With Nonsingular Triangular or
Block-Triangular Coefficient Matrices

Let

A �




A11 A12 · · · A1r

0 A22 · · · A2r
...

...
...

0 0 Arr




represent ann × n upper block-triangular matrix whoseij th block Aij is of di-
mensionsni × nj (j ≥ i � 1,2, . . . , r). Suppose that the diagonal blocksA11,
A22, . . . ,Arr of A are all nonsingular, or, equivalently (in light of Theorem 8.5.5),
thatA itself is nonsingular.
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Let B represent ann × p matrix, and consider the linear systemAX � B (in
then× p matrix X). PartitionX andB as

X �




X1

X2
...

Xr


 and B �




B1

B2
...

Br


 ,

whereXi andBi are of dimensionsni × p (i � 1, . . . , r), and rewrite the linear
system as 


A11 A12 · · · A1r

0 A22 · · · A2r
...

...
...

0 0 Arr






X1

X2
...

Xr


 �




B1

B2
...

Br


 (8.1)

or, equivalently, as

AiiXi +
r∑

j�i+1

AijXj � Bi (i � 1, . . . , r − 1) ,

ArrXr � Br .

In solving linear system (8.1), the block-triangularity of the coefficient matrix
can be exploited by proceeding inr steps. The first step is to solve the linear system
ArrXr � Br for Xr — one representation for the solution isXr � A−1

rr Br . The
second step is to solve the linear system

Ar−1,r−1Xr−1 + Ar−1,rXr � Br−1

for Xr−1 in terms ofXr — one representation for this solution is

Xr−1 � A−1
r−1,r−1(Br−1 − Ar−1,rXr ) .

More generally, the (r − i + 1)th step is to solve the linear system

AiiXi +
r∑

j�i+1

AijXj � Bi

for Xi in terms of the quantitiesXr , Xr−1, . . . ,Xi+1 determined during the first,
second,. . ., (r − i)th steps, respectively — one representation for this solution is

Xi � A−1
ii

(
Bi −

r∑
j�i+1

AijXj

)
(8.2)

(i � r − 1, r − 2, . . . ,1). This approach to the solution of linear system (8.1) is
calledback substitution.
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Let us now specialize by takingU � {uij } to be ann × n nonsingular upper
triangular matrix andb � {bi} to be ann×1 vector, and by considering the linear
systemUx � b in then × 1 vectorx � {xi}. As applied to this linear system,
back substitution consists of determiningxn, xn−1, . . . , x1, recursively, from then
formulas

xn � bn/unn , (8.3a)

xi �
(
bi −

n∑
j�i+1

uij xj

)/
uii (i � n− 1, . . . ,1) . (8.3b)

For example, in the case of the linear system
8 1 6

0 5 4
0 0 2




x1

x2

x3


 �


−9

3
−6


 ,

these formulas give
x3 � −6/2� −3 ,

x2 � [3− 4(−3)]/5� 3 ,

x1 � [−9− 1(3)− 6(−3)]/8� 0.75 .

Suppose now that, instead of being upper block-triangular, the coefficient matrix
of the linear systemAX � B is a lower block-triangular matrix

A �




A11 0 · · · 0
A21 A22 0

...
...

...
Ar1 Ar2 · · · Arr




(with nonsingular diagonal blocksA11,A22, . . . ,Arr ), in which case the linear
system is expressible as


A11 0 · · · 0
A21 A22 0

...
...

...
Ar1 Ar2 · · · Arr






X1

X2
...

Xr


 �




B1

B2
...

Br


 (8.4)

or, equivalently, as
A11X1 � B1 ,

AiiXi +
i−1∑
j�1

AijXj � Bi (i � 2,3, . . . , r) .

In solving linear system (8.4), the block-triangularity of the coefficient matrix
can (as in the case of an upper block-triangular coefficient matrix) be exploited by
proceeding inr steps. The first step is to solve the linear systemA11X1 � B1 for
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X1 — one representation for this solution isX1 � A−1
11 B1. Theith step is to solve

the linear system

AiiXi +
i−1∑
j�1

AijXj � Bi

for Xi in terms of the quantitiesX1, . . . ,Xi−1 determined during the first, second,
. . . , (i − 1)th steps, respectively — one representation for this solution is

Xi � A−1
ii

(
Bi −

i−1∑
j�1

AijXj

)
(8.5)

(i � 2,3, . . . , r). This approach to the solution of linear system (8.4) is called
forward elimination.

Let us now specialize by takingL � {#ij } to be ann × n nonsingular lower
triangular matrix andb � {bi} to be ann× 1 vector and by considering the linear
systemLx � b in then × 1 vectorx � {xi}. As applied to this linear system,
forward elimination consists of determiningx1, x2, . . . , xn, recursively, from the
n formulas

x1 � b1/#11 , (8.6a)

xi �
(
bi −

i−1∑
j�1

#ij xj

)/
#ii (i � 2,3, . . . , n) . (8.6b)

11.9 A Computational Approach

Consider the problem of computing a solution to a consistent linear systemAX � B
(in X). Depending on the nature of the coefficient matrixA, this problem can be
relatively easy or relatively difficult. One case where it is relatively easy is that
whereA is an orthogonal matrix or more generally where the columns ofA are
orthonormal (with respect to the usual inner product). In that special case, the
(unique) solution toAX � B is X � A′B. Another case where the computation of
a solution toAX � B is relatively easy is that whereA is a triangular matrix. IfA
is upper or lower triangular, then a solution to the linear system can be computed
by back substitution or forward elimination — refer to Section 11.8 — or (in the
eventA is singular) by a variant of back substitution or forward elimination.

More generally, the computation of a solution toAX � B can be approached by
(implicitly or explicitly) decomposingA into the productA � KT of two matrices
K andT, whereT is of full row rank, and by proceeding in two steps as follows:
(1) compute a solutionY∗ to the linear systemKY � B (in a matrixY) and then
(2) compute a solutionX∗ to the linear systemTX � Y∗ (in X). [Upon observing
thatC(B) ⊂ C(A) ⊂ C(K), it follows from Theorem 7.2.1 that the linear system
KY � B is consistent; and it follows from Theorem 7.2.2 that the linear system
TX � Y∗ is consistent.] Clearly,

AX∗ � KTX∗ � KY∗ � B,
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so that the matrixX∗ computed in Step (2) is a solution toAX � B. Here, the
decompositionA � KT should be such that the solutions of the linear systems
KY � B and TX � Y∗ are relatively easy to compute. One choice for this
decomposition (in the special case whereA is of full column rank) is the QR
decomposition, considered in Section 6.4d. Other decompositions that could (de-
pending on the nature ofA) be suitable choices will be considered subsequently
(in Chapters 14 and 21).

11.10 Linear Combinations of the Unknowns

Suppose thatAx � b is a consistent linear system (in ann-dimensional vectorx).
Often,k′x, wherek is ann-dimensional column vector, or more generallyK′x,
whereK is ann × q matrix, may be of interest rather thanx itself — note that
k′x is a linear combination of the unknowns (the elements ofx) and thatK′x is a
q-dimensional column vector, each element of which is a linear combination of the
unknowns. For instance, in the case of the so-called normal equations (which arise
from fitting a linear statistical model by least squares), interest may be confined to
those linear combinations of the unknowns that correspond to estimable functions
— refer, for example, to Searle (1971, sec. 5.4).

More generally, suppose thatAX � B is a consistent linear system (in ann×p
matrix X). Then,K′X may be of interest.

a. Invariance to choice of solution

Under what circumstances is the value ofK′X invariant to the choice of solution
to AX � B? The answer to this question is provided by the following theorem.

Theorem 11.10.1. Suppose thatAX � B is a consistent linear system (in an
n×pmatrixX), and letK represent ann×q matrix. Then, the value ofK′X is the
same for every solution toAX � B if and only if R(K′) ⊂ R(A) or equivalently
if and only if every row ofK′ belongs toR(A).

Proof. Let X0 represent any particular solution toAX � B.
Suppose thatR(K′) ⊂ R(A). Then, according to Lemma 4.2.2, there exists a

matrix L such thatK′ � LA. Letting X∗ represent any solution toAX � B, we
find that

K′X∗ � LAX∗ � LB � LAX0 � K′X0 .

Thus, the value ofK′X is the same for every solution toAX � B.
Conversely, suppose that the value ofK′X is the same for every solution to

AX � B. Then, it follows from Theorem 11.2.4 that the value of

K′[A−B+ (I− A−A)Y]

is the same for every matrixY (of appropriate dimensions) or equivalently that
K′(I−A−A)Y � 0 for every matrixY. In particular,K′(I−A−A)Y � 0 for every
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matrix Y of the general form (y, 0, . . . , 0). Thus,K′(I − A−A)y � 0 for every
n× 1 column vectory, or equivalentlyK′y � K′A−Ay for everyy, implying (in
light of Lemma 2.3.2) thatK′ � K′A−A. We conclude, on the basis of Lemma
9.3.5, thatR(K′) ⊂ R(A). Q.E.D.

As a special case of Theorem 11.10.1, we have the following corollary.
Corollary 11.10.2. Suppose thatAx � b is a consistent linear system (in an

n-dimensional column vectorx), and letk′ represent ann-dimensional row vector.
Then, the value ofk′x is the same for every solution toAx � b if and only if
k′ ∈ R(A).

b. An alternative representation

As described in the following theorem, the solution set of the linear systemAX � B
is related to that of a linear systemA′Y � K (in Y).

Theorem 11.10.3. Suppose thatAX � B andA′Y � K are consistent linear
systems (inX andY, respectively). Then,

K′X0 � Y′
0B (10.1)

for any solutionsX0 andY0 to AX � B andA′Y � K, respectively.
Proof. We have that

K′X0 � (A′Y0)′X0 � Y′
0AX0 � Y′

0B .

Q.E.D.
Suppose thatAX � B is a consistent linear system (inX) and that, for some

n × q matrix K such thatR(K′) ⊂ R(A), the value ofK′X is of interest. (It
follows from Theorem 11.10.1 that the value ofK′X is the same for every solution
to AX � B.) An obvious way to determine the value ofK′X is to find a solution
X0 to AX � B and to then form the productK′X0. According to Theorem 11.10.3,
there is an alternative approach — the value ofK′X can be determined by finding
a solutionY0 to A′Y � K and then forming the productY′

0B.

c. Two augmented linear systems

It is easy to verify the following two theorems.
Theorem 11.10.4. Let A represent anm× nmatrix,B anm×p matrix, andK

ann × q matrix. If X∗ andL∗ are the first and second parts, respectively, of any
solution to the linear system(

A 0
−K′ I

)(
X
L

)
�
(

B
0

)
(10.2)

(in X and L), thenX∗ is a solution to the linear systemAX � B (in X), and
L∗ � K′X∗. Conversely, ifX∗ is any solution toAX � B, thenX∗ andK′X∗ are
the first and second parts, respectively, of some solution to linear system (10.2).
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Theorem 11.10.5. Let A represent ann× n matrix,B ann× p matrix, andK
ann × q matrix. If X∗ andL∗ are the first and second parts, respectively, of any
solution to the linear system(

A+KK′ −K
−K′ I

)(
X
L

)
�
(

B
0

)
(10.3)

(in X and L), thenX∗ is a solution to the linear systemAX � B (in X) and
L∗ � K′X∗. Conversely, ifX∗ is any solution toAX � B, thenX∗ andK′X∗ are
the first and second parts, respectively, of some solution to linear system (10.3).

Note that Theorem 11.10.4 implies that linear system (10.2) is consistent if and
only if the linear systemAX � B is consistent. Similarly, Theorem 11.10.5 implies
that linear system (10.3) is consistent if and only if the linear systemAX � B is
consistent.

Theorems 11.10.4 and 11.10.5 indicate that a solutionX∗ to a consistent linear
systemAX � B (in X) and the corresponding valueK′X∗ of K′X can both be
obtained as parts of the solution to a single linear system, namely linear system
(10.2) or (in the special case whereA is square) linear system (10.3).

11.11 Absorption

Consider the problem of determining whether a linear system

a11x1 + a12x2 � b1 , (11.1a)

a21x1 + a22x2 � b2 (11.1b)

of two equations in two unknowns (x1 andx2) is consistent and, if it is consistent,
of solving it. Suppose thata11 �� 0. Then, one approach to the problem is to solve
the first equation forx1 in terms ofx2, obtaining

x1 � a−1
11 b1 − a−1

11 a12x2 , (11.2)

and to eliminatex1 from the second equation by replacingx1 with expression
(11.2), which gives

(a22− a21a
−1
11 a12)x2 � b2 − a21a

−1
11 b1 . (11.3)

Clearly, linear system (11.1) is consistent if and only if equation (11.3) has a
solution (forx2), sayx∗2, in which case a solution to linear system (11.1) isx∗1 and
x∗2, where

x∗1 � a−1
11 b1 − a−1

11 a12x
∗
2

is the value ofx1 obtained by settingx2 � x∗2 in expression (11.2). Moreover, if
a22 �� a21a

−1
11 a12, equation (11.3) has a unique solution, namely,

x∗2 � (a22− a21a
−1
11 a12)

−1(b2 − a21a
−1
11 b1) .
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If a22 � a21a
−1
11 a12, then, depending on whether or notb2 � a21a

−1
11 b1, either any

value ofx2 can serve as a solution to equation (11.3), or there is no solution to
equation (11.3).

Let us now consider the extension of this approach to the problem of solving
linear system (11.1) to that of solving a linear system comprising an arbitrary
number of equations in an arbitrary number of unknowns. The basis for such an
extension is provided by the following theorem.

Theorem 11.11.1. LetA represent anm×nmatrix andB anm×pmatrix, and
consider the linear systemAX � B (in ann× p matrix X). PartitionA, B, andX
as

A �
(

A11 A12

A21 A22

)
, B �

(
B1

B2

)
, and X �

(
X1

X2

)
,

whereA11, A12, andB1 havem1 rows,A21, A22, andB2 havem2 rows,A11 and
A21 haven1 columns,A12 andA22 haven2 columns, andX1 andX2 haven1 rows
andn2 rows, respectively. Suppose that

C(A12) ⊂ C(A11), C(B1) ⊂ C(A11), and R(A21) ⊂ R(A11) ,

and letC � A−
11B1 andK � A−

11A12 or, more generally, letC represent any matrix
such thatA11C � B1 andK any matrix such thatA11K � A12. Then, (1) the matrix

X∗ �
(

X∗
1

X∗
2

)
(whereX∗

1 hasn1 rows) is a solution to the linear systemAX � B if

and only ifX∗
2 is a solution to the linear system

(A22− A21K)X2 � B2 − A21C (in X2) (11.4)

andX∗
1 andX∗

2 form a solution to the linear system

A11X1 + A12X2 � B1 (in X1 andX2); (11.5)

(2) the linear systemAX � B is consistent if and only if linear system (11.4) is

consistent; (3) for any particular value ofX2,

(
C−KX2

X2

)
is a solution to linear

system (11.5), that is,

A11(C−KX2)+ A12X2 � B1 .

In connection with Theorem 11.11.1, observe that the linear systemAX � B
can be reexpressed in two parts as follows:

A11X1 + A12X2 � B1 ,

A21X1 + A22X2 � B2 .
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Observe also (in light of Lemma 4.2.2) that the existence of matricesC andK
such thatA11C � B1 andA11K � A12 is insured by the assumptions thatC(B1) ⊂
C(A11) andC(A12) ⊂ C(A11).

Proof (of Theorem 11.11.1). It is clear that, for any particular value ofX2,

A11(C−KX2)+ A12X2 � B1 − A12X2 + A12X2 � B1 ,

which establishes Part (3) of the theorem.
For purposes of proving Part (1), observe (in light of Lemma 4.2.2) that, since

R(A21) ⊂ R(A11), there exists a matrixL such that

A21 � LA11 .

Thus, it follows from Part (3) that, for any solutionX∗
1 andX∗

2 to linear system
(11.5),

A21X∗
1 � LA11X∗

1 � L(B1 − A12X∗
2) � LA11(C−KX∗

2)

� A21(C−KX∗
2) . (11.6)

Suppose now thatX∗ �
(

X∗
1

X∗
2

)
is a solution toAX � B. Then, it is clear thatX∗

1

andX∗
2 form a solution to linear system (11.5) and, in light of result (11.6), that

A21(C−KX∗
2)+ A22X∗

2 � B2 ,

or equivalently that

(A22− A21K)X∗
2 � B2 − A21C ,

and hence thatX∗
2 is a solution to linear system (11.4).

Conversely, suppose thatX∗
1 andX∗

2 form a solution to linear system (11.5) and
additionally thatX∗

2 is a solution to linear system (11.4). Then,

A21(C−KX∗
2)+ A22X∗

2 � B2 ,

implying [in light of result (11.6)] that

A21X∗
1 + A22X∗

2 � B2

and hence that

(
X∗

1
X∗

2

)
is a solution toAX � B, which completes the proof of Part

(1) of the theorem.
Finally, consider Part (2). That the consistency ofAX � B implies the consis-

tency of linear system (11.4) is an obvious consequence of Part (1). Conversely,
if linear system (11.4) is consistent, then by definition this linear system has a
solution, sayX∗

2, and, lettingX∗
1 � C − KX∗

2, it follows from Part (3) thatX∗
1

andX∗
2 form a solution to linear system (11.5) and hence, in light of Part (1), that(

X∗
1

X∗
2

)
is a solution toAX � B, implying thatAX � B is consistent. Q.E.D.
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Theorem 11.11.1 can be translated into the following four-step procedure for
solving the linear systemAX � B:

(1) find matricesC andK such thatA11C � B1 andA11K � A12;

(2) form the coefficient matrixA22−A21K and the right sideB2−A21C of linear
system (11.4);

(3) obtain a solutionX∗
2 to linear system (11.4); and

(4) form the matrixX∗
1 � C−KX∗

2, and take

(
X∗

1
X∗

2

)
to be the solution toAX � B.

In intuitive terms, this procedure consists of:

(1) solving the firstm1 equations of the linear systemAX � B for X1 in terms of
X2;

(2) “absorbing” the firstm1 equations into the lastm2 equations by substituting
this solution forX1 into the latter equations, thereby eliminatingX1 from these
equations and in effect “reducing” them to linear system (11.4);

(3) solving linear system (11.4); and

(4) “back-solving” forX1, using the expression forX1 obtained in solving the first
m1 equations forX1 in terms ofX2.

Accordingly, in the context of this procedure, linear system (11.4) is sometimes
called thereduced linear system, and the procedure itself is sometimes referred to
asabsorption.

The circumstances under which the use of absorption is advantageous are similar
to those under which the use of formula (8.5.16) for the inverse of a partitioned
matrix is advantageous, or more generally under which the use of formula (9.6.2)
for the generalized inverse of a partioned matrix is advantageous. More specifically,
the use of absorption can be advantageous if matricesC andK such thatA11C � B1

andA11K � A12 are known and if the dimensions ofA11 are relatively large. Under
these circumstances, the effect of absorption is to replace the problem of solving
the linear systemAX � B, which comprisesm equations inn unknowns, with the
problem of solving linear system (11.4), which comprises “only”m2 equations in
“only” n2 unknowns.

In describing absorption, it has been supposed that the firstn1 rows ofX are to be
eliminated by absorbing the firstm1 equations of the linear system into the lastm2

equations. By modifying the results of Theorem 11.11.1 in a straightforward way,
we could, in principle, obtain formulas for eliminating an arbitrary set ofn1 rows
of X by absorbing an arbitrary set ofm1 equations of the linear system into the
remaining equations. Another means to the same end is to rewrite any particular
linear system in such a way that the unknowns to be eliminated are those in the
first n1 rows and the equations to be absorbed are the firstm1 equations, which
can be accomplished by permuting the rows and columns of the coefficient matrix



156 11. Linear Systems: Solutions

and also the rows of the right side and of the matrix of unknowns.
Consider, for example, the linear system


0 1 0 1

−6 2 4 8
0 5 1 0
1 3 0 0





x1

x2

x3

x4


 �



−2

6
−1

5


 . (11.7)

By permuting the rows and columns of the coefficient matrix, the elements of the
right side, and the unknowns, this linear system can be rewritten as


1 0 0 3
0 1 0 5
0 0 1 1

−6 4 8 2





x1

x3

x4

x2


 �




5
−1
−2

6


 .

Now, let us apply Theorem 11.11.1, taking

A11 �

1 0 0

0 1 0
0 0 1


 , A12 �


3

5
1


 , B1 �


 5
−1
−2


 , X1 �


x1

x3

x4


 ,

A21 � (−6, 4, 8), A22 � (2), B2 � (6), and X2 � (x2) .

It is immediately apparent that the unique choices forC andK (such thatA11C �
B1 andA11K � A12) are

C �

 5
−1
−2


 and K �


3

5
1


 .

Thus,
A22− A21K � −8 and B2 − A21C � 56 ,

and the unique solution to linear system (11.4) isx2 � 56/(−8)� −7. Moreover,
for x2 � −7,

C−KX2 �

26

34
5


 .

We conclude that the unique solution to linear system (11.7) isx1 = 26,x2 = –7,
x3 = 34, andx4 = 5.

In solving some linear systems, it may be helpful to make repeated use of
absorption. That is, the linear system (11.4) obtained by absorbing the firstm1

equations of the linear systemAX � B into the lastm2 equations could itself
possibly be solved by absorption.

For some linear statistical models, the use of absorption can greatly facilitate
the solution of the so-called normal equations (which arise in fitting the model by
least squares). One linear statistical model for which this is the case is the additive
version of the two-way crossed-classification model — refer to Searle (1971, sec.
7.1).
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11.12 Extensions to Systems of the FormAXC � B

Let X0 � A−B or, more generally, letX0 represent any particular solution to a
consistent linear systemAX � B (with anm×n coefficient matrixA,m×p right
sideB, andn×p matrix of unknownsX). It was established in Section 11.2 that a
matrixX∗ is a solution toAX � B if and only if X∗ � X0+Z∗ for some solution
Z∗ to the homogeneous linear systemAZ � 0 (in Z). Also, in light of Theorem
11.2.1,X∗ is a solution toAX � B if and only if X∗ � X0+ (I−A−A)Y for some
matrix Y.

The following theorem generalizes these results to any consistent system of the
form AXC � B (whereA is anm× n matrix,C ap × q matrix, andB anm× q
matrix, and whereX is ann× p matrix of unknowns).

Theorem 11.12.1. Let X0 � A−BC− or, more generally, letX0 represent any
particular solution to a consistent systemAXC � B (in X). Then, (1) a matrixX∗
is a solution toAXC � B if and only if

X∗ � X0 + Z∗

for some solutionZ∗ to the systemAZC � 0 (in Z); (2) X∗ is a solution to
AXC � B if and only if

X∗ � X0 + Y− A−AYCC−

for some matrixY (of suitable dimensions); and (3)X∗ is a solution toAXC � B
if and only if

X∗ � X0 + A−AR(I− CC−)+ (I− A−A)SCC− + (I− A−A)T(I− CC−)

for some matricesR, S, andT (of suitable dimensions).
Proof. Note that it follows from Theorem 9.7.1 thatA−BC− is a solution to

AXC � B.
(1) If X∗ � X0 + Z∗ for some solutionZ∗ to AZC � 0, then

AX∗C � AX0C+ AZ∗C � B+ 0 � B ,

so thatX∗ is a solution toAXC � B. Conversely, suppose thatX∗ is a solution to
AXC � B. Then,X∗ � X0 + Z∗, whereZ∗ � X∗ − X0. And, since

AZ∗C � AX∗C− AX0C � B− B � 0 ,

Z∗ is a solution toAZC � 0.
(2) If X∗ � X0 + Y− A−AYCC− for some matrixY, then

AX∗C � AX0C+ AYC− AA−AYCC−C � B+ AYC− AYC � B ,

so thatX∗ is a solution toAXC � B. Conversely, ifX∗ is a solution toAXC � B,
then [as a consequence of Part (1)]X∗ � X0+Z∗ for some solutionZ∗ toAZC � 0
and hence

X∗ � X0 + Z∗ − A−0C− � X0 + Z∗ − A−AZ∗CC− ,
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so thatX∗ � X0 + Y− A−AYCC− for Y � Z∗.
(3) If

X∗ � X0 + A−AR(I− CC−)+ (I− A−A)SCC− + (I− A−A)T(I− CC−)

for some matricesR, S, andT, then

AX∗C � AX0C + AA−AR(C− CC−C)+ (A− AA−A)SCC−C

+ (A− AA−A)T(C− CC−C)

� B+ 0+ 0+ 0 � B,

so thatX∗ is a solution toAXC � B. Conversely, ifX∗ is a solution toAXC � B,
then [as a consequence of Part (2)]

X∗ � X0 + Y− A−AYCC−

for some matrixY, implying {since

Y � [A−A+ (I− A−A)]Y[CC− + (I− CC−)]

� A−AYCC− + A−AY(I− CC−)+ (I− A−A)YCC−

+ (I− A−A)Y(I− CC−)

and hence since

Y− A−AYCC− � A−AY(I− CC−)+ (I− A−A)YCC−

+ (I− A−A)Y(I− CC−)}
that

X∗ � X0 + A−AR(I− CC−)+ (I− A−A)SCC− + (I− A−A)T(I− CC−)

for R � S � T � Y. Q.E.D.

Exercises

Section 11.2

1. Show that, for any matrixA,

C(A) � N (I− AA−) .

2. Show that ifX1, . . . ,Xk are solutions to a linear systemAX � B (in X) and
c1, . . . , ck are scalars such that

∑k
i�1 ci � 1, then the matrix

∑k
i�1 ciXi is a

solution toAX � B.
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Section 11.3

3. LetA andZ representn× n matrices. Suppose that rank(A) � n− 1, and let
x andy represent nonnulln-dimensional column vectors such thatAx � 0 and
A′y � 0.

(a) Show thatAZ � 0 if and only if Z � xk′ for somen-dimensional row
vectork′.

(b) Show thatAZ � ZA � 0 if and only if Z � cxy′ for some scalar c.

4. Suppose thatAX � B is a nonhomogeneous linear system (in ann×p matrix
X). Lets � p[n−rank(A)], and takeZ1, . . . ,Zs to be anys n×pmatrices that
form a basis for the solution space of the homogeneous linear systemAZ � 0
(in ann×p matrixZ). DefineX0 to be any particular solution toAX � B, and
let Xi � X0 + Zi (i � 1, . . . , s).

(a) Show that thes + 1 matricesX0,X1, . . . ,Xs are linearly independent so-
lutions toAX � B.

(b) Show that every solution toAX � B is expressible as a linear combination
of X0,X1, . . . ,Xs .

(c) Show that a linear combination
∑s

i�0 kiXi of X0,X1, . . . ,Xs is a solution to
AX � B if and only if the scalarsk0, k1, . . . , ks are such that

∑s
i�0 ki � 1.

(d) Show that the solution set ofAX � B is a proper subset of the linear space
sp(X0,X1, . . . ,Xs).

Section 11.5

5. Suppose thatAX � B is a consistent linear system (in ann × p matrix X).
Show that, if rank(A) < n and rank(B) < p, then there exists a solutionX∗ to
AX � B that is not expressible asX∗ � GB for any generalized inverseG of
A.

Section 11.6

6. Use the result of Part (b) of Exercise 7.1 to generalize Lemma 11.6.1.

7. LetA represent anm× n matrix,B anm× p matrix, andC a q × m matrix,
and suppose thatAX � B andCAX � CB are linear systems (inX).

(a) Show that if rank[C(A,B)] � rank(A,B), thenCAX � CB is equivalent
to AX � B, thereby generalizing Lemmas 11.6.1 and 11.6.2.

(b) Show that if rank[C(A,B)] < rank(A,B) and if CAX � CB is consistent,
then the solution set ofAX � B is a proper subset of that ofCAX � CB
(i.e., there exists a solution toCAX � CB that is not a solution toAX � B).
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(c) Show, by example, that if rank[C(A,B)] < rank(A,B) and if AX � B is
inconsistent, thenCAX � CB can be either consistent or inconsistent.

Section 11.10

8. LetA represent aq×nmatrix,B anm×pmatrix, andC anm×q matrix; and
suppose that the linear systemCAX � B (in ann× p matrixX) is consistent.
Show that the value ofAX is the same for every solution toCAX � B if and
only if rank(CA) � rank(A).

9. Verify (1) Theorem 11.10.4 and (2) Theorem 11.10.5.
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Projections and Projection Matrices

Projections and projection matrices, which are introduced and discussed in this
chapter, are frequently encountered in discourse on linear statistical models related
to the estimation of parameters and to the analysis of variance. Their appearance in
such discourse can be attributed to their connection to the so-called least squares
problem — one long-standing approach to the estimation of the parameters of
a linear statistical model is based on “fitting” the model by least squares. Their
connection to the least squares problem is described and discussed in Section 12.4.

12.1 Some General Results, Terminology, and Notation

If a matrix Y in a linear space of matrices is orthogonal to every matrix in a
subspaceU , Y is said to beorthogonal to U . The statement thatY is orthogonal
to U is sometimes abbreviated toY ⊥ U . Similarly, to indicate that every matrix
in a subspaceU is orthogonal to every matrix in a subspaceW, one says thatU
is orthogonal to W or writes U ⊥ W.

The following lemma is easy to verify.
Lemma 12.1.1. Let Y represent a matrix in a linear spaceV, let U and W

represent subspaces ofV, and take{X1, . . . ,Xs} to be a set of matrices that spans
U and{Z1, . . . ,Zt } to be a set that spansW. Then,Y ⊥ U if and only if Y •Xi � 0
for i � 1, . . . , s; that is,Y is orthogonal toU if and only if Y is orthogonal to each
of the matricesX1, . . . ,Xs . And, similarly,U ⊥ W if and only if Xi

•Zj � 0 for
i � 1, . . . , s andj � 1, . . . , t ; that is,U is orthogonal toW if and only if each of
the matricesX1, . . . ,Xs is orthogonal to each of the matricesZ1, . . . ,Zt .

By applying Lemma 12.1.1 in the special case whereV � Rm×1 andU andW
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are the column spaces of two matrices (each of which hasm rows), we obtain the
following corollary.

Corollary 12.1.2. Let y represent anm-dimensional column vector, and letX
represent anm× n matrix andZ anm× p matrix. Then,y is orthogonal toC(X)
(with respect to the usual inner product) if and only ifX′y � 0 (or equivalently
if and only if y′X � 0). Similarly, C(X) is orthogonal toC(Z) (with respect to
the usual inner product) if and only ifX′Z � 0 (or equivalently if and only if
Z′X � 0).

Consider the following theorem.
Theorem 12.1.3. LetY represent a matrix in a linear spaceV, and letU represent

an r-dimensional subspace ofV. Then there exists a unique matrixZ in U such
that (Y− Z) ⊥ U , that is, such that the difference betweenY andZ is orthogonal
to every matrix inU . If r � 0, thenZ � 0, and, ifr > 0, Z is expressible as

Z � c1X1 + · · · + crXr , (1.1)

where{X1, . . . ,Xr} is any orthonormal basis forU andcj � Y •Xj (j � 1, . . . , r).
Moreover,Z � Y if and only if Y ∈ U .

Proof. Consider first the case wherer � 0. In this case, the only matrix inU
is the null matrix0. Clearly,Y− 0 is orthogonal to0. Thus, there exists a unique
matrix Z in U such that (Y − Z) ⊥ U , namely,Z � 0. Moreover, it is clear that
Y � Z if and only if Y ∈ U .

Consider now the case wherer > 0. Take{X1, . . . ,Xr} to be any orthonormal
basis forU , and definecj � Y •Xj (j � 1, . . . , r). Clearly,

∑
j cjXj ∈ U , and(

Y−
∑
j

cjXj

)
•Xi � (Y •Xi)− ci � 0

for i � 1, . . . , r, implying (in light of Lemma 12.1.1) that (Y −∑j cjXj ) ⊥ U .
Moreover, for any matrixX such thatX ∈ U and (Y − X) ⊥ U , we find that
(X−∑j cjXj ) ∈ U and hence that(

X−
∑
j

cjXj

)
•

(
X−

∑
j

cjXj

)

�
(

Y−
∑
j

cjXj

)
•

(
X−

∑
j

cjXj

)
− (Y− X) •

(
X−

∑
j

cjXj

)

� 0− 0� 0 ,

so thatX −∑j cjXj � 0 or equivalentlyX �∑j cjXj . We conclude that there
exists a unique matrixZ in U such that (Y− Z) ⊥ U , namely,Z �∑j cjXj . To
complete the proof, observe that, ifY � Z, then obviouslyY ∈ U , and conversely,
if Y ∈ U , then, sinceY − Y � 0 is orthogonal toU,Y � Z. Q.E.D.

Suppose thatU is a subspace of a linear spaceV. Then, it follows from Theorem
12.1.3 that, corresponding to each matrixY in V, there exists a unique matrixZ in
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U such thatY−Z is orthogonal toU or, equivalently (ifY �∈ U), such thatY−Z
forms an angle ofπ/2 with every nonnull matrix inU . The matrixZ is called the
orthogonal projection of Y on U or simply theprojection of Y on U .

Note that, for any matrixY in U , Y itself is the projection ofY on U .
The following theorem relates the projection of a linear combination ofp ma-

trices Y1, . . . ,Yp (on a subspaceU of a linear spaceV) to the projections of
Y1, . . . ,Yp (onU).

Theorem 12.1.4. Let Y1, . . . ,Yp represent matrices in a linear spaceV, let
U represent a subspace ofV, and letZ1, . . . ,Zp represent the projections of
Y1, . . . ,Yp, respectively, onU . Then, for any scalarsk1, . . . , kp, the projection
of the linear combinationk1Y1 + · · · + kpYp (on U) is the corresponding linear
combinationk1Z1 + · · · + kpZp of Z1, . . . ,Zp.

Proof. By definition,Zi ∈ U and (Yi −Zi) ⊥ U (i � 1, . . . , p). Thus, (k1Z1+
· · · + kpZp) ∈ U . Moreover, for every matrixX in U ,

[k1Y1 + · · · + kpYp − (k1Z1 + · · · + kpZp)] •X

� [k1(Y1 − Z1)+ · · · + kp(Yp − Zp)] •X

� k1[(Y1 − Z1) •X] + · · · + kp[(Yp − Zp) •X]

� k10+ · · · + kp0� 0 ,

so that [k1Y1 + · · · + kpYp − (k1Z1 + · · · + kpZp)] ⊥ U . We conclude that
k1Z1 + · · · + kpZp is the projection ofk1Y1 + · · · + kpYp on U . Q.E.D.

12.2 Projection of a Column Vector

a. Main results

The following theorem gives an algebraic expression for the projection (with re-
spect to the usual inner product) of ann-dimensional column vector on a subspace
of Rn.

Theorem 12.2.1. Let z represent the projection (with respect to the usual inner
product) of ann-dimensional column vectory on a subspaceU of Rn, and letX
represent anyn× p matrix whose columns spanU . Then,

z � Xb∗ (2.1)

for any solutionb∗ to the (consistent) linear system

X′Xb � X′y (in b) . (2.2)

Proof. Suppose thatb∗ is a solution to the (consistent) linear systemX′Xb �
X′y. (The consistency of this linear system is evident from Theorem 7.4.1.) Then,
X′(y−Xb∗) � 0, implying (in light of Corollary 12.1.2) thaty−Xb∗ is orthogonal
to C(X) and hence [sinceC(X) � U ] to U . SinceXb∗ ∈ U , we conclude thatXb∗

is the projection ofy on U and hence, by definition, thatz � Xb∗. Q.E.D.
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Linear system (2.2) comprisesp equations. Thesep equations are known as
the normal equations. When the columns, sayx1, . . . , xp, of the matrixX are
taken to be an orthonormal basis forU , we find thatX′X � I and hence that the
normal equations (2.2) have a unique solutionb∗ � (x′1y, . . . , x′py)′, in which
case expression (2.1) for the projectionz of y on U reduces to a special case of
expression (1.1).

Since the vector (X′X)−X′y is one solution to the normal equations (2.2), we
have the following corollary of Theorem 12.2.1.

Corollary 12.2.2. Let z represent the projection (with respect to the usual inner
product) of ann-dimensional column vectory on a subspaceU of Rn, and letX
represent anyn× p matrix whose columns spanU . Then,

z � X(X′X)−X′y . (2.3)

A further implication of Theorem 12.2.1 is as follows:
Corollary 12.2.3. Let y represent ann-dimensional column vector,X ann× p

matrix, andW anyn× q matrix such thatC(W) � C(X). Then,

Wa∗ � Xb∗

for any solutiona∗ to the linear systemW′Wa � W′y (in a) and any solutionb∗

to the linear systemX′Xb � X′y (in b).
As a special case of Corollary 12.2.3, we have the following corollary.
Corollary 12.2.4. Let y represent ann-dimensional column vector, andX an

n × p matrix. Then,Xb1 � Xb2 for any two solutionsb1 andb2 to the linear
systemX′Xb � X′y (in b).

The following theorem gives a converse of Theorem 12.2.1.
Theorem 12.2.5. Let z represent the projection (with respect to the usual inner

product) of ann-dimensional column vectory on a subspaceU of Rn, and letX
represent anyn×pmatrix whose columns spanU . Then anyp×1 vectorb∗ such
thatz � Xb∗ is a solution to the linear systemX′Xb � X′y (in b).

Proof. In light of Theorem 12.2.1,X′Xb � X′y has a solution, saya, and
z � Xa. Thus,

X′Xb∗ � X′z � X′Xa � X′y .

Q.E.D.

b. Two-dimensional example

Let us find the projection (with respect to the usual inner product) of ann-
dimensional column vectory on a subspaceU of Rn in the special case where
n � 2, y � (4,8)′, and U � sp{x}, wherex � (3,1)′.

Upon takingX to be the 2×1 matrix whose only column isx, the linear system
X′Xb � X′y becomes (10)b � (20), which has the unique solutionb � (2). Thus,



i



ii
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For any matrixX, it is clear thatPX is the projection matrix forC(X). Thus, we
have the following additional corollary of Theorem 12.3.1.

Corollary 12.3.3. A matrix A is a projection matrix if and only ifA � PX for
some matrixX.

Certain basic properties of projection matrices are listed in the following two
theorems.

Theorem 12.3.4. Let X represent anyn× p matrix. Then,

(1) PXX � X; that is,X(X′X)−X′X � X; that is, (X′X)−X′ is a generalized
inverse ofX;

(2) PX � XB∗ for any solutionB∗ to the (consistent) linear systemX′XB � X′

(in B);

(3) P
′
X � PX; that is,PX is symmetric; that is,X[(X′X)−]′X′ � X(X′X)−X′;

(4) X[(X′X)−]′X′X � X; that is, [(X′X)−]′X′ is a generalized inverse ofX;

(5) X′PX � X′P
′
X � X′; that is,X′X(X′X)−X′ � X′X[(X′X)−]′X′ � X′; that is,

X(X′X)− andX[(X′X)−]′ are generalized inverses ofX′;

(6) P 2
X � PX; that is,PX is idempotent;

(7) C(PX) � C(X), andR(PX) � R(X′);

(8) rank(PX) � rank(X);

(9) (I−PX)2 � I−PX � (I−PX)′; that is,I−PX is symmetric and idempotent;

(10) rank(I− PX) � n− rank(X).

Proof. (1) It follows from the very definition of a generalized inverse that
X′X(X′X)−X′X � X′X � X′XI, and, upon applying Corollary 5.3.3, we conclude
thatX(X′X)−X′X � XI � X.

[An alternative proof of (1) is as follows: Letx1, . . . , xp represent the columns
of X. Then, according to Theorem 12.3.1,PXxi is the projection ofxi on C(X),
and, sincexi ∈ C(X), it follows from Theorem 12.1.3 that the projection ofxi on
C(X) is xi . Thus,PXX � (PXx1, . . . ,PXxp) � (x1, . . . , xp) � X.]

(2) If B∗ is a solution to the linear systemX′XB � X′ (whose consistency was
established in Corollary 7.4.2), then (according to Theorem 11.2.4)

B∗ � (X′X)−X′ + [I− (X′X)−X′X]Y

for some matrixY, implying [in light of Part (1)] that

XB∗ � PX + (X− PXX)Y � PX .

(3) According to Corollary 9.3.4, [(X′X)−]′ is a generalized inverse ofX′X, so
that [(X′X)−]′X′ is a solution to the (consistent) linear systemX′XB � X′ (in B).
Thus, applying Part (2), we find that

X(X′X)−X′ � PX � X[(X′X)−]′X′.
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(4) Making use of Parts (3) and (1), we find that

X[(X′X)−]′X′X � P
′

XX � PXX � X .

(5) Making use of Parts (3) and (1), we find that

X′PX � X′P′X � (PXX)′ � X′ .

(6) Making use of Part (1), we find that

P2
X � PXX(X′X)−X′ � X(X′X)−X′ � PX .

(7) Recalling Corollary 4.2.3, it is clear from the definition ofPX thatC(PX) ⊂
C(X) and from Part (1) thatC(X) ⊂ C(PX). Thus,C(PX) � C(X), and (in light
of Lemma 4.2.5)R(P

′
X) � R(X′) or, equivalently [in light of Part (3)],R(PX) �

R(X′).
(8) That rank(PX) � rank(X) is an immediate consequence of Part (7).
(9) It follows from Part (3) that the matrixI− PX is symmetric. And, in light

of Lemma 10.1.2, it follows from Part (6) thatI− PX is idempotent.
(10) Making use of Lemma 10.2.4 and Parts (6) and (8), we find that

rank(I− PX) � n− rank(PX) � n− rank(X) .
Q.E.D.

Theorem 12.3.5. LetX represent ann×pmatrix, and letW represent anyn×q
matrix such thatC(W) ⊂ C(X). Then,

(1) PXW � W, andW′PX � W′;
(2) PXPW � PWPX � PW.

Proof. (1) According to Lemma 4.2.2, there exists a matrixF such thatW � XF.
Thus, making use of Parts (1) and (3) of Theorem 12.3.4, we find that

PXW � PXXF � XF � W

and
W′ � (PXW)′ � W′P

′
X � W′PX .

(2) Making use of Part (1), we find that

PXPW � PXW(W′W)−W′ � W(W′W)−W′ � PW

and similarly that

PWPX � W(W′W)−W′PX � W(W′W)−W′ � PW .

Q.E.D.
In the special case whereW � X, the results of Theorem 12.3.5 reduce to results

included in Parts (1), (5), and (6) of Theorem 12.3.4.
Note that ifX andW are any two matrices such thatC(W) � C(X), then it

follows from Part (2) of Theorem 12.3.5 that

PW � PXPW � PX .
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(That PW � PX can also be deduced from Theorem 12.3.1.) Thus, we have the
following corollary of Theorem 12.3.5.

Corollary 12.3.6. For any two matricesX andW such thatC(W) � C(X),PW �
PX.

Another result that can be deduced from Part (2) of Theorem 12.3.5 is given by
the following corollary.

Corollary 12.3.7. Let X represent ann×p matrix. Then, for any matrixA that
is the projection matrix for some subspaceU of C(X),

PXA � APX � A .

Proof. Let W represent any matrix whose columns spanU . Then, according to
Corollary 12.3.2,A � PW. Thus, sinceC(W) ⊂ C(X), it follows from Part (2) of
Theorem 12.3.5 that

PXA � APX � A .

Q.E.D.
Suppose that a matrixA is the projection matrix for a subspaceU of the linear

spaceRn of all n-dimensional column vectors. LetX represent any matrix whose
columns spanU . Then, according to Corollary 12.3.2,A � PX. Thus, making use
of Part (7) of Theorem 12.3.4, we find that

U � C(X) � C(PX) � C(A)

[in which case dim(U) � rank(A)], thereby establishing the following theorem.
Theorem 12.3.8. If a matrix A is the projection matrix for a subspaceU of

the linear spaceRn of all n-dimensional column vectors, thenU � C(A), and
dim(U) � rank(A).

Projection matrices can be characterized as follows:
Theorem 12.3.9. A matrix is a projection matrix if and only if it is symmetric

and idempotent.
Proof. Together, Corollary 12.3.3 and Parts (3) and (6) of Theorem 12.3.4 imply

that every projection matrix is symmetric and idempotent. Thus, to prove Theorem
12.3.9, it suffices to show that every symmetric idempotent matrix is a projection
matrix.

Suppose thatA is a symmetric idempotent matrix. Then,A′A � A2 � A, so
that any generalized inverse ofA′A is a generalized inverse ofA. Thus,

PA � A(A′A)−A′ � A(A′A)−A � A .

We conclude, on the basis of Corollary 12.3.3, thatA is a projection matrix. Q.E.D.
Note that, together, Theorems 12.3.9 and 12.3.8 imply that if a matrixA is

symmetric and idempotent, then it is the projection matrix forC(A).

12.4 Least Squares Problem

Suppose thatY is a matrix in a linear spaceV and thatU is a subspace ofV.
Then, as indicated by Theorem 12.1.3, there exists a unique matrixZ in U , called
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the projection ofY on U , such that the differenceY − Z betweenY and Z is
orthogonal toU . A fundamental property of the projection ofY on U is described
in the following theorem.

Theorem 12.4.1. LetY represent a matrix in a linear spaceV, and letU represent
a subspace ofV. Then, forW ∈ U , the distance‖Y − W‖ betweenY andW is
minimized uniquely by takingW to be the projectionZ of Y on U . Moreover,

‖Y− Z‖2 � Y • (Y− Z) .

Proof. For any matrixW in U ,

‖Y−W‖2 � ‖(Y− Z)− (W− Z)‖2

� (Y− Z) • (Y− Z)− 2(Y− Z) • (W− Z)

+ (W− Z) • (W− Z) .

Further,W− Z is in U and, by definition,Y− Z is orthogonal to every matrix in
U . Thus, (Y− Z) • (W− Z) � 0, and hence

‖Y−W‖2 � (Y− Z) • (Y− Z)+ (W− Z) • (W− Z)

� ‖Y− Z‖2 + ‖W− Z‖2

≥ ‖Y− Z‖2 ,

with equality holding if and only ifW � Z. It follows that, forW ∈ U, ‖Y−W‖2

and, consequently,‖Y−W‖ are minimized uniquely by takingW � Z.
That‖Y − Z‖2 � Y • (Y − Z) is clear upon observing thatZ ∈ U and hence

thatZ • (Y− Z) � 0. Q.E.D.
Suppose thaty � {yi} is ann-dimensional column vector and thatU is a subspace

of the linear spaceRn of all n-dimensional column vectors. Consider the problem
of minimizing, forw � {wi} in U , the sum of squares (y−w)′(y−w) �∑n

i�1(yi−
wi)2 or, equivalently, the distance [(y − w)′(y − w)]1/2 (with respect to the usual
norm) betweeny andw. This minimization problem is known as theleast squares
problem.

The solution of the least squares problem can be obtained as a special case of
Theorem 12.4.1. Theorem 12.4.1 implies that, forw ∈ U , the distance betweeny
andw is minimized uniquely by takingw to be the projection ofy on U . Thus, in
light of Theorem 12.2.1, we reach the following conclusion.

Theorem 12.4.2. Let U represent a subspace of the linear spaceRn of all n-
dimensional column vectors, takeX to be ann×pmatrix such thatC(X) � U , and
let y represent a vector inRn. Then, forw ∈ U , the sum of squares (y−w)′(y−w)
of the elements of the differencey−w betweeny andw is minimized uniquely by
takingw � Xb∗, whereb∗ is any solution to the normal equationsX′Xb � X′y,
or, equivalently, by takingw � PXy. Further, the minimum value of the sum of
squares is expressible as

(y− Xb∗)′(y− Xb∗) � y′(y− Xb∗) � y′(I− PX)y .
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In connection with Theorem 12.4.2, observe thatU comprises everyn×1 vector
w that is expressible asw � Xb for some vectorb. Thus, in light of Theorem 12.2.5,
we have the following variant of Theorem 12.4.2.

Theorem 12.4.3. Let X � {xij } represent ann × p matrix, andy � {yi}
ann-dimensional column vector. Then, forb � {bi} in Rp, the sum of squares
(y − Xb)′(y − Xb) � ∑n

i�1(yi −
∑p

j�1 xij bj )
2 has a minimum at a pointb∗ if

and only ifb∗ is a solution to the normal equationsX′Xb � X′y, in which case
Xb∗ � PXy and

(y− Xb∗)′(y− Xb∗) � y′(y− Xb∗) � y′(I− PX)y .

12.5 Orthogonal Complements

a. Some general results, terminology, and notation

The set of all matrices in a linear spaceV that are orthogonal to a subspaceU of V
is called theorthogonal complement of U relative to V or simply theorthogonal
complement of U . The symbolU⊥ is used to represent the orthonal complement
of U .

Note that, by definition, the orthogonal complement of a subspaceU of a linear
spaceV depends onV as well asU (and also on the choice of inner product).
Since this dependence is not evident in the symbolU⊥, the use of this symbol is
restricted to settings where the identity of the linear spaceV, relative to which the
orthogonal complement ofU is defined, is clear from the context.

If U is a subspace of a linear spaceV, thenU⊥ is also a subspace ofV, as is
easily verified.

As an immediate consequence of Lemma 12.1.1, we have the following lemma.
Lemma 12.5.1. Let U represent a subspace of a linear spaceV, and let

{B1, . . . ,Bk} represent any set of matrices that spansU . Then, a matrixA in
V belongs toU⊥ if and only if A is orthogonal to each of the matricesB1, . . . ,Bk.

For anyn× p matrix X, the symbolC⊥(X) is used to represent the orthogonal
complement ofC(X) relative to the linear spaceRn of all n-dimensional column
vectors (taking the inner product to be the usual inner product forRn). Similarly,
the symbolR⊥(X) is used to represent the orthogonal complement ofR(X) relative
to the linear spaceRp of all p-dimensional row vectors.

It follows from Corollary 12.1.2 thatC⊥(X) is the set of all solutions to the
homogeneous linear systemX′z � 0 (in z). Thus, recalling (from Theorem 12.3.4)
thatX(X′X)− is a generalized inverse ofX′, we have (in light of Corollary 11.2.2)
the following lemma.

Lemma 12.5.2. For anyn× p matrix X,

C⊥(X) � N (X′) � C(I− PX) .

As a consequence of Lemma 11.3.1 or, alternatively, Theorem 12.3.4, we have
the following corollary of Lemma 12.5.2.
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Corollary 12.5.3. For anyn× p matrix X,

dim[C⊥(X)] � n− rank(X) � n− dim[C(X)] . (5.1)

The following theorem describes a fundamental property of the orthogonal com-
plement of a subspaceU of a linear spaceV.

Theorem 12.5.4. A matrix A in a linear spaceV belongs to a subspaceU of V
if and only if A is orthogonal to every matrix inU⊥ [i.e., if and only ifA belongs
to (U⊥)⊥]. Or, equivalently,U � (U⊥)⊥.

Proof. Suppose thatA ∈ U . Then it follows immediately from the definition of
U⊥ thatA is orthogonal to every matrix inU⊥.

Conversely, suppose thatA is orthogonal to every matrix inU⊥. LetB represent
the projection ofA on U . Then, by definition, (A − B) ⊥ U or, equivalently,
(A− B) ∈ U⊥. Thus,

(A− B) • (A− B) � A • (A− B)− B • (A− B) � 0− 0� 0 ,

implying thatA−B � 0, or equivalently thatA � B, and hence thatA ∈ U . Q.E.D.
Various implications of Theorem 12.5.4 are set forth in the following three

corollaries.
Corollary 12.5.5. A subspaceW of a linear spaceV is contained in a subspace

U of V if and only if W ⊥ U⊥ (i.e., if and only ifW is orthogonal toU⊥).
Proof. Corollary 12.5.5 follows from Theorem 12.5.4 upon observing thatW ⊥

U⊥ ⇔ W ⊂ (U⊥)⊥. Q.E.D.
Corollary 12.5.6. Let U andW represent subspaces of a linear spaceV. Then,

(1) W ⊂ U if and only if U⊥ ⊂ W⊥, and (2)W � U if and only if W⊥ � U⊥.
Proof. (1) Making use of Corollary 12.5.5 and Theorem 12.5.4, we find that

W ⊂ U ⇔ W ⊥ U⊥ ⇔ (W⊥)⊥ ⊥ U⊥ ⇔ U⊥ ⊥ (W⊥)⊥ ⇔ U⊥ ⊂ W⊥ .

(2) If W⊥ � U⊥, thenW⊥ ⊂ U⊥ andU⊥ ⊂ W⊥, implying [in light of Part
(1)] thatU ⊂ W andW ⊂ U and hence thatW � U . Conversely, ifW � U , then
W ⊂ U andU ⊂ W, implying thatU⊥ ⊂ W⊥ andW⊥ ⊂ U⊥ and hence that
W⊥ � U⊥. Q.E.D.

Corollary 12.5.7. LetX represent ann×pmatrix, and letZ represent anyn×s
matrix whose columns spanC⊥(X) or, equivalently, spanN (X′). Then, for any
n× q matrix Y, C(Y) ⊂ C(X) if and only if Z′Y � 0 or, equivalently, if and only
if Y′Z � 0.

Proof. In light of Corollary 12.1.2 and Corollary 12.5.5, we have that

Z′Y � 0 ⇔ C(Y) ⊥ C(Z)

⇔ C(Y) ⊥ C⊥(X) [since, by definition, C(Z) � C⊥(X)]

⇔ C(Y) ⊂ C(X) .
Q.E.D.

Note that, for any matrixY in the orthogonal complementU⊥ of a subspaceU
of a linear spaceV of m× nmatrices, them× n null matrix0 is the projection of
Y on U .
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b. Projection on an orthogonal complement

For any matrixY in a linear spaceV, there is a simple relationship between the pro-
jection ofY on a subspaceU and the projection ofY on the orthogonal complement
U⊥ of U . This relationship is described in the following theorem.

Theorem 12.5.8. LetY represent a matrix in a linear spaceV, and letU represent
a subspace ofV. Then the projection ofY on U⊥ equalsY − Z, whereZ is the
projection ofY onU .

Proof. By definition,Y−Z is orthogonal toU , and hence (Y−Z) ∈ U⊥. Thus,
to show thatY−Z is the projection ofY onU⊥, it suffices to show thatY−(Y−Z)
is orthogonal toU⊥. That is, it suffices to show thatZ is orthogonal to every matrix
in U⊥ or, equivalently (in light of Theorem 12.5.4), thatZ ∈ U . ThatZ ∈ U is
clear from the definition ofZ. Q.E.D.

In light of Theorem 12.2.1, we have the following two corollaries of Theorem
12.5.8.

Corollary 12.5.9. Let X represent ann × p matrix, and letz represent the
projection (with respect to the usual inner product) of a column vectory onC⊥(X).
Then,

z � y− Xb∗

for any solutionb∗ to the normal equationsX′Xb � X′y (in b). In particular,

z � y− PXy � (I− PX)y .

Corollary 12.5.10. LetX represent ann×pmatrix. Then, the projection matrix
for C⊥(X) is I− PX.

Various of the results included in Theorems 12.1.3 and 12.5.8 can be combined
and restated as follows:

Theorem 12.5.11. Let Y represent a matrix in a linear spaceV, and letU
represent a subspace ofV. ThenU contains a unique matrixZ andU⊥ a unique
matrixW such thatY � Z+W. Moreover,Z is the projection ofY on U , andW
is the projection ofY on U⊥.

c. Two-dimensional example revisited

Let us find, for the two-dimensional example considered previously in Section
12.2b, the projection (with respect to the usual inner product) of ann-dimensional
column vectory on the orthogonal complementU⊥ of a subspaceU of Rn. Recall
thaty � (4, 8)′, U � sp(x) � C(X), wherex � (3,1)′ andX is the 2× 1 matrix
whose only column isx, and that the projection ofy onU is z � (6,2)′.

It follows from Corollary 12.5.3 and Lemma 12.5.2 that

dim(U⊥) � dim[C⊥(X)] � n− rank(X) � 2− 1� 1

and thatU⊥ � C⊥(X) � sp(v∗), wherev∗ is any nonnull solution to the homoge-
neous linear systemX′v � 0 (in v), for example,v∗ � (1,−3)′. Furthermore, the
projection ofy on U⊥ is w � y− z � (−2,6)′, as depicted in Figure 12.3.
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e. Dimension of an orthogonal complement

Formula (5.1) for the dimension of the orthogonal complementC⊥(X) of the col-
umn spaceC(X) of ann × p matrix X can be extended to the orthogonal com-
plement of any subspace of any linear space. To do so, suppose thatU is an
r-dimensional subspace of ann-dimensional linear spaceV, definek � dim(U⊥),
and letM � {A1, . . . ,Ar} andT � {B1, . . . ,Bk} represent orthonormal bases for
U and U⊥, respectively. In addition, takeS � {A1, . . . ,Ar ,B1, . . . ,Bk} to be the
set whose members consist of ther matrices inM together with thek matrices in
T .

Theorem 12.5.11 implies that every matrixY in V is expressible asY � Z+W
for some matrixZ in U and some matrixW in U⊥ and hence that the setS
spansV. Moreover, sinceAi ∈ U andBj ∈ U⊥, Ai andBj are orthogonal (i �
1, . . . , r; j � 1, . . . , k), implying thatS is orthonormal and consequently linearly
independent. We conclude thatS is a basis forV and hence thatn � r+k, thereby
establishing the following generalization of Corollary 12.5.3.

Theorem 12.5.12. Let U represent a subspace of a linear spaceV. Then

dim(V) � dim(U)+ dim(U⊥)

or, equivalently, dim(U⊥) � dim(V)− dim(U).

Exercises

Section 12.1

1. Verify Lemma 12.1.1.

2. Let U andV represent subspaces ofRm×n. Show that if dim(V) > dim(U),
thenV contains a nonnull matrix that is orthogonal toU .

Section 12.2

3. Let U represent a subspace of the linear spaceRm of allm-dimensional column
vectors. TakeM to be the subspace ofRm×n defined byW ∈ M if and only
if W � (w1, . . . ,wn) for some vectorsw1, . . . ,wn in U . Let Z represent the
projection (with respect to the usual inner product) of anm × n matrix Y on
M, and letX represent anym × p matrix whose columns spanU . Show that
Z � XB∗ for any solutionB∗ to the linear system

X′XB � X′Y( in B).
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4. For the example of Section 12.2c, recompute the projection ofy onU by taking
X to be the 3× 2 matrix 

0 −2
3 2
6 4




and carrying out the following two steps:

(1) compute the solution to the normal equationsX′Xb � X′y;

(2) postmultiplyX by the solution you computed in Step (1).

Section 12.3

5. Let X represent anyn × p matrix. It follows from Parts (1) – (3) of Theorem
12.3.4 that if ap × n matrix B∗ is a solution to the linear systemX′XB � X′

(in B), thenB∗ is a generalized inverse ofX, andXB∗ is symmetric. Show
that, conversely, if ap × n matrix G is a generalized inverse ofX, andXG is
symmetric, thenX′XG � X′ (i.e.,G is a solution toX′XB � X′).

6. Using the result of Part (b) of Exercise 9.3 (or otherwise), show that, for any
nonnull symmetric matrixA,

PA � B(TB)−1T ,

whereB is any matrix of full column rank andT any matrix of full row rank
such thatA � BT. (ThatTB is nonsingular follows from the result of Exercise
8.3.)

7. Let V represent ak-dimensional subspace of the linear spaceRn of all n-
dimensional column vectors. TakeX to be anyn × p matrix whose columns
spanV, letU represent a subspace ofV, and defineA to be the projection matrix
for U . Show (1) that a matrixB (of dimensionsn × n) is such thatBy is the
projection ofy on U for everyy ∈ V if and only if B � A + Z′

∗ for some
solutionZ∗ to the homogeneous linear systemX′Z � 0 (in ann×nmatrixZ),
and (2) that, unlessk � n, there is more than one matrixB such thatBy is the
projection ofy onU for everyy ∈ V.

Section 12.5

8. Let{A1, . . . ,Ak} represent a nonempty linearly independent set of matrices in
a linear spaceV, and defineB1, . . . ,Bk as in Theorem 6.4.1. Show thatBj is
the (orthogonal) projection ofAj on some subspaceUj (of V) and describeUj
(j � 2, . . . , k).



13
Determinants

Determinants are encountered with considerable frequency in the statistics liter-
ature (and in the literature of various other disciplines that involve the notion of
randomness). A determinant appears in the “normalizing constant” of the proba-
bility density function of the all-important multivariate normal distribution (e.g.,
Searle 1971, sec. 2.4f). And the definition of the generalized variance (or gener-
alized dispersion) of a random vector involves a determinant — in the design of
experiments, D-optimal designs are obtained by minimizing a generalized variance
(e.g., Fedorov 1972).

13.1 Some Definitions, Notation, and Special Cases

a. Negative versus positive pairs

Associated with any square matrix is a scalar that is known as the determinant
of the matrix. As a preliminary to defining the determinant, it is convenient to
introduce a convention for classifying various pairs of matrix elements as either
positive or negative.

Let A � {aij } represent an arbitraryn×nmatrix. Consider any pair of elements
of A that do not lie either in the same row or the same column, sayaij andai ′j ′
(wherei ′ �� i andj ′ �� j ). The pair is said to be anegative pair if one of the
elements is located above and to the right of the other, or equivalently if either
i ′ > i andj ′ < j or i ′ < i andj ′ > j . Otherwise (if one of the elements is located
above and to the left of the other, or, equivalently, if eitheri ′ > i andj ′ > j or
i ′ < i andj ′ < j ), the pair is said to be apositive pair. Thus, the pairaij and
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ai ′j ′ is classified as positive or negative in accordance with the following two-way
table:

i ′ > i i ′ < i

j ′ > j + –
j ′ < j – +

For example (supposing thatn ≥ 4), the paira34 anda22 is positive, whereas the
paira34 anda41 is negative.

Note that whether the pairaij andai ′j ′ is positive or negative is completely
determined by the relative locations ofaij andai ′j ′ and has nothing to do with
whetheraij andai ′j ′ are positive or negative numbers.

Now, considern elements ofA, no two of which lie either in the same row or
the same column, say thei1j1, . . . , injnth elements (where bothi1, . . . , in and
j1, . . . , jn are permutations of the firstn positive integers). A total of

(
n

2

)
pairs can

be formed from thesen elements. The symbolσn(i1, j1; . . . ; in, jn) is to be used
to represent the number of these

(
n

2

)
pairs that are negative pairs.

Observe thatσn(i1, j1; . . . ; in, jn) has the following two properties:

(1) the value ofσn(i1, j1; . . . ; in, jn) is not affected by permuting itsn pairs of ar-
guments; in particular, it is not affected if then pairs are permuted so that they
are ordered by row number or by column number [e.g.,σ3(2,3; 1,2; 3,1)�
σ3(1,2; 2,3; 3,1)� σ3(3,1; 1,2; 2,3)];

(2) σn(i1, j1; . . . ; in, jn) � σn(j1, i1; . . . ; jn, in)
[e.g.,σ3(2,3; 1,2; 3,1)� σ3(3,2; 2,1; 1,3)].

For any sequence ofn distinct integersi1, . . . , in, define

φn(i1, . . . , in) � p1 + · · · + pn−1 ,

wherepk represents the number of integers in the subsequenceik+1, . . . , in that
are smaller thanik (k � 1, . . . , n− 1). For example,

φ5(3,7,2,1,4)� 2+ 3+ 1+ 0� 6 .

Then, clearly, for any permutationi1, . . . , in of the firstn positive integers,

σn(1, i1; . . . ; n, in) � σn(i1,1; . . . ; in, n) � φn(i1, . . . , in) . (1.1)

b. Definition of determinant

Thedeterminant of ann× n matrix A � {aij }, to be denoted by|A| or (to avoid
confusion with the absolute value of a scalar) by detA or det(A), is defined by

|A| �
∑

(−1)σn(1,j1;...;n,jn)a1j1
· · · anjn (1.2a)

or equivalently by

|A| �
∑

(−1)φn(j1,...,jn)a1j1
· · · anjn , (1.2b)
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wherej1, . . . , jn is a permutation of the firstn positive integers and the summation
is over all such permutations.

Thus, the determinant of ann×nmatrixA can (at least in principle) be obtained
via the following process:

(1) Form all possible products, each ofn factors, that can be obtained by picking
one and only one element from each row and column ofA.

(2) In each product, count the number of negative pairs among the
(
n

2

)
pairs of

elements that can be generated from then elements that contribute to this
particular product. If the number of negative pairs is an even number, attach a
plus sign to the product; if it is an odd number, attach a minus sign.

(3) Sum the signed products.

In particular, the determinant of a 1× 1 matrixA � (a11) is

|A| � a11 ; (1.3)

the determinant of a 2× 2 matrixA � {aij } is

|A| � (−1)0a11a22+ (−1)1a12a21

� a11a22− a12a21 ; (1.4)

and the determinant of a 3× 3 matrixA � {aij } is

|A| � (−1)0a11a22a33+ (−1)1a11a23a32+ (−1)1a12a21a33

+(−1)2a12a23a31+ (−1)2a13a21a32+ (−1)3a13a22a31

� a11a22a33+ a12a23a31+ a13a21a32

−a11a23a32− a12a21a33− a13a22a31. (1.5)

In the case of a partitioned matrix, say

(
A11 A12

A21 A22

)
, it is customary to write∣∣∣∣

(
A11 A12

A21 A22

)∣∣∣∣ in the abbreviated form

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ .

An alternative definition of the determinant of ann× n matrix A is

|A| � ∑
(−1)σn(i1,1;...;in,n)ai11 · · · ainn (1.6a)

� ∑
(−1)φn(i1,...,in)ai11 · · · ainn , (1.6b)

wherei1, . . . , in is a permutation of the firstn positive integers and the summation
is over all such permutations.

Definition (1.6) is equivalent to definition (1.2). To see this, observe that the
producta1j1

· · · anjn , which appears in definition (1.2), can be reexpressed by per-
muting then factorsa1j1

, . . . , anjn so that they are ordered by column number,
giving

a1j1
· · · anjn � ai11 · · · ainn ,
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wherei1, . . . , in is a permutation of the firstn positive integers that is defined
uniquely by

ji1 � 1, . . . , jin � n .

Further,

σn(1, j1; . . . ; n, jn) � σn(i1, ji1; . . . ; in, jin ) � σn(i1,1; . . . , ; in, n) ,

so that

(−1)σn(1,j1;...;n,jn)a1j1
· · · anjn � (−1)σn(i1,1;···;in,n)ai11 · · · ainn .

Thus, we can establish a one-to-one correspondence between the terms of the sum
(1.6) and the terms of the sum (1.2) such that the corresponding terms are equal.
We conclude that the two sums are themselves equal.

The number of terms in the sum (1.2) or (1.6) equalsn!. As n increases, the
number of terms grows rapidly. As a consequence, the computations required
for the direct numerical evaluation of this sum can be extensive and (for even
moderately large values ofn) prohibitive. Representations that are better suited
for computational purposes can be devised by making use of various results to be
presented subsequently.

c. Diagonal, triangular, and permutation matrices

There is a simple expression for the determinant of a triangular matrix, which is
given by the following lemma.

Lemma 13.1.1. If ann×nmatrixA � {aij } is (upper or lower) triangular, then

|A| � a11a22 · · · ann , (1.7)

that is, the determinant of a triangular matrix equals the product of its diagonal
elements.

Proof. Consider a lower triangular matrix

A �



a11 0 . . . 0
a21 a22
...

...
...

an1 an2 · · · ann


 .

That |A| � a11a22 · · · ann follows immediately upon observing that the only term
in the sum (1.2) that can be nonzero is that corresponding to the permutation
j1 � 1, . . . , jn � n [and thatφn(1,2, . . . , n) � 0]. (To verify formally that only
this one term can be nonzero, letj1, . . . , jn represent an arbitrary permutation
of the firstn positive integers, and suppose thata1j1

· · · anjn �� 0 or equivalently
that aij i �� 0 for i � 1, . . . , n. Then, it is clear thatj1 � 1 and that, ifj1 �
1, . . . , ji−1 � i − 1, thenji � i. We conclude, on the basis of mathematical
induction, thatj1 � 1, . . . , jn � n).
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The validity of formula (1.7) as applied to an upper triangular matrix follows
from a similar argument. Q.E.D.

Corollary 13.1.2. The determinant of a diagonal matrix equals the product of
its diagonal elements.

As obvious special cases of Corollary 13.1.2, we have that

|0| � 0 , (1.8)

|I| � 1 . (1.9)

The following lemma gives a simple expression for the determinant of a permu-
tation matrix.

Lemma 13.1.3. For ann × n permutation matrixP whose first,. . . , nth rows
or columns are respectively thek1, . . . , knth rows or columns of then× n identity
matrix,

|P| � (−1)φn(k1,...,kn) .

Proof. PuttingA � P, we find that all of the terms in sum (1.6) are zero except
the term corresponding to the permutationi1 � k1, . . . , in � kn, which equals
(−1)φn(k1,...,kn). Q.E.D.

13.2 Some Basic Properties of Determinants

The following lemma relates the determinant of a matrix to the determinant of its
transpose.

Lemma 13.2.1. For anyn× n matrix A,

|A′| � |A| . (2.1)

Proof. Let aij andbij represent theij th elements ofA and A′, respectively
(i, j � 1, . . . , n). Then, in light of the equivalence of definitions (1.6) and (1.2),

|A′| �
∑

(−1)φn(j1,...,jn)b1j1
· · · bnjn

�
∑

(−1)φn(j1,...,jn)aj11 · · · ajnn
� |A| ,

wherej1, . . . , jn is a permutation of the firstnpositive integers and the summations
are over all such permutations. Q.E.D.

As an immediate consequence of the definition of a determinant, we have the
following lemma.

Lemma 13.2.2. If an n × n matrix B is formed from ann × n matrix A by
multiplying all of the elements of one row or one column ofA by the same scalar
k (and leaving the elements of the othern− 1 rows or columns unchanged), then

|B| � k|A| .
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As a corollary of Lemma 13.2.2, we obtain the following generalization of result
(1.8).

Corollary 13.2.3. If one or more rows (or columns) of ann × n matrix A are
null, then

|A| � 0 .

Proof. Suppose that theith row ofA is null, and letB represent ann×nmatrix
formed fromA by multiplying all of the elements of theith row of A by zero.
Then,A � B, and we find that

|A| � |B| � 0|A| � 0 .
Q.E.D.

The following corollary (of Lemma 13.2.2) relates the determinant of a scalar
multiple of a matrixA to that ofA itself.

Corollary 13.2.4. For anyn× n matrix A and any scalark,

|kA| � kn|A| . (2.2)

Proof. This result follows from Lemma 13.2.2 upon observing thatkA can be
formed fromA by successively multiplying each of then rows ofA by k. Q.E.D.

As a special case of Corollary 13.2.4, we have the following, additional corollary.
Corollary 13.2.5. For anyn× n matrix A,

| − A| � (−1)n|A| . (2.3)

The following two theorems describe how the determinant of a matrix is affected
by permuting its rows or columns in certain ways.

Theorem 13.2.6. If an n× n matrix B � {bij } is formed from ann× n matrix
A � {aij } by interchangingtwo rows or two columns ofA, then

|B| � −|A| .
Proof. Consider first the case whereB is formed fromA by interchanging two

adjacent rows, say theith and (i + 1)th rows. Then,

|B| �
∑

(−1)φn(j1,...,jn)b1j1
· · · bnjn

�
∑

(−1)φn(j1,...,jn)a1j1
· · · ai−1,j i−1

ai+1,j i ai,j i+1
ai+2,j i+2

· · · anjn
� −

∑
(−1)φn(j1,...,jj−1,ji+1,ji ,ji+2,...,jn)

× a1j1
· · · ai−1,j i−1

ai,j i+1
ai+1,j i ai+2,j i+2

· · · anjn
[sinceφn(j1, . . . , ji−1, ji+1, ji, ji+2 . . . , jn)

� φn(j1, . . . , jn)+ 1, if ji+1 > ji ,

� φn(j1, . . . , jn)− 1, if ji+1 < ji ]

� −|A| ,
wherej1, . . . , jn (and hencej1, . . . , ji−1, ji+1, ji, ji+2, . . . , jn) is a permutation
of the firstn positive integers and the summation is over all such permutations.
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Consider now the case whereB is formed fromA by interchanging two not-
necessarily-adjacent rows, say theith andkth rows wherek > i. Suppose that
we successively interchange thekth row of A with the k − i rows immediately
preceeding it, putting then rows of A in the order 1, . . . , i − 1, k, i, i + 1, . . . ,
k − 1, k + 1, . . . , n. Suppose that we then further reorder the rows ofA by suc-
cessively interchanging what was originally theith row with thek − i − 1 rows
immediately succeeding it, putting then rows in the order 1, . . . , i − 1, k, i + 1,
. . . , k−1, i, k+1, . . . , n. Thus, by executing 2(k− i)−1 successive interchanges
of adjacent rows, we have in effect interchanged theith andkth rows ofA. Since
each interchange of adjacent rows changes the sign of the determinant, we conclude
that

|B| � (−1)2(k−i)−1|A| � −|A| .
By employing an analogous argument, we find that the interchange of any two

columns ofA likewise changes the sign of the determinant. Q.E.D.
Theorem 13.2.7. If B is ann× p matrix (wherep < n) andC ann× q matrix

(whereq � n− p), then

|B, C| � (−1)pq |C, B| . (2.4)

Similarly, if B is ap × n matrix andC aq × n matrix, then∣∣∣∣BC
∣∣∣∣ � (−1)pq

∣∣∣∣CB
∣∣∣∣ . (2.5)

Proof. Suppose that the dimensions ofB aren × p and those ofC aren × q.
Let b1, . . . ,bp represent the columns ofB andc1, . . . , cq the columns ofC. Then,
(C,B) � (c1, . . . , cq, b1, . . . ,bp).

Suppose that, in the matrix (C, B), we successively interchange columnb1

with the columnscq, . . . , c1, producing the matrix (b1, c1, . . . , cq,b2, . . . ,bp).
Suppose then that, in the latter matrix, we successively interchange columnb2

with the columnscq, . . . , c1, producing the matrix (b1,b2, c1, . . . , cq,b3, . . . ,bp).
Continuing in this fashion, we produce (afterp steps) the matrix (b1, . . . ,bp,
c1, . . ., cq) � (B,C).

It is now clear that we can obtain the matrix (B, C) from the matrix (C, B) via
a total ofpq successive interchanges of columns. Thus, it follows from Theorem
13.2.6 that

|B, C| � (−1)pq |C, B| .
Result (2.5) can be derived via an analogous approach. Q.E.D.
A (square) matrix that has one or more null rows or columns has (according to

Corollary 13.2.3) a zero determinant. Other matrices whose determinants are zero
are described in the following two lemmas.

Lemma 13.2.8. If two rows or two columns of ann× nmatrixA are identical,
then|A| � 0.

Proof. Suppose that two rows ofA are identical, say theith and andkth rows,
and letB represent a matrix formed fromA by interchanging itsith andkth rows.
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Obviously,B � A and hence|B| � |A|. Moreover, according to Theorem 13.2.6,
|B| � −|A|. Thus,|A| � |B| � −|A|, implying that|A| � 0.

That the determinant of a (square) matrix having two identical columns equals
zero can be proved via an analogous argument. Q.E.D.

Lemma 13.2.9. If a row or column of ann× n matrixA is a scalar multiple of
another row or column, then|A| � 0.

Proof. Let a′1, . . . , a′n represent the rows ofA. Suppose that one row is a scalar
multiple of another, that is, thata′s � ka′i for somes andi (with s �� i) and some
scalark. Let B represent a matrix formed fromA by multiplying theith row ofA
by the scalark. Then, according to Lemmas 13.2.2 and 13.2.8,

k|A| � |B| � 0 . (2.6)

If k �� 0, then it follows from equality (2.6) that|A| � 0. If k � 0, thena′s � 0,
and it follows from Corollary 13.2.3 that|A| � 0. Thus, in either case,|A| � 0.

An analogous argument shows that if one column of a (square) matrix is a scalar
multiple of another, then again the determinant of the matrix equals zero. Q.E.D.

The transposition of a (square) matrix does not (according to Lemma 13.2.1)
affect its determinant. Other operations that do not affect the determinant of a
matrix are described in the following two theorems.

Theorem 13.2.10. Let B represent a matrix formed from ann× n matrixA by
adding, to any one row or column ofA, scalar multiples of one or more other rows
or columns. Then,

|B| � |A| .
Proof. Let a′i � (ai1, . . . , ain) andb′i � (bi1, . . . , bin) represent theith rows of

A andB, respectively (i � 1, . . . , n). For some integers (1 ≤ s ≤ n) and some
scalarsk1, . . . , ks−1, ks+1, . . . , kn,

b′s � a′s +
∑
i ��s

kia′i and b′i � a′i (i �� s).

Thus,

|B| �
∑

(−1)φn(j1,...,jn)b1j1
· · · bnjn

�
∑

(−1)φn(j1,...,jn)

× a1j1
· · · as−1,j s−1

(asjs +
∑
i ��s

kiaij s )as+1,j s+1
· · · anjn

� |A| +
∑
i ��s

∑
(−1)φn(j1,...,jn)

× aij1
· · · as−1,j s−1

(kiaij s )as+1,js+1 · · · anjn
� |A| +

∑
i ��s

|Bi | ,

whereBi is a matrix formed fromA by replacing thesth row of A with kia′i
and wherej1, . . . , jn is a permutation of the firstn positive integers, and the
(unlabeled) summations are over all such permutations.
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Since (according to Lemma 13.2.9)

|Bi | � 0 (i �� s) ,

we conclude that|B| � |A|.
An analogous argument shows that|B| � |A| whenB is formed fromA by

adding, to a column ofA, scalar multiples of other columns. Q.E.D.
Theorem 13.2.11. For anyn×nmatrixA and any (upper or lower) unit triangular

matrix T,
|AT| � |TA| � |A| . (2.7)

Proof. Consider the case whereA is postmultiplied byT andT is unit lower
triangular. DefineTi to be a matrix formed fromIn by replacing theith column of
In with theith column ofT (i � 1, . . . , n). It is easy to verify thatT � T1T2 · · ·Tn

and hence that
AT � AT1T2 · · ·Tn .

DefineB0 � A, andBi � AT1T2 · · ·Ti (i � 1, . . . , n − 1). Clearly, to show
that |AT| � |A|, it suffices to show that, fori � 1, . . . , n, the postmultiplication
of Bi−1 by Ti does not alter the determinant ofBi−1. Observe that the columns of
Bi−1Ti are the same as those ofBi−1, except for theith column ofBi−1Ti , which
consists of theith column ofBi−1 plus scalar multiples of the (i + 1), . . . , nth
columns ofBi−1. Thus, it follows from Theorem 13.2.10 that

|Bi−1Ti | � |Bi−1| .

We conclude that|AT| � |A|.
That result (2.7) is valid for the cases of postmultiplication by a unit upper

triangular matrix, and premultiplication by a unit upper or lower triangular matrix
can be established via similar arguments. Q.E.D.

13.3 Partitioned Matrices, Products of Matrices, and
Inverse Matrices

Formula (1.7) for the determinant of a triangular matrix can be extended to a
block-triangular matrix, as indicated by the following theorem.

Theorem 13.3.1. Let T represent anm×mmatrix,V ann×mmatrix, andW
ann× n matrix. Then, ∣∣∣∣T 0

V W

∣∣∣∣ �
∣∣∣∣W V

0 T

∣∣∣∣ � |T||W| . (3.1)

Proof. Let

A �
(

T 0
V W

)
,
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and letaij represent theij th element ofA (i, j � 1, . . . , m+ n). By definition,

|A| �
∑

(−1)φm+n(j1,...,jm+n)a1j1
· · · am+n,jm+n , (3.2)

wherej1, . . . , jm+n is a permutation of the firstm + n positive integers and the
summation is over all such permutations.

Clearly, the only terms of the sum (3.2) that can be nonzero are those for which
j1, . . . , jm constitutes a permutation of the firstm positive integers and thus for
whichjm+1, . . . , jm+n constitutes a permutation of the integersm+1, . . . , m+n.
For any such permutation, we have that

a1j1
· · · am+n,jm+n � t1j1

· · · tmjmw1,jm+1−m · · ·wn,jm+n−m
� t1j1

· · · tmjmw1k1 · · ·wnkn ,
where tij represents theij th element ofT (i, j � 1, . . . , m) andwij the ij th
element ofW (i, j � 1, . . . , n) and wherek1 � jm+1 −m, . . . , kn � jm+n −m,
and that

φm+n(j1, . . . , jm+n) � φm(j1, . . . , jm)+ φn(jm+1, . . . , jm+n)
� φm(j1, . . . , jm)+ φn(jm+1 −m, . . . , jm+n −m)

� φm(j1, . . . , jm)+ φn(k1, . . . , kn) .

Thus,

|A| �
∑∑

(−1)φm(j1,...,jm)+φn(k1,...,kn)t1j1
· · · tmjmw1k1 · · ·wnkn

�
∑

(−1)φm(j1,...,jm)t1j1
· · · tmjm

∑
(−1)φn(k1,...,kn)w1k1 · · ·wnkn

� |T||W| ,
wherej1, . . . , jm is a permutation of the firstm positive integers andk1, . . . , kn a
permutation of the firstn positive integers, and where the summations are over all
such permutations.

That

∣∣∣∣W V
0 T

∣∣∣∣ � |T||W| can be established via a similar argument. Q.E.D.

The repeated application of Theorem 13.3.1 leads to the following formulas for
the determinant of an arbitrary (square) upper or lower block-triangular matrix
(with square diagonal blocks):∣∣∣∣∣∣∣∣∣

A11 A12 . . . A1r

0 A22 . . . A2r
...

...
...

0 0 Arr

∣∣∣∣∣∣∣∣∣
� |A11||A22| · · · |Arr | ; (3.3)

∣∣∣∣∣∣∣∣∣

B11 0 . . . 0
B21 B22 0

...
...

...
Br1 Br2 . . . Brr

∣∣∣∣∣∣∣∣∣
� |B11||B22| · · · |Brr | ; (3.4)
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In the special case of a block-diagonal matrix, formula (3.3) becomes

diag(A11,A22, . . . ,Arr ) � |A11||A22| · · · |Arr | . (3.5)

By making use of Theorem 13.2.7, we obtain the following corollary of Theorem
13.3.1.

Corollary 13.3.2. Let T represent anm×mmatrix,V ann×mmatrix, andW
ann× n matrix. Then,∣∣∣∣ 0 T

W V

∣∣∣∣ �
∣∣∣∣V W
T 0

∣∣∣∣ � (−1)mn|T||W| . (3.6)

The following corollary gives a simplified version of formula (3.6) for the special
case wherem � n andT � −In.

Corollary 13.3.3. Forn× n matricesW andV,∣∣∣∣ 0 −In
W V

∣∣∣∣ �
∣∣∣∣ V W
−In 0

∣∣∣∣ � |W| . (3.7)

Proof (of Corollary 13.3.3). Corollary 13.3.3 can be derived from the special
case of Corollary 13.3.2 wherem � n andT � −In by observing that

(−1)nn| − In||W| � (−1)nn(−1)n|W| � (−1)n(n+1)|W|

and that eithern or n+ 1 is an even number and consequentlyn(n+ 1) is an even
number. Q.E.D.

By using Theorem 13.3.1 (and Corollary 13.3.3), together with Theorem
13.2.11, we find that, forn× n matricesA andB,

|A||B| �
∣∣∣∣ A 0
−I B

∣∣∣∣ �
∣∣∣∣
(

A 0
−I B

)(
I B
0 I

)∣∣∣∣ �
∣∣∣∣ A AB
−I 0

∣∣∣∣ � |AB| ,

thereby establishing the following, very important result.
Theorem 13.3.4. Forn× n matricesA andB,

|AB| � |A||B| . (3.8)

The repeated application of Theorem 13.3.4 leads to the following formula for
the product of an arbitrary number ofn× n matricesA1,A2, . . . ,Ak:

|A1A2 · · ·Ak| � |A1||A2| · · · |Ak| . (3.9)

As a special case of this formula, we obtain the following formula for thekth power
of ann× n matrix A:

|Ak| � |A|k (3.10)

(k � 1,2, . . .).
In light of Lemma 13.2.1, we have the following corollary of Theorem 13.3.4.
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Corollary 13.3.5. For anyn× n matrix A,

|A′A| � |A|2 . (3.11)

According to Lemma 13.1.3, a permutation matrix has a determinant whose
absolute value is one. The following corollary indicates that every orthogonal
matrix has this property.

Corollary 13.3.6. For an orthogonal matrixP,

|P| � ±1 .

Proof (of Corollary 13.3.6). Using Corollary 13.3.5, together with result (1.9),
we find that

|P|2 � |P′P| � |I| � 1 .

Q.E.D.
Corollary 13.2.3 and Lemmas 13.2.8 and 13.2.9 identify certain matrices that

have zero determinants. These results are generalized as part of the following
theorem.

Theorem 13.3.7. Let A represent ann× n matrix. Then,A is nonsingular (or,
equivalently,A is invertible) if and only if|A| �� 0, in which case

|A−1| � 1/|A| . (3.12)

Proof. It suffices to show that, ifA is nonsingular, then|A| �� 0 and|A−1| �
1/|A| and that, ifA is singular, then|A| � 0.

Suppose thatA is nonsingular. Then, according to Theorem 13.3.4 and result
(1.9),

|A−1||A| � |A−1A| � |I| � 1 ,

implying that|A| �� 0 and further that|A−1| � 1/|A|.
Suppose now thatA is singular. Then, some column ofA, say thesth col-

umn as , can be expressed as a linear combination of the othern − 1 columns
a1, . . . , as−1, as+1, . . . , an; that is

as �
∑
i ��s

kiai

for some scalarsk1, . . . , ks−1, ks+1, . . . , kn. Now, letB represent a matrix formed
from A by adding the vector−∑i ��s kiai to thesth column ofA. Clearly, thesth
column ofB is null, and it follows from Corollary 13.2.3 that|B| � 0. Moreover,
it follows from Theorem 13.2.10 that|A| � |B|. Thus,|A| � 0. Q.E.D.

The following theorem gives formulas for the determinant of a partitioned matrix
that are analogous to formulas (8.5.16) and (8.5.17) for the inverse of a partitioned
matrix.

Theorem 13.3.8. Let T represent anm × m matrix, U anm × n matrix, V an
n×m matrix, andW ann× n matrix. If T is nonsingular, then∣∣∣∣T U

V W

∣∣∣∣ �
∣∣∣∣W V
U T

∣∣∣∣ � |T||W− VT−1U| . (3.13)
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Proof. Suppose thatT is nonsingular. Then,(
T U
V W

)
�
(

I 0
VT−1 W− VT−1U

)(
T U
0 I

)
.

Applying Theorems 13.3.4 and 13.3.1, we find that∣∣∣∣T U
V W

∣∣∣∣ � |T||W− VT−1U| .

That

∣∣∣∣W V
U T

∣∣∣∣ � |T||W− VT−1U| can be proved in similar fashion. Q.E.D.

13.4 A Computational Approach

Formula (3.8) and, more generally, formula (3.9) (for the determinant of a product
of matrices) can be very useful from a computational standpoint. Suppose thatA is
ann×nmatrix whose determinant|A| is of interest and thatA can be decomposed
into the product of some number ofn × n matrices, each of whose determinants
is easy to “evaluate.” Then, formula (3.9) can be used to evaluate|A|.

Suppose, for instance, that we have obtained the QR decompositionA � QR
(whereQ is orthogonal andR triangular) of ann× n matrix A. Then, in light of
Corollary 13.3.6,|A| � ±|R|; and, in light of Lemma 13.1.1,|A|can be determined
(up to its absolute value) by forming the product of the diagonal elements ofR.

13.5 Cofactors

Let A � {aij } represent ann× n matrix. LetAij represent the (n− 1)× (n− 1)
submatrix ofA obtained by striking out the row and the column that contain the
elementaij , that is, theith row and thej th column. The determinant|Aij | of this
submatrix is called theminor of the elementaij . The “signed” minor (−1)i+j |Aij |
is called thecofactor of aij .

The determinant ofA can be expanded in terms of the cofactors of thenelements
of any particular row or column ofA, as described in the following theorem.

Theorem 13.5.1. Let aij represent theij th element of ann × n matrix A, and
let αij represent the cofactor ofaij (i, j � 1, . . . , n). Then, fori � 1, . . . , n,

|A| �
n∑
j�1

aijαij � ai1αi1 + · · · + ainαin , (5.1)

and, forj � 1, . . . , n,

|A| �
n∑
i�1

aijαij � a1jα1j + · · · + anjαnj . (5.2)



190 13. Determinants

Proof. Let Aij represent the matrix obtained by striking out theith row and
the j th column ofA (i, j � 1, . . . , n). Consider first result (5.1) for the case
i � 1. Denote bya(j )

ts thetsth element of the matrixA1j (t, s � 1, . . . , n− 1;j �
1, . . . , n). We find that

|A| �
∑

(−1)φn(k1,...,kn)a1k1 · · · ankn
(wherek1, . . . , kn is a permutation of the firstn positive integers

and the summation is over all such permutations)

� a11

∑
(−1)φn−1(k2,...,kn)a2k2 · · · ankn + · · ·

+ a1j

∑
(−1)j−1+φn−1(k2,...,kn)a2k2 · · · ankn + · · ·

+ a1n

∑
(−1)n−1+φn−1(k2,...,kn)a2k2 · · · ankn

(where, in thej th of then sums,k2, . . . , kn is a permutation of the

n− 1 integers 1,. . . , j − 1, j + 1, . . . , n and the summation is

over all such permutations)

� a11

∑
(−1)φn−1(s1,...,sn−1)a

(1)
1s1
· · · a(1)

n−1,sn−1
+ · · ·

+ a1j (−1)j−1
∑

(−1)φn−1(s1,...,sn−1)a
(j )
1s1
· · · a(j )

n−1,sn−1
+ · · ·

+ anj (−1)n−1
∑

(−1)φn−1(s1,...,sn−1)a
(n)
1s1
· · · a(n)

n−1,sn−1

(where, in each of then sums,s1, . . . , sn−1 is a permutation of the

first n− 1 positive integers and the summation is over all such

permutations)

�
n∑
j�1

a1j (−1)j−1|A1j |

�
n∑
j�1

a1j (−1)j+1|A1j |

�
n∑
j�1

a1jα1j .

Consider now result (5.1) for the casei > 1. LetB represent then× n matrix
whose first row is theith row of A, whose second,. . ., ith rows are the first,
. . . , (i − 1)th rows, respectively, ofA, and whose (i + 1), . . . , nth rows are the
same as those ofA. Observe thatA can be obtained fromB by successively
interchanging the first row ofB with its second,. . . , ith rows, so that, according
to Theorem 13.2.6,

|A| � (−1)i−1|B| .

Let B1j represent the matrix obtained by striking out the first row and thej th
column of B, and letb1j represent thej th element of the first row ofB (j �
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1, . . . , n). Then,B1j � Aij (j � 1, . . . , n), and we find that

|A| � (−1)i−1|B| � (−1)i−1
n∑
j�1

b1j (−1)1+j |B1j |

� (−1)i−1
n∑
j�1

aij (−1)1+j |Aij |

�
n∑
j�1

aijαij .

Finally, consider result (5.2). Observe that the matrix obtained by striking out
thej th row and theith column ofA′ is A′

ij and hence that the cofactor of thejith
element ofA′ is

(−1)j+i |A′
ij | � (−1)i+j |Aij | � αij

(i, j � 1, . . . , n). Thus, since thejith element ofA′ is the ij th element ofA
(i, j � 1, . . . , n), it follows from result (5.1) (and from Lemma 13.2.1) that

|A| � |A′| �
n∑
i�1

aijαij

(j � 1, . . . , n). Q.E.D.
Note that if thej th elementaij of the ith row of A equals zero, then thej th

term in formula (5.1) also equals zero. Similarly, ifaij � 0, then theith term in
formula (5.2) equals zero. Thus, if then × n matrix A contains a row or column
that includes many zeroes, then formula (5.1) or (5.2) can be used to reexpress
|A| in terms of the determinants of a relatively small number of (n− 1)× (n− 1)
submatrices ofA.

The following theorem can be regarded as a companion to Theorem 13.5.1.
Theorem 13.5.2. Let aij represent theij th element of ann × n matrix A, and

letαij represent the cofactor ofaij (i, j � 1, . . . , n). Then, fori ′ �� i � 1, . . . , n ,

n∑
j�1

aijαi ′j � ai1αi ′1 + · · · + ainαi ′n � 0 , (5.3)

and, forj ′ �� j � 1, . . . , n,

n∑
i�1

aijαij ′ � a1jα1j ′ + · · · + anjαnj ′ � 0 . (5.4)

Proof. Consider result (5.3). LetB represent a matrix whosei ′th row equals the
ith row ofA and whose first,. . . , (i ′ − 1), (i ′ + 1), . . . , nth rows are identical to
those ofA (wherei ′ �� i). Observe that thei ′th row of B is a duplicate of itsith
row and hence, according to Lemma 13.2.8, that|B| � 0.
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Let bkj represent thekj th element ofB (k, j � 1, . . . , n). Clearly, the cofactor
of bi ′j is the same as that ofai ′j (j � 1, . . . , n). Thus, making use of Theorem
13.5.1, we find that

n∑
j�1

aijαi ′j �
n∑
j�1

bi ′jαi ′j � |B| � 0 ,

which establishes result (5.3). Result (5.4) can be proved via an analogous argu-
ment. Q.E.D.

For anyn × n matrix A � {aij }, then × n matrix whoseij th element is the
cofactorαij of aij is called thematrix of cofactors (or cofactor matrix) of A. The
transpose of this matrix is called theadjoint matrix of A and is denoted by the
symbol adjA or adj(A). Thus

adj A �



α11 . . . α1n
...

...
...

αn1 . . . αnn



′

�



α11 . . . αn1
...

...
...

α1n . . . αnn


 .

If A is symmetric, then the matrix of cofactors is also symmetric (or equivalently
the adjoint matrix equals the matrix of cofactors), as is easily verified.

There is a close relationship between the adjoint of a nonsingular matrixA and
the inverse ofA, as is evident from the following theorem and is made explicit in
the corollary of this theorem.

Theorem 13.5.3. For ann× n matrix A,

A adj(A) � (adj A)A � |A|In . (5.5)

Proof. Letaij represent theij th element ofA, and letαij represent the cofactor
of aij (i, j � 1, . . . , n). Then, theii ′th element of the matrix productA adj(A) is∑n

j�1 aijαi ′j (i, i ′ � 1, . . . , n). According to Theorems 13.5.1 and 13.5.2,

n∑
j�1

aijαi ′j � |A|, if i ′ � i ,

� 0, if i ′ �� i .

Thus,A adj(A) � |A|I.
That (adjA)A � |A|I can be established via a similar argument. Q.E.D.
Corollary 13.5.4. If A is ann× n nonsingular matrix, then

adj(A) � |A|A−1 (5.6)

or equivalently

A−1 � (1/|A|) adj(A) . (5.7)
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13.6 Vandermonde Matrices

Consider the matrix

V �




1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

...
...

...
...

1 xn x2
n . . . xn−1

n


 ,

wherex1, x2, . . . , xn are arbitrary scalars. A matrix of this general form is called
a Vandermonde matrix, after Alexandre Theophile Vandermonde (1735–1796).
Vandermonde matrices are encountered in statistics in fitting (by least squares) a
polynomial (in an explanatory variablex) to the observed values of a “dependent”
variabley. Let us find the determinant ofV.

Observe that

VT �
(

1n−1 A
1 0

)
, (6.1)

where

T �




1 −xn 0 . . . 0 0
0 1 −xn 0 0
0 0 1
...

...
0 0 0 1 −xn
0 0 0 0 1




and

A �



x1 − xn x1(x1 − xn) . . . xn−2

1 (x1 − xn)
x2 − xn x2(x2 − xn) . . . xn−2

2 (x2 − xn)
...

...
...

...
xn−1 − xn xn−1(xn−1 − xn) . . . xn−2

n−1(xn−1 − xn)


 .

Note that the effect of postmultiplyingV by T is to add, to thej th column ofV, a
scalar multiple of the preceding column (j � 2, . . . , n), thereby creating a matrix
whose last row is (1,0,0, . . . ,0).

Observe also thatA is expressible as

A � DW , (6.2)

whereD � diag(x1 − xn, x2 − xn, . . . , xn−1 − xn) and

W �




1 x1 x2
1 . . . xn−2

1
1 x2 x2

2 . . . xn−2
2

...
...

...
...

1 xn−1 x2
n−1 . . . xn−2

n−1


 .
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Thus,A is expressible as a product of a diagonal matrix and of the (n−1)× (n−1)
submatrix ofV obtained by deleting the last row and column ofV. Note that this
submatrix (i.e., the matrixW) is an (n− 1)× (n− 1) Vandermonde matrix.

Making use of results (6.1) and (6.2) and of various properties of determinants
(described in Theorems 13.2.11 and 13.3.4 and Corollaries 13.3.2, 13.2.5, and
13.1.2), we find that

|V| � |VT| �
∣∣∣∣1n−1 A
1 0

∣∣∣∣ � (−1)n−1|A|
� (−1)n−1|D||W| � | − D||W|
� (xn − x1)(xn − x2) · · · (xn − xn−1)|W| (6.3)

Formula (6.3) serves to relate the determinant of ann × n Vandermonde matrix
to that of an (n− 1)× (n− 1) Vandermonde matrix, and its repeated application
allows us to evaluate the determinant of any Vandermonde matrix.

Clearly, whenn � 2,
|V| � x2 − x1 ;

whenn � 3,
|V| � (x3 − x1)(x3 − x2)(x2 − x1) ;

and, in general,

|V| �
∏
i,j

(j<i)

(xi − xj )

� (xn − x1)(xn − x2) · · · (xn − xn−1)

× (xn−1 − x1)(xn−1 − x2) · · · (xn−1 − xn−2) · · · (x2 − x1), (6.4)

as can be formally verified by a simple mathematical induction argument based
on relationship (6.3).

It is evident from formula (6.4) that|V| �� 0 if and only if xj �� xi for j <
i � 1, . . . , n. Thus,V is nonsingular if and only if then scalarsx1, x2, . . . , xn are
distinct.

In fact,
rank(V) � r , (6.5)

wherer is the number of distinct values represented amongx1, . . . , xn. To see this,
let i1, i2, . . . , ir (i1 < i2, < . . . < ir ) representr integers such thatxi1, xi2, . . . , xir
are distinct. Then, thei1, . . . , ir th rows ofV spanR(V) (since each of the remaining
n− r rows ofV is a duplicate of one of these rows), implying that

rank(V) � dim[R(V)] ≤ r . (6.6)

Moreover, ther× r submatrix ofV formed from the firstr columns ofV and from
thei1, . . . , ir th rows, that is, the submatrix


1 xi1 x2

i1
. . . xr−1

i1

1 xi2 x2
i2

. . . xr−1
i2

...
...

...
...

1 xir x2
ir

. . . xr−1
ir


 ,
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is a Vandermonde matrix, which (sincexi1, . . . , xir are distinct) is nonsingular.
Thus, according to Theorem 4.4.10, rank(V) ≥ r, which together with inequality
(6.6) implies that rank(V) � r.

13.7 Some Results on the Determinant of the Sum of
Two Matrices

Consider the determinant of the sum of twon × n matricesA andB. Except in
special cases,|A+B| �� |A|+|B|. However, as described in the following theorem,
|A+ B| can, for any particular integerk (1 ≤ k ≤ n), be expressed as the sum of
the determinants of 2k n× n matrices; theith row of each of these 2k matrices is
identical to theith row of A, B, or A+ B (i � 1, . . . , n).

Theorem 13.7.1. For any twon× n matricesA andB,

|A +B| �
∑

{i1,...,ir }
|C{i1,...,ir }

k | , (7.1)

wherek is any particular one of the firstnpositive integers 1, . . . , n, and{i1, . . . , ir}
is a subset of the firstk positive integers 1, . . . , k (and the summation is over all
2k such subsets), and whereC{i1,...,ir }

k is ann× nmatrix whose lastn− k rows are
identical to the lastn− k rows ofA+ B, whosei1, . . . , ir th rows are identical to
thei1, . . . , ir th rows ofA, and whose remaining rows, say their+1, . . . , ikth rows,
are identical to their+1, . . . , ikth rows ofB.

Preliminary to proving Theorem 13.7.1, it is convenient to prove the following
result, which is of some interest in its own right.

Theorem 13.7.2. LetA, B, andC representn×nmatrices, and denote bya′i ,b′i ,
andc′i theith rows ofA, B, andC, respectively (i � 1, . . . , n). If, for somek,

c′k � a′k + b′k

and
c′i � a′i � b′i (i � 1, . . . , k − 1, k + 1, . . . , n) ,

then
|C| � |A| + |B| .

Proof (of Theorem 13.7.2). Denote byakj , bkj , andckj thekj th elements ofA,
B, andC, respectively, and letαkj represent the cofactor of thekj th element of
A (j � 1, . . . , n). Clearly, the cofactor of thekj th element ofB and the cofactor
of the kj th element ofC are the same as the cofactor of thekj th element ofA
(j � 1, . . . , n). Thus, making use of Theorem 13.5.1, we find that

|C| �
n∑
j�1

ckjαkj �
n∑
j�1

(akj + bkj )αkj
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�
n∑
j�1

akjαkj +
n∑
j�1

bkjαkj

� |A| + |B| .
Q.E.D.

Proof (of Theorem 13.7.1). The proof is by mathematical induction. It follows
from Theorem 13.7.2 that

|A+ B| � |C{1}
1 | + |Cφ

1 |
(whereφ denotes the empty set), so that result (7.1) is valid fork � 1.

Suppose that result (7.1) is valid fork � k∗ − 1, that is,

|A+ B| �
∑

{i1,...,ir }
|C{i1,...,ir }

k∗−1 | ,

where{i1, . . . , ir} is a subset of the firstk∗−1 positive integers (and the summation
is over all 2k

∗−1 such subsets). We must show that result (7.1) is valid fork � k∗.
Using Theorem 13.7.2, we find that

|C{i1,...,ir }
k∗−1 | � |C{i1,...,ir ,k∗}

k∗ | + |C{i1,...,ir }
k∗ | ,

for any subset{i1, . . . , ir} of the firstk∗ − 1 positive integers. Moreover, the 2k
∗

possible subsets of the firstk∗ positive integers consist of the 2k
∗−1 possible subsets

of the firstk∗ − 1 positive integers plus the 2k
∗−1 subsets obtained by augmenting

each of the latter subsets with the integerk∗. We conclude that

|A+ B| �
∑

{i1,...,ir }
|C{i1,...,ir }

k∗ | ,

where{i1, . . . , ir} is a subset of the firstk∗ positive integers (and the summation
is over all 2k

∗
such subsets). Q.E.D.

The following theorem gives an expansion for the determinant of the sum of
two n× n matrices in the special case where one of the matrices is diagonal.

Theorem 13.7.3. Let B represent ann× nmatrix, and letD represent ann× n
diagonal matrix whose diagonal elements ared1, . . . , dn. Then,

|D+ B| �
∑

{i1,...,ir }
di1 · · · dir |B{i1,...,ir }| , (7.2)

where {i1, . . . , ir} is a subset of the firstn positive integers 1, . . . , n (and the
summation is over all 2n such subsets) and whereB{i1,...,ir } is the (n− r)× (n− r)
principal submatrix ofB obtained by striking out thei1, . . . , ir th rows and columns.
[The term in sum (7.2) corresponding to the empty set is to be interpreted as|B|, and
the term corresponding to the set{1, 2,. . . , n} is to be interpreted asd1d2 · · · dn.]

Proof. Applying result (7.1) withA � D andk � n, we find that

|D+ B| �
∑

{i1,...,ir }
|C{i1,...,ir }| ,
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whereC{i1,...,ir } is ann × n matrix whosei1, . . . , ir th rows are identical to the
i1, . . . , ir th rows of D and whose remaining rows, say their+1, . . . inth rows
(ir+1 < . . . < in), are identical to their+1 . . . , inth rows ofB. Thus, to verify
result (7.2), it suffices to show that

|C{i1,...,ir }| � di1 · · · dir |B{i1,...,ir }| .
Let P represent then × n (permutation) matrix whose first,. . . , rth, (r + 1),

. . . , nth columns are thei1, . . . , ir th, ir+1, . . . , inth columns, respectively, ofIn.
Then, clearly,

P′C{i1,...,ir }P �
(

diag(di1, . . . , dir ) 0
F{i1,...,ir } B{i1,...,ir }

)
,

whereF{i1,...,ir } is an (n− r)× r matrix whosest th element is their+s it th element
of B.

Thus, using Lemmas 13.2.1 and 13.1.3, Theorems 13.3.4 and 13.3.1, and Corol-
lary 13.1.2, we find that

|C{i1,...,ir }| � |P′||C{i1,...,ir }||P|
� |P′C{i1,...,ir }P|
� |diag(di1, . . . , dir )||B{i1,...,ir }|
� di1 · · · dir |B{i1,...,ir }| .

Q.E.D.
In the special case whered1 � · · · � dn, result (7.2) simplifies as follows:
Corollary 13.7.4. For anyn× n matrix B and any scalarx,

|B+ xIn| �
n∑
r�0

xr
∑

{i1,...,ir }
|B{i1,...,ir }| , (7.3)

where{i1, . . . , ir} is anr-dimensional subset of the firstnpositive integers 1, . . . , n
(and the second summation is over all

(
n

r

)
such subsets) and whereB{i1,...,ir } is the

(n− r)× (n− r) principal submatrix ofB obtained by striking out thei1, . . . , ir th
rows and columns. (Forr � n, the sum

∑
{i1,...,ir } |B{i1,...,ir }| is to be interpreted as

1.)
Note that expression (7.3) is a polynomial inx and that the coefficient ofx0

(i.e., the constant term of the polynomial) equals|B| and the coefficient ofxn−1

equals tr(B).

13.8 Laplace’s Theorem and the Binet-Cauchy Formula

The following theorem, which is due to Pierre Simon Laplace (1749–1827), is a
generalization of Theorem 13.5.1.

Theorem 13.8.1 (Laplace’s theorem). LetA represent ann × n matrix, let r
represent any particular one of the firstn − 1 positive integers 1, . . . , n − 1, and
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let {i1, . . . , ir} and {j1, . . . , jr} (wherei1 < · · · < ir andj1 < · · · < jr ) rep-
resent arbitraryr-dimensional subsets of the firstn positive integers 1, . . . , n.
Further, letAj1,...,jr

i1,...,ir
represent ther × r submatrix ofA obtained by striking

out all of the rows and columns except thei1, . . . , ir th rows andj1, . . . , jr th

columns, and let̄A
j1,...,jr

i1,...,ir
represent the (n− r)× (n− r) submatrix ofA obtained

by striking out thei1, . . . , ir th rows andj1, . . . , jr th columns. Then, for fixed
i1, . . . , ir ,

|A| �
∑

{j1,...,jr }
(−1)i1+···+ir+j1+···+jr |Aj1,...,jr

i1,...,ir
||Āj1,...,jr

i1,...,ir
| . (8.1)

and,
for fixed j1, . . . , jr ,

|A| �
∑

{i1,...,ir }
(−1)i1+···+ir+j1+···+jr |Aj1,...,jr

i1,...,ir
||Āj1,...,jr

i1,...,ir
| . (8.2)

Proof. Consider first result (8.1) for the casei1 � 1, . . . , ir � r. The n!
permutations of the firstn positive integers can be divided into

(
n

r

)
classes —

one class for each subset{j1, . . . , jr}. The class corresponding to any partic-
ular subset{j1, . . . , jr} consists of ther!(n − r)! permutations of the general
form k1, . . . , kr , kr+1, . . . , kn, wherek1, . . . , kr is a permutation of the integers
j1, . . . , jr andkr+1, . . . , kn is a permutation of the othern−r of the firstn positive
integers. Note that, for each permutationk1, . . . , kn corresponding to any particular
subset{j1, . . . , jr},
φn(k1, . . . , kn) � φr (k1, . . . , kr ) + φn−r (kr+1, . . . , kn)

+ (j1 − 1)+ (j2 − 2)+ · · · + (jr − r)
and consequently

(−1)φn(k1,...,kn) � (−1)φn(k1,...,kn)+2(1+2+···+r)

� (−1)φr (k1,...,kr )+φn−r (kr+1,...,kn)+j1+j2+···+jr+1+2+···+r .

Denote bya{j1,...,jr }
ts thetsth element ofAj1,...,jr

1,...,r (t, s � 1, . . . , r), and byā{j1,...,jr }
ts

thetsth element ofĀ
j1,...,jr

1,...,r (t, s � 1, . . . , n− r). We find that

|A| �
∑

(−1)φn(k1,...,kn)a1k1 · · · ankn
(wherek1, . . . , kn is a permutation of the firstn positive integers

and the summation is over all such permutations)

�
∑

{j1,...,jr }

∑
k1,...,kr

∑
kr+1,...,kn

(−1)φn(k1,...,kn)a1k1 · · · ankn
[wherek1, . . . , kr is a permutation of the integersj1, . . . , jr

(and the second summation is over all such permutations) and

wherekr+1, . . . , kn is a permutation of thosen− r of the firstn
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positive integers not contained in the set{j1, . . . , jr}
(and the third summation is over all such permutations)]

�
∑

{j1,...,jr }
(−1)1+2+···+r+j1+j2+···+jr

·∑k1,...,kr
(−1)φr (k1,...,kr )a1k1 · · · arkr

·∑kr+1,...,kn
(−1)φn−r (kr+1,...,kn)ar+1,kr+1 · · · ankn

�
∑

{j1,...,jr }
(−1)1+2+···+r+j1+j2+···+jr

·∑t1,...,tr
(−1)φr (t1,...,tr )a{j1,...,jr }

1t1
· · · a{j1,...,jr }

rtr

·∑tr+1,...,tn
(−1)φn−r (tr+1,...,tn)ā

{j1,...,jr }
1tr+1

· · · ā{j1,...,jr }
n−r,tn

[wheret1, . . . , tr is a permutation of the firstr positive integers

(and the second summation is over all such permutations) and where

tr+1 . . . , tn is a permutation of the firstn− r positive integers

(and the third summation is over all such permutations)]

�
∑

{j1,...,jr }
(−1)1+2+···+r+j1+j2+···+jr |Aj1,...,jr

1,...,r ||Ā
j1,...,jr

1,...,r | .

Consider now result (8.1) for the case of an arbitary subset{i1, . . . , ir}. Let
ir+1, . . . , in (whereir+1 < · · · < in) represent thosen − r of the firstn positive
integers not contained in{i1, . . . , ir}, let a′1, . . . , a′n represent the first,. . . , nth
rows ofA, and let

B �




a′i1
...

a′ir
a′ir+1

...
a′in



.

The matrixA can be obtained fromB by a successive interchange of rows.
Specifically, suppose that we successively interchange therth row of B with the
nextir− r rows, thereby producing a matrix, sayB∗, whoseir th row is the same as
that ofA. Next, suppose that we successively interchange the (r − 1)th row ofB∗

with the nextir−1− (r − 1) rows, thereby producing a matrix whoseir−1 andir th
rows are the same as those ofA. Continuing in this fashion, we produce, afterr steps
involving a total of (ir−r)+[ir−1−(r−1)]+· · ·+(i1−1)� i1+· · ·+ir−(1+· · ·+r)
interchanges, the matrixA. We conclude, on the basis of Theorem 13.2.6, that

|A| � (−1)i1+···+ir−(1+···+r)|B| .
Let Bj1,...,jr

1,...,r represent ther × r submatrix ofB obtained by striking out all of
the rows and columns except the first,. . . , rth rows andj1, . . . , jr th columns, and

let B̄
j1,...,jr
1,...,r represent the (n− r) × (n − r) submatrix ofB obtained by striking
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out the first,. . . , rth rows andj1, . . . , jr th columns. Then,Bj1,...,jr
1,...,r � Aj1,...,jr

i1,...,ir
and

B̄
j1,...,jr
1,...,r � Ā

j1,...,jr

i1,...,ir
, and we find that

|A| � (−1)i1+···+ir−(1+···+r)|B|
� (−1)i1+···+ir−(1+···+r)

·
∑

{j1,...,jr }
(−1)1+···+r+j1+···+jr |Bj1,...,jr

1,...,r ||B̄
j1,...,jr
1,...,r |

�
∑

{j1,...,jr }
(−1)i1+···+ir+j1+···+jr |Aj1,...,jr

i1,...,ir
||Āj1,...,jr

i1,...,ir
| .

Finally, consider result (8.2). Observe that the matrix obtained by striking out
all of the rows and columns ofA′ except thej1, . . . , jr th rows andi1, . . . , ir th
columns is (Aj1,...,jr

i1,...,ir
)′ and that the matrix obtained by striking out thej1, . . . , jr th

rows andi1, . . . , ir th columns ofA′ is (Ā
j1,...,jr

i1,...,ir
)′. Thus, it follows from result (8.1)

[and result (2.1)] that

|A| � |A′| �
∑

{i1,...,ir }
(−1)j1+···+jr+i1+···+ir |(Aj1,...,jr

i1,...,ir
)′||(Āj1,...,jr

i1,...,ir
)′|

�
∑

{i1,...,ir }
(−1)i1+···+ir+j1+···+jr |Aj1,...,jr

i1,...,ir
||Āj1,...,jr

i1,...,ir
| .

Q.E.D.
Note that, in the special case wherer � 1, expressions (8.1) and (8.2) are

essentially the same as expressions (5.1) and (5.2).
The following theorem is a generalization of Theorem 13.3.4.
Theorem 13.8.2. LetA represent anm×nmatrix andB ann×mmatrix, where

m ≤ n. Then,
|AB| �

∑
{i1,...,im}

|A{i1,...,im}||B{i1,...,im}| , (8.3)

where {i1, . . . , im} is anm-dimensional subset of the firstn positive integers
1, . . . , n [and the summation is over all

(
n

m

)
such subsets], whereA{i1,...,im} is the

m×m submatrix ofA obtained by striking out all of the columns ofA except the
i1, . . . , imth columns, and whereB{i1,...,im} is them × m submatrix ofB obtained
by striking out all of the rows ofB except thei1, . . . , imth rows.

Proof. To prove Theorem 13.8.2, let us first express|AB| in terms of the deter-
minant of the (m+ n)× (m+ n) partitioned matrix

C �
(

A 0
−In B

)
,

and then use Laplace’s theorem to evaluate|C|.
It follows from Corollary 13.3.2 (and from Corollary 13.1.2) that∣∣∣∣ A AB
−In 0

∣∣∣∣ � (−1)nm| − In||AB| � (−1)nm(−1)n|AB| � (−1)n(m+1)|AB| .
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Thus, making use of Theorem 13.2.11, we find that

|AB| � (−1)−n(m+1)

∣∣∣∣ A AB
−In 0

∣∣∣∣ � (−1)−n(m+1)

∣∣∣∣
(

A 0
−In B

)(
In B
0 Im

)∣∣∣∣
� (−1)−n(m+1)|C| (8.4)

Moreover, it follows from result (8.1) that

|C| �
∑

{j1,...,jm}
(−1)1+···+m+j1+···+jm |C{j1,...,jm}

1 ||C̄{j1...,jm}
2 | ,

where{j1, . . . , jm} is anm-dimensional subset of the firstm+ n positive integers
1, . . . , m+ n [and the sum is over all

(
m+n
m

)
such subsets], whereC{j1,...,jm}

1 is the
m × m submatrix of them × (m + n) matrix (A, 0) obtained by striking out all

of the columns except thej1, . . . , jmth columns, and wherēC
{j1,...,jm}
2 is then× n

submatrix of then× (m+ n) matrix (−In,B) obtained by striking out thej1, . . . ,
jmth columns. Clearly, ifjs ≤ n for s � 1, . . . , m, thenC{j1,...,jm}

1 � A{j1,...,jm};
and, ifjs > n for some integers (1≤ s ≤ m), then at least one column ofC{j1,...,jm}

1
is null. Therefore, in light of Corollary 13.2.3, we have that

|C| �
∑

{i1,...,im}
(−1)1+···+m+i1+···+im |A{i1,...,im}|| − Ī

{i1,...,im}
, B| , (8.5)

whereĪ
{i1,...,im} is then × (n − m) matrix obtained fromIn by striking out thei1,

. . . , imth columns (and where{i1, . . . , im} is anm-dimensional subset of the first
n positive integers).

Now, applying result (8.2), we find that

| − Ī
{i1,...,im}

, B| �
∑

{k1,...,km}
(−1)k1+···+km+(n−m+1)+···+(n−1)+n

× |B{k1,...,km}|| − Ī
i1,...,im
k1,...,km

| ,
where {k1 . . . , km} is anm-dimensional subset of the firstn positive integers

1, . . . , n [and the summation is over all
(
n

m

)
such subsets] and whereĪ

i1,...,im
k1,...,km

is
the (n − m) × (n − m) submatrix ofIn obtained by striking out thek1, . . . , kmth
rows andi1, . . . , imth columns. Moreover, unless{k1, . . . , km} � {i1, . . . , im}, at
least one row of̄I

i1,...,im
k1,...,km

is null, so that

| − Īi1,...,imk1,...,km
| � | − In−m| if {k1, . . . , km} � {i1, . . . , im} ,
� 0, otherwise.

Therefore,

| − Ī
{i1,...,im}

, B|
� (−1)i1+···+im+(n−m+1)+···+(n−1)+n|B{i1,...,im}|| − In−m|
� (−1)i1+···+im+(n−m+1)+···+(n−1)+n|B{i1,...,im}|(−1)n−m

� (−1)i1+···+im+(n−m)+···+(n−1)+n|B{i1,...,im}| . (8.6)
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Finally, substituting from result (8.6) in expression (8.5), we obtain

|C| �
∑

{i1,...,im}
(−1)1+···+m+2(i1+···+im)+(n−m)+···+(n−1)+n

·|A{i1,...,im}||B{i1,...,im}|
�

∑
{i1,...,im}

(−1)2(i1+···+im)+n(m+1)|Ai1,...,im}||B{i1,...,im}| ,

which, together with result (8.4), implies that

|AB| �
∑

{i1,...,im}
(−1)2(i1+···+im)|A{i1,...,im}||B{i1,...,im}|

�
∑

{i1,...,im}
|A{i1,...,im}||B{i1,...,im}| .

Q.E.D.
Formula (8.3) is sometimes called theBinet-Cauchy formula. In the special case

wherem � n, it reduces to the formula|AB| � |A||B|, given by Theorem 13.3.4.
Note (in light of Lemma 4.4.3 and Corollary 4.4.5) that the rank of the product
AB of anm× n matrix A and ann×m matrix B is at mostn, implying (in light
of Theorem 13.3.7) that|AB| � 0 if m > n.

Exercises

Section 13.1

1. Let

A �



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 .

(a) Write out all of the pairs that can be formed from the four boxed elements
of A.

(b) Indicate which of the pairs from Part (a) are positive and which are negative.

(c) Use formula (1.1) to compute the number of pairs from Part (a) that are
negative, and check that the result of this computation is consistent with
your answer to Part (b).
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Section 13.2

2. Consider then× n matrix

A �



x + λ x . . . x

x x + λ x
...

...
x x x + λ


 .

Use Theorem 13.2.10 to show that

|A| � λn−1(nx + λ) .

(Hint. Add the lastn− 1 columns ofA to the first column, and then subtract
the first row of the resultant matrix from each of the lastn− 1 rows).

Section 13.3

3. LetA represent ann× n nonsingular matrix. Show that if the elements ofA
andA−1 are all integers, then|A| � ±1.

4. LetT represent anm×mmatrix,U anm× nmatrix,V ann×mmatrix, and
W ann× n matrix. Show that ifT is nonsingular, then∣∣∣∣V W

T U

∣∣∣∣ �
∣∣∣∣U T
W V

∣∣∣∣ � (−1)mn|T||W− VT−1U| .

Section 13.5

5. Compute the determinant of the 4× 4 matrix

A �




0 4 0 5
1 0 −1 2
0 3 0 −2
0 0 −6 0




in each of the following two ways:

(a) by finding and summing the nonzero terms in expression (1.2) or (1.6);

(b) by repeated expansion in terms of cofactors [use formula (5.1) or (5.2) to
expand|A| in terms of the determinants of 3× 3 matrices, to expand the
determinants of the 3× 3 matrices in terms of the determinants of 2× 2
matrices, and finally to expand the determinants of the 2× 2 matrices in
terms of the determinants of 1× 1 matrices].

6. Let A � {aij } represent ann × n matrix. Verify that if A is symmetric, then
the matrix of cofactors (ofA) is also symmetric.

7. LetA represent ann× n matrix.
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(a) Show that ifA is singular, then adj(A) is singular.

(b) Show that det[adj(A)] � [det(A)]n−1.

8. Use formula (5.7) to verify formula (8.1.2) for the inverse of a 2×2 nonsingular
matrix.

9. Let

A �

 2 0 −1
−1 3 1

0 −4 5


 .

(a) Compute the cofactor of each element ofA.

(b) Compute|A| by expanding|A| in terms of the cofactors of the elements
of the second row ofA, and then check your answer by expanding|A| in
terms of the cofactors of the elements of the second column ofA.

(c) Use formula (5.7) to computeA−1.

10. LetA � {aij } represent ann× n matrix (wheren ≥ 2), and letαij represent
the cofactor ofaij .

(a) Show [by, for instance, making use of the result of Part (b) of Exercise 11.3]
that if rank(A) = n−1, then there exists a scalarc such that adj(A) � cxy′,
wherex � {xj } and y � {yi} are any nonnulln-dimensional column
vectors such thatAx � 0 andA′y � 0. Show also thatc is nonzero and is
expressible asc � αij /(yixj ) for anyi andj such thatyi �� 0 andxj �� 0.

(b) Show that if rank(A) ≤ n− 2, then adj(A) � 0.

11. LetA represent ann× n nonsingular matrix andb ann× 1 vector. Show that
the solution to the linear systemAx � b (in x) is then × 1 vector whosej th
component is

|Aj |/|A| ,
whereAj is a matrix formed fromA by substitutingb for thej th column of
A (j � 1, . . . , n). [This result is called Cramer’s rule, after Gabriel Cramer
(1704–1752).]

12. Letc represent a scalar, letx andy representn× 1 vectors, and letA represent
ann× n matrix.

(a) Show that ∣∣∣∣A y
x′ c

∣∣∣∣ � c|A| − x′ adj(A) y . (E.1)
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(b) Show that, in the special case whereA is nonsingular, result (E.1) can be
reexpressed as ∣∣∣∣A y

x′ c

∣∣∣∣ � |A|(c − x′A−1y) ,

in agreement with result (3.13).

Section 13.6

13. LetVk represent the (n − 1)× (n − 1) submatrix of then × n Vandermonde
matrix

V �




1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

...
...

...
...

1 xn x2
n . . . xn−1

n




(wherex1, x2, . . . , xn are arbitrary scalars) obtained by striking out thekth row
and thenth (last) column (ofV). Show that

|V| � |Vk|(−1)n−k
∏
i ��k

(xk − xi) .

Section 13.8

14. Show that, forn× n matricesA andB,

adj(AB) � adj(B)adj(A)

[Hint. Use the Binet-Cauchy formula to establish that theij th elements of
adj(AB) and adj(B)adj(A) are equal.]
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14
Linear, Bilinear, and Quadratic Forms

This chapter is devoted to certain functions (of ann-dimensional vector) that are
defined in Section 14.1 and that are known as linear, bilinear, and quadratic forms.
Those bilinear forms that have certain properties (known as symmetry and positive
definiteness) are of interest (at least in part) because they qualify as inner products
for Rn (as is discussed in Section 14.10). Quadratic (and bilinear) forms are of
considerable relevance in statistics; the “sums of squares (or products)” in an
analysis of variance (or covariance) table are quadratic (or bilinear) forms.

14.1 Some Terminology and Basic Results

Let a � (a1, . . . , an)′ represent an arbitraryn-dimensional column vector, and
consider the function that assigns to each vectorx � (x1, . . . , xn)′ in Rn the value
a′x � ∑i aixi . A function of x (with domainRn) that is expressible asa′x for
some vectora is called alinear form (in x). Thus, a linear form is a homogeneous
polynomial of degree one. Note that the linear forma′x can be reexpressed asx′a.
It is customary to refer toa1, . . . , an as thecoefficients of the linear form and to
the row or column vectora′ or a as thecoefficient vector.

A function, sayf (x), ofx (with domainRn) is said to belinear if (1) f (x1+x2) �
f (x1) + f (x2) for all vectorsx1 andx2 in Rn, and (2)f (cx) � cf (x) for every
scalarc and every vectorx in Rn. Or, equivalently,f (x) is linear if

f (c1x1 + c2x2 + · · · + ckxk) � c1f (x1)+ c2f (x2)+ · · · + ckf (xk)

for all scalarsc1, c2, . . . , ck and all (n-dimensional) vectorsx1, x2, . . . , xk (where
k is an integer greater than or equal to 2).
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A linear forma′x �∑i aixi is a linear function ofx � (x1, . . . , xn)′, as is easily
verified. The converse is also true; that is, a linear functionf (x) of x is expressible
as a linear form (inx). To see this, takeai � f (ei), whereei is theith column of
In (i � 1, . . . , n), and observe that

f (x) � f (x1e1 + x2e2 + · · · + xnen)
� x1f (e1)+ x2f (e2)+ · · · + xnf (en)

� a1x1 + a2x2 + · · · + anxn � a′x .

If the coefficient vectorsa � (a1, . . . , an)′ andb � (b1, . . . , bn)′ of two linear
formsa′x andb′x (in x) are equal, then clearly the two linear forms are identically
equal (i.e., equal for allx). Conversely, if the two linear formsa′x andb′x are
identically equal, thena � b, as is evident from Lemma 2.3.2.

Now, letA � {aij } represent an arbitrarym×nmatrix, and consider the function
that assigns to each pair of vectorsx � (x1, . . . , xm)′ andy � (y1, . . . , yn)′ (in Rm

andRn, respectively) the valuex′Ay �∑i,j aij xixj . A function ofx andy that is
expressible in the formx′Ay is called abilinear form (in x andy). Thus, a bilinear
form is a special kind of second-degree homogeneous polynomial (in them + n
variablesx1, . . . , xm, y1, . . . , yn) — one which, for fixedx, is homogeneous of
first degree iny1, . . . , yn and which, for fixedy, is homogeneous of first degree in
x1, . . . , xm. It is customary to refer toA as thematrix of the bilinear form x′Ay.
Note that the bilinear formx′Ay can be reexpressed asy′A′x — a bilinear form in
y andx whose matrix isA′.

A function, sayf (x, y), of x andy is said to bebilinear if, for every fixedx, it is
a linear function ofy and if, for every fixedy, it is a linear function ofx. For every
fixedy, the bilinear formx′Ay is a linear form inx — one with coefficient vectorAy.
(And, for every fixedx, x′Ay is a linear form iny.) Since (as noted earlier) a linear
form is a linear function, a bilinear form is a bilinear function. Conversely, any
bilinear function is expressible as a bilinear form. To see this, letf (x, y) represent
an arbitrary bilinear function inx � (x1, . . . , xm)′ andy � (y1, . . . , yn)′, and take
A to be them× nmatrix with ij th elementaij � f (ei , uj ), whereei denotes the
ith column ofIm, anduj thej th column ofIn. Then,

f (x, y) � f (
∑
i

xiei , y) �
∑
i

xif (ei , y)

�
∑
i

xif (ei ,
∑
j

yjuj )

�
∑
i

xi
∑
j

yjf (ei ,uj ) �
∑
i,j

aij xiyj � x′Ay .

If the coefficient matricesA � {aij } and B � {bij } of two bilinear forms
x′Ay and x′By (in x and y) are equal, then clearly the two bilinear forms are
identically equal (i.e., equal for allx andy). Conversely, if the two bilinear forms
are identically equal, thenA � B, as is evident upon observing that, forx � ei
(theith column ofIn) andy � uj (thej th column ofIn) aij � x′Ay � x′By � bij
(i � 1, . . . , m; j � 1, . . . , n).
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A bilinear form x′Ay in vectorsx � (x1, . . . , xn)′ andy � (y1, . . . , yn)′ (of
the same dimensions) is said to besymmetric if x′Ay � y′Ax for all x and y.
Sincey′Ax � (y′Ax)′ � x′A′y, the bilinear formx′Ay is symmetric if and only if
x′Ay � x′A′y for all x andy and hence if and only ifA � A′. Thus, the bilinear
form is symmetric if and only if the matrix of the bilinear form is symmetric.

Finally, let A � {aij } represent an arbitraryn × n matrix, and consider the
function that assigns to each vectorx � (x1, . . . , xn)′ (in Rn) the value

x′Ax �
∑
i,j

aij xixj �
∑
i

aix
2
i +

∑
i,j ��i

aij xixj .

A function of x that is expressible in the formx′Ax is called aquadratic form
(in x). Thus, a quadratic form is a homogeneous polynomial of degree two. It is
customary to refer toA as thematrix of the quadratic form x′Ax. Clearly, the
quadratic formx′Ax can be obtained from the bilinear formx′Ay (in x andy)
simply by settingy � x.

Let B � {bij } represent a secondn × n matrix. Under what circumstances
are the two quadratic formsx′Ax andx′Bx identically equal? Clearly, a sufficient
condition forx′Ax ≡ x′Bx is thatA � B. However, except in the special case
n � 1, A � B is not a necessary condition.

For the purpose of establishing a necessary condition, suppose thatx′Ax ≡ x′Bx.
Settingx equal to theith column ofIn, we find that

aii � x′Ax � x′Bx � bii (i � 1, . . . , n) . (1.1)

That is, the diagonal elements ofA are the same as those ofB. Consider now the
off-diagonal elements ofA andB. Settingx equal to then-dimensional column
vector whoseith andj th elements equal one and whose remaining elements equal
zero, we find that

aii + aij + aji + ajj
� x′Ax � x′Bx � bii + bij + bji + bjj (j �� i � 1, . . . , n) . (1.2)

Together, results (1.1) and (1.2) imply that

aii � bii, aij + aji � bij + bji (j �� i � 1, . . . , n)

or equivalently that
A+ A′ � B+ B′ . (1.3)

Thus, condition (1.3) is a necessary condition forx′Ax andx′Bx to be identically
equal. It is also a sufficient condition. To see this, observe that (since a 1×1 matrix
is symmetric) condition (1.3) implies that

x′Ax � (1/2)[x′Ax+ (x′Ax)′] � (1/2)(x′Ax+ x′A′x)
� (1/2)x′(A+ A′)x
� (1/2)x′(B+ B′)x
� (1/2)[x′Bx+ (x′Bx)′] � x′Bx .
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In summary, we have the following lemma.
Lemma 14.1.1. LetA � {aij } andB � {bij } represent arbitraryn×nmatrices.

The two quadratic formsx′Ax andx′Bx (in x) are identically equal if and only if,
for j �� i � 1, . . . , n, aii � bii andaij + aji � bij + bji or, equivalently, if and
only if A+ A′ � B+ B′.

Note that Lemma 14.1.1 implies in particular thatx′A′x � x′Ax for all x.
When B is symmetric, the conditionA + A′ � B + B′ is equivalent to the

conditionB � (1/2)(A+A′), and, when bothA andB are symmetric, the condition
A+A′ � B+B′ is equivalent to the conditionA � B. Thus, we have the following
two corollaries of Lemma 14.1.1.

Corollary 14.1.2. Corresponding to any quadratic formx′Ax, there is a unique
symmetric matrixB such thatx′Bx � x′Ax for all x, namely, the matrixB �
(1/2)(A+ A′).

Corollary 14.1.3. For any pair ofn × n symmetric matricesA andB, the two
quadratic formsx′Ax andx′Bx (in x) are identically equal (i.e.,x′Ax � x′Bx for
all x) if and only if A � B.

As a special case of Corollary 14.1.3 (that whereB � 0), we have the following,
additional corollary.

Corollary 14.1.4. Let A represent ann× n symmetric matrix. Ifx′Ax � 0 for
every (n× 1) vectorx, thenA � 0.

14.2 Nonnegative Definite Quadratic Forms and
Matrices

a. Definitions

Let x′Ax represent an arbitrary quadratic form [in ann-dimensional vectorx �
(x1, . . . , xn)′]. The quadratic formx′Ax is said to benonnegative definite if x′Ax ≥
0 for everyx in Rn.

Note thatx′Ax � 0 for at least one value ofx, namely,x � 0. If x′Ax is nonneg-
ative definite and if, in addition, the null vector0 is the only value ofx for which
x′Ax � 0, thenx′Ax is said to bepositive definite. That is,x′Ax is positive definite
if x′Ax > 0 for everyx exceptx � 0. A quadratic form that is nonegative defi-
nite, but not positive definite, is calledpositive semidefinite. Thus,x′Ax is positive
semidefinite ifx′Ax ≥ 0 for everyx ∈ Rn andx′Ax � 0 for some nonnullx.

Consider, for example, the two quadratic formsx′Ix � x2
1 + x2

2 + · · · + x2
n and

x′Jx � x′11′x � (1′x)′ 1′x � (x1 + x2 + · · · + xn)2. Clearly,x′Ix andx′Jx are
both nonnegative definite. Moreover,x′Ix > 0 for all nonnullx, while (assuming
thatn ≥ 2) x′Jx � 0 for the nonnull vectorx � (1− n,1,1, . . . ,1)′. Thus,x′Ix
is positive definite, andx′Jx is positive semidefinite.

The quadratic formx′Ax is said to benonpositive definite, negative definite, or
negative semidefinite if −x′Ax is nonnegative definite, positive definite, or positive
semidefinite, respectively. Thus,x′Ax is nonpositive definite ifx′Ax ≤ 0 for every
x in Rn, is negative definite ifx′Ax < 0 for every nonnullx in Rn, and is negative
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semidefinite ifx′Ax ≤ 0 for everyx in Rn andx′Ax � 0 for some nonnullx.
A quadratic form that is neither nonnegative definite nor nonpositive definite is

said to beindefinite. Thus,x′Ax is indefinite ifx′Ax < 0 for somex andx′Ax > 0
for some (other)x.

The terms nonnegative definite, positive definite, positive semidefinite, nonpos-
itive definite, negative definite, negative semidefinite, and indefinite are applied to
matrices as well as to quadratic forms. Ann × n matrix A is said to benonneg-
ative definite, positive definite, or positive semidefinite if the quadratic formx′Ax
(in x) is nonnegative definite, positive definite, or positive semidefinite, respec-
tively. Similarly,A is said to benonpositive definite, negative definite, or negative
semidefinite if the quadratic formx′Ax is nonpositive definite, negative definite,
or negative semidefinite, respectively, or equivalently if−A is nonnegative defi-
nite, positive definite, or positive semidefinite. Further,A is said to be indefinite
if the quadratic formx′Ax is indefinite or equivalently ifA is neither nonnegative
definite nor nonpositive definite.

(Symmetric) nonnegative definite matrices are encountered with considerable
frequency in linear statistical models and in other areas of statistics. In particular,
the variance-covariance matrix of any random vector is inherently nonnegative
definite (and symmetric).

Our usage of the terms nonnegative definite, positive definite, positive semidef-
inite, nonpositive definite, negative definite, negative semidefinite, and indefinite
differs somewhat from that employed in various other presentations. In particular,
we apply these terms to both symmetric and nonsymmetric matrices, whereas in
many other presentations their application to matrices is confined to symmetric ma-
trices. Moreover, our usage of the terms positive semidefinite and negative semidef-
inite is not completely standard. In some presentations, these terms are used in the
same way that nonnegative definite and nonpositive definite are being used here.

It is instructive to consider the following lemma, which characterizes the con-
cepts of nonnegative definiteness, positive definiteness, and positive semidefinite-
ness as applied to diagonal matrices and which is easy to verify.

Lemma 14.2.1. Let D � {di} represent ann× n diagonal matrix. Then, (1)D
is nonnegative definite if and only ifd1, . . . , dn are nonnegative; (2)D is positive
definite if and only ifd1, . . . , dn are positive; and (3)D is positive semidefinite if
and only ifdi ≥ 0 fori � 1, . . . , nwith equality holding for one or more values ofi.

Suppose that ann × n symmetric matrixA is both nonnegative definite and
nonpositive definite. Then, for everyn × 1 vectorx, x′Ax ≥ 0 and−x′Ax ≥ 0
(or equivalentlyx′Ax ≤ 0). We conclude thatx′Ax � 0 for everyx and hence (in
light of Corollary 14.1.4) thatA � 0. Thus, we have the following lemma.

Lemma 14.2.2. The onlyn × n symmetric matrix that is both nonnegative
definite and nonpositive definite is then× n null matrix.

b. Some basic properties of nonnegative definite matrices

We now consider some of the more elementary properties of nonnegative defi-
nite matrices. We do not explicitly consider the properties of nonpositive definite
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matrices. However, sinceA is nonpositive definite, negative definite, or negative
semidefinite if and only if−A is nonnegative definite, positive definite, or positive
semidefinite, respectively, the properties of nonpositive definite matrices can be
readily deduced from those of nonnegative definite matrices.

The following two lemmas give some basic results on scalar multiples and sums
of nonnegative definite matrices.

Lemma 14.2.3. Letk > 0 represent a (positive) scalar, andA ann×nmatrix. If
A is positive definite, thenkA is also positive definite; ifA is positive semidefinite,
thenkA is also positive semidefinite.

Proof. Consider the quadratic formsx′Ax andx′(kA)x (in x). Clearly,x′(kA)x
� kx′Ax. Thus, ifx′Ax is positive definite, thenx′(kA)x is positive definite; sim-
ilarly, if x′Ax is positive semidefinite, thenx′(kA)x is positive semidefinite. Or,
equivalently, ifA is positive definite, then,kA is positive definite; and ifA is
positive semidefinite, thenkA is positive semidefinite. Q.E.D.

Lemma 14.2.4. Let A andB representn × n matrices. IfA andB are both
nonnegative definite, thenA+ B is nonnegative definite. Moreover, if eitherA or
B is positive definite and the other is nonnegative definite (i.e., positive definite or
positive semidefinite), thenA+ B is positive definite.

Proof. Suppose that one of the two matrices, sayA, is positive definite and
that the other (B) is nonnegative definite. Then, for every nonnull vectorx in R,
x′Ax > 0 andx′Bx ≥ 0, and hence

x′(A+ B)x � x′Ax+ x′Bx > 0 .

Thus,A+ B is positive definite.
A similar argument shows that ifA andB are both nonnegative definite, then

A+ B is nonnegative definite. Q.E.D.
The repeated application of Lemma 14.2.4 leads to the following generalization.
Corollary 14.2.5. Let A1, . . . ,Ak representn × n matrices. IfA1, . . . ,Ak are

all nonnegative definite, then their sumA1+· · ·+Ak is also nonnegative definite.
Moreover, if one or more of the matricesA1, . . . ,Ak is positive definite and the
others are nonnegative definite, thenA1 + · · · + Ak is positive definite.

As an essentially immediate consequence of Lemma 14.1.1, we have the fol-
lowing lemma and corollary.

Lemma 14.2.6. Let A represent ann × n matrix, and takeB to be anyn × n

matrix such thatB+ B′ � A +A′. Then,A is positive definite if and only ifB is
positive definite, is positive semidefinite if and only ifB is positive semidefinite,
and is nonnegative definite if and only ifB is nonnegative definite.

Corollary 14.2.7. An n × n matrix A is positive definite if and only ifA′ is
positive definite and if and only if (1/2)(A + A′) is positive definite; is positive
semidefinite if and only ifA′ is positive semidefinite and if and only if (1/2)(A+A′)
is positive semidefinite; and is nonnegative definite if and only ifA′ is nonnegative
definite and if and only if (1/2)(A + A′) is nonnegative definite.

If A is a symmetric matrix, thenA′ � A and (1/2)(A + A′) � A. Thus, it
is only in the case of a nonsymmetric positive definite, positive semidefinite, or
nonnegative definite matrix that Corollary 14.2.7 is meaningful.
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A basic property of positive definite matrices is described in the following
lemma.

Lemma 14.2.8. Any positive definite matrix is nonsingular.
Proof. Let A represent ann × n positive definite matrix. For purposes of

establishing a contradiction, suppose thatA is singular or, equivalently, that
rank(A) < n. Then, the columns ofA are linearly dependent, and hence there
exists a nonnull vectorx∗ such thatAx∗ � 0. We find that

x′∗Ax∗ � x′∗(Ax∗) � x′∗0 � 0 ,

which (sinceA is positive definite) establishes the desired contradication. Q.E.D.
Lemma 14.2.8 implies that singular nonnegative definite matrices are positive

semidefinite. However, the converse is not necessarily true. That is, there exist
nonsingular positive semidefinite matrices as well as singular positive semidefinite
matrices.

Additional basic properties of nonnegative definite matrices are described in the
following theorem and corollaries.

Theorem 14.2.9. LetA represent ann×nmatrix, andP ann×mmatrix. (1) IfA
is nonnegative definite, thenP′AP is nonnegative definite. (2) IfA is nonnegative
definite and rank(P) < m, thenP′AP is positive semidefinite. (3) IfA is positive
definite and rank(P) � m, thenP′AP is positive definite.

Proof. Suppose thatA is nonnegative definite (either positive definite or positive
semidefinite). Then,y′Ay ≥ 0 for everyy in Rn and in particular for everyy that
is expressible in the formPx. Thus, for everym-dimensional vectorx,

x′(P′AP)x � (Px)′APx ≥ 0 , (2.1)

which establishes thatP′AP is nonnegative definite, thereby completing the proof
of Part (1).

If rank(P) < m, then

rank(P′AP) ≤ rank(P) < m ,

which (in light of Lemma 14.2.8) establishes thatP′AP is not positive definite
and hence (sinceP′AP is nonnegative definite) thatP′AP is positive semidefinite,
thereby completing the proof of Part (2).

If A is positive definite, then equality is attained in inequality (2.1) only when
Px � 0. Moreover, if rank(P) � m, then (in light of Lemma 11.3.1)Px � 0
implies x � 0. Thus, if A is positive definite and rank(P) � m, then equality is
attained in inequality (2.1) only whenx � 0, implying (sinceP′AP is nonnegative
definite) thatP′AP is positive definite. Q.E.D.

Corollary 14.2.10. Let A represent ann×nmatrix andP ann×n nonsingular
matrix. (1) IfA is positive definite, thenP′AP is positive definite. (2) IfA is positive
semidefinite, thenP′AP is positive semidefinite.

Proof. (1) ThatP′AP is positive definite ifA is positive definite is a direct
consequence of Part (3) of Theorem 14.2.9.
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(2) Suppose thatA is positive semidefinite. Then, according to Part (1) of The-
orem 14.2.9,P′AP is nonnegative definite. Further, there exists a nonnull vectory
such thaty′Ay � 0. Letx � P−1y. Then,y � Px, and we find thatx �� 0 (since,
otherwise, we would have thaty � 0) and that

x′(P′AP)x � (Px)′APx � y′Ay � 0 .

We conclude thatP′AP is positive semidefinite. Q.E.D.
Corollary 14.2.11. (1) A positive definite matrix is invertible, and its inverse

is positive definite. (2) If a positive semidefinite matrix is nonsingular, then it is
invertible and its inverse is positive semidefinite.

Proof. (1) LetA represent a positive definite matrix. Then, according to Lemma
14.2.8,A is nonsingular and hence (according to Theorem 8.1.4) invertible. Since
(A−1)′ � (A−1)′AA−1, it follows from Part (1) of Corollary 14.2.10 [together with
result (2.5)] that (A−1)′ is positive definite and hence (in light of Corollary 14.2.7)
thatA−1 is positive definite.

(2) By employing similar reasoning, it can be shown that Part (2) of Corollary
14.2.11 follows from Part (2) of Corollary 14.2.10. Q.E.D.

Corollary 14.2.12. Any principal submatrix of a positive definite matrix is
positive definite; any principal submatrix of a positive semidefinite matrix is non-
negative definite.

Proof. Let A represent ann × n matrix, and consider the principal subma-
trix of A obtained by striking out all of its rows and columns except itsi1,
i2, . . . , imth rows and columns (wherei1 < i2 < · · · < im). This submatrix
is expressible asP′AP, whereP is the n × m matrix whose columns are the
i1, i2, . . . , imth columns ofIn. Since rank(P) � m, it follows from Part (3)
of Theorem 14.2.9 thatP′AP is positive definite ifA is positive definite. Fur-
ther, it follows from Part (1) of Theorem 14.2.9 thatP′AP is nonnegative def-
inite if A is nonnegative definite (and, in particular, ifA is positive semidefi-
nite). Q.E.D.

Corollary 14.2.13. The diagonal elements of a positive definite matrix are pos-
itive; the diagonal elements of a positive semidefinite matrix are nonnegative.

Proof. This corollary follows immediately from Corollary 14.2.12 upon observ-
ing (1) that theith diagonal element of a (square) matrixA is the element of a
1×1 principal submatrix (that obtained by striking out all of the rows and columns
of A except theith row and column) and (2) that the element of a 1× 1 positive
definite matrix is positive and the element of a 1× 1 nonnegative definite matrix
is nonnegative. Q.E.D.

Corollary 14.2.14. LetP represent an arbitraryn×mmatrix. Them×mmatrix
P′P is nonnegative definite. If rank(P) � m, P′P is positive definite; otherwise [if
rank(P) < m], P′P is positive semidefinite.

Proof. This corollary follows from Theorem 14.2.9 upon observing thatP′P �
P′IP and that (as demonstrated in Subsection a)I is positive definite. Q.E.D.

Corollary 14.2.15. Let P represent ann× n nonsingular matrix andD � {di}
ann × n diagonal matrix. Then, (1)P′DP is nonnegative definite if and only if
d1, . . . , dn are nonnegative; (2)P′DP is positive definite if and only ifd1, . . . , dn are
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positive; and (3)P′DP is positive semidefinite if and only ifdi ≥ 0 for i � 1, . . . , n
with equality holding for one or more values ofi.

Proof. Let A � P′DP. Then, clearly,D � (P−1)′AP−1. Thus, it follows from
Part (1) of Theorem 14.2.9 thatA is nonnegative definite if and only ifD is
nonnegative definite; and it follows, respectively, from Parts (1) and (2) of Corollary
14.2.10 thatA is positive definite if and only ifD is positive definite and thatA is
positive semidefinite if and only ifD is positive semidefinite. In light of Lemma
14.2.1, the proof is complete. Q.E.D.

Corollary 14.2.16. Let A represent ann × n symmetric matrix andD � {di}
ann× n diagonal matrix such thatP′AP � D for somen× n nonsingular matrix
P. Then, (1)A is nonnegative definite if and only ifd1, . . . , dn are nonnegative;
(2) A is positive definite if and only ifd1, . . . , dn are positive; and (3)A is positive
semidefinite if and only ifdi ≥ 0 for i � 1, . . . , n with equality holding for one
or more values ofi.

Proof. Corollary 14.2.16 follows from Corollary 14.2.15 upon observing that
A � (P−1)′DP−1. Q.E.D.

Note that Corollaries 14.2.15 and 14.2.16 can be regarded as generalizations of
Lemma 14.2.1.

c. The nonnegative definiteness of symmetric idempotent matrices

Suppose thatA is a symmetric idempotent matrix. Then,A � AA � A′A, and it
follows from Corollary 14.2.14 thatA is nonnegative definite. Thus, we have the
following lemma.

Lemma 14.2.17. Every symmetric idempotent matrix is nonnegative definite.
Note (in light of Lemmas 14.2.8 and 10.1.1) that then× n identity matrixIn is

the onlyn×n idempotent matrix (symmetric or otherwise) that is positive definite.

14.3 Decomposition of Symmetric and Symmetric
Nonnegative Definite Matrices

According to Corollary 14.2.14, every matrixA that is expressible in the form
A � P′P is a (symmetric) nonnegative definite matrix. Is the converse true? That is,
is every symmetric nonnegative definite matrixA expressible in the formA � P′P?
In Subsection b, it is established that the answer to this question is yes.

As a preliminary, consideration is given to a closely related question, which
is of some interest in its own right. Is a symmetric matrixA expressible in
the form A � P′DP, whereP is a nonsingular matrix andD a diagonal ma-
trix? In Subsection a, it is established that the answer to this question is also
yes.

In what follows, it will be convenient to have at our disposal the following
lemma.

Lemma 14.3.1. LetA represent ann×nmatrix andD ann×n diagonal matrix
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such thatA � PDQ for somen× n nonsingular matricesP andQ. Then, rank(A)
equals the number of nonzero diagonal elements inD.

Proof. Making use of Corollary 8.3.3, we find that

rank(A) � rank(PDQ) � rank(DQ) � rank(D) .

Moreover, rank(D) equals the number of nonzero diagonal elements inD. Q.E.D.

a. Decomposition of symmetric matrices

Let us begin by establishing the following two lemmas.
Lemma 14.3.2. Let A � {aij } represent ann × n symmetric matrix (where

n ≥ 2). DefineB � {bij } � L′AL, whereL is ann × n unit lower triangular

matrix of the formL �
(

1 0
� In−1

)
. PartitionA asA �

(
a11 a′

a A22

)
. Suppose

that a11 � 0, but thata �� 0 or, equivalently, thata1j �� 0 for somej (greater
than 1), sayj � k. Then, the (n− 1)-dimensional vector� can be chosen so that
b11 �� 0; this can be done by taking the (k − 1)th element of� to be any nonzero
scalarc such thatcakk �� −2a1k and by taking the othern− 2 elements of� to be
zero.

Proof. Sincea1k �� 0, there exists (whether or notakk � 0) a nonzero scalarc
such thatcakk �� −2a1k. Taking the (k− 1)th element of� to be any such nonzero
scalarc and the remaining elements of� to be zero, we find that

b11 � a11+ �′a+ a′�+ �′A22�

� 0+ cak1 + ca1k + c2akk

� c(cakk + 2a1k) �� 0 .
Q.E.D.

Lemma 14.3.3. Let A � {aij } represent ann × n symmetric matrix (where
n ≥ 2). DefineB � {bij } � U′AU, whereU is ann × n unit upper triangular

matrix of the formU �
(

1 u′

0 In−1

)
. PartitionB andA asB �

(
b11 b′

b B22

)
and

A �
(
a11 a′

a A22

)
. Suppose thata11 �� 0. Then, the (n− 1)-dimensional vectoru

can be chosen so thatb � 0; this can be done by takingu � −a−1
11 a.

Proof. We find that

b � (u, I)A
(

1
0

)
� a11u+ a ,

which, foru � −a−1
11 a, givesb � a− a � 0. Q.E.D.

We are now in a position to establish the following theorem.
Theorem 14.3.4. Corresponding to anyn× n symmetric matrixA, there exists

a nonsingular matrixQ such thatQ′AQ is a diagonal matrix.
Proof. The proof is by mathematical induction. The theorem is clearly true for

any 1× 1 matrix. Suppose now that it is true for any (n− 1)× (n− 1) symmetric
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matrix, and consider an arbitraryn×n symmetric matrixA � {aij }. For purposes
of establishing the existence of a nonsingular matrixQ such thatQ′AQ is diagonal,

it is convenient to partitionA asA �
(
a11 a′

a A22

)
and to proceed case-by-case.

Case (1): a � 0. The submatrixA22 is an (n−1)×(n−1) matrix. Thus, by suppo-
sition, there exists a nonsingular matrixQ∗ such thatQ′

∗A22Q∗ is a diagonal matrix.
TakeQ � diag(1,Q∗). Then,Q is nonsingular, andQ′AQ � diag(a11,Q′

∗A22Q∗),
which (like Q′

∗A22Q∗) is a diagonal matrix.
Case (2): a �� 0 and a11 �� 0. According to Lemma 14.3.3, there exists a unit

upper triangular matrixU such thatU′AU � diag(b11,B22) for some scalarb11

and some (n − 1)× (n − 1) matrix B22. Moreover, by supposition, there exists
a nonsingular matrixQ∗ such thatQ′

∗B22 Q∗ is a diagonal matrix. TakeQ �
U diag(1,Q∗). Then,Q is nonsingular (sinceQ is the product of two nonsingular
matrices), and

Q′AQ � diag(1,Q′
∗) diag(b11,B22) diag(1,Q∗) � diag(b11,Q′

∗B22Q∗) ,

which (like Q′
∗B22Q∗) is a diagonal matrix.

Case (3): a �� 0, but a11 � 0. Let B � {bij } � L′AL, whereL is a unit
lower triangular matrix chosen so thatb11 �� 0 — the existence of such a choice
is guaranteed by Lemma 14.3.2. Then, according to Lemma 14.3.3, there exists a
unit upper triangular matrixU such thatU′BU � diag(c11,C22) for some scalar
c11 and some (n − 1) × (n − 1) matrix C22. Moreover, by supposition, there
exists a nonsingular matrixQ∗ such thatQ′

∗C22Q∗ is a diagonal matrix. Take
Q � LU diag(1,Q∗). Then,Q is nonsingular (sinceQ is the product of three
nonsingular matrices), and

Q′AQ � diag(1, Q′
∗)U

′BU diag(1, Q∗)
� diag(1, Q′

∗) diag(c11, C22) diag(1, Q∗) � diag(c11, Q′
∗C22Q∗) ,

which (like Q′
∗C22Q∗) is a diagonal matrix. Q.E.D.

Note that ifQ is a nonsingular matrix such thatQ′AQ � D for some diagonal
matrix D, then

A � (Q−1)′Q′AQQ−1 � (Q−1)′DQ−1 .

Thus, we have the following corollary of Theorem 14.3.4.
Corollary 14.3.5. Corresponding to anyn×n symmetric matrixA, there exists

a nonsingular matrixP and a diagonal matrixD such thatA � P′DP.
Corollary 14.3.5 leads to the following result on quadratic forms.
Corollary 14.3.6. Let A represent ann× nmatrix. Then, there exists a nonsin-

gular matrixP andn scalarsd1, . . . , dn such that the quadratic formx′Ax (in an
n-dimensional vectorx) is expressible as a linear combination

∑n
i�1 diy

2
i of the

squares of the elementsy1, . . . , yn of the transformed vectory � Px.
Proof. According to Corollary 14.1.2, there is a unique symmetric matrixB such

thatx′Ax � x′Bx for all x, namely, the matrixB � (1/2)(A +A′). And, according
to Corollary 14.3.5, there exists a nonsingular matrixP and a diagonal matrixD
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such thatB � P′DP. Thus, lettingd1, . . . , dn represent the diagonal elements of
D andy1, . . . , yn the elements of the vectory � Px, we find that

x′Ax � x′P′DPx � (Px)′DPx �
∑
i

diy
2
i .

Q.E.D.

b. Decomposition of symmetric nonnegative definite matrices

Let us now specialize to symmetric nonnegative definite matrices, beginning with
the following theorem.

Theorem 14.3.7. An n × n (nonnull) matrixA is a symmetric nonnegative
definite matrix of rankr if and only if there exists anr×nmatrixP of rankr such
thatA � P′P.

Proof. Suppose thatA is a symmetric nonnegative definite matrix of rankr.
Then, according to Corollary 14.3.5, there exists a nonsingular matrixT and a
diagonal matrixD such thatA � T′DT.

Letd1, . . . , dn represent the first,. . . ,nth diagonal elements ofD, andt′1, . . . , t′n
the first,. . . , nth rows ofT. It follows from Lemma 14.3.1 thatr of the diagonal
elements ofD, say thek1, . . . , kr th diagonal elements, are nonzero (and hence, in
light of Corollary 14.2.15, are positive). Now, takeP to be ther × nmatrix whose
ith row is

√
dki t′ki . Then,

A �
n∑
k�1

dktkt′k �
r∑
i�1

dki tki t
′
ki
�

r∑
i�1

√
dki tki (

√
dki t′ki ) � P′P ,

and rank(P) � rank(P′P) � rank(A) � r.
Conversely, if there exists anr × n matrix P of rankr such thatA � P′P, then

rank(A) � rank(P′P) � rank(P) � r ,

A is symmetric, and (according to Corollary 14.2.14)A is nonnegative defi-
nite. Q.E.D.

In light of Corollary 14.2.14 (and upon observing that0 � 0′0), we have the
following corollary of Theorem 14.3.7.

Corollary 14.3.8. Ann×nmatrixA is a symmetric nonnegative definite matrix
if and only if there exists a matrixP (havingn columns) such thatA � P′P.

As a further corollary of Theorem 14.3.7, we have the following result on
quadratic forms.

Corollary 14.3.9. Let A represent ann × n (nonnull) matrix, and letr �
rank(A + A′). Then, the quadratic formx′Ax (in ann-dimensional vectorx) is
nonnegative definite if and only if, for somer × n matrix P of rank r, x′Ax �
(Px)′Px for all x (i.e.,x′Ax is expressible as the sum of squares of the elements of
the vectorPx).

Proof. According to Corollary 14.1.2, there is a unique symmetric matrixB such
thatx′Ax � x′Bx for all x, namely, the matrixB � (1/2)(A + A′). Suppose that
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the quadratic formx′Ax, or equivalently the quadratic formx′Bx, is nonnegative
definite, in which caseB is a nonnegative definite matrix. Then, it follows from
Theorem 14.3.7 that there exists anr×nmatrixP of rankr such thatB � P′P and
hence such thatx′Bx � (Px)′Px for all x or, equivalently, such thatx′Ax � (Px)′Px
for all x.

Conversely, suppose that, for somer × n matrix P of rankr, x′Ax � (Px)′Px
for all x or, equivalently,x′Ax � x′P′Px for all x. Since (according to Theo-
rem 14.3.7 or, alternatively, according to Corollary 14.2.14)P′P is a nonnegative
definite matrix,x′P′Px, or equivalentlyx′Ax, is a nonnegative definite quadratic
form. Q.E.D.

Further implications of Theorem 14.3.7 are given in Corollaries 14.3.10 to
14.3.12.

Corollary 14.3.10. Let A represent ann× n matrix, letr � rank(A), and take
m to be any positive integer greater than or equal tor. If A is symmetric and
nonnegative definite, then there exists anm× n matrix P such thatA � P′P.

Proof. Suppose thatr > 0. (Whenr � 0, A � 0′0.) According to Theorem

14.3.7, there exists anr×nmatrixP1 such thatA � P′1P1. TakeP �
(

P1

0

)
. Then,

clearly,A � P′P. Q.E.D.
Corollary 14.3.11. For anyn×mmatrixX and anyn×n symmetric nonnegative

definite matrixA, AX � 0 if and only if X′AX � 0.
Proof. According to Corollary 14.3.8, there exists a matrixP such thatA � P′P

and hence such thatX′AX � (PX)′PX. Thus, if X′AX � 0, then (in light of
Corollary 5.3.2)PX � 0, implying thatAX � P′(PX) � 0.

ThatX′AX � 0 if AX � 0 is obvious. Q.E.D.
Corollary 14.3.12. A symmetric nonnegative definite matrix is positive definite

if and only if it is nonsingular (or, equivalently, is positive semidefinite if and only
if it is singular).

Proof. Let A represent ann× n symmetric nonnegative definite matrix. IfA is
positive definite, then we have, as an immediate consequence of Lemma 14.2.8,
thatA is nonsingular.

Suppose now that the symmetric nonnegative definite matrixA is nonsingu-
lar, and consider the quadratic formx′Ax (in x). If x′Ax � 0, then, according
to Corollary 14.3.11,Ax � 0, and consequentlyx � A−1Ax � 0. Thus, the
quadratic formx′Ax is positive definite and hence the matrixA is positive defi-
nite. Q.E.D.

As a special case of Theorem 14.3.7 (that wherer � n), we have (in light of
Corollary 14.3.12) the following corollary.

Corollary 14.3.13. An n × n matrix A is a symmetric positive definite matrix
if and only if there exists a nonsingular matrixP such thatA � P′P.

Corollary 14.3.13 is a variant of Theorem 14.3.7 that is specific to symmetric
positive definite matrices. Similarly, the following corollary is a variant of Corol-
lary 14.3.9 that is specific to positive definite quadratic forms.

Corollary 14.3.14. A quadratic formx′Ax (in an n-dimensional vectorx) is
positive definite if and only if, for somen×nnonsingular matrixP,x′Ax � (Px)′Px
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for all x (i.e., x′Ax is expressible as the sum of squares of the elements of the
vectorPx).

Proof. If x′Ax is positive definite, then (according to Corollary 14.2.7)
(1/2)(A + A′) is positive definite and hence (in light of Lemma 14.2.8) is of
rankn, so that it follows from Corollary 14.3.9 that, for somen × n nonsingular
matrix P, x′Ax � (Px)′Px for all x. Conversely, if for somen × n nonsingular
matrixP, x′Ax � (Px)′Px for all x, then, since (according to Corollary 14.2.14 or
Corollary 14.3.13)P′P is positive definite,x′Ax (which equalsx′P′Px) is positive
definite. Q.E.D.

14.4 Generalized Inverses of Symmetric Nonnegative
Definite Matrices

A symmetric positive definite matrix is invertible, and its inverse is positive def-
inite and symmetric [Corollary 14.2.11 and result (8.2.4)]. A symmetric positive
semidefinite matrix is not invertible (Corollary 14.3.12). What is the nature of a
generalized inverse of a symmetric positive semidefinite matrix? In particular, are
some or all of the generalized inverses of a symmetric positive semidefinite matrix
nonnegative definite?

Let A represent ann× n matrix of rankr, and suppose that

A � PDQ , (4.1)

whereP andQ are (n×n) nonsingular matrices andD � {di} is ann×n diagonal
matrix. According to Lemma 14.3.1,r of the diagonal elements ofD, say thei1,
. . . , ir th diagonal elements, are nonzero and the othern − r diagonal elements
of D equal zero. LetS � {i1, i2, . . . , ir} and denote bȳS the set whose elements
consist of thosen− r of the firstn positive integers 1,2, . . . , n not contained inS.

Let D∗ represent ann× n matrix of the general form

D∗ � diag(d∗1 , d
∗
2 , . . . , d

∗
n ) ,

where, fori ∈ S, d∗i � 1/di and, fori ∈ S̄, d∗i is an arbitrary scalar. Note thatD∗

is a generalized inverse ofD.
DefineG � Q−1D−P−1 andG∗ � Q−1D∗P−1. According to Lemma 9.2.4,G

is a generalized inverse ofA. In particular,G∗ is a generalized inverse ofA.
Suppose now thatA is symmetric and that decomposition (4.1) is such that

P � Q′, so that decomposition (4.1) is of the form

A � Q′DQ . (4.2)

Then, in light of result (8.2.3),

G∗ � Q−1D∗(Q−1)′ . (4.3)
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Thus,G∗ is a symmetric generalized inverse ofA. Moreover, ifd∗i is chosen to be
nonzero for everyi in S̄, thenG∗ is a (symmetric) nonsingular generalized inverse
of A.

Next, suppose thatA is nonnegative definite, as well as symmetric — and con-
tinue to suppose thatP � Q′ and hence that decomposition (4.1) is of the form
(4.2). Then it follows from Corollary 14.2.15 thatd∗i > 0 for everyi in S. Thus,
if d∗i is chosen to be greater than zero for everyi in S̄, then (in light of Corollary
14.2.15)G∗ is a symmetric positive definite generalized inverse ofA. (If di is
chosen to be greater than or equal to zero for alli in S̄ and equal to zero for at least
onei in S̄, thenG∗ is positive semidefinite; ifdi is chosen to be less than zero for
at least onei in S̄, then — assuming thatA is nonnull —G∗ is indefinite.) Since
(according to Corollary 14.3.5) every symmetric matrix has a decomposition of
the form (4.2), we have the following lemma.

Lemma 14.4.1. Every symmetric nonnegative definite matrix has a symmetric
positive definite generalized inverse.

14.5 LDU, U′DU, and Cholesky Decompositions

It was established in Section 14.3 that every symmetric nonnegative definite matrix
A has a decomposition of the formA � P′P. Stronger versions of this result are
possible. In fact, it is shown in the present section that every symmetric nonnegative
definite matrixA has a decomposition of the formA � T′T, whereT is an upper
triangular matrix. [And, in a subsequent chapter (Section 21.9), it is shown that
A has a (unique) decomposition of the formA � R2, whereR is a symmetric
nonnegative definite matrix.]

It is convenient to begin by considering some general questions about the de-
composition of (not necessarily nonnegative definite) matrices. Is a square matrix
A expressible in the formA � LDU, whereL is a unit lower triangular matrix,D is
a diagonal matrix, andU is a unit upper triangular matrix? And, more specifically,
is a symmetric matrixA expressible in the formA � U′DU? Subsequently, the
term LDU decomposition is used for any decomposition of the formA � LDU
and the termU′DU decomposition for any decomposition of the formA � U′DU.

a. Some preliminary results

The following lemma relates the LDU decomposition of ann× nmatrixA to that
of the leading (n− 1)× (n− 1) principal submatrix ofA.

Lemma 14.5.1. LetA represent ann×nmatrix,L ann×n unit lower triangular
matrix,U ann× n unit upper triangular matrix, andD ann× n diagonal matrix
(wheren ≥ 2). PartitionA, L, U, andD as

A �
(

A∗ a
b′ c

)
, L �

(
L∗ 0
�′ 1

)
, U �

(
U∗ u
0 1

)
, andD �

(
D∗ 0
0 k

)
,
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whereA∗, L∗, U∗, andD∗ are of dimensions (n− 1)× (n− 1). Then,A � LDU
if and only if

L∗D∗U∗ � A∗ , (5.1a)

L∗D∗u � a , (5.1b)

U′
∗D∗� � b , (5.1c)

and
k � c − �′D∗u . (5.1d)

Lemma 14.5.1 can be verified simply by equating the four submatricesA∗, a,b′,
andc to the corresponding submatrices of the matrix productLDU. With regard
to condition (5.1a), note thatL∗ is a principal submatrix of a unit lower triangular
matrix and hence is itself unit lower triangular, and similarly thatU∗ is unit upper
triangular andD∗ is diagonal. Thus, condition (5.1a) states thatL∗D∗U∗ is an LDU
decomposition ofA∗.

The following theorem relates the existence and construction of an LDU or
U′DU decomposition of ann × n matrix to the existence and construction of an
LDU or U′DU decomposition of the leading (n−1)× (n−1) principal submatrix
of A.

Theorem 14.5.2. Let A represent ann× n matrix (wheren ≥ 2), and partition
A as

A �
(

A∗ a
b′ c

)
,

whereA∗ is of dimensions (n− 1)× (n− 1).

(1) If A∗ has an LDU decomposition, sayA∗ � L∗D∗U∗, and if a ∈ C(A∗)
and b′ ∈ R(A∗), then there exist vectors� and u such thatU′

∗D∗� � b
and L∗D∗u � a, and, taking� and u to be any such vectors and taking
k � c − �′D∗u, an LDU decomposition ofA is

A �
(

L∗ 0
�′ 1

)(
D∗ 0
0 k

)(
U∗ u
0 1

)
. (5.2)

(1′) If A is symmetric (in which caseA′
∗ � A∗ andb � a), if A∗ has a U′DU

decomposition, sayA∗ � U′
∗D∗U∗, and if a ∈ C(A∗), then there exists a

vectoru such thatU′
∗D∗u � a, and, takingu to be any such vector and taking

k � c − u′D∗u, a U′DU decomposition ofA is

A �
(

U∗ u
0 1

)′ (D∗ 0
0 k

)(
U∗ u
0 1

)
. (5.3)

(2) The matrixA has an LDU decomposition only ifA∗ has an LDU decomposi-
tion, a ∈ C(A∗), andb′ ∈ R(A∗).

(2′) The matrixA has a U′DU decomposition only ifA is symmetric,A∗ has a
U′DU decomposition, anda ∈ C(A∗).
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Proof. (1) Suppose thatA∗ has an LDU decomposition, sayA∗ � L∗D∗U∗, and
thata ∈ C(A∗) andb′ ∈ R(A∗). Then, there exist vectorsr ands such thata � A∗r
andb′ � s′A∗. SinceU′

∗D∗(L′
∗s) � A′

∗s � b, andL∗D∗(U∗r) � A∗r � a, there
exist vectors� andu such thatU′

∗D∗� � b andL∗D∗u � a. Moreover, equality
(5.2) is an immediate consequence of Lemma 14.5.1.

(1′) If A′
∗ � A∗, thena ∈ C(A∗) implies a′ ∈ R(A∗). Thus, Part (1′) can be

obtained as a special case of Part (1) by puttingb � a andL∗ � U′
∗ and setting

� � u.
(2) and (2′). Suppose thatA has an LDU decomposition, sayA � LDU. Partition

L, U, andD as

L �
(

L∗ 0
�′ 1

)
, U �

(
U∗ u
0 1

)
, andD �

(
D∗ 0
0 k

)
,

whereL∗, U∗, andD∗ are of dimensions (n− 1)× (n− 1). Then, it follows from
Lemma 14.5.1 thatA∗ � L∗D∗U∗ and hence thatA∗ has an LDU decomposition.
As a further consequence, we have thata � L∗D∗u � A∗U−1

∗ u ∈ C(A∗) and
b′ � �′D∗U∗ � �′ L−1

∗ A∗ ∈ R(A∗).
In the special case whereL � U′ (i.e., whereA � LDU is a U′DU decom-

position), we have thatL∗ � U′
∗ and hence thatA∗ � U′

∗D∗U∗. Thus, if A has
a U′DU decomposition, thenA∗ also has a U′DU decomposition. Moreover, ifA
has a U′DU decomposition, then clearlyA is symmetric. Q.E.D.

Note that, together, Parts (1) and (2) of Theorem 14.5.2 imply, in particular,
thatA has an LDU decomposition if and only ifA∗ has an LDU decomposition,
a ∈ C(A∗), andb′ ∈ R(A∗). Similarly, Parts (1′) and (2′) imply thatA has a U′DU
decomposition if and only ifA is symmetric,A∗ has a U′DU decomposition, and
a ∈ C(A∗).

The following theorem relates the LDU decomposition ofany leading principal
submatrix of ann× n matrix A to that ofA itself.

Theorem 14.5.3. Let A represent ann × n matrix (wheren ≥ 2), and letA11

represent thek × k leading principal submatrix ofA (where 1≤ k ≤ n − 1).
Suppose thatA has an LDU decomposition, sayA � LDU, and partitionL, U,
andD as

L �
(

L11 0
L21 L22

)
, U �

(
U11 U12

0 U22

)
, andD �

(
D1 0
0 D2

)
,

where the dimensions ofL11, U11, andD1 arek×k. Then, an LDU decomposition
of A11 is A11 � L11D1U11.

Theorem 14.5.3 can be verified simply by equatingA11 to thek × k leading
principal submatrix of the matrix productLDU. Note that, in the special case of
Theorem 14.5.3 whereA � LDU is a U′DU decomposition (i.e., whereL �
U′), L11 � U′

11 and henceA11 � L11D1U11 is a U′DU decomposition ofA11.
Theorem 14.5.3 implies in particular that ifA has an LDU or U′DU decomposition,
then each of its leading principal submatrices has, respectively, an LDU or U′DU
decomposition.
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b. Existence, recursive construction, and uniqueness of an LDU or
U′DU decomposition

It is easy to see that a 1×1 matrixA has a (unique) LDU (and U′DU) decomposition,
namely,A � (1)A(1). The following theorem gives results on the existence and
recursive construction of an LDU or U′DU decomposition of a (square) matrix of
order two or more.

Theorem 14.5.4. LetA � {aij } represent ann×nmatrix (wheren ≥ 2). Denote
by Ai the leading principal submatrix ofA of order i (i � 1, . . . , n). For i �
2, . . . , n, takeai � (a1i , . . . , ai−1,i)′ andb′i � (ai1, . . . , ai,i−1), or equivalently
defineai andb′i by

Ai �
(

Ai−1 ai
b′i aii

)
.

(1) Let L1 � (1),U1 � (1), andD1 � (a11), and suppose that, fori � 2, . . . , n,
ai ∈ C(Ai−1) andb′i ∈ R(Ai−1). Then, fori � 2, . . . , n, there exist a unit
lower triangular matrixLi , a unit upper triangular matrixUi , and a diagonal
matrix Di such that

Li �
(

Li−1 0
�′i 1

)
, Ui �

(
Ui−1 ui

0 1

)
, Di �

(
Di−1 0

0 di

)
, (5.4)

whereU′
i−1Di−1�i � bi ,Li−1Di−1ui � ai , anddi � aii−�′i Di−1ui ; and,

takingLi , Ui , andDi to be any such matrices, an LDU decomposition ofAi

is Ai � LiDiUi . In particular, an LDU decomposition ofA is A � LnDnUn.
(1′) Let U1 � (1) andD1 � (a11), and suppose thatA is symmetric (in which

caseA′
i−1 � Ai−1 andbi � ai for i � 2, . . . , n) and that, fori � 2, . . . , n,

ai ∈ C(Ai−1). Then, fori � 2, . . . , n, there exist a unit upper triangular matrix
Ui and a diagonal matrixDi such that

Ui �
(

Ui−1 ui
0 1

)
, Di �

(
Di−1 0

0 di

)
, (5.5)

whereU′
i−1Di−1ui � ai anddi � aii − u′iDi−1ui ; and takingUi andDi to be

any such matrices, a U′DU decomposition ofAi isAi � U′
iDiUi . In particular,

a U′DU decomposition ofA is A � U′
nDnUn.

(2) The matrixA has an LDU decomposition only if, fori � 2, . . . , n, ai ∈
C(Ai−1) andb′i ∈ R(Ai−1).

(2′) The matrixA has a U′DU decomposition only ifA is symmetric and, for
i � 2, . . . , n, ai ∈ C(Ai−1).

Proof. (1) For purposes of proving Part (1), suppose that, fori � 2, . . . , n,
ai ∈ C(Ai−1) and b′i ∈ R(Ai−1). The proof is by mathematical induction. It
follows from Theorem 14.5.2 that, fori � 2, there exist a unit lower triangular
matrixLi , a unit upper triangular matrixUi , and a diagonal matrixDi of the form
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(5.4) and thatA2 � L2D2U2 for any such matricesL2, U2, andD2. Suppose now
that, fori � k−1 (where 3≤ k ≤ n), there exist a unit lower triangular matrixLi ,
a unit upper triangular matrixUi , and a diagonal matrixDi of the form (5.4) and,
takingLk−1, Uk−1, andDk−1 to be any such matrices, thatAk−1 � Lk−1Dk−1Uk−1.
The proof is complete upon observing that, fori � k, there exist (as a consequence
of Theorem 14.5.2) a unit lower triangular matrixLi , a unit upper triangular matrix
Ui , and a diagonal matrixDi of the form (5.4) and thatAk � LkDkUk for any such
matricesLk, Uk, andDk.

(1′) A proof of Part (1′), analogous to that of Part (1), can be constructed by
making use of Part (1′) of Theorem 14.5.2.

(2) Suppose thatA has an LDU decomposition. Then, it follows from Theo-
rem 14.5.3 that the leading principal submatricesA2,A3, . . . ,An−1 of orders two
throughn−1 (as well as the leading principal submatrixAn � A of ordern) have
LDU decompositions. Based on Part (2) of Theorem 14.5.2, we conclude that, for
i � 2, . . . , n, ai ∈ C(Ai−1) andb′i ∈ R(Ai).

(2′) A proof of Part (2′), analogous to that of Part (2), can be constructed by
making use of Theorem 14.5.3 and Part (2′) of Theorem 14.5.2. Q.E.D.

Note that, together, Parts (1) and (2) of Theorem 14.5.4 imply in particular that
A has an LDU decomposition if and only if, fori � 2, . . . , n, ai ∈ C(Ai−1) and
b′i ∈ R(Ai−1). Similarly, Parts (1′) and (2′) imply thatA has a U′DU decomposition
if and only if A is symmetric and, fori � 2, . . . , n, ai ∈ C(Ai−1).

For purposes of illustration, consider a 2×2 matrixA � {aij } and suppose that
a11 � 0. Then,A has an LDU decomposition if and only ifa21 � a12 � 0, that is,
if and only if A is of the form

A �
(

0 0
0 a22

)
.

WhenA is of this form, an LDU decomposition ofA is

A �
(

1 0
# 1

)(
0 0
0 a22

)(
1 u

0 1

)
,

where# andu are arbitrary scalars.
To what extent is the LDU decomposition of ann × n matrix unique? This

question is addressed in the following theorem.
Theorem 14.5.5. Let A represent ann × n matrix of rankr that has an LDU

decomposition. LetL � {#ij } represent ann × n unit lower triangular matrix,
U � {uij } ann× n unit upper triangular matrix, andD � {di} ann× n diagonal
matrix such thatA � LDU; that is, such thatA � LDU is an LDU decomposition
of A. (1) The diagonal matrixD is unique. (2) Suppose that thei1, . . . , ir th diagonal
elements ofD (wherei1 < · · · < ir ) are nonzero (and the remaining diagonal
elements ofD are zero). Then, fori ∈ {i1, . . . , ir} and j > i, uij and#ji are
unique, and, fori �∈ {i1, . . . , ir} andj > i, uij and#ji are completely arbitrary.
That is, of the elements ofU above the diagonal, those in thei1, . . . , ir th rows are
unique and those in the remaining rows are completely arbitrary; and, similarly, of
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the elements ofL below the diagonal, those in thei1, . . . , ir th columns are unique
and those in the remaining columns are completely arbitrary.

Proof. LetL∗ � {#∗ij } represent a unit lower triangular matrix,U∗ � {u∗ij } a unit
upper triangular matrix, andD∗ � {d∗i } a diagonal matrix such thatA � L∗D∗U∗,
so thatA � L∗D∗U∗, like A � LDU, is an LDU decomposition ofA. Then,

L∗−1LD � L∗−1(LDU)U−1 � L∗−1(L∗D∗U∗)U−1 � D∗U∗U−1 . (5.6)

Since (according to Corollary 8.5.9)L∗−1 is unit lower triangular andU−1 is
unit upper triangular, it follows from Lemma 1.3.1 that the diagonal elements of
L∗−1LD ared1, . . . , dn, respectively, and that the diagonal elements ofD∗U∗U−1

ared∗1 , . . . , d
∗
n , respectively, implying — in light of equality (5.6) — thatd∗i � di

(i � 1, . . . , n), or equivalently thatD∗ � D, which establishes Part (1) of Theorem
14.5.5.

For purposes of proving Part (2), takeA11 to be ther × r submatrix obtained
by striking out all of the rows and columns ofA except thei1, . . . , ir th rows and
columns. LetD1 � diag(di1, . . . , dir ). Denote byL1 andL∗

1 ther × n submatrices
obtained by striking out all of the rows ofL and L∗, respectively, except the
i1, . . . , ir th rows, and byL11 andL∗

11 the submatrices obtained by striking out all
of the rows and columns ofL andL∗, respectively, except thei1, . . . , ir th rows
and columns. Similarly, denote byU1 andU∗

1 then × r submatrices obtained by
striking out all of the columns ofU andU∗, respectively, except thei1, . . . , ir th
columns, and byU11 andU∗

11 ther × r submatrices obtained by striking out all of
the rows and columns ofU andU∗, respectively, except thei1, . . . , ir th rows and
columns. Then,A11 � L1DU1 � L11D1U11 and (sinceD∗ � D) A11 � L∗

1D∗U∗
1

� L∗
1DU∗

1 � L∗
11D1U∗

11, implying that

L11D1U11 � L∗
11D1U∗

11. (5.7)

The matricesL11 and L∗
11 are principal submatrices of unit lower triangular

matrices and hence are themselves unit lower triangular. Similarly,U11 andU∗
11

are unit upper triangular. Premultiplying both sides of equality (5.7) byL∗−1
11 and

postmultiplying both sides byU−1
11 D−1

1 , we find that

L∗−1
11 L11 � D1U∗

11U
−1
11 D−1

1 . (5.8)

According to Corollary 8.5.9,L∗−1
11 is unit lower triangular andU−1

11 is unit upper
triangular. Observe that (according to Lemma 1.3.1)L∗−1

11 L11 is unit lower trian-
gular. SinceD1U∗

11U
−1
11 D−1

1 is upper triangular, it follows from equality (5.8) that
L∗−1

11 L11 � I, or, equivalently, that

L∗
11 � L11 ,

and — in light of equality (5.7) and the nonsingularity ofL11 andD1 — that

U∗
11 � U11 .
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Now, takeA1 to be then×r submatrix obtained by striking out all of the columns
of A except thei1, . . . , ir th columns, and takeA2 to be ther×n submatrix obtained
by striking out all of the rows ofA except thei1, . . . , ir th rows. Denote byL2 and
L∗

2 then× r submatrices obtained by striking out all of the columns ofL andL∗,
respectively, except thei1, . . . , ir th columns. Similarly, denote byU2 andU∗

2 the
r×n submatrices obtained by striking out all of the rows ofU andU∗, respectively,
except thei1, . . . , ir th rows. Then,A1 � LDU1 � L2D1U11 and (sinceD∗ � D
andU∗

11 � U11) A1 � L∗D∗U∗
1 � L∗DU∗

1 � L∗
2D1U∗

11 � L∗
2D1U11, implying that

L∗
2D1U11 � L2D1U11, and hence (sinceD1 andU11 are nonsingular) that

L∗
2 � L2 . (5.9)

Similarly, A2 � L1DU � L11D1U2 andA2 � L∗
1D∗U∗ � L∗

1DU∗ � L∗
11D1U∗

2
� L11D1U∗

2, implying thatL11D1U∗
2 � L11D1U2, and hence that

U∗
2 � U2 . (5.10)

The kj th elements ofU2 andU∗
2 areuikj andu∗ikj , respectively, and thejkth

elements ofL2 andL∗
2 are#jik and#∗jik , respectively (k � 1, . . . , r; j � 1, . . . , n).

Thus, it follows from equalities (5.9) and (5.10) that, fori ∈ {i1, . . . , ir} and for
j � 1, . . . , n (and in particular forj � i+ 1, . . . , n) thatu∗ij � uij and#∗ji � #ji .

To complete the proof of Part (2) of Theorem 14.5.5, observe thatA � LDU �
L2D1U2 and hence thatA � LDU even if those elements ofL (below the diagonal)
that are not elements ofL2 and/or those elements ofU (above the diagonal) that
are not elements ofU2 are changed arbitrarily. Q.E.D.

Under what circumstances does ann× nmatrixA have a unique LDU decom-
position? This question is addressed in the following two corollaries.

Corollary 14.5.6. If an n × n matrix A has an LDU decomposition and if the
leading principal submatrix (ofA) of ordern − 1 is nonsingular, then the LDU
decomposition ofA is unique.

Proof. Let A11 represent the (n − 1)× (n − 1) leading principal submatrix of
A. Suppose thatA has an LDU decomposition, sayA � LDU, and thatA11 is
nonsingular. PartitionL, U, andD as

L �
(

L11 0
�′ 1

)
, U �

(
U11 u
0 1

)
, andD �

(
D1 0
0 d

)

[where L11,U11, and D1 are of dimensions (n − 1) × (n − 1)]. According to
Lemma 14.5.1, an LDU decomposition ofA11 is A11 � L11D1U11. Thus (since
A11 is nonsingular), it follows from Lemma 14.3.1 that alln−1 diagonal elements
of D1 are nonzero, or equivalently, that the firstn− 1 diagonal elements ofD are
nonzero. Based on Theorem 14.5.5, we conclude that the LDU decomposition of
A is unique. Q.E.D.

Corollary 14.5.7. Let A represent ann × n matrix (wheren ≥ 2), and, for
i � 1,2, . . . , n−1, letAi represent the leading principal submatrix (ofA) of order
i. If A1, A2, . . . ,An−1 are nonsingular, thenA has a unique LDU decomposition.
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Proof. Let aij represent theij th element ofA (i, j � 1, . . . , n); and, fori �
2, . . . , n, defineai � (a1i , . . . , ai−1,i)′ andb′i � (ai1, . . . , ai,i−1). Suppose that
A1,A2, . . ., An−1 are nonsingular. Then, fori � 2, . . . , n, ai ∈ C(Ai−1) and
b′i ∈ R(Ai−1), and it follows from Part (1) of Theorem 14.5.4 thatA has an LDU
decomposition. That this decomposition is unique is (sinceAn−1 is nonsingular)
an immediate consequence of Corollary 14.5.6. Q.E.D.

For a symmetric matrix, the uniqueness of an LDU decomposition has the fol-
lowing implication.

Lemma 14.5.8. If a symmetric matrixA has a unique LDU decomposition,
sayA � LDU, thenL � U′, that is, the unique LDU decomposition is a U′DU
decomposition.

Proof. Suppose that the symmetric matrixA has the unique LDU decomposition
A � LDU. Then,A � A′ � U′DL′, implying (sinceU′ is unit lower triangular
andL′ is unit upper triangular) thatA � U′DL′ is an LDU decomposition ofA
and hence — in light of the uniqueness of the LDU decomposition — thatL � U′

(or equivalentlyU � L′). Q.E.D.
Note that if a (square) matrixA has an LDU decomposition, sayA � LDU,

then, lettingL∗ � LD andU∗ � DU, it can also be decomposed asA � L∗U,
which is the product of a lower triangular matrix and a unit upper triangular matrix,
or asA � LU∗, which is the product of a unit lower triangular matrix and an upper
triangular matrix.

The termLU decomposition is sometimes used in referring to any decomposition
of a (square) matrixA of the general formA � LU, whereL is a lower triangular
matrix andU an upper triangular matrix — see, e.g., Stewart (1973). In the special
case whereL is unit lower triangular, Stewart refers to such a decomposition as a
Doolittle decomposition, and in the special case whereU is unit upper triangular,
he refers to such a decomposition as aCrout decomposition. Golub and Van Loan
(1989) restrict their use of the term LU decomposition to the special case where
L is unit lower triangular, that is, to what Stewart calls a Doolittle decomposition.

c. Decomposition of positive definite matrices

Let us now consider the implications of the results of Subsection b as applied to
positive definite matrices. Does a positive definite matrix necessary have an LDU
decomposition, and is the LDU decomposition of a positive definite matrix unique?
These questions are answered (in the affirmative) by the following theorem, which
also provides some information about the nature of the LDU decomposition of a
positive definite matrix.

Theorem 14.5.9. An n×n positive definite matrixA has a unique LDU decom-
position, sayA � LDU, and the diagonal elements of the diagonal matrixD are
positive.

Proof. According to Corollary 14.2.12, any principal submatrix of a positive
definite matrix is positive definite and hence (according to Lemma 14.2.8) is non-
singular. Thus, it follows from Corollary 14.5.7 thatA has a unique LDU decom-
position, sayA � LDU.
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It remains to show that the diagonal elements, sayd1, . . . , dn, of the diagonal
matrixD are positive. For this purpose, consider the matrixB � DU(L−1)′. Since
(in light of Corollary 8.5.9) (L−1)′ (like U) is unit upper triangular, it follows from
Lemma 1.3.1 that the diagonal elements ofB are the same as the diagonal elements
d1, . . . , dn of D. Moreover,

B � L−1(LDU)(L−1)′ � L−1A(L−1)′ ,

implying (in light of Corollary 14.2.10) thatB is positive definite. We conclude
(on the basis of Corollary 14.2.13) thatd1, . . . , dn are positive. Q.E.D.

In the special case of a symmetric positive definite matrix, the conclusions of
Theorem 14.5.9 can (as a consequence of Lemma 14.5.8) be made more specific,
as described in the following corollary.

Corollary 14.5.10. An n×n symmetric positive definite matrixA has a unique
U′DU decomposition, sayA � U′DU, and the diagonal elements of the diagonal
matrix D are positive.

Note that, as an immediate consequence of Corollary 14.2.15, we have the
following converse to Corollary 14.5.10: If ann × n matrix A has a U′DU de-
composition, sayA � U′DU, and if the diagonal elements of the diagonal matrix
D are positive, thenA is positive definite (and symmetric).

An alternative decomposition of a symmetric positive definite matrix is de-
scribed in the following theorem.

Theorem 14.5.11. For anyn × n symmetric positive definite matrixA, there
exists a unique upper triangular matrixT with positive diagonal elements such that

A � T′T . (5.11)

Moreover, takingU to be the unique unit upper triangular matrix andD � {di} to
be the unique diagonal matrix such thatA � U′DU,

T � D1/2U ,

whereD1/2 � diag(
√
d1,

√
d2, . . . ,

√
dn).

Proof. Note that Corollary 14.5.10 guarantees the existence and uniqueness of
the unit upper triangular matrixU and the diagonal matrixD and also guarantees
that the diagonal elements ofD are positive. Note further thatD1/2U is upper
triangular, that the diagonal elements ofD1/2U are

√
d1,

√
d2, . . . ,

√
dn, and that

A � (D1/2U)′D1/2U. Thus, there exists an upper triangular matrixT with positive
diagonal elements such thatA � T′T. It remains to show that there is only one
such upper triangular matrix with positive diagonal elements.

Suppose thatT � {tij } is ann×n upper triangular matrix with positive diagonal
elements such thatA � T′T. DefineD∗ � diag(t211, t

2
22, . . . , t

2
nn) and

U∗ � [diag(t11, t22, . . . , tnn)]
−1T � diag(1/t11,1/t22, . . . ,1/tnn)T .

Then,U∗ is unit upper triangular, andA � U′
∗D∗U∗, so thatA � U′

∗D∗U∗ is a
U′DU decomposition ofA. Thus, it follows from Corollary 14.5.10 thatD∗ � D or,
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equivalently (sincetii , is positive), thattii �
√
di (i � 1, . . . , n), and thatU∗ � U.

Consequently,T � D1/2U∗ � D1/2U. We conclude that the only upper triangular
matrixT with positive diagonal elements such thatA � T′T isT � D1/2U. Q.E.D.

Decomposition (5.11) of the symmetric positive definite matrixA is known as
theCholesky decomposition.

d. Decomposition of symmetric nonnegative definite matrices

Let us now extend the results of Corollary 14.5.10 and Theorem 14.5.11 (which
apply to symmetric positive definite matrices) to symmetric nonnegative definite
matrices that may not be positive definite. The following theorem provides the
basis for these extensions.

Theorem 14.5.12. Corresponding to anyn× n symmetric nonnegative definite
matrixA, there exists a unit upper triangular matrixU such thatU′AU is a diagonal
matrix.

For purposes of proving this theorem, it is helpful to establish the following
lemma.

Lemma 14.5.13. Let A � {aij } represent ann× n nonnegative definite matrix.
If aii � 0, then, forj � 1, . . . , n, aij � −aji ; that is, if theith diagonal element
of A equals 0, then (ai1, . . . , ain), which is theith row ofA, equals−(a1i , . . . , ani),
which is−1 times the transpose of theith column ofA (i � 1, . . . , n).

Proof (of Lemma 14.5.13). Suppose thataii � 0, and takex � {xk} to be an
n-dimensional column vector such thatxi < −ajj , xj � aij + aji , andxk � 0 for
k other thank � i andk � j (wherej �� i). Then,

x′Ax � aiix
2
i + (aij + aji)xixj + ajjx2

j

� (aij + aji)2(xi + ajj )
≤ 0 , (5.12)

with equality holding only ifaij + aji � 0 or, equivalently, only ifaij � −aji .
Moreover, sinceA is nonnegative definite,x′Ax ≥ 0, which — together with
inequality (5.12) — implies thatx′Ax � 0. We conclude thataij � −aji . Q.E.D.

If the nonnegative definite matrixA in Lemma 14.5.13 is symmetric, thenaij �
−aji ⇔ 2aij � 0⇔ aij � 0. Thus, we have the following corollary.

Corollary 14.5.14. Let A � {aij } represent ann × n symmetric nonnegative
definite matrix. Ifaii � 0, then, forj � 1, . . . , n, aji � aij � 0; that is, if the
ith diagonal element ofA equals zero, then theith column (a1i , . . . , ani)′ of A
and theith row (ai1, . . . , ain) of A are null. Moreover, if alln diagonal elements
a11, a22, . . . , ann of A equal zero, thenA � 0.

Proof (of Theorem 14.5.12). The proof is by mathematical induction and is
similar to the proof of Theorem 14.3.4. The theorem is clearly true for any 1× 1
matrix. Suppose now that it is true for any (n−1)× (n−1) symmetric nonnegative
definite matrix, and consider an arbitraryn × n symmetric nonnegative definite
matrix A � {aij }. For purposes of establishing the existence of a unit upper
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triangular matrix such thatU′AU is diagonal, it is convenient to consider separately
the casea11 � 0 and the casea11 �� 0.

Case (1):a11 � 0. It follows from Corollary 14.5.14 that the first row and column
of A are null or, equivalently, thatA � diag(0,A22) for some (n − 1)× (n − 1)
matrixA22. Moreover, sinceA22 is a principal submatrix ofA,A22 is symmetric and
nonnegative definite, and hence, by supposition, there exists a unit upper triangular
matrix U∗ such thatU′

∗A22U∗ is a diagonal matrix. TakeU � diag(1,U∗). Then,
U is unit upper triangular, andU′AU � diag(0,U′

∗A22U∗), which (likeU′
∗A22U∗)

is a diagonal matrix.
Case (2): a11 �� 0. According to Lemma 14.3.3, there exists a unit upper tri-

angular matrixU1 such thatU′
1AU1 � diag(b11,B22) for some scalarb11 and

some (n − 1)× (n − 1) matrix B22. Moreover,U′
1AU1 is (in light of Theorem

14.2.9) symmetric and nonnegative definite, and, sinceB22 is a principal subma-
trix of U′

1AU1,B22 is symmetric and nonnegative definite. Thus, by supposition,
there exists a unit upper triangular matrixU2 such thatU′

2B22U2 is a diagonal
matrix. TakeU � U1diag(1,U2). Then,U is a unit upper triangular matrix [since
diag(1,U2) is unit upper triangular and the product of two unit upper triangular
matrices is unit upper triangular], and

U′AU � diag(1, U′
2) diag(b11, B22) diag(1, U2) � diag(b11, U′

2B22U2) ,

which (like U′
2B22U2) is a diagonal matrix. Q.E.D.

Corollary 14.5.10 indicates that, in the special case of a symmetric positive
definite matrixA, the nonsingular matrixP in Corollary 14.3.5 can be chosen to
be a unit upper triangular matrix, in which case the decompositionA � P′DP is a
U′DU decomposition. The following corollary (of Theorem 14.5.12) indicates that
P can be chosen to be unit upper triangular even ifA is only (symmetric) positive
semidefinite.

Corollary 14.5.15. An n × n symmetric nonnegative definite matrixA has a
U′DU decomposition, and, for any such decompositionA � U′DU, the diagonal
elements of the diagonal matrixD are nonnegative.

Proof. In light of Corollary 14.2.15, it suffices to show thatA has a U′DU
decomposition. According to Theorem 14.5.12, there exists a unit upper triangular
matrix T such thatT′AT � D for some diagonal matrixD. TakeU � T−1. Then,
A � U′DU, and (according to Corollary 8.5.9)U is unit upper triangular. Thus,
A � U′DU is a U′DU decomposition ofA. Q.E.D.

Note that, as an immediate consequence of Corollary 14.2.15, we have the
following converse to Corollary 14.5.15: If ann×nmatrixA has a U′DU decom-
position, sayA � U′DU, and if the diagonal elements of the diagonal matrixD
are nonnegative, thenA is nonnegative definite (and symmetric).

Theorem 14.5.11 establishes that any symmetric positive definite matrixA has
a unique decomposition of the form (5.11) and relates this decomposition to the
U′DU decomposition ofA. The following theorem extends these results to any
symmetric nonnegative definite matrix.

Theorem 14.5.16. Let A represent ann × n symmetric nonnegative definite
matrix, and letr � rank(A). Then, there exists a unique upper triangular matrixT
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with r positive diagonal elements and withn− r null rows such that

A � T′T . (5.13)

Moreover, takingU to be a unit upper triangular matrix andD � {di} to be the
unique diagonal matrix such thatA � U′DU,

T � D1/2U , (5.14)

whereD1/2 � diag(
√
d1,

√
d2, . . . ,

√
dn).

Proof. Note that Corollary 14.5.15 and Theorem 14.5.5 guarantee the existence
of the unit upper triangular matrixU and the existence and uniqueness of the diag-
onal matrixD and also guarantee that the diagonal elements ofD are nonnegative.
Note further (on the basis of Lemma 14.3.1) thatr of the diagonal elements of
D, say thei1, . . . , ir th diagonal elements (wherei1 < · · · < ir ), are nonzero
and hence positive, and that the remainingn − r diagonal elements ofD equal
zero. Moreover,D1/2U is upper triangular, the diagonal elements ofD1/2U are√
d1,

√
d2, . . . ,

√
dn (r of which are positive),n − r rows of D1/2U are null

(those rows other than thei1, . . . , ir th rows), andA � (D1/2U)′D1/2U. Thus, there
exists an upper triangular matrixT with r positive diagonal elements and with
n− r null rows such thatA � T′T. It remains to show that there is only one such
upper triangular matrix withr positive diagonal elements and withn−r null rows.

Suppose thatT � {tij } is ann × n upper triangular matrix withr positive
diagonal elements — say thek1, . . . , kr th diagonal elements (wherek1 < · · · < kr )
— and withn− r null rows such thatA � T′T. TakeD∗ to be then× n diagonal
matrix whosek1, . . . , kr th diagonal elements aret2k1k1

, . . . , t2kr kr , respectively, and
whose othern− r diagonal elements equal zero. Further, lett′k1

, . . . , t′kr represent
the k1, . . . , kr th rows ofT, and takeU∗ to be any unit upper triangular matrix
whosek1, . . . , kr th rows are (1/tk1k1)t

′
k1
, . . . , (1/tkr kr )t

′
kr

, respectively — clearly,
such a unit upper triangular matrix exists. Then,

A � tk1t′k1
+ · · · + tkr t

′
kr
� U′

∗D∗U∗ ,

so thatA � U′
∗D∗U∗ is a U′DU decomposition ofA. Thus, it follows from

Theorem 14.5.5 thatD∗ � D, in which casek1 � i1, . . . , kr � ir and
ti1i1 �

√
di1, . . . , tir ir �

√
dir , and that thei1, . . . , ir th rows ofU∗ are respec-

tively equal to thei1, . . . , ir th rows ofU. Consequently,

T � D1/2U∗ � D1/2U .

We conclude that the only upper triangular matrixT with r positive diagonal
elements and withn− r null rows such thatA � T′T is T � D1/2U. Q.E.D.

In the special case where the symmetric nonnegative definite matrixA is positive
definite, decomposition (5.13) simplifies to decomposition (5.11). And, as in that
special case, the decomposition is called theCholesky decomposition.
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e. Recursive formulas for LDU and Cholesky decompositions

Let A � {aij } represent ann × n matrix. Consider the problem of finding a unit
upper triangular matrixU � {uij }, a unit lower triangular matrixL � {#ji},
and a diagonal matrixD � {di} such thatA � LDU (when they exist). The
formulas given in Part (1) of Theorem 14.5.4 can be used to constructL, D, and
U in n steps. At each step, an additional column ofU, an additional row ofL,
and an additional diagonal element ofD are obtained by solving linear systems
with triangular coefficient matrices. By making use of the results of Section 11.8
(on the solution of linear systems with nonsingular triangular or block-triangular
coefficient matrices), the formulas given in Part (1) of Theorem 14.5.4 can be
reexpressed as follows:

d1 � a11

d1u1j � a1j ,

diuij � aij −
i−1∑
k�1

#ikdkukj (i � 2,3, . . . , j − 1) ,

d1#j1 � aj1 ,

di#ji � aji −
i−1∑
k�1

ukidk#jk (i � 2,3, . . . , j − 1) ,

dj � ajj −
j−1∑
k�1

ukjdk#jk (5.15)

(j � 2,3, . . . , n).
The first step in then-step procedure for constructingU, L, andD consists of

settingd1 � a11. Thej th step (2≤ j ≤ n) consists of successively determining
uij and#ji for i � 1,2, . . . , j − 1, and of then determining [from formula (5.15)]
dj . If di � 0, thenuij and #ji can be chosen arbitrarily; for example, choose
uij � #ji � 0. If di �� 0, then, depending on whetheri � 1 or i > 1, take
uij � aij /di and#ji � aji/di or

uij �
(
aij −

i−1∑
k�1

#ikdkukj

)/
di and #ji �

(
aji −

j−1∑
k�1

ukidk#jk

)/
di ,

respectively.
There is an alternativen-step procedure for constructingU, L, andD in which

U is formed row-by-row, rather than column-by-column, andL is formed column-
by-column, rather than row-by-row. The first step consists of settingd1 � a11 and,
depending on whetherd1 � 0 or d1 �� 0, choosingu12, . . . , u1n and#21, . . . , #n1

arbitrarily or (forj � 2, . . . , n) settingu1j � a1j /d1 and#j1 � aj1/d1. Theith
step (2≤ i ≤ n − 1) consists of determining [from formula (5.15)]di and, de-
pending on whetherdi � 0 ordi �� 0, choosingui,i+1, . . . , uin and#i+1,i , . . . , #ni
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arbitrarily or (forj � i + 1, . . . , n) setting

uij �
(
aij −

i−1∑
k�1

#ikdkukj

)/
di and #ji �

(
aji −

i−1∑
k�1

ukidk#jk

)/
di .

The final (nth) step consists of setting

dn � ann −
n−1∑
k�1

ukndk#nk .

Note that (with either of these twon-step procedures), oncedj has been deter-
mined,ajj is no longer needed (at least not for purposes of constructing an LDU
decomposition). Similarly, onceuij has been determined,aij is no longer required,
and, once#ji has been determined,aji is no longer required. Thus, in implementing
eithern-step procedure on a computer, storage can be saved if, asdj , uij , and#ji
are determined, they are placed in the locations previously occupied byajj , aij ,

andaji , respectively.
So far, it has been presumed thatA has an LDU decomposition. Suppose that

there is uncertainty about the existence of an LDU decomposition. The nonexis-
tence of an LDU decomposition can (at least in principle) be determined during
the course of then-step procedures by incorporating certain tests. Ifd1 � 0, then
— prior to assigning values tou1j and#j1 — we should test whethera1j � 0 and
aj1 � 0; similarly, if di � 0 (2≤ i ≤ n− 1), then — prior to assigning values to
uij and#ji — we should test whether

aij −
i−1∑
k�1

#ikdkukj � 0 and aji −
i−1∑
k�1

ukidk#jk � 0

or, equivalently, whether

aij �
i−1∑
k�1

#ikdkukj and aji �
i−1∑
k�1

ukidk#jk .

If the result of any test is negative, we terminate then-step procedure and conclude
(on the basis of Theorem 14.5.4) thatA does not have an LDU decomposition. If
the result of every test is positive, then then-step procedure is carried to completion
and produces an LDU decomposition.

Suppose now thatA is symmetric, and consider the problem of determining
whetherA has a U′DU decomposition and of constructing a U′DU decomposition.
This problem can be “solved” by employing a simplified version of the procedure
for checking for the existence of an LDU decomposition and for constructing
an LDU decomposition. The simplification comes from setting#ji � uij , for
j � 2, . . . , n and i � 1, . . . , j − 1, and more specifically from the resulting
reduction in computational and storage requirements.

Finally, suppose thatA is a symmetric nonnegative definite matrix, and consider
the problem of finding the Cholesky decomposition ofA. That is, consider the
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problem of finding the unique upper triangular matrixT � {tij } with r positive
diagonal elements andn − r null rows [wherer � rank(A)] such thatA � T′T.
One approach is to find the U′DU decomposition ofA and to then determineT
from formula (5.14). However, there is a more direct method, which is sometimes
called thesquare root method. The square root method is based on the following
formulas, which can be obtained from the formulas of Part (1′) of Theorem 14.5.4
by applying the results of Section 11.8 and making use of relationship (5.14):

t11 � √
a11 , (5.16)

t1j � a1j /t11, if t11 > 0 , (5.17a)
� 0 , if t11 � 0 , (5.17b)

tij �
(
aij −

∑i−1
k�1 tki tkj

)/
tii , if tii > 0 , (5.18a)

� 0 , if tii � 0 (5.18b)

(i � 2,3, . . . , j − 1) ,

tjj �
(
ajj −

j−1∑
k�1

t2kj

)1/2

(5.19)

(j � 2,3, . . . , n).
In the square root method,T is constructed row-by-row or column-by-column in

n steps, one row or column per step. For example, the first step of the row-by-row
version consists of determining [from formulas (5.16) and (5.17)]t11, t12, . . . , t1n;
the ith step (2≤ i ≤ n − 1) consists of determining [from formulas (5.19) and
(5.18)] tii , ti,i+1, . . . , tin; and the final (nth) step consists of determining [from
formula (5.19)]tnn.

If there is uncertainty about whetherA is nonnegative definite, then, in applying
the square root method toA, various modifications should be incorporated. We
should (prior to determiningt11) test whethera11 ≥ 0, and ifa11 � 0, we should
(prior to settingt1j � 0) test whethera1j � 0. Similarly, for 2≤ i ≤ n − 1,
we should (prior to determiningtii) test whetheraii −

∑i−1
k�1 t

2
ki ≥ 0, and ifaii −∑i−1

k�1 t
2
ki � 0, we should (prior to settingtij � 0) test whetheraij −

∑i−1
k�1 tki tkj �

0. Finally, we should (prior to determiningtnn) test whetherann−
∑n−1

k�1 t
2
kn ≥ 0. If

the result of any test is negative, it follows from Theorems 14.5.4 and 14.5.16 that
eitherA does not have a U′DU decomposition or, for a U′DU decomposition (of
A), sayA � U′DU, one or more of the diagonal elements of the diagonal matrixD
are negative. Thus, if the result of any test is negative, we terminate the square root
procedure and conclude (on the basis of Corollary 4.5.15) thatA is not nonnegative
definite. If the result of every test is positive, thenA is nonnegative definite, and
the procedure is carried to completion and produces the Cholesky decomposition.

Suppose, for example, that

A �

 4 2 −2

2 1 −1
−2 −1 10


 .
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Let us apply the modified square root method (the row-by-row version). Observing
thata11 > 0, we find thatt11 �

√
4 � 2, t12 � 2/2 � 1, andt13 � −2/2 � −1.

Further, upon observing thata22 − t212 � 0, we find thatt22 � 0, and, after
observing thata23 − t12t13 � 0, we sett23 � 0. Finally, upon observing that
a33−

∑2
k�1 t

2
k3 � 9, we find thatt33 �

√
9� 3. We conclude thatA is nonnegative

definite — sincet22 � 0, it is positive semidefinite — and that the Cholesky
decomposition ofA is

A �

2 1 −1

0 0 0
0 0 3



′
2 1 −1

0 0 0
0 0 3


 .

Note that ifa23 � a32 had equaled any number other than−1, it would have been
the case thata23− t12t13 �� 0, andA would not have been nonnegative definite. Or,
if the value ofa22 had been smaller than one, we would have had thata22− t212 < 0,
andA would not have been nonnegative definite.

f. Use of an LDU, U′DU, or Cholesky decomposition in obtaining
a generalized inverse

Suppose thatA is a (square) matrix that has an LDU decomposition, sayA � LDU.
Then, it follows from the discussion in Section 14.4 that the matrix

G � U−1D−L−1 (5.20)

is a generalized inverse ofA and that one choice forD− is the diagonal matrix
obtained by replacing the nonzero diagonal elements of the (diagonal) matrixD
with their reciprocals.

Thus, one way to obtain a generalized inverse ofA is to obtain the LDU de-
composition ofA and to then apply formula (5.20). In this regard, note that the
recursive procedure described in Section 8.5d can be used to invertU andL. Note
also that, in the special case whereL � U′, formula (5.20) simplifies to

G � U−1D−(U−1)′ . (5.21)

Suppose now thatA is ann×n symmetric nonnegativedefinite matrix of rankr.
Then we can obtain a generalized inverse ofA in terms of its U′DU decomposition
[using formula (5.21)]. We can also obtain a generalized inverse ofA directly
in terms of its Cholesky decomposition. To see this, letA � T′T represent the
Cholesky decomposition ofA, so that, by definition,T is an upper triangular matrix
with r positive diagonal elements, say itsi1, i2, . . . , ir th diagonal elements (where
i1 < i2 < · · · < ir ), and withn− r null rows.

TakeT1 to be ther×nmatrix obtained by striking out the null rows ofT. Then,
clearly,A � T′

1T1, and rank(T1) � rank(A) � r. It follows from Lemma 8.1.1 that
T1 has a right inverse, sayR. And, sinceARR′A � T′

1T1R(T1R)′T1 � T′
1T1 � A,

RR′ is a generalized inverse ofA.
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A right inverse ofT1 can be obtained by making use of the procedure described
in Section 8.5d for inverting a nonsingular triangular matrix. To see this, letT11

represent ther × r submatrix obtained by striking out all of the columns ofT1

except thei1, i2, . . . , ir th columns. Note thatT11 is a principal submatrix ofT
and hence (likeT) is upper triangular and (since the diagonal elements ofT11 are
nonzero) thatT11 is nonsingular. TakeR to be then× r matrix whosei1, i2, . . . ,
ir th rows are the first, second,. . . , rth rows ofT−1

11 and whose othern − r rows
are null. Then, clearly,T1R � T11T−1

11 � I, so thatR is a right inverse ofT1.

14.6 Skew-Symmetric Matrices

Ann×nmatrixA � {aij } is said to beskew-symmetric if A′ � −A or, equivalently
(sinceaii � −aii ⇔ 2aii � 0 ⇔ aii � 0), if aii � 0 for i � 1, . . . , n and

aji � −aij for j �� i � 1, . . . , n. For example, the 2× 2 matrix

(
0 1

−1 0

)
is

skew-symmeric.
A principal submatrix of a skew-symmetric matrix is skew-symmetric, as is

easily verified. Other basic properties of skew-symmetric matrices are described
in the following two lemmas.

Lemma 14.6.1. The only n × n matrix that is both symmetric and skew-
symmetric is then× n null matrix.

Proof. If an n× n matrix A is both symmetric and skew-symmetric, thenA �
A′ � −A, implying that 2A � 0 and hence thatA � 0. Q.E.D.

Lemma 14.6.2. Let A represent ann× nmatrix andP ann×mmatrix. If A is
skew-symmetric, thenP′AP is skew-symmetric.

Proof. If A is skew-symmetric, then

(P′AP)′ � P′A′P � P′(−A)P � −P′AP .
Q.E.D.

The following lemma, which is an immediate consequence of Lemma 14.1.1,
characterizes the skew-symmetry of a (square) matrixA in terms of the quadratic
form whose matrix isA.

Lemma 14.6.3. An n× n matrix A is skew-symmetric if and only if, for every
n-dimensional column vectorx, x′Ax � 0.

There is a relationship between skew-symmetry and nonnegative definiteness,
which is described in the following lemma.

Lemma 14.6.4. An n× n matrix A � {aij } is skew-symmetric if and only if it
is nonnegative definite and its diagonal elementsa11, a22, . . . , ann equal zero.

Proof. Suppose thatA is skew-symmetric. Then, by definition,aii � 0 (i �
1,2, . . . , n). Moreover, it follows from Lemma 14.6.3 thatA is nonnegative defi-
nite.

Conversely, suppose thatA is nonnegative definite and that its diagonal elements
equal zero. Then it follows from Lemma 14.5.13 thataji � −aij for i, j �
1,2, . . . n. Thus,A is skew-symmetric. Q.E.D.
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14.7 Trace of a Nonnegative Definite Matrix

a. Basic results

The following result is an immediate consequence of Corollary 14.2.13.
Theorem 14.7.1. For any positive definite matrixA, tr(A) > 0.
The following theorem extends the result of Theorem 14.7.1 to nonnegative

definite matrices that are not positive definite, that is, to positive semidefinite
matrices.

Theorem 14.7.2. Let A � {aij } represent ann × n nonnegative definite ma-
trix. Then, tr(A) ≥ 0, with equality holding if and only if the diagonal ele-
mentsa11, a22, . . . , ann of A equal zero or, equivalently, if and only ifA is skew-
symmetric.

Proof. According to Corollary 14.2.13,aii ≥ 0 (i � 1,2, . . . , n). Thus,

tr(A) � a11+ a22+ · · · + ann ≥ 0 ,

with tr(A) � 0 if and only if a11, a22, . . . , ann equal zero. That the nonnegative
definite matrixA being skew-symmetric is equivalent to the diagonal elements of
A being zero is an immediate consequence of Lemma 14.6.4. Q.E.D.

In the special case whereA is a symmetric nonnegative definite matrix, Theorem
14.7.2 can (in light of Lemma 14.6.1) be restated as follows.

Corollary 14.7.3. Let A � {aij } represent ann × n symmetric nonnegative
definite matrix. Then, tr(A) ≥ 0, with equality holding if and only if the diagonal
elementsa11, a22, . . . , ann of A equal zero or, equivalently, if and only ifA � 0.

b. Extensions to products of nonnegative definite matrices

The following theorem extends Theorem 14.7.1.
Theorem 14.7.4. For anyn×n positive definite matrixA and anyn×n nonnull

symmetric nonnegative definite matrixB, tr(AB) > 0.
Proof. Letr � rank(B). Then, according to Theorem 14.3.7,B � Q′Q for some

r × n matrix Q of rankr. Since (according to Theorem 14.2.9)QAQ′ is positive
definite, we find (using Lemma 5.2.1 and Theorem 14.7.1) that

tr(AB) � tr(AQ′Q) � tr(QAQ′) > 0 .
Q.E.D.

As an essentially immediate consequence of Theorem 14.7.4, we have the fol-
lowing corollary, which extends Corollary 14.7.3.

Corollary 14.7.5. Let A represent ann × n positive definite matrix andB an
n × n symmetric nonnegative definite matrix. Then, tr(AB) ≥ 0, with equality
holding if and only ifB � 0.

In the special case whereB � I, Theorem 14.7.4 reduces to Theorem 14.7.1,
and, in the special case whereA � I, Corollary 14.7.5 reduces to Corollary 14.7.3.

The following theorem extends Theorem 14.7.2.
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Theorem 14.7.6. Let A represent ann × n nonnegative definite matrix andB
ann× n symmetric nonnegative definite matrix. Then tr(AB) ≥ 0, with equality
holding if and only ifBAB is skew-symmetric.

Proof. The theorem is true in the special case whereB � 0, since in that special
case tr(AB) � 0 andBAB � 0. Thus, in proving the theorem, it suffices to restrict
attention to the case whereB �� 0.

Suppose thatB �� 0, and letr � rank(B). Then, according to Theorem 14.3.7,
B � Q′Q for somer × n matrix Q of rankr. Observe [in light of result (5.2.3)]
that

tr(AB) � tr(AQ′Q) � tr(QAQ′) . (7.1)

According to Theorem 14.2.9,QAQ′ is nonnegative definite. Thus, it follows from
Theorem 14.7.2 that tr(QAQ′) ≥ 0, or, equivalently, that tr(AB)≥ 0, with equality
holding if and only ifQAQ′ is skew-symmetric or, equivalently, if and only if

QA′Q′ � −QAQ′ . (7.2)

SinceQ is of full row rank andQ′ of full column rank, we have (as a consequence
of Lemma 8.3.1) that condition (7.2) is equivalent to the condition

Q′QA′Q′Q � −Q′QAQ′Q . (7.3)

Moreover, condition (7.3) can be reexpressed as

(BAB)′ � −BAB .

Thus, condition (7.3) is satisfied if and only ifBAB is skew-symmetric. Q.E.D.
In the special case whereB � I, Theorem 14.7.6 reduces to Theorem 14.7.2.

If A is symmetric (as well as nonnegative definite), then the results of Theorem
14.7.6 can be sharpened, as described in the following corollary, which generalizes
(in a different way than Corollary 14.7.5) Corollary 14.7.3.

Corollary 14.7.7. Let A andB representn× n symmetric nonnegative definite
matrices. Then, tr(AB) ≥ 0, with equality holding if and only ifAB � 0.

Proof. Clearly, (BAB)′ � B′A′B′ � BAB; that is,BAB is symmetric, implying
(in light of Lemma 14.6.1) thatBAB is skew-symmetric if and only ifBAB � 0.
Thus, it follows from Theorem 14.7.6 that tr(AB) ≥ 0, with equality holding if
and only if

BAB � 0 . (7.4)

To complete the proof, it suffices to show that condition (7.4) is equivalent to
the conditionAB � 0. In the special case whereA � 0, these two conditions are
clearly equivalent. Thus, it suffices to restrict attention to the case whereA �� 0.

Suppose thatA �� 0, and letr � rank(A). According to Theorem 14.3.7,
A � Q′Q for somer × n matrix Q of rank r. Thus, condition (7.4) can be
reexpressed as (QB)′QB � 0, which (according to Corollary 5.3.2) is equivalent
to the condition

QB � 0 . (7.5)
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Moreover, sinceQ′ is of full column rank, it follows from Lemma 8.3.1 that
condition (7.5) is equivalent to the condition

Q′QB � Q′0 ,

which is reexpressible asAB � 0. We conclude that condition (7.4) is equivalent
to the conditionAB � 0. Q.E.D.

In the special case whereA � I or B � I, Corollary 14.7.7 reduces to Corollary
14.7.3.

14.8 Partitioned Nonnegative Definite Matrices

a. Applicability of formulas for ranks, determinants, inverses, and
generalized inverses

Consider a (square) partitioned matrixA of the form

A �
(

T U
V W

)
,

whereT is anm × m (square) matrix,W is ann × n (square) matrix,U is of
dimensionsm×n, andV is of dimensionsn×m, or consider a partitioned matrix
B of the form

B �
(

W V
U T

)
.

Suppose thatT is nonsingular. Then, formula (13.3.13) can be used to express|A|
or |B| in terms of the determinant ofT and the determinant of the Schur complement
W−VT−1U of T, and formula (8.5.15) can be used to express rank(A) or rank(B)
in terms of the orderm of T and the rank of the Schur complement ofT. Suppose
further thatA or B is nonsingular. Then, formula (8.5.16) or (8.5.17) can be used
to expressA−1 or B−1 in terms of the inverse ofT and the inverse of the Schur
complement ofT.

Is A or B nonsingular — and isT nonsingular — ifA or B is nonnegative
definite? IfA or B is positive definite, then it is clear from Lemma 14.2.8 thatA or
B, respectively, is nonsingular and from Corollary 14.2.12 thatT is nonsingular. If
A or B is a symmetric positive semidefinite matrix, then it is clear from Corollary
14.3.12 thatA or B, respectively, is singular. IfA or B is a nonsymmetric positive
semidefinite matrix, thenA or B, respectively, may or may not be nonsingular.
Moreover, even ifA or B is a nonsingular positive semidefinite matrix,T may be
singular.

Suppose now thatT is possibly singular. IfC(U) ⊂ C(T) andR(V) ⊂ R(T),
then formula (9.6.2) or (9.6.3) gives a generalized inverse ofA or B, respectively,
in terms of an arbitrary generalized inverseT− of T and an arbitrary generalized
inverse of the Schur complementW − VT−U of T, and formula (9.6.1) can be
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used to express rank(A) or rank(B) in terms of the rank ofT and the rank of the
Schur complement ofT.

Are the conditionsC(U) ⊂ C(T) andR(V) ⊂ R(T) satisfied ifA orB is positive
semidefinite? IfA or B is symmetric as well as positive semidefinite, the answer
to this question is yes, as is evident from the corollary of the following lemma.

Lemma 14.8.1. Let A represent a symmetric nonnegative definite matrix that
has been partitioned as

A �
(

T U
V W

)
,

whereT (and henceW) is square. Then there exist matricesR andS such that

T � R′R, U � R′S, V � S′R, W � S′S .

Proof. According to Corollary 14.3.8, there exists a matrixX such thatA � X′X.
PartitionX asX � (R,S) (whereR has the same number of columns asT). Then,

A � X′X �
(

R′

S′

)
(R, S) �

(
R′R R′S
S′R S′S

)
.

SinceR′R, R′S, S′R, andS′S are of the same dimensions asT, U, V, andW,
respectively,T � R′R, U � R′S, V � S′R, andW � S′S. Q.E.D.

Corollary 14.8.2. Let A represent a symmetric nonnegative definite matrix that
has been partitioned as

A �
(

T U
V W

)
,

whereT (and henceW) is square. Then,C(U) ⊂ C(T) andR(V) ⊂ R(T). Simi-
larly, C(V) ⊂ C(W) andR(U) ⊂ R(W).

Proof. According to Lemma 14.8.1, there exist matricesR andS such that

T � R′R, U � R′S, V � S′R, W � S′S .

Thus, making use of Corollaries 4.2.3 and 7.4.5, we find that

C(U) ⊂ C(R′) � C(T)

and
R(V) ⊂ R(R) � R(T) .

It can be shown in similar fashion thatC(V) ⊂ C(W) andR(U) ⊂ R(W). Q.E.D.

b. Block-diagonal matrices

Lemma 14.2.1 characterizes the concepts of nonnegative definiteness, positive
definiteness, and positive semidefiniteness as applied to diagonal matrices. The
following result extends the results of Lemma 14.2.1 to block-diagonal matrices.
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Lemma 14.8.3. Let Ai represent anni × ni matrix (i � 1,2, . . . , k), let n �
n1 + n2 + · · · + nk, and defineA to be then× n block-diagonal matrix

A � diag(A1,A2, . . . ,Ak) .

Then, (1)A is nonnegative definite if and only ifA1,A2, . . . ,Ak are nonnegative
definite; (2)A is positive definite if and only ifA1,A2, . . . ,Ak are positive definite;
and (3)A is positive semidefinite if and only if the diagonal blocksA1,A2, . . . ,Ak

are nonnegative definite with at least one of the diagonal blocks being positive
semidefinite.

Proof. Consider the quadratic formx′Ax (in ann-dimensional column vectorx)
whose matrix isA. Partitionx′ asx′ � (x′1, x′2, . . . , x′k), where (fori � 1,2, . . . , k)
xi is anni-dimensional (column) vector. Then, clearly,

x′Ax � x′1A1x1 + x′2A2x2 + · · · + x′kAkxk .

(1) If A1,A2, . . . ,Ak are nonnegative definite, then, by definition,x′iAixi ≥ 0
for everyxi (i � 1,2, . . . , k), implying thatx′Ax ≥ 0 for everyx and hence that
A is nonnegative definite. Conversely, ifA is nonnegative definite, then it follows
from Corollary 14.2.12 thatA1,A2, . . . ,Ak are nonnegative definite.

(2) If A1,A2, . . . ,Ak are positive definite, then, by definition,x′iAixi > 0 for
every nonnullxi (i � 1,2, . . . , k), implying thatx′Ax > 0 for every nonnullx
and hence thatA is positive definite. Conversely, ifA is positive definite, then it
follows from Corollary 14.2.12 thatA1,A2, . . . ,Ak are positive definite.

(3) Suppose thatA1,A2, . . . ,Ak are nonnegative definite and that, for somei,
sayi � i∗, Ai is positive semidefinite. Then, by definition,x′iAixi ≥ 0 for every
xi (i � 1,2, . . . , k), and there exists some nonnull value ofxi∗ , sayxi∗ � x̃i∗ , for
which x′i∗Ai∗xi∗ � 0. It follows thatx′Ax ≥ 0 for everyx, with equality holding
for x′ � (0, . . . , 0, x̃′i∗ ,0, . . . , 0). Thus,A is positive semidefinite.

Conversely, suppose thatA is positive semidefinite. Then, it follows from Part (1)
thatA1,A2, . . . ,Ak are nonnegative definite. Moreover, it follows from Part (2) that
not all of the matricesA1,A2, . . . ,Ak are positive definite and hence (since they
are nonnegative definite) that at least one of them is positive semidefinite. Q.E.D.

c. Nonnegative definiteness of a Schur complement

Sufficient conditions for the positive definiteness or positive semidefiniteness of a
Schur complement are given by the following theorem.

Theorem 14.8.4. Let

A �
(

T U
V W

)
,

whereT is of dimensionsm×m, U of dimensionsm×n, V of dimensionsn×m,
andW of dimensionsn× n.

(1) If A is positive definite, then the Schur complementW − VT−1U of T and
the Schur complementT− UW−1V of W are positive definite.
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(2) If A is symmetric positive semidefinite, then the Schur complementW −
VT−U of T and the Schur complementT− UW−V−1 of W are nonnegative
definite.

(3) If A is positive semidefinite (but not necessarily symmetric) and ifC(U) ⊂
C(T) or R(V) ⊂ R(T), then the Schur complementW−VT−U of T (relative
to T−) is nonnegative definite.

(3′) If A is positive semidefinite and ifC(V) ⊂ C(W) or R(U) ⊂ R(W), then the
Schur complementT−UW−V of W (relative toW−) is nonnegative definite.

Proof. Let us confine our attention to Result (3) and to the parts of Results (1)
and (2) that pertain to the Schur complement ofT. Result (3′) and the parts of
Results (1) and (2) that pertain to the Schur complement ofW can be established
via analogous arguments.

Define

P �
(

Im −T−U
0 In

)
.

According to Lemma 8.5.2,P is nonsingular. Further,

P′AP �
(

T (I− TT−)U
V− (T−U)′T Q

)
,

whereQ � W− VT−U− (T−U)′(I− TT−)U.
Suppose thatA is positive definite. Then, according to Corollary 14.2.10,P′AP

is positive definite. Thus, it follows from Corollary 14.2.12 thatQ is positive
definite. A further implication of Corollary 14.2.12 is thatT is positive definite
and hence nonsingular, so thatQ � W−VT−1U. We conclude that ifA is positive
definite, then the Schur complement ofT is positive definite.

Suppose now thatA is positive semidefinite. Then, according to Corollary
14.2.10,P′AP is positive semidefinite. Thus, it follows from Corollary 14.2.12
that Q is nonnegative definite. IfC(U) ⊂ C(T) — which (in light of Corollary
14.8.2) would be the case ifA were symmetric — then (according to Lemma
9.3.5) (I − TT−)U � 0 and henceQ � W − VT−U. We conclude that ifA is
symmetric positive semidefinite or, more generally, ifA is positive semidefinite
andC(U) ⊂ C(T), then the Schur complement ofT is nonnegative definite.

That the Schur complement ofT is nonnegative definite ifA is positive semidef-
inite andR(V) ⊂ R(T) can be established via a similar argument. Q.E.D.

As a partial “converse” to Theorem 14.8.4, we have the following result.
Theorem 14.8.5. Let

A �
(

T U
U′ W

)
,

whereT is of dimensionsm×m, U of dimensionsm× n, andW of dimensions
n× n.
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(1) If T is symmetric positive definite, and the Schur complementW− U′T−1U
of T is positive definite, or ifW is symmetric positive definite and the Schur
complementT−UW−1U′ of W is positive definite, thenA is positive definite.

(2) Suppose thatT is symmetric nonnegative definite and that the Schur com-
plementW − U′T−U of T is nonnegative definite. Suppose further that
C(U) ⊂ C(T). Then,A is nonnegative definite.

(2′) Suppose thatW is symmetric nonnegative definite and that the Schur com-
plementT − UW−U′ of W is nonnegative definite. Suppose further that
R(U) ⊂ R(W). Then,A is nonnegative definite.

Proof. Suppose thatT is symmetric positive definite (in which caseT is nonsin-
gular) or more generally thatT is symmetric nonnegative definite andC(U) ⊂ C(T).
Define

P �
(

Im −T−U
0 In

)
.

According to Lemma 8.5.2,P is nonsingular. Moreover,

P′AP � diag(T, W − U′T−U) ,

as can be easily verified by making use of Lemma 9.3.5, or equivalently

A � (P−1)′diag(T, W− U′T−U)P−1 . (8.1)

If W−U′T−U is nonnegative definite, then it follows from Lemma 14.8.3 that
diag(T,W−U′T−U) is nonnegative definite, implying [in light of equality (8.1) and
Corollary 14.2.10] thatA is nonnegative definite. Similarly, ifT is positive definite
(and hence invertible) andW − U′T−1U is positive definite, then diag(T,W −
U′T−1U) is positive definite, implying thatA is positive definite.

We conclude that ifT is symmetric nonnegative definite,W − U′T−U is non-
negative definite, andC(U) ⊂ C(T), thenA is nonnegative definite, and that ifT is
symmetric positive definite andW−U′T−1U is positive definite, thenA is positive
definite. It can be shown, in similar fashion, that ifW is symmetric nonnegative
definite,T− UW−U′ is nonnegative definite, andR(U) ⊂ R(W), thenA is non-
negative definite, and that ifW is symmetric positive definite andT−UW−1U′ is
positive definite, thenA is positive definite. Q.E.D.

In the special case of a symmetric partitioned matrix, we have (in light of The-
orem 14.8.4 and Corollary 14.2.12) the following corollary of Theorem 14.8.5.

Corollary 14.8.6. Suppose that a symmetric matrixA is partitioned as

A �
(

T U
U′ W

)

(whereT andW are square). Then,A is positive definite if and only ifT and the
Schur complementW − U′T−1U of T are both positive definite. Similarly,A is
positive definite if and only ifW and the Schur complementT − UW−1U′ of W
are both positive definite.
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14.9 Some Results on Determinants

a. Determinant of a symmetric nonnegative definite matrix

Let A represent ann × n symmetric positive definite matrix. Then, according to
Corollary 14.3.13, there exists a nonsingular matrixP such thatA � P′P. Since
(in light of Theorem 13.3.7)|P| �� 0, it follows that

|A| � |P′||P| � |P|2 > 0 .

Thus, recalling Corollary 14.3.12, we have the following theorem.
Lemma 14.9.1. The determinant of a symmetric positive definite matrix is

(strictly) positive. The determinant of a symmetric positive semidefinite matrix
equals zero.

b. Determinant of a (not necessarily symmetric) nonnegative
definite matrix

Those nonsymmetric nonnegative definite matrices that are nonsingular have
nonzero determinants — refer to Theorem 13.3.7. Can anything further be said
about their determinants? In particular, is the determinant of a nonsingular non-
symmetric nonnegative definite matrix, like that of a symmetric positive definite
matrix, necessarily positive? In what follows, the answer to this question is shown
to be yes.

Preliminary to considering the determinant of a possibly nonsymmetric non-
negative definite matrix, it is convenient to establish the following result on the
determinants of skew-symmetric matrices — recall (from Lemma 14.6.4) that a
matrix is skew-symmetric if and only if it is nonnegative definite and its diagonal
elements equal zero.

Theorem 14.9.2. Let A represent ann × n skew-symmetric matrix. (1) Ifn is
an odd number, then det(A) � 0. (2) If n is an even number, then det(A) ≥ 0.

Proof. (1) By definition,A′ � −A, so that, according to Lemma 13.2.1 and
Corollary 13.2.5,

|A| � |A′| � | − A| � (−1)n|A| .
Consequently, ifn is an odd number,|A| � −|A|, implying that 2|A| � 0 and
hence that|A| � 0.

(2) The proof that det(A) ≥ 0 whenn is an even number is by mathematical
induction. Whenn � 2,

A �
(

0 c

−c 0

)
for some scalarc, in which case

|A| � c2 ≥ 0 .

Suppose now that the determinant of every (n− 2)× (n− 2) skew-symmetric
matrix is greater than or equal to zero, wheren is an arbitrary even number (greater
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than or equal to 4). To complete the induction argument, we must show that the
determinant of an arbitraryn×n skew-symmetric matrixA � {aij } is greater than
or equal to zero.

For this purpose, it suffices to restrict attention to the case where at least one of
the lastn− 1 elements of the first row ofA is nonzero. (The case where alln− 1
of these elements are zero is trivial, since in that case the first row ofA is null and
hence it follows from Corollary 13.2.3 that|A| � 0.) Assume then thata1m �� 0
for some integerm (2 ≤ m ≤ n).

Let B � P′AP, whereP is the permutation matrix obtained by interchanging
the second andnth columns ofIn. (If m � 2, takeP � I.) Observe (in light of
Theorem 13.3.4 and Corollary 13.3.6) that

|B| � |P|2|A| � |A| , (9.1)

and partitionB asB �
(

B11 B12

B21 B22

)
, where the dimensions ofB11 are 2× 2.

According to Lemma 14.6.2,B is skew-symmetric, implying thatB11 �(
0 a1m

−a1m 0

)
, B′

12 � −B21, andB′
22 � −B22. Sincea1m �� 0, we have that

|B11| � a2
1m > 0 ,

and it follows from Theorem 13.3.8 that

|B| � a2
1m|B22− B21B−1

11 B12| . (9.2)

Moreover,

(B22− B21B−1
11 B12)

′ � B′
22− B′

12(B
′
11)

−1B′
21

� −B22− (−B21)(−B−1
11 )(−B12)

� −(B22− B21B−1
11 B12) ,

so thatB22 − B21B−1
11 B12 [which is of dimensions (n − 2)× (n − 2)] is skew-

symmetric. Thus, by supposition,

|B22− B21B−1
11 B12| ≥ 0 . (9.3)

Together, results (9.2) and (9.3) imply that|B| ≥ 0 and hence [in light of result
(9.1)] that|A| ≥ 0. Q.E.D.

We are now in a position to establish the following result on the determinant of
a nonnegative definite matrix.

Theorem 14.9.3. For any nonnegative definite matrixA, det(A) ≥ 0.
Proof. The proof is by mathematical induction. Clearly, the determinant of any

1× 1 nonnegative definite matrix is nonnegative.
Suppose now that the determinant of every (n−1)×(n−1) nonnegative definite

matrix is nonnegative, and consider the determinant of ann × n nonnegative
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definite matrixA � {aij }. To complete the induction argument, we must show that
det(A) ≥ 0.

In light of Theorem 14.9.2, it suffices to restrict attention to the case where at least
one of the diagonal elementsa11, a22, . . . , ann of A is nonzero and hence positive.
[If all nof the diagonal elements ofA are zero, then (according to Lemma 14.6.4)A
is skew-symmetric, and we have, as an immediate consequence of Theorem 14.9.2,
that det(A) ≥ 0.] Assume then thatamm > 0 for some integerm (1≤ m ≤ n).

Let B � P′AP, whereP is the permutation matrix obtained by interchanging the
first andmth columns ofIn. (If m � 1, takeP � I.) Observe (in light of Theorem
14.2.9) thatB is nonnegative definite and that

|B| � |P|2|A| � |A| . (9.4)

PartitionB asB �
(

B11 B12

B21 B22

)
, where the dimensions ofB11 are 1× 1.

Clearly,B11 � (amm), and consequently (sinceamm �� 0) it follows from Theo-
rem 13.3.8 that

|B| � amm|B22− B21B−1
11 B12| . (9.5)

Moreover, according to Parts (1) and (3) of Theorem 14.8.4,B22 − B21B−1
11 B12

[which is of dimensions (n − 1)× (n − 1)] is nonnegative definite, so that, by
supposition,

|B22− B21B−1
11 B12| ≥ 0 . (9.6)

Sinceamm > 0, we conclude [on the basis of results (9.5) and (9.6)] that|B| ≥ 0
and hence [in light of result (9.4)] that|A| ≥ 0. Q.E.D.

In light of Lemma 14.2.8 and Corollary 14.3.12, we have, as a corollary of
Theorem 14.9.3, the following result, which generalizes Lemma 14.9.1.

Corollary 14.9.4. The determinant of a positive definite matrix or of a nonsin-
gular nonsymmetric positive semidefinite matrix is (strictly) positive. The deter-
minant of a symmetric positive semidefinite matrix or of a singular nonsymmetric
positive semidefinite matrix equals 0.

c. A necessary and sufficient condition for the positive
definiteness of a symmetric matrix

Whether a symmetric matrix is positive definite can be ascertained from the deter-
minants of its leading principal submatrices. The following theorem provides the
basis for doing so.

Theorem 14.9.5. Let A � {aij } represent ann× n symmetric matrix, and, for
k � 1,2, . . . , n, let

Ak �



a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

...
ak1 ak2 . . . akk
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represent the leading principal submatrix ofA of order k. Then,A is positive
definite if and only if, fork � 1,2, . . . , n, det(Ak) > 0, that is, if and only if the
determinants of alln of the leading principal submatricesA1,A2, . . . ,An of A are
positive.

In proving Theorem 14.9.5, it is convenient to make use of the following result,
which is of some interest in its own right.

Lemma 14.9.6. Let A represent ann× n symmetric matrix (wheren ≥ 2), and
partitionA as

A �
(

A∗ a
a′ c

)
,

where the dimensions ofA∗ are (n− 1)× (n− 1). Then,A is positive definite if
and only ifA∗ is positive definite and|A| > 0.

Proof (of Lemma 14.9.6). IfA is positive definite, then it is clear from Corollary
14.2.12 thatA∗ is positive definite and from Lemma 14.9.1 that|A| > 0.

Conversely, suppose thatA∗ is positive definite (and hence nonsingular) and
that|A| > 0. Then, according to Theorem 13.3.8,

|A| � |A∗|(c − a′A−1
∗ a) .

Since (according to Lemma 14.9.1)|A∗| > 0 (and since|A| > 0), we conclude
that the Schur complementc−a′A−1

∗ a of A∗ (like A∗ itself) is positive definite and
hence [in light of Part (1) of Theorem 14.8.5] thatA is positive definite. Q.E.D.

Proof (of Theorem 14.9.5). That the determinants ofA1,A2, . . . ,An are positive
if A is positive definite is an immediate consequence of Corollary 14.2.12 and
Lemma 14.9.1.

For purposes of proving the converse, suppose that the determinants ofA1,A2,

. . ., An are positive. The proof consists of establishing, via a mathematical induc-
tion argument, thatA1,A2, . . . ,An are positive definite, which (sinceA � An)
implies in particular thatA is positive definite.

Clearly,A1 is positive definite. Suppose now thatAk−1 is positive definite (where
2 ≤ k ≤ n), and partitionAk as

Ak �
(

Ak−1 ak
a′k akk

)
,

whereak � (a1k, a2k, . . . , ak−1,k)′. SinceAk−1 is (by supposition) positive definite
(and since|Ak| > 0), it follows from Lemma 14.9.6 thatAk is positive definite.

We conclude, on the basis of the induction argument, thatA1,A2, . . . ,An are
positive definite and thatA in particular is positive definite. Q.E.D.

d. A necessary and sufficient condition for the nonnegative
definiteness of a symmetric matrix

Is it the case that ann×n symmetric matrix is nonnegative definite if and only if the
determinants of alln of its leading principal submatrices are nonnegative (as might
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be conjectured on the basis of Theorem 14.9.5)? It is clear (from Corollary 14.2.12
and Lemma 14.9.1) that the nonnegativity of the determinants of then leading
principal submatrices is a necessary condition (for nonnegative definiteness). It
can be shown, however, that this condition is not sufficient.

In this section, we establish a necessary and sufficient condition for the non-
negative definiteness of a symmetric matrix. This condition is analogous to the
necessary and sufficient condition for positive definiteness given by the following
theorem (which differs from the necessary and sufficient condition for positive
definiteness given by Theorem 14.9.5).

Theorem 14.9.7. LetA represent ann×n symmetric matrix. Then,A is positive
definite if and only if (1)A is nonsingular and (2) the determinant of every principal
submatrix ofA is nonnegative.

To prove Theorem 14.9.7, we require the following result, which is of some
interest in its own right.

Theorem 14.9.8. LetA represent ann×n nonsingular symmetric matrix (where
n ≥ 3), and partitionA as

A �
(

B a
a′ c

)
,

where the dimensions ofB are (n − 1)× (n − 1). ThenB is nonsingular orB
contains an (n− 2)× (n− 2) nonsingular principal submatrix. Moreover, ifB is
singular andB∗ is any (n−2)× (n−2) nonsingular principal submatrix ofB, then
|B∗| |A| < 0 (i.e.,|B∗| and|A| are opposite in sign).

Proof (of Theorem 14.9.8). Suppose thatB is singular, and letA1 � (B, a). Since
the rows ofA are linearly independent, the rows ofA1 are also linearly independent,
and hence rank(A1) � n−1. Thus,A1 containsn−1 linearly independent columns,
implying thatB contains (at least)n− 2 linearly independent columns. Since (by
supposition)B is singular, we have that

rank(B) � n− 2 .

Moreover,B is symmetric. We conclude (in light of Corollary 4.4.11) thatB con-
tains an (n− 2)× (n− 2) nonsingular principal submatrix.

Let B∗ represent an (n − 2)× (n − 2) nonsingular principal submatrix ofB,
say that obtained by striking out thekth row and column (ofB). Let U � (U∗,u),
whereU∗ is the (n − 1)× (n − 2) submatrix ofIn−1 obtained by striking out the
kth column (ofIn−1) andu is thekth column ofIn−1. Then,U is a permutation
matrix, and

U′BU �
(

B∗ U′
∗Bu

u′BU∗ u′Bu

)

[so that the (n− 2)× (n− 2) leading principal submatrix ofU′BU is B∗].
TakeP to be then× n matrix

P �
(

U 0
0′ 1

)
.
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Then,P is a permutation matrix, and

P′AP �
(

U′BU U′a
a′U c

)
�

 B∗ U′

∗Bu U′
∗a

u′BU∗ u′Bu u′a
a′U∗ a′u c


 .

Thus, making use of Theorem 13.3.8, we find that

|A| � |P|2|A| � |P′AP| � |B∗||F| , (9.7)

whereF �
(
f11 f12

f12 f22

)
with

f11 � u′Bu − u′BU∗B−1
∗ U′

∗Bu ,

f12 � u′a − u′BU∗B−1
∗ U′

∗a ,
f22 � c − a′U∗B−1

∗ U′
∗a .

Further,

|B| � |U|2|B| � |U′BU| � |B∗|(u′Bu− u′BU∗B−1
∗ U′

∗Bu) � |B∗|f11 . (9.8)

Since (by supposition)B is singular and since (by definition)B∗ is nonsingular,
we have that|B| � 0 and|B∗| �� 0, implying [in light of result (9.8)] thatf11 � 0
and hence that|F| � −f 2

12. Thus, making use of result (9.7), we find that

|A| � −f 2
12|B∗| .

We conclude that|B∗| and|A| are opposite in sign. Q.E.D.
Proof (of Theorem 14.9.7). IfA is positive definite, then it is clear from Lemma

14.2.8, Corollary 14.2.12, and Lemma 14.9.1 thatA is nonsingular and that the
determinant of every principal submatrix ofA is positive (and hence nonnegative).
Thus, it suffices to prove that ifA is nonsingular and the determinant of every
principal submatrix ofA is nonnegative, thenA is positive definite. The proof of
this is by mathematical induction.

Consider first the relatively trivial case of a 1× 1 matrix A � (a11) that is
nonsingular and whose only principal submatrix (A itself) has a nonnegative de-
terminant. We have thata11 �� 0 anda11 ≥ 0, implying thata11 > 0 and hence
thatA is positive definite.

Next, consider the case of a 2× 2 symmetric matrixA �
(
a11 a12

a12 a22

)
that is

nonsingular and whose three principal submatrices [(a11), (a22), andA itself] have
nonnegative determinants. We have that|A| �� 0, implying (since|A| ≥ 0) that
|A| > 0. And a11 ≥ 0, so thata11 > 0 (since ifa11 � 0, it would be the case
that |A| � −a2

12 ≤ 0). Based on Theorem 14.9.5, we conclude thatA is positive
definite.

Now, suppose that every (n−1)× (n−1) symmetric matrix that is nonsingular
and whose principal submatrices all have nonnegative determinants is positive
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definite, and consider ann× n symmetric matrixA that is nonsingular and whose
principal submatrices all have nonnegative determinants. To complete the induction
argument, we must show thatA is positive definite.

Observe that|A| �� 0 (sinceA is nonsingular) and that|A| ≥ 0 (sinceA is a
principal submatrix of itself) and hence that|A| > 0. PartitionA as

A �
(

B a
a′ c

)
,

where the dimensions ofB are (n−1)× (n−1). Observe that every principal sub-
matrix ofB is a principal submatrix ofA and hence that every principal submatrix
of B has a nonnegative determinant. Observe also thatB is nonsingular [since ifB
were singular,B would (according to Theorem 14.9.8) contain an (n−2)× (n−2)
principal submatrix whose determinant would be opposite in sign to|A| and hence
negative]. Accordingly, it follows from our supposition thatB is positive definite.

We conclude (on the basis of Lemma 14.9.6) thatA is positive definite. Q.E.D.
For purposes of establishing a necessary and sufficient condition for the nonneg-

ative definiteness of a symmetric matrix, analogous to the necessary and sufficient
condition given by Theorem 14.9.7 for the positive definiteness of a symmetric
matrix, it is helpful to introduce the following two lemmas.

Lemma 14.9.9. Let A represent ann × n symmetric matrix of rankr. Then,
corresponding to anyr × r nonsingular principal submatrixA∗ of A, there exists
anr × n matrix Q (of rankr) such thatA � Q′A∗Q.

Proof. Suppose thatA∗ is ther× r nonsingular principal submatrix obtained by
striking out all of the rows and columns ofA except thei1, i2, . . . , ir th rows and
columns (wherei1 < i2 < · · · < ir ). TakeP to be any permutation matrix whose
first, second,. . . , rth columns are thei1, i2, . . . , ir th columns, respectively, ofIn.

LetB � P′AP, and partitionP asP � (P1,P2), whereP1 is of dimensionsn×r.
Then,A∗ � P′1AP1 and hence

B �
(

A∗ B12

B′
12 B22

)
,

whereB12 � P′1AP2 andB22 � P′2AP2. Since rank(B) � rank(A) � r, it follows
from Lemma 9.2.2 thatB22 � B′

12A−1
∗ B12. Thus,

B � (Ir , A−1
∗ B12)

′A∗(Ir , A−1
∗ B12) ,

so that
A � PBP′ � Q′A∗Q ,

whereQ � (Ir ,A−1
∗ B12)P′.

Moreover, rank(Q) ≥ rank(A) � r, and (sinceQ is of dimensionsr × n)
rank(Q) ≤ r. Thus, rank(Q) � r. Q.E.D.

Lemma 14.9.10. Let A represent ann× n symmetric matrix of rankr, and let
A∗ represent anr×r nonsingular principal submatrix ofA. ThenA is nonnegative
definite if and only ifA∗ is positive definite.
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Proof. Suppose thatA is nonnegative definite. Then, according to Corollary
14.2.12,A∗ is nonnegative definite. Moreover, sinceA is symmetric,A∗ is sym-
metric. Thus, it follows from Corollary 14.3.12 thatA∗ is positive definite.

Conversely, suppose thatA∗ is positive definite. Then, according to Lemma
14.9.9, there exists a matrixQ such thatA � Q′A∗Q. Thus, it follows from
Theorem 14.2.9 thatA is nonnegative definite. Q.E.D.

The following theorem gives a necessary and sufficient condition for the nonneg-
ative definiteness of a symmetric matrix, analogous to the necessary and sufficient
condition given by Theorem 14.9.7 for the positive definiteness of a symmetric
matrix.

Theorem 14.9.11. Let A represent ann × n symmetric matrix. Then,A is
nonnegative definite if and only if the determinant of every principal submatrix of
A is nonnegative.

Proof. Suppose that the symmetric matrixA is nonnegative definite. Then (in
light of Corollary 14.2.12) every principal submatrix ofA is nonnegative defi-
nite (and symmetric). And, we conclude (on the basis of Lemma 14.9.1) that the
determinant of every principal submatrix ofA is nonnegative.

Conversely, suppose that the determinant of every principal submatrix ofA is
nonnegative. Letr � rank(A). Then, according to Corollary 4.4.11,A contains an
r × r nonsingular principal submatrix, sayA∗. Clearly, every principal submatrix
of A∗ is a principal submatrix ofA, and hence (by supposition) the determinant
of every principal submatrix ofA∗ is nonnegative, implying (in light of Theorem
14.9.7) thatA∗ is positive definite. We conclude (on the basis of Lemma 14.9.10)
thatA is nonnegative definite. Q.E.D.

14.10 Geometrical Considerations

As discussed in Section 6.1, the inner product of twom× n matricesA andB (in
a linear spaceV of m × n matrices) is the valueA • B assigned toA andB by a
designated functionf whose domain consists of all pairs of matrices inV and that
has certain basic properties. The usual inner product ofA andB is that given by
the formula

A •B � tr(A′B) .

In the special case ofn-dimensional column vectorsx � {xi} andy � {yi}, the
formula for the usual inner product simplifies to

x •y � x′y � x1y1 + x2y2 + · · · + xnyn .
In the present section, we consider alternative inner products for the linear space
Rn×1 of all n-dimensional column vectors.

a. Expression of inner products as bilinear forms

Consider a bilinear formx′Ay (in n-dimensional column vectorsx andy). If the
matrixA is symmetric positive definite, thenx′Ay qualifies as an inner product for
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Rn×1. To see this, letx, y, andz represent arbitraryn-dimensional column vectors
andk an arbitrary scalar, and observe that ifA is symmetric positive definite, then
the bilinear form has the following four properties:

(1) x′Ay � y′Ax;

(2) x′Ax ≥ 0, with equality holding if and only ifx � 0;

(3) (kx)′Ay � k(x′Ay);

(4) (x+ y)′Az � x′Az+ y′Az.

Are the symmetry and positive definiteness ofA necessary as well as sufficient
for the bilinear formx′Ay to qualify as an inner product forRn×1? The answer is
yes. IfA were not symmetric, then (as discussed in Section 14.1) the bilinear form
x′Ay would not be symmetric; that is, there would existn-dimensional vectors
x andy such thatx′Ay �� y′Ax. Moreover, ifA were not positive definite, then
x′Ax < 0 for somex or x′Ax � 0 for some nonnullx.

Note (in light of Corollary 14.1.3) that distinct (symmetric positive definite)
choices for the matrixA of the bilinear formx′Ay produce distinct inner products.

Is every inner product forRn×1 expressible as a bilinear form? The answer is
yes. To verify this, letx •y represent the value assigned to arbitraryn-dimensional
column vectorsx andy by an inner product forRn×1; denote bye1, . . . , en the
first, . . . , nth columns, respectively, ofIn; and takeA to be then×nmatrix whose
ij th element isaij � ei •ej . Then,

x •y �
(∑

i

xiei

)
•y

�
∑
i

xi (ei •y)

�
∑
i

xi

[
ei •

(∑
j

yjej

)]

�
∑
i

xi
∑
j

yj (ei •ej ) �
∑
i,j

xiyjaij � x′Ay .

In summary, a bilinear form (inn-dimensional vectors) qualifies as an inner
product forRn×1 if and only if the matrix of the bilinear form is symmetric and
positive definite; distinct (symmetric positive definite) choices for the matrix of the
bilinear form produce distinct inner products forRn×1; and every inner product
for Rn×1 is expressible as a bilinear form.

b. Schwarz inequality

In light of the discussion of Subsection a, we obtain, as a direct consequence of
Theorem 6.3.1, the following version of the Schwarz inequality.
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Theorem 14.10.1. LetW represent ann×n symmetric positive definite matrix.
Then, for anyn-dimensional column vectorsx andy,

(x′Wy)2 ≤ (x′Wx)(y′Wy) , (10.1)

with equality holding if and only ify � 0 or x � ky for some scalark.
The following corollary, which is essentially a special case of Corollary 6.3.2,

expresses the result of Theorem 14.10.1 in an alternative form.
Corollary 14.10.2. LetW represent ann×n symmetric positive definite matrix.

Then, for anyn-dimensional column vectory,

max
{x∈Rn:x ��0}

(x′Wy)2

x′Wx
� y′Wy . (10.2)

Moreover, if y � 0, the maximum is attained at every nonnullx ∈ Rn, and if
y �� 0, the maximum is attained at every nonnullx ∈ Rn that is proportional toy.

By replacing the vectory in Theorem 14.10.1 and Corollary 14.10.2 with the
vectorW−1y, we obtain the following two corollaries.

Corollary 14.10.3. LetW represent ann×n symmetric positive definite matrix.
Then, for anyn-dimensional column vectorsx andy,

(x′y)2 ≤ (x′Wx)(y′W−1y) , (10.3)

with equality holding if and only ify � 0 or x � kW−1y for some scalark.
Corollary 14.10.4. LetW represent ann×n symmetric positive definite matrix.

Then, for anyn-dimensional column vectory,

max
{x∈Rn:x��0}

(x′y)2

x′Wx
� y′W−1y . (10.4)

Moreover, if y � 0, the maximum is attained at every nonnullx ∈ Rn, and if
y �� 0, the maximum is attained at every nonnullx ∈ Rn that is proportional to
W−1y.

c. Quasi-inner products

Let V represent a linear space ofm× nmatrices, letf represent a function whose
domain consists of all pairs of matrices inV, and, forA andB in V, denote by
A ∗ B the value assigned byf to the pairA andB. The four basic requirements
that would (for all matricesA, B, andC in V and for every scalark) have to be
satisfied byf for f to qualify as an inner product are:

(1) A ∗ B � B ∗ A;

(2) A ∗ A ≥ 0, with equality holding if and only ifA � 0;

(3) (kA) ∗ B � k(A ∗ B);
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(4) (A+ B) ∗ C � (A ∗ C)+ (B ∗ C).

A less restrictive requirement than requirement (2) is the requirement

(2′) A ∗ A ≥ 0, with equality holding ifA � 0;

obtained by allowingA ∗ A to equal 0 even ifA �� 0. If f satisfies requirement
(2′) [as well as requirements (1), (3), and (4)], but not necessarily requirement (2),
let us use the termquasi-inner product in referring tof and to the values assigned
by f to the various pairs of matrices.

Subsequently, the symbolA • B will sometimes be used to represent the quasi-
inner product of two matricesA andB, although this will never be done without
calling attention to the (temporary) departure from our standard usage ofA •B as
a symbol for a “true” inner product. In using the dot notation to represent a quasi-
inner product, the symbol‖A‖ will continue to be used to represent the quantity
(A • A)1/2. In the case of a quasi-inner product, let us refer to this quantity as a
quasi norm, rather than a norm.

It is a straightforward exercise to generalize the results of Subsection a to quasi-
inner products. We find that a bilinear form (inn-dimensional vectors) qualifies
as a quasi-inner product forRn×1 if and only if the matrix of the bilinear form is
symmetric and nonnegative definite; that distinct (symmetric nonnegative definite)
choices for the matrix of the bilinear form produce distinct quasi-inner products
for Rn×1; and that every quasi-inner product forRn×1 is expressible as a bilinear
form.

The Schwarz inequality (6.3.1) applies to quasi-inner products as well as “true”
inner products. To see this, letV represent a linear space ofm×nmatrices, and let
A •B represent the value assigned by a quasi-inner product to any pair of matrices
A andB (in V).

That the Schwarz inequality

|A •B| ≤ ‖A‖‖B‖ (10.5)

is valid for allA andB in V such that‖B‖ > 0 can be established in essentially the
same way as in the case of a “true” inner product — refer to the proof of Theorem
6.3.1. And, it can be established via an analogous argument that this inequality is
valid for all A andB in V such that‖A‖ > 0. It remains to establish the validity
of inequality (10.5) for thoseA andB in V such that‖A‖ � ‖B‖ � 0 — this can
be accomplished by observing that if‖A‖ � ‖B‖ � 0, then

0 ≤ (A+ B) • (A+ B) � 2A •B

and
0 ≤ (A− B) • (A− B) � −2A •B ,

and, as a consequence,A •B � 0.
As in the case of a “true” inner product, a sufficient condition for equality to

hold in inequality (10.5), that is, for

|A •B| � ‖A‖‖B‖ , (10.6)



256 14. Linear, Bilinear, and Quadratic Forms

is thatB � 0 or A � kB for some scalark. However, this condition is no longer
necessary. That is, in general, equality (10.6) can be satisfied withoutB being null
or A being proportional toB.

In the case of a quasi-inner product,‖A‖ � 0 need not imply thatA � 0.
However, even in the case of a quasi-inner product,

‖A‖ � 0 ⇒ A •B � 0 (10.7)

(for everyB in V), as is evident from the Schwarz inequality.

14.11 Some Results on Ranks and Row and Column
Spaces and on Linear Systems

The following theorem generalizes Theorem 7.4.1.
Theorem 14.11.1. Let W represent anm × m symmetric nonnegative definite

matrix. Then, for anym× n matrix A andm× p matrix B, the linear system

A′WAX � A′WB (in X) (11.1)

is consistent.
Proof. According to Corollary 14.3.8,W � P′P for some matrixP. Linear

system (11.1) can be rewritten as

A′
∗A∗X � A′

∗B∗ ,

whereA∗ � PA andB∗ � PB. Thus, it follows from Theorem 7.4.1 that linear
system (11.1) is consistent. Q.E.D.

Some results on the row and column spaces and the rank of the coefficient
matrix of linear system (11.1) are given by the following lemma, which generalizes
Corollary 7.4.5.

Lemma 14.11.2. For anym × n matrix A and anym × m symmetric non-
negative definite matrixW, C(A′WA) � C(A′W), R(A′WA) � R(WA), and
rank(A′WA) � rank(WA).

Proof. According to Corollary 14.3.8,W � P′P for some matrixP. Observing
thatA′WA � (PA)′PA and making use of Corollary 7.4.5 and Theorem 7.4.3, we
find that

R(A′WA) � R(PA) � R(P′PA) � R(WA) .

ThatC(A′WA) � C(A′W) follows from Lemma 4.2.5. Q.E.D.
Since any positive definite matrix is nonsingular, we have (in light of Corollary

8.3.3) the following corollary of Lemma 14.11.2, which (like Lemma 14.11.2
itself) can be regarded as a generalization of Corollary 7.4.5.

Corollary 14.11.3. For anym× nmatrixA and anym×m symmetric positive
definite matrixW, C(A′WA) � C(A′), R(A′WA) � R(A), and rank(A′WA) �
rank(A).
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14.12 Projections, Projection Matrices, and Orthogonal
Complements

In this section, further consideration is given to the projection of ann-dimensional
column vector on a subspace ofRn×1. By definition, the projection depends on
the choice of inner product. A rather extensive discourse on the projection of a
column vector was presented in Chapter 12. The results included in that discourse
are, for the most part, specific to the case where the inner product is the usual inner
product. In this section, these results are generalized to an arbitrary inner product.

a. Some terminology, notation, and basic results

Let W represent ann × n symmetric positive definite matrix. As discussed in
Section 14.10a, the bilinear formx′Wy (in n-dimensional column vectorsx and
y) qualifies as an inner product forRn×1. (And every inner product is expressible
as a bilinear form.) When the bilinear formx′Wy is chosen to be the inner product
for Rn×1, x ⊥ y (i.e., twon-dimensional column vectorsx andy are orthogonal)
if and only if x′Wy � 0, x ⊥ U (i.e., x is orthogonal to a subspaceU of Rn×1)
if and only if x′Wy � 0 for everyy in U , andU ⊥ V (i.e., U is orthogonal to a
subspaceV) if and only if x′Wy � 0 for everyx in U and everyy in V.

To indicate thatx′Wy � 0 for two n-dimensional vectorsx andy, let us (for
convenience and/or to emphasize that the orthogonality of two vectors depends on
the choice of inner product) writex ⊥W y or say thatx andy are orthogonal with
respect toW. Similarly, to indicate thatx′Wy � 0 for every vectory in a subspace
U , let us writex ⊥W U or say thatx andU are orthogonal with respect toW. And,
to indicate thatx′Wy � 0 for everyx in a subspaceU and everyy in a subspace
V, let us writeU ⊥W V or say thatU andV are orthogonal with respect toW.
Clearly, saying thatx andy, x andU , or U andV are orthogonal with respect toI
is synonymous with saying that they are orthogonal with respect to the usual inner
product.

Furthermore, let us extend our use of this notation and terminology to the case
whereW is positive semidefinite rather than positive definite. Thus, for anyn× n
symmetric nonnegative definite matrixW, let us writex ⊥W y or say thatx andy
are orthogonal with respect toW to indicate thatx′Wy � 0; let us writex ⊥W U
or say thatx andU are orthogonal with respect toW to indicate thatx′Wy � 0
for everyy in U ; and let us writeU ⊥W V or say thatU andV are orthogonal
with respect toW to indicate thatx′Wy � 0 for everyx in U and everyy in V.
Note that ifW is only positive semidefinite, then the bilinear formx′Wy does not
qualify as an inner product (as it does whenW is positive definite) — although it
still qualifies as what (in Section 14.10c) is called a quasi-inner product.

By applying Lemma 12.1.1 (in the special case whereV � Rm×1 andU andW
are column spaces of matrices), we obtain the following generalization of Corollary
12.1.2.

Lemma 14.12.1. Let y represent anm-dimensional column vector,X anm× n
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matrix, andZ anm×p matrix, and letW represent anm×m symmetric positive
definite matrix. Then,y ⊥W C(X) if and only if X′Wy � 0 (or equivalently if
and only ify′WX � 0). Similarly, C(X) ⊥W C(Z) if and only if X′WZ � 0 (or
equivalently if and only ifZ′WX � 0).

The restriction in Lemma 14.12.1 thatW be positive definite can be relaxed.
The lemma is valid for anym × m symmetric nonnegative definite matrixW, as
can be easily verified.

b. Approach

To extend (to inner products other than the usual inner product) the results presented
in Chapter 12 on the projection of a column vector, we could proceed in either of two
ways. One approach is to generalize and (when necessary) modify the derivations
given in Chapter 12. An alternative approach, which is sometimes employed here,
uses the following lemma to take advantage of the results already established (in
Chapter 12) in the special case of the usual inner product.

Lemma 14.12.2. Let L represent an arbitrary matrix of dimensionsm× n, and
let U represent an arbitrary subspace ofRn×1. Further, define

V � {v ∈ Rm : v � Lx for somex ∈ U} ,
defineW � L′L, and letX represent ann × p matrix whose columns spanU .
Then,

(1) the setV is a subspace ofRm;

(2) two vectorsx andy in Rn are orthogonal with respect toW if and only if Lx
andLy are orthogonal with respect to the usual inner product (forRm);

(3) a vectorx (in Rn) and the subspaceU are orthogonal with respect toW if and
only if Lx andV are orthogonal with respect to the usual inner product (for
Rm);

(4) the subspaceU and a subspaceM (of Rn×1) are orthogonal with respect toW
if and only if V and the subspace

N � {z ∈ Rm : z � Ly for somey ∈ M}

are orthogonal with respect to the usual inner product (forRm);

(5) the columns ofLX spanV.

Proof. (1) By definition,V is a subset ofRm. Thus, it suffices to show thatV is a
linear space. Letv andw represent arbitrary vectors inV, and letk be an arbitrary
scalar. Then,v � Lx andw � Ly for some vectorsx andy in U , and (sinceU is
a linear space)x+ y ∈ U andkx ∈ U . It follows thatv+ w � L(x+ y) ∈ V and
kv � L(kx) ∈ V, and hence thatV is a linear space.

(2) Observe thatx′Wy � (Lx)′Ly, and hence thatx′Wy � 0 if and only if
(Lx)′Ly � 0.
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(3) In light of Part (2),x andU are orthogonal with respect toW, or, equivalently,
x andy are orthogonal (with respect toW) for everyy in U , if and only if Lx and
Ly are orthogonal (with respect to the usual inner product) for everyy in U . Thus,
x andU are orthogonal (with respect toW) if and only if Lx andv are orthogonal
(with respect to the usual inner product) for everyv in V, or, equivalently, if and
only if Lx andV are orthogonal (with respect to the usual inner product).

(4) In light of Part (2),U andM are orthogonal with respect toW, or, equiv-
alently,x andy are orthogonal (with respect toW) for everyx in U and everyy
in M, if and only if Lx andLy are orthogonal (with respect to the usual inner
product) for everyx in U and everyy in M. Thus,U andM are orthogonal (with
respect toW) if and only if v andz are orthogonal (with respect to the usual inner
product) for everyv in V and everyz in N , or, equivalently, if and only ifV and
N are orthogonal (with respect to the usual inner product).

(5) Let v represent an arbitrary vector inV. Then,v � Lx for somex ∈ U .
Moreover,x � Xr for somep-dimensional column vectorr. Thus,v � LXr, so
thatv is expressible as a linear combination of the columns ofLX. We conclude
that the columns ofLX spanV. Q.E.D.

c. Projections

Let W represent ann × n symmetric positive definite matrix, lety represent an
n-dimensional column vector, and letU represent a subspace ofRn×1. Definez to
be the projection ofy on U when the inner product (forRn×1) is taken to be the
bilinear formx′Wy. Let us refer to this projection as theorthogonal projection of
y on U with respect to, W or simply as theprojection of y on U with respect to W.

Formula (12.2.1) gives the projection ofy onU with respect to the usual inner
product (i.e., with respect toI) in terms of an arbitrary solution to the normal
equations (12.2.2). For purposes of generalizing this formula, letL represent a
nonsingular matrix such thatW � L′L, define

V � {v ∈ Rn : v � Lx for somex ∈ U} ,

and takeX to be anyn× p matrix whose columns spanU .
Let b∗ represent any solution to the linear system

X′WXb � X′Wy (in b) .

(The existence of such a solution follows from Theorem 14.11.1.) Note that this
linear system can be rewritten as

(LX)′LXb � (LX)′Ly .

By definition, z is the (unique) vector inU such thaty − z ⊥W U . Thus, it
follows from Part (3) of Lemma 14.12.2 thatL(y− z), or, equivalently,Ly− Lz,
is orthogonal toV with respect to the usual inner product, implying thatLz is the
projection ofLy onV with respect to the usual inner product. Since [according to
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Part (5) of Lemma 14.12.2] the columns ofLX spanV, we have, as a consequence of
Theorem 12.2.1, thatLz � LXb∗ and hence (sinceL is nonsingular) thatz � Xb∗.

In summary, we have the following generalization of Theorem 12.2.1.
Theorem 14.12.3. Let z represent the projection of ann-dimensional column

vectory on a subspaceU (of Rn) with respect to a symmetric positive definite
matrix W, and letX represent anyn× p matrix whose columns spanU . Then,

z � Xb∗

for any solutionb∗ to the (consistent) linear system

X′WXb � X′Wy (in b) .

The following three corollaries (of Theorem 14.12.3) generalize Corollaries
12.2.2–12.2.4, respectively.

Corollary 14.12.4. Let z represent the projection of ann-dimensional column
vectory on a subspaceU (of Rn) with respect to a symmetric positive definite
matrix W, and letX represent anyn× p matrix whose columns spanU . Then,

z � X(X′WX)−X′Wy .

Corollary 14.12.5. Lety represent ann-dimensional column vector,X ann×p
matrix, andU anyn× q matrix such thatC(U) � C(X). Then,

Ua∗ � Xb∗

for any solutiona∗ to the linear systemU′WUa � U′Wy (in a) and any solution
b∗ to the linear systemX′WXb � X′Wy (in b).

Corollary 14.12.6. Let y represent ann-dimensional column vector, andX an
n × p matrix. Then,Xb1 � Xb2 for any two solutionsb1 andb2 to the linear
systemX′WXb � X′Wy (in b).

The following theorem generalizes Theorem 12.2.5.
Theorem 14.12.7. Let z represent the projection of ann-dimensional column

vectory on a subspaceU (of Rn) with respect to a symmetric positive definite
matrixW, and letX represent anyn×p matrix whose columns spanU . Then any
p × 1 vectorb∗ such thatz � Xb∗ is a solution to the linear systemX′WXb �
X′Wy (in b).

Proof. As a consequence of Theorem 14.12.3,X′WXb � X′Wy has a solution,
saya, andz � Xa. Thus,

X′WXb∗ � X′Wz � X′WXa � X′Wy .
Q.E.D.

d. Projection matrices

Subsequently, for anyn×pmatrixX and for anyn×nmatrixW, the symbolPX,W is
used to represent then×nmatrixX(X′WX)−X′W. Note thatPX,I � X(X′X)−X′ �
PX. Note also that ifW is symmetric and positive definite, thenPX,W is invariant
to the choice of the generalized inverse (X′WX)− as (in light of Corollary 14.11.3)
is evident from Theorem 9.4.1 and as is implicit in the following theorem.
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Theorem 14.12.8. Let U represent any subspace of the linear spaceRn of all
n-dimensional column vectors, and letW represent anyn× n symmetric positive
definite matrix. Then there exists a unique matrixA (of dimensionsn × n) such
that, for everyy in Rn, Ay is the projection ofy on U with respect toW. Moreover,
A � PX,W for any matrixX such thatC(X) � U .

Theorem 14.12.8 generalizes Theorem 12.3.1 and can be proved in essentially
the same way as Theorem 12.3.1.

Let us refer to the matrixA (from Theorem 14.12.8) as theorthogonal projection
matrix for U with respect to W or simply asthe projection matrix for U with respect
to W. And let us speak of ann × n matrix as aprojection matrix with respect to
W when we wish to indicate that there exists some subspace ofRn for which that
matrix is the projection matrix with respect toW. Moreover, for consistency with
our previous terminology, let us refer to the projection matrix forU with respect
to I simply as the projection matrix forU and to a projection matrix with respect
to I simply as a projection matrix.

The following two corollaries (of Theorem 14.12.8) generalize Corollaries
12.3.2 and 12.3.3.

Corollary 14.12.9. Let A represent the projection matrix for a subspaceU
(of Rn×1) with respect to ann × n symmetric positive definite matrixW. Then,
A � PX,W for any matrixX such thatC(X) � U .

Corollary 14.12.10. An n × n matrix A is a projection matrix with respect to
ann× n symmetric positive definite matrixW if and only if A � PX,W for some
matrix X.

The basic properties of projection matrices encompassed in Theorems 12.3.4
and 12.3.5 are generalized in the following two theorems.

Theorem 14.12.11. LetX represent anyn×pmatrix, andW anyn×nsymmetric
positive definite matrix. Then,

(1) PX,WX � X; that is,X(X′WX)−X′WX � X; implying thatWPX,WX � WX;

(2) PX,W � XB∗ for any solutionB∗ to the linear systemX′WXB � X′W (in B);

(3) WPX,W is symmetric; that is,WX[(X′WX)−]′X′W � WX(X′WX)−X′W;

(3′) PX,WW−1 is symmetric; that is,X[(X′WX)−]′X′ � X(X′WX)−X′;

(4) X[(X′WX)−]′X′WX � X; implying thatP
′
X,WWX � WX;

(5) X′WX(X′WX)−X′ � X′WX[(X′WX)−]′X′ � X′P
′
X,W � X′; implying that

X′WPX,W � X′W;

(6) P2
X,W � PX,W; that isPX,W is idempotent;

(6′) P
′
X,WWPX,W � WPX,W;

(7) C(PX,W) � C(X), andR(PX,W) � R(X′W);

(8) rank(PX,W) � rank(X);
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(9) (I− PX,W)2 � I− PX,W; that isI− PX,W is idempotent;

(9′) (I− PX,W)′W(I− PX,W) � W(I− PX,W);

(10) rank(I− PX,W) � n− rank(X).

Proof. According to Corollary 14.3.13, there exists a nonsingular matrixL such
thatW � L′L.

(1) Making use of Part (1) of Theorem 12.3.4, we find that

LX(X′WX)−X′WX � LX[(LX)′LX]−(LX)′LX � LX .

SinceL is nonsingular, we conclude thatX(X′WX)−X′WX � X.
(2) If B∗ is a solution toX′WXB � X′W, then (according to Theorem 11.2.4)

B∗ � (X′WX)−X′W+ [I− (X′WX)−X′WX]Y

for some matrixY, implying [in light of Part (1)] that

XB∗ � PX,W + [X− X(X′WX)−X′WX]Y � PX,W .

(3) and (3′). It follows from Part (3) of Theorem 12.3.4 that

LX[(X′WX)−]′X′L′ � LX{[(LX)′LX]−}′(LX)′

� LX[(LX)′LX]−(LX)′ � LX(X′WX)−X′L′.

Thus,

WX[(X′WX)−]′X′W � L′LX[(X′WX)−]′X′L′L
� L′LX(X′WX)−X′L′L � WX(X′WX)−X′W ,

and

X[(X′WX)−]′X′ � L−1LX[(X′WX)−]′X′L′(L′)−1

� L−1LX(X′WX)−X′L′(L′)−1 � X(X′WX)−X′ .

(4) Making use of Parts (3) and (1), we find that

X[(X′WX)−]′X′WX � W−1{WX[(X′WX)−]′X′W}X
� W−1[WX(X′WX)−X′W]X

� X(X′WX)−X′WX � X .

(5) It follows from Part (4) that

X′ � {X[(X′WX)−]′X′WX}′ � X′WX(X′WX)−X′

and from Part (1) that

X′ � (PX,WX)′ � X′P
′
X,W � X′WX[(X′WX)−]′X′ .
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(6) Making use of Part (5), we find that

P2
X,W � X(X′WX)−X′WPX,W � X(X′WX)−X′W � PX,W .

(6′) Making use of Part (4), we find that

P
′
X,WWPX,W � P

′
X,WWX(X′WX)−X′W

� WX(X′WX)−X′W � WPX,W .

(7) Recalling Corollary 4.2.3, it is clear from the definition ofPX,W that
C(PX,W) ⊂ C(X) and from Part (1) thatC(X) ⊂ C(PX,W), so thatC(PX,W) �
C(X). Similarly, it is clear from the definition ofPX,W thatR(PX,W) ⊂ R(X′W)
and from Part (5) thatR(X′W) ⊂ R(PX,W), so thatR(PX,W) � R(X′W).

(8) That rank(PX,W) � rank(X) is an immediate consequence of Part (7).
(9) Since [according to Part (6)]PX,W is idempotent, it follows from Lemma

10.1.2 thatI− PX,W is idempotent.
(9′) Making use of Parts (3) and (6′), we find that

(I− PX,W)′W(I− PX,W) � W− (WPX,W)′ −WPX,W + P
′
X,WWPX,W

� W−WPX,W −WPX,W +WPX,W

� W(I− PX,W) .

(10) Making use of Lemma 10.2.4 and Parts (6) and (8), we find that

rank(I− PX,W) � n− rank(PX,W) � n− rank(X) .
Q.E.D.

Theorem 14.12.12. Let X represent ann × p matrix, U ann × q matrix such
thatC(U) ⊂ C(X), andW ann× n symmetric positive definite matrix. Then,

(1) PX,WU � U, implying thatWPX,WU � WU, andU′WX(X′WX)−X′ � U′,
implying thatU′WPX,W � U′W;

(2) PX,WPU,W � PU,WPX,W � PU,W, andP
′
X,WWPU,W � WPU,W.

Proof. (1) According to Lemma 4.2.2, there exists a matrixF such thatU � XF.
Thus, making use of Parts (1) and (5) of Theorem 14.12.11, we find that

PX,WU � PX,WXF � XF � U

and
U′WX(X′WX)−X′ � F′X′WX(X′WX)−X′ � F′X′ � U′ .

(2) Making use of Part (1), we find that

PX,WPU,W � PX,WU(U′WU)−U′W � U(U′WU)−U′W � PU,W

and similarly that

PU,WPX,W � U(U′WU)−U′WX(X′WX)−X′W
� U(U′WU)−U′W � PU,W .
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Further, making use of Part (3) of Theorem 14.12.11, we find that

P
′
X,WWPU,W � (WPX,W)′PU,W � WPX,WPU,w � WPU,W .

Q.E.D.
The following two corollaries generalize Corollaries 12.3.6 and 12.3.7 and can

be deduced from Theorem 14.12.12 in essentially the same way that Corollaries
12.3.6 and 12.3.7 were deduced from Theorem 12.3.5.

Corollary 14.12.13. LetW represent ann×nsymmetric positive definite matrix.
Then, for anyn × p matrix X and anyn × q matrix U such thatC(U) � C(X),
PU,W � PX,W.

Corollary 14.12.14. LetW represent ann×n symmetric positive definite matrix
andX ann × p matrix. Then, for any matrixA that is the projection matrix for
some subspaceU of C(X) with respect toW,

PX,WA � APX,W � A .

The following theorem generalizes Theorem 12.3.8 and can be derived in es-
sentially the same way as Theorem 12.3.8.

Theorem 14.12.15. If an n × n matrix A is the projection matrix for some
subspaceU of Rn×1 with respect to somen×n symmetric positive definite matrix,
thenU � C(A) and dim(U) � rank(A).

The following theorem characterizes matrices that are projection matrices with
respect to any particular symmetric positive definite matrix.

Theorem 14.12.16. An n × n matrix A is a projection matrix with respect to
ann × n symmetric positive definite matrixW if and only if A′WA � WA or,
equivalently, if and only if (I− A)′WA � 0.

Proof. Suppose thatA is a projection matrix with respect toW. Then, according
to Corollary 14.12.10,A � PX,W for some matrixX. Thus, it follows from Part
(6′) of Theorem 14.12.11 thatA′WA � WA.

Conversely, suppose thatA′WA � WA or, equivalently, that

A′W � (WA)′ � (A′WA)′ � A′WA .

Then, making use of Part (1) of Theorem 14.12.11, we find that

A � PA,W + A− A(A′WA)−A′W
� PA,W + A− A(A′WA)−A′WA

� PA,W + A− A

� PA,W ,

which is the projection matrix forC(A) with respect toW. Q.E.D.
The following corollary, which generalizes Theorem 12.3.9, gives an alterna-

tive characterization of matrices that are projection matrices with respect to any
particular symmetric positive definite matrix.

Corollary 14.12.17. An n × n matrix A is a projection matrix with respect to
ann × n symmetric positive definite matrixW if and only if WA is symmetric
andA is idempotent.
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Proof. In light of Theorem 14.12.16, it suffices to show thatA′WA � WA if
and only if WA is symmetric andA is idempotent or, equivalently (sinceW is
nonsingular), if and only ifWA is symmetric andWA2 � WA.

If WA is symmetric andWA2 � WA, then

A′WA � (WA)′A � WAA � WA2 � WA .

Conversely, ifA′WA � WA, then

(WA)′ � (A′WA)′ � A′WA � WA

(i.e.,WA is symmetric), and

WA2 � WAA � (WA)′A � A′WA � WA .

Q.E.D.

e. When are projections with respect to a symmetric positive definite
matrix W projections with respect to another symmetric positive
definite matrix V?

Suppose thatU is a subspace of the linear spaceRn of all n-dimensional column
vectors. LetX represent ann×p matrix whose columns spanU , and letW andV
representn × n symmetric positive definite matrices. Under what circumstances
is the projectionPX,Wy of y on U with respect toW the same (for everyy in
Rn) as the projectionPX,Vy of y on U with respect toV? Or equivalently (in
light of Lemma 2.3.2), under what circumstances isPX,W � PX,V; that is, under
what circumstances isPX,W the projection matrix forU with respect toV as well
as the projection matrix forU with respect toW? These circumstances can be
characterized in terms of the conditions given by the following theorem.

Theorem 14.12.18. Let U represent a subspace ofRn×1, let X represent an
n×p matrix whose columns spanU , and letW andV representn× n symmetric
positive definite matrices. Then each of the following four conditions is necessary
and sufficient for the projectionPX,Wy of y on U with respect toW to be the
same (for everyy in Rn) as the projectionPX,Vy of y onU with respect toV (or,
equivalently, forPX,W � PX,V):

(1) X′VPX,W � X′V, or, equivalently,X′V(I− PX,W) � 0;

(2) P
′
X,WVPX,W � VPX,W, or, equivalently, (I− PX,W)′VPX,W � 0;

(3) VPX,W is symmetric;

(4) there exists ap×pmatrixQ such thatVX � WXQ, or, equivalently,C(VX) ⊂
C(WX).

Proof. (1) It follows from Lemma 14.12.1 that the projectionPX,Wy of y on U
with respect toW is the same (for everyy in Rn) as the projection ofy on U with
respect toV if and only if, for everyy,

X′V(y− PX,Wy) � 0 ,
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or, equivalently, if and only if, for everyy,

X′V(I− PX,W)y � 0 ,

and hence if and only if
X′V(I− PX,W) � 0 .

(2) It suffices to show that Condition (2) is equivalent to Condition (1). If Con-
dition (1) is satisfied, then

P
′
X,WVPX,W � (X′VPX,W)′(X′WX)−X′W

� (X′V)′(X′WX)−X′W � VPX,W .

Conversely, if Condition (2) is satisfied, then, making use of Part (5) of Theorem
14.12.11, we find that

X′V � X′P
′
X,WV � X′(VPX,W)′

� X′(P
′
X,WVPX,W)′ � X′P

′
X,WVPX,W � X′VPX,W .

(3) It suffices to show that Condition (3) is equivalent to Condition (2). If Con-
dition (2) is satisfied, then

(VPX,W)′ � (P
′
X,WVPX,W)′ � P

′
X,WVPX,W � VPX,W ,

that is,VPX,W is symmetric. Conversely, if Condition (3) is satisfied, then [in light
of Part (6) of Theorem 14.12.11]

P
′
X,WVPX,W � (VPX,W)′PX,W � VPX,WPX,W � VPX,W .

(4) It suffices to show that Condition (4) is equivalent to Condition (1) or,
equivalently [sinceVX � (X′V)′ andP

′
X,WVX � (X′VPX,W)′], to the condition

VX � P
′
X,WVX . (12.1)

If Condition (12.1) is satisfied, then

VX � WX[(X′WX)−]′X′VX � WXQ

for Q � [(X′WX)−]′X′VX. Conversely, ifVX � WXQ for some matrixQ, then,
making use of Part (4) of Theorem 14.12.11, we find that

P
′
X,WVX � P

′
X,WWXQ � WXQ � VX ;

that is, condition (12.1) is satisifed. Q.E.D.
Condition (4) of Theorem 14.12.18 has appeal relative to Conditions (1) – (3)

in that it does not explicitly involvePX,W. In the special case whereW � I, PX,W

reduces to the usual projection matrixPX � X(X′X)−X′, and (in this special case)
the four conditions of Theorem 14.12.18 reduce, respectively, to
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(1) X′VPX � X′V, or, equivalently,X′V(I− PX) � 0;

(2) PXVPX � VPX, or, equivalently, (I− PX)VPX � 0;

(3) VPX is symmetric;

(4) there exists ap × p matrix Q such thatVX � XQ, or, equivalently,C(VX) ⊂
C(X).

f. Generalized or weighted least squares problem

Suppose thaty � {yi} is ann-dimensional column vector and thatU is a sub-
space of the linear spaceRn of all n-dimensional column vectors. LetW � {wij }
represent ann × n symmetric positive definite matrix. Consider the problem of
minimizing, for u � {ui} in U , the quadratic form (y − u)′W(y − u) (in the
differencey − u) or, equivalently, the quantity [(y − u)′W(y − u)]1/2, which is
the distance betweeny andu when the inner product is taken to be the bilinear
form x′Wy. This minimization problem is known as thegeneralized or weighted
least squares problem. [Typically, the use of the term weighted least squares is
reserved for the special case whereW is a diagonal matrix — in this special case,
(y− u)′W(y− u) �∑n

i�1wii(yi − ui)2, which is a weighted sum of the squared
deviations of the elements ofu from the corresponding elements ofy (with weights
w11, w22, . . . , wnn, respectively).]

In the special case whereW � I, the generalized or weighted least squares
problem reduces to the least squares problem considered in Section 12.4. It is
customary (and convenient) to refer to this special case assimple least squares,
ordinary least squares, or unweighted least squares.

The solution of the generalized least squares problem, like that of the simple
least squares problem, can be obtained as a special case of Theorem 12.4.1. Since
[(y− u)′W(y− u)]1/2 is the distance betweeny andu (when the inner product is
taken to be the bilinear formx′Wy), Theorem 12.4.1 implies that [(y− u)′W(y−
u)]1/2 is minimized uniquely by takingu to be the projection ofy onU with respect
to W. Thus, based on Theorem 14.12.3, we arrive at the following generalization
of Theorem 12.4.2.

Theorem 14.12.19. Let U represent a subspace of the linear spaceRn of all
n-dimensional column vectors, letX be ann× p matrix such thatC(X) � U , let
W be ann × n symmetric positive definite matrix, and lety represent a vector
in Rn. Then, foru ∈ U , the quadratic form (y − u)′W(y − u) (in the difference
y − u) is minimized uniquely by takingu � Xb∗, whereb∗ is any solution to
the linear systemX′WXb � X′Wy (in b), or, equivalently, by takingu � PX,Wy.
Furthermore, the minimum value of (y − u)′W(y − u) (for u ∈ U) is expressible
as

(y− Xb∗)′W(y− Xb∗) � y′W(y− Xb∗) � y′W(I− PX,W)y .

In light of Theorem 14.12.7, we have the following variant of Theorem 14.12.19,
which generalizes Theorem 12.4.3.
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Theorem 14.12.20. Let X represent ann × p matrix, W ann × n symmetric
positive definite matrix, andy ann-dimensional column vector. Then, forb ∈ Rp,
the quadratic form (y−Xb)′W(y−Xb) has a minimum at a pointb∗ if and only if
b∗ is a solution to the linear systemX′WXb � X′Wy, in which caseXb∗ � PX,Wy
and

(y− Xb∗)′W(y− Xb∗) � y′W(y− Xb∗) � y′W(I− PX,W)y .

The results encompassed in Theorems 14.12.19 and 14.12.20 are generally at-
tributed to Aitken (1935). In fact, thep equations that compose the linear system
X′WXb � X′Wy have come to be known as theAitken equations.

g. Orthogonal complements of row and column spaces

Let X represent ann × p matrix, and takeW to be ann × n symmetric positive
definite matrix. In Section 12.5, consideration was given toC⊥(X) andR⊥(X),
which are the orthogonal complements ofC(X) andR(X), respectively, relative to
the linear spaceRn (of all n-dimensional column or row vectors) when the inner
product is taken to be the usual inner product forRn. Let us now consider the
orthogonal complements ofC(X) andR(X) relative toRn when the inner product is
taken to be the bilinear formx′Wy. Let us denote these orthogonal complements by
C⊥W(X) andR⊥

W(X), respectively, and speak of them as the orthogonal complements
of C(X) andR(X) with respect toW. Note thatC⊥I (X) � C⊥(X) andR⊥

I (X) �
R⊥(X).

Since [according to Part (5) of Theorem 14.12.11]X(X′WX)− is a generalized
inverse ofX′W, we have (in light of Lemma 14.12.1 and Corollary 11.2.2) the
following generalization of Lemma 12.5.2.

Lemma 14.12.21. For anyn × p matrix X and anyn × n symmetric positive
definite matrixW,

C⊥W(X) � N (X′W) � C(I− PX,W) . (12.2)

As a consequence of Lemma 11.3.1 or alternatively Theorem 14.12.11, we have
the following corollary, which is a generalization of Corollary 12.5.3.

Corollary 14.12.22. For anyn× p matrixX and anyn× n symmetric positive
definite matrixW,

dim[C⊥W(X)] � n− rank(X) � n− dim[C(X)] . (12.3)

h. Projection on the orthogonal complement of a column space

In light of Theorems 12.5.8 and 14.12.3, we have the following theorem and
corollary, which are generalizations of Corollaries 12.5.9 and 12.5.10.

Theorem 14.12.23. Let X represent ann × p matrix, W ann × n symmetric
positive definite matrix, andy ann-dimensional column vector, and takez to be
the projection ofy onC⊥W(X) with respect toW. Then,

z � y− Xb∗
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for any solutionb∗ to the linear systemX′WXb � X′Wy (in b). In particular,

z � y− PX,Wy � (I− PX,W)y .

Corollary 14.12.24. LetX represent ann×pmatrix andW ann×n symmetric
positive definite matrix. Then, the projection matrix forC⊥W(X) with respect toW
is I− PX,W.

i. Extensions

LetW represent ann×nsymmetric nonnegative definite matrix, and letU represent
a subspace ofRn×1. In what follows, a vectorz in U is said to be aprojection of
an n-dimensional column vector y on U with respect to W if (y− z) ⊥W U ; and an
n×nmatrixA is said to be aprojection matrix for U with respect to W if, for every
y in Rn×1, Ay is a projection ofy onU . (To say simply that ann× nmatrixA is a
projection matrix with respect toW is to indicate that there exists some subspace
of Rn×1 for which A is a projection matrix with respect toW.) Our previous use
of this terminology was restricted to the case whereW is positive definite.

Recall that, for anyn × p matrix X and anyn × n matrix W, PX,W �
X(X′WX)−X′W. Theorem 14.12.11 sets forth some basic properties of the matrix
PX,W in the special case whereW is symmetric and positive definite. The follow-
ing theorem gives generalizations of those properties for the less restrictive special
case whereW is symmetric and nonnegative definite.

Theorem 14.12.25. LetX represent anyn×pmatrix, andW anyn×nsymmetric
nonnegative definite matrix. Then,

(1) WPX,WX � WX; that isWX(X′WX)−X′WX � WX;

(2) WPX,W � WXB∗ for any solutionB∗ to the linear systemX′WXB � X′W
(in B);

(3) WPX,W is symmetric; that is,WX[(X′WX)−]′X′W � WX(X′WX)−X′W;

(4) P
′
X,WWX � WX; that is,WX[(X′WX)−]′X′WX � WX;

(5) X′WPX,W � X′P
′
X,WW � X′W;

that is,X′WX(X′WX)−X′W � X′WX[(X′WX)−]′X′W � X′W;

(6) P2
X,W � PX,W; that is,PX,W is idempotent;

(6′) P
′
X,WWPX,W � WPX,W;

(7) C(WPX,W) � C(WX), andR(PX,W) � R(X′W);

(8) rank(PX,W) � rank(WPX,W) � rank(WX);

(9) (I− PX,W)2 � I− PX,W; that is,I− PX,W is idempotent;

(9′) (I− PX,W)′W(I− PX,W) � W(I− PX,W);
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(10) rank(I− PX,W) � n− rank(WX).

The various parts of Theorem 14.12.25 can be established via arguments that are
essentially the same as the arguments employed in establishing the corresponding
parts of Theorem 14.12.11 or via simple variants of those arguments.

The following theorem extends the result (on projections) given by Theorem
14.12.3.

Theorem 14.12.26. Let y represent ann-dimensional column vector, letU rep-
resent a subspace ofRn×1, letW represent ann×n symmetric nonnegative definite
matrix, and letX represent anyn × p matrix whose columns spanU . Then (1)
there exists a projection ofy on U with respect toW; (2) Wz has the same value
for every vectorz that is a projection ofy onU with respect toW; and (3) a vector
z is a projection ofy on U with respect toW if and only if z � Xb∗ for some
solutionb∗ to the (consistent) linear system

X′WXb � X′Wy (in b) . (12.4)

Proof. Let L represent a matrix such thatW � L′L, denote bym the number
of rows inL, define

V � {v ∈ Rm : v � Lx for somex ∈ U} ,
and letv∗ represent the (unique) projection ofLy on V (with respect toI). Then
it follows from Part (3) of Lemma 14.12.2 that a vectorz in U is a projection of
y on U with respect toW if and only if L(y − z) (or, equivalently,Ly − Lz) is
orthogonal toV with respect to the usual inner product and hence if and only if

Lz � v∗ . (12.5)

Let b∗ represent any solution to linear system (12.4). (The existence of such a
solution follows from Theorem 14.11.1.) According to Part (5) of Lemma 14.12.2,
the columns ofLX spanV. Moreover, linear system (12.4) can be rewritten as

(LX)′LXb � (LX)′Ly .

Thus, it follows from Theorem 12.2.1 that

v∗ � LXb∗ . (12.6)

Clearly,Xb∗ is inU . Moreover, it follows from result (12.6) that condition (12.5)
can be satisfied by takingz � Xb∗. Thus,Xb∗ is a projection ofy onU with respect
to W. Furthermore, since a vectorz is a projection ofy on U with respect toW
only if z satisfies condition (12.5),Wz (which equalsL′Lz) has the same value,
namelyL′v∗, for every vectorz that is a projection ofy onU with respect toW.

Suppose now thatz is a projection ofy onU with respect toW. Then,z � Xa
for some vectora. Further,

WXa � Wz � L′v∗ � L′LXb∗ � WXb∗ ,
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implying that
X′WXa � X′WXb∗ � X′Wy .

Thus,a is a solution to linear system (12.4). Q.E.D.
The following three corollaries extend the results of Corollaries 14.12.4–

14.12.6.
Corollary 14.12.27. Let y represent ann-dimensional column vector, letU

represent a subspace ofRn×1, let W represent ann × n symmetric nonnegative
definite matrix, and letX represent anyn×pmatrix whose columns spanU . Then
a vectorz is a projection ofy onU with respect toW if and only if

z � PX,Wy+ (I− PX,W)Xk

for somep × 1 vectork.
Proof. Corollary 14.12.27 follows from Part (3) of Theorem 14.12.26 upon

observing that (for anyk)

PX,Wy+ (I− PX,W)Xk � X{(X′WX)−X′Wy+ [I− (X′WX)−X′WX]k}

and that (in light of Theorem 11.2.4) a vectorb∗ is a solution to linear system
(12.4) if and only if

b∗ � (X′WX)−X′Wy+ [I− (X′WX)−X′WX]k

for somek. Q.E.D.
Corollary 14.12.28. Let y represent ann-dimensional column vector,W an

n× n symmetric nonnegative definite matrix,X ann× p matrix, andU ann× q
matrix such thatC(U) � C(X). Then,

WUa∗ � WXb∗

for any solutiona∗ to the linear systemU′WUa � U′Wy (in a) and any solution
b∗ to the linear systemX′WXb � X′Wy (in b).

Corollary 14.12.29. Lety represent ann-dimensional column vector,X ann×p
matrix, andW ann × n symmetric nonnegative definite matrix. Then,WXb1 �
WXb2 for any two solutionsb1 andb2 to the linear systemX′WXb � X′Wy (in
b).

Note that, for any vectory in a subspaceU of Rn×1 and for any symmetric
nonnegative definite matrixW, y itself is a projection ofy onU with respect toW
(as is evident from the very definition of a projection ofy onU with respect toW).

The following theorem generalizes Theorem 14.12.7.
Theorem 14.12.30. Let y represent ann-dimensional column vector, letU rep-

resent a subspace ofRn×1, letW represent ann×n symmetric nonnegative definite
matrix, and letX represent anyn × p matrix whose columns spanU . Then any
p × 1 vectorb∗ such thatXb∗ is a projection ofy on U with respect toW is a
solution to the linear systemX′WXb � X′Wy (in b).
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Proof. According to Theorem 14.12.26,Xb∗ � Xa for some solutiona to
X′WXb � X′Wy. Thus,

X′WXb∗ � X′WXa � X′Wy .
Q.E.D.

Corollary 14.12.27 leads to the following lemma, which extends the result of
Corollary 14.12.9.

Lemma 14.12.31. Let U represent a subspace ofRn×1, and letW represent an
n × n symmetric nonnegative definite matrix. Then, for any matrixX such that
C(X) � U , PX,W is a projection matrix forU with respect toW.

Thus,PX,W is a projection matrix forU [� C(X)] with respect toW whenW
is positive semidefinite as well as whenW is positive definite. However, whenW
is positive semidefinite, there may be more than one projection matrix forU with
respect toW.

The following theorem, whose proof parallels that of Theorem 12.4.1, provides
a basis for extending the results of Theorem 14.12.19.

Theorem 14.12.32. Let U represent a subspace of the linear spaceRn of all
n-dimensional column vectors, takeW to be ann × n symmetric nonnegative
definite matrix, and lety represent a vector inRn. Then, foru ∈ U , the quadratic
form (y−u)′W(y−u) (in the differencey−u) attains its minimum value atu � z
if and only if z is a projection ofy onU with respect toW, in which case

(y− z)′W(y− z) � y′W(y− z) .

Proof. Suppose thatz is a projection ofy onU with respect toW. Then, for any
vectoru in U ,

(y− u)′W(y− u) � [y− z− (u− z)]′W[y− z− (u− z)]

� (y− z)′W(y− z)− 2(y− z)′W(u− z)

+ (u− z)′W(u− z) .

Moreover,u − z is in U and, by definition,y − z is orthogonal to every vector in
U . Thus, (y− z)′W(u− z) � 0, and hence

(y− u)′W(y− u) � (y− z)′W(y− z)+ (u− z)′W(u− z)

≥ (y− z)′W(y− z) , (12.7)

which implies that (y− u)′W(y− u) attains its minimum value atu � z.
Furthermore, sincez is in U , we have thatz′W(y−z) � 0, with the consequence

that
(y− z)′W(y− z) � y′W(y− z) .

To complete the proof, it suffices to show that equality is attained in inequality
(12.7), or, equivalently, that (u− z)′W(u− z) � 0, only if u is a projection ofy on
U with respect toW. If (u− z)′W(u− z) � 0, then we find (in light of Corollary
14.3.11) thatW(u − z) � 0, or, equivalently, thatWu � Wz, implying that, for
every vectorx in U ,

x′W(y− u) � x′W(y− z) � 0
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and hence thatu, like z, is a projection ofy onU with respect toW. Q.E.D.
The following theorem, which extends the results of Theorem 14.12.19, is ob-

tained by combining the results of Theorem 14.12.32 with those of Theorem
14.12.26 and Corollary 14.12.27.

Theorem 14.12.33. Let U represent a subspace of the linear spaceRn of all
n-dimensional column vectors, takeX to be ann× p matrix such thatC(X) � U ,
takeW to be ann× n symmetric nonnegative definite matrix, and lety represent
a vector inRn. Then, foru ∈ U , the quadratic form (y − u)′W(y − u) (in the
differencey − u) has a minimum at a pointu∗ if and only if u∗ � Xb∗ for some
solutionb∗ to the linear systemX′WXb � X′Wy (in b) or, equivalently, if and
only if u∗ � PX,Wy + (I − PX,W)Xk for somep × 1 vectork. Furthermore, the
minimum value of (y− u)′W(y− u) (for u ∈ U) is expressible as

(y− Xb∗)′W(y− Xb∗) � y′W(y− Xb∗) � y′W(I− PX,W)y

(whereb∗ is any solution toX′WXb � X′Wy).
In light of Theorem 14.12.30, we have the following variant of Theorem

14.12.33, which generalizes Theorem 14.12.20.
Theorem 14.12.34. Let X represent ann × p matrix, W ann × n symmetric

nonnegative definite matrix, andy an n-dimensional column vector. Then, for
b ∈ Rp, the quadratic form (y− Xb)′W(y− Xb) has a minimum at a pointb∗ if
and only ifb∗ is a solution to the linear systemX′WXb � X′Wy (in b), in which
caseXb∗ � PX,Wy+ (I− PX,W)Xk for somep × 1 vectork and

(y− Xb∗)′W(y− Xb∗) � y′W(y− Xb∗) � y′W(I− PX,W)y .

Exercises

Section 14.1

1. Show that a symmetric bilinear formx′Ay (in n-dimensional vectorsx and
y) can be expressed in terms of the corresponding quadratic form, that is, the
quadratic form whose matrix isA. Do so by verifying that

x′Ay � (1/2)[(x+ y)′A(x+ y)− x′Ax− y′Ay] .

2. Show that corresponding to any quadratic formx′Ax (in then-dimensional
vectorx) there exists a unique upper triangular matrixB such thatx′Ax and
x′Bx are identically equal, and express the elements ofB in terms of the
elements ofA.

Section 14.2

3. Show, by example, that the sum of two positive semidefinite matrices can be
positive definite.
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4. Show, via an example, that there exist (nonsymmetric) nonsingular positive
semidefinite matrices.

5. Show, by example, that there exist ann×n positive semidefinite matrixA and
ann×m matrix P (wherem < n) such thatP′AP is positive definite.

6. Convert results (1) – (3) of Theorem 14.2.9, which are for nonnegative definite
(positive definite or positive semidefinite) matrices, into equivalent results for
nonpositive definite matrices.

7. Let {X1, . . . ,Xr} represent a set of matrices from a linear spaceV, and let
A � {aij } represent ther×rmatrix whoseij th element isXi ·Xj — this matrix
is referred to as theGram matrix (or the Gramian) of the set{X1, . . . ,Xr} and
its determinant is referred to as theGramian (or the Gram determinant) of
{X1, . . . ,Xr}.
(a) Show thatA is symmetric and nonnegative definite.

(b) Show thatX1, . . . ,Xr are linearly independent if and only ifA is nonsin-
gular.

8. Let A � {aij } represent ann × n symmetric positive definite matrix, and let
B � {bij } � A−1. Show that, fori � 1, . . . , n,

bii ≥ 1/aii ,

with equality holding if and only if, for allj �� i, aij � 0.

Section 14.3

9. LetA represent anm×nmatrix andD a diagonal matrix such thatA � PDQ
for some matrixP of full column rank and some matrixQ of full row rank.
Extend the result of Lemma 14.3.1 by showing that rank(A) equals the number
of nonzero diagonal elements inD.

10. LetA represent ann× n symmetric idempotent matrix andV ann× n sym-
metric positive definite matrix. Show that rank(AVA) � tr(A).

11. Show that if ann× nmatrixA is such thatx′Ax �� 0 for everyn× 1 nonnull
vectorx, thenA is either positive definite or negative definite.

12. (a) LetA represent ann × n symmetric matrix of rankr. TakeP to be an
n × n nonsingular matrix andD an n × n diagonal matrix such that
A � P′DP — the existence of such matrices is guaranteed by Corollary
14.3.5. The number, saym, of diagonal elements ofD that are positive
is called theindex of inertia of A (or of the quadratic formx′Ax whose
matrix isA). Show that the index of inertia is well-defined in the sense that
m does not vary with the choice ofP or D. That is, show that ifP1 andP2

are nonsingular matrices andD1 andD2 are diagonal matrices such that
A � P′1D1P1 � P′2 D2P2, thenD2 contains the same number of positive
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diagonal elements asD1. Show also that the number of diagonal elements
of D that are negative equalsr −m.

(b) Let A represent ann × n symmetric matrix. Show thatA � P′ diag(Im,
−Ir−m, 0)P for somen × n nonsingular matrixP and some nonnegative
integersm andr. Show further thatm equals the index of inertia of the
matrix A and thatr � rank(A).

(c) Ann×n symmetric matrixB is said to becongruent to ann×n symmetric
matrixA if there exists ann×n nonsingular matrixP such thatB � P′AP.
(If B is congruent toA, then clearlyA is congruent toB.) Show thatB
is congruent toA if and only if B has the same rank and the same index
of inertia asA. This result is calledSylvester’s law of inertia, after James
Joseph Sylvester (1814–1897).

(d) LetA represent ann× n symmetric matrix of rankr with index of inertia
m. Show thatA is nonnegative definite if and only ifm � r and is positive
definite if and only ifm � r � n.

13. Let A represent ann × n symmetric nonnegative definite matrix of rankr.
Then, according to Theorem 14.3.7, there exists ann× r matrixB (of rank r)
such thatA � BB′. Let X represent anyn × m matrix (wherem ≥ r) such
thatA � XX′.
(a) Show thatX � PBX.

(b) Show thatX � (B, 0)Q for some orthogonal matrixQ.

Section 14.4

14. Show that if a symmetric matrixA has a nonnegative definite generalized
inverse, thenA is nonnegative definite.

Section 14.5

15. Suppose that ann× n matrix A has an LDU decomposition, sayA � LDU,
and letd1, d2, . . . , dn represent the diagonal elements of the diagonal matrix
D. Show that

|A| � d1d2 · · · dn .

16. (a) Suppose that ann× nmatrixA (wheren ≥ 2) has a unique LDU decom-
position, sayA � LDU, and letd1, d2, . . . , dn represent the first, second,
. . . , nth diagonal elements ofD. Show thatdi �� 0 (i � 1,2, . . . , n − 1)
and thatdn �� 0 if and only if A is nonsingular.

(b) Suppose that ann× n (symmetric) matrixA (wheren ≥ 2) has a unique
U′DU decomposition, sayA � U′DU, and letd1, d2, . . . , dn represent
the first, second,. . . , nth diagonal elements ofD. Show thatdi �� 0
(i � 1,2, . . . , n− 1) and thatdn �� 0 if and only if A is nonsingular.
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17. Suppose that ann×n (symmetric) matrixA has a unique U′DU decomposition,
sayA � U′DU. Use the result of Part (b) of Exercise 17 to show thatA has
no LDU decompositions other thanA � U′DU.

18. Show that if a nonsingular matrix has an LDU decomposition, then that de-
composition is unique.

19. LetA represent ann×nmatrix (wheren ≥ 2). By for instance using the results
of Exercises 16, 17, and 18, show that ifA has a unique LDU decomposition
or (in the special case whereA is symmetric) a unique U′DU decomposition,
then the leading principal submatrices (ofA) of orders 1,2, . . . , n − 1 are
nonsingular (thereby establishing the converse of Corollary 14.5.7) and have
unique LDU decompositions.

20. (a) LetA � {aij } represent anm×n nonnull matrix of rankr. Show that there
exist anm×m permutation matrixP and ann× n permutation matrixQ
such that

PAQ �
(

B11 B12

B21 B22

)
,

whereB11 is anr × r nonsingular matrix whose leading principal subma-
trices (of orders 1,2, . . . , r − 1) are nonsingular.

(b) Let B �
(

B11 B12

B21 B22

)
represent anym× n nonnull matrix of rankr such

thatB11 is anr×r nonsingular matrix whose leading principal submatrices
(of orders 1,2, . . . , r−1) are nonsingular. Show that there exists a unique
decomposition ofB of the form

B �
(

L1

L2

)
D(U1, U2) ,

whereL1 is an r × r unit lower triangular matrix,U1 is an r × r unit
upper triangular matrix, andD is anr × r diagonal matrix. Show further
that this decomposition is such thatB11 � L1DU1 is the unique LDU
decomposition ofB11, D is nonsingular,L2 � B21U−1

1 D−1 and U2 �
D−1L−1

1 B12.

21. Show, by example, that there existn×n (nonsymmetric) positive semidefinite
matrices that do not have LDU decompositions.

22. LetA represent ann×n nonnegative definite (possibly nonsymmetric) matrix
that has an LDU decomposition, sayA � LDU. Show that the diagonal
elements of the diagonal matrixD are nonnegative (thereby extending part of
Theorem 14.5.9 and part of Corollary 14.5.15).
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23. LetA represent anm×kmatrix of full column rank. And, letA � QR represent
the QR decomposition ofA; that is, letQ represent the uniquem× k matrix
whose columns are orthonormal with respect to the usual inner product and
let R represent the uniquek×k upper triangular matrix with positive diagonal
elements such thatA � QR. Show thatA′A � R′R (so thatA′A � R′R is
the Cholesky decomposition ofA′A).

24. LetA represent anm × k matrix of rankr (wherer is possibly less thank).
Consider the decompositionA � QR1, whereQ is anm × r matrix with
orthonormal columns andR1 is an r × k submatrix whose rows are ther
nonnull rows of ak × k upper triangular matrixR havingr positive diagonal
elements andn−r null rows. (Such a decomposition can be obtained by using
the results of Exercise 6.4 — refer to Exercise 6.5.) Generalize the result of
Exercise 23 by showing that if the inner product with respect to which the
columns ofQ are orthonormal is the usual inner product, thenA′A � R′R (so
thatA′A � R′R is the Cholesky decomposition ofA′A).

25. Let A � {aij } represent ann × n matrix that has an LDU decomposition,
sayA � LDU. And, defineG � U−1D−L−1 (which, as discussed in Section
14.5f, is a generalized inverse ofA).

(a) Show that

G � D−L−1 + (I− U)G � U−1D− +G(I− L) .

(b) Fori � 1, . . . , n, let di represent theith diagonal element of the diagonal
matrix D; and, fori, j � 1, . . . , n, let #ij , uij , andgij represent theij th
elements ofL, U, andG, respectively. TakeD− � diag(d∗1 , . . . , d

∗
n ), where

d∗i � 1/di , if di �� 0, andd∗i is an arbitrary scalar, ifdi � 0. Show that

gii � d∗i −
n∑

k�i+1

uikgki � d∗i −
n∑

k�i+1

gik#ki (E.1)

and that

gij �



−

n∑
k�j+1

gik#kj , for j < i , (E.2a)

−
n∑

k�i+1

uikgkj , for j > i (E.2b)

(where the degenerate sums
∑n

k�n+1 gik#ki and
∑n

k�n+1 uikgki are to be
interpreted as 0).

(c) Devise a recursive procedure that uses the formulas from Part (b) to gen-
erate a generalized inverse ofA.
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Section 14.6

26. Verify that a principal submatrix of a skew-symmetric matrix is skew-
symmetric.

27. (a) Show that the sum of skew-symmetric matrices is skew-symmetric.

(b) Show that the sumA1 + A2 + · · · + Ak of n × n nonnegative definite
matricesA1,A2, . . . ,Ak is skew-symmetric if and only ifA1,A2, . . . ,Ak

are skew-symmetric.

(c) Show that the sumA1+A2+· · ·+Ak of n×n symmetric nonnegative defi-
nite matricesA1,A2, . . . ,Ak is a null matrix if and only ifA1,A2, . . . ,Ak

are null matrices.

Section 14.7

28. (a) LetA1,A2, . . . ,Ak representn × n nonnegative definite matrices. Show
that tr(

∑k
i�1 Ai) ≥ 0, with equality holding if and only if

∑k
i�1 Ai is

skew-symmetric or, equivalently, if and only ifA1,A2, . . . ,Ak are skew-
symmetric, thereby generalizing Theorem 14.7.2. [Note. That

∑k
i�1 Ai

being skew-symmetric is equivalent toA1,A2, . . . ,Ak being skew-
symmetric is the result of Part (b) of Exercise 27.]

(b) Let A1,A2, . . . ,Ak representn × n symmetric nonnegative definite ma-
trices. Show that tr(

∑k
i�1 Ai) ≥ 0, with equality holding if and only if∑k

i�1 Ai � 0 or, equivalently, if and only ifA1,A2, . . . ,Ak are null ma-
trices, thereby generalizing Corollary 14.7.3.

29. Show, via an example, that (forn > 1) there existn × n (nonsymmetric)
positive definite matricesA andB such that tr(AB) < 0.

30. (a) Show, via an example, that (forn > 1) there existn×n symmetric positive
definite matricesA andB such that the productAB has one or more negative
diagonal elements (and hence such thatAB is not nonnegative definite).

(b) Show, however, that the product of twon× n symmetric positive definite
matrices cannot be nonpositive definite.

31. LetA � {aij }andB � {bij } representn×nmatrices, and takeC to be then×n
matrix whoseij th elementcij � aij bij is the product of theij th elements ofA
andB. Show that ifA is nonnegative definite andB is symmetric nonnegative
definite, thenC is nonnegative definite. Show further that ifA is positive
definite andB is symmetric positive definite, thenC is positive definite. [Hint.
Takingx � (x1, . . . , xn)′ to be an arbitraryn× 1 vector andF � (f1, . . . , fn)
to be a matrix such thatB � F′F, begin by showing thatx′Cx � tr(AH),
whereH � G′G with G � (x1f1, . . . , xnfn).]
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32. LetA1,A2, . . . ,Ak andB1,B2, . . . ,Bk representn×n symmetric nonnegative
definite matrices. Show that tr(

∑k
i�1 AiBi) ≥ 0, with equality holding if and

only if, for i � 1,2, . . . , k, AiBi � 0, thereby generalizing Corollary 14.7.7
and the results of Part (b) of Exercise 28.

Section 14.8

33. LetA represent a symmetric nonnegative definite matrix that has been parti-
tioned as

A �
(

T U
V W

)

whereT (and henceW) is square. Show thatVT−U andUW−V are symmetric
and nonnegative definite.

34. Show, via an example, that there exists an (m+ n)× (m+ n) (nonsymmetric)

positive semidefinite matrixA of the form A �
(

T U
V W

)
, whereT is of

dimensionsm×m, W of dimensionsn×n, U of dimensionsm×n, andV of
dimensionsn×m, for whichC(U) �⊂ C(T) and/orR(V) �⊂ R(T), expression
(9.6.1) does not necessarily equal rank(A) [i.e., rank(T)+ rank(W−VT−U)
does not necessarily equal rank(A)], formula (9.6.2) does not necessarily give
a generalized inverse ofA.

35. Show, via an example, that there exists an (m + n) × (m + n) symmetric

partitioned matrixA of the formA �
(

T U
U′ W

)
, whereT is of dimensions

m × m, U of dimensionsm × n, and W of dimensionsn × n, such that
T is nonnegative definite and (depending on the choice ofT−) the Schur
complementW−U′T−U of T relative toT− is nonnegative definite, butA is
not nonnegative definite.

36. An n × n matrix A � {aij } is said to bediagonally dominant if, for i �
1,2, . . . , n, |aii | >

∑n
j�1(j ��i) |aij |. (In the degenerate special case where

n � 1, A is said to be diagonally dominant if it is nonnull.)

(a) Show that a principal submatrix of a diagonally dominant matrix is diag-
onally dominant.

(b) LetA � {aij } represent ann× n diagonally dominant matrix, partitionA

asA �
(

A11 a
b′ ann

)
[so thatA11 is of dimensions (n− 1)× (n− 1)], and

let C � A11 − (1/ann)ab′ represent the Schur complement ofann. Show
thatC is diagonally dominant.

(c) Show that a diagonally dominant matrix is nonsingular.

(d) Show that a diagonally dominant matrix has a unique LDU decomposition.

(e) Let A � {aij } represent ann × n symmetric matrix. Show that ifA is
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diagonally dominant and if the diagonal elementsa11, a22, . . . , ann of A
are all positive, thenA is positive definite.

Section 14.9

37. LetA � {aij } represent ann × n symmetric positive definite matrix. Show
that det(A) ≤∏n

i�1 aii , with equality holding if and only ifA is diagonal.

38. LetA �
(
a b

c d

)
, wherea, b, c, andd are scalars.

(a) Show thatA is positive definite if and only ifa > 0, d > 0, and
|b + c|/2< √

ad.

(b) Show that, in the special case whereA is symmetric (i.e., wherec � b),
A is positive definite if and only ifa > 0, d > 0, and|b| <√

ad.

39. By, for example, making use of the result of Exercise 38, show that if ann×n
matrix A � {aij } is symmetric positive definite, then, forj �� i � 1, . . . , n,

|aij | < √
aiiajj ≤ max(aii, ajj ) .

40. Show, by example, that it is possible for the determinants of both leading
principal submatrices of a 2× 2 symmetric matrix to be nonnegative without
the matrix being nonnegative definite and that, forn ≥ 3, it is possible for
the determinants of alln leading principal submatrices of ann× n symmetric
matrix to be nonnegativeand for the matrix to be nonsingular without the
matrix being nonnegative definite.

Section 14.10

41. Let V represent a subspace ofRn×1 of dimensionr (wherer ≥ 1). Take
B � (b1,b2, . . . ,br ) to be anyn × r matrix whose columnsb1,b2, . . . ,br
form a basis forV, and letL represent any left inverse ofB. Letg represent a
function that assigns the valuex ∗ y to an arbitrary pair of vectorsx andy in
V.

(a) Letf represent an arbitrary inner product forRr×1, and denote bys • t the
value assigned byf to an arbitrary pair ofr-dimensional vectorss andt.
Show thatg is an inner product (forV) if and only if there exists anf such
that (for allx andy in V)

x ∗ y � (Lx) • (Ly) .

(b) Show thatg is an inner product (forV) if and only if there exists anr × r
symmetric positive definite matrixW such that (for allx andy in V)

x ∗ y � x′L′WLy .
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(c) Show thatg is an inner product (forV) if and only if there exists ann× n
symmetric positive definite matrixW such that (for allx andy in V)

x ∗ y � x′Wy .

42. LetV represent a linear space ofm × n matrices, and letA • B represent the
value assigned by a quasi inner product to any pair of matricesA andB (in
V). Show that the set

U � {A ∈ V : A •A � 0} ,

which comprises every matrix inV with a zero quasi norm, is a linear space.

43. LetW represent anm×m symmetric positive definite matrix andV ann× n
symmetric positive definite matrix.

(a) Show that the function that assigns the value tr(A′WBV) to an arbitrary
pair ofm× nmatricesA andB qualifies as an inner product for the linear
spaceRm×n.

(b) Show that the function that assigns the value tr(A′WB) to an arbitrary pair
of m× n matricesA andB qualifies as an inner product forRm×n.

(c) Show that the function that assigns the value tr(A′WBW) to an arbitrary
pair ofm×m matricesA andB qualifies as an inner product forRm×m.

Section 14.12

44. LetA represent aq × p matrix, B ap × n matrix, andC anm × q matrix.
Show that (a)CAB(CAB)−C � C if and only if rank(CAB) � rank(C), and
(b)B(CAB)−CAB � B if and only if rank(CAB) � rank(B) [thereby (in light
of Corollary 14.11.3) extending the results of Parts (5) and (1) of Theorem
14.12.11].

45. LetU represent a subspace ofRn×1, let X represent ann × p matrix whose
columns spanU , and letW andV representn×n symmetric positive definite
matrices. Show that each of the following two conditions is necessary and
sufficient for the projectionPX,Wy of y on U with respect toW to be the same
(for everyy in Rn) as the projectionPX,Vy of y onU with respect toV:

(a) V � P
′
X,WVPX,W + (I− PX,W)′V(I− PX,W);

(b) there exist a scalarc, ap × p matrix K, and ann× n matrix H such that

V � cW+WXKX′W+ (I− PX,W)′H(I− PX,W) .
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46. Lety represent ann-dimensional column vector, letU represent a subspace of
Rn×1, and letX represent ann× p matrix whose columns spanU . It follows
from Corollary 12.1.2 that y⊥I U if and only if X′y � 0 and, more generally,
it follows from Lemma 14.12.1 that, for anyn×n symmetric positive definite
matrixW, y ⊥W U if and only ifX′Wy � 0. Extend this result (in the direction
indicated in the discussion following Lemma 14.12.1) by using Parts (3) and
(5) of Lemma 14.12.2 to show that, for anyn × n symmetric nonnegative
definite matrixW, y ⊥W U if and only if X′Wy � 0.

47. LetW represent ann× n symmetric nonnegative definite matrix.

(a) Generalize Theorem 14.12.12 by showing that, for anyn × p matrix X
and anyn× q matrix U such thatC(U) ⊂ C(X),

(1) WPX,WU � WU, andU′WPX,W � U′W;

(2) PU,WPX,W � PU,W andP
′
X,WWPU,W � WPX,WPU,W � WPU,W.

(b) Generalize Corollary 14.12.13 by showing that, for anyn × p matrix X
and anyn× q matrix U such thatC(U) � C(X),

WPU,W � WPX,W .

48. LetU represent a subspace ofRn×1, letA represent ann×nmatrix andW an
n × n symmetric nonnegative definite matrix, and letX represent anyn × p
matrix whose columns spanU .

(a) Show thatA is a projection matrix forU with respect toW if and only if

A � PX,W + (I− PX,W)XK

for somep × n matrix K.

(b) Show that ifA is a projection matrix forU with respect toW, thenWA �
WPX,W.

49. Let A represent ann × n matrix andW an n × n symmetric nonnegative
definite matrix.

(a) Show (by, e.g., using the results of Exercise 48) that ifA′WA � WA [or,
equivalently, if (I−A)′WA � 0], thenA is a projection matrix with respect
to W, and in particularA is a projection matrix forC(A) with respect to
W, and, conversely, show that ifA is a projection matrix with respect to
W, thenA′WA � WA (thereby generalizing Theorem 14.12.16).

(b) Show that ifA is a projection matrix with respect toW, then in particular
A is a projection matrix forC(A) with respect toW.



Exercises 283

(c) Show thatA is a projection matrix with respect toW if and only if WA is
symmetric andWA2 � WA (thereby generalizing Corollary 14.12.17).

50. LetU represent a subspace ofRn×1, let X represent ann × p matrix whose
columns spanU , and letW andV representn × n symmetric nonnegative
definite matrices. Show (by, e.g., making use of the result of Exercise 46)
that each of the following two conditions is necessary and sufficient for every
projection ofy onU with respect toW to be a projection (for everyy in Rn)
of y onU with respect toV:

(a) X′VPX,W � X′V, or, equivalently,X′V(I− PX,W) � 0;

(b) there exists ap × p matrix Q such thatVX � WXQ, or, equivalently,
C(VX) ⊂ C(WX) [thereby generalizing Parts (1) and (4) of Theorem
14.12.18].

51. Let X represent ann × p matrix andW an n × n symmetric nonnegative
definite matrix. As in the special case whereW is positive definite, let

C⊥W(X) � {y ∈ Rn×1 : y ⊥W C(X)} .

(a) By, for example, making use of the result of Exercise 46, show that

C⊥W(X) � N (X′W) � C(I− PX,W)

(thereby generalizing Lemma 14.12.21).

(b) Show that

dim[C⊥W(X)] � n− rank(WX) ≥ n− rank(X) � n− dim[C(X)]

(thereby generalizing Corollary 14.12.22).

(c) By, for example, making use of the result of Exercise 46, show that, for
any solutionb∗ to the linear systemX′WXb � X′Wy (in b), the vector
y−Xb∗ is a projection ofy onC⊥W(X) with respect toW (thereby extending
the result of Theorem 14.12.23).
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15
Matrix Differentiation

It is natural and convenient to use matrix notation and terminology in defining
and discussing certain functions of one or more variables. Earlier (in Chapter
14), matrix notation and terminology were used in defining and discussing lin-
ear, bilinear, and quadratic forms. In some cases, the use of matrix notation and
terminology is essentially unavoidable — consider, for example, a case where
the determinant of anm × m matrix is regarded as a function of itsm2 ele-
ments.

Matrix differentiation is the derivation of the first-, second-, or higher-order
partial derivatives of a function or functions that have been expressed in terms
of matrices. In deriving, presenting, and discussing the partial derivatives of such
functions, it is natural, convenient, and in some cases necessary to employ matrix
notation and terminology. Not only may the functions be expressed in terms of
matrices, but the functions may comprise the elements of a vector or matrix, as
would be the case if the elements of the inverse of anm×m (nonsingular) matrix
A were regarded as functions of the elements ofA.

Matrix differentiation is of considerable importance in statistics. It is especially
useful in connection with the maximum likelihood estimation of the parameters in
a statistical model. The maximum likelihood estimates of the model’s parameters
satisfy the equations (known as the likelihood equations) obtained by equating to
zero the first-order partial derivatives (with respect to the model’s parameters) of
the logarithm of the so-called likelihood function — in many important cases, the
likelihood function involves the determinant and/or inverse of a matrix. Further,
an approximation (suitable for large samples) to the variance-covariance matrix
of the maximum likelihood estimators can be obtained by inverting the matrix
(known as the information matrix) whoseij th element is−1 times the second-
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order partial derivative (with respect to theith andj th parameters) of the logarithm
of the likelihood function.

15.1 Definitions, Notation, and Other Preliminaries

a. Neighborhoods, interior points, and open sets

Let c represent an arbitrarym-dimensional column vector. Taking the norm for
Rm×1 to be the usual norm, aneighborhood of c is (by definition) a set of the
general form

{x ∈ Rm×1 : ‖x− c‖ < r} ,
wherer is a positive number called theradius of the neighborhood. Thus, a neigh-
borhood ofc of radiusr is the set of allm-dimensional column vectors whose
distance fromc is less thanr. Geometrically, a neighborhood ofc is (depending
on whetherm is 1, 2, 3, or greater than 3) the interior of an interval, circle, sphere,
or “hypersphere” centered atc.

The definition of neighborhood can be extended to row vectors. In fact, it can
be extended to matrices of any dimensions. Taking the norm forRm×n to be the
usual norm, aneighborhood of an arbitrarym× nmatrixC is a set of the general
form

{X ∈ Rm×n : ‖X− C‖ < r} .
Let S represent an arbitrary set ofm-dimensional column vectors (or more

generally ofm × n matrices), that is, letS represent a subset ofRm×1 (or more
generally ofRm×n). Then, a vectorx (or matrixX) in S is said to be aninterior
point of S if there exists a neighborhood ofx (or X), all of whose points belong to
S. The setS is said to beopen if all of its points are interior points. It can be shown
that every neighborhood of a pointx (or X) in Rm (or Rm×n) is an open set.

b. Functions and continuity

In what follows, the word function is to be used restrictively to mean a scalar-
valued function whose domain is a set (ofm-dimensional column vectors) inRm

or more generally a set (ofm × n matrices) inRm×n. The value of a functionf
corresponding to an arbitrary vectorx or matrixX is to be denoted by the symbol
f (x) orf (X). Further, iff � {fs} is ap×1 vector or, more generally, ifF � {fst }
is ap×q matrix, each element of which is a function defined on some set inRm×n,
then, for an arbitrary matrixX, thep× 1 vector [f1(X), . . . , fp(X)]′ or thep× q
matrix with st th elementfst (X) is to be denoted byf(X) or F(X) and referred to
as the value off or F at X.

At times, attention will be restricted to functions whose domains are sets of
column vectors. This can be done without loss of generality in the sense that the
elements of anm× nmatrix can be rearranged in the form of anmn-dimensional
column vector.
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Let f represent a function whose domain is a setS in Rm×1. Then,f is said to
becontinuous at an interior pointc of S if

lim
x→c

f (x) � f (c)

— by definition, limx→c f (x) is a scalarb such that, for every positive scalarε,
there exists a neighborhoodNε of c such that|f (x)− b| < ε for all x in Nε other
thanc. A p× q matrixF of functions, each of whose domains is the same setS in
Rm×1, will be said to becontinuous at an interior pointc of S if all pq elements
of F are continuous atc.

c. First-order partial derivatives and continuous differentiability

Let f represent a function, defined on a setS, of a vectorx � (x1, . . . , xm)′ of
m variables. Suppose thatS contains at least some interior points, and letc �
(c1, . . . , cm)′ represent an arbitrary one of those points. Further, letuj represent
thej th column ofIm.

Consider the limit

lim
t→0

f (c+ tuj )− f (c)

t
.

When this limit exists, it is called thej th(first-order) partial derivative off atc and
is denoted byDjf (c). Note thatc+ tuj � (c1, . . . , cj−1, cj + t, cj+1, . . . , cm)′,
so thatDjf (c) can be regarded as the ordinary derivative (atcj ) of the func-
tion of one variable obtained fromf (x) by fixing x1, . . . , xj−1, xj+1, . . . , xm at
c1, . . . , cj−1, cj+1, . . . , cm, respectively.

The scalarDjf (c) can be regarded as the value assigned to the pointc by a
function. This function is denoted by the symbolDjf (and is referred to as the
j th partial derivative off ). Its domain consists of those interior points (ofS) at
which thej th partial derivative (off ) is defined.

The symbolDf represents the row vector (D1f, . . . ,Dmf ) whose elements
are the partial derivatives off , and accordingly the symbolDf (c) represents the
row vector [D1f (c), . . . , Dmf (c)] whose elements are the values of the functions
D1f, . . . ,Dmf atc — note thatDf (c) is defined only ifc is such that allm of the
partial derivatives off at c exist. The column vector (Df )′ is referred to as the
gradient (or gradient vector) of f .

An alternative notation is obtained by writing∂f (x)/∂xj for the j th par-
tial derivative off at x, writing ∂f (x)/∂x′ for the row vector [∂f (x)/∂x1, . . . ,
∂f (x)/∂xm] of partial derivatives off at x, and writing∂f (x)/∂x for the column
vector [∂f (x)/∂x1, . . . , ∂f (x)/∂xm]′ of partial derivatives off atx. In this context,
∂f (x)/∂x′ may be called the derivative off (x) with respect tox′, and∂f/∂x may be
called the derivative off (x) with respect tox. The symbols∂f (x)/∂xj , ∂f (x)/∂x′,
and∂f (x)/∂x have the same interpretations asDjf (x),Df (x), and [Df (x)]′, re-
spectively, and are sometimes abbreviated to∂f/∂xj , ∂f/∂x′, and∂f/∂x. On
certain occasions (to be ascertained from the context), these symbols may be used
to represent the functionDjf and the vectors of functionsDf and (Df )′ (rather
than their values atx).
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The functionf (with domainS in Rm×1) will be said to becontinuously differen-
tiable at the interior pointc (of S) if D1f (x), . . . , Dmf (x) exist and are continuous
at every pointx in some neighborhood ofc. It can be shown that iff is continuously
differentiable atc, then

lim
x→c

f (x)− [f (c)+ Df (c)(x− c)]

‖x− c‖ � 0 , (1.1)

which indicates that, forx sufficiently close toc, the first-order Taylor formula
f (c)+Df (c)(x− c) approximatesf (x) with an error that is of smaller order than
‖x− c‖ (e.g., Magnus and Neudecker, 1988, chap. 5).

If the functionf is such that result (1.1) holds, thenf (x) → f (c), as is evident
upon writing

f (x) � f (c)+ Df (c)(x− c)+ ‖x− c‖f (x)− [f (c)+ Df (c)(x− c)]

‖x− c‖ .

Thus, we have the following lemma.
Lemma 15.1.1. If a functionf , with domainS in Rm×1, is continuously differ-

entiable at an interior pointc of S, thenf is continuous atc.
A function f for which result (1.1) holds is said to bedifferentiable at c. It is

worth mentioning that, whilef being continuously differentiable atc is a suffi-
cient condition forf to be differentiable atc, it is not in general necessary — as
demonstrated by, for example, Magnus and Neudecker (1988, secs. 5.9 and 5.10).

d. Second- and higher-order partial derivatives

As in Subsection c, letf represent a function, defined on a setS, of a vector
x � (x1, . . . xm)′ of m variables; suppose thatS contains at least some interior
points; and letc represent an arbitrary one of those points.

Suppose thatD1f (x), . . . , Dmf (x) exist for all x in some neighborhood ofc
(so thatc is an interior point of the domains of the functionsD1f, . . . ,Dmf ).
When theith (first-order) partial derivative ofDjf atc exists, it is called theij th
second-order partial derivative of f at c and is denoted byD2

ij f (c). The scalar
D2
ij f (c) can be regarded as the value assigned to the pointc by a function. This

function is denoted by the symbolD2
ij f (and is referred to as theij th second-order

partial derivative off ).
The symbolHf represents them×m matrix whoseij th element isD2

ij f , and
accordingly the symbolHf (c) represents the value ofHf at the pointc, that is,
them × m matrix whoseij th element isD2

ij f (c). The matrixHf is called the
Hessian matrix of f .

An alternative notation is obtained by writing∂2f (x)/∂xi∂xj — or, in the spe-
cial case wherej � i, ∂2f (x)/∂x2

i — for theij th second-order partial derivative
D2
ij f (x) of f at x and writing∂2f (x)/∂x∂x′ for the Hessian matrixHf (x) of f at

x. The symbols∂2f (x)/∂xi∂xj , ∂2f (x)/∂x2
i , and∂2f (x)/∂x∂x′ are sometimes
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abbreviated to∂2f/∂xi∂xj , ∂2f/∂x2
i , and∂2f/∂x∂x′, respectively, and are some-

times used to represent the functionsD2
ij f andD2

iif and the matrix of functions
Hf (rather than their values atx).

The functionf will be said to betwice (or 2 times) continuously differentiable
atc if f and all of its first-order partial derivatives are continuously differentiable
at c or, equivalently, if all of the first- and second-order partial derivatives off

exist and are continuous at every point in some neighborhood ofc. It can be shown
that iff is twice continuously differentiable atc, then the matrixHf is symmetric
at c [i.e., Hf (c) is symmetric, or, equivalently,D2

jif (c) � D2
ij f (c) for all i and

j < i] — refer to, for example, Magnus and Neudecker (1988, sec. 6.7). It can be
further shown that iff is twice continuously differentiable atc, then

lim
x→c

f (x)− [f (c)+ Df (c)(x− c)+ (1/2)(x− c)′Hf (c)(x− c)]

‖x− c‖2
� 0, (1.2)

which indicates that, forx sufficiently close toc, the second-order Taylor formula

f (c)+ Df (c)(x− c)+ (1/2)(x− c)′Hf (c)(x− c)

approximatesf (x) with an error that is of smaller order than‖x−c‖2 (e.g., Magnus
and Neudecker, 1988, sec. 6.9).

Partial derivatives off of orderk (wherek ≥ 2) can be defined recursively.
Suppose that the (k−1)th-order partial derivatives off atx exist for allx in some
neighborhood ofc. Forj � 1, . . . , k, let ij represent an arbitrary integer between
1 andm, inclusive. When thei1th partial derivative of thei2 · · · ikth (k − 1)th-
order partial derivative off atc exists, it is called thei1i2 · · · ikth kth-order partial
derivative off atc. The function whose value atc is thei1i2 · · · ikthkth-order partial
derivative off at c is referred to as thei1i2 · · · ikth kth-order partial derivative of
f .

The symbol∂kf (x)/∂xi1 · · · ∂xik (or in abbreviated form∂kf/∂xi1 · · · ∂xik ) can
be used to represent thei1 · · · ikth kth-order partial derivative off at x.

The functionf will be said to bek times continuously differentiable at c if
f and all of its first- through (k − 1)th-order partial derivatives are continuously
differentiable atc or, equivalently, if all of the first- throughkth-order partial
derivatives off exist and are continuous at every point in some neighborhood of
c. It can be shown that iff is k times continuously differentiable atc, then, for any
permutationj1, . . . , jk of the sequencei1, . . . , ik, thej1 · · · jkth andi1 · · · ikth kth-
order partial derivatives off are identical, and, lettingi∗1, . . . , i

∗
s (i∗1 < · · · < i∗s )

denote the distinct integers represented amongi1, . . . , ik and lettingkj represent
the number of integers in the sequencei1, . . . , ik that equali∗j , we may write

∂kf (x) /∂xk1
i∗1
· · · ∂xksi∗s (or simply ∂kf/∂xk1

i∗1
· · · ∂xksi∗s ) for ∂kf (x)/∂xi1 · · · ∂xik . It

can be further shown that iff is k times continuously differentiable atc, then, for
x sufficiently close toc, thekth-order Taylor formula approximatesf (x) with an
error that is of smaller order than‖x− c‖k.

Note that iff is k times continuously differentiable atc, thenf is continuously
differentiable atc and is also 2, . . . , k − 1 times continuously differentiable at
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c. Moreover, iff is k times continuously differentiable atc, thenf is k times
continuously differentiable at every point in some neighborhood ofc, as can be
easily verified.

e. Partial derivatives of a function of an unrestricted or symmetric
matrix

Suppose that the domain of the functionf to be differentiated is the setRm×n of
all m × n matrices or, more generally, is a set S inRm×n that contains at least
some interior points. Thenf can be regarded as a function of anm × n matrix
X � {xij } of mn “independent” variables. And, for purposes of differentiatingf ,
the elements ofX can be rearranged in the form of anmn-dimensional column
vectorx, andf can be reinterpreted as a function ofx, in which case the domain
of f is the set, sayS∗, obtained by rearranging the elements of eachm× nmatrix
in S in the form of a column vector. (It should be noted that anmn-dimensional
column vector is an interior point ofS∗ if and only if it is a rearrangement of an
m× n matrix that is an interior point ofS.)

By definition, the elements∂f/∂xij (i � 1, . . . , m; j � 1, . . . , n) of themn-
dimensional column vector∂f/∂x are the first-order partial derivatives off at x
(and the elements of themn × mn matrix ∂f/∂x∂x′ are the second-order partial
derivatives off atx). However, instead of presenting the first-order partial deriva-
tives off atx (or, equivalently,X) in the form of the vector∂f ∂x, it is natural and
in many cases convenient to present them in the form of them× n matrix whose
ij th element is∂f/∂xij . This matrix is to be denoted by the symbol∂f (X)/∂X
(or in abbreviated form∂f/∂X) and is to be called the derivative off (X) with
respect toX. Further, let us write∂f (X)/∂X′ (or ∂f/∂X′) for then × m matrix
[∂f (X)/∂X]′ and refer to this matrix as the derivative off (X) with respect toX′.

Suppose now that the functionf of interest is one whose domain is restricted to
all m×m symmetric matrices or, more generally, to a subsetS of such matrices.
Then,f can still be regarded as a function of anm × m matrix X � {xij } of m2

variables. However, because of the restriction to symmetric matrices,xji � xij
for all i andj > i, so that them2 elements ofX can no longer be regarded as
m2 independent variables. A closely related point is thatS cannot contain any
interior points. As a consequence, the previous development — that leading to the
introduction of the symbol∂f (X)/∂X and to the definition of the derivative off (X)
with respect toX — is not applicable. In the present case — that whereS contains
only symmetric matrices — the symbol∂f (X)/∂X and the term “derivative off (X)
with respect toX” are to be defined differently. (When not explicitly indicated, the
intended interpretation must be ascertained from the context.)

For purposes of differentiating the functionf of the symmetric matrixX, f is to
be interpreted as a function of an [m(m+1)/2]-dimensional column vectorx whose
elements arexij (j ≤ i � 1, . . . , m) or, alternatively,xij (j ≥ i � 1, . . . , m) [i.e.,
whose elements are the “independent” elements ofX, which are those on and
below (or alternatively above) the diagonal]. Whenf is reinterpreted in this way,
the domain off is the setS∗ of [m(m+1)/2]-dimensional column vectors obtained
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by transforming them×m matrices inS from X-values intox-values.
Suppose thatS∗ contains at least some interior points. (The setS∗ can contain

interior points, even thoughS cannot.) By definition, the elements∂f ∂xij (j ≤ i �
1, . . . , m or, alternatively,j ≥ i � 1, . . . , m) of the [m(m + 1)/2]-dimensional
column vector∂f/∂x are the first-order partial derivatives off at x {and the
elements of the [m(m + 1)/2] × [m(m + 1)/2] matrix ∂f/∂x∂x′ are the second-
order partial derivatives off at x}. However, instead of presenting the first-order
partial derivatives off atx (or, equivalently,X) in the form of the vector∂f/∂x, it
is natural, and in many cases convenient, to present them in the form of them×m
symmetric matrix whoseij th andjith elements are∂f/∂xij . In the present case
(that where the domainS of f is restricted to symmetric matrices), it is this matrix
that is denoted by the symbol∂f (X)/∂X (or ∂f/∂X) and is called the derivative
of f with respect toX.

f. Differentiation of a vector or matrix of functions

Suppose that there is a (column) vectorf � (f1, . . . , fp)′ of p functions to be
differentiated and that the domain of all of these functions is a setS in Rm×1.
Suppose further thatS contains at least some interior points, and letc represent an
arbitrary one of those points.

The symbolDj f is used to represent thep-dimensional column vector whose
sth element is thej th partial derivativeDjfs of fs , and the symbolDf is used to
represent thep×mmatrix whosesj th element isDjfs or, equivalently, thep×m
matrix whosej th column isDj f. Accordingly,Dj f(c) � [Djf1(c), . . . , Djfp(c)]′,
andDf(c) � [D1f(c), . . . , Dmf(c)] (provided that each of them partial derivatives
of each of thep functionsf1, . . . , fp at c exists). The matrixDf is called the
Jacobian matrix of f, and its transpose (Df)′ is called thegradient (or gradient
matrix) of f. Note that (Df)′ � [(Df1)′, . . . , (Dfp)′]. In the special case where
p � m, the determinant ofDf is called theJacobian (or Jacobian determinant) of
f.

An alternative notation is obtained by lettingx � (x1, . . . , xm)′ represent a vector
of m variables and writing∂f(x)/∂x′ (or ∂f/∂x′) for thep×mmatrix whosesj th
element is∂fs(x)/∂xj and∂f ′(x)/∂x (or ∂f ′/∂x) for them×pmatrix [∂f(x)/∂x′]′

whosejsth element is∂fs(x)/∂xj . In this context,∂f(x)/∂x′ may be called the
derivative off(x) with respect tox′, and∂f ′(x)/∂x may be called the derivative of
f ′(x) with respect tox. The symbol∂f(x)/∂x′ has the same interpretation asDf(x)
(or alternativelyDf).

Suppose now that there is ap × q matrix F � {fst } of pq functions to be
differentiated and that the domain of all of these functions is a setS in Rm×1 (that
contains at least some interior points). As in the special case whereq � 1, each
of the elements ofF can be regarded as a function of a vectorx � (x1, . . . , xm)′

of m “independent” variables.
All mpq (first-order) partial derivatives (of the elements ofF) can be presented

in the form of a singlepq ×m (orm×pq) matrix by rearranging the elements of
F in the form of a column vectorf and by then forming the Jacobian (or gradient)
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matrix of f. However, with the possible exception of the special case wherep � 1
or q � 1 (i.e., whereF is a row or column vector), it is sometimes preferable to
present thej th (first-order) partial derivatives of the elements ofF in a separate
p × q matrix whosest th element is∂fst (x)/∂xj (j � 1, . . . , m). This matrix is
to be denoted by the symbol∂F(x)/∂xj (or, in abbrevated form,∂F/∂xj ) and is
to be referred to as thej th partial derivative ofF — in the special case where
q � 1 (i.e., whereF is a column vector),∂F(x)/∂xj has the same interpretation
asDjF(x). And, thep × q matrix whosest th element is∂kfst (x)/∂xk1

j1
· · · ∂xkrjr

is to be denoted by the symbol∂kF(x)/∂xk1
j1
· · · ∂xkrjr or ∂kF/∂xk1

jr
· · · xkrjr (where

j1, . . . , jr is a subsequence of the firstm positive integers;k1, . . . , kr are positive
integers; andk � k1 + · · · + kr ).

The matrixF will be said to becontinuously differentiable at an interior point
c (of S) if all pq of its elements are continuously differentiable atc, and to be
twice (or 2 times) continuously differentiable atc if all pq of its elements are twice
continuously differentiable atc. More generally,F is said to bek times continuously
differentiable at c if all pq of its elements arek times continuously differentiable
at c.

15.2 Differentiation of (Scalar-Valued) Functions:
Some Elementary Results

The techniques employed in matrix differentiation can be regarded as generaliza-
tions or extensions of those employed in nonmatrix differentiation. Some elemen-
tary results on nonmatrix differentiation are stated (without proof) in the following
two lemmas.

Lemma 15.2.1. Let f represent a function, defined on a set S, of a vector
x � (x1, . . . , xm)′ of m variables, and suppose that (forx ∈ S) f (x) is constant
or (more generally) does not vary withxj . Then, for any interior pointc of S,
Djf (c) � 0.

Lemma 15.2.2. Letf andg represent functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ of m variables. And, leta andb represent constants or (more
generally) functions (defined onS) that are continuous at every interior point ofS
and are such thata(x) andb(x) do not vary withxj . Define

# � af + bg, h � fg, and r � f/g ,

so that# andh are functions, each of whose domain isS, andr is a function whose
domain isS∗ � {x ∈ S : g(x) �� 0}. If f andg are continuously differentiable at
an interior pointc of S, then# andh are also continuously differentiable atc, and

Dj#(c) � a(c)Djf (c)+ b(c)Djg(c) (2.1)

and
Djh(c) � f (c)Djg(c)+ g(c)Djf (c) . (2.2)
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And, if f andg are continuously differentiable at an interior pointc of S∗, thenr
is also continuously differentiable atc, and

Djr(c) � [g(c)Djf (c)− f (c)Djg(c)]/[g(c)]2 . (2.3)

Formulas (2.1) – (2.3) can be expressed less formally and more succinctly as

∂(af + bg)

∂xj
� a

∂f

∂xj
+ b ∂g

∂xj
, (2.4)

∂fg

∂xj
� f

∂g

∂xj
+ g ∂f

∂xj
, (2.5)

and
∂(f/g)

∂xj
� [g

∂f

∂xj
− f ∂g

∂xj
]/g2 . (2.6)

Special cases of formula (2.4) include:

∂(af )

∂xj
� a

∂f

∂xj
,

∂(f + g)

∂xj
� ∂f

∂xj
+ ∂g

∂xj
,

∂(f − g)

∂xj
� ∂f

∂xj
− ∂g

∂xj
. (2.7)

And, as a special case of formula (2.6), we have (in light of Lemma 15.2.1) that

∂(1/g)

∂xj
� −(1/g2)

∂g

∂xj
. (2.8)

Results (2.1) and (2.2) can be extended (by repeated application) to a linear
combination or a product of an arbitrary number of functions. Letf1, f2, . . . , fk
representk functions, defined on a set S, of a vectorx � (x1, . . . , xm)′ of m
variables, and leta1, a2, . . . , ak represent constants or (more generally) functions
(defined onS) that are continuous at every interior point ofS and are such that
a1(x), a2(x), . . . , ak(x) do not vary withxj . Define

# � a1f1 + a2f2 + · · · + akfk and h � f1f2 · · · fk .

If f1, f2, . . . , fk are continuously differentiable at an interior pointc of S, then#
andh are also continuously differentiable atc, and

Dj#(c) � a1(c)Djf1(c)+ a2(c)Djf2(c)+ · · · + ak(c)Djfk(c) (2.9)

and

Djh(c) �
k∑
i�1

[∏
s ��i
fs(c)

]
Djfi(c) . (2.10)

Formulas (2.9) and (2.10) can be rewritten as

∂(a1f1 + a2f2 + · · · akfk)
∂xj

� a1
∂f1

∂xj
+ a2

∂f2

∂xj
+ · · · + ak ∂fk

∂xj
(2.11)
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and
∂(f1f2 · · · fk)

∂xj
�

k∑
i�1

(∏
s ��i
fs

)
∂fi

∂xj
. (2.12)

Note that formulas (2.6) and (2.12) for the partial derivatives of a ratio of two
functions or for a product of two or more functions can be recast in vector notation
as

∂(f/g)

∂x
� g−2[ g

∂f

∂x
− f ∂g

∂x
] (2.13)

and
∂(f1f2 · · · fk)

∂x
�

k∑
i�1

(∏
s ��i
fs

)
∂fi

∂x
. (2.14)

Similarly, formula (2.11) can (in the special case wherea1, a2, . . . , ak are con-
stants) be recast as

∂(a1f1 + a2f2 + · · · + akfk)
∂x

� a1
∂f1

∂x
+ a2

∂f2

∂x
+ · · · + ak ∂fk

∂x
. (2.15)

Note also that by setting each of thek functionsf1, . . . , fk in formula (2.12)
equal to the same function, sayf , we obtain the result that (for any positive integer
k)

∂f k

∂xj
� k f k−1 ∂f

∂xj
. (2.16)

Since clearly
∂xj

∂xj
� 1 ,

we have in particular [upon takingf (x) � xkj ] that

∂xkj

∂xj
� k xk−1

j . (2.17)

15.3 Differentiation of Linear and Quadratic Forms

The results of Section 15.2 can be used to derive formulas for the partial derivatives
of a linear forma′x or a quadratic formx′Ax (in an unconstrainedm-dimensional
column vectorx). Letai andxi represent theith elements ofa andx, respectively,
and letaik represent theikth element ofA. Then,

a′x �
∑
i

aixi and x′Ax �
∑
i,k

aik xi xk .

In light of Lemma 15.2.1 and results (2.17) and (2.7), we have that

∂xi

∂xj
�
{

1, if i � j , (3.1a)
0, if i �� j , (3.1b)
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and that

∂(xixk)

∂xj
�




2xj , if i � k � j , (3.2a)
xi, if k � j but i �� j, (3.2b)
xk, if i � j butk �� j, (3.2c)
0, otherwise (i.e., ifi �� j andk �� j ) . (3.2d)

Using these results in combination with result (2.11), we find that

∂(a′x)

∂xj
� ∂(

∑
i aixi)

∂xj
�
∑
i

ai
∂xi

∂xj
� aj (3.3)

and

∂(x′Ax)

∂xj

� ∂(
∑

i,k aikxixk)

∂xj

� ∂(ajjx2
j +

∑
i ��j aij xixj +

∑
k ��j ajkxjxk +

∑
i ��j,k ��j aikxixk)

∂xj

� ajj
∂x2

j

∂xj
+
∑
i ��j

aij
∂(xixj )

∂xj
+
∑
k ��j

ajk
∂(xjxk)

∂xj

+
∑

i ��j,k ��j
aik
∂(xixk)

∂xj

� 2ajjxj +
∑
i ��j

aij xi +
∑
k ��j

ajkxk + 0

�
∑
i

aij xi +
∑
k

ajkxk . (3.4)

Result (3.3) can be recast in vector notation as

∂(a′x)

∂x
� a (3.5)

or alternatively as
∂(a′x)

∂x′
� a′ . (3.6)

And, result (3.4) can be recast in matrix notation as

∂(x′Ax)

∂x
� (A+ A′)x , (3.7)

as is evident upon observing that
∑

k ajkxk is thej th element of the column vector
Ax and

∑
i aij xi is thej th element ofA′x.
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Thesj th second-order partial derivative ofx′Ax can be obtained by finding the
sth partial derivative of expression (3.4), giving

∂2(x′Ax)

∂xs∂xj
�
∑
i

aij
∂xi

∂xs
+
∑
k

ajk
∂xk

∂xs
� asj + ajs . (3.8)

Result (3.8) can be recast in matrix notation as

∂2(x′Ax)

∂x∂x′
� A+ A′ . (3.9)

Note that all partial derivatives ofa′x of order higher than one are zero, and that
all partial derivatives ofx′Ax of order higher than two are zero. Note also that, in
the special case whereA is symmetric, results (3.7) and (3.9) simplify to

∂(x′Ax)

∂x
� 2Ax,

∂2(x′Ax)

∂x∂x′
� 2A .

Formulas (3.5) and (3.6) for the derivative of the linear forma′x with respect to
x or x′ can be extended to a vector of linear forms. LetB � {bij } represent ap×m
matrix of constants, and consider the column vectorBx. Theith element ofBx is
the linear formb′ix, whose coefficient vector isb′i � (bi1, . . . , bim). According to
result (3.3), thej th partial derivative of this linear form isbij . Thus, the partial
derivative ofBx with respect tox′ (which is the Jacobian matrix ofBx) is

∂(Bx)

∂x′
� B , (3.10)

and the partial derivative of (Bx)′ with respect tox (which is the gradient matrix
of Bx) is

∂(Bx)′

∂x
� B′ . (3.11)

Note that, in the special case whereB � Im, results (3.10) and (3.11) reduce to

∂x
∂x′

� ∂x′

∂x
� Im . (3.12)

15.4 Differentiation of Matrix Sums, Products, and
Transposes (and of Matrices of Constants)

The results presented in Section 15.2 (on the differentiation of functions) can be
extended to the differentiation of matrices of functions.

The following lemma generalizes (and follows from) Lemma 15.2.1.
Lemma 15.4.1. Let F � {fis} represent ap× q matrix of functions, defined on

a setS, of a vectorx � (x1, . . . , xm)′ of m variables; and suppose that (forx ∈ S)
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F (x) is constant or (more generally) does not vary withxj . Then, at any interior
point ofS, ∂F/∂xj � 0.

A generalization of formula (2.4) is given by the following lemma.
Lemma 15.4.2. Let F � {fis} and G � {gis} representp × q matrices of

functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ ofm variables. And, let
a andb represent constants or (more generally) functions (defined onS) that are
continuous at every interior point of S and are such thata(x) andb(x) do not vary
with xj . Then, at any interior pointc (of S) at whichF andG are continuously
differentiable,aF+ bG is continuously differentiable and

∂(aF+ bG)

∂xj
� a

∂F
∂xj

+ b ∂G
∂xj

. (4.1)

Proof. Let L � aF+ bG. Theisth element ofL is

#is � afis + bgis .
The functionsfis andgis are continuously differentiable atc, implying (in light of
Lemma 15.2.2) that#is is continuously differentiable atc and that (atx � c)

∂#is

∂xj
� a

∂fis

∂xj
+ b∂gis

∂xj
.

It follows thatL is continuously differentiable atc, and (since∂#is/∂xj , ∂fis/∂xj ,
and∂gis/∂xj are theisth elements of∂L/∂xj , ∂F/∂xj , and∂G/∂xj , respectively)
that (atx � c)

∂L
∂xj

� a
∂F
∂xj

+ b ∂G
∂xj

.

Q.E.D.
We obtain, as special cases of formula (4.1), the following generalization of

result (2.7):

∂(aF)

∂xj
� a

∂F
∂xj

,
∂(F+G)

∂xj
� ∂F
∂xj

+ ∂G
∂xj

,
∂(F−G)

∂xj
� ∂F
∂xj

− ∂G
∂xj

. (4.2)

Formula (2.5) is generalized in the following lemma.
Lemma 15.4.3. LetF � {fis} andG � {gis} representp×q andq×r matrices

of functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ ofm variables. Then,
at any interior pointc (of S) at whichF andG are continuously differentiable,FG
is continuously differentiable and

∂FG
∂xj

� F
∂G
∂xj

+ ∂F
∂xj

G . (4.3)

Proof. Let H � FG. Theit th element ofH is

hit �
q∑
s�1

fisgst .
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The functionsfis andgst are continuously differentiable atc, implying (in light of
Lemma 15.2.2) thatfisgst is continuously differentiable atc and that (atx � c)

∂fisgst

∂xj
� fis

∂gst

∂xj
+ ∂fis

∂xj
gst .

Thus,hit is continuously differentiable atc, and (atx � c)

∂hit

∂xj
�

q∑
s�1

∂(fisgst )

∂xj
�

q∑
s�1

fis
∂gst

∂xj
+

q∑
s�1

∂fis

∂xj
gst .

We conclude that H is continuously differentiable atc and [since∑q

s�1 fis(∂gst/∂xj ) and
∑q

s�1(∂fis/∂xj )gst are theit th elements ofF(∂G/∂xj )
and (∂F/∂xj )G, respectively] that (atx � c)

∂FG
∂xj

� F
∂G
∂xj

+ ∂F
∂xj

G .

Q.E.D.
In the special case where (forx ∈ S) F(x) is constant or (more generally) does

not vary withxj , formula (4.3) simplifies to

∂FG
∂xj

� F
∂G
∂xj

. (4.4)

And, in the special case where (forx ∈ S) G(x) is constant or (more generally)
does not vary withxj , formula (4.3) simplifies to

∂(FG)

∂xj
� ∂F
∂xj

G . (4.5)

The results of Lemma 15.4.3 can be extended (by repeated application) to the
product of three or more matrices. LetF, G, andH representp × q, q × r, and
r × v matrices of functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ ofm
variables. Then, at any interior point (ofS) at whichF, G, andH are continuously
differentiable,FGH is continuously differentiable and

∂FGH
∂xj

� FG
∂H
∂xj

+ F
∂G
∂xj

H+ ∂F
∂xj

GH . (4.6)

In the special case where (forx ∈ S) F(x) andH(x) are constant or (more geneally)
do not vary withxj , formula (4.6) simplifies to

∂(FGH)

∂xj
� F

∂G
∂xj

H . (4.7)

More generally, letF1,F2, . . . ,Fk represent matrices of functions, defined on a
setS, of a vectorx � (x1, . . . , xm)′ of m variables. Then, at any interior point (of
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S) at whichF1,F2, . . . ,Fk are continuously differentiable,F1F2 · · ·Fk is contin-
uously differentiable and

∂(F1F2 · · ·Fk)
∂xj

� F1 · · ·Fk−1
∂Fk
∂xj

+ F1 · · ·Fk−2
∂Fk−1

∂xj
Fk + · · · + ∂F1

∂xj
F2 · · ·Fk. (4.8)

(assuming that the dimensions ofF1,F2, . . . ,Fk are such that the product
F1F2· · ·Fk is defined).

Note that ifg is a function, defined on a setS, of a vectorx � (x1, . . . , xm)′ of
m variables and ifF is ap × q matrix of functions (defined onS) of x, then, at
any interior point (ofS) at whichg andF are continuously differentiable,gF is
continuously differentiable and

∂(gF)

∂xj
� ∂g

∂xj
F+ g ∂F

∂xj
, (4.9)

as is evident from Lemma 15.4.3 upon takingG � gI.
Note also that ifF is a p × q matrix of functions, defined on a set S, of a

vectorx � (x1, . . . , xm)′ of m variables, then, at any interior point at whichF is
continuously differentiable,F′ is continuously differentiable and

∂F′

∂xj
�
(
∂F
∂xj

)′
. (4.10)

15.5 Differentiation of a Vector or an (Unrestricted or
Symmetric) Matrix With Respect to Its Elements

Let x � {xs} represent anm-dimensional column vector, and letuj represent the
j th column of an identity matrix (of unspecified dimensions). The elements ofx
can be regarded as functions, defined onRm, of x. Thej th partial derivatives of
these functions are given by result (3.1). This result can be reexpressed in matrix
notation as

∂x
∂xj

� uj . (5.1)

Result (5.1) can be generalized to an (unrestricted)m×nmatrixX � {xst }. The
elements ofX can be regarded as functions, defined onRm×n, of X. For purposes
of differentiatingxst , the elements ofX can be rearranged in the form of anmn-
dimensional column vectorx, andxst can be reinterpreted as a function (defined
onRmn) of x (as discussed in Section 15.1e). Then [in light of result (3.1)],

∂xst

∂xij
�
{

1, if s � i andt � j , (5.2a)
0, otherwise. (5.2b)
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Or, in matrix notation,
∂X
∂xij

� uiu′j . (5.3)

Suppose now thatX � {xst } is a symmetric (but otherwise unrestricted) matrix
(of dimensionsm×m). Then, the elements ofX can still be regarded as functions
of X; however, the domain of these functions now comprises allm×m symmetric
matrices, which (unlessm � 1) is a proper subset ofRm×m. For purposes of
differentiatingxst , xst is (by convention) interpreted as a function (defined on
Rm(m+1)/2) of an [m(m+ 1)/2]-dimensional column vectorx whose elements are
xij (j ≤ i � 1, . . . , m) or alternativelyxij (j ≥ i � 1, . . . , m). This approach
gives

∂xst

∂xii
�
{

1, if s � t � i, (5.4a)
0, otherwise; (5.4b)

and, forj < i (or alternatively forj > i),

∂xst

∂xij
�
{

1, if s � i andt � j or if s � j andt � i, (5.5a)
0, otherwise. (5.5b)

Or, in matrix notation,
∂X
∂xii

� uiu′i , (5.6)

and, forj < i (or alternatively forj > i),

∂X
∂xij

� uiu′j + uju′i . (5.7)

15.6 Differentiation of a Trace of a Matrix

Let F � {fis} represent ap×p matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ ofm variables. Then, at any interior pointc (of S) at whichF is
continuously differentiable, tr(F) is continuously differentiable and

∂tr(F)

∂xj
� tr

(
∂F
∂xj

)
, (6.1)

as is evident upon observing that tr(F) � f11+f22+· · ·+fpp [which establishes
that tr(F) is continuously differentiable atc] and that (atx � c)

∂tr(F)

∂xj
� ∂f11

∂xj
+ ∂f22

∂xj
+ · · · + ∂fpp

∂xj
� tr

(
∂F
∂xj

)
.

Suppose now thatF is ap × q matrix of functions, defined on a setS, of a
vectorx � (x1, . . . , xm)′ of m variables, and suppose thatA is aq × p matrix of
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constants or (more generally) aq × p matrix of functions (defined onS) that is
continuous at every interior point ofS and such thatA(x) does not vary withxj .
Then, making use of results (6.1) and (4.5) (along with Lemma 5.2.1), we find
that, at any interior point (ofS) at whichF is continuously differentiable, tr(AF)
or, equivalently, tr(FA) is continuously differentiable and

∂tr(AF)

∂xj
� ∂tr(FA)

∂xj
� tr

(
∂F
∂xj

A
)
� tr

(
A
∂F
∂xj

)
. (6.2)

Result (6.2) can be generalized to the trace of the product of “any” two matrices
of functions. LetF andG representp×q andq×pmatrices of functions, defined
on a setS, of a vectorx � (x1, . . . , xm)′ ofm variables. Then, in combination with
result (6.1) and Lemma 5.2.1, Lemma 15.4.3 implies that, at any interior point at
which F andG are continuously differentiable, tr(FG) or, equivalently, tr(GF) is
continuously differentiable and

∂tr(FG)

∂xj
� ∂tr(GF)

∂xj
� tr

(
F
∂G
∂xj

)
+ tr

(
G
∂F
∂xj

)
. (6.3)

Note that alternative versions of formula (6.3) can be obtained by making either
or both of the two substitutions

tr

(
F
∂G
∂xj

)
� tr

(
∂G
∂xj

F
)

and tr

(
G
∂F
∂xj

)
� tr

(
∂F
∂xj

G
)
.

Let us now consider a special case of result (6.2). TakeX � {xst } to be anm×n
matrix of “independent” variables, and suppose that the range ofX comprises all
of Rm×n. DefineA � {ats} to be ann×mmatrix of constants, and letuj represent
thej th column of an identity matrix (of unspecified dimensions). Then,

∂tr(AX)

∂xij
� ∂tr(XA)

∂xij
� aji , (6.4)

as is evident from result (6.2) upon observing [in light of result (5.3)] that

tr

(
A
∂X
∂xij

)
� tr(Auiu′j ) � tr(u′jAui) � u′jAui � aji .

Result (6.4) can be restated as

∂tr(AX)

∂X
� ∂tr(XA)

∂X
� A′ . (6.5)

Suppose now thatX is a symmetric (but otherwise unrestricted) matrix (of
dimensionsm × m). Then, for purposes of differentiating a function ofX, the
function is reinterpreted as a function of an [m(m + 1)/2]-dimensional column
vectorx whose elements arexij (j ≤ i � 1, . . . , m). Consequently, result (6.4) is
no longer applicable. Instead, we have that

∂tr(AX)

∂xij
� ∂tr(XA)

∂xij
�
{
aii, if j � i , (6.6a)
aij + aji, if j < i . (6.6b)
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To verify this, apply result (6.2) and observe [in light of results (5.6) and (5.7)]
that

tr

(
A
∂X
∂xii

)
� tr(Auiu′i) � u′iAui � aii

and that (forj < i)

tr

(
A
∂X
∂xij

)
� tr(Auiu′j )+ tr(Auju′i) � u′jAui + u′iAuj � aji + aij .

Result (6.6) can be restated as

∂tr(AX)

∂X
� ∂tr(XA)

∂X
� A+ A′ − diag(a11, a22, . . . , amm) . (6.7)

Note that, regardless of whetherX is unrestricted (but square) or symmetric, we
have that

∂tr(X)

∂xij
�
{

1, if j � i ,

0, if j �� i ,

or, equivalently, that
∂tr(X)

∂X
� I ,

as is evident from results (6.4) – (6.7) upon takingA � I.

15.7 The Chain Rule

The chain rule can be very helpful in deriving the partial derivatives of a functionf

that is the composite of a functiong and a vector of functionsh, that is, of a function
f whose value at an arbitrary pointx is given by the formulaf (x) � g[h(x)]. The
chain rule is stated (without proof) in the following theorem.

Theorem 15.7.1 (chain rule). Leth � {hi} represent ann×1 vector of functions,
defined on a setS, of a vectorx � (x1, . . . , xm)′ of m variables. Letg represent a
function, defined on a setT , of a vectory � (y1, . . . , yn)′ of n variables. Suppose
thath(x) ∈ T for everyx in S, and takef to be the composite function defined (on
S) by f (x) � g[h(x)]. If h is continuously differentiable at an interior pointc of S
and if [assuming thath(c) is an interior point ofT ] g is continuously differentiable
at h(c), thenf is continuously differentiable atc and

Djf (c) �
n∑
i�1

Dig[h(c)]Djhi(c) � Dg[h(c)]Djh(c) . (7.1)

Formula (7.1) can be reexpressed less formally as

∂f

∂xj
�

n∑
i�1

∂g

∂yi

∂hi

∂xj
� ∂g

∂y′
∂h
∂xj

, (7.2)



15.7 The Chain Rule 303

where∂g/∂yi and∂g/∂y′ are to be interpreted as having been evaluated aty � h(x).
Formula (7.1) or (7.2) can be recast as

Df (c) �
n∑
i�1

Dig[h(c)]Dhi(c) � Dg[h(c)]Dh(c) (7.3)

or
∂f

∂x′
�

n∑
i�1

∂g

∂yi

∂hi

∂x′
� ∂g

∂y′
∂h
∂x′

. (7.4)

The result of Theorem 15.7.1 can be generalized by takingg � {gs} to be a
p × 1 vector of functions (defined onT) of y andf � {fs} to be ap × 1 vector
of composite functions defined (onS) by fs(x) � gs [h(x)] (s � 1, . . . , p) or,
equivalently, byf(x) � g[h(x)]. If (in this more general context)h is continuously
differentiable at an interior pointc of S andg is continuously differentiable ath(c),
thenf is continuously differentiable atc and

Dj f(c) �
n∑
i�1

Dig[h(c)]Djhi(c) � Dg[h(c)]Djh(c) (7.5)

or, equivalently,
∂f
∂xj

�
n∑
i�1

∂g
∂yi

∂hi

∂xj
� ∂g
∂y′

∂h
∂xj

(7.6)

[where∂g/∂yi and∂g/∂y′ are to be interpreted as having been evaluated aty �
h(x)]. Formula (7.5) or (7.6) can be recast as

Df(c) �
n∑
i�1

Dig[h(c)]Dhi(c) � Dg[h(c)]Dh(c) (7.7)

or
∂f
∂x′

�
n∑
i�1

∂g
∂yi

∂hi

∂x′
� ∂g
∂y′

∂h
∂x′

. (7.8)

Let us now consider a different generalization of the result of Theorem 15.7.1
— one whereH � {his} is ann× r matrix of functions, defined onS, of x; where
g is a function, defined on a setT , of ann × r matrix Y � {yis} of nr variables;
whereH(x) ∈ T for everyx in S; and wheref is the composite function defined
(onS) by f (x) � g[H(x)]. Suppose that the elements ofH andY are rearranged
in the form of column vectorsh and y, respectively, and that, for purposes of
differentiation,g is reinterpreted as a function ofy. If h or, equivalently,H is
continuously differentiable at an interior pointc of S and if [assuming thatH(c)
is an interior point ofT ] g is continuously differentiable ath(c) or, equivalently,
H(c), thenf is continuously differentiable atc and (atx � c)

∂f

∂xj
�

n∑
i�1

r∑
s�1

∂g

∂yis

∂his

∂xj
(7.9)
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(as is evident from Theorem 15.7.1). Formula (7.9) can be rewritten as

∂f

∂xj
� tr

[(
∂g

∂Y

)′
∂H
∂xj

]
. (7.10)

[The quantities∂g/∂yis and∂g/∂Y, which appear in formulas (7.9) and (7.10),
are to be interpreted as having been evaluated atY � H(x).]

15.8 First-Order Partial Derivatives of Determinants
and Inverse and Adjoint Matrices

Let X � {xij } represent anm × m matrix ofm2 “independent” variables (where
m ≥ 2), and suppose that the range ofX comprises all ofRm×m. Denote byξij the
cofactor ofxij . Then, the functionf of X defined (onRm×m) by f (X) � det(X)
is continuously differentiable at everyX and

∂ det(X)

∂xij
� ξij . (8.1)

To see this, rearrange the elements ofX in the form of anm2-dimensional column
vectorx, and regardf as a function ofx. Since each element ofX is a continuously
differentiable function ofx, and since (according to Lemma 15.2.2) sums and
products of continuously differentiable functions are continuously differentiable,
it follows from the very definition of the determinant [given by expression (13.1.2)]
that f is continuously differentiable. Moreover, expanding det(X) as det(X) �∑m

t�1 xit ξit [in accordance with result (13.5.1)], observing thatξi1, . . . , ξim do not
vary withxij , and recalling result (5.2), we find that

∂ det(X)

∂xij
�

m∑
t�1

ξit
∂xit

∂xij
� ξij . (8.2)

Result (8.1) indicates that the derivative of det(X) with respect toX is the matrix
of cofactors (ofX) or, equivalently, that

∂ det(X)

∂X
� [adj(X)]′ . (8.3)

Let us now extend our results to the differentiation of the determinant of ap×p
matrixF � {fis} of functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ of
m variables. Thus, the function to be differentiated is the functionh of x defined
(on S) by h(x) � det[F(x)]. It is convenient (for purposes of differentiatingh)
to introduce a functiong of a p × p matrix Y � {yis} of p2 variables, defined
(on Rp×p) by g(Y) � det(Y), and to expressh as the composite ofg andF, so
that h(x) � g[F(x)]. Clearly (in light of our earlier results),g is continuously
differentiable at everyY and

∂g

∂Y
� [adj(Y)]′ .
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Thus, it follows from the chain rule [and in particular from result (7.10)] that if
F is continuously differentiable at an interior pointc of S, thenh is continuously
differentiable atc and (atx � c)

∂ det(F)

∂xj
� tr

[
adj(F)

∂F
∂xj

]
. (8.4)

Moreover, ifF is nonsingular as well as continuously differentiable atc, then [in
light of result (13.5.6)]

∂ det(F)

∂xj
� |F|tr

(
F−1 ∂F

∂xj

)
. (8.5)

Suppose now thatS is the set of allx-values for which det[F(x)] > 0 or is a
subset of that set, and consider the differentiation of the function# of x defined
(on S) by #(x) � log det[F(x)]. To facilitate the differentiation, letg represent a
function of a variabley defined (fory > 0) byg(y) � logy, and express# as the
composite ofg andh, so that#(x) � g[h(x)].

Recall (from the calculus of a single variable) thatg is continuously differen-
tiable (at all points in its domain) and that (fory > 0)

∂ logy

∂y
� 1

y
.

Applying the chain rule, we find [in light of results (8.4) and (8.5)] that ifF is con-
tinuously differentiable at an interior pointc of S (in which caseh is continuously
differentiable atc), then# is continuously differentiable atc and (atx � c)

∂ log det(F)

∂xj
� 1

|F|
∂ det(F)

∂xj
� 1

|F| tr
[
adj(F)

∂F
∂xj

]
� tr

(
F−1 ∂F

∂xj

)
. (8.6)

Let us now consider result (8.6) in the special case wherex is anm2-dimensional
column vector whose elements are the same as those of anm×mmatrixX � {xij }
of m2 “independent” variables and whereF (x) � X. Let c represent an interior
point of S [whereS consists of some or allx-values for which det(X) > 0], and
let uj represent thej th column ofIm.

It follows from result (5.3) thatX is continuously differentiable atc and that
(at x � c) ∂X/∂xij � uiu′j . We conclude that the function# defined (onS) by
#(x) � log det(X) is continuously differentiable atc and that (atx � c)

∂ log det(X)

∂xij
� tr(X−1uiu′j ) � u′jX

−1ui � yji , (8.7)

whereyji is thejith element ofX−1 or, equivalently, theij th element of (X−1)′.
Result (8.7) can be recast as

∂ log det(X)

∂X
� (X−1)′ . (8.8)
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Formulas (8.3) and (8.8) [or (8.2) and (8.7)] are applicable when them2 elements
of X are independent variables. Suppose now thatX � {xij } is anm×m symmetric
matrix, in which case formulas (8.3) and (8.8) are not applicable. For purposes of
differentiation, the functionf of X defined (on a setS comprising some or allm×m
symmetric matrices) byf (X) � det(X) and the function# of X defined (on a set
S∗ comprising some or allm×m symmetric matrices with positive determinants)
by #(X) � log det(X) are by convention to be interpreted as functions of the
[m(m+1)/2]-dimensional column vectorx whose elementsxij (j ≤ i � 1, . . . , m)
are “independent” elements ofX.

Let c represent an interior point ofS andc∗ an interior point ofS∗. Then, it
follows from the results of Section 15.5 thatX is continuously differentiable atc
andc∗, implying thatf is continuously differentiable atc and that# is continuously
differentiable atc∗. Moreover, we have [as a special case of result (8.4)] that (at
x � c)

∂ det(X)

∂xij
� tr

[
adj(X)

∂X
∂xij

]
.

Making use of results (5.6) and (5.7) and denoting thej th column ofIm by uj , we
find that

tr

[
adj(X)

∂X
∂xii

]
� tr

[
adj(X)uiu′i

] � u′iadj(X)ui

and (forj < i)

tr

[
adj(X)

∂X
∂xij

]
� tr[adj(X)uiu′j ] + tr[adj(X)uju′i ]

� u′j adj(X)ui + u′i adj(X)uj .

Thus, denoting the cofactor ofxij by ξij (and recalling that the cofactor matrix of
a symmetric matrix is symmetric), we have that

∂ det(X)

∂xij
�
{
ξii , if j � i , (8.9a)
2ξij , if j < i, (8.9b)

or, equivalently, that

∂ det(X)

∂X
� 2 adj(X)− diag(ξ11, ξ22, . . . , ξmm) . (8.10)

Further, lettingyij represent theij th element ofX−1, we find [in light of results
(8.6) and (13.5.7)] that (atx � c∗)

∂ log det(X)

∂xij
�
{
yii, if j � i, (8.11a)
2yij , if j < i, (8.11b)

or, equivalently, that

∂ log det(X)

∂X
� 2X−1 − diag(y11, y22, . . . , ymm) . (8.12)
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Consider now the differentiation of the adjoint matrix of ap×pmatrixF � {fis}
of functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ of m variables. Let
Fsi represent the (p−1)× (p−1) submatrix ofF obtained by striking out thesth
row and theith column (ofF), and letφsi � (−1)s+i det(Fsi). Then, by definition,
φsi is the cofactor offsi and hence theisth element of adj(F). It follows from our
discussion of the differentiation of determinants [including result (8.4)] that ifF
is continuously differentiable at an interior pointc of S, thenφsi is continuously
differentiable atc and (atx � c)

∂φsi

∂xj
� (−1)s+i tr

[
adj(Fsi)

∂Fsi
∂xj

]
. (8.13)

In other words, ifF is continuously differentiable atc, then adj(F) is continuously
differentiable atc, and theisth element of the matrix∂adj(F)/∂xj is given by
expression (8.13).

Suppose now thatS is the set of allx-values for whichF(x) is nonsingular or
is a subset of that set, and consider the differentiation of the inverse matrixF−1.
Denote byc any interior point (ofS) at whichF is continuously differentiable. Then,
φsi and det(F) are continuously differentiable atc, implying (in light of Lemma
15.2.2) thatφsi/det(F) is continuously differentiable atc. Since (according to
Corollary 13.5.4)φsi/det(F) equals theisth element ofF−1, we conclude that
F−1 is continuously differentiable atc. Moreover,FF−1 � I, implying (in light of
Lemmas 15.4.3 and 15.4.1) that (atx � c)

F
∂F−1

∂xj
+ ∂F
∂xj

F−1 � ∂I
∂xj

� 0

and hence

F
∂F−1

∂xj
� − ∂F

∂xj
F−1 . (8.14)

Premultiplying both sides of equality (8.14) byF−1, we obtain

∂F−1

∂xj
� −F−1 ∂F

∂xj
F−1 (8.15)

as a formula for∂F−1/∂xj .
An alternative expression for the elements of∂adj(F)/∂xj can [whenS is re-

stricted tox-values for whichF(x) is nonsingular] be obtained by making use of
formula (4.9). Since (according to Corollary 13.5.4) adj(F) � |F|F−1, we have [in
light of formula (8.5)] that

∂adj(F)

∂xj
� ∂|F|

∂xj
F−1 + |F|∂F−1

∂xj

� |F|tr
(

F−1 ∂F
∂xj

)
F−1 + |F|

(
−F−1 ∂F

∂xj
F−1

)

� |F|
[
tr

(
F−1 ∂F

∂xj

)
F−1 − F−1 ∂F

∂xj
F−1

]
. (8.16)
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Formula (8.15) can be generalized by making use of result (4.6). LetA andB
representk × p andp × r matrices of functions (defined on the same setS as
the elements ofF) of x. Suppose thatA andB (as well asF) are continuously
differentiable atc. Then,AF−1B is continuously differentiable atc and (atx � c)

∂(AF−1B)

∂xj
� AF−1 ∂B

∂xj
− AF−1 ∂F

∂xj
F−1B+ ∂A

∂xj
F−1B . (8.17)

In the special case where (forx ∈ S) A(x) andB(x) are constant or (more generally)
do not vary withxj , formula (8.17) simplifies to

∂(AF−1B)

∂xj
� −AF−1 ∂F

∂xj
F−1B . (8.18)

15.9 Second-Order Partial Derivatives of Determinants
and Inverse Matrices

Let F � {fis} represent ap×p matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ of m variables. Suppose thatF(x) is nonsingular for everyx
in S, and denote byc any interior point (ofS) at whichF is twice continuously
differentiable. Then,F is continuously differentiable atc. In fact,F is continuously
differentiable at every point in some neighborhoodN of c.

In light of the results of Section 15.8, we have that det(F) andF−1 are continu-
ously differentiable at every point inN and that (forx ∈ N )

∂ det(F)

∂xj
� |F|tr

(
F−1 ∂F

∂xj

)

and
∂F−1

∂xj
� −F−1 ∂F

∂xj
F−1.

Moreover, ∂F/∂xj is continuously differentiable atx � c. Consequently,
∂ det(F)/∂xj and∂F−1/∂xj are continuously differentiable atc, and hence det(F)
andF−1 are twice continuously differentiable atc.

Further, making use of results (2.5) and (6.3), we find that (atx � c)

∂2 det(F)

∂xi∂xj
� ∂{|F|tr[F−1(∂F/∂xj )]}

∂xi

� |F|
[
tr

(
F−1 ∂F

∂xi∂xj

)
+ tr

(
−F−1 ∂F

∂xi
F−1 ∂F

∂xj

)]

+|F|tr
(

F−1 ∂F
∂xi

)
tr

(
F−1 ∂F

∂xj

)
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� |F|
[
tr

(
F−1 ∂F

∂xi∂xj

)
+ tr

(
F−1 ∂F

∂xi

)
tr

(
F−1 ∂F

∂xj

)

− tr

(
F−1 ∂F

∂xi
F−1 ∂F

∂xj

)]
. (9.1)

And, making use of result (4.6), we find that (atx � c)

∂2F−1

∂xi∂xj
� ∂[−F−1(∂F/∂xj )F−1]

∂xi

� −F−1 ∂F
∂xj

∂F−1

∂xi
− F−1 ∂F

∂xi∂xj
F−1 − ∂F−1

∂xi

∂F
∂xj

F−1

� −F−1 ∂F
∂xj

(
−F−1 ∂F

∂xi
F−1

)
− F−1 ∂F

∂xi∂xj
F−1

−
(
−F−1 ∂F

∂xi
F−1

)
∂F
∂xj

F−1

� −F−1 ∂F
∂xi∂xj

F−1 + F−1 ∂F
∂xi

F−1 ∂F
∂xj

F−1

+ F−1 ∂F
∂xj

F−1 ∂F
∂xi

F−1. (9.2)

Suppose now that det[F(x)] > 0 for everyx in S. Then, in light of our previous
results, log det(F) is continuously differentiable at every point inN and (forx ∈ N )

∂ log det(F)

∂xj
� tr

(
F−1 ∂F

∂xj

)
.

Thus (sinceF−1 and∂F/∂xj are continuously differentiable atc), ∂ log det(F)/∂xj
is continuously differentiable atc, and hence log det(F) is twice continuously
differentiable atc. Moreover, making use of result (6.3), we find that (atx � c)

∂2 log det(F)

∂xi∂xj
� ∂tr[F−1(∂F/∂xj )]

∂xi

� tr

(
F−1 ∂F

∂xi∂xj

)
+ tr

(
−F−1 ∂F

∂xi
F−1 ∂F

∂xj

)

� tr

(
F−1 ∂F

∂xi∂xj

)
− tr

(
F−1 ∂F

∂xi
F−1 ∂F

∂xj

)
. (9.3)

15.10 Differentiation of Generalized Inverses

Let F represent ap × q matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ of m variables. Consider theq × p matrix G of functions
defined (onS) by taking G(x) to be any generalized inverse ofF(x).
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In the special case whereq � p and S is composed exclusively of non-
singular matrices (and hence whereG � F−1), G is continuously differen-
tiable at every interior point ofS at whichF is continuously differentiable, and
∂G/∂xj � −G(∂F/∂xj )G (as discussed in Section 15.8). In this section, we con-
sider the extent to which these results (and various other results on the differenti-
ation of ordinary inverses) can be extended to the case whereF is not necessarily
nonsingular (andq not necessarily equal top). One such extension is given by the
following theorem.

Theorem 15.10.1. Let F represent ap× q matrix of functions, defined on a set
S, of a vectorx � (x1, . . . , xm)′ ofm variables. Letc represent any interior point of
S at whichF is continuously differentiable. Suppose thatF has constant rank, say
r, on some neighborhood ofc. Takei1, . . . , ir to be integers chosen from the first
p positive integers, 1, . . . , p, in such a way that thei1, . . . , ir th rows ofF(c) are
linearly independent, andj1, . . . , jr to be integers chosen from the firstq positive
integers, 1, . . . , q, in such a way that thej1, . . . , jr th columns of F(c) are linearly
idependent. Further, takeP to be anyp×p permutation matrix whose firstr rows
are thei1, . . . , ir th rows ofIp andQ to be anyq × q permutation matrix whose
first r columns are thej1, . . . , jr th columns of Iq . Let B � PFQ, and partitionB
as

B �
(

B11 B12

B21 B22

)
,

whereB11 is of dimensionsr × r. Then, rank(B11) � rank(F) � r on some
neighborhoodN of c. And, there exists a generalized inverseG of F such that

G � Q
(

B−1
11 0
0 0

)
P

on N. Moreover,G is continuously differentiable atc, and (atx � c)

∂G
∂xj

� −Q
[

B−1
11 (∂B11/∂xj )B−1

11 0
0 0

]
P � −G

∂F
∂xj

G .

With regard to Theorem 15.10.1, note (in light of the discussion of Section
9.2a) thatF(c) necessarily containsr linearly independent rows andr linearly
independent columns, thatB11 is the submatrix ofF obtained by striking out all of
the rows and columns ofF except thei1, . . . , ir th rows andj1, . . . , jr th columns (or
is anr×rmatrix obtained from that submatrix by permuting its rows and columns),
and thatB11(c) is nonsingular. In proving Theorem 15.10.1, it is convenient to make
use of the following lemma.

Lemma 15.10.2. LetF represent ap×pmatrix of functions, defined on a setS,
of anm-dimensional column vectorx. Suppose thatF is nonsingular at an interior
point c of S and thatF is continuous atc. Then,F is nonsingular at all points in
some neighborhood ofc.

Proof (of Lemma 15.10.2). It follows from the very definition of a determinant
[given by formula (13.1.2)] and from standard results on the continuity of functions
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that det(F) is a continuous function ofx (at x � c) and hence that

lim
x→c

det[F(x)] � det[F(c)] .

Since det[F(c)] �� 0, S contains a neighborhoodN of c such that|det[F(x)]−
det[F(c)]| < |det[F(c)]| for x ∈ N or, equivalently, such that|det[F(c)]|−
|det[F(c)]− det[F(x)]| > 0 for x ∈ N . And, since|det[F(c)]| ≤ |det[F(x)]|+
|det[F(c)]− det[F(x)]| or, equivalently,|det[F(x)]| ≥ |det[F(c)]|− |det[F(c)]−
det[F(x)]|, we have that|det[F(x)]| > 0 for x ∈ N . We conclude thatF(x) is
nonsingular forx ∈ N . Q.E.D.

Proof (of Theorem 15.10.1). Since (in light of Lemma 15.1.1)F is continuous
at c (implying thatB11 is continuous atc), it follows from Lemma 15.10.2 that
B11 is nonsingular at all points in some neighborhoodN1 of c. LetN2 represent
a neighborhood ofc on which rank(F) � r, and takeN to be whichever of the
two neighborhoodsN1 andN2 has the smallest radius. Then, clearly, rank(B11) �
rank(F) � r for x ∈ N .

The existence of a generalized inverseG of F such that

G � Q
(

B−1
11 0
0 0

)
P

onN follows from Theorem 9.2.3. ThatG is continuously differentiable atc and
that (atx � c)

∂G
∂xj

� −Q
(

B−1
11 (∂B11/∂xj )B11 0

0 0

)
P

follows from the results of Sections 15.4 and 15.8. To complete the proof, observe
that∂B/∂xj � P(∂F/∂xj )Q, implying that

∂F
∂xj

� P′
∂B
∂xj

Q′ � P′
(
∂B11/∂xj ∂B12/∂xj
∂B21/∂xj ∂B22/∂xj

)
Q′

and hence that

G
∂F
∂xj

G � Q
(

B−1
11 0
0 0

)(
∂B11/∂xj ∂B12/∂xj
∂B21/∂xj ∂B22/∂xj

)(
B−1

11 0
0 0

)
P

� Q
[

B−1
11 (∂B11/∂xj )B−1

11 0
0 0

]
P .

Q.E.D.
According to Theorem 15.10.1, a sufficient condition for the existence of a

generalized inverse ofF that is continuously differentiable atc (wherec is an
interior point at whichF is continuously differentiable) is thatF have constant
rank on some neighborhood ofc. Is this condition necessary as well as sufficient?
This question is answered (in the affirmative) by the corollary of the following
lemma.

Lemma 15.10.3. Let F represent ap × q matrix of functions, defined on a set
S, of anm-dimensional column vectorx. And, let c represent any interior point
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of S at whichF is continuous. If there exists a generalized inverse ofF that is
continuous atx � c, thenF has constant rank on some neighborhood ofc.

Proof. Suppose that there exists a generalized inverse, sayG, of F that is con-
tinuous atx � c. Then, since sums and products of continuous functions are
continuous, tr(FG) is continuous atx � c. Moreover, according to result (10.2.1),
tr(FG) � rank(F). Thus, rank(F) is continuous atx � c. Since rank(F) is integer-
valued, we conclude that rank(F) is constant on some neighborhood ofc. Q.E.D.

Corollary 15.10.4. Let F represent ap × q matrix of functions, defined on a
setS, of anm-dimensional column vectorx. Let c represent any interior point of
S at whichF is continuously differentiable. If there exists a generalized inverse of
F that is continuously differentiable atx � c, thenF has constant rank on some
neighborhood ofc.

Proof. Suppose that there exists a generalized inverse, sayG, of F that is con-
tinuously differentiable atc. Since (according to Lemma 15.1.1) continuously dif-
ferentiable functions are continuous,F andG are both continuous atx � c. Thus,
it follows from Lemma 15.10.3 thatF has constant rank on some neighborhood of
c. Q.E.D.

Let F represent ap × q matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ of m variables. Further, letc represent an interior point ofS
at whichF is continuously differentiable, and suppose thatF has constant rank
on some neighborhood ofc. Then, according to Theorem 15.10.1, there exists a
generalized inverseG of F that is continuously differentiable atc and whose partial
derivatives atx � c are given by the formula

∂G
∂xj

� −G
∂F
∂xj

G . (10.1)

Is formula (10.1) applicable to every generalized inverseG (of F) that is contin-
uously differentiable atc? Except in special cases, the answer is no. Suppose, for
example, thatF � 0 for all x in some neighborhoodN of c and thatG is chosen
in such a way thatG is continuously differentiable atc and∂G/∂xj is nonnull
— since anyq × p matrix is a generalized inverse of ap × q null matrix, such a
choice is clearly possible. Then, the right side of equality (10.1) is null atx � c,
while the left side is nonnull.

The following lemma relates the partial derivatives (atx � c) of a generalized
inverse ofF to the partial derivatives ofF itself — it does so in a less definitive
way than formula (10.1), but in a way that is applicable to any generalized inverse
(of F) that is continuously differentiable atc.

Lemma 15.10.5. Let F represent ap × q matrix of functions, defined on a set
S, of a vectorx � (x1, . . . , xm)′ of m variables. Further, letc represent an interior
point of S at which F is continuously differentiable, and (assuming thatF has
constant rank on some neighborhood ofc) let G represent any generalized inverse
of F that is continuously differentiable atc. Then (atx � c),

F
∂G
∂xj

F � −FG
∂F
∂xj

GF . (10.2)
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Proof. Differentiating both sides of the equalityF � FGF [with the help of
result (4.6)], we find that (atx � c)

∂F
∂xj

� FG
∂F
∂xj

+ F
∂G
∂xj

F+ ∂F
∂xj

GF . (10.3)

Premultiplying and postmultiplying both sides of equality (10.3) byFG andGF,
respectively, gives

FG
∂F
∂xj

GF � FGFG
∂F
∂xj

GF+ FGF
∂G
∂xj

FGF+ FG
∂F
∂xj

GFGF

� FG
∂F
∂xj

GF+ F
∂G
∂xj

F+ FG
∂F
∂xj

GF

or, equivalently,

F
∂G
∂xj

F � −FG
∂F
∂xj

GF .

Q.E.D.
The following theorem generalizes result (10.1).
Theorem 15.10.6. Let F, A, andB representp × q, k × q, andp × r matrices

of functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ ofm variables. Letc
represent an interior point ofS at whichF, A, andB are continuously differentiable.
Suppose that there exists a neighborhoodN of c such that (1)F has constant rank
on N and (2)R(A) ⊂ R(F) and C(B) ⊂ C(F) for all x in N . Then, for any
generalized inverseG of F, AGB is continuously differentiable atc, and (atx � c)

∂AGB
∂xj

� AG
∂B
∂xj

− AG
∂F
∂xj

GB+ ∂A
∂xj

GB . (10.4)

Theorem 15.10.6 indicates that, even if the generalized inverseG is not contin-
uously differentiable (atx � c) or the formula

∂G
∂xj

� −G
∂F
∂xj

G (10.5)

is not applicable toG, we can for purposes of obtaining the partial derivatives of
AGB (at x � c) proceed as thoughG is continuously differentiable and formula
(10.5) is valid. In the special case where (forx ∈ S) A(x) andB(x) are constant or
(more generally) do not vary withxj , formula (10.4) simplifies to

∂(AGB)

∂xj
� −AG

∂F
∂xj

GB . (10.6)

Preliminary to proving Theorem 15.10.6, it is convenient to establish the fol-
lowing theorem, which is of some interest in its own right.

Theorem 15.10.7. Let F represent ap× q matrix of functions, defined on a set
S, of anm-dimensional column vectorx, and letG represent a generalized inverse
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of F. Further, letc represent any interior point (ofS) at whichF is continuously dif-
ferentiable, and suppose thatF has constant rank on some neighborhood ofc. Then
there exists a second generalized inverseG∗ (of F) such thatG∗ is continuously
differentiable (atc) andG∗(c) � G(c).

Proof (of Theorem 15.10.7). According to Theorem 15.10.1, there exists a gen-
eralized inverse, sayH, of F that is continuously differentiable atc. Let

G∗ � H+ Z−HFZFH ,

whereZ � G(c) − H(c). Then, it follows from Theorem 9.2.7 thatG∗ is a gen-
eralized inverse ofF and from the results of Section 15.4 thatG∗ is continuously
differentiable (atc). Moreover,

G∗(c) � H(c)+ Z−H(c)F(c)[G(c)−H(c)]F(c)H(c)

� H(c)+ Z−H(c)F(c)H(c)+H(c)F(c)H(c)

� H(c)+ Z

� G(c)
Q.E.D.

Proof (of Theorem 15.10.6). According to Theorem 15.10.7, there exists a gen-
eralized inverseG∗ of F such thatG∗ is continuously differentiable (atc) and
G∗(c) � G(c). Moreover, according to Theorem 9.4.1,AGB � AG∗B for every
x inN . Thus, it follows from the results of Section 15.4 thatAGB is continuously
differentiable atc and that (atx � c)

∂(AGB)

∂xj
� ∂(AG∗B)

∂xj
� AG∗

∂B
∂xj

+ A
∂G∗
∂xj

B+ ∂A
∂xj

G∗B

� AG
∂B
∂xj

+ A
∂G∗
∂xj

B+ ∂A
∂xj

GB .

To complete the proof, observe thatA(c) � LF(c) andB(c) � F(c)R for some
matricesL andR and hence (in light of Lemma 15.10.5) that (atx � c)

A
∂G∗
∂xj

B � LF
∂G∗
∂xj

FR � −LFG∗
∂F
∂xj

G∗FR

� −AG∗
∂F
∂xj

G∗B � −AG
∂F
∂xj

GB .

Q.E.D.

15.11 Differentiation of Projection Matrices

Recall (from Section 14.12d) thatPX,W represents the matrixX(X′WX)−X′W
(whereX is ann × p matrix andW an n × n matrix) and that, for ann × n

symmetric positive definite matrixW, PX,W is the projection matrix forC(X) with
respect toW. If the elements ofW and/orX are functions of a vector, sayz, of
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variables, then the differentiation (with respect to the elements ofz) of PX,W may
be of interest. The following theorem gives some results on the differentiation of
PX,W and also on the differentiation ofWPX,W andW−WPX,W.

Theorem 15.11.1. Let X represent ann× p matrix andW ann× n symmetric
positive definite matrix, and suppose that the elements ofX andW are functions,
defined on a setS, of a vectorz � (z1, . . . , zm)′ of m variables. Further, letc
represent any interior point (ofS) at whichX andW are continuously differentiable,
and suppose thatX has constant rank on some neighborhood ofc. Then,PX,W,
WPX,W, andW−WPX,W are continuously differentiable atc, and (atz � c)

∂PX,W

∂zj
� (I− PX,W)

∂X
∂zj

(X′WX)−X′W

+X(X′WX)−
(
∂X
∂zj

)′
W(I− PX,W)

+ X(X′WX)−X′ ∂W
∂zj

(I− PX,W) , (11.1)

∂(WPX,W)

∂zj
� ∂W

∂zj
− (I− P

′
X,W)

∂W
∂zj

(I− PX,W)

+ W(I− PX,W)
∂X
∂zj

(X′WX)−X′W

+ WX(X′WX)−
(
∂X
∂zj

)′
W(I− PX,W), (11.2)

∂(W−WPX,W)

∂zj
� (I− P

′
X,W)

∂W
∂zj

(I− PX,W)

−W(I− PX,W)
∂X
∂zj

(X′WX)−X′W

−WX(X′WX)−
(
∂X
∂zj

)′
W(I− PX,W). (11.3)

The results of Theorem 15.11.1 are special cases of various results encompassed
in the following theorem{as is evident upon recalling (from Corollary 14.11.3)
that rank(X′WX) � rank(X) and (from Theorem 14.12.11) thatX[(X′WX)−]′X′ �
X(X′WX)−X′ and hence thatWX(X′WX)−X′ � P

′
X,W}.

Theorem 15.11.2. Let W, X, andY representr × n, n× p, andq × r matrices
of functions, defined on a setS, of a vectorz � (z1, . . . , zm)′ of m variables.
Let c represent any interior point ofS at whichW, X, andY are continuously
differentiable. Suppose that there exists a neighborhoodN of c such that (1)YWX
has constant rank onN and (2) rank(X) � rank(Y) � rank(YWX) for all z in N .
DefineK � X(YWX)−Y. Then,K,KW,WKW, andW−WKW are continuously
differentiable atc, and (atz � c)

∂K
∂zj

� (I−KW)
∂X
∂zj

(YWX)−Y+X(YWX)−
∂Y
∂zj

(I−WK)−K
∂W
∂zj

K , (11.4)
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∂(KW)

∂zj
� (I−KW)

∂X
∂zj

(YWX)−YW

+ X(YWX)−
∂Y
∂zj

W(I−KW)+ K
∂W
∂zj

(I−KW), (11.5)

∂(WKW)

∂zj
� ∂W

∂zj
− (I−WK)

∂W
∂zj

(I−KW)

+ W(I−KW)
∂X
∂zj

(YWX)−YW

+ WX(YWX)−
∂Y
∂zj

W(I−KW) , (11.6)

∂(W−WKW)

∂zj
� (I−WK)

∂W
∂zj

(I−KW)

−W(I−KW)
∂W
∂zj

(YWX)−YW

−WX(YWX)−
∂Y
∂zj

W(I−KW) . (11.7)

Proof. In light of the results of Section 15.4, we have thatYWX is continuously
differentiable atc. And, in light of Corollary 4.4.7, we have thatR(X) � R(YWX)
andC(Y) � C(YWX) for all z inN . Applying Theorem 15.10.6 (withF � YWX,
A � X, andB � Y), we find thatK is continuously differentiable atc and that (at
z � c)

∂K
∂zj

� X(YWX)−
∂Y
∂zj

− X(YWX)−
∂(YWX)

∂zj
(YWX)−Y+ ∂X

∂zj
(YWX)−Y . (11.8)

Moreover,
∂(YWX)

∂zj
� YW

∂X
∂zj

+ Y
∂W
∂zj

X+ ∂Y
∂zj

WX . (11.9)

Upon substituting expression (11.9) for∂(YWX)/∂zj in expression (11.8), we
obtain

∂K
∂zj

� X(YWX)−
∂Y
∂zj

−KW
∂X
∂zj

(YWX)−Y−K
∂W
∂zj

K

− X(YWX)−
∂Y
∂zj

WK+ ∂X
∂zj

(YWX)−Y

� (I−KW)
∂X
∂zj

(YWX)−Y+ X(YWX)−
∂Y
∂zj

(I−WK)−K
∂W
∂zj

K ,
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thereby validating formula (11.4).
Further, sinceK is continuously differentiable atc, it follows from the results

of Section 15.4 thatKW, WKW, andW−WKW are continuously differentiable
at c and that (atz � c)

∂(KW)

∂zj
� K

∂W
∂zj

+ ∂K
∂zj

W , (11.10)

∂(WKW)

∂zj
� W

∂(KW)

∂zj
+ ∂W
∂zj

KW , (11.11)

∂(W−WKW)

∂zj
� ∂W

∂zj
− ∂(WKW)

∂zj
. (11.12)

Upon substituting expression (11.4) for∂K/∂zj in expression (11.10), we obtain
(after a little simplification) expression (11.5). Similarly, upon substituting expres-
sion (11.5) for∂(KW)/∂zj in expression (11.11), we obtain expression (11.6),
which when substituted for∂(WKW)/∂zj in expression (11.12) gives expression
(11.7). Q.E.D.

According to Theorem 15.11.1, a sufficient condition forPX,W to be contin-
uously differentiable atc (wherec is an interior point at whichX and W are
continuously differentiable) is thatX have constant rank on some neighborhood
of c. Is this condition necessary as well as sufficient? This question is answered
(in the affirmative) by the corollary of the following lemma.

Lemma 15.11.3. Let X represent ann× p matrix andW ann× n symmetric
positive definite matrix, and suppose that the elements ofX andW are functions,
defined on a setS, of anm-dimensional column vectorz. And letc represent any
interior point ofS at whichX andW are continuous. IfPX,W is continuous at
z � c, thenX has constant rank on some neighborhood ofc.

Proof. Suppose thatPX,W is continuous atz � c. Then, tr(PX,W) is continuous
at z � c. Moreover, since (according to Theorem 14.12.11)PX,W is idempotent
and rank(X) � rank(PX,W), we have (in light of Corollary 10.2.2) that rank(X) �
tr(PX,W). Thus, rank(X) is continuous atz � c. Since rank(X) is integer-valued,
we conclude that rank(X) is constant on some neighborhood ofc. Q.E.D.

Corollary 15.11.4. Let X represent ann×p matrix andW ann×n symmetric
positive definite matrix, and suppose that the elements ofX andW are functions,
defined on a setS, of anm-dimensional column vectorz. Let c represent any
interior point ofS at whichX andW are continuously differentiable. IfPX,W is
continuously differentiable atc, thenX has constant rank on some neighborhood
of c.

Proof. Suppose thatPX,W is continuously differentiable atc. Since (according
to Lemma 15.1.1) continuously differentiable functions are continuous,X, W, and
PX,W are all continuous atz � c. Thus, it follows from Lemma 15.11.3 thatX has
constant rank on some neighborhood ofc. Q.E.D.

In the special case whereX is a matrix of constants, or, more generally, where
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(for z ∈ S) X(z) does not vary withzj , formulas (11.1) – (11.3) reduce to

∂PX,W

∂zj
� X(X′WX)−X′ ∂W

∂zj
(I− PX,W) , (11.13)

∂(WPX,W)

∂zj
� ∂W

∂zj
− (I− P

′
X,W)

∂W
∂zj

(I− PX,W) , (11.14)

∂(W−WPX,W)

∂zj
� (I− P

′
X,W)

∂W
∂zj

(I− PX,W) .) (11.15)

Formulas (11.1) – (11.3) can be expressed in a more general form by making
use of the following lemma.

Lemma 15.11.5. Let X represent ann× p matrix andW ann× n symmetric
positive definite matrix, and suppose that the elements ofX andW are functions,
defined on a setS, of a vectorz � (z1, . . . , zm)′ ofm variables. Letc represent any
interior point (ofS) at whichW andX are continuously differentiable, and suppose
thatX has constant rank on some neighborhood ofc. Further, letB represent any
p × n matrix such thatX′WXB � X′W. Then, atz � c,(

∂PX,W

∂zj

)′

WPX,W � (I− P
′
X,W)

∂W
∂zj

PX,W

+W(I− PX,W)
∂X
∂zj

B . (11.16)

Proof. Recall (from Theorem 14.12.11) that

P
′
X,WWX � WX

(for all z in S) and (from Theorem 15.11.1) thatPX,W is continuously differentiable
at c. Thus (atz � c)

∂(WX)

∂zj
� ∂(P

′
X,WWX)

∂zj
� P

′
X,W

∂(WX)

∂zj
+
(
∂PX,W

∂zj

)′
WX ,

so that (
∂PX,W

∂zj

)′
WX � (I− P

′
X,W)

∂(WX)

∂zj

� (I− P
′
X,W)

∂W
∂zj

X+ (I− P
′
X,W)W

∂X
∂zj

,

implying that(
∂PX,W

∂zj

)′
WXB � (I− P

′
X,W)

∂W
∂zj

XB+ (I− P
′
X,W)W

∂X
∂zj

B . (11.17)

Moreover, by making use of Parts (2) and (3) of Theorem 14.12.11, equality (11.17)
can be reexpressed as equality (11.16). Q.E.D.
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Since neither (∂PX,W/∂zj )′ WPX,W nor (I−P
′
X,W (∂W/∂zj )PX,W involvesB, it

follows from Lemma 15.11.5 thatW(I−PX,W) (∂X/∂zj )B is invariant to the choice
of B. Thus, since the choices forB include (X′WX)−X′W and [(X′WX)−]′X′W,
we have that

W(I− PX,W)
∂X
∂zj

(X′WX)−X′W � W(I− PX,W)
∂X
∂zj

B (11.18)

and

W(I− PX,W)
∂X
∂zj

[(X′WX)−]′X′W � W(I− PX,W)
∂X
∂zj

B ,

which [sinceW(I− PX,W) is symmetric] is equivalent to

WX(X′WX)−
(
∂X
∂zj

)′
W(I− PX,W) � [W(I− PX,W)

∂X
∂zj

B]′ . (11.19)

Moreover, upon premultiplying both sides of equalities (11.18) and (11.19) by
W−1, we find that

(I− PX,W)
∂X
∂zj

(X′WX)−X′W � (I− PX,W)
∂X
∂zj

B (11.20)

and

X(X′WX)−
(
∂X
∂zj

)′
W(I− PX,W) � W−1[W(I− PX,W)

∂X
∂zj

B]′ . (11.21)

By using results (11.18) – (11.21) [and writingPX,WW−1 for X(X′WX)−X′],
formulas (11.1) – (11.3) can be reexpressed as

∂PX,W

∂zj
� (I− PX,W)

∂X
∂zj

B+W−1[W(I− PX,W)
∂X
∂zj

B]′

+ PX,WW−1∂W
∂zj

(I− PX,W) , (11.22)

∂(WPX,W)

∂zj
� ∂W

∂zj
− (I− P

′
X,W)

∂W
∂zj

(I− PX,W)

+ W(I− PX,W)
∂X
∂zj

B+ [W(I− PX,W)
∂X
∂zj

B]′, (11.23)

∂(W−WPX,W)

∂zj
� (I− P

′
X,W)

∂W
∂zj

(I− PX,W)

−W(I− PX,W)
∂X
∂zj

B

−[W(I− PX,W)
∂X
∂zj

B]′ (11.24)

(whereB is anyp × n matrix such thatX′WXB � X′W).
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15.12 Evaluation of Some Multiple Integrals

Let x � (x1, . . . , xn)′ represent a (column) vector ofn variablesx1, . . . , xn. Fur-
ther, letW represent ann× n symmetric positive definite matrix, letA represent
ann× n matrix, and letc andk representn× 1 vectors. Consider the evaluation
of the following three integrals:∫

Rn

exp[−(1/2)(x− c)′W(x− c)] dx ,

∫
Rn

(k′x) exp[−(1/2)(x− c)′W(x− c)] dx ,

∫
Rn

(x− c)′A(x− c) exp[−(1/2)(x− c)′W(x− c)] dx

[where the symbol
∫
Rn f (z)dz is used to denote the integral of a functionf (z) of

a (column) vectorz of n variables over all ofRn].
These three integrals are of considerable importance in probability and statistics,

where they arise in connection with the multivariate normal distribution (e.g.,
Searle 1971, chap. 2). They can be evaluated by introducing a suitable change of
variables and by recalling (from the integral calculus of a single variable) that∫ ∞

−∞
e−x

2/2dx � (2π )1/2 ,

∫ ∞

−∞
xe−x

2/2dx � 0 ,

∫ ∞

−∞
x2e−x

2/2dx � (2π )1/2 .

According to Corollary 14.3.13, there exists ann×n nonsingular matrixP such
thatW � P′P. Define

z � P(x− c) ,

so thatx � P−1z + c. Further, let J represent the Jacobian ofP−1z + c (where
P−1z + c is regarded as a vector of functions ofz). Then, observing [in light of
result (3.10)] that

∂(P−1z+ c)

∂z′
� P−1 ,

we find that
J� |P−1| � |P|−1 .

And, since|W| � |P′P| � |P|2, we have that

J� ±|W|−1/2 .
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Thus, upon making use of standard results on changes of variables (e.g., Bartle
1976, sec. 45), we find that∫

Rn

exp[−(1/2)(x− c)′W(x− c)]dx

�
∫

Rn

exp[−(1/2)z′z] |J|dz

� |W|−1/2
∫ ∞

−∞
e−z

2
1/2dz1 · · ·

∫ ∞

−∞
e−z

2
n/2dzn

� (2π )n/2|W|−1/2 . (12.1)

Further, lettingdi represent theith element of the 1× n vector k′P−1 [and
observing that (fori � 1, . . . , n)

∫∞
−∞ zie

−z2
i /2dzi � 0], we find that

∫
Rn

(k′x) exp[−(1/2)(x− c)′W(x− c)] dx

� (k′c)
∫

Rn

exp[−(1/2)(x− c)′W(x− c)] dx

+
∫

Rn

k′(x− c) exp[−(1/2)(x− c)′W(x− c)] dx

� (k′c)(2π )n/2|W|−1/2

+
∫

Rn

(k′P−1z) exp[−(1/2)z′z]|J|dz

� (k′c)(2π )n/2|W|−1/2

+|W|−1/2
n∑
i�1

di

∫ ∞

−∞
zie

−z2
i /2dzi

∏
s ��i

∫ ∞

−∞
e−z

2
s /2dzs

� (k′c)(2π )n/2|W|−1/2 . (12.2)

And, lettingbij represent theij th element of then× n matrix (P−1)′AP−1 and
recalling Lemma 5.2.1 [and observing that (P−1)′ � (P′)−1], we find that∫

Rn

(x− c)′A(x− c) exp[−(1/2)(x− c)′W(x− c)] dx

�
∫

Rn

[z′(P−1)′AP−1z] exp[−(1/2)z′z] |J|dz

� |W|−1/2
∑
i,j

bij

∫
Rn

zizj exp[−(1/2)z′z] dz

� |W|−1/2{
∑
i

bii

∫ ∞

−∞
z2
i e
−z2

i /2dzi
∏
s ��i

∫ ∞

−∞
e−z

2
s /2dzs

+
∑
i,j ��i

bij

∫ ∞

−∞
zie

−z2
i /2dzi

∫ ∞

−∞
zj e

−z2
j /2dzj

∏
s ��i,j

∫ ∞

−∞
e−z

2
s /2dzs}
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� |W|−1/2
∑
i

bii(2π )1/2(2π )(n−1)/2

� (2π )n/2|W|−1/2tr[(P−1)′AP−1]

� (2π )n/2|W|−1/2tr[AP−1(P−1)′]
� (2π )n/2|W|−1/2tr(AW−1) . (12.3)

Formulas (12.1) – (12.3) can be regarded as special cases of the formula given
by the following theorem.

Theorem 15.12.1. Let B represent ann× n symmetric positive definite matrix
andA ann× nmatrix, letb represent ann× 1 vector, and letb0 anda0 represent
scalars. Then,∫

Rn

(a0 + a′x+ x′Ax) exp[−(b0 + b′x+ x′Bx)]dx

� (1/2)πn/2|B|−1/2 exp[(1/4)b′B−1b− b0]

× [tr(AB−1)− a′B−1b+ (1/2)b′B−1AB−1b+ 2a0] . (12.4)

Proof.It is easy to show that

b0 + b′x+ x′Bx � (1/2)(x− c)′W(x− c)+ f ,
whereW � 2B, c � −(1/2)B−1b, andf � b0 − (1/4)b′B−1b. It is also easy to
show that

a0 + a′x+ x′Ax � (x− c)′A(x− c)+ k′x+ g ,
wherek � a− (1/2)(A + A′)B−1b andg � a0 − (1/4)b′B−1AB−1b.

Thus, making use of results (12.1) – (12.3) [and observing thatb′B−1A′B−1b
� (b′B−1A′B−1b)′ � b′B−1AB−1b], we find that∫

Rn

(a0 + a′x+ x′Ax) exp[−(b0 + b′x+ x′Bx] dx

� e−f
∫

Rn

[g + k′x+ (x− c)′A(x− c)]

×exp[−(1/2)(x− c)′W(x− c)] dx

� e−f [g(2π )n/2|W|−1/2 + (k′c)(2π )n/2|W|−1/2

+(2π )n/2|W|−1/2tr(AW−1)]

� (2π )n/2|W|−1/2e−f [g + (k′c)+ tr(AW−1)]

� (2π )n/22−n/2|B|−1/2 exp[(1/4)b′B−1b− b0]

× [a0 − (1/4)b′B−1AB−1b− (1/2)a′B−1b

+(1/4)b′B−1(A+ A′)B−1b+ (1/2)tr(AB−1)]

� (1/2)πn/2|B|−1/2 exp[(1/4)b′B−1b− b0]

× [tr(AB−1)− a′B−1b+ (1/2)b′B−1AB−1b+ 2a0] .
Q.E.D.



Exercises 323

Exercises

Section 15.1

1. Using the result of Part (c) of Exercise 6.2, show that every neighborhood of
a pointx in Rm×1 is an open set.

2. Letf represent a function, defined on a setS, of a vectorx � (x1, . . . , xm)′

of m variables, suppose thatS contains at least some interior points, and
let c represent an arbitrary one of those points. Verify that iff is k times
continuously differentiable atc, thenf is k times continuously differentiable
at every point in some neighborhood ofc.

3. LetX � {xij } represent anm× n matrix ofmn variables, and letx represent
anmn-dimensional column vector obtained by rearranging the elements ofX
(in the form of a column vector). Further, letS represent a set ofX-values,
and letS∗ represent the corresponding set ofx-values (i.e., the set obtained by
rearranging the elements of eachm × n matrix in S in the form of a column
vector). Verify that anmn-dimensional column vector is an interior point of
S∗ if and only if it is a rearrangement of anm × n matrix that is an interior
point ofS.

4. Let f represent a function whose domain is a setS in Rm×1 (that contains
at least some interior points). Show that the Hessian matrixHf of f is the
gradient matrix of the gradient vector (Df )′ of f .

Section 15.2

5. Letg represent a function, defined on a setS, of a vectorx � (x1, . . . , xm)′

of m variables, letS∗ � {x ∈ S : g(x) �� 0}, and letc represent any interior
point ofS∗ at whichg is continuously differentiable. Use Lemma 15.2.2 and
the ensuing discussion [including formulas (2.16) and (2.8)] to show that (for
any positive integerk) g−k is continuously differentiable atc and

∂g−k

∂xj
� −kg−k−1 ∂g

∂xj
,

thereby generalizing formula (2.8) and establishing that formula (2.16) is valid
for negative (as well as positive) values ofk.

Section 15.4

6. Let F represent ap × p matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ of m variables. Letc represent any interior point ofS at
which F is continuously differentiable. Show that ifF is idempotent at all
points in some neighborhood ofc, then (atx � c)

F
∂F
∂xj

F � 0 .
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7. Letg represent a function, defined on a setS, of a vectorx = (x1, . . . , xm)′ of
m variables, and letf represent ap × 1 vector of functions (defined onS) of
x. Let c represent any interior point (ofS) at whichg andf are continuously
differentiable. Show thatgf is continuously differentiable atc and that (at
x � c)

∂(gf)
∂x′

� f
∂g

∂x′
+ g ∂f

∂x′
.

Section 15.6

8. (a) LetX � {xij } represent anm× n matrix ofmn “independent” variables,
and suppose thatX is free to range over all ofRm×n.

(1) Show that, for anyp ×m andn× p matrices of constantsA andB,

∂tr(AXB)

∂X
� A′B′ .

[Hint. Observe that tr(AXB) = tr(BAX).]

(2) Show that, for anym- andn-dimensional column vectorsa andb,

∂(a′Xb)

∂X
� ab′ .

[Hint. Observe thata′Xb � tr(a′Xb).]

(b) Suppose now thatX is a symmetric (but otherwise unrestricted) matrix (of
dimensionsm×m).

(1) Show that, for anyp ×m andm× p matrices of constantsA andB,

∂tr(AXB)

∂X
� C+ C′ − diag(c11, c22, . . . , cmm) ,

whereC � {cij } � BA.

(2) Show that, for anym-dimensional column vectorsa � {ai} andb �
{bi},

∂(a′Xb)

∂X
� ab′ + ba′ − diag(a1b1, a2b2, . . . , ambm) .

9. (a) LetX � {xst } represent anm× n matrix of “independent” variables, and
suppose thatX is free to range over all ofRm×n. Show that, for anyn×m
matrix of constantsA,

∂tr[(AX)2]

∂X
� 2(AXA)′ .
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(b) LetX � {xst } represent anm×m symmetric (but otherwise unrestricted)
matrix of variables. Show that, for anym×m matrix of constantsA,

∂tr[(AX)2]

∂X
� 2[B+ B′ − diag(b11, b22, . . . , bmm)] ,

whereB = {bst } = AXA.

10. Let X � {xij } represent anm × n matrix of “independent” variables, and
suppose thatX is free to range over all ofRm×n. Show that, fork � 2,3, . . . ,

∂tr(Xk)

∂X
� k(X′)k−1 ,

thereby generalizing result (2.17).

11. Let X � {xst } represent anm × n matrix of “independent” variables, and
suppose thatX is free to range over all ofRm×n.

(a) Show that, for anym×m matrix of constantsA,

∂tr(X′AX)

∂X
� (A+ A′)X .

(b) Show that, for anyn× n matrix of constantsA,

∂tr(XAX′)
∂X

� X(A+ A′) .

(c) Show (in the special case wheren � m) that, for anym × m matrix of
constantsA,

∂tr(XAX)

∂X
� (AX)′ + (XA)′ .

(d) Use the formulas from Parts (a) – (c) to devise simple formulas for
∂tr(X′X)/∂X, ∂tr(XX′)/∂X, and (in the special case wheren � m)
∂tr(X2)/∂X.
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Section 15.7

12. Let X � {xij } represent anm × m matrix. Let f represent a function of
X defined on a setS comprising some or allm × m symmetric matrices.
Suppose that, for purposes of differentiation,f is to be interpreted as a function
of the [m(m + 1)/2]-dimensional column vectorx whose elements arexij
(j ≤ i � 1, . . . , m). Suppose further that there exists a functiong, whose
domain is a setT of not-necessarily-symmetric matrices that containsS as a
proper subset, such thatg(X) � f (X) for X ∈ S, so thatg is a function of
X andf is the function obtained by restricting the domain ofg to S. Define
S∗ � {x : X ∈ S}. Let c represent an interior point ofS∗, and letC represent
the corresponding value ofX. Show that ifC is an interior point ofT and ifg
is continuously differentiable atC, thenf is continuously differentiable atc
and that (atx � c)

∂f

∂X
� ∂g

∂X
+
(
∂g

∂X

)′
− diag

(
∂g

∂x11
,
∂g

∂x22
, . . . ,

∂g

∂xmm

)
.

13. Leth � {hi} represent ann × 1 vector of functions, defined on a setS, of a
vectorx � (x1, . . . , xm)′ of m variables. Letg represent a function, defined
on a setT , of a vectory � (y1, . . . , yn)′ of n variables. Suppose thath(x) ∈ T
for every x in S, and takef to be the composite function defined (onS)
by f (x) � g[h(x)]. Show that ifh is twice continuously differentiable at
an interior pointc of S and if [assuming thath(c) is an interior point ofT ]
g is twice continuously differentiable ath(c), thenf is twice continuously
differentiable atc and

Hf (c) � [Dh(c)]′Hg(c)Dh(c)+
n∑
i�1

Dig[h(c)]Hhi(c) .

Section 15.8

14. LetX � {xij } represent anm×mmatrix ofm2 “independent” variables (where
m ≥ 2), and suppose that the range ofX comprises all ofRm×m. Show that
(for any positive integerk) the functionf defined (onRm×m) byf (X) � |X|k
is continuously differentiable at everyX and that

∂|X|k
∂X

� k|X|k−1[adj(X)]′ .

15. LetF � {fis} represent ap × p matrix of functions, defined on a setS, of a
vectorx � (x1, . . . , xm)′ of m variables. Letc represent any interior point (of
S) at whichF is continuously differentiable. Use the results of Exercise 13.10
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to show that (a) if rank[F(c)] � p − 1, then (atx � c)

∂ det(F)

∂xj
� ky′

∂F
∂xj

z ,

wherez � {zs} andy � {yi} are any nonnullp-dimensional vectors such that
F(c)z � 0 and [F(c)]′y � 0 and where [lettingφis represent the cofactor of
fis(c)] k is a scalar that is expressible ask � φis/(yizs) for any i ands such
thatyi �� 0 andzs �� 0; and (b) if rank[F(c)] ≤ p − 2, then (atx � c)

∂ det(F)

∂xj
� 0 .

16. LetX � {xst } represent anm × n matrix of “independent” variables, letA
represent anm×m matrix of constants, and suppose that the range ofX is a
setS comprising some or allX-values for which det(X′AX) > 0. Show that
log det(X′AX) is continuouslydifferentiable at any interior pointC of S and
that (atX � C)

∂ log det(X′AX)

∂X
� AX(X′AX)−1 + [(X′AX)−1X′A]′ .

17. (a) LetX represent anm× n matrix of “independent” variables, letA andB
representq×m andn×q matrices of constants, and suppose that the range
of X is a setS comprising some or allX-values for which det(AXB) > 0.
Show that log det(AXB) is continuously differentiable at any interior point
C of S and that (atX � C)

∂ log det(AXB)

∂X
� [B(AXB)−1A]′ .

(b) Suppose now thatX is anm×m symmetric matrix; thatA andB areq×m
andm× q matrices of constants; that, for purposes of differentiating any
function ofX, the function is to be interpreted as a function of the column
vectorx whose elements arexij (j ≤ i � 1, . . . , m); and that the range
of x is a setS comprising some or allx-values for which det(AXB) > 0.
Show that log det(AXB) is continuously differentiable at any interior point
c (of S) and that (atx � c)

∂ log det(AXB)

∂X
� K+K′ − diag(k11, k22, . . . , kqq) ,

whereK � {kij } � B(AXB)−1A.
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18. LetF � {fis} represent ap × p matrix of functions, defined on a setS, of
a vectorx � (x1, . . . , xm)′ of m variables, and letA andB representq × p

andp × q matrices of constants. Suppose thatS is the set of allx-values for
which F(x) is nonsingular and det[AF−1(x)B] > 0, or is a subset of that set.
Show that ifF is continuously differentiable at an interior pointc of S, then
log det(AF−1B) is continuously differentiable atc and (atx � c)

∂ log det(AF−1B)

∂xj
� −tr

[
F−1B(AF−1B)−1AF−1 ∂F

∂xj

]
.

19. LetA andB representq ×m andm× q matrices of constants,

(a) Let X represent anm × m matrix of m2 “independent” variables, and
suppose that the range ofX is a setS comprising some or allX-values for
whichX is nonsingular and det(AX−1B) > 0. Use the result of Exercise 18
to show that log det(AX−1B) is continuously differentiable at any interior
point C of S and that (atX � C)

∂ log det(AX−1B)

∂X
� −[X−1B(AX−1B)−1AX−1]′

(b) Suppose now thatX is anm × m symmetric matrix; that, for purposes
of differentiating any function ofX, the function is to be interpreted as
a function of the column vectorx whose elements arexij (j ≤ i �
1, . . . , m); and that the range ofx is a setS comprising some or allx-
values for whichX is nonsingular and det(AX−1B) > 0. Use the result of
Exercise 18 to show that log det(AX−1B) is continuously differentiable at
any interior pointc of S and that (atx � c)

∂ log det(AX−1B)

∂X
� −K−K′ + diag(k11, k22, . . . , kqq) ,

whereK � {kij } � X−1B(AX−1B)−1AX−1.

20. LetF � {fis} represent ap × p matrix of functions, defined on a setS, of a
vectorx � (x1, . . . , xm)′ of m variables. Letc represent any interior point (of
S) at whichF is continuously differentiable. By, for instance, using the result
of Part (b) of Exercise 13.10, show that if rank[F(c)] ≤ p − 3, then

∂adj(F)

∂xj
� 0 .
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21. (a) LetX represent anm × m matrix of m2 “independent” variables, and
suppose that the range ofX is a setS comprising some or allX-values for
whichX is nonsingular. Show that (when the elements ofX−1 are regarded
as functions ofX) X−1 is continuously differentiable at any interior point
C of S and that (atX � C)

∂X−1

∂xij
� −yiz

′
j ,

whereyi represents theith column andz′j thej th row of X−1.

(b) Suppose now thatX is anm×m symmetric matrix; that, for purposes of
differentiating a function ofX, the function is to be interpreted as a function
of the column vectorx whose elements arexij (j ≤ i � 1, . . . , m); and
that the range ofx is a setS comprising some or allx-values for whichX is
nonsingular. Show thatX−1 is continuously differentiable at any interior
point c of S and that (atx � c)

∂X−1

∂xij
�
{−yiy

′
i , if j � i ,

−yiy
′
j − yjy

′
i , if j < i

(whereyi represents theith column ofX−1).

Section 15.9

22. Let X represent anm × m matrix of m2 “independent” variables. Suppose
that the range ofX is a setS comprising some or allX-values for whichX is
nonsingular, and letC represent an interior point ofS. Denote theij th element
of X−1 by yij , thej th column ofX−1 by yj , and theith row of X−1 by z′i .

(a) Show thatX−1 is twice continuously differentiable atC and that (atX � C)

∂2X−1

∂xij ∂xst
� yjsyiz

′
t + ytiysz′j .

(b) Suppose that det(X) > 0 for everyX in S. Show that log det(X) is twice
continuously differentiable atC and that (atX � C)

∂2 log det(X)

∂xij ∂xst
� −ytiyjs .

23. Let F � {fis} represent ap × p matrix of functions, defined on a setS,
of a vectorx � (x1, . . . , xm)′ of m variables. For any nonempty setT �
{t1, . . . , ts}, whose members are integers between 1 andm, inclusive, define
D(T ) � ∂sF/∂xt1 · · · ∂xts . Let k represent a positive integer and, fori �
1, . . . , k, let ji represent an arbitrary integer between 1 andm, inclusive.
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(a) Suppose thatF is nonsingular for everyx in S, and denote byc any interior
point (of S) at whichF is k times continuously differentiable. Show that
F−1 is k times continuously differentiable atc and that (atx � c)

∂kF−1

∂xj1 · · · ∂xjk
�

k∑
r�1

∑
T1,...,Tr

(−1)rF−1D(T1)F−1D(T2) · · ·F−1D(Tr )F−1, (E.1)

whereT1, . . . , Tr arer nonempty mutually exclusive and exhaustive sub-
sets of{j1, . . . , jk} (and where the second summation is over all possible
choices forT1, . . . , Tr ).

(b) Suppose that det(F) > 0 for everyx in S, and denote byc any interior
point (of S) at whichF is k times continuously differentiable. Show that
log det(F) is continuously differentiable atc and that (atx � c)

∂k log det(F)

∂xj1 · · · ∂xjk
�

k∑
r�1

∑
T1,...,Tr

(−1)r+1tr[F−1D(T1)F−1D(T2) · · ·F−1D(Tr )], (E.2)

whereT1, . . . , Tr arer nonempty mutually exclusive and exhaustive sub-
sets of{j1, . . . , jk}with jk ∈ Tr (and where the second summation is over
all possible choices forT1, . . . , Tr ).

Section 15.10

24. LetX � {xij } represent anm × m symmetric matrix, and letx represent the
[m(m + 1)/2]-dimensional column vector whose elements arexij (j ≤ i �
1, . . . , m). DefineS to be the set of allx-values for whichX is nonsingular
andS∗ to be the set of allx-values for whichX is positive definite. Show that
S andS∗ are both open sets.

Section 15.11

25. LetX represent ann × p matrix of constants, and letW represent ann × n

symmetric positive definite matrix whose elements are functions, defined on a
setS, of a vectorz � (z1, . . . , zm)′ ofm variables. Further, letc represent any
interior point (ofS) at whichW is twice continuously differentiable. Show
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thatW−WPX,W is twice continuously differentiable atc and that (atx � c)

∂2(W−WPX,W)

∂zi∂zj

� (I− P
′
X,W)

∂W
∂zi∂zj

(I− PX,W)

− (I− P
′
X,W)

∂W
∂zi

X(X′WX)−X′ ∂W
∂zj

(I− PX,W)

− [(I− P
′
X,W)

∂W
∂zi

X(X′WX)−X′ ∂W
∂zj

(I− PX,W)]′ .

26. Provide an alternative derivation of formula (11.23) for∂(WPX,W)/∂zj by
using Part (6′) of Theorem 14.12.11 to obtain the representation

∂(WPX,W)

∂zj
� P

′
X,WW

∂PX,W

∂zj
+ P

′
X,W

∂W
∂zj

PX,W

+
(
∂PX,W

∂zj

)′
WPX,W

and by then making use of result (11.16).
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16
Kronecker Products and the Vec and
Vech Operators

Some (though by no means all) of the partitioned matrices encountered in statistics
are expressible in terms of two (or more) matrices (of relatively small dimensions)
in the form of something called a Kronecker product. In Section 16.1, the definition
of a Kronecker product of matrices is given, and a number of results on Kronecker
products are presented. These results can (when applicable) be exploited for com-
putational (and other) purposes.

In subsequent sections of this chapter, the notion introduced in Chapter 15 (in
connection with the differentiation of a function of a matrix) of rearranging the
(nonredundant) elements of a matrix in the form of a column vector is formalized
by introducing something called the vec or vech operator. A number of results
on the vec or vech operator are presented. Kronecker products appear in many of
these results.

16.1 The Kronecker Product of Two or More Matrices:
Definition and Some Basic Properties

The Kronecker product of two matrices, say anm × n matrix A � {aij } and a
p × q matrix B � {bij }, is denoted by the symbolA⊗ B and is defined to be the
mp × nq matrix

A⊗ B �



a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...
am1B am2B . . . amnB
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obtained by replacing each elementaij of A with thep× q matrixaijB. Thus, the
Kronecker product ofA andB is a partitioned matrix, comprisingm rows andn
columns ofp × q dimensional blocks, theij th of which isaijB.

Clearly, each element ofA⊗B is the product of an element ofA and an element
of B. Specifically, the element that appears in the [p(i − 1)+ r]th row and [q(j −
1)+ s]th column ofA⊗ B is thersth elementaij brs of aijB.

Note that, unlike the “ordinary” productAB of A andB (which is defined only in
the special case wherep � n), the Kronecker productA⊗B is defined regardless
of the dimensions ofA andB. Note also that, while the Kronecker productB⊗A
of B andA is of the same dimensions (mp × nq) asA ⊗ B, it is only in special
cases thatB⊗ A equalsA⊗ B. For example, ifm � n � q � 2 andp � 3, then

A⊗ B �




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a11b31 a11b32 a12b31 a12b32

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

a21b31 a21b32 a22b31 a22b32



,

B⊗ A �




b11a11 b11a12 b12a11 b12a12

b11a21 b11a22 b12a21 b12a22

b21a11 b21a12 b22a11 b22a12

b21a21 b21a22 b22a21 b22a22

b31a11 b31a12 b32a11 b32a12

b31a21 b31a22 b32a21 b32a22



.

In some presentations,A ⊗ B is referred to as thedirect product or thetensor
product of A andB rather than the Kronecker product. And,A ⊗ B andB ⊗ A
are sometimes referred to, respectively, as theright andleft Kronecker (or direct
or tensor) products of A andB.

For any scalark and anym× n matrix A,

k ⊗ A � A⊗ k � kA , (1.1)

as is evident from the very definition of a Kronecker product. And lettinga � {ai}
andb � {bj } represent column vectors of dimensionsm andn, respectively, it is
easy to verify that

a⊗ b �



a1b
a2b

...
amb


 (1.2)

(i.e., thata ⊗ b is anmn-dimensional partitioned column vector comprisingm
subvectors, theith of which isaib); that

a′ ⊗ b′ � (a1b′, a2b′, . . . , amb′) (1.3)
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(i.e., thata′ ⊗ b′ is anmn-dimensional partitioned row vector comprisingm sub-
vectors, theith of which isaib′); and that

a⊗ b′ � b′ ⊗ a � ab′ . (1.4)

In connection with result (1.4), recall thatab′ is anm × n matrix whoseij th
element isaibj .

Let A � {aij } represent ap × q matrix. Then, clearly,

0⊗ A � A⊗ 0 � 0 . (1.5)

Further, for any diagonal matrixD � {di} of orderm,

D⊗ A � diag(d1A, d2A, . . . , dmA) , (1.6)

which, in the special case whereA is a diagonal matrix (of orderp), is the diagonal
matrix of ordermp whose [p(i − 1)+ r]th diagonal element isdiarr (as is easily
verified). In the special case whereD � Im, result (1.6) simplifies to

I⊗ A � diag(A,A, . . . ,A) , (1.7)

and in the further special case whereA � Ip, it simplifies to

Im ⊗ Ip � Imp . (1.8)

Note that, aside from certain special cases, the Kronecker product

A⊗ I �



a11I a12I . . . a1qI
a21I a22I . . . a2qI

...
...

...
ap1I ap2I . . . apqI


 (1.9)

of A andIm differs from the Kronecker productI⊗ A of Im andA.
Lettingk represent an arbitrary scalar andA andB arbitrary matrices, it is easy

to see that the effect on the Kronecker productA ⊗ B of replacing eitherA or B
by the scalar multiplekA or kB is as follows:

(kA)⊗ B � A⊗ (kB) � k(A⊗ B) . (1.10)

Another easily verified property of Kronecker products is that, for anym × n

matricesA andB and anyp × q matrix C,

(A+ B)⊗ C � (A⊗ C)+ (B⊗ C) , (1.11)

C⊗ (A+ B) � (C⊗ A)+ (C⊗ B) . (1.12)

Results (1.11) and (1.12) can be used to show that, for anym× n matricesA and
B and anyp × q matricesC andD,

(A+ B)⊗ (C+ D) � (A⊗ C)+ (A⊗ D)+ (B⊗ C)+ (B⊗ D) . (1.13)
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More generally, results (1.11) and (1.12) can be used to show that, for anym× n
matricesA1,A2, . . . ,Ar andp × q matricesB1,B2, . . . ,Bs ,(

r∑
i�1

Ai

)
⊗
(

s∑
j�1

Bj

)
�

r∑
i�1

s∑
j�1

(Ai ⊗ Bj ) . (1.14)

Note that, in the special case wherer � s � 2, result (1.14) reduces to what is
essentially result (1.13).

Consider now the transpose (A ⊗ B)′ of the Kronecker product of anm × n

matrix A � {aij } and ap × q matrix B. It follows from result (2.2.3) (together
with the very definition of a Kronecker product) that (A ⊗ B)′ is a partitioned
matrix, comprisingn rows andm columns ofq × p dimensional blocks, theij th
of which isajiB′. SinceajiB′ is also theij th block ofA′ ⊗ B′,

(A⊗ B)′ � A′ ⊗ B′ . (1.15)

Note that, in contrast to what might have been conjectured from the formula
[(AB)′ � B′A′] for the transpose of the “ordinary” product of two matrices, (A⊗B)′

is not in general equal toB′ ⊗ A′. Note also that ifA andB are both symmetric,
then it follows from result (1.15) that

(A⊗ B)′ � A⊗ B ;

that is, the Kronecker product of symmetric matrices is symmetric.
The following lemma provides a basis for extending the definition of a

Kronecker product to three or more matrices.
Lemma 16.1.1. For anym× n matrix A � {aij }, p × q matrix B � {bij }, and

u× v matrix C,
A⊗ (B⊗ C) � (A⊗ B)⊗ C . (1.16)

Proof. Let G � A ⊗ (B ⊗ C) andH � (A ⊗ B) ⊗ C. We wish to show that
G � H.

PartitionG into m rows andn columns ofpu × qv dimensional blocks, and
denote theij th of these blocks byG∗

ij . By definition,G∗
ij � aij (B⊗C). For each

i andj , partitionG∗
ij into p rows andq columns ofu × v dimensional blocks,

thereby defining a further partitioning ofG intomp rows andnq columns of (u×v
dimensional) blocks. Denote thersth block ofG∗

ij byGrs
ij and thexzth of the (u×v

dimensional) blocks ofG by Gxz. Then,

Gp(i−1)+r,q(j−1)+s � Grs
ij � aij brsC . (1.17)

Now, observe thatH � F⊗C, whereF � {fxz} � A⊗B. PartitionH intomp
rows andnq columns ofu × v dimensional blocks, and denote thexzth of these
blocks byHxz. Then,fp(i−1)+r,q(j−1)+s � aij brs , and consequently

Hp(i−1)+r,q(j−1)+s � fp(i−1)+r,q(j−1)+sC � aij brsC . (1.18)
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Together, results (1.17) and (1.18) imply that (for arbitraryi, j, r, ands)

Gp(i−1)+r,q(j−1)+s � Hp(i−1)+r,q(j−1)+s .

We conclude thatG � H. Q.E.D.
The symbolA ⊗ B ⊗ C is used to represent the common value of the left and

right sides of equality (1.16), and this value is referred to as theKronecker product
of A, B, andC. This notation and terminology extend in an obvious way to any
finite number of matrices.

The following lemma establishes a connection between the “ordinary” product
of Kronecker products and the Kronecker product of ordinary products.

Lemma 16.1.2. For anym×nmatrixA � {aij }, p× q matrixB � {bij }, n×u
matrix C � {cij }, andq × v matrix D � {dij },

(A⊗ B)(C⊗ D) � (AC)⊗ (BD) . (1.19)

Proof. By definition,A ⊗ B is a partitioned matrix, comprisingm rows and
n columns ofp × q dimensional blocks, theij th of which isaijB; andC ⊗ D
is a partitioned matrix, comprisingn rows andu columns ofq × v dimensional
blocks, thejrth of which iscjrD. Thus, (A⊗ B) (C⊗ D) is a partitioned matrix,
comprisingm rows andu columns ofp× v dimensional blocks, theirth of which
is the matrix

n∑
j�1

(aijB)(cjrD) �
(

n∑
j�1

aij cjr

)
BD .

By way of comparison, (AC)⊗ (BD) is a partitioned matrix, comprisingm rows
andu columns ofp × v dimensional blocks, theirth of which is the matrix

firBD ,

wherefir is theirth element ofAC. The proof is complete upon observing that
fir �

∑n
j�1 aij cjr and hence that theirth block of (AC)⊗ (BD) equals theirth

block of (A⊗ B) (C⊗ D). Q.E.D.
One implication of result (1.19) is that the Kronecker productA⊗B of anm×n

matrix A and ap × q matrix B can be decomposed in either of the following two
ways:

A⊗ B � (A⊗ Ip)(In ⊗ B) � (Im ⊗ B)(A⊗ Iq) . (1.20)

And, in light of result (1.4), a further implication is that, for anym× n matrix A,
p × q matrix C, p × 1 vectorb, andn× 1 vectord,

(A⊗ b′)(d⊗ C) � (b′ ⊗ A)(C⊗ d) � Adb′C . (1.21)

Result (1.19) can be extended (by repeated application) to the ordinary product
of an arbitrary number of Kronecker products. We have that

(A1 ⊗ B1)(A2 ⊗ B2) · · · (Ak ⊗ Bk) � (A1A2 · · ·Ak)⊗ (B1B2 · · ·Bk) , (1.22)
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where (fori � 1,2, . . . , k) Ai is anmi × mi+1 dimensional matrix andBi is a
pi × pi+1 dimensional matrix.

The Kronecker productA ⊗ B of anym × m nonsingular matrixA and any
p × p nonsingular matrixB is invertible, and

(A⊗ B)−1 � A−1 ⊗ B−1 , (1.23)

as is evident upon observing [in light of results (1.19) and (1.8)] that

(A⊗ B)(A−1 ⊗ B−1) � (AA−1)⊗ (BB−1) � Im ⊗ Ip � Imp .

More generally,A−⊗B− is a generalized inverse of the Kronecker productA⊗B
of anym× nmatrixA and anyp× q matrixB, as is evident upon observing that

(A⊗ B)(A− ⊗ B−)(A⊗ B) � (AA−A)⊗ (BB−B) � A⊗ B . (1.24)

Consider now the trace of the Kronecker productA ⊗ B of anm × m matrix
A � {aij } and ap × p matrix B. Making use of formula (5.1.7), we find that

tr(A⊗ B) � tr(a11B)+ tr(a22B)+ · · · + tr(ammB)

� (a11+ a22+ · · · + amm)tr(B) .

Thus,
tr(A⊗ B) � tr(A)tr(B). (1.25)

Next, consider the rank of the Kronecker product of anm × n matrix A and a
p× q matrixB. SinceA− ⊗B− is a generalized inverse ofA⊗B, it follows from
results (10.2.1), (1.19), and (1.25) that

rank(A⊗B) � tr[(A⊗B)(A−⊗B−)] � tr[(AA−)⊗ (BB−)] � tr(AA−)tr(BB−) ,

and [again making use of result (10.2.1)] we conclude that

rank(A⊗ B) � rank(A)rank(B) . (1.26)

Note that result (1.26) implies that themp×nq dimensional Kronecker product
A ⊗ B of anm× n matrix A and ap × q matrix B has full row rank if and only
if both A andB have full row rank, has full column rank if and only if bothA and
B have full column rank, and hence is nonsingular if and only if bothA andB are
nonsingular.

The Kronecker product of anm× n partitioned matrix

A �




A11 A12 . . . A1c

A21 A22 . . . A2c
...

...
...

Ar1 Ar2 . . . Arc
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and ap× q matrixB equals themp×nq matrix obtained by replacing each block
Aij of A with the Kronecker product ofAij andB; that is,


A11 A12 . . . A1c

A21 A22 . . . A2c
...

...
...

Ar1 Ar2 . . . Arc


⊗ B

�




A11⊗ B A12⊗ B . . . A1c ⊗ B
A21⊗ B A22⊗ B . . . A2c ⊗ B

...
...

...
Ar1 ⊗ B Ar2 ⊗ B . . . Arc ⊗ B


 , (1.27)

as is easily verified. And, the Kronecker product of anm-dimensional column vec-
tora � {ai} and ap×qmatrixB that has been partitioned asB � (B1,B2, . . . ,Bk)
is themp×q matrix obtained by replacing each blockBj of B with the Kronecker
product ofa andBj ; that is,

a⊗ (B1,B2, . . . ,Bk) � (a⊗ B1, a⊗ B2, . . . , a⊗ Bk) , (1.28)

as is also easily verified.
Suppose now that

A �




A11 A12 . . . A1c

A21 A22 . . . A2c
...

...
...

Ar1 Ar2 . . . Arc




is a partitioned matrix whoserc blocksA11,A12, . . . ,Arc are all of the same size,
saym× n (in which caseA is of dimensionsrm× cn). Let Uij represent anr × c
matrix whoseij th element is 1 and whose remainingrc−1 elements are 0. Then,

A �
r∑
i�1

c∑
j�1

Uij ⊗ Aij , (1.29)

as is evident upon observing thatUij ⊗ Aij is an rm × cn partitioned matrtix
comprisingr rows andc columns ofm×n dimensional blocks, thepqth of which
equalsApq , if i � p andj � q, and equals0, if i �� p or j �� q.

16.2 The Vec Operator: Definition and Some Basic
Properties

It is sometimes convenient (as in the discussion of matrix differentiation in Chapter
15) to rearrange the elements of anm× nmatrixA � {aij } in the form on anmn-
dimensional column vector. The conventional way of doing so is to successively
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stack the first, second,. . . , nth columnsa1, a2, . . . , an of A one under the other,
giving themn-dimensional column vector


a1

a2
...

an


 , (2.1)

that is, giving a partitioned column vector comprisingn subvectors of dimension
m, theith of which isai .

Themn-dimensional column vector (2.1) is referred to as thevec of A — think
of vec as being an abbreviation for vector. It is denoted by the symbol vec(A) or
sometimes (when the parentheses are not needed for clarity) by vecA. Vec(A)
can be regarded as the value assigned toA by a vector-valued function or operator
whose domain isRm×n — this operator is known as thevec operator. By definition,
theij th element ofA is the [(j − 1)m+ i]th element of vec(A).

Suppose, for example, thatm � 2 andn � 3. Then,

vec(A) �




a11

a21

a12

a22

a13

a23



.

For any column vectora,

vec(a′) � vec(a) � a , (2.2)

as is evident from the very definition of the vec operator. And, for anym-
dimensional column vectora � {ai} andn-dimensional column vectorb,

vec(ba′) � a⊗ b , (2.3)

as is evident from result (1.2) upon observing that theith (of them columns) of
ba′ is aib.

Clearly, for any scalarc and any matrixA,

vec(cA) � c vec(A) , (2.4)

and, for any two matricesA andB (of the same size),

vec(A+ B) � vec(A)+ vec(B) . (2.5)

More generally, for anyk scalars c1, c2, . . . , ck and for any k matrices
A1,A2, . . . ,Ak (of the same size),

vec

(
k∑
i�1

ciAi

)
�

k∑
i�1

ci vec(Ai) , (2.6)
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as can be easily established by the repeated application of results (2.5) and (2.4).
Let A represent anm × n matrix andB ann × p matrix, and denote the first,

second,. . . , pth columns ofB by b1,b2, . . . ,bp, respectively. Then,

vec(AB) �




Ab1

Ab2
...

Abp


 , (2.7)

as is evident upon observing that thej th column ofAB is Abj . Note that result
(2.7) implies that

vec(AB) � diag(A,A, . . . ,A)vec(B) (2.8)

or equivalently [in light of result (1.7)] that

vec(AB) � (Ip ⊗ A)vec(B) . (2.9)

Result (2.9) is generalized in the following theorem.
Theorem 16.2.1. For anym×nmatrixA, n×p matrixB, andp× q matrixC,

vec(ABC) � (C′ ⊗ A)vec(B) . (2.10)

Proof. According to result (2.4.2),B is expressible as

B �
p∑
j�1

bju′j ,

where (forj � 1, . . . , p) bj is thej th column ofB andu′j is thej th row of Ip.
Thus, making use of results (2.3) and (1.19), we find that

vec(ABC) � vec

[
A

(∑
j

bju′j

)
C

]

�
∑
j

vec(Abju′jC)

�
∑
j

[(C′uj )⊗ (Abj )]

�
∑
j

(C′ ⊗ A)(uj ⊗ bj )

�
∑
j

(C′ ⊗ A)vec(bju′j )

� (C′ ⊗ A)vec

(∑
j

bju′j

)
� (C′ ⊗ A)vecB .

Q.E.D.
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Three alternative expressions for the vec of the productAB of anm× nmatrix
A and ann× p matrix B can be obtained as special cases of result (2.10). One of
these expressions is given by result (2.9). The other two are

vec(AB) � (B′ ⊗ Im)vec(A) , (2.11)

vec(AB) � (B′ ⊗ A)vec(In) . (2.12)

Consider now the productABx of anm× n matrix A, ann× p matrix B, and
ap × 1 vectorx. According to result (2.2),

ABx � vec(ABx) � vec(x′B′A′) .

Thus, it follows from result (2.10) that

ABx � (x′ ⊗ A)vec(B) � (A⊗ x′)vec(B′) . (2.13)

For anym× n matricesA andB,

tr(A′B) � (vecA)′vecB . (2.14)

To see this, letaj andbj represent thej th columns ofA andB, respectively, and
observe that thej th diagonal element ofA′B equalsa′jbj , so that

tr(A′B) �
n∑
j�1

a′jbj � (a′1, a′2, . . . , a′n)




b1

b2
...

bn


 �




a1

a2
...

an



′


b1

b2
...

bn




� (vecA)′vecB .

Note that result (2.14) implies that the (usual) inner product of any twom ×
n matrices equals the (usual) inner product of their vecs. Note also that, since
[according to result (5.2.8)] tr(A′B) � tr(B′A) � tr(BA′) � tr(AB′), alternative
versions of formula (2.14) can be obtained by replacing tr(A′B) with tr(B′A),
tr(BA′), or tr(AB′).

Result (2.14) is generalized in the following theorem.
Theorem 16.2.2. For anym × n matrix A, m × p matrix B, p × q matrix C,

andn× q matrix D,

tr(A′BCD′) � (vecA)′(D⊗ B)vecC . (2.15)

Proof. Making use of results (2.14) and (2.10), we find that

tr(A′BCD′) � (vecA)′vec (BCD′) � (vecA)′(D⊗ B)vecC .

Q.E.D.
Note [in light of results (5.2.3) and (5.1.5)] that tr(A′BCD′) � tr(D′A′BC) �

tr(CD′A′B) � tr(BCD′A′) and that tr(A′BCD′) � tr[(A′BCD′)′] � tr(DC′B′A) �
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tr(ADC′B′) � tr(B′ADC′) � tr(C′B′AD). Thus, alternative versions of formula
(2.15) can be obtained by replacing tr(A′BCD′) with tr(D′A′BC), tr(CD′A′B),
tr(BCD′A′), tr(DC′B′A), tr(ADC′B′), tr(B′ADC′), or tr(C′B′AD). Note also [in
light of result (1.7)] that, in the special case whereq � n andD � In, result (2.15)
reduces in effect to

tr(A′BC) � (vecA)′ diag(B,B, . . . ,B)vecC . (2.16)

Let A � (A1,A2, . . . ,Ak) represent anm× n partitioned matrix comprising a
single row ofk blocks, and letnj represent the number of columns inAj . Then,

vec(A1,A2, . . . ,Ak) �




vecA1

vecA2
...

vecAk


 ; (2.17)

that is, vec(A1,A2, . . . ,Ak) equals anmn-dimensional column vector, comprising
k subvectors, thej th of which is themnj -dimensional column vector vec(Aj ). To
see this, observe that both vec(A1,A2, . . . ,Ak) and


vecA1

vecA2
...

vecAk




are equal to anmn-dimensional partitioned column vector, comprisingn m-
dimensional subvectors, the (

∑j−1
s�1 ns + r)th of which is therth column ofAj

(where
∑0

s�1 ns � 0).

16.3 Vec-Permutation Matrix

a. Definition and some alternative descriptions

Let A � {aij } represent anm × n matrix, and denote the first,. . . , nth columns
of A by a1, . . . , an, respectively, and the first,. . . , mth rows ofA by r′1, . . . , r′m,
respectively. Then,r1, . . . , rm are them columns ofA′, and, by definition,

vec(A) �




a1

a2
...

an


 and vec(A′) �




r1

r2
...

rm


 .

Both vec(A′) and vec(A) are obtained by rearranging the elements ofA in the form
of anmn-dimensional column vector; however, they are arranged row by row in



344 16. Kronecker Products and the Vec and Vech Operators

vec(A′) instead of column by column [as in vec(A)]. For example, whenm � 2
andn � 3,

vec(A) �




a11

a21

a12

a22

a13

a23




and vec(A′) �




a11

a12

a13

a21

a22

a23



.

Clearly, vec(A′) can be obtained by permuting the elements of vec(A). Accord-
ingly, there exists anmn × mn permutation matrix, to be denoted by the symbol
Kmn, such that

vec(A′) � Kmnvec(A) . (3.1)

(This matrix depends onm andn, but not on the values ofa11, a12, . . . , amn.) For
example,

K23 �




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



.

The matrixKmn is referred to as avec-permutation matrix (e.g., Henderson
and Searle 1979) or, more commonly and for reasons that will become evident in
Subsection c, as acommutation matrix (e.g., Magnus and Neudecker 1979).

As discussed in Section 16.2, theij th element of them × n matrix A is the
[(j−1)m+i]th element of vec(A). And, theij th element ofA is thejith element of
then×mmatrixA′ and accordingly is the [(i−1)n+j ]th element of vec(A′). Thus,
the [(i−1)n+ j ]th row of the vec-permutation matrixKmn is the [(j −1)m+ i]th
row of Imn (i � 1, . . . , m; j � 1, . . . , n).

Note that, since the transposeA′ of them× nmatrixA is of dimensionsn×m,
it follows from the very definition of a vec-permutation matrix that

vec(A) � vec[(A′)′] � Knmvec(A′). (3.2)

The following theorem gives a useful and informative representation for the
vec-permutation matrixKmn.

Theorem 16.3.1. Letm andn represent positive integers, and (fori � 1, . . . , m
andj � 1, . . . , n) let Uij � eiu′j , whereei is theith column ofIm anduj thej th
column ofIn (in which caseUij is anm × n matrix whoseij th element is 1 and
whose remaining elements are 0). Then,

Kmn �
m∑
i�1

n∑
j�1

(Uij ⊗ U′
ij ). (3.3)
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Proof. Using results (3.1), (2.4.3), (2.4.5), and (2.10), we find that, for anym×n
matrix A,

Kmnvec(A) � vec(A′) � vec

(∑
i,j

aijU′
ij

)

�
∑
i,j

vec(aijuje′i)

�
∑
i,j

vec(uj aije′i)

�
∑
i,j

vec[uj (e′iAuj )e′i ]

�
∑
i,j

vec(U′
ijAU′

ij )

�
∑
i,j

(Uij ⊗ U′
ij )vec(A)

and hence that, for anymn-dimensional column vectora,

Kmna �
(∑

i,j

Uij ⊗ U′
ij

)
a .

Based on Lemma 2.3.2, we conclude that

Kmn �
∑
i,j

(Uij ⊗ U′
ij ).

Q.E.D.
In light of result (1.29), result (3.3) can be reexpressed as

Kmn �




U′
11 U′

12 . . . U′
1n

U′
21 U′

22 . . . U′
2n

...
...

...
U′
m1 U′

m2 . . . U′
mn


 . (3.4)

That is,Kmn can be regarded as anmn × mn partitioned matrix, comprisingm
rows andn columns ofn×m dimensional blocks, theij th of which is the matrix
U′
ij � uje′i (whosejith element is 1 and whose othermn−1 elements are 0). For

example,

K23 �
(

U′
11 U′

12 U′
13

U′
21 U′

22 U′
23

)
�




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



.
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Let a represent anm-dimensional column vector. Then, upon settingA � a in
equality (3.1) and result (3.2), we find [in light of result (2.2)] that

a � Km1a , a � K1ma .

It follows (in light of Lemma 2.3.2) that

Km1 � K1m � Im . (3.5)

b. Some basic properties

It follows from result (3.2) that, for anym× n matrix A,

vec(A) � Knmvec(A′) � KnmKmnvec(A)

and hence that, for anymn-dimensional column vectora,

a � KnmKmna ,

implying (in light of Lemma 2.3.2) that

Imn � KnmKmn .

Thus (in light of Lemma 8.1.3),Kmn is nonsingular andK−1
mn � Knm. Moreover,

sinceKmn is a permutation matrix, it is orthogonal, and consequentlyK′
mn � K−1

mn.
In summary, we have thatKmn is nonsingular and that

K′
mn � K−1

mn � Knm . (3.6)

Note that result (3.6) implies that

K′
mm � Kmm ; (3.7)

that is,Kmm is symmetric (as well as orthogonal).
As a special case of a formula for tr(Kmn) given by, for example, Magnus and

Neudecker (1979, p. 383), we have that

tr(Kmm) � m . (3.8)

To verify formula (3.8), letei represent theith column ofIm, let Uij � eie′j , and
observe thate′jei equals 1, ifj � i, and equals 0, ifj �� i. Then, making use of
results (3.3), (1.25), and (5.2.6), we find that

tr(Kmm) � tr

(∑
i,j

Uij ⊗ U′
ij

)

�
∑
i,j

tr(Uij ⊗ U′
ij )
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�
∑
i,j

tr(Uij )tr(U′
ij )

�
∑
i,j

[tr(Uij )]
2

�
∑
i,j

[tr(eie′j )]
2

�
∑
i,j

(e′jei)
2 �

∑
i

(e′iei)
2 �

m∑
i�1

(1)2 � m .

c. Kronecker product of two matrices: the effect of premultiplying
or postmultiplying by a vec-permutation matrix

As discussed in Section 16.1, the Kronecker productB⊗A of two matricesB and
A is not in general equal to the Kronecker productA ⊗ B of A andB. However,
B⊗A can be “made equal to”A⊗B by permuting the columns ofB⊗A and the
rows ofA⊗ B, as indicated by the following theorem.

Theorem 16.3.2. For anym× n matrix A andp × q matrix B,

(B⊗ A)Kqn � Kpm(A⊗ B) , (3.9)

B⊗ A � Kpm(A⊗ B)Knq . (3.10)

Proof. Making use of Theorem 16.2.1, we find that, for anyq × n matrix X,

(B⊗ A)KqnvecX � (B⊗ A)vec(X′) � vec(AX′B′)
� vec[(BXA′)′]
� Kpmvec(BXA′)
� Kpm(A⊗ B)vecX .

Thus,
(B⊗ A)Kqnx � Kpm(A⊗ B)x

for everynq × 1 vectorx, implying (in light of Lemma 2.3.2) that

(B⊗ A)Kqn � Kpm(A⊗ B) .

Further, sinceK−1
qn � Knq , we have that

B⊗ A � (B⊗ A)KqnKnq � Kpm(A⊗ B)Knq .

Q.E.D.
As indicated by result (3.10), the effect onA ⊗ B of premultiplication and

postmultiplication by the vec-permutation matricesKpm and Knq , respectively,
is to interchange or “commute”A and B. It is because of this effect that vec-
permutation matrices are often referred to as commutation matrices.

In the various special cases whereA or B is a row or column vector, result
(3.9) or (3.10) of Theorem 16.3.2 can be stated more simply, as indicated by the
following corollary.
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Corollary 16.3.3. For anym× n matrix A andp × 1 vectorb,

b⊗ A � Kpm(A⊗ b) , (3.11)

A⊗ b � Kmp(b⊗ A) , (3.12)

b′ ⊗ A � (A⊗ b′)Knp , (3.13)

A⊗ b′ � (b′ ⊗ A)Kpn . (3.14)

Note that in the special case whereB is a row vector, sayb′, andA is a column
vector, saya, equality (3.13) or (3.14) reduces to the equality

b′ ⊗ a � a⊗ b′ ,

given previously in result (1.4).
The trace of the matrix obtained by premultiplying or postmultiplying a

Kronecker product (of ann×mmatrix and anm×nmatrix) by a vec-permutation
matrix is given by the following theorem.

Theorem 16.3.4. For anym× n matricesA andB,

tr[(A′ ⊗ B)Kmn] � tr[Kmn(A′ ⊗ B)] � tr(A′B) � (vecA′)′KmnvecB . (3.15)

Proof. Let ei represent theith column ofIm anduj thej th column ofIn, and
defineUij � eiu′j . That tr[(A′ ⊗ B)Kmn] � tr[Kmn(A′ ⊗ B)] is an immediate
consequence of Lemma 5.2.1. Further, making use of results (3.3), (1.19), (1.25),
(5.2.6), (2.4.5), and (5.2.4), we find that

tr
[
Kmn(A′ ⊗ B)

] � tr

[∑
i,j

(Uij ⊗ U′
ij )(A

′ ⊗ B)

]

�
∑
i,j

tr[(Uij ⊗ U′
ij )(A

′ ⊗ B)]

�
∑
i,j

tr[(UijA′)⊗ (U′
ijB)]

�
∑
i,j

tr(UijA′)tr(U′
ijB)

�
∑
i,j

tr(eiu′jA
′)tr(uje′iB)

�
∑
i,j

(u′jA
′ei)e′iBuj

�
∑
i,j

bij aij

� tr(A′B) .

And, in light of results (2.14), (3.2), and (3.6), we have that
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tr(A′B) � (vecA)′vecB � (KnmvecA′)′vecB

� (vecA′)′K′
nmvecB

� (vecA′)′KmnvecB.
Q.E.D.

d. Relationship between the vec of the Kronecker product of two
matrices and the Kronecker product of their vecs

The following theorem relates the vec of the Kronecker product of two matrices
A andB to the Kronecker product of the vecs ofA andB.

Theorem 16.3.5. For anym× n matrix A and anyp × q matrix B,

vec(A⊗ B) � (In ⊗Kqm ⊗ Ip)[vec(A)⊗ vec(B)]. (3.16)

Proof. Let ai represent theith column ofA, andei the ith column ofIn (i �
1, . . . , n). And, letbj represent thej th column ofB, anduj thej th column ofIq
(j � 1, . . . , q). Then, writingA andB asA � ∑i aie′i andB � ∑j bju′j and
making use of results (1.14), (2.6), (1.15), (1.19), (2.3), (1.16), and (3.11), we find
that

vec(A⊗ B) � vec

[∑
i,j

(aie′i)⊗ (bju′j )

]

�
∑
i,j

vec[(aie′i)⊗ (bju′j )]

�
∑
i,j

vec[(ai ⊗ bj )(ei ⊗ uj )′]

�
∑
i,j

(ei ⊗ uj )⊗ (ai ⊗ bj )

�
∑
i,j

ei ⊗ (uj ⊗ ai)⊗ bj

�
∑
i,j

(In ⊗Kqm ⊗ Ip)(ei ⊗ ai ⊗ uj ⊗ bj )

�
∑
i,j

(In ⊗Kqm ⊗ Ip)[vec(aie′i)⊗ vec(bju′j )]

� (In ⊗Kqm ⊗ Ip)

[∑
i

vec(aie′i)⊗
∑
j

vec(bju′j )

]

� (In ⊗Kqm ⊗ Ip)

[
vec

(∑
i

aie′i

)
⊗ vec

(∑
j

bju′j

)]

� (In ⊗Kqm ⊗ Ip)[vec(A)⊗ vec(B)] .
Q.E.D.
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e. Determinant of a Kronecker product

Preliminary to deriving a formula for the determinant of a Kronecker product of
two matrices, observe [in light of results (1.20) and (3.10)] that, for anym × n

matrix A and anyp × q matrix B,

A⊗ B � (A⊗ Ip)(In ⊗ B)

� Kmp(Ip ⊗ A)Kpn(In ⊗ B)

� Kmpdiag(A,A, . . . ,A)Kpndiag(B,B, . . . ,B) . (3.17)

Consider now the determinant of the Kronecker productA ⊗ B of anm × m

matrix A and ap × p matrix B. Applying result (3.17) (in the special case where
n � m andq � p), we find [in light of results (13.3.9) and (13.3.5)] that

|A⊗ B| � |Kmp| |A|p|Kpm| |B|m .
And, in light of result (3.6), we have that

|Kmp| |Kpm| � |KmpKpm| � |I| � 1 .

We conclude that (for anym×m matrix A and anyp × p matrix B)

|A⊗ B| � |A|p|B|m . (3.18)

16.4 The Vech Operator

a. Definition and basic characteristics

The values of alln2 elements of ann× n symmetric matrixA can be determined
from the values of thosen(n+1)/2 elements that are on or below the diagonal [or
alternatively from thosen(n+1)/2 elements that are on or above the diagonal]. In
rearranging the elements ofA in the form of a vector, we may wish to exclude the
n(n− 1)/2 “duplicate” elements. This would be the case if, for example,A were
a (symmetric) matrix of variables and our objective were the differentiation of a
function ofA.

Let A � {aij } represent ann × n (symmetric or nonsymmetric) matrix. To
obtain the vec ofA, we successively stack the first, second,. . . , nth columns
a1, a2, . . . , an of A one under the other. Consider a modification of this process in
which (before or after the stacking) then(n − 1)/2 “supradiagonal” elements of
A are eliminated froma1, a2, . . . , an. The result is the[n(n+ 1)/2]-dimensional
vector 


a∗1
a∗2
...

a∗n


 , (4.1)
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where (for i � 1,2, . . . , n) a∗i � (aii, ai+1,i , . . . , ani)′ is the subvector ofai
obtained by striking out its firsti − 1 elements. Thus, by definition, the vector
(4.1) is a subvector of vecA obtained by striking out a particular set of what are,
in the special case whereA is symmetric, duplicate or redundant elements.

Following Henderson and Searle (1979), let us refer to the vector (4.1) as the
vech of A — think of vech as being an abbreviation for “vector-half.” And, denote
this vector by the symbol vech(A) or possibly (when the parentheses are not needed
for clarity) by vechA. Like vecA, vechA can be regarded as the value assigned to
A by a vector-valued function or operator — the domain of this function isRn×n.

Forn � 1, n � 2, andn � 3,

vechA � (a11), vechA �

a11

a21

a22


 , and vechA �




a11

a21

a31

a22

a32

a33



, respectively.

By way of comparison,

vecA � (a11), vecA �



a11

a21

a12

a22


 , and vecA �




a11

a21

a31

a12

a22

a32

a13

a23

a33



, respectively.

Observe that the total number of elements in thej vectorsa∗1, a∗2, a∗3, . . . , a∗j is

n+ (n− 1)+ (n− 2)+ · · · + n− (j − 1)

� nj − (0+ 1+ 2+ · · · + j − 1)� nj − j (j − 1)/2

and that, of then− (j −1)� n− j +1 elements ofa∗j , there are (fori ≥ j ) n− i
elements that come afteraij . Sincenj−j (j−1)/2−(n−i) � (j−1)(n−j/2)+i,
it follows that (for i ≥ j ) the ij th element ofA is the [(j − 1)(n − j/2)+ i]th
element of vechA. By way of comparison, theij th element ofA is (as discussed
in Section 16.2) the [(j − 1)n + i]th element of vecA, so that (fori ≥ j ) the
[(j−1)n+ i]th element of vecA is the [(j−1)(n−j/2)+ i]th element of vechA.
For example, whenn � 8, we find [upon settingi � 7 andj � 5 and observing
that (j − 1)n + i � 39 and that (j − 1)(n − j/2)+ i � 29] thata75 is the 39th
element of vecA and the 29th element of vechA.

Letc1, . . . , ck represent anyk scalars, and letA1, . . . ,Ak represent anyk square
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matrices (of the same order). Then,

vech

(
k∑
i�1

ciAi

)
�

k∑
i�1

ci vech(Ai) , (4.2)

as is evident from result (2.6) upon observing that the vech of any (square) matrix
is a subvector of its vec.

b. Duplication matrix

Every element of ann × n symmetric matrixA, and hence every element of vec
A, is either an element of vechA or a “duplicate” of an element of vechA. Thus,
there exists a unique{[n2×n(n+1)/2]-dimensional}matrix, to be denoted by the
symbolGn, such that

vecA � Gn vechA (4.3)

for everyn× n symmetric matrixA. This matrix is called theduplication matrix.
Clearly,

G1 � (1), G2 �




1 0 0
0 1 0
0 1 0
0 0 1


 , andG3 �




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



.

More generally (for an arbitrary positive integern), the matrixGn can be
described in terms of its rows or columns. Fori ≥ j , the [(j − 1)n + i]th
and [(i − 1)n + j ]th rows of Gn equal the [(j − 1)(n − j/2) + i]th row of
In(n+1)/2, that is, they equal the [n(n + 1)/2]-dimensional row vector whose
[(j−1)(n−j/2)+ i]th element is 1 and whose remaining elements are 0. And (for
i ≥ j ), the [(j − 1)(n − j/2)+ i]th column ofGn is ann2-dimensional column
vector whose [(j − 1)n + i]th and [(i − 1)n + j ]th elements are 1 and whose
remainingn2 − 1 (if i � j ) or n2 − 2 (if i > j ) elements are 0.

The matrixGn is of full column rank; that is,

rank(Gn) � n(n+ 1)/2 . (4.4)

To see this, observe that the columns ofGn are orthogonal (since every row of
Gn contains only one nonzero element) and are nonnull. Or, alternatively, observe
that every row ofIn(n+1)/2 is a row ofGn and hence thatGn containsn(n + 1)/2
linearly independent rows.
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Now, for purposes of deriving a recursive formula forGn, let B represent an
arbitrary (n+ 1)× (n+ 1) matrix, and partitionB as

B �
(
c b′

a A

)

(whereA is n× n). Then there exists an (n+ 1)2 × (n+ 1)2 permutation matrix,
to be denoted by the symbolQn+1, such that (for every choice ofB)

Q′
n+1vecB �




c

b
a

vecA


 .

Further, lettingu represent the first column ofIn+1 and lettingU represent the
(n + 1)× n submatrix ofIn+1 obtained by striking outu, Qn+1 is expressible as
Qn+1 � (Q(1)

n+1,Q(2)
n+1), where

Q(1)
n+1 � diag(u,u, . . . ,u) � In+1 ⊗ u ,

Q(2)
n+1 � diag(U,U, . . . ,U) � In+1 ⊗ U .

Clearly,

vechB �

 c

a
vechA


 .

Thus, ifB is symmetric (in which caseA is symmetric andb � a), we have that


c

b
a

vecA


 �




1 0 0
0 In 0
0 In 0
0 0 Gn


 vechB

or, equivalently, that

Q′
n+1vecB �




1 0 0
0 In 0
0 In 0
0 0 Gn


 vechB .

We conclude that ifB is symmetric, then

vecB � Qn+1




1 0 0
0 In 0
0 In 0
0 0 Gn


 vechB .
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This conclusion gives rise to the recursive formula

Gn+1 � Qn+1




1 0 0
0 In 0
0 In 0
0 0 Gn


 . (4.5)

Since the duplication matrixGn is of full column rank, it has a left inverse. In
fact, except in the special case wheren � 1, Gn has an infinite number of left
inverses. (G1 is nonsingular and subsequently has a unique left inverse.)

In what follows, the symbolHn is used to represent an arbitrary left inverse of
Gn. Thus, by definition,Hn is ann(n+ 1)/2× n2 matrix such that

HnGn � I .

One choice forHn is
Hn � (G′

nGn)
−1G′

n .

(SinceGn is of full column rank,G′
nGn is nonsingular.)

The premultiplication of the vech of ann × n symmetric matrixA by the du-
plication matrixGn transforms vechA to vecA. Upon premultiplying both sides
of equality (4.3) byHn, we find that

vechA � HnvecA (4.6)

for everyn× n symmetric matrixA. Thus, the premultiplication of the vec of an
n× n symmetric matrixA by the left inverseHn transforms vecA to vechA.

Are there matrices other than left inverses (ofGn) that have this property? That
is, does there exist ann(n+ 1)/2× n2 matrix L such that

vechA � L vecA (4.7)

for everyn× n symmetric matrixA that does not satisfy the conditionLGn � I?
The answer is no, as is evident upon observing that, together with equality (4.3),
equality (4.7) implies that

vechA � LGn vechA

for everyn × n symmetric matrixA, or, equivalently, thata � LGna for every
[n(n+ 1)/2]-dimensional column vectora, and hence that

LGn � I .

Thus, as an alternative to characterizing the matrixHn as an arbitrary left inverse
of Gn, it could be characterized as anyn(n+1)/2×n2 matrixL such that equality
(4.7) holds for everyn × n symmetric matrixA. In fact, as noted by Henderson
and Searle (1979), it is the latter characterization that provides the motivation for
denoting this matrix by a capital h — h added to vec gives vech.
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We find that

H1 � (1), H2 �

1 0 0 0

0 c 1− c 0
0 0 0 1


 , (4.8a)

H3 �




1 0 0 0 0 0 0 0 0
0 c1 0 1− c1 0 0 0 0 0
0 0 c2 0 0 0 1− c2 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 c3 0 1− c3 0
0 0 0 0 0 0 0 0 1



, (4.8b)

wherec,c1,c2, andc3 are arbitrary scalars. More generally (for an arbitrary positive
integern), the matrixHn can be described in terms of its rows. The [(i − 1)(n −
i/2) + i]th row of Hn is the [(i − 1)n + i]th row of In2, and (for i > j ) the
[(j − 1)(n − j/2) + i]th row of Hn is any n2-dimensional row vector whose
[(j − 1)n + i]th and [(i − 1)n + j ]th elements sum to 1 and whose remaining
n2 − 2 elements are 0.

Note thatHn is of full row rank, that is,

rank(Hn) � n(n+ 1)/2 (4.9)

(as is evident from Lemma 8.1.1 upon observing thatGn is a right inverse ofHn).
Note also that

vecA � GnHn vecA (4.10)

for everyn × n symmetric matrixA [as is evident upon substituting expression
(4.6) in the right side of equality (4.3)].

Consider now the matrix (G′
nGn)−1Gn (which is one choice forHn). The

n(n + 1)/2 × n(n + 1)/2 matrix G′
nGn is diagonal (since the columns ofGn

are orthogonal). Further, the [(i − 1)(n − i/2)+ i]th diagonal element ofG′
nGn

equals 1, and (fori > j ) the [(j − 1)(n− j/2)+ i]th diagonal element ofG′
nGn

equals 2. Consequently, the [(i − 1)(n − i/2)+ i]th row of (G′
nGn)−1G′

n is the
[(i − 1)n + i]th row of In2, and (for i > j ) the [(j − 1)(n − j/2) + i]th row
of (G′

nGn)−1G′
n is an n2-dimensional row vector whose [(j − 1)n + i]th and

[(i−1)n+ j ]th elements equal 1/2 and whose remainingn2−2 elements equal 0.
For example,G′

1G1 = (1),G′
2G2 = diag(1, 2, 1), andG′

3G3 � diag(1,2,2,1,2,1);
and (G′

1G1)−1G′
1, (G′

2G2)−1G′
2, and (G′

3G3)−1G′
3 are the special cases ofH1, H2,

andH3, respectively, obtained by settingc � c1 � c2 � c3 � 1/2 in result (4.8).
Recursive formulas forG′

nGn and forHn can be obtained from formula (4.5).
Recalling thatQn+1 is orthogonal, we find that

G′
n+1Gn+1 �


1 0 0

0 2In 0
0 0 G′

nGn


 (4.11)
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and that, forHn+1 � (G′
n+1Gn+1)−1G′

n+1 andHn � (G′
nGn)−1G′

n,

Hn+1 �

1 0 0 0

0 (1/2)In (1/2)In 0
0 0 0 Hn


Q′

n+1. (4.12)

Note that, forHn � (G′
nGn)−1G′

n,

GnHn � Gn(G′
nGn)

−1G′
n � PGn

. (4.13)

c. Some relationships involving the duplication and
vec-permutation matrices

For everyn× n symmetric matrixA,

Gn vechA � vecA � vec(A′) � Knn vecA � KnnGn vechA .

Thus,Gna � KnnGna for every [n(n+1)/2]-dimensional column vectora, leading
to the conclusion that

KnnGn � Gn . (4.14)

Further, sinceK′
nn � Knn,

(G′
nGn)

−1G′
nKnn � (G′

nGn)
−1(KnnGn)

′ � (G′
nGn)

−1G′
n ,

so that, forHn � (G′
nGn)−1G′

n,

HnKnn � Hn . (4.15)

Note that result (4.14) implies that

(1/2)(In2 +Knn)Gn � Gn . (4.16)

Similarly, result (4.15) implies that, forHn � (G′
nGn)−1G′

n,

Hn[(1/2)(In2 +Knn)] � Hn . (4.17)

Let us now consider (for future reference) some of the properties of the matrix
(1/2)(In2 + Knn), which enters in results (4.16) and (4.17). SinceK2

nn � I, we
have that

(1/2)(In2 +Knn)Knn � (1/2)(In2 +Knn) � Knn[(1/2)(In2 +Knn)] . (4.18)

Further, recalling thatKnn is symmetric [and using result (4.18)], we find that

[(1/2)(In2 +Knn)]
′ � (1/2)(In2 +Knn) � [(1/2)(In2 +Knn)]

2 , (4.19)

that is, (1/2)(In2 +Knn) is symmetric and idempotent. And, in light of result (3.8),
we have that

tr[(1/2)(In2 +Knn)] � n(n+ 1)/2 (4.20)
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or, equivalently [since (1/2)(In2 +Knn) is idempotent], that

rank[(1/2)(In2 +Knn)] � n(n+ 1)/2 . (4.21)

Now, observe [in light of results (4.19), (4.16), and (4.17)] that, forHn �
(G′

nGn)−1G′
n,

[(1/2)(In2 +Knn)−GnHn]
2

� [(1/2)(In2 +Knn)]
2 − (1/2)(In2 +Knn)GnHn

− GnHn[(1/2)(In2 +Knn)] +GnHnGnHn

� (1/2)(In2 +Knn)−GnHn −GnHn +GnHn

� (1/2)(In2 +Knn)−GnHn .

Moreover, as a consequence of results (5.2.3) and (4.20), we have that

tr[(1/2)(In2 +Knn)−GnHn] � tr[(1/2)(In2 +Knn)] − tr(GnHn)

� tr[(1/2)(In2 +Knn)] − tr(HnGn)

� tr[(1/2)(In2 +Knn)] − tr(In(n+1)/2)

� n(n+ 1)/2− n(n+ 1)/2� 0 .

Thus, forHn � (G′
nGn)−1G′

n, the matrix (1/2)(In2 +Knn)−GnHn is idempotent
and its trace equals 0. We conclude (on the basis of Corollary 10.2.3) that, for
Hn � (G′

nGn)−1G′
n,

(1/2)(In2 −Knn)−GnHn � 0

or, equivalently, that [forHn � (G′
nGn)−1G′

n]

GnHn � (1/2)(In2 +Knn) . (4.22)

d. Vech of a product of matrices

Let A represent ann × n matrix andX ann × n symmetric matrix. Observe (in
light of Theorem 16.2.1) that

vec(AXA′) � (A⊗ A) vecX � (A⊗ A)Gn vechX . (4.23)

Observe also that (sinceAXA′ is symmetric)

vech(AXA′) � Hn vec(AXA′) . (4.24)

Together, results (4.23) and (4.24) imply that

vech(AXA′) � Hn(A⊗ A)Gn vechX. (4.25)

Result (4.25) can be regarded as the vech counterpart of formula (2.10) for the
vec of a product of matrices. According to this result, the premultiplication of
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the vech ofX by then(n + 1)/2× n(n + 1)/2 matrixHn(A ⊗ A)Gn transforms
vechX into vech(AXA′). Let us now consider various properties of the matrix
Hn(A⊗ A)Gn.

Observe [in light of results (4.23) and (4.10)] that (for anyn × n symmetric
matrix X)

(A⊗ A)Gn vechX � vec(AXA′) � GnHn vec(AXA′)
� GnHn(A⊗ A)Gn vechX .

Thus, (A ⊗ A)Gnx � GnHn(A ⊗ A)Gnx for every [n(n + 1)/2]-dimensional
column vectorx, leading to the conclusion that

GnHn(A⊗ A)Gn � (A⊗ A)Gn . (4.26)

And, for Hn � (G′
nGn)−1G′

n,

GnHn(A⊗ A) � (A⊗ A)GnHn , (4.27)

as is evident from result (4.22) upon observing [in light of result (3.9)] that

(1/2)(In2 +Knn)(A⊗ A) � (1/2)[(A⊗ A)+Knn(A⊗ A)]

� (1/2)[(A⊗ A)+ (A⊗ A)Knn]

� (A⊗ A)[(1/2)(In2 +Knn)] .

Further, premultiplying both sides of equality (4.27) byHn (and recalling that
HnGn � I), we find that [forHn � (G′

nGn)−1G′
n]

Hn(A⊗ A)GnHn � Hn(A⊗ A) , (4.28)

analogous to result (4.26).
Several properties of the matrixHn(A⊗A)Gn are given in the following theorem.
Theorem 16.4.1. For anyn× n matrix A,

(1) Hn(A⊗ A)Gn is invariant to the choice ofHn;

(2) Hn(A− ⊗ A−)Gn is a generalized inverse ofHn(A⊗ A)Gn;

(3) tr[Hn(A⊗ A)Gn] � (1/2)[tr(A)]2 + (1/2) tr(A2);

(4) rank[Hn(A⊗ A)Gn] � (1/2)[rank(A)]2 + (1/2)rank(A);

(5) Hn(A⊗ A)Gn is nonsingular if and only ifA is nonsingular.

Proof. (1) LetH(1)
n andH(2)

n represent any two choices forHn, that is, any two
left inverses ofGn. Then, using result (4.26), we find that

H(2)
n (A⊗ A)Gn � H(2)

n GnH(1)
n (A⊗ A)Gn � H(1)

n (A⊗ A)Gn .
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(2) Using result (4.26) and observing (in light of the discussion in Section 16.1)
thatA− ⊗ A− is a generalized inverse ofA⊗ A, we find that

Hn(A⊗ A)GnHn(A− ⊗ A−)GnHn(A⊗ A)Gn

� Hn(A⊗ A)(A− ⊗ A−)GnHn(A⊗ A)Gn

� Hn(A⊗ A)(A− ⊗ A−)(A⊗ A)Gn � Hn(A⊗ A)Gn .

(3) SetHn � (G′
nGn)−1G′

n — in light of Part (1), it suffices to verify Part (3)
for a single choice ofHn. Then, using results (5.2.3), (4.22), (1.25), and (3.15), we
find that

tr[Hn(A⊗ A)Gn] � tr[(A⊗ A)GnHn]

� tr{(A⊗ A)[(1/2)(In2 +Knn)]}
� (1/2)tr(A⊗ A)+ (1/2)tr[(A⊗ A)Knn]

� (1/2)[tr(A)]2 + (1/2)tr(A2) .

(4) Since [according to Part (2)]Hn(A− ⊗ A−)Gn is a generalized inverse of
Hn(A⊗ A)Gn, it follows from result (10.2.1) that

rank[Hn(A⊗ A)Gn] � tr[Hn(A⊗ A)GnHn(A− ⊗ A−)Gn] .

Further, using result (4.26), Part (3), and result (10.2.1), we find that

tr[Hn(A⊗ A)GnHn(A− ⊗ A−)Gn]

� tr[Hn(A⊗ A)(A− ⊗ A−)Gn]

� tr{Hn[(AA−)⊗ (AA−)]Gn}
� (1/2)[tr(AA−)]2 + (1/2)tr(AA−AA−)

� (1/2)[tr(AA−)]2 + (1/2)tr(AA−)

� (1/2)[rank(A)]2 + (1/2)rank(A) .

(5) SinceHn(A ⊗ A)Gn is a square matrix of ordern(n + 1)/2, Part (5) is an
immediate consequence of Part (4). Q.E.D.

For purposes of deriving a recursive formula forHn(A⊗A)Gn, let B represent
an arbitrary (n+ 1)× (n+ 1) matrix, partitionB as

B �
(
c b′

a A

)

(whereA is n × n), and defineQn+1 � (Q(1)
n+1,Q(2)

n+1), u, andU as in Subsection
b. Then,

Q′
n+1(B⊗ B)Qn+1 �


Q(1)′

n+1(B⊗ B)Q(1)
n+1 Q(1)′

n+1(B⊗ B)Q(2)
n+1

Q(2)′
n+1(B⊗ B)Q(1)

n+1 Q(2)′
n+1(B⊗ B)Q(2)

n+1


 .
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Further, since(
c b′

a A

)
� I′n+1BIn+1 � (u, U)′B(u, U) �

(
u′Bu u′BU
U′Bu U′BU

)
,

we find that

Q(1)′
n+1(B⊗ B)Q(1)

n+1 � (In+1 ⊗ u′)(B⊗ B)(In+1 ⊗ u)

� B⊗ (u′Bu) � B⊗ c � cB ,

Q(1)′
n+1(B⊗ B)Q(2)

n+1 � (In+1 ⊗ u′)(B⊗ B)(In+1 ⊗ U)

� B⊗ (u′BU) � B⊗ b′ ,
Q(2)′
n+1(B⊗ B)Q(1)

n+1 � (In+1 ⊗ U′)(B⊗ B)(In+1 ⊗ u)

� B⊗ (U′Bu) � B⊗ a ,

Q(2)′
n+1(B⊗ B)Q(2)

n+1 � (In+1 ⊗ U′)(B⊗ B)(In+1 ⊗ U)

� B⊗ (U′BU) � B⊗ A .

Thus, in light of results (1.27), (1.4), (3.14), and (3.12), we have that

Q′
n+1(B⊗ B)Qn+1 �




c2 c b′ c b′ b′ ⊗ b′

c a cA ab′ (b′ ⊗ A)Knn

c a ab′ cA b′ ⊗ A
a⊗ a Knn(a⊗ A) a⊗ A A⊗ A


 .

And, in light of results (4.12), (4.5), (4.15), and (4.16) [as well as Part (1) of
Theorem 16.4.1], it follows that, forHn � (G′

nGn)−1G′
n,

Hn+1(B⊗ B)Gn+1

�

1 0 0 0

0 (1/2)In (1/2)In 0
0 0 0 Hn


Q′

n+1(B⊗ B)Qn+1




1 0 0
0 In 0
0 In 0
0 0 Gn




�




c2 cb′ cb′ b′ ⊗ b′

ca (1/2)(cA+ ab′) (1/2)(cA+ ab′) (b′ ⊗ A)
×[(1/2)(In2 +Knn)]

Hn(a⊗ a) Hn(a⊗ A) Hn(a⊗ A) Hn(A⊗ A)




×




1 0 0
0 In 0
0 In 0
0 0 Gn




�

 c2 2cb′ (b′ ⊗ b′)Gn

ca cA+ ab′ (b′ ⊗ A)Gn

Hn(a⊗ a) 2Hn(a⊗ A) Hn(A⊗ A)Gn


 . (4.29)

Result (4.29) provides what is in effect a recursive formula forHn(A⊗ A)Gn.
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Let

S �
(
c2 2cb′

ca cA+ ab′

)
−
(

b′ ⊗ b′

b′ ⊗ A

)
GnHn(A− ⊗ A−)GnHn[a⊗ a, 2(a⊗ A)]

[whereHn � (G′
nGn)−1G′

n]. And observe [in light of Part (2) of Theorem 16.4.1]
thatS is a Schur complement of then(n+1)/2× n(n+1)/2 submatrixHn(A⊗A)Gn

in the lower right corner of partitioned matrix (4.29). Further, using results (4.26),
(4.22), and (3.12), we find that

GnHn(A− ⊗ A−)GnHn[a⊗ a, 2(a⊗ A)]

� (A− ⊗ A−)GnHn[a⊗ a, 2(a⊗ A)]

� (A− ⊗ A−)[(1/2))(In2 +Knn)][a⊗ a, 2(a⊗ A)]

� (A− ⊗ A−)[a⊗ a, (a⊗ A)+ (A⊗ a)] .

Thus,

S �



c2 − (b′A−a)⊗ (b′A−a)

2cb′ − (b′A−a)⊗ (b′A−A)
− (b′A−A)⊗ (b′A−a)

ca− (b′A−a)⊗ (AA−a)
cA+ ab′ − (b′A−a)⊗ A

− (b′A−A)⊗ (AA−a)




�
(

c2 − (b′A−a)2 2cb′ − 2(b′A−a)b′A−A
ca− (b′A−a)AA−a (c − b′A−a)A+ ab′ − AA−ab′A−A

)
,

and, in the special case whereA is nonsingular,

S � (c − b′A−1a)

(
c + b′A−1a 2b′

a A

)
. (4.30)

Consider now the determinant of the matrixHn+1(B ⊗ B)Gn+1. By applying
result (13.3.13) to partitioned matrix (4.29), we find that ifA is nonsingular [in
which case it follows from Part (5) of Theorem 16.4.1 thatHn(A ⊗ A)Gn is also
nonsingular], then

|Hn+1(B⊗ B)Gn+1| � |Hn(A⊗ A)Gn||S| . (4.31)

Further, using result (4.30), Corollary 13.2.4, and result (13.3.13), we find that if
A is nonsingular, then

|S| � (c − b′A−1a)n+1

∣∣∣∣c + b′A−1a 2b′

a A

∣∣∣∣
� (c − b′A−1a)n+1|A|(c + b′A−1a− 2b′A−1a)

� (c − b′A−1a)n+2|A| . (4.32)

Together, results (4.31) and (4.32) imply that (in the special case whereA is
nonsingular)

|Hn+1(B⊗ B)Gn+1| � (c − b′A−1a)n+2|A||Hn(A⊗ A)Gn| . (4.33)



362 16. Kronecker Products and the Vec and Vech Operators

Result (4.33), which provides what is in effect a recursive formula for the de-
terminant ofHn(A⊗ A)Gn, can be used to establish the following theorem.

Theorem 16.4.2. For anyn× n matrix A,

|Hn(A⊗ A)Gn| � |A|n+1 . (4.34)

Proof. The proof is by mathematical induction. Clearly, equality (4.34) holds
for every 1×1 matrixA. Suppose that equality (4.34) holds for everyn×nmatrix
A. Let B represent an arbitrary (n+ 1)× (n+ 1) matrix, and partitionB as

B �
(
c b′

a A

)

(whereA is n× n). To complete the induction argument, it suffices to show that

|Hn+1(B⊗ B)Gn+1| � |B|n+2 . (4.35)

In establishing the validity of this equality, it is convenient to consider successively
three different cases.

Case (1): B singular. In this case, both the left and right sides of equality (4.35)
equal 0 — refer to Part (5) of Theorem 16.4.1.

Case (2): Both A and B nonsingular. Since (by supposition)|Hn(A⊗A)Gn| �
|A|n+1, it follows from result (4.33) [along with result (13.3.13)] that

|Hn+1(B⊗ B)Gn+1| � (c − b′A−1a)n+2|A|n+2 � |B|n+2 .

Case (3): B nonsingular, but A singular. Denote the first. . . , nth columns of
A by a1, . . . , an, respectively. SinceB is nonsingular, the rows ofB are linearly
independent, implying that rank(a,A) � n and also (sinceA is singular) that
rank(A) � n− 1. Consequently,A containsn− 1 linearly independent columns,
saya1, . . . , ai−1, ai+1, . . . , an, anda is not expressible as a linear combination of
the columns ofA.

Let e represent theith column ofIn. Then, the matrixA+ ae′, whose columns
area1, . . . , ai−1, ai+a, ai+1, . . . , an, respectively, is nonsingular (since otherwise
there would exist scalarsc1, . . . , ci−1, ci+1, . . . , cn such thatai + a �∑j ��i cjaj ,
which would imply thata is expressible as a linear combination of the columns of
A).

Now, let

T �
(

1 e′

0 In

)
.

Then,

BT �
(
c b′ + ce′
a A+ ae′

)
.

Further,|T| � 1.
SinceIn andA + ae′ are nonsingular, we have [from the same reasoning as in

Case (2)] that
|Hn+1(T⊗ T)Gn+1| � |T|n+2 � 1 , (4.36)
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|Hn+1[(BT)⊗ (BT)]Gn+1| � |BT|n+2 � |B|n+2|T|n+2 � |B|n+2 . (4.37)

And, using result (4.26), we find that

|Hn+1[(BT)⊗ (BT)]Gn+1|
� |Hn+1(B⊗ B)(T⊗ T)Gn+1|
� |Hn+1(B⊗ B)Gn+1Hn+1(T⊗ T)Gn+1|
� |Hn+1(B⊗ B)Gn+1||Hn+1(T⊗ T)Gn+1| ,

which [in combination with results (4.36) and (4.37)] implies that

|Hn+1(B⊗ B)Gn+1| � |B|n+2 .

Q.E.D.

16.5 Reformulation of a Linear System

Consider a linear system
AX � B , (5.1)

with anm × n coefficient matrixA, m × p right sideB, andn × p matrix of
unknownsX. This linear system can be reformulated as a linear system whose
right side is anmp × 1 vector and whose unknowns are arranged in annp × 1
vector. This process is facilitated by the use of the vec operator (and the use of
Kronecker products).

Specifically, by applying the vec operator to each side of equation (5.1) and
recalling result (2.9), we obtain the equivalent linear system

(Ip ⊗ A)x � b , (5.2)

whereb � vecB and wherex � vecX is annp × 1 vector of unknowns — the
equivalence is in the sense thatX is a solution to linear system (5.1) if and only
if vec X is a solution to linear system (5.2). Note that linear system (5.2) can be
rewritten as

diag(A,A, . . . ,A)x � b .

Let us now generalize from linear system (5.1) to the system

AXC � B , (5.3)

whereA is anm×nmatrix,C ap× q matrix,B anm× q matrix, andX ann×p
matrix of unknowns. Upon applying the vec operator to each side of equation (5.3)
and recalling result (2.10), we obtain the equivalent (linear) system

(C′ ⊗ A)x � b ,

whereb � vecB and wherex � vecX is annp × 1 vector of unknowns.
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A further generalization is possible. Consider the system

r∑
i�1

AiXCi +
s∑
j�1

LjX′Tj � B , (5.4)

whereA1, . . . ,Ar arem×nmatrices,C1, . . . ,Cr arep× q matrices,L1, . . . ,Ls

arem× p matrices,T1, . . . ,Ts aren× q matrices,B is anm× q matrix, andX
is ann× p matrix of unknowns. Using results (2.6) and (2.10), we find that

vec

(∑
i

AiXCi +
∑
j

LjX′Tj

)

�
∑
i

vec(AiXCi)+
∑
j

vec(LjX′Tj )

�
∑
i

(C′
i ⊗ Ai) vecX+

∑
j

(T′
j ⊗ Lj ) vecX′

�
{∑

i

(C′
i ⊗ Ai)+

[∑
j

(T′
j ⊗ Lj )

]
Knp

}
vecX . (5.5)

Consequently, system (5.4) is equivalent to the (linear) system{∑
i

(C′
i ⊗ Ai)+

[∑
j

(T′
j ⊗ Lj )

]
Knp

}
x � b , (5.6)

whereb � vecB, and wherex � vecX is annp × 1 vector of unknowns. As a
special case (that where “s=0”), we have that the system

r∑
i�1

AiXCi � B (5.7)

is equivalent to the (linear) system[∑
i

(C′
i ⊗ Ai)

]
x � b . (5.8)

In our consideration of system (5.4) [and systems (5.1), (5.3), and (5.7)], it
has been implicitly assumed that there are no restrictions onX (other than those
imposed by the system) — if there were restrictions onX, system (5.4) would
be equivalent to system (5.6) only if equivalent restrictions were imposed onx.
Suppose now thatX is restricted to be symmetric [in which casep � n and system
(5.4) is no more general than system (5.7)]. Then, since vecX � Gn vech X,
system (5.7) is equivalent to the (linear) system[∑

i

(C′
i ⊗ Ai)

]
Gnx � b , (5.9)
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where nowx � vechX is ann(n + 1)/2× 1 (unrestricted) vector of unknowns
[and whereb � vecB] — the equivalence is in the sense that a symmetric matrix
X is a solution to system (5.7) if and only if vechX is a solution to system (5.9).

16.6 Some Results on Jacobian Matrices

In this section, attention is given to some Jacobian matrices of a kind encountered
in multivariate statistical analysis.

Let F represent ap × q matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ ofm variables. Then, vecF is apq-dimensional column vector
obtained by rearranging the elements ofF (in a particular way). By definition, the
Jacobian matrix of vecF is thepq ×mmatrix∂vec(F)/∂x′, whosej th column is
∂vec(F)/∂xj . Note that

∂vecF
∂xj

� vec

(
∂F
∂xj

)
(6.1)

(as is evident from the very definition of the vec operator). Thus, the Jacobian
matrix of vecF is thepq ×m matrix whosej th column is vec(∂F/∂xj ).

Consider now the special case whereq � p. If F is symmetric (for allx in
S), thenp(p − 1)/2 of the elements of vecF are redundant. In contrast, vechF
contains no redundancies (that are attributable to symmetry). By definition, the
Jacobian matrix of vechF is thep(p + 1)/2 × m matrix ∂vech(F)/∂x′, whose
j th column is∂vech(F)/∂xj . Note that [analogous to result (6.1)]

∂vechF
∂xj

� vech

(
∂F
∂xj

)
. (6.2)

Thus, the Jacobian matrix of vechF is thep(p + 1)/2 × m matrix whosej th
column is vech(∂F/∂xj ).

If F is symmetric, then clearly [in light of result (4.6)]

∂vecF
∂xj

� Gp

∂vechF
∂xj

,
∂vechF
∂xj

� Hp

∂vecF
∂xj

(6.3)

(j � 1, . . . , m), and consequently

∂vecF
∂x′

� Gp

∂vechF
∂x′

,
∂vechF
∂x′

� Hp

∂vecF
∂x′

. (6.4)

Next, consider the Jacobian matrix of vec(AFB), whereF is ap × q matrix of
functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ of m variables and
whereA andB arer × p andq × s matrices of constants. Making use of formula
(2.10), we find that

∂vec(AFB)

∂xj
� (B′ ⊗ A)

∂vecF
∂xj

(6.5)
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(j � 1, . . . , m) and hence that

∂vec(AFB)

∂x′
� (B′ ⊗ A)

∂vecF
∂x′

. (6.6)

Formula (6.6) relates the Jacobian matrix of vec(AFB) to that of vecF.
Whens � q, r � p, andm � pq, it follows from results (6.6) and (3.18) that∣∣∣∣∂vec(AFB)

∂x′

∣∣∣∣ � |A|q |B|p
∣∣∣∣∂vecF
∂x′

∣∣∣∣ , (6.7)

which relates the Jacobian of vec(AFB) to that of vecF.
In the special case wherex � vecX andF(x) � X for somep× q matrixX of

variables, result (6.6) simplifies [in light of result (15.3.12)] to

∂vec(AXB)

∂(vecX)′
� B′ ⊗ A , (6.8)

and (whens � q andr � p) result (6.7) simplifies to∣∣∣∣∂vec(AXB)

∂(vecX)′

∣∣∣∣ � |A|q |B|p . (6.9)

Suppose now thatF is symmetric and thatA is square (in which case bothF
andA arep × p). Then,

∂vech(AFA′)
∂x′

� Hp(A⊗ A)Gp

∂vechF
∂x′

, (6.10)

as is evident from result (6.6) upon settingB � A′ and observing [in light of result
(4.6)] that

∂vech(AFA′)
∂x′

� Hp

∂vec(AFA′)
∂x′

,
∂vecF
∂x′

� Gp

∂vechF
∂x′

.

Whenm � p(p + 1)/2, it follows from results (6.10) and (4.34) that∣∣∣∣∂vech(AFA′)
∂x′

∣∣∣∣ � |A|p+1

∣∣∣∣∂vechF
∂x′

∣∣∣∣ . (6.11)

In the special case wherex � vechX andF(x) � X for somep×p symmetric
matrix X, results (6.10) and (6.11) simplify to

∂vech(AXA′)
∂(vechX)′

� Hp(A⊗ A)Gp ,∣∣∣∣∂vech(AXA′)
∂(vechX)′

∣∣∣∣ � |A|p+1 .

Finally, consider the Jacobian matrix of vec(F−1), whereF is ap×p matrix of
functions, defined on a setS, of a vectorx � (x1, . . . , xm)′ of m variables [with
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F(x) nonsingular for everyx in S]. Making use of results (15.8.15) and (2.10) [as
well as result (6.1)], we find that

∂vec(F−1)

∂xj
� vec

(
∂F−1

∂xj

)
� vec

(
−F−1 ∂F

∂xj
F−1

)

� −[(F−1)′ ⊗ F−1]vec

(
∂F
∂xj

)

� −[(F−1)′ ⊗ F−1]
∂vecF
∂xj

(6.12)

(j � 1, . . . , m), which implies that

∂vec(F−1)

∂x′
� −[(F−1)′ ⊗ F−1]

∂vecF
∂x′

, (6.13)

thereby relating the Jacobian matrix of vec(F−1) to that of vecF. Moreover, when
m � p2, it follows from result (6.13), together with Corollary 13.2.5, result (3.18),
and Theorem 13.3.7 [and the fact that (−1)p

2 � (−1)p], that∣∣∣∣∣∂vec(F−1)

∂x′

∣∣∣∣∣ � (−1)p|F|−2p

∣∣∣∣∂vecF
∂x′

∣∣∣∣ , (6.14)

which relates the Jacobian of vec(F−1) to that of vecF.
In the special case wherex � vecX andF(x) � X for somep×p nonsingular

matrix X of variables, results (6.13) and (6.14) simplify to

∂vec(X−1)

∂(vecX)′
� −(X−1)′ ⊗ X−1 , (6.15)

∣∣∣∣∣∂vec(X−1)

∂(vecX)′

∣∣∣∣∣ � (−1)p|X|−2p . (6.16)

Suppose now that the (p × p) matrix F is symmetric. Then

∂vech(F−1)

∂x′
� −Hp(F−1 ⊗ F−1)Gp

∂vechF
∂x′

, (6.17)

as is evident from result (6.13) upon observing [in light of result (4.6)] that

∂vech(F−1)

∂x′
� Hp

∂vec(F−1)

∂x′
,

∂vecF
∂x′

� Gp

∂vechF
∂x′

.

Whenm � p(p+1)/2, it follows from Corollary 13.2.5, result (4.34), and Theorem
13.3.7 that ∣∣∣∣∣∂vech(F−1)

∂x′

∣∣∣∣∣ � (−1)p(p+1)/2|F|−(p+1)

∣∣∣∣∂vechF
∂x′

∣∣∣∣ . (6.18)
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In the special case wherex � vechX andF(x) � X for somep×p nonsingular
symmetric matrixX, results (6.17) and (6.18) simplify to

∂vech(X−1)

∂(vechX)′
� −Hp(X−1 ⊗ X−1)Gp , (6.19)

∣∣∣∣∣∂vech(X−1)

∂(vechX)′

∣∣∣∣∣ � (−1)p(p+1)/2|X|−(p+1) . (6.20)

Exercises

Section 16.1

1. (a) Verify result (1.13); that is, verify that, for anym × n matricesA andB
and anyp × q matricesC andD,

(A+ B)⊗ (C+ D) � (A⊗ C)+ (A⊗ D)+ (B⊗ C)+ (B⊗ D) .

(b) Verify result (1.14); that is, verify that, for anym × n matrices
A1,A2, . . . ,Ar andp × q matricesB1,B2, . . . ,Bs ,(

r∑
i�1

Ai

)
⊗
(

s∑
j�1

Bj

)
�

r∑
i�1

s∑
j�1

(Ai ⊗ Bj ) .

2. Show that, for anym× n matrix A andp × q matrix B,

A⊗ B � (A⊗ Ip)diag(B,B, . . . ,B) .

3. Show that, for anym×1 vectora and anyp×1 vectorb, (1)a⊗b � (a⊗Ip)b
and (2)a′ ⊗ b′ � b′(a′ ⊗ Ip).

4. LetA andB represent square matrices.

(a) Show that ifA andB are orthogonal, thenA⊗B is orthogonal.

(b) Show that ifA andB are idempotent, thenA⊗B is idempotent.

5. Lettingm, n, p, andq represent arbitrary positive integers, show (a) that, for
anyp × q matrix B (havingp > 1 orq > 1), there exists anm× n matrix A
such thatA ⊗ B has generalized inverses that are not expressible in the form
A−⊗B−; and (b) that, for anym×nmatrixA (havingm > 1 orn > 1), there
exists ap × q matrix B such thatA⊗ B has generalized inverses that are not
expressible in the formA− ⊗ B−.
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6. LetX � A⊗B, whereA is anm× nmatrix andB ap× q matrix. Show that
PX � PA ⊗ PB.

7. Show that the Kronecker productA⊗ B of anm×m matrix A and ann× n
matrixB is (a) symmetric nonnegative definite ifA andB are both symmetric
nonnegative definite or both symmetric nonpositive definite, and (b) symmet-
ric positive definite ifA andB are both symmetric positive definite or both
symmetric negative definite.

8. LetA andB representm×m symmetric matrices andC andD n×n symmetric
matrices. Using the result of Exercise 7 (or otherwise), show that ifA−B,C−
D, B, andC are nonnegative definite, thenA ⊗ C − B ⊗ D is symmetric
nonnegative definite.

9. LetA represent anm× nmatrix andB ap× q matrix. Show that, in the case
of the usual norm,

‖A⊗ B‖ � ‖A‖‖B‖ .

10. Verify result (1.27).

11. Show that (a) ifT andU are both upper triangular matrices, thenT⊗U is an
upper triangular matrix, and (b) ifT andL are both lower triangular matrices,
thenT⊗ L is a lower triangular matrix.

12. Let A represent anm × m matrix andB an n × n matrix. Suppose thatA
andB have LDU decompositions, sayA � L1D1U1 andB � L2D2U2. Using
the results of Exercise 11, show thatA ⊗ B has the LDU decomposition
A⊗ B � LDU, whereL � L1 ⊗ L2, D � D1 ⊗ D2, andU � U1 ⊗ U2.

Section 16.2

13. Let A1,A2, . . . ,Ak representk matrices (of the same size). Show that
A1,A2, . . . ,Ak are linearly independent if and only if vec(A1), vec(A2), . . . ,
vec(Ak) are linearly independent.

14. Letm represent a positive integer, letei represent theith column ofIm (i �
1, . . . , m), and (fori, j � 1, . . . , m) let Uij � eie′j (in which caseUij is an
m×mmatrix whoseij th element is 1 and whose remainingm2− 1 elements
are 0).

(a) Show that

vec (Im) �
m∑
i�1

ei ⊗ ei .

(b) Show that (fori, j, r, s � 1, . . . , m)

vec(Uri)[vec(Usj )]
′ � Uij ⊗ Urs .
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(c) Show that
m∑
i�1

m∑
j�1

Uij ⊗ Uij � vec(Im)[vec(Im)]′ .

15. LetA represent ann× n matrix.

(a) Show that ifA is orthogonal, then (vecA)′ vecA � n.

(b) Show that ifA is idempotent, then [vec(A′)]′ vecA � rank(A).

16. Show that for anym×nmatrixA,p×nmatrixX,p×pmatrixB, andn×m
matrix C,

tr(AX′BXC) � (vecX)′[(A′C′)⊗ B] vec X � (vecX)′[(CA)⊗ B′] vec X .

17. (a) LetV represent a linear space ofm × n matrices, and letg represent a
function that assigns the valueA ∗ B to each pair of matricesA andB in
V. TakeU to be the linear space ofmn× 1 vectors defined by

U � {x ∈ Rmn×1 : x � vec(A) for someA ∈ V} ,

and letx •y represent the value assigned to each pair of vectorsx andy in
U by an arbitrary inner productf . Show thatg is an inner product (forV)
if and only if there exists anf such that (for allA andB in V)

A ∗ B � vec(A) • vec(B) .

(b) Letg represent a function that assigns the valueA ∗B to an arbitrary pair
of matricesA andB in Rm×n. Show thatg is an inner product (forRm×n) if
and only if there exists anmn×mn partitioned symmetric positive definite
matrix

W �




W11 W12 . . . W1n

W21 W22 . . . W2n
...

...
...

...
Wn1 Wn2 . . . Wnn




(where each submatrix is of dimensionsm × m) such that (for allA and
B in Rm×n)

A ∗ B �
∑
i,j

a′iWijbj ,

wherea1, a2, . . . , an andb1,b2, . . . ,bn represent the first, second,. . . ,
nth columns ofA andB, respectively.

(c) Letg represent a function that assigns the valuex′ ∗ y′ to an arbitrary pair
of (row) vectors inR1×n. Show thatg is an inner product (forR1×n) if and
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only if there exists ann × n symmetric positive definite matrixW such
that (for every pair ofn-dimensional row vectorsx′ andy′)

x′ ∗ y′ � x′Wy .

Section 16.3

18. (a) Define (form ≥ 2) P to be themn×mn permutation matrix such that, for
everym× n matrix A, (

vecA∗
r

)
� P vecA ,

whereA∗ is the (m− 1)× n matrix whose rows are respectively the first,
. . . , (m − 1)th rows ofA andr′ is themth row of A [and hence where

A �
(

A∗
r′

)
andA′ � (A′

∗, r)] .

(1) Show thatKmn �
(

Km−1,n 0
0 In

)
P .

(2) Show that|P| � (−1)(m−1)n(n−1)/2.

(3) Show that|Kmn| � (−1)(m−1)n(n−1)/2|Km−1,n|.

(b) Show that|Kmn| � (−1)m(m−1)n(n−1)/4.

(c) Show that|Kmm| � (−1)m(m−1)/2.

19. Show that, for anym× n matrix A, p × 1 vectora, andq × 1 vectorb,

(1) b′ ⊗ A⊗ a � Kmp[(ab′)⊗ A];

(2) a⊗ A⊗ b′ � Kpm[A⊗ (ab′)].

20. Letm andn represent positive integers, and letei represent theith column
of Im (i � 1, . . . , m) anduj represent thej th column ofIn (j � 1, . . . , n).
Show that

Kmn �
n∑
j�1

u′j ⊗ Im ⊗ uj �
m∑
i�1

ei ⊗ In ⊗ e′i .
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21. Letm, n, andp represent positive integers. Using the result of Exercise 20,
show that

(a) Kmp,n � Kp,mnKm,np;

(b) Kmp,nKnp,mKmn,p � I;

(c) Kn,mp � Knp,mKmn,p;

(d) Kp,mnKm,np � Km,npKp,mn;

(e) Knp,mKmn,p � Kmn,pKnp,m;

(f) Km,npKmp,n � Kmp,nKm,np.

[Hint. Begin by lettinguj represent thej th column ofIn and showing that
Kmp,n �

∑
j (u

′
j ⊗ Ip)⊗ (Im ⊗ uj ) and then making use of result (3.10).]

22. LetA represent anm× nmatrix, and defineB � Kmn(A′ ⊗A). Show (a) that
B is symmetric, (b) that rank(B) � [rank(A)]2, (c) thatB2 � (AA′)⊗ (A′A),
and (d) that tr(B) � tr(A′A).

23. Show that, for anym× n matrix A and anyp × q matrix B,

vec (A⊗ B) � (In ⊗G) vecA � (H⊗ Ip) vecB,

whereG � (Kqm ⊗ Ip)(Im ⊗ vecB) andH � (In ⊗Kqm)[vec(A)⊗ Iq ].

Section 16.4

24. Show that, forHn � (G′
nGn)−1G′

n,

GnHnH′
n � H′

n .

25. There exists a unique matrixLn such that

vechA � Ln vecA

for every n × n matrix A (symmetric or not). [The matrixLn is one choice
for the matrixHn discussed in Section 16.4b. It is referred to by Magnus and
Neudecker (1980) as theelimination matrix — the effect of premultiplying the
vec of ann×nmatrixA byLn is to eliminate (from vecA) the “supradiagonal”
elements ofA.]

(a) Write out the elements ofL1, L2, andL3.

(b) For an arbitrary positive integern, describeLn in terms of its rows.

26. LetA represent ann× n matrix andb ann× 1 vector.

(a) Show that (1/2)[(A⊗ b′)+ (b′ ⊗ A)]Gn � (A⊗ b′)Gn.
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(b) Show that, forHn � (G′
nGn)−1G′

n,

(1) (1/2)Hn[(b⊗ A)+ (A⊗ b)] � Hn(b⊗ A),

(2) (A⊗ b′)GnHn � (1/2)[(A⊗ b′)+ (b′ ⊗ A)],

(3) GnHn(b⊗ A) � (1/2)[(b⊗ A)+ (A⊗ b)].

27. LetA � {aij } represent ann× n (possibly nonsymmetric) matrix.

(a) Show that, forHn � (G′
nGn)−1G′

n,

Hn vecA � (1/2) vech(A+ A′).

(b) Show that

G′
nGn vechA � vech[2A− diag(a11, a22, . . . , ann)].

(c) Show that

G′
n vecA � vech[A+ A′ − diag(a11, a22, . . . , ann)].

28. LetA represent ann× n matrix. Show that, forHn � (G′
nGn)−1G′

n,

GnHn(A⊗ A)H′
n � (A⊗ A)H′

n .

29. Show that if ann×nmatrixA � {aij } is upper triangular, lower triangular, or
diagonal, thenHn(A⊗A)Gn is respectively upper triangular, lower triangular,
or diagonal with diagonal elementsaiiajj (i � 1, . . . , n; j � i, . . . , n).

Section 16.5

30. LetA1, . . . ,Ak, andB representm× n matrices, and letb � vecB.

(a) Show that the matrix equation
∑k

i�1 xiAi � B (in unknownsx1, . . . , xk) is
equivalent to a linear system of the formAx � b, wherex � (x1, . . . , xk)′

is a vector of unknowns.

(b) Show that ifA1, . . . ,Ak, andB are symmetric, then the matrix equation∑k
i�1 xiAi � B (in unknownsx1, . . . , xk) is equivalent to a linear system

of the formA∗x � b∗, whereb∗ � vechB andx � (x1, . . . , xk)′ is a
vector of unknowns.

Section 16.6

31. LetF represent ap × p matrix of functions, defined on a setS, of a vector
x � (x1, . . . , xm)′ of m variables. Show that, fork � 2,3, . . . ,

∂vec(Fk)
∂x′

�
k∑
s�1

[(Fs−1)′ ⊗ Fk−s ]
∂vecF
∂x′

(whereF0 � Ip).
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32. LetF � {fis} andG representp× q andr × s matrices of functions, defined
on a setS, of a vectorx � (x1, . . . , xm)′ of m variables.

(a) Show that (forj � 1, . . . , m)

∂(F⊗G)

∂xj
�
(

F⊗ ∂G
∂xj

)
+
(
∂F
∂xj

⊗G
)
.

(b) Show that (forj � 1, . . . , m)

∂vec(F⊗G)

∂xj

� (Iq ⊗Ksp ⊗ Ir )
[
(vecF)⊗ ∂vecG

∂xj
+ ∂vecF

∂xj
⊗ (vecG)

]
.

(c) Show that

∂vec(F⊗G)

∂x′

� (Iq ⊗Ksp ⊗ Ir )
[
(vecF)⊗ ∂vecG

∂x′
+ ∂vecF

∂x′
⊗ (vecG)

]
.

(d) Show that, in the special case wherex′ � [(vec X)′, (vecY)′], F(x) � X,
andG(x) � Y for somep × q andr × s matricesX andY of variables,
the formula in Part (c) simplifies to

∂vec(X⊗ Y)

∂x′
� (Iq ⊗Ksp ⊗ Ir )(Ipq ⊗ (vecY), (vecX)⊗ Irs) .
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17
Intersections and Sums of Subspaces

The orthogonality of a pair of subspaces was defined and discussed in Chapter 12.
There are pairs of subspaces that are not orthogonal but that have a weaker property
called essential disjointness — orthogonal subspaces are essentially disjoint, but
essentially disjoint subspaces are not necessarily orthogonal. Unlike orthogonality,
essential disjointness does not depend on the choice of inner product. The essential
disjointness of a pair of subspaces is defined and discussed in the present chapter.
The concept of essential disjointness arises in a very natural and fundamental way
in results (like those of Sections 17.2, 17.3, and 17.5) on the ranks, row and column
spaces, and generalized inverses of partitioned matrices and of sums and products
of matrices.

It was found in Chapter 12 that a subspaceU of a linear spaceV and its orthogonal
complementU⊥ (which is a subspace ofV that is by definition orthogonal toU and
for which dimU + dimU⊥ � dimV) have the property that every matrixY in V
can be uniquely expressed as the sum of a matrix inU (which is the projection ofY
onU) and a matrix inU⊥ (which is the projection ofY onU⊥) — refer to Theorem
12.5.11. It is shown in Section 17.6 that this property extends to any subspacesU
andW of V that are essentially disjoint and that have dimU + dimW � dimV.
That is, for any such subspacesU andW, every matrix inV can be uniquely
expressed as the sum of a matrix inU and a matrix inW.

17.1 Definitions and Some Basic Properties

Let U andV represent subsets of the linear spaceRm×n of allm×nmatrices. The
intersection of U andV is the subset (ofRm×n) comprising allm×nmatrices that
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are common toU andV (i.e., that belong to bothU andV) and is denoted by the
symbolU ∩ V.

If U andV are subspaces (ofRm×n), then their intersectionU ∩ V is also a
subspace. To see this, suppose thatU andV are subspaces. Then, them × n null
matrix0 belongs to bothU andV and hence toU ∩ V, so thatU ∩ V is nonempty.
Further, for any matrixA in U ∩ V and any scalark, A is in U and also inV,
implying thatkA is in bothU andV and consequently inU ∩ V. And, for any
matricesA andB in U ∩V, bothA andB are inU and both are also inV, implying
thatA+ B is in U and also inV and hence thatA+ B is in U ∩ V.

More generally, the intersection ofk subsetsU1, . . . ,Uk of Rm×n (wherek ≥
2) is the subset (ofRm×n) comprising allm × n matrices that are common to
U1, . . . ,Uk and is denoted by the symbolU1∩ · · · ∩Uk (or alternatively by∩ki�1Ui
or simply∩iUi). And, if U1, . . . ,Uk are subspaces (ofRm×n), thenU1 ∩ · · · ∩ Uk
is also a subspace.

Note that if (for subsetsU , V, andW of Rm×n) W ⊂ U andW ⊂ V, then
W ⊂ U ∩ V. Note also that ifU ⊂ W andV ⊂ W, thenU ∩ V ⊂ W.

Thesum of two (nonempty) subsetsU andV of Rm×n is defined to be the subset
{U + V : U ∈ U , V ∈ V} comprising every (m× n) matrix that is expressible as
the sum of a matrix inU and a matrix inV. It is denoted by the symbolU + V.
Note that, except for special cases,U + V differs from the unionU ∪ V of U and
V, which by definition is the subset (ofRm×n) comprising allm× nmatrices that
belong toU or V.

The following lemma provides a useful characterization of the sum of two
subspaces ofRm×n.

Lemma 17.1.1. Let U andV represent subspaces ofRm×n. If V � {0} (i.e., if
there are no nonnull matrices inV), thenU + V � U , and similarly ifU � {0},
thenU + V � V. Further, ifU is spanned by a (finite nonempty) set of (m × n)
matricesU1, . . . ,Us andV is spanned by a set of matricesV1, . . . ,Vt , then

U + V � sp(U1, . . . ,Us , V1, . . . ,Vt ) .

Proof. That U + V � U if V � {0} and thatU + V � V if U � {0} is
obvious. Suppose now thatU is spanned by the set{U1, . . . ,Us} andV by the
set{V1, . . . ,Vt }. Then, for any matrixU in U and any matrixV in V, there exist
scalarsc1, . . . , cs andk1, . . . , kt such thatU � ∑s

i�1 ciUi andV � ∑t
j�1 kjVj

and hence such that

U+ V �
s∑
i�1

ciUi +
t∑

j�1

kjVj ,

implying thatU+ V ∈ sp(U1, . . . ,Us ,V1, . . . ,Vt ). Thus,

U + V ⊂ sp(U1, . . . ,Us , V1, . . . ,Vt ) . (1.1)

Further, for any matrixA in sp(U1, . . . ,Us , V1, . . . ,Vt ), there exist scalars
c1, . . . , cs, k1, . . . , kt such thatA �∑s

i�1 ciUi +
∑t

j�1 kjVj , implying thatA �
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U+ V for some matrixU in U and some matrixV in V (namely,U �∑s
i�1 ciUi

and V � ∑t
j�1 kjVj ). It follows that sp(U1, . . . ,Us , V1, . . . ,Vt ) ⊂ U + V,

leading [in light of result (1.1)] to the conclusion thatU + V � sp(U1, . . . ,Us ,
V1, . . . ,Vt ). Q.E.D.

As an immediate consequence of Lemma 17.1.1, we have the following corol-
lary.

Corollary 17.1.2. The sumU +V of two subspacesU andV (of Rm×n) is itself
a subspace. Further, if bothU andV are contained in a subspaceW (of Rm×n),
thenU + V is contained inW.

The addition of (nonempty) subsets ofRm×n (like the addition of matrices in
Rm×n) is commutative and associative (as is easily verified). Thus, takingU and
V to be two (nonempty) subsets ofRm×n,

U + V � V + U , (1.2)

and, takingW to be a third (nonempty) subset,

U + (V +W) � (U + V)+W . (1.3)

The symbolU + V +W is used to represent the subset that is common to the
left and right sides of equality (1.3), and this subset is referred to as thesum of U ,
V, andW. Further,

U + V +W � {U+ V+W : U ∈ U,V ∈ V,W ∈ W} .
This notation, terminology, and property extend in an obvious way to any finite
number of (nonempty) subsets. Moreover, the sum of any (finite) number of sub-
spaces is itself a subspace.

The column spaceC(A) and the row spaceR(A) of anm × n matrix A are
subspaces ofRm andRn, respectively. Further,C(A) is spanned by then columns
of A, andR(A) is spanned by them rows of A. Thus, it follows from Lemma
17.1.1 that, for anym× n matrix A and anym× p matrix B,

C(A,B) � C(A)+ C(B) (1.4)

and, similarly, that, for anym× n matrix A and anyp × n matrix C,

R
(

A
C

)
� R(A)+R(C) . (1.5)

Results (1.4) and (1.5) can be extended (by repeated application). For any ma-
tricesA1,A2, . . . ,Ak having the same number of rows,

C(A1,A2, . . . ,Ak) � C(A1)+ C(A2)+ · · · + C(Ak) ; (1.6)

and similarly, for any matricesA1,A2, . . . ,Ak having the same number of
columns,

R




A1

A2
...

Ak


 � R(A1)+R(A2)+ · · · +R(Ak) . (1.7)
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Let U andV represent subspaces of the linear spaceRm×n. If U ∩V � {0}, that
is, if the only matrix thatU andV have in common is them× n null matrix, then
U andV are said to beessentially disjoint. Note that the intersection of essentially
disjoint subspaces ofRm×n is not the empty set; rather, it is a set with one member
(them × n null matrix) — this is the reason for referring to essentially disjoint
subspaces as essentially disjoint rather than as disjoint. (Since them×n null matrix
is a member of every subspace ofRm×n, it is not possible for the intersection of
two subspaces to be the empty set.)

The following lemma gives an important property of essentially disjoint sub-
spaces.

Lemma 17.1.3. Let U andV represent subspaces (of dimension 1 or more) of
Rm×n. And, let {U1, . . . ,Ur} represent any linearly independent set of matrices
in U , and{V1, . . . ,Vs} any linearly independent set of matrices inV. If U andV
are essentially disjoint, then the combined set{U1, . . . ,Ur ,V1, . . . ,Vs} is linearly
independent.

Proof. It suffices to show that if{U1, . . . ,Ur , V1, . . . ,Vs} is linearly dependent,
thenU andV are not essentially disjoint.

Suppose that{U1, . . . ,Ur ,V1, . . . ,Vs} is linearly dependent. Then, for some
scalarsc1, . . . cr andk1, . . . , ks (not all of which are 0),

r∑
i�1

ciUi +
s∑
j�1

kjVj � 0

or, equivalently,
r∑
i�1

ciUi � −
s∑
j�1

kjVj . (1.8)

We have that
∑r

i�1 ciUi �� 0 — since if
∑r

i�1 ciUi � 0 (in which case∑s
j�1 kjVj � 0), we would be led to the contradictory conclusion that{U1, . . . ,

Ur} or {V1, . . . ,Vs} is linearly dependent. Thus, since
∑r

i�1 ciUi ∈ U and [in
light of equality (1.8)]

∑r
i�1 ciUi ∈ V, we conclude thatU ∩V contains a nonnull

matrix and hence thatU andV are not essentially disjoint. Q.E.D.
Note that ifU andV are essentially disjoint subspaces ofRm×n, then, for any

subspaceW of U and any subspaceX of V,W andV are essentially disjoint,U and
X are essentially disjoint, and more generallyW andX are essentially disjoint.

The following lemma gives two alternative characterizations of essentially dis-
joint subspaces.

Lemma 17.1.4. Let U andV represent subspaces ofRm×n. Then

(1) U andV are essentially disjoint if and only if, for matricesU ∈ U andV ∈ V,
the only solution to the matrix equation

U+ V � 0 (1.9)

is U � V � 0; and



17.1 Definitions and Some Basic Properties 381

(2) U andV are essentially disjoint if and only if, for every nonnull matrixU in
U and every nonnull matrixV in V, U andV are linearly independent.

Proof. (1) It suffices to show thatU andV are not essentially disjoint if and only
if, for U ∈ U andV ∈ V, equation (1.9) or, equivalently, the equation

U � −V , (1.10)

has a solution other thanU � V � 0.
Suppose that (forU ∈ U andV ∈ V) equation (1.10) has a solution other than

U � V � 0, sayU � U∗ and V � V∗. Then,U∗ is nonnull. Further, since
−V∗ ∈ V, U∗ is a member ofV (as well as ofU), and henceU∗ ∈ U ∩ V. Thus,
U andV are not essentially disjoint.

Conversely, suppose thatU andV are not essentially disjoint. Then,U ∩ V
contains a nonnull matrixU∗. And, sinceU∗ � −(−U∗),U∗ ∈ U , and−U∗ ∈ V,
a solution to equation (1.10) (that satisfies the constraintsU ∈ U andV ∈ V and
differs fromU � V � 0) can be obtained by takingU � U∗ andV � −U∗.

(2) Suppose thatU andV are essentially disjoint. Then, upon applying Lemma
17.1.3 (in the special case wherer � s � 1), we find that, for every nonnull matrix
U in U and every nonnull matrixV in V, U andV are linearly independent.

Conversely, suppose that, for every nonnullU ∈ U and every nonnullV ∈ V,
U andV are linearly independent. Then, there does not exist any nonnull matrix
belonging to bothU andV, since any such matrix would not be linearly independent
of itself. Q.E.D.

When two subspacesU andV of Rm×n are essentially disjoint, their sumU +V
is sometimes referred to as adirect sum and is sometimes denoted by the symbol
U ⊕ V. By stating that a subspaceW is the direct sum of two subspacesU andV
or by writing W � U ⊕ V, we can simultaneously indicate thatW is the sum of
U andV and thatU andV are essentially disjoint. Or, even if it has already been
indicated that two subspacesU andV are essentially disjoint, we can emphasize
their essential disjointness by referring to their sum as a direct sum and/or by using
the notationU ⊕ V.

Direct sums have an important property, which is described in the following
theorem.

Theorem 17.1.5. Let U represent ap-dimensional subspace andV a q-
dimensional subspace ofRm×n. Further, letS1 andS2 represent bases forU andV,
respectively, and defineS to be the set ofp + q matrices obtained by combining
thep matrices inS1 with theq matrices inS2. If U andV are essentially disjoint
(or equivalently ifU + V is a direct sum), thenS is a basis forU + V; if U and
V are not essentially disjoint, thenS contains a proper subset that is a basis for
U + V.

Proof. It is clear from Lemma 17.1.1 thatS spansU + V.
Now, suppose thatU andV are essentially disjoint. Then, it is evident from

Lemma 17.1.3 thatS is a linearly independent set. Thus,S is a basis forU + V.
Alternatively, suppose thatU andV are not essentially disjoint. Then,U ∩ V

contains a nonnull matrix, sayU. Further,U � ∑p

i�1 ciUi , wherec1, . . . , cp are
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scalars (not all of which can be zero) andU1, . . . ,Up are the matrices inS1.
Similarly, U � ∑q

j�1 kjVj , wherek1, . . . , kq are scalars andV1, . . . ,Vq are the
matrices inS2. Thus,

p∑
i�1

ciUi +
q∑
j�1

(−kj )Vj � U− U � 0 ,

implying thatS is a linearly dependent set. We conclude thatS itself is not a basis
and consequently (in light of Theorem 4.3.11) thatS contains a proper subset that
is a basis forU + V. Q.E.D.

The following corollary is an immediate consequence of Theorem 17.1.5.
Corollary 17.1.6. Let U andV represent subspaces ofRm×n. If U andV are

essentially disjoint (or equivalently ifU + V is a direct sum), then

dim(U ⊕ V) � dim(U)+ dim(V) ; (1.11)

and ifU andV are not essentially disjoint, then

dim(U + V) < dim(U)+ dim(V) .

Or, equivalently,
dim(U + V) ≤ dim(U)+ dim(V) , (1.12)

with equality holding if and only ifU andV are essentially disjoint.
Corollary 17.1.6 leads to the following result.
Corollary 17.1.7. LetU andV represent subspaces of a linear spaceW. If U and

V are essentially disjoint and if dim(U)+ dim(V) � dim(W), thenU ⊕ V � W.
Proof (of Corollary 17.1.7). Suppose thatU andV are essentially disjoint and

that dim(U) + dim(V) � dim(W). Then, it follows from Corollary 17.1.6 that
dim(U ⊕ V) � dim(W). Since (according to Corollary 17.1.2)U ⊕ V ⊂ W, we
conclude (on the basis of Theorem 4.3.10) thatU ⊕ V � W. Q.E.D.

As a special case of Corollary 17.1.7, we have the following corollary.
Corollary 17.1.8. Let U andV represent subspaces ofRm×n. If U andV are

essentially disjoint and if dim(U)+ dim(V) � mn, thenU ⊕ V � Rm×n.
The following lemma establishes an important relationship.
Lemma 17.1.9. Let U andV represent subspaces ofRm×n. If U ⊥ V (i.e., if U

andV are orthogonal), thenU ∩ V � {0} (i.e.,U andV are essentially disjoint).
Proof. Suppose thatU ⊥ V. Then, for any matrixU in U ∩ V (i.e., in bothU

andV), U ⊥ U, or, equivalently,U · U � 0, implying thatU � 0. We conclude
thatU ∩ V � {0}. Q.E.D.

The converse of Lemma 17.1.9 is not necessarily true. That is, essentially disjoint
subspaces are not necessarily orthogonal. Suppose, for example, thatU is the one-
dimensional subspace spanned by the vector (1, 0) andV is the one-dimensional
subspace spanned by (1, 1). Then,U andV are essentially disjoint; however,U
andV are not orthogonal (with respect to the usual inner product).

As an immediate consequence of Lemma 17.1.9, we have the following corol-
lary.

Corollary 17.1.10. Let U andV represent subspaces ofRm×n. If U andV are
orthogonal, then their sum is a direct sum.
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17.2 Some Results on Row and Column Spaces and on
the Ranks of Partitioned Matrices

The following lemma is an almost immediate consequence of Lemma 4.1.1.
Lemma 17.2.1. For anym × n matrix A andm × p matrix B, C(A) andC(B)

are essentially disjoint if and only ifR(A′) andR(B′) are essentially disjoint.
The following lemma can be useful in establishing that a matrix equals a null

matrix.
Lemma 17.2.2. (1) Let A represent anm × n matrix andB anm × p matrix

whose column spacesC(A) andC(B) are essentially disjoint. And, letX represent
anm× q matrix. If C(X) ⊂ C(A) andC(X) ⊂ C(B), or, equivalently, ifX � AK
andX � BL for some matricesK andL, thenX � 0.

(2) Similarly, letA represent anm× nmatrix andB ap× nmatrix whose row
spacesR(A) andR(B) are essentially disjoint. And, letX represent aq×nmatrix.
If R(X) ⊂ R(A) andR(X) ⊂ R(B), or, equivalently, ifX � KA andX � LB for
some matricesK andL, thenX � 0.

Proof. (1) If C(X) ⊂ C(A) andC(X) ⊂ C(B), then

C(X) ⊂ C(A) ∩ C(B) � {0} ,
implying that rank(X) � dim[C(X)] � 0 and hence thatX � 0.

(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
As a variation on Lemma 17.2.2, we have the following corollary.
Corollary 17.2.3. (1) LetA represent anm× n matrix andB anm× p matrix

whose column spacesC(A) andC(B) are essentially disjoint. And letK represent
ann× q matrix andL ap × q matrix. If AK � BL, thenAK � 0 andBL � 0.

(2) Similarly, letA represent anm× nmatrix andB ap× nmatrix whose row
spacesR(A) andR(B) are essentially disjoint. And letK represent aq×mmatrix
andL aq × p matrix. If KA � LB, thenKA � 0 andLB � 0.

By applying Corollary 17.1.6 in the special case whereU andV are the column
spaces of anm×nmatrixA and anm×p matrixB, and in the special case where
U andV are the row spaces of anm× nmatrixA and aq × nmatrixC, we obtain
[in light of equalities (1.4) and (1.5)] the following theorem, which sharpens the
results of Lemma 4.5.7.

Theorem 17.2.4. (1) Let A represent anm× n matrix andB anm× p matrix.
If C(A) andC(B) are essentially disjoint, then

rank(A, B) � rank(A)+ rank(B) ,

and ifC(A) andC(B) are not essentially disjoint, then

rank(A, B) < rank(A)+ rank(B) .

Or, equivalently,
rank(A, B) ≤ rank(A)+ rank(B) , (2.1)

with equality holding if and only ifC(A) andC(B) are essentially disjoint.
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(2) Let A represent anm× n matrix andC a q × n matrix. If R(A) andR(C)
are essentially disjoint, then

rank

(
A
C

)
� rank(A)+ rank(C) ,

and ifR(A) andR(C) are not essentially disjoint, then

rank

(
A
C

)
< rank(A)+ rank(C) .

Or, equivalently,

rank

(
A
C

)
≤ rank(A)+ rank(C) , (2.2)

with equality holding if and only ifR(A) andR(C) are essentially disjoint.
A further result on row and column spaces is given by the following lemma.
Lemma 17.2.5. (1) Let A represent anm × n matrix andB anm × p matrix

such thatC(A) andC(B) are essentially disjoint and rank(A)+ rank(B) � m. Then,
corresponding to anym× q matrix C, there exist ann× q matrix R and ap × q
matrix S such that

C � AR+ BS .

(2) Similarly, letA represent anm×nmatrix andB ap×nmatrix such thatR(A)
andR(B) are essentially disjoint and rank(A)+rank(B) � n. Then, corresponding
to anyq×nmatrixC, there exist aq×mmatrixR and aq×p matrixS such that

C � RA+ SB .

Proof. (1) It follows from Corollary 17.1.8 thatC(A) + C(B) � Rm or, equiv-
alently [in light of result (1.4)], thatC(A,B) � Rm. Thus,C(C) ⊂ C(A, B),
implying (in light of Lemma 4.2.2) thatC � (A, B)L for some (n+p)×q matrix

L. And, upon partitioningL asL �
(

R
S

)
(whereR hasn rows), we find that

C � AR+ BS.
(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
The following lemma characterizes the idempotency of ann × n matrix A in

terms of the essential disjointness of two subspaces ofRn.
Lemma 17.2.6. (1) An n × n matrix A is idempotent if and only ifC(A) and

C(I−A) are essentially disjoint. (2) Ann× nmatrixA is idempotent if and only
if R(A) andR(I− A) are essentially disjoint.

Proof. (1) SinceA− A2 � A(I− A) andA− A2 � (I− A)A, it follows from
Lemma 17.2.2 that ifC(A) andC(I−A) are essentially disjoint, thenA−A2 � 0
or, equivalently,A is idempotent.

Conversely, suppose thatA is idempotent. Letx represent an arbitrary vector
in C(A)∩C(I − A). Then,x � Ay andx � (I − A)z for some vectorsy andz,
implying that

x � AAy � Ax � A(I− A)z � (A− A2)z � 0 .
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Thus,C(A) andC(I− A) are essentially disjoint.
(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
The following lemma has some useful consequences.
Lemma 17.2.7. For anym× n matrix A, C(A) andC(I−AA−) are essentially

disjoint, andR(A) andR(I− A−A) are essentially disjoint.
Proof. Since (according to Lemma 10.2.5)AA− is idempotent, it follows from

Lemma 17.2.6 thatC(AA−) andC(I − AA−) are essentially disjoint and hence
(in light of Lemma 9.3.7) thatC(A) and C(I − AA−) are essentially disjoint.
That R(A) andR(I − A−A) are essentially disjoint follows from an analogous
argument. Q.E.D.

In light of Lemma 4.2.2 and Theorem 17.2.4, we have the following corollary
(of Lemma 17.2.7).

Corollary 17.2.8. Let A represent anm× n matrix,B anm× q matrix, andC
aq × n matrix. Then,C(A) andC[(I− AA−)B] are essentially disjoint, and

rank[A, (I− AA−)B] � rank(A)+ rank[(I− AA−)B] . (2.3)

Similarly, R(A) andR[C(I− A−A)] are essentially disjoint, and

rank

(
A

C(I− A−A)

)
� rank(A)+ rank[C(I− A−A)] . (2.4)

More generally, for anym× p matrix F such thatC(F) ⊂ C(A) (or, equivalently,
for anym× p matrixF that is expressible asF � AK for somen× p matrixK),
C(F) andC[(I− AA−)B] are essentially disjoint, and

rank[F, (I− AA−)B] � rank(F)+ rank[(I− AA−)B] . (2.5)

And, for anyp × n matrix H such thatR(H) ⊂ R(A) (or equivalently for any
p × n matrix H that is expressible asH � LA for somep ×m matrix L), R(H)
andR[C(I− A−A)] are essentially disjoint, and

rank

(
H

C(I− A−A)

)
� rank(H)+ rank[C(I− A−A)] . (2.6)

Upon combining Lemma 4.5.4 with Corollary 17.2.8 [and recalling results (1.4)
and (1.5)], we obtain as a second corollary (of Lemma 17.2.7) the following result.

Corollary 17.2.9. For anym× n matrix A andm× p matrix B,

C(A, B) � C[A, (I− AA−)B] � C(A)⊕ C[(I− AA−)B], (2.7)

rank(A, B) � rank[A, (I− AA−)B] � rank(A)+ rank[(I− AA−)B]. (2.8)

Similarly, for anym× n matrix A andq × n matrix C.

R
(

A
C

)
� R

(
A

C(I− A−A)

)
� R(A)⊕R[C(I− A−A)], (2.9)

rank

(
A
C

)
� rank

(
A

C(I− A−A)

)
� rank(A)+ rank[C(I− A−A)]. (2.10)
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Three additional corollaries (of Lemma 17.2.7) are as follows.
Corollary 17.2.10. Let A represent anm×nmatrix,B anm×p matrix, andC

aq × n matrix. Then, rank[(I− AA−)B] � rank(B) if and only if C(A) andC(B)
are essentially disjoint, and, similarly, rank[C(I − A−A)] � rank(C) if and only
if R(A) andR(C) are essentially disjoint.

Proof. According to Corollary 17.2.9,

rank[(I− AA−)B] � rank(A, B)− rank(A) .

Moreover, according to Theorem 17.2.4, rank(A, B) � rank(A) + rank(B), or,
equivalently, rank(A, B) − rank(A) � rank(B), if and only if C(A) andC(B) are
essentially disjoint. We conclude that rank[(I − A−A)B] � rank(B) if and only
if C(A) andC(B) are essentially disjoint. That rank[C(I − A−A)] � rank(C) if
and only ifR(A) andR(C) are essentially disjoint follows from a similar argu-
ment. Q.E.D.

Corollary 17.2.11. Let A represent anm × n matrix, B anm × p matrix, and
C a q × n matrix. Then,R[(I − AA−)B] � R(B) if and only if C(A) andC(B)
are essentially disjoint, and, similarly,C[C(I−A−A)] � C(C) if and only if R(A)
andR(C) are essentially disjoint.

Proof. Corollary 17.2.11 follows from Corollary 17.2.10 upon observing
(in light of Corollary 4.4.7) thatR[(I − AA−)B] � R(B) if and only if
rank[(I − AA−)B] � rank(B) and thatC[C(I − A−A)] � C(C) if and only if
rank[C(I− A−A)] � rank(C). Q.E.D.

Corollary 17.2.12. Let A represent anm × n matrix, B anm × p matrix,
and C a q × n matrix. If AA−B � 0 or BB−A � 0, thenC(A) andC(B) are
essentially disjoint. Similarly, ifCA−A � 0 or AC−C � 0, thenR(A) andR(C)
are essentially disjoint.

Proof. If AA−B � 0 orBB−A � 0, then clearly rank[(I−AA−)B] � rank(B) or
rank[(I−BB−)A] � rank(A), and it follows from Corollary 17.2.10 thatC(A) and
C(B) are essentially disjoint. Similarly, ifCA−A � 0 or AC−C � 0, then clearly
rank[C(I − A−A)] � rank(C) or rank[A(I − C−C)] � rank(A), and it follows
from Corollary 17.2.10 thatR(A) andR(C) are essentially disjoint. Q.E.D.

In connection with Lemma 17.2.7 (and its corollaries), recall [from Part (1)
of Theorem 12.3.4] that one choice forA− is (A′A)−A′, and observe that, for
A− � (A′A)−A′, AA− � PA. Similarly, recall [from Part (5) of Theorem 12.3.4]
that another choice forA− is A′(AA′)−, and observe that, forA− � A′(AA′)−,
A−A � PA′ .

As a consequence of Corollary 17.2.9, we have that, for anym × n matrix A
andm× p matrix B, there exists a matrixK (havingm rows) such thatC(A) and
C(K) are essentially disjoint andC(A, B) � C(A, K) or, equivalently, such that
C(A, B) equals the direct sum ofC(A) andC(K). One choice forK (that given by
Corollary 17.2.9) isK � (I−AA−)B. The following theorem gives, for the special
case whereB is an (m×m) symmetric nonnegative definite matrix, an alternative
choice forK.

Theorem 17.2.13. For anym× nmatrixA and anym×m symmetric nonneg-
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ative definite matrixV, C(A) andC{V[I − (A′)−A′]} are essentially disjoint and
C(A,V) � C{A,V[I− (A′)−A′]}, or, equivalently,

C(A, V) � C(A)⊕ C{V[I− (A′)−A′]} . (2.11)

Proof. Let Z � I − (A′)−A′, and observe thatA′Z � 0 and hence thatZ′A �
(A′Z)′ � 0.

Let x represent an arbitrary (m× 1) vector inC(A) ∩ C(VZ). Then,x � Ar for
some vectorr, andx � VZs for some vectors. Moreover,

Z′VZs � Z′x � Z′Ar � 0 ,

so that
(Zs)′VZs � s′Z′VZs � 0 ,

implying (in light of Corollary 14.3.11) thatVZs � 0 or equivalently thatx � 0.
Thus,C(A) andC(VZ) are essentially disjoint.

Now, it is clear from Lemma 4.5.5 that

C(A, VZ) ⊂ C(A, V) .

And, making use of Theorem 17.2.4 and result (2.8) and observing that

rank(VZ) � rank[(VZ)′] � rank({I− A[(A′)−]′}V)

and that [(A′)−]′ is a generalized inverse ofA, we find that

rank(A, VZ) � rank(A)+ rank(VZ)

� rank(A)+ rank({I− A[(A′)−]′}V)

� rank(A, V) .

We conclude, on the basis of Theorem 4.4.6, thatC(A,VZ) � C(A,V). Q.E.D.
In connection with Theorem 17.2.13, recall (from Corollary 11.2.2) that

C[I− (A′)−A′] � N (A′), and observe (in light of Corollaries 4.2.4 and 4.5.6)
that, for any matrixZ such thatC(Z) � N (A′), C{V[I − (A′)−A′]} � C(VZ) and
C{A,V[I− (A′)−A′]} � C(A, VZ). Thus, we have the following corollary.

Corollary 17.2.14. Let A represent anm × n matrix, and letV represent an
m × m symmetric nonnegative definite matrix. Then, for any matrixZ such that
C(Z) � N (A′) (i.e., any matrixZ whose columns span the null space ofA′), C(A)
andC(VZ) are essentially disjoint andC(A,V) � C(A,VZ), or, equivalently,

C(A, V) � C(A)⊕ C(VZ) . (2.12)

The following lemma gives a basic result on the essential disjointness of the row
or column spaces of partitioned matrices.

Lemma 17.2.15. (1) Let A � (A1,A2) represent anm × n partitioned matrix
andB � (B1,B2) ap × n partitioned matrix, whereB1 has the same number of
columns, sayn1, asA1. If R(A1) andR(B1) are essentially disjoint and ifR(A2)
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andR(B2) are essentially disjoint, thenR(A) andR(B) are essentially disjoint. (2)

Similarly, letA �
(

A1

A2

)
represent anm×n partitioned matrix, andB �

(
B1

B2

)
an

m× p partitioned matrix, whereB1 has the same number of rows, saym1, asA1.
If C(A1) andC(B1) are essentially disjoint and ifC(A2) andC(B2) are essentially
disjoint, thenC(A) andC(B) are essentially disjoint.

Proof. (1) Suppose thatR(A1) andR(B1) are essentially disjoint and thatR(A2)
andR(B2) are essentially disjoint. Letx′ represent an arbitrary (1× n) vector in
R(A)∩R(B). Then,x′ � r′A andx′ � s′B for some (row) vectorsr′ ands′. Now,
partitioningx′ asx′ � (x′1, x′2) (wherex′1 is of dimensions 1× n1), we find that

(x′1, x′2) � r′(A1, A2) � (r′A1, r′A2)

and, similarly, that

(x′1, x′2) � s′(B1, B2) � (s′B1, s′B2) .

Thus,x′1 � r′A1 andx′1 � s′B1, implying (in light of Lemma 17.2.2) thatx′1 � 0;
and similarlyx′2 � r′A2 andx′2 � s′B2, implying thatx′2 � 0. It follows that
x′ � (0, 0) � 0. We conclude thatR(A) andR(B) are essentially disjoint.

(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
In the special case where one of the submatricesA1,A2,B1, andB2 is a null

matrix, Lemma 17.2.15 can be restated as the following corollary.
Corollary 17.2.16. Let T represent anm× p matrix,U anm× q matrix,V an

n×pmatrix, andW ann×q matrix. (1) IfR(T) andR(V) are essentially disjoint,
thenR(T, U) andR(V, 0) are essentially disjoint. Similarly, ifR(U) andR(W) are
essentially disjoint, thenR(T, U) andR(0, W) are essentially disjoint. (2) IfC(T)

andC(U) are essentially disjoint, thenC
(

T
V

)
andC

(
U
0

)
are essentially disjoint.

Similarly, if C(V) andC(W) are essentially disjoint, thenC
(

T
V

)
andC

(
0

W

)
are

essentially disjoint.
Let A � (A1,A2) represent anm × n partitioned matrix, andB � (B1,B2)

a p × n partitioned matrix (whereB1 has the same number of columns asA1).
ForR(A) andR(B) to be essentially disjoint, it is (according to Lemma 17.2.15)
sufficient thatR(A1) andR(B1) be essentially disjoint and thatR(A2) andR(B2)
be essentially disjoint. Are these conditions necessary as well as sufficient? The
answer is no, as is easily verified.

Results (2.10) and (2.8) are extended in the following theorem.
Theorem 17.2.17. Let T represent anm× p matrix,U anm× q matrix, andV

ann× p matrix. Then

rank

(
T U
V 0

)
� rank

(
0 V
U T

)
� rank(V)+ rank[U, T(I− V−V)] (2.13)
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� rank(U)+ rank

(
V

(I− UU−)T

)
(2.14)

� rank(U)+ rank(V)

+ rank[(I− UU−)T(I− V−V)]. (2.15)

Proof. Clearly,

(
0

V−

)
is a generalized inverse of (0, V), and

I−
(

0
V−

)
(0, V) �

(
I 0
0 I− V−V

)
.

Thus, making use of result (2.10), we find that

rank

(
0 V
U T

)
� rank(0, V)+ rank

{
(U, T)

[
I−
(

0
V−

)
(0, V)

]}

� rank(V)+ rank[U, T(I− V−V)] .

It can be established in similar fashion that rank

(
0 V
U T

)
equals expression (2.14).

That rank

(
T U
V 0

)
= rank

(
0 V
U T

)
is evident from Lemma 8.5.1. And it follows

from result (2.8) that

rank[U, T(I− V−V)] � rank(U)+ rank[(I− UU−)T(I− V−V)] .

Substitution of this expression for rank[U,T(I − V−V)] into expression (2.13)
gives expression (2.15). Q.E.D.

The following theorem can be regarded as a generalization of Corollary 17.2.10.
Theorem 17.2.18. Let T represent anm× p matrix,U anm× q matrix, andV

ann× p matrix. Then,

rank[(I− UU−)T(I− V−V)] ≤ rank(T) , (2.16)

with equality holding if and only ifC(T) andC(U) are essentially disjoint andR(T)
andR(V) are essentially disjoint.

Proof. It follows from Corollary 4.4.5 that

rank[(I− UU−)T(I− V−V)] ≤ rank[T(I− V−V)] ≤ rank(T) .

Further, in light of Corollary 17.2.10,

rank[(I− UU−)T(I− V−V)] � rank(T)

⇔ rank[(I− UU−)T(I− V−V)] � rank[T(I− V−V)] � rank(T)

⇔ C(U) andC[T(I− V−V)] are essentially disjoint and

R(V) andR(T) are essentially disjoint.
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And, according to Corollary 17.2.11,

R(V) andR(T) are essentially disjoint⇔ C[T(I− V−V)] � C(T),

and consequently

C(U) andC[T(I− V−V)] are essentially disjoint and
R(V) andR(T) are essentially disjoint

⇔ C(U) andC(T) are essentially disjoint and
R(V) andR(T) are essentially disjoint.

Q.E.D.
Upon combining Theorem 17.2.18 with result (2.15), we obtain the following

theorem, which extends the results of Theorem 17.2.4.
Theorem 17.2.19. For anym× p matrixT,m× q matrixU, andn× p matrix

V,

rank

(
T U
V 0

)
≤ rank(T)+ rank(U)+ rank(V) , (2.17)

with equality holding if and only ifR(T) andR(V) are essentially disjoint and
C(T) andC(U) are essentially disjoint.

17.3 Some Results on Linear Systems and on
Generalized Inverses of Partitioned Matrices

The following theorem gives a basic result on a linear system whose left and right
sides are the sums of the left and right sides of two other linear systems.

Theorem 17.3.1. LetA1 represent anm×n1 matrix,A2 anm×n2 matrix, andB1

andB2 m×pmatrices. Further, letn � n1+n2, A � (A1,A2), andB � B1+B2.
Suppose thatC(A1) andC(A2) are essentially disjoint and thatC(B1) ⊂ C(A1) and

C(B2) ⊂ C(A2). Then, for any solutionX∗ �
(

X∗
1

X∗
2

)
to the linear systemAX � B

(in ann× p matrix X), or, equivalently, to the linear system

A1X1 + A2X2 � B1 + B2

(in n1 × p andn2 × p matricesX1 andX2), X∗
1 is a solution to the linear system

A1X1 � B1, andX∗
2 is a solution to the linear systemA2X2 � B2.

Proof. According to Lemma 4.2.2,B1 � A1F1 and B2 � A2F2 for some
matricesF1 andF2. Thus, we have that

A1X∗
1 + A2X∗

2 � B1 + B2 � A1F1 + A2F2 ,

implying that
A1(X∗

1 − F1) � A2(F2 − X∗
2) .

SinceC(A1) andC(A2) are essentially disjoint, it follows (in light of Corollary
17.2.3) thatA1(X∗

1 − F1) � 0 andA2(F2 − X∗
2) � 0 and hence thatA1X∗

1 �
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A1F1 � B1 and A2X∗
2 � A2F2 � B2. We conclude thatX∗

1 is a solution to
A1X1 � B1 and thatX∗

2 is a solution toA2X2 � B2. Q.E.D.
In connection with Theorem 17.3.1, note (in light of Lemmas 4.5.8 and 4.5.5)

that the supposition thatC(B1) ⊂ C(A1) andC(B2) ⊂ C(A2) implies thatC(B) ⊂
C(A) and hence that the linear systemAX � B is consistent.

Suppose that a linear systemA1X � B1 (in a matrixX of unknowns) is consistent
and that a second linear systemA2X � B2 (in X) is also consistent. Under what

circumstances is the combined linear system

(
A1

A2

)
X �

(
B1

B2

)
consistent, or,

equivalently, under what circumstances doesA2X � B2 have solutions in common
with A1X � B1? This question is addressed in the following theorem.

Theorem 17.3.2. Let A1 represent anm1 × n matrix, A2 anm2 × n matrix,
B1 anm1 × p matrix, andB2 anm2 × p matrix. And suppose that the linear
systemsA1X � B1 andA2X � B2 (in X) are both consistent [or, equivalently, that
C(B1) ⊂ C(A1) andC(B2) ⊂ C(A2)]. If R(A1) andR(A2) are essentially disjoint,

then the combined linear system

(
A1

A2

)
X �

(
B1

B2

)
(in X) is consistent.

Proof. Suppose thatR(A1) andR(A2) are essentially disjoint. Letk represent

any (m1+m2)×1 vector such thatk′
(

A1

A2

)
� 0′. Then, partitioningk ask �

(
k1

k2

)
(wherek1 hasm1 elements),k′1A1+k′2A2 � 0′, or, equivalently,k′1A1 � −k′2A2.
Thus,k′1A1 � 0′, andk′2A2 � 0′.

Moreover, each of the linear systemsA1X � B1 andA2X � B2 is (in light
of Theorem 7.3.1) compatible, so thatk′1B1 � 0′ and k′2B2 � 0′ and hence

k′
(

B1

B2

)
� 0′. We conclude that the combined linear system

(
A1

A2

)
X �

(
B1

B2

)
is

compatible and hence (in light of Theorem 7.3.1) consistent. Q.E.D.
Under what condition(s) are the blocksG1 and G2 of a generalized inverse(

G1

G2

)
of a partitioned matrix (A, B) generalized inverses of the blocks (A andB)

of (A, B)? And, similarly, under what condition(s) are the blocksH1 andH2 of a

generalized inverse (H1,H2) of a partitioned matrix

(
A
C

)
generalized inverses of

the blocks of

(
A
C

)
? These questions are answered in the following theorem.

Theorem 17.3.3. Let A represent anm × n matrix, B anm × p matrix, and

C a q × n matrix. (1) For any generalized inverseG �
(

G1

G2

)
(whereG1 hasn

rows) of them× (n+ p) partitioned matrix (A, B), G1 is a generalized inverse of
A, andG2 a generalized inverse ofB, if and only if C(A) andC(B) are essentially
disjoint. (2) Similarly, for any generalized inverseH � (H1,H2) (whereH1 hasm

columns) of the (m+q)×n partitioned matrix

(
A
C

)
, H1 is a generalized inverse of

A, andH2 a generalized inverse ofC, if and only ifR(A) andR(C) are essentially
disjoint.
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Proof. (1) Clearly,

(AG1A+ BG2A, AG1B+ BG2B) � (A, B)G(A, B) � (A, B) ,

so that
BG2A � A− AG1A, AG1B � B− BG2B . (3.1)

Now, suppose thatC(A) andC(B) are essentially disjoint. Then, rewriting equal-
ities (3.1) as

BG2A � A(I−G1A), AG1B � B(I−G2B)

and applying Corollary 17.2.3, we find that

A(I−G1A) � 0, B(I−G2B) � 0 ,

or, equivalently, thatAG1A � A andBG2B � B. Thus,G1 is a generalized inverse
of A andG2 a generalized inverse ofB.

Conversely, suppose thatG1 is a generalized inverse ofA andG2 is a generalized
inverse ofB. Then it follows from result (3.1) thatBG2A � 0, and we conclude
(on the basis of Corollary 17.2.12) thatC(A) andC(B) are essentially disjoint.

(2) The proof of Part (2) is analogous to that of Part (1). Q.E.D.
The following theorem gives sufficient conditions for the blocksG11,G21,G12,

and G22 of a generalized inverse

(
G11 G12

G21 G22

)
of a partitioned matrixA �(

T U
V W

)
to be generalized inverses of the blocks (T, U, V, andW) of A.

Theorem 17.3.4. LetT represent anm×pmatrix,U anm×q matrix,V ann×p
matrix, andW ann×q matrix. And let

(
G11 G12

G21 G22

)
(whereG11 is of dimensions

p ×m) represent a generalized inverse of the partitioned matrix

(
T U
V W

)
.

(1) If C(T) andC(U) are essentially disjoint andR(T) andR(V) are essentially
disjoint, thenG11 is a generalized inverse ofT;

(2) if C(U) andC(T) are essentially disjoint andR(U) andR(W) are essentially
disjoint, thenG21 is a generalized inverse ofU;

(3) if C(V) andC(W) are essentially disjoint andR(V) andR(T) are essentially
disjoint, thenG12 is a generalized inverse ofV; and

(4) if C(W) andC(V) are essentially disjoint andR(W) andR(U) are essentially
disjoint, thenG22 is a generalized inverse ofW.

Proof. Clearly,


TG11T+ UG21T
+ TG12V+ UG22V

TG11U+ UG21U
+ TG12W+ UG22W

VG11T+WG21T
+ VG12V+WG22V

VG11U+WG21U
+ VG12W+WG22W
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�
(

T U
V W

)(
G11 G12

G21 G22

)(
T U
V W

)
�
(

T U
V W

)
. (3.2)

(1) It follows from result (3.2) that

TG11T+ UG21T+ TG12V+ UG22V � T . (3.3)

Now, suppose thatC(T) andC(U) are essentially disjoint andR(T) andR(V) are
essentially disjoint. Then, rewriting equality (3.3) as

U(G21T+G22V) � T(I−G11T−G12V)

and applying Corollary 17.2.3, we find that

T(I−G11T−G12V) � 0 . (3.4)

Further, rewriting equality (3.4) as

(I− TG11)T � TG12V

and again applying Corollary 17.2.3, we find that (I−TG11)T � 0 or, equivalently,
thatT � TG11T. Thus,G11 is a generalized inverse ofT.

(2), (3), and (4). The proofs of Parts (2), (3), and (4) are analogous to the proof
of Part (1). Q.E.D.

Note that the conditions of Parts (1) and (4) of Theorem 17.3.4 [as well as those
of Parts (2) and (3)] are satisfied in particular ifU � 0 andV � 0 — if U � 0 and

V � 0,
(

T U
V W

)
reduces to the block-diagonal matrix diag(T, W).

17.4 Subspaces: Sum of Their Dimensions Versus
Dimension of Their Sum

The following theorem quantifies the difference between the right and left sides
of inequality (1.12).

Theorem 17.4.1. For any subspacesU andV of Rm×n,

dim(U + V) � dim(U)+ dim(V)− dim(U ∩ V) , (4.1)

or equivalently

dim(U ∩ V) � dim(U)+ dim(V)− dim(U + V). (4.2)

Proof. Let r � dim(U), s � dim(V), andt � dim(U ∩ V). If t � 0, U andV
are essentially disjoint, and result (4.1) follows from result (1.11). Consider now
the case wheret > 0.

Let {F1, . . . ,Ft } represent a basis for the subspaceU ∩ V. Since (U ∩ V) ⊂ U ,
F1, . . . ,Ft are contained inU , and it follows from Theorem 4.3.12 that there exist
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r−t additional matricesA1, . . . ,Ar−t such that the set{F1, . . . ,Ft , A1, . . . ,Ar−t }
is a basis forU — if r � t , the set{F1, . . . ,Ft , A1, . . . ,Ar−t } reduces to the
set{F1, . . . ,Ft }. Similarly, F1, . . . ,Ft are contained inV, and there exists − t

additional matricesB1, . . . ,Bs−t such that the set{F1, . . . ,Ft , B1, . . . ,Bs−t } is a
basis forV.

To validate result (4.1), it suffices to establish that the set{F1, . . . ,Ft ,
A1, . . . ,Ar−t , B1, . . . ,Bs−t } spansU + V and is linearly independent [thereby
establishing that this (r + s − t)-dimensional set is a basis forU + V]. Clearly, if
X ∈ U andY ∈ V, then each of the matricesX andY is expressible as a linear
combination of the matricesF1, . . . ,Ft , A1, . . . ,Ar−t , B1, . . . ,Bs−t and conse-
quentlyX+ Y is expressible as a linear combination of these matrices. Thus, the
set{F1, . . . ,Ft , A1, . . . ,Ar−t , B1, . . . ,Bs−t } spansU + V.

To complete the proof, we must show that this set is linearly independent. For
this purpose, suppose thats > t — if s � t , the set{F1, . . . ,Ft , A1, . . . ,Ar−t ,
B1, . . . ,Bs−t } reduces to the set{F1, . . . ,Ft , A1, . . . ,Ar−t }, which is a basis for
U and is therefore linearly independent.

Let k1, . . . , kt , c1, . . . , cr−t , d1, . . . , ds−t represent any scalars such that

k1F1+ · · · + ktFt + c1A1+ · · · + cr−tAr−t + d1B1+ · · · + ds−tBs−t � 0. (4.3)

And, define

H � k1F1 + · · · + ktFt + c1A1 + · · · + cr−tAr−t . (4.4)

Then,
H � −d1B1 − · · · − ds−tBs−t . (4.5)

Equality (4.4) implies thatH ∈ U , and equality (4.5) implies thatH ∈ V. Thus,
H ∈ U ∩ V, and, consequently, there exist scalarsz1, . . . , zt such that

H � z1F1 + · · · + ztFt . (4.6)

Together, equalities (4.5) and (4.6) imply that

z1F1 + · · · + ztFt + d1B1 + · · · + ds−tBs−t � H−H � 0.

Since{F1, . . . ,Ft , B1, . . . ,Bs−t } is a basis forV and hence is linearly independent,
it follows that

d1 � . . . � ds−t � 0 (4.7)

(and thatz1 � . . . � zt � 0) and [in light of equality (4.3)] that

k1F1 + · · · + ktFt + c1A1 + · · · + cr−tAr−t � 0. (4.8)

And since{F1, . . . ,Ft , A1, . . . ,Ar−t } is a basis forU and hence is linearly inde-
pendent, result (4.8) implies that

k1 � . . . � kt � c1 � . . . � cr−t � 0. (4.9)
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We conclude [on the basis of results (4.7) and (4.9)] that the set{F1, . . . ,Ft ,
A1, . . . ,Ar−t , B1, . . . ,Bs−t } is linearly independent. Q.E.D.

By applying Theorem 17.4.1 in the special case whereU andV are the column
spaces of anm× nmatrixA and anm×p matrixB and in the special case where
U andV are the row spaces of anm× nmatrixA and aq × nmatrixC, we obtain
[in light of equalities (1.4) and (1.5)] the following theorem, which quantifies the
difference between the right and left sides of inequality (2.1) and the difference
between the right and left sides of inequality (2.2).

Theorem 17.4.2. Let A represent anm× n matrix,B anm× p matrix, andC
aq × n matrix. Then,

rank(A,B) � rank(A)+ rank(B)− dim[C(A) ∩ C(B)], (4.10)

rank

(
A
C

)
� rank(A)+ rank(C)− dim[R(A) ∩R(C)]. (4.11)

Or, equivalently,

dim[C(A) ∩ C(B)] � rank(A)+ rank(B)− rank(A,B), (4.12)

dim[R(A) ∩R(C)] � rank(A)+ rank(C)− rank

(
A
C

)
. (4.13)

Upon combining result (4.10) with result (2.8) and result (4.11) with result
(2.10), we obtain the following corollary of Theorem 17.4.2.

Corollary 17.4.3. Let A represent anm× n matrix,B anm× p matrix, andC
aq × n matrix. Then,

rank[(I− AA−)B] � rank(B)− dim[C(A) ∩ C(B)], (4.14)

rank[C(I− A−A)] � rank(C)− dim[R(A) ∩R(C)]. (4.15)

Result (4.15) can be restated in terms of the following set:

U � {x ∈ Rq×1 : x � Cz for somen× 1 vectorz in N (A)}.

We have that
U � C[C(I− A−A)], (4.16)

as is evident upon observing (in light of Corollary 11.2.2) that

x ∈ C[C(I− A−A)] ⇔ x � C(I− A−A)y for somen× 1 vectory
⇔ x � Cz for somez in C(I− A−A)
⇔ x � Cz for somez in N (A).

Thus,U is a linear space, and, as a consequence of result (4.15),

dim(U) � rank[C(I− A−A)] � rank(C)− dim[R(A) ∩R(C)]. (4.17)
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17.5 Some Results on the Rank of a Product of Matrices

a. Initial presentation of results

Upper bounds for the product of anm× nmatrixA and ann×p matrixB are, as
previously indicated (in Corollary 4.4.5):

rank(AB) ≤ rank(A), rank(AB) ≤ rank(B). (5.1)

Note that inequalities (5.1) can be combined and restated as

rank(AB) ≤ min[rank(A), rank(B)]. (5.2)

For purposes of obtaining a lower bound for the rank of a product of matrices, let
A represent anm×nmatrix,C ann× q matrix, andB aq×p matrix. According
to Theorem 9.6.4,

rank

(
C CB

AC 0

)
� rank(C)+ rank(−ACB) � rank(C)+ rank(ACB), (5.3)

and, according to Theorem 17.2.17,

rank

(
C CB

AC 0

)
� rank(AC)+ rank(CB)

+ rank{[I− CB(CB)−]C[I− (AC)−AC]}. (5.4)

Equating expression (5.4) to expression (5.3), we obtain the following result on
the rank of a product of three matrices.

Theorem 17.5.1. Let A represent anm× nmatrix,C ann× q matrix, andB a
q × p matrix. Then,

rank(ACB) � rank(AC)+ rank(CB)− rank(C)

+ rank
{[

I− CB(CB)−
]

C
[
I− (AC)−AC

]}
. (5.5)

Further,
rank(ACB) ≥ rank(AC)+ rank(CB)− rank(C), (5.6)

with equality holding if and only if[
I− CB(CB)−

]
C
[
I− (AC)−AC

] � 0. (5.7)

In the special case whereC � In, Theorem 17.5.1 reduces to the following
corollary on the rank of a product of two matrices.

Corollary 17.5.2. LetA represent anm×nmatrix andB ann×pmatrix. Then,

rank(AB) � rank(A)+ rank(B)− n+ rank[(I− BB−)(I− A−A)]. (5.8)

Further,
rank(AB) ≥ rank(A)+ rank(B)− n, (5.9)
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with equality holding if and only if

(I− BB−)(I− A−A) � 0. (5.10)

Inequality (5.9) is calledSylvester’s law of nullity, after James Joseph Sylvester
(1814–1897), and inequality (5.6) is called theFrobenius inequality, after Ferdi-
nand Georg Frobenius (1849–1917).

According to Corollary 17.5.2, the lower bound (5.9) (on the rank of a prod-
uct of two matrices) is attained if and only if equality (5.10) holds. Under what
condition(s) are the upper bounds [given by result (5.1)] attained? To answer this
question, observe (in light of Corollary 17.2.9) that

rank(B, I− A−A) � rank(B)+ rank[(I− BB−)(I− A−A)], (5.11)

rank

(
A

I− BB−

)
� rank(A)+ rank[(I− BB−)(I− A−A)]. (5.12)

A comparison of expressions (5.11) and (5.12) with expression (5.8) leads to the
following theorem.

Theorem 17.5.3. LetA represent anm×nmatrix andB ann×pmatrix. Then,

rank(AB) � rank(A)− n+ rank(B, I− A−A) (5.13)

� rank(B)− n+ rank

(
A

I− BB−

)
. (5.14)

Further, equality is attained in the inequality rank(AB) ≤ rank(A) if and only if
rank(B, I−A−A) � n or, equivalently, if and only if (B, I−A−A) is of full row
rank. And equality is attained in the inequality rank(AB) ≤ rank(B) if and only if

rank

(
A

I− BB−

)
� n or, equivalently, if and only if

(
A

I− BB−

)
is of full column

rank.

b. Reexpression of results in more “geometrically meaningful”
terms

Let A represent anm × n matrix andB ann × p matrix. Then, making use of
Theorem 17.4.2, Lemma 10.2.6, and Corollary 11.2.2, we find that

rank(B, I− A−A) � rank(B)+ rank(I− A−A)

− dim[C(B) ∩ C(I− A−A)]

� rank(B)+ n− rank(A)− dim[C(B) ∩N (A)]. (5.15)

Further, recalling that (B−)′ is a generalized inverse ofB′, we find in similar fashion
that
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rank

(
A

I− BB−

)
� rank

[(
A

I− BB−

)′]
� rank[A′, I− (B−)′B′]
� rank(A)+ rank[I− (B−)′B′]

− dim{C(A′) ∩ C[I− (B−)′B′]}
� rank(A)+ n− rank(B)

− dim[C(A′) ∩N (B′)]. (5.16)

Substituting expressions (5.15) and (5.16) into expressions (5.13) and (5.14), re-
spectively, we obtain the following alternative to Theorem 17.5.3.

Theorem 17.5.4. LetA represent anm×nmatrix andB ann×pmatrix. Then,

rank(AB) � rank(B)− dim[C(B) ∩N (A)] (5.17)

� rank(A)− dim[C(A′) ∩N (B′)]. (5.18)

Further, equality is attained in the inequality rank(AB) ≤ rank(B) if and only if
C(B) andN (A) are essentially disjoint. And equality is attained in the inequality
rank(AB) ≤ rank(A) if and only if C(A′) andN (B′) are essentially disjoint.

By equating expression (5.8) for the rank of a product of two matrices to each
of the alternative expressions (5.17) and (5.18), we find (in light of Lemma 11.3.1)
that (for anym× n matrix A and anyn× p matrix B)

rank[(I− BB−)(I− A−A)] � n− rank(A)− dim[C(B) ∩N (A)]

� dim[N (A)] − dim[C(B) ∩N (A)] (5.19)

and similarly that

rank[(I− BB−)(I− A−A)] � n− rank(B′)− dim[C(A′) ∩N (B′)]
� dim[N (B′)] − dim[C(A′) ∩N (B′)]. (5.20)

Based on equalities (5.19) and (5.20), we obtain the following theorem, which
allows us to reexpress condition (5.10) [under which equality holds in inequality
(5.9)] in more “geometrically meaningful” terms.

Theorem 17.5.5. LetA represent anm×nmatrix andB ann×pmatrix. Then,

(I− BB−)(I− A−A) � 0 ⇔ N (A) ⊂ C(B) ⇔ N (B′) ⊂ C(A′).

Let A represent anm × n matrix, C ann × q matrix, andB a q × p matrix.
Then, making use of result (5.17), we find that

rank(ACB) � rank[A(CB)] � rank(CB)− dim[C(CB) ∩N (A)] (5.21)

and, similarly, making use of result (5.18), that

rank(ACB) � rank[(AC)B] � rank(AC)− dim{C[(AC)′] ∩N (B′)}. (5.22)
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Further, equating expression (5.5) [for rank(ACB)] to expression (5.21) and
making use of result (5.17), we find that

rank{[I− CB(CB)−]C[I− (AC)−AC]}
� rank(C)− rank(AC)− dim[C(CB) ∩N (A)]

� dim[C(C) ∩N (A)] − dim[C(CB) ∩N (A)] (5.23)

and, similarly, equating expression (5.5) to expression (5.22) and making use of
result (5.18), that

rank{[I− CB(CB)−]C[I− (AC)−AC]}
� rank(C)− rank(CB)− dim[C(C′A′) ∩N (B′)]
� dim[C(C′) ∩N (B′)] − dim[C(C′A′) ∩N (B′)]. (5.24)

Based on equalities (5.23) and (5.24), we obtain the following theorem, which
allows us to reexpress condition (5.7) [under which equality holds in the Frobenius
inequality] in more geometrically meaningful terms.

Theorem 17.5.6. Let A represent anm× nmatrix,C ann× q matrix, andB a
q × p matrix. Then,

[I− CB(CB)−]C[I− (AC)−AC] � 0

⇔ C(CB) ∩N (A) � C(C) ∩N (A)

⇔ C(C′A′) ∩N (B′) � C(C′) ∩N (B′).

17.6 Projections Along a Subspace

a. Some general results and terminology

Let V represent a linear space ofm×nmatrices, and letU represent a subspace of
V. The subspaceU and its orthogonal complementU⊥ (which is also a subspace of
U) are orthogonal (as is evident from the very definition ofU⊥) and hence are (as
a consequence of Lemma 17.1.9) essentially disjoint. Moreover, it follows from
Corollary 17.1.2 thatU + U⊥ ⊂ V and from Theorem 12.5.11 thatV ⊂ U + U⊥.
Thus,

V � U ⊕ U⊥ (6.1)

(i.e.,V equals the direct sum ofU andU⊥).
Let X represent anm×pmatrix, and takeW to be anm×m symmetric positive

definite matrix. Then, as a special case of result (6.1) [that whereV � Rm and
U � C(X) and where the inner product forRm is taken to be the bilinear form
whose matrix isW], we have that

Rm � C(X)⊕ C⊥W(X), (6.2)
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which, in the further special case whereW � I, reduces to

Rm � C(X)⊕ C⊥(X). (6.3)

According to Theorem 12.1.3, a subspaceU (of a linear spaceV of m × n

matrices) and its orthogonal complementU⊥ have the following property: corre-
sponding to anym×nmatrixY in V, there exists a unique matrixZ in U such that
Y − Z ∈ U⊥. The following theorem indicates that any two essentially disjoint
subspaces whose sum isV have this property.

Theorem 17.6.1. LetY represent a matrix in a linear spaceV ofm×nmatrices,
and letU andW represent essentially disjoint subspaces whose sum isV. Then,
U contains a unique matrixZ such thatY− Z ∈ W.

Proof. SinceV � U + W, it follows from the very definition of a sum (of
subspaces) thatU contains a matrixZ andW a matrixW such thatY � Z+W.
Clearly,Y− Z � W, and henceY− Z ∈ W.

For purposes of establishing the uniqueness ofZ, let Z∗ represent a matrix
(potentially different fromZ) in U such thatY−Z∗ ∈ W. Then,Z∗ −Z ∈ U and
Y− Z∗ − (Y− Z) ∈ W. And,

Z∗ − Z+ [Y− Z∗ − (Y− Z)] � 0.

We conclude, on the basis of Part (1) of Lemma 17.1.4, thatZ∗ − Z � 0 [and
that Y − Z∗ − (Y − Z) � 0] and hence thatZ∗ � Z, thereby establishing the
uniqueness ofZ. Q.E.D.

Theorem 17.6.1 can be restated in the form of the following corollary.
Corollary 17.6.2. LetY represent a matrix in a linear spaceV ofm×nmatrices,

and letU andW represent essentially disjoint subspaces whose sum isV. ThenU
contains a unique matrixZ andW a unique matrixW such thatY � Z+W.

Suppose that a linear spaceV is the direct sumU ⊕W of two subspacesU and
W (as in Theorem 17.6.1). Then, as indicated by the theorem, there exists a unique
matrix Z in U such that the difference betweenY andZ is in W. This matrix (the
matrix Z) is referred to as theprojection of Y on U along W.

The following theorem, which is easy to verify, relates the projection ofY on
W alongU to the projection ofY onU alongW.

Theorem 17.6.3. Let Y represent a matrix in a linear spaceV, and letU andW
represent essentially disjoint subspaces whose sum isV. Then the projection ofY
onW alongU equalsY− Z, whereZ is the projection ofY onU alongW.

The following theorem gives an explicit expression for the projection of a matrix
Y (in a linear spaceV) on a subspaceU along a subspaceW (whereV � U ⊕W)
and also for the projection ofY onW alongU .

Theorem 17.6.4. LetY represent a matrix in a linear spaceV ofm×nmatrices,
and letU andW represent essentially disjoint subspaces whose sum isV. Further,
let {U1, . . . ,Us} represent any set of matrices that spansU , let {W1, . . . ,Wt }
represent any set of matrices that spansW, and definec1, . . . , cs andk1, . . . kt to
be any scalars such that

c1U1 + · · · + csUs + k1W1 + · · · + ktWt � Y. (6.4)
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Then the projection ofY onU alongW equalsc1U1+· · ·+csUs , and the projection
of Y onW alongU equalsk1W1 + · · · + ktWt .

In connection with Theorem 17.6.4, note that the existence of scalars
c1, . . . , cs and k1, . . . , kt that satisfy condition (6.4) is guaranteed by Lemma
17.1.1.

Proof (of Theorem 17.6.4). Clearly,
∑s

i�1 ciUi ∈ U , and

Y−
s∑
i�1

ciUi �
t∑

j�1

kjWj ∈ W .

Thus,
∑s

i�1 ciUi is (by definition) the projection ofY on U along W, and∑t
j�1 kjWj is (in light of Theorem 17.6.3) the projection ofY on W along

U . Q.E.D.
In the special case wheren � 1 (i.e., whereV is a linear space of column

vectors), Theorem 17.6.4 can be restated as the following corollary.
Corollary 17.6.5. Let y represent a vector in a linear spaceV ofm-dimensional

column vectors, and letU andW represent essentially disjoint subspaces whose
sum isV. Further, letU � (u1, . . . ,us) andW � (w1, . . . ,wt ), whereu1, . . . ,us
are any vectors that spanU andw1, . . . ,wt any vectors that spanW, or, equiv-
alently, let U represent anym × s matrix such thatC(U) � U and W any
m × t matrix such thatC(W) � W. And definex∗ to be any solution to the
linear system (U,W)x � y [in an (s + t)–dimensional column vectorx], and

partition x∗ as x∗ �
(

x∗1
x∗2

)
(wherex∗1 hass elements). Then the projection of

y on U along W equalsUx∗1, and the projection ofy on W along U equals
Wx∗2.

The following theorem, whose validity is apparent from result (6.1) and Theo-
rems 12.5.8 and 17.6.3, establishes a connection to the results of Chapter 12 (on
orthogonal projections).

Theorem 17.6.6. LetY represent a matrix in a linear spaceV, and letU represent
a subspace ofV. Then the projection ofY on U alongU⊥ equals the orthogonal
projection ofY onU . And, the projection ofY onU⊥ alongU equals the orthogonal
projection ofY onU⊥.

The orthogonal projection of anm × n matrix Y on a subspaceU (of a lin-
ear spaceV of m × n matrices) equalsY if and only if Y ∈ U — refer to the
last part of Theorem 12.1.3. An extension of this result is given in the following
lemma.

Lemma 17.6.7. Let Y represent a matrix in a linear spaceV, let U and W
represent essentially disjoint subspaces whose sum isV, and letZ represent the
projection ofY onU alongW. Then,Z � Y if and only if Y ∈ U . (And Z � 0 if
and only ifY ∈ W.)

Proof. If Z � Y, then (since, by definition,Z ∈ U), Y ∈ U . Conversely, if
Y ∈ U , then, sinceY − Y � 0 ∈ W, Z � Y. (If Z � 0, thenY � Y − Z ∈ W;
conversely, ifY ∈ W, then clearlyZ � 0.) Q.E.D.

The following theorem can be regarded as an extension of Theorem 12.1.4.
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Theorem 17.6.8. Let Y1, . . . ,Yp represent matrices in a linear spaceV, let U
andW represent essentially disjoint subspaces whose sum isV, and letZ1, . . . ,Zp

represent the projections ofY1, . . . ,Yp, respectively, onU alongW. Then, for
any scalarsk1, . . . , kp, the projection of the linear combinationk1Y1+· · ·+kpYp

on U alongW is the corresponding linear combinationk1Z1 + · · · + kpZp of
Z1, . . . ,Zp.

Proof. By definition,Zi ∈ U andYi − Zi ∈ W (i � 1, . . . , p). Thus,k1Z1 +
· · · + kpZp ∈ U , and

k1Y1 + · · · + kpYp − (k1Z1 + · · · + kpZp)

� k1(Y1 − Z1)+ · · · + kp(Yp − Zp) ∈ W.

We conclude thatk1Z1+ · · · + kpZp is the projection ofk1Y1+ · · · + kpYp onU
alongW. Q.E.D.

b. Two–dimensional example

Let us find the projection of anm–dimensional column vectory on a subspace
U of Rm along a subspaceW of Rm in the special case wherem � 2, y �
(4,8)′, U � sp{u}, andW � sp{w}, with u � (3,1)′ andw � (1,4)′. (Clearly,
R2 � U ⊕ W.)

It follows from Corollary 17.6.5 that the projection ofy on U alongW equals
x∗1u and the projection ofy on W alongU equalsx∗2w, wherex∗ � (x∗1, x∗2)′ is
any solution to the linear system

(u,w)x � y ⇔
(

3 1
1 4

)(
x1

x2

)
�
(

4
8

)
(6.5)

[in the 2× 1 vectorx � (x1, x2)′]. The (unique) solution to linear system (6.5) is
x � (8/11,20/11)′, as is easily verified. Thus, the projection ofy onU alongW
is the vector

(8/11)

(
3
1

)
�
(

24/11
8/11

)
,

and the projection ofy onW alongU is the vector

(20/11)

(
1
4

)
�
(

20/11
80/11

)
.

Both of these vectors are displayed in Figure 17.1.
It is informative to compare Figure 17.1 with Figures 12.1 and 12.3; the latter

figures depict the orthogonal projection ofy on U (which is identical to the pro-
jection ofy on U alongU⊥) and the orthogonal projection ofy on U⊥ (which is
identical to the projection ofy onU⊥ alongU).



i



ii
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Moreover, for any matrixA such thatAy is the projection ofy on U alongV for
everyy in Rn, we have thatAy � Zy for everyy, implying (in light of Lemma
2.3.2) thatA � Z. We conclude that there exists a unique matrixA such thatAy
is the projection ofy onU alongV for everyy ∈ Rn and thatA � Z. Q.E.D.

Suppose thatU andV are essentially disjoint subspaces (ofRn×1) whose sum
is Rn×1. Then, according to Theorem 17.6.9, there exists a unique matrixA (of
dimensionsn × n) such thatAy is the projection ofy on U alongV for every
y ∈ Rn. This matrix is called theprojection matrix for U along V.

As an almost immediate consequence of Theorem 17.6.3, we have the following
result.

Theorem 17.6.10. Let U and V represent essentially disjoint subspaces (of
Rn×1) whose sum isRn×1. Then, the projection matrix forV along U equals
I− A, whereA is the projection matrix forU alongV.

In light of Theorems 17.6.6, 17.6.10, 12.3.1, and 14.12.8, we have the following
theorem, which establishes a connection to the results of Chapter 12 and Section
14.12.

Theorem 17.6.11. LetX represent ann×pmatrix. Then, the projection matrix
for C(X) alongC⊥(X) equalsPX, which is the orthogonal projection matrix for
C(X), and the projection matrix forC⊥(X) alongC(X) equalsI − PX. More gen-
erally, for anyn× n symmetric positive definite matrixW, the projection matrix
for C(X) alongC⊥W(X) equalsPX,W, which is the orthogonal projection matrix for
C(X) with respect toW, and the projection matrix forC⊥W(X) alongC(X) equals
I− PX,W.

The following theorem extends the results of Theorems 12.3.8 and 14.12.15.
Theorem 17.6.12. If an n× n matrix A is the projection matrix for a subspace

U of Rn×1 along a subspaceV of Rn×1 (whereU ⊕ V � Rn×1), thenU � C(A)
andV � C(I− A).

Proof. Suppose thatA is the projection matrix forU alongV. Then, for any
y ∈ Rn, Ay is the projection ofy onU alongV and hence is inU . Thus,C(A) ⊂ U .
Moreover, as a consequence of Lemma 17.6.7, we have that, for anyy ∈ U ,
y � Ay ∈ C(A). It follows that U ⊂ C(A) and hence [sinceC(A) ⊂ U ] that
U � C(A).

Further, since (in light of Theorem 17.6.10)I − A is the projection matrix for
V alongU , it follows from a similar argument thatV � C(I− A). Q.E.D.

The following theorem expands on the results of Theorem 12.3.9 and Corollary
14.12.17.

Theorem 17.6.13. Ann×nmatrixA is the projection matrix for some subspace
U of Rn×1 along some subspaceV of Rn×1 (whereU ⊕ V � Rn×1) if and only if
A is idempotent.

Proof. Suppose thatA is idempotent. Then, according to Lemma 17.2.6,C(A)
andC(I − A) are essentially disjoint. And everyy in Rn is expressible asy �
Ay+ (I−A)y. Thus,C(A)⊕C(I−A) � Rn. Further, for everyy in Rn, y−Ay �
(I − A)y, implying [sinceAy ∈ C(A) and (I − A)y ∈ C(I − A)] that Ay is the
projection ofy onC(A) alongC(I− A). It follows thatA is the projection matrix
for C(A) alongC(I− A).
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Conversely, suppose thatA is the projection matrix for some subspaceU along
some subspaceV (whereU ⊕ V � Rn×1). Then it follows from Theorem 17.6.12
thatC(A) � U andC(I−A) � V, implying thatC(A) andC(I−A) are essentially
disjoint and hence (in light of Lemma 17.2.6) thatA is idempotent. Q.E.D.

The results of Theorems 17.6.12 and 17.6.13 can be combined and (in light of
Theorem 11.7.1) restated as the following theorem.

Theorem 17.6.14. If ann×nmatrixA is the projection matrix for a subspaceU
of Rn×1 along a subspaceV of Rn×1 (whereU⊕V � Rn×1), thenA is idempotent,
U � C(A), andV � C(I− A) � N (A). And, if ann× n matrix A is idempotent,
thenC(A) ⊕ C(I − A) � Rn [or, equivalently,C(A) ⊕ N (A) � Rn], andA is
the projection matrix forC(A) alongC(I− A) [or, equivalently, alongN (A)].

17.7 Some Further Results on the Essential Disjointness
and Orthogonality of Subspaces and on Projections
and Projection Matrices

Let U andW represent two subspaces ofRn×1. Recall (from Section 17.1) that
if U andW are orthogonal, then they are essentially disjoint. Recall also thatU
andW can be essentially disjoint without being orthogonal with respect to the
usual inner product (or with respect to whatever other inner product may have
been adopted). Are essentially disjoint subspaces ofRn×1 necessarily orthogonal
with respect to some inner product? This question is answered (in the affirmative)
by the following theorem.

Theorem 17.7.1. LetU andW represent essentially disjoint subspaces ofRn×1.
Further, lettings � dim(U) and t � dim(W) (and supposing thats > 0 and
t > 0), takeU to be anyn×s matrix such thatC(U) � U,W to be anyn× t matrix
such thatC(W) � W, andZ to be anyn× (n–s–t) matrix such that then × n

partitioned matrix (U,W,Z) is nonsingular. DefineB � (U,W,Z)−1, partitionB

asB �

B1

B2

B3


 (whereB1 hass rows andB2 hast rows), and letH � B′B or (more

generally) letH represent any matrix of the form

H � B′
1A1B1 + B′

2A2B2 + B′
3A3B3,

whereA1,A2, andA3 are symmetric positive definite matrices. Then,U andW
are orthogonal with respect toH.

In connection with Theorem 17.7.1, observe (in light of Theorem 17.2.4) that
rank(U,W) � s + t [or, equivalently, that the columns of (U, W) are linearly
independent], insuring (in light of Theorem 4.3.12) the existence ofn–s–t n-
dimensional column vectors (the columns ofZ) that, together with the columns of
(U,W), form a basis forRn (and hence form a set ofn linearly independent vectors).
Observe also thatH � B′diag(A1,A2,A3)B and that (according to Lemma 14.8.3)
diag(A1,A2,A3) is positive definite, insuring (in light of Corollary 14.2.10) that
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H is positive definite. Further, in the degenerate special case of Theorem 17.7.1
wheres+ t � n (or, equivalently, whereU ⊕ W � Rn×1), interpret (U, W, Z) as

(U,W),


B1

B2

B3


 as

(
B1

B2

)
, andB′

1A1B1+B′
2A2B2+B′

3A3B3 asB′
1A1B1+B′

2A2B2.

Proof (of Theorem 17.7.1). In light of Lemma 14.12.1, it suffices to show that
U′HW � 0. By definition,

B1U B1W B1Z
B2U B2W B2Z
B3U B3W B3Z


 � B(U,W,Z) � In �


Is 0 0

0 It 0
0 0 In−s−t


 ,

implying in particular thatB1W � 0, B2U � 0, andB3W � 0. Thus,

U′HW � U′B′
1A1B1W+ (B2U)′A2B2W+ U′B′

3A3B3W � 0+ 0+ 0 � 0.
Q.E.D.

In discussing the implications of Theorem 17.7.1, it will be convenient to have
at our disposal the following lemma.

Lemma 17.7.2. LetU andW represent subspaces of a linear spaceV of m× n
matrices. IfU ⊥W and ifU +W � V, thenW � U⊥ andU � W⊥.

Proof. Suppose thatU ⊥ W and thatU+W � V. Then, clearly,W ⊂ U⊥, and
U ⊂ W⊥. Moreover,V andW are (in light of Lemma 17.1.9) essentially disjoint,
implying (in light of Corollary 17.1.6) that

dim(V) � dim(U)+ dim(W).

Thus, making use of Theorem 12.5.12, we find that

dim(W) � dim(V)− dim(U) � dim(U⊥)

and, similarly, that

dim(U) � dim(V)− dim(W) � dim(W⊥).

We conclude (on the basis of Theorem 4.3.10) thatW � U⊥ and thatU �
W⊥. Q.E.D.

Let V represent a linear space ofn × 1 vectors, and letU andW represent
essentially disjoint subspaces whose sum isV. Then, according to Theorem 17.7.1,
U andV are orthogonal with respect to some symmetric positive definite matrix
H, implying (in light of Lemma 17.7.2) thatW equals the orthogonal complement
U⊥ of U (where the orthogonality in the orthogonal complement is with respect to
the bilinear formx′Hy). Thus, it follows from Theorem 17.6.6 that, for any vector
y in V, the projection ofy onU alongW equals the orthogonal projection ofy on
U with respect toH. Further, lettingX represent any matrix such thatC(X) � U ,
it follows from Theorem 17.6.11 that, in the special case whereV � Rn×1 (and
hence whereU ⊕ W � Rn×1), the projection matrix forU alongW equals the
orthogonal projection matrixPX,H for U with respect toH.
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Exercises

Section 17.1

1. LetU andV represent subspaces ofRm×n.

(a) Show thatU ∪ V ⊂ U + V.

(b) Show thatU + V is the smallest subspace (ofRm×n) that containsU ∪ V,
or, equivalently [in light of Part (a)], show that, for any subspaceW such
thatU ∪ V ⊂ W, U + V ⊂ W.

2. Let A �

1 0

0 1
0 0


 and B �


0 2

1 1
2 3


. Find (a) a basis forC(A) + C(B),

(b) a basis forC(A) ∩ C(B), and (c) a vector inC(A) + C(B) that is not in
C(A) ∪ C(B).

3. LetU , W, andX represent subspaces of a linear spaceV of matrices, and let
Y represent an arbitrary matrix inV.

(a) Show (1) that ifY ⊥ W andY ⊥ X , thenY ⊥ (W + X ), and (2) that if
U ⊥ W andU ⊥ X , thenU ⊥ (W + X ).

(b) Show (1) that (U+W)⊥ � U⊥ ∩W⊥ and (2) that (U∩W)⊥ � U⊥+W⊥.

4. LetU , W, andX represent subspaces of a linear spaceV of matrices.

(a) Show that (U ∩W)+ (U ∩ X ) ⊂ U ∩ (W + X ).

(b) Show (via an example) thatU ∩ W � {0} andU ∩ X � {0} does not
necessarily imply thatU ∩ (W + X ) � {0}.

(c) Show that ifW ⊂ U , then (1)U + W � U and (2)U ∩ (W + X ) �
W + (U ∩ X ).

5. Let U1,U2, . . . ,Uk represent subspaces ofRm×n. Show that if, forj �
1,2, . . . , k, Uj is spanned by a (finite nonempty) set of (m × n) matrices
U(j )

1 , . . . ,U(j )
rj

, then

U1 + U2 + · · · + Uk �
sp(U(1)

1 , . . . ,U(1)
r1
,U(2)

1 , . . . ,U(2)
r2
, . . . ,U(k)

1 , . . . ,U(k)
rk

).

6. Let U1, . . . ,Uk represent subspaces ofRm×n. The k subspacesU1, . . . ,Uk
are said to beindependent if, for matricesU1 ∈ U1, . . . ,Uk ∈ Uk, the only
solution to the matrix equation

U1 + · · · + Uk � 0 (E.1)

is U1 � · · · � Uk � 0.
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(a) Show thatU1, . . . ,Uk are independent if and only if, fori � 2, . . . , k, Ui
andU1 + · · · + Ui−1 are essentially disjoint.

(b) Show thatU1, . . . ,Uk are independent if and only if, fori � 1, . . . , k, Ui
andU1 + · · · + Ui−1+ Ui+1 + · · · + Uk are essentially disjoint.

(c) Use the results of Exercise 3 [along with Part (a) or (b)] to show that if
U1, . . . ,Uk are (pairwise) orthogonal, then they are independent.

(d) Assuming thatU1,U2, . . . ,Uk are of dimension one or more and let-
ting {U(j )

1 , . . . ,U(j )
rj
} represent any linearly independent set of matrices

in Uj (j � 1,2, . . . , k), show that ifU1,U2, . . . ,Uk are independent, then
the combined set{U(1)

1 , . . . ,U(1)
r1

, U(2)
1 , . . . ,U(2)

r2
, . . ., U(k)

1 , . . . ,U(k)
rk
} is lin-

early independent.

(e) Assuming thatU1,U2, . . . ,Uk are of dimension one or more, show that
U1,U2, . . . ,Uk are independent if and only if, for every nonnull matrixU1

in U1 , every nonnull matrixU2 in U2, . . . , and every nonnull matrixUk in
Uk, U1,U2, . . . ,Uk are linearly independent.

(f) For j � 1, . . . , k, let pj � dim(Uj ), and letSj represent a basis for
Uj (j � 1, . . . , k). DefineS to be the set of

∑k
j�1pj matrices obtained

by combining all of the matrices inS1, . . . , Sk into a single set. Use the
result of Exercise 5 [along with Part (d)] to show that (1) ifU1, . . . ,Uk
are independent, thenS is a basis forU1+ . . .+ Uk; and (2) ifU1, . . . ,Uk
are not independent, thenS contains a proper subset that is a basis for
U1 + . . .+ Uk.

(g) Show that (1) ifU1, . . . ,Uk are independent, then

dim(U1 + · · · + Uk) � dim(U1)+ · · · + dim(Uk);
and (2) ifU1, . . . ,Uk are not independent, then

dim(U1 + · · · + Uk) < dim(U1)+ · · · + dim(Uk).

Section 17.2

7. Let A1, . . . ,Ak represent matrices having the same number of rows, and let
B1, . . . ,Bk represent matrices having the same number of columns. Adopting
the terminology of Exercise 6, use Part (g) of that exercise to show (a) that if
C(A1), . . . , C(Ak) are independent, then

rank(A1, . . . ,Ak) � rank(A1)+ · · · + rank(Ak),

and ifC(A1), . . . , C(Ak) are not independent, then

rank(A1, . . . ,Ak) < rank(A1)+ · · · + rank(Ak)
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and (b) that ifR(B1), . . . ,R(Bk) are independent, then

rank




B1
...

Bk


 � rank(B1)+ · · · + rank(Bk),

and ifR(B1), . . . ,R(Bk) are not independent, then

rank




B1
...

Bk


 < rank(B1)+ · · · + rank(Bk).

8. Show [by, e.g., using the result of Part (c)–(2) of Exercise 4 in combination
with Corollary 17.2.9] that, for anym× nmatrixA and anym× p matrixB,

(a) C[(I− AA−)B] � C(I− AA−) ∩ C(A,B) and

(b) C[(I− PA)B] � N (A′) ∩ C(A,B).

9. Let A � (T,U) andB � (V, 0), whereT is anm × p matrix, U anm × q

matrix, andV ann× p matrix, and suppose thatU is of full row rank. Show
thatR(A) andR(B) are essentially disjoint [even ifR(T) andR(V) are not
essentially disjoint].

10. To what extent does formula (2.15) simplify in (a) the special case where
C(T) andC(U) are essentially disjoint [butR(T) andR(V) are not necessar-
ily disjoint] and (b) the special case whereR(T) andR(V) are essentially
disjoint.

Section 17.3

11. LetT represent anm× p matrix,U anm× q matrix, andV ann× p matrix.
Further, defineET � I − TT−, FT � I − T−T, X � ETU, andY � VFT .

Show (a) that the partitioned matrix

(
T− − T−UX−ET

X−ET

)
is a generalized

inverse of the partitioned matrix (T,U) and (b) that the partitioned matrix
(T− − FTY−VT−, FTY−) is a generalized inverse of the partitioned matrix(

T
V

)
. Do so by applying formula (E.1) from Part (a) of Exercise 10.10 to the

partitioned matrices

(
T U
0 0

)
and

(
T 0
V 0

)
and by making use of Theorem

17.3.3.
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12. Let T represent anm × p matrix, U an m × q matrix, andV an n × p

matrix. And let

(
G11 G12

G21 G22

)
(whereG11 is of dimensionsp×m) represent a

generalized inverse of the partitioned matrix

(
T U
V 0

)
. Show that (a) ifG11 is

a generalized inverse ofT andG12 a generalized inverse ofV, thenR(T) and
R(V) are essentially disjoint, and (b) ifG11 is a generalized inverse ofT and
G21 a generalized inverse ofU, thenC(T) andC(U) are essentially disjoint.

Section 17.4

13. (a) Generalize Theorem 17.4.1 by showing that, for any subspacesU1, . . . ,Uk
of Rm×n,

dim(U1 + · · · + Uk)
� dim(U1)+ · · · + dim(Uk)

−
k∑
i�2

dim[(U1 + · · · + Ui−1) ∩ Ui ]. (E.2)

(b) Generalize Theorem 17.4.2 by showing that, for any matricesA1, . . . ,Ak

having the same number of rows,

rank(A1, . . . ,Ak) � rank(A1) + · · · + rank(Ak)
−∑k

i�2 dim[C(A1, . . .Ai−1) ∩ C(Ai)]

and, for any matricesB1, . . . ,Bk having the same number of columns,

rank




B1
...

Bk


 � rank(B1)+ · · · + rank(Bk)

−
k∑
i�2

dim[R




B1
...

Bi−1


 ∩R(Bi)].

Section 17.5

14. Show that, for anym× n matrix A, n× q matrix C, andq × p matrix B,

rank{[I− CB(CB)−]C[I− (AC)−AC]}
� rank(A)+ rank(C)− rank(AC)− n

+ rank{[I− CB(CB)−](I− A−A)}.

[Hint. Apply equality (5.8) to the productA(CB), and make use of equality
(5.5).]
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Section 17.6

15. Show that if ann × n matrix A is the projection matrix for a subspaceU of
Rn×1 along a subspaceV of Rn×1 (whereU ⊕ V � Rn×1), thenA′ is the
projection matrix forV⊥ alongU⊥ [whereU⊥ andV⊥ are the orthogonal
complements (with respect to the usual inner product and relative toRn×1) of
U andV, respectively].

16. Show that, for anyn × p matrix X, XX− is the projection matrix forC(X)
alongN (XX−).

17. LetY represent a matrix in a linear spaceV ofm×nmatrices, and letU1, . . . ,Uk
represent subspaces ofV. Adopting the terminology and using the results of
Exercise 6, show that ifU1, . . . ,Uk are independent and ifU1+· · ·+Uk � V,
then (a) there exist unique matricesZ1, . . . ,Zk in U1, . . . ,Uk, respectively,
such thatY � Z1+· · ·+Zk, and (b) fori � 1, . . . , k , Zi equals the projection
of Y onUi alongU1 + · · · + Ui−1 + Ui+1 + · · · + Uk.

18. LetU andW represent essentially disjoint subspaces (ofRn×1) whose sum is
Rn×1, and letU represent anyn × s matrix such thatC(U) � U andW any
n× t matrix such thatC(W) = W.

(a) Show that then× (s + t) partitioned matrix (U, W) has a right inverse.

(b) TakingR to be an arbitrary right inverse of (U, W) and partitioningR as

R �
(

R1

R2

)
(whereR1 hass rows), show that the projection matrix forU

alongW equalsUR1 and that the projection matrix forW alongU equals
WR2.

19. LetA represent the (n× n) projection matrix for a subspaceU of Rn×1 along
a subspaceV of Rn×1 (whereU ⊕ V � Rn×1), let B represent the (n × n)
projection matrix for a subspaceW of Rn×1 along a subspaceX of Rn×1

(whereW ⊕ X � Rn×1), and suppose thatA andB commute (i.e., thatBA=
AB).

(a) Show thatAB is the projection matrix forU ∩W alongV + X .

(b) Show thatA + B – AB is the projection matrix forU +W alongV ∩ X .

[Hint for Part (b). Observe thatI − (A + B − AB) � (I − A)(I − B), and
make use of Part (a).]

20. LetV represent a linear space ofn-dimensional column vectors, and letU
and W represent essentially disjoint subspaces whose sum isV. Then, an
n × n matrix A is said to be aprojection matrix for U along W if Ay is the
projection ofy onU alongW for everyy ∈ V — this represents an extension
of the definition of a projection matrix forU alongW given in Section 17.6d
(in the special case whereV � Rn). Further, letU represent ann× s matrix
such thatC(U) � U , and letW represent ann× t matrix such thatC(W) � W.
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(a) Show that ann× n matrix A is a projection matrix forU alongW if and
only if AU � U andAW � 0 or, equivalently, if and only ifA′ is a solution

to the linear system

(
U′

W′

)
B �

(
U′

0

)
(in ann× n matrix B).

(b) Establish the existence of a projection matrix forU alongW.

(c) Show that ifA is a projection matrix forU alongW, then I − A is a
projection matrix forW alongU (thereby generalizing Theorem 17.6.10).

(d) Let X represent anyn× p matrix whose columns spanN (W′) or, equiv-
alently,W⊥. Show that ann × n matrix A is a projection matrix forU
alongW if and only ifA′ � XR∗ for some solutionR∗ to the linear system
U′XR � U′ (in ap × n matrix R).

Section 17.7

21. LetU1, . . . ,Uk represent independent subspaces ofRn×1 such thatU1+· · ·+
Uk � Rn×1 (where the independence of subspaces is as defined in Exercise
6). Further, lettingsi � dim(Ui) (and supposing thatsi > 0), takeUi to be
any n × si matrix such thatC(Ui) � Ui (i � 1, . . . , k). And defineB �

(U1, . . . ,Uk)−1, partitionB asB �




B1
...

Bk


 (where, fori � 1, . . . , k,Bi hassi

rows), and letH � B′B or (more generally) letH represent any matrix of the
form

H � B′
1A1B1 + B′

2A2B2 + · · · + B′
kAkBk, (E.3)

whereA1,A2, . . . ,Ak are symmetric positive definite matrices.

(a) Using the result of Part (g)-(1) of Exercise 6 (or otherwise), verify that the
partitioned matrix (U1, . . . ,Uk) is nonsingular (i.e., is square and of rank
n).

(b) Show thatH is positive definite.

(c) Show that (forj �� i � 1, . . . , k) Ui andUj are orthogonal with respect
to H.

(d) Using the result of Part(a)-(2) of Exercise 3 (or otherwise), show that, for
i � 1, . . . , k, (1)U1+ · · ·+Ui−1+Ui+1+ · · ·+Uk equals the orthogonal
complementU⊥

i of Ui (where the orthogonality in the orthogonal comple-
ment is with respect to the bilinear formx′Hy) and (2) the projection of
anyn× 1 vectory onUi alongU1+ · · · + Ui−1+ Ui+1+ · · · + Uk equals
the orthogonal projection ofy onUi with respect toH.

(e) Show that if, forj �� i � 1, . . . , k, Ui andUj are orthogonal with respect
to some symmetric positive definite matrixH∗, thenH∗ is expressible in
the form (E.3).
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18
Sums (and Differences) of Matrices

It is common in such areas of statistics as linear statistical models and Bayesian
statistics to encounter matrices of the formR+STU, where the dimensions (number
of rows and/or number of columns) ofT are small relative to those ofR and whereR
and possiblyT are diagonal matrices or are of some other form that, for example,
makes them easy to “invert.” Typically, there is a need to find the determinant,
ordinary or generalized inverse, or rank of a matrix of this form and/or to solve
a linear system having a coefficient matrix of this form. This chapter includes
(in Sections 18.1a, 18.2d–e, and 18.5a) formulas that can be very useful in such
a situation. It also includes (in the remainder of Sections 18.1, 18.2, and 18.5
and in Section 18.3) a wide variety of relatively basic results (having a myriad of
applications in statistics) on the determinants, ordinary or generalized inverses, and
ranks of sums, differences, or linear combinations of matrices and on the solution
of a linear system whose coefficient matrix is a sum of matrices.

Section 18.4 gives necessary and sufficient conditions for (square) matrices
whose sum is idempotent to be individually idempotent. These conditions can be
used to establish a classical result on the statistical distribution of quadratic forms
that is due to Cochran (1934) and is known as Cochran’s theorem. This result can
in turn be used to establish the conditions under which the sums of squares in a
statistical analysis of variance are distributed independently as scalar multiples of
central or noncentral chi-square random variables.
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18.1 Some Results on Determinants

a. Determinants of matrices of the form R+ STU

The following theorem gives a very useful formula for the determinant of the sum
R + STU of ann × n nonsingular matrixR and the productSTU of ann × m

matrix S,m×m nonsingular matrixT, andm× n matrix U.
Theorem 18.1.1. Let R represent ann × n matrix, S ann × m matrix, T an

m×m matrix, andU anm× n matrix. If R andT are nonsingular, then

|R+ STU| � |R| |T| |T−1 + UR−1S| . (1.1)

Proof. Suppose thatR andT are nonsingular. Then, making use of Theorem
13.3.8, we find that∣∣∣∣R −S

U T−1

∣∣∣∣ � |T−1| |R− (−S)(T−1)−1U| � |T−1| |R+ STU|

and also that∣∣∣∣R −S
U T−1

∣∣∣∣ � |R| |T−1 − UR−1(−S)| � |R| |T−1 + UR−1S| .

Thus,
|T−1| |R+ STU| � |R| |T−1 + UR−1S| ,

or, equivalently (since|T−1| � 1/|T|),belowdisplayskip0bp

|R+ STU| � |R| |T| |T−1 + UR−1S| .

Q.E.D.
In the special case whereR � In andT � Im, Theorem 18.1.1 simplifies to the

following result.
Corollary 18.1.2. For anyn×m matrix S and anym× n matrix U,

|In + SU| � |Im + US| . (1.2)

In the special case wherem � 1, Corollary 18.1.2 can be restated as the following
corollary.

Corollary 18.1.3. For anyn–dimensional column vectorss � {si} andu � {ui},

|In + su′| � 1+ u′s � 1+ s′u � 1+
n∑
i�1

siui . (1.3)

Corollary 18.1.3 reduces the problem of evaluating the determinant of ann× n
matrix of the formIn + su′ to one of evaluating a scalar-valued expression. More
generally, Corollary 18.1.2 converts the problem of evaluating the determinant of
ann× n matrix of the formIn + SU into one of evaluating the determinant of an
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m×mmatrix (wherem equals the number of columns inS and the number of rows
in U), which can be advantageous ifm < n. Still more generally, Theorem 18.1.1
converts the problem of evaluating the determinant of ann× nmatrix of the form
R + STU into one of evaluating the determinant and inverse of then × n matrix
R, the determinant and inverse of them × m matrix T, and the determinant of a
furtherm×mmatrix — this can be advantageous ifm < n and if |R|, |T|, R−1,
andT−1 are easy to obtain (as would be the case if, e.g.,R andT were diagonal).

In connection with Theorem 18.1.1, note that

R+ STU � R+ (ST)T−1(TU) . (1.4)

Upon applying formula (1.1) to the right side of equality (1.4) [i.e., applying
formula (1.1) withST, T−1, andTU in place ofS, T, andU, respectively] and
observing that (T−1)−1 � T and |T−1| � 1/|T|, we obtain (as an additional
corollary of Theorem 18.1.1) the following, alternative formula.

Corollary 18.1.4. Let R represent ann × n matrix, S ann × m matrix, T an
m×m matrix, andU anm× n matrix. If R andT are nonsingular, then

|R+ STU| � |R| |T+ TUR−1ST|/|T| . (1.5)

Finally, as a consequence of Theorem 18.1.1 and Corollary 18.1.4, we have the
following corollary.

Corollary 18.1.5. Let R represent ann × n matrix, S ann × m matrix, T an
m×mmatrix, andU anm×nmatrix. Suppose thatR andT are nonsingular. Then
R + STU is nonsingular if and only ifT−1+UR−1S is nonsingular or, equivalently,
if and only if T+ TUR−1ST is nonsingular.

b. Some inequalities

The following theorem gives a basic result on the determinant|A+B| of the sum
of a symmetric positive definite matrixA and a symmetric nonnegative definite
matrix B.

Theorem 18.1.6. For anyn × n symmetric positive definite matrixA and any
n× n symmetric nonnegative definite matrixB,

|A+ B| ≥ |A|,
with equality holding if and only ifB � 0.

Proof. According to Corollary 14.3.8, there exists a matrixK such thatB � K′K.
Denote byr the number of rows inK; and (fori � 1, . . . , r) let k′i represent the
ith row ofK, and letKi represent thei × n submatrix (ofK) obtained by striking
out the lastr − i rows of K. Further, defineA0 � A and (for i � 1, . . . , r)
Ai � A + K′

iKi . Observe (in light of Lemma 14.2.4 and Corollary 14.2.14) that
Ai is symmetric and positive definite.

It is clear that (fori � 2, . . . , r) Ki �
[

Ki−1

k′i

]
and hence thatK′

iKi �
K′
i−1Ki−1 + kik′i . Thus, fori � 1, . . . , r,

Ai � Ai−1 + kik′i � Ai−1 + ki(1)k′i ,
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and, applying formula (1.1), we find that

|Ai | � |Ai−1| |1| |1+ k′iA
−1
i−1ki | � |Ai−1|(1+ k′iA

−1
i−1ki) .

Since (according to Corollary 14.2.11)A−1
i−1 is positive definite, we have (for

i � 1, . . . , r) that
|Ai | ≥ |Ai−1| ,

with equality holding if and only ifk′iA
−1
i−1ki � 0 or, equivalently, if and only if

ki � 0.
It is now clear that

|Ar | ≥ |Ar−1| ≥ · · · ≥ |A1| ≥ |A0| , (1.6)

implying that
|Ar | ≥ |A0| . (1.7)

Further, equality holds in inequality (1.7) if and only if equality holds in allr of the
inequalities (1.6). Thus, equality holds in inequality (1.7) if and only ifk1, . . . ,kr
are null, or, equivalently, if and only ifK � 0, and hence (in light of Corollary
5.3.2) if and only ifB � 0. Since clearlyAr � A+B (andA0 � A), we conclude
that

|A+ B| ≥ |A| ,
with equality holding if and only ifB � 0. Q.E.D.

Theorem 18.1.6 can be restated in the form of the following corollary.
Corollary 18.1.7. For anyn × n symmetric positive definite matrixA and for

anyn× n symmetric matrixC such thatC− A is nonnegative definite,

|C| ≥ |A| ,
with equality holding if and only ifC � A.

Proof. Upon settingB � C−A in Theorem 18.1.6 (and observing thatC−A �
0 ⇔ C � A), we obtain Corollary 18.1.7. Q.E.D.

A variation on Corollary 18.1.7 (in which the requirement thatA be symmet-
ric positive definite is replaced by the weaker requirement thatA be symmetric
nonnegative definite) is given by the following corollary.

Corollary 18.1.8. For anyn× n symmetric nonnegative definite matrixA and
for anyn× n symmetric matrixC such thatC− A is nonnegative definite,

|C| ≥ |A| , (1.8)

with equality holding if and only ifC is singular orC � A.
Proof. Let us begin by observing (in light of Lemma 14.9.1) that

|A| ≥ 0 (1.9)

and that, sinceC � A+ (C− A) (implying thatC is nonnegative definite),

|C| ≥ 0 . (1.10)
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Now, consider the inequality|C| ≥ |A|. EitherA is positive definite, orA is
positive semidefinite. IfA is positive definite, then it follows from Corollary 18.1.7
that |C| ≥ |A|. Alternatively, if A is positive semidefinite, then|A| � 0, and it
follows from inequality (1.10) that|C| ≥ |A|.

It remains to show that|C| � |A| if and only if C is singular orC � A. If
C � A, then obviously|C| � |A|. If C is singular, then|C| � 0, which together
with inequalities (1.8) and (1.9) implies that|C| � |A|.

Suppose now that|C| � |A|. If A is positive definite, then it follows from
Corollary 18.1.7 thatC � A. Alternatively, if A is positive semidefinite, then
(in light of Lemma 14.9.1)|A| � 0 and hence|C| � 0, implying thatC is
singular. Q.E.D.

18.2 Some Results on Inverses and Generalized
Inverses and on Linear Systems

a. Some basic results on (ordinary) inverses

The following lemma gives a very basic (but useful) result on the inverse of a
(nonsingular) sum of two (square) matrices.

Lemma 18.2.1. Let A andB representn× nmatrices. IfA+B is nonsingular,
then

(A+ B)−1A � I− (A+ B)−1B , (2.1)

A(A+ B)−1 � I− B(A+ B)−1 . (2.2)

Proof. Suppose thatA+ B is nonsingular. Then, clearly,

(A+ B)−1A+ (A+ B)−1B � (A+ B)−1(A+ B) � I ,

and hence
(A+ B)−1A � I− (A+ B)−1B .

Similarly,

A(A+ B)−1 + B(A+ B)−1 � (A+ B)(A+ B)−1 � I ,

and hencebelowdisplayskip0bp

A(A+ B)−1 � I− B(A+ B)−1 .

Q.E.D.
In the special case whereA � I, Lemma 18.2.1 reduces to the following result.
Corollary 18.2.2. For any (square) matrixB such thatI+ B is nonsingular,

(I+ B)−1 � I− (I+ B)−1B (2.3)

� I− B(I+ B)−1 . (2.4)
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A further basic result on inverse matrices is given by the following lemma.
Lemma 18.2.3. Let A represent anm× nmatrix andB ann×mmatrix. Then,

In + BA is nonsingular if and only ifIm + AB is nonsingular, in which case

(In + BA)−1B � B(Im + AB)−1 . (2.5)

Proof. ThatI+BA is nonsingular if and only ifI+AB is nonsingular is evident
from Corollary 18.1.5 (upon settingR � In, S � B, T � Im, andU � A).

Suppose now thatI+AB is nonsingular (in which caseI+ BA is also nonsin-
gular), and observe that

B(I+ AB) � (I+ BA)B . (2.6)

Then, upon premultiplying both sides of equality (2.6) by (I + BA)−1 and post-
multiplying both sides by (I+AB)−1, we obtain the equalitybelowdisplayskip0bp

(I+ BA)−1B � B(I+ AB)−1 .

Q.E.D.
The following theorem establishes a relationship between the inverse of a (non-

singular) differenceA − B between two nonsingular matricesA andB and the
inverse of the differenceA−1 − B−1 betweenA−1 andB−1.

Theorem 18.2.4. Let A andB representn× n nonsingular matrices. Then,

rank(A−1 − B−1) � rank(B− A) � rank(A− B) . (2.7)

Further,A−1 − B−1 is nonsingular if and only ifB− A is nonsingular (or, equiv-
alently, if and only ifA− B is nonsingular), in which case

(A−1 − B−1)−1 � A+ A(B− A)−1A (2.8)

� A− A(A− B)−1A . (2.9)

Proof. Clearly,

A−1 − B−1 � (I− B−1A)A−1 , (2.10)

B− A � B(I− B−1A) . (2.11)

Thus, recalling (from Corollary 8.3.3) that the premultiplication or postmultipli-
cation of a matrix by a nonsingular matrix does not affect its rank [and observing
thatA− B � −(B− A)], we find that

rank(A−1 − B−1) � rank(I− B−1A) � rank(B− A) � rank(A− B) .

It follows in particular thatA−1 − B−1 is nonsingular if and only ifB − A is
nonsingular (or equivalently if and only ifA− B is nonsingular).

Suppose now thatB − A is nonsingular (in which caseI − B−1A is also non-
singular). Then, observing [in light of equality (2.11)] that

(B− A)−1 � [B(I− B−1A)]−1 � (I− B−1A)−1B−1 ,
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we find [in light of equality (2.10)] that

(A−1 − B−1)[A+ A(B− A)−1A]

� (I− B−1A)A−1[A+ A(I− B−1A)−1B−1A]

� I− B−1A+ B−1A

� I,

thereby validating result (2.8) and also{since (A − B)−1 � [−(B − A)]−1 �
−(B− A)−1} result (2.9). Q.E.D.

b. Some basic results on generalized inverses

Under what conditions is a generalized inverse (A+B)− of the sum of twom× n
matricesA andB a generalized inverse ofA and a generalized inverse ofB? This
question is addressed in the following theorem.

Theorem 18.2.5. Let A andB representm × n matrices. IfR(A) andR(B)
are essentially disjoint and ifC(A) and C(B) are essentially disjoint, then any
generalized inverse ofA + B is a generalized inverse ofA and a generalized
inverse ofB.

Theorem 18.2.5 is an immediate consequence of the following result.
Theorem 18.2.6. For anym× n matricesA andB,(

A
B

)
(A+ B)−(A,B) �

(
A 0
0 B

)
(2.12)

[or, equivalently,A(A + B)−A � A, B(A + B)−B � B, A(A + B)−B � 0, and
B(A+B)−A � 0] if and only if R(A) andR(B) are essentially disjoint andC(A)
andC(B) are essentially disjoint.

Proof (of Theorem 18.2.6). Suppose thatR(A) andR(B) are essentially disjoint
andC(A) andC(B) are essentially disjoint. And observe that

A(A+ B)−A+ A(A+ B)−B+ B(A+ B)−A+ B(A+ B)−B
� (A+ B)(A+ B)−(A+ B) � A+ B

and hence that

A(A+ B)−A+ B(A+ B)−A−A � B−A(A+ B)−B− B(A+ B)−B . (2.13)

Since the left side of equality (2.13) is expressible in the formKA for some matrix
K and the right side is expressible in the formLB for some matrixL, it follows
from Part (2) of Corollary 17.2.3 that

A(A+ B)−A+ B(A+ B)−A− A � 0,

B− A(A+ B)−B− B(A+ B)−B � 0,

or, equivalently, that

B(A+ B)−A � A− A(A+ B)−A, (2.14)

A(A+ B)−B � B− B(A+ B)−B . (2.15)
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And, since the right side of equality (2.14) is expressible in the formAK for some
matrix K and the right side of equality (2.15) is expressible in the formBL for
some matrixL, it follows from Part (1) of Corollary 17.2.3 that

B(A+ B)−A � 0, A− A(A+ B)−A � 0,
A(A+ B)−B � 0, B− B(A+ B)−B � 0,

or, equivalently, that (
A
B

)
(A+ B)−(A,B) �

(
A 0
0 B

)
.

Conversely, suppose that(
A
B

)
(A+ B)−(A,B) �

(
A 0
0 B

)
.

Then, making use of Corollary 4.4.5 and inequality (4.5.1), we find that

rank(A)+ rank(B) � rank

(
A 0
0 B

)
� rank

[(
A
B

)
(A+ B)−(A,B)

]
≤ rank(A,B) ≤ rank(A)+ rank(B)

and hence that
rank(A,B) � rank(A)+ rank(B) .

It can be established in similar fashion that

rank

(
A
B

)
� rank(A)+ rank(B) .

We conclude, on the basis of Theorem 17.2.4, thatC(A) andC(B) are essentially
disjoint andR(A) andR(B) are essentially disjoint. Q.E.D.

c. A result on linear systems of the form (A+ B)X � C+ D (in X)

Under what conditions is a solution to a linear system of the form (A+B)X � C+D
(in X) a solution to the linear systemAX � C and to the linear systemBX � D?
This question is addressed in the following theorem.

Theorem 18.2.7. LetA andB representm×nmatrices, and letC andD represent
m×pmatrices such thatC(C) ⊂ C(A) andC(D) ⊂ C(B). (1) If R(A) andR(B) are
essentially disjoint, then the linear system (A+B)X � C+D (in X) is consistent.
(2) If C(A) andC(B) are essentially disjoint, then any solution to the linear system
(A + B)X � C + D is a solution to the linear systemAX � C and also to the
linear systemBX � D.

Proof. (1) Suppose thatR(A) andR(B) are essentially disjoint. Then it follows

from Theorem 17.3.2 that the linear system

(
A
B

)
X �

(
C
D

)
(in X) is consistent
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and hence has a solution, sayX∗. Thus,AX∗ � C andBX∗ � D, implying that
(A+B)X∗ � C+D, so thatX∗ is a solution to the linear system (A+B)X � C+D.
And we conclude that the linear system (A+ B)X � C+ D is consistent.

(2) Suppose thatC(A) andC(B) are essentially disjoint, and letX∗ represent any
solution to the linear system (A+B)X � C+D. Then,AX∗ +BX∗ � C+D, and
a solution to the linear systemAX1 + BX2 � C + D (in n × p matricesX1 and
X2) is obtained by settingX1 � X2 � X∗. We conclude, on the basis of Theorem
17.3.1, thatX∗ is a solution to the linear systemAX � C and also to the linear
systemBX � D. Q.E.D.

d. (Ordinary) inverses of matrices of the form R+ STU

Let R represent ann × n matrix, S ann × m matrix, T anm × m matrix, and
U anm× n matrix. And suppose thatR andT are nonsingular. Then result (1.1)
[or (1.5)] can be used to express the determinant ofR + STU in terms of the
determinants ofR, T, andT−1 + UR−1S [or T+ TUR−1ST]. Can the inverse of
R+ STU (assuming thatR+ STU is nonsingular) be expressed in a comparable
way? In what follows, the answer to this question is shown to be yes.

Suppose now thatR + STU is nonsingular, and letA � TUR−1. Then, since
R+STU � (I+SA)R (and since, e.g., the premultiplication or postmultiplication
of a matrix by a nonsingular matrix does not affect its rank),I+SA is nonsingular,
and

(R+ STU)−1 � R−1(I+ SA)−1 . (2.16)

Further, it follows from Corollary 18.2.2 that

(I+ SA)−1 � I− (I+ SA)−1SA . (2.17)

And it follows from Lemma 18.2.3 thatI + AS (� I + TUR−1S) is nonsingular
and that

(I+ SA)−1S � S(I+ AS)−1 . (2.18)

Substituting expression (2.18) into expression (2.17) and then substituting the
resultant expression into expression (2.16), we find that

(R+ STU)−1 � R−1[I− S(I+ AS)−1A]

� R−1 − R−1S(I+ AS)−1TUR−1. (2.19)

And, since I + AS � T(T−1 + UR−1S) and since alsoI + AS � (T +
TUR−1ST)T−1, T−1 + UR−1S andT+ TUR−1ST are nonsingular, and

(I+ AS)−1 � (T−1 + UR−1S)−1T−1 (2.20)

� T(T+ TUR−1ST)−1 . (2.21)

Substituting expression (2.20) into expression (2.19), we obtain

(R+ STU)−1 � R−1 − R−1S(T−1 + UR−1S)−1UR−1 .
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Alternatively, substituting expression (2.21) into expression (2.19), we obtain

(R+ STU)−1 � R−1 − R−1ST(T+ TUR−1ST)−1TUR−1 .

In summary, we have the following theorem (which incorporates the content of
Corollary 18.1.5).

Theorem 18.2.8. Let R represent ann × n matrix, S ann × m matrix, T an
m × m matrix, andU anm × n matrix. Suppose thatR andT are nonsingular.
Then,R + STU is nonsingular if and only ifT−1 + UR−1S is nonsingular, or,
equivalently, if and only ifT+ TUR−1ST is nonsingular, in which case

(R+ STU)−1 � R−1 − R−1S(T−1 + UR−1S)−1UR−1 (2.22)

� R−1 − R−1ST(T+ TUR−1ST)−1TUR−1 . (2.23)

Some special cases of Theorem 18.2.8 are given in the following three corollar-
ies.

Corollary 18.2.9. LetS represent ann×mmatrix andU anm×nmatrix. Then,
In + SU is nonsingular if and only ifIm + US is nonsingular, in which case

(In + SU)−1 � In − S(Im + US)−1U . (2.24)

Corollary 18.2.10. LetR represent ann×n nonsingular matrix, and lets andu
representn-dimensional column vectors. Then,R+ su′ is nonsingular if and only
if u′R−1s �� −1, in which case

(R+ su′)−1 � R−1 − (1+ u′R−1s)−1R−1su′R−1 . (2.25)

Corollary 18.2.11. Let s � {si} andu � {ui} representn-dimensional column
vectors. Then,I + su′ is nonsingular if and only ifu′s �� −1 (or, equivalently, if
and only if

∑
i siui �� −1), in which case

(I+ su′)−1 � I− (1+ u′s)−1su′ � I−
(

1+
∑
i

siui

)−1

su′ . (2.26)

Formula (2.25) is generally attributed to Sherman and Morrison (1949 and 1950)
and/or to Bartlett (1951). The more general formulas (2.22) and (2.23) are often
attributed to Woodbury (1950), and one or the other of them is sometimes referred
to as Woodbury’s formula [although a formula that is essentially the same as
formula (2.22) was given earlier by Duncan (1944) and by Guttman (1946)]. Refer
to Henderson and Searle (1981a) for additional information about the history of
formulas (2.22) and (2.23).

Depending upon the circumstances, formula (2.22) or (2.23) can be used to
great advantage in the inversion of a (nonsingular) matrix of the formR + STU.
The circumstances under which the use of formula (2.22) can be advantageous are
similar to the circumstances (discussed in Section 18.1a) under which the use of
formula (1.1) (for the determinant ofR+STU) can be advantageous. Specifically,



18.2 Some Results on Inverses and Generalized Inverses and on Linear Systems 425

the use of formula (2.22) can be advantageous if the dimensions ofT−1+UR−1S
(or, equivalently, ofT) are small relative to those ofR + STU (or, equivalently,
of R) and ifR−1 andT−1 are easy to obtain. Formula (2.23) calls for more matrix
multiplications than formula (2.22), but does not call for the inversion ofT.

Formulas (2.22) and (2.23) were derived by making use of Corollary 18.2.2 and
Lemma 18.2.3. An alternative derivation of these formulas is obtained by applying
Theorem 8.5.11 (on the inverse of a partitioned matrix) to the partitioned matrices(

R −S
U T−1

)
and

(
R −ST

TU T

)
.

If T−1+UR−1S is nonsingular, then (according to Theorem 8.5.11)

(
R −S
U T−1

)
is nonsingular,R+ STU is also nonsingular, and(

(R+ STU)−1 (R+ STU)−1ST
−TU(R+ STU)−1 T− TU(R+ STU)−1ST

)

�
(

R −S
U T−1

)−1

�
(

R−1 − R−1S(T−1 + UR−1S)−1UR−1 R−1S(T−1 + UR−1S)−1

−(T−1 + UR−1S)−1UR−1 (T−1 + UR−1S)−1

)
,

implying in particular that

(R+ STU)−1 � R−1 − R−1S(T−1 + UR−1S)−1UR−1 .

Similarly, if T + TUR−1ST is nonsingular, then

(
R −ST

TU T

)
is nonsingular,

R+ STU is also nonsingular, and(
(R+ STU)−1 (R+ STU)−1S

−U(R+ STU)−1 T−1 − U(R+ STU)−1S

)

�
(

R −ST
TU T

)−1

�




R−1 − R−1ST(T
+TUR−1ST)−1TUR−1 R−1ST(T+ TUR−1ST)−1

−(T+ TUR−1ST)−1TUR−1 (T+ TUR−1ST)−1


 ,

implying in particular that

(R+ STU)−1 � R−1 − R−1ST(T+ TUR−1ST)−1TUR−1 .

Either of the two formulas (2.22) and (2.23) can be obtained as a “special case”
of the other. To see this, reexpressR+ STU as

R+ STU � R+ (ST)T−1(TU) .
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Then, applying formula (2.22) withST,T−1, andTU in place ofS, T, andU,
respectively, we obtain

(R+ STU)−1 � R−1 − R−1ST[(T−1)−1 + TUR−1ST]−1TUR−1

� R−1 − R−1ST(T+ TUR−1ST)−1TUR−1 .

Similarly, applying formula (2.23) withST,T−1, andTU in place ofS, T, andU,
respectively, we obtain

(R+ STU)−1 � R−1 − R−1STT−1(T−1

+T−1TUR−1STT−1)−1T−1TUR−1

� R−1 − R−1S(T−1 + UR−1S)−1UR−1 .

e. Generalized inverses of matrices of the form R+ STU

Let R represent ann× q matrix,S ann×m matrix,T anm× p matrix, andU a
p× q matrix. In the special case whereR, T, andT+TUR−1ST are nonsingular,
R+STU is nonsingular, and formula (2.23) gives the inverse ofR+STU in terms
of the inverses ofR andT+ TUR−1ST.

Consider now the general case whereR andT may not be nonsingular or even
square. Does the expression obtained from formula (2.23) by replacingR−1 and
(T + TUR−1ST)−1 with generalized inversesR− and (T + TUR−ST)− give a
generalized inverse ofR+ STU? That is, is the matrix

R− − R−ST(T+ TUR−ST)−TUR−

necessarily a generalized inverse ofR+ STU?
To answer this question, letD � STU andQ � T + TUR−ST, and observe

that
(R+ D)R−ST � RR−ST+ S(Q− T) � SQ− (I− RR−)ST,

TUR−(R+ D) � TUR−R+ (Q− T)U � QU− TU(I− R−R),

SQU � D+ DR−D,

so that

(R+ D)(R− − R−STQ−TUR−)(R+ D)

� R+ DR−R+ RR−D+ DR−D− (R+ D)R−STQ−TUR−(R+ D)

� R+ DR−R+ RR−D+ DR−D

−[SQ− (I− RR−)ST]Q−[QU− TU(I− R−R)]

� R+ DR−R+ RR−D+ DR−D− SQU+ SQQ−TU(I− R−R)

+ (I− RR−)STQ−QU− (I− RR−)STQ−TU(I− R−R)

� R+ DR−R+ RR−D+ DR−D− D− DR−D+ SQQ−TU(I− R−R)

+ (I− RR−)STQ−QU− (I− RR−)STQ−TU(I− R−R)
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� R+ D− STU(I− R−R)− (I− RR−)STU+ SQQ−TU(I− R−R)

+ (I− RR−)STQ−QU− (I− RR−)STQ−TU(I− R−R)

� R+ D− S(I−QQ−)TU(I− R−R)− (I− RR−)ST(I−Q−Q)U

−(I− RR−)STQ−TU(I− R−R).

Thus, we have the following theorem.
Theorem 18.2.12. Let R represent ann × q matrix, S ann × m matrix, T an

m × p matrix, andU ap × q matrix, and defineQ � T + TUR−ST. Then, the
matrix

R− − R−STQ−TUR− (2.27)

is a generalized inverse of the matrixR+ STU if and only if

S(I−QQ−)TU(I− R−R)+ (I− RR−)ST(I−Q−Q)U

+(I− RR−)STQ−TU(I− R−R) � 0 . (2.28)

It is clear (in light of Lemma 9.3.5) that condition (2.28) is satisfied ifR(TU) ⊂
R(R) andC(ST) ⊂ C(R). In fact, condition (2.28) is satisfied ifR(STU) ⊂ R(R)
andC(STU) ⊂ C(R), as is evident from the following lemma.

Lemma 18.2.13. LetR represent ann×q matrix,S ann×mmatrix,T anm×p
matrix, andU ap×q matrix, and defineQ � T+TUR−ST. If R(STU) ⊂ R(R)
andC(STU) ⊂ C(R), then

(I−QQ−)TU(I− R−R) � 0 , (2.29)

(I− RR−)ST(I−Q−Q) � 0 , (2.30)

(I− RR−)STQ−TU(I− R−R) � 0 . (2.31)

Proof. Let D � STU, and observe thatQQ−(T+TUR−ST) � T+TUR−ST,
or, equivalently, that (I−QQ−)T � −(I−QQ−)TUR−ST, and hence that

(I−QQ−)TU � −(I−QQ−)TUR−D . (2.32)

It can be shown in similar fashion that

ST(I−Q−Q) � −DR−ST(I−Q−Q) . (2.33)

Further,
(T+ TUR−ST)Q−(T+ TUR−ST) � T+ TUR−ST ,

or, equivalently,

TQ−T � T+ TUR−ST −TUR−STQ−T
−TQ−TUR−ST− TUR−STQ−TUR−ST ,

implying that

STQ−TU � D+ DR−D− DR−STQ−TU

−STQ−TUR−D− DR−STQ−TUR−D . (2.34)
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And, if R(D) ⊂ R(R) andC(D) ⊂ C(R) [in which caseD(I − R−R) � 0 and
(I−RR−)D � 0], results (2.29) – (2.31) follow from results (2.32) – (2.34). Q.E.D.

In light of Lemma 18.2.13, we have (as a consequence of Theorem 18.2.12) the
following result.

Theorem 18.2.14. Let R represent ann × q matrix, S ann × m matrix, T an
m × p matrix, andU ap × q matrix. If R(STU) ⊂ R(R) andC(STU) ⊂ C(R),
then the matrix

R− − R−ST(T+ TUR−ST)−TUR−

is a generalized inverse of the matrixR+ STU.
Observe (in connection with Theorem 18.2.14) thatR+STU can be reexpressed

as
R+ STU � R+ (ST)T−(TU) .

Thus, applying Theorem 18.2.14 withST,T−, andTU in place ofS, T, andU,
respectively, we obtain the following corollary, which generalizes result (2.22).

Corollary 18.2.15. Let R represent ann × q matrix, S ann × m matrix, T an
m × p matrix, andU ap × q matrix. If R(STU) ⊂ R(R) andC(STU) ⊂ C(R),
then the matrix

R− − R−STT−(T− + T−TUR−STT−)−T−TUR−

is a generalized inverse of the matrixR+ STU.

f. An infinite-series representation of the inverse of a matrix of the
form I− A

Let A1,A2, . . . represent a sequence ofm × n matrices, and (fori � 1, . . . , m,
j � 1, . . . n, andk � 1,2, . . .) let a(k)

ij represent theij th element ofAk. If for
everyi andj (i.e., if for i � 1, . . . , m andj � 1, . . . , n) there exists a scalaraij
such thataij is the limit of the sequencea(1)

ij , a
(2)
ij , . . ., we say that them×nmatrix

A, whoseij th element isaij , is thelimit of the sequenceA1,A2, . . . (or that the
sequenceA1,A2, . . . converges to A), and write limk→∞ Ak � A (or Ak → A).

If the sequenceA1,A2, . . . has a limit, it is said to beconvergent. If the sequence
A1,A2, . . . does not have a limit (i.e., if for somei andj the sequencea(1)

ij , a
(2)
ij , . . .

does not have a limit), it is said to bedivergent.
Four basic properties of sequences of matrices (which are almost immediate

consequences of basic properties of sequences of scalars) are as follows:

(1) For anym × n matrix A, the sequenceA,A, . . . (each of whose members
equalsA) converges toA.

(2) For any scalarc (includingc � −1) and for any sequenceA1,A2, . . . ofm×n
matrices that converge to an (m× n) matrix A, lim

k→∞
(cAk) � cA.

(3) If A1,A2, . . . andB1,B2, . . . are sequences ofm × n matrices that converge
to (m× n) matricesA andB, respectively, then

lim
k→∞

(Ak + Bk) � A+ B . (2.35)
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(4) If A1,A2, . . . is a sequence ofm × n matrices that converges to an (m × n)
matrix A andB1,B2, . . . a sequence ofn × p matrices that converges to an
(n× p) matrix B, then

lim
k→∞

AkBk � AB . (2.36)

Results (2.35) and (2.36) extend in a straightforward way to an arbitrary (finite)
number of sequences of matrices.

Corresponding to any sequenceA1,A2, . . .ofm×nmatrices is another sequence
S1,S2, . . ., whereS1 � A1, S2 � A1 +A2, and more generally (fork � 1,2, . . .)
Sk �

∑k
i�1 Ai . The sequenceS1,S2, . . . is referred to as theinfinite series (or

simply as theseries) generated by the sequenceA1,A2, . . .. Further, the matrixAk

is referred to as thekth term of the infinite series, and the matrixSk is referred to
as thekth partial sum. And, if the infinite seriesS1,S2, . . . converges, its limit is
referred to as thesum of the infinite series and is denoted by the symbol

∑∞
k�1 Ak

or by the expressionA1 + A2 + . . ..
It is convenient to use the symbol

∑∞
k�1 Ak, or the expressionA1 + A2 + . . .,

not only to represent the sum of the infinite series generated by the sequence
A1,A2, . . . (when the infinite series converges) but also to represent the infinite
series itself — the intended usage must be determined from the context. Further,
the symbol

∑∞
k�p Ak (or the expressionAp + Ap+1 + . . .) is used to represent

an infinite series (Ap,Ap + Ap+1, . . .) generated by a sequenceAp,Ap+1, . . . of
m× nmatrices and also to represent the sum of that infinite series (wherep is an
integer, not necessarily equal to 1).

The following theorem gives a useful result on the inversion of a matrix of the
form I− A.

Theorem 18.2.16. Let A represent ann × n matrix. Then, the infinite series
I + A + A2 + A3 + . . . converges if and only if limk→∞ Ak � 0, in which case
I− A is nonsingular and

(I− A)−1 �
∞∑
k�0

Ak � I+ A+ A2 + A3 + . . . (2.37)

(whereA0 � I).
Preliminary to proving Theorem 18.2.16, it is convenient to establish the fol-

lowing lemma.
Lemma 18.2.17. Let A0,A1,A2, . . . represent a sequence ofm×nmatrices. If

the infinite series
∑∞

k�0 Ak converges, then limk→∞ Ak � 0.
Proof (of Lemma 18.2.17). Suppose that

∑∞
k�0 Ak converges. And, fork �

0,1,2, . . ., let Sk �
∑k

i�0 Ai . Then (in light of our supposition) the sequence
S0,S1,S2, . . . has a limit, sayS. Thus, observing that (fork � 1,2, . . .) Ak �
Sk − Sk−1 and that limk→∞ Sk−1 � S, it follows thatbelowdisplayskip0bp

lim
k→∞

Ak � lim
k→∞

(Sk − Sk−1) � lim
k→∞

Sk − lim
k→∞

Sk−1 � S− S � 0 .
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Q.E.D.
Proof (of Theorem 18.2.16). If the infinite seriesI+A+A2+A3+. . . converges,

then it is clear from Lemma 18.2.17 that limk→∞ Ak � 0.
Conversely, suppose that limk→∞ Ak � 0. And observe that

(I+ A+ A2 + · · · + Ak)(I− A) � I− Ak+1 (2.38)

and that
lim
k→∞

(I− Ak+1) � I− lim
k→∞

Ak+1 � I− 0 � I . (2.39)

Then, for anyn× 1 vectorx such that (I− A)x � 0, we find that

(I− Ak+1)x � (I+ A+ A2 + · · · + Ak)(I− A)x � 0

(k � 0,1,2, . . .) and consequently that

x � Ix � [ lim
k→∞

(I− Ak+1)]x � lim
k→∞

(I− Ak+1)x � lim
k→∞

0 � 0 .

Thus,I− A is nonsingular.
Further, postmultiplying both sides of equality (2.38) by (I − A)−1, we obtain

the equality

I+ A+ A2 + · · · + Ak � (I− Ak+1)(I− A)−1 .

And, in light of result (2.39), we conclude that the infinite series
∑∞

k�0 Ak converges
and thatbelowdisplayskip0bp

∞∑
k−0

Ak � lim
k→∞

(I− Ak+1)(I− A)−1

� [ lim
k→∞

(I− Ak+1)](I− A)−1 � I(I− A)−1 � (I− A)−1 .

Q.E.D.
Theorem 18.2.16 can be generalized as follows.
Theorem 18.2.18. Let A andB representn × n matrices. Suppose thatB is

nonsingular, and defineF � B−1A. Then the infinite seriesB−1+FB−1+F2B−1+
F3B−1 + . . . converges if and only if limk→∞ Fk � 0, in which caseB − A is
nonsingular and

(B− A)−1 �
∞∑
k�0

FkB−1 � B−1 + FB−1 + F2B−1 + F3B−1 + . . . (2.40)

(whereF0 � I).
Proof. If the infinite series

∑∞
k�0 FkB−1 converges, then, as a consequence of

Lemma 18.2.17, limk→∞ FkB−1 � 0, and hence

lim
k→∞

Fk � lim
k→∞

FkB−1B � ( lim
k→∞

FkB−1)B � 0B � 0 .
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Conversely, suppose that limk→∞ Fk � 0. Then, it follows from Theorem
18.2.16 thatI− F is nonsingular and that

(I− F)−1 �
∞∑
k�0

Fk .

Further,B − A � B(I − F), implying (sinceB is nonsingular) thatB − A is
nonsingular and [in light of result (2.36)] thatbelowdisplayskip0bp

(B− A)−1 � (I− F)−1B−1 �
( ∞∑
k�0

Fk
)

B−1

�
(

lim
p→∞

p∑
k�0

Fk
)

B−1

� lim
p→∞

p∑
k�0

FkB−1 �
∞∑
k�0

FkB−1 .

Q.E.D.
Formula (2.37) is applicable if (and only if) limk→∞ Ak � 0, and, more gen-

erally, formula (2.40) is applicable if (and only if) limk→∞ Fk � 0. Depending
on the nature ofA (or F), it may be difficult to determine whether the condition
limk→∞ Ak � 0 (or the condition limk→∞ Fk � 0) is satisfied. A condition that
is more stringent, but that is typically easier to check, can be obtained from the
following theorem.

Theorem 18.2.19. LetA represent ann×nmatrix. If ‖A‖ < 1 (where the norm
is the usual norm), then limk→∞ Ak � 0.

Preliminary to proving Theorem 18.2.19, it is convenient to establish the fol-
lowing two lemmas, which are of some interest in their own right.

Lemma 18.2.20. LetA1,A2, . . . represent a sequence ofm×nmatrices. Then,
A1,A2, . . . converges to an (m×n) matrixA if and only if ‖Ak−A‖ → 0 (where
the norm is the usual norm).

Proof (of Lemma 18.2.20). Letaij represent theij th element ofA, and (for
k � 1,2, . . .) let a(k)

ij represent theij th element ofAk. Then, it is clear from the
very definition of the usual norm that (fork � 1,2, . . .)

max
i,j

|a(k)
ij − aij | ≤ ‖Ak − A‖ ≤ (mn)1/2 max

i,j
|a(k)
ij − aij | . (2.41)

Suppose now that‖Ak − A‖ → 0. Then, corresponding to each positive scalar
ε, there exists a positive integerp such that, fork > p, ‖Ak − A‖ < ε and
hence [in light of result (2.41)] such that, fork > p (and fori � 1, . . . , m and
j � 1, . . . , n), |a(k)

ij − aij | < ε. Thus, limk→∞ a
(k)
ij � aij (for i � 1, . . . , m and

j � 1, . . . , n), and consequentlyAk → A.
Conversely, suppose thatAk → A. Then, by definition,a(k)

ij → aij (for i �
1, . . . , m andj � 1, . . . , n). Thus, corresponding to any positive scalarε, there
exists a positive integerp such that, fork > p (and fori � 1, . . . , m andj �
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1, . . . , n), |a(k)
ij − aij | < (mn)−1/2ε and hence [in light of result (2.41)] such that,

for k > p, ‖Ak − A‖ < ε. Thus,‖Ak − A‖ → 0. Q.E.D.
Lemma 18.2.21. For anym× n matrix A andn× p matrix B,

‖AB‖ ≤ ‖A‖ ‖B‖
(where the norms are the usual norms).

Proof (of Lemma 18.2.21). Denote the first,. . . , pth columns of B by
b1, . . . ,bp, respectively. Then, thej th column ofAB is Abj , and [in light of
result (5.2.5)] we have that

‖AB‖2 � tr[(AB)′AB] �
p∑
j�1

(Abj )′Abj . (2.42)

Further, lettinga′i represent theith row of A (for i � 1, . . . , m) and making use
of inequality (6.3.2) (the Schwarz inequality), we find that (forj � 1, . . . , p)

(Abj )′Abj �
m∑
i�1

(a′ibj )
2 ≤

m∑
i�1

(a′iai)(b
′
jbj ) � ‖A‖2b′jbj . (2.43)

And, upon combining result (2.43) with result (2.42), we obtain

‖AB‖2 ≤ ‖A‖2
p∑
j�1

b′jbj � ‖A‖2‖B‖2 ,

or, equivalently,belowdisplayskip0bp

‖AB‖ ≤ ‖A‖ ‖B‖ .
Q.E.D.

Proof (of Theorem 18.2.19). By making repeated use of Lemma 18.2.21, we
find that (for any positive integerk)

‖Ak‖ ≤ ‖A‖k . (2.44)

Suppose now that‖A‖ < 1. Then it follows from a basic result on limits [which
is example 14.8(c) in Bartle’s (1976) book] that‖A‖k → 0, implying [in light of
inequality (2.44)] that‖Ak‖ → 0. We conclude, on the basis of Lemma 18.2.20,
that limk→∞ Ak � 0. Q.E.D.

18.3 Some Results on Positive (and Nonnegative)
Definiteness

a. Matrices of the form V+∑k

i�1 xiAi

The following theorem gives a basic result on matrices of the formV+∑k
i�1 xiAi

(whereV is symmetric and positive definite andA1, . . . ,Ak are symmetric).
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Theorem 18.3.1. Let V represent ann× n symmetric positive definite matrix,
and letA1, . . . ,Ak representk symmetric matrices of ordern. And let x � {xi}
represent ak × 1 vector. Then there exists a neighborhoodN of the k × 1 null
vector0 such that, forx ∈ N, V+∑k

i�1 xiAi is (symmetric) positive definite.
Proof. Fors � 1, . . . , n, let A(s)

1 , . . . ,A(s)
k , andV(s) represent thes × s leading

principal submatrices ofA1, . . . ,Ak andV, respectively. Then, when regarded as
a function ofx, |V(s) +∑k

i�1 xiA
(s)
i | is continuous at0 (and at every other point

in Rk), as is evident from the very definition of a determinant [given by formula
(13.1.2) or (13.1.6)]. Thus,

lim
x→0

|V(s) +
k∑
i�1

xiA
(s)
i | � |V(s) +

k∑
i�1

0A(s)
i | � |V(s)| .

And, since (according to Theorem 14.9.5)|V(s)| > 0, there exists a neighborhood
Ns of 0 such that, forx ∈ Ns , |V(s) +∑k

i�1 xiA
(s)
i | > 0.

Now, takeN to be the smallest of then neighborhoodsN1, . . . Nn. Then, forx ∈
N , |V(1) +∑k

i�1 xiA
(1)
i | > 0, . . . , |V(n) +∑k

i�1 xiA
(n)
i | > 0. And, observing that

V(1)+∑k
i�1 xiA

(1)
i , . . . ,V(n) +∑k

i�1 xiA
(n)
i are the leading principal submatrices

of V+∑k
i�1 xiAi , we conclude (on the basis of Theorem 14.9.5) that, forx ∈ N ,

V+∑k
i�1 xiAi is positive definite. Q.E.D.

In the special case wherek � 1, Theorem 18.3.1 can be restated as the following
corollary.

Corollary 18.3.2. LetA represent ann×n symmetric matrix, and letV represent
ann× n symmetric positive definite matrix. Then there exists a (strictly) positive
scalarc such thatV+ xA is (symmetric) positive definite for every scalarx in the
interval−c < x < c.

The following corollary gives a variation on Corollary 18.3.2.
Corollary 18.3.3. LetA represent ann×n symmetric matrix, and letV represent

ann× n symmetric positive definite matrix. Then there exists a scalarc such that
A+ xV is (symmetric) positive definite for every (scalar)x > c.

Proof. Letw represent an arbitrary scalar. Then it follows from Corollary 18.3.2
that there exists a (strictly) positive scalard such thatV+wA is positive definite
for −d < w < d. And, sincex > 1/d ⇒ 0 < 1/x < d and since (forx �� 0)
A+ xV � x[V+ (1/x)A], it follows from Lemma 14.2.3 thatA+ xV is positive
definite forx > 1/d. Q.E.D.

b. Matrices of the form A−1 − B−1

The following theorem gives sufficient conditions for the differenceA−1 − B−1

between the inverses of a symmetric positive definite matrixA and a (nonsingular)
matrix B to be positive definite or positive semidefinite.

Theorem 18.3.4. Let A represent ann× n symmetric positive definite matrix,
and letB represent ann× n matrix.
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(1) If B−A is positive definite or, more generally, ifB−A is nonnegative definite
and nonsingular (in which caseB is positive definite), thenA−1 − B−1 is
positive definite.

(2) If B−A is symmetric and positive semidefinite (in which caseB is symmetric
and positive definite), thenA−1 − B−1 is positive semidefinite.

Proof. (1) Suppose thatB−A is nonnegative definite and nonsingular [which,
sinceB � A+(B−A), implies (in light of Lemma 14.2.4) thatB is positive definite
(and hence nonsingular)]. Then it follows from Theorem 18.2.4 thatA−1−B−1 is
nonsingular and that

(A−1 − B−1)−1 � A+ A(B− A)−1A � A+ A′(B− A)−1A .

Moreover, it follows from Corollary 14.2.11 that (B − A)−1 is nonnegative
definite, implying (in light of Theorem 14.2.9) thatA′(B−A)−1A is nonnegative
definite and hence (in light of Lemma 14.2.4) thatA+ A′(B− A)−1A is positive
definite. Thus, (A−1 − B−1)−1 is positive definite. SinceA−1 − B−1 � [(A−1 −
B−1)−1]−1, we conclude (on the basis of Corollary 14.2.11) thatA−1 − B−1 is
positive definite.

(2) Suppose thatB − A is symmetric and positive semidefinite [which, since
B � A + (B − A), implies thatB is symmetric and (in light of Lemma 14.2.4)
thatB is positive definite (and hence nonsingular)]. And letr � rank(B−A) [and
observe (in light of Corollary 14.3.12) thatr < n]. Then, according to Theorem
14.3.7, there exists anr × n matrix P (of rankr) such thatB− A � P′P. Thus,

B � A+ (B− A) � A+ P′P � A+ P′IrP;

and it follows from Theorem 18.2.8 thatIr + PA−1P′ is nonsingular and that

B−1 � A−1 − A−1P′(Ir + PA−1P′)−1PA−1 ,

or, equivalently, that

A−1 − B−1 � (PA−1)′(Ir + PA−1P′)−1PA−1 .

Moreover, sinceA−1 is positive definite,Ir + PA−1P′ is positive definite and
hence (Ir + PA−1P′)−1 is positive definite. And, since rank(PA−1) � r (< n),
it follows from Theorem 14.2.9 that (PA−1)′(Ir + PA−1P′)−1PA−1 is positive
semidefinite. Q.E.D.

18.4 Some Results on Idempotency

a. Basic results

Suppose that the sum ofk (square) matricesA1, . . . ,Ak is idempotent. Under
what condition(s) areA1, . . . ,Ak idempotent? This question is answered in the
following theorem.
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Theorem 18.4.1. Let A1, . . . ,Ak representn × n matrices, and defineA �
A1 + . . . + Ak. Suppose thatA is idempotent. Then, each of the following three
conditions implies the other two:

(1) AiAj � 0 (for j �� i � 1, . . . , k) and rank(A2
i ) � rank(Ai) (for i � 1, . . . , k);

(2) A2
i � Ai (for i � 1, . . . , k);

(3) rank(A1)+ · · · + rank(Ak) � rank(A).

Preliminary to proving Theorem 18.4.1, it is convenient to establish the follow-
ing two lemmas.

Lemma 18.4.2. An n × n matrix A is idempotent if and only if rank(A) +
rank(I− A) � n.

Proof (of Lemma 18.4.2). According to Theorem 11.7.1,A is idempotent if
and only if N (A) � C(I − A). Moreover, since [according to result (11.1.1)]
N (A) ⊂ C(I − A), it follows from Theorem 4.3.10 thatN (A) � C(I − A) if
and only if dim[N (A)] � dim[C(I − A)]. Since (according to Lemma 11.3.1)
dim[N (A)] � n− rank(A) and since (by definition) dim[C(I−A)] � rank(I−A),
we conclude thatA is idempotent if and only ifn − rank(A) � rank(I − A) or,
equivalently, if and only if rank(A)+ rank(I− A) � n. Q.E.D.

Lemma 18.4.3. For any idempotent matricesA andB (of the same size),A+B
is idempotent if and only ifBA � AB � 0.

Proof (of Lemma 18.4.3). Clearly,

(A+ B)2 � A2 + B2 + AB+ BA � A+ B+ AB+ BA .

Thus,A+ B is idempotent if and only ifAB+ BA � 0.
Suppose now thatBA � AB � 0. Then, obviously,AB + BA � 0, and

consequentlyA+ B is idempotent.
Conversely, suppose thatAB+ BA � 0. Then,

AB+ ABA � A2B+ ABA � A(AB+ BA) � 0,

and
ABA+ BA � ABA+ BA2 � (AB+ BA)A � 0,

implying that

AB− BA � AB+ ABA− (ABA+ BA) � 0− 0 � 0

and hence that
AB � BA .

Further,belowdisplayskip0bp

AB � (1/2)(AB+ AB) � (1/2)(AB+ BA) � 0 .

Q.E.D.
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Proof (of Theorem 18.4.1). The proof consists of successively showing that
Condition (1) implies Condition (2), Condition (2) implies Condition (3), and
Condition (3) implies Condition (1).

(1)⇒ (2). Suppose that Condition (1) is satisfied. Then (fori � 1, . . . , k)

A2
i � AiA � AiAA � A2

i A � A3
i .

Moreover, since rank(A2
i ) � rank(Ai), it follows from Corollary 4.4.7 thatC(A2

i ) �
C(Ai), so thatAi � A2

i Li for some matrixLi . Thus,

Ai � A2
i Li � A3

i Li � Ai(A2
i Li) � A2

i .

(2)⇒ (3). Suppose that Condition (2) is satisfied. Then, making use of Corollary
10.2.2, we find that

k∑
i�1

rank(Ai) �
k∑
i�1

tr(Ai) � tr

(
k∑
i�1

Ai

)
� tr(A) � rank(A) .

(3) ⇒ (1). Suppose that Condition (3) is satisfied. And defineA0 � In − A.
Then

∑k
i�0 Ai � I. Moreover, it follows from Lemma 10.2.4 that rank(A0) �

n− rank(A), so that
∑k

i�0 rank(Ai) � n.
Thus, making use of result (4.5.10), we find (fori � 1, . . . , k) that

rank(I− Ai) � rank

(
k∑

m�0(m ��i)
Am

)
≤

k∑
m�0(m ��i)

rank(Am) � n− rank(Ai) ,

so that rank(Ai)+ rank(I− Ai) ≤ n, implying [since rank(Ai)+ rank(I− Ai) ≥
rank(Ai + I− Ai) � rank(In) � n] that

rank(Ai)+ rank(I− Ai) � n

and hence implying (in light of Lemma 18.4.2) thatAi is idempotent [and that
rank(A2

i ) � rank(Ai)]. Similarly, again making use of result (4.5.10), we find (for
j �� i � 1, . . . , k) that

rank(I− Ai − Aj ) � rank

(
k∑

m�0(m ��i,j )

Am

)

≤
k∑

m�0(m ��i,j )

rank(Am) � n− rank(Ai)− rank(Aj )

≤ n− rank(Ai + Aj ) ,

so that rank(Ai +Aj )+ rank(I−Ai −Aj ) ≤ n, implying [since rank(Ai +Aj )+
rank(I− Ai − Aj ) ≥ rank(Ai + Aj + I− Ai − Aj ) � rank(In) � n] that

rank(Ai + Aj )+ rank[I− (Ai + Aj )] � n
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and hence (in light of Lemma 18.4.2) thatAi + Aj is idempotent. We conclude,
on the basis of Lemma 18.4.3, thatAiAj � 0 for j �� i � 1, . . . , k. Q.E.D.

The following theorem complements Theorem 18.4.1.
Theorem 18.4.4. Let A1, . . . ,Ak representn × n matrices, and defineA �

A1+ · · · +Ak. If A1, . . . ,Ak are idempotent and ifAiAj � 0 for all i andj �� i,
thenA is idempotent and rank(A1)+ · · · + rank(Ak) � rank(A).

Proof. Suppose thatA1, . . . ,Ak are idempotent and thatAiAj � 0 for all i and
j �� i. Then,A is idempotent, as is evident upon observing that

A2 �
∑
i

A2
i +

∑
i,j ��i

AiAj �
∑
i

Ai � A .

Further, it follows from Theorem 18.4.1 that rank(A1) + · · · + rank(Ak) �
rank(A). Q.E.D.

In connection with Theorem 18.4.1 (and Theorem 18.4.4), observe that, in the
special case whereA � In, rank(A) � n. Observe also that ifAi is a symmetric
matrix, thenA2

i � A′
iAi , implying (in light of Corollary 7.4.5) that rank(A2

i ) �
rank(Ai). Thus, in the special case whereA1, . . . ,Ak are symmetric matrices,
Condition (1) of Theorem 18.4.1 reduces to the condition

AiAj � 0 (for j �� i � 1, . . . k) .

In light of these observations, we obtain, as a special case of Theorem 18.4.1,
the following theorem.

Theorem 18.4.5. Let A1, . . . ,Ak representn× n symmetric matrices such that
A1 + · · · +Ak � I. Then each of the following three conditions implies the other
two:

(1) AiAj � 0 (for j �� i � 1, . . . , k);

(2) A2
i � Ai (for i � 1, . . . , k);

(3) rank(A1)+ · · · + rank(Ak) � n.

Theorem 18.4.5 provides the underpinnings for Cochran’s (1934) theorem (on
the statistical distribution of quadratic forms) and is itself sometimes referred to
as Cochran’s theorem.

b. Extensions

Theorems 18.4.1 and 18.4.4 are generalized in the following two theorems.
Theorem 18.4.6. Let A1, . . . ,Ak representn× n matrices, and letV represent

ann× n symmetric nonnegative definite matrix. DefineA � A1 + · · · + Ak, and
takeR to be any matrix such thatV � R′R. Suppose thatRAR′ is idempotent.
Then each of the following three conditions implies the other two:

(1) RAiVAjR′ � 0 (for j �� i � 1, . . . , k) and rank(RAiVAiR′) � rank(RAiR′)
(for i � 1, . . . , k);
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(2) RAiVAiR′ � RAiR′ (for i � 1, . . . , k);

(3) rank(RA1R′)+ · · · + rank(RAkR′) � rank(RAR′).

Theorem 18.4.7. Let A1, . . . ,Ak representn× n matrices, and letV represent
an n × n symmetric nonnegative definite matrix. DefineA � A1 + · · · + Ak,
and takeR to be any matrix such thatV � R′R. If RAiVAiR′ � RAiR′ for
all i and if RAiVAjR′ � 0 for all i andj �� i, thenRAR′ is idempotent and
rank(RA1R′)+ · · · + rank(RAkR′) � rank(RAR′).

In connection with Theorems 18.4.6 and 18.4.7, note that the existence of a
matrix R such thatV � R′R is guaranteed by Corollary 14.3.8. Note also that,
in the special case whereA1, . . . ,Ak are symmetric, Condition (1) of Theorem
18.4.6 reduces to the condition

RAiVAjR′ � 0 (for j �� i � 1, . . . , k)

{since, in that special case, rank(RAiVAiR′) � rank[(RAiR′)′RAiR′] �
rank(RAiR′)}. And, note that, in the special case whereV � I (and whereR
is chosen to beI), Theorems 18.4.6 and 18.4.7 reduce to Theorems 18.4.1 and
18.4.4.

Theorems 18.4.6 and 18.4.7 can be derived from Theorems 18.4.1 and 18.4.4
— upon applying Theorems 18.4.1 and 18.4.4 withRA1R′, . . . ,RAkR′ in place
of A1, . . . ,Ak, respectively, we obtain Theorems 18.4.6 and 18.4.7.

Theorems 18.4.6 and 18.4.7 can be restated in terms that do not involve the
matrix R. For this purpose, observe that

(RAR′)2 � RAR′ ⇒ R′RAVARR′ � R′RAR′R ,

RAiVAiR′ � RAiR′ ⇒ R′RAiVAiR′R � R′RAiR′R ,

RAiVAjR′ � 0 ⇒ R′RAiVAjR′R � 0 ,

and conversely (in light of Corollary 5.3.3) that

R′RAVAR′R � R′RAR′R ⇒ RAVAR′R
� RAR′R ⇒ (RAR′)2 � RAR′,

R′RAiVAiR′R � R′RAiR′R ⇒ RAiVAiR′R
� RAiR′R ⇒ RAiVAiR′�RAiR′,

R′RAiVAjR′R � 0 ⇒ RAiVAjR′R
� 0 ⇒ RAiVAjR′ � 0 .

Thus,

(RAR′)2 � RAR′ ⇔ VAVAV � VAV , (4.4)

RAiVAiR′ � RAiR′ ⇔ VAiVAiV � VAiV , (4.5)

RAiVAjR′ � 0 ⇔ VAiVAjV � 0 . (4.6)
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Further, in light of Corollary 7.4.4, we have that

rank(RAR′) � rank(R′RAR′) � rank(R′RAR′R) � rank(VAV), (4.4)

rank(RAiR′) � rank(R′RAiR′) � rank(R′RAiR′R) � rank(VAiV), (4.5)

rank(RAiVAiR′) � rank(R′RAiVAiR′)
� rank(R′RAiVAiR′R) � rank(VAiVAiV) . (4.6)

Based on results (4.1) – (4.6), Theorems 18.4.6 and 18.4.7 can be restated as
the following two theorems.

Theorem 18.4.8. Let A1, . . . ,Ak representn × n matrices, letV represent an
n × n symmetric nonnegative definite matrix, and defineA � A1 + · · · + Ak.
Suppose thatVAVAV � VAV. Then each of the following three conditions
implies the other two:

(1) VAiVAjV � 0 (for j �� i � 1, . . . , k) and rank(VAiVAiV) � rank(VAiV)
(for i � 1, . . . , k);

(2) VAiVAiV � VAiV (for i � 1, . . . , k);

(3) rank(VA1V)+ · · · + rank(VAkV) � rank(VAV).

Theorem 18.4.9. Let A1, . . . ,Ak representn × n matrices, letV represent an
n × n symmetric nonnegative definite matrix, and defineA � A1 + · · ·Ak. If
VAiVAiV � VAiV for all i and if VAiVAjV � 0 for all i and j �� i, then
VAVAV � VAV and rank(VA1V)+ · · · + rank(VAkV) � rank(VAV).

Note that, in the special case whereA1, . . . ,Ak are symmetric, Condition (1)
of Theorem 18.4.8 reduces to the condition

VAiVAjV � 0 (for j �� i � 1, . . . , k)

{since, in that special case, rank(VAiVAiV) � rank(RAiVAiR′) �
rank[(RAiR′)′RAiR′] � rank(RAiR′) � rank(VAiV)}. Note also that, in the
special case whereV is positive definite (and hence nonsingular), simplifications
can be effected in Theorem 18.4.8 (and in Theorem 18.4.9) by observing that

VAVAV � VAV ⇔ (AV)2 � AV ⇔ AVA � A ,

VAiVAiV � VAiV ⇔ (AiV)2 � AiV ⇔ AiVAi � Ai ,

VAiVAjV � 0 ⇔ AiVAjV � 0 ⇔ AiVAj � 0 ,

and that

rank(VAV) � rank(AV) � rank(A) ,

rank(VAiV) � rank(AiV) � rank(Ai) ,

rank(VAiVAiV) � rank[(AiV)2] � rank(AiVAi) .
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18.5 Some Results on Ranks

a. Ranks of matrices of the form R+ STU

In Sections 18.1a and 18.2d–e, expressions were obtained for the determinant
and for the ordinary or generalized inverse of a matrix of the formR + STU.
These expressions (when applicable) give the determinant ofR + STU in terms
of the determinants ofR, T, andT + TUR−1ST or the determinants ofR, T,
and T−1 + UR−1S and give the ordinary or generalized inverse ofR + STU
in terms of the ordinary or generalized inverses ofR and T + TUR−1ST (or
T+TUR−ST) or the ordinary or generalized inverses ofR,T, andT−1+UR−1S (or
T−+T−TUR−STT−). The corollary of the following theorem gives a comparable
expression for the rank ofR+ STU.

Theorem 18.5.1. For anyn× q matrixR, n×mmatrixS,m×p matrixT, and
p × q matrix U,

rank(T)+ rank(R+ RR−STUR−R)

� rank(R)+ rank(T+ TUR−RR−ST). (5.1)

Proof. Let A �
(

R −RR−ST
TUR−R T

)
. Then, observing that

A
(

I 0
−UR−R I

)
�

(
R+ RR−STUR−R −RR−ST

0 T

)
,(

I 0
−TUR− I

)
A �

(
R −RR−ST
0 T+ TUR−RR−ST

)

and making use of Lemma 8.5.2 and Corollary 9.6.2, we find that

rank(A) � rank

(
R+ RR−STUR−R −RR−ST

0 T

)
� rank(T)+ rank(R+ RR−STUR−R),

rank(A) � rank

(
R −RR−ST
0 T+ TUR−RR−ST

)

� rank(R)+ rank(T+ TUR−RR−ST) ,

implying that

rank(T)+ rank(R+ RR−STUR−R) � rank(R)+ rank(T+ TUR−RR−ST) .

Or, alternatively, Theorem 18.5.1 can be proved by applying result (9.6.1)
— observing thatC(TUR−R) ⊂ C(T) and R(−RR−ST) ⊂ R(T) and that
C(−RR−ST) ⊂ C(R) andR(TUR−R) ⊂ R(R), we find thatbelowdisplayskip0bp

rank(T)+ rank(R+ RR−STUR−R)

� rank(A) � rank(R)+ rank(T+ TUR−RR−ST) .
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Q.E.D.
Corollary 18.5.2. Let R represent ann × q matrix, S ann × m matrix, T an

m × p matrix, andU ap × q matrix. If R(STU) ⊂ R(R) andC(STU) ⊂ C(R),
then

rank(R+ STU) � rank(R)+ rank(T+ TUR−ST)− rank(T) . (5.2)

Proof. Suppose thatR(STU) ⊂ R(R) andC(STU) ⊂ C(R). Then, in light of
Lemma 9.3.5,

R+ RR−STUR−R � R+ RR−STU � R+ STU .

Now, letQ � T+ TUR−ST andH � T+ TUR−RR−ST, and observe that

Q−H � TU(I− R−R)R−ST .

Clearly, to complete the proof, it suffices [in light of result (5.1)] to show that
rank(H) � rank(Q).

In light of result (2.29),

(I−QQ−)(Q−H) � (I−QQ−)TU(I− R−R)R−ST � 0 ,

implying (in light of Lemma 9.3.5) thatC(Q−H) ⊂ C(Q), so that

Q−H � QK

for some matrixK. Moreover, upon substitutingR−RR− (which, like R− itself,
is a generalized inverse ofR) for R− in result (2.29), we find that

(I−HH−)TU(I− R−R) � (I−HH−)TU(I− R−RR−R) � 0 ,

implying that

(I−HH−)(Q−H) � (I−HH−)TU(I− R−R)R−ST � 0

and hence (in light of Lemma 9.3.5) thatC(Q−H) ⊂ C(H), so that

Q−H � HL

for some matrixL. Thus,

H � Q− (Q−H) � Q(I−K), Q � H+ (Q−H) � H(I+ L) ,

implying thatC(H) ⊂ C(Q), andC(Q) ⊂ C(H) and hence thatC(H) � C(Q), and
it follows thatbelowdisplayskip0bp

rank(H) � rank(Q) .

Q.E.D.
In connection with Corollary 18.5.2, note that equality (5.2) [which is applicable

if R(STU) ⊂ R(R) andC(STU) ⊂ C(R)] is equivalent to the equality

rank(R)− rank(R+ STU) � rank(T)− rank(T+ TUR−ST) . (5.3)

Thus, ifR(STU) ⊂ R(R) andC(STU) ⊂ C(T), then the difference in rank between
R andR+ STU is the same as that betweenT andT+ TUR−ST. Note also that
this difference in rank is nonnegative [as is evident, e.g., upon observing that
T+ TUR−ST � T(I+ UR−ST)].
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b. Lower (and upper) bounds on the rank of a sum of two matrices

Let A andB representm× n matrices. In Section 4.5, it was established that

rank(A+ B) ≤ rank(A,B) ≤ rank(A)+ rank(B), (5.4)

rank(A+ B) ≤ rank

(
A
B

)
≤ rank(A)+ rank(B) . (5.5)

Thus, rank(A + B) is bounded from above by rank(A,B), by rank

(
A
B

)
, and

by rank(A) + rank(B). Further, in Section 17.2, it was established that equality
holds in the inequality rank(A,B) ≤ rank(A) + rank(B) if and only if C(A) and

C(B) are essentially disjoint, and that equality holds in the inequality rank

(
A
B

)
≤

rank(A)+ rank(B) if and only if R(A) andR(B) are essentially disjoint.
In this section, these results are augmented with results on lower bounds for

rank(A + B) and with results on the conditions under which these lower bounds
are attained [and also with results on the conditions under which the upper bounds

rank(A,B) and rank

(
A
B

)
are attained]. These additional results are derived from

the following theorem.
Theorem 18.5.3. LetA andB representm×nmatrices. And, letc � dim[C(A)∩

C(B)], d � dim[R(A) ∩R(B)], and

H �
[

I−
(

A
B

)(
A
B

)−](A 0
0 B

)
[I− (A,B)−(A,B)] . (5.6)

Then,

rank(A+ B)

� rank(A,B)+ rank

(
A
B

)
− rank(A)− rank(B)+ rank(H) (5.7)

� rank(A,B)− d + rank(H) (5.8)

� rank

(
A
B

)
− c + rank(H) (5.9)

� rank(A)+ rank(B)− c − d + rank(H) . (5.10)

Proof. Equality (5.7) is the special case of equality (17.5.5) obtained by

putting (Im, Im) in place ofA,

(
In
In

)
in place ofB, and

(
A 0
0 B

)
in place of

C and by observing that (Im, Im)

(
A 0
0 B

)
� (A,B),

(
A 0
0 B

) (
In
In

)
�
(

A
B

)
,

(Im, Im)

(
A 0
0 B

) (
In
In

)
� A+ B, and rank

(
A 0
0 B

)
� rank(A)+ rank(B). Fur-

ther, equalities (5.8) and (5.9) are obtained from equality (5.7) by substituting
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for rank

(
A
B

)
or rank(A,B), respectively, on the basis of formula (17.4.11) or

(17.4.10). Similarly, equality (5.10) is obtained from equality (5.8) or (5.9) by

substituting for rank(A,B) or rank

(
A
B

)
, respectively, on the basis of formula

(17.4.10) or (17.4.11). Q.E.D.
Lower and upper bounds for the rank of the sum of two matricesA andB can

be obtained from the following theorem, which gives various inequalities relating

rank(A+B) to rank(A)+ rank(B) and to rank(A,B) or rank

(
A
B

)
and which also

gives the conditions under which these inequalities hold as equalities.
Theorem 18.5.4. LetA andB representm×nmatrices. And, letc � dim[C(A)∩

C(B)], d � dim[R(A) ∩R(B)], and

H �
[

I−
(

A
B

) (
A
B

)−] (A 0
0 B

)
[I− (A,B)−(A,B)] . (5.11)

(1) Then,

rank(A) + rank(B)− c − d
� rank(A,B)− d (5.12a)
≤ rank(A+ B) ≤ rank(A,B) � rank(A)+ rank(B)− c (5.12b)

≤ rank(A)+ rank(B), (5.12c)

with equality holding under the following conditions:

rank(A+ B) � rank(A,B)− d
[or, equivalently, rank(A+ B) � rank(A)+ rank(B)− c − d]

⇔ rank(H) � 0; (5.13)

rank(A+ B) � rank(A,B) ⇔ rank(H) � d; (5.14)

rank(A,B) � rank(A)+ rank(B)

[or, equivalently, rank(A)+ rank(B)− c � rank(A)+ rank(B)]

⇔ c � 0; (5.15)

(2) Similarly,

rank(A) + rank(B)− c − d
� rank

(
A
B

)
− c (5.16a)

≤ rank(A+ B) ≤ rank

(
A
B

)
� rank(A)+ rank(B)− d (5.16b)

≤ rank(A)+ rank(B), (5.16c)
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with equality holding under the following conditions:

rank(A+ B) � rank

(
A
B

)
− c

[or, equivalently, rank(A+ B) � rank(A)+ rank(B)− c − d]

⇔ rank(H) � 0; (5.17)

rank(A+ B) � rank

(
A
B

)
⇔ rank(H) � c; (5.18)

rank

(
A
B

)
� rank(A)+ rank(B)

[or, equivalently, rank(A)+ rank(B)− d � rank(A)+ rank(B)]

⇔ d � 0. (5.19)

Proof. (1) That rank(A)+ rank(B)− c − d � rank(A,B)− d is an immediate
consequence of result (17.4.10). That rank(A,B)−d ≤ rank(A+B), with equality
holding if and only if rank(H) � 0, is evident from result (5.8). That rank(A +
B) ≤ rank(A,B) was established earlier (in Lemma 4.5.8). That rank(A + B) �
rank(A,B) if and only if rank(H) � d is clear from result (5.8). That rank(A,B) �
rank(A) + rank(B) − c was established earlier [as result (17.4.10)]. And, that
rank(A)+ rank(B)− c ≤ rank(A)+ rank(B), with equality holding if and only if
c � 0, is obvious.

(2) The proof of Part (2) of Theorem 18.5.4 is analogous to that of Part (1). Q.E.D.
Together, results (5.12) and (5.16) lead to the following corollary.
Corollary 18.5.5. For any matricesA andB (of the same size),

rank(A)+ rank(B)− c − d
≤ rank(A+ B) ≤ rank(A)+ rank(B)−max(c, d) , (5.20)

wherec � dim[C(A) ∩ C(B)] andd � dim[R(A) ∩R(B)].
The matrixH, defined by expression (5.11) [or by expression (5.6)], plays a

prominent role in Theorems 18.5.4 and 18.5.3. The following theorem gives some
results on the rank of this matrix.

Theorem 18.5.6. LetA andB representm×nmatrices. And, letc � dim[C(A)∩
C(B)], d � dim[R(A) ∩R(B)], and

H �
[

I−
(

A
B

) (
A
B

)−](A 0
0 B

)
[I− (A,B)−(A,B)] .

Then,

0 ≤ rank(H) � c − [rank

(
A
B

)
− rank(A+ B)] ≤ c ,

0 ≤ rank(H) � d − [rank(A,B)− rank(A+ B)] ≤ d .
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Proof. The equalities rank(H) � c− [rank

(
A
B

)
− rank(A+B)] and rank(H) �

d − [rank(A,B)− rank(A + B)] are equivalent to equalities (5.9) and (5.8). Fur-

ther, since [according to results (5.5) and (5.4)] rank

(
A
B

)
≥ rank(A + B) and

rank(A,B) ≥ rank(A+B), it is clear thatc− [rank

(
A
B

)
− rank(A+B)] ≤ c and

thatd − [rank(A,B)− rank(A+ B)] ≤ d. Q.E.D.
In connection with Theorem 18.5.6, note that the condition rank(H) � d, which

appears in Part (1) of Theorem 18.5.4 [as a necessary and sufficient condition for
rank(A+B) � rank(A,B)], is satisfied ifd � 0 — if d � 0, then rank(H) � 0� d.
And, similarly, the condition rank(H) � c, which appears in Part (2) of Theorem

18.5.4 [as a necessary and sufficient condition for rank(A + B) � rank

(
A
B

)
], is

satisfied ifc � 0 — if c � 0, then rank(H) � 0� c.

c. Rank additivity

The following theorem gives necessary and sufficient conditions for rank additivity,
that is, for the rank of the sum of two matrices to equal the sum of their ranks.

Theorem 18.5.7. For any two matricesA andB (of the same size), rank(A+B) �
rank(A)+ rank(B) if and only if R(A) andR(B) are essentially disjoint andC(A)
andC(B) are essentially disjoint.

Proof. Let c � dim[C(A) ∩ C(B)] andd � dim[R(A) ∩R(B)]. Suppose that
R(A) andR(B) are essentially disjoint andC(A) andC(B) are essentially disjoint
(or, equivalently, thatc � 0 andd � 0). Then, it follows from Corollary 18.5.5
that

rank(A)+ rank(B) ≤ rank(A+ B) ≤ rank(A)+ rank(B)

and hence that rank(A+ B) � rank(A)+ rank(B).
Conversely, suppose that rank(A + B) � rank(A) + rank(B). Then, in light of

inequalities (5.4) and (5.5), we have that rank(A,B) � rank(A) + rank(B) and

rank

(
A
B

)
� rank(A) + rank(B) and hence [according to results (17.4.12) and

17.4.13)] thatc � 0 andd � 0. Q.E.D.

Exercises

Section 18.1

1. Provide an alternative derivation of formula (1.1) by applying the results of

Theorem 13.3.8 to

∣∣∣∣ R −ST
TU T

∣∣∣∣ (and by proceeding as in the proof of Theorem

18.1.1).
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2. LetR represent ann×nmatrix,S ann×mmatrix,T anm×mmatrix, andU
anm× nmatrix. Use Theorem 18.1.1 (or Corollary 18.1.2 or 18.1.4) to show
that if R is nonsingular, then

|R+ STU| � |R| |Im + UR−1ST| � |R| |Im + TUR−1S| .

3. LetA represent ann× n symmetric nonnegative definite matrix. Show that if
I− A is nonnegative definite and if|A| � 1, thenA � I.

4. Show that, for anyn×n symmetric nonnegative definite matrixB and for any
n× n symmetric matrixC such thatC− B is nonnegative definite,

|C| ≥ |C− B| ,

with equality holding if and only ifC is singular orB � 0.

5. LetA represent a symmetric nonnegative definite matrix that has been parti-
tioned as

A �
(

T U
U′ W

)
,

whereT is of dimensionsm × m andW of dimensionsn × n (and where
U is of dimensionsm × n). DefineQ � W − U′T−U (which is the Schur
complement ofT).

(a) Using Theorem 14.8.4 and the result of Exercise 14.33 (or otherwise),
show that

|W| ≥ |U′T−U| ,
with equality holding if and only ifW is singular orQ � 0.

(b) Suppose thatn � m and thatT is nonsingular. Show that

|W| |T| ≥ |U|2 ,

with equality holding if and only ifW is singular or rank(A) � m.

(c) Suppose thatn � m and thatA is positive definite. Show that

|W| |T| > |U|2 .

6. Show that, for anyn×p matrixX and any symmetric positive definite matrix
W,

|X′WX| |X′W−1X| ≥ |X′X|2 . (E.1)

[Hint. Begin by showing that the matricesX′X(X′WX)−X′X andX′W−1X−
X′X(X′WX)−X′X are symmetric and nonnegative definite.]
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7. (a) Show that, for anyn× n skew-symmetric matrixC,

|In + C| ≥ 1 ,

with equality holding if and only ifC � 0.

(b) Generalize the result of Part (a) by showing that, for anyn× n symmetric
positive definite matrixA and anyn× n skew-symmetric matrixB,

|A+ B| ≥ |A| ,
with equality holding if and only ifB � 0.

Section 18.2

8. (a) LetR represent ann× n nonsingular matrix, and letB represent ann× n
matrix of rank one. Show thatR+B is nonsingular if and only if tr(R−1B) ��
−1, in which case

(R+ B)−1 � R−1 − [1+ tr(R−1B)]−1R−1BR−1 .

(b) To what does the result of Part (a) simplify in the special case where
R � In?

9. Let R represent ann × n matrix, S an n × m matrix, T anm × m matrix,
andU anm× n matrix. Suppose thatR andT are nonsingular. Use Theorem
18.2.8 to show (a) thatR + STU is nonsingular if and only ifIm + UR−1ST
is nonsingular, in which case

(R+ STU)−1 � R−1 − R−1ST(Im + UR−1ST)−1UR−1 ,

and (b) thatR+STU is nonsingular if and only ifIm+TUR−1S is nonsingular,
in which case

(R+ STU)−1 � R−1 − R−1S(Im + TUR−1S)−1UR−1 .

[Hint. ReexpressR+ STU asR+ STU � R+ (ST)ImU and asR+ STU �
R+ SImTU.]

10. Let R represent ann × q matrix, S an n × m matrix, T anm × p matrix,
andU a p × q matrix. Extend the results of Exercise 9 by showing that if
R(STU) ⊂ R(R) andC(STU) ⊂ C(R), then the matrix

R− − R−ST(Ip + UR−ST)−UR−

and the matrix
R− − R−S(Im + TUR−S)−TUR−

are both generalized inverses of the matrixR+ STU.
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11. LetR represent ann× q matrix,S ann×m matrix,T anm× p matrix, and
U ap × q matrix.

(a) Let G represent a generalized inverse of the partitioned matrix(
R −ST

TU T

)
, and partitionG asG �

(
G11 G12

G21 G22

)
(whereG11 is of

dimensionsq × n). Use Theorem 9.6.5 to show thatG11 is a generalized
inverse of the matrixR+ STU.

(b) Let ER � I − RR−, FR � I − R−R, X � ERST, Y � TUFR, EY �
I − YY−, FX � I − XX−, Q � T + TUR−ST, Z � EYQFX, and
Q∗ � FXZ−EY . Use the result of Part (a) of Exercise 10.10 to show that
the matrix

R− − R−STQ∗TUR− − R−ST(I−Q∗Q)X−ER

− FRY−(I−QQ∗)TUR− + FRY−(I−QQ∗)QX−ER (E.2)

is a generalized inverse of the matrixR+ STU.

(c) Show that ifR(TU) ⊂ R(R) andC(ST) ⊂ C(R), then formula (2.27) for
a generalized inverse ofR + STU can be obtained as a special case of
formula (E.2).

12. LetA1,A2, . . . represent a sequence ofm × n matrices, and letA represent
anotherm× n matrix.

(a) Using the result of Exercise 6.1 (i.e., the triangle inequality), show that if
‖Ak − A‖ → 0, then‖Ak‖ → ‖A‖.

(b) Show that ifAk → A, then‖Ak‖ → ‖A‖ (where the norms are the usual
norms).

13. LetA represent ann× nmatrix. Using the results of Exercise 6.1 and of Part
(b) of Exercise 12, show that if‖A‖ < 1, then (fork � 0,1,2, . . .)

‖(I− A)−1 − (I+ A+ A2 + · · · + Ak)‖ ≤ ‖A‖k+1/(1− ‖A‖)

(where the norms are the usual norms). (Note. It follows from Theorems
18.2.16 and 18.2.19 that if‖A‖ < 1, thenI− A is nonsingular.)

14. Let A andB representn × n matrices. Suppose thatB is nonsingular, and
defineF � B−1A. Using the result of Exercise 13, show that if‖F‖ < 1, then
(for k � 0,1,2, . . .)

‖(B− A)−1 − (B−1 + FB−1 + F2B−1 + · · · + FkB−1)‖
≤ ‖B−1‖ ‖F‖k+1/(1− ‖F‖)

(where the norms are the usual norms). (Note. It follows from Theorems
18.2.18 and 18.2.19 that if‖F‖ < 1, thenB− A is nonsingular.)
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Section 18.3

15. LetA represent ann × n symmetric nonnegative definite matrix, and letB
represent ann×nmatrix. Show that ifB−A is nonnegative definite (in which
caseB is also nonnegative definite), thenR(A) ⊂ R(B) andC(A) ⊂ C(B).

Section 18.4

16. LetA represent ann × n symmetric idempotent matrix, and letB represent
ann × n symmetric nonnegative definite matrix. Show that ifI − A − B is
nonnegative definite, thenBA � AB � 0. (Hint. Show thatA′(I−A−B)A �
−A′BA, and then consider the implications of this equality.)

17. LetA1, . . .Ak representn × n symmetric matrices, and letA � A1 + · · · +
Ak. Suppose thatA is idempotent. Suppose further thatA1, . . . ,Ak−1 are
idempotent and thatAk is nonnegative definite. Using the result of Exercise
16 (or otherwise), show thatAiAj � 0 (for j �� i � 1, . . . , k), that Ak is
idempotent, and that rank(Ak) � rank(A)−∑k−1

i�1 rank(Ai).

18. LetA1, . . . ,Ak representn×n symmetric matrices, and defineA � A1+· · ·+
Ak. Suppose thatA is idempotent. Show that ifA1, . . . ,Ak are nonnegative
definite and if tr(A) ≤ ∑k

i�1 tr(A2
i ), thenAiAj � 0 (for j �� i � 1, . . . , k)

andA1, . . . ,Ak are idempotent. (Hint. Show that
∑

i,j ��i tr(AiAj ) ≤ 0 and
then make use of Corollary 14.7.7.)

19. LetA1, . . . ,Ak representn×n symmetric matrices such thatA1+· · ·+Ak � I.
Show that if rank(A1) + · · · + rank(Ak) � n, then, for any (strictly) positive
scalarsc1, . . . , ck, the matrixc1A1 + · · · + ckAk is positive definite.

20. Let A1, . . . ,Ak representn × n symmetric idempotent matrices such that
AiAj � 0 for j �� i � 1,2, . . . , k. Show that, for any (strictly) positive
scalarc0 and any nonnegative scalarsc1, . . . , ck, the matrixc0I +∑k

i�1 ciAi

is positive definite (and hence nonsingular), and

(
c0I+

k∑
i�1

ciAi

)−1

� d0I+
k∑
i�1

diAi ,

whered0 � 1/c0 and (fori � 1, . . . , k) di � −ci/[c0(c0 + ci)].
21. LetA1, . . . ,Ak representn× n symmetric idempotent matrices such that (for

j �� i � 1, . . . , k) AiAj � 0, and letA represent ann × n symmetric
idempotent matrix such that (fori � 1, . . . , k) C(Ai) ⊂ C(A). Show that if
rank(A1)+ · · · + rank(Ak) � rank(A), thenA1 + · · · + Ak � A.

22. LetA represent anm× nmatrix andB ann×mmatrix. If B is a generalized
inverse ofA, then it follows from Lemma 10.2.6 that rank(I − BA) � n −
rank(A). Show that the converse is also true; that is, show that if rank(I−BA) �
n− rank(A), thenB is a generalized inverse ofA.
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23. LetA represent the (n× n) projection matrix for a subspaceU of Rn×1 along
a subspaceV of Rn×1 (whereU ⊕V � Rn×1), and letB represent the (n× n)
projection matrix for a subspaceW of Rn×1 along a subspaceX of Rn×1

(whereW ⊕ X � Rn×1).

(a) Show thatA + B is the projection matrix for some subspaceL of Rn×1

along some subspaceM of Rn×1 (whereL⊕M � Rn×1) if and only if
BA � AB � 0, in which caseL � U ⊕W andM � V ∩ X .

(b) Show thatA − B is the projection matrix for some subspaceL of Rn×1

along some subspaceM of Rn×1 (whereL ⊕ M � Rn×1) if and only
if BA � AB � B, in which caseL � U ∩ X andM � V ⊕W. [Hint.
Observe (in light of Theorem 17.6.13 and Lemma 10.1.2) thatA − B is
the projection matrix for some subspaceL along some subspaceM if and
only if I − (A − B) � (I − A) + B is the projection matrix for some
subspaceL∗ along some subspaceM∗, and then make use of Part (a) and
Theorem 17.6.10.]

24. (a) LetB represent ann× n symmetric matrix, and letW represent ann× n
symmetric nonnegative definite matrix. Show that

WBWBW � WBW ⇔ (BW)3 � (BW)2

⇔ tr[(BW)2] � tr[(BW)3] � tr[(BW)4] .

(b) Indicate how, in the special case of Theorems 18.4.8 and 18.4.9 where
A1, . . . ,Ak are symmetric, the conditionsVAVAV � VAV and
VAiVAiV � VAiV (which appear in both theorems) can be reexpressed
by applying the results of Part (a) (of the current exercise).

Section 18.5

25. LetR represent ann× q matrix,S ann×m matrix,T anm× p matrix, and
U ap × q matrix.

(a) Show that

rank(R+ STU) � rank

(
R −ST

TU T

)
− rank(T) . (E.3)

(b) Let ER � I − RR−, FR � I − R−R, X � ERST, Y � TUFR, EY �
I−YY−, FX � I−X−X, Q � T+TUR−ST, andZ � EYQFX. Use the
result of Part (b) of Exercise 10.10 to show that

rank(R+ STU) � rank(R)+ rank(X)+ rank(Y)+ rank(Z)− rank(T) .
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26. Show that, for anym× n matricesA andB,

rank(A+ B) ≥ | rank(A)− rank(B) | .

27. Show that, for anyn× n symmetric nonnegative definite matricesA andB,

C(A+ B) � C(A,B), R(A+ B) � R
(

A
B

)
,

rank(A+ B) � rank(A,B) � rank

(
A
B

)
.

28. LetA andB representm× n matrices.

(a) Show that (1)C(A) ⊂ C(A+ B) if and only if rank(A,B) � rank(A+ B)

and (2)R(A) ⊂ R(A+ B) if and only if rank

(
A
B

)
� rank(A+ B).

(b) Show that (1) ifR(A) and R(B) are essentially disjoint, thenC(A) ⊂
C(A + B) and (2) ifC(A) andC(B) are essentially disjoint, thenR(A) ⊂
R(A+ B).

29. LetA andB representm × n matrices. Show thateach of the following five
conditions is necessary and sufficient for rank additivity [i.e., for rank(A+B) �
rank(A)+ rank(B)]:

(a) rank(A,B) � rank

(
A
B

)
� rank(A)+ rank(B);

(b) rank(A) � rank[A(I− B−B)] � rank[(I− BB−)A];

(c) rank(B) � rank[B(I− A−A)] � rank[(I− AA−)B];

(d) rank(A) � rank[A(I− B−B)] and rank(B) � rank[(I− AA−)B];

(e) rank(A) � rank[(I− BB−)A] and rank(B) � rank[B(I− A−A)].

30. LetA andB representm× n matrices. And, let

H �
[

I−
(

A
B

) (
A
B

)−] (A 0
0 −B

)
[I− (A,B)−(A,B)] .

(a) Using result (5.8) or (5.9) (with−B in place ofB), show that

rank(A− B) � rank(A)− rank(B)+ [rank(A,B)− rank(A)]

+ [rank

(
A
B

)
− rank(A)] + rank(H) .
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(b) Show thatA andB are rank subtractive [in the sense that rank(A − B) �
rank(A)− rank(B)] if and only if rank(A,B) � rank

(
A
B

)
� rank(A) and

H � 0.

(c) Show that if rank(A,B) � rank

(
A
B

)
� rank(A), then (1) (A−, 0) and(

A−

0

)
are generalized inverses of

(
A
B

)
and (A,B), respectively, and (2)

for

(
A
B

)−
� (A−, 0) and (A,B)− �

(
A−

0

)
, H �

(
0 0
0 BA−B− B

)
.

(d) Show thateach of the following three conditions is necessary and sufficient
for rank subtractivity [i.e., for rank(A− B) � rank(A)− rank(B)]:

(1) rank(A,B) � rank

(
A
B

)
� rank(A) andBA−B � B;

(2) C(B) ⊂ C(A), R(B) ⊂ R(A), andBA−B � B;

(3) AA−B � BA−A � BA−B � B.

(e) Using the result of Exercise 29 (or otherwise), show that rank(A − B) �
rank(A) − rank(B) if and only if rank(A − B) � rank[A(I − B−B)] �
rank[(I− BB−)A].

31. LetA1, . . . ,Ak representm× nmatrices. Adopting the terminology of Exer-
cise 17.6, use Part (a) of that exercise to show that ifR(A1), . . . ,R(Ak) are in-
dependent andC(A1), . . . , C(Ak) are independent, then rank(A1+· · ·+Ak) �
rank(A1)+ · · · + rank(Ak).

32. LetT represent anm× p matrix,U anm× q matrix,V ann× p matrix, and
W ann× q matrix, and defineQ � W−VT−U. Further, letET � I−TT−,
FT � I− T−T, X � ETU, andY � VFT .

(a) Show that

rank

(
T U
V W

)
� rank(T)+ rank

(
0 X
Y Q

)
. (E.4)

(b) Show that

rank

(
0 V
U T

)
� rank(T)+ rank

(−VT−U Y
X 0

)
.

[Hint. Observe (in light of Lemma 8.5.1) that rank

(
0 V
U T

)
�

rank

(
T U
V 0

)
, and make use of Part (a).]
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(c) Show that

rank

(
0 V
U T

)
� rank(T)+ rank(X)+ rank(Y)+ rank(EYVT−UFX),

whereEY � I − YY− andFX � I − X−X. [Hint. Use Theorem 17.2.17
in combination with Part (b).]

(d) Show that

rank

(
T U
V W

)
� rank(T) + rank(Q)+ rank(A)+ rank(B)

+ rank[(I− AA−)XQ−Y(I− B−B)],

whereA � X(I − Q−Q) andB � (I − QQ−)Y. [Hint. Use Part (c) in
combination with Part (a).]

33. LetR represent ann× q matrix,S ann×m matrix,T anm× p matrix, and
U ap× q matrix, and defineQ � T+TUR−ST. Further, letER � I−RR−,
FR � I−R−R, X � ERST, Y � TUFR, A � X(I−Q−Q), B � (I−QQ−)Y.
Use the result of Part (d) of Exercise 32 in combination with the result of Part
(a) of Exercise 25 to show that

rank(R+ STU) � rank(R) + rank(Q)

− rank(T)+ rank(A)+ rank(B)

+ rank[(I− AA−)XQ−Y(I− B−B)],

thereby generalizing formula (5.2).
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19
Minimization of a Second-Degree
Polynomial (inn Variables) Subject to
Linear Constraints

The subject of this chapter is the minimization of a quadratic form, or, more
generally, a second-degree polynomial, in some number, sayn, of variables that
may be subject to linear constraints. Special cases of this minimization problem
are encountered in various areas of statistics and in many related disciplines. In
particular, they are encountered in estimating the parameters of a linear statistical
model. One approach to the estimation goes by the acronym BLUE (for best linear
unbiased estimation); in this approach, consideration is restricted to estimators that
are linear (i.e., that are expressible as linear combinations of the data) and that are
unbiased (i.e., whose “expected values” equal the parameters), and the estimator
of each parameter is chosen to have minimum variance among all estimators that
are linear and unbiased. The minimization problem encompassed in this approach
can be formulated as one of minimizing a quadratic form (in the coefficients of the
linear combination) subject to linear constraints — the constraints arise from the
restriction to unbiased estimators.

Another approach is to regard the estimation of the parameters as a least squares
problem — the least squares problem was considered (from a geometrical perspec-
tive) in Chapter 12. This approach consists of minimizing the sum of the squared
deviations between the data points and the linear combinations of the parameters
(in the model) that correspond to those points. The sum of the squared deviations
is a second-degree polynomial (in the parameters). In some cases, the parameters
of the model may be subject to linear constraints — knowledge of the process that
gave rise to the data may suggest such constraints (along with the other aspects
of the model). In the presence of such constraints, the minimization problem en-
compassed in the least squares approach is one of minimizing a second-degree
polynomial (in the parameters) subject to linear constraints (on the parameters).
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19.1 Unconstrained Minimization

As a preliminary to considering the minimization of a second-degree polynomial
(in n variables) subject to linear constraints, it is instructive to consider the uncon-
strained minimization of a second–degree polynomial.

a. Basic results

Let V � {vij } represent ann × n symmetric nonnegative definite matrix, and let
b � {bi} represent ann×1 vector such thatb ∈ C(V). Further, leta � (a1, . . . , an)′

represent a (column) vector ofn variables, and consider the minimization of the
functionf of a defined (fora ∈ Rn) by

f (a) � a′Va− 2b′a .

Note thatf (a) can be reexpressed as

f (a) � a′Va− 2a′b � a′Va− b′a− a′b

or in nonmatrix form as the second–degree polynomial

f (a) �
∑
i,j

vij aiaj − 2
∑
i

biai .

Forf to have a minimum at a pointa∗, it is necessary thata∗ be a stationary point
of f , that is, it is necessary that∂f/∂a � 0 ata � a∗ (e.g., Magnus and Neudecker
1988, pp. 119–120). As a consequence of formulas (15.3.5) and (15.3.7), we have
that

∂f

∂a
� 2Va− 2b � 2(Va− b) . (1.1)

Thus, forf to have a minimum at a pointa∗, it is necessary thatVa∗ � b or,
equivalently, thata∗ be a solution to the linear systemVa � b (in a).

The following theorem makes a stronger claim — forf to have a minimum at
a pointa∗, it is sufficient, as well as necessary, thatVa∗ � b.

Theorem 19.1.1. Let a represent ann× 1 vector of (unconstrained) variables,
and definef (a) � a′Va − 2b′a, whereV is ann × n symmetric nonnegative
definite matrix andb is ann×1 vector such thatb ∈ C(V). Then the linear system
Va � b (in a) is consistent. Further,f (a) attains its minimum value at a pointa∗
if and only if a∗ is a solution toVa � b, in which casef (a∗) � −b′a∗ � −a′∗b.

Theorem 19.1.1 is a special case of the following result (that wheres � 1).
Theorem 19.1.2. Let A represent ann× s matrix of (unconstrained) variables,

and defineF(A) � A′VA−B′A−A′B, whereV is ann×n symmetric nonnegative
definite matrix andB is ann × s matrix such thatC(B) ⊂ C(V). Then, the linear
systemVA � B (in A) is consistent. Further,F(A) attains its minimum value
at a matrixA∗ (in the sense thatF(A) − F(A∗) is nonnegative definite for every
A ∈ Rn×s) if and only if A∗ is a solution toVA � B, in which caseF(A∗) �
−B′A∗ � −A′

∗B.
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Proof (of Theorem 19.1.2). SinceC(B) ⊂ C(V), the consistency of the linear
systemVA � B follows from Theorem 7.2.1.

Now, letA∗ represent any solution toVA � B, and letA represent an arbitrary
n× s matrix. Then,

A′VA � [A∗ + (A− A∗)]′V[A∗ + (A− A∗)]
� A′

∗VA∗ + A′
∗V(A− A∗)+ (A− A∗)′VA∗ + (A− A∗)′V(A− A∗)

� A′
∗VA∗ + B′(A− A∗)+ (A− A∗)′B+ (A− A∗)′V(A− A∗) .

Thus,

F(A)− F(A∗) � A′VA− A′
∗VA∗ − B′(A− A∗)− (A− A∗)′B

� (A− A∗)′V(A− A∗) , (1.2)

implying (in light of Theorem 14.2.9) thatF(A)− F(A∗) is nonnegative definite.
Further, letA0 represent anyn×s matrix such thatF(A)−F(A0) is nonnegative

definite for everyA ∈ Rn×s . Then,F(A∗) − F(A0) is nonnegative definite, or
equivalently,F(A0)−F(A∗) {which� −[F(A∗)−F(A0)]} is nonpositive definite,
and, sinceF(A0) − F(A∗) is nonnegative definite, it follows from Lemma 14.2.2
thatF(A0) − F(A∗) � 0 and hence [upon applying equality (1.2) withA � A0]
that (A0 − A∗)′V(A0 − A∗) � 0. Thus, as a consequence of Corollary 14.3.11,
V(A0 − A∗) � 0, implying thatVA0 � VA∗ � B and hence thatA0 is a solution
to VA � B.

Finally, observe that

F(A∗) � A′
∗VA∗ − B′A∗ − A′

∗B � A′
∗B− B′A∗ − A′

∗B � −B′A∗

and similarly that

F(A∗) � (VA∗)′A∗ − B′A∗ − A′
∗B � B′A∗ − B′A∗ − A′

∗B � −A′
∗B .

Q.E.D.
Note, in connection with Theorem 19.1.1, that in the special case whereV is

positive definite (and hence nonsingular), the linear systemVa � b has a unique
solution, namely,a � V−1b, and thatV−1b is the only value ofa at whichf (a)
attains its minimum value. Similarly (and more generally), note, in connection
with Theorem 19.1.2, that, in the special case whereV is positive definite, the
linear systemVA � B has a unique solution, namely,A � V−1B, and that there is
only onen× s matrixA∗ such thatF(A)−F(A∗) is nonnegative definite for every
A ∈ Rn×s , namely,A∗ � V−1B.

b. Least squares approach to derivation of main result

Let a represent ann × 1 vector of (unconstrained) variables, and definef (a) �
a′Va− 2b′a, whereV is ann× n symmetric nonnegative definite matrix andb is
ann × 1 vector such thatb ∈ C(V). Further, leta∗ represent any solution to the
(consistent) linear systemVa � b. It was established in Subsection a (specifically
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in Theorem 19.1.1) thatf (a) attains its minimum value at a pointa∗ if and only if
a∗ is a solution to the (consistent) linear systemVa � b, in which casef (a∗) �
−b′a∗. This result can be derived from the results of Section 12.4 (on the least
squares problem), thereby providing an alternative to the proof given in Subsection
a — actually, the proof given in Subsection a is for the more general result given
by Theorem 19.1.2.

Let R represent a matrix such thatV � R′R — the existence of such a matrix is
guaranteed by Corollary 14.3.8 — lett represent ann×1 vector such thatb � Vt,
and lety � Rt. Then,

f (a) � a′Va− 2t′Va � a′R′Ra− 2y′Ra � (y− Ra)′(y− Ra)− y′y .

Sincey′y does not depend ona, the minimization off (a) is equivalent to the
minimization of (y − Ra)′(y − Ra). Moreover, sinceR′y � R′Rt � Vt � b, the
linear systemVa � b is equivalent to the linear systemR′Ra � R′y of normal
equations. Thus, it follows from Theorem 12.4.3 that (y−Ra)′(y−Ra) attains its
minimum value at a pointa∗ if and only if a∗ is a solution toVa � b, in which
case

(y− Ra∗)′(y− Ra∗) � y′y− y′Ra∗ � y′y− b′a∗ .

We conclude thatf (a) attains its minimum value at a pointa∗ if and only if a∗ is
a solution toVa � b, in which case

f (a∗) � (y− Ra∗)′(y− Ra∗)− y′y � −b′a∗ .

c. Use of convexity to establish main result

Let a represent ann × 1 vector of (unconstrained) variables, and definef (a) �
a′Va − 2b′a, whereV is ann × n symmetric nonnegative definite matrix andb
is ann × 1 vector such thatb ∈ C(V). Further, leta∗ represent any solution to
the (consistent) linear systemVa � b. Then,f (a) attains its minimum value at
a � a∗, as was established in Subsection a and as was reconfirmed (via a second
approach) in Subsection b. There is yet another way of verifying thatf (a) attains
its minimum value ata � a∗.

Using the results of Section 15.3, we find that

∂2f

∂a∂a′
� 2V .

Thus, the Hessian matrix off is nonnegative definite (for alla), and consequently
f is a convex function — refer, for example, to Theorem 7.7 of Magnus and
Neudecker (1988). And, recalling (from Subsection a) thata∗ is a stationary point
of f , it follows from a well-known result on convex functions [which is Theorem
7.8 of Magnus and Neudecker (1988)] thatf (a) attains its minimum value ata∗.
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19.2 Constrained Minimization

a. Basic results

Let a � (a1, . . . , an)′ represent ann× 1 vector of variables, and impose ona the
constraintX′a � d, whereX � {xij } is ann× p matrix andd � {dj } is ap × 1
vector such thatd ∈ C(X′). Further, define (fora ∈ Rn) f (a) � a′Va − 2b′a,
whereV is ann×n symmetric nonnegative definite matrix andb is ann×1 vector
such thatb ∈ C(V,X). And consider the constrained (byX′a � d) minimization
of f (a).

Note that the (vector-valued) constraintX′a � d can be rewritten asp scalar-
valued constraints

x′ja � dj (j � 1, . . . , p) ,

wherexj � (x1j , . . . , xnj )′ is thej th column ofX, or in completely nonmatrix
notation as

n∑
i�1

xij ai � dj (j � 1, . . . , p) .

Letting r � {rj } represent an arbitraryp × 1 vector, the Lagrangian function
for our constrained minimization problem can be expressed as

g(a) � f (a)− 2r′(d− X′a)

or, equivalently, as

g(a) � f (a)+
p∑
j�1

(−2rj )(dj − x′ja) .

Thep scalars−2r1, . . . ,−2rp are the Lagrange multipliers. (Expressing the La-
grangian function so that the vector of Lagrange multipliers is represented by−2r
rather than byr will be convenient in what follows.)

Suppose now that rank(X) � p. Then, upon applying Lagrange’s theorem
[which is Theorem 7.10 of Magnus and Neudecker (1988)], we find that, forf (a)
to have a minimum at a pointa∗ under the constraintX′a � d, it is necessary that
there exist ap × 1 vectorr∗ such that, forr � r∗, a∗ is a stationary point ofg
(i.e., such that, forr � r∗, ∂g/∂a � 0 at a � a∗). Of course, it is also necessary
thata∗ satisfy the constraint (i.e., thatX′a∗ � d).

Making use of result (1.1) and of formula (15.3.5), we find that

∂g

∂a
� ∂f

∂a
+ 2

∂(r′X′a)

∂a
� 2(Va− b+ Xr) .

Thus, forf to have a minimum at a pointa∗ under the constraintX′a � d, it is
necessary that there exist ap × 1 vectorr∗ such thatVa∗ + Xr∗ � b (and that
X′a∗ � d) or, equivalently, it is necessary that there exist ap × 1 vectorr∗ such
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thata∗ andr∗ are, respectively, the first and second parts of a solution to the linear
system comprising the two equations

Va+ Xr � b , (2.1)

X′a � d (2.2)

(in a andr). Note that equations (2.1) and (2.2) can be reformulated as(
V X
X′ 0

)(
a
r

)
�
(

b
d

)
.

Are the conditions obtained by applying Lagrange’s theorem sufficient as well as
necessary forf (a) to have a minimum at a pointa∗ under the constraintX′a � d?
And does their necessity extend to the degenerate case where rank(X) < p? The
following theorem answers these questions (in the affirmative).

Theorem 19.2.1. Let a represent ann × 1 vector of variables; letX represent
ann × p matrix andd a p × 1 vector such thatd ∈ C(X′); and definef (a) �
a′Va− 2b′a, whereV is ann× n symmetric nonnegative definite matrix andb is
ann× 1 vector such thatb ∈ C(V,X). Then the linear system(

V X
X′ 0

)(
a
r

)
�
(

b
d

)
(2.3)

(in a and ap× 1 vectorr) is consistent, and the values ofVa andXr are invariant
to the choice of solution to this linear system. Further,f (a) attains its minimum
value at a pointa∗ under the constraintX′a � d if and only if a∗ is the first part of
some solution to linear system (2.3). And for the first and second partsa∗ andr∗
of any solution to linear system (2.3),

f (a∗) � −b′a∗ − d′r∗ � −a′∗b− r′∗d . (2.4)

Theorem 19.2.1 is a special case of the following result (that wheres � 1).
Theorem 19.2.2. Let A represent ann× s matrix of variables; letX represent

an n × p matrix andD a p × s matrix such thatC(D) ⊂ C(X′); and define
F(A) � A′VA−B′A−A′B, whereV is ann× n symmetric nonnegative definite
matrix andB is ann× s matrix such thatC(B) ⊂ C(V,X). Then the linear system(

V X
X′ 0

)(
A
R

)
�
(

B
D

)
(2.5)

(in A and ap×smatrixR) is consistent, and the values ofVA andXR are invariant
to the choice of solution to this linear system. Further, ann× s matrixA∗ satisfies
the constraintX′A � D and is such thatF(A)− F(A∗) is nonnegative definite for
all A satisfyingX′A � D if and only if A∗ is the first part of some solution to
linear system (2.5). And for the first and second partsA∗ andR∗ of any solution
to linear system (2.5),

F(A∗) � −B′A∗ − D′R∗ � −A′
∗B− R′

∗D . (2.6)
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Proof (of Theorem 19.2.2). There exists a matrixL such thatV � L′L. And
there exist matricesT and U such thatB � VT + XU or, equivalently, such
thatB � L′LT + XU. Thus, the consistency of linear system (2.5) follows from
Corollary 7.4.9.

Now, letA∗ andR∗ represent the first and second parts of any solution to linear
system (2.5), and letA represent an arbitraryn × s matrix satisfyingX′A � D.
Then, clearly,X′A∗ � D. And,

(A− A∗)′VA∗ � (A− A∗)′(B− XR∗)
� (A− A∗)′B− (X′A)′R∗ + (X′A∗)′R∗
� (A− A∗)′B− D′R∗ + D′R∗
� (A− A∗)′B ,

and consequently

A′VA � [A∗ + (A− A∗)]′V[A∗ + (A− A∗)]
� A′

∗VA∗ + (A− A∗)′VA∗
+ [(A− A∗)′VA∗]′ + (A− A∗)′V(A− A∗)

� A′
∗VA∗ + (A− A∗)′B+ B′(A− A∗)+ (A− A∗)′V(A− A∗) .

Thus,

F(A)− F(A∗) � A′VA− A′
∗VA∗ − B′(A− A∗)− (A− A∗)′B

� (A− A∗)′V(A− A∗) , (2.7)

implying (in light of Theorem 14.2.9) thatF(A)− F(A∗) is nonnegative definite.
Further, letA0 represent anyn× s matrix that satisfies the constraintX′A � D

and is such thatF(A)−F(A0) is nonnegative definite for allA satisfyingX′A � D.
Then,F(A∗)−F(A0) is nonnegative definite, or equivalently,F(A0)−F(A∗) {which
equals−[F(A∗) − F(A0)]} is nonpositive definite, and, sinceF(A0) − F(A∗) is
nonnegative definite, it follows from Lemma 14.2.2 thatF(A0)− F(A∗) � 0 and
hence [upon applying equality (2.7) withA � A0] that (A0 − A∗)′V(A0 − A∗)
� 0. Thus, as a consequence of Corollary 14.3.11,V(A0−A∗) � 0, or, equivalently,

VA0 � VA∗ , (2.8)

implying that
VA0 + XR∗ � VA∗ + XR∗ � B

and hence (sinceX′A0 � D) that A0 andR∗ are the first and second parts of a
solution to linear system (2.5).

Next, letA1 andR1 represent the first and second parts of a possibly different
(from A∗ andR∗) solution to linear system (2.5). Then,X′A1 � D, and (in light of
what has already been established)F(A)−F(A1) is nonnegative definite for every
A satisfyingX′A � D. Thus, as a consequence of result (2.8), we have that

VA1 � VA∗
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and that
XR1 � B− VA1 � B− VA∗ � XR∗ ,

implying thatVA andXR are invariant to the choice of solution to linear system
(2.5).

Finally, observe that

F(A∗) � A′
∗VA∗ − B′A∗ − A′

∗B � A′
∗(B− XR∗)− B′A∗ − A′

∗B
� −(X′A∗)′R∗ − B′A∗
� −D′R∗ − B′A∗

and, similarly, that

F(A∗) � (VA∗)′A∗ − B′A∗ − A′
∗B � (B− XR∗)′A∗ − B′A∗ − A′

∗B
� −R′

∗X
′A∗ − A′

∗B
� −R′

∗D− A′
∗B

Q.E.D.

b. Interpretation of the Lagrange multipliers (in the special case
where X is of full column rank)

Let a represent ann× 1 vector of variables; impose ona the constraintX′a � d,
whereX is ann × p matrix andd is ap × 1 vector such thatd ∈ C(X′); define
f (a) � a′Va− 2b′a, whereV is ann× n symmetric nonnegative definite matrix
andb is ann× 1 vector such thatb ∈ C(V,X); and consider the constrained (by
X′a � d) minimization off (a).

According to Theorem 19.2.1,f (a) attains its minimum value at a pointa∗
(under the constraintX′a � d) if and only if a∗ is the first (n×1) part of a solution
to the linear system (

V X
X′ 0

)(
a
r

)
�
(

b
d

)
. (2.9)

What (if any) significance can be attributed to the second (p×1) part of a solution
to linear system (2.9)?

Suppose that rank(X) � p (i.e., thatX is of full column rank). Then, the second
part of the solution to linear system (2.9) is unique — ifr1 andr2 are the second
parts of two solutions to linear system (2.9), then (according to Theorem 19.2.1)
Xr1 � Xr2, or equivalently,X(r1 − r2) � 0, implying (since, by supposition, the
columns ofX are linearly independent) thatr1 − r2 � 0, or, equivalently, that
r1 � r2. Further, defining (ford ∈ Rp×1)

h(d) � min
{a∈Rn: X′a�d}

f (a) ,

it follows from well-known results on Lagrange multipliers [described, for exam-
ple, by Magnus and Neudecker (1988, sec. 7.16)] that

∂h

∂d
� −2r∗ , (2.10)
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wherer∗ is the (unique) second part of the solution to linear system (2.9). Thus,
the elements of the vector−2r∗ indicate howh is affected by small changes in the
elements ofd.

An alternative way of arriving at formula (2.10) is by direct differentiation. LetG

represent a generalized inverse of

(
V X
X′ 0

)
, and partitionG asG �

(
G11 G12

G21 G22

)

(whereG11 is of dimensionsn×n). Then,G
(

b
d

)
�
(

G11b+G12d
G21b+G22d

)
is a solution to

linear system (2.9). Moreover, since [in light of the symmetry of

(
V X
X′ 0

)
] G′ is

a generalized inverse of

(
V X
X′ 0

)
, G′

(
b
d

)
�
(

G′
11b+G′

21d
G′

12b+G′
22d

)
is also a solution

to linear system (2.9). Further, as a consequence of result (2.4), we have that

h(d) � −b′G11b− d′G21b− b′G12d− d′G22d

� −b′G11b− (G21b)′d− (G′
12b)′d− d′G22d . (2.11)

And, using formulas (15.3.5) and (15.3.7) to differentiate expression (2.11), we
find that

∂h

∂d
� −G21b−G′

12b− (G22+G′
22)d

� −(G21b+G22d)− (G′
12b+G′

22d) � −r∗ − r∗ � −2r∗ .

c. Use of convexity to establish main result

Let a represent ann× 1 vector of variables; impose ona the constraintX′a � d,
whereX is ann × p matrix andd is ap × 1 vector such thatd ∈ C(X′); and
definef (a) � a′Va− 2b′a, whereV is ann× n symmetric nonnegative definite
matrix andb is ann × 1 vector such thatb ∈ C(V,X). Further, leta∗ and r∗
represent the first and second parts of any solution to the (consistent) linear system(

V X
X′ 0

)(
a
r

)
�
(

b
d

)
.

As discussed in Subsection a, the Lagrangian function for the problem of min-
imizing f (a) under the constraintX′a � d is

g(a) � f (a)− 2r′(d− X′a)

(where−2r is the vector of Lagrange multipliers). Using the results of Section
15.3, we find that

∂2g

∂a∂a′
� 2V . (2.12)

Thus, the Hessian matrix ofg is nonnegative definite (for alla), and, consequently,
g is a convex function (regardless of the value ofr) — refer, for example, to
Theorem 7.7 of Magnus and Neudecker (1988). And, recalling (from Subsection
a) that (forr � r∗) ∂g/∂a � 0 at a � a∗ and thatX′a∗ − d � 0, it follows
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from a well-known result on convex functions [which is Theorem 7.13 of Magnus
and Neudecker (1988)] thatf (a) attains its minimum value (under the constraint
X′a � d) at a � a∗.

19.3 Explicit Expressions for Solutions to the
Constrained Minimization Problem

In Section 19.2a (specifically, in Theorem 19.2.2), we considered a constrained
“minimization” problem that includes as a special case the problem of minimizing
a second-degree polynomial (inn variables) subject to linear constraints. And we
found that this problem “reduces” to the problem of finding the first (n × s) part
of a solution to a (consistent) linear system of the form(

V X
X′ 0

)(
A
R

)
�
(

B
D

)
(3.1)

(in an n × s matrix A and ap × s matrix R), whereV is ann × n symmetric
nonnegative definite matrix,X is ann× p matrix,B is ann× s matrix such that
C(B) ⊂ C(V,X), andD is ap × s matrix such thatC(D) ⊂ C(X′). This linear
system comprises the two equations

VA+ XR � B, (3.2)

X′A � D . (3.3)

The objective in the present section is to obtain “explicit” expressions for so-
lutions to linear system (3.1). Let us begin by attacking the important special
case whereV is positive definite and then the less restrictive special case where
C(X) ⊂ C(V), before proceeding to the general case.

a. Special case: V positive definite

Suppose that the matrixV is positive definite and hence nonsingular. Then linear
system (3.1) is equivalent to the system comprising the two equations

A � V−1B− V−1XR, (3.4)

X′V−1XR � X′V−1B− D . (3.5)

To verify the equivalence of these two systems, suppose thatA andR satisfy
equation (3.1), or, equivalently, equations (3.2) and (3.3). Then, clearly,A andR
satisfy equation (3.4) and, upon replacingA in equation (3.3) with the right side
of equation (3.4), we find that

X′V−1B− X′V−1XR � D

or, equivalently, thatR satisfies equation (3.5).
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Conversely, suppose thatA andR satisfy equations (3.4) and (3.5). Then, clearly,
A andR satisfy equation (3.2). Further,

X′A � X′(V−1B− V−1XR) � X′V−1B− X′V−1XR

� X′V−1B− (X′V−1B− D) � D ,

so thatA satisfies equation (3.3).
The equivalence of linear system (3.1) to the system comprising equations (3.4)

and (3.5) suggests a “computational” scheme for solving this system. First, solve
equation (3.5) forR. Then substitute this solution in expression (3.4) to obtain the
value ofA. If the inverse ofV is easy to obtain (as would be the case if, e.g.,V
were diagonal), then in effect this scheme reduces the problem of solving linear
system (3.1) (which comprisesn + p equations inn + p rows of unknowns) to
one of solving a linear system comprisingp equations inp rows of unknowns.

According to Corollary 14.11.3, rank(X′V−1X) � rank(X). Thus, aside from
the special case where rank(X) � p (i.e., whereX is of full column rank), equation
(3.5) has an infinite number of solutions (forR). However, in light of Theorem
19.2.2 [and of the equivalence of linear system (3.1) and the system comprising
equations (3.4) and (3.5)], the matrixXR is invariant to the choice of solution.
Further, the right side of equation (3.4) is invariant to the choice of solution (for
R), which implies that the first (n× s) part of the solution to linear system (3.1) is
unique. [The uniqueness of the first part of the solution to linear system (3.1) can
also be seen to follow from the invariance ofVA to the choice of solution to linear
system (3.1) — ifA1 andA2 are the first parts of two solutions to linear system
(3.1), thenVA1 � VA2, implying thatA1 � V−1VA1 � V−1VA2 � A2.]

b. Special case: C(X) ⊂ C(V)

The results obtained in Subsection a [on the solution of linear system (3.1)], which
are for the special case whereV is positive definite, can be extended in a relatively
straightforward way to the less restrictive special case whereC(X) ⊂ C(V).

Suppose thatC(X) ⊂ C(V). Then the matricesA andR satisfy the two equations
(3.2) and (3.3), which compose linear system (3.1), if and only ifR satisfies the
equation

X′V−XR � X′V−B− D (3.6)

and
A � V−B− V−XR+ (I− V−V)L (3.7)

for some (n× s) matrix L.
For purposes of verifying this, observe (in light of Lemma 9.3.5 and Lemma

4.2.5) that

VV−X � X (3.8)

X′V−V � X′ . (3.9)
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Observe also thatB � VE+ XF for some matricesE andF and hence that

VV−B � VV−VE+ VV−XF � VE+ XF � B . (3.10)

Now, suppose thatA and R satisfy equations (3.2) and (3.3). Then,VA �
B−XR, and it follows from Theorem 11.2.4 that equality (3.7) holds for someL.
Moreover, upon replacingA in equation (3.3) with the right side of equality (3.7),
we find [in light of result (3.9)] that

X′V−B− X′V−XR � D

or, equivalently, thatR satisfies equation (3.6).
Conversely, suppose thatR satisfies equation (3.6) and that equality (3.7) holds

for someL. Then, making use of results (3.8) – (3.10), we find that

VA+ XR � VV−B− VV−XR+ V(I− V−V)L+ XR

� B− XR+ 0+ XR � B

and

X′A � X′V−B− X′V−XR+ X′(I− V−V)L

� X′V−B− X′V−XR � X′V−B− (X′V−B− D) � D ,

so thatA andR satisfy equations (3.2) and (3.3).
Our results suggest a “computational” scheme for solving linear system (3.1).

First, solve equation (3.6) forR. Then substitute this solution in expression (3.7)
to obtain a value forA— the matrixL in expression (3.7) can be chosen arbitrarily;
in particular,L can be set equal to0.

We have that
rank(X′V−X) � rank(X) . (3.11)

To see this, observe thatX � VK for some matrixK and hence thatX′V−X �
K′VV−VK � K′VK, implying [in light of Part (1) of Theorem 14.12.25] that

X(X′V−X)−X′V−X � VK(K′VK)−K′VK � VK � X . (3.12)

And result (3.12) implies result (3.11), as is evident from the following lemma.
Lemma 19.3.1. Let W represent ann× nmatrix andX ann×p matrix. Then,

the following three conditions are equivalent:

(1) rank(X′WX) � rank(X);

(2) X(X′WX)−X′WX � X;

(3) X′WX(X′WX)−X′ � X′.

Proof. If Condition (1) is satisfied, then (according to Corollary 4.4.7)
R(X′WX) � R(X), implying (in light of Lemma 9.3.5) that Condition (2) is
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satisfied. Conversely, if Condition (2) is satisfied, then (according to Corollary
4.4.5) rank(X′WX) ≥ rank(X), implying [since clearly rank(X′WX) ≤ rank(X)]
that Condition (1) is satisfied. Thus, Conditions (1) and (2) are equivalent.

It can be shown in similar fashion that Conditions (1) and (3) are equiva-
lent. Q.E.D.

It is clear from result (3.11) that, aside from the special case where rank(X) � p,
equation (3.6) has an infinite number of solutions (forR). However, since any
solution to equation (3.6) is the second part of a solution to linear system (3.1), it
follows from Theorem 19.2.2 that the value ofXR is invariant to the choice of a
solution.

Since a solution (forR) to equation (3.6) can be obtained by premultiplying the
right side of the equation by (X′V−X)−, we find [upon substituting this solution
in expression (3.7)] thatA is the first part of some solution to linear system (3.1)
if and only if

A � [V− − V−X(X′V−X)−X′V−]B+ V−X(X′V−X)−D+ (I− V−V)L

for some matrixL, or, equivalently, if and only if

A � V−(I− PX,V− )B+ V−X(X′V−X)−D+ (I− V−V)L (3.13)

for someL. Clearly, the first part of the solution to linear system (3.1) is unique
if and only if V is nonsingular (which is the special case considered in Subsection
a).

c. General case

The following, easily verifiable lemma provides a basis for extending the results
of Subsection b on the solution of linear system (3.1) [which are for the special
case whereC(X) ⊂ C(V)] to the general case.

Lemma 19.3.2. LetV represent anm×nmatrix,X anm×p matrix,Y aq×n
matrix,B anm× s matrix,D aq × s matrix, andU ap× q matrix. Then,A∗ and
R∗ are, respectively, the first (n× s) and second (p × s) parts of a solution to the
linear system (

V X
Y 0

)(
A
R

)
�
(

B
D

)

(in ann× s matrix A and ap × s matrix R) if and only if A∗ andR∗ − UD are,
respectively, the first (n × s) and second (p × s) parts of a solution to the linear
system (

V+ XUY X
Y 0

)(
A
T

)
�
(

B
D

)

(in ann× s matrix A and ap × s matrix T).
The following theorem gives “explicit” expressions for the first and second parts

of solutions to linear system (3.1).
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Theorem 19.3.3. Let V represent ann × n symmetric nonnegative definite
matrix,X ann× p matrix,B ann× s matrix such thatC(B) ⊂ C(V,X), andD a
p×smatrix such thatC(D) ⊂ C(X′). Further, letU represent anyp×pmatrix such
thatC(X) ⊂ C(V+XUX′), and letW represent an arbitrary generalized inverse of
V+XUX′. ThenA∗ andR∗ are, respectively, the first (n× s) and second (p× s)
parts of a solution to the (consistent) linear system(

V X
X′ 0

)(
A
R

)
�
(

B
D

)
(3.14)

(in ann× s matrix A and ap × s matrix R) if and only if

R∗ � T∗ + UD (3.15)

and
A∗ � WB−WXT∗ + [I−W(V+ XUX′)]L (3.16)

for some solutionT∗ to the (consistent) linear system

X′WXT � X′WB− D (3.17)

(in ap × s matrix T) and for somen× s matrix L.
A natural question (in connection with Theorem 19.3.3) is whether ap × p

matrix U such thatC(X) ⊂ C(V + XUX′) necessarily exists. The answer is yes.
To see this, note that (according to Corollary 14.3.8)V � S′S for some matrixS,
implying (in light of Corollary 7.4.5) that, for any nonzero scalark,

C(X) � C(kX) ⊂ C(S′, kX) � C[(S′, kX)(S′, kX)′] � C(V+ k2XX′) .

Thus,C(X) ⊂ C(V+ XUX′) for U � k2I and in particular forU � I.
In the special case whereC(X) ⊂ C(V), the conditionC(X) ⊂ C(V + XUX′)

can be satisfied by settingU � 0. WhenU � 0, formula (3.16) reduces to formula
(3.7).

Preliminary to proving Theorem 19.3.3, it is convenient to establish the follow-
ing lemma.

Lemma 19.3.4. Let V represent ann×n symmetric matrix,X ann×p matrix,
andU ap × p matrix. Then, the following ten conditions are equivalent:

(1) C(X) ⊂ C(V+ XUX′);

(2) C(V+ XUX′) � C(V,X);

(3) rank(V+ XUX′) � rank(V,X);

(4) rank(V+ XU′X′) � rank(V,X);

(5) C(V+ XU′X′) � C(V,X);

(6) C(X) ⊂ C(V+ XU′X′);
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(7) R(X′) ⊂ R(V+ XUX′);

(8) R(X′) ⊂ R(V+ XU′X′);

(9) X � (V+ XUX′)(V+ XUX′)−X;

(10) X′ � X′(V+ XUX′)−(V+ XUX′).

Proof (of Lemma 19.3.4). Clearly,

V+ XUX′ � (V,X)

(
I

UX′

)
,

so that
C(V+ XUX′) ⊂ C(V,X) . (3.18)

Now, if C(X) ⊂ C(V + XUX′), thenX � (V + XUX′)L for some matrixL, in
which case

V � V+ XUX′ − XUX′ � V+ XUX′ − (V+ XUX′)LUX′

� (V+ XUX′)(I− LUX′)

and consequently

(V,X) � (V+ XUX′)(I− LUX′,L),

implying thatC(V,X) ⊂ C(V + XUX′) and hence [in light of result (3.18)] that
C(V + XUX′) � C(V,X). Thus, (1)⇒ (2), and, since clearly (2)⇒ (1), (1)⇔
(2).

Moreover, in light of Theorem 4.4.6, it follows from result (3.18) that (3)⇒ (2),
and, since clearly (2)⇒ (3), (2)⇔ (3). We conclude that Conditions (1), (2), and
(3) are equivalent. And, based on essentially the same line of reasoning (withU′

in place ofU), we further conclude that Conditions (4), (5), and (6) are equivalent.
Further, observe thatV + XU′X′ � (V + XUX′)′. Thus, rank(V + XU′X′) �

rank(V+ XUX′), and consequently (4)⇔ (3). And, in light of Lemma 4.2.5, (7)
⇔ (6), and (8)⇔ (1). Finally, in light of Lemma 9.3.5, (9)⇔ (1), and (10)⇔
(7). Q.E.D.

Proof (of Theorem 19.3.3). Observe (in light of Lemma 19.3.4) that

(V+ XUX′)WX � X (3.19)

and
X′W(V+ XUX′) � X′ . (3.20)

Observe also thatB � VE + XF for some matricesE andF [so thatB � (V +
XUX′)E+ X(F− UX′E)] and hence that

(V+ XUX′)WB � (V+ XUX′)W(V+ XUX′)E
+(V+ XUX′)WX(F− UX′E)

� (V+ XUX′)E+ X(F− UX′E) � B . (3.21)
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Now, suppose thatA∗ andR∗ are the first and second parts of a solution to linear
system (3.14), and letT0 � R∗ − UD. ThenR∗ � T0 + UD. And we have, as a
consequence of Lemma 19.3.2, that(

V+ XUX′ X
X′ 0

)(
A∗
T0

)
�
(

B
D

)

or, equivalently, that

(V+ XUX′)A∗ � B− XT0

X′A∗ � D . (3.22)

Thus, it follows from Theorem 11.2.4 that

A∗ � WB−WXT0 + [I−W(V+ XUX′)]L (3.23)

for some matrixL. Moreover, upon replacingA∗ in equality (3.22) with expression
(3.23), we find [in light of result (3.20)] that

X′WB− X′WXT0 � D ,

or, equivalently, thatX′WXT0 � X′WB − D, so thatT0 is a solution to linear
system (3.17).

Conversely, suppose thatR∗ � T∗ + UD and

A∗ � WB−WXT∗ + [I−W(V+ XUX′)]L

for some solutionT∗ to linear system (3.17) and for some matrixL. Then, making
use of results (3.19) – (3.21), we find that

(V+ XUX′)A∗ + XT∗ � (V+ XUX′)WB− (V+ XUX′)WXT∗
+ (V+ XUX′)[I−W(V+ XUX′)]L+ XT∗

� B− XT∗ + 0+ XT∗ � B

and

X′A∗ � X′WB− X′WXT∗ + X′[I−W(V+ XUX′)]L
� X′WB− X′WXT∗ � X′WB− (X′WB− D) � D ,

so that (
V+ XUX′ X

X′ 0

)(
A∗
T∗

)
�
(

B
D

)
.

SinceT∗ � R∗ − UD, it follows from Lemma 19.3.2 thatA∗ andR∗ are the first
and second parts of a solution to linear system (3.14).

Finally, note that the consistency of linear system (3.14) was established in
Theorem 19.2.2 and that its consistency implies the consistency of linear system
(3.17). Q.E.D.



19.3 Expressions for Solutions to Constrained Minimization Problem 471

Theorem 19.3.3 suggests a “computational” scheme for solving linear system
(3.1) or, equivalently, linear system (3.14). First, obtain a solutionT∗ to linear
system (3.17). Then use expressions (3.16) and (3.15) to obtain the first and second
parts of a solution to linear system (3.14) — the matrixL in expression (3.16) can
be chosen arbitrarily; in particular,L can be set equal to0.

Result (3.11), which is for the special case whereC(X) ⊂ C(V), is generalized
in the following theorem.

Theorem 19.3.5. Let V represent ann × n symmetric nonnegative definite
matrix andX ann × p matrix. Further, letU represent anyp × p matrix such
thatC(X) ⊂ C(V + XUX′), and letW represent an arbitrary generalized inverse
of V+ XUX′. Then,

rank(X′WX) � rank(X) . (3.24)

Proof. Observe (in light of Lemma 19.3.4) thatR(X′) ⊂ R(V + XUX′) and
hence (in light of Lemma 9.3.5) that

X′W(V+ XUX′) � X′ .

Now, letZ � I− (X′)−X′. Then,

X′WVZ � X′WVZ+ X′WXUX′Z � X′W(V+ XUX′)Z � X′Z � 0 .

Thus, since (as a consequence of Theorem 17.2.13 and Lemma 19.3.4)

C(X,VZ) � C(X,V) � C(V+ XUX′) ,

we find (in light of Corollary 4.2.4) that

C(X′WX) � C(X′WX, 0)

� C(X′WX,X′WVZ)

� C[X′W(X,VZ)] � C[X′W(V+ XUX′)] � C(X′) ,

implying that rank(X′WX) � rank(X). Q.E.D.
In light of Lemma 19.3.1, we have the following corollary of Theorem 19.3.5.
Corollary 19.3.6. Let V represent ann × n symmetric nonnegative definite

matrix andX ann × p matrix. Further, letU represent anyp × p matrix such
thatC(X) ⊂ C(V + XUX′), and letW represent an arbitrary generalized inverse
of V+ XUX′. Then,

X(X′WX)−X′WX � X , (3.25)

X′WX(X′WX)−X′ � X′ . (3.26)

In connection with Theorem 19.3.3, it is clear from result (3.24) that, aside from
the special case where rank(X) � p, linear system (3.17) has an infinite number
of solutions (forT). However, since, for any solutionT∗ to linear system (3.17),
T∗ + UD is the second part of a solution to linear system (3.14), it follows from
Theorem 19.2.2 that the value ofX(T+UD) is invariant to the choice of solution
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and hence thatXT is invariant to the choice of solution — sinceR(X′WX) � R(X)
(as is evident from Theorem 19.3.5 and Corollary 4.4.7), the invariance ofXT is
also apparent from Theorem 11.10.1.

Since the matrix (X′WX)−(X′WB−D) is one solution to linear system (3.17),
we find [upon substituting this solution in expression (3.16)] that then× s matrix
A is the first part of some solution to linear system (3.14) if and only if

A � [W−WX(X′WX)−X′W]B+WX(X′WX)−D+ [I−W(V+ XUX′)]L

for some matrixL, or, equivalently, if and only if

A � W(I− PX,W)B+WX(X′WX)−D+ [I−W(V+ XUX′)]L (3.27)

for someL. Clearly, the first part of the solution to linear system (3.14) is unique if
and only ifV+ XUX′ is nonsingular or, equivalently (in light of Lemma 19.3.4),
if and only if rank(V,X) � n.

The matrixW in Theorem 19.3.3 (and in Theorem 19.3.5 and Corollary 19.3.6)
is by definition a generalized inverse of the matrixV + XUX′ — recall thatV
is a symmetric nonnegative definite matrix and thatU is any matrix such that
C(X) ⊂ C(V + XUX′). There is no requirement thatW be a generalized inverse
of V. Nevertheless,U can be chosen in such a way thatW will be a generalized
inverse ofV as well as ofV+ XUX′.

To verify this, it suffices (in light of Theorem 18.2.5) to show thatU can be
chosen in such a way thatC(V) andC(XUX′) are essentially disjoint andR(V)
and R(XUX′) are essentially disjoint [and also, of course, in such a way that
C(X) ⊂ C(V + XUX′)]. For purposes of constructing such aU, let R represent
any matrix such thatV � RR′ — the existence of which follows from Corollary
14.3.8 — letT represent any matrix whose columns span the null space ofV, and
observe (in light of Corollaries 7.4.5, 4.5.6, and 17.2.14) that

C(V,X) � C(V,XX′) � C(V,XX′T)

� C(R,XX′T)

� C[(R,XX′T)(R,XX′T)′]
� C(V+ XX′TT′XX′) .

Now, setU � X′TT′X. Then,C(V + XUX′) � C(V,X), or, equivalently
(in light of Lemma 19.3.4),C(X) ⊂ C(V + XUX′). Moreover,C(XUX′) �
C[XX′T(XX′T)′] � C(XX′T), implying (in light of Corollary 17.2.14) thatC(V)
andC(XUX′) are essentially disjoint. And, since clearlyXUX′ is symmetric, it
follows from Lemma 17.2.1 thatR(V) andR(XUX′) are also essentially disjoint.
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19.4 Some Results on Generalized Inverses of
Partitioned Matrices

In Subsection a, some expressions are obtained for generalized inverses of par-

titioned matrices of the form

(
V X
X′ 0

)
(whereV is symmetric and nonnegative

definite), and some basic properties of such generalized inverses are described. Ac-
tually, some of these results are applicable to generalized inverses of partitioned

matrices of the more general form

(
V X
Y 0

)
(whereY is not necessarily equal

to X′) and do not require thatV be symmetric or nonnegative definite (or even
square). Then, in Subsection b, an alternative derivation of the results of Section
19.3c [on the solution of linear system (3.1)] is devised by applying the results of
Subsection a.

a. Some expressions and basic properties

It is easy to verify the following lemma.
Lemma 19.4.1. Let V represent anm× n matrix,X anm× p matrix, andY a

q × nmatrix. And, letG11 represent ann×mmatrix,G12 ann× q matrix,G21 a
p ×m matrix, andG22 ap × q matrix. Then,(

G11 G12

G21 G22

)(
V X
Y 0

)
�
(

G11V+G12Y G11X
G21V+G22Y G21X

)
, (4.1)

(
V X
Y 0

)(
G11 G12

G21 G22

)
�
(

VG11+ XG21 VG12+ XG22

YG11 YG12

)
. (4.2)

Further,

(
G11 G12

G21 G22

)
is a generalized inverse of the partitioned matrix

(
V X
Y 0

)
if and only if

V(G11V+G12Y)+ X(G21V+G22Y) � V
[or, equivalently, (VG11+ XG21)V+ (VG12+ XG22)Y � V], (4.3a)

(VG11+ XG21)X � X, (4.3b)
Y(G11V+G12Y) � Y, and (4.3c)
YG11X � 0 . (4.3d)

Some basic properties of generalized inverses of matrices of the form

(
V X
X′ 0

)
(whereV is symmetric and nonnegative definite) are established in the following
theorem.

Theorem 19.4.2. Let V represent ann × n symmetric nonnegative definite

matrix andX an n × p matrix. And, letG �
(

G11 G12

G21 G22

)
(whereG11 is of
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dimensionsn × n) represent an arbitrary generalized inverse of the partitioned

matrix

(
V X
X′ 0

)
. Then,

(1) X′G12X′ � X′ andXG21X � X (i.e., G12 is a generalized inverse ofX′ and
G21 a generalized inverse ofX);

(2) VG12X′ � XG21V � −XG22X′;

(3) VG11X � 0, X′G11V � 0, andX′G11X � 0;

(4) V � VG11V− XG22X′; and

(5) VG11V, VG12X′, XG21V, andXG22X′ are symmetric and are invariant to the
choice of the generalized inverseG.

Proof. (1) – (2) Consider the linear system(
V X
X′ 0

)(
A
R

)
�
(

0
X′

)

(in ann×nmatrixA and ap×nmatrixR). Since (according to Corollary 14.3.8)
V � K′K for some matrixK, it follows from Theorem 7.4.8 that this linear system
is consistent. Thus,(

V X
X′ 0

)(
G11 G12

G21 G22

)(
0
X′

)
�
(

0
X′

)
, (4.4)

and also [since, in light of the symmetry of

(
V X
X′ 0

)
, G′ is a generalized inverse

of

(
V X
X′ 0

)
] (

V X
X′ 0

)(
G′

11 G′
21

G′
12 G′

22

)(
0
X′

)
�
(

0
X′

)
. (4.5)

Moreover,(
V X
X′ 0

)(
G11 G12

G21 G22

)(
0
X′

)
�
(

VG12X′ + XG22X′

X′G12X′

)
, (4.6)

(
V X
X′ 0

)(
G′

11 G′
21

G′
12 G′

22

)(
0
X′

)
�
(

VG′
21X

′ + XG′
22X′

X′G′
21X

′

)
(4.7)

[as can be easily verified by taking advantage of result (4.2)]. Clearly, re-
sults (4.6) and (4.4) imply thatVG12X′ + XG22X′ � 0, or, equivalently, that
VG12X′ � −XG22X′, and thatX′G12X′ � X′. And results (4.7) and (4.5) im-
ply that VG′

21X
′ + XG′

22X′ � 0 andX′G′
21X

′ � X′, and hence thatXG21V �
(VG′

21X
′)′ � (−XG′

22X′)′ � −XG22X′ andXG21X � (X′G′
21X

′)′ � (X′)′ � X.
(3) ThatX′G11X � 0 is evident from Lemma 19.4.1. And, as a further conse-

quence of Lemma 19.4.1, we have that (VG11 + XG21)X � X andX′(G11V +
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G12X′) � X′, implying [in light of Part (1)] thatVG11X � X − XG21X � 0 and
X′G11V � X′ − X′G12X′ � 0.

(4) It follows from Lemma 19.4.1 that

V � VG11V+ VG12X′ + XG21V+ XG22X′ .

And, upon applying Part (2), we find that

V � VG11V− XG22X′ − XG22X′ + XG22X′ � VG11V− XG22X′ .

(5) Let G∗ �
(

G∗
11 G∗

12
G∗

21 G∗
22

)
represent an arbitrary generalized inverse of(

V X
X′ 0

)
(whereG∗

11 is of dimensionsn × n and whereG∗ may differ from

G). Then, making use of Parts (3) and (4), we find that

VG∗
11V � VG∗

11(VG11V− XG22X′)
� VG∗

11VG11V− VG∗
11XG22X′

� VG∗
11VG11V (sinceVG∗

11X � 0)

� VG∗
11VG11V− XG∗

22X′G11V (sinceX′G11V � 0)

� (VG∗
11V− XG∗

22X′)G11V

� VG11V .

And, upon settingG∗ � G′, we find, in particular, thatVG′
11V � VG11V or,

equivalently, that (VG11V)′ � VG11V. Thus,VG11V is symmetric and is invariant
to the choice of the generalized inverseG.

Further, since [as a consequence of Part (4)]XG22X′ � VG11V − V, XG22X′

is symmetric and is invariant to the choice ofG, and, in light of Part (2),VG12X′

andXG21V are symmetric and are invariant to the choice ofG. Q.E.D.
Let V represent ann×n symmetric nonnegative definite matrix andX ann×p

matrix. In the special case whereC(X) ⊂ C(V), Theorem 9.6.1 can be used to

obtain a generalized inverse for the partitioned matrix

(
V X
X′ 0

)
in terms ofV−

and (X′V−X)−. Upon applying formula (9.6.2) [and observing that−(X′V−X)−

is a generalized inverse of−X′V−X], we find that [in the special case where
C(X) ⊂ C(V)] the partitioned matrix(

V− − V−X(X′V−X)−X′V− V−X(X′V−X)−

(X′V−X)−X′V− −(X′V−X)−

)
(4.8)

is a generalized inverse of

(
V X
X′ 0

)
.

A generalization of formula (4.8) that applies without restriction [i.e., that ap-
plies even ifC(X) is not contained inC(V)] is given by the following theorem.

Theorem 19.4.3. Let V represent ann × n symmetric nonnegative definite
matrix andX ann × p matrix. Further, letU represent anyp × p matrix such
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thatC(X) ⊂ C(V + XUX′), and letW represent an arbitrary generalized inverse
of V+ XUX′. Then the partitioned matrix

(
W−WX(X′WX)−X′W WX(X′WX)−

(X′WX)−X′W −(X′WX)− + U

)

is a generalized inverse of the partitioned matrix

(
V X
X′ 0

)
.

Preliminary to proving Theorem 19.4.3, it is convenient to establish the follow-
ing theorem, which is of some interest in its own right.

Theorem 19.4.4. LetV represent anm×nmatrix,X anm×pmatrix,Y aq×n
matrix, andU ap× q matrix. (1) Then, for any generalized inverse

(
G11 G12

G21 G22

)

of the partitioned matrix

(
V X
Y 0

)
(whereG11 is of dimensionsn×m), the parti-

tioned matrix

(
G11 G12

G21 G22− U

)
is a generalized inverse of the partitioned matrix(

V+ XUY X
Y 0

)
. (2) Conversely, for any generalized inverse

(
H11 H12

H21 H22

)
of

the partitioned matrix

(
V+ XUY X

Y 0

)
(whereH11 is of dimensionsn×m), the

partitioned matrix

(
H11 H12

H21 H22+ U

)
is a generalized inverse of the partitioned

matrix

(
V X
Y 0

)
.

Proof (of Theorem 19.4.4). (1) Let

C �
(

V+ XUY X
Y 0

)(
G11 G12

G21 G22− U

)(
V+ XUY X

Y 0

)
,

and partitionC asC �
(

C11 C12

C21 C22

)
(whereC11 is of dimensionsm× n).

Then, making use of the results of Lemma 19.4.1, we find that

C22 � YG11X � 0 ,

C21 � Y(G11V+G11XUY+G12Y)

� Y(G11V+G12Y)+ YG11XUY

� Y(G11V+G12Y) (sinceYG11X � 0)

� Y,

C12 � (VG11+ XUYG11+ XG21)X

� (VG11+ XG21)X+ XUYG11X

� (VG11+ XG21)X

� X,
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C11 � (VG11+ XUYG11+ XG21)(V+ XUY)

+ (VG12+ XUYG12+ XG22− XU)Y

� (VG11+ XG21)V+ XUYG11V

+(VG11+ XG21)XUY+ XUYG11XUY

+(VG12+ XG22)Y+ XUYG12Y− XUY

� (VG11+ XG21)V+ XUYG11V+ XUY+ 0

+(VG12+ XG22)Y+ XUYG12Y− XUY (sinceYG11X � 0)

� (VG11+ XG21)V+ (VG12+ XG22)Y+ XUYG11V+ XUYG12Y

� V+ XUYG11V+ XUYG12Y

� V+ XUY(G11V+G12Y)

� V+ XUY .

Thus,

(
G11 G12

G21 G22

)
is a generalized inverse of

(
V+ XUY X

Y 0

)
.

(2) Rewriting

(
V X
Y 0

)
as

(
(V+ XUY)+ X(−U)Y X

Y 0

)
and applying Part (1)

(with V+ XUY in place ofV and−U in place ofU), we find that the partitioned

matrix

(
H11 H12

H21 H22− (−U)

)
, which equals

(
H11 H12

H21 H22+ U

)
, is a generalized

inverse of

(
V X
Y 0

)
. Q.E.D.

Proof (of Theorem 19.4.3). Since (in light of Lemma 19.3.4)R(X′) ⊂ R(V+
XUX′), formula (9.6.2) (for the generalized inverse of a partitioned matrix) is

applicable to the partitioned matrix

(
V+ XUX′ X

X′ 0

)
. Upon applying that formula

[and observing that−(X′WX)− is a generalized inverse ofX′WX], we find that
the partitioned matrix(

W−WX(X′WX)−X′W WX(X′WX)−

(X′WX)−X′W −(X′WX)−

)

is a generalized inverse of

(
V+ XUX′ X

X′ 0

)
. Thus, it follows fom Part (2) of

Theorem 19.4.4 that the partitioned matrix(
W−WX(X′WX)−X′W WX(X′WX)−

(X′WX)−X′W −(X′WX)− + U

)

is a generalized inverse of the partitioned matrix

(
V X
X′ 0

)
. Q.E.D.

b. Alternative derivation of the results of Section 19.3c

For purposes of obtaining an alternative derivation of the results of Section 19.3c,
let V represent ann × n symmetric nonnegative definite matrix andX ann × p
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matrix. Further, letU represent anyp×p matrix such thatC(X) ⊂ C(V+XUX′),
and letW represent an arbitrary generalized inverse ofV+ XUX′.

Then, upon taking the generalized inverseG [of the partitioned matrix(
V X
X′ 0

)
] in Theorem 19.4.2 to be the generalized inverse given by Theorem

19.4.3, it follows from Part (1) of Theorem 19.4.2 that

X′WX(X′WX)−X′ � X′, (4.9)

X(X′WX)−X′WX � X . (4.10)

And, in light of Lemma 19.3.1, it is evident from equality (4.9) or (4.10) that

rank(X′WX) � rank(X) . (4.11)

Now, letB represent ann× s matrix such thatC(B) ⊂ C(V,X) andD ap × s
matrix such thatC(D) ⊂ C(X′). And, let

G11 � W−WX(X′WX)−X′W,

G12 � WX(X′WX)−,
G21 � (X′WX)−X′W,

G22 � −(X′WX)− + U .

Then, according to Theorem 19.4.3, the partitioned matrix

(
G11 G12

G21 G22

)
is a gen-

eralized inverse of the partitioned matrix

(
V X
X′ 0

)
, and it follows from Theorem

11.2.4 thatA∗ andR∗ are, respectively, the first (n× s) and second (p × s) parts
of a solution to the (consistent) linear system(

V X
X′ 0

)(
A
R

)
�
(

B
D

)
(4.12)

(in ann× s matrix A and ap × s matrix R) if and only if(
A∗
R∗

)
�
(

G11 G12

G21 G22

)(
B
D

)
+
[(

In 0
0 Ip

)
−
(

G11 G12

G21 G22

)(
V X
X′ 0

)](
L
M

)

for somen× s matrix L and somep × s matrix M.
Note that, as a consequence of Lemma 19.3.4,X′ � X′W(V + XUX′), or,

equivalently, thatX′(I − WV) � X′WXUX′. Thus, making use of results (4.1)
and (4.10), we find that(

G11 G12

G21 G22

)(
V X
X′ 0

)

�
(

WV+WX(X′WX)−X′(I−WV) 0
−(X′WX)−X′(I−WV)+ UX′ (X′WX)−X′WX

)

�
(

W(V+ XUX′) 0
[I− (X′WX)−X′WX]UX′ (X′WX)−X′WX

)
.
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We conclude thatA∗ andR∗ are, respectively, the first and second parts of a solution
to linear system (4.12) if and only if

A∗ � [W−WX(X′WX)−X′W]B+WX(X′WX)−D+ [I−W(V+ XUX′)]L,
R∗ � (X′WX)−(X′WB− D)+ UD+ [I− (X′WX)−X′WX](M− UX′L)

for some matricesL andM, or, equivalently, if and only if

A∗ � [W−WX(X′WX)−X′W]B+WX(X′WX)−D

+[I−W(V+ XUX′)]L, (4.13)

R∗ � (X′WX)−(X′WB− D)+ UD+ [I− (X′WX)−X′WX]Z (4.14)

for some matricesL andZ.
This result can be reexpressed in terms of the linear system

X′WXT � X′WB− D (4.15)

(in ap × s matrix T). Since clearlyD � X′K for some matrixK, it follows from
result (4.9) that

X′WX(X′WX)−(X′WB− D) � X′WB− D

and hence (in light of Lemma 9.5.1) that linear system (4.15) is consistent. Further,
in light of Corollary 4.4.7, it follows from result (4.11) thatR(X′WX) � R(X),
implying (in light of Theorem 11.10.1) thatXT is invariant to the choice of solution
to linear system (4.15). Then, upon recalling Theorem 11.2.4 and observing that
the matrix (X′WX)−(X′WB − D) is a solution to linear system (4.15), we find
that equalities (4.13) and (4.14) hold for some matricesL andZ if and only if
R∗ � T∗ + UD and

A∗ � WB−WXT∗ + [I−W(V+ XUX′)]L

for some solutionT∗ to linear system (4.15) and for some matrixL.

19.5 Some Additional Results on the Form of Solutions
to the Constrained Minimization Problem

Let a represent ann × 1 vector of variables. And consider the minimization of
the quadratic forma′Va subject to the constraintX′a � d, whereV is ann × n

symmetric nonnegative definite matrix,X is ann × p matrix, andd is ap × 1
vector such thatd ∈ C(X′). This minimization problem is a special case of the
minimization problem considered in Sections 19.2 – 19.4.

It follows from the results of Sections 19.2 – 19.4 that the problem of minimizing
a′Va subject toX′a � d has a solution or solutions of the form

a � WX(X′WX)−d , (5.1)
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whereW is ann×nmatrix. For the vector (5.1) to be a solution to this minimization
problem, it is sufficient (in light of the results of Section 19.3c) thatW equal
any generalized inverse ofV + XUX′, whereU is anyp × p matrix such that
C(X) ⊂ C(V+ XUX′).

In this section, conditions are given that are necessary (as well as sufficient) for
the vector (5.1) to solve, for everyd ∈ C(X′), the problem of minimizinga′Va
subject toX′a � d (whenW does not vary withd). For fixedV, these conditions
characterize those vectors of the form (5.1) that are solutions [for everyd ∈ C(X′)]
to this minimization problem. For fixedW, these conditions characterize those
nonnegative definite quadratic forms (ina) for which the vector (5.1) is a solution
to the constrained minimization problem.

The following theorem gives what are perhaps the most basic of the necessary
and sufficient conditions.

Theorem 19.5.1. Let V represent ann × n symmetric nonnegative definite
matrix, W ann × n matrix, X ann × p matrix, andd ap × 1 vector. Then, for
the vectorWX(X′WX)−d to be a solution, for everyd ∈ C(X′), to the problem of
minimizing the quadratic forma′Va (in a) subject toX′a � d, it is necessary and
sufficient (assuming that the elements ofW are not functionally dependent ond)
that

C(VWX) ⊂ C(X) (5.2)

and
rank(X′WX) � rank(X) . (5.3)

Proof. It follows from Theorem 19.2.1 thata′Va has a minimum at
WX(X′WX)−d under the constraintX′a � d [whered ∈ C(X′)] if and only if
VWX(X′WX)−d + Xr � 0 for some vectorr andX′WX(X′WX)−d � d, or,
equivalently, if and only ifVWX(X′WX)−d ∈ C(X) andX′WX(X′WX)−d � d.
Thus, forWX(X′WX)−d to be a solution, for everyd ∈ C(X′), to the problem of
minimizing a′Va subject toX′a � d, it is necessary and sufficient that, for every
n × 1 vectoru, VWX(X′WX)−X′u ∈ C(X) andX′WX(X′WX)−X′u � X′u or,
equivalently, that

C[VWX(X′WX)−X′] ⊂ C(X) (5.4)

and
X′WX(X′WX)−X′ � X′ . (5.5)

It remains to show that conditions (5.4) and (5.5) are equivalent to conditions
(5.2) and (5.3). If condition (5.2) is satisfied, then, sinceC[VWX(X′WX)−X′] ⊂
C(VWX), condition (5.4) is satisfied; and if condition (5.3) is satisfied, then, as a
consequence of Lemma 19.3.1, condition (5.5) is satisfied.

Conversely, suppose that conditions (5.4) and (5.5) are satisfied. Then it follows
from Lemma 19.3.1 that condition (5.3) is satisfied. And, as a further consequence
of Lemma 19.3.1, we have that

VWX(X′WX)−X′WX � VWX .
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Thus,
C(VWX) ⊂ C[VWX(X′WX)−X′] ,

and hence condition (5.2) is satisfied. Q.E.D.
In connection with Theorem 19.5.1, note that the conditionC(VWX) ⊂ C(X)

is equivalent to the condition

VWX � XQ for some matrixQ . (5.6)

And, lettingZ represent any matrix whose columns spanC⊥(X) or, equivalently,
spanN (X′), it is also equivalent to the condition

Z′VWX � 0 (5.7)

(as is evident from Corollary 12.5.7).
Moreover, the condition rank(X′WX) � rank(X) is equivalent to each of the

following conditions:

X(X′WX)−X′WX � X, (5.8)

X′WX(X′WX)−X′ � X′, (5.9)

R(X′WX) � R(X), (5.10)

C(X′WX) � C(X′) (5.11)

(as is evident from Lemma 19.3.1 and Corollary 4.4.7). Thus, variations on The-
orem 19.5.1 can be obtained by replacing condition (5.2) with condition (5.6) or
(5.7) and/or by replacing condition (5.3) with any one of conditions (5.8) – (5.11).

Note (in light of Corollary 14.11.3) that one circumstance under which the
condition rank(X′WX) � rank(X) is satisfied is that whereW is symmetric and
positive definite.

The following theorem provides alternatives to the necessary and sufficient con-
ditions given by Theorem 19.5.1 [conditions (5.2) and (5.3)] and to the variations
on those conditions [conditions (5.6) – (5.7) and (5.8) – (5.11)].

Theorem 19.5.2. Let V represent ann × n symmetric nonnegative definite
matrix, W ann × n matrix, X ann × p matrix, andd ap × 1 vector. Then, for
the vectorWX(X′WX)−d to be a solution, for everyd ∈ C(X′), to the problem of
minimizing the quadratic forma′Va (in a) subject toX′a � d, it is necessary and
sufficient that there exist ap × p matrix U such that

(V+ XUX′)WX � X . (5.12)

It is also necessary and sufficient thatW be expressible in the form

W � G+K∗ , (5.13)

where, for somep×p matrixU such thatC(X) ⊂ C(V+XUX′), G is an arbitrary
generalized inverse ofV + XUX′, and whereK∗ is some solution to the system(

V
X′

)
KX � 0 (in ann× n matrix K).
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Preliminary to proving Theorem 19.5.2, it is convenient to prove the following
lemma.

Lemma 19.5.3. For anyn× n symmetric nonnegative definite matrixV, n× n
matrix W, andn× p matrix X,

C(VWX) ⊂ C(X) ⇒ R(VWX) ⊂ R(X′WX) .

Proof (of Lemma 19.5.3). Suppose thatC(VWX) ⊂ C(X). Then, as a conse-
quence of Corollary 4.2.4,

C(X′W′VWX) ⊂ C(X′W′X) ,

and (in light of Lemma 4.2.5) we have that

R[(WX)′VWX] � R[(X′W′VWX)′] ⊂ R[(X′W′X)′] � R(X′WX) .

Since (in light of Lemma 14.11.2)R[(WX)′VWX] � R(VWX), we conclude
thatR(VWX) ⊂ R(X′WX). Q.E.D.

Proof (of Theorem 19.5.2). To prove the first part of the theorem, it suffices
(in light of Theorem 19.5.1) to show that there exists a matrixU that satisfies
condition (5.12) if and only ifC(VWX) ⊂ C(X) and rank(X′WX) � rank(X)
or, equivalently (in light of Corollary 4.4.7), if and only ifC(VWX) ⊂ C(X) and
R(X′WX) � R(X).

Upon observing that condition (5.12) is equivalent to the condition

XUX′WX � X− VWX ,

it is clear from Corollary 9.7.2 that there exists a matrixU that satisfies condition
(5.12) if and only ifC(X − VWX) ⊂ C(X) andR(X − VWX) ⊂ R(X′WX)
or, equivalently (in light of Lemma 4.5.10), if and only ifC(VWX) ⊂ C(X) and
R(X− VWX) ⊂ R(X′WX).

Now, suppose thatC(VWX) ⊂ C(X), implying (according to Lemma 19.5.3)
that R(VWX) ⊂ R(X′WX). Then if R(X′WX) � R(X), it follows from
Lemma 4.5.10 thatR(X−VWX) ⊂ R(X′WX). Conversely, ifR(X−VWX) ⊂
R(X′WX), it follows from Lemma 4.5.10 thatR(X) ⊂ R(X′WX) or, equiv-
alently [since clearlyR(X′WX) ⊂ R(X)], that R(X′WX) � R(X). Thus,
C(VWX) ⊂ C(X) andR(X−VWX) ⊂ R(X′WX) if and only ifC(VWX) ⊂ C(X)
andR(X′WX) � R(X). And we conclude that there exists a matrixU that satisfies
condition (5.12) if and only ifC(VWX) ⊂ C(X) andR(X′WX) � R(X).

To complete the proof of Theorem 19.5.2, it suffices to show thatW is expressible
in the form (5.13) if and only if there exists a matrixU that satisfies condition (5.12).

Suppose thatW is expressible in the form (5.13). Then, making use of Lemma
19.3.4, we find that

(V+ XUX′)WX � (V+ XUX′)GX+ VK∗X + XUX′K∗X
� X+ 0+ XU0 � X .
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Thus, there exists a matrixU that satisfies condition (5.12).
Conversely, suppose that there exists a matrixU that satisfies condition (5.12).

Then, clearly,C(X) ⊂ C(V+ XUX′). And, it follows from Theorem 11.12.1 that

W � (V+ XUX′)−XX− + Z∗

for some solutionZ∗ to the system (V+ XUX′)ZX � 0 (in Z).
Now, letK∗ � Z∗ − (V+ XUX′)−(I− XX−). Then

W � (V+ XUX′)−XX− + (V+ XUX′)−(I− XX−)+K∗
� (V+ XUX′)− +K∗ .

Moreover, it follows from Lemma 19.3.4 thatC(V+XU′X′) � C(V,X), implying
(in light of Lemma 4.2.2) that (V,X) � (V + XU′X′)L for some matrixL and
hence that (

V
X′

)
� (V,X)′ � L′(V+ XU′X′)′ � L′(V+ XUX′) .

Thus,(
V
X′

)
K∗X �

(
V
X′

)
Z∗X−

(
V
X′

)
(V+ XUX′)−(I− XX−)X

� L′(V+ XUX′)Z∗X−
(

V
X′

)
(V+ XUX′)−(X− XX−X)

� L′0−
(

V
X′

)
(V+ XUX′)−0 � 0 ,

so thatK∗ is a solution to the system

(
V
X′

)
KX � 0. Q.E.D.

As discussed earlier, the first of the necessary and sufficient conditions in The-
orem 19.5.1 [condition (5.2)] is equivalent to condition (5.6) and also to condition
(5.7), and, consequently, can be replaced by either of those two conditions. It can
also be replaced by any condition that in combination with condition (5.3) gives
a pair of conditions that is equivalent to conditions (5.2) and (5.3). The following
theorem gives some variations on Theorem 19.5.1 obtained by replacing condition
(5.2) by a condition of the latter kind.

Theorem 19.5.4. Let V represent ann × n symmetric nonnegative definite
matrix, W ann × n matrix, X ann × p matrix, andd ap × 1 vector. Then, for
the vectorWX(X′WX)−d to be a solution, for everyd ∈ C(X′), to the problem of
minimizing the quadratic forma′Va (in a) subject toX′a � d, it is necessary and
sufficient that

PX,W′V(I− P
′
X,W′) � 0 and rank(X′WX) � rank(X)

or, equivalently, that

PX,W′V � PX,W′VP
′
X,W′ and rank(X′WX) � rank(X) .



484 19. Minimization of a Second-Degree Polynomial

It is also necessary and sufficient that

PX,W′V � VP
′
X,W′ and rank(X′WX) � rank(X)

or, equivalently, thatPX,W′V be symmetric and rank(X′WX) � rank(X).
Preliminary to proving Theorem 19.5.4, it is convenient to establish the follow-

ing lemma.
Lemma 19.5.5. Let W represent ann × n matrix andX an n × p matrix.

If rank(X′WX) � rank(X), then (1)PX,WX � X, (2) X′WPX,W � X′W, (3)
P2

X,W � PX,W (i.e., PX,W is idempotent), (4) rank(PX,W) � rank(X), and (5)
rank(I− PX,W) � n− rank(X).

Proof (of Lemma 19.5.5). Suppose that rank(X′WX) � rank(X) [and recall that
PX,W � X(X′WX)−X′W].

(1) – (2) ThatPX,WX � X and X′WPX,W � X′W is evident from Lemma
19.3.1.

(3) Using Part (1), we find that

P2
X,W � PX,WX(X′WX)−X′W � X(X′WX)−X′W � PX,W .

(4) – (5) By definition,PX,W � XG, whereG � (X′WX)−X′W. Since [ac-
cording to Part (1)]XGX � X (i.e., sinceG is a generalized inverse ofX), it
follows from result (10.2.1) that rank(PX,W) � rank(X) and from Lemma 10.2.6
that rank(I− PX,W) � n− rank(X). Q.E.D.

Proof (of Theorem 19.5.4). To establish the necessity and sufficiency of the
conditionsPX,W′V(I−P

′
X.W′) � 0 and rank(X′WX) � rank(X), it suffices (in light

of Theorem 19.5.1) to show that these conditions are equivalent to the conditions
C(VWX) ⊂ C(X) and rank(X′WX) � rank(X).

Suppose that rank(X′WX) � rank(X). Then, sinceX′W′X � (X′WX)′,
rank(X′W′X) � rank(X). Thus, applying Parts (1) and (2) of Lemma 19.5.5
(with W′ in place ofW), we find thatPX,W′X � X and X′W′PX,W′ � X′W′.
Letting Z � I − P

′
X,W′ and applying Part (5) of Lemma 19.5.5, we find also that

X′Z � (Z′X)′ � [(I−PX,W′)X]′ � 0′ � 0 and rank(Z) � rank(Z′) � n−rank(X),
implying (in light of Lemma 11.4.1) thatC(Z) � N (X′).

Now, if C(VWX) ⊂ C(X) or, equivalently, ifVWX � XQ for some matrixQ,
then

PX,W′V(I− P
′
X,W′) � [(I− PX,W′)VP

′
X,W′ ]′

� {(I− PX,W′)VWX[(X′W′X)−]′X′}′
� {(I− PX,W′)XQ[(X′W′X)−]′X′}′
� {(X− X)Q[(X′W′X)−]′X′}′ � 0 .

Conversely, ifPX,W′V(I− P
′
X,W′) � 0, then

(VWX)′Z � X′W′V(I− P
′
X,W′) � X′W′PX,W′V(I− P

′
X,W′) � 0 ,

implying (in light of Corollary 12.5.7) thatC(VWX) ⊂ C(X).
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We conclude that the conditionsPX,W′V(I − P
′
X,W′) � 0 and rank(X′WX) �

rank(X) are equivalent to the conditionsC(VWX) ⊂ C(X) and rank(X′WX) �
rank(X).

To complete the proof of Theorem 19.5.4, it suffices to show that the conditions
PX,W′V � VP

′
X,W′ and rank(X′WX) � rank(X) are equivalent to the conditions

PX,W′V � PX,W′VP
′
X,W′ and rank(X′WX) � rank(X).

If PX,W′V � VP
′
X,W′ and rank(X′WX) � rank(X), then [sinceX′W′X �

(X′WX)′] rank(X′W′X) � rank(X), implying [in light of Part (3) of Lemma 19.5.5]
thatP2

X,W′ � PX,W′ , so that

PX,W′V � PX,W′(PX,W′V) � PX,W′VP
′
X,W′ .

Conversely, ifPX,W′V � PX,W′VP
′
X,W′ , thenPX,W′V is symmetric, so that

PX,W′V � (PX,W′V)′ � VP
′
X,W′ .

Thus, the conditionsPX,W′V � VP
′
X,W′ and rank(X′WX) � rank(X) are

equivalent to the conditionsPX,W′V � PX,W′VP
′
X,W′ and rank(X′WX) �

rank(X). Q.E.D.

19.6 Transformation of the Constrained Minimization
Problem to an Unconstrained Minimization
Problem

Leta represent ann×1 vector of variables, and impose ona the constraintX′a � d,
whereX is ann × p matrix andd is ap × 1 vector such thatd ∈ C(X′). Define
f (a) � a′Va− 2b′a, whereV is ann× n symmetric nonnegative definite matrix
andb is ann× 1 vector such thatb ∈ C(V,X).

In Section 19.3, an expression was obtained for the general form of a solution to
the problem of minimizingf (a) (under the constraintX′a � d). This expression
was derived by “solving” the linear system(

V X
X′ 0

)(
a
r

)
�
(

b
d

)

(in a andr), which is the linear system obtained by equating the derivative of the
Lagrangian function (with respect toa) to the null vector and by adjoining the
constraint.

An alternative expression for the general form of a solution to the constrained
minimization problem can be derived by transforming this problem to an uncon-
strained minimization problem (and by then making use of the results of Section
19.1).

For purposes of deriving such an expression, leta0 � (X′)−d, and letZ �
I−(X′)−X′. Or, more generally, leta0 represent anyn×1 vector such thatX′a0 � d,
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and letZ represent anyn × k matrix whose columns span the null space ofX′.
Then, in light of Theorem 11.2.3,X′a � d if and only if

a � a0 + Zu

for somek × 1 vectoru.
Now, for u ∈ Rk×1, defineh(u) � f (a0 + Zu). Then,

h(u) � u′Z′VZu+ 2a′0VZu+ a′0Va0 − 2b′a0 − 2b′Zu

� u′Z′VZu− 2[Z′(b− Va0)]′u+ c, (6.1)

wherec � (Va0 − 2b)′a0 (which is a constant). It is clear that the minimization
of f (a) (with respect toa), subject to the constraintX′a � d, is equivalent to the
unconstrained minimization ofh(u) (with respect tou). The equivalence is in the
sense thatf (a) attains its minimum value (under the constraintX′a � d) at a point
a∗ if and only if a∗ � a0 + Zu∗ for somek × 1 vectoru∗ at whichh(u) attains its
minimum value.

Sinceb ∈ C(V,X), b � Vr+ Xs for some vectorsr ands, so that

Z′(b− Va0) � Z′(Vr+ Xs− Va0) � Z′V(r− a0)+ (X′Z)′s
� Z′V(r− a0)+ 0 � Z′V(r− a0) ,

implying thatZ′(b − Va0) ∈ C(Z′V) and hence (in light of Lemma 14.11.2) that
Z′(b − Va0) ∈ C(Z′VZ). Thus, it follows from Theorem 19.1.1 that the linear
systemZ′VZu � Z′(b − Va0) (in u) is consistent and thath(u) has a minimum
value at a pointu∗ if and only if u∗ is a solution toZ′VZu � Z′(b−Va0), in which
case

h(u∗) � −(b− Va0)′Zu∗ + c � −b′a0 − (b− Va0)′(a0 + Zu∗) . (6.2)

We conclude thatf (a) attains its minimum value (under the constraintX′a � d)
at a pointa∗ if and only if a∗ � a0 + Zu∗ for some solutionu∗ to Z′VZu �
Z′(b− Va0), or, equivalently (in light of Theorem 11.2.4), if and only if

a∗ � a0 + Z(Z′VZ)−Z′(b− Va0)+ Z[I− (Z′VZ)−Z′VZ]w (6.3)

for somek × 1 vectorw, in which case

f (a∗) � −b′a0 − (b− Va0)′a∗ . (6.4)

19.7 The Effect of Constraints on the Generalized Least
Squares Problem

LetX represent ann×pmatrix,W ann×n symmetric nonnegative definite matrix,
andy ann-dimensional column vector. Further, letb represent ap × 1 vector of
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variables, and consider the minimization of the quadratic form (y−Xb)′W(y−Xb)
(in the difference betweeny andXb), subject to the constraint

A′b � d ,

whereA is ap × q matrix andd is aq × 1 vector inC(A′).
The unconstrained minimization of (y − Xb)′W(y − Xb) was considered in

Section 12.4 (in the special case whereW � I), in Section 14.12f (in the special
case whereW is positive definite), and in Section 14.12i (in the general case).
It was found that (in the absence of constraints) (y − Xb)′W(y − Xb) attains its
minimum value at a pointb∗ if and only if b∗ is a solution to the linear system

X′WXb � X′Wy

(in b), in which case

(y− Xb∗)′W(y− Xb∗) � y′W(y− Xb∗) .

The results of Section 19.3 can be used to generalize our results on the uncon-
strained minimization of (y−Xb)′W(y−Xb) to the case whereb is subject to the
constraintA′b � d. For this purpose, reexpress (y− Xb)′W(y− Xb) as

(y− Xb)′W(y− Xb) � b′X′WXb− 2(X′Wy)′b+ y′Wy ,

and observe (in light of Theorem 14.2.9) thatX′WX is nonnegative definite (and
symmetric) and (in light of Lemma 14.11.2) thatX′Wy ∈ C(X′WX).

Now, applying Theorem 19.2.1 (withb, A, X′WX, andX′Wy in place ofa, X,
V, andb, respectively), we find that the linear system(

X′WX A
A′ 0

)(
b
r

)
�
(

X′Wy
d

)
(7.1)

(in b and theq × 1 vector r) is consistent (and that the values ofX′WXb
and Ar are invariant to the choice of solution to this linear system). Further,
(y − Xb)′W(y − Xb) has a minimum value (under the constraintA′b � d) at
a pointb∗ if and only if b∗ is the first part of some solution to linear system (7.1).
And, for the first and second partsb∗ andr∗ of any solution to linear system (7.1),

(y− Xb∗)′W(y− Xb∗) � y′Wy− (X′Wy)′b∗ − d′r∗ (7.2)

� y′W(y− Xb∗)− d′r∗ . (7.3)

Linear system (7.1) comprises the two equations

X′WXb+ Ar � X′Wy , (7.4)

A′b � d . (7.5)

If C(A) ⊂ C(X′WX), then (according to the results of Section 19.3b)b and r
satisfy equations (7.4) and (7.5) if and only ifr satisfies the equation

A′(X′WX)−Ar � A′(X′WX)−X′Wy− d (7.6)
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and

b � (X′WX)−X′Wy− (X′WX)−Ar+ [I− (X′WX)−X′WX]k (7.7)

for somep× 1 vectork. Note (in light of Lemma 14.11.2 and Corollary 14.11.3)
that the conditionC(A) ⊂ C(X′WX) is equivalent to the conditionC(A) ⊂ C(X′W)
and that, in the special case whereW is positive definite, it is equivalent to the
conditionC(A) ⊂ C(X′).

Turning now to the “solution” of linear system (7.1) in the general case [where
C(A) is not necessarily contained inC(X′WX)], let U represent anyq × q matrix
such thatC(A) ⊂ C(X′WX+AUA′), and letG represent any generalized inverse
of X′WX+AUA′. Then, according to Theorem 19.3.3,b∗ andr∗ are, respectively,
the first and second parts of a solution to linear system (7.1) if and only if

r∗ � t∗ + Ud (7.8)

and
b∗ � GX′Wy+GAt∗ + [I−G(X′WX+ AUA′)]k (7.9)

for some solutiont∗ to the (consistent) linear system

A′GAt � A′GX′Wy− d (7.10)

(in aq × 1 vectort) and for somep × 1 vectork. In particular,b∗ is the first part
of some solution to linear system (7.1) if and only if

b∗ � G(I− PA,G)X′Wy + GA(A′GA)−d

+ [I−G(X′WX+ AUA′)]k (7.11)

for some vectork.

Exercises

Section 19.1

1. Leta represent ann×1 vector of (unconstrained) variables, and definef (a) �
a′Va − 2b′a, whereV is ann × n matrix andb ann × 1 vector. Show that
if V is not nonnegative definite or ifb �∈ C(V), thenf (a) is unbounded from
below; that is, corresponding to any scalarc, there exists a vectora∗ such that
f (a∗) < c.

Section 19.3

2. LetV represent ann×n symmetric matrix andX ann×p matrix. Show that,
for anyp × p matrix U such thatC(X) ⊂ C(V+ XUX′),

(1) (V+ XUX′)(V+ XUX′)−V � V;

(2) V(V+ XUX′)−(V+ XUX′) � V.
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3. In Section 19.3c, Theorem 19.3.3 was proved “from scratch.” Devise a shorter
proof of Theorem 19.3.3 by taking advantage of Theorem 11.10.1.

4. LetV represent ann×n symmetric matrix andX ann×pmatrix. Further, let
U � X′TT′X, whereT is any matrix whose columns span the null space ofV.
Show thatC(X) ⊂ C(V+XUX′) and thatC(V) andC(XUX′) are essentially dis-
joint, andR(V) andR(XUX′) are essentially disjoint, as has already been es-
tablished (in Section 19.3c) in the special case whereV is nonnegative definite.

5. Let V represent ann × n symmetric nonnegative definite matrix andX an
n× p matrix. Further, letZ represent any matrix whose columns spanN (X′)
or, equivalently,C⊥(X). And adopt the same terminology as in Exercise 17.20.

(a) Using the result of Part (a) of Exercise 17.20 (or otherwise) show that an
n× nmatrixH is a projection matrix forC(X) alongC(VZ) if and only if
H′ is the first (n× n) part of a solution to the consistent linear system(

V X
X′ 0

)(
A
R

)
�
(

0
X′

)
(E.1)

(in ann× n matrix A and ap × n matrix R).

(b) LettingU represent anyp×p matrix such thatC(X) ⊂ C(V+XUX′) and
letting W represent an arbitrary generalized inverse ofV + XUX′, show
that ann× nmatrixH is a projection matrix forC(X) alongC(VZ) if and
only if

H � PX,W +K[I− (V+ XUX′)W]

for somen× n matrix K.

Section 19.5

6. LetV represent ann× n symmetric nonnegative definite matrix,W ann× n
matrix, andX ann× p matrix. Show that, for the matrixWX(X′WX)−X′ to
be the first (n× n) part of some solution to the (consistent) linear system(

V X
X′ 0

)(
A
R

)
�
(

0
X′

)
(E.2)

(in ann×nmatrixA and ap×nmatrixR), it is necessary and sufficient that
C(VWX) ⊂ C(X) and rank(X′WX) � rank(X).

7. Let a represent ann × 1 vector of variables, and impose ona the constraint
X′a � d, whereX is ann × p matrix andd is a p × 1 vector such that
d ∈ C(X′). Definef (a) � a′Va − 2b′a, whereV is ann × n symmetric
nonnegative definite matrix andb is ann × 1 vector such thatb ∈ C(V,X).
Further, defineg(a) � a′(V + W)a − 2(b + c)′a, whereW is anyn × n

matrix such thatC(W) ⊂ C(X) andR(W) ⊂ R(X′) and wherec is anyn× 1
vector inC(X). Show that the constrained (byX′a � d) minimization ofg(a)
is equivalent to the constrained minimization off (a) [in the sense thatg(a)
andf (a) attain their minimum values at the same points].
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8. LetV represent ann× n symmetric nonnegative definite matrix,W ann× n
matrix, X ann × p matrix, f ann × 1 vector, andd ap × 1 vector. Further,
let b represent ann × 1 vector such thatb ∈ C(V,X). Generalize Theorem
19.5.1 by showing that, for the vectorW(I−PX,W)f+WX(X′WX)−d to be a
solution, for everyd ∈ C(X′), to the problem of minimizing the second-degree
polynomiala′Va−2b′a (in a) subject toX′a � d, it is necessary and sufficient
that

VWf− b ∈ C(X), (E.3)

C(VWX) ⊂ C(X), (E.4)

and

rank(X′WX) � rank(X) . (E.5)

9. LetV andW representn× n matrices, and letX represent ann× p matrix.
Show that ifV andW are nonsingular, then the conditionC(VWX) ⊂ C(X) is
equivalent to the conditionC(V−1X) ⊂ C(WX) and is also equivalent to the
conditionC(W−1V−1X) ⊂ C(X).

10. Let V represent ann × n symmetric positive definite matrix,W an n × n

matrix, X ann × p matrix, andd a p × 1 vector. Show that, for the vector
WX(X′WX)−d to be a solution, for everyd ∈ C(X′), to the problem of mini-
mizing the quadratic forma′Va (in a) subject toX′a � d, it is necessary and
sufficient thatV−1PX,W′ be symmetric, and rank(X′WX) � rank(X). Show
that it is also necessary and sufficient that (I − P

′
X,W′)V−1PX,W′ � 0 and

rank(X′WX) � rank(X).

11. LetV represent ann× n symmetric nonnegative definite matrix,X ann× p
matrix, andd ap × 1 vector. Show that each of the following six conditions
is necessary and sufficient for the vectorX(X′X)−d to be a solution for every
d ∈ C(X′) to the problem of minimizing the quadratic forma′Va (in a) subject
to X′a � d:

(a) C(VX) ⊂ C(X) (or, equivalently,VX � XQ for some matrixQ);

(b) PXV(I− PX) � 0 (or, equivalently,PXV � PXVPX);

(c) PXV � VPX (or, equivalently,PXV is symmetric);

(d) C(VPX) ⊂ C(PX);

(e) C(VPX) � C(V) ∩ C(PX);

(f) C(VX) � C(V) ∩ C(X).
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12. LetV represent ann× n symmetric nonnegative definite matrix,W ann× n
matrix,X ann×pmatrix, andd ap×1 vector. Further, letK represent anyn×q
matrix such thatC(K) � C(I− PX,W′). Show that if rank(X′WX) � rank(X),
then each of the following two conditions is necessary and sufficient for the
vectorWX(X′WX)−d to be a solution, for everyd ∈ C(X′), to the problem of
minimizing the quadratic forma′Va (in a) subject toX′a � d:

(a) V � XR1X′ + (I− PX,W′)R2(I− PX,W′)′

for somep × p matrix R1 and somen× n matrix R2;

(b) V � XS1X′ +KS2K′

for somep × p matrix S1 and someq × q matrix S2.

And show that if rank(X′WX) � rank(X) andW is nonsingular, then another
necessary and sufficient condition is:

(c) V � tW−1+XT1X′ +KT2K′ for some scalart , somep× p matrixT1,
and someq × q matrix T2.

[Hint. To establish the necessity of Condition (1), begin by observing thatV �
CC′ for some matrixC and by expressingC asC � PX,W′C+ (I−PX,W′)C.]
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20
The Moore-Penrose Inverse

By definition, a generalized inverse of anm× n matrix A is anyn×m matrix G
such thatAGA � A. Except for the special case whereA is a (square) nonsingular
matrix,A has an infinite number of generalized inverses (as discussed in Section
9.2a). While for many purposes one generalized inverse is as good as another, there
is a unique one of the generalized inverses, known as the Moore-Penrose inverse,
that is sometimes singled out for special attention and that is the primary subject
of the present chapter.

20.1 Definition, Existence, and Uniqueness
(of the Moore-Penrose Inverse)

The Moore-Penrose inverse of anm×nmatrixA can be described in terms of the
conditions given by the following theorem.

Theorem 20.1.1. Corresponding to anym×nmatrixA, there is a uniquen×m
matrix G such that

(1) AGA � A (i.e.,G is a generalized inverse ofA);

(2) GAG � G (i.e.,A is a generalized inverse ofG);

(3) (AG)′ � AG (i.e.,AG is symmetric); and

(4) (GA)′ � GA (i.e.,GA is symmetric).
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Moreover, ifA � 0, thenG � 0; and if A �� 0, then

G � T′(B′AT′)−1B′ , (1.1)

whereB is any matrix of full column rank andT any matrix of full row rank such
thatA � BT.

In connection with Theorem 20.1.1, note that the existence of a matrixB of
full column rank and a matrixT of full row rank such thatA � BT follows from
Theorem 4.4.8. Note also thatB′AT′ � B′BTT′ and that [since rank(B′B) �
rank(B) and rank(TT′) � rank(T)] B′B and TT′ are nonsingular, implying in
particular thatB′AT′ is nonsingular. Further, (B′AT′)−1 � (TT′)−1(B′B)−1, so
that, as an alternative to formula (1.1), we have the formula

G � T′(TT′)−1(B′B)−1B′ . (1.2)

Proof (of Theorem 20.1.1). IfA � 0, then it is obvious that Conditions (1) –
(4) are satisfied by takingG � 0.

Suppose now thatA �� 0, and takeG � T′(B′AT′)−1B′ or, equivalently, take
G � T′(TT′)−1(B′B)−1B′. Then,

AGA � BTT′(TT′)−1(B′B)−1B′BT � BT � A ,

and

GAG � T′(TT′)−1(B′B)−1B′BTT′(TT′)−1(B′B)−1B′

� T′(TT′)−1(B′B)−1B′ � G ,

so that Conditions (1) and (2) are satisfied. Further,

AG � BTT′(TT′)−1(B′B)−1B′ � B(B′B)−1B′ � PB,

and
GA � T′(TT′)−1(B′B)−1B′BT � PT′ ,

implying [in light of Part (3) of Theorem 12.3.4] thatAG andGA are symmetric.
We have established that Conditions (1) – (4) are satisfied by takingG � G∗,

where G∗ is the n × m matrix defined as follows:G∗ � 0, if A � 0;
G∗ � T′(B′AT′)−1B′, if A �� 0. Moreover, for anyn × m matrix G that satis-
fies Conditions (1) – (4),

G � GAG � G(AG)′ � GG′A′ � GG′(AG∗A)′ � GG′A′(AG∗)′

� GG′A′AG∗ � G(AG)′AG∗ � GAGAG∗ � GAG∗
� GAG∗AG∗ � (GA)′(G∗A)′G∗ � A′G′A′G′

∗G∗ � (AGA)′G′
∗G∗

� A′G′
∗G∗ � (G∗A)′G∗ � G∗AG∗ � G∗.

Thus, there is no choice forG other thanG � G∗ that satisfies Conditions (1) –
(4). Q.E.D.
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Then×mmatrixG defined (uniquely) by Conditions (1) – (4) of Theorem 20.1.1
is called theMoore-Penrose inverse (or Moore-Penrose pseudoinverse) of A. (The
practice of referring to this matrix as the Moore-Penrose inverse is widespread,
although not universal — some other authors refer to this matrix as the generalized
inverse or the pseudoinverse.)

The existence and uniqueness of then × m matrix G that satisfies Conditions
(1) – (4) was established by Penrose (1955). An earlier effort by Moore (1920)
to extend the concept of an inverse matrix to (square) singular matrices and to
rectangular matrices had led to a different characterization of the same matrix.
Conditions (1) – (4) are referred to as thePenrose conditions or (less commonly
and perhaps less appropriately) as theMoore-Penrose conditions.

The symbolA+ is used to denote the Moore-Penrose inverse of a matrixA.
Clearly,A+ is a particular one of what may be an infinite number of generalized
inverses ofA.

20.2 Some Special Cases

For anyn× n nonsingular matrixA,

A+ � A−1,

as is evident from Lemma 9.1.1 or upon recalling thatAA−1 � A−1A � In and
verifying thatA−1 satisfies the Penrose conditions. More generally, for anym× n
matrix A of rankm (i.e., of full row rank),

A+ � A′(AA′)−1 (2.1)

— this result is a special case of result (1.1) (that whereB � Im andT � A).
Similarly, for anym× n matrix A of rankn (i.e., of full column rank)

A+ � (A′A)−1A′. (2.2)

For ann× n diagonal matrixD � {di},
D+ � diag(d+1 , d

+
2 , . . . , d

+
n ) ,

where (fori � 1, . . . , n)

d+i �
{

1/di, if di �� 0,
0, if di � 0 .

More generally, for any matricesA1,A2, . . . ,Ak,

[diag(A1,A2, . . . ,Ak)]
+ � diag(A+

1 ,A+
2 , . . . ,A+

k ) ,

as is easily verified.
The following lemmas are easy to verify.
Lemma 20.2.1. For any symmetric idempotent matrixA, A+ � A.
Lemma 20.2.2. For anym × n matrix P whosen columns form an orthonor-

mal (with respect to the usual inner product) set (ofm-dimensional vectors) or,
equivalently, for anym× n matrix P such thatP′P � In, P+ � P′.
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20.3 Special Types of Generalized Inverses

If in choosing a generalized inverseG of a matrixA [or, equivalently, a matrixG that
satisfies Penrose Condition (1)] we require thatG satisfy Penrose Conditions (2)
– (4), we obtain the Moore-Penrose inverseA+ of A. A less restrictive approach
is to require only thatG satisfy a particular one or a particular two of Penrose
Conditions (2) – (4). Generalized inverses that satisfy Penrose Condition (2), (4),
or (3) are considered in Subsections a, b, and c, respectively.

a. Reflexive generalized inverses

A generalized inverseG of a matrixA is said to bereflexive if GAG � G. Thus,
ann × m matrix G is a reflexive generalized inverse of anm × n matrix A if it
satisfies Penrose Conditions (1) and (2).

The following theorem gives an expression for the general form of a reflexive
generalized inverse.

Theorem 20.3.1. LetA represent anm×nnonnull matrix, and letB represent any
matrix of full column rank andT any matrix of full row rank such thatA � BT.
Then, ann × m matrix G is a reflexive generalized inverse ofA if and only if
G � RL for some right inverseR of T and some left inverseL of B.

Proof. Suppose thatG � RL for some right inverseR of T and some left inverse
L of B. Then, according to Theorem 9.1.3,G is a generalized inverse ofA. Further,

GAG � RLBTRL � RIIL � RL � G,

so thatG is reflexive.
Conversely, suppose thatG is a reflexive generalized inverse ofA. Then,

BTGBT � AGA � A � BT � BIT,

and it follows from Part (3) of Lemma 8.3.1 thatTGB � I. Thus,GB is a right
inverse ofT, andTG is a left inverse ofB. Further,

G � GAG � (GB)TG .

Q.E.D.
Any nonreflexive generalized inverse of a matrixA can be converted into a re-

flexive generalized inverse by making use of the corollary of the following lemma.
Lemma 20.3.2. Let G1 andG2 represent any (possibly different) generalized

inverses of a matrixA. Then, the matrixG1AG2 is a reflexive generalized inverse
of A.

Proof. That G1AG2 is a reflexive generalized inverse ofA is evident upon
observing that

A(G1AG2)A � (AG1A)G2A � AG2A � A ,

and
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(G1AG2)A(G1AG2) � G1(AG2A)G1AG2 � G1AG1AG2 � G1AG2 .

Q.E.D.
Corollary 20.3.3. Let G represent any generalized inverse of a matrixA. Then

the matrixGAG is a reflexive generalized inverse ofA.
Proof. The corollary is essentially a special case of Lemma 20.3.2, namely, the

special case whereG2 � G1. Q.E.D.
Note (as a rather obvious converse of Corollary 20.3.3) that any reflexive gen-

eralized inverseB of a matrixA is expressible in the formB � GAG for some
generalized inverseG of A — in particular,B � GAG for G � B.

A very basic characteristic of reflexive generalized inverses is described in the
following theorem.

Theorem 20.3.4. A generalized inverseG of a matrixA is reflexive if and only
if rank(G) � rank(A).

Proof. Suppose thatG is reflexive. Then, as a consequence of Lemma 9.3.9,
rank(G) ≥ rank(A) and also (sinceA is a generalized inverse ofG) rank(A) ≥
rank(G). Thus, rank(G) � rank(A).

Conversely, suppose that rank(G) � rank(A). Then, in light of Lemma 10.2.5
and of Corollary 9.3.8 (or in light of Theorem 10.2.7),GA is idempotent, and

rank(GA) � rank(A) � rank(G) .

Thus, it follows from Theorem 10.2.7 thatA is a generalized inverse ofG (i.e.,
thatGAG � G) and hence thatG is a reflexive generalized inverse ofA. Q.E.D.

If an n × m matrix G is a generalized inverse of anm × n matrix A, then
(according to Lemma 9.3.3)G′ is a generalized inverse ofA′. Similarly, if A is a
generalized inverse ofG, thenA′ is a generalized inverse ofG′. Thus, we have the
following lemma.

Lemma 20.3.5. If an n × m matrix G is a reflexive generalized inverse of an
m× n matrix A, thenG′ is a reflexive generalized inverse ofA′.

b. Minimum norm generalized inverses

A generalized inverseG of a matrixA is said to be aminimum norm generalized
inverse (of A) if (GA)′ � GA. Thus, ann × m matrix G is a minimum norm
generalized inverse of anm× nmatrixA if it satisfies Penrose Conditions (1) and
(4).

The rationale for referring to such a matrix as a minimum norm generalized
inverse comes from the following theorem.

Theorem 20.3.6. Let A represent anm × n matrix andG ann × m matrix. If
G is a minimum norm generalized inverse ofA, then, for everyb ∈ C(A), ‖x‖
attains its minimum value over the set{x : Ax � b} [comprising all solutions to
the linear systemAx � b (in x)] uniquely atx � Gb (where the norm is the usual
norm). Conversely, if, for everyb ∈ C(A), ‖x‖ attains its minimum value over the
set{x : Ax � b} atx � Gb, thenG is a minimum norm generalized inverse ofA.

Proof. Let H represent a minimum norm generalized inverse ofA. And let x
represent an arbitrary solution toAx � b [whereb ∈ C(A)]. Then, according to
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Theorem 11.2.4,

x � Hb+ (I−HA)y

for some vectory.
Further,

‖x‖2 � [Hb+ (I−HA)y] · [Hb+ (I−HA)y]

� ‖Hb‖2 + ‖(I−HA)y‖2 + 2(Hb) · (I−HA)y

(where the inner product is the usual inner product). And sinceb � Ar for some
vectorr and since (according to Lemma 10.2.5)HA is idempotent,

(Hb) · (I−HA)y � (HAr) · (I−HA)y � (HAr)′(I−HA)y

� r′(HA)′(I−HA)y

� r′HA(I−HA)y

� r′[HA− (HA)2]y

� r′(HA−HA)y � 0 .

Thus,

‖x‖2 � ‖Hb‖2 + ‖(I−HA)y‖2,

so that‖x‖2 ≥ ‖Hb‖2, or, equivalently,‖x‖ ≥ ‖Hb‖, with equality holding if and
only if ‖(I−HA)y‖ � 0. Since‖(I−HA)y‖ � 0 if and only if (I−HA)y � 0, and
hence if and only ifx � Hb (and sinceHb is a solution toAx � b), we conclude
that‖x‖ attains its minimum value over the set{x : Ax � b} uniquely atx � Hb.

To complete the proof, suppose that, for everyb ∈ C(A),‖x‖attains its minimum
value over the set{x : Ax � b} at x � Gb. Then, clearly,Gb � Hb for every
b ∈ C(A), or, equivalently,GAr � HAr for every (n × 1) vectorr, implying (in
light of Lemma 2.3.2) thatGA � HA. Thus, (GA)′ � (HA)′ � HA � GA. And
since (in light of Theorem 9.1.2)G is a generalized inverse ofA, we conclude that
G is a minimum norm generalized inverse ofA. Q.E.D.

Two alternative characterizations of a minimum norm generalized inverse are
given by the following theorem and corollary.

Theorem 20.3.7. An n × m matrix G is a minimum norm generalized inverse
of anm × n matrix A if and only if GAA′ � A′, or, equivalently, if and only if
AA′G′ � A.

Proof. Suppose thatGAA′ � A′ or, equivalently, thatAA′G′ � A. Then,
AGAA′ � AA′, implying (in light of Corollary 5.3.3) thatAGA � A. Moreover,
GA � GAA′G′ � GA(GA)′, so thatGA is symmetric. Thus,G is a minimum
norm generalized inverse ofA.

Conversely, ifG is a minimum norm generalized inverse ofA, then

GAA′ � (GA)′A′ � A′G′A′ � (AGA)′ � A′ .
Q.E.D.
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Corollary 20.3.8. An n×m matrix G is a minimum norm generalized inverse
of anm × n matrix A if and only if GA � PA′ , or, equivalently, if and only if
A′G′ � PA′ .

Proof. In light of Theorem 20.3.7, it suffices to show thatGA � PA′ ⇔ GAA′ �
A′.

If GA � PA′ , then [in light of Part (1) of Theorem 12.3.4]GAA′ � PA′A′ � A′.
Conversely, ifGAA′ � A′, then [in light of Part (5) of Theorem 12.3.4]

GA � GAA′(AA′)−A � A′(AA′)−A � PA′ .

Q.E.D.
LetA represent anm×nmatrix. Then, for any generalized inverseG of A, GA is

idempotent,R(GA) � R(A), and rank(GA) � rank(A), as was established earlier
(in Lemmas 10.2.5 and 9.3.7 and Corollary 9.3.8). Further, for any minimum norm
generalized inverseG of A, GA is (according to the very definition of a minimum
norm generalized inverse) symmetric. Two other properties of the matrix product
GA obtained by premultiplyingA by a minimum norm generalized inverseG (of
A) are described in the following, additional corollary of Theorem 20.3.7.

Corollary 20.3.9. Let G represent a minimum norm generalized inverse of a
matrix A. Then,

(1) GA is invariant to the choice ofG; and

(2) C(GA) � C(A′).

Proof. According to Corollary 20.3.8,GA � PA′ . Thus,GA is invariant to the
choice ofG, and [in light of Part (7) of Theorem 12.3.4]C(GA) � C(PA′ ) �
C(A′). Q.E.D.

A generalized inverseG of a matrixA is said to be aminimum norm reflexive
generalized inverse (of A) if it is a minimum norm generalized inverse (ofA) and
it is reflexive. Thus, ann×m matrix G is a minimum norm reflexive generalized
inverse of anm× n matrix A if it satisfies Penrose Conditions (1), (2), and (4).

The following lemma gives a basic property of a minimum norm reflexive gen-
eralized inverse.

Lemma 20.3.10. For any minimum norm reflexive generalized inverseG of a
matrix A, C(G) � C(A′).

Proof. Recalling Corollary 4.2.3, it follows from Part (2) of Corollary 20.3.9
thatC(A′) ⊂ C(G). Moreover, in light of Theorem 20.3.4, rank(G) � rank(A) �
rank(A′). Thus, as a consequence of Theorem 4.4.6, we have thatC(G) �
C(A′). Q.E.D.

Since [according to Part (1) of Theorem 12.3.4]A′(AA′)−AA′ � A′, it follows
from Theorem 20.3.7 that the matrixA′(AA′)− is a minimum norm generalized
inverse ofA. The following theorem makes a stronger statement.

Theorem 20.3.11. An n×mmatrixG is a minimum norm reflexive generalized
inverse of anm×nmatrixA if and only if G � A′H for some generalized inverse
H of AA′.

Proof. According to Part (1) of Theorem 12.3.4,A′(AA′)−AA′ � A′. Thus, as
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previously indicated, it follows from Theorem 20.3.7 that the matrixA′(AA′)− is
a minimum norm generalized inverse ofA. Further,

[A′(AA′)−]A[A′(AA′)−] � [A′(AA′)−AA′](AA′)− � A′(AA′)− ,

so thatA′(AA′)− is a minimum norm reflexive generalized inverse ofA.
Now, suppose thatG is a minimum norm reflexive generalized inverse ofA.

Then it follows from Lemma 20.3.10 thatC(G) � C(A′) and hence that there
exists a matrixH such thatG � A′H. And A � AGA � AA′HA, implying that
AA′ � AA′HAA′, so thatH is a generalized inverse ofAA′. Q.E.D.

c. Least squares generalized inverses

A generalized inverseG of a matrixA is said to be aleast squares generalized
inverse (of A) if (AG)′ � AG. Thus, ann×mmatrixG is a least squares generalized
inverse of anm× n matrix A if it satisfies Penrose Conditions (1) and (3).

Two alternative characterizations of a least squares generalized inverse are given
by the following theorem and corollary — these characterizations are analogous to
the characterizations of a minimum norm generalized inverse given, respectively,
by Theorem 20.3.7 and Corollary 20.3.8.

Theorem 20.3.12. An n × m matrix G is a least squares generalized inverse
of anm × n matrix A if and only if A′AG � A′, or, equivalently, if and only if
G′A′A � A.

Proof. Suppose thatA′AG � A′ or, equivalently, thatG′A′A � A. Then,
A′AGA � A′A, implying (in light of Corollary 5.3.3) thatAGA � A. Moreover,
AG � G′A′AG � (AG)′AG, so thatAG is symmetric. Thus,G is a least squares
generalized inverse ofA.

Conversely, ifG is a least squares generalized inverse ofA, then

A′AG � A′(AG)′ � (AGA)′ � A′ .
Q.E.D.

Corollary 20.3.13. An n×mmatrixG is a least squares generalized inverse of
anm× n matrix A if and only if AG � PA.

Proof. In light of Theorem 20.3.12, it suffices to show thatAG � PA ⇔
A′AG � A′.

If AG � PA, then [in light of Part (5) of Theorem 12.3.4]A′AG � A′PA � A′.
Conversely, ifA′AG � A′, then [in light of Part(1) of Theorem 12.3.4]

AG � A(A′A)−A′AG � A(A′A)−A′ � PA .

Q.E.D.
The aptness of our use of the term least squares generalized inverse is evident

from the following corollary (of Theorem 20.3.12).
Corollary 20.3.14. A p × n matrix G is a least squares generalized inverse of

ann× p matrix X if and only if, for everyy ∈ Rn×1, the norm‖y− Xb‖ (of the
difference betweeny andXb) attains its minimum value (with respect to thep×1
vectorb) at b � Gy (where the norm is the usual norm), or, equivalently, if and
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only if, for everyy ∈ Rn×1, the sum of squares (y−Xb)′(y−Xb) (of the elements
of the difference betweeny andXb) attains its minimum value atb � Gy.

Proof. In light of Theorem 20.3.12, it suffices to show thatX′XG � X′ if and
only if, for everyy ∈ Rn×1, (y−Xb)′(y−Xb) attains its minimum value atb � Gy.
Or, equivalently (in light of Theorem 12.4.3), it suffices to show thatX′XG � X′ if
and only if, for everyy ∈ Rn×1, the vectorGy is a solution to the normal equations
X′Xb � X′y (i.e., if and only if, for everyy ∈ Rn×1, X′XGy � X′y).

If, for every y ∈ Rn×1, X′XGy � X′y, then it is evident from Lemma 2.3.2
that X′XG � X′. Conversely, ifX′XG � X′, then it is obvious that, for every
y ∈ Rn×1, X′XGy � X′y. Q.E.D.

Let A represent anm × n matrix. Then, for any generalized inverseG of A,
AG is idempotent,C(AG) � C(A), and rank(AG) � rank(A), as was established
earlier (in Lemmas 10.2.5 and 9.3.7 and Corollary 9.3.8). Further, for any least
squares generalized inverseG of A, AG is (according to the very definition of a
least squares generalized inverse) symmetric. Two other properties of the matrix
productAG obtained by postmultiplyingA by a least squares generalized inverse
G (of A) are described in the following, additional corollary of Theorem 20.3.12.

Corollary 20.3.15. Let G represent a least squares generalized inverse of a
matrix A. Then,

(1) AG is invariant to the choice ofG; and

(2) R(AG) � R(A′).

Proof. According to Corollary 20.3.13,AG � PA. Thus,AG is invariant to the
choice ofG, and [in light of Part (7) of Theorem 12.3.4]R(AG) � R(PA) �
R(A′). Q.E.D.

A generalized inverseG of a matrixA is said to be aleast squares reflexive
generalized inverse (of A) if it is a least squares generalized inverse (ofA) and it is
reflexive. Thus, ann×mmatrixG is a least squares reflexive generalized inverse
of anm× n matrix A if it satisfies Penrose Conditions (1), (2), and (3).

The following lemma gives some basic properties of a least squares reflexive
generalized inverse.

Lemma 20.3.16. For any least squares reflexive generalized inverseG of a
matrix A, R(G) � R(A′) andN (G) � C⊥(A) � N (A′).

Proof. Recalling Corollary 4.2.3, it follows from Part (2) of Corollary 20.3.15
thatR(A′) ⊂ R(G). Moreover, in light of Theorem 20.3.4, rank(G) � rank(A) �
rank(A′). Thus, as a consequence of Theorem 4.4.6, we have thatR(G) � R(A′).

Further, it follows from Part (2) of Lemma 4.2.5 thatC(G′) � C(A). And, making
use of Lemma 12.5.2, we find that

N (G) � C⊥(G′) � C⊥(A) � N (A′) .
Q.E.D.

Since [according to Part (5) of Theorem 12.3.4]A′A(A′A)−A′ � A′, it follows
from Theorem 20.3.12 that the matrix (A′A)−A′ is a least squares generalized
inverse ofA. The following theorem makes a stronger statement.
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Theorem 20.3.17. An n × m matrix G is a least squares reflexive generalized
inverse of anm×nmatrixA if and only if G � HA′ for some generalized inverse
H of A′A.

Proof. According to Part (5) of Theorem 12.3.4,A′A(A′A)−A′ � A′. Thus, as
previously indicated, it follows from Theorem 20.3.12 that the matrix (A′A)−A′

is a least squares generalized inverse ofA. Further,

[(A′A)−A′]A[(A′A)−A′] � (A′A)−[A′A(A′A)−A′] � (A′A)−A′ ,

so that (A′A)−A′ is a least squares reflexive generalized inverse ofA.
Now, suppose thatG is a least squares reflexive generalized inverse ofA. Then

it follows from Lemma 20.3.16 thatR(G) � R(A′) and hence that there exists
a matrix H such thatG � HA′. And A � AGA � AHA′A, implying that
A′A � A′AHA′A, so thatH is a generalized inverse ofA′A. Q.E.D.

d. Some equivalences

The four Penrose conditions can be reexpressed in accordance with the equiva-
lences given by the following, easily verifiable lemma.

Lemma 20.3.18. LetA represent anm×nmatrix andG ann×mmatrix. Then,

(1) AGA � A ⇔ A′G′A′ � A′;

(2) GAG � G ⇔ G′A′G′ � G′;

(3) (AG)′ � AG ⇔ (G′A′)′ � G′A′; and

(4) (GA)′ � GA ⇔ (A′G′)′ � A′G′.

As an immediate consequence of Lemma 20.3.18, we have the following corol-
lary (which expands on Lemma 20.3.5).

Corollary 20.3.19. An n×m matrix G is a reflexive generalized inverse of an
m× n matrix A if and only if G′ is a reflexive generalized inverse ofA′. Further,
G is a least squares generalized inverse ofA if and only if G′ is a minimum norm
generalized inverse ofA′ and is a least squares reflexive generalized inverse ofA
if and only if G′ is a minimum norm reflexive generalized inverse ofA′.

20.4 Some Alternative Representations and
Characterizations

The Moore-Penrose inverse can be characterized in the ways described in the
following theorem and two corollaries.

Theorem 20.4.1. An n×mmatrixG is the Moore-Penrose inverse of anm×n
matrix A if and only if G is a least squares generalized inverse ofA andA is a
least squares generalized inverse ofG.
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Proof. By definition,G is a least squares generalized inverse ofA if and only if
AGA � A and (AG)′ � AG [which are Penrose Conditions (1) and (3)], andA is
a least squares generalized inverse ofG if and only if GAG � G and (GA)′ � GA
[which, in the relevant context, are Penrose Conditions (2) and (4)]. Thus,G is the
Moore-Penrose inverse ofA if and only if G is a least squares generalized inverse
of A andA is a least squares generalized inverse ofG. Q.E.D.

Corollary 20.4.2. An n×mmatrixG is the Moore-Penrose inverse of anm×n
matrix A if and only if A′AG � A′ andG′GA � G′.

Proof. Corollary 20.4.2 follows from Theorem 20.4.1 upon observing (in light
of Theorem 20.3.12) thatG is a least squares generalized inverse ofA if and only
if A′AG � A′ and thatA is a least squares generalized inverse ofG if and only if
G′GA � G′. Q.E.D.

Corollary 20.4.3. An n×mmatrixG is the Moore-Penrose inverse of anm×n
matrix A if and only if AG � PA andGA � PG.

Proof. Corollary 20.4.3 follows from Theorem 20.4.1 upon observing (in light
of Corollary 20.3.13) thatG is a least squares generalized inverse ofA if and only
if AG � PA and thatA is a least squares generalized inverse ofG if and only if
GA � PG. Q.E.D.

The following theorem expresses the Moore-Penrose inverse of a matrixA in
terms of solutions to the two linear systemsA′AX � A′ andAA′Y � A.

Theorem 20.4.4. For anym× n matrix A,

A+ � Y′
∗AX∗ , (4.1)

whereX∗ is any solution to the (consistent) linear systemA′AX � A′ (in ann×m
matrix X) andY∗ is any solution to the (consistent) linear systemAA′Y � A (in
anm× n matrix Y).

Proof. Note (in light of Corollary 7.4.2) that the two linear systemsA′AX � A′

andAA′Y � A are consistent. And observe (in light of Theorems 20.3.12 and
20.3.7) thatAX∗A � A and (AX∗)′ � AX∗ and thatAY′

∗A � A and (Y′
∗A)′ �

Y′
∗A. Thus,

A(Y′
∗AX∗)A � AY′

∗(AX∗A) � AY′
∗A � A;

(Y′
∗AX∗)A(Y′

∗AX∗) � Y′
∗(AX∗A)Y′

∗AX∗ � Y′
∗AY′

∗AX∗ � Y′
∗AX∗;

[A(Y′
∗AX∗)]′ � [(AY′

∗A)X∗]′ � (AX∗)′ � AX∗ � (AY′
∗A)X∗ � A(Y′

∗AX∗);
[(Y′

∗AX∗)A]′ � [Y′
∗(AX∗A)]′ � (Y′

∗A)′ � Y′
∗A � Y′

∗(AX∗A) � (Y′
∗AX∗)A .

We conclude thatY′
∗AX∗ satisfies all four of the Penrose conditions and hence

thatA+ � Y′
∗AX∗. Q.E.D.

The matrix (A′A)−A′ is one solution to the linear systemA′AX � A′ and
{sinceAA′ is symmetric and hence since [(AA′)−]′ is a generalized inverse of
AA′} the matrix [(AA′)−]′A is one solution to the linear systemAA′Y � A. Thus,
as a special case of formula (4.1){that obtained by settingX∗ � (A′A)−A′ and
Y∗ � [(AA′)−]′A}, we have that

A+ � A′(AA′)−A(A′A)−A′ . (4.2)
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Note that the right side of equality (4.2) can be reexpressed as
A′(AA′)−AA− A(A′A)−A′, giving rise to the alternative representation

A+ � PA′A−PA . (4.3)

The following theorem gives three expressions for the Moore-Penrose inverse
of a (nonnull) symmetric nonnegative definite matrix.

Theorem 20.4.5. Let A represent ann × n (nonnull) symmetric nonnegative
definite matrix. Then, for any matrixT of full row rank such thatA � T′T,

A+ � T′(TAT′)−1T (4.4)

� T′(TT′)−2T (4.5)

� T+(T+)′ (4.6)

{where (TT′)−2 � [(TT′)−1]2}.
In connection with Theorem 20.4.5, note that Theorem 14.3.7 guarantees the

existence of a matrixT of full row rank such thatA � T′T.
Proof. Results (4.4) and (4.5) are special cases of results (1.1) and (1.2), respec-

tively. Specifically, they are the special cases obtained by settingB � T′. And in
light of result (2.1) [and the symmetry of (TT′)−1], result (4.6) follows from result
(4.5). Q.E.D.

20.5 Some Basic Properties and Relationships

The Moore-Penrose inverse of a matrixA is, by definition, a reflexive generalized
inverse, a minimum norm generalized inverse, a least squares generalized inverse,
a minimum norm reflexive generalized inverse, and a least squares reflexive gen-
eralized inverse (ofA). Accordingly, certain properties of Moore-Penrose inverses
can be deduced from the properties (discussed in Section 3) of reflexive, minimum
norm, least squares, minimum norm reflexive, and least squares reflexive gener-
alized inverses. In particular, the following theorem describes some properties of
Moore-Penrose inverses that are immediate consequences of Theorem 20.3.4 and
of Corollaries 20.3.8 and 20.3.13 and Lemmas 20.3.10 and 20.3.16.

Theorem 20.5.1. For any matrixA,

(1) rank(A+) � rank(A);

(2) A+A � PA′ andAA+ � PA;

(3) C(A+) � C(A′) andR(A+) � R(A′); and

(4) N (A+) � C⊥(A) � N (A′).

In light of Parts (3) and (6) of Theorem 12.3.4, we have the following corollary
of Theorem 20.5.1.

Corollary 20.5.2. For any matrixA, A+A andAA+ are symmetric and idem-
potent.
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Some additional properties of Moore-Penrose inverses are described in the fol-
lowing theorem.

Theorem 20.5.3. Let A represent anm× n matrix. Then,

(1) (A′)+ � (A+)′;

(2) if A is symmetric, thenA+ is symmetric;

(3) if A is symmetric and positive semidefinite, thenA+ is symmetric and positive
semidefinite; ifA is symmetric and positive definite, thenA+ is symmetric and
positive definite (and ifA is symmetric and nonnegative definite, thenA+ is
symmetric and nonnegative definite);

(4) (A+)+ � A; and

(5) for any nonzero scalarc, (cA)+ � (1/c)A+.

Proof. (1) It is clear from Lemma 20.3.18 that (A+)′ satisfies all four of the
Penrose conditions (as applied to the matrixA′) and hence that (A+)′ is the Moore-
Penrose inverse ofA′.

(2) Part (2) is an immediate consequence of Part (1).
(3) Suppose thatA is symmetric and nonnegative definite. Then, according to

Part (2),A+ is symmetric. And since (according to Theorem 20.5.1) rank(A+) �
rank(A), A+ is (in light of Corollary 14.3.12) singular ifA is positive semidefinite
and nonsingular ifA is positive definite. Further,A+ � A+AA+ � (A+)′AA+.
Thus, it follows from Parts (2) and (3) of Theorem 14.2.9 thatA+ is positive
semidefinite ifA is positive semidefinite and positive definite ifA is positive
definite.

(4) That (A+)+ � A is evident from the definition of the Moore-Penrose inverse
(as a matrix that satisfies the four Penrose conditions).

(5) Clearly,

cA[(1/c)A+]cA � cAA+A � cA,
[(1/c)A+]cA[(1/c)A+] � (1/c)A+AA+ � (1/c)A+,
{cA[(1/c)A+]}′ � (AA+)′ � AA+ � cA[(1/c)A+], and
{[(1/c)A+]cA}′ � (A+A)′ � A+A � [(1/c)A+]cA,

so that (1/c)A+ satisfies Penrose Conditions (1) – (4) (as applied to the matrix
cA). Q.E.D.

Note that, as a special case of Part (5) of Theorem 20.5.3 (that wherec � −1),
we have that, for any matrixA,

(−A)+ � −A+ . (5.1)

The Moore-Penrose inverse of a matrixA is related to minimum norm general-
ized inverses ofA′A and to least squares generalized inverses ofAA′, as described
in the following theorem.

Theorem 20.5.4. Let A represent anm× n matrix. Then, for any least squares
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generalized inverseF of AA′, A+ � A′F, and, for any minimum norm generalized
inverseH of A′A, A+ � HA′.

Proof. According to Theorem 20.3.11,A′F is a minimum norm reflexive
generalized inverse ofA, and, according to Theorem 20.3.17,HA′ is a least
squares reflexive generalized inverse ofA. Moreover, (AA′F)′ � AA′F and
(HA′A)′ � HA′A, so thatA′F satisfies Penrose Condition (3) andHA′ satisfies
Penrose Condition (4). Thus, bothA′F andHA′ satisfy all four Penrose conditions,
and hence both equalA+. Q.E.D.

As an immediate consequence of Theorem 20.5.4, we have the following corol-
lary, which relates the Moore-Penrose inverse of a matrixA to the Moore-Penrose
inverse ofAA′ and to the Moore-Penrose inverse ofA′A.

Corollary 20.5.5. For any matrixA,

A+ � A′(AA′)+ � (A′A)+A′ . (5.2)

The following theorem relates the Moore-Penrose inverse of a matrix of the
form PAQ′, whereP andQ are orthogonal matrices (or more generally whereP
andQ are such thatP′P � I andQ′Q � I), to the Moore-Penrose inverse ofA
itself.

Theorem 20.5.6. Let A represent anm× nmatrix. Then, for anyr ×mmatrix
P whose columns form an orthonormal (with respect to the usual inner product)
set (ofr-dimensional vectors) and anys × n matrix Q whose columns form an
orthonormal (with respect to the usual inner product) set (ofs-dimensional vectors)
or, equivalently, for anyr ×m matrix P such thatP′P � Im and anys × n matrix
Q such thatQ′Q � In,

(PAQ′)+ � QA+P′ .

Proof. It suffices to show thatQA+P′ satisfies the four Penrose conditions.
Clearly,

(1) PAQ′(QA+P′)PAQ′ � PAA+AQ′ � PAQ′;

(2) QA+P′(PAQ′)QA+P′ � QA+AA+P′ � QA+P′;

(3) [PAQ′(QA+P′)]′ � (PAA+P′)′ � P(AA+)′P′ � PAA+P′

� PAQ′(QA+P′) ;

(4) [QA+P′(PAQ′)]′ � (QA+AQ′)′ � Q(A+A)′Q′ � QA+AQ′

� QA+P′(PAQ′) .

Q.E.D.

For anym × n matrix A and anyp × q matrix B, A− ⊗ B− is a generalized
inverse of the Kronecker productA⊗B (as discussed in Section 16.1). This result
is generalized in the following theorem.

Theorem 20.5.7. LetA represent anm×nmatrix,B ap×q matrix,G ann×m
matrix, andH aq×pmatrix. Then,G⊗H satisfies any of the Penrose Conditions
(1) – (4) (when the Penrose conditions are applied to the matrixA ⊗ B) that are
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satisfied by bothG andH (when the Penrose conditions are applied toA andB,
respectively).

Proof. (1) If AGA � A andBHB � B, then (as indicated in Section 16.1)

(A⊗ B)(G⊗H)(A⊗ B) � (AGA)⊗ (BHB) � A⊗ B .

(2) Similarly, if GAG � G andHBH � H, then

(G⊗H)(A⊗ B)(G⊗H) � (GAG)⊗ (HBH) � G⊗H .

(3) If (AG)′ � AG and (BH)′ � BH, then

[(A⊗ B)(G⊗H)]′ � [(AG)⊗ (BH)]′ � (AG)′ ⊗ (BH)′

� (AG)⊗ (BH)

� (A⊗ B)(G⊗H) .

(4) Similarly, if (GA)′ � GA and (HB)′ � HB, then

[(G⊗H)(A⊗ B)]′ � [(GA)⊗ (HB)]′ � (GA)′ ⊗ (HB)′

� (GA)⊗ (HB)

� (G⊗H)(A⊗ B) .
Q.E.D.

As an obvious consequence of Theorem 20.5.7, we have the following corollary.
Corollary 20.5.8. For any matricesA andB,

(A⊗ B)+ � A+ ⊗ B+.

20.6 Minimum Norm Solution to the Least Squares
Problem

For anyn × p matrix X and anyn × 1 vectory, the (least squares) problem of
minimizing the (usual) norm‖y−Xb‖ (of the difference betweeny andXb) with
respect to thep×1 vectorb can be solved by takingb � Gy, whereG is any least
squares generalized inverse ofX (as indicated in Corollary 20.3.14). One choice
for G is G � X+. The solution (b � X+y) obtained by choosingG � X+ has the
property described in the following theorem.

Theorem 20.6.1. Let X represent ann × p matrix andy an n-dimensional
column vector. Taking the norm of a vector to be the usual norm, defineS to be
the set comprising those values of ap × 1 vectorb at which‖y− Xb‖ attains its
minimum value or, equivalently, to be the solution set{b : X′Xb � X′y} of the
normal equations. Then,‖b‖ attains its minimum value over the setS uniquely at
b � X+y. Moreover, ifG is ap × n matrix such that, for everyy, ‖b‖ attains its
minimum value over the setS at b � Gy, thenG � X+.

In connection with Theorem 20.6.1, note that in general the setS varies withy
(although the dependence ofS on y is suppressed in the notation).
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Proof. That the set comprising those values ofb at which‖y− Xb‖ attains its
minimum value is the same as the solution set of the normal equations is evident
from Theorem 12.4.3.

Now, letH represent a minimum norm generalized inverse ofX′X. Then, since
S � {b : X′Xb � X′y}, it follows from Theorem 20.3.6 that‖b‖ attains its
minimum value over the setS uniquely atb � HX′y. And, according to Theorem
20.5.4,HX′ � X+. Thus,‖b‖ attains its minimum value over the setS uniquely
at b � X+y.

Further, ifG is ap × n matrix such that, for everyy, ‖b‖ attains its minimum
value over the setS at b � Gy, then, for everyy, Gy � X+y, implying (in light
of Lemma 2.3.2) thatG � X+. Q.E.D.

20.7 Expression of the Moore-Penrose Inverse as a
Limit

Let F � {fij } represent anm × n matrix whose elements are functions defined
on some setS of scalars. And letfij (x) represent the value offij at an arbitrary
pointx in S. Then, them× nmatrix whoseij th element isfij (x) will be referred
to as thevalue of F atx and will be denoted by the symbolF(x). Further, if every
element ofF has a limit at a pointc (in R), then them × n matrix whoseij th
element is lim

x→c
fij (x) (the limit of fij atc) will be referred to as thelimit of F at c

and will be denoted by the symbol lim
x→c

F(x).

Clearly, if F is anm × n matrix of functions defined on some setS of scalars
and if allmn of these functions are continuous at an interior pointc of S, then

lim
x→c

F(x) � F(c) .

Various properties of the limits of matrices of functions can be readily deduced
from well-known properties of scalar-valued functions. In particular, for anyp×q
matrixG of functions defined on some setS (of scalars) that have limits at a point
c and for anym× p matrix of constantsA and anyq × n matrix of constantsB,
the matrix of functionsF, defined byF � AGB, has a limit atc, and

lim
x→c

F(x) � A[lim
x→c

G(x)]B .

The following theorem expresses the Moore-Penrose inverse of a matrix as a
limit.

Theorem 20.7.1. For anym× n matrix A,

A+ � lim
δ→0

(A′A+ δ2In)−1A′ � lim
δ→0

A′(AA′ + δ2Im)−1. (7.1)

In connection with Theorem 20.7.1, note (in light of Lemmas 14.2.1 and 14.2.4
and Corollary 14.2.14) that, forδ �� 0, the matricesA′A + δ2In andAA′ + δ2Im
are positive definite and hence (in light of Lemma 14.2.8) nonsingular.
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Proof. Suppose thatA �� 0 — that the theorem is valid forA � 0 is easy to
verify — and letB represent anm× r matrix of full column rankr andT anr ×n
matrix of full row rankr such thatA � BT — the existence of such matrices was
established in Theorem 4.4.8. And, letL � B′BT, so thatA′A � T′L. Further, let
δ represent an arbitrary nonzero scalar [and writeδ−2 for (δ−1)2].

Then, sinceA′A + δ2In � δ2(δ−2T′L + In), δ−2T′L + In (like A′A + δ2In) is
nonsingular, and

(A′A+ δ2In)−1 � δ−2(δ−2T′L+ In)−1 .

And, in light of Lemma 18.2.3,δ−2LT′ + Ir is nonsingular, and

(A′A+ δ2In)−1T′ � δ−2(δ−2T′L+ In)−1T′ � δ−2T′(δ−2LT′ + Ir )−1 .

Moreover, sinceLT′ + δ2Ir � δ2(δ−2LT′ + Ir ), LT′ + δ2Ir is nonsingular, and

(LT′ + δ2Ir )−1 � δ−2(δ−2LT′ + Ir )−1 .

Thus,

(A′A+ δ2In)−1A′ � (A′A+ δ2In)−1T′B′ � T′(LT′ + δ2Ir )−1B′ . (7.2)

Now, let δ represent a completely arbitrary (not necessarily nonzero) scalar.
Recalling (from Section 20.1) thatLT′ (� B′AT′) is nonsingular, observe that
LT′ + δ2Ir is nonsingular forδ � 0 as well as forδ �� 0. Observe also (in light
of Corollary 13.5.4) that (fori, j � 1, . . . , r) the ij th element of (LT′ + δ2Ir )−1

equalsαji/|LT′ + δ2Ir |, whereαji is thejith element of the cofactor matrix of
LT′ + δ2Ir .

It is clear from Corollary 13.7.4 (or, more basically, from the very definition of a
determinant) that|LT′+δ2Ir | and the elements of the cofactor matrix ofLT′+δ2Ir
are polynomials inδ. Thus, every element of (LT′+δ2Ir )−1 is a continuous function
of δ (at 0 or at any other point) — refer, for example, to Bartle (1976, sec. 20). We
conclude that

lim
δ→0

(LT′ + δ2Ir )−1 � (LT′ + 02Ir )−1 � (LT′)−1

and hence [in light of results (7.2) and (1.1)] that

lim
δ→0

(A′A+ δ2In)−1A′ � T′[lim
δ→0

(LT′ + δ2Ir )−1]B′

� T′(LT′)−1B′ � T′(B′AT′)−1B′ � A+ .

To complete the proof, observe that (for everyδ)

(A′A+ δ2In)A′ � A′(AA′ + δ2Im) , (7.3)

so that, forδ �� 0,

A′(AA′ + δ2Im)−1 � (A′A+ δ2In)−1A′ ,
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as is evident upon premultiplying both sides of equality (7.3) by (A′A + δ2In)−1

and postmultiplying both sides by (AA′ + δ2Im)−1. It follows that

lim
δ→0

A′(AA′ + δ2Im)−1 � lim
δ→0

(A′A+ δ2In)−1A′ .

Q.E.D.
Result (7.1) is of some relevance in statistics. It can be used in particular to relate

the estimates of the parameters in a linear statistical model obtained via a Bayesian
approach to those obtained by approaching the estimation of the parameters as a
least squares problem. More specifically, it can be used to show that, in the limit
(as the “amount of prior information decreases”), the vector of Bayesian estimates
equals the minimum norm solution to the least squares problem.

20.8 Differentiation of the Moore-Penrose Inverse

Earlier (in Section 15.10), some results were given on the differentiation of gen-
eralized inverses of a matrix of functions. These results were (for the most part)
applicable to “any” generalized inverse. In the present section, some results are
given that are specific to the Moore-Penrose inverse.

The Moore-Penrose inverse of a matrix of functions is continuously differen-
tiable under the conditions set forth in the following lemma.

Lemma 20.8.1. Let F represent ap × q matrix of functions, defined on a set
S, of anm-dimensional column vectorx. And, let c represent any interior point
of S at whichF is continuously differentiable. IfF has constant rank on some
neighborhood ofc, thenF+ is continuously differentiable atc.

Proof. Suppose thatF has constant rank on some neighborhood ofc. Then, since
rank(FF′) � rank(F′F) � rank(F), each of the matricesFF′ andF′F has constant
rank on some neighborhood ofc. And, in light of the results of Section 15.4, each
of the matricesFF′ andF′F is continuously differentiable atc.

Thus, it follows from Theorem 15.10.1 that there exist generalized inversesG
andH of FF′ andF′F, respectively, such thatG andH are continuously differen-
tiable atc. Since [according to result (4.2)]F+ � F′GFHF′, we conclude (in light
of the results of Section 15.4) thatF+ is continuously differentiable atc. Q.E.D.

In connection with Lemma 20.8.1, note (in light of Corollary 15.10.4) that, for
F+ to be continuously differentiable atc, it is necessary, as well as sufficient, that
F have constant rank on some neighborhood ofc. In fact, unlessF has constant
rank on some neighborhood ofc, there is (according to Corollary 15.10.4) no
generalized inverse ofF that is continuously differentiable atc.

The following theorem gives a formula for the partial derivatives of the Moore-
Penrose inverse of a matrix of functions.

Theorem 20.8.2. Let F represent ap × q matrix of functions, defined on a
setS, of a vectorx � (x1, . . . , xm)′ of m variables. Further, letc represent an
interior point ofS at whichF is continuously differentiable, and suppose thatF
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has constant rank on some neighborhood ofc. Then, atx � c,

∂F+

∂xj
� −F+

∂F
∂xj

F+ + F+(F+)′
(
∂F
∂xj

)′
(I− FF+)

+ (I− F+F)

(
∂F
∂xj

)′
(F+)′F+ . (8.1)

Preliminary to proving Theorem 20.8.2, it is convenient to establish the follow-
ing theorem.

Theorem 20.8.3. LetF represent ap×q matrix of functions, defined on a setS,
of a vectorx � (x1, . . . xm)′ ofm variables. Further, letc represent an interior point
of S at whichF is continuously differentiable, and suppose thatF has constant rank
on some neighborhood ofc. Then,F+F andFF+ are continuously differentiable
at c, and (atx � c)

∂F+F
∂xj

� F+
∂F
∂xj

(I− F+F)+ [F+
∂F
∂xj

(I− F+F)]′ , (8.2)

∂FF+

∂xj
� (I− FF+)

∂F
∂xj

F+ + [(I− FF+)
∂F
∂xj

F+]′ . (8.3)

Proof (of Theorem 20.8.3). ThatF+F andFF+ are continuously differentiable
at c follows from Lemmas 15.4.3 and 20.8.1.

Now, recall (from Corollary 20.5.2) thatF+F andFF+ are symmetric and idem-
potent, and observe (in light of Lemma 15.4.3) that (atx � c)

∂F+F
∂xj

�
(
∂F+F
∂xj

)′
�
(
∂F+FF+F
∂xj

)′

�
(
∂F+F
∂xj

F+F+ F+F
∂F+F
∂xj

)′

� F+F
∂F+F
∂xj

+
(

F+F
∂F+F
∂xj

)′
(8.4)

and similarly

∂FF+

∂xj
�
(
∂FF+

∂xj

)′
�
(
∂FF+FF+

∂xj

)′

�
(

FF+
∂FF+

∂xj
+ ∂FF+

∂xj
FF+

)′

� ∂FF+

∂xj
FF+ +

(
∂FF+

∂xj
FF+

)′
. (8.5)

Moreover, atx � c,

∂F
∂xj

� ∂FF+F
∂xj

� ∂F
∂xj

F+F+ F
∂F+F
∂xj

,
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and similarly
∂F
∂xj

� ∂FF+F
∂xj

� ∂FF+

∂xj
F+ FF+

∂F
∂xj

,

implying that (atx � c)

F
∂F+F
∂xj

� ∂F
∂xj

(I− F+F) (8.6)

and
∂FF+

∂xj
F � (I− FF+)

∂F
∂xj

. (8.7)

Upon substituting expressions (8.6) and (8.7) into expressions (8.4) and (8.5),
respectively, we obtain expressions (8.2) and (8.3). Q.E.D.

Proof (of Theorem 20.8.2). Observe (in light of Lemmas 20.8.1 and 15.4.3) that
F+, F+F, andFF+ are continuously differentiable atc.

Now, using Lemma 15.4.3, we find that (atx � c)

∂F+

∂xj
� ∂F+FF+

∂xj
� ∂F+F

∂xj
F+ + F+F

∂F+

∂xj
. (8.8)

Moreover, atx � c,
∂FF+

∂xj
� ∂F
∂xj

F+ + F
∂F+

∂xj
,

implying that (atx � c)

F
∂F+

∂xj
� ∂FF+

∂xj
− ∂F
∂xj

F+ . (8.9)

And, upon substituting expression (8.9) into the second term of expression (8.8)
and then making use of results (8.3) and (8.2), we find that (atx � c)

∂F+

∂xj
� −F+

∂F
∂xj

F+ + F+
∂FF+

∂xj
+ ∂F+F

∂xj
F+

� −F+
∂F
∂xj

F+ + F+(I− FF+)
∂F
∂xj

F+ + F+[(I− FF+)
∂F
∂xj

F+]′

+ F+
∂F
∂xj

(I− F+F)F+ + [F+
∂F
∂xj

(I− F+F)]′F+ .

Thus, sinceF+(I − FF+) � 0 and (I − F+F)F+ � 0 and since (according to
Corollary 20.5.2)F+F andFF+ are symmetric,

∂F+

∂xj
� −F+

∂F
∂xj

F+ + F+(F+)′
(
∂F
∂xj

)′
(I− FF+)

+ (I− F+F)

(
∂F
∂xj

)′
(F+)′F+ .

Q.E.D.
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Exercises

Section 20.2

1. Show that, for anym × n matrix B of full column rank and for anyn × p

matrix C of full row rank,

(BC)+ � C+B+ .

2. Show that, for anym×nmatrixA, A+ � A′ if and only if A′A is idempotent.

Section 20.3

3. In connection with Theorem 9.6.1, show that ifC(U) ⊂ C(T) andR(V) ⊂
R(T) and if the generalized inversesT− andQ− (of T andQ, respectively)
are both reflexive, then partitioned matrices (9.6.2) and (9.6.3) are reflexive

generalized inverses of

(
T U
V W

)
and

(
W V
U T

)
, respectively.

4. Determine which of Penrose Conditions (1) – (4) are necessarily satisfied by
a left inverse of anm × n matrix A (when a left inverse exists). Which of
the Penrose conditions are necessarily satisfied by a right inverse of anm× n
matrix A (when a right inverse exists)?

Section 20.4

5. LetA represent anm× n matrix andG ann×m matrix.

(a) Show thatG is the Moore-Penrose inverse ofA if and only if G is a mini-
mum norm generalized inverse ofA andA is a minimum norm generalized
inverse ofG.

(b) Show thatG is the Moore-Penrose inverse ofA if and only if GAA′ � A′

andAGG′ � G′.

(c) Show thatG is the Moore-Penrose inverse ofA if and only if GA � PA′

andAG � PG′ .

6. (a) Show that, for anym×nmatricesA andB such thatA′B � 0 andBA′ � 0,
(A+ B)+ � A+ + B+.

(b) Let A1,A2, . . .Ak representm × n matrices such that, forj > i �
1, . . . , k − 1, A′

iAj � 0 and AjA′
i � 0. Generalize the result of Part

(a) by showing that (A1 + A2 + · · · + Ak)+ � A+
1 + A+

2 + · · · + A+
k .

Section 20.5

7. Show that, for anym× n matrix A, (A+A)+ � A+A, and (AA+)+ � AA+.

8. Show that, for anyn× n symmetric matrixA, AA+ � A+A.
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9. LetV represent ann× n symmetric nonnegative definite matrix,X ann× p
matrix, andd a p × 1 vector. Using the results of Exercises 8 and 19.11
(or otherwise), show that, for the vectorX(X′X)−d to be a solution, for every
d ∈ C(X′), to the problem of minimizing the quadratic forma′Va (in a) subject
to X′a � d, it is necessary and sufficient thatC(V+X) ⊂ C(X).

10. Use Theorem 20.4.5 to devise an alternative proof of Part (3) of Theorem
20.5.3.

11. Let C represent anm × n matrix. Show that, for anym × m idempotent
matrix A, (AC)+A′ � (AC)+ and that, for anyn × n idempotent matrixB,
B′(CB)+ � (CB)+.

12. Leta represent ann × 1 vector of variables, and impose ona the constraint
X′a � d, whereX is ann×pmatrix andd ap×1 vector such thatd ∈ C(X′).
Definef (a) � a′Va − 2b′a, whereV is ann × n symmetric nonnegative
definite matrix andb is ann × 1 vector such thatb ∈ C(V,X). Further, let
R represent any matrix such thatV � R′R, let a0 represent anyn× 1 vector
such thatX′a0 � d, and takes to be anyn× 1 vector such thatb � Vs+ Xt
for somep × 1 vectort. Using the results of Section 19.6 and of Exercise 11
(or otherwise), show thatf (a) attains its minimum value (under the constraint
X′a � d) at a pointa∗ if and only if

a∗ � a0 + [R(I− PX)]+R(s− a0)+ {I− [R(I− PX)]+R}(I− PX)w

for somen× 1 vectorw.

13. LetA represent ann × n symmetric nonnegative definite matrix, and letB
represent ann× nmatrix. Suppose thatB−A is symmetric and nonnegative
definite (in which caseB is symmetric and nonnegative definite). Using Theo-
rems 18.3.4 and 20.4.5 and the results of Exercises 1 and 18.15 (or otherwise),
show thatA+ − B+ is nonnegative definite if and only if rank(A) � rank(B).
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21
Eigenvalues and Eigenvectors

The decomposition of a matrixA into a product of two or three matrices can
(depending on the characteristics of those matrices) be a very useful first step in
computing such things as the rank, the determinant, or an (ordinary or generalized)
inverse (ofA) as well as a solution of a linear system havingA as its coefficient
matrix. In particular, decompositions like the QR, LDU, U′DU, and Cholesky
decompositions — refer to Sections 6.4 and 14.5 — in which the component
matrices are diagonal or triangular, or have orthonormal rows or columns, can be
very useful for computational purposes. Moreover, establishing that a matrix has
a decomposition of a certain type can be instructive about the nature of the matrix.
In particular, if it can be shown that a matrixA is expressible asA � RR′ for
some matrixR, then it can be concluded — refer to Corollary 14.2.14 — thatA is
nonnegative definite (and symmetric).

In the present chapter, consideration is given to a decomposition known as
the spectral decomposition, which exists for symmetric matrices, and to a related
decomposition known as the singular-value decomposition, which exists for all
matrices. In the spectral or singular-value decomposition of a matrixA, A is de-
composed intoA � QDP, whereP andQ are orthogonal matrices and whereD
is a diagonal matrix or, more generally, whereD � diag(D1, 0) for some diagonal
matrix D1 — in the case of the spectral decompositionP � Q′.

The first part of the present chapter is devoted to scalars and (column) vectors
that satisfy the definitions of what are, respectively, known as an eigenvalue and an
eigenvector of a (square) matrix. And, in subsequent parts of the chapter, it is shown
that the existence and construction of the spectral or singular-value decomposition
of a matrixA is equivalent to the existence and computation of linearly independent
eigenvectors ofA or of A′A or AA′.
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The existence of the spectral or singular-value decomposition can (once it has
been established) be very useful in establishing various other results on matrices,
including a number of the results that were established earlier in the book without
resort to the existence of this decomposition. And, once the spectral or singular-
value decomposition of a matrix has been constructed, it can be very useful for
computational purposes. However, there are drawbacks in using the existence of
the spectral or singular-value decomposition in “theoretical” arguments (when
there are other options) and in constructing this decomposition for computational
purposes. Any proof of existence implicitly or explicitly involves some relatively
deep mathematics, and in general the construction of the spectral or singular-
value decomposition requires iterative methods and is much more computationally
intensive than the construction of various other decompositions.

Most (if not all) of the more basic theoretical results in linear statistical models
and in related areas of statistics can be established without implicit or explicit use of
the existence of the spectral or singular-value decomposition. And, in addressing
the computational problems encountered in this area of statistics, it is typically
not efficient to adopt an approach that requires the construction of the spectral or
singular-value decomposition. However, there are exceptions — refer, for example,
to Harville and Fenech (1985).

21.1 Definitions, Terminology, and Some Basic Results

A scalar (real number)λ is said to be aneigenvalue of ann× n matrix A � {aij }
if there exists ann× 1 nonnull vectorx such that

Ax � λx

or, equivalently, such that
(A− λIn)x � 0 .

Clearly,λ is an eigenvalue ofA if and only if the matrixA−λI is singular. The set
comprising the different scalars that are eigenvalues ofA is called thespectrum of
A.

An n × 1 nonnull vectorx is said to be aneigenvector of the matrixA if
there exists a scalar (real number)λ such thatAx � λx, in which caseλ is (by
definition) an eigenvalue ofA. For any particular eigenvectorx (of A), there is only
one eigenvalueλ such thatAx � λx, which (sinceAx � λx ⇒ x′Ax � λx′x) is

λ � x′Ax
x′x

.

The eigenvectorx is said to correspond to (or belong to) this eigenvalue. Note that
if x is an eigenvector ofA, then, for any nonzero scalarc, the scalar multiplecx is
also an eigenvector ofA andcx corresponds to the same eigenvalue asx.

Clearly, a nonnull vectorx is an eigenvector (of then×nmatrixA) corresponding
to any particular eigenvalueλ if and only if it is a solution to the homogeneous linear



21.1 Definitions, Terminology, and Some Basic Results 517

system (A− λI)z � 0 (in z) or, equivalently, if and only ifx ∈ N (A− λI). Thus,
the set comprising all of the eigenvectors (ofA) corresponding to the eigenvalueλ
is the set obtained fromN (A− λI) by deleting the (n× 1) null vector. The linear
spaceN (A − λI) is sometimes referred to as theeigenspace of the eigenvalueλ,
and the dimension of this space is referred to as thegeometric multiplicity of λ.
As a consequence of Lemma 11.3.1,

dim[N (A− λI)] � n− rank(A− λI) . (1.1)

A scalar (real number)λ is an eigenvalue of then× n matrix A if and only if

| A− λI | � 0 (1.2)

(sinceA − λI is singular if and only if|A − λI | � 0). Let δij represent theij th
element ofIn, so thatδij � 1, if j � i, andδij � 0, if j �� i (i, j � 1, . . . , n). Then,
it follows from the very definition of a determinant [given by formula (13.1.2)]
that

| A− λI | �
∑

(−1)φn(j1,...,jn)(a1j1 − δ1j1λ) · · · (anjn − δnjnλ) , (1.3)

wherej1, . . . , jn is a permutation of the firstn positive integers and the summation
is over all such permutations.

Upon inspecting the sum (1.3), we find that the term

(a11− λ)(a22− λ) · · · (ann − λ), (1.4)

corresponding to the permutationj1 � 1, j2 � 2, . . . , jn � n, is a polynomial (in
λ) of degreen and that each of the remaining (n!− 1) terms is a polynomial (inλ)
of degreen− 2 or less. It follows that

| A− λI | � p(λ), (1.5)

where
p(λ) � c0 + c1λ+ · · · + cn−1λ

n−1 + cnλn (1.6)

is a polynomial (inλ) whose coefficientsc0, c1, . . . , cn−1, cn depend on the ele-
ments ofA. And the term (1.4) is the only term of the sum (1.3) that contributes
to cn andcn−1, so that

cn � (−1)n, cn−1 � (−1)n−1
n∑
i�1

aii � (−1)n−1tr(A) . (1.7)

Further,
c0 � p(0)� | A | . (1.8)

Alternatively, results (1.7) and (1.8) could have been deduced from Corollary
13.7.4. In fact, Corollary 13.7.4 provides expressions forc1, c2, . . . , cn−2 as well
as forc0, cn−1, andcn.
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Condition (1.2) can be reexpressed as

p(λ) � 0 (1.9)

and can be regarded as an equation (inλ). This equation is called thecharacteristic
equation of A, and the polynomialp is called thecharacteristic polynomial of
A. [Equation (1.9) and the polynomialp differ by a factor of (−1)n from what
some authors call the characteristic equation and characteristic polynomial —
those authors refer to|λI− A|, which equals (−1)n|A− λI|, as the characteristic
polynomial and/or to|λI−A| � 0 as the characteristic equation.] Clearly, a scalar
(real number) is an eigenvalue ofA if and only if it is a root of the characteristic
polynomial or, equivalently, if and only if it is a solution to the characteristic
equation.

Let {λ1, . . . , λk} represent the spectrum of then × n matrix A, that is, the set
of (distinct) scalars that are eigenvalues ofA. It follows from standard results on
polynomials — refer, for example, to Beaumont and Pierce (1963, secs. 9-5 and
9-7) — that the characteristic polynomialp of A has a unique (aside from the order
of the factors) representation of the form

p(λ) � (−1)n(λ− λ1)γ1 · · · (λ− λk)γk q(λ) , (1.10)

whereγ1, . . . , γk are positive integers andq is a polynomial (of degreen−∑k
i�1 γi)

that has no real roots.
The exponentγi of the factor (λ−λi)γi in expression (1.10) is referred to as the

algebraic multiplicity of the eigenvalueλi (i � 1, . . . , k). Since the characteristic
polynomialp is of degreen, it is clear that the sum

∑k
i�1 γi of the algebraic

multiplicities of thek eigenvalues of then×nmatrixA cannot exceedn (and also
that the numberk of distinct eigenvalues ofA cannot exceedn). The sum

∑k
i�1 γi

equalsn if and only if (for all λ) q(λ) � 1 — compare the coefficient ofλn in
expression (1.10) with that in expression (1.6) — in which case expression (1.10)
reduces to

p(λ) � (−1)n(λ− λ1)γ1 · · · (λ− λn−1)γn−1(λ− λn)γn . (1.11)

In general, the algebraic multiplicity of an eigenvalue of ann× n matrix is not
the same as its geometric multiplicity. In fact, it will be shown in Section 3 that the
algebraic multiplicity of any eigenvalue is greater than or equal to its geometric
multiplicity.

Suppose, for example, thatn � 2 and thatA �
(

1 1
0 1

)
. Then, the characteristic

polynomial ofA is

p(λ) �
∣∣∣∣1− λ 1

0 1− λ
∣∣∣∣ � (1− λ)2 � (λ− 1)2 .

Thus, the spectrum ofA comprises a single eigenvalue 1, and the algebraic multi-
plicity of this eigenvalue is 2. However,

A− (1)I �
(

0 1
0 0

)
,
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so that dim{N [A− (1)I]} � n− rank[A− (1)I] � 2−1� 1. Thus, the geometric
multiplicity of A is only 1.

Does every (square) matrix have at least one eigenvalue?
The fundamental theorem of algebra guarantees that every polynomial of degree

one or more has a possibly complex root. Refer, for example, to Beaumont and
Pierce (1963, sec. 9-8 and app. 3) for a formal statement of the fundamental theorem
of algebra and for a proof — the proof of this theorem is well beyond the scope
and mathematical level of our presentation.

Thus, the characteristic polynomial of every (square) matrix has at least one
possibly complex root. However, there exist matrices whose characteristic poly-
nomials have no real roots. These matrices have no eigenvalues.

Consider, for example, the matrix

(
0 1

−1 0

)
. The characteristic polynomial of

this matrix is

p(λ) �
∣∣∣∣−λ 1
−1 −λ

∣∣∣∣ � λ2 + 1,

which has no real roots (although it has two imaginary roots,λ � i andλ � −i).
Thus, the matrix

(
0 1

−1 0

)
has no eigenvalues.

In the degenerate special case where then×nmatrixA has no eigenvalues, ex-
pression (1.10) for the characteristic polynomial is to be read asp(λ) � (−1)nq(λ).

Every eigenvalue has an algebraic and geometric multiplicity of at least one. An
eigenvalue is referred to as asimple eigenvalue or amultiple eigenvalue, depending
on whether its algebraic multiplicity equals one or exceeds one. Eigenvectors that
correspond to the same simple eigenvalue are scalar multiples of each other — it
will be shown in Section 3 that the geometric multiplicity of a simple eigenvalue is
necessarily equal to one — and consequently can be distinguished from each other
by, for example, specifying the value of any nonzero element. In what follows,
scalars that are not eigenvalues will sometimes (for convenience in stating various
results) be regarded as eigenvalues whose algebraic and geometric multiplicities
equal zero.

If the algebraic multiplicities of the eigenvalues of ann × n matrix A sum to
n, then every root of the characteristic polynomial ofA is a real number [as is
evident from expression (1.11)]. The fundamental theorem of algebra can be used
to establish the converse of this result. If the polynomialq in expression (1.10) is
of degree one or more, then (according to the fundamental theorem)q has a root
(which by definition is not real). Thus, if every root of the characteristic polynomial
of then × n matrix A is real, then the algebraic multiplicities of the eigenvalues
of A sum ton.

Our use of the terms eigenvalue and eigenvector is more restrictive than that of
many authors. In reference to ann × n matrix A, they apply the term eigenvalue
to any possibly complex numberλ for which there exists a vectorx (of possibly
complex numbers) such thatAx � λx or, equivalently, to any possibly complex
number that is a root of the characteristic polynomial. Similarly, they apply the
term eigenvector to any vectorx (of possibly complex numbers) for which there



520 21. Eigenvalues and Eigenvectors

exists a possibly complex numberλ such thatAx � λx. In contrast, we confine
our use of these terms to what those other authors call real eigenvalues and real
eigenvectors.

It should also be noted that some authors use other terms in place of eigenvalue
and eigenvector. In the case of eigenvalues, the alternative terms include charac-
teristic value or root, proper value, and latent value. Similarly, the alternatives to
eigenvector include characteristic vector, proper vector, and latent vector.

In referring to ann × n matrix, it is convenient to adopt a terminology that
allows us to distinguish between the elements of its spectrum and the elements
of a certain closely related set. Lettingm � ∑k

i�1 γi , expression (1.10) for the
characteristic polynomial of ann× n matrix A can be reexpressed as

p(λ) � (−1)n(λ− d1)(λ− d2) · · · (λ− dm)q(λ) ,

whered1, d2, . . . , dm arem scalars,γi of which equalλi (i.e., equal theith element
of the spectrum ofA). Let us refer to the elements of the set{d1, d2, . . . , dm} as
the eigenvalues of the matrixA or (for emphasis) as the not-necessarily-distinct
eigenvalues ofA. And, to avoid confusion, let us subsequently refer to the elements
of the spectrum ofA as the distinct eigenvalues ofA.

Consider, for example, the 7×7 diagonal matrixD � diag(3,1,−5,−5,1,1,0).
Its characteristic polynomial is

p(λ) � (λ−3)(λ−1)(λ+5)(λ+5)(λ−1)(λ−1)λ � (λ−3)(λ−1)3(λ+5)2λ .

The (not necessarily distinct) eigenvalues ofD are 3,1,−5,−5,1,1, and 0; and
the distinct eigenvalues ofD are 3,1,−5, and 0.

Let A represent ann×nmatrix. Further, letx1, . . . , xm representn×1 vectors,
and letX � (x1, . . . , xm). Then, allm of the vectorsx1, . . . , xm are eigenvectors
of A if and only if there exists a diagonal matrixD � {dj } such that

AX � XD ,

in which cased1, . . . , dm are the eigenvalues to whichx1, . . . , xm, respectively,
correspond. (To see this, observe that thej th columns ofAX andXD are, respec-
tively, Axj anddjxj .)

The eigenvectors of ann×nmatrixA have a noteworthy geometrical property.
Let λ represent any nonzero eigenvalue ofA, let x represent any eigenvector that
corresponds toλ, and take the inner product forRn×1 to be the usual inner product.
Then, the direction of the vectorAx (which, likex, is ann×1 vector) is either the
same as that ofx or opposite to that ofx, depending on whetherλ > 0 orλ < 0.
That is, the angle betweenAx andx is either 0 orπ (180◦), depending on whether
λ > 0 orλ < 0. And the length ofAx is |λ| times that ofx.

A subspaceU of the linear spaceRn×1 is said to beinvariant relative to ann×n
matrix A if, for every vectorx in U , the vectorAx is also inU .

Letx1, . . . , xm represent any eigenvectors ofA, and letX � (x1, . . . , xm). Then,
there exists a (diagonal) matrixD such thatAX � XD. And, corresponding to any
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vectoru in C(X), there exists anm× 1 vectorr such thatu � Xr, so that

Au � AXr � XDr ∈ C(X) .

Thus, the subspaceC(X) (of Rn×1) spanned by the eigenvectorsx1, . . . , xm is
invariant (relative toA).

With the help of result (1.1), it is easy to verify the following lemma.
Lemma 21.1.1. The scalar 0 is an eigenvalue of ann×nmatrixA if and only if

A is singular, in which case the geometric multiplicity of the eigenvalue 0 equals
n − rank(A) or, equivalently, rank(A) equalsn minus the geometric multiplicity
of the eigenvalue 0.

The following two lemmas relate the eigenvalues of the transpose of ann × n
matrix A to those ofA itself and relate the eigenvalues and eigenvectors ofAk

(wherek is a positive integer) and ofA−1 to those ofA.
Lemma 21.1.2. Let A represent ann× nmatrix. ThenA′ has the same charac-

teristic polynomial and the same spectrum asA, and every scalar in the spectrum
(of A) has the same algebraic multiplicity when regarded as an eigenvalue ofA′

as when regarded as an eigenvalue ofA.
Proof. It suffices to show thatA′ andA have the same characteristic polynomial.

That their characteristic polynomials are the same is evident upon observing (in
light of Lemma 13.2.1) that, for any scalarλ,

|A′ − λI| � |(A− λI)′| � |A− λI| .
Q.E.D.

Lemma 21.1.3. Let λ represent an eigenvalue of ann × n matrix A, and letx
represent any eigenvector (ofA) corresponding toλ. Then, (1) for any positive
integerk, λk is an eigenvalue ofAk, andx is an eigenvector ofAk corresponding
to λk; and (2) ifA is nonsingular (in which caseλ �� 0), 1/λ is an eigenvalue of
A−1, andx is an eigenvector ofA−1 corresponding to 1/λ.

Proof. (1) The proof is by mathematical induction. By definition,λ1 is an eigen-
value ofA1, andx is an eigenvector ofA1 corresponding toλ1. Now, suppose that
λk−1 is an eigenvalue ofAk−1 and thatx is an eigenvector ofAk−1 corresponding
to λk−1 (wherek ≥ 2). Then,

Akx � Ak−1Ax � Ak−1(λx) � λAk−1x � λλk−1x � λkx .

(2) Suppose thatA is nonsingular (in which caseλ is clearly nonzero). Then,

x � A−1Ax � A−1(λx) � λA−1x ,

implying thatA−1x � (1/λ)x. Q.E.D.
In connection with Lemma 21.1.2, it should be noted that (unlessA is symmetric)

an eigenvector ofA is not in general an eigenvector ofA′.
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21.2 Eigenvalues of Triangular or Block-Triangular
Matrices and of Diagonal or Block-Diagonal
Matrices

The eigenvalues of a matrix depend on the elements of the matrix in a very compli-
cated way, and in general their computation requires the use of rather sophisticated
and time-consuming numerical procedures. However, for certain types of matrices
such as block-triangular or block-diagonal matrices, the eigenvalues can be reex-
pressed in terms of the eigenvalues of matrices of smaller dimensions or in other
relatively simple ways, and the computational requirements can be substantially
reduced.

The following lemma gives some results on the eigenvalues of block-triangular
matrices.

Lemma 21.2.1. Let A represent ann× n matrix that is partitioned as

A �




A11 A12 . . . A1r

A21 A22 . . . A2r
...

...
...

...
Ar1 Ar2 . . . Arr


 ,

where (fori, j � 1, . . . , r) Aij is of dimensionsni × nj . Suppose thatA is (upper
or lower) block triangular. Then,

(1) the characteristic polynomialp(λ) of A is such that (forλ ∈ R) p(λ) �∏r
i�1pi(λ), where (fori � 1, . . . , r) pi(λ) is the characteristic polynomial of

Aii ;

(2) a scalarλ is an eigenvalue ofA if and only if λ is an eigenvalue of at least one
of the diagonal blocksA11, . . . ,Arr , or, equivalently, the spectrum ofA is the
union of the spectra ofA11, . . . ,Arr ;

(3) the algebraic multiplicity of an eigenvalueλ of A equals
∑r

i�1 γ
(i), where (for

i � 1, . . . , r) γ (i) is the algebraic multiplicity ofλ whenλ is regarded as an
eigenvalue ofAii — if λ is not an eigenvalue ofAii , thenγ (i) � 0; and

(4) the (not necessarily distinct) eigenvalues ofA ared (1)
1 , . . . , d (1)

m1
, d (2)

1 , . . . ,

d (2)
m2
, . . ., d (r)

1 , . . . , d (r)
mr

, where (fori � 1, . . . , r) d (i)
1 , . . . , d

(i)
mi

are the (not
necessarily distinct) eigenvalues ofAii .

Proof. (1) Forλ ∈ R, the matrixA−λIn is block triangular with diagonal blocks
A11− λIn1, . . . ,Arr − λInr , respectively. Thus, making use of results (13.3.3) and
(13.3.4), we find that (forλ ∈ R)

p(λ) � |A− λI| �
r∏
i�1

|Aii − λI| �
r∏
i�1

pi(λ) .

(2) – (4). Parts (2) – (4) are almost immediate consequences of Part (1). Q.E.D.
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Observe that the characteristic polynomial of a 1× 1 matrix (c) (whose only
element is the scalarc) is p(λ) � (−1)(λ − c), that the spectrum of (c) is the set
{c} whose only member isc, and that the algebraic (and geometric) multiplicities
of the eigenvaluec of (c) equal 1. Then, by regarding a triangular matrix as a
block-triangular matrix with 1× 1 blocks, we obtain the following corollary of
Lemma 21.2.1.

Corollary 21.2.2. For anyn× n (upper or lower) triangular matrixA � {aij },
(1) the characteristic polynomial ofA is p(λ) � (−1)n

∏n
i�1(λ− aii);

(2) a scalarλ is an eigenvalue ofA if and only if it equals one or more of the
diagonal elementsa11, . . . , ann, or, equivalently, the spectrum ofA comprises
the distinct scalars represented among the diagonal elements ofA;

(3) the algebraic multiplicity of an eigenvalueλof A equals the number of diagonal
elements ofA that equalλ;

(4) the (not necessarily distinct) eigenvalues ofA are the diagonal elements ofA.

In light of Corollary 21.2.2, it is a trivial matter to determine the eigenvalues of
a triangular matrix. One need only inspect its diagonal elements.

Lemma 21.2.1 gives various results on the characteristic polynomial, the spec-
trum, and the algebraic multiplicities of the distinct eigenvalues of a block-
triangular matrix (with square diagonal blocks). Since block-diagonal matrices
are block triangular, these results are applicable to block-diagonal matrices (or,
more precisely, to block-diagonal matrices with square diagonal blocks). The fol-
lowing lemma gives some results on the geometric multiplicities of the distinct
eigenvalues of a block-diagonal matrix and on the eigenvectors of a block-diagonal
matrix — these results are specific to block-diagonal matrices; that is, they do not
(in general) apply to block-triangular matrices.

Lemma 21.2.3. For anyn × n block-diagonal matrixA with square diagonal
blocksA11, . . . ,Arr of ordern1, . . . , nr , respectively,

(1) the geometric multiplicity of an eigenvalueλ of A equals
∑r

i�1 ν
(i), where (for

i � 1, . . . , r) ν(i) is the geometric multiplicity ofλ whenλ is regarded as an
eigenvalue ofAii — if λ is not an eigenvalue ofAii , thenν(i) � 0; and

(2) if an ni × 1 vectorx∗ is an eigenvector ofAii corresponding to an eigen-
valueλ, then then × 1 vectorx � (0′, . . . 0′, x′∗, 0′, . . . , 0′)′, whose (1+∑i−1

s�1 ns)th, . . . , (
∑i

s�1 ns)th elements are respectively the first,. . . , ni th ele-
ments ofx∗, is an eigenvector ofA corresponding toλ — λ is an eigenvalue
of A as well as ofAii (1≤ i ≤ r).

Proof. (1) Recalling results (1.1) and (4.5.14) and observing thatA − λI �
diag(A11 − λI, . . . ,Arr − λI), we find that the geometric multiplicity ofλ
equals
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n− rank(A− λI) � n−
r∑
i�1

rank(Aii − λI) �
r∑
i�1

[ni − rank(Aii − λI)]

�
r∑
i�1

ν(i) .

(2) Suppose thatx∗ is an eigenvector ofAii corresponding to an eigenvalueλ.
Then,

Ax �




0
...
0

Aiix∗
0
...
0



�




0
...
0
λx∗
0
...
0



� λx .

Q.E.D.
By regarding a diagonal matrix as a block-diagonal matrix with 1× 1 blocks,

we obtain the following corollary of Lemma 21.2.3.
Corollary 21.2.4. For anyn× n diagonal matrixD � {di},

(1) the geometric multiplicity of an eigenvalueλ of D equals the number of diag-
onal elements ofD that equalλ; and

(2) then × 1 vectorcui , whereui is the ith column ofIn andc is an arbitrary
nonzero scalar, is an eigenvector ofD corresponding todi — di is an eigenvalue
of D (1≤ i ≤ n).

Corollary 21.2.4 gives results on diagonal matrices that augment those given by
Corollary 21.2.2 — since diagonal matrices are triangular, the results of Corollary
21.2.2 are applicable to diagonal matrices. Note that the geometric multiplicity of
any eigenvalue of a diagonal matrix is the same as its algebraic multiplicity, as
evidenced by Part (1) of Corollary 21.2.4 and Part (3) of Corollary 21.2.2.

21.3 Similar Matrices

An n×nmatrixB is said to besimilar to ann×nmatrixA if there exists ann×n
nonsingular matrixC such thatB � C−1AC or, equivalently, such thatCB � AC.
Upon observing that (for anyn× n nonsingular matrixC)

B � C−1AC ⇒ A � CBC−1 � (C−1)−1BC−1,

it is clear that ifB is similar toA, thenA is similar toB.
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Some of the ways in which similar matrices are similar are described in the
following theorem.

Theorem 21.3.1. For anyn× nmatrixA and anyn× n nonsingular matrixC,

(1) rank(C−1AC) � rank(A);

(2) det(C−1AC) � det(A);

(3) tr(C−1AC) � tr(A);

(4) C−1AC andA have the same characteristic polynomial and the same spectrum;

(5) an eigenvalue has the same algebraic and geometric multiplicities when re-
garded as an eigenvalue ofC−1AC as when regarded as an eigenvalue ofA;

(6) if x is an eigenvector ofA corresponding to an eigenvalueλ, thenC−1x is an
eigenvector ofC−1AC corresponding toλ, and, similarly, ify is an eigenvector
of C−1AC corresponding toλ, thenCy is an eigenvector ofA corresponding
to λ; and

(7) the (not necessarily distinct) eigenvalues ofC−1AC are the same as those of
A.

Proof. (1) That rank(C−1AC) � rank(A) is evident from Corollary 8.3.3.
(2) Using results (13.3.9) and (13.3.12), we find that

|C−1AC| � |C−1| |A| |C| � (1/|C|) |A| |C| � |A| .

(3) As a consequence of Lemma 5.2.1,

tr(C−1AC) � tr(ACC−1) � tr(A) .

(4) Applying Part (2) (withA− λI in place ofA), we find that, for any scalarλ,

|C−1AC− λI| � |C−1(A− λI)C| � |A− λI| .

Thus,C−1AC andA have the same characteristic polynomial (which implies that
they have the same spectrum).

(5) Letλ represent an eigenvalue ofA or, equivalently [in light of Part (4)], of
C−1AC. Since [according to Part (4)]C−1AC andA have the same characteristic
polynomial,λ has the same algebraic multiplicity when regarded as an eigenvalue
of C−1AC as when regarded as an eigenvalue ofA. Further, the geometric multi-
plicities ofλ when regarded as an eigenvalue ofC−1AC and when regarded as an
eigenvalue ofA are, respectively [in light of result (1.1)],n−rank(C−1AC−λI) and
n− rank(A− λI) and hence{since rank(C−1AC− λI) � rank[C−1(A− λI)C] �
rank(A− λI)} are the same.

(6) If Ax � λx, then

(C−1AC)C−1x � C−1Ax � C−1(λx) � λC−1x ,
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and if C−1ACy � λy, then

ACy � CC−1ACy � C(λy) � λCy .

(7) Since [according to Part (4)]C−1AC andA have the same characteristic
polynomial, the (not necessarily distinct) eigenvalues ofC−1AC are the same as
those ofA. Q.E.D.

Theorem 21.3.1 can be very useful. If, for example, it can be demonstrated that a
matrixA is similar to a diagonal or triangular matrix or to some other matrix whose
eigenvalues are relatively easy to obtain, then the determination of the eigenvalues
of A may be greatly facilitated.

Subsequently, we shall have occasion to make use of the following theorem.
Theorem 21.3.2. Let A represent ann× n matrix,B a k × k matrix, andU an

n× k matrix with orthonormal columns (i.e., withU′U � I) such thatAU � UB.
Then, there exists ann × (n − k) matrix V such that then × n matrix (U,V) is
orthogonal. And, for any such matrixV,

(U,V)′A(U,V) �
(

B U′AV
0 V′AV

)

[so thatA is similar to the block-triangular matrix

(
B U′AV
0 V′AV

)
], and, in the special

case whereA is symmetric,

(U,V)′A(U,V) �
(

B 0
0 V′AV

)

[so thatA is similar to diag(B,V′AV)].
Proof. As a consequence of Theorem 6.4.5, there exists ann× (n−k) matrixV

such that the columns of then×nmatrix (U,V) form an orthonormal (with respect
to the usual inner product) basis forRn or, equivalently, such that the matrix (U,V)
is orthogonal.

Now, letV represent any such matrix. Then, observing that

U′AU � U′UB � IB � B

and that
V′AU � V′UB � 0B � 0 ,

we find that

(U,V)′A(U,V) �
(

B U′AV
0 V′AV

)
.

And, in the special case whereA is symmetric,

U′AV � U′A′V � (V′AU)′ � 0′ � 0 ,

so that



21.3 Similar Matrices 527

(U,V)′A(U,V) � diag(B,V′AV) .

Q.E.D.
In the special case wherek � 1, Theorem 21.3.2 can be restated as the following

corollary.
Corollary 21.3.3. Let A represent ann × n matrix. And letλ represent any

eigenvalue ofA (assuming that one exists), andu represent an eigenvector of
(usual) norm 1 that corresponds toλ. Then there exists ann × (n − 1) matrixV
such that then× nmatrix (u,V) is orthogonal. Moreover, for any such matrixV,

(u,V)′A(u,V) �
(
λ u′AV
0 V′AV

)

[so thatA is similar to the block-triangular matrix

(
λ u′AV
0 V′AV

)
], and, in the special

case whereA is symmetric,

(u,V)′A(u,V) �
(
λ 0
0 V′AV

)

[so thatA is similar to diag(λ,V′AV)].
The following theorem gives an inequality that was mentioned (but not verified)

in Section 1.
Theorem 21.3.4. The geometric multiplicity of an eigenvalueλ of an n × n

matrix A is less than or equal to the algebraic multiplicity ofλ.
Proof. Letν � dim[N (A−λI)], which by definition is the geometric multiplic-

ity of λ. Then, as a consequence of Theorem 6.4.3, there exists ann× ν matrixU
with orthonormal (with respect to the usual inner product) columns that form a ba-
sis forN (A−λI). And, since (A−λI)U � 0 and hence sinceAU � λU � U(λIν),
it follows from Theorem 21.3.2 thatA is similar to a matrix that is expressible as(

λIν R
0 S

)
,

whereR is aν × (n− ν) matrix andS is an (n− ν)× (n− ν) matrix.

Now, it follows from Theorem 21.3.1 thatλ is an eigenvalue of

(
λIν R
0 S

)
—

thatλ is an eigenvalue of

(
λIν R
0 S

)
is also evident from Lemma 21.2.1 — and that

λhas the same algebraic multiplicity when regarded as an eigenvalue of

(
λIν R
0 S

)
as when regarded as an eigenvalue ofA. Moreover, it is clear from Lemma 21.2.1
and from Corollary 21.2.2 that the algebraic multiplicity ofλ when regarded as an

eigenvalue of

(
λIν R
0 S

)
is at leastν. We conclude that the algebraic multiplicity

of λ when regarded as an eigenvalue ofA is at leastν. Q.E.D.
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The following four corollaries give various implications of Theorem 21.3.4.
Corollary 21.3.5. If the algebraic multiplicity of an eigenvalueλ of ann × n

matrix equals 1, then the geometric multiplicity ofλ also equals 1.
Proof. The validity of Corollary 21.3.5 is evident from Theorem 21.3.4 upon

observing that the geometric multiplicity ofλ is at least one. Q.E.D.
Corollary 21.3.6. If ann× n matrixA hasn distinct eigenvalues, then each of

them has a geometric (and algebraic) multiplicity of 1.
Proof. The algebraic multiplicities of the distinct eigenvalues ofA are greater

than or equal to 1, and the sum of the algebraic multiplicities cannot exceedn. Thus,
if A hasn distinct eigenvalues, then each of them has an algebraic multiplicity of
1 and hence (in light of Corollary 21.3.5) a geometric multiplicity of 1. Q.E.D.

Corollary 21.3.7. LetA represent ann×nmatrix that hask distinct eigenvalues
λ1, . . . , λk with algebraic multiplicitiesγ1, . . . , γk, respectively, and geometric
multiplicities ν1, . . . , νk, respectively. Then,

∑k
i�1 νi ≤

∑k
i�1 γi ≤ n. And, if∑k

i�1 νi � n, then
∑k

i�1 γi � n. Moreover, if
∑k

i�1 νi �
∑k

i�1 γi , then (for
i � 1, . . . , k) νi � γi .

Proof. That
∑k

i�1 νi ≤
∑k

i�1 γi is an immediate consequence of Theorem
21.3.4, and that

∑k
i�1 γi ≤ n was established earlier (in Section 1). And, if∑k

i�1 νi � n, then together these inequalities imply that
∑k

i�1 γi � n.
Now, suppose that

∑k
i�1 νi �

∑k
i�1 γi . Then,

∑k
i�1(γi − νi) � 0. And, accord-

ing to Theorem 21.3.4,γi ≥ νi or, equivalently,γi − νi ≥ 0 (i � 1, . . . , k). Thus,
γi − νi � 0, or, equivalently,νi � γi (i � 1, . . . , k). Q.E.D.

Corollary 21.3.8. LetA represent ann×nmatrix that hask distinct eigenvalues
λ1, . . . , λk with geometric multiplicitiesν1, . . . , νk, respectively. Then the sum of
the geometric multiplicities of the (k or k− 1) nonzero distinct eigenvalues (ofA)
is less than or equal to rank(A), with equality holding if and only if

∑k
i�1 νi � n.

Proof. It is convenient to consider separately two cases.
Case 1: rank(A) � n. In this case, allk of the distinct eigenvaluesλ1, . . . , λk

are nonzero (as is evident from Lemma 11.3.1), and it is apparent from Corollary
21.3.7 that the sum

∑k
i�1 νi of the geometric multiplicities is less than or equal to

rank(A). (And it is obvious that this sum equals rank(A) if and only if
∑k

i�1 νi � n.)
Case 2: rank(A) < n. In this case, it follows from Lemma 11.3.1 that one of the

distinct eigenvalues, sayλs , equals 0 and thatνs � n− rank(A). Thus, making use
of Corollary 21.3.7, we find that

k∑
i ��s

νi �
k∑
i�1

νi − [n− rank(A)] ≤ n− [n− rank(A)] � rank(A) .

And, clearly,
∑k

i ��s νi � rank(A) if and only if n �∑k
i�1 νi . Q.E.D.

21.4 Linear Independence of Eigenvectors

A basic property of eigenvectors is described in the following theorem.
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Theorem 21.4.1. Let A represent ann × n matrix, letx1, . . . , xk representk
eigenvectors ofA, and letλ1, . . . , λk represent the eigenvalues (ofA) to which
x1, . . . xk correspond. Ifλ1, . . . , λk are distinct, thenx1, . . . , xk are linearly inde-
pendent.

Theorem 21.4.1 is a special case of the following result.
Theorem 21.4.2. LetA represent ann×nmatrix. And, letx(1)

i , . . . , x(mi )
i repre-

sent linearly independent eigenvectors ofA that correspond to some eigenvalueλi
(i � 1, . . . , k). If λ1, . . . , λk are distinct, then the combined setx(1)

1 , . . . , x(m1)
1 , . . . ,

x(1)
k , . . . , x(mk )

k of
∑k

i�1 mi eigenvectors is linearly independent.
Proof (of Theorem 21.4.2). Assume thatλ1, . . . , λk are distinct. To show that the

combined set is linearly independent, let us proceed by mathematical induction.
The set ofm1 eigenvectorsx(1)

1 , . . . x
(m1)
1 is by definition linearly independent. Sup-

pose now that the set comprising the first
∑s

i�1 mi eigenvectorsx(1)
1 , . . . , x(m1)

1 , . . .,
x(1)
s , . . . , x(ms )

s is linearly independent (where 1≤ s ≤ k−1). Then, to complete the
induction argument, it suffices to show that the set comprising the first

∑s+1
i�1 mi

eigenvectorsx(1)
1 , . . . , x(m1)

1 , . . ., x(1)
s+1, . . . , x(ms+1)

s+1 is linearly independent.

Let c(1)
1 , . . . , c

(m1)
1 , . . . , c

(1)
s+1, . . . , c

(ms+1)
s+1 represent any scalars such that

c
(1)
1 x(1)

1 + · · · + c(m1)
1 x(m1)

1 + · · · + c(1)
s+1x(1)

s+1 + · · · + c(ms+1)
s+1 x(ms+1)

s+1 � 0 . (4.1)

And, observe that, forj � 1, . . . , ms+1,

(A− λs+1I)x(j )
s+1 � 0

and that, fori � 1, . . . , s andj � 1, . . . , mi ,

(A− λs+1I)x(j )
i � [A− λiI+ (λi − λs+1)I]x(j )

i � (λi − λs+1)x(j )
i .

Then, premultiplying both sides of equality (4.1) byA− λs+1I, we find that

(λ1 − λs+1)(c(1)
1 x(1)

1 + · · · + c(m1)
1 x(m1)

1 )
+ · · · + (λs − λs+1)(c(1)

s x(1)
s + · · · + c(ms )

s x(ms )
s ) � 0 .

And sinceλi − λs+1 �� 0 for i �� s + 1 and (by supposition) the
∑s

i�1 mi vectors
x(1)

1 , . . . , x(m1)
1 , . . . , x(1)

s , . . . , x(ms )
s are linearly independent, it follows that

c
(1)
1 � . . . � c

(m1)
1 � . . . � c(1)

s � . . . � c(ms )
s � 0 . (4.2)

Moreover, substituting from result (4.2) into equality (4.1), we find that

c
(1)
s+1x(1)

s+1 + · · · + c(ms+1)
s+1 x(ms+1)

s+1 � 0

and hence, since thems+1 vectorsx(1)
s+1, . . . x

(ms+1)
s+1 are by definition linearly inde-

pendent, that
c

(1)
s+1 � . . . � c

(ms+1)
s+1 � 0 . (4.3)



530 21. Eigenvalues and Eigenvectors

Together, results (4.2) and (4.3) imply that the
∑s+1

i�1 mi vectorsx(1)
1 ,. . .,x(m1)

1 , . . .,
x(1)
s+1, . . ., x(ms+1)

s+1 are linearly independent. Q.E.D.
How many linearly independent eigenvectors are there? This question is an-

swered (in terms of the geometric multiplicities of the distinct eigenvalues) by the
following theorem.

Theorem 21.4.3. Let λ1, . . . , λk represent the distinct eigenvalues of ann× n
matrixA (i.e., the members of the spectrum ofA), and letν1, . . . , νk represent their
respective geometric multiplicities. Then, fori � 1, . . . , k, there exists a set of
νi linearly independent eigenvectorsx(1)

i , . . . , x(νi )
i of A corresponding toλi . The

combined setS � {x(1)
1 , . . . , x(ν1)

1 , . . . , x(1)
k , . . . x

(νk )
k }, comprising

∑k
i�1 νi eigen-

vectors, is linearly independent; and any set of more than
∑k

i�1 νi eigenvectors is
linearly dependent. Moreover, if

∑k
i�1 νi � n, thenS is a basis forRn, and the

setS∗ obtained fromS by deleting any eigenvectors that correspond to 0 (in the
event that 0 is an eigenvalue ofA) is a basis forC(A).

Proof. Fori � 1, . . . , k, any basis for the eigenspaceN (A−λiI) is a set ofνi lin-
early independent eigenvectors corresponding toλi , so that such a set clearly exists.

That the combined setS is linearly independent is an immediate consequence
of Theorem 21.4.2. Suppose now (for purposes of establishing a contradiction)
that there existed a linearly independent set of more that

∑k
i�1 νi eigenvectors.

Then, for some integert (1 ≤ t ≤ k), the number of eigenvectors in that set
that corresponded toλt would exceedνt . And, as a consequence,N (A − λtI)
would contain more thanνt linearly independent vectors, which{since by definition
νt � dim[N (A−λtI)]} establishes the desired contradiction. Thus, any set of more
than

∑k
i�1 νi eigenvectors is linearly dependent.

To complete the proof, suppose that
∑k

i�1 νi � n. Then,S comprisesn (linearly
independent,n-dimensional) vectors and hence is a basis forRn. Further, letr
represent the number of vectors inS∗, let X represent ann × r matrix whose
columns are the vectors inS∗, and let6 represent anr × r diagonal matrix whose
diagonal elements are the eigenvalues to which the columns ofX correspond, so
that AX � X6, implying (since the diagonal elements of6 are nonzero) that
X � AX6−1. And, upon observing that rank(X) � r and (in light of Corollary
21.3.8) thatr � rank(A), it follows from Corollary 4.4.7 thatC(X) � C(A). Thus,
S∗ is a basis forC(A). Q.E.D.

As an immediate consequence of Theorem 21.4.3, we have the following corol-
lary.

Corollary 21.4.4. Let ν1, . . . , νk represent the geometric multiplicities of the
distinct eigenvalues of ann×nmatrixA. Then there exists a linearly independent
set ofn eigenvectors (ofA) if and only if

∑k
i�1 νi � n.

Eigenvectors that correspond to distinct eigenvalues are linearly independent (as
indicated by Theorem 21.4.1). If the eigenvectors are eigenvectors of a symmetric
matrix, then we can make the following, stronger statement.

Theorem 21.4.5. If two eigenvectorsx1 andx2 of ann × n symmetric matrix
A correspond to different eigenvalues, thenx1 andx2 are orthogonal (with respect
to the usual inner product).
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Proof. Let λ1 andλ2 represent the eigenvalues to whichx1 andx2 correspond.
Then, by definition,Ax1 � λ1x1 andAx2 � λ2x2. Premultiplying both sides of
the first of these two equalities byx′2 and both sides of the second byx′1, we find
thatx′2Ax1 � λ1x′2x1 andx′1Ax2 � λ2x′1x2. And, sinceA is symmetric, we have
that

λ1x′2x1 � x′2A′x1 � (x′1Ax2)′ � (λ2x′1x2)′ � λ2x′2x1 ,

implying that (λ1 − λ2)x′2x1 � 0 and hence ifλ1 �� λ2 that x′2x1 � 0. Thus, if
λ1 �� λ2, thenx1 andx2 are orthogonal. Q.E.D.

21.5 Diagonalization

a. Definitions and some basic properties

An n× n matrix A is said to bediagonalizable (or diagonable) if there exists an
n × n nonsingular matrixQ such thatQ−1AQ � D for some diagonal matrixD,
in which caseQ is said todiagonalize A (or A is said to bediagonalized by Q).
Note (in connection with this definition) that

Q−1AQ � D ⇔ AQ � QD ⇔ A � QDQ−1 . (5.1)

Clearly, ann× n matrix is diagonalizable if and only if it is similar to a diagonal
matrix.

Ann×nmatrixA is said to beorthogonally diagonalizable if it is diagonalizable
by an orthogonal matrix; that is, if there exists ann× n orthogonal matrixQ such
thatQ′AQ is diagonal.

The process of constructing ann × n nonsingular matrix that diagonalizes an
n×nmatrixA is referred to as thediagonalization of A. This process is intimately
related to the process of finding eigenvalues and eigenvectors ofA, as is evident
from the following theorem.

Theorem 21.5.1. LetA represent ann×nmatrix. And suppose that there exists
ann × n nonsingular matrixQ such thatQ−1AQ � D for some diagonal matrix
D; denote the first,. . . , nth columns ofQ by q1, . . . ,qn, respectively, and the first,
. . . , nth diagonal elements ofD by d1, . . . , dn, respectively. Then,

(1) rank(A) equals the number of nonzero diagonal elements ofD;

(2) det(A) � d1d2 · · · dn;
(3) tr(A) � d1 + d2 + · · · + dn;
(4) the characteristic polynomial ofA is

p(λ) � (−1)n(λ− d1)(λ− d2) · · · (λ− dn) ;

(5) the spectrum ofA comprises the distinct scalars represented among the diag-
onal elements ofD;
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(6) the algebraic and geometric multiplicities of an eigenvalueλ of A equal the
number of diagonal elements ofD that equalλ;

(7) the (not necessarily distinct) eigenvalues ofA are the diagonal elements ofD;
and

(8) the columns ofQ are (linearly independent) eigenvectors ofA (with the ith
columnqi corresponding to the eigenvaluedi).

Proof. Upon recalling various results on diagonal matrices [specifically, result
(4.5.14) and the results given by Corollaries 13.1.2, 21.2.2, and 21.2.4], Parts
(1) – (7) of Theorem 21.5.1 follow from Theorem 21.3.1. Thatq1, . . . ,qn are
eigenvectors ofA [as claimed in Part (8)] is evident upon observing [in light of
result (5.1)] thatAQ � QD (and that, fori � 1, . . . , k, the ith columns ofAQ
andQD are, respectively,Aqi anddiqi). Q.E.D.

b. Necessary and sufficient conditions for a matrix to be
diagonalizable

If ann×nmatrixA is diagonalizable by ann×n nonsingular matrixQ, then, ac-
cording to Part (8) of Theorem 21.5.1, the columns ofQ are (linearly independent)
eigenvectors ofA. The following theorem makes a stronger statement.

Theorem 21.5.2. An n× nmatrixA is diagonalizable by ann× n nonsingular
matrix Q if and only if the columns ofQ are (linearly independent) eigenvectors
of A.

Proof. In light of Part (8) of Theorem 21.5.1, it suffices to prove the “if part” of
Theorem 21.5.2.

Suppose that the columnsq1, . . . ,qn of Q are eigenvectors ofA. Then there
exists a diagonal matrixD � {di} such thatAQ � QD (as discussed in Section
1 and as is evident upon observing that, fori � 1, . . . , n, theith columns ofAQ
andQD are, respectively,Aqi anddiqi). We conclude [in light of result (5.1)] that
Q diagonalizesA. Q.E.D.

As an immediate consequence of Theorem 21.5.2, we have the following corol-
lary.

Corollary 21.5.3. An n×nmatrixA is diagonalizable if and only if there exists
a linearly independent set ofn eigenvectors (ofA).

In light of Corollary 21.4.4 (and of Corollary 21.3.8), we have the following,
additional corollary.

Corollary 21.5.4. An n×nmatrixA, whose spectrum comprisesk eigenvalues
with geometric multiplicitiesν1, . . . , νk, respectively, is diagonalizable if and only
if
∑k

i�1 νi � n or, equivalently, if and only if the geometric multiplicities of thek
or k − 1 nonzero distinct eigenvalues (ofA) sum to rank(A).
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c. A basic result on symmetric matrices

In Subsection d, the discussion of the diagonalization of matrices is specialized to
the diagonalization of symmetric matrices. The results of Subsection d depend in
a fundamental way on the following property of symmetric matrices.

Theorem 21.5.5. Every symmetric matrix has an eigenvalue.
The conventional way of proving this theorem (e.g., Searle 1982, chap. 11) is

to implicitly or explicitly use the fundamental theorem of algebra to establish that
the characteristic polynomial of any (square) matrix has a possibly complex root
and to then show that if the matrix is symmetric, this root is necessarily real. The
resultant proof is accessible only to those who are at least somewhat knowledgeable
about complex numbers. Moreover, the fundamental theorem of algebra is a very
deep result — its proof is well beyond the scope and mathematical level of our
presentation.

Here, we take a different approach. This approach consists of establishing the
following theorem, of which Theorem 21.5.5 is an immediate consequence.

Theorem 21.5.6. Let A represent ann × n matrix. Then, there exist nonnull
vectorsx1 andx2 such that

x′1Ax1

x′1x1
≤ x′Ax

x′x
≤ x′2Ax2

x′2x2

for every nonnull vectorx in Rn (or, equivalently, such thatx′1Ax1/x′1x1 �
minx ��0 x′Ax/x′x andx′2Ax2/x′2x2 � maxx ��0 x′Ax/x′x). Moreover, ifA is sym-
metric, thenx′1Ax1/x′1x1 andx′2Ax2/x′2x2 are eigenvalues ofA — in fact, they
are, respectively, the smallest and largest eigenvalues ofA — andx1 andx2 are
eigenvectors corresponding tox′1Ax1/x′1x1 andx′2Ax2/x′2x2, respectively.

Proof. Letx represent ann×1 vector of variables, and defineS � {x : x′x � 1}.
The quadratic formx′Ax is a continuous function ofx, and the setS is closed and
bounded. Since any continuous function attains a maximum value and a minimum
value over any closed and bounded subset of its domain (e.g., Bartle 1976, thm.
22.6; Magnus and Neudecker 1988, thm. 7.1),S contains vectorsx1 andx2 such that

x′1Ax1 ≤ x′Ax ≤ x′2Ax2

for everyx in S. Moreover, for any nonnullx (in Rn), (x′x)−1/2x ∈ S and

[(x′x)−1/2x]′A[(x′x)−1/2x] � x′Ax/x′x .

Thus,
x′1Ax1

x′1x1
� x′1Ax1 ≤ x′Ax

x′x
≤ x′2Ax2 � x′2Ax2

x′2x2
(5.2)

for every nonnullx.
Now, suppose thatA is symmetric. Then, in light of results (15.2.13) and (15.3.7),

we find that (for nonnullx)

∂(x′Ax/x′x)

∂x
� (x′x)−2

[
(x′x)

∂x′Ax
∂x

− (x′Ax)
∂x′x
∂x

]
� (x′x)−2[(x′x)2Ax− (x′Ax)2x] .
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Moreover,x′Ax/x′x attains (forx �� 0) minimum and maximum values atx1 and
x2, respectively [as is evident from result (5.2)], so that∂(x′Ax/x′x)/∂x � 0 for
x � x1 andx � x2. Thus, forx � x1 andx � x2,

(x′x)2Ax− (x′Ax)2x � 0 ,

or, equivalently,
Ax � (x′Ax/x′x)x .

We conclude thatx′1Ax1/x′1x1 andx′2Ax2/x′2x2 are eigenvalues ofA and thatx1

andx2 are eigenvectors that correspond tox′1Ax1/x′1x1 andx′2Ax2/x′2x2, respec-
tively. Q.E.D.

d. Orthogonal diagonalization

Let A represent ann×nmatrix, and suppose that there exists an orthogonal matrix
Q such thatQ′AQ � D for some diagonal matrixD. Then, since [in light of result
(5.1)] A � QDQ′,

A′ � (QDQ′)′ � QD′Q′ � QDQ′ � A .

Thus, a necessary condition forA to be orthogonally diagonalizable is thatA be
symmetric (so that while certain nonsymmetric matrices are diagonalizable, they
are not orthogonally diagonalizable). This condition is also sufficient, as indicated
by the following theorem.

Theorem 21.5.7. Every symmetric matrix is orthogonally diagonalizable.
Proof. The proof is by mathematical induction. Clearly, every 1× 1 matrix is

orthogonally diagonalizable. Suppose now that every (n−1)× (n−1) symmetric
matrix is orthogonally diagonalizable (wheren ≥ 2). Then it suffices to show that
everyn× n symmetric matrix is orthogonally diagonalizable.

Let A represent ann× n symmetric matrix. And letλ represent an eigenvalue
of A (the existence of which is guaranteed by Theorem 21.5.5), andu represent an
eigenvector of (usual) norm 1 that corresponds toλ. Then, according to Corollary
21.3.3,

(u,V)′A(u,V) � diag(λ,V′AV)

for somen× (n− 1) matrixV such that then× n matrix (u,V) is orthogonal.
Clearly,V′AV is a symmetric matrix of ordern − 1, so that (by supposition)

there exists an orthogonal matrixR such thatR′(V′AV)R � F for some diagonal
matrix F. DefineS � diag(1,R) andP � (u,V)S. Then,

S′S � diag(1,R′R) � diag(1, In−1) � In ,

so thatS is orthogonal and hence (according to Lemma 8.4.1)P is orthogonal.
Further,

P′AP � S′(u,V)′A(u,V)S�S′diag(λ,V′AV)S

� diag(λ,R′V′AVR)�diag(λ,F),
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so that P′AP equals a diagonal matrix. Thus,A is orthogonally diagonaliz-
able. Q.E.D.

The following corollary (of Theorem 21.5.7) can be deduced from Corollaries
21.5.4 and 21.3.7 (or from Theorem 21.5.1).

Corollary 21.5.8. LetA represent ann×n symmetric matrix that hask distinct
eigenvaluesλ1, . . . , λk with algebraic multiplicitiesγ1, . . . , γk, respectively, and
geometric multiplicitiesν1, . . . , νk, respectively. Then,

∑k
i�1 γi �

∑k
i�1 νi � n,

and (fori � 1, . . . , k) νi � γi .
As a further corollary of Theorem 21.5.7, we have the following result.
Corollary 21.5.9. LetA represent ann×n symmetric matrix, and letd1, . . . , dn

represent the (not necessarily distinct) eigenvalues ofA (in arbitrary order). Then,
there exists ann× n orthogonal matrixQ such that

Q′AQ � diag(d1, . . . , dn) .

Proof. According to Theorem 21.5.7, there exists ann×n orthogonal matrixR
such thatR′AR � F for some diagonal matrixF � {fi}. It follows from Part (7) of
Theorem 21.5.1 that there exists some permutationk1, . . . , kn of the firstn positive
integers 1, . . . , n such that (fori � 1, . . . , n) di � fki . Now, letQ � RP, where
P is then× n permutation matrix whose first,. . . , nth columns are, respectively,
thek1, . . . , knth columns ofIn. Then, since a permutation matrix is orthogonal,Q
is (in light of Lemma 8.4.1) orthogonal. Further,

Q′AQ � P′R′ARP � P′FP � diag(d1, . . . , dn) .
Q.E.D.

Let A represent ann×n symmetric matrix. Then, according to Theorem 21.5.7,
there exists an orthogonal matrix that diagonalizesA. There also exist nonorthog-
onal matrices that diagonalizeA. If A hasn distinct eigenvalues, then it follows
from Theorem 21.4.5 that the columns of any diagonalizing matrix are orthogonal
[since, according to Part (8) of Theorem 21.5.1, they are necessarily eigenvectors].
However, the norms of these columns need not equal one. More generally, ifλ is
an eigenvalue ofA of multiplicity ν, then we can include as columns of the di-
agonalizing matrix anyν linearly independent eigenvectors that correspond toλ.
We need not choose theseν linearly independent eigenvectors to be orthonormal
or even (ifν > 1) orthogonal.

The (usual) norm of a symmetric matrix can be expressed in terms of its eigen-
values, as described in the following theorem.

Theorem 21.5.10. For anyn× n symmetric matrixA,

‖A‖ �
(

n∑
i�1

d2
i

)1/2

,

whered1, . . . , dn are the (not necessarily distinct) eigenvalues ofA (and where the
norm is the usual norm).

Proof. According to Corollary 21.5.9, there exists ann×n orthogonal matrixQ
such thatQ′AQ � D, whereD � diag(d1, . . . , dn). Thus, making use of Lemma
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5.2.1, we find that

‖A‖2 � tr(A′A) � tr(AA)

� tr(AInAIn)

� tr(AQQ′AQQ′)
� tr(Q′AQQ′AQ)

� tr(D2) � tr[diag(d2
1, . . . , d

2
n)] �

n∑
i�1

d2
i .

Q.E.D.

e. Orthogonal “triangularization”

Let A represent ann × n matrix. If A is nonsymmetric, then there does not exist
anyn×n orthogonal matrix that diagonalizesA. However, there may exist ann×n
orthogonal matrix that “triangularizes”A, as indicated by the following theorem.

Theorem 21.5.11. Let A represent ann× n matrix whose distinct eigenvalues
have algebraic multiplicities that sum ton, and letd1, . . . , dn represent the not-
necessarily-distinct eigenvalues ofA (in arbitrary order). Then there exists ann×n
orthogonal matrixQ such that

Q′AQ � T ,

whereT is an (n×n) upper triangular matrix whose first,. . . , nth diagonal elements
ared1, . . . , dn, respectively.

Proof. The proof is by mathematical induction. Clearly, the theorem is valid for
any 1× 1 matrix. Suppose now that it is valid for any (n − 1)× (n − 1) matrix
whose distinct eigenvalues have algebraic multiplicities that sum ton− 1 (where
n ≥ 2), and consider the validity of the theorem for ann × n matrix A whose
algebraic multiplicities sum ton and whose (not necessarily distinct) eigenvalues
ared1, . . . dn.

Let u represent an eigenvector (ofA) of (usual) norm 1 that corresponds tod1.
Then, according to Corollary 21.3.3,

(u,V)′A(u,V) �
(
d1 u′AV
0 V′AV

)

for somen × (n − 1) matrix V such that then × n matrix (u,V) is orthogonal.
Moreover, it follows from Theorem 21.3.1 and Lemma 21.2.1 that the algebraic
multiplicities of the distinct eigenvalues of the (n − 1)× (n − 1) matrix V′AV
sum ton − 1 and that the (not necessarily distinct) eigenvalues ofV′AV are
d2, . . . , dn. Thus, by supposition, there exists an orthogonal matrixR such that
R′(V′AV)R � T∗, whereT∗ is an (n−1)× (n−1) upper triangular matrix whose
first, . . . , (n− 1)th diagonal elements ared2, . . . , dn, respectively.

Now, defineS � diag(1,R) andQ � (u,V)S. Then,

S′S � diag(1,R′R) � diag(1, In−1) � In ,
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so thatS is orthogonal and hence (according to Lemma 8.4.1)Q is orthogonal.
Further,

Q′AQ � S′(u,V)′A(u,V)S �
(

1 0
0 R′

)(
d1 u′AV
0 V′AV

)(
1 0
0 R

)

�
(
d1 u′AVR
0 R′V′AVR

)
�
(
d1 u′AVR
0 T∗

)
.

And, upon observing that

(
d1 u′AVR
0 T∗

)
is an (n × n) upper triangular matrix

whose first,. . . , nth diagonal elements ared1, . . . , dn, respectively, the induction
argument is complete. Q.E.D.

Let A represent ann × n matrix. If there exists an orthogonal matrixQ such
thatQ′AQ � T for some upper triangular matrixT, then the diagonal elements
of T are the not-necessarily-distinct eigenvalues ofA, as is evident from Part (4)
of Corollary 21.2.2 and Part (7) of Theorem 21.3.1. Theorem 21.5.11 indicates
that a sufficient (as well as necessary) condition for the existence of such an
orthogonal matrixQ is that the algebraic multiplicities of the not-necessarily-
distinct eigenvalues ofA sum ton and also indicates that (when this condition is
satisfied)Q can be chosen so that the order in which the eigenvalues (ofA) appear
as diagonal elements of the triangular matrixT is arbitrary.

Note (in light of Corollary 21.5.8) that Theorem 21.5.11 is applicable to any
symmetric matrix. In the special case where the matrixA in Theorem 21.5.11 is
symmetric, the triangular matrixT is a diagonal matrix (since ifA is symmetric,
Q′AQ is symmetric and henceT is symmetric). Thus, in this special case, Theorem
21.5.11 simplifies to Corollary 21.5.9.

f. Spectral decomposition (of a symmetric matrix)

LetA represent ann×n symmetric matrix. And letQ represent ann×n orthogonal
matrix andD � {di}ann×ndiagonal matrix such thatQ′AQ � D — the existence
of such matrices is guaranteed by Theorem 21.5.7. Or, equivalently, letQ represent
ann × n matrix whose columns are orthonormal (with respect to the usual inner
product) eigenvectors ofA, and takeD � {di} to be the diagonal matrix whose
first, . . . , nth diagonal elementsd1, . . . , dn are the eigenvalues (ofA) to which
the first, . . . , nth columns ofQ correspond — the equivalence is evident from
Theorems 21.5.1 and 21.5.2. Further, denote the first,. . . , nth columns ofQ by
q1, . . . ,qn, respectively.

In light of result (5.1),A can be expressed as

A � QDQ′ (5.3)

or as

A �
n∑
i�1

diqiq
′
i . (5.4)
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And, lettingλ1, . . . , λk represent the distinct eigenvalues ofA, letting ν1, . . . νk
represent the (algebraic or geometric) multiplicities ofλ1, . . . , λk, respectively,
and (forj � 1, . . . , k) letting Sj � {i : di � λj } represent the set comprising
theνj values ofi such thatdi � λj , A can also be expressed as

A �
k∑
j�1

λjEj , (5.5)

where (forj � 1, . . . , k) Ej �
∑

i∈Sj qiq
′
i .

Expression (5.5) is called thespectral decomposition or spectral representation
of then× n symmetric matrixA. [Sometimes the term spectral decomposition is
used also in reference to expression (5.3) or (5.4).]

The decompositionA �∑k
j�1 λjEj is unique (aside from the ordering of the

terms), whereas (in general) the decompositionA � ∑n
i�1 diqiq

′
i is not. To see

this (i.e., the uniqueness of the decompositionA �∑k
j�1 λjEj ), suppose thatP

is ann× n orthogonal matrix andD∗ � {d∗i } ann× n diagonal matrix such that
P′AP � D∗ (whereP andD∗ are possibly different fromQ andD). Further, denote
the first,. . . , nth columns ofP by p1, . . . ,pn, respectively, and (forj � 1, . . . , k)
let S∗j � {i : d∗i � λj }. Then, analogous to the decompositionA �∑k

j�1 λjEj ,
we have the decomposition

A �
k∑
j�1

λjFj ,

where (forj � 1, . . . , k) Fj �
∑

i∈S∗j pjp
′
j .

Now, for j � 1, . . . , k, let Qj � (qi1, . . . ,qiνj ) and Pj � (pi∗1 , . . . ,pi∗νj
),

wherei1, . . . , iνj andi∗1, . . . , i
∗
νj

are the elements ofSj andS∗j , respectively. Then,
C(Pj ) � N (A − λj I) � C(Qj ), so thatPj � QjLj for someνj × νj matrix Lj .
Moreover, since clearlyQ′

jQj � Iνj andP′jPj � Iνj ,

L′
jLj � L′

jQ
′
jQjLj � P′jPj � I ,

implying thatLj is an orthogonal matrix. Thus,

Fj � PjP′j � QjLjL′
jQ

′
j � Qj IQ′

j � QjQ
′
j � Ej .

We conclude that the decompositionA � ∑k
j�1 λjFj is identical to the decom-

positionA � ∑k
j�1 λjEj , and hence that the decompositionA � ∑k

j�1 λjEj is
unique (aside from the ordering of terms).

The spectral decomposition of themth power Am of the n × n symmetric
matrix A (wherem is a positive integer) and (ifA is nonsingular) the spec-
tral decomposition ofA−1 are closely related to the spectral decomposition of
A itself. It follows from Lemma 21.1.3 thatq1, . . . ,qn are eigenvectors ofAm

and (if A is nonsingular) ofA−1 (as well as ofA) and that the eigenvalues to
which they correspond aredm1 , . . . , d

m
n (in the case ofAm) and d−1

1 , . . . , d−1
n
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(in the case ofA−1). Thus, the spectral decompositions ofAm andA−1 can be
obtained from that ofA by replacing each eigenvalue ofA by its mth power
or by its reciprocal. More explicitly, observing thatDm � diag(dm1 , . . . , d

m
n )

and D−1 � diag(d−1
1 , . . . , d−1

n ), the spectral decompositions ofAm and A−1

are

Am � QDmQ′ �
n∑
i�1

dmi qiq
′
i �

k∑
j�1

λmj Ej , (5.6)

A−1 � QD−1Q′ �
n∑
i�1

d−1
i qiq

′
i �

k∑
j�1

λ−1
j Ej . (5.7)

21.6 Expressions for the Trace and Determinant of a
Matrix

Theorem 21.5.1 gives various results onn× n diagonalizable matrices or, equiva-
lently (in light of Corollary 21.5.4), onn× nmatrices whose distinct eigenvalues
have geometric multiplicities that sum ton. Included among these results are ex-
pressions for the determinant and the trace of such a matrix. These expressions
[which are Parts (2) and (3) of Theorem 21.5.1] are in terms of the eigenvalues.
They can be extended to a broader class of matrices, as indicated by the following
theorem.

Theorem 21.6.1. Let A represent ann × n matrix having distinct eigenvalues
λ1, . . . λk with algebraic multiplicitiesγ1, . . . , γk, respectively, that sum ton or,
equivalently, havingn not-necessarily-distinct eigenvaluesd1, . . . , dn. Then,

det(A) �
n∏
i�1

di �
k∏
j�1

λ
γj
j , (6.1)

tr(A) �
n∑
i�1

di �
k∑
j�1

γjλj . (6.2)

Proof. As a consequence of Theorem 21.5.11, there exists ann× n orthogonal
matrix Q such thatQ′AQ � T, whereT is an (n × n) upper triangular matrix
whose diagonal elements ared1, . . . , dn, respectively. Then, recalling Corollary
13.3.6, result (13.3.9), and Lemmas 13.2.1 and 13.1.1, we find that

|A| � |Q|2|A| � |Q′AQ| � |T| �
n∏
i�1

di .

And, recalling Lemma 5.2.1, we find that

tr(A) � tr(AIn) � tr(AQQ′) � tr(Q′AQ) � tr(T) �
n∑
i�1

di .

Q.E.D.
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There is an alternative way of proving Theorem 21.6.1. Again takeQ to be an
n × n orthogonal matrix such thatQ′AQ � T, whereT is a triangular matrix
whose diagonal elements ared1, . . . , dn. And, recall (from Section 1) that the
characteristic polynomial ofA is

p(λ) � c0 + c1λ+ · · · + cn−1λ
n−1 + cnλn ,

with first and next-to-last coefficients that are expressible as

c0 � |A| , cn−1 � (−1)n−1tr(A) . (6.1)

Clearly,T is similar toA and hence (according to Theorem 21.3.1) has the same
characteristic polynomial asA. Thus, recalling Lemma 13.1.1, we find that

c0 � |T| �
n∏
i�1

di, cn−1 � (−1)n−1tr(T) � (−1)n−1
n∑
i�1

di .

And, upon comparing these expressions forc0 andcn−1 with those in result (6.1),
we conclude that|A| �∏n

i�1 di and that tr(A) �∑n
i�1 di .

21.7 Some Results on the Moore-Penrose Inverse of a
Symmetric Matrix

The following lemma relates the eigenvalues and eigenvectors of the Moore-
Penrose inverse of ann× n symmetric matrixA to those ofA itself.

Lemma 21.7.1. Letλ represent an eigenvalue of ann× n symmetric matrixA,
and letx represent any eigenvector (ofA) corresponding toλ. Further, define

λ+ �
{

1/λ, if λ �� 0,
0, if λ � 0.

Thenλ+ is an eigenvalue ofA+, andx is an eigenvector ofA+ corresponding to
λ+.

Proof. By definition,Ax � λx. If λ �� 0, thenx � λ−1Ax, and, upon observing
(in light of Theorem 20.5.3) thatA+ is symmetric and hence thatA+A � (A+A)′ �
A′(A+)′ � AA+, we find that

A+x � A+(λ−1Ax) � λ−1A+Ax � λ−1AA+x

� λ−1AA+(λ−1Ax)

� (λ−1)2AA+Ax

� (λ−1)2Ax � λ−1(λ−1Ax) � λ−1x .

Alternatively, if λ � 0, thenAx � 0, and hence [since, according to Theorem
20.5.1,N (A+) � N (A)] A+x � 0 � 0x. Q.E.D.
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LetA represent ann×n symmetric matrix. And, as in Section 5f, letQ represent
an n × n orthogonal matrix andD � {di} an n × n diagonal matrix such that
Q′AQ � D; or, equivalently, letQ represent ann× n matrix whose columns are
orthonormal eigenvectors ofA, and takeD � {di} to be the diagonal matrix whose
first, . . . , nth diagonal elementsd1, . . . , dn are the eigenvalues (ofA) to which the
first, . . . , nth columns ofQ correspond. Further, denote the first,. . . , nth columns
of Q by q1, . . . ,qn, respectively; letλ1, . . . , λk represent the distinct eigenvalues
of A; and (forj � 1, . . . , k) let Ej �

∑
i∈Sj qjq

′
j , whereSj � {i : di � λj }.

Then, by definition, the spectral decomposition ofA is

A � QDQ′ �
n∑
i�1

diqiq
′
i �

k∑
j�1

λjEj .

The spectral decomposition of the Moore-Penrose inverseA+ of the n × n

symmetric matrixA is closely related to that ofA itself. Letting

d+i �
{

1/di, if di �� 0,
0, if di � 0

(for i � 1, . . . , n), it follows from Lemma 21.7.1 thatq1, . . . ,qn are eigenvectors
of A+ and that the eigenvalues to which they correspond ared+1 , . . . , d

+
n . Thus,

the spectral decomposition ofA+ can be obtained from that ofA by replacing
each nonzero eigenvalue ofA by its reciprocal. More explicitly, observing (in
light of the results of Section 20.2) thatD+ � diag(d+1 , . . . , d

+
n ) and letting (for

j � 1, . . . , k)

λ+j �
{

1/λj , if λj �� 0,
0, if λj � 0,

the spectral decomposition ofA+ is

A+ � QD+Q′ �
n∑
i�1

d+i qiq
′
i �

k∑
j�1

λ+j Ej . (7.1)

21.8 Eigenvalues of Orthogonal, Idempotent, and
Nonnegative Definite Matrices

The following two theorems characterize the eigenvalues of orthogonal matrices
and idempotent matrices.

Theorem 21.8.1. If a scalar (real number)λ is an eigenvalue of ann × n or-
thogonal matrixP, thenλ � ±1.

Proof. Suppose thatλ is an eigenvalue ofP. Then, by definition, there exists a
nonnull vectorx such thatPx � λx, and, consequently,

x′x � x′Inx � x′P′Px � (Px)′Px � (λx)′(λx) � λ2x′x . (8.1)
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Sincex �� 0, we have thatx′x �� 0, and, upon dividing both sides of equality (8.1)
by x′x, we find thatλ2 � 1 or, equivalently, thatλ � ±1. Q.E.D.

Theorem 21.8.2. An n×n idempotent matrixA has no eigenvalues other than 0
or 1. Moreover, 0 is an eigenvalue ofA if and only if A �� In, in which case it has a
geometric and algebraic multiplicity ofn−rank(A). Similarly, 1 is an eigenvalue of
A if and only if A �� 0, in which case it has a geometric and algebraic multiplicity
of rank(A). And, the geometric and algebraic multiplicities of the (one or two)
distinct eigenvalues ofA sum ton.

Proof. Suppose that a scalarλ is an eigenvalue ofA. Then, by definition, there
exists a nonnull vectorx such thatAx � λx, and, consequently,

λx � Ax � A2x � A(Ax) � A(λx) � λAx � λ2x .

Sincex �� 0, it follows thatλ2 � λ, or, equivalently, thatλ(λ− 1)� 0, and hence
thatλ � 0 orλ � 1.

Moreover, ifA � In, then (in light of Lemma 21.1.1) 0 is not an eigenvalue of
A. Alternatively, ifA �� In, then (according to Lemma 10.1.1)A is singular, and it
follows from Lemma 21.1.1 that 0 is an eigenvalue ofA of geometric multiplicity
n− rank(A).

Similarly, if A � 0, then there exists no nonnull vectorx such thatAx= x, and,
consequently, 1 is not an eigenvalue ofA. Alternatively, ifA �� 0, then (in light of
Lemma 10.2.4)

rank(A− 1I) � rank[−(I− A)] � rank(I− A) � n− rank(A) < n ,

implying that 1 is an eigenvalue ofA and that its geometric multiplicity is
n− rank(A− 1I) � rank(A).

And if A � In orA � 0, thenA has one distinct eigenvalue (1 or 0) of geometric
multiplicity n; otherwise,A has two distinct eigenvalues (0 and 1) with geometric
multiplicities [n− rank(A) and rank(A)] that sum ton. It remains only to observe
(on the basis of Corollary 21.3.7) that the algebraic multiplicities of the distinct
eigenvalues ofA equal the geometric multiplicities. Q.E.D.

Idempotent matrices of ordern have a maximum of two distinct eigenvalues,
and the geometric multiplicities of their distinct eigenvalues sum ton. Orthogonal
matrices of ordern also have a maximum of two distinct eigenvalues; however,
the geometric (or algebraic) multiplicities of their distinct eigenvalues do not nec-
essarily sum ton. In fact, for any positive integern that is divisible by 2, there
existn×n orthogonal matrices that have no eigenvalues (i.e., whose characteristic
polynomials have no real roots).

In the special case of ann× n symmetric matrix or othern× n diagonalizable
matrix, the first part of Theorem 21.8.2 can be equipped with a converse and
restated as the following theorem.

Theorem 21.8.3. An n × n symmetric matrixA or, more generally, ann × n

diagonalizable matrixA is idempotent if and only if it has no eigenvalues other
than 0 or 1.

Proof. It suffices to prove the “if” part of the theorem — the “only if” part is a
direct consequence of the first part of Theorem 21.8.2.
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Suppose thatA has no eigenvalues other than 0 or 1. By definition, there exists
ann × n nonsingular matrixQ such thatQ−1AQ � D for somen × n diagonal
matrixD. And, according to Part (7) of Theorem 21.5.1, the diagonal elements of
D are the (not necessarily distinct) eigenvalues ofA. Thus, every diagonal element
of D equals 0 or 1, implying thatD2 � D. Further,A � QQ−1AQQ−1 � QDQ−1,
and it follows that

A2 � QDQ−1QDQ−1 � QD2Q−1 � QDQ−1 � A .

Q.E.D.
The following theorem characterizes the eigenvalues of nonnegative definite

matrices and positive definite matrices.
Theorem 21.8.4. Every eigenvalue of a nonnegative definite matrix is nonneg-

ative; every eigenvalue of a positive definite matrix is positive.
Proof. Letλ represent an eigenvalue of a (square) matrixA, and letx represent an

eigenvector ofA corresponding toλ. Then, by definition,x �� 0, and, consequently,
x′x > 0. Further,

λ � x′Ax
x′x

(as discussed in Section 1 and as is evident upon observing thatAx � λx and
hence thatx′Ax � λx′x).

Now, if A is nonnegative definite, thenx′Ax ≥ 0, and consequentlyλ ≥ 0. And,
if A is positive definite, thenx′Ax > 0, and consequentlyλ > 0. Q.E.D.

The following theorem gives conditions that can be used to determine whether a
symmetric matrix is nonnegative definite and, if so, whether the matrix is positive
definite or positive semidefinite.

Theorem 21.8.5. An n × n symmetric matrixA is nonnegative definite if and
only if every eigenvalue ofA is nonnegative, is positive definite if and only if
every eigenvalue ofA is (strictly) positive, and is positive semidefinite if and only
if every eigenvalue ofA is nonnegative and at least one eigenvalue is zero.

Proof. The theorem follows immediately from Corollary 14.2.15 upon recalling
(from Section 5) thatA � QDQ′, whereQ is ann× n orthogonal matrix andD is
ann×n diagonal matrix whose diagonal elements are the (not necessarily distinct)
eigenvalues ofA. Q.E.D.

21.9 Square Root of a Symmetric Nonnegative Definite
Matrix

A symmetric nonnegative definite matrix can be decomposed in the way described
in the following theorem.

Theorem 21.9.1. Corresponding to anyn × n symmetric nonnegative definite
matrixA, there exists ann× n symmetric nonnegative definite matrixR such that
A � R2. Moreover,R is unique and is expressible as

R � Q diag(
√
d1, . . . ,

√
dn)Q′, (9.1)
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whered1, . . . , dn are the (not necessarily distinct) eigenvalues ofA and, letting
D � diag(d1, . . . , dn), Q is anyn× n orthogonal matrix such thatQ′AQ � D or,
equivalently, such thatA � QDQ′.

Note that in Theorem 21.9.1 it is implicitly assumed that the eigenvalues of
A are nonnegative and that there exists ann × n orthogonal matrixQ such that
Q′AQ � D. The justification for these assumptions comes from Theorem 21.8.5
and Corollary 21.5.9.

Proof. Let S � diag(
√
d1, . . . ,

√
dn), so thatQ diag(

√
d1, . . . ,

√
dn)Q′ �

QSQ′. Then,

(QSQ′)2 � QSInSQ′ � QS2Q′ � QDQ′ � A .

Moreover,QSQ′ is symmetric and nonnegative definite (as is evident from Corol-
lary 14.2.15). It remains to establish the uniqueness ofQSQ′; that is, to show that
there is non × n symmetric nonnegative definite matrix other thanQSQ′ with a
“squared value” equal toA.

Let R represent anyn × n symmetric nonnegative definite matrix such that
A � R2. Then,

(R−QSQ′)′(R−QSQ′) � (R−QSQ′)(R−QSQ′)
� R2 −QSQ′R− RQSQ′ + (QSQ′)2

� 2A−QSQ′R− (QSQ′R)′.

Thus, to establish the uniqueness ofQSQ′, it suffices to show thatQSQ′R � A
[since then (R − QSQ′)′(R − QSQ′) � 0, implying thatR − QSQ′ � 0 or,
equivalently, thatR � QSQ′].

SinceR is symmetric, there exists ann× n orthogonal matrixP and ann× n
diagonal matrixT � {ti} such thatR � PTP′. And, we find that

Q′PT2 � Q′PTInTIn
� Q′PTP′PTP′P � Q′R2P � Q′AP � Q′(QSQ′)2P

� InSInSQ′P � S2Q′P .

Now, for i, j � 1, . . . , n, let bij represent theij th element ofQ′P, and observe
that theij th elements ofQ′PT2 andS2Q′P are, respectively,t2j bij anddibij . So,
we have thatt2j bij � dibij . And, since (in light of Corollary 14.2.15)tj ≥ 0, it
follows thattj bij �

√
dibij . (If bij � 0, thentj bij � 0 � √

dibij ; alternatively,
if bij �� 0, thent2j bij � dibij ⇒ t2j � di ⇒ tj �

√
di ⇒ tj bij �

√
dibij .)

Moreover,tj bij and
√
dibij are theij th elements ofQ′PT andSQ′P, respectively.

Thus,Q′PT � SQ′P, and, consequently,

QSQ′R � QSQ′PTP′ � QSSQ′PP′ � QDQ′In � A .

Q.E.D.
Then×n symmetric nonnegative definite matrixR given by expression (9.1) is

called thesquare root of then×n symmetric nonnegative definite matrixA and is
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denoted by the symbolA1/2. Note that if the matrixA is positive definite, then (as a
consequence of Theorem 21.8.5) its eigenvaluesd1, . . . , dn are (strictly) positive,
implying (in light of Corollary 14.2.15) that the matrixR is positive definite. Thus,
the square root of a symmetric positive definite matrix is positive definite.

21.10 Some Relationships

Let A represent ann × n matrix, and letk represent an arbitrary scalar. The
eigenvalues and eigenvectors of the differenceA− kIn and of the scalar multiple
kA are related to those ofA itself in a relatively simple way.

Clearly, the conditionAx � λx (whereλ is a scalar andx a vector) is equivalent
to the condition (A−kI)x � (λ−k)x. Thus, a scalarλ is an eigenvalue ofA if and
only if λ− k is an eigenvalue ofA− kI. And ann× 1 vectorx is an eigenvector
of A corresponding to the eigenvalueλ (of A) if and only if x is an eigenvector of
A− kI corresponding to the eigenvalueλ− k (of A− kI).

Moreover, for any scalarλ,

|A− λI| � |A− kI− (λ− k)I| ,

so that the characteristic polynomials, sayp(·) andq(·), of A andA− kI, respec-
tively, are such that (for allλ) p(λ) � q(λ− k). And the algebraic and geometric
multiplicities of an eigenvalueλ of A are the same as those of the corresponding
eigenvalueλ− k of A− λI.

If k � 0, thenkA has only one distinct eigenvalue (namely, 0), any nonnulln×1
vector is an eigenvector ofkA, the characteristic polynomial ofkA isr(λ) � (−λ)n,
and the algebraic and geometric multiplicities of the eigenvalue 0 (ofkA) equaln.

Suppose now thatk �� 0. Then the conditionAx � λx (whereλ is a scalar
andx a vector) is equivalent to the conditionkAx � kλx. Thus, a scalarλ is an
eigenvalue ofA if and only if kλ is an eigenvalue ofkA. And, ann × 1 vectorx
is an eigenvector ofA corresponding to the eigenvalueλ (of A) if and only if x is
an eigenvector ofkA corresponding to the eigenvaluekλ (of kA).

Moreover, for any scalarλ,

|A− λI| � k−n|kA− kλI| ,

so that the characteristic polynomials, sayp(·) andr(·) of A andkA, respectively,
are such that (for allλ) p(λ) � k−nq(kλ). And the algebraic and geometric mul-
tiplicities of an eigenvalueλ of A are the same as those of the corresponding
eigenvaluekλ of kA.

The following theorem relates the eigenvalues and eigenvectors of then × n

productBA of ann×m matrix B and anm× n matrix A to those of them×m
productAB.

Theorem 21.10.1. Let A represent anm × n matrix andB ann × m matrix.
Then,
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(1) the characteristic polynomials, sayq(λ) andp(λ) of BA andAB, respectively,
are such that (for allλ) q(λ) � (−λ)n−mp(λ), (−λ)m−nq(λ) � p(λ), orq(λ) �
p(λ), depending on whetherm < n,m > n, orm � n;

(2) the nonzero distinct eigenvalues and nonzero not-necessarily-distinct eigen-
values ofBA are the same as those ofAB;

(3) for any matrixX whose columns are linearly independent eigenvectors ofAB
corresponding to a nonzero eigenvalueλ, the columns ofBX are linearly inde-
pendent eigenvectors ofBA corresponding toλ; and, similarly, for any matrix
Y whose columns are linearly independent eigenvectors ofBA correspond-
ing to a nonzero eigenvalueλ, the columns ofAY are linearly independent
eigenvectors ofAB corresponding toλ;

(4) each nonzero eigenvalue ofAB (or, equivalently, ofBA) has the same algebraic
and geometric multiplicities when regarded as an eigenvalue ofBA as when
regarded as an eigenvalue ofAB; and

(5) the algebraic multiplicity of 0 when 0 is regarded as an eigenvalue (or potential
eigenvalue) ofBA equalsn−m plus the algebraic multiplicity of 0 when 0 is
regarded as an eigenvalue (or potential eigenvalue) ofAB.

Proof. (1) Making use of Corollaries 13.2.4 and 18.1.2, we find that, forλ �� 0,

p(λ) � |AB− λIm| � (−λ)m|Im − λ−1AB|

and

q(λ) � |BA− λIn| � (−λ)n|In − λ−1BA| � (−λ)n|Im − λ−1AB| .

Thus, forλ �� 0, q(λ) � (−λ)n−mp(λ), (−λ)m−nq(λ) � p(λ), and, in the special
case wherem � n, q(λ) � p(λ). And the proof of Part (1) is complete upon
observing that if two polynomials inλ are equal for allλ in some nondegenerate
interval, then they are equal for allλ— refer to Theorem 21.A.5 (in the Appendix)
or, alternatively, upon observing that ifm < n, thenBA is singular and hence
q(0) � 0; that ifm > n, thenAB is singular and hencep(0) � 0; and that if
m � n, thenq(0)� |BA| � |A| |B| � |AB| � p(0).

(2) Part (2) is an almost immediate consequence of Part (1).
(3) By definition,

ABX � λX .

Thus,

rank(X) ≥ rank(BX) ≥ rank(ABX) � rank(λX) � rank(X) ,

so that rank(BX) � rank(X) and consequently (sinceBX has the same number of
columns asX) the columns ofBX are linearly independent. Moreover,

BA(BX) � B(ABX) � B(λX) � λBX ,
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implying (since the columns ofBX are linearly independent and hence nonnull)
that the columns ofBX are eigenvectors ofBA corresponding toλ.

That the columns ofAY are linearly independent eigenvectors ofAB corre-
sponding toλ follows from an analogous argument.

(4) It follows from Part (3) that, for each nonzero eigenvalueλ of AB (or,
equivalently, ofBA), dim[N (BA− λI)] ≥ dim[N (AB− λI)] and dim[N (AB−
λI)] ≥ dim[N (BA−λI)] and hence dim[N (BA−λI)] � dim[N (AB−λI)]. Thus,
λ has the same geometric multiplicity when regarded as an eigenvalue ofBA as
when regarded as an eigenvalue ofAB. Thatλ has the same algebraic multiplicity
when regarded as an eigenvalue ofBA as when regarded as an eigenvalue ofAB
is evident from Part (1).

(5) Part (5) is an almost immediate consequence of Part (1). Q.E.D.
In the special case whereB � A′, the results of Theorem 21.10.1 can be aug-

mented by the following result.
Lemma 21.10.2. For anym× nmatrixA, the geometric multiplicity of 0 when

0 is regarded as an eigenvalue (or potential eigenvalue) ofA′A equalsn−m plus
the geometric multiplicity of 0 when 0 is regarded as an eigenvalue (or potential
eigenvalue) ofAA′.

Proof. Making use of result (1.1) (or Lemma 11.3.1) and of Corollary 7.4.5, we
find that

dim[N (A′A− 0In)] � n− rank(A′A) � n− rank(A)

and that

dim[N (AA′ − 0Im)] � m− rank(AA′) � m− rank(A) .

Thus,
dim[N (A′A− 0In)] � n−m+ dim[N (AA′ − 0Im)] .

Q.E.D.

21.11 Eigenvalues and Eigenvectors of Kronecker
Products of (Square) Matrices

Eigenvalues and eigenvectors of a Kronecker productA⊗B of two square matrices
A andB can be obtained by combining eigenvalues and eigenvectors ofA with
eigenvalues and eigenvectors ofB in the way described in the following theorem.

Theorem 21.11.1. Let λ represent an eigenvalue of anm × m matrix A, and
let x represent an eigenvector ofA corresponding toλ. Similarly, letτ represent
an eigenvalue of ap × p matrix B, and lety represent an eigenvector ofB corre-
sponding toτ . Then,λτ is an eigenvalue ofA⊗B, andx⊗ y is an eigenvector of
A⊗ B corresponding toλτ .

Proof. By definition,Ax � λx, andBy � τy. Thus,

(A⊗ B)(x⊗ y) � (Ax)⊗ (By) � (λx)⊗ (τy) � λτ (x⊗ y) .

Moreover,x⊗ y is clearly nonnull. Q.E.D.
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In connection with Theorem 21.11.1, it should be noted thatA ⊗ B may have
eigenvectors that are not expressible as the Kronecker productx⊗ y of an eigen-
vectorx of A and an eigenvectory of B. Following Magnus and Neudecker (1988,

p. 29), suppose, for example, thatB � A �
(

0 1
0 0

)
, and lete1 �

(
1
0

)
and

e2 �
(

0
1

)
. Then,A (or B) has only one distinct eigenvalue, namely 0; and every

eigenvector ofA (or of B) is a scalar multiple ofe1. And, in accordance with
Theorem 21.11.1, 0 is an eigenvalue ofA ⊗ B, ande1 ⊗ e1 is an eigenvector of
A⊗ B corresponding to 0. However,e1 ⊗ e2 ande2 ⊗ e1 are also eigenvectors of
A⊗ B corresponding to 0 (as is easily verified).

The following theorem gives some basic results on the similarity of two
Kronecker products.

Theorem 21.11.2. Let R represent anm×mmatrix that is similar to anm×m
matrixA. Similarly, letS represent ap×pmatrix that is similar to ap×pmatrix
B. Then,R⊗S is similar toA⊗B. And, for anym×m nonsingular matrixC such
thatR � C−1AC and for anyp × p nonsingular matrixT such thatS � T−1BT,

R⊗ S � (C⊗ T)−1(A⊗ B)(C⊗ T) .

Proof. SinceR is similar toA andS similar toB, there exist nonsingular matrices
C andT such thatR � C−1AC andS � T−1BT. Moreover, recalling formula
(16.1.23) (and that the Kronecker product of nonsingular matrices is nonsingular),
we find that, for any such nonsingular matricesC andT, C⊗T is nonsingular, and

R⊗ S � (C−1 ⊗ T−1)(A⊗ B)(C⊗ T) � (C⊗ T)−1(A⊗ B)(C⊗ T) .
Q.E.D.

Upon recalling that (by definition) a (square) matrixA is diagonalizable if and
only if there exists a diagonal matrix that is similar toA and that the Kronecker
product of diagonal matrices is diagonal and observing [in light of results (16.1.15)
and (16.1.23)] that a Kronecker product of orthogonal matrices is orthogonal, we
obtain the following corollary.

Corollary 21.11.3. Let A represent anm×m matrix andB ap × p matrix. If
bothA andB are diagonalizable, thenA⊗B is diagonalizable; if bothA andB are
orthogonally diagonalizable, thenA⊗B is orthogonally diagonalizable. And, ifA
is diagonalized by anm×m nonsingular matrixP andB by ap × p nonsingular
matrixQ, thenA⊗B is diagonalized by the (nonsingular) matrixP⊗Q. Moreover,
if P andQ are orthogonal, thenP⊗Q is also orthogonal.

The following theorem gives a result on the not-necessarily-distinct eigenvalues
of a Kronecker product of two (square) matrices.

Theorem 21.11.4. Let A represent anm × m matrix andB a p × p matrix.
Suppose thatA hasm (not necessarily distinct) eigenvalues, sayd1, . . . , dm, the
last s of which equal 0. And, letf1, . . . , fk represent the (not necessarily dis-
tinct) eigenvalues ofB (where possiblyk < p). Then,A ⊗ B has (m − s)k + sp
(not necessarily distinct) eigenvalues:d1f1, . . . , d1fk, . . . , dm−sf1, . . . , dm−sfk,
0, . . . ,0.
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Proof. As a consequence of Theorem 21.5.11, there exists anm×m orthogonal
matrixQ such thatQ′AQ � T, whereT is an upper triangular matrix with diagonal
elementsd1, . . . , dm. Further,Q⊗Ip is an orthogonal matrix (as is easily verified),
and

(Q⊗ Ip)′(A⊗ B)(Q⊗ Ip) � (Q′AQ)⊗ B � T⊗ B .

Thus,A ⊗ B is similar toT ⊗ B, and it follows from Part (7) of Theorem 21.3.1
that the (not necessarily distinct) eigenvalues ofA ⊗ B are the same as those of
T ⊗ B. And T ⊗ B is an (upper) block-triangular matrix with diagonal blocks
d1B, . . . , dmB, so that [in light of Part(4) of Lemma 21.2.1 and the results of
Section 10]T ⊗ B has (m − s)k + sp (not necessarily distinct) eigenvalues:
d1f1, . . . , d1fk, . . ., dm−sf1, . . . , dm−sfk, 0, . . . ,0. Q.E.D.

In the special case wherek � p, Theorem 21.11.4 can be restated as the fol-
lowing corollary.

Corollary 21.11.5. Let A represent anm × m matrix andB a p × p matrix.
Suppose thatA hasm (not necessarily distinct) eigenvalues, sayd1, . . . , dm, and
thatB hasp (not necessarily distinct) eigenvalues, sayf1, . . . , fp. Then,A⊗B has
mp (not necessarily distinct) eigenvalues:difj (i � 1, . . . , m; j � 1, . . . , p).

Let A represent anm×mmatrix andB ap×p matrix. According to Theorem
21.11.4 (and Corollary 21.11.5), a sufficient condition forA ⊗ B to havemp
(not necessarily distinct) eigenvalues is thatA havem (not necessarily distinct)
eigenvalues andB havep (not necessarily distinct) eigenvalues or thatA � 0.
However, this condition is not necessary.

Suppose, for example that

B � A �

 0 1 0
−1 0 0

0 0 0


 .

Then the characteristic polynomial ofA (or B) is

p(λ) � |A− λI| � −λ(λ2 + 1)

(as can be easily seen by, e.g., making use of Theorem 13.3.1). Consequently, 0
is an eigenvalue ofA and has an algebraic multiplicity of 1. Moreover,A has no
eigenvalues other than 0 — the characteristic polynomial ofA has two imaginary
roots, namely,i and−i.

By way of comparison, the characteristic polynomial ofB ⊗ A is (in light of
Theorem 13.3.1)

q(λ) � |B⊗ A− λI| �
∣∣∣∣∣∣
−λI A 0
−A −λI 0

0 0 −λI

∣∣∣∣∣∣ � (−λ)3

∣∣∣∣−λI3 A
−A −λI3

∣∣∣∣ .
And, making use of results (13.3.13) and (13.2.2), we find that (forλ �� 0)∣∣∣∣−λI3 A
−A −λI3

∣∣∣∣ � | − λI3| | − λI− (−A)(−λI)−1A|
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� (−λ)3| − λI3 − λ−1A2|
� |(−λ)(−λI− λ−1A2)|
� |λ2I+ A2|

�
∣∣∣∣∣∣
λ2 − 1 0 0

0 λ2 − 1 0
0 0 λ2

∣∣∣∣∣∣�(λ2 − 1)2λ2�λ2[(λ+ 1)(λ− 1)]2

and hence that (for allλ)

q(λ) � (−λ)3λ2[(λ+ 1)(λ− 1)]2 � (−1)9λ5(λ+ 1)2(λ− 1)2 .

So,B⊗A has three distinct eigenvalues: 0,−1, and 1, with algebraic multiplicities
of 5, 2, and 2, respectively. Thus,B⊗A has 9 (not necessarily distinct) eigenvalues,
whereas each of the matricesA andB (which are of order 3) has only one.

21.12 Singular Value Decomposition

a. Definition, existence, and some basic properties and
relationships

Let A represent ann× n symmetric nonnegative definite matrix. Then, it follows
from the results of Section 5 (and from the nonnegativity of the eigenvalues of a
nonnegative definite matrix) thatA is expressible in the form

A � Q
(

D1 0
0 0

)
Q′ , (12.1)

whereQ is ann × n orthogonal matrix and whereD1 is a diagonal matrix with
(strictly) positive diagonal elements. In fact, decomposition (12.1) is the spectral
decomposition ofA. The following theorem can be used to establish a generaliza-
tion of this decomposition that is applicable to any matrix.

Theorem 21.12.1. LetA represent anm×nmatrix of rankr. And, takeQ to be
anyn× n orthogonal matrix andD1 to be anyr × r nonsingular diagonal matrix
such that

Q′A′AQ �
(

D2
1 0

0 0

)
(12.2)

[where, whenr � 0 or r � n,

(
D2

1 0
0 0

)
equals0 or D2

1, respectively]. Further,

partitionQ asQ � (Q1,Q2), whereQ1 hasr columns, and letP � (P1,P2), where
P1 � AQ1D−1

1 and whereP2 is anym× (m− r) matrix such that

P′1P2 � 0 . (12.3)

(Whenr � 0, Q � Q2, P � P2, andP2 is arbitrary; whenr � n, Q � Q1; and
whenr � m, P � P1.) Then,

P′AQ �
(

D1 0
0 0

)
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[where, whenr � 0, r � m, r � n, or r � m � n,

(
D1 0
0 0

)
equals0, (D1, 0),(

D1

0

)
, or D1, respectively].

Proof. Since

Q′A′AQ �
(

Q′
1A′AQ1 Q′

1A′AQ2

Q′
2A′AQ1 Q′

2A′AQ2

)
,

we have thatQ′
1A′AQ1 � D2

1. Further, (AQ2)′AQ2 � Q′
2A′AQ2 � 0, implying (in

light of Corollary 5.3.2) thatAQ2 � 0. Thus, upon observing thatP′1 � D−1
1 Q′

1A′

and thatAQ1 � P1D1, we find that

P′AQ �
(

P′1AQ1 P′1AQ2

P′2AQ1 P′2AQ2

)
�

(
D−1

1 Q′
1A′AQ1 P′10

P′2P1D1 P′20

)

�
(

D−1
1 D2

1 0
(P′1P2)′D1 0

)
�
(

D1 0
0 0

)
.

Q.E.D.
There exist anr×r diagonal matrixD1 with (strictly) positive diagonal elements

and ann×n orthogonal matrixQ that satisfy condition (12.2) of Theorem 21.12.1,
and there exists anm× (m− r) matrix P2 that not only satisfies condition (12.3)
but is such thatP is orthogonal. To see this, takeD1 � diag(s1, . . . , sr ), where
s1, . . . , sr are the positive square roots of ther nonzero (and hence positive) not-
necessarily-distinct eigenvalues ofA′A. [SinceA′A is symmetric and (in light of
Corollary 14.2.14) nonnegative definite and since rank(A′A) � rank(A) � r, it
follows from Corollaries 21.3.8 and 21.5.8 thatA′A hasr nonzero not-necessarily-
distinct eigenvalues and from Theorem 21.8.5 that those eigenvalues are positive.]
Now, choose then×n orthogonal matrixQ to satisfy condition (12.2) — that this
is possible is evident from Corollary 21.5.9.

Further, observe (as in the proof of Theorem 21.12.1) thatQ′
1A′AQ1 � D2

1 and
hence that

P′1P1 � D−1
1 Q′

1A′AQ1D−1
1 � D−1

1 D2
1D−1

1 � Ir .

And, observing (in light of Lemma 11.3.1) that

dim[N (P′1)] � m− rank(P′1) � m− rank(P′1P1) � m− r,
takeP2 to be anym× (m− r) matrix whose columns form an orthonormal basis
for N (P′1). Then,

P′P �
(

P′1P1 P′1P2

P′2P1 P′2P2

)
�
(

Ir 0
0 Im−r

)
� Im .

In light of this discussion, we have the following corollary of Theorem 21.12.1.
Corollary 21.12.2. Corresponding to anym× nmatrixA of rankr, there exist

anm×m orthogonal matrixP and ann× n orthogonal matrixQ such that

P′AQ �
(

D1 0
0 0

)
,
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whereD1 is anr × r diagonal matrix with diagonal elements that are (strictly)
positive.

Let A represent anm × n matrix. And, letP represent anm × m orthogonal
matrix, Q ann × n orthogonal matrix, andD1 � {si} an r × r diagonal matrix
with (strictly) positive diagonal elements such that

P′AQ �
(

D1 0
0 0

)

— the existence of such matrices is guaranteed by Corollary 21.12.2. Further,
partition P andQ asP � (P1,P2) andQ � (Q1,Q2), whereP1 hasr columns,
sayp1, . . . ,pr , respectively, andQ1 hasr columns, sayq1, . . . ,qr , respectively.

ThenA can be expressed as

A � P
(

D1 0
0 0

)
Q′ (12.4)

or as
A � P1D1Q′

1 (12.5)

or

A �
r∑
i�1

sipiq
′
i . (12.6)

Lettingα1, . . . , αk represent the distinct values represented amongs1, . . . , sr and
(for j � 1, . . . , k) lettingLj � {i : si � αj }, A can also be expressed as

A �
k∑
j�1

αjUj , (12.7)

where (forj � 1, . . . , k) Uj �
∑

i∈Lj piq
′
i .

Expression (12.4) is called thesingular-value decomposition of them×nmatrix
A. Sometimes the term singular-value decomposition is used also in referring to
expression (12.5), (12.6), or (12.7).

The following theorem provides some insight into the nature of the various
components of the singular-value decomposition and the extent to which those
components are unique.

Theorem 21.12.3. LetA represent anm×nmatrix. And, takeP to be anm×m
orthogonal matrix,Q ann × n orthogonal matrix, andD1 an r × r nonsingular
diagonal matrix such that

P′AQ �
(

D1 0
0 0

)
. (12.8)

Further, partitionP andQ asP � (P1,P2) andQ � (Q1,Q2), where each of the
matricesP1 andQ1 hasr columns. Then,

r � rank(A) , (12.9)
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Q′A′AQ �
(

D2
1 0

0 0

)
, (12.10)

P′AA′P �
(

D2
1 0

0 0

)
, (12.11)

P1 � AQ1D−1
1 , (12.12)

Q1 � A′P1D−1
1 . (12.13)

Proof. The veracity of result (12.9) is evident from equality (12.8) upon observ-
ing that rank(P′AQ) � rank(A). Further,

Q′A′AQ�Q′A′PP′AQ� (P′AQ)′P′AQ�
(

D1 0
0 0

)′ (D1 0
0 0

)
�
(

D2
1 0

0 0

)
,

which verifies equality (12.10). Equality (12.11) can be verified in similar fashion.

And observing thatP′AQ �
(

P′1AQ1 P′1AQ2

P′2AQ1 P′2AP2

)
[and making use of equality

(12.8)], we find that

P1 � P1D1D−1
1 � P1(P′1AQ1)D−1

1

� (P1P′1)AQ1D−1
1

� (Im − P2P′2)AQ1D−1
1

� AQ1D−1
1 − P2(P′2AQ1)D−1

1

� AQ1D−1
1 − P20D−1

1 � AQ1D−1
1 .

ThatQ1 � A′P1D−1
1 can be established via an analogous argument. Q.E.D.

In light of Theorem 21.5.1, it is clear from Theorem 21.12.3 that the scalars
s1, . . . , sr , which appear in the singular-value decomposition (12.4) (as the diago-
nal elements of the diagonal matrixD1) are the positive square roots of the nonzero
(not necessarily distinct) eigenvalues ofA′A (or, equivalently, of the nonzero not-
necessarily-distinct eigenvalues ofAA′). Moreover, they are unique (i.e., they
do not vary with the choice of the orthogonal matricesP andQ that appear in
the singular-value decomposition), and they are equal in number to rank(A). The
scalarss1, . . . , sr are referred to as thesingular values of the matrixA. (In some
presentations, the positive square roots of alln orm eigenvalues ofA′A andAA′,
including those that equal 0, are regarded as singular values ofA.) The scalars
α1, . . . , αk, which appear in decomposition (12.7) and which (by definition) are
the distinct singular values ofA, are the positive square roots of the distinct nonzero
eigenvalues ofA′A (or, equivalently, of the distinct nonzero eigenvalues ofAA′).

Theorem 21.12.3 is also informative about the nature of the orthogonal matrices
P andQ, which appear in the singular-value decomposition (12.4). Them columns
of P are eigenvectors ofAA′, with the firstr columns corresponding to the nonzero
eigenvaluess2

1, . . . , s
2
r and the remainingm − r columns corresponding to the 0

eigenvalues. Similarly, then columns ofQ are eigenvectors ofA′A, with the first
r columns corresponding to the nonzero eigenvaluess2

1, . . . , s
2
r and the remaining
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n − r columns corresponding to the 0 eigenvalues. Moreover, once the firstr

columns ofQ are specified, the firstr columns ofP are uniquely determined [by
result (12.12)]. Similarly, once the firstr columns ofP are specified, the firstr
columns ofQ are uniquely determined [by result (12.13)].

For any fixed ordering of the distinct singular valuesα1, . . . , αk, decomposition
(12.7) is unique. To see this, observe [in light of result (12.12)] that (fori �
1, . . . , r) pi � s−1

i Aqi . Thus, forj � 1, . . . , k,

Uj �
∑
i∈Lj

piq
′
i �

∑
i∈Lj

s−1
i Aqiq

′
i � α−1

j AEj ,

whereEj �
∑

i∈Lj qiq
′
i . Further, since (fori ∈ Lj ) qi is an eigenvector ofA′A

corresponding to the eigenvalueα2
j , it follows from the results of Section 5f (on the

uniqueness of the spectral decomposition) thatEj does not vary with the choice
of P, Q, andD1 and hence thatUj does not vary with this choice. We conclude
that decomposition (12.7) is unique (aside from the ordering of the terms).

The (usual) norm of them × n matrix A with singular-value decomposition
(12.4) can be expressed in terms of the singular valuess1, . . . sr . Making use of
Lemma 5.2.1, we find that

‖A‖2 � tr(A′A)

� tr

[
Q
(

D1 0
0 0

)′
P′P
(

D1 0
0 0

)
Q′
]

� tr

[(
D1 0
0 0

)′
P′P
(

D1 0
0 0

)
Q′Q

]

� tr

[(
D1 0
0 0

)′
Im

(
D1 0
0 0

)
In

]
� tr

[(
D2

1 0
0 0

)]
� s2

1 + · · · + s2
r .

Thus,
‖A‖ � (s2

1 + · · · + s2
r )

1/2. (12.14)

Let us now consider the singular-value decomposition of ann × n symmetric
matrixA. Let d1, . . . , dn represent the (not necessarily distinct) eigenvalues ofA,
ordered in such a way thatd1, . . . , dr are nonzero anddr+1 � · · · � dn � 0. And let
q1, . . . ,qn represent orthonormal eigenvectors ofA corresponding tod1, . . . , dn,
respectively, and (fori � 1, . . . , n) let

6i �
{

1, if di ≥ 0,
−1, if di < 0 .

Further, defineD � diag(d1, . . . , dn), Q � (q1, . . . ,qn), and 6 �
diag(61, . . . , 6n); and takeP � Q6 to be then× n matrix whoseith columnpi
is eitherqi or−qi depending on whetherdi ≥ 0 ordi < 0.

Then,P andQ are orthogonal. AndQ′AQ � D, so that

P′AQ � 6Q′AQ�6D

� diag(61d1, . . . , 6ndn)�diag(|d1|, . . . , |dn|) �
(

D1 0
0 0

)
,
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whereD1 � diag(|d1|, . . . , |dr |). Thus, the singular values ofA are the absolute
values|d1|, . . . , |dr | of its nonzero eigenvalues. And, the singular-value decompo-
sition of A [decomposition (12.6)] is

A �
r∑
i�1

|di |piq′i �
r∑
i�1

|di |(6iqiq
′
i) .

By way of comparison, the spectral decomposition ofA [decomposition (5.4)] is

A �
n∑
i�1

diqiq
′
i �

r∑
i�1

diqiq
′
i .

Note that, in the special case where the symmetric matrixA is nonnegative definite,
d1, . . . , dr are positive, so that (fori � 1, . . . , n) 6i � 1, |di | � di , andpi � qi .
Thus, in this special case, the singular values ofA are its nonzero eigenvalues,
and the singular-value decomposition ofA is essentially the same as the spectral
decomposition ofA.

b. Singular-value decomposition of the Moore-Penrose inverse

Let A represent anm×nmatrix. And letP represent anm×m orthogonal matrix,
Q ann×n orthogonal matrix, andD1 � {si} anr×r diagonal matrix with (strictly)
positive diagonal elements such that

P′AQ �
(

D1 0
0 0

)
.

Then, by definition, the singular-value decomposition ofA is

A � P
(

D1 0
0 0

)
Q′ .

According to Theorem 20.5.6,

A+ � Q
(

D1 0
0 0

)+
P′ .

And, in light of the results of Section 20.2,(
D1 0
0 0

)+
�
(

D+
1 0

0 0

)
�
(

E1 0
0 0

)
,

whereE1 � diag(1/s1, . . . ,1/sr ). Thus,

A+ � Q
(

E1 0
0 0

)
P′ , (12.15)

or, equivalently,

Q′A+P �
(

E1 0
0 0

)
.

Clearly, expression (12.15) is the singular-value decomposition ofA+. And the
singular values ofA+ are the reciprocals of the singular values ofA.
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c. Approximation of a matrix by a matrix of smaller rank

The following theorem suggests that if some of the singular values of anm × n

matrix A are relatively small, them × n matrix obtained from the singular-value
decomposition (ofA) by setting those singular values equal to zero may provide
a “good” approximation toA.

Theorem 21.12.4. LetA represent anm×nmatrix (of rankr) with singular val-
uess1, s2, . . . , sr ordered so thats1 ≥ s2 ≥ · · · ≥ sr . LetD1 � diag(s1, s2, . . . , sr ),
and letP represent anm×m orthogonal matrix andQ ann×n orthogonal matrix
such thatP′AQ � diag(D1, 0), so that

A � P
(

D1 0
0 0

)
Q′

is the singular-value decomposition ofA. Then, for anym× nmatrixB of rankk
or less (wherek < r),

‖B− A‖2 ≥ s2
k+1 + · · · + s2

r (12.16)

(where the norm is the usual norm). Moreover, equality is attained in inequality
(12.16) by taking

B � P
(

D∗
1 0

0 0

)
Q′ ,

whereD∗
1 � diag(s1, . . . , sk).

As a preliminary to proving Theorem 21.12.4, it is convenient to establish the
following theorem, which is of some interest in its own right.

Theorem 21.12.5. Let A represent ann × n symmetric matrix with (not nec-
essarily distinct) eigenvaluesd1, d2, . . . , dn ordered so thatd1 ≥ d2 ≥ · · · ≥ dn.
Then, for anyn × k matrix X such thatX′X � Ik or, equivalently, for anyn × k
matrix X with orthonormal columns (wherek ≤ n),

tr (X′AX) ≤
k∑
i�1

di ,

with equality holding if the columns ofX are orthonormal eigenvectors ofA
corresponding tod1, d2, . . . , dk, respectively.

Proof (of Theorem 21.12.5). LetU represent ann×nmatrix whose first,. . . , nth
columns are orthonormal (with respect to the usual inner product) eigenvectors of
A corresponding tod1, . . . , dn, respectively. Then there exists ann × k matrix
R � {rij } such thatX � UR. Further,U′AU � D, whereD � diag(d1, . . . , dn).
Thus,

tr(X′AX) � tr(R′U′AUR) � tr(R′DR)

�
k∑
j�1

n∑
i�1

dir
2
ij �

n∑
i�1

widi ,
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where (fori � 1, . . . , n) wi �
∑k

j�1 r
2
ij .

The scalarsw1, . . . , wn are such that

0 ≤ wi ≤ 1 (12.17)

(for i � 1, . . . , n) and
n∑
i�1

wi � k . (12.18)

To see this, observe that

R′R � R′InR � R′U′UR � X′X � Ik

(which indicates that the columns ofR are orthonormal). Then, as a consequence
of Theorem 6.4.5, there exists ann× (n− k) matrixS such that the columns of the
matrix (R,S) form an orthonormal basis forRn or, equivalently, such that (R,S)
is an orthogonal matrix. And,RR′ + SS′ � (R,S)(R,S)′ � In, so that

In − RR′ � SS′ ,

implying thatIn−RR′ is nonnegative definite. Thus, since clearly theith diagonal
element ofIn−RR′ equals 1−wi , we have that 1−wi ≥ 0, which (together with
the obvious inequalitywi ≥ 0) establishes result (12.17). Moreover,

n∑
i�1

wi �
k∑
j�1

n∑
i�1

r2
ij � tr(R′R) � tr(Ik) � k ,

which establishes result (12.18).
Results (12.17) and (12.18) imply that

∑n
i�1 widi ≤

∑k
i�1 di (as is easily

verified) and hence that

tr(X′AX) ≤
k∑
i�1

di .

Moreover, in the special case where the columns ofX are orthonormal eigenvec-
tors ofA corresponding tod1, . . . , dk, respectively,AX � X diag(d1, . . . , dk) and
hence

X′AX � X′X diag(d1, . . . , dk) � diag(d1, . . . , dk) .

Thus, in that special case, tr(X′AX) �∑k
i�1 di . Q.E.D.

Proof (of Theorem 21.12.5). Corresponding to anym × n matrix B of rank
k or less, there exists anm × k matrix U with orthonormal columns such that
C(B) ⊂ C(U) or, equivalently, such thatB � UL for somek × n matrix L.

Now, let U represent an arbitrarym × k matrix with orthonormal columns or,
equivalently, an arbitrarym × k matrix such thatU′U � Ik. And, letL represent
an arbitraryk × n matrix. Then, to verify inequality (12.16), it suffices to show
that

‖UL− A‖2 ≥ s2
k+1 + · · · + s2

r .
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We have that

‖UL− A‖2 � tr[(UL− A)′(UL− A)] � tr(L′L− A′UL− L′U′A)+ tr(A′A) .

And, since

L′L− A′UL− L′U′A+ A′UU′A � (L− U′A)′(L− U′A)

and since (L− U′A)′(L− U′A) is a nonnegative definite matrix, we find (in light
of Theorem 14.7.2) that

tr(L′L− A′UL− L′U′A+ A′UU′A) ≥ 0

and hence that

tr(L′L− A′UL− L′U′A) ≥ −tr(A′UU′A) � −tr(U′AA′U) .

Thus,
‖UL− A‖2 ≥ tr(A′A)− tr(U′AA′U) .

Moreover, since (in light of the results of Subsection a)s1, . . . , sr are the positive
square roots of the nonzero eigenvalues ofA′A (or, equivalently, of the nonzero
eigenvalues ofAA′), it follows from Theorem 21.6.1 that

tr(A′A) �
r∑
i�1

s2
i

and from Theorem 21.12.5 that

tr(U′AA′U) ≤
k∑
i�1

s2
i .

We conclude that

‖UL− A‖2 ≥
r∑
i�1

s2
i −

k∑
i�1

s2
i � s2

k+1 + · · · + s2
r .

And the proof is complete upon observing (in light of Lemma 8.4.2) that

‖P
(

D∗
1 0

0 0

)
Q′ − A‖2 � ‖P

(
D∗

1 0
0 0

)
Q′ − P

(
D1 0
0 0

)
Q′‖2

� ‖
(

D∗
1 0

0 0

)
−
(

D1 0
0 0

)
‖2 � s2

k+1 + · · · + s2
r .

Q.E.D.
In the special case where the matrixA is symmetric, Theorem 21.12.4 can (in

light of the results of Subsection a) be restated in terms related to the spectral
decomposition ofA, as described in the following corollary.
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Corollary 21.12.6. Let A represent ann× n symmetric matrix (of rankr) with
nonzero (not necessarily distinct) eigenvaluesd1, . . . , dr ordered so that|d1| ≥
|d2| ≥ · · · ≥ |dr |. Let D1 � diag(d1, . . . , dr ), and letQ represent ann × n

orthogonal matrix such thatQ′AQ � diag(D1, 0), so that

A � Q
(

D1 0
0 0

)
Q′

is the spectral decomposition ofA. Then, for anyn× nmatrixB of rankk or less
(wherek < r)

‖B− A‖2 ≥ d2
k+1 + · · · + d2

r . (12.19)

Moreover, equality is attained in inequality (12.19) by taking

B � Q
(

D∗
1 0

0 0

)
Q′ ,

whereD∗
1 � diag(d1, . . . , dk).

21.13 Simultaneous Diagonalization

In Section 5, we considered the diagonalization of ann × n matrix. Now, let
A1, . . . ,Ak representk matrices of dimensionsn× n, and consider the conditions
under which there exists a singlen × n nonsingular matrixQ that diagonalizes
all k of these matrices; that is, the conditions under which there exists ann × n

nonsingular matrixQ such thatQ−1A1Q � D1, . . . ,Q−1AkQ � Dk for some
diagonal matricesD1, . . . ,Dk. When such a nonsingular matrixQ exists,Q is said
to simultaneously diagonalize A1, . . . ,Ak (or A1, . . . ,Ak are said to besimultane-
ously diagonalized by Q), andA1, . . . ,Ak are referred to as beingsimultaneously
diagonalizable.

Suppose that there exists ann× n nonsingular matrixQ such thatQ−1A1Q �
D1, . . . ,Q−1AkQ � Dk for some diagonal matricesD1, . . . ,Dk. Then, fors ��
i � 1, . . . , k,

Q−1AsAiQ � Q−1AsQQ−1AiQ

� DsDi � DiDs

� Q−1AiQQ−1AsQ � Q−1AiAsQ ,

implying that

AsAi � Q(Q−1AsAiQ)Q−1 � Q(Q−1AiAsQ)Q−1 � AiAs .

Thus, a necessary condition forA1, . . . ,Ak to be simultaneously diagonalizable
is that

AsAi � AiAs (s > i � 1, . . . , k) (13.1)

(i.e., thatA1, . . . ,Ak commute in pairs).
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For symmetric matricesA1, . . . ,Ak, condition (13.1) is sufficient, as well as nec-
essary, forA1, . . . ,Ak to be simultaneously diagonalizable. In fact, symmetric ma-
tricesA1, . . . ,Ak that satisfy condition (13.1) can be simultaneously diagonalized
by an orthogonal matrix. To verify this, let us proceed by mathematical induction.

In the case of one symmetric matrixA1, we know (from Theorem 21.5.7) that
there exists an orthogonal matrix that “simultaneously” diagonalizesA1 — when
k � 1, condition (13.1) is vacuous. Suppose now that anyk−1 symmetric matrices
(of the same order) that commute in pairs can be simultaneously diagonalized by
an orthogonal matrix (wherek ≥ 2). And, letA1, . . . ,Ak representk symmetric
matrices of arbitrary ordern that commute in pairs. Then, to complete the induction
argument, it suffices to show thatA1, . . . ,Ak can be simultaneously diagonalized
by an orthogonal matrix.

Letλ1, . . . , λr represent the distinct eigenvalues ofAk, and letν1, . . . , νr repre-
sent their respective multiplicities. TakeQj to be ann× νj matrix whose columns
are orthonormal (with respect to the usual inner product) eigenvectors ofAk corre-
sponding to the eigenvalueλj or, equivalently, whose columns form an orthonormal
basis for theνj -dimensional linear spaceN (Ak − λj I)(j � 1, . . . , r). And define
Q � (Q1, . . . ,Qr ).

Since (according to Theorem 21.5.7)Ak is diagonalizable, it follows from Corol-
lary 21.5.4 that

∑r
j�1 νj � n, so thatQ hasn (orthonormal) columns and hence

is an orthogonal matrix. Further,

Q′AkQ � diag(λ1Iν1, . . . , λrIνr ) (13.2)

(as is evident from Theorems 21.5.2 and 21.5.1).
SinceAk commutes with each of the matricesA1, . . . ,Ak−1, we find that, for

i � 1, . . . , k − 1 andj � 1, . . . , r,

Ak(AiQj ) � Ai(AkQj ) � Ai(λjQj ) � λjAiQj .

Thus, (Ak − λj I)AiQj � 0, implying (in light of Lemma 11.4.1) thatC(AiQj ) ⊂
N (Ak − λj I). And, since the columns ofQj form a basis forN (Ak − λj I), there
exists aνj × νj matrix Bij such that

AiQj � QjBij (13.3)

(i � 1, . . . , k − 1; j � 1, . . . , r), and we find that (fori � 1, . . . , k − 1)

Q′AiQ � Q′(AiQ1, . . . ,AiQr ) � Q′(Q1Bi1, . . . ,QrBir )

� Q′Q diag(Bi1, . . . ,Bir )

� diag(Bi1, . . . ,Bir ) . (13.4)

Now, using result (13.3), we find that, forj � 1, . . . , r,

Bij � Iνj Bij � Q′
jQjBij � Q′

jAiQj

(i � 1, . . . , k − 1) and that

BsjBij � Q′
jAsQjBij � Q′

jAsAiQj � Q′
jAiAsQj � Q′

jAiQjBsj � BijBsj
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(s > i � 1, . . . , k − 1), so that thek − 1 matricesB1j , . . . ,Bk−1,j (which are
of order νj ) are symmetric and they commute in pairs. Thus, by supposition,
B1j , . . . ,Bk−1,j can be simultaneously diagonalized by an orthogonal matrix; that
is, there exists aνj × νj orthogonal matrixSj and νj × νj diagonal matrices
D1j , . . . ,Dk−1,j such that (fori � 1, . . . k − 1)

S′jBijSj � Dij . (13.5)

DefineS � diag(S1, . . . ,Sr ) andP � QS. Then, clearly,S is orthogonal and,
hence, according to Lemma 8.4.1,P is also orthogonal. Further, using results
(13.4), (13.5), and (13.2), we find that, fori � 1, . . . , k − 1,

P′AiP � S′Q′AiQS

� diag(S′1, . . . ,S′r ) diag(Bi1 . . . ,Bir ) diag(S1, . . . ,Sr )

� diag(S′1Bi1S1, . . . ,S′rBirSr )

� diag(Di1, . . . ,Dir )

and that

P′AkP � S′Q′AkQS

� diag(S′1, . . . ,S′r ) diag(λ1Iν1, . . . , λrIνr ) diag(S1, . . . ,Sr )

� diag(λ1S′1S1, . . . , λrS′rSr )
� diag(λ1Iν1, . . . , λrIνr ),

so that allk of the matricesA1, . . . ,Ak are simultaneously diagonalized by the
orthogonal matrixP.

Summarizing, we have the following theorem.
Theorem 21.13.1. If n × n matricesA1, . . . ,Ak are simultaneously diagonal-

izable, then they commute in pairs, that is, fors > i � 1, . . . , k, AsAi � AiAs .
If n × n symmetric matricesA1, . . . ,Ak commute in pairs, then they can be si-
multaneously diagonalized by an orthogonal matrix; that is, there exists ann× n
orthogonal matrix;P and diagonal matricesD1, . . . ,Dk such that, fori � 1, . . . , k,

P′AiP � Di .

In connection with Theorem 21.13.1, note that symmetric matricesA1, . . . ,Ak

commute in pairs if and only if each of thek(k−1)/2 matrix productsA1A2,A1A3,
. . . , Ak−1Ak is symmetric.

In the special case wherek � 2, Theorem 21.13.1 can be restated as the following
corollary.

Corollary 21.13.2. If two n×nmatricesA andB are simultaneously diagonal-
izable, then they commute, that is,BA � AB. If two n × n symmetric matrices
A andB commute (or, equivalently, if their productAB is symmetric), then they
can be simultaneously diagonalized by an orthogonal matrix; that is, there exists
ann × n orthogonal matrixP such thatP′AP � D1 andP′BP � D2 for some
diagonal matricesD1 andD2.
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21.14 Generalized Eigenvalue Problem

Let A represent ann×n symmetric matrix, and letB represent ann×n symmetric
positive definite matrix. Then, according to Corollary 14.3.14, there exists ann×n
nonsingular matrixQ such that the quadratic formx′Bx (in ann × 1 vectorx) is
expressible as the sum of squares

∑n
i�1 y2

i of the elementsy1, . . . , yn of the
transformed vectory � Q′x. And, according to Corollary 14.3.6, there exists
ann × n nonsingular matrixQ andn scalarsd1, . . . , dn such that the quadratic
form x′Ax is expressible as a linear combination

∑n
i�1 diy

2
i of the squares of the

elementsy1, . . . , yn of the transformed vectory � Q′x.
Can the samen× n nonsingular matrixQ be used to so express bothx′Bx and

x′Ax? Or, equivalently, does there exist ann× n nonsingular matrixQ such that
B � QQ′ andA � QDQ′ for some diagonal matrixD? The answer is yes, as is
shown in the following development.

Let R represent anyn × n nonsingular matrix such thatB−1 � R′R. And let
C � RAR′, and defineP to be ann × n orthogonal matrix such thatP′CP � D
for some diagonal matrixD � {di}. Now, takeQ � R−1P. Then,

QQ′ � R−1PP′(R′)−1 � R−1(R′)−1 � B , (14.1)

and

QDQ′ � R−1PP′CPP′(R′)−1 � R−1C(R′)−1 � R−1RAR′(R′)−1 � A . (14.2)

In addition to establishing the existence of ann× n nonsingular matrixQ such
that B � QQ′ and A � QDQ′ (for some diagonal matrixD), the preceding
development suggests an indirect “strategy” for constructing such a matrix. This
strategy comprises four steps: (1) construction of then× n nonsingular matrixR
(such thatB−1 � R′R); (2) formation of the matrixC � RAR′; (3) determination
of then × n orthogonal matrixP that diagonalizesC; and (4) formation of the
matrixQ � R−1P. In connection with Step (3), note that the columns of then×n
orthogonal matrixP can be anyn orthonormal eigenvectors ofC.

Let us now consider an alternative approach to the construction of ann × n

nonsingular matrixQ such thatB � QQ′ andA � QDQ′ (for some diagonal
matrixD). In the alternative approach, the columns of the matrix (Q′)−1 are taken
to be orthonormal “generalized eigenvectors” ofA, where the orthonormality of
these vectors is with respect to an inner product other than the usual inner product.

Let X � (Q′)−1 (whereQ represents an arbitraryn × n nonsingular matrix),
and letD � {di} represent an arbitraryn× n diagonal matrix. Then,

B � QQ′ and A � QDQ′ ⇔ BX � Q and AX � QD

⇔ BX � Q and AX � BXD

⇔ X′BX � I and AX � BXD .

And, lettingxi represent theith column ofX (i � 1, . . . , n),

X′BX � I ⇔ x′jBxi �
{

1, for j � i � 1, . . . , n,
0, for j �� i � 1, . . . , n,
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and

AX � BXD ⇔ Axi � diBxi , for i � 1, . . . , n .

Accordingly, the alternative approach to the construction of ann×n nonsingular
matrixQ such thatB � QQ′ andA � QDQ′ (for some diagonal matrixD) consists
of findingn solutions (d1, x1); . . . ; (dn, xn) (for a scalarλ and ann × 1 vectorx)
to the equation

Ax � λBx (14.3)

such thatx1, . . . , xn are orthogonal with respect to the inner productx′By and of
then taking (Q′)−1 to be the matrix whose columns arex1, . . . , xn.

Various properties of the “x- andλ-parts” of solutions to equation (14.3) can be
deduced by observing that

Ax � λBx ⇔ C(R−1)′x � λ(R−1)′x (14.4)

and that (for anyn× 1 vectorsx andy)

x′By � [(R−1)′x]′(R−1)′y . (14.5)

Thus, a scalarλ and ann-dimensional vectorx form a solution to equation (14.3) if
and only ifλ is an eigenvalue ofC and (R−1)′x is an eigenvector ofC corresponding
to λ. Further, ann-dimensional vectorx has unit norm with respect to the inner
productx′By if and only if (R−1)′x has unit norm with respect to the usual inner
product. And twon-dimensional vectorsx andy are orthogonal with respect to the
inner productx′By if and only if (R−1)′x and (R−1)′y are orthogonal with respect
to the usual inner product. Recalling Theorem 21.4.5, we conclude in particular
thatx′1Bx2 � 0 for any two solutions (λ1, x1) and (λ2, x2) to equation (14.3) such
thatλ2 �� λ1.

Since

Ax � λBx ⇔ (A− λB)x � 0 , (14.6)

Ax � λBx for somen-dimensional vectorx if and only if |A − λB| � 0. The
problem of finding the roots of|A − λB| (i.e., the solutions forλ to the equation
|A− λB| � 0) is called thegeneralized eigenvalue problem.

Note that

|A− λB| � |R|−2|C− λI| � |B| |AB−1 − λI| � |B| |B−1A− λI| , (14.7)

so that the generalized eigenvalue problem is equivalent to the problem of finding
the eigenvalues of the symmetric matrixC or of the not-necessarily-symmetric
matrix AB−1 or B−1A. Note also that, in the special case whereB � I, the gen-
eralized eigenvalue problem reduces to the problem of finding the eigenvalues of
A.
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21.15 Differentiation of Eigenvalues and Eigenvectors

The following lemma provides an appropriate context for our discussion of the
differentiation of eigenvalues and eigenvectors.

Lemma 21.15.1. LetF represent ap×p symmetric matrix of functions, defined
on a setS, of a vectorx � (x1, . . . , xm)′ ofm variables. Further, letc represent any
interior point ofS at whichF is continuously differentiable. And, letλ∗ represent
a simple eigenvalue ofF(c) (i.e., an eigenvalue of multiplicity 1), and letu∗ �
(u∗1, . . . , u

∗
p)′ represent an eigenvector [ofF(c)] with (usual) norm 1 corresponding

toλ∗. Then, for some neighborhoodN of c, there exists a functionλ (of x), defined
onN , and a vectoru � (u1, . . . , up)′ of functions (ofx), defined onN , with the
following properties: (1)λ(c) � λ∗ and u(c) � u∗; (2) for x ∈ N, λ(x) is
an eigenvalue ofF(x), andu(x) is an eigenvector [ofF(x)] with (usual) norm 1
corresponding toλ(x) [and the signs of the nonzero elements ofu(x) are the same
as those of the corresponding elements ofu∗]; and (3)λ andu are continuously
differentiable atc.

Proof. Regarding (for the moment)λandu as a variable and a vector of variables,
define (forx ∈ S, λ ∈ R, andu ∈ Rp)

h(u, λ; x) �
[
(F(x)− λI)u

u′u− 1

]
.

Further, let

J(u, λ; x) �
[
∂h(u, λ; x)

∂u′
,
∂h(u, λ; x)

∂λ

]
.

And observe [in light of results (15.3.10) and (15.3.7)] that

J(u, λ; x) �
(

F(x)− λI −u
2u′ 0

)
.

Now, sinceλ∗ is a simple eigenvalue ofF(c),

rank [F(c)− λ∗I] � p − 1 .

And, since [F(c) − λ∗I]′u∗ � [F(c) − λ∗I]u∗ � 0, C(u∗) is (in light of Corollary
12.1.2) orthogonal toC[F(c)−λ∗I], implying (in light of Lemma 17.1.9) thatC(u∗)
andC[F(c)− λ∗I] are essentially disjoint and also (in light of Lemma 17.2.1) that
R(u∗′) andR[F(c) − λ∗I] are essentially disjoint. Thus, making use of Theorem
17.2.19, we find that

rank [J(u∗, λ∗; c)] � rank [F(c)− λ∗I] + rank(−u∗)+ rank(2u∗′)
� p − 1+ 1+ 1� p + 1 .

Moreover,
h(u∗, λ∗; c) � 0 ,

andh is continuously differentiable at the point (u∗, λ∗; c).
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The upshot of these results is that the conditions of the implicit function theorem
(e.g., Magnus and Neudecker 1988, thm. 7.A.2; Bartle 1976, p. 384) are satisfied.
And it follows from this theorem that, for some neighborhoodN∗ of c, there exists
a functionλ (of x), defined onN∗, and a vectoru � (u1, . . . , up)′ of functions
(of x), defined onN∗, with the following properties: (1)λ(c) � λ∗ andu(c) � u∗;
(2) for x ∈ N∗, λ(x) is an eigenvalue ofF(x), and u(x) is an eigenvector [of
F(x)] with (usual) norm 1 corresponding toλ(x); and (3)λ andu are continuously
differentiable atc. Moreover, in light of Lemma 15.1.1, the elements ofu are
continuous atc, so that there exists some neighborhoodN of c (whereN ⊂ N∗)
such that the signs of the nonzero elements ofu(x) are the same as those of the
corresponding elements ofu∗. Q.E.D.

Let us now consider the differentiation of the functionsλ, u1, . . . , un described
in Lemma 21.15.1.

For x ∈ N , we have that
Fu � λu .

Upon differentiating both sides of this equality with respect toxj , we find that (at
x � c)

F
∂u
∂xj

+ ∂F
∂xj

u � λ
∂u
∂xj

+ ∂λ

∂xj
u (15.1)

(j � 1, . . . , m). And, upon premultiplying both sides of equality (15.1) byu′, we
obtain

u′F
∂u
∂xj

+ u′
∂F
∂xj

u � λu′
∂u
∂xj

+ ∂λ

∂xj
u′u ,

or, equivalently [sinceu′F � (Fu)′ � λu′ andu′u � 1],

λu′
∂u
∂xj

+ u′
∂F
∂xj

u � λu′
∂u
∂xj

+ ∂λ

∂xj
.

And it follows that (atx � c)

∂λ

∂xj
� u′

∂F
∂xj

u (15.2)

(j � 1, . . . , m).
As a formula for thej th partial derivative ofu, we have that (atx � c)

∂u
∂xj

� −H+ ∂F
∂xj

u , (15.3)

whereH � F− λI.
To verify formula (15.3), rewrite equality (15.1) as

H
∂u
∂xj

� ∂λ

∂xj
u− ∂F

∂xj
u . (15.4)
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Premultiplying both sides of equality (15.4) byH+, we obtain

H+H
∂u
∂xj

� ∂λ

∂xj
H+u−H+ ∂F

∂xj
u . (15.5)

SinceH+H � (H+H)′ � H(H+)′ � HH+ and since [observing thatHu � 0 and
recalling (from Theorem 20.5.1) thatN (H+) � N (H)] H+u � 0, equality (15.5)
can be rewritten as

HH+ ∂u
∂xj

� −H+ ∂F
∂xj

u .

To complete the verification of formula (15.3), we need to show that (atx � c)

HH+ ∂u
∂xj

� ∂u
∂xj

. (15.6)

For this purpose, observe that(
∂u
∂xj

)′
u+ u′

∂u
∂xj

� 0

(as is clear upon differentiating both sides of the equalityu′u � 1) and hence
{since (∂u/∂xj )′u � [(∂u/∂xj )′u]′ � u′(∂u/∂xj )} that

u′
∂u
∂xj

� 0 .

Thus,

u′
(

H,
∂u
∂xj

)
� 0′ ,

implying that thep rows of the matrix (H, ∂u/∂xj ) are linearly dependent and
hence that

rank

(
H,

∂u
∂xj

)
≤ p − 1 . (15.7)

Moreover, atx � c,

p − 1� rank(H) ≤ rank

(
H,

∂u
∂xj

)
. (15.8)

Together, results (15.7) and (15.8) imply that (atx � c)

rank

(
H,

∂u
∂xj

)
� rank(H) .

It follows (in light of Corollary 4.5.2) that∂u/∂xj ∈ C(H), which (upon applying
Corollary 9.3.6) gives result (15.6).

Let us now consider formulas (15.2) and (15.3) in the special case wherex
is an [m(m + 1)/2]-dimensional column vector whose elements consist of those
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elements of anm×m symmetric matrixX � {xij } that lie on or below the diagonal
and whereF(x) � X. Assume thatS � Rm(m+1)/2 (i.e., that there are no restrictions
onX other than symmetry), observe that (in this special case) the interior points of
S at whichF is continuously differentiable consist of all ofS, and letej represent
thej th column ofIm.

Then, upon substituting from result (15.5.6) or (15.5.7) into equality (15.2), we
find that

∂λ

∂xii
� u′eie′iu � u2

i

and, forj < i,

∂λ

∂xij
� u′(eie′j + eje′i)u � uiuj + ujui � 2uiuj .

Thus,

∂λ

∂xij
�
{
u2
i , if j � i , (15.9a)

2uiuj , if j < i . (15.9b)

Or, equivalently,
∂λ

∂X
� 2uu′ − diag(u2

1, . . . , u
2
m) . (15.10)

Further, letgj represent thej th column ofH+ andgij theij th element ofH+.
Then, upon substituting from result (15.5.6) or (15.5.7) into equality (15.3), we
find that

∂u
∂xij

�
{−uigi , if j � i , (15.11a)
−(ujgi + uigj ) , if j < i . (15.11b)

And thesth element of the (m-dimensional) vector∂u/∂xij is expressible as

∂us

∂xij
�
{−uigsi , if j � i , (15.12a)
−(ujgsi + uigsj ) , if j < i . (15.12b)

Further, lettingxj � (xj1, . . . , xj,j−1, xjj , xj+1,j , . . . , xmj )′,

∂u
∂x′j

� −ujH+ − gju
′ + ujgje′j . (15.13)

21.16 An Equivalence (Involving Determinants and
Polynomials)

The following theorem is of considerable importance in statistics (where it is used
in establishing a fundamental result on the statistical independence of quadratic
forms) — refer, for example, to Driscoll and Gundberg (1986) and Reid and
Driscoll (1988).
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Theorem 21.16.1. Let A andB representn × n symmetric matrices, and letc
andd represent (strictly) positive scalars. Then a necessary and sufficient condition
for

|I− tA− uB| � |I− tA| |I− uB| (16.1)

for all (scalars)t andu satisfying|t | < c and|u| < d (or, equivalently, for allt
andu) is thatAB � 0.

Proof. The sufficiency of the conditionAB � 0 is evident upon observing that

|I− tA| |I− uB| � |(I− tA)(I− uB)| � |I− tA− uB+ tuAB| .
Now, for purposes of establishing the necessity of this condition, suppose that

equality (16.1) holds for allt andu satisfying|t | < c and|u| < d. And letc∗ (≤ c)
represent a positive scalar such thatI − tA is positive definite whenever|t | < c∗

— the existence of such a scalar is guaranteed by Corollary 18.3.2 — and (fort

satisfying|t | < c∗) let
H � (I− tA)−1 .

If |t | < c∗, then |I − uB| � |I − uBH| and |I − (−u)B| � |I − (−u)BH|,
implying that

|I− u2B2| � |I− u2(BH)2| . (16.2)

Since each side of equality (16.2) is a polynomial inu2, we have that

|I− rB2| � |I− r(BH)2|
for all r (and fort such that|t | < c∗) — refer to Theorem 21.A.5 (in the Appendix).

Applying result (15.8.5), we find that (if|t | < c∗)

tr(B2) � −∂|I− rB2|
∂r

∣∣∣∣∣
r�0

� −∂|I− r(BH)2|
∂r

∣∣∣∣
r�0

� tr[(BH)2] .

Thus,
∂2tr[(BH)2]

∂t2
� ∂2tr(B2)

∂t2
� 0 (16.3)

(for t such that|t | < c∗). And, using results (15.8.15), (15.9.2), (15.6.1), (15.4.8),
and (5.2.3), we find that

∂H
∂t

� HAH ,
∂2H
∂t2

� 2HAHAH ,

∂tr[(BH)2]

∂t
� tr

[
∂(BH)2

∂t

]
� tr

[
B
∂H
∂t

BH+ BHB
∂H
∂t

]
� 2tr

[
BHB

∂H
∂t

]
,

and

∂2tr[(BH)2]

∂t2
� 2tr

[
B
∂H
∂t

B
∂H
∂t

+ BHB
∂2H
∂t2

]
� 2tr[BHAHBHAH+ 2BHBHAHAH] . (16.4)
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Combining results (16.4) and (16.3) and settingt � 0 gives

0 � tr[(BA)2] + 2tr(B2A2)

� tr[(BA)2 + B2A2] + tr(B2A2)

� tr[B(AB+ BA)A] + tr(B2A2)

� (1/2)tr[B(AB+ BA)A] + (1/2)tr{[B(AB+ BA)A]′} + tr(BA2B)

� (1/2)tr[(AB+ BA)AB] + (1/2)tr[A(AB+ BA)′B] + tr(BA2B)

� (1/2)tr[(AB+ BA)′AB] + (1/2)tr[(AB+ BA)′BA] + tr(BA2B)

� (1/2)tr[(AB+ BA)′(AB+ BA)] + tr[(AB)′AB] . (16.5)

Both terms of expression (16.5) are nonnegative and hence equal to 0. Moreover,
tr[(AB)′AB] � 0 implies thatAB � 0 — refer to Lemma 5.3.1. Q.E.D.

In light of Theorem 18.3.1, we have the following variation on Theorem 21.16.1.
Corollary 21.16.2. LetA andB representn×n symmetric matrices. Then there

exist (strictly) positive scalarsc andd such thatI− tA, I− uB, andI− tA− uB
are positive definite for all (scalars)t andu satisfying|t | < c and|u| < d. And a
necessary and sufficient condition for

log

[ |I− tA− uB|
|I− tA| |I− uB|

]
� 0

for all t andu satisfying|t | < c and|u| < d is thatAB � 0.
The following theorem (which, like Theorem 21.16.1, can be useful in establish-

ing results on the statistical independence of quadratic forms) generalizes Corollary
21.16.2.

Theorem 21.16.3. LetA andB representn×n symmetric matrices. Then there
exist (strictly) positive scalarsc andd such thatI− tA, I−uB, andI− tA−uB are
positive definite for all (scalars)t andu satisfying|t | < c and|u| < d. And letting
h(t, u) represent a polynomial (int andu), necessary and sufficient conditions for

log

[ |I− tA− uB|
|I− tA| |I− uB|

]
� h(t, u)

|I− tA| |I− uB| |I− tA− uB| (16.6)

for all t andu satisfying|t | < c and|u| < d are thatAB � 0 and that, for allt
andu satisfying|t | < c and|u| < d (or, equivalently, for allt andu), h(t, u) � 0.

As a preliminary to proving Theorem 21.16.3, it is convenient to establish the
following result on polynomials.

Theorem 21.16.4. Let r1(x), s1(x), ands2(x) represent polynomials in a real
variablex. And, let

r2(x) � γ (x − λ1)m1(x − λ2)m2 · · · (x − λk)mk ,
wherek is a nonnegative integer;m1,m2, . . . , mk are (strictly) positive integers;
γ is a nonzero real number; andλ1, λ2, . . . , λk are real numbers. [Whenk � 0,
r2(x) � γ .] Suppose that

log

[
s1(x)

s2(x)

]
� r1(x)

r2(x)
(16.7)
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for all x in some nondegenerate intervalI [that does not includeλ1, λ2, . . . , λk or
any roots ofs2(x)]. Then there exists a real numberα such thatr1(x) � αr2(x) for
all x. Further,s1(x) � eαs2(x) for all x.

Proof (of Theorem 21.16.4). The proof makes considerable use of various basic
properties of polynomials — refer to the Appendix for a review of the relevant
properties.

Assume (without loss of generality) thatλ1, λ2, . . . , λk are distinct and that
λ1, λ2, . . . , λk are not roots ofr1(x). [To see that the latter assumption can be
made without loss of generality, suppose thatλ1 were a root ofr1(x). Then, in
light of Theorem 21.A.3, there would exist a polynomialp1(x) such thatr1(x) �
(x − λ1)p1(x), so that, forx ∈ I , r1(x)/r2(x) � p1(x)/p2(x), with

p2(x) � γ (x − λ1)m1−1(x − λ2)m2 · · · (x − λk)mk .
Moreover, to show thatr1(x) � αr2(x) for someα, it would suffice to show that
p1(x) � αp2(x) for someα. This process of canceling common factors could
be continued until the right side of equality (16.7) were expressed as a ratio of
two polynomials that have no common roots.] Assume also (again without loss of
generality) thatλi is not a root of boths1(x) ands2(x) (i � 1,2, . . . , k).

Making frequent use of an abbreviated notation for polynomials (discussed in
the Appendix) and lettingr∗1(x), r∗2(x), s∗1(x), ands∗2(x) represent the derivatives
of r1(x), r2(x), s1(x), ands2(x), respectively, we find [upon differentiating both
sides of equality (16.7)] that

r∗1r2 − r1r∗2
r2

2

� s∗1s2 − s1s∗2
s1s2

for x ∈ I . And, in light of Theorem 21.A.5, it follows that

(r∗1r2 − r1r∗2)s1s2 � r2
2(s∗1s2 − s1s∗2) (16.8)

for all x.
We now come to the heart of the proof, which consists of showing that equality

(16.8) implies thatk � 0 (i.e., thatr2 ≡ γ ). Lettingi represent an arbitrary one of
the firstm positive integers, we can rewriter2(x) as

r2(x) � (x − λi)mi t(x) ,

wheret(x) � γ
∏
j ��i (x − λj )mj . Then, lettingt∗(x) represent the derivative of

t(x), we can rewrite equality (16.8) as

[(x − λi)(r∗1 t − r1t∗)−mir1t ](x − λi)mi−1s1s2 � (x − λi)2mi t2(s∗1s2 − s1s∗2) ,

so that (for allx)

[(x − λi)(r∗1 t − r1t∗)−mir1t ]s1s2 � (x − λi)mi+1t2(s∗1s2 − s1s∗2) . (16.9)

Neitherr1 nor t hasλi as a root, implying thatr1t does not haveλi as a root and
hence that

(x − λi)(r∗1 t − r1t∗)−mir1t
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does not haveλi as a root. Thus, in light of Theorem 21.A.4,

s1s2 � (x − λi)mi+1b

for some polynomialb(x).
By assumption,λi is not a root of boths1 ands2, so that (x − λi)mi+1 is a factor

of eithers1 or s2. Suppose that it iss1 that hasλi as a root, so that

s1(x) � (x − λi)mi+1d(x)

for some polynomiald(x). Then, lettingd∗(x) represent the derivative ofd(x), the
right side of equality (16.9) can be rewritten as the polynomial

(x − λi)mi+1t2{[(mi + 1)(x − λi)mi d + (x − λi)mi+1d∗]s2 − (x − λi)mi+1ds∗2} ,

which has (x − λi)2mi+1 as a factor. It follows that (x − λi)2mi+1 is a factor ofs1s2
and hence ofs1.

This argument can be repeated to establish that (x − λi)3mi+1 is a factor ofs1.
Further repetition reveals that, for an arbitrarily large integern, (x − λi)nmi+1 is a
factor ofs1. Alternatively, if it is s2 (rather thans1) that hasλi as a root, then we
find that, for arbitrarily largen, (x − λi)nmi+1 is a factor ofs2.

Thus,k � 0, that is,r2 ≡ γ (since otherwise we arrive at a contradiction of the
fact thats1 ands2 are polynomials of fixed degree). And, upon substitutingγ for
r2 in equality (16.8), we find that (for allx)

γ r∗1s1s2 � γ 2(s∗1s2 − s1s∗2) . (16.10)

Now, if r1 were not a constant and if (forx ∈ I ) s1/s2 were of constant value,
then (forx ∈ I ) the left side of equality (16.7) would be of constant value but
the right side would not be of constant value. Ifr1 were not a constant and if (for
x ∈ I ) s1/s2 were not of constant value (in which cases1 or s2 is not a constant),
then the degree of the polynomial that forms the left side of equality (16.10) would
exceed the degree of the polynomial that forms the right side. In either case, we
arrive at a contradiction. Thus,r1 is a constant; that is,r1(x) � τ for some real
numberτ , and hencer1 ≡ (τ/γ )r2. Further,s1 ≡ exp(τ/γ )s2 [since, forx ∈ I ,
s1/s2 � exp(r1/r2) � exp(τ/γ )]. Q.E.D.

Proof (of Theorem 21.16.3). The sufficiency of these conditions is an immediate
consequence of Corollary 21.16.2 [as is the existence of positive scalarsc andd
such thatI − tA, I − uB, andI − tA − uB are positive definite for allt andu
satisfying|t | < c and|u| < d].

For purposes of establishing their necessity, takeu to be an arbitrary scalar
satisfying|u| < d, and observe (in light of Corollaries 14.2.11 and 14.3.13) that
there exists ann × n nonsingular matrixS such that (I − uB)−1 � S′S. And let
d1, . . . , dr represent the nonzero (not necessarily distinct) eigenvalues ofA and
f1, . . . , fr the nonzero (not necessarily distinct) eigenvalues ofSAS′. Then, ac-
cording to Corollary 21.5.9, there existn×n orthogonal matricesP andQ such that
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P′AP � diag(d1, . . . , dr ,0, . . . ,0) andQ′SAS′Q � diag(f1, . . . , fr ,0, . . . ,0).
Thus, in light of result (13.3.9), we have that

|I− tA| � |P(I− tP′AP)P′| � |P| |diag(1− td1, . . . ,1− tdr ,1, . . . ,1)| |P′|

�
r∏
i�1

(1− tdi)

�
r∏
i�1

(−di)(t − d−1
i )

and that

|I− tA− uB| � |S−1(S′)−1 − tA|
� |S−1(I− tSAS′)(S′)−1|
� |S|−2|I− tSAS′|
� |S|−2|Q(I− tQ′SAS′Q)Q′|
� |S|−2|Q| |diag(1− tf1, . . . ,1− tfr ,1, . . . ,1)| |Q′|

� |S|−2
r∏
i�1

(1− tfi) � |S|−2
r∏
i�1

(−fi)(t − f −1
i ) ,

so that (for fixedu) |I − tA − uB| and |I − tA| |I − uB| are polynomials int .
Further,

|I− tA| |I− uB| |I− tA− uB|
� |I− uB| |S|−2

r∏
i�1

difi(t − d−1
i )(t − f −1

i ) , (16.11)

which (for fixedu) is a polynomial int of degree 2r with rootsd−1
1 , . . . , d−1

r ,
f −1

1 , . . . , f −1
r .

Now, regardingu as fixed, suppose that equality (16.6) holds for allt satisfying
|t | < c. Then, in light of equality (16.11), it follows from Theorem 21.16.4 that
there exists a real numberα such that, for allt ,

h(t, u) � α|I− tA| |I− uB| |I− tA− uB|
and

|I− tA− uB| � eα|I− tA| |I− uB| . (16.12)

[In applying Theorem 21.16.4, takex � t , s1(t) � |I − tA − uB|, s2(t) �
|I − tA| |I − uB|, r1(t) � h(t, u), andr2(t) � |I − tA| |I − uB| |I − tA − uB|.]
Moreover, upon settingt � 0 in equality (16.12), we find that

|I− uB| � eα|I− uB| ,
implying thateα � 1 or, equivalently, thatα � 0. Thus, for allt , h(t, u) � 0 and
|I− tA− uB| � |I− tA| |I− uB|.
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We conclude that if equality (16.6) holds for allt andu satisfying|t | < c and
|u| < d, thenh(t, u) � 0 and|I − tA − uB| � |I − tA| |I − uB| for all t andu
satisfying|u| < d, implying (in light of Theorem 21.A.5) thath(t, u) � 0 for all
t andu and (in light of Theorem 21.16.1) thatAB � 0. Q.E.D.

Appendix: Some Properties of Polynomials (in a Single
Variable)

An expression of the form

p(x) � a0 + a1x + a2x
2 + · · · + anxn ,

where x is a real variable,n is a nonnegative integer, and the coefficients
a0, a1, a2, . . . , an are real numbers is referred to as apolynomial in x. The polyno-
mialp(x) is said to benonzero if one or more of the coefficientsa0, a1, a2, . . . , an
is nonzero, in which case the largest nonnegative integerk such thatak �� 0 is
referred to as thedegree of p(x) and is denoted by the symbol deg[p(x)]. When it
causes no confusion,p(x) may be abbreviated top {and deg[p(x)] to deg(p)}.

A polynomialq is said to be afactor of a polynomialp if there exists a poly-
nomialr such thatp ≡ qr. And, a real numberc is said to be aroot (or azero) of
a polynomialp if p(c) � 0.

The following three theorems give some basic properties of polynomials —
refer, for example, to Beaumont and Pierce (1963) for proofs of these theorems,
which are equivalent to their Theorems 9-3.3, 9-3.5, and 9-7.5.

Theorem 21.A.1 (the division algorithm). Letp andq represent polynomials.
Suppose thatq is nonzero. Then, there exist unique polynomialsb andr such that

p ≡ bq + r,
where eitherr ≡ 0 or else deg(r) < deg(q).

Theorem 21.A.2. Letp(x) represent a nonzero polynomial (inx) of degreen.
Then, for any real numberc, p(x) has a unique representation of the form

p(x) � b0 + b1(x − c)+ b2(x − c)2 + · · · + bn(x − c)n ,
whereb0, b1, b2, . . . , bn are real numbers.

Theorem 21.A.3. A real numberc is a root of a polynomialp(x) (in x) if and
only if the polynomialx − c is a factor ofp(x).

The following two theorems give some additional properties of polynomials.
Theorem 21.A.4. Let p(x), q(x), andr(x) represent polynomials (inx). And

suppose that
p(x)q(x) � (x − c)mr(x) , (A.1)

wherem is a positive integer and wherec is a real number that is not a root ofp(x).
Then, (x − c)m is a factor ofq(x); that is, there exists a polynomials(x) such that

q(x) � (x − c)ms(x) .
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Proof. The proof consists of using mathematical induction to show that, for
k � 1, . . . , m, there exists a polynomialsk(x) such thatq(x) � (x − c)ksk(x).
Clearly,c is a root ofq(x). Thus, it follows from Theorem 21.A.3 that there exists
a polynomials1(x) such thatq(x) � (x − c)1s1(x).

Suppose now that there exists a polynomialsk−1(x) (where 2≤ k ≤ m) such
that

q(x) � (x − c)k−1sk−1(x) . (A.2)

Then, substituting expression (A.2) into expression (A.1), we find that

(x − c)k−1p(x)sk−1(x) � (x − c)mr(x) , (A.3)

implying that
p(x)sk−1(x) � (x − c)m−k+1r(x)

for x �� c and hence that

p(c)sk−1(c) � lim
x→c

p(x)sk−1(x) � lim
x→c

(x − c)m−k+1r(x)

� (c − c)m−k+1r(c) � 0 . (A.4)

Equality (A.4) implies thatc is a root ofsk−1(x). Thus, there exists a polynomial
sk(x) such that

sk−1(x) � (x − c)sk(x) . (A.5)

And, substituting expression (A.5) into expression (A.2), we find that

q(x) � (x − c)ksk(x) ,

thereby completing the induction argument. Q.E.D.
Theorem 21.A.5. Letp(x) andq(x) represent polynomials (inx). And suppose

thatp(x) � q(x) for all x in some nondegenerate intervalI . Then,p(x) � q(x)
for all x.

Proof. Let c represent an interior point ofI , and observe (in light of Theorem
21.A.2) thatp(x) andq(x) are expressible as

p(x) � a0 + a1(x − c)+ a2(x − c)2 + · · · + an(x − c)n,
q(x) � b0 + b1(x − c)+ b2(x − c)2 + · · · + bn(x − c)n,

respectively, wheren is a nonnegative integer [withn ≥ deg(p) andn ≥ deg(q)]
anda0, a1, a2, . . . , an andb0, b1, b2, . . . bn are real numbers. And we find that for
k � 1, . . . , n,

∂kp(x)

∂xk
�

n∑
m�k

m(m− 1) · · · (m− k + 1)am(x − c)m−k ,

∂kq(x)

∂xk
�

n∑
m�k

m(m− 1) · · · (m− k + 1)bm(x − c)m−k .
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Thus,
b0 � q(c) � p(c) � a0 ,

and, fork � 1, . . . , n,

k!bk � ∂kq(x)

∂xk

∣∣∣∣
x�c

� ∂kp(x)

∂xk

∣∣∣∣
x�c

� k!ak .

We conclude thatbk � ak for k � 0,1, . . . , n and thatp(x) � q(x) for all
x. Q.E.D.

Exercises

Section 21.1

1. Show that ann× n skew-symmetric matrixA has no nonzero eigenvalues.

2. LetA represent ann×nmatrix,B ak× k matrix, andX ann× k matrix such
thatAX � XB.

(a) Show thatC(X) is an invariant subspace (ofRn×1) relative toA.

(b) Show that ifX is of full column rank, then every eigenvalue ofB is an
eigenvalue ofA.

3. Letp(λ) represent the characteristic polynomial of ann × n matrix A, and
let c0, c1, c2, . . ., cn represent the respective coefficients of the characteristic
polynomial, so that

p(λ) � c0λ
0 + c1λ+ c2λ

2 + · · · + cnλn �
n∑
s�0

csλ
s

(for λ ∈ R). Further, letP represent then × n matrix obtained fromp(λ)
by formally replacing the scalarλ with then × n matrix A (and by setting
A0 � In). That is, let

P � c0I+ c1A+ c2A2 + · · · + cnAn �
n∑
s�0

csAs .

Show thatP � 0 (a result that is known as the Cayley-Hamilton theorem) by
carrying out the following four steps.

(a) LettingB(λ) � A − λI and lettingH(λ) represent the adjoint matrix of
B(λ), show that (forλ ∈ R)

H(λ) � K0 + λK1 + λ2K2 + · · · + λn−1Kn−1 ,

whereK0,K1,K2, . . . ,Kn−1 aren× nmatrices (that do not vary withλ).
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(b) Letting T0 � AK0, Tn � −Kn−1, and (for s � 1, . . . , n − 1) Ts �
AKs −Ks−1, show that (forλ ∈ R)

T0 + λT1 + λ2T2 + · · · + λnTn � p(λ)In .

[Hint. It follows from Theorem 13.5.3 that (forλ ∈ R) B(λ)H(λ) �
|B(λ)|In � p(λ)In.]

(c) Show that, fors � 0,1, . . . , n, Ts � csI.

(d) Show that

P � T0 + AT1 + A2T2 + · · · + AnTn � 0 .

4. Let c0, c1, . . . , cn−1, cn represent the respective coefficients of the character-
istic polynomialp(λ) of ann× n matrix A [so thatp(λ) � c0 + c1λ+ · · · +
cn−1λ

n−1 + cnλ
n (for λ ∈ R)]. Using the result of Exercise 3 (the Cayley-

Hamilton theorem), show that ifA is nonsingular, thenc0 �� 0, and

A−1 � −(1/c0)(c1I+ c2A+ · · · + cnAn−1) .

Section 21.3

5. Show that if ann× n matrix B is similar to ann× n matrix A, then (1)Bk is
similar toAk (k � 2,3, . . .) and (2)B′ is similar toA′.

6. Show that if ann×nmatrixB is similar to an (n×n) idempotent matrix, then
B is idempotent.

7. Let A �
(

1 0
0 1

)
andB �

(
1 1
0 1

)
. Show thatB has the same rank, deter-

minant, trace, and characteristic polynomial asA, but that, nevertheless,B is
not similar toA.

8. Expand on the result of Exercise 7 by showing (for an arbitrary positive integer
n) that for ann×nmatrixB to be similar to ann×nmatrixA it is not sufficient
for B to have the same rank, determinant, trace, and characteristic polynomial
asA.

9. Let A represent ann × n matrix, B a k × k matrix, andX ann × k matrix
such thatAX � XB. Show that ifX is of full column rank, then there exists

an orthogonal matrixQ such thatQ′AQ �
(

T11 T12

0 T22

)
, whereT11 is ak× k

matrix that is similar toB.

10. Show that if 0 is an eigenvalue of ann × n matrix A, then its algebraic
multiplicity is greater than or equal ton− rank(A).

11. LetA represent ann× nmatrix. Show that if a scalarλ is an eigenvalue ofA
of algebraic multiplicityγ , then rank(A− λI) ≥ n− γ .
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12. Letγ1 represent the algebraic multiplicity andν1 the geometric multiplicity
of 0 when 0 is regarded as an eigenvalue of ann× n (singular) matrixA. And
let γ2 represent the algebraic multiplicity andν2 the geometric multiplicity
of 0 when 0 is regarded as an eigenvalue ofA2. Show that ifν1 � γ1, then
ν2 � γ2 � ν1.

Section 21.4

13. Let x1 andx2 represent eigenvectors of ann × n matrix A, and letc1 and
c2 represent nonzero scalars. Under what circumstances is the vectorx �
c1x1 + c2x2 an eigenvector ofA?

Section 21.5

14. Let A represent ann × n matrix, and suppose that there exists ann × n

nonsingular matrixQ such thatQ−1AQ � D for some diagonal matrixD �
{di}. Further, fori � 1, . . . , n, letr′i represent theith row ofQ−1. Show (a) that
A′ is diagonalized by (Q−1)′, (b) that the diagonal elements ofD are the (not
necessarily distinct) eigenvalues ofA′, and (c) thatr1, . . . , rn are eigenvectors
of A′ (with ri corresponding to the eigenvaluedi).

15. Show that if ann × n nonsingular matrixA is diagonalized by ann × n

nonsingular matrixQ, thenA−1 is also diagonalized byQ.

16. Let A represent ann × n matrix whose spectrum comprisesk eigenvalues
λ1, . . . , λk with algebraic multiplicitiesγ1, . . . , γk, respectively, that sum ton.
Show thatA is diagonalizable if and only if, fori � 1, . . . , k, rank(A−λiI) �
n− γi .

17. LetA represent ann×n symmetric matrix with not-necessarily-distinct eigen-
valuesd1, . . . , dn that have been ordered so thatd1 ≤ d2 ≤ · · · ≤ dn. And let
Q represent ann × n orthogonal matrix such thatQ′AQ � diag(d1, . . . , dn)
— the existence of which is guaranteed by Corollary 21.5.9. Further, for
m � 2, . . . , n − 1, defineSm � {x ∈ Rn×1 : x �� 0, Q′

mx � 0} and
Tm � {x ∈ Rn×1 : x �� 0, P′mx � 0}, whereQm � (q1, . . . ,qm−1) and
Pm � (qm+1, . . . ,qn). Show that, form � 2, . . . , n− 1,

dm � min
x∈Sm

x′Ax
x′x

� max
x∈Tm

x′Ax
x′x

.

18. LetA represent ann× n symmetric matrix, and adopt the same notation as in
Section 5f.

(a) Show that the matricesE1, . . . ,Ek, which appear in the spectral decom-
position (5.5) ofA, have the following properties:

(1) E1 + · · · + Ek � I;

(2) E1, . . . ,Ek are nonnull, symmetric, and idempotent;

(3) for t �� j � 1, . . . , k, EtEj � 0; and
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(4) rank(E1)+ · · · + rank(Ek) � n.

(b) TakeF1, . . . ,Fr to ben× n nonnull idempotent matrices such thatF1 +
· · · + Fr � I. And suppose that, for some distinct scalarsτ1, . . . , τr ,

A � τ1F1 + · · · + τrFr .

Show thatr � k and that there exists a permutationt1, . . . , tr of the first
r positive integers such that (forj � 1, . . . , r) τj � λtj andFj � Etj .

19. LetA represent ann × n symmetric matrix, and letd1, . . . , dn represent the
(not necessarily distinct) eigenvalues ofA. Show that limk→∞ Ak � 0 if and
only if, for i � 1, . . . , k, |di | < 1.

Section 21.7

20. (a) Show that if 0 is an eigenvalue of ann×nnot-necessarily-symmetric matrix
A, then it is also an eigenvalue ofA+ and that the geometric multiplicity
of 0 is the same when it is regarded as an eigenvalue ofA+ as when it is
regarded as an eigenvalue ofA.

(b) Show (via an example) that the reciprocals of the nonzero eigenvalues of
a square nonsymmetric matrixA are not necessarily eigenvalues ofA+.

Section 21.8

21. Show that, for any positive integern that is divisible by 2, there exists ann×n
orthogonal matrix that has no eigenvalues.
[Hint. Find a 2× 2 orthogonal matrixQ that has no eigenvalues, and then
consider the block-diagonal matrix diag(Q, Q, . . . , Q).]

22. LetQ represent ann × n orthogonal matrix, and letp(λ) represent the char-
acteristic polynomial ofQ. Show that (forλ �� 0)

p(λ) � ±λnp(1/λ) .

23. LetA represent ann×nmatrix, and suppose that the scalar 1 is an eigenvalue of
A of geometric multiplicityν. Show thatν ≤ rank(A) and that ifν � rank(A),
thenA is idempotent.

Section 21.10

24. LetA represent ann×n nonsingular matrix. And letλ represent an eigenvalue
of A, andx represent an eigenvector ofA corresponding toλ. Show that|A|/λ
is an eigenvalue of adj(A) and thatx is an eigenvector of adj(A) corresponding
to |A|/λ.
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25. Let A represent ann × n matrix, and letp(λ) represent the characteristic
polynomial ofA. And letλ1, . . . , λk represent the distinct eigenvalues ofA,
andγ1, . . . , γk represent their respective algebraic multiplicities, so that (for
all λ)

p(λ) � (−1)nq(λ)
k∏
j�1

(λ− λj )γj

for some polynomialq(λ) (of degreen −∑k
j�1 γj ) that has no real roots.

Further, defineB � A − λ1UV′, whereU � (u1, . . . ,uγ1) is an n × γ1

matrix whose columnsu1, . . . ,uγ1 are (not necessarily linearly independent)
eigenvectors ofA corresponding toλ1 and whereV � (v1, . . . , vγ1) is an
n× γ1 matrix such thatV′U is diagonal.

(a) Show that the characteristic polynomial, sayr(λ), of B is such that (for all
λ)

r(λ) � (−1)nq(λ)
γ1∏
i�1

[λ− (1− v′iui)λ1]
k∏
j�2

(λ− λj )γj . (E.1)

[Hint. Since the left and right sides of equality (E.1) are polynomials (in
λ), it suffices to show that they are equal for allλ other thanλ1, . . . , λk.]

(b) Show that in the special case whereU′V � cI for some nonzero scalar
c, the distinct eigenvalues ofB are eitherλ2, . . . , λs−1, λs , λs+1, . . . , λk
with algebraic multiplicitiesγ2, . . . , γs−1, γs + γ1, γs+1, . . . , γk, respec-
tively, or (1−c)λ1, λ2, . . . , λk with algebraic multiplicitiesγ1, γ2, . . . , γk,
respectively [depending on whether or not (1− c)λ1 � λs for somes
(2 ≤ s ≤ k)].

(c) Show that, in the special case whereγ1 � 1, (a)u1 is an eigenvector ofB
corresponding to the eigenvalue (1− v′1u1)λ1 and (b) for any eigenvector
x of B corresponding to an eigenvalueλ [other than (1− v′1u1)λ1], the
vector

x− λ1(λ1 − λ)−1(v′1x)u1

is an eigenvector ofA corresponding toλ.
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Section 21.12

26. Let A represent anm × n matrix of rankr. And, takeP to be anym × m

orthogonal matrix andD1 to be anyr × r nonsingular diagonal matrix such
that

P′AA′P �
(

D2
1 0

0 0

)
.

Further, partitionP asP � (P1,P2), whereP1 hasr columns, and letQ �
(Q1,Q2), whereQ1 � A′P1D−1

1 and whereQ2 is anyn× (n− r) matrix such
thatQ′

1Q2 � 0. Show that

P′AQ �
(

D1 0
0 0

)
.

27. Show that the matricesU1, . . . ,Uk, which appear in decomposition (12.7), are
such thatUjU′

jUj � Uj (for j � 1, . . . , k) andU′
tUj � 0 andUtU′

j � 0 (for
t �� j � 1, . . . , k).

28. LetA represent anm × n matrix. And, as in Theorem 21.12.3, takeP to be
anm×m orthogonal matrix,Q ann× n orthogonal matrix, andD1 anr × r
nonsingular diagonal matrix such that

P′AQ �
(

D1 0
0 0

)
.

Further, partitionP andQ asP � (P1,P2) andQ � (Q1,Q2), where each
of the matricesP1 andQ1 hasr columns. Show thatC(A) � C(P1) and that
N (A) � C(Q2).

Section 21.13

29. LetA1, . . . ,Ak representn × n not-necessarily-symmetric matrices, each of
which is diagonalizable. Show that ifA1, . . . ,Ak commute in pairs, then
A1, . . . ,Ak are simultaneously diagonalizable.

30. LetV represent ann× n symmetric nonnegative definite matrix,X ann× p
matrix of rankr, andd ap× 1 vector. Using the results of Exercise 19.11 (or
otherwise), show that each of the following three conditions is necessary and
sufficient for the vectorX(X′X)−d to be a solution, for everyd ∈ C(X′), to the
problem of minimizing the quadratic forma′Va (in a) subject toX′a � d:

(a) there exists an orthogonal matrix that simultaneously diagonalizesV and
PX;

(b) there exists a subset ofr orthonormal eigenvectors ofV that is a basis for
C(X);

(c) there exists a subset ofr eigenvectors ofV that is a basis forC(X).
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Section 21.14

31. LetA represent ann×n symmetric matrix, and letB represent ann×n sym-
metric positive definite matrix. And letλmax andλmin represent, respectively,
the largest and smallest roots of|A− λB|. Show that

λmin ≤ x′Ax
x′Bx

≤ λmax

for every nonnull vectorx in Rn.

32. Let A represent ann × n symmetric matrix, and letB represent ann × n

symmetric positive definite matrix. Show thatA−B is nonnegative definite if
and only if alln (not necessarily distinct) roots of|A−λB| are greater than or
equal to 1 and is positive definite if and only if alln roots are (strictly) greater
than 1.

Bibliographic and Supplementary Notes
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22
Linear Transformations

In more advanced presentations of the topics of Chapters 1 – 21, matrices typically
play a subordinate role. In such presentations, the main results are in terms of
something called a linear transformation, which is regarded as a more fundamental
concept than that of a matrix. The emphasis on linear transformations results in an
approach that is more abstract, more “elegant,” and more conducive to geometrical
interpretation. It results in more generality in one sense, although not in another
sense. It tends to appeal to the “mathematically more sophisticated,” who typically
prefer “geometrical reasoning” to “algebraic arguments.”

In the first part of the present (and final) chapter of the book, the concept of
a linear transformation is formally introduced, and a number of results on linear
transformations are derived from first principles (i.e., “independently” of matri-
ces). And, in the latter parts of the chapter, it is shown that linear transformations
can be put into 1–1 correspondence with matrices, and then, based on this corre-
spondence, various results and terminology pertaining to matrices are extended to
linear transformations.

22.1 Some Definitions, Terminology, and Basic Results

A transformation (also known as a function, operator, map, or mapping)T from a
setV (consisting of scalars, row or column vectors, matrices, or other “objects”)
into a setW is a correspondence that assigns to each memberX of V a unique
member ofW. This unique member ofW is denoted by the symbolT (X) and is
referred to as theimage of X. The use of the term “into” (in the definition ofT )
alludes to the possibility that some members ofW may not appear as the image
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of any member ofV.
The setV is called thedomain of T . And the set{Y ∈ W : Y � T (X) for

someX ∈ V}, consisting of every member ofW that appears as the image of one
or more members ofV, is called therange of T . In the event that the range ofT
consists of all ofW, T is said to beonto and may be referred to as a transformation
from V ontoW. If each member of the range ofT appears as the image of only
one member ofV, T is referred to as a 1–1(one to one) transformation.

Corresponding to anym× n matrix A is the transformationT from Rn×1 into
Rm×1 that assigns to eachn×1 vectorx them×1 vectorAx. Clearly, the range of
T equalsC(A). Further,T is onto if and only ifA is of full row rank, that is, if and
only if rank(A) � m. And, T is 1–1 if and only if the columns ofA are linearly
independent, that is, if and only if rank(A) � n.

In what follows, the emphasis is on linear transformations. LetT represent a
transformation from a linear spaceV (of m × n matrices) into a linear spaceW
(of p × q matrices). Then,T is said to belinear if it satisfies the following two
conditions:

(1) for all X andZ in V, T (X+ Z) � T (X)+ T (Z); and

(2) for every scalarc and for allX in V, T (cX) � cT (X).

It is easy to verify thatT is linear if and only if, for all scalarsc andk and for
all X andZ in V,

T (cX+ kZ) � cT (X)+ kT (Z) .

More generally, lettingr represent a positive integer (greater than 1),T is linear
if and only if, for all scalarsc1, . . . , cr and for allX1, . . .Xr in V,

T

(
r∑
i�1

ciXi

)
�

r∑
i�1

ciT (Xi) . (1.1)

Clearly, for anym× nmatrixA, the transformation from the linear spaceRn×1

into the linear spaceRm×1 that assigns to eachn×1 vectorx them×1 vectorAx
is a linear transformation. More generally, for anyr × p matrix A and anyq × s
matrixB, the transformation from the linear spaceRp×q into the linear spaceRr×s

that assigns to eachp×q matrixX ther×s matrixAXB is a linear transformation
(as is easily verified).

LetT represent a transformation from a setV into a setW. Then corresponding
to any subsetU of V is the subset{Y ∈ W : Y � T (X) for someX ∈ U},
consisting of every member ofW that appears as the image of one or more members
of U . This subset is denoted by the symbolT (U) and is referred to as theimage
of the setU . Note that, by definition, the imageT (V) of the domainV of T is the
range ofT .

Now, suppose thatT is a linear transformation from a linear spaceV into a linear
spaceW and thatU is a subspace ofV. Then, for any matricesX1, . . . ,Xr that
spanU ,

T (U) � sp[T (X1), . . . , T (Xr )],
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as is evident from result (1.1). Thus,T (U) is a linear space; it is a subspace ofW.
In particular, the rangeT (V) of T is a subspace ofW and, accordingly, may be
referred to as therange space of T .

A linear transformationT from a linear spaceV ofm× nmatrices into a linear
spaceW of p × q matrices has the property thatT (0) � T (00) � 0T (0) � 0.
Thus,T assigns the (p× q) null matrix inW to the (m× n) null matrix inV. The
linear transformationT may also assign the null matrix inW to various nonnull
matrices inV.

The set

{X ∈ V : T (X) � 0} , (1.2)

comprising all matrices inV to which T assigns the null matrix, is nonempty.
Moreover, for any matricesX andZ in the set (1.2) and for any scalarc,T (X+Z) �
T (X)+ T (Z) � 0+ 0 � 0 andT (cX) � cT (X) � c0 � 0, so thatX+ Z andcX
are in the set (1.2). Thus, the set (1.2) is a linear space; it is a subspace ofV. This
subspace is called thenull space (or thekernel) of the linear transformationT and
is denoted by the symbolN (T ).

There is a simple and fundamental relationship between the range and null
spaces of a linear transformation. This relationship is described in the following
theorem.

Theorem 22.1.1. LetT represent a linear transformation from a linear spaceV
into a linear spaceW. Then,

dim(V) � dim(M)+ dim(N ) , (1.3)

whereM andN are, respectively, the range and null spaces ofT .
Proof. Letk � dim(V) ands � dim(N ). Further, letr � k−s. And assume that

r > 0 — if r � 0, then (in light of Theorem 4.3.10)V � N , in which caseM � {0}
and equality (1.3) is clearly valid — and take{Z1, . . .Zs} to be a basis forN —
if s � 0, interpret{Z1, . . . ,Zs} as the empty set. Then, it follows from Theorem
4.3.12 that there exist matricesX1, . . . ,Xr in V such that{X1, . . . ,Xr ,Z1, . . . ,Zs}
is a basis forV — if s � 0, interpret{X1, . . . ,Xr ,Z1, . . .Zs} as{X1, . . . ,Xr}.

Now, for i � 1, . . . , r, let Yi � T (Xi) (and observe thatYi ∈ M). To prove
Theorem 22.1.1, it suffices to show that{Y1, . . . ,Yr} is a basis forM. Let us
begin by showing that this set spansM.

Let Y represent an arbitrary matrix inM. Then there exists a matrixX in V
such thatY � T (X). Further, ifs > 0, there exist scalarsa1, . . . , ar , b1, . . . , bs
such that

X �
r∑
i�1

aiXi +
s∑
j�1

bjZj ,

in which case

Y � T (X) �
r∑
i�1

aiT (Xi)+
s∑
j�1

bjT (Zj ) �
r∑
i�1

aiT (Xi) �
r∑
i�1

aiYi .
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Alternatively, if s � 0, there exist scalarsa1, . . . , ar such thatX �∑r
i�1 aiXi , in

which case

Y � T (X) �
r∑
i�1

aiT (Xi) �
r∑
i�1

aiYi .

Thus, whethers > 0 or s � 0, M ⊂ sp(Y1, . . . ,Yr ), and, consequently,
{Y1, . . . ,Yr} spansM.

It remains to show that{Y1, . . . ,Yr} is linearly independent. Letc1, . . . , cr
represent any scalars such that

∑r
i�1 ciYi � 0. And defineZ �∑r

i�1 ciXi . Then,
we have that

T (Z) � T (
r∑
i�1

ciXi) �
r∑
i�1

ciT (Xi) �
r∑
i�1

ciYi � 0 ,

implying thatZ belongs toN . Thus, ifs > 0, there exist scalarsd1, . . . , ds such
thatZ �∑s

j�1 djZj , in which case

c1X1 + · · · + crXr − d1Z1 − · · · − dsZs � Z− Z � 0 ,

and (since{X1, . . . ,Xr ,Z1, . . . ,Zs} is a basis forV and hence is linearly indepen-
dent) it follows thatc1 � · · · � cr � 0 (and thatd1 � · · · � ds � 0). Alternatively,
if s � 0, thenZ � 0, and (since{X1, . . . ,Xr} is linearly independent), it follows
thatc1 � · · · � cr � 0. In either case, we conclude that{Y1, . . . ,Yr} is linearly
independent (and hence is a basis forM). Q.E.D.

In connection with Theorem 22.1.1, equality (1.3) can be rewritten to give the
following expressions for dim(M) and dim(N ):

dim(M) � dim(V)− dim(N ) , (1.4)

dim(N ) � dim(V)− dim(M) . (1.5)

Moreover, as an immediate consequence of Theorem 22.1.1, we have the following
corollary.

Corollary 22.1.2. For any linear transformationT from a linear spaceV into
a linear spaceW, the dimension of the range space ofT is less than or equal to
dim(V), that is, less than or equal to the dimension of the domain ofT .

One very basic transformation is the transformation from a linear spaceV into
a linear spaceW that assigns to every matrix inV the null matrix (inW). This
transformation is called thezero transformation and is denoted by the symbol 0.
Clearly, the zero transformation is linear. Further, its range space is the set whose
only member is the null matrix, and its null space equals its domainV.

Another very basic transformation is the identity transformation. Theidentity
transformation is the transformation from a linear spaceV into (the same linear
space)V defined byT (X) � X; it is denoted by the symbolI . The identity
transformation is linear (as is readily apparent). Further, it is onto; that is, its range
space equalsV. And, clearly, it is 1–1, implying in particular that its null space is
the set whose only member is the null matrix.
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Let T represent a linear transformation from a linear spaceV into a linear
spaceW, and letU represent any subspace ofV. Then, the transformation, say
R, from U into W defined byR(X) � T (X) (which assigns to each matrix inU
the same matrix inW assigned byT ) is called therestriction of T to U . Clearly,
the restriction ofT to U is a linear transformation. Further, its range space equals
T (U), and its null space equalsU ∩N (T ). And if T is 1–1, then so is the restriction
of T to U .

The following four lemmas give some basic results on linear transforma-
tions.

Lemma 22.1.3. Let T represent a linear transformation from a linear spaceV
into a linear spaceW. ThenT is 1–1 if and only ifN (T ) � {0} [i.e., if and only
if N (T ) contains no nonnull matrices].

Proof. Suppose thatT is 1–1. Then, since the image of the null matrix (inV) is
the null matrix (inW), V cannot contain any other matrix (i.e., any nonnull matrix)
whose image is the null matrix. Thus,N (T ) contains no nonnull matrices.

Conversely, suppose thatN (T ) contains no nonnull matrices. Then, for any
matricesZ and X in V for which T (Z) � T (X), we have thatT (Z − X) �
T (Z) − T (X) � 0, implying thatZ − X ∈ N (T) and hence thatZ − X � 0 or,
equivalently,Z � X. Thus,T is 1–1. Q.E.D.

Lemma 22.1.4. Let T represent a linear transformation from a linear spaceV
into a linear spaceW. And letX1, . . . ,Xk represent matrices inV. If X1, . . . ,Xk are
linearly dependent, then their imagesT (X1), . . . ,T(Xk) are also linearly dependent.

Proof. Suppose thatX1, . . . ,Xk are linearly dependent. Then there exist scalars
c1, . . . , ck, one or more of which is nonzero, such that

∑k
i�1 ciXi � 0. And,

k∑
i�1

ciT (Xi) � T

(
k∑
i�1

ciXi

)
� T (0) � 0 .

Thus,T (X1), . . . , T (Xk) are linearly dependent. Q.E.D.
Lemma 22.1.5. Let T represent a 1–1 linear transformation from a linear

spaceV into a linear spaceW. And letX1, . . . ,Xk represent matrices inV. Then
T (X1), . . . , T (Xk) are linearly independent if and only ifX1, . . . ,Xk are linearly
independent.

Proof. It suffices to show thatT (X1), . . . , T (Xk) are linearly dependent if and
only if X1, . . . ,Xk are linearly dependent. ThatT (X1), . . . , T (Xk) are linearly
dependent ifX1, . . . ,Xk are linearly dependent is an immediate consequence of
Lemma 22.1.4.

Now, suppose thatT (X1), . . . , T (Xk) are linearly dependent. Then there exist
scalarsc1, . . . , ck, one or more of which is nonzero, such that

∑k
i�1 ciT (Xi) � 0.

Further,T (
∑k

i�1 ciXi) �
∑k

i�1 ciT (Xi) � 0. And, it follows from Lemma 22.1.3
that

∑k
i�1 ciXi � 0. Thus,X1, . . . ,Xk are linearly dependent. Q.E.D.

Lemma 22.1.6. Let T represent a linear transformation fromV into W, where
V andW are linear spaces of the same dimension. Then,T is 1–1 if and only if
T (V) � W (i.e., if and only ifT is onto).

Proof. According to Lemma 22.1.3,T is 1–1 if and only ifN (T ) � {0} or,
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equivalently, if and only if dim[N (T )] � 0. Moreover, according to Theorem
22.1.1,

dim[N (T )] � dim(V)− dim[T (V)] .

Thus,T is 1–1 if and only if dim(V)−dim[T (V)] � 0 or, equivalently, if and only
if dim[T (V)] � dim(V). And, since dim(V) � dim(W), T is 1–1 if and only if
dim[T (V)] � dim(W).

It is now clear that ifT (V) � W, thenT is 1–1. And, conversely, ifT is 1–1, then
[sinceT (V) ⊂ W] we have [in light of Theorem 4.3.10] thatT (V) � W. Q.E.D.

As a special case of Lemma 22.1.6, we have the following corollary.
Corollary 22.1.7. Let T represent a linear transformation fromV into V. Then

T is 1–1 if and only ifT (V) � V (i.e., if and only ifT is onto).
The following lemma is sometimes useful.
Lemma 22.1.8. Let V andW represent linear spaces. And, denoting dim(V)

by r (and supposing thatr > 0), let {X1, . . . ,Xr} represent a basis forV, and
Y1, . . . ,Yr represent anyr (not necessarily distinct) matrices inW. Then the
transformationT (from V into W) defined by

T (X) �
r∑
i�1

ciYi ,

wherec1, . . . , cr are the (unique) scalars that satisfyX � ∑r
i�1 ciXi , is linear.

And, T (V) � sp(Y1, . . . ,Yr ). Moreover,T is 1–1 if and only ifY1, . . . ,Yr are
linearly independent.

Proof. Lettingk represent an arbitrary scalar, lettingX andZ represent arbitrary
matrices inV, and takingc1, . . . , cr andd1, . . . , dr to be the (unique) scalars that
satisfyX �∑r

i�1 ciXi andZ �∑r
i�1 diXi , we find thatkX �∑r

i�1(kci)Xi and
X+ Z �∑r

i�1(ci + di)Xi and hence that

T (kX) �
r∑
i�1

(kci)Yi � k

r∑
i�1

ciYi � kT (X)

and

T (X+ Z) �
r∑
i�1

(ci + di)Yi �
r∑
i�1

ciY+
r∑
i�1

diYi � T (X)+ T (Z) .

Thus,T is linear.
To verify that T (V) � sp(Y1, . . . ,Yr ), let Y represent any matrix in

sp(Y1, . . . ,Yr ). Then, there exist scalarsc1, . . . , cr such thatY � ∑r
i�1 ciYi .

Clearly,
∑r

i�1 ciXi ∈ V andT (
∑r

i�1 ciXi) � Y, implying thatY ∈ T (V). Thus,
sp(Y1, . . . ,Yr ) ⊂ T (V), and [since obviouslyT (V) ⊂ sp(Y1, . . .Yr )] it follows
thatT (V) � sp(Y1, . . . ,Yr ).

To prove the final part of the lemma, observe (in light of Lemma 22.1.3) thatT

is 1–1 if and only ifN (T ) � {0} and (since
∑r

i�1 ciXi � 0 ⇔ c1 � · · · � cr � 0)
thatN (T ) � {0} if and only if the only scalarsc1, . . . , cr for which

∑r
i�1 ciYi � 0
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arec1 � · · · � cr � 0. Thus,T is 1–1 if and only ifY1, . . . ,Yr are linearly
independent. Q.E.D.

LetS andT represent transformations from a setV into a setW. If S(X) � T (X)
for every memberX of V, S andT are said to be equal (or identical), and we may
write S � T .

The following lemma gives a necessary and sufficient condition for two linear
transformations to be equal.

Lemma 22.1.9. LetS andT represent linear transformations from a linear space
V into a linear spaceW. And letX1, . . . ,Xr represent any matrices (inV) that form
a basis forV or, more generally, any matrices such that sp(X1, . . . ,Xr ) � V. Then
(supposing thatr > 0) S � T if and only if, for i � 1, . . . , r, S(Xi) � T (Xi).

Proof. ThatS(Xi) � T (Xi) (for i � 1, . . . , r) if S � T is obvious.
Now, suppose that, fori � 1, . . . , r, S(Xi) � T (Xi). And let X represent an

arbitrary matrix inV. Then there exist scalarsc1, . . . , cr such thatX �∑r
i�1 ciXi .

Further,

S(X) � S

(
r∑
i�1

ciXi

)
�

r∑
i�1

ciS(Xi) �
r∑
i�1

ciT (Xi) � T (
r∑
i�1

ciXi) � T (X) .

Thus,S � T . Q.E.D.

22.2 Scalar Multiples, Sums, and Products of Linear
Transformations

a. Scalar multiples

Let T represent a transformation from a linear spaceV into a linear spaceW, and
let k represent an arbitrary scalar. Then the transformation fromV into W that
assigns to each matrixX in V the matrixkT (X) (in W) is referred to as ascalar
multiple of T and is denoted by the symbol (kT ) or (in the absence of ambiguity)
kT . Thus, (kT )(X) � kT (X). If the transformationT is linear, then the scalar
multiplekT is also linear, as is easily verified.

Clearly,

1T � T , (2.1)

and, lettingc (like k) represent a scalar, we find that

c(kT ) � (ck)T � (kc)T � k(cT ) . (2.2)

In the special case wherek � 0 or T � 0, the scalar multiplekT reduces to
the zero transformation (fromV into W). That is, 0T � 0, andk0 � 0. Further,
it is customary to refer to the scalar multiple (−1)T as thenegative of T and to
abbreviate (−1)T to (−T ) or−T .
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b. Sums

Let T andS represent transformations from a linear spaceV into a linear space
W. Then, the transformation fromV into W that assigns to each matrixX in V the
matrixT (X)+S(X) (in W) is referred to as thesum ofT andS and is denoted by the
symbol (T +S) orT +S. Thus, (T +S)(X) � T (X)+S(X). If the transformations
T andS are both linear, then their sumT + S is also linear, as is easily verified.

The addition of transformations is commutative, that is,

T + S � S + T . (2.3)

The addition of transformations is also associative, that is, takingR to be a third
transformation fromV into W,

T + (S + R) � (T + S)+ R . (2.4)

The symbol (T +S+R) orT +S+R is used to represent the (common) transfor-
mation given by the left and right sides of equality (2.4), and this transformation
is referred to as thesum of T , S, andR. This notation and terminology extend in
an obvious way to any finite number of transformations fromV into W.

We find (via a straightforward exercise) that, for any scalarc,

c(T + S) � (cT )+ (cS) (2.5)

and that, for any scalarsc andk,

(c + k)T � (cT )+ (kT ) . (2.6)

Let us write (T − S) or T − S for the sumT + (−S) or, equivalently, for the
transformation (fromV into W) that assigns to each matrixX in V the matrix
T (X) − S(X) (in W). And, let us refer to this transformation as thedifference
betweenT andS.

Clearly,
T − T � 0 . (2.7)

Further,
T + 0� 0+ T � T . (2.8)

c. Products

Let S represent a transformation from a linear spaceU into a linear spaceV,
and letT represent a transformation fromV into a linear spaceW. Consider the
transformation fromU into W that assigns to each matrixX in U the matrix
T [S(X)] (in W) obtained by applyingS to X and then applyingT to S(X). This
transformation is called theproduct (or thecomposition) of T andS and is denoted
by the symbol (T S) or T S. Thus, (T S)(X) � T [S(X)]. If the transformationsT
andS are both linear, then their productT S is also linear, as is easily verified.
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Let R represent a transformation from a linear spaceM into a linear spaceU ,
S a transformation fromU into a linear spaceV, andT a transformation fromV
into a linear spaceW. Then, for any matrixX in M,

(T (SR))(X) � T [(SR)(X)] � T {S[R(X)]} � (T S)[R(X)] � ((T S)R)(X) .

Thus,
T (SR) � (T S)R . (2.9)

The symbol (T SR) orT SR is used to represent the (common) transformation given
by the left and right sides of equality (2.9), and this transformation is referred to
as theproduct of T , S, andR — if the transformationsR, S, andT are all linear,
then clearly the transformationT SR is also linear. This terminology and notation
extend in an obvious way to an arbitrary number of transformations.

Now, letR andS represent linear transformations from a linear spaceU into
a linear spaceV, and letT represent a linear transformation fromV into a linear
spaceW. Then, for any matrixX in U ,

(T (S + R))(X) � T [(S + R)(X)] � T [S(X)+ R(X)]

� T [S(X)] + T [R(X)]

� (T S)(X)+ (T R)(X) .

Thus,
T (S + R) � (T S)+ (T R) . (2.10)

[And, the transformationT (S + R) (like R, S, andT ) is linear.]
Alternatively, suppose thatR is a linear transformation from a linear spaceU

into a linear spaceV and thatS andT are linear transformations fromV into a
linear spaceW. Then, employing an argument similar to that used to establish
equality (2.10), we find that

(T + S)R � (T R)+ (SR) . (2.11)

[And, the transformation (T + S)R is linear.]
Result (2.10) extends in an obvious way to the product of the linear transforma-

tionT (fromV intoW) and the sum of an arbitrary number of linear transformations
(from U into V). Similarly, result (2.11) extends in an obvious way to the product
of the sum of an arbitrary number of linear transformations (fromV into W) and
the linear transformationR (from U into V).

For any transformationS from a linear spaceU into a linear spaceV and any
transformationT from V into a linear spaceW, and for any scalark,

k(T S) � (kT )S � T (kS) , (2.12)

as is easily verified. The symbolkT S may be used to represent transformation
(2.12). (Further, if the transformationsS andT are linear, then so is the transfor-
mationkT S.)
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For any transformationT from a linear spaceV into a linear spaceW,

T I � IT � T , (2.13)

T 0� 0, 0T � 0 (2.14)

(where, depending on the context,I is the identity transformation fromV ontoV
or fromW ontoW, and 0 is the zero transformation from a linear spaceU into V
or W or fromW or V into U).

The following theorem gives a basic result on the product of two linear trans-
formations.

Theorem 22.2.1. Let S represent a linear transformation from a linear spaceU
into a linear spaceV, and letT represent a linear transformation fromV into a
linear spaceW. Then,

dim(MT S) � dim(MS)− dim(MS ∩NT ) , (2.15)

whereMS andMT S are the range spaces ofS andT S, respectively, andNT is
the null space ofT .

Proof. LetR represent the restriction ofT to MS . And denote the range space
and the null space ofR by MR andNR, respectively.

According to Theorem 22.1.1,

dim(MR) � dim(MS)− dim(NR) .

Moreover, it follows from the discussion (of restrictions) in Section 22.1 that

MR � T (MS) � T [S(U)] � T S(U) � MT S

andNR � MS ∩NT . Thus,

dim(MT S) � dim(MS)− dim(MS ∩NT ) .
Q.E.D.

As an immediate consequence of Theorem 22.2.1, we have the following corol-
lary.

Corollary 22.2.2. Let S represent a linear transformation from a linear space
U into a linear spaceV, and letT represent a linear transformation fromV into a
linear spaceW. Then,

dim(MT S) ≤ dim(MS) , (2.16)

whereMT S andMS are the range spaces ofT S andS, respectively.

22.3 Inverse Transformations and Isomorphic Linear
Spaces

Let T represent a transformation from a linear spaceV into a linear spaceW.
Suppose thatT is 1–1 and onto. ThenT is said to beinvertible. And there exists
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a (unique) transformation fromW into V that assigns to each matrixY in W the
(unique) matrixX (in V) such thatT (X) � Y. This transformation is called the
inverse of T and is denoted by the symbolT −1. Thus,

T −1(Y) � X

[whereX is such thatT (X) � Y].
The inverse transformationT −1 is 1–1 and onto, as can be easily verified. More-

over, if T is linear, then so isT −1. To see this, suppose thatT is linear. Then,
letting c represent an arbitrary scalar, lettingY and Z represent arbitrary ma-
trices in W, and lettingX and U represent the (unique) matrices (inV) such
that T (X) � Y and T (U) � Z, we find thatT (cX) � cT (X) � cY and
T (X+ U) � T (X)+ T (U) � Y+ Z, so that

T −1(cY) � cX � cT −1(Y)

and
T −1(Y+ Z) � X+ U � T −1(Y)+ T −1(Z) .

And it follows thatT −1 is linear.
For any matrixX in V, we have that

(T −1T )(X) � T −1[T (X)] � X � I (X)

(where the identity transformationI is that fromV ontoV). Thus,

T −1T � I . (3.1)

The inverse transformationT −1 is itself invertible (since it is 1–1 and onto).
Moreover, upon applying result (3.1) (withT −1 in place ofT ), we find that

(T −1)−1T −1 � I (3.2)

(where the identity transformationI is that fromW ontoW). It follows that

(T −1)−1 � (T −1)−1I � (T −1)−1(T −1T ) � ((T −1)−1T −1)T � IT � T .

Thus,T is the inverse ofT −1. Result (3.2) can be restated as

T T −1 � I . (3.3)

Let V andW represent linear spaces. If there exists a 1–1 linear transformation,
sayT , from V ontoW, thenV andW are said to beisomorphic, andT is said to
be anisomorphism of V ontoW.

Note that the identity transformationI from a linear spaceV onto V is an
isomorphism (fromV onto V) and hence that any linear space is isomorphic to
itself. Note also thatI is invertible and thatI−1 � I .

The following theorem gives a necessary and sufficient condition for two linear
spaces to be isomorphic.
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Theorem 22.3.1. Two linear spacesV andW are isomorphic if and only if
dim(V) � dim(W).

Proof. Suppose that dim(V) � dim(W) � r for some integerr. And suppose
thatr > 0 — if r � 0, we have thatV � {0} andW � {0}, and these two linear
spaces are clearly isomorphic. Then, there existr linearly independent matrices
Y1, . . . ,Yr in W (consisting of anyr matrices that form a basis forW), and it
follows from Lemma 22.1.8 that there exists a 1–1 linear transformation fromV
ontoW. Thus,V andW are isomorphic.

Conversely, suppose thatV andW are isomorphic. Then, by definition, there
exists an isomorphism, sayT , of V onto W. And, since (according to Lemma
22.1.3)N (T ) � {0}, it follows from Theorem 22.1.1 that

dim(V) � dim[T (V)] + dim[N (T )] � dim(W)+ 0� dim(W) .
Q.E.D.

As an immediate consequence of Theorem 22.3.1, we have the following corol-
lary.

Corollary 22.3.2. Everyn-dimensional linear space is isomorphic toRn.
Let W represent ann-dimensional linear space, and letB represent a set of

matricesY1, . . . ,Yn (in W) that form a basis forW. Subsequently, the symbol
LB is used to represent the transformation fromRn×1 into W that assigns to each
vectorx � (x1, . . . , xn)′ in Rn×1 the matrixx1Y1+ · · ·+ xnYn in W. Clearly,LB
is 1–1 and onto (and hence invertible) and is linear, so thatLB is an isomorphism
of Rn ontoW.

Note that the inverseL−1
B ofLB is the (linear) transformation that assigns to each

matrixY inW the column vectorx inRn whose elements (x1, . . . , xn, respectively)
are (uniquely) determined by the conditionY � x1Y1+· · ·+xnYn; that is, whose
elements are the coefficients of the basis matricesY1, . . . ,Yn whenY is expressed
as a linear combination of those matrices.

For i � 1, . . . , m and j � 1, . . . , n, let Uij represent thatm × n ma-
trix whoseij th element equals 1 and whose remainingmn − 1 elements equal
0. Then, the set, sayB, whose members are, respectively, themn matrices
U11,U21, . . . ,Um1, . . . ,U1n, U2n, . . . ,Umn, is a basis forRm×n. It is easy to see
that, for anym× n matrix A,

L−1
B (A) � vec(A) . (3.4)

Similarly, for i � 1, . . . , n, letU∗
ii represent then×nmatrix whoseith diagonal

element equals 1 and whose remainingn2−1 elements equal 0. And, forj < i �
1, . . . , n, let U∗

ij represent then × n matrix whoseij th andjith elements equal
1 and whose remainingn2 − 2 elements equal 0. Then, the set, sayB∗, whose
members are, respectively, then(n + 1)/2 matricesU∗

11,U∗
21, . . . ,U∗

n1, . . . ,U∗
ii ,

U∗
i+1,i , . . . ,U∗

ni, . . . ,U∗
nn is a basis for the linear space of alln × n symmetric

matrices. Clearly, for anyn× n symmetric matrixA,

L−1
B∗ (A) � vech(A) . (3.5)
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22.4 Matrix Representation of a Linear Transformation

a. Background, definition, and some basic properties

Any linear transformationT from ann-dimensional linear spaceV into anm-
dimensional linear spaceW can be replaced by a linear transformation fromRn×1

into Rm×1. LetB represent a set of matricesV1, . . . ,Vn (in V) that form a basis
for V, and letC represent a set of matricesW1, . . . ,Wm (in W) that form a basis
for W. And, adopting the notation introduced in Section 3, consider the product
L−1
C T LB of the three linear transformationsL−1

C , T , andLB .
For anyn× 1 vectorx and anym× 1 vectory,

(L−1
C T LB)(x) � y ⇔ T [LB(x)] � LC(y) , (4.1)

as is evident upon observing that

(L−1
C T LB)(x) � (L−1

C (T LB))(x) � L−1
C [(T LB)(x)]

andT [LB(x)] � (T LB)(x) and hence that result (4.1) can be reexpressed as

L−1
C [(T LB)(x)] � y ⇔ (T LB)(x) � LC(y).

And, for any matrixZ in V and any matrixY in W,

T (Z) � Y ⇔ (L−1
C T LB)[L−1

B (Z)] � L−1
C (Y) , (4.2)

as is evident from result (4.1) upon settingx � L−1
B (Z) andy � L−1

C (Y).
It is now clear that the linear transformationT from V into W can be replaced

by the transformationL−1
C T LB , which is a linear transformation fromRn×1 into

Rm×1. WhileT transforms each matrixZ in V into a matrixT (Z) in W,L−1
C T LB

transforms then-dimensional column vectorx � (x1, . . . , xn)′, whose elements
are the coefficients of the basis matricesV1, . . . ,Vn in the representationZ �
x1V1+· · ·+xnVn, into them-dimensional column vectory � (y1, . . . , ym)′, whose
elements are the coefficients of the basis matricesW1, . . .Wm in the representation
T (Z) � y1W1 + · · · + ymWm.

The image (L−1
C T LB)(x) of an arbitraryn × 1 vectorx � (x1, . . . , xn)′ under

the transformationL−1
C T LB can be obtained by premultiplyingx by a certain

matrix. To see this, observe that (forj � 1, . . . , n) the imageT (Vj ) of the j th
basis matrixVj for V (under the transformationT ) can be uniquely expressed as a
linear combination of the basis matrices forW; that is, there exist unique scalars
a1j , a2j , . . . , amj such that

T (Vj ) � a1jW1 + a2jW2 + · · · + amjWm . (4.3)

And, let A represent them × n matrix whosej th column is (a1j , a2j , . . . , amj )′

or, equivalently, whoseij th element isaij . This matrix, which is dependent on
the choice of the basesB andC, is referred to as thematrix representation of the
transformationT (or simply as the matrix ofT ).
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Now, letZ �∑n
j�1 xjVj [wherex � (x1, . . . , xn)′ is an arbitraryn×1 vector].

ThenZ is in V, and there exists a unique vectory � (y1, . . . , ym)′ in Rm×1 such
that

T (Z) �
m∑
i�1

yiWi . (4.4)

Moreover, it follows from the definition of a linear transformation that

T (Z) � T

(
n∑
j�1

xjVj

)
�

n∑
j�1

xjT (Vj ) �
n∑
j�1

xj

m∑
i�1

aijWi �
m∑
i�1

(
n∑
j�1

xjaij

)
Wi .

And, in light of the uniqueness of the coefficientsy1, . . . , ym in representation
(4.4), we have that

yi �
n∑
j�1

xjaij (i � 1, . . . , m) . (4.5)

Them equalities (4.5) can be rewritten as the matrix equality

y � Ax . (4.6)

Moreover, since clearlyT [LB(x)] � T (Z) � LC(y), it follows from result (4.1)
thaty � (L−1

C T LB)(x). Thus,

(L−1
C T LB)(x) � Ax ; (4.7)

that is, the image ofx under the transformationL−1
C T LB equalsAx.

LetS represent a linear transformation fromV intoW such thatS �� T . Further,
defineF � {fij } to be the matrix representation ofS (with respect to the bases
B andC), and observe that, as a consequence of Lemma 22.1.9, there exists an
integerj (between 1 andn, inclusive) such thatS(Vj ) �� T (Vj ). Then, since (by
definition)S(Vj ) �

∑m
i�1 fijWi , it follows thatfij �� aij for some integeri and

hence thatF �� A. Thus, distinct transformations fromV into W have distinct
matrix representations (with respect to the same bases).

b. Some special cases

It is instructive to consider the matrix representation of a linear transformation in
the following special cases.

1. LetT represent a linear transformation from ann-dimensional linear spaceV
into Rm×1. Further, letB represent a set of matricesV1, . . . ,Vn that form a basis
for V, and letC represent a set of (n-dimensional) column vectorsw1, . . . ,wm

that form a basis forRm×1. Then, lettingW represent them × m (nonsingular)
matrix whose first,. . ., mth columns arew1, . . . ,wm, respectively, the matrix
representation ofT with respect toB andC is (by definition) the uniquem × n

matrix A such that
WA � [T (V1), . . . , T (Vn)] , (4.8)
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that is, the matrix

W−1[T (V1), . . . , T (Vn)] . (4.9)

Note that whenC is taken to be the natural basis forRm×1, W � I, and the matrix
(4.9) simplifies to [T (V1), . . . , T (Vn)].

2. Let A represent anm × n matrix. Then, as discussed in Section 22.1, the
transformationT from Rn×1 into Rm×1 defined byT (x) � Ax is a linear transfor-
mation. The matrix representation ofT with respect to the natural bases forRn×1

andRm×1 (which consist of the columns ofIn andIm, respectively) is the matrix
A. However, except for special cases, the matrix representation ofT with respect
to other bases differs fromA.

3. LetV represent ann-dimensional linear space. And letB � {V1, . . . ,Vn} and
C � {W1, . . . ,Wn} represent arbitrary bases forV. Then the matrix representation
(with respect toB andC) of the identity transformationI from V ontoV is the
uniquen× n matrix A � {aij } such that (forj � 1, . . . , n)

Vj � a1jW1 + a2jW2 + · · · + anjWn . (4.10)

Moreover, the columns ofA are linearly independent and henceA is nonsin-
gular (since if the columns ofA were linearly dependent, then, in light of the
linear independence ofV1, . . . ,Vn, we would arrive at a contradiction of Lemma
3.2.4).

Note that ifx � (x1, . . . , xn)′ is then-dimensional column vector whose ele-
ments are the coefficients of the basis matricesV1, . . . ,Vn when a matrixZ (in V)
is expressed asZ � x1V1+· · ·+xnVn, then the first,. . . , nth elementsy1, . . . , yn
of then-dimensional column vectory � Ax are the coefficients of the basis ma-
tricesW1, . . . ,Wn whenZ is expressed asZ � y1W1 + · · · + ynWn. Note also
thatA � In if (and only if)B � C.

Further, for anyn × n nonsingular matrixA � {aij } and for any choice of the
basisC, the basisB can be chosen so thatA is the matrix representation of the
identity transformationI (from V ontoV) with respect toB andC. This can be
done by choosing (forj � 1, . . . , n) Vj � a1jW1 + a2jW2 + · · · + anjWn; that
V1, . . . ,Vn are linearly independent (and hence form a basis forV) is evident from
Lemma 3.2.4.

Now, suppose thatV � Rn×1. Then, B comprisesn column vectors
v1, . . . , vn, and similarlyC comprisesn column vectorsw1, . . . ,wn. Defining
V � (v1, . . . , vn) andW � (w1, . . . ,wn) (both of which aren × n nonsingular
matrices), the matrix representation of the identity transformationI from Rn×1

ontoRn×1 with respect toB andC is the (unique)n × n (nonsingular) matrixA
such thatWA � V [as is evident from equality (4.10)], that is, the matrixW−1V.

4. Let B represent a set of matricesY1, . . . ,Yn that form a basis for ann-
dimensional linear spaceW, and letC represent the set comprising the first,. . . , nth
columns, saye1, . . . , en, of In (which is the natural basis forRn×1). Further, let
A � {aij } denote the matrix representation of the linear transformationLB (with
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respect toC andB). Forj � 1, . . . , n, we have that

Yj � LB(ej ) �
n∑
i�1

aijYi ,

implying thatajj � 1 and that, fori �� j , aij � 0. Thus,A � In.
5. Let T represent a linear transformation fromRm×n into Rp×q . Further, let

C represent the natural basis forRm×n, comprising themn matricesU11,U21,
. . . ,Um1, . . . , U1n, U2n, . . . ,Umn, where (fori � 1, . . . , m andj � 1, . . . , n)
Uij is them×nmatrix whoseij th element equals 1 and whose remainingmn−1
elements equal 0; and, similarly, letD represent the natural basis forRp×q . Then,
making use of result (3.4), we find that, for anymn× 1 vectorx,

(L−1
D T LC)(x) � (L−1

D (T LC))(x) � L−1
D [(T LC)(x)]

� vec[(T LC)(x)] � vec{T [LC(x)]} .
Further, for anym× n matrix X � {xij },

(L−1
D T LC)(vecX) � vec{T [LC(vecX)]}

� vec(T {LC [L−1
C (X)]}) � vec[T (X)] , (4.11)

implying in particular that

(L−1
D T LC)(vecX) � vec

[
T

(∑
i,j

xijUij

)]

� vec

[∑
i,j

xij T
(
Uij

)]

�
∑
i,j

xij vec[T (Uij )]

� [vec T (U11), . . . , vecT (Um1), . . . , vecT (U1n),

. . . , vecT (Umn)]vec(X) .

And, in light of result (4.7), it follows that the matrix representation ofT (with
respect to the natural basesC andD) equals thepq ×mn matrix

[vec T (U11), . . . , vecT (Um1), . . . , vecT (U1n), . . . , vecT (Umn)] . (4.12)

Suppose, for instance, that (for everym× n matrix X)

T (X) � AXB ,

whereA is ap×mmatrix andB ann× q matrix. Then the matrix representation
of T (with respect to the natural basesC andD) is B′ ⊗ A.

To see this, observe [in light of result (4.11) and Theorem 16.2.1] that

(L−1
D T LC)(vecX) � vec[T (X)] � (B′ ⊗ A)vecX ,
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and apply result (4.7). Or, alternatively, lettingai represent theith column ofa
andb′j thej th row of B, observe [in light of result (16.2.3)] that

vecT (Uij ) � vec(aib′j ) � bj ⊗ ai

(i � 1, . . . , m ; j � 1, . . . , n) and hence [in light of results (16.1.28) and
(16.1.27)] that expression (4.12) simplifies to

(b1 ⊗ a1, . . . ,b1 ⊗ am, . . . ,bn ⊗ a1, . . . ,bn ⊗ am)

� (b1 ⊗ A, . . .bn ⊗ A) � (b1, . . . ,bn)⊗ A � B′ ⊗ A .

6. Let V represent the linear space of alln × n symmetric matrices andW
the linear space of allp × p symmetric matrices, and letT represent a linear
transformation fromV into W. Further, letB represent the usual basis forV,
comprising then(n+ 1)/2 matricesU∗

11,U∗
21, . . ., U∗

n1, . . . , U∗
ii , . . . , U∗

i+1,i , . . . ,
U∗
ni, . . ., U∗

nn, where (fori � 1, . . . , n) U∗
ii is then× nmatrix whoseith diagonal

element equals 1 and whose remainingn2 − 1 elements equal 0 and where (for
j < i � 1, . . . , n) U∗

ij is then × n matrix whoseij th andjith elements equal 1
and whose remainingn2−2 elements equal 0. And letC represent the usual basis
for W.

Then, making use of result (3.5), we find that, for anyn(n+ 1)/2× 1 vectorx,

(L−1
C T LB)(x) � (L−1

C (T LB))(x) � L−1
C [(T LB)(x)]

� vech[(T LB)(x)] � vech{T [LB(x)]} .
Further, for anyn× n symmetric matrixX � {xij },

(L−1
C T LB)(vechX) � vech{T [LB(vechX)]}

� vech(T {LB [L−1
B (X)]}) � vech[T (X)] , (4.13)

implying in particular that

(L−1
C T LB)(vechX) � vech

[
T

(∑
i,j<i

xijU∗
ij

)]

� vech

[∑
i,j<i

xij T
(
U∗
ij

)]

�
∑
i,j<i

xij vech[T (U∗
ij )]

� [vechT (U∗
11), . . . , vechT (U∗

n1), . . . , vechT (U∗
ii),

. . . , vechT (U∗
ni), . . . , vechT (U∗

nn)]vech(X) .

And, in light or result (4.7), it follows that the matrix representation ofT (with
respect to the usual basesB andC) equals thep(p + 1)/2× n(n+ 1)/2 matrix

[vechT (U∗
11), . . . , vechT (U∗

n1), . . . , vechT (U∗
ii),

. . . vechT (U∗
ni), . . . , vechT (U∗

nn)] . (4.14)
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Suppose, for instance, thatp � n (implying thatW � V andC � B) and that
(for everyn× n symmetric matrixX)

T (X) � AXA′ ,

whereA is ann × n matrix. Then, the matrix representation ofT (with respect
to the usual bases) isHn(A ⊗ A)Gn (whereGn andHn are as defined in Section
16.4b), as can be verified by, for example, observing [in light of results (4.13) and
(16.4.25)] that

(L−1
C T LB)(vechX) � vech[T (X)] � [Hn(A⊗ A)Gn]vechX

and applying result (4.7).

c. Matrix representations of scalar multiples, sums, and
products of linear transformations

The following two theorems give some basic results on the matrix representations
of scalar multiples, sums, and products of linear transformations.

Theorem 22.4.1. Let k represent a scalar, and letT and S represent linear
transformations from ann-dimensional linear spaceV into anm-dimensional linear
spaceW. And letC andD represent bases forV andW, respectively. Further, let
A � {aij } represent the matrix representation ofT with respect toC andD, and
B � {bij } the matrix representation ofS with respect toC andD. Then,kA is the
matrix representation ofkT (with respect toC andD) andA + B is the matrix
representation ofT + S (with respect toC andD).

Proof. Let V1, . . . ,Vn represent the matrices that form the basisC, and
W1, . . . ,Wm the matrices that form the basisD. Then, forj � 1, . . . , n,

(kT )(Vj ) � kT (Vj ) � k

m∑
i�1

aijWi �
m∑
i�1

(kaij )Wi ,

and

(T + S)(Vj ) � T (Vj )+ S(Vj ) �
m∑
i�1

aijWi +
m∑
i�1

bijWi �
m∑
i�1

(aij + bij )Wi .

Thus, the matrix representation ofkT (with respect toC andD) is them×nmatrix
whoseij th element iskaij , that is, the matrixkA; and the matrix representation
of T + S (with respect toC andD) is them × n matrix whoseij th element is
aij + bij , that is, the matrixA+ B. Q.E.D.

Theorem 22.4.2. LetS represent a linear transformation from ap-dimensional
linear spaceU into ann-dimensional linear spaceV, and letT represent a linear
transformation fromV into anm-dimensional linear spaceW. And letC,D, and
E represent bases forU , V, andW, respectively. Further, letA � {aij } represent
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the matrix representation ofS with respect toC andD, andB � {bij } the matrix
representation ofT with respect toD andE. ThenBA is the matrix representation
of T S (with respect toC andE).

Proof. LetU1, . . . ,Up represent the matrices that form the basisC, V1, . . . ,Vn

the matrices that form the basisD, andW1, . . . ,Wm the matrices that form the
basisE. Then, forj � 1, . . . , p,

(T S)(Uj ) � T [S(Uj )] � T

(
m∑
k�1

akjVk

)

�
n∑
k�1

akjT (Vk)

�
n∑
k�1

akj

m∑
i�1

bikWi �
m∑
i�1

(
n∑
k�1

bikakj

)
Wi .

Thus, the matrix representation ofT S (with respect toC andE) is them × p

matrix whoseij th element is
∑n

k�1 bikakj , that is, the matrixBA. Q.E.D.
The results given by Theorems 22.4.1 and 22.4.2 on the matrix representations

of a sum and a product of two linear transformations can be extended (by repeated
application) to a sum and a product of any finite number of linear transformations.
If T1, T2, . . . , Tk are linear transformations from a linear spaceV into a linear space
W, and ifA1,A2, . . . ,Ak are their respective matrix representations (with respect
to the same basesC andD), thenA1+A2+ · · · +Ak is the matrix representation
of T1 + T2 + · · · + Tk (with respect toC andD). Similarly, if B0, B1, . . . , Bk are
bases for linear spacesV0,V1, . . . ,Vk, respectively, and if (fori � 1, . . . , k) Ti is
a linear transformation fromVi−1 into Vi , andAi is the matrix representation of
Ti with respect toBi−1 andBi , thenAk · · ·A2A1 is the matrix representation of
Tk · · · T2T1 with respect toB0 andBk.

As a corollary of Theorem 22.4.2, we have the following result.
Corollary 22.4.3. Let T represent an invertible linear transformation from a

linear spaceV onto a linear spaceW (in which caseV andW are of the same
dimension). And, letB andC represent bases forV andW, respectively. Further,
let A represent the matrix representation ofT with respect toB andC. ThenA
is nonsingular, andA−1 is the matrix representation ofT −1 (which is a linear
transformation fromW ontoV) with respect toC andB.

Proof. Let H represent the matrix representation ofT −1 (with respect toC and
B). Then, since [according to result (3.1)]T −1T � I and since (as discussed in
Part 3 of Subsection b) the matrix representation of the identity transformation
from V ontoV (with respect toB andB) is I, it follows from Theorem 22.4.2 that
HA � I. And, based on Lemma 8.1.3, we conclude thatA is nonsingular and that
H � A−1. Q.E.D.
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d. Change of bases

The effect of a change of bases on the matrix representation of a linear transfor-
mation is described in the following theorem.

Theorem 22.4.4. Let T represent a linear transformation from a linear space
V into a linear spaceW, and letA represent the matrix representation ofT with
respect to basesB andC (for V andW, respectively). Then the matrix represen-
tation ofT with respect to alternative basesE andF (for V andW, respectively)
equalsS−1AR, whereR is the matrix representation of the identity transformation
from V ontoV with respect toE andB andS is the matrix representation of the
identity transformation fromW ontoW with respect toF andC.

Proof. To avoid confusion, let us writeI1 for the identity transformation from
V onto V and I2 for the identity transformation fromW onto W. Then, since
I−1 � I , we have thatT � I−1

2 T I1. And, upon observing (in light of Corollary
22.4.3) thatS−1 is the matrix representation ofI−1

2 with respect toC andF , and
upon applying Theorem 22.4.2, we find that the matrix representation ofT with
respect toE andF equalsS−1AR. Q.E.D.

As special cases of Theorem 22.4.4, we have the following two corollaries.
Corollary 22.4.5. Let T represent a linear transformation from a linear space

V into a linear spaceW, and letA represent the matrix representation ofT with
respect to basesB andC (for V andW, respectively). Then, the matrix representa-
tion of T with respect to an alternative basisE (for V) and the basisC equalsAR,
whereR is the matrix representation of the identity transformation fromV ontoV
with respect toE andB. And the matrix representation ofT with respect toB and
an alternative basisF (for W) equalsS−1A, whereS is the matrix representation
of the identity transformation fromW ontoW with respect toF andC.

Corollary 22.4.6. Let V represent a linear space, and letC andF represent
bases forV. Further, letT represent a linear transformation fromV into V, and
let A represent the matrix representation ofT with respect toC andC. Then the
matrix representation ofT with respect toF andF equalsS−1AS, whereS is the
matrix representation of the identity transformation (fromV ontoV) with respect
to F andC.

Let V represent ann-dimensional linear space andW anm-dimensional linear
space. Further, letB represent a basis forV andC a basis forW. And let R
represent ann× n nonsingular matrix andS anm×m nonsingular matrix. Then,
in light of the discussion in Part 3 of Subsection b, there exists a basisE for V
such thatR is the matrix representation of the identity transformation (fromV
ontoV) with respect toE andB, and similarly there exists a basisF for W such
thatS is the matrix representation of the identity transformation (fromW ontoW)
with respect toF andC. Thus, as a consequence of Theorem 22.4.4 and Corollary
22.4.6, we have the following two results.

Theorem 22.4.7. Let V represent ann-dimensional linear space andW anm-
dimensional linear space. Further, letB represent a basis forV andC a basis for
W. And letT represent a linear transformation fromV into W, andA represent
the matrix representation ofT with respect toB andC. Then anm× n matrix H
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is a matrix representation ofT with respect to some basesE andF if and only if
H � S−1AR for somen×n (nonsingular) matrixR and somem×m (nonsingular)
matrix S.

Theorem 22.4.8. Let V represent ann-dimensional linear space, and letC
represent any basis forV. Further, letT represent a linear transformation fromV
into V, and letA represent the matrix representation ofT with respect toC and
C. And let H represent ann × n matrix. Then there exists a basisF for V such
that H is the matrix representation ofT with respect toF andF if and only if
H � S−1AS for somen × n (nonsingular) matrixS, that is, if and only ifH is
similar toA.

22.5 Terminology and Properties Shared by a Linear
Transformation and Its Matrix Representation

Let V represent ann-dimensional linear space andW anm-dimensional linear
space. And letB represent a set of matricesV1, . . . ,Vn (in V) that form a basis for
V, andC represent a set of matricesW1, . . . ,Wm (in W) that form a basis forW.
Then, corresponding to each linear transformationT from V into W is its matrix
representationA � {aij } (with respect toB andC), which is them × n matrix
whosej th column is uniquely defined (forj � 1, . . . , n) by equation (4.3).

Conversely, corresponding to anym×nmatrixA, there is a unique linear trans-
formation fromV into W that hasA as its matrix representation (with respect to
B andC), namely, the transformationLCSL

−1
B , whereS is the (linear) transfor-

mation fromRn into Rm defined byS(x) � Ax. To see this, observe (in light of
Part 4 of Section 22.4b) that the matrix representation ofLB (with respect to the
natural basis forRn×1 and the basisB) is In, and that the matrix representation
of LC (with respect to the natural basis forRm×1 and the basisC) is Im. Then,
making use of Theorem 22.4.2 and Corollary 22.4.3, we find (in light of Part 2 of
Section 22.4b) that the matrix representation ofLCSL

−1
B (with respect toB and

C) is ImAI−1
n � A. [Moreover, it follows from the discussion in Section 22.4a that

LCSL
−1
B is the only linear transformation fromV into W that hasA as its matrix

representation (with respect toB andC).]
Thus, by associating every linear transformation (fromV intoW) with its matrix

representation (with respect toB andC), we obtain a 1–1 correspondence between
transformations (fromV intoW) andm×nmatrices. It is customary to use the same
or similar terminology in speaking of various kinds of linear transformations as in
speaking of their matrix counterparts (and vice versa). For example, in the special
case whereW � V andC � B, theidentity matrix is the matrix representation of
the identity transformation from V ontoV. Results on linear transformations can
be translated into results on matrices (and conversely).

As discussed in Section 22.4a, a linear transformationT from V into W can
be replaced byL−1

C T LB , which is a linear transformation fromRn×1 into Rm×1

L−1
C T LB transforms ann × 1 vectorx � (x1, . . . , xn)′, whose elements can be
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regarded as the coefficients or “coordinates” of a matrixZ inV (whenZ is expressed
as a linear combinationZ � x1V1+ · · ·+ xnVn of the basis matricesV1, . . . ,Vn)
into them × 1 vectory � (y1, . . . , ym)′, whose elements are the coefficients
or “coordinates” of the matrix T(Z) in W [when T(Z) is expressed as a linear
combinationT (Z) � y1W1 + · · · + ymWm of the basis matricesW1, . . . ,Wm].
Further, the image (L−1

C T LB)(x) of x can be obtained by matrix multiplication,
using the formulaL−1

C T LB(x) � Ax, whereA is the matrix representation ofT
(with respect toB andC).

Accordingly, one approach to the subject of linear transformations is to restrict
attention to linear transformations defined, in terms of anm × n matrix A, by
specifying thatAx is the image of an arbitraryn× 1 vectorx. In a certain sense,
there is no loss of generality in this approach. Its appeal is that it allows results on
linear transformations to be developed as results on matrices and to be expressed
in the language of matrices.

An alternative approach is to derive results on linear transformations from first
principles (starting with the definition of a linear transformation), with matrices
playing a subordinate role. This approach, which was followed to a considerable
extent in Sections 22.1 – 22.3, is sometimes referred to as thecoordinate-free
approach.

Let us now consider a few of the more important relationships between linear
transformations and their matrix representations, beginning with the following
result on null spaces and on range or column spaces.

Theorem 22.5.1. LetT represent a linear transformation from ann-dimensional
linear spaceV into anm-dimensional linear spaceW, and letA represent the matrix
representation ofT with respect to basesB andC (for V andW, respectively).

(1) Anm× 1 vectory is in C(A) if and only if the corresponding matrixLC(y) is
in the range spaceT (V) of T , or, equivalently, a matrixY (in W) is in T (V) if
and only if the corresponding vectorL−1

C (Y) is in C(A).

(2) An n × 1 vectorx is in N (A) if and only if the corresponding matrixLB(x)
is in N (T ), or, equivalently, a matrixX (in V) is in N (T ) if and only if the
corresponding vectorL−1

B (X) is in N (A).

Proof. (1) Making use of results (4.7) and (4.1), we find that

y ∈ C(A) ⇔ y � Ax for some vectorx

⇔ y � (L−1
C T LB)(x) for some vectorx

⇔ LC(y) � T [LB(x)] for some vectorx

⇔ LC(y) ∈ T (V) .

(2) Again making use of results (4.7) and (4.1), we find that

x ∈ N (A) ⇔ Ax � 0 ⇔ (L−1
C T LB)(x) � 0

⇔ T [LB(x)] � LC(0)
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⇔ T [LB(x)] � 0 ⇔ LB(x) ∈ N (T ) .
Q.E.D.

The dimension dim[T (V)] of the range space of a linear transformationT from
a linear spaceV into a linear spaceW is referred to as therank of T and is denoted
by the symbol rankT or rank(T ). This use of the term rank is consistent with its
use in connection with matrices, as described in the following theorem.

Theorem 22.5.2. LetT represent a linear transformation from ann-dimensional
linear spaceV into anm-dimensional linear spaceW, and letA represent the matrix
representation ofT with respect to basesB andC (for V andW, respectively).
Then,

rankT � rankA . (5.1)

Proof. Part (1) of Theorem 22.5.1 implies thatLC [C(A)] � T (V) (as can be
easily verified). Thus, there exists a 1–1 linear transformation fromC(A) onto
T (V), namely, the linear transformationR defined [fory ∈ C(A)] by R(y) �
LC(y). And, it follows thatC(A) andT (V) are isomorphic. Based on Theorem
22.3.1, we conclude that dim[T (V)] � dim[C(A)] or, equivalently, that rankT �
rankA. Q.E.D.

In connection with Theorem 22.5.2, note that result (5.1) does not depend on
the choice of the basesB andC. Note also that, as a consequence of Theorem
22.1.1 and Lemma 11.3.1, we have the following corollary.

Corollary 22.5.3. LetT represent a linear transformation from ann-dimensional
linear spaceV into anm-dimensional linear spaceW, and letA represent the matrix
representation ofT with respect to basesB andC (for V andW, respectively).
Then,

dim[N (T )] � n− rank(T ) � n− rank(A) � dim[N (A)] . (5.2)

Now, letT represent a linear transformation from a linear spaceV intoV. Then,
a scalar (real number)λ is said to be aneigenvalue of T if there exists a nonnull
matrix X (in V) such that

T (X) � λX ,

in which caseX may be referred to as aneigenmatrix (or, in the special case where
V is a linear space of vectors, as aneigenvector) corresponding toλ.

As might be suspected, the eigenvalues and eigenmatrices of a linear transforma-
tion T are related to the eigenvalues and eigenvectors of the matrix representation
of T . This relationship is described in the following theorem.

Theorem 22.5.4. LetT represent a linear transformation from ann-dimensional
linear spaceV intoV, letB represent any basis forV, and letA represent the matrix
representation ofT (with respect toB andB). Then a scalarλ is an eigenvalue of
A and ann× 1 vectorx is an eigenvector ofA corresponding toλ if and only if λ
is an eigenvalue ofT andLB(x) is an eigenmatrix ofT corresponding toλ.

Proof. In light of results (4.7) and (4.1),

Ax � λx ⇔ (L−1
B T LB)(x) � λx

⇔ T [LB(x)] � LB(λx) ⇔ T [LB(x)] � λLB(x) .

Moreover,x is nonnull if and only ifLB(x) is nonnull. Q.E.D.
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A subspaceU of ann-dimensional linear spaceV is said to beinvariant relative
to a linear transformationT from V into V if T (U) ⊂ U , that is, if for every matrix
Z in U , the imageT (Z) of Z is also inU . As described in the following theorem,
the invariance of a subspace of ann-dimensional linear spaceV relative to a linear
transformationT (fromV intoV) is related to the invariance of a subspace ofRn×1

relative to the matrix representation ofT .
Theorem 22.5.5. LetT represent a linear transformation from ann-dimensional

linear spaceV intoV, letB represent any basis forV, and letA represent the matrix
representation ofT (with respect toB andB). Then a subspaceU of Rn×1 is
invariant relative toA if and only if the corresponding subspaceLB(U) of matrices
in V is invariant relative toT .

Proof. In light of result (4.7),U is invariant relative toA if and only if U is
invariant relative toL−1

B T LB (which is a linear transformation fromRn×1 into
Rn×1). Thus, it suffices to show thatU is invariant relative toL−1

B T LB if and only
if LB(U) is invariant relative toT .

Suppose thatLB(U) is invariant relative toT . And let x represent an arbitrary
vector inU [so thatLB(x) ∈ LB(U)]. ThenT [LB(x)] � Y for some matrixY
in LB(U), or, equivalently,T [LB(x)] � LB(y) for some vectory in U . And it
follows from result (4.1) that (L−1

B T LB)(x) � y for somey in U and hence that
(L−1

B T LB)(x) ∈ U . Thus,U is invariant relative toL−1
B T LB .

Conversely, suppose thatU is invariant relative toL−1
B T LB . And letZ represent

an arbitrary matrix inLB(U). Then there exists a vectorx in U such thatZ � LB(x).
Moreover, (L−1

B T LB)(x) � y for some vectory in U . Thus, making use of result
(4.1), we find that

T (Z) � T [LB(x)] � LB(y) ∈ LB(U) .

And it follows thatLB(U) is invariant relative toT . Q.E.D.

22.6 Linear Functionals and Dual Transformations

In the special case whereW � R1, it is customary to refer to a linear transformation
from a linear spaceV into a linear spaceW as alinear functional on V. Thus, a
linear functionalf on a linear spaceV transforms each matrixX in V into a scalar
f (X) and does so in such a way thatf (

∑r
i�1 ciXi) �

∑r
i�1 cif (Xi) for any r

matricesX1, . . . ,Xr (in V) and anyr scalarsc1, . . . , cr (wherer is an arbitrary
positive integer). Note that if the linear functionalf is the zero functional [i.e., if
f (X) � 0 for every matrixX in the domainV of f ], then the range off is {0} and
that otherwise the range off is R1.

It follows from the discussion in Section 14.1 that, corresponding to any linear
functionalf onRn×1, there exists a unique vectora in Rn×1 such that

f (x) � a′x

for every vectorx in Rn×1, that is, such thatf (x) equals the usual inner product
of a andx. And, for any vectora in Rn×1, the function with domainRn×1 that
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transforms each vectorx in Rn×1 into the usual inner producta′x of a andx is a
linear functional onRn×1. These results are generalized (to inner products other
than the usual inner product and to linear spaces other thanRn×1) in the following
lemma.

Lemma 22.6.1. (1) Corresponding to any linear functionalf on a linear space
V (and to any inner product forV), there exists a matrixA in V such that

f (X) � A •X

for every matrixX in V. Moreover, this matrix is unique and is expressible as

A � f (X1)X1 + · · · + f (Xr )Xr ,

whereX1, . . . ,Xr are any matrices that form an orthonormal basis forV. (2) For
any matrixA in V, the functionf (with domainV) that transforms each matrixX
in V into the inner productA •X of A andX is a linear functional onV.

Proof. (1) LetX represent an arbitrary matrix inV. Then, according to Theorem
6.4.4,X �∑r

i�1(X •Xi)Xi . And we find that

f (X) �
r∑
i�1

(X •Xi)f (Xi) �
r∑
i�1

f (Xi)(Xi
•X) �

[
r∑
i�1

f (Xi)Xi

]
•X � A •X ,

whereA �∑r
i�1 f (Xi)Xi .

Now, letB represent any matrix inV such thatf (X) � B •X for everyX in V.
Then, to complete the proof of Part (1), it suffices to show thatB � A. For every
X in V, we have thatB •X � f (X) � A •X and hence that

(B− A) •X � (B •X)− (A •X) � 0 .

In particular, (B − A) • X � 0 for X � B − A; that is, (B − A) • (B − A) � 0,
implying thatB− A � 0 or, equivalently, thatB � A.

(2) That the functionf is a linear functional onV is an immediate consequence
of the properties of inner products. Q.E.D.

Let A represent anm× n matrix. Takex •z to be the usual inner productx′z of
arbitrary vectorsx andz in Rn×1, and writeu ∗ y for the usual inner productu′y
of arbitrary vectorsu andy in Rm×1. Then there exists a uniquen × m matrix B
such that

x • (By) � (Ax) ∗ y (6.1)

for everyx in Rn×1 and everyy in Rm×1, andB � A′ (as can be easily verified).
The following theorem extends this result to transformations.

Theorem 22.6.2. LetT represent a linear transformation from ann-dimensional
linear spaceV into anm-dimensional linear spaceW. And writeX •Z for the inner
product of arbitrary matricesX andZ in V, andU ∗ Y for the inner product of
arbitrary matricesU andY in W. Then there exists a linear transformationS from
W into V such that

X •S(Y) � T (X) ∗ Y
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for every matrixX in V and every matrixY in W. Moreover, this linear transfor-
mation is unique, and (for everyY in W)

S(Y) � [Y ∗ T (X1)]X1 + [Y ∗ T (X2)]X2 + · · · + [Y ∗ T (Xn)]Xn ,

whereX1,X2, . . . ,Xn are any matrices that form an orthonormal basis forV.
Proof. Let X represent an arbitrary matrix inV, andY an arbitrary matrix in

W. And observe (in light of Theorem 6.4.4) thatX � ∑n
j�1(X • Xj )Xj and that

(for j � 1, . . . , n) Xj �
∑n

i�1(Xj
•Xi)Xi . Then,

T (X) ∗ Y � T

[
n∑
j�1

(X •Xj )Xj

]
∗ Y

�
[

n∑
j�1

(X •Xj )T (Xj )

]
∗ Y

�
n∑
j�1

(X •Xj )[T (Xj ) ∗ Y]

�
n∑
j�1

(X •Xj )

{
T

[
n∑
i�1

(Xi
•Xj )Xi

]
∗ Y

}

�
n∑
j�1

(X •Xj )

{[
n∑
i�1

(Xi
•Xj )T (Xi)

]
∗ Y

}

�
n∑
j�1

(X •Xj )
n∑
i�1

(Xi
•Xj )[T (Xi) ∗ Y]

�
n∑
j�1

(X •Xj )
n∑
i�1

[Y ∗ T (Xi)](Xi
•Xj )

�
n∑
j�1

(X •Xj )

{(
n∑
i�1

[Y ∗ T (Xi)]Xi

)
•Xj

}

�
n∑
j�1

(X •Xj )

{
Xj

•

(
n∑
i�1

[Y ∗ T (Xi)]Xi

)}

�
[

n∑
j�1

(X •Xj )Xj

]
•

(
n∑
i�1

[Y ∗ T (Xi)]Xi

)

� X •S(Y) ,

whereS is the transformation fromW into V that transforms each matrixY in
W into the matrix

∑n
i�1[Y ∗ T (Xi)]Xi . Moreover,S is linear, as is evident upon

observing that (for any scalark and for any matricesY andU in W)

S(kY) �
n∑
i�1

[(kY) ∗ T (Xi)]Xi � k

n∑
i�1

[Y ∗ T (Xi)]Xi � kS(Y)
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and

S(U+ Y) �
n∑
i�1

[(U+ Y) ∗ T (Xi)]Xi

�
n∑
i�1

[U ∗ T (Xi)]Xi +
n∑
i�1

[Y ∗ T (Xi)]Xi � S(U)+ S(Y) .

Now, letR represent any linear transformation fromW intoV such thatX •R(Y)
� T (X) ∗ Y for everyX ∈ V and everyY ∈ W. Then, to complete the proof, it
suffices to show thatR � S. For everyX ∈ V and everyY ∈ W, we have that
X •R(Y) � X •S(Y) and hence that

X • [R(Y)− S(Y)] � X •R(Y)− X •S(Y) � 0 .

And, upon settingX � R(Y)−S(Y), we find that [R(Y)−S(Y)] • [R(Y)−S(Y)] �
0 for everyY and hence thatR(Y)− S(Y) � 0 or, equivalently,R(Y) � S(Y) (for
everyY). Thus,R � S. Q.E.D.

The linear transformationS in Theorem 22.6.2 is referred to as thedual trans-
formation of T or theadjoint transformation of T (or simply as theadjoint of T )
— referring to this transformation as the adjoint transformation risks confusion
with the adjoint matrix (which was introduced in Section 13.5 and is unrelated to
the dual or adjoint transformation). Note that the dual transformation ofT depends
on the choice of inner products forV andW.

Now, letA represent anm× n matrix. And consider the dual transformationS
of the linear transformationT fromRn×1 intoRm×1 defined byT (x) � Ax (where
x is an arbitraryn× 1 vector), taking the inner products forRn×1 andRm×1 to be
the usual inner products. Then, for everyx in Rn×1 and everyy in Rm×1,

x′S(y) � (Ax)′y � x′A′y .

And, in light of the uniqueness ofS, it follows that (for ally in Rm×1)

S(y) � A′y (6.2)

[which is consistent with the earlier observation that the unique matrixB that
satisfies condition (6.1) (for allx ∈ Rn×1 and ally ∈ Rm×1) equalsA′].

Exercises

Section 22.1

1. Let U represent a subspace of a linear spaceV, and letS represent a linear
transformation fromU into a linear spaceW. Show that there exists a linear
transformationT from V into W such thatS is the restriction ofT to U .
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2. LetT represent a 1–1 linear transformation from a linear spaceV into a linear
spaceW. And write U · Y for the inner product of arbitrary matricesU and
Y in W. Further, defineX ∗ Z � T (X) · T (Z) for all matricesX andZ in V.
Show that the “∗-operation” satisfies the four properties required of an inner
product forV.

3. Let T represent a linear transformation from a linear spaceV into a linear
spaceW, and letU represent any subspace ofV such thatU andN (T ) are
essentially disjoint. Further, let{X1, . . . ,Xr} represent a linearly independent
set ofr matrices inU .

(a) Show thatT (X1), . . . , T (Xr ) are linearly independent.

(b) Show that ifr � dim(U) (or, equivalently, ifX1, . . . ,Xr form a basis for
U) and ifU ⊕N (T ) � V, thenT (X1), . . . , T (Xr ) form a basis forT (V).

Section 22.2

4. LetT andS represent linear transformations from a linear spaceV into a linear
spaceW, and letk represent an arbitrary scalar.

(a) Verify that the transformationkT is linear.

(b) Verify that the transformationT + S is linear.

5. Let S represent a linear transformation from a linear spaceU into a linear
spaceV, and letT represent a linear transformation fromV into a linear space
W. Show that the transformationT S is linear.

6. Let T represent a linear transformation from a linear spaceV into a linear
spaceW, and letR represent a linear transformation from a linear spaceU
into W. Show that ifT (V) ⊂ R(U), then there exists a linear transformation
S from V into U such thatT � RS.

Section 22.3

7. Let T represent a transformation from a linear spaceV into a linear space
W, and letS andR represent transformations fromW into V. And suppose
thatRT � I (where the identity transformationI is fromV ontoV) and that
T S � I (where the identity transformationI is fromW ontoW).

(a) Show thatT is invertible.

(b) Show thatR � S � T −1.
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8. LetT represent an invertible transformation from a linear spaceV into a linear
spaceW, let S represent an invertible transformation from a linear spaceU
into V, and letk represent an arbitrary scalar. Using the results of Exercise 7
(or otherwise), show that

(a) kT is invertible and (kT )−1 � (1/k)T −1, and that

(b) T S is invertible and (T S)−1 � S−1T −1.

Section 22.4

9. LetT represent a linear transformation from ann-dimensional linear spaceV
into anm-dimensional linear spaceW. And writeU ·Y for the inner product
of arbitrary matricesU andY in W. Further, letB represent a set of matrices
V1, . . . ,Vn (in V) that form a basis forV, and letC represent a set of matrices
W1, . . . ,Wm (in W) that form an orthonormal basis forW. Show that the
matrix representation forT with respect toB andC is them×nmatrix whose
ij th element isT (Vj ) ·Wi .

10. LetT represent the linear transformation fromRm×n into Rn×m defined by
T (X) � X′. And, letC represent the natural basis forRm×n, comprising themn
matricesU11,U21, . . ., Um1, . . . ,U1n, U2n, . . . ,Umn, where (fori � 1, . . . , m
andj � 1, . . . , n) Uij is them × n matrix whoseij th element equals 1 and
whose remainingmn− 1 elements equal 0; and, similarly, letD represent the
natural basis forRn×m. Show that the matrix representation forT with respect
to the basesC andD is the vec-permutation matrixKmn.

11. LetW represent the linear space of allp × p symmetric matrices, and letT
represent a linear transformation fromRm×n into W. Further, letB represent
the natural basis forRm×n, comprising themn matricesU11, . . . ,U21, . . . ,
Um1, . . . ,U1n, U2n, . . . ,Umn, where (fori � 1, . . . , m andj � 1, . . . , n) Uij

is them×nmatrix whoseij th element equals 1 and whose remainingmn−1
elements equal 0. And letC represent the usual basis forW.

(a) Show that, for anym× n matrix X,

(L−1
C T LB)(vecX) � vech[T (X)] .

(b) Show that the matrix representation forT (with respect toB andC) equals
thep(p + 1)/2×mn matrix

[vechT (U11), . . . , vechT (Um1), . . . , vechT (U1n), . . . , vechT (Umn)] .

(c) Suppose thatp � m � n and that (for everyn× n matrix X)

T (X) � (1/2)(X+ X′) .

Show that the matrix representation ofT (with respect toB andC) equals
(G′

nGn)−1G′
n (whereGn is the duplication matrix).
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12. Let V represent ann-dimensional linear space. Further, letB �
{V1,V2, . . . ,Vn} represent a basis forV, and letA represent ann × n non-
singular matrix. And, forj � 1, . . . , n, let

Wj � f1jV1 + f2jV2 + · · · + fnjVn ,

where (fori � 1, . . . , n) fij is the ij th element ofA−1. Show that the set
C comprising the matricesW1,W2, . . .Wn is a basis forV and thatA is the
matrix representation of the identity transformationI (from V onto V) with
respect toB andC.

Section 22.5

13. LetT represent the linear transformation fromR4×1 into R3×1 defined by

T (x) � (x1 + x2, x2 + x3 − x4, x1 − x3 + x4)′ ,

where x � (x1, x2, x3, x4)′. Further, letB represent the natural basis for
R4×1 (comprising the columns ofI4), and letE represent the basis (for
R4×1) comprising the four vectors (1,−1,0,−1)′, (0,0,1,1)′, (0,0,0,1)′,
and (1,1,0,0)′. And, letC represent the natural basis forR3×1 (comprising
the columns ofI3), andF represent the basis (forR3×1) comprising the three
vectors (1,0,1)′, (1,1,0)′, and (−1,0,0)′.

(a) Find the matrix representation ofT with respect toB andC.

(b) Find (1) the matrix representation of the identity transformation fromR4×1

ontoR4×1 with respect toE andB and (2) the matrix representation of the
identity transformation fromR3×1 ontoR3×1 with respect toC andF .

(c) Find the matrix representation ofT with respect toE andF via each of two
approaches: (1) a direct approach, using equality (4.8); and (2) an indirect
approach, using Theorem 22.4.4 together with the results of Parts (a) and
(b).

(d) Using Theorem 22.5.2 and Corollary 22.5.3 (or otherwise), find rankT

and dim[N (T )].

14. Let T represent a linear transformation of rankk (wherek > 0) from an
n-dimensional linear spaceV into anm-dimensional linear spaceW. Show
that there exist a basisE for V and a basisF for W such that the matrix

representation ofT with respect toE andF is of the form

(
Ik 0
0 0

)
.

15. LetT represent a linear transformation from ann-dimensional linear spaceV
into anm-dimensional linear spaceW, and letA represent the matrix represen-
tation ofT with respect to basesB andC (for V andW, respectively). Use Part
(2) of Theorem 22.5.1 to devise a “direct” proof that dim[N (T )] � dim[N (A)]
(as opposed to deriving this equality as a corollary of Theorem 22.5.2).
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16. LetT represent a linear transformation from ann-dimensional linear spaceV
into V.

(a) Let U represent anr-dimensional subspace ofV, and suppose thatU is
invariant relative toT . Show that there exists a basis forV such that the
matrix representation ofT with respect toB andB is of the (upper block-

triangular) form

(
E F
0 H

)
(whereE is of dimensionsr × r).

(b) Let U and W represent subspaces ofV such thatU ⊕ W � V (i.e.,
essentially disjoint subspaces ofV whose sum isV). Suppose that both
U andW are invariant relative toT . Show that there exists a basisB for
V such that the matrix representation ofT with respect toB andB is of
the (block-diagonal) form diag(E,H) [where the dimensions ofE equal
dim(U)].

Section 22.6

17. LetV, W, andU represent linear spaces.

(a) Show that the dual transformation of the identity transformationI from V
ontoV is I .

(b) Show that the dual transformation of the zero transformation 01 from V
into W is the zero transformation 02 from W into V.

(c) LetS represent the dual transformation of a linear transformationT from
V into W. Show thatT is the dual transformation ofS.

(d) Let k represent a scalar, and letS represent the dual transformation of a
linear transformationT from V into W. Show thatkS is the dual transfor-
mation ofkT .

(e) LetT1 andT2 represent linear transformations fromV into W, and letS1

andS2 represent the dual transformations ofT1 andT2, respectively. Show
thatS1 + S2 is the dual transformation ofT1 + T2.

(f) Let P represent the dual transformation of a linear transformationS from
U into V, and letQ represent the dual transformation of a linear trans-
formationT from V into W. Show thatPQ is the dual transformation of
T S.

18. LetS represent the dual transformation of a linear transformationT from an
n-dimensional linear spaceV into anm-dimensional linear spaceW. And let
A � {aij } represent the matrix representation ofT with respect to orthonormal
basesC andD, andB � {bij } represent the matrix representation ofS with
respect toD andC. Using the result of Exercise 9 (or otherwise), show that
B � A′.
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19. LetA represent anm× nmatrix, letV represent ann× n symmetric positive
definite matrix, and letW represent anm × m symmetric positive definite
matrix. And letS represent the dual transformation of the linear transformation
T from Rn×1 into Rm×1 defined byT (x) � Ax (wherex is an arbitraryn× 1
vector). Taking the inner product of arbitrary vectorsx andz in Rn×1 to be
x′Vz and taking the inner product of arbitrary vectorsu andy in Rm×1 to be
u′Wy, generalize result (6.2) by obtaining a formula forS(y).

20. LetS represent the dual transformation of a linear transformationT from a
linear spaceV into a linear spaceW.

(a) Show that [S(W)]⊥ � N (T ) (i.e., that the orthogonal complement of the
range space ofS equals the null space ofT ).

(b) Using the result of Part (c) of Exercise 17 (or otherwise), show that
[N (S)]⊥ � T (V) (i.e., that the orthogonal complement of the null space
of S equals the range space ofT ).

(c) Show that rankS � rankT .
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