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Preface 

Two-fluid dynamics is a challenging subject rich in physics and prac
tical applications. Many of the most interesting problems are tied to the 
loss of stability which is realized in preferential positioning and shaping of 
the interface, so that interfacial stability is a major player in this drama. 
Typically, solutions of equations governing the dynamics of two fluids are 
not uniquely determined by the boundary data and different configurations 
of flow are compatible with the same data. This is one reason why stability 
studies are important; we need to know which of the possible solutions are 
stable to predict what might be observed. When we started our studies in 
the early 1980's, it was not at all evident that stability theory could actu
ally work in the hostile environment of pervasive nonuniqueness. We were 
pleasantly surprised, even astounded, by the extent to which it does work. 
There are many simple solutions, called basic flows, which are never stable, 
but we may always compute growth rates and determine the wavelength 
and frequency of the unstable mode which grows the fastest. This proce
dure appears to work well even in deeply nonlinear regimes where linear 
theory is not strictly valid, just as Lord Rayleigh showed long ago in his 
calculation of the size of drops resulting from capillary-induced pinch-off of 
an inviscid jet. In two-fluid problems, there are many sources for instability 
and the active ones may be determined to a degree by analysis of different 
terms which arise in the energy budget of the most dangerous disturbance. 

Though we have presented many results from nonlinear analysis of two
fluid problems, this side of the subject is not yet well-developed. We are 
also certain that the direct simulations of two-fluid problems which have 
commenced only in the years just passed have a potentially huge domain 
for increased understanding. 

Applications of two-fluid dynamics range from manufacturing to lu
bricated transport. Different mechanisms which are unique to the flow of 
two fluids can be exploited for this purpose. Density-matching can be used 
to depress the effect of gravity, or of centripetal acceleration in rotating 
systems, allowing one to manipulate the places occupied and the shapes of 
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the interfaces between fluids. Viscosity segregation can be used to promote 
mixing and demixing, to promote say the displacement of one fluid by an
other as in the problem of oil recovery, or to segregate one molten plastic 
from another by encapsulation. The lubrication of one fluid by another is a 
particularly important branch of two-fluid dynamics; if one fluid has a sur
passingly large viscosity, it may be lubricated by a less viscous fluid. The 
most beautiful of the lubricated flows are the rollers discussed in chapter II 
of the first part, Mathematical Theory and Applications. The most useful of 
the lubricated flows are the water-lubricated pipelines, which are discussed 
in chapters V through VIII in the second part, Lubricated Transport, Drops 
and Miscible Liquids. It is our hope that this book will lead to deeper un
derstanding of the principles and applications of two-fluid dynamics. 

The topics treated in this book are displayed in the table of contents. 
Four of the six chapters in this part, Lubricated Transport, Drops and Mis
cible Liquids, are about water-lubricated pipelining. We have reported 
results of systematic studies of ideal flows and linear and nonlinear stabil
ity analyses with experimental and field observations. Some techniques of 
analysis which are applied here are discussed in the first part, Mathemati
cal Theory and Applications, and they are also explained again here at the 
places where they appear. We present all the analysis with enough details 
to teach students. As always, it is certain that a number of excellent studies 
of two-fluid dynamics which deserve mention have not been mentioned. 

Water-lubrication of viscous materials is a nascent technology with a 
proven potential for great economy. This feature of the subject is a moti
vation for our work and we have tried to direct readers, wherever possible, 
to the remaining problems which impede the technology. 

Our research for this project could not have been done without the 
help of certain persons: Mike Arney, Runyan Bai, Nick Baumann, Gor
don Beavers, Kangping Chen, Howard Hu, Paul Mohr, John Nelson, Ky 
Nguyen, Luigi Preziosi and Michael Renardy. We are especially indebted 
to Chen, Hu and Preziosi for their excellent analytical and numerical stud
ies of lubricated pipelining and to Bai for the design and execution of very 
elegant experiments. We thank Michael Renardy for reading through the 
manuscript. 

Our nominee for the "gold core flow" medal is Veet Kruka, a petroleum 
engineer at Shell Development in Westhollow, Texas. He was the first to 
make a water-lubricated line work on a commercial scale (see chapter V). 
We are indebted to him, his co-worker, Greg Geiger, and to Gustavo Nunez 
and Emilio Guevara of Intevep, PDVSA, for various kinds of help and 
encouragement. 

The last two chapters of the book, IX and X, are completely indepen
dent of the others. Chapter IX is a description of the immiscible vortex 
rings which develop in free fall. In chapter X, we develop a new theory 
of binary mixtures of incompressible liquids based on the observation that 
the velocity of a fluid particle in such a mixture cannot be solenoidal when 
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diffusion is active. It explores the idea that gradients of composition can 
induce direct stresses which will mimic the effects of a transient interfacial 
tension when the gradients are large. 

The work of Joseph was supported mainly by the Department of En
ergy, Office of Basic Energy Sciences and also by the fluid mechanics branch 
of the National Science Foundation, the mathematics division of the Army 
Research Office, by the Army High Performance Computing Center, and the 
Minnesota Supercomputer Institute. Joseph's research on water-lubricated 
pipelining was funded initially under a special small NSF grant for inno
vative research involving the lubricated transport of coal-oil dispersions. 
Joseph is grateful to Steve Traugott for this initial grant which was later 
picked up by Oscar Manley at the DOE. 

Renardy's research was funded by the National Science Foundation 
under Grant No. DMS-8902166. This project was begun during the Winter 
Quarter of 1989 at the Institute for Mathematics and Its Applications at 
the University of Minnesota. 

Yuriko dedicates this book with love to her father Sadayuki Yamamuro 
("Papa, arigato"), and to her mother Akiko ("osewani narimashita"). Dan 
dedicates this book to Adam, Bai, Chris, Claude, Dave, Geraldo, Harry, 
Howard, John, Kangping, Luigi, Mike, Paul, Pushpendra and Terrence. 

January 1992 Minneapolis, Minnesota 
Blacksburg, Virginia 
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V.I Nature of the Problem 

1 
3 

10 
11 
16 

There is a strong tendency for two immiscible fluids to arrange themselves 
so that the low-viscosity constituent is in the region of high shear. We can 
imagine that it may be possible to introduce a beneficial effect in any flow 
of a very viscous liquid by introducing small amounts of a lubricating fluid. 
Nature's gift is evidently such that the lubricating fluid will migrate to the 
right places so as to do the desired job. This gives rise to a kind of gift 
of nature in which the lubricated flows are stable, and it opens up very 
interesting possibilities for technological applications in which one fluid is 
used to lubricate another. The particular case of lubricated pipelining is 
discussed in chapter 1.1 (b) and is the subject of chapters VI - VIII. A good 
source for the literature prior to 1985 is the review paper of Oliemans and 
Ooms [1986] and the monograph of Oliemans [1986]. 

Various arrangements of oil and water occur in experiments. The ar
rangements which appear in horizontal pipes are: 

1) Stratified flow with heavy fluid below 
2) Oil bubbles and slugs in water 
3) A concentric oil core in an annulus of water (this is called core-annular 

flow and is possible only when the two fluids have the same density) 
4) Various kinds of shear stabilized lubricated wavy flow, called wavy core 

flows 
5) Water in oil (w/o) emulsions. 

Some of these arrangements are shown in figure 1.1. 
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The density of the oil has been raised to that of water by adding carbon tetra
chloride to the oil. These experiments are discussed further and their results are 
compared with theory in sections VI.1 (m), VI.2 (g) and in chapter VII. 

Similar arrangements of oil and water appear in the vertical flows dis
cussed in chapters VI and VII. The problem for vertical flow, including the 
effect of gravity, possesses axisymmetry, and the flows are axisymmetric, at 
least in an average sense. In vertical pipes we can identify robustly stable 
regimes exhibiting 

6) Bamboo waves (see plate V.1.2) and 
7) Intermittent corkscrew waves (see plate V.1.3). 
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All of the arrangements (1) through (7) except (1) and (5) are well
lubricated with drag reductions of the order of the viscosity ratio, with 
reduction factors of 10-4 or more for viscous oils with viscosities greater 
than 100 poise. The arrangements (1) and (4) give rise to a loss of lubri
cation; emulsification of water is particularly onerous because the emulsion 
will not be lubricated and will have a higher viscosity than the oil. 

Considerable progress in understanding these complicated two-fluid 
flows can be made by comparing the results of stability studies of perfect 
core-annular flows with experiments giving rise to the different arrange
ments which are observed. These kinds of studies are given in the chapters 
which follow. 

V.2 Chronology of Experiments and Applications 

The first mention of lubrication of oil by water in pipes appears to be 
in the patent application of Isaacs and Speed [1904]. The density of the 
lubricating fluid here is greater than oil. They note that concentric flow 
may be established if a rotational motion is imparted to the flowing liquids 
by means of a rifle on the inside of the pipe. Their invention consists in 
delivering to the pipe the fluid to be conveyed, together with a fluid of 
greater density, and in making the fluids advance through the pipe with 
a helical motion, so that the denser fluid is caused to separate from the 
lighter and to encase it, thus reducing the frictional resistance to the flow 
of the lighter fluid. 

The foregoing idea may perhaps be usefully reformulated as a compe
tition between centripetal and gravity forces, with film lubrication when 
centripetal acceleration is dominant, and vertically stratified flow when 
gravity is dominant (see, for example, Chernikin [1956], and section VI.2 of 
this book). 

When gravity is dominant, stratified flow will result. In this case, only 
a part of the pipe wall may be lubricated by the water. Looman [1916] 
patented an invention for a method of conveying oils or similar substances 
through pipes by passing them over relatively stationary bodies of water 
lying at the bottom of the pipe. His idea was to have an array of these 
water traps at the bottom of the horizontal pipe. (Obviously there would 
be no need for a water trap if the two fluids were delivered together in a 
stratified arrangement.) 

Theoretical methods are available for estimating the pressure drop re
duction for completely stratified laminar flow. This flow is a lot less efficient 
than the encapsulated arrangement in transporting the viscous fluid. Yu 
and Sparrow [1967] and Charles and Redberger [1962] find that the ratio 
of the depth h of the lubricating layer to pipe radius R for maximum re
duction is hi R = 0.4. The pressure gradient reduction factor found by Yu 
and Sparrow is about 1.37 for liquids with a viscosity ratio greater than 
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1000. Charles and Redberger [1962) find a slightly smaller reduction factor. 
Other theoretical studies which assume laminar flow and a flat interface are 
by Gemmell and Epstein [1962) and Ranger and Davis [1979). The experi
ments of Charles and Lilleleht [1965) and Kao and Park [1972) indicate that 
the perfectly stratified flow assumed in these theoretical studies is stable at 
least for some of the operating conditions in their experiments. The dis
crepancies in the results of the experiments of Russell, Hodgson and Govier 
[1959) and Charles [1960) on nominally stratified flow of two immiscible liq
uids in circular pipes may be due to instabilities of perfectly stratified flow 
which have not yet been analyzed. The same cause may be at the root of 
the difference between the idealized prediction for stratified laminar flow 
between infinitely wide parallel plates by Russell and Charles [1959) with 
experimental data for circular pipes. 

The water in a stratified oil-water flow will tend to encapsulate the 
oil. This is a dynamic effect which is independent of the wetting proper
ties between the liquids and the pipe walls. Charles and Lilleleht [1965) 
observed a curving of the interface in the neighborhood of the duct walls, 
but concluded that this is not an effect of first importance except in ducts 
of small horizontal dimensions. Bentwich [1976) has considered some prob
lems of laminar stratified flow with an eccentric interface in the form of 
a circular arc. This could be called perfect partially stratified flow and it 
would be unstable under certain conditions. It is not clear whether or not 
the Bentwich model captures some effects of encapsulation. 

We shall not consider vertically stratified flows further, but they are 
important. 

We have already noted that if the density difference between water and 
oil is not too great and if the viscosity difference is great enough, the water 
will automatically encapsulate the oil all around. The earliest application of 
this idea to the practice of pipelining that we could find is by Clark [1948) 
(cited as a private communication by Russell and Charles [1959)) 

" ... who studied the heavy crude oil from the McMurray oil sand of 
Alberta, and observed a pressure drop reduction when the water was in
jected into this oil in a 0.375 inch pilot pipeline. The flow was laminar, with 
Reynolds numbers ranging from 10 to 20, and at temperatures investigated 
the oil viscosity ranged from 800 to 1000 cpo Injection of 7-13% water re
duced the pressure gradient, which is the pressure drop per unit length of 
the pipe in the direction of flow, by factors from 6 to 12. The relative po
sitions of the oil and water were not known, but it was suggested that the 
water wetted the inside of the pipe preferentially." 

The patent application by Clark and Shapiro [1949) is the first that 
appears to address the problem of core-annular flows of heavy petroleum. 
Here gravity effects are reduced by density matching to an acceptably small 
level and the heavy oil and water can flow in a lubricated manner, without 
stratification. Clark and Shapiro were engineers for the Socony Vacuum Oil 
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company. They did extensive tests in a three mile length of six-inch pipe. 
They 

" .. .found that the flow of viscous petroleums in pipelines can be greatly 
facilitated by the use of water containing minute proportions of a water 
soluble anionic surface-active agent and of an alkali-metal phosphate and 
having its pH adjusted to within the range pH 5.7 to pH 7.9, preferably pH 
6.6." 

Clark and Shapiro emphasized the method of additives and surface 
active agents in controlling the emulsification of water into oil. The emulsi
fication is an undesirable condition since the emulsion has a higher viscosity 
than the oil alone. When water emulsifies into oil, lubrication is lost. Emul
sification occurs readily in the so-called light oils with viscosities less than 
500 cpo Lubricated pipelining is a viable proposition for heavy oils which 
can be defined roughly as oils whose viscosity exceeds 500 cp with a density 
near to water, say Poil > 0.9g/cm3 . 

Various options in the selection of pipelines for transporting 48,000 
bbl per day of viscous crude oil from Temblador in the southern part of the 
state of Monagas, Venezuela, to the Carpite refinery and terminal 92 miles 
north on the San Juan River are considered by Leach [1957] of the Creole 
Petroleum Corp., VZ. He rejects water-lubrication and says that: 

"Had the water injection line been selected, a considerable saving in 
initial investment would probably have been realized, and if, upon operating 
the water injection system, the formation of emulsions proved to be no 
problem and operating cost proved to be as anticipated, this line would have 
been the best selection. In view of the large investment involved, however, 
and the considerable amount of uncertainly that existed concerning the 
formation of emulsions, dehydration of the crude, and pumping difficulties 
after a shutdown, it was concluded that the construction of a water injection 
line could not be justified at this time." 

It would be very good for lubricated pipelining if materials for pipes, 
or pipe linings, could be developed to keep the oil from sticking to the wall. 
Then one could lubricate with 2 to 5 percent water and dehydration would 
not be necessary. 

Clifton and Handley [1958] addressed this problem of emulsification in 
another way. They were engineers for Shell Development Co. in Emerville, 
CA, and they wrote a patent application specifying methods and apparatus 
to be used in preventing emulsification and improving film lubrication. They 
say that: 

"It is also known that substantial amounts of water may be introduced 
into a stream of viscous petroleum flowing through a pipe line to reduce the 
viscosity of the stream and thus facilitate the flow through the pipe line. 
Instead of adding substantial amounts of water to a viscous petroleum to 
reduce its viscosity, it is now proposed to add only minor amounts of water, 
say, about 1%, into a stream of a viscous petroleum so that the water forms 
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a lubricating film between the flowing petroleum and the inner wall of a 
pipe line. 

"It is therefore an object of this invention to provide a method and 
means of facilitating the flow of heavy oil through a pipe line by lubricating 
the pipe line with another liquid of low viscosity, preferably one having a 
specific gravity (or density) approximately that of the heavy oil. 

"It has been found, however, that while water may be employed to re
duce the viscosity of a heavy oil, or to lubricate it through a pipe line, water 
loses its beneficial qualities if the combined water and oil is run through 
a pump. Upon running a viscous oil and any amount of water through a 
pump, the water generally becomes thoroughly emulsified in the oil with the 
formation of a water-in-oil emulsion having a substantially higher viscosity 
than that of the unemulsified water and oil mixture upstream of the pump. 
It may be readily seen that it would not be practical to introduce water 
into a heavy oil being transported by pipe line over a distance sufficiently 
great to necessitate the use of more than one pump between the shipping 
and receiving terminals, since additional emulsification of the oil and water 
would occur at each pump with a concomitant increase in viscosity. 

"Therefore, it is also an object of this invention to provide means for 
introducing a film of water between the inner wall of a pipe line and a 
stream of viscous oil flowing therethrough, and for subsequently removing 
substantially all the water from the flowing stream before the stream enters 
a pump in the pipe line. 

"Another object of this invention is to provide means for introducing 
a thin aqueous film completely around the inner wall of a pipe line. 

"A further object of the invention is to provide a method and means for 
adjusting the specific gravity of a lubricating aqueous film to substantially 
that of the liquid that it surrounds. 

"Another object of the present invention is to provide a method and 
means for lubricating a stream of heavy oil in a pipe line so that increased 
flows through the pumps may be realized without any increase in pumping 
pressures. " 

An important series of experiments on water-lubricated pipelining were 
carried out in Alberta, Canada by Russell and Charles [1959], Russell, 
Hodgson and Govier [1959], Charles [1960] and especially by Charles, Govier 
and Hodgson [1961]. The latter experiments are described in figure 1.1 and 
in sections VI.1 - 3. 

Glass [1961] of Esso Research and Engineering has described his ex
periments and results as follows: 

"All experimental work was carried out by flowing oil and water 
through a 4 ft length of 1 cm inside diameter glass tubing. Oil viscosity 
was varied from 10 to 30,000 centistokes, oil specific gravity from 0.97 to 
1.03; volumetric water rate from 10 to 400% on oil; and oil superficial veloc
ities (that is, the mass flux per cross-sectional area) from 0.2 to 4.2 ft/sec. 



V.2 Chronology of Experiments and Applications 7 

Visual observations of the flow were made. Pressure gradients were deter
mined by two manometer taps situated 1 ft and 3 ft downstream of the oil 
injector. 

"Results. With the more viscous oils, the initial "core" of oil was read
ily maintained. The less viscous the oil, the more this core would break up 
into "globs" of oil of various sizes. At low enough viscosity, no distinguish
able core-annulus structure was maintained. 

"As the percent of water on oil increased, the pressure gradient first 
dropped, passed through a minimum at 30-40%, and then rose again. Figure 
1 shows a typical plot. With 35% water, a pressure gradient of only 5 in 
H20/ft was sufficient to move 200 centistoke oil at a superficial velocity 
of 4.1 ft/sec. Without water, a gradient of 108 in H20 would have been 
needed. 

"The initial drop in pressure gradient with increasing water rate is due 
to the widening of the water annulus. There is more water to intervene 
between the rapidly moving oil core and the stationary tube wall. Eddying 
and energy dissipation in the water layer is thus less violent. As the percent 
water goes up, however, the oil core continues to neck down, and must go 
faster and faster to maintain the same oil flow rate. The average velocity of 
the water will also increase, and the pressure gradient goes up despite the 
slight additional widening of the annulus. 

"The pressure gradient at a given percent water for core-annulus flow 
was found to go up with the 1.8 power of the flow rate. This can be ascribed 
to the turbulent losses in the water annulus. 

"Oil core-water annulus formation was stable for oils heavier than wa
ter, as well as for oils lighter than water. Changing oil density in the range 
0.97 to 1.03 had no discernible effect on pressure gradient. For oil lighter 
than water, the oil was carried slightly high in the tube. That is, there was 
less water above the core than below. For oils heavier than water, the core 
was carried low in the tube. Oil viscosity had no great effect on pressure 
gradient, as long as core-annulu~ flow was maintained. Shearing and the 
attendent energy dissipation occurred primarily in the water annulus. In
creasing oil viscosity, however, did result in a small decrease in pressure 
drop. As oil viscosity went up, the core consisted of fewer and fewer globs 
of oil. It thus also contained less and less water trapped between globs. At 
high enough viscosity, only a single continuous stream of oil was left. With 
fewer globs and less water trapped in the core, the core is slightly smaller 
and the annulus slightly wider; this results in a somewhat lower pressure 
drop. Thus, a 20-fold increase in viscosity (from 50 to 1,000 centistokes) 
resulted in roughly a 30% decrease in pressure gradient." 

Other experiments on water lubrication in horizontal pipes were re
ported by Stein [1978], Oliemans, Ooms, Wu and Duyvestin [1985] and by 
Arney, Bai, Joseph and Liu [1992]. 

Shell Oil has pioneered the development of commercially viable pipe
lines. One of their commercial lines is described in figure 2.2. Recently 
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Fig. 2.1. [Glass, 1961, Chern Eng Prog 57, 116[(v2)6,8] Reproduced by permis
sion of the American Institute of Chemical Engineers, ©1961 AICHE] 30-40% 
water gives lowest pressure gradient. 

Maraven ofPVSA (Petroleos de Venezuela Sociedad Autonomia) has placed 
in operation a 60-kilometer line to transport heavy crudes in the lubricated 
mode. In general such lubricated lines become attractive when the lighter 
crudes are expensive or locally in short supply. Plate V.2.3 is a photograph 
of a core-annular flow in a test loop at San Tome, Venezuela. 

Water-lubrication in a vertical pipe was studied in the experiments of 
Bai, Chen and Joseph [1991] which are described in chapter VII. 

Finally we draw the reader's attention to some experiments which are 
indirectly related to water-lubricated pipelining. Shertok [1976] studied flow 
development in a vertical pipe. Hasson, Man and Nir [1970] studied film 
rupture in the pipe flow of water inside an annulus of slightly heavier and 
more viscous organic liquid (see also Hasson and Nir [1970]). Aul and 01-
bricht [1990] studied the instability of an oil film O(IJ-tm) on the wall inside 
a capillary tube of 54 J-tm filled with water. Their experiment is related to 
secondary oil recovery. 
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Oil-water line moves highly v'iscous crude 
PIPELINING h igh ly viscous crude oil, 
ar. economic barrier to development 
o heavy-oil fields. has been made 
p('$sible Via a nev; technique, oil-water 
core flow. 

It involves tnnsponing a stream of 
oil inside a jacket of water. Frictional 
drag is reduced , since the oil is sur
rounded by water and does not come 
into contact with the pipe wall. 

Shell Oil Co. is using the technique 
iT, ]. 24-mile, 6-in. line transponing an 
. -gravity crude from its Midway

Sunset producing area to its Ten Sec
lion dehydration plant. The li':1e has 
a design capa:"i:y of about 27,000 bId 
of liquids. The Dow is 70% oil and 
30% water. 

Liquids are injected into the line 
at the single su.tion with the aid of a 
~~ecially designEd nozzle. Oil nows 
l .. rough the CeD i.l?r of the nozzle while 
\,".:.ter is injec icd through a jacket 
surrounaing th~ oJ. 

The noule's cesign causes the oil 
and water to enter the pipeline at ap
proximately the same velocities and 
in the desired coruiguration. -The oil 
core remains stable as long as the 
now rate in the line maintains a mini· 
"'urn velocity al 3 ft/sec. 

There are four positive-displacement 
p:Jmps at the station, one 200-hp unit 
for water. ~'o 150-hp units for oil and 
oae 150-bp unit for either service. Pur· 
chased water zlong wit!J. water used 
for steam injection are used in the 
line. 

The oil, with a viscosity at 100· F. 
SO.OOO times greater than water: is 
produced. by secondary recovery us
ing steam injection. 

It is gathered in a heated pipeline 
system and stored in a 3O,()()()"'bbl tank 
before shipm~L 

After injection into the line, the 
oil core and ..-ater jacket are pumped 
to the de.bydr.ation plant. There heavy 
Crude is combmed with a lighter crude 
oil. This mixture goes to a 40,Q()I}.bbi 

CUI-a-way shows how nozzle works 

INJECTION NOmE. the tapered unit between the two f1.anges (at cenler in ,heIOl. ~s the 
water ,nd oil into Shell's Imusual 6-in, line (righU moving Midway·Sunset field's viscous crude. 

separation tank where the water set· 
ties out. Remaining water is removed 
in a dehydration plant , the oil is 
blended and then goes through an 8-in. 
line to Bakersfield before going on [ 0 

Shell's Martinez refinery near Oak
laRd. 

The oil-water pipeline has been in 
operation for about a year. lis sIan· 

up culmigated several years of study 
at the Shell Pipe Line Corp.'s re· 
search and development labratory in 
Houston. It is expected to make the 
operation of some submarginal heavy 
oil fiel ds economic_ 

Heated pipelines or 1 a n k trucks, 
both expensive, have been used in this 
service. 

9 

Fig. 2.2. [1972, Pennwell Publishing Co.] An editorial from The Oil and Gas 
Journal describing Shell's pipeline. 
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V.3 Effects of Gravity 

Oil, being lighter than water, will rise to the top of a horizontal pipe in 
which oil and water are flowing. The oil can then ride high in a pipe while 
maintaining a lubricated situation, with a film of water all around, the film 
being thinner at the top than at the bottom. Another possible arrangement 
occurs when the pressure gradients are not too small: the oil is again sur
rounded by a film of water but seizes parts of the wall on the top where it 
runs as rivulets in the water. In some cases, there is oil at the top of the 
pipe, with a film of water below it and the water partly lubricates an oil 
core. 

Ooms, Segal, Van der Wees, Meerhoff and Oliemans [1989] developed a 
model to explain their experimental observation of a rippled core lubricated 
by water through a horizontal pipe. They write: 

"Special attention was paid to understanding how the buoyancy force 
on the core, resulting from any density difference between the oil and wa.
ter, is counterbalanced. This problem was simplified by assuming the oil 
viscosity to be so high that any flow inside the core may be neglected and 
hence that there is no variation of the profile of the oil-water interface with 
time. In the model the core is assumed to be solid and the interface to be 
a solid/liquid interface. 

"By means of the hydrodynamic lubrication theory it has been shown 
that the ripples on the interface moving with respect to the pipe wall can 
generate pressure variations in the annular layer. These result in a force 
acting perpendicularly on the core, which can counterbalance the buoyancy 
effect. 

"To check the validity of the model, oil-water core-annular flow experi
ments have been carried out in a 5.08 cm and a 20.32 cm pipeline. Pressure 
drops measured have been compared with those calculated with the aid of 
the model. The agreement is satisfactory." 

The foregoing model is semi-empirical. Data from experiments is re
quired to make the model work. A later revision of this model by Oliemans, 
Ooms, Wu and DUYvestin [1985] incorporates some effects of turbulence in 
the lubricating water: 

"Abstract. Core flow tests with a 3000 mP as fuel oil in a 5 cm test 
facility have revealed important information on the amplitudes and lengths 
of waves at the oil/water interface. The wavelengths vary considerably with 
water fraction and oil velocity. Moreover, the flow in the water annulus is 
turbulent. A previously developed theoretical model for steady core-annular 
flow in pipes has been extended by incorporating the effect of turbulence 
in the water film surrounding the oil core. The adapted model predicts the 
pressure-gradient increase with oil velocity correctly, provided that actual 
wave amplitudes and wavelengths observed during these tests are used as 
input data. The possible contribution of inertial effects is discussed." 
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Purely theoretical nonlinear amplitude equations for a plane layer 
based on lubrication theory have been given by Ooms, Segal, Cheung and 
Oliemans [1985], and by Frenkel, Babchin, Levich, Shlang and Sivashin
sky [1987], Frenkel [1989] and Papageorgiou, Maldarelli and Rumschitzki 
[1990]. In chapter VIII we shall review these theories and show that they 
apply only under very restricted conditions which exclude essential effects 
of inertia. 

Since the effect of gravity is such as to destroy axisymmetry in hori
zontal pipes, the study of horizontal flow with gravity included is difficult. 
None of the lubrication-based theories and none of the stability studies 
treat the asymmetric effect of gravity in horizontal pipes. This is a pity 
since the effect of gravity is possibly more dangerous to lubrication the 
larger the pipe, but we cannot say anything definite because the analysis 
has not been done. 

Gravity plays an important role for the lubrication of heavy crudes 
because the oil and water will stratify whenever the flow is stopped. In gen
eral, the pressure gradient required for restarting a line which is filled with 
oil above and water below is much greater than for steady flow. Maximum 
load designs therefore are associated with startup. These maximum loads 
can, it turns out, be greatly reduced by the use of additives in the water. It 
is also probable that large improvements can be achieved by constructing 
the pipe out of the right material. The general goal would be to coat the 
inside of pipes with hydrophilic materials. We are unaware of systematic 
studies along these lines. 

V.4 Stability Studies 

There have been a number of studies of the flow of two immiscible fluids of 
different viscosities and equal density through a pipe under a pressure gra
dient (see chapter I for examples of experimental and analytical studies). 
This problem has a continuum of solutions corresponding to arbitrarily 
prescribed interface shapes. The question therefore arises as to which of 
these solutions are stable and thus observable. Experiments have shown a 
tendency for the thinner fluid to encapsulate the thicker one. This had pre
viously been "explained" by the viscous dissipation principle (see section 
1.3 (f)), which postulates that the amount of viscous dissipation is mini
mized for a given flow rate. For a circular pipe, this predicts a concentric 
configuration with the more viscous fluid located at the core. Later stability 
analyses discussed in more detail below show that while this configuration is 
stable when the more viscous fluid occupies most of the pipe, it is not stable 
when there is more of the thin fluid. Therefore the dissipation principle does 
not hold, and the volume ratio is a crucial factor. The additional effects of 
a density difference and interfacial tension have also been investigated and 
are discussed below. 
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Perfect core-annular flow (PCAF) is an exact steady laminar solution 
of the problem of flow in a pipe of circular cross-section and is the subject of 
chapters VI - VIII. PCAF is a rectilinear flow with one nonzero component 
of velocity that varies only with the radial coordinate. The two fluids are 
arranged centrally, one fluid in the core, the other in the annulus. This 
solution possesses maximum symmetry. Since the effects of gravity are such 
as to destroy the axial symmetry in the problem for the horizontal pipes, 
PCAF cannot be realized unless gravity is nullified by density matching 
as in the experiments of Charles, Govier and Hodgson [1961]. In vertical 
pipes of circular cross-section, the inclusion of gravity in the analysis does 
not break down the axial symmetry present in the problem, and PCAF is 
possible without matching densities. 

PCAF is an idealized model problem for which all the measures of 
efficiency, pressure drops and holdup ratios can be computed when the 
volume flow rates of oil and water are given. We are going to study the 
stability of PCAF in the following chapters and we find that it is stable 
only for a very small set of conditions which typically do not occur in the 
applications. The other more robust core flows like wavy-core flow, which 
are well-lubricated and well-liked in the oil industry, are far from PCAF so 
that it is not clear at the outset that stability studies will have a practical 
application. Fortunately it turns out that the study of stability of PCAF is 
indeed helpful in understanding, predicting, and possibly in controlling the 
flows far from PCAF which arise in the applications. 

Hickox [1971] studied the linear theory of stability of PCAF in a vertical 
pipe with the long-wave approximation. All the principal physical effects, 
the viscosity ratio, the density ratio, the ratio of radius of the interface 
to the pipe radius, surface tension, gravity and a Reynolds number are in 
his governing equations. However, his analysis is restricted to long waves; 
up to first order in an expansion in powers of the wave number and only 
axisymmetric disturbances and disturbances with a first mode in azimuthal 
periodicity were considered. Hickox further restricted his study to the case 
in which the viscosity of the core is less than the annulus; for example, 
water inside oil. He found all such flows are unstable to long waves. He did 
not consider the case of lubricated pipelining in which the core viscosity is 
greater. This latter problem was studied by Joseph, Renardy and Renardy 
[1985], who showed that the lubricated flows could be stable. 

Ooms [1971] considered the stability of core-annular flow of two ideal 
liquids through a pipe. He found that the flow undergoes capillary insta
bilities and Kelvin-Helmholtz instabilities, due to a velocity difference at 
the interface. This difference is suppressed by viscosity and is replaced by a 
discontinuity in the velocity gradient. The flow is unstable to short waves if 
surface tension is zero in both the viscous and inviscid cases. The instability 
in the inviscid case is catastrophic, however; the growth rate goes to infinity 
with the wave number (Hadamard instability). The short-wave instability 
which arises in the viscous case when surface tension is zero is discussed 
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in chapter IV and can be called a viscous regularization of the Kelvin
Helmholtz instability (see the review paper by Joseph and Saut [1990] for 
a discussion). A viscous-inviscid model for core-annular flow has been ana
lyzed by Power and Villegas [1990]. They predict instability to long waves 
and surface tension stabilizes short waves. 

Hickox's study was extended to all wavenumbers by Joseph, Renardy 
and Renardy [1985]. Preziosi, Chen and Joseph [1989] (see section VI.1) 
and Hu and Joseph [1989 a] (see section V1.2) extended the analysis, in
cluding the effects of surface tension and density, but excluding gravity. 
They present numerical results for the axisymmetric mode. Surface tension 
is important: it is not possible to derive a theory without it which could be 
used in the design and control of lubricated pipeline technologies. A stabil
ity study concerning a different parameter range is that of a viscous liquid 
jet surrounded by a viscous gas in a vertical pipe in the presence of gravity 
and interfacial tension given by Lin and Ibrahim [1990]. Their results are 
relevant to the atomization of a liquid jet forced into an ambient gas. 

Russo and Steen [1989] consider the stability of an annular liquid film 
flowing down a rod with a free surface. The cylindrical interface is subject 
to a capillary and a surface-wave instability. Axisymmetric and nonaxisym
metric disturbances are studied. When the annular layer is thin, they find 
that the shear can stabilize capillary breakup (this stabilization also occurs 
in core-annular flow). The physical mechanism responsible for long-wave 
stabilization is discussed in Dijkstra and Steen [1991]. These works extend 
the results of Xu and Davis [1985] which demonstrate that capillary breakup 
can be suppressed by shear. 

Deferring to one important application, we say oil and water when we 
mean more viscous and less viscous liquids. In section V1.2, three arrange
ments are examined: 

(i) oil is in the core and water on the wall, 
(ii) water is in the core and oil is outside and 
(iii) three layers, oil inside and outside with water in between. 

The arrangement in (iii) is a model for lubricated pipelining when the 
pipe walls are hydrophobic. The arrangement in (ii) was also studied by 
Hickox [1971] and recent experiments of Aul and Olbricht [1990] are of 
interest. The arrangement in (i) was also studied by Preziosi, Chen and 
Joseph [1989]. Neutral curves, growth rates, maximum growth rates and 
wavenumbers for maximum growth are presented, as well as the various 
terms which enter into the analysis of the equation for the evolution of the 
energy of a small disturbance. The energy analysis allows us to identify 
the three competing mechanisms under way: interfacial tension, interfacial 
friction and Reynolds stress. 

Hu and Joseph [1989b] analyzed the linear stability of core-annular 
flow in rotating pipes for a particular situation modeling the flow of oil and 
water. Attention is focused on the effects of rotation and the difference in 
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density of the two fluids. It is found that for two fluids of equal density, the 
rotation of the pipe stabilizes the axisymmetric mode and destabilizes the 
nonaxisymmetric modes. Except for small Reynolds numbers, where the 
axisymmetric capillary instability is dominant, the first azimuthal mode is 
the most unstable. When the heavier fluid is outside, centripetal accelera
tion of the fluid in the rotating pipe is stabilizing; there is a critical rotating 
speed above which the flow is stabilized against capillary instability for a 
certain range of small Reynolds numbers. When the lighter fluid is outside, 
the particular arrangement studied is unstable, although for a thinner an
nulus or a larger viscosity difference, the adverse density stratification can 
be stabilized by shear, just as in the case of the thin-layer effect discussed 
in section IV.6. 

Couette flow of two fluids between sliding coaxial cylinders is consid
ered by Preziosi and Rosso [1991). The effects of surface tension and viscos
ity difference are included. They study the linear stability of the cylindrical 
interface numerically, as well as with the long-wave asymptotic method and 
the energy equation. Long waves may be unstable due to surface tension, 
and short waves may be unstable due to the viscosity ratio. 

It is known that the stability problem for core-annular flow of very 
viscous crude oil and water is singular: the water annulus appears to be 
inviscid with boundary layers at the pipe wall and at the interface. Hu, 
Lundgren and Joseph [1990) treat this singular problem by the method of 
matched asymptotic expansions (see section VI.3). There are two cases of 
instability corresponding to different positions of the critical point in the 
annulus. One case is when the critical point is far away from the interface, 
the other is when the critical point is close to the interface. In both cases, 
explicit forms for the neutral curves are obtained. These are in agreement 
with numerical results obtained with a finite element code. An asymptotic 
analysis similar to that of Hu, Lundgren and Joseph was carried out by 
Miesen, Beijnon, Duijvestijn, Oliemans and Verheggen [1991) for a two
dimensional Couette flow with the less viscous fluid bounded by a wall and 
the other fluid unbounded. For lubricating core-annular flow with a thin an
nulus, large viscosity ratio, large Reynolds number for the lubricating fluid, 
and wave speeds close to the speed of the core, their theory predicts there 
will be waves with wavelengths of about 1-10 times the gap size. They show 
qualitative agreement with experiments. Boomkamp and Miesen [1991) have 
examined the nonaxisymmetric disturbances in core-annular flow with the 
method of matched asymptotic expansions for a small viscosity ratio. 

The linear stability of core-annular flow in vertical pipes is analyzed 
in chapter VII. The flow is studied for two cases: in one case, gravity op
poses and in the other aids the applied pressure gradient. The prediction 
of stability for perfect core-annular flow in a carefully selected window of 
parameters is verified with experimental results for the case of free fall in 
which the applied pressure gradient vanishes. The related problem of verti
cal plane Poiseuille flow in three layers has been studied in Renardy [1987b), 



VA Stability Studies 15 

Lister [1987] and Than, Rosso and Joseph [1987]. Lister's work on vertical 
three-layer flow concerns the case when the walls are an infinite distance 
apart, with a thin plume of fluid falling down. For the other works, there 
is an analogy between the plane flow and a cross section of the pipe if the 
layers next to the walls are thin. For example, the arrangement with a thin 
layer of the less viscous fluid at the wall can be stable in both flows. The 
results in Renardy [1987] indicate that an intuitive reasoning may provide 
a guideline for the location of the fluids when the densities are markedly 
different: one expects the heavier fluid to be placed at the center for down
ward flow, and at the wall for upward flow. In fact, it is found that when 
the fluids have equal viscosity, the flow downward under gravity may be 
linearly stable only if the central fluid is markedly heavier. This stability 
occurs for a narrow interval of volume ratios. If this flow is forced upward 
against gravity, it may be linearly stable only if the heavier fluid is outside. 
This stability occurs for a restricted range of volume ratios and when the 
densities are markedly different. In the case of instability, the largest growth 
rates often occur at order 1 wavenumbers. A study of vertical pipe flow with 
density stratification has been given by Smith [1989] for axisymmetric long 
waves. He finds that when the densities are similar, stable flows are usually 
downward flows when the light fluid is at the center, and are usually up
ward flows when the heavier fluid is at the center. He explains this behavior 
in terms of a physical mechanism for the long-wave instability. In Renardy 
[1987], both the snake mode and the varicose mode are taken into account 
for the plane flow. It is then found that when the densities are similar, 
either one or the other mode produces instability, and that stability is only 
possible when the densities are markedly different, as mentioned above. 

In the latter half of chapter VII, we present experimental results [Bai, 
Chen and Joseph 1991] on a water-lubricated pipelining of oil for modest 
flow rates. The force of gravity is axial in the apparatus, in the direction of 
the pressure gradient in up-flow and against the pressure gradient in down
flow. Measurements are compared with theoretical predictions based on 
the linear theory of stability of laminar core-annular flow. In the analysis 
of vertical plane Poiseuille flow, Renardy [1987 b] found that a varicose 
instability occurs in up-flow and a snake instability occurs in down-flow. 
These are reminiscent of the bamboo waves and corkscrew waves reported 
here. A summary of the published data of many authors is collapsed on 
friction factor versus Reynolds number plots. 

In chapter VIII, the nonlinear stability of core-annular flow near points 
of the neutral curves at which perfect core-annular flow loses stability is 
studied using the Ginzburg-Landau equations [Chen and Joseph 1991a]. 
The results of the bifurcation theory are consistent with observations of 
flows that are close to perfect core-annular flows. We also present a review 
and critique of various weakly nonlinear long wave equations used to de
scribe waves on the interface [Chen and Joseph 1991b]. Viscoelastic effects 
have been investigated by Chen [1991a, 1992]. 
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V.s Plan of Chapters VI - VIII, and List of Acronyms 

Chapters VI through VIII give an account of the work by D. D. Joseph et al. 
on the subject of water-lubricated pipelining. Our discussions are basically 
restricted to flows of two liquids (typically water and oil) through pipes 
of circular cross-section. We are going to present results chronologically, 
as they appeared. Our material on lubricated pipelining is taken from the 
following list of eleven papers. The acronym for each of these is followed by 
the topic or authors. 

ABJL ......... Arney, Bai, Joseph and Liu 1992 
BCJ ......... Bai, Chen and Joseph 1991 
CAF ......... Core-annular flow 
CBJ ......... Chen, Bai and Joseph, 1990 
CGH ........ Charles, Govier and Hodgson 1961 
CJ1 .......... Chen and Joseph 1991 a 
CJ2 .......... Chen and Joseph 1991 b 
HJ1 .......... Hu and Joseph 1989 a 
HJ2 .......... Hu and Joseph 1989 b 
HLJ ......... Hu, Lundgren and Joseph, 1990 
JRR ......... Joseph, M. Renardy, and Y. Renardy 1984 
PCAF ...... Perfect core-annular flow 
PCJ ......... Preziosi, Chen and Joseph 1989 

Some of the theoretical papers, JRR, PCJ, HJ1 , HJ2 , and HLJ, are for 
horizontal flow with gravity neglected. Negligible gravity can be achieved 
by density-matching as in the experiments of CGH. In the analysis without 
gravity, we equate the coefficient of gravitational acceleration g to zero 
and retain the different densities elsewhere. Experiments on lubricated flow 
in horizontal lines in which densities are not matched (as in ABJL) are 
certainly influenced by gravity. For horizontal circular pipes, the inclusion 
of gravity kills the axial symmetry in the problem. The papers of CBJ, 
BCJ, CJ1 and CJ2 are for vertical pipelines in which gravity is included in 
the analysis; for the vertical circular pipe, gravity does not kill the axial 
symmetry in the problem and can be incorporated readily in the analysis. 
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VI.l Neutral Curves, Waves of Fastest Growth, 
Comparison with Experiments of CGH 

VI.l(a) Introduction 

This section is based on the paper by Preziosi, Chen and Joseph [1989] 
(PCJ) and incorporates some results from Joseph, Renardy and Renardy 
[1983, 1984] (JRR). We present the linear stability of core-annular flow 
(CAF) with emphasis on the case of viscous fluid in the core. The effects 
of surface tension and density difference, neglecting gravity, are considered. 
As in the case of other layered shearing flows, surface tension plays an 
important role (cf. section IV.5) in the stability theory. 

Upper and lower branches of the neutral stability curve are found in a 
Reynolds number (R) versus wave number (a) plane. A window of par am
eters is identified in which CAF is stable to small disturbances. When R is 
below the lower critical value, CAF is destabilized by surface tension and 
long waves break up into slugs and bubbles. The size of slugs and bubbles 
of oil in water, observed by CGH, are given by the wavelength of the fastest 
growing wave. This instability persists in the long-wave limit and is a capil
lary instability, modified by shear, which reduces to Rayleigh's instability in 
the appropriate limit. At higher R, the capillary instability is stabilized by 
shear. At yet higher R above the upper critical value, the flow is unstable 
to generally shorter waves which lead to emulsification, and water droplets 
in oil. There is an optimum viscosity ratio for stability: greater stability 
can be obtained by using a heavy liquid as a lubricant when the flow is 
unstable to capillary modes on the lower branch and by using a light liquid 
when the flow is unstable to emulsifying disturbances on the upper branch. 

Our results appear to be in quantitative agreement with the results 
of experiments of Charles, Govier and Hodgson [1961] (CGH) on bicompo
nent flow of water and oil-carbon tetrachloride solutions density-matched 
with water. Gravity is made negligible by density-matching, so that their 
experiments and our analysis are compatible. Their results are summarized 
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in figure V.1.1 and discussed in section VI.1 (m). For now, it will suffice to 
note that 

(a) there is a minimum speed, observed in experiments, but not previously 
treated by analysis, below which core-annular flow is unstable and gives 
way to oil slugs in water, and 

(b) there is a maximum speed, observed in experiments, but not previ
ously treated by analysis, above which core-annular flow is replaced by 
emulsions of water in oil. 

The conditions in the experiments of CGH are not directly of interest 
in lubricated pipelining. In pipelines, one usually sees a form of wavy core 
flow when the oil viscosity is greater than 500 cpo In terms of the parameters 
used in this chapter the viscosity ratio m in practice is less than 0.002, much 
smaller than the value of 0.0532 used by CGH. Moreover, in some practical 
applications the density difference between oil and water causes the oil to 
ride high in the pipe and at low speeds the oil may rise up and seize the 
wall, leading to a failure of lubrication (see Oliemans and Ooms [1986] for a 
photograph and discussion of the effects of gravity). Fortunately, the oil core 
need not touch the upper wall. A lubricating layer can persist. The exact 
hydrodynamic mechanism, which maintains the lubrication layer at the top 
of the pipe, is not understood. Oliemans and Ooms think that a lubrication 
effect associated with ripples is important. Oliemans [1986] has developed a 
lubricating film model for core-annular flow which agrees with experiments 
in some details and disagrees in others. Evidently, the stronger shear in the 
small gap at the top of the pipe stabilizes the big capillary waves which 
are evident in the large gap at the bottom of the pipe. M. Renardy and 
Joseph [1986] have shown that traveling ripples will occur as a bifurcation 
of core-annular flow so that wavy-core flow which is observed in pipelines 
may arise as a subcritical bifurcation of core-annular flow. 

Experiments were carried out on water-lubricated transport of SAE 30 
motor oil and number two fuel oil and on 30% and 40% dispersions of 70 
JLm coal in these two oils. The oils are usually well-lubricated if the pressure 
gradient is not too small, even though the oil rides high in the pipe due 
to gravity. In general, the experiments resulted in lubricated flows even 
when the oil at the top seized the wall, but these are not concentric core
annular flows. In these cases, there is oil at the top of the pipe, sometimes 
running as rivulets, and underneath this, there is oil at the core lubricated 
by water all around. The effects of gravity are not so serious as to impede 
successful lubrication in our small pipes, but these effects could be more 
serious in pipes of larger diameter. There are some interesting situations in 
which the density of the oil and water are nearly the same, so that gravity 
is not important. This is the case, for example, with heavy oil extracted 
from the Alberta oil sands and with the dispersions of 40% coal in SAE 
30 motor oil used in our experiments. The most serious problem for the 
technology of water-lubricated pipelining associated with stratification due 
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to gravity is start-up from rest. The effects of gravity under transient and 
steady conditions have not yet been treated in a theoretically satisfactory 
manner. 

In this section, we confine our attention to parameter values in the 
range of the experiments of CGH. The second type of failure of lubricated 
pipelining, emulsification of water in oil, already occurs in these experiments 
and is apparently correlated with the higher-Reynolds-number instability 
identified in our linear theory. A finit&-element program was implemented 
with an adaptive mesh in the boundary layer at the wall (cf. section VI.2 
(d». This calculation agreed with the pseudospectral code used in the 
present section but it also worked well at the small values of m <0.002 
characteristic of field practice. The results of this finit&-element calculation 
were compared with field data provided from experiments in 6 in. diameter 
pipes. The linear theory predicted wavy-core How when the oil viscosity was 
greater than a critical one, with emulsification of water into oil for smaller 
viscosities. These predictions agree with the field data. 

VI.l{b) The Equations and Basic Flow 

Two liquids are Howing down a pipe of inner radius R2. The interface 
between the two liquids is ~ven bl ": =A R{9, X, t) where (r, 9, x) denotes 
cylindrical coordinates and U = (U, V, W) are the corresponding compo
nents of velocity. The region 0 ~ r ~ R{9, x, t) is occupied by the first liquid 
with viscosity J1.1 and density PI and the second liquid (J1.2 and P2) is located 
in R{ 9, x, t) ~ r ~ R2 • The pipe axis is at r=O and the pipe is infinitely 
long -00 ~ x ~ 00. The mean value of R2 over 9, andx, is a constant fixed 
by the prescribed volumes of each of the two liquids, independent of t. We 
denote the mean of R2 by R~ = R2{9,x,t). 

The equations of motion, gravity neglected, are 

divU = 0 (lb.l) 

where l=l when 0 ~ r ~ Rand l=2 when R ~ r ~ R2, 

U = 0 on r = R2 , (lb.2) 

and U is bounded at r = o. The kinematic free surface condition is 

R=RI. (lb.3) 

The jump in the quantity (-) across the interface is denoted [(.)] = {. h - {. h. 
The jump in U over r = R is 

[U] = O. (lb.4) 

The normal stress condition is 
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-([.P) + 2HT)n + [2JLDru]] . n = 0, (lb.5) 

where DrO] = !(V'U + V'uT ) , 2H is the sum of the principal curvatures, T 
is the coefficient of surface tension, n = nl2 is the normal to r - R = 0 from 
liquid I to 2 (see chapter I for the derivation of the governing equations). 

We shall study the stability of core-annular flow 

~ = (0,0, W(r)) } 

[PI = [PI = T/R I 

(lb.6) 

where V' P = -F, F >0 is the magnitude of the constant pressure gradient, 
and 

W(r) =,..1 ,..2 { -l:' (r2 - RD + l: (~ - R~), 0 ~ r ~ RI, } 

4~2 (R~ - r2), RI ~ r ~ R2. 
(lb.7) 

To study the stability and bifurcation of core-annular flow, it is necessary 
to introduce an extended core-annular flow, for which in (lb.7) we write 
o ~ r ~ R(O, x, t) and R(O, x, t) ~ r ~ R2, respectively (see chapter 1.3 (e) 
for a discussion on extending the definition of the basic flow). 

VI.l(e) Perturbation Equations 

We now perturb extended core-annular flow 

U = (u,v, W + w), .P = P+ p, R = RI + 8(O,x,t) (lc.l) 

(lc.2) 
where (PI, JLz) = (PI, JLI) in r < RI and (p2, JL2) in r > RI and W' = dW/dr. 
Moreover, 

u = v = w = 0 at r = R2 , (le.3) 

u, v, ware bounded at r = 0 and satisfy other conditions to be stated later. 
At the linearized position of the interface r = Rl, we find that 

u = WCx + Ct, 6 = 0, 

where 6 is the average value of 8, 

(lc.4a) 
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[u] = [v] = 0, (Ic.4b) 

[JL (:: + ~~)] = 0, (Ic.4c) 

[JL (:; + Rl :~ - v)] = 0, (Ic.4d) 

-[P] + 2 [JL ~:] = :~ (8(J(J + R~8xx + 8), (Ic.4e) 

and 
[W']8 + [w] = 0. (Ic.5) 

Equation (Ic.5) shows that w is not continuous across r = R 1 , and 
it is this jump in the shear rate [W'] that produces instability. We can 
eliminate 8 = -[w]/[W'] from our problem. 

VI.l(d) Dimensionless Equations and Parameters 

We shall now make our equations dimensionless. Lengths are scaled with 
the mean radius R 1 , velocity is scaled with the centerline velocity 

and time with RdWo. We shall use the same symbols for dimensional and 
dimensionless variables. 

The differential equations satisfied by the dimensionless u, v, W,p are 
of the same form as (Ic.2) with PI = 1 and JLI replaced by I/1RI where 

(Id.I) 

A dimensionless function W (r) also appears in these equations and is 
given by 

where 

{
I - mr2/(a2 + m - 1), 

W(r) = 
(a2 - r2)/(a2 + m - 1), 

m = JLdJLl :::; 1 

is the viscosity ratio and a = R2/R1 ~ 1 

(Id.2) 

is the dimensionless ratio of the outer cylinder. The ratio of the volume of 
the liquid outside to the volume of liquid inside is a2 - 1. The boundary 
conditions (Ic.3) are required to hold at r = a. The mean position of the 
dimensionless interface is at r = 1. Equation (Id.2) shows that W(r) is 
continuous across r = 1 

W(I) = (a2 - I)/(a2 + m - 1), (Id.3) 
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but, because the shear stress is continuous, the derivatives of W are different 
on sides 1 and 2 ofr = 1 

W~ (I) = -2m/{a2 + m - 1), } 

W~{I) = -2/{a2 + m - 1). 
(ld.4) 

Equations (lc.4a, b) and (lc.5) are unchanged in form. Equations 
(lc.4c - e) take the following form in dimensionless variables 

[ i (au ow)] = 0 
R ax + Or ' 

(ld.5) 

[((au av )] 
R of} + or - v = 0, (ld.6) 

[(au] -[(p] + 2 R or = 8{666 + 6xx + 6), (ld.7) 

where Pi is scaled by Pi W6 , 
(ld.8) 

is a density ratio and 

(ld.9) 

is the dimensionless surface tension. 
The parameter 8 has been used in previous studies of instability of two 

fluids, but it is not a good parameter because it depends strongly on the 
velocity or the rate of shear in the basic flow. It is better to use J defined 
by 

(ld.lO) 

This is a surface tension parameter introduced by Chandrasekhar [1961] 
in his study of capillary instability of jets of viscous liquid in air, and Rl 
is the dimensional radius of the undisturbed interface. The advantage of 
using the parameter J instead of 8 is that it measures surface tension, and 
involves variables that remain constant in an experiment. 

For core-annular flow the parameter 

(ld.ll) 

is more convenient to use because it is given when the pipe radius is known, 
whereas the core radius would have to be known for J. 

The problem is characterized by six dimensionless parameters: m, a, 
(2, J, Rl and R2 of which five are independent: RdR2 = m/(2 where 
m = 11-2/11-1. 
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VI.l( e) Normal Modes 

We replace [UI, VI, WI, pl1{r, 6, x, t) and 0{6, x, t) with amplitude functions 
[iUI' VI, WI, pl1{r) and an amplitude constant 0 times exp[in6+ia (x - Ot)] 
in the usual way. The kinematic condition 

u{I, 6, x, t) = Ot + W{I)o:r; 

then reduces to 
u{I) = a{W{I) - 0)0, (Ie.I) 

giving O. In each of the two regions, corresponding to l = I{O ~ r ~ 1) and 
l = 2{I ~ r ~ a), we get 

, U n 
U + - + -v + aw = 0, 

r r 

• { , ( 2 1) 2} , 1 "U 2 n+ n 
a(W, - C)u = P - - U + - - a + -- U - -V , R, r r2 r2 

(Ie.2) 

(Ie.3) 

a(W, - O)v = _ np _ ~ {vII + V' _ (a2 + n2 + 1) V _ 2n u}, (Ie.4) 
r RI r r2 r2 

. { , ( 2)} , 1" W 2 n 
a(WI - O)w + WI U = -ap - - w + - - a + - w . R, r r2 

(Ie.5) 

The boundary values of the amplitude functions are such that 

u(a) = v(a) = w{a) = 0, u(O), v(O), w(O),p(O) finite. (Ie.6) 

On the interface r = 1, we have 

[U] = [v] = 0, 

[W']u(I) + a(W{I) - O)[w] = 0, 

[i (w' - au)] = 0 

[~ (v' - v - nu)] = 0, 

[ . [(,] J 2 2) u(I) 
-I(P] + 21 R u = R~ (1 - a - n a{W{I) _ 0)" 

(Ie.7) 

(Ie.8) 

(Ie.g) 

(Ie.lO) 

(Ie.l1) 

We eliminate p from the system (Ie.2) to (Ie.l1). Equations (Ie.3) to (Ie.4) 
are reduced to 
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( . ') {. ( 2)" } i" 1 1 WI ' 1 2 n +1 WI -u + - - + - u - - a + -- - - - a(WI - C) U 
Rl RI r a Rl r2 a 

i /II i 1" { i (2 n 2 + 1) } , +-w +--w - - a +-- -(WI-C) w 
aRI aRI r aRI r2 

2in 1 {2in2 1 , } ---v+ ---+Wl w=o 
Rl r2 aRI r3 

(le.12) 

and 

-- + -- nu+ - a + -- -a(WI-C) v { 2i 1 W; 1 } { i (2 n 2 + 1) } 
Rl r2 a r Rl r2 

ill iI, nil" 
--v - --v + ---w 

Rl Rl r aRI r 

ni 1 , n { i (2 n2) } +--w -- - a +- -(WI-C) w=o. 
aRI r2 r aRI r2 

(le.13) 

where I = 1,2 corresponds to regions one and two. 
We eliminate [(p] from the normal stress condition (le.H) by equating 

it to [(p] obtained by evaluating (le.5) at r = 1. After some simplifications, 
using the other interface conditions, we get 

-(I-a -n )--+2i -u +- -{w +w -(a +n )w} J 2 2 [w] [('] i [( " , 2 2 ] 
R~ [W'] R a R 

+(W - C) { [we] - [~V [w] } = 0. (le.14) 

The governing equations are (le.2), (le.6) - (le.lO), (le.12), (le.13) and 
(le.14). 

We next discuss the conditions (le.6) at r = 0. The following conditions 
are inferred from the fact that the velocity at the origin u(O, (), x, t) must not 
depend on ()j otherwise, the velocity would be multi-valued at the origin. 
We may decompose u into an axial part exw, and a part that lies in a 
cross-section, which will be named the "tangential" part, etUt = eru + e9V. 

Of course, w(0,x)ein9 is independent of () when n = 0, or when n#-O and 
w(O, x) = 0. The tangential velocity 

Ut = cos()[iu(O, x )ein9 ] - sin()[v(O, x )ein9 ] 

is independent of () when 

aUt . 9 To = -{(nu + v)cos() + i sin()(u + nv)}elll = 0. 

When n #- 1, Ut cannot be independent of () unless u(O, x) and v(O, x) are 
both zero because of the presence of the cos () and sin () terms. Therefore, 
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Ut is zero. When n = 1, it is enough to have u(O) + v(O) = O. The tangential 
component Ut need not vanish when n = 1. Some further conditions at 
r = 0 can be deduced from (Ie.2) at r = 0, using the results just obtained. 

lim {aw + u' + u + nv} = aw(O) + 2u' (0) + nv' (0) = o. 
r-+O r 

Summarizing our results, 

n = 0: u(O) = v(O) = aw(O) + 2u' (0) = 0, } 
n = 1: u(O) + v(O) = w(O) = 0, 
n ~ 2: u(O) = v(O) = w(O) = o. 

(Ie.I5) 

We define system I for u, v and w to be equations (Ie.2), (Ie.7) - (Ie.lO), 
(Ie.I2), (Ie.I3) and (Ie.I4). We define system II to be the equations for u 
and valone which can be derived from system I by using (Ie.2) to eliminate 
w. System II is defined by the condition 

u(a) = v(a) = u' (a) = 0 (Ie.I6a, b, c) 

and the following equations in the two regions 1 = 1, 2: 

r4 u"" + 2r 3u lll 
- [11 + 2a2r2 + n2 + 3]r2u" 

-[JI + 2a2r2 - n 2 - 3]ru' + [11(a2r2 + 1) 

+a4r4 + (n2 + 2)a2r2 + 3n2 - 3]u + nr3v'" - 2nr2v" 
2 2 2' , 3 -[11 + a r + n - 3]nrv + [11 - ia1RIWI r 

+3(a2r2 + n 2 - I)]nv = 0, (Ie.I7) 

nr3u'" + 2nr2u" - [11 + a 2r2 + n2 + I]nru' 

-[11 - ia1RIW; r3 + 3a2r2 + n 2 - I]nu 

+(a2r2 + n2)r2v" + (a2r2 _ n 2)rv' - [11(a2r2 + n 2) + a 4r4 

+(2n2 + I)a2r2 + n 2(n2 - I)]v = o. (Ie.I8) 

At the interface r = 1, we have 

[uD = [v] = 0, 

(m - I)W~(I)u2 - (W(I) - C)[u'D = 0, 

v~ - mv; + (m - I)v + n( m - I)u = 0, 
" I 2 2 '" ul + ul + (a + n -1)(1- m)u - mU2 - mU2 = 0, 

(Ie.I9a, b) 

(Ie.20) 

(Ie.2I) 

(Ie.22) 
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"'" 2 2 I " f Ul + 2u1 - (!I + 3a + n + 1 )Ul + nVl - nVl 

'"" 2 2 ' - mU2 - 2mu2 + [!I(2 + m(3a + n + 1)]u2 

, 2 2 
+ [!I (2 - 1) - iaR1 W 2(1)(2 - m) + (m - l)(a + n - l)]u 

- nmv; + nmv; + [!I (2 -1) + (m - 1)(a2 + n2 - l)]nv 
iaJ 2 2 

+ R 1(W(1) _ C) (a + n - l)u = O. (le.23) 

Equation (le.23) may be put into a more convenient form, using (le.20) 

'" " 2 2 I " , u1 +2ul - (3a + n + l)Ul + nVl - nVl 
'"" 2 - mU2 - 2mu2 + {!I (2 - 1) + m(3a 

2 ' '2 + n + 1)}u2 + {!I (2 - 1) - iaR1(2 - 1)W2(1) + (m - l)(a 
2 2 2 " + n - 1)}u2 + {!I (2 - 1) + (m - l)(a + n - 1)}nv2 - nmv2 

, iaJ(a2 - n2 - 1) 
+ nmv2 + R 1 (W(1) _ C) U2 = O. (le.24) 

In the axisymmetric case (n = 0), the equations for U and v decouple 
and the unstable eigenvalues are determined from the equations for u(r). 
The v-equation gives rise only to stable eigenvalues. Most of the results 
given below are computed for the case of matched density (2 = 1) and 
axisymmetric disturbances (n = 0). In this case, u is governed by 

r4u"" + 2r3u'" - [II + 2a2r2 + 3]r2u" 

- [II + 2a2r2 - 3]ru' + [II (a2r2 + 1) 

+ a 4r4 + 2a2r2 - 3]u = 0, 

where Ul(O)=O and ul(r) has bounded derivatives at r = 0, 

and, at the interface, r = 1 

(m - l)W~(l)u - (W(l) - C)(u~ - u;) = 0, 

" I 2 "I u 1 + u 1 + (a - 1)(1- m)u - mU2 - mU2 = 0, 

U~' + 2u~ - (3a2 + l)u~ - mu~' - 2mu~ + m(3a2 + l)u; 

2 iaJ(a2 - 1) 
+ (m - l)(a - 1)u2 + R 1(W(1) _ C) U2 = O. 

(le.25) 

(le.26) 

(le.27a) 

(le.27b) 
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System II was used in JRR and solved numerically with the Chebyshev
tau method [Orszag 1971]. We next comment on the conditions (le.6) at 
r = 0 with respect to system II for the benefit of anyone contemplating the 
use of it. When eliminating w from the continuity equation (le.2), there 
is a division by r: thus, even if we impose the condition that u and v are 
smooth at r = 0, we allow w to have an unphysical ~-singularity. Using the 
method of Frobenius, the conditions at r = 0 can be stated more precisely 
as follows. The equation (le.5) has a regular singular point at 0, and -1 is 
the root of the indicial equation precisely for n = 1. Since the second root is 
+1, the unbounded solution generally behaves like ~ + arlogr near r = o. 
It can be shown that the coefficient a of the logarithmic term vanishes if 
and only if C = W1(0) - 3o:i/R1• This mode appears in the computed list 
of eigenvalues as an extra eigenvalue for n = 1, and is simply dismissed. 

VI.I(f) Pseudospectral Numerical Method 

A collocation method using Chebyshev polynomials Tk (y) was used to in
tegrate System I. Following Orszag and Kells [1980], we expand (u, v, w)(r) 
in terms of 

Tk(Y) = cos(k arccos Y), k = 0, 1,2, ... , N (1/.1) 

where N is a truncation number. To use this representation for the dis
cretization in the radial direction, we must map each of the regions occupied 
by the two fluids into [-1,1]. In region 1, r --+ y where 

y+1 
r=-2-' (If·2) 

and in region 2, r --+ y where 

(1- a)y+ 1 +a 
r = 2 . (1/.3) 

The interface r = 1 maps into y = 1 for both regions. 
In each region i = 1,2, we define the following interpolation functions 

ofy: 
N 

[INu,INv,INw] = L[Uk,Vk,Wk]Tk(y). (If.4) 
k=O 

The collocation points are chosen to be 

Yj =cos~, j =O,l, ... ,N (If·5) 

where j = N is a boundary point and j = 0 is an interface point. In the 
core, the centerline conditions are imposed at the boundary point. 

The interpolation functions must be determined by computing the c0-

efficients (Uk, Vk, Wk). The N + 1 coefficients Uk can be determined by 
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setting the discretized velocity (If.4) evaluated at the collocation points 
equal to the original continuous velocity at those points: 

(1/.6) 

where Tj is the point that is mapped into Yj. The coefficients Vk and Wk can 
be obtained in the same way. Thus, there are 3(N + 1) velocity coefficients 
to be determined from the discretization of system I. The derivatives in the 
differential equation are discretized in the following way: 

dJ'~~U lYle = t. U(Yj)(Dp)kj, (1/.7) 

where u(Yj) is the function value evaluated at the collocation point [Canuto, 
Hussaini, Quarteroni and Zang 1988], 

Yj 
2(1 - yJ)' 

(Ddoo = 2N~+ 1 = -(Dl)NN, 

CN = Co = 2, 

Cj = 1, 

and Dp = (Dl)P. 

k =1= j, 

1 ::; k = j ::; N - 1, 

(1f.8) 

There are 3(N - 1) equations for u, v, w arising from (le.2), (le.12) and 
(le.13) at interior points of collocation in the annulus and 3(N -1) equations 
in the core. There are three boundary conditions at the wall and three 
centerline conditions in the core and six interface conditions; hence 3(N +1) 
in each region and 6(N + 1) in all. The 6N + 6 linear equations in 6N + 6 
unknowns form a linear eigenvalue problem of the type 

(A+ cB) ·x=O (1/.9) 

This eigenvalue problem was solved using the IMSL routine EIGZC. 
The convergence of the discretization scheme was tested by increasing 

the truncation number N. Converged eigenvalues C(N) would not change 
as N is increased, as opposed to any spurious eigenvalues. The convergence 
was satisfactory in our range of parameters when N ~ 14. 

The numerical results were checked against those of JRR [1983} which 
are based on the Chebyshev-r method (see section III.3 for this numerical 
scheme applied to the two-layer Benard problem). To compare the results 
with JRR, we put the density ratio (2 = P2/ Pl to one, S = 0, the Reynolds 
number of JRR is Re and their complex wave speed is designated as CR, 
related to our Rl and C by 
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a3 
Re = ( 2 ) Rt, a +m-1 m 

(1/.10) 

where m = 1-'2/1-'1 < 1. The m used by JRR is I-'t/ 1-'2 > 1. Our results also 
agree with stability results for one fluid presented by Salwen and Grosch 
[1972] and Salwen, Cotton and Grosch [1980], which JRR reproduced. 

Our numerical results for the longest and shortest waves were checked 
against the asymptotic formulas in section VI.1 (h) and section VI.1(i), 
respectively. 

VI.l (g) Axisymmetric and Nonaxisymmetric Disturbances 

The pseudospectral numerical code handles both non-axisymmetric and 
axisymmetric disturbances, but we will present results only for n = 0 for 
the following reasons. In the range of parameters that was examined, PCJ 
did not find situations in which instability occurs for n f. 0, with stability 
for n = O. 

Numerical results for a few discrete values of a were presented by JRR. 
In their work, the density difference is zero «(2 = 1) and surface tension is 
zero. Their results show that in some parameter ranges, the axisymmetric 
and the nonaxisymmetric modes can behave quite differently. For instance, 
when the less viscous fluid is in the core, it is possible for the n = 0 mode 
to be stable and the higher modes to be unstable. However, this type of 
viscosity stratification is not pursued here since we focus on having a thin 
layer of a much less viscous fluid at the wall. In our situation, numerical 
studies indicate that if the growth rates for n = 0, 1, ... are compared for all 
wavenumbers, then the highest growth rate is achieved by the n = 0 mode. 
Short waves are stabilized by surface tension so that waves with n > > 1 
tend to be stable: the larger the n, the greater the stability. In addition, 
experience has shown that it is the mode with the highest growth rate that 
is most likely to be observed in experiments. This does not, however, rule 
out the possibility or importance of an instability due to the n = 1 mode. 
In fact, the corkscrew waves pictured in figure V.1.3 are nonaxisymmetric. 
This area needs further study. 

JRR found that the high azimuthal modes are unstable, but the mag
nitude of Im(C) decreases asymptotically with the mode number. This in
stability of the higher modes and also for large a is a manifestation of the 
short-wave instability (cf. sections IV.5, VI.1(i» when surface tension is 
zero. 

There is one type of instability (the capillary instability) for which 
the axisymmetric disturbance ought to be the most dangerous. The effect 
of surface tension appears only in the normal stress condition (le.14) at 
the interface and is in the form J(l - a 2 - n 2 ) where a is a positive real 
number and n is the azimuthal wave number. It is known that long waves 
are destabilized by surface tension; for example, there is instability even 
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with n = 0: = O. For long wave instability, J(1 - 0:2 - n2 ) > 0: in order for 
this to be satisfied, we must have n = 0 and also 0: < 1. This instability, it 
turns out, is analogous to a capillary instability and it is axisymmetric. 

VI.l(b) Perturbation Solution for Long Waves 

The stability problem has been solved explicitly in the limit of long waves 
(0: ---- 0) by Hickox [1971] using the method of Yih [1967], in which the 
variables are expanded in a power series in 0: (see also sections III.4, where 
the method is used for the two-layer Benard problem, and IV.4, where the 
method is used for plane channel flows). The formulas in this section have 
been checked against Hickox's results. 

The axisymmetric problem can be obtained from (le.16a, c), (le.17), 
(le.19a), (le.20), (le.22), (le.23). The v-problem (le.16b), (le.18), (le.19b), 
(le.21) is decoupled and gives rise only to stable eigenvalues. Thus, 

u(r,o:) = u(O)(r) + o:u(l)(r) + 0(0:2), 

C(o:) = C(O) + o:C(I) + 0(0:2 ). 

At zeroth order, we get 

At first order, 

C (I) -.1R 1 - m (a2 - 1)2G - (a4 + m - I)H 
-1 1-- , 

m (a2 + m - l)(a4 + m - 1) 

where 

(lh.l) 

(lh.2) 

(lh.3) 

(lh.4) 

G = -2(3a2 + 2m - 3)&1 - 3(8a2 + 5m - 8),81 + 2(a6 + 3a2 + 3m - 4)&2 

+3(a8 + 8a2 + 6m - 9),82 + (2a2 + m - 2)fc, 

H = (2a6 - 3a4 + 6a2 - 5 - 12 Ina&2 + (3aB - 4a6 + 24a2 - 23 - 48 Ina),82 

2 A fc 
-6(a - 1 - 2 Ina)(&1 + 4/31 - 3) 

A a2 +m-l m A 2a2 + 2m - 2 - ma2 
0:1= -, 

a4 + m -1 24 
0:2 = 

(a2 + m - 1)(a4 + m -1) 
A -m2 

/31= 144(a2+m-l)' 
A -1 

/32 = 144(a2 + m - 1)' 

k = (a2 + m - 1)(a4 + m - 1)8 
16(1 - m) 

«(2 - 1) (a2 - 1)2(a4 + 2(m - l)a2 - m + 1) 
8 (a2 +m-l)(a4 +m-l) 

(lh.5) 
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Fig. 1.1. [Preziosi, Chen and Joseph, 1989] Rc/(J*)! as a function of m for long 
waves (0 -+ 0) with a as a parameter. The numbers on the vertical axis give 

1 
values of Rc/(J*p. 
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Fig. 1.2. [Preziosi, Chen and Joseph, 
1989] The value a(m) for which Rc(a, 
m) -+ 00. At m = 0.9999, a = 1.5805. 
At m = 0.15, a = 1.4889. The region 
above the curve is unstable at any R. 

Fig. 1.3. [Preziosi, Chen and Joseph, 
1989] The best viscosity ratio m(a) 
for minimizing instability to long 
waves (a -+ 0) according to (lh.12). 
For the gap in the curve, the values 
lie on the horizontal axis. This graph 
is obtained from figure 1.1 by seeking 
the critical Reynolds number for each 
curve. 

To find points of the neutral curves for a -+ 0, put C(l)=O and solve 
for 

J 
2R~(1- m) = 

8[(a4 + m - 1)Ho - (a2 - 1)2Gol/ ((a2 + m - 1)(a4 + m - 1) 

[( -4a4 + ma2 - 3m + 4)(a2 - 1) + 4 lna(a4 + m - 1)]) 

((2 - 1)(a2 - 1)[a4 + 2(m - 1)a2 - m + 1] 
+ (a2 + m - 1)2(a4 + m - 1)2 ' 

where Ho and Go are the same as H and G after k is put to zero. 

(1h.6) 
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The flow is unstable for long waves O! - 0 when 

J* J* 
--2 = B > Be = --2' 
aRl aRe 

(lh.7) 

The coefficient of (2 -1 in (lh.6) is positive whenever a> 1. Increasing the 
density of the liquid in the annulus stabilizes the flow against long waves 
when m < 1 and destabilizes when m > 1, but the effect is relatively weak. 
The effect of increasing the density of the liquid in the annulus destabilizes 
short waves when m < 1. Light lubricants are efficient against emulsification 
and heavy ones against capillarity. 

We can write the criterion (lh.7) for instability as 

(lh.8) 

A greater than critical amount of shearing (Rl > Re) can stabilize capillary 
instabilities. We may express Be as some function of a and m: 

(lh.9) 

Hence, 
R~ = J* f(a, m)/a. (lh.lO) 

The lower critical Reynolds number varies with (J*)!. In figure 1.1, 
we show Rc/(J*)! as a function of m with a as a parameter. For each 
value of a ::; 1.4889, the values of Rc are finite for all m E [0,1) and 
Rc - 00 as m - 1. When a > 1.5805, Rc = 00 for all mE [0,1). When 
1.4889< a <1.5805, Rc(a, m) is finite for some m and is infinite for others. 
We may define a(m) as the a such that 

Rc(a(m), m) - 00 (lh.ll) 

A graph of a( m) is shown as figure 1.2. 
When a <1.5805, there is a best viscosity ratio m = m(a) minimizing 

the region of instability to long waves: 

R(a) = min Rc(a, m) = Rc(a, m(a)). 
O~m<l 

(lh.12) 

The graph of m(a) is shown in figure 1.3 and the graph of R(a) is figure 
1.4. 

VI.I(i) Perturbation Solution for Short Waves 

Hooper and Boyd [1983] have considered the linear theory of stability of an 
unbounded plane Couette flow with constant shear rates above and below 
a flat interface, matched so that the shear stress is continuous. Their anal
ysis is presented in section IV.5 and is relevant locally in the limit of short 
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Fig. 1.4. [Preziosi, Chen and Joseph, 1989) Stability limit for long waves 0 -

o defined by (1h.12). When a = 1.5805, R(a) = +00, and the interface will 
undergo a capillary instability to long waves (0 -- 0) at any ]R.1. At a = 1.55, 1R 
/(J*)!=40.4. 

waves, 0: -+ 00 or n -+ 00, and it predicts instability whenever surface ten
sion vanishes. Surface tension can be included in their perturbation scheme 
provided that 0:3S :5 0(1) as 0: -+ 00, or n3S :5 0(1) as n -+ 00, and 
this stabilizes the short waves. Their perturbation scheme can be modified 
to apply to the situation where S = 0(1) (see equations (5.53) - (5.54) of 
section IV.5). The asymptotic expansion for core-annular flow (supplied to 
us by K. Chen) is: 

C = W(l) _ ~ 19m(1 - m) 
0:3 (1 + m)2(a2 + m - 1) 

+iJR1 ( 2(1-m)2 _ S )+O(~) 
0:3(1 + m)(a2 + m -1)2 2(1 + m) 0:4 

(li.1) 

as 0: -+ 00 with 0:3S = 0(1). For the case where S = 0(1) and 0: -+ 00, we 
let 

1 
C=W(l)+eo+ O(-) 

0: 
(li.2) 
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and find 
-iRIS 

Co = 2{1 +m)" 

(See Renardy and Joseph [1985 a] for the application of the short-wave 
perturbation scheme for a -+ 00 and for n -+ 00 for circular Couette flow.) 

In figure 7 of PCJ, the results of the psuedospectral code are compared 
with those of Hooper and Boyd exhibited as figure 5 of their 1987 paper. 
We present a list of conversion factors. We attach the subscript HB to the 
symbols used by HB [1987]. 

RHB= 
2~a _1)2 R 

m{a +m-1) , R=R1, 

SHB = 
(a2+m-1)2 

4(a _ 1)3 S, 

mHB= l/m, 
(li.3) 

aHB = (a - l)a, 

~- m(a2+m-1? C 
HB 4(a _1)3 n' 

There is an error in the last conversion factor of equations (9.3) of PCJ 
which has been corrected in equations (1i.3) above. With this correction, 
there is agreement with the results of HB for large aHB' 

VI.l(j) m -+ 0 for RI =F 0 is a Singular Limit 

We have already mentioned that m = 0 is an important limit for lubricated 
pipelining. Since m = J1.2/ J1.1, we get very small m when lubricating viscous 
crudes J1.1 = 1000 P with water J1.2 = 1/100 p: m = 10-5. 

Consider the axisymmetric problem (le.25), (le.26) and (le.27). The 
Reynolds number for the water R2 appears only in the water equation 
(le.25) when 1 :::; r :::; a and R2 = RI/m. If RI =F 0 and m -+ 0, the water 
equation is inviscid 

(lj.1) 

and two derivatives are lost. To solve this singular perturbation problem 
at zeroth order, it is necessary to discard certain boundary and interface 
conditions. The no-slip condition u~{a) = 0 and (le.27b) are set aside. The 
shear stress condition (le.22) reduces to 

(lj.2) 

which is an uncoupled condition on UI. On the other hand, (le.23) reduces 
to 
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whereas (le.24) reduces to 

U~' + 2u~ - (30:2 + l)u~ + !t((2 - l)u~ 

. , 2 io:J(0:2 - I)UI 
+{!t((2 -1) -lo:RI((2 -1)W2(1) + 1- 0: }UI + R I(W(I) _ C) = O. 

(lj.4) 
These two equations couple the flow in the water to the flow in the oil 
through terms proportional to u~. Equations (lj.3) and (lj.4) are equivalent 
when (le.20), or the first of (le.27b), holds. If (le.20) is discarded ab initio, 
we are obliged to use (lj.3). This is the form of the normal stress when the 
outer fluid is regarded as inviscid from the start and the continuity of the 
axial component of velocity (lc.5), which leads to (le.20) is omitted. 

Equation (lj.3) decouples from the water when (2 = O. Then (le.25), 
(lj.2) and (lj.3) are enough to determine the family of eigenvalues given by 
Chandrasekhar [1961) in his study of capillary instability of a viscous jet. 
To identify our problem with his, we note that when m = 0, WI (r) = 1. 
Then put RI (I-C) = 0, which is equivalent to rescaling the time. To com
plete the formal identification of this problem with Chandrasekhar's, put 
Wo = v j R I , where Wo is the centerline velocity. In dimensionless variables, 
Chandrasekhar's problem can be written as 

Ut = -Vpjp+ V2u on O:S r:S 1 

with U = 6t , ux+wr = 0, -pjp+2ur = J(666+6xx+6) on r = 1. 
It follows that 0 depends on a wave number 0: and the surface tension 

parameter J. The limit v - 0, J - 00, corresponds to an inviscid jet, 
leading to Rayleigh's theory with maximum growth rate at a = 0.697. 
The wave number a(J), 0 :s a :s 1, which maximizes the growth rate 
(1 = 1m o:O(o:,J) is an increasing function with a(oo) = 0.697. For small 
J, Chandrasekhar [1961) showed that to a good approximation (1 = T(1 -
0:2)j6J.tIRI: hence, a(O) = O. Small J may be interpreted as large viscosity. 
In other words, the most dangerous wave for very viscous jets is very long. 
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VI.I(k) The Limit RI - 0 and m =I 0 

This is not a singular limit: R2 = RI/m tends to zero with RI and we 
get Stokes' linearized equations in the oil and in the water. We again cal
culate eigenvalues C = G/RI. Then, when Rl - 0, It = -iaG and 
h = -iaG /m, (le.27b) reduces to 

ui=u~ at r=l 

and the last term of (le.27b) is replaced by 

2 ~ 

-iaJ(a - 1)u2/C. 

This problem is independent of JR.l and also of WI(r), l = 1,2, as it should 
be in the Stokes' flow limit. 

Surface tension J is stabilizing when a > 1 and destabilizing when 
a < 1. In all cases for which Rl - 0, core-annular flow was found to be 
stable when a > 1 and unstable when a < 1. This is shown clearly in 
figure 1.9 and in the neutral curves exhibited in sections VI.1 (l) and (m). 
Values of a(a, m, J) of the fastest growing wave show that the Stokes' flow 
limit Rl - 0 depends on a, m, and J. We recover the capillary instability of 
Chandrasekhar [1961] numerically by fixing m« Rl - 0, and the capillary 
instability of Rayleigh [1879] by putting J - 00 when m/Rl is small and 
Rl-O. 

VI.I (l) Neutral Curves 

Some representative types of neutral curves are shown in figures 1.5 - 1.7, 
and 1.10 - 1.14. The results given in section VI.1 (m) are a fairly com
plete representation of what linear theory has to say about the experiments 
depicted in figure V.1.1. 

Figure 1.5 illustrates a typical situation, with disjoint neutral curves: 
each neutral curve consists of an upper branch and a lower branch. The 
lower branch is associated with long waves leading to an instability caused 
by surface tension at low Reynolds numbers. This region is in the bottom 
left-hand comer of the (a, Rl)-plane. It terminates on a = 1 for Itl = O. 
The values Rl = He as a function of a and m when a = 0 were given in 
section VI.1 (h). When a > 1.5805, disturbances with a = 0 are unstable 
at all R. We may define a critical stability limit for the lower branch 

RL(a,m,J*) = maxRcL(a,m,J*,a). 
Q~O 

(I.e. 1) 

The flow is unstable to generalized capillary instability when Rl < RL. 
The upper branch of the neutral curve is associated with larger a, 

shorter waves and larger Reynolds number. We may define a critical stabil
ity limit for the upper branch: 
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m - 0.8 (_._._), m - 0.78 (000 , 
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The stable band of Reynolds num
bers disappears between m = 0.78 
and m= 0.75. 

lRu(a, m, J*) = min R.cu(a, m, J* , a). 
Q~O 

(1£.2) 

Core-annular flow (CAF) is unstable, evidently leading to emulsions, when 

Rl > lRu. 

When 
(1£.3) 

we have stable CAF. 
The topology of the neutral curves may change with the parameters. 

For instance, figure 1.6 shows a change of topology leading to the destruc
tion of the upper and lower branches and the formation of the left and right 
neutral branches for J* = 930, a = 1.25 for some m between 0.75 and 0.78. 
Left and right branches of the neutral curve Rc are also shown in figure 
1.7. 

Figure 1.8 is a graphical representation of (1£.3) for J* = 930, a = 1.25 
for different values of m . CAF is stable in the enclosed region of the figure. 

Figure 1.9 shows that increasing J* stabilizes short waves (a > > 1) 
and destabilizes long ones (a < < 1). 
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Fig. LT. [Preziosi, Chen and Joseph, 
1989] Neutral curves Rc(a, m, r), r 
= 930, a = 1.25, m = 0.01. The lower 
critical condition and upper critical 
condition have merged. Stable core
annular flow is not possible. 
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Fig. 1.8. [Preziosi, Chen and Joseph, 
1989] Upper Ru(m) and lower RL(m) 
critical Reynolds numbers for a = 
1.25 and r = 930. Core-annular flow 
is stable in the enclosed region. 

VI.t{m) Comparison with Experiments 

Now we shall compare the results of the experiments of CGH with predic
tions based on the linear theory of stability applied to the axisymmetric 
mode. CGH presented pictures of the flow in eleven different cases (cf. fig
ure V.l.1), for which we present the neutral curves and growth rates. The 
neutral curves are exhibited in figures 1.10 - 1.13 and the growth rates for 
the fastest growing waves are listed in the caption of figure 1.10, and in 
table 1.1. 

The following three categories are used in the comparison and discus
sion to follow: 

(1) Linear theory with the axisymmetric mode was used to predict the win
dows of the operating parameters for stable core-annular flow (CAF). 

(2) The neutral curves were used to identify the nature of the instability 
which should be observed in the experiments. The aim was to discrim
inate between conditions in which they get bubbles and slugs of oil in 
water from those in which they got emulsions of water in oil. 

(3) The length of the most rapidly growing wave was calculated in order 
to predict the length of slugs and bubbles which should arise from the 
capillary instability. 
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Fig. 1.9. [Preziosi, Chen and Joseph, 19891 Neutral curves in the (0, S)-plane 
for a = 1.4, m = 0.5. Increasing S at a fixed Rl is the same as increasing J. 
Increasing J at fixed 0 and Rc destabilizes long waves (0 < 1) and stabilizes 
short waves (0 > 1). 

In all eleven experiments, except Experiment 2, CAF is unstable in the 
experiments and in the theory. In principle there is no reason why the flow 
observed under unstable conditions should correlate with the predictions of 
a linear theory. The bubbles, slugs and emulsions seen in the experiments 
are not small perturbations of CAF. Nevertheless, the predictions of the 
linear theory do seem to correlate with observations. 
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Table 1.1. Comparison of theor:y and experiment. The # refers to pictures shown 
in figure 1.1 of chapter V. u(a) = aIm O(a) is the growth rate and a is the 
wavenumber of the fastest growing wave. lR2 is the length of a slug or the radius 
of a bubble. 

Experiment 

# a Rl lexp 

3 1.42 69.80 4.5 (short slug) 

7.5 (long slug) 

4 2.24 26.98 0.85 (bubble) 

6 1.5 406.90 >15.75 (slug) 

7 1.74 287.41 13.1 (slug) 

8 2.80 134.50 0.69 (middle-most bubble) 

9 1.81 795.97 6.0 or >15.75 (slug) 

10 2.65 433.70 2.70 (longest slug) 

11 4.63 221.69 0.3125 (largest bubble) 

Theory 

# a u(a) 
3 0.6 7.83518X 10-2 5.2665 

4 0.66 2.91616 X 10-1 0.8596 

6 0.22 5.85969 X 10-3 12.1856 

7 0.08 2.34665 X 10-3 21.4686 

8 0.61 5.23881Xl0-2 0.7060 

9 0.32 6.8402 X 10-2 4.7682 

0.023 5.39895 X 10-4 66.3405 

10 0.11 1.82720 X 10-2 4.4199 

11 0.64 2.41483 X 10-2 0.4202 

To apply the results of our stability calculation to the experiments, we 
need to convert the experimental data into parameters used in the analysis. 
Superficial velocity is defined as the volume flow rate divided by the area 
of the pipe. From the flow rates and the values of the material parameters, 
we may compute Rl and Wo for stable core-annular flow. This fixes all 
of the dimensional, hence, dimensionless, parameters used in the analysis. 
The solution is carried out in cgs units. The viscosity of water is given 
as 0.984 cPo For the oil viscosity (16.8 cp) listed in figure V.l.1, we get 
m = 0.0532. Carbon tetrachloride was added to the oil to increase the oil 
density. The density was matched ((2 = 1). The interfacial tension between 
the 16.8 cp oil and water was measured by the method of capillary rise 
and is given as 45 dyne/em. (The capillary rise method is not accurate 
and the evaporation of carbon tetrachloride makes it likely that the surface 
tension value is not accurate and could have changed by as much as 5 
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Fig. 1.10. [Preziosi, Chen and Jos
eph, 1989] Neutral curves correspond
ing to Experiments 1,2: a = 1.08, 1.21; 
J* = 2102; m = 0.0532. The horizon
tal lines correspond to the Reynolds 
number of the experiments. For Ex
periment 2, the minimum value Rl = 
138.2. Stable core-annular flow is ob
served with Rl = 138.6. The maxi
mum growth rate aIm C = 2.747 X 

10-3 occurs at Q = a = 2.24. This 
flow is almost stable. 
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Fig.1.ll. [Preziosi, Chen and Jos
eph, 1989] Neutral curves correspond
ing to Experiments 3,5: a = 1.42, 
1.31; J* = 2102; m = 0.0532. Oil 
slugs in water are observed in Exper
iment 3. Water drops in oil are ob
served in Experiment 5. 

dynes/em from experiment to experiment.) In all the cases exhibited in 
figure V.1.I, water wets the wall of the cellulose acetate-butyrate. Let W1s 

be the superficial velocity of the oil (called V in figure V.1.I) and W 2s the 
superficial velocity of water with e = W 1s/W2s from (Ib.7) and 

1 

a = { 1 + e + (: + me)! } :2 , 2W2s 1 1 
Wo = -(1 +me)2[m-I + (1 +me):2]. 

m 

(Im.I) 
Then, 

Rl = Pl WORl _ Pl WOR2 } 
J.Ll - aJ.Ll ' 

s= T _ aT _ J* 
P1R1 wg - P1R2 wg - aR~· 

(Im.2) 

The values of the superficial velocities are given in figure V.1.1. 
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The comparisons between theory and experiments are made in figures 
1.10 - 1.13 (the neutral curves corresponding to the 11 drawings shown in 
figure V.1.1) and in table VI.1. The table gives the wavenumber a = a 
corresponding to the maximum growth rate 

aCi(a) = maxIm aC(a). 
a~O 

(1m.3) 

The dimensionless wavelength corresponding to a is 5. = 211'/ a and the 
dimensional one is 5.RI . 

The window of parameters for stable CAF may be expressed as an 
interval 

(1mo4) 

between the maximum RI on the lower branch of the neutral branch and 
the minimum RI on the upper branch. Such an interval exists when the 
lubricating layer is small but not when it is large. Recall that the flow is 
always unstable to long waves a -t 0 when a > 1.5805. 

The minimum Rv decreases rapidly as a is increased. We may describe 
this result in tenns of a critical Reynolds number 

Re = (R2 - RdWo = Rv(a -1) 
VI m 

in the lubricating layer. The numerical results show that Re is a rather 
weak function of a and Re ~ 660. Hence, we get an approximation 

Rv ~ m660 = 35.21. 
(a -1) a-1 

On the other hand, the maximum value RL on the lower critical branch 
is an increasing function of a - 1 (see figure 104). Hence, as a increases, 
the interval (1mo4) shrinks; and the construction implied by the foregoing 
argument, shown in figure 1.14, indicates that CAF is always unstable under 
the experimental conditions (m = 0.0532, J* = 2102) of CGH when a > ac 
where ac ~ 1.23. The same argument shows that CAF is more stable when 
the lubricating layer is thinner with maximal intervals (1mo4) of stability 
as a-t 1. 

CGH observed stable CAF in Experiment 2 and only in Experiment 
2. The theoretical result for this experiment is shown in figure 1.10. The 
experiment lies very nearly in the stable band of Reynolds numbers with 
a weak short-wave instability (cf. growth rates, figure 1.11) in a narrow 
interval centered on a = 2.2. 

Very minor adjustments of the values of operating parameters, well 
within the errors expected of these experiments, would place the flow en
tirely within the stable band. All the other ten cases are unstable in the 
experiments and in the theory. 
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Fig. 1.12. [Preziosi, Chen and Jos
eph, 1989] Neutral curves correspon
ding to Experiment 7: a = 1.74, J* = 
2102, m = 0.0532. Oil slugs in water 
are observed. For Experiments 9, 4, 
10, 8, 11 (a = 1.84, 2.24, 2.65, 2.80, 
4.63, respectively) the neutral curves 
are very similar to the one shown 
here except for some scale changes. 
These other neutral curves are avail
able from the authors PCJ on re
quest. 
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Fig. 1.13. [Preziosi, Chen and Jos
eph, 1989] Neutral curves correspon
ding to Experiment 6: a = 1.50, J* 
= 2102, m = 0.0532. CAF plus wa
ter drops in oil are observed at Rl = 
407. 

We next consider category (2) of the comparison between theory and 
experiment. There are two cases and only two cases of emulsification of 
water into oil, shown in figure V.1.1 as experiments 1 and 5, with associated 
neutral curves in figures 1.10 and 1.11. In both cases, we get an instability 
for high Reynolds number Rl > 1Ru above the upper critical, short-wave 
branch. 

The flows in all the other experiments (3, 4, 6, 7, 8, 9, 10, 11) of figure 
V.1.1 are unstable and the theory, exhibited in figures 1.11 - 1.15, show that 
the instability is due to long waves and not to short waves. For these long
wave instabilities, there is always a wavelength>' = 271"/0: which maximizes 
the rate of growth (lm.3) of an unstable wave. The length of slugs and 
bubbles of oil in water can be compared with a theoretical value we get 
from computing 0:. The procedure we use is to identify the volume of a 
cylinder 
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Fig. 1.14. [Preziosi, Chen and Joseph, 19891 Upper and lower stability limits as 
a function of a for J*=2102, m=O.0532. The upper curve is derived from the 
critical Reynolds number from the upper branch of each neutral stability curve. 
The straight line is derived from the critical Reynolds number from the lower 
branch of each neutral stability curve. When the two lines meet, there is no 
stable region. CAF is never stable when a is larger than a R;; 1.23 at the point of 
intersection. 

(lm.5) 

of radius RI and length ARI . We say that this volume is preserved in the 
nonlinear breakup of the oil, and hence is the same as the volume of slugs 
and bubbles observed in the experiments. (The words "oil drops" used by 
CGH in Experiment 11 is a sort of misnomer because the oil is lighter than 
the water. Perhaps a better expression would be oil bubbles). If Ii is very 
small, then the wavelength is many times the circumference of the core. 
The oil in such a long wave can gather together to form something like 
a spherical bubble only if the pipe is large enough. Otherwise the bubble 
cannot collect into a closed spherical shape: hence, it takes form as a cylin
der, perhaps long, which we shall call slug. Slugs and bubbles, like CAF, 
seem well lubricated by water at a radius of approximately a ~ 1.20, as in 
Experiments 3, 6, 7 and 9. Hence, RI ~ R2/1.20 and the volume (lm.5) is 
equal to the volume of the observed slug with area 1l'(R2/1.2)2 and length 
lR2 as follows: 
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(lm.6) 

Hence, 
(lm.7) 

The volume of the observed bubble is ~7I"b3 where b is the bubble radius. 
Equating this to (lm.5), we define 

l = .!!...- = (371")! ~ 
R2 2a a· 

(lm.8) 

The length lexpR2 of observed slugs was measured from the pictures in 
figure V.l.l. The lexp gives the number of pipe radii in the length of one 
slug and it can be compared with the lin (lm.7). An identical measurement 
of the ratio of the bubble radius b to R2 determines an lexp to compare with 
the theoretical ratio in (lm.8). 

Theory and experiment are compared in table l.1, where we have iden
tified the experiments with the numbers shown in figure V.l.l. In the table, 
we list the value R 1 , the wave number a of the fastest growing wave, the 
growth rate if = aIm C (a) of this wave, the theoretical value l from (1m. 7) 
(for Experiments 3, 6, 7, 9 and 10) or (lm.8) (for Experiments 4, 8 and 
11) and the measured value lexp. The size of bubbles and slugs which can 
be observed in figure V.l.1 under any particular operating condition is not 
unique. Since we compute a unique size based on the assumption of constant 
volumes, our comparison is only suggestive and not precise. Some remarks 
about the comparisons shown in table l.1 are necessary. In the table, we 
have identified which slug or bubble has been used for comparison. We do 
not know if the size of slugs and bubbles, so identified, is representative. For 
example, there may be a longer or shorter slug upstream or downstream of 
the section showing the single long slug exhibited in Experiment 7 of figure 
V.l.l. In some of the experiments, like 6,9 and 10, there is a great variabil
ity with different sizes and configurations occurring simultaneously. Only 
Experiment 2 of the three labeled oil in water concentric seems to be asso
ciated with stable CAF. The other two, Experiments 6 and 9, are unstable 
to very long waves leading to slugs whose lengths (12.186R2 , 66.340R2 ) are 
nearly as long or longer than the 15.75 R2 length of frames shown in the 
pictures of figure V.l.l. We cannot distinguish such long slugs from oil in 
water concentric. A shorter slug can be identified in Experiment 9 of figure 
V.l.1 as the region between the narrow black lines running from top to 
bottom. The smaller water bubbles shown in Experiments 6 and 9 and the 
oil bubbles in Experiment 10 are unexplained by this analysis. They could 
arise as a reaction to turbulence in the water, or as a kind of secondary 
instability of the slugs. 
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VI.l{n) Conclusions 

The analysis of the spectral problem of linear stability leads to the following 
conclusions: 

(I) Core-annular flow (CAF) is stable to disturbances with infinitely long 
wavelengths (a -+ 0) for some RI when the ratio a = R2/RI of the 
radius of the pipe to the mean radius of the interface does not exceed a 
critical value a{ m) which depends on the viscosity ratio m = J-t2/ J-tl ::; 1 
alone (see figure 1.2) and 

1.4889 = a{0.I5) ::; a ::; a{I) = 1.5805. (In.I) 

When a > a, CAF is unstable to long waves at any R 1. 

(2) CAF is unstable to long waves when the core Reynolds number R = 
WoRdv, where Wo is the centerline velocity, is smaller than a critical 
value 

Rda,m,J*) = maxRcda,m,J*,a) 
02:0 

(In.2) 

where RcL is the lower branch ofthe neutral curve (see figures 1.5 - 1.8, 
1.11 and 1.12). This long-wave instability is induced by surface tension 
and is a generalized capillary instability which leads to the formation 
of oil slugs and bubbles in water. When a > 1.5805, this instability is 
always present. 

(3) The limit m -+ 0, RI > 0 is singular and leads to inviscid flow 
in the water whereas the flow in the core reduces to the problem 
of capillary instability of a viscous jet which was studied by Chan
drasekhar [1961]. This problem depends on a surface tension parameter 
J = J* / a = T Rd PI vr When J -+ 0, the wavelength of the distur
bance with maximum growth tends to infinity. When J -+ 00 then 
Chandrasekhar's problem reduces to Rayleigh's with a most danger
ous wavenumber a = 0.697. 

( 4) Increasing J* stabilizes short waves (a > > 1) and destabilizes long 
ones (a « 1). 

(5) The limit m > 0, RI -+ 0 is a Stokes flow limit. CAF is always unstable 
to long waves and is always stable to short waves in this limit when 
surface tension is present. 

(6) CAF is unstable to short waves when 

RI > Ru{a,m,J*) = minRcu{a,m,J*,a), 
02:0 

(In.3) 

where Reu is the upper branch associated with shorter waves (see 
figures 1.5 - 1.7, 1.10 -1.12). Instability above the upper branch appears 
to lead to emulsions of water in oil. The emulsions may arise from a 
secondary capillary instability after water fingers into oil. 

(7) There is a window of parameters (a, m, J*) such that CAF is stable; 
that is, there is an interval 
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of stable CAF. In this interval, we may say capillary instability has 
been stabilized by shear. A section of such a window is shown in figure 
1.9. This figure shows that there is an optimal value of m ~ 0.5 which 
maximizes the stable interval (In.4) when J* = 930 and a = 1.25. 

(8) The density difference, without gravity, affects the stability of CAF, 
with opposite effects on the lower and upper branches. If we increase 
(2 = P2/ Pl so that the fluid in the annulus is more dense, then ReL 
is decreased and there is a smaller region of generalized capillary in
stability; that is, the lower branch is more stable. The effect on the 
upper branch is opposite; increasing (2 decreases Rev, increasing the 
region (Rl > Rev) of instability. The destabilizing effect of increasing 
(2 on the upper branch is much greater than the stabilizing effect on 
the lower branch (see figure 1.10). 

(9) The numerical results show that there is a critical Reynolds number in 
the water 

Re = Rv(a - 1)/m, 

and for the experimental conditions, this is nearly independent of a: 
Re ~ 660 for a ~ 1.42. Hence, 

Rv ~ 35.2 . 
a-I 

On the other hand, RL increases monotonically from zero when a = 1, 
to 00 at some finite value of a (cf. figure 1.4). Thus, when a -+ 1, we 
retrieve the maximal interval 0 < Rl < 00 for the interval (Im.4) of 
stable CAF, as we should. 

(10) There is a critical value a = ii(m, J*) such that when a > ii, the interval 
(In.4) of stable CAF closes up (see figure 1.6) and CAF is unstable. 
Note that 

ii(m, J*) ~ a(m). 

For m = 0.0532, J* = 2102, corresponding to the experiments of CGH 

ii ~ 1.23 

(see figure 1.14). One of the most important parameters in lubricated 
pipelining is the volume fraction of oil to water 

¢ = Vw = 7r(R~ -2Rt) = a2 -1. 
Vo 7rRl 

In the experiments, CAF is unstable when ¢ > 0.5376. The pictures 
in figure V.1.1 suggest that long slugs are stable in a lubricated flow 
with a ~ 1.2. 

(11) The linear theory of stability has shown that all the cases of emulsified 
water drops in oil seen in the experiments of CGH, and only these 
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cases, are at Reynolds numbers exciting the short waves on the upper 
branch (that is, Rl > Itu) and long waves are not excited because 
Rl > RL (see figures 1.10 and 1.11). 

VI.2 Energy Analysis of the Waves of Fastest Growth 

This section is based on the paper of Hu and Joseph [1989 a). 

VI.2(a) Introduction 

We consider the linear stability of core-annular flow of two liquids with 
different densities and viscosities with surface tension included but gravity 
excluded. Results will be given for the problem with a water core, with 
oil on the wall, studied previously by Hickox [1971) for long waves, for 
all wavenumbers and Reynolds numbers, with effects of surface tension in
cluded. The extended analysis of this problem appears to be in good agree
ment with new experiments of Aul and Olbricht [1990) on water flow in an 
oil coated glass tube of small (54 pm) diameter. The application of such 
experiments is more related to oil recovery than to lubricated pipelining. 
Results will also be given for the lubricated flow of a viscous liquid when 
a layer of viscous fluid coats the pipe wall, modeling the situation in lubri
cated pipelining of oil when the pipe walls are hydrophobic. In this case, 
the pipe wall takes on oil, but the oil core is lubricated by water in a layer 
between the core and the oil coating the wall. 

In section VI.1, we identified a window of parameters in which core
annular flow was stable to small disturbances. For stability, the water frac
tion cannot be too large, about 40 percent at most, and the Reynolds num
ber for the core rests in an interval RL < R < Ru where RL is the lower 
critical value below which core-annular flow is unstable to capillary forces 
and Ru is the upper critical value. PCJ compared their results with the 
experiments of Charles, Govier and Hodgson [1961) (referred to as CGH), 
and they noticed that the cases of instability with R > Ru were correlated 
with the emulsification of water into oil. 

Many of the cases presented in section VI.1 and here are unstable. The 
utility of linear theory for understanding unstable flow is problematic, since 
the flows which arise from an instability are, in theory, a perturbation of 
core-annular flow only in some special circumstances involving stable bi
furcations. The flows which actually arise from instability in practice seem 
in general not to be close to core-annular flow. In order to use linear sta
bility theory to understand unstable flows, it is necessary to be guided by 
experiments. 
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In the experiments carried out by Joseph's group, we note three inter
esting observations. First, they are able to achieve a lubrication of a coal-oil 
dispersion (40 percent in SAE 30 motor oil) in water. The dispersion is very 
nearly density matched; and it could not be economically transported in 
a pipe without water because, at this high concentration of coal, the dis
persion is a plastic fluid with an enormous viscosity. Secondly, they get a 
lubricated flow in three layers in glass pipes which are hydrophobic. Thirdly, 
they always see waves on thin oil films wetting glass when there is a shear 
driven by water. They argue that these waves are driven by interfacial fric
tion associated with the viscosity difference. The waves on thin layers of 
oil driven by the shear flows of water remind us of water waves generated 
by wind. This problem was studied by Blennerhassett [1980] and Renardy 
[1989] from the point of view of nonlinear stability theory (see chapter IV). 
Of course, unstable interfacial waves driven by interfacial friction can be 
equilibrated by effects of gravity when the dense fluid is below, as in water 
waves driven by the wind. Travelling waves can be expected to arise from 
instability and bifurcation of stable core-annular flows [Renardy, M. and 
Joseph 1986]. The waves determined by Blennerhassett [1980] do not seem 
to fit the experimental data for water waves well, but we think this line of 
inquiry should not be closed. 

A list of hydrodynamical structures which can be imagined to arise 
from the instability of core-annular flow are: (a) bubbles and slugs of oil 
in water; (b) drops of water in oil; (c) emulsions, mainly of water in oil; 
(d) wavy interfaces. Of these, it would seem that only some of the wavy 
interfaces could be regarded as arising out of stable bifurcation of core
annular flow. We might hope for a good agreement between the linear theory 
and experiments for this case. 

In the cases (a, b, c) mentioned above, the comparison between lin
ear theory and experiments is more problematic. We have basically three 
procedures which can be used. 

(1) We can compute maximum growth rates and the wavelength of the 
fastest growing wave. This length can be compared with the size of 
bubbles and slugs which arise in experiments. The agreement between 
this type of calculation and experiments (cf. section VI. 1 ) was better 
than we expected. 

(2) We can calculate neutral curves and try to compare regions of param
eter space in the stability diagrams with the corresponding regions in 
experiments. This procedure is global in the parameters and it appears 
to be promising. 

(3) We can compute various terms which arise in the global balance of 
energy of the small disturbance with the largest growth rate. The en
ergy analysis allows us to identify the three competing mechanisms 
under way: interfacial tension, interfacial friction and Reynolds stress. 
We get integrated Reynold stresses in the bulk fluid, as in the case of 
one fluid; but when there are two fluids, we can compare the contri-
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butions to the total made by each of the fluids. There are boundary 
terms, one is proportional to interfacial tension, another to interfacial 
friction (proportional to the viscosity difference), and each of these con
tributions appears on every interface. All these terms take on positive 
and negative values as the parameters are varied, and they compete 
to determine whether or not the average energy of a disturbance will 
increase or decrease. For now, it will suffice to note that interfacial 
tension is always dominant and always destabilizing at the smallest 
Reynolds numbers. Interfacial friction can stabilize interfacial tension 
(capillary instability) and, in fact, is a major actor in the stabilization 
of core-annular flow with oil cores. In other circumstances, interfacial 
friction destabilizes and it always destabilizes the flow with water cores 
when the walls are wet by oil. The Reynolds stress in the core is not 
destabilizing; water cores are never destabilized by Reynolds stress. 
The Reynolds stress contribution in the water annulus lubricating the 
core will always lead to instability, whether or not water or oil is on 
the wall. 

The results in this section were obtained with a finite element code 
which performs well even for small values less than 10-4 of the ratio of 
viscosity of water to oil where the problem is known to become singular (cf. 
section VI.3). The reader will find a summary of results at the conclusion 
of this section. 

VI.2(b) The Basic Flow 

Consider the problem of two liquids flowing down a circular pipe in three 
layers with the inner and outer layers occupied by liquid 1 and the middle 
layer by liquid 2. The interfaces between the liquids are r = rl(O, z, t) and 
r = r2(0,z,t), (r2 > rd, where (r,O,z) are cylindrical coordinates and t is 
time. Let U =( U r , U9, u z ) be the velocity and p be the pressure, JLl and Pl 
be the viscosity and density of liquid 1, JL2 and P2 of liquid 2. 

Assume that the pipe is infinitely long with radius Ra and axis at 
r = 0, the mean value of rl (and r2) over O{O ::; ° ::; 211") is Rl (and R2), a 
constant independent of time, and the gravity force can be neglected. 

We scale the length with Ra, the velocity with the centerline velocity 
of the basic flow Wo, pressure with Pl WJ, and time with Ra/Wo. We use 
the same symbols for dimensional and dimensionless variables. 

The basic core-annular flow with constant pressure gradient 8P / 8z = 
-F is 

with 
U = (O,O, W(r» 

{ 
[(b2 -112) + m{l + 112 - b2 - r2»)/A, 

W{r) = [b2 - r2 + m{l- ~)l/A, 
[m{l- r2»)/A, 

r E [0,11), 
r E [11, b), 
r E [b,l) 

(2b.1) 

(2b.2) 
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where 

Wo = 4F [m(R~ + R~ - ~) + R~ - R~], (2b.3) 
J.L2 

and 
J.L2 m=-, 
J.L1 

(2b.5) 

VI.2(c) Perturbation Equations and Normal Modes 

We perturb the core-annular flow with 

U = (u, v, w+ W), P = P+p, rl = T/ (or b) +81(0, z, t) (l = 1,2) (2c.l) 

and introduce dimensionless parameters 

i _ P2 ,,- , 
P1 

U sing the normal mode decomposition of solutions: 

(2c.2) 

[u, v, w,p](r, 0, z, t) = [iu, v, w,p](r)exp[inO + i,6(z - ct)]} (2c.3) 
and [81 ,82](0, z, t) = [81, 82]exp[inO + i,6(z - ct)] 

where u(r), v(r), w(r),p(r) are complex-valued functions, and 81, 82 are 
complex constants. If we write 81 = 181 Ie i4>1,82 = 182 1ei 4>2 then </;2 - </;1 

indicates the phase shift of the two interfaces in the z-direction. 
The linearized equations of motion are 

I iml [d (d(rU») (2 n2) 2n] (1,6(W - c)u = p - - - -- - ,6 + - u - -v , 
IR dr rdr r2 r2 

(2c.4) 

(d,6(W-c)w+Wu]=-,6p-- -- r- - ,6 +- w , (2c.6) I iml [1 d ( dW) (2 n 2 ) ] 
IR r dr dr r2 

d(rdu) + '!!:.v + ,6w = O. 
r r r 

(2c.7) 

where W' = dW/dr, ml = (1, m, 1), (I = (1, (,1), I = 1,2,3 indicates the 
flow region fh =[O,T/), Q2 = (T/, b), Q3 = (b,l] with P3 = P1 and J.L3 = J.L1· 
The boundary conditions are 
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r= 1: u=v =W =0, 

r=O : u, v, W,p and their derivatives are finite. 

(2c.8) 

(2c.9) 

The linearized interface conditions are at r = 1] and b (corresponds to 
1= 1,2) : 

u(rl) = .B(W - c)61, 

[U]I = [V]I = 0, 

[W]I + [W']161 = 0, 

[ml( -.Bu + W')]I = 0, 

[ ( nu+v ,)] ml --r-+ v 1=0. 

(2c.1O) 

(2c.11) 

(2c.12) 

(2c.13) 

(2c.14) 

[P] 2i ['] J* 1 2 2 2) 1- R mlu 1= - R2 rl (1- n - rl.B 61, (2c.15) 

where for any function G(r) in il = ill U il2 U il3 , [mIG]1 is defined as 

[mIG]1 = mIG(rl) - ml+1 G(rt). 

We could eliminate 61 in (2c.12) and (2c.15): 

U[W']I - (W - c) [U']I = 0, 

[P] 2i ['] J* 1 [U']I 2 2 2 
I - R mlu I = - R2 rl.B[W']1 (1 - n - rl.B ). 

VI.2(d) Finite Element Formulation 

Define functional spaces 

(2c.16) 

(2c.17) 

v = {u, vlu E c2(il),v E cl(il)j at r = 1,u(1) = u'(l) = v(l) = OJ 

at r = 0, u, v and their derivatives are finitej 

at r = rl, [U]I = [V]I = ° and U[W']I - (W - c) [U']I = ° }. 
Solving the equations (2c.4) to (2c.7) is equivalent to solving the fol

lowing problem (weak solution): 
Find u, v E V such that, for every u*, v* E V, 

~ f (I {[.B(W - c)uu* + .!:.(W _ c) d(ru) d(ru*) _ W' u d(ru*)] tt Jill .B rdr rdr .B rdr 

n [ v d(ru*)]} +- (W - c) --- rdr 
.B r rdr 
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i t f {[ d (d{rU)) d (d{ru*)) 
= R,82 1=1 Jill ml dr rdr dr ~ 

(2{./2 n2) d{ru) d{ru*) ({./2 n2) {./2 *] + fJ + - ----- + fJ + - fJ uu r2 rdr rdr r2 

[ d (V) d (d{ru*)) ({./2 n2) V d{ru*) 2,82 *]} d +n - - - -- + fJ +- ---+-vu rr dr r dr rdr r2 r rdr r2 

[( imld{ru)) * iml Id{ru*) ] + p---- ru +-w--r 
R rdr ,8R rdr -O+~+b+l 

(2d.1) 

and 

t f (I {~ [(W - c) d{ru) _ W'u] v* 
1=1 Jill,8 rdr r 

+~(W - c) (,82 + ;:) vv*} rdr 

i ~ f {n [d (d{ru)) d (V*) 
= R {;t Jill ml ,82 dr rdr dr -:;: 

( {./2 n2) d{ru) v* 2,82 *] + fJ +- ---+-uv r2 rdr r r2 

+ [d{rv) d{rv*) + n2 .!!:..- (~) .!!:..- (v*) 
rdr rdr ,82 dr r dr r 

+ (,82 + ;:) (1 + ,8~;2 ) vv* ] } rdr 

[ iml (n , d{ rv) ) *] + - -w --- rv 
R r,8 rdr -O+~+b+l 

(2d.2) 

where [ ... J-O+~+b+l = -I· .. Jr=O + [ .. ·h + [ ... ]2 + [ ... Jr=l. 
Using the boundary conditions and interface conditions, we evaluate 

two of the terms above: 

[( iml d{ru)) * iml ,d{ru)] p---- ru +-w--
R rdr ,8R dr -O+~+b+l 

. J* A 1 2 2,82 
= Rl {[mlu'h77u*(77)+(1-m)u{77)77U*'{77)}---2 -271 -77) [u'hu*(77) 

2,8R 77 - m 

i {[ '] * () ( ) () *, ( )} J* A 1 - n 2 
- b2,82 ['] * (b) +R mlu 2bu b - 1-m u b bu b + 2,8R2 b2{1-m) u 2U , 

(2d.3) 
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and 

[iml (n , d(rV») *] 
R r{3 W - rdr rv -O+'1+b+l 

= ~ [u(O) -v(O)]v*(O) - [2(1- m)~ V(1J)V*(1J)] + [2(1- m)~ V(b)V*(b)] . 

(2d.4) 
In the finite element method, the domain n is divided into simple geo

metric subdomains or elements. u and v are approximated in each element 
by interpolation functions using values of u (and derivatives of u) and v at 
nodal points. The piecewise cubic Hermite interpolation fuctions are taken 
for u and the piecewise linear Lagrange interpolation functions are taken 
for v, since the governing equation for u after eliminating w is fourth order 
while the equation for v is second order. Thus the unknowns at each node 
are (u, du/dr, v). 

After discretization of (2d.l) and (2d.2), we combine them into matrix 
form 

Ax= cBx, (2d.5) 

where c is the eigenvalue in (z - ct) in (2c.3), A and B are the global 
matrices with the forced boundary conditions (2c.8), (2c.ll) and (2c.16) 
being applied, and x = [UI, U'l, VI, U2, U'2, V2, .. . UN, U'N, VNjT. N is the 
total number of nodes. 

Using the IMSL routine EIGZC, the eigenvalues c = Cr + ie; of the 
problem (the eigenvalue of most interest is the one with the largest imag
inary part e;) and the corresponding eigenfunctions are computed. If the 
computed value Ci < 0, the perturbation will decay with time. The flow is 
stable to this mode of perturbation. If Ci > 0, then, in linear stability the
ory, this mode of perturbation will grow exponentially with the growth rate 
of (3e;. The basic flow is then unstable. Thus Ci = 0 indicates the neutral 
state. 

VI.2(e) Energy Analysis 

The method of energy is useful in the analysis of stability of flow of one 
fluid because certain limited nonlinear results can be obtained from the 
method by rigorous analysis. It is known that the utility of the method for 
the classical case of flow of one fluid is basically restricted to analysis of 
sufficient conditions for stability, though a recent approach of Galdi [1988] 
goes in another direction. The situation is more complicated for the case 
of two fluids. The main new feature is the appearance of new terms on the 
boundary. Hooper and Boyd [1983, 1987] and Hooper [1988] showed that the 
linearized energy equation can be used to analyze instability in the case of 
long and short waves. When the energy equation is evaluated on solutions, 
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we may determine the situations in which instability is introduced through 
the Reynolds stress, as in one fluid, or in the boundary terms, through 
the surface tension and viscosity difference. There are three instabilities 
which may be identified through the energy: due to interfacial tension, 
interfacial friction and Reynolds stress. Hu and Joseph [1989a] calculated 
these different terms on the most unstable eigenfunction corresponding to 
the wave whose length gives rise to the maximum rate of growth of a small 
disturbance. This procedure is based on Rayleigh's idea that the linear 
wave of maximum growth will be observed under nonlinear conditions. The 
analysis of the parameter dependence of these instabilities together with 
comparison with experiments gives this type of analysis a potential for 
uncovering the basic dynamics of the flow. 

Mathematically, the energy analysis of the nonlinear stability of flow 
of two fluids is frustrated by the fact that the boundary terms cannot be 
estimated a priori in terms of the dissipation [Joseph 1987]. After multi
plying equations (2c.4), (2c.5) and (2c.6) by u.,v. and w., the complex 
conjugates of u, v, w, we integrate and add the three equations using (2c.7) 
and boundary conditions (2c.8) , (2c.9) to obtain 

3 

~ LI (I [fj(W - c)(lul2 + Ivl2 + Iw12) + W'uw.] rdr 

= ~ t [ ml [I d(ru) 12 + 1 d(rv) 12 + 1 dw 12 
IR 1=1 Jill rdr rdr dr 

(2e.1) 

where lul2 = uu., Ivl2 = vv., .... Each term in the equation is a type of 
energy; thus equation (2e.1) represents the energy balance for the perturbed 
flow. The imaginary part of (2e.1) governs the growth of the energy of the 
small perturbations and it can be separated into four terms 

(2e.2) 

where 
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3 

1= L r (IW'Im{uw.}rdr, 
1=1 inl 

D =~ t r ml [ld(rU) 12 + Id(rV) 12 + Idw l2 
R 1=1 i nl rdr rdr dr 

+ ({j2 + ;:) (lul2 + Ivl2 + Iw12) 

+ !~Re{uv.}] rdr + ~ [lu(O)12 + Iv(OWJ, (2e.3) 

B = 1m {[-pru. + ~ml (d;~;)ru. + d;~~)rv. + ~; rw.) ]~+b}' 
E is the rate of change of kinetic energy of the perturbed flow; I is the 

rate at which energy is transferred from the basic flow to the perturbed flow 
through the Reynolds stress; -Dis the rate of viscous dissipation of the 
perturbed flow and B is the rate at which energy is being supplied at the 
two interfaces. Using the interface conditions (2c.1O) to (2c.17), the energy 
B can be written as 

where 

J* I_n2 _ n2t2.2 1 ( )1 2 } Bl~ = Ci,8R2 ~(W(~r-C)2 u.,., , 
J* I-n2 - b2t2.2 1 ( )1 2 BIb = Ci .8R2 b(W(b)-C)2 U b , 

B2~ = 2(I;m) [lv(.,.,)12 - Re {.,.,u'(.,.,+)u.(.,.,) + ~(\!,-_,:? lu(.,.,)12 

+ A.8f~~c)* W' (.,.,+)u. (.,.,) }] , 

B 2b = _2(l;m) [lv(b)12 - Re {bu'(b+)u.(b) _ b:~~:,:? IU(b)12 

+ A.8(t-c)* w'(b+)u.(b)}] , 

where (W - c). indicates the complex conjugate of (W - c). 

(2e.4) 

(2e.5) 

(2e.6) 

Bl~ and BIb are the energies supplied at the interfaces r = .,., and r = b 
due to surface tension. Surface tension destabilizes long axisymmetric 
(n = 0) waves {j < l/b (Bl~ > 0 and BIb> 0) and stabilizes short waves 
{j > 1/.,., (B1"" BIb < 0). Surface tension always stabilizes nonaxisymmetric 
perturbations (n ~ 1). B2~ and B2b are the energies supplied at the inter
faces r = .,., and r = b, due to the difference of viscosity of the two fluids. 
Since the amplitude of velocities u, v, w (or eigenfunctions) is arbitrary, the 
value of each term of the energy is normalized with D = 1. From the values 
of Bl~' Bib, B 2"" B 2b, I, and E, we can determine which interface is more 
unstable, where the instability arises and what kind of instability it is. 
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VI.2(f) Comparison with Previous Results for Two-Layer Core
Annular Flow 

To reduce the three-layer equations to two layers, we suppress all terms 
relating to the interface r = b. In the two-layer case, the basic flow is 

(2/·1) 

where 
(2/·2) 

and 
ml = (1, m), (I = (1, (), (l = 1, 2). (2f.3) 

We wish first to specify how many elements are needed to obtain re
liable results. Table 1 of Hu and Joseph [1989 a] lists the influence of the 
number of elements on the eigenvalue of interest for three situations. This 
table shows that 10 elements (5 in ill and 5 in il2 ) are sufficient for three
digit accuracy in the range of parameters we consider. Therefore, we present 
results with that number of elements. These results were frequently checked 
by using more elements. It was found that for larger Reynolds numbers and 
small viscosity ratios m, more elements are needed in the region outside the 
core which is occupied by the less viscous liquid. m ---+ 0 is a singular limit 
(cf. section VI.3). The calculations were compared with results of section 
VI.1 and JRR. Figure 1 of HJ 1 shows a comparison of both methods. The 
conversion of notation to those of section VI.1 [Preziosi, Chen and Joseph 
1989] is as follows: PCJ defined 

radius ratio a = R2/ Rl : 
wavenumber based on Rl : 
Reynolds number WoRdvl : 

a = 1/1], } 
a = /31], 
1Rl = 1R1]. 

(2/.4) 

The pseudospectral method of section VI. 1 gives rise to spurious eigen
values in the discretized system. This problem seems not to arise in the 
present finite element method. When numerical integration is done on the 
finite element matrices in (2d.1) and (2d.2), care must be taken at the first 
element because r = 0 is a singular point. This precaution is especially 
necessary when n = 1 because, in this case, u(O) and v(O) need not be zero. 

VI.2(g) The Viscous Core: m <1 

The case m < 1, with a viscous core and lubricating annulus was treated 
in section VI. 1. More results will be given for this case. Eigenfunctions are 
computed to evaluate the terms in the energy balance in an attempt to iden
tify the mechanisms of instability and the finite-amplitude consequences of 
these mechanisms by comparing with experiments. The computational re
sults, both for two-layer flow with m < 1 and m > 1 and for three-layer 
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flow, indicate that the axisymmetric mode of perturbation may be the most 
unstable, although the maximum growth rates for n = 0 and n = 1 are very 
close for large R. Therefore, only the results for n = 0 are presented in this 
section. 

VI.2(g)(i) The Fastest Growing Wave. When J* ,1/, m, ( and R are fixed, the 
growth rate {3c;. varies with wave number (3. There is a positive maximum 
growth rate at a certain wave number P provided the flow is unstable. 

Figure 2.1 shows the variation of the maximum growth rate a-~Pc;.(P) 
and corresponding wavenumber P with Reynolds number R when J* = 
1000, 1/ = 0.8, m = 0.1 and ( = 1. Core-annular flow is stable when 
RL < R < Ru. In this interval, a- = 0 at p = O. P decreases slightly at 
first, then jumps to zero at R = RL, remains zero in the stable region 
RL < R < Ru, and jumps up to a certain value at R = Ru, and finally 
decreases again. Figure 2.1 is typical for this case. When the stable interval 
of Reynolds number shrinks to nothing, the right and left branches of the 
curve giving the maximum growth rate merge at a certain value of R but 
the curve for P may have one jump at such R, indicating a switch from one 
mode of instability to another. 

VI.2(g)(ii) Energy Analysis for Two Cases with m < 1. We have shown 
in section VI.1 that some neutral curves for m < 1 have two branches: 
a lower branch which is associated with long waves leading to capillary 
instability caused by surface tension at low R and an upper branch which 
is associated with shorter waves at large R. The lower branch ends at 
wavenumber {3 = 1/1/ in the notation of this section or a: = 1 in the notation 
of section VI.1. Neutral curves for 1/ = 0.8 and 1/ = 0.7 are shown in figure 
2.2. For 1/ = 0.8, the neutral curve has two branches, while for 1/ = 0.7, 
the two branches have merged. In the present case, the energy equation 
(2e.2) is defined by (2e.3) with {} = {}l U {}2' The boundary terms BIb 

and B2b at the second interface are suppressed. For simplicity, we write 
BI1/ and B21/ as BI and B2. All the terms were computed in the energy 
equation E = I - D + BI + B2 corresponding to the two cases shown in 
figure 2.2. The eigenfunctions in the integrals defining the energy balance 
are evaluated for {3 = p, corresponding to the disturbance of fastest growth. 

The terms of the energy balance corresponding to 1/ = 0.8 and 1/ = 0.7 
are plotted as a function of R in figure 2.3. Stable core-annular flow with 
RL < R < Ru is possible for 1/ = 0.8, but not for 1/ = 0.7. Positive values 
mean energy is supplied by the disturbance, leading to instability, with 
the obvious opposite meaning for negative values. There are three different 
kinds of instability corresponding to: 

BI > 0 (capillary instability due to interfacial tension); 
B2 > 0 (surface wave instability due to a difference of viscosity, inter
facial friction); 
1- D{= 1- 1) > 0 (Reynolds stress instability. The production of 
energy in the bulk of the fluid exceeds its dissipation.). 
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It is known that B l , which is proportional to the surface tension param
eter J*, produces capillary instability modified by shear. This instability 
is always dominant at low R when m < 1. The instability associated with 
interfacial friction B2 is destabilizing at the lowest R, but is not as im
portant as capillarity. For larger but still small R (say, 100), the instability 
due to interfacial friction dominates interfacial tension. The Reynolds stress 
minus dissipation term I - 1 of the energy equation is stabilizing at small 
R and destabilizing at large R. Eventually, at large R, the flow is unstable 
by virtue of the production of energy in the bulk, with negligible contri
butions from the surface terms Bl and B2 , as in one fluid. In the stable 
case.,., = 0.8, when there is less water, the Reynolds stress does not grow 
rapidly and is dominated by the dissipation. When RL < R < Ru, the 
term 1- D(= 1- 1) is stabilizing and overcomes the destabilizing effect 
of the interfacial friction term B2 • We call this shear stabilization, though 
what actually happens is that the dissipation is large enough to dominate 
the other terms when RL < R < Ru. In the case.,., = 0.8, R> RL, the 
surface terms are relatively small, but stabilizing. 

The energy supplied by the production integral I is associated with the 
Reynolds stress in il and can be decomposed into two parts corresponding 
to the production of energy in oil in region ill and in water in region il2 • 

In ill, W' = 2mr I A is small when m is small, but W' = 2 riA in il2 • 

This thought leads to the idea that the instability at moderately high R 
is associated with the water, not the oil. This is what happens in the two 
cases corresponding to figure 2.3, and is illustrated by computations shown 
in figure 2.4 which show that h, the Reynolds stress production in the oil, 
is entirely negligible. 

VI.2(g)(iii) Comparison of the Energy Analysis with Experiments. In sec
tion Vl.l, we describe the types of instability that are generated from linear 
theory and compare these with experimental results of CGH. The density 
of oil used in the experiments was matched with water by adding carbon 
tetrachloride. This eliminated gravity effects, so that conditions assumed in 
the theory (negligible gravity) are achieved in the experiment. The observed 
flows were far from core-annular flows but the linear stability results were 
in rather surprising agreement with regard to the type of instability and 
the size of bubbles and slugs, which were computed from the wavelength of 
the fastest growing disturbances. 

The comparison of theory and experiment will be supplemented by 
computing all the terms in the energy equation, using the eigenfunction of 
the fastest growing mode, for each of the eleven cases shown in figure 1.1 
of chapter V. The computed results are exhibited in table 2.1. The method 
used to convert data given for the experiments into the values needed for 
computation is explained in section VI.1. Two of the columns given in the 
table are not needed for the computations; the volume fraction of water is 
determined when.,., = RdR2 is given, VwlV = 7r(~ - R~)/7r~, and the 
Reynolds number R' = WO(R2 - RdP21 Ji2 = R(1 - .,.,)elm in the water is 
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Fig. 2.1. [Hu and Joseph, 1989a) The wavenumber S of maximum growth and 
the corresponding growth rate 0- = SCi(S) as a function of R: 0 for 0-, f::. for S. 

~ 
Fig. 2.2. [Hu and Joseph, 1989a) Neutral curves for J* = 1000, m = 0.1, ( = 1: 
o for TJ = 0.8; f::. for TJ = 0.7. Sand U indicate the stable and unstable regions. 
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2,-----------------------------------, 

2 ~-----------------------------------, 

o 200 400 600 
R 

Fig. 2.3(a-b). [Hu and Joseph, 1989a] Variation with R of the terms 1 - D = 
1 - 1 ( x ), B I ( <> ) , B2 (6), and E (+) in the energy equation corresponding to the 
fastest growing disturbance with wavenumber /3, (J*, m , ( ) = (1000,0.1, 1). (a) 
1] = 0.8, (b) 1] = 0.7. Flows with negative E are stable. A discontinuity in these 
curves reflects a switch from one mode to another (mode jumping). 

3~-----------------------------------. 

2 

O~----~------------------------

-I 
o 2()() 4()() iR 

Fig. 2.4. [Hu and Joseph, 1989a] The Reynolds stress integral 1 = h + 12 is 
decomposed into an integral over ill and il2 with conditions specified in figure 
2.3 (a). 
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determined when the Reynolds number R and radius ratio are given. 
Roughly speaking, two kinds of flow are observed in CGH: small water 

drops in oil and oil bubbles in water. Experiment 2 is an exception, it 
appears to be a stable core-annular flow but its stability parameters put it 
close to the border of stability leading to water drops in oil, as in experiment 
1. The main factor controlling which phase appears is the water fraction 
(or radius ratio). There is a phase inversion at a value Vw/V around 0.45 
(or TJ around 0.75) with water emulsions or stable core-annular flow for 
smaller water fractions and some form of oil bubbles in water for larger 
water fractions. 

According to the linear theory, stable flows are those for which E < o. 
Table 2.2 shows that the least unstable flow among those in figure 1.1 of 
chapter V is experiment 2. This stable or nearly stable flow is achieved by 
balancing the destabilizing Reynolds stress minus dissipation I - 1 against 
the stabilizing effect of the interface term B2 associated with the viscosity 
difference. Capillarity Bl plays a secondary role. 

Emulsions of water drops in oil are seen in experiments 1 and 5. The 
effect of surface tension Bl is not important in the linear theory for these 
two flows. The instability is produced by the Reynolds stress in the water 
and is not introduced by effects at the interface which are stabilizing: Bl + 
B2 < O. In section V1.1, we have noted that the emulsifying instability 
for experiment 1 was for JR > Ru, above the upper critical branch of the 
neutral curve. The upper and lower critical branches have merged for the 
larger water fraction in experiment 5. In both experiments, the longest 
waves are stable. 

High Reynolds numbers alone will not emulsify water into oil, as experi
ment 11 shows. Evidently, water-into-oil emulsions occur at higher Reynolds 
numbers, above critical, when the water fraction is smaller than a critical 
value of about 0.45. 

At the other extreme, in all the flows where well-defined and fairly 
uniformly sized oil bubbles are observed, as in experiments 4, 8 and 11, 
table 2.2 shows that the dominant instability is due to surface tension: Bl 
dominates. The instability of the shorter slugs shown in experiment 3 is 
still dominated by surface tension. 

The interface term B 2 , arising from friction, does not dominate when 
m < 1. It is an important term in the balance, giving rise to slugs and 
bubbles in experiments 3, 7, 8 and 10. It will be shown in the next section 
that when m > 1 (water inside, oil outside), the friction interface term B2 
is the dominant mode of instability giving rise to travelling waves on the 
interface. 
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Table 2.1. Terms of the energy equation E = 1- 1 + Bl + B2 evaluated for 
the most dangerous mode corresponding to experiment numbers in figure 1.1 of 
chapter V. 

Exp. 

No. 1/ JR JR' Vw/V 1-1 Bl B2 E. 
0.9245 432.2 613.4 0.145 0.361 -0.013 -0.229 0.119 

2 0.8260 167.7 548.5 0.318 0.317 -0.008 -0.266 0.043 

3 0.7026 99.4 555.4 0.494 0.952 1.408 0.642 3.000 

4 0.4460 60.5 630.0 0.801 -0.802 5.784 -0.061 4.921 

5 0.7614 833.1 3736.4 0.580 2.521 0.004 -0.015 2.510 

6 0.6660 611.1 3836.6 0.556 1.746 0.026 0.034 1.805 

7 0.5748 499.9 3995.4 0.670 1.531 0.119 0.241 1.890 

8 0.3570 376.8 4554.2 0.873 0.223 4.383 0.275 4.880 

9 0.5532 1439.0 12085.4 0.694 0.165 0.001 -0.001 0.165 

10 0.3777 1148.2 13430.9 0.857 1.364 0.406 1.011 2.781 

11 0.2160 1026.1 15121.5 0.953 -0.276 4.480 0.116 4.319 

VI.2(h) The Viscous Liquid is on the Wall: m> 1 

This case was considered by Hickox [1971] who used a perturbation scheme 
for long waves and showed that this flow is always unstable to long waves. In 
this section, it is shown that surface tension destabilizes long waves at the 
smallest JR and the friction term B2 at the interface destabilizes at larger 
JR. The instability takes form as a travelling wave of growing amplitude. 

VI.2(h)(i) Neutral Curves, Parameters of the Fastest Growing Wave. 
Unlike the case m < 1, core-annular flow with m > 1 (the viscous liquid 
outside) is always unstable. The instability is always greatest for the ax
isymmetric mode and we shall present results for this case. Typical neutral 
curves are shown in figure 2.5. It shows that as JR ---- 0, 0: ---- 1 and 

dlogJR 1 d1R 
--- = - - ---- 00. 

do: JR do: 

The flow is unstable for smallJR when 0: < 1. The results just given appear 
to be true for all positive values J, m, (, so long as m > 1. 

Figure 2.6 shows the wavenumber 0: of the fastest growing wave and 
the maximum growth rate if as a function of JR for different values 'T} near 
1 and (J, m, () = (l05, 10, 1). For smallJR the wavenumber ofthe fastest 
growing wave is independent of 'T} and it is almost constant for JR< 100. 
From figure 2.6 (b) it is also evident that if ---- 0 as 'T} ---- 1. This means 



66 Chapter VI. Lubricated Pipelining: Linear Stability Analysis 

1~ r-----------------------------~ 

IR 

u 

1()2 

101 '----'---'--------''---- -'-_ __ ---.J 
o 2 4 6 

a=Pll 
8 

Fig. 2.S. [Hu and Joseph, 1989a) Neutral curves for different values of", near 1 
when (J* , m, () = (105 , 10, 1). U and S indicate the unstable and stable regions. 

that core-annular flow with water in the core and oil outside is only weakly 
unstable if the thickness of the oil coating is thin. 

VI.2{h)(ii) Energy Analysis. Figure 2.7 is a plot of the terms in the energy 
equation E = 1- 1 + Bl + B2 when (J,m,() = (l05, 10, 1) for TJ = 
0.7 and 0.99. As in the case m < 1, surface tension plays an important 
role in instability at small values of R, leading to the formation of water 
drops in oil. The main feature of the flows with m > 1 is that the friction 
term, which is proportional to the viscosity difference, is the dominant 
mode for instability at all but the smallest R. The instability due to the 
Reynolds stress is not dominant when m > 1. In fact, I -1 is often negative 
(stabilizing). This property of the Reynolds stress is compatible with the 
numerical evidence to date that Hagen-Poiseuille flow of one fluid in a round 
pipe is linearly stable. When the oil layer is very thin, the flow is only very 
weakly unstable. This fact, which we noted in our discussion of figure 2.6, 
is also evident in figure 2.7 (b) . 

VI.2{h)(iii) Comparison with Experiment. Aul and Olbricht [1990) have 
presented results of experiments corresponding to the analysis of this sec
tion. Their experimental apparatus is a glass capillary tube of round cross
section of radius 27 f.1.m (R2 = 27f.1.m). The experiments were arranged so 
that the glass tube was wet by UeON oil of the same density as water. 
Water flows in the core. In the experimental results given to us, the film 
thickness of the oil is 1.8 f.1.m. Hence Rl = 25.2f.1.m. The motion of the fluid 
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is monitored with a microscope. The values of material parameters are : P1 
= P2 = 106 g/m3 , J.t1 = 1 g/ms, J.t2 = 173 g/ms, and T = 3.5 g/S2. Hence 
'" = Rt/R2 = 0.933, m = J.t2/J.t1 = 173, (= 1 and J* = TR2P/J.t~ = 94.5. 

The flow data are expressed as a superficial velocity based on the vol
ume flux of water U = Qt/7rRJ. . We compute the mass flux of water by 
integrating the basic velocity (2f.1) over the core. 

Thus 
1 2 m",2 + 2(1- ",2) 

U = Wo-2'" 2 (1 2) = 0.436Wo· 
m", + -'" 

We may now form expressions for the following quantities: 

centerline velocity: Wo = RJ.tt/P1R2 = 3.704 x 1Q4RJ.tm/s 

superficial water velocity: U = 0.436Wo = 1.615 x 104RJ.tm/s 

wavelength: L = 27rR2//3 = 169.6//3J.tm 

growth rate: t = o-Wo/ R2 = 1.372 X 1Q30-Rs-1 

wave speed: C = er(/3)Wo = er(/3)3704 x 1Q4RJ.tm/s 

where 0- = /3ci(/3). 
The superficial water velocities U, which were specified in the ex

periments, range from 299 J.tm/s to 697 J.tm/s corresponding to 0.0185 
< R < 0.0432, with an average U = 448 J.tm/s and an average R = 
0.0277. The wavelengths observed in the experiments ranged between 200 
J.tm < L < 280J.tm, with an average L = 225 J.tm. 

The theoretical predictions for the conditions specified in the experi
ments are given in table 2.2. It is found that the critical wavelength L does 
not depend on R for small R. In table 2.3, the computed values for the 
terms in the energy balance are presented. These flows are unstable with 
small growth rates. The Reynolds stress minus dissipation I - 1 is always 
negative (stabilizing). At the smallest R, the instability is due to a combina
tion of capillarity and interfacial friction. At larger R, in the region of the 
experiments, capillarity (B1 ) has been suppressed and interfacial friction 
(B2 ) supplies the destabilizing mechanism. 

The following are points of comparison between theory and experiment: 

(1) The theory predicts instability in all situations and no stable flows are 
observed. 

(2) The theory predicts instability to axisymmetric disturbances and only 
these are observed. 

(3) The theory predicts a travelling wave whose amplitude is increasing. 
This type of wave is observed. 
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(4) The theory predicts that the wavenumber of the fastest growing wave is 
independent of R in the range of small R in the experiments. This also 
appears to be true of the experiments though there is a non-systematic 
variation in the observed values of L, 200 < L < 280 which does not 
correlate with R. 

(5) The value of L = 224 is predicted and a mean value L = 225 is observed. 

Table 2.2. Predicted values of the lengths of the fastest growing wave L, the 
growth rate t and the wave speed C for the conditions in the experiments of 
Aul and Olbricht. 

R P iT Cr L(,.m) :t(l/s) C(,.m/s) 

0.005 0.757 3.5941<10-3 9.900x10- 4 224.0 2.465x10- 2 0.1833 

0.01 0.757 1. 797xlO-3 9.900xlO-4 224.0 2.465x10- 2 0.3667 

0.0277 0.757 6.488xlO- 4 9.900xlO-4 224.0 2.466xlO-2 1.016 

0.05 0.757 3.595x10-4 9.900xlO-4 224.0 2.466xlO- 2 1.833 

0.1 0.757 1.799xlO-4 9.90OxlO-4 224.0 2.468xlO- 2 3.667 

Table 2.3. Values of the Reynolds stress minus dissipation I - 1, the interfacial 
tension surface term B l , the frictional term at the interface due to the viscosity 
difference B 2 , and the rate of change of disturbance energy E for the conditions 
in table 2.2. 

R 1-1 Bl B2 E 
0.005 0.21x10-6 -1 0.6605 0.3393 0.2117xlO-6 

0.01 0.41xlO-6 -1 0.3264 0.6733 0.4173x10-6 

0.0277 0.55xlO-6 -1 0.05934 0.9402 0.5816xlO-6 

0.05 0.49x10-6 -1 0.01899 0.9805 0.6065x10-6 

0.1 0.16xlO-6 -1 0.4819xlO- 2 0.9946 0.6155xlO-6 
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VI.2(i) Stability of Thin Liquid Threads 

When 1] is sufficiently small, the core degenerates into a thin thread with a 
velocity profile 

W(r)",{ 1, rE[O,1]], 
1-r2, rE[1],l] 

independent of m when m1]2 « 1. Moreover, both W'(1]-) and W'(1]+) -0 
with 1]. We may, therefore, expect limiting results, giving the instability of a 
uniform jet at the center of a Poiseuille flow of another liquid. The Poiseuille 
flow of a single liquid in a round pipe is always stable to small disturbances, 
and this stability does not appear to be disturbed by the small-diameter 
unstable jet. The jet itself cannot depend on W in this limit of small 1] and, 
if a new eigenvalue c = R(l-c) is defined, then it can be easily verified that 
the interface conditions are independent of R. In fact, the numerical results 
yield eigenvalue c proportional to l/R and limiting values of the neutral 
curve and wavenumbers of the fastest growing wave which are independent 
of R. In section VI. 1 (k), we examined a capillary jet limit for a very viscous 
core, and it reduced to the one treated by Chandrasekhar [1961] in which 
J(= TRIPI/J-td, rather than R, appears as the controlling parameter. The 
thin jets studied here also have this property. The analysis of the energy of 
these jets shows clearly that when 1] - 0, we are dealing exclusively with 
capillary instability. The disturbance energy associated with the Reynolds 
stress minus dissipation and with interfacial friction is stabilizing. 

VI.2(i)(i) Neutral Curves, Parameters of the Fastest Growing Wave. The 
parameters used in this section are the wavenumber a = 1]/3 where 
1] = RI/R2 , the usual Reynolds number R = PI R2WO/J-tb and the surface 
tension parameter J* = T R2PI / J-t~. We shall give results for two represen
tative values m = 0.1 and m = 10 and confine our attention to the case 
of matched density P2 = Pl. If Rand J* are for m = 0.1, then lOR and 
100J* are the Reynolds number and surface tension parameter when m 
= 10. The thin jet and its surrounding fluid have the same density and 
different viscosities: say oil is inside and water is outside Or vice versa. 

Figure 2.8 shows that the neutral curves are independent of R for 
small R and are also independent of m for small R. The neutral curves 
begin at R=O and a = 1, at which point the figure indicates that 8R/8a = 
00. The flow is unstable for wavenumbers on the left of the neutral curves. 
Neutral curves of this sort are characteristic of capillary instability in which 
the main action of viscosity enters through J* rather than R. 

Figure 2.9 is a log-log plot of the maximum growth rate a* = iiCi(ii), 
as a function of R for different 1]. The straight lines show that a* is pro
portional to l/R, which indicates that the expression c =R(l - c) is a 
natural grouping of terms. Figure 2.10 shows that the wavenumber of the 
fastest growing wave is basically independent of R for small 1] irrespective 
of whether the more viscous liquid is inside or outside. 
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Table 2.4 shows that the instability of a thin jet is due to capillarity. 
There are only weak effects of IR and m through the stabilizing action of 
the Reynolds stress minus dissipation, I -1, and the interfacial friction B 2 • 

Table 2.4. Terms of the energy balance for thin liquid threads. 

IR Bl B2 I-I E 
(J" ,m,7),()=(1000,0.1,0.05,1) 

5 2.422 -0.05065 0.1141xl0-5 -1 1.3717 

50 2.422 -0.05063 0.1140xlO-3 -1 1.3716 

100 2.422 -0.05059 0.4545xlO-3 -1 1.3723 

250 2.422 -0.05026 0.2793xl0-2 -1 1.3748 

500 2.421 -0.04919 0.1058xlO- 1 -1 1.3829 

(J" ,m,7),()=(105 ,10,0.05,1) 

10 3.681 -0.2285 0.4840xl0- 7 -1 2.4523 

100 3.681 -0.2285 0.4840xlO- 5 -1 2.4523 

500 3.680 -0.2283 0.121OxlO- 3 -1 2.4522 

2000 3.672 -0.2250 0.1914xl0- 2 -1 2.4490 

Table 2.5. Capillary instability of a liquid jet in air (J, m, (, 1R.1 ) = (1010, 10-3 , 

10-4 , 10-3 ). 

"., 0.8 0.6 0.4 0.2 0.1 0.5 
a 0.6970 0.6969 0.6968 0.6968 0.6967 0.6965 

VI.2(i)(ii} Capillary Instability. In the study of instability of jets, it is 
appropriate to use the radius of the jet Rl as the scale of length. We have 
introduced dimensionless parameters J = T R 1PI/ f.L~ and IRI = WOR 1PI/ f.Ll 

and the wavenumber a based on R1 • 

Consider the capillary instability of a liquid jet in air. This corresponds 
to core-annular flow with a liquid core and an air annulus. Therefore, we 
take the viscosity ratio m and density ratio ( to be very small. If the influ
ence of the air is neglected and the jet is considered inviscid, this capillary 
instability leads to Rayleigh's result that the maximum growth rate occurs 
for the wavenumber a=0.697. The jet presumably breaks into bubbles of 
length 211" RI/0.697 because of surface tension. Table 2.5 lists the results of 
computations, where J is taken very large and IRI very small to ensure that 
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Fig. 2.10. [Hu and Joseph, 1989a] The wavenumber 0: of the fastest growing wave 
as a function of TJ when the density is matched, ( = 1, and capillary instability 
dominates. (a) (J, RI, m) = (1010 ,0.1,0.1); (b) (J, R I, m) = (2 X 109 ,10-3 ,103); 

(c) (J,RI,m) = (2 x 103 ,10-3 ,10-3 ). 

surface tension dominates the instability. The agreement with Rayleigh's & 
= 0.697 is excellent. 

In the above case, the inertia of the fluid outside the jet could be 
neglected. Now let us consider another extreme case: a jet of air injected 
into liquid. The capillary instability of such a 'hollow jet' was studied by 
Chandrasekhar [1961] with the result that the maximum growth rate is 
achieved at &=0.484. It is obvious that in this situation the boundary of 
the pipe wall will have an effect on the instability, but this effect should 
become less as the core becomes thinner. In the computations here, m and 
( are both taken very large to simulate the situation. It is found that & = 
0.489 at ", = 0.1, and & = 0.487 at ", = 0.05 which are very close to the 
result of Chandrasekhar's 0.484. 

For ( = 1, the inertia of both the fluid in the core and in the annulus 
cannot be neglected. Figure 2.10 presents results for three cases. For all 
the cases, the calculated limit of & as ", -+0 depends on the value of J and 
m. Computations show that for very large J, where surface tension plays 
a dominant role, the limiting value of & is almost the same for different 
viscosity ratios m regardless of whether m < 1 or m > 1. For fixed m, the 
limiting value increases with J and also tends to a unique J-independent 
limiting value when J is large. 
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VI.2(j) Stability of Core-Annular Flow in Three Layers 
(Hydrophobic Pipe Walls) 

For some construction materials, it is impossible to make the water wet 
the pipe wall; the pipe wall is hydrophobic and takes on oil preferentially. 
Teflon is an example. It is, however, possible to get a lubricated flow in such 
a situation. There is an annulus of water between the oil in the core and the 
oil on the wall. In fact, it will be shown that core-annular flow of this type 
is always unstable. In these cases, waves are seen on the surface of the oil 
which wets the wall. It appears that such waves are equilibrated nonlinearly 
and that they are driven by an instability due to friction at the interface. 
In this section, we give the results from the linear theory of stability for 
the three-layer problem. The finite element code described earlier is used. 
A sample of results will be given, restricted to the case of density-matched 
fluids (= 1 and compared with two representative two-layer problems. The 
representative problems are for 'f/ = 0.6 and '" = 0.8. When '" = 0.8, the 
neutral curve consists of two branches; whereas for '" = 0.6 the neutral 
curve is continuous and not in separate branches. 

VI.2(j)(i) Neutral Curves. In figure 2.11 we present neutral curves for the 
three-layer problem. The unstable region lies on the left side of each neutral 
curve and the stable region lies on the right. The flow is always unstable 
to long waves, as in the two-layer case with m > 1. The neutral curves 
all begin at the wavenumber (3 = 1/",. The neutral curves for b=O.90 and 
b=0.95 in figure 2.11 (a) have a corner at a certain (3-value; the neutral 
curves for b= 0.8 and b= 0.9 in figure 2.11 (b) are rather strange. These 
unusual features will be explained in what follows. 

For the cases considered in this section, it was found that three-layer 
core-annular flow may be regarded as the composition of one two-layer flow 
with m < 1 and another two-layer flow with m > 1, as shown in figure 2.12. 
In the decomposition, we define the dimensionless parameters R, J* based 
on one fluid (fluid 1), as in (2c.2), for all three cases. This decomposition 
will provide the explanation of the main features of the neutral curves. In 
figure 2.13, we compare two- and three-fluid neutral curves when", =0.8 
and 0.6. The neutral curve for the three-layer case (1) begins at (3 = 1/"" 
first following the lower branch of the neutral curve for case (2), then fol
lowing the neutral curve for case (3) until it meets the upper branch of 
the neutral curve for case (2). At this point, it makes a sharp turn to the 
right, roughly following the upper branch. Since the upper branch of the 
neutral curve corresponds to instability due to Reynolds stress in the water 
layer, the real characteristic length for this instability is the thickness of 
the water layer. When another layer of fluid is added near the pipe wall, 
this characteristic length decreases, and correspondingly the wavenumber 
(3 increases. Therefore, the position of this part of neutral curve for the 
three-layer case moves to larger (3, as seen in figure 2.13 (a). The increase 
in the wavenumber for this part of the neutral curve is not linearly propor-



VI.2 Energy Analysis 75 

300~------------------------------------. 

200 

100 

500 

IR 
400 

300 

200 

100 

o 

2 4 8 

u 

10 
~ 

Fig. 2.11(a-b). [Hu and Joseph, 1989a] Neutral curves for different values of 
b = R2/R3 when J* = 103 , m=O.l and (a) Tf = 0.8, (b) Tf = 0.6. 

tional to the decrease in the thickness of the layer. Computations show that 
Reynolds stress near the pipe wall gives a relatively larger contribution to 
the total integrated Reynolds stress in the water. In figure 2.13 (b), curve 
(1) starts off following (2) , then follows (3), and then deforms but swings 
back to follow what can be thought of as a deformed curve (2). It is ex
pected that as the outer layer becomes thinner (b -+1), this deviation of the 
neutral curve becomes less. Therefore, the neutral curve for the three-layer 
flow can be viewed as a combination of neutral curves for case (3) and the 
deformed neutral curve for case (2) in which the upper branch is moved to 
larger {3. 
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(1) m=O.l 

+ 

Fig. 2.12. [Hu and Joseph, 1989a) Diagram showing how three-layer core-annular 
flow could be understood from the composition of two two-layer flows. 

VI.2(j)(ii) Parameters of the Fastest Growing Wave. In the three-layer 
problem, b = R2/ R3 is the radius of the interface nearest the wall at r = 1 
and 17 = Rtf R3 , 17 ~ b ~ 1, is the radius of the core. The case in which a 
thin oil-layer is on the wall, b -+ 1, is of practical interest. Figure 2.14 shows 
the growth rate a((3) for (J*, m, 17) = (103 ,0.1,0.8) for different Rand 
(a) b= 0.9, (b) b= 0.99. Discontinuities in the slopes of the curve mean that 
the mode of instability has changed. For example, the growth-rate curve 
for R = 200, shown in figure 2.14 (a) , has two peaks: analysis of the energy 
shows that the first peak is associated with interfacial friction, the second 
with an instability due to the Reynolds stress in the middle (water) layer. 
As R increases, the second peak grows. The magnitude of the growth rates 
decreases as b -+ 1. Figure (b) shows the growth rates on a logarithmic scale. 
The first peak on the curve for R = 50 is due to instability induced by in
terfacial tension and friction on the interface at r = 17. The high peak on the 
curve for R = 500 corresponds to an instability due to the Reynolds stress 
in the water layer. The curve for R = 150 is smooth because there is only 
one unstable mode due to interfacial friction; the corresponding two-layer 
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flow is stable when 1R = 150 (see figure 2.2). 
Figure 2.15 shows the maximum growth rate a = jjci(jj) and wavenum

ber jj of the fastest growing wave as a function of 1R for the conditions 
specified in figure 2.14 when 'TJ = 0.8. The corresponding two-layer flow for 
'TJ = 0.8 has an interval, shown in figure 2.2, in which core-annular flow is 
stable. The curves in figure 2.15 can be divided into three intervals. The 
first is an interval of small 1R where the growth rate for interfacial tension 
and friction is larger at the inner than at the outer interface. The second 
interval is for medium 1R where the growth rate for instability at the outer 
interface dominates. Actually, the inner interface is stable for most values of 
:JR in this section. The growth rate for the eigenvalue arising from the outer 
interface tends to zero as b -+1. This is reflected in figure 2.15 (b) when 
b = 0.99 where the boundary of this interval is quite sharp and just fits the 
stable region of two-layer flow in figure 2.2. The third interval is for larger 
1R where the growth rate of the eigenvalue arising from the inner interface 
again is the larger one and the flow is unstable due to the Reynolds stress. 
The jumps of jj indicate changes in the dominant mode of instability. The 
case 'TJ = 0.6 does not exhibit mode jumping, because the corresponding 
neutral curve for the two-layer problem shown in figure 2.2 does not have 
distinct branches. In all the cases, the growth rate for instability is larger 
at the inner than at the outer interface. 

Figure 2.16 demonstrates that the difference between the two- and 
three-layer cases tends to zero as the outer layer gets thinner, b -+1. Thus, 
a thin layer of oil on the wall of a pipe need not be a serious impediment 
to the lubrication of an oil core with water. 

VI.2(j)(iii) Energy Analysis. In three-layer core-annular flow, there are two 
interfaces giving rise to two interfacial eigenvalues and using energy analy
sis, we can again determine the sources of the instabilities. 

Figure 2.17 shows the graph of the terms in the energy equation, E = 
I - D + B1T/ + Blb + B2T/ + B 2b, corresponding to growth rate curves shown 
in figure 2.15. These curves are associated with mode jumping which is 
evident from figure 2.15. In the first interval, B1T/ and B2T/ are destabilizing. 
The instability is induced at the inner interface. As :JR increases, the first 
instability is a capillary instability due to interfacial tension (B1T/); then 
interfacial friction B2T/ becomes important. At higher :JR, in the second 
interval, B2b is largest; the instability is due to the interfacial friction at 
the outer interface (we believe this produces waves at the outer interface). 
At still higher :JR, in the third interval, instability due to the Reynolds 
stress becomes dominant. This type of instability can be associated with 
the formation of emulsions of water in oil, at least in some cases. 

In lubricated pipelining, the core-annular flow with capillary instabil
ity (oil bubbles or oil slugs in water) or surface waves is also effective for 
lubricated transport of very viscous oil, although not as effective as stable 
core-annular flow. The most undesirable situation is when water emulsifies 
in the oil. This leads to a breakdown of lubrication. The results of linear 
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the outer wall is thin, (r,m,b) = (103 , 0.1, 0.99). 0, Two layers; 6., three layers. 
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stability theory suggest that the oil layer at the pipe wall does not have 
much influence on the operation of lubricated pipelining since it induces 
only slight changes on the onset of instabilities due to the Reynolds stress 
in the water. 

Hooper and Boyd [1987) studied the instability of Couette flow of two 
superposed fluids of different viscosity when the depth of the lower less 
viscous fluid is bounded by a wall and the interface, while the depth of 
the upper viscous fluid is unbounded. They studied an instability at large 
Reynolds number (see also section IV .6b) revealed first in a numerical study 
of Renardy [1985) and suggested that the instability is due to the distur
bance vorticity generated by the solid boundary. They showed that this 
instability is driven by the Reynolds stress in the water when m < 1. In 
fact, the Reynolds stress is proportional to W' where W(r) is the forward 
velocity of the basic flow. W' in the water is about 11m times larger than 
W' in the oil core, leading to larger Reynolds stress in water than in oil. 
Figure 2.18 shows that the dominant instability at high R continues to be 
associated with the Reynolds stress in the water annulus even when there 
is an oil layer at the wall; the Reynolds stress contribution 12 in the inter
mediate low-viscosity layer is clearly much larger than the Reynolds stress 
contribution h in the oil core or 13 in the oil layer on the pipe wall. The 
origin of this instability in the water when a layer of oil is on the wall needs 
clarification. 

VI.2(j)(iv) Amplitude Ratio and Phase Shift of the Inner and Outer In
terface. We recall that 61(z, t) is the deviation of the inner interface from 
a mean radius Rl and 62 (z, t) is the deviation of the outer interface from a 
mean radius R2 • In the linearized theory 

where 61 = 161Iei <Pl, 62 = 1621ei <P2 are complex constants. The amplitude 
ratio 161 1/1621 and phase shift <P2 - <PI give the relative shape of the two 
interfaces in the linearized approximation. 

Figure 2.19 shows the amplitude ratio and phase shift as a function 
of R for (J*, m, "') = (103 , 0.1, 0.8) and b = 0.99. There are three distinct 
regions of Reynolds numbers. In the first and third regions, the flow of 
the corresponding two-layer problem is unstable (see figure 2.16 (a)). This 
means the main instability for low and high R in three-layer flow is associ
ated with the core-lubricant interface or the water annulus. The magnitude 
of the amplitude ratio for these R is largely dependent on the thickness 1-b 
of the outer layer. The instability in these cases is reflected in the relatively 
large deformation of the inner interface. For R in the range RL < R < Ru, 
the two-layer core-annular flow is stable and the only instability is due to 
interfacial friction at the outer interface and 161 1/1621 < 1, with only small 
variations with the thickness 1 - b. There is always a phase shift between 
the two interfaces, except at the smallest R where interfacial tension is 
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Fig. 2.19. [Hu and Joseph, 1989aJ Amplitude ratio 181 1/182 1(0), and phase shift 
4>1 - 4>2(£::') . (J*,m,l1,b)=( 103 ,0.1,0.8,0.99). 

dominant. The phase shift and amplitude ratio appear to tend to limiting 
values for large R. 

VI.2(k) Conclusions 

Linear stability analysis of core-annular flow leads to the following conclu
sions: 

(1) There are three different kinds of instability identified through the en
ergy analysis: (a) an interfacial tension instability or capillary instabil
ity; (b) an interfacial friction instability due to the viscosity difference 
across the interface; (c) a Reynolds stress instability. 

(2) At low Reynolds numbers, instability due to interfacial tension is dom
inant. 

(3) Interfacial friction causes instability in two-layer flow with m > 1 when 
R is relatively large. It may also dominate the instability for three-layer 
flow at values of R in the range where two-layer core-annular flow with 
m < 1 would be stable if the water fraction were smaller. 

(4) Instability due to the Reynolds stress is dominant in two-layer flow 
with m < 1 and the the three-layer flow when R is sufficiently large 
(corresponding to the upper branch of the neutral curve) and the core 
is not very thin. 
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(5) The Reynolds stress instability is always associated with the less vis
cous fluid layer. Even in the three-layer flow where a viscous layer of 
fluid is on the pipe wall, the Reynolds stress instability is induced by 
the less viscous fluid in the intermediate layer. The possibility raised 
by the work of Hooper and Boyd [1987] that this instability is due to 
the disturbance vorticity generated by the solid boundary needs to be 
reconciled with the observation that we have this type of instability in 
the water even when it does not touch the solid boundary. 

(6) Comparison with the experiments of CGH suggests that bubbles or 
slugs of oil in water are associated with interfacial tension instability 
or capillary instability; the emulsification of water into oil is correlated 
with the Reynolds stress instability. The water fraction is an impor
tant factor in determining the phase inversion with water emulsions, 
in achieving stable core-annular flow for small water fraction, and in 
the formation of some types of oil bubbles in water for larger water 
fractions. Comparison with the experiments of Aul and Olbricht also 
suggests that interfacial friction instability generates interfacial waves 
which may equilibrate nonlinearly. 

(7) Two-layer core-annular flow with m < 1 and rJ near 1 undergoes the 
following scenario of instabilities as R is increased: instability due to 
interfacial tension, stabilization of the instability of interfacial ten
sion associated with the growth of instability due to interfacial fric
tion, complete stabilization of core-annular flow, instability due to the 
growth of Reynolds stresses in the lubricating layer. If rJ is smaller than 
say 0.7, the stabilization of core-annular flow will not occur. When the 
core is very small (rJ -+0), only the instability due to interfacial tension 
(capillary instability) will occur. 

(8) Two-layer flow with m > 1 is always unstable. It is only weakly un
stable if the thickness of the oil coating is very small (the maximum 
growth rate a -+ 0 as rJ -+1). 

(9) In two-layer flow with m > 1, there are two instabilities: interfacial 
tension at lower R, and interfacial friction at higher R. Instability due 
to Reynolds stresses does not occur because the flow with just one fluid 
would be linearly stable. 

(10) Core-annular flow with a very thin core (rJ -+0) undergoes instability 
due to interfacial tension alone, when m > 1 or m < 1. The disturbance 
energies associated with the Reynolds stress minus dissipation I - D 
and with interfacial friction B2 are stabilizing. The neutral curves and 
wavenumbers of the fastest growing wave are independent of R; the 
maximum growth rate is proportional to 1 fR. This is consistent with 
the fact that as rJ -+0, the expression c = R(1 - c) is independent of 
R, as in the theory of capillary instability. 

(11) In general, the capillary instability of jets depends on parameters J* , m 
and (. Rayleigh's capillary instability of an inviscid jet with 0:= 0.697 
emerges when the density ratio ( and viscosity ratio m are very small. 
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Capillary instability of a 'hollow jet' with a= 0.484 emerges when the 
density ratio, and viscosity ratio m are very large. 

(12) Three-layer core-annular flow, denoted as flow (1), may in some in
stances be regarded as the composition of one two-layer flow with m < 
1 (denoted by (2» and another two-layer flow with m > 1 (denoted 
by(3». The neutral curve for (1) can be viewed as a combination of the 
neutral curve for (3) and the deformed neutral curve for (2) in which 
the upper branch is moved to larger wavenumbers. 

(13) The three-layer flow considered in this section is always unstable. 
Roughly speaking, as R increases, it undergoes the same sequence of 
instabilities as two-layer flow with m < 1 except that the stable core
annular flow region is destabilized by interfacial friction at the outer 
interface. 

(14) As the viscous layer coating the pipe wall becomes thinner (b -+1), 
the difference between two-layer flow with m < 1 and three-layer flow 
tends to zero. Thus, a thin layer of oil on the wall of a pipe need not 
be an impediment to lubricated pipelining. 

(15) The amplitude ratio 161 1/1621 is largely dependent on the thickness of 
the outer layer (1 - b), when the instability is induced at the inner 
interface or in the middle water annulus reflecting a relatively large 
deformation of the inner interface. Except at the smallest R, there is 
always a phase shift between the two interfaces. 

VI.2(l) Comparison with Field Data: Scale-up, Transition to 
Water in Oil (w/o) Emulsions 
Field Data. We were given field data by V. Kruka and G. Geiger of West
Hollow Research Center of the Shell Development Company in the following 
form. 

Outline of the Test Cases 

1. Lower limit of viscosity 

Input: pipe D = 6.249 in. 
pipe wall roughness f=150xlO-6ft 
oil flow rate V 1 oil =500 gpm 
annular water flow rate Vlwater=165 gpm 
interfacial tension 20 dynes/em 
oil viscosities 100000 cs, 10000 cs, 1000 cs, and lower to limit 
(i.e., core-flow breakup) 
fresh water properties at 60°F 

Output: frictional pressure gradient for each oil viscosity 

wave characteristics such as wavelength and amplitude 
lower limit of viscosity 

2. Pipe diameter effects 
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Input: pipe D's 4.026, 6.249, 10, 14, 20, 26, 32, 40 and 48 in. 

pipe wall roughness €=150x la-6 ft 
water to oil flow rate Vlon/Vlwater=0.20 
interfacial tension 20 dynes/cm 
oil viscosity 10000 cs 
mean (bulk) velocity VltotaI/Atotal=5 fps 
fresh water properties at 60°F 

Output: frictional pressure gradient for each pipe D 

wave characteristics for each pipe D 
maximum mean velocity at each pipe D 

We were asked to obtain the output by inputting the given data into 
our theory. From the start, we knew that there was no way we could get 
the wave amplitude or frictional pressure gradient when the flow rates were 
prescribed from a linear theory. However, we evidently were successful in 
predicting wave lengths, wave speeds, and the conditions controlling the 
transition to w/o emulsions. 

Transition to w/o Emulsions. We identified the transition to emulsions as a 
mode jump in which the fastest growing mode of the linear theory changes 
discontinuously as the viscosity is decreased, with the other parameters 
held constant. For the larger viscosities, the most dangerous disturbance is 
a short wave which gives rise to waves driven by interfacial friction. There 
is also a long wave mode of instability arising from Reynolds stresses in 
the water, as in figures 2.20-2.22, but the maximum growth rate for the 
long waves is smaller than for the short waves for the 100000 cs, 10000 cs 
and 1000 cs oil. At 500 cs, the situation is reversed, as in figure 2.23 and 
the maximum growth rate is for a long wave and is associated with the 
Reynolds stress in the water (see table 2.6). Perhaps this transition can be 
associated with a transition to turbulence in the water. 

The transition to w / 0 emulsions depends also on the water fraction. 
You will never see water/oil emulsions in systems in which much more 
water than oil is present. This appears to be related to a problem of phase 
inversion for packing of liquid spheres. 

We found that for each and every one of the test cases, the mechanism 
which produces instability is the interfacial friction B2 , proportional to the 
viscosity difference at the interface. The other two mechanisms, Reynolds 
stress in the water and interfacial tension, are stabilizing. In our previ
ous work, we have always found that this instability profile corresponds 
to instability of PCAF, but stability of nonlinearly equilibrated interfacial 
waves which industry regards as stable core-flow. For all these, we produce 
a wavelength and a wave speed. 

The last entry in table 2.6 shows sharply different stability properties 
than all the others. This case would correspond to 500 cs oil and the in
stability is produced by the Reynolds stress in the water: the interfacial 
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Fig. 2.20. Neutral curves (a) and growth rates (b) for the 100,000 cs oil in the 
test group on the lower limit of viscosity m=.OOOOll, R=2.1. The dashed line in 
(a) is at R=2.1. The maximum growth (table 2.6) is at /3 = 2.56. 
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Fig. 2.21. Neutral curves (a) and growth rates (b) for the 10,000 cs oil in the 
test group on the lower limit of viscosity m=.OOOll, IR=21. The dashed line in 
(a) is at IR=21. The maximum growth (table 2.6) is at [3 = 8.24. 
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Fig. 2.22. Neutral curves (a) and growth rates" (b) for the 1000 C8 oil in the test 
group on the lower limit of viscosity m=.OOll, 1R=21O. The dashed line in (a) is 
at lR=21O. The maximum growth (table 2.6) is at i3 = 19.54. In this case there is 
a narrow band 1R for which it is possible to get stable core-annular flow without 
waves. 
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Fig. 2.23. Neutral curves (a) and growth rates (b) for the 500 cs oil; m=.0022, 
IR=421.05. The dashed line in (a) is at IR=421.05. The main feature is that the 
maximum growth is now in the unstable region on the left, with a much longer 
wave for the fastest growing disturbance. i3 = 0.63, L = 7rDjO.63. The analysis of 
energy shows that the Reynolds stress in the water is now the cause for instability 
and we expect emulsions of water in oil. 
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friction is now stabilizing (on this mode corresponding to the maximum 
wavelength). From our previous experience, comparing linear theory with 
experiments, we have come to associate this type of instability (and the 
associated neutral curve) with a kind of turbulence in water, leading to the 
emulsion of water in oil and the failure of core-flow. 

Basic Quantities for the Computation. Since the basic flow (concentric core
annUlar) is given by (lb.7), the centerline velocity is then 

F 
Wo = -4 RJ(mTJ2 + 1 _TJ2) 

Jl.2 

where TJ = Rd R2 is the radius ratio. From the velocity profile of the basic 
flow we can calculate the flow rate in the core (cf. equation VII.(18.1O)
VII.(18.1l)) 

l Rl 7r 2 mTJ2 + 2(1 - TJ2) 
Ql = 27r rW(r)dr = -2 WORI 2 1 2' 

o mTJ + -TJ 

the flow rate in the annulus 

l R2 7r (1 TJ2)2 
Q2 = 27r rW(r)dr = -2 WoR~ 2 - 1 2' 

Rl mTJ + -TJ 

and the ratio of these flow rates 

From the above formula, we can solve for the radius ratio 

TJ= 
l+q- VI +mq 

q+2-m 

If the flow rate Ql or Q2 is given, we can calculate the Reynolds number 
for the flow by 

lR = WOR2 = mTJ2 + 1 - TJ2 Ql = mTJ2 + 1 - TJ2 Q2 
VI ~(mTJ2 + 2(I-TJ2)) TJR1Vl ~(I-TJ2)2 R2Vl· 

If the mean bulk velocity V is given, then 

Ql +Q2 Wo 1- (l-m)TJ4 
V = 7r R~ =""2 mTJ2 + 1 - TJ2 ' 

lR _ 2(mTJ2 + 1 _TJ2)V R2 
- (1 - (1 - m)TJ4)vl . 

Computation for the Lower Limit of Viscosity. 

Input 

Pipe radius R2=3.124 in.=7.936 cm 
Interfacial tension T=20 dynes/cm =20 g/S2 



VI.2 Energy Analysis 91 

Oil How rate Ql =500 gpm=0.03154 m3 /s 
Water How rate Q2=165 gpm=0.01041 m3/s 
Oil/water How ratio q=3.0303 
Water viscosity v2=1.1 cs=1.1 x 1O-6m2/s at 60°F 
Oil viscosity VI =105, 104, 103 cs = 10-1 , 10-2 , 10-3 m2 /s 
or lower limit 
Density PI = P2 = 106 g/m3 (assumed to be matched) 

Corresponding dimensionless parameters for the cases of our computations 
are: 

Case a. VI = 105 cs = 1O-1m2/s 
m = 1.1 x 10-5, (= 1, 'f/ = 0.7761, 
J* = T2R2 = 1.587 X 10-4 , 1R = 2.10. 

VlPl 

Case b. VI = 104 cs = 1O-2m2 /s 
m = 1.1 x 10-4 , (= 1, 'f/ = 0.7761, 
J* = 1.587 X 10-2, 1R = 21.0. 

Case c. VI = 103 cs = 1O-3m2 /s 
m = 1.1 x 10-3 , (= 1, 'f/ = 0.7761, 
J* = 1.587, 1R = 210.3 

Case d. VI = 500es = 0.5 x 10-3 m2/s 
m = 2.2 x 10-3 , (= 1, 'f/ = 0.7759, 
J* = 6.348, 1R = 421.05 

Table 2.6. We tabulate the terms in the energy balance for the lower limit of 
viscosity. The four entries in this table correspond to the four test cases specified 
above. These four cases fix all the parameters but the oil viscosity. The first 
three cases are all unstable to interfacial friction but stable to both interfacial 
tension and the Reynolds stress minus dissipation. This means that we will see 
nonlinearly stable travelling waves of length L and speed C = er(,B)Wo. We were 
asked to determine a lower limit of viscosity. Such a limit is given by the linear 
theory as the fourth entry in the table. In this case it is the Reynolds stress which 
destabilizes; interfacial friction is stabilizing. In all the cases we studied before 
with this theoretical profile, the actual flow gave way to an emulsion of water in 
oil. Hence, when the density is matched the emulsification occurs for a viscosity 
of about 500 cs. 

m /3 (j L(cm) C(m/s) 1-1 Bl B2 E 
.000011 2.56 .01588 19.5 2.63 -.9513 -.0003 1.052 .lO02 

.00011 8.24 .03975 6.05 2.63 -.8901 -.0067 1.016 .1189 

.0011 19.54 .03605 2.55 2.63 -.9318 -.0307 1.034 .0719 

.0022 .63 .00327 79.1 1.10 1.111 .00002 -.0854 1.025 
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The results for the terms of the energy balance, wave length and wave speed 
of the fastest growing waves are listed in table 2.6. The neutral curves and 
the growth rates as a function of wave numbers for each case are plotted in 
figures 2.20-2.23. Our computation is consistent with the idea that the test 
cases for 100000, 10000 and 1000 cs oil are in wavy core-flow. We find that 
the 500 CS oil should emulsify. 

Pipe Diameter Effects. 
Input 

Interfacial tension T=20 dynes/cm =20 g/S2 
Oil viscosity V1 =104 cs = 1O-2m2/s 
Water viscosity v2=1.1 cs=1.1 x 1O-6m2 /s at 60°F 
Water-to-total-flow ratio: Ql<t2Q2 = 0.2 (or q = 8;=4.0). 
Mean bulk velocity V =5 fps=1.524 m/s. 
Pipe radius: 

Case a b c d e f g h 

D{in.) 4.026 6.249 10 14 20 26 32 40 

R2 {m) .0511 .0794 .127 .178 .254 .330 .406 .508 

i 

48 

.610 

Corresponding dimensionless parameters for the cases of our compu
tations are: 

m = 1.1 x 10-4, (= 1, 1] = 0.8165 

Case R2 (m) J* R 
a .0511 .01023 9.351 
b .0794 .01588 14.51 
c .127 .02541 23.23 
d .178 .03557 32.52 
e .254 .05082 46.45 
f .330 .06607 60.39 
g .406 .08131 74.32 
h .508 .1016 92.90 

.610 .1220 111.48 

The data in table 2.7 shows that the stability properties are not 
changed qualitatively by scale-up. There is modest change in the wave
length of the fastest growing wave. 

It is probably safe to extrapolate the data from small pipes to large 
ones, understanding at least the change in the wavelength. However, even 
if our linear analysis works well in relation to field data in small pipes, it 
could conceivably fail in large ones because of effects of gravity which have 
not yet been included in our analysis. 
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Table 2.7. We tabulate the effect of pipe radius. In these entries the viscosity ratio 
m, the flow ratio q and the radius ratio." and mean bulk velocity or maximum 
velocity Wo are all fixed. Changing the radius is equivalent to scale-up. The only 
dimensionless parameters which change are IR and J*. The Reynolds stress minus 
bulk dissipation I-I is negative (stabilizing). Interfacial tension B1 is negative 
(stabilizing). Interfacial friction is positive (destabilizing) leading to E > 0 and 
hence the PCAF is unstable. We therefore expect to see interfacial waves of length 
L = 11' D / S. The crests of these waves would move forward with speed 6, according 
to linear theory. The main effect of the scale-up is to change the wave length. 

D(in.) jj if L(in.) C(m/s) I-I Bl B2 E 
4.026 6.24 .04899 2.03 1.81 -.9011 -.0055 1.019 .1128 

6.249 7.70 .04916 2.55 1.81 -.8944 -.0069 1.017 .1160 

10 9.58 .04901 3.28 1.82 -.8881 -.0088 1.016 .1188 

14 11.2 .04855 3.93 1.82 -.8851 -.0103 1.015 .1197 

20 13.2 .04754 4.76 1.82 -.8811 -.0117 1.012 .1194 

26 14.8 .04644 5.52 1.82 -.8869 -.0132 1.016 .1159 

32 16.2 .04530 6.21 1.82 -.8896 -.0141 1.016 .1126 

40 17.9 .04382 7.02 1.82 -.8949 -.0150 1.018 .1077 

48 19.4 .04243 7.77 1.82 -.9000 -.0157 1.019 .1028 

VI.2(m) Stability of Rotating Core-Annular Flow 

Linear stability theory for the rapid rotation of Poiseuille flow of one fluid 
in a pipe was studied by Pedley [1968,1969]. Joseph and Carmi [1969] did a 
nonlinear energy analysis which applies to the same flow and found a nearly 
identical result (see Joseph [1976]). They found that the flow is unstable 
to non-axisymmetric disturbances for Reynolds number greater than 82.9. 
This instability has been confirmed for slow rotation both numerically and 
experimentally by Mackrodt [1976]. Later, Cotton and Salwen [1981] did 
extensive numerical computations on the problem. They all found that the 
most unstable disturbance is non-axisymmetric (lnl = 1). 

Hu and Joseph [1989b] studied the stability of core-annular flow in a 
rotating pipe emphasizing the effect of rotation and the difference in the 
density of the two fluids. They computed neutral curves and formed the 
energy balance for unstable disturbances with the largest growth rates. 
Detailed results can be found in their paper and a summary is given below. 

For two fluids of equal density, rotation stabilizes the axisymmetric (n 
=0) mode and destabilizes the non-axisynlIDetric (Inl = 1) mode. Except 
for small Reynolds number R= PI WOR2/""1. where capillary instability is 
dominant, the azimuthal mode n = 1 is the most unstable. Even with slow 
rotation, the flow will be unstable to the n = 1 mode. In this case we may 
observe spiral waves at the interface instead of stable core-annular flow. In 
fact, such spiral waves have been seen in nonlinear regimes of wavy core 
flow in which shearing stresses give rise to a turning torque. 
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IT the heavier fluid is outside, the rotation of the pipe stabilizes the 
flow, and there exists a critical rotating speed ilc above which the flow is 
stable for a certain range of small R. If the lighter fluid is outside, the How 
of oil and water with the particular volume ratio studied in this section 
is unstable. If the annulus were thinner or if the viscosity difference were 
larger, it is possible to have shear-stabilization in the case of an adverse den
sity stratification (see section IV.6 on the thin-layer effect in the presence 
of viscosity stratification). 

VI.3 Stability of Core-Annular Flow with a Small 
Viscosity Ratio 

This section is based on the paper of Hu, Lundgren and Joseph [1990]. The 
analysis is similar to the work of Miesen, Beijnon, Duijvestijn, Oliemans and 
Verheggen [1991]. Nonaxisymmetric disturbances have been investigated 
by Boomkamp and Miesen [1991] and shown to be of importance in some 
regimes: for instance, a situation with relatively low surface tension leads to 
an instability for the shorter waves and one would then expect the higher 
azimuthal modes to be important. 

The viscosity of crude oil can be as high as 1000P at room temperature. 
Thus in actual applications, the ratio of viscosities of water to oil is usually 
extremely small, say 10-5 . The stability problem is then singular: the water 
annulus is nearly inviscid with boundary layers at the pipe wall and at the 
interface. In this section, we treat this problem by the method of matched 
asymptotic expansions. The results are confirmed with the finite element 
code described in section VI.2, modified to take into account the boundary 
layers at the pipe wall and at the interface between the water and oil. 

VI.3(a) Formulation of the Problem 

The equations governing this problem are given in sections VI.1 (b) - (d). 
The density of the two fluids are assumed to be the same: Pl = P2 = p. 

The basic How is given in equation (ld.2). It is a steady, fully devel
oped core-annular flow driven by a constant pressure gradient. The velocity 
profile is parabolic in both the core and the annulus with a jump in slope 
at the interface due to the discontinuity in the viscosity of the two liquids. 

We list the dimensionless parameters: 

R2 
a=-, 

Rl 
the radius ratio, 

J1.2 m=-, the viscosity ratio, 
J1.l 
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R -- PWORl, the Reynolds number based on the core liquid, 
Itl 

j = Tp~l the interfacial tension parameter based on liquid 2, 
1t2 

where T is the coefficient of interfacial tension between the two liquids. 
We will assume that the axisymmetric disturbance is the most danger

ous. Thus, the disturbances to the velocity, the pressure and the interface 
radius are taken to be axisymmetric and proportional to exp[ ia(x - ct)], 
where a is the dimensionless wavenumber. After eliminating the axial com
ponent w and pressure p, the linearized equation for U is given by equation 
(le.25) (subscript 1 for the core, 2 for the annUlUS): 

)
2 

1 2 1 1 2 
- (D +-D - - - a Ul Ra r r2 

. ) (2 1 1 2) -l(W - c D + -:;.D - r2 - a Ul = 0 for 0 ~ r ~ 1, (3a.l) 

( )
2 

m 2 1 1 2 
- D +-D---a U2 Ra r r2 

.( ) (2 1 1 2) -lW-C D +-:;.D- r2 -a u2=Oforl~r~a, (3a.2) 

where D = :f... 
The boundary and interfacial conditions are, from equations (le.26) -

(le.27): 
U2 = DU2 = 0, at the pipe wall r = a, 

Ul, DUl, D2ul are bounded at the origin r = 0, 

and at the interface r = 1, 

2(1 - m) (a2 - 1 ) 
2 1 Ul - 2 1 - C (DUl - DU2) = 0 

a - +m a - +m 

(3a.3) 

(3a.4) 

(3a.5) 

(3a.6) 

(3a.7) 

(3a.8) 
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il) 
£1/2 il2 n 
il2) 

r=0 r=1 r=rc r=a 

(a) Case I 

il2! 

ill £1/3 il2 
I r=r=1 

r=O r=1 r=r c r=a 

(b) Case II 

Fig. 3.1. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] Two 
cases considered. (a) Case I. The critical point r = rc is far away from the 
interface. (b) Case II. The critical point is close to the interface, within a distance 
of order e1/3 . 

The problem is to solve the eigen-system of ordinary differential equa
tions (3a.l) and (3a.2) subject to the conditions (3a.3)-(3a.8), when the 
viscosity ratio m ---+ o. After examining equation (3a.2) we choose 

m 
e=-

Ra 
(3a.9) 

as a small parameter, and use a matched asymptotic perturbation scheme 
to solve the problem. 

As m or g ---+ 0, equation (3a.l) is regular, and we can get a uniformly 
valid asymptotic expansion for Ul in the core region. On the other hand 
equation (3a.2) is singular, since g is the coefficient for the term which has 
the highest derivative. We therefore argue that within most of the annulus 
the viscous force corresponding to the first term is much less important than 
the inertial force corresponding to the second term and may be neglected. 
In some regions, however, the viscous force may be of the same order of 
magnitude as the inertial force. These regions are the viscous boundary 
layer at the pipe wall where the no-slip boundary condition is required, 
the viscous boundary layer at the interface where the interfacial conditions 
are prescribed, and the critical layer where the velocity of the disturbance 
is the same as the velocity W(rc) of the basic flow: Re(c) = W(rc). The 
asymptotic expansions are different depending on the location of the critical 
point r = rc. Two cases are treated: (a) the critical point is far away from 
the interface; and (b) the critical point is close to the interface, within a 
distance of order gl/3, as indicated in figure 3.1. 
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VI.3(b) Case I: The Critical Point is Far Away from the 
Interface 

In this situation, an appropriate expansion for the eigenvalue c is 

In the present study, only two terms of the expansion are computed, that 
is 

C rv Co + c1/ 2 C1 + O(c). (3b.l) 

The basic flovr (ld.2) can be expanded in terms of cas 

W r _ { 1 + O(c) 0::; r ::; 1, 
( ) - (a2 - r2)/(a2 - 1) + O(c) 1::; r ::; a. (3b.2) 

VI.3(b)(i) In the Core ill. In ill as indicated in figure 3.1 (a), the velocity 
U1 is expanded as 

(3b.3) 

After substituting (3b.l), (3b.2) and (3b.3) into equation (3a.l), and col
lecting the coefficients for cO and c1/ 2 terms in the equation, we have two 
equations for u~O)(r) and u~l)(r): 

( 2 1 1 2) (2 1 1 2) (0) D + -D - - - K, D + -D - - - a U1 = 0, r r2 r r2 (3b.4) 

D +-D---K, D +-D---a u ( 2 1 1 2) (2 1 1 2) (1) r r2 r r2 1 
. (2 1 1 2) (0) = -lRo:c1 D + -D - - - a u 1 r r2 (3b.5) 

where 
(3b.6) 

Since the critical point is away from the interface, or Co =I 1, we have 
K,2 =I a 2 • 

The solutions to equations (3b.4) and (3b.5) with the conditions that 
the solutions are bounded at the origin are 

u~O)(r) = A ll11(K,r) + A12h(ar), (3b.7) 

(1) iRo:C1 
u1 (r) = -~Allr10(K,r) + Bll11 (K,r) + B1211 (ar), (3b.8) 

where 11 (,) and 100 are the modified Bessel functions of the first kind with 
orders 1 and 0 respectively, Au, A 12 , Bll and B12 are arbitrary constants 
to be determined by the interfacial conditions. As m --+ 0, the basic flow in 



98 Chapter VI. Lubricated Pipelining: Linear Stability Analysis 

the core becomes uniform, and equations (3b.4) - (3b.5) can be integrated in 
terms of Bessel functions. Papageorgiou, Maldarelli and Rumschitzki [1990] 
use Kummer functions in integrating the core equations for general m. 

VI.3(b)(ii) The Form of the Solution in the Annulus il2• The outer expan
sions for velocity U2 in il2 is 

(3b.9) 

After substituting the expansions into equation (3a.2), we find that they 
all satisfy 

for j = 0, 1. (3b.1O) 

Thus the solutions are 

(3b.ll) 

(3b.12) 

where K 1 (·) is the modified Bessel function of the second kind with order 1, 
and all the A's and B's are arbitrary constants. The solution to the outer 
Orr-Sommerfeld equation (3a.2) is not singular at the critical point r = r e 

for this case since r(W'lr)' is zero (compares to equation (31.16) of Drazin 
and Reid [1982]). Thus, the outer expansion (3b.9) is smooth at re , and 
there is no need for a critical layer in this case as indicated in figure 3.1 (a). 

VI.3{b )(ili) The Form of the Solution in the Boundary Layer at the Pipe 
Wall il22 • It can be easily verified that the proper choice of scaling for this 
wall boundary layer il22 is c1/ 2 , the inner coordinate in the boundary layer 
is therefore introduced as 

a-r 
'f/ = c1/ 2 . 

The inner expansion for the velocity in this layer takes the form 

u2(r) = cl/2u~~)('f/) + w~~)('f/) + O(€3/2). 

(3b.13) 

(3b.14) 

Since the basic flow is of order c1/ 2 in this layer, the order of the leading 
term in expansion (3b.14) is also taken to be c1/ 2 • 

By changing to the new variable in equation (3a.2), and using the 
expansion (3b.14), we obtain two equations for u~~ and u~~) 

(3b.15) 
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where D'1 stands for 1'1 . The boundary condition (3a.4) transforms to 

(3b.17) 

As 'fJ -t 00, u;~), uW are required to match the outer expansion (3b.1O) as 
r -t a. 

The solution to (3b.15) satisfying (3b.17) and the matching require
ments is 

(3b.18) 

where A~2) is a constant to be determined by the matching, and p = ±J -ieo 
with a negative real part. 

Similarly, after substituting (3b.18) into (3b.16) we find the solution 

(1) ( ) _ B(2) [[ P'1 1] + 'A(2) {Co'fJ2 
u22 'fJ - 3 e - P'f/ - 1 3 -2-ap 

- (Co + C1P) _1_ ['fJ{eP'1 + 1) - ~(eP'1 - 1)] 
a 2p2 p 

+ a ['fJ2ep'1 _ '!1 (5eP1/ + 3) + ~ (eP'1 - I)]} 
2p{a2 - 1) p p2 

(3b.19) 

where B~2) is another constant to be determined by matching with the 
outer solution. 

In order to determine the constants A~2) and B~2), we introduce an 
intermediate coordinate, for example z = (a - r)/c1/ 4 . This method is used 
in Kevorkian and Cole [1980]. An alternative method is used in Van Dyke 
[1975]. In this way, we construct an intermediate layer where both the 
inner expansion (3b.14) and the outer expansion (3b.9) are valid. Note 
that since the outer expansion (3b.9) is a continuous function at r = a, 
we can represent it by a Taylor series around r = a. By equating these 
two expansions in the intermediate coordinate, we can obtain the following 
relations 

u;O) (a) = 0, 

Du;O){a) = A~2)p, 

U;I) (a) = _A~2), 

(1) (2) iA~2) (Co 3a ) 
DU2 (a) = B3 P + 2p2 -; + CIP + a2 _ 1 . 

A~2) in (3b.21) and (3b.22) can be eliminated giving 

Du;O){a) = -u;1){a)p. 

(3b.20) 

(3b.21) 

(3b.22) 

(3b.23) 

(3b.24) 
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VI.3(b)(iv) The Form of the Solution in the Boundary Layer at the In
terface {}21. Following the procedure used above, an inner coordinate is 
defined 

r-1 e = gl/2 . 

The inner expansion for the velocity U2 takes the form 

(3b.25) 

(3b.16) 

Here we find it necessary to carry out the expansion to the third term. 
At the leading order gO: 

D4 (0) '(1 )D2 (0) 0 
~u21 - 1 - Co ~u21 = , (3b.27) 

with boundary conditions at e = 0 (derived from the interfacial conditions 
(3a.5)-(3a.8) ): 

U~~)(O) = uiO)(l), 

D~u~~) (0) = 0, 

Dtu~~)(O) = :.to: [D2 + D - 1 + 0:2] uiO)(l), 

D~u~~) (0) = O. 

The solution to this order is a constant 

The third boundary condition in (3b.28) requires 

At the next order gl/2 we have 

2D3 (0) . [( )D (0) (2e ) D2 (0)] = - ~u21 + 1 1 - Co ~u21 - a2 _ 1 + Cl ~U21' 

(3b.28) 

(3b.29) 

(3b.30) 

(3b.31) 

The right hand side of the equation is zero after substituting for u~~). The 
boundary conditions at e = 0 are 

u~~)(O) = uP)(l), 

(1)() D (0)( ) 2 (0)( ) D~U21 0 = u1 1 - (a2 _ 1)(1 _ Co) u1 1, 

Dtu~~)(O) = Ita [D2 + D - 1 + 0:2] uP)(1), 

D~u~~)(O) = in [D3 + 2D2 - (30:2 + l)D + 1 - 0:2] uiO)(l). 

(3b.32) 
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The solution is 

(3b.33) 

where q = ±y'i(1 - eo) has a negative real part and the constants satisfy 

B~l) + B~l) = ui1)(1), 

(1) (1) _ (O)() 2 (0)( ) 
B2 + qB 3 - DU1 1 - (a2 _ 1)(1 _ eo) u 1 1, 

Raq2 B~l) = [D2 + D - 1 + a 2] ui1)(1), 

R aq3 B~l) = [D3 + 2D2 - (3a2 + 1)D + 1 - a 2] uiO)(1). 

(3b.34) 

(3b.35) 

(3b.36) 

(3b.37) 

A similar derivation was carried out to order €1. The equation and boundary 
conditions are lengthy, so only the final result is presented here. We found 
that 

u~~) (e) =D~l) + D~l) e + D~l) eqe - i(12~2eo) [B~l) - (1 + ( 2)Ai1)] e 
_ iB(l) 1 - eo + C1q (e _ ~) eqe 

3 2q2 q 

- iB(l) 1 (e - 5~ + ~) eqe (3b.38) 
3 2q(a2 _ 1) q q2 

where Di1), D~l) and D~l) are constants, and D~l) can be determined by 
boundary conditions as 

(1) _ (1) [C1 2] 
D2 -B3 1 - 1 _ eo q + (a2 - 1)(1 - eo) 

- ~q2 [D3 + 2D2 - (3a2 + 1 + 1Ro:q2) D +1 - a 2] ui1)(1) 

2 [ (1) C1 (0) ] 
- (a2 _ 1)(1 _ eo) u 1 (1) + 1 _ eo u 1 (1) . (3b.39) 

Again the matching with the outer expansion (3b.9) as r --+ 1 gives the 
relations: 

u~0)(1) = Ail) = uiO)(1), 

Du~0)(1) = B~l), 

u~1)(1) = B~l), 

Du~1)(1) = D~l). 

(3b.40) 

(3b.41) 

(3b.42) 

(3b.43) 

VI.3{b)(v) The Secular Equations. At the zeroth order, we group four equa
tions, equations (3b.20), (3b.30), (3b.40), and (3b.35) with B~l) and B~l) 
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eliminated with (3b.27) and (3b.41), and write them explicitly using the 
properties of the Bessel functions 

A2Ih(aa) + A22KI(aa) = 0, 

(1\:2 + a2)AuI I(I\:) + 2a2 AI2II(a) = 0, 

A2Ih(a) + A22KI(a) = AUII(I\:) + A I2 I I(a), 

a [A2II~(a) + A22K~(a)] 

- ~q2 {Au [(3a2 - 1\:2)I\:I~(I\:) - (1\:2 - a2)II(I\:)] 

+A12 [2a3I~(a)]} 

= [I\:AuI~(I\:) + aAI2I~(a)] 
2 

(a2 _ 1)(1 _ eo) [Ault(l\:) + A I2 I I(a)]. 

Non-zero solutions Au, A 12 , A21 and A22 of this set oflinear equations 
can be obtained only if the secular equation formed from the determinant 
of the coefficients is satisfied. This gives 

4a41\: I~ (I\:) _ (1\:2 + a2)2a I~ (a) 
h(l\:) II (a) 

(3b.44) 

where 
Z = KI(aa)I~(a)lt(aa)K~(a). 

II (a)KI (aa)II (aa)KI (a) 
(3b.45) 

At the next order, the equations used to derive the secular equation 
are (3b.24), (3b.34) with B~l) eliminated using (3b.42), (3b.36), and (3b.43) 
with D~l) given by (3b.39)j the B~l) in these equations is given by (3b.37). 
After tedious manipulation of these equations and using (3b.44) to cancel 
some terms, the final result is simply 

(3b.46) 

where 

F = (1\:2 - a2)2 Y[K~(a) - KI(a)Z] 
2p KI(aa) 

+ H [(1\:2 _ 3a2) (1\:2 _ a2) ..!. _ (1\:2 - a4 ) I~(a) 
q 2a 2a II (a) 

- (1\:2 - a2) + a(a~ 1) (1\:2 - 3a2)] , 
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In the nonlinear equation (3b.44) the eigenvalue eo is embedded in ",2 = 
0:2 + i1Ro:(1 - eo). Inspection of (3b.44) and (3b.46) shows that there are 
three parameters in the equations, the radius ratio a, the dimensionless 
wave number 0: and the Reynolds number JR. The expansion (3b.1) shows 
that the eigenvalue depends also on the viscosity ratio m. It is interesting 
to notice that up to this order the interfacial tension parameter j does not 
come into play. 

One obvious solution to the equation (3b.44) is ",2 = 0:2 , but since 
eo ::F 1 by the assumption in this section, this solution is rejected. Given 
a, 0: and JR, the nonlinear equation (3b.44) is solved numerically using 
the IMSL subroutine ZANLYT and checked on the Macintosh II with the 
software Mathematica. It is found that there is only one root for ",2 (or eo) 
to this equation in the range of interest. After obtaining ",2 we can easily 
calculate C1 from (3b.46), and eigenvalue c from 

(3b.47) 

The neutral curves are" computed by fixing a and m, and searching 
the (0:, JR) plane for the line on which the growth rate of disturbances 
Im(o:c) = O. Figure 3.2 presents the neutral curves obtained in this case, 
for radius ratio a = 1.5 and viscosity ratio m = 10-3, 10-4 and 10-5 . The 
region to the right of these curves is stable, and to the left is unstable. These 
neutral curves are almost parallel straight lines in the log-log plot with a 
shift for different viscosity ratios m, and they seem to fit the relation o:c 
= constant x (mJR)1/3. In addition, the neutral curves exist at relatively 
small wavenumbers, or for long waves. Thus, an asymptotic analysis was 
carried out for the secular equations (3b.44) and (3b.46), for small 0:, under 
the condition that vmj(1Ro:) is still a small parameter. In this case the 
eigenvalue c can be expressed as 

a2 -1.30:(a2 -1) Jm v'2 1+i 
c= ~ -1 1Ra2 + V&a2(a2 -1) Ja2 -1· (3b.48) 
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1~~---------------------------------. 

100 

10 

1 

0.001 

Unstable 

0.01 a 0.1 

Fig. 3.2. [Hu, Lundgren and Joseph, 1990, American Institute of Physics) Neu
tral curves for the case I in which the critical point is far away from the interface. 
The radius ratio is a = 1.5 and the viscosity ratio m = 10-3, 10-4 and 10-5 • 
The region to the right of the neutral curves is stable, and to the left is unstable. 
The asymptotic analysis for small 0 and small Jmj(Ra) given by (3b.49) yields 
Oc = 0.4176(mR)1/3 in the present case. This formula almost exactly fits the 
curves in the figure. 

The neutral curve is determined by Im(c) = 0, that is 

v'2 (mR)l/3 (mR)l/3 ( )
2/3 

Q c ="""3 (a2 _ 1)5/3 = 0.6057 (a2 _ 1)5/3· (3b.49) 

Equation (3b.49) gives the lines presented in figure 3.2 almost exactly. 

VI.3( c) Case II: The Critical Point is Close to the Interface 

In this section, we consider the case where the critical point is at a distance 
of order el / 3 from the interface, as shown in figure 3.1 (b). Unlike the 
previous case where the presence of the critical layer can be totally ignored, 
the critical layer in this case does play an important role. We consider the 
expansion 

(3c.l) 

where Co = 1 and Cl is the first order correction. 
An analysis similar to the one carried out in the previous section is 

used to get the solutions in the core ill, in the outer region of the annulus 
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{h and in the wall boundary layer [}22. Only one term of the expansion is 
computed. The results are listed below: 

{ 
ul(r) = u~O)(r) + O(c1/ 3 ), 

in [}l 

u~O)(r) = Al1lt(o:r) + A12r10(o:r), 

. {U2(r) = u~O)(r) + O(c1/ 3 ), 
m[}2 0 

u~ )(r) = A21lt(o:r) + A22 K 1(o:r), 

in [}22 {U2(r) = c1/ 2 [U~~)(1]) + 0 (c1/ 3 )] , 

u~~)(1]) = A~2) [ePlI - P1J - 1]. 

(3c.2) 

(3c.3) 

(3c.4) 

We match the wall boundary inner expansion (3c.4) as 1] =(a - r)/c1/ 2 

--+ 00 with the outer expansion (3c.3) as r --+ a- to find 

(3c.5) 

Inside the critical layer [}21 near the interface, we introduce an inner 
variable 

r-1 
z = c1/ 3 ' 

and take a one term expansion for the velocity 

The equation (3a.2) at the leading order reduces to 

4 (0) • ( 2Z) 2 (0) D z U21 + 1 Cl + a2 _ 1 D z U 21 = O. 

(3c.6) 

(3c.7) 

(3c.8) 

The interfacial conditions (3a.5)-(3a.8), at r = 1 ( or Z = 0), become 

U~~)(O) = u~0)(1), 

(0) ( ) _ 2 (0) ( ) c1Dz u21 0 - a2 _ 1 u1 1, 

0= [D2 + D - 1 + 0:2]u~0)(1), 

IRo:D~u~~) (0) = [D3 + 2D2 - (30:2 + 1)D + 1 - 0:2]U~0) (1). 

Consider an equation of the form 

d2w ( 2Z) 
d 2 + i Cl + -2-- w = 0 

Z a -1 

which is solvable with Airy functions 

(3c.9) 

(3c.lD) 

(3c.ll) 

(3c.12) 
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where (J = {f, 5;, or - ~ . If we require that w should be matched with some 
outer expansion as z --+ 00, the solution must tend to some finite value as 
z --+ 00. This yields the only possible solution to be (J = 5;. Therefore the 
general solution of (3c.8) has a form similar to the one for plane shear flow 
computed by Hooper and Boyd [1983, 1987): 

u~~) (z) = All) + A~l) Z + A~l)X(z) (3c.13) 

where 

x(z) = J~ dz J~ Ai [ - (a2 ~ 1) 1/3 (z + c; (a2 - 1») ei51r / 6 ] dz. (3c.14) 

The boundary conditions (3c.9), (3c.l0), (3c.12) require that 

All) + A~l)X(O) = ulO)(I), (3c.15) 

Cl [A~l) + A~l>X' (0)] = a2 ~ 1 uiO)(I), (3c.16) 

RaA~l)XIll (0) = [D3 + 2D2 - (3a2 + I)D + 1- a2] uiO)(I). (3c.17) 

The matching of this inner with the outer expansion (3c.3) requires that 

A (l) - 0 
2 - , (3c.18) 

(3c.19) 

Equation (3c.16) with A~l) = 0 and A~l) eliminated by (3c.17) may be 
written as 

This, together with equation (3c.ll) written as 

Au2a2/t(a) + A122a [11 (a) + alo(a)} = 0 

leads to the secular equation 

~xlll(0)_a(a2-1)[1 2_ 2I~(a)] 
Cl X'(O) - R +a a II(a) . 

If we define a constant E independent of the unknown Cl 

E - 1- .a(a2 - 1) [1 2 _ 2I~(a)] 
- 1 R + a a II(a) , 

(3c.21) 

(3c.22) 

(3c.23) 
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and use 

( 
2 ) 2/3 _ a -1 -i1l"/6c1 x- -- e -

2 2 
(3c.24) 

as the new variable, we may use the properties of Airy functions to write 
the secular equation (3c.22) in a very simple form 

100 {z + Ex)Ai{x + z)dz = o. (3c.25) 

It is interesting to notice that the unknown x in the equation depends only 
on E, a combination of three parameters: a, a and R. Therefore, in the 
computation of neutral curves, we need to find only one neutral point at 
E = Ec and x = Xc which satisfies Im{cd=O. Then, using (3c.23) we can 
extend this point to a whole curve in the (a, R) plane valid for different 
values of a. The equation for this neutral curve is 

10 _. (a2 - 1) [1 2 _ 2 I ;5{a)] 
"""c - 1 1 _ Ec a + a a Ir(a) . 

We note that although the total eigenvalue c depends on the viscosity ratio 
m, the neutral curve on which Im(c)=Im(cl)=O is independent of m. 

The Airy functions of complex argument were computed using an algo
rithm developed by Schulten, Anderson and Gordon [1979]. The integration 
in (3c.25) was transformed into one for the interval [0,1] and integrated nu
merically using an adaptive scheme given by Robinson [1976], which was 
modified to handle the complex-valued functions. The equation solver is 
subroutine ZANLYT on IMSL. The results were again checked on the Mac
intosh II with the software Mathematica. In solving the nonlinear equation 
(3c.25), we choose only the root Cl that has a negative real part since the 
velocity of the disturbance equals the basic flow velocity at the critical point 
which is always less than 1. The root with the largest imaginary part, or 
the most unstable mode with the largest growth rate, is chosen. 

It is found numerically that Ec = 1 + 0.425i; thus, the neutral curves 
are given by 

2 [ 2 2 I ;5{a)] Rc = 0.294{a -l)a -1- a + a Ir{a) . (3c.26) 

Figure 3.3 shows (3c.26) for a = 1.5. The region to the right of the neu
tral curve is unstable, and the region to the left is stable. The short waves 
(disturbances with large wavenumber a) are unstable, since the effect of 
interfacial tension is suppressed in the present study. If the effect of interfa
cial tension is to be included {we need to make some assumptions about the 
magnitude of the combination m 2a} IR in the equation (3a.8)), we expect 
the shortest waves to be stabilized. 
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Fig. 3.3. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] Neu
tral curves for case II in which the critical point is close to the interface, when 
the radius ratio a = 1.5. The region to the right of the neutral curves is unstable, 
and to the left is stable (see equation (3c.26». 

VI.3(d) Numerical Results 

The finite element code described in section VI.2 is modified to take into 
account the effect of the boundary layers near the pipe wall and near the 
interface between the two liquids. 

In the core region 0 ~ r ~ 1, since the equation is regular, 10 uniform 
elements are used. The annulus 1 ~ r ~ a, is divided into 8 equal inter
vals. In the first interval (closest to the interface) and in the last interval 
(closest to the pipe wall), the size of the elements increases gradually with 
a magnification rate of 2. The size of the smallest element is kept less than 
O.ly'm/(Ra). Thus, the number of the elements used in the program varies 
automatically according to the values of m, R and 0:. 

The results obtained using this modified finite element code were com
pared with those obtained by the matched asymptotic expansions method. 
Figure 3.4 shows the comparison of neutral curves at relatively small 0:, 

corresponding to the case in which the critical point is far away from the 
interface or the velocity of the disturbances is not close to one. There is 
good agreement at one end of the curves. At the other end, the finite el
ement code predicts another branch of neutral curves, while the matched 
asymptotic expansions method fails since y'm/(Ro:) is no longer a small 
parameter when 0: or R is extremely small. 
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Fig. 3.4. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] Com
parison of neutral curves corresponding to case I obtained by the matched asymp
totic expansions (solid lines) with that obtained by the modified finite element 
code (dots). The radius ratio a = 1.5, surface tension parameter J = 0 and 
viscosity ratio m = 10-3 , 10-4 and 10-5 . 
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Fig. 3.5. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] Com
parison of neutral curves corresponding to case II obtained by the matched asymp
totic expansions (solid line given by equation (3c.26}) with that obtained by the 
modified finite element code (dots). The radius ratio a = 1.5, surface tension 
parameter J = 0 and viscosity ratio m = 10-3 , 10-4 and 10-5 . The agreement 
is increasingly better as m ~ O. 
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Fig. 3.6. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] Com
bination ot figures 3.4 and 3.5. This gives an overall view of the neutral curves 
for both cases I and II. 

Figure 3.5 presents the comparison of neutral curves corresponding to 
the case in which the critical point is near the interface or the velocity of 
the disturbances is close to one. There is an increasingly better agreement 
as m -+ O. Figure 3.6 combines the neutral curves in figures 3.4 and 3.5, 
giving an overall view of the neutral curves in the (0:, R) plane. 

Figure 3.7 demonstrates the changes of the neutral curves in the (o:,R) 
plane as m increases when J is not zero (a=1.25, J=1000) . The numerical 
solutions shown in figure 3.7 (a) for m = 0.001 is similar to the neutral 
curves in figure 3.6 except that in figure 3.7 (a), there exists an extra branch 
for 0: > 1 at small R, which corresponds to the stabilizing effect of the 
interfacial tension for short waves. Since the effect of interfacial tension 
scales according to the parameter J* = T pRt/ J-t~ = Jm2 , as m increases, 
the influence of the interfacial tension increases. In figure 3.7 (b) (m = 0.01), 
the extra branch gets connected with the branch corresponding to the case 
II in the asymptotic analysis, and forms another U-shape branch at large 
0: . At the left-hand side corner, the small unstable bubble is caused by the 
capillary instability due to the interfacial tension. When m = 0.1 (figure 
3.7 (c)), the interfacial tension further stabilizes the short waves (pushes up 
the U-shape branch at large 0:) and destabilizes the long waves (blows the 
bubble at the left-hand side corner) . If the J is large enough, the U branch 
at large 0: can be pushed out of sight. Then the U-shaped branch at small 
0: and the bubble at the left-hand side corner are the familiar upper and 
lower branches of the neutral curves displayed in section VI.1 for finite but 
small m. 
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Fig. 3.7. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] 
Changes in the neutral curves as the viscosity ratio m increases. The radius ratio 
a = 1.25, surface tension parameter J=1000 and (a) m=O.OO1; (b) m=O.01; (c) 
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Fig. 3.S. [Hu, Lundgren and Joseph, 1990, American Institute of Physics] 
Growth rates Im(ac ) vs wavenumber a for two modes of instability when R=100, 
a = 1.5 and m = 0.001 , 0.0001, 0.00001. Ll is the growth rate for mode I corre
sponding to case I, and 0 is the growth rate for mode II corresponding to case 
II. Except at small a where the growth rate of mode I is slightly positive and 
the growth rate of mode II is negative, the growth rate of mode II is much larger 
than that of mode I. The maximum growth rate occurs on the curve for mode II 
at a = 12.1, and tends to zero (neutrally stable) as m tends to zero. 

VI.3(e) Growth Rate and Wave Velocity 

Im(ac) is the growth rate and Re(c) is the wave velocity for small distur
bances. The two modes of instability corresponding to case I and case II 
have different growth rates. For R=100, a = 1.5 and m = 0.001, 0.0001 
and 0.00001, the growth rates for both modes are plotted in figure 3.8. The 
results are obtained using the method of matched asymptotic expansions. 
This figure shows that the growth rate for mode I, corresponding to case 
I, is small and positive at small a. It reaches a maximum at a about 0.1, 
which varies for different m, then decreases rapidly as a increases. The 
growth rate for mode II, corresponding to case II, has a peak at a = 12.1 
which is independent of m, and decays to zero at both ends of small and 
large a. Except at small a, the growth rate of mode II is much larger than 
that of mode I. Combining these two modes of instability the maximum 
growth rate for the whole range of a occurs on the curve for mode II at 
a = 12.1. This maximum growth rate tends to zero (neutrally stable) as m 
tends to zero because the growth rate is proportion to m 1/ 3 as shown in 
expansion (3b.49). 

The energy analysis described in section VI.2 shows that for the sec-
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ond mode of instability the B2 term due to the difference of viscosity and 
interfacial friction is dominant in the energy balance. The comparison with 
experiments discussed in section VI.2 shows that this type of instability 
leads interfacial waves. 

The wave velocities for the same parameters as in figure 3.8 at the 
maximum growth rates are 0.9961, 0.9982, 0.9991 for m = 0.001,0.0001 and 
0.00001 respectively. The expansion (3b.49) also shows that the interfacial 
wave tends to be stationary. The wave velocity is equal to the velocity of 
the core, as m tends to zero. 

VI.3(f} Conclusions 

(a) As the ratio of viscosities of water to oil m tends to zero (g = mj(Ro:) 
as a small parameter), the equation that governs the linear stability 
of the core-annular flow is regular in the core; and is singular in the 
annulus of water, with boundary layers near the pipe wall and the 
interface, and with a critical layer whose position is not predetermined. 

(b) Depending on the position of the critical point in the annulus, there 
are two modes of instability. One is when the critical point is far away 
from the interface, or the velocity of the disturbance is much less than 
one, corresponding to case I. The other is when the critical point is 
close to the interface within a distance of order g1/3, corresponding to 
case II. 

(c) In case I, the eigenvalue c is determined by (3b.44) and (3b.46). For 
small values of a and Jmj(Ra) the eigenvalue can be expressed ex
plicitly by equation (3b.48), and the neutral curve by equation (3b.49). 
In case II, the eigenvalue c can be determined by solving the nonlinear 
equation (3c.25), while the neutral curve is simply given by equation 
(3c.26) explicitly. 

(d) The instability of the core-annular flow, when the viscosity ratio m is 
small, leads to an interfacial wave with wave velocity slightly less than 
the velocity of the interface. As m tends to zero, the interfacial wave 
tends to a standing wave convected with the velocity of the flow at the 
interface and the maximum growth rate tends to zero. This leads to 
a neutrally stable standing wave in a coordinate system moving with 
the velocity of the interface. 
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VII.! Introduction 

A linear stability analysis is given in sections VII.2 - VII.9 for Poiseuille 
flow in a vertical pipe in the presence of gravity [Chen, Bai and Joseph 
1990], and sections VII.10 - 21 are based on Bai, Chen and Joseph [1992] 
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and Arney, Bai, Joseph and Liu [1992]. The analysis will be restricted to the 
axisymmetric mode. We include the effect of an applied pressure gradient 
which can reinforce or oppose the body force due to gravity. The physi
cal effects treated are associated with gravity, density difference, viscosity 
difference, surface tension and Reynolds number. It is shown that a heavy 
lubricant should be used to stabilize capillary instability in slow flows in 
the direction of gravity and a light lubricant should be used for slow flow 
against gravity. The results also show that there is an optimal value of den
sity ratio that maximizes the interval of Reynolds numbers for which CAF 
is stable. 

Before we investigate the stability of vertical pipe flow, it is instructive 
to look at the two-dimensional analogue of this problem. Renardy [1987b] 
considered the linear stability of three-layer vertical plane Poiseuille flow 
in the presence of gravity. The layers next to the walls are assumed to 
be of the same thickness and to be the same fluid. The two fluids have 
different viscosities and densities. Since the problem is symmetric across the 
centerline, the interfacial mode is composed of an axisymmetric one and an 
antisymmetric one. We refer to the symmetric mode as being 'varicose' and 
the antisymmetric one as 'snake'. Numerical results, as well as formulas for 
short and long waves, were obtained. 

The plane problem may be expected to model pipe flow in some sense; 
for instance, if the layers at the walls are thin. For viscosity stratification, 
the arrangement with a thin layer of the less viscous fluid at the walls is 
stable in both flows. For density stratification, intuition suggests that the 
fluids should arrange themselves in order to flow most easily; that is, to 
maximize the flow rate for a given pressure gradient. This leads one to 
expect that the heavier fluid should tend to stay at the center of the pipe 
for down flow and to stay at the walls for up-flow. The numerical results 
of Renardy [1987] support this idea if the density difference is large. The 
picture is not so simple if the densities are similar, as in the case of water 
and oil. Let r denote the ratio Pouter/ Pcore. For lubricated pipelining, we 
have r slightly greatly than 1. The numerical results for the plane problem 
indicate that for down flow, if r is a little larger than 1, there is a snake 
mode instability (see her figure 8). For up flow, there is a varicose mode 
instability (see her figure 16). We report experimental results in the latter 
part of this chapter [Bai, Chen and Joseph 1992], including observations 
of axisymmetric 'bamboo' waves for up-flow, and the non-axisymmetric 
'corkscrew' waves in down flow. 

It is essential that the predictions of linearized theory be tested against 
experiments. Two devices were constructed to study the flow of two liquids 
in a vertical pipe, one for free fall under gravity and the other for forced flow. 
The linear theory was used to predict the parameters necessary to enter into 
the window of stability of perfect core-annular flow in the free-fall apparatus 
and obtained agreement between theory and experiment. With these two 
devices, the parameters which appear in the analysis were monitored. The 
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vertical pipe seems to be the instrument of choice in this field because the 
experiments and the analysis are well-matched, and because of the relevance 
to industrial applications (cf. chapter V). In fact, the use of water as a 
lubricant for pumping crude oil from underground wells appears to be a 
possible technology in down-hole situations with shallow wells, or when the 
oil viscosity is very large as in cold wells. For such applications, pumping 
up against gravity is the relevant case. 

In the latter half of this chapter, experimental results are given for 
water-lubricated pipelining of 6.01 poise cylinder oil in a vertical apparatus 
in up and down flows in regimes of modest flow rates, less than 3 ft/sec. 
Measured values of flow rates, hold-up ratios (cf. section VII.14), pressure 
gradients and flow types are presented and compared with theoretical pre
dictions based on the linear theory of stability of the laminar flow. New 
types of flow, such as bamboo waves in up-flow and corkscrew waves in 
down-flow, are observed. These are consistent with the results on varicose 
and snake instabilities of Renardy [1987b]. Nearly perfect core-annular flows 
are observed in down-flows and these transport the oil very efficiently with 
measured values close to those of the idealized problem. The hold-up ratios 
in up-flow and fast down-flow are constant independent of the value, and the 
ratio of values, of the flow rates of oil and water. A vanishing hold-up ratio 
can be achieved by fluidizing a long lubricated column of oil in the down
flow of water. In some regimes, there is satisfactory agreement between the 
experiments and theory for the celerity and diagnosis of flow type. Since the 
oil is very viscous, waves are observed to be nearly stationary, convected 
with the oil core. These results are robust with respect to moderate changes 
in the viscosity and surface tension. The computed wavelengths are some
what smaller than the average length of bamboo waves which are observed. 
This is explained by stretching effects of buoyancy and lubrication forces 
induced by the wave. Other points of agreement and disagreement are re
viewed. All the data are reduced and plotted on a master curve using two 
different formulations of the Reynolds number and friction factor. 

VII.2 Basic Flow 

Two immiscible liquids are flowing up or down a vertical pipe of radius 
R2. The interface between the two liquids is given by r = R(O, x, t), where 
(r,O,x) are cylindrical coordinates chosen in such a way that gravity is 
acting in the positive x-direction, as shown in figure 2.1, and u = (u, v, w) 
are the corresponding velocity components. The region 0:5 r :5 R(O, x, t) is 
occupied by the first liquid with viscosity J1.l and density Pl and the second 
liquid with viscosity J1.2 and density P2 is located in R(O, x, t) :5 r :5 R2. 
The pipe is infinitely long and the mean value of R(O, x, t) is Rb a constant 
fixed by prescribing the volumes of each liquid, independent of t. 
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We are interested in the perfect core-annular flow solution of the gov
erning equations given in section VI.1 (b), with the addition of gravity 
(the gravity term in the equations of motion cannot be absorbed into the 
pressure: cf. equation (4.8)), satisfying 

U = (0,0, Wi (r)), i = 1,2, 

and 
R(B,x,t) = RI . 

On the cylindrical interface r = R I , 

(2.1) 

where T is the interfacial tension and the jump across the interface is defined 
by 

U = ('h - (·h· 
It follows that the pressure satisfies 

dFI dF2 
dx = dx = - f (constant). 

The axial velocities are 
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(2.2a) 

W2(r) = f + (12g (~ _ r2) _ R~(P]g In~, Rl :::; r :::; R2. (2.2b) 
41'2 21'2 R2 

We scale length with RI! velocity with gRVvI! time with vdgRl and 
pressure with Plg2 Rt / v? The dimensionless parameters are defined as fol
lows: 

1'2 m=-, 
1'1 

We also introduce R g : 

R - Rl(gRl )! = R!. 
9 - VI 

f F=-, 
PIg 

i = 1, 

i = 2, 

The parameter F is the ratio of the driving forces: the pressure gradient 
and gravity. The Reynolds number Rg is based on gravity and is zero in a 
forced flow when gravity is entirely neglected, a case not considered here. 
Forced flows with a fixed value of Rg characterize the experiments of this 
section well. Strong forcing is then obtained when IF - 11 » 1 for a fixed 
value of R g • Free fall without forcing means F = o. The pressure gradient 
and gravity act in the same direction when the driving force ratio F > 0, 
and in opposition when F < O. 

When written in terms of the dimensionless quantities, the velocities 
(2.2) of CAF become 

Wl(r)=F;I(I_r2)+F4:(2(a2_1)+1;";'2 Ina, O:::;r:::;l, (2.3a) 

W2(r) = F + (2 (a2 _ r2) _ 1 - (2 In!:., 1:::; r :::; a. (2.3b) 
4m 2m a 

Examination of the formulas (2.3a, b) shows that we may determine 
the range of F for which the flow goes up and when it goes down in terms 
of Fl and F2 defined by 

and 
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F2 = _ m + 2 In a + (2 (a2 - 1 - 2 In a) . 
m+a2 -1 

Each one of these is negative. There are three types of flows: 

down - flow in the core and annulus, F > Fu (2.4) 
mixed flow, up in some places, down in others, Fu > F > Fl (2.5) 
up - flow in the core and annulus, Fl > F (2.6) 

where (Fl, Fu) = (FI, F2) if (2 > 1 and (Fl' Fu) = (F2' Fd if (2 < 1 . 
The situation of interest in pumping against gravity is (2.6), and also 

possibly F < Fl when the water is heavier and outside. Free flow cor
responds to downward flow in both core and annulus. The size of the 
F -interval for which mixed flows are possible is 

When the densities are matched Fl = F2 , and mixed flows are not possible. 

VII.3 Experiments 

Two devices were built to study lubricated vertical core-annular flow. The 
first setup is a free-fall apparatus (see plate VII.3.1). The fluids are intro
duced into the pipe in the core and annulus. The entrance for the core is 
a centrally located stand pipe through which oil is introduced. The water 
enters through an annulus surrounding the stand pipe. The flow is driven 
by gravity alone acting on the density difference, care being taken not to 
introduce large differences in the static heads of oil and water at the en
trance. The water and oil are kept separated by the stand pipe wall for a few 
centimeters before the two streams merge into the test plastic pipe of inner 
radius of 0.3175 cm and 120 cm long. The two fluids empty into the atmo
sphere simultaneously. CBJ constructed the free-fall apparatus in a rough 
and ready way solely to demonstrate that a perfect core-annular flow, i.e. 
the basic flow given by (2.3) with F = 0, could be achieved in experiments 
designed so that the system parameters are in the window identified as sta
ble by the linear theory. Theory and experiment are compared in section 
VII.8. 

The second apparatus shown in figure 3.3 is a much more carefully 
designed inverse U loop whose long legs are pipes for up and down flows. 
These pipes are plastic and are of inner radius 0.48 cm. The second ap
paratus is used to study forced flows, up when the pressure gradient and 
gravity are in opposition and down when the pressure and gravity are in the 
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Fig.3.3. [Chen, Bai and Joseph, 1990] Forced-flow apparatus. The sections in
dicated by arrows are test sections and they are surrounded by boxes filled with 
glycerine to eliminate visual distortion. The left test section is for up-flow and 
the right is for down-flow. The two extra sections on the far left are only used for 
demonstration purposes. The inner radius of the pipe is 0.48 cm. 
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same direction. Sections VII.lO - VII.20 show data on the flow rates, pres
sure drops and hold-up ratios (ratio of the input oil-water ratio to the in 
situ ratio) for several oil-water systems, and comparison between the linear 
theory and experimental results. A part of these results, documenting the 
prediction of perfect CAF in free fall, is presented in the following sections. 
We also present some representative results for the linear theory to provide 
the reader with an understanding of the range of phenomena which may be 
expected from the instabilities of CAF in vertical pipes. 

Table 3.1. Material parameters at 23°C. 

Fluid Density Viscosity Interfacial tension 

(gm/cc) (P) (dyne/em) 

80% - 20% glycerine-water 1.18 0.34 

12.27 

SAE 30 0.85 1.03 

VII.3(a) Free Fall 

In free fall, there is no pressure gradient (F = 0) and the two fluids run 
down the pipe under the influence of gravity alone. As we will see later 
in section VII.8, the linear theory predicts that it is possible to choose 
parameters so as to achieve a perfect core-annular flow in free fall. It is 
very important to test this prediction because linearly stable pipe flows of 
a single fluid are known to be destabilized by finite amplitude disturbances. 
The flows which the oil companies call 'lubricated' are wavy core flows, 
not perfect core-annular flows. At one point, CBJ thought that it might 
be possible that wavy core flows can arise out of a subcritical bifurcation 
of perfect core-annular flow. Until they carried out these experiments, they 
had never seen a perfect core-annular flow, though the sketch of experiment 
2 by CGH (see figure 1.1 of chapter V) called 'oil in water concentric' is 
close to perfect and the data for this experiment is nearly in the region 
of stability (see figure 1.12 of section VI.l). In the experiments reported 
below, based on the predicted parameters for stable CAF, CBJ built an 
apparatus and selected fluids to match the prediction and were successful. 
Now it is established that it is possible to run a perfect core-annular flow, 
robustly stable to finite amplitude disturbances if the operating conditions 
are stable according to linearized theory. 

In section VI. 1 , it is shown that the values of the viscosity ratio m for 
which stable CAF is possible lie in a bounded interval (see figure 1.10 of 
section VI.l, for example) and there is a certain m, near 0.5, which maxi
mizes the size of the interval of Reynolds numbers for which CAF is stable. 
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The calculations in section VII.8 show that heavy lubricants are beneficial, 
and we can minimize capillary instability by choosing two fluids with a 
small interfacial tension. To sum up, we need small interfacial tension, a 
relatively heavy lubricant, a viscosity ratio which is somewhat close to 0.5 
and Reynolds number large enough to avoid capillary instability but not 
too high. These conditions are met by choosing a pipe with inner radius 
0.3175 em, using 80% glycerine and 20% water (by weight) mixture as the 
lubricant for the transport of Tropic Artic (Phillip) SAE 30 core fluid (see 
table 3.1). With these design parameters, (2 = 1.4, m=0.33 and CBJ were 
able to realize stable CAF for various values of a. The example in plate 
VI1.3.2 corresponds to a = 1.86, Rg = 1.82 and J* = 2.26. The neutral 
curves for these parameters are exhibited in section VII.8 and it will be 
shown that the linear theory agrees with experiment. 

We think it is important to draw attention to the effects of the material 
of construction of the pipe on the problem of lubrication. In fact, it was 
necessary to thoroughly wash the pipe with the glycerine-water mixture. 
If the pipes were not so prepared, we might see flow with oil deposited on 
the plexiglass wall. There is an instability which we call 'chugging' which 
is associated with this failure of lubrication. We really have nothing in our 
equations to tell us whether the oil or the glycerine-water mixture will be 
on the wall. This appears to be a problem of adhesion which goes beyond 
the usual discussion about contact lines. 

VII.3(b) Forced Flows 

As explained earlier, we shall only describe some of the qualitative behaviors 
of forced flow here. A photograph of the U loop, used to study forced flows, 
is shown in figure 3.3. The working fluids are water and heavy Mobil oil 
with p = 0.881 gm/cc, f.L = 13.32 poise. This gives (2 = 1.135, m = 0.00067. 
Water is introduced in an annulus by small nozzles evenly distributed on a 
circle on the outer wall of the annulus. The oil is introduced through a thin
walled pipe at the center of the annulus. After a few centimeters, the water 
in the annulus merges with the flow of oil. The applied pressure gradient in 
the water and oil tanks, and the volume flow rates of both water and oil, 
are adjustable; they are dials with which the experiments are controlled. 
Pressure drops and hold-up ratios can be measured in the two test sections 
to monitor up- and down-flow. The test sections are seen in figure 3.3 as the 
portions of the U loop surrounded by boxes filled with glycerine designed 
to remove the visual distortion which is created by the circular tube. A 
high-speed video system is used to detect different flow configurations in 
these boxes, and to measure the size of bubbles and slugs. 

A sequence of photographs of the flows which are realized as the super
ficial water velocity Vw = Qw/A and the superficial oil velocity Vo = Qo/A 
are varied is shown in figure 3.4. Here Qw, Qo are the volume flow rates of 
water and oil respectively and A = 7r~ (R2 = 0.48 em) is the area of the 
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(a) (b) 

(c) (d) 

Fig. 3.4(a-k). [Chen, Bai and Joseph, 1990) Core-annular flow of heavy Mobil oil 
and water. The left panel is up-flow; gravity opposes the applied pressure gradient. 
The right panel is down-flow; gravity aids the applied pressure gradient. Vw and 
Vo are the superficial velocities of water and oil respectively. (a) (Vw, Yo) = (0.436, 
0.283) ft/s ; (b) (1.56,0.256) ft/s; (c) (0.436,0.542) ft/s; (d) (1.56,0.582) ft/s; (e) 
(1.56,0.906) ft/s; (f) (0.413,0.426) ft/s; (g) (0.413,0.426) ft/s; (h) (0.554,0.739) 
ft/s; (j) (0.330,0.909) ft/s; (j) (0.436. 1.766) ft/s; (k) (1.116. 1.241) ft/s. 
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(e) (f) 

(g) (h) 

Fig. 3 .4(e-h) . Continued. 
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(i) (j) 

(k) 

Fig. 3.4(i-k). Continued. 
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cross-section of the whole pipe. There are two panels in each photograph. 
Up-flow with the pressure gradient pushing the fluid up against gravity is 
on the left. Down-flow with the pressure gradient pushing the fluid down 
in the same direction as gravity is on the right. When the oil velocity Vo is 
small, as in figure 3.4 (a) and (b), oil bubbles are formed both in the up
and down-flows. These bubbles are a consequence of capillary instability in 
the unstable left hand side of the F - a plane of neutral curves shown in 
section VI1.9; for example, figure 9.1 (b). As Vo is increased, wavy core flow 
is first observed in up-flow on the left, while the down-flow takes form in 
the bubbles and slugs as in (c) and (d) or in long slugs as in (e). This trend 
can be explained as follows in terms of the hold-up ratio used by CGH in 
a similar experiment (see figure 1.1 of chapter V and section VI.1 (m) for 
the work of CGH). In general, the input oil-water ratio, Ro/w = Qo/Qw, 
and the in situ ratio, which is the ratio of the volume of the pipe occupied 
by oil to the volume occupied by water, are different because one of the 
components will tend to accumulate in the pipe. The hold-up ratio, defined 
as the ratio of the input oil-water ratio to the in situ oil-water ratio, is thus 
an important parameter for core-annular flow. For a given input ratio Ro/w, 
if oil accumulates in the pipe, the hold-up ratio will be less than unity, and 
greater than unity if water accumulates in the pipe. When the flow rates 
are moderate, the accumulation of water in up-flow is greater than in down
flow because the effective gravity accelerates oil (buoyancy) and decelerates 
water. For down-flow, the opposite is true: gravity decelerates oil and ac
celerates water. This leads to an accumulation of oil in the down-flow. The 
in situ ratio was examined in both up- and down-flows simultaneously, and 
the results confirm that if the flow rates are not too large, the in situ ratio 
in the down-flow test section is larger than that in the up-flow test section. 
At higher speeds, this difference is negligible. Mathematically, the above 
statement is equivalent to the statement that for a given input ratio Ro/w, 
the parameter a in our analysis has different values for up- and down-flows: 
a is larger for up-flow than that for down-flow. For water and heavy Mobil 
oil, the parameters are not in the window of stable CAF because m is too 
small, (2 is not large enough, etc. In section VI1.9, it will be shown that with 
other parameters fixed, the unstable region will expand as a is increased: 
typically, the upper branch of neutral curves which is associated with wavy 
core flows will sink. The instability on the upper branch is responsible for 
the wavy flows observed in up-flow while stable slugs occur in down-flow. 
For faster flows, the effect of gravity is small and there is less difference 
between the up- and down-flows. The differences which can be observed in 
figure 3.4 (f) through (j) are again well-correlated with the argument about 
the hold-up ratio which leads to a larger water fraction, and less stability, 
in up-flow. 

Many different and interesting nonlinear waves of large amplitude de
velop in vertical core-annular flow. There is as yet no coherent theory for 
these waves. We shall make a few casual observations. First, wakes are im-
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portant. We see the drafting of slugs and bubbles, in which the rear bubble 
accelerates in the wake of the bubble preceding it, eventually forming a 
bubble train held together by pressure deficits behind the blunt body. Such 
trains can be seen at the top of the up-flow panel in figure 3.4 (a) and 
the down-flow panel in (d). This type of wake-effect is present also in the 
wavy core behind the large crests as in the draining of up-flow jets shown in 
(c), (d), (e) and (f). Large-amplitude axisymmetric waves in up-flow with 
peaked crests like those shown at the top and the bottom of the left panel 
of (f) more typically take a corkscrew form in down-flow as is evident in 
the right panels of (f) and (g). The pictures in (f) and (g) show that the 
waves are slowly modulated and are not strictly periodic. It may be argued 
that all non-axisymmetric waves will be forced to rotate by hydrodynamic 
couples associated with shear between oil and water. 

VII.4 Disturbance Equations 

The linear stability of CAF is analyzed as in section VI.I (e). The governing 
equations, and the boundary and centerline conditions are the same. The 
interfacial conditions, (Ie.7), (Ie.8), (Ie.lO) and (Ie.ll) in section VI.1 (e) 
are unchanged, but (Ie.9) which arises from the balance of shear tractions, 
has to be replaced by 

[ ' ,,] [' I ] IR W (1) u(I) + IR (w - au) a(W(I) - C) = o. (4.1) 

This change is solely due to the presence of the density difference because 

(4.2) 

The condition (4.1) is better understood when written in dimensional 
form. It arises originally from the statement that the shear stress Trx is 
continuous across the interface r = Rl + 8: 

The continuity of the shear stress for the basic flow (8 = 0) is in the 
form 

(4.4) 

and 
(4.5) 

To leading order, (4.3) reduces to 

(4.6) 
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This shows that the jump in the shear stress on r = Rl is balanced by the 
effective gravity 

(4.7) 

The instability associated with (4.7) is induced by gravity. The only 
stable equilibrium of two fluids in a gravitational field is vertically stratified. 
Hence, when the velocity is reduced to zero, the heavy fluid will fall into 
a stratified configuration with heavy fluid below. Experiments (cf section 
VI1.3) and analysis show that this fall-down instability can be stabilized 
by shear. The gravity term in this system of equations is not conservative, 
and cannot be written as a gradient, because 

curl pg = V P x g =F 0, (4.8) 

where V p is distributional ( a delta function) across the interface. 
It is shown in section VI.2 (e) that the linearized energy equation may 

be used to identify sources of instability. The growth rate of the energy of 
small disturbances is given by equation (2e.2) of section VI.2 (e), together 
with equation (2f.4) for the notation. We have 

where 

E=I -D+B, 

E = aCj l (jr(luI2 + Ivl2 + IwI2)dr, 

1= l (jrW' (r)Im(uw*)dr, 

D = l ~j {~(ld~;)1)2 + ~ (ld~;)lr +r (1~~lr 

+ r (a2 + ~:) (lul2 + Ivl2 + Iw12) + ~nRe(U*V)} dr 

1 + R (lu(OW + Iv(OW), 

B=Bl+B2+B3 

J* 1 - a2 - n2 C;. 2 

Bl = aR2 a IW(l) _ 012 Iu(1)1 , 

I-m 
B2 = --.t {2(luI2 + Iv12) + 2aRe(u*w2) + 2nRe(uv*) 

(4.9) 

_f+1'!'Re( u*w; )_F+l(2-m)(W(1)-Cr)1 (lW} 
2 a (W(l) - 0)* 2m IW(l) _ 012 U , 
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B3 = -{(2 -l)~Re ( W~~2~ C) 
1 - m F + 1 (2 - 1 2 
+~ a2IW(1) _ q2 2m IU{l)1 . (4.1O) 

Cr = Re{C), Ci = Im{C), 

Ci > 0 for instability, 

and an asterisk denotes the complex conjugate. To compare with the equa
tions in (2e.3) of section V1.2, replace (3 and T of that section by alrJ and 
TrJ respectively, where rJ = 11a. 

E and D may be further decomposed into a part in the water and a 
part in the oil. B1 is the energy supplied at the interface due to interfacial 
tension. It originates from the normal stress balance at the interface and 
arises from a perturbation of the curvature of the interface. It can be seen 
from the expression for B1 that interfacial tension stabilizes short waves and 
all asymmetric waves (n ~ 1), and destabilizes long axisymmetric waves. 

B2 is the energy supply due to the viscosity jump which is called 
'interfacial friction' in section V1.2. It comes from perturbing the condition 
expressing the continuity of velocity. This leads to a jump in the shear 
rate which can be reduced to a viscosity jump. Instability due to interfacial 
friction is a viscous generalization of the Kelvin-Helmholtz instability. It 
has been found that when the densities are matched, B2 stabilizes the 
flow at low Reynolds numbers, destabilizes at high Reynolds numbers and 
causes wavy core flows. The term B3 in the energy supply is proportional 
to the jump of the density, with gravity as a constant of proportionality. We 
have used gRUVl as the velocity scale so that the gravity effect is implicit. 
The last term in B3 also contains a factor proportional to the viscosity 
difference, indicating the coupling of the effect of the viscosity jump and 
the effect of the density jump. We call B3 'interfacial gravity'. 

It is clear from the energy equation that even when viscosities are 
matched (m = 1) and J* = 0, there is still an interfacial energy supply 
B = B3 due to interfacial gravity which can induce instability. 

VII.5 Numerical Method 

The Chebyshev pseudospectral method of section VI.1 (f) is modified and 
applied to the eigenvalue problem. 

Convergence tests were performed by increasing the truncation number 
N of the interpolation functions (see table 2 of CBJ [1990]). N = 20 yielded 
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sufficient accuracy for the calculations of this section. The code was checked 
against JRR, PCJ and HJ. If we take (2 = 1 and 

F = 4m -1, 
m+a2 -1 

then our problem is identical with that of section VI.1. 
In section VI.I (g), we discuss reasons for analyzing the axisymmet

ric mode and not the nonaxisymmetric modes when gravity is neglected. 
When gravity is included, we cannot confine ourselves to the axisymmetric 
modes. If the lubricant at the wall is in a very thin annulus, then the two
dimensional analogue of our problem is the lubricated vertical Poiseuille 
flow [Renardy 1987bJ. For the plane problem, it is found that when the 
densities are similar, either the axisymmetric or the antisymmetric mode is 
unstable, and that the densities have to be very different in order to have a 
linearly stable flow. It appears, however, that for the pipe flows presented 
in this chapter, the data on the axisymmetric mode suffices for the neutral 
curves. Growth rates were computed for the axisymmetric mode (n = 0) 
and the asymmetric modes n = 1 and 5 for a = 1.1, m = 0.95, (2=0.2, 
J* = F = 0, 1Rg = 10, which is a free flow under gravity: the axisym
metric mode has the largest growth rate. Similar mode comparisons have 
been carried out for other ranges of parameters, including up-flows, and the 
axisymmetric mode happened to be the most unstable. In the rest of this 
chapter, only the axisymmetric disturbances are pursued. 

VII.6 Density Stratification and Interfacial Gravity 

Interfacial gravity plays an important role in the disturbance energy budget. 
Density stratification could either stabilize or destabilize the basic flow, de
pending on the parameters. To illustrate the effect of density stratification, 
we consider the following two examples. 

In the first example, we have calculated the growth rates for a = 1.1, 
m = 1, J* = F = 0, 1Rg = 10, corresponding to free fall with matched vis
cosities and zero interfacial tension. Figure 6.1 shows that the flow is stable 
when the lubricant is heavier than the core fluid and unstable when lighter. 
The interfacial mode degenerates to the neutral mode C = W(I) when the 
densities are also matched. This example indicates that density stratifica
tion could cause instability even in the absence of interfacial tension and 
interfacial friction. 

We next consider the lubricated case, m = 0.5. JRR showed that for 
horizontal pipe-flow with matched density, in the absence of interfacial ten
sion, CAF is stable to long waves if the lubricating layer is very thin. But 
if the lubricating layer is thick, CAF is unstable to long waves, even in the 
limit 1R ~ O. This long-wave instability is due to interfacial friction. 
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Fig. 6.1. [Chen, Bai and Joseph, 1990] Growth rates for a=1.1, m=1, J*= F=O, 
Rg =10. Values of (2 are indicated above each curve. The flow is stable when 
(2 > 1 and unstable when (2 < 1. 
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Fig. 6.2. [Chen, Bai and Joseph, 1990] Growth rates for a=1.86, m = 0.5, 
J* = F = 0, R=1; (2 is indicated above each curve. The long-wave instability 
for (2 =1 is reinforced when (2 < 1, suppressed when (2 > 1, and stabilized when 
(221.15. 
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Fig. 6.3. [Chen, Bai and Joseph, 1990] The rate of change of disturbance energy 
E versus Reynolds number R for a=1.1, m=1, F=O, J*= 2000, (2 =2.0, 1.5, 1.25. 
The flow is stable when R> Rc((2): Rc(2.0) = 190, Rc(1.5) = 330, Rc(1.25)=550. 
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Fig. 6.4. [Chen, Bai and Joseph, 1990] Energy supplies B1 and B3 for a =1.1, 
m=1, F = 0, J* = 2000, (2 =2.0, 1.5, 1.25. Interfacial gravity B3 is always 
positive, destabilizing the flow. 
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Interfacial tension can also induce a long-wave instability. For vertical pipe 
flow studied here, say free fall, the same type of long-wave instability due to 
interfacial friction will be present if the radius ratio a is large, the densities 
are matched and interfacial tension is neglected. We want to determine if 
this long-wave instability can be stabilized by density stratification. We 
have computed the case a = 1.86, m = 0.5, J* = F = 0, Rg = 1, and 
various values of density ratio (2, for the long waves a « 1. The results 
are shown as plots of growth rates aCj vs (2 in figure 6.2. From these plots 
it is clear that the long-wave instability (2=1) is reinforced when (2 < 1, 
suppressed when (2 > 1 and completely stabilized when (2 > (J (> 1). In 
our case, (J is about 1.15. 

The stabilizing effect of using heavy lubricant seems to work generally. 
When interfacial tension is included, short waves (a > 1) are stabilized and 
there is a battle in the long-wave range 0 < a < 1 between the destabilizing 
effect of surface tension and the stabilizing effect of density stratification. 
In the rest of this section, we will include interfacial tension and monitor 
the terms in the energy budget corresponding to the most unstable mode 
as the Reynolds number is varied. In performing such calculations, we will 
normalize our eigenfunction with D = 1. We choose the following param
eters: a = 1.1, J* = 2000, F = 0, m = 1 and various values of (2, as one 
example of free flow under gravity. By matching the viscosities we make 
the B2 term in the energy budget vanish so that we can isolate and study 
the interfacial gravity B3. 

We start with (2 > 1: the heavy fluid is outside. In figure 6.3, the 
rate of change of the disturbance energy E is plotted against Reynolds 
number R for three different values of (2. As R is increased to R c(2), E 
monotonically decays to zero. The flow is stable when R > Rc(2). The fact 
that Rc(2.0) < Rc(1.5) < Rc(1.25) indicates that increasing the density of 
the lubricating fluid can stabilize the flow. Water is a good lubricant for oil. 
A heavier fluid (at the same viscosity ratio) might have a wider window of 
stability in parameter space. For instance, see figure 6.4, where we compare 
the interfacial energy supply B1. Capillary instability is rapidly stabilized 
by using a heavy lubricant. This result could be used for preventing the 
formation of slugs and bubbles in slow flows. 

Figure 6.4 also shows that interfacial gravity B3 is always positive 
and destabilizes the flow. In fact, B3 is a monotonically increasing function 
of R and levels off at large R. Although the interfacial gravity is always 
destabilizing, the flow is stable when R > R c (2). The larger the (2, the 
faster Bl decays and the faster B3 increases. The Reynolds stress 1- D 
in the bulk of the fluids is plotted in figure 6.5. It is always stabilizing. 
This result indicates that the stabilizing effect of using a heavy lubricant 
is achieved through increasing viscous dissipation, not through interfacial 
gravity B3. 

When (2 < 1, the heavy fluid is in the core and the results are very 
different. The density stratification helps instability and the flow is always 
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unstable for all the Reynolds numbers that were used. Figure 6.6 shows that 
for (2 = 0.8, 0.5 and 0.3, the rate of change of the disturbance energy E is 
positive and is a monotonically decreasing function of the Reynolds number. 
Figure 6.7 is a plot of the energy supply Bl and interfacial gravity B3 
against Reynolds number. At low Reynolds numbers, interfacial tension is 
the main source of instability and at large Reynolds numbers the interfacial 
gravity is the main source of instability. The value of the Reynolds number 
for this transition in the type of instability decreases as (2 decreases. 

Figure 6.8 shows that I - D is stabilizing for all Reynolds numbers. 
The following conclusions can be drawn for flows falling freely under gravity 
(F = 0): 

(1) A heavy lubricant suppresses the long-wave instability caused by in
terfacial tension and prevents the formation of slugs and bubbles. 

(2) Heavy lubricants can also stabilize the long-wave instability due to 
interfacial friction which occurs when a is large. 

(3) Capillary instability is dominant at low Reynolds numbers and is sta
bilized by shear at large Reynolds numbers. 

(4) Interfacial gravity is always destabilizing and increasingly so at higher 
Reynolds numbers. When the viscosities are matched and the lubri
cant is lighter, interfacial gravity is responsible for instability at large 
Reynolds numbers. 

VII.7 Long Waves 

In the long-wave limit a - 0, the eigenvalue problem can be solved ex
plicitly with a series of powers of a using the method of Yih [1967]. The 
general method is described in section IV.4 in the context of plane flows. 
The solution was first given by Hickox [1971], in terms of a different set of 
parameters than ours. The surface tension parameter used by Hickox is 

T s= 2' PlRlWl (0) 

where W l (0) is the centerline velocity. See equations (ld.9)- (ld.lO) of sec
tion Vl.l for a discussion of this parameter. 

The formula thus obtained for the eigenvalue C can be written as 

(7.1) 

where c(O) is a real constant and thus does not affect stability and c(l) is 
purely imaginary and therefore determines the stability at the lowest order. 
In fact, c(l) can be written as 

C(l) = i {~ h(a,m) + Rh(a,m,(2,F)}, (7.2) 
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where h (a, m) is positive definite, measuring the capillary instability mod
ified by shearing. For details, the reader is referred to the appendix of the 
paper by CBJ. The function h(a, m, (2, F) indicates the effects of in
terfacial shearing and interfacial gravity on the long-wave stability, since 
h(a, m, (2, F) can be expressed as 

h(a,m,(2,F) = (1- m)Q1(a,m, (2,F) + (1- (2)Q2(a,m, (2, F). (7.3) 

We also note that h(a, m, (2, F) is a quadratic polynomial in (2. These 
functions are given in the appendix of CBJ. 

Consider free flow under gravity (F = 0). If h(a, m, (2, 0) is negative, 
then there exists a critical Reynolds number 1Ro, defined in the same way 
as Rg in section VII.2, determined by 

h(a,m) 
(7.4) 

such that we have stability to long waves when Rg > 1Ro and instability 
when Rg < 1Ro. It can be seen from (7.2) that shear stabilizes capillary 
instability when Rg > 1Ro. 

In figure 7.1, we have plotted 1Ro/ J*! vs (2 for m = 0.5 and different 
values of a. The function h (a, m, (2, F) is a parabola on the h - (2 plane 
for any given value of a, m and F and h (a, m) is a constant for given a 
and m. For the parameters we chose to use, h is a concave-up parabola. 
For the (2-range of interest, say 0 < (2 < 5.5, there are three distinct cases, 
depending on the values of a: 

(1) For small a (say a = 1.1) there is a region of stability Rg > 1Ro ((2), 
for 0 < (2 < 5.5. 

(2) Define (0 to be one of the two zeros of the parabola h(a, m, (2, 0) in 
the (2-range considered. Then 1Ro ((2) ---+ 00 as (2 ---+ (0' There is 
one and only one (0 in this range. An example of this is the curve for 
a = 1.2. When (2 < (0, the flow is unstable to long waves at every 
Rg > 1Ro = 0; when (2 > (0 and Rg > 1Ro the flow is stable to long 
waves, when (2 > (0 and Rg < 1Ro the flow is unstable to long waves. 

(3) Define two critical density ratios (01 and (02 to be the two zeros of 
h(a, m, (2, 0) and they are both in the range 0 < (2 < 5.5. Then 
1Ro((2) ---+ 00 as (2 ---+ (01 or (02' The flow is unstable to long waves 
when (01 < (2 < (02 at all Rg > 1Ro((2) and is stable when Rg > 1Ro. 
When (2 < (01 or (2 > (02 the flow is unstable at all values of 1Ro. The 
curves for a = 1.4 and 1.6 are of this type. 

The above classification only makes sense in the range of (2 considered, 
i.e. 0 < (2 < 5.5. In fact, type (3) is the generic case. But for smaller values 
of a, one or both of the zeros (01 and (02 of h(a, m, (2, 0) may be either 
negative or too large and out of the range of interest. 

For forced flow (F =I- 0), we can determine Pu and PI for given values 
of Rg and the other parameters such that when PI < F < Pu , long waves 



138 Chapter VII. Core-Annular Flow in Vertical Pipes 

6 .0 

5.0 

4 .0 

3 .0 1.2 

2.0 1.4 

1.35 

1.0 

0.0 L--,--L-,--L-,--..L.--,-..L-"",--..L-""'--...1...-~-'-~-'-~--'-~--'-~-1 
0 .0 0 .5 1. 0 1.5 2 . 0 2 .5 3 . 0 3.5 4 .0 4.5 5 . 0 5 .5 

Fig. 7.1. [Chen, Bai and Joseph, 1990J Critical Ra/ rl vs (2 for a = 0, m = 0.5, 
F = 0 and a as a parameter with values given above each curve. 

are unstable. This corresponds to capillary instability. Some examples are 
given in section VI1.9. 

It has been shown (cf. section VI.1, PCJ, Renardy [1987b]) that maxi
mum growth rates often occur when the wavenumbers are of order 1 rather 
than for long waves. It is therefore never sufficient to discuss the stability 
of CAF to long waves alone. 

VII.8 Neutral Curves: Free Fall Under Gravity 

The simplest vertical CAF is free fall under gravity (F = 0). This flow 
can be realized physically by slowly pouring fluids into a vertical pipe (cf. 
section VII.3 (a)). The effect of density stratification in free fall can be 
determined by comparing neutral curves in the (Rg , a:) plane. 

Figures 8.1-8.4 are neutral curves for a = 1.1, 1.2, 1.3, m = 0.5, J* = 
2000, and (2 = 0.5, 1.0, 1.2, 1.4, 1.6, 2.0. 
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Fig. 8.1. [Chen, Bai and Joseph, 1990J Lower and upper branches of the neutral 
curves for a =1.1, m=0.5, F =0, J*=2000. (2 = 2.0, 1.6, 1.4, 1.2, 1.0,0.5. Stable 
and unstable regions are marked by S and U respectively. The plotting symbols 
for (2 are: 0, 2.0; <>, 1.6; 6., 1.4; +, 1.2; x, 1.0; 0, 0.5. 
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Fig. 8.2. [Chen, Bai and Joseph, 1990] Neutral curves for a = 1.2, m=0.5, F = 0, 
J*=2000, (2 = 2.0, 1.6, 1.4, 1.2, 1.0, 0.5. Symbols as for figure 8.1. 
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F!g. 8.3. [Chen, Bai and Joseph, 19901 Neutral curves for a = 1.3, m=0.5, F=O, 
J = 2000, (2 = 2.0, 1.6, 1.4, 1.2. Symbols as for figure 8.1. 
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Fig. 8.4. [Chen, Bai and Joseph, 1990] Left and right branches of neutral curves 
for a = 1.3, m = 0.5, F=O, J* = 2000, (2 = 1.0, 0.5. CAF is always unstable for 
these density ratios. Symbols as for figure 8.1. 

The following observations can be obtained from inspecting the neutral 
curves for n = 0, a = 1.1: 

(1) There is an interval 
(8.1) 

in which CAF is stable for the six values of (2. Here, RL and Ru are 
the maximum and minimum Reynolds numbers on the lower and upper 
branches, respectively. 

(2) RL((2) is a monotonically decreasing function of (2 in the range of 
(2 considered. The heavier the lubricant, the smaller is the maximum 
Reynolds number below which CAF is unstable to capillary instability 
induced by interfacial tension. 

(3) RU((2) is not monotonic in (2: 

Ru(1.2) > Ru(1.4) > Ru(1.0) > Ru(1.6) > Ru(2.0) > Ru(0.5) 

There is an optimal value of (2 , around 1.2, that maximizes RU((2). 
(4) The change of RL((2) with respect to the density ratio (2 is relatively 

small compared to that of RU((2)' 
(5) The stable interval (8.1) is larger when the heavy fluid is outside 

((2> 1), than when the lighter fluid is outside ((2 < 1), and reaches a 
maximum when (2 = 1.2. 



VII.8 Neutral Curves: Free Fall Under Gravity 143 

30 

\ 

20 
U 

Rg 

10 

S 

0 
0 .0 0 .5 1.0 1.5 2 .0 

a. 

2.0 

. _ . _ . _ . - - ' -_ .--- -- -

1.6 

1.2 

Rg 

0_8 U 

0.4 

0.0 +-...-....... --r ....... ~-,--~~-.-.............. -----r~--t-~...--, 

0 .0 0_2 0 . 4 0 .6 0 .8 1.0 1.2 

a. 

Fig. 8.5 . [Chen, Bai !lld Joseph, 19901 Neutral curves for fr~ fall , a = 1.86, 
m = 0.33, (2 = 1.4, J = 2.26, F = O. Stable and unstable regions are marked 
by Sand U respectively. The dashed straight line corresponds to the experiment 
Rg = 1.82, which is shown in plate VII.3.2. Stable perfect core-annular flow is 
observed. 
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(6) Increasing the density of the lubricating fluid moves the upper branch 
towards shorter waves. 

Similar conclusions can be drawn from figure 8.2 - 8.4 for a = 1.2 and 
1.3, but there are some new features: 

(7) When a = 1.2, linearly stable CAF is no longer possible for (2 = 0.5, 
while there still exists a stable window of E.g in which CAF is stable 
for other density ratios (2 = 1.0, 1.2, 1.4, 1.6 and 2.0. When a = 1.3, 
not only (2 = 0.5 but also (2 = 1.0 become unstable, while others are 
still stable. 

(8) The optimal value of (2 which maximizes E.U((2) is still about (2 = 1.2 
for both a=1.2 and 1.3. 

(9) Comparing figures 8.1, 8.2 and 8.3, we found that, for those (2 values 
with which there is a stable E.g window, and therefore E.L((2) and 
E.U((2) could be defined, the following relations hold: 

E.L((2)la=1.1 < E.L((2) la=1.2 < E.L((2)la=1.3' (8.2) 

E.u((2)la=1.1 > E.U((2) la=1.2 > E.u((2)la=1.3· (8.3) 

In other words, for a fixed value of (2 , the size of the E.g window, in 
which CAF is stable, is a decreasing function of a. 

The main results obtained in the study of the neutral curves for n = 0, 
m = 0.5, J* = 2000 can be summarized as 

(a) for a fixed value of a, there exists an optimal value of density ratio (m 
which maximizes the size of the stability window of E.g. For our cases, 
(m is about 1.2 for a = 1.1, 1.2 and 1.3. 

(b) for a fixed value of (2, increasing a (increasing the volume oflubricant) 
will decrease the size of the stable window of E.g, or even destroy the 
stability of the flow, like the cases a = 1.2, (2 = 0.5 and a = 1.3, 
(2 = 0.5, 1.0. 

In section V1.1, it was shown that with other parameters fixed, there 
is an optimal value of the viscosity ratio m which maximizes the size of 
the interval of Reynolds number for which CAF is stable. Using this result 
and those obtained above as a guideline, perfect and stable core-annular 
flows were realized in the free-fall experiment described in section VII.3 
(a). The neutral curves corresponding to the example of plate VII.3.2 is 
given in figure 8.5, where the parameters are m = 0.33, (2=1.4, a = 1.86, 
J* = 2.26, and the Reynolds number for the experiment E.g =1.82 is shown 
as a dashed line. Clearly, the Reynolds number for the experiment falls in 
the stability window of E.g. 
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VII.9 Neutral Curves: Forced Flows 

In this section, neutral curves are calculated for forced flows. The effect of 
varying the density ratio is explored for lubricating layers a = 1.1, 1.2, 1.3 
and 1.4 for the sample set of parameters m = 0.5, J* = 2000, Rg = 10. 

Neutral curves for a = 1.1 are shown in figure 9.1. For each value of (2, 
there are three branches of neutral curves. A region of capillary instability 
to long waves is formed for slow motions around F = -1. This region is 
shown in (b). When (2 = 1, all the neutral curves are symmetric about the 
axis F = -1. Since the basic flow is symmetric about F = -1, changing the 
value of F from Fl to - Fl - 2 will only reverse the flow without changing the 
dynamics. Figure 9.1 (b) shows that a heavier lubricant will shift the region 
of capillary instability downward without changing its shape. Therefore, for 
a given pressure gradient, one way to overcome the capillary instability is 
to use a heavy lubricant for down-flows (say F > 0) and a light lubricant 
for up-flows (say F < -1). When the densities are markedly different, one 
might expect that the heavier fluid should stay at the center of the pipe 
for down-flows and the light fluid stays at the center for up-flows, but this 
heuristic idea is just a guide and need not always be true (Renardy [1987b]). 

The upper branches (a) of the neutral curves correspond to fast flow. 
The effect ofincreasing (2 on the upper branch of figure 9.1 (a) is interesting. 
We may confine our remarks to the positive upper branch (F being positive) 
since the negative upper branch (F being negative) is dynamically similar 
to the positive one with the sign of F reversed. Let FU((2) denote the 
minimum value of F(a) on the upper neutral curve over a for each fixed 
value of (2. Similar to the case of free fall under gravity, for a given value of 
a, there is an optimizing value (m of the density ratio (2, for which Fu((m) 
is a maximum. For a = 1.1, (m is about 1.5. The upper branch (a) is 
more sensitive than the capillary branch (b) to changes of (2. When (2 is 
increased, the unstable wavenumbers on the upper branches (a) are shifted 
to shorter waves (larger a). 

Figure 9.2 gives the neutral curves for a = 1.2. For each given value of 
(2, the size of stable regions for CAF is rapidly reduced as the water fraction 
is increased. For (2 = 0.5, stable CAF is impossible for a = 1.2, while for 
a = 1.1 there is still a region of stability. The main effect of increasing a is 
to move the upper branches downward reducing the region of stability. The 
lower branch of the neutral curve is less sensitive to changing a. The upper 
branch sinks as a is increased until it connects with the lower branch at a 
critical value of a. Then stable CAF is not possible. The critical value of a 
depends strongly on all the other parameters. 

The neutral curves for negative values of F in figure 9.2 (a) are nearly 
mirror reflections of the upper branches of neutral curves for positive F 
across the line F = -1. We call these 'negative-F upper branches'. The 
negative-F upper branches shift to short waves as (2 is increased more 
strongly than the positive branches (see figure 9.2 (a». There is again a 



146 Chapter VII. Core-Annular Flow in Vertical Pipes 

density ratio which maximizes stability. 
Figure 9.3 shows that when the density is matched, stable CAF is 

possible when the radius ratio a ::::; 1.2, but is not possible for a = 1.3. 
Stable CAF can be achieved when a is large by choosing a lubricant which 
brings the density ratio close to the optimal one: for example, there is 
stability for a = 1.3 when (2 = 2 but instability when (2 = 0.5. 

There are similarities with the free-fall situation discussed in section 
VlI.8. For a given a, the largest window of stable CAF can be achieved by 
choosing a favorable density ratio (m, and for a given density ratio (2, the 
size of the stable region can be reduced by increasing the radius ratio a. For 
example, the stabilization of the How for a = 1.3, achieved by increasing the 
density ratio to (2 = 2 (figure 9.3(a», is nearly lost when a is increased to 
1.4 (figure 9.4 (d)). The figures show that the destabilization with increasing 
lubricant fraction (or radius ratio a) acts on the upper branch of the neutral 
curve and can to some extent be countered by a suitable choice of (2. 
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Fig. 9.1. [Chen, Bai and Joseph, 1990] Neutral curves for a = 1.1, m = 0.5, J* = 
2000, Rg = 10, and different values of (2 given by the numbers above each curve. 
(a) Positive- and negative-F upper branches. The negative branches are similar 
to the positive ones. The band of stability is maximized for a certain value (m of 
(2, and (m is close to 1.5. (b) Regions of capillary instability. 
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Fig.9.4(a-e). [Chen, Bai and Joseph, 1990J Figure 9.4 shows neutral curves for 
a = 1.4, m = 0.5, J* = 2000, Rg = 10, and various (2 . (a) Left branch for (2 = 
0.5. (b) Right branch for (2 = 0.5. CAF is unstable. (c) (2 = 1. CAF is unstable. 
(d) Positive- and negative-F upper branches for (2 =2. There is a narrow band 
of stability. (e) Region of capillary instability for (2 = 2. 
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VII.10 Conclusions on Linear Stability 

1.0 1. 2 

We have analyzed the effect of the density difference on the stability of 
vertical core-annular flow. The density difference changes the basic flow of 
chapter VI and introduces an effective gravity [p]g in the balance equation 
for the shear stress at the interface. 

First, we summarize the main results for free fall when the lubricating 
layer is thin and the viscosities are matched, emphasizing the effect of the 
density ratio. As a typical example, we take (F, a, m) = (0,1.1, 1), n = O. 

(1) Energy analysis shows that interfacial gravity is destabilizing, for heavy 
and light lubricants and at all Reynolds numbers. 

(2) The Reynolds stress minus the dissipation is stabilizing in the cases 
studied in this chapter. 

(3) The stabilizing effects just mentioned are in opposition to capillary in
stability and to the destabilizing effect of gravity at the interface which 
drive the fluids to vertical stratification. The flow may be stabilized by 
dissipation for R > R c «(2) if the lubricant is heavy, but not if it is 
light. 

Now we allow for different viscosities with the more viscous fluid inside, 
and set m = 0.5. 
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(4) Heavy lubricants suppress capillary instability. Increasing the density 
of the lubricant shifts the upper branch of the neutral curves toward 
shorter waves. 

(5) When the lubricating layer is thin and the density ratio is not too 
small, there is an interval of Reynolds numbers between the lower and 
upper branches in which CAF is stable. 

(6) For a given value of a, we can maximize the interval of Reynolds num
bers on which CAF is stable by choosing the best (2 = (m, 0 < (m < 00, 
the other parameters being fixed. The destabilization of the upper 
branch due to increasing a (thick lubricating layers) can be countered 
by using lubricants with (2 close to (m. 

We next summarize the results for forced flow: F #- 0 and F can be 
positive or negative. When (2 = 1, F = -1 implies that the gravity force 
and the pressure gradient are in balance and the neutrally buoyant core 
flow will break up by capillary instability. Large positive F means down
flow and large negative F means up-flow. There are two branches of neutral 
curves for up-flow and two branches for down-flow: the capillary branch and 
the upper branch. In order to have linear stability for a given density ratio, 
the lubricating layer must be sufficiently thin. The following summarizes 
the results for the parameter range addressed in the preceding sections. 

(7) To achieve stable CAF for slow flow, use a heavy lubricant for down-
flow and a light one for up-flow. 

(8) The difference in the nature of the response between up-flow and down
flow is due only to the effect of gravity, and the two flows would be 
equivalent if the basic speeds involved were very fast. Thus, if IFI is 
very large, the flows are very fast, either upward or downward, and the 
response of the system in both types of flows are the same. 

(9) The upper branch for either up-flow or down-flow is more sensitive 
to changes in the density of the lubricant than the capillary branch. 
Increasing the density of the lubricant will shift all the upper branches 
to shorter waves. 

(10) IT the lubricating layer is sufficiently thin, it is possible to have linear 
stability for some range of density ratios, and there is an optimizing 
density ratio (2 = (m which gives the largest interval of Reynolds 
numbers for stability. 

The experiments described here on free fall have established that it 
is possible to run a perfect core-annular flow, robustly stable to finite am
plitude disturbances, if the operating conditions are stable according to 
linearized theory. Some results are given for forced flows to show the range 
of flows which can be expected from a heavy motor oil and water. The 
experimental results are pursued in more depth in the next sections. 
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VII.II Notation for Sections VII.12-2I 

a 
A 

=R2/ Rl radius ratio 
= area of the pipe (1T~ where R2 =3/16 in is the inside 

radius of the pipe) 
= cross-sectional area of the core (1TR~ where Rl is the radius 

of the core) 
Aw = cross-sectional area of the annulus (1T(~ - R~)) 
BW = bamboo waves (see figures 15.3, 19.1-19.9) 
CW = corkscrew wave (see figures 14.1, 19.4) 
Dl =2Rl 

D2 , d =2R2 

DBW = disturbed bamboo waves (see figure 15.6) 
DCAF = disturbed core-annular flow (see figures 15.7, 19.9) 
'f/ = Rd R2 = l/a radius ratio 
>. = friction factor (19.4) 
fl' h = pressure gradients (18.8) 
g = gravity constant 9.81 m/s2 

HI = Ho height of oil head 
H2 = Hw height of water head 
iI, iII. iI2 = heights of water columns in the manometer tube (see figure 13.2) 
h = hold-up ratio (14.1) 
() = dimensionless pressure drop 
J = T R2 / apl vi capillary number of Chandrasekhar 
J* = aJ 
L = pipe length, also = Ho + Hw 
m = J.L2 / J.Ll viscosity ratio (oil inside corresponds to m < 1). In the 

J.Ll 

p 
p' 
PCAF 
Ql 
Q2 
Rl 
R2 
R 
Re 
Rg(Rl) 

experiments m =1/601 at 22°C) 
= J.Lo oil viscosity 
= J.Lw water viscosity 
= kinematic viscosity J.L/ p, VI = vw , V2 = Vo 
= L1TR~ = LAo = Ho1T~ = HoA volume of oil 
= L1T(~ - Rn = LAw = Hw1T~ = HwA volume of water 
= no + nw total volume 
= pressure drop 
= piezometric pressure 
= dynamic pressure 
= constant pressure gradient 
= perfect core-annular flow 
= Qo volume flow rate of oil 
= Qw volume flow rate of water 
= mean radius of the core 
= inside radius of the pipe 
= Reynolds number (see Wo ) 

= Vd/v Reynolds number (see V) 
= RIV'gIf; / VI Reynolds number 
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= Uw (D2 - Dd/lIl 
= Po oil density 
= Pw water density 
= Pl-P2 
= interfacial tension 
= shear stress at the wall 

Uo = average velocity of the oil 
Uw = average velocity of the water 
(V, Vl, V2) = (V, Yo, Vw) = (Q, Qo, Qw)/A are superficial velocities 
W(r) = axial velocity of PCAF 
Wo = W(O) centerline velocity 
W(I) = velocity of the oil/water interface in PCAF 

VII.12 Properties of Fluids Used in Experiments 

The Mobil cylinder oil was repeatedly recycled, in contact with water, dur
ing the two-year course of experiments reported here. After the two years, 
the recycled oil had taken on water in a relatively stable emulsion. The 
viscosity of the emulsified oil is less than half that of the pure oil. It is 
well known that emulsification of water into oil will increase the viscosity, 
as evident in Einstein's formula (cf. §4.11, Batchelor [1970]; Happel and 
Brenner [1983]) and in the measurements of Tipman and Hodgson [1956] 
for water emulsified in oil in concentrations ranging up to 30%. Except for 
an observed small decrease in viscosity at a water fraction of 2.5%, the 
emulsions of water in oil had increasingly larger viscosities. Both our fresh 
oil and our recycled oil are Newtonian (see Bai, Chen and Joseph [1992] 
for shear stress versus shear rate plots and viscosity versus temperature 
plot). We do not have an explanation for the decrease in viscosity of the 
water-emulsified oil. The decrease is even greater than for an ideal mix
ture computed as follows. If c: is the water fraction, the density Pe of the 
emulsion is the weighted sum c:pw + (1- C:)Po of the densities of water and 
oil. The viscosity of the emulsion is J.Le = C:J.Lw + (1 - C:)J.Lo. The density 
Pe = 0.905 g/cm3 and Po = 0.885 g/cm3 . Hence c: = 2/11.5. At 22°C, 
J.Lo=13.8p and J.Le ",9.5(13.8)/11.5=11.4 poise. This is much larger than the 
measured value J.Le=6.01 poise. It is possible that the emulsified oil contains 
air. Another possibility is that the oil has undergone chemical change in 
two years, possibly due to attack by bacteria. 

The viscosity of the pure oil and the used oil was measured on a Rheo
metries System 4 rheometer and on a parallel plate Deer rheometer with 
consistent results. The water used in the experiments was a 0.4% aqueous 
solution of sodium silicate. The density of this solution is Pw=0.995 g/cm3 

and the viscosity is taken at J.Lw = 10-2 poise. The sodium silicate was 
added to promote wettability of the glass walls of the pipe with water, to 
promote lubrication. This works if the glass is clean. After two years with
out cleaning (yuck!), the dirty walls are less hydrophilic to aqueous sodium 
silicate solution than clean walls to pure water. The nature of absorbed lay-
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ers, and the history of wetting are important; wetting is not just a property 
of materials but depends on the history and dynamics of Huid motions near 
a surface (see (vi) of section VII.15 for more discussion). 

The interfacial tension was measured with a spinning rod tensiometer 
which is basically a spinning drop tensiometer with a centrally located rod 
of small diameter designed to improve spin up and stability. The interfacial 
tension between the emulsified oil and pure water is T = 22.50 ± 1.86 
dyn/ cm. The interfacial tension between the emulsified oil and the aqueous 
sodium silicate solution is T = 8.54 ± 0.157 dyn/cm. 

For our computations we have used measured values for the emulsified 
oil and sodium silicate solution at T = 22°. 

(/-Lw, /-Lo) = (10-2 , 6.01)poise, 

(Pw, Po) = (0.995, 0.905) g/cm3 , 

T = 8.54 dyn/ cm. 

(12.1) 

The values for pure oil are as follows, but they do not characterize 
the Huids for which the How data were taken. However, we present some 
computations in section VII.19 for this oil. 

(/-Lw, /-Lo) = (10-2 , 13.32)poise, 

(Pw, Po) = (1, 0.881) g/cm3 , 

T = 20 dyn/ cm. 

VII.13 Experimental Set-Up and Procedures 

(12.2) 

The How system is shown in figure 13.1. The pipeline is a n loop which 
is mounted on the wall with its long legs vertical, aligned with gravity. 
The How of oil and water to the pipeline is established by the pressure of 
compressed air in the oil and water tanks. The How rates Qo and Qw for oil 
and water are controlled by valves at the outlet of the oil and water tanks. 
Qw is measured by a Dwyer rotameter and Qo by a positive displacement 
gearmeter (FTB-1000, manufactured by Omega Engineering Co.) which is 
particularly suited for high-viscosity liquids. The oil and water are injected 
into the pipeline concentrically, with the oil in the core and water in an 
annulus, by means of a nozzle fitted centrally in the pipe. The oil is delivered 
through the nozzle. The How is first pushed up against gravity in the left leg 
of the n loop. The How turns arolind at the top of the loop and Hows down 
in the right leg. There are test sections on the left and right legs which are 
enclosed in boxes filled with glycerine to remove lens distortion from the 
round walls of the pipe. The height of the test sections is 93". The total 
height of the n loop is 180". 
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The n loop system is closed: the oil and water are recirculated. Oil and 
water are stored in separate pressurized tanks. The pressure levels in the 
two tanks are adjustable and drive the liquids to the n loop without pulses. 
The oil and water are ejected into a large tank and separated under gravity. 
After separation, the two liquids are driven back into the inlet storage oil 
tanks by compressed air. 

Pressure drops are measured in the up- and down-flow legs of the n 
loop. In each leg, there are two pressure taps connected to a manometer. 
The pressure taps are designed to facilitate the separation of oil from the 
water so that only water will enter the manometer. The pressure gradient 
cannot simply be read off the manometer when there are two fluids in the 
pipe. Let PA be the piezometric pressure at the bottom tap in figure 13.2 
and PB is the piezometric pressure at the top tap. The pressure difference 

(13.1) 

where PwgHw is the weight of the water, PogHo the weight of the oil per 
unit area and 

Llp =PA - PB (13.2) 

is the dynamic pressure producing the flow. Now consider the manometer in 
figure 13.2 (a) and let Pc be the air pressure in the column of air separating 
the two legs of the manometer. The pressure at A balances Pc plus the 
pressure of the water column of height iII, 

(13.3) 

The pressure Pc balances PB plus the pressure of the column of water of 
L - iI2 where L is the distance A to B 

Pc = PB + Pwg{L - iI2). (13.4) 

Combining now (13.1), (13.3), (13.4) and 

(13.5) 

we find that 
(13.6) 

is the pressure drop due to the motion in up-flow. 
In down-flow, where the pressure gradient and relative buoyancy are 

opposed, the difference in height of the manometer legs is proportional to 
Llp plus the hydrostatic contribution so that 

(13.7) 

We may have flow, due to relative buoyancy alone, for which iI = O. 
Formulas (13.6) and (13.7) require measured values of iI and Ho. The 

height difference iI is read directly but Ho depends on the volume of oil 
between the pressure taps in the pipe and it cannot be determined directly. 
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To determine Ho, we measure the volumes of oil and water between the 
pressure taps directly. This is done by means of two valves, called hold-up 
valves, which cut off the flow between the taps simultaneously. There is a 
third safety valve which opens at the same time that the hold-up valves 
are closed, releasing the high pressure in the system. After the hold-up 
valves are closed, the oil rises and the volumes of oil and water are read 
easily. Actually, the distance between the hold-up valves is 93 inches so 
that the measured heights must be reduced by 90/93. Since the diameter 
(d = 3/8 inches) of all pipes is the same, we may easily compute volumes 
by measuring heights. There are two sets of hold-up valves, one for up-flow 
and one for down-flow. 

All the data taken in our experiments is recorded on our Kodak Spin 
Physics2000 Motion Analysis System or on a high resolution video camera. 
The only quantities that can be controlled after an experiment is in place 
are the flow rates of oil and water. One of these flow rates is fixed, and 
the other is varied. Then we wait for transients to decay. The slower flow 
rates have long transients. After steady conditions are established, video 
recordings are made. The high-speed recordings have the raw data for the 
analysis of the flow; they allow us to measure the distances, say between 
crests of waves, and their phase speed (celerity). We present average wave 
lengths and wave speeds, which are simple averages obtained by summing 
values and dividing by the number of trials. 

To correlate the experimental observations with the linear theory of 
stability, we need to specify whether we are in up- or down-flow, the two flow 
rates and the water fraction in the pipe. The water fraction is a functional 
of the solution determined by the hold-up ratio in the manner described 
below. 
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Fig. 13.1. [Bai, Chen and Joseph, 1992) The experimental system. 
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Fig. 13.2. [Bai, Chen and Joseph, 1992] Manometer tubes in up-flow (a) and 
down-flow (b). The distance from A to B is L and ih - iI2 = iI. In flows driven 
by buoyancy alone, without pressure gradients, iI < O. 

VII.14 Hold-Up Ratio 

Conventional wisdom about hold-up ratios in lubricated pipelining needs 
to be amended for effects of buoyancy in vertical pipes. The hold-up ratio 
is the ratio of ratios (14.1) , the ratio of volume flow rates to the ratio of 
volumes. These two ratios would be the same in a perfectly mixed flow, say 
a well-emulsified solution of water in oil. In the perfectly mixed flow, the 
hold-up ratio h is One. In general, and certainly in lubricated pipelining, 
the two fluids are not well-mixed, and the hold-up ratio differs from unity. 
The conventional wisdom is that the liquid in contact with the pipe wall 
tends to be held back. Thus the hold-up ratio will tend to be greater than 
unity when the water is the component in contact with the pipe wall and 
to be less than unity when oil is in contact with the pipe wall. This idea 
is not correct in vertical flow where the effects of buoyancy are important. 
Gravity makes the water flow faster than the oil in down-flow. 

Because the up- and down-flow legs of our n loop apparatus are con
nected, the pressure drop is established over the whole pipe with a contin
uous loss of pressure due to friction. The reader may be helped by thinking 
that to a first approximation, the pressure gradient is a constant, the same 
constant in the up- and down-legs of the n apparatus. Gravity aids the 
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Fig. 14.1. rBai, Chen and Joseph, 1992] Long oil slug suspended by gravity in 
down-flow o( water when the water flow rate is about 0.04 ft./sec. The slug is flu
idized, in equilibrium under weight and drag. The hold-up ratio is zero. Transient 
traveling spiral waves, called corkscrews, can be seen on different segments of the 
core. It is easy to fluidize much longer slugs, even to have a continuous core of oil 
fill the entire down-flow pipe. 

applied pressure gradient in accelerating the oil relative to water in the 
up-flow and decelerating the oil relative to the water in the down-flow legs 
of the apparatus. This means that more oil accumulates in down-flow than 
in up flow. The water fraction is greater in up-flow than in down-flow. This 
implies that the a-I = (R2 - Rd/ Rl is smaller in down-flow and that the 
hold-up ratio 

(14.1 ) 

is smaller in down-flow where the oil volume Do = 7rRJHo is larger. 
The value h = 0 of the hold-up ratio can never be achieved in up 

flow or horizontal flow, but it can be realized in down-flow. We get h = 0 
when there is already oil in the pipe, (Do # 0) but no new oil supply is 
forthcoming (Qo = 0) . An experimental realization of this in down-flow is 
shown in figure 14.1 where a long slug of oil with aspect ratio in excess 
of 20 is exhibited. This slug is perfectly lubricated by water. Basically, 
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we can say that the slug is fluidized: it is lifted by gravity against the 
oncoming downward flow of water, suspended in the lubricating stream in 
an equilibrium of weight and drag. It is possible to suspend truly large slugs 
with aspect ratios greater than 100 in this way. 

The volume ratio ilo/ ilw = Ho/ Hw is per unit length of pipe, and is 
hence equal to the area ratio Ao/ Aw of oil to water in a perfect core-annular 
flow. This ratio may be expressed in terms of the radius ratio a = R2/ Rl by 
the formula a2 -1 = Aw/Ao. After replacing ilw/ilo with a2 -1 in (14.1), 
we get 

(14.2) 

This formula is relevant to experiments which show that h is constant in 
up-flow and fast flows. 

In figure 14.2 we present the volume ratio ilo/ il = Ho/ L, L = Ho+Hw, 
where il = ilo+ilw = 7rm(Ho+Hw) is the total volume, against the input 
flow ratio Qo/Qw = Vo/Vw. We can fit the data for up-flow to the empirical 
curve 

Ho = 1- 1 
L (1 + 0.72Vo/Vw) 

(14.3) 

Hence Hw/il = 1/(1 + 0.72Vo/Vw) and 

h = Qo ilw = Vo Hw = 1/0.72. 
Qw ilo Vw Ho 

(14.4) 

This shows that h is constant in up-flow of cylinder oil in water and is 
independent of any input ratio or flow condition. 

Figure 14.3 is for down-flow. The data points are more scattered in 
down- than in up-flow, especially for moderate input ratios. The empirical 
formula (14.3) which works for up-flow does not work as well in down-flow. 
The difference between up-flow and down-flow is more clearly expressed in 
figure 14.4. 

One major conclusion implied by the data shown in figures 14.2 and 
14.4 is that the hold-up ratio h in up-flow does not depend on the flow 
rates of oil and water, nor on the ratio of flow rates. The hold-up ratio 
in down-flow depends strongly on these parameters, as is shown in figures 
14.3 and 14.4. These figures show that when the flow rates are large, the 
effect of gravity is suppressed, as the up- and down-flows can be treated 
equivalently. Hence, in fast flows, the hold-up ratios are the same and equal 
to approximately 1.39 in both up- and down-flows. This result agrees with 
conventional wisdom (the water is being held up), but disagrees with results 
of Charles, Govier and Hodgson [1961] who found that in horizontal pipes, 
when the densities of oil and water are matched, the hold-up ratio does 
depend on the input ratio and flow velocity, even at large flow rates. 
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Fig. 14.2. [Bai, Chen and Joseph, 1992) The volume ratio flo / fl = H o / L versus 
the input ratio Vo/Vw for up-flow . The data falls close to the solid line given by 
(14.3). The data points are given by the superficial velocity of water Vw in ft/sec . 
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Fig. 14.3. [Bai, Chen and Joseph, 1992) The volume ratio versus input ratio for 
down-flow. The formula (14.3) is plotted. The data points are designated as in 
figure 14.2. 
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Fig. 14.4. [Bai, Chen and Joseph, 1992) Hold-up ratio in down-flow as a function 
of Vo/Vw with Vw as a parameter. 

VII.15 Flow Types 

Several qualitatively different regimes of flow can be distinguished in our 
experiments. There is some subjectivity involved in the delineation of dif
ferences which might be labeled qualitative or merely quantitative, so that 
the exact number of qualitatively different regimes may differ slightly from 
observer to observer. The flow regimes which appear in horizontal pipes un
der conditions of matched density have been already identified in the paper 
by CGH (figure V.l.!) who studied concurrent flow of water and oil-carbon 
tetrachloride solution in a l.04 inch diameter pipe. Some of the different 
regimes observed by them have been studied in chapter VI. Many of these 
regimes, and some new ones, for example, bamboo waves, appear in verti
cal flow. We were not able to study the regime in which water emulsifies 
into the oil, called 'water droplets' by CGH, because our apparatus is not 
strong enough to withstand the high pressure gradients generated in this 
condition. 
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Fig. 15.1{a-b). [Bai, Chen and Joseph, 1992] Oil bubbles in water. (a) Up-flow. 
The bubbles do not aggregate. Wake forces are weak. (b) Down-flow. Bubbles 
aggregate in bubble-trains held together by wake forces. 

In this section, we shall give a qualitative description of the types of 
flow we encounter, together with illustrative photographs and a discussion 
of some underlying physical mechanisms associated with them. In the next 
section, the regimes are depicted as regions on a flow chart, whose coordi
nates may be chosen as the superficial velocities of oil and water. 

(i) Oil bubbles in water. These bubbles arise from capillary instabilities in 
the presence of shear. Oil bubbles in water are produced by capillarity but 
the size of the bubbles is determined by other factors, like shear, as well. 
The range of sizes of the bubbles which are observed is fairly well predicted 
by the linear theory of stability using Rayleigh's idea (cf. §1.5, Drazin and 
Reid [1982)) that the mode that would be observed is the one with the 
maximum growth rate. In our situation, this means that the size of the 
bubble which would be observed corresponds to one-half of the wavelength 
of the mode with the maximum growth rate. Rayleigh's idea originated 
in his work on the stability of an incompressible inviscid jet in air with 
surface tension at the free surface. In contrast, the presence of shear in 
our problem has a strong influence on the length of maximum growth. A 
comparison of calculations from the linear theory of stability with the size 
of bubbles observed in the experiments of CGH is shown in table 1.1 of 
chapter VI and shows agreement. 
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(b) 
Fig. 15.2(a-b). [Bai, Chen and Joseph, 1992] Oil slugs in water. (a) Up-flow. 
The larger bubbles are stretched out under the action of shear and buoyancy. 
This is shear-stabilization of slugs and bubbles leading to long bamboo waves. 
(b) Down-flow. The oil is held up by buoyancy and slugs held together by wakes 
forming long trains. 

As a rule of thumb, we can say that we will always have oil bubbles in 
water if there is a large amount of water. Dispersions of oil in water, rather 
than bubbles, appear when the water velocity is much larger than the oil 
velocity. Dispersions will be discussed under (vii) below. 

There is a marked difference in the distribution of bubbles in up-flow 
and in down-flow, even when they are of approximately the same size. In 
up-flow, the bubbles tend to spread and distribute themselves uniformly in 
the pipe. The wake interactions are weak because the velocity of the oil 
relative to the water is small. The oil is lifted by gravity relative to a forced 
stream of water moving in the same direction. Bubbles in down-flow tend 
to aggregate. Wake forces between bubbles in down-flow are much greater 
than in up flow because the bubbles are lifted against the forced stream of 
water, producing larger relative velocities and stronger wakes. 

The tendency of bubbles to disperse in up-flow and to aggregate in 
down-flow is evident in the photograph shown in figure 15.1. 

(ii) Slugs of oil in water. Suppose we use Rayleigh's idea mentioned in (i) 
above and determine a natural diameter for an oil bubble in water. If this 
diameter is larger than the pipe diameter, it will not fit in the pipe. One 
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way to get the entire volume into the pipe is to squash it into a capsule 
shape. These capsule shapes are dynamically possible because they are 
shear-stabilized by water. They move through the pipe freely lubricated on 
all sides by water in a manner reminiscent of capsule transport in pneumatic 
tubes. 

Slugs form readily from bubble aggregates in down-flow when the oil 
fraction is increased. The bubble aggregates collapse to form longer slugs 
which have a relatively large diameter lubricated by a thin layer of water. 
Long slugs are like segments of PCAF, but they support corkscrew waves. 
Corkscrew waves look like a periodically buckled wimpy rod which rotates 
in the water due to hydrodynamic torques. Corkscrew waves on a long shear 
stabilized slug are shown in figure 14.1 and many of them can be seen in 
the down-flow side on the right hand sides of the photographs of section 
VII.20, say figure 20.5. 

It seems to be impossible to create capsule slugs and corkscrew waves 
in up-flow. In up-flow bubbles do not aggregate to form slugs as the oil 
input is increased. Instead, filaments are pulled out and the bubbles are 
stretched, as shown in the photograph of figure 15.2, under the combined 
action of buoyancy and lubrication forces described in the caption of figure 
15.5. This filament at ion gives rise to the bamboo waves which are described 
next. 

(iii) Bamboo waves (BW). The shear-stabilization of capillary instabilities 
in up-flow leads to a regime of wavy flow in trains of sharp crests connected 
by long filaments. We call these bamboo waves. Superficially, they resem
ble Stokes waves except that they perturb a cylinder. They appear to be 
axisymmetric but there may be slight imperfections, such as that the crests 
may not be exactly axisymmetric. Many photographs of bamboo waves un
der different conditions are shown in section VII.20. The filaments which 
connect the crests thicken as the oil velocity Vo is increased for a fixed Vw 
and the average length of a wave decreases. These effects are evident in the 
photographs exhibited in figure 15.3 and are documented in the graphs of 
data assembled in figure 15.4. These waves are nearly stationary in a coor
dinate system moving with the undisturbed interface velocity so that the 
wave speed relative to laboratory coordinates also increases with increasing 
oil input. 

Bamboo waves are a very robust regime of up-flow, occupying a large 
area in the up-flow charts shown in figures 16.1 - 16.4. They seem to main
tain well-defined average wave lengths and wave speeds, but they are not 
perfectly periodic. The overtaking of one crest by another and the transient 
stretching of filaments between the waves is a frequent occurrence. 

The stability analysis of Renardy [1987bJ for vertical plane Poiseuille 
flow has shown that a varicose instability arises in up-flow and a snake in
stability (analogous perhaps to corkscrew waves) arises in down-flow. Some
thing like a varicose instability might give rise to bamboo waves. A heuristic 
reasoning for the shape of the bamboo waves in up-flow is that they are 
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Fig. 15.3. [Bai, Chen and Joseph, 19921 Thin and thick bamboo waves. The 
bamboo thickens and the average length o( a wave decreases when the oil velocity 
increases at a fixed value of the water velocity. Some very short bamboo waves 
associated with high input velocities are shown in figure 15.6. 

stretched due to the combined action of buoyancy and lubrication forces. 
The buoyancy part of this mechanism is simply that the oil is lifted by 
gravity relative to the heavy water which in any event is stationary on the 
pipe wall. The crest of a wave on the oil must move forward relative to the 
water. We noted already that the wave is nearly stationary, convected with 
the oil, unable to move fast on the oil core because the oil is so viscous. This 
means that there will be a positive build-up of pressure on the up side and 
a decrease of pressure on the down side of every crest in up-flow, as shown 
in figure 15.5 The pressure associated with this lubrication effect will push 
the water from plus to minus and this will induce stretching in the same 
sense as buoyancy, elongating the wave, stretching the stems. On the other 
hand, the effects of buoyancy and lubrication are opposed in down flow. 
This tends to compress, even to eliminate, bamboo waves and may lead to 
the form of buckling which we have called corkscrew. 
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Fig. 15.4. [Bai, Chen and Joseph, 1992] The average length of a bamboo wave 
decreases monotonically as the oil input is increased for fixed flow rate of water. 
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Fig. 15.5(a-b). [Bai, Chen and Joseph, 1992] Lubrication forces arise from 
bamboo waves which in the first approximation are connected with the oil relative 
to stationary walls. The pressures which develop in the water in the front and 
back of crests are designated by (+-) and buoyancy of oil relative to water is 
designated by B. The pressure forces and buoyancy work together in up-flow (a) 
where they lead to stretching and are opposed in down-flow (b) where they lead 
to compression and buckling. 
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Fig. 15.6(a-b). [Bai, Chen and Joseph, 1992) Disturbed bamboo waves. When 
the pressure gradient is much larger than buoyancy, the difference between up
Bow (a) and down-Bow (b) is suppressed. One sees short, thick-stemmed waves. 
The effect of stretching in up-flow and compression in down-flow is still active in 
producing longer waves in up-flow. 

(iv) Disturbed bamboo waves (DBW). We have already mentioned that 
when the driving pressure gradients are relatively large and the flow is fast, 
the difference between up- and down-flow vanishes. In particular, the asym
metric effect of buoyancy on the hold-up ratio is relatively less important 
when the pressure gradient is large. This can be seen in the disturbed up
and down-flow bamboo waves shown in figure 15.6. Some effect of buoyancy 
on the wave length is still in evidence, with stretched waves in up-flow and 
compressed ones in down-flow. At a lower speed, the up-flow waves would 
elongate and the bamboo stems would thin, while in down-flow the stems 
thicken into columns of oil which support perfect core-annular flow which 
is perturbed by corkscrew waves from place to place. At a faster speed, the 
oil core cannot keep its integrity and various kinds of dispersions of oil in 
water and water in oil will form. 

(b) 
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Fig. 15.7(a-b). [Bai, Chen and Joseph, 1992] Disturbed core annular flow 
(DCAF). Some portions of the oil column in down-flow are nearly perfect (a) 
while others are buckled and rotate as a corkscrew (b). 

(v) Disturbed core-annular flow (DeAF) and corkscrew waves. In PCAF, 
the core has a perfectly cylindrical interface of uniform radius which is 
perfectly centered on the pipe axis with an annulus of lubricating water 
outside. See earlier sections of this chapter for photographs. Figure 15.7 
shows PCAF disturbed by transient spiral waves which we call corkscrew. 
This is reminiscent of the snake instability found in down-flow of vertical 
plane Poiseuille flow [Renardy 1987b]. We call this regime of flo~ disturbed 
core-annular flow (DCAF) . Actually, the motion of a corkscrew as it is 
screwed forward in the cork is an accurate description of the waves we see. 
These waves are not understood by us but they are perhaps associated with 
the buckling of a very soft rubber when loaded with shear tractions, which 
in our experiments are generated by the motion of water in the annulus. 
The apparent velocity of advance of the turning corkscrew is larger than 
the superficial velocity of oil or water. When the water flow rate is fixed 
in the small-to-moderate range where corkscrew waves appear, the pitch 
of the screw will increase with increasing rates of flow of oil leading to an 
apparent slowing of the wave. In this way, one can obtain a nearly perfect 
core annular flow. 

(b) 
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Fig. 15.8(a-b). [Bai, Chen and Joseph, 1992] Deposition of oil on the wall. Oil 
seizes the hydrophilic glass wall when the oil flow rate is increased at a small fixed 
water flow rate (see 'oil sticks to the wall' on the flow charts in section VII.16). 
After the oil seizes the wall, the pipe is blocked and the blockage is relieved by 
an 'oil-core water-annulus oil-sheath' configuration. (a) A bubble cloud around 
an internal core. (b) A clearer picture of the ejected core. 

(vi) Oil sticks to the wall. The glass wall of the pipe is wet preferentially 
by water. However, when the water flow rate is small and the oil flow rate 
is large, oil can displace the water on the wall of the pipe. This usually 
happens first in the up-flow leg of the loop. At still higher values of the 
oil flow rate, water will disperse or emulsify into oil. This dispersion is 
discussed under (vii) below. 

The deposition of oil on the pipe wall can sometimes be observed as 
a slow propagation of the wetting front with oil on the wall behind the 
front and water on the wall before the front. We call this phenomenon 
chugging. Two chugging configurations in up-flow are exhibited in figure 
15.8. To achieve chugging, we increase the oil flow rate, keeping the water 
rate constant. In (a) and (b), an oil core plus oil bubbles are ejected from 
the sheath of oil on the wall. Evidently, there is an annulus of water between 
the sheath and the core. There is a blockage when the oil seizes the wall 
which is relieved by an 'oil-core water-annulus oil-sheath' configuration. 
Shearing forces tear away many oil bubbles which form a cloud around an 
oil core in (a), more clearly seen in (b). If the oil flow rate is increased 
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Fig. 15.9(a-b). [Bai, Chen and Joseph, 1992] (a) Removal of oil from the hy
drophilic wall in down-flow. Look at the bottom of the photograph. Oil is being 
removed from the wall. Slugs and bubbles are entering the oil sheath where they 
are lubricated by water. (b) Oil is deposited on the wall in down-flow. Slugs and 
bubbles are ejected from the sheath. 

further, more oil bubbles than in (a) will be formed followed by a phase 
inversion in which water droplets emulsify and oil becomes the continuous 
phase. This leads to a loss of the lubricated arrangement of the fluids and 
to huge increases in the pressure gradient. 

The fact that oil replaces water on a hydrophilic wall under certain 
repeatable dynamical conditions is of wide interest because the complete 
solution of the problem of wetting and spreading [Dussan V. 19791 cannot 
be solved by thermodynamic and generalized energy considerations; it is 
not only a problem of finding good constitutive models. The answer to the 
question "When two fluids flow, which one will be on the wall?" depends 
on the history of the motion as well as the properties and interactions of 
the two fluids and the wall. 

In figure 15.9, we see that oil may be deposited or removed from the 
hydrophilic glass pipe. In figure 15.10, the oil is deposited on one part of the 
glass wall, and water on the other. This is reminiscent of figure 11.5.3, where 
it is shown that oil can stick on the plexiglass wall of a Taylor apparatus 
at the downflow cell boundary of a Taylor cell of an emulsified oil, but 
not elsewhere. This 'painted' configuration remains 'forever' even after the 
motion is put to rest . People who actually work for a living know they have 

(b) 
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Fig. 15.10. [Bai, Chen and Joseph, 1992] Some oil sticks on the wall, water 
flowing through. In a static tube filled with water one can see stationary slugs of 
oil clinging to the wall which do not move even though they are buoyed up. 

to wash their hands to get them clean. 
CGH got water lubrication for three different oils (6.29, 16.8 and 65.0 

centipoise) in a 1.04" cellulose acetate-butyrate pipe which is hydrophobic. 
This shows that water lubrication is mainly a dynamical effect, with a 
secondary role played by wettability. To more fully understand this, we 
need to consider the problem of phase inversion which is considered in the 
next subsection. 

Hasson, Mann and Nir [1970] studied core flow of water in a heav
ier (density 1.02 g/cm3 ) organic liquid (kerosene-perchlorthylene solution). 
They were not aware that their flow is unstable because the organic solu
tion has a higher viscosity. Their pipe was made of glass, preferentially wet 
by water, and they studied film rupture. They say that 

"The mechanism whereby the preferentially wall-wetting core liquid 
causes film rupture is not sufficiently clear. Accidental wetting of the glass 
wall by water is apparently insufficient in itself to disintegrate the organic 
film. The observed reproducibility in the break-up location (Figure 8) in 
spite of the wavy interface and the occasional water drops adhering to 
the pipe wall, suggests that the criterion governing the occurrence of film 
rupture must also involve a film momentum resisting break-up. It may 
be of significance that break-up film-thicknesses measured from enlarged 
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photographs for the data plotted in Figure 8, were all roughly equal. The 
mean value of the break-up thickness was 500 micron, with a random scatter 
in the range of 300 to 700 micron while the interfacial velocities in the 
vicinity of the break-up point were of the order of 20 cm/sec." 

(vii) Dispersions, Phase inversion. There is evidently a dispersion limit in 
which large bubbles, slugs, sheets, and other coherent bodies of a single 
fluid are broken up by forces associated with the motion. A dispersion of 
immiscible liquids, one of which is polar, the other non-polar, is often called 
an oil and water dispersion or emulsion. An emulsion is a stable dispersion, 
but stability here is defined in a time frame so that a dispersion over a long 
time can be considered an emulsion over a short time. There are water in oil 
(w/o) dispersions and oil in water dispersions (o/w). There are conditions 
under which an o/w dispersion will change to w/o dispersion. This is called 
a phase inversion. It is also possible for o/w and w/o dispersions to coexist. 
The formation of dispersions, their properties, and phase inversion may be 
studied in different systems; for example, see section II.5 for dispersions in 
a Taylor-Couette apparatus. 

Dispersions will always form in motions of two immiscible liquids which 
are sufficiently intense. CGH gave data for them; w/o dispersions were 
called 'water drops in oil' and o/w dispersions were called 'oil drops in 
water.' 

This distinction between small bubbles of oil in water and o/w disper
sions can be fuzzy. In section Vr.l, the size of a small bubble which would 
arise in the experiment of CGH on 'oil drops in water' was computed and 
found to be 4/3 the size of the largest oil bubble in the dispersion. The 
other bubbles in the dispersion were much smaller. Perhaps the study of 
the size of single drops and bubbles in different flows is fundamental in 
distinguishing between bubbles and dispersions. 

The o/w dispersions are a lubricated regime of flow, which is of practi
cal interest since they burn with reduced nitrous oxide (NOx) and partic
ulate emissions (and is better for the environment) than the oil would on 
its own. 

Water in oil dispersions have a higher viscosity than oil alone; the 
resulting pressure gradients are greater than the apparatus could withstand. 
The w/o dispersions have higher oil flow rates than the one in which oil 
seizes the wall. If we tried to increase the flow of oil in a case like figure 
15.1 (a), the pressure gradient would shoot up, and if we could run the 
apparatus at the high pressure, a phase inversion to a w / 0 dispersion would 
likely result. The w/o dispersions, and similarly phase inversion from o/w 
dispersions, are undesirable for industrial pipelining. 

CGH gave flow charts for oils of viscosities 6.29, 16.8 and 65 cp, and 
identified a phase inversion boundary in the region of dispersions. This 
boundary does not seem to depend strongly on the viscosity or interfacial 
tension, but the water fraction is important. They observed w/odispersions 
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for water fractions ranging from 10 to 67% at sufficiently high oil velocities. 
The importance of the water fraction is also mentioned in laboratory and 
field tests of Charles [1963], who reports that: 

"Very substantial reductions in pressure gradient are again evident. 
For water contents up to about 20 per cent the pressure gradient was af
fected very little by the addition of the water and these conditions probably 
correspond to the water-in-oil emulsion flow pattern. At a water content of 
approximately 20 per cent a sudden decrease in pressure gradient was ob
served which was probably coincident with the transition of the flow pattern 
to stratified flow. For water contents greater than 40 per cent the pressure 
gradient was reduced by factors in excess of 10. The results obtained with 
the field pipeline indicated that optimum reduction of pressure gradients 
was obtained when the water was added to the extent of 30 to 50 per cent 
of the total liquid flow." 

Topological considerations, like the packing fractions of monodisperse 
(bubbles of uniform size) and polydisperse (bubbles of different sizes) 
spheres, are of importance in emulsion rheology and are probably important 
for the problem of the phase inversion of dispersions in lubricated pipelin
ing. The rhomboidal packing point for monosized spheres is the closest 
possible packing of spheres and the volume fraction of the spheres in this 
packing is 74.08%. Imagine that we have a dispersion of monosized spheres 
of oil; for example, many spheres of oil are shown in figure 15.8(a), but they 
are polydisperse. A monodisperse dispersion of such oil spheres could not 
exist if the water fraction were less than 25.92% because there would be 
no room for the oil spheres. Either we get polydisperse oil spheres, sphere 
distortions which are energetically unstable, or phase inversions. 

VII.16 Flow Charts 

A flow chart is a graph in the (Vw, Vo) plane in which regions of 
different flow types are designated. The hold-up ratio h for each (Vw, Vo) 
point may be obtained from figure 14.4 and the corresponding value of the 
water fraction given by a = R2/ Rl from (14.4). The determination of a 
for a given (Vw, Vo) is simplified by the fact that h = 1.38 universally in 
up-flow and for fast down-flows. 

Figure 16.1 is a chart showing the types of up-flow of oil and water 
(0.4% aqueous sodium silicate solution). The flow condition is identified by 
points in the (Vw, Vo) plane, where Vw = Qw/A is the superficial velocity 
of the water and Vo is the superficial velocity of the oil. 

Figure 16.2 is a flow chart for up-flow using the same oil with pure 
water in a freshly cleaned pipe. 
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Fig. 16.1. [Bai, Chen and Joseph, 1992J This flow chart shows the types of flow 
that arise in up-flow as a function of the superficial water (with sodium silicate) 
velocity Vw = Qw / A and oil velocity Vo = Qo/ A. The hold-up ratio is universally 
h = 1.38 (see figure 14.4) and the value of a = R2 / Rl can be obtained from 
(14.2) for each and every point. The labeled circles and triangles are identified 
for comparison with the theory in section VII.19. 

Figure 16.3 is a flow chart for down-flow under the conditions specified 
in figure 16.1. Figure 16.4 is the down-flow chart using fresh water in a 
freshly cleaned pipe. 

The figures may be compared with the flow charts of CGH. The flow 
types are not the same; they did not have bamboo waves or disturbed core
annular flow with corkscrew waves and we could not achieve the pressure 
gradients necessary for emulsification of water into oil. Nevertheless, the 
interested reader will find the way to identify similar regimes. There is a 
regularity in the pattern with which flow types fallon the flow charts. 
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Fig. 16.2. [Bai, Chen and Joseph, 1992] Flow chart in up-Bow as in figure 16.1 
except that fresh water is used in a freshly cleaned pipe. There is a small upward 
shift probably due to a decrease in the water fraction, h = 1.38 for this Bow. 
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Fig. 16.3. [Bai, Chen and Joseph, 1992] This flow chart shows the types of flows 
that occur in down-flow as a function of the superficial velocities. The value of 
a = R2/ Rl can be determined from (14.2) when the hold-up ratio h is found 
experimentally as in figure 14.4. The disturbance in disturbed core-annular flow 
(DCAF) are corkscrew waves near the slugs boundary and immature bamboo 
waves near the DBW boundary. The four circles are for reference to the linear 
theory of stability discussed in section VII.19. 
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Fig. 16.4. [Bai, Chen and Joseph, 1992] Flow chart for down-flow using fresh 
water in a newly cleaned pipe. 
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VII.17 Pressure Drop Measurements 

Data on pressure drops and hold-up ratios were obtained for different flow 
rates of oil and water. We are expressing the flow rates Qw, Qa in terms 
of superficial velocities (vw, Va) = (Qw, Qa)/A in ft/sec where A = 7r(P/4 
and d = 3/8 inch. Data were taken for six values of Vw = .329, .385, .554, 
.834, 1.116, 1.678, 2.803 and five values of Va = .305, .607, .909, 1.513 and 
2.269. We fix Vw (or Va) and take measurements for all Va (or Vw). We 
measure Llp for the motion with the manometers using equations (13.6) 
and (13.7). The pressure gradient due to the motion is Llp/L. We define a 
dimensionless pressure gradient 

e = Llp/PwgL (17.1) 

which is expressed as feet of water/foot. Measured values of the pressure 
drop versus the flow rate ratio with Vw as a parameter are given in figure 
17.1. 

Measured values of the pressure drop vs. the flow rate ratio with Va as 
a parameter are given in figure 17.2. The reader's attention should focus on 
the following practical result: for a fixed flow rate of oil there is an optimal 
flow rate Vw of water, with Vw/Va between 0.2 and 0.8 in the experiments, 
for which e is minimized. This means the flow rates of water and oil can 
be adjusted to minimize energy expenditure while transporting the same 
amount of oil. The minimum e point moves toward lower values of Vw /Va 
as Va is increased. All the minimum points in up-flow are located in regions 
of bamboo waves. 

The minimum pressure gradients fall in the region of disturbed core
annular flow. In this region, one finds corkscrew waves, perfect or nearly per
fect core-annular flow with disturbances in the form of immature corkscrew 
waves, or bamboo waves. 

In figure 17.3 we compare the pressure gradients in up-flow and down
flow as a function of the input ratio. The difference in the pressure gradients 
depends mainly on the rate of flow of the lubricating water. For high pres
sure gradients, the effect of buoyancy is relatively small and the differences 
between up- and down-flows are suppressed. In general, the pressure gradi
ents in down-flow are smaller because of buoyancy which leads to greater 
accumulations of oil and more energy efficient flow regimes in down-flow. 

The manner in which the oil is introduced into the pipe has some effect 
on the pressure drops. Tests were done with two different diameters for the 
nozzle used to deliver the oil centrally into the pipe (see figure 17.4). Their 
inside diameters were 0.2" and 0.17". Smaller nozzles were rejected because 
they give rise to higher pressure gradients, especially when oil flow rates 
are large. The reason is that when the nozzle is small, for one reason or 
another, many small oil bubbles are formed at the exit lip. Although the 
flow will soon tend to a steady state compatible with a particular set of 
operating conditions, the small bubbles persist and produce an additional 
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Fig. 17.1(a-b). [Bai, Chen and Joseph, 1992J Pressure drop per unit length as a 
function of the input ratio for various values of water flow velocity Vw in ft/sec: 
(a)2.80, (b) 1.08, (c)1.12, (d)0.83, (e)O.55, (f)0.38, (g)0.33. For each Vw, e is an 
increasing function of Vo , with larger increases for larger values of Vw and no 
increases, even decreases, for small value of Vw • (a) Up-flow, (b) Down-flow. 
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Fig. 17.2(a-b). [Bai, Chen and Joseph, 1992] Dimensionless pressure gradient 
versus the inverse input ratio for different values of the oil velocity in ftjsec: 
(a)0.31, (b)0.61, (c)0.91, (d)1.51, (e)2.27. (a) Up-flow, (b) Down-flow. 
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Fig. 17.3. [Bai, Chen and Joseph, 1992J Comparison of the pressure drop per 
unit length as a function of the input ratio for four values of Vw in ft/sec: (a) 
2.80, (b)1.68, (c) 0.83, (d) 0.33. 

pressure drop. This effect is greatly enhanced by increasing the flow rate of 
oil. 

VII.1S Ideal and Measured Efficiency of Lubrication 

To assess the energy saving due to water lubrication in vertical flow, a com
parison was made of the measured values for the flow rates, hold-up ratio 
and pressure gradients with ideal values which are described below. The 
ideal values are determined by the solutions of the equations (cf. VI. (1 b.l)) 

AI ( " 1 ,) -p + Pig + III W + ~ W = 0 (18.1) 

for W = Wl(r) which holds for up-flow in the region l = 1 of the core 
0< r < Rl and the region l = 2 of the annulus Rl < r < R2 when 

dFl dF2 AI 

-=-=p 
dx dx 

is one and the same constant pressure gradient. , 
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Fig. 17.4(a-b). [Bai, Chen and Joseph, 1992] The effect of the nozzle diameter 
on the pressure drop as a function of the input ratio for different values of the 
water velocity Vw in ft/sec: (a) 2.80, (b) 1.68, (c) 1.12, (d) 0.55, (e) 0.33. The 
nozzle 'big' has an inside diameter of 0.2, 'small' has an inside diameter of 0.17. 
(a) up-flow, (b) down-flow. 
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To compare this ideal flow with experiments, we must remove the part 
of the pressure associated with the composite density of the mixture 

PwHw+PoHo 
Pc = Hw+Ho 

where L = Ho+Hw, and Ho and Hw are the heights of the oil and water in 
the pipeline which were described in section VI1.13. We may determine Ho 
and Hw in terms of 11 = l/a = Rd R2 and L by the conservation of volume 

Hence 

and 

Ho7rR~ = 7rR~L, 

Hw7rR~ = 7r(~ - RnL. 

where P2 = Pw and PI = Po· 

(18.2) 

(18.3) 

The dynamic pressure p which is measured by the method of section 
VII.13 is then given by 

I' =P+Pcgx 

and 
_1" + Pig = _p' + (PI - Pc)g 

where, using (18.3), we find that 

Then, we have 

PI - Pc = (1 -112)[P], 
P2 - Pc = -112 [p]. 

- p' + (1-112)[P]9+ J.tl (w" + ~W,) = 0, 0:::; r:::; R1, 

- p' -112[P]9 + J.t2 (w" + ~W,) = 0, RI:::; r:::; R2. 

(18.4) 

(18.5) 

(18.6) 

Equations (18.6) show that core-annular flow in a vertical pipe depends on 
the density through the density difference and only through the density dif
ference. These terms disappear entirely from the governing equation (18.5) 
when the flow is all oil (11 = 1) or all water (11 = 0). 

If we think of x increasing in the same direction as the pressure drop, 
we have the same equation (18.5) in down-flow but with gravity reversed. 
The equations derived below are for up-flow. To get the equations for down
flow, change the sign of g. 

The solution of (18.6) together with appropriate boundary and inter
face conditions (see section VII.2) is 
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where 

in up-flow and 

It = _p' + (1- 112 )[P]9 

h = _p' - 112 IP]g 
(18.8) 

W2(r) = h (~_ r2) _ R~[P]g ln~. (18.9) 
4/12 2/12 R2 

The oil flow rate is given by 

Q1 = 271" foRI rW1(r)dr 

= 271" {Am + h (~R~ - m) + Rt[p]g lnR2}. 
16/11 8/12 4/12 R1 

The water flow rate is given by 

Q2 = 271" rR2 rW2(r)dr iRl 

(18.10) 

= 271" {~(R2 _ R2)2 + [p]g [R2 R2 + 2m In R1 -.m] 1t1811) 
16/12'&"2 1 8/12 1.&"2 1 R2 1 l' . 

When there is only oit in the pipe, R1 = R2, Q2 = 0, It = _p'. When 
there is only water in the pipe, R1 = ° and Q1 = 0, h = _p'. Hence in 
both cases, the flow rate is 

I 

Q = -:/171"~. (18.12) 

When 9 = 0, such as in the case of matched densities studied by CGH, 
we have 

(18.13) 

and 

(18.14) 

Some people have tried to explain why the two fluids end up in the 
lubricated arrangement by resorting to various optimization problems (cf. 
section 1.3). For example, we found in section 1.3 (f) the water fraction, or 
the value of R1, such that the total volume flux Q1 +Q2 is maximized among 
all the flows satisfying (18.13) and (18.14) for a given pressure gradient p'. 
Another problem is to maximize the oil flow rate Q1 alone under the same 
conditions. This is a payoff calculation in which the water fraction is chosen 
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to maximize the throughput of oil. This problem was solved when [p]g = 0 
by Russell and Charles [1959] (cf. Joseph, Nguyen and Beavers [1984]). 

The slightly more difficult case of vertical flow is considered below. 
First we rewrite (18.10) and (18.11) in a more convenient form in which we 
introduce the superficial velocities Vo = QdrrRJ, and Vw = Q2lrrR~. Thus 

4Vo/L2 _pi {m 4 2 4} 
R~g = 9 2"" +"., -"., 

+ [p] {; (".,4 _ ".,6) _".,4 +".,6 _ 2".,4 In".,} (18.15) 

and 

(18.16) 

Equations (18.15) and (18.16) each depend on two dimensionless param
eters. The right sides of both depend on one parameter pi / g[p] which is 
positive because pi < 0 and [p] ::; 0 in our flows. The same formulas hold 
in down-flow with the sign of 9 reversed. 

A theoretical formula for the hold-up ratio can be derived from (14.1), 
(18.2), (18.15) and (18.16) 

(1 - ".,2) { 8 (T".,4 + ".,2 - ".,4) + ~ [( T - 1) (".,4 - ".,6) - 2".,4 In".,] } 
=2------~--__ ------------------------__ ------~ 

".,2 { 8(1 _ ".,2)2 + ~(".,2 _ ".,6 + 4".,4In".,) } 

(18.17) 
where 

I 

-p ~fe 
Pwg 

(18.18) 

is a dimensionless pressure gradient which can be compared with ilp/ PwgL 
measured in experiments. 

The maximization problem solved by Russel and Charles [1959] is to 
maximize Vo with respect to "." for fixed pi when [p] = O. They found that 
Vo is the maximum when 

In our experiments 

".,= (_1 )1/2 
2-m 

m ~ 1/601, [p]g = -0.090g 

and the oil flow-pressure gradient relation (18.15) for up-flow becomes 
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Fig. 18.1. [Bai, Chen and Joseph, 1992] Up-flow with negative flow of water, 
Vo=O.305 ft(sec, Vw =-O.046 ft/sec. 

4VOJL2 p' (2 4) 0.090( 6 4 2 41 ) 
-2 - = - - "I - "I - -- "I - "I - "I nrJ 
R29Pw 9Pw Pw 

(18.19) 

where Pw = 0.995, to within a small error. The same formula holds in 
down-flow with the sign of 9 reversed. 

In the first five rows of table 18.1 we compare experimental and ideal 
results for five cases of up-flow, and in rows 6 through 10 for five cases of 
down-flow. The columns of this table are as follows: Voe is the superficial 
velocity from experiments, Vwe the prescribed water velocity, he is the hold
up ratio from figure 14.4, "Ie = R le / R2 is the experimental ratio of the mean 
radius of the interface to the pipe radius which is computed from he using 
(14.4), and Be is the measured value of dimensionless pressure gradient. We 
may define an ideal flow as PCAF satisfying (18.15) and (18.16). Subscript 
L is used for parameters of the idealized laminar flow. Then "I and B L ("1) 
are computed from (18.15) and (18.16) when (Va' Vw) = (Voe, Vwe ) and 
(18.17) determines hL(rJ). BdrJe), VwL(rJe) and hdrJe) are computed from 
the formulas when (TJ, Va) = ("Ie, Voe ) are given. The value TJ = 1/V2 is a 
good approximation to the value of "1 which minimizes B(rJ) = _p' /9Pw for 
a fixed value of Va. We can prove this when "I is close to one by noting that 

rJ6-rJ4-2rJ41nrJ = rJ6-rJ4-rJ41n[1-(1-rJ2)] = "16_"14+"14(1-"12)+0[(1-"12)2] 

= 0[(1 - "12)2] (18.20) 
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Table 1B.1. Comparision of experimental and ideal values in up-flow (#1-5) and 
down flow (#6-10) for the same oil flow. V is given in ft/sec. The other quantities 
are dimensionless. Subscript e denotes experimental and L denotes theoretical 
data. "The velocity profile for this case of negative Vw is shown in figure 18.1. 

Voe Vwe TJe flow type he 8 e TJ 8dTJ) hdTJ) 
1. 0.305 0.554 0.52 BW 1.39 0.019 0.34 0.0013 4.18 

2. 0.607 0.272 0.78 BW 1.39 0.020 0.56 - 0.004 4.83 

3. 0.909 0.554 0.74 BW 1.39 0.027 0.58 0.003 3.31 

4. 1.513 0.554 0.82 BW 1.39 0.052 0.72 0.016 2.53 

5. 2.269 0.494 0.88 DBW 1.39 0.096 0.82 0.044 2.19 

6. 0.305 0.554 0.53 DeAF 1.39 0.020 0.61 0.026 1.59 

7. 0.607 0.154 0.86 DeAF 1.39 0.025 0.85 0.028 1.59 

8. 0.909 0.154 0.90 DeAF 1.39 0.033 0.88 0.038 1.78 

9. 1.513 0.554 0.82 DeAF 1.39 0.052 0.78 0.050 1.72 

10. 2.269 0.554 0.86 DBW 1.39 0.090 0.83 0.071 1.86 

QdTJe) VwdTJe) hdTJe) TJrn(8e ) VoL (8e) Vwd8e) 
1. -0.011 -0.046" -16.7 0.67 1.68 0.82 

2. -0.00013 0.11 3.89 0.67 1.73 0.84 

3. 0.0038 0.25 2.97 0.67 2.04 1.01 

4. 0.026 0.31 2.29 0.68 3.17 1.60 

5. 0.062 0.31 2.11 0.69 5.16 2.61 

6. 0.027 0.64 0.91 0.89 0.34 0.06 

7. 0.028 0.14 1.61 0.86 0.50 0.11 

8. 0.04 0.12 1.84 0.82 0.81 0.24 

9. 0.051 0.45 1.76 0.77 1.61 0.65 

10. 0.076 0.41 1.90 0.74 3.31 1.53 

hdTJrn) 8 L(1) 8do) 
1. 2.53 2.34 .0095 

2. 2.51 4.65 .0097 

3. 2.41 6.96 .016 

4. 2.24 11.6 .023 

5. 2.141 7.4 .031 

6. 1.55 2.34 .0095 

7. 1.57 4.65 .0084 

8. 1.62 6.96 .012 

9. 1.72 11.6 .023 

10. 1.84 17.4 .031 
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The result 'TI = 1/v'2 follows from (18.19) when the second term of 
the right hand side is zero. 'TIm(8e) is the value of'TI which maximizes Vo = 
VoL(8e) in (18.15) when 8 = 8 e and h£('TIm) is calculated from (18.17) 
with ('TI, 8) = ('TIm, 8 e ). 

The value 8(1) is the dimensionless pressure gradient required to trans
port oil alone in the same pipe with the same oil throughput. We obtain 

(18.21) 

from (18.15) with 'TI =1. 
Another measure of efficiency which is used in the oil industry is to 

compare the observed pressure gradient 8 e with the pressure drop 8(0) 
required to transport water alone with a volume flux Qo+w = Qo + Qw 
equal to the total flux. We can compute 8£(0) for the laminar flow of 
water from (18.12) 

8 L (0) = 8Vo+w J.l2 (laminar) 
g~pw 

(18.22) 

where Vo+w = Vo+ Vwe = Qo+w/A can be obtained from tables. Table 18.1 
shows correlation between experimental and theoretical data for the DeAF 
cases. 

In table 18.2 we have various pressure gradient ratios, which are mea
sures of efficiency together with the values of the Reynolds number 

Re = Vo+wd, / 
Vw = J.l2 Pw 

Vw 

where d = 3/8 in and J.l2 = 10-2 poise. Hence 

R - V, 12(2.54)2300 ~ 2903V, 
e - o+w 8 - o+w· (18.23) 

From experimental data, the water is turbulent when Re > 2300 in which 
case we should not compare 8 e with 8 L (0) for laminar flow. For these, 
we should compute 8 T (0), the pressure gradient for turbulent flow at a 
superficial velocity of Vo+w • It requires a greater pressure gradient, 8 T (0) = 
k8L(0) with k > 1 (for example, k = 3/2), to transport a given mass flux 
in turbulent flow. So, as a rough measure, the reader should multiply the 
number 8 L (0)/8c by 3/2 when Re > 2300. 
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Table 18.2. Comparison of the ratio of ideal to the experimental pressure gradi
ents for the same oil flow. The Reynolds number Re = (Vo + Vw)d/vw. Re > Rec 
where Rec ~ 2000, the flow is turbulent. In the turbulent case we should replace 
e£(o) with eT(O) > eL(O) because a greater pressure gradient is required for 
the same volume flux in turbulent flow. 

flow type fh(l)/Be BL(1])/Be BL(1]e)/Be BL(o)/Be R 
1. BW 122.93 0.068 -0.58 0.49 2481 

2. BW 232.46 -0.20 -0.0065 0.49 2599 

3. BW 257.88 0.11 0.14 0.60 4226 

4. BW 222.87 0.31 0.50 0.44 5656 

5. DBW 180.97 0.46 0.65 0.32 7981 

6. DeAF 116.79 1.30 1.35 0.47 2481 

7. DeAF 185.97 1.12 1.12 0.34 2198 

8. DeAF 210.99 0.85 1.21 0.36 3071 

9. DeAF 222.88 0.96 0.98 0.44 5971 

10. DBW 193.04 0.79 1.07 0.35 8155 

From our comparisons of ideal and measured values of the pressure 
gradients we may draw the following conclusions. 

(1) The pressure drops required to transport a given flux of oil with water 
lubrication are about 200 times less than pressure drops required to 
transport the same flux of 601 cp oil without lubrication. In vertical 
pipes we have found a reduction of the order kim where m = /-L2/ /-L1 
and k is a fraction, say about 1/3 (see second column of table 18.2). 

(2) The pressure drops required to transport a given flux of oil and wa
ter with water lubrication are of the same order as the pressure drop 
necessary to transport water alone at a superficial velocity Vo+w cor
responding to the total flux provided that the water is turbulent. 

(3) Bamboo waves require a much greater pressure gradient to transport a 
given volume flux of oil at low oil velocity and fixed water velocity than 
in the ideal case (see fifth column of table 18.2). The significance of 
this comparison is diminished by the fact that oil is being transported 
mainly by buoyancy. 

(4) Disturbed core-annular flow with corkscrew waves is energy efficient, 
with pressure gradients only moderately greater, sometimes even less 
than those required for perfect core-annular flow with the same water 
fraction. In this sense, DCAF is close to PCAF. 
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~--------L--------~· I 
Fig. 19.1. Force balance. 

VII.19 Friction Factor and Reynolds Number for 
Lubricated Pipelining 

The Reynolds number and friction factors can, from a theoretical stand
point, be defined in any convenient way. We have chosen a definition which 
yields the most meaningful compression of data from different authors. 

The force balance in figure 19.1 shows that 

(19.1) 

Hence, 

(19.2) 

and 
(19.3) 

where L1p = Pi -P2 and p' is the dynamic pressure gr:adient _p' = L1p/ L. We 
may eliminate T w with the friction factor (resistan~e coefficient) A defined 
in the usual way (see, for example, p505 of Schlichting [1960]). 

8Tw = A(R) 
PcV2 

(19.4) 
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where Pc is the composite density defined by (18.3), and 

(19.5) 

is an average superficial velocity and R is a to-be-determined Reynolds 
number. We next eliminate Vo and Vw in terms of p', using (18.5) and 
(18.16) giving rise to a relation between p' and V. Then p' is eliminated in 
favor of Tw using (19.3) and Tw is then eliminated in favor of>. and V using 
(19.4). After solving for >., we get 

>. = p/2D2 = 64 _ B 
PcV2 R 

where ~ = Po/Pw, m = J.Lw/J.Lo, Pc(TJ) is the composite density (18.3), 

and 
B = 2[P]gD2(1 - "12)"12(1 + TJ2(m - 1)) . 

PwV2(1 + TJ2(~ -1)){1 + TJ4(m -1)) 

(19.6) 

(19.8) 

If [P] < 0, B < O. This applies in down-flow. For up-flow, we change the 
sign of the two velocities and the pressure gradient so that _p' > 0 and 

>. = 64 _ B for down flow 
R 

>. = 64 + B for up flow. 
R 

Of course B = 0 when there is no gravity. We may evaluate the friction 
factor in special situations. For a horizontal pipe, g=O, and [P] = 0, so 
~ = 1. Then>. = 64/R and 

R = PcD2V (1 + TJ4(m -1)) = PwD2V (1 + TJ4(m - 1)). (19.9) 
J.Lw J.Lw 

If Qo = 0, "I = 0 and we retrieve the friction factor and Reynolds number 
for water alone. 

If Qw = 0, "1=1 and we retrieve the formulas for oil alone. 
For Qo > 0 and "I < 1, the velocity profile has a back flow as in figure 

19.2. 
When Qo + Qw ~ 0 and PI - P2 :::; 0: this condition occurs only for 

up-flow in a vertical pipe when Reynolds number is small, so that the 
buoyancy contribution B dominates the friction factor. In fact, the oil's 
buoyancy drives the flow and an external pressure gradient is not needed. 
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R2 

___ ~--_==:~~--~~~=:,~_~~,_-_(_o~a'-------~====~_~ 

-1 

·2 
o 

~ 
~ 

~--------------L --------------~·I 
Fig. 19.2. Back flow. 

Up flow, 11=0.6 

Down flow, 11=0.6 

1000 1500 

lR 

Fig. 19.3. Theoretical friction factor. 

Our definition is suitable whenever Qo + Qw ~ 0, regardless of the sign of 
Qw' The case of back flow of water is rare. 

Figure 19.3 shows that the friction factor depends strongly on TJ. The 
maximum friction factor occurs at TJ ~ 0.5,0.6 for down-flow. For up-flow, 
the minimum friction factor occurs around TJ ~ 0.5,0.6. When the Reynolds 
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number or TJ increases, the friction factor will tend to 64/R. If TJ decreases 
to zero, the friction factor will also tend to 64/R. The friction factor also 
depends on the difference of the densities of water and oil. In figure 19.3, 
we put [p]=0.09. If the density difference were smaller, the friction factor 
would be close to the curve of 64/R. 

Generally speaking, the density of water is greater than that of oil and 
[PD < O. However, if [pD > 0, B > O. Therefore, the down-flow equations for 
[p] < 0 are the same as the up-flow equations for [p] > 0, and the up-flow 
equations for [pD < 0 are the same as the down-flow equations for [p] > O. 

Comparison with Experiments. In this section, we reduce the data from 
the experiments of different authors into a friction factor versus Reynolds 
number plot. This is an effective way to gather all the data originating from 
a wide range of pipeline shapes and sizes, with vastly different core fluids. 
Thus, a simple and complete procedure for predicting pressure drop for a 
given core-annular flow situation is introduced and evaluated. 

The holdup volume fraction Hw was measured as a function of the 
input fraction Cw, following the convention first used by Oliemans [1986]: 

where Vw is the volume of water, Vo is the volume of oil, Qw is the volume 
flow rate of water and Qo is the volume flow rate of oil. Cw and Hw are 
related to the holdup ratio h of Charles et al. [1961] (cf. (14.1)) defined as 

so that 

h= VoQw 
VwQo 

(19.10) 

The definitions for the friction factor and Reynolds number which we 
have given were designed to compress the data in a meaningful way. The 
Reynolds number R for an experiment can be determined from (19.7) when 
V and h are known. V is the composite superficial velocity (19.5) which 
is determined from the prescribed flow rate and an average radius ratio 
TJ = RdR2 can be determined from measured values of the pressure drop 
using A = (R2Llp)/(PcV22L) where Pc(TJ) is slightly less than Pw, Pc/Pw ~ 
0.92, and slowly varying in the interval Po :5 Pc :5 Pw' This definition of A 
and R allows us to reduce our correlations to what they should be when 
TJ --+ 1, in the case of pure oil. In the lubricated case, it may be more 
natural to replace Pc with Pw, and (A,R) with (5.,lR), where 5. = A(Pc/Pw) 
and lR = R(Pw/ Pc). This has the effect of shifting all experimental points 
down and to the right. This brings the points from the experiments of BCJ 
closer to the theoretical values in figure 19.4. The theoretical results are the 
same as in figure 19.3 except for the difference in scales. 
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The data of Sinclair [1970J, Charles, Govier and Hodgson [1961J, Rus
sell, Hodgson and Govier [1959J and Oliemans [1986], CBJ[1991J and Arney, 
Bai, Joseph and Liu [1992J are represented in figures 19.5 - 19.6 and table 
19.1. Points in the data of CGH which are labeled water drops in oil are 
omitted. These points represent a failure of lubrication in which very small 
water drops are dispersed in oil, forming a single emulsified fluid with a 
viscosity much greater than that of the oil alone. Sinclair [1970] looked 
at vertical flow and remarked that ' .. .in the laboratory tests no measur
able difference was found in the friction losses in horizontal and vertical 
test sections' ... and he shows results for horizontal flow for three different 
pipeline diameters. Charles et al. used one value for the diameter, but with 
three different oils. Also featured are data from pilot plant processes which 
are contributed by INTEVEP, Caracas, Venezuela, and Shell Oil Develop
ment Company, Houston, Texas. INTEVEP used a core oil that was really 
an emulsion of crude oil and water. Table 19.1 features a wide variety of 
situations regarding the viscosity of the oil, pipe diameter and pipe length. 

The data of Arney et al. [1992] was taken for waxy crude oil in water 
and #6 fuel oil lubricated by water in a horizontal pipe made of glass. 
Details of the experimental set-up and fluid properties are presented in 
their paper (see table 19.1 for a summary). The water preferentially wets 
the glass wall. 

Figure 19.5 contains the holdup data for literature sources listed in 
table 19.1. The holdup volume fraction is plotted as a function of the input 
fraction achieving good agreement among all of the data sources. The points 
that show the most scatter, which are for the emulsified waxy crude oil and 
for the data from INTEVEP, the core fluid is non-Newtonian, but all of 
the data for Newtonian oils show excellent agreement. The holdup data is 
fitted to the empirical formula: 

Hw = C':(l + 0.35(1 - Cw)). (19.11) 

A line corresponding to this formula is also shown in the figure. This formula 
is comparable to the one found in Oliemans [1986], but more closely fits 
the available data. Until the work of Oliemans [1986J, a useful prediction 
of the holdup was missing from the literature. When the input fraction for 
a process is known, equation (19.11) can be used to predict the holdup 
fraction and the average core diameter can be estimated by 

(19.12) 

where Dc is the diameter of the core and Dp is the diameter of the pipe. 
The Reynolds number is similar to (19.9): 

!R = PcVDp(l + 114 (m -1)). 
JLw 

(19.13) 
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Down flow, 11=0.6 

« 0.' 

0.01 

0.00. L-_ _ ~ _ _ ~~~~~~....L.. _______ ___ ~........J 

'00 '000 

~ 

Fig. 19.4. Theoretical friction factor and a comparison with the data from the 
vertical pipeline of Bai, Chen, Joseph .• up-flow, • down-flow. 

The friction factor is (19.6) : 

where 

is the average density, 

A = 2pl_Dp 
pV2 

Dc 
TJ= -, 

Dp 

V= 4(Qo+Qw) 
D2 

p 

(19.14) 

is the overall velocity, and p' is the pressure drop per unit length of pipe. 
Figure 19.6 is the result of applying equations (19.13) - (19.14) to the 

pressure drop -- flow rate data listed in table 19.1. For comparison, we 
drew lines corresponding to the theoretical formula for laminar flow 
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Fig. 19.5. Holdup data for sources listed in table 19.1 
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Fig. 19.6. Friction factor versus Reynolds number for sources listed in table 19.1. 
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and the Blasius formula for turbulent flow 

\ _ 0.316 
1\ - R O•2S ' 

Two authors, Sinclair [1970] and the pilot plant data from Shell Oil Co. of 
Houston did not give holdup data, so we used equation (19.11) to calculate 
the Reynolds number and friction factor. 

The data appears to be scattered for low Reynolds numbers. This is 
expected since, for slow flow rates, the core becomes very eccentric, causing 
the friction between the core and the wall to rise, yielding an increased 
friction factor. This increase in the friction has been predicted by Oliemans 
[1986]. For high Reynolds numbers, the data is smoother, with data from the 
non-Newtonian waxy crude oil and INTEVEP oil measurements showing 
the most scatter. It is reasonable to expect that the wavyness of the core will 
influence the pressure drop, much like the roughness of the pipe influences 
regular single-fluid pipe flow. The main strength of the results in figures 19.5 
- 6 lies in the fact that it works very well for the high Reynolds numbers 
which are of interest in most industrial situations. 

Figure 19.6 is the Moody Chart for lubricated pipelining since, together 
with figure 19.5, it can be used to predict pressure drops for any lubricated 
pipeline of any size. 
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VII.20 Comparison of Experiments with Theory 

In the linear theory of stability presented in sections VII.2-1O, the Reynolds 
number is defined as Rg(Rl) = WgRt/lIl where Wg = gRVlIl and F = 
_p' /Plg. Lengths are scaled with Rl , velocity with Wg and time with 
Rt/IWgl. In those sections, x increases in the direction of gravity so that 
W(r) in up-flow here is -W(r) there. 

Two kinds of comparisons were made between theory and experiments. 
First, we calculated wave lengths and wave speeds in the regions of param
eter space in which waves were observed and compared the calculated and 
measured values. Secondly, we tried to determine the regions of parameter 
space where different flow types could be found by analysis of the energy 
of the most dangerous disturbance. 

It is useful here to draw attention again to the fact that we are trying 
to compare results of a linear theory of stability of PCAF with flow types 
in deeply nonlinear regions of flow. There are different ways to make this 
comparison corresponding to different choices of the laminar flow which is 
supposed to be relevant for the nonlinear flow which is observed. We shall 
give a more precise characterization of the possible choices below. 

A laminar flow is determined by two parameters, say Vw and Vo or 
Vo and a = 1/"1 = R2/ Rl or Vw and a. For example, given Vo and Vw we 
may compute "I and p' from (18.15) and (18.16). We may conclude that 
other types of flow, say bamboo waves, are determined by prescribing two 
parameters plus the flow type. We compare flow types having 

(1) the same oil and water inputs; that is, Vo and Vw are prescribed and 
equal to measured values 

(2) the same oil input, Vo and the same water fraction expressed by a = ae 
where ae is taken from the measured hold-up h = he in figure 14.4. 
Bamboo waves trap water between the crests (see figure 15.5) and 
sweep it through the system faster than in laminar flow: less water is 
held up. The "Ie > "I or ae < a in up-flow. In down-flow, this trapping 
does not operate and the experimental hold-up is nearly the same as 
the laminar one (see table 18.1). 

VII.20(a) For Fixed Values of Vo and Vw 

Calculations were carried out for the emulsified oil used in the experiments 
at a temperature of 22°C with material parameters given by (12.1). The di
mensionless parameters which can be computed from the parameters given 
by (12.1) are 

m = 1/601, Pw/ Po = 0.995/0.905 = 1.10, J* = TR2 = 0.102. (20.1) 
Poll; 
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In our first comparison of linear theory with experiments, we select nine 
arbitrary cases of bamboo waves from experiments and compare observed 
and calculated wave lengths and wave speeds. Bamboo waves are imper
fectly periodic but it is easy to identify average values, taken as simple 
averages from video recordings using scaled reticle and automatic lapsed
timer features. To compute wave lengths and wave speed from linear theory, 
we need to identify the unstable wave of maximum growth. For this we need 
to prescribe dimensionless parameters a, F and Rg which can be obtained 
from PCAF formulas in section VII.18; values of the oil and water volume 
flow rates Qo = Vo/A and Qw = Vw/A are prescribed. The values of these 
parameters at the labeled flow points in the chart of figure 16.1 are listed 
in table 20.1. 

VII.20(a)(i) Up-flow. The comparison of computed and measured values of 
the wave speed and wave length of bamboo waves for points 1 through 9 of 
figure 16.1 is given in table 20.2. The measured values of the wave length are 
on the average slightly larger than computed values, probably due to the 
nonlinear stretching associated with the lubrication and buoyancy effects 
described in figure 15.5. 

The speed W(l) of the undisturbed interface is on the average slightly 
larger than the computed value of c. This shows that the bamboo wave is 
on the average basically stationary in a frame moving with velocity W(l). 
As a further check we computed c = 8.03 cm/s, W(l) = 9.84 cm/s at point 
D2 and c = 16.96 cm/s, W(l) = 18.95 cm/s at E2. The viscosity of the 
oil is too large to support any but slowly propagating waves, so the wave 
is convected with the oil. Analysis of the singular problem m -t 0 (section 
VI.3) shows that c -t W(l) in the limit m -t o. The discrepancy between 
the computed and measured values of the wave speed is consistent with the 
idea that the wave is convected with the oil. The reason for the discrepancy 
can be traced to the fact that the water fraction for laminar flow with Vo 
and Vw prescribed is larger than the measured water fraction in up-flow; 
'TI < 'TIe in the first five columns of table 18.1. Since Vo is prescribed to be the 
same in laminar flow and bamboo waves, the oil in a core with Rl < Rle 
must flow faster. We speculate that the speed discrepancy between c in 
theory and experiments is due to the reduction of the water fraction due 
to sweep-out effects of bamboo waves. 
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Table 20.1. Specification of parameters used to calculate theoretical values from 
the linear theory of stability at the labeled How points in the How chart of figure 
16.1. 

Experiment Basic flow (:1.8.7), (18.9) with the same Va, Vw 

Vo(ft/sec) Vw (ft/sec) a Wo(cm/sec) W(l)(cm/sec) R g (R1 } F 
1 1.06 0.55 1.61 83.91 83.69 0.5749 -1.067 

2 0.76 0.55 1.90 83.90 83.73 0.3475 -1.0737 

3 0.46 0.55 2.44 83.03 82.91 0.1646 -1.0835 

4 0.31 0.55 2.93 SO.03 79.94 0.0951 -1.0893 

5 0.31 0.27 2.58 62.15 62.05 0.1390 -1.0807 

6 0.46 0.27 2.11 61.83 61.69 0.2563 -1.0722 

7 0.61 0.27 1.78 58.66 58.49 0.4262 -1.0635 

8 0.76 0.27 1.54 54.78 54.58 0.6595 -1.0556 

9 0.91 0.27 1.38 53.23 53.01 0.9045 -1.0509 

A1 0.01 0.03 8.03 19.68 19.67 0.0046 -1.0969 

B1 0.02 0.03 6.41 25.04 25.02 0.0091 -1.0953 

C1 0.03 0.03 5.59 28.62 28.59 0.0137 -1.0940 

01 0.1 0.03 3.63 40.09 40.04 0.0504 -1.0869 

E1 0.3 0.03 2.18 43.39 43.27 0.2327 -1.0690 

F1 1.0 0.03 1.03 32.80 31.91 2.1952 - 1.1127 

A2 0.01 0.09 8.52 22.14 22.13 0.0039 -1.0980 

B2 0.02 0.09 6.72 27.57 27.55 0.0079 -1.0965 

C2 0.05 0.09 4.87 36.21 36.18 0.0207 -1.0931 

02 0.2 0.09 2.82 48.50 48.41 0.1071 - 1.0808 

E2 0.5 0.09 1.48 33.27 33.09 0.7472 - 1.0459 

F2 2.0 0.09 1.04 67.16 65.93 2.1045 -1.1605 

A3 0.01 1.0 14.95 68.98 68.97 0.0007 - 1.1108 

B3 0.02 1.0 10.91 73.51 73.50 0.0018 - 1.0509 

C3 0.1 1.0 5.42 90.68 90.65 0.0151 -1.1063 

03 0.3 1.0 3.41 106.16 106.09 0.0607 -1.0996 

E3 0.5 1.0 2.72 112.95 112.85 0.1190 -1.0943 

F3 2.0 1.0 1.49 135.06 134.74 0.7292 -1.0832 
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Table 20.2. Comparison of computed and measured values of the wave speed c 
and wave length A of bamboo waves at the How points #1 through #9 of the How 
chart in figure 16.1 for up-How. The first column shows the experiment number #. 
The speed W(1) of the undisturbed interface is also listed for convenience. The 
computations are for the most unstable mode. The values listed in the parentheses 
are those computed when Vo, a = ae are prescribed. 

Experiments Computations 

# A (em) e (em/sec) A (em) e(em/sec) W(l)(em/see) 
1 1.21 57.70 0.82 (0.79) 79.84 (52.02) 83.69 (55.64) 

2 1.31 43.28 0.92 (0.96) 80.21 (42.54) 83.73 (46.24) 

3 1.41 35.65 1.22 (1.22) 79.76 (33.51) 82.91 (37.26) 

4 1.22 27.81 1.65 (1.33) 77.00 (29.42) 79.94 (32.66) 

5 1.374 19.16 1.56 (1.25) 58.91 (17.94) 62.05 (20.75) 

6 1.79 22.90 1.23 (1.16) 58.12 (22.17) 61.69 (25.35) 

7 1.34 28.22 1.05 (1.02) 54.80 (26.68) 58.49 (29.95) 

8 1.17 31.06 0.95 (0.87) 50.85 (31.33) 54.58 (34.53) 

9 0.90 36.25 0.86 (0.79) 49.38 (35.71) 53.01 (39.12) 

We turn next to analysis of the equation governing the evolution of the 
kinetic energy E of the most unstable disturbance of PCAF. This may be 
written as 

E = 1- D + B1 + B2 + B3 (20.2) 

where 1- D is the Reynolds stress minus the dissipation (and we normalize 
with D = 1), B1 is a boundary term associated with interfacial tension, 
B2 is a boundary term associated with the viscosity difference which we 
call interfacial friction and B3 is a boundary term in the energy supply 
which is proportional to gravity times the jump in density. All the terms 
in (20.2) are derived and explicit formulas for them are given in section 
VIlA. It has been shown in section VI.2 that terms of the energy equation 
should be computed on the most unstable disturbance to help diagnose the 
mechanism producing instability. Table 20.3 shows that bamboo waves are 
driven by interfacial friction, the other terms in the energy equation are 
stabilizing with an ever so slight destabilizing effect from interfacial tension 
in experiments 4 and 5. 
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Table 20.3 (a). Energy equation (20.2) evaluated on the most unstable mode 
at each of 9 labeled points in figure 16.1. The first column shows the experiment 
number #. Positive E means that PCAF is unstable. 

# E I-D Bl B2 B3 
1 0.1836 -0.7932 -0.01419 0.9944 - 0.00359 

2 0.2142 -0.7680 -0.01080 0.9983 - 0.00544 

3 0.2759 -0.7081 0 0.9950 -0.01123 

4 0.3480 -0.6332 0.01423 0.9873 - 0.02051 

5 0.3837 -0.5869 0.00830 0.9800 - 0.01781 

6 0.3133 -0.6485 -0.00321 0.9754 - 0.0106. 

7 0.2640 -0.6996 -0.00968 0.9802 - 0.00700 

8 0.2244 -0.7405 -0.013290.9833 - 0.00514 

9 0.1829 -0.7881 -0.015540.9903 -0.00378 

Table 20.3(b). The values listed here are those computed when Va' a = ae are 
prescribed. The flows are all unstable to interfacial friction B2 > 0 leading to 
bamboo waves. 

# E I-D Bl B2 B3 
1 0.1552 -0.8214 -0.01659 0.9961 - 0.00284 

2 0.2117 -0.7511 -0.01409 0.9818 - 0.00497 

3 0.3352 -0.6131 -0.00851 0.9659 - 0.00915 

4 0.4186 -0.5502 -0.00451 0.9848 - 0.01150 

5 0.3491 -0.6323 -0.01078 1.0013 - 0.00918 

6 0.2463 -0.7165 -0.01238 0.9828 - 0.00772 

7 0.1805 -0.7826 -0.01422 0.9829 - 0.00558 

8 0.1402 -0.8303 -0.01603 0.9902 - 0.00371 

9 0.1203 -0.8487 -0.01584 0.9876 - 0.00271 
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Table 20.4. Energy budget (20.2) evaluated on the most unstable mode at 
labeled points in figure 16.1. >. is the dimensional wave length based on the most 
unstable mode. 

Points E 1-0 Bl B2 B3 A(cm) Flow region in the chart 

Al 0.2450 -0.8982 0.4145 0.7341 -0.0060 1.5519 o /W dispersion 

Bl 0.2852 -0.8791 0.2085 0.9702 -0.0148 1.7295 oil bubble 

Cl 0.3052 -0.8610 0.1362 1.0485 -0.0189 1.7833 oil bubble 

01 0.4116 -0.6853 0.0388 1.0816 - 0.0237 1.8341 BW/slug 

E1 0.4264 -0.5353 0.0011 0.9798 -0.0141 1.4624 oil sticks on the pipe wall 

Fl 0.0032 -0.9954 -0.0021 0.9978 - 0.0001 0.2342 oil sticks on the pipe wall 

A2 0.2291 -0.9038 0.4840 0.6532 - 0.0053 1.5268 o /W dispersion 

B2 0.2719 -0.8862 0.2387 0.9331 -0.0143 1.7116 oil bubble 

C2 0.3424 -0.8050 0.0909 1.0806 -0.0243 1.9188 oil slug 

02 0.4566 -0.5449 0.0167 1.0068 -0.0220 1. 7690 BW 

E2 0.2814 -0.6791 -0.0120 0.9799 -0.0075 1.1267 BW 

F2 0.0552 -0.9261 -0.0115 0.9968 -0.0001 0.2604 oil sticks on the pipe wall 

A3 0.0742 -0.9778 1.1728 -0.1204 -0.0012 1.0009 o /W dispersion 

B3 0.1353 -0.9530 0.7341 0.3618 -0.0084 1.3061 o /W dispersion 

C3 0.2721 -0.8208 0.1095 1.0203 -0.0373 2.1226 oil bubble 

03 0.2983 -0.7031 0.0221 1.0022 -0.0231 1.6892 oil slug 

E3 0.2457 -0.7436 0.0030 0.9980 - 0.0119 1.2353 BW 

F3 0.1371 -0.8506 -0.0158 1.0049 - 0.0014 0.6096 OBW 

Table 20.5. Specification of parameters used to calculate theoretical values from 
the linear theory of stability at the labeled Bow points in the Bow chart of figure 
16.3. 

Experiment Basic flow (18.7), (18.9t with the same V o, Vw 

Vo(ft/sec) Vw (ft/sec) a Wo(cm/sec) W(I)(cm/sec) R g (Rl) F 

1 0.105 0.40 1.59 10.70 10.82 0.5965 - 1.035f 

2 0.70 0.40 1.34 37.33 37.37 1.0010 -1.0094 

3 1.0 0.40 1.27 49.38 49.36 1.1638 -0.9964 

4 4.0 0.40 1.09 145.74 144.54 1.8480 -0.8288 

Photographs of the nine cases considered in tables 20.2 and 20.3 are 
shown in figures 20.1-9. The close-up photograph is taken from the TV 
monitor and shows an actual frame used in constructing the average wave 
length and wave speed. The still photograph from a distance shows both 
the up-flow bamboo waves and down-flow disturbed core-annular flow with 
corkscrew waves. 
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Terms of the energy budget for the other labeled points in the up-flow 
chart of figure 16.1 are displayed in table 20.4. In addition, we have given 
the value of the wave length ~ = 271"10: of the fastest growing wave. It is 
shown in section VI.1 that the length of the slugs and bubbles which are 
observed correlate well with ~/2. We would not get this kind of agreement 
here, because the slugs are stretched and stringy due to buoyancy and shear 
(see figures 15.2, 20.4). 

There is agreement between theory and experiment with regard to 
selection of flow type in a sense which needs explanation. In all the entries 
the Reynolds stress term I - D is stabilizing. In section VI.2, it is shown 
that when the flow is unstable CE > 0) and 1- D > 0 is destabilizing, with 
all other terms negative, there is correlation with transitions to wlo (water 
into oil) emulsions. We did not encounter this situation when evaluating 
the energy budget and, correspondingly, no wi 0 dispersions are observed. 
In every case where slugs, bubbles and olw dispersions are observed, PCAF 
is unstable both to interfacial tension B1 and interfacial friction B3j the 
other terms are stabilizing. The size of the bubbles in the o/w dispersions 
is much smaller than ~/2 and is probably associated with the breakup of 
large bubbles in shear flow. 

The energy budgets for the cases of bamboo waves (BW) and disturbed 
bamboo waves (DBW) that are observed are all alike. The instability pro
ducing these waves is due to a strongly positive B2, with all other effects 
stabilizing or at least only weakly destabilizing. Interfacial friction is driving 
these interfacial waves. 

VII.20(a)(ii) Down-How. For down-flow, we reverse the sign of g. We are 
going to compare theory and experiment at four arbitrarily chosen points on 
the down-flow chart in figure 16.4. The flows at points in the region DCAF 
are essentially PCAF as the theory predicts (see table 20.6) The point #4 
in the region DBW is unstable to interfacial friction. The point #1 in the 
region of slugs is unstable also to interfacial tension. This gives perfect 
agreement at all four points. The neutral curves for experiments labeled as 
# 1 and #3 of down How are shown in figure 20.10-12. The dashed straight 
lines correspond to the experimental points and it is obvious that # 1 is 
unstable to capillary instability (modified by shear) and # 3 is linearly 
stable. 
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Table 20.6. Energy budget (20.2) evaluated on the most unstable mode at labeled 
points in figure 16.3. >. is the dimensional wave length based on the most unstable 
mode. 

Points E J-D Bl B2 B3 >. (em) Flow region in the chart 

1 0.1690 -0.8327 0.0035 1.2220 - 0.2238 13.4382 slugs 

2 stable DCAF 

3 stable DCAF 

4 0.0854 -0.9105 -0.0126 1.0085 0.0002 0.2887 DBW 

Table 20.7. Specification of parameters used to calculate theoretical values from 
the linear theory of stability at the labeled flow points in the flow chart of figure 
16.1. 

Experiment Basic flow (18.7), (18.9) with the same v; v. 
'" 

Va(ft/see) Vw (ft/see) a Wo(em/see) W(I)(em/see) Rg(Rl) F 

1 1.06 0.55 1.31 55.89 55.64 1.0592 -1.0510 

2 0.76 0.55 1.42 46.44 46.24 0.8396 -1.0491 

3 0.46 0.55 1.64 37.43 37.26 0.5452 -1.0530 

4 0.31 0.55 1.88 32.80 32.66 0.3633 -1.0589 

5 0.31 0.27 1.50 20.91 20.75 0.7156 -1.0422 

6 0.46 0.27 1.35 25.53 25.35 0.9697 -1.0382 

7 0.61 0.27 1.27 30.15 29.95 1.1605 -1.0377 

8 0.76 0.27 1.22 34.75 34.53 1.3077 -1.0394 

9 0.91 0.27 1.19 39.37 39.12 1.4242 -1.0428 

VII.20(b) For Fixed Values of Va and a 

We remarked that the discrepancy between the theoretical and measured 
values of c in table 20.2 was due to the sweeping out of trapped water 
between the crests of bamboo waves leading to a reduced water fraction. 
To check this idea, we decided to compute stability results when Va is 
prescribed as in the experiment and a = ae is given by experiment. This 
idea is completely consistent with results shown in the parentheses listed 
in table 20.2. The energy decomposition shown in table 20.3(b) is also 
completely consistent with the idea that bamboo waves are produced by 
interfacial friction. 
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Table 20.8. Specification of parameters used to calculate theoretical values from 
the linear theory of stability at the labeled How points in the How chart of figure 
16.1 (pure oil). 

Experiment Basic flow (18.7), (18.9) with the same 'no w v. v. 
Vo(ft/sec) Vw (ft/sec) a Wo(cm/sec) W(l)(cm/sec) Rg(Rt} F 

1 1.06 0.55 1.31 55.69 55.53 0.2043 -1.0577 

2 0.76 0.55 1.42 45.67 45.52 0.1620 -1.0587 

3 0.46 0.55 1.64 37.43 37.27 0.1052 -1.0668 

4 0.31 0.55 1.88 32.83 32.69 0.0701 -1.0760 

5 0.31 0.27 1.50 20.90 20.79 0.1381 -1.0541 

6 0.46 0.27 1.35 25.41 25.30 0.1871 -1.0469 

7 0.61 0.27 1.27 30.00 29.88 0.2239 -1.0443 

8 0.76 0.27 1.22 34.59 34.46 0.2523 -1.0444 

9 0.91 0.27 1.19 39.33 39.19 0.2748 -1.0464 

We carried out a similar computation, with Vo, ae prescribed, but with 
parameters appropriate to pure oil as given in (12.2). We get satisfactory 
agreement again between theory and experiments even though the oil used 
in the experiments is not pure oil. In fact many results are insensitive to 
small changes of viscosity when the water fraction is fixed because the 
viscosity of the oil is so much larger. 
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(a) 

(b) 
Fig.20.1(a-b). [Bai, Chen and Joseph, 1992) Flow condition at #1 (Vw, Vo) = 
(0.55, 1.06) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow on 
the left, and disturbed core annular flow with immature bamboo and corkscrew 
waves in down flow on the right. Lower photo (b) Bamboo waves on the video 
monitor. 
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(a) 

(b) 
Fig.20.2(a-b). [Bai, Chen and Joseph, 1992] Flow condition at #2 (Vw , Vol = 
(0.55, 0.76) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow on 
the left, and bCAF with mild corkscrew waves on the right. Lower photo (b) 
Bamboo waves on the video monitor. 
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(a) 

(b) 
Fig.20.3(a-b). [Bai, Chen and Joseph, 1992] Flow condition at #3 (Vw, Vo) = 
(0.55, 0.46) ft/sec of figure 16.1. Upper photo (a) Bamboo waves arising from 
shear stabilization of slugs in up flow on the left, corkscrew waves on the right. 
Lower photo (b) Bamboo waves on the video monitor. 
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(a) 

(b) 

Fig.20.4(a-b). [Bai, Chen and Joseph, 1992] Flow condition at #4 (Vw, Va) 
= (0.55, 0.35) ft/sec of figure 16.1. The flows are like those in figure 20.3, but 
exaggerated. 



VII.20 Comparison of Experiments with Theory 215 

(a) 

(b) 
Fig.20.5(a-b). [Bai, Chen and Joseph, 1992] Flow condition at #5 (Vw , Vo) 
= (0.27, 0.31) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow 
on the left, DeAF with corkscrew waves on the right. Lower photo (b) Bamboo 
waves on the video monitor. 
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(a) 

(b) 
Fig.20.6{a-b). [Bai, Chen and Joseph, 1992] Flow condition at #6 (Vw, Vo ) = 
(0.27, 0.46) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow on 
the left, corkscrew waves on the right. Lower photo (b) Bamboo waves on the 
video monitor. 
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(a) 

(b) 
Fig. 20.7(a-b) . [Bai, Chen and Joseph, 1992] Flow condition at #7 (Vw, Vo ) 
= (0.27, 0.61) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow 
on the left, mildly disturbed core annular flow in down-flow on the right. Lower 
photo (b) Bamboo waves on the video monitor. 
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(a) 

(b) 

Fi~. 20.8(a-b). [Bai, Chen and Joseph, 1992) Flow condition at #8 (Vw, Vo ) 
= (0.27, 0.76) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow 
on the left, DCAF with immature bamboo waves on the right. Lower photo (b) 
Bamboo waves on the video monitor. 
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(a) 

(b) 
Fig.20.9{a-b). [Bai, Chen and Joseph, 1992] Flow condition at #9 (Vw, Vo) = 
(0.27, 0.91) ft/sec of figure 16.1. Upper photo (a) Bamboo waves in up-flow on 
the left, DCAF with immature bamboo and corkscrew waves on the right. Lower 
photo (b) Bamboo waves on the video monitor. 
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Fig. 20.10. [Bai, Chen and Joseph, 1992J Neutral curves for down-flow experi
ment labeled # 1. 
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Fig. 20.11. [Bai, Chen and Joseph, 1992J Neutral curves for down-flow experi
ment labeled # 3. Lower branch. 
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Fig. 20.12. [Bai, Chen and Joseph, 1992] Neutral curves for down-flow experi
ment labeled # 3. Upper branch. 

VII.21 Summary and Discussion 

In sections VII. 11-20, we reported the results of experiments on water lubri
cated pipelining of 6.01 poise cylinder oil in a vertical apparatus with up and 
down-flow. The measurements were compared with theoretical predictions 
(sections VII.2-1O) based a linear stability analysis of the axisymmetric 
mode in ideal laminar flow (PCAF). 

Flow rates for the oil and water, pressure gradients and hold-up ratios 
for up and down-flow over a wide range of velocities less than 3 ftjsec were 
recorded. 

The oil is buoyed up in water by gravity. In up-flow the pressure gra
dient and buoyancy are in the same direction. Waves develop in up-flow 
and the lubrication forces together with the buoyancy tend to stretch wave 
troughs. In down-flow the pressure gradient and buoyancy are opposed. This 
compresses the oil column, suppresses bamboo waves, and leads to straight 
or buckled columns of oil. The differences between up and down-flow are 
suppressed in fast flow when the pressure gradient dominates buoyancy. 

The stretching of oil in up-flow and its compression in down-flow im
plies that less oil will accumulate in up-flow than in down-flow. It is possible 
to fluidize hugely long slugs of oil in down-flow. The ratio of the input ratio 
to the volume ratio is called the hold-up ratio h; h is one in a well-mixed 
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flow and larger than one in a laminar lubricated flow without gravity. Buoy
ancy changes this; zero and even negative hold-ups are possible (see figure 
18.1). 

Different types of flow were observed and located on flow charts in a 
Vw , Vo plane. The flow types change with the oil flow at a fixed water flow. 

First we describe changes in up-flow as the oil flow is increased. For 
slow oil flow with enough water, oil bubbles will form by capillary instabil
ity; if the water flow is fast enough the large bubbles are torn apart, leaving 
o/w dispersions. When the water flow is slow enough to support capillary 
bubbles, increasing oil flow will cause the bubbles to connect into longer 
structures, called slugs, which are like segments of bamboo with bamboo 
swells connected by long thin bamboo stems. Further increases in the oil 
flow cause the segments to connect into a definite bamboo train. The stems 
of the bamboo thicken and the distance between the cells decreases with 
increasing oil flow. Bamboo waves seem to be imperfect monochromatic 
waves with a very well defined average length, speed and amplitude. Yet 
further increases in the oil throughput lead to much thicker and shorter 
stems and the bamboo crests become very jagged, irregular, and not ax
isymmetric. These are called disturbed bamboo waves (DBW). BW and 
DBW are robust regimes of up-flow. 

In a region of the up-flow chart where the superficial velocity of wa
ter is low compared with that of oil, the oil sticks to the wall. This is a 
flow-induced adhesion, and it can be reversed. This flow induced change of 
adhesion results either in blockage with a loss of lubrication or in a three
layer configuration with oil on the outer wall, water in an annulus beneath 
and oil in the core. Our apparatus could not withstand the pressures needed 
to produce larger rates of oil than the ones in which oil sticks to the wall. 
We believe that water in oil emulsions would arise if the oil flow could be 
increased. 

Now we describe down-flow after the flow turns around at the upper 
end of the pipe, first for high oil flows with DBW in up-flow and then as 
the oil flow is decreased. When DBW are observed at high oil flow rates 
in up-flow, they are also observed in down flow. However, the wave lengths 
of DBW are shorter in down-flow than in up-flow because of stretching in 
up-flow and compression in down flow. When the oil input is decreased, the 
waves disappear leading to disturbed core annular flow. This flow can be 
almost a perfect core annular flow. At higher flow rates of oil, it is disturbed 
by immature bamboo waves, at lower flow rates by rotating buckled struc
tures which we call corkscrews. At yet lower oil inputs the oil column will 
break into trains of long slugs and then into trains of large bubbles which 
seem tied together by wake forces. 

For a fixed flow of oil, there is an optimum flow rate of water for which 
the pressure gradient is a minimum. The minimum pressure gradient is in a 
region of bamboo waves in up-flow and in a region of disturbed core annular 
flow in down-flow. The pressure gradients in down-flow are less than in up-
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flow. This shows that disturbed core annular flow is more efficient than 
bamboo waves. 

We compared ideal lubrication theory with experiments and obtained 
some measures of energy efficiency. To calculate the dynamic pressure gra
dient, it is necessary to take account of the composite water-oil density. 
The properties of the flow can be evaluated on the PCAF solution when 
two parameters, such as the flow inputs of oil and water, are prescribed. A 
theoretical formula for the hold-up is derived and evaluated. We calculate 
the water fraction for the PCAF flow which maximizes the oil flow when 
the pressure gradient is fixed. 

We compared measured pressure gradients with different ideal pressure 
gradients in five cases of up-flow and five cases of down flow. The pressure 
gradient required to move a given flow rate of 6.01 poise oil is on the average 
200 times greater when there is no water lubrication. This improvement 
is roughly one-third of the ratio I-lo/ I-lw = l/m. We can guess that drag 
reductions of the order l-lo/3l-lw are possible in a vertical pipeline. For a 
viscous crude, water lubrication would reduce the pressure gradient by a 
factor of more than 10,000. 

We compared measured pressure gradients with the gradients required 
to move water alone with a flow rate equal to the measured total flow (oil 
plus water). For laminar flow, the measured gradients in lubricated flow 
are roughly three times larger than the theoretical gradients required for 
laminar flow of water alone. However, at the given flow rates, water would 
be turbulent and the ratio of measured to theoretical values would be much 
closer to one. 

The measured values of the pressure gradient and water fraction were 
compared with theoretical values computed for PCAF with the same oil 
and water input. The computed water fraction expressed by the radius 
ratio a = R2/ Rl is larger than the mean values ae = R2/ Rle measured in 
the experiments. This reduction in the water fraction in the experiments 
is due to the transport of water trapped between bamboo waves, flushing 
out water, leaving a smaller water fraction behind. The computed pressure 
gradients in up flow at low oil flow rates is much smaller than the measured 
values. This comparison must be interpreted in the light of the fact that 
under these conditions the main force of transport is buoyancy. At higher 
oil flow rates, the ratio of computed to measured pressure gradients is of 
order one, between 0.1 and 0.5. 

Theoretical and measured values of the water fraction and pressure 
gradients in down-flow are very close for the disturbed core-annular flows. 
These are practically optimally efficient, with pressure gradient reductions 
of the same value as PCAF with the same water fraction. This indicates 
that DCAF is only a slight perturbation of PCAF. 

We compared measured values of the speed and wave length of bamboo 
waves with two different theoretical values computed from the linear theory 
of stability. In the first comparison we compared all flows with the same 
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oil and water input, the same Vo and Vw, as in our experiments. In the 
second comparison we compared all flows with the same oil input and water 
fraction, the same Vo and a, where a was put equal to the measured value 
for that Vo. The second comparison was introduced to validate the following 
conclusion: the wave on a very viscous oil, which basically must travel with 
nearly uniform velocity (see figure 18.1), must be very nearly a standing 
wave, convected with the flow. At 6.01 poise, it is too viscous to support 
fast wave propagation. In every case, the computed wave speed c of the 
most unstable disturbance was nearly the same as the speed W of the oil 
core in the basic PCAF. 

The average wave length of bamboo waves is slightly larger than the 
wave length of the most unstable disturbance of a PCAF 1, with the same 
Vo and Vw and also of the PCAF2 , with the same Vo and a as in the 
experiments. Nonlinear effects are responsible for this discrepancy. 

There is a larger discrepancy between the measured and theoretical 
wave speeds for PCAF, with theoretical speeds up to three times faster. 
We attribute this discrepancy to a systematic difference a - ae > 0 between 
the experiments and PCAF 1. The wave speed must be greater for flows with 
more water because the oil core with superficial oil velocity Vo has to rise 
faster when a is larger. Since the wave is convected with the oil, a compar
ison of computation with one a with another computation or experiment 
with another will give rise to a systematic discrepancy of the observed type. 
In fact this systematic discrepancy disappears when the measured speeds 
are compared with the ones computed for the PCAF2 which has the same 
a. 

We attempted to correlate the flow types observed in experiments by 
identifying the source of instability in the energy equation evaluated for the 
most dangerous disturbance of PCAF1 and PCAF2 • For PCAF1 we found 
that when oil bubbles and slugs occur in water, the instability arises from 
the boundary through a combination of interfacial tension and interfacial 
friction. When bamboo waves and disturbed bamboo waves are observed, 
the destabilizing factor is only interfacial friction. For PCAF 1, energy anal
ysis of down-flows yields the same consistent identification of the sources 
of instability for slug flow and disturbed bamboo waves. In addition, for 
the two arbitrarily chosen points near the center of the DCAF area, where 
nearly perfect core-annular flows are actually observed, the linear theory 
shows PCAF1 to be stable. In sections VI. 1-2, it is shown that when oil 
in water dispersions were observed, instability of PCAF arises from the 
Reynolds stress in the water, and not from terms at the boundary. We did 
not observe 0/ w dispersion in the experiments and no term with a Reynolds 
stress-induced instability was identified from the theory. 

Future work correlating stability calculations with experiments using 
more viscous and less viscous oils in vertical flow ought to be undertaken. 
It would be worthwhile to build a robust apparatus in which the pressure 
gradients needed to create o/w emulsions could be attained. The transition 
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to o/w emulsions is a practical problem of considerable importance because 
it leads to a loss of lubrication in the field. 
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VIII.1 Introduction 

In this chapter, we will discuss nonlinear theories of the Ginzburg-Landau 
type [Chen and Joseph 1991a) and various long-wave equations [Chen and 
Joseph 1991b). 

Surprisingly, the linear theory of stability performs better than ex
pected for predicting wave lengths, wave speeds and How types in Hows 
which are far from the perfect core-annular How which the linear theory is 
supposed to perturb only slightly (chapter VII). However, there are some 
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situations for which the linear theory fails and it is of interest here to see 
what understanding can be achieved from nonlinear theory. For instancce, 
an effort is made here to correlate the 'bamboo' waves, shown in plate V.1.2 
to the weakly nonlinear analysis, but it is found that these waves cannot 
be obtained from this theory. 

The analysis of sections VIII.l - VIII.9 applies to situations in which 
there is a threshold for instability; this means cases in which stable PCAF 
(perfect core-annular flow) is possible and the neutral curves are separated 
as in figures 5.1- 5.2. For these cases, we apply an amplitude equation which 
allows for slow modulations of wavy flow in space and time. The amplitude 
evolution equation has now come to be known as the Ginzburg-Landau 
equation. l As discussed in section IV.8(b), there is more than one way of 
deriving the Ginzburg-Landau equation, and depending on the assumptions 
made, the Landau coefficient turns out to be different. For instance, the 
stability analysis can be performed with the pressure gradient fixed, or 
with the combined volume flux fixed. Both are treated for the plane flow in 
chapter IV where it is shown that the sign of the Landau constant computed 
both ways can have opposite signs. The volume flux is chosen fixed for 
the pipe flow in sections VIILI-9. Another place where we have to make 
a decision is in the calculation of the second-order correction to the mean 
flow. The method adopted here is that of section IV.8 (b), and an alternative 
way is that of Blennerhassett [1980). Thus, the analysis can be carried out 
in a variety of ways, and the final Landau constant is numerically different 
depending on the path that leads to it. We have to choose the path which 
we feel is the best description of our experimental procedure. 

There are regimes of flow which give rise to separated neutral curves for 
which the Ginzburg-Landau equation may be applied. There are, however, 
even more regimes in which PCAF is not possible and analytical approaches 
to the nonlinear problem seem to be unknown. The neutral curves shown in 
figures 1.8 and 1.12 of section VI.1 and figure 8.4 of section VIL8 where the 
upper and the lower branches have merged to form left and right branches, 
will not allow for bifurcation analysis. Unfortunately, the case m « 1 which 
is typical of applications in which the oil is very viscous is one of these cases 
(cf. section VL3). 

Amplitude equations are derived under restricted conditions. Once de
rived, they take on a life of their own and may be applied in all sorts of 
situations for which they were never intended. For example, the Ginzburg
Landau equation presumably applies only to small-amplitude waves which 
modulate a monochromatic wave of wavelength 211'/ Q c where Q c is the crit
ical wavenumber at the nose of the neutral curve. A modulated wave solv-

lOur 'Ginzburg-Landau' equation actually follows from the work of Newell 
11974J and Stewartson and Stuart [1971J who extended the work of Newell and 
Whitehead [1969J and Segel 11969J to the unsteady case in which the marginally 
stable eigenvalue at criticality is purely imaginary, as in Hopf bifurcation. 
Ginzburg and Landau [1950J wrote down, but did not derive, a differential 
amplitude equation with slow modulation for the theory of superconductivity. 
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ing the Ginzburg-Landau equation (3.12) has a slowly varying amplitude 
A(~, T), ~ = f(X - cgt), T = f 2 t (see (3.3)), where f (given by (3.1)) is small 
and determines the bandwidth of excited waves centered on the wavelength 
271" / O:c of the monochromatic wave. A( ~, T) is the envelope of amplitudes of 
this monochromatic wave. The length of the periodic wave solution may be 
computed from the Ginzburg-Landau equation. It is of interest to see what 
kinds of effects may be described by solutions lying in the full solution set 
of Ginzburg-Landau equations. The formation of solitons and chaos are two 
such effects which have been examined in a qualitative way in the works 
of Moon, Huerre and Redekopp [1983] and Bretherton and Spiegel [1983]. 
There are many recent works in which the coefficients of the Ginzburg
Landau equations are selected so as to give apparent agreement between 
computer simulations and experiments. What we need are the explicit coef
ficients for the Ginzburg-Landau equation which apply to the experiments. 
With this information, we may hope to answer the question of ''where is 
the modulation?", and to look for structures which can be described as 
modulations of monochromatic waves. 

In sections VIII. 2-9, we compute the coefficients of the Ginzburg
Landau equations for different situations of interest and we make some 
comparisons with experiments. The singular value decomposition method 
is used to compute the coefficients of the amplitude equation and normal 
forms. This is described in section VIlI.4. Our comparison of Ginzburg
Landau theory with experiments is limited by the fact that the theory 
applies to a small set of situations in which there are stable flows. Even 
in these cases, we see no evidence of modulation, so that our calculations 
are rather more in the way of an application of Ginzburg-Landau equations 
to the bifurcation of nonlinear monochromatic waves than to any kind of 
modulation of these waves. In this restricted application, we do see some 
agreement between the weakly nonlinear theory and the experiments. In 
the problem of water-lubricated pipelining, we have obtained many useful 
results from the linearized theory of stability but only limited success with 
the nonlinear theories. 

In sections VIII.IO-I7, we present some of the weakly nonlinear long
wave equations applicable to core-annular flows. We show that lubrication 
theory sometimes fails to capture the destabilizing effect of the inertia of 
the core or of the annulus, particularly when the outer lubricating layer 
is not thin enough or when the viscosity ratio is small. However, there is 
a place for theories in which the waves are long with respect to the gap 
width, but not necessarily long with respect to the inner core radius, and 
lubrication theory is one way to tackle this situation. These aspects are 
summarized in section VIlI.17. 
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VIII.2 Nonlinear Evolution of Axisymmetric 
Disturbances 

Two immiscible fluids are flowing inside a pipe of radius R2 • The interface 
between the two fluids is cylindrical at r = Rl. Fluid 1 is located in the 
core and fluid 2 in the annulus. We are interested in the stability of this 
core-annular flow. 

There are five independent controlling parameters: a, m, (2, J* and 
Rl for horizontal core-annular flow and six for vertical core-annular flow: 
a, m, (2, J*, Rg and F ( see below for definitions). Although a multi
parameter bifurcation analysis is possible, we restrict our attention here 
to the simplest case in which a single parameter is varied for fixed values 
of the other five. We prefer a parameter that we can control in our ex
periments once the working fluids and the pipe are chosen. For horizontal 
flow, the Reynolds number Rl defined below can be used as the bifurcation 
parameter. For vertical flow, a good dynamical parameter is the forcing 
ratio 

f F=-, 
PlY 

where 
f- dA _ dF2 
--dx--dx 

is the applied pressure gradient. For the concentric basic flows considered 
here, f is the same constant in both the core and the annulus. In this 
chapter, we shall use a different equivalent set of parameters incorporating 
both horizontal and vertical flows. 

We shall choose the magnitude of the center-line velocity IW(O)I as the 
velocity scale, Rl the length scale and RdIW(O)1 the time scale. We define 
the following parameters: 

R2 
a=-

Rl 

(ml,m2) = (I,m) = (1, ~:), 
«(1, (2) = (1, () = (1, ::) , 

R~fRl = IW(O)lplRl , Reynolds number, 
J.Ll 

R2 = IW(O)lp2R l = (2 R , 
J.L2 m 

Reynolds number based on gravity, 
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(This is different from Rg = ~ used in sections VII.2 - VII.10.) 
"1 

(ratio of driving forces in core and annulus) 

where T is the interfacial tension. The cylindrical polar coordinate system 
is chosen in such a manner that gravity is acting in the positive x-direction. 
We choose the Reynolds number R as our bifurcation parameter. When the 
density is matched, K = 1 and gravity does not enter into the problem. Rg 
and J* are known constants once the working fluids and pipe radius are 
given, independent of flow conditions. 

The basic flow in dimensional form is given in (2.2) of section VII.2. 
The velocity at the centerline of the pipe is 

W(O) = f + PIg R~ + f + P2g (R~ _ RD + [p]gR~ In R2. 
4J.t I 4J.t2 2 J.t2 R I 

Using this relation, we can show that the parameter K can be expressed in 
terms of Rg and R. To do this, we need to distinguish between the cases 
W(O) > 0 and W(O) < O. For convenience, we will loosely refer to flows 
with W(O) > 0 as down-flows and W(O) < 0 as up-flows, although mixed 
flows are also possible for both cases, depending on the magnitude of W(O) 
or f, as shown in chapter VII. Then the dimensionless basic flow can be 
expressed as: 

(a) down-flow: W(O) > 0 

K(R) _ 4ma3R + [(]Rg(a2 - 1 - 2ln a) ) 
- 4ma3R - [(]Rg(m + 2ln a)' (2.1a 

mK(R)r2 
WI(r,R) = 1- mK(R) +a2 -1 +2(K(R) -l)ln a' O:S: r:S: 1 

(2.1b) 
a2 - r2 - 2(K(R) - l)ln1: 

W2(r, R) = mK(R) + a2 _ 1 + 2(K(R) _ a1)ln a' 1:S: r :s: a (2.1c) 

(b) Up-flow: W(O) < 0 

K(R) = 4ma3R - [(]Rg(a2 - 1 - 2ln a) 
4ma3R + [(]Rg(m + 2ln a) 

mK(R)r2 
WI(r,R) = -1 + mK(R) + a2 -1 + 2(K(R) -l)ln a' 

a2 - r2 - 2(K(R) - l)ln 1: 
W2(r, R) = - mK(R) + a2 _ 1 + 2(K(R) - i)ln a' 

(2.2a) 

(2.2b) 

(2.2c) 
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In the above formulas, the jump H is defined as 

[.] = (·h - (·h· 

It can be seen from these expressions that the up-flow velocity is formally 
the negative of the down-flow velocity except that the parameter K(R) is 
different. However, both down-flow and up-flow can be analyzed using the 
velocity profile (2.1), with Rg > 0 for down-flows and Rg < 0 for up-flows 
since any up-flow can be obtained from a down-flow by simply reversing the 
direction of gravity. The basic flow (2.1) depends on the Reynolds number 
R through the parameter K (R). 

The perfect core-annular flow (2.1) can be realized if the controlling 
parameters fall in a certain range. Experiments in a vertical pipe with 
parameters in this range were described in chapter VII. It is also possible to 
realize the concentric core-annular flow in a horizontal pipe if the densities 
of oil and water are matched. The experiment 2 of CGH (see figure V.1.1) 
called 'oil in water concentric', can be regarded as an example of perfect 
core-annular flow in a horizontal pipe. 

Numerical experiments using linear theory have indicated that for our 
range of parameters in horizontal flows, and for some vertical flows, it may 
be sufficient to consider axisymmetric disturbances (cf. chapter VII). There
fore, the analysis here is restricted to them. Nevertheless, nonaxisymmetric 
waves arise in practice. The photograph of 'corkscrew' waves exhibited in 
figure 1.3 of chapter V is a good example. These corkscrew waves may result 
from the instabilities due to finite nonaxisymmetric disturbances. 

For axisymmetric disturbances, the disturbance velocity is of the form 
u = (u,O,w) in the cylindrical coordinates (r,O,x) and ~ = o. 

The full nonlinear evolution equations for u in dimensionless form are 

1 a ow 
;: or (ru) + ax = 0, (2.3a) 

au au au au ap 1 [2 U ] -+W-+u-+w-=--+- \7u--, 
&t ax or ax or Rl r2 

(2.3b) 

ow ow I ow ow ap 1 2 - + W- + Wu+u- +w- = -- + -\7 w 
&t ax or ax ax Rl 

(2.3c) 

where 

\72 f = ~ ~ (r Of) + 02 f . 
r or or ax2 

W is the basic flow and p is the perturbation pressure. These equations 
hold both in the core, l = 1 when 0 :s: r :s: 1 + c5(x, t), and in the annulus, 
l = 2 when 1 + c5(x, t) :s: r :s: a. c5(x, t) is the dimensionless deviation of the 
interface from the r = 1. The primes denote derivatives with respect to the 
coordinate r. On the pipe wall r = a, we have the no-slip condition 

u = w = 0, (2.4) 
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and at the center of the pipe, r = 0, U, W,p are bounded. 
At the interface, r = 1 + 8(x, t), we have the kinematic condition 

and the continuity of velocity 

where the subscript 8 refers to the deformed interface r = 1 + 8(x, t). 
The shear stress and normal stress balances on the interface are 

[m {(1- 8;)(W' + U x + wr) + 28x(ur - wx)}l~ = 0 

-[(p]c5 + Rl(12+ 8;) [m {ur - 8x (w' + U x + wr) + 8;wx } t 
= a~~ {(I :~i)3/2 - (1 + 8)(11 + 8;)1/2 + I} . 

(2.6) 

(2.7) 

(2.8) 

where, the subscripts r and x refer to differentiations with respect to r and 
x, respectively. 

To simplify these equations further, we can introduce a perturbation 
stream function ¢ in each region: 

¢x 
U=--, 

r 
¢r 

W --- . 
r 

Then the field equations can be reduced to a single equation for the stream 
function ¢ by eliminating the pressure p : 

(L¢)t - (W" - ~') ¢x + (w + ~¢r) (L¢)x 

-~¢x(L¢)r + 22 ¢xL¢ = Rl L2¢ 
r r I 

where the operator L is defined as 

fP 18 82 

L = 8r2 - -:;. 8r + 8x2· 

At r = a: 

At r = 0: 

¢ = ¢r =0. 

¢ =¢r = o. 

(2.9) 

(2.10) 

(2.11) 

All the interface conditions can be expressed in terms of the perturba
tion stream function ¢, resulting in a system of differential equations for 
¢1 (r, x, t), ¢2(r, x, t) and 8(x, t). 

To study weakly nonlinear stability, we expand the interfacial condi
tions around the unperturbed interface r = 1 and truncate the Taylor series 
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at order 0(63 ). For this purpose we notice that from the linear theory, we 
have 

u '" w '" 6. (2.12) 

The resulting interface conditions up to the third order can be summarized 
as: 
Kinematic condition: 

Lil (tPl, 6) = Qil (tPl, 6) + Gil (tPl, 6), 

Continuity of velocity: 

[Li2 ( tP)] = Qi2( tPb tP2, 6) + Gi2 ( tPb tP2, 6), 

[Li3 ( tP, 6)] = Qi3 ( tPb tP2, 6) + Gi3 ( tPb tP2, 6) , 

Shear stress balance: 

Normal stress balance: 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

J* 
[Li5 (tP, 6)] - R2 (6xxx + 6x) = Qi5(tPb tP2, 6) + Gi5 ('1/h, tP2, 6). (2.13e) 

a 1 

In the above expressions, the jump [(.)] without subscript 6 refers to the 
jump evaluated at the undeformed interface r = 1 and all the quantities are 
evaluated at r = 1 as well. The symbols L, Q, G refer to linear, quadratic 
and cubic differential operators respectively. The subscripts i indicate that 
all these operators are defined on the interface r = 1 only. 

These interfacial operators are listed below [Chen 1990]. 

Lil (tPl , 6) = 6t + W(I)c5x + tPx, 

Qil(tPl, 6) = - {W' (1)66x + 6xtPr + 6(tPrx - tPx)} , 

{ I" 2 Gil (tPl , 6) = - 2 W (1)6 6x + 66x(tPrr - tPr) 

+62 (~tPrrx - tPrx + tPx) } ; 

Li2 (tP) = tPx, 

Qi2 (tPl, tP2, 6) = -6[tPrx] ' 

Gi2 ( tPb tP2, 6) = - ~ 152 [tPrrx] ; 

Li3 (tP,6) = W' (1)6 + tPr, 
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[ { I 2 ", ] Qi4('1/h, tP2, 8) = - m '28 W (1) + 8(tPrrr - tPrr + tPr - tPrxx) 

+ 28x( -2tPrx + tPx}], 

Ci4 (tP1,tP2,8) = - [m {~83W"" (1) - 88;W" (1) 

+ 82 (~tPrrrr - ~tPrrr + tPrr - tPr 

-~tPrrxx ) 
-8;(tPrr - tPr - tPxx) + 288x( -2tPrrx + tPrx - tPx)}], 

£i5(tP,8) =( {tPrt + W(l)tPrx - W' (l)tPx } 

+ :1 {-tPrrr + tPrr - tPr - 3tPrxx + 2tPxx - 28xxW' (I)}, 

Qi5(tP1, tP28) = - [( {8[tPrrt - tPrt + W(l)(tPrrx - tPrx) 
+ (W'(l) - WI/(l))tPx) 
-8x[tPxt + W(l)tPxx) + [-tPx(tPrr - tPr) + tPrtPrx)} 

m 
+ R1 {-8[-tPrrrr + 2tPrrr - 3tPrr + 3tPr - 3tPrrxx 

+ 5tPrxx - 4tPxx - 28xxW" (1))- 28xx [tPrr - tPr - tPxx) 

+8x [-3tPrrx + 5tPrx - 4tPx + 3tPxxx - 28x W" (I)]} ] 
J* + -R 8x(8xx - 28), 

a 1 
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Ci5 {1/J1, 1/J2, 0) = - [, {02 [~1/Jrrrt -1/Jrrt + 1/Jrt 

+ W (I) (~1/Jrrrz - 1/Jrrz + 1/Jrz ) 

+ W' (I) (~1/Jrrz -1/Jz) + W" (I) ( -~1/Jrz + 1/Jx) 

- ~ Will (I )1/Jx ] 

+ O[1/Jx{ -1/Jrrr + 31/Jrr - 31/Jr) + 1/Jr{1/Jrrx -1/Jrx)] 

- OOx [1/Jrxt -1/Jzt + W{l)1/Jrxx + (W' (I) - W{l)) 1/Jxx] 

+ Oz [1/Jx{ 1/Jrz -1/Jx) -1/Jr1/Jxx]} 

+ :1 {02 [- ~1/Jrrrxx + 41/Jrrxx - 71/Jrxx 

+ 61/Jxz - Oxx W'" (I) 

1 3 17 ] 
-21/Jrrrrr + 21/Jrrrr + 2"1/Jrrr + 61/Jrr - 61/Jr 

- 200x[1/Jrrr - 21/Jrr + 21/Jr -1/Jrxx + 1/Jxx] 
2 I + 40z oxx [21/Jrx -1/Jx] + 60xoxzW (I) 

+ 00z[-31/Jrrrx + 81/Jrrx - 141/Jrx + 121/Jx - 31/Jxxx 

+ 31/Jrxxx - 20x W" (I)] 

+20; [-1/Jrrr + 21/Jrr - 21/Jr + 31/Jrxx - 21/Jxxj}] 

J*( 2 3 2 1 3 2) + aR~ 30xOxx - 20xxxOx - 20x - OOxOxx + 30 Ox . 

The reduced system (2.9), (2.1O), (2.11) and (2.13) is used to derive 
the amplitude equation. 

VIII.3 Multiple Scales, Wave Packets and Ginzhurg
Landau Equations 

The derivation of the amplitude equation near criticality, using the tech
niques of multiple scales is now well known and the details can be found 
in Newell [1974] or Stewartson and Stuart [1971]. We introduce a small 
perturbation parameter e, defined by 

(3.1) 

where we have adopted the notation of Stewartson and Stuart [1971] for 
d1r 
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(3.2) 

Here -iO'.c is the linear complex growth rate for the linear instability of 
the basic flow and (O'.e, Rc) is the point at the nose of the neutral curve. 
This critical point is a minimum on the upper branch of the neutral curve 
and a maximum on the lower branch. Here, 'upper' and 'lower' refer to the 
bifurcation parameter R, not the wave number 0'. as traditionally assigned. 
The basic flow loses stability as R is increased past Re on the upper branch. 
Here, d1r > 0 on the upper branch, and d1r < 0 on the lower branch. We 
may consider the first case d1r > 0, R> Re and then generalize to cover 
all the possibilities. 

Introduce the slow spatial and time scales 

~ = c(x - Cgt), 

T = c2t, 
(3.3h 

where cg is the group velocity at criticality. These scales are appropriate for 
a wave packet centered at the nose of the neutral curve and the long time 
behavior of this wave train is examined in the frame moving with its group 
velocity cg • The perturbation stream function 1jJ and the interface deviation 
8 are assumed to be slowly varying functions of ~, T: 

1jJ ---+ 1jJ(~, T; r, x, t), 

8 ---+ 8(~, T; x, t), 
a a a 20 
at ---+ at - cCg a~ + c aT' 
a a a 
ax ---+ ax + c a( 

We then define the traveling wave factor of the amplitude 

(3.3h 

(3.4) 

where Cr is the phase speed at criticality. For a wave packet centered around 
the critical state, we can assume that 1jJ and 8 have the following form: 

8 = 80(~,T) + {81(~,T)E + c.c} + {82(~,T)E2 + c.c} + h.h., (3.5) 

where c.c stands for complex conjugate and h.h. for higher harmonics. We 
assume that the fundamental wave 1jJ1 (r, ~, T)E is of order c and expansions 
in c yield 
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tPl = etPl1 (r, e, r) + e2tPI2(r, e, r) + e3tP13(r, e, r) + O(e4), 

tP2 = e2tP22(r, e, r) + O(e4), (3.6) 

tPo = e2tP02(r, e, r) + O(e4), 

and similarly, 

(h = e611 (e, r) + e2612(e, r) + e3613(e, r) + O(e4), 

62 = e2622 (e, r) + O(e4 ), (3.7) 

60 = e2602 (e, r) + O(e4 ). 

Substitute the above expansions into the nonlinear system of equa
tions and identify different orders (k, n) <=> (Ek, en) to obtain a sequence 
of differential equations. To obtain the amplitude equation at the lowest 
order, we only need to consider k = 0,1,2 exponentials (3.4) and n = 1,2,3 
powers of the small parameter e. 

At order (1, 1) we have the linear eigenvalue problem at criticality and 
if we denote the eigenfunction at criticality to be cp(r), then 

tP11(r,e,r) = A(e,r)cp(r), 

611 (e,r) = A(e,r)1]11, (3.8) 

where 1]11 is a constant which can be expressed in terms of the value of cp at 
r = 1 and A(e, r) is the slowly varying amplitude of the fundamental wave. 
The equations which arise at orders (0, 2), (2, 2), (1, 2) support separated 
product solutions of the following type 

tP02(r, e, r) = IA(e, r)12 F(r), 
602 (e, r) = IA(e, r)121]o2; 
tP22(r, e, r) = A2(e, r)G(r), 
622 (e, r) = A2(e, r)1]22; 

BA(e,r) 
tPI2(r, e, r) = Be H(r) + A2(e, r)cp(r), 

BA(e,r) 
612 (e, r) = Be 1]12 + A2(e, r)1]11. (3.9) 

We need to be careful with the calculation of the (0,2) term, since there 
is more than one way of handling it, and this influences the final value of the 
Landau constant. The method employed here is the one discussed around 
equation IV.(8b.31) for the X function. An alternative method was used 
by Blennerhassett [1980]. This concerns the fact that at order (0,2), the 
kinematic condition at the interface does not give any equation for the 
interface deviation 1]02, since the condition contains terms such as 1]t and 
1]x, whereas 1]02 = 1]02(e, r). Thus, we look for another condition to use. 
Since the oil volume is conserved, we have 



238 Chapter VIII. Nonlinear Stability of Core-Annular Flow 

{L (1+6(z,t) 
J o Jo 27rr drdx = (volume)oil of 1 period 

= 1L 11 27rr drdx. 

Therefore, 

1L 26(x, t) + 62(x, t) dx = o. 

Into this equation, we substitute the following: 

6(x, t) = 77o(e, T) + ''11(e, T)E + i'h(e, T)E-1 + ... , 

77o(e, T) = e27702(e, T) + O(e4 ), 

171(e, T) = e17u(e, T) + e21712(e, T) + O(e3 ), 

172(e, T) = e21722(e, T) + O(e4 ). 

Any term multiplied by E, E-1, E-2, ... , will be integrated to zero, and 
the left-over, to O(e2), is 

L (27702 (e, T) + 217u (e, T)11u (e, T») = 0 

and this yields 
7702(e,T) = -117u(e,TW· 

The other equations for the problem at order (0,2) are: 

2 (i { 1 2 - 1 () 2 - 2 - 2 } 
VOtP02 = 2-acRc 1m -tPUr V 1 tPu + -tPu J:l.. V 1 tPu + "2tPu V 1 tPu mi r r Ul- r 

h '("'72 82 18 d h· £ were v 0 = 8rI - r 8r' an at t e mterxace, 

[tP02] = 2 ReHtPur)11u} = 0, 

[W'(I)]7702 + [tP02r] = -[W"(IH17U11U - 2 Re{17u[tiiurr - tiiur]} , 

[mi(tPo2rr - tP02r + W"(I)7702] = -[mi(W"(I)17U11U 

+ 2 Re{ 17U(tiiurrr - tiiurr + (1- 3a~)tiiur + 2a~tiiu)} H, 
[mi ( -tP02rrr + tP02rr - tP02r)] 

= 2acRc 1m {[ (i ( 11u [(W (1) - cr)( tPUrr - tPUr) 

+ (W'(I) - W"(I) - ac(W(I) - er»tPu] 

+ tiiu ( tPu rr - tPur»]} 

+ 2a~ Re{ [mi17u ( - tiiurrrr + 2tiiurrr + (3a~ - 2)tiiurr 
2- 2 - 2 " )} - 5actPur + (5ac + 4)tPu + 2(ac + I)W (1)11U J . 
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Then at orders (1, 2) and (1, 3), we have 

where L1 is the linear Orr-Sommerfeld operator at criticality and Jb i = 
1"",5 are functions of <p(r), F(r), G(r) and H(r). Applying the Fredholm 
alternative at order (1, 2), we can obtain a formula determining the group 
velocity cg • At order (1, 3), the application of the Fredholm alternative 
yields the Ginzburg-Landau equation governing the amplitude A(e, r) of 
the fundamental wave, 

(3.11) 

The term ~ does not appear because its coefficient vanishes when the 
group velocity cg is properly expressed using the Fredholm alternative. The 
complementary part of the solution of the singular problem at order (1, 2) 
has no effect on the final amplitude equation. The coefficient of the cubic 
term, I, is called the first Landau constant and it depends on all the lower 
order solutions. The coefficients a2 , d1 and I are complex in general and can 
be computed using the Fredholm alternative. For the upper branch of the 
neutral curve d1r > 0 and for the lower branch d1r < O. For non-degenerate 
cases, the real part of a2 is always positive for both the upper and the lower 
branch because the growth rate reaches a maximum at the critical point, 
the nose of the neutral curve (a2r = 0 if the neutral curve has a higher 
order (> 2) contact with R = Rc). 

We may write a uniform form of the Ginzburg-Landau equation, valid 
for both the upper and lower branch of the neutral curves 

8A 82A d1 2 
8r - a2 8e2 = sgn(d1r)sgn(R - Rc) d1r A -IIAI A, (3.12) 

by taking proper account of the various sign possibilities offered by (3.1). 
Here the parameter sgn( d1r ) sgn(R - Rc) measures the distance from the 
bifurcation threshold (linear growth or damping), sgn(d1r) sgn(R-Rc) .2l.i.dd ' 

lr 
corresponds to the frequency shift due to the linear dispersion, a2r, a2b lr' Ii 
are associated with diffusion(a2r > 0), dispersion, nonlinear saturation(lr) 
and nonlinear renormalization of the frequency respectively. 

The Landau constant I depends on the normalization of the eigenvector 
<p( r) of the spectral problem but is independent of the normalization of the 
adjoint eigenvector. If we use a different normalization for the eigenvector 
<p(r) such that 

<p(r) ~ q<p(r), A(e, r) ~ qA(e, r) 

where q is any non-zero constant, we find, using (3.12), that 
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The Landau constant will become unique if a well-defined amplitude is in
troduced. This is especially important when pursuing higher order Landau 
constants [Joseph and Sattinger 1972; Herbert 1980; Sen and Venkateswarlu 
1983]. In the lowest order case, represented by the Ginzburg-Landau equa
tion (3.12), we can simply rescale the amplitude function A(e, r) 

A(e, r) -+ A(e, r) 
IqlvVrT 

(3.14) 

where l = lr + ilb to get a Ginzburg-Landau equation with coefficients 
independent of q: 

aA 82A d1 . 2 
8r - a2 ae2 = sgn(d1r)sgn(R - Rc) d1r A - (sgn(lr) + lCn)IAI A, (3.15) 

where Cn = rI!:r is a parameter independent of the normalization condition 
for cp(r). 

Another useful rescaled form of (3.13) can be obtained by introducing 
the following transformations: 

A(e,r) = A~ exp [i sgn(d1r)sgn(R- Rc)ddli ] , 
Iql Ilrl lr 

~ e e=--, y'ja;r 
C a2i 
d=--, 

la2rl 
(3.16) 

After dropping the roofs, we get 

~: -(sgn(a2r)+iCd ) ~~~ = sgn(d1r)sgn(R-Rc)A-(sgn(lr)+iCn )IAI2 A. 

(3.17) 
The form (3.17) was first introduced by Moon, Huerre and Redekopp [1983] 
in their study of transition to chaos in solutions of the Ginzburg-Landau 
equation. Since a2r > 0 we can replace sgn( a2r) by + 1. 

Equation (3.17) can be regarded as the canonical form ofthe Ginzburg
Landau equation. It admits a traveling wave solution of the form A( e, r) = 
Aoexp[iCBoe - 'Yor)] where Ao, /30, and 'Yo are all real constants defined in 
terms of the coefficients of (3:17). The stability of the traveling wave solu
tion was studied by Newell [1974], Stuart and DiPrima [1978] and Moon 
[1982]. Their analysis provides a unified treatment of the well-known Eck
haus instability and Benjamin-Feir instability, and their results are also 
framed in terms of the coefficients of (3.17). When the real part of the 
Landau coefficient, lr, is positive, there are soliton-like solutions of the 
Ginzburg-Landau equation which have been discussed by Hocking and 
Stewartson [1972]. These solutions have been called 'breathers' by Holmes 
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Plate V .1.2. [Bai, Chen and Joseph, 1992] Bamboo waves observed in up-flows 
of motor oil and water. The oil has a viscosity of 6.01 poise and a density of 0.881 
g/cm3 at room temperature T = 22°C. The volume flow rates are Qo = 0.11332 
GPM, Qw = 0.05284 GPM. 



Plate V.l.3. [Bai, Chen and Joseph, 1992] Corkscrew waves observed in down
flows of motor oil and water. The oil has a viscosity of 6.01 poise and a density 
of 0.881 g/cm3 at room temperature T = 22°C. The volume flow rates are Qo = 
0.08312 GPM, Qw = 0.05284 GPM. 



Plate V.2.3. Core-annular flow of oil lubricated by water in a pipe of diameter 
8" and test loop of length lkm at San Tome, Venezuela. The water fraction is 
approximately 10%. The oil is Zuata. At 30°C, the viscosity is 80,000 mPa.s. This 
photograph was supplied by INTEVEP, SA. 



Plate VII.3.1. [Chen, Bai and Jos
eph, 19901 Free-lall apparatus. The 
test section of the pipe is surrounded 
by a square box filled with glycerine 
to remove the visual distortion cre
ated by the circular pipe. The inner 
radius of the pipe is 0.3175 cm and 
the pipe is 120 cm long. 

Plate VII.3.2. [Chen, Bai and Jos
eph, 19901 Stable perfect core-annular 
flow ofSAE 30 oil and glycerine/water 
mixture. a=1.86, m=0.33, (2=1.4, J* 
= 2.26, F = 0, R g =1.82. 



(a) 

(b) 

Plate IX.2.2(a-b). [Kojima, Hinch and Acrivos, 1984, American Institute of 
Physics] Falling drops of aqueous corn syrup of density 1.329 g/cm3 and viscosity 
3.9 P into aqueous corn syrup of density 1.26 g/cm3 and viscosity 0.51 P. (a) The 
low viscosity mixture intrudes into the drop at the trailing edge near the tail. (b) 
A vortex ring forms. Continued. 



(c) 

(d) 

Plate IX.2.2( c-d). [Kojima, Hinch and Acrivos, 1984, American Institute of 
Physics) (c) Vortex ring (Rayleigh-Taylor) instability. (d) Cascade of new rings 
begins to form. 



(a) 

u 

(b) 

PlateIX.7.5(a-c). [Baumann, Joseph, Mohr and Renardy, 1992, American In
stitute of Physics] Failure of poke-through of captured drop of 1000 cS silicone oil 
in an indented oblate drop of the same silicone oil falling through contaminated 
safflower oil. (a) The captured drop is sucked strongly into the wake behind the 
oblate drop. There is a tail drawn out of the captured drop by the motion of 
safflower oil in the wake which reminds one of the tail behind drops in misci
ble liquids (cf. figure IX.2.2 (c». (b) The drops are sucked into strong contact. 
( c) The captured drop decelerates under the restraining action of the silicone oil 
membrane on the oblate drop which never breaks. 



(c) 

PlateIX.7.5(c). Continued. 

(a) 

PlateIX.7.6(a-d). [Baumann, Joseph, Mohr and Renardy, 1992, American In
stitute of Physicsl Crisco rising in a column of water with surfactant (Alconox). 
The value of interfacial tension has been reduced from 3.39 dyn/cm to 0.158 
dyn/cm by the surfactant. The membrane does not break, despite the low ten
sion. (a) A torus is formed inside the water bag. (b) The water in the torus is 
dragged out in the wake. 



(b) 

(c) 

Plate IX. 7 .6(b-c). Continued. 



(d) 

Plate IX. 7.6( d). Continued. 

(a) (b) 

Plate IX.8.3(a-f). [Baumann, Joseph, Mohr and Renardy, 1992, American In
stitute of Physics]" Ring formation in 1000 cS silicone oil with a surfactant falling 
in soy bean oil. The surfactant is a trace amount of 97% dye with 3% Rhodamine 
B base powder. (a) One indented oblate sphere accelerates in the wake of another; 
(b) they come close. (c) Poke-through: the large ring loses its membrane. (d) The 
small ring never pokes through; it retains the oblate indented shape. (e) Begin
ning of the two-lobe instability of the Rayleigh-Taylor type. (f) The instability 
can be compared with 8.2 (b) where the membrane does not break and with the 
miscible ring in figure IX.2.2 (d). 



(c) (d) 

(e) (f) 

Plate IX.8.3( c-f) . Continued. 



Plate IX.8.4. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] Vortex ring of 1000 cS silicone oil with trace amounts of surfactant 
(Igepal) falling in soy bean oil after blow-out. 

Plate IX.8.S. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] Vortex ring of dyed glycerine falling in soy bean oil after blow-out. 



(a) 

(b) 
Plate IX.I0.1{a-b). [Baumann, Joseph, Mohr and Renardy, 1992, American 
Institute of Physics] (a) The center-spanning membrane has ruptured while still 
at the bottom of this 2ml drop of pure silicone oil. (b) Here, the membrane has 
bulged up through the center of the 5ml, pure silicone drop, forming a large dome. 



(b) 

Plate X.l.3(a-f). [Joseph, 1990, Gauthier-Villars] Molasses drops falling in 
glycerin. The fall is timed in seconds. Frictional drag on the falling drop creates 
circulation. The drop eats the thread in (a), (b), (c). In (d), the tail of the drop 
is breaking. It breaks, then reforms. In (e) a small 'capillary bubble' forms on the 
molasses thread. In (f), the drop at the bottom has reformed. Continued. 



(c) 

- ..:;:p 

(d) 

Plate X.1.3( c-d) . Continued. 



.. 

(e) 

(f) 

Plate X.1.3(e-f). 



(a) (b) 

(c) 

PlateX.3.2(a-c). [Joseph, 1990, Gauthier-Villars] Mobil 1 synthetic motor oil 
(0.83 glcc at 77°) in mineral oil (0.82 glcc at 77°). This looks like a pendant drop 
due to surface tension (see figure X.2.2) . The three frames were photographed at 
four-second intervals. We think that the side drift of the drop is due to convection 
and other temperature effects induced by the hot lights used for illumination. 



Plate X .6.2. [Kojima, Hinch and Acrivos, 1984, American Institute of Physics] 
Cold drop initially _7°C falls into the same liquid initil!lly at 21°C. 
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[1986]. The soliton-like solutions can also be described in terms of the co
efficients in (3.17). 

The spectral problem (1, 1) and the boundary value problems at or
ders (0, 2), (2, 2), (1, 2) which are needed to compute the coefficients of 
the Ginzburg-Landau equation (3.12) are listed in Chen [1990]. We note 
that at each order the interface parameter 17 can be eliminated. All the al
gebraic operations are carried out by the symbolic manipulator REDUCE2 
and independently checked by hand. An efficient method to compute the 
coefficients of the Ginzburg-Landau equation is presented in the next sec
tion. Interested readers may apply the theory of modulated plane wave and 
soliton-like structures to the problem of water-lubricated pipelining using 
these coefficients. Large-amplitude waves (such as the bamboo waves) have 
been observed in our experiments, but we have concluded that they are not 
modulated monochromatic waves and that they seem not to be described 
by the Ginzburg-Landau equation. 

VIII.4 Numerical Scheme 

There are many universal equations used as model equations for the study 
of various physical processes. These equations arise as an asymptotic solv
ability condition which is a condition on the leading order approximation to 
the solution of a more complicated set of equations which ensures that the 
later iterates of the approximation remain uniformly bounded. Examples 
of these equations are the Korteweg-de Vries equation and its generaliza
tions, the Ginzburg-Landau equation and its generalizations and the Davey
Stewartson equations [Craik 1983; Newell 1985]. For parallel shear flows, 
the coefficients of these model equations are in general given by very lengthy 
domain integrals expressing solvability conditions, commonly known as the 
Fredholm alternative. 

The Fredholm alternative requires that the inhomogeneous terms in 
the underlying system of differential equations, which contain the unknown 
coefficients, be orthogonal to the independent eigenvector spanning the null 
space of the adjoint system of differential equations. Typically the under
lying system of the inhomogeneous differential equation is discretized and 
solved as an inhomogeneous matrix-valued problem. We find that the solv
ability conditions which lead to values of the unknown coefficients are con
veniently and economically computed by application of the singular value 
decomposition directly to the matrix formulation. 

The singular value decomposition (SVD) is one of the most impor
tant decompositions in matrix algebra and is widely used for statistics and 
for solving least squares problems (see Golub and Van Loan [1983]). The 
decomposition theorem can be stated as follows: each and every M x N 
complex valued matrix T can be reduced to diagonal form by unitary trans
formations U and V, 
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(4.1) 

where 0'1 2: 0'2 2: ..... 2: O'N 2: ° are real-valued scalars, called the singular 
values of T. Here U is an M x N column orthonormal matrix, V an N x N 
unitary matrix and yH is the Hermitian transpose of V. The columns of 
U and V are called the left and right singular vectors of T respectively. 

When M = N, T is a square matrix and 

uuH =UHU=I 

yyH =yHY=I. 

Consider the generalized matrix eigenvalue problem 

(A - cB)x = 0, 

(4.2) 

(4.3) 

(4.4) 

where A, B are both square N x N complex matrices. Assume that c is an 
semi-simple eigenvalue of (4.4) with algebraic and geometric multiplicity 
K. Then applying SVD to the matrix A - cB, we get 

A - cB = U diag [0'1.0'2······ ,O'N-K,O,O,···· .,0jyH, (4.5) 

where 0'1 2: 0'2 2: ..... 2: O'N-K > ° are real constants (see Wilkinson 
[1977]). 

Let 
U = [u1, U2,···, UN-K, UN-K+b···, uNj, 

Y = [VI' V2,···, VN-K, VN-K+b···, VN], 

(4.6) 

(4.7) 

where Uj, V j (j = 1,· .. ,N) are the column vectors of matrices U and y, 
respectively. From (4.4) and (4.5) we see that diag [0'1. 0'2, ... , O'N-K, 0, 
0, ... , OJ Y = 0, where yHx = y and x is the eigenvector corresponding to 
the eigenvalue c. Therefore we have 

yHx = Y = [0,0··· ,O,YN-K+b··· ,YNj, (4.8) 

where YN -K+1, ... ,YN are K arbitrary constants. Then x = yy is an 
eigenvector of A - cB. We find, in this way, that the column vectors 
Vj,j = N - K + 1,····, N, are the K independent eigenvectors correspond
ing to c, normalized with 

j = N -K +1,····,N, 

where the asterisk * denotes the complex conjugate and superscript T 
denotes the transpose. Similarly the column vectors Uj, j = N - K + 
1,······, N, are the K independent eigenvectors of the problem adjoint 
to (4.4): 

(A - cB)Hx = 0. (4.9) 

They are the corresponding adjoint eigenvectors, normalized with 
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u":u~ = 1 J. = N - K + 1 .... N :1:1' , ,. 

The application of SVD to solve the inhomogeneous system of algebraic 
equations 

{A - cB}x = f {4.1O} 

is straight forward. Suppose c is an semi-simple eigenvalue of {4.4} of mul
tiplicity K. We use SVD to decompose A - cB in the form {4.5}. We then 
compute 

{4.11} 

The last K components of the vector on the left of {4.11} are identically zero 
and so must be those on the right. This defines the Fredholm alternative, 
the solvability conditions 

ujfT = 0, j = N - K + 1,······, N, {4.12} 

for the inhomogeneous matrix problem {4.1O}. The conditions {4.12} are 
necessary and sufficient for solvability of the inhomogeneous problem {4.1O} 
in which c is an eigenvalue of A relative to B. 

The solution to the inhomogeneous equation {4.10} is given by 

N 

X = Vsg + L (3jVj, 

j=N-K+1 

where the N x {N - K} matrix Vs is given by 

{4.13} 

with Vl, V2,··· •. , VN-K given by {4.7} and the vector g has N - K com
ponents given by 

where the u/s are those given by {4.6}. The (3/s are constants and can be 
determined by the K normalization conditions. 

Applications of the above SVD algorithm to bifurcation theory is stud
ied in detail by Chen and Joseph [1990]. Independently, Newell, Passot and 
Souli [1989] applied the same algorithm to the bifurcation study of con
vection at finite Rayleigh numbers in large containers. The algorithm takes 
advantage of the matrix formulations of the perturbation problems stated 
in section VIII.3. Specifically, the problems {O, 2}, {2, 2} are invertible and 
{I, 2}, {I, 3} are singular. For these singular problems, a singular system 
of algebraic equations of the form {4.1O} arises after discretization and the 
techniques described above are readily applicable. For the spectral problem, 
we have 

{A - crB}cp = 0, 
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where the matrix A - c,.B and the vector cp result from the discretization 
of the Orr-Sommerfeld operator at criticality and the eigenfunction cp{ r) 
respectively. At orders (I, 2) and (I, 3), we have the following singular 
algebraic equations 

(A - CrB)h = f{cp,cg ), (4.14) 

aA cPA A 2 
{A - c,.B)'l/h3 = f:h f1 + a£.2 f2 + d1r f3 + IAI Af4 • (4.15) 

Assume at criticality Cr is semi-simple with multiplicity K = 1. Then (4.14) 
can be solved by first using the solvability condition (4.12) to evaluate the 
group velocity cg and then using the formula (4.13) without the complemen
tary part ({3; = 0) because of the fact that the complementary part has no 
contribution to the final amplitude equation. Application of the solvability 
condition (4.12) to (4.15) generates the coefficients of the Ginzburg-Landau 
equation (3.12): 

and 
uliff =F O. 

The above procedure was applied to the problem of one-fluid plane 
Poiseuille flow and compared with values obtained by Reynolds and Pot
ter [1967] and Davey, Hocking and Stewartson [1974]. The comparison is 
presented in table 1 of Chen and Joseph [1991 a], showing that the present 
algorithm gives accurate results. A Chebychev psuedospectral method (cf. 
section VI. 1 ) is used for the discretization of the differential equations. We 
normalize the eigen-streamfunctions CP1 and CP2 such that the discrete L2 
norms satisfy II CP111 2 + II CP211 2 = 1. 

VIII.5 Nonlinear Stability of Core-Annular Flows 

The nature of the bifurcation of core-annular flows is determined by the 
real part of the Landau constants 1 in (3.12). If lr > 0, the bifurcation 
is supercritical and a finite amplitude equilibrium solution exists. On the 
other hand, if lr < 0, the bifurcation is subcriticalj the bifurcating solution 
of (3.12) will burst in finite time and a higher-order theory is needed. 

The coefficients of Ginzburg-Landau equations for different parameters 
are listed in tables 5.1 - 5.6. Since we are mainly interested in the direc
tion of the bifurcations here, we have only listed the values of the critical 
states (£le , Rc{£le», sgn{lr), Cd and Cn in these tables, corresponding to the 
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canonical form (3.17). The values of Cr, cg , d1 , a2 and l are documented 
in Chen [1990]. The first thing to look at in these tables is the next to the 
last column labeled sgn(lr ). A plus sign here means that the bifurcation is 
supercritical, subcritical for the minus sign. 

The cases studied in tables 5.1 - 5.6 are for the purpose of exploring 
the general features of bifurcation of core-annular flow. The cases with 
parameters corresponding to some of the experiments of CGH (figure V .1.1) 
and those of chapter VII are discussed in section VIII. 8. As mentioned 
earlier, our bifurcation analysis is only valid near the nose of the neutral 
curves. This means that such analysis is applicable only when the upper 
branch and the lower branch of the neutral curve are separated, i.e. there 
exists a Reynolds number window within which core-annular flow is linearly 
stable, as in figures 5.1 - 5.2. In other words, we can only study those cases 
where linearly stable core-annular flow is possible. The reader may easily 
understand how the subcritical and supercritical solutions fit in with the 
upper and lower branches of the neutral curves by looking at figure 5.3. It 
has been shown in section VI.1 and also in chapter VII that such a stable 
CAF occurs only when the parameters a, m, (, J* fall into a certain subspace 
of the parameter space. Typically, there is a 'thin layer effect': that is, a thin 
lubricating layer with a small a - 1(= R2/ Rl - 1) tends to stabilize core
annular flow. It is also shown in section V1.3, that if the oil is too viscous, 
m = m2/ml «: 1, stable core-annular flow is very difficult to achieve. We 
have thus restricted our studies in tables 5.1 - 5.6 to the typically small 
values of a-I and values of m of order 10-1, which stabilize core-annular 
flows. 

The parameter IRg I = 0.5 is used for all the cases considered in the 
tables. This parameter enters into the equations only as a product ((2 -
l)Rg, hence plays no role when the densities of the two fluids are the same 
((; = 1). We can vary the effective gravity ((2 -l)Rg by varying the value 
of (2 for a fixed value of R g • 

We are going to divide the tables into two groups according to the 
value of capillary number J*. The first group is for J* = 1, corresponding 
to weak capillary effects typical for our experiments. The results for J* = 1 
are summarized in tables 5.1 - 5.4. The second group is for J* = 2000, 
corresponding to strong capillary effects. This case is of interest for low 
viscosity cores for which the capillary number is large. 

There is an important difference in the lower branch of the neutral 
curves when J* = 1 and J* = 2000 that is evident from a comparison 
of figures 5.1 - 5.2. When J* = 1, the maximum value of R(a) on the 
lower branch of the neutral curve occurs near a = o. When J* = 2000, the 
maximum value of R( a) on the lower branch of the neutral curve occurs at 
a finite value near 0.6. 

The lower branch of the neutral curve for J* = 1 has a region in the 
neighborhood of (a, R( a» = (0, R( 0» in which the analysis of long waves 
may be relevant. In the case of very long waves, it may be impossible to 
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Fig. 5.1. [Chen and Joseph, 1991aJ Neutral curves for a=1.1, m=0.5, (2 = 1.2, 
J* = 1.0, R g = 0.5, down-flow. U and S stand for unstable and stable. The upper 
and lower branches are well separated. Surface tension is weak and the critical 
Reynolds number for the lower branch occurs at 0=0.09. 
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Fig. 5.2. [Chen and Joseph, 1991aJ Neutral curves for a = 1.3, m = 0.5, (2 = 
1.2, J* = 2000, Rg = 0.5, down-flow. U and S stand for unstable and stable. 
For this case of strong surface tension, the critical Reynolds number for the lower 
branch occurs at a wavenumber 0 = 0.56 away from zero. 



VIII.5 Nonlinear Stability of Core-Annular Flows 247 

R 
CU 

CL 
R 

I A I (amplitwle of the bifUICating solution) 

Fig. 5.3. [Chen and Joseph, 1991a) An example of neutral curves for which 
PCAF can be stable. The region of linear stability is RcL < R < Rcu. The 
regions above the upper curve and below the lower curve are linearly unstable. 
The critical Reynolds numbers for the curves are denoted by Rcu and RcL. 
Bifurcation theory can be used for R close to Rcu or RcL. Bifurcating branches 
of solutions with R in the linearly unstable region are supercritical and with R 
in the linearly stable re~on are subcritical. Thus, when R > Rcu and IAI > 0, 
or when R < RcL and IAI > 0, the How is supercritical. The shaded regions are 
supercritical. When RcL < R < Rcu and IAI > 0, the How is subcritical. 

obtain an amplitude equation of the Ginzburg-Landau type. The critical 
wave number at the nose of the neutral curve tends to zero so that the wave 
you are supposed to modulate is already hugely long. 
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Table 5.1. Coefficients of the Ginzburg-Landau equation for a = 1.25, (2 = 1, 
J* = 1, down-flow 

(a) Upper branch of the neutral curve 

m Q c Rc Cd sgn(lr) Cn 

0.9 2.99 175.033 5.0054 + -11.4151 

0.85 3.2 162.23 5.0375 + -197.3133 

0.8 3.3 150.71 4.9972 - -6.7538 

0.7 3.6 128.72 4.3832 - -1.2640 

0.5 9.1 55.61 -0.7895 - -1.3827 

0.2 5.8 16.24 -1.0769 - -0.8lO1 

0.1 4.4 9.985 -0.4983 - -0.1714 

(b) Lower branch of the neutral curve 

m Q c Rc Cd sgn(lr) Cn 

0.9 0.09 5.6047 7.0 + -5.6021 

0.85 0.06 4.70lO 4.3030 + -3.9426 

0.8 0.04 4.0821 6.7899 + -5.5512 

0.7 0.03 3.3751 42.8759 + -31.0698 

0.5 0.05 2.78 23.3539 - 20.4787 

0.2 0.029 2.6341 245.4459 - 254.3165 

0.1 0.06 2.707 71.4207 - 78.8215 

Table 5.2. Coefficients of the Ginzburg-Landau equation for a = 1.25, m = 0.7, 
J* = 1, Rg = 0.5, down-flow 

(a) Upper branch of the neutral curve 

(2 Q c Rc Cd sgn(lr) Cn 

1.0 3.6 128.72 4.3832 - -1.2640 

1.2 1.95 1592.3 4.1387 + 0.1952 

1.4 2.7 lO60.741.2524 + -0.1585 

1.6 3.28 791.31 1.0583 + -0.2605 

(b) Lower branch of the neutral curve 

(2 Q c Rc Cd sgn(lr) Cn 

1.0 0.03 3.3751 42.8759 + -31.0698 

1.2 0.043.183035.5138 + -19.6098 

1.4 0.01 3.071 1.5466 + -1.6507 

1.6 0.01 2.93 1.4688 + -1.4710 
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Table 5.3. Coefficients of GL equation for a = 1.25, m = 0.5, J* = 1, Rg = 0.5, 
down-Bow 

(a) Upper branch of the neutral curve 

(2 <lc Rc Cd sgn(lr) Cn 

1.0 9.1 55.61 -0.7895 - 1.3827 

1.2 1.9 543.6 11.2156 + 0.7736 

1.4 2.71 568.68 1.6348 + -0.151~ 

1.6 3.1 469.25 1.4034 + -0.433~ 

(b) Lower branch of the neutral curve 

(2 <lc Rc Cd sgn(lr) Cn 

1.0 0.05 2.78 23.3539 - 20.4787 

1.2 0.08 2.523 14.9791 - 13.8764 

1.4 0.04 2.3228 61.18 - 51.4451 

1.6 0.08 2.1801 9.2344 - 8.4382 

Table 5.4. Coefficients of the GL equation for a = 1.1, m = 0.5, J* = 1, Rg = 
0.5, down-Bow 

(a) Upper branch of the neutral curve 

(2 <lc Rc Cd sgn(lr) Cn 

0.5 7.26 140.871 5.7827 - -2.4054 

0.8 8.91 235.084 4.7197 - -0.8352 

1.0 24.77 156.451 1.1180 - 5.2623 

1.2 24.36 136.034 1.1141 - 12.0131 

1.4 24.05 121.916 1.0833 - 273.010. 

1.5 23.92 116.355 1.0514 + 44.9198 

1.6 23.82 111.522 1.0179 + 24.6314 

(b) Lower branch of the neutral curve 

(2 <lc Rc Cd sgn(lr) Cn 

0.5 0.1 1.08 -11.9596 - -7.2965 

0.8 0.15 1.051 -9.3205 - -6.5107 

1.0 0.05 1.044 -58.0376 - -28.678S 

1.2 0.09 1.034 -15.1812 - -10.8799 

1.4 0.14 1.0202 -9.5561 - -7.2649 

1.5 0.06 1.019 -21.2016 - -0.8362 

1.6 0.1 1.0 -23.6511 - -14.7862 
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Table 5.5. Coefficients of GL equation for a = 1.1, m = 0.5, J* = 2000, Rg = 0.5, 
down-flow 

(a) Upper branch of the neutral curve 

(2 ll!c Rc Cd sgn(lr) Cn 

0.5 2.03 619.53 -0.2407 + -1.7274 

0.6 2.16 706.80 -0.1143 + -2.6185 

0.7 2.31 824.45 0.0196 + -6.3772 

0.8 2.53 994.30 0.1235 - -5.0004 

1.0 3.56 1490.16 0.3926 - -0.3405 

1.2 7.67 2025.59 -0.2422 - -6.9622 

1.4 8.80 1700.47 -0.4030 - -2.6566 

1.5 9.55 1537.17 -0.5902 - -34.1854 

1.6 10.36 1390.44 -0.8053 + 0.8573 

1.8 11.91 1162.06 -1.1776 + 1.0673 

(b) Lower branch of the neutral curve 

(2 ll!c Rc Cd sgn(lr) Cn 

0.50.26 47.91 -5.9844 - -0.7709 

0.60.24 47.70 -7.0583 - -0.8770 

0.70.22 47.50 -8.2410 - -0.9921 

0.80.22 47.30 -7.7273 - -0.9799 

1.00.20 46.92 -8.3867 - -1.0912 

1.2 0.1646.564 -11.6444 - -1.4088 

1.4 0.1 46.22 -21.4375 - -2.2710 

1.5 0.11 46.053 -16.9091 - -2.0493 

1.6 0.11 45.89 -16.0870 - -2.0335 

1.80.09 45.56 -18.9375 - -2.4719 
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Table 5.6. Coefficients of GL equation for a = 1.1, m = 0.9, J* = 2000, 1Rg = 0.5, 
down-flow 

(a) Upper branch of the neutral curve 

(2 a c 1Rc Cd sgnclr) Cn 

0.5 1.55 1347.87 -0.7492 + 1.0261 

1.0 2.63 2701.37 -0.3912 + 0.1679 

1.2 4.18 7126.05 0.0020 - 104.0321 

1.5 3.87 6503.75 0.6476 - -0.3164 

2.0 6.81 3202.31 0.1169 - -1.9525 

3.0 13.46 1381.32 -1.3575 - -5.8459 

4.5 15.50 990.06 -1.1833 + 0.2410 

(b) Lower branch of the neutral curve 

(2 a c 1Rc Cd sgnclr) Cn 

0.5 0.52 150.26 -0.7910 + 0.5327 

1.0 0.51 145.26 -0.7624 + 0.5031 

1.2 0.503 143.47 -0.7740 + 0.504~ 

1.5 0.50 140.95 -0.7473 + 0.481 

2.0 0.49 137.17 -0.7418 + 0.4657 

3.0 0.47 130.79 -0.7500 + 0.4516 

4.5 0.45 123.25 -0.7345 + 0.4175 

VIII.6 Small Capillary Numbers 

When the capillary parameter J* is small, the maximum growth rate for 
capillary instability does not differ much from the value as a -t 0 which 
maximizes 1R(a) on the lower branch of the neutral curve in figure 5.1. We 
have selected the value J* = 1 to represent weak surface tension and our 
results are displayed in tables 5.1 - 5.4 and in figure 5.1. Tables 5.1 - 5.3 
are for a = 1.25, corresponding to the water-to-oil volume ratio Vw/v" = 
a2 - 1 = 0.5025. The coefficients of the Ginzburg-Landau equations in the 
case in which the densities of the core and the lubricating fluids are the 
same «(2 = 1) are exhibited in table 5.1. We know from energy analysis 
of the linear problem that PCAF in the region above the upper branch of 
the neutral curve is unstable to interfacial friction (cf. section VI.2 and the 
latter half of chapter VII). We expect that wavy core flow will arise from 
this instability. The entries in table 5.1 show that the bifurcating waves are 
supercritical when the viscosity ratio /-L2/ /-L1 = m ~ 0.85 and sub critical 
when m ::; 0.8. Stable small-amplitude shear waves are expected in the 
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supercritical case and something else far from PCAF, perhaps large waves, 
in the subcritical case. Small viscosity differences can lead to stable wavy 
flow at the interface. 

Thrning next to the lower branch of the neutral curve which is prey to 
modified capillary instability, we note that the bifurcation is supercritical 
when m ~ 0.7 and subcritical when m :$ 0.5. We expect to see small
amplitude capillary waves in the supercritical case. This can be interpreted 
to mean that linear capillary instability is nonlinearly shear-stabilized when 
m ~ 0.7. The flows which bifurcate subcritically (m :$ 0.5) would be far 
from PCAF. These more viscous cores probably break into slugs or bubbles 
far from PCAF connected by thin threads. The results in table 5.1 indicate 
that when the densities of the fluids are matched, a large viscosity difference 
leads to subcritical bifurcation while a small viscosity difference can result 
in supercritical bifurcation. 

We next study the effect of changing the density of the lubricant for the 
same fixed a = 1.25. If the lubricant is heavier than the core, say water and 
oil, then (2 > 1. Can we change the nature of the bifurcations, i.e. change 
the dynamics of lubrication, by varying (2? Table 5.2 shows that for fluids 
with m = 0.7, the bifurcation of the upper branch for (2 = 1 can be changed 
from sub to supercritical by increasing the density ratio to (2 = 1.2. We 
can stabilize small-amplitude bifurcating waves driven by interfacial friction 
by increasing the density of the lubricant. The change of density does not 
destabilize the supercritical bifurcating solution on the lower branch. Table 
5.3 gives results for a smaller viscosity ratio m = 0.5. The same manner of 
bifurcation holds also when m = 0.2. The only difference is that the wavy 
solutions below the lower branch of the neutral curve are all stable when 
the viscosity ratio is large (m = 0.7) and are all unstable when m = 0.5 
and m = 0.2. These results suggest that for a given surface tension, the 
bifurcation of the upper branch is sensitive to changes in the density ratio, 
while the lower branch is sensitive to changes of the viscosity ratio but not 
to changes of the density ratio. 

In table 5.4, we look at fluids with m = 0.5 for the effect of varying 
(2 . The difference here is that there is much less water: a = 1.1, and 
water-to-oil volume ratio Vw/Vo = a2 - 1 = 0.21. The lubricating layer is 
quite thin. The bifurcation of the periodic solution from the lower branch 
of the neutral curve is subcritical for (2 between 0.5 and 1.6, as in the case 
a = 1.25. The bifurcation of a periodic solution from the upper branch of 
the neutral curve can be changed from sub to supercritical by increasing the 
density of the lubricant. However the transition density ratio for a = 1.1 
occurs between (2 = 1.4 and (2 = 1.5, a larger transition ratio than for 
a = 1.25, m = 0.5, which is between (2 = 1.0 and (2 = 1.2 (see table 
5.3). Suppose the density ratio of the fluids is between 1.2 and 1.5 and 
the viscosity ratio is m = 0.5. If the lubricating layer is relatively thick 
(a = 1.25), then the upper branch will bifurcate supercritically. However, 
if the lubricating layer is thin, say a = 1.1, then the upper branch will 
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bifurcate subcritically. This indicates some kind of nonlinear break-down of 
the 'thin layer effect': in order to achieve a linearly stable core-annular flow, 
we need to have a thin lubricating layer. However, if the layer is too thin, the 
bifurcation of the upper branch will become subcritical. The exact physical 
implication of this subcritical bifurcation is not clear to us. However, in the 
experiments of chapter VII, in a region where the superficial oil velocity 
is large and superficial water velocity is relatively small, corresponding to 
very small values of a, oil sticks to the pipe wall. 

The role that a density difference plays in the stability of core-annular 
flow is interesting. The effect of the density difference on the neutral stabil
ity curves of core-annular flow is studied in chapter VII. The calculations 
there, as well as the weakly nonlinear ones presented here, show that the 
upper branch of the neutral curves are more sensitive to the changes of 
density ratio (2 than the lower branch. For the upper branch, the Reynolds 
number is large and the effect of the effective gravity [(]Rg is negligible. 
The only place that the density ratio (2 enters into the equations is through 
the jump in the perturbation pressure in the normal stress balance equa
tion at the interface, (2.8). Relatively small changes in (2 can cause a large 
perturbation of the pressure jump when the Reynolds number is large. This 
changes the stability of the upper branch considerably. When the Reynolds 
number is large, the pressure jump is basically equal to the jump in the 
inertia of the fluids which is large in this case. On the other hand, when 
the Reynolds number is small, density stratification manifests itself mainly 
through the effective gravity term [(]Rg in the basic flow. This term is not 
too large for the small pipes we have considered and the change of the lower 
branch is relatively small for the moderate changes in (2' 

We have also computed a few cases of up-flow, for a = 1.1, with 
Rg = -0.5. After comparing these results with relevant entries in the pre
vious tables, we found that there are only slight changes in the values of 
coefficients and the type of bifurcation remains the same for both upper 
and lower branches. This is expected for the case of not too large IRg I and 
fixed value of a. Effective gravity [(]Rg has little effect on the stability, and 
particularly for the upper branch, there is almost no difference between up
and down-flows for both the neutral curves and bifurcation. For the lower 
branch, there is a slight shift of the neutral curves between the up- and 
down-flows, but the type of bifurcation is not affected. The large difference 
between up- and down-flows at moderate flow rates observed in experiments 
is due to the accumulation of oil in down flow and its depletion in up-flow 
due to buoyancy. The water fraction is therefore greater and a is larger in 
up- than in down-flow. 
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VIII.7 Large Capillary Numbers 

As the surface tension parameter J* is increased, the wave number cor
responding to the most unstable mode of the lower branch tends to the 
capillary limit a = 0.69. It has been shown in section VI.1 that linearly 
stable CAF is possible only when the lubricating fluid is heavy and (2 is 
large enough. The neutral curve for a = 1.3, m = 0.5, J* = 2000, Rg = 0.5 
and (2 = 1.2 is shown in figure 5.2. For this set of parameters a, m, J* , R g , 

linearly stable CAF is only possible when (2 2: 1.2. A heavy lubricant will 
stabilize capillary instability, and the critical Reynolds number below which 
the flow is unstable to capillarity is decreased as (2 is increased. However, 
increasing the density of the lubricant does not appear to change the nature 
of the bifurcation from the capillary branch, which is subcritical at least for 
the case a = 1.3, m = 0.5 and J* = 2000 which we calculated. The subcrit
ical bifurcation here may lead to the capillary break-up of the oil core and 
the formation of oil slugs and bubbles. Bifurcations from the upper branch 
when (a, m, J*) = (1.3,0.5,2000) are always supercritical, leading to the 
finite travelling waves at the interface. 

The second example of large capillary number is exhibited in table 5.5 
for the parameters a = 1.1, m = 0.5, J* = 2000 and Rg = 0.5. Linearly 
stable CAF is possible for a much wider range of (2 because of the sta
bilization effect of thin lubricating layer. However, the bifurcation of the 
capillary branch remains subcritical for all the density ratios considered. 
These results for J* = 2000 and those for J* = 1 show that the bifurca
tion of the lower branch is insensitive to the changes in density difference 
and water fraction. For the upper branch, from table 5.5 (a), we see that 
there is a range of density ratios within which the bifurcation of the upper 
branch is subcritical. Outside of this range, i.e. for small and large density 
ratios, the bifurcation becomes supercritical. This result also holds when 
J* = 1, as shown in section VIII.6, but the subcritical range is different. The 
break-down of the 'thin-layer effect' for J* = 1 also occurs for J* = 2000. 

How do changes in the viscosity ratio m change the bifurcation of core
annular flows when J* is large? Table 5.6 gives results for a = 1.1, m = 0.9, 
J* = 2000, Rg = 0.5 and down-flow. The remarkable difference between 
m = 0.9 and m = 0.5 is that for the smaller viscosity stratification, the 
lower capillary branch bifurcates supercritically for all the density ratios 
considered, even for a lighter lubricant ((2 < 1). This means that finite am
plitude capillary waves are saturated nonlinearly by the action of a small 
viscosity difference (m near one). This nonlinear saturation by small viscos
ity difference also occurs when J* is small (cf. section VIII.6). For the upper 
branch, there is still a range of density ratios within which the bifurcation 
is subcritical, as in the case of weak capillarity. 
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VIII.8 Experiments 

In the somewhat restricted situation of Hopf bifurcation of strictly peri
odic waves at a simple eigenvalue, we could say that the supercritical waves 
are stable whilst the subcritical waves are unstable. To compare bifurca
tion analysis with experiments, we must first identify a flow with a critical 
Reynolds number Re . There are then upper and lower critical values, Reu 
and ReL (see figure 5.3). If the operating Reynolds number R is in a re
gion of instability of PCAF near criticality, then supercritical bifurcating 
solutions are in this same region of instability of PCAF. Under restric
tive hypotheses, the supercritical bifurcating solution is stable. We say that 
bifurcation theory is consistent with experiments when the observed su
percritical solution is just a small perturbation of PCAF (we would need 
to compare details of the bifurcated solution with experiments to test the 
theory, and we have not done this). On the other hand, if the bifurcation 
is subcritical when R is in the unstable region for PCAF (shaded region 
in figure 5.3), then the bifurcating solution is unstable when its amplitude 
is small, but may recover stability for large amplitudes. In this case the 
observed flows would be far from PCAF. If R is in a region of stability 
of PCAF, ReL < R < Reu, and both bifurcations are supercritical, we 
might expect to see stable PCAF, stable both to small and finite distur
bances. If, on the other hand, one or both bifurcations are sub critical and 
ReL < R < Rev, then the conclusion of bifurcation theory is ambiguous. 
Without ambiguity, we may conclude that if a flow different than stable 
PCAF is seen in the linearly stable range, then one or both bifurcations 
should be subcritical with large deviations (with an ambiguous 'large') from 
PCAF. 

In table 8.1, we have compared bifurcation theory with experiments. 
The comparisons exhibited in rows one and two can be said to show agree
ment between theory and experiments. Less can be concluded from rows 
three through seven, but in all cases, there is no obvious inconsistency be
tween experiments and bifurcation theory. 

We wish to draw attention to a possible interpretation of bamboo waves 
as a structure far from PCAF. When the waves are large, they are clearly 
far from PCAF. In one interpretation, bamboo waves arise from shear sta
bilization of capillary instability which in pure form leads to spheres of oil, 
far from PCAF. There is no stable capillary figure close to a cylinder. 

We turn next to a discussion of theory and experiments in which the 
entries in table 8.1 are explained in a wider context. We first consider 
the experiment labeled as 2 in figure V.1.1. One sees a slightly perturbed 
PCAF which is labeled as 'oil in water concentric'. The neutral curve for 
this case is shown as figure 1.10 in section VI.1. The operating condition, 
a = 1.21, J* = 2102, m = 0.0532, Rl = 138.6, is just above the nose 
(Qe, Re) = (2.24,138.2) of the upper neutral curve; hence PCAF is unstable. 
For this case the coefficients of the amplitude equation (3.17) are 
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Cd = -1.3967, 

Cn = -0.02393, 

sign(lr) = + 1. 

Since lr > 0, the bifurcation is supercritical and only a small perturbation 
of PCAF is expected and is realized. The remaining ten cases in figure 
1.1 of chapter V are either always unstable or with operating conditions 
(operating Reynolds numbers) far away from the critical conditions (see 
section VI.1 for the neutral curves). Thus bifurcation analysis can not be 
applied. 

In chapter VII, the linear theory of stability is correlated with exper
imental data. The Huids and the size of the pipe were chosen with the 
guidance of the linear theory and a stable perfect core-annular How was 
achieved in the free-fall apparatus, as predicted by the theory. The neutral 
curve for that experiment is given in figure VII.8.5. The experiment falls in 
the linearly stable region and is not too far away from the critical condition 
of the lower branch. After converting the parameters to the ones used in the 
present paper, we have, for the experiment, a = 1.86, m = 0.33, (2 = 1.4, 
J* = 2.26, Rg = 21.31, R = 8.22. The bifurcation near the critical state of 
the lower branch, (ae , Rc)= (0.04, 6.31), is supercritical: 

Cd = 89.65, 

Cn = 21.31, 

sign(lr) = +1. 

The upper branch, although far away with (ae , Rc) = (0.5,153.0), also 
bifurcates supercritically. Perfect core-annular How was observed in the ex
periment, as predicted by theory. 

The difficulty in applying the above theory to the practical situations 
of lubricated pipelining lies in the fact that, when the viscosity ratio of 
water to oil (m = /J2/ /Jl) is very small, say m of order 10-5 which is typical 
for crude oil and water, PCAF is always linearly unstable and thus there is 
no critical state for bifurcation analysis. This restriction severely limits the 
parameter range for which this analysis can be applied. 

The experiments of chapter VII reveal many interesting features of 
nonlinear waves in lubricated pipelining. For these experiments, we have 

m = 1.66 x 10-3 , (2 = 1.0994, J* = 0.1019, Rg = 2.4. 

For this value of m, linearly stable CAF can be obtained only when a is 
very small (say a < 1.15). The How charts in chapter VII show how the How 
regimes change with respect to the superficial velocities of water and oil, 
Vw , Vo . In the up-How chart, there is a region in the (Vw, Vo) plane called 
'wavy CAF', which corresponds to the bamboo waves observed (see plate 
V.1.2). For the points marked #1 through #9, and D2 , E3 in the bamboo 
wave regime, the upper and lower neutral curves are connected and they are 
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linearly unstable at all Reynolds numbers. This is because of the large values 
of a for these points. For point E2 , a = 1.12, Rl = 1.2283. The upper and 
lower branches of the neutral curves are separated. The experimental line 
Rl = 1.2283 is cutting through the upper branch, linearly unstable and is 
not too far away from the nose of the neutral curve (O:e, Rc) = (2.41,0.501). 
The bifurcation at this point is found to be sub critical with 

Cd = 0.9623, 

Cn = -0.9657, 

sign(lr) = -1. 

This subcritical bifurcation indicates that in order to achieve the experimen
tally observed stable bamboo waves at E2 , higher order theory is needed. 

The examples discussed above show that the current lowest order bifur
cation theory is hopeless for the prediction of bamboo waves, either because 
the corresponding linear theory predicts linear instability for all Reynolds 
numbers, or because of the subcriticality of the bifurcation. For the latter 
case, we may supplement a higher order theory. Nevertheless, the above 
examples suggest that bamboo waves are flows far from PCAF and fully 
numerical simulations may be required for their characterizations. 

The flow regime called 'oil sticking on the wall' in the up-flow chart 
is a region where Vw is small and Vo is large. In this region, there is little 
water in the pipe and thus the value of a is small. We found that for 
these small values of a, the upper and lower branches of the neutral curves 
are separated, due to the strong stabilization of the thin lubricating layer 
('thin-layer effect'). The experimental lines Rl = RE cut through the upper 
branch. However, the bifurcations of the upper branch are found to be 
all subcritical. This is the nonlinear break-down of the thin-layer effect 
discussed in section VIII. 6. An example in this region is the point F1 , 

where a = 1.03, Rl = 2.2838. The nose of the upper branch is (O:e, 1Re) = 
(12.0,2.04) and we have a subcritical bifurcation with 

Cd = -0.1479, 

Cn = -0.7556, 

sign(lr) = -1. 

Whether these subcritical bifurcations correlate to the losses of lubrication 
observed in the experiments remains to be resolved, either by higher order 
theory or numerical solution. Obviously the phenomena observed in the 
experiments are very nonlinear. 

We next examine the down-flow chart of chapter VII. The points #2, 
#3 fall in a region called 'disturbed CAF', corresponding to 'corkscrew' 
waves as in plate V.1.3. The linear theory predicts that #2 , #3 are linearly 
stable to infinitesimal disturbances, axisymmetric and nonaxisymmetric. 
The bifurcations of the upper and lower branches are all sub critical. It is 
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obvious that these 'corkscrew' waves are nonaxisymmetric and due to finite 
nonaxisymmetric disturbances which are not considered in this paper. 

The point marked #4 in the down-How chart falls in a region called 
'disturbed CAF', which corresponds to axisymmetric, very short stem bam
boo waves. For point #4, a = 1.09, Rl = 9.59, the upper and lower branches 
are separated, and Rl = 9.59 cuts through the upper branch. In this case, 
the bifurcation at the nose of upper branch, (ac , Rc) = (3.6,1.36) is su
percritical with 

Cd = 0.6590, 

Cn = -0.5718, 

sign(lr) = + 1. 

However, the experimental point 1Rl = 9.59 is far away from the nose and 
the information on the bifurcation at the nose may be not relevant to the 
observed equilibrium waves. 

A summary of the results testing bifurcation theory are in table 8.1. It 
is evident from the above discussions that the usefulness of the bifurcation 
analysis is restricted. For the situations of practical interest, m « 1, the 
bifurcation analysis is either not applicable or fails to provide useful infor
mation relevant to the experimentally observed phenomena. On the other 
hand, in all these cases we have obtained useful information from the study 
of the linear theory of stability. It seems to us that, unlike linear theory, 
weakly nonlinear theory is valid in a too narrowly defined set of conditions 
to be of much use in our problem. Perhaps direct numerical approaches 
have more to offer. 
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Table 8.1. Comparison of bifurcation theory and experiments. Among the exper
iments, there is only a small number to which the Ginzburg-Landau theory would 
apply. They are listed in this table. sgn(lr}=+l for supercritical, sgn(lr}=-l for 
subcritical bifurcations. Subscripts U and L refer to the upper and lower branch 
respectively. 

Experiment Operating R sgn(lr)U sgn(lr)L Observations and Comments 

fig.V.1.1 R>Rcu +1 The bifurcation is supercriticaJ 

#2 and the flow is near PCAF. 

sec.VII.3 R>Rcu +1 +1 PCAF is observed. Perfect 

Free fall agreement between experiments 

and theory. 

* #E2 R>Rcu -1 Bamboo waves, 

up-flow far from PCAF 

* #Fl R>Rcu -1 Oil sticks to the pipe wall. 

up-flow 

* #2 RcL <R<Rcu -1 -1 Intermittent corkscrew waves 

down-flow are observed. 

* #3 RcL<R<Rcu -1 -1 Intermittent corkscrew waves 

down-flow are observed. 

* #4 R»Rcu +1 Disturbed bamboo waves, 

down-flow perhaps not far from PCAF, 

are observed. 

* fig. VII.16.1 

VIII.9 Summary and Discussion of the Application of 
Ginzburg-Landau Equations to Core-Annular Flow 

(1) There are regions of parameter space in which PCAF is possible and 
the neutral curves consist of an upper branch and a lower branch. For 
these parameters we can write two Ginzburg-Landau equations, one 
near the minimum point of the upper branch and another near the 
maximum point of the lower branch. At the upper branch, PCAF loses 
stability to waves generated by interfacial friction. At the lower branch 
PCAF loses stability to capillary waves. 

(2) There are many regions of parameter space in which PCAF is not 
possible, and bifurcation analysis is not applicable. 

(3) The singular value decomposition is a useful numerical method for 
computing all the coefficients of Ginzburg-Landau equation. 
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(4) The stability of wavy flows near the upper branch of the neutral curve 
can be controlled by varying the density ratio (2 . For example, when 
the other parameters are fixed we can choose a best (2 (say (2,) to 
maximize the minimum critical value RU(2) of the linear theory on 
the upper branch of the neutral curve (chapter VII). The bifurcation 
of waves from the upper branch RU(2) of the neutral curve will be su
percritical if (2 is large enough. For smaller values of (2 the bifurcation 
is subcritical. 

(5) The lower branch is less sensitive to changes in (2 than the upper 
branch. The critical Reynolds number above which down-flow is lin
early stable decreases with increasing (2. In up-flow, smaller values of (2 
lead to larger regions of linear stability (chapter VII). The bifurcation 
of the lower branch is controlled by the viscosity difference and surface 
tension. Changes of (2 do not change the directions of bifurcation of 
the lower branch. 

(6) The viscosity ratio, m, plays a key role in determining both the linear 
and nonlinear stability of core-annular flows. When m is small, linearly 
stable PCAF cannot be achieved (chapter VI). Stable PCAF can be 
achieved only when the viscosity difference 1 - m is small. 

(7) Other things being equal, the linear theory tells us that we will get 
larger intervals of the Reynolds number in which PCAF is stable if the 
lubricating layer is thin (a --+ 1). We can say that this stability will 
be realized practically even when PCAF is unstable, if the bifurcating 
solutions of small amplitude are stable. This means that a robust form 
of lubricated pipelining with thin lubricating films is expected when the 
bifurcations are supercritical, but nonlinear failures may occur when 
the bifurcations are subcritical. On the other hand, there are cases 
for which increasing the thickness of the lubricating layer can change 
subcritical to supercritical bifurcation. 

(8) When the flows are slight perturbations of PCAF, experiments agree 
perfectly with both linear and nonlinear theories. One example is the 
experiment #2 of figure V.1.1. The operating Reynolds number of the 
experiment is slightly above the nose of the upper branch of the neutral 
curve where the bifurcation is found to be supercritical. An even more 
convincing example is the free-fall experiment of chapter VII in which 
PCAF is predicted and observed. 

(9) The finite amplitude bamboo waves (plate V.1.2) are evidently too 
far from PCAF to be described by our Ginzburg-Landau equation. 
In many practical situations described in chapter VII, the bifurcation 
theory can not be applied because the corresponding PCAF is linearly 
unstable at all Reynolds numbers. In other cases, the bifurcations near 
the nose of the upper branch are subcritical. These results suggest that 
bamboo waves and other flows far from PCAF perhaps may be best 
treated by direct numerical methods. 



VUI.lO Nonlinear Amplitude Equations for Long Waves 261 

VIII.I0 Nonlinear Amplitude Equations for Long 
Waves 

In the case of very long waves, it would be impossible to obtain an ampli
tude equation of the Ginzburg-Landau type. The critical wave number at 
the nose tends to zero so that the wave you are supposed to modulate is 
already hugely long.2 In this situation, there are other types of approxima
tions which give rise to nonlinear amplitude equations describing a slowly 
varying waveform rather than the slowly varying envelope of a modulated 
wave as in the Ginzburg-Landau equation. This type of approach was pio
neered by Benney [1966]. For core-annular flow in a pipe, a similar approach 
based on the lubrication approximation in the annulus has been developed 
by Frenkel, Babchin, Levich, Shlang and Sivashinsky [1987], Frenkel [1988] 
and Papageorgiou, Maldarelli and Rumschitskii [1990]. Inertia of the fluid 
in the annulus is completely neglected in the derivation of the nonlinear 
amplitude equation which arises at lowest order. This means that such the
ories automatically rule out motions in which secondary flows are involved. 
It is thought that such theories are particularly relevant to very thin films 
in situations in which the most amplified wave of linear theory is very long. 

In general, the inertia term in the Navier-Stokes equation p(u . V)u 
induces wave number multiplication which produces shorter and shorter 
waves. A monochromatic linear wave proportional to exp( iax), where a 
is the wave number of maximum linear growth, undergoes multiplications 
leading to exp(±2iax) and mean terms: the nonlinear interactions of these 
lead to exp( ±4iax), and so on. The nonlinear terms therefore rapidly pro
duce short waves from long ones. This type of generation of short waves 
from long ones due to inertia is automatically removed by assuming the 
scales used in lubrication-based theories which allow inertia to be treated 
only as a perturbation, if at all. The amplitude equation which appears 
at lowest order has a nonlinear, wave-shortening term TJ aTJlax which is 
controlled at the interface by surface tension. But we do not know if the 
neglected inertia terms in the fluid can be controlled by surface tension. 
Maybe the dynamics will not allow the assumed slow scales. If the dissipa
tive terms do not dissipate the short waves, they will begin to dominate the 
dynamics, but their effects will not be captured by the amplitude equation. 
For this reason, we think that if the problem is to follow the evolution of 
the amplitude of a wave under conditions in which the wave number of 
maximum growth is bounded strictly away from zero, the application of a 
long wave equation could lead to irrelevant results. Solutions of a hierarchy 
of equations (the higher-order equations in the perturbation series) pinned 
on the amplitude equation which converge and preserve slow scales may fail 

2 We are indebted to A. Frenkel for this remark. He noted that to have a 
Ginzburg-Landau equation the sideband width Lla ought to be small relative 
to the wave number a on which it centers. 
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to satisfy the Navier-Stokes equations. This problem appears not to have 
been studied with the tools of analysis, numerical analysis or by comparison 
with experiments. 

We have been trying to determine the conditions under which the pre
dictions of the lubrication-based amplitude equations for lubricated pipelin
ing may be realized in an experiment. These amplitude equations are ap
propriate when there is a thin lubricating film of water on the pipe. Very 
thin water films have not yet been seen in experiments in which the flow 
rates of oil and water are prescribed. In these cases, the film thickness is 
a functional of the solution. If the water flow rate is reduced or the flow 
rate of oil is increased, the oil will stick to the wall and/or the water will 
emulsify into the oil, leading to a failure of lubrication. It may be hard 
to achieve the conditions required to test the predictions of the nonlinear 
amplitude equations based on the lubrication approximation. On the the
oretical side, we have studied the conditions of validity for the amplitude 
equations based on lubrication theory. For water-lubricated pipelining, the 
oil in the core is typically 100 times more viscous than the lubricating 
water. For the lubrication-based theory to be applicable even under the 
moderate operating condition of order one core Reynolds number, the wa
ter film has to be extremely thin. If it is not thin, the inertia of the water 
film will not be negligible. Indeed, examination of the special case of long 
waves in section VIII.14 shows that the lubrication-based theory applies 
only when the dimensionless film thickness is small compared to m 2/ 3 , 

where m = J-twater/ J-toil. which is typically 10-2 or smaller. 

VIII.ll Amplitude Equation of Hooper and Grimshaw 

Hooper and Grimshaw [1985] derive a nonlinear amplitude equation (the 
Kuramoto-Sivashinskyequation) which we describe in section IV.8(a). The 
flow is Couette-Poiseuille between parallel plates with an undisturbed in
terface at Y = 0 with u = exul(Y), UI(Y) = Aly2 + am + 1, l = 1 for Y < 0, 
l = 2 for Y > 0, Al = G /2J-t1 where G is the pressure gradient. The viscosi
ties of the fluids are J-tl. The dispersion relation for the linear problem when 
the disturbance wavelength is long compared with the depth of either fluid 
is given by IV.(8a.66): 

C = Co + iaR{J(m, n, r, A l ) - a 2 S(m, n)} + O(a2 ) (11.1) 

where C is the complex wavespeed, a is the disturbance wavenumber, and Co 

is real. The viscosity, density and depth ratios are denoted by m = J-t2/ J-tl, 

r = P2/ Pl and n = d2/dl, respectively. R = Uoddvl is the Reynolds num
ber. J and S are rational functions of the parameters defined by IV.(8a.64 
- 65). S(m, n) is proportional to surface tension. 

Hooper and Grimshaw did a weakly nonlinear long-wave analysis as
suming IV.(8a.19 - 20): 
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1/ = cA(~, r), ~ = c(x - Cot), r = c2 t (11.2) 

where c is a small parameter, otherwise unspecified, and 1/ is the deviation 
of the fluid interface from its flat position. 

The perturbed streamfunction is expanded as IV.(8a.20): 

(11.3) 

At O(CO), they recover the basic flow. At O(c), they get Yih's stability 
result. The eigenfunctions are expressed in terms of the unknown amplitude 
A(~, r) which is determined by solvability conditions at second order. These 
conditions yield the amplitude equation IV.(8a.62): 

AT + RJ(m, n, r, AdA~~ + c2 RS(m, n)A~~~~ = -l(m, n)AA~ (11.4) 

where the subscripts are partial derivatives with respect to the correspond
ing variables, and I (m, n) is a rational function found by analysis. 

We can deduce the left-hand side of (11.4) from (11.1) formally by 
replacing 0 with -i tx and oc by i It. Then ocA = oCoA + i02 R( J - 0 2 S)A 
to within terms of order 0 3 and 

.8A . 8A . 82 A . cr A 
z- = -ZCo- - zRJ-- - zRS--. at 8x 8x2 8x4 

(11.5) 

They say that "... retention of the surface tension term requires that c2 S 
is 0(1) in their perturbation expansion .... When S is 0(1) and the term S 
is ignored, the evolution equation is Burger's equation. When J is positive 
this equation (with S ignored) describes unstable behavior, and distur
bances grow without limit with the shortest wavelengths having the great
est growth rates. It is for this reason that we have included the effects of 
surface tension in the analysis to ensure that unstable waves possess a high 
wave number cut-off." 

The linear part of the amplitude equation (11.4) is exact in the sense 
that, linearization of it results in the exact dispersion relation (11.1). Thus, 
the linear stabilization or destabilization mechanism for the longest waves 
are preserved in the amplitude equation (11.4). It is important to note that, 
although the linear instability caused by viscosity stratification persists at 
arbitrarily small Reynolds numbers, it is necessary to maintain all the iner
tia terms in the governing equations when performing the stability analysis, 
as is evident in the dispersion relation (11.1). The second term on the right 
hand side of equation (11.1), excluding the surface tension contribution, is 
the sum of the contributions from the inertias of both fluids, and it is the 
term determining the linear instability or stability of the problem to the 
leading order. 

An amplitude equation similar to (11.4) can be derived for core-annular 
flow of two fluids in a circular pipe by following the procedure of Hooper 
and Grimshaw when the wave is long relative to both the core radius and 
annulus thickness. This amplitude equation has the same linear part as that 
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of the linearization of the full problem in the same limit, which includes both 
the contributions from the core and the annulus, but only up to and not 
including terms of O(a2 ). This equation should not be used to describe 
the nonlinear evolution of systems like those driven by capillary instability, 
in which the wavenumber a = a c of maximum growth is bounded strictly 
away from zero. In such a case, the expression for a c would involve terms 
of order a 2 neglected in the analysis (cf. equation (12.16)). Other types of 
amplitude equations which do not produce the same dispersion relation as 
the exact linear theory can also be derived for core-annular flow, as well 
shall see in section VIII.13, but extra conditions must be imposed for the 
validity of such theories. 

VIII.12 Rupture of Thin Films 

Theories like those of Hooper and Grimshaw are called long-wave theories. 
They could be called very long-wave theories since they restrict attention 
to waves which are longer than all of the physically relevant length scales. 
In the case of core-annular flow, these very long waves are much longer than 
the core radius. To get nonlinear descriptions, these theories inevitably in
troduce restrictions which go beyond the linear long-wave analysis for the 
exact problem. The usual practice is to choose scales so that the lineariza
tion of the amplitude equation agrees at leading order in a with the first 
term of the expansion of the dispersion relation of the exact problem. If 
the wavenumber of maximum growth in the exact problem is surpassingly 
small, then there is perhaps hope for this method. If, on the other hand, 
the wavenumber of maximum growth is bounded strictly away from zero, 
then it is not likely that the amplitude equations for the longest waves can 
represent the observed dynamics. 

It is sometimes possible to restrict the values of given parameters in 
the problem in such a way as to drive the wavenumber of maximum growth 
toward zero. This formal procedure, proposed for example for the problem of 
film rupture by A. Frenkel at the end of this section, has many advantages. 
The expansion may be framed in terms of physically identifiable, externally 
given parameters with which we can control the wavenumber and force it 
to zero. We have no control over wave-shortening due to the part of inertia 
which is quadratic in u, but the linear parts are well-represented. 

To illustrate the points just raised, we shall consider the problem of 
film rupture posed by Williams and Davis [1982] using their notation. 

A thin film of mean thickness ho lies above a horizontal solid plate. 
The x-axis is horizontal and the z-axis is vertical. The velocity components 
are U and w, respectively. The dimensionless equations are 

Ut + UUx + WUz = V 2u - Px - cPx, 
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Wt +uwx +wwz = V 2w - pz - f/Jz, 

U x +wz = 0, 

A 
f/J = h3 ' (12.1) 

where f/J is the potential of the van der Waals forces, A is the dimensionless 
Hamaker constant and h(x, t) is the dimensionless film thickness. At z = 0, 

U=W=o. 

At z = h(x, t), we have the following free surface conditions: 

w=ht+uhx, 

(uz + wx)(1 - h~) + 2hx(wz - ux) = 0, 

_ 2(1-h~,)wz-hx(uz+wx)_ 3Shxx 
p + (1 + h~) - (1 + h~)3/2' 

where S is a dimensionless surface tension parameter. 
The basic state is static with 

h = 1, P = constant, 

it = v = til = 0, ¢ = A. 

The linearized stability of this basic state is governed by 

Ut = V 2u - Px - f/Jx, 

Wt = V 2w - pz - f/Jz, 

U x +wz = 0, 

f/J = -3A6, 

(12.2) 

(12.3) 

(12.4) 

where u, w, p and f/J are perturbed quantities and 6 is the deviation of the 
free surface from h = 1. At z = 0, U = W = 0. At z = 1, 

(12.5) 

We introduce normal modes (u, w, p, 6) = (U(z), W(z), P(z), TJ) 
expia(x - ct). 

VIII.12(a) Long Waves 

For long waves, we can expand U, W, P, c and TJ in powers of a. To compare 
the long-wave analysis with the lubrication theory of Williams and Davis 
in the linearized case, we need to carry out the analysis to order a 4 • We 
eliminate P and U throughout the equations. 
Zeroth order: Wo = 0, Co and TJo undetermined. 
Order a: Wl = 0, Co = 0. 
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and T/2 is undetermined. 
Therefore, the eigenvalue up to 0(a3 ) is given by 

c = i(aA - a3S + a 3 A/12 + a 3 A2 /24). (12.9) 

VIII.12(b) Lubrication Theory 

We return now to the nonlinear problem. Williams and Davis expanded the 
variable u and w in powers of a as before, but p is expanded differently: 

(12.10) 

and h = 1 + 6 is not expanded at all. Clearly, even at this stage, there is a 
big difference between the lubrication theory and that of long waves. 

To justify (12.10), Williams and Davis assume that (12.5)a gives, at 
zeroth order, 

-Po = 3Shee, 
where S = 0(1) and ~ = ax. This implies that 

S = a 3S = 0(1). 

(12.11) 

(12.12) 

Otherwise, you don't get (12.10). This is the typical assumption (see Ather
ton and Homsy [1975]) used to retain surface tension at the lowest order. 

In the same spirit, Williams and Davis assumed 

A=aA = 0(1). (12.13) 

Then A and S appear in their problem at zeroth order. 
The amplitude equation of Williams and Davis is 

ht + A(hz/h)z + S(h3hzzz )z = O. (12.14) 

After linearization around h = 1, this gives the dispersion relation 

(12.15) 

This can be compared to (12.9), and (12.15) is correct when (12.12) 
and (12.13) hold. The long-wave expression (12.9) is correct up to order a 3 

for all bounded values of A and S, without further restrictions. 
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The most interesting a is the one which gives rise to the maximum 
growth rate. Ideally, for long waves, a=O would be best. In the present 
case, the a giving maximum growth is 

A A2 . 
28 - 12 + 24 

A 
(12.16) 

Williams and Davis cite the values A = 10-4 and 8 = 0.1 as typical. For 
these values, am ~ J AI28 = 1/v2000. This is small, so that we might 
expect to see agreement with the long-wave analysis. 

We could hope that for the typical values of A and 8 which give a 
small am, the order conditions (12.12)-(12,13) for the lubrication theory 
would hold. However, 

- 1 
A=a A= ---:== 

m 104 V2000' 
and S = a 3 8 = ..,..-::-c;-:-::-1::-:-;-;;-;-;:-

m 10(2000)3/2 

are not of order one. Obviously, you need special conditions, beyond long 
waves, to get equation (12.14). 

One problem of the lubrication theory just reviewed is that the spec
ification of the condition beyond long waves for which the theory applies, 
is not framed in terms of the parameters of the problem: the wavenumber 
a is in some sense a functional of the solution. Frenkel (1990) in a per
sonal communication has suggested to us that the region of validity of the 
equation derived by Williams and Davis can be greatly extended by dis
carding conditions like a 38 = 0(1) and replacing them with conditions on 
parameters which insure the length 27l" I am of the wave that grows fastest is 
large. Frenkel in particular has carried out the analysis, based on two small 
parameters J AI28 and A218 without placing any restrictions on a. These 
restrictions can be regarded as an alternative to the thin-film assumption. 

VIII.13 Amplitude Equations of Frenkel et al. and 
Papageorgiou et al. 

Frenkel et al. [1987] considers a core-annular flow of two fluids with matched 
viscosities and densities. Unlike the long-wave analysis of the Hooper
Grimshaw type, this analysis does accomodate capillary instability. It pre
dicts that in a certain range of parameters, capillary instabilities saturate 
nonlinearly, producing chaotic waves rather than film rupturing. Since the 
viscosity difference is neglected, the linear mechanism of shear stabiliza
tion through interfacial friction which is routinely observed in experiments 
is absent from the analysis. Besides requiring that the layer thickness be 
small relative to the core radius, the analysis requires small Reynolds num
bers in the annulus, as well as other conditions. They derive a Kuramoto
Sivashinsky equation of the form (13.6) below with DI = O. This equation 
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gives rise to bounded but chaotic solutions which are said to saturate the 
linear instability. 

Frenkel, responding to results of the analysis of the stabilizing effect 
of interfacial friction, found a method for dealing with the dynamical ef
fects of the core in which lubrication approximations are inappropriate. He 
used lubrication theory in the gap and a different approximation which is 
basically not restricted to long waves in the core. He obtained a nonlinear 
amplitude equation with additional linear terms, equivalent to the term D I 
in (13.6), which gave rise to dispersion and dissipation. Smooth rather than 
chaotic waves then saturate unstable core-annular flow (see Papageorgiou 
et al. [1990]). He identified four parameters 

1 
e3=--, 

m-l 
(13.1) 

which must each be small (and positive) for his theory to be valid. f in 
(13.1) is defined as (R2 - Rtl/Rl where R2 and Rl are the radius of the 
pipe and the oil core, respectively. Rl and J are the core Reynolds number 
and dimensionless surface tension parameter defined in section YI.l. Since 
ele2 = e, the film thickness must be small. 

Frenkel also uses his equation to discuss the case of lubricated pipelin
ing in which m < 1 and e3 < 0, but he does not give the justification of his 
theory for this case. He notes that his equations give rise to shear stabiliza
tion due to viscosity stratification (interfacial friction) without nonlinear 
effects when 

(13.2) 

This can be interpreted as shear stabilization for small gaps (e « 1) and 
long waves (a « 1). We shall see that this shear stabilization is correct in 
the case of very thin films to which the lubrication theory applies. 

Frenkel's idea was further developed and systematized in the work 
of Papageorgiou et al. [1990j. They obtain a nonlinear equation for the 
evolution of the interface from the analysis of a solution of the problem 
in powers of the film thickness e « 1. They found that the inertia of the 
water in the thin annulus may be neglected at leading order and they took 
into account the dynamics of the core in an approximation introduced by 
Frenkel. They found that in addition to the requirement that e « 1 it was 
also necessary to guarantee that 

eJ = 0(1). 
Rl 

This condition can be satisfied in two ways: 

Rl = e, J = 0(1) 

which gives rise to a low Reynolds number approximation, and 

(13.3) 

(13.4) 
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R1 = 0(1), J = lie (13.5) 

which is a large surface tension approximation. The condition (13.5h may 
be written as R1 = (pvr)/(Tf.) where T is surface tension. For heavy 
crudes, T = 20 dynlcm, J.L1 = 103 p, and if f. = 0.1 (J = 10) say, then 
R1 = 0(106cm) which is not a reasonable size. Obviously, (13.5) is a very 
restrictive condition. 

If e « 1 and (13.3) is satisfied, then they find an amplitude equation 
in the form 

2 Je 
TJT - -TJTJz + -3R (TJ + TJzz)zz + DI = 0 

m 1m 
(13.6) 

where t, x are physical variables such that 

T = e2t, z = e(X - W(l)t), (13.7) 

W(l) being the interfacial velocity of the basic flow. The term DI is a 
linear term which depends globally on the wave number. Equation (13.6) 
was given by Frenkel [1988] but the term DI was expressed in an abstract 
rather than explicit manner. 

In the small Reynolds number case (13.4) Papageorgiou et al. find that 
the core dynamics is governed by Stokes flow 

(13.8) 

The stream function for (Uo, Wo) satisfies a partial differential equation 
of fourth order which is solved by the method of Fourier transforms. The 
transform of the stream function satisfies an ordinary differential equation 
which can be solved by Bessel functions. The stream function for the core 
can be expressed by the inversion integral which is a global expression in 
wave number space and not restricted to long waves. The core quantities on 
the interface can be expressed in terms of this inversion integral and they 
appear in the term D I as follows: 

DI = ~ (1-~) roo NB(k) roo TJ(Y, T)exp {ik(z - y)} dydk, (13.9) 
rrm m J-oo Loo 

where 

(13.10) 

and Io(k) and h(k) are Bessel functions. 
The linear term DI given above is purely dispersive so that it can

not stabilize the capillary instability. In fact, shear stabilization is associ
ated with the inertia of the basic flow, which is neglected here both in the 
core and the annulus. You don't have much shear stabilization at very low 
Reynolds numbers, so the analysis and the physics are not incompatible. 
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In the second case (13.5), where the surface tension is supposed to 
be large, a Stokes flow approximation in the core is not appropriate. The 
core inertia of the basic flow must be taken into account and this can lead 
to shear stabilization [Frenkel 1988j. In the analysis of Papageorgiou et al. 
[1990j, the inertia of the core is explicitly represented. The core equations 
are given by 

2 8Uo 8Po 1 (Q2 1 8 Q2 1 ) 
(1 - r ) 8z = - 8r + R1 8r2 + r 8r + 8z2 - r2 Uo 

2 8WO - 2rUo + (1 - r ) 8r 

= - 8Po +...!.. (~+ ~~ + Q2 ) Wo (13.11) 
8z R1 8r2 r 8r 8z2 

The neglected terms !lfft and 8::;0 are rigorously zero in a coordinate system 
which moves with the speed Co of the wave. 

The solution of (13.11) together with the continuity equation can be 
obtained by the method of Fourier transforms, as indicated already, and 
the stream function can be expressed by the inverse transform. This leads 
again to (13.6) but now with 

DI = 2 -i (1 - ~) 100 ~K(k) 100 17(Y, r)exp {k(z - y)} dydk, 
1I"m m -00 -00 

(13.12) 
where 

(13.13) 

with 
1 11" k2 A 

A = "2v'kR exp[-i4"j, A = 1 + 8A - 2' 

N1(k) = 11 (I1(k)K1(kt) - 11 (kt)K1(k» t2 exp[-At2jM(A, 2, 2At2)dt, 

and M is the confluent hypergeometric function (the Kummer function). 
The functions I and K are the modified Bessel functions. 

The analyses of Frenkel and Papageorgiou et al. and the calculation 
in the next section show that DI given by (13.9) or (13.12) gives rise to 
dissipation as well as to dispersion. We get shear stabilization from (13.12) 
which represents the contribution from the inertia of the core. The am
plitude equation (13.6) is quite general in the sense that it is capable of 
describing waves with wavelengths comparable to the core radius, although 
the wavelengths are required to be long compared to the thickness of the 
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annulus. On the other hand, the contribution from the inertia of the annu
lus is totally neglected. Under what circumstances can this omission of the 
annulus inertia be compatible with the underlying physics, so that equation 
(13.6) can be applied? This question has not been adequately addressed. 
For the special case of long waves, with wavelengths long relative to both 
the core radius and annulus thickness, we will give a critical assessment of 
the validity of the amplitude equation (13.6) in section VIII.15. 

VIII.14 Long-Wave Expansions for the Amplitude 
Equation (13.6) when =0(1) 

We want to compare the stability criteria for long waves which arise from 
linearizing the nonlinear amplitude equation (13.6) around 1] = 0 with 
stability criteria for long waves for the linearized full problem when IRl = 
0(1). 

We first substitute normal modes 

1](Z, T) = if exp [ia(z - ct)] 

into the linearized version of (13.6) 

i(m - 1) 100 100 
- 2 NK(k) 1](y,T)exp{ik(z-y)}dydk=O. 

27l"m -00 -00 

After using Fourier transforms in the form 

we find that 

. 4 2 J€ .m - 1 ) wc= (a -a )-- -z--NK(a. 
3IR1m m2 

(14.1) 

(14.2) 

(14.3) 

Asymptotic development of the Kummer function for small a leads to 

(14.4) 

Combining (14.3) and (14.4) and writing c = Co + aCl we find that 

m-l . [J€ m-1IR1] 
c=4~+w 3IR1m +~12 =eo+aCl· (14.5) 
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Finally we note that the stability of the solution 'fJ = 0 of (13.6) to 
long waves depends on the sign of the growth rate aIm c corresponding to 
(14.1). To leading order in a, we have 

aIm c = a 2 [3~~m + m ~ 1 ~ ] . (14.6) 

The eigenvalue c given by (14.5) is related to the eigenvalue C of the exact 
linearized theory by 

(14.7) 

In the next section we will show that the result (14.6) of lubrication theory 
is exact in the limit c -+ 0, to which it is said to apply provided that 
J = lie and JR.! = 0(1). Equation (14.6) shows that perfect core-annular 
flow is always unstable when JR.! is small or the less viscous fluid is inside 
(m > 1). We get shear stabilization when the more viscous fluid is inside 
and JR.! is increased past a critical value defined by the first zero of (14.6). 
This shear stabilization is solely due to the inertia of the core which is 
maintained in the analysis leading to equation (13.6) when JR.! =0(1). 

VIII.15 Exact Stability Results for Long Waves 

Now we shall study the stability of perfect core-annular flow to long waves 
(a ~ 0) without using the approximations (one of which is c -+ 0) of 
lubrication theory. We will show that the two theories give rise to the same 
result in the limit a -+ 0 and c -+ O. However, the results of lubrication 
are not robust; they change qualitatively when c is finite. In particular, for 
larger values of c, greater than say e( m), the core is destabilizing, and we 
have e(m) -+ 0 as m -+ O. Moreover, the inertia of the lubricating fluid in 
the annulus which is negligible (of order c3 ) when c -+ 0 becomes important 

when c > ~(m) and ~(m) -+ 0 as m -+ 1. 
We may hope that an asymptotic theory is actually applicable un

der less restricted conditions than are required for its strict mathematical 
validity. We do not appear to have such good luck in the present case. 

The analysis of long-wave solutions of the equations of the linearized 
theory of stability of perfect core-annular flow in a series of powers of the 
wave number a was done for horizontal flow (section VI.1) and for vertical 
flow (section VII.7). Here we are going to carry the analysis to a more ex
plicit conclusion suitable for comparison with nonlinear theories, based on 
lubrication-type approximations. We shall confine our attention to axisym
metric solutions n = 0, v = 0 for the case in which ( = P21 P! = 1, with 
fluid 1 in the core and fluid 2 in the annulus. We may eliminate the pressure 
and streamwise perturbations w(r) of velocity and height function'fJ from 
the governing equations. Then we get an eigenvalue problem for the radial 
component of velocity u(r) which satisfies VI.(le.25), u(O) = 0 and u'(O) 
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is bounded. At the solid wall r = a, u(a) satisfies VI.(1e.26). The interface 
conditions at r = 1 are given by VI.(1e.27), with the last equation replaced 
by the following equivalent condition: 

- [o:( (W(1) - C)(u' + u) - W'(1)U) 

+ ~( u'" + 2u" - (1 + 0:2)U' + (1 _ 0:2)u) ] + 2~2 [mu'] 

Jo:(1 - 0:2) [u'] 
R~ [W']· 

(15.1) 

Long-wave solutions may be obtained by substituting the series 

u(r, 0:) = u(O)(r) + o:u(I)(r) + 0(0:2), C = C(O) + o:C(I) + 0(0:2 ) (15.2) 

into the above equations. u(O) and C(O) satisfy 

- -- r- --(ru(») = 0 d (1 d [ d {1 do}]) 
dr r dr dr r dr 

in the core 0 < r < 1 and in the annulus 1 < r < a, 

u(O)(a) = u(O)' (a) = 0, 

u(O) (0) = 0 and u(O)' (O) is bounded. 

At the interface r = 1, 

[W']u(O) - (W(1) - C(O»)[u(O)'] = 0, 

[u(O)] = 0, 

[m{u(O)" + u(O)' - u(O»)] = 0, 

[m{u(O)1II + 2u(0)" - u(O)' + u(O»)] = O. 

(15.3) 

(15.4) 

(15.5) 

(15.6) 

(15.7) 

(15.8) 

(15.9) 

The first-order problem is an inhomogeneous form of the zeroth order 
problem 

-- -- r- --(ru(») = fl{r) 1 d (1 d [ d {1 d 1 }]) 
Rl dr r dr dr r dr 

(15.10) 

where h(r) is for the core 0 ~ r < 1 and h(r) is for the annulus 1 ~ r ~ a, 

u(I){a) = u(1)' (a) = 0, 

U(I) (O) = 0, U(I)' (O) is bounded. 

At the interface r = 1 

[W']U(I) - [W(1) - C(O)] [U(I)'] = 91, 

[U(I)] = 0 

(15.11) 

(15.12) 

(15.13) 

(15.14) 
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where 

(m(u(I)" + U(I)' - U(I»)] = 0, 

[m(u(I)111 + 2U(I)" - u(I)' + U(I»)] = [/2, 

(15.15) 

(15.16) 

(15.17) 

91 = _C(I)[U(O)'), (15.18) 

92 = i {~1 l;:} + Rl [(W(I) - C(O»(u(O)' + u(O» - W' (l)u(O)] }. 

(15.19) 
The problem adjoint to (15.3) through (15.9) is satisfied by q(r) and 

C(O). The function q(r) satisfies (15.3)- (15.5), (15.7), (15.8) and 

[q'] = 0 
, 

"' '" [W J /I I 

[m(q + 2q - q + q)] - W(I) _ C(O) m(ql + q1 - q1) = 0 
(15.20) 

The adjoint eigenfunction will be used to obtain solvability conditions for 
the inhomogeneous problem (15.10) - (15.16). One disadvantage of the usual 
procedure is that, in the final dispersion relation, the contributions from 
the core inertia and the annulus inertia are not explicitly distinguishable. 
We notice however that C(I) can be obtained by invoking the Fredholm 
alternative without actually solving the O(a) problem. The contributions 
from the inertia of the core and the annulus to C(I) are explicit in the 
formula obtained by this method and this allows us to not only track the 
origin of the instability, but also evaluate the relative importance of each 
contribution. The solvability condition is found in the form 

We satisfy this condition with an appropriate choice of C(I) • 

Now we shall list all the parameters and functions which are involved 
in the determination of C(1) from (15.21). 

(15.22) 

(15.23) 
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[W'] = 2(1 - m) , (15.24) 
a2 +m-l 

uiO)(r) = [(a2 _1)2 - m] r + mr3, (15.25) 

u~O)(r) = (a2 - r2)2 jr, (15.26) 

C(O) = a2(a2 - l)j(a4 + m - 1), (15.27) 

ql(r) = Dlr3 + Fir, (15.28) 

3 G2 q2(r) = D2r + E2r(2ln r -1) + F2r + -, (15.29) 
r 

DI = m(a2 _1)2, 

FI = (2a2 + m - 2) (2a2 + m - 1) + (1 - m)(a2 - 1)2 
_(a4 + m -1)(4lna + 1 + m), 

D2 = -(2a2 + m - 2) 

E2 = 2(a4 + m -1) 

F2 = 2{a2(2a2 + m - 2) - 2(a4 + m - l)lna} 

G2 = (1 - m)(a2 - 1)2 + a4 + m - 1. 

Using these formulas, we may evaluate (15.21) and find that 

where 

{I ( , u(O»)' 
Ie = 10 rql(r)[W1(r) - c(O)] uiO) + --;.- dr 

= 8m 11 r2ql (r)[WI (r) - C(O)]dr, 

(15.30) 

(15.31) 

Be = ql(l) {[W(I) - c(O)](uiO)' (1) + uiO) (1» - W' (l)uiO)(I)}, (15.32) 



276 Chapter VIII. Nonlinear Stability of Core-Annular Flow 

f. ~ [ r<J2(r)[W,(r) - 0(0)1 ( t40)' + ~»)' dr 

= Sl° r 2q2(r)[W2(r} - O(O)]dr, (15.33) 

Bo = q1(1} {[W(I} - O(O)](t40)' (I) + u~O)(I» - W~(I}u~O)(I}}. (15.34) 

Since the disturbances are proportional to eia(:I:-et) and 0(0) given by 
(15.27) is real, the question of stability to long waves is resolved by the sign 
of 1m 0(1) given by (15.30). We have eia(:I:-ct) = ei(a:l:-Cot)ea2ImC(1)t so 
that we have instability when 1m 0(1) > O. 

We want to trace effects of different terms in the growth rate formula 
(15.30). The letters Ie and Ia stand for 'integrals' in the core and in the 
annulus respectively, while Be and Ba are interface or boundary terms in 
the core and in the annulus. Actually, using (15.6) and (15.7), we can show 
that 

Ba+Be = O. (15.35) 

However, we want to assess the effect of inertia in the core Ie + Be and 
inertia in the annulus 10 + Ba on stability. 

It can be shown that: 

[W'] = 2(1 - m} > 0 for m < 1, 
a2 +m-l 

u(O)(I} = (a2 _1}2 > 0, 

q; (I) + q~(I) - q1(1} = Sm(a2 _1}2 > 0, 

W(I} - 0(0) = [W'](a2 - 1}2 > 0, for m < 1 
2(a4 +m -I} 

< 0, "1m, a> 1. 

(15.36) 

(15.37) 

(15.3S) 

(15.39) 

(15.40) 

We may use the expressions (15.36) - (15.40) to put (15.30) in a more 
explicit form: 

0(1) = i {Rl16m(ail+m11)(a4+m 1)2 (Ie + Be + 10 + Bo) + .il X 

-[(2a2+m-2)(202+m-1)+(02-1)2-~04+m-1)(4In a+1+m)]} 
16m(04+m-1 . (15.41) 

When the viscosities are matched (m = I), only capillary instability is 
possible. 

In figures 15.1 through 15.4 we have plotted the values of the integrals 
which lead to shear stabilization or shear destabilization in (15.41) as a 
function of a for different values of m. 



VIII.15 Exact Stability Results for Long Waves 277 

Figure 15.1 shows that the inertia Ie + Be of the oil core is stabilizing 
when e = a-I is small and is destabilizing when e is greater than a critical 
value l{ m} which depends strongly on m and tends to zero with m. 

Figure 15.2 shows that the inertia Ia + Ba of the water annulus is 
stabilizing when e = a-I is small and m < 0.8; otherwise it is destabilizing. 
The inertia of the annulus is negligible for small e when m is small, but not 
when 1 - m is small. 

Figure 15.3 gives a direct comparison of the contributions of inertia 
due to the oil and water. The core contributions are dominant for the very 
smallest values of e, but not for larger values. 

Figure 15.4 shows how the combined action of inertia Ia+Ba+Ie+Be = 
Ia + Ie in the core and annulus produces shear stabilization or destabiliza
tion. Though the core contribution and the annulus contribution are sepa
rately sensitive to the value of m, the combined contribution depends only 
weakly on m. The flow is stabilized by interfacial friction when e < 0.4, 
say, independent of m and is destabilized when e is larger. The comparison 
shows that inertia can not be neglected in the annulus when e is large or 
when e is small and m is near 1. 

A quantitative estimate for the range of € within which the core contri
bution dominates and thus the annulus contribution can be safely neglected, 
can be obtained by examining the asymptotic expansions for the contribu
tions of inertia in the core and the annulus when the annulus is thin. When 
€« 1, we have 

For the lubricated case {m < I} and a thin annulus {€ < < I}, the con
tribution Ie + Be of the core is always negative and stabilizing, while 
the contribution Ia + Ba of the annulus is negative and stabilizing only 
when m < 0.8. Thus, when m < 0.8, both the core and the annu
lus are stabilizing, and the contribution from the annulus is negligible if 
-{128/15}{ -4 + 5m}€5 « {4/3}m2€2. This leads to 

{ 5 m 2 }1/3 
€« 324- 5m . {15.43} 

When m is small, this reduces to 

€ < < 0.34m2/3 • {15.44} 

When m = 0.05, {15.44} indicates that the inertia in the annulus can be 
safely neglected when € « 0.046, which is consistent with figure 15.1{b}. 

We may derive a criterion like {15.44} by quantitative arguments when 
m < 1. The film Reynolds number is defined by 

1R! = W{I}{R2 - R1 } • 

V2 
{15.45} 
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Rf is related to the core Reynolds number Rl by the relation 

R = Rl ~ €(2 + €) 
f m €(2 + €) + m· 

(15.46) 

The expansion scheme leading to the omission of inertia in the annulus and 
to the amplitude equation (13.6) is actually an expansion in the parame
ter €Rf. For the inertia of the annulus to be negligible, one requires that 
€Rf < < 1. When € is also small, (15.46) reduces to Rf = Rl (€2 1m2 ). 

Hence 
€« m 2/ 3 , (15.47) 

when Rl = 0(1). This is consistent with the criterion (15.44). 
When 0.8 < m < 1, inertia in the core is stabilizing but inertia in the 

annulus is destabilizing when € is small. In this situation, the contribution 
from the annulus is negligible if 

(15.48) 

When the core fluid is less viscous (m > 1), and the multiplier in 
the first term on the right hand side of (15.30) is negative, the asymptotic 
formula (15.42) indicates that when € < < 1 the core inertia is destabilizing 
and the annulus inertia is stabilizing. When (15.48) is satisfied, however, 
the stabilizing effect of the annulus can be neglected, as in the numerical 
studies for the case m > 1 by Papageorgiou et al. 

VIII.16 Comparison of Lubrication Theory with Exact 
Theory 

The lubrication theory is in perfect agreement with the exact theory in 
the long-wave case a -+ 0 when the assumption g -+ 0 of the lubrication 
theory is valid. This may be demonstrated analytically by setting a = 1 + g 

in the expressions (15.27), (15.39), and (15.41), giving C(O) and C(l), then 
expanding in powers of g. After comparing the result with the expression 
from lubrication theory (14.5), we find first that 

W(I) _ C(O) -+ 4(m; 1) = Cog. 
m 

Then, after setting Be + Ba. = 0 in (15.41) we find that 

4 Ie = __ m 2g2 + 0(g3) 
3 

and 

(16.1) 

(16.2) 

(16.3) 
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Fig.15.1(a-d). [Chen and Joseph, 1991b, American Institute of Physics] The 
inertia contribution Ie + Be of the oil core to instabilit:y of perfect core-annular 
flow as a function of a = R2/Rl 2: 1: (a) m = 0.001, (b) m = 0.01, (c) m = 0.1, 
(d) m = 0.95. The core contribution is stabilizing when c = a - 1 is small and is 
destabilizing when c is larger than a critical value g(m) which tends to zero with 
m . For small m the core is effectively destabilizing for all but the smallest c. 
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Fig. 15.1(c-d). Continued. 
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Fig.15.2(a-b). [Chen and Joseph, 1991b, American Institute of Physics) The 
inertial contribution fa + Ba of the water annulus to the instability of core-annular 
flow as a function of a: (a) m=O.OOI, (b) m=0.5. The inertia in the annulus is 
stabilizing for small e when m < 0.8 and is destabilizing for all e when m ~ 0.8 
(see also figure 15.3). 
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Fig. 15.3(a-j). [Chen and Joseph, 1991b, American Institute of Physics] Com
parison of the contributions of inertia of the water annulus Ia + Ba and oil core 
Ie + Be to the long-wave instability of core-annular flow as a function of a: (a) 
m=O.OOl, (b) m=0.OO5, (c) m=O.01, (d) m=0.05, (e) m=O.l, (f) m=0.3, (g) 
m=0.5, (h) m=0.7, (i) m=0.8, (j) m=0.95. The inertia iIi the annufus is stabiliz
ing for small c when m < 0.8, dest.abilizing for m :2: 0.8. 
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Fig. 15.3(g-i). Continued. 
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Fig. 15.3(j). Continued. 
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Fig. 15.4(a-c). [Chen and Joseph, 1991b, American Institute of Physics] Total 
contribution of inertia of the core plus the annulus Ia + Ba + Ie + Be = Ia + Ie to 
instability of core-annular flow for m < 1. Though the separate contributions of 
the core and the annulus are sensitive to the values of m, the total contribution 
is insensitive. (a) m=O.OOl, (b) m=O.5, (c) m=O.95. 



286 Chapter VIII. Nonlinear Stability of Core-Annular Flow 

Sum 

0 . 3 

0 . 2 

0 . 1 

0 . 3 

0 . 2 

0 . 1 

-0 . 1 

-0 . 2 

Sum 

1.8 

(b) 

1.2 1.8 

(c) 

Fig. 15.4(b-c). Continued. 

2 . 

2 . 



VIII.17 Discussion 

The term JIR1 also occurs at order €3: 

(1) _ . 2 { m - 1 €J} 3 
C - ~€ 12m2 R1 + 3mR1 + O(€ ). 

Comparing this with (14.5), we find that 

C(1) = €2C1 

proving that the two theories agree in the stated limit. 

VIII.17 Discussion 

287 

(16.4) 

For the lubricated case m < 1, the linear dispersion relation resulting from 
the amplitude equation (13.6) in the limit a ---t 0 approaches that of the 
exact problem when (15.43) is satisfied. This follows from the asymptotic 
formula (15.42). We have seen that when (15.43) is satisfied, the contribu
tion from inertia in the annulus Ia + Ba can be neglected and we have the 
following expansion for the eigenvalue C of the exact theory: 

2 m - 1 . 2 J€ m - 1 R1 3 
C-W(l)=€ 4~+w€ (3R1m +~12)+O(€). 

Comparing this to the dispersion relation (14.5), we have found that C -
W(l) = €2c+ O(€3). 

At least two types of weakly nonlinear amplitude equations can be 
obtained for core-annular flow when the annulus is thin. The first is the 
one analogous to that of Hooper and Grimshaw. The wavelength is re
quired to be long compared with both the core radius and the annulus 
thickness. The linear part of this amplitude equation is exact in the sense 
that the linear dispersion relation reduces to that of the full problem in the 
same limit. The linear mechanism of shear stabilization or destabilization 
is fully preserved in this amplitude equation, but the dynamics is retricted 
to the longest waves which, as in the case of capillary instability, are not 
the most strongly amplified. The second approach is that of Frenkel and 
Papageorgiou et al. Their amplitude equation is more general, because the 
wavelength is required to be long only compared with the annulus thickness 
and waves with wavelength comparable to the core radius are incorporated 
in the analysis. The trade-off of this is that, on top of the strict restriction 
f.J IR1 =0(1), the contribution of the inertia in the annulus is completely 
neglected and the linear part of the amplitude equation is only an approxi
mation to the exact linear problem. When certain additional conditions are 
not satisfied, some of the important physics could be missed. In the case 
of lubricated pipelining (m < 1), the theory is restricted to cases where 
the annulus thickness (€ = a-I) is very small: specifically, we require that 
(15.43) hold for m < 0.8. If m is sufficiently small, then (15.44) holds. This 
condition may be hard to achieve for lubricated pipelining for which typical 
values of m are of the order of 0.01 or smaller. 
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IX.1 Introduction 

This chapter is based on the paper by Baumann, Joseph, Mohr and Renardy 
[1992]. We present and interpret experiments in which vortex rings of one 
immiscible liquid are created in another from drops falling from rest under 
gravity. These rings are associated with circulations generated by viscosity 
and, unlike classical vortex rings which occur in miscible liquids at high 
Reynolds numbers, they can exist even at very low Reynolds numbers. 
Since the rings do not diffuse, they are well-defined. Nonetheless, there 
are many similarities in the dynamics of formation and flow of miscible 
and immiscible rings. We are going to identify parameters which appear to 
correlate our observations and to show photographs of some of the more 
interesting events we have seen. 
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IX.2 Classical Vortex Rings 

By way of comparison, it is instructive to recall that in classical hydrody
namics, it is usual to consider vortical regions embedded in an otherwise 
irrotational flow. In the case of the ring, a cross-section (figure 2.1(a)) is 
like the "potential vortex" (figure 2.1 (b)): the flow outside a cylinder which 
rotates rigidly. This is the Taylor problem (flow between two concentric 
cylinders with the inner one rotating and the outer one fixed) with the 
outer cylinder moved to infinity. The streamfunction 1/J of the flow, with 
(1/Jy, -1/Jx) for the velocity in the x - y-plane, and r = (x2 + y2) 1/2, is then 
1/J = c In r. Thus, L11/J = 0 and the flow is irrotational. The potential vortex 
satisfies the no slip boundary condition at the cylindrical boundary, and it 
is one of only a few potential flow solutions of the Navier-Stokes equations. 

In the classical theory of vortex rings, viscosity is absent, diffusion is 
absent and surface tension is absent. For the classical case, we think of a 
smoke ring. Many beautiful photographs of vortex rings in miscible liquids 
can be found in the photograph album of Van Dyke [1982]. 

Vortex rings can be generated in a number of ways. One way is to 
impulsively eject a puff of fluid from a circular opening into a bath of the 
same fluid, as in the smoke ring [Baird, Wairegi and Loo 1977]. Another 
is to let a drop of liquid fall into a pool of the same liquid [Chapman and 
Critchlow 1967]. A third method is to force a buoyant fluid into a tank of 
water (see section 6.3.2 of Turner [1979]) [Simons and Larson 1974]. These 
experiments do not involve immiscible liquids. Rings are more easily created 
in miscible rather than immiscible liquids. Thomson and Newall [1885] did 
an interesting study of ring formation and their stability in miscible and 
immiscible liquids. They say that: 

"It is not every liquid, however, which, when dropped into water, gives 
rise to rings, for if we drop into water any liquid which does not mix with it, 
such as chloroform, the drop in consequence of the surface tension remains 
spherical as it descends. In fact, we may say that, with some few exceptions 
to be noticed later, rings are formed only when a liquid is dropped into 
one with which it can mix. This is important, because surface tension has 
been supposed to play an important part in the formation of these rings; 
it is difficult, however, to see how any appreciable surface tension can exist 
between liquids that can mix, and as far as our experiments go they tend 
to show that it is only the absence of surface tension which is necessary for 
their production." 

Most of the experimental studies of vortex rings are for rings gener
ated impulsively or otherwise in a single fluid or between miscible liquids. 
Many theoretical studies proceed from the inviscid equations of motion in 
which the vorticity is confined to certain regions, say rings, in an otherwise 
potential flow. These are models of flows at high Reynolds numbers. Low 
Reynolds number studies of the settling and break-up of miscible drops 
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(a) 

(b) 

Fig. 2.1(a-b). [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] (a) The two circular cross-sections of a ring vortex are shown. The 
flow is as indicated. The dashed line denotes the axis at the center of the ring. 
The ring as a whole turns about this axial line. The continual turning of the ring 
is analogous to the rigid-body rotation of a straight cylinder shown in (b) if the 
ring were cut and straightened. (b) An infinitely long solid cylinder is rotating 
with azimuthal velocity Dr, where D is the angular speed. The flow outside the 
cylinder is irrotational and given by the streamfunction 1/J = cln r. 

and the formation of rings have been given by Kojima, Hinch and Acrivos 
[1984] (plate IX.2.2) and by Arecchi, Buah-Bassuah, Francini, Perez-Garcia 
and Quercioli [1989] (figure 2.3). To explain the discrepancies between their 
experimental observations and their Stokes flow calculations, Kojima et al. 
introduced some notions of transient interfacial tension (cf. chapter X). 

Most of the studies of vortex rings in immiscible liquids are for water 
and air at high Reynolds numbers. One example is to let a bubble of air rise 
through water [Walters and Davidson 1963; Pedley 1968], and another is to 
let a drop of water fall through the air [O'Brien 1961]. The latter method 
leads to large deformations from the original drop, and the formation of 
bags which look very different from rings even though these are related. In 
the former study, it is necessary to inject the air impulsively to create a 
strong circulation in order to get a ring to form. A recent analysis of this 
problem has been given by Lundgren and Mansour [1990]. 

On the whole, it is not surprising that a phenomenon which occurs 
at zero interfacial tension also occurs at small values of interfacial tension. 
And small here means with respect to viscous effects, so that the actual 
numerical value of the coefficient of interfacial tension does not have to be 
small. The processes are similar whether miscible or immiscible liquids are 
involved, up to the ring stage. However, interfacial tension does affect the 
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(a) (b) 

Fig.2.3(a-d). [Figure 1 of Arecchi et al., 1989, Editions de Physique] [1989]) 
Evolution of a falling drop of 9/10 glycerin-water (r = 0.29 cm) seeded with 
small carbon particles into a 3/2 glycerin-water solution of nearly matched den
sity (.1p = 0.0789 g/cc). (a) - (d) is a sequence of lateral views of the drop motion 
taken at the following positions from the free surface and times from the deposi
tion: (a) 6.0 cm, 3.03 s; (b) 1O.0cm, 5.2s; (c) 13.0 cm, 7.34s; and (d) 16.0 cm, 10.0 
s. (c) shows the appearance of the turban instability (the change of sign in the 
curvature of the bottom membrane is the onset of what is called a turban insta
bility, since the deformed drop looks like a turban), and (d) the torus breaking 
by Rayleigh-Taylor instability. 
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break-up pattern: for example [O'Brien 1961], it can prevent the smaller
sized drops from repeating the sequence of ring formation and break-up: 
this limits the vortex-cascade (Thomson and Newall [1885] describe this 
cascade for the case of an ink drop in water, with their figures 1 and 2 as 
illustrations) to one or two stages. Membrane rupture is another form of 
break-up. The rupture strength or breaking strength of membranes is not 
well-understood but it may be related to surface tension. We know that the 
rupture strength generally decreases with surface tension. When the surface 
tension parameter is small but the surface tension is large, a vortex ring 
spanned by a tough permanent membrane can form. In other cases in which 
interfacial tension has been reduced by surfactants, the membrane is blown 
out and an unstable vortex ring of the type shown in our photographs forms. 
The difference between strong and weak interfacial tension is illustrated in 
plates IX.7.5 and IX.8.3. In plate IX.7.5, a smaller drop of 1000 cS silicone 
oil is sucked into the wake of an oblate ring-like cap of the same silicone 
oil falling in a contaminated soy bean oil. The membrane in this system 
is too tough to break. On the other hand, if a surfactant (97 % dye, 3% 
Rhodamine B base powder, Aldrich Chern. Co., Milwaukee, WI) is added 
(as in plate IX.8.3) the membrane breaks readily. Figure 2.3 (e) illustrates 
this well. The existence of a spanning membrane in miscible liquids is hard 
to understand without invoking the idea of transient interfacial tension 
induced by momentarily strong gradients of composition. Such notions were 
introduced by Kojima et al. [1984], and considered in more detail in chapter 
X. 

IX.3 The Normal Stress Balance 

It is probable that the parameters which control the deformations of drops 
to rings in free fall are associated with the stress balance at the interface 
(cf. section 1.2): 

-[p]n + 2[J'D[u]]n + S*n2H = o. (3.1) 

H is the mean curvature at a point on the interface E and D[u] is the rate 
of strain: 

111 
2H = Rl + R2' D[u] = 2(Vu + (Vu)T), 

where Rl and R2 are the local radii of curvature at a point of Ej n is the 
outward normal on the interface. 

We denote 

to be the jump in the quantity . across the interface, where the subscript 
d stands for drop and 0 stands for the outer fluid. In the equilibrium case 
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(that is, no flow), the drop or bubble pulls into a sphere with radius Rl = 
R2 = a and equilibrium pressures satisfying 

[pe] e e 28* 
=Pd -Po =~. 

Equation (3.1) may be decomposed into normal and tangential parts. 
The tangential part says that shear stress is continuous. By using the con
dition that the velocity is continuous at the interface 

[u] = 0 

and the continuity equation, we will show that 

where we denote 
Dnn = n . D[uJ . n. 

This result will be used in equations (3.8) and (4.4). 
For the proof, we write the continuity equation 

a 
V· u = (n- + VII)' u = 0 an 

(3.2) 

(3.3) 

(3.4) 

where a/an = n . V, V II is the surface gradient tl (tl . V) + t2 (t2 . V), and 
tl and t2 are the two tangents to the interface. Then on the interface, 

au 
0= [V· u] = [n· an + VII . u] 

We note next that 

au 
= [n· an] + VII . [u] 

au 
= [n· an]. 

We take the jump of (3.6) and use (3.5) to prove (3.3). 

(3.5) 

(3.6) 

The next step in the reduction of the normal component of the stress 
balance on the interface E is the decomposition of the pressure into an 
equilibrium part pe , a hydrostatic part pS = pgz, with pS = Pdgz in the 
drop, and a dynamic part II due to the motion. We use a coordinate system 
where the origin is the center of the spherical drop, and we denote the 
parametrization for the surface of the drop by Z= z .. dx, y). Thus, [pS] = 

[p]gzE' and 
[P] = [pe] + [PS] + [II] 

28* 
= - + [p]gzE + [II]. 

a 
(3.7) 
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Combining now (3.3) and (3.7) with (3.1), we find that 

-[lID + 2Dnn lUtD + [P)gZL' + S*(R1 + Rl -~) = O. (3.8) 
1 2 a 

The dynanlic pressure is of course an unknown which must be deter
mined from the solution. This equation will be used in (4.4). 

IX.4 Stokes Flow Around a Drop or Bubble 

It is of interest here to consider the solution due to Hadanlard and Rybczyn
ski [Clift, Grace and Weber 1978; Happel and Brenner 1983] for the problem 
of a falling drop when the Reynolds numbers are small enough so that in
ertia may be neglected. The solution is also discussed in §4.9 of Batchelor 
[1970]. For numerical simulations on the problem at finite Reynolds num
bers, see Dandy and Leal [1989] and Tryggvason and Unverdi [1991]. 

When inertia is negligible, if we assume that the drop is spherical and 
is falling at its terminal speed, and match the shear stress and velocities at 
the interface, then the normal stress condition will be seen a posteriori to 
be automatically satisfied. Thus, a spherical drop falling at its equilibrium 
speed is a steady solution. 

We begin by supposing that interfacial tension is large enough to keep 
the drop spherical against the deforming effect of the viscous forces. We use 
spherical polar coordinates (r, 0, </», with the spherical interface E being 
r = a. On E, z = ZL' = acosO. We assume axisymmetry: a/a</> = O. It is 
convenient to introduce a stream function 'l/J such that 

-1 a'l/J 
U r = r2 sin 0 aO ' 

1 a'l/J 
U(}---

- rsinO ar' ( 4.1) 

The velocity and shear stress are made continuous at the interface and 
the kinematic condition is satisfied. Let U be the speed of the drop. It 
can be shown (see equation (4.9.5) of Batchelor [1970]) that the required 
solution is in the form 

where 

'l/J = f(r) sin2 0, r 2: a, 

'l/Jd = fd(r) sin2 0, r:::; a, 

D 
f(r) = Ar + Br2 + -, 

r 

A __ 3Ua (JLd + ~JL) 
- 4 JLd+JL' 

(4.2) 
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E-~-I-'
- 4a2 I-'d + I-' ' 

-U I-' 
F=---. 

4 I-'d + I-' 
The pressure for Stokes flow is harmonic V2 II = 0 and the solution is 

given by 

II _ aU cos(} I-'{I-' + il-'d) 
- 2 ' r ~ a, 

r I-'d + I-' 
(4.3) 

IId = -5Urcos(} __ I-'_, 
---=-2-- r::::; a. 

a I-'d + I-' 
The solution (4.2) and (4.3) is obtained by satisfying all the required 

conditions except the normal stress equation (3.8). It can be shown that 
the solution automatically satisfies the normal stress condition. Equation 
(3.8) may be written on ZE = acos(} and Rl = R2 = a as 

(4.4) 

where 
D - OUr _ -2 cos (} /'( ) _ -2U cos (} _1-'_ 

rr- - a-or (r=a) a2 a I-'d + I-' ' (4.5) 

and 
[II] = {lId _ II)r=a = -U cos (} (131-' + 1-'2 ). 

a 2 I-'d 
(4.6) 

In equation (4.4), the interfacial tension term vanishes, so that it is not 
necessary to assume a priori that the effect of surface tension must be 
enough to keep the drop spherical. For example, a large air bubble rising in 
tar can take a spherical shape, even when the effect of interfacial tension 
cannot be dominant. Putting this all together, we get 

( -3U I-' I-' + il-'d [P] ) (} 0 -- + gacos=. 
a I-'d + I-' 

(4.7) 

This yields 

(4.8) 

The analysis just given shows that if the flow is very slow, so that iner
tia may be neglected, the sphere is a solution for the shape of a drop falling 
at its terminal speed. At low Reynolds number, a solution is a slightly per
turbed sphere [Taylor and Acrivos 1964]. There is numerical and experimen
tal evidence to suggest that these solutions are stable to small disturbances 
[Koh and Leal 1990; Pozrikidis 1990] but not to large disturbances. 

The same result holds for the case in which a drop falls from rest 
under gravity. In this situation, we have the unsteady Stokes equation with 
gravity as the body force for the flows inside and outside the drop. Suppose 
the drop has a speed U (t) in the direction of gravity. Then in a coordinate 
system moving with the drop, the governing equations are the continuity 
equation (3.4) and 



296 Chapter IX. Vortex Rings 

~ • 2 
P lJt = -Vp - p(g - U(t»e. + pV u. (4.9) 

We divide the pressure into three parts: p = pa + II + pB, where pB is 
the static pressure satisfying IPB] = 2/a, pa is the pressure due to the body 
force, which can be found from Vpa = -p(g - ir)e., and II is the dynamic 
pressure, which will be determined with the solenoidal velocity u by 

au 
p lJt = -VII + pL1u. (4.10) 

Equation (4.10) holds in both fluids. 
Assuming now that the flow is axisymmetric, we introduce a stream 

function as in (4.1). Equations (3.1) and (3.7) imply that [us), [ur], [p.Drs] 
all vanish, and 

. 1 1 2 
-[II] + 2[pDrr] + [P](g - U(t»acosO + S*( -R + -R - -) = 0, (4.11) 

1 2 a 

where S* is the surface tension coefficient and lt + i2 is the mean curvature 
of the surface. 

It is concluded that the spherical bubble does not need interfacial ten
sion to retain its shape when it is accelerating because the weight is momen
tarily greater than the drag. The proof will be as follows. First, we suppose 
that the surface tension is large enough to keep the spherical shape of the 
bubble: that is, we ignore equation (4.11) and enforce the other boundary 
conditions on the sphere. Then we show that this equation will automati
cally be satisfied without any condition on S*. 

Taking the curl of (4.10), we get the equation for the stream function 
t/J(r, 0, t): 

(4.12) 

where 
2 {)2 sinO {) 1 {) 

E = fJr2 + 1=2 {)O (sinO {)O)· 

We can separate variables: 

t/J(r, 0, t) = f(r, t) sin2 0. (4.13) 

Then Ur can be written as ur(r, t) cos 0, Us = us(r, t) sin 0. From the equa
tion 

where 
2 1 ( {) ( 2 {) » 1 {) ( . {) ) 

V = r2 fJr r fJr + r2 sinO {)O sm9 {)9 ' 

we see that II(r,9,t) is of the form 

II(r, 9, t) = iJ(r, t) cosO. 
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Hence, 
8ur -

Drr(r,O,t) = 8r = Drr(r,t) cosO, 

1 8 U9 18ur - . 
Dr9 = 2(r 8r (-;:) +;: 80 ) = Dr9(r, t) smO. 

Now let us compute the force acting on the spherical bubble by the outside 
fluid which, because of the symmetry, must be along ez . By Newton's law, 
the magnitude of this force is equal to the force acting on the outside fluid 
by the bubble. Hence, J ez . [T] . n ds = 0, (4.14) 

where 
[T] = (-[JI] + [p](g - U(t))acosO))I + 2[JLD(u)], 

ez = cosOer - sinOe9, n = er , and I is the unit matrix, and the integral is 
executed on the spherical surface. 

Using all the above equations and ds = 21l"a2 sinO dO, we get 

21l"a~( - [ll(a, t)] + [p](g - U(t)a) + 2 [JlDrr (a, t)]) l1r cos2 OsinO dO = O. 

(4.15) 
Therefore, 

-[ll(a, t)] + [P](g - U(t)a) + 2 [JlDrr (a, t)] = O. 

This is just the sum of the first three terms of equation (4.11). Thus, if we 
can find a solution for I(r, t), the proof is finished. 

We introduce V = a2gplJl, a and Vig as scales for the velocity, length 
and time respectively, and Va2 for I(r,t). Then, using the same notation 
for the dimensionless variables, the initial value problem becomes 

and 

for r> 1; 

8 24 at L Id = Lid, for 0 < r < 1; 

l(r,O) = Id(r, 0) = U(O) = 0, 

1(1, t) = Id(l, t) = 0, 

[8/ ]=0, 
8r 

1821 281 1821d 281d 
;: 8r2 - r2 8r = m(;: 8r2 - r2 8r ), 

1 
I(r, t) - -2r2U(t) as r - 00, 



298 Chapter IX. Vortex Rings 

f(r ,r) 
0 .0005 

0 .0004 

0.0003 

0.0002 

0.000 

0.0000 

·0.0001 

·00002 

·0.0003 

·0.0004 

·0.0001i 
0.0 

t- .f. : ••• 
+ 

+ 
+ 

. . . . 
+ 

+ 
+ 

+ 

+ 

+ 

+ ' 

. . . . '/' 
+ 

+ 

+ 

+ + 
+ + 

+ ... + 

1 . 0 .5 

Fig. 4.1. f(r, t) vs r, m = 0.9 and d = 0.95: (e) t = 0.11, (+) t = 0.27. 
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Fig. 4.2. U(t) vs t: (+) m = 0.9, d = 0.95, fj = -0.0172; (e) m = 0.4, d = 1.3, 
fj = 0.1273. Positive values of U(t) are for falling drop and negative are for rising 
bubble. 
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. tf3f 2f)2f 2f)f f)2f 
dU(t) = (-!'l 3 + -!'l 2 + 2£l +d-1)lr=1 + !'l !'l.Llr=b 

ur r ur r ur UrUL 

where 
d = Pd d J.Ld an m=-. 

P J.L 
The system was solved for f(r, t) and U(t) by a finite element method. 
Graphs of f(r, t) versus r for m = 0.9, d = 0.95 at two different times are 
given in figure 4.1. Graphs of the dimensionless U(t) versus t for different 
parameters are given in figure 4.2. The terminal velocity of the drop is given 
by 

fj = 2(1 + m)(d - 1) . 
3(2 + 3m) 

This is the dimensionless form of equation (4.8). Figure 4.2 shows that the 
unsteady solution U(t) converges to fj as t approaches infinity. 

IX.S Dimensionless Parameters 

To identify dimensionless parameters, we scale lengths with a, the radius of 
the equivalent spherical drop or bubble with the same volume, and velocity 
with U to be specified later (see section IX.6). The normal stress balance 
at the interface (see section IX.3) shows that there are four forces at work: 
gravity, surface tension, inertia and viscosity. 

The viscosity ratio 
M_J.Ld 

- J.L' (5.1) 

where J.Ld is the viscosity of the drop and J.L is the viscosity of the ambient 
fluid, is very important. 

The ratio of inertia to viscous forces is measured by the Reynolds 
numbers 

R - Ua - , 
v 

(5.2) 

where v = J.L/ p, Vd =J.Ld/ Pd. To form immiscible vortex rings, inertia is im
portant because the drop will be close to a sphere if R and Rd are sufficiently 
small [Clift, Grace and Weber 1978]. 

The viscous part of the normal stress in the drop is scaled by U J.Ld/ a 
and in the exterior fluid by U J.L / a. The interfacial tension term in the stress 
balance is scaled by S* / a. The ratio of the stress associated with interfacial 
tension to the viscous part of the normal stress in the outer fluid is 

S* J 
J.LU= R' 

(5.3) 

where 
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8*a 
J = -, (5.4) 

v2p 

is Chandrasekhar's capillary number (used in his study of the capillary 
instability of a jet; see §111 of his book [1981]) for the outer fluid. Similarly, 
for the inner fluid we have 

8* Jd (5.5) --=-, 
J.LdU Rd 

where 
MJd J 

(5.6) 
Rd R· 

For a ring to form, the tendency for interfacial tension to keep the drop 
spherical should be overcome by the effect of viscosity to distort it. Thus, 
we expect to see rings when J / R < < 1. In our experiments, we got ring 
formation only when M > > 1. We did not observe rings in immiscible liq
uids when M < 5. The condition M > > 1 may not be universal. Certainly 
it is easier to form vortex rings in miscible liquids; for these J / R = 0 but 
evidently when M ~ 1, it is possible to form vortices from ink drops falling 
in water. 

We have already mentioned that inertial effects are always important 
in deforming the drop away from a sphere. These effects can be measured 
by the Weber number, the ratio of interfacial tension to inertia. 

The inertial part of the dynamic pressure for the outer fluid is scaled 
with pU2 and the drop with PdU2. The ratio of interfacial tension to inertia 
in the outside fluid is 

(8* fa) J 1 
pU2 R2 W' (5.7) 

and in the drop is 
(8* fa) Jd 1 
PdU2 = R~ = Wd' (5.8) 

where W is the Weber number. Obviously, 

Pd Jd J 
P R~ = R2· (5.9) 

Since P and Pd do not differ greatly in our experiments, the Weber number 
is nearly the same in the outside fluid and the drop. The Weber number 
Wd for systems that do form rings ranged between 330 and 9600 whereas 
the Wd for systems that do not form rings ranges between 0.3 and 11000. 
The low Weber number drops are spherical. 
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IX.6 Physical and Other Properties 

The physical properties are density, viscosity and interfacial tension. Other 
properties used in our discussion are the velocity U and the drop size a. 
First, we discuss the fluid properties. 

Table 6.1 lists the fluids used in the experiments. The densities were 
measured using a Curtin Scientific hydrometer at approximately 21 degrees 
Celsius. The viscosities were measured using standard Cannon Fenske tube 
viscometers. The interfacial tension S* was measured with the spinning rod 
tensiometer. 

Table 6.1. Fluid properties are tabulated .. 95 Gly = 95 percent glycerin in 5 
percent water. Sil = Silicone oil with indicated viscosity. Canola oil is also termed 
rapeseed oil. The glycerin listed is .99 pure USP glycerin. The percentages listed 
for golden syrup and glycerin are dilutions with water. Alconox is an industrial 
glass cleaner and is used as a surfactant with water. 

Fluid Density Kinematic Viscosity Viscosity 

(g/cm3 ) (cstokes) (g/cm sec) 

Canola Oil 0.915 67 0.61 

Glycerin 1.265 656 8.29 

.95 Gly 1.245 244 3.03 

.91 Gly 1.240 113 1.40 

.92 Golden Syrup 1.400 2606 36.49 

Lyle's Golden Syrup 1.440 20804 299.58 

Motor Oil 30W 0.886 316 2.80 

Olive Oil 0.914 69 0.63 

Palmolive Soap 1.05 238 2.50 

Safflower Oil 0.920 51 0.47 

Sesame Oil 0.920 64 0.59 

Shell Research Oil 0.895 2037 18.23 

Sil 5cS 0.930 5 0.05 

Sil 100eS 0.960 100 0.96 

Sil 200eS 0.970 200 1.94 

Sil 300eS 0.970 300 2.91 

Sil 400eS 0.970 400 3.88 

Sil 500eS 0.971 500 4.86 

Sil 600eS 0.971 600 5.83 

Sil 1000eS 0.971 1000 9.71 

Sil 10000cS 0.975 10000 97.50 

Sil 30000cS 0.975 30000 292.50 

Soy Bean Oil 0.922 53 0.49 

Water 1.000 0.01 

Water+Alconox 1.080 33 0.36 

Walnut Oil 0.925 51 0.47 
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Our early experiments on vortex rings were carried out in a plexiglass 
box three inches square and eight feet long. The top of the box is open to 
allow introduction of the drop and the bottom is closed by a valve. The valve 
holds the host fluid in and allows the removal of the dropped fluids that 
collect at the bottom. The plexiglass is clear to allow good visualization 
and photographic recording. The apparatus is back-lighted by reflecting 
incandescent light off of a translucent plexiglass sheet. The most recent 
experiments were carried out in a tube, which differed from the earlier 
apparatus in that it is made of glass and has a circular rather than square 
cross-section. The tube is four feet long, and like the plexiglass box, it is 
open at the top, and closed at the bottom with a valve. 

The method for introducing the drop into the vortex ring box is as 
follows. A 10 cc drop of the more dense fluid was carefully placed on top of 
the host fluid with a calibrated beaker. This gives 

4 
3,m3 = 10 cc or a = (2.39)1/3 em = 1.34 em. 

Care was taken to insure that the drop was not splashed or accelerated into 
the host fluid. 

A parametric study of drop size was also carried out with volumes 
other than 10 cc. The results of these studies are summarized in figure 9.1. 

The velocity scale we use to calculate the Reynolds numbers is U given 
by (4.8). Using this U, Rd = Ua/vd depends only on measurable quantities 
and may be interpreted as the ratio between the buoyancy and viscous 
foces. The assumptions leading to (4.8) are that the fluid is a sphere falling 
at constant speed in Stokes flow, and that if the shear stress and velocity are 
matched at the interface, then the normal stress is automatically matched. 
The analysis does not say anything about what the drop would do if it were 
not falling at the terminal speed; for example, in the experiments, the drop 
starts at rest, some drops do not attain any steady speed, and moreover 
appear not to reach the speed predicted by this formula. It is difficult to 
decide a priori on a velocity scale because we do not have a formula for 
predicting the velocity as the drop changes shape. For each experiment, one 
could measure the maximum speed attained by the drop and use that as 
U, and this type of data is available for some of the experiments. 

The velocity of the drop as it falls in the vortex ring box has been 
measured for some situations and found to be much smaller than the value 
from (4.8). Measurements of the velocity of a falling drop were made by 
recording the time it took for the drop to cross a six inch region of the 
box. Five such regions were selected to best capture the rate of fall at 
critical sections. The records were taken ten times for each region and the 
average velocity was calculated. Figure 6.1 shows the average velocity versus 
distance down the tube for three types of glycerin (e.g. 90% glycerin means 
90% glycerin in 10 % water) and silicone oil falling in soy bean oil. {Rings 
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91% glycerin 

95% glycerin 

, 00% glycerin 

---_------....-.--_----- 500cS. silicone • 

2 0 3 0 40 

distance down tube (Inches) 

Fig. 6.1. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute of 
Physics] The average velocity versus distance down the vortex ring tube for the 
designated liquids falling in soy bean oil. 

were observed in the 100% glycerin case, but not in the other two cases, 
which happen to have higher velocities in the figure.} 

Take, for example, the data in this figure. Compared with this, the 
value of U from (4.8) is approximately 110 inches per second, which is 
about twenty times the actual average velocity. This is consistent with the 
notion that a spherical drop would fall faster than a flattened spheroid or 
a ring. The swings in the measured speed reflect the changes in the shape 
of the drop as it evolves into a ring and decays. We should therefore keep 
in mind when looking at the tables that the true Reynolds numbers are 
probably an order of magnitude less than those tabulated. 

There are also situations where U from (4.8) turns out to be large which 
is inconsistent with one of the assumptions in the derivation of (4.8); but 
since Stokes drag is less than the actual drag at higher Reynolds numbers, 
we expect that the U is an upper bound on the actual maximum velocity. 
Thus, our tabulated values of Jd/ Rd and J / R in the sequel underestimate 
the importance of surface tension, but consistently, so that they should 
probably be an order of magnitude larger than they are. This would imply 
that the switch in the behavior from ring formation to no ring is actually 
occurring at a value of J / R of order 1. This, in fact, is what one would 
expect. 
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It is interesting that the condition for ring formation (on M and J / R) 
appears to hold for the entire wide range of Reynolds numbers encountered 
in the experiments. Why? In the normal stress condition at the interface, 
the only term we have not really commented on above is the pressure term, 
which is multiplied by the Reynolds number R. It appears that this term 
does not affect the ability to give birth to a ring: indeed, the factor R 
appearing there can be made to disappear just by changing the way the 
pressure is non-dimensionalized. 

The formation of vortex rings always involves the breaking of a mem
brane, by poke-through or blow-out, and the breaking strength (toughness) 
of a membrane is very difficult to control, especially in silicone-vegetable 
oil systems. Our early experiments were recently repeated with good suc
cess except for the breaking of silicone-vegetable oil membranes. Some ex
periments were carried out with a contaminated safflower oil with various 
additives. We could never break a membrane in a silicone-contaminated 
safflower oil system (plate IX.7.5 and figure 8.2). The breaking strength of 
a membrane may be related to interfacial tension since we could get tough 
membranes to break by adding certain types of surfactants to the silicone oil 
(trace amounts of 97% dye, 3% Rhodamine B base powder in plate IX.8.3; 
trace amounts of Igepal in plate IX.8.4). We also had difficulty breaking 
membranes in a silicone-soy bean oil system, even when uncontaminated 
fluids were used. However, the oils used in the most recent experiments were 
not exactly the same as those used earlier, and it is possible that the newer 
oils had an interfacial tension large enough to prohibit vortex ring forma
tion. As was the case for the contaminated oil system, rings were formed 
when the above mentioned surfactants were added to the silicone oil. 

The low values of surface tension in the silicone oil-vegetable oil systems 
may indicate the possibility of small-scale activity at the interface. This 
activity could affect the boundary conditions involved, but more research 
must be done before any definitive statements may be made. 

IX.7 Distortion of the Spherical Drop 

When viscous effects win over the effect of interfacial tension, a falling drop 
cannot maintain a spherical shape. Numerical solutions have been obtained 
by Dandy and Leal [1989] for steady streaming flow past an axisymmetric 
drop over a wide range of Reynolds numbers, interfacial tension, viscosity 
ratios and density ratios. Their results indicate that at lower Reynolds 
numbers, the shape of the drop tends toward an indented oblate shape 
with decreasing interfacial tension, and at higher Reynolds numbers the 
drop becomes more disk shaped with decreasing interfacial tension. 

In our experiments, the drop is released at zero speed and undergoes 
accelerations and decelerations, so that the results mentioned above con
cerning steady motions cannot strictly be used to infer anything about what 
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(b) 

Fig.7.1(a-b). [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] Indented oblate drops falling in safflower oil. (a) Water M = 0.02, 
J = 4530, S· = 3.39 dyn/cm. Indentation never develops in water and oil systems 
without surfactants. (b) 500 cS silicone oil. These are the most common shapes 
when falling. The high viscosity drop develops a circulation which brings it closer 
to a vortex ring. 
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1 1 

(a) · I I 
Fig. 7.2(a-b). rBaumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] Development of vorticity in a drop falling from rest. The streamlines 
are sketched in a frame movin~ with the drops: (a) from experimental observations 
at sufficiently small velocity, lb) larger velocity. 

our drop is doing. Moreover, as mentioned in section IX.6, measurements 
of the drop speed indicate that it often does not reach the steady speed 
predicted by the formula (4.8). However, there are similarities with these 
analyses and what we have seen. 

Figure 7.1 shows an indented oblate drop like those computed by 
Dandy and Leal at low Reynolds numbers (see, for example, their figure 
3). Experimental observations suggest that the streamline pattern on the 
concave side of the cap is probably like that of figures 7.2; there are no 
points of separation or vortices in this guess about the underlying fluid 
dynamics. The suction in the cap, call it a wake, is large and small drops 
and even large drops are easily captured by the indented drop, as shown 
in figures 7.3 - 7.4 and 8.1(a) and plate IX.7.5 (a). If the conditions are 
right, the drop in the wake will poke through the membrane spanning the 
indentation, as in figure 8.1 and plate IX.8.3, but if the membrane is tough, 
as in plate IX.7.5 and figure 8.2, the poke-through will fail. 
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(a) 

(b) 

Fig.7.3(a-b). [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] Spheres nested in the wake of an indented oblate drop. (a) Glycerin 
falling in soy bean oil M = 16.9, J = 0.45, S* = 18.45 dyn/cm. (b) 500 cs silicone 
oil in contaminated safflower oil. 
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Fig. 7.4. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute of 
Physicsl A streamline pattern for figure 7.3. The flow in the wake could pull out 
a tail from the nested sphere if the wake were strong as in plate IX.7.5 (b), or the 
surface tension weak as in the case of miscible liquids. 

IX.S Formation of Rings 

Stuke [1954] did experiments like those reported in this chapter. He cites the 
work of Northrup [1912] who used paraffin in a water bath, where interfacial 
tension is large. Northrup needed to inject the paraffin at high speed so that 
viscous forces would create a circulation of sufficient magnitude, as in the 
case of air injected into water. The larger the interfacial tension, the faster 
the intrusive speed necessary to create a ring. Stuke showed that rings 
would form at slower speeds when water was replaced with amyl alcohol, 
with a consequent lowering of interfacial tension. The slower speeds allowed 
these processes to be recorded in photographs which can be compared with 
the photographs of this chapter. Initially, there is a membrane across the 
hole of the ring (cf. figures 8.1-2). and then the membrane ruptures. Once 
formed, the ring starts to expand rapidly and the bulk of the paraffin flows 
into two or three bulges around the ring (cf. plates IX.8.3 (f) and IX.8.4). 
These heavier bulges fall faster, so that the ring bends and breaks into two 
or three drops (see his figure 5, figure 2b of O'Brien [1961] and our figures). 
If a drop were large enough, it would form another vortex ring and the 
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sequence repeats itself. An analogous description of the ring instability for 
miscible liquids at slow speed is given by Kojima et al. [1984] for their figure 
4 and by Arecchi et al. [1989]. 

If the conditions are right, if the drop is much more viscous than the 
host fluid (M > > 1) and the ratio J / R of interfacial to viscous forces is 
not too large, then the spherical drop will evolve toward a vortex ring. The 
entries in tables 9.1 to 9.3 for drops of silicone oils in soy bean oil exemplify 
these effects well. The viscosity of silicone oil can be varied through careful 
mixing without changing their density or surface tension appreciably. It was 
observed that when the viscosity of the drop was lower than a certain value 
(about 500 centistokes here), rings did not form. In particular, when the 
drop was less viscous than the bath, even with very low interfacial tension, 
rings did not form, as in plate IX.7.6. 

Inertia alone will not cause a ring to form. Indented oblate drops like 
those shown in figure 7.1 are the most robust of the falling drops. If condi
tions are such that the viscous action of the host fluid can create a perma
nent circulation (like that sketched in figures 7.2 (b) and 7.4) of sufficient 
strength, the drop will begin to look like a ring, spanned by a membrane, as 
in figures 7.3, 7.4,8.1 (a) and especially 8.2 (a). A free ring will form only if 
the membrane breaks. The membrane mayor may not break. If it breaks, 
it does so either by poke-through of a smaller drop caught in the wake as 
in figures 8.1-2, or by blow-out. Blow-out can best be understood by the 
failure of blow-out shown in figure 8.2 (a). Blow-out can occur only if the 
membrane is very weak as in miscible liquids or in low interfacial tension 
systems like those shown in plates IX.8.4-8.5. 

Vortex rings are unstable; whether or not the membrane has broken, 
the ring will expand rapidly. The rapid extension is a universal characteristic 
of the instability. If a membrane remains and no drop rests in the wake to 
poke through, the membrane will stretch and either rupture or fold as in 
figure 8.2 (b). 

Bulges develop on the ring because of capillarity, draining, or other 
causes; these fall faster than the rest of the ring, and fluid drains rapidly 
to the heavy bulges, exacerbating the instability. This instability can be 
considered as a manifestation of the Rayleigh-Taylor instability of the heavy 
fluid into the light, when the heavy fluid has the shape of a vortex ring. In 
our experiments, the draining almost always occurs at just two points of 
the ring, more or less at opposite points on the ring as in plate IX.2.2 (d), 
figure 2.3 (f), 8.1 (d) and plate IX.8.3 (f). This type of instability scenario 
can occur even for ring-like structures like the one shown in figure 8.2 (a) in 
which the membrane does not break and it leads to the folded ring shown in 
figure 8.2 (b). The heavier places fall faster and the ring bends and breaks 
into drops. 

O'Brien [1985], in reviewing her own work and that of Stuke [1954], 
noted that the number of bulges which develop on the ring depends on 
the Reynolds number and is two for Reynolds numbers of order one or 
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(a) 

(b) 

Fig.8.1(a-d). [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] Poke-through of 1000 cS silicone oil in safflower oil M = 19.8, J = 0.03, 
S· = 2.41 dyn/cm. (a) Silicone oil spheres nested in the wake of an indented 
oblate drop of the same oil. (b) Poke-through leads to a vortex ring. (c) Vortex 
ring (Rayleigh-Taylor) instability is the rapid expansion of the ring diameter and 
the draining of the oil into the falling bulges. (d) Two new indented oblate drops 
form from the falling bulges in a replication of the dynamic sequence. 
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(c) 

(d) 

Fig.8.1(c-d). Continued. 
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(a) 

(b) 

Fig.8.2(a-b). [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] 1000 cS silicone oil falling in contaminated safflower oil. (a) A vortex 
ring with circulation has developed but a tough membrane spans the ring. (b) 
The ring is unstable in the usual way (Rayleigh-Taylor instability) forming the 
characteristic drops (cf. figure 8.1 (d», but the membrane breaks. 
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less. Basically, we observed only two bulges even at Reynolds numbers of 
order 100, with some very rare exceptions. Perhaps the number of bulges 
on the ring is related to capillary breakup and is strongly influenced by the 
value of interfacial tension. We saw many bulges when soap was added to 
water in soy bean oil (see the last entry of table 9.1). This interpretation is 
also suggested by the closely similar instability in miscible liquids reported 
by O'Brien [1961], in which case the lack of surface tension promotes the 
formation of many more nodules around the ring, the ring breaks into many 
drops, and those drops subsequently repeat the cycle and there is a vortex 
cascade [Thomson and Newall 1885]. Surface tension can keep subsequent 
drops spherical if they are small enough, and thus inhibits the cascade. 

The effect of the wall on the drop and ring needs further study [Ama
rakoon, Hussey, Good and Grimsal 1982]. For example, when a ring ap
proaches a wall of the apparatus, it expands considerably before touching 
it. Also, experiments done with a vortex tube of smaller diameter show that 
the walls inhibit ring formation. Observations about the way a ring behaves 
(in the miscible case) at a variety of boundaries is reported by Northrup 
[1912]. 

The dynamics leading to formation of vortex rings is not well under
stood. Data presented in the next section show that rings form from drops 
started from rest when the viscosity of the drop is relatively great and the 
interfacial forces do not dominate viscous forces. 

A falling drop is relentlessly sheared by the host fluid, but only small 
portions of the host fluid come under the influence of the falling drop, and 
these only momentarily. If we move with the drop, we can think that we 
have a uniform flow around the drop as in figure 7.2 (b), and this picture is 
also suggestive of why circulations develop in the drop and not in the host 
fluid. The flow around the ring would, in the case where the ring fluid is very 
viscous, resemble that of figure 2.1 (a), where the flow is analogous to the 
rigid-body rotation of figure 2.1 (b) and would then be almost potential 
flow, with potential flow at infinity (uniform flow), and the vorticity is 
localized to the interface region between the fluids. 

IX.9 Two-Fluid Systems That Do and Do Not Form 
Vortex Rings 

We used formula (4.8) to compute the velocity of a falling drop ( with a= 
(2.39)1/3) and rising bubble (with volume 5 cc, a= (1.19)1/3) and evalu
ated many of the dimensionless parameters defined in section IX.5. The 
parameters are listed in tables 9.1-9.3. Parameters which are not set down 
explicitly in these tables can be computed readily from the listed values. 
Table 9.1 tabulates the systems that were observed to form rings. The other 
two tables list the two-fluid pairs that were observed not to form rings. 
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We find that to form a ring, it is necessary that the drop fluid be much 
more viscous than the host fluid. Another criterion which appears to be 
necessary is that the effect of interfacial tension should be smaller than 
viscous effects, which may be expressed as 

J 
R < 0(1), (9.1) 

where the notation is defined in (5.4) and (5.6). The last column of table 
9.1 is comfortably in agreement with (9.1). However, the velocity U used to 
compute R was computed from (4.8) and the true J/R may be an order of 
magnitude larger than in the table. In general, however, when one inspects 
the tabulated data, it becomes apparent that since all of the fluids tested 
have low values of J / R, the factor which distinguishes a system which will 
form rings from a system which will not is the value of M. For the most 
part, the criterion for the fluids tested seems to be that M be greater than 8 
or so. However, there is definitely an ambiguous range (5 < M < 8) within 
which we cannot predict whether a ring will form or not. 

A very dramatic illustration of the importance of J / R and M is exhib
ited by data for Palmolive soap dropped in soy bean oil (a ring forms; see 
last entry of table 9.1) and water dropped in soy bean oil (a ring does not 
form). Palmolive soap is essentially water modified with a surfactant which 
reduces the interfacial tension enough to move J / R down to a sufficiently 
small value. The viscosity of Palmolive soap is greater than that of water 
and this alters M such that the combination of J / Rand M produces a 
vortex ring. The evolution of the ring in this soapy solution is exceptionally 
rapid and the torus breaks up rapidly into small bubbles, as in the case of 
miscible liquids. 

Table 9.2 displays systems that do not form vortex rings. The data show 
that a modification of the fluids will switch a system that forms a vortex ring 
to one that does not. An example is the glycerin and soy bean oil system. 
When 9 percent water is added to glycerin, the resulting diluted solution 
will not form a vortex ring because the viscosity ratio M has decreased 
and J / R has increased to the borderline level. A similar adjustment was 
made for golden syrup by adding water. Of course, we cannot determine in 
these examples which parameter is truly causing the change of the system, 
since in both cases, M and J / R change simultaneously. However, it is still 
interesting to observe the effect of altering the relevant parameters. 
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Table 9.1. Systems that form vortex rings. Gly denotes 100 percent glycerin; 
.95Gly denotes 95 percent glycerin in 5 percent water; Shell denotes Shell Research 
Oil; Sil denotes silicone oil with the indicated viscOSitr Soc< denotes soy bean oil. 
The difference ilp denotes (density of dr0rvped fluid - densitr of host fluid); 
ill! denotes (viscosity of dropped fluid) - viscosity of host fluid: this difference 
is negative in some of the systems in the tables. 

System t1p t1l! S* U Rd Pd/p M Jd/Rd J/R 
(g/cm3 ) (cS) (dyn/cm)(cm/sec) 

Gly /Soy 0.343 606 18.45 278.5 57 1.37 16.9 .008 .135 

Gly 0.350 589 35.78 227.5 46 1.38 13.6 .02 .272 

/Canola 

500cS Sil 0.056 433 2.33 37.0 10 1.06 8.0 .01 .080 

/Canola 

Gly 0.351 588 10.50 242.0 49 1.38 13.2 .005 .066 

/Olive Oil 

500cS SilO.057 431 3.10 58.0 16 1.06 7.7 .01 .077 

/Olive Oil 

Gly 0.345 606 15.65 291.5 59 1.38 17.6 .006 .106 

/Saffiower 

500cS SilO.051 450 7.44 43.6 12 1.06 10.3 .03 .309 

/Saffiower 

Gly 0.340 605 39.51 285.8 58 1.37 17.6 .02 .352 

/Walnut Oil 

500cS Sil 0.046 449 4.15 39.1 10 1.05 10.3 .02 .206 

/Walnut Oil 

Gly 0.345 592 15.20 216.3 44 1.38 14.1 .008 .113 

/Sesame Oil 

500cS SilO.051 436 3.40 34.9 9 1.06 8.2 .02 .164 

/Sesame Oil 

500cS Sil 0.049 447 1.68 40.3 11 1.05 9.9 .008 .079 

/Soy 

600cS Sil 0.049 547 2.68 40.1 9 1.05 11.9 .01 .119 

/Soy 

1000cS 0.049 947 2.41 39.7 5 1.06 19.8 .006 .119 

Sil/Soy 

10000cS 0.053 9947 3.29 42.3 0.6 1.06 199.0 .0008 .159 

Sil/Soy 

30000cS 0.053 29947 6.49 42.3 0.2 1.06 597.0 .0005 .298 

Sil/Soy 

Golden 0.518 20751 42.20 413.3 2.7 1.56 611.4 .0003 .183 

Syrup/Soy 

.92Gold. 0.478 2553 28.46 382.6 19.6 1.52 74.47 .002 .149 

Syrup/Soy 

Palmolive 0.128 185 18.10 108.0 61.0 1.14 5.10 .0006 .003 

/Soy 
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Table 9.2. Systems that do not form vortex rings 

System ~P Llv S* u Rrl Pd/p M Jd/Rd J/R 
(g/em3 ) (eS) (dyn/em)(em/sec) 

.95 Gly 0.323 194 13.43 269.8 148 1.35 6.2 .02 .124 

/Soy 

.91Gly 0.318 63 11.49 277.3 328 1.34 2.9 .03 .87 

/Soy 

Water 0.114 315 9.22 23.7 3172 1.13 0.004 38.85 .156 

/30W Motor Oil 

Water 0.105 2036 42.14 3.4 450 1.12 0.0005 1251 .625 

/Shell 

Gly 0.370 1381 27.83 10.3 2 1.41 0.45 .34 .153 

/Shell 

500eS SilO.076 1537 5.82 2.2 0.6 1.08 0.27 .53 .143 

/Shell 

5eS Sil 0.008 -48 1.14 9.2 245 1.01 0.10 2.7 .27 

/Soy 

1000S SilO.038 47 2.75 34.1 46 1.04 2.0 .08 .16 

/Soy 

200eS SilO.048 147 2.16 40.9 28 1.05 4.0 .03 .12 

/Soy 

300eS SilO.048 247 2.71 40.2 18 1.05 5.9 .02 .118 

/Soy 

400eS Sil 0.048 347 2.67 39.7 13 1.05 7.9 .02 .158 

/Soy 

Water 0.078 -52 3.39 92.3 12337 1.08 0.02 .37 .074 

/Soy 

Water+ 0.158 -20 4.64 156.0 632 1.17 0.73 .08 .056 

Aleonox/Soy 

.60Gold. 0.342 -27.5 7.42 341.0 1788 1.37 0.659 .07 .046 

Syrup/Soy 

Table 9.3 lists systems where bubbles of the less dense liquid were 
released and left to rise through the more dense liquid. In each case, an oil 
was released into water. No vortex rings were observed. The related case of 
air bubbles released into water has been shown to yield rings (see figure 7 of 
Walters and Davidson [1963]). The case of 12500 centistoke silicone oil was 
inconclusive because the silicone oil showed an affinity for the plexiglass 
box. 
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Fig. 9.1. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute of 
Physics] Distance travelled by a falling drop before a vortex ring forms as a 
function of drop volume. The formation of the ring occurs when the membrane 
spanning the ring breaks. 

Table 9.3. Systems of injected bubbles 

System S* Pd/p u M 
(dyn/em) (ern/sec) 

100eS Sil 24.67 0 .96 984 1043 96 0.03 2.88 

/Water 

12500eS 27.11 0.975 621 5.3 12188 0.0004 4.8 

Sil/Water 

Soy Oil 3.39 0.922 1917 3829 49 0.004 0.196 

/Water 

30W Motor 9.22 0.886 280 

Oil/Water 

Olive Oil 16.42 0 .914 2119 3257 63 0.012 0 .72 

/Water 

In figure 9.1, we display the results of a study of drop size on the 
distance required for ring formation. This distance decreases monotonically 
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with volume and seems to asymptote to some small value less than 15 inches 
for large volumes. 

IX.10 Effect of Drop Size and Surfactant 

This section is based on the work by Mohr and Joseph which appears as an 
addendum to the paper of Baumann, Joseph, Mohr and Renardy [1992], and 
concerns experiments with silicone drops, and silicone drops containing the 
surfactant Igepal. The drops are released at the top of a four foot tall glass 
tube which contains soybean oil. They fall under gravity, and observations 
are made as they traverse the length of the tube. To control the drop size, 
a 1 inch diameter (60 ml) plastic syringe is used, with the end almost 
completely removed. Since small amounts of silicone invariably stick to the 
syringe and since the modified syringe volume is measured to be 0.8 ml 
less than with the tip intact, the plunger is consistently pulled back 1 ml 
beyond the desired drop size. With the plunger set, the syringe is filled with 
the silicone oil and the end is quickly placed into the soybean oil and the 
plunger is depressed. The syringe is tilted to a sharp angle and twisted to 
remove the clinging drop. While this method does not guarantee a great 
deal of accuracy for the true drop volume, it does provide for drops of very 
consistent volumes. 

Pure Silicone on. Small drops (roughly those <2ml) were generally ob
served to remain as indented oblate spheres for the entire length of the 
tube. When drop sizes were increased to 2 ml, the indentation in the drop 
deepened, and for many drops (6 times out of 10 observations) this indenta
tion poked all the way through until a free ring was generated. These rings 
would always rupture their membranes while they were on the bottom of 
the drop (see plate IX.1O.1(a) and figure 10.2). 

Drops of approximately 3 ml also form rings, but their evolution is 
slightly different than that of 2 ml drops in that the spanning membrane 
does not always break while it is on the bottom. These drops instead ex
pand horizontally, and the membrane bulges up through the center of the 
surrounding annulus of fluid (see plate IX.1O.1(b) and figure 10.3). The 
degree to which it bulges upward is strongly dependent on drop size; the 
larger the drop, the more extreme the expansion. For drops with volumes 
of 3 ml, the membrane would occasionally rupture after this expansion. 
However, those drops of pure silicone oil having a volume greater than 3 
ml were not observed to form rings. They underwent the same evolution as 
the slightly smaller drops, but exhibited Rayleigh-Taylor instability before 
membrane rupture (see figure 8.2). The instability causes the drop to form 
two lobes, thus pinching off the center membrane. 

Silicone on with 0.5% Igepal CO-530. The addition of 0.5% Igepal CO-530 
to the 1000 cS silicone oil had a rather dramatic effect on the upper bound of 
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I. The drops begins to indent on top. 

II. The indentation deepens. Very small drops 
(less than 1 mD remain like this for the entire 
length of the tube. 

III. The indentation reaches the bottom of the drop. 
Drops that are 1-2ml will sometimes remain in 
this configuration for the length of the tube. 

IV. Membrane rupture occurs on the bottom of the 
drop. Those drops 2-3Jl'J will usually exhibit this 
type of rupture. 

Fig. 10.2. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute of 
Physics] Drop evolution for volumes of 2-3 ml. 

drop size. As mentioned above, large drops (4ml-7ml) had the tendency to 
become unstable, form a tough membrane and pinch off before a ring could 
be formed. The drops which contained Igepal proceeded in the same fashion 
except that the membrane usually broke; sometimes before and sometimes 
after the onset of instability. It was sometimes observed that a membrane 
would rupture during pinch-off. In other words, it appeared that the mem
brane rupture occurred when the total surface area of the membrane was 
decreasing. Without Igepal, 4ml and larger drops would invariably pinch off 
without membrane rupture, while with Igepal, 4 and 5 ml drops would fre
quently (9 and 7 times out of 10 observations respectively) form free rings 
(see figures lO.4(a) - (b)). Thus, large drops with Igepal more frequently 
experience membrane rupture than those without, and so it would appear 
that the membrane strength was in some sense decreased with the addition 
of the Igepal. The interfacial tension between the Igepaljsilicone oil solution 
and soybean oil was found to be 1.0 dynjcm. This is lower than the value 
of 2.5 dynjcm between pure silicone oil and soybean oil. 
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o 

I. The drop forms an oblate sphere 

II. An indentation begins to fonn on the 
top of the oblate sphere, flattening it 
out, and forcing more fluid towards 
the outer edges of the drop. 

III. The indentation becomes deeper, and 
still more fluid is forced into the outer 
edges of the drop 

IV. The middle of the drop is now a fairly 
thin membrane, with a thick annulus 
surrounding it. 

v. The membrane is stretched upward, and 
becomes very thin. Drops of 4 mI and 
more exhibit Rayleigh-Taylor instability 
at this point and do not proceed to 
phase VI. 

The membrane breaks, leaving only 
the vortex ring. This configuration is 
unstable, and the ring will separate 
into two lobes shortly after forming. 

Fig. 10.3. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute of 
Physics) Drop evolution for volumes of 3-5 ml. 
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(a) 

(b) 

Fig.l0.4(a-b). [Baumann, Joseph, Mohr and Renardy, 1992, American Institute 
of Physics] (A) This 5ml drop of 1000 cS silicone containin~ 0.5% Igepal CO-530 
has formed a membrane similar to that in plate IX.lO.l(b). (b) The membrane 
is rupturing from the left side of the drop to the right. Rupture of membranes 
at this stage of development is extremely rare with pure silicone oil, but occurs 
frequently when Igepal is added. 
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The effect of Igepal on smaller drop sizes is not clear. For 2ml drops, 
membranes broke less often with the Igepal (4 out of 10 with Igepal, 6 out 
of 10 without). However, with 2.5ml drops membranes broke much more 
frequently with Igepal (10 out of 10 with, 3 out of 10 without). At 3ml, 
no effect was observed when Igepal was added (membranes broke 10 times 
in 10 trials with or without). It appears that with small drops, size is the 
more critical factor in determining whether a ring will form than whether 
or not the drop contains any Igepal. 

The raw data is presented in the table below. Under each column, two 
numbers are given; the first is for pure 1000 cS silicone oil, the second for 
the same containing 0.5% Igepal. # Ruptures lists the number of times 
the membrane was observed to rupture, # Pinch-off lists the number of 
times the instability manifested itself before the membrane could rupture, 
and # Oblates lists the number of drops which were observed to remain as 
indented oblate spheres for the entire length of the tube. 

The number of trials is small (10 and less) at each drop size, and it 
could certainly be said that more observations should be made. However, 
for the most part, it was found that given the drop size, we could predict 
whether a ring would form. 

Table 10.1. Data summary. Quantities listed are: pure 1000cS silicone/lOOOcS 
silicone with 0.5% Igepal. The interfacial surface tension for the pure silicone oil 
in soybean oil is 2.7 dyn/cm. With 0.5% Igepal in the silicone oil, the interfacial 
tension is 1.0 dyn/ cm. 

Size(ml) # Trials # Ruptures # Pinch-off # Oblates 

1.0 5/5 0/0 0/0 5/5 

2.0 10/10 6/4 0/0 4/6 

2.5 2/4 2/4 0/0 0/0 

3.0 10/10 3/10 7/0 0/0 

4.0 10/10 0/9 10/1 0/0 

5.0 2/10 0/7 2/3 0/0 

7.0 3/- 0/- 3/- 0/-



IX.lO Effect of Drop Size and Surfactant 323 

12 

.. 
;; 
:s 10 

'" ... 
.5 

8 .. 
2: 
.i! c.. 
::0 6 =: .. 
c: 
I! I! Pure Silicone Oil 
.c 4 e • Silicone Oil with Igepal (0.5%) .. 
~ 

Ci 
2 .. 
0 

0 2 3 4 5 6 

Drop Size (m\) 

Fig. 10.5. [Baumann, Joseph, Mohr and Renardy, 1992, American Institute of 
Physics] Graphic data summary. 
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This chapter is based on papers by Joseph [1990b], Galdi, Joseph, 
Preziosi and Rionero [1991], Joseph and Hu [1991] and Hu and Joseph 
[1992]. The density of incompressible fluids can vary with concentration 
and temperature, but not with pressure. The velocity field u of such in
compressible fluids is not in general solenoidal: div u I- O. We require that 
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the mass per unit total volume of one of the liquids in a material volume is 
conserved in the absence of diffusion. This yields the diffusion equation for 
the mass fraction "p. Alternatively, if we obtain an equation for the volume 
fraction (jJ, then the left hand side of the diffusion equation differs from the 
usual substantial derivative of (jJ by the addition of (jJ div u. 

The possibility that stresses are induced by gradients of concentration 
and density in slow diffusion of incompressible miscible liquids, as in the 
theory of Korteweg [1901] is considered. Such stresses could be important 
in regions of high gradients giving rise to effects which can mimic surface 
tension. One could also wonder about the effect of gradients in viscosity on 
surface tension, when two fluids are brought into contact. However, surface 
tension is a quantity that remains the same whether the fluids are in motion 
or not, so that the effect of viscous stresses on it which are present when 
there is motion must be unimportant, and we do not pursue it here. 

The presence of a sharp interface in the case of slow diffusion in rising 
bubbles and falling drops has been documented in many experiments and in 
the experiments reported here. The shape of such interfaces over time-scales 
in which diffusion is small can scarcely be distinguished from the shapes 
of bubbles and drops of immiscible liquids with surface tension. The usual 
description of interface problems for miscible liquids with classical interface 
conditions but with zero interfacial tension misses out on slow diffusion on 
the one hand and gradient stresses that mimic the effect of surface tension 
on the other. The usual description of diffusion with divu =0 is a bad 
approximation for some cases at certain times and places. 

X.1 Motivation and Problem Statement 

In figure 1.1, we present a sequence of photographs documenting the change 
in the shape of a water bubble (density p = 1 gm/ cc) as it rises in a container 
filled with glycerin (p = 1.2 gm/cc). Since water and glycerin are miscible, 
we must admit that our perceptions trick us and that our eyes do not 
resolve the diffusion layer of aqueous glycerol in which the transition from 
pure glycerin to pure water must take place. The shape of the water bubble 
we see, however, is not so different from what we might expect to see in the 
case of a rising bubble or falling drop of one immiscible liquid in another, 
provided that these immiscible liquids are otherwise similar to the miscible 
ones in their physical properties; that is, that they have the same densities 
and viscosities and a small, but not zero, interfacial tension. 

In figure 1.2, we show a sequence of photographs of a molasses and 
water mixture in glycerin. The densities are nearly matched, so that the 
bubble rises slowly. 

In plate X.1.3, we show a sequence of photographs of a molasses drop 
falling in glycerin. The diffusion between this pair of fluids is very slow. Even 
after vigorous mixing, it takes two days for the small amount of molasses 
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to dissolve completely in the glycerin. It appears possible that one can find 
a pair of miscible liquids that mix so slowly that essentially no mixing has 
taken place over the time of an experiment. 

Similar shapes and phenomena are observed in thermals. These are 
related to vortex rings and are described in chapters 6 and 7 of the book 
by Turner [1979]. In figure 1.4 (i), we show some photographs of a dyed 
thermal taken by Griffiths [1986 a]. A layer of fluid is initially at rest at a 
constant temperature. Subsequently, the lower boundary is set at a higher 
temperature, and the fluid heats up due to conduction. A boundary layer 
forms whose thickness increases with time; at certain critical times, some 
of the buoyant fluid in the boundary layer escapes upwards in blobs. For 
most of the time, the transfer of heat near the boundary layer is due to 
conduction, followed by short intervals during which the conditions are 
locally restored to the original uniform state by the removal of the buoyant 
fluid as a thermal (see figure 1.4 (ii): this shows some other possible shapes 
for the fluid escaping from the boundary layer). Thermals that resemble the 
pictures shown in figure 1.2 can be found in Griffiths [1986 b]. He considers, 
the idea that interfacial tension might playa role in the 22 % discrepancy 
between the observed rise velocity and the velocity predicted by Stokes' 
law. However, his observations suggested to him that the discrepancy was 
most likely due to the presence of the sidewalls of the apparatus. 

In figure 1.5, we show photographs [Koh and Leal 1990] of an unstable 
spherical drop of 10000 cs Dow silicone oil in Pale 1000 oil. 

A striking comparison of incipient vortex rings which arise in the free 
fall of liquid drops in another liquid can be formed by comparing the mem
brane which spans the ring in the miscible case shown in plate IX.2.2 (c) 
and the immiscible case shown in figure IX.8.2 (a). The existence of a mem
brane across the ring of one aqueous glycerol solution in another shown in 
plate IX.2.2( c) may be hard to explain without appeal to the notion of 
transient interfacial tension. 

When two miscible fluids come into contact, there may initially be what 
looks like a sharp interface. Over time, there is diffusion across that interface 
due to gradients in the physical properties and there is then a transition 
layer from one fluid to the other; eventually, the fluids mix. The figures 
presented above motivate us to pose some basic questions. One question is 
how to model the diffusion and the force due to the gradient of composition 
in the transition layer. 
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(a)-(b) 

Fig. 1.1(a-f). [Joseph, 1990b, Gauthier-Villars] Water bubbles rising in a column 
of glycerin. The photographs (a) through (e) were taken at approximately two
second intervals with an interval of 1 to 1-~ seconds between (a) and (b). (f) 
follows (d) after 40 seconds. The density ratio (Pouter/ Pdrop) is 1.21 and the 
viscosity ratio is 69. The water bubble appears to want to pull into a sphere even 
and especially at the instant of injection. The spherical shape in (c) is nearly 
perfect. However, there is always a rearward protrusion followed by an extruded 
thread of water left behind as the bubble rises. A small 'capillary bubble' is visible 
on the water thread in (c) and (d). The sharp spherical interface at the leading 
edge and the protruding tail at the trailing edge are persistent. The drop shapes 
resemble the unstable spherical drops with nonzero interfacial tension which were 
computed by Koh and Leal [1989] (their figures 7 and 9), by Pozrikidis [1990] (his 
figure 6) and observed by Koh and Leal [1990] (see figure 1.5). The computed 
shapes for zero interfacial tension and no diffusion always have intrusions (which 
were not observed in our experiments) near the trailing edge even when a thread 
is ejected at the trailing edge. We have the impression that glycerin has been 
entrained and possibly diffused in the bubble shown in (e) and (f), as in the 
thermal drops studied by Griffiths [1986a]. 
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(c)-( d) 

(e)-(f) 

Fig. 1.1(a-f). Continued. 
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(a) 

(b) 

Fig. 1.2( a-f) . [Joseph, 1990b, Gauthier-Villars] A mixture of molasses and water 
in glycerin rises slowly. The density is nearly matched, The essentially 'static' con
figurations in (a) through (c) possibly su~est the action of capillary-like forces. 
Time on the clock is in seconds: (a) 0.98, (b) 1.23, (c)1.14, (d) 1.99, (e) 9.01, (f) 
15.68. 
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(c) 

(d) 

Fig. 1.2( c-d). Continued. 
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(e) 

(f) 

Fig. 1.2(e-f). Continued. 
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Fig.1.4(i). [Griffiths, 1986a] A thermal of dyed liquid. 
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(a) (b) (c) 

Fig.1.4(ii). [Thrner, 1979, Buoyancy Effects in Fluid, Cambridge University 
Press] Sketches of convection phenomena: (a) plume, (b) thermal, (c) starting 
plume. The arrows indicate the direction of mean motion. 
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Fig. 1.5. [Koh and Leal, 1990, American Institute of Physics] Unstable spherical 
drop of 10000 cs Dow silicone oil (p, = 101 P, p =0.972 gm/cm3 ) in Pale 1000 oil 
(oxidized castor oil, p, = 391 P, p = 1.021). 
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X.2 Historical Introduction 

The idea that there are capillary forces at work in a transition layer between 
miscible liquids goes back at least to an 1871 report of Bosscha, cited in 
a paper of Korteweg [1901], and reproduced here. Korteweg noted that 
Bosscha had published, in the proceedings of the 30th of September and the 
25th of November 1871 of the Academy of Sciences of Amsterdam 1871/72, 
#3 and 5, some observations on the very slow motion of a solution in 
water, or in a less concentrated solution. The two fluids were miscible in 
all proportions. The most natural explanation seemed to Bosscha to be 
the existence of appreciable capillary forces in the layer between the two 
liquids. Thomson and Newall [1885], on the contrary, attribute to other 
causes similar phenomena that they have observed (see pages 430 and 431 
of their article). Since the question seemed not to be resolved, Korteweg 
published, as an appendix to his paper, the French translation of some 
extracts of the proceedings cited above and of an unedited letter of Bosscha 
treating the same subject. 

The following is an extract of a communication made by M. Bosscha 
at the Academy of Sciences of Amsterdam, on September 30th, 1871: 

"A test tube, of which the bottom is stretched into a funnel with a fine 
opening, is partly immersed in water which fills a large cylindrical vessel. 
When the water in the tube reaches the same height as in the vessel, one 
injects a crystal of a soluble substance in the water. The liquid contained in 
the tube then becomes specifically heavier than the surrounding water and 
begins to flow in a thin thread. This liquid thread exhibits all the details 
of a jet of ordinary water, except that the flow is much slower so that one 
has no need for any artifice to observe directly all the phenomena which 
accompany it. Some distance from the opening, one sees the formation of 
bulges which more and more take the form of drops, all of them linked by 
very thin liquid threads. Soon these threads break and are pulled into the 
drops which henceforth fall freely. Because of the great resistance which they 
encounter in their fall the small drops thus formed flatten; at the center they 
shape themselves into skull caps, concave on the bottom, which terminate 
by breaking in their turn, in such a way that each drop is transformed 
into a ring which enlarges more and more and disperses slowly, as much 
by the motion of the liquid as by diffusion. It sometimes happens that a 
tight ring falls through the already enlarged ring which preceded it; in these 
conditions a liquid film is carried from the interior boundary of the latter 
large ring ac (cf. figure 2.1), which looks like a known capillary surface, but 
which contracts until at the end the two rings have formed only one. 

"According to the observations of the author, one can do this experi
ment with any salt. The experiment works even when one lets flow a less 
concentrated solution, as long as the difference in the birifringent powers 
permits one to distinguish between them. If one makes use of a tube of 
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a c 

b d 

Fig. 2.1. 

which the bottom is pulled into a fine point toward the interior, one can, 
by suitably regulating the hydrostatic pressure, make a vertical jet of the 
liquid from the cylindrical vessel climb in the tube; under these conditions 
one can also observe separation into small drops, but it is sometimes nec
essary to tap slightly against the glass to produce the effect. 

"From a theoretical point of view it seems important to do these ex
periments with some liquids which combine themselves with a considerable 
release of heat. I have been able to verify that sulphuric acid and water, 
or a solution of caustic potash in dilute sulphuric acid tends thus to as
sume a surface as small as possible, from this it results then that capillary 
attractions are of an altogether different nature than chemical attraction." 

The following are extracts from a letter of M. Bosscha dated 22 May, 
1901: 

"The phenomena which I have observed related to the slow flow of one 
liquid into another, however slow the flow, remains nevertheless phenomena 
of motion, and the states I have observed are always states of motion. It 
is only by way of approximation that one can think of them as states of 
equilibrium. 

"This is why I have always tried to claim some deep scruples that 
capillary forces only produce the clearly defined forms which are taken by 
the flowing liquid· ... 

"But each time that I have repeated the experiment, in other respects 
very simple, and that I saw the liquid thread give rise to local bulges, as 
in an ordinary jet of water, and resolve themselves then into small drops 
which finally become rings, my conviction became stronger that capillary 
action actually must play an important role. What strikes me especially 
was to see how of the two consecutive rings the higher, smaller one falls 
through the lower, larger one, and carries clearly in its motion a portion 
of the interior rim of the other, so that between the larger ac (cf. figure 
2.1) and small bd a film forms a surface of revolution from it, of which a 
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meridional may be a catenary.1 
"I returned to this subject later in a discussion relative to the agglu

tination of particles suspended in liquids. When this question became the 
subject of one of the sessions of the Academy, I recall that while I was occu
pying myself with the preceding experiments, I took note of the remarkable 
experiments of M. Vogelsang on globulites (microscopic drops suspended in 
a mixture of baum of Canada and carbon sulphide; these drops consist of 
a supersaturated solution of dissolved sulphur in carbon sulphide). 

"M. Vogelsang has described (Arch. Neerl. (1) 5, 166) the motion of 
these drops in the liquids, motions such that they approach one another 
until contact. An attractive action of these drops at appreciable distance 
cannot be attributed to molecular attraction of the drops themselves. In 
my opinion one is rather forced to search for a motive force in the liquid. It 
is thus that I thought to myself that each drop is a center of concentration 
of sulphur, depleting sulphur from the liquid environment, so that each 
drop will be surrounded by concentric layers in which the percentage of 
sulphur in it diminishes with increasing radius. As long as the sulphur
poor hydrospheres of neighboring drops come into contact, if there exists 
in reality a surface tension at the boundary of the two layers of unequal 
concentrations, it is necessary that the tendency of this surface of separation 
to become a minimum, brings about the fusion of the layers; this will be 
caused because some new layers of more packed drops come into contact 
until at the end the drops touch themselves. 

"I have thought that there is a way to explain in an analogous fashion 
the tendency to agglutination that can be seen with small solid particles 
suspended in a liquid. These solid particles can more particularly concen
trate around themselves certain elements of the liquid in which they are 
suspended." 

The notion that capillary forces are responsible for the phenomena 
observed by Bosscha is not shared by Thomson and Newall [1885] who 
appear to suggest that such phenomena, which they observed independently 
and apparently without knowledge of Bosscha's work, are associated with 
instabilities of motion, and not with capillarity. It is refreshing to see the 
pictures which they draw to represent what they observe, at a time before 
the taking of photographs of these things was a common practice. Their 
sketched pictures are art in science, emphasizing the scientifically relevant 
details, suppressing the others. They wrote: 

"If a tube be drawn out into a fine capillary and be filled with sulphuric 
acid, and held so that its capillary end is just beneath the surface of a 
column of water, a fine stream of acid flows down; and on it marked beadings 
appear. Each bead gives rise to a vortex ring, and the rings so formed behave 

1 The surface of revolution formed by a catenary is a minimal surface. Note that 
a catenary is the graph of a hyperbolic cosine, like the shape of a rope if you 
hold its ends. 
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in a characteristic manner (fig. 92). Here there seems strong evidence of a 
tension between the acid and the water, but the appearances are to be 
explained by differences of velocity in the stream, brought about by motion 
in the column of water, or by vibrations communicated to the capillary tube. 
If the experiment be made with all care to avoid vibration, the stream falls 
unbroken through a column of 8 inches of water: whilst if a tap be given to 
the acid tube a break occurs in the stream, in consequence of a momentary 
stop in the flow of acid, a small bead is formed, and from it a ring. If 
no care is taken to avoid vibration the beads will follow one another very 
rapidly. It may be objected that if there existed a surface tension, it would 
only be when disturbances were communicated that beading would appear. 
But in such a case, the resolution into drops would be complete, and small 
spherules would be formed between the larger drops. In fact, however, the 
connexions between the beadings are fine filaments of acid, so that the 
beadings are never really separated from one another. We have, moreover, 
convinced ourselves of the correctness of this explanation, by allowing a 
stream of cold water with lycopodium powder to flow from a fine tube into 
a column of slightly warm water; similar cessations in flow and formations 
of beadings may be observed; the rings are not well formed, but this is to 
be expected, for the conditions are not nearly so favourable." 

In fact the citation does not really tell us what might be the real 
cause of the capillary-like phenomena seen in their sketch. A theory in 
which stresses due to gradients of concentration and density are allowed, 
say Korteweg's theory, could conceivably give rise both to the capillary 
phenomena and the deviations from classical capillarity which are observed. 
Perhaps it is just this thought which motivated Korteweg to remark that 
" ... the question does not seem to us to be resolved ... ". 

X.3 Dynamic and Instantaneous Interfacial Tension 

Freundlich [1926]' in his treatise on colloid and capillary chemistry, dis
cussed methods of measuring interfacial tension between immiscible liquids 
and the corresponding theory. He also wrote about liquids that are miscible 
in some proportions but not all. He noted that 

" ... there is little new to be said .... We have only to remember here we 
are in the end always dealing with solutions. For the one liquid will always 
be soluble in the other to some degree, however small. Hence the dynamic 
tension of liquids, when first brought into contact, is to be distinguished 
from the static tension, when the two liquids are mutually saturated. Not 
only do liquids which are not miscible in all proportions have a mutual sur
face tension; even two completely miscible liquids, before they have united 

2 See our figure 2.2. 
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Fig. 2.2. [Figure 9 of Thomson and Newall, 1985, Royal Society of London] 

to form one phase, exhibit a dynamic interfacial tension. For we get by care
ful overlaying of any two liquids a definite meniscus, a jet of one liquid may 
be generated in another, and so on. The tension decreases rapidly during 
the process of solution, and becomes zero as soon as the two liquids have 
mixed completely." 

The dynamic tension is denoted by S*(t) below. Freundlich [1926] cites 
the measurements of the dynamic tension by Quincke [1902] of ethyl alcohol 
in contact with aqueous salt solutions (sulphates of zinc, copper, etc.). 
These two liquids are miscible in all proportions. Quincke used the method 
of drop weight (see, for example, §6.7 of the book by Hiemenz [1977] for a 
description of this method) to make his measurements. In these liquids the 
drop, as it emerges, does not form streaks, but keeps its shape for a while. 
He found values between 0.8 and 3 dyne/em. 

Smith, Van Den Ven and Mason [1981] have reported an estimate of 
1 dyne/em for the force corresponding to a 'transient interfacial tension' 
between a 2000 cs and a 1 cs silicone oil, measured over a period of time 



X.3 Dynamic and Instantaneous Interfacial Tension 339 

and extrapolated to the time of contact. According to the authors, these 
are two mutually soluble liquids whose interdiffusion is sufficiently slow to 
enable this measurement to be made. They note that 

"In principle there exists between any two separated fluid phases which 
have a chemical potential difference, an instantaneous interfacial tension 
which mayor may not persist with time. We are unaware of reports in 
the literature of measurements of interfacial tension between two miscible 
liquids." 

It is clear that in the case of two liquids miscible in all proportions 
we are not dealing with an equilibrium situation; there is no equilibrium 
tension. Rather, we are looking at stress effects due to differences in den
sity and composition and possibly even temperature which influence the 
positions occupied by interdiffusing fluids. One could imagine that when 
the gradients of composition are large, as in the boundary layer between 
two regions of different composition suddenly put into contact, that these 
stresses give rise to an effect which might be called 'transient interfacial 
tension.' 

Smith et al. used the Wilhelmy plate method to measure the tension 
as a function of time, which decreases with time because of diffusion. The 
Wilhelmy plate method (see, for example, §6.2 of Hiemenz [1977]) makes 
use of the following equation. A solid sample experiences a capillary force 
P due to the deformed interface 

P = 2(l + d) S* cos(} (3.1) 

where l is the length of the plate, d its thickness, S* is interfacial tension 
and () is the apparent contact angle. In practice, all quantities except for S* 
ought to be independently measurable, and thus S* is retrieved. However, 
the contact angle can be difficult to determine, as in the work of Smith et 
al. They measured the capillary force per unit length 

F = S* cos(} = P/[2(l + d)] (3.2) 

as a function of time. Their experimental result for F(t) is summarized 
in their figure 1, reproduced below in figure 3.1. They were not able to 
measure (}(t) so they could not find S*(t). 

Smith et al. present an expression for the chemical potential based on 
expressions for the free energy in a nonuniform system [Van der Waals 1895; 
Cahn and Hilliard 1954]: 

JXO (8<P)2 
S*oo J'l dx 

-Xo uX 
(3.3) 

where S* is the interfacial tension, <p is the local composition and Xo is 
the 'interfacial region'. The composition satisfies a diffusion equation <Pt = 
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Fig. 3.1. [Smith, Van Den Ven and Mason, 1981, Academic Press, Inc.] (a) Typi
cal decay of capillary force on a Wilhelmy plate for two mutually miscible silicone 
oils (schematic details of experiment are shown in the inset) ; (b) Logarithm of F 
vs time, for various experimental runs. The extrapolated force at zero time yields 
in all cases Fo = 1.0 mN/m. 

Fig.3.3. [Joseph, 1990b, Gauthier-Villars] Profile of a Benzene-water pendant 
drop. 
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Dcpxx with diffusion constant D. If at t = 0+, cp = cp+ for x> 0 and cp_ for 
x < 0 and thereafter cp is continuous at x = 0, then 

cp(x, t) = [cp+ - cp_]/(",), 1(",) = erfc"" ", = x/2.Ji5i (3.4) 

and S· is proportional to 

(3.5) 

At small times the breadth of the diffusion layer scales with .Ji5i. Then 
the gradient theory (equation (3.3)) leads to a square root singularity for 
the dynamic tension. Figure 3.1 (b) shows that F decays exponentially and 
does not follow the r 1/ 2 decay that would be required by F = S* cosO 
if 0 were constant. It is noteworthy that though the slopes in that fig
ure vary between 0.6 to 1.4, the extrapolation to zero time does not vary 
and leads reproducibly to a force of ",ldyn/cm. They conclude that " ... 
present experiments do indeed confirm that an instantaneous interfacial 
tension exists between mutually miscible liquids." Smith et al. remarked 
that the Wilhelmy technique appears to be the most sensitive and that 
other techniques for measuring surface tension, such as the pendant drop 
method, were found to be unsuitable due to the small magnitude and tran
sient nature of the force involved. Plate X.3.2 shows pendant drops of some 
pairs of miscible liquids. They give rise at early times to shapes similar to, 
but not the same as, pendant drops of immiscible liquids; compare them 
with the immiscible case in figure 3.3. The experiments show a systematic 
difference between the miscible and immiscible pairs. Davis [1988] supplies 
a constant of proportionality for the expression (3.3), which he develops 
independently starting from the Irving-Kirkwood pressure tensor and some 
simplifying assumptions. He then estimates the constants in his theory to 
construct a table of values of S* (-y in his notation), given here as table 3.1. 

Table 3.1. Tension "I of a planar front of a miscible fluid as a function of time t 
of diffusive spreading of the front. In the first row, D is measured in cm2 /s. 

D= 10 5 10 7 10-9 10 5 10 7 10-9 

Time t(s) Mixing Zone Width y'Dt(cm) Tension "I (dyn/cm) 

1 3.1E-3 3.1E-4 3.1E-5 6.3E-4 6.3E-3 6.3E-2 

10 E-2 E-3 E-4 2.0E-4 2.0E-3 2.0E-2 

102 3.1E-2 3.1E-2 3.1E-3 6.3E-5 6.3E-4 6.3E-3 

103 E-1 E-2 E-4 2.0E-5 2.0E-4 2.0E-3 

4X103 2E-1 2E-2 2E-3 1.0E-5 1.0E-4 1.0E-3 
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He notes that "from the entries in this table it follows that the tension 
of a diffusive mixing zone between miscible fluids, while small, is neverthe
less not zero." 

The theory used by Smith et al. [1981] and Davis [1988] evidently 
requires that one assume wrongly that the density of a mixture of incom
pressible fluids is constant, independent of concentration. Davis restricts 
his analysis to a two-component regular solution, in which the densities of 
the components 1 and 2 are (iJp and (1 - (iJ)p, (iJ is the mole fraction of 
component 1 and p is the total density, which he sets equal to a constant 
in a regular solution. We shall reinterpret Davis' work for simple mixtures 
by replacing the mole fraction (iJ with the mass fraction ¢ = m,",(/m of an 
incompressible liquid (say, water) in a mixture (say water and glycerin) of 
total mass m = m'"'( + mil where mil is the mass fraction of glycerin. Then 
(m/V,m'"'(/V'"'(,mll/VII ) = (P,P'"'(,PII) where V is the total material volume 
and P'"'( and PII are the ordinary (constant) densities (of water and glycerin) 
listed in the handbooks. Moreover, if our regular solution keeps its volume 
after mixing, then 

- - mm m m 
p(¢) = rxP + p(l - ¢) = V ;: + V (1 - ;:) = 'Y + v = P'"'(¢ + PII(I - ¢) 

and the regular solution of Davis is a simple mixture. Obviously, a mixture 
of incompressible liquids does not have a constant density, even though the 
density of each of its constituents is constant at a fixed temperature. 

The type of calculation of dynamic tension given above, as well as the 
calculation to be carried out in section X.9, gives rise to a pressure difference 
across a spreading plane layer. This is not a good analogy to interfacial 
tension which is proportional to curvature and vanishes across plane layers. 
The calculation of forces over a spherical layer advanced in section X.lO 
does contain curvature terms, but the analogy is not far-reaching, even in 
the spherically symmetric case. 

Davis [1988] expresses well the notion that graqients of composition 
can lead to anisotropic forces which mimic the effects of interfacial tension: 

"When two miscible fluids are placed in contact they will immediately 
begin to mix diffusively (and convectively if their densities are such as to 
drive convection) across the concentration front formed at the zone of con
tact. Although no interface will form at the concentration front, the com
position inhomogeneities can give rise to pressure anisotropies and there
fore to tension at the mixing zone between the contacted fluids. Diffusive 
mixing will continuously broaden the mixing zone and reduce the pressure 
anisotropy and the associated tension. The purpose of this short paper is 
to examine with the aid of a molecular theory of inhomogeneous fluid the 
magnitude and rate of reduction of the tension by diffusive mixing of the 
zone of contact of miscible fluids. The results found here suggest that insta
bilities in miscible frontal displacement may be similar to those in ultralow 
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tension immiscible frontal displacement, with the added caveat that in the 
miscible process the tension decreases continuously in time." 

More recently, it has been suggested by Barkey and Laporte [1990] that 
morphological instabilities observed in electrochemical deposition could 
have their origins in an effective surface tension between depleted and rich 
solutions in a mass-transfer boundary layer whose thickness is observed to 
be on the scale of a few tens of microns. In another recent study, Garik, 
Hetrick, Orr, Barkey and Ben-Jacob [1991] " ... reported on the stability of 
the interface between two immiscible fluids of closely matching viscosities 
when one is driven into the other. For the case where the fluids differ only in 
solution concentration, we find that spontaneous cellular convective mixing 
can develop. We suggest that this interfacial patterning is a surface tension 
effect distinct from viscous fingering; the latter can occur simultaneously . 
. .. On the basis of the above experimental results, we hypothesize that the 
global morphology of depositional growth, i.e., the number of branches, 
the stability of the branch tips, and the way it fills space (its 'dimension') 
is determined by the hydrodynamic stability of the interface between the 
depleted fluid near the growth and the bulk fluid provided the gradient is 
sufficiently sharp to provide an effective liquid-liquid interface. Since leading 
edges grow fastest, hydrodynamic modulation of the liquid-liquid interface 
it la Hele-Shaw would determine branch position, just as cellular mixing 
will. In electrodeposition the existence of a sharp gradient sustained by the 
growing deposit is experimentally supported." 

May and Maher [1991] have extracted an effective surface tension be
tween isobutylene acid and water at near-critical composition (62.1 volume 
% water) for change of phase from a miscible to immiscible liquid mixture. 
This binary liquid mixture has an upper critical temperature, Tc = 26.310 C, 
below which its two equilibrium phases act as immiscible liquids with an 
interfacial tension a = ao [(Tc - T) /Tc] 1.23 • If this system is initially at 
two-phase equilibrium and then has its temperature abruptly raised above 
Tc but is not mechanically disturbed, the interface will remain visible for 
many hours as diffusion can only mix the two phases slowly. May and Maher 
[1991] measured the autocorrelation function for light scattered from cap
illary waves at the interface of a two-phase equilibrium and after abruptly 
raising the temperature to drive the system toward one-phase equilibrium. 
They used a capillary wave dispersion relation to determine a decaying 
transient 'surface tension' with a maximum value near 0.01 dyne/em. They 
note that " .... This surface tension represents a dynamical integrity of the 
nonequilibrium interface which may affect pattern formation when the in
terface is driven." 
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X.4 Mixtures of Incompressible Miscible Liquids and 
Korteweg's Theory 

It can be argued that the measurement of interfacial tension between mis
cible liquids is not a viable proposition since there is no such thing as 
an equilibrium interfacial tension between miscible liquids. The concepts 
of dynamic and instantaneous interfacial tensions, denoted by 8*(t) and 
8*(0) respectively, are certainly more useful but they are not fundamental. 
What is fundamental is the study of the way in which differences of den
sity, composition, and temperature enter into the stress tensor in a fluid 
mixture. The parameters we shall need to measure are ultimately to be 
defined by a theory giving the precise nature of general forces that give rise 
to capillary-like phenomena in particular situations. Korteweg's theory, dis
cussed below, is perhaps an example of how such a theory might look. The 
expression (3.3) is too special to be useful in a fundamental study of an 
acceptable constitutive law for the layer of transition between the two flu
ids. Rather, we would seek a general expression involving gradients of cp, 
subject to invariance requirements (such as invariance under rotation). 

X.4(a) Compressible fluids 

Korteweg was motivated on the one hand by the work of Van der Waals 
[1895] who, in his work on fluids that have large variations of density, 

" ... has shown theoretically that it is very probable that the discon
tinuity at the surface of a liquid and its vapor is only apparent and that 
there is a layer of transition, very thin to be sure, but of a thickness much 
larger under ordinary conditions than the radius of the sphere of action of 
the molecules, and which can even grow indefinitely as one approaches the 
critical temperature." 

This comment was made in the context of the study of a fluid which 
consists of a liquid and its vapor, coexisting for a certain range of the 
temperature, and then at a critical temperature, the fluid becomes just one 
phase. For this problem of a liquid and its vapor, Korteweg proposed a con
tinuum approach with a compressible fluid model with a stress T(l) of the 
usual Navier-Stokes type plus a part T(2) depending on density derivatives 
alone: 

(4a.l) 

and 

(4a.2) 
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where p and the coefficients a, {3, 8, " J-L and >. are functions of the den
sity p and temperature (J. Truesdell and Noll {1965] discuss this theory in 
section 124 of their book; we repeat some of it here and refer to them for 
intermediate steps. 

Korteweg showed how his theory reduced to the classical theory of 
capillarity, in which the jump conditions at the interface between two flu
ids of different densities are prescribed. As an illustration, this was done 
for a spherical mass of fluid in equilibrium with purely radial variation of 
density: p = p(r), where r is the distance from a fixed center. Using spher
ical coordinates, (4a.1) - (4a.2) yield zero shear stresses and the following 
normal stresses: 

2 T<rr> = _p - (a + {3)p'2 + ,(p" + _pi) + 8p", 
r 

(4a.3) 

2 I 

T<oo> = T<ci>ci» = -p - ap'2 + ,(p" + _p') + 8E-, (4a.4) 
r r 

where p' = dpldr, T<rr> = er.T.er , and the stress tensor T is as in 
section 1.2 (cf. equations (124.4) - (124.7) of the article by Truesdell and 
Noll [1965]). 

Let b( r) denote the radial component of the external body force. The 
equations of equilibrium are that the components b<o> and b<ci» are zero, 
and the radial component of the momentum equation is 

aT<rr> 2 -;::--- + _(T<rr> _ T<oo» + pb(r) = O. 
ar r 

(4a.5) 

We assume that in the region rl < r < r2, the fluid has a layer of transition 
where the density varies by a lot, and that for r < rl or r > r2, the density is 
approximately constant. Then the use of T<rr> and T<oo> in the equations 
of equilibrium yields the jump in T<rr> between the layer at r = rl and 
r = r2: 

(4a.6) 

We assume that p' = dpldr is approximately zero at r = rl and r = r2, 
which are sufficiently away from the region where p varies rapidly, so that 
the second term on the right hand side vanishes. We then let rl ~ ro and 
r2 ~ ro and obtain a result for a thin layer of transition. The first term on 
the right hand side then vanishes and if 

(4a.7) 

where 8(r - TO) is Dirac's delta function, then the last term reduces to 
28* Iro where 8* is the surface tension. Thus, the classical jump condition 
for the normal stress at an interface between two fluids of different densities 
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is retrieved. Whether the requirement (4a. 7) is actually satisfied or not 
would have to be checked out from the equations governing the problem. 
For instance, this theory could not apply to the surface tension that is 
there between density-matched immiscible liquids because {I is then zero 
and would not satisfy (4a.7): this theory was not meant for such a problem. 

There are a number of interesting papers on Korteweg-type theories 
for compressible fluids (see, for example, Dunn [1986]). These theories rely 
strongly on thermodynamic arguments for compressible fluids which evi
dently do not apply to the incompressible fluids under discussion here. 

X.4(b) Mixtures of Incompressible Fluids 

On the other hand, Korteweg suggested that his theory might apply to 
the processes of slow diffusion of miscible incompressible liquids such as 
were already described in the previously cited account of the experiments 
of Bosscha. In such a problem, an important variable to work with is the 
concentration, as well as the density, so we need to mimic and adapt his 
ideas to this case. He wrote: 

"Let us suppose ... that one must deal with two liquids miscible in all 
proportions, or indeed, a solution with variable concentration. In this case it 
cannot be a question of equilibrium, correctly speaking, before the concen
tration has by diffusion become equal everywhere. Moreover, in considering 
diffusion as a very slow process, one can deal with provisional equilibrium, 
where equations 3 are satisfied momentarily. In such equilibria, all possible 
distributions of concentration, satisfying these equations, could rigorously 
occur, since the distribution at a given moment depends on the initial dis
tribution and the laws of diffusion." 

Provisional equilibrium of drops and bubbles means that everything is 
in equilibrium except for diffusion, due to gradients in concentration, which 
is assumed to be a slow process compared with fluid motion. This requires 
at least that the density of the mixture be independent of the concentration; 
otherwise, buoyancy will produce motion. 

We next describe some experiments done under provisional equilib
rium. Several bubble injection experiments like those described in figure 
1.1 were done but with two fluids of matched density. A glob of one fluid 
is released through a capillary tube as in figure 1.1 into a second fluid. In 
one case, we added just enough sugar to water to match the density of 
glycerin. The density-matched sugar solution has a much smaller viscosity 
than glycerin. When injected via the capillary tube into the glycerin, the 
sugar solution sometimes appears to pull into a sphere; more often after a 
short time it splits into two segments: one rises and one falls. These two 

3 This corresponds to our equations (4a.l) - (4a.2) with u = 0 and p replaced by 
<p. 
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segments then take a more pronounced spherical shape. Perhaps this sug
gests that the spherical shape is more easily obtained by a drop in motion 
than by capillary forces at the surface. Next, the role of the fluids was re
versed. Glycerin injected into a sugar solution did pull into a sphere but 
maintained the thread-like tail it had in the capillary tube. Capillary-like 
bulges developed on the thread before it lost its identity to diffusion. 

We were never completely successful in matching the density and it 
may be impossible to do so. The problem is that the volume of a mixture of 
two constituents need not be the same as the sum of the volumes of the two 
constituents before mixing. For example, small changes of the total volume 
VT of a mixture of glycerin and water at 20°C are observed and reported 
by Segur [1953] in the data shown in his figure 7.4 and table 7.12. His table 
is displayed here as figure 4.1 and shows the volume contraction of glycerin 
and water. His figure 7.4 and the 6th column of table 7.12 show that the 
mixture equation (4b.3) below holds to within an accuracy of about 1%. 
He reports a maximum change of 1.1% for a mixture of 60% glycerin by 
weight. 

Suppose that before mixing, the volume of water is given by Vw = 
mw I pw where mw is the mass and similarly, for glycerin, Va = mal Pa· 
After mixing, the density of the mixture is 

m mw+ma Vw Va 
P = VT = VT = Pw VT + Pa VT . 

(4b.l) 

Now if we ignore the small volume change, then 

VT =Vw+ Va ( 4b.2) 

and 
P = ifJpw + (1 - ifJ)pa ( 4b.3) 

where ifJ = Vw IVT is the volume fraction of water. Equations (4b.2) - (4b.3) 
define a 'simple mixture'. The fact that simple mixtures arise only as an 
approximation means that the mixture of liquids with the same density will 
not actually retain this density after mixing because the VT changes. The 
density in a diffusion layer may vary from point to point, even though the 
density on either side of the layer is the same. 

There are other measures of composition and concentration. The mass 
fraction say of liquid, in liquid 1/, ¢ = m'Ylm where m = m'Y + m,,> is a 
second measure and the mole fraction ¢ = n'Yln, n = n'Y + n v , where n'Y is 
the number of moles of " is a third measure. The relation between these 
three different volume measures is nonlinear. For example, 

and 
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TABLE 7-12. VOLUMETRIC CONTRACTION 01' GLYCEROL AND W"T" WIlEN 

MIXED AT 20°C 
Calc . from .p. gr. Data of Boaart aDd SDoddy 

Puta or " by Wt Puta by Vol " by Vol ~~= 
Vol 01_. 

I.~VoI 01 SoIL at 
Gb-c. Water GI.Yc. Water GI.Yc. Water aDd 5Dodclr a"C 
---, ------ ---
100 0 79 .278 0.0 100.00 0 1.28362 79.278 0 .000 
90 10 71.360 10.018 87.69 12.31 1.23766 80.948 0.516 
80 20 83.423 20.035 75.99 24.01 1.21090 82.730 0.872 
75 25 59 .469 25.044 70.36 29.64 1.19720 83.676 0 .979 
70 30 55.495 30.053 64.87 35.13 1.18366 84.641 1.049 
86 35 51.631 35,(162 59.51 40.49 1.16980 85.636 1.105 
62 38 49.163 38.067 56.36 43 .64 1.16166 86.245 1.118 
60 40 47.567 40.071 54.28 45.72 1.15605 86.655 1.122 
59 41 46.774 41 .073 63.24 46.76 1.16325 86.865 1.118 
58 42 45.981 42.074 52.22 47.78 1.115050 87.073 1.115 
56 44 44 .396 44.078 50.18 49.82 1.14500 87.491 1.111 
54 46 42.810 46.082 48.16 51.84 1.13945 87.917 1.097 
52 48 41.225 48.085 46.16 63 .84 1.13395 88.344 1.082 
IiO IiO 39 .639 50.089 44.18 66 .82 1.12845 88.774 1.083 
40 60 31.711 60.106 34.54 86.46 1.10135 90.959 0 .934 
30 70 23.783 70.124 25.33 74.67 1.07470 93.214 0.738 
20 80 15.856 80.142 16.52 83.48 1.04880 95.516 0.1i02 
10 90 7.929 90.160 8 .08 91.92 1.02395 97 .834 0.2110 
0 100 0 .0 100.177 0 .00 100.00 1.00000 100 .177 0.000 

-
CalculatioD8 : DeD8ity of wnter at 20°C - 0.99823. 

DeD8ity of 100% glycerol at 20°C - 1.26138. 
. . . Wt + Deoaity of water 

Volume of liqUid - Wt/DeD8lty - S fl. .d. ,. p. gr. o Iqui 

Fig. 4.1. [Segur, 1953, Glycerol, Reinhold Publishing Corp. Reprinted with per
mission of Van Nostrand-Reinhold] Volume contraction of glycerin and water. 
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where M'Y and M" denote the masses of one mole of constituents 'Y and v, 
respectively. 

The volume fraction is the natural composition variable to introduce in 
the theory of simple mixtures. It defines the equation of state (4b.3) for the 
density of a mixture of incompressible liquids. An important consequence 
is that the density of such a mixture is not constant and the motion of such 
mixtures is not solenoidal: div u =f. o. 

X.4( c) Diffusion Equation for Mixtures of Miscible 
Incompressible Fluids 

Now we shall derive a diffusion equation in conservation form (4c.4) by 
requiring that the mass per unit total volume of one of the liquids in a 
material volume V(t) is conserved in the absence of diffusion. 'Y = m'Y/V is 
the mass of 'Y per total volume and the mass of 'Y in V can change only if 
some 'Y diffuses across the boundary of V. Thus, 

dd [ 'YdV = - [ q'Y. ndS 
t JV(t) Jav 

(4c.l) 

where q'Y is the flux of 'Y. 
Since V(t) is a material volume, no mass crosses av, in or out, and 

dd [ pdV = 0, 
t JV(t) 

(4c.2) 

where p = m/V. In the usual way, we may carry out the differentiations 
on the left of (4c.l) and (4c.2) using the Jacobian J of the transformation 
from V(t) to Va where Vo is independent of t and (cf. section 1.2(a» 

dJ Jd. 
dt = IV U (4c.3) 

and u is the velocity of a material point. After writing dV = JdVo, we may 
bring the time derivative under the integral and we have 

Iv d: + P div u dV = 0 

and 

Iv ~~ + 'Y div u + divq'Y dV = O. 

Thus, the integrand must vanish: 

d'Y d· d· - + 'Y IVU = - Ivq'Y. 
dt 

(4c.4) 
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Of course, the substantial time derivative of density p{ 'Y) given in the 
isothermal case by dpl dt = ,; {'Y )d'Y I dt is not zero when d'Y I dt = IYy I &+ {u· 
Vh ::f. O. Hence, even when the change of p with temperature is suppressed, 

. Idp 1 '( )d'Y..J. divu = --- = --p 'Y - r o. 
pdt p dt 

(4c.5) 

Suppose v is the density of the other liquid per unit volume. Then 
because we have a simple solution, p = 'Y + v and 

dv d· d· dt + v IVU = - IV<lv. 

The continuity equation (4c.5) may be written as 

dv d'Y . 
dt + dt + (v + 'Y)dlVU = O. 

Hence, using (4c.4-5) in (4c.7), we find that 

div{qv + q")') = o. 

(4c.6) 

(4c.7) 

(4c.8) 

The sum of the fluxes of the mass of each constituent across the boundary 
of any material volume V must vanish 

f (qv+q")').ndS=O Jav 
to conserve total mass. Given our interpretation of q")' and qv as the flux of 
mass relative to a varying material volume, it seems reasonable to require 
that at any impenetrable surface, moving or at rest, 

(4c.9) 

If the volume V of a mixture of two liquids does not change on mixing, 
then V = V")' + Vv and the density can be expressed in terms of the volume 
fraction 4J = V")' IV of one of the constituents by the form 

p{4J) = p")'4J + Pv{1- 4J) (4c.1O) 

where P")' and Pv are the densities of'Y and v, obtained from handbooks. 
These formulas are (4b.2-3), and mixtures satisfying these conditions are 
called simple mixtures. Since'Y = p")'4J and v = Pv{1- 4J) are conserved in 
the absence of diffusion, it is natural to express the constitutive equation 
for the fluxes q")' and <Iv as a nonlinear Fick's law for each constituent in 
terms of the volume fraction of one of them 

(4c.ll) 

with different diffusion functions and assume that P")' and Pv are constants, 
as in the isothermal case. Then 
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{ n· (q" + q-y)dS = { (D"p" - D-yp-y)n. Vi/J dS = 0 Jav Jav 
in each and every material volume V, so that either 

div [(D"p" - D-yp-y)Vi/J) = 0 

at each and every point in V or the ratio of diffusion functions 

D" p-y 
D-y = p" 

(4c.12) 

is a constant. Equation (4c.12) also appears in conventional theories (see 
section 4(e)). 

X.4( d) Solenoidal Fields for Simple Mixtures 

We have shown in equation (4c.5) that since the density of a simple mixture 
of incompressible liquids changes by virtue of diffusion of the volume frac
tion, the velocity field cannot be solenoidal. However, we can decompose 
the velocity field into a solenoidal part and a non-solenoidal part, following 
Galdi, Joseph, Preziosi and Rionero [1991). They eliminated d,,(/dt between 
(4c.4-5) and used (4b.3) to show that when P-yP,,/(p,,- p-y) is constant (e.g., 
if the temperature is constant),then 

divW = 0, W = u - (P-y - p,,) q-y. 
P-yP" 

(4d.l) 

From (4c.6) we also get 

divW = 0, W = u _ (p" - p-y) q" 
p-yp" 

(4d.2) 

and if (4c.12) holds, then W = W. In this case, we may introduce a stream 
function. For example, in plane problems, where (x, z) are the coordinates 
and (u, w) the velocity components, there is a function 1jJ which we call a 
stream function, such that 

To extract the consequences of the balance of momentum, it is desirable 
to frame the theory in terms of a material particle. A natural method for 
this is to apply balance laws to a material volume which in the continuous 
limit is a particle of fluid mass. The same perception is behind the use of a 
mass averaged velocity in mixture theories. In both cases, we defer to the 
statement that the laws of dynamics are framed relative to the velocity u 
of a volume of fixed mass. Hence, it is the u in W which will enter into the 
balance of momentum. 
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There is a general question about what kind of relationships between 
the density and composition (or temperature) would lead to a solenoidal 
velocity. The foregoing development may be carried out for homogeneous 
fluids with temperature gradients when the Boussinesq approximations are 
relaxed and the density p is related to the temperature T by the special 
equation 

p = p*(1 + {3T)-l 

for constant p* and {3. Then 

w = u - (3",VT 

where", is the thermodiffusion coefficient [Pukhnachov 1991). 
The relationship between the theory being developed here and mixture 

theories is discussed next. Mixture theories are based on an idea of interpen
etrating continua in which actual material points are no longer identifiable; 
usually they concern solid particles suspended in a liquid and both are as
sumed to be present at each and every material point. An account of the 
ideas of mixture theory is given by Bowen [1971], with more recent devel
opments reviewed in papers of Nunziato et al. [1986) and Passman et al. 
[1984). Related ideas based on ensemble averaging can be found in Drew 
[1983). 

For definiteness, put v = 9 for glycerine and 'Y = w for water (cf. 
figure 1.1). Evidently, glycerine and water molecules must move at different 
speeds; otherwise, there could be no diffusion. Mixture theories for binary 
mixtures usually introduce two 'average' velocities, a composite or volume
averaged velocity and a mass-averaged velocity, in addition to the velocity 
of each constituent. The volume-averaged velocity is solenoidal and can be 
identified with W. You can generate mixture theories for binary mixtures 
of incompressible constituents rigorously (but not without ambiguities) by 
ensemble averaging, following Joseph, Lundgren, Jackson and Saville [1990). 
We define an indicator function 

H ( ) _ {O if x is on a water molecule 
x-I if x is on a glycerine molecule 

and let < > designate the operation of taking the average. The average is 
over many identical trials. We think of an experiment which is started at a 
certain time. At a later time, and at a certain place, we record the value of 
some flow variable. We repeat the experiment, wait the same time, look at 
the same place and record again. After many trials, we average the values 
by summing and dividing by the number N of trials, then we let N - 00. 

In this manner, we generate a function < > (x, t). 
Now we derive some identities using ensemble averaging and the indi

cator function. First, 

< H >= €(x, t) = 1 - cjJ(x, t) 
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is the glycerin fraction and 

< 1 - H >= 1- < H >= <p(x, t) 

is the water fraction. Suppose that v(x, t) is the true velocity, the water 
velocity when x is on a water molecule, and so on. It is the actual velocity 
of the individual molecules and is a microscopic quantity. What appears 
on a macroscopic scale is an average velocity. We may define an average 
glycerin velocity 

( ) < Hv > < Hv > 
Vg x,t = H = 

< > f 

and an average water velocity 

( ) _ < (1 - H)v > _ < (1 - H)v > 
Vw x, t - < (1 _ H) > - <p . 

The composite velocity is 

vc(x, t) =< v >=< Hv > + < (1 - H)v >= fVg + <pvw, 

(4d.3) 

(4dA) 

(4d.5) 

and the relationship with W is shown in (4d.16). We may define composite 
averages and mass averages of any quantity I by 

Ie =< I >= fIg + <plw 

and 
1m = < pI > = (pf)e 

< P > fPg + <PPw 
where Pg and Pw are the constant densities of glycerin and water, respec
tively. In particular, the mass-averaged velocity is 

< pv > PgVgf + Pwvw<P 
V m = = . 

< P > fPg + <PPw 
(4d.6) 

We next note that H(x, t) is a material variable for materials which do 
not change phase, always taking the value 1 following glycerin molecules, 
and taking the value 0 following water molecules. That is, 

8H 
at+v.VH=O. 

Using this, and div v=O, we find 

8H 8H . o =< at + v . V H >=< at + dlV Hv > 

8<H> . 
= at + dlV < Hv > 

8f d. 
= at + IVfVg • 

(4d.7) 

(4d.8) 
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METHANOL-WATER MIXTURE 
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Fig.4.2. Volume contraction of methanol and water. This figure was obtained 
by calculation from figure 7-8 in the book by Smith and Van Ness [1975]. 

In the same way, we may show that 

: + div</>vw = O. (4d.9) 

These are the equations of mass balance assumed by mixture theory. It 
follows that 

divvc = O. (4d.1O) 

The reader can prove that 

'::: + div (Pcvrn) = O. (4d.11) 

We are now in a position to draw analogies with the continuum ap
proach (cf. Landau and Lifshitz [1959]) and the mixture theory (cf. Joseph, 
Lundgren, Jackson and Saville [1990]). 

First we identify 
Pc = p(</». (4d.12) 

This equation shows that every mixture of truly incompressible constituents 
is a simple mixture. Actually, incompressible liquids do not lead to simple 
mixtures, because of volume changes due to mixing. In glycerin-water sys
tems, equation (4d.12) is an approximation with a maximum error of about 
1% (figure 4.1). In methanol-water systems, the maximum error is 3% (fig
ure 4.2). 
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Suppose that glycerin and water have been thoroughly mixed, so that 
the volume fractions are constants; their gradients vanish. Then there is no 
relative motion between glycerin and water; our mixture is a homogeneous 
fluid 

Vg = Vw = Vc = V m . (4d.13) 

In the general case, it is useful to decompose Vg and Vw into a 
solenoidal part Vc and non-solenoidal parts Vg and Vw which vanish when 
'fil ¢ = 0, and 

Vg=Vc+Vg , 

Vw = Vc +vw . 

Since Vc = fVg + ¢vw, (4d.14) implies 

(4d.14) 

fVg + ¢vw = O. (4d.15) 

Noting now that both Wand W are solenoidal and using (4d.l) -
(4d.2), we define 

W + W = 2vc = 2u + Pg - Pw (qw - qg). 
Pgpw 

(4d.16) 

Now u is the mass-averaged velocity V m , since the material volume ap
proach requires that we use a mass-averaged velocity (rather than the 
volume-averaged velocity vc). Thus (4d.16) may be written with Vm re
placing u and using the definitions (4d.5) - (4d.6), we get 

fVg + ¢vw = ~(fVgPg + ¢vwPw) + P; - Pw (qw - qg). 
Pc pgPw 

(4d.17) 

Using (4d.14), we may replace Vg and Vw with Vg and v w , and after rear
ranging and using (4d.15), we find that 

Pc - Pg A + Pc - Pw A. A _ Pg - Pw ( ) 
fVg 'f'Vw - 2 qw - qg . 

Pc Pc PgPw 
(4d.18) 

Noting that Pc - Pg = (pw - Pg)¢, and Pc - Pw = (Pg - Pw)f, we find that 
(4d.18) may be reduced to 

(4d.19) 

We use (4d.15)-(4d.19), together with the assumption for diffusion 

qw + qg = 0, pointwise, (4d.20) 

to obtain 

(4d.21) 



356 Chapter X. Two Miscible Liquids 

Since 

and similarly, 

= pgfVw + Pw<pvw - Pw<pvw - PgfVg 

= Pc{vw - v m) = Pc{vw - u) 

PwVg = Pc{vg - u), 

we can express (4d.21) in terms of the mass-averaging velocity u and the 
partial densities 

mw ,= V = Pw<P, 
m 

v = ---1l.. = pgf 
V 

as follows: 
qw = ,(vw - u), Qg = v{vg - u). (4d.22) 

The next step in ensemble averaging is to average the equations of 
motion. The usual procedure would be to write down the equations of mo
tion for each constituent and then ensemble average. For example, Joseph, 
Lundgren, Jackson and Saville [1990] did ensemble averaging for solid par
ticles in a liquid, assuming that the solid was a rigid particle and the fluid 
a Newtonian liquid satisfying the Navier-Stokes equations. Obviously, con
stitutive assumptions have been introduced. The ensemble averaging of the 
equations of motion then leads to many interaction terms relating to forces 
arising at the interface which require further modeling. This modeling is 
difficult and involves a lot of guesswork. 

Another procedure which could be used is to guess the constitutive 
equation satisfied by the mass-averaged velocity. This is what is actually 
done using the continuum approach where it is assumed that u satisfies 
the Navier-Stokes equation. This procedure still does not close the system 
of equations. Further constitutive assumptions relate the fluxes to volume 
fractions through Fick's law and give rise to expressions for ensemble aver
ages of the constituent velocities. 

It is perhaps preferable in the case of two liquids to follow the contin
uum approach which is in some sense more persuasive. First of all, ensemble 
averages are in the best of cases a type of gedanken activity which typically 
is not actually carried out. In the case of two liquids, it may actually be 
impossible to define a boundary between the two molecules, so it is not 
clear when x is in glycerine or water. But the main reason to follow the 
continuum approach is perhaps a matter of belief in which the kind of per
suasive modeling which leads to the Navier-Stokes equations and Fick's law 
is enforced. After all is said and done, it is a matter of choice, and new ideas 
could be tried. 
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X.4( e) Diffusion in Simple Mixtures 

Landau and Lifshitz [1959] have considered diffusion without explicitly tak
ing up the case of incompressible liquids. They write what might at first 
glance look like the usual diffusion equation (their (58.3» 

d¢ d'. p- = - IVI 
dt 

(4e.1) 

where 
¢=m,,(/m=,/p (4e.2) 

is the mass fraction, m is the total mass and i is said to be the diffusion flux 
density, which we shall specify presently, according to our understanding. 

After substituting (4e.2) into (4e.1) and using (4c.5), the left hand side 
of (4e.1) becomes 

p d, / p = d, + ,div u. 
dt dt 

(4e.3) 

This shows that (4e.1) is perfectly consistent with mass-conservation pro
vided that 

divi = divq"( (4e.4) 

is the divergence of the flux of " say the flux of the solute. 
Landau and Lifshitz [1959] develop a coupled thermodynamic theory 

for i and the heat flux under the condition that the concentration gradients 
are small (which is not the main case of interest here). When temperature 
and pressure gradients vanish, they find that 

8fJ, - -
i = -agradfJ, = -a( 8¢ )p,Tgrad¢ = - pDgrad¢ (4e.5) 

where fJ, is the chemical potential and D is the diffusion coefficient. For 
simple mixtures, ¢ = , / p = p,,(<Pi p( ¢) and 

(4e.6) 

After combining (4e.3-4) with (4e.1), with p"( and Pv being constants, we 
find that 

0;: + div(¢u) = div[D"((¢)\7¢] (4e.7) 

Theories of diffusion in liquids lead to expressions in which D is in
dependent of ¢, but these expressions are not consistent with experiments 
(see, e.g., Segur [1953]). We have investigated what the consequences would 
be for mass balance and diffusion if we assume that the volumes of the in
compressible constituents do not change on mixing. This assumption is 
expressed as (4c.1O). The density of such a mixture may change by dilution 
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and the volume fraction is the material variable relating mass with diffu
sion. It follows from our theory that the velocity u is not solenoidal but 
that a linear combination W (or W) of the velocity and a species flux is 
solenoidal. These effects could also be obtained from equations contained 
in the theory of Landau and Lifshitz [1959], but these issues seem not to 
have been explored. 

Many pairs of liquids will give rise to small volume changes upon mix
ing. These liquids are only approximately simple mixtures. It is probable 
that nearly all the interesting cases which are not already well-described by 
the theory of perfect incompressible mixtures could be treated as a to-be
developed perturbation of the perfect case. There are problems for which a 
one percent change of volume is significant. This small change, for example, 
will not allow a binary mixture of incompressible liquids to fill a container 
of fixed volume. 

In many areas of applications related to mixing liquids (such as mis
cible displacements - cf. section X.12, binary convection, Taylor disper
sion, reaction and diffusion, transport of diffusing 'passive' scalars like dyes, 
Marangoni convection, solidification problems) it is universally and incor
rectly assumed that div u = o. For high diffusion speeds, div u = 0 appears 
not to be appropriate even for short times. Presumably, the practitioners of 
these arts know what they are doing and recognize that they are making an 
approximation. In fact, though there are surely many situations in which 
the assumption that div u = 0 is a good one, there are others in which 

divu = P-y - Pv divq-y = Pv - P-y div[D-y(4))V'4>J 
PvP-y Pv 

(4e.8) 

is large when V' 4> is large, as is true when mixing liquids are placed into 
sudden contact. It is clear already from (4e.8) that if gradients are moderate, 
divu will be small if the prefactor or the diffusion coefficient D-y(4)) is 
small. For glycerin, Pv=1.26 g/cm3 and for water, p-y=1 g/cm3 ,so that 
the prefactor 0.26/1.26 is not negligible, but the diffusion coefficient D-y 
=O(1O-6cm2/sec) is. It follows then that the assumption that div u = 0 
is a slow diffusion rather than a Boussinesq approximation (in which the 
density does not depend on temperature). 

The diffusion equation (4e. 7) is in a conservation form which differs 
from the classical equation to which it reduces when div u =0, when the 
densities are matched and D-y(4)) is taken as the diffusion coefficient. An
other diffusion equation, based on W and D(4)), 

0;: + (W . V')4> = div(DV'4» (4e.9) 

follows from (4e. 7) using 

(4e.1O) 
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and (4e.7) where <" = (Pv - P-y)/Pv, is in a classical form. Though (4e.9) 
appears to be classical, it is not classical because the solenoidal velocity W 
which governs convection is not the same as the true velocity u of the mass 
particle. 

X.4(f) Korteweg Stresses and the Equation of Motion 

To allow for the possibility that composition gradients and density gradi
ents can both induce stress, we may generalize Korteweg's formula (4a.2), 
writing 

(4f.l) 

The expression (4f.l) must be invariant to a change of fluids in the binary 
mixture; v for "I and 1 - </> for </> while p is unchanged. This implies that 
(4f.l) cannot contain terms linear in derivatives of </>. 

The notation T(2) is used for the Korteweg stress which, together with 
the components described by (4f.3)-(4f.4), make up the stress tensor T. 
This is an isotropic expression, invariant to a change in the sign of the axis 
of reference. In fact, it is the most general second order tensor composition 
of the first and second gradients of p and </>. We allow 81 , 82 , "11, "12 and 
"13 to depend on p, </> and the temperature (}, and we deal with a simple 
mixture (4c.1O). In this case, the dependence of p on </> is displayed explicitly 
and the temperature-dependence is expressed through the relations p-y = 
P-y«(}) and Pv = Pv«(}). These are found in handbooks. This is an enormous 
simplification. 

The coefficients of "12 and "13 should be invariant to a change of the 
fluid ofreference in the binary mixture. The expression (4f.l) for the stress 
should not change when Pv is exchanged with P-y, and </> is exchanged with 
1 - </>. This implies, for example, that 

"12 (Pv, P-y, </» = -'Y2(P-y,Pv, 1- </». 

One solution of this equation is 

"12 = (Pv - p-yh(</» where 'Y(</» = "1(1- </». 

It will be obvious, if it is not already, that a pressure which does not enter 
into the formula for the density must be entered as a purely mechanical 
variable to complete the mathematical description of our problem, so that 
we end up with the same number of equations as unknowns. In this case, 
it may be best to regard the pressure p as the mean normal stress 

-1 
p= 3traceT (4f·2) 
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and to split T into a pressure and a deviator 

T= -pI+TD 

where 

D 2. (2) 1 (2) T·· = 2"D .. - -O .. "dlVU+r. .. and T = T - -ItrT 
Q r Q 3 Qr Q - 3 

(4/.3) 

(4/.4) 

are traceless: Tjp = 'Ttl = O. In the general case {u, p, p, (J, tP) are unknown, 
and satisfy the continuity equation (4c.5) , the simple mixture equation 
(4c.1O), the diffusion equation (4e.7), the three equations of momentum 

P~: = -Vp+divTD +pg (4/.5) 

and an energy equation for the temperature. There are seven equations for 
seven unknowns. The energy equation for mixtures of incompressible misci
ble liquids in which the pressure is a dynamical and not a thermodynamical 
variable needs further study. 

X.5 Motionless Solutions and Steady Solutions 

Motionless solutions with u=O can persist only when curl{p du/dt) = O. 
We can form an expression for this by taking the curl of (4f.5). This leads 
to the vorticity equations for the incompressible Korteweg equation. If, for 
simplicity, 01. 02, 1'1. 1'2 and 1'3 in (4f.1) are assumed to be constants, then 

du du . 
V p x dt + pcurl dt - 2curl dlV (p.D[uJ) + g x V p 

+ 01 Vp X V (V2p) + 02V¢ X V (V2¢) 

+ 1'3[Vp X V{V2¢) + V¢ x V{V2p)] = O. (5.1) 

The constants 1'1 and 1'2 in (4f.1) which are associated with third derivatives 
can be absorbed by the pressure. In general motionless solutions require 
g x V p = 0 so that V p is parallel to gravity or is zero due to density
matching. 

The condition (5.1) is a necessary but not a sufficient condition for 
static solution. Suppose first that dp/d¢:F O. Then 

divu = _.!. dp d¢ 
pd¢ dt 

(5.2) 

vanishes only if ¢ is independent of t. If we imagine that density matching 
is possible, that p{ tP) = Pc = ¢P-y + {1- ¢ )p", with p-y = p", then motionless 
solutions exist only if 

(5.3) 
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This condition holds for vertical stratification 4J = 4J(z, t) and for radial 
stratification in spherical polar coordinates. This type of condition would 
be used in a Benard problem with diffusion and no motion in a spherical 
geometry. 

Since (D-y(4J)V4J = Vh(4J) is a potential and u = W + Vh(4J), the 
mass and volume averaged velocities u and W have the same curl and a 
motionless solution u = ° does not imply a vanishing W. In the case that 
u = 0, W is entirely due to diffusion. 

X.6 Falling Drops, Rising Bubbles and Plumes 

A basic and basically unsolved problem of fluid dynamics is to determine 
the evolution of rising bubbles and falling drops of one miscible liquid in 
another. This problem is unsteady as long as diffusion operates. An impor
tant question is whether it is necessary to introduce a stress depending on 
gradients of concentration, temperature and density in our equations to get 
results which agree with experiments like those shown in the photographs 
of this chapter. 

One method for doing such problems is to imagine that diffusion is 
so slow that it can be neglected. Then the problem is treated as a free 
interface problem, using the usual jump conditions at the interface, except 
that the interfacial tension is put to zero. This is the method followed by 
Kojima et al. [1984] and Pozrikidis [1990] and we discuss their comparisons 
with experiments later. However, if the interface were really that sharp the 
gradients of composition, density and temperature might be expected to 
induce strong capillary-like stress effects across the interface. One question 
is whether it is necessary to introduce such gradient stresses to explain the 
shape of drops, bubbles and plumes shown here and elsewhere. Another 
question, already framed, is how and when to take into account the effects 
of diffusion. 

One can argue about all this using the water bubble in glycerin shown 
in figure 1.1 as an example. We don't know what the streamline pattern 
around the water bubble might be but perhaps it is like the Hadamard
Rybczynski bubble with a tail (cf. section IXA). 

As the bubble rises, its leading edge is pushed into fresh glycerin. This, 
together with the circulation inside the bubble which brings fresh water up 
to the leading edge, generates the sharpest gradients there with weaker gra
dients at the trailing edge. Whether or not the Korteweg terms are actually 
important in sustaining the spherical shape we see at the leading edge of 
the water bubble through the whole 48 seconds of its rise is something we 
would like to find out. 

Kojima et al. [1984] presented data for falling drops of miscible liquids, 
see plate IX.2.2, and they carried out an analysis of the problem at vanishing 
Reynolds numbers. They say that: 
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" ... Under the assumptions of zero interfacial tension and creeping 
flow, the theory provides a qualitative description for the initial stages 
of the drop evolution ... but is unable to account for the observed drop 
expansion during latter stages of deformation. . .. On the other hand, if 
small inertial effects are retained in the analysis, the theory predicts that 
a slender open fluid torus possessing an arbitrary cross-sectional geometry 
will expand without change of shape to first order in Reynolds number. 

"Quantitative comparisons of theoretically predicted rates of expansion 
with experimental measurements suggest the possible existence of a small, 
time-dependent interfacial tension across the drop interface." 

It is perhaps suggestive that the shape of miscible and immiscible vor
tex rings are very similar. Compare, for example, the miscible rings shown 
in plate IX.2.2 and figure IX.2.3 with the immiscible rings shown in figures 
IX.8.1 - 8.2. 

The argument just given could conceivably be applied to thermal 
plumes; as a plume rises its leading edge pushes always into a freshly cold 
part of the liquid. The circulations in the plume could act to bring hot liquid 
to the leading edge giving rise to sharp gradients of temperature and den
sity there. Thermals, like buoyant miscible bubbles, take on shapes which 
may be influenced by stresses associated with thermally induced density 
gradients (see figures 1.4, 6.1 and plate X.6.2). 

A thermal drop was created by Kojima, Hinch and Acrivos [1984]: 

" ... by using the same fluid for the drop as for the bulk medium 
but at a sufficiently low temperature such that the density difference was 
large enough for the drop to fall in the continuum under the force of grav
ity. Under these conditions, the effect of the interfacial tension should be 
negligible, since the authors are unaware of reports in the literature which 
suggests that a time dependent interfacial tension exists between two fluids 
having different temperature." 

A comparison of thermal plumes and drops shows a similar structure. 
The plume shown in figure 6.1 has a less diffuse structure. 

Thermally induced density gradients will be sharper in relatively vis
cous drops and plumes which are poor heat conductors and have large 
coefficients dp/d() of thermal expansion. We do not know of any reason to 
reject the possible action of thermally-induced gradient stresses in some of 
these fluids. If there is a large temperature gradient in the system, as in 
the case of cold and hot liquids coming into contact, then we might model 
that with a Korteweg stress. 
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Fig. 6.1. [Sparrow, Husar and Goldstein, 1970] These are photographs of thermal 
plumes in water rising from a heated horizontal surface. 

X.7 Isothermal Problems 

The possibility that stresses are induced by gradients of concentration and 
density in diffusing incompressible miscible liquids, as in the theory of Ko
rteweg [1901], can be considered. Such stresses could be important in regions 
of high gradients giving rise to effects which can mimic surface tension. We 
have already seen, in (4e.14), that it is just the same region of high gradients 
where the volume changes due to dilution cause the strongest departures 
from the classical approximation div u = O. We are going to study the su
perposition of non-classical effects of volume changes such that div u =f. 0 
due to diffusion and Korteweg stresses. 

In the isothermal case, p varies with ¢ alone, and Korteweg's expression 
for the stress (4f.1) due to the combined effects of gradients of ¢ and p( ¢) 
are 

(7.1) 

where 

and 
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, dp 
'Y = 'Y1 d¢ + 'Y2· 

In the case of a simple mixture (4c.1O), the governing equations are 

and (4f.5): 

(p"{ - Pv) ~~ + pdivu = 0, 

~~ + ¢divu = V' . (D"{ V'¢) 

p ~~ = -V'p + divTD + pg, 

where TD is the stress deviator defined by (4f.4) with 

(7.2) 

(7.3) 

(7.4) 

, 2 2 
where 6 = (p"{ - Pv) 61 + 62 + 2'Y3 (p"{ - Pv), and 'Y = 'Y1 (p"{ - Pv) + 'Y2, and 
p is the mean normal stress. 

The continuity equation (7.2) may be replaced with (4d.1): 

divW = 0 and W = u - (D"{V'¢ (7.6) 

where 

(7.7) 

and Fick's law (4c.11) is used. We are thinking of glycerin as v and water 
as 'Y: then ( > 0. 

Using (7.6), we may eliminate divu from the stress deviator (4f.4) 

D 2. ( ) 
Tij = 2/-LDij - 3b'ij (/-Ld1v D"{ V'¢ + Tij (7.8) 

and rewrite (7.4) as 

du 'T 
Pdt =-V'(p+Q(¢))+div(2/-LD [u]+8(V'¢)(V'¢) )+pg, (7.9) 

where 
1, 2 2 2 2 

Q(¢) = 381V'¢1 + 3(/-Ldiv(D"{V'¢) - 3'YV' ¢. (7.10) 

In writing (7.9), we have assumed that 'Y is constant. It will simplify the 
calculation to also assume that 8 is a constant. Moreover, the diffusion 
coefficient D"{ and the classical diffusion term D given by (4e. 7) satisfy the 
following relation: 

(7.11) 
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° T:() (0.1=-19.8.0.2=17.6.0.3=-6.66) 

• T=20 (0.1=-16.2.0.2=.\4.9,0.3=-5.92) 

o T=40 (0.1 =- 13.3. u2=12.2, 0.3= .99) 

o T=6> (0.1 =- 10.8, 0.2=9.47, 0.3=-3.83) 

" T=80 (0.1 =-9. 14.0.2:.7.93,0.3=- 3.26) 

+ T=IOQ(0.1=-7.78. 0.2=6.63. 0.3~2.79 ) 

0.4 0.6 0.8 1.0 

Fig. 7.1. Viscosity of glycerol solutions at temperature 0 - lOOoe. The expression 
J.L = J.LGexp( al</> + a2</>2 + 0.3</>3) fits the experimental data. This graph is plotted 
from data found in the book of Segur [1953J. 

We now adopt (7.3), (7.6) and (7.9) as our system of equations gov
erning the evolution of simple mixtures of incompressible liquids. These are 
five equations for the components of the velocity, pressure and </>. In this 
study, we shall restrict our attention to some one-dimensional problems for 
which the equations decouple, but still allow for some of the basic issues to 
be addressed. 

To keep our discussion of the basic issues concrete, we will use estimates 
for the material parameters for the glycerin-water system. One reference for 
this is the article by Segur [1953]. In figure 7.1, we have reproduced Segur's 
experimental data [1953] for the viscosity J.L. This can be correlated well 
with the expression 

(7.12) 

where the coefficients 0.1, 0!2 and 0!3 depend on the temperature T in the 
way shown in the figure, and J.LC is the viscosity of pure glycerin: J.Lc=14.99 
poise at 20°C. The density of glycerin (G) and water (W) mixtures is given 
to within 1% by (4b.3) with (p"pPv) = (pw, pc) '" (1, 1.26)gjcm3 at 20°C. 
Unfortunately, we do not have the global dependence of the diffusion coeffi-
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cient D"'(¢». Small gradient theories of diffusion are inadequate for mixing 
layers in which ¢> takes on all allowed values from zero to one. A represen
tative value for D(¢», varying over the concentration ¢>, taken from Segur 
(p.328) is D = 5 x 1O-6cm2 Is. We will use this representative value in our 
estimates. 

x.s One-Dimensional Mixing Layer Problems 

We shall suppose that u = u(x, t)ex where x increases upward against 
gravity. In this case, 

O=divW= !(U-(D"'(:~), 
with ( given by (7.7). Hence, 

u = A(t) + ue(x, t) 

where 

(8.1) 

(8.2) 

is the expansion velocity which arises from mixing, and A(t) is the solenoidal 
part of the velocity (Le., the volume-averaged velocity). In theories in which 
div u=O is assumed, Ue = 0 and, of course, Ue = 0 when the fluids are 
density-matched. Using (8.1-2) we find that 

(8.3) 

The momentum equation in one dimension is given by 

au au op a (4 au 2 ~ a¢> 2 2 ~ 02¢» 
p(¢»( at +U ax) = - ax + ax a/1ox +aO(ox) +a'Y ox2 +pg' ex (8.4) 

where U is given in terms of A(t) and ¢> by (8.1). We need p to satisfy (8.4) 
when, say, u(x, t) and ¢>(x, t) are prescribed at the boundary. 

The problem of diffusion is decoupled from (8.4) when A(t) = O. And 
A(t) = 0 if there is a value x such that for all t, U and the diffusion flux 
a¢> lax are zero. This is the case at an impermeable wall across which the 
velocity and the flux of water must vanish. It is also true for mixing problems 
on unbounded domains for which U and o¢>lox vanish at x = ±oo. These 
problems are canonical for the development of mixing layers from initially 
discontinuous data which are considered below. When A(t) = 0, 

a¢> 
U=Ue = (D"'(

ax 
(8.5) 

and if we switch to using the classical diffusion coefficient D( ¢» given by 
(4e.7), the diffusion equation (8.3) becomes, by (7.11), 
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o¢ = ~(D(¢) o¢). (8.6) 
at ox ox 

In the simplest case, we assume that D is independent of ¢: (8.6) is the 
classical diffusion equation. With appropriate boundary conditions (8.6) can 
be solved easily. Then u is given by (8.5), without any consideration from 
the dynamics, and the momentum equation (8.4) determines p(x, t) directly. 
Various issues which arise in the dynamical theory of simple mixtures can 
be framed in terms of the one-dimensional problem as we shall see below. 

X.9 Jump of the Normal Stress Across a Plane Mixing 
Layer 

We shall now examine the problem of dynamic interfacial tension without 
assuming that density is constant and using the one-dimensional problem 
defined by (8.4-6). This is the canonical initial-value problem for mixing 
layers: the smoothing-out of a discontinuity in ¢ at a plane. At t = 0, water 
lies above glycerin 

¢ = ¢+ for x > 0, ¢ = ¢_ for x < 0 

where ¢ is the water fraction. Since we are on an infinite domain, 

¢ = ¢+ for x - 00, ¢ = ¢_ for x - -00 

for all t > O. Without loss of generality we may translate ¢ by il¢/2 where 
il¢ = ¢+ - ¢_ > 0 and suppose that when t = 0, 

and 

,/,. __ Ll¢ £ 0 
~ 2 0rx >, 

¢ = il¢ for x _ 00, 
2 

for all t > O. 

¢=_il¢ for x<O 
2 

¢ = -il¢ for x _ -00 

2 

(9.1) 

(9.2) 

In this situation, (8.5) holds and the velocity is proportional to the 
volume fraction gradient "¢ which is infinite at t = 0+ due to the step 
jump (9.1) in ¢. 

For simplicity, we take the diffusion coefficient D to be independent 
of ¢ and as an approximation for the glycerin-water mixture, D is of order 
10-6 cm2 /sec. Then the classical diffusion equation (8.6) has a similarity 
solution 

¢ = _ il¢ + il¢ 1'1 e-'12 dry (9.3) 
2 .fir-oo 

with x 
ry = 2.[l5i: (9.4) 
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Using (9.3) we may express (8.5) as 

( {D, x (tl4J (D x 2 

U = U e = 2(1 _ (4J) V T4J (2v'Dt) = 2y'1r(1 - (4J) V T exp[-(2v'Dt) ]. 
(9.5) 

The variable 4J(-TJ) lies between -tl4J/2 at 11 = -00 and tl4J/2 at 11 = 00. A 
look at the graph of (9.3) in figure 9.1 indicates that the diffusion layer can 
be defined from the place -Xo where 4J = -0.495tl4J to the place Xo where 
4J = 0.495tl4J, or by -m < 11 < m with m approximately 2. The thickness 
of the diffusion layer is 

tlx = Xo - (-xo) = 4m..[i5t (9.6) 

and it tends to zero with t. 
Equation (9.5) shows that the expansion velocity which enters into the 

dynamics can be significant at early times inside the diffusion layer. The 
gradient of 4J is the machine which drives the velocity. The velocity decays 
as y'D/t. 

It is of interest to calculate the jump of the stress across the mixing 
layer. To find the jump in the stress, we integrate (8.4) over the diffusion 
layer. Outside of this layer the derivatives of 4J vanish and 

1:1:0 au au 1:1:0 

-:1:0 p(4J)( at + U {)x)dx = -Ifp] - 9 -:1:0 p(4J)dx (9.7) 

where 
Ifp] = p(xo, t) - p( -Xo, t). 

Equation (9.7) shows that the Korteweg stresses do not enter into the stress 
jump across the plane mixing layer. This is like true interfacial tension in 
which the curvature supports a jump in the stress. The continuity equation 
shows that the contribution due to inertia is always zero: 

1 :1:0 au au 1:1:0 {) 
-:1:0 p(4J)( at + U {)x)dx = -:1:0 :: dx 

1 :1:0 {) {)4J 1:1:0 {) {)4J 
= (Pv ~ (D(4J)£l )dx = (Pv -n-(D(4J) ~)dx = o. 

-:1:0 U~ uX -:1:0 uX u~ 
(9.8) 

For the second equality above, replace U with (8.5) and D-y with (7.11); 
then commute the time and x derivatives and integrate to obtain O. (The 
contribution of inertia also vanishes when D( 4J) depends on 4J.) Therefore, 

1
:1:0 

Ifp] = -g -:1:0 p(4J)dx. (9.9) 

Thus, the jump in the normal stress is simply the static pressure difference 
across the mixing layer. 
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Fig. 9.1. Graph of -h, = -~ + J:;r J~oo exp( -1/2)d1/. When 1/ = 2, -h,= 0.497661 
and when 1/=-2, -h, =-0.497661. 

X.tO Spreading of a Spherical Diffusion Front and 
Korteweg Stresses 

The problem of the spreading of a spherical front without gravity illustrates 
well how Korteweg stresses enter the normal stress balance in the case when 
the curvature is not zero. In fact, this kind of calculation was carried out 
for a vapor bubble in a liquid under equilibrium in the absence of diffu
sion or motion by Korteweg [1901]. A critical discussion of the Korteweg's 
equilibrium calculation can be found in Joseph [1990 b]. 

At t = 0, a spherical mass of radius ro of one liquid is inserted into an 
infinite reservoir of a second liquid. The two liquids are miscible in all pro
portions. We can imagine a sphere of glycerin in a reservoir of water. The 
governing equations are (7.3), (7.6) and (7.9) written for spherically sym
metric solutions, for the radial component of velocity u(r, t) which vanishes 
at r = 0 and r = 00. Under these conditions, div W =0 implies that 

a¢>(r, t) 
u(r, t) = ue(r, t) = (D-y or . 

The diffusion equation (7.3) may then be written as 

(10.1) 

(10.2) 
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where the water fraction ¢(r, t) = 1 when r > ro, t = 0, and ¢(r, t) = 0 
when r < ro, t = O. When the thickness of the mixing layer at r = ro is 
small, it is locally like a plane and the second term on the right side of 
(10.2) may be neglected. This reduces our problem to the one considered in 
section 9 centered on r = ro and it has the same self-similar solution with 

(10.3) 

when 21.,,/15i« roo 
The momentum equation (7.9) may be written as 

p(¢)(ou + u au) = _ ~[p + Q(¢)] + 2~(J.L au) + 4J.L au 
at or or or or ror 

_ 4J.LU + ~[8(O¢)2] + 28 (O¢)2 (10.4) 
r2 or or r or 

where p(¢) is given by the simple mixture formula (4c.1O), and J.L(¢) by 
(7.12). After integrating over the mixing layer from rl = ro - 2m-/Dt to 
r2 = ro + 2m-/Dt, we find that 

I T2 p(¢)(ou + u au) _ 4J.L ou/r _ 28 (O¢)2 dr 
Tl at or or r or 

= [-p - Q(¢) + 2J.L ~: + 8(~~)2]~~. (10.5) 

Outside the mixing layer (rl (t), r2 (t)), ¢ is essentially constant and u is 
essentially zero. The contribution due to the inertia on the left hand side 
of (10.5) is again found to be zero, as in the case of the plane layer. After 
writing 

I
T2 ou/rd _ [U]T2 IT2 '(A.)U o¢d J.L-- r - J.L- Tl - J.L 'I' - - r 

Tl or r Tl r or 
(10.6) 

and setting terms outside the mixing layer equal to zero, we get 

(10.7) 

Now we evaluate (10.7) at very early times, when the mixing layer is very 
thin, with r2 - rl = 4m-/Dt and r ~ roo Using the same approximations 
with r ~ ro in the two terms of the integral of (10.7), we find that 

(10.8) 

Finally, 
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p(Tl' t) - p(T2' t) = 2T(t) 
TO 

where the "transient surface tension" is given by 

T(t) = JD/t i: (r'~q>~~ - 0.5 ~)q>'2d17. (10.9) 

Here, J-t' < 0 because the solution gets more watery when q> is increased. For 
glycerin and water solutions at 20°C, we may evaluate (10.9) using values 
for J-t' and ( close to (7.12) as 

T(t) = JD/t(164.5; -428.7) (10.10) 

with D about 7.5x 1O-6cm2 /sec, but we do not have any knowledge about 
the value of the Korteweg stress coefficient 8. There are two terms in the 
expression for the dynamic interfacial tension; one term arises from the 
Korteweg stress and it gives rise to a stress opposing the internal pressure 
as in the case of equilibrium pressure if the Korteweg coefficient 8 has 
a negative sign. A second term arises from the expansion velocity and is 
proportional to the rate of change of viscosity with volume fraction. This 
term has the wrong sign for interfacial tension in the case of glycerin and 
water solutions but has the right sign when the lighter fluid is the more 
viscous. 

In general, D( q» is not a constant and the error function solution (9.3) 
is not valid. However, even in this case, (8.6) admits a similarity solution 
with 

q> = /(17), 
x 

17 = 2v'Dot' (10.11) 

where Do is a representative value of D( q» and 

(10.12) 

where 
/ = ilq> £< 0 d / ilq> £< 0 2 or 17 = + an = -2 or 17 = -

and 
/ = ilq> as 17 _ 00 and / = - ilq> as 17 _ 00. 

2 2 
Following now the derivation leading to (10.9), we find again with 

T(t) = JDo/t ["'2 (J-t'(q»( D(q» _ 0.5~ ) q>,2 d17, 
1-111 1 - (q> Do Do 

(10.13) 

where 171 and 172 mark the effective end of the diffusion layer replacing m 
in (10.9). In general q>(17) will not be antisymmetric if D(q» is not an even 
function. 



372 Chapter X. Two Miscible Liquids 

The computation of an effective interfacial tension given by (10.13) 
allows one to introduce interfacial tension into problems of slow diffusion 
like the drop and bubble problems discussed in section X.6. In these prob
lems, we imagine that diffusion is confined to narrow layers outside of which 
Vrp=O and u = W. We noted that various authors like Kojima et al. [1984] 
and Pozrikidis [1990] have considered slow diffusion problems to be classi
cal interface problems with the additional caveat that the interfacial ten
sion vanishes. Now we can go one step further with this approach allowing 
W = u outside the diffusion as in classical interface problems with no dif
fusion, treating the layer as an interface with a transient interfacial tension 
T(t) given by (10.13). A higher-order theory involving matched asymptotic 
expansions could be considered. Of course, such approximation would be 
useful only in problems which start from rest at early times before the layers 
have greatly spread. As a general rule when W # 0, it might be a better 
idea to abandon the idea of an interface problem and look for shapes of 
drops and bubbles in the level lines of the concentration field. 

X.11 The Effect of Convection on Diffusion 

In sections 9 and 10, we examined problems in which the velocity and 
stresses are induced by gradients of the volume fraction in simple mixtures. 
In these problems, a large concentration gradient is the engine which drives 
the motion, and the motion is important only at early times. In other 
cases, the motion is driven externally and the distribution of rp is driven by 
a balance of diffusion and convection. In all of these cases, the assumption 
that div u=O can lead to large errors. The effect of expansion on the velocity 
due to mixing can be studied by elementary means for the case of steady 
flow, in which equations (8.1) - (8.4) reduce to 

U = A+ue , 

(D drp 
U e = 1 - (rp dx' 

A drp = D lflrp 
dx dx2 ' 

du d d du A drp 2 
p(rp)ud,x =-dx(P+Q(rp)) + d,x[2Jtdx +6(d,x) ]+p(rp)g·ex . 

From (11.3), we find that 

rp = C1 + C2exp(Ax/ D) 

and from (11.1) - (11.2), we get 

(C2 
U e = 1 _ (rp Aexp(Ax/ D) 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

(11.6) 
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and 
(02 

U = A[l + 1 _ (cP exp(Axj D)] (11.7) 

where 0 1 , O2 and A are to be determined from the boundary conditions. 
The variation of effective pressure p(x) is determined by 0 1 , O2 and A, after 
substituting (11.5-7) into (11.4). If, for example, we set Dirichlet conditions 
by prescribing cP(O) = cPo and cP(L) = cPL, then 

exp(Axj D) - 1 
cP = cPo + (cPL - cPo) exp(ALjD) _ l' (11.8) 

The distribution of cP between 0 and L depends on the balance between 
diffusion and convection. We may define a diffusion length 

l= DjA, 

or an effective diffusion parameter (the inverse Peclet number) 

S = !!.... = molecular diffusion = diffusion velocity 
LA convective diffusion convective velocity' 

Then the distribution of concentration (11.8) is 

exp(xjSL) - 1 
cP=cPO+(cPL-cPO) exp(ljS)-l' 

and the expansion velocity in (11.6) can be evaluated 

(11.9) 

(11.10) 

(11.11) 

A((cPL - cPo)exp(xjSL) 
~= . exp(ljS) - 1- ([cPo(exp(ljS) -1) + (cPL - cPo) (exp(xjSL) - 1)] 

(11.12) 
If S is very small, then cP = cPo for most values of x, with a narrow mixing 
layer of thickness of order of l near x = L. And the expansion velocity 
U e , neglected in the case when div u is set equal to zero, will be important 
inside this layer. We may estimate that 

( ) (L) ~ A((cPL - cPo) 
U e 0 ~ 0, U e 1 _ (cPL (11.13) 

when S is small. The effect of the expansion velocity is confined to the 
narrow mixing layer and the assumption that div u=O is valid outside the 
mixing layer. (11.13) also indicates that the expansion velocity inside the 
mixing layer is of the same order as the constant convection velocity A 
if the density ratio ( is not too small. If S is not small, and this is a 
realizable possibility in many situations, then the expansion velocity will 
not be small, and will not be confined to a boundary layer. The velocity A 
can be determined in the Hele-Shaw problem to be considered in the next 
section. In this problem we shall imagine a vertical cell 0 ~ x ~ L in which 
the liquids are mixed, with pure water at one end and pure glycerin at the 
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other. We may restrict our attention to free fall with atmospheric pressure 
at x = 0, L. In this case, we could imagine that the inlet concentration <Po is 
prescribed but that the well-mixed condition at the outlet is too restrictive, 
replacing a prescribed <P L with a mixed condition 

<p+c:~ =0 at x=L (11.14) 

for a constant c. Formulas corresponding to (11.11) and (11.13) for this case 
are easily derived. We shall proceed with the Dirichlet problem, leaving 
more general and realistic problems like (11.14) for future work. 

X.12 Miscible Displacement in a Hele-Shaw Cell 

In this section, we formulate a theory for the miscible displacement in a 
Hele-Shaw cell. An application for this is the problem of miscible displace
ment in oil-bearing sand. It is well known that the equations which govern 
the flow of a single viscous incompressible liquid between the closely spaced 
parallel plates defining Hele-Shaw cell are in the form of Darcy's equations 
with the averaged velocity proportional to the two-dimensional gradient 
of the piezometric pressure. From this springs an analogy between flow in 
a porous medium and the more easily visualized flow in a Hele-Shaw cell. 
This analogy has been pursued for the case of incompressible mixing liquids 
under the assumption of zero expansion (divu=O) by many authors (see 
Homsy [1987] for a review). It was suggested already by Davis [1988] that 
the kind of instability leading to fingering and tip-splitting observed in the 
miscible displacement experiments in a Hele-Shaw cell could be associated 
with an ersatz surface tension due to a sharp gradient in composition. It 
is perhaps of even greater interest to look for instability induced by anti
surface tension forces generated by gradients of viscosity (see (1O.1O}) when 
the effects of the expansion velocity are not neglected. 

It is therefore of interest to see if a reasonable Hele-Shaw theory with 
expansion velocity and Korteweg stresses included can be formulated to 
guide the interpretation of experiments. The theory given below is presum
ably valid under the usual assumptions resulting from small gap, which lead 
to low Reynolds number viscously dominated flows in which the derivatives 
of the velocity normal to the walls are much larger than derivatives in the 
plane of the motion. Obviously, this assumption cannot hold for a small 
diffusion layer at early times in which the velocity and the derivatives of 
the volume fraction are effectively infinite. So we start our discussion of the 
theory with the remark that it may indeed fail at early times when fresh 
liquids of different composition are neighbors. After this, we shall see if the 
lubrication approximations which are usually made [Homsy 1987] are valid. 

Consider the flow in the Hele-Shaw cell of figure 12.1. The top of the 
cell is connected to a reservoir of glycerin and the bottom of the cell is 
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flush with a reservoir of water. Both reservoirs are open to the atmosphere. 
The flow is falling freely under gravity in a small gap of thickness b, and 
there is a second macroscopic dimension L, with b/ L = £ < < 1. The reader 
should visualize this by imagining a razor-like slit protruding into a vast 
reservoir of freshly stirred liquid. The equations (10.2-4) can be simplified 
by averaging over the thin gap in this situation. 

Since £ = b/L « 1, the diffusion equation (7.3) requires that the 
variation of the volume concentration ¢ across the gap be small, of order 
£2. Moreover, since there is no flux of water across such a wall, a¢/az = 0 
there. Thus, it is reasonable to assume that ¢ is independent of z. This 
means that the density and viscosity are also independent of z. Let the 
velocity u = (ux , uy, uz ) and (x, y, z) be the coordinate system shown in 
figure 12.1. The physics requires that u = 0 on the walls, and we are 
thinking of flow driven by gravity so that u depends on z. When equations 
(7.2-3) are averaged over the gap, they become 

ap a a 
at + ax (pu) + ay (pv) = 0, (12.1) 

a¢ a a a D a¢ a D a¢ 
at + ax (¢u) + ay(¢v) = ax(l-(¢ax)+ ay(l-(¢ay)' (12.2) 

where u and v are simple averages of the velocities U x and uy over the 
gap. In the momentum equation (7.9), if the Reynolds number based on 
the gap size is small, we can neglect the inertial terms on the left hand side 
of the equation. Obviously, this latter idea is erroneous at early times. A 
lubrication analysis yields that the pressure p is independent of z and 

_ ap + pg + ~(/L aUX ) + 8[~(a¢)2 + ~(a¢ a¢)l_ aQ(¢) = 0, (12.3) 
ax az az ax ax ay ax ay ax 

_ ap + ~(/LaUy) +8[~(a¢)2 + ~(a¢a¢)l_ aQ(¢) = o. (12.4) 
ay az az ay ay ax ax ay ay 

These equations can be integrated twice with respect to z, leading directly 
to the expressions for U x and uy. Then the averaged velocities u and v can 
be obtained easily as 

u = ~ (_ ap + pg + 8[~(a¢)2 + ~(a¢a¢)l_ aQ(¢)), (12.5) 
12/L ax ax ax ay ax ay ax 

v = ~ (_ ap + 8[~(a¢)2 + ~(a¢ a¢)l_ aQ(¢)). (12.6) 
12/L ay ay ay ax ax ay ay 

Now we further assume that the flow is unidirectional with v = O. We 
have (11.1) - (11.2), and 

(12.7) 
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L 

b " 
Water (4' =1), P=Pa 

Fig. 12.1. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-VerlagJ Geometry of a Hele-Shaw cell. The top of 
the cell is connected to a reservoir of fluid 1 (glycerin) and the bottom of the cell 
is flush with a reservoir of fluid 2 (water). 
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Fig. 12.2. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-VerlagJ Distribution of volume concentration cp at 
different times for three cases. (1) Solid lines, S = 1, ( = O. (2) Long dashed lines, 
S = 1, ( = 0.2. (3) Short dashed lines, S = 0.01, ( = 0.2. 
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which is the same as the exact equations (8.1)-{8.3) for one-dimensional 
flow, and 

(12.8) 

The last equation differs from (8.4) because the effect of inertia which is im
portant during the initial stage of mixing has been suppressed. We confine 
our attention to the evolution to the steady state, after the transients which 
may be poorly represented in this formulation have decayed. In this situ
ation, o¢jox is not too large, and we may imagine that A{t) is generated 
from free fall in which the last two terms in (12.8) and the corresponding 
terms in (12.5) are negligible. A further justification for adopting (12.5) 
as the u-equation of momentum can be constructed for cells in which b is 
small and fluids for which D, 8 and l' are small. Inclusion of the neglected 
terms are expected not to change the qualitative features of the analysis to 
follow. 

Under the aforementioned approximation, we may formulate a one
dimensional miscible displacement problem for simple mixtures of incom
pressible liquids in a Hele-Shaw cell as an initial-value free fall problem sat
isfying (4c.1O), (7.12) and (12.7-8). We introduce dimensionless variables 
(x, t, u, U,p) related to the dimensional variables (x, t, u, A,p) by scaling 
(x, t, u, U,p) = (xj L, Vtj L, ujV, AjV,pj{P1gL)). The dimensionless equa-
tions are: 

(12.9) 

(12.1O) 

(12.11) 

where 
P = 1- (¢, 

J.L{¢) = exp{Q:1¢ + Q:2¢2 + Q:3¢3) (12.12) 

and 

2' 2 D P1gb, 0 '1' Sb 
S = LV' V = 12J.L1' 01 = P1g£3' 02 = P1gL3' ID = 12L2' (12.13) 

2 (' (2J.L{¢) ) 2 (' (J.L{¢) ) 
K 1 {¢) = "3 01-ID{1_(¢)2 ,K2 {¢)="3 02- ID 1 _(¢ . 

S is the effective diffusion parameter (l1.lO), or the inverse Peclet number. 
After the transients have decayed, o¢jox is not too large, and we may 
imagine that U{t) is generated from free fall in which the K1 and K2 terms 
in (12.11) are negligible, since the thickness of the cell bj L is small and the 
coefficients of the fluids D, 8 and l' are small. Dirichlet boundary conditions 
for the problem of free fall are 
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¢(O, t) = ¢o, ¢(1, t) = ¢L, p{O, t) = p{1, t) = Pa (12.14) 

where (¢o, ¢L) =(0,1) for glycerin displacing water, and (¢o, ¢L)=(1,0) for 
water displacing glycerin. The constant Pa corresponds to atmospheric pres
sure. We shall assume that somehow the liquids are initially arranged so 
that 

¢ = ¢o for x < 1/2; and ¢ = ¢L for x> 1/2. (12.15) 

This is a common assumption for the problem of miscible displacement. 
U{t) can be determined by integrating the pressure equation (12.11) over 
the cell x = (O, 1) and applying the pressure conditions from (12.14). Thus, 

(12.16) 

Therefore, the flow in a Hele-Shaw cell is governed by the unsteady non
linear transport equation (12.1O) with U{t) given by (12.16). We have an 
X-dependent velocity given by (12.9). 

In this problem, if we use the solenoidal velocity W to replace the 
mass-averaged velocity u in the momentum equation, we still could have 
the same diffusion equation (12.1O). The solenoidal theory gives rise to a 
uniform velocity u = U(t) independent of position with 

U{t) = 11 pdx/ 11 JL(¢)dx. (12.17) 

However, the term in (12.16) which is missing in (12.17) may not be neg
ligible. Actually, in this problem, if we compare the equations of motion 
for u and W, they are the same when inertia is neglected except that the 
pressure is different. This difference alters the pressure drop across the cell 
and changes the velocity of free fall. 

The equilibrium solution (8¢/&t =0) of (12.10) is 

with U = U{oo). 

'" = '" ('" _ '" )exp(Ux/S) - 1 
'I' '1'0+ 'l'L '1'0 exp{U/S)-1 

The equations (12.9) and (12.16) are solved numerically. Figure 12.2 
shows the distribution of the volume concentration ¢ in the cell at different 
times for three cases. Initially, ¢ is a step function at x = 1/2. As time 
evolves, diffusion smoothes out the front and back of the step, and convec
tion washes the step downwards. The curves for t = 00 correspond to the 
steady equilibrium state given in (12.18) {cf. equation (11.11)). For small 
S, the diffusion is confined to a narrow layer. Changing the density ratio ( 
only affects the U{t) in (12.16) and does not greatly influence the evolution 
of the diffusion profile as shown in the figure. 

As in (11.1)-{11.2), the velocity in (12.9) consists of a solenoidal and 
an expansion part. When S is not small, as in many situations, then the 
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expansion velocity will not be small and will not be confined to the mixing 
layer. When 8 is small, the expansion velocity is confined to the narrow 
mixing layer, and it is almost zero outside this layer: thus, the assumption 
that div u=O is valid outside of the mixing layer. 

X.13 Stability of Steady Miscible Displacement 

Studies of the stability of miscible displacement usually focus on the stabil
ity of a moving front, as in the case (12.16), but under the assumption that 
divu = 0 (see Wooding [1969), Homsy [1987), Yortsos and Zeybek [1988)). 
Since the moving front is unsteady, the method of normal modes does not 
apply unless the unsteady flow is assumed to be steady. This is called the 
quasi-steady approximation which tacitly assumes that we are looking at 
disturbances of high frequency relative to time intervals over which the ba
sic flow appears steady. It is of interest to carry out a quasi-steady analysis 
of the moving front in the problem of miscible displacement based on the 
equations used in the previous section, for a comparison. A related problem 
is the stability of the steady equilibrium flow which was given in section 11 
for which the quasi-steady approximation is unnecessary. We shall desig
nate this steady flow using capital letters U, 4i(x) and P(x). The velocity 
U is given by (12.16) as t -+ 00, the concentration 41 is given by (12.18) 
and the pressure P(x) is determined by directly integrating the momentum 
equation (12.11). Now we linearize the Hele-Shaw equations (12.1), (12.2), 
(12.5) and (12.6) around the basic flow. 

The perturbations are defined by 

p=P+p 

A (U (841' A) A 

u = uoex + u = + 1 _ (41 + u ex + vey 

P = Po + p, J.L = J.Lo + fl, 
Q=Qo+Q 

(13.1) 

(13.2) 

(13.3) 

(13.4) 

(13.5) 

where 41, U, P and quantities with subscript 0 satisfy the unperturbed 
equations and those with A are the perturbations. 

By (4b.3), (4e.10), (7.12) and the above equation, we obtain 

p= -(¢, 

W=Uex+w 

A A (8 A (2841' A 

w = U - 1- (41 "V¢ - (1 _ (41)2 ¢>ex. 

(13.6) 

(13.7) 

(13.8) 
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After applying the above relations, the perturbation equations are: 

divw = 0, (13.9) 

(13.10) 

(13.11) 

(13.12) 

where 
A 2 A A 

A 2 A I a¢ 2 A 2 A 2 ( V' ¢ 2( I a¢ 
Q = 3 81 4> ax - 382V' ¢ + 3 ID(JLO 1- (4) + (1- (4))24> ax 

(J>p" 2(2J>p'2 2 I A 2 
+ (1 _ (4))2 + (1 _ (4))3) - 3JLoID¢V' 10g(1 - (4)). (13.13) 

After replacing u with w, equations (13.9) - (13.12) are four equations for 
two components of w, ~ and p. We may eliminate p from (13.11) - (13.12) by 
cross-differentiation, taking the curl of the momentum equation and after 
introducing a streamfunction for w via 

A a~ 
w·e =--

x ay' 

we get 

A a~ 
w·ey =ax (13.14) 

(13.15) 

Equations (13.10) and (13.15) are two equations for ~ and~. We are going 
to solve these equations for prescribed values of ¢ at x = 0 and x = 1 which 
means that 

~ = 0 at x = 0, 1. (13.16) 

Other, more general conditions like (11.14) could be treated by the same 
type of analysis. Two more boundary conditions arise from the condition 
that the pressure is prescribed at the top and bottom so that 

p = 0 at x = 0, 1. (13.17) 

We are now ready to form the spectral problem for the stability of 
miscible displacement in a Hele-Shaw cell, using normal modes 
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[p, <,b, -¢](x, y, t) = [P{x) , ¢(x), 1jJ{x )]exp{iay + ct). (13.18) 

The stability equations become 

c¢ + U¢' + Uq,' = 8{¢" - a 2¢) 

"+ 1,-,;.11 
U I,/, /-LoU /-Lo'¥u /",/, 

/-Lo'/'+ /-LoU - 2 = -"''/' a 

+81 (2{¢/q,/)1 _ (82 + a2){~/)) 
8x2 

(13.19) 

(13.20) 

where U = -ia1jJ{x). The boundary conditions are: 

¢=O (13.21) 

and 

/-LOU' = ~8q,1,/,1 ~''/''' _ ~/"ID (~ 2(¢/q,1) 
a 2 3 '/' + 3 'Y'/' 3'" /-Lo 1 _ (q, + {I _ (q,)2 (13.22) 

at x = 0,1. (13.22) is the pressure condition obtained using (13.12) and 
(13.21). 

Since the basic velocity U is a constant, it can be combined with the 
scaling velocity V in (12.13). This would replace V with the basic velocity 
A = UV in the scaling, and we would have 

(13.23) 

, ( d ([ 1 ¢] ') 2 ') +81 dx ¢ - S q, - a ~ (13.24) 

1 ¢L - ¢o x ( 1 ) q, = 8 exp{ s) / exp{ s) - 1 , (13.25) 

where /-L~ is a derivative with respect to q" and ¢/, q,1 and u' are derivatives 
with respect to x, the boundary conditions (13.21)-{13.22) are the same 
with the parameters redefined as 

G = P1gb2 . 
12A/-L1 

(13.26) 
The parameter G is the inverse of the basic dimensionless velocity G = 
l/U which is determined by equation (12.16) and depends solely on the 
distribution of ¢. The parameters 81 and 82 are of unknown magnitude. ID 
is a small parameter because D and b2 are small; b2 as small as we wish 
and D smaller than 1O-5cm2/sec. 

As we have seen in this problem, the approximation of replacing u 
with the solenoidal velocity W results in a difference in the pressure which 
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alters the basic velocity of free fall. In the solenoidal theory, the stability 
equations would have the same form as (13.23)-(13.24) if the pressure is 
eliminated, but the pressure boundary condition (13.22) would be different. 
This difference will be small if the parameter ID is small. 

X.14 Asymptotic Analysis of Stability 

The eigenvalue problem defined by (13.21)-(13.25) may be solved explicitly 
by expansions for long and short waves. For long waves, we write 

4>(x, a) = 4>o(x) + 0.24>1 (x) + ... , 
u(x, a) = o.2uo(x) + o.4u1(X) + .... , (14.1) 

c = eo + o.2c1 + ... , as a -+ o. 
These expressions are inserted into the governing equations and indepen
dent powers of 0.2 are identified. At zeroth order (13.24) becomes 

84>~ - 4>~ - eo4>o = 0, 4>0(0) = 4>0(1) = 0 

so that 
2 2 1 

eo = -(k 7r 8 + 48)' k = ±1, ±2, ... 

4>0 = Bexp( ;8) sin( k7rx) 

(14.2) 

(14.3) 

(14.4) 

where B is an arbitrary constant. We may find a function uo(x) which 
satisfies (13.21) and (13.24) at the lowest order. Hence 

1 
c = -(7r28 + 48) + 0(0.2 ) (14.5) 

and miscible displacement is stable to long waves (however, adding in inertia 
leads to additional modes). 

To study the stability of miscible displacement to short waves, we use 
the method of "frozen coefficients" [Joseph and Saut 1990; Joseph 1990a]. 
This method is founded on the perception that the variable coefficients of 
the equations are effectively constant over the short interval defining a short 
wave of length 27r / a, a -+ 00. In this limit the highest derivatives dominate 
and the analysis of stability is local, at each (x, y) point, independent of 
boundary conditions. 
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To implement this method we use normal modes centered on Xo (the 
interfacial region, cf. (9.6», writing 

[cp(x) , u(x)] = [q;, u]exp[i,8(x - xo)] 

where q;, u are constants. We find that, to leading order 

cq; + uiP' = -Sk2q;, 

J-Lok2u = _a2 (G( + J-L~ + 81 iP")q; - a 2 k2iP' 81 q; 
S 

(14.6) 

(14.7) 

(14.8) 

where k2 = a2 +,82 and iP', J-Lo are evaluated at Xo. Noting now that 
iP' = iP/S, we eliminate u from (14.7) - (14.8) and find that 

8 iP,2a 2 a 2iP'(G( + J-L' + c51t') 
c = -Sk2 + 1 + 0 s 

J-Lo k2J-Lo 
(14.9) 

where J-Lo = J-L'(iP) is decreasing. The diffusion term -Sk2 is always stabi
lizing. 

To bring out the main features of (14.9) we write 

(a,,8) = k(cosO, sinO) (14.10) 

noting that a is a cross-stream wave number and ,8 is a streamwise 
wavenumber. At the leading order, 

8 q,'2 
c= (-S+COS20-1-)k2. 

J-Lo 
(14.11) 

The second term is stabilizing when 81 < O. For 81 > 0 and ,8 = 0, the 
cross-stream disturbances will lead to instability when 

(14.12) 

When (14.12) holds, miscible displacement is Hadamard unstable; ill-posed 
as an initial value problem with explosive instability to the shortest waves. 
The Korteweg coefficient 81 was introduced in the gradient theory to sim
ulate surface tension: for this, we must take 81 < o. 

We next note that when water is displaced by glycerin, q,' > o. The 
most unstable situation with 81 ::; 0, is when 81 = 0 and then 

iP' 
c = -Sk2 + cos2 O-(G( + J-L~). 

J-Lo 
(14.13) 

The only positive term is associated with gravity G( and it does not even 
operate for streamwise disturbances with a = O. The numerical work shows 
that this case is Rayleight-Taylor unstable, but not to short waves which 
are stabilized by diffusion. 
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The case of viscous fingering is associated with the problem in which 
water displaces glycerin for which ~ < O. The most unstable case is for 
cross-stream disturbances (cos2 8 = 1). In this case, G(~ is stabilizing. If 
we put ( = 0, then for fingering instability to short waves we must have 
a2 -+ 00 and 

(14.14) 

This means that we might have instability to short waves satisfying (14.14) 
but the shortest waves of length 27r/a with a > J~'J1.'o/(J1.o8) would be 
stable. This is a diffusion cut-off for these waves (see figure 15.7). 

X.15 Growth Rates and Neutral Curves 

The eigenvalue problem (13.21)- (13.24) was solved by the finite element 
method and checked against analytical results for long and short waves. In 
our computation, (ID, 81, 82 ) = (0,0,0). The eigenvalues are real-valued, with 
zero frequency. Some representative results are shown in figures 15.1 and 
15.2. Figure 15.1 shows neutral curves for glycerin displacing water. The 
temperature enters this problem through the normalized viscosity function 
J1.(~). The viscosity parameters (al, a2, a3) in J1.(~) change according to 
temperature as shown in figure 7.1. A strong variation of viscosity with 
composition (at low temperature) leads to greater instability. There is sta
bility when diffusion is large. Therefore, within certain ranges of parameters, 
the miscible displacement of glycerin into water can be unstable. At higher 
temperatures, we find stability again. Neutral curves for a fixed tempera
ture of DoC and different values of G are given in figure 15.2. These show 
that the instability is associated with the gravity term G( in the stability 
equations: the larger the value of the driving force associated with gravity, 
the greater is the instability. Therefore the instability of miscible displace
ment of glycerin into water is basically a Rayleigh-Taylor type of instability, 
regularized by diffusion rather than by surface tension. The fingering of a 
dilute potassium permanganate solution into water shown in figure 15.3 is 
caused by an instability of this type. 

The stabilizing effect of diffusion, of decreasing Peclet numbers 1/8, is 
exhibited in figure 15.4 in a plot of the growth rate versus wave number. 
From the figure, it is clear that the wavelength of the most unstable dis
turbances decreases as the diffusion parameter 8 becomes smaller. When 
8 = 0.1, the most unstable wave number is about 40 which gives a dimen
sionless wave length of 0.16. This places about six and a half waves in a 
length of the cell. As 8 becomes smaller, these waves become finer. Figure 
15.5 plots the variation of the eigenfunction 4J(x) and u(x) across the cell, 
corresponding to the most unstable disturbances. The figure shows that as 
8 decreases, the disturbances are confined within an increasingly thinner 
diffusion layer. 
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We next consider the case of water displacing glycerin. In this case, 
gravity is stabilizing: larger values of G give rates of decay. Diffusion is also 
stabilizing: larger values of S give faster rates of decay (see figure 15.6). Our 
numerical study suggests that water displacing glycerin is always stable. 
This is evident for short waves. We have found that the diffusion cut-off 
wave number is 

J-t~1 X( 1 ) I-I-exp(-)j exp(-)-l 
J-tO S2 S S 

which means that the shortest waves with 0: > O:c would be stable. In the 
above expression, J-t~j J-to can not be too large: a value of 10 would give a 
viscosity ratio of two fluids about 2.2 x 105 . The smallest O:c occurs at x = O. 
A sample value for O:c for small S = 0.1 is about 0.2, which is not large 
enough for the short wave analysis to be valid, but supports the result 
that water displacing glycerin is stable. One way to think about this is 
that the steady equilibrium profile is not steep enough to create a fingering 
instability. In order to get the fingering instability, we have to do a quasi
steady analysis at an earlier time when the gradient of concentration is 
large, but the use of the Hele-Shaw equations at early times is problematic. 

We have found that 8 must be negative to avoid Hadamard instability 
and ill-posedness. Miscible displacement is stable to long and short waves. 
Diffusion is strongly stabilizing in both cases. Within certain ranges of pa
rameters, the miscible displacement of glycerin into water can be unstable. 
This instability is basically a Rayleigh-Taylor type of instability, regularized 
by diffusion rather than by surface tension. As the diffusion parameter S 
becomes smaller, the waves of disturbances become finer and are confined 
within an increasingly thinner diffusion layer. Water displacing glycerin is 
stable. This is due to the fact that the steady equilibrium profile is not 
steep enough to create a fingering instability. 
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Fig. 15.1. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-Verlag] Neutral curves for the stability of glyc
erin displacing water, with G = 1. The flow is stable for large S, when diffusion 
dominates. The temperature enters this problem through the function ,.,,(tJ>} which 
varies more strongly with tJ> at low than high temperature (see figure 7.1). 
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Fig. 15.2. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-Verlag] Neutral curves for the stability of misci
ble displacement of heavy fluid into light. Glycerin displaces water at O°C. The 
reciprocal Peclet number S is plotted against the wavenumber 0: for different 
gravity parameters G. The regions of instability grow with G. 
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Fig. IS.3. [Wooding, 1969, Cambridge University Press] Fingering of a solution 
of potassium permanganate into water in a Hele-Shaw apparatus. 
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Fig. 15.4. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-Verlag] Growth rates (Re c) for miscible displace
ment of heavy fluid into light (glycerin into water) at 20°C. Increasing diffusion 
(larger S) is stabilizing. 
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Fig.15.5. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-Verlag] Variation of eigenfunctions ¢J(x) and u(x) 
across the cell, for miscible displacement of glycerin into water at 20°C. The solid 
lines are for diffusion parameter S = 0.5 and wavenumber 0 = 10. The dashed 
lines are for S = 0.1 and 0=40. 
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O~~~_~--~-~--~--~-_~ __ ~_~ __ ~ __ ~~I 
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wave nwnber a 
Fig. 15.6. [Hu and Joseph, 1992, Miscible displacement in a Hele-Shaw cell, 
ZAMP, to appear, Birkhauser-Verlag] Growth rate for water replacing glycerin 
with G=1 and G=O and l-L(tP) evaluated at O°C. The growth rates are always 
negative, with faster decay for greater diffusion (larger S) . 

X.16 Structure of Two-Dimensional Problems 

There are many problems of diffusion and mixing which can be treated in 
the frame of the theory of simple mixtures. Consider the problem of mixing 
of glycerin and water which fill a container. At the initial instant, we imagine 
that the bottom of the container is filled with pure glycerin and the top, up 
to a free surface, with pure water. As time goes on, the glycerin and water 
mix and eventually become a homogeneous mixture. The traditional way 
to treat this problem is to assume that u = 0 and that the mixing takes 
place by diffusion alone. This assumption is incorrect because the density 
of a binary mixture changes with composition even if the two liquids are 
incompressible. So our mixing is not pure diffusion and a mass averaged 
velocity must be generated in the transient, leading to complete mixing, 
raising the center of mass of the mixture. To show how such problems are 
formulated in the frame of simple mixtures, we shall formulate this mixing 
problem in two dimensions, leaving the analysis for a later work. 

Consider a rectangular vessel in two dimensions, closed at the bottom 
and on the sides but opened at the top, as in figure 16.1. We may imagine 
that at t = 0 the mixture has a known stratification in the vertical direction 
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. {I l<y~L 
ljJ{x,y,O) = </>o{y) = 0 0 ~ y < I (16.1) 

and that the solenoidal velocity vanishes 

W{x, y, 0) = O. (16.2) 

We wish to follow the evolution of mixing. The evolution may be described 
in terms of a streamfunction t/J{x, y, t) and concentration field. 

First, since div W =0, we have a streamfunction given by 

8t/J 
W.ex=-ay' 

8t/J 
W·ey = ax. (16.3) 

The equations of motion and the boundary conditions are expressed in 
terms of the mass averaged velocity u related to W by 

u=W+lIe (16.4) 

where 

= (DVljJ = Vh{""') 
lie 1- (ljJ 'I' 

(16.5) 

and curlu = curlW, divu = divlle, and 

h{ljJ) = -Dlog{l- (ljJ) 

when D is a constant, independent of ljJ. The diffusion of ljJ is governed 
by (8.6) and the equations of motion are given by (7.9). We may elimi
nate u with W using (16.4). After this is done, the diffusion equation and 
momentum are for the coupled fields of W and ljJ. We may write 

Since 

the part of stress associated with the expansion velocity 

lie = Vh{ljJ) 
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Fig. 16.1. Mixing of initially separated binary mixture of glycerin and water. 

will give rise to vorticity only if J-t' =I- O. 
The boundary conditions for the concentration is that there is no flux 

of either water or glycerin across a solid boundary or a free surface. This 
means that 

(16.6) 

at all points of the boundary of the container in figure 16.1, even at the 
free surface. By using the divergence theorem, we can show that the average 
value of '\l2¢ over the domain occupied by the two fluids vanishes. At a solid 
wall, we require that the mass-averaged velocity u vanish. This implies that 

(16.7) 

at solid walls, and since U e . n = 0 there, 

W·n=O (16.8) 

at a solid wall. Let t be any tangent vector on a solid wall. Then the 
tangential component of W is driven by the flux of ¢: 

(D 
W· t = --- t· '\l¢ = -t·'\lh(¢) 

1- (¢ 

at a solid wall. In our container, 

~! = ex . W = 0 on the side walls, 

~~ = e y • W = 0 on the bottom of the container, 

(16.9) 

(16.10) 

(16.11) 
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W. ey = -~ ot/J = _ oh(t/J) on the side wall 
1- (t/J 8y 8y 

(16.12) 

W. ex = -~ ot/J = - oh(t/J) on the bottom. 
1- (t/Jox ax 

(16.13) 

The two components of W may be obtained from a streamfunction using 
(16.3). 

The top of our container may be regarded as an ordinary free surface 
F(x, y, t) = y - Y(x, t) = O. The kinematic equation is written 

0= dF =W'ey+ oh(t/J) _ (OY +(W'ex + Oh(t/J»OY). (16.14) 
• 8y m & & 

After using (16.6), (16.14) reduces to 

(16.15) 

We next consider the stress condition at y = Y, supposing that the air 
outside is dynamically inactive. Then 1.(2b.12) may be written as 

(16.16) 

where n points into air, Pa is atmospheric pressure, H is the mean curvature, 
and u is surface tension. Normal and tangential equations for the stress at 
the free surface are given by (16.16) which may be expressed in terms of 
the unknown W using (16.4). 

The equations of motion are given by (4f.5) (equation (7.9) for the 
isothermal case) and may be reduced to equations for W, t/J and P using 
(16.4). The equations of motion in two dimensions may be framed in terms 
of the streamfunction using (16.3): 

! (P + Q) = 2/1,' t/J",( -1/1",y + h",,,,) + f.t( -1/1yyy -1/1",,,,y + 2h",,,,,,, + 2h",yy) 

+f.t'1/1y(1/1",,,, -1/1yy + 2h",y) + 6(2t/J",t/J",,,, + t/J",yt/Jy + t/Jyyt/J",) 

-p(1/1",y1/1y -1/1",1/1yy - h",1/1",y - hy1/1yy -1/1yt + h",y1/1", 
-h",,,,1/1y + h",t + h",h",,,, + hyh",y) - pg, (16.17) 

~ (P + Q) = 2f.t't/Jy (1/1",y + hyy) + f.t( 1/1",,,,,,, + 1/1",yy + 2hyyy + 2h",,,,y) 

+f.t't/J",(1/1",,,, -1/1yy + 2h",y) + 6(2t/Jyt/Jyy + t/J",,,,t/Jy + t/J",yt/J",) 

-p(1/1:z;y1/1", -1/1y1/1:z;:z; + h:z;1/1:z;:z; + hy1/1:z;y + 1/1:z;t - h",y1/1y 

+hyy1/1:z; + hyt + h:z;h:z;y + hyhyy), (16.18) 

where 
(16.19) 
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and the derivative of J.t is with respect to ¢. 
The highest derivatives of ¢ in these equations are in potential form 

and disappear after cross-differentiation: 

2{J.t" ¢"'¢Y + J.t' ¢"'Y) { -2t/J",y + h",,,, - hyy) 

+ (J.t" ¢~ + J.t' ¢yy - J.t" ¢~ - J.t' ¢"'''') (t/J",,,, - t/Jyy + 2h",y) 

-2J.t'¢ (~V2t/J - ~V2h) - 2J.t'¢", ( ~V2t/J + ~V2h) 
y oy {)y ax oy 

-J.tV4¢ + 8(¢",~ - ¢ ~ )V2¢ oy Yox 
+(pg¢y{ -t/Jyt + h",t + L( -t/Jy + h",) + g) 

-(Pg¢",{t/J",t + hyt + L(t/J", + hy)) 

+p(LV2t/J + V 2hV2t/J + V2t/Jt) = ° (16.20) 

where Pg is the density for glycerin, and the differential operator L is defined 
by 

a a 
L = u . V = (-t/Jy + h",) ax + (t/J", + hy) oy . 

Thus, we have the diffusion equation (4e.9) and the vorticity equation 
(16.20) to solve for two unknowns ¢ and t/J. The boundary conditions at 
the side wall are 

¢'" =0, 

The boundary conditions at the bottom are 

(D¢", 
¢y = 0, t/J", = 0, and t/Jy = 1- (¢' 

The free surface conditions at y = Y (x, t) are 

n'V¢=O, 

and 
-(p - Pa)n + 2J.t{D[W] + D[Vh]) . n 

du Y",,,,u 
= d¢ VII¢+ (1+Y';)3/2 n . 

Various problems of mixing and even Taylor dispersion which are con
ventionally treated in the framework of other equations with div u = 0, 
could be studied using the equations developed here. 
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X.17 Conclusions and Discussion 

1. A theory of motion and mixing of two incompressible liquids v and 'Y 
can be developed based on the equation of state for the density of a 
simple mixture (4c.1O). The natural variable connecting composition 
to density is the volume fraction ¢ say of 'Y with constant densities P"'( 
and PII under isothermal conditions. 

2. The velocity u is not solenoidal because the density p(¢) changes due 
to diffusion. For simple mixtures, the vector W defined in (7.6) is 
solenoidal. The velocity u is then decomposed into a solenoidal part 
Us and an expansion part lle (cf (8.1-2)) where 

div lle = L1 = (div[l ~(¢ V'¢] 

is the expansion and D( ¢) is a diffusion function of ¢, a quantity of 
order 10-6 cm2/sec in many liquids. D(¢) is assumed to be constant 
in standard theories of Fick's law (but it varies in experiments). The 
expansion velocity is driven by gradients of the volume fraction. 

3. It is universally but incorrectly assumed that div u=O when treat
ing problems involving the diffusion of incompressible liquids. This 
assumption is exact in two situations, ( = 0 and D = 0, and could be 
a good approximation for conditions close to these. 

(1) Small 1(1 means the densities are nearly matched, which is sort of 
like a Boussinesq approximation. There are problems, however, like 
that of the smoothing-out of a discontinuity at a plane or spherical 
front in which the expansion is infinite at the initial instant, and 
large for small times, no matter how small 1(1 might be. 

(2) Small D means diffusion is neglected. This kind of approximation 
has been applied in the literature to determine the motion of two 
homogeneous liquids separated by an interface across which inter
face conditions are applied, for instance, the continuity of the stress 
traction vector and velocity. This is the same formulation as in the 
case of immiscible liquids, except that interfacial tension is set equal 
to zero. It misses out on surface tension-like forces associated with 
the stresses induced by the expansion velocity and Korteweg stresses 
and, of course, it misses out on diffusion entirely. 

4. The diffusion equation may be simplified by replacing u with W. The 
volume fraction is convected by W rather than u. The resulting equa
tion is in classical form. 

5. The tangential component of W does not vanish at a solid wall, but 
instead balances the flux of ¢ there. 

6. The problem of dynamic interfacial tension due to effects of the ex
pansion velocity and Korteweg stresses is analyzed by evaluating the 
jump of the normal stress across plane and spherical mixing layers 
which smooth an initial discontinuity of composition. We find no jump 
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across a plane layer but there is a jump proportional to the curvature 
across the spherical surface. The dynamic tension at the spherical in
terface decays as JD/t. There are two terms in the expression (10.10) 
for the interfacial tension; one term arises from the Korteweg stress 
and it gives rise to stress opposing the internal pressure as in the case 
of equilibrium pressure if the Korteweg coeffficient has the appropriate 
sign. A second term arises from the expansion velocity and is propor
tional to the rate of change of viscosity with volume fraction. This term 
has the wrong sign for interfacial tension in the case of glycerin and 
water solution but has the right sign when the lighter fluid is the more 
viscous. 

7. A Hele-Shaw theory may be derived from our equations. The problem 
of miscible displacement in a Hele-Shaw cell is formulated and solved 
in a variety of cases. The stability of miscible displacement reveals a 
Rayleigh-Taylor type of instability with heavy fluid above and a vis
cous fingering instability when the displacing fluid is much less viscous. 
Diffusion is strongly stabilizing. 

Our common perception is that the diffusion of miscible liquids is ir
reversible; homogeneous mixtures do not demix. Perhaps this perception is 
faulty and it is possible to separate homogeneous mixtures to a degree by 
dynamic processes. Frei and Schiffer [1947] report separating solutions of 
glycerin and water and of hexane and heavier paraffins using ultrasound. 
Other methods which can be used for separation are thermodiffusion and 
ultra-centrifugation. It is also of perhaps of special interest to readers of 
this volume to consider the separation of a homogeneous mixture by the 
"method of lubricated pipelines". The question is: would a homogeneous 
mixture, say of glycerin and water, running through a very long capillary 
tube, tend to segregate as it flows with more glycerin in the center than at 
the wall? 



Appendix 

Differential Geometry of Surfaces 

We derive equation (2c.2) of chapter I, volume 1. E is a surface F(x, y, z, t) = 
o in three-dimensional space. Reference coordinates (u, v) locate points 
on E. The reference coordinates are independent of time; they are not 
unique. The position vector for points on E is re(u, v, t) and reu = 8re/8u, 
rev = 8re / 8v are base vectors tangent to E at (u, v) which lie along the 
lines v=constant and u=constant, respectively. The normal to E is given 
by 

(A.I) 

where u and v are chosen so that reu /\ rev and V' F are in the same direction. 
We may use the surface Jacobian 

to define a set of reciprocal base vectors. 

:J aU = -n /\ rev, 
:J a V = n /\ reu , 

:J an = reu /\ rev, 

(A.2) 

(A.3) 

where reu . aU = rev . a V = n . an = 1 and all other scalar products are 
biorthogonal. The surface Jacobian arises in the representation of surface 
areas in terms of reference coordinates. 

ndE = (reu /\ rev) du dv, 
dE = :Jdu dv. 

(A.4) 

Now we consider the curvature of a surface. Let (u, v) be a point on E 
and £ is a straight line along the normal n to E at (u, v). Consider spheres 
of radius Ipl, centered at points on £ which make a second order contact 
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Fig. A.1. Construction for curvature and for the principal lines of curvature. 

x + pn = c, p > 0 in the figure, x. + pn. + p.n = c. where 8 is arc-length on the 

line of curvature, p.n = Ca, x. + pn. = O. 

with E, p > 0 if n is the inward normal to the sphere and p < 0 if n is 
the outward normal to the sphere. In general there are two spheres which 
can make a second order contact with E. If we vary the size of the spheres 
centered on l we will find that there is a large sphere and a small sphere 
which will, in general, make a second order contact with E (see figure A.I). 
The lines along which the spheres make a second order contact are called 
the principal lines of curvature and they are orthogonal. To show this, we 
note that if a sphere is to make a second order contact with E, then along 
this line of curvature with arc-length s, n8 must lie in the plane of nand 
Z8: 

After writing Z8 = Z UU 8 + ZVV8, etc, we find that 

Pu~ + 2QU8 V 8 + Ru~ = 0, (A.5) 

where 
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P = n· (nu /\ ~u), 
2Q = n . (nu /\ ~v) + n . (nv /\ ~u) , 
R = n . (nv /\ ~v) . 

Equation (A.5) is the quadratic form for the symmetric matrix, 

(A.6) 

(A.7) 

whose principal directions are orthogonal, and coincide with the principal 
lines of curvature. 

It can be shown that, along a line of curvature, ~s and ns are co-linear 
with the radius of curvature p as the factor of proportionality so that 

", = lip· 

From this, it follows that n· (",xv + nv) /\ (",xu + nu)us = O. Hence 

J ",2 + 2A", + B = 0, 

where 
2A = n . (~u /\ nv) + n . (nu /\ ~v) , 
B = n· (nu /\ nv). 

(A.8) 

(A.9) 

The two roots "'1 and "'2 of (A.9) are principal curvatures. Writing (", - "'1) 
(", - "'2) = 0 we find by comparing with (A.9) that 

(mean curvature) (A.lO) 

and 
"'1"'2 = B I J (Gauss curvature). (A.H) 

We turn next to surface gradients. This is the usual gradient, but 
without the component normal to E; that is, 

"V II = "V - n( n . "V). (A.12) 

This gradient is also perpendicular to level lines of scalars ¢( u, v, t) defined 
on E. This latter requirement means that if ~(u, v, t) is the position vector 
of a point on E, then 

d¢ = (d~ . "V II)¢ = (~u . "V II )¢du + (~v . "V II )¢dv 

a¢ a¢ 
= au du + av dv. 

(A.13) 

A surface gradient with the stated properties may be expressed as 

"V u a va 
II =a au +a av' (A.14) 
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where aU, a V are given by (A.3). Using (A.lO) we show that 

'V II . n = :1 -1 (-n /\ xv) . nu + :1 -1 (n /\ Xu) . nv 
=-2H 

and 
'VII· n¢ = -2H¢. 

Moreover 

'V II . (¢xu) = ; ! (..1 ¢), } 

1 a 
'V II· (¢xv) = :1 av (:1 ¢). 

To prove (A.18h, we write 

'VII· (¢xu) = 'VII· (:1 ¢xu/:1) 

= :1 - lxu . 'V II:1 ¢ + ¢:1'V II· (xu/:1). 

(A.16) 

(AI7) 

(A.18) 

(A.19) 

The first term on the right of (A.19) is t tu (:1 ¢). The second term 
vanishes: 

a a 
:1 'V II . (xu/:1) = -n /\ Xv au . (xu/:1) + n /\ Xu av . (xu/:1) 

=? . {:u (n/\xv) - ! (n/\xu)} =? . (nu /\xv) = 0, 

because n u, Xv, Xu are all perpendicular to n. 
Let I(x, t) be a vector field in three-dimensions whose components on 

E may be represented by 

1 (x(u, v, t), t) = rxu + rxv + rn. (A.20) 

The surface divergence of this vector is 

'VII· 1 = 'VII· (rxu + rxv + rn) 

= :1-1~(:1 r) + :1-1~(:1 r) - 2Hr. 
au av 

(A.21) 

A surface divergence theorem may be expressed as 

r 'VII.ldE= r I.f-d£- r 2HrdE, JE JaE JE (A.22) 

where aE is a closed curve on E, the boundary of E, and f- is the unit 
normal to aE which lies in E. If t is the unit tangent vector of aE, then 
f- = t /\ n is perpendicular to t and n. To prove (A.22), we first write 
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l (VII' J + 2Hr) dE = ! ! [VII' (fuzu + rZv)]:J du dv 

! ! [o~!U + O~!v] du dv = faE [:J rdv -:J rdu]. 
(A.23) 

Then, to complete the proof, we note that 

J. f-df = J. (t 1\ n)df = J. (tdf 1\ n) = J. (dz 1\ n) 
= J. (zudu + zvdv ) 1\ n = J. (zu 1\ n du + Zv 1\ ndv) (A.24) 

= r:J dv - r:J duo 

Recalling next that u, v are reference coordinates which are indepen
dent of time t, we prove that 

d:J defO:J 
dt = at (u,v,t) = :JVII' UE, (A.25) 

where 
8z ) dZdef. 

UE = at (u,v,t = dt =Z. (A.26) 

We recall that it is perpendicular to n and write 

o:J ( . . ) at = n· Zu 1\ Zv + Zu 1\ Zv 

= n· ((UE)u 1\ Zv + Zu 1\ (UE)v) 

= :J {n 1\ Zu ~ _ n t\ Zv ~} . UE 
:J ov :J au 

= :JVII' UE· 

Finally, we shall use (A.25) and (A.22) to derive equation (2c.2) of 
chapter I, volume 1. 
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The index entry "(vm) n" refers 
to ''volume m, page n" . 

acceleration, (vI) 18 
acrylics, (vI) 11 
additives, (vI) 4 
adhesion, (v2) 222 
adhesive failure, (vI) 375-377; 

(v2) 122 
adjoint problem, (vI) 188-190, 

207-218, 222-223, 281-
287, 299-303; (v2) 274 

air entrainment, (vI) 3, 166 
air-water system, (vI) 270 
Airy function, (vI) 292; (v2) 105 
amplitude equation, see normal 

form, Landau equation, 
Ginzburg-Landau equa
tion, (vI) 240-241, 270, 
324, 345; (v2) 11, 226-
287 

amplitude modulation, (vI) 346, 
348; (v2) 228, 241, 247 

anemometry, (vI) 6 
angular momentum,(v1) 110 
angular velocity, (vI) 34,45, 120-

133, 144, 148 
anti-plane shear flow, (vI) 40-43 
asymptotic expansions, 

high Reynolds number, (vI) 
305-320; (v2) 80 

long waves, (vI) 196-198, 
232-233, 279-296; (v2) 

31-33, 136-137, 261-287, 
382 

method of matched asymp
totic expansions, (vI) 
305-319; (v2) 14, 94-113 

near a cusp, (vI) 143, 150-
156 

short waves, (vI) 199-202, 
296-302, 364-373; (v2) 
34-36, 382-383 

similar liquids, (vI) 203-236, 
304 

thin-layer, see thin-layer ef
fect, (vI) 290-295, 303-
305 

atomization of a jet, (v2) 13 
autocorrelation, (vI) 134-139; 

(v2) 343 

bamboo waves (BW), see wavy 
CAF, (v2) 2, 15, 115-
116, 164, 166-170, 
177, 191, 202-225, 241, 
255-260 

disturbed (DBW), (v2) 170-
171, 208-225 

immature, (v2) 179, 211, 
218-219, 222 

bandwidth, (v2) 228 
Benard problem, (vI) 24, 170-

266, 269; (v2) 29, 31, 
243 

hexagonal cells, (vI) 170, 
175-176 
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one-fluid, (vI) 170-178,263 
rectangular cells, (vI) 176 
rolls, (vI) 175-178 
square cells, (vI) 175-176 

Benard-Couette problem, (vI) 
173,278 

Bessel function, (v2) 97-98, 269-
270 

bicomponent flows, (vI) 1 
bifurcation analysis, see also 

amplitude equation, 
(vI) 336, 338-359; (v2) 
15, 51, 226-260, 287 

distortion to the mean flow, 
(vI) 343, 346 

extension of domain, (vI) 32; 
(v2) 21 

frequency shift, (v2) 239 
fundamental wave, (v2) 236-

237 
harmonics, (vI) 334-338, 

348; (v2) 236 
second, (vI) 343 

Hopf, (vI) 171, 173-175, 193-
195, 219, 236-266, 398; 
(v2) 255 

Hopf Bifurcation Theorem, 
(vI) 241 

parameter, (vI) 246; (v2) 
229 

pattern selection, (vI) 176, 
236-266 

pitchfork, (vI) 263-266 
steady, (vI) 173, 175, 222-

234 
sub critical, supercritical, 

(vI) 174, 178,243, 263-
266, 339, 343, 353-359; 
(v2) 19, 121, 244-260 

biharmonic equation, (vI) 151-
155 

binary sequence, (vI) 114-115, 
133-139 

bistable, (vI) 117 
Blasius formula, (v2) 200 

body force, (vI) 22-23 
Bond number, (vI) 167-168 
bonding property, (vI) 9 
bouncy state, (vI) 336-338 
boundary conditions, (vI) 25 

natural, (vI) 59 
boundary layer, (vI) 270, 277, 

297, 306-318; (v2) 14, 
20, 94-113, 339 

mass-transfer, (v2) 343 
Boussinesq, see Oberbeck-Bous

sinesq approximation 
breathers, (v2) 240 
bubbles, see also drops, emul

sions, slugs, (vI) 1, 16, 
27-28, 45, 62, 71-72, 76, 
78-82, 114, 119, 133, 
141; (v2) 46, 64, 126-
127, 166, 207, 346 

and slugs, (v2) 1, 18, 40-41, 
47-48, 51, 64, 77, 83, 
126, 135, 166, 173, 175, 
208, 224, 252, 254 

gas, (vI) 144 
oil bubbles in water, (v2) 

165,222 
pointed ends, (vI) 143-144 
rising, (v2) 313, 325-331, 

361-363 
train, (v2) 127, 222 
two-dimensional, (vI) 141 

-144 
buckling, (v2) 171,221-222 
bumps, (vI) 87 
Burger's equation, (vI) 333; (v2) 

263 

cap, (v2) 306, 334 
capillary bridge, (vI) 90 
capillary force, (v2) 334-343, 347 
capillary number, (vI) 116, 148, 

154, 361; (v2) 251-255, 
300 

capillary rise, method of, (v2) 42 



capillary waves, (v2) 19,254" 259 
343 

catenary, (v2) 336 
cat's paws, (vI) 319 
Cauchy-Fourier formula, (vI) 22 
celerity, (vI) 323; (v2) 158 
cellular automata, (vI) 6 
Center Manifold Theorem, (vI) 

176, 245, 250-252, 338, 
343 

centrifugal effects, (vI) 48, 92, 95, 
110 

centripetal effects, (vI) 94, 99; 
(v2) 3, 14 

channel, (vI) 268-399; (v2) 31 
rectangular, (vI) 4 

chaos, (vI) 114-115, 119, 133-139, 
336-338; (v2) 228, 240, 
267-268 

characteristics, (vI) 332-333 
Chebyschev-tau method, (vI) 

191, 303, 342, 350, 373; 
(v2) 28-29 

chemical potential, (v2) 339, 357 
circulation, (v2) 288 
Clapeyron equation, (vI) 380 
coal, see coal-oil dispersion, (vI) 

7-9 
coal-oil mixture, (vI) 8-9 
coal-water mixture, (vI) 8 

coating flow, (vI) 48, 76, 85-92, 
94, 101-104, 153, 173 

co-drawing, (vI) 11-13 
coefficient of cubical expansion, 

see stratification, (vI) 
26, 179; (v2) 362 

co-extrusion,(v1) 11, 360 
Cole-Hopf transformation, ( vI) 

333 
collocation method, (v2) 28-29 
colloid chemistry, (v2) 337 
composition gradients, (v2) 324-

395 
compound jet, (vI) 11-12 
compressible liquids, (v2) 344-
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346 
concentration gradients, (v2) 

325-395 
condensation, (vI) 380, 398 
confluent hypergeometric func

tion, (v2) 270 
constitutive models, (v2) 173,344 

constant-viscosity Oldroyd 
model, (vI) 360 

four-constant Oldroyd 
model, (vI) 360 

inelastic power-law liquid, 
(vI) 360 

upper-convected Maxwell 
liquid, (vI) 271, 359-
377; (v2) 15 

contact angle, (vI) 76, 86, 107, 
115, 163, 164, 166; (v2) 
339 

contact line, (vI) 51-52, 54, 56-57, 
62, 76-77, 79-80; (v2) 
122 

convection, see also Benard prob
lem, (vI) 26, 31, 378 

binary, (v2) 358 
concentrated solutions, (vI) 375 
core flow, (v2) 10, 12, 174 

breakup, (v2) 84 
wavy, (v2) 1, 19, 90, 92, 121, 

129, 251 
core-annular flow (CAF), (vI) 4-

5, 14-15, 178, 320, 323, 
338, 359, 361, 375-377, 
381; (v2) 1-287 

axisymmetric mode, (v2) 27, 
58ff., 229-260 

between sliding pipes, (v2) 
14 

horizontal, (v2) 16-113, 226-
287 

disturbed (DCAF), (v2) 171, 
179-180, 191, 207, 222-
225, 257-260 

inviscid liquids, (v2) 12, 313 
perfect (PCAF), (v2) 3, 12, 
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16, 18-113, 115-153 
nonlinear stability, (v2) 

226-287 
rotating, (v2) 13,93 
three-layer, (v2) 13, 50-84 
vertical, see pipe flow, verti-

cal, (v2) 14, 16, 114-225, 
229 

viscous-inviscid model, (v2) 
13 

wavy CAF, (v2) 256 
corkscrew waves, see disturbed 

CAF, (vI) 7; (v2) 2, 15, 
30, 115-116, 127, 161, 
167-171, 177, 179-180, 
191, 207-225, 231, 257-
260 

immature, (v2) 180 
intermittent, (v2) 259 

crude oil, see lubricated pipelin
ing, (vI) 3,9; (v2) 4-11, 
36, 94, 116, 196, 223, 
269 

waxy, (v2) 200 
Couette device, see also Taylor

Couette flow, (vI) 7 
Couette flow 

banded, see Taylor-Couette, 
(vI) 31 

circular, see Taylor-Couette, 
(v2) 36 

layered, see Taylor-Couette, 
(vI) 31 

locally, (vI) 302 
one-fluid, (vI) 294 
pipe, see core-annular flow 
plane, (vI) 28, 37-38, 229, 

243, 267-399; (v2) 31, 
80,106 

rotating, see Taylor-Couette 
semi-infinite, (vI) 269-270, 

290-296, 305-319 
three-layer, (vI) 279 
unbounded, (vI) 269, 294, 

296-303 

Couette-Poiseuille flow, (vI) 269-
271, 279, 287-290, 324, 
356 

one-fluid, (vI) 347 
creeping flow, (vI) 33 
critical point, (v2) 14, 94-114 
curvature, (vI) 22, 25, 29-30, 67-

68, 140, 145, 154 
cusp, interface, (vI) 102, 140-169 

apparent, (vI) 150,162,165-
166 

generic analytic cusp, (vI) 
152-153 

Darcy's law, (vI) 399; (v2) 374 
Davey-Stewartson equation, (v2) 

241 
deformation gradient, (vI) 18 
dehydration, (v2) 5 
density, see also stratification 

derivatives, (v2) 344-345 
variation with concentration, 

(v2) 324-395 
variation with temperature, 

(v2) 324 
density matching, (vI) 4-5, 14-15, 

27-43, 115; (v2) 4, 12, 
16,18,51,162,164,230-
231, 291, 346, 360, 366 

diamonds, (vI) plate 11.4.11 
diffusion, (v2) 289, 324-395 

effect of convection on, (v2) 
359,372-374 

diffusion coefficient, (v2) 357-395 
diffusion equation, (v2) 325, 349-

395 
classical, (v2) 367 

diffusion flux density, (v2) 357 
diffusion front, (v2) 341, 369-395 
diffusion function, (v2) 350-351 
Dirac's delta function, (v2) 345 
discontinuity, simple (vI) 19-20 
dispersion relation, (vI) 294; (v2) 

262-264, 274, 287 



dispersions 
coal-oil, (vI) 9; (v2) 19, 51 
fine-particle, (vI) 9 
monodisperse, polydisperse, 

(v2) 176 
oil in water, (v2) 166, 175-

176, 207-209, 222-225 
dissipation, see also energy, vis

cous dissipation princi
ple, (vI) 24, 41, 50, 99, 
302, 322; (v2) 11, 57-84, 
128, 135, 205 

distinguished limit, (vI) 300 
divergence theorem, (vI) 22-23 
domain perturbations, (vI) 184 
double diffusion, (vI) 172, 176 
drafting, (vI) 127, 130; (v2) 127 
drag reduction, (v2) 3 
drift waves in plasmas, (vI) 270 
drop, see also bubbles, pendant 

drop, (vI) 1,3-4,45,62, 
71-72, 76, 102, 104-105, 
141; (v2) 46, 64, 164, 
174, 288-323, 346 

distortion of spherical drop, 
see also vortex ring, (v2) 
294-308 

falling, (v2) 291, 293-299, 
313, 325-333, 361-363 

indented oblate drop, (v2) 
304-307, 309, 311 

miscible drops, (v2) 289 
slightly perturbed sphere, 

(v2) 295 
spherical, (v2) 294-299 
Stokes flow around a drop, 

(v2) 294-299, 326 
thermal, (v2) 362 

drop parameter, (vI) 72-76; (v2) 
300 

dry friction oscillator, (vI) 138 

eigenvalue, 
degeneracy, (vI) 178,238 
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double, (vI) 204-219, 224 
semi-simple, (v2) 242 
simple, (vI) 222, 282; (v2) 

255 
sixfold, (vI) 238 ff. 

Einstein's formula, (v2) 155 
Ekman layer, (vI) 16-17 
elasticity, (vI) 360 
electrochemical deposition, (v2) 

343 
emulsions, see bubbles, (vI) 3,93, 

102-109, 112, 114-116, 
119-139; (v2) 3, 39-41, 
45, 48, 50-51 

dynamic, see emulsions, 
water-in-oil, (vI) 1,3, 
93, 103-109, 115; (v2) 18 

water-in-oil, (v2) 1-6, 19-20, 
34, 64, 84-92, 155, 160, 
164, 172, 175ff., 225 

encapsulation, see core-annular 
flow, (vI) 4-5, 11, 13, 16, 
43, 110-112, 114; (v2) 4, 
11 

energy, see also interfacial 
friction, interfacial ten
sion, interfacial gravity, 
Reynolds stress 

equation, (vI) 23-25, 38, 49, 
58, 178, 271-272, 302, 
307, 320-324, 334-338, 
383-384, 390-392; (v2) 
13-14, 50-82, 113, 128-
138, 152, 202, 205-209, 
224-225, 251 

internal, (vI) 26, 379 
kinetic, (vI) 23, 49, 302; (v2) 

58,205 
surface, (vI) 23 
thermal, (vI) 391 

ensemble average, (v2) 352-356 
enthalpy, (vI) 379-381 
equations, formulation of, (vI) 

18-27 
ergodic sequence, (vI) 133-139 
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error function, (v2) 371 
estimation theory, (vI) 133-139 
Eulerian coordinate, (vI) 18 
Euler-Lagrange equation, (vI) 

334 
evaporation, (vI) 380 
exchange of stability, (vI) 171, 

399 
extensional flow, (vI) 13 
extra stress tensor, (vI) 362 
extrudate sharkskin formation, 

(vI) 361, 375-377 

fibers, (vI) 8, 11, 13 
Fick's law, (v2) 350, 356, 394 
FIDAP, (vI) 158 
filaments, see co-drawing 
film, 

condensation, (vI) 378-379 
liquid-vapor, (vI) 378-399 
photographic, (vI) 11 
rupture, (v2) 8, 174, 264-266 
thin, see coating flow, lubri-

cated pipelining, thin
layer effect, (vI) 31, 48, 
66, 87-92, 98, 101, 110-
112, 118, 140, 163, 270-
271, 333, 336-338, 376; 
(v2) 3, 5-6, 8, 14-15, 51, 
115, 264-267 

vapor, (vI) 378-399 
finger, fat, (vI) 121 
fingering, (vI) 2-3, 5, 28, 103-109, 

114-115, 126, 128, 145, 
149-150; (v2) 343, 374, 
384, 387, 395 

finite elements, (vI) 158, 396; 
(v2) 14, 20, 52, 54-55, 
94, 108-113, 299, 384 

Floquet theory, (vI) 243 
flow chart, (v2) 176,256 
flow rate, (v2) 84-94, 116, 156, 

160, 183ff. 
volume, (v2) 122 

fluidized 
beds, see drafting, kissing, 

tumbling, (vI) 1,7, 122, 
127 

slug, (v2) 161-162, 221 
foams, (vI) 2, 104, 120, 125, 130 
four-roller apparatus, (vI) 99-

101, 141 
Fourier series, (vI) 236-239, 335-

338 
Fourier transform, (v2) 269-271 
fractionation, (vI) 376 
fracture, 

adhesive, (vI) 94, 377 
cohesive, (vI) 94, 377 

Fredholm alternative, (vI) 222, 
269; (v2) 239, 241-244, 
274 

free energy, (v2) 339 
friction factor, (v2) 15, 116, 192-

202 
Frobenius, method of, (v2) 28 
front-tracking scheme, (vI) 272 
Froude number, (vI) 26, 48, 78, 

116, 273, 287, 361 
frozen coefficients, method of, 

(v2) 382 

Galileo number, (vI) 167-168 
geophysical applications, see 

mantle, volcanic 
conduits, (vI) 15, 399 

geothermal system, (vI) 378 
Ginzburg-Landau equation, see 

also amplitude modula-
tion, Stuart-Landau 
equation, (v2) 15, 235-
241, 
259-261 

frequency shift, (v2) 239 
gradient stress, see Korteweg 
gravity, (v2) 3, 10, 12, 114-225, 

253 
parameter, see Froude num

ber, (vI) 324, 387 



group velocity, (v2) 236, 239, 244 
growth rate, (v2) 67 

Hadamard-Rybczynski bubble, 
(v2) 294-299, 361 

Hagen-Poiseuille flow, (vI) 28-30; 
(v2) 114-153 

one-fluid, (v2) 66 
heat conduction, Fourier's law 

for, (vI) 179,380 
heat equation, backward, (vI) 

333 
heat flux, (vI) 23, 25, 180 
heat of vaporization, (vI) 381 
Hele-Shaw cell, (vI) 3; (v2) 343, 

373-395 
Hermite cubics, (v2) 56 
hexagon, symmetries of, (vI) 236-

238 
hexagonal lattice, (vI) 175-177, 

236,246 
Hilbert space, (vI) 205 
Hodge projection, (vI) 205 
hold-up ratio, (v2) 116, 122, 126, 

160-164, 176ff., 221-222 
hold-up valve, (v2) 158 
honey, (vI) 147-148 
Hopf bifurcation, see bifurcation 
hydrometer, (v2) 301 
hydrophilic, (v2) 11, 156, 172-173 
hydrophobic, (vI) 9; (v2) 13, 50-

51,74-84,174 

inclined plane, flow down, (vI) 
271-272, 279, 359, 378-
384 

incompressibility, (vI) 18,22,46 
ink-jet printing, (vI) 11-12 
inner product, (vI) 205, 253 
instability, see also stratification 

Benjamin-Feir, (v2) 240 
capillary, see also jet, shear 

stabilization, (vI) 3, 5, 
45, 104, 115, 119, 128; 
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(v2) 12-14, 18, 23 , 30, 
34, 37-38, 41, 48-49, 52, 
60, 67, 71-73, 83-84, 93, 
115, 122, 126, 135-137, 
145, 152-153, 165-166, 
222, 251-260, 264, 267-
270, 287, 309, 313 

chugging, (v2) 122, 172 
convective, see steady bifur-

cation, (vI) 171, 175 
crustal thickness, (vI) 172 
Eckhaus, (v2) 240 
fingering, see fingering 
Hadamard, (vI) 297, 330; 

(v2) 12, 383, 385 
Kelvin-Helmholtz, (vI) 297; 

(v2) 12 
viscous regularization of, 

(v2) 13, 129 
oscillatory, see Hopf bifurca

tion, (vI) 171 
Rayleigh-Taylor, (vI) 272, 

333; (v2) 291, 309, 311-
312, 318, 384-385, 395 

resonant, (vI) 272, 279 
ring, (v2) 308 
Taylor, see Taylor cells 
thermodiffusive flame, (vI) 

271 
turban, (v2) 291 

interfacial buoyancy, (vI) 322; 
(v2) 180 

interfacial conditions, (vI) 18-27, 
46-49,360 

core-annular flow, horizon
tal, (v2) 20-22, 229-235 

core-annular flow, vertical, 
(v2) 116-119 

liquid-vapor, (vI) 379-390 
phase change, see liquid

vapor 
plane channel flows, (vI) 

272-275 
temperature, (vI) 381, 390-

399 
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thermal convection, (vI) 
178-187 

viscoelastic fluids, (vI) 361-
363 

interfacial friction, (vI) 322-323, 
396,398; (v2) 13,51-52, 
57-84, 110, 113, 129-135, 
137, 205-209, 224, 251, 
267-271, 277 

interfacial gravity, (v2) 128-135, 
137, 152-153, 205 

interfacial mode, (vI) 193-194, 
268-269, 277 1£. 

interfacial tension, see surface 
tension, (vI) 5, 15, 77-
80,116,322; (v2) 13,51-
52, 57-84, 107-112, 128-
135, 156, 205-209, 224, 
230 

dynamic, (v2) 337-395 
measurements, (v2) 338-

343 
method of drop weight, 

(v2) 338 
Wilhelmy plate method, 

(v2) 339-343 
instantaneous, (v2) 337-344 
relaxation function, (vI) 81-

84 
transient, (v2) 290, 292, 326, 

338, 343, 362, 371 
interface potential, (vI) 52-77, 87 
internal modes, see one-fluid 

modes, (vI) 339 
INTEVEP, (v2) vi, plate V.2.3, 

196 
inviscid flow, (vI) 279, 312, 318; 

(v2) 12, 14, 48, 94 
Irving-Kirkwood pressure tensor, 

(v2) 341 

Jacobian matrix, (vI) 18; (v2) 
349 

jet 
hollow, (v2) 73, 84 
inviscid, (v2) 37-38, 165-166 
thin (thin thread), (v2) 70-

73, 83-84, 334, 347 
viscous, (v2) 13, 23, 37-38, 

48,300,334,337 
jump identities, (vI) 20, 27, 47 

kinematic free-surface condition, 
(vI) 25, 47, 141, 151 

kinematic viscosity, (vI) 179,268, 
273 

kissing,(vl) 127, 130 
Korn's inequality, (vI) 58 
Korteweg equaton, (v2) 360 
Korteweg stress, (v2) 344-395 
Korteweg-de Vries equation, (v2) 

241 
Kummer function, (v2) 98, 270-

271 
Kuramoto-Sivashinsky equation, 

(vI) 270-271, 333; (v2) 
262-264, 267 

Lagrange multiplier, (vI) 67, 334 
Lagrange polynomials, (v2) 56 
Lagrangian coordinates, (vI) 18 
laminar film condensation, (vI) 

378-379 
Landau constant, see Stuart

Landau, (v1)339, 345 
1£.; (v2) 237, 239-240 

Landau equation, (vI) 337, 339 
least squares problem, (v2) 241 
Leibniz rule, (vI) 53-55 
liquid-vapor interface, (vI) 378-

399 
lobes, (vI) 88-90 
long waves, see asymptotic 

expansions, (vI) 173, 
177, 222, 232-233, 269, 
350, 390, 398; (v2) 12-
15, 18, 48-50, 65, 103, 



129-130, 136, 138, 145, 
226, 245, 247, 272-287, 
383 

finite amplitude, (vI) 338 
thin film, (v2) 265 
weakly nonlinear, (vI) 270, 

324-338; (v2) 15, 228, 
261-264, 271-287 

Lorenz attractor, (vI) 134, 136 
Lorenz equation, (vI) 115, 133-

139 
lubricant, heavy, (v2) 115, 122, 

135-136, 142, 145, 152-
153, 252, 254 

lubricated pipelining, see core
annular flow, core-flow, 
(vI) 3, 33; (v2) 1-287 

of solids, (vI) 5-7 
lubrication, see thin-layer effect, 

(vI) 2-8, 373-377; (v2) 
1-287 

lubrication approximation, (v2) 
261-262, 265-287, 374-
375 

lubrication principle, see viscous 
dissipation principle, 
(vI) 104 

lubrication sheet, (vI) 102-105 
Lyapunov exponent, (vI) 114-

115, 135-139 

magma, (vI) 5-6, 15-16 
manometer, (v2) 7, 157, 160 
mantle convection, (vI) 15, 172, 

378-379 
map, 

logistic, (vI) 139 
Poincare, (vI) 139 
tent, (vI) 139 

Marangoni effect, (vI) 173, 192; 
(v2) 358 

Marangoni number, (vI) 192 
mass conservation, (vI) 18; (v2) 

350 
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mass flux, (v2) 67 
mass fraction, (v2) 325, 342, 347 
material derivative, (v1)19 
material volume, (vI) 18-20, 50; 

(v2) 325, 349 
mean radius, (v2) 22 
melt fracture, (vI) 375-378 
melt spinning, see co-drawing 
membrane stress, (vI) 22 
metastable states, (vI) 61 
microgravity, see density match-

ing 
migration, (vI) 4, 377 
minimization problem, see 

viscous dissipation prin
ciple, variational 
problem 

miscible displacement, (v2) 342, 
358, 374-395 

miscible liquids, (v2) 288-395 
interfacial tension, (v2) 339-

344 
mixtures, (v2) 344-395 

mixing layer, (v2) 366-395 
convective, (v2) 343 

mixture, see coal, miscible 
liquids, (vI) 5,8-9, 171, 
331, 
375-376 

anisotropic, (vI) 42 
binary, (v2) 358-359, 389 ff. 
regular solution, (v2) 342 
simple mixture, (v2) 342, 

347-395 
of super fluids, (vI) 171 
water and oil, (v2) 6, 155 

modulated wave solutions, (vI) 
339, 346-348, 352, 356-
359 

one-fluid, (vI) 348 
mole fraction, (v2) 342, 347-348 
molecular theory, (v 1) 399 
momentum, balance of, (vI) 22-

23,46 
monolayer, (vI) 101, 104 
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Moody chart, (v2) 200 
multiple scales, (vI) 324, 348; 

(v2) 235-241, 261 

Navier-Stokes equations, (vI) 2, 
22-23, 179, 272, 340 

no-slip condition, (vI) 25 
nodoid, (vI) 68-76 
non-Newtonian fluid, (vI) 8, 11, 

140, 144-150, 169, 359-
378; (v2) 196, 200 

nonuniqueness of steady 
solutions, (vI) 27-43 

normal form, (vI) 177, 241, 339 
Birkhoff normal form, (vI) 

256-258 
Poincare normal form, (vI) 

176 
nuclear magnetic resonance 

(NMR) imaging,(v1) 7 
nullspace, (vI) 247, 345 
nylon, (vI) 10 

Oberbeck-Boussinesq approxima
tion, (vI) 24, 26, 175, 
179, 220, 229; (v2) 352, 
358, 394 

oil, see crude 
light, heavy, (v2) 5 
recovery, (vI) 2; (v2) 8, 50 
sheath, (v2) 172-173,222 
wells, (v2) 116 

one-fluid modes, (vI) 193, 268, 
277 

organic liquid, (v2) 174 
Orr-Sommerfeld equation, (vI) 

275, 291, 295, 307-319; 
(v2) 98, 239, 244 

overstability, (v 1) 171 

Peclet number, (vI) 387; (v2) 
373, 377, 384 

pendant drop, (vI) 91-92; (v2) 
341 

phase change, (vI) 378-399; (v2) 
343 

number, (vI) 387 
phase inversion, (vI) 104, 127-

132; (v2) 64, 85,174-176 
phase separation, (vI) 127-132 
phase speed (celerity), (v2) 236 
phase transition, (vI) 380 
pipe flow, see core-annular flow 

(vI) 4, 11,30, 37-38, 4~ 
43; (v2) 1-287 

horizontal, (v2) 3, 7, 10, 16 
of oil and water, (vI) 4; (v2) 

1-287 
pipe flow, vertical, see also bam

boo waves, corkscrew 
waves, disturbed CAF, 
(v2) 2, 8, 16, 114-225 

dispersions, (v2) 175-176 
effect of pipe diameter, (v2) 

184, 196 
efficiency, (v2) 183-192, 222 
flowchart, (v2) 176-179 
flow types, (v2) 164-175 
forced flow, (v2) 122, 137-

138, 145-153 
forced-flow apparatus, (v2) 

120 
free fall, (v2) 121, 137-146, 

152-153, 256, 260 
free-fall apparatus, (v2) 119 
friction factor vs Reynolds 

number, (v2) 192-201 
hold-up ratios, ( v2) 176 ff., 

222 
Moody chart, (v2) 200 
oil bubbles in water, (v2) 

165,207 
oil-core water-annulus oil

sheath, (v2) 172-173, 
222 

oil sticks to wall, (v2) 172, 
207, 222, 257-260 



painted configuration, (v2) 
173 

pilot plant data, (v2) 196-
200 

pressure drop measurement, 
(v2) 180-183 

slugs of oil in water, (v2) 166, 
174,208,213,222 

stretching due to lubrication, 
(v2) 203, 221 

pipe wall roughness, (v2) 84 
pipeline transportation, see lubri-

cated pipelining 
plastic fluid, (v2) 51 
plug flow, (vI) 6,8 
Poincare's constant, (vI) 58 
Poincare map, (vI) 138-139 
point force, (vI) 141 
Poiseuille flow, (v2) 70 

one-fluid, (vI) 346-347; (v2) 
70,93,244 

pipe, see also Hagen-
Poiseuille flow, (v 1) 6 

plane, (vI) 28-29,38-40,269, 
278-279, 354-356, 359 

plane three-layer, (v2) 14-15, 
115-116, 130, 167-168, 
171 

snake mode, varicose 
mode, (v2) 15, 115-116, 
167-168, 171 

rotating, (v2) 93 
polar liquid, (v2) 175 
polymers, (vI) 9, 11, 13, 375-378 
porous media, (vI) 378; (v2) 374 
potential, see interface potential 
potential flow, (v2) 313 
power-law parameters, (vI) 360 
Prandtl number, (vI) 27, 171, 

181, 235, 275, 387 
pressure 

dynamic, (v2) 185, 293-294, 
296 

hydrostatic, (v2) 293, 335 
piezometric, (v2) 157, 374 

Index 441 

Stokes flow, (v2) 295 
pressure drop, (vI) 4; (v2) 122, 

157, 180-183, 191 
reduction, (v2) 4 

pressure gradient, (vI) 4; (v2) 116 
pressure taps, (v2) 158 
pretzels, (vI) plate H.4.11 

quasi-periodic waves, (vI) 333 
quasi-steady approximation, (v2) 

379 

Rayleigh number, (vI) 27, 171, 
181, 235, 275 

Rayleigh-Benard convection, see 
Benard problem 

reference configuration, (vI) 18-
19 

relaxation time, see stratification 
in, (vI) 157 

resolvent, (vI) 205-207 
Reynolds number, (vI) 26, 48, 

116, 164, 273, 287, 305, 
361, 387; (v2) 15, 22, 95 

Reynolds stress, (vI) 302, 396, 
398; (v2) 13, 51-52, 57-
84, 128, 135, 152-153, 
205-209, 224 

Reynolds' transport theorem, 
(vI) 50 

rheometer, (vI) 15, 377 
lubricated die, (vI) 13-14 

Riesz index, (v 1) 204 
rigid motions, (vI) 31, 45-110; 

(v2) 313 
rings, see also vortex rings, (vI) 

86-90, 102 
rivulets, (v2) 10 
rock formation, (vI) 16 
rock glaciers, (vI) 16 
rod-climbing, (vI) 15, 147, 168 
roller, (vI) 1,76,93-102,112, 114, 

119-121, 141, 149 
fat, (vI) plate H.4.11 
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rotating container, (vI) 16 
rotating disk, (vI) 90 
rubber-like liquid, (vI) 8 

saturation, (vI) 271, 333-338 
saturation temperature, (vI) 380 

-399 
scale-up, (v2) 84-92 
scallops, (vI) 121, 146 
second-order fluid, (vI) 156 
secular equation, (vI) 307, 318; 

(v2) 101-104 
sedimentation, (vI) 295 
Segre-Silberberg effect,(v1) 6 
segregation, (vI) 5-6, 376 
self-adjoint, (vI) 171, 174 
sharkskin formation, (vI) 361, 

375 -378 
shear modes, see one-fluid, (vI) 

350 
shear waves, (v2) 251 
shear stabilization, (v2) 13, 18, 

94, 137, 166-170, 208, 
213, 252, 267, 270-272, 
276-287. 

shear-thinning, (vI) 360 
sheets, (vI) 1, 94, 101-105; (v2) 

175 
Shell Oil, (v2) vi, 5, 7, 9, 84-93, 

196, 200, 315 
short waves, see asymptotic ex

pansions, (vI) 114, 118, 
172, 177, 222, 232, 258, 
269, 349; (v2) 12-13, 34-
36,44,135,261,383-384 

diffusion cut-off for, (v2) 
384-385 

shrimp, see scallops 
singular algebraic equation, (v2) 

244 
singular perturbation, see also 

asymptotic expansions 
for short waves, (vI) 
306-319; (v2) 14, 36-37, 
48,52,94-113,203 

singular value decomposition, 
(v2) 228, 241-244, 259 

singularity in curvature, see cusp 
slip, see wet slip, (vI) 361, 375-

378 
apparent, (vI) 375 
dry, (vI) 375 
true, (vI) 375 

slugs, see bubbles, (vI) 1,4; (v2) 
19, 46, 126, 161-162, 
173, 175, 179 

slugs of oil in water, (v2) 
166-167, 174, 208, 213, 
222 

smoke ring, (v2) 289 
solid particulates, see lubricated 

pipelining, fluidized 
solids 

solid-body rotation, see rigid mer 
tions 

solidification problem, (v2) 358 
soliton, (v2) 228, 240-241 
spanning vectors, (vI) 236-237 
specific gravity, (v2) 6 
specific heat, (vI) 27, 380 
spectral method, (vI) 191 

pseuder, (v2) 20, 129, 244 
spectrum, (vI) 363, 373-375 

continuous, (vI) 364, 368 
spin-dowm, (vI) 17 
spin-up, (v1)16 
spinning drop tensiometer, (vI) 

17; (v2) 156 
spinning rod tensiometer, (vI) 

78-84; (v2) 156, 301 
spurt flow, (vI) 375, 377 
Squire's Theorem, (vI) 268, 276-

278 
Squire's transformation, (vI) 268, 

276-277, 320, 363 
stagnation point, (vI) 143, 149-

150, 157, 163 
Stewartson layer, (vI) 17 
sticking, (vI) 375 
Stokes drag, (v2) 303 



Stokes equation, see also creep
ing flow, (vI) 33, 59, 
141, 151-156, 295; (v2) 
38, 48, 269-270 

unsteady, (v2) 295 
Stokes flow around a drop, (v2) 

294-299, 302, 362 
Stokes number, (vI) 163-165 
Stokes paradox, (vI) 295 
Stokes wave, (v2) 167 
stratification in 

adverse density stratifi
cation, (vI) 278, 303, 
353; (v2) 14, 94 

coefficient of cubical expan
sion, (vI) 179,221,235, 
258,260 

density, (vI) 116, 172, 177, 
179, 220, 235, 258, 261 
ff.; (v2) 4, 12, 49 ff., 93, 
114-225, 253ff. 

elasticity, (vI) 11, 271, 360-
378 

relaxation times, (vI) 271, 
359-377 

thermal conductivity, (vI) 
172, 177, 179, 201-202, 
221, 229, 233-236, 258, 
260, 387-399 

thermaldiffusivity, (vI) 179, 
221,235 

viscoelastic properties, (vI) 
11,359-378 

viscosity, (vI) 11, 116, 177, 
179, 221, 229ff; (v2) 1 ff. 

stratified fluid, (vI) 5; (v2) 1, 3-4 
streamfunction, (vI) 151-153, 

275,279 
stress, see also Korteweg stress 

deviator, (v2) 364 
extensional, (vI) 143, 157, 

169 
normal, (vI) 47, 50, 141, 147, 

151 
power, (vI) 24 
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relaxation function, (vI) 156 
second normal, (vI) 15 
shear, (vI) 47, 112, 141, 151 
tensor, (vI) 22, 25, 34, 46, 

156-157, 180, 362 
structural optimization, (vI) 42 
Stuart-Landau equation, (vI) 

339, 345 
surface tension, see interfacial 

tension, bubbles, (vI) 
25-26, 29, 47, 82-87, 99, 
140-169, 172, 177, 180, 
220, 258 ff; (v2) 12, 18, 
30,48 

gradients, see Marangoni ef
fect, (vI) 171 

parameter, (vI) 273, 287, 
305; (v2) 23, 95, 136 

surfactant, (vI) 9; (v2) 5 
suspension, (vI) 1,6-9 
symmetry, 

hexagonal, (vI) 240 
midplane, (vI) 176,263 
spatio-temporal, (vI) 242 
triangular, (vI) 99 

Taylor cells, (vI) 110-116, 119-
127, 133-139; (v2) 173 

Taylor dispersion, (v2) 358, 393 
Taylor expansion, (vI) 32, 179, 

292, 327, 340; (v2) 99 
Taylor number, (vI) 116, 127, 130 
Taylor-Couette apparatus, (vI) 

111, 116, 130; (v2) 173, 
175 

Taylor-Couette flow, (vI) 7, 110-
139, 269, 303-304; (v2) 
289 

banded Couette flow, (vI) 
31, 114, 117-119, 
124-125, 132 

circular Couette flow, (vI) 
28, 30-31, 114, 117-118 

layered Couette flow, (vI) 
31, 113, 117-119, 123 



444 Index 

rotating Couette flow (Tay
lor -Couette flow), (v 1 ) 
34-43 

test function, (vI) 334 
thermal convection, see Benard 

problem 
thermal conductivity, see stratifi

cation, (vI) 26, 179 
thermal diffusivity, see stratifica

tion, (vI) 26-27, 179 
thermal equilibrium, (vI) 

381, 390 
thermal plume, (v2) 332, 361-363 
thermals, (v2) 326, 332 
thermodiffusion, (v2) 352, 395 
thermodynamic equilibrium, (vI) 

381,390 
thin-layer effect, see lubricated 

pipelining, (vI) 174, 
222, 229, 233-234, 270, 
304, 356, 373; (v2) 30, 
94, 245, 254, 257 

nonlinear breakdown of, (v2) 
257 

torque, (vI) 7, 35-37, 106-107, 
112, 116-120, 126-127, 
131; (v2) 93, 167 

torus, (v2) 291, 314 
traction, (vI) 22-25, 180 
transport identities, (vI) 18-21 
transport theorem for surface ar-

eas, (vI) 51 
tumbling, (vI) 127 
turbulent flow, (vI) 8, 323, 338; 

(v2) 7, 10, 85, 90, 190, 
200 

two-mode equilibrium, (vI) 335-
338 

two-phase equilibrium, (v2) 343 
two-phase flow, (vI) 1 

ultrasound, (v2) 395 
unduloid, (vI) 68-76 
unitary transformation, (v2) 241-

242 

upper-convected Maxwell liquid, 
(vI) 271, 359-377 

one-fluid, (vI) 363 
upper-convected time derivative, 

(vI) 362 

van der Waals force, (v2) 265 
variational principles, (vI) 32-43 
variational problem, (vI) 45-76 
velocity, (vI) 18 

centerline, (v2) 22, 67, 90 
composite, (v2) 352-353 
expansion, (v2) 371-374, 

390-395 
mass-averaged, see non

solenoidal, (v2) 352-353 
mean bulk, (v2) 84-94 
non-solenoidal, (v2) 324, 

349, 351-395 
solenoidal, (v2) 351-395 
superficial, (v2) 6, 43, 67, 

122, 171, 177ff., 253, 256 
volume-averaged, see 

solenoidal, (v2) 352 
wave, (v2) 112 

viscoelastic fluids, see also non
Newtonian, (vI) 10, 11, 
13-16, 38, 103, 143, 153, 
156-157, 271, 359-377 

viscometer, (v2) 301 
viscosity 

apparent, (vI) 376 
extensional, (vI) 13, 157 
function, (v2) 365, 384 
shear, (vI) 157 
shear-dependent, (vI) 360 

viscous diffusion length, (vI) 268, 
306-307, 319 

viscous dissipation, see dissipa
tion 

viscous dissipation principle, (vI) 
2, 32-43, 104-106; (v2) 
11, 186-187 

volcanic conduits, (vI) 6, 15-16 



volume contraction, (v2) 347-
348, 354 

volume flux, (vI) 42; (v2) 67 
volume fraction, (v2) 325, 347-

348,355 
vortex 

potential vortex, (v2) 289 
vortex dipole, (vI) 153 
vortex ring, immiscible liquids, 

(v2) 288-323, 326, 362 
dimensionless parameters, 

(v2) 299-301 
experimental data, (v2) 313-

318 
formation of rings, (v2) 292, 

304, 308-313 
bulges, (v2) 308-309, 311, 

318 
effect of drop size and sur

factant, (v2) 317-323 
lobes, (v2) 318 
membrane rupture, (v2) 292, 

317-322 
blow-out, (v2) 304, 309 
pinch-off, (v2) 318-322 
poke-through, (v2) 304, 

306, 309, 311 
normal stress balance, (v2) 

292-294 
oblate ring-like cap, (v2) 292 

vortex ring, miscible liquids, (v2) 
289-292, 300, 313-314, 
334-337, 362 

Index 445 

ring formation and break-up, 
(v2) 292, 309 

vortex cascade, (v2) 292, 313 
vorticity equation, (v2) 360 

wake, (v2) 126-127, 166,222,292, 
306, 308 

water fraction, (v2) 50, 64, 83-85, 
155, 158, 161, 175-176, 
210 

water traps, (v2) 3 
water waves, (v2) 51 
wave packet, (v2) 235-241 
wave speed, (v2) 29, 67, 224 
wavelength, (v2) 67 
waves 

envelope, (v2) 228, 261 
monochromatic, (v2) 228, 

241 
spiral, (v2) 171 

weak solution, (v2) 54 
Weber number, (vI) 387; (v2) 300 
Weissenberg number, (vI) 361 
wet slip, (vI) 375-378 
wetting, (vI) 9, 104, 107; (v2) 4, 

156, 172, 174 
and spreading, (v2) 173 
dynamic, (vI) 163, 166 
front, (v2) 172 

white noise, (vI) 115, 138-139 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>

    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




