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Preface

vii

Ten years have elapsed since the appearance of the first
edition of this book, and since then a number of ad-
vances have been made in the field of diagnostic pathol-
ogy. New and improved techniques have contributed
to our diagnostic armamentarium and to our general
understanding of various disease processes. In the field
of neoplasia, immunohistochemistry has become a rou-
tine procedure in most departments of pathology. Flow
cytometry has become an efficient technique for meas-
uring ploidy, and molecular biological methods such as
DNA and RNA hybridization and polymerase chain re-
action (PCR) have made it possible to identify specific
genetic markers for various hereditary, neoplastic, and
infectious diseases. The importance of these innova-
tions in pathology is duly recognized, but, at the same
time, they have limitations, and traditional morpho-
logical studies still comprise the backbone of the
pathologist’s work. In this latter group of studies we in-
clude electron microscopy, which has continued to be
used selectively in diagnostic workups of neoplastic, re-
nal, neuromuscular, infectious, hereditary, and meta-
bolic diseases. In our own experience, electron micro-
scopy has been especially valuable in complementing
immunohistochemistry or in superseding immunohis-
tochemistry when the latter is equivocal or nonspecific.

Aside from the practical application to diagnostic
work, electron microscopy has been a valuable tool for
educating residents and staff. It reveals cells and tissues
at very high magnification, making cell surfaces and in-
teriors visible beyond the limits of light microscopy, a
seemingly important experience in the study of normal
and diseased states. The omission of this basic mor-
phological step in the training and continuing educa-
tion of pathologists would be, in our opinion, a serious
deficiency.

In this second edition, we have retained the style and
core components of the first edition but have updated
the text and bibliography, added new topics, and re-
placed and supplemented photographs appropriately.
The result has been a larger book and, we hope, one of
broader applicability.

G. Richard Dickersin, M.D.
Boston, Massachusetts
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Normal Cell
Ultrastructure and
Function

Cells comprise various subunits, the types and arrange-
ment of which depend on the stages and direction of
differentiation. Although a morphologic and functional
diversity exists among various cell types, there is also a
certain consistency that all cells share (Figure 1.1).

The cell is enclosed by a membrane (plasmalemma)
and has two main compartments, the nucleus and cyto-
plasm, which are separated by the nuclear envelope.
Membranes also enclose some of the substructures of
the cell, serving as mechanical barriers for metabolic
units as well as having a specialized molecular compo-
sition and function of their own. The living substance
composing the nucleus and cytoplasm is called the pro-
toplasm; more specifically, the protoplasm of the nu-
cleus is referred to as the nucleoplasm (or karyoplasm),
and that of the remainder of the cell as the cytoplasm.
The nucleus and cytoplasm contain substructures des-
ignated as organelles and inclusions. Organelles are liv-
ing, metabolically active structures, whereas inclusions
are stored or transient products of metabolism, such as
lipid, glycogen, and pigment deposits. The cytoplasm
also contains a cytoskeleton consisting of filaments and
microtubules that contribute to the shape and contrac-
tility of the cell and to the arrangement of organelles.

Cytoplasmic Organelles

The organelles are surrounded by a selectively perme-
able membrane and separated by a cell sap (hyaloplasm
or cytosol). Numerous chemical reactions and inter-
changes occur constantly at the membrane interfaces
between the cell sap and the organelles. Organelles are
dynamic structures, changing their size, shape, and
position in the cell and, in some cases, duplicating
themselves.

Ribosomes. Ribosomes are small (15—-30 nm), bilobed
(round or oval at low magnification) bodies that are
distributed free and attached to membranes of rough
endoplasmic reticulum (RER). In both locations, they
occur singly (monoribosomes) and in clusters (polyri-
bosomes or polysomes). They are composed of ribonu-
cleic acid and have the metabolic function of synthe-
sizing polypeptides and proteins from amino acids. The
sequencing of amino acids is controlled by molecules of
messenger ribonucleic acid (mRNA), transported from
the nucleus. The proteins formed by the free ribosomes
remain in the cell sap, and the polypeptides formed by
the attached ribosomes penetrate into the channels of
RER. Cells that secrete large amounts of protein have a
high percentage of their ribosomes in the attached form,
whereas cells that manufacture protein for rapid growth
or metabolism, as in embryos and malignant neoplasms,
have a high proportion of their ribosomes in the free
form.



Figure 1.1. Diagram of a cell.
N = Nucleus
n = Nucleolus
NP = Nuclear pore
V = Villi
Ci = Cilium
BB = Basal body
Ca = Canaliculus
BL = Basal lamina
JC = Junctional complex
t = tight junction
i = intermediate junction
d = desmosome

Rough endoplasmic reticulum. This organelle consists
of a system of membrane-bound tubules and flattened
sacs (cisternae), in which polypeptides received from
the attached ribosomes are further synthesized into pro-
teins. The proteins are then packaged into small vesi-
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Ce = Centrioles

G = Golgi apparatus

M = Mitochondria

RER = Rough endoplasmic reticulum
R = Ribosomes

SER = Smooth endoplasmic reticulum
LY = Lysosomes

S = Secretory granules

Gl = Glycogen granules

Li = Lipid vacuoles

F = Filaments

T = Microtubules

cles and pass along the channels of RER to the Golgi
apparatus.

Smooth (agranular) endoplasmic reticulum. This is a net-
work of closely arranged tubules devoid of ribosomes
on its limiting membranes, and it may or may not be in



NORMAL CELL ULTRASTRUCTURE AND FUNCTION

continuity with the RER. Its function varies from one
cell type to another, but important roles include the syn-
thesis of steroid hormones (e.g., adrenal cortex), lipid
transport (intestinal epithelium), lipid and cholesterol
metabolism (liver), and detoxification of lipid-soluble
chemicals (liver).

Golgi apparatus. The Golgi apparatus consists of a
group of side-by-side, fenestrated cisternae and many
adjacent, small vesicles. The cisternae usually are
curved, and the vesicles at their convex or forming face
are transitional, being derived from the RER and then
incorporated into the cisternae of the Golgi apparatus.
The vesicles fuse into and bud off successive cisternae
from the convex face to the concave or maturing face.
The terminal cisternae of the maturing face are highly
fenestrated and form the trans-Golgi network. While
traversing the Golgi, the protein is modified (e.g., by the
addition of a carbohydrate moiety) and concentrated,
and vesicles are formed at the maturing face by seg-
mentation of cisternae into secretory granules and pri-
mary lysosomes. In addition to its role in the secretory
process, the Golgi apparatus is also involved in the re-
cycling and transportation of membranes of organelles
and plasmalemmas.

Mitochondria. Mitochondria usually are rod-shaped,
2-8 pm X 0.2-0.8 wm, but they can change their shape
into short or long forms and from straight to curved
ones. They are enclosed by a double membrane; the
outer one is the usual trilaminar type, and the inner
membrane has numerous infoldings called cristae. The
cristae provide additional membranous surface area
across which chemical transfers can take place. The mor-
phologic and functional specialization of the inner mem-
brane differs from that of the outer membrane. Between
the cristae is matrix, which contains granules, ribo-
somes, strands of deoxyribonucleic acid (DNA), and en-
zymes. Mitochondria are mobile within the cytoplasm
and may be either diffusely dispersed or concentrated
in one region where their energy production is needed.
They have a life cycle and self-duplicate by binary fis-
sion. The main function of mitochondria is to produce
energy for the cell. They are the power source of the cell
and contain the necessary enzymes for oxidative phos-
phorylation and cellular respiration as well as those
used in the synthesis of fat and protein (for example,
adenosine triphosphate and Krebs cycle enzymes).

Lysosomes. Primary lysosomes are round, oval, and
irregularly shaped, membrane-bound structures,
0.25-0.5 pm in diameter, that are formed in the Golgi
apparatus. They contain hydrolytic enzymes (for ex-
ample, peroxidase and acid phosphatase) that are used
in intra- and extracellular digestive reactions, both in
pathologic and physiologic conditions. An example of
lysosomal action under physiologic conditions is the
engulfing and digesting of metabolic breakdown prod-

ucts of the cell itself, such as particles of mitochondria,
endoplasmic reticulum, and other organelles. This
process is known as autophagy or autophagocytosis,
and it contrasts with heterophagy or heterophagocy-
tosis, which is lysosomal digestion of solid substances
taken into the cell from the extracellular environment.
A lysosome engaged in autophagy or heterophagy is
termed a secondary lysosome. Secondary lysosomes
that contain undigested material such as certain lipid
and membranes are called residual bodies. Lipofuscin
(wear and tear pigment) is a common example of a sub-
stance that normally accumulates in cells in this man-
ner. Some of these indigestible materials may be elim-
inated from the cell by the lysosomes transporting it to
the cell surface and extruding it through the plas-
malemma. The process of releasing cell products, in-
cluding small vesicles and secretory granules, into the
extracellular space is known as exocytosis. Pinocytosis
is similar to heterophagocytosis except that the parti-
cles taken into the cells are much smaller and consist
of droplets of fluid and solutes. Endocytosis encom-
passes both phagocytosis and pinocytosis. In both
cases, the ingesting vacuoles are formed from infold-
ing of the plasmalemma.

Centrioles. A pair (diplosome) of short, hollow rods
at right angle to each other, centrioles measure about
0.3-0.5 wm long and 0.2 pm in diameter. The wall of
each rod comprises nine groups of three longitudinally
directed microtubules. Centrioles are usually located in
the centrosome or centrosphere (cell center) region of
the cytoplasm, between the nucleus and Golgi appara-
tus. Centrioles in this location are associated with cell
division, first replicating and then migrating to oppo-
site ends of the nucleus and becoming a part of the spin-
dle for cell division. Centrioles also occur singly in the
apical cytoplasm of some cells, where they serve as the
origin or root (basal body; kinetosome; blepharoplast)
of cilia. These roots are involved in the formation of the
axoneme, the microtubular core of cilia, and in the me-
tabolism of tubulins, the proteins composing the mi-
crotubules. In cells having multiple cilia, each cilium is
derived from a separate centriole following prolifera-
tion of centrioles as a step in differentiation.

Peroxisomes (microbodies). These are spherical
membrane-bound organelles, about 0.5 pm to 1.0 pm
in diameter, which are present in various types of cells
but are more numerous in metabolically active cells,
such as proximal tubular epithelium of the kidney and
epithelium of the liver. The matrix of peroxisomes
varies from species to species, but in humans it tends to
be finely granular. In certain lower animals, it may con-
tain a paracrystalline core, or nucleoid. All the functions
of peroxisomes are not known, but they contain cata-
lases and numerous other oxidases. One function is to
oxidate substrates of long-chain fatty acids, producing



energy and H,O,. The H,O, is then broken down by
catalase (peroxidase).

Annulate lamellae. Annulate lamellae are parallel lay-
ers of regularly spaced cisternae with periodic, round
openings with membranous diaphragms along their
length. Individual cisternae with pores resemble the nu-
clear envelope, to which they are thought possibly to
give rise. The ends of the cisternae are sometimes con-
tinuous with the cisternae of RER. The function of the
annulate lamellae is not known, although it is found in
germ cells and many different somatic cells, usually
those that are differentiating or dividing.

Cytoskeleton
(Cytoplasmic Matrix Structures)

Filaments. Most types of cells contain a framework of
thin (6-7 nm), actin filaments, so-called microfila-
ments, as well as filaments of intermediate thickness
(10 nm), such as keratin, vimentin, desmin, glial fibril-
lary acid protein, and neurofilaments. Those cells en-
gaged in a contractile function (smooth and skeletal
muscle) contain many more filaments, including thick
(15 nm) myosin filaments. Tonofibrils are large, dense
bundles of keratin filaments that occur in squamous
epithelial cells. Dense bodies are sites where bundles
of desmin filaments converge with actin filaments and
plasmalemmas, as in smooth muscle cells. Although all
classes of intermediate filaments are different bio-
chemically, they cannot be distinguished from one an-
other ultrastructurally.

Microtubules. Microtubules are straight structures,
several micrometers long and 20-27 nm in diameter
and composed of a protein called tubulin. They are
present in small amounts in most types of cells and in-
crease during mitosis and when cells undergo changes
in shape. During mitosis, they form the spindle. They
are also thought to serve as routes along which meta-
bolic vesicles, organelles, and inclusions can be trans-
ported throughout the cytoplasm. Microtubules also oc-
cur in pairs or doublets, in cilia and flagella, and in
triplets in centrioles and basal bodies. Microtubule for-
mation in cells is in a dynamic state with soluble tubu-
lin, and the number of microtubules in a cell varies with
time.

Cytoplasmic Inclusions

Glycogen. Glycogen consists of irregularly shaped par-
ticles, 15—30 nm in diameter, that occur singly (beta par-
ticles) and in clusters (alpha particles). The amount of
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stored glycogen varies according to cell type and meta-
bolic state. Resting skeletal muscle cells and liver paren-
chymal cells have a rich content of glycogen as a source
of energy.

Lipid. Neutral fat occurs to some extent in most cells
and is stored in various sized droplets that are not
bound by a membrane. It serves as a source of energy
and as a supply of carbon chain subunits in the synthe-
sis of membranes. In cells in which lipid is synthesized,
as in endocrine organs, it is present in the form of small
droplets, and in cells where it is stored, as in adipocytes,
it is present as a single large vacuole.

Pigment. Lipofuscin and hemosiderin are examples
of pigment and are found within secondary lysosomes
(phagosomes).

Nuclear Organelles

Cells cannot live without a nucleus and, therefore, will
not divide, differentiate, or metabolize. The nucleus
produces the RNA necessary for protein synthesis,
which is required for the continuing function of the cell.
The nucleus is also essential in the heredity of cells.

Chromatin and chromosomes. Chromatin is the stain-
able part of the nucleus and is composed of nucleic
acids, especially DNA and histones. Heterochromatin
is the course, clumped particles of chromatin visible
during the nondividing state (interphase) of the cell. Eu-
chromatin is finely dispersed chromatin and is more ac-
tive metabolically than the heterochromatin. During mi-
tosis, all chromatin is organized into chromosomes,
which measure about 3—6 pm long and 0.5-0.8 pm in
diameter.

Nucleolus. A round body, the nucleolus is usually ec-
centrically located in the nucleus and varies somewhat
in internal structure depending on the type of cell.
There may be more than one nucleolus per nucleus.
Common substructures of the nucleolus include: pars
amorpha (pars fibrosa and nucleolar organizer region),
one or more zones of pale-staining, densely arranged
50 A filaments; nucleolonema (pars granulosa), which
surrounds the pars amorpha and consists of 15-nm
granules and filaments; nucleolar-associated chromatin,
a rim of chromatin immediately around and extending
into the nucleolus; protein matrix; and other less con-
sistent components, such as lipid, glycogen, and vari-
ous inclusions.

The main known function of the nucleolus is to pro-
duce and process precursors of RNA. The nucleolus dis-
perses and becomes invisible during mitosis, and it en-
larges in cells that are growing or actively synthesizing
protein.
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Nuclear sap (karyolymph). The nuclear sap is the the-
oretical territory not occupied by chromatin or nucleo-
lus; it is theoretical, because there may be euchromatin
or other unknown particles, too small to be seen, that
actually occupy this space.

Nuclear envelope (membrane). The nuclear envelope is
the flattened sac that encloses the nucleus. It consists of
inner and outer membranes, and an intervening space
(perinuclear space). The two membranes meet at vari-
ous foci along the circumference of the nucleus to form
nuclear pores, approximately 700 A in diameter. The
pores are covered with thin, incomplete membranous
diaphragms that are selectively permeable. The outer
layer of the nuclear envelope has ribosomes attached to
it, and the perinuclear space is continuous with the
spaces of the RER. The inner aspect of the inner mem-
brane is covered by layers of fibers that abut the pe-
ripherally located heterochromatin.

Organization of Organelles
Within the Cell

The plasmalemma, or cell membrane, has three layers:
outer and inner electron-dense lines, 2.5-3.0 nm thick;
and a middle, lucent space, 3.5-4.0 nm thick. Similar
membranes also surround organelles within the cell.
The plasmalemma is composed of a bilayer of phos-
pholipids and accompanying proteins, glycoproteins,
and glycolipids. The membrane is permeable to water,
gases, and small uncharged molecules but is not very
permeable to charged and large uncharged molecules.
The latter are transported by proteins within the mem-
brane. Some of these proteins have a carbohydrate side
chain that protrudes through the outer membrane,
forming a coating or glycocalyx. The glycocalyx is es-
pecially visible on the surface of intestinal epithelial
cells. It plays an important role in selective binding of
external substances and other cells.

The various components of the cytoplasm are
arranged in two main regions of the cell. Actin filaments
form a network in the peripheral region—the ecto-
plasm—and intermediate filaments, microtubules, vesi-
cles, and organelles are located in the central region—
the endoplasm. In certain types of cells, the arrangement
of organelles appears to correlate with function, rather
than being random. An example of this relationship is
in columnar epithelium lining a lumen, as in the gut,
where the free luminal surface of the cells is microvil-
lous. The microvilli increase the surface area of the cell
for absorption and secretion. In the same vein, the Golgi
apparatus is supranuclear in position, and secretory
granules occupy the zone between the Golgi and the vil-

lous surface of the cell. Mitochondria also may be con-
centrated in the apical part of the cell and tend to be ori-
ented parallel to the long axis of the cell.

Cell Attachment Sites

Zonula occludens (tight junction). These are sites of
strongest attachment between cells, each junction
consisting of a series of alternating points of fusion
and slight separation between opposing plasmalem-
mas. Other than serving this purely mechanical func-
tion, it is not known if tight junctions also play a role
in electrochemical communication between cells, as
do some other types of junctions. The tight junction is
typically, but not exclusively, found sealing the apical
intercellular space between epithelial cells that line
lumens.

Zonula adherens (intermediate junction). Adjacent cell
membranes are about 15-20 nm apart at this junction,
and there is a material of low electron density in the in-
tercellular space between the membranes. A collection
of thin actin filaments is attached to the inner surface of
the junctional membrane and extends into the subjacent
cytoplasm. One place where the zonula adherens is
found is below and near the tight junction of epithelial
cells lining lumens. Taken together, the tight junction,
the intermediate junction, and the desmosome (see next
paragraph) form the junctional complex (terminal bar,
by light microscopy).

Macula adherens (desmosome). Maculae adherens are
plaque-like, subplasmalemmal thickenings of apposing
cells, with a 15-25 nm space between the plasmalem-
mas and a thin, dense line in the middle of the inter-
cellular space. Extending from the thickened plas-
malemma into the cytoplasm are many intermediate
filaments that connect the junction with the cytoskele-
ton of the cell. In squamous epithelial cells, these
tonofilaments course into dense bundles called tono-
fibrils. In addition to forming a component of the junc-
tional complex, and to interconnecting squamous cells,
desmosomes are also found between other types of ep-
ithelial cells. Hemidesmosomes may be found along the
basal plasmalemma of epithelial cells that rest on a basal
lamina.

Nexus (gap junction). The nexus is a plaque-like thick-
ening of adjacent plasmalemmas, with a narrow gap of
approximately 2—3 nm between them. The gap contains
hexagonally packed globular subunits that contain
channels that allow low resistance flow of ions and
small molecules between cells. The nexus is found be-
tween epithelial type cells as well as between nerve,
smooth muscle, and cardiac muscle cells.
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Selective
Embryology

Aknowledge of the early stages of human embryogen-
esis is helpful in classifying neoplasms according to
cells of origin. The least differentiated tumors obviously
are the most difficult to categorize, and the key to di-
agnosis often lies in finding cells that have sufficient cy-
toplasmic or surface differentiation to allow a compar-
ison with known cytologic structures in the normal
human embryo. The brief text, diagrams, and electron
micrographs that follow serve to illustrate some of the
basic embryonic features that are applicable in estab-
lishing the histogenesis of various neoplasms.

Embryogenesis from Fertilization
Through Three Weeks

Figures 2.1A and B depict embryogenesis from fertil-
ization to implantation. The fertilized ovum (zygote)
undergoes sequential cleavages, forming a ball of 12-16
cells (morula) by the third day. Further cellular division
and accumulation of extracellular fluid during the
fourth through seventh days result in a blastula (blas-
tocyst), which consists of an eccentric cavity, an outer
cell mass (trophoblast), and an inner cell mass (em-
bryoblast, Figure 2.1C). Implantation of the blastocyst
into the endometrium occurs between the fifth and sev-
enth days; by the eighth day, a bilaminar germ disc, con-
sisting of epiblast (pre-ectoderm) and hypoblast (pre-
endoderm), has formed (Figure 2.1D). During the sec-
ond week of development, the amniotic cavity and yolk
sac are created, and the trophoblast differentiates into
two layers: cytotrophoblast and syncytiotrophoblast. By
the 16th day, the primitive streak has formed in the cau-
dal end of the embryonic disc, and cells of the epiblast
in this region migrate ventrally, laterally, and cephalad
to form first a loose primary mesenchyme and then a
more dense third germ layer, the mesoderm (Figure
2.2A). The notochord (axial mesoderm) is formed from
cephalic migration of some of the cells of the primary
mesenchyme, cephalad to the primitive streak, at ap-
proximately the 18th day. By the 20th day, the meso-
dermal cells have aggregated into three discrete masses:
paraxial, intermediate, and lateral (Figure 2.2B). The
paraxial mesoderm becomes more distinct somites
within a day, starting at the cranial end and progress-
ing caudally; the intermediate mesoderm develops into
nephrotomes cranially and the nephrogenic cord cau-
dally; the lateral mesoderm divides into somatic and
splanchnic layers, which become the mesothelial linings
of the coelomic cavities.
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Embryogenesis

A
Sperm
L ]
Fertilization
B
Fertilized Oocyte (Zygote) Morula

30-40 hours 3-4 days

C inner cell mass
(embryoblast)
outer cell mass
(trophoblast)
Blastula (Blastocyst)
4-7 days

D

Bilaminar Germ Disc
8-14 days

Figure 2.1. Diagram of embryogenesis, from fertilization through the 14th day.
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Differentiation of the Paraxial Mesoderm

The cells of the somites have epithelial features, and
in the fourth week, each somite develops a central cav-
ity. The somatic cells continue to proliferate, become
more loosely arranged, and take on a more irregular
shape (secondary mesenchyme). Cells from the medial
and ventral aspects of the somites migrate toward the
notochord, resulting in the formation of the sclero-

tomes and ultimate vertebral column (Figure 2.2C).
The mesenchymal cells comprising the sclerotomes
have the potential to differentiate into osteoblasts,
chondroblasts, and fibroblasts. The dorsal aspects of
the somites become the dermatomes (the future con-
nective tissue of the back and some of the muscles of
the limbs). The remaining internal regions of the
somites form the myotomes (the anlage of the muscles
of the back).

Transverse View

Dorsal View (caudally)

Sagittal View

primitive mesoderm

streak

ectoderm

primitive ectoderm

streak L
mesoderm -ty

endoderm  Trilaminar Germ Disc

(A) 16th day

intermediate

neural groove
. mesoderm

neural
groove

lateral mesoderm;
somatic and
splanchnic

somites

primitive
streak

paraxial
mesoderm
(pre-somite)
(B) 20th day

notochord

neural tube

cranio-caudal
flexion

cranio-caudal
flexion

somites
I T 1 7]}
PR AL
foregut
hindgut

(C) 22nd day

Figure 2.2. Embryogenesis during the third week of ges-
tation. A, Appearance of the third germ layer, the meso-
derm. B, Formation of discrete mesodermal masses.

C, Migration and differentiation of cells of the mesoder-
mal masses.
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Differentiation of the
Intermediate Mesoderm

The cells of the intermediate mesoderm develop into
the pronephros, mesonephros, and metanephros in a
cephalocaudal order and in a successive and overlap-
ping timeframe (Figure 2.3). The pronephros is formed
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first, in the 7-14 somite, cranial region (occipital and
cervical zones of the later fetus). This is characterized
by a dorsolateral outgrowth of each intermediate cell
mass (nephrotome). These buds hollow to form tubules
that, on their lateral extremity, empty into the coelomic
cavity, and at their medial end grow caudally and in-
terconnect with one another, forming the pronephric

Frontal View Transverse View
Pronephros _
21-28 days nephric
tubule
mesonephric
J— duct
ap— —u‘
! Mesonephros
| nephogenic 4th—-16th week
cord
!
I’ B mesonephric
& tubul
/ coelom ubue
gonad ] )
mesonephric
= duct
allantois — — gut
' metanephric
duct Metanephros
ureteric Sth week
bud

cloaca

Figure 2.3. Development of the nephrogenic system from the intermediate mesoderm, from the third through fifth

weeks of embryogenesis.
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duct. Sprouts of the aorta grow simultaneously into the
medial end of the pronephric buds to form primitive
glomeruli. The pronephros reaches its peak of devel-
opment in the fourth week of embryonic life and then,
except for its duct, involutes. The pronephric duct re-
mains and serves as the duct of the mesonephros, emp-
tying into the cloaca.

The mesonephros begins to develop in the fourth
and fifth weeks from the nephrogenic cord at the levels
of 14-26 somites (lower cervical, thoracic, and upper
lumbar regions).

Vesicles and then tubules develop in the nephrogenic
cord. The dorsolateral end of each tubule joins the
pronephric duct (now the mesonephric duct), and the
opposite end forms a glomerulus with a branch of
the aorta. Progressive cephalocaudal degeneration of
the mesonephros occurs until the end of the 16th week
of life, when only the mesonephric (Wolffian) duct per-
sists in the male (vas deferens).

The metanephros begins to develop in the fifth week,
in the lower lumbar region, from two primordia: an out-
growth (metanephric diverticulum, or ureteric bud) of
the mesonephric duct, and the nephrogenic cord (meta-
nephric blastema) (Figure 2.3). The nephrogenic tissue
aggregates into small nodules at the tips of ingrowing
collecting tubules, which are the terminal extensions of
the outgrowing and dividing urogenital sinus (from the
anterior part of the cloaca). The nephrogenic nodules be-
come vesicles and then elongate into tubules, connecting
with the collecting tubules on one end, and forming Bow-
man’s capsules on the opposite end.

11

Differentiation of the Lateral Mesoderm

The cells of the lateral (coelomic) mesoderm separate
into two layers around a central, intraembryonic
coelom by the 19th day (Figures 2.2B and C). The outer
somatic layer differentiates into the parietal mesothe-
lium of the coelomic cavities and the connective tissue
and skeletal muscle of the ventral body wall and por-
tions of the limbs. The inner splanchnic layer of lateral
mesoderm develops into the visceral mesothelium of
the coelomic cavities, connective tissue and smooth
muscle of the gastrointestinal tract, paramesonephric
(Miillerian) ducts, genital ridges, adrenal cortex, and
myocardium.

Comparison of Embryonic Mesodermal
Differentiation with Embryonal
Rhabdomyosarcoma, Wilms” Tumor,
and Mesothelioma

It is during the third to eighth weeks of embryogenesis
that differentiation is especially interesting to study,
particularly in respect to correlating the morphology of
early derivatives (Figure 2.4) of the third germ layer, the
mesoderm (Figures 2.5 and 2.6), with the structure of
certain mesodermally derived neoplasms. For example,
myotomes (Figures 2.7 through 2.12) are morphologi-
cally recapitulated in embryonal rhabdomyosarcomas,
both being composed of small round cells and early

Primary mesenchyme

Paraxial mesoderm Intermediate mesoderm Lateral mesoderm
l (nephrogenic) (coelomic)
Somite
l ,
Secondary mesenchyme Urogenital system
(sclerotome)  (dermatome)  (myotome) (nephrotome and  (gonad)
nephrogenic cord)
osteoblast lipoblast rhabdomyoblast pronephros mesothelium endothelium
chondroblast fibroblast mesonephros gut leiomyoblast hematopoietic cells
metanephros cardiac myoblast lymphocytes
(blastema) adrenal cortical cell

Figure 2.4. Diagram of the differentiation of primary mesenchyme.
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Figure 2.5. Primary mesenchyme from a 39-day-old human embryo. The cells vary in shape, are loosely arranged in
an electron-lucent matrix, and have only focal contact with one another. (X 2100)

strap like cells. Likewise, a well-recognized similarity
exists between metanephric blastema (Figures 2.13
through 2.16) and the undifferentiated component of
Wilms’ tumors. In a similar vein, intraembryonic coe-
limic lining cells correlate with epithelioid mesothe-
liomas, and, more speculatively, the subsurface cells

(Figures 2.17 and 2.18) may be represented in the cells
that comprise so-called fibrous mesotheliomas. (Illus-
trations of these and related primitive neoplasms are
presented in the chapters on neoplasms).

(Text continues on page 26)
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Figure 2.6. Higher magnification of primary mesenchymal cells reveals a high nuclear-cytoplasmic ratio, euchro-
matic nuclei, prominent nucleoli, and few cytoplasmic organelles. (X 6480)
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Figure 2.7. Human myotome, central dense area. The  abundant. (X 5510) (Permission for reprinting granted by
cells are polygonal and densely arranged. Their nuclei Hemisphere Publishing Co., Dickersin GR: Embryonic ul-
and nucleoli are similar to those of primary mesenchyme,  trastructure as a guide in the diagnosis of tumors. Ultra-
but their cytoplasm and organelles are somewhat more  struct Pathol 11:609-652, 1987.)
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Figure 2.8. Higher power of cells of a myotome. A mod-
erate number of organelles is visible, including Golgi ap-

by Hemisphere Publishing Co., Dickersin GR: Embryonic

ultrastructure as a guide in the diagnosis of tumors. Ul-

trastruct Pathol 11:609-652, 1987.)

paratuses (G), mitochondria (M), and rough endoplasmic
reticulum (RER). Small junctions (J) are present between



16 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 2.9. Myotome. Among the primitive-appearing  power). (X 7020) (Permission for reprinting granted by
cells are two cells (*) showing early myoblastic differen- ~ Hemisphere Publishing Co., Dickersin GR: Embryonic ul-
tiation. This is characterized by a pale cytoplasm and sev-  trastructure as a guide in the diagnosis of tumors. Ultra-
eral electron-dense areas (see Figure 2.10 for higher  struct Pathol 11:609-652, 1987.)
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Figure 2.10. Myotome. Higher magnification of two of  glycogen, plus many irregularly arranged thin (actin) fil-
the pale cells in Figure 2.9 reveals most of the cytoplasm aments. The dense areas (arrows) consist of thick (myosin)
to have an open or clear background, consistent with and thin filaments. (X 14,850)
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Figure 2.11. Myotome. This elongated cell is found
among many primitive polygonal cells. It shows the ear-
liest sign of skeletal muscle differentiation; that is, paral-
lel thick filaments and closely associated rows and
clusters of ribosomes (bracketed areas). (X 95,000) (Per-
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mission for reprinting granted by Hemisphere Publishing
Co., Dickersin GR: Embryonic ultrastructure as a guide
in the diagnosis of tumors. Ultrastruct Pathol 11:609-652,
1987.)
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Figure 2.12. Myotome. Another recognizable myogenic ~ comeres cut transversely. (X 27,800) (Permission for
cell is found among many undifferentiated ones making  reprinting granted by Hemisphere Publishing Co., Dick-
up the myotome. Parallel thick filaments and early  ersin GR: Embryonic ultrastructure as a guide in the di-
Z-bands (Z) are forming sarcomeres. The electron-dense agnosis of tumors. Ultrastruct Pathol 11:609-652, 1987.)
region at the left side of the field represents early sar-
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Figure 2.16. Metanephric blastema and early tubule. A definite lumen is present in this tubular form, and focal basal

l[amina separating the tubule from the undifferentiated blastema is visible at higher magnification. (X 4750)
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Figure 2.17. Coelomic lining. These cells derived from
the lateral mesodermal mass show early mesothelial dif-
ferentiation in the surface layer. No basal lamina between
the surface layer and subjacent undifferentiated cells is
identified at this stage of development. (X 4320) (Per-
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Figure 2.18. Coelomic lining. Higher magnification than
Figure 2.17 shows the surface cells to have the epithelial
feature of prominent junctions (J), and the deeper cells
resemble primitive mesenchymal cells. (X 5940) (Per-
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mission for reprinting granted by Hemisphere Publishing
Co., Dickersin GR: Embryonic ultrastructure as a guide
in the diagnosis of tumors. Ultrastruct Pathol 11:609-652,
1987.)
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(Text continued from page 12)
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This chapter covers the salient ultrastructural features of
large, round, and polygonal cell neoplasms and includes
most carcinomas, melanomas and mesotheliomas and
many lymphomas and some sarcomas. Many of these
neoplasms appear undifferentiated by light microscopy,
but most show differentiation along one cell line or an-
other at the ultrastructural level. However, it is note-
worthy that not all of the ultrastructural criteria for iden-
tifying the cell type may be present in every example of
aneoplasm. As expected, the more differentiated the neo-
plasm, the more likely will its cells contain a broad com-
plement of diagnostic morphologic features. Conversely,
the least differentiated neoplasms may contain no cells
that show any differentiated diagnostic structures, and
the final electron microscopic diagnosis in these cases
must rest at “undifferentiated,” or “primitive,” neo-
plasm. Usually, however, the ultrastructural findings do
allow the pathologist to make a definitive diagnosis
when interpreted in conjunction with the light micro-
scopic picture and, in some cases, with the histochemi-
cal and immunohistochemical results.

Carcinoma

Various types of carcinomas have a number of distin-
guishing features, as described and illustrated in this
chapter, but one common characteristic of all carcino-
mas is the presence of intercellular junctions, usually
desmosomes and /or intermediate junctions. This is not
to say that certain types of junctions are not present in
some types of noncarcinomatous neoplasms, such as
various sarcomas, but desmosomes almost always in-
dicate epithelial differentiation.

Adenocarcinoma (and Adenoma)

(Figures 3.1 through 3.37.)

Diagnostic criteria. (1) Lumens; (2) microvilli; (3) tight
junctions/junctional complexes; (4) basal lamina; (5) se-
cretory granules; (6) prominent Golgi apparatus; (7) mod-
erately prominent rough endoplasmic reticulum.

Additional points. Cilia may be seen in certain types
of adenocarcinoma, such as those arising in Miillerian
tissue, especially the fallopian tube. Single cilia (oligocilia)
are found in many types of cells and are not diagnostic.
Cilia are an important diagnostic marker for ependymo-
mas and choroid plexus neoplasms (see Chapter 8).

Some adenocarcinomas have more-or-less specific
features for their organ of origin, which may be useful
in diagnosing metastatic neoplasms of unknown pri-
mary sources. How closely neoplastic cells resemble the
cells of the organ of origin is determined by the level of

(Text continues on page 62)
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Figure 3.1. Adenoma (thyroid). An example of a well-  lamina (BL) along the basal aspect of the cells, and junc-
differentiated glandular tumor. A single row of low  tions (J) between cells are visible but are seen better at
cuboidal epithelial cells lines the lumen (L) of the gland.  higher power in Figures 3.2 and 3.4. (X 5130)
Microvilli (V) on the luminal surface of the cells, basal



Figure 3.2. Adenoma (thyroid). Higher magnification of
portions of the cells from the well-differentiated glandu-
lar tumor depicted in Figure 3.1. Microvilli (V) are sparse
in this field. A small segment of basal lamina (BL) is visi-
ble along the base of cells, and junctional complexes
(JC) are prominent at their luminal aspect. Numerous
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membrane-bound, secretory granules (S) are located in
the apical cytoplasm. Non-membrane-bound lipid drop-
lets (Li) are randomly dispersed in the cytoplasm. L = lu-
men. (X 14,180) (Permission for reprinting granted by WB
Saunders, Dickersin GR: Electron microscopy of leukemias
and lymphomas. Clin Lab Med 7:199-247, 1987.)
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Figure 3.3. Phyllodes tumor (breast). The glands in this ~ myoepithelial cells (M). The lumen contains secretions
tumor are well differentiated but are lined by more than ~ (S) and is lined by cells rich in microvilli (V). (X 5320)
one layer of epithelial cells and by peripherally located
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Figure 3.4. Phyllodes tumor (breast). Higher magnifica-  secretory granules (S), Golgi apparatuses (G), rough

tion of the neoplasm illustrated in Figure 3.3 shows mi-  endoplasmic reticulum (RER), and mitochondria (M).
crovilli (V) and junctional complexes (JC). Note also the (X 11,700)
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Figure 3.5. Adenomatous features at higher magnifica-  granules (S). (X 17,900) C, Golgi apparatuses (G).
tion. A, Basal lamina (BL). (X 12,150) B, Golgi apparatus (X 14,280) D, microvilli (V) and junctional complex (JC).
(G); rough endoplasmic reticulum (RER), which is dilated (X 15,250)

and filled with medium-dense material; and secretory
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Figure 3.6. Adenocarcinoma (breast). Several cells of this infiltrating ductal carcinoma exhibit intracytoplasmic lu-
mens (L). (X 5200)
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Figure 3.7. Adenocarcinoma (breast). Higher magnifica-  tight junctions, which if present, would be indicative of
tion of one of the cells in Figure 3.6 depicts an intracy-

a pseudolumen caused by invagination of the cell by ex-
toplasmic lumen lined by microvilli and an absence of  tracellular matrix. (X 27,300)
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Figure 3.8. Adenocarcinoma of gastrointestinal type (eth-
moid sinus). Characteristic of gastrointestinal tumors are
numerous thin filaments (F) filling microvilli and extend-
ing into the subjacent cytoplasm. (X 22,300). Inset: higher
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magnification of the apical surface of a cell illustrates
more clearly the filaments in the microvilli and cyto-
plasm. (X 47,100)
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Figure 3.9. Hepatocellular carcinoma (liver). A small  vesicular luminal contents all aid in the identification of
canaliculus (C) is identifiable among five hepatocytes. ~ small canaliculi. (X 10,500)
Microvilli, tight junctions and granular, membranous and
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Figure 3.10. Hepatocellular carcinoma (liver). A dilated
canaliculus (C) has no remaining microvilli, but tight
junctions and junctional complexes (J) as well as innu-
merable intraluminal granules and vesicles of bile are
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readily identifiable. Abundant smooth endoplasmic retic-
ulum (S), consisting of many small vesicles, occupies the
apical cytoplasm of the bordering hepatocytes. (X 12,500)
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Figure 3.11. Hepatocellular carcinoma with a Mallory body (liver). This hepatocyte contains a Mallory body (*) com-
posed of intermediate filaments and surrounded by microbodies (peroxisomes) (arrows). (X 20,000)
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Figure 3.12. Cholangiocarcinoma (liver). Neoplastic  ules occupy the apical cytoplasm of the luminal lining
cells surround a lumen (L), which has innumerable mi-  cells. (X 5700)
crovilli (*) lining it. In addition, numerous secretory gran-

Figure 3.13. Cholangiocarcinoma (liver). Higher mag-
nification of a portion of the lumen and lining depicted
in Figure 3.12 illustrates the microvilli (*) with anchoring
filaments as well as the secretory granules in the apical
cytoplasm of the lining cells. (X 11,500)
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Figure 3.14. Cholangiocarcinoma (liver). In this neo-  contains numerous tonofibrils (T). Junctional complexes
plasm, lumens (L) are lined by microvilli devoid of an-  (J) and desmosomes (D) are also prominent. (X 15,400)
choring filaments, and the cytoplasm of luminal cells
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Figure 3.15. Ductal, mucinous cystadenocarcinoma
(pancreas). In this field, the neoplastic cells form a cystic
lumen (L) lined by innumerable microvilli. The villi have
anchoring filamentous cores that are seen better in Fig-
ure 3.16. An intracytoplasmic lumen (IL), without junc-

tional complexes, is present in one cell. Some of the cells
lining the lumen have a rich collection of mucinous gran-
ules (M) in their apical cytoplasm. Lateral cell borders
show a switch-backing pattern of interdigitation (arrows).
(X 6800)
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Figure 3.16. Ductal, mucinous cystadenocarcinoma  with filamentous cores and rootlets (F) as well as the mu-
(pancreas). Higher magnification of the neoplasm de-  cinous granules (M). (X 34,000)
picted in Figure 3.15 illustrates more clearly the microvilli
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Figure 3.17. Ductal, mucinous cystadenocarcinoma
(pancreas). This field is from a solid, noncystic area of the
same neoplasm depicted in Figures 3.15 and 3.16. Nu-
merous signet-ring forms that had been observed by light

43

microscopy prove ultrastructurally to be due to true in-
tracytoplasmic lumens (IL), devoid of junctional com-
plexes. (X 5000)
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Figure 3.18. Serous microcystic cystadenoma (pan-  crovilli (V), abundant cytoplasmic glycogen (G, open
creas). Characteristic of this neoplasm are the low  spaces) and few organelles. (X 6100)
cuboidal, epithelial lining cells with scant, short mi-
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Figure 3.19. Solid and cystic (solid and papillary) tumor
(pancreas). This field illustrates a pseudopapilla of neo-
plastic epithelial cells, with an open space on the right
(**) and a blood vessel with surrounding matrix in the
lower left (V). The epithelial cells are palisaded around
the vessel in a pseudorosette-like fashion. The cells lin-
ing the open space do not have microvilli or tight junc-
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tions, evidence for the space being either artifact or sec-
ondary to degeneration, rather than being a true lumen.
Several smaller intercellular spaces (*) are filled with a
flocculent material of the same medium-density as linear
basal lamina, which was identified focally in other fields
and at higher magnification. (X 4400)
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Figure 3.20. Solid and cystic (solid and papillary) carci- ~ medium-dense material similar to the matrix (**) sur-
noma (pancreas). This region of the neoplasm is solid and  rounding the solid groups. Mitochondria (M) fill the cy-
microcystic, with cells being tightly apposed except for ~ toplasm and represent the main organelle of the cells.
a small intercellular space (*) filled with flocculent, (X 7500)
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Figure 3.21. Solid and cystic (solid and papillary) carci-
noma (pancreas). Higher magnification of a cluster of
neoplastic cells with an intercellular cystic space filled
with flocculent material (*) and an open degenerative or
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artefactual space (**). No well-defined junctional com-
plexes or microvilli are present along either of the two
spaces. The main organelle in the cytoplasm of the cells
is mitochondria. (X 6600)
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Figure 3.22. Acinar cell carcinoma (metastatic to lung  another characteristic of acinar cells, can be seen in the
from parotid gland). Among the neoplastic cells in this  cell at the top of the field. The inset illustrates the zymo-
gland are several cells (*) having large, dense, zymogen  gen granules and RER at higher magnification. (X 5000;
granules. Stacked rough endoplasmic reticulum (RER),  inset X 19,000)
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Figure 3.23. Mucinous adenocarcinoma (bronchogenic  granules of mucus. (X 5200) See higher magnification of
or bronchioloalveolar, lung). The malignant cells are  the granules in Figure 3.24.
characterized by many supranuclear, medium-dense
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Figure 3.24. Mucinous adenocarcinoma (lung). Numerous granules of mucus fill the upper cytoplasm of the neo-
plastic cell. (X 12,000)
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Figure 3.25. Bronchioloalveolar cell carcinoma (lung). Neoplastic Clara cells contain numerous electron-dense granules,
predominantly in the apical cytoplasm. See higher magnification of another cell in Figure 3.26. (X 5800)
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Figure 3.26. Bronchioloalveolar cell carcinoma (lung). This Clara cell exhibits characteristic membrane-bound, electron-
dense granules in the apical cytoplasm. (X 14,200)
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Figure 3.27. Bronchioloalveolar cell carcinoma (meta- (X 22,700). Inset: one compound and several single
static to a mediastinal lymph node). Characteristic of alve- ~ lamellar bodies are prominent diagnostic features in this
olar type Il cells are lamellar or surfactant bodies (L)  cell. (X 26,000)

occupying the supranuclear cytoplasm of the cells.
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Figure 3.28. Clear cell carcinoma (kidney). The cyto-  used, the glycogen appears as open, escalloped spaces.
plasm of the cells is rich in glycogen (G) and vacuoles of A small villus-lined lumen (*) is visible among several of
neutral lipid (L). By the method of chemical processing  the cells. (X 5300)
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Figure 3.29. Clear cell carcinoma (kidney). By this al-
ternative method of chemical processing, glycogen (G)
has been preserved as electron-dense granules. L = lipid;

N = nucleus. (x 5300) Figure 3.30. Granular cell carcinoma, reclassified as

eosinophilic variant of chromophobe cell carcinoma
(kidney). The cells in this neoplasm have much less
glycogen and lipid than that seen in clear cell renal car-
cinoma, and mitochondria comprise the main con-
stituent of the cytoplasm. (X 3600)
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Figure 3.31. Chromophobe cell carcinoma (kidney). The  crovilli (V) are visible along the free border of some of the
main feature of the cells in this neoplasm is the innu-  cells. Higher magnification of the demarcated rectangu-
merable small cytoplasmic vesicles (*). Numerous mito-  lar field is seen in Figure 3.32. (X 5600)

chondria (M) are also present in many of the cells. Mi-
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Figure 3.32. Chromophobe cell carcinoma (kidney).
Higher magnification of the rectangular region in the pre-
vious photograph reveals some of the small vesicles to be
clear and others to have flocculent and membranous ma-
terial within them. Mitochondria (M) are moderately

pleomorphic and have an abnormal number and arrange-
ment of cristae. No definite transitional forms between
small vesicles and mitochondria are apparent in this field.
(X 15,900)
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Figure 3.33. Adenocarcinoma, moderately differentiated  cells. Lipid droplets (L) are visible in the cytoplasm, but
(prostate). The epithelial lining cells in this invasive gland ~ secretory granules are better seen at higher magnification
are single layered, without accompanying basal reserve  in Figure 3.34. (X 3500)
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Figure 3.34. Adenocarcinoma, moderately differentiated  of secretion (*) are also present in the glandular lumen.
(prostate). Innumerable secretory granules (S) occupy the Microvilli (V) are irregularly distributed. (X 13,000)
apical cytoplasm of these epithelial lining cells. Particles
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Figure 3.35. Cortical adenoma (aldosteronoma, adrenal
gland). The cortical cells contain numerous organelles
and lipid inclusions, some of the latter appearing to be
membrane bound (L). The organelles consist of many
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small cisternae and vesicles of smooth endoplasmic retic-
ulum (S), numerous small mitochondria (M), and lyso-
somes ( parentheses). (X 5000)
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Figure 3.36. Cortical black adenoma (adrenal gland). nification of the lipofuscin reveals a membrane focally
Numerous granules of lipofuscin (L) occupy the cyto- identifiable at the periphery (arrow). (X 19,200)
plasm of these cortical cells. (X 6800). Inset: higher mag-
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(Text continued from page 27)

differentiation of a neoplasm. Examples of this phe-
nomenon follow.

Thyroid follicular neoplasms have the general features
of adenocarcinomas and adenomas and do not show
pathognomonic structures (Figure 3.1). Thyroglobulin-
containing, supranuclear granules, usually present in
some of the cells lining acini (Figure 3.2), cannot be dis-
tinguished morphologically from the secretory granules
of various other glandular neoplasms (Figures 3.3
through 3.5).

Breast carcinomas usually have cells with intracyto-
plasmic lumens, and although this feature is not spe-
cific for breast, it is probably more common there than
in any other organ (Figures 3.6 and 3.7). Furthermore,
intracytoplasmic lumens are found both in ductal and
in lobular carcinomas. Also apropos of breast carcino-
mas, an outer, myoepithelial layer of cells is present in
benign glands (Figure 3.3) and in in situ carcinoma,
whereas these cells are absent in invasive and metasta-
tic carcinomas.

Gastrointestinal carcinomas, including bile ductal and
some pulmonary neoplasms (foregut derivatives), have
cells with filamentous microvilli; that is, the microvilli
contain cores of thin filaments, and the filaments extend
as rootlets into the subjacent cytoplasm (Figure 3.8).
Goblet cells and other, less frequent gastrointestinal
markers consist of Paneth cells, endocrine cells, and am-
phicrine (combined exocrine and endocrine) cells.
These gastrointestinal features may also occasionally be
found in primary neoplasms arising in nongastroin-
testinal locations, such as ovarian carcinomas and
sinonasal carcinomas (Figure 3.8). Theories of origin for
primary enteric neoplasms in nonenteric sites include
heterotopia, metaplasia, and pluripotential differentia-
tion of local stem cells.

Hepatocellular carcinomas have intercellular canaliculi
as an outstanding feature, and when accompanied by
intraluminal and/or intracellular bile, the finding is
pathognomonic (Figures 3.9 and 3.10). Bile has various
forms, including homogeneous electron dense bodies
and varying sized vesicles and membranous whorls
(Figure 3.10). Small canaliculi are recognizable by their
microvilli and tight junctions, and dilated canaliculi, by
their location between cells, their contents of bile and
their tight junctions; microvilli are usually attenuated
or absent. Other characteristics of hepatocytes include
microbodies (peroxisomes), numerous mitochondria,
and abundant smooth endoplasmic reticulum (Figure
3.10). Hepatocellular carcinomas often show increased
amounts of rough endoplasmic reticulum, with cister-
nae that are stacked or concentric and distended by
electron-dense material. Mitochondria may be pleo-
morphic and contain crystals or large, irregularly
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shaped, matrical densities. Filamentous and solid cyto-
plasmic inclusions, corresponding respectively to Mal-
lory hyalin (Figure 3.11) and alpha-1-antitrypsin (see
Chapter 11, Figures 11.15 and 11.16), may also be pres-
ent. The filaments comprising Mallory hyalin are of in-
termediate (10 nm) diameter and are positive immuno-
histochemically for keratin. The filaments are arranged
in round or irregularly shaped groups but do not ag-
gregate into tonofibrils. The groups are often sur-
rounded by microbodies (Figure 3.11).

Bile duct carcinomas (cholangiocarcinomas) have a tu-
bular, papillary, or solid pattern, and cells lining lumens
have short, straight microvilli that are filled with fine
filaments; the filaments anchor into the subjacent cyto-
plasm, similar to what is found in the stomach and in-
testine (Figures 3.12 and 3.13). Microvilli of this type
may be absent in poorly differentiated cholangiocarci-
nomas. Secretory granules may occupy the apical cyto-
plasm of the cells, and tonofibrils may or may not be
present (Figures 3.12 through 3.14).

Pancreatic exocrine carcinomas may arise from acinar
cells, centroacinar cells, intercalated duct cells, in-
tralobular duct cells, interlobular duct cells, and main
pancreatic duct cells. Adenocarcinomas from main and
interlobular ducts (mucinous cystadenocarcinomas) have
cells similar to those of bile ducts and intestinal epithe-
lium; that is, the cytoplasm contains mucin granules,
and the free surface has microvilli filled with thin fila-
ments that anchor into the subjacent cytoplasm (Figures
3.15 and 3.16). In addition, neuroendocrine cells may be
present. Less differentiated large-duct carcinomas and
those arising from smaller (intralobular and interca-
lated) ducts do not show intestinal features. Solid, non-
cystic areas with signet-ring cells may be present in
some of these neoplasms (Figure 3.17). Glycogen-rich,
microcystic adenomas (serous cystadenomas) are composed
of varying sized cysts lined by cuboidal or flat epithe-
lial cells. Most of these cells contain abundant glycogen
and few other organelles (Figure 3.18), but some cells
contain abundant endoplasmic reticulum. Microvilli are
sparse, short, and without intestinal-type anchoring fil-
aments. The cells resemble intercalated duct or cen-
troacinar cells of normal pancreas. Solid and cystic (solid
and papillary) tumors are composed of solid sheets of
cells, with focal, degenerative, cystic spaces and
pseudopapillae (Figures 3.19 and 3.20). There may also
be smaller intercellular spaces that invaginate some of
the cells, forming pseudolumens (Figures 3.19 through
3.21). True lumens lined by microvilli and tight junc-
tions are rarely present. The cells of solid and cystic tu-
mors are usually poorly differentiated and are proba-
bly derived from uncommitted or pluripotential cells
from centroacinar and/or terminal duct epithelium.
However, focal acinar cell and neuroendocrine cell dif-
ferentiation, recognizable by zymogen granules and
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dense-core granules, respectively, may be found in
some of these neoplasms. In addition, many cells are
oncocytic, having numerous mitochondria (Figures 3.20
and 3.21). Acinar (acinic) cell carcinomas of pancreas and
salivary glands are composed partially of cells having
large, zymogen, or serous granules, 125-1500 nm in di-
ameter (Figure 3.22). More pleomorphic, sometimes
larger, filamentous granules, similar to those in the
12-20-week-old fetal pancreas, may also be present,
and abundant stacked cisternae of rough endoplasmic
reticulum are common. Other components of acinar cell
carcinomas are undifferentiated stem cells and interca-
lated ductal cells, neither of which has exclusive ultra-
structural features.

Pulmonary adenocarcinomas may be bronchogenic or
from cells lining bronchioles and alveoli. Those arising
from bronchial glands are usually mucinous, and those
originating from bronchioloalveolar cells may be com-
posed of any combination of three cell-types—mucus-
secreting cells, Clara cells, and type II alveolar lining
cells. Mucus-secreting cells are readily identifiable by
characteristic granules of variable, but usually medium,
density in the supranuclear cytoplasm (Figures 3.23 and
3.24). Clara cells contain varying numbers of electron-
dense granules, predominantly in the supranuclear cy-
toplasm (Figures 3.25 and 3.26). Type II alveolar lining
cells contain diagnostic lamellar (surfactant) bodies,
also in the supranuclear cytoplasm (Figure 3.27).

Renal adenocarcinoma most often ultrastructurally re-
capitulates to varying degrees the morphology of nor-
mal proximal tubules, including long microvilli on the
apical or free surface of the cell, glycocalyx in intervil-
lous crypts, and numerous pinocytotic vesicles and
vacuoles in the apical cytoplasm. Other features that
are found both in normal proximal and distal tubules
are infoldings of the basal plasmalemma, interdigita-
tions of the lateral plasmalemmas, basal lamina, nu-
merous mitochondria, varying amounts of glycogen
and lipid, microbodies, and lysosomes. In renal cell car-
cinoma, microvilli may be present only focally and on
a few cells. Extracellular or intracellular lumens may
also be present. Blood vessels in renal cell carcinomas
typically have fenestrated endothelium, similar to nor-
mal peritubular capillaries. In the clear cell form of these
neoplasms, the cytoplasm is rich in neutral lipid and
glycogen (Figures 3.28 and 3.29). In granular cell neo-
plasms (including oncocytomas), lipid and glycogen are
minimal, and mitochondria are numerous and fill most
of the cytoplasm (Figure 3.30). The entity previously
called granular cell carcinoma is currently reclassified
into oncocytoma, an eosinophilic variant of chromo-
phobe cell carcinoma and collecting duct carcinoma.
Chromophobe cell carcinomas represent less than 7% of all
renal carcinomas and have a very distinctive ultra-
structure. Cell cytoplasm contains innumerable small
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vesicles, 150-300 p in diameter. Many cells also con-
tain numerous mitochondria, and some cells may show
an apparent transition between altered mitochondria
and small vesicles (Figures 3.31 and 3.32).

Prostatic adenocarcinomas are composed of luminal
type cells, although focal neuroendocrine cells and pure
neuroendocrine neoplasms also occur. Normal glandu-
lar epithelium of the prostate includes columnar lining
cells, cuboidal basal reserve cells, and scattered neu-
roendocrine cells. The main feature of normal and neo-
plastic lining cells is the presence of many secretory
granules, some of which may be quite large (Figures 3.33
and 3.34). Varying numbers of lipid droplets and lyso-
somes are also frequently present. Secondary lysosomes
often contain lipofuscin pigment that, if prominent,
gives rise to the light microscopic picture referred to as
melanosis and may be seen in benign and malignant
prostatic epithelium. Electron microscopy substantiates
the pigment as being lipofuscin and not melanin. Com-
pared to normal prostatic epithelium, the cells compris-
ing adenocarcinomas show a disorganized arrangement
of organelles, including the secretory granules not being
limited to the supranuclear cytoplasmic compartment.
In addition, microvilli are not as uniform in size and dis-
tribution on the surface of the cells, and mitochondria
are pleomorphic and increased in number.

Adrenal cortical adenomas and carcinomas are com-
posed of solid groups of cells that have a wide range of
ultrastructural features but usually retain some or-
ganelles and inclusions characteristic of normal cortex,
albeit in abnormal amount and distribution (Figure
3.35). The normal adrenal cortex, as with other steroid
producing endocrine organs, is composed of cells with
abundant smooth endoplasmic reticulum, lipid droplets,
mitochondria, and lysosomes. Some of the mitochon-
dria have tubulovesicular cristae. A few small villi may
be found on the free surface of the cells, but there are no
microacini. Basal lamina surrounds groups of cells. Nu-
clei are round and have a small amount of heterochro-
matin. In addition, there are features characteristic of
specific zones. Cells of the zona glomerulosa are smaller
and have less cytoplasm than the cells from the other
two zones. Lipid droplets are less numerous and
smaller than in the zona fasciculata, and some are sur-
rounded by a limiting membrane. Mitochondria are
small, round, and elongated. The zona fasciculata is char-
acterized mostly by numerous lipid droplets. Mito-
chondria are variable in size and shape. The zona retic-
ularis has abundant lipofuscin as its main feature, and
neutral lipid droplets are less numerous than in the
other two zones. Mitochondria are usually elongated.
There may also be stacks of rough endoplasmic reticu-
lum and lysosomes of varying size.

Cortical adenomas and carcinomas, functional and
nonfunctional, are composed of cells that usually have
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numerous organelles, including a moderate number of
mitochondria, and in oncocytic adenomas mitochon-
dria represent the main cytoplasmic organelle. Cristae
may be tubular or lamellar, and there may be large,
dense bodies in the mitochondrial matrix. Unfortu-
nately, smooth endoplasmic reticulum may not always
be present in abundance, and lipid droplets may not be
numerous in some of these neoplasms. Rough endo-
plasmic reticulum is commonly found and is often
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arranged in stacks. Intercellular junctions are small, and
compressed villi may be found between cells. Acini are
very rare. Nuclei are usually regular in contour, contain
a small amount of heterochromatin and have small nu-
cleoli. Dense-core granules of neuroendocrine type are
not expected but rarely may be present. Glycogen is not
usual but may be seen in a few of these neoplasms,
making the differential diagnosis between cortical car-
cinoma and renal cell carcinoma difficult. The combi-

Figure 3.37. Cortical hyperplasia treated with spironolactone (adrenal gland). Several electron-dense, lamellar (spirono-
lactone) bodies (SB) are apparent. (X 6500)
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nation of glycogen and lipid is otherwise a fairly reli-
able finding for the diagnosis of renal cell carcinoma.

Usually, it is not possible to tell from its ultrastruc-
ture whether a cortical lesion is functioning or non-
functioning. Furthermore, ultrastructural markers,
more often than not, are unreliable in identifying spe-
cific types of functioning adenomas. On the other hand,
some lesions do recapitulate the morphology of the cor-
tical zone of origin: aldosteronomas may show the
membrane-bound lipid vacuoles characteristic of the
zona glomerulosa; some cortisol-secreting lesions ex-
hibit the overabundance of lipid vacuoles typical of the
zona fasciculata; and cellular proliferations producing
the adrenogenital syndrome may contain many lyso-
somes and lipofuscin granules, characteristic of the
zona reticularis. An exaggerated amount of lipofuscin
is also seen in so-called black adenomas, in which the
excessive pigment actually imparts a grossly visible
black or brown discoloration to the involved cortex. Al-
though a limiting membrane is often difficult to iden-
tify around the pigment, the pigment is probably in sec-
ondary lysosomes (Figure 3.36).

When hypertension in hyperaldosteronism is treated
with spironolactone, an aldosterone antagonist, the
adenomatous or hyperplastic adrenal cortical cells ac-
cumulate electron-dense, membranous whorls—spiro-
nolactone bodies (Figure 3.37). These structures are usu-
ally in close association with surrounding smooth
and/or rough endoplasmic reticulum. Spironolactone
type bodies are not morphologically specific for treated
adrenal cortical hyperfunction and may be seen in other
locations and circumstances, such as in hepatocytes in
patients treated with phenobarbital and certain other
drugs.

Squamous Cell Carcinoma

(Figures 3.38 through 3.49.)

Diagnostic criteria. (1) Desmosomes; (2) tonofibrils;
(3) keratohyalin granules (in well-differentiated cells).

Additional points. Intercellular bridges may be pro-
duced if adjoining cells are partially pulled apart as a
result of edema, degeneration, or autolysis (Figures 3.38
and 3.39). Basal lamina may or may not be present
around groups of cells.

The epithelial cells of thymomas (Figures 3.40 through
3.42) and most thymic carcinomas are of squamous type,
but the size of desmosomes and number of tonofibrils
vary with the degree of differentiation and the zone of
thymus from which the neoplastic cells are derived.
Cortical neoplasms tend to have cells with long, slen-
der processes; small desmosomes; and few tonofibrils.
Medullary lesions (including spindle cell thymomas)
have shorter cells with more abundant cytoplasm, large
desmosomes, and numerous and prominent tonofibrils.
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The epithelial cells of some medullary thymomas may
form Iumens lined by microvilli and junctional com-
plexes. Nonsquamous cell thymic carcinomas include
clear cell carcinoma, mucoepidermoid carcinoma, basa-
loid carcinoma, lymphoepithelioma-like carcinoma, and
sarcomatoid carcinoma.

So-called undifferentiated carcinomas of the nasopharynx
and paranasal sinuses are actually poorly differentiated
squamous cell carcinomas and characteristically have
desmosomes but only a few tonofibrils (Figures 3.43
through 3.45).

Adamantinomas of long bones also are composed of
cells exhibiting squamous differentiation (Figures 3.46
and 3.47). This is true for oval and polygonal cell com-
ponents and for spindle cell portions, although a ma-
trix containing nonneoplastic, fibroblastic spindle cells
usually accompanies the islands or cords of neoplastic
squamous cells. Basal lamina may surround the squa-
mous cellular groupings.

Concomitant squamous and glandular differentia-
tion is seen in adenocarcinomas with squamous meta-
plasia, adenosquamous carcinomas, and mucoepider-
moid carcinomas. In some of these neoplasms there may
be separate cell types—secretory glandular epithelium
and squamous epithelium—as well as biphasic differ-
entiation within the same cell (Figures 3.48 and 3.49).

Squamous and neuroendocrine differentiation with-
in the same cell also may be seen in small cell carcinoma
of the bronchus.

Transitional Cell (Urothelial) Carcinoma

(Figures 3.50 through 3.59.)

Diagnostic criteria. (1) Interdigitating, villus-like, lat-
eral cell borders; (2) scalloping of luminal plasmalem-
mas by small invaginations that connect with elliptical
apical cytoplasmic vesicles; (3) apical cytoplasmic fila-
ments; (4) focally invaginated basal border, at points of
abutment of neighboring cells; (5) desmosomes.

Additional points. A common feature of neoplastic
urothelial cells is interdigitation of lateral cell mem-
branes. Apical vesicles and plasmalemmal scalloping
are also very characteristic of urothelium, but they
may be scarce or inconspicuous in neoplastic tissue.
Short microvilli may be present on the apical surface
of cells, and varying amounts of cytoplasmic glycogen
and secondary lysosomes may also be present. Tono-
fibrils, a sign of squamous differentiation, often are
present to some degree. Most cells are polygonal, and
some are elongate. Nuclei are frequently indented and
irregular in shape, as is true to a lesser extent in nor-
mal, nonneoplastic urothelial cells. Nucleoli are large
and multiple and consist mostly of open strands of nu-
cleolonemas.

(Text continues on page 88)
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Figure 3.38. Squamous cell carcinoma (bronchus). A and intercellular bridges (ICB). The cytoplasm of most
nest of well-differentiated squamous cells is surrounded  cells is rich in bundles of prekeratin filaments (tonofibrils)
by basal lamina (BL) and has prominent desmosomes (D) (F). (X 6700)
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Figure 3.39. Squamous cell carcinoma (bronchus). lamina (BL) enclosing the periphery of the group of cells.
Higher magnification of one of the cells illustrated in Fig- (X 12,150) (Permission for reprinting granted by WB
ure 3.38. Desmosomes (D), intercellular bridges (ICB), Saunders, Dickersin GR: Electron microscopy of leukemias
and tonofibrils (F) are all prominent. Note also the basal and lymphomas. Clin Lab Med 7:199-247, 1987.)
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Figure 3.40. Thymoma. An island of poorly differenti-  tonofibrils (F) can be seen well only in one cell. Note the
ated squamous cells (center) lies within a sea of lym- mitotic figure (m) in one cell. (X 4750)
phocytes (top, bottom, and left). At this magnification,
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Figure 3.41. Thymoma. Higher magnification of one of the squamous cells in Figure 3.40 depicts tonofibrils (F) and
desmosomes (D). (X 22,750)
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Figure 3.42. Thymoma. Poorly differentiated cells show prominent desmosomes (D) and no tonofibrils. Filaments (F)
are present but in a diffuse, unbundled arrangement. (X 15,390)
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Figure 3.43. Undifferentiated (squamous) carcinoma (na- nucleoli (Nu). The cytoplasm is primitive, with free ribo-
sopharynx). The neoplasm is characteristically composed ~ somes being the most prominent organelle. Lateral cell
of large cells that have a high nuclear—cytoplasmic ratio, borders are interdigitated (circles) in many foci. (X 5740)
large nuclei with finely dispersed chromatin, and large
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Figure 3.44. Undifferentiated (squamous) carcinoma (na-  are small. (X 9900) (Permission for reprinting granted by
sopharynx). Higher magnification of the same case as ~ WB Saunders, Dickersin GR: Electron microscopy of
shown in Figure 3.43 illustrates the lack of differentiation leukemias and lymphomas. Clin Lab Med 7:199-247,
of the cytoplasm. Free ribosomes (r) compose most of the ~ 1987.)

cytoplasm. Desmosomes (D) are readily discernible but
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Figure 3.45. Undifferentiated (squamous) carcinoma (na- the presence of a few tonofibrils (F) and desmosomes (D)
sopharynx). The cells in this neoplasm are spindle shaped  of moderate size. L = lymphocyte. (X 6750)
and show mild squamous differentiation, as indicated by
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Figure 3.46. Adamantinoma (tibia). Some of the cells in tonofibrils (F) in their cytoplasm. The latter are better seen
this island of epithelial cells are spindle shaped but are  at higher magnification in Figure 3.47. (X 10,400)
still interconnected by desmosomes (D) and contain
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Figure 3.47. Adamantinoma (tibia). Higher magnification of a cell from the same neoplasm depicted in Figure 3.46
illustrates more clearly the cytoplasmic tonofibrils (F). (X 37,700)
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Figure 3.48. Mucoepidermoid carcinoma (bronchus). A neoplasm manifesting two lines of differentiation: glandular,
with microvilli (V) and secretory (mucus) granules (S); squamous, with tonofibrils (F). (X 5320)
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Figure 3.49. Mucoepidermoid carcinoma (bronchus). Higher magnification of one of the cells depicted in Figure 3.48,
illustrates the microvilli (V), secretory granules (S), and tonofibrils (F). (X 15,960)
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Figure 3.50. Normal urothelium (ureter). At low magni-  Also noted is the irregularly villous luminal surface (top
fication, the characteristic transitional cell feature of in-  of field) and the indented and irregularly shaped nuclei
terdigitating, villus-like lateral borders (*) is discernible.  (N). (X 3700)
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Figure 3.51. Normal urothelium (ureter). High magnifi- innumerable small apical vesicles (circles), and a few
cation of luminal lining cells illustrates an irregularly vil- ~ secondary lysosomes (1). (X 16,520)
lous surface (V), interdigitating lateral cell membranes (¥),
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Figure 3.52. Normal urothelium (ureter). High magnification of the apical cytoplasm of a lining cell demonstrates
communications between some of the small vesicles (arrows) and the lumen (L). (X 47,600)



LARGE CELL NEOPLASMS 81

Figure 3.53. Normal urothelium (ureter). The basal side ~ marked interdigitation of their villus-like projections (*).
of the urothelial lining is covered by basal lamina (BL), (X 9880)
and the lateral plasma membranes of adjacent cells show
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Figure 3.54. Papillary transitional cell carcinoma (renal  and the nuclear shape is irregular in the latter-type cells.
pelvis). Some of the neoplastic cells at the surface of this A few microvilli (V) are present on the free surface of both
papilla are narrow and long (A), and others are bulbous  types of cells. (X 6750)

and pouting (B). The nuclear—cytoplasmic ratio is high,



LARGE CELL NEOPLASMS 83

_.g . o "il"

L e e
b s LT

: ’ e
i -'1. T et

Figure 3.55. Papillary transitional cell carcinoma (renal ponderance of euchromatin. The cytoplasm is composed
pelvis). Neoplastic cells deep within a papilla are plump ~ mostly of free ribosomes plus a moderate number of mi-
and have large and irregularly shaped nuclei with multi-  tochondria (M) and a few undilated cisternae of rough

ple open strand-like nucleoli (nucleolonemas) and a pre- endoplasmic reticulum (RER). (X 7020)
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Figure 3.56. Metastatic transitional cell carcinoma from bladder (omentum). The neoplastic cells are narrow and have
interdigitating lateral borders (*). The open cytoplasmic spaces represent glycogen (G). (X 10,640)
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Figure 3.57. Metastatic transitional cell carcinoma from bladder (omentum). High magnification highlights the copi-
ous cytoplasmic glycogen (G) present in many of the cells of this neoplasm. (X 11,400)
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Figure 3.58. Metastatic transitional cell carcinoma from
bladder (omentum). These cells at the edge of the neo-
plastic island illustrate interdigitating lateral borders (*¥),
a peripheral covering by basal lamina (BL) and invagi-

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS
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nation of their basal cell membrane at the line of junc-
tion between cells (arrow). Additional features include
tonofibrils (T) and dilated cisternae of rough endoplasmic
reticulum (RER). (X 15,000)
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Figure 3.59. Metastatic transitional cell carcinoma from  chondria; RER = dilated cisternae of rough endoplasmic
bladder (omentum). Early squamous differentiation in this  reticulum. (X 17,700)
cell is indicated by numerous tonofibrils (T). M = mito-
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(Text continued from page 65)

Undifferentiated Carcinoma

(Figures 3.60 through 3.63.)

Diagnostic criteria. (1) Intercellular junctions; (2) no
squamous differentiation; (3) no glandular differentia-
tion; (4) no lymphoid or sarcomatoid differentiation (see
later sections).

Additional points. Most carcinomas of the large cell,
undifferentiated type at the light microscopic level can
be proved to be poorly differentiated squamous cell car-
cinomas or adenocarcinomas when viewed through the
electron microscope. This is especially true for carcino-
mas arising in the bronchus, nasopharynx, and para-
nasal sinuses, as pointed out earlier (see section on
squamous cell carcinoma). However, a small percent-
age of neoplasms in this “undifferentiated” group ap-
pear genuinely undifferentiated at the ultrastructural
level as well. Examples of these entities include germ
cell tumors such as dysgerminomas and some embry-
onal carcinomas and a few neoplasms in which the cell
line cannot be determined. Intercellular junctions are
the sole feature in some of these neoplasms that allow
a diagnosis of carcinoma to be made and lymphoma to
be ruled out. The junctions usually are of the interme-
diate type and may be sparse and small. When promi-
nent desmosomes are found, on the other hand, it is of-
ten an indication of squamous differentiation. Another
epithelial feature, if the neoplasm has an insular pat-
tern, is the presence of basal lamina surrounding groups
of cells rather than individual cells.

Melanoma

(Figures 3.64 through 3.71.)

Diagnostic criteria. (1) Premelanosomes (stage I and
IT melanosomes); (2) melanosomes (stage III and 1V);
(3) atypical (or aberrant) melanosomes.

Additional points. Premelanosomes are unpigmented
vesicles that include stage I and stage II melanosomes.
Stage I melanosomes originate from the Golgi appara-
tuses as clear, round vesicles and are not diagnostic of
melanoma. Stage Il melanosomes consist of larger, oval
or elliptical vesicles with a pathognomic internal lamel-
lar structure. Stage III melanosomes are partially pig-
mented, and stage IV melanosomes are heavily pig-
mented and have their internal lamellar pattern
completely obscured. Stage IV melanosomes and atyp-
ical melanosomes, by themselves, are often only sug-
gestive of, or consistent with, the diagnosis, especially
if they are few in number. Atypical melanosomes
include a broad spectrum of morphologic types of
electron-dense granules and often are difficult to dis-
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tinguish from primary and secondary lysosomes. Fila-
ments of an intermediate diameter (10 nm) are often
moderately numerous in melanocytes, and arrays of mi-
crotubules within cisternae of rough endoplasmic retic-
ulum may also be found occasionally (Figures 3.68 and
3.69). Unexpected structures such as microvilli and
basal lamina may be found rarely in the cells compris-
ing a melanoma.

Clear cell sarcoma, or melanoma of soft parts, has the
same criteria for diagnosis as other melanomas; namely,
the presence of melanosomes (Figures 3.70 and 3.71).
Cytoplasmic glycogen accounts for the clear appear-
ance of the cells at light microscopy. The cells may be
polygonal and/or spindle shaped, and in some cases
the spindle cells are more consistent with melanotic
Schwann cells than with melanocytes. The Schwannian
features include long intertwining processes, basal lam-
ina, junctions (variable in size and number), secondary
lysosomes, and long-spacing collagen (see section on
Schwannoma, Chapter 6).

Balloon cell melanoma is a rare form of melanoma in
which all or some of the neoplastic melanocytes are
large and have copious, vacuolated cytoplasm. Some of
the vacuoles disclose a melanosomal origin by the pres-
ence of striated lamellar remnants. The cause of the
vacuolization is unknown but may be a degenerative
change or an abnormality in melanin synthesis.

Mesothelioma

(Figures 3.72 through 3.77.)

Diagnostic criteria. (1) Numerous long, thin microvilli
with a length-to-diameter ratio of 10-to-1 or higher;
(2) prominent intercellular junctions, including desmo-
somes and junctional complexes; (3) numerous fila-
ments, including tonofibrils; (4) glycogen; (5) intracy-
toplasmic lumens.

Additional points. The above criteria are characteris-
tic of the epithelial type of mesothelioma (Figures 3.72
through 3.74). The microvilli, in addition to being on the
free surface of cells lining papillae and acini, may com-
pletely surround less organoid cells and abut matrical
collagen. Otherwise, a basal lamina courses along the
basal plasmalemma of adjacent cells, separating them
from the fibrous stroma. Cytoplasmic organelles usu-
ally include many mitochondria. Nuclei are round, and
nucleoli are of moderate size. Mesotheliomas can usu-
ally be distinguished from pulmonary carcinomas by
the absence of mucinous granules in the cytoplasm and
by the absence of glycocalyx on the cell surface. In ad-
dition, it is rare for adenocarcinomas to have long, thin
microvilli.
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Less common spindle cell types of mesothelioma in-
clude sarcomatous, or mesenchymal mesothelioma,
and localized fibrous tumor of the pleura. In sarcoma-
toid mesotheliomas, the spindle cells vary in their fea-
tures, some having the prominent RER and Golgi ap-
paratuses of fibroblasts, some having additionally the
filaments and dense bodies of myofibroblasts, and oth-
ers having junctions and microvilli characteristic of ep-
ithelial cells. In localized fibrous tumor of the pleura,
the cells are spindle and polygonal in shape, dispersed
individually and in small clusters in a matrix of dense
collagen, and they may have no or only minor epithe-
lial features such as small intercellular junctions and a
few abortive microvilli (Figures 3.75 through 3.77). In
addition, the cells usually have a nondescript cyto-
plasm, but in a small percentage of cases the cytoplasm
contains prominent rough endoplasmic reticulum, con-
sistent with fibroblasts.

Lymphoma

(Figures 3.78 through 3.86.)

Diagnostic criteria. (1) Nucleus with peripheral het-
erochromatin, in at least some of the cells; (2) cytoplasm
composed mostly of free ribosomes and/or polyribo-
somes; (3) absence of intercellular junctions.

Additional points. Large cell lymphomas include high-
grade follicle center lymphoma, composed of centro-
blasts; diffuse, large B-cell lymphoma, which has sev-
eral variants including centroblastic, immunoblastic,
mixed centroblastic/immunoblastic (most common),
and anaplastic types; anaplastic large cell lymphoma,
T- and null-cell types; and some cases of peripheral T-
cell lymphoma, unspecified, subcutaneous T-cell lym-
phoma, and intestinal T-cell lymphoma.

Centroblasts have round nuclei with smooth or in-
dented contours, a small amount of heterochromatin,
peripheral nucleoli, and abundant cytoplasm with a
predominance of ribosomes and polyribosomes and
few other organelles (Figures 3.78 through 3.80). Im-
munoblasts have large, mostly euchromatic nuclei,
large central nucleoli (frequent nucleolonemas), vary-
ing amounts (often prominent) of rough endoplasmic
reticulum and numerous ribosomes and polyribosomes
(Figures 3.81 and 3.82). Plasmacytoid immunoblasts
have varying amounts of heterochromatin and one or
two large central or peripheral nucleoli. The cytoplasm
contains abundant rough endoplasmic reticulum,
which is dilated and filled with a medium-dense sub-
stance (Figure 3.83). These cells have generally similar
features to the plasma cells seen in plasmacytomas,
multiple myeloma, and reactive plasmacytic prolifera-
tions (see Chapter 4, Figures 4.51 through 4.54).
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B-cells and T-cells cannot be morphologically distin-
guished from one another, although T-cells tend to have
more irregularly shaped nuclei.

The CD30 (Ki-1) positive anaplastic cells of T-cell,
null-cell (and infrequent B-cell) lymphomas are irregu-
larly oval and have abundant cytoplasm with a
predominance of ribosomes, a moderate number of mi-
tochondria, and a few undilated cisternae of rough en-
doplasmic reticulum. Nuclei are pleomorphic, in-
dented, lobated, and euchromatic. Nucleoli are large
and multiple (Figures 3.84 and 3.85). Plasmalemmas, in
about 20% of cases, are raised into numerous, compli-
cated filopodia (filiform cells, anemone cells, porcupine
cells) (Figure 3.85), a feature present also in some
nonanaplastic large cell (mostly B-cell) lymphomas
(Figure 3.81). The ultrastructural features of the large
cells of anaplastic lymphomas may be strikingly simi-
lar to those of Reed-Sternberg cells of Hodgkin's dis-
ease. Reed-Sternberg cells, depending on the plane of
sectioning, may appear to have classic mirror-image,
double nuclei, or they may reveal only one nucleus.
Some nuclei that appear double by light microscopy are
identifiable as single, bilobed nuclei with narrow isth-
muses, by electron microscopy (Figure 3.86).

Although large cell lymphomas often are composed
predominantly of blasts having euchromatic nuclei,
they usually also contain scattered smaller cells that
have the characteristic peripheral heterochromatin pat-
tern of lymphoid nuclei (Figures 3.78 and 3.79). Other
features of some large cell lymphomas are intertwining
of plasmalemmas of adjacent cells and tapering, broad,
polar processes (Figures 3.79 and 3.80). Intertwining of
plasmalemmas is also seen with follicular dendritic cells
and with paracortical interdigitating cells. Follicular
dendritic cells are found in the follicular centers of nor-
mal and hyperplastic lymph nodes and have been in-
terpreted in follicular lymphoma to indicate that the
nodules derive from follicles.

Electron microscopy has elucidated the nonhistio-
cytic, lymphoid nature of the large neoplastic cells in
large-cell lymphomas; and the term “histiocytic lym-
phoma”, as used in the outdated Rappaport classifica-
tion of lymphomas, is a misnomer. Histiocytes occur in
varying numbers in large-cell lymphomas but are con-
sidered to be part of the inflammatory reaction accom-
panying the neoplasms. Usually, there is no difficulty
encountered in distinguishing a histiocyte from a large
lymphoid cell. Histiocytes have abundant cytoplasm
with many different organelles. Histiocytic sarcoma, a
lymphoma-like lesion composed of neoplastic histio-
cytes, is a very rare entity, and although it may progress
to a diffuse stage, it is usually localized on first presen-
tation (see Section on Histiocytic Disorders next).

(Text continues on page 116)
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Figure 3.60. Undifferentiated large cell carcinoma (lung).
The three moderately well-preserved cells in this field
show an absence of squamous and glandular features
and, at higher magnification (Figure 3.61), have a few
small intercellular junctions. There is a high nuclear—

cytoplasmic ratio, nuclei are predominantly euchromatic
and have large nucleoli, and the cytoplasmis rich in free
ribosomes. The large secondary lysosomes (1) could rep-
resent either a heterophagosome or an autophagosome.
(X 5940)
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Figure 3.61. Undifferentiated large cell carcinoma (lung). lar junctions (J). In addition, cell membranes of adjacent
Higher magnification of the same neoplasm as that de-  cells show focal interdigitation (arrows), less diffuse than

picted in Figure 3.60 shows at least two small intercellu-  those seen in urothelial cells. (X 11,700)



DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 3.62. Metastatic undifferentiated large cell carci-
noma (posterior mediastinum, in paratracheal lymph
nodes). Several large neoplastic cells (N) are surrounded
by lymphocytes (L), and the neoplastic cells have no
squamous or glandular differentiation. The cytoplasm is

rich in free ribosomes and also has numerous mitochon-
dria (M) and undilated cisternae of rough endoplasmic
reticulum (RER). Nuclei are large, irregularly shaped, and
euchromatic, and they have large nucleoli (Nu). Junctions
cannot be discerned at this low magnification. (X 5510)
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Figure 3.63. Metastatic undifferentiated large cell carci-
noma (posterior mediastinum, in paratracheal lymph
node). Higher magnification of the same neoplasm as that
shown in Figure 3.62 highlights the lack of squamous and
glandular differentiation in the cytoplasm and the incon-

spicuousness of intercellular junctions. The presence of
copious glycogen (G, clear spaces) rules out lymphoma
and often is present in undifferentiated large cell carci-
nomas. (X 5720)



Figure 3.64. Melanoma (metastatic to soft tissue of thigh).
By light microscopy and low-power electron microscopy,
this poorly differentiated neoplasm was amelanotic, and
only at higher power did a few cells contain diagnostic
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melanosomes. Note the marked nuclear pleomorphism
among the cells. Also, chromatin is finely dispersed, and
nucleoli are marginally located along the nuclear enve-
lope. (X 5130)
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Figure 3.65. Melanoma (nasal mucosa). This neoplasm,  the variation in size, shape, and density among the
as compared with Figure 3.64, is extremely melanotic, ~ melanosomes. (X 5130)
having many melanosomes (M) in most of the cells. Note
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Figure 3.66. Melanoma (skin of upper eyelid). Diagnos- (M) have partial or complete obliteration of that pattern
tic early-stage melanosomes (m) have a discernible in- by synthesized melanin pigment. (X 100,500)
ternal lamellar pattern, whereas later-stage melanosomes
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Figure 3.67. Melanomas. Examples of later-stage mela- A and D, the size of the melanosomes (m) can be con-
nosomes from four different melanomas, illustrating the  trasted to that of mitochondria (M). A, X 63,000. B, X
range of morphology possible in these organelles. In  64,800. C, X 29,700. D, X 40,500.
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Figure 3.68. Melanoma (metastatic to inguinal lymph node). A malignant melanocyte contains a paranuclear col-
lection of intracisternal microtubules (arrows) (see higher magnification in Figure 3.69). (X 14,300)
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Figure 3.69. Melanoma (metastatic to inguinal lymph  crotubules in longitudinal (arrow) and transverse (double
node). Higher magnification of a cell from the same neo-  arrows) directions. (X 30,000)
plasm shown in Figure 3.68 depicts the intracisternal mi-
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Figure 3.70. Clear cell sarcoma (lymph node, left arm). Closely arranged polygonal cells have large euchromatic nu-
clei with prominent nucleoli and abundant cytoplasmic glycogen (*, open finely granular spaces). (X 5700)
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Figure 3.71. Clear cell sarcoma (lymph node, left arm). High magnification of a portion of one of the clear cells from
the case illustrated in Figure 3.70 shows numerous melanosomes (M) of various stages. (X 35,000)
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Figure 3.72. Mesothelioma (pleura and anterior thoracic wall). Epithelial type cells have a floridly villous free surface
(V) and tightly apposed other surfaces. C = collagen. (X 4940)
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Figure 3.73. Mesothelioma (pleura and anterior thoracic ~ long and numerous. Intercellular junctions (J) and mi-
wall). Higher magnification of a cell from the same neo-  crofilaments (F) are prominent, and nucleoli (Nu) are
plasm as depicted in Figure 3.72. The surface villi (V) are  large. (X 15,000)
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Figure 3.74. Mesothelioma (pleura). This specimen was specially processed to preserve glycogen (G) as electron-
dense granules. Glycogen often is copious in the cells of mesotheliomas. (X 16,000)
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Figure 3.75. Fibrous mesothelioma (pleura). The neo-  of the cells are more oval and polygonal than spindle
plastic cells are dispersed individually and in small  shaped. (X 3245)
groups within a matrix of collagen. Within groups, some
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Figure 3.76. Fibrous mesothelioma (pleura). A group of  the finely dispersed chromatin, and the prominent nu-
neoplastic cells are tightly apposed and spindle and  cleolus (Nu) all contribute to the poorly differentiated ap-
polygonal in shape. The high nuclear—cytoplasmic ratio, ~ pearance of the cells. (X 5700)
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Figure 3.77. Fibrous mesothelioma (pleura). High mag-  lular junctions (J), and small, intercellular, villus-lined
nification of a group of neoplastic cells depicts several  spaces (arrows). (X 16,245)
epithelial-like features: polygonal shapes, small intercel-
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Figure 3.78. Reactive follicular center (cervical lymph
node). The large cells are centroblasts and have a high
nuclear—cytoplasmic ratio, finely dispersed chromatin
(euchromatin), large nucleoli, and cytoplasm composed
mostly of free ribosomes. Scattered among the centro-
blasts are smaller centrocytes having the aggregated chro-

matin (heterochromatin) pattern characteristic of lym-
phocytes (L). Although the cells are in tight apposition,
there are no intercellular junctions. The abutting plas-
malemmas of adjacent cells are intertwined in many foci
(circles). (X 4990)
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Figure 3.79. Reactive follicular center (cervical lymph
node). This higher magnification of the specimen de-
picted in Figure 3.78 illustrates the intertwining of the
plasma membranes of adjacent cells. Although free ribo-
somes predominate in the cytoplasm of these centro-
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blasts, there also are a few mitochondria (M), scattered
cisternae of rough endoplasmic reticulum (RER), and
prominent Golgi apparatuses (G) with a few primary lyso-
somes (circles). (X 23,660)
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Figure 3.80. Nodular and diffuse, centroblastic large cell (X 7760) (Permission for reprinting granted by WB Saun-
lymphoma (nasopharynx). This field illustrates the many  ders, Dickersin GR: Electron microscopy of leukemias
broad processes (P) that lymphoid cells may exhibit.  and lymphomas. Clin Lab Med 7:199-247, 1987.)
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Figure 3.81. Diffuse large cell lymphoma, immunoblas-
tic (cervical lymph node). These large lymphoid cells
have a microvillous surface, similar to what would be ex-
pected in an adenocarcinoma. However, there are no
junctions between the cells and no formation of mi-

croacini. (X 5250) (Permission for reprinting granted by
WB Saunders, Dickersin GR: Electron microscopy of
leukemias and lymphomas. Clin Lab Med 7:199-247,
1987.)
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Figure 3.82. Diffuse large cell lymphoma, immunoblas-
tic (axillary lymph node). This blast, when viewed indi-
vidually and not in context with the remaining infiltrate,
could be difficult to prove as a lymphoblast. The nucleus
does not have the typical heterochromatin pattern of the
lymphoid series, although the innumerable ribosomes
and absence of intercellular junctions are clues that the
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cell is a lymphoblast. The moderate amount of rough en-
doplasmic reticulum (RER) and central, large nucleolus
are consistent with an immunoblast. (X 9750) (Permis-
sion for reprinting granted by WB Saunders, Dickersin
GR: Electron microscopy of leukemias and lymphomas.
Clin Lab Med 7:199-247, 1987.)



LARGE CELL NEOPLASMS 113

i

Ty e
. ,-.m::?%% g
' f{ﬂ‘:fé:ml'i_ﬁéséé
Figure 3.83. Large cell lymphoma, immunoblastic, ~ prominent peripheral heterochromatin, characteristic of
plasmacytoid subtype (cervical lymph node). A plasma-  lymphocytes/plasma cells. A nucleolus is large and cen-

cytoid immunoblast has cytoplasm filled with dilated  tral. (X 14,200)
rough endoplasmic reticulum (arrows). The nucleus has
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Figure 3.84. Anaplastic Ki-1 positive large cell lym-  junctions. The poorly differentiated cells have indented
phoma (retroperitoneal lymph node). Large, poorly dif-  and lobated nuclei. Chromatin is finely dispersed, and
ferentiated cells (K) are interspersed with smaller cells  nucleoli are prominent and multiple. Cytoplasm contains
having the chromatin pattern of lymphocytes (L). The  a predominance of free ribosomes and a moderate num-
cells are closely apposed, but there are no intercellular  ber of mitochondria. (X 5900)



LARGE CELL NEOPLASMS 115

Figure 3.85. Anaplastic Ki-1 positive large cell lym-  reticulum in the cytoplasm and innumerable filopodia (*)
phoma (retroperitoneal lymph node). Poorly differenti-  on their surfaces (filiform cells/anemone cells/porcupine
ated large cells have pleomorphic nuclei, ribosomes, mi-  cells). (X 5600)

tochondria, and a few cisternae of rough endoplasmic



Figure 3.86. Hodgkin’s disease (cervical lymph node).
These four fields (A through D) illustrate the degree of lo-
bation that may be present in the nuclei of Reed-Stern-
berg cells and how the plane of sectioning could result

(Text continued from page 89)

Histiocytic Disorders

Macrophagic Lesions

(Figures 3.87 through 3.92.)

Diagnostic criteria. (1) Small and large cells having a
copious and “busy” cytoplasm, and a surface raised
into many broad pseudopods; (2) cytoplasmic organ-
elles and inclusions include varying numbers of small
(primary) and large (secondary) lysosomes, many mi-
tochondria, a moderate amount of rough endoplasmic

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

in apparent binucleation. The cytoplasmic features of all
four cells are more consistent with a lymphoid line
than they are with a histiocytic one (see Figure 3.87).
A, X 6150. B, X 7870.

reticulum, prominent Golgi apparatuses, and occa-
sional lipid droplets; (3) in hemophagocytic syndromes,
phagocytosed erythrocytes, leukocytes, and / or platelets
within the cytoplasm; (4) in histiocytic sarcoma, nuclei
of large histiocytes are frequently large, irregular in
shape, and euchromatic and have one or two prominent
nucleoli.

Additional points. The question of benignancy or ma-
lignancy of histiocytes may be difficult to answer on the
basis of cellular morphology alone, but usually large
and irregularly shaped nuclei with euchromatin and
prominent nucleoli are indicative of malignancy, rather
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Figure 3.86. (continued)
C, X 6525. D, X 6390.

than an inflammatory reaction (Figures 3.87 through
3.92). The current classification of histiocytic disorders
includes two broad categories: disorders of varied bio-
logical behavior and malignant disorders. Within each
of these categories, the cell type may be a macrophage
or a dendritic cell. In addition, monocytic leukemias
and sarcomas are included under the malignant disor-
ders. Macrophagic disorders encompass hemophago-
cytic syndromes, Rosai-Dorfman disease, multicentric
reticulohistiocytosis, solitary histiocytoma, and histio-
cytic sarcoma (localized or disseminated).

Dendritic Cell Lesions

The cells in these lesions are not phagocytic and func-
tion to take up and deliver antigens and immune com-
plexes to lymphoid cells. Dendritic cell lesions include
Langerhans’ cell histiocytosis and sarcoma, hyperplas-
tic and neoplastic follicular dendritic cell lesions, and in-
terdigitating dendritic cell proliferations.

(Text continues on page 124)



Figure 3.87. Histiocyte (axillary lymph node). The busy
cytoplasm of this histiocyte is in marked contrast to the
simple cytoplasm (mostly ribosomes) of the large lym-
phocytes seen in Figures 3.78 through 3.82. Cytoplasm
containing primary (p) and secondary (S) lysosomes and
cell surfaces forming pseudopods (P) are especially good
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markers for identifying histiocytes. Note also lipid
droplets (L), mitochondria (m), and rough endoplasmic
reticulum (RER). (X 12,930) (Permission for reprinting
granted by WB Saunders, Dickersin GR: Electron mi-

croscopy of leukemias and lymphomas. Clin Lab Med
7:199-247,1987.)
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Figure 3.88. Hemophagocytic syndrome associated with
acute lymphocytic leukemia (bone marrow). The filopo-
dia (*) of two giant histiocytes, or two processes of the
same histiocyte, show a plane of complicated interdigi-

bt ;-.i'-..
e

o5

tation. The cytoplasm is rich in organelles. (X 7850) (Per-
mission for reprinting granted by WB Saunders, Dickersin
GR: Electron microscopy of leukemias and lymphomas.
Clin Lab Med 7:199-247, 1987.)
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Figure 3.89. Hemophagocytic syndrome associated with
acute lymphocytic leukemia (bone marrow). At least two
giant histiocytes are present in this field. In addition to an
intimate interdigitation of their filopodia (*) and a plethora
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of cytoplasmic organelles, the nucleus is large, irregularly
shaped, and euchromatic and has a prominent nucleo-
lus. (X 6750)
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Figure 3.90. Hemophagocytic syndrome associated with
acute lymphocytic leukemia (bone marrow). The cyto-
plasm of this histiocyte contains two phagocytosed ery-
throcytic precursors (E) as well as a large secondary lyso-
some (L) with heterogeneous contents that may be a

partially digested erythrocyte or another type of phago-
cytosed cell. (X 8740) (Permission for reprinting granted
by WB Saunders, Dickersin GR: Electron microscopy of
leukemias and lymphocytes. Clin Lab Med 7:199-247,
1987.)
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Figure 3.91. Histiocytic sarcoma (malignant histiocyto- is abundant, and organelles are plentiful. Secondary lyso-
sis) (femur). Characterizing these histiocytes are a solid ~ somes with engulfed erythrocytic particles (E) are present

grouping of molded oval cells with folded filopodia (*) in some of the cells. (X 2440)
and an absence of intercellular junctions. The cytoplasm
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Figure 3.92. Histiocytic sarcoma (malignant histiocyto- (X 5720) (Permission for reprinting granted by WB Saun-
sis) (femur). Higher magnification of the same neoplasm ders, Dickersin GR: Electron microscopy of leukemias
as that illustrated in Figure 3.91 highlights the phagocy-  and lymphomas. Clin Lab Med 7:199-247, 1987.)
tosed erythrocytes (E) and erythrocytic particles (*).
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(Text continued from page 117)

Langerhans’ Cell Histiocytosis (Histiocytosis X)

(Figures 3.93 through 3.95.)

Diagnostic criteria. (1) Varying numbers of large
(12-25 p) mononuclear (Langerhans’) cells, with low-
power characteristics of a curved or oval nucleus and
abundant cytoplasm; (2) at high-power, diagnostic Bir-
beck (Langerhans’, X) granules in the cytoplasm; (3) nu-
merous other cytoplasmic organelles including many
free ribosomes, mitochondria, rough endoplasmic retic-
ulum, and primary lysosomes; (4) filopodia at the cell
surface; (5) absence of secondary lysosomes (phago-
lysosomes) except in rare cases.

Additional points. The most distinguishing feature of
this disease is the Langerhans’ or Langerhans’-like cell,
a dendritic cell having the Birbeck granule as its most
characteristic marker (Figure 3.95). The Birbeck granule
has a three-dimensional shape of a cup or disc, or a
combination of the two. The two-dimensional appear-
ance of the granule is several-fold, including rods and
tennis-racket-shaped structures. A dense, zipper-like,
striated line is frequently visible running longitudinally
in the middle of the granule, and may represent a cel-
lular surface-coating similar to a glycocalyx (Figure
3.95). Some Birbeck granules can be identified as origi-
nating from invaginations of plasmalemmas (Figure
3.95), and some may possibly originate from Golgi ap-
paratuses. Structures similar to Birbeck granules may
also be found as attachment plaques between plas-
malemmas of apposing Langerhans’ cells. Cells with
the immunophenotype and morphology of Langer-
hans’ cells without Birbeck granules have been desig-
nated indeterminate cells.

Langerhans’ cells are found normally in squamous
epithelial surfaces such as skin and mucous membrane.

Follicular Dendritic Cell Lesions

(Figures 3.96 through 3.100.)

Diagnostic criteria. (1) Cells with oval or elongated
nuclei, with or without indentations; (2) small amounts
of heterochromatin, more concentrated at the periphery
of the nucleus; (3) small nucleolus (sometimes in
form of nucleolonema) is usually single and central;
(4) sparse cytoplasmic organelles, mostly free ribo-
somes; (5) dense network of long and intertwining cy-
toplasmic processes; (6) desmosomes present between
processes.

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Additional points. Proliferations of follicular dendritic
cells may be neoplastic or nonneoplastic, with the
latter being very uncommon. Neoplastic lesions are
usually low-grade sarcomas, but a few are high-grade
sarcomas.

Interdigitating Dendritic Cell Lesions

Diagnostic criteria. (1) Cells with large, indented and
pleomorphic nuclei; (2) predominance of heterochro-
matin subjacent to nuclear envelope; (3) sparse cyto-
plasmic organelles, including free ribosomes, smooth
and rough endoplasmic reticulum and Golgi appara-
tuses; (4) interdigitating cytoplasmic processes; (5) ab-
sence of desmosomes.

Additional points. Interdigitating dendritic cells are
present in T cell regions of lymph nodes and spleen, and
lesions composed of them are extremely rare and usu-
ally very malignant.

Mastocytosis and Mastocytoma

(Figures 3.101 and 3.102.)

Diagnostic criteria. (1) Round, oval or spindle shaped
cells with granules of varying size, internal pattern and
density; (2) round, nonsegmented nucleus.

Additional points. The most characteristic morphol-
ogy of mast cell granules is a lamellar or scroll-like pat-
tern, but other nonspecific forms, including giant-size
and compound granules, also may be seen. Mastocyto-
sis may be isolated to the skin as in urticaria pigmen-
tosa or, less commonly, systemic, in which case other or-
gans but especially the bone marrow are involved.

Systemic mastocytosis may be associated with other
myeloproliferative disorders such as acute and chronic
myelocytic leukemia. Rarely, systemic mastocytosis
may be a primary malignancy. Solitary mastocytomas
comprise a small minority of all cases of mastocytosis.
Mast cells perform some of the same biochemical and
immunological functions as basophils, and both cell
types derive from hematopoietic precursors in the bone
marrow. However, there are some functional differences
as well as distinctions in morphology and natural his-
tory. Mast cells mature and reside in connective tissue,
whereas basophils mature in the bone marrow, circu-
late in the peripheral blood, and migrate into solid tis-
sues in response to inflammatory stimuli.

(Text continues on page 135)
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Figure 3.93. Histiocytosis X (eosinophilic granuloma,  sion for reprinting granted by WB Saunders, Dickersin
vertebral body). Several characteristic Langerhans’ cells ~ GR: Electron microscopy of leukemias and lymphomas.
display curved and indented nuclei, copious cytoplasm,  Clin Lab Med 7:199-247, 1987.)

and many filopodia on their surfaces. (X 6360) (Permis-
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Figure 3.94. Histiocytosis X (skin). The cytoplasm of the (X 13,500) (Permission for reprinting granted by WB Saun-
Langerhans’ cell is abundant, and many different or-  ders, Dickersin GR: Electron microscopy of leukemias and
ganelles are contained. Characteristically, the nucleusis ~ lymphomas. Clin Lab Med 7:199-247, 1987.)

curved, and the cell surface is raised into filopodia (f).
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Figure 3.95. Histiocytosis X (eosinophilic granuloma, central linear density. (X 104,000) (Permission for reprint-
calvarium). The cytoplasm of a Langerhans’ cell, seen at  ing granted by WB Saunders, Dickersin GR: Electron mi-
high magnification, illustrates several Birbeck granules,  croscopy of leukemias and lymphomas. Clin Lab Med
including a rod form (r), tennis-racket shape (t), and in- 7:199-247,1987.)

vagination of the cell membrane (i) with a glycocalyceal
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Figure 3.96. Hyperplastic lymphoid follicle (cervical magnification (see Figure 3.97), desmosomes are visible
lymph node). In the midst of these follicular center cells  between the processes. Cytoplasm contains few or-
are foci of intertwining, narrow cellular processes con-  ganelles, mostly free ribosomes. (X 8500)

sistent with dendritic cell processes (brackets). At higher
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Figure 3.97. Hyperplastic lymphoid follicle (cervical  dritic cell processes, their fuzzy, medium-dense coating
lymph node). Higher magnification of the central, brack-  (arrows), a desmosome (D), and less prominent junction
eted field in Figure 3.96 illustrates the intertwining den- (). (X 23,800)
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Figure 3.98. Follicular dendritic cell sarcoma (spleen). tion, but still discernible are numerous cellular processes
This specimen was fixed in formalin rather than glutar-  with a fuzzy, medium-dense coating (arrows), plus the
aldehyde, resulting in less-than-optimal cellular preserva-  cell body of a malignant dendritic cell (*). (X 6600)
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Figure 3.99. Follicular dendritic cell sarcoma (axillary ~ some indented nuclei, and single nucleoli. Cytoplasm is
lymph node). The neoplastic cells have dendritic-like ~ nondescript. A desmosome (D) is discernible between
processes (arrows), small amounts of heterochromatin, two processes. (X 7800)



132 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 3.100. Follicular dendritic cell sarcoma (axillary ~ descript cytoplasm with few organelles, and several
lymph node). Higher magnification of two cells from the desmosomes (D). (X 12,500)
same neoplasm depicted in Figure 3.99 reveals non-
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Several mast cells are characterized by a floridly filopodial surface and nu-

skin of leg).

Mastocytoma (

.101.

3

Figure

X 6700)

(

merous cytoplasmic granules of varying density.
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Figure 3.102. Mastocytoma (skin of leg). High magnification illustrates a mast cell with innumerable membrane-bound
cytoplasmic granules (G) of varying density as well as florid filopodia (F). C = collagen. (X 11,400)
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Neuroendocrine Carcinoma

(Figures 4.1 through 4.8.)

Diagnostic criteria. (1) Oval and/or spindle shaped
cells, variably with polar processes; (2) diffuse, usually
noninsular arrangement of cells; (3) high nucleocyto-
plasmic ratio in cell bodies; (4) intercellular junctions;
(5) dense-core granules.

Additional points. Neuroendocrine neoplasms include
those derived from neural crest, such as neuroblastoma,
and those derived from epithelium in various parts of
the body, the gastrointestinal tract and skin being ex-
emplary sites. Two examples of small cell neuroen-
docrine carcinomas are oat cell carcinoma of the lung
and Merkel cell carcinoma of the skin. Oat cell carci-
noma originates from the bronchogenic Kulschitzki cell,
an endodermal derivative, and is the malignant
counterpart of the carcinoid tumor (see Chapter 9).
Merkel cell carcinoma arises from cutaneous neuroen-
docrine cells of probable neuroectodermal derivation.
These neoplasms, especially oat cell carcinoma, often
have a paucity of dense-core granules, making diagno-
sis more difficult. Furthermore, the presence of one or
two small, dense granules in a cell does not rule out the
possibility of the granules being primary lysosomes,
which may be seen in almost any type of cell, including
lymphocytes. Difficulty in diagnosis may arise if the tis-
sue is not well preserved and/or if there is compression
or other artifact. The identification of intercellular junc-
tions, especially desmosomes, in these situations may
be very helpful in making the diagnosis of carcinoma.
Also, aggregates of paranuclear intermediate filaments
and/or tonofibrils may be found in some tumors, es-
pecially Merkel cell carcinomas. Another particular fea-
ture of Merkel cell tumors is that the dense-core gran-
ules are predominantly in a subplasmalemmal location.

Neuroblastoma

(Figures 4.9 through 4.13.)

Diagnostic criteria. (1) Diffuse, nonorganoid pattern
of small round and oval cell-bodies with high nucleo-
cytoplasmic ratio; (2) zones devoid of cell bodies occu-
pied by back-to-back cellular processes (neuropil);
(3) microtubules, parallel and longitudinally directed,
within cellular processes; (4) intermediate filaments;
(5) small, round dense-core granules (more numerous
in processes than in cell bodies); (6) synaptic vesicles in
processes (variable); (7) intercellular junctions.

Additional points. Neuroblastoma, a neuroectoder-
mally derived neuroendocrine neoplasm, has a unique
ultrastructural appearance. Nuclei often have an irreg-
ular contour. The neuropil is characteristic, and the bare

(Text continues on page 161)
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Figure 4.1. Oat-cell carcinoma (metastatic in mediasti-
nal lymph node). The neoplastic small cells are tightly
apposed and have active-appearing nuclei (euchromatin
and prominent nucleoli). The dark cells (D) are examples
of cell death, either in vivo or in vitro. They are charac-

terized by their smaller volume, shrunken nuclei with
aggregated chromatin, loss of plasma membrane, and
swollen, membrane-bound, cytoplasmic organelles.
(X 5100)
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15
A
Figure 4.2. Oat-cell carcinoma (metastatic in mediasti-  include rough endoplasmic reticulum (RER), Golgi ap-
nal lymph node). The higher magnification of the neo- paratuses (G), and mitochondria (M). (X 12,100) (Per-
plasm shown in Figure 4.1 illustrates intercellular junc-  mission for reprinting granted by WB Saunders, Dickersin

tions (J) and a few dense-core granules (arrows). Other ~ GR: Electron microscopy of leukemias and lymphomas.
nondiagnostic organelles, in addition to free ribosomes  Clin Lab Med 7:199-247, 1987.)
(background granules) that can be seen in small amounts,



150 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 4.3. Oat-cell carcinoma (metastatic in bronchial various cytoplasmic organelles are more numerous here,
lymph node). Contrast this better differentiated, small cell and diagnostic dense-core granules (arrows) are particu-
carcinoma with that depicted in Figures 4.1 and 4.2. The  larly easy to find (see also Figures 4.4 and 4.5). (X 5100)
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Figure 4.4. Oat-cell carcinoma (metastatic in bronchial
lymph node). A binucleated neoplastic cell contains nu-
merous dense-core granules. The large size of the Golgi
apparatus (G) presumably is related to the production of
granules. (X 5250)
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Figure 4.5. Oat-cell carcinoma (metastatic in bronchial
lymph node). A higher power of the numerous dense-core
granules in the same neoplasm as depicted in Figures 4.3
and 4.4. Note also the cells have long intertwining
processes. (X 15,000)



Figure 4.6. Carcinoid tumor (bronchus). The neoplastic
cells contain innumerable dense-core granules, in contrast
to relatively few granules in the less well-differentiated cells
of oat-cell carcinoma, as depicted in Figures 4.1 through
4.5. The long cytoplasmic processes predominating in
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this carcinoid tumor are characteristic of the spindle-cell
variant. (X 6700) Inset: Higher magnification of several
cytoplasmic processes illustrates numerous dense-core
granules and a microlumen (L). (X 12,150)
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Figure 4.7. Merkel cell carcinoma (skin of eyelid). The neoplastic cells are oval and polygonal and have narrow
processes (P). Dense-core granules are more numerous in the processes than in the cell bodies. (X 6800)
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Figure 4.8. Merkel cell carcinoma (skin of eyelid). High power of a neoplastic cell illustrates the subplasmalemmal

location of the dense-core granules. (X 12,000)
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Figure 4.9. Neuroblastoma (retroperitoneum). Most of ~ matin, and the simple complement of cytoplasmic or-
this field of the neoplasm consists of cell bodies, and  ganelles (mostly ribosomes and a few mitochondria);
there are only small zones (encircled areas) comprised  these cellular features indicate active synthesis or divi-
solely of cellular processes. Within the cell bodies, note  sion. (X 5130)

the prominent nucleoli, the finely dispersed nuclear chro-
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Figure 4.10. Neuroblastoma (bone marrow). The lower  processes. (X 9180) (Permission for reprinting granted by
portion of the field is occupied mostly by cell bodies, and ~ WB Saunders, Dickersin GR: Electron microscopy of
the upper portion, back-to-back neuritic processes. The leukemias and lymphomas. Clin Lab Med 7:199-247,
longitudinal lines within the processes are microtubules. 1987.)

Mitochondria (M) are also visible in the cytoplasm of the
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Figure 4.11. Neuroblastoma (bone marrow). Higher tified. (X 24,600) (Permission for reprinting granted by
magnification of the same neoplasm as depicted in Fig- ~ WB Saunders, Dickersin GR: Electron microscopy of
ure 4.10 illustrates the neuritic processes with micro-  leukemias and lymphomas. Clin Lab Med 7:199-247,
tubules (T). Intercellular junctions (J) are somewhat vague 1987.)

in this field, and no definite dense-core granules are iden-
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Figure 4.12. Neuroblastoma (A, nasal mucosa; B and C, brain). High magnification of neuritic processes. A, Dense-
core granules (arrows). (X 27,700) B, synaptic vesicles (S). (X 46,000)
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Figure 4.12. (continued) ing granted by WB Saunders, Dickersin GR: Electron mi-
C, dense-core granules (arrows), microtubules (T), and  croscopy of leukemias and lymphomas. Clin Lab Med
synaptic vesicles (S). (X 57,000) (Permission for reprint- 7:199-247,1987.)
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Figure 4.13. Ganglioneuroblastoma (soft tissue of tho- cesses (P) of its own as well as those of less-differentiated
racic wall). A mature ganglion cell (G) has copious cyto-  neuroblasts composing the neoplasm. (X 4940)
plasm with many organelles. It is surrounded by cell pro-
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(Text continued from page 147)

minimum among the criteria for diagnosis is the pres-
ence of small foci of cellular processes with micro-
tubules (Figures 4.10 through 4.12). Dense-core gran-
ules (Figures 4.12A and C) may be scant in poorly
differentiated tumors and are not necessary for diag-
nosis. Synaptic vesicles (Figures 4.12B and C) are the
least frequent criterion encountered and are present in
some better differentiated neuroblastomas and in gan-
glioneuroblastomas. The ganglion cells of ganglioneu-
roblastomas and ganglioneuromas represent mature cells
that have differentiated from neuroblasts, and they are
characterized ultrastructurally by their large size, round
nucleus, prominent nucleolus, and voluminous cyto-
plasm with many organelles, including dense-core
granules (Figure 4.13 and Chapter 8, Figures 8.33
through 8.35). Ganglioneuroblastomas also contain foci
of Schwann cell-neurite clusters, where groups of neu-
ritic processes are surrounded by Schwann cells and
basal lamina.

The key to finding readily the diagnostic criteria in
any neuroblastoma is to select an area for electron mi-
croscopic examination that is composed of neuropil
(zones of apparent acellularity, by light microscopy),
rather than an area occupied by cell bodies. Olfactory
neuroblastomas (esthesioneuroblastomas) have generally
similar ultrastructural features as those of neuroblas-
tomas of other sites. Neurocytomas of the central nerv-
ous system are composed of mature unmyelinated neu-
rons, cells further differentiated than the cells of
neuroblastoma, and are described in Chapter 8.

Ewing’s Sarcoma

(Figures 4.14 through 4.18.)

Diagnostic criteria. (1) Cells of uniform size and shape
(oval and polygonal); (2) high nuclear—cytoplasmic
ratio; (3) junctions are few, small, and inconspicuous;
(4) finely dispersed chromatin (euchromatin); (5) cyto-
plasmic glycogen, usually copious but may be less;
(6) cytoplasm composed predominantly of free ribo-
somes and polyribosomes.

Additional points. Ewing’s sarcomas of bone and those
of soft tissue have an identical ultrastructural appear-
ance. The cells appear primitive and active; the cyto-
plasm is filled with ribosomes, and the nuclei are eu-
chromatic and have small-to-large, often open nucleoli
(nucleolonemas) (Figures 4.14 and 4.15). A few mito-
chondria and occasional areas of intermediate filaments
are also present in the cytoplasm. Atypical Ewing’s sar-
comas show larger cells with irregularly shaped nuclei,
moderate amounts of heterochromatin, and larger nu-
cleoli. In the past, lymphoblasts were suggested as one
of the possible cells of origin for Ewing’s sarcomas, but
subsequent immunohistochemical evidence has more
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or less ruled out that possibility. Furthermore, ultra-
structurally it would be unusual in a lymphoblastic
lymphoma to have no cells with the classic heterochro-
matin pattern of the lymphoid series. The vague inter-
cellular junctions seen in Ewing’s sarcoma constitute
another difference between these two neoplasms, but
there are examples of Ewing’s sarcoma in which any
semblance of a junction is difficult to find. Glycogen is
the best differential criterion between Ewing’s cells (Fig-
ures 4.16 through 4.18) and lymphoblasts, because it is
virtually always present in the untreated former cells
and absent in the latter ones.

The most popular current theory of histogenesis of
Ewing’s sarcoma, based on ultrastructural, immuno-
histochemical, and genetic evidence, is that it is a prim-
itive neuroectodermal tumor (PNET; discussed in the
next section). Although this concept may be true of
some examples of Ewing’s sarcoma, it is probably not
true for all. The ultrastructural features seen in some
Ewing’s sarcomas supporting neural differentiation are
occasional cells with polar processes, which may con-
tain a few microtubules and rare dense-core type gran-
ules. Ultrastructurally, the cells resemble a stage of
mesenchymal differentiation just beyond primary mes-
enchyme (for example, paraxial mesenchymal mass or
somites, myotomes, and sclerotomes; intermediate and
lateral mesenchymal masses).

Primitive Neuroectodermal Tumor

(Figures 4.19 through 4.21.)

Diagnostic criteria. (1) Oval and elongated cells;
(2) polar processes (some cells); (3) high nucleocyto-
plasmic ratio of cell bodies; (4) irregularly shaped nu-
clei with varying amounts of heterochromatin; (5) small
intercellular junctions; (6) varying sized nucleoli; (7) cy-
toplasm with mostly ribosomes and polyribosomes;
(8) focal intermediate filaments (variable); (9) occasional
microtubules; (10) rare or occasional dense-core granules.

Additional points. Glycogen is less frequently present
and is often in lesser quantities than in typical Ewing’s
sarcoma. PNET is less differentiated than neuroblas-
toma; polar processes are less numerous and not or-
ganized in parallel arrays. Rather, irregularly oriented,
intertwining processes occupy small foci and have
fewer microtubules and often only rare dense-core
granules. Homer Wright rosettes are rare in this poorly
differentiated neoplasm. PNETs arising in bone and
those in soft tissue are ultrastructurally similar. An ex-
ample of PNET is the thoracic Askin tumor (Figures 4.19
through 4.21).

(Text continues on page 169)
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Figure 4.14. Ewing’s sarcoma (soft tissue of leg). The neo-
plastic cells are in contiguity with one another along all
borders. They are oval and polygonal cells and uniformly
sized. Intercellular junctions are few, small, and incon-
spicuous at this magnification. The primitive nature of the

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

cells is reflected in the high nuclear—cytoplasmic ratio,
the euchromatic nuclei, the large open nucleoli, and the
preponderance of free ribosomes and lack of many other
organelles in the cytoplasm. (X 6250)
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Figure 4.16. Ewing’s sarcoma (ilium). This neoplasm is  appears, by this method of chemical processing, as es-
morphologically similar to that depicted in Figures 4.14  calloped clear areas in the cytoplasm (G). (X 6250)
and 4.15, but glycogen is present in copious amounts and
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Figure 4.17. Ewing’s sarcoma (ilium). This sample is from the same neoplasm as illustrated in Figure 4.16 and shows
the escalloped clear spaces of glycogen (G) at a higher magnification. (X 11,250)



Figure 4.18. Ewing’s sarcoma (ilium). This is the same
neoplasm as pictured in Figures 4.16 and 4.17, but the
method of chemical processing was such that glycogen
(G) was preserved as electron-dense granules. This
method allows for the demonstration of smaller aggre-
gates of glycogen than would be revealed by the alter-

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS
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ey A
nate method that results in glycogen appearing as open
cytoplasmic spaces. (X 9180) (Permission for reprinting
granted by WB Saunders, Dickersin GR: The contribu-
tions of electron microscopy in the diagnosis and histo-
genesis of controversial neoplasms. Clin Lab Med

4:123-164, 1984.)
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Figure 4.19. Primitive neuroectodermal tumor (Askin tu-
mor; chest wall). The neoplastic cells are closely ap-
posed, and diminutive junctions are inconspicuous at this
magnification. The cells have a high nucleocytoplasmic
ratio; nuclei are round, oval, and euchromatic, and nu-

cleoli are prominent. Cytoplasm contains predominantly
free ribosomes and is otherwise nondescript. No glyco-
gen is apparent. One small focus of cytoplasmic pro-
cesses (*) is present in this field. (X 5600)
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Figure 4.20. Primitive neuroectodermal tumor (Askintu-  lection of closely apposed cellular processes (*), some of
mor; chest wall). Higher magnification of another field of ~ which contain a few small, dense granules (bracket).
the neoplasm depicted in Figure 4.19 illustrates a col- (X 9500)

Figure 4.21. Primitive neuroectodermal tumor (Askintu-  tain abundant glycogen, but focally there are processes
mor; chest wall). This neoplasm is a different one from  containing microtubules (between the asterisks), sup-
the one illustrated in Figures 4.19 and 4.20. Its cells con-  portive evidence for neuronal differentiation. (X 30,900)
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(Text continued from page 161)

Embryonal and Alveolar
Rhabdomyosarcoma

(Figures 4.22 through 4.32.)

Diagnostic criteria. (1) Thick (15 nm) myosin filaments;
(2) Z-band formation; (3) thick filament-ribosomal com-
plexes; (4) basal lamina; (5) glycogen.

Additional points. Thin (6 nm) actin filaments may be
seen in early rhabdomyoblasts and, by themselves, are
not diagnostic of rhabdomyosarcoma. Thick, myosin fil-
aments must accompany the thin filaments in order to
establish the line of differentiation as skeletal muscle. The
normal arrangement of thin and thick filaments is 12 thin
ones around a central thick one, but it is usually not dis-
cernible in poorly differentiated rhabdomyoblasts.

There are examples of probable embryonal rhab-
domyosarcoma in which the cells are too poorly differ-
entiated to allow a definite diagnosis (Figure 4.22). Usu-
ally in these cases the clinical setting and the light
microscopy will provide the background upon which
the ultrastructure can confirm the diagnosis, but there
are a few occasions when Ewing’s sarcoma and rhab-
domyosarcoma cannot be morphologically distin-
guished from one another. There are some helpful but
not pathognomonic differences between these two
primitive neoplasms. Rhabdomyoblasts have more
pleomorphic nuclei, with more heterochromatin than
have Ewing’s cells. The typical Ewing’s nucleus is com-
posed completely of euchromatin. Basal lamina may
form around individual rhabdomyoblasts, around
groups of them (Figure 4.22), and along a row of them
in the alveolar form of rhabdomyosarcoma. The cells of
alveolar and embryonal rhabdomyosarcoma otherwise
have similar ultrastructural features. Glycogen, as has
been illustrated (Figures 4.23 and 4.24), may be just as
copious in rhabdomyosarcoma as in Ewing’s sarcoma.
Intercellular junctions are small and infrequent in both
neoplasms and, therefore, are of no diagnostic help.
Like most neoplasms, if adequately sampled for elec-
tron microscopy, embryonal rhabdomyosarcoma will be
composed of cells in more than one stage of differenti-
ation, and a thorough search often will reveal an occa-
sional cell with a few foci of thick filaments and small
aggregates of Z-band material. The earliest ultrastruc-
tural clue that an undifferentiated cell is a rhabdomyo-
blast is the finding of thick filament-ribosomal com-
plexes, in which a group of thick filaments are arranged
in parallel, and rows of ribosomes are situated between
them (Figures 4.25 through 4.27). Z-bands also are a
helpful criterion for recognizing rhabdomyoblasts, and
puffs of Z-band material appear soon after the appear-
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ance of thick filaments (Figures 4.25 and 4.27). Narrow
and more discrete Z-bands develop as the cell differen-
tiates further and as alignment of bands and filaments
into recognizable sarcomeres occurs.

Some concept of mid- to late-stage differentiation in
neoplastic rhabdomyoblasts is captured in Figures 4.28
through 4.32.

Rhabdoid Tumor

(Figures 4.33 through 4.35.)

Diagnostic criteria. (1) Diffuse, nonorganoid collec-
tions of round, oval, and polygonal cells; (2) irregularly
shaped nuclei with large central nucleoli; (3) large
paranuclear whorls of intermediate filaments and oc-
casionally focal tonofibrils; (4) diminutive junctions.

Additional points. No basal lamina surrounds cells.
There are no polar processes. Cytoplasm has varying
amounts of dilated rough endoplasmic reticulum, pri-
mary and secondary lysosomes, and lipid vacuoles.
Glycogen may rarely be present. Renal and extrarenal
rhabdoid tumors have a similar ultrastructure.

Nephroblastoma (Wilms” Tumor)

(Figures 4.36 through 4.48.)

Diagnostic criteria. (1) Loose and tight groups of
polygonal and elongated cells (blastema), with a high
nuclear—cytoplasmic ratio and scant cytoplasm con-
taining mostly free ribosomes; (2) blastemal cells in
small groups surrounded by basal lamina (pretubules);
(3) junctions and junctional complexes in the pre-
tubules; (4) true lumens and microvilli on luminal lin-
ing cells (tubules); (5) varying numbers of secondary
lysosomes in blastemal and tubular cells; (6) rare nests
of epithelial cells forming glomeruloid structures (de-
void of mesangial cells and capillaries); (7) flocculent,
medium-dense, basal lamina-like, intercellular material;
(8) areas of banded collagen and loosely arranged spin-
dle cells having abundant, often dilated, rough endo-
plasmic reticulum (fibroblastic stroma).

Additional points. Because Wilms’ tumors contain
varying combinations of blastema, epithelium, and
stroma, sampling for electron microscopy may not be
completely representative. Furthermore, some neo-
plasms contain heterologous elements, including vari-
ous types of epithelial cells, striated muscle, smooth
muscle, cartilage, bone, and nerve, and the electron mi-
croscopic features of these cells are similar to those de-
scribed elsewhere in this book in the sections on the pri-
mary neoplasms composed of those respective cells.

(Text continues on page 197)
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Figure 4.22. Embryonal (alveolar) rhabdomyosarcoma  nucleoli are large. Cytoplasmic organelles are sparse and

(metastatic to axillary lymph node). A group of undiffer- include free ribosomes (circle), a moderate number of mi-
entiated small cells is surrounded by basal lamina (BL). tochondria (M), and a few cisternae of rough endoplas-
The cells are oval and polygonal, are closely apposed, mic reticulum (RER). An occasional lipid droplet (L) also
and have small junctions. There is a high nuclear— s present. (X 6750)

cytoplasmic ratio, chromatin tends to be aggregated, and
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Figure 4.23. Embryonal rhabdomyosarcoma (metastatic ~ cally the embryonal rhabdomyoblasts are rich in glyco-

to cervical lymph node). The tissue was processed to pre-  gen. Nuclei (N) are pale or unstained by this technique.
serve glycogen (G) as electron-dense granules, and typi- (X 6270)
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Figure 4.24. Embryonal rhabdomyosarcoma (deep fascia of forearm). High magnification of glycogen granules (G) in
the cytoplasm of an embryonal rhabdomyoblast. N = nucleus. (X 33,750)
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Figure 4.25. Embryonal rhabdomyosarcoma (soft tissue  cle differentiation. Several dense puffs (Z) in the vicinity
of forearm). High magnification of this primitive cell re-  of thick filaments probably represent early Z-band for-
veals a thick filament-ribosomal complex (to right of mation. (X 70,000)

bracket), the earliest morphologic marker of skeletal mus-
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Figure 4.26. Embryonal rhabdomyosarcoma (soft tissue of forearm). Other thick filament-ribosomal complexes (brack-
eted) are somewhat more developed than the one depicted in Figure 4.25. (X 70,700)
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Figure 4.27. Embryonal rhabdomyosarcoma (soft tissue  tion; note region of parallel thick filaments with fewer
of forearm). Further development of thick filament-ribo-  ribosomes (bracket) and early Z-band regions (7).
somal complexes will result in early sarcomere forma- (X 62,500)
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Figure 4.28. Embryonal rhabdomyosarcoma (soft tissue
of forearm). Early strap cell differentiation is present in
this cell and its neighbor (upper end of field). Puffs of Z-
band material (Z) and thick filament-ribosomal com-
plexes (brackets) can be recognized in the lower cell, and

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

early sarcomere development (S) is already present in
the upper cell. Note also the small junction (J) between
the two cells, and the basal lamina (BL) around them.
(X 12,900)
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Figure 4.29. Embryonal rhabdomyosarcoma (vagina).
Early skeletal muscle differentiation in embryonal type

cells (E) is noted in the left part of the field. Note the mod-
erate increase in cytoplasm in the electron-dense foci (F),
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which represents aggregates of developing actin and
myosin filaments. In the right part of the field are portions
of two early- to mid-stage strap cells (S), with numerous
aggregates of filaments filling the cytoplasm. (X 5130)
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Figure 4.30. Embryonal rhabdomyosarcoma (vagina). myosin filaments (F). (X 4900) Inset shows filaments at
Early strap cell differentiation is characterized by copi-  higher power. (X 8200)
ous cytoplasm and many dense aggregates of actin and
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Figure 4.31. Embryonal rhabdomyosarcoma (metastatic
to cervical lymph node). This field illustrates the wide
range of differentiation that may exist within a single neo-
plasm. Most of the cells are embryonal type rhabdo-
myoblasts, but the elongated cell that spans the width of
the field is a later-stage strap cell (S). Note that, at places,

there are sarcomeres with parallel and regularly spaced
Z-bands (Z). (X 7200) (Permission for reprinting granted
by WB Saunders, Dickersin GR: Electron microscopy of
leukemias and lymphomas. Clin Lab Med 7:199-247,
1987.)
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Figure 4.32. Embryonal rhabdomyosarcoma (metastatic ~ whereas lesser degrees of differentiation of the filaments
to cervical lymph node). Higher magnification of the  are discernible elsewhere in the cytoplasm of this cell.
same neoplasm as depicted in Figure 4.31. Sarcomeres  Note the basal lamina (BL) along the lower edge of the
are well formed in the center and left part of the field, cell. (X 15,670)
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Figure 4.33. Rhabdoid tumor (orbit). A collection of round and polygonal cells have large, irregularly shaped nuclei
and cytoplasm containing large areas of filaments (F). (X 5500)
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Figure 4.34. Rhabdoid tumor (abdominal wall). The neoplastic cells have markedly irregularly shaped nuclei and in-
numerable cytoplasmic filaments (F) with focal densities suggestive of tonofibrils (arrow). (X 7600)
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Figure 4.35. Rhabdoid tumor (abdominal wall). Higher a large central nucleolus. The cell at the top of the field
magnification of a cell from the same neoplasm as de-  shows densities among the filaments suggestive of tono-
picted in Figure 4.34 illustrates the numerous cytoplas- fibrils (arrow). (X 6200)

mic filaments (F) and an irregularly shaped nucleus with
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Figure 4.36. Nephroblastoma (Wilms’tumor). An areaof ~ mission for reprinting granted by Hemisphere Publishing,
neoplastic blastema consists of loosely arranged polygo- ~ Dickersin GR: Embryonic ultrastructure as a guide in the
nal and elongated cells having a high nuclear—cytoplas-  diagnosis of tumors. Ultrastruct Pathol 11:609-652,
mic ratio and a scant amount of cytoplasm. (X 2870) (Per- 1987.)
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Figure 4.37. Nephroblastoma (Wilms’ tumor). This re-
gion of neoplastic blastema consists of more tightly ap-
posed cells than those illustrated in Figure 4.36. (X 3915)
(Permission for reprinting granted by Hemisphere Pub-
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lishing, Dickersin GR: Embryonic ultrastructure as a guide
in the diagnosis of tumors. Ultrastruct Pathol 11:609-652,
1987.)
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Figure 4.38. Nephroblastoma (Wilms’ tumor). Higher The abundant flocculent, medium-dense, intercellular
magnification of a group of loosely arranged blastemal substance (*) is consistent with basal laminar material.
cells reveals their poorly differentiated character; that is, (X 5620)

their high nuclear—cytoplasmic ratio and scant cytoplasm.
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Figure 4.39. Nephroblastoma (Wilms’ tumor). Higher  seen in the loosely arranged regions of Figure 4.38. Sec-
magnification of a group of tightly apposed blastemal  ondary lysosomes (L) are present in at least three of the
cells shows further differentiation of the cytoplasm than cells. (X 5510)
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Figure 4.40. Nephroblastoma (Wilms’ tumor). A group  small intercellular junctions (J) indicate early epithelial

of closely apposed, polygonal cells are poorly differenti-  and tubular development. One cell (M) is in mitosis.
ated, but focal parallel or radial alignment and a few (X 5930)
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Figure 4.41. Nephroblastoma (Wilms’ tumor). Early pretubules are recognizable as small groups of aligned cells sur-
rounded by basal lamina (BL). (X 7020)
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Figure 4.42. Nephroblastoma (Wilms’tumor). These two has more organelles than that of the less-differentiated
pretubule groupings illustrate focal parallel alignment of ~ blastema of Figures 4.37 and 4.38. (X 6480)
cells (*) and delimiting basal lamina (BL). Also, the cytoplasm
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lamina. Delineated rectangular area is enlarged in Figure

4.44.

" tumor). This pre-

Wilms

(

Figure 4.43. Nephroblastoma

X 6480)

(

tubule contains two foci of several junctional complexes

(J), the earliest indication of a lumen forming. BL = basal
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Figure 4.44. Nephroblastoma (Wilms’ tumor). Enlargement of the demarcated rectangular area in Figure 4.43 illus-
trates a focus of early lumen formation. ] = junctional complexes (X 20,640)
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Figure 4.45. Nephroblastoma (Wilms’ tumor). An early  reprinting granted by Hemisphere Publishing, Dickersin
tubule has a lumen (L) with cellular debris (*) and promi- ~ GR: Embryonic ultrastructure as a guide in the diagnosis
nent junctional complexes (JC). (X 9500) (Permission for of tumors. Ultrastruct Pathol 11:609-652, 1987.)
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Figure 4.46. Nephroblastoma (Wilms’ tumor). Moder- Schmidt D, Dickersin GR, Vawter GF, et al: Wilms’' tu-
ately well-formed, neoplastic tubule has luminal lining mor: Review of ultrastructure and histogenesis. Pathobiol
cells with microvilli (V) on their apical surface. (X 7020) Annu 12:281-300, 1982.)

(Permission for reprinting granted by Raven Press,
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Figure 4.47. Nephroblastoma (Wilms’ tumor). The stro-
mal component of this neoplasm consists of fibroblasts
with abundant rough endoplasmic reticulum and inter-
cellular collagen. (X 4900) (Permission for reprinting

1 i S -

granted by Hemisphere Publishing, Dickersin GR: Em-
bryonic ultrastructure as a guide in the diagnosis of tu-
mors. Ultrastruct Pathol 11:609-652, 1987.)
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Figure 4.48. Nephroblastoma (Wilms’ tumor). This neo-  reprinting granted by WB Saunders, Dickersin GR, Colvin
plasm contains focal skeletal muscle differentiation, and RB: Pathology of renal tumors. In Skinner DG, Lieskovsky
well-differentiated strap cells (S) are found adjacentto G, eds: Genitourinary Cancer, WB Saunders, Philadel-
groups of blastemal cells (B). (X 9880) (Permission for phia, 1987.)
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(Text continued from page 169)

Lymphoma (Small Cell)

(Figures 4.49 and 4.50.)

Diagnostic criteria. (1) Nucleus with abundant het-
erochromatin, especially along the nuclear envelope;
(2) cytoplasm composed predominantly of ribosomes;
(3) absence of intercellular junctions.

Additional points. Small lymphocytes usually are not
a problem in identification because of their typical pat-
tern of heterochromatin (Figure 4.49). Intermediate-
sized lymphocytes have less heterochromatin, but it is
still recognizable as having the peripheral distribution
of alymphocyte (Figure 4.50). Lymphoblasts may show
a complete absence of heterochromatin, but they almost
always are mixed with other lymphoid cells having the
typical heterochromatin arrangement (see Chapter 3,
Figure 3.79). As a lymphocyte is transformed into a
blast, the free ribosomes aggregate into clusters of
polyribosomes. If one were to examine a single blast
having a completely euchromatic nucleus and cyto-
plasm devoid of a specific line of differentiation, it
would be impossible to classify that cell as lymphoid or
any other cell line.

Plasmacytoma

(Figures 4.51 through 4.54.)

Diagnostic criteria. (1) Nucleus with abundant het-
erochromatin, similar to a small lymphocyte; (2) cyto-
plasm with stacks of rough endoplasmic reticulum;
(3) centrosome or hof, a perinuclear area of cytoplasm
devoid of rough endoplasmic reticulum and occupied
by Golgi apparatus, mitochondria, and centrioles.

Additional points. Intermediate forms between lym-
phocytes and plasma cells may be seen in lymphomas,
and these cells have less developed rough endoplasmic
reticulum than do fully differentiated plasma cells (Fig-
ures 4.51 through 4.54). Intermediate lymphocytes,
plasmacytoid lymphocytes, plasmablasts, and im-
munoblasts are terms used to represent a range of dif-
ferentiation within the lymphoid line of cells. The rough
endoplasmic reticulum in plasmacytoid cells often is di-
lated and filled with a substance of medium electron
density. This substance represents active protein (im-
munoglobulin) synthesis and occasionally may be rep-
resented as huge spherical collections. Because the nu-
clear envelope is continuous with the cisternae of rough
endoplasmic reticulum, these collections may be lo-
cated in the envelope as well as in the cisternae (Figure
4.53). Rarely, lymphoid cells of any type may have a
filopodial, villus-like surface (Figure 4.54), mimicking
a truly villous surface of some epithelial cells. However,
lymphoid cells never have junctional complexes or mi-
croacini. Therefore, lymphomas composed of filopodia-
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covered cells are readily distinguishable from epithelial
neoplasms.

Desmoplastic Small Round Cell Tumor
with Divergent Differentiation

(Figures 4.55 through 4.57.)

Diagnostic criteria. (1) Groups of closely apposed
round and oval cells separated by bands of fibroblastic
stroma; (2) discontinuous basal lamina surrounding the
groups; (3) high nucleocytoplasmic ratio; (4) variable
cytoplasmic composition, with ribosomes frequently
predominating; (5) intermediate filaments with paranu-
clear whorls (variable); (6) Golgi apparatuses may be
prominent in some cells; (7) dense-core granules may
be present but usually are not; (8) focal glycogen pres-
ent or not; (9) diminutive and intermediate junctions
and occasionally desmosomes; (10) occasional micro-
acini; (11) occasional polar processes with microtubules.

Additional points. The cellular composition of these
neoplasms varies, as the term “divergent differentia-
tion” implies. Usually there is evidence of more than
one line of differentiation, with epithelial, mesenchy-
mal, and neural features being evident ultrastructurally.
The stromal component separating the islands of small
round cells contains spindle cells having the morpho-
logical features of fibroblasts and myofibroblasts.

Small Cell Osteosarcoma

(Figures 4.58 and 4.59.)

Diagnostic criteria. (1) Groups and sheets of tightly
apposed small, round, oval, and polygonal cells in a
matrix of banded collagen and flocculent, medium-
dense material; (2) small, distinct intercellular junctions;
(3) high nucleocytoplasmic ratio; (4) nuclei variably
with regular or irregular contours; (5) chromatin usu-
ally finely dispersed (euchromatin); (6) nucleoli of mod-
erate or large size; (7) poorly differentiated cytoplasm
with numerous ribosomes, a moderate number of small
mitochondria, small-to-moderate amount of undilated
or slightly dilated rough endoplasmic reticulum, occa-
sionally prominent Golgi apparatuses, small-to-
moderate number of filaments, and variable amounts
of glycogen.

Additional points. Small cell osteosarcoma may be dif-
ficult or impossible to distinguish from Ewing’s sar-
coma if there is no evidence of hydroxyapatite in the
sample studied. Malignant cartilage, present in some
small cell osteosarcomas, is another feature ruling out
Ewing’s sarcoma. Focal spindle cell areas may be pres-
ent or even predominant in some small cell osteosarco-
mas, and rough endoplasmic reticulum may or may not
be prominent in the spindle cells.

(Text continues on page 209)
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Figure 4.49. Lymphoma, well-differentiated, small cell type (cervical lymph node). This neoplasm is composed of
small lymphocytes with the characteristic peripheral chromatin of the lymphoid series. (X 6250)
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Figure 4.50. Lymphoma, poorly differentiated, smalland ~ matin, and the intermediate lymphocytes (I) have less of
intermediate cell type (supraclavicular lymph node). The  the same, although it is in insufficient amounts to allow
small lymphocytes (S) have abundant peripheral chro-  the cells to be identified as lymphocytes. (X 5320)
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Figure 4.51. Plasmacytoma (rib). Except for several ery-
throcytes (E) and one lymphocyte (L), all the cells in this
field are plasmacytes. Their most striking ultrastructural
features include the heterochromatin pattern of the nu-

clei, and the abundance of stacked rough endoplasmic
reticulum. Several of the cells are oriented in a direction
that allows their centrosome, or hof (H), to be visible.
(X 5130)
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Figure 4.52. Plasmacytoma (epidural space). The plasma  this tumor by a greater nuclear—cytoplasmic ratio, more
cells in this neoplasm are slightly less mature than those ~ euchromatin (especially in the uppermost cell), and larger
in the neoplasm depicted in Figure 4.51, manifested in nucleoli. (X 8840)
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Figure 4.53. Plasmacytoma (stomach). High magnifica- sion (*) of the nucleus actually is a dilated and protein-
tion of a plasma cell illustrates the abundant rough en-  rich nuclear envelope, which is continuous with the
doplasmic reticulum (RER), which is dilated and filled rough endoplasmic reticulum. The nuclear heterochro-
with a medium-dense material. The large pseudoinclu-  matin pattern is characteristic for a plasma cell. (X 14,250)
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Figure 4.54. Plasmacytoma (cervical lymph node). The  tiated plasmacyte. The villous surface (V) is rare for
cells in this field qualify as plasmablasts or plasmacytoid plasma cells and may also be seen in a small percentage
lymphocytes, because they have more euchromatin and of nonplasmacytoid lymphocytes. (X 6750)

less rough endoplasmic reticulum than a more differen-
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Figure 4.55. Desmoplastic small round cell tumor of
divergent differentiation (ovary). An island of closely ap-

posed, oval and polygonal cells is surrounded by abun-
dant banded collagen. The cells have a high nuclear-

cytoplasmic ratio, and nuclei are extremely pleomorphic.
Even at this relatively low magnification, junctions (brack-
ets) are visible; see Figure 4.56. (X 7500)
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Figure 4.56. Desmoplastic small round cell tumor of di-  tercellular junctions (J), including desmosomes. Other or-
vergent differentiation (ovary). Higher magnification of  ganelles include free ribosomes, mitochondria, and small
the bracketed area in Figure 4.55 illustrates multiple in- vesicles. (X 27,800)



206 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 4.57. Desmoplastic small round cell tumor of di- and 4.56 illustrates a whorl of paranuclear filaments (F).
vergent differentiation (ovary). High magnification of a (X 20,400)
cell from the same neoplasm as depicted in Figures 4.55
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Figure 4.58. Small cell osteosarcoma (tibia). Small oval ~ cal material (M) completely or partially surrounds many
and elongated neoplastic cells have a high nuclear—  of the cells. (X 7200)
cytoplasmic ratio and pleomorphic nuclei. Dense matri-
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Figure 4.59. Small cell osteosarcoma (femur). A group of ~ ments (F) within the cytoplasm. Nuclei are predominantly
neoplastic oval cells illustrates a high nuclear-cytoplasmic ~ euchromatic, and one large nucleolus is apparent.
ratio, pockets of glycogen (G), and collections of fila- (X 7600)
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(Text continued from page 197)
Mesenchymal Chondrosarcoma

(Figures 4.60 and 4.61.)

Diagnostic criteria. (1) Groups of small, poorly differ-
entiated cells in a collagenous matrix; (2) high nucleo-
cytoplasmic ratio; (3) irregularly shaped nuclei; (4) few
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cytoplasmic organelles; (5) foci of further differentiated
cartilaginous cells.

Additional points. Mesenchymal chondrosarcoma is
another small cell neoplasm that may be indistinguish-
able from small cell osteosarcoma, and hydroxyapatite,
in association with prominent, banded collagen fibrils
of varying diameter (osteoid), may be the only distin-
guishing feature.

Figure 4.60. Mesenchymal chondrosarcoma (proximal
tibia). Small groups of poorly differentiated cells are dis-
tributed in a medium-dense matrix. Nuclear—cytoplasmic

ratios are high, nuclei vary in shape, and cytoplasm is
scant. (X 5900)
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Figure 4.61. Mesenchymal chondrosarcoma (proximal
tibia). Higher magnification of mesenchymal chondro-
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Myelocytic Leukemia

(Figures 5.1 through 5.9.)

Diagnostic criteria. (1) Cytoplasmic granules; (2) demon-
strable peroxidase in the cytoplasmic granules; (3) Auer
rods.

Additional points. Myeloblasts are large cells with a
high nuclear—cytoplasmic ratio, predominantly euchro-
matic nuclei, large and multiple nucleoli, and cytoplasm
with free ribosomes as the main organelle (Figure 5.1).
As the blasts mature, cytoplasmic volume and organelles
increase, and nuclei become more heterochromatic. The
presence of primary (azurophilic) granules (Figure 5.2)
in leukemic cells is the single most reliable proof of a
myelocytic (or monocytic, see next section) line of dif-
ferentiation. Golgi apparatus, rough endoplasmic retic-
ulum, and perinuclear cisterna, as other components of
the synthesizing and secretory system in the cells, also
may appear prominent, but they are not as diagnostic as
the granules themselves. Granules are numerous and
readily found in chronic forms of granulocytic leukemia,
in which there is neutrophilia, basophilia, and eosino-
philia, but they may be sparse in the acute, minimally
differentiated (MO0) and without differentiation (M1) blas-
tic phases of the disease (Figures 5.1 and 5.3 through 5.5).
In these phases, it may be necessary to identify myeloper-
oxidase in the granules, in order to exclude their being
nonspecific, primary lysosomes, which are present in
many types of cells, including lymphocytes. The method
most used for demonstrating peroxidase is the di-
aminobenzadine (DAB) reaction, which is performed by
incubating the specimen of marrow or blood cells with
DAB in vitro. DAB does not react with the enzymes of
primary lysosomes but does combine with peroxidase to
form a reaction product that is electron dense and easily
visualized (Figures 5.6 and 5.7). In this way, blasts that
otherwise may be unclassifiable can be concluded to be
myeloblasts and monoblasts if their granules and/or
Golgi apparatuses, rough endoplasmic reticulum, and
nuclear envelope show a positive DAB reaction. Any
granules present in lymphoblasts would be DAB-negative.
Auer rods, another diagnostic feature of myelocytic
leukemia, form from the coalescence of azurophilic gran-
ules (Figures 5.8 and 5.9). Auer rods are present in
myeloblasts in more than half of the cases of acute
myeloblastic leukemia. In acute promyelocytic leukemia,
cells having numerous Auer rods are frequent, and the
Auer rods have a tubular rather than the more usual
lamellar internal structure. Also, rough endoplasmic
reticulum is dilated and focally forms parallel cisternae
and stellate arrangements. Myeloblasts and promyelo-
cytes may have aggregates of cytoplasmic filaments. Nu-
clei of these cells often have deep infoldings. Monocytes
(see next section) are also present in most cases of chronic
myelocytic leukemia.

(Text continues on page 227)
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Figure 5.1. Acute myelocytic leukemia (bone marrow).  Otherwise, the cytoplasm is composed predominantly of
Several myeloblasts contain only a few granules in asso-  free ribosomes. Note the euchromatic nuclei and large,
ciation with small Golgi apparatuses (encircled zones). open nucleoli. (X 8500)
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Figure 5.2. Acute myelocytic leukemia (bone marrow).  ture cells have both large primary (azurophilic) and small
This field of marrow illustrates a range of cells in the gran- ~ secondary (specific) granules. E = erythrocytes; * = dy-
ulocytic series, from myeloblasts (M) to neutrophils (N). ing cell. (X 4750)

The blasts contain few or no granules, and the more ma-
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Figure 5.3. Acute myelocytic leukemia (bone marrow).  ulocytic series cells. B = myeloblasts; C = myelocytes.

This is a higher magnification of the same marrow asde- (X 6250)
picted in Figure 5.2, illustrating a field of immature gran-
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Figure 5.4. Acute myelocytic leukemia (peripheral  erroneous interpretation that the cells are lymphoblasts.
blood). Small amounts of heterochromatin are present in Infrequent Golgi apparatuses (G) and only rare granules
the nuclei of these cells and could be responsible for an (arrows) can add to the diagnostic difficulties. (X 5130)
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Figure 5.5. Acute myelocytic leukemia (peripheral blood). This is the same sample illustrated in Figure 5.4, but this
cell has a more completely developed Golgi apparatus (G) and a few more granules (arrows). (X 11,500)
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Figure 5.6. Acute myelocytic leukemia (bone marrow).
A positive DAB-peroxidase reaction in the granules of this
immature hematopoietic cell establishes its myelomono-
cytic lineage. Other cytoplasmic organelles and nucleus
(N) stain lightly by this method of chemical processing,

5

resulting in the granules being seen in more contrast.
Note that neighboring erythrocytes (E) are peroxidase-
positive and therein serve as a control for this method of
staining. (X 11,250)
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Figure 5.7. Acute myelocytic leukemia (bone marrow). envelope (P) and rough endoplasmic reticulum (R). Golgi
This myeloblast exhibits DAB-peroxidase reaction prod- ~ apparatus is not present in this plane of section.
uct, not only in granules (arrows), but in the perinuclear (X 16,000)
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bone marrow). The myeloblast in the center of the field contains an Auer rod
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Figure 5.8. Acute myelocytic leukemia

arrow). (X 12,500)
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Figure 5.9. Acute myelocytic leukemia (bone marrow). Higher magnification of the Auer rod (arrows) in Figure 5.7
shows in better detail its limiting membrane and dense internal composition (X 57,000)
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Monocytic and Myelomonocytic
Leukemia

(Figures 5.10 and 5.11.)

Diagnostic criteria. (1) Indented, U- or W-shaped nu-
cleus; (2) ruffled cell surface; (3) cytoplasmic granules.

Additional points. Monoblasts are large cells with
round or oval nuclei and abundant cytoplasm with free
ribosomes and polysomes, a moderate number of mi-
tochondria and cisternae of rough endoplasmic reticu-
lum, groups of microfilaments, and varying numbers of
primary granules. Auer rods are seldom present. Ribo-
somal lamellar type complexes (see section on hairy cell
leukemia) are present in about one-fourth of cases. Nu-
clei are euchromatic, and nucleoli are prominent and
sometimes multiple. Filopodia and pseudopods may be
present at the surface of the cells. As monoblasts ma-
ture into promonocytes and monocytes, their cytoplasm
develops more organelles, and nuclei become more het-
erochromatic, indented, and lobated. The granules in
monocytes are smaller and fewer than in myelocytes.
The granules are peroxidase-positive with DAB. Mono-
cytic cells often coexist with myelocytic ones, as myelo-
monocytic leukemia, rather than being a pure mono-
cytic population.

Lymphocytic Leukemia

(Figures 5.12 and 5.13.)

Diagnostic criteria. (1) Nucleus with abundant het-
erochromatin, especially peripherally along the nuclear
envelope; (2) cytoplasm devoid of secretory granules,
or a few peroxidase-negative, primary lysosomes.

Additional points. Leukemias manifesting most of the
lymphoid population as small- and medium-sized lym-
phocytes (for example, chronic lymphocytic leukemias)
usually pose no problem in diagnosis, because nuclei
have a typical lymphoid pattern of heterochromatin. On
the other hand, some acute lymphoblastic leukemias
show a high percentage of lymphoblasts having
euchromatic nuclei, and these cells may be indistin-
guishable from myeloblasts. As described in the section
on myelocytic leukemia, the absence of peroxidase-
containing granules is evidence in favor of the blasts be-
ing lymphoblasts. The chromatin pattern in most cell
lines indicates whether the cell is a blast or a more ma-
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ture form; euchromatin is present in blasts, and hetero-
chromatin increases with maturation beyond blasts.
However, this sequence may not always be assumed,
and chromatin pattern alone may not be sufficient evi-
dence for determining the degree of differentiation of
lymphoblasts. Even the most primitive of blasts may
show moderately heterochromatic nuclei. Also, cells of
this type are smaller than later-stage lymphoblasts (al-
though larger than normal, nonneoplastic, small lym-
phocytes) and have small or inconspicuous nucleoli.
Consistent criteria for identifying the earliest blast are
its high nuclear—cytoplasmic ratio and its small amount
of cytoplasm. Cytoplasmic organelles consist mainly of
free ribosomes and polysomes, but a Golgi apparatus
and a few mitochondria and cisternae of rough endo-
plasmic reticulum are also present. Nuclei may be reg-
ular in contour or indented. Later-stage blasts are larger
and have more cytoplasm, which often contains lipid
vacuoles and, rarely, lysosomes. Nuclei are round or ir-
regularly shaped, and nucleoli are large and multiple.

Erythrocytic Leukemia

(Figures 5.14 and 5.15.)

Diagnostic criteria. (1) Nucleus mostly euchromatic in
earliest blast (proerythroblast) and heavily hetero-
chromatic in later blast forms (polychromatophilic ery-
throblasts); (2) few cytoplasmic organelles, especially in
the later blast forms; (3) cytoplasmic glycogen.

Additional points. The later blast forms are readily rec-
ognized because of the abundant heterochromatin re-
sembling the nucleus of a small lymphocyte and be-
cause of the lack of many organelles in the cytoplasm.
Even the ribosomes are decreased from the amount
present in early erythroblasts. Invisible hemoglobin,
fine particles of ferritin, and open spaces of glycogen
occupy the territory between the ribosomes. Early ery-
throblasts contain a few mitochondria, centrioles, a
Golgi apparatus, and a small number of primary lyso-
somes. Secondary, iron-containing lysosomes (ferritin
or hemosiderin) also may be seen. In the leukemic state,
the erythroblasts usually show increased ribosomes,
lipid, and glycogen in the cytoplasm, and nuclei may
be lobed or multilobed, variable in size, and multiple.
Erythroblasts are accompanied by myeloblasts and to-
gether represent a variant of acute myelocytic leukemia
in which the erythroblasts represent 30-50% of nucle-
ated marrow cells, and the nonerythroid myeloblasts
comprise another 30% or more.

(Text continues on page 234)
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Figure 5.10. Acute monocytic leukemia (peripheral  tic ruffled (filopodia and pseudopodia) plasmalemmas,
blood). These cells are promonocytes and monocytes  U- and W-shaped nuclei, and small cytoplasmic granules.
without accompanying blasts. They exhibit characteris- (X 4750)
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Figure 5.11. Acute monocytic leukemia (peripheral prominent Golgi apparatus (G) and rough endoplasmic
blood). Higher magnification of one of the promonocytes reticulum (RER) as well as the small granules (circle).
from the same sample as in Figure 5.10 illustrates a (X 12,375)
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Figure 5.12. Acute lymphocytic leukemia (bone mar-
row). This field depicts lymphocytes in different stages of
differentiation, although small lymphocytes (S) are out-
numbered by intermediate lymphocytes (I) and lym-
phoblasts (B). All cells except the blasts have the charac-

teristic pattern of heterochromatin subjacent to the nu-
clear envelope. Note that at least two of the cells have a
prominent Golgi apparatus (G) and numerous mito-
chondria (M). One cell is undergoing mitosis (*). (X 5130)
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Figure 5.13. Acute lymphocytic leukemia (bone mar-
row). Higher magnification of the same sample illustrated
in Figure 5.12 elucidates the cytoplasmic details of the
lymphoid cells. In addition to a background of free ribo-
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somes, Golgi apparatuses (G) and mitochondria (M) are
also clearly discernible. A rare granule (arrow) is consis-
tent with being a primary lysosome. (X 11,000)
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Figure 5.14. Erythroleukemia (bone marrow). A  bosomes and glycogen, the latter being represented by
monomorphic collection of erythroblasts is seen in this  open, clear spaces (g). Mitochondria (M) are numerous
field. Nuclei are euchromatic, and nucleoli consist of in some of the cells. (X 6100)

open nucleolonemas (Nu). Cytoplasm is rich in free ri-
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Figure 5.15. Erythroleukemia (bone marrow). Higher magnification of an erythroblast, illustrating the nucleolonema
(Nu) and the predominance of free ribosomes in the cytoplasm. (X 8500)



234
(Text continued from page 227)

Megakaryocytic Leukemia

(Figures 5.16 through 5.20.)

Diagnostic criteria. (1) Megakaryoblasts, characterized
as undifferentiated cells with a high nuclear—cytoplas-
mic ratio, a moderate amount of heterochromatin, and
cytoplasmic protrusions; (2) megakaryocytes, usually
characterized by their large size, but also may be small
(micro-megakaryocytes), with (a) copious cytoplasm,
(b) irregularly shaped nuclei, (c) cytoplasmic demarca-
tion membranes and blebs (budding platelets), and
(d) small dense (azurophilic) cytoplasmic granules.

Additional points. The demarcation membranes of the
megakaryocyte consist of invaginations of the plas-
malemma of the cell and represent platelet formation.
The number of demarcation membranes increases with
the maturation of the megakaryocyte. Other organelles
in the cytoplasm of the megakaryoblast and megakary-
ocyte include many free ribosomes and polysomes, a
small amount of rough endoplasmic reticulum, and a
large Golgi apparatus. Platelets are normally about
2-5 p in diameter, but in reactive and neoplastic states
they may reach five or more times this size. They usu-
ally are oval and have a few pseudopods. They are de-
void of a nucleus and have a busy cytoplasm that con-
tains, in addition to small, dense (azurophilic) granules,
primary lysosomes, small mitochondria, bundles of mi-
crotubules along the cell membrane, many thin and
thick filaments, vesicles, glycogen, and lipid. Platelet
peroxidase is demonstrable in the nuclear envelope and
rough endoplasmic reticulum, using unfixed or tannic-
acid-fixed specimens.

Hairy Cell Leukemia
(Leukemic Reticuloendotheliosis)

(Figures 5.21 through 5.24.)
Diagnostic criteria. (1) Small-to-medium-sized lym-
phocytes with filopodia or villus-like (hairy) plas-

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

malemmal projections, in samples of peripheral blood,
where cells are separated by plasma and their surfaces
are free (Figure 5.21), and overlapped and interdigitated
projections, in samples of marrow and spleen, where
cells are tightly apposed (Figure 5.22); (2) nucleus with
a lymphoid chromatin pattern (abundant heterochro-
matin, especially along nuclear envelope); (3) ribosome-
lamellar complexes in the cytoplasm, usually in a paranu-
clear location (Figure 5.22 through 5.24).

Additional points. Hairy cells are morphologically and
functionally distinctive, because they are B-lymphocytes
that have an ability, although weak, to phagocytize.
They synthesize immunoglobulin, have a low prolifer-
ative rate, and are capable of engulfing (perhaps with-
out digesting) erythrocytes, platelets, and latex and zy-
mosan particles. They express monocytoid antigens, but
their overall ultrastructural appearance is that of a lym-
phocyte; specifically, the nucleus has abundant hetero-
chromatin, including a heavy peripheral distribution,
and the cytoplasm lacks the many primary and sec-
ondary lysosomes expected in a monocyte/histiocyte.
Nuclei are round, oval, or lobated, and nucleoli are
small or inconspicuous. The most striking feature of the
cytoplasm of hairy cells is the presence of ribosome-
lamellar complexes, which are found in approximately
half of the cases of this type of leukemia as well as in
occasional cases of chronic lymphocytic leukemia
(where they were first described), acute monocytic
leukemia, Waldenstrom’s macroglobulinemia, and Cush-
ing’s syndrome. In those cases of hairy cell leukemia
having ribosome-lamellar complexes, the number of
cells exhibiting the complexes ranges from less than 1%
to almost 100%. The ultrastructure of these inclusions
consists of cylinders of alternating and parallel rows of
ribosomes and tubular lamellae, spiraling and inter-
secting around a central core. Other structures that are
less frequently encountered in hairy cells include par-
allel tubular arrays in the cytoplasm, and zipper-like
junctions between abutting cells.

(Text continues on page 244)
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Figure 5.16. Megakaryocytic leukemia (peripheral
blood). This megakaryoblast is too poorly differentiated
for positive classification without the presence of neigh-
boring megakaryocytes or special cytochemistry for
platelet peroxidase. The nuclear—cytoplasmic ratio is
high, the nucleus has a moderate amount of heterochro-
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matin, there is a nonspecific complement of organelles
in the cytoplasm, and the surface of the cell is focally
raised into filopodia. (X 11,400) (Permission for reprint-
ing granted by WB Saunders, Dickersin GR: Electron mi-
croscopy of leukemias and lymphomas. Clin Lab Med
7:199-247,1987.)
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Figure 5.17. Megakaryocytic leukemia (bone marrow).  ganelles, including scattered small, dense granules (cir-
A megakaryocyte is readily identifiable by its large size  cles), but demarcation membranes and budding platelets
and irregular nucleus, contrasted with the surrounding are not visible. (X 5320)

cells of the marrow. Its cytoplasm contains many or-
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Figure 5.19. Megakaryocyte (bone marrow). High mag-  mission for reprinting granted by WB Saunders, Dickersin
nification of a megakaryocyte illustrates diagnostic gran-  GR: Electron microscopy of leukemias and lymphomas.
ules (arrows) and cytoplasmic blebs (*). (X 22,680) (Per- Clin Lab Med 7(1):199-247, 1987.)
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Figure 5.20. Micromegakaryocyte (bone marrow). The
size of this cell is within the range expected for mi-
cromegakaryocytes, but it also could be one end of a
larger cell. The cytoplasm shows blebs (*) and many
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dense core granules (arrows). (X 13,500) (Permission for
reprinting granted by WB Saunders, Dickersin GR: Elec-
tron microscopy of leukemias and lymphomas. Clin Lab
Med 7:199-247, 1987.)



Figure 5.21. Hairy cell leukemia (peripheral blood). The
cells have a villus-like, or hairy, surface, and their nuclei
have abundant heterochromatin in a lymphoid type dis-
tribution. A high proportion of nuclei are indented and
lobated, and Golgi apparatuses (G) and centrioles (C) are
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located adjacent to the indentation. (X 8500) (Permission
for reprinting granted by WB Saunders, Dickersin GR:
Electron microscopy of leukemias and lymphomas. Clin
Lab Med 7(1):199-247, 1987.)
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Figure 5.22. Hairy cell leukemia (bone marrow). The plexes (arrows). (X 8500) (Permission for reprinting
leukemic cells are tightly apposed in the marrow, and  granted by WB Saunders, Dickersin GR: Electron micros-
their hairy surfaces are overlapped and interdigitating (cir- ~ copy of leukemias and lymphomas. Clin Lab Med
cles). Nuclei are markedly indented, and cytoplasm con- 7(1):199-247, 1987.)

tains numerous juxtanuclear ribosome-lamellar com-
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Figure 5.23. Hairy cell leukemia (bone marrow). Higher well as two ribosome-lamellar complexes (arrows). A
magnification of several hairy cells illustrates the over- ~ prominent Golgi apparatus (G) and numerous mito-
lapped surface projections (circles) of adjacent cells, as chondria (M) also are evident in one cell. (X 14,250)
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Figure 5.24. Hairy cell leukemia (bone marrow). High
magnification of a juxtanuclear region of one cell depicts
ribosome-lamellar complexes (arrows) in more than one
plane of section. (X 46,500) (Permission for reprinting

A .
2o A
St

granted by WB Saunders, Dickersin GR: Electron mi-
croscopy of leukemias and lymphomas. Clin Lab Med
7(1):199-247, 1987.)
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Fibrous Neoplasms

(Figures 6.1 through 6.17.)

Diagnostic criteria. (1) Abundant rough endoplasmic
reticulum; (2) type I (banded) collagen closely sur-
rounding the cells (Figures 6.1 through 6.3).

Additional points. Fibroblasts also have a prominent
Golgi apparatus, and they may or may not have filopo-
dia and long, tapering, polar processes. Lipid vacuoles
in varying numbers may also be present in the cyto-
plasm. Fibroblasts often show partial differentiation to-
ward smooth muscle cells, so-called myofibroblasts, in
actively proliferating fibroblastic lesions (Figures 6.4
through 6.6), and toward histiocytes, designated facul-
tative histiocytes, as in some examples of malignant fi-
brous histiocytoma (MFH) (see next section). True
smooth muscle cells and true histiocytes have less
rough endoplasmic reticulum than do fibroblasts, and
the cisternae of the rough endoplasmic reticulum usu-
ally are not dilated. Fibroblasts also usually have more
rough endoplasmic reticulum than do the spindle cells
of synovial sarcoma (see section on synovial sarcoma)
and solitary fibrous tumors of pleura and soft tissues
(see Chapter 3, section on mesothelioma, Figures 3.75
through 3.77, and Figure 6.14). Infrequently, the cells of
fibrosarcomas may be epithelioid, rather than spindle
shaped, but the characteristic ultrastructural features of
fibroblasts are still evident (Figures 6.16 and 6.17).

Fibroblasts, alone or in conjunction with other cell
types, are found in a number of neoplasms other than
fibroma, fibrosarcoma, and MFH, and these other neo-
plasms include myxoma, fibromyxoid sarcoma, dermatofi-
brosarcoma protuberans, elastofibroma, angiofibroma, repar-
ative granuloma, giant cell tumor of bone, and solitary
fibrous tumors of soft tissue. Dermatofibrosarcoma protu-
berans, usually a very cellular lesion with a storiform
pattern, may be myxoid as well (Figure 6.7). The lesion
is composed of fibroblasts and myofibroblasts (Figure
6.8), but perineurial cells possibly could be the cell type
in some cases. It is still unsettled whether perineurial
cells are modified fibroblasts or modified Schwann cells
(see Figure 6.124). Evidence for the latter is the finding
of melanosomes in the cells of a few examples of der-
matofibrosarcoma protuberans, the so-called Bednar tu-
mor. Fibrosarcoma may develop within dermatofi-
brosarcoma protuberans, as illustrated in Figures 6.9
and 6.10. In elastofibroma, fibroblasts are associated with
matrical elastin fibers, which have a medium-dense,
amorphous, and filamentous appearance (Figures 6.11
and 6.12). In reparative granuloma and giant cell tumor of
bone, the giant cells have features of osteoclasts, the
most notable feature being numerous mitochondria
(Figure 6.13).

(Text continues on page 264)



248 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 6.1. Fibrosarcoma (soft tissue of leg). This low  of some of the nuclei (*) is a criterion for malignancy. The
power view illustrates an intimate admixture of spindle-  cytoplasm of the cells is rich in dilated rough endoplas-
shaped cells and collagenous matrix. The irregular shape ~ mic reticulum (RER). (X 4940)
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Figure 6.2. Fibrosarcoma (soft tissue of leg). Higher mag- ~ doplasmic reticulum (RER) and the surrounding banded
nification of one of the fibroblasts from the same neo- collagen (C). (X 9690)
plasm as shown in Figure 6.1 accentuates the rough en-
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Figure 6.3. Fibrosarcoma (soft tissue of buttock). Some cells are oval, and others have long cytoplasmic processes (P).
Rough endoplasmic reticulum is dilated and virtually fills the cytoplasm. (X 4940)
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Figure 6.4. Fibrosarcoma (transverse colon). Two neo- areas of microfilaments (F) and associated densities, so-
plastic fibroblasts with abundant dilated rough endo-  called dense bodies (arrows), qualifying as myofibro-
plasmic reticulum (RER) also contain large cytoplasmic blasts. (X 4940)
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Figure 6.5. Fibrosarcoma (transverse colon). Higher magnification of one of the myofibroblasts illustrated in Figure
6.4 shows in better detail the microfilaments (F) and dense bodies (arrows). (X 23,600)
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Figure 6.6. Fibrosarcoma (metastatic to liver). High mag-
nification of a portion of a cytoplasmic process of a myo-
fibroblast shows abundant, dilated rough endoplasmic
reticulum (R) and a prominent Golgi apparatus (G), so

RRER ™= g O

characteristic of fibroblastic differentiation. In addition,
there are numerous filaments with dense bodies (arrows)
and numerous pinocytotic vesicles (P), typical of smooth
muscle differentiation. (X 30,000)
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Figure 6.7. Dermatofibrosarcoma protuberans (scalp). in their cell-bodies, and the amount of rough endoplas-
Low magpnification illustrates the spindle cells to be long ~ mic reticulum and number of other organelles varies from
and narrow and individually dispersed in a collagenous  cell to cell. (X 3400)

matrix. Many cells have a high nucleocytoplasmic ratio



SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS 255

Figure 6.8. Dermatofibrosarcoma protuberans (scalp). moderate amount of rough endoplasmic reticulum, most
Higher magnification of the same neoplasm as depicted  of which is not dilated. The cells are consistent with in-
in Figure 6.7 shows the cytoplasm to have a small to ~ completely differentiated fibroblasts. (X 9000)
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Figure 6.9. Fibrosarcoma arising in dermatofibrosarcoma  cells, shorter polar processes, and more irregularly
protuberans (scalp). The spindle cells in this malignant  shaped nuclei. Dilated rough endoplasmic reticulum (R)
area of the dermatofibrosarcoma protuberans illustrated is visible in some of the cells. (X 2800)

in Figures 6.7 and 6.8 reveal a closer arrangement of
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Figure 6.10. Fibrosarcoma arising in dermatofibrosar- focal filaments with dense bodies (arrows), features con-
coma protuberans (scalp). Higher magnification of one  sistent with smooth muscle differentiation within a fi-
of the cells depicted in Figure 6.9 illustrates dilated rough broblast, a so-called myofibroblast. (X 18,000)
endoplasmic reticulum (R), prominent junctions (J), and



258 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 6.11. Elastofibroma (soft tissue of scapula). Low
magnification of a portion of a fibroblast and surround-
ing collagenous matrix reveals electron-dense deposits
of elastic fibers (*), seen better at higher magnification in
Figure 6.12. (X 13,800)

Figure 6.12. Elastofibroma (soft tissue of scapula). Higher magnification of elastic fibers reveals a central amorphous
region (arrow) and peripheral more granular and fibrillar regions (*). (X 27,400)
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Figure 6.13. Giant cell reparative granuloma (soft tissue
of buttock). Several fibroblasts (F) and an adjacent
osteoclast-like giant cell exemplify this lesion. The fi-
broblasts are rich in dilated rough endoplasmic reticulum
(R), and the giant cell has numerous filopodia on the sur-

face (*) and many mitochondria (M) within the cytoplasm.
(X 6800) (Permission for reprinting granted by New Eng-
land Journal of Medicine; Case Records of the Massa-
chusetts General Hospital: Weekly clinicopathologic ex-
ercises. Case 1-1986. N Engl ] Med 314;105-113, 1986.)
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Figure 6.14. Solitary fibrous tumor of soft tissue (face). A trix is rich in heavy, dense fibers of collagen (*), “ami-
neoplastic fibroblast characteristically contains dilated  anthoid” fibers, seen better at higher magnification in the
rough endoplasmic reticulum (R), and the adjacent ma- inset. (X 8900; inset X 22,000)
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Figure 6.15. Fibrosarcoma (supraclavicular lymph node). paratuses (G), and intracisternal banded collagen (C),
This neoplastic fibroblast shows a moderate amount of  seen at higher magnification in the inset. (X 19,000; in-
rough endoplasmic reticulum (R), prominent Golgi ap-  set X 90,000)
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Figure 6.16. Epithelioid fibrosarcoma (pretracheal soft ganelle in some of the cells (*). No line of differentiation
tissue). Several epithelioid cells have varying amounts of ~ other than a fibroblast is suggested by the ultrastructure.
rough endoplasmic reticulum (R), and it is the main or- (X 5600)
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Figure 6.17. Epithelioid fibrosarcoma (pretracheal soft tissue). Higher magnification of a cell from the same neoplasm
depicted in Figure 6.16 illustrates the abundant rough endoplasmic reticulum (R). (X 9300)
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(Text continued from page 247)

Solitary fibrous tumors of soft tissue are similar ultra-
structurally to solitary fibrous tumors of pleura and
other serosal surfaces, namely that the cell type is either
an identifiable fibroblast (Figure 6.14) or too poorly dif-
ferentiated to be certain of cell type (See Figures 3.75
and 3.76). Giant collagen fibrils, collectively forming so-
called amianthoid fibers (Figure 6.14), may be found in
these and other fibroblastic neoplasms as well as in car-
tilagenous lesions. Intracisternal banded collagen, that
is, collagen within cisternae of rough endoplasmic retic-
ulum (Figure 6.15), may be seen occasionally in actively
synthesizing fibroblasts.

Although most, by far, fibroblastic proliferations are
composed of spindle cells, rare fibrosarcomas may be
epithelioid, or a combination of spindle and epithelioid
cells (Figures 6.16 and 6.17). Neoplasms of this type
may be exceedingly difficult to diagnosis by light mi-
croscopy and immunohistochemistry, and electron mi-
croscopy is essential.

Malignant Fibrous Histiocytoma

(Figures 6.18 through 6.30.)

Diagnostic criteria. (1) Fibroblasts (spindle cells with
abundant rough endoplasmic reticulum; see section on
fibrosarcoma) (2) mononucleated and multinucleated
giant cells of fibroblastic type (Figures 6.18 and 6.19);
(3) giant cells of osteoclastic type, especially in “giant
cell MFH” (Figure 6.20; also see Figure 6.13 [giant cell
reparative granuloma] and Figures 6.45 and 6.46 [os-
teosarcomal); (4) malignant facultative histiocytes (Fig-
ures 6.20 and 6.21) or malignant true histiocytes (Figure
6.22); (5) primitive, or poorly differentiated fibroblasts
(Figure 6.23); (6) small, benign-appearing histiocytes
(see Chapter 3, Figure 3.87).

Additional points. A high percentage of sarcomas di-
agnosed as storiform/pleomorphic MFH and myxoid MFH
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at the light microscopic level prove to be pure fibrosar-
comas when studied by electron microscopy; both the
spindle cells and the giant cells have fibroblastic fea-
tures. A smaller proportion of these tumors contains
giant cells that are consistent with being facultative his-
tiocytes; that is, they have primary and secondary lyso-
somes as well as abundant, usually undilated, rough
endoplasmic reticulum. A few tumors contain a com-
ponent of malignant-appearing, true histiocytes. Small,
benign-appearing histiocytes as well as other inflam-
matory cells may be found in varying numbers and dis-
tribution in these tumors. In giant cell MFH, osteoclas-
tic type giant cells are numerous but also mixed with
fibroblasts and facultative histiocytes. In inflammatory
MFH, numerous xanthoma cells, rich in lipid (Figure
6.24), are found in combination with acute and chronic
inflammatory cells and with areas of storiform/pleo-
morphic spindle cells. Lipid-rich fibroblasts may also
be present in the usual storiform/pleomorphic form of
MFH and in fibrosarcoma, and there the cells are spin-
dle shaped rather than round, and fibroblastic rather
than histiocytic (Figure 6.25). Angiomatoid MFH is usu-
ally described at the light microscopic level as consist-
ing of islands of histiocytes, histiocyte-like cells, fibro-
histiocytes, and /or undifferentiated mesenchymal cells,
interspersed with blood-filled spaces and surrounded
by a lymphoplasmacytic infiltrate. In our own experi-
ence, the neoplastic cells ultrastructurally are fibroblasts
and myofibroblasts (Figures 6.26 through 6.30). Thus,
although there may not be a consensus of opinion on
the cell type comprising angiomatoid MFH, it appears
acceptable to continue to classify neoplasms of this
type in the fibroblastic group and, more specifically,
with MFH.

Pleomorphic malignant fibrous histiocytomas at the light
microscopic level may be confused with pleomorphic
forms of rhabdomyosarcoma, leiomyosarcoma, and li-
posarcoma, but distinguishing among these lesions
usually is readily achievable by electron microscopic
examination.

(Text continues on page 278)
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Figure 6.18. Malignant fibrous histiocytoma (soft tissue of anterior abdominal wall). This mononucleated giant cell
is a fibroblast, typified by its abundant, dilated rough endoplasmic reticulum (RER). (X 6750)
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Figure 6.19. Malignant fibrous histiocytoma (soft tissue ~ multilobed, but at the light microscopic level of magni-
of back). This giant multinucleated fibroblast is filled with  fication it probably would be interpreted as multiple nu-
rough endoplasmic reticulum (RER) and shows no evi- clei. (X 5320)

dence of histiocytic markers. The nucleus is probably
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Figure 6.20. Malignant fibrous histiocytoma (rectus
femoris muscle). A giant cell contains many different or-
ganelles in its cytoplasm. Rough endoplasmic reticulum
is abundant but not especially dilated. The Golgi appa-
ratus (G) is prominent, mitochondria (M) are numerous,

and lysosomes (L) are moderate in number (seen at higher
power in Figure 6.21. These characteristics are highly
suggestive of the cell being a facultative histiocyte.
(X 4940)
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Figure 6.21. Malignant fibrous histiocytoma (rectus  (L). No secondary lysosomes (phagosomes) were identi-
femoris muscle). A higher magnification of a portion of  fied in this cell. The rough endoplasmic reticulum (RER)
the giant cell and probable facultative histiocyte depicted is plentiful but not very dilated. (X 29,000)

in Figure 6.20 highlights the frequent primary lysosomes



269

SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS

e

.,..-.-
s e

s N e

. ..%,.ﬂpu ..
..”j.ﬂ. .

(300

dmed

i R

T L T A

e

r, and their cytoplasm contains numerous

nant orde
phagosomes

parailial

soft tissue). Among the fibroblasts and facultative histio-

(

Figure 6.22. Malignant fibrous histiocytoma
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preted as malignant histiocytes.

cytes in this neoplasm were cells of the type depicted
here (*). Their size and nuclear features are of a malig-
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Figure 6.23. Malignant fibrous histiocytoma (liver). A The nucleus is euchromatic and contains a large nucle-
primitive or poorly differentiated fibroblast has a moder-  olus, features characteristic of proliferative or metabolic
ate amount of undilated rough endoplasmic reticulum  activity, the former being more likely in this neoplastic
(arrows), but the predominant organelle is free ribosomes. cell. (X 5100)
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Figure 6.24. Malignant fibrous histiocytoma, inflammatory type (soft tissue of thigh). Several xanthomatous, histio-
cytic type cells contain numerous lipid droplets (L) and lysosomes (arrows) of various sizes. (X 6500)
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Figure 6.25. Malignant fibrous histiocytoma (metastatic to lung). Neoplastic fibroblasts have numerous lipid droplets
(L) in their cytoplasm. (X 4800)
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Figure 6.26. Malignant fibrous histiocytoma, angioma-  (R) (better seen at higher magnification in Figure 6.27 and
toid type (soft tissue of arm). Edematous (*) and hemor- focal filaments (f). Nuclei are irregularly indented and
rhagic (rbc) matrix separates neoplastic oval and spindle ~ moderately heterochromatic. (X 5300)

cells. Cytoplasm contains rough endoplasmic reticulum
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Figure 6.27. Malignant fibrous histiocytoma, angioma-  rough endoplasmic reticulum (R) and focal filaments (f).
toid type (soft tissue of arm). Higher magnification of the (X 13,600)
lower central field of Figure 6.26 depicts more clearly the
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Figure 6.28. Malignant fibrous histiocytoma, angioma-  cellular processes (brackets) and pockets of closely ap-
toid type (soft tissue of arm). A more cellular and less ede- ~ posed extracellular collagen (C). (X 5500)

matous and hemorrhagic area of the neoplasm depicted
in Figures 6.26 and 6.27 reveals groups of long, narrow,



276 DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

Figure 6.29. Malignant fibrous histiocytoma, angioma- trates in finer detail the processes and collagen (C). In ad-
toid type (soft tissue of arm). Higher magnification of the  dition, focal filaments (f) and several mtercellular junc-
left half of the upper bracketed area in Figure 6.28 illus- tions (j) are also visible. (X 19,800)
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Figure 6.30. Malignant fibrous histiocytoma, angioma-  6.29 depicts cytoplasmic filaments (f) and dense bodies
toid type (soft tissue of arm). High magnification of the  (d). (X 22,000)
same neoplasm as that depicted in Figures 6.26 through
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Cartilaginous Neoplasms

(Figures 6.31 through 6.36.)

Diagnostic criteria. (1) Oval and polygonal cells and,
in some less differentiated neoplasms, spindle-shaped
cells; (2) escalloped or villus-like cell surfaces (Figures
6.31 through 6.33); (3) clear zone between cell and visi-
ble matrix (Figure 6.33); (4) abundant dilated rough
endoplasmic reticulum (Figures 6.31 through 6.33);
(5) large Golgi apparatus (Figure 6.32); (6) copious cy-
toplasmic glycogen (Figures 6.34 and 6.35), especially
in clear cell chondrosarcoma (Figure 6.34); (7) variable in-
termediate filaments.

Additional points. Chondroblasts may be difficult to
distinguish from osteoblasts, although they usually
contain more glycogen than osteoblasts, and they do
not manufacture osteoid. Both chondroblasts and os-
teoblasts are closely related morphologically and func-
tionally to fibroblasts, and this is most evident by their
abundant rough endoplasmic reticulum and their ac-
tive synthesis of extracellular matrix.

In extraskeletal myxoid chondrosarcoma, chondroblasts
are widely separated by loose, flocculent matrix. Mi-
tochondria may be numerous, and rough endoplasmic
reticulum may contain arrays of microtubules (Figure
6.36). In the past, some examples of extraskeletal
myxoid chrondrosarcoma were referred to as “chor-
doid sarcoma” and “parachordoma” because of their
light microscopic resemblance to chordomas, but by
electron microscopy they are seen to be composed of
chondroblasts.

Mesenchymal chondrosarcoma is a small cell neoplasm
that may be indistinguishable from Ewing’s sarcoma
and small cell osteosarcoma (see Chapter 4, Figures 4.60
and 4.61).

Chondromyxoid fibroma is a neoplasm in which chon-
droblasts are interspersed with fibroblasts and myofi-
broblasts in a myxoid stroma.

Osteoblastoma and Osteosarcoma

(Figures 6.37 through 6.46.)
Diagnostic criteria. (1) Oval and polygonal cells are
more common than spindle-shaped cells (Figures 6.37
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and 6.38); (2) escalloped or villus-like cell surfaces (Fig-
ures 6.38 and 6.39); (3) clear zone between cell and vis-
ible matrix (Figure 6.40); (4) abundant dilated rough
endoplasmic reticulum (Figures 6.38 through 6.40);
(5) large Golgi apparatus (Figure 6.40); (6) moderate to
large amounts of cytoplasmic glycogen (Figure 6.41);
(7) hydroxyapatite deposits on prominent fibers of col-
lagen (osteoid) (Figure 6.42).

Additional points. Osteoblasts are morphologically
similar to chondroblasts, and the presence of hydroxy-
apatite deposits in the extracellular matrix (Figures 6.42
through 6.44) may be the only distinguishing feature.
In poorly differentiated neoplasms without much os-
teoid, small deposits that may not be visible or con-
vincing by light microscopy can be identified readily at
the ultrastructural level. However, the small size of the
electron microscopic sample often makes the findings
of the deposits a matter of chance.

Although most osteogenic and chondrogenic neo-
plasms are composed, at least in part, of cells having
most of the morphologic features described in the di-
agnostic criteria section, there also are less-differenti-
ated examples that are composed of spindle-shaped
cells having some resemblance to fibroblasts (Figure
6.37). In these instances, the search for better differenti-
ated foci and a careful reevaluation of the light micro-
scopic picture can prove rewarding. On occasion, it may
be necessary to excise from the paraffin blocks a focus
of better differentiated neoplasm and reprocess it for
electron microscopy. The morphologic detail of re-
processed, formalin-fixed, paraffin-embedded tissue
usually will not be well preserved, but it may be ade-
quate for establishing the exact or probable cell type of
the neoplasm.

Osteoclasts sometimes are included in the sample
submitted for electron microscopic study, and they are
readily distinguishable from osteoblasts by their large
size, multinucleation, and busy cytoplasm, especially
numerous mitochondria (Figures 6.45 and 6.46).

Small cell osteosarcoma is composed of poorly differ-
entiated, small, round, and oval cells that may be in-
distinguishable from the cells of mesenchymal chon-
drosarcoma and Ewing’s sarcoma (see Chapter 4,
Figures 4.58 and 4.59).

(Text continues on page 295)
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Figure 6.31. Myxoid chondrosarcoma (parasellar region material filling the reticulum represents the proteinaceous
of brain). The chondroblasts are widely separated in  precursor of the matrical collagen, glycoprotein, and gly-
abundant matrix, and their cytoplasm is rich in dilated ~ cosaminoglycans. (X 4275)

rough endoplasmic reticulum (RER). The medium-dense
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Figure 6.32. Myxoid chondrosarcoma (parasellar region of brain). This chondroblast, in addition to showing extreme
dilation of the rough endoplasmic reticulum (RER), has a large Golgi apparatus (G). (X 7600)
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Figure 6.33. Enchondroma (tibia). A well-differentiated chondroblast has a villus-like surface and a clear zone be-
tween the cell and the collagen. RER = rough endoplasmic reticulum. (X 9200)
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Figure 6.34. Clear cell chondrosarcoma (synovial membrane of thigh). The glassy, clear spaces (*) in the cytoplasm
of this chondroblast represent glycogen that was lost during the chemical processing of the tissue. (X 9000)



SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS 283

Figure 6.35. Chondroblastoma (humerus). This specimen gen (G) are evident in the cytoplasm of this neoplastic
was processed by a method that preserves glycogen as  cell. (X 8200)
electron-dense granules, and copious amounts of glyco-
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Figure 6.36. Extraskeletal myxoid chondrosarcoma (fe-  endoplasmic reticulum (partially bracketed). (X 7800) In-
mur). Chondroblasts are widely separated by a medium-  set: high magnification of the bracketed area reveals par-
dense, flocculent matrix. Cell cytoplasm is rich in mito-  allel microtubules within the dilated RER. (X 23,000)

chondria (M), and one cell has markedly dilated rough
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Figure 6.37. Osteosarcoma (femur). Many of the cells in
this neoplasm were spindle-shaped and poorly differen-
tiated osteoblasts, as shown, but there also were better
differentiated areas composed of oval and polygonal cells
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(see Figure 6.38). Collagen consistent with osteoid but no
hydroxyapatite is present in the extracellular matrix of
this field. (X 3900)
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Figure 6.38. Osteosarcoma (femur). This better differen-  rough endoplasmic reticulum (RER), occasional pockets
tiated area of the osteosarcoma illustrated in Figure 6.37  of glycogen (G), and focally villus-like cell surfaces (*).
is composed of oval and polygonal cells having abundant (X 5000)
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Figure 6.39. Osteosarcoma (parafemoral soft tissue).  villus-like surface (V), abundant rough endoplasmic retic-

Well-differentiated osteoblasts comprise this neoplasm ulum (RER), and pockets of glycogen (G). (X 5300)
and are typified by their oval and polygonal shape, florid
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Figure 6.40. Osteoblastoma (pubic ramus). The os-
teoblasts in this neoplasm are even better differentiated
than those in Figure 6.39, in that they have more abun-
dant cytoplasm and more organelles within it. Golgi ap-

paratuses (G) are large, but their detail is not clearly vis-
ible at this low magnification. Villus-like surface projec-
tions (V) and rough endoplasmic reticulum (RER) are
abundant. (X 5300)
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Figure 6.41. Osteoblastoma (femur). The specimen was teoblasts are extremely rich in this inclusion. N = nuclei.
processed by a method that preserves glycogen (G) as (X 6750)
electron-dense granules, and these well-differentiated os-
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Figure 6.42. Osteosarcoma (soft tissue of thigh). Miner- that are not well visualized at this magnification), abuts
alizing osteoid (O), characterized by electron-dense de- this well-differentiated osteoblast. (X 6750)
posits of hydroxyapatite (on prominent fibers of collagen
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Figure 6.43. Reactive parosteal bone (femur). Innumerable deposits of hydroxyapatite are superimposed on promi-
nent fibers of banded collagen in this zone of benign, new bone formation. (X 12,000)
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Figure 6.44. Reactive parosteal bone (femur). Higher  of collagen (osteoid) in greater detail. The edge of an os-
magnification of the same specimen as depicted in Fig-  teoblast, in close association with the osteoid, is seen in
ure 6.43 shows the hydroxyapatite and prominent fibers  the upper left corner of the field. (X 27,000)
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Figure 6.45. Osteogenic sarcoma (soft tissue of hip). Ly-  abundant and contains many organelles. Mitochondria,
ing between several osteoblasts (B) is an osteoclast (C). It seen at higher power in Figure 6.46, are especially nu-
is of giant size and has multiple nuclei. The cytoplasm is merous. (X 4550)
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Figure 6.46. Osteogenic sarcoma (soft tissue of hip). Mi-  least three Golgi apparatuses (*), although less well seen.
tochondria (M) predominate in the busy cytoplasm of this ~ The villus-like surface of the cell is visible in the upper
osteoclast, and there are also many small vesicles, col- left corner of the field. (X 6750)

lapsed cisternae of rough endoplasmic reticulum, and at
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(Text continued from page 278)

Synovial Sarcoma

(Figures 6.47 through 6.56.)

Diagnostic criteria. (1) Biphasic components (in the
classic case) of spindle-shaped stromal cells and ep-
ithelial cells arranged in solid groups or lining spaces
or glands (Figures 6.47 through 6.52 and 6.55); (2) the
spaces and glands are separated from the stromal cells
by basal lamina (Figures 6.47, 6.48, and 6.51); (3) spin-
dle cells are dispersed in varying amounts of matrix
composed of banded collagen and amorphous, medium-
dense material (Figure 6.53), but many of them also con-
tact one another focally and have small junctions (Fig-
ures 6.54 and 6.55); (4) epithelial cells lining spaces and
glands have microvilli and junctional complexes (Fig-
ures 6.47 through 6.50); (5) glands may or may not con-
tain secretory material (Figure 6.49).

Additional points. A range of patterns may be seen
among synovial sarcomas. In addition to the classic
biphasic picture, there are also monophasic spindle cell
tumors and, rarely, monomorphic epithelioid sarcomas.
In the latter-type neoplasm and in poorly differentiated
epithelial components of biphasic neoplasms, the oval
and polygonal epithelioid cells often occur in solid
nests. The cells have junctions but may not form micro-
villi or gland-like spaces (Figure 6.55). In the spindle-
cell type or component of synovial sarcoma, the cells
have a high nuclear—cytoplasmic ratio and do not have
the ultrastructural characteristics of any other type of
spindle cell (Figure 6.53). They may have small inter-
cellular junctions. Although probably derived from
primitive mesenchymal cells and possibly from fibro-
blasts, they possess less rough endoplasmic reticulum
than do typical fibroblasts. Intermediate filaments (ker-
atin and/or vimentin) often are demonstrable, some-
times in large amounts, both in the epithelial and spin-
dle cells of synovial sarcomas (Figures 6.52 and 6.56). It
is open to question whether the two cell types in syn-
ovial sarcoma have a common lineage. There is some
evidence that in normal synovial membrane, the lining
cells are macrophagic and derived from monocytes, and
the underlying spindle cells are secretory and derived
from mesenchymal cells.

Adipose Neoplasms

(Figures 6.57 through 6.70.)

Diagnostic criteria. (1) Lipid droplets; (2) pinocytotic
vesicles; (3) cytoplasmic glycogen; (4) basal lamina;
(5) intermediate filaments.

Additional points. Golgi apparatuses, varying amounts
of smooth and rough endoplasmic reticulum, and mi-

tochondria are other organelles that may be seen in
lipoblasts. Most of the nonlipid cellular features listed
are found in all stages of differentiation except for the
very late lipoblast and mature lipocyte.

There probably are three lines of differentiation for
lipoblasts: pericytes, fibroblasts, and poorly differenti-
ated mesenchymal cells. The role of the pericyte can be
studied conveniently in myxoid liposarcoma (Figures 6.57
through 6.59), where the vascular pattern consistently
is a prominent component of the neoplasms. Here, per-
icytes and neighboring early lipoblasts can be seen to
resemble one another closely in both size and shape
and in nuclear and cytoplasmic detail. A few pericytes
even contain lipid droplets (Figure 6.58). Another per-
tinent observation in these neoplasms is that there is a
gradient of increasing differentiation in lipoblasts as
their distance from capillaries increases. The main cri-
terion for recognizing advancing differentiation is the
increasing amount of lipid in the cells, and as the num-
ber of lipid droplets increases, the cytoplasmic space
expands (Figures 6.60 through 6.63). Coalescence of
droplets in seen in late-stage lipoblasts, and finally a
single cytoplasmic vacuole is present in the mature
lipocyte. Glycogen usually is present in moderate-to-
heavy amounts in early- and mid-stage lipoblasts (Fig-
ures 6.64 and 6.65).

Developmental relationships similar to those noted
between the lipoblast and pericyte also can be seen be-
tween the lipoblast and poorly differentiated mes-
enchymal cell and between the lipoblast and fibroblast.
In all examples, the increasing amount of cytoplasmic
lipid is the main morphologic index for maturation of
the cell. The fibroblast, or fibrolipoblast, is found more
frequently in well-differentiated liposarcoma than in myx-
oid liposarcoma and round cell liposarcoma. Round cells
consist mostly of poorly differentiated mesenchymal
cells and, to a lesser extent, early lipoblasts (Figure 6.66
and 6.67).

The cells comprising pleomorphic liposarcomas cover a
wide spectrum that includes all stages of lipoblasts and
giant cells having bizarre nuclei and varying amounts
of cytoplasmic lipid (Figures 6.68 and 6.69).

Hibernomas are lipomas composed of brown fat, and
the component lipocytes have copious cytoplasm that
contains numerous small- and intermediate-sized lipid
droplets and numerous mitochondria. Glycogen may
also be present in the cytoplasm. Basal lamina can be
found coating the cells (Figure 6.70).

Lipocytes and lipoblasts occur in combination with
other cell types in a variety of neoplasms, including
myelolipoma, angiolipoma, and angiomyolipoma.

In dedifferentiated liposarcoma, areas of well-differentiated
liposarcoma are interspersed with regions of fibrosar-
coma or MFH.

(Text continues on page 320)
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Figure 6.47. Synovial sarcoma (soft tissue of thigh). Ep-  lamina (barely discernible at this low magnification), sep-
ithelial (E) and stromal (S) cells are depicted in this bipha- arates the two cell-types. (X 5700)
sic neoplasm, and a sharp demarcation, including a basal
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including the formation of a basal lamina (BL).
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Figure 6.49. Synovial sarcoma (soft tissue of leg). A discrete acinus lined by well-differentiated epithelial cells (E) is
surrounded by a stroma that is hypocellular (S) and rich in extracellular matrix (M). (X 5300)
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Figure 6.50. Synovial sarcoma (soft tissue of leg). High
magnification of an epithelial cell of the neoplasm illus-
trated in Figure 6.49 shows microvilli (V) on the luminal
surface and junctional complexes ()) at its apical aspect

and membrane-bound granules (G) and mitochondria (M)
as the outstanding organelles in the cytoplasm. (X 18,500)
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Figure 6.51. Synovial sarcoma (vulva). An island of ep- mal component by a thick layer of basal lamina (BL).
ithelial cells in this biphasic synovial sarcoma has a cen- (X 4800)
tral microlumen (L) and is separated from the mesenchy-



301

SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS

contains numerous
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Figure 6.52. Synovial sarcoma
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Figure 6.53. Synovial sarcoma (soft tissue of arm). Aspin-  features of Schwannian differentiation such as long in-
dle cell component of a biphasic synovial sarcoma re-  tertwining processes, continuous basal lamina, and long
veals the spindle cells to have a nondescript cytoplasm,  spacing collagen are absent. (X 9300)

devoid of fibroblastic and leiomyoblastic markers. Also,
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Figure 6.54. Synovial sarcoma (soft tissue of hand). The by collagen and amorphous electron-dense material.
spindle cells of this monomorphic synovial sarcoma abut (X 4940)
focally on one another and are otherwise separated
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Figure 6.55. Synovial sarcoma (soft tissue of deltoid re- cells with small intercellular junctions (arrows) and only
gion). This predominantly monomorphic spindle cell  a small amount of intercellular amorphous matrix (*).
neoplasm had focal solid areas of oval and polygonal (X 9350)
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Figure 6.56. Synovial sarcoma (soft tissue of thigh). Many cells of this monophasic synovial sarcoma contain large
zones of microfilaments (F and inset). (X 5130) (inset X 15,100)
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Figure 6.57. Myxoid liposarcoma (soft tissue of right  flocculent and medium-dense matrix. In addition to
knee). Lipoblasts of early (EL) and intermediate (ML) droplets of lipid (L), many cells also contain open spaces
stages are dispersed individually and in columns, in.a  representing glycogen (G). (X 3960)
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Figure 6.58. Myxoid liposarcoma (soft tissue of thigh). A capillary is partially surrounded by pericytes (P) having lipid
droplets (L) and a duplicated basal lamina (BL). * = erythrocyte; E = endothelial cells. (X 7420)
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Figure 6.59. Myxoid liposarcoma (soft tissue of thigh). Several early lipoblasts (L) surround a capillary. Compare with
pericytes in Figure 6.58. E = endothelial cell; * = lumen of capillary. (X 5225)
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Figure 6.60. Myxoid liposarcoma (soft tissue of thigh). chondria (M). Basal lamina around capillary and
Early lipoblasts (L) surround a capillary (*) and show lipoblasts is diffuse and flocculent rather than discrete.
abundant glycogen clear spaces (G) and many mito- (X 7000)
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Figure 6.61. Myxoid liposarcoma (soft tissue of thigh). An early lipoblast contains prominent lipid (L) and rough en-
doplasmic reticulum (RER). (X 7000)



SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS 311

T
155

1 )
Tk, Bl

b _|,'|"
" i)
1y P

&

Lt

AL

e
5

.
B
.
[ 7r4
)i L
e e

.-
I
o
B
2
o iy
W
i
k.
'
&
e
T i
=i i
55""1 o b
3k . 7 '
- Ly | oy
SRl
.
Pkl

o

[

i

¥

¥ R
R T
i

T
-
Eae L

2 g
el
T
et T

i
=
.
:-l-i:

[ ]

'

i

I

- ).

'ﬂ' &
=h

Bl
A
B

T

.
-

5
L

L

L5

p - : N oy -

KT M s SRR Ll e RE T o ;

g R v ad By e o W " = 17 ca il ¥ o
| ¥ If-ll'- ‘Fq TR I [l s : 4’ L 4 ) ,I'-,--

|.'.'|L : j,. te L R b e VR R ot ;*-

Figure 6.62. Myxoid liposarcoma (soft tissue of thigh). ~ with early lipoblasts in Figure 6.59 through 6.61.

An intermediate-stage lipoblast contains many lipid (X 6875)
droplets (L) as its main ultrastructural feature. Compare
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Figure 6.63. Myxoid liposarcoma (soft tissue of thigh). Several late lipoblasts have cytoplasm composed predomi-
nantly of lipid droplets. (X 5900)
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Figure 6.64. Myxoid liposarcoma (soft tissue of thigh).  a moderate amount of glycogen (G) and lipid (L).
The specimen was processed to preserve glycogen as (X 18,000)
electron-dense granules. This early lipoblast contains
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Figure 6.65. Myxoid liposarcoma (soft tissue of thigh). This early lipoblast has cytoplasm bulging with glycogen (G).
L = lipid. N = nucleus. (X 13,275)
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Figure 6.66. Round cell liposarcoma (soft tissue of thigh).  spersed cells (*) have more abundant cytoplasm, numer-
Most of the cells in this neoplasm have no oronly afew  ous lipid droplets, and numerous mitochondria.
lipid droplets in their cytoplasm. The nuclear-cytoplas- (X 3800)

mic ratio is high, and nucleoli are small. A few inter-
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Figure 6.67. Round cell liposarcoma (soft tissue of thigh). tiated lipoblast (C) showing a rare lipid droplet, a mod-
Higher magnification of cells from the same neoplasmas  erate number of mitochondria (M), and a large Golgi ap-
depicted in Figure 6.66 illustrates two poorly differenti-  paratus (G). (X 9600)

ated lipoblasts (A and B) and one slightly more differen-



SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS 317

]
S

' e . st ;
: rl & 1 : ; ; F, . 1 .-ﬂh d.- -I. -"1‘_- ¥ . L

Figure 6.68. Pleomorphic liposarcoma (soft tissue of thigh). This giant lipoblast has a high nuclear—cytoplasmic ratio;
a bizarre, multilobed nucleus, and a moderate number of lipid droplets (L). (X 4940)
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Figure 6.69. Pleomorphic liposarcoma (soft tissue of thigh). A multinucleated, giant lipoblast has copious cytoplasm
with a preponderance of lipid droplets (L) and dilated rough endoplasmic reticulum (RER). (X 5130)
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Figure 6.70. Hibernoma (soft tissue of interscapular region of back). These cells have the features of brown fat, namely,
numerous mitochondria (M) and numerous small- and medium-sized lipid droplets (L). (X 5100)
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(Text continued from page 295)

Smooth Muscle Neoplasms

(Figures 6.71 through 6.86.)

Diagnostic criteria. (1) Fascicular or syncytial arrange-
ment of spindle cells, in a matrix of collagen (Figures
6.71 and 6.72); (2) basal lamina surrounding cells (Fig-
ures 6.72 and 6.73); (3) thin (6 nm) filaments and dense
bodies among filaments, within the cytoplasm proper
and subjacent to the plasmalemma (Figures 6.73
through 6.75); (4) pinocytotic vesicles (Figures 6.75);
(5) round-ended nuclei (Figures 6.72 and 6.73); (6) con-
traction indentations of nuclei (Figure 6.76).

Additional points. Filaments and dense bodies tend to
be more numerous in cytoplasmic processes than in cell
bodies, and they are usually considered to be a mini-
mum requirement for identifying smooth muscle cells.
However, in poorly differentiated leiomyosarcomas, ep-
ithelioid leiomyosarcomas, and certain gastrointestinal
stromal tumors, these filaments and dense bodies may
be scant or absent, and the fulfillment of some of the
other diagnostic criteria in small amounts or focally is
considered supportive. Round-ended nuclei are espe-
cially valuable and, with nuclear contraction indenta-
tions, may be sufficient evidence for a “probable” or
“consistent with” diagnosis. Furthermore, narrow at-
tachment plaques may be found between cells.

An example of a poorly differentiated leiomyosar-
coma having a nondescript cytoplasm, with few fila-
ments and no definite dense bodies, is illustrated in Fig-
ure 6.77. A few poorly differentiated leiomyosarcomas
have cells with few filaments and abundant rough en-
doplasmic reticulum, resembling fibroblasts (Figures
6.78 and 6.79). In these cases, some of the features listed
other than filaments and dense bodies as well as further
sampling may lead to the correct diagnosis.

Epithelioid leiomyosarcomas (leiomyoblastomas) also de-
pend on the presence of thin filaments and dense bod-
ies for a definite diagnosis, but the other ultrastructural
characteristics of smooth muscle may be scant or ab-
sent. Basal lamina also is often present, but more often
than not the cytoplasm contains numerous mitochon-
dria as its main organelle (Figure 6.80). Glomus tumors
also are composed of epithelioid-type, mitochondria-
rich smooth muscle cells, usually in islands and small
clusters separated by basal lamina and banded colla-
gen, and often in juxtaposition to thin-walled blood ves-

DIAGNOSTIC ELECTRON MICROSCOPY: A TEXT/ATLAS

sels (Figure 6.81 and 6.82). Thin filaments, dense bod-
ies, pinocytosis, and basal lamina are also often present
and characterize the glomus cell as smooth muscle in
type (Figure 6.82).

Arrare form of leiomyoma and leiomyosarcoma is the
granular cell type. These neoplasms mimic granular cell
schwannomas at the light microscopic level, but by elec-
tron microscopy their granules are seen to be derived
from mitochondria rather than from electron-dense sec-
ondary lysosomes (Figures 6.83 through 6.85).

A significant proportion of gastrointestinal stromal tu-
mors (GIST), in our experience, are leiomyomas and
leiomyosarcomas, and some are atypical and difficult
to prove as being of smooth muscle cell type (Figure
6.86). In others, the cell of origin may be a fibroblast, a
Schwann cell, an autonomic neuron or, questionably, an
interstitial cell of Cajal (gastrointestinal pacemaker cell)
(see Chapter 9).

Skeletal Muscle Neoplasms

(Figures 6.87 through 6.90) (also see Figures 4.14
through 4.24).

Diagnostic criteria. (1) Thick (15 nm), myosin fila-
ments; (2) Z-band formation; (3) sarcomeres.

Additional points. Rhabdomyosarcomas composed of
spindle-shaped cells usually are easier to diagnose than
those consisting of small, round, embryonal cells or
than the bizarre cells of pleomorphic rhabdomyosarcoma.
The spindle cells are varying stages of differentiating
strap cells and contain thin and thick filaments, readily
identifiable Z-band material, and usually some degree
of sarcomere formation. Refer again to Figures 4.28
through 4.32 for early strap cell differentiation in em-
bryonal rhabdomyosarcomas. Later stages in the de-
velopment of skeletal muscle cells are illustrated in the
rhabdomyoma in Figures 6.87 and 6.88.

Spindle cell embryonal rhabdomyosarcoma is a rare neo-
plasm that usually occurs in children, but it may also be
seen in adults. The cells are arranged in a fascicular or
storiform pattern and resemble late-stage fetal myo-
tubules. The cells are immature rhabdomyoblasts and
have copious glycogen, numerous mitochondria, a
moderate amount of rough endoplasmic reticulum, and
focal collections of filaments with Z-band material and
early sarcomere formation (Figures 6.89 and 6.90).

(Text continues on page 341)
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Figure 6.71. Leiomyosarcoma (pelvic soft tissue). The neoplasm is composed of a syncytium of spindle cells with fo-
cal attachments in a matrix of collagen. (X 5510)
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Figure 6.72. Leiomyosarcoma (pelvic soft tissue). This
area of the same neoplasm as depicted in Figure 6.71
consists of a close arrangement of spindle cells rather
than the loose, syncytial pattern exemplified in Figure
6.71. Basal lamina (BL) covers the free surfaces of the

cells and often is diffuse rather than discrete (see Figure
6.73). Nuclei tend to have at least one rounded end, and
some nuclei have shallow contraction indentations.
(X 7185)
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Figure 6.73. Leiomyosarcoma (metastatic to dura mat- merable thin filaments, and dense bodies of filaments (ar-
ter). These malignant spindle cells exhibit several mark- rows) and round-ended nuclei. (X 9520)
ers of smooth muscle, including basal lamina (BL), innu-
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A malignant smooth muscle cell has cytoplasm filled with

).

Figure 6.74. Leiomyosarcoma (metastatic to dura matter

thin filaments and dense bodies (arrows).

X 13,500)

(



SPINDLE CELL NEOPLASMS AND THEIR EPITHELIOID VARIANTS 325

Figure 6.75. Leiomyosarcoma (metastatic to trapezius  that some of the dense bodies lie immediately subjacent
muscle). High magnification of malignant smooth mus-  to the plasmalemma. Pinocytotic vesicles (P) and basal
cle cells illustrates many thin filaments (F) and dense bod- ~ lamina (BL) are easily seen at this magnification.
ies (arrows) occupying the cytoplasm. Note also that there (X 26,000)

is peripheral compartmentalization of the filaments and
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Figure 6.76. Leiomyosarcoma (tibia). This cellular spindle-cell neoplasm shows the nuclear contraction indentations
(arrows) so often seen in smooth muscle cells. (X 6750)
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Figure 6.77. Leiomyosarcoma, nondescript type (retro-
vaginal tissue). Filaments are scant in these malignant
spindle cells, but round-ended and contracted nuclei are
salient features. (X 10,500) (Permission for reprinting

granted by Taylor and Francis Publishers, Dickersin GR,
Selig MK, Park YN: The many faces of smooth muscle
neoplasms in a gynecological sampling: An ultrastruc-
tural study. Ultrastruct Pathol 21:109-134, 1997.)
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Figure 6.78. Metastatic leiomyosarcoma, fibroblast-like
type (omentum). Tightly apposed, neoplastic spindle cells
have abundant rough endoplasmic reticulum in their cy-
toplasm. A few cells contain focal collections of filaments
(*) as well. (X 6800) (Permission for reprinting granted by

Taylor and Francis Publishers, Dickersin GR, Selig MK,
Park YN: The many faces of smooth muscle neoplasms
in a gynecological sampling: An ultrastructural study. Ul-
trastruct Pathol 21:109-134, 1997.)
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Figure 6.79. Metastatic leiomyosarcoma, fibroblast-like lishers, Dickersin GR, Selig MK, Park YN: The many faces
type (omentum). High magnification illustrates moder- ~ of smooth muscle neoplasms in a gynecological sam-
ately dilated rough endoplasmic reticulum (arrows) and ~ pling: An ultrastructural study. Ultrastruct Pathol 21:
excessive basal lamina material (*). (X 24,900)) (Permis- 109-134, 1997.)

sion for reprinting granted by Taylor and Francis Pub-
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Figure 6.80. Epithelioid leiomyosarcoma (stomach). The  dria as the main feature. There are relatively few micro-
cells of this neoplasm are polygonal rather than spindle-  filaments. (X 5130)
shaped, and their cytoplasm contains many mitochon-
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Figure 6.81. Glomus tumor (soft tissue of inguinal re-  basal-like material (BL). The marked density of the cyto-
gion). Clusters of epithelioid type cells are separated by  plasm of the cells is attributable to innumerable mito-
bands of collagen (C) and excessive accumulations of ~ chondria. (X 4250)
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Figure 6.82. Glomus tumor (soft tissue of inguinal re-  aments (F), pinocytotic vesicles (P), and basal lamina (BL).
gion). High magnification of a neoplastic glomus cell (X 42,500)
highlights the smooth muscle feature of cytoplasmic fil-
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Figure 6.83. Granular cell leiomyoblastoma (uterus,
formalin-fixed). Ultrastructural detail is somewhat com-
promised by the method of fixation, but still discernible
are numerous cytoplasmic granules (*). (X 7600) (Per-
mission for reprinting granted by Taylor and Francis Pub-

lishers, Dickersin GR, Selig MK, Park YN: The many faces
of smooth muscle neoplasms in a gynecological sam-
pling: An ultrastructural study. Ultrastruct Pathol 21:
109-134, 1997.)
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