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Preface

Professor Subrahmanyan Chandrasekhar was a legend well within his own lifetime, and
continues to be so after his death on August 21, 1995. Thus it is not surprising that many
institutions, in India, in the United States, and elsewhere chose to celebrate in various ways
the 100th anniversary of his birth on October 19, 1910. One of these celebrations took place
at the University of Chicago, where he joined the faculty in January 1937. He remained
there for the rest of his life.

The Chandrasekhar Centennial Symposium at the University of Chicago was held from
October 15–17, with the International Planning Committee being co-chaired by Professors
Robert Wald and Kameshwar C. Wali. It included both scientific and personal reminis-
cences by students and colleagues who had known him quite well, and reports by other
scholars on topics that he had pioneered. A special issue of theBulletin of the Astronomi-
cal Society of India (BASI), published in March 2011, comprised written versions of some
of those talks and additional articles covering topics not represented at the conference by
other distinguished astrophysicists. This book contains a dozen articles published in this
special issue of BASI, as well as a biographical portrait, his role in 20th century science
and several personal reminiscences based on articles published inPhysics Today, and an
account of Chandrasekhar and the legacy of Ramanujan, and Chandrasekhar’s impact on
Indian astronomy.

One of us (VT) was the PhD student of Chandrasekhar’s student Professor Guido
Munch, and was lucky to know him at a level that entitled one to address him as Chandra.
It has been a privilege for both of us to edit the issue of BASI and this book as a tribute
to Professor Chandrasekhar on his birth centenary. We would like to take this opportu-
nity to thank Ms Sandra Rajiva from the Indian Institute of Astrophysics and Ms Lakshmi
Narayanan from World Scientific Publishing for their help in editing the special issue of
BASI and this book respectively to celebrate Professor Chandrasekhar’s birth centenary.

D. J. Saikia and Virginia Trimble
Editors
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Chandrasekhar Centennial Symposium
(October 15–17, 2010)

October 19, 2010 marked the 100th anniversary of the birth of Subrahmanyan
Chandrasekhar. The symposium was an occasion for those who knew Chandra
to commemorate his memory and work, and for those who did not know him to
experience firsthand some of the impact he had on 20th century science. The Sym-
posium began with a reception on the 15th evening followed by two full days of
talks on October 16 and 17.

Coincidentally, October 15, 2010 was the 100th birthday of Lalitha Chandra-
sekhar. The opening reception was devoted to the celebration of her birthday.
Knowing her fondness for Indian dance and vocal music, a local dance troupe
(Natraj Dance Company) and musicians were invited to perform. Although she
could not be present in person, her being in good spirits and health was the oc-
casion of joy for many who knew her well. A scroll expressing best wishes for
her birthday and the commemoration of Chandra’s centennial from Martin Rees,
President, the Council and Fellows of the Royal Society of London was presented
and read for the occasion by Robert M. Wald. It was later presented in person to
Lalitha.

International Planning Committee

Abhay Ashtekar, Naresh Dadhich, Valeria Ferrari, John Friedman, Giuseppe Mus-
sardo, Jayant Narlikar, Roger Penrose, Saul Teukolsky, Robert Wald (co-chair) and
Kameshwar C. Wali (co-chair).

Funding for the Symposium was provided by the National Science Foundation
and by the Department of Astronomy and Astrophysics, the Enrico Fermi Institute,
the Kavli Institute for Cosmological Physics, and the Department of Physics of the
University of Chicago.
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Speakers at the Symposium

Freeman Dyson:Chandra’s Role in 20th Century Science
Clifford Will: The Unreasonable Effectiveness of the Post-Newtonian Approxi-
mation.
Roger Penrose: Mathematical Properties of Black Holes and Colliding Plane
Waves
Jayant V. Narlikar: Chandra’s Impact on Indian Astronomy
John Friedaman: Instabilities of Relativistic Stars
Kip S. Thorne: Black Holes
Valeria Ferrari: Gravitational Waves from Perturbed Stars
Martin Rees: Chandra’s Scientific Legacy
James M. Stone:Magnetohydrodynamics in Astrophysical Contexts
Priyamvada Natarajan: The Formation and Growth of Super-Massive Black
Holes
Ganesan Srinivasan:Chandra and the Legacy of Ramanujan
Jeremiah P. Ostriker: Galaxy Structure and Formation
Rashid A. Sunyaev:Scattering of Radiation in the Universe: From the CMB and
Last Scattering Surface to Clusters of Galaxies and Quasars
Gordon P. Garmire: The Chandra X-ray Telescope
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Chandra: A biographical portrait∗

Kameshwar C. Wali†
Department of Physics, Syracuse University, Syracuse, New York, USA

Abstract. The complexities of three countries — India, England, and the
US — helped produce a scientist of rare stature and greatness.

The simple is the seal of the true. And beauty is the splendor of truth.

With the words above, Subrahmanyan Chandrasekhar, popularly known as Chandra, con-
cluded his Nobel Prize lecture on 8 December 1983. Toward the end of his talk, he was
describing black holes in the astronomical universe, explaining the simplicity in the un-
derlying physics and the beauty of their mathematical description within the framework of
Einstein’s theory of relativity. “They are,” he said, “the most perfect macroscopic objects
there are in the universe.”

The Nobel Prize in Physics brought an extremely private and somewhat shy individual
into the limelight. For newspaper journalists and broadcast interviewers, neither the sim-
plicity of the physics of the black holes nor the mathematical beauty of their description
was of major concern; the pronunciation of Chandra’s full name seemed to present them
with an astronomical difficulty in and of itself.

The announcement of the prize he shared with William Fowler was greeted with joy
and appreciation throughout the scientific world, and he was soon inundated with telephone
calls, telegrams, and letters of congratulations and good wishes from his former students,
associates, heads of scientific institutions, and governments. Most considered the prize
belated and long overdue. But for Chandra, who had been critical of the atmosphere it
creates — and of the ways in which some people seemed to go after it — it was to a
large extent distorting to science and its true pursuit. He had never considered himself as
a possible candidate, since his areas of research, pursued in a single-minded quest for a
personal perspective, had not led him into areas that were in the science spotlight.

Lahore and Madras, 1910 25

Chandra was born on 19 October 1910 (“19-10-1910,” as Chandra was fond of saying
with a rare chuckle) in Lahore, Pakistan (then a part of colonial British India). His father,
Chandrasekhara Subrahmanyan Ayyar, was in the government service, the deputy auditor-
general of the North Western Railways. Chandra was the first son and the third child in a

∗Reproduced with permission from Physics Today. c© 2010 American Institute of Physics.
†Kameshwar Wali is the distinguished research professor emeritus.
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2 Kameshwar C. Wali

Figure 1. Subrahmanyan Chandrasekhar, age 6.

family of four sons and six daughters. His mother, Sitalakshmi, was a woman of great talent
and intellectual attainment. She married young and received only a few years of elementary
schooling, yet she managed to continue her education while bearing 10 children and learned
English well enough to adapt Henrik Ibsen’s A Doll’s House and translate a long story by
Tolstoy into Tamil. Intensely ambitious for her children, she was to play a pivotal role in
Chandra’s career.

Being the first son, Chandra inherited the name of his grandfather, Ramanathan Chan-
drasekhar (referred to as R. C. hereafter). R. C. had been the first in the family to depart
from traditional village life and pursue an English education. If, after graduating from high
school in 1881, he had continued his college education and completed his BA degree as
expected, he probably would have ended up in a high British government post. But he took
his Western education seriously: He read English literature and philosophy extensively,
studied mathematics and physics, and in general pursued what interested him most rather
than what was required of him. This remarkable person,1 who transformed the lives of his
future generations, built a fine home library, which proved to be a very valuable resource
to them. Chandra inherited not only his grandfather’s name but also his independent streak
in the pursuit of knowledge.

Chandra’s early education was at home under the tutelage of his parents and private tu-
tors. When he was 11 and the family had permanently settled in Madras (now Chennai), he
began his regular schooling at the Hindu High School in the city’s Triplicane neighborhood.

Chandra found formal school neither easy nor pleasant. His education at home un-
der private tutors had allowed him the freedom to study what he liked (mainly English
and arithmetic). Now he was suddenly required to study history, geography, and general
science and was subjected to periodic examinations. It was a disappointing first year, but
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the promise of the following year’s curriculum, which included algebra and geometry, was
enough to get him excited. Without waiting for classes to begin, he got the books and
studied on his own during the summer vacation. By the time he started his second year,
he knew all the geometry and all the algebra the school was going to teach, and in fact
more. He kept up his studying during the following three vacations and did extremely well
in high school; he became a freshman at Presidency College in Madras when he was only
15 years old.

Those early years of learning were happy years for Chandra. Though the family was
growing — a new child every two years or so — his father’s income provided a comfortable
life. In 1924, Chandra’s father built his own house, named Chandra Vilas, in Mylapore, a
prestigious suburb of Madras. And because he was in the railway services, he and the
family received free railway travel or reduced fares, so they got together more frequently
than they could otherwise. The children traveled to all parts of India — a privilege few
Indians could afford. Grandfather R. C.’s efforts had paved the way for a new urban life for
his children and grandchildren.

Education and urban life could not completely change centuries of tradition, however.
Chandra’s father, a highly cultivated individual, widely read and traveled, was a traditio-
nal father. He was authoritarian and demanded unquestioned obedience. Reserved and
undemonstrative, he remained aloof from his children; they in turn could not share their
innermost thoughts or feelings with him. Deeper connections were left to Chandra’s mo-
ther. Sitalakshmi was the vital force of the family, keeping it together, helping the children
with their studies, and meeting their needs. Without imposing strict religious discipline,
she infused them with the cultural heritage and ideals of Hinduism. Chandra, the eldest
son, held a special place in her heart.

Presidency College, 1925 30

Chandra’s freshman and sophomore years (1925–27) proceeded smoothly. After he com-
pleted his second year with distinction in physics, chemistry, and mathematics, Chandra’s
next step was to work toward a bachelor’s degree.

He wanted to take honors mathematics; he had not only excelled in his mathematics
studies, he had long been under the spell of the legendary Srinivasa Ramanujan. Chandra
was not quite 10 years old when his mother told him of the death of a famous Indian
mathematician named Ramanujan who had gone to England some years earlier, colla-
borated with some famous English mathematicians, and returned to India only recently
with international fame as a great mathematician. Ever since, Ramanujan was a source of
inspiration.

Unfortunately, Chandra’s father had different ideas. He wanted Chandra to aim for the
Indian Civil Service examination to become an ICS officer in His Majesty’s government.
That was certainly the practical thing for such a brilliant young man to do. From his high-
school days, however, Chandra had determined to pursue a career in pure science. He had as
an example, his uncle Chandrasekhara Venkata Raman (popularly known as C. V. Raman),
who had resigned a high level government post to pursue an academic and research career
in physics. Although Chandra wanted to study pure mathematics, as a compromise to his
father he opted to study physics and enrolled himself for a BSc honors degree.
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The year 1928 proved an extraordinary time for Chandra. First of all, in February and
March of that year, Raman, along with Kariamanickam Srinivasa Krishnan, made a funda-
mental discovery in the molecular scattering of light, later to become known as the Raman
effect. Chandra spent the summer months in Calcutta, staying with Raman and working
in the laboratory where the discovery was made. He knew enough theoretical physics to
participate in the excitement and even explain to the experimentalists the significance of
the discovery. He came to know Krishnan very well. Although 12 years apart in age, the
two struck up a friendship that lasted through Krishnan’s lifetime.

Soon after his return to Madras, Chandra learned from Krishnan that Arnold Sommer-
feld was to visit India on a lecture tour in the fall and Madras and Presidency College were
on his itinerary. For Chandra that was most exciting news — a rare opportunity to hear
the famous man, especially since he had read Sommerfeld’s book Atomic Structure and
Spectral Lines and worked through it on his own. Chandra dreamed of meeting him, im-
pressing him with his knowledge of atomic physics, and discussing plans for his research.
Indeed, after the lecture in the science college, Chandra made arrangements to see him in
his hotel room the following day. Chandra approached him with the brash confidence of a
young undergraduate, but Sommerfeld shocked him by telling him that the quantum theory
in the book was out-dated. He told Chandra about recent discoveries — Erwin Schrödin-
ger’s wave mechanics and the new quantum mechanics of Werner Heisenberg, Paul Dirac,
Wolfgang Pauli, and others. Chandra had also studied classical Maxwell–Boltzmann sta-
tistics. Sommerfeld told him that too had undergone a fundamental change in the light of
the new quantum mechanics. Seeing a crestfallen young student before him, Sommerfeld
offered Chandra the galley proofs of his as yet unpublished paper that contained an account
of the new Fermi–Dirac quantum statistics and its application to the electron theory of
metals.

Chandra would later characterize that encounter as the “single most important event”
in his life. He immediately launched on a serious study of the new developments in atomic
theory. Sommerfeld’s paper was sufficient for him to learn about Fermi–Dirac statistics
and prepare,within a few months, a paper entitled “The Compton Scattering and the New
Statistics.” Chandra thought it significant enough to merit publication in the Proceedings
of the Royal Society. But the society required the papers to be communicated by a fellow,
a member of the society. As he was browsing through the newly arrived journals in the
university library, he had came across Ralph Fowler, a fellow, who had just published his
pioneering paper on the theory of white dwarfs based on the new Fermi–Dirac statistics.
So Chandra sent his paper to Fowler, who agreed to communicate it and got it published.
That chance circumstance was to have a profound influence on Chandra’s future scientific
career.

Along with his studies, Chandra continued his research, and by the end of his second
undergraduate year he had a formidable list of papers to his name. His final year in college
was equally eventful. First Heisenberg came through Madras on a lecture tour in October
1929. Krishnan had put Chandra in charge of showing Heisenberg around Madras. A day
alone with the famous Heisenberg was an exhilarating experience for young Chandra. In
addition, his activities and his prominence in his studies and research had attracted the
attention of Lalitha Doraiswamy, a fellow undergraduate who would become his wife. A
few months later, in January 1930, he attended the Indian Science Congress, Association
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Figure 2. Subrahmanyan Chandrasekhar and his wife, Lalitha, in Williams Bay, Wisconsin,
circa 1940.

meeting in Allahabad. He met the celebrated astrophysicist Meghnad Saha and his students
and was pleasantly surprised to know his work had become well known. Chandra had the
honor of being a dinner guest in the company of some distinguished senior Indian scientists.
To top it all, on his return, he was called into the college principal’s office. Principal Philip
Fyson told him, in strict confidence, that he was going to be offered a Government of India
scholarship to continue his studies in England. The scholarship was special, more or less
created for him. On 22 May he received official notification that he had been awarded the
scholarship and that he could proceed to make the necessary travel arrangements. Chandra
decided to go to Cambridge University and study under the guidance of Fowler.

The opportunity to go abroad for advanced studies, ordinarily so difficult a matter both
financially and logistically, came to Chandra so unexpectedly and so easily. Nonetheless,
he had to face a difficult personal conflict. His mother had been ill since the summer of
1928, just before his encounter with Sommerfeld, and her illness had taken a serious turn.
Although she had ups and downs, after two years of every kind of treatment it had become
clear she was not going to get well again. If he went to England, he might never see her
again.

Tradition and pressure from friends and relatives mounted against leaving his mother
in such a condition. But Sitalakshmi herself intervened. Her insistence and persuasion
and her solemn desire not to stand in the way of his future prevailed. With her promise of
getting well, she persuaded the reluctant Chandra to proceed. Chandra left India on 31 July
1930, leaving behind a loving and caring family, and Lalitha.
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Cambridge and Copenhagen, 1930 33

Before leaving India, Chandra had studied Fowler’s paper more carefully and further de-
veloped the theory of white dwarfs to obtain a more detailed picture of them. On his
long voyage from India, as a result of musings and calculations, he found Fowler’s theory
needed modifications to include special relativistic effects that led to a startling conclusion:
There was an upper limit on the mass of a star that could become a white dwarf in its
terminal stage (see the article by Freeman Dyson, page 13), and that limit could be expres-
sed in terms of fundamental atomic constants.

When Chandra met Fowler for the first time, he handed over two papers, one he had
completed in India and the other about the startling discovery he had made on his journey.
Fowler was extremely impressed with this young, new student who exhibited so much
independence and initiative. After some discussion, Fowler was quite pleased with the first
paper, which had extended his own work. However, he was not so sure of the second paper.
He offered to send it to Edward Arthur Milne, who Fowler thought was more familiar
with the subject. After getting no response from Fowler or Milne for months and seeing no
possibility of its publication in Monthly Notices of the Royal Astronomical Society, Chandra
sent it to the Astrophysical ]ournal on 12 November 1930; it was published the following
July.2

Among the lectures Chandra attended during his first year were Dirac’s lectures on
quantum mechanics. He had studied Dirac’s book on his own, but he nevertheless attended
the lectures faithfully, even though Dirac essentially copied onto the blackboard from his
book. Dirac became his official adviser during the second term when Fowler left Cambridge
on sabbatical, and Chandra came to know Dirac quite well. “He was very human, extremely
cordial to me in a personal way,” Chandra recalled. “Even though he was not very much
interested in what I was doing, he used to have me for tea in his room in St. John’s about
once a month. He also came to my rooms for tea and, on some Sundays, used to drive me
out to fields outside Cambridge where we used to go for long walks.”

Chandra continued to do research on relativistic ionization and on stellar atmospheres
and began a correspondence with Milne, who was quite receptive of his work. Milne’s
encouragement as well as his critical comments were of great help to Chandra during those
early days. Within six months they had established a strong rapport, and Milne suggested
collaboration and joint publications. Chandra’s research efforts were recognized — he
was elected to Trinity College’s Sheepshanks Exhibition, a special honor bestowed every
year to one candidate for proficiency in astrophysics, with an award of £40. He received
a congratulatory note from Arthur Eddington with an invitation to meet him on 23 May
1931.

However, on 21 May 1931, Chandra received a devastating telegram:

Mother passed away Thursday 2PM Bear patiently.

Chandra used to write home twice a week to his father and at least once a month to his
younger brother Balakrishnan, and also to his mother in Tamil; they were probably the only
diversion from his routine. The letters to his father reveal in depth Chandra’s life: his work,
study; and leisure routines; his worries; his excursions and walks; the scientists around
him; financial details (how he spent and saved); and his diet and his health (as indicated by
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Figure 3. Yerkes Observatory, part of the University of Chicago and located in Williams Bay
Wisconsin, was home to Subrahmanyan Chandrasekhar (left) for 27 years.

his weight). His mother’s health was constantly on his mind, and in every letter he inquired
about it. As her health went through rapid ups and downs, he always hoped she would get
better. But that was not to be.

Alone, with no one to share his grief, he went to the riverbank, sat, and wept. Bear
patiently, he told himself. He kept his appointment with Eddington two days after the
news, received congratulations, and discussed his work, all the while feeling empty inside.

Work was the only panacea for loneliness and grief. He was working on stellar coef-
ficients of absorption with Milne and had plans to spend the summer in Oxford. But after
the news of his mother’s death, he felt the need for a change from the drudgery of Cam-
bridge and the past 11 months of ceaseless study and research. He thought a few months
of diversion on the continent would provide the necessary relief. He spent the summer at
the Institute for Theoretical Physics in Göttingen, Germany, where Max Born was wor-
king. Although the summer was supposed to be a vacation for Chandra, it became mostly
a change of place and a change of study topics. But it helped to broaden his circle of
friends on the continent. He returned to Cambridge in early September to begin his second
academic year.
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As he continued his research and piled up publications, some in collaboration with
Milne, a conflict slowly brewed in Chandra’s mind. He was in astrophysics by sheer
chance — on his own, he had found a problem to work on. He began to have nagging
doubts about the value of the work he was doing in astrophysics, as he was not receiving
any encouragement in Cambridge. What about his true love — pure mathematics? He had
come into physics due to the insistence of his father. Failing to pursue pure mathematics,
he felt he would be happier if he could devote himself to pure physics, which he saw as
the frontier field in which fundamental discoveries were taking place. The star-studded
Cavendish Laboratory was the center of activity.

Dirac was his mentor, but because of a sense of loyalty to Fowler, he hesitated to tell
Dirac he wanted to switch fields from astrophysics to theoretical physics. Finally, toward
the end of his second year, he revealed to Dirac how unhappy he was in Cambridge and
with what he was doing. Dirac, not being in astrophysics, was in no position to convince
him otherwise. But he was very nice and understanding, and sympathized with Chandra’s
situation. He strongly urged Chandra to go to Niels Bohr’s Institute for Theoretical Phy-
sics in Copenhagen, where he would find a better climate with friendly men who, though
younger, were “big men” in physics.

Chandra took Dirac’s suggestion and spent his final year in Copenhagen. The atmos-
phere at the institute was indeed, as Dirac indicated, quite unlike Cambridge. It was ex-
tremely friendly and truly international. Chandra found himself in a group of enthusiastic
young people, including Max Delbrück, George Placzek, Victor Weisskopf, E. J. Williams,
and Léon Rosenfeld. Chandra was particularly drawn to Rosenfeld, from Belgium, whose
fiancée was studying astrophysics. There were also frequent visitors, including Oskar Klein
and Heisenberg. With new friendships, tea every Sunday at Bohr’s house, and walks and
bicycle rides in the country, Chandra’s life took on a new communal dimension.

He was also happy to be working on a problem in physics that Dirac had suggested:
generalizing Fermi–Dirac statistics to more than two particles. Unfortunately, that did not
work out. Chandra believed he had solved the problem and wrote a paper titled “On the
Statistics of Similar Particles.” Bohr and Rosenfeld read the paper and Bohr communicated
it for publication to the Proceedings of the Royal Society. But Dirac found an error and
convinced Chandra that he had not solved the problem Dirac had suggested. The paper had
to be withdrawn.

Chandra had hoped to change fields from astrophysics to pure theoretical physics, but
his lack of success with Dirac’s problem put an end, at least for then, to that idea. Physics
was the fundamental science, and while Chandra socialized with physicists like Weisskopf,
Delbrück, Hans Kopfermann and others who appeared to be at the hub of important disco-
veries, he was not part of their science.

As December came along, it became clear to Chandra that he had to get his thesis ready
to get his degree before the end of his scholarship in August 1933. Back to astrophysics, he
set himself to prepare for his thesis a series of papers on distorted polytropes. (A polytrope
is gaseous material in equilibrium under its own gravity and in which the pressure and
density have a power-law relationship.)
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A fellowship and an encounter, 1933 36

The degree became just a formality. Fowler did not find it necessary even to read Chandra’s
thesis. Chandra felt his future to be bleak, however. His scholarship would end in August
and he would be required to return to India as soon as he completed his PhD degree. He
was also under pressure from his father to return, but there was no promise of a suitable
position that would allow him to continue his research. He was determined to extend
his stay in Europe. He would seek support from Cambridge and Copenhagen; if nothing
materialized, he had sufficient savings to stay at least six months anywhere in Europe. With
little hope, he applied for a fellowship at Trinity College, a wild dream. If it came true, he
would have four more years in Cambridge with free rooms in the college, dining privileges
at the high table, and an allowance of £300 per year. Fowler was not very optimistic,
though — the fellowship was open to candidates from all fields and the competition was
formidable.

The dream did come true. The only other Indian who had been elected a Trinity fellow
was Ramanujan some 16 years before. Chandra’s Cambridge life became more enjoyable.
He was no longer as lonely. He felt assured that his work would be appreciated. Astrophy-
sics was going to be his predominant area of research, at least for the next four years. As
a Trinity fellow, he could become a fellow of the Royal Astronomical Society on his own
merit and did so without much ado. A trip to London to attend RAS meetings every second
Friday of the month became a routine in his life and allowed him to make a mark on the
tradition-ridden, hierarchical scientific surroundings. The Trinity fellowship also brought
an opportunity to visit Russia during the summer of 1934.

The Russian visit renewed Chandra’s interest in his own earlier work on the theory of
white dwarfs. Neither Fowler nor Milne appreciated the startling discovery he had made.
During the intervening years, he had occupied himself with other problems. In Russia, he
gave talks about his white dwarf work, and Viktor Ambartsumian, in particular, was quite
enthusiastic about his discovery. Ambartsumian suggested Chandra should work out the
exact, complete theory devoid of some simplifying assumptions he had made.

During the fall months of 1934, Chandra involved himself in detailed, tedious nu-
merical calculations in order to obtain as exact a theory of the white dwarf as one could
construct within the framework of relativistic quantum statistics and the known features of
stellar interiors. He accomplished the task by the end of 1934 and submitted two papers
to the RAS. At the society’s invitation, he presented a brief account of his results at the
January 1935 meeting. His findings raised challenging and fundamental questions: What
happens to the more massive stars as they continue to collapse? Are there other terminal
stages different from white dwarfs? Instead of getting appreciation and recognition for
a fundamental discovery, Chandra unexpectedly faced what amounted to a public humi-
liation. No sooner had he presented his paper than Eddington, who had been his mentor
and who had followed his work closely, ridiculed the basic idea of relativistic degeneracy
on which Chandra’s work was based. Eddington characterized the theory as amounting
to reduction ad absurdum behavior of the star, tantamount to stellar buffoonery.3 Chandra
sought the support of eminent physicists, who without exception agreed that his derivations
were flawless, but Eddington’s authority prevailed among the astronomers as he continued
to attack the theory.
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Eddington’s denunciation was a traumatic experience for Chandra. In the face of such
opposition, he decided to gracefully withdraw from the controversy instead of engaging
in a dogged fight. He stopped further work on the theory of white dwarfs and went on to
research in other areas. As he said4

I foresaw for myself some thirty to forty years of scientific work, and I simply did
not think it was productive to constantly harp on something which was done. It was
much better for me to change the field of interest and go into something else. If I was
right, then it would be known as right. For myself, I was positive that a fact of such
clear significance for evolution of the stars would in time be established or disproved. I
didn’t see a need to stay there, so I just left it.

More than two decades passed before the Chandrasekhar limit became an established
fact. It has been hailed as one of the most important discoveries of the last century, since it
paved the way to the discovery of the other two presently known terminal stages of stars:
neutron stars and black holes.

A voyage to the New World, 1936

During the fall of 1935, Chandra received an offer of a lectureship at Harvard University
from Harlow Shapley, director of the Harvard College Observatory. The appointment could
begin in December or January and required at least three months’ stay. Chandra accepted
the offer and had a highly successful and productive first visit to America from 30 Decem-
ber 1935 to 25 March 1936. He attended the American Astronomical Society meeting at
Princeton University, gave 10 lectures at the observatory, and at an invitation from its di-
rector, Otto Struve, visited the Yerkes Observatory in Williams Bay, Wisconsin. A future
for Chandra in America seemed to chart itself without any effort on his part. He received
two offers, one from Harvard and the other from Yerkes. At Harvard, he would join the
Society of Fellows, and at Yerkes he would have a research associateship. He received the
latter offer aboard ship during his return voyage to Cambridge, and it came directly from
Robert Hutchins, the president of the University of Chicago, with a prepaid cable for his
answer.

Chandra chose to accept the offer from Yerkes, persuaded by Struve’s arguments in
favor of close cooperation between a theorist like him and observational astronomers. With
Gerard Kuiper and Bengt Strömgren (a good friend from Copenhagen) also coming to
Yerkes, a formidable group of young theorists and observational astronomers was in the
making. Thus Chandra felt that as far as his scientific career was concerned, his immediate
future had been virtually settled for him. It was time to think of other matters before
setting forth to America. He had been away from home for nearly six years and it was
time to return. He planned a short trip of three months. There was also the matter of
marriage. Chandra had met Lalitha when both were undergraduate students at Presidency
College, and they had developed an “understanding” of a lifelong commitment. Though
the intervening six years had raised concerns of their future, once they met again in Madras
all the doubts and uncertainties vanished. They were married on 11 September 1936, and
after one short month in Cambridge they set forth to America.
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Figure 4. The National Medal of Science being presented to Subrahmanyan Chandrasekhar by
President Lyndon B. Johnson in 1967.

Williams Bay and Chicago, 1937 95

Chandra and Lalitha, newly married, arrived in the US in 1937, and Chandra joined the
faculty of the University of Chicago at Yerkes Observatory. He immediately took on the
task of developing a graduate program in astronomy and astrophysics. It wasn’t too long
before his reputation as a teacher, his youth, and his enthusiasm for research began to
attract students from all parts of the world. As a teacher and a lecturer, Chandra was a
grand master who brought elegance and scholarship that literally charmed his listeners and
kept them spellbound. He was also the sole editor of the Astrophysical Journal during
the years 1952–71. He played a decisive role in transforming the journal which had been
essentially the private property of the University of Chicago, into the national journal of the
American Astronomical Society and one of the foremost astrophysics journals in the world.

Chandra and Lalitha lived in Williams Bay for the next 27 years. In 1964 they moved
to the Hyde Park neighborhood of Chicago, near the university. Elected a fellow of the
Royal Society of London in 1944, Chandra was named the Morton D. Hull Distinguished
Service Professor at the University of Chicago in 1946 and remained at the university until
his death in 1995.

The judgment of posterity

Chandra often told his life story as follows:

I left India and went to England in 1930. I returned to India in 1936 and married a girl
who had been waiting for six years, came to Chicago, and lived happily thereafter.

It may be so. But the Chandra one knows is the product of the complexities of three widely
different countries: India, the land of his birth with its ancient culture and traditions, which
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undoubtedly influenced his early childhood and youth; England, the land of colonial mas-
ters, where his scientific research mushroomed and matured; and finally America, his adop-
ted homeland, where he continued his research and became one of the foremost scientists
of the 20th century.

Although there have been many scientists whose discoveries had perhaps greater im-
pact and whose names have become more illustrious, in my opinion Chandra stands alone
for his single-minded pursuit of his science and his devotion to the life of the mind. His
extraordinary success in his scientific work was marked by an extraordinary effort, an
intensity, a fervor for completeness, elegance, and above all else a personal, aesthetic
perspective that extended beyond his well-known scientific papers and monographs. For
example, when he was chosen for the University of Chicago’s 1975 Ryerson Lecture,
Chandra said that his preparations for his talk “Shakespeare, Newton, and Beethoven, or
Patterns of Creativity,”

consisted in reading several biographies of Shakespeare, his sonnets (in A. L. Rowse’s
editions) very carefully, and listening with the text (together with Ruth and Norman
Lebovitz) to all the great tragedies (in their Marlowe editions); reading several biogra-
phies of Beethoven (particularly Turner’s and Sullivan’s); and similarly reading several
biographies of Newton; besides, the lives of Rutherford, Faraday, Michelson, Moseley,
Maxwell, Einstein, Rayleigh, Abel; and books and essays by Hadamard, Poincaré, and
Hardy and the works of Keats and Shelley and most particularly Shelley’s A Defense of
Poetry and King-Hele’s biography of Shelley.5

Chandra often quoted a letter from Milne:

Posterity, in time, will give us all our true measure and assign to each of us our due and
humble place. He really succeeds who perseveres according to his lights, unaffected by
fortune, good or bad. And it is well to remember there is no correlation between the
judgment of posterity and the judgment of contemporaries.

This first centennial celebration of Chandra’s birth may or may not be the moment to deter-
mine the true measure of posterity. However, the Chandrasekhar Centennial Symposium,
held at the University of Chicago in October, and this special issue of PHYSICS TODAY
mark the beginning of that posterity’s judgment to bestow on him his due place as a scientist
of rare stature and greatness.
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Chandrasekhar’s role in 20th-century science∗
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Abstract. Once the astrophysics community had come to grips with a cal-
culation performed by a 19-year-old student sailing off to graduate school, the
heavens could never again be seen as a perfect and tranquil dominion.

In 1946 Subrahmanyan Chandrasekhar gave a talk at the University of Chicago entitled
“The Scientist.”1 He was then 35 years old, less than halfway through his life and less than
a third of the way through his career as a scientist, but already he was reflecting deeply
on the meaning and purpose of his work. His talk was one of a series of public lectures
organized by Robert Hutchins, then the chancellor of the university. The list of speakers is
impressive, and included Frank Lloyd Wright, Arnold Schoenberg, and Marc Chagall. That
list proves two things. It shows that Hutchins was an impresario with remarkable powers of
persuasion, and that he already recognized Chandra as a world-class artist whose medium
happened to be theories of the universe rather than music or paint. I say “Chandra” because
that is the name his friends used for him when he was alive.

Basic science and derived science

Chandra began his talk with a description of two kinds of scientific inquiry. “I want to draw
your attention to one broad division of the physical sciences which has to be kept in mind,
the division into a basic science and a derived science. Basic science seeks to analyze the
ultimate constitution of matter and the basic concepts of space and time. Derived science,
on the other hand, is concerned with the rational ordering of the multi-farious aspects of
natural phenomena in terms of the basic concepts.”

As examples of basic science, Chandra mentioned the discovery of the atomic nucleus
by Ernest Rutherford and the discovery of the neutron by James Chadwick. Each of those
discoveries was made by a simple experiment that revealed the existence of a basic building
block of the universe. Rutherford discovered the nucleus by shooting alpha particles at a
thin gold foil and observing that some of the particles bounced back. Chadwick discovered
the neutron by shooting alpha particles at a beryllium target and observing that the resulting
radiation collided with other nuclei in the way expected for a massive neutral twin of the
proton. As an example of derived science, Chandra mentioned the discovery by Edmond
Halley in 1705 that the comet now bearing his name had appeared periodically in the sky at

∗Reproduced with permission fromPhysics Today.c© 2010 American Institute of Physics.
†Freeman Dyson is a retired professor.
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Figure 1. The SS Pilsna, a member of the Lloyd Triestino fleet, sailed from India to Europe
in the early 20th century. In 1930 Subrahmanyan Chandrasekhar sailed on the ship on his way
to study with Ralph Fowler at Cambridge University. En route, he refined an earlier calculation
of Fowler’s; the so-called Chandrasekhar limit implied by the new calculation was to have pro-
found consequences. (c©Penelope Fowler. Courtesy of Historical Photographs of China, University
of Bristol.)

least four times in recorded history and that its elliptical orbit was described by Newton’s
law of gravitation. He also noted the discovery by William Herschel in 1803 that the orbits
of binary stars are governed by the same law of gravitation operating beyond our solar sys-
tem. The observations of Halley and Herschel did not reveal new building blocks, but they
vastly extended the range of phenomena that the basic science of Newton could explain.

Chandra also described the particular examples of basic and derived science that played
the decisive role in his own intellectual development. In 1926, when Chandra was 15 years
old but already a physics student at Presidency College in Madras (now Chennai), India,
Enrico Fermi and Paul Dirac independently discovered the basic concepts of Fermi–Dirac
statistics: If a bunch of electrons is distributed over a number of quantum states, each
quantum state can be occupied by at most one electron, and the probability that a state is
occupied is a simple function of the temperature. Those basic properties of electrons were
a cornerstone of the newborn science of quantum mechanics. They paved the way to the
solution of one of the famous unsolved problems of condensed-matter physics, explaining
why the specific heats of solid materials decrease with temperature and go rapidly to zero
as the temperature goes to zero.

Two years later, in 1928, the famous German professor Arnold Sommerfeld, one of
the chief architects of quantum mechanics, visited Presidency College. Chandra was well
prepared. He had read and understood Sommerfeld’s classic textbook,Atomic Structure
and Spectral Lines. He boldly introduced himself to Sommerfeld, who took the time to
tell him about the latest work of Fermi and Dirac. Sommerfeld gave the young Chandra
the galley proofs of his paper on the electron theory of metals, a yet-to-be-published article
that gave the decisive confirmation of Fermi–Dirac statistics. Sommerfeld’s paper was a
masterpiece of derived science, showing how the basic concepts of Fermi and Dirac could
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Figure 2. Ralph Fowler, shown here in a 1931 photograph, wrote the seminal paper explaining the
properties of white dwarf stars that inspired Subrahmanyan Chandrasekhar’s revolutionary calcula-
tion. Fowler and other important English astrophysicists did not accept the validity of the new work.
(Photo courtesy of the AlP Emilio Segrè Visual Archives, V. Ya. Frenkel collection.)

explain in detail why metals exist and how they behave. The Indian undergraduate was one
of the first people in the world to read it.

Two years after his meeting with Sommerfeld, at the ripe old age of 19, Chandra sailed
on the steamshipPilsna to enroll as a graduate student at Cambridge University. He was
to work there with Ralph Fowler, who had used Fermi–Dirac statistics to explain the pro-
perties of white dwarf stars — stars that have exhausted their supply of nuclear energy by
burning hydrogen to make helium or carbon and oxygen. White dwarfs collapse gravitatio-
nally to a density many thousands of times greater than normal matter, and then slowly cool
down by radiating away their residual heat. Fowler’s triumph of derived science included
a calculation of the relation between the density and mass of a white dwarf, and his result
agreed well with the scanty observations available at that time. With the examples of Som-
merfeld and Fowler to encourage him, Chandra was sailing to England with the intention
of making his own contribution to derived science.

A sea change

Aboard thePilsna, Chandra quickly found a way to move forward. The calculations of
Sommerfeld and Fowler had assumed that the electrons were nonrelativistic particles
obeying the laws of Newtonian mechanics. That assumption was certainly valid for Som-
merfeld. Electrons in metals at normal densities have speeds that are very small compared
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with the speed of light. But for Fowler, the assumption of Newtonian mechanics was
not so safe. Electrons in the central regions of white dwarf stars might be moving fast
enough to make relativistic effects important. So Chandra spent his free time on the ship
repeating Fowler’s calculation of the behavior of a white dwarf star, but with the electrons
obeying the laws of Einstein’s special relativity instead of the laws of Newton. Fowler had
calculated that for a given chemical composition, the density of a white dwarf would be
proportional to the square of its mass. That made sense from an intuitive point of view.
The more massive the star, the stronger the force of gravity and the more tightly the star
would be squeezed together. The more massive stars would be smaller and fainter, which
explained the fact that no white dwarfs much more massive than the Sun had been seen.

To his amazement, Chandra found that the change from Newton to Einstein has a
drastic effect on the behavior of white dwarf stars. It makes the matter in the stars more
compressible, so that the density becomes greater for a star of given mass. The density does
not merely increase faster as the mass increases, it tends to infinity as the mass reaches
a finite value, the Chandrasekhar limit. Provided its mass is below the limit, physicists
can model a white dwarf star with relativistic electrons and obtain a unique mass-density
relation; there are no models for white dwarfs with mass greater than the Chandrasekhar
limit. The limiting mass depends on the chemical composition of the star. For stars that
have burned up all their hydrogen, it is about 1.5 times the mass of the Sun.

Chandra finished his calculation before he reached England and never had any doubt
that his conclusion was correct. When he arrived in Cambridge and showed his results to
Fowler, Fowler was friendly but unconvinced and unwilling to sponsor Chandra’s paper for
publication by the Royal Society in London. Chandra did not wait for Fowler’s approval
but sent a brief version of the paper to theAstrophysical Journalin the US.2 The journal
sent it for refereeing to Carl Eckart, a famous geophysicist who did not know much about
astronomy. Eckart recommended that it be accepted, and it was published a year later,
Chandra had a coolhead. He had no wish to engage in public polemics with the British
dignitaries who failed to understand his argument. He published his work quietly in a repu-
table astronomical journal and then waited patiently for the next generation of astronomers
to recognize its importance. Meanwhile, he would remain on friendly terms with Fowler
and the rest of the British academic establishment, and he would find other problems of
derived science that his mastery of mathematics and physics would allow him to solve.

The decline and fall of Aristotle

Astronomers had good reason in 1930 to react with skepticism to Chandra’s statements.
The implications of his discovery of a limiting mass were totally baffling. All over the
sky, we see an abundance of stars cheerfully shining with masses greater than the limit.
Chandra’s calculation says that when those stars burn up their nuclear fuel, there will exist
no equilibrium states into which they can cool down. What then, can a massive star do
when it runs out of fuel? Chandra had no answer to that question, and neither did anyone
else when he raised it in 1930.

The answer was discovered in 1939 by J. Robert Oppenheimer and his student Hartland
Snyder. They published their solution in a paper, “On Continued Gravitational Contrac-
tion.”3 In my opinion, it was Oppenheimer’s most important contribution to science. Like
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Figure 3. Subrahmanyan Chandrusekhar’s discovery of a limiting mass for an ideal white dwarf
appeared in a two-page paper published in 1931. The limiting value of 0.9 solar mass is different
from the modern value, which is 1.5 solar masses. The difference results from Chandra’s using an
obsolete estimate of the chemical composition of the star.

Chandra’s contribution nine years earlier, it was a masterpiece of derived science, taking
some of Einstein’s basic equations and showing that they give rise to startling and unexpec-
ted consequences in the real world of astronomy. The difference between Chandra and Op-
penheimer was that Chandra started with the 1905 theory of special relativity, whereas Op-
penheimer started with Einstein’s 1915 theory of general relativity. In 1939 Oppenheimer
was one of the few physicists who took general relativity seriously. At that time it was an
unfashionable subject, of interest mainly to philosophers and mathematicians. Oppenhei-
mer knew how to use it as a working tool to answer questions about real objects in the sky.

Oppenheimer and Snyder accepted Chandra’s conclusion that there exists no static
equilibrium state for a cold star with mass larger than the Chandrasekhar limit. Therefore,
the fate of a massive star at the end of its life must be dynamic. They worked out the
solution to the equations of general relativity for a massive star collapsing under its own
weight and discovered that the star is in a state of permanent free fall — that is, the star
continues forever to fall inward toward its center. General relativity allows that paradoxical
behavior because the time measured by an observer outside the star runs faster than the
time measured by an observer inside the star. The time measured on the outside goes all
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the way from now to the end of the universe, while the time measured on the inside runs
only for a few days. During the gravitational collapse, the inside observer sees the star
falling freely at high speed, while the outside observer sees it quickly slowing down. The
state of permanent free fall is, so far as we know, the actual state of every massive object
that has run out of fuel. We know that such objects are abundant in the universe. We call
them black holes.

With several decades of hindsight, we can see that Chandra’s discovery of a limiting
mass and the Oppenheimer–Snyder discovery of permanent free fall were major turning
points in the history of science. Those discoveries marked the end of the Aristotelian
vision that had dominated astronomy for 2000 years: the heavens as the realm of peace and
perfection, contrasted with Earth as the realm of strife and change.

Chandra and Oppenheimer demonstrated that Aristotle was wrong. In a universe do-
minated by gravitation, no peaceful equilibrium is possible. During the 1930s, between
the theoretical insights of Chandra and Oppenheimer, Fritz Zwicky’s systematic observa-
tions of supernova explosions confirmed that we live in a violent universe.4 In the same
decade, Zwicky discovered the dark matter whose gravitation dominates the dynamics of
large-scale structures. After 1939, astronomers slowly and reluctantly abandoned the Aris-
totelian universe as more evidence accumulated of violent events in the heavens. Radio
and x-ray telescopes revealed a universe full of shock waves and high-temperature plasmas,
with outbursts of extreme violence associated in one way or another with black holes.

Every child learning science in school and every viewer watching popular scientific
documentary programs on television now knows that we live in a violent universe. The
“violent universe” has become a part of the prevailing culture. We know that an asteroid
collided with Earth 65 million years ago and caused the extinction of the dinosaurs. We
know that every heavy atom of silver or gold was cooked in the core of a massive star
before being thrown out into space by a supernova explosion. We know that life survived
on our planet for billions of years because we are living in a quiet corner of a quiet galaxy,
far removed from the explosive violence that we see all around using more turbulent parts
of the universe. Astronomy has changed its character totally during the past 100 years. A
century ago the main theme of astronomy was to explore a quiet and unchanging landscape.
Today the main theme is to observe and explain the celestial fireworks that are the evidence
of violent change. That radical transformation in our picture of the universe began on
the good shipPilsnawhen the 19-year-old Chandra discovered that there can be no stable
equilibrium state for a massive star.

New ideas confront the old order

It has always seemed strange to me that the work of the three main pioneers of the violent
universe — Chandra, Oppenheimer, and Zwicky — received so little recognition and ac-
claim at the time when it was done. Those discoveries were neglected, in part, because
all three pioneers came from outside the astronomical profession. The professional astro-
nomers of the 1930s were conservative in their view of the universe and in their social
organization. They saw the universe as a peaceful domain that they knew how to explore
with the standard tools of their trade. They were not inclined to take seriously the claims
of interlopers with new ideas and new tools. It was easy for the astronomers to ignore the
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Figure 4. The Chandra X-ray Observatory is one of several telescopes casting an eye on the
violent universe.Chandrais seen here loaded in theColumbiaspace shuttle a few days before its 23
July 1999 launch. (Courtesy of NASA.)

outsiders because the new discoveries did not fit into the accepted ways of thinking and the
discoverers did not fit into the established astronomical community.

In addition to those general considerations, which applied to all three of the scientists,
individual circumstances contributed to the neglect of their work. For Chandra, the special
circumstances were the personalities of Arthur Eddington and Edward Arthur Milne, who
were the leading astronomers in England when Chandra arrived from India. Eddington
and Milne had their own theories of stellar structure in which they firmly believed; both of
those were inconsistent with Chandra’s calculation of a limiting mass. The two astronomers
promptly decided that Chandra’s calculation was wrong and never accepted the physical
facts on which it was based.

Zwicky confronted an even worse situation at Caltech, where the astronomy depart-
ment was dominated by Edwin Hubble and Walter Baade. Zwicky belonged to the physics
department and had no official credentials as an astronomer. Hubble and Baade believed
that Zwicky was crazy, and he believed that they were stupid. Both beliefs had some basis
in fact. Zwicky had beaten the astronomers at their own game of observing the heavens,
using a wide-field camera that could cover the sky 100 times faster than could other tele-
scope cameras existing at that time. Zwicky then made an enemy of Baade by accusing him



20 Freeman Dyson

of being a Nazi. As a result of that and other incidents, Zwicky’s discoveries were largely
ignored for the next 20 years.

The neglect of Oppenheimer’s greatest contribution to science was mostly due to an
accident of history. His paper with Snyder, establishing in four pages the physical reality of
black holes, was published in thePhysics Reviewon 1 September 1939, the same day Adolf
Hitler sent his armies into Poland and began World War II. In addition to the distraction
created by Hitler, the same issue of thePhysics Reviewcontained the monumental paper
by Niels Bohr and John Wheeler on the theory of nuclear fission — a work that spelled
out for all who could read between the lines, the possibilities of nuclear power and nuclear
weapons.5 It is not surprising that the understanding of black holes was pushed aside by
the more urgent excitements of war and nuclear energy.

Each of the three pioneers, after a brief period of revolutionary discovery and a short
publication, lost interest in fighting for the revolution. Chandra enjoyed seven peaceful
years in Europe before moving to America, mostly working without revolutionary impli-
cations, on the theory of normal stars. Zwicky, after finishing the sky survey that revea-
led dark matter and several types of supernovae, became involved in military problems as
World War II was beginning; ultimate he became an expert in rocketry. Oppenheimer, af-
ter discovering the most important astronomical consequence of general relativity, turned
his attention to mundane nuclear explosions and became the director of the Los Alamos
laboratory.

When I tried in later years to start a conversation with Oppenheimer about the impor-
tance of black holes in the evolution of the universe, he was as unwilling to talk about them
as he was to talk about his work at Los Alamos. Oppenheimer suffered from an extreme
form of the prejudice prevalent among theoretical physicists, overvaluing pure science and
undervaluing derived science. For Oppenheimer, the only activity worthy of the talents of
a first-rate scientist was the search for new laws of nature. The study of the consequences
of old laws was an activity for graduate students or third-rate hacks. He had no desire in
later years to return to the study of black holes, the area in which he had made his most
important contribution to science. Indeed, Oppenheimer might have continued to make im-
portant contributions in the 1950s, when black holes were an unfashionable subject, but he
preferred to follow the latest fashion. Oppenheimer and Zwicky did not, like Chandra, live
long enough to see their revolutionary ideas adopted by a younger generation and absorbed
into the main stream of astronomy.

From stellar structure to Shakespeare

Chandra would spend 5–10 years on each field that he wished to study in depth. He would
take a year to master the subject, a few more years to publish a series of journal articles
demolishing the problems that he could solve, and then a few more years writing a definitive
book that surveyed the subject as he left it for his successors. Once the book was finished,
he left that field alone and looked for the next topic to study.

That pattern was repeated eight times and recorded in the dates and titles of Chan-
dra’s books.An Introduction to the Study of Stellar Structure(University of Chicago Press,
1939) summarizes his work on the internal structure of white dwarfs and other types of
stars. Principles of Stellar Dynamics(University of Chicago Press, 1942) describes his
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highly original work on the statistical theory of stellar motions in clusters and in galaxies.
Radiative Transfer(Clarendon Press, 1950) gives the first accurate theory of radiation trans-
port in stellar atmospheres.Hydrodynamic and Hydromagnetic Stability(Clarendon Press,
1961) provides a foundation for the theory of all kinds of astronomical objects — in-
cluding stars, accretion disks, and galaxies — that may become unstable as a result of
differential rotation. Ellipsoidal Figures of Equilibrium(Yale University Press, 1969)
solves an old problem by finding all the possible equilibrium configurations of an in-
compressible liquid mass rotating in its own gravitational field. The problem had been
studied by the great mathematicians of the 19th century — Carl Jacobi, Richard Dede-
kind, Peter Lejeune Dirichlet, and Bernhard Riemann — who were unable to determine
which of the various configurations were stable. In the introduction to his book, Chandra
remarks,

These questions were to remain unanswered for more than a hundred years. The rea-
son for this total neglect must in part be attributed to a spectacular discovery by Poin-
caré, which channeled all subsequent investigations along directions which appeared
rich with possibilities; but the long quest it entailed turned out in the end to be after a
chimera.

After the ellipsoidal figures opus came a gap of 15 years before the appearance of
the next book,The Mathematical Theory of Black Holes(Clarendon Press, 1983). Those
15 years were the time during which Chandra worked hardest and most intensively on
the subject closest to his heart: the precise mathematical description of black holes and
their interactions with surrounding fields and particles. His book on black holes was his
farewell to technical research, just asThe Tempestwas William Shakespeare’s farewell to
writing plays. After the book was published, Chandra lectured and wrote about nontech-
nical themes, about the works of Shakespeare and Beethoven and Shelley, and about the
relationship between art and science. A collection of his lectures for the general public was
published in 1987 with the titleTruth and Beauty.1

During the years of his retirement, he spent much of his time working his way through
Newton’sPrincipia. Chandra reconstructed every proposition and every demonstration,
translating the geometrical arguments of Newton into the algebraic language familiar to
modem scientists. The results of his historical research were published shortly before his
death in his last book,Newton’s “Principia” for the Common Reader(Clarendon Press,
1995). To explain why he wrote the book, he said, “I am convinced that one’s knowledge
of the Physical Sciences is incomplete without a study of thePrincipia in the same way
that one’s knowledge of Literature is incomplete without a knowledge of Shakespeare.”6

Chandra’s work on black holes was the most dramatic example of his commitment to
derived science as a tool for understanding nature. Our basic understanding of the nature
of space and time rests on two foundations: first, the equations of general relativity dis-
covered by Einstein, and second, the black hole solutions of those equations discovered
by Karl Schwarzschild and Roy Kerr and explored in depth by Chandra. To write down
the basic equations is a big step toward understanding, but it is not enough. To reach a
real understanding of space and time, it is necessary to construct solutions of the equations
and to explore all their unexpected consequences. Chandra never said that he understood
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more about space and time than Einstein, but he did. So long as Einstein did not accept the
existence of black holes, his understanding of space and time was far from complete.

When I was a student at Cambridge, I studied with Chandra’s friend Godfrey Hardy,
a pure mathematician who shared Chandra’s views about British imperialism and Indian
politics. When I came, Hardy was old and he spent most of his time writing books. With
the arrogance of youth, I asked Hardy why he wasted his time writing books instead of
doing research. Hardy replied, “Young men should prove theorems. Old men should write
books.” That was good advice that I have never forgotten. Chandra followed it too. I do not
know whether he learned it from Hardy.

This article is based on a talk I gave for the Chandrasekhar Centennial Symposium at the
University of Chicago on 16 October 2010.
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1. Introduction
Srinivasa Ramanujan is so far outside the circumference of my comprehension that I am
naturally apprehensive to speak on this topic, particularly when there are authorities in the
audience, like Professor Dyson who has ‘played in Ramanujan’s garden’ for over six de-
cades. My only credential is that most of the things I will say, I heard personally from
Chandra and Professor Richard Askey. May I, therefore, begin on the same note on which
Chandra ended one of his most memorable lectures?

First, my fear; then my curtsy; last my speech.
My fear, is your displeasure,
My curtsy, my duty, and my speech, to beg your pardon.

Henry IV

I came to this department in 1965. My first encounter with Chandra was similar to
what others had experienced. During one of the pre-colloquium coffee, when the students
mingled with the greats of the department, I went up to Chandra and said “I am a new
student here”. He said “Yes, I know. You are taking my course on Statistical Mechanics”.
I thought I had broken the ice, and felt that I should push it along. I said “I would like
to meet you some time”. He said “well....?” I had been warned about such a brush off,
and was prepared for it. I said “Nothing in particular, you know. I would like to chat with
you some time”. He said “I shall let you know when I am free”. Nothing happened for
three months! And then, one day, he called me to his office around 5 o’clock; it was a
Thursday, and the Colloquium had been cancelled because the speaker was stranded due to
bad weather. When I entered his office, he was attending to something. So I stood there,
absorbing everything I could see. Three or four framed photographs on the walls attracted
my attention. I recognized two of them. He looked up at me and said “Do you recognize
them?” He closed his PARKER pen, laid it carefully on the table, and asked me to sit
down. He didn’t talk about the photographs then; instead he asked me “The OLD VIC is in
town. Are you going to any of the plays?” I said “I have been to ‘Measure for Measure’
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Figure 1. Subrahmanyan Chandrasekhar.

and ‘Romeo and Juliet’.” “Well, then,” he asked “can you tell me when Juliet matured
as a person?” The iceberg had melted. We talked for two hours, rather he did! About
Alice, Virginia Wolf, Mozart ... That was the beginning of a friendship that was to last till
he passed away.

Two days later, it was a Saturday, he told me to meet him at the front steps of the
Museum of Science and Industry on the lake shore. He took me to the Mathematics section,
where among other things there was a gallery of portraits of all the great mathematicians.
And there was Ramanujan’s photograph. Chandra beamed and said “If Ramanujan was
Hardy’s discovery, that is my discovery.” And then he told me about his discovery of 1936.
I recall it as if it was yesterday. But since I cannot recall every word that was said forty five
years ago – like Chandra could! – I shall read from a speech Chandra gave at the Royal
Society in May 1994:

“Hardy was to give a series of 12 lectures on subjects suggested by Ramanujan’s life
and work at the Harvard Tercentenary Conference of Arts and Sciences in autumn of
1936. In the spring of that year, Hardy told me that the only photograph of Ramanujan
available at that time was one of him in cap and gown, ‘which makes him look ridiculous.’
And he asked me whether I would try to secure, on my next visit to India, a better pho-
tograph which he might include with the published version of his lectures. It happened
that I was in India that same year from July to October. I knew that Mrs. Ramanujan was
living somewhere in South India, and I tried to find where, at first without success. On
the day before my departure for England in October 1936, I traced Mrs. Ramanujan to
a house in Triplicane, Madras. I went to her house and found her living under extremely
modest conditions. I asked her if she had any photograph of Ramanujan which I might
give to Hardy. She told me that the only one she had was the one in the passport which
he had secured in London early in 1919. I asked her for the passport and found that the
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Figure 2. Srinivasa Ramanujan.

Figure 3. G.H. Hardy.

photograph was sufficiently good (even after 17 years) that one could make a good negative
and copies. It is this photograph that appears in Hardy’s book.... It is of interest to recall
Hardy’s reaction to the photograph: ‘He looks rather ill (and no doubt he was very ill):
but he looks all over the genius that he was.’

Who was this person about whom Chandra was so excited? It is possible that there
may be one or two young persons in the audience who may not have encountered the name
of Srinivasa Ramanujan. Certainly in India, the way science is taught now is completely
devoid of any sense of history. Let me, therefore stick my neck out, and make a few
remarks.

Toward the end of January 1913, G.H. Hardy at Trinity College in Cambridge received
a letter dated 16 January 1913. It began and ended as follows:
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Figure 4. One of the many sheets in which Ramanujan had written down his theorems. These sheets
were attached to the letter addressed to Hardy. None of the theorems had any proofs!

Dear Sir,
I beg to introduce myself to you as a clerk in the Accounts Department of the Port
Trust Office at Madras on a salary of only 20 pounds per annum. I am now 23 years
of age. I have no University education but have undergone the ordinary school
course. After leaving school I have been employing the spare time at my disposal
to work at mathematics..... I would request you to go through the enclosed papers.
Being poor, if you are convinced that there is anything of value I would like to have
my theorems published..... requesting to be excused for the trouble I give you,

I remain, Dear Sir, Yours truly,
S. Ramanujan
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There were about twelve sets of theorems; none of them had any ‘proofs’. As E.H.
Neville has remarked “No one who was in the mathematical circles in Cambridge at that
time can forget the sensation caused by this letter.”

At first, Hardy thought the letter was a hoax. He sought the help of his close collabo-
rator Littlewood. After pouring over Ramanujan’s theorems, Hardy said:

“They defeated me completely. I had never seen anything in the least like them
before. A single look at them is enough to show that they could only be written down
by a mathematician of the highest class. They must be true because, if they were not
true, no one would have had the imagination to invent them.”

Hardy decided that Ramanujan must be brought to England. As C. P. Snow has written
“Once Hardy was determined, no human agency could have stopped Ramanujan, but they
needed a certain amount of help from a superhuman one.” I shall return to this ‘divine
intervention’ a little later.

Ramanujan arrived in Cambridge in April 1914. The next five years saw an incredible
burst of creativity from Ramanujan. In 1918, he was elected a Fellow of the Royal Society
and a Fellow of Trinity College. Soon he became extremely ill and had to return to India
early in 1919, and died on January 12, 1920. Hardy wrote thus in his biographical notice
for Ramanujan:

“In his insight into algebraical formulae, transformation of infinite series, and so
forth, that was most amazing. On this side most certainly I have never met his equal,
and I can compare him only with Euler or Jacobi.”

Fifteen years later, in his Harvard Lectures, Hardy reassessed what he had written:

“I do not think now that this extremely strong language is extravagant. It is possible
that great days of formulae are finished, and that Ramanujan ought to have been
born 100 years ago; but he was by far the greatest formalist of his time. ”

Eric Neville, a mathematician of distinction and Fellow of Trinity, and who played a
crucial role in Ramanujan coming to Cambridge, said:

“Srinivasa Ramanujan was a mathematician so great that his name transcends jea-
lousies, the one superlatively great mathematician whom India has produced in the
last thousand years”.

2. Ramanujan Institute
Thirty years after Ramanujan’s death a mathematical institute named after him was esta-
blished in Madras. Chandra played a very important role in this. Sometime after the World
War ended, one of his former classmates Sir Alagappa Chettiar wrote to him inquiring if
it might be useful for him to found a mathematical institute in memory of Ramanujan. Sir
Alagappa Chettiar was a very successful entrepreneur and a philanthropist. Chandra en-
thusiastically supported the idea, and the institute was inaugurated on January 26, 1950,
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Figure 5. Temple at Kumbakonam.

the day India became a Republic! T. Vijayaraghavan, one of the most talented among
Hardy’s former students, was appointed as the first Director. Chandra continued to take
keen interest in the development of the Institute. Unfortunately, Vijayaraghavan died in
1955 at a comparatively young age. C.T. Rajagopal, a noted analyst, was appointed as the
next Director on the recommendation of Andre Weil and Chandrasekhar.

Soon funds started drying up. And when Alagappa Chettiar died in 1957, the fate of the
institute hung in balance. Rajagopal wrote to Chandra saying that ‘the institute will cease to
exist from the first of next month’. Chandrasekhar came to its rescue. He wrote to the Prime
Minister Jawaharlal Nehru, explaining the origin of the institute and the seriousness of its
condition. Nehru replied promptly and, as Chandra has written, ¢the reply was refreshing¢.
Nehru wrote:

“Even if you had not put in your strong recommendation in favour of the Ramanujan
Institute of Mathematics, I would not have liked anything to happen which put an
end to it. Now that you have also written to me on this subject, I shall keep in touch
with this matter and I think I can assure you that the institute will be carried on.”

And it was! In 1967, the Ramanujan Institute was merged with the Department of
Mathematics of the University of Madras at the suggestion of the University Grants Com-
mission, and renamed as the Ramanujan Institute for Advanced Study in Mathematics.
Although the funding improved, it is still extremely modest compared to what other re-
search institutes in India get from the government. It is a pity that this institute did not
attain the same distinction as, for example, the School of Mathematics at the Tata Institute
in Bombay.

3. The Goddess of Namakkal
And now for the divine intervention! When the opportunity arose for Ramanujan to go to
Cambridge, he was initially hesitant. As Eric Neville described it “Ramanujan declined,
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reluctant to lose caste, and deferring to the opposition on the part of his parents, whose
objections were religious.” In 1914, Neville visited Madras and won Ramanujan’s trust
completely. Ramanujan expressed his delight to go to Cambridge, and his parents’ op-
position had been withdrawn. According to the folklore, his mother had a vivid dream
in which Ramanujan was surrounded by Europeans, and she heard the Goddess Nama-
giri commanding her to no longer stand between her son and the fulfilment of his life’s
purpose.

Chandra was always annoyed at the suggestion of some of Ramanujan’s contempora-
ries that he was a deeply religious man. He was very sensitive to this. On more than one
occasion Chandra had remarked:

“Quite generally, it may be stated that.... there was very little correlation between
‘observance’ and ‘belief’. In particular, I can vouch from my own personal expe-
rience that some of the ‘observances’ that one followed were largely for the purpose
of not offending the sensibilities of one’s parents, relations, and friends”.

In a BBC radio programme, Chandra mentioned how his mother tied a sacred thread
around his wrist on the eve of his voyage to England, and told him not to remove it.

Chandra corresponded with Hardy on the subject of ‘Ramanujan and God’, and was
inclined to accept Hardy’s views expressed in a letter dated February 19, 1936:

“.... And my own view is that, at the bottom and to a first approximation, R. was
(intellectually) as sound an infidel as Bertrand Russell or Littlewood....
One thing I am sure. R. was not in the least the ‘inspired idiot’ that some people seem
to have thought him. On the contrary, he was (except for a period when his mental
equilibrium was definitely upset by illness) a very shrewd and sensible person: very
individual, of course, and with a reasonable allowance of the minor eccentricities of
genius, but fundamentally normal and sane.”

The subtle difference between ‘observance’ and ‘belief’ came up many times during
my conversations with Chandra. When he returned from India in 1968 after delivering the
Nehru Memorial Lecture and the Ramanujan Memorial Lecture, he talked to me at length
about his visit. Among other things, he mentioned his private meeting with the Prime
Minister Mrs. Indira Gandhi, during which she said to him “You do not know how difficult
it is to administer this country. Yesterday, you talked to us about astronomy. Suppose
someone had told me that you went to the Ganges this morning and had a bath to prevent
the snake Raghu from swallowing the Sun, what can I make of you? That is the kind of
persons I have to deal with.”

4. The Lost Notebook

Was Ramanujan born a hundred years too late, as hinted by Hardy? Contemporary
mathematicians have firmly rejected this notion. What has led to this reappraisal of
Ramanujan?
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Figure 6. Bruce Berndt has compared Ramanujan with J.S. Bach.

Bruce Berndt, one of the foremost authorities on Ramanujan, has compared him with
Johann Sebastian Bach. Bach died in 1750, and was largely unknown. The turnaround
came with Felix Mendelssohn’s performance of the St Mathew Passion on 11 March, 1829.
For Ramanujan, the roughly analogous event was the discovery by George Andrews in
1976 of the Lost Notebook. Since some of you may not be aware of this story, permit me
to narrate it.

When G.N. Watson died in 1965, the Royal Society asked J.M. Whittaker to write
Watson’s Biographical Memoir. For that purpose, Whittaker contacted Mrs. Watson and
asked if he could examine the papers that Watson might have left in his study. Whittaker
recalled:

“... papers covered the floor of a fair sized room to a depth of about a foot, all
jumbled together, and were to be incinerated in a few days. One could only make
lucky dips and, as Watson never threw away anything, the result might be a sheet of
mathematics, but more probably a receipted bill or a draft of his income tax return
for 1923. By extraordinary stroke of luck one of my dips brought up the Ramanujan
material.”

This ‘material’, consisting of some 87 loose sheets, was part of a batch of papers the
Registrar at the University of Madras had sent to Hardy in 1923. These sheets contained
the work Ramanujan had done during the last year of his life, literally in his death bed.
Whittaker passed on his lucky dip to Robert Rankin, Watson’s successor in Birmingham.
Rankin, in turn, deposited them with Trinity College. There it lay in the Trinity Archives
till George Andrews discovered and rescued them in 1976.

These loose sheets contain remarkable results pertaining to “mock theta function”,
the subject of Ramanujan’s last letter to Hardy three months before he died. Watson worked
on Ramanujan’s notes for many years before World War II. Indeed, ‘mock theta functions’
was the topic of his famous Presidential Address to the Mathematical Society in 1935.
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Figure 7. A random page from the ‘Lost Notebook of Ramanujan’.

Concluding that address, Watson said:

“Such a formula gives me a thrill which is indistinguishable from the thrill which
I feel when I enter the Sagrestia Nuova of the Capelle Medicee and see before me
the austere beauty of the four statues representing “Day¢, “Night”, “Evening”, and
“Dawn” which Michelangelo has set over the tombs of Giuliano de’ Medici and
Lorenzo de’ Medici.”

Reminiscing at the Royal Society about the discovery of the Lost Notebook, Chandra
remarked,

Andrews told me, at a later time, that when he presented a paper on the ‘Lost Notebook’
at a meeting of the American Mathematical Society, Dr. Olga Taussky-Todd, who was
chairing the session, said:

“The discovery of the Lost Notebook is as sensational a discovery for the mathema-
ticians as a complete draft of a tenth symphony of Beethoven would have been to the
musicians.”

Let me next quote Professor Richard Askey:
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Figure 8. Two of the 87 loose sheets discovered by Whittaker.

“Try to imagine the quality of Ramanujan’s mind, one which drove him to work
unceasingly while deathly ill, and one great enough to grow deeper while his body
became weaker. I stand in awe of his accomplishments; understanding is beyond me.
We would admire any mathematician whose life’s work was half of what Ramanujan
found in the last year of his life while he was dying.”

The discovery of the Lost Notebook, and the subsequent deep work done by Andrews,
attracted a lot of attention. The Hindu, one of the leading newspapers in India, published
an interview with Andrews. It followed it up with an interview of Mrs. Ramanujan. She
was 80 years old at that time. In that interview, Mrs. Ramanujan lamented the fact that
a statue of Ramanujan had never been made, although one had been promised. When Ri-
chard Askey heard of this, his reaction was simple: if Ramanujan’s widow wanted a bust of
her husband she should have it! Askey identified Paul Granlund, a distinguished sculptor at
Gustavus College, Saint Peter, Minnesota. The passport photograph of Ramanujan, disco-
vered by Chandra, was all that Granlund had! Initially four busts were made. One of them
was for Mrs. Ramanujan. Askey acquired one. Chandra and Lalitha acquired two. One
of these two was to be gifted by Chandra and Lalitha to the Indian Academy of Sciences
on the occasion of its Golden Jubilee in 1984; Chandra was a Foundation Fellow of the
Academy, founded by his uncle Sir C.V. Raman. Chandra arranged for the Indian Embassy
in Washington to send me two busts; the one to be presented to Mrs. Ramanujan, and the
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Figure 9. Ramanujan’s magical formulae inspired G.N. Watson to compare them to the great sculp-
tures by Michelangelo at the Medici Chapel in Florence.

Figure 10. Lalitha Chandrasekhar unveiling the bust of Ramanujan at the Raman Research Institute
in Bangalore.

one to be presented by them to the Academy. Chandra and Lalitha came to Bangalore in
October 1984 for the Golden Jubilee Meeting. Unfortunately, the meeting had to be post-
poned due to the assassination of Indira Gandhi. They came again in February of 1985 for
the rescheduled Golden Jubilee Meeting.

It was then that they formally gifted the Academy with one of the busts. It is located at
the entrance of the lovely library at the Raman Research Institute, which shares the campus
with the Indian Academy of Sciences.

In the meantime, I had arranged for S. Ramaseshan, the President of the Academy, to
go to Madras and present the other bust to Mrs. Ramanujan.

5. Ramanujan as an inspiration

Most of you knew Chandra well. You must be aware that Ramanujan made a tremendous
impact on Chandra’s life. Chandra first heard of Ramanujan when he was barely ten years
old. His mother told him that a famous Indian mathematician had died the previous day.
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Figure 11. Chandra addressing the gathering after the unveiling.

Figure 12. Ramanujan’s widow with the bust of her husband.

Sixty seven years later, Chandra reminisced about the influence Ramanujan had on his
generation:

“I can still recall the gladness I felt at the assurance that one brought up under
circumstances similar to my own, could have achieved what I could not grasp....”
“The fact that Ramanujan’s early life was spent in a scientifically sterile atmosphere,
that his life in India was not without hardship, that under circumstances that appea-
red to most Indians as nothing short of miraculous, he had gone to Cambridge, sup-
ported by eminent mathematicians, and had returned to India with every assurance
that he would be considered, in time, as one of the most original mathematicians of
the century – these fact were enough – more than enough – for aspiring young Indian
students to break their bonds of intellectual confinement and perhaps soar the way
that Ramanujan had.”
“.. The Indian scientific community were exceptionally fortunate in having before
them the example of Ramanujan. It is hopeless to try to emulate him. But he was
there even as the Everest is there.”



Chandrasekhar and the legacy of Ramanujan 35

Figure 13. Mount Everest.

Figure 14. A view of the Kinchinjunga.

We have gathered here to remember another Indian who soared high. Chandra felt that
Ramanujan represents so extreme a fluctuation from the norm that his being born an
Indian must be considered to a large extent accidental. In his attitude to the pursuit of
science, his achievements and his scholarship, Chandra, too, was an extreme fluctuation.
What did Chandra think of himself? The following concluding sentences of his lecture at
the Golden Jubilee meeting of the Indian Academy of Sciences might hold a clue:

“The pursuit of science has often been compared to the scaling of mountains, high
and not so high. But who amongst us can hope, even in imagination, to scale the
Everest and reach its summit when the sky is blue and the air is still, and in the
stillness of the air survey the entire Himalayan range in the dazzling white of the
snow stretching to infinity? None of us can hope for a comparable vision of nature
and of the universe around us. But there is nothing mean or lowly in standing in the
valley below and awaiting the sun to rise over Kinchinjunga.”

When Chandra died, the Indian Academy of Sciences requested me to take the initiative
to make a bust. The first thing that came to my mind was the Ramanujan-Chandrasekhar
connection.
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Figure 15. Paul Granlund sculpting the bust of Chandra.

With Richard Askey’s help, I approached Paul Granlund and asked if he would under-
take to make a bust of Chandra. I was delighted when he not only agreed, but was most
enthusiastic. But unlike Mrs. Ramanujan, Lalitha Chandrasekhar was not at all keen that
a bust should be made. I had to work very hard before she finally consented.

Therefore, it was a matter of great personal satisfaction to me that Lalitha came to
Bangalore to unveil the bust.

Figure 16. Lalitha Chandrasekhar unveiling the bust of Chandra at the Raman Research Institute.
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Figure 17. Paul Granlund’s busts of Srinivasa Ramanujan (left) and Subrahmanyan Chandrasekhar
(right).

Today, Chandra’s bust stands adjacent to Ramanujan’s bust at the Library of the Raman
Institute in Bangalore.
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Abstract. The extraordinary achievements of Subrahmanyan Chandrasekhar
(Chandra) have guided and inspired many younger astrophysicists. The brief
survey seeks to highlight a few specific cases in India where, through his wri-
tings, lectures and discussions, Chandra made a lasting impact. It will be argued
that although at a general, somewhat superficial level, Chandra is a light beacon
to be followed, very few Indian astrophysicists reached a level where they could
engage Chandra in a scientific discussion on a topic that interested him.

1. Introduction
A centenary symposium provides an admirable opportunity to review the impact of the
concerned scientist on his recognized field of research. Subrahmanyan Chandrasekhar
(‘Chandra’ henceforth) had a very successful career in theoretical astrophysics, topped
with many awards and distinctions including the 1983 Physics Nobel Prize, which he sha-
red with William A. Fowler. He died on August 21, 1995 at the age of 85 years. So this
centenary symposium gives us the opportunity of evaluating Chandra’s impact in his native
land of India, some 15 years after his passing away.

To begin such an evaluation I can do no better than reproduce extracts from Chandra’s
own assessment of his work (Odelberg 1984):

“...After the early preparatory years, my scientific work has followed a certain pattern
motivated, principally, by a quest after perspectives. In practise, this quest has consisted in
my choosing (after some trials and tribulations) a certain area which appears amenable to
cultivation and compatible with my taste, abilities, and temperament. And when after some
years of study, I feel that I have accumulated a sufficient body of knowledge and achieved a
view of my own, I have the urge to present my point of view, ab initio, in a coherent account
with order, form and structure.

There have been seven such periods in my life: stellar structure, including the theory
of white dwarfs (1929-1939); stellar dynamics, including the theory of Brownian motion
(1938-1943); the theory of radiative transfer, including the theory of stellar atmospheres
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and the quantum theory of the negative ion of hydrogen and the theory of planetary atmos-
pheres, including the theory of the illumination and the polarization of the sunlit sky (1943-
1950); hydrodynamic and hydromagnetic stability, including the theory of the Rayleigh-
Bénard convection (1952-1961); the equilibrium and the stability of ellipsoidal figures of
equilibrium, partly in collaboration with Norman R. Lebovitz (1961-1968); the general
theory of relativity and relativistic astrophysics (1962-1971); and the mathematical theory
of black holes (1974-1983). The monographs which resulted from these several periods
are:

1. An Introduction to the Study of Stellar Structure (1939, University of Chicago Press;
reprinted by Dover Publications, Inc., 1967).
2a. Principles of Stellar Dynamics (1943, University of Chicago Press; reprinted by Dover
Publications, Inc., 1960).
2b. Stochastic Problems in Physics and Astronomy, Reviews of Modern Physics, 15, 1-89
(1943) reprinted in Selected Papers on Noise and Stochastic Processes by Nelson Wax,
Dover Publications, Inc., 1954.
3. Radiative Transfer (1950, Clarendon Press, Oxford; reprinted by Dover Publications,
Inc., 1960).
4. Hydrodynamic and Hydromagnetic Stability (1961, Clarendon Press, Oxford; reprinted
by Dover Publications, Inc., 1981).
5. Ellipsoidal Figures of Equilibrium (1968, Yale University Press).
6. The Mathematical Theory of Black Holes (1983, Clarendon Press, Oxford).”

This pattern is, I believe, unique in the sense that I know of no other scientist who had
systematically compartmentalized his interests so precisely that he never revisited any of
the earlier fields of interest. We will encounter in Section 6 an example of this trait. But
it follows that given the diversity of interests in the above list, two scientists following the
lead given by Chandra may not share a common interest.

Before coming to the topic of my presentation, I should briefly outline the evolution of
Indian astronomy and astrophysics over the period of Chandra’s work. The theoretical work
was mostly done in physics departments, except for general relativity, which was mostly
done in mathematics departments. Amongst the former, during the 1930s and 1940s, Delhi
and Allahabad universities stood out, with D.S. Kothari in Delhi and M.N. Saha in Allaha-
bad. Amongst the latter, Calcutta University and Banaras Hindu University were prominent
in hosting schools of general relativity.

This pre-eminence of universities declined, however, in the post-independence, post-
1947 era. The emphasis on research dwindled, and instead found another outlet in the
so called autonomous research institutes. These, including the CSIR laboratories and
the prestigious Tata Institute of Fundamental Research (TIFR), proliferated in the post-
independence era. Their impact on the growth of astronomy and astrophysics (A&A) was
predictable and has continued till today. The major Indian research in A&A today comes
from the TIFR, the Raman Research Institute (RRI), the Indian Institute of Astrophysics
(IIA), the Physical Research Laboratory (PRL), the Institute of Mathematical Sciences
(IMSc), the Harish-Chandra Research Institute (HRI) and the Aryabhatta Research Ins-
titute of Observational Sciences (ARIES). The heavy tilt away from the universities was to
some extent counterbalanced by the creation of the Inter-University Centre for Astronomy
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and Astrophysics (IUCAA), an institution within the university sector, providing guidance
and facilities to university academics working in A&A, besides very successfully conduc-
ting its own research.

With this background we may now try to assess Chandra’s impact.

2. The 1930s and 1940s
In his biography of Chandra, Kameshwar Wali (1991) has described how Chandra as a
student in 1930 attended a get-together in the house of Meghnad Saha in Allahabad, fol-
lowing a major scientific meeting in the city. That the talk at Saha’s house was related to
issues in A&A sets a contrast to a modern meeting of a similar kind where the talk would
be largely on local or national politics. As it turned out a few years later Saha himself
took part in national politics, took up positions in important committees, became an M.P.
and so on.

Nevertheless Chandra’s work on white dwarfs did have impact on a young Indian trai-
ned by Saha at Allahabad who left for Cambridge for his Ph.D. in astrophysics. Daulat
Singh Kothari got his degree in 1933 and after his return to India he set up the Physics
Department at the University of Delhi. Significantly, the new department was named as
Department of Physics and Astrophysics. Kothari, following Chandra, was interested in
astronomical objects made of dense matter. Normally one considers the ionized state of
matter as arising at high enough temperature. Kothari showed that under high pressure
also, ionization could be achieved (Kothari 1938).

Sir A.S. Eddington wrote: ”I mentioned that we only gradually came to realize that
ionization could be produced by high pressure as well as high temperature. I think the first
man to state this explicitly was D.S. Kothari. Stimulated by some work of HN Russall, Ko-
thari has made what I think is an extremely interesting application.” Further commenting
on Kothari’s work, Arnold Sommerfeld wrote :“During the times of Galileo and Kepler
the planets were at the foucs of astronomical interest but in view of the developments of the
last few decades the interest has shifted to stellar physics and spiral nebula. It is notewor-
thy that the Indian D.S. Kothari has developed an audacious relationship between the old
fashioned planets and the now discovered newest heavenly bodies, the white dwarfs”.1

Indeed by keeping temperatures low and pressures high, Kothari could simulate condi-
tions inside a planet through pressure ionization. One important conclusion he arrived at
was that a “cold body” cannot have radius exceeding that of planet Jupiter (Kothari 1938;
Auluck 1939).

Kothari’s tenure at the University of Delhi, unfortunately came to an end when, in
1948, he became scientific advisor to the Defence Minister. Like other scientists of repute
such as Saha, Bhabha, Bhatnagar, etc., Kothari too left the academic world in favour of an
important government appointment. As after achieving independence, the nation needed
brains of demonstrated ability to come forward to create the national infrastructure, many
intellectuals were so lost by the academia.

1http://www.vigyanprasar.gov.in/scientists/DKothari.htm (Subodh Mahanti: Daulat Singh Kothari, The Archi-
tect of Defence Science in India).
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Nevertheless, not all brains were lost this way. Some continued to work in the univer-
sities, and later, in the autonomous research institutes. As mentioned earlier, the emergence
of a school of general relativity and gravitation (GRG) came up at the Banaras Hindu Uni-
versity (BHU). Its mentor was my father Vishnu Vasudeva Narlikar (VVN) who had worked
in Cambridge under the guidance of A.S. Eddington. VVN was more or less contempo-
rary of Chandra at Cambridge and the two continued to exchange correspondence in the
subsequent years.

In the 1940s, Prahlad Chunilal Vaidya, a student of VVN came up with an important
exact solution in general relativity. Whereas the classic Schwarzschild solution of 1916
describes the gravitational field of a spherically symmetric, non-radiatinig mass distribu-
tion, the Vaidya solution describes the gravitational field of a radiating mass (Vaidya 1943).

At that time VVN sensed that GRG might play a more decisive role in astrophysics
than expected hitherto. Nevertheless, to get an expert’s assessment he wrote to Chandra to
ask if relativists like him should engage themselves in research in relativistic astrophysics.
Chandra replied, expressing his view that he did not expect general relativity to be crucial
in any part of astrophysics. As a result of this negative assessment VVN as well as Vaidya
stayed away from further work in relativistic astrophysics. One can see the logic behind
Chandra’s assessment through this simple calculation. The dimensionless quantity

α =
2GM
c2R

(1)

describes the gravitational effect of mass M, radius R on the ambient spacetime geometry.
For a significant impact of general relativity α needs to approach 1. For white dwarf stars
this ratio is α ∼ 10−5. As believed by most astronomers including Chandra, in the 1940s
(and even a decade later) more dense objects with higher α lay in the realm of speculation.

We may look upon α in (1) as made up of two quantities: the mass (M) and the average
density (ρ) of the stellar size object. Then the condition for general relativity to be important
is that

α =

(
32π

3

)1/3 GM2/3ρ1/3

c2 ∼ 1. (2)

As mentioned earlier, for white dwarfs, α ∼ 10−5 − 10−4 � 1. However, in the 1960s
two important discoveries led to the raising of α. Neutron stars with densities approaching
1015 times that of water became known. These raised α to within the range (10−2 − 10−1).
The second discovery was that of quasars which were suspected to have masses as high
as 109 solar masses. This possibility also raised α to a value close to unity at compara-
tively modest densities, thus making the system of significance to general relativity. We
may recall that in his historic controversy with Chandra, Eddington himself had expressed
his lack of belief in the existence of what are today known as ‘black holes’ (Eddington
1935).

These discoveries showed that two decades earlier Chandra also had erred in grossly
under-estimating the impact of general relativity on astrophysics. In 1963 a symposium on
the new subject ‘Relativistic Astrophysics’ had been held in Dallas, Texas and it launched
several investigations in general relativity of relevance to astrophysics. Chandra did not
attend the meeting since, because of racial problems still existing in the South he avoided
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travelling to the southern states. Ironically, however, he later made significant contributions
to this interdisciplinary field.

3. Alumni of Osmania University

In a personal recollection to this author, VVN had mentioned the offer sent through him
to Chandra by Professor S. Radhakrishnan, Vice-Chancellor of BHU in the 1940s. The
offer was an invitation to head an observatory, and the associated astronomical research,
at a handsome salary. The telescope itself was promised by the industrialist Birla family.
Chandra declined the offer with thanks. His reservations, as expressed to VVN were largely
to do with the lack of an assurance that the autonomy promised by Dr Radhakrishnan
would continue after he left the position of the V.C. This was a valid fear, since India
has seen several instances of individuals after attaining important positions like that of a
V.C., disowning the promises made by their predecessors. Chandra was also afraid of the
disruption in his own research brought upon by the administrative and infrastructural issues
of running an observatory.

Nevertheless in his capacity as a distinguished visitor, Chandra played a constructive
role in India. In my correspondence with Professor Saleh Mohammed Alladin, who retired
from the Astronomy Department of Osmania University, Hyderabad, Dr Alladin recalled
attending a graduate course on general relativity given by Chandra in 1959 in the Phy-
sics Department of the University of Chicago. While stating that Chandrasekhar’s lectures
were lucid and provided a good background of the subject, Alladin mentions ‘Professor
Chandrasekhar used to emphasize that mathematical work should not only be correct but
should also be elegantly expressed’. Those of us who have read Chandra’s book reassessing
Newton’s Principia, will have seen echos of this sentiment there too.

Alladin recalls that he was due to be interviewed for a post at Osmania University in
1964 on the same day that Chandra was to visit the University. Between lunch and tea
arranged by the University in honour of Chandra, Alladin’s interview for the post had been
scheduled. However, no interview took place and when the tea party began, the Vice-
Chancellor called Alladin and asked him to join the party. He was introduced to the experts
invited to interview him. However, at the end of the party the V.C. congratulated him for
his selection, without an interview! Alladin feels that Chandra may have been consulted
and spoken in his favour.

This episode tells of the flexibility still existing in the university system which enabled
a Vice-Chancellor to make an appointment based on recommendation but no interview.
Flexibility can be used both ways: to corrupt a system or to invigorate it. Alladin’s work on
merging galaxies, which he started as a graduate student of D. Nelson Limber — himself a
former student of Chandra — later fructified in a lot of very interesting work on dynamics of
galaxies at Osmania University (Vardya 1994). In today’s highly regulated system the Vice-
Chancellor is powerless in terms of what he can do to recruit highly qualified staff. The
present decline of Osmania University is a classic example of this situation, and presents a
sad contrast to the situation described by Alladin in 1964.

While visiting Hyderabad in 1962, Alladin recalls, Chandra also helped another astro-
nomer from Osmania University, K.D. Abhyankar, in selecting the site for the proposed
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Rangapur Observatory. Abhyankar’s own work on radiative transfer was considerably in-
fluenced by the discussions he had with Chandra during this visit (Abhyankar 1990).

4. Indian graduate students

Chandra had two graduate students from India who later returned home and continued their
research there. They were (the late) S.K. Trehan and Bimla Buti, both working in the area of
plasma oscillations, two stream instability, etc. Trehan worked in the Applied Mathematics
Department of Punjab University, Chandigarh whereas Buti joined the Physical Research
Laboratory, Ahmedabad. At the time of writing Trehan is no more.

Buti mentions that at the time of her tenure as graduate student at Chicago University
the research publications belonging to the Ph.D. thesis had to be single authored, written
by the student, only. So all her thesis publications are under her name only (Buti 1962,
1963a,b).

As the only surviving member from India who worked under Chandra’s guidance, I
asked Bimla her impressions of Chandra as a human being. She wrote:

“I was impressed and influenced, directly or indirectly, by some of his following habits
and actions:

He was a man of very simple habits.
He himself was an extremely disciplined person and expected discipline around him

e.g., from all the students in his class. But he was never harsh.
Without fail, he would visit the library and glance through the latest journals.
He was extremely hard working and thorough not only in scientific work but in all

respects. However, he would find time for some other activites like gardening, musical
concerts, reading classic novels.

While preparing his manuscripts, he was very particular about the English grammar
and even punctuations. He would tell his students to follow this pattern.

He had a terrific memory. At a social gathering, he would narrate stories about his
pleasant interactions (scientific and social) with other great scientists like Einstein etc. He
would keep everyone busy, for hours, with anecdotes.

I personally found him a very friendly and affectionate person.”

5. From white dwarfs to neutron stars and the Sun

Coming now to a later era, 1960-70, my former colleague at the Tata Institute of Funda-
mental Research (TIFR), Kumar Chitre has provided useful inputs. His own work was
influenced by two of Chandra’s interests : stellar structure and hydrodynamic and hydro-
magnetic stability.

In the 1960s, the problem of determining the limiting mass of a neutron star, like
the Chandrasekhar mass limit for white dwarfs posed a challenge to theoreticians. The
answer lies in finding the correct equation of state for matter with density approaching
∼ 1015g cm−3, the density expected to be present within the core of a neutron star. S.M.
Chitre at TIFR and V. Canuto at CCNY went through the exercise with the solution that
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the limiting mass is around 2M� (Canuto & Chitre 1973). A somewhat different line
leading to the same answer was followed by Pandharipande in the University of Illinois at
Urbana.

Chitre was also guided by Chandra’s work on hydrodynamic and hydromagnetic sta-
bility to look at the stability of solar models. The spectrum of eigenfrequencies derived
numerically by perturbing the solar model could then be compared with the accurately
observed accoustic mode oscillation frequencies. This technique helps in arriving at an
accurate model of the Sun with a confident prediction of solar neutrino flux emerging from
it. The value so obtained agrees very well with that obtained from the standard model of
the Sun. So one was led to the conclusion that the observed deficit of solar neutrino flux
had to come from neutrino physics, e.g., from neutrino oscillations (Antia & Chitre 1997,
1998).

Both these works demonstrate practical applications of ideas Chandra had propagated
decades ago.

6. Antonov instability

Chandra’s name and achievement have become textbook material. Even secondary school
children in India will have encountered his life story sometime during their school studies.
The younger generation therefore views him more in awe as a scientist who had scaled high
peaks of excellence than really understanding what exactly he did achieve. His academic
interaction with a young working scientist has thus been somewhat rare. The episode des-
cribed by T. Padmanabhan is therefore of some interest. I quote him almost verbatim in
what follows.

“My main academic encounter with Professor S. Chandrasekhar was related to the
question of Antonov instability.

During my postdoctoral years (1986-87) at Institute of Astronomy, Cambridge, Donald
Lynden-Bell got me interested in the study of statistical mechanics of gravitating systems
and, in particular, in Antonov instability, first described by Antonov in 1962. His original
derivation was quite complicated (Antonov 1962) and I was trying to understand its phy-
sical origin from a simpler point of view from the structure of the equations describing an
isothermal sphere.

Chandrasekhar, in his work in 1939, has discussed how the equations of stellar struc-
ture (including the ones describing the isothermal sphere) can be reduced to a first order
differential equation by using two variables u, v. The solutions to isothermal sphere equa-
tion in these variables is represented as a spiral in the uv plane. I realized the key dimen-
sionless parameter q = [RE/GM2] - where R is the radius, M is the mass and E is the
energy - which describes the Antonov instability can also be expressed in terms of these
variables. In fact, I found that q = constant curves are straight lines in the uv plane! Any
solution with a fixed value of q is given by the intersection of two curves (one spiral and one
straight line) in the uv plane. The condition that these lines have to intersect immediately
leads to the condition for Antonov instability. This is shown in figure 4.2 page 316 of my
review. (See Padmanabhan 1990).
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I was surprised that Chandrasekhar, in his ref., did not bother to plot lines of constant
[RE/GM2] in a corresponding figure. If he had done that he would have discovered Anto-
nov instability nearly 25 years before Antonov!

I was happy to get this simpler derivation but wanted to know whether Chandra had
some thoughts on this matter. I wrote him a letter around 1990 when I was working on my
review and asked him about it. He sent me a polite reply saying that as the matter refers to
something which he did nearly 50 years back he cannot quite recollect what his thoughts
were when he performed this analysis. Later on, when I met him at IUCAA, I had attempted
to discuss this problem with him. He told me that he likes to work in an area for sometime
and then move on but almost never re-visits that topic. In fact, he was not very keen to
know the details of my derivation. It was an interesting approach to physics in the sense
that he almost showed certain amount of reluctance to discuss/revisit the problem he had
pioneered, once he had moved on.”

This is the aspect of Chandra that I had hinted at earlier in this presentation: that once
he made a transition from one major topic to another and written a monograph on the work
just completed, the topic became a ‘closed book’ for him.

7. Concluding remarks

In a moving account sent as a letter to me, Ramnath Cowsik has narrated his various en-
counters with Chandra. It becomes interesting in the present context because it throws light
on Chandra’s attitude to science and other intellectual pursuits as expressed before Indian
students. I mention a few instances next.

At a radio interview in Mumbai Cowsik asked him a question, that he said, had been
prompted by many students : “How does a student prepare for a career in Physics? Should
he first have a serious study of theoretical physics or should he learn experimental tech-
niques?..” Chandra answered this question in his inimitable way: “Different students de-
pending upon their temperament and preparation approach physics in their own unique
ways. Each of these is as valid as any other. But what is important is they dedicate them-
selves to academic life. It does not matter through which gate that one enters a garden.
Once you are in, you may wander enjoying a bloom here or a bough there”.

The dedication ceremony of my centre IUCAA (Inter-University Centre for Astro-
nomy and Astrophysics) was highlighted by Chandra’s talk entitled The Series Paintings
of Claude Monet and the Landscape of General Relativity. That was in 1992 December.
Cowsik recalls a seminar Chandra gave at the Indian Institute of Astrophysics, entitled “On
the oscillations of a star as a problem in the scattering of gravitational waves”. In both lec-
tures he showed how to map one problem into another and thereby from the second obtain
an elegant solution to the first problem.

Finally, I end with an account of my first meeting with Chandra. In 1960 when I was
in the final stages of completing the Mathematical Tripos Examination at Cambridge, my
father wrote to Chandra to explore the possibility of my becoming his research student.
Chandra replied that he was in the process of changing his field of research and in this
transitional phase he did not intend taking a new research scholar. So I missed the chance
of being Chandra’s pupil. But I continued at Cambridge as student of Fred Hoyle.
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In 1962 I attended the International Conference on General Relativity and Gravitation
held near Warsaw. On the first morning I took a stroll before breakfast in the vast well laid
gardens of the Polish country house where I was staying. There I met a senior gentleman
in a dark suit, evidently from the Indian subcontinent. He smiled and introduced himself. I
reciprocated, although my face may have shown some surprise as to what a mathematical
astrophysicist was doing at a relativity conference. For Chandra vounteered the informa-
tion: “I have decided to work in the field of general relativity. What better place than an
international conference, to get to know the areas where intellectual challenges exist? So I
have come as a student to learn.”

At early fifties, as I estimated Chandra’s age to be, most scientists begin to taper down
their research. Here was someone entering a new field with the enthusiasm of a twenty-odd
year old. It is this attitude that I, as a twenty-four year old, felt the need to copy.
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Abstract. Chandrasekhar’s own books, papers, and oral history interviews
make clear that he was generally more interested in the present and future of
astrophysics than in its past. Nevertheless, late in his life and after his death,
historians of science have somewhat entangled him in two supposedly contro-
versial issues, one concerning precursors of his mass limit for degenerate stars
and the other his relationship with Eddington. Neither story is an entirely happy
one.

1. The fate of famous scientists

Biographers write biographies and historians write books and papers, and no one, living
or dead, has much defense against them. Among scientists I’ve known, Richard Feynman,
Fred Hoyle, and Carl Sagan have each been the subject of at least three. Thus no one should
be surprised that there are biographies and encyclopedia articles about Chandra (Wali 1991,
2008) and Eddington (Douglas 1956; Stanley 2007, 2008), and indeed even a biography of
Eddington by Chandrasekhar (1983). Not that you had any doubts before, but you cannot
come away from any of these without realizing that each made both extraordinarily many
and extraordinarily important contributions to 20th century astrophysics. But be thou chaste
as ice, as pure as snow, thou shalt not escape calumny (Hamlet, Act III, Sc. 1, to save you
looking it up).

2. Degenerate stars, or, who discovered the Chandrasekhar limit?

I first encountered this issue more than 30 years ago (Trimble 1979) when I reviewed a
semi-popular book by I.S. Shklovskii (1978) called ‘Stars: Their Birth, Life, and Death’
and claimed to have learned from it that the Chandrasekhar limit was really discovered by
Yakov (variously Jacov) Frenkel in 1928. Very soon after that issue of Sky & Telescope hit
the newsstands, there arrived a manilla envelope from the University of Chicago, in which
Chandra had enclosed copies of his 1931 papers and a hand-written note pointing out that
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these were the first papers to use explicitly an equation of state with pressure proportional
to (density)4/3, although this is implicit in the Frenkel paper. Indeed so he had said on page
409 of his stellar structure book (Chandrasekhar 1939).

First I apologized and then I sat down to read the Frenkel paper with a German born
friend who was a professional interpreter. She read the short words and I the long ones.
She quickly concluded that German was not Frenkel’s first language and I that he had
not discovered the Chandresekhar limit. Rather, he was somehow addressing degenerate
baryons, though the neutron had yet to be found (Chadwick 1932) and protons never get a
chance to be degenerate. And there, I supposed, the issue would rest.

It did not and has been raised again by Nauenberg (2008) and again by Nauenberg
(2011) and Blackman (2011) in connection with the Chandrasekhar centenary, with a re-
buttal from Wali (2011). There is no disagreement about what the several relevant papers
say, but only about what Chandra knew and when he knew it, and how credit should be divi-
ded, and eponyms awarded. All agree that Fowler (1926) was first to derive an equation of
state,P = K1(ρ)5/3 for completely degenerate matter, neglecting any possible effects of spe-
cial or general relativity. With this EoS, you can build configurations of any total mass, and
Chandra had read the Fowler paper before leaving India. Next, Edmund C. Stoner (1929)
and Wilhelm Anderson (1929) looked for deviations from Fermi-Dirac degeneracy implied
by large densities and so by occupation of momentum states close toE = p2/2m = mec2.
Stoner reported an upper limit to densities and Anderson a modification of the EoS in the
direction towardP = K2(ρ)4/3 which we now associate with completely relativistic dege-
neracy. His tables and formulae imply an upper limit to degenerate masses, but explicit
calculation of this limit was left to Stoner (1930). Chandra had not had access to those
papers before leaving India.

Both approximated white dwarf stars by uniform density spheres. This is not actually
a foolish thing to do, and still has pedagogical value (Hansen, Kawaler & Trimble 2004,
p. 16). Israel (1987) affirms thatP = K2(ρ)4/3 is and should be called the Stoner-Anderson
equation of state. Chandrasekhar (1931a,b) famously, perhaps even notoriously did his
critical calculation on board ship in 1930, and Wali (2011) has concluded that he was not
aware of either Stoner’s or Anderson’s work at the time. His work was therefore inde-
pendent, but, more to the point, he adopted Eddington’s (1926) polytropes for his models
which could, therefore, be in hydrostatic equilibrium, which constant density stars cannot,
and real ones must be. A very similar limiting mass was derived by Landau (1932, but
paper submitted February 1931), but he is not mentioned by either Nauenberg (2011) or
Blackman (2011).

Did Chandra give adequate credit to his predecessors? Simply reading his 1939 book
one would think so, though his student, Guido Munch, said very much later that the Stellar
Atmospheres book credits him only with drawing figures and not for the couple of chapters
he wrote. In any case, Chandrasekhar carried on work largely on stellar structure, especially
degenerate stars until 1935. And then significant portions of the roof fell in.

3. Chandrasekhar and Eddington

In the interim, Eddington had apparently been concentrating on his ‘fundamental theory’
(Israel 1987), and so, although he was in regular touch with Chandra and his ongoing work,



Chandrasekhar and the history of astronomy 51

he had perhaps not immediately thought what the consequences would be (Wali 1982). And
when he did, he put in a paper on ‘Relativistic Degeneracy’ to be read at the January, 1935
meeting of the Royal Astronomical Society immediately after Chandra’s presentation of
extensive numerical analysis indicating that the fate of massive stars must be something
other than gradually cooling white dwarfs. The next part of the story can be read by any-
body with access to old journals, because Observatory, then as now, published more or less
verbatim accounts of the RAS meetings, and January 1935 appears in Volume 58, page
37ff. Eddington announced that there is no such thing as relativistic degeneracy and that
Dr. Chandrasekhar had rubbed in his result to a reductio ad absurdum, leaving among most
hearers the impression that Chandrasekhar had made a simple mistake in his calculations.

Chandra was given no opportunity to respond at that meeting, nor was he later in the
year when Eddington spoke at the Paris IAU on the non-existence of relativistic degeneracy.
Eddington’s toes remained dug in for a number of years thereafter, despite support for the
(ρ)4/3 equation of state from physicists (Wali 1982) and some observational confirmation
(Nauenberg 2011). The questions we might reasonably ask are:

1. Was Eddington’s behaviour outside of tolerances? Not, one must conclude, by Ed-
dington’s standards. This was, after all, the person who said he did not think it necessary to
read a paper by Professor Milne, because it would be absurd for him (Eddington) to pretend
that he (Milne) has the remotest chance of being right (Wali 1982). On other occasions, he
said things equally harsh about James Jeans and others (Stanley 2008), and his remark at
another meeting about generation of subatomic energy in stars, “If the honorable gentleman
does not think the center of the sun is hot enough, then let him go and find a hotter place”,
has joined the body of folklore we share with students.

2. Why did the Eddington toes remain so firmly buried? Stanley (2008) has pretty
firmly ruled out the unpleasant suggestion that racial prejudice entered into it. Israel (1987)
worked carefully through Eddington’s scientific output from the time of his 1923 paper
‘The Mathematical Theory of Relativity’, and concluded that Eddington had gradually be-
come so wedded to his own definition of the stress tensor and its imbedding in his ‘funda-
mental theory’ that he simply couldn’t conceive of the Stoner-Anderson equation of state
describing anything in the real world.

3. What were the consequences, especially for Chandra? Remember the title of his
1983 book, ‘Eddington: The Most Distinguished Astrophysicist of His Time’. If you are
thinking that nobody writes a book just to say nasty things about someone else, you need to
think again. But, more to the point, Chandra need not have written an Eddington biography
at all. Nor would he have needed to have given the obituary and centenary talks cited by
Wali (1982). Was Chandrasekhar’s acceptance of a position in the United States partly a
reaction to Eddington’s attitude and the expectation that it might interfere with a successful
career in the UK? Perhaps. But more firmly (Wali 2008), the Eddington controversy entered
into Chandra’s decision to write up his work on stellar structure in 1939 and move on to
stellar dynamics. This set the pattern for much of the rest of his career, during which, as
virtually everybody has noticed, he worked intensely on a topic until he felt he had learned
what he had set out to learn, wrote it up, and moved on to something else, rarely looking
back. Thus, just possibly, Eddington’s behaviour helped nudge his younger colleague in
the most productive possible direction (Dyson 2010).
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4. In their own words (and deeds)

What Eddington said to Cecilia H. Payne when she expressed a strong desire to become
an astronomer was, “I see no insuperable obstacle”, but he advised her to go to the Uni-
ted States, which she did, finding the obstacles from 1925 to 1956 (when she was finally
appointed to a professorship at Harvard) high, but indeed not insuperable.

What Chandra said to me when I was passing through Chicago in early May 1968,
en route to a brief postdoc at Cambridge University was, “You must give a colloquium”,
which I did, to a nearly-filled room, despite the detail that it was Saturday and that the topic
was ‘Motions and Structure of the Filamentary Envelope of the Crab Nebula’. Some of
the interesting things he said to other colleagues are included in five reminiscences in the
December, 2010 issue of Physics Today.

What of whimsy? Eddington had his cycling number, x , the largest number such that
he had cycled at least that many miles on at least that many days. It had reached 75 when
he wrote to Chandra in 1938, and the concept will be recognized as the ancestor of the
Hirsch index, h, having to do with citations of papers. My own piece of Chandra whimsy
was his response to my question about why he had never been on one of the decadal survey
committees used, in the US, to set equipment and other astrophysical priorities, starting
in 1962. He responded immediately, “No one ever asked me”, and, after a moment’s co-
gitation, continued with a verse or two of an English folk rhyme ending with a pompous
young man saying to a farmer’s daughter, “Then I cannot wed you my fair young maid. No-
body asked you sir, she said.” Not surprisingly, he gave “said” the Yorkshire pronunciation
required to sustain the rhyme.

A widely reproduced Eddington quote came from his 1935 RAS talk in opposition to
relativistic degeneracy: The star has to go on radiating and radiating and contracting and
contracting until, I suppose, it gets down to a few km radius, when gravity becomes strong
enough to hold in the radiation, and the star can at last find peace. This is surely as good a
prediction of black holes or at least horizons, as is to be found in the 18th century writings
of John Michell and Pierre Simon de Laplace.

Somewhat less well known is the last line of Chandrasekhar (1932) submitted during
his brief stay in Copenhagen: “Given a container containing electrons and atomic nuclei
(total charge zero), what happens if we go on compressing the material indefinitely?”
Equally clearly, this is a prologue to neutron stars. James Chadwick announced neutrons
in February, 1932 and the paper was submitted on September 28th, but in fact neutron stars
had to wait another year for Baade & Zwicky (1933), about whom there are also many
stories, but they must wait for another book.
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Abstract. The Chandrasekhar limit is of key importance for the evolution of
white dwarfs in binary systems and for the formation of neutron stars and black
holes in binaries. Mass transfer can drive a white dwarf in a binary over the
Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO
white dwarf) or an Accretion-Induced Collapse (AIC, in the case of an O-Ne-
Mg white dwarf; and possibly also in some CO white dwarfs) which produces a
neutron star. Thedirect formation of neutron stars or black holes out of degen-
erate stellar cores that exceed the Chandrasekhar limit, occurs in binaries with
components that started out with masses≥ 8 M⊙.

This paper first discusses possible models for Type Ia supernovae, and
then focusses on the formation of neutron stars in binary systems, by direct core
collapse and by the AIC of O-Ne-Mg white dwarfs in binaries. Observational
evidence is reviewed for the existence of two different direct neutron-star forma-
tion mechanisms in binaries: (i) by electron-capture collapse of the degenerate
O-Ne-Mg core in stars with initial masses in the range of 8 to about 12 M⊙, and
(ii) by iron-core collapse in stars with inital masses above this range. Observa-
tions of neutron stars in binaries are consistent with a picture in which neutron
stars produced by e-capture collapse have relatively low masses,∼1.25 M⊙, and
received hardly any velocity kick at birth, whereas neutron stars produced by
iron-core collapses are more massive and received large velocity kicks at birth.
Many of the globular cluster neutron stars and also some of the neutron stars
in low-mass binaries in the Galactic disk are likely to have been produced by
AIC of O-Ne-Mg white dwarfs in binaries. AIC is expected to produce normal
strongly magnetized neutron stars, which in binaries can evolve into millisecond
pulsars through the usual recycling scenario.

Keywords: stars: binaries: general – stars: evolution – stars: white dwarfs –
stars: neutron – stars: pulsars: general – stars: supernovae: general

1. Introduction

The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary
systems which receive mass from a companion star. This is now the favoured model for
the origin of Type Ia supernovae, which are known to be excellent ‘standard candles’ (e.g.
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Riesset al. 1998; Phillipset al. 1999). Their use in cosmology has led to the discovery of
dark energy (Schmidtet al. 1998; Perlmutteret al. 1999).

It was realized long ago (Hoyle & Fowler 1960) that Carbon-Oxygen (CO) white
dwarfs, which are the final products of stars less massive than about 8 M⊙, still contain
a large amount of nuclear fuel, and that the ignition of carbon under degenerate conditions
in the interior of a white dwarf will lead to runaway nuclear fusion, converting most of
the star into56Ni, thereby causing the star to blow up in a gigantic explosion with energy
equivalent to that of a supernova. Since hydrogen and helium are absent in the spectra of
Type Ia supernovae, and these spectra are dominated by products expected from explosive
carbon burning, these supernovae fit very well with the thermonucelar explosion model of
a carbon-oxygen (CO) white dwarf (Hoyle & Fowler 1960; Nomoto 1982a).

In order to trigger carbon ignition the mass of the white dwarf has to grow to the Chan-
drasekhar limit. The only realistically conceivable way to achieve this, is by the transfer of
matter from a companion star in a binary system. This led Whelan & Iben (1973) to sug-
gest that Type Ia supernovae originate from binaries in which a red giant star is transferring
mass to a CO white dwarf. This is the so-called ‘Single-Degenerate’ (SD) model for Type
Ia supernovae. This model was worked out for example by Nomoto (1982a,b).

Subsequently it was realized by Webbink (1984) and Iben & Tutukov (1984) that wide
binaries of intermediate mass (components between∼2 and 8 M⊙) may after several stages
of mass exchange and common-envelopeevolution leave very close binary systems consist-
ing of two CO white dwarfs. When their orbital periods are shorter than about one day these
systems will within a Hubble time merge, due to loss of orbital angular momentum by emis-
sion of gravitational waves. If the merger product has a mass larger than the Chandrasekhar
limit, it may explode as a Type Ia supernova. This is the Double Degenerate (DD) model
for Type Ia supernovae (however, see Saio & Nomoto 1985, 2004, for the alternative view
that a DD merger produces a neutron star). I will briefly discuss the merits of the SD and
DD models in Section 2.

In binaries in which the mass-receiving white dwarf is of the O-Ne-Mg type (these can
under certain conditions be produced by stars with initial masses between∼8 and 12 M⊙;
see Miyajiet al. 1980; Podsiadlowskiet al. 2004), mass transfer to the star until it reaches
the Chandrasekhar limit will lead to the collapse of the star due to the capture of degenerate
electrons by nuclei of Ne and Mg (e.g. Miyajiet al. 1980; Nomoto 1984; Canal, Isern &
Labay 1990; Pylyser & Savonije 1988). The outcome of this Accretion-Induced Collapse
(AIC) is expected to be a neutron star. (Under very special conditions a CO white dwarf
might in some cases collapse to a neutron star, e.g. Canal, Isern & Labay 1990.) This is one
way to produce neutron stars in binary systems, which may later evolve into X-ray binaries
and binary radio pulsars.

However, the majority of the neutron stars in X-ray binaries and binary radio pulsars
are expected to have been produced by the direct core collapse of stars that started their
lives with masses≥ 8 M⊙. Here there is still a difference between stars which started
out with masses between∼8 and 12 M⊙, in which a degenerate O-Ne-Mg core forms,
which collapses as a result of electron capture (Miyajiet al. 1980; Podsiadlowskiet al.
2004), and stars more massive than about 12 M⊙, in which the core passes through all
stages of nuclear fusion until a degenerate iron core forms which collapses to a neutron
star.
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In recent years it has become clear from the study of Be-type X-ray Binaries (Pfahl
et al. 2002) and of binary radio pulsars (van den Heuvel 2004) that these two types of core
collapses most probably produce neutron stars with different properties, i.e. with different
masses and kick velocities (Podsiadlowskiet al. 2004, 2005; van den Heuvel 2004; Dewi,
Podsiadlowski & Pols 2005; Schwab, Podsiadlowski & Rappaport 2010).

In Section 3, I discuss in more detail these relatively new findings that appear to confirm
that there are two different mechanisms by which neutron stars can form, as was originally
suggested by Miyajiet al. (1980). I also briefly discuss there the role that AIC may play
in the formation of neutron stars in globular clusters and in Low-Mass X-ray Binaries and
binary pulsars observed in the Galactic disk.

2. Type Ia supernova scenarios

2.1 The Single Degenerate model and its problems

In the SD model the white dwarf is growing in mass due to the accretion of matter from its
non-degenerate companion star. The problem here is that for a wide range of mass-transfer
rates, the hydrogen accumulated on the surface of the white dwarf tends to ignite explo-
sively, once the mass of the accreted layer exceeds a threshold value. Such thermonuclear
explosions of the accreted hydrogen layer are observed as various types of nova outbursts,
and it is quite possible that in many of these explosions much, if not all, of the accreted
matter is ejected, such that little or no net-growth of the white dwarf may take place. The
critical mass∆Mc at which nuclear burning ignites decreases with increasing white dwarf
mass and increasing accretion rate (e.g. Nomoto 1982a; Prialnik & Kovetz 1995; Townsley
& Bildsten 2005).

Figure 1 (from Townsley & Bildsten 2005) depicts the various nuclear burning regimes,
of hydrogen-rich matter (70 per cent hydrogen), on the surface of a white dwarf, as a
function of accretion rate and white dwarf mass. For a small range of accretion rates,
(1 − 4) × 10−7 M⊙/yr, indicated by the hatched band in the figure, the hydrogen burns
steadily on the surface of the white dwarf, and for these accretion rates the white dwarf
will be able to steadily grow in mass. Below this range of accretion rates, the burning takes
place in flashes. The curves in the figure depict the critical masses∆Mc of the accreted
hydrogen layer at the moment at which burning is ignited. The accretion rate onto the WD
determines the strength of the outburst. Higher accretion rates lead to less violent outbursts.

For very high accretion rates, above twice the maximum accretion rate for steady nu-
clear burning, the burning is still steady, but due to the super-Eddington energy generation
by this burning, a strong stellar wind develops in which the excess accreted matter is blown
away. For these accretion rates, the WD still grows, but less efficiently than in the accretion
range for steady burning without a wind, since part of the transferred matter will be lost,
and cannot contribute to the growth of the WD.

Binaries in which steady nuclear burning on the surface of the WD takes place were
identified with the bright Super Soft X-ray Sources (SSS) discovered by the ROSAT satel-
lite (van den Heuvelet al. 1992; see the reviews by Rappaport & Di Stefano 1996 and
Kahabka & van den Heuvel 1997, 2006). These typically emit of order1038 ergs/s in the
form of very soft X-rays peaking in the energy range 20-100 eV. (It should be remembered
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Figure 1. Hydrogen ignition masses∆Mign for CO white dwarfs that have reached their equilibrium
core temperatures. Contours are equally spaced in ignition masses, labels indicate∆Mign in M⊙.
The vertically hatched region indicates where steady burning of H is expected (Nomoto 1982a). At
higher mass-accretion rates either envelope build-up and expansion into a giant, or the development
of a strong wind is expected (after Townsley & Bildsten 2005).

that, contrary to the case of a neutron star, in the case of a WD accretion of matter onto the
surface produces far less energy than nuclear burning, so the main energy source of the SSS
is nuclear burning, not accretion; see also Kahabka, van den Heuvel & Rappaport 1999.)

Although some symbiotic binaries and old novae also appear as SSS, the main group of
SSS is that of the so-called ‘classical’ ones, which are binaries with orbital periods of one
day to a few days, in which a donor star in the mass range 1.5−2.5 M⊙ is transferring mass
to the white dwarf on a thermal timescale of the donor. This yields typical mass-transfer
rates of order10−7 M⊙ per year. [These binaries are the higher-donor-mass analogues
of the Cataclysmic Variables, and formed in the same way, through a phase of Common-
Envelope evolution, starting from a wide binary consisting of a red giant with a degenerate
core, plus an unevolved companion star of 1.5 to 2.5 M⊙ (e.g. Rappaport & Di Stefano
1996; Kahabka & van den Heuvel 1997).] These classical SSS are an interesting subgroup
of potential Type Ia SN progenitor candidates (e.g. Di Stefano 2010).
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WDs with mass accretion rates below the range for steady burning, but still quite high,
e.g. in the range between10−8.5 and10−7 M⊙ per year, have only weak flashes of nuclear
burning, such that most of the accreted matter may be retained. These systems, which
may appear as various types of novae, may also contribute considerably to the Type Ia SN
rate. This is the regime of accretion for observed recurrent novae such as RS Ophiuchi and
T Corona Borealis, which are binaries composed of a solar-mass red-giant which fills its
Roche lobe plus a massive WD (M∼1.0 to 1.2 M⊙). They erupt every few decades and
with an average accretion rate of order 10−7.5 M⊙/yr, they need∼107 yr to accrete the
∼0.3 M⊙ needed to reach the Chandrasekhar limit. So, if these WDs are composed of C
and O, they are excellent candidates for producing a Type Ia SN (Bildsten 2010).

Other suggested candidates for the hydrogen SD model are the symbiotic binaries,
some of which are also SSS. These are wide binaries consisting of a red giant that does
not fill its Roche lobe but has a strong stellar wind, and a WD that is accreting matter from
this wind. As wind accretion is relatively inefficient and the lifetimes of the red giants are
limited, it is questionable if many of the WDs in symbiotic binaries will ever be able to
grow to the Chandrasekhar limit.

An interesting other type of SD model is one in which the donor star is a helium star.
Such systems are, like the DD systems, the results of two CE phases. These systems were
recognized as potentially interesting Type Ia SN candidate progenitors (e.g. Yungelson
2005 and references therein), which has been confirmed by later simulations (e.g. Wang &
Han 2010). Here the accreted helium layer detonates and sends in a shockwave which may
ignite carbon close to the centre of the white dwarf, triggering a Type Ia supernova. The
mass of the white dwarf may in this case also be below the Chandrasekhar limit (e.g. Yun-
gelson 2005; Bildsten 2010). Along similar lines, several authors have recently suggested
that all Type Ia SNe might result from explosions of sub-Chandrasekhar-mass WDs (e.g.
see Ruiter, Belczynski & Fryer 2009; Ruiteret al. 2010, and references given therein).
However, since it remains to be seen whether these can indeed produce ‘standard candle-
like’ explosions, as expected from WDs which all explode at the same Chandrasekhar mass,
I do not further discuss these models here.

2.2 The relative importance of the SD and the DD scenarios for
the Type Ia SN rate in galaxies

In order to examine the relative contributions of the SD and DD models to the Type Ia SN
rates in different galaxies, several groups have carried out population synthesis evolution
calculations assuming a realistic initial fraction of binary systems (usually between 50 and
100 per cent). Among the SD models one still has to distinguish between SD systems in
which the donor is a hydrogen-rich star (SD,H) and one in which it is a helium-burning
helium star (SD,He).

In such calculations one starts from a burst of star formation, and follows the evolution
of the entire population of this starburst in the course of time, including the evolution of
all the types of binary systems. For the starburst one assumes a distribution of the stellar
masses (which includes the primary stars of binaries) according to the Initial Mass Function
(IMF). The binaries are assigned an orbital semi-major axis and a mass ratio, taken from
the observed distributions of these binary parameters (e.g. van den Heuvel 1994). One
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then has to use a binary evolution code in which the evolution of all types of binaries, with
different initial primary star masses, orbital radii (orbits are mostly assumed to be circular)
and mass ratios are included.

Here, a number of assumptions have to be made about what happens in certain stages
in the evolution of binaries for which the outcome is presently still (very) uncertain. These
are particularly the stages in which a binary loses much mass and orbital angular momen-
tum, for example in the very important Common Envelope phases. The outcome of Com-
mon Envelope evolution depends critically on what prescription for the energy and angular
momentum losses during this phase is assumed, and different authors use here different for-
malisms, and different values for the ‘CE-efficiency’ parameterαce for Common-Envelope
evolution, which can give widely different results. This may, after two Common Envelope
phases, lead to final orbital dimensions that differ by more than an order of magnitude.
It appears that despite using widely different binary evolution and stellar evolution codes,
the results obtained by different authors, although numerically quite different, show similar
global trends for the predicted SD and DD Type Ia rates as a function of time following the
starburst. As an illustration, Figs. 2 and 3 show the results obtained by the Moscow group
(Yungelson 2005) and by Claeyset al. (2010), respectively. One observes in both cases
that the DD model starts with a high rate some(3− 7)× 107 yr after the starburst, and then
decays for a Hubble time following roughly a 1/t relation. The reason for this 1/t behaviour
of the DD rate is well understood (e.g. Lipunov, Panchenko & Pruzhinskaya 2011; Moaz
2010).

On the other hand, for the simulations by Yungelson (2005), the (SD,He) model shows
a broad peak between4 × 107 yr and about109 yr, which, during part of this time, can
slightly exceed the DD rate. However, in the (SD, He) explosions, Yungelson also included
sub-Chandrasekhar mass explosions, by assuming that after 0.15 M⊙ has been accreted
also a sub-Chandra white dwarf would, after an edge-lit He-explosion, ignite C-burning
close to its centre. Whether this will really occur is uncertain. If one excludes the sub-
Chandra cases, the (SD, He) explosions in Yungelson’s model terminate at∼ 2 × 108 yr,
and this is also the case in the Claeyset al. model (see Fig. 3), and the same is true for
the simulation of Wang & Han (2010) . In Yungelson’s simulation the (SD,H) rate begins
to rise at about6 × 108 yr and cuts off at2 × 109 years. On the other hand, in the Claeys
et al. simulation withαce=1, the (SD,H) model begins to contribute already at108 yr,
and reaches values similar to the DD rate and then, like the DD rate, decays as 1/t for a
Hubble time. One thus sees that only the behaviour of the (SD,H) rate is very different
between the simulations of Figs. 2 and 3, due to quite different assumptions concerning the
behaviour of the accreting white dwarfs for (SD,H) case. Other simulations, such as those
by Mennekenset al. (2010a,b), Ruiter, Belczynski & Fryer (2009) and Ruiteret al. (2010)
show a similar behaviour for the DD model, but for the two SD models, differences can be
quite considerable.

Observations of the ‘delay rates’, i.e. the change of the Type Ia SN rate as a function
of time, in elliptical galaxies (that have not had star formation for several billions of years),
show that these follow a 1/t behavior (Totaniet al. 2008; Moaz 2010), which appears to
suggest that in elliptical galaxies the DD process dominates (although in the simulations
Claeyset al. this could still be due to the (SD,H) model). For a detailed discussion of the
results obtained by different authors, I refer to Nelemans (2010).
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Figure 2. Rates of potential SNIa-scale events after a one year long burst of star formation that pro-
duces one solar mass of binary systems, after Yungelson (2005). The Helium-Edge-Lit Detonations
include sub-Chandrasekhar-mass events. If these are excluded, the explosions of helium-accretors
terminate about 200 million years after the burst of star formation. The MS/SG-Ch systems are the
Single-Degenerate H-accretors (SuperSoft X-ray Sources), exploding at Chandrasekhar mass.

One observes from Figs. 2 and 3 that when the starburst is still young (from(3− 4)×
107 yr on) the (SD,He) and DD processes dominate, and only after(1 − 6) × 108 yr the
(SD,H) process begins to kick in, and then may be quite important for at least a few billion
years. One also sees in these figures, that the absolute Type Ia rate predicted by these
models is very high at young ages. Therefore, all models predict a much higher Type Ia SN
rate for star-forming galaxies such as spirals and irregulars, than for elliptical galaxies. This
fits very well with the observations, as it is well known that the Type Ia SN rate observed
in star-forming galaxies is much higher than that in ellipticals (e.g. Garnavich 2010). The
difference between the star-forming galaxies and the ellipticals is, apart form these different
SN Ia rates, that the sole type of SNe found in ellipticals is the SN Ia, while in star-forming
galaxies one also finds the core-collapse types of SNe: the Types II, Ib and Ic.

The conclusions from these population synthesis calculations are as follows.

(i) Their global predictions are in agreement with the observed trends of the evolution
of the Type Ia SN rate with time in galaxies, and particularly,
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Figure 3. Type Ia SN event rates as a function of time after a single burst of star formation, for
the three different progenitor scenarios indicated in the figure, as calculated by Claeyset al. (2010),
assuming an efficiency parameter for Common-Envelope evolutionαce=1.

(ii) the 1/t behaviour of the Type Ia time-delay curve observed in elliptical galaxies fits
well with the predictions for the DD process obtained by all authors.

(iii) The much higher observed Type Ia SN rates in star-forming galaxies are well pre-
dicted by all models.

(iv) At early times(3×107 to 2×108 yr) the Type Ia SN rate is expected to be dominated
by the (SD,He) and the DD processes;

(v) while at middle ages(0.2− 2)× 109 yr the Type Ia SN are expected to be produced
by a mix of the (SD,H), (SD,He) and DD processes.

3. Formation processes for neutron stars in binaries: Evidence for
two different NS formation mechanisms, yielding different

neutron star masses and kick velocities

3.1 Two classes of B-emission X-ray binaries

A very important discovery by Pfahlet al. (2002) was that there are two distinct classes
of B-emission/neutron star systems (X-ray binaries as well as binary radio pulsars): one
with orbits of small eccentricity (<0.25), in which the neutron star received hardly any
velocity kick at birth, and a class with substantial orbital eccentricities (0.3 to 0.9) in which
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the neutron stars must have received a kick velocity of several hundred km/s at birth. A
B-emission X-ray binary is a High Mass X-ray Binary (HMXB) consisting of a neutron
star plus a rapidly rotating early B-type star, with a mass typically of∼8 to 20 M⊙ and
an orbital period between about 15 days and several years. The class with low orbital
eccentricities (low birth kicks) is substantial and may comprise the majority of all Be/X-
ray binaries (Pfahlet al. 2002). This may be partly a ‘selection effect’, as a considerable
fraction of the high-kick systems may have been disrupted at the birth of the neutron star.

3.2 Double neutron stars and their formation history: evidence that low kick
velocities are related to low neutron star masses

Double-neutron-star systems tend to have very narrow orbits (see Table 1) and are the later
evolutionary products of wide high-mass X-ray binary systems with orbital periods>100
days (van den Heuvel & Taam 1984; Bhattacharya & van den Heuvel 1991), which are
mostly B-emission X-ray binaries. When the massive star in such a system has expanded
to become a red giant, its envelope engulfs the neutron star, causing this star to spiral down
into this envelope, reducing its orbital separation by several orders of magnitude. The large
energy release due to friction and accretion during this spiral-in process is expected to cause
the hydrogen-richenvelope of the giant to be expelled such that a very close binary remains,
consisting of the helium core of the giant together with the neutron star. (Depending on the
orbital separation at the onset of spiral-in, the helium core itself may already be (somewhat)
evolved and possibly already have some C and O in its core.) Due to the large frictional
and tidal effects during spiral-in, the orbit of the system is expected to be perfectly circular.
The helium star that remains after the spiral-in generates its luminosity by helium burning,
which produces C and O, and subsequently by carbon burning, produces Ne and Mg.

If the helium star has a mass in the range 1.6 to∼2.8 M⊙ (corresponding to a main-
sequence progenitor in the range of 8 to 12(±1) M⊙; the precise limits of this mass range
depend on metallicity and on the assumed model for convective energy transport; Podsiad-
lowski et al. 2004), it will, during carbon burning, develop a degenerate O-Ne-Mg core,
surrounded by episodic C- and He-burning shells (Nomoto 1984; Habets 1986). When
such a degenerate core develops, the envelope of the helium star begins to expand, causing
the onset of mass transfer by Roche-lobe overflow in a binary system (Habets 1986; Dewi
& Pols 2003). Roche-lobe overflow leads to the formation of an accretion disk around
the neutron star and accretion of matter with angular momentum from this disk will cause
the spin frequency of the neutron star to increase. Therefore one expects during the later
evolution of these helium stars of relatively low mass, the first-born neutron star in the sys-
tem to be ‘spun up’ to a short spin period. This neutron star had already a long history of
accretion: first when it was in a wide binary with an early-type (presumably Be) compan-
ion; subsequently during the spiral-in phase into the envelope of its companion and now
as companion of a Roche-lobe overflowing helium star. Since all binary pulsars which had
a history of mass accretion (the so-called ‘recycled’ pulsars; Radhakrishnan & Srinivasan
1982, 1984) tend to have much weaker magnetic fields than normal single pulsars, it is
thought that accretion in some way causes a weakening of the surface dipole magnetic field
of neutron stars (Taam & van den Heuvel 1986). Several theories have been put forward
to explain this accretion-induced field decay (e.g. Bhattacharya & Srinivasan 1995; Zhang
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1998; Cumming, Arras & Zweibel 2004). With a field weakened to about 1010 Gauss
(as observed in the recycled components of the double neutron stars (see Table 1), and an
Eddington-limited accretion rate of helium (4×10−8 M⊙/yr) a neutron star can be spun-up
to a shortest possible spin period of a few tens of milliseconds (Smarr & Blandford 1976;
Bhattacharya & van den Heuvel 1991). [If one assumes that spin-up requires Roche-lobe
overflow, such spin-up will not take place if the helium star is more massive than about 3.5
M⊙, because these stars do not greatly expand during their later evolution and therefore do
not go through a sufficiently long-lasting phase of Roche-lobe overflow.]

When the helium star finally explodes as a supernova, the second neutron star in the
system is born. This is a newborn neutron star without a history of accretion and is therefore
expected to resemble the ‘normal’ strong-magnetic field single radio pulsars (Srinivasan
& van den Heuvel 1982), which have typical surface dipole magnetic fields strengths of
1012−1013 Gauss. This theoretical expectation has been confirmed by the discovery of the
double pulsar systems PSR J0737−3039AB, which consists of a recycled pulsar (star A)
with a very rapid spin (P=23 ms) and a weak magnetic field (7×109 G) and a normal
strong-magnetic-field (6×1012 G) pulsar (star B), with a ‘normal’ pulse period of 2.8 sec
(Burgayet al. 2003; Lyneet al. 2004; see Table 1). The explosive mass loss in the second
supernova has made the orbit eccentric and since the two neutron stars are basically point
masses, tidal effects in double neutron star systems will be negligible and there will be
no tidal circularization of the orbit. (On timescales of tens of millions of years the orbits
may be circularized by a few tens of per cent due to the emission of gravitational waves in
the shortest-period system of PSR J0737−3039; assuming the observed pulsars to have an
age of order half their spin down timescale, this is a negligible effect in all other systems,
except in the final stages of spiraling together; e.g. Shapiro & Teukolsky 1983.)

3.3 A correlation between a small velocity kick and a low mass of the neutron star
in double neutron star systems

In case of spherically symmetric mass ejection in the supernova explosion there is a simple
relation between the orbital eccentricity and the amount of mass∆MSN ejected in the

supernova:

e =
∆MSN

Mns1 +Mns2

(1)

whereMns1 andMns2 are the masses of the first- and the second-born neutron stars. I
made calculations of the effect of the supernova mass loss plus a kick of 400 km/s, as
observed for the young single pulsars (Hobbset al. 2005) on the final orbital eccentricity
of a double neutron star. I chose as a representative progenitor system: a binary with a
circular orbit and a period of 4.8 hr, consisting of a 2 M⊙ helium star plus a 1.38 M⊙
neutron star, and assumed the helium star to leave a 1.25 M⊙ neutron star, which received
a randomly directed kick at birth of 400 km/s. From these calculations it was found that
about half of all systems is disrupted by the explosion and that the systems that remain
bound have on average an orbital eccentricity>0.7.

However, Table 1 shows that five out of the eight double neutron star systems known
in the Galactic disk have eccentricities below 0.25. Taking into account that the sudden
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mass-loss effects of the supernova also induced an orbital eccentricity, this unusually large
fraction of low-eccentricity systems strongly suggests that the second-born neutron stars
in these systems received at most only a very small velocity kick at their births. This is
further confirmed by the fact that, as Dewi, Podsiadlowski & Pols (2005) have shown, the
observed correlation between the orbital eccentricity and the spin-period of the recycled
neutron stars in the double neutron star systems (Faulkneret al. 2005) can be explained
only if the second-born neutron stars received hardly any kick velocity at their birth (less
than a few tens of km/sec). Indeed, Faulkneret al. had already pointed out that this relation
could be understood on the basis of equation (1) if no kick had been imparted at birth to
the second-born neutron star. It thus appears that, as pointed out by van den Heuvel (2004),
these second-born neutron stars belong to the same ‘kick-less’ class as the neutron stars in
the low-eccentricity class of Be/X-ray binaries (Pfahlet al. 2002).

The same holds for the young strong-magnetic-field pulsar in the eccentric radio-pulsar
binary PSR J1145−6545 which has a massive white dwarf as a companion (Kaspiet al.
2000; Baileset al. 2003; Bhat, Bailes & Verbiest 2008). The orbital eccentricity of 0.172
of this binary shows that the neutron star was the last-born object in the system, since
formation of a white dwarf as the second-born object in the system cannot induce an orbital
eccentricity (Kaspiet al. 2000; Baileset al. 2003, van den Heuvel 2004; Bhatet al. 2008).
The low value of its eccentricity would be hard to understand if the neutron star received
the canonical 400 km/s kick (Hobbset al. 2005) at its birth.

In the eccentric white-dwarf neutron-star system of PSR J1145−6545 the mass of the
neutron star is known from the measurement of relativistic effects (periastron advance and
Shapiro delay) to be 1.27(± 0.01) M⊙ (Bhatet al.2008; number within parentheses indi-
cates the 95% confidence boundary). Also in three of the other low-eccentricity double
neutron stars the masses of both stars are accurately known from the measured relativistic
effects.

(i) In PSR J0737−3039 the second-born neutron star has MB=1.2489(± 0.0007) and
the first-born one has MA= 1.3381(± 0.0007) M⊙ (Krameret al. 2006).

(ii) In PSR J1756−2251 the second-born neutron star has a mass of 1.24(± 0.02) and
the first-born one a mass of 1.32(± 0.02) M⊙ (Stairs 2008).

(iii) In PSR J1906+0746 we observe the second-born (non-recycled) pulsar, which has a
mass of 1.248(±0.018) M⊙, while its (invisible) recycled companion has a mass of
1.365(± 0.018) M⊙ (Kasian 2008). The observed second-born pulsar here is very
young (∼105 yr) and is spinning fast (P=0.144 sec)

In the other double neutron stars the masses of the stars are not yet accurately known,
but in the two other low-eccentricity systems the second-born neutron stars must be less
massive than 1.30 M⊙ for the following reasons. In all double neutron star systems the
relativistic parameter that can be measured most easily is the general relativistic rate of
periastron advance, which directly yields the sum of the masses of the two neutron stars
(e.g. Stairs 2004). In the systems of PSR J1518+4904 and PSR J1829+2456 the result-
ing sum of the masses turns out to be 2.62(± 0.07) M⊙ (Nice, Sayer & Taylor 1996) and
2.53(±0.10) M⊙ (Championet al. 2004), respectively. The individual masses of the neu-
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tron stars in these systems are still rather poorly determined, but in both these systems the
already crudely determined other relativistic parameters indicate that the second-born neu-
tron star has the lowest mass of the two (Stairs 2004). As in all these systems the sum of
the masses is around 2.60 M⊙, the second-born neutron stars in these systems cannot be
more massive than 1.30 M⊙.

One thus observes that in the six systems (out of seven, if J1145−6545 is included)
with low orbital eccentricities the second-born neutron star has a low mass, close to 1.25
M⊙ and belongs to the low-kick category. This is strong evidence that no (or a low) kick
velocity is correlated with a low neutron star mass of around 1.25(±0.05) M⊙ (see also
Schwab 2010).

A neutron star mass of∼1.25 M⊙ corresponds to a pre-collapse mass of about 1.44
M⊙ as during the collapse the gravitational binding energy of the neutron star of about 0.20
M⊙ (slightly depending on the assumed equation of state of neutronized matter) is lost in
the form of neutrinos. So apparently the cores which collapsed to form these second-born
neutron stars had a mass very close to the Chandrasekhar mass.

3.4 Formation mechanisms of neutron stars and possible resulting kicks

There are two basically different ways in which neutron stars are expected to form (Miyaji
et al. 1980; Canalet al. 1990).

(I) In stars which originated in the main-sequence with mass in the range between 8
and about 12(±1) M⊙, and which are in binaries produce helium stars in the mass range
1.6 to 2.8 M⊙. The O-Ne-Mg core which forms during carbon burning becomes degenerate
and when its mass approaches the Chandrasekhar mass, and electron captures on Mg and
Ne cause the core to collapse to a neutron star. Since these stars did not reach oxygen and
silicon burning, the baryonic mass of the neutron star, which forms in this way is expected
to be purely determined by the mass of the collapsing degenerate core, which is the Chan-
drasekhar mass. The gravitational mass of this neutron star is then the Chandrasekhar mass
minus the gravitational binding energy of the neutron star, which is about 0.20 M⊙. Thus
a neutron star with a mass of about 1.25 M⊙ is expected.

(II) In stars initially more massive than 12(±1) M⊙, the O-Ne-Mg core does not be-
come degenerate and these cores proceed through oxygen and silicon burning to form an
iron core. When the mass of this iron core exceeds the Chandrasekhar limit it collapses to
form a neutron star. The precise way in which neutrino transport during core bounce and
shock formation results in a supernova explosion is not yet fully understood. It appears that
first the shock stalls and then several hundreds of milliseconds later is revitalized. Some
fall back of matter from the layers surrounding the proto neutron star is expected to occur
(e.g. Fryer 2004) such that the neutron star that forms may be substantially more massive
than the baryonic mass of the collapsing Fe-core.

The fact that the pre-collapse masses of the low-mass, low-kick neutron stars were
very close to the Chandrasekhar limit suggests that these neutron stars are the result of the
electron-capture collapse of the degenerate O-Ne-Mg cores of helium stars that originated
in the mass range 1.6 to about 2.8 M⊙ (initial main-sequence mass in the range 8 to about
12 M⊙). Can one understand why such neutron stars would not receive a large birth kick
whereas those formed by the collapse of an iron core would?
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Table 1. Double neutron star binaries in the Galactic disk.

Spin Compan. Pulsar Sum of
Pulsar per. Porb Mass Mass masses Bs
Name (ms) (d) E (M⊙) (M⊙) (M⊙) (1010 G) Ref

J0737−3039A 22.7 0.10 0.088 1.2489(7) 1.3381(7) 2.5870(3) 0.7 1
J0737−3039B 2770 0.10 0.088 1.3381(7) 1.2489(7) 2.5870(3) 6×102 1
J1518+ 4904 40.9 8.63 0.249 1.05+0.45

−0.11 1.56+0.13
−0.45 2.62(7) 0.1 2

B1534+12 37.9 0.42 0.274 1.3452(10) 1.3332(10) 2.678(1) 1 3
J1756−2251 28.5 0.32 0.18 1.24 (2) 1.32 (2) 2.56(2) 0.54 4
J1811−1736 104 18.8 0.828 1.11+0.53

−0.15 1.62
+0.22
−0.55 2.60 (10) 1.3 3

J1829+2456 41.0 1.18 0.139 1.27+0.11
−0.07 1.30

+0.05
−0.05 2.53(10) ∼ 1 5

J1909−3744 144 3.98 0.085 1.365(18) 1.248(18)∗ 2.613(9) 170 6
B1913+16 59 0.33 0.617 1.3873(3) 1.4408(3) 2.8281(1) 2 4
J1145−6545 394 0.20 0.172 1.01(1)WD 1.27(1) 2.28(1) 102 7

References: (1) Krameret al. (2006); (2) Niceet al. (1996); (3) Stairs (2004); (4) Stairs
(2008); (5) Championet al. (2004); (6) Kasian (2008); (7) Bhatet al. (2008).
∗ The observed pulsar here is the second-born non-recycled strong-magnetic field
one.

Burrows & Hayes (1996) have pointed out that the violent large-scale convective mo-
tions in the core during O- and Si-burning just prior to the formation of the Fe-core may pro-
duce considerable large-scale density inhomogeneities in the mantle of the proto-neutron
star. They showed that this may lead to asymmetric neutrino transport and escape, which
may easily impart enough momentum to the neutron star to produce a space velocity of 500
km/s. Recent 3-D numerical hydrodynamic core collapse and neutrino transport calcula-
tions by Schecket al. (2004) and Arnett & Maekin (2011) confirm this expectation. As
no O- and Si-burning occur prior to the e-capture collapse of a degenerate O-Ne-Mg core,
neutrino transport in this case may be close to spherically symmetric, leading to no (or a
very small) kick velocity imparted during collapse, as was confirmed by detailed numerical
hydrodynamical calculations of such stellar cores by Kitauraet al. (2006).

3.5 Why are there no low-velocity, young, single radio pulsars?

A detailed statistical study by Hobbset al. (2005) of all available pulsar proper motions
showed that the observed velocity distribution of single young (age<3 million years) radio
pulsars is excellently represented by one single Maxwellian with a mean 3-D speed of
about 400 km/sec, and that there is no evidence for a bimodal velocity distribution (viz.: a
separate lower-velocity population of young single pulsars) as had been suggested earlier
(e.g. Arzoumanian, Chernoff & Cordes 2002). In terms of the above-described model this
would mean that single pulsars are solely the products of iron-core collapse supernovae,
whereas neutron star formation by electron-capture collapse would occur only in interacting
binaries.
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This is indeed precisely what has been suggested by Podsiadlowskiet al. (2004) on
grounds of stellar evolution considerations. These authors argued that if stars in the mass
range 8 to about 12 M⊙ are single, they will later in life evolve towards the Asymptotic
Giant Branch (AGB), where the convective envelope during ‘dredge-up’ will penetrate the
evolved helium core (which on the AGB has a degenerate O-Ne-Mg central core) and dur-
ing this phase will erode away the outer helium layers of this core down to the degenerate O-
Ne-Mg core. This prevents the latter core from further growth towards the Chandrasekhar
limit. Their suggestion is therefore that single stars in the mass range 8 to 12(±1) M⊙

do not evolve to core collapse, but after heavy mass loss on the AGB will leave O-Ne-Mg
white dwarfs.

Single stars more massive than about 12(± 1) M⊙ will not produce degenerate O-
Ne-Mg cores and will, in this picture, evolve through O- and Si-burning towards an iron-
core collapse supernova. According to the above-described model calculations of Scheck
et al.(2004) and Arnett & Maekin (2011) such a supernova presumably imparts a large kick
velocity to the neutron star. Thus, combining these models with that of Podsiadlowskiet al.
(2004), one expects single pulsars to generally have received a large velocity kick at birth.

On the other hand, if the 8 to 12(±1) M⊙ star is in an interacting binary, the star cannot
reach the AGB: before that time it already overflows its Roche lobe and loses its hydrogen-
rich envelope by mass transfer towards its companion star (and in many cases, partly out of
the system). For this reason in these systems a helium star in the mass range 1.6 to 2.8 M⊙

will be left, which will produce a growing degenerate O-Ne-Mg core that evolves towards
e-capture collapse. Thus, the e-capture collapse supernovae are, according to the model of
Podsiadlowskiet al. (2004), expected to solely occur in interacting binaries, and these will
produce neutron stars of about 1.25 M⊙.

These are then to be identified with the low-kick-velocity (low-mass) neutron stars that
we observe in the double neutron star systems in Table 1 (van den Heuvel 2004; Podsiad-
lowski et al. 2005). One therefore would expect the low-kick low-mass neutron stars to
solely be formed in interacting binaries, while single stars, or components of wide non-
interacting binaries only produce high-kick-velocity neutron stars.

3.6 Consequences for the occurrence of neutron star formation by
Accretion-Induced Collapse (AIC)

An important consequence of the above described model for the origins of kicks is that the
accretion-induced collapse (AIC) of an O-Ne-Mg white dwarf in a close binary will not
induce a sizeable kick velocity to the thus formed neutron star. Since in this process only
the binding-energy mass equivalent of a neutron star (∼0.2 M⊙) is explosively lost, the
mass-loss-induced runaway velocity of the resulting neutron-star binary is not expected to
exceed a few tens of km/s for systems with Cataclysmic-Variable-like dimensions prior to
the AIC. Such systems are therefore unlikely to escape from globular clusters and it seems
most plausible, in view of the very large white dwarf populations in these clusters, that AIC
is the dominant neutron-star forming mechanism in such clusters. This at the same time
would explain why in some globular clusters, despite their ages of over ten billion years,
still apparently young strongly magnetized radio pulsars are present (Lyne, Manchester &
D’Amico 1996; an example is the strong-magentic-field globular cluster binary radio pulsar
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PSR B1719−19, with P=1.0 second, B=1012 G ). Although in globular clusters there is a
large population of weakly magnetized millisecond pulsars, produced by accretion-driven
binary recycling, the presence of already 3 short-lived strong-magnetic field radio pulsars
in globular clusters implies that these have a birthrate that may be higher than that of the
∼100 millisecond pulsars known in globular clusters, as the latter ones will live almost
eternally (spindown timescales of Gigayears).

Furthermore, the existence of the very wide radio pulsar binaries with circular orbits,
such as PSR B0820+02 (orbital period 3.5 years) so far was very puzzling, as at the onset of
the mass transfer from the low-mass red-giant progenitor of the white dwarf companion of
this pulsar, the orbital period of the system was already about one year (Verbunt & van den
Heuvel 1995). A neutron star that received a few hundred km/s kick at its birth could never
have remained bound to a low-mass companion star in such a wide system. Formation from
a white dwarf by a kick-less AIC in a wide symbiotic-type binary seems a plausible way to
solve this problem (although direct formation from the e-capture collapse of a helium core
of ∼2 M⊙ cannot be excluded).

3.7 Massive neutron stars in binaries: A third type of neutron star?

Since 1975 it has been known that the accreting neutron star in the eclipsing High Mass X-
ray Binary Vela X-1 (4U0900-40) has a mass considerably larger than the Chandrasekhar
limit. The best modern determination of the mass of this neutron star from the Doppler-
measurements of the orbits of both stars in the system is 1.86(±0.15) solar masses (Barziv
et al. 2001; Quaintrellet al. 2003). In view of the very short lifetime of HMXBs the growth
in mass by accretion of this neutron star was negligible, hence this neutron star must have
been born directly with a large mass.

Models of the final evolution of massive stars by Timmes, Woosley & Weaver (1996)
show that at an initial stellar mass of about 19 M⊙ there occurs a jump in the mass of
the collapsing iron core from 1.4 to∼1.7 M⊙. Hence, stars more massive than about 19
M⊙, like the progenitor of the neutron star in Vela X-1, are expected to leave behind quite
massive neutron stars in the range 1.8 to 2.0 M⊙ (if a fall-back of a few tenths of a solar
mass is included) or black holes, in the case of a large fall-back mass.

Interestingely, recently several new massive neutron stars have been discovered in bi-
nary radio pulsar systems: PSR J1614−2230 with a mass of 1.97±0.04 M⊙ (Demorest
et al. 2010) and PSR J1903+0327 with a mass of 1.667±0.021 M⊙ (Freireet al. 2011).
The latter pulsar is a millisecond one (P=2.15 ms) and its high mass could be the result
of a long-lasting accretion phase of a neutron star that started out with a mass∼1.4 M⊙.
The same might be true for the 1.97 M⊙ neutron star PSR J1614−2230 (P=3.1 ms). This
pulsar is in a relatively wide and circular orbit (P=8.7 days) with a 0.5 M⊙ CO white dwarf
companion. Its short pulse period suggests that it has accreted at least∼0.1 M⊙. It could
have formed directly with a high mass in core collapse, if its progenitor started out with
a mass in excess of 19 M⊙. It is not difficult to make models for such an origin of this
system (e.g Linet al. 2010; Tauris, private communication). Alternatively, it might have
started out with a mass of∼1.4 M⊙, but then it must have accreted some 0.6 M⊙, which
is a very large amount, but not impossible for a millisecond pulsar (e.g. van den Heuvel
1995). In the latter case, however, one wonders why it has not been spun up to a rotation
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period shorter than one millisecond. For this reason, it seems most likely to me that PSR
J1614−2230 is the second example of a neutron star that was born already with a large
mass,≥ 1.70 M⊙.

A third example is the compact star in the High Mass X-ray Binary 4U 1700−37. This
compact star has a mass of 2.44±0.27 M⊙, and has 0% probability to be<1.60 M⊙, and
only 3.5% probability to be<2.0 M⊙ (Clarket al. 2002). It has never shown regular X-ray
pulsations, but its X-ray spectrum is that of an accreting neutron star, which is significantly
different from that of an accreting black hole (e.g. Clarket al. 2002). Its donor star is a
highly luminous O6.5f supergiant star with a mass of 58±11 M⊙, making it very likely that
the progenitor of this compact star had a mass>19 M⊙. It therefore probably is the most
massive neutron star known.

3.8 Discussion; some further consequences of the model

A consequence of the model in which neutron stars formed by electron-capture collapse
receive hardly any kicks at birth, whereas those that are formed by Fe-core collapse receive
large kicks, is that the formation of bound double neutron stars will be highly biased to-
wards the lower-mass binaries, with components in the mass range 8 to about 12 M⊙. The
probability for disruption of such systems will be much lower than for systems in which the
helium stars are above about 2.8 M⊙. If the first supernova results from a helium star above
2.8 M⊙, the resulting neutron star will get a large velocity kick, resulting in the formation
of a high-eccentricity B-emission X-ray binary, or in the disruption of the system.

If the second helium star (resulting from the Be star in a Be/X-ray binary) has a mass
above 2.8 M⊙, it will again produce a high-kick neutron star, such that either the system is
disrupted in the second supernova, or a very eccentric system results. As only three out of
the eight double neutron stars in the Galactic disk have an orbital eccentricity larger than
0.25, and since some of these eccentricities may also have resulted from the pure mass-loss
effects of a helium star with a mass just below 2.8 M⊙, the formation of double neutron
stars from systems in which the last-born helium stars are more massive than 2.8 M⊙ seems
to rarely occur in nature.

3.9 Summary

There is strong observational evidence, in combination with predictions from stellar evolu-
tion theory, for the existence of three classes of neutron stars, with two different formation
mechanisms: electron-capture collapse of degenerate O-Ne-Mg cores in stars in binaries
with intitial masses between∼8 and∼12 M⊙, and iron-core collapse for all stars, single
as well as binary, more massive than∼12 M⊙.
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Abstract. Stable relativistic stars form a two-parameter family, parametrized
by mass and angular velocity. Limits on each of these quantities are associated
with relativistic instabilities discovered by Chandrasekhar: A radial instability,
to gravitational collapse or explosion, marks the upper and lower limits on their
mass; and an instability driven by gravitational waves may set an upper limit on
their spin. Our summary of relativistic stability theory given here is based on
and includes excerpts from the bookRotating Relativistic Stars, by the present
authors (Friedman & Sterigioulas 2011).
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1. Introduction

A neutron star in equilibrium is accurately approximated by a stationary self-gravitating
perfect fluid.1 The character of its oscillations and their stability, however, depend on
bulk and shear viscosity, on the superfluid nature of its interior, and – for modes near the
surface – on the properties of the crust and the strength of its magnetic field.

The stability of a rotating star is governed by the sign of the energy of its perturbations;
and the amplitude of an oscillation that is damped or driven by gravitational radiation is
governed by the rate at which its energy and angular momentum are radiated. Noether’s
theorem relates the stationarity and axisymmetry of the equilibrium star to conserved cur-
rents constructed from the perturbed metric and fluid variables. Their integrals, the canon-
ical energy and angular momentum on hypersurface can each be written as a functional
quadratic in the perturbation, and the conservation laws express their change in terms of
the flux of gravitational waves radiated to null infinity.

∗e-mail: friedman@uwn.edu (JF), niksterg@auth.gr (NS)
1Departures from the local isotropy of a perfect fluid are associated with the crust; with magnetic fields that

are thought to be confined to flux tubes in the superfluid interior; and with a velocity field whose vorticity is
similarly confined to vortex tubes. Departures from perfect fluid equilibrium due to a solid crust are expected
to be smaller than one part in∼ 10

−3, corresponding to the maximum strain that an electromagnetic lattice
can support. The vortex tubes are closely spaced; but the velocity field averaged over meter scales is that of a
uniformly rotating configuration. Finally, the magnetic field contributes negligibly to the pressure support of the
star, even in magnetars with fields of10

15 G.
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We begin with an action for perturbations of a rotating star from which these conserved
quantities are obtained. The action was introduced by Chandrasekhar and his students in the
Newtonian approximation (Chandrasekhar 1964; Clement 1964; Lymden Bell & Ostriker
1967), and its generalization to the exact theory was initially due to Chandra, in his pio-
neering paper on the stability of spherical relativistic stars (Chandrasekhar 1964). Several
authors, including Taub, Carter, Chandrasekhar, Friedman, and Schutz (Taub 1954, 1969;
Carter 1973; Chandrasekhar & Friedman 1972 a & b, Friedman & Schultz 1975; Friedman
1978) extended it to a Lagrangian formalism for rotating stars in general relativity.

We next review local stability to convection and to differential rotation. A spherical
star that is stable against convection is stable to all nonradial perturbations: Only the ra-
dial instability to collapse (or explosion) can remain. A turning-point criterion governs
stability against collapse and is associated with upper and lower limits on the masses of
relativistic stars, the analog for neutron stars of the Chandrasekhar limit. Finally, we con-
sider the additional instabilities of rotating stars. These are nonaxisymmetric instabilities
that radiate gravitational waves. They may set an upper limit on the spin of old neutron
stars spun up by accretion and on nascent stars that form with rapid enough rotation. Chan-
drasekhar’s was again the pioneering paper, showing that gravitational radiation can drive
a nonaxisymmetric instability (Chandrasekhar 1970).

2. Action and canonical energy

One can obtain an action for stellar perturbations by introducing a Lagrangian displacement
ξα joining each unperturbed fluid trajectory (the unperturbed worldline of a fluid element)
to the corresponding trajectory of the perturbed fluid. We denote byp, ǫ, ρ anduα the fluid’s
pressure, energy density, rest-mass density and 4-velocity, respectively. A perturbative
description can be made precise by introducing a family of (time dependent) solutions

Q(λ) = {gαβ(λ), uα(λ), ρ(λ), s(λ)}, (1)

and comparing to first order inλ the perturbed variablesQ(λ) with their equilibrium values
Q(0).

Eulerian and Lagrangian changes in the fluid variables are defined by

δQ :=
d

dλ
Q(λ)

∣∣∣∣
λ=0

, ∆Q = (δ + Lξ)Q, (2)

with Lξ the Lie derivative alongξα.
Because oscillations of a neutron star proceed on a dynamical timescale, a timescale

faster than that of heat flow, one requires that the Lagrangian change∆s in the entropy per
unit rest mass vanishes, and perturbations ofuα, ρ andǫ are expressed in terms ofξα and
hαβ := δgαβ by

∆uα =
1

2
uαuβuγ∆gβγ , ∆ρ = −1

2
ρqαβ∆gαβ , ∆ǫ = −1

2
(ǫ+p)qαβ∆gαβ, (3)
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with ∆gαβ = hαβ +∇αξβ +∇βξα. Our restriction to adiabatic perturbations means that
the Lagrangian perturbation in the pressure,∆p is given by

∆p

p
= Γ

∆ρ

ρ
= −1

2
Γ qαβ∆gαβ, (4)

where the adiabatic indexΓ is defined by

Γ =
∂ log p(ρ, s)

∂ log ρ
=
ǫ + p

p

∂ p(ǫ, s)

∂ǫ
. (5)

The perturbed Einstein-Euler equations,

δ(Gαβ − 8π Tαβ) = 0, (6)

are self-adjoint in the weak sense that they are a symmetric system up to a total divergence:
For any pairs(ξα, hαβ) and(ξ̂α, ĥαβ), the symmetry relation has the form

ξ̂βδ(∇γT
βγ
√
|g|) + 1

16π
ĥβγδ

[
(Gβγ − 8πT βγ)

√
|g|
]
= −2L(ξ̂, ĥ; ξ, h) +∇βΘ

β, (7)

whereL is symmetric under interchange of(ξ, h) and(ξ̂, ĥ). A symmetry relation of the
form (7) implies thatL(2)(ξ, h) := 1

2L(ξ, h; ξ, h) is a Lagrangian density and

I(2) =

∫
d4xL(2) (8)

is an action for the perturbed system.
The conserved canonical energy is associated with the timelike Killing vector is the

Hamiltonian of the perturbation, expressed in terms of configuration space variables,

Ec =

∫

S

d3xα(ΠαLtξα + παβLthαβ − L(2)), (9)

whereα is the lapse function, andΠα andπαβ are the momenta conjugate toξα andhαβ ,

Πα = −nγΠγα, παβ = −nγπγαβ , (10)

with

Παβ =
1

2

∂L(ξ, h; ξ, h)
∂∇αξβ

, (11)

παβγ =
1

2

∂L(ξ, h; ξ, h)
∂∇αhβγ

. (12)

The negative signs in Eq. (10) are associated with the choice of a future pointing unit
normal and the signature−+++ .

The corresponding canonical momentum has the form

Jc =

∫

S

d3xα(ΠαLφξα + παβLφhαβ). (13)
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If one foliates the background spacetime by a family of spacelike but asymptotically
null hypersurfaces, the differenceE2 − E1 in Ec from one hypersurface to another to
its future is the energy radiated in gravitational waves to future null infinity. Because this
energy is positive definite,Ec can only decrease. This suggests that a condition for stability
is thatEc be positive for all initial data.

This is, in fact, an appopriate stability criterion, but there is a subtlety, associated with
a gauge freedom in choosing a Lagrangian displacement: There is a class oftrivial dis-
placements, for which the Eulerian changes in all fluid variables vanish. For a one (two)
parameter equation of state, these correspond to rearranging fluid elements with the same
value ofρ (ands).2 For a trivial displacementηα, the same physical perturbation is de-
scribed by the pairshαβ , ξα andhαβ , ξα + ηα, but the canonical energy is not invariant
under addition of a trivial displacement, and its sign depends on this kind of gauge free-
dom. There is, however, a preferred class ofcanonicaldisplacements, the displacements
ξα that are orthogonal to all trivial displacements, with respect to the symplectic product
of two perturbations,

W (ξ̂, ĥ; ξ, h) :=

∫

Σ

(Π̂αξ
α + π̂αβhαβ −Παξ̂

a − παβ ĥαβ)d
3x. (14)

The criterion for stability can then be phrased as follows:

1. IfE < 0 for some canonical data onΣ, then the configuration is unstable or marginally
stable: There exist perturbations on a family of asymptotically null hypersurfacesΣu
that do not die away in time.

2. If E > 0 for all canonical data onΣ, the magnitude ofE is bounded in time and only
finite energy can be radiated.

The trivial displacements are relabelings of fluid elements with the same baryon density
and entropy per baryon. They are Noether-related to conservation of circulation in surfaces
of constant entropy per baryon (Calkin 1963; Friedman & Schultz 1978), and canonical
displacements are displacements that preserve the circulation of each fluid ring – for which
the Lagrangian change in the circulation vanishes.

For perturbations that are not spherical, stable perturbations have positive energy and
die away in time; unstable perturbations have negative canonical energy and radiate neg-
ative energy to infinity, implying thatE becomes increasingly negative. One would like
to show that whenE < 0 a perfect-fluid configuration is strictly unstable, that within the
linearized theory the time-evolved data radiates infinite energy and that|E| becomes in-
finite along a familyΣu of asymptotically null hypersurfaces. There is no proof of this
conjecture, but it is easy to see that ifE < 0, the time derivativeṡξα andḣαβ must remain
finitely large. Thus a configuration withE < 0 will be strictly unstable unless it admits
nonaxisymmetric perturbations that are time dependent butnonradiative.

2This is not the gauge freedom associated with infinitesimal diffeos of the metric and matter, but a redundancy
in the Lagrangian-displacement description of perturbations that is already present in a Newtonian context.
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3. Local stability

The criterion for the stability of a spherical star against convection is easy to understand.
When a fluid element is displaced upward, if its density decreases more rapidly than the
density of the surrounding fluid, then the element will be buoyed upward and the star will
be unstable. If, on the other hand, the fluid element expands less than its surroundings it
will fall back, and the star will be stable to convection.

As this argument suggests, criteria for convective stability arelocal, involving pertur-
bations restricted to an arbitrarily small region of the star or, for axisymmetric perturba-
tions, to an arbitrarily thin ring. For local perturbations, the change in the gravitational
field can be ignored: A perturbation in density of orderδǫ/ǫ that is restricted to a region of
volumeV ≪ R3 (R the radius of the star) can be regarded as adding or subtracting from
the source a massδm of orderδǫV . Then

δm

M
∼ V

R3

δǫ

ǫ
≪ δǫ

ǫ
. (15)

The change in the metric is then also smaller thanδǫ/ǫ by the factorV/R3, arbitrarily
small when the support of the matter perturbation is arbitrarily small. Note that, because
the metric perturbation is gauge-dependent, this statement about the smallness of the metric
is also gauge-dependent. A more precise way of stating this property of a local perturbation
is that a gauge can be chosen in which the metric perturbation is smaller than the density
perturbation by a factor of orderV/R3.

Convective instability of spherical relativistic stars was discussed by Thorne (1966) and
subsequently, with greater rigor, by Kovetz (1967) and Schutz (1970). An initial heuristic
treatment by Bardeen (1970) of convective instability of differentially rotating stars was
made more precise and extended to models with heat flow and viscosity by Seguin (1975).

Consider a fluid element displaced radially outward from an initial position with radial
coordinater to r+ξ. The displacement vector then has componentsξµ = δµr ξ. The fluid el-
ement expands (or, if displaced inward, contracts), with its pressure adjusting immediately
– in sound travel time across the fluid element – to the pressure outside:

∆p = ξ · ∇p = dp

dr
ξ. (16)

Heat diffuses more slowly, and the analysis assumes that the motion is faster than the time
for heat to flow into or out of the fluid element: The perturbation isadiabatic:

∆ǫ =

(
∂ǫ

∂p

)

s

∆p

=

(
∂ǫ

∂p

)

s

dp

dr
ξ = Γ

ǫ+ p

p

dp

dr
ξ, (17)

whereΓ :=

(
∂ log p

∂ log ρ

)

s

and we have used the adiabatic conditions (3) and (4).

The difference∆⋆ǫ in the density of the surrounding star betweenr andr + ξ is given
by

∆⋆ǫ = ξ
dǫ

dr
. (18)
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The displaced fluid element falls back if|∆ǫ| < |∆⋆ǫ| – if, that is, the fluid element’s
density decreases more slowly than the star’s density:

(
∂p

∂ǫ

)

s

∣∣∣∣ξ
dp

dr

∣∣∣∣ <
∣∣∣∣ξ
dǫ

dr

∣∣∣∣ . (19)

The star is then stable against convection if the inequality,

(
dp

dǫ

)

⋆

:=
dp/dr

dǫ/dr
<

(
∂p

∂ǫ

)

s

, (20)

is satisfied, unstable if the inequality is in the opposite direction.
The convective stability criterion can also be stated in terms of the temperature gradi-

ent: If the temperature gradient is superadiabatic – ifT decreases faster than an adiabati-
cally displaced fluid element – then the star is unstable against convection.

Within seconds after its formation, a neutron star cools to a temperature below the
Fermi energy per nucleon, below1012 K ∼ 100 MeV. Its neutrons and protons are then
degenerate, with a nearly homentropic equation of state. The star is convectively stable,
but its convection modes have low frequencies (of order 100 Hz or smaller). The nonzero
frequency arises from the composition gradient in the star, a changing ratio of neutrons to
protons. A displaced fluid element does have time to adjust its composition to match that
of the background star.

For spherical stars, any perturbation can be written as a superposition of spherical
harmonics that are axisymmetric about some axis, and one therefore need only consider
stability of axisymmetric perturbations. In fact, Detweiler & Ipser (1973) (generalizing a
Newtonian result due to Lebovitz (1965)), show that, apart from local instability to convec-
tion, one need only consider radial perturbations:If a nonrotationg star is stable to radial
oscillations and stable against convection, the star is stable. The Detweiler-Ipser argu-
ment shows that the Schwarzschild criterion (20) for stability against convection implies
that there are no zero-frequency nonradial modes with polar parity, no time-independent
polar-parity solutions to the perturbed Einstein-Euler system. The argument, by continuity
of the frequency of outgoing modes, is compelling but not rigorous. It could be made more
cleanly and without assumptions about normal modes if one could show directly that the
canonical energy was always positive. This may follow from an integral inequality (asso-
ciated with Eq. (42) of (Detweiler & Ipser 1973)), that is central to the Detweiler-Ipser
argument. For a local perturbation – a perturbation for which the metric perturbation is
negligible – the criterion for convective instability can easily be written in terms of the
canonical energyEc: For time-independent initial data withδǫ = 0,∆ǫ 6= 0,

Ec =

∫
1

ǫ+ p

[(
∂p

∂ǫ

)

s

−
(
dp

dǫ

)

⋆

]
∆ǫ2αdV, (21)

and there are time-independent axisymmetric initial displacementsξα for which the canoni-
cal energyEc of a rotating barotropic star is negative if and only if the generalized Schwarz-
schild criterion is violated.



Stability of relativistic stars 81

3.1 Convective instability due to differential rotation: The Solberg criterion

Differentially rotating stars have one additional kind of convective (local) instability. If the
angular momentum per unit rest mass,j = huαφ

α, decreases outward from the axis of
symmetry, the star is unstable to perturbations that change the differential rotation law.

The criterion is easy to understand in a Newtonian context. Consider a ring of fluid
in the star’s equatorial plane that is displaced outward fromr to r + ξ, conserving angular
momentum and mass. Again the displaced ring immediately adjusts its pressure to that of
the surrounding star. If the ring’s centripetal acceleration is larger that the net restoring
force from gravity and the surrounding pressure gradient, it will continue to move outward.
Now in the unperturbed star, the centripetal acceleration is equal to the restoring force.
As in the discussion of convective instability, the displaced fluid element encounters the
pressure gradient and gravitational field of the uperturbed star at its new position, and the
restoring force is the restoring force on a fluid element atr + ξ in the unperturbed star.
Thus, if the displaced fluid ring has the same value ofv2/r as the surrounding fluid it will
be in equilibrium, and the star will be marginally stable. If a displaced fluid ring has larger
v2/r than its surrounding fluid the star will be unstable.

The difference in acceleration for the background star is∆⋆(v
2/r) = ξr

d

dr
(v2/r),

and stability then requires

ξr
d

dr

(
v2

r

)
−∆

v2

r
> 0, (22)

for ξr > 0.
Because∆j = 0 andv(j, r) = j(r)/r, we have

∆
v2

r
= ∆

j2

r3
= j2ξr

d

dr

1

r3
, (23)

while

∆⋆
v2

r
= ξr

d

dr

j2

r3
, (24)

implying

∆⋆
v2

r
−∆

v2

r
= ξr

1

r2
dj2

dr
; (25)

and the star is stable only if
dj

dr
> 0 in the equatorial plane (forj > 0), or, equivalently,

only if ∂̟(̟2Ω) > 0.
For relativistic stars, the same criterion ordinarily holds, where the specific angular

momentumj = huφ is the angular momentum per unit rest mass. Bardeen (1970) gives a
heuristic argument for this criterion, and a subsequent comprehensive treatment, including
heat flow and viscosity, is due to Seguin (1975). Abramowicz (2004) provides a much
quicker and more intuitive derivation for a homentropic star with no dissipation. (The last
paragraph was its Newtonian version.)

For a differentially rotating homentropic star with metric

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ(dr2 + r2dθ2), (26)
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the angular momentum per unit baryon mass is
ǫ+ p

ρ
uφ =

ǫ+ p

ρ

eψv√
1− v2

, wherev =

eψ−ν(Ω − ω) is the fluid velocity measured by a zero-angular-momentum observer. The
canonical energy of a local axisymmetric perturbation withδp = 0 is given by

Ec =

∫
(ǫ + p)

(1 − v2)2
[
2vξα∇α(ψ − ν)− (1 + v2)eψ−νξα∇αω

] ∂v
∂j
ξα∇αj

√−gd3x,(27)

implying that there are perturbations for whichEc < 0 unless

ξα∇αj > 0, for ξα outward-directed, (28)

where outward-directed is defined by

ξα
[
∇α(ψ − ν)− (1 + v2)

2v
eψ−ν∇αω

]
> 0. (29)

The derivation of the criterion is valid for dust (pressure-free fluid) or for a single
particle in the geometry of a rotating star or black hole, where it implies that a circular
orbit is stable if and only ifj increases outward along the surrounding family of circular
equatorial orbits.

This is a simplest example of the turning-point criterion governing axisymmetric sta-
bility: A point of marginal stability along a sequence of circular orbits of a particle is a
point at whichj is an extremum. The turning-point condition can be rephrased in terms of
the particle’s energy. For a particle of fixed rest mass, the difference in energy of adjacent
orbits is related to the difference in its angular momentum by

δE = ΩδJ.

Then a point of marginal stability along a sequence of circular orbits of a particle of fixed
baryon mass is a point at which its energy is an extremum.

4. Instability to collapse: Turning point criterion

For spherical stars in the Newtonian approximation, instability sets in when the matter
becomes relativistic, when the adiabatic indexΓ (more precisely, its pressure-weighted av-
erage) reaches the value 4/3 characteristic of zero rest mass particles. This quickly follows
from the Newtonian form of the canonical energy for radial perturbations of a spherical
star: For an initial radial displacementξ, with ∂tξ = 0,

Ec =

∫ R

0

dr

{
4

r
p′r2ξ2 +

1

r2
Γp
[
(r2ξ)′

]2
}
. (30)

Choosing as initial dataξ = r gives

Ec =

∫ R

0

drr2p

(
Γ− 4

3

)
, (31)

implying instability forΓ < 4/3.
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In the stronger gravity of general relativity, even models with the stiffest equation of
state must be unstable to collapse for some value ofR/M > 9/8, the ratio for the most
relativistic model of uniform density. By (in effect) computing the relativistic canonical
energy,

Ec =

∫ R

0

eλ+ν
{[

4

r
p′ − p′2

ǫ+ p
+ 8πp(ǫ+ p)

]
r2ξ2 +

e3λ−ν

r2
Γp
[
(e−νr2ξ)′

]2
}
, (32)

Chandrasekhar (1964) showed that the stronger gravity of the full theory gives a more
stringent condition for stability: A star is unstable if

Γ <
4

3
+K

M

R
, (33)

whereK is a positive constant of order 1. Because a gas of photons hasΓ = 4/3 and mas-
sive stars are radiation-dominated, the instability can be important for stars withM/R≫ 1
(Chandrasekhar 1964; Fowler 1966).

Turning point instability

The best-known instability result in general relativity is the statement that instability to
collapse is implied by a point of maximum mass and maximum baryon mass, along a
sequence of uniformly rotating barotropic models with fixed angular momentum. A formal
symmetry in the way baryon mass and angular momentum occur in the first law implies that
(as in the case of circular orbits) points of instability are also extrema of angular momentum
along sequences of fixed baryon mass.

For dynamical oscillations of neutron stars, the adiabatic index does not coincide with

the polytropic index,Γ 6= d log p(r)/dr

d log ρ/dr
. Chandrasekhar’s criterion locates the point of

dynamical instability, if one uses the adiabatic index in the canonical energy. The turn-
ing point method locates asecularinstability — an instability whose growth time is long
compared to the typical dynamical time of stellar oscillations. For spherical stars, the
turning-point instability proceeds on a time scale slow enough to accommodate the nuclear
reactions and energy transfer that accompany the change to a nearby equilibrium. For ro-
tating stars, the time scale must also be long enough to accommodate a transfer of angular
momentum between fluid rings. That is, the growth rate of the instability is limited by the
time required for viscosity to redistribute the star’s angular momentum. For neutron stars,
this is expected to be short, probably comparable to the spin-up time following a glitch,
and certainly short compared to the lifetime of a pulsar or an accreting neutron star. For
this reason, it is the secular instability that sets the upper and lower limits on the mass of
spherical and uniformly rotating neutron stars.

Note that, if one considers perturbations conforming to the effective equation of state
satisfied by the equilibrium star, then Chandrasekhar’s canonical energy criterion coincides
with the turning-point criterion for spherical stars. The turning point criterion, however,
has a longer history. In their 1939 paper, Oppenheimer and Volkoff had already used it
to locate the stable part of a sequence of model neutron stars; and Misner & Zapolsky
(1964) noticed that, along a sequence of neutron star models, the configuration at which
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the functionalEc first becomes negative appeared to be the model with maximum mass.
In each case, they used models in which the equilibrium configuration and its perturba-
tions are governed by the same one-parameter equation of state. A turning-point method,
due initially to Poincaré (1885), then implies that points at which the stability of a mode
changes are extrema of the mass (Harrisonet al. 1965). See Thorne (1967) for a review
of the turning point method applied to spherical neutron stars and (Thorne 1978) for later
references; a somewhat different treatment is given by Zel’dovich and Novikov (1971).
The generalization of the turning point criterion to rapidly rotating stars, due to Friedman,
Ipser, and Sorkin (see below) (1988), is based on a general turning-point theorem due to
Sorkin (1981, 1982).

One can easily understand why the instability sets in at an extremum of the mass by
looking at a radial mode of oscillation of a nonrotating star with an equation of statep =
p(ρ), ǫ = ǫ(ρ). Along the sequence of spherical equilibria, a radial mode changes from
stability to instability when its frequencyσ changes from real to imaginary, withσ = 0
at the point of marginal stability. Now a zero-frequency mode is just a time-independent
solution to the linearized Einstein-Euler equations – a perturbation from one equilibrium
configuration to a nearby equilibrium with the same baryon number. From the first law of
thermodynamics, a perturbation that keeps the star in equilibrium satisfies

δM =
µ

ut
dN, (34)

with µ the chemical potential andN the number of baryons. The relation implies that,
for a zero frequency perturbation involving no change in baryon number, the changeδM in
mass must vanish. This is the requirement that the mass is an extremum along the sequence
of equilibria. Models on thehigh-densityside of the maximum-mass instability point are
unstable: Because the turning point is a star with maximum baryon number as well as
maximum mass, there are models on opposite sides of the turning point with the same
baryon number. Becauseµ/ut is a decreasing function of central density, the model on the
high-density side of the turning point has greater mass than the corresponding model with
smaller central density.

At the minimum mass, it is thelow-densityside that is unstable: Because the mass is a
minimum, the model on the low-density side of the turning point has greater mass than the
corresponding model with the same baryon number on the high-density side.

The precise statement of the turning-point criterion is the following result:

Theorem (Friedman, Isper & Sorkin 1988). Consider a continuous sequence of uniformly
rotating stellar models based on an equation of state of the formp = p(ǫ). Let λ be the
sequence parameter and denote the derivatived/dλ along the sequence by( ˙ ).
(i) Suppose that the total angular momentum is constant along the sequence and that there
is a pointλ0 whereṀ = 0 and whereµ > 0, (µ̇Ṁ)˙ 6= 0. Then the part of the sequence
for which µ̇Ṁ > 0 is unstable forλ nearλ0.
(ii) Suppose that the total baryon massM0 is constant along the sequence and that there is
a pointλ0 whereṀ = 0 and whereΩ > 0, (Ω̇Ṁ)˙ 6= 0. Then the part of the sequence for
which Ω̇Ṁ > 0 is unstable forλ nearλ0.
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Friedman, Ipser & Sorkin (1988) point out the symmetry betweenM0 andJ that im-
plies the maximum-J form of the theorem, and Cook, Shapiro & Teukolsky (1992) first
use the theorem in this form.

For rotating stars, the turning point criterion is a sufficient condition for secular in-
stability to collapse. In general, however, collapse can be expected to involve differen-
tial rotation, and the turning point identifies only nearby uniformly rotating configurations
with lower energy. Rotating stars are therefore likely to be secularly unstable to collapse
at densities slightly lower than the turning point density. The onset of secular instability to
collapse is at or before the onset of dynamical instability along a sequence of uniformly ro-
tating stars of fixed angular momentum, and recent work by Rezzolla, Katami and Yoshida
(2011) appears to show that rapidly rotating stars can also be dynamically unstable to col-
lapse just prior to the turning point.

Searches to determine the line of turning points have covered the set of models with
sequences of constant rest massM0, extremizingJ on each one, or vice versa. This is
a computationally expensive procedure, and a more efficient way is summarized in the
following corollary due to Jocelyn Read (Readet al. 2009):

RegardM0 andJ as functions on the two-dimensional space of equilibria. Turning
points are the points at which∇M0 and∇J are parallel. An equivalent statement of this
criterion is that the wedge product of the gradients vanishes:dM0 ∧ dJ = 0; or, with the
space of equilibria embedded in a 3-dimensional space,∇M0 × ∇J = 0. In particular,
with the space of equilibria parametrized by the central energy densityǫc and axis ratio
r = rp/re, the turning points satisfy

∂(M0, J)

∂(ǫc, r)
≡ ∂M0

∂ǫc

∂J

∂r
− ∂J

∂ǫc

∂M0

+∂r
= 0. (35)

5. Nonaxisymmetric instabilities

Rapidly rotating stars and drops of water are unstable to a bar mode that leads to fission
in the water drops and is likely to be the reason many stars in the Universe are in close
binary systems. Galactic disks are unstable to nonaxisymmetric perturbations that lead
to bars and to spiral structure. And a related instability of a variety of nonaxisymmetric
modes, driven by gravitational waves, the Chandrasekhar-Friedman-Schutz (CFS) instabil-
ity (Chandrasekhar 1970; Friedman & Schultz 1978; Friedman 1978), may limit the rota-
tion of young neutron stars. The existence of this gravitational-wave driven instability in
rotating stars was first found by Chandrasekhar (1970) in the case of thel = 2 mode in uni-
formly rotating, uniform density Maclaurin spheroids. Subsequently, Friedman and Schutz
(1978) showed that all rotating self-gravitating perfect fluid configurations are generically
unstable to the emission of gravitational waves. Along a sequence of stars, the instability
sets in when the frequency of a nonaxisymmetric mode vanishes in the frame of an inertial
observer at infinity, and such zero-frequency modes of rotating perfect-fluid stellar models
are marginally stable.

This review begins with a discussion of the CFS instability for perfect-fluid models
and then outlines the work that has been done to decide whether the instability is present in
young neutron stars and in old neutron stars spun up by accretion. For very rapid rotation
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and for slower but highly differential rotation, nonaxisymmetric modes can bedynamically
unstable, with growth times comparable to the period of a star’s fundamental modes, and
the review ends with a brief discussion of these related dynamical instabilities.

To understand the way the CFS instability arises, consider first a stable spherical star.
All its modes have positive energy, and the sign of a mode’s angular momentumJc about an
axis depends on whether the mode moves clockwise or counterclockwise around the star.
That is, a mode with angular and time dependence of the formcos(mφ − σ0t)e

−α0t, has
positive angular momentumJc about thez-axis if and only if the mode moves in a positive

direction:
σ0
m

is positive. Because the wave moves in a positive direction relative to an

observer at infinity, the star radiates positive angular momentum to infinity, and the mode
is damped. Similarly, a mode with negative angular momentum has negative pattern speed
σ0
m

and radiates negative angular momentum to infinity, and the mode is again damped.

Now consider a slowly rotating star with a backward-moving mode, a mode that moves
in a direction opposite to the star’s rotation. Because a short-wavelength fluid mode (a mode
with a Newtonian counterpart, not aw-mode) is essentially a wave in the fluid, the wave
moves with nearly the same speed relative to a rotating observer that it had in the spherical
star. That means that an observer at infinity sees the mode dragged forward by the fluid.
The frequencyσr seen in a rotating frame is the frequency associated with theφ coordinate
φr = φ− Ωt of a rotating observer,σr = σ −mΩ. Then

mφ− σt = mφr − (σ +mΩ)t = mφr − σrt,

implying that the frequency seen by the rotating observer is

σr = σ −mΩ. (36)

For a slowly rotating star,σr ≈ σ0. When the star rotates with an angular velocity greater
than|σr/m|, the backward-going mode is draggedforward relative to an observer at infin-
ity:

σ

m
=
σr
m

+Ω (37)

is positive.
Because the pattern speedσ/m is now positive, the mode radiates positive angular

momentum to infinity. But the canonical angular momentum is still negative, because the
mode is moving backward relative to the fluid: The angular momentum of the perturbed star
is smaller than the angular momentum of the star without the backward-going mode. As
the star radiates positive angular momentum to infinity,Jc becomes increasingly negative,
implying that the amplitude of the mode grows in time:Gravitational radiation now drives
the mode instead of damping it.

For largem or smallσ0, σ/m will be positive whenΩ ≈ |σ0/m|. This relation
suggests two classes of modes that are unstable for arbitrarily slow rotation: Backward-
moving modes with large values ofm and modes with anym whose frequency is zero in
a spherical star. Both classes of perturbations exist. The usualp-modes andg-modes have
finite frequencies for a spherical star and are unstable forΩ & σ0/m; andr-modes, which
have zero frequency for a non-rotating barotropic star, are unstable for all values ofm and
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Ω (that is, those r-modes are unstable that are backward-moving in the rotating frame of a
slowly rotating star).

We have so far not mentioned the canonical energy, but our key criterion for the onset
of instability is a negativeEc. If we ignore the imaginary part of the frequency, the change
in the sign ofEc follows immediately from the relationJc = −σpEc. To take the imaginary
partImσ = α 6= 0 of the frequency into account, we need to use the fact that energy is lost

at a rateĖc ∝
...
Q

2 ∝ σ6 for quadrupole radiation, witḣEc proportional to higher powers
of σ for radiation into higher multipoles. BecauseEc is quadratic in the perturbation, it is
proportional toe−2αt, implying α ∝ σ6. Thusα/σ → 0 asσ → 0, implying that for a
normal modeEc changes sign whenσp changes sign.

Although the argument we have given so far is heuristic, there is a precise form of
the statement that a stable, backward-moving mode becomes unstable when it is dragged
forward relative to an inertial observer (Friedman & Schultz 1978; Friedman & Stergioulas
2011).

Theorem. Consider an outgoing mode(hαβ(λ), ξα(λ)), that varies smoothly along a fam-
ily of uniformly rotating perfect-fluid equilibria, labeled byλ. Assume that it hast andφ
dependence of the formei(mφ−σt), thatσ = Re{σ} satisfiesσ/m − Ω < 0 for all λ, and
that the sign ofσ/m is negative forλ < λ0 and positive forλ > λ0. Then in a neigh-
borhood ofλ0, α := Im{σ} ≤ 0; and if the mode has at least one nonzero asymptotic
multipole moment at future null infinity, the mode is unstable (α < 0) for λ > λ0.

A corresponding result that does not rely on existence or completeness of normal
modes is the statement that one can always choose canonical initial data to makeEc < 0
(Friedman 1978; Friedman & Stergioulas 2011).

The growth timeτGR of the instability of a perfect fluid star is governed by the rate
dE

dt

∣∣∣∣
GR

at which energy is radiated in gravitational waves:

1

τGR
= − 1

2Ec

dEc
dt

∣∣∣∣
GR

, (38)

where (Thorne 1980)

dE

dt

∣∣∣∣
GR

= −σ(σ +mΩ)
∑

l≥2

Nlσ
2l
(
|δDlm|2 + |δJlm|2

)
, (39)

whereDlm andJlm are the asymptotically defined mass and current multipole moments of

the perturbation andNl =
4π(l + 1)(l + 2)

l(l− 1)[(2l + 1)!!]2
is, for low l, a constant of order unity. In

the Newtonian limit,

δDlm =

∫
δρ rlYlmd

3x. (40)

For a star to be unstable, the growth timeτGR must be shorter than the viscous damping
time τviscosity of the mode, and the implications of this are discussed below. In particular
because the growth time is longer for largerl, only low multipoles can be unstable in
neutron stars.
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Modes with polar and axial parity

The spherical symmetry of a nonrotating star and its spacetime implies that perturba-
tions can be labeled by fixed valuesl,m labeling an angular harmonic: The quantities
hαβ, ξ

α, δρ, δǫ, δp, δs that describe a perturbation are all proportional to scalar, vector and
tensor spherical harmonics constructed fromYlm, and perturbations with differentl,m val-
ues decouple. Similarly, because spherical stars are invariant under parity (a map of each
pointP of spacetime to the diametrically opposite point on the symmetry sphere through
P ), perturbations with different parity decouple, the parity of a perturbation is conserved,
and normal modes have definite parity. Perturbations associated with anl,m angular har-
monic are said to havepolar parity if they have the same parity as the functionYlm, (−1)l.
Perturbations having parity(−1)l+1, opposite to that ofYlm have axial parity. In the New-
tonian literature, modes of a rotating star that are continuously related to polar modes of a
spherical star are commonly calledspheroidal; while modes whose spherical limit is axial
are calledtoroidal.

Every rotational scalar –ǫ, p, ρ, and the components of the perturbed metrichαβ and
the perturbed fluid velocityδuα in thet-r subspace – can be expressed as a superposition of
scalar spherical harmonicsYℓm. As a result, modes of spherical stars that involve changes
in any scalar are polar. On the other hand, the angular components of velocity perturbations
can have either polar parity, with

δv = f(r)∇Ylm (41)

or axial parity, with Newtonian form

δv = f(r)r ×∇Ylm, (42)

and the relativistic formδuα ∝ ǫαβγδ∇βt∇γr∇δYlm.
There are two families of polar modes of perfect-fluid Newtonian stars,p-modes (pres-

sure modes) andg-modes (gravity modes). For short wavelengths, thep-modes are sound
waves, with pressure providing the restoring force and frequencies

σ = csk, (43)

wherek is the wavenumber andcs is the speed of sound. The short-wavelengthg-modes
are modes whose restoring force is buoyancy, and their frequencies are proportional to
the Brunt-Väisälä frequency, related to the difference betweendp/dǫ in the star andc2s =
∂p(ǫ, s)/∂ǫ. The fundamental modes of oscillation of a star (f -modes), with no radial
nodes, can be regarded as a bridge betweeng-modes andp-modes.

Because axial perturbations of a spherical star involve no change in density or pressure,
there is no restoring force in the linearized Euler equation, and the linear perturbation is
a time-independent velocity field – a zero-frequency mode.3 In a rotating star, the axial

3Axial perturbations of the spacetime of a spherical star include both axial perturbations of the fluid and
gravitational waves with axial parity. The axial-parity waves do not couple to the fluid perturbation, which is
stationary in the sense that∂tδuα = 0.
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modes acquire a nonzero frequency proportional to the star’s angular velocityΩ, a fre-
quency whose Newtonian limit has the simple form

σ =
(l − 1)(l + 2)

l(l + 1)
mΩ, (44)

where the harmonic time and angular dependence of the mode isei(mφ−σt). These modes
are calledr-modes, their name derived from the Rossby waves of oceans and planetary
atmospheres. The termr-mode can be usefully regarded as a mnemonic for arotationally
restoredmode. Equation (36) implies that ther-mode associated with every nonaxisym-
metric multipole obeys the instability condition for every value ofΩ: It is forward moving
in an inertial frame and backwards moving relative to a rotating observer:

σr = − 2m

l(l+ 1)
Ω, (45)

with sign opposite to that ofσ andm. Because the rate at which energy is radiated is
greatest for thel = m = 2 r-mode, that is the mode whose instability grows most quickly
and which determines whether an axial-parity instability can outpace viscous damping.

The instability of low-multipoler-modes for arbitrarily slow rotation is strikingly dif-
ferent from the behavior of the low-multipolef - andp-modes, which are unstable only for
large values ofΩ. The reason is that the frequencies off - andp-modes are high, and, from
Eq. (37), a correspondingly high angular velocity is needed before a mode that moves back-
ward relative to the star is dragged forward relative to an inertial observer at infinity. Of the
polar modes,f -modes withl = m have the fastest growth rates; their instability points for
uniformly rotating relativistic stars, found by Stergioulas (Friedman & Stergioulas 2011),
are shown in Figure 1. (Work on these stability points of relativistic stars is reported in
(Stergioulas & Friedman 1998; Yoshida & Eriguchi 1997; Yoshida & Eriguchi 1999; Zink
et al. 2010; Gaertiget al. 2011)

The figure shows that, for uniform rotation, thel = m = 2 f -mode is unstable only
for stars with high central density and therefore with masses greater than 1.4M⊙. Neutron
stars, however, rotate differentially at birth, and thel = 2 mode, as well asf -modes with
l ≥ 5, could be initially unstable.

Implications of the instability

The nonaxisymmetric instability may limit the rotation of nascent neutron stars and of old
neutron stars spun up by accretion; and the gravitational waves emitted by unstable modes
may be observable by gravitational wave detectors. Whether a limit on spin is in fact
enforced depends on whether the instability of perfect-fluid models implies an instability
of neutron stars; and the observability of gravitational waves also requires a minimum
amplitude and persistence of an unstable mode. We briefly review observational support
for an instability-enforced upper limit on spin and then turn to the open theoretical issues.

Evidence for an upper limit on neutron-star spin smaller than the Keplerian frequency
ΩK comes from nearly 30 years of observations of neutron stars with millisecond peri-
ods, seen as pulsars and as X-ray binaries. The observations reveal rotational frequencies
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Figure 1. Critical angular velocityΩ/ΩK vs. the dimensionless central energy densityǭc for the
m = 2, 3, 4 and 5 neutral modes ofN = 1.0 polytropes. The filled circles on the vertical axis are
the Newtonian values of the neutral points for each mode.

ranging upward to 716 Hz and densely populating a range of frequencies below that. Selec-
tion biases against detection of the fastest millisecond radio pulsars have made conclusions
about an upper limit on spin uncertain, but Chakrabarty argues that the class of sources
whose pulses are seen in nuclear bursts (nuclear powered accreting millisecond X-ray pul-
sars) constitute a sample without significant bias (Chakrabarty 2008); their distribution of
spins is shown in Fig. 1 of that paper, reproduced as Fig. 2 below.

Summarizing his analysis, Chakrabarty writes, “There is a sharp cutoff in the popula-
tion for spins above 730 Hz. RXTE has no significant selection biases against detecting
oscillations as fast as 2000 Hz, making the absence of fast rotators extremely statistically

Figure 2. The spin frequency distribution of accreting millisecond X-ray pulsars. (From Chakrabarty
2008.)
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significant.” Even for a 1.4M⊙ star, 800 Hz is well belowΩK for all but the stiffest can-
didate equations of state, and accreting pulsars are likely to have larger masses and still
higher values ofΩK .

A magnetic field of order108 G can limit the spin of an accreting millisecond pulsar.
Because matter within the magnetosphere corotates with the star, only matter that accretes
from outside the magnetosphere can spin up the star, leading to an equilibrium period given
approximately by (Ghosh & Lamb 1979)

Peq ∼
(

B

1012G

)6/7
(

Ṁ

10−9M⊙yr−1

)−3/7

. (46)

Because this period depends on the magnetic field, a sharp cutoff in the frequency of ac-
creting stars is not an obvious prediction of magnetically limited spins; and a cutoff at a
rotation rate of order 700-800 Hz is not consistent with a range of magnetic field strengths
presumed to extend below108 G.

Under what circumstances the CFS instability could limit the spin of recycled pulsars
has now been studied in a large number of papers. References to this work can be found in
the treatment in (Friedman & Stergioulas 2011) on which the present review is based and
in comprehensive earlier discussions by Stergioulas (2003), by Andersson and Kokkotas
(2001), and by Kokkotas and Ruoff (2001, 2002) briefer reviews of more recent work
are given in (Anderssonet al. 2011; Owen 2010). References in the present review are
generally limited to initial work and to a late paper that contains intervening references.

Whether the instability survives the complex physics of a real neutron star has been the
focus of most recent work, but it remains an open question. Studies have focused on:

• Dissipation from bulk and shear viscosity and mutual friction in a superfluid interior;
• magnetic field wind-up;
• nonlinear evolution and the saturation amplitude; and
• the possiblity that a continuous spectrum replacesr-modes in relativistic stars.

We discuss these in turn and then summarize the implications for nascent, rapidly rotating
stars and for old stars spun up by accretions.

Viscosity

When viscosity is included, the growth-time or damping timeτ of an oscillation has the
form

1

τ
=

1

τGR
+

1

τb
+

1

τs
, (47)

with τb andτs the damping times due to bulk and shear viscosity. Bulk viscosity is large
at high temperatures, shear viscosity at low temperatures. This leaves a window of oppor-
tunity in which a star with large enough angular velocity can be unstable. The window for
the l = m = 2 r-mode is shown in Fig. 3, for a representative computation of viscosity.
The highest solid curves on left and right mark the critical angular velocityΩc above which
thel = m = 2 r-mode is unstable. The curves on the left, show the effect of shear viscos-
ity at low temperature, allowing instability whenΩ < ΩK only for T > 106K; the curve
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on the right shows the corresponding effect of bulk viscosity, cutting off the instability at
temperatures above about4× 1010K.
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Figure 3. Critical angular velocity for the onset of ther-mode instability as a function of temperature
(for a 1.5M⊙ neutron star model). The solid line corresponds to theO(Ω2) result using electron-
electron shear viscosity, and modified URCA bulk viscosity. The dashed line corresponds to the case
of neutron-neutron shear viscosity. Dotted lines areO(Ω) approximations.

There is substantial uncertainty in the positions of both of these curves.
Bulk viscosity arises from nuclear reactions driven by the changing density of an oscil-

lating fluid element, with neutrons decaying,n→ p+ e+ ν̄e, as the fluid element expands
and protons capturing electrons,p + e → n + νe, as it contracts. The neutrinos leave the
star, draining energy from the mode. The rates of theseURCAreactions increase rapidly
with temperature and are fast enough to be important above about109K, with an expected
damping timeτb given by

1

τb
=

1

2Ec

∫
ζ(δθ)2d3x, (48)

whereθ = ∇αu
α is the divergence of the fluid velocity and the coefficient of bulk viscosity

ζ is given by (Cutler, Lindblom & Splinter 1990)

ζ = 6× 1025ρ215T
6
9

( ωr
1Hz

)−2

g cm−1 s−1, (49)

whereT9 = T/(109K). With these values, bulk viscosity kills the instability in all modes
above a few times1010K (Ipser & Lindblom 1991 a, b; Yoshida & Eriguchi 1995).
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These equations and Fig. 3 assume that onlymodified URCAreactions can occur, that
the URCA reactions require a collision to conserve four-momentum, and this will be true
when the proton fraction is less than about1/9. If the equation of state turns out to be un-
expectedly soft (and the mass is large enough), direct URCA reactions would be allowed,
suppressing the instability for uniformly rotating stars at roughly109K (Zdunik 1996). A
soft equation of state is also more likely to lead to stars with hyperons in their core with
an additional set of nuclear reactions that dissipate energy and increase the bulk viscosity
(Jones 2010; Lindblom & Owen 2002; Haensel, Levenfish & Yakovlev 2002; Nayyar &
Owen 2006; Haskell & Andersson 2010) or quarks (Madsen 1998; Madsen 2000; Anders-
sonet al., 2002; Jaikumaret al. 2008; Rupak & Jaikumar 2010).

In contrast to bulk viscosity, shear viscosity increases as the temperature drops. In
terms of the shear tensorσαβ = (δγα + uαu

γ)(δδβ + uβu
δ)(∇γuδ +∇δuγ − 2

3gγδ∇ǫu
ǫ),

the damping time is given by

1

τs
=

1

Ec

∫
ηδσαβδσαβ d

3x, (50)

whereη is the coefficient of shear viscosity. For nascent neutron stars hotter than the super-
fluid transition temperature (about109K), the neutron-neutron shear viscosity coefficient is
(Flowers & Itoh 1976)

ηn = 2× 1018ρ
9/4
15 T

−2
9 g cm−1 s−1, (51)

whereρ15 = ρ/(1015g cm−3). Below the superfluid transition temperature, electron-
electron scattering determines the shear viscosity in the superfluid core, giving (Cutler &
Lindblom 1987)

ηe = 6× 1018ρ215T
−2
9 g cm−1 s−1. (52)

Shear viscosity may be greatly enhanced after formation of the crust in a boundary
layer (Ekman layer) between crust and core (Ushomirsky & Bildsten 1998; Lindblomet al.
2000; Andersonet al. 2000; Glampedakis & Anderson 2006a, Glampedakis & Anderson
2006b). The enhancement depends on the extent to which the core participates in the
oscillation, parametrized by the slippage at the boundary. The uncertainty in this slippage
appears to be the greatest current uncertainty in dissipation of the mode by shear viscosity,
and it significantly affects the critical angular velocity of ther-mode instability in accreting
neutron stars.

Forf -modes, the part of the instability window in Fig. 3 to the left of109 K is thought
to be removed by another dissipative mechanism that comes into play below the superfluid
transition temperature. Called mutual friction, it arises from the scattering of electrons off
magnetized neutron vortices. Work by Lindblom and Mendell (1995) shows that mutual
friction in the superfluid core completely suppressesf - andp-mode instabilities below the
transition temperature. For ther-mode instability, subsequent work by the same authors
(2000) finds that the mutual friction is much smaller, with a damping time of order104 s,
too long to be important.

In a recent paper, Gaertiget al. point out the possibility of an interaction between
vortices and quantized flux tubes that would result in a much smaller value for the mutual
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friction. They argue that the resulting uncertainty is great enough that shear viscosity could
be the dominant dissipative mechanism forf -modes as well asr-modes.

Magnetic field windup

At second-order in the perturbation, the nonlinear evolution of an unstable mode includes
an axisymmetric part that describes a growing differential rotation. Because differential
rotation will wind up magnetic field lines, the mode’s energy could be transferred to the
star’s magnetic field (Spruit 1999; Rezzollaet al. 2000; Rezzollaet al. 2001b; Rezzolla
et al. 2001a; Cuofano & Drago 2010). Again there is large uncertainty about the strength of
a toroidal magnetic field that will be generated by the differential rotation, what magnetic
instabilities will arise, and what the effective dissipation will be. Apart from the studies
cited here (all of which deal withr-modes) nearly all the remaining work on the evolution
of unstable modes ignores magnetic fields.

Relativisticr-modes and a possible continuous spectrum

Relativisticr-modes have been computed by a number of authors (Kojima 1998; Kojima
& Hosonuma 1999; Kojima & Hosonuma 2000; Lockitch, Andersson & Friedman 2001;
Lockitch, Friedman & Andersson 2003; Lockitch, Andersson & Watts 2004; Andersson
1998; Ruoff & Kokkotas 2001; Ruoff & Kokkotas 2002; Ruoff, Stavridis & Kokkotas
2003; Kokkotas & Ruoff 2002; Yoshida & Lee 2002; Kastaun 2008). Where the Newtonian
approximation has purely axiall = m r-modes for barotropic stars at lowest order inΩ,
in the full theory all rotationally restored modes include a polar part. The change in the
structure of the computedr-modes are small, but that may not be the end of the story.

For non-barotropic stars Kojima found a single second-order eigenvalue equation for
the frequency, to lowest nonvanishing order inΩ. The coefficient of the highest derivative
term in that equation vanishes at some value of the radial coordinater, for typical candidate
neutron-star equations of state, and that singular behavior gives a continuous spectrum.
Lockitch, Andersson & Watts (2004) consider the question of the continuous spectrum and
the existence of r-modes in some detail. They argue that the singularity in the Kojima
equation is an artifact of the slow-rotation approximation and is not present if one includes
terms of orderΩ2. Their work is a strong argument for the existence of r-modes in non-
barotropic models.

Showing the existence of the mode, however, does not decide the question of whether
a continuous spectrum is also present or whether the existence of a continuous or nearly
continuous spectrum significantly alters the evolution of an initial perturbation.

Nonlinear evolution

Linear perturbation theory is valid only for small-amplitude oscillations; as the amplitude
of an unstable mode grows, couplings to other modes become increasingly important, and
the mode ultimately reaches a saturation amplitude or is disrupted, losing coherence. The
first nonlinear studies of ther-mode instability involved fully nonlinear 3+1 evolutions
in which ther-mode was set at a large initial amplitude (Stergioulas & Font 2001) or was
driven to large amplitude by an artificially large gravitational-radiation reaction term (Lind-
blom, Tohline & Vallisneri 2001, Lindblom, Tohline & Vallisneri 2002). On a few tens
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of dynamical timescales, saturation was seen only at an amplitude of order unity. Subse-
quently, simulations on longer timescales showed a coupling to daughter modes (Gressman
et al. 2002; Lin & Suen 2006), suggesting that the actual saturation amplitude of ther-
mode is smaller than the amplitude at which gravitational-radiation reaction was switched
off in the short-timescale simulations.

The resolution of 3+1 simulations, however, is too low to see couplings to short-
wavelength modes, and they cannot run for a time long enough to see the growth from
a realistic radiation-reaction term. The alternative is to examine the nonlinear evolution
in the context of higher-order perturbation theory. To do this, the Cornell group (initially
with S. Morsink) (Arraset al. 2003; Schenket al. 2002; Morsink 2002) constructed a
second-order perturbation theory for rotating Newtonian stars, and then used the formal-
ism to study the nonlinear evolution of an unstabler-mode. Their series of papers leaves
little doubt that nonlinear couplings sharply limit the amplitude of an unstabler-mode,
with a possible range of10−1–10−5 (see (Bondarescu, Teukolsky & Wasserman 2007) and
references therein).

The nonlinear development of thef -mode instability has been modeled in three-
dimensional, hydrodynamical simulations (in a Newtonian framework) by Ou, Tohline &
Lindblom (2004) and by Shibata & Karino (2004), essentially confirming previous approx-
imate results obtained in (Lai & Shapiro 1995). Kastaunet al. (2010) report an initial
nonlinear study off -modes in general relativity. In the framework of a 3+1 simulation
in a Cowling approximation (a fixed background metric of the unperturbed rotating star),
they find limits on the amplitude of less than 0.1, set by wave-breaking and by coupling to
inertial modes. This can be regarded as an upper limit on the amplitude, with second-order
perturbative computations still to be done.

Instability scenarios in nascent neutron stars and in old accreting stars

Both r-modes andf -modes may be unstable in nascent neutron stars that are rapidly
rotating at birth. Recent work onf -modes in relativistic models (Gaertiget al.; Gaertig
& Kokkotas 2010) finds growth times substantially shorter than previously computed New-
tonian values. In particular, thel = m = 3 andl = m = 4 f -modes have growth times of
103-105 s forΩ nearΩK . In a typical scenario, a star with rotation near the Kepler limit
becomes unstable within a minute of formation, when the temperature has dropped below
1011K. As the temperature drops further, the instability grows to saturation amplitude in
days or weeks. Loss of angular momentum to gravitational waves spins down the star un-
til the critical angular velocity is reached below which the star is stable, at or before the
time at which the core becomes a superfluid. Thel = m = 3 mode could be a source of
observable gravitational waves for supernovae in or near the Galaxy.

The time over which the instability is active depends on the saturation amplitude, the
cooling rate, and the superfluid transition temperature, and all of these have large uncer-
tainties. The time at which a superfluid transition occurs could be shorter than a year, but
recent analyses of the cooling of a neutron star in Cassiopeia A (Pageet al. 2011; Shternin
et al. 2011) suggest a superfluid transition time for that star of order 100 years.

The scenario for thel = m = 2 r-mode instability of a nascent star is similar. The
r-mode instability itself was pointed out by Andersson (1998), with a mode-independent
proof for relativistic stars given by Friedman and Morsink (1998). First computations of the
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growth and evolution were reported by Lindblomet al. (1998) and Anderssonet al. (1999),
with effects of a crust discussed in Lindblomet al. (2000). Intervening work is referred to
in a recent paper by Bondarescuet al. (2008); the simulations reported by Bondarescuet al.
include nonlinear couplings that saturate the amplitude and the alternative possibilities for
viscosity that we have discussed above. Ther-mode’s saturation amplitude is likely to be
lower than that of thef -modes, and it is likely to persist longer because of its low mutual
friction.

As mentioned above, ther-mode instability of neutron stars spun up by accretion has
been more intensively studied in connection with the observed spins of LMXBs. Pa-
paloizou & Pringle (1978) suggested the possibility of accretion spinning up a star until
it becomes unstable to the emission of gravitational waves and reaches a steady state, with
the angular momentum gained by accretion equal to the angular momentum lost to gravi-
tational waves. Following the discovery of the first millisecond pulsar, Wagoner examined
the mechanism in detail for CFS unstablef -modes (Wagoner 2002). Although mutual fric-
tion appears to rule out the steady-state picture forf -modes, it remains a possibility for
r-modes (Bildsten 1998; Anderssonet al. 1999; Anderssonet al. 2000; Wagoner 2002).
Levin (1999) and (independently) Spruit (1999), however, pointed out that viscous heating
of the neutron star by its unstable oscillations will lower the shear viscosity and so increase
the mode’s growth rate, leading to a runaway instability. The resulting scenario is a cycle
in which a cold, stable neutron star is spun up over a few million years until it becomes
unstable; the star then heats up, the instability grows, and the star spins down until it is
again stable, all within a few months; the star then cools, and the cycle repeats.

This scenario would rule outr-modes in LMXBs as a source of detectable gravitational
waves because the stars would radiate for only a small fraction of the cycle. A small
saturation amplitude, however, lengthens the time spent in the cycle, possibly allowing
observability (Heyl 2002). The steady state itself remains a possible alternative in stars
whose core contains hyperons or free quarks (or if the “neutron stars” are really strange
quark stars) (Anderssonet al. 2002; Lindblom & Owen 2002; Wagoner 2002; Reisenegger
& Bonacić 2003; Nayyar & Owen 2006; Haskell & Andersson 2010). Heating the core
increases the bulk viscosity, and with an exotic core, this growth in the bulk viscosity is
large enough to prevent the thermal runaway and allow a steady state. Recent work by
Bondarescuet al. (2007) constructs nonlinear evolutions (restricted to 3 coupled modes)
that include neutrino cooling, shear viscosity, hyperon bulk viscosity and dissipation at the
core-crust boundary layer, with parameters to span a range of uncertainty in these various
quantities. They display the regions of parameter space associated with the alternative
scenarios just outlined – steady state, cycle, and fast and slow runaways. In all cases,
the r-mode amplitude remains very small (∼ 10−5), but because of the long duration of
the instability, such systems are still good candidates for gravitational wave detection by
advanced LIGO class interferometers (Bondarescuet al. 2007; Watts & Krishnan 2009;
Owen 2010).

Dynamical nonaxisymmetric instability

Work on dynamical nonaxisymmetric instabilities is largely outside the scope of this re-
view. They are most likely to be relevant to protoneutron stars and to the short-lived hyper-
massive neutron stars that form in the merger of a double neutron star system. Unless the
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star has unusually high differential rotation, instability requires a large value of the ratio
T/|W | of rotational kinetic energy to gravitational binding energy: comparable to the value
T/|W | = 0.27 that marks the dynamical instability of thel = m = 2 mode of uniformly
rotating uniform density Newtonian models (the Maclauring spheroids). This bar insta-
bility, if present, will emit strong gravitational waves with frequencies in the kHz regime.
The development of the instability and the resulting waveform have been computed numer-
ically in the context of both Newtonian gravity and in full general relativity (see (Houser
et al. 1994; Tohlineet al. 1985; Shibataet al. 2000; Mancaet al. 2007) for representative
studies).

Uniformly rotating neutron stars have maximum values ofT/|W | smaller than 0.14,
apparently precluding dynamical nonaxisymmetric instability. For highly differential rota-
tion, however, Centrellaet al. (2001) found a one-armed (m = 1) instability for smaller
rotation, forT/|W | ∼ 0.14, but for a polytropic index ofN = 3 which is not representative
for neutron stars. Remarkably, Shibataet al. (2002, 2003) then found anm = 2 instability
for T/|W | as low as 0.01, for models with polytropic indexN = 1, representing a stiff-
ness appropriate to neutron stars. These instabilities appear to be related to the existence of
corotation points, where the pattern speed of the mode matches the star’s angular velocity
(Watts, Anderson & Jones 2005; Saijo & Yoshida 2006); Ou and Tohline tie the growth of
the instability to a resonant cavity associated with a minimum in the vorticity to density
ratio (the so-called vortensity) (Ou & Tohline 2006). Collapsing cores in supernovae are
differentially rotating, and these instabilities of proto-neutron stars arise in simulations of
rotating core collapse (Ottet al. 2005; Ott 2009). Because they can radiate more energy
in gravitational waves than the post-bounce burst signal itself, interest in these dynamical
instabilities is strong.
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Abstract. We review here some of the major open issues and challenges in
black hole physics today, and the current progress on the same. It is pointed out
that to secure a concrete foundation for the basic theory as well as astrophysical
applications for black hole physics, it is essential to gain a suitable insight into
these questions. In particular, we discuss the recent results investigating the final
fate of a massive star within the framework of the Einstein gravity, and the sta-
bility and genericity aspects of the gravitational collapse outcomes in terms of
black holes and naked singularities. Recent developments such as spinning up
a black hole by throwing matter into it, and physical effects near naked singu-
larities are considered. It is pointed out that some of the new results obtained in
recent years in the theory of gravitational collapse imply interesting possibilities
and understanding for the theoretical advances in gravity as well as towards new
astrophysical applications.

Keywords : black hole physics – gravitation

1. Introduction

The fundamental question of the final fate of a massive star, when it exhausts its internal
nuclear fuel and collapses continually under the force of its own gravity, was highlighted
by Chandrasekhar way back in 1934 (Chandrasekhar 1934), who pointed out:

“Finally, it is necessary to emphasize one major result of the whole investigation,
namely, that the life-history of a star of small mass must be essentially different from the
life-history of a star of large mass. For a star of small mass the natural white-dwarf stage
is an initial step towards complete extinction. A star of large mass (>Mc) cannot pass into
the white-dwarf stage, and one is left speculating on other possibilities.”

We can see the seeds of modern black hole physics already present in the inquiry made
above on the final fate of massive stars. The issue of endstate of large mass stars has,
however, remained unresolved and elusive for a long time of many decades after that. In
fact, a review of the status of the subject many decades later notes, “Any stellar core with
a mass exceeding the upper limit that undergoes gravitational collapse must collapse to
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indefinitely high central density... to form a (spacetime) singularity” (Report of the Physics
Survey Committee 1986).

The reference above is to the prediction by general relativity, that under reasonable
physical conditions, the gravitationally collapsing massive star must terminate in a space-
time singularity (Hawking & Ellis 1973). The densities, spacetime curvatures, and all
physical quantities must typically go to arbitrarily large values close to such a singularity.
The above theoretical result on the existence of singularities is, however, of a rather gen-
eral nature, and provides no information on the nature and structure of such singularities.
In particular, it gives us no information as to whether such singularities, when they form,
will be covered in horizons of gravity and hidden from us, or alternatively these could be
visible to external observers in the Universe.

One of the key questions in black hole physics today therefore is, are such singular-
ities resulting from collapse, which are super-ultra-dense regions forming in spacetime,
visible to external observers in the Universe? This is one of the most important unre-
solved issues in gravitation theory currently. Theorists generally believed that in such cir-
cumstances, a black hole will always form covering the singularity, which will then be
always hidden from external observers. Such a black hole is a region of spacetime from
which no light or particles can escape. The assumption that spacetime singularities result-
ing from collapse would be always covered by black holes is called the Cosmic Censorship
Conjecture (CCC; Penrose 1969). As of today, we do not have any proof or any spe-
cific mathematical formulation of the CCC available within the framework of gravitation
theory.

If the singularities were always covered in horizons and if CCC were true, that would
provide a much needed basis for the theory and astrophysical applications of black holes.
On the other hand, if the spacetime singularities which result from a continual collapse
of a massive star were visible to external observers in the Universe, we would then have
the opportunity to observe and investigate the super-ultra-dense regions in the Universe,
which form due to gravitational collapse and where extreme high energy physics and also
quantum gravity effects will be at work.

My purpose here is to review the above and some of the related key issues in grav-
itation theory and black hole physics today. This will be of course from a perspective
of what I think are the important problems, and no claim to completeness is made. In
Section 2, we point out that in view of the lack of any theoretical progress on CCC, the
important way to make any progress on this problem is to make a detailed and extensive
study of gravitational collapse in general relativity. Some recent progress in this direc-
tion is summarized. While we now seem to have a good understanding of the black hole
and naked singularity formations as final fate of collapse in many gravitational collapse
models, the key point now is to understand the genericity and stability of these outcomes,
as viewed in a suitable framework. Section 3 discusses these issues in some detail. Re-
cent developments on throwing matter into a black hole and the effect it may have on its
horizon are pointed out in Section 4, and certain quantum aspects are also discussed. The
issue of predictability or its breakdown in gravitational collapse is discussed in Section
5. We conclude by giving a brief idea of the future outlook and possibilities in the final
section.
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2. What is the final fate of a massive star?

While Chandra’s work pointed out the stable configuration limit for the formation of a
white dwarf, the issue of the final fate of a star which is much more massive (e.g. tens
of solar masses) remains very much open even today. Such a star cannot settle either as a
white dwarf or as a neutron star.

The issue is clearly important both in high energy astrophysics and in cosmology. For
example, our observations today on the existence of dark energy in the Universe and its
acceleration are intimately connected to the observations of Type Ia supernovae in the Uni-
verse. The observational evidence coming from these supernovae, which are exploding
stars in the faraway Universe, tells us on how the Universe may be accelerating away and
the rate at which such an acceleration is taking place. While Type Ia supernovae result
from the explosion of a white dwarf star, at the heart of a Type II supernova underlies the
phenomenon of a catastrophic gravitational collapse of a massive star, wherein a powerful
shock wave is generated, blowing off the outer layers of the star.

If such a star is able to throw away enough of matter in such an explosion, it might
eventually settle as a neutron star. But otherwise, or if further matter is accreted onto the
neutron star, there will be a further continual collapse, and we shall have to then explore and
investigate the question of the final fate of such a massive collapsing star. But other stars,
which are more massive and well above the normal supernova mass limits must straight-
away enter a continual collapse mode at the end of their life cycle, without an intermediate
neutron star stage. The final fate of the star in this case must be decided by general relativity
alone.

The point here is, more massive stars which are tens of times the mass of the Sun burn
much faster and are far more luminous. Such stars then cannot survive more than about ten
to twenty million years, which is a much shorter life span compared to stars like the Sun,
which live billions of years. Therefore, the question of the final fate of such short-lived
massive stars is of central importance in astronomy and astrophysics.

What happens then, in terms of the final outcome, when such a massive star dies after
exhausting its internal nuclear fuel? As we indicated above, the general theory of relativity
predicts that the collapsing massive star must terminate in a spacetime singularity, where
the matter energy densities, spacetime curvatures and other physical quantities blow up. It
then becomes crucial to know whether such super-ultra-dense regions, forming in stellar
collapse, are visible to an external observer in the Universe, or whether they will be always
hidden within a black hole and an event horizon that could form as the star collapses. This
is one of the most important issues in black hole physics today.

The issue has to be probed necessarily within the framework of a suitable theory of
gravity, because the strong gravity effects will be necessarily important in such a scenario.
This was done for the first time in the late 1930s, by the works of Oppenheimer and Snyder,
and Datt (Oppenheimer & Snyder 1939; Datt 1938). They used the general theory of
relativity to examine the final fate of an idealized massive matter cloud, which was taken
to be a spatially homogeneous ball which had no rotation or internal pressure, and was
assumed to be spherically symmetric. The dynamical collapse studied here resulted in
the formation of a spacetime singularity, which was preceded by the development of an
event horizon, which created a black hole in the spacetime. The singularity was hidden
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Figure 1. Dynamical evolution of a homogeneous spherical dust cloud collapse, as described by the
Oppenheimer-Snyder-Datt solution.

inside such a black hole, and the collapse eventually settled into a final state which was the
Schwarzschild geometry (see Fig. 1).

There was, however, not much attention paid to this model at that time, and it was
widely thought by gravitation theorists as well as astronomers that it would be absurd for
a star to reach such a final ultra-dense state of its evolution. It was in fact only as late as
1960s, that a resurgence of interest took place in the topic, when important observational
developments in astronomy and astrophysics revealed several very high energy phenomena
in the Universe, such as quasars and radio galaxies, where no known physics was able to
explain the observations of such extremely high energy phenomena in the cosmos. Atten-
tion was drawn then to dynamical gravitational collapse and its final fate, and in fact the
term ‘black hole’ was also popularized just around the same time in 1969, by John Wheeler.

The CCC also came into existence in 1969. It suggested and assumed that what hap-
pens in the Oppenheimer-Snyder-Datt (OSD) picture of gravitational collapse, as discussed
above, would be the generic final fate of a realistic collapsing massive star in general. In
other words, it was assumed that the collapse of a realistic massive star will terminate in
a black hole, which hides the singularity, and thus no visible or naked singularities will
develop in gravitational collapse. Many important developments then took place in black
hole physics which started in earnest, and several important theoretical aspects as well as
astrophysical applications of black holes started developing. The classical as well as quan-
tum aspects of black holes were then explored and interesting thermodynamic analogies
for black holes were also developed. Many astrophysical applications for the real Universe
then started developing for black holes, such as making models using black holes for phe-
nomena such as jets from the centres of galaxies and the extremely energetic gamma rays
bursts.
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Figure 2. A spacetime singularity of gravitational collapse which is visible to external observers in
the Universe, in violation to the cosmic censorship conjecture.

The key issue raised by the CCC, however, still remained very much open, namely
whether a real star will necessarily go the OSD way for its final state of collapse, and
whether the final singularity will be always necessarily covered within an event horizon.
This is because real stars are inhomogeneous, have internal pressure forces and so on, as
opposed to the idealized OSD assumptions. This remains an unanswered question, which
is one of the most important issues in gravitation physics and black hole physics today. A
spacetime singularity that is visible to faraway observers in the Universe is called a naked
singularity (see Fig. 2). The point here is, while general relativity predicts the existence
of singularity as the endstate for collapse, it gives no information at all on the nature or
structure of such singularities, and whether they will be covered by event horizons, or
would be visible to external observers in the Universe.

There is no proof, or even any mathematically rigorous statement available for CCC af-
ter many decades of serious effort. What is really needed to resolve the issue is gravitational
collapse models for a realistic collapse configuration, with inhomogeneities and pressures
included. The effects need to be worked out and studied in detail within the framework
of Einstein gravity. Only such considerations will allow us to determine the final fate of
collapse in terms of either a black hole or a naked singularity final state.

Over the past couple of decades, many such collapse models have been worked out
and studied in detail. The generic conclusion that has emerged out of these studies is that
both the black holes and naked singularity final states do develop as collapse endstates,
for a realistic gravitational collapse that incorporates inhomogeneities as well as non-zero
pressures within the interior of the collapsing matter cloud. Subject to various regularity
and energy conditions to ensure the physical reasonableness of the model, it is the initial
data, in terms of the initial density, pressures, and velocity profiles for the collapsing shells,
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that determine the final fate of collapse as either a naked singularity or a black hole (for
further detail and references see e.g. Joshi 2008).

3. The genericity and stability of collapse outcomes

While general relativity may predict the existence of both black holes and naked singular-
ities as collapse outcome, an important question then is, how would a realistic continual
gravitational collapse of a massive star in nature end up. Thus the key issue under ac-
tive debate now is the following: Even if naked singularities did develop as collapse end
states, would they be generic or stable in some suitably well-defined sense, as permitted
by the gravitation theory? The point here is, if naked singularity formation in collapse
was necessarily ‘non-generic’ in some appropriately well-defined sense, then for all prac-
tical purposes, a realistic physical collapse in nature might always end up in a black hole,
whenever a massive star ended its life.

In fact, such a genericity requirement has been always discussed and desired for any
possible mathematical formulation for CCC right from its inception. However, the main
difficulty here has again been that, there is no well-defined or precise notion of genericity
available in gravitation theory and the general theory of relativity. Again, it is only various
gravitational collapse studies that can provide us with more insight into this genericity
aspect also.

A result that is relevant here is the following (Joshi & Dwivedi, 1999; Goswami &
Joshi, 2007). For a spherical gravitational collapse of a rather general (type I) matter field,
satisfying the energy and regularity conditions, given any regular density and pressure pro-
files at the initial epoch, there always exist classes of velocity profiles for the collapsing
shells and dynamical evolutions as determined by the Einstein equations, that, depending
on the choice made, take the collapse to either a black hole or naked singularity final state
(see e.g. Fig. 3 for a schematic illustration of such a scenario).

Such a distribution of final states of collapse in terms of the black holes and naked
singularities can be seen much more transparently when we consider a general inhomo-
geneous dust collapse, for example, as discussed by Mena, Tavakol & Joshi (2000) (see
Fig. 4).

What determines fully the final fate of collapse here are the initial density and velocity
profiles for the collapsing shells of matter. One can see here clearly how the different
choices of these profiles for the collapsing cloud distinguish between the two final states
of collapse, and how each of the black hole and naked singularity states appears to be
‘generic’ in terms of their being distributed in the space of final states. Typically, the result
we have here is, given any regular initial density profile for the collapsing dust cloud, there
are velocity profiles that take the collapse to a black hole final state, and there are other
velocity profiles that take it to naked singularity final state. In other words, the overall
available velocity profiles are divided into two distinct classes, namely the ones which take
the given density profile into black holes, and the other ones that take the collapse evolution
to a naked singularity final state. The same holds conversely also, namely if we choose a
specific velocity profile, then the overall density profile space is divided into two segments,
one taking the collapse to black hole final states and the other taking it to naked singularity
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Figure 3. Evolution of spherical collapse for a general matter field with inhomogeneities and non-
zero pressures included.

Figure 4. Collapse final states for inhomogeneous dust in terms of initial mass and velocity profiles
for the collapsing shells.
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final states. The clarity of results here gives us much understanding on the final fate of a
collapsing matter cloud.

Typically, all stars have a higher density at the centre, which slowly decreases as one
moves away. So it is very useful to incorporate inhomogeneity into dynamical collapse
considerations. However, much more interesting is the collapse with non-zero pressures
which are very important physical forces within a collapsing star. We briefly consider
below a typical scenario of collapse with a non-zero pressure component, and for further
details we refer to Joshi & Malafarina (2011).

For a possible insight into genericity of naked singularity formation in collapse, we
investigated the effect of introducing small tangential pressure perturbations in the collapse
dynamics of the classic Oppenheimer-Snyder-Datt gravitational collapse, which is an ide-
alized model assuming zero pressure, and which terminates in a black hole final fate as
discussed above. Thus we study the stability of the OSD black hole under introduction of
small tangential stresses.

It is seen explicitly that there exist classes of stress perturbations such that the introduc-
tion of a smallest tangential pressure within the collapsing OSD cloud changes the endstate
of collapse to formation of a naked singularity, rather than a black hole. What follows is
that small stress perturbations within the collapsing cloud change the final fate of the col-
lapse from being a black hole to a naked singularity. This can also be viewed as perturbing
the spacetime metric of the cloud in a small way. Thus we can understand here the role
played by tangential pressures in a well-known gravitational collapse scenario. A specific
and physically reasonable but generic enough class of perturbations is considered so as to
provide a good insight into the genericity of naked singularity formation in collapse when
the OSD collapse model is perturbed by introduction of a small pressure. Thus we have an
important insight into the structure of the censorship principle which as yet remains to be
properly understood.

The general spherically symmetric metric describing the collapsing matter cloud can
be written as,

ds2 = −e2σ(t,r)dt2 + e2ψ(t,r)dr2 + R(t, r)2dΩ2, (1)

with the stress-energy tensor for a generic matter source being given by,T t
t = −ρ, T r

r =

pr, T θ
θ
= T φ

φ
= pθ. The above is a general scenario, in that it involves no assumptions about

the form of the matter or the equation of state.
As a step towards deciding the stability or otherwise of the OSD collapse model under

the injection of small tangential stress perturbations, we consider the dynamical develop-
ment of the collapsing cloud, as governed by the Einstein equations. The visibility or
otherwise of the final singularity that develops in collapse is determined by the behaviour
of the apparent horizon in the spacetime, which is the boundary of the trapped surface re-
gion that develops as the collapse progresses. First, we define a scaling functionv(r, t) by
the relationR = rv. The Einstein equations for the above spacetime geometry can then be
written as,

pr = −
Ḟ

R2Ṙ
, ρ =

F′

R2R′
, (2)

σ′ = 2
pθ − pr

ρ + pr

R′

R
−

p′r
ρ + pr

, (3)
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2Ṙ′ = R′
Ġ
G
+ Ṙ

H′

H
, (4)

F = R(1−G + H) , (5)

The functionsH andG in the above are defined as,H = e−2σ(r,v)Ṙ2, G = e−2ψ(r,v)R′2. The
above are five equations in seven unknowns, namelyρ, pr, pθ, R, F, G, H. Hereρ is the
mass-energy density,pr andpθ are the radial and tangential stresses respectively,R is the
physical radius for the matter cloud, andF is the Misner-Sharp mass function.

It is possible now, with the above definitions ofv,H andG, to substitute the unknowns
R,H with v, σ. Then, without loss of generality, the scaling functionv can be written
as v(ti, r) = 1 at the initial timeti = 0, when the collapse begins. It then goes to zero
at the spacetime singularityts, which corresponds toR = 0, and thus we havev(ts, r) =
0. This amounts to the scalingR = r at the initial epoch of the collapse, which is an
allowed freedom. The collapse condition here isṘ < 0 throughout the evolution, and this
is equivalent to ˙v < 0.

One can integrate the Einstein equations, at least up to one order, to reduce them to
a first order system, to obtain the functionv(t, r). This function, which is monotonically
decreasing int can be inverted to obtain the time needed by a matter shell at any radial
valuer to reach the event with a particular valuev. We can then write the functiont(r, v)
as,

t(r, v) =
∫ 1

v

e−σ
√

F
r3ṽ +

be2rA−1
r2

dṽ . (6)

The functionA(r, v) in the above depends on the nature of the tangential stress perturbations
chosen. The time taken by the shell atr to reach the spacetime singularity atv = 0 is then
ts(r) = t(r, 0).

Sincet(r, v) is in general at leastC2 everywhere in the spacetime (because of the regu-
larity of the functions involved), and is continuous at the centre, we can write it as,

t(r, v) = t(0, v) + rχ(v) + O(r2) (7)

Then, by continuity, the time for a shell located at anyr close to the centre to reach the
singularity is given as,

ts(r) = ts(0)+ rχ(0)+ O(r2) (8)

Basically, this means that the singularity curve should have a well-defined tangent at the
center. Regularity at the center also implies that the metric functionσ cannot have constant
or linear terms inr in a close neighborhood ofr = 0, and it must go asσ ∼ r2 near the
center. Therefore the most general choice of the free functionσ is,

σ(r, v) = r2g(r, v) (9)

Sinceg(r, v) is a regular function (at leastC2), it can be written nearr = 0 as,

g(r, v) = g0(v) + g1(v)r + g2(v)r2 + ... (10)
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We can now investigate how the OSD gravitational collapse scenario, which gives rise
to a black hole as the final state, gets altered when small stress perturbations are introduced
in the dynamical evolution of collapse. For that we first note that the dust model is obtained
if pr = pθ = 0 in the above. In that case,σ′ = 0 and together with the conditionσ(0) = 0
givesσ = 0 identically. In the OSD homogeneous collapse to a black hole, the trapped
surfaces and the apparent horizon develop much earlier before the formation of the final
singularity. But when density inhomogeneities are allowed in the initial density profile,
such as a higher density at the centre of the star, then the trapped surface formation is
delayed in a natural manner within the collapsing cloud. Then the final singularity becomes
visible to faraway observers in the Universe (e.g. Joshi, Dadhich & Maartens 2002).

The OSD case is obtained from the inhomogeneous dust case, when we assume further
that the collapsing dust is necessarily homogeneous at all epochs of collapse. This is of
course an idealized scenario because realistic stars would have typically higher densities at
the centre, and they also would have non-zero internal stresses. The conditions that must be
imposed to obtain the OSD case from the above are given byM = M0 v = v(t) b0(r) = k.
Then we haveF′ = 3M0r2, R′ = v, the energy density is homogeneous throughout the
collapse, and the density is given byρ = ρ(t) = 3M0/v3. The spacetime geometry then
becomes the Oppenheimer-Snyder metric, which is given by,

ds2 = −dt2 +
v2

1+ kr2
dr2 + r2v2dΩ2, (11)

where the functionv(t) is a solution of the equation of motion,dv
dt =

√
(M0/v) + k, ob-

tained from the Einstein equation. In this case we getχ(0) = 0 identically. All the matter
shells then collapse into a simultaneous singularity, which is necessarily covered by the
event horizon that developed in the spacetime at an earlier time. Therefore the final fate of
collapse is a black hole.

To explore the effect of introducing small pressure perturbations in the above OSD sce-
nario and to study the models thus obtained which are close to the Oppenheimer-Snyder,
we can relax one or more of the above conditions. If the collapse outcome is not a black
hole, the final collapse to singularity cannot be simultaneous. We can thus relax the con-
dition v = v(t) above, allowing forv = v(t, r). We keep the other conditions of the OSD
model unchanged, so as not to depart too much from the OSD model, and this should bring
out more clearly the role played by the stress perturbations in the model. We know that
the metric functionσ(t, r) must identically vanish for the dust case. On the other hand, the
above amounts to allowing for small perturbations inσ, and allowing it to be non-zero now.
This is equivalent to introducing small stress perturbations in the model, and it is seen that
this affects the apparent horizon developing in the collapsing cloud. We note that taking
M = M0 leads toF = r3M0.

In this case, in the smallr limit we obtainG(r, t) = b(r)e2σ(r,v). The radial stress
pr vanishes here aṡF = 0, and the tangential pressure turns out to have the form,pθ =
p1r2 + p2r3 + ..., wherep1, p2 are evaluated in terms of coefficients ofm, g, andR and its
derivatives, and we get,

pθ = 3
M0g0

vR′2
r2 +

9
2

M0g1

vR′2
r3 + ... (12)
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As seen above, the choice of the sign of the functionsg0 andg1 is enough to ensure pos-
itivity or negativity of the pressurepθ. The first order coefficientχ in the equation of the
time curve of the singularityts(r) is now obtained as,

χ(0) = −
∫ 1

0

v
3
2 g1(v)

(M0 + vk + 2vg0(v))
3
2

dv . (13)

As we have noted above, it is the quantityχ(0) that governs the nature of the singularity
curve, and whether it is increasing or decreasing away from the center. It can be seen from
above that the initial data matters in terms of the density and stress profiles, the velocity of
the collapsing shells, and the allowed dynamical evolutions that govern and fix the value of
χ(0).

The apparent horizon in the spacetime and the trapped surface formation as the collapse
evolves is also governed by the quantityχ(0), which in turn governs the nakedness or
otherwise of the singularity. The equation for the apparent horizon is given byF/R = 1.
This is analogous to that of the dust case sinceF/R = rM/v in both these cases. So the
apparent horizon curverah(t) is given by

r2
ah =

vah

M0
, (14)

with vah = v(rah(t), t), which can also be inverted as a time curve for the apparent horizon
tah(r). The visibility of the singularity at the center of the collapsing cloud to faraway
observers is determined by the nature of this apparent horizon curve which is given by,

tah(r) = ts(r) −
∫ vah

0

e−σ
√

M0
v +

be2σ−1
r2

dv (15)

where thets(r) is the singularity time curve, and its initial point ist0 = ts(0). Nearr = 0 we
then get,

tah(r) = t0 + χ(0)r + o(r2) . (16)

From these considerations, it is possible to see how the stress perturbations affect the
time of formation of the apparent horizon, and therefore the formation of a black hole or
naked singularity. A naked singularity would typically occur as a collapse endstate when
a comoving observer at a fixedr value does not encounter any trapped surfaces before the
time of singularity formation. For a black hole to form, trapped surfaces must develop
before the singularity. Therefore it is required that,

tah(r) ≤ t0 for r > 0, near r = 0 . (17)

As can be seen from above, for all functionsg1(v) for whichχ(0) is positive, this condition
is violated and in that case the apparent horizon is forced to appear after the formation of the
central singularity. In that case, the apparent horizon curve begins at the central singularity
r = 0 att = t0 and increases with increasingr, moving to the future. Then we havetah > t0
for r > 0 near the center. The behaviour of outgoing families of null geodesics has been
analyzed in detail in the case whenχ(0) > 0 and we can see that the geodesics terminate at
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the singularity in the past. Thus timelike and null geodesics come out from the singularity,
making it visible to external observers (Joshi & Dwivedi 1999).

One thus sees that it is the termg1 in the stressespθ which decides either the black
hole or naked singularity as the final fate for the collapse. We can choose it to be arbitrarily
small, and it is then possible to see how introducing a generic tangential stress perturbation
in the model would change drastically the final outcome of the collapse. For example, for
all non-vanishing tangential stresses withg0 = 0 andg1 < 0, even the slightest perturbation
of the Oppenheimer-Snyder-Datt scenario, injecting a small tangential stress would result
in a naked singularity. The space of all functionsg1 that makeχ(0) positive, which includes
all the strictly negative functionsg1, causes the collapse to end in a naked singularity. While
this is an explicit example, it is by no means the only class. The important feature of this
class is that it corresponds to a collapse model for a simple and straightforward perturbation
of the Oppenheimer-Snyder-Datt spacetime metric.

In this case, the geometry near the centre can be written as,

ds2 = −(1− 2g1r3)dt2 +
(v + rv′)2

1+ kr2 − 2g1r3
dr2 + r2v2dΩ2 , (18)

The metric above satisfies the Einstein equations in the neighborhood of the center of the
cloud when the functiong1(v) is small and bounded. We can take 0< |g1(v)| < ǫ, so that,
the smaller we take the parameterǫ, the bigger will be the radius where the approximation
is valid. We can consider here the requirement that a realistic matter model should satisfy
some energy conditions ensuring the positivity of mass and energy density. The weak
energy condition would imply restrictions on the density and pressure profiles. The energy
density as given by the Einstein equation must be positive. SinceR is positive, to ensure
positivity of ρ we requireF > 0 andR′ > 0. The choice of positiveM(r), which clearly
holds for M0 > 0, and is physically reasonable, ensures positivity of the mass function.
HereR′ > 0 is a sufficient condition for the avoidance of shell crossing singularities. The
tangential stress can now be written, withpr = 0, and is given by

pθ =
1
2

R
R′
ρσ′ (19)

So the sign of the functionσ′ would determine the sign ofpθ. Positivity ofρ + pθ is then
ensured for small values ofr throughout collapse for any form ofpθ. In fact, regardless of
the values taken byM andg, there will always be a neighbourhood of the centerr = 0 for
which |pθ| < ρ and thereforeρ + pθ ≥ 0.

What we see here is that, in the space of initial data in terms of the initial matter
densities and velocity profiles, any arbitrarily small neighborhood of the OSD collapse
model, which is going to end as a black hole, contains collapse evolutions that go to naked
singularities. Such an existence of subspaces of collapse solutions, that go to a naked
singularity rather than a black hole, in the arbitrary vicinity of the OSD black hole, presents
an intriguing situation. It gives an idea of the richness of structure present in the gravitation
theory, and indicates the complex solution space of the Einstein equations which are a
complicated set of highly non-linear partial differential equations. What we see here is the
existence of classes of stress perturbations such that an arbitrarily small change from the
OSD model is a solution going to a naked singularity.
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This then provides an intriguing insight into the nature of cosmic censorship, namely
that the collapse must necessarily be properly fine-tuned if it is to produce a black hole
only as the final endstate. Traditionally it was believed that the presence of stresses or
pressures in the collapsing matter cloud would increase the chance of black hole formation,
thereby ruling out dust models that were found to lead to a naked singularity as the collapse
endstate. It now becomes clear that this is actually not the case. The model described
here not only provides a new class of collapses ending in naked singularities, but more
importantly, shows how the bifurcation line that separates the phase space of ‘black hole
formation’ from that of ‘naked singularity formation’ runs directly over the simplest and
most studied of black hole scenarios such as the OSD model.

It has to be noted of course that the general issue of stability and genericity of collapse
outcomes has been a deep problem in gravitation theory, and requires mathematical break-
throughs as well as evolving further physical understanding of the collapse phenomenon.
As noted above, this is again basically connected with the main difficulty of cosmic censor-
ship itself, which is the issue of how to define censorship. However, it is also clear from the
discussion above, that consideration of various collapse models along the lines as discussed
here does yield considerable insight and inputs in understanding gravitational collapse and
its final outcomes.

4. Spinning up a black hole and quantum aspects

It is clear that the black hole and naked singularity outcomes of a complete gravitational
collapse for a massive star are very different from each other physically, and would have
quite different observational signatures. In the naked singularity case, if it occurs in na-
ture, we have the possibility of observing the physical effects happening in the vicinity of
the ultra-dense regions that form in the very final stages of collapse. However, in a black
hole scenario, such regions are necessarily hidden within the event horizon of gravity. The
fact that a slightest stress perturbation of the OSD collapse could change the collapse final
outcome drastically, as we noted in the previous section, changing it from black hole for-
mation to a naked singularity, means that the naked singularity final state for a collapsing
star must be studied very carefully to deduce its physical consequences, which are not well
understood so far.

It is, however, widely believed that when we have a reasonable and complete quantum
theory of gravity available, all spacetime singularities, whether naked or those hidden inside
black holes, will be resolved away. As of now, it remains an open question if quantum
gravity will remove naked singularities. After all, the occurrence of spacetime singularities
could be a purely classical phenomenon, and whether they are naked or covered should not
be relevant, because quantum gravity will possibly remove them all any way. But one may
argue that looking at the problem this way is missing the real issue. It is possible that in a
suitable quantum gravity theory the singularities will be smeared out, though this has not
been realized so far. Also there are indications that in quantum gravity also the singularities
may not after all go away.

In any case, the important and real issue is, whether the extreme strong gravity regions
formed due to gravitational collapse are visible to faraway observers or not. It is quite
clear that gravitational collapse would certainly proceed classically, at least till quantum
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Figure 5. Even if the naked singularity is resolved by the quantum gravity effects, the ultra-strong
gravity region that developed in gravitational collapse will still be visible to external observers in the
Universe.

gravity starts governing and dominating the dynamical evolution at scales of the order of
the Planck length,i.e. till extreme gravity configurations have been already developed due
to collapse. The key point is the visibility or otherwise of such ultra-dense regions whether
they are classical or quantum (see Fig. 5).

What is important is, classical gravity implies necessarily the existence of ultra-strong
gravity regions, where both classical and quantum gravity come into their own. In fact,
if naked singularities do develop in gravitational collapse, then in a literal sense we come
face-to-face with the laws of quantum gravity, whenever such an event occurs in the Uni-
verse (Wald 1997).

In this way, the gravitational collapse phenomenon has the potential to provide us with
a possibility of actually testing the laws of quantum gravity. In the case of a black hole
developing in the collapse of a finite sized object such as a massive star, such strong gravity
regions are necessarily hidden behind an event horizon of gravity, and this would happen
well before the physical conditions became extreme near the spacetime singularity. In that
case, the quantum effects, even if they caused qualitative changes closer to singularity, will
be of no physical consequence. This is because no causal communications are then allowed
from such regions. On the other hand, if the causal structure were that of a naked singu-
larity, then communications from such a quantum gravity dominated extreme curvature
ball would be visible in principle. This will be so either through direct physical processes
near a strong curvature naked singularity, or via the secondary effects, such as the shocks
produced in the surrounding medium.

Independently of such possibilities connected with gravitational collapse as above, let
us suppose that the collapse terminated in a black hole. It is generally believed that such a
black hole will be described by the Kerr metric. A black hole, however, by its very nature
accretes matter from the surrounding medium or from a companion star. In that case, it
is worth noting here that there has been an active debate in recent years about whether a
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black hole can survive as it is, when it accretes charge and angular momentum from the
surrounding medium.

The point is, there is a constraint in this case for the horizon to remain undisturbed,
namely that the black hole must not contain too much of charge and it should not spin too
fast. Otherwise, the horizon cannot be sustained. It will breakdown and the singularity
within will become visible. The black hole may have formed with small enough charge
and angular momentum to begin with; however, we have the key astrophysical process of
accretion from its surroundings, of the debris and outer layers of the collapsing star. This
matter around the black hole will fall into the same with great velocity, which could be
classical or quantized, and with either charge or angular momentum or perhaps both. Such
in-falling particles could ‘charge-up’ or ‘over-spin’ the black hole, thus eliminating the
event horizon. Thus, the very fundamental characteristic of a black hole, namely its trait of
gobbling up the matter all around it and continuing to grow becomes its own nemesis and
a cause of its own destruction.

Thus, even if a massive star collapsed into a black hole rather than a naked singularity,
important issues remain such as the stability against accretion of particles with charge or
large angular momentum, and whether that can convert the black hole into a naked singu-
larity by eliminating its event horizon. Many researchers have claimed this is possible, and
have given models to create naked singularities this way. But there are others who claim
there are physical effects which would save the black hole from over-spinning this way and
destroying itself, and the issue is very much open as yet. The point is, in general, the sta-
bility of the event horizon and the black hole continues to be an important issue for black
holes that developed in gravitational collapse. For a recent discussion on some of these
issues, we refer to Matsas & da Silva (2007), Matsaset al. (2009), Hubeny (1999), Hod
(2008), Richartz & Saa (2008), Jacobson & Sotiriou (2009, 2010a,b), Barausse, Cardoso
& Khanna (2010), and references therein.

The primary concern of the cosmic censorship hypothesis is the formation of black
holes as collapse endstates. Their stability, as discussed above, is only a secondary issue.
Therefore, what this means for cosmic censorship is that the collapsing massive star should
not retain or carry too much charge or spin; otherwise it could necessarily end up as a naked
singularity, rather than a black hole.

5. Predictability, Cauchy horizons and all that

A concern sometimes expressed is that if naked singularities occurred as the final fate
of gravitational collapse, that would break the predictability in the spacetime. A naked
singularity is characterized by the existence of light rays and particles that emerge from
the same. Typically, in all the collapse models discussed above, there is a family of future
directed non-spacelike curves that reach external observers, and when extended in the past
these meet the singularity. The first light ray that comes out from the singularity marks the
boundary of the region that can be predicted from a regular initial Cauchy surface in the
spacetime, and that is called the Cauchy horizon for the spacetime. The causal structure of
the spacetime would differ significantly in the two cases, when there is a Cauchy horizon
and when there is none. A typical gravitational collapse to a naked singularity, with the
Cauchy horizon forming is shown in Fig. 6.
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Figure 6. The existence of a naked singularity is typically characterized by existence of a Cauchy
horizon in the spacetime. Very high energy particle collisions can occur close to such a Cauchy
horizon.

The point here is, given a regular initial data on a spacelike hypersurface, one would
like to predict the future and past evolutions in the spacetime for all times (see for example,
Hawking & Ellis (1973) for a discussion). Such a requirement is termed the global hyper-
bolicity of the spacetime. A globally hyperbolic spacetime is a fully predictable universe.
It admits a Cauchy surface, the data on which can be evolved for all times in the past as
well as in future. Simple enough spacetimes such as the Minkowski or Schwarzschild are
globally hyperbolic, but the Reissner-Nordstrom or Kerr geometries are not globally hy-
perbolic. For further details on these issues, we refer to Hawking & Ellis (1973) or Joshi
(2008).

Here we would like to mention certain recent intriguing results in connection to the
existence of a Cauchy horizon in a spacetime when there is a naked singularity resulting as
final fate of a collapse. Let us suppose the collapse resulted in a naked singularity. In that
case, there are classes of models where there will be an outflow of energy and radiations
of high velocity particles close to the Cauchy horizon, which is a null hypersurface in the
spacetime. Such particles, when they collide with incoming particles, would give rise to a
very high center of mass energy of collisions. The closer we are to the Cauchy horizon,
higher is the center of mass energy of collisions. In the limit of approach to the Cauchy
horizon, these energies approach arbitrarily high values and could reach the Planck scale
energies (see for example, Patil & Joshi 2010, 2011a,b; Patil, Joshi & Malafarina 2011).

It has been observed recently that in the vicinity of the event horizon for an extreme
Kerr black hole, if the test particles arrive with fine-tuned velocities, they could undergo
very high energy collisions with other incoming particles. In that case, the possibility
arises that one could see Planck scale physics or ultra-high energy physics effects near the
event horizon, given suitable circumstances (Banados, Silk & West 2009; Bertiet al. 2009;
Jacobson & Sotiriou 2010a,b; Weiet al. 2010; Grib & Pavlov 2010; Zaslavskii, 2010).



Key problems in black hole physics today 117

What we mentioned above related to the particle collisions near Cauchy horizon is
similar to the situation where the background geometry is that of a naked singularity. These
results could mean that in strong gravity regimes, such as those of black holes or naked
singularities developing in gravitational collapse, there may be a possibility to observe
ultra-high energy physics effects, which would be very difficult to see in the near future in
terrestrial laboratories.

While these phenomena give rise to the prospect of observing Planck scale physics near
the Cauchy horizon in the gravitational collapse framework, they also raise the following
intriguing question. If extreme high energy collisions do take place very close to the null
surface which is the Cauchy horizon, then in a certain sense it is essentially equivalent
to creating a singularity at the Cauchy horizon. In that case, all or at least some of the
Cauchy horizon would be converted into a spacetime singularity, and would effectively
mark the end of the spacetime itself. In this case, the spacetime manifold terminates at the
Cauchy horizon, whenever a naked singularity is created in gravitational collapse. Since
the Cauchy horizon marks in this case the boundary of the spacetime itself, predictability
is then restored for the spacetime, because the rest of the spacetime below and in the past
of the horizon was predictable before the Cauchy horizon formed.

6. Future perspectives

We have pointed out in the considerations here that the final fate of a massive star continues
to be a rather exciting research frontier in black hole physics and gravitation theory today.
The outcomes here will be fundamentally important for the basic theory and astrophysical
applications of black hole physics, and for modern gravitation physics. We highlighted
certain key challenges in the field, and also several recent interesting developments were
reviewed. Of course, the issues and the list given here are by no means complete or exhaus-
tive in any manner, and there are several other interesting problems in the field as well.

In closing, as a summary, we would like to mention here a few points which we think
require the most immediate attention, and which will have possibly maximum impact on
future development in the field.

1. The genericity of the collapse outcomes, for black holes and naked singularities
need to be understood very carefully and in further detail. It is by and large well-accepted
now, that the general theory of relativity does allow and gives rise to both black holes and
naked singularities as the final outcome of continual gravitational collapse, evolving from
a regular initial data, and under reasonable physical conditions. What is not fully clear yet
is the distribution of these outcomes in the space of all allowed outcomes of collapse. The
collapse models discussed above and considerations we gave here would be of some help
in this direction, and may throw some light on the distribution of black holes and naked
singularity solutions in the initial data space.

2. Many of the models of gravitational collapse analyzed so far are mainly of spherical
symmetric collapse. Therefore, the non-spherical collapse needs to be understood in a
much better manner. While there are some models which illustrate what the departures
from spherical symmetry could do (see e.g. Joshi & Krolak 1996), on the whole, not
very much is known for non-spherical collapse. Probably numerical relativity could be
of help in this direction (see for example Baiotti & Rezzolla 2006), for a discussion on
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the evolving developments as related to applications of numerical methods to gravitational
collapse issues. Also, another alternative would be to use global methods to deal with
the spacetime geometry involved, as used in the case of singularity theorems in general
relativity.

3. At the very least, the collapse models studied so far do help us gain much insight
into the structure of the cosmic censorship, whatever final form it may have. But on the
other hand, there have also been attempts where researchers have explored the physical
applications and implications of the naked singularities investigated so far (see e.g. Harada,
Iguchi & Nakao 2000, 2002; Haradaet al. (2001) and also references therein).

If we could find astrophysical applications of the models that predict naked singular-
ities, and possibly try to test the same through observational methods and the signatures
predicted, that could offer a very interesting avenue to get further insights into this problem
as a whole.

4. An attractive recent possibility in that regard is to explore the naked singularities as
possible particle accelerators as we pointed out above.

Also, the accretion discs around a naked singularity, wherein the matter particles are at-
tracted towards or repulsed away from the singularities with great velocities could provide
an excellent venue to test such effects and may lead to predictions of important obser-
vational signatures to distinguish the black holes and naked singularities in astrophysical
phenomena (see Kovacs & Harko 2010; Pugliese, Quevedo & Ruffini 2011).

5. Finally, further considerations of quantum gravity effects in the vicinity of naked
singularities, which are super-ultra-strong gravity regions, could yield intriguing theoretical
insights into the phenomenon of gravitational collapse (Goswami, Joshi & Singh 2006).
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Abstract. The discovery of dynamical friction was Chandrasekhar’s best known
contribution to the theory of stellar dynamics, but his work ranged from the few-
body problem to the limit of largeN (in effect, galaxies). Much of this work was
summarised in the text “Principles of Stellar Dynamics” (Chandrasekhar 1942,
1960), which ranges from a precise calculation of the time of relaxation, through
a long analysis of galaxy models, to the behaviour of star clusters in tidal fields.
The later edition also includes the work on dynamical friction and related issues.
In this review we focus on progress in the collisional aspects of these problems,
i.e. those where few-body interactions play a dominant role, and so we omit
further discussion of galaxy dynamics.1 But we try to link Chandrasekhar’s
fundamental discoveries in collisional problems with the progress that has been
made in the 50 years since the publication of the enlarged edition.

Keywords : binaries: general – galaxies: kinematics and dynamics – globular
clusters: general – open clusters and associations: general

1. Introduction

Chandrasekhar’s “Principles of Stellar Dynamics” is not his best-known text, but it had
few competitors for many years, and covered a broad range of topics. The later edition
(Chandrasekhar 1960) added a number of lengthy and significant papers mainly on the
statistical approach to collisional stellar dynamics, and was published just over 50 years
ago. In this review we consider a few of the topics considered by Chandrasekhar, and try
to connect his view of the subject with current research.

Since the book is not so well known, and has been virtually supplanted by the book
by Binney and Tremaine (Binney & Tremaine 1987, 2008), it is worth looking over its
contents list. After an observational review, the theory begins with a careful derivation of
the relaxation time of stellar systems, including all the geometry of two-body encounters

∗e-mail: d.c.heggie@ed.ac.uk
1There is one other such problem to which Chandrasekhar contributed, though the paper in question (Chan-

drasekhar 1944) was not reprinted in the book. See Section 2. For more on the collisionless problems studied by
Chandrasekhar, see the paper by N. Wyn Evans (2011) in the present volume.
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and a discussion of the origin of the Coulomb logarithm. It contains a derivation of a
formula for what came to be known as “dynamical friction”, possibly Chandrasekhar’s
most significant and enduring discovery in the field of stellar dynamics. The history and
context of Chandrasekhar’s work in these two topics is nicely discussed in Padmanabhan
(1996), and in the present paper we consider more recent developments in the theory of
dynamical friction in Section 4.

In Chandrasekhar’s book there follows two chapters on collisionless stellar dynamics,
or rather the dynamics of galaxies. After some preliminaries, the first of these considers
the problem of determining what galactic potentials are consistent with the assumption of
a Schwarzschild (Gaussian) distribution of velocities, while the second turns to the prob-
lem of spiral structure. Then there is a long and interesting chapter on collisional stellar
dynamics; specifically, the dynamics of star clusters, a subject which we review here in
Section 3.

Apart from two appendices, at this point the old and new editions of the book differ.
The latter now includes several reprints, some on dynamical friction (a topic we take up
here in Section 4), and a final long paper on the statistics of the gravitational field of a
distribution of point masses, together with its applications to dynamical friction and star
clusters. It is amusing to find that Chandrasekhar titled this last paper “New Methods in
Stellar Dynamics”. One wonders if this was a conscious echo of Poincaré’s famous “Les
Méthodes Nouvelles de la Mécanique Celeste” (see also Hénon 1967). At any rate, one of
Chandrasekhar’s applications of his theory is the starting point for the next section of this
review.

2. The dynamics of binary stars

We begin with a slim paper “On the Stability of Binary Systems” (Chandrasekhar 1944).
It did not make it into his book, but it appears to be Chandrasekhar’s only work on a topic
which has become one of the pillars of collisional stellar dynamics. In Chandrasekhar’s
paper, it is set in the context of a critique by Ambartsumian (Ambartsumian 1937) of an
older idea by Jeans, who had used information on the distribution of binary stars to argue
that the Milky Way was well relaxed.

2.1 The statistical effect of encounters

Chandrasekhar’s estimate for the disruption time scale,τ, of a binary was based on his
theory of the two-point distribution for the gravitational acceleration due to a random dis-
tribution of stars, which led to the formula

τ =
(M1 + M2)1/2

4πG1/2MNa3/2
,

whereM1,M2 are the component masses,a is the semi-major axis, andM,N are the av-
erage individual mass and number density of the field stars. Ambartsumian’s formula, by
contrast, was

τ =
v

4πGMaN ln

(

1+
a2v4

4G2M2

) ,
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wherev is some average speed which we take here to be the velocity dispersion. Notice
that, by contrast, Chandrasekhar’s formula includes no information on the velocity disper-
sion, because the underlying theory describes the spatial correlation of fluctuations but not
their temporal correlation. He gives the impression that the absence of any dependence on
the velocities is a merit, but it later turned out that the velocities of the stars are crucial.
Jeans himself (Jeans 1918) had argued (incorrectly, as it later emerged) that encounters
with field stars would lead to equipartition of kinetic energies, giving all binaries a period
of order

P =
G(M1 + M2)

v3
. (1)

This conclusion was, however, turned upside down by Gurevich & Levin (1950), who
used arguments akin to those of Ambartsumian and obtained formulae for the average rate
of change of the binding energy of a binary as a result of encounters. They concluded that,
if a binary has period much longer than equation (1), then its period will tend to become
longer still (eventually leading to disruption), while if its period is much shorter then it be-
comes still shorter. Their conclusion was correct, and was arrived at independently by Hills
(Aarseth & Hills 1972; Hills 1975) using numerical methods and by Heggie (Heggie 1975)
using mainly analytical approximations. Heggie also used the terms “hard” and “soft” to
signify binaries whose internal binding energy,ε, was larger or smaller, respectively, than
the mean kinetic energy of the field stars.

The case of equal masses has been worked out in a lot of detail, especially in a se-
ries of papers by Hut and colleagues, much of it summarised with tables, figures and
formulae in Heggie & Hut (1993). Applications, of course, require unequal masses in
general, and here our knowledge is much more patchy. Heggie, Hut & McMillan (1996)
were able to give a general formula for exchange encounters with hard binaries (i.e. en-
counters in which the incoming third star takes the place of one of the original binary
components). They used analytical arguments to establish the mass dependence for ex-
treme cases (e.g. one component of very low mass), and filled in the gaps by interpola-
tion in results of numerical experiments. For this purpose they used the starlab package
(http://www.manybody.org/manybody/starlab.html, McMillan & Hut (1996)), which has
very well organised tools for the computation of scattering cross sections. Large numbers
of other results for various specific combinations of masses will be found scattered in the
literature, including Sigurdsson & Phinney (1993) and especially the compendious book of
Valtonen & Karttunen (2006).

A number of extreme parameter ranges have become important for astrophysical rea-
sons, and also these are situations in which the complexities of the mass-dependence of a
cross section may be considerably reduced. On the other hand, as we shall see, the situation
can be considerably richer than the simple notion that soft binaries soften and hard binaries
harden.

The case of a third body (intruder) of relatively low mass has been studied in the
context of the hardening of a black hole-black hole binary in a galactic nucleus (Mikkola
& Valtonen 1992). It led to an interesting debate (Hills 1990; Gould 1991) on whether it is
really true that hard binaries (defined by the ratio of the binding energy of the binary to the
energy of relative motion of the intruder) tend to harden and soft binaries tend to soften.
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Hills had argued that it was the ratio ofspeedsthat mattered, but Quinlan (1996) eventually
vindicated the earlier position. There is now a considerable literature on the problem of a
massive binary in a system of particles of low mass which usesN-body simulations rather
than cross sections.

Another important context where the distinction between fast encounters and energetic
encounters is significant is the study of stellar encounters with planetary systems. This
has been studied by several groups, including Laughlin & Adams (1998); Hills & Dissly
(1989); Malmberg, Davies & Heggie (2010); Spurzemet al. (2009), but here we focus
briefly on the study of Fregeau, Chatterjee & Rasio (2006). In the case under considera-
tion, let us denote the incoming velocity which distinguishes hard from soft binaries (in the
sense of energies) byvc (the “critical” velocity, in the sense that slower encounters cannot
destroy the binary). Because the planetary mass is so low,vc is much smaller than the or-
bital speed of the planet (vorb). These authors find that, indeed, when the encounter speed
is less than a speed of ordervc, the average change in the binding energy of the binary is
positive, i.e. the encounter hardens the binary. But at the same time the planetary system
has been destroyed, because the most likely outcome of a close encounter in this regime
is an exchange encounter leaving the two stars bound. Similarly, in the regime of en-
counter speeds betweenvc andvorb an encounter indeed tends to soften a planetary system,
but not to disrupt it (until encounter speeds of ordervorb are reached). A careful reading
of Fregeau, Chatterjee & Rasio (2006) is recommended for a proper appreciation of the
issues.

The last case of extreme masses that we shall mention is another highly topical one:
that of a single black hole encountering a binary with stellar-mass components. This is
thought to be of importance in the creation of high-velocity stars by scattering off the black
hole at the Galactic Centre (Hills 1988). The literature is considerable, but among those
studies focusing on the three-body aspects of the problem are Zhang, Lu & Yu (2010);
Gvaramadze, Gualandris & Portegies Zwart (2009); Sari, Kobayashi & Rossi (2010); Gua-
landris, Portegies Zwart & Sipior (2005); Yu & Tremaine (2003).

2.2 Wide binaries in the Milky Way

Chandrasekhar’s interest in binary stars was focused on the dynamical evolution of field
binaries, a topic which remains lively up to the present day, with an extensive literature,
especially on the observational side. Before turning to recent developments, however, it
is worth mentioning that the topic had already been considered, before the work of Chan-
drasekhar and Ambartsumian, byÖpik (1932).

This thread of research was then taken up by Oort (1950) who, likeÖpik, was con-
cerned with binaries with one massless component (a comet or meteoroid). While all these
studies used analytical estimates, soon after this numerical integrations came into routine
use, and were applied to this problem by Yabushita (1966) and Cruz-González & Poveda
(1971). The latter authors found that the lifetime exceeded the estimates given by any of the
previous theories which they tested. There were also theoretical developments, however.
Except for Chandrasekhar’s theory, that earlier work had been based on the computation
of the mean square change of velocity (i.e. the relative velocity between the two com-
ponents of a binary), or the mean change in the energy of the binary. As Chandrasekhar
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himself would have recognised, however, it is also necessary to take into account the second
moment of the change in energy (i.e. its mean square value), to construct a kinetic theory
based on a Fokker-Planck treatment. This was accomplished in King (1977) and Retterer
& King (1982).

Further theoretical developments have mainly involved improvements in the physical
model, i.e. the inclusion of significant additional processes, such as encounters with giant
molecular clouds (Weinberg, Shapiro & Wasserman 1987) and with dark matter particles
(Wasserman & Weinberg 1987). Nor are the wide binaries of the Galactic field lacking
interest even after they have dissolved. Then they are also strongly subject to galactic
perturbations, which impose an interesting (and potentially detectable) correlation in den-
sity with a peak when the two components have separated by 100-300pc (Jiang & Tremaine
2010). Finally, it is not self-evident how wide binaries can emerge from the relatively dense
star-cluster environment in which most stars are thought to form, and indeed it seems likely
that significant numbers form during the cluster dissolution process itself (Kouwenhoven
et al. 2010).

3. The dynamics of star clusters

The title of this section is also the title Chandrasekhar chose for the last chapter of his book.
As usual, it opens with a number of generalities, but then it moves on to the important
problem of the escape rate from a star cluster, including the differential escape of stars of
low and high mass. Implicit in this theory is the assumption that the cluster is isolated,
but the next section of his book moves on to consider the effect on a cluster of its galactic
environment. This section begins with an excellent derivation of equations of motion,
“energy”-integral and virial theorem.

3.1 Tidal stability

After the preliminaries, Chandrasekhar takes up the stability of star clusters, using as his
model an ellipsoidal cluster of uniform densityρ. The reason for this is that the gravitational
field (including the tidal field of the galaxy) becomes linear, and the motions of the stars can
be computed explicitly. The frequencies become imaginary whenρ is sufficiently low, and
Chandrasekhar interprets this as the onset of instability. A somewhat similar approach was
taken by Angeletti, Capuzzo-Dolcetta & Giannone (1983), who studied orbits in the nearly
constant-density core of a cluster. They used Floquet analysis to determine the stability
limit and were thus able to extend results to the case of a cluster on a non-circular galactic
orbit.

This section of Chandrasekhar’s book is of particular interest to the author of the
present paper because it turns out to be possible to construct a self-consistent ellipsoidal
model of uniform density by superposition of these exact orbits (Mitchell & Heggie 2007),
though they are indeed unstable when the density is low enough (Fellhauer & Heggie 2005).
Though these models are artificial,2 they are of interest because examples of self-consistent

2The later paper has never been cited so far, much as the referee predicted. The present paper will probably
provide its one and only citation.
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cluster models in a tidal field are rare (Heggie & Ramamani 1995; Bertin & Varri 2008;
Varri & Bertin 2009). These models also give a pointer for the construction of better mod-
els of star clusters than any in existence, in the following sense. These models consist of
the familiar galactic epicycles, but modified by the attraction of the cluster. They are there-
fore retrograde orbits, and it has been known for a long time that there should existstable
retrograde orbits in the vicinity of a star cluster, but outside its tidal radius (Hénon 1970).
Thus one can imagine a sequence of self-consistent cluster models with varying propor-
tions of stars inside and outside the cluster tidal radius, with (say) the models of Heggie &
Ramamani (1995) (which are generalised King models) at one end of the sequence, and the
models of Mitchell & Heggie (2007) at the other.

3.2 Fokker-Planck dynamics

Towards the end of his chapter on star clusters, in which Chandrasekhar has discussed both
escape and relaxation, he laments, “A rigorous theory of galactic clusters must therefore
take both these factors into account. But such a theory is not yet available.” It was not
too long in coming, the essential formalism being established by Kuzmin (1957). But its
power was first demonstrated by Hénon (1961), in a landmark paper which, among other
things, produced a solution of the Fokker-Planck equation (for the relaxation) with a tidal
boundary condition (producing escape). Not only this, but Hénon also realised the critical
role played by binaries.

Hénon’s model was of a very special type, but one which all reasonable solutions
would approach asymptotically. It took almost another 20 years before a general numeri-
cal solution of the equation became feasible (Cohn 1979), though initially restricted to the
case of stars of equal mass, as in Hénon’s model. This refinement was added relatively
quickly, however (Merritt 1981, 1983), albeit in the context ofgalaxyclusters (as opposed
to galactic ones). The subsequent development of this tool was steady: rotation (Good-
man 1983), binary stars formed in three-body encounters (quoted in Cohn 1985) or those
formed tidally (Statler, Ostriker & Cohn 1987) or primordially (Gao et al. 1991) and stellar
evolution (Kim, Chun & Min 1991) were all added; until it became a tool which could
be applied to the modelling of individual star clusters and quite detailed comparison with
observations.

This was not the first kind of code to reach this goal, however. In advance of the
development of Fokker-Planck methods was a method of treating the dynamics of a star
cluster as if it was a self-gravitating gas (Larson 1970). This technique developed with
comparable rapidity, and after only 10 years it was possible to produce synthetic sur-
face density profiles for comparison with observation (Angeletti, Dolcetta & Giannone
1980). These gas models remained of importance, and were responsible for the discovery
of gravothermal oscillations (Sugimoto & Bettwieser 1983), which are the response of
a system to an unstable balance between the relaxation-driven flow of energy and the
redistribution of energy by binary interactions in the core. Interest in this behaviour
slowly waned, but has recently been invoked as a significant mechanism for under-
standing the variety of surface brightness profiles exhibited by well observed star clusters
(Fig. 1).
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Figure 1. Evolution of the core in a directN-body model of the globular cluster NGC6397 (from
Heggie & Giersz (2009)). From top to bottom, the plotted radii are the 1% Lagrangian radius (i.e. the
radius of a sphere, centred at the densest part of the cluster, which contains 1% of the total mass), the
core radius (i.e. the radius at which the density of the cluster falls to a certain fraction of its central
value, though it is actually calculated by a different procedure), and the 0.1% Lagrangian radius.
Radii are given in parsecs, and the horizontal axis is time (in units of 1Myr) after the present. The
cluster core is alternately compact and more extended, on a time scale which is long by comparison
with the central relaxation time; this, and other arguments, suggest that the oscillations are essentially
gravothermal.

3.3 Monte Carlo models

From the numerical point of view, both the Fokker-Planck and gas models are of finite
difference type. It is also possible to solve the former equation with at least two kinds of
Monte Carlo technique. One of these was pioneered by Spitzer and his students (see Spitzer
& Hart (1971) and subsequent papers in the series). Its last serious application appeared
many years ago (Spitzer & Mathieu 1980), and it is probably ripe for revival, as it better
adapted to some important situations (e.g. a time-dependent tide) than some competitors.

An alternative Monte Carlo technique was developed at about the same time (Hénon
1967, 1971), but has been taken up and developed by others, right up to the present
(Stodolkiewicz 1982; Giersz 2006; Chatterjeeet al. 2010). It now includes a rich mix
of important ingredients, not only relaxation and escape, but also the internal (stellar) evo-
lution of single stars and binaries, as well as interactions involving binaries. Despite its
limitations to a steady tidal field, spherical symmetry and zero rotation, it is the method of
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choice for studying virtually all globular star clusters, because it is so fast, without sacri-
ficing much realism. Even the evolution of a rich star cluster like 47 Tuc, which is thought
to have almost 2× 106 stars and a few percent of binaries, can be modelled for a Hubble
time in less than a week on an ordinary computer (Giersz & Heggie 2010). Such modelling
makes possible a range of investigations at the interface with observations, and is very use-
ful for the planning and interpretation of some kinds of observational programmes, such
as searches for radial velocity binaries (Sommarivaet al. 2009). The speed is important,
because we do not knowab initio what initial conditions to use to match a given cluster.
Repeated trial and error, or grid searches, require a fast method.

3.4 N-body methods

Naturally enough, there is nothing inPrinciples of Stellar Dynamicswhich prepares us for
the explosion of interest inN-body methods in the subject, even if we restrict ourselves to
direct summation methods. It started about 20 years after the publication of the book (von
Hoerner 1960), and in 50 years has brought us to the point where it begins to be possible
to study the entire life history of the easiest globular clusters (Hasani Zonooziet al. 2011),
though most still lie beyond our capabilities.

The main problem is the number of stars,N. Figure 2 shows the steady but slow
progress that has been made since 1960. The mean mass of the Galactic globular clusters
being (Mandushev, Staneva & Spasova 1991) of order 1.9× 105M⊙ (and the median mass
is lower still), it might be thought that a large fraction of them are within reach ofN-body
simulation. However, they lose large amounts of mass through evolution over about 12Gyr,
and so, except for a few sparse and large clusters, the initial stages of the evolution prevents
them from being simulated in a reasonable time.

Actually, it is not hard to evolve larger models than those shown in Fig. 2 to well be-
yond core collapse. Figure 3 shows a simulation using as initial conditions those suggested
for the cluster M4 by Heggie & Giersz (2008), except that there areno primordial binaries.
If these had been included (and the suggested abundance is only about 7%) the progress of
the simulation would have been slower by about a factor of 20.

3.5 The escape rate from star clusters

Chandrasekhar (1943a,b) produced two papers on this topic in quick succession. His moti-
vation for this was not simply to understand the lifetime of star clusters, but to elucidate the
role played by dynamical friction (Section 4). Dynamical friction is an aspect of two-body
relaxation which tends to reduce the energy of stars, especially those of high speed, and
which therefore particularly affects escaping stars. Without it, Chandrasekhar showed, the
lifetime of a star cluster would be too short to explain the existence of star clusters with
ages of order a Gyr. Somewhat analogously, it has also been invoked in studies of the
escape of black holes from a galaxy (Kapoor 1985a,b).

In Chandrasekhar’s papers he was, in effect, solving the Fokker-Planck equation as-
suming that escape took place at some fixed speed (which he estimated from the virial
theorem). Similar calculations have been carried out by Spitzer & Harm (1958); King
(1960) and Lemou & Chavanis (2010). Long ago, however, King (1958) pointed out a
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Figure 2. Largest directN-body simulation to date, plotted against publication date. Only dynam-
ically well evolved simulations (roughly speaking, to or beyond “core collapse”; see, for example,
Heggie & Hut (2003)) are included. The last simulation is not yet published at the time of writing
(February 2011), in fact see Hurleyet al. (2008).

number of shortcomings of the Chandrasekhar model, and proceeded to investigate some
of them in subsequent papers. One of these was the spatial inhomogeneity of the star clus-
ter model, which, in the same paper, he investigated by integrating the escape rate over
the cluster. The escape rate formula which he integrated was a more primitive estimate
than Chandrasekhar’s, dating back to the earlier work of Ambartsumian (1938) and Spitzer
(1940). A similar treatment, but based on more elaborate formulae for the local escape rate
were later presented by Saito (1976) and Johnstone (1993).

All the formulae in the papers cited are based on the theory of relaxation, and therefore
include as a factor the Coulomb logarithm. A completely different view of the situation
was taken by Hénon (1960), who showed that relaxation cannot lead to escape from an iso-
lated cluster, essentially because the “period” of a star’s orbit tends to infinity as its energy
approaches zero (from below). He obtained a formula for the escape rate due to discrete,
individual encounters (rather than the diffusive effect of many encounters). Tellingly, it
does not contain the Coulomb logarithm.

One of the comments made by King (1958) was that, however one computes the es-
cape rate, it will change as the cluster evolves. Spitzer & Shapiro (1972) pointed out that
relaxation changes the distribution function of the stars in a cluster, and then a single en-
counter, as envisaged by Hénon, may raise the energy of a star above the energy of escape.
Therefore it is possible that the relaxation time scale does, after all, control the escape rate
from an isolated system, as is commonly assumed.

There have been many numerical studies addressing the problem, but we shall mention
only one (Baumgardt, Hut & Heggie 2002), which showed that another, additional mecha-
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Figure 3. Core- and half-mass radii of anN-body model with 453 000 particles initially. The initial
conditions are described in the text. The model includes stellar evolution and the effect of the Galactic
tide, but no binaries(initially). The initial brief reduction of the core radius is caused by mass
segregation. After about 5Myr, stellar evolution temporarily halts the collapse of the core, but this
resumes, and reaches completion after about 50Myr. Thereafter the small core is sustained by the
formation and dynamical evolution of binary stars, but the core is now unstable to “gravothermal
oscillations”. Both stellar evolution (or rather its associated mass loss) and the evolution of binaries
increase the energy of the cluster, which leads to the expansion of the half-mass radius. The tidal
radius (not shown), which marks the effective boundary between motions dominated by the cluster
and those dominated by the Galaxy, decreases by only about 15% in the time shown. The units of
radius are “N-body units” (see Heggie & Hut (2003)). This simulation took about 2 months.

nism is at play. While it is true that most escapees emerge from encounters deep inside the
cluster, some occur because this process causes the potential well of the cluster to become
shallower, and this in turn causes stars with energies just below the energy of escape to drift
across the escape boundary.

All these issues change when one considers a cluster limited by the tidal field of a
galaxy. At the simplest level, the energy of escape drops and the rate of escape increases,
as was found numerically many years ago (Wielen 1968; Hayli 1970). But the very notion
of escape is complicated. It is possible, at least on the standard model of a star cluster on a
circular galactic orbit, for an escapee to recede arbitrarily far from from the cluster and still
return to it (Ross, Mennim & Heggie 1997). Stars can exist on stable orbits with energies
above the escape energy, and even on orbits which lie outside the conventional tidal radius
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of the cluster (Hénon 1970); see also Section 3.1. Such stars have important effects on the
observable velocity dispersion profile of a globular cluster (Küpperet al. 2010). Matters are
complicated further for clusters onnon-circulargalactic orbits, where there is no conserved
quantity analogous to energy (and therefore no notion of escape energy or even of an escape
boundary). Nevertheless the common view is that, even in these cases, the time scale of
escape is determined by the time of relaxation.

Among early indications that this is not so were numerical results by Vesperini &
Heggie (1997), who showed that the escape rate depended systematically onN, even when
scaled by the relaxation time.N-body models by T. Fukushige and J. Makino (Heggie et al.
1998) showed clearly that escape scales withN in a different way from relaxation. Further
N-body results (Heggie 2001a,b) gave an escape time scale proportional (empirically) to
aboutN0.63, whereas in the same units the relaxation time scales approximately asN/ logN.

The problem was greatly clarified by the work of Baumgardt (2001). He showed that
the scaling could be understood by noting that stars may remain inside a static cluster
for an arbitrarily long time, even with energies above the escape energy (Fukushige &
Heggie 2000), and that this changes the escape time scale from the relaxation time,tr, to
approximatelyt3/4r t1/4cr , wheretcr is the crossing time. For the range ofN studied inN-body
simulations of the time, this results in a dependence close toN0.63, in units such thattcr is
constant.

It is the interaction between this buffer of “potential escapees” and the processes of
relaxation and escape which complicates the overall escape time scale. The effect of this
buffer is sometimes referred to as a “retardation effect”, after a study by King (1959),
which was in turn suggested by a remark of Chandrasekhar (1960, p.209). The point is
that a star which has gained enough energy to escape may, on its way out of the cluster,
experience another encounter which brings it below the escape energy once more. But the
N-dependence of this effect is different from that described in Baumgardt (2001), and there
it is not encounters which retain an escapee, but the dynamics of stars in the field of tidal
and inertial forces.

The scaling does depend on factors such as the initial concentration of the cluster
(Tanikawa & Fukushige 2005, 2010), the extent to which the cluster initially underfills
its tidal radius (Gieles & Baumgardt 2008), and the galactic environment (i.e. the strength
of the tidal field, Lamers, Gieles & Portegies Zwart (2005)). Amazingly, it does not de-
pend significantly on the assumption that the cluster orbit is circular (Baumgardt & Makino
2003); if the orbit is non-circular, the cluster appears to behave like one on a circular or-
bit of intermediate radius. Understanding this fact from a theoretical point of view is a
significant unsolved problem in this area, despite some empirical advances with the aid of
N-body simulations (Küpperet al. 2010). There is also growing observational evidence on
the mass-dependence of cluster disruption, and it is consistent with these theoretical devel-
opments (Boutloukos & Lamers 2003; Gieleset al. 2005; Lamers & Gieles 2006), though
it has to be recognised that other processes come into play beyond the relatively gentle
evaporation of escapees created in encounters. That is a long and old story which we shall
not review here.

Equally old and long is the theory of what is calledpreferentialor differentialescape,
i.e. its dependence on the mass of the escapee. The common opinion is that the escape
rate increases with decreasing mass, but Chandrasekhar’s finding (Chandrasekhar 1960)
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(p.209f) was more subtle. His result was that the escape rate is fastest for stars with a mass
of about 40% of the mean mass. This result was based on the assumption that stars are
in energy equipartition in the cluster, which is inconsistent with a fixed escape velocity.
Nevertheless the result still turns out to hold in star clusters which include stellar evolution
and a low remnant retention fraction (Kruijssen 2009), if the total disruption time of the
cluster is short enough.

4. Dynamical friction

This is another subject with a long and rich history, and it takes us beyond star cluster
dynamics into the dynamics of galaxies and galaxy clusters. In that context, which we
come to at the end of this section, it also takes us away from the collisional problems to
which this review has been devoted. Within collisional stellar dynamics, dynamical friction
is simply part of the mainstream of the theory of relaxation, and does not often receive
separate, explicit mention. There is an interesting experimental check of what is, in effect,
the coefficient of dynamical friction in Theuns (1996). Within limits the comparison is
satisfactory, but this study also shows that direct comparison is not an easy task.

One current problem of collisional stellar dynamics involving dynamical friction ex-
plicitly (and linking with the topics of Section 2) is the fate of black holes in merging
galaxies. Their evolution was outlined in a famous paper of Begelman, Blandford & Rees
(1980), and much subsequent attention has been paid to a protracted period of evolution un-
der the action of dynamical friction, often referred to as “the final parsec problem”. Some
theoretical studies relevant to this problem (scattering of low-mass objects off a massive
binary) are referred to in Section 2.1, and others which refer specifically to the galactic
context include Polnarev & Rees (1994) and Vecchio, Colpi & Polnarev (1994). (Of course
it is a big assumption to suppose that this process of the evolution of pairs of black holes
can be understood entirely in terms of stellar dynamics; the effect of galactic gas and ac-
cretion disks around the black holes may be decisive; but we shall continue to ignore these
in our further review.)

In the stellar dynamical problem Chandrasekhar’s formula has been extended in several
ways, e.g. to a non-uniform background medium (Just & Peñarrubia 2005), one with an
anisotropic velocity distribution (Ideta 2002), or one with a mass spectrum (Ciotti 2010).
N-body techniques are possible, but demanding, because it is known on theoretical grounds
that it is necessary to include the effect of the black holes on the stellar distribution self-
consistently (Iwasawaet al. 2011; Sesana 2010). To reach a regime which can be scaled
robustly to galactic nuclei is a computational challenge comparable to the simulation of
globular clusters (Section 3.4). Progress has been faster than for the globular cluster prob-
lem, however, partly because there is no need (it is assumed) to follow also a binary pop-
ulation in the stellar distribution (Berczik, Merritt & Spurzem 2005; Bercziket al. 2006;
Berentzenet al. 2009).

Black holes are point masses, but the notion of dynamical friction has been extended
(in numerous studies) to problems of the orbital evolution of a satellite galaxy within a
larger galaxy or halo, i.e. to extended bodies. From the theoretical point of view it seems
clear that the behaviour of a rigid satellite (which is the basis of some theoretical studies)
may differ essentially from that of a responsive satellite (Fujii, Funato & Makino 2006). A
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common approach is to use a more-or-less self-consistentN-body simulation and to sum-
marise the results by a calibration of the Coulomb logarithm in the Chandrasekhar formula;
examples include Chan, Mamon & Gerbal (1997); Cora, Muzzio & Vergne (1997); Spin-
nato, Fellhauer, & Portegies Zwart (2003) and Justet al. (2010).

While dynamical friction, as introduced by Chandrasekhar, is a mechanism of colli-
sional stellar systems, galaxies are collisionless (at least, in the regime under discussion
here). Indeed, since Chandrasekhar’s time, it has become clear that there is acollective
process which governs such phenomena as the decay of the orbit of a satellite galaxy in the
halo of its parent galaxy (Tremaine & Weinberg 1984; Weinberg 1986; Colpi & Pallavicini
1998). It might even be concluded that the physical phenomenon which causes the orbital
decay of satellite galaxies has no deeper connection with dynamical friction than the same
dependence on the basic scales of density and velocity dispersion (which allows it to be
expressed by a suitable choice of the Coulomb logarithm). Even more tenuous is the link
between Chandrasekhar’s theory and the decay of a satellite in a partly or purelygaseous
medium, though this too is often referred to as “dynamical friction”. While there is some
danger of confusing the underlying physics, perhaps it is a measure of the appeal of Chan-
drasekhar’s discovery that the term “dynamical friction” has been extended to encompass
such a diversity of astrophysical processes.
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Abstract. Stellar dynamics occupied Chandrasekhar’s interest for a brief inter-
lude between his more prolonged studies of stellar structure and radiative trans-
fer. This paper traces the history of one of his ideas – namely, that the shape
of the galactic potential controls the orientation of the stellar velocity disper-
sion tensor. It has its roots in papers by Eddington (1915) and Chandrasekhar
(1939), and provoked a fascinating dispute between these two great scientists –
less well-known than their famous controversy over the white dwarf stars. In
modern language, Eddington claimed that the integral curves of the eigenvectors
of the velocity dispersion tensor provide a one-dimensional foliation into mu-
tually orthogonal surfaces. Chandrasekhar challenged this, and explicitly con-
structed a counter-example. In fact, the work of neither of these great scientists
was without flaws, though further developments in stellar dynamics were to ul-
timately draw more on Eddington’s insight than Chandrasekhar’s. We conclude
with a description of modern attempts to measure the orientation of the veloc-
ity dispersion tensor for populations in the Milky Way Galaxy, a subject that is
coming into its own with the dawning of the age of precision astrometry.

Keywords: celestial mechanics – stellar dynamics – galaxies: kinematics and
dynamics – galaxies: general – Galaxy: stellar populations

1. Introduction

Chandrasekhar was perhaps the most influential theoretical astrophysicist of his time. This
influence was particularly felt through an outstanding series of research monographs that
continue to be read today. In fact, most astronomers first encounter Chandrasekhar through
the cheap Dover reprints of books likeStellar Structure, Radiative Transfer, Hydrodynamic
and Hydromagnetic StabilityandEllipsoidal Figures of Equilibrium. These books bristle
with formulae, equations, numerical tables, graphs and historical notes, leavened with an
immaculate prose style. They make exciting reading still today because they contain so
much classic astrophysics so lucidly explained.

In his Nobel lecture, Chandrasekhar (1984) wrote “There have been seven periods
in my life. They are briefly: 1) stellar structure, including the theory of white dwarfs
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(1929-1939); 2) stellar dynamics, including the theory of Brownian motion (1938-1943);
3) the theory of radiative transfer, the theory of the illumination and the polarization of
sunlit sky (1943-1950); 4) hydrodynamic and hydromagnetic stability (1952-1961); 5) the
equilibrium and stability of ellipsoidal figures of equilibrium (1961-1968); 6) the general
theory of relativity and relativistic astrophysics (1962-71) and 7) the mathematical theory
of black holes (1974-1983).”

So, Chandrasekhar’s work on stellar dynamics occupied a brief interlude of time. It
began in 1938 as a natural progression of his interests in the structure and evolution of
stars. This was at the height of his famous controversy with Eddington over the fate of
the white dwarf stars. It was over by 1943, when Chandrasekhar was commuting between
his professorship at Yerkes Observatory and the University of Chicago, and the Aberdeen
Proving Ground in Maryland, working on ballistics as part of the war effort. His research
interests had moved towards radiative transfer – the subject which Chandrasekhar himself
has described as the one giving him most satisfaction (Wali 1990).

Chandrasekhar’s (1943) bookPrinciples of Stellar Dynamicsis not as well-known or
as magisterial as some of his others. The work on dynamical friction and dynamics of star
clusters has proved to be of long-lasting value (see e.g., Heggie’s article in this issue). How-
ever, much of the book reads oddly today. There are two long and, to modern eyes, puzzling
chapters devoted to problems in collisionless stellar dynamics, in particular, galaxy models
consistent with the ellipsoidal hypothesis. This term is not much used nowadays, but was
introduced by Eddington (1915) as a generalisation of the triaxial Gaussian distribution
of velocities used by Schwarzschild (1908) to describe the velocities of stars in the solar
neighbourhood. This is the work we shall examine here, and it is fair to say that this is
not Chandrasekhar at his most memorable. But, its connection with the earlier work of
Eddington is fascinating, especially considering the personal relations between these two
great scientists. And even when Chandrasekhar was not at his brilliant best, he could still
find much of interest that others had overlooked.

So, we shall trace out the twists and turns that take us from the founding of stellar
dynamics by Jeans and Eddington at the beginning of the twentieth century to modern
times. Chandrasekhar himself contributed both fresh footpaths and blind alleys to this
mazy route.

2. Eddington and the ellipsoidal hypothesis

Eddington’s (1915) paper that studies the ellipsoidal hypothesis is one of his great ones.
We can do no better than use Eddington’s own words:

“At any point of the system, the directions of the axes of the velocity ellipsoid determine
three directions at right angles. The velocity ellipsoids thus define three orthogonal families
of curves, each curve being traced by moving step by step always in the direction of an
axis of the velocity ellipsoid at the point reached. These curves may be regarded as the
intersections of a triply orthogonal family of surfaces, which we shall call the principal
velocity surfaces. The axes of the velocity ellipsoid at any point are normals to the three
principal velocity surfaces through any point”.
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In modern language, the theory of collisionless systems such as galaxies begins with
the Boltzmann equation:

∂F

∂t
+ v ·

∂F

∂x
−

∂Φ

∂x
·
∂F

∂v
= 0, (1)

whereF is the phase space distribution function andΦ is the gravitational potential. At
every point in the galaxy, we can define a velocity dispersion tensor

σij = 〈(vi − 〈vi〉)(vj − 〈vj〉), (2)

where angled brackets denote averages over the distribution function. The velocity disper-
sion tensorσij is real and symmetric, and therefore by a well-known theorem in linear al-
gebra has mutually orthogonal eigenvectors. Eddington is asserting that the integral curves
of the eigenvectors provide a one-dimensional foliation into surfaces, which he callsthe
principal velocity surfaces.We shall return to the assumptions underlying this assertion
shortly, as it is precisely the point that troubled Chandrasekhar.

Eddington then shows via Lagrange’s equations that a steady state distribution of stars
moving in a gravitational potentialΦ necessarily generates principal velocity surfaces that
are confocal quadrics. Labelling the quadric surfaces by(λ, µ, ν), these are recognised as
ellipsoidal coordinates (e.g., Morse & Feshbach 1953). Eddington now proves two further
theorems. First, suppose that the distribution of velocities has exactly the Schwarzschild
(1908) or triaxial Gaussian form

F ∝ exp

(

−
v2λ
2σ2

λ

−
v2µ
2σ2

µ

−
v2ν
2σ2

ν

)

, (3)

where (vλ, vµ, vν ) are velocity components referred to the locally orthogonal axes and
(σλ, σµ, σν ) are the semiaxes of the velocity ellipsoid. This is the ellipsoidal hypothesis.
Eddington showed that the only solutions for the principal velocity surfaces are spheres.
However, the gravitational potential need not be spherical, but can take the general form

Φ(r, θ, φ) = f(r) +
g(θ)

r2
+

h(φ)

r2 sin2 θ
, (4)

wheref, g andh are arbitrary functions of the indicated arguments. These have sometimes
been called Eddington potentials in the astronomical literature.

Secondly, Eddington considered the more general case of a stellar population with
an arbitrary distribution of velocities. Under the assumption of the existence of principal
velocity surfaces, he showed that the potential can take the general form in ellipsoidal
coordinates

Φ(λ, µ, ν) =
f(λ)

(λ− µ)(λ − ν)
+

g(µ)

(µ− λ)(µ − ν)
+

h(ν)

(ν − µ)(ν − λ)
. (5)

Eddington does not consider the fully triaxial case in detail, but he does study the degen-
erations of the ellipsoidal coordinates into spheroidal coordinates. Here, the stars have
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oblate or prolate density distributions, the principal velocity surfaces are prolate or oblate
spheroids and the velocity dispersion tensor is in general anisotropic. This was the first
attempt to build galaxy models using the separable potentials. Except in the spherical limit,
Eddington did not write down the form of the integrals of motion, leaving that task to his
student, G.L. Clark (1937).

Although Eddington’s paper is not without its flaws, it turned out to be remarkably
prescient, anticipating developments over half a century later.

3. Chandrasekhar’s criticism

In retrospect, Chandrasekhar’s venture into stellar dynamics seems both natural and brave.
It is natural, as it is an obvious progression of his interests in stellar structure and evolu-
tion. It is brave, as it strays onto territory that Eddington had already made his own. The
discipline had been founded by two people – Eddington in his bookStellar Movements
and the Structure of the Universepublished in 1914, and Jeans in his 1917 Adams Prize
essay, published somewhat later in 1919 asProblems of Cosmogony and Stellar Dynamics.
Eddington and Jeans had dominated the subject over the 1920s, with fundamental contribu-
tions, including Jeans’ theorem, the equations of stellar hydrodynamics (sometimes called
the Jeans’ equations), and Eddington’s inversion formula for the distribution function of a
spherical galaxy. Given Chandrasekhar’s worsening relationship with Eddington over these
years, his incursions into this field were almost inevitably opening up a second front.

Chandrasekhar (1939, 1940) announced his entry into the field with two gigantic papers
on the ellipsoidal hypothesis (summarised in Chapters 3 and 4 ofPrinciples of Stellar
Dynamicswhich themselves occupy over a hundred pages). Right away, he detected an
error in Eddington’s paper. Chandrasekhar’s criticism is worth quoting in full:

“The fallacy in Eddington’s argumentation is clear. It is true that we can regard the direc-
tions of the principal axes of the velocity ellipsoid at any given point as being tangential to
the three curves which intersect orthogonally at the point considered. But it is not generally
true that we can regard these curves as the intersections of a triply orthogonal system of
surfaces. Consequently, the notion of principal velocity surfaces introduces severe restric-
tions on the problem, which are wholly irrelevant and certainly unnecessary.”

Here, Chandrasekhar is completely correct. Eddington assumed that the eigenvectors
of the velocity dispersion tensor are the tangent vectors of a triply orthogonal system of
surfaces. This is a sufficient, but not a necessary, consequence of the orthogonality of the
eigenvectors of the dispersion tensor. Eddington (1943) himself conceded as much in his
review of Chandrasekhar’s book. Writing in the journalNature, he stated:

“Chandrasekhar rightly points out a fallacy in a theorem which I gave in 1915 and the
correction makes the conclusion less general than has hitherto been assumed. But he does
not take the opportunity of restating the position. Presumably it is still true that in a steady
system with axial symmetry, the velocity surfaces are confocal quadrics and transverse star
streaming is necessarily excluded, but there is no mention of this”.
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Where did Chandrasekhar’s insight lead? Chandrasekhar first somewhat generalised
the problem by asking for stellar dynamical models with distribution functionsF of the
form

F = F (Q), (6)

whereQ is a quadratic function of the velocities. The coefficients are arbitrary functions
of position. More formally,

Q = v ·M(x) · v +N(x), (7)

whereM andN are matrix and scalar functions of position. This is a generalized ellip-
soidal hypothesis, asQ and hence the phase space densityF is constant on ellipsoids in
velocity space.

Chandrasekhar proceeds by substituting his ansatz for the distribution function into the
Boltzmann equation and separating term by term in the powers of velocity. He extracts a
set of 20 partial differential equations, which he reduces to 6 integrability conditions. Note
that Chandrasekhar does not impose the Poisson equation, as he is interested in finding
the conditions that a stellar population has a distribution function of ellipsoidal form in
an externally imposed potential. He reaches a very surprising conclusion thatfor stellar
systems in a steady state, the potentialΦ must necessarily be characterised by helical
symmetry. The case of axial symmetry is included as a special case.

In other words, using cylindrical polar coordinates (R, φ, z), Chandrasekhar asserts that
the only solutions for the gravitational potential compatible with the generalised ellipsoidal
hypothesis are

Φ = f(R, z + αφ), (8)

wheref is an arbitrary function of the indicated arguments andα is a constant (the recipro-
cal of the pitch of the helix). The integrals of motion are the energyE and the generalisation
of the angular momentum component, namely

I = pφ − αpz (9)

wherepφ andpz are the canonical momenta conjugate toφ andz. Chandrasekhar then
notes that such a potential can have bound orbits only if it is axisymmetric (α = 0) and so
he reaches his final conclusion.For stellar systems with differential motions, which are in
steady states and of finite spatial extent, the potentialΦ must necessarily be characterized
by axial symmetry.

This is a strong claim and we shall shortly see that, like Eddington’s work, it is not
entirely correct. A surprising aspect is that, having realised that Eddington had introduced
unnecessarily restrictive assumptions into the problem, Chandrasekhar is not troubled by
that fact that his more general approach finds fewer solutions than Eddington – and indeed
doesn’t find the solutions with quadric principal velocity surfaces at all! Even more curi-
ously, Chandrasekhar recognises that the phase space distributionF is an integral of mo-
tion, quoting Whittaker’s (1936) book onAnalytical Dynamicsas a reference. He therefore
knows that his problem is exactly equivalent to seeking all potentials that admit integrals of
motion quadratic in the velocities. But, this problem is also (partly) solved in Whittaker’s
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book, which provides a derivation of the separable potentials in spheroidal coordinates,
though not ellipsoidal, from the assumption of quadratic integrals.

A new result of Chandrasekhar is that he provides an explicit counter-example to Ed-
dington’s assumption. The helically symmetric systems indeed remain the only ones known
to us which do not possess mutually orthogonal principal velocity surfaces, but do satisfy
the ellipsoidal hypothesis. They are not of much astrophysical interest as they do not re-
semble galaxies, but they remain of considerable intellectual interest.

Another insight of Chandrasekhar that has proved its worth is his repeated emphasis
on the principle of equivalence. By this, he means that if several different models can be
found sharing the same gravitational potential, then a more complex model that does not
satisfy the ellipsoidal hypothesis can be built by weighted linear superposition. This idea
has often been exploited in modern times to build realistic models by superpositions of
analytic distribution functions (e.g., Fricke 1952; Dejonghe 1989; Emsellem, Dejonghe &
Bacon 1999).

4. A modern approach

Let us now state and give the solution to Chandrasekhar’s problem anew from the point
of view of a modern dynamicist. Jeans’ theorem tells us that the distribution function of
a collisionless system depends only on the globally defined, isolating, integrals of motion.
It therefore follows thatQ must be an integral of motion. Chandrasekhar’s problem is
exactly equivalent to identifying all those potentials that admit integrals of motion at most
quadratic in the velocities. This is a problem of widespread interest in both mathematics
and physics, with an enormous literature and history.

Integrals of motion that are linear in the velocities always result from geometric sym-
metries of space. This is sometimes called Noether’s theorem (see e.g., Landau & Lifshitz
1976; Arnold 1978). It follows from the fact that the Lagrangian is invariant with respect
to the corresponding transformations, which are linear in the generators of the Euclidean
group of symmetries. Examples include the invariance of the angular momentum compo-
nentpφ in axisymmetric potentialsΦ(R, z), and the invariance of the linear momentum
componentpz in translationally invariant potentialsΦ(x, y). Chandrasekhar’s helical solu-
tion is the most general possible, with rotationally and translationally invariant potentials
given by the limitsα → 0 andα → ∞ respectively.

Integrals of motion that are quadratic in the velocities always result from separability
of the Hamilton-Jacobi equation in some coordinate system. Many authors discovered
some or all of the potentials for which the Hamilton-Jacobi equation is separable in the
confocal ellipsoidal coordinates or their degenerations (e.g., Eddington 1915; Weinacht
1924; Whittaker 1936; Clark 1937; Eisenhart 1948; Lynden-Bell 1962). These systems
possess integrals of the motion quadratic in the velocities by construction, as the Hamilton-
Jacobi equation only has such terms in it! The fact that separability of the Hamilton-Jacobi
equation is both a necessary and sufficient condition is a much more difficult result to prove.
It was done for the first time in Makarovet al. (1967).

Although written from the viewpoint of particle physicists, Makarovet al. (1967)
follow essentially the same route as Chandrasekhar in Chapter 3 ofPrinciples of Stellar
Dynamics. That is, they ask for the Poisson bracket of the integral of motionQ with
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the HamiltonianH to vanish. This is mathematically identical to requiring thatQ satisfy
the collisionless Boltzmann equation, as Chandrasekhar did. The main difference is that
Makarovet al. substantially simplifyQ by rotations and translations, before requiring that
Q commute with the HamiltonianH . This considerably reduces the mathematical com-
plexity of the problem, enabling them to find all possible solutions (including the separable
ones that Chandrasekhar had missed).

Before passing to later developments, it is worth remembering that Chandrasekhar and
Eddington had disagreed over the white dwarf stars and the endpoints of stellar evolution
(see Vibert Douglas 1956; Wali 1997; Chandrasekhar 1988 for various perspectives on this
affair). In retrospect, it is clear that Eddington behaved badly over the white dwarfs, not
so much because he was wrong – that can (and should) happen to every scientist! – but
because he used his seniority to stifle the work of a younger colleague.

Is it possible that Chandrasekhar, hurt by the reception of what would ultimately prove
to be a Nobel Prize winning achievement, was unable to appreciate fully the advantages
in Eddington’s approach in stellar dynamics? True, he had detected an error in Edding-
ton’s (1915) paper, but Eddington in the end saw closer to the truth of the matter in stellar
dynamics. Eddington introduced a hypothesis – the principal velocity surfaces – that was
not strictly-speaking necessary and would ultimately be discarded by later scientists. But,
it proved to be a physically fruitful hypothesis that led Eddington to an important class of
models. Consequently, later developments were to build more on Eddington’s work than
Chandrasekhar’s, as we will now see.

5. Later developments

Further advances had to wait till the late fifties and early sixties, when the subject was
revived by Lynden-Bell (1962) with a particularly original investigation. Rather than start-
ing from an assumption that the integrals are quadratic in the velocities, Lynden-Bell per-
mitted the integrals to have any form (polynomial or transcendent). Instead, he assumed
that the steady-state is one of a set through which the system may secularly evolve whilst
preserving the existence of the integrals of motion. This led to the enumeration of all poten-
tials with such isolating integrals – prominent among them being the separable potentials
in ellipsoidal coordinates and their degenerations. At the time, the flattening of elliptical
galaxies was believed to be caused primarily by rotation rather than velocity anisotropy.
Hence, the application of the potentials to galaxies remained unexplored in the West.

This was not true in the former Soviet Union, as a remarkable and sadly neglected
paper by Kuzmin (1956) – citing the influences of Eddington (1915) and Clark (1937)
– had already used the separable potentials in spheroidal coordinates to build an oblate,
axisymmetric model of the Galaxy. Kuzmin (1973) was also the first to write down the
fully triaxial case, and study its orbital structure, identifying the 4 characteristic classes
of orbits: box, inner and outer long axis tubes and short axis tubes (see e.g., Binney &
Tremaine 1987). These models became well-known in the West only after they had been
re-discovered and extended by de Zeeuw (1985). Kuzmin (1973) and de Zeeuw (1985)
showed that an ellipsoidally stratified model with density

ρ =
ρ0

(1 +m2)2
, m2 =

x2

a2
+

y2

b2
+

z2

c2
(10)
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possesses an exactly separable gravitational potential in confocal ellipsoidal coordinates.
The easiest way to demonstrate this is by making use of the methods and formulae in
Chandrasekhar’s (1968) finest and most beautiful book,Ellipsoidal Figures of Equilibrium.
This is an important result as it showed that realistic and physically motivated models of
elliptical galaxies could be built from separable potentials. De Zeeuw also demonstrated a
number of beautiful properties of these models, including the classification of their orbits
in integral and action space.1 This led to a flowering of interest in the models, as evidenced
by the papers inIAU Symposium 127: The Structure and Dynamics of Elliptical Galaxies
(de Zeeuw 1987). This can be seen as the culmination of over seventy years of astronomical
research on the subject, from Eddington, through Chandrasekhar, Lynden-Bell and Kuzmin
to modern times.

Even though their mass density falls off faster than the luminosity density of giant ellip-
ticals, and even though they are cored in the central parts rather than cusped, the separable
models still occupy a special place in modern galactic dynamics. This is because the orbital
structure of the models is generic for all flattened triaxial systems without figure rotation.
Although the models do not contain any irregular or chaotic orbits, for many applications
in galactic dynamics, this is unimportant, as the fraction of phase space occupied by truly
irregular orbits is believed to be small (Goodman & Schwarzschild 1981).

6. The alignment of the velocity dispersion tensor

Modern interest in the subject (e.g., Smith, Evans & An 2009a,b; Binney & McMillan
2011) has been given additional impetus by large-scale photometric and spectroscopic sur-
veys of hundreds of thousands of stars in the Milky Way Galaxy itself. If proper motions
are also available, then this raises the possibility that all the components of the velocity
dispersion tensor can be computed directly from the data. There have been a number of
interesting recent attempts to do this, both for halo and disk populations. Although sample
sizes are presently still small, and distance errors a serious hazard, matters will substantially
improve in the next few years.

For example, theSloan Digital Sky Survey(SDSS, Yorket al. 2000) carried out re-
peated photometric measurements in an equatorial stripe, known as Stripe 82, primarily
with the aim of supernova detection. Bramichet al. (2008) then provided a public archive

1By now, these potentials had come to be known as Stäckel potentials in the astronomical literature. This
seems unwarranted. First, it is poor practice in physics to associate a name with an equation if a perfectly adequate
descriptive term exists. On these grounds alone, the term ‘separable potential’ is preferable to ‘Stäckel potential’.
And, second, there is no reason to associate the name of Paul Stäckel with coordinate systems and potentials
that he never wrote down! Stäckel was a prominent differential geometer, later Professor of Mathematics at
Heidelberg. In hisHabilitationschrift in 1891 at Halle, Stäckel wrote down the condition for the Hamilton-Jacobi
equation to separate in a given coordinate system on a general Riemannian manifold in the form of the vanishing
of a determinant (which has reasonably enough come to be called the Stäckel determinant). Stäckel did not derive
the coordinate systems in Euclidean 3-space for which his determinant vanishes, far less the form of the separable
potentials in these coordinates. This work was left to Weinacht (1924) and Eisenhart (1948). In fact, Stäckel’s
result is limited, as it does not even provide a comprehensive test for separability. Stäckel’s determinant for a
separable system only vanishes if it is written down in the separable coordinate system itself. The finding of a
general criterion for identifying whether a potential is separable in some coordinate system remains an outstanding
research problem.



Chandrasekhar and modern stellar dynamics 145

-400 -200 0 200 400

-400

-200

0

200

400

vr (km/s)

v θ
 (

km
/s

)

-400 -200 0 200 400

-400

-200

0

200

400

vr (km/s)
v f

 (
km

/s
)

Density

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

Figure 1. The efficiency corrected velocity distributions in the(vr, vθ) and(vr, vφ) planes for the
sample of 1,600 subdwarfs with1 kpc < |z| < 4 kpc. The dashed lines show the orientation of
the tilts, which are very close to spherical alignment. The apparent non-Gaussianity in the(vr, vφ)

distribution is due to the variation of the efficiency correction across this plane. [From Smith et al.
(2009b)].

of light-motion curves in Stripe 82 complete down to magnitude21.5 in theu, g, r andi
photometric bands, and to magnitude20.5 in z. This reaches almost 2 magnitudes fainter
than the SDSS/USNO-B catalogue (Munnet al. 2004), making it the deepest large-area
photometric and astrometric catalogue available. Smithet al. (2009a,b) extracted a sample
of ∼1,600 halo subdwarf stars via a reduced proper motion diagram. Their radial velocities
are calculated from the SDSS spectra and their distances are estimated from photometric
parallaxes, thus giving the full phase space information. Although the sample is not kine-
matically unbiased, the detection efficiency can be calculated and corrections made for any
biases.

Figure 1 shows the velocity distributions of the SDSS Stripe 82 subdwarfs. These halo
stars lie at Galactocentric cylindrical polar radii between 7 and 10 kpc, and at depths of
4.5 kpc or less below the Galactic plane. The good alignment of the velocity ellipsoid
in spherical polars is already apparent from the velocity distributions in the (vr, vθ ) and
(vr, vφ) planes. Smithet al. find that the velocity dispersion tensor of the halo subdwarfs
has semiaxes (σr, σφ, σθ) = (143 ± 2, 82 ± 2, 77 ± 2) km s−1. The misalignment from
the spherical polar coordinate surfaces can then be described by the correlation coefficients
and the tilt angles using

Corr[vi, vj ] =
σ2

ij

(σ2

iiσ
2

jj)
1/2

, (11)

and

tan(2αij) =
2σ2

ij

σ2

ii − σ2

jj

. (12)
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The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is
found to be consistent with zero for two of the three tilt angles, and very small for the third.
Specifically, Smithet al. find:

Corr[vr, vθ] = 0.078±0.029, αrθ = 3.◦4±1.◦3,

Corr[vr, vφ] = −0.028±0.039, αrφ = −2.◦2±3.◦3, (13)

Corr[vφ, vθ] = −0.087±0.047, αφθ = −37.◦4±20.◦4.

In Eddington’s language, these stars have spherical principal velocity surfaces to an ex-
cellent approximation. In a slight extension of the earlier results of Eddington (1915) and
Chandrasekhar (1939), Smithet al. (2009b) prove that:If the potential is nonsingular, it is
a sufficient condition for spherical symmetry that one of the non-degenerate eigenvectors
of the velocity dispersion tensor is aligned radially everywhere.

Of course, Smithet al. (2009b) did not demonstrate that the velocity dispersion ten-
sor is aligned everywhere in spherical polar coordinates. They showed that the alignment
is very close to spherical for halo subdwarfs at heliocentric distances of< 5 kpc along
the∼ 250 deg2 covered by SDSS Stripe 82. Nonetheless, they argued that this is still a
striking and unexpected result over a range of Galactic locations that provides a new line
of attack on the awkward question of the shape of the Milky Way’s dark halo. Binney &
McMillan (2011) concur that local measurements are not enough to constrain the shape
of the Galaxy’s potential. Further work on the alignment of the velocity ellipsoid of halo
populations is highly desirable.

By contrast, the behaviour of the velocity ellipsoid of disk populations has been more
widely studied, not least because of its importance for calculations of the asymmetric drift
and the Oort Limit. Based on evidence from orbit integrations, Binney & Tremaine (1987)
suggest that the tilt may lie midway between spherical and cylindrical polar alignment. This
is also the expectation from models based on potentials separable in spheroidal coordinates
(Statler 1989). There have been three recent determinations directly from data by Siebert
et al. (2008), Fuchset al. (2009) and Smith, Evans & Whiteoak (2011).

Siebertet al. (2008) extracted 763 red clump stars from theRadial Velocity Experiment
dataset (RAVE, Zwitteret al. 2008), spanning a distance interval from the Sun of 500 to
1500 pc. The tilt of the velocity ellipsoid of stars so close to the Galactic plane is affected
both by the structure of the Galactic disk and and the flattening of the dark halo. Siebert
et al. find that the velocity ellipsoid is tilted towards the Galactic plane with an inclination
of 7.◦3 ± 1.◦8. This is entirely consistent with alignment in spherical polar coordinates.
Siebertet al. compare this value to computed inclinations for two mass models of the
Milky Way. The measurement is consistent with a short scalelength of the stellar disc (≈ 2
kpc) if the dark halo is oblate or with a long scalelength (≈3 kpc) if the dark halo is
spherical or prolate.

Fuchset al. (2009) used an enormous sample of∼ 2 million M dwarfs derived from
theSloan Digital Sky SurveyData Release 7 (Abazajianet al. 2009). Although the proper
motions and photometric distances of these stars are available, unfortunately the radial
velocities are not. Fuchset al. estimated the radial velocities via the method of deprojection
of proper motions. They found an anomalously large tilt reaching an inclination of20◦ at
heights above the Galactic plane of 800 pc, whereas spherical alignment would predict an
inclination of≈ 5◦. McMillan & Binney (2009) have argued that this surprisingly large
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Figure 2. The variation ofσRz and the corresponding angleαRz as a function of height from the
plane. The dashed red line is the assumed halo tilt (i.e. aligned in spherical polars). The blue and
cyan points correspond to disc stars with metallicities−0.8 ≤ [Fe/H] ≤ −0.5 and[Fe/H] ≥ −0.5,
respectively. [From Smithet al. (2011)].

value may be spurious, a consequence of correlations between velocities and positions of
stars, which renders the method of deprojection invalid.

Finally, Smithet al. (2011) again use the very deep light-motion catalogue for Stripe 82
(Bramichet al. 2008) to extract a sample of disk stars, complete with radial velocities from
SDSS spectra and photometric metallicities. These stars are confined to a narrow range of
cylindrical polar radius between7 ≤ R ≤ 9 kpc. However, there are enough stars to split
the data into three ranges in metallicity (−1.5 ≤ [Fe/H] ≤ −0.8,−0.8 ≤ [Fe/H] ≤ −0.5
and−0.5 ≤ [Fe/H]), and for each metallicity bin to divide the data into four ranges in
z (0 ≤ |z| ≤ 0.8, 0.8 ≤ |z| ≤ 1.1, 1.1 ≤ |z| ≤ 1.5 and1.5 ≤ |z| ≤ 2.2 kpc). This
gives around 500 to 800 stars per bin. The variation with height and metallicity is shown
in Figure 2. The dotted line corresponds to what we would expect for a velocity ellipsoid
aligned in spherical polar coordinates. The metal-rich and medium-metallicity stars are
arguably consistent with the dotted line, and hence consistent with the result of Siebert
et al. (2008). In general, the stars in the lowest metallicity bins (not plotted in Figure 2)
exhibit tilt angles which are larger than this, albeit with very large error bars.

Fortunately, the very-near future comprises the dawning of the Age of Precision As-
trometry. The GAIA satellite (e.g., Gilmore 2007) will provide tangential velocities for
44 million stars and distances for 21 million stars with an accuracy better than 1 per cent.
There is therefore a realistic prospect that the behaviour of the velocity ellipsoid for both
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disk and halo populations over a swathe of locations in the Milky Way Galaxy will be
known shortly.
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Abstract. I outline methods for calculating the solution of Monte Carlo Radia-
tive Transfer (MCRT) in scattering, absorption and emission processes of dust
and gas, including polarization. I provide a bibliography of relevant papers on
methods with astrophysical applications.
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1. Introduction

The Monte Carlo method was invented by Stanislaw Ulam and John von Neumann to
study neutron transport during the atomic bomb program of World War II. According to
Wikipedia, because the work was secret, a code name was needed, so they chose Monte
Carlo, after the famous Casino in Monaco which Ulam’s uncle frequented. At this time and
for several decades after, the pressing radiative transfer problems in astrophysics were in
stellar atmospheres and interiors, which fortunately are 1-D problems that could be solved
with other, much faster methods. Many clever integral and differential equation techniques
were devised to calculate sophisticated stellar atmosphere models, including line transfer
and stellar winds. These methods are reviewed in several standard texts, e.g., Mihalas
(1978). Scattering and polarization were always the most complicated aspects of these
methods, and were therefore often ignored. Not surprisingly, these were tackled very early
by S. Chandrasekhar (1946, 1960).

As radiative transfer began to be applied to other kinds of objects that are not as spher-
ical as stars, it became necessary to consider multi-dimensional geometries and scattering.
As an example, both forming and evolved stars are often surrounded by dusty disks and/or
clumpy envelopes and outflows. The asymmetric circumstellar geometries produce very
different spectral energy distributions (SEDs) than 1-D models can account for. Galaxies
can appear bluer than expected if scattering from interstellar dust is not taken into account.
A method that is ideally suited to solve these types of problems is the Monte Carlo method.

∗e-mail: bwhitney@astro.wisc.edu
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I was fortunate to have my thesis advisor, Art Code, suggest this method to study polariza-
tion in magnetic white dwarfs, back in the 1980s. I then applied this method in the area of
star formation, where 2-D radiative transfer proved very useful in interpreting the disk and
bipolar structures of Young Stellar Objects (YSOs). Since this time, many scientists have
developed new methods to calculate, e.g., the radiative equilibrium solution for dust, gas
line and continuum transfer, photoionization, polarization, and relativistic radiative transfer
(references for these methods and applications are given later in the text). Now the Monte
Carlo method is in widespread use in astronomy and is an exciting area to get into.

This article is designed for readers who are interested in learning the Monte Carlo
method for radiative transfer in astrophysics. It starts with the basics needed to write a
complete but simple Monte Carlo scattering code (Section 2), and then shows more com-
plicated but common scattering problems (Section 3), dust emission (Section 4.1-4.5), and
gas emission (Section 4.6). Not everything is described in detail, e.g., line scattering and
gas emission, but numerous references are cited. I have made an attempt to include the
most relevant and up-to-date references on methods, but I surely have missed some and I
apologize for this.1

2. Monte Carlo basics and a simple scattering problem

In the Monte Carlo method for radiative transfer (MCRT), probabilistic methods are used
to simulate the transport of individual ‘photon packets’ (which we will abbreviate as ‘pho-
tons’) through a medium. In this ‘random walk’, we just have to describe all the radiation
sources, trace a path for each photon describing all interactions, and tabulate parameters of
interest, such as intensity, flux, angle of exit, position of exit (for imaging), and wavelength.
These should converge to a mean and become statistically significant when a large number
of photons are processed. Many problems require iteration, and clever methods have been
developed to handle this as well as high optical depths efficiently, as will be described later.
In this section, we will describe the basic methods needed to solve a simple scattering prob-
lem, that of isotropic scattering in a plane-parallel atmosphere (see also Watson & Henney
2001, and Gordonet al. 2001 for an overview of the MCRT scattering solution). This is a
problem that Chandrasekhar (1946, 1960) calculated analytically. His simplest case was a
semi-infinite atmosphere, that is infinite in thex, y, and−z directions and photons emerge
from the top of the atmosphere, defined atz = 0. This is our most time-consuming case,
which can be approximated by a plane parallel atmosphere with a large optical depth (τ = 7
is sufficient) from bottom to top. Coulson, Dave & Sekera (1960) calculated finite thick-
ness atmospheres using Chandrasekhar’s method. Our code can be tested by comparing to
Coulsonet al.’s tables, recently updated by Natraj, Li & Yung (2009).

2.1 The Fundamental Principle: sampling probability distributions

The essence of the Monte Carlo Method is sampling from probability distribution functions
(PDFs), and this is referred to as the ‘Fundamental Principle’. To sample a quantityx0 from

1Please send me any relevant references and I will update the online version of this document.
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a PDFP(x), we need to invert the cumulative probability distribution (CPD),ψ(x0), which
is the integral ofP(x):

ψ(x0) =

∫ x0

a
P(x)dx

∫ b

a
P(x)dx

. (1)

As x0 ranges froma to b, ψ(x0) ranges from 0 to 1 uniformly (the proof of this can be found
in Duderstadt & Martin 1979; see also Kalos & Whitlock 2008 or other standard Monte
Carlo texts). Thus, to sample a ‘random variate’x0, we just need to call a random number
generator that samples from 0 to 1 uniformly (we call this ‘uniform random deviate’ξ),
and invert equation (1) to getx0.

To illustrate, we give the example of sampling the optical depth that a photon travels
before being absorbed or scattered. The probability that a photon travels an optical depthτ

without interacting is
P(τ)dτ = e−τdτ. (2)

Applying the fundamental principle:

ψ(τ) =

∫ τ0

0
e−τdτ

∫ ∞
0

e−τdτ
= 1− e−τ0 = ξ. (3)

Inverting this gives
τ0 = − log(1− ξ), (4)

whereξ is the uniform random deviate returned from the random number generator sub-
routine. It is worth investigating the algorithm used by your compiler to find out how many
numbers it generates before repeating. A good source for a discussion on random number
generators and a recommended algorithm is given in Numerical Recipes (Presset al. 2007).

Sampling a scattering angle from an isotropic distribution (P(µ, φ)dµdφ = dµ/2dφ/
(2π)) is also very straightforward, giving

µ0 = 2ξ1 − 1
φ0 = 2πξ2

(5)

whereµ = cosθ, dµ = sinθdθ.
We discuss in Section 3 different methods for sampling from more complicated PDFs.

Kalos & Whitlock (2008) describe in detail different sampling methods. Carter & Cashwell
(1975) describe methods relevant to radiative transfer, such as sampling from a Planck
function.

2.2 The random walk

To calculate this problem, we emit photons from the bottom of a plane-parallel atmosphere,
definingτz = 0, and the top of the atmosphere isτz = τatm. The initial photon position is
x, y, z = 0, 0, 0, and the initial direction isµ0, φ0 = 0. Sample optical depth from Eq. (4),
and move the photon to a new position:τznew= τzold+ µ ∗ τ. Check to see ifτznewis greater
thanτatm. If not, sample direction from Eq. (5) and continue to randomly walk until the
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photon exits. When the photon exits the top of the atmosphere, tabulate its angle of exit.
Bin the angles uniformly betweenµ = 0− 1 andφ = 0− 2π:

i = integer(µNµ) + 1 (6)

j = integer(φ ∗ Nφ + 0.5)+ 1; i f j > Nφ, j = 1 (7)

whereinteger is a function that converts a real number to an integer (its actual call name
depends on the computer language), andNµ is the number ofµ bins. andNφ is the number
of φ bins.

2.3 Calculating intensity and flux

Next we want to calculate the intensity of the exiting binned photons. From Chandrasekhar
(1960; Eq. (1))

Iν =
dEν

cosθdνdσdAdt
(8)

whereEν is the energy at frequencyν exiting at an angleθ to the normal of a surface with
areadA into a solid angledω over time dt. This describes a pencil beam of radiation emitted
from the surface of the atmosphere.

If Ni, j is the number of photons exiting atµi , φ j, and assuming for now monochromatic
photons with no time dependence, then the intensityI i, j is given by

I i, j =
hνNi, j

µi∆µ∆φdA
(9)

The intensity is usually normalized to fluxF. As defined in Chandrasekhar (1960), the net
rate of flow of energy across a surface per unit area per unit frequency interval is given by

πF =
∫ 1

−1

∫ 2π

0
I (µ, φ)µdµdφ (10)

A total of N0 photons are incident at cosine angleµ0, giving

πF =
hνN0

µ0dA
(11)

and therefore
I i, j

F
=

πµ0Ni, j

µiN0∆µ∆φ
(12)

If the incident radiation is isotropic,Iν(µ, φ) = I0, then Eq. (10) givesF = I0. According
to Eq. (8),dE = I0µdµdφdA. Integrating over solid angle and area givesE = hνN0 = πI0,
which equalsπF. Substituting this definition ofF into Eq. (9) gives

I i, j

F
=

πNi, j

µi N0∆µ∆φ
, (13)

which is the same as that for parallel incident radiation except there is no factor ofµ0.
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By extending this algorithm to include electron scattering (Section 3.1), polarization,
and albedo (Section 3.2.2), the code can be compared to Chandrasekhar (1946, 1960) and
Code (1950) for large optical depths, and Coulsonet al. (1960) and Natrajet al. (2009) for
varying optical depths and incident angles. This is a great way to test out your Monte Carlo
code, and learn how to compute intensity and flux. When considering more complicated
problems with different boundary conditions, or frequency and time dependence, refer to
the original definitions of intensity and flux to properly normalize the results. This is one
reason I have referred to Chandrasekhar’s (1960) book many times over the last 30 years.

2.4 More complicated geometries

The Monte Carlo Method solves problems in 3-D geometries as easily as 1-D, complicated
scattering functions as easily as isotropic, and low optical depth more easily than high;
therefore this is where it excels and is very complementary to other methods. All that is
needed to solve any scattering problem is to describe where the photons originate from and
in what direction, where the scattering material is, how it scatters, and when the photon ex-
its. As described before, at each scatter, a new photon direction is chosen and a new optical
depth. In most problems, the density of material varies with position, and the distance a
photon travels is related to the optical depth through the exinction opacity (the sum of the
absorptive and scattering opacities) of the material:

dτ = χ1ρds= χ2nds= χ3ds (14)

reflecting the different units the opacity might have. In this case, the units ofχ1 are cm−2

g, the units ofχ2 are cm2 and the units ofχ3 are cm−1. In the first case multiply by the
densityρ (g cm−3), in the second case by the number densityn (cm−3), and in the third
case, the density has already been factored into the value ofχ3. As the photon propagates,
Eq. (14) must be integrated either analytically or numerically. The new photon position is
then calculated from

x = xold + ssinθ cosφ
y = yold + ssinθ sinφ
z= zold + scosθ

(15)

In most problems where the density varies with position, we use grids to describe the
problem, either spherical-polar, cylindrical, or cartesian. In each grid cell the density is
constant across the cell. Given the photon propagation direction, the distance to the nearest
wall is calculated,swall (in a cartesian grid, we find the distance to planes; in a spherical-
polar grid, we find the distance to planes (φ), cones (θ) and spheres (r)). The photon
position is updated using Eq. (15). The optical depth is updated:

τ = τold + χρcellswall (16)

If τ exceeds the sampled value (Eq. (4)), the photon is moved back to whereτ = τ0;
otherwise it continues through the next cell wherex, y, z, andτ are updated again. When
τ = τ0, the photon scatters.
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2.5 Producing images

Images are easily computed by tracking the position of the previous interaction. When the
photon exits, its position of last interaction (scatter or emission) is projected onto thex− y
plane perpendicular to the outgoing direction:

ximage= zold sinθ − yold cosθ sinφ − xold cosθ cosφ
yimage= yold cosφ − xold sinφ,

(17)

where (xold, yold, zold) are the coordinates of the last interaction. Next we bin the photon
into a pixel (ix, iy) on the image:

ix = integer(nx(ximage+ xmax)/(2xmax)) + 1
iy = integer(ny(yimage+ ymax)/(2ymax)) + 1,

(18)

where (nx, ny) are the number ofx andy pixels in the image, and the image size ranges
from [−xmax : xmax] and [−ymax : ymax].

2.6 Estimating errors

In the simple case of isotropic scattering as described above, the photon energy remains
constant as it propagates through the medium, and the fractional error in the intensity is
the Poisson statistical error 1/

√
N whereN is the number of photons. In more complicated

problems as described below, if we sample properly the PDFs for scattering and propaga-
tion, then the energy of each photon remains constant and is also given by simple Poisson
statistical error. As described below, we could sample from isotropic scattering and then
weight the photon by its more complicated phase function for scattering. Then the errors
can be estimated from the standard deviation of the summed intensities of the outgoing
photons normalized to

√
N. When polarization is included, the other Stokes parameters are

estimated in the same way, by the standard deviation of the outgoing Stokes component (Q,
U, or V), normalized to

√
N (Woodet al. 1996). The errors are minimized when the PDFs

are sampled exactly. Gordonet al. (2001) also discuss error estimation.

3. More complicated scattering problems

The kinds of scattering problems usually investigated in astrophysics applications are elec-
tron, Compton, resonance line, and dust scattering. In many cases, the scattering phase
function (the angular dependence of the scattering function) can be defined or approxi-
mated with analytic functions, and in other cases, they are computed numerically and de-
scribed in tabular form. All of these cases, including the polarization components, can be
solved with relative ease with the Monte Carlo method. I summarize one general method
here, including polarization (see also Chandrasekhar 1960; Code & Whitney 1995), not-
ing that there are other variations to implement this (Hatcher Tyneset al. 2001; Cornet,
C-Labonnote, & Szczap 2010; Hillier 1991). We use the Stokes VectorS to describe the
polarization:

S(θ, φ) = [ I (θ, φ),Q(θ, φ),U(θ, φ),V(θ, φ)] (19)
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whereI is the intensity,Q the linear polarization aligned parallel or perpendicular to thez-
axis,U is the linear polarization aligned±45◦to thez-axis andV is the circular polarization.
The Stokes vector could also be defined as [I‖(θ, φ), I⊥(θ, φ),U(θ, φ),V(θ, φ)], whereI‖ is
the intensity of light with polarization parallel to thez-axis, I⊥ has polarization perpendic-
ular to thez-axis, andQ = I‖ − I⊥. A scattering diagram is shown in Fig. 1 (Chandrasekhar
1960). The photon is originally propagating into directionP1 and will scatter into direc-
tion P2. In many scattering problems, the phase function can be described analytically
dependent only on the angleΘ with respect toP1. For polarization problems, it is more
complicated, because the polarization depends on the frame of reference. We define the
polarization in the “observer’s” frame (thex − y − z frame in Fig. 1). Thus, we need to
rotate into and out of the photon propagation direction to apply the scattering matrix, using
Mueller matrices (Chandrasekhar 1960; Code & Whitney 1995). This is not strictly neces-
sary, as the full scattering matrix can be calculated in the observer’s frame (e.g., Whitney
1991a). In magnetic problems, it is easier to define the scattering phase function with re-
spect to the magnetic field direction, and rotate in and out of these frames (Whitney &
Wolff 2002). The resulting Stokes vector after scattering is:

S= L (π − i2)RL (−i1)S′, (20)

whereS′ is the incident Stokes vector andL is the Mueller matrix that rotates in and out of
the photon frame, defined as

L (ψ) =































1 0 0 0
0 cos 2ψ sin 2ψ 0
0 −sin2ψ cos2ψ 0
0 0 0 1































. (21)

The scattering matrixR(Θ) is

R(Θ) = a































P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44































(22)

whereΘ is the scattering angle measured from the incident photon direction anda is a
normalization factor. Note that if we want to ignore polarization, we can ignore all of the
elements exceptP11.

3.1 Rayleigh scattering

Let us consider the case of Rayleigh scattering, where

a = 3/4
P11 = P22 = cos2Θ + 1 = M2 + 1
P12 = P21 = cos2Θ − 1 = M2 − 1
P33 = P44 = 2 cosΘ = 2M

(23)

whereM = cosΘ, and the other elements are 0.
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Figure 1. Geometry for scattering. A photon propagating into directionP1 (θ′, φ′ in the observer’s
frame) scatters through angleΘ into directionP2 (θ, φ).

Then theI Stokes parameter in the reference frame of the photon is computed:

S= RL (−i1)S′, (24)

giving:
I = (M2 + 1)I ′ + (M2 − 1) cos 2i1Q′ − 2M sin 2i1U′. (25)

We want to sample the scattering direction (M, i1) from this function.

3.1.1 Ignoring polarization and using lookup tables for sampling PDFs

First consider the case where we ignore the polarization. ThenI = I ′(M2 + 1). There are a
couple of ways we can sample scattering angle from this PDF. We could sampleM from a
uniform angular distribution (Eq. (5)), and calculate a new photon intensity at each scatter
from I = I ′(M2 + 1). Or we can sample the angleM directly from the PDFI = I ′(M2 + 1).
In this case the photon intensity will always be equal to 1 as it propagates through the
medium. To do this for Rayleigh scattering, we apply the fundamental principle (Eq. (1)),

ξ =

∫ M0

−1
1+ M2dM

∫ 1

−1
1+ M2dM

= 1/2+ 3/8M0 + 1/8M2
0 (26)

As described before,ξ is a uniform random number between 0 and 1, obtained from a
random number generator. Inverting Eq. (26) to getM0 for each scatter is not trivial. A
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fast way to sampleM0 is to make a table of the CPD (Eq. (26)), 1/2 + 3/8M0 + 1/8M2
0,

which ranges from 0 to 1 uniformly. Then linearly interpolate this table to get the value of
M0 that corresponds to the value ofξ obtained from the random number generator. Once
M0 is computed, an azimuthal anglei1 is sampled (i1 = 2πξ), and the new direction in the
coordinate frame of the observer is computed (Fig. 1).

3.1.2 Including polarization and using the rejection method for sampling from PDFs

If solving the full polarization problem, we will sampleM and i1 from the I Stokes pa-
rameter calculated from Eq. (24). As described before, we could sampleM(= cos2Θ) and
i1 from uniform angular distribution (Eq. (5)), and calculate a new photon intensity from
Eq. (25). Then the intensity of the photon will vary as the photon propagates through the
medium. For Rayleigh scattering, where the intensity varies only by a factor of 2 with angle
of scatter, it is okay to sample isotropically and weigh the photon intensity. For scattering
that has a more peaked function, such as dust scattering, or in strong magnetic fields, this
will lead to higher errors and systematic biases (many photons with small intensities and
few with large intensities but poor statistics). To prevent this, I generally try to sample
from the exact probability distribution. A simple method that samples from complicated
probability distributions is the rejection method. All that is needed for this method is to
know the peak of the PDF.

In the rejection method, we sample from a rectangle that encloses the curve ofP(x) vs
x. That is, following Eq. (1), we samplex uniformly froma to b: x0 = a+ ξ(b− a); and we
sampley uniformly from 0 toPmax, the maximum value ofP(x): y0 = ξPmax. We ask ify0 is
less thanP(x0). If so, we acceptx0. If not, we sample again. It is like throwing random darts
at the plot and only accepting those that fall below the curve. By throwing enough darts,
we accurately sample the different values ofx appropriately. That is, in regions of the plot
whereP(x) is low, we sample those values ofx less frequently than regions whereP(x) is
large. The rejection method is less efficient for highly peaked PDFs; that is, if the rectangle
enclosing the PDF has a lot of area above the PDF. However, it is so simple to use that it is
still usually much faster and easier to implement than more complicated inversions of the
CPD (Eq. (1)). See Kalos & Whitlock (2008) or other Monte Carlo texts for more examples
and more sophisticated modifications to this method (such as enveloping highly-peaked
functions with simple analytic highly-peaked functions which are sampled from first).

Going back to our scattering problem, as described in Fig. 1, we want to sample scat-
tering angles that change our direction fromP1 to P2. That is, we want to sampleΘ and
ı1, compute the new Stokes parameters and then rotate back into the observer’s frame of
reference. Using the rejection method, we samplei1 and M = cosΘ from an isotropic
distribution (Eq. (5)):i1 = 2πξ1; M = 2ξ2 − 1. We calculateI (M, i1) from Eq. (25). We
sampleP(M, i1) = ξPmax. If P(M, i1) is greater thanI (M, i1), we acceptM and i1 as our
new scattering angles. Otherwise, we resample untilP(M, i1) is greater thanI (M, i1). As
mentioned previously, we need to know the value ofPmax. This can be determined ana-
lytically or numerically (from brute-force calculation over all angles). It is a good idea to
verify thatP(M, i1) never exceedsPmax during the run.

Now that we have our new scattering anglesM andi1, we compute the new propagation
direction and Stokes vectors in the observer’s frame. The anglesi2, θ, φ − φ′ (Fig. 1) can
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be calculated from the spherical laws of sines and cosines (Green 1985). The matrices are
multiplied through and the Stokes parameters are calculated from Eq. (20). The Stokes
vectors are then normalized to the PDF we sampled fromP(M, i1) (Eq. (25)). Then theI
Stokes parameter of the photon is equal to 1 as it propagates through.

3.2 Dust scattering

Since dust is ubiquitous throughout the universe, having the capabilities to solve the radia-
tive transfer of dust in multi-dimensional geometries allows us to model everything from
planets, extrasolar planets, forming stars, evolved stars, star forming regions, and galaxies
throughout the universe. Dust scattering can be approximated with analytic functions or
tables produced from numerical models.

3.2.1 Analytic functions

The most famous analytic function is the Henyey-Greenstein (H-G) function (Henyey &
Greenstein 1941). White (1979) added to this with approximations for the polarization
functions. The elements of the scattering matrixR(M) (whereM = cosΘ) (Eq. (22)) are

a = 3/4
P11 = P22 = (1− g2)/(1+ g2 − 2gM)3/2

P12 = P21 = −p1P11(1− M2)/(1+ M2)

P33 = P44 = P11(2M)/(1+ M2)

P34 = P43 = −pcP11(1− M2
f )/(1+ M2

f ),

(27)

whereg is the scattering asymmetry parameter, ranging from 0 for isotropic scattering to 1
for fully forward scattering;pl is the maximum linear polarization;pc is the peak circular
polarization;M f = cosΘ f , Θ f = Θ(1+ 3.13sexp(−7Θ/π), ands is the skew factor which
we take to be 1 following White (1979). The other elements in Eq. (22) are 0. Note that
this function includes a circular polarization component (P34 andP43). This is a second
order effect that depends on the linear polarization and is usually small.

Multiplying through Eq. (24) to get theI Stokes parameter in the photon reference
frame gives:

I = P11I
′ + P12 cos 2i1Q′ − P12 sin 2i1U′ (28)

The scattering anglesM, i1 can be sampled using the rejection method (Section 3.1.2).
If you don’t care to solve the polarization problem, you just useP11 for the scatter-

ing phase function. This can be sampled from directly using the following formula (Witt
1977a):

M =
1+ g2 − [(1 − g2)/(1− g+ 2gξ)]2

2g
(29)

Witt (1977a) describes in detail a Monte Carlo dust scattering algorithm using this func-
tion, as well as superpositions of H-G functions. He also describes how to force the first
scattering in an optically thin nebula to make the code more efficient (see also Gordonet al.
2001).
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The other parameters that describe the dust properties are the extinction opacityχ

(see Eq. (14)) and the albedoω (Section 3.2.2). These as well asg have been estimated
observationally. Theoretical models also match these as well as estimatingpl andpc which
can be tested by comparing scattered light models to polarization observations. All of these
quantitites are wavelength-dependent.

3.2.2 Dust scattering albedo

The scattering albedo is the ratio of scattered to extinct (scattered+ absorbed) flux, and it
ranges from 0 to 1. This can be taken into account in one of two ways: either by weighting
the photon at each scatter by the albedo, or by casting for a random numberξ to determine if
the photon is absorbed or scattered at each interaction. In calculations where we only con-
sider the scattered component of the radiation at a specified wavelength (e.g., dusty sources
illuminated by UV, optical, and near-IR radiation), we might think the first solution would
be more efficient, that of weighting the scattered photons by albedo. This is often not the
case, especially in sources with very high optical depths in some regions, where too much
computing time is wasted on photons with little weight and therefore little contribution to
the final answer. In those cases, it is much faster to let the photon scatter or absorb by
casting for a random number. Ifξ is less than the albedo, the photon scatters; otherwise, it
is killed, and we proceed to the next photon.

3.2.3 Tabular functions

The scattering matrixR(M) (Eq. (22)) can also be computed numerically. Tables of the
16-element matrix as a function of scattering angle are read at the beginning of the compu-
tation. For spherical grains, the matrix is simplified, with only 4 independent elements
needed, as above in the analytic approximation. For randomly oriented non-spherical
grains, 6 independent elements are needed. For aligned grains, all 16 elements are non-
zero.

The rejection method works well at sampling the tabular functions. At the beginning
of the code, the peak of theM11 element is computed, which we will callIpeak. In the cases
I have tried, this is also the peak of theI Stokes vector even when the incident radiation is
polarized. At each scatter, as described in Section 3.1.2, the anglesM andi1 are sampled
uniformly. The values ofP11, P12, andP13, P14 (if non-zero) are calculated by interpolating
the tables (which depend onM). Then theI Stokes parameter in the reference frame of the
photon is computed from Eq. (24):

I = P11I
′ + (P12 cos 2i1 + P13 sin 2i1)Q′ + (P13 cos 2i1 − P12 sin 2i1)U′ + P14V

′. (30)

For spherical grains, only 8 of the scattering matrix elements are filled with 4 unique ele-
ments, as in the analytic prescription above:P11 = P22, P12 = P21, P33 = P44, P34 = P43,
and the rest are zero, giving the same form as Eq. (28). As described in Section 3.1.2, a
random numberξ is chosen between 0 and the peak of I; ifξ is less thanIpeak, the angles
M andi1 are accepted, and the rest of the Stokes vectors are calculated from Eq. (20). To
verify that we properly calculated the peak of the scattering function, we check at each
scattering that theI Stokes parameter does not exceedIpeak. if it does, we need to rerun
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the code with the correct value. Once the scattering angle has been calculated, the other
angles are computed, and the Stokes vector in the observer frame are computed (Eq. (20)),
as described in Section 3.1.2.

3.2.4 Aligned grains

Aligned grains use the full 16-element scattering matrix, calculated as described in the pre-
vious section (Section 3.2.3). Instead of rotating in and out of the photon direction frame,
we rotate into and out of the frame aligned with the magnetic field along thez-axis. The
16-element scattering matrix is defined with respect to field direction rather than photon di-
rection. The additional component here is in the random walk, where the opacities depend
on the polarization of the photon. Photons traversing the medium develop Q polarization in
the frame of the magnetic field, called dichroism. Photons with some U polarization (w.r.t.
magnetic field direction) develop V polarization, called birefringence. Whitney & Wolff

(2002) describe how to implement these effects along the photon propagation path.

3.2.5 Applications of continuum scattering problems

Most electron scattering applications are in resonance line scattering of stellar winds, as
described in the next section. Whitney (1991a) described how to calculate the scattering
of electrons in magnetic fields of arbitrary strength, and showed how the magnetic effects
can explain the unusual polarization behavior in the polarization of magnetic white dwarfs
(Whitney 1991b).

The most widespread applications of Monte Carlo (MC) continuum scattering have
been for dust scattering. Witt (1977a,b,c) and Witt & Oshel (1977) pioneered this field de-
scribing algorithms for sampling the Henyey-Greenstein function and computing the MC
radiative transfer. Witt and collaborators applied these codes to galaxies showing the “blue-
ing” due to scattering partially compensates for reddening by extinction (Witt, Thronson &
Capuano 1992) and the effects of clumping on the radiative transfer (Witt & Gordon 1996,
2000). Bianchiet al. (2000) also studied the effect of clumping in dusty galaxies. Boisse
(1990) studied the effects of clumps in the penetration of UV photons inside molecular
clouds. Whitney & Hartmann (1992, 1993), Kenyonet al. (1993), and Fischer, Henning
& Yorke (1994) calculated dust scattering and polarization in 2-D structures–disks, en-
velopes, and bipolar cavities — surrounding protostellar envelopes. Several authors have
modeled high spatial-resolution images from Young Stellar Objects (YSOs), determining
disk/envelope properties and grain size distributions (e.g., Wood & Whitney 1998; Cotera
et al. 2001; Schneideret al. 2003; Wolf, Padgett & Stapelfeldt 2003; Watson & Stapelfeldt
2004, 2007; Ducheneet al. 2004; Starket al. 2006; Watsonet al. 2007 and references
therein), and polarization maps (Whitney, Kenyon & Gomez 1997; Lucas & Roche 1997,
1998). Whitney & Wolff (2002), Lucas (2003), and Lucaset al. (2004) modeled polar-
ization maps of YSOs with aligned grains, to study the magnetic field structures. Jonsson
(2006) describes a code for computing scattering in galaxies. The advances of this code
are that it follows a spectrum of photons through, rather than a single wavelength; and is
designed to work with SPH simulations and on an adaptive grid. This code is widely used
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in the study of galaxy evolution to visualize galaxy images produced from SPH simulations
(such as the GADGET code; Springel, Di Matteo & Hernquist 2005).

3.3 Line scattering problems

3.3.1 Resonance line scattering and scattering in flows

Resonance lines are transitions to and from the ground states of bound electrons. The
scattering matrix is the sum of a Rayleigh phase function plus an isotropic function. In
a flow, such as an expanding atmosphere or universe, we take into account the Doppler
shifts of the fluid with respect to the incident photons. Hillier (1991) calculated the electron
scattering of lines in Wolf-Rayet stars. He described how to calculate the emission location,
that is, where the photon of a given direction and frequency will resonantly interact with the
flow, and how to transform the frequency from one frame to the next in the flow. Kurosawa
& Hillier (2001) applied these algorithms in a 3-D tree-structured grid, and demonstrated
their model on interacting winds in massive binaries (see also Kurosawa, Hillier & Pittard
2002 for an application to the massive binary V444 Cyg). Sundqvist, Puls & Feldmeier
(2010) calculated resonance line formation in 2-D wind models, in an ongoing effort to
resolve a very interesting new controversy on mass-loss rates from clumpy massive stellar
winds (see Puls, Vink & Najarro 2008). They required higher mass loss rates than in the
optically thin clump models which they said resolves the controversy. Knigge, Woods &
Drew (1995) calculated resonance line scattering in accretion disk winds.

Another useful application for resonance line scattering is the radiative transfer of Lyα

photons. This problem can be approximately solved analytically only for a limited number
of cases such as a static, extremely opaque and plane-parallel medium. Several authors
describe radiative transfer calculations (e.g., Zheng & Miralda-Escude 2002; Verhamme,
Schaerer & Maselli 2006; Laursenet al. 2009)) and apply them to, e.g., Lyα radiative
transfer in a dusty, multiphase medium (Hansen & Oh 2006), Lyα pressure in the neutral
intergalactic medium (Dijkstra & Loeb 2008), Lyα escape fractions from simulated high-
redshift dusty galaxies (Laursen, Sommer-Larsen & Andersen 2009), cosmological reion-
ization simulations (Zhenget al. 2010), and the Lyα forest around high redshift quasars
(Partlet al. 2010).

3.3.2 Relativisitic scattering

In principle, the calculations for relativistic scattering processes are similar, with additional
transformations of the photon frequency in and out of the co-moving frame. If gravitational
redshift is important, we need to apply this to the photon frequency at each step of the pho-
ton path integration. For more information, I refer the reader to other authors who know
much more than I: Wang, Wasserman & Salpeter (1988) calculate cyclotron line resonance
transfer in neutron star atmospheres; Fernandez & Thompson (2007) also calculate cy-
clotron resonance scattering in 3-D geometries. Sternet al. (1995) describe a large particle
(LP) method for simulating non-linear high-energy processes near compact objects. And
Dolenceet al. (2009) describes a general code (grmonty) for relativistic radiative transport.
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4. Including emission

Adding emission usually adds wavelength dependence to the problem and allows us to
model the spectral dependence of an astrophysical source. The dominant emission
processes are from gas and dust. We start with dust, which is the easiest to calculate. For-
tunately, a wide variety of astrophysical problems can be addressed with 3-D dust radiative
transfer, due to the wealth of infrared data recently available from, e.g., the Spitzer Space
Telescope, Herschel Space Observatory, Wide Field Infrared Survey Explorer (WISE), and
the upcoming James Webb Space Telescope.

4.1 Dust radiative equilibrium

Due to the nature of its opacity, dust generally scatters and absorbs optical radiation, and
emits infrared radiation. For grains larger than about 200 A in radius, we can usually
assume that the dust is in thermal equilibrium with the surrounding gas (we will address
smaller grains in Section 4.2). The gas-to-dust mass ratio is about 100 in our Galaxy. Even
though there is much more gas mass than dust, its opacity is many orders of magnitude
larger than gas, so we can usually neglect the gas opacity in dusty nebulae.

We calculate the radiative transfer as described previously, but when a photon is ab-
sorbed (see Section 3.2.2), we re-emit a thermal photon. To do that, we need to know the
temperature of the dust. This is straightforward to solve under conditions of radiative equi-
librium and local thermal equilibrium (LTE). The radiative equilibrium process describes
the condition when all of the energy is transported by radiation. Then we can say that the
total energy absorbed by a given volume of material is equal to the total energy emitted
(Mihalas 1978):

4π
∫ ∞

0
χν(Sν − Jν)dν, (31)

whereSν is the Source function, or the ratio of the total emissivity to the opacity,Jν is the
average intensity in the same volume, andχν = κν + σν is the mass extinction coefficient.
In local thermal equilibrium, we can write (Mihalas 1978):

Sν = (κνBν + σνJν)/(κν + σν) (32)

whereκν andσν are the mass absorption and scattering coefficients, respectively, and their
sum isχν (in units of cm2/g). The condition of radiative equilibrium is then

∫ ∞

0
κνBν(T)dν =

∫ ∞

0
κνJνdν, (33)

This is all the information we need for our Monte Carlo calculation. We will do our cal-
culation on a grid so we can calculate the volume and mass of each cell for the emission
properties. This also allows flexibility in including arbitrary density functions and makes
optical depth integrations straightforward (Section 2.4).

Bjorkman & Wood (2001, hereafter BW01) describe how to determine the tempera-
ture of each grid cell by equating the total absorbed photons with those emitted assuming
thermal equilibrium. This gives

σT4
cell =

NcellL
4NκP(Tcell )mcell

, (34)
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whereNcell is the number of photon packets absorbed in the cell,L is the source luminosity,
κP(Tcell) is the Planck mean opacity,mcell is the mass of the cell, andN is the total number
of photon packets in the simulation. This applies to any continuous opacity source that is
independent of temperature. To solve this equation efficiently, we pretabulate the Planck
mean opacities and use a simple iterative algorithm.

When a photon is absorbed in a cell we sum its energy into an array for use in comput-
ing Eq. (34). We then emit a new photon of equal energy to conserve radiative equilibrium.
All that’s required is to properly sample its frequency from the emissivity function con-
verted to a PDF:

dPcell

dν
=

jν
∫ ∞

0
jνdν
=

κνBν(Tcell )
∫ ∞

0
κνBν(Tcell )dν

(35)

where (dPcell/dν) is the probability of emitting a photon between frequenciesν andnu+dν.
We precompute the running integral of this function (that is, the cumulative probability
distribution or CPD, see Section 3.1.1) for a range of frequencies and temperatures, and
interpolate the table based on the sampled random numberξ to getν.

At the start of our simulation, we do not know the temperature of each cell, so we
use an arbitrary value (we start with 3 K), and use the absorbed photons to determine
the temperature. We can iterate, i.e., do the calculation several times, and calculate a new
temperature for each cell (Eq. (34)) after each iteration, until the cell temperature converges
(Lucy 1999a). Alternatively, we can correct the temperature as we go and emit from a
corrected emissivity spectrum (BW01). This corrects the emitted spectrum so that the total
emitted spectrum at the end of the simulation is appropriate for the temperature of that
cell. For example, if the cell starts out cold, the emitted photon frequencies will be lower
than the proper spectrum, so as the temperature warms up, we will sample from an overly
“hot” spectrum to emit higher frequency photons. This is described graphically in Fig. 1 of
BW01. The temperature correction probability distribution is

dPcell

dν
=
κν

K

(

dBν

dT

)

T=Tcell

, (36)

whereK =
∫ ∞
0
κν(dBν/dT)dν is the normalization constant. Again, we can precompute the

CPD and interpolate from this to sampleν based on random numberξ.
Lucy (1999a) derived a much faster way to compute the total absorbed radiation in a

grid cell (the right-hand-side of Eq. (33)), using the pathlengths ofall photons crossing a
cell, rather than summing only those absorbed. This gives

∫ ∞

0
κνJνdν =

L
4πNV

∑

κνl, (37)

whereV is the volume of the cell,l is the pathlength across the cell that a given photon
traveled, and the others are as defined in Eq. (34). The pathlengths are summed during
the optical depth integration as the photon travels through various cells on its way to an
interaction. Following BW01 and equating this with the emitted radiation to solve for
temperature, we get:

σT4
cell =

ρcellL
∑

κνl
4NκP(Tcell )mcell

, (38)
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Thus, we can call our temperature solver withρcell
∑

κνl in placeNcell. The simplest way
to implement this method for calculating temperature is with an iterative scheme. The
temperature remains constant during an iteration, we sample frequency from the emissivity
(Eq. (35)), and then calculate a new temperature for each cell at the end of the iteration
(Eq. (38)). Lucy (1999a) notes that this temperature correction scheme appears identical to
the “notorious” lambda-iteration procedures that are known to fail (Mihalas 1978); however
it is not the same, because flux is conserved exactly across all surfaces. In fact, this method
converges in only a few iterations (3-4).

This method has several advantages over BW01: 1) It is very fast at converging the tem-
perature. Chakrabarti & Whitney (2009) quantified this by running several 3-D simulations
and comparing the BW01 and Lucy methods. In the Lucy iteration method, the number
of photons required to get an accurate temperature is approximatelyNtemp∼ 2Ngrid, where
Ngrid is the number of grid cells. The BW01 method requires at leastNtemp∼ 100Ngrid. In
the Lucy method, we run the firstn iterations usingNtemp photons, and then run the final
iteration usingNS ED, the number of photons required to produce an SED of our desired
signal-to-noise. Usually,NS ED is much larger thanNTemp. In 2-D problems, the run-time
of Lucy and BW01 is similar; in 3-D problems, because there are so many more grid cells,
the Lucy method runs much faster. 2) The Lucy method is easily parallelizable. Since the
temperature remains constant during an iteration, the photons can be divided up among
several processors and run independently. At the end of each iteration, they are summed up
and a new temperature is calculated. 3) More complicated physical processes that require
iteration can be incorporated in a straightforward way. For example, including tempera-
ture dependent opacities (e.g., gas opacity); calculating grain alignment from moments of
the radiation intensity; and calculating non-thermal small grain emissivity which requires
knowledge of the average intensity in a grid cell.

4.1.1 High fidelity spectra and images

A useful technique for computing a high signal-to-noise image and SED is to ‘peel-off’ a
photon in a specified (observer’s) direction at every interaction (Yusef-Zadeh, Morris, &
White 1984). When a photon is initially emitted, in addition to its sampled direction, we
emit an additional photon into one or more specified observer directions, weighted by the
PDF, or the probability that it would have gone in this direction. The photon’s intensity is
additionally weighted by the extinction it undergoes on its way to the observerI = I0e−τ

whereτ is the integrated optical depth along its path. At each interaction (scattering or
emission), we again peel-off a photon into the observer direction, weighted by the PDF
(for scattering or emission), and the extinction. Note that the peeling-off technique does
not replace the regular Monte Carlo simulation, but is an added computation. The main
‘trick’ with this is that we have to make sure that the peeled photon is normalized properly.
In the regular simulation, this is done at the end of the simulation with the conversion of
exiting photons to flux and energy; during the simulation, the PDF’s are normalized to
range from 0-1 (to match the random number range). For example, in emitting photon
packets from a limb darkened star, we emit each photon with the same energy, but the
distribution of emitted photons varies with angle. For the peeled photon, we weight it by
the limb-darkening law and need to normalize it properly. Fortunately, this is easy to verify
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by comparing the peeled images and spectra with the regular Monte Carlo in simulations
that test all the emission and scattering processes (i.e., viewing images and SEDs of the star
only, then scattering-only simulations, emission-only, high and low optical depths, etc.).

4.2 The diffusion method

In sources with high optical depths, MCRT can become very slow to compute when the
photon path length is much shorter than the escape length from a given region. In dust
radiative transfer this effect is offset to some extent because the opacity of dust decreases
with increasing wavelength: optical photons that are absorbed and re-emitted by the cooler
dust get converted to infrared photons that can usually escape. Thus sources with visual
optical depths of even 1000 are computed quickly. However, in regions of much higher
optical depths, such as protostellar disks, the photons effectively get trapped in the disk
midplane, undergoing millions of interactions before escaping. Minet al. (2009, hereafter
M09) developed a modified random-walk (MRW) that moves photons through optically
thick regions, using the diffusion approximation.

In the MRW method, when the optical depth in a grid cell is much larger than 1, we
define a sphere whose radius is smaller than the distance to the closest wall, and travel to
the edge of the sphere in a single step. The true distance the photon would have traveled
in a random walk is calculated using the diffusion approximation. This along with the
average mass absorption coefficient are used to compute the total energy deposited and
therefore the temperature of the cell. A new photon emerges from the sphere with the
frequency sampled from the Planck function at the local dust temperature. If the BW01
temperature correction method is used, the photon frequency is sampled fromdBν(T)/dT.
Robitaille (2010) showed how to compute the local diffusion coefficient D, the average
mass absorption coefficient and the dust emission coefficientην without iteration, giving:

D =
1

3ρχR
, (39)

κ =

∫ ∞
0
κνBν(T)dν

∫ ∞
0

Bν(T)dν
= κP, (40)

ην = χνBν(T)
κP

χP
, (41)

whereχP is the Planck mean opacity,

χP =

∫ ∞
0
χνBν(T)dν

∫ ∞
0

Bν(T)dν
(42)

andχR is the Rosseland mean opacity:

1
χR
=

∫ ∞
0
χνBν(T)/χνdν
∫ ∞
0

Bν(T)dν
. (43)

Robitaille (2010) describes the implementation of the MRW algorithm in his Section 3, so
I refer the reader to that.
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M09 also describe a Partial Diffusion Approximation (PDA) which can be used to ob-
tain a reliable temperature in regions where few if any photons reach, such as the midplane
of an externally illuminated disk with no self-luminosity due to accretion. For computa-
tions of images and SEDs, if no photons reach a given region, none are emitted, so PDA is
not needed. However, if we want to solve for the vertical hydrostatic density distribution
of the disk, the temperature in all regions is required. The PDA assumes that no photons
escape the optically thick region without interactions, which simplifies the 3-D radiative
diffusion equation (Wehrse, Baschek & von Waldenfels 2000; Rosseland 1924)

∇ · (D∇E) =
1
c
∂E
∂t

(44)

to
∇ · (D∇T4) = 0. (45)

This results in a system of linear equations that can be solved knowing the temperature at
the boundaries of the optically thick regions. Thus the PDA requires iteration, using the
temperature calculated from the MCRT solution. The PDA overestimates the temperature
slightly because it does not take into account the few very long-wave photons that can
escape from the region and cool it more efficiently.

4.3 Non-equilibrium dust (small grain emission)

Grains smaller than about 200 A, or Very Small Grains (VSGs), as well as large molecules
such as Polycyclic Aromatic Hydrocarbons (PAHs) undergo quantum heating from even
single photons, which leads to temperature fluctuations. These fluctuations depend on the
size of the particle. Given a probability distribution P(T)dT for the temperature of a grain,
the emission from an ensemble of VSGs is given by (Misseltet al. 2001)

L(ν) = 4π
∑

i

∫ amax

amin

ni(a)σi(a, λ)da
∫

Bν(Ti,a)P(Ti,a)dT (46)

wherei is the species of the grains (e.g., silicates or carbon),n is the number density of
grains (typically units are cm−3) of radiusa andσ is the cross section of the grains (in
units of cm2). This can be compared to the left-hand side of Eq. (33), where the grain cross
sections are already integrated over size and are all assumed to emit at the same temperature
T, which is valid for large grains. Misseltet al. (2001) describe how to determine P(T) for
VSGs using the continuous cooling approximation developed by Guhathakurta & Draine
(1989), which speeds up the calculation significantly. They describe an even more simplied
approach to compute the PAH emission:

LPAH(a, ν) = 4πσ(a, ν)B[T(t)], (47)

where the Planck function is averaged over the mean time between absorptions calculated
from

1

t
=

4π
hc

∫ νc

0
σ(a, ν)Jνdν, (48)

whereνc is the cutoff frequency in the optical/UV cross section of the PAH molecule
(Desertet al. 1990).
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In their radiative transfer algorithm, Misseltet al. (2001) first process the stellar and
nebular sources, calculating the transmitted, scattered and absorbed photons in the grid.
Then they calculate the dust emission and transfer based on the heating from the absorbed
photons. They iterate on the fractional change of energy absorbed by the grid. This method
does not conserve energy in a given iteration and may be subject to Lambda iteration issues.
The large grain emission is as described in the radiative equilibrium Eq. (33), using the
average intensity of each cell computed at the end of an iteration. The PAH and very small
grain component is as given in Eqs. (46) and (47). The solution for the very small grains is
the most computationally expensive part of the code.

Pontoppidanet al. (2007) also use the method of Guhathakurta & Draine (1989) to
compute the heating of the very small grains, and do not compute the PAH emission (though
they do include PAH absorption opacity). Photons absorbed by these very small grains are
lost in the first iteration, to be released in a post-processing step and/or in a second iteration.

Woodet al. (2008) bypass the temperature calculations of the VSGs and PAHs alto-
gether, and use look-up tables for the emissivity of these species. The input to the lookup
tables is the average intensityJ in each grid cell, calculated using the Lucy (1999a) method
(Eq. (33), without the opacity). This method requires iteration. In each iteration the pho-
tons are emitted from the star and other luminosity sources (e.g., disk accretion) and are
processed as described in previous sections. At each interaction, we sample a probability
that a photon is absorbed by a thermal grain, a VSG, or a PAH molecule, based on the
relative opacities of these material for the frequency of the incoming photon. If a thermal
grain, a thermal photon is emitted based on the temperature of the cell (Eq. (35)); if a VSG
or PAH, a non-thermal photon is emitted from the pre-computed emissivity spectra based
on J in the cell. After each iteration a new temperature andJ are computed in each cell.
Energy is conserved, and the models converge in 3-4 iterations. This method is as fast as the
radiative equilibrium method using the Lucy method. The lookup tables incorporate all the
physics of the temperature fluctuations and emission as a function of input radiation field,
but are pre-computed so that it does not slow down the radiative transfer calculations. The
main approximation to the Woodet al. (2008) implementation is that they do not take into
account the frequency dependence of the average intensity (Jν). This assumption is not as
egregious as it might seem because the wavelength dependence of the opacity is taken into
account, ensuring that PAH and VSG photons are not emitted in regions with highJ but
low probability of excitation. Future implementations will likely incorporate wavelength
dependence to the look-up tables.

4.4 Aligned grain emission

Thermal emission from aligned grains is similar to that of spherical grains except the full
Stokes matrix is used in the emission. The dust opacities need to be calculated, along with
the degree of alignment. Fiege & Pudritz (2000) describe a method for emitting polarized
submillimeter emission in molecular clouds. Bethellet al. (2007) and Pelkonen, Juvela
& Padoan (2009) show how to calculate the degree of alignment using radiative torques.
Hoang & Lazarian (2008, 2009a, 2009b), and Hoang, Draine & Lazarian (2010) present
new calculations on the radiative torque mechanism. Because of the low opacities at these
wavelengths, the absorption and scattering is ignored in these calculations. In protostellar



170 Barbara A. Whitney

disks where the grains are larger and the optical depths higher, these approximations are
likely not valid. Whitney & Wolff (2002) describe how to include absorption along the
photon path and scattering of aligned grains. When emission, scattering, and absorption
are included, models can be made at all wavelengths and densities.

4.5 Applications of dust MCRT

Several authors have developed dust MCRT codes that can be applied to a variety of astro-
physical objects. Their methods are generally similar to what I described above but there
are variations in, for example, conserving energy by re-emitting photons as they are ab-
sorbed vs separating the initial emission and re-emission processes; or different coordinate-
system rotations for the Stokes vectors (conceptually simple vs computationally efficient).
Numerical techniques and codes have been described by Lucy (1999a), Wolf, Henning &
Stecklum (1999), Wolf & Henning (2000), Misseltet al. (2001), Bjorkman & Wood (2001),
Wolf (2003), Stamatellos & Whitworth (2003), Stamatellos, Whitworth, & Ward-Thomson
(2004), Whitneyet al. (2003a,b), Niccoliniet al. (2003), Goncalves, Galli & Walmsley
(2004), Baeset al. (2005), Pinteet al. (2006), Niccolini & Alcolea (2006), Pontoppidan
et al. (2007), Bianchi (2008), Woodet al. (2008), Minet al. (2009), Kamaet al. (2009),
and Robitaille (2010). Adaptive grid techniques have been described by Niccolini & Al-
colea (2006). Benchmark tests have been made by Pascucciet al. (2004) and Pinteet al.
(2009).

These codes have been applied widely in the study of protostellar envelopes/disks,
and galaxies. In both cases, clumpy structures (e.g., Schartmannet al. 2008 and Bianchi
2008 for galaxies, Indebetouwet al. 2006 for protostars, Doty, Metzler, & Palotti 2005 for
externally heated molecular clouds), and other asymmetric dust distributions (e.g., outflow
cavities and disks) require 2-D and 3-D radiative transfer codes to properly interpret the
SEDs, images, and polarization.

Grain alignment models have been applied to near-IR polarization maps, to determine
magnetic field structures in protostars (Whitney & Wolff 2002; Lucas 2003; Lucaset al.
2004); and to submillimeter polarization maps to determine magnetic structures (Fiege &
Pudritz 2000), density distributions, grain size distribution (Pelkonenet al. 2009), and
to test the radiative torque theories for grain alignment, polarization-Intensity relations
(Bethell et al. 2007; Pelkonen, Juvela & Padoan 2007), and the Chandrasekhar-Fermi
formula (Padoanet al. 2001).

The recent explosion of optical and IR data from several observatories and surveys
(e.g., Spitzer Space Telescope, Herschel Space Telescope, Hubble Space Telescope, 2MASS,
UKIDDS, WISE), combined with advances in dynamical simulations that provide realis-
tic density distributions, has made the development of 3-D dust radiative transfer a very
fruitful area of research.

4.6 Gas emission

4.6.1 Non-LTE MCRT and flows

As in the scattering and dust emission processes, MCRT is very complementary to other
methods. Whereas traditional methods excel in high optical depth LTE 1-D geometries,
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MCRT can excel in non-LTE, 3-D geometries with complex velocity fields and anisotropic
radiation fields. Bernes (1979) outlined a procedure for non-LTE multi-level radiative
transfer and demonstrated the method for CO line profiles in a spherical, homogeneous,
collapsing dark cloud. Since then, several authors have improved on the Bernes (1979)
algorithms to, e.g., extend to 3-D (Park & Hong 1995) allow for very high optical depths
(Hartstein & Liseau 1998), treat clumpy structures (Park, Hong & Minh 1996; Juvela 1997;
Pagani 1998), accelerate the convergence and include dust emission Hogerheijde & van der
Tak (2000), and include multiple molecules (Pavlyuchenkovet al. 2007).

The application of MCRT to the computation of expanding gaseous envelopes was de-
scribed by Abbott & Lucy (1985). Mazzali & Lucy (1993) adapted this code to supernova
envelopes, where a single continuum photon can interact with many more spectral lines
due to the high velocities of the outflow (∼ 30000 km s−1). The Monte Carlo approach is
better suited to this problem than the formal integral type solutions. Mazzali & Lucy (1993)
include ionization, electron scattering and line scattering in their code. Lucy (1999b) im-
proves the line formation treatment of this code and the noise in the emergent spectrum by
using the formal integral for the emergent intensity. Lucy (2005) removes many of the sim-
plifying assumptions in the earlier codes and solves the time-dependent 3-D NLTE transfer
in homologously expanding ejecta of a SN, given the distribution of mass and composi-
tion at an initial timet1. Kasen, Min & Nugent (2006) describe a similarly capable code,
which also includes polarization and non-grey opacities, that can provide direct compari-
son between multidimensional hydrodynamic explosion models and observations. Maeda,
Mazzali & Nomoto (2006) and Sim (2007) also developed similar codes based on the Lucy
methods.

Long & Knigge (2002) applied the methods of Mazzali & Lucy (1993) to calculate
line formation and transfer in accretion disk winds. Sim, Drew & Long (2005) extended
this code to include ‘macro atoms’, as devised by Lucy (2002, 2003), allowing energy
conservation and radiative equilibrium to be enforced at all times. This allows lines formed
by non-resonance scattering or recombination to be modeled.

Carciofi & Bjorkman (2006) employed a 3-D non-LTE code to study the tempera-
ture and ionization structure of Keplerian disks around classical Be stars. They devised a
method independent of Lucy’s (2002) transition probability method to solve the equations
of statistical equilibrium. It is similar in many ways, except that the photon absorption and
re-emission mechanisms are uncorrelated, allowing them to dispense with Lucy’s macro
atoms, along with their associated internal transitions and Monte Carlo transition probabil-
ities. Their models show that the optically thick regions of the disk are similar to Young
Stellar Object (YSO) disks and the optically thin outer parts are like stellar winds. Carciofi
& Bjorkman (2008) built on their previous work and solved the steady state nonisothermal
viscous diffusion and vertical hydrostatic equilibrium of Keplerian disks. Their solution
departs significantly from the analytic isothermal density, affecting the emergent spectrum.

4.6.2 Photoionization

Several authors describe algorithms for calculating photoionization, e.g., Ochet al. (1998),
Wood & Loeb (2000), Ciardiet al. (2001), Maselli, Ferrara & Ciardi (2003), Ercolana
et al. (2003), Wood, Mathis & Ercolana (2004), Ercolanaet al. (2008), and Cantalupo &
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Porciana (2011). Some particular features of these codes are Woodet al.’s (2004) use of
photon packets vs energy packets to more easily match the notation of the recombination
coefficients; the x-ray extension to the MOCASSIN code to allow computation detailed
high-resolution spectra (Ercolanoet al. 2008); and photoionization on adaptive mesh re-
finement grids (Cantalupo & Porciani 2011).

These have been applied to the study of escape of ionizing radiation from high-redshift
galaxies (Wood & Loeb 2000), cosmological reionization around the first stars (Ciardiet al.
2001), modeling the diffuse ionized gas in the Milky Way and other galaxies (Wood &
Mathis 2004, photoevaporating planetary disks (Ercolano & Owen 2010), H II regions (Er-
colano, Wesson & Bastian 2010 and references therein), and planetary nebulae (Ercolano
et al. 2004 and references therein), to name a few.

4.6.3 Chemistry

The combinations of dust radiative transfer (Section 4.1) and line radiative transfer (Section
4.6.1) can be used to study the chemistry in clouds. Jorgensenet al. (2006) iterated on the
dust temperature and molecular line calculations to determine where molecules freeze-
out in protostellar envelopes. Spaans (1996) included a chemical network of 44 species
to study the effects of clumpiness. Brudereret al. (2009a,b, 2010) demonstrated chemical
modeling of Young Stellar Objects in a 3-part series. They pre-calculated a grid of chemical
composition as a function of time, for a given gas density, temperature, far-UV irradiation
and X-ray flux. The local far-UV flux is calculated by a Monte Carlo radiative transfer
code, which includes scattering and temperature calculation. The use of the pre-calculated
chemical grid speeds up calculations by several orders of magnitude.

5. Summary

The Monte Carlo method for radiative transfer (MCRT) is complementary to the traditional
formal methods. While those excel in 1-D, at high optical-depths, incorporating many gas
lines and computing detailed spectra, MCRT excels with 3-D geometries, non-LTE gas
processes, anisotropic radiation fields and scattering functions, complex velocity fields, and
polarization calculations. Thus MCRT is a great tool to add to the set of well-developed
methods for radiative transfer. In fact, it is a necessary tool to interpret the ever-increasing
sophistication of our new observatories.
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Abstract. Over the course of roughly a decade, from the late 1950s through
the early 1960s, Chandraskhar made fundamental contributions to basic plasma
physics, and the effect of magnetic fields on the dynamics of astrophysical
plasmas. This paper reviews recent progress and outstanding problems inAstro-
physical magnetohydrodynamics, the application of MHD to astrophysical
systems, with particular emphasis on the role of Chandra’s early contributions
to the field. Specific topics discussed include magnetic field amplification by
dynamo processes inside stars, the magnetorotational instability and angular
momentum transport in accretion disks, MHD turbulence in the interstellar
medium of galaxies, and kinetic MHD effects in weakly collisional plasmas.
Chandra’s contributions in all of these areas endure.

Keywords : MHD – turbulence – accretion disks

1. Introduction

It was a great honour and privilege to speak at the Chandrasekhar Centennial Symposium
on the topic of ‘Astrophysical Magnetohydrodynamics’, especially since there were so
many eminent members of the audience whom I would have liked to hear speak on the
same topic! The goals of my talk were to provide a summary of recent progress in mag-
netohydrodynamics (MHD) as applied to a wide variety of astrophysical systems, and to
highlight Chandra’s early contributions to these topics. The goals of this paper are the
same.

Unfortunately, by the time I was a graduate student in the late 1980s, Chandra was no
longer working on plasma physics, and therefore I never had the opportunity to meet him
personally. However, he still had an enormous impact on me, as on most graduate students,
through his books. In particular, his books on radiative transfer (Chandrasekhar 1950),
hydrodynamic and hydromagnetic stability (Chandrasekhar 1961), and ellipsoidal figures
of equilibrium (Chandrasekhar 1969), all still available as Dover reprints, are as relevant
today as they were back then.

Throughout the 1950s and 1960s, Chandra wrote many papers on MHD and plasma
physics, following four general themes:
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1. the statistical properties of turbulence,
2. problems in astrophysical MHD,
3. basic plasma physics, and
4. hydrodynamic and MHD instabilities.

Chandraskhar (1989a,b), volumes 3 and 4 of his selected papers, contain his most important
work in these areas. Rather than highlighting individual papers or results, instead I have
organized this paper around astrophysical objects of increasing scale. Thus, after a brief
introduction to some general concepts in MHD, I will discuss evidence for the importance
of magnetic fields first instars, then inaccretion disks, then ingalaxies, and finally on the
largest scale inclusters of galaxies. Each topic will be organized into a separate section.

Finally, it is useful to highlight what Chandra himself wrote about astrophysical MHD
back in 1957: “It is clear we are very far from an adequate characterization of cosmic
magnetic fields” (Chandrasekhar 1957). Obviously we have come very far since 1957, but
in some cases it is clear we still have very far to go.

2. Some elementary MHD

Before discussing results, it is worthwhile to summarize some basic physics of MHD. In a
highly collisional plasma with perfect conductivity, the equations of motion are essentially
the Euler equations of gas dynamics, supplemented with Maxwell’s equations to describe
the evolution of the magnetic field (in particular, Faraday’s Law). The result, usually re-
ferred to as the equations of ideal MHD, is

∂ρ

∂t
+ ∇·[ρv] = 0, (1)

∂ρv
∂t
+ ∇·

[

ρvv − BB + P∗
]

= 0, (2)

∂E
∂t
+ ∇ ·

[

(E + P∗)v − B(B · v)
]

= 0, (3)

∂B
∂t
− ∇ × (v × B) = 0, (4)

whereP∗ is a diagonal tensor with componentsP∗ = P+ B2/2 (with P the gas pressure),E
is the total energy density

E =
P
γ − 1

+
1
2
ρv2 +

B2

2
, (5)

andB2 = B · B. The other symbols have their usual meaning. These equations are written
in units such that the magnetic permeabilityµ = 1. An equation of state appropriate to an
ideal gas,P = (γ − 1)e (whereγ is the ratio of specific heats, ande is the internal energy
density), has been assumed in writing Eq. (5). These equations are valid only for non-
relativistic flows, and for phenomena at frequencies much less than the plasma frequency.
As we shall see in Section 6 there are many interesting frontiers to explore as some of
the assumptions underlying the equations of ideal MHD are relaxed, for example in low
collisionality plasmas.
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Restricting ourselves to one dimensional flow for the moment, it is useful to rewrite
the equations of motion in a compact form

∂U
∂t
=
∂F
∂U
∂U
∂x

(6)

where the components of the vectorsU andF are the conserved variables and their fluxes,
respectively, that is
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Note that Eq. (6) defines a system of nonlinear hyperbolic partial differential equations
(PDEs). The mathematical properties of hyperbolic PDEs are well studied. In particular,
the eigenvalues of the Jacobian∂F/∂U define the characteristic (wave) speeds in MHD.

In fact, probably the most important property of hyperbolic PDEs is that they admit
wave-like solutions. Much of the dynamics of magnetized plasmas can be interpreted using
the properties of linear and nonlinear wave solutions. The properties of linear waves can be
studied using the dispersion relation, derived by looking for solutions for small amplitude
disturbances of the form expi(ωt + k · x), whereω is the frequency andk the wavevector, in
a stationary, isotropic, homogeneous medium. Inserting this form for the solution into the
equations of motion, and keeping only terms which are linear in the disturbance amplitude
results in a system of linear equations, which have solutions only if the frequency and
wavenumber are related through the following dispersion relation

[

ω2
− (k · VA)2

] [

ω4
− ω2k2

(

V2
A +C2

)

+ k2C2 (k · VA)2
]

= 0 (8)

whereVA = B/
√

4πρ is the Alfvén velocity, andC2 = γP/ρ the adiabatic sound speed.
The dispersion relation has three pairs of solutions, which represent right- and left-going
waves of three different families. (Note that MHD is immediately different from hydro-
dynamics, which has only one wave family: sound waves). The MHD wave families are
the Alfvén wave (an incompressible transverse wave propagating at speedVA), and the fast
and slow magnetosonic waves (which are both compressible acoustic modes with phase
velocity modified by the magnetic pressure). To complicate matters even more, the phase
velocity for each mode depends on the angle between the wavevector and the magnetic
field, as well as the strength of the magnetic field as measured by the ratioVA/C. The
angular dependence is most easily demonstrated using Friedrichs diagrams, which plot the
relative phase velocity of each mode versus the angle betweenk andB in a polar diagram
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(see Section 14.1 in Sturrock 1994 for an example). Such plots clearly demonstrate impor-
tant properties of MHD waves, for example, for directions parallel to the magnetic field,
the Alfvén wave has the same phase velocity as either the fast or the slow magnetosonic
wave (which one depends on whether the Alfvén speed is faster or slower than the sound
speed). In this case, the modes are degenerate. Mathematically, this reflects the fact that the
equations of MHD are notstrictly hyperbolic, since in some circumstances the eigenvalues
of the Jacobian are degenerate. This fact makes finding solutions to the equations of ideal
MHD even more complicated.

Another important property of MHD waves in comparison to hydrodynamics is that,
because they involve transverse motions, Alfvén waves can be polarized. The sum of
two linear polarizations with different phase shifts can lead to circularly polarized Alfvén
waves. This means in MHD, all three components of velocity must be kept, even in one
dimensional flows, in order to represent all polarizations. Moreover, in non-ideal MHD the
left- and right-circularly polarized Alfvén waves can have different phase velocities, these
are the whistler waves in the Hall MHD regime (where ions and electrons can drift due to
collisions with neutrals). Again, this new behavior is a direct consequence of the complex-
ity of MHD waves, and it is fair to say that the rich dynamics of MHD results in part from
this complexity.

Finding analytic solutions to the equations of MHD, beyond those representing lin-
ear waves, is very difficult. Usually, very restrictive assumptions are required, such as
steady (so that∂/∂t = 0), and/or one dimensional flow. Today, the most important tools
for solving the MHD equations are numerical methods. Grid based methods for MHD
are now quite mature, and a variety of public codes are available to study MHD flows in
fully three-dimensions, including a rich set of physics beyond ideal MHD. Most grid based
methods for MHD adopt the same approach: the conserved variables are discretized on a
grid, with volume averaged values stored at cell centers. In order to enforce the divergence-
free constraint on the magnetic field, it is better to store area averages of each component of
the magnetic field at corresponding cell faces, and evolve these components using electric
fields at cell edges, using a technique called “constrained transport”. Figure 1 shows the
basic discretization of the variables.

One example of a publicly-available grid code for MHD is Athena (Stone et al. 2008),
available athttps://trac.princeton.edu/Athena. Athena implements a higher-order
Godunov scheme based on directionally unsplit integrators, piecewise-parabolic recon-
struction, and constrained transport, with a variety of Riemann solvers available to com-
pute the fluxes. With this approach, mass, momentum, energy, and magnetic flux are all
conserved to machine precision. Of course, there are many other codes available which
implement different algorithms than those used in Athena, and this is a very good thing,
because by comparing solutions to the same problem generated by different algorithms, we
can gauge whether those solutions are reliable. Throughout the rest of this paper, I will
discuss solutions to MHD problems generated by Athena and other codes.

3. Solar magnetoconvection

The best evidence of the importance of magnetic fields to the dynamics of astrophysical
plasmas comes from observations of the outer layers of the Sun. Both the presence of



Astrophysical magnetohydrodynamics 181

B

BU

Y

Z

X

i,j,k y,i,j+1/2,k

x,i+1/2,j,k

Bz,i,j,k+1/2

Figure 1. Basic centering of variables for a grid-based numerical method for MHD using constrained
transport. Volume averages of conserved variables are stored at cell centers, while area averages of
each component of the magnetic field are stored at cell faces.

sunspots in the photosphere, and structures such as filaments, prominences, and flares in the
solar corona, demonstrate the key role that magnetic fields play in shaping the dynamics.
In fact, the very existence of the hot corona is now interpreted as due to heating by MHD
effects. Beautiful images and animations that show magnetic fields in action in the solar
corona have been obtained by recent spacecraft missions such as SOHO, TRACE, Yokoh,
Hinode, and SDO.

It is thought that most of the magnetic activity of the Sun is driven by the combination
of rotation and turbulent flows in the convection zone. In fact, the properties of MHD
turbulence driven by convection was one of the problems that first interested Chandra in
plasma physics (for examples, see papers in Chandrasekhar 1989a).

Understanding the origin and evolution of the Sun’s magnetic field via a dynamo pro-
cess has been a challenging problem for many decades. In addition to generation of the
dipole field due to differential rotation, a process first proposed by Parker (1955), there
are also small-scale multipole fields thought to be generated by the convective turbulence
that play a role in shaping sunspots and coronal activity. Both the processes that produce
sunspots, and the large-scale magnetic field of the Sun, are very active areas of research.

In the case of sunspots, direct numerical simulations of magnetoconvection in the outer
layers, including realistic radiative transfer to capture the outer radiative zone, can now
reproduce details of observed sunspots, including the penumbral filaments; a beautiful ex-
ample is given in Rempelet al. (2009).

In the case of the solar dynamo, the dipole field is now thought to originate in the
tachocline, a region of strong shear between the radiative core (which is in solid body
rotation, according to results from helioseismology) and the outer convective zone (which
is in differential rotation). However, although the sophistication of modern global MHD
simulations of magnetoconvection in spherical and rotating stars is impressive, they still
fail to explain both the origin of the differential rotation in the convective zone, and the
origin of the cyclic dipole field. Solving the solar dynamo problem is important, as we are
unlikely to understand magnetic fields in other stars if we cannot first understand the Sun.
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4. The MRI in accretion disks

Moving beyond stars, the next set of astrophysical systems where magnetic fields have been
identified as being important is accretion disks. Such disks are ubiquitous, occurring in
protostellar systems, close binaries undergoing mass transfer, and in active galactic nuclei.

The most basic property of an accretion disk is the angular momentum transport mech-
anism. This mechanism controls the rate of accretion, which in turn controls the luminosity,
variability, and spectrum of the disk. Mass accretion in disks is analogous to nuclear fusion
in stars: it is the mechanism that powers the entire system.

It has been known for decades that kinetic viscosity in an astrophysical plasma is too
small to explain the angular momentum transport and mass accretion rate, so that some
form of “anomalous” viscosity is required (Shakura & Sunyaev 1973). It has also been
long suspected that the transport was associated with turbulence in the disk, but disks with
Keplerian rotation profiles are linearly stable according to the Rayleigh criterion, that is,
so long as the specific angular momentum increases outwards. So the question becomes:
what drives turbulence in disks?

The answer seems to be: magnetic fields. Remarkably, disks with Keplerian rotation
profiles which contain weak magnetic fields (weak in the sense that the gas pressure is
larger than the magnetic pressure) are linearlyunstable to the magnetorotational instabil-
ity (MRI), as first recognized by Balbus & Hawley (1991). The MRI can be identified by
calculating the linear dispersion relation for MHD waves in a Keplerian shear flow. The
simplest analysis which captures the MRI assumes incompressible axisymmetric pertur-
bations, a purely vertical magnetic field, and ideal MHD (all of these assumptions have
been relaxed in later analyses, e.g. see Balbus & Hawley 1999 for a review). The resulting
dispersion relation is

ω4
− ω2

[

κ2 + 2(k · VA)2
]

+ (k · VA)2

(

[k · VA]2 +
dΩ2

d ln r

)

= 0 (9)

whereVA is the Alfvén speed, and

κ2 =
1

R3

d(R4Ω2)
dR

(10)

is the epicyclic frequency (R is the cylindrical radius). Note that the coefficient of the first
and second terms in Eq. (9) are positive and negative respectively, therefore solutions with
ω2 < 0 (that is, instability) are possible if the third term is negative. This occurs when

(k · VA)2 < −
dΩ2

d lnr
(11)

Physically, this states that if the rotation frequency in the disk is decreasing outwards (as is
true in Keplerian flows), then there are always sufficiently small wavenumbers that will be
unstable. Note that this is in direct contradiction to the Rayleigh criterion, which requires
the angularmomentum (not frequency) decrease outward for instability. How small is “suf-
ficiently small” for instability depends on the magnetic field strength (VA). In practice,
if the field is weak (VA < C), there always are unstable modes with wavenumbers large
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Figure 2. Images of the density from a global simulation of a MRI unstable disk (left), and of the
density and magnetic field vectors from a local shearing box simulation (right).

enough that the corresponding wavelength is less than the vertical scale height (thickness)
of the disk.

In fact, studies of the MRI have a long and interesting history. The MRI was first
identified by Velikhov (1959) in a study motivated by a rotating plasma experiment. Chan-
drasekhar (1960) made important contributions, showing the instability was present in a
global analysis of magnetized Couette flow. Fricke (1969) found the instability in differ-
entially rotating stars. However, the importance of the MRI to accretion disks was not
recognized by any of these authors, in fact Safronov (1972) argued that the inclusion of
finite resistivity and viscosity effects would make the MRI unimportant in disks. A key
element of confusion seems to be over the lack of recovery of the Rayleigh criterion as
the magnetic field strength is decreased to zero. The stability properties of hydrodynamic
flows (based on angular momentum gradients) and MHD flows (based on angular velocity
gradients) are incompatible, a point discussed in detail by Balbus & Hawley (1991). It was
not until their paper that the important role that the MRI plays in disks was identified.

Over the past 20 years, there has been considerable effort to understand the nonlinear
regime and saturation of the MRI, mostly using computational methods. Figure 2 shows
images from typical simulations of the MRI in bothglobal domains, in which the entire
disk is evolved over a wide range of radii, andlocal shearing box simulations, in which
only a small radial extent of the disk is evolved. The advantage of the shearing box is that
by focusing all of the computational resources on a small patch, much higher numerical
resolution is possible.

Perhaps the most important result from local shearing box simulations is that in the
nonlinear regime, the MRI produces MHD turbulence which has both significant Maxwell
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and Reynolds stresses that transport angular momentum outward. It is remarkable that
the inclusion of a weak fieldqualitatively changes the stability properties of the flow, and
results in outward transport at a level required by observations. Numerical simulations of
the MRI have also established that turbulence amplifies the magnetic field, and drives an
MHD dynamo, and that the power spectrum of the turbulence is anisotropic, with most of
the energy on the largest scales (Balbus 2003).

Still, many important questions remain. At the moment, it is not understood how the
energy liberated by accretion is dissipated by the turbulence: does most of the energy
go into the ions or electrons? It is not understood how MRI unstable disks drive powerful
winds and outflows as are observed in many astrophysical systems, and what are the relative
contributions of the MRI and winds to angular momentum transport. Finally, calculations
which include radiation have only begun to be explored; it is likely many important phe-
nomena may be related to the interaction of the radiation field with the flow field generated
by the MRI. All of these questions will undoubtedly be addressed by future efforts.

5. MHD turbulence in the ISM of galaxies

Moving to ever larger scales, the next system in which magnetic fields have been observed
to be important is the interstellar medium (ISM) of galaxies. The observation of polarized
synchrotron emission from the ISM of the Milky Way and other galaxies, produced by
relativistic electrons spiraling around magnetic field lines, is direct proof of the presence
of such fields. Moreover, the observations allow the strength and even the direction of
the field to be inferred. In most cases, it is found the fields are in equipartition, with the
magnetic energy density being about equal to the thermal energy of the gas, and kinetic
energy of relativistic particles. Moreover, observations of the kinematics of the ISM in
galaxies reveal it is highly turbulent. Thus, interpretation of the dynamics of the ISM
requires an understanding of highly compressible MHD turbulence.

In fact, the statistical properties of turbulence were of considerable interest to Chandra.
It is revealing to read what he wrote in his Henry Norris Russell Lecture:

We cannot construct a rational physical theory without an adequate base of physical
knowledge. It would therefore seem to me that we cannot expect to incorporate the concept
of turbulence in astrophysical theories in any essential manner without a basic physical
theory of the phenomenon of turbulence itself, (Chandrasekhar 1949).

Fortunately, the theory of energy cascades in strong MHD turbulence has progressed
enormously in the last few decades (e.g. Goldreich & Sridhar 1995), so that there now
are theories of the power spectrum and statistical properties of MHD turbulence that can
be tested and compared to observation. One method to investigate the properties of MHD
turbulence is through direct numerical simulation.

Figure 3 shows images from high resolution (10243) numerical simulations of highly
compressible MHD turbulence with both strong and weak magnetic fields, taken from
Lemaster & Stone (2009). The turbulence is driven with a forcing function whose spa-
tial power spectrum is highly peaked at a wavenumber corresponding to about 1/8 the size
of the computational domain. The energy input rate of the driving is held constant, and
the turbulence is driven so that the Mach number of RMS velocity fluctuationsM = σV/C
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Figure 3. Structure of the density (grayscale) and magnetic field (arrows) in driven supersonic MHD
turbulence for strong (top) and weak (bottom) fields.

(whereC is the sound speed) is about 7. The magnetic field strength corresponds to a ratio
of gas to magnetic pressureβ = 8πP/B2 of 0.01 in the strong field case, and one in the
weak field case. This means the Alfvénic Mach number of the turbulence is about one in
the strong field case, and 7 in the weak field case.

It is quite clear from the images that in the weak field case, the density fluctuations are
isotropic, and the magnetic field is highly tangled. In contrast, in the strong field case the
density fluctuations are elongated along the field lines, and the field is more or less ordered.
This suggests that the power spectrum of the turbulence will be anisotropic. In fact, this is
one of the most basic predictions of the theory (Goldreich & Sridhar 1995).
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In addition to investigating the spectrum of fluctuations, such simulations can be used
to measure properties such as the decay rate of the turbulence, and how it depends on the
magnetic field strength. Early predictions suggested the decay rate of strongly magne-
tized turbulence would be very low, since it would be dominated by incompressible Alfvén
waves. In fact, the simulations (Stone, Ostriker & Gammie 1998; MacLow 1999) found
the decay rate ofsupersonic MHD turbulence was very fast, with the decay time about
equal to an eddy turn over time on the largest scales, regardless of the field strength. Most
of the dissipation was found to occur in shocks. Thus, while Alfvén waves are important
to the energetics, the coupling of large amplitude nonlinear Alfvén waves to compressible
modes, in particular slow magnetosonic waves, cannot be ignored. This coupling pumps
energy into the compressible modes, which then decay in shocks. The result has important
implications for the decay of supersonic turbulence in the ISM of galaxies.

Finally, more direct comparison between the simulations and observations is possible
using properties such as the polarization angle of background star light. In many regions
of the ISM, spinning dust grains become aligned with their long axis perpendicular to
the magnetic field. When background stars are viewed through these aligned grains, their
light is polarized, with the strength and direction of the polarization vector related to the
column density of gas, and the magnetic field strength in the plane of the sky. Using
numerical simulations of MHD turbulence, it is possible to compute theoretical maps of the
polarization vectors along different viewing angles for background sources viewed through
the simulation domain. Figure 4 shows an example for two simulations, both using Mach
10 turbulence with strong (β = 0.01) and weak (β = 1) magnetic fields.

It is clear from inspection that in the case of strong fields, the scatter in polarization
angle is small, while in the case of weak fields the scatter is large. In fact, this effect was
predicted by Chandrasekhar & Fermi (1953), who showed that the scatter in the polariza-
tion angleδφ should be related to the plane-of-sky magnetic field strengthBp, gas density
ρ, and line-of-sight velocity dispersionδv through

Bp = 0.5
(4πρ)1/2δv
δφ

(12)

Equation (12) is now known as the “Chandrasekhar-Fermi” formula, and is now routinely
used as a technique to measure magnetic field strengths in the ISM.

6. Kinetic MHD effects in clusters of galaxies

Finally, we consider the effect of magnetic fields on the largest structures in the universe,
clusters of galaxies. Radio observations of Faraday rotation in background sources indicate
that the x-ray emitting plasma trapped in the gravitational potential of clusters is magne-
tized. Using the x-ray spectra to determine the temperature and density of the plasma shows
that the mean free path of charged particles in the plasma is much smaller than the system
size, but much larger than the gyroradius, that is the plasma is in thekinetic MHD regime.

The most important property of weakly collisional plasmas in the kinetic MHD regime,
in comparison to highly collisional plasmas, is that the microscopic transport coefficients
become anisotropic. For example, if the electron mean free path is much larger than the
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Figure 4. Scatter in polarization angle in supersonic turbulence with a strong field (top) and weak
field (bottom). The grayscale shows the column density, and the line segments show the direction and
amplitude of the polarization vector.
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Figure 5. Basic mechanism of the MTI. The structure of the perturbed field lines in a stratified
atmosphere are shown (which is hotter on the bottom than top), along with the direction of the heat
flux Q induced along field lines which results in amplification of the perturbations.

electron gyroradius, thermal conduction is primarily along magnetic field lines. Similarly,
when the ion mean free path is much larger than the ion gyroradius, kinematic viscosity
is primarily along magnetic field lines. The simplest description of the dynamics is there-
fore given by the equations of MHD supplemented by anisotropic thermal conduction and
viscous transport terms (Braginskii 1965).

Remarkably, the addition of anisotropic transportqualitatively changes the dynamics
of the plasma. For example, with anisotropic thermal conduction, the convective stability
criterion no longer depends on entropy, but only on the temperature gradient (ifdT/dz < 0,
the plasma isunstable to convection; Balbus 2000). Convective instability in this regime
has been termed the magnetothermal instability (MTI). In fact, other instabilities have also
been found in the kinetic MHD regime that might be important in clusters (Quataert 2008)
or in diffuse accretion flows (Balbus 2000).

Figure 5, taken directly from a nonlinear simulation (Parrish & Stone 2007), demon-
strates the physics of the MTI. Consider a stratified atmosphere in a constant gravitational
field. Arrange the vertical profiles of the pressure and density so that the atmosphere is
hotter at the bottom than the top, and so that the entropy is constant or increasing upwards.
In this case, the atmosphere should bestable to convection by the Schwarzschild criterion.
Now consider a weak, horizontal magnetic field with anisotropic thermal conduction along
field lines. Initially the field lines are parallel to the isotherms, so there is no heat flux in
the equilibrium state. Now consider the evolution of vertical perturbations, as shown in the
figure. The peaks of the perturbations are at a slightly lower pressure than their equilibrium
position, so they expand and cool. The valleys are at a slightly higher pressure, and so con-
tract and heat up. These lead to a temperature gradient, and therefore a heat fluxQ, along
the field lines. The net result is toincrease the entropy at the peaks (making them more
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buoyant), and todecrease the entropy at the valleys (making them sink). This increases
the perturbation, tilts the field line more to the vertical, increases the temperature gradient
along the field line and therefore increases the heat flux; and this process runs away as an
instability.

The nonlinear regime of the MTI has now been quite well studied using numerical
simulations. With non-conducting boundaries at the top and bottom of the domain, the
MTI saturates when the temperature profile becomes isothermal. If the top and bottom
boundaries are held at fixed temperatures, then vigorous and sustained convection can be
driven.

How does the MTI relate to galaxy clusters? Recent work shows that it can play an
important role in the temperature profiles of the x-ray emitting gas. When clusters form
from gravitational collapse of large-scale structure, the initial temperature profile is cen-
trally peaked. This profile is unstable to the MTI, and simulations of hydrostatic cores with
weak magnetic fields show that the MTI causes significant redistribution of the tempera-
ture profile of the cluster, along with significant amplification of the magnetic field, in a
Hubble time. More recently, the role that externally driven turbulence plays in the plasma
dynamics, along with the MTI and other instabilities in the kinetic regime, has been an area
of active inquiry (for example, see Parrish, Quataert & Sharma 2009).

7. Summary

I have discussed a very wide range of astrophysical systems where magnetic fields modify
or even control the dynamics in order to demonstrate that MHD is now understood to be
fundamental to many basic problems in astrophysics. Perhaps the best example is provided
by the problem of angular momentum transport in accretion disks. For over thirty years, it
was a struggle to understand why such transport occurs. With the identification of the MRI,
it became clear that MHD is the key: weakly magnetized Keplerian shear flows are linearly
unstable, and subsequent computational studies have shown this instability saturates as
MHD turbulence with a significant Maxwell stress. In fact, both Velikhov (1959) and
Chandrasekhar (1960) recognized the presence of the instability, although neither realized
its importance in accretion disks, perhaps because such disks were not well recognized
observationally at the time.

Many frontiers exist in astrophysical MHD, as Section 6 demonstrates. Motivated by
the properties of weakly collisional plasmas in the x-ray emitting gas in clusters of galax-
ies, anisotropic thermal conduction was shown to qualitatively change the dynamics. In
particular, it has been found that the stability condition for convection is fundamentally
altered when anisotropic conduction is important: stability depends only on the tempera-
ture gradient, while the entropy profile is irrelevant. Undoubtedly, many more remarkable
results remain to be discovered as ever more realistic descriptions of astrophysical plasmas
are adopted.

It is impossible to describe studies of astrophysical MHD without mentioning the im-
portant role that numerical methods now play. In fact, computational methods are now
the primary tool for the investigation of nonlinear, time-dependent, and multidimensional
solutions to the equations of MHD. I wonder what Chandra would think of modern com-
putational methods, and their application to problems in astrophysics?
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Finally, I hope this paper has demonstrated that Chandra’s contributions to plasma
physics and MHD endure. In particular, his work on the MRI was before its time.

Acknowledgments

I thank the organizers of the symposium for the opportunity to speak, and for running
such an interesting and productive meeting. I thank my collaborators who have contributed
significantly to the work presented here, in particular S. Balbus, C. Gammie, T. Gardiner,
J. Hawley, N. Lemaster, E. Ostriker, and I. Parrish. This work has been supported by grants
from the DOE, NSF and NASA ATP programs.

References

Balbus S.A., Hawley J.F., 1991, ApJ, 376, 214
Balbus S.A., Hawley J.F., 1999, Rev. Mod. Phys., 70, 1
Balbus S.A., 2000, ApJ, 534, 420
Balbus S.A., 2003, ARA&A, 41, 555
Braginskii S.I.., 1965, Rev. Pl. Phys., 1, 205
Chandrasekhar S., 1949, ApJ, 110, 329
Chandrasekhar S., 1950, Radiative Transfer, Dover Publications, New York
Chandrasekhar S., Fermi E., 1953, ApJ, 118, 113
Chandrasekhar S., 1957, Proc. Nat. Acad. Sci., 43, 24
Chandrasekhar S., 1960, Proc. Nat. Acad. Sci., 46, 253
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York
Chandrasekhar S., 1969, Ellipsoidal Figures of Equilibrium, Dover Publications, New York
Chandrasekhar S., 1989a, Selected Papers, Volume 3: Stochastic, Statistical, and Hydromagnetic

Problems in Physics and Astronomy, University of Chicago Press, Chicago
Chandrasekhar S., 1989b, Selected Papers, Volume 4: Plasma Physics, Hydrodynamic and Hydro-

magnetic Stability, and Applications of the Tensor-Virial Theorem, University of Chicago
Press, Chicago

Fricke K., 1969, A&A, 1, 388
Goldreich P., Sridhar S., 1995, ApJ, 438, 763
Hawley J.F., Balbus S.A., Stone J.M., 2001, ApJ, 554, L49
Lemaster M.N., Stone J.M., 2009. ApJ, 691, 1092
MacLow M.-M., 1999, ApJ, 524, 169
Miller K.A., Stone J.M., 1999, ASSL, 240, 237
Parker E.N., 1955, ApJ, 122, 293
Parrish I.J., Stone J.M., 2007, ApJ, 664, 135
Parrish I.J., Quataert E., Sharma P., 2009, ApJ, 703, 96
Quataert E., 2008, ApJ, 673, 758
Rempel M., Schüssler M., Cameron R.H., Knölker M., 2009, Science, 325, 171
Safronov V.S., 1972, Evolution of the protoplanetary cloud and formation of the earth and planets,

Jerusalem (Israel): Israel Program for Scientific Translations, Keter Publishing House
Shakura N.I., Sunyaev R.A., 1973, A&A, 24, 337
Stone J.M., Ostriker E.C., Gammie C.F., 1998, ApJ, 508, L99
Stone J.M., Gardiner T.A., Teuben P., Hawley J.F., Simon J.B., 2008, ApJS, 178, 137
Sturrock P.A., 1994, Plasma Physics, Cambridge University Press, Cambridge
Velikhov E.P., 1959, Sov. Phys. JETP, 36, 995



Bull. Astr. Soc. India (2011)

The formation and evolution of massive black hole seeds in
the early Universe

Priyamvada Natarajan∗

Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
Department of Physics, Yale University, P.O. Box New Haven, CT 06520, USA
Institute for Theory and Computation, Harvard University,
60 Garden Street, Cambridge MA 02138, USA

Received February 27, 2011; accepted March 24, 2011

Abstract. Tracking the evolution of high redshift seed black hole masses to
late times, we examine the observable signatures today. These massive initial
black hole seeds form at extremely high redshifts from the direct collapse of
pre-galactic gas discs. Populating dark matter halos with seeds formed in this
fashion, we follow the mass assembly history of these black holes to the present
time using a Monte-Carlo merger tree approach. Utilizing this formalism, we
predict the black hole mass function at high redshifts and at the present time; the
integrated mass density of black holes in the Universe; the luminosity function
of accreting black holes as a function of redshift and the scatter in observed, lo-
cal Mbh − σ relation. Comparing the predictions of the ‘light’ seed model with
these massive seeds we find that significant differences appear predominantly
at the low mass end of the present day black hole mass function. However, all
our models predict that low surface brightness, bulge-less galaxies with large
discs are least likely to be sites for the formation of massive seed black holes
at high redshifts. The efficiency of seed formation at high redshifts has a di-
rect influence on the black hole occupation fraction in galaxies atz = 0. This
effect is more pronounced for low mass galaxies. This is the key discriminant
between the models studied here and the Population III remnant ‘light’ seed
model. We find that there exists a population of low mass galaxies that do not
host nuclear black holes. Our prediction of the shape of theMbh − σ relation
at the low mass end and increased scatter has recently been corroborated by
observations.
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1. Introduction

Demography of local galaxies suggests that most galaxies harbour quiescent super-massive
black holes (SMBHs) in their nuclei at the present time and that the mass of the hosted
SMBH is correlated with properties of the host bulge. In fact, observational evidence points
to the existence of a strong correlation between the mass of the central SMBH and the
velocity dispersion of the host spheroid (Tremaineet al. 2002; Ferrarese & Merritt 2000,
Gebhardtet al. 2003; Marconi & Hunt 2003; Häring & Rix 2004; Gültekinet al. 2009)
and possibly the host halo (Ferrarese 2002) in nearby galaxies. These correlations are
strongly suggestive of co-eval growth of the SMBH and the stellar component, likely via
regulation of the gas supply in galactic nuclei from the earliest times (Haehnelt, Natarajan,
Rees 1998; Silk & Rees 1999; Kauffmann & Haehnelt 2000; Fabian 2002; King 2003;
Thompson, Quataert & Murray 2005; Natarajan & Treister 2009).

2. Links between massive SMBH seeds, halo mass and spin

Optically bright quasars powered by accretion onto black holes are now detected out to red-
shifts ofz > 6 when the Universe was barely 7% of its current age (Fanet al. 2004; 2006).
The luminosities of these high redshift quasars imply black hole massesMBH > 109 M⊙.
Models that describe the growth and accretion history of supermassive black holes typically
use as initial seeds the remnants derived from Pop-III stars (e.g. Haiman & Loeb 1998;
Haehnelt, Natarajan & Rees 1998). Assembling these large black hole masses by this early
epoch starting from remnants of the first generation of metal free stars has been a chal-
lenge for models. Some suggestions to accomplish rapid growth invoke super-Eddington
accretion rates for brief periods of time (Volonteri & Rees 2005). Alternatively, it has
been suggested that the formation of more massive seeds ab-initio through direct collapse
of self-gravitating pre-galactic disks might offer a new channel as proposed by Lodato &
Natarajan 2006 [LN06]. This scenario alleviates the problem of building up supermassive
black hole masses to the required values byz = 6.

We focus on the main features of massive seed models in this review. Most aspects of
the evolution and assembly history of this scenario have been explored in detail in Volonteri
& Natarajan (2009) and Volonteri, Lodato & Natarajan (2008). In these models, at early
times the properties of the assembling SMBH seeds are more tightly coupled to properties
of the dark matter halo as their growth is driven by the merger history of halos. However,
at later times, when the merger rates are low, the final mass of the SMBH is likely to be
more tightly coupled to the small scale local baryonic distribution. The relevant host dark
matter halo property at high redshifts in this picture is the spin.

In a physically motivated model for the formation of heavy SMBH seeds (in contrast
to the lower mass remnant seeds from Population III stars) as described in LN06, there is a
limited range of halo spins and halo masses that are viable sites for the formation of seeds.
In this picture, massive seeds withM ≈ 105 − 106M⊙ can form at high redshift (z > 15),
when the intergalactic medium has not been significantly enriched by metals (Koushiappas,
Bullock & Dekel 2004; Begelman, Volonteri & Rees 2006; LN06; Lodato & Natarajan
2007). As derived in LN06, the development of non-axisymmetric spiral structures drives
mass infall and accumulation in a pre-galactic disc with primordial composition. The mass
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accumulated in the center of the halo (which provides an upper limit to the SMBH seed
mass) is given by:

MBH = mdMhalo
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λ < λmax = mdQc/8(md/ jd)(Tvir/Tgas)1/2 (2)

andMBH = 0 otherwise. Hereλmax is the maximum halo spin parameter for which the disc
is gravitationally unstable,md is the gas fraction that participates in the infall andQc is the
Toomre parameter. The efficiency of SMBH formation is strongly dependent on the Toomre
parameterQc, which sets the frequency of formation, and consequently the number density
of SMBH seeds. The efficiency of the seed assembly process ceases at large halo masses,
where the disc undergoes fragmentation instead. This occurs when the virial temperature
exceeds a critical valueTmax, given by:

Tmax

Tgas
=

(

4αc

md

1
1+ MBH/mdMhalo

)2/3

, (3)

whereαc ≈ 0.06 is a dimensionless parameter measuring the critical gravitational torque
above which the disc fragments. The remaining relevant parameters are assumed to have
typical values:md = jd = 0.05,αc = 0.06 for theQc = 2 case. The gas has a temperature
Tgas= 5000K.

To summarize, every dark matter halo is characterized by its massM (or virial tem-
peratureTvir) and by its spin parameterλ. If λ < λmax (see equation 2) andTvir < Tmax

(equation 3), then a seed SMBH forms in the centre. Hence SMBHs form (i) only in halos
within a given range of virial temperatures, and hence, halo masses, and (ii) only within a
narrow range of spin parameters, as shown in Figure 1. High values of the spin parameter,
leading most likely to disk-dominated galaxies, are strongly disfavored as seed formation
sites in this model, and in models that rely on global dynamical instabilities (Volonteri &
Begelman 2010).

3. The evolution of seed black holes

We follow the evolution of the MBH population resulting from the seed formation process
delineated above in aΛCDM Universe. Our approach is similar to the one described in
Volonteri, Haardt & Madau (2003). We simulate the merger history of present-day halos
with masses in the range 1011 < M < 1015 M⊙ starting fromz = 20, via a Monte Carlo al-
gorithm based on the extended Press-Schechter formalism. Every halo entering the merger
tree is assigned a spin parameter drawn from the lognormalP(λ) distribution of simulated
LCDM halos. Recent work on the fate of halo spins during mergers in cosmological simu-
lations has led to conflicting results: Vitvitskaet al. (2002) suggest that the spin parameter
of a halo increases after a major merger, and the angular momentum decreases after a long
series of minor mergers; D’Onghia & Navarro (2007) find instead no significant correla-
tion between spin and merger history. Given the unsettled nature of this matter, we simply
assume that the spin parameter of a halo is not modified by its merger history.
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Figure 1. Parameter space (virial temperature, spin parameter) for SMBH formation. Halos with
Tvir > 104 K at z = 15 are picked to participate in the infall (md). The shaded areas in the bottom
panel show the range of virial temperatures and spin parameters where discs are Toomre unstable
and the joint conditions,λ < λmax (equation 2) andTvir < Tmax (equation 3, showing the minimum
spin parameter,λmin value below which the disc is globally prone to fragmentation) are fulfilled. The
top panel shows the probability of SMBH formation and is obtained by integrating the lognormal
distribution of spin parameters betweenλmin andλmax.

When a halo enters the merger tree we assign seed MBHs by determining if the halo
meets all the requirements described in Section 2 for the formation of a central mass con-
centration. As we do not self-consistently trace the metal enrichment of the intergalactic
medium, we consider here a sharp transition threshold, and assume that the MBH formation
scenario suggested by Lodato & Natarajan ceases atz ≈ 15 (see also Sesana 2007; Volon-
teri 2007). Atz > 15, therefore, whenever a new halo appears in the merger tree (because
its mass is larger than the mass resolution), or a pre-existing halo modifies its mass by a
merger, we evaluate if the gaseous component meets the conditions for efficient transport
of angular momentum to create a large inflow of gas which can either form a MBH seed,
or feed one if already present.

The efficiency of MBH formation is strongly dependent on a critical value of the
Toomre parameterQc, which sets the frequency of formation, and consequently the number
density of MBH seeds. We investigate the influence of this parameter in the determination
of the global evolution of the MBH population. Figure 2 shows the number density of
seeds formed in three different models with varying efficiency, withQc = 1.5 (low effi-
ciency model A),Qc = 2 (intermediate efficiency model B), andQc = 3 (high efficiency



Massive black hole seeds 195

Figure 2. Mass function of MBH seeds in the three Q-models that differ in seed formation efficiency.
Left panel: Qc = 1.5 (the least efficient model A), middle panel:Qc = 2 (intermediate efficiency
model B), right panel:Qc = 3 (highly efficient model C). Seeds form atz > 15 and this channel
ceases atz = 15. The solid histograms show the total mass function of seeds formed byz = 15, while
the dashed histograms refer to seeds formed at a specific redshift,z = 18.

model C). The solid histograms show the total mass function of seeds formed byz = 15
when this formation channel ceases, while the dashed histograms refer to seeds formed in
a specific redshift slice atz = 18. The number of seeds changes by about one order of mag-
nitude from the least efficient to the most efficient model, consistent with the probabilities
shown in Figure 1.

We assume that, after seed formation ceases, thez < 15 population of MBHs evolves
according to a “merger driven scenario”, as described in Volonteri (2006). We assume
that during major mergers MBHs accrete gas mass that scales with the fifth power of the
circular velocity (or equivalently the velocity dispersionσc) of the host halo (Ferrarese
2002). We thus set the final mass of the MBH at the end of the accretion episode to 90% of
the mass predicted by theMBH − σc correlation, assuming that the scaling does not evolve
with redshift. Major mergers are defined as mergers between two dark matter halos with
mass ratio between 1 and 10. BH mergers contribute to the mass addition of the remaining
10%.

We briefly outline the merger scenario calculation here. The merger rate of halos can
be estimated using equation 1 of Fakhouri, Ma & Boylan-Kolchin (2010), where a simple
fitting formula is derived from large LCDM simulations. The merger rate per unit redshift
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and mass ratio (ξ) at fixed halo mass is given by:

dNm

dξdz
(Mh) = A

(

Mh

1012M0

)α

ξβ exp

[(

ξ

ξ̃

)γ]

(1+ z)η. (4)

with A = 0.0104,α = 0.133,β = −1.995,γ = 0.263,η = 0.0993 and̃ξ = 9.72× 10−3. We
can integrate the merger rate betweenz = 0 and say,z = 3, for major mergers. This gives
the number of major mergers a halo of a given mass experiences betweenz = 0 andz = 3.
Halo mass can be translated into virial circular velocity:

Vc = 142km/s

[

Mh

1012 M⊙

]1/3 [

Ωm

Ω
z
m

∆c

18π2

]1/6

(1+ z)1/2, (5)

where∆c is the over-density at virialization relative to the critical density. For a WMAP5
cosmology we adopt here the fitting formula∆c = 18π2

+ 82d − 39d2 (Bryan & Norman
1998), whered ≡ Ω z

m − 1 is evaluated at the collapse redshift, so thatΩ z
m = Ωm(1+ z)3/

(Ωm(1+ z)3
+ ΩΛ + Ωk(1+ z)2). It is well known that the major merger rate is an increasing

function of halo mass or circular velocity. In fact we find that the expected number of
mergers betweenz = 0 andz = 3 with mass ratioξ > 0.3 is≃ 0.4 for Mh = 108M⊙, ≃ 0.5
for Mh = 109M⊙, ≃ 0.7 for Mh = 1010M⊙, ≃ 1.0 for Mh = 1011M⊙, ≃ 1.4 for Mh = 1012M⊙,
≃ 1.8 for Mh = 1013M⊙.

In order to calculate the luminosity function of active black holes and to follow the
black hole mass growth during each accretion event, we also need to calculate the mass
inflow rate. This is assumed to scale with the Eddington rate for the MBH, and is based on
the results of merger simulations, which heuristically track accretion onto a central MBH
(Di Matteo, Springel & Hernquist 2005; Hopkinset al. 2005; Sijackiet al. 2007). The
time spent by a given simulated AGN at a given bolometric luminosity1 per logarithmic
interval is approximated by Hopkinset al. (2005) as:

dt
dL
= |α|tQ L−1

(

L
109L⊙

)α

, (6)

wheretQ ≃ 109 yr, andα = −0.95+0.32 log(Lpeak/1012L⊙). HereLpeak is the luminosity of
the AGN at the peak of its activity. Hopkinset al. (2006) show that approximatingLpeakby
the Eddington luminosity of the MBH at its final mass (i.e., when it sits on theMBH − σc

relation) compared to computing the peak luminosity with equation (6) above gives the
same result and in fact, the difference between these two cases is negligible. Volonteri,
Salvaterra & Haardt (2006) derive the following simple differential equation to express the
instantaneous accretion rate (fEdd,in units of the Eddington rate) for a MBH of massMBH

1Weconvert accretion rate into luminosity assuming that the radiative efficiency equals the binding energy per
unit mass of a particle in the last stable circular orbit. We associate the location of the last stable circular orbit with
the spin of the MBHs, by self-consistently tracking the evolution of black hole spins throughout our calculations
(Volonteri 2006). We set 20% as the maximum value of the radiative efficiency, corresponding to a spin slightly
below the theoretical limit for thin disc accretion (Thorne 1974).
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in a galaxy with velocity dispersionσc:

d fEdd(t)
dt

=
f 1−α
Edd (t)

|α|tQ

(

ǫṀEddc2

109L⊙

)−α

, (7)

wheret is the time elapsed from the beginning of the accretion event. Solving this equation
provides us with the instantaneous Eddington ratio for a given MBH at a specific time,
and therefore we can self-consistently follow the MBH mass. We set the Eddington ratio
fEdd = 10−3 at t = 0. This same type of accretion is assumed to occur, atz > 15, following
a major merger in which a MBH is not fed by disc instabilities.

4. Results

The repercussions of different initial efficiencies for seed formation for the overall evolu-
tion of the MBH population stretch from high-redshift to the local Universe. Detection
of gravitational waves from seeds merging at the redshift of formation (Sesana 2007) is
probably one of the best ways to discriminate among formation mechanisms. On the other
hand, the imprint of different formation scenarios can also be sought in observations at
lower redshifts. The various seed formation scenarios have distinct consequences for the
properties of the MBH population atz = 0.

4.1 Low redshift predictions

4.1.1 Supermassive black holes in dwarf galaxies

Obviously, a higher density of MBH seeds implies a more numerous population of MBHs
at later times, which can produce observational signatures in statistical samples. More
subtly, the formation of seeds in aΛCDM scenario follows the cosmological bias. As a
consequence, the progenitors of massive galaxies (or clusters of galaxies) have a higher
probability of hosting MBH seeds (cf. Madau & Rees 2001). In the case of low-bias
systems, such as isolated dwarf galaxies, very few of the high-z progenitors have the deep
potential wells needed for gas retention and cooling, a prerequisite for MBH formation. In
the lowest efficiency model A, for example, a galaxy needs of order 25 massive progenitors
(mass above∼ 107M⊙) to ensure a high probability of seeding within the merger tree. In
model C, instead, the requirement drops to 4 massive progenitors, increasing the probability
of MBH formation in lower bias halos.

The signature of the efficiency of the formation of MBH seeds will consequently be
stronger in isolated dwarf galaxies. Figure 3 (bottom panel) shows a comparison between
the observedMBH − σ relation and the one predicted by our models (shown with circles),
and in particular, from left to right, the three models based on the LN06 and Lodato &
Natarajan (2007) seed masses withQc = 1.5, 2 and 3, and a fourth model based on lower-
mass Population III star seeds. The upper panel of Figure 3 shows the fraction of galaxies
thatdo not host any massive black holes for different velocity dispersion bins. This shows
that the fraction of galaxies without a MBH increases with decreasing halo masses atz =
0. A larger fraction of low mass halos are devoid of central black holes for lower seed
formation efficiencies. Note that this is one of the key discriminants between our models
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Figure 3. The Mbh−velocity dispersion (σc) relation atz = 0. Every circle represents the central
MBH in a halo of givenσc. Observational data are marked by their quoted errorbars, both inσc,
and inMbh (Tremaineet al. 2002). Left to right panels:Qc = 1.5, Qc = 2, Qc = 3, Population III
star seeds.Top panels: fraction of galaxies at a given velocity dispersion whichdo not host a central
MBH.

and those seeded with Population III remnants. As shown in Figure 3, there are practically
no galaxies without central BHs for the Population III seeds.

We can therefore make quantitative predictions for the local occupation fraction of
MBHs. Our model A predicts that belowσc ≈ 60 kms−1 the probability of a galaxy hosting
a MBH is negligible. With increasing MBH formation efficiencies, the minimum mass for
a galaxy that hosts a MBH decreases, and it drops below our simulation limits for model C.
On the other hand, models based on lower mass Population III star remnant seeds, predict
that massive black holes might be present even in low mass galaxies. Our predictions
have been corroborated by recent observations of low mass galaxies (Kormendy & Bender
2011).

Although there are degeneracies in our modeling (e.g., between the minimum redshift
for BH formation and the instability criterion), the BH occupation fraction and the masses
of the BHs in dwarf galaxies are the key diagnostics. An additional caveat worth men-
tioning is the possibility that a galaxy is devoid of a central MBH because of dynamical
ejections (due to either the gravitational recoil or three-body scattering). The signatures
of such dynamical interactions should be more prominent in dwarf galaxies, but ejected
MBHs would leave observational signatures on their hosts (Gültekinet al. in prep.). On
top of that, Schnittman (2007) and Volonteri, Lodato & Natarajan (2008) agree in consid-
ering the recoil a minor correction to the overall distribution of the MBH population at low
redshift (cf. Figure 4 in Volonteri 2007).
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Figure 4. Predicted bolometric luminosity functions at different redshifts with observational data
over-plotted. All 3 models match the observed bright end of the LF at high redshifts and predict a
steep slope at the faint end down toz = 1. The 3 models are not really distinguishable with the LF.
However at low redshifts, for instance atz = 0.5, all 3 models are significantly flatter at both high
and low luminosities and do not adequately match the current data. As discussed in the text, the LF
is strongly determined by the accretion prescription, and what we see here is simply a reflection of
that fact.

Additionally, as MBH seed formation requires halos with low angular momentum
(small spin parameter), we envisage that low surface brightness, bulge-less galaxies with
large spin parameters (i.e. large discs) are systems where MBH seed formation is less prob-
able. Furthermore, bulgeless galaxies are believed to have preferentially quieter merger
histories and are unlikely to have experienced major mergers that could have brought in a
MBH from a companion galaxy.

4.1.2 Comoving mass density of black holes

Since during the quasar epoch MBHs increase their mass by a large factor, signatures of the
seed formation mechanisms are likely more evident atearlier epochs. We compare in Fig-
ure 5 the integrated comoving mass density in MBHs to the expectations from Sołtan-type
arguments, assuming that quasars are powered by radiatively efficient flows (for details, see
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Yu & Tremaine 2002; Elvis, Risaliti & Zamorini 2002; Marconiet al. 2004). While during
and after the quasar epoch the mass densities in models A, B, and C differ by less than a
factor of 2, atz > 3 the differences are more pronounced.

A very efficient seed MBH formation scenario can lead to a very large BH density at
high redshifts. For instance, in the highest efficiency model C withQc = 3, the integrated
MBH density atz = 10 is already∼ 25% of the density atz = 0. The plateau atz > 6 is
due to our choice of scaling the accreted mass with thez = 0 Mbh−σ relation. Since in our
models we let MBHs accrete mass that scales with the fifth power of the circular velocity
of the halo, the accreted mass is a small fraction of the MBH mass (see the discussion in
(Marulli et al. 2006)), and the overall growth remains small, as long as the mass of the
seed is larger than the accreted mass, which, for our assumed scaling, happens whenever
the mass of the halo is below a few times 1010M⊙. The comoving mass density, an integral
constraint, is reasonably well determined out toz = 3 but is poorly known at higher red-
shifts. All models appear to be satisfactory and consistent with current observational limits
(shown as the shaded area).

4.1.3 Black hole mass function at z = 0

One of the key diagnostics is the comparison of the measured and predicted BH mass
function atz = 0 for our 3 models. In Figure 6, we show (from left to right, respectively)
the mass function predicted by models A, B, C and Population III remnant seeds compared
to that obtained from measurements. The histograms show the mass function obtained with
our models (where the upper histogram includes all the black holes while the lower one
only includes black holes found in central galaxies of halos in the merger-tree approach).
The two lines are two different estimates of the observed black hole mass function. In the
upper one, the measured velocity dispersion function for nearby late and early-type galaxies
from the SDSS survey (Bernardiet al. 2003; Shethet al. 2003) has been convolved with
the measuredMBH − σ relation. We note here that the scatter in theMbh − σ relation is
not explicitly included in this treatment, however the inclusion of the scatter is likely to
preferentially affect the high mass end of the BHMF, which provides stronger constraints
on the accretion histories than do the seed masses. It has been argued by Tundoet al.
(2007), Bernardiet al. (2007) and Laueret al. (2007) that the BH mass function differs if
the bulge mass is used instead of the velocity dispersion in relating the BH mass to the host
galaxy. Since our models do not trace the formation and growth of stellar bulges in detail,
we are restricted to using the velocity dispersion in our analysis.

The lower dashed curve is an alternate theoretical estimate of the BH mass function
derived using the Press-Schechter formalism from Jenkinset al. (2001) in conjunction
with the observedMBH − σ relation. Selecting only the central galaxies of halos in the
merger-tree approach adopted here (lower histograms) is shown to be equivalent to this
analytical estimate, and this is clearly borne out in the plot. When we include black holes
in satellite galaxies (upper histograms, cf. the discussion in Volonteri, Haardt & Madau
2003) the predicted mass function moves towards the estimate based on SDSS galaxies.
The higher efficiency models clearly produce more BHs. At higher redshifts, for instance
at z = 6, the mass functions of active MBHs predicted by all models are in very good
agreement, in particular for BH masses larger than 106 M⊙, as it is the growth by accretion
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Figure 5. Integrated black hole mass density as a function of redshift. Solid lines: total mass density
locked into nuclear black holes. Dashed lines: integrated mass density accreted by black holes.
Models based on BH remnants of Population III stars (lowest curve),Qc = 1.5 (middle curve) and
Qc = 2 (upper curve). Shaded area: constraints from Sołtan-type arguments, where we have varied
the radiative efficiency from a lower limit of 6% (applicable to Schwarzschild MBHs, upper envelope
of the shaded area), to about 20%. All 3 massive seed formation models are in comfortable agreement
with the mass density obtained from integrating the optical luminosity functions of quasars.

that dominates the evolution of the population. At the highest mass end (> 109 M⊙) model
A lags behind models B and C, although we stress once again that our assumptions for the
accretion process are very conservative.

Therelative differences between models A, B, and C at the low-mass end of the mass
function, however, are genuinely related to the MBH seeding mechanism (see also Fig-
ures 3 and 5). In model A, simply, fewer galaxies host a MBH, hence reducing the overall
number density of black holes. Although our simplified treatment does not allow robust
quantitative predictions, the presence of a “bump” atz = 0 in the MBH mass function at
the characteristic mass that marks the peak of the seed mass function (cf. Figure 2) is a
sign of highly efficient formation of massive seeds (i.e., much larger mass than, for in-
stance, Population III remnants). The higher the efficiency of seed formation, the more
pronounced is the bump (note that the bump is most prominent for model C). Since current
measurements of MBH masses extend barely down toMbh ∼ 106M⊙, this feature cannot
be observationally tested with present data, but future campaigns, with the Giant Magellan
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Figure 6. Mass function of black holes at z=0. Histograms represent the results of our models,
including central galaxies only (lower histograms with error bars), or including satellites in groups
and clusters (upper histograms). Left panel:Qc = 1.5, mid-left panel:Qc = 2, mid-right panel:
Qc = 3, right panel: models based on BH remnants of Population III stars. Upper dashed line: mass
function derived from combining the velocity dispersion function of Sloan galaxies (Shethet al.
2003, where we have included the late-type galaxies extrapolation), and BH mass-velocity dispersion
correlation (e.g., Tremaine et al. 2002). Lower dashed line: mass function derived using the Press-
Schechter formalism from Jenkinset al. (2001) in conjunction with theMBH − σ relation (Ferrarese
2002).

Telescope or JWST, are likely to extend the mass function measurements to much lower
black hole masses.

4.2 Predictions at high redshift

4.2.1 The luminosity function of accreting black holes

Turning to the global properties of the MBH population, as suggested by Yu & Tremaine
(2002), the mass growth of the MBH population atz < 3 is dominated by the mass ac-
creted during the bright epoch of quasars, thus washing out most of the imprint of initial
conditions. This is evident when we compute the luminosity function of AGN. Clearly the
detailed shape of the predicted luminosity function depends most strongly on the accre-
tion prescription used. With our assumption that the gas mass accreted during each merger
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episode is proportional toV5
c , we find that distinguishing between the various seed models

is difficult. As shown in Figure 4, all 3 models reproduce the bright end of the observed
bolometric LF (Hopkins, Richards & Hernquist 2007) at higher redshifts (marked as the
solid curve in all the panels), and predict a fairly steep faint end that is as yet undetected.
All models fare less well at low redshift, shown in particular atz = 0.5. This could be due
to the fact that we have used a single accretion prescription to model growth at all times.
On the other hand, the decline in the available gas supply at low redshifts (since the bulk
of the gas has been consumed before this epoch by star formation activity) likely changes
the radiative efficiency of these systems. Besides, observations suggest a sharp decline
in the number of actively accreting black holes at low redshifts at different wave-lengths,
produced most probably by changes in the accretion flow as a result of changes in the ge-
ometry of the nuclear regions of galaxies. In fact, all 3 of our models under-predict the
slope at the faint end. There are three other effects that could cause this flattening of the
LF at the faint end at low redshift for our models: (i) not having taken into account the
result of on-going mergers and the fate of satellite galaxies; (ii) the number of realizations
generated and tracked is insufficient for statistics, as evidenced by the systematically larger
errorbars and (iii) more importantly, it is unclear if merger-driven accretion is indeed the
trigger of BH fueling in the low redshift Universe. We note that the 3 massive seed models
and Population III seed model cannot be discriminated by the LF at high redshifts. Models
B and C are also in agreement viz-a-viz the predicted BH mass function atz = 6 (see Fig-
ure 2), even assuming a very high radiative efficiency (up to 20%), while model A might
need less severe assumptions, in particular for BH masses larger than 107 M⊙.

5. Conclusions

In this review, we outline massive black hole seed formation models and focus on the pre-
dictions made by these at high and low redshift. While the errors on mass determinations
of local black holes are large at the present time, definite trends with host galaxy prop-
erties are observed. The tightest correlation appears to be between the BH mass and the
velocity dispersion of the host spheroid. Starting with the ab-initio black hole seed mass
function computed in the context of direct formation of central objects from the collapse of
pre-galactic discs in high redshift halos, we follow the assembly history to late times using
a Monte Carlo merger tree approach. Key to our calculation of the evolution and build-up
of mass is the prescription that we adopt for determining the precise mass gain during a
merger. Motivated by the phenomenological observation ofMBH ∝ V5

c , we assume that
this proportionality carries over to the gas mass accreted in each step. With these prescrip-
tions, a range of predictions can be made for the mass function of black holes at high and
low z, and for the integrated mass density of black holes, all of which are observationally
determined. We evolve 3 models, designated model A, B and C, which correspond to in-
creasing efficiencies respectively for the formation of seeds at high redshift. These models
are compared to one in which the seeds are remnants of Population III stars.

It is important to note here that one major uncertainty prevents us from making more
concrete predictions: the unknown metal enrichment history of the Universe. Key to the
implementation of our models is the choice of redshift at which massive seed formation
is quenched. The direct seed formation channel described here ceases to operate once the
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Universe has been enriched by metals that have been synthesized by the first generation
of stars. Once metals are available in the Inter-Galactic Medium, gas cooling is much
more efficient and hydrogen in either atomic or molecular form is no longer the key player.
In this work, we have assumed this transition redshift to bez = 15. The efficiency of
MBH formation and the transition redshift are somehow degenerate (e.g., a model with
Q = 1.5 and enrichment redshiftz = 12 is halfway between model A and model B); if other
constraints on this redshift were available we could considerably tighten our predictions.

Below we list our predictions and compare how they fare with respect to current ob-
servations. The models investigated here clearly differ in predictions at the low mass end
of the black hole mass function. With future observational sensitivity in this domain, these
models can be distinguished.

1. Occupation fraction atz = 0: Our model for the formation of relatively high-mass
black hole seeds in high-z halos has direct influence on the black hole occupation
fraction in galaxies atz = 0. All our models predict that low surface brightness,
bulge-less galaxies with large spin parameters (i.e. large discs) are systems where
MBH formation is least probable. We find that a significant fraction of low-mass
galaxies might not host a nuclear black hole. This is in very good agreement with the
shape of theMbh − σ relation determined recently from an observational census (an
HST ACS survey) of low mass galaxies in the Virgo cluster reported by Ferrarese
et al. (2006). While current data in the low mass regime are scant (Barth 2004;
Greene & Ho 2007; Kormendy & Bender 2011), future instruments and surveys are
likely to probe this region of parameter space with significantly higher sensitivity.

2. High mass end of the local SMBH mass function: While the models studied here
(with different black hole seed formation efficiencies) are distinguishable at the low
mass end of the BH mass function, at the high mass end the effect of initial seeds
appears to be less important. These models cannot be easily distinguished by obser-
vations atz ∼ 3.

One of the key caveats of our picture is that it is unclear whether the differences pro-
duced by different seed models on observables atz = 0 might be compensated or masked
by BH fueling modes at earlier epochs. There could be other channels for BH growth that
dominate at low redshifts like minor mergers, dynamical instabilities, accretion of molec-
ular clouds and tidal disruption of stars. The decreased importance of the merger driven
scenario is patent from observations of low-redshift AGN, which are for the large majority
hosted by undisturbed galaxies (e.g. Pierceet al. 2007 and references therein) in low-
density environments. However, the feasibility and efficiency of some alternative channels
are still to be proven, for example, the efficiency of feeding from large scale instabilities
(see discussion in King & Pringle 2007; Shlosman, Frank & Begelman 1989; Goodman
2003; Collin 1999). In any event, while these additional channels for BHgrowth can mod-
ify the detailed shape of the mass function of MBHs, or of the luminosity function of
quasars, they will not create new MBHs. The occupation fraction of MBHs (see Figure 3)
is therefore largelyindependent of the accretion mechanism and a true signature of the
formation process.

To date, most theoretical models for the evolution of MBHs in galaxies do not include
how MBHs form. This work is a first analysis of the observational signatures of massive
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black hole formation mechanisms in the low redshift Universe, complementary to the in-
vestigation by Sesana, Volonteri & Haardt (2007), where the focus was on detection of
seeds at the very early times when they form, via gravitational waves emitted during MBH
mergers. We focus here on possible dynamical signatures that forming massive black hole
seeds carry over to the local Universe. Obviously, the signatures of seed formation mech-
anisms will be far more clear if considered jointly with the evolution of the spheroids that
they host. The mass, and especially the frequency, of the forming MBH seeds is a neces-
sary input when investigating how the feedback from accretion onto MBHs influences the
host galaxy, and is generally introduced in numerical models using extremely simplified,
ad hoc prescriptions (e.g., Springel, Di Matteo & Hernquist 2005; Di Matteo, Springel &
Hernquist 2005; Hopkinset al. 2006; Crotonet al. 2005; Cattaneo et al 2006; Boweret al.
2006). Adopting more detailed models for black hole seed formation, as outlined here, can
in principle strongly affect such results. Incorporating sensible assumptions for the masses
and frequency of MBH seeds in models of galaxy formation is necessary if we want to
understand the symbiotic growth of MBHs and their hosts.
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Abstract. The Universe is the grandest conceivable scale on which the hu-
man mind can strive to understand nature. The amazing aspect of cosmology,
the branch of science that attempts to understand the origin and evolution of
the Universe, is that it is largely comprehensible by applying the same basic
laws of physics that we use for other branches of physics. The observed cos-
mic microwave background (CMB) is understood by applying the basic laws
of radiative processes and transfer, masterfully covered in the classic text by
S. Chandrasekhar, in the cosmological context. In addition to the now widely
acclaimed temperature anisotropy, there is also linear polarization information
imprinted on the observed Cosmic Microwave background. CMB polarization
already has addressed, and promises to do a lot more to unravel the deepest
fundamental queries about physics operating close to the origin of the Universe.

Keywords: cosmic microwave background – early Universe – polarization –
radiative transfer

1. Introduction

It is an honour to write an invited article commemorating the birth centenary of Nobel
laureate, Professor Subrahmanyan Chandrasekhar. The Universe is the grandest conceiv-
able scale on which the human mind can strive to understand nature. Remarkably, even
the origin and evolution of the Universe is largely comprehensible by applying the same
basic laws of physics that are used in many other branches of physics. Chandrasekhar’s
research epitomizes this amazing reality, that one can understand complex phenomena in
astrophysics by building theories based on the basic laws of physics. This article is de-
voted to the cosmic microwave background (CMB), in particular, the measured intensity
and polarization fluctuations. The physics of this emerging champion among cosmological
observables is based on straightforward application of the theory of radiative transfer of the
relic radiation from big bang through the cosmic eons – a subject that has been masterfully
enshrined in the classic text ‘Radiative Transfer’ of S. Chandrasekhar (1960). This text is,
in fact, cited in the seminal papers on CMB anisotropy and polarization and, subsequent
reviews (Peebles & Yu 1970; Bond & Efstathiou 1984, 1987; Bond 1996).

∗e-mail: tarun@iucaa.ernet.in
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Historically, theoretical development always preceded observations in cosmology up
until the past couple of decades. However, in sharp contrast, recent developments in cos-
mology have been largely driven by huge improvements in the quality, quantity and scope
of cosmological observations. There are two distinct aspects to modern day cosmology –
the background Universe and the perturbed Universe. The ‘standard’ model of cosmology
must not only explain the dynamics of the homogeneous background Universe, but also
satisfactorily describe the perturbed Universe – the generation, evolution and finally, the
formation of the large-scale structure (LSS) in the Universe observed in the vast galaxy
surveys. It is fair to say that cosmology over the past few decades has increasingly seen
intense interplay between the theory and observations of the perturbed Universe. Spectac-
ular breakthroughs in various observations have now concretely verified that the present
edifice of the standard cosmological models is robust. A set of foundations and pillars of
cosmology has emerged, and each is supported by a number of distinct observations, which
are listed below.

• Homogeneous, isotropic Universe, expanding from a hot initial phase due to gravita-
tional dynamics described by the Friedman equations derived from laws of General
Relativity.

• The basic constituents of the Universe are baryons, photons, neutrinos, dark matter
and dark energy (cosmological constant/vacuum energy).

• The homogeneous spatial sections of space-time are nearly geometrically flat (Eu-
clidean space).

• Evolution of density perturbations under gravitational instability has produced the
large-scale structure in the distribution of matter starting from the primordial pertur-
bations in the early Universe.

• It has been established that the primordial perturbations have correlation on length
scales larger than the causal horizon; this makes a strong case for an epoch of infla-
tion in the very early Universe. The nature of primordial perturbations matches that
expected from the generation of primordial perturbations in the simplest models of
inflation.

The cosmic microwave background, a nearly uniform, thermal black-body distribution
of photons throughout space, at a temperature of 2.7 degrees Kelvin, accounts for almost
the entire radiation energy density in the Universe. Tiny variations of temperature and lin-
ear polarization of these black-body photons of the cosmic microwave background arriving
from different directions in the sky faithfully encode information about the early Universe.
Further these photons have travelled unimpeded across the entire observable Universe mak-
ing them excellent probes of the Universe on the largest observable scales. The much talked
about ‘dawn of precision era of cosmology’ has been ushered in by the study of the per-
turbed Universe. Measurements of CMB anisotropy and polarization have been by far the
most influential of the cosmological observations driving advances in current cosmology in
this direction.
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Figure 1. A cartoon explaining the Cosmic Microwave Background (CMB) using a space-
(conformal) time diagram. The present Universe is transparent and CMB photons travel to us freely
over cosmic distances along our past light cone. In an expanding Universe, the temperature of the
Planck black-body CMB is inversely proportional to the expansion factor. When the Universe is
about 1100 times smaller, the CMB photons are just hot enough to keep the baryonic matter in the
Universe (about 3 quarters Hydrogen, 1 quarter Helium as determined by big bang nucleosynthesis)
ionized, and at that epoch there is a sharp transition to an opaque Universe in the past. The CMB
photons come to us unimpeded directly from this spherical opaque surface of last scattering at a dis-
tance ofRH = 14 Gpc that surrounds us – a super IMAX cosmic screen. The red circle depicts the
sphere of last scattering in the reduced 2+ 1 dimensional representation of the Universe.

2. CMB anisotropy and polarization

The CMB photons arriving from different directions in the sky show tiny variations in
temperature, at a level of ten parts per million, i.e., tens of micro-Kelvin, referred to as
the CMB anisotropy, and a net linear polarization pattern at micro-Kelvin to tens of nano-
Kelvin level. The tiny variations of temperature and linear polarization of these black-
body photons of the cosmic microwave background arriving from different directions in
the sky have freely propagated over cosmological distances and carry information about the
early Universe. As illustrated in the cartoon in Fig. 1, the cosmic microwave background
radiation sky is essentially agiant, cosmic ‘super’ IMAX theater screensurrounding us at
a distance of 14 billion parsecs displaying a snapshot of the Universe at a time very close
to its origin. Hence the CMB anisotropy and polarization are imprints of the perturbed
Universe in the radiation when the Universe was only 0.3 million years old, compared to
its present age of about 14 billion years.
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It is convenient to express the sky map of CMB temperature anisotropy,∆T(n̂) (and
polarization, as we shall discuss later), in the directionn̂ in a spherical harmonic expansion:

∆T(n̂) =
∞
∑

ℓ=2

ℓ
∑

m=−ℓ

aℓmYℓm(n̂) . (1)

Theory predicts that the primary CMB anisotropy is a statistically isotropic, Gaussian field
(of zero mean), and current observations remain fully consistent with this expectation. The
anisotropy can then be characterized solely in terms of an angular power spectrum

Cℓ =
1

(2ℓ + 1)

ℓ
∑

m=−ℓ

|aℓm|
2 . (2)

TheCℓ spectra for a wide range of parameters within the ‘standard’ cosmology share a
generic set of features neatly related to basic physics, governing the CMB photon distribu-
tion function. On the large angular scales (low multipole,ℓ), the CMB anisotropy directly
probes the primordial power spectrum of metric fluctuations (scalar gravitational potential
and tensor gravitational waves) on scales enormously larger than the ‘causal horizon’. On
smaller angular scales (150< ℓ < 1500), the CMB temperature fluctuations probe the
physics of the coupled baryon-photon fluid through the imprint of the acoustic oscillations
in the ionized plasma produced by the same primordial fluctuations. At even higher multi-
poles, the damping tail of the oscillations encodes interesting physics such as the slippage
in the baryon-photon coupling, temporal width of the opaque to transparent Universe tran-
sition, and weak lensing due to large scale structures in the Universe. Figure 2, which
dissects the CMB angular power spectrum, attempts to provide a compact summary of the
various kinds of physics involved. Overall, the physics of CMB anisotropy has been very
well understood for more than two decades, Furthermore, the predictions of the primary
anisotropy and linear polarization and their connection to observables are, by and large,
unambiguous (Bond 1996; Hu & Dodelson 2002).

The acoustic peaks occur because the cosmological perturbations excite acoustic waves
in the relativistic plasma in the early Universe. The recombination of baryons at redshift
z ≈ 1100 effectively decouples the baryons and photons in the plasma, abruptly switching
off the wave propagation. In the time between the excitation of the perturbations and the
epoch of recombination, modes of different wavelength can complete different numbers of
oscillation periods, or in other words, waves can travel a finite distance and then freeze.
This translates the characteristic time scale into a characteristic length scale and leads to
a harmonic series of maxima and minima in the CMB anisotropy power spectrum. The
acoustic oscillations have a characteristic scale known as the sound horizon, which is the
comoving distance that a sound wave could have traveled up to the epoch of recombination.
This well-determined physical scale of 150 Mpc is imprinted on the CMB fluctuations at
the surface of last scattering. It is the typical scale of the random bright and dull patches
on the ‘cosmic super-IMAX’ screen.

The angle subtended by this physical scale in the CMB sky (IMAX screen) at a known
distance of 14 Gpc then allows a sensitive determination of the geometry (Ω0K) of the back-
ground Universe. Essentially, the same standard ruler of 150 Mpc placed at 14 Gpc would
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Figure 2. Figure taken from Hu, Sugiyama & Silk (1997) summarizes the different contributions to
the primary CMB anisotropy. Also indicated is the dependence of the four length scales that are im-
printed on theCℓ spectrum by some of the cosmological parameters. The Sachs-Wolfe (SW) plateau
at low ℓ is a faithful reproduction of the near scale-invariant spectrum of initial metric perturbations.
Integrated Sachs-Wolfe (ISW) effect arises from the evolution of metric perturbations along the path
of free streaming CMB photons. Late ISW arises atℓ < ℓΛK if the Universe has significant curvature
or cosmological constant. The early ISW contribution atℓ ∼ ℓeq is due to the transition from radiation
to matter domination. The acoustic and Doppler terms give rise to a harmonic series of oscillatory
peaks as a snapshot of the oscillations of a viscous baryon-photon fluid prior to the epoch of recom-
bination. The sound horizon at recombination sets the length scale of the acoustic oscillations. This
‘standard ruler’ atz ≈ 1100 then allows an accurate determination of the geometry of the Universe
from the location of the first peak,ℓA via the angle-distance relationship. High baryon density in-
creases viscous drag leading to suppression of even numbered acoustic peaks relative to odd. Power
is exponentially damped at largeℓ due to photon diffusion out of matter over-densities (Silk damping)
and finite thickness of the last scattering surface.

subtend different angles in a Universe with different spatial curvature. This determines the
location of the series of harmonic peaks ofCℓ along the multipoleℓ seen in Fig. 2. The
amplitude of baryon-photon oscillations can be expected to directly scale with the den-
sity of baryons available in the Universe. Consequently, the height of the peaks in the
Cℓ sensitively determine the baryon density,ΩB. TheCℓs are sensitive to other important
cosmological parameters, such as the relative density of matter,Ωm, cosmological con-
stant,ΩΛ, Hubble constant,H0 and deviation from flatness (curvature),ΩK . Implicit in Cℓ
is the hypothesized nature of random primordial/initial metric perturbations – (Gaussian)
statistics , (nearly scale-invariant) power spectrum, (largely) adiabatic vs. iso-curvature and
(largely) scalar vs. tensor component. The ‘default’ settings in bracket are motivated by
inflation (Starobinsky 1982; Guth & Pi 1982; Bardeen, Steinhardt & Turner 1983).
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Besides, the entirely theoretical motivation for the paradigm of inflation, the assump-
tion of Gaussian, random, adiabatic scalar perturbations with a nearly scale-invariant power
spectrum is arguably also the simplest possible theoretical choice for the initial perturba-
tions. What has been truly remarkable is the extent to which recent cosmological obser-
vations have been consistent with and, in certain cases, even vindicated the simplest set of
assumptions for the initial conditions for the perturbed Universe discussed below.

The first two decades (∼ 1991-2011) of exciting CMB anisotropy measurements have
been capped off with the release of 7 years of data from the Wilkinson Microwave Aniso-
tropy Probe (WMAP) of NASA.1 The first detection of CMB anisotropy by COBE-DMR
in 1992 observationally established the origin and mechanism of structure formation in the
Universe. Observations were then made at three frequencies, 90, 53 and 31 GHz which
allowed a fairly good removal of the ‘foreground’ contamination of the cosmic signal by
the strong emission from our own Galaxy. The 15-years old experimental success story of
CMB anisotropy measurements, starting from discovery of CMB anisotropy by the COBE
satellite in 1992, has been topped off by the exquisite data from the WMAP. The WMAP
satellite was placed at the second Lagrange point of the Sun-Earth system. Measurements
from WMAP combine high angular resolution with full sky coverage and high sensitivity
due to the stable thermal environment allowed by a space mission. Moreover, observations
were made at five frequencies, 94 (W-band), 61 (V-band), 41 (Q-band), 33 (Ka-band) and
23 GHz (K-band) that allowed much better removal of the ‘foreground’ contamination.
Similar to the observational strategy of COBE-DMR, the satellite measures CMB temper-
ature differences between a pair of points in the sky. Each day the satellite covered 30% of
the sky, but covers the full sky in 6 months. This massive redundancy in measurements al-
lows the mission to beat down the detector noise from milli-Kelvin to tens of micro-Kelvin
level. The WMAP mission acquired data for about nine years up until August 2010 and
made that public at regular intervals after a short proprietary period (first year data were
released in 2003, three year data in 2006, five year data in 2008, and seven year data in
2010). A final data release of the entire nine years of data is expected in the coming year.

The measured angular power spectrum of the cosmic microwave background tempera-
ture fluctuations,Cℓ, shown in Fig. 3 has become invaluable for constraining cosmological
models. The position and amplitude of the peaks and dips of theCℓ are sensitive to impor-
tant cosmological parameters. The most robust constraints obtained are those on the spatial
curvature of the Universe and on baryon density. The observations establish that space on
cosmic scales is geometrically flat (ΩK = 0) to within sub-percent precision. The dominant
energy content in the present Universe is a mysterious matter with negative pressure dubbed
dark energy or the cosmological constant, which contributes about 73% of the total energy
budget (ΩΛ = 0.73), followed by cold non-baryonic dark matter about 23% (Ωm = 0.23)
and, most humbly, ordinary matter (baryons) accounts for only about 4% (ΩB = 0.04) of
the matter budget. The current up to date status of cosmological parameter estimates from
joint analysis of CMB anisotropy and large-scale structure (LSS) data is usually found in
the parameter estimation paper accompanying the most recent results of a major experi-
ment, such as the recent WMAP release of 7-year data (Komatsuet al. 2011; Larsonet al.
2011).

1Wilkinson Microwave Anisotropy Probe mission http://wmap.gsfc.nasa.gov/.
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Figure 3. The exquisite temperature anisotropy data from the first three years of data from the
WMAP satellite is shown in the figures.Top: The top figure shows colour-coded full sky map
(in Mollweide projection) of the CMB temperature variations. The temperature variations range
between±200µK with an rms of about 70µK. The angular resolution of features of the map is about
a quarter of a degree. For comparison, the first CMB anisotropy measurements in 1992 by the DMR
instrument on board the COBE satellite produced the same map at a much coarser resolution of 7
degrees.Bottom: The angular power spectrum estimated from the multi-frequency five- and seven-
year WMAP data. The result from IPSE, a self-contained model free approach to foreground removal
(Saha, Jain & Souradeep 2006; Samalet al. 2010) matches that obtained by the WMAP team. The
solid curve showing prediction of the best fit power-law, flat,ΛCDM model threads the data points
closely [Figure: courtesy Tuhin Ghosh].

More recently, CMB polarization measurements have provided the required comple-
mentary information on the nature of initial conditions for the primordial fluctuations. One
of the firm predictions of the working ‘standard’ cosmological model is a random pattern
of linear polarization (Q andU Stokes parameters) imprinted on the CMB at last scattering
surface. Thomson scattering generates CMB polarization anisotropy at decoupling (Bond
& Efstathiou 1984; Hu & White 1997). This arises from the polarization dependence of
the differential cross section:dσ/dΩ ∝ |ǫ′ · ǫ|2, whereǫ andǫ′ are the incoming and out-
going polarization states involving linear polarization only (Rybicki & Lightman 1979). A
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local quadrupole temperature anisotropy produces a net polarization, because of the cos2 θ

dependence of the cross section. A net pattern of linear polarization is retained due to local
quadrupole intensity anisotropy of the CMB radiation impinging on the electrons at the last
scattering surface. The polarization pattern on the sky can be decomposed into two kinds
with different parities. The even parity pattern arises as the gradient of a scalar field called
theE-mode. The odd parity pattern arises from the ‘curl’ of a pseudo-scalar field called the
B-mode of polarization. The observed CMB sky map is then characterized by a triplet of
random scalar fields:X(n̂) ≡ {∆T(n̂), E(n̂), B(n̂)}. It is possible to generalize equation (1)
to express both CMB anisotropy and polarization in spherical harmonic space as

X(n̂) =
∞
∑

ℓ=2

ℓ
∑

m=−ℓ

aX
ℓmYℓm(n̂) . (3)

and also to define a set of observable angular power spectra analogous to eqn. (2) as

CXX′
ℓ =

1
(2ℓ + 1)

ℓ
∑

m=−ℓ

aX
ℓmaX′∗
ℓm . (4)

For a statistically isotropic, Gaussian CMB sky, there are a total of 4 power spectra that
characterize the CMB signal :CTT

ℓ
,CTE
ℓ
,CEE
ℓ
,CBB
ℓ

. Parity conservation within standard
radiative processes eliminates the two other possible power spectra,CTB

ℓ
& CEB

ℓ
. An im-

portant point to note is that the odd-parityB-mode of polarization cannot arise from scalar
density perturbations, or potential velocity flow.B mode polarization can arise only due
to shear fields acting on photon distribution, such as from gravitational waves and (weak)
gravitational lensing deflection of photons.

After the first detection of the CMB polarization spectrum by the Degree Angular Scale
Interferometer (DASI) in the intermediate band of angular scales (l∼ 200− 440) in late
2002 (Kovacet al. 2002), the field has rapidly grown, with measurements coming in from a
host of ground–based and balloon-borne dedicated CMB polarization experiments. The full
skyE-mode polarization maps and polarization spectra from WMAP were a new milestone
in CMB research (Kogutet al. 2003; Pageet al. 2007). Although the CMB polarization is a
clean probe of the early Universe that promises to complement the remarkable successes of
CMB anisotropy measurements it is also a much subtler signal than the anisotropy signal.
Measurements of polarization by ongoing experiments at sensitivities ofµK (E-mode) have
had to overcome numerous challenges in the past decade. The tens ofnK level B-mode
signal pose the ultimate experimental and analysis challenge to this area of observational
cosmology. The most current CMB polarization measurement ofCTT

ℓ
, CTE
ℓ

andCEE
ℓ

and
a non-detection ofB-modes come from QUaD and BICEP. They also report interesting
upper limits onCTB

ℓ
or CEB

ℓ
, over and above observational artifacts (Wuet al. 2009). A

non-zero detection ofCTB
ℓ

or CEB
ℓ

, over and above observational artifacts, could be tell-tale
signatures of exotic parity violating physics (Lue, Wang & Kamionkowski 1999; Maity,
Mazumdar & Sengupta 2004) and the CMB measurements put interesting limits on these
possibilities.

The immense dividends of CMB polarization measurements for understanding the
physics behind the origin and evolution of our Universe have just started coming in. While
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CMB temperature anisotropy can also be generated during the propagation of the radiation
from the last scattering surface, the CMB polarization signal must be generated primarily
at the last scattering surface, where the optical depth of the Universe transits from large to
small values. The polarization information complements the CMB temperature anisotropy
by isolating the effect at the last scattering surface from other distinct physical effects acting
during the propagation of the photons along the line of sight.

The polarization measurements provide an important test on the adiabatic nature of pri-
mordial scalar fluctuations.2 CMB polarization is produced by the anisotropy of the CMB
at recombination, consequently, the angular power spectra of temperature and polarization
are closely linked. The power in the CMB polarization signal is produced by the gradient
(velocity) term in the same acoustic oscillations of the baryon-photon fluid at last scattering
that give rise to temperature (intensity) anisotropy. Hence, clear evidence of adiabatic ini-
tial conditions for primordial fluctuations is that the compression and rarefaction peaks in
the temperature anisotropy spectrum should be ‘out of phase’ with the gradient (velocity)
driven peaks in the polarization spectra.

Figure 4 taken from Brownet al. (2009) reflects the current observational status of
CMB E-mode polarization measurements. The recent measurements of the angular power
spectrum theE-mode of CMB polarization at largel have confirmed that the peaks in the
CEE
ℓ

spectra are out of phase with that of the temperature anisotropy spectrumCTT
ℓ

.
While the power in the CMB temperature anisotropy at low multipoles (l ∼< 60) first

measured by the COBE-DMR (Smootet al. 1992) did point to the existence of correlated
cosmological perturbations on super Hubble-radius scales at the epoch of last scattering,
it left open the (rather unlikely) ‘logical’ alternative possibility that all the power at low
multipole is generated through the integrated Sachs-Wolfe effect along the line of sight
later in the Universe (when the Hubble scale is larger). However, since the polarization
anisotropy is generated only at the last scattering surface, the negative trough clearly visible
at high significance in theCTE

ℓ
spectrum atl ∼ 130 (which corresponds to a scale larger than

the horizon at the epoch of last scattering) sealed this loophole, and provides unambiguous
proof of apparently ‘acausal’ correlations in the cosmological perturbations. This was first
first measured by WMAP and later reconfirmed with higher significance by QUaD and
BICEP (Kogutet al. 2003; Bennettet al. 2003; Pageet al. 2007; Brownet al. 2009;
Chianget al. 2010).

The B-mode CMB polarization is a very clean and direct probe of the early Universe
physics that generated the primordial metric perturbations. Inflationary models necessar-
ily produce tensor perturbations (gravitational waves) that are predicted to evolve inde-
pendently of the scalar density perturbations, with an uncorrelated power spectrum. The
tensor modes on the scales of Hubble-radius along the line of sight to the last scattering
distort the photon propagation and generate an additional anisotropy pattern predominantly
on the largest scales. (The amplitude of a tensor mode falls off rapidly on sub-Hubble
radius scales, hence it is important on angular scales comparable to and larger than the
Hubble radius at last scattering). It is common to parametrize the tensor component by the

2Another independent observational test comes from the recent measurements of the Baryon Acoustic Os-
cillations (BAO) in the power spectrum of LSS in the distribution of galaxies. BAO has also observationally
established the gravitational instability mechanism for structure formation.
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Figure 4. Figure taken from Brownet al. (2009) shows a compilation of recent measurements of
the angular power spectra of CMB anisotropy and polarization from a number of CMB experiments.
The data is good enough to indicate that the peaks in EE and TE are out of phase with that of TT as
expected for adiabatic initial conditions. The null BB detection of primary CMB signal from gravity
waves is not unexpected (given the ratio of tensor to scalar perturbations expected in the simplest
models of inflation). It is important to note that the upper limits onCBB

ℓ
have improved by almost an

order of magnitude in the past two years from experiments such as QUAD and BICEP.

ratio rk∗ = At/As, ratio of At, the primordial power in the transverse traceless part of the
metric tensor perturbations, andAs, the amplitude scalar perturbation at a comoving wave-
number,k∗ (in Mpc−1). For power-law models, recent WMAP data alone put an improved
upper limit on the tensor to scalar ratio,r0.002 < 0.55 (95% CL) and the combination of
WMAP and the lensing-normalized SDSS galaxy survey impliesr0.002 < 0.28 (95% CL)
(MacTavishet al. 2006).

On angular scales corresponding to the multipole range 50< ℓ < 150, the B (curl)
component of CMB polarization is a unique signature of tensor perturbations from infla-
tion. The amplitude of tensor perturbations is directly proportional to Hubble parameter
during inflation, Loosely speaking, this is related to the Hawking temperature in de-Sitter
like space-times. In turn,Hinf is related to the energy densityEInf of the Universe during in-
flation through the Friedman equation governing cosmological evolution. Hence, the CMB
B-polarization is a direct probe of the energy scale of early Universe physics that generated
the primordial metric perturbations (scalar & tensor). The relative amplitude of tensor to
scalar perturbations,r, sets the energy scale for inflationEInf = 3.4×1016 GeVr1/4. A mea-
surement ofB-mode polarization on large scales would give us this amplitude, and hence
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Figure 5. The figure taken from Boyle, Steinhardt & Turok 2006, and NASA/DOE/NSF Task force
report on Cosmic Microwave Background research, 2005 (http://www.nsf.gov/mps/ast/tfcr.jsp) shows
the theoretical predictions and observational constraints on primordial gravitational waves from in-
flation. The gravitational wave energy density per logarithmic frequency interval, (in units of the
critical density) is plotted versus frequency. The shaded (blue) band labeled ‘minimally tuned’ rep-
resents the range predicted for simple inflation models with the minimal number of parameters and
tunings. The dashed curves have lower values of tensor contribution,r, that are possible with more
fine tuned inflationary scenarios. The currently existing experimental constraints shown are due to:
big bang nucleosynthesis (BBN), binary pulsars, and WMAP-1 (first year) with SDSS. Also shown
are the projections for LIGO (both LIGO-I, after one year running, and LIGO-II); LISA; and BBO
(both initial sensitivity, BBO-I, and after cross-correlating receivers, BBO-Corr). Also shown is the
projected sensitivity of a future space mission for CMB polarization (CMBPol).

a direct determination of the energy scale of inflation.Besides being a generic prediction
of inflation, the cosmological gravity wave background from inflation would be also be
a fundamental test of GR on cosmic scales and of the semi-classical behavior of gravity.
Figure 5 summarizes the current theoretical understanding, observational constraints, and
future possibilities for the stochastic gravity wave background from inflation. The stochas-
tic gravitational wave background from inflation is expected to exist from cosmological
scales down to terrestrial scales. The first CMB normalized GW spectra from inflation
using the COBE results was given by Souradeep & Sahni (1992) from IUCAA. This pre-
diction will be targeted by both CMB polarization experiments, as well as by future GW
observatories in space, such as Big Bang Observatory (BBO), DECIGO and LISA (Marx
et al. 2010).

Gravitational lensing of the stronger CMB E-polarization by the ongoing process of
structure formation along the line of sight to the last scattering surface also generates a
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significantB-mode polarization, but on smaller angular scales(ℓ > 200). This prediction is
shown as the black curve in bottom left panel forCBB

ℓ
measurements in Fig. 4. The lensing

signal carries important information about the matter power spectrum and its evolution over
a range of redshift inaccessible to other observations. This promises to be a powerful probe
for constraining the nature of dark energy and, also more excitingly, for determining the
neutrino masses. Recent studies indicate that measuring the lensing polarization signal to
the cosmic variance limit, can potentially place limits on the total mass of neutrinos at a
level comparable to the measured mass differences from neutrinos oscillations.

While there has been no detection of cosmological signal inB-mode polarization,
the lack ofB-mode power suggests that foreground contamination from polarized emis-
sion from our own Galaxy is at a manageable level and is very encouraging news for the
prospects of future measurements. The Planck satellite launched in May 2009 will greatly
advance our knowledge of CMB polarization by providing foreground/cosmic variance–
limited measurements ofCTE

ℓ
andCEE

ℓ
out beyondl ∼ 1000. We also expect to detect

the weak lensing signal inCBB
ℓ

, although with relatively low precision, that is required for
placing ultimate limits on the total neutrino mass. Perhaps, Planck could also detect the
stochastic inflationary gravitational wave background if it exists at a level ofr ∼ 0.1. Ded-
icated future CMB polarization space missions are under study at both NASA and ESA for
the time frame 2020+.3 Lower budget missions would primarily target the low multipole
B-mode polarization signature of gravity waves and consequently, identify the viable sec-
tors in the space of inflationary parameters. More ambitious plans, such as COrE,4 target
the entire usefulCBB

ℓ
spectrum and also aim to probe other exciting results from CMB weak

lensing measurements.

3. Beyond the angular power spectra of the CMB sky

It is well appreciated that in ‘classical’ big bang model the initial perturbations would have
had to be generated ‘acausally’. Besides resolving a number of other problems of classical
Big Bang, inflation provides a mechanism for generating these apparently ‘acausally’ cor-
related primordial perturbations (Starobinsky 1982; Guth & Pi 1982; Bardeenet al. 1983).
There is increasing effort towards establishing this observationally. There are subtle obser-
vations of the CMB sky that could reveal more clearly the mechanism for generations of
primordial fluctuation, or, perhaps surprise us by producing insurmountable challenges to
the inflation paradigm.

3.1 Statistical isotropy of the Universe

TheCosmological Principlethat led to the idealized FRW Universe found its strongest sup-
port in the discovery of the (nearly) isotropic, Planckian, cosmic microwave background.
The isotropy around every observer leads to spatially homogeneous cosmological models.

3NASA/DOE/NSF Task force report on Cosmic Microwave Background research, 2005.
http://www.nsf.gov/mps/ast/tfcr.jsp (Also available at the Legacy Archive for Microwave Background Data anal-
ysis (LAMBDA) site http://lambda.gsfc.nasa.gov).

4Cosmic Origins Explorer (COrE) proposal, http://www.core-mission.org.
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The large scale structure in the distribution of matter in the Universe (LSS) implies that the
symmetries incorporated in FRW cosmological models ought to be interpreted statistically.
These are also predicted in the simplest models of inflation.

The CMB anisotropy and its polarization is currently the most promising observa-
tional probe of the global spatial structure of the Universe on length scales close to, and
even somewhat beyond, the ‘horizon’ scale (∼cH−1

0 ). The exquisite measurement of the
temperature fluctuations in the CMB provide an excellent test bed for establishing the sta-
tistical isotropy (SI) and homogeneity of the Universe. In ‘standard’ cosmology, the CMB
anisotropy signal is expected to be statistically isotropic, i.e., statistical expectation values
of the temperature fluctuations∆T(q̂) are preserved under rotations of the sky. In particu-
lar, the angular correlation functionC(q̂, q̂′) ≡ 〈∆T(q̂)∆T(q̂′)〉 is rotationally invariant for
Gaussian fields. In spherical harmonic space, where∆T(q̂) =

∑

lm almYlm(q̂), the condition
of statistical isotropy(SI) translates to a diagonal〈alma∗l′m′〉 = Clδll ′δmm′ whereCl , is the
widely used angular power spectrum of CMB anisotropy. TheCl is a complete description
only of a (Gaussian) SI CMB sky and would be (in principle) an inadequate measure for
comparing models when SI is violated (Bond, Pogosyan & Souradeep 1998, 2000a,b).

Interestingly enough, the statistical isotropy of CMB has come under a lot of scrutiny
after the WMAP results. Tantalizing evidence of SI breakdown (albeit, in very different
guises) has mounted in theWMAPfirst year sky maps, using a variety of different statis-
tics. It was pointed out that the suppression of power in the quadrupole and octupole are
aligned (Tegmark, de Oliveira-Costa & Hamilton 2004). Further “multipole-vector” direc-
tions associated with these multipoles (and some other low multipoles as well) appear to be
anomalously correlated (Copi, Huterer & Starkman 2004; Schwartzet al. 2004). There are
indications of asymmetry in the power spectrum at low multipoles in opposite hemispheres
(Eriksenet al. 2004). Analysis of the distribution of extrema inWMAPsky maps has indi-
cated non-Gaussianity, and to some extent, violation of SI (Larson & Wandelt 2004). The
more recent WMAP maps are consistent with the first-year maps up to a small quadrupole
difference. The additional years of data and the improvements in analysis have not sig-
nificantly altered the low multipole structures in the maps (Hinshawet al. 2007). Hence,
‘anomalies’ persist at the same modest level of significance and are unlikely to be artifacts
of noise, systematics, or the analysis in the first year data. The cosmic significance of these
‘anomalies’ remains debatable also because of the aposteriori statistics employed to ferret
them out of the data. The WMAP team has devoted an entire publication to discussing and
presenting a detailed analysis of the various anomalies (Bennettet al. 2011).

The observed CMB sky is a single realization of the underlying correlation, hence de-
tection of SI violation, or correlation patterns, poses a great observational challenge. It is
essential to develop a well defined, mathematical language to quantify SI and the ability to
ascribe statistical significance to the anomalies unambiguously. The Bipolar spherical har-
monic (BipoSH) representation of CMB correlations has proved to be a promising avenue
to characterize and quantify violation of statistical isotropy.

Two point correlations of CMB anisotropy,C(n̂1, n̂2), are functions onS2 × S2, and
hence can be generally expanded as

C(n̂1, n̂2) =
∑

l1,l2,ℓ,M

AℓMl1l2
Yl1l2
ℓM (n̂1, n̂2) . (5)
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HereAℓMl1l2
are the Bipolar Spherical harmonic (BipoSH) coefficients of the expansion and

Yl1l2
ℓM (n̂1, n̂2) are bipolar spherical harmonics. Bipolar spherical harmonics form an or-

thonormal basis onS2 × S2 and transform in the same manner as the spherical harmonic
function withℓ, M with respect to rotations. Consequently, inverse-transform ofC(n̂1, n̂2)
in eq. (5) to obtain the BipoSH coefficients of expansion is unambiguous.

Most importantly, the Bipolar Spherical Harmonic (BipoSH) coefficients,AℓMl1l2
, are

linear combinations ofoff-diagonal elementsof the harmonic space covariance matrix,

AℓMl1l2
=
∑

m1m2

〈al1m1a
∗
l2m2
〉(−1)m2CℓMl1m1l2−m2

(6)

whereCℓMl1m1l2m2
are Clebsch-Gordan coefficients and completely represent the information

of the covariance matrix.
Statistical isotropy implies that the covariance matrix is diagonal,〈alma∗l′m′〉 = Cl δll ′δmm′

and hence the angular power spectra carry all the information about the field. When sta-
tistical isotropy holds, BipoSH coefficients,AℓMll ′ , are zero except those withℓ = 0,M = 0
which are equal to the angular power spectra up to a (−1)l(2l + 1)1/2 factor. Therefore to
test a CMB map for statistical isotropy, one should compute the BipoSH coefficients for
the maps and look for nonzero BipoSH coefficients.Statistically significant deviations of
the BipoSH coefficient of map from zero would establish violation of statistical isotropy.

SinceAℓMl1l2
form an equivalent representation of a general two point correlation func-

tion, cosmic variance precludes measurement of every individualAℓMl1l2
. There are several

ways of combining BipoSH coefficients into different observable quantities that serve to
highlight different aspects of SI violations. Among the several possible combinations of
BipoSH coefficients, the Bipolar Power Spectrum (BiPS) has proved to be a useful tool
with interesting features (Hajian & Souradeep 2003; Hajian, Souradeep & Cornish 2005).
The BiPS of CMB anisotropy is defined as a convenient contraction of the BipoSH coeffi-
cients

κℓ =
∑

l,l′ ,M

WlWl′
∣

∣

∣AℓMll ′

∣

∣

∣

2
≥ 0 (7)

whereWl is the window function that corresponds to smoothing the map in real space by
a symmetric kernel in order to target specific regions of the multipole space and to isolate
the SI violation on corresponding angular scales.

The BipoSH coefficients can be summed overl andl′ to reduce the cosmic variance, to
obtain reduced BipoSH (rBipoSH) coefficients (Hajian & Souradeep 2006)

AℓM =
∞
∑

l=0

ℓ+l
∑

l′=|ℓ−l|

AℓMll ′ . (8)

Reduced bipolar coefficients provide orientation information for the correlation patterns.
An interesting way of visualizing these coefficients is to make aBipolar mapfrom AℓM

Θ(n̂) =
∞
∑

ℓ=0

ℓ
∑

M=−ℓ

AℓMYℓM(n̂). (9)

The symmetryAℓM = (−1)MA∗
ℓ−M of reduced bipolar coefficients guarantees reality ofΘ(n̂).
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Figure 6. Figure taken from WMAP-7 yr publication on anomalies in the CMB sky (Bennettet al.
2011). It shows the measured quadrupolar (bipolar indexL = 2) bipolar power spectra for V-band
and W-band WMAP data, using the KQ75y7 mask. The spherical multipoles have been binned
within uniform bandsδl = 50. Only the components of the bipolar power spectra with M= 0 in
ecliptic coordinates are shown. A statistically significant quadrupolar effect is seen, even for a single
frequency band in a single angular bin.

It is also possible to obtain a measurable band power measure ofAℓMl1l2
coefficient by

averagingl1 in bands in multipole space. Recently, the WMAP team has chosen to quantify
SI violation in the CMB anisotropy maps by estimatingAℓMll−i for small value of bipolar
multipole,L, band averaged in multipolel. Figure 6 taken from the WMAP-7 release paper
(Bennettet al. 2011) shows SI violation measured in WMAP CMB maps.

High-resolution CMB polarization maps over large areas of the sky will be delivered by
experiments in the near future from Planck. The statistical isotropy of the CMB polarization
maps will be an independent probe of the cosmological principle. Since CMB polarization
is generated at the surface of last scattering, violations of statistical isotropy are pristine
cosmic signatures and more difficult to attribute to the local Universe. The Bipolar Power
spectrum has been defined and implemented for CMB polarization and shows great promise
(Basak, Hajian & Souradeep 2006; Souradeep, Hajian & Basak 2006).

3.2 Gaussian primordial perturbations

The detection of primordial non-Gaussian fluctuations in the CMB would have a profound
impact on our understanding of the physics of the early Universe. The Gaussianity of
the CMB anisotropy on large angular scales directly implies Gaussian primordial pertur-
bations (Munshi, Souradeep & Starobinsky 1995; Spergel & Goldberg 1999) as are theo-
retically motivated by inflation. The simplest inflationary models predict only very mild
non-Gaussianity that should be undetectable in the WMAP data.

The CMB anisotropy maps (including the non Gaussianity analysis carried out by the
WMAP team data; Komatsuet al. 2011) have been found to be consistent with a Gaus-
sian random field. Consistent with the predictions of simple inflationary theories, there
are no significant deviations from Gaussianity in the CMB maps using general tests such
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as Minkowski functionals, the bispectrum, or trispectrum in the three year WMAP data
(Spergelet al. 2007; Komatsuet al. 2011). There have however been numerous claims of
anomalies in specific forms of non-Gaussian signals in the CMB data from WMAP at large
scales (see discussion in sec. 3.1). Recently, a new class of odd-parity bispectra has been
discovered enriching the field significantly (Kamionkowski & Souradeep 2011).

4. Summary

The past few years have seen the emergence of a ‘concordant’ cosmological model that is
consistent both with observational constraints from the background radiation of the Uni-
verse as well that from the formation of large scale structures. It is certainly fair to say that
the present edifice of the ‘standard’ cosmological models is robust. A set of foundations,
and pillars of cosmology have emerged and are each supported by a number of distinct
observations (Ostriker & Souradeep 2004; Souradeep 2011).

Besides precise determination of various parameters of the ‘standard’ cosmological
model, observations have also established some important basic tenets of cosmology and
structure formation in the Universe – ‘acausally’ correlated initial perturbations, adiabatic
primordial density perturbations, and gravitational instability as the mechanism for struc-
ture formation. The favoured, concordance model inferred is a spatially flat accelerating
Universe, where structures have formed by the gravitational evolution of nearly scale invari-
ant, adiabatic perturbations, as expected from inflation. The signature of primordial per-
turbations observed through the CMB anisotropy and polarization is the most compelling
evidence for new, possibly fundamental, physics in the early Universe that underlies the
scenario of inflation (or related alternatives). Searches are also on for subtle signals in
the CMB maps beyond the angular power spectrum that might violate statistical isotropy
(Hajian & Souradeep 2003, 2006; Hajian, Souradeep & Cornish 2005; Basak, Hajian &
Souradeep 2006; Souradeep, Hajian & Basak 2006), or Gaussianity (Munshi, Souradeep &
Starobinksy 1995; Spergel & Goldberg 1999).

Cosmology is a branch of physics that has seen theoretical enterprise at its best. Dur-
ing the long period of sparse observations in its history, brilliant theoretical ideas (and
prejudices) shaped a plausible self-consistent scenario. But current cosmology is passing
through a revolution. In the recent past, cosmology has emerged as a data rich field increas-
ingly driven by exquisite and grand observations of unprecedented quality and quantity.
These observations have transformed cosmology into an emergent precision science of this
century. Further, CMB polarization is arguably emerging as a key observable that can also
address fundamental questions related to the origin of the Universe.
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Abstract. An enigmatic prediction of Einstein’s general theory of relativity is
gravitational waves. With the observed decay in the orbit of the Hulse-Taylor
binary pulsar agreeing within a fraction of a percent with the theoretically com-
puted decay from Einstein’s theory, the existence of gravitational waves was
firmly established. Currently there is a worldwide effort to detect gravitational
waves with inteferometric gravitational wave observatories or detectors and sev-
eral such detectors have been built or are being built. The initial detectors have
reached their design sensitivities and now the effort is on to construct advanced
detectors which are expected to detect gravitational waves from astrophysical
sources. The era of gravitational wave astronomy has arrived. This article de-
scribes the worldwide effort which includes the effort on the Indian front — the
IndIGO project —, the principle underlying interferometric detectors both on
ground and in space, the principal noise sources that plague such detectors, the
astrophysical sources of gravitational waves that one expects to detect by these
detectors and some glimpse of the data analysis methods involved in extracting
the very weak gravitational wave signals from detector noise.

Keywords: gravitational waves – black holes – stars: binaries – techniques:
interferometric – instrumentation: interferometers

1. Introduction

In the past half a century or so, astronomy has been revolutionised by several unexpected
discoveries because of the plethora of windows being opened in various bands of the elec-
tromagnetic spectrum. To name a few, the cosmic microwave background and the discovery
of pulsars in radio band, gamma-ray bursts, X-ray objects, all go to show that whenever a
new window has been opened, startling discoveries have followed. Yet another window to
the Universe should soon open up in few years time - the gravitational wave (GW) window.
Not only will this window test Einstein’s general theory of relativity, but also provide di-
rect evidence for black holes, and more generally test general relativity in the strong field
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regime. Just as the other windows to the Universe have brought in unexpected discoveries,
it is not unreasonable to expect the same in this case also — and more so, because this
involves changing the physical interaction from electromagnetic to gravitational.

The existence of gravitational waves predicted by the theory of general relativity, has
long been verified ‘indirectly’ through the observations of Hulse and Taylor (Hulse & Tay-
lor 1975; Taylor 1994). The inspiral of the members of the binary pulsar system named
after them has been successfully accounted for in terms of the back-reaction due to the
radiated gravitational waves — the observational results and the theory agree with each
other within a fraction of a percent. However, detecting such waves directly with the help
of detectors based either on ground or in space has not been possible so far.

The key to gravitational wave detection is the very precise measurement of small
changes in distance. For laser interferometers, this is the distance between pairs of mirrors
hanging at either end of two long, mutually perpendicular vacuum chambers. A GW pass-
ing through the instrument will shorten one arm while lengthening the other. By using an
interferometric design, the relative change in length of the two arms can be measured, thus
signalling the passage of a GW at the detector site. GW detectors produce an enormous
volume of output consisting mainly of noise from a host of sources both environmental
and intrinsic. Buried in this noise will be the GW signature. Sophisticated data analysis
techniques are needed to optimally extract the GW signal from the interferometric data.
IUCAA has made significant contributions in this area.

2. Interferometric detection of GW

Historically with pioneering efforts of Weber in the 1960s, the detectors were resonant bar
detectors which were suspended, seismically isolated, aluminium cylinders. The later ver-
sions were cooled to extremely low temperatures — ultracryogenic — to suppress the ther-
mal noise. There are also spherical resonant mass detectors being constructed/operating.
However, these ideas although interesting and useful in their niche, have their limitations.
In this article we will confine ourselves to the interferometric detectors.

2.1 The principle of interferometric detection

A weak GW is described by a metric perturbationhµν in general relativity. Typically, for the
astrophysical GW sources which are amenable to detection,hµν ∼ 10−22. In the transverse-
traceless gauge, thehµν can be expressed in terms of just two amplitudes,h+ andh×, called
the ‘plus’ and ‘cross’ polarisations. If a weak monochromatic gravitational wave of+

polarisation is incident on a ring of test-particles, the ring is deformed into an ellipse as
shown at the top of Figure 1. Phases, a quarter cycle apart, of the GW are shown in the
Figure. For the× polarisation the ellipses are rotated by an angle of 45◦. A general wave
is a linear combination of the two polarisations.

At the bottom of Figure 1, a schematic of the interferometer is depicted. If the change
in the armlengthL is δL, then,

δL ∼ hL, (1)

whereh is a typical component of the metric perturbation.
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Test mass
Test mass
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Figure 1. Upper: A circular ring of test particles is deformed into an ellipse by an incident GW.
Phases, a quarter of a cycle apart are shown for the+ polarisation. The length change in the inter-
ferometric arms is also shown schematically. Lower: a schematic diagram of an interferometer is
drawn.

For a GW source,hcan be estimated from the well-known Landau-Lifschitz quadrupole
formula. The GW amplitudeh is related to the second time derivative of the quadrupole
moment (which has dimensions of energy) of the source:

h ∼ 4
r

G
c4

Ekinetic
nonspherical, (2)

wherer is the distance to the source,G is the gravitational constant,c is the speed of
light andEkinetic

nonsphericalis the kinetic energy in thenonsphericalmotion of the source. If we

considerEkinetic
nonspherical/c

2 a fraction of a solar mass and the distance to the source ranging
from galactic scale of tens of kpc to cosmological distances of Gpc, thenh ranges from
10−17 to 10−22. These numbers then set the scale for the sensitivities at which the detectors
must operate. The factor of 4 is also important given the weakness of the interaction and
the subsequent signal extraction from detector noise.

2.2 Ground-based interferometric detectors

There are a host of noise sources in ground-based interferometric detectors which con-
taminate the data. At low frequencies there is the seismic noise. The seismic isolation is
a sequence of stages consisting of springs/pendulums and heavy masses. Each stage has
a low resonant frequency about a fraction of a Hz. The seismic isolation acts as a low
pass filter, attenuating high frequencies, but low frequencies get through. This results in
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a ‘noise wall’ at low frequencies and marks the lower end of the detector bandwidth. It
is about 40 Hz for initial detectors but will go down to 10 Hz for advanced detectors in-
creasing the bandwidth. At mid-frequencies up to a few hundred Hz, the thermal noise is
important and is due to the thermal excitations both in the test masses — the mirrors — as
well as the seismic suspensions. Currently, this seems to be the noise hardest to suppress.
The natural modes of the mirrors and the suspension are driven by the thermal excitations.
One ‘solution’ is to cool the mirrors/suspensions, but this has its own problems. Never-
theless, the Japanese have planned a detector doing just this — the Large-scale Cryogenic
Gravitational-wave Telescope (LCGT) which has been funded recently. At high frequen-
cies the shot noise from the laser dominates. This noise is due to the quantum nature of
light. From photon counting statistics and the uncertainty principle, the phase fluctuation
is inversely proportional to the square root of the mean number of photons arriving during
a period of the wave. So increasing the laser power and hence the mean number of photons
during a given period of the wave tends to reduce this noise. Apart from these main noise
sources there are other noise sources, an important one among them is gravity gradient
noise which cannot be screened and occurs only at low frequencies. The slowly chang-
ing gravity gradients are due to natural causes (such as clouds moving in the sky, changes
in atmospheric density) or are manmade. Thus long arm lengths, high laser power, and
extremely well-controlled laser stability are essential to reach the requisite sensitivity. Fig-
ure 2 shows the sensitivity achieved by the initial LIGO detectors (Gonzalez 2005) when
the actual noise in the detectors reached theoretical design sensitivity (shown by the bold
curve). The sensitivity has continued to improve with time.

2.3 The worldwide network of ground-based interferometric gravitational wave
observatories

The USA has been at the forefront in building large scale detectors. The LIGO project
(Abramoviciet al. 1992) has built three detectors, two of armlength 4 km and one of arm-
length 2 km at two sites about 3000 km apart at Hanford, Washington and at Livingston,
Louisiana. The 2 km detector is at Hanford. These initial detectors have had several sci-
ence runs and the design sensitivity has not only been reached but surpassed. The goal of
this initial stage was mainly to vindicate the technologies involved in attaining the design
sensitivities. Now the next phase is to build advanced detectors with state of the art tech-
nologies which will be capable of observing GW sources and doing GW astronomy. With
these future goals a radical decision has been taken by the LIGO project, that of building
one of its detectors in Australia — that is LIGO will build two advanced detectors in US
and partially fund a full scale detector in Australia with advanced design. This detector is
called LIGO-Australia and will be built in collaboration with the Australians who already
have an interferometric facility at Gingin near Perth — the AIGO (Australian Interfero-
metric Gravitationalwave Observatory) project. The reason for this decision by the US is
clear — it is to increase the baseline and have a detector far removed from other detec-
tors on Earth, which has several advantages, such as improving the localization of the GW
source.

In Europe the large-scale project is the VIRGO project (Bradaschiaet al. 1990) of Italy
and France which has built a 3 km armlength detector. After commissioning of the project
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Best Strain Sensitivities for the LIGO Interferometers
Comparisons among S1–S5 Runs LIGO-G060009-03-Z

Figure 2. The figure shows the sensitivity achieved by LIGO detectors by March 2007. This sensi-
tivity level has been surpassed in later operations (Gonzalez 2005; see LIGO website).

in 2007, it also had science runs. The GEO600 (Danzmannet al. 1995) is a German-British
project and whose detector has been built near Hannover, Germany with an armlength of
600 metres. One of the goals of GEO600 is to develop advanced technologies required for
the next generation detectors with the aim of achieving higher sensitivity.

Japan was the first (around 2000) to have a large scale detector of 300 m armlength —
the TAMA300 detector under the TAMA project (Tsubono 1995) — operating continu-
ously at high sensitivity in the range ofh ∼ 10−20. Now Japan plans to construct a cryo-
genic inteferometric detector called the LCGT (Large-scale Cryogenic Gravitational wave
Telescope; Kuroda 2006) which has been recently funded. The purpose of the cryogenics
is to quell the thermal noise. But this technnology is by no means straight forward and will
test the skills of the experimenters.

Australia is looking for international partners, because of LIGO-Australia. Given the
twenty year old legacy in GW data analysis at IUCAA, Pune and waveform modelling at
RRI, Bangalore, Australia would welcome the Indians as partners in this endeavour. Re-
cently, about two years ago, an Indian Initiative in Gravitational Wave Astronomy (IndIGO)
has begun whose goal is to promote and foster gravitational wave astronomy in India and
join in the worldwide quest to observe gravitational waves. Apart from the data analysis
this initiative includes the all important experimental aspect. Accordingly a modest be-
ginning has been made by IndIGO with TIFR, Mumbai approving a 3 metre prototype on
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which Indian experimenters can get first hand experience and develop expert manpower.
This project has already been funded. Concurrently, an MOU with Australia has been
signed which purports to ask for funding from Indian agencies in parallel with Australia.
An IndIGO consortium has been formed with scientists from leading institutions such as
TIFR, RRCAT, RRI, IUCAA, IISERs, Delhi University and CMI, and also including sci-
entists (mainly Indian) working abroad. The current strength of the consortium is about
25 scientists. In order to further this effort the first goal is to muster up sufficient expert
and skilled manpower which will launch this activity. It will mean India getting into this
worldwide challenging experiment.

Besides the current projects, studies have begun for third generation detectors which
will include further advanced technologies to enhance the sensitivities of GW detectors to
reach out farther in the sky; the Einstein Telescope (ET) is just such a future goal.

2.4 Space-based detectors: the LISA project

A natural limit occurs on decreasing the lower frequency cut-off beyond∼10 Hz because
it is not practical to increase the arm-lengths on ground and also because of the gravity
gradient noise which is difficult to eliminate below 10 Hz. Thus, the ground based in-
terferometers will not be sensitive below the limiting frequency of∼10 Hz. But on the
other hand, there exist in the cosmos, interesting astrophysical GW sources which emit
GW below this frequency such as the galactic binaries, massive and super-massive black
hole binaries. If we wish to observe these sources, we need to go to lower frequencies.
The solution is to build an interferometer in space, where such noises will be absent and
allow the detection of GW in the low frequency regime.LISA — Laser Interferometric
Space Antenna— is a proposed ESA-NASA mission which will use coherent laser beams
exchanged between three identical spacecrafts forming a giant (almost) equilateral triangle
of side 5×106 kilometers to observe and detect low-frequency cosmic GW.1 The ground-
based detectors and LISA complement each other in the observation of GW in an essential
way, analogous to the way optical, radio, X-ray,γ-ray observations do for electromagnetic
waves. As these detectors begin to operate, a new era ofgravitational astronomyis on the
horizon and a radically different view of the Universe is expected to be revealed. There are
also further space projects being considered.

LISA consists of three spacecrafts, flying five million kilometres apart, in an equilateral
triangle. The spacecrafts are maintained drag-free by a complex system of accelerometers
and micro-propellers. Each spacecraft will carry two optical assemblies that contain the
main optics and a free-falling inertial sensor. The light sent out by a laser in one spacecraft
is received by the telescope on the distant spacecraft. The incoming light from the distant
spacecraft is then mixed with the in-house laser and the differential phase is recorded. This
defines one elementary data stream. There are thus six elementary data streams which
are formed by going clockwise and anti-clockwise around the LISA triangle. Suitable
combinations of these elementary data streams can be used to optimally extract the GW
signal from the instrumental noise. In other words, LISA is basically a giant Michelson

1http://sci.esa.int/science-e/www/area/index.cfm?fareaid=27; http://lisa.gsfc.nasa.gov
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Figure 3. LISA orbital configuration around the Sun, describing a cone with 60◦ half opening angle.
The centroid of the triangle follows an Earth-like orbit trailing 20◦ behind (Benderet al. 1998).

interferometer placed in space, with a third arm added to give independent information on
the two gravitational wave polarisations, and for redundancy. The distance between the
spacecrafts — the interferometer arm-length — determines the frequency range in which
LISA can make observations; it was carefully chosen to allow for the observations of most
of the interesting sources of gravitational radiation. Each spacecraft revolves in its own
heliocentric orbit. The centre of LISA’s triangle will follow Earth’s orbit around the Sun,
trailing 20◦ behind. It will maintain a distance of 1 AU (astronomical unit) from the Sun,
the average distance between the Earth and the Sun (Figure 3). The spacecrafts rotate in
a circle drawn through the vertices of the triangle and the LISA constellation as a whole
revolves around the Sun. LISA’s operational position was chosen as a compromise between
the need to minimise the effects on the spacecrafts of changes in the Earth’s gravitational
field and the need to be close enough to the Earth for easy communication.

LISA will observe low-frequency GW in the range 0.1 mHz to 0.1 Hz. Since astro-
physical systems are generally large and in spite of high velocities do not change their
quadrupole moment too quickly, the Universe is richly populated with sources in this fre-
quency band. Also the masses that produce GW in this frequency band are generally large
and thus produce stronger GW than those in ground-based detectors, leading to high signal-
to-noise ratios (SNR). The signals for LISA arise from a large variety of phenomena, such
as merging massive and supermassive black holes, vibrating black holes (quasi-normal
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modes), stellar mass objects falling into massive and supermassive black holes and GWs
of cosmological origin. The high SNRs of these signals imply detailed and accurate infor-
mation which can test general relativity and its ramifications to unprecedented accuracies.
Astrophysics of various objects like compact binaries, stellar remnants can be studied and
LISA observations can provide useful clues to events in the early Universe (Bender & Hils
1997; Nelemans, Yungelson & Portegies Zwart 2001; Postnov & Prokhorov 1998; Hills &
Bender 2000).

LISA sensitivity is limited by several noise sources. A major noise source is the laser
phase (frequency) noise which arises due to phase fluctuations of the master laser. Amongst
the important noise sources, laser phase noise is expected to be several orders of magnitude
larger than other noises in the instrument. The current stabilisation schemes estimate this
noise to about∆ν/ν0 ≃ 3× 10−14/

√
Hz, whereν0 is the frequency of the laser and∆ν the

fluctuation in frequency. If the laser frequency noise can be suppressed then the noise floor
is determined by the optical-path noise which acts like fluctuations in the lengths of optical
paths and the residual acceleration of proof masses resulting from imperfect shielding of
the drag-free system. The noise floor is then at an effective GW strain sensitivityh ∼ 10−21

or 10−22. Thus, cancelling the laser frequency noise is vital if LISA is to reach the requisite
sensitivity.

In ground-based detectors the arms are chosen to be of equal length so that the laser
light experiences identical delay in each arm of the interferometer. This arrangement pre-
cisely cancels the laser frequency/phase noise at the photodetector. However, in LISA it is
impossible to achieve equal distances between spacecrafts and also the data are taken at a
phasemeter as a beat note between the local oscillator and the incoming beam coming from
a spacecraft 5 million km away. In LISA, six data streams arise from the exchange of laser
beams between the three spacecrafts — it is not possible to bounce laser beams between
different spacecrafts, as is done in ground-based detectors. The technique of time-delay
interferometry (TDI) is used (Armstrong, Estabrook & Tinto 1999; Estabrook, Tinto &
Armstrong 2000) which combines the recorded data with suitable time-delays correspond-
ing to the three arm-lengths of the giant triangular interferometer. An original approach
to this problem was taken by IUCAA. Asystematic methodbased on modules over poly-
nomial rings has been successfully formulated which is most appropriate for this problem
(Dhurandhar, Nayak & Vinet 2000; 2010). The method uses the redundancy in the data to
suppress the laser frequency noise.

3. General discussion of GW sources

3.1 GW sources

Several types of GW sources have been envisaged which could be directly observed by
Earth-based detectors: (i) Burst sources — such as binary systems consisting of neutron
stars and/or black holes in their inspiral phase or merger phase; supernova explosions —
whose signals last for a time between a few milli-seconds and a few minutes, much shorter,
than the typical observation time; (ii) stochastic backgrounds of radiation, of either pri-
mordial or astrophysical origin, and (iii) continuous wave sources — e.g. rapidly rotating
non-axisymmetric neutron stars — where a weak sinusoidal signal is continuously emitted.
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As one sees from the discussion that follows, the strengths of these sources are usually well
below or even way below, the mean noise level in the detectors either currently operating or
even for those planned in the near future — the advanced detectors. This situation makes
the expert data analysis all the more vital, firstly in detecting the source, and secondly and
more importantly in extracting astrophysical information about it.

Inspiraling binaries have been considered as highly promising sources not only because
of the enormous GW energy they emit, but also because they are such ‘clean’ systems to
model; the inspiral waveform can be computed accurately to several post-Newtonian orders
adequate for optimal signal extraction and parameter estimation (Blanchetet al. 2004). The
typical strength of the source is:

h ∼ 2.5× 10−23

(

M
M⊙

)5/3 (

f
100 Hz

)2/3 (

r
100 Mpc

)−1

, (3)

whereM is the chirp mass equal to (µM2/3)3/5, µ andM being respectively the reduced and
the total mass of the system,r is the distance to the source — it is given at the scale of 100
Mpc because such events would be rare and therefore to obtain a reasonable event rate, a
sufficient volume of the Universe needs to be covered — andf is the instantaneous fiducial
frequency of the source as the source evolves adiabatically during the inspiral stage. Since
the phase of the waveform, apart from the amplitude, can be computed accurately by post-
Newtonian methods, the optimal extraction technique of matched filtering is used. In the
recent past, numerical relativity has been able to make a breakthrough by continuing the
waveform to the merger phase and eventually connect it with the ringdown of the final black
hole. It is here that Chandrasekhar’s contribution stands out because he pointed out that a
black hole rings like a bell if it is subjected to a perturbation (Chandrasekhar & Detweiler
1975). In the current context this occurs in the final stages of the merger when a black
hole is formed. Quasi-normal modes were first discovered by Vishveshwara (1970) while
examining the stability of the Schwarzschild black hole.

Another important burst source of GW is supernovae. It is difficult to reliably compute
the waveforms for supernovae, because complex physical processes are involved in the
collapse and the resulting GW emission. This limits the data analysis and optimal signal
extraction.

Continuous wave sources pose one of the most computationally intensive problems in
GW data analysis (Schutz 1989; Bradyet al. 1998; Cutler, Gholami & Krishnan 2005).
A rapidly rotating asymmetrical neutron star is a source of continuous gravitational waves.
There are some astrophysical systems known from electromagnetic observations which
might be promising sources of continuous GWs. Surveys for continuous GWs have so far
not led to a direct detection, but the searches have now become astrophysically interesting.
We mention the result for the Crab pulsar in the next subsection. These searches for known
systems are not computationally intensive since they target a known sky position, frequency
and spindown rate. On the other hand, blind all-sky and broad-band searches for previously
unknown neutron stars are a different matter altogether. Long integration times, typically
of the order of a few months or years are needed to build up sufficient signal power. The
reason for this is that the signal is very weak and lies way below the detector noise level.
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We give a typical example:

h ∼ 10−25

(

I

1045gm.cm2

) (

f
1kHz

)2 (

ǫ

10−5

)

(

r
10kpc

)−1

, (4)

whereI is the moment of inertia of the neutron star,r the distance to the source,f the
GW frequency andǫ is a measure of asymmetry of the neutron star. The asymmetry of a
neutron star can occur in various ways such as crustal deformation, intense magnetic fields
not aligned with the rotation axis or the Chandrasekhar-Friedman-Schutz instability (Chan-
drasekhar & Esposito 1970; Friedman & Schutz 1978). This instability is in fact driven by
GW emission and consists of strong hydrodynamic waves in the star’s surface layers. This
phenomenon results in significant gravitational radiation. Earth’s motion Doppler modu-
lates the signal, and this Doppler modulation depends on the direction to the GW source.
Thus, coherent extraction of the signal whose direction and frequency is unknown is an
impossibly computationally expensive task. The parameter space is very large, and a blind
survey requires extremely large computational resources.

To detect stochastic background one needs a network of detectors, ideally say two de-
tectors preferably identically oriented and close to one another. The stochastic background
arises from a host of unresolved independent GW sources and can be characterised only
in terms of its statistical properties. The strength of the source is given by the quantity
ΩGW( f ) which is defined as the energy-density of GW per unit logarithmic frequency in-
terval divided byρcritical, the energy density required to close the Universe. The typical
strength of the Fourier component of the GW strain for the frequency bandwidth∆ f = f
is:

h̃( f ) ∼ 10−26

(

ΩGW

10−12

) (

f
10Hz

)−3/2

Hz−1/2 , (5)

The signal is extracted by cross-correlating the outputs. Two kinds of data-analysis methods
have been proposed (i) a full-sky search — but this drastically limits the bandwidth (Allen
& Romano 1999), (ii) a radiometric search in which the sky is scanned pixel by pixel —
since a small part of the sky is searched at a time, it allows for larger bandwidth, and
more importantly includes the bandwidth in which the current detectors are most sensitive,
thus potentially leading to a large SNR (Mitraet al. 2008). Moreover, with this method a
detailed map of the sky is obtained.

Apart from these sources, there can be burst sources of GW from mergers or explosions
or collapses which may or may not be seen electromagnetically but nevertheless deserve
attention. In this case time-frequency methods are the appropriate methods which look for
excess power in a given time-frequency box.

In the section on data analysis, we will focus on two of the above mentioned and
prominent GW sources, namely, the compact binaries and the continuous wave sources.
Before moving on to the data analysis we would like to briefly describe the astrophysically
interesting results so far obtained in GW astronomy.

3.2 Astrophysical results from current GW data

Even in this initial stage of the detectors, it is important to note that astrophysically in-
teresting results have been obtained from the data so far taken with the LIGO detectors,
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more specifically, the data from the S5 run. The data have set astrophysically interesting
upper limits on the GW emanating from astrophysical sources. We mention a few of the
important results below.

The S5 data have constrained the cosmological GW background in which the upper
limit falls below the previous upper limit set by nucleosynthesis (LIGO Science Collab-
oration and VIRGO Science Collaboration 2009). This result has excluded several string
theory motivated big bang models.

The GW data analysis from the S5 run shows that less than 4% of the energy can
be radiated away in GW from the Crab pulsar (Abbottet al. 2008a) This is because the
spindown rate is∼ 3.7× 10−10 Hz/sec, while no GW signal was observed even as low as
h ∼ 2.7× 10−25.

Since no GW signal was detected from the GRB source 0702012, this implies that
a compact binary progenitor with masses in the range 1M⊙ < m1 < 3M⊙ and 1M⊙ <

m2 < 40M⊙ located in M 31 is excluded as a GW source with 99% confidence. If the
binary progenitor was not in M 31, then it rules out a binary star merger progenitor upto a
distance of 3.5 Mpc, with 90% confidence and assuming random orientation (Abbottet al.
2008b). A search was performed from the LIGO S5 and the Virgo first science runs for
the total mass of the component stars ranging from 2 to 35 M⊙. No GWs were identified.
The 90 per cent confidence upper limit on the rate of coalescence of non-spinning binary
neutron stars was estimated to be 8.7×10−3 yr−1 L−1

10, where L10 is 1010 times the blue solar
luminosity (Abadieet al. 2010).

These are some of the salient astrophysical results which merely serve to indicate the
revolutionary scientific impact that GW astronomy can bring to science.

4. Data analysis of GW sources

As can be seen from the foregoing, data analysis of interferometric data is a very impor-
tant aspect in the quest for detection of gravitational waves. This is because the signal is
weak and must be extracted from the noisy data — infact the noise, in general, strongly
overwhelms the signal. Thus sophisticated statistical techniques and efficient algorithms
based on statistical analysis are vital for extracting the signal from the noise. The data
analysis technique of course depends on the nature of the signal. We would like to discuss
a couple of sources and their data analysis in more detail. We first describe the matched
filtering paradigm for the inspiraling binaries and then describe some current efforts in the
so called ‘All sky all frequency search’ for GW from periodic or continuous wave sources,
which are based on group theoretic methods. This does not mean that the sources not dis-
cussed here are unimportant in any way, but the idea here is to give a flavour of the data
analysis methods employed in GW detection. Here we have chosen two such data analysis
problems.

In this article we would like to emphasise the importance of the role of symmetries
which play a crucial part in increasing the efficiency of an algorithm and in turn reducing the
computational burden. The symmetries arise from the physical model of the GW source.
The idea is to capture the symmetries in terms of group representation theory and then use
the representation theory to develop efficient search algorithms.
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4.1 Inspiraling/coalescing binaries

Here we will deal essentially with the inspiral waveform which is the first stage when the
stars are relatively far apart, and the stage ends a little before the last stable orbit is reached.
The last stable circular orbit for a test particle orbiting a Schwarzschild black hole of mass
M is at radial distance of 6MG/c2. Here we may takeM to be the total mass of the binary
components, and then the inspiral stage is the one before the orbit shrinks to around 10M or
a little less. After the inspiral stage comes the merger stage, and the final stage is that when
a single black hole is formed (in the case the masses are two black holes). Just before the
final black hole is formed it oscillates, emitting quasi-normal mode radiation finally settling
into a stable configuration of a stationary black hole. The merger waveform for black
holes can now be computed from numerical relativity; there was a recent breakthrough in
2005 (Pretorius 2005), and this was followed by several groups actually implementing their
numerical code (Campanelliet al. 2006; Bakeret al. 2006). The inspiral waveform we
will consider also holds for two neutron stars or a neutron star/black hole pair. Here we
will restrict ourselves to the binary inspiral and data analysis for it.

4.1.1 Matched filtering

The appropriate technique to use, when one has the accurate knowledge of the waveform —
especially of the phase — is matched filtering. First, it yields the maximum signal-to-noise
(SNR) among all linear filters. Secondly, it is optimal in the Neyman-Pearson sense — in
additive Gaussian noise, the matched filter statistic gives the maximum detection probabil-
ity for a given false alarm rate. The matched filtering operation is defined as follows: ifx(t)
is the data in the time domain, then the matched filter outputc(τ) at the epochτ is given by:

c(τ) =
∫

x(t)q(t + τ)dt , (6)

whereq(t) is the matched filter. In stationary noise (the noise is independent of absolute
time)q has a particularly simple form and is conveniently described in the Fourier domain
as:

q̃( f ) =
h̃( f )
Sh( f )

, (7)

whereh(t) is the expected signal in the detector andSh( f ) is the power spectral density of
the noise. An illustration of the matched filtering paradigm is given in Figure 4.

4.1.2 Searching the parameter space: the spinless case

In this section we will be considering only the point mass approximation which is valid
for black holes and to a large extent for neutron stars if they do not deform. The problem
would have been simple if there were a single signal waveform. But the signal depends on
several parameters. Thus one is actually searching through a family of signals. The signal
has the form:

h(t;A, ta, φa, τ0, τ3) = Aa(t − ta, τ0, τ3) cos[φ(t − ta, τ0, τ3) + φa] , (8)
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Figure 4. The top part of the figure shows the signal — the inspiral binary waveform usually called
the chirp; the middle part shows the signal embedded in the detector noise while the bottom shows
the plot of the output of the matched filterc(τ). By recognising the peak by thresholding, the signal
can be detected.

whereA is the amplitude,ta is the time of arrival of the signal,τ0 andτ3 as defined below
are functions of the individual massesm1,m2 of the binary andφa the phase at arrival of the
wave. The signal described in equation (8) is what is called the restricted post-Newtonian
waveform in which the amplitude is of the Newtonian waveform which is slowly varying
with time, while the phase is given to as much as accuracy is possible, that is upto the
3.5 post-Newtonian order which is deemed sufficient because it gives a phase accuracy to
better than a cycle for the stellar mass objects inspiraling in the bandwidth of the current
or even advanced detectors. It is most important for the technique of matched filtering that
the phase is known as accurately as possible, because even half a cycle can put the signal
waveform out of phase with the template waveform which can lead to substantial decrease
in the output of the matched filter. The amplitudeA depends on the chirp mass parameter
µM2/3 and on the fiducial frequencyfa of the wave at the time of arrivalta. Instead of the
masses, it has been found useful to use the chirp timesτ0 andτ3 as signal parameters —
these parameters appear in a simple way in the Fourier transform of the signal, namely, they
appearlinearly in the phase of the Fourier transform in the stationary phase approximation.
The final search algorithm becomes simple in terms of these parameters. They are related
to M andη = µ/M by the relations:

τ0 =
5

256η fa
(πM fa)−5/3 , τ3 =

1
8η fa

(πM fa)−2/3 . (9)
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whereτ0 is the Newtonian time of coalescence and the chirp timeτ3 is related to the 1.5
PN order. As one can see from equation (8), both the amplitudea and phaseφ depend on
these parameters. We do not give the explicit forms of these functions here because they
are unimportant to the discussion here, but they can be found in the literature, eg. (Mohanty
& Dhurandhar 1996).

We use the maximum likelihood approach, that is, the likelihood ratio must be max-
imised over the signal parameters, namely,{A, ta, φa, τ0, τ3}. The maximum likelihood
method shows that a matched filter is the simpler surrogate statistic than the likelihood
ratio, and it is sufficient to maximise the output of the matched filter over the search param-
eters. The amplitudeA is readily extracted from the signal by normalising the template
waveform. The parametersta andφa are searched for by using the symmetry of the signal
family. The signal istranslationally invariantin time, that is, a signal at another time of
arrival is just obtained from translation. This symmetry can be exploited by using the Fast
Fourier Transform (FFT), that is, writing equation (6) in the Fourier domain:

c(ta) =
∫

x̃∗( f )h̃( f )
Sh( f )

e2πi f tad f + complex conjugate, (10)

where the integral in the Fourier domain is carried out essentially over the bandwidth of
the detector and where the signal cuts off at the upper frequency end. This is a family of
integrals parametrised by all the signal parameters, in particular,ta. We have suppressed
other parameters to avoid clutter, since we now focus onta. But thec(ta) can be obtained
for eachta by just using the FFT algorithm. This saves enormous computational effort
because now the number of operations reduces to orderN log2 N rather thanN2, whereN
is the number of samples in the data segment. Typically, for a 500 sec. data train sampled
at 2 kHz,N ∼ 106, which implies a saving of computational cost of more than 104!

In the phase parameterφa also, there is a symmetry — changingφa to sayφ′a = φa+φ0

involves just adding a constant phase to the signal and the waveform still remains within
the family. This is the so calledS1 symmetry. The search over phase can be carried out
by using just two templates say forφa = 0 andφa = π/2. If we call the correlations
so obtainedc0 andcπ/2 respectively, where we have computed these correlations from the
corresponding templatesh( f ; φa = 0) andh( f ; φa = π/2), thec(φa) at arbitraryφa is then
given by,

c(φa) = c0 cosφa + cπ/2 sinφa , (11)

where we have suppressed other parameters to avoid clutter. Moreover, the maximisation
of c(φa), the surrogate statistic, overφa can be done analytically. Thus,

max
φa

c(φa) =
(

c2
0 + c2

π/2

)1/2
. (12)

Thus the kinematical parametersta andφa in the signal waveform are efficiently dealt with;
the search over the masses, which are the dynamical parameters, now remains. There
does not seem to be any efficient way, for example of using symmetries, to search over
these parameters. Figure 5 shows the parameter space for 1M⊙ ≤ m1,m2 ≤ 30M⊙ in
the parametersτ0 andτ3. Since the waveform is symmetric inm1,m2, one needs to only
search the spacem1 ≤ m2. This gives roughly a triangular shape to the search region of
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Figure 5. Parameter space in terms of the parametersτ0, τ3 for the mass range 1M⊙ ≤ m1,m2 ≤ 30M⊙
and fa = 40 Hz.

the parameter space which is topologically equivalent to the triangle in (m1,m2) space.
One now spans the parameter space densely with a bank of templates. The templates are
arranged so that the maximum mismatch between a signal and a template never exceeds a
small fixed amount. The usual number is taken to be 3% which corresponds to a maximum
loss of 10% in the event rate of the signals. With this criterion, in the parametersτ0, τ3 the
templates are approximately uniformly spaced. The idea is totile the parameter space so
that (i) there are no ‘holes’ and (ii) there is minimal overlap, so that the number of templates
is reduced to a minimum which then in turn reduces the computational burden. The best
such scheme happens to be hexagonal tiling as shown in Figure 6. One does this template
placement elegantly by defining a metric (Balasubramanian, Sathyaprakash & Dhurandhar
1996; Owen 1996) over the parameter space. Then one finds that the metric coefficients
are nearly constant when the parametersτ0, τ3 are used; the parameters in fact play the role
of coordinates on a signal manifold, and the above statement can be reworded as saying
that τ0, τ3 are like Cartesian coordinates, whilem1,m2 are curvilinear. For this level of
mismatch the number of templates required is∼ 104 for the noise PSD of the initial LIGO.
If the signal is cut-off at a little less than 1 kHz, so that the sampling rate is 2 kHz, then
a simple computation shows that the online search for these signals is little more than 3
GFlops.

One now takes the maximum of the matched filter output over all the parameters and
compares this maximum with a threshold. The threshold is set by the noise statistics and
the false alarm rate that one is prepared to tolerate. Clearly, the false alarm rate must be
much less than the expected event rate. If the noise is Gaussian, thec maximised over
φa has a Rayleigh distribution in the absence of the signal. Assuming a false alarm rate
of 1 per year, gives a false alarm probability of∼ 10−14 for one year observation period,
which in turn sets the threshold at 8.2 (this is in units of the standard deviation of the
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Figure 6. Hexagonal tiling of the parameter space.

Gaussian noise). Detection is announced if thec maximised over the parameters exceeds
the threshold. However, in order to achieve good detection probability one must havec
well over the threshold — thusc > 8.9 gives a detection probability better than about 95%.

The foregoing describes the general matched filtering paradigm. It clearly holds for a
larger mass range or a larger bandwidth. If one lowers the lower limit of the band to 10 Hz
as will be the case for advanced detectors and increases the mass range to begin from say
0.2M⊙, the online search requirement increases by a hundred times. Also if one includes
spins, the waveform now must depend on 6 more parameters, namely, the spin vectors
~S1, ~S2, and the computational burden increases roughly by three orders of magnitude.

In order to deal with the rather large computational cost, hierarchical schemes have
been proposed (Mohanty & Dhurandhar 1996; Sengupta, Dhurandhar & Lazzarini 2003)
which can reduce this cost. The idea is to look for triggers with a low threshold with a
coarse bank of templates, and then follow only the trigger events by a fine search and then
use the high threshold as in the regular search described above. This method can reduce the
cost considerably and theoretical factors of few tens in reducing the cost have been obtained
in stationary Gaussian noise. These reduction factors of course will be significantly less
in the presence of real detector noise. Recently Cannonet al. (2010) have shown that
singular value decomposition can be used to reduce the computational cost. They have
shown that for neutron star/neutron star inspiral where the parameter space is smaller, the
computational gain can be almost an order of magnitude.

4.1.3 Merger and ringdown

For a black hole merger, one must solve Einstein’s equations with complex initial and
boundary conditions. Due to the nonlinearity of Einstein’s equations, the problem is highly
complex, and work had been going on for few decades before Pretorius (2005) made a
breakthrough. This was followed by other successful numerical solutions (Campanelliet al.
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2006; Bakeret al. 2006). Clearly, the first such solutions corresponded to nonrotating
black holes which now are not too difficult to obtain. The rather surprising fact was that
the merger phase is a smooth continuation of the inspiral phase, contrary to what had been
expected. There are results also for spinning black holes. Work is in progress to obtain
numerical relativistic solutions spanning the entire parameter space for different mass ratios
and spins. There are also interesting effects such as ‘kicks’ in the general case; the final
black hole has a residual linear momentum.

The final ring-down phase consists of a superposition of quasi-normal modes (QNM)
with their amplitude depending on the details of the perturbation. But each QNM is
uniquely given by the black hole mass and the angular momentum parameter. The ‘no hair’
theorem for black holes in general relativity states that a black hole is completely charac-
terised by its mass and angular momentum. The above mentioned property of QNMs is a
consequence of this theorem. Thus observing QNMs would unambiguously show that the
source is a black hole and also confirm the no hair theorem of general relativity.

The important point for data analysis is that the inspiral waveform can be continued
into the merger phase and to the ring-down phase of the final black hole to obtain a single
stitched waveform, thus yielding a higher SNR. The mass range can now go upto 100M⊙
and the distance by about a factor of 2 which would then correspondingly increase the event
rate by about an order of magnitude. These searches are currently being performed by the
Ligo Science Collaboration.

4.2 The all sky, all frequency search for GW from rotating neutron stars

We will consider the simple model of an isolated rapidly rotating neutron star and ignore
spindown. We will show here, how the group theory and other algebraic methods can
be used to elegantly formulate the problem by exploiting the symmetries in the physical
model. In this endeavour, we will make use of thestepping around the sky method— a
method proposed by Schutz more than twenty years ago (Schutz 1989), which gives an apt
framework for this approach. There have been a host of methods proposed, notably the
Hough transform, the stack and slide, and resampling methods (Schutz & Papa 1999; Patel
et al. 2010) which reduce the computational cost over the straight-forward search over the
sky direction, frequency, and spindown parameters. Although these methods significantly
reduce the computational burden, it is not reduced to the point where the search can be
performed with the current computer resources available in reasonable time. Therefore, it
becomes necessary to explore novel approaches which address this problem.

Consider abarycentric framein which the isolated neutron star is at rest or moving
with uniform velocity. Ignoring spindowns the signal in this frame is assumed to be a
pure sinusoid — monochromatic of constant frequency sayf . The detector however, takes
part in an accelerated motion — in general a superposition of simple harmonic motions of
varying amplitudes and phases. Thus the signal in the detector is not a pure sinusoid but is
modulated by Doppler effects — the Doppler correction depending on the direction to the
source, relative to the motion of the detector. Since the detector moves in a complicated
way relative to the barycentre, a complex Doppler profile is generated which depends on
the direction to the source. If the direction to the source and the frequency are unknown,
the Doppler profile is unknown and then one must face the problem of scanning over all
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directions in the sky and also over frequency. From astrophysical considerations usually
the maximum frequencyfmax is taken to be 1 kHz. Thesteppingmethod gives a direct way
for obtaining the Fourier transform in the barycentric frame of the demodulated signals
connecting two different directions saŷn andn̂′.

The signal expected is so weak that one typically needs to integrate the signal for
several months or a year before one can build up significant SNR. So if the observation
time needed isT ∼ 107 sec or more and if the maximum frequencyfmax to be scanned is
taken about a kHz, then the number of samples in a data train areN ∼ 2 fmaxT ∼ 1010. Since
the detector orbits the Sun in this time, the ‘aperture’ of the ‘telescope’ is the diameterD
of the Earth’s orbit;D ∼ 3× 108 km while the minimum GW wavelength isλGW ∼ 300 km
corresponding to a frequency of 1 kHz. Thus the resolution is∆θ = λGW/D ∼ 10−6 radian,
a fraction of an arc second — the Fourier transform of such a signal spreads into a million
Fourier bins, and consequently the signal is lost in the noise of the detector. One therefore
needs to demodulate the signal first and then take its Fourier transform in order to collect the
signal power in a single frequency bin. This means one needs to scan or demodulate over
Npatches≃ 4π/∆θ2 ∼ 1013 directions or patches in the sky. So even this naive calculation
gives the number of operations for the search to beNops ∼ 3NpatchesN log2 N ∼ 1025 if one
were to perform the FFT of the data train after demodulating in each direction. A machine
with a speed of few teraflops would need several thousand years to perform the analysis!
Moreover, this estimate excludes overheads, and ignores spindown parameters. Including
these would increase the cost of the search by several orders of magnitude. Thus the search
is highly computationally expensive, and novel and original ideas should be explored, if
this search has to be brought within the capabilities of current resources or those envisaged
in the near future. The approach outlined here is based on group theory and is one such
attempt towards finding a solution to this problem.

Moreover, there exists also the possibility of using this approach in tandem with the
previous approaches which have been aimed at reducing the computational cost. It is en-
visaged that a judicious combination of several approaches may go towards alleviating the
computational burden.

4.2.1 The formulation of the problem

Let the motion of the detector be described in general byR(t) in the barycentric frame
(X,Y,Z); for circular motionR(t) = R(cosΩt X̂ + sinΩt Ŷ) — we take the detector motion
in the (X,Y) plane — wherêX andŶ are unit vectors along theX andY axes respectively,
andΩ is the angular velocity of the detector in the barycentric frame. We will treatR(t)
generally for now until later when we specialise to circular motion. The key defining
equation which describes the transformation between barycentric timet and detector time
t′ is:

s′(t′) = s(t) . (13)

The detector time coordinatet′, which is in fact a retarded or advanced time, is given byt′ =
t −R(t) · n̂/c and is related to the barycentric time coordinatet. From our assumptions, the
signal in the barycentric frame can be taken to be monochromatic. So after demodulation
a Fourier transform is all that is necessary to extract the signal from the detector noise. It
is in fact the matched filter!
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We write the Doppler modulation in an abstract form in terms of an operator. The
signal at the detector coming from the directionn̂ is related to the signal in the barycentric
frame by the equation:

s′(n̂) = M(n̂) s, (14)

whereM(n̂) is the modulation operator which is defined via equation (13). This operator
has explicit representations in the time as well as in the Fourier domain (Dhurandhar &
Krishnan 2011). Note that in the all sky, all frequency search we do not known̂. Therefore
we need to scan over the directions. A trial demodulation is performed for some general
direction n̂′ given by n̂′ = (sinθ′ cosφ′, sinθ′ sinφ′, cosθ′), which is not necessarilŷn.
Thus we try the direction̂n′ and have a trial demodulated signal,

strial(n̂′; n̂) = M−1(n̂′) s′(n̂) . (15)

If n̂′ , n̂, then the demodulation is incorrect and we must try again with a differentn̂′

until we get ton̂ or atleast get close enough. Ifn̂′ ≃ n̂, we must observe a peak in Fourier
domain. Using these formulae we can nowstep directlyto a directionn̂′ as follows:

strial(n̂′; n̂) = Q(n̂′, n̂) s, (16)

where thesteppingoperator is defined by:

Q(n̂′, n̂) = M−1(n̂′) M(n̂) . (17)

This was the approach suggested by Schutz, now expressed in our formulation, so that
one may directlystepfrom the directionn̂ to the directionn̂′ in the space of demodulated
waveforms. This formulation was expected to enhance the efficiency of the search, for
example, by using the sparseness of the matrices. The approach here builds upon this
formulation. Apart from the sparseness of matrices, the idea is to use symmetries in the
problem for stepping efficiently in the sky. The symmetry is made manifest via the language
of group theory.

In order to get a group structure and go beyond the method advocated by Schutz, it
is necessary to expand the scope of the direction vectorsn̂ to the full three dimensional
Euclidean spaceR3. It is clear that this is required because even a step in the sky namely,
n̂′ − n̂ will not be of unit length. Thus it is necessary as also convenient to ‘unwrap’ the
space of directions, which is a projective space, to its universal covering spaceR3. We then
define the operatorsM(a), wherea is an arbitrary vector inR3, anda is used in the ‘re-
tarded time’ instead of̂n. We can then show that these operators now form a group, atleast
approximately, well within the physical requirements (Dhurandhar & Krishnan 2011). It is
important to note that these operatorsM act on functions, namely signals, and map them
to other signals — the signals are Doppler shifted. Such groups are called transformation
groups in the literature (Vilenkin 1988).

4.2.2 Circular motion of the detector

For concreteness, we give an example of circular motion of the detector. This is a very
simplified case because in reality the detector partakes of a complicated superposition of
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simple harmonic motions which have complex set of phases. This simple case is taken
to see how the group theory helps. The group now is reduced to Euclidean group in 2
dimensions, usually denoted byE(2). We consider the motion as above and consider the
situation when the motion consists of exactly one orbit, i.e. 0≤ t ≤ T andΩT = 2π. Then
in the Fourier space, wheren = f /T andn′ = f ′/T, we look at the action ofM(a) on the
complete orthonormal basis of the Hilbert space of square integrable functions over [0,T],
namely, the set of functionse2πint/T . The natural scalar product on this Hilbert space for the
two functionsg1 andg2 is defined by:

(g1, g2) =
1
T

∫ T

0
g1(t) g∗2(t) dt . (18)

In this basis, the matrix representation forM (we have chosena = n̂ a unit vector) is readily
given:

M(n̂; n′, n) = (M(n̂) e2πin t′
T , e2πin′ t′

T )

= (e2πin t
T , e2πin′ t′

T )

=
1
T

∫ T

0
dt′ e2πin t

T −2πin′ t′
T . (19)

where we have used the definitionM(n̂)s(t′) = s(t). An explicit expression forM(n̂; n′, n)
can be obtained for the direction̂n = (sinθ cosφ, sinθ sinφ, cosθ). Writing ψ = Ωt′ and
β = RΩ/c we obtain:

M(n̂; n′, n) =
1
2π

∫ 2π

0
dψ ei(n−n′)ψ+inβ sin θ cos(ψ−φ)

≡ eiχ(n−n′) Jn−n′ (nβ sinθ) , (20)

whereχ = φ + π/2 is the translated azimuthal angle.
From the form ofM(n̂; n′, n) it is evident that when applied to the data vectorxn, the

search inχ can be performed by a fast Fourier transform; the stepping in the azimuthal
parameter is done in an efficient way. If there areB samples of theχ parameter, then
the search overχ for a givenθ and frequencyn′ can be performed in order ofB log2 B
number of operations. It may be further possible to reduce the number of operations by
similar methods, but this example underlines the role of symmetry and the group theory in
developing efficient data processing algorithms.

5. Concluding remarks

The era of gravitational wave astronomy has arrived. The initial detectors have not only
reached their promised sensitivities but have surpassed them. The advanced detectors will
start operating in few years time and the era of gravitational wave astronomy would then
have truly begun. From the astrophysical knowledge that we possess as of now, one should
expect a fair rate of gravitational wave events that one should be able to observe. An impor-
tant recent development has been LIGO-Australia where LIGO is planning to build one of
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its detectors in Australia with partial funding from Australia. A detector far away and out
of the plane of other detectors in US and Europe would greatly benefit the search of grav-
itational waves. India is also thinking of chipping in, so that India also has a stake in this
exciting world project. Already, India has a 20 year old legacy in gravitational wave data
analysis at IUCAA, Pune and wave form modelling at RRI, Bengaluru, and recently a three
metre prototype detector at T.I.F.R., Mumbai has been funded. Apart from the groundbased
detectors, there is also the prospect of the space-based ESA-NASA detector LISA which
will bring in important astrophysical information at low frequencies complementing the
ground-based detectors. The future looks bright for GW astronomy.
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Sezione INFN ROMA1, Piazzale Aldo Moro 5, 00185 Roma, Italy

Received February 11, 2011; accepted February 28, 2011

Abstract. Non radial oscillations of neutron stars are associated with the emis-
sion of gravitational waves. The characteristic frequencies of these oscillations
can be computed using the theory of stellar perturbations, and they are shown to
carry detailed information on the internal structure of the emitting source. More-
over, they appear to be encoded in various radiative processes, as for instance, in
the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination
is central to the theory of stellar perturbation. A viable approach to the prob-
lem consists in formulating this theory as a problem of resonant scattering of
gravitational waves incident on the potential barrier generated by the spacetime
curvature. This approach discloses some unexpected correspondences between
the theory of stellar perturbations and the theory of quantum mechanics, and
allows us to predict new relativistic effects.

Keywords: gravitational waves – black hole physics – stars: oscillations – stars:
neutron – stars: rotation

1. Introduction

The theory of stellar perturbations is a very powerful tool to investigate the features of
gravitational signals emitted when a star is set in non-radial oscillations by any external
or internal cause. The characteristic frequencies at which waves are emitted are of great
interest in these days, since gravitational wave detectors Virgo and LIGO are approaching
the sensitivity needed to detect gravitational waves emitted by pulsating stars. These fre-
quencies carry information on the internal structure of a star, and appear to be encoded in
various radiative processes; thus, their study is a central problem in perturbation theory and
in astrophysics. In this paper I will illustrate the theory of perturbations of a non-rotating
star, describing in particular the formulation that Chandrasekhar and I developed, its moti-
vation and outcomes. Furthermore, I will briefly describe how the theory has been applied
to study the oscillation frequencies of neutron stars.
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247



248 V. Ferrari

In order to frame the problem in an appropriate historical perspective, it is instructive
to remind ourselves how the study of stellar perturbations was treated in the framework of
Newtonian gravity. In that case, the adiabatic perturbations of a spherical star are described
by a fourth-order, linear, differential system which couples the perturbation of the Newto-
nian potential to those of the stellar fluid. All perturbed quantities are Fourier-expanded
and, after a suitable expansion in spherical harmonics, which allows for the separation of
variables, the relevant equations are manipulated in such a way that the quantity which is
singled out to describe the perturbed star is the Lagrangian displacement~ξ experienced by
a generic fluid element; indeed, the changes in density, pressure and gravitational potential
induced by the perturbation, can all be expressed uniquely in terms of~ξ. The equations for
~ξ have to be solved by imposing appropriate boundary conditions at the centre of the star,
where all physical quantities must be regular, and on its boundary, where the perturbation
of the pressure must vanish. These conditions are satisfied only for a discrete set ofreal val-
ues of the frequency,{ωn}, which are the frequencies of the star’snormal modes. Thus, the
linearized version of the Poisson and of the hydro equations are reduced to a characteristic
value problem for the frequencyω.

An adequate base for a rigorous treatment of stellar pulsations of a spherical star in
general relativity was provided by K.S. Thorne and collaborators in a series of papers pub-
lished in the late sixties–early seventies of the last century (Thorne & Campolattaro 1967,
1968; Campolattaro & Thorne 1970; Thorne 1969a,b; Ipser & Thorne 1973). The theory
was developed in analogy with the Newtonian approach, and was later completed by Lind-
blom & Detweiler (1983), who brought the analytic framework to a form suitable for the
numerical integration of the equations, thus allowing for the determination of the real and
imaginary parts of the characteristic frequencies of theℓ = 2, quasi-normal modes. In-
deed, a main difference between the Newtonian and the relativistic theory is that in general
relativity the oscillations are damped by the emission of gravitational waves, and conse-
quently the mode eigenfrequencies are complex. Higher order (ℓ > 2) mode frequencies
were subsequently computed by Cutler & Lindblom (1987).

In 1990, Professor Chandrasekhar and I started to work on stellar perturbations, and
we decided to derive ab initio the equations of stellar perturbations following a different ap-
proach, having as a guide the theory of black hole perturbations rather than the Newtonian
theory of stellar perturbations.

1.1 Black hole perturbations: wave equations and conservation laws

In 1957 T. Regge and J.A. Wheeler set the basis of the theory of black hole perturbations
showing that, by expanding the metric perturbations of a Schwarzschild black hole in ten-
sorial spherical harmonics, Einstein’s equations can be separated (Regge & Wheeler 1957).
Spherical harmonics belong to two different classes, depending on the way they transform
under the parity transformationθ → π − θ andϕ → π + ϕ; those which transform like
(−1)(ℓ+1) are namedodd, or axial, those that transform like (−1)ℓ are namedeven, or polar.
The perturbed equations decouple in two distinct sets belonging to the two parities. Regge
& Wheeler further showed that by Fourier-transforming the time dependent variables, the
equations describing the radial part of theaxial perturbations can easily be reduced to a
single Schroedinger-like equation, and 13 years later Frank Zerilli showed that this can
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also be done for the much more complicated set ofpolar equations (Zerilli 1970a,b); thus,
the axial and polar perturbations of a Schwarzschild black hole are described by the wave
equation

d2Z±
ℓ

dr2
∗
+

[

ω2 − V±ℓ (r)
]

Z±ℓ = 0 , (1)

V−ℓ (r) =
1
r3

(

1−
2M
r

)

[ℓ(ℓ + 1)r − 6M] (2)

V+ℓ (r) =
2(r − 2M)

r4(nr + 3M)2
[n2(n+ 1)r3 + 3Mn2r2 + 9M2nr + 9M3] . (3)

wherer∗ = r + 2M log
( r
2M
− 1

)

, n = 1
2(ℓ + 1)(ℓ − 2), andM is the black hole mass.

The superscript− and+ indicate, respectively, the Regge-Wheeler equation for the axial
perturbations, and the Zerilli equation for the polar perturbations, and the corresponding
potentials. The Regge-Wheeler potential forℓ = 2 is shown in Figure 1.
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Figure 1. The potential barrier generated by the axial perturbations of a Schwarzschild black hole
for ℓ = 2. The potential for the polar perturbations has a similar form.

An alternative approach to studying black hole perturbations considers the perturba-
tions of the Weyl and Maxwell scalars within the Newman-Penrose formalism. Using this
approach in 1972, S. Teukolsky was able to decouple and separate the equations governing
the perturbations of a Kerr black hole (Teukolsky 1972, 1973), and to reduce them to a
single master equation for the radial part of the perturbationRlm:

∆Rlm,rr + 2(s+ 1)(r − M)Rlm,r + V(ω, r)Rlm = 0 , ∆ = r2 − 2Mr + a2. (4)

Variable separation was achieved in terms of oblate spheroidal harmonics, and the potential
V(ω, r) is given by

V(ω, r) =
1
∆

[

(r2 + a2)2ω2 − 4aMrmω+ a2m2 + 2is(am(r − M) − Mω(r2 − a2))
]

(5)

+
[

2isωr − a2ω2 − Alm

]

, (6)
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wherea is the black hole angular momentum,Alm is a separation constant, ands, the spin-
weight parameter, takes the valuess = 0,±1,±2, respectively for scalar, electromagnetic
and gravitational perturbations. It may be noted that for the Schwarzschild perturbations,
due to the background spherical symmetry, non-axisymmetric modes with aeimφ depen-
dence can be deduced from axisymmetric,m = 0 modes by suitable rotations of the polar
axes. As a consequence, the potentials (2) and (3) do not depend on the harmonic indexm.
Conversely, since Kerr’s background is axisymmetric, this degeneracy is removed and the
potential (6) depends onm. Moreover, while the Schwarzschild potentials (2) and (3) are
real and independent of frequency, the potential barrier of a Kerr black hole is complex,
and depends on frequency.

The wave equations governing black hole perturbations show that the curvature gen-
erated by a black hole appears in the perturbed equations as a one-dimensional potential
barrier; consequently, the response of a black hole to a generic perturbation can be studied
by investigating the manner in which a gravitational wave incident on that barrier is trans-
mitted, absorbed and reflected. Thus, the theory of black hole perturbations can be formu-
lated as a scattering theory, and the methods traditionally applied in quantum mechanics
to investigate the behaviour of physical systems described by a Schroedinger equation can
be adapted and used to study the behaviour of perturbed black holes. For instance, it is
known that in quantum mechanics, given a one-dimensional potential barrier associated
with a Schroedinger equation, the singularities in the scattering cross-section correspond
to complex eigenvalues of the energy and to the so-called quasi-stationary states. Since
the perturbations of a Schwarzschild black hole are described by the Schroedinger-like
equation (1) with the one-dimensional potential barriers (2) and (3), in which the energy
is replaced by the frequency, the singularities in the scattering cross-section will provide
the complex values of the black hole eigenfrequencies, and the corresponding eigenstates
will be the black hole Quasi Nomal Modes (QNM). These modes satisfy the boundary
conditions of a pure outgoing gravitational wave emerging at radial infinity (r∗ → +∞),
and a pure ingoing wave impinging at the black hole horizon (r∗ → −∞). That these
solutions should exist had been suggested by C.V. Vishveshwara in 1970 (Vishveshwara
1970), and the next year W.H. Press confirmed this idea by numerically integrating the
axial wave equation (1), and by showing that an arbitrary initial perturbation ends in a ring-
ing tail, which indicates that black holes possess some proper modes of vibration (Press
1971). However, it was only in 1975 that S. Chandrasekhar and S. Detweiler computed
the complex eigenfrequencies of the quasi-normal modes of a Schwarzschild black hole,
by integrating the Riccati equation associated with the axial equation (1) (Chandrasekhar
& Detweiler 1975). In addition, they also showed that the transmission and the reflection
coefficients associated respectively with the polar and with the axial potential barriers are
equal. As a consequence, the polar and the axial perturbations are isospectral, i.e. the polar
and axial QNM eigenfrequencies are equal. This equality can be explained in terms of
a transformation theory which clarifies the relations that exist between potential barriers
admitting the same reflection and absorption coefficients. This is an example of how the
scattering approach has been effective not only to determine the QNM frequencies, but also
to investigate the inner relations existing among the axial and polar potential barriers and to
gain a deeper insight in the mathematical theory of black holes, which was illustrated by S.
Chandrasekhar in his book on the subject (Chandrasekhar 1984). Following this approach,
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a variety of methods developed in the context of quantum mechanics have been used to
determine the QNM spectra of rotating and non-rotating black holes, such as the WKB and
higher order WKB method, phase-integral methods and the theory of Regge poles, just to
mention some of them (Schutz & Will 1985; Ferrari & Mashhoon 1984a,b; Andersson,
Araujo & Schutz 1993a,b,c; Andersson 1994; Andersson & Thylwe 1994).

1.2 A conservation law for black hole perturbations and its generalization to
perturbed stars

In quantum mechanics the equation

|R|2 + |T |2 = 1, (7)

whereR andT are the reflection and transmission coefficients associated with a potential
barrier, expresses the symmetry and unitarity of the scattering matrix; it says that, if a
wave of unitary amplitude is incident on one side of the potential barrier, it gives rise to
a reflected and a transmitted wave such that the sum of the square of their amplitudes
is still one. Therefore, Eq. (7) is an energy conservation law for the scattering problem
described by the Schroedinger equation with a potential barrier. This conservation law
is a consequence of the constancy of the Wronskian of pairs of independent solutions of
the Schroedinger equation. Similarly, the constancy of the Wronskian of two independent
solutions of the black hole wave equations allows us to write the same relation between the
reflection and transmission coefficients associated with the potential barrier, and therefore
it shows that such an energy conservation law also governs the scattering of gravitational
waves by a perturbed black hole. It should be stressed that such energy conservation law
does notexist in the framework of the exact non-linear theory; however, it can be derived
in perturbation theory both for Schwarzschild, Kerr and Reissner-Nordstrom black holes.

This possibility led Chandrasekhar to the following consideration. Since in general
relativity, any distribution of matter (or more generally energy of any sort) induces a curva-
ture of the spacetime – a potential well – instead of picturing the non-radial oscillations of
a star as caused by some unspecified external perturbation, we can picture them as excited
by incident gravitational radiation. Viewed in this manner, the reflection and absorption of
incident gravitational waves by black holes and the non-radial oscillations of stars, become
different aspects of the same basic theory. However, this idea needed to be substantiated by
facts, and our starting point was to show that also for perturbed stars it is possible to write
an energy conservation law in terms of Wronskians of independent solutions of the per-
turbation equations of a spherical star. This is easy if we consider the axial perturbations
of a non-rotating star, because in that case, as we shall show in Section 2, the perturbed
equations can be reduced to a wave equation with a one dimensional potential barrier as for
black holes. However, to derive the conservation law for the polar perturbations was not
easy, because the corresponding equations are a fourth order linear differential system, in
which the perturbed metric functions couple to the fluid perturbations, and it was not clear
how to define the conserved current. Anyway, working hard on the equations, we were able
to derive a vector~E in terms of metric and fluid perturbations, which satisfies the following
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equation (Chandrasekhar & Ferrari 1990a):

∂

∂xα
Eα = 0, α = (x2 = r, x3 = ϑ). (8)

(It is worth reminding ourselves that, due to the spherical symmetry, it is not restrictive
to consider axisymmetric perturbationsm = 0). The vanishing of the ordinary divergence
implies that, by Gauss’s theorem, the flux of~E across a closed surface surrounding the
star is a constant. When the fluid variables are switched off, this conservation law reduces
to that derived for a Schwarzschild black hole, and therefore we thought we were on the
right track. However, there was still a question to answer: are we entitled to say that the
vector~E actually represents the flux of gravitational energy which develops through the
stars and propagates outside? If so, Eq. (8) should reduce to the second variation of the
time component of the well known equation

∂

∂xν
[
√
−g(Tµν + t µν)] = 0. (9)

wheret µν is the stress-energy pseudotensor of the gravitational field. The problem is that
t µν is not uniquely defined; indeed Eq. (9) shows that it is defined up to a divergenceless
term. A possible definition is that given by Landau & Lifschitz (1975), which has the
advantage of being symmetric. However, the second variation of the time component of
Eq. (9) assumingt µν = t µνLL, does not give the divergenceless equation satisfied by our vector
~E, neither for the Einstein-Maxwell case, nor in the case of a star. Then, Raphael Sorkin
suggested that the pseudo-tensor whose second variation should reproduce our conserved
current is the Einstein pseudo-tensor, because its second variation retains its divergence-
free property, provided only the equations governing the static spacetime and its linear
perturbations are satisfied.1 This property is a consequence of the Einstein pseudo-tensor
being a Noether operator for the gravitational field; the Landau-Lifshitz pseudotensor failed
to reproduce the conserved current because it does not satisfy the foregoing requirements.
In addition, Sorkin pointed out that the contribution of the source should be introduced not
by adding the second variation of the source stress-energy tensorTµν, as one might naively
have thought, but through a suitably defined Noether operator, whose form he derived for
an electromagnetic field (Sorkin 1991). Though this operator does not coincide withTµν, it
gives the same conserved quantities. Thus, the flux integral which we had obtained, I would
say, by brute force, working directly on the perturbed hydrodynamical equations, could be
obtained from a suitable expansion of the Einstein pseudo-tensor showing that, as for black
holes, energy conservation also governs phenomena involving gravitational waves emitted
by perturbed stars (Chandrasekhar & Ferrari 1991a). We therefore decided to derive ab ini-
tio the equations of perturbations of a spherical star in the same gauge used when studying
the perturbations of a Schwarzschild black hole, and to study the problem as a scattering
problem. In the next sections I shall briefly illustrate the main results we obtained by using
this approach (Chandrasekhar & Ferrari 1990b, 1991b,c, 1992; Chandrasekhar, Ferrari &
Winston 1991).

1It should be mentioned that the first variation of the Einstein pseudo-tensor vanishes identically.
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2. Perturbations of a non-rotating star

As for a Schwarzschild black hole, when the equations describing the perturbations of a
spherical star are perturbed and expanded in spherical tensor harmonics they decouple in
two distinct sets, one for the polar and one for the axial perturbations. The axial equations
do not involve fluid motion except for a stationary rotation, while the polar equations couple
fluid and metric perturbations. The axial equations are therefore much simpler and we
showed that, after separating the variables and Fourier-expanding the perturbed functions,
they can be combined as in the Schwarzschild case, and reduced to a single Schroedinger-
like equation with a one-dimensional potential barrier (Chandrasekhar & Ferrari 1990b,
1991c):

d2Z−
ℓ

dr2
∗
+ [ω2 − V−ℓ (r)]Z−ℓ = 0, (10)

where

r∗ =
∫ r

0
e−ν+µ2dr, (11)

and

V−ℓ (r) =
e2ν

r3
[ℓ(ℓ + 1)r + r3(ǫ − p) − 6m(r)]. (12)

The functionsν(r) andµ2(r), which appear in the definition of the radial variabler∗, are
two metric functions which are found by solving the equations of stellar structure for an
assigned equation of state (EOS).ǫ(r) andp(r) are the energy density and the pressure in the
unperturbed star; outside the star they vanish and Eq. (12) reduces to the Regge-Wheeler
potential (2) of a Schwarzschild black hole. Thus, the axial potential barrier generated by
the curvature of the star depends on how the energy-density and the pressure are distributed
inside the star in the equilibrium configuration, and therefore it depends on the equation of
state of matter inside the star. As an example, in Figure 2 we show theℓ = 2 potential
barrier for an ideal, constant density star withR/M = 2.8 (left panel) andR/M = 2.4 (right
panel). If we compare the potential shown in Figure 2 with the Regge-Wheeler potential
of a Schwarzschild black hole shown in Figure 1, we notice an important difference. The
Schwarzschild potential vanishes at the black hole horizon, and has a maximum atrmax ∼
3M, whereas the potential barrier of a perturbed star tends to infinity atr = 0. Thus,
for a Schwarzschild black hole waves are scattered by a one-dimensional potential barrier,
whereas in the case of a star they are scattered by a central potential.

Since the axial perturbations do not excite any motion in the fluid, for a long time they
have been considered as trivial. But this is not true if we adopt the scattering approach: the
absence of fluid motion simply means that the incident axial wave experiences a potential
scattering, and this scattering can, in some extreme conditions, be resonant. Indeed, if we
look for solutions that are regular atr = 0 and behave as pure outgoing waves at infinity,
we find modes which do not exist in Newtonian theory; if the star is extremely compact, the
potential in the interior is a well, and if this well is deep enough there can exist one or more
more slowly damped quasi-normal modes, ors-modes (Chandrasekhar & Ferrari 1991c).
For example, if the mass of the star is, say,M = 1.4 M⊙ andR/M = 2.4, i.e. the stellar
compactness isM/R= 0.42, as shown in Figure 2 the well inside the star is deep enough to
allow one quasi-normal mode. The number ofs-modes increases with the depth of the well,
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Figure 2. Theℓ = 2 potential barrier for a constant density star of massM = 1.4 M⊙ andR/M = 2.8
(left panel) andR/M = 2.4 (right panel). The horizontal, dashed line in the right panel corresponds
to the value of frequencyω2, which corresponds to a solution regular atr = 0 and behaving as a pure
outgoing wave at radial infinity, i.e. to a quasi-normal mode.

which corresponds to a larger stellar compactness. However, it should be mentioned that
neutron stars are not expected to have such a large compactness, unless one invokes some
exotic equation of state. Thes-modes are also namedtrapped modesbecause, due to the
slow damping, they are effectively trapped by the potential barrier, and not much radiation
can leak out of the star when these modes are excited. Axial modes on a second branch
are namedw-modes and are highly damped (Kokkotas 1994). Thew-mode frequency also
depends on the stellar compactness, as we shall show in Section 3.1. Therefore they carry
interesting information on the internal structure of the star.

It should be stressed that the axial modes do not have a Newtonian counterpart.
Our approach to the polar perturbations, which couple the perturbations of the gravi-

tational field to those of the metric, is different from the Newtonian approach briefly de-
scribed in the introduction. Rather than focusing on the fluid behaviour, we focus on the
variables which describe the spacetime perturbations, assuming that, as in the case of black
holes, they are excited by the incidence of polar gravitational waves belonging to a par-
ticular angular harmonic. A careful scrutiny of the structure of the polar equations shows
that it is possible to decouple the equations describing the metric from those describing
the fluid perturbations. This decoupling allows us to solve the equations for the spacetime
perturbations with no reference to the motion that can be induced in the fluid, and this
is possible in general. Once the solution for the metric perturbations is found, the fluid
variables can be determined in terms of them by simple algebraic relations without further
ado (Chandrasekhar & Ferrari 1990b). The final set of equations to solve is described in
Section 2.1.

2.1 The equations for the polar perturbations

Assuming that the metric which describes the unperturbed star has the form

ds2 = e2ν(dt)2 − e2ψdϕ − e2µ2(dr)2 − e2µ3(dθ)2, (13)
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the functions that describe the polar perturbations, expanded in spherical tensor harmonics
and Fourier-expanded are

δν = Nℓ(r)Pℓ(cosθ)eiωt δµ2 = Lℓ(r)Pℓ(cosθ)eiωt (14)

δµ3 = [Tℓ(r)Pℓ + Vℓ(r)Pℓ,θ,θ]eiωt δψ = [Tℓ(r)Pℓ + Vℓ(r)Pℓ,θ cotθ]eiωt,

δp = Πℓ(r)Pℓ(cosθ)eiωt 2(ǫ + p)eν+µ2ξr (r, θ)eiωt = Uℓ(r)Pℓe
iωt

δǫ = Eℓ(r)Pℓ(cosθ)eiωt 2(ǫ + p)eν+µ3ξθ(r, θ)e
iωt =Wℓ(r)Pℓ,θe

iωt,

wherePℓ(cosθ) are Legendre’s polynomials,ω is the frequency,δp andδǫ are perturbations
of the pressure and of the energy density, andξr , ξθ are the relevant components of the La-
grangian displacement of the generic fluid element. Note that (N, L,T,V) and (Π,E,U,W)
are, respectively, the radial part of the metric and of the fluid perturbations. After separating
the variables the relevant Einstein’s equations for the metric functions become
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(15)

where
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2ω

2e−2ν, Q = (ǫ+p)
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γ =
(ǫ+p)

p

(

∂p
∂ǫ

)

entropy=const
, B = e−2µ2ν,r

2(ǫ+p) (ǫ,r − Qp,r),

D = 1− A
2(A+B) = 1− ω2e−2ν(ǫ+p)

ω2e−2ν(ǫ+p)+e−2µ2ν,r (ǫ,r−Qp,r )
,

E = D(Q− 1) − Q,

F = ǫ,r−Qp,r
2(A+B) =

2[ǫ,r−Qp,r ](ǫ+p)
2ω2e−2ν(ǫ+p)+e−2µ2ν,r (ǫ,r−Qp,r )

,

(16)

and Vℓ and Tℓ have been replaced byXℓ and Gℓ defined as


















Xℓ = nVℓ
Gℓ = ν,r [ n+1

n Xℓ − Tℓ] ,r + 1
r2 (e2µ2 − 1)[n(Nℓ + Tℓ) + Nℓ]

+
ν,r
r (Nℓ + Lℓ) − e2µ2(ǫ + p)Nℓ +

1
2ω

2e2(µ2−ν)[Lℓ − Tℓ + 2n+1
n Xℓ].

(17)

These equations are valid in general, also for non-barotropic equations of state. It should
be stressed that Eqs. (15) govern the variables (X,G,N, L) which aremetric perturbations;
however, since the motion of the fluid is excited by the polar perturbation, we may want
to determine the fluid variables, (Π,E,U,W); they can be obtained in terms of the metric
functions using the following algebraic relations

Wℓ = Tℓ − Vℓ + Lℓ,

Πℓ = −
1
2
ω2e−2νWℓ − (ǫ + p)Nℓ, Eℓ = QΠℓ +

e−2µ2

2(ǫ + p)
(ǫ,r − Qp,r)Uℓ,

Uℓ =
[(ω2e−2νWℓ),r + (Q+ 1)ν,r(ω2e−2νWℓ) + 2(ǫ,r − Qp,r)Nℓ](ǫ + p)

[

ω2e−2ν(ǫ + p) + e−2µ2ν,r(ǫ,r − Qp,r)
] .
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Outside the star the fluid variables vanish, and the polar equations reduce to the wave
equation (1) with the Zerilli potential (3).

As discussed above, for the axial perturbations, the frequencies of the quasi-normal
modes were found by solving a problem of scattering by a central potential; for the polar
perturbations it is not so simple, because a Schroedinger equation holds only in the exterior
of the star, whereas a higher order system must be solved in the interior. It is still a scat-
tering problem, but of a more complex nature since the incident polar gravitational waves,
which excite the perturbations, drive the fluid pulsations, which in turn emit the scattered
component of the wave. This approach was very fruitful in many respects. First of all,
given the equilibrium configuration for any assigned equation of state, it was very easy
to evaluate the QNM-frequency by integrating the equations for the metric perturbations
inside and outside the star, looking for the solutions which, being regular atr = 0, behave
as pure outgoing waves at infinity. Furthermore, we generalized the perturbed equations to
slowly rotating stars, and derived the equations which describe how the axial perturbations
couple to the polar (Chandrasekhar & Ferrari 1991b).

2.2 Perturbed equations for a slowly rotating star

Very briefly, the coupling mechanism is the following. LetZ0−
ℓ

be the axial radial function,
solution of Eq. (10), which describes the perturbation of a non-rotating star; letǫ(Ω)Z1−

ℓ
be

the perturbation to first order in the star angular velocityΩ. The axial perturbation is the
sum of the two:

Z−ℓ = Z0−
ℓ + ǫ(Ω)Z1−

ℓ .

As Z0−
ℓ

, the functionZ1−
ℓ

satisfies the wave equation (10) with the same potential (12), but
with a forcing term:

∞
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C
− 3

2

ℓ+2(µ) = re2ν−2µ2(1− µ2)2
∞
∑

ℓ=2

S0
ℓ (r, µ), (18)

whereµ = cosϑ andC
− 3

2
ℓ+2(µ) are the Gegenbauer polynomials. The source termS0

ℓ
is

S0
ℓ = ̟,r [(2W0

ℓ + N0
ℓ + 5L0

ℓ + 2nV0
ℓ Pℓ,µ + 2µV0

ℓ Pℓ,µ,µ] + 2̟W0
ℓ (Q− 1)ν,rPℓ,µ;

it is a combination of the functions which describe thepolar perturbations on thenon-
rotatingstar, found by solving the equations given in Section 2.1. It should be stressed that
the coupling function̟ is the function responsible for the Lense-Thirring effect. Thus a
rotating star exerts a dragging not only of the bodies, but also of the waves, and conse-
quently an incoming polar gravitational wave can convert, through the fluid oscillations it
excites, some of its energy into outgoing axial waves. This is a purely relativistic effect,
and it is due to the dragging of inertial frames. It is interesting to note that the coupling
between axial and polar perturbations satisfies rules that are similar to those known in the
theory of atomic transitions: a Laporte rule and a selection rule, according to which the
polar modes belonging toevenℓ can couple only with the axial modes belonging tooddℓ,
and conversely, and that it must be

l = m+ 1, or l = m− 1.
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Furthermore, the coupling satisfies a propensity rule (Fano 1985): the transitionℓ → ℓ + 1
is strongly favoured over the transitionℓ → ℓ − 1.

At the time Chandrasekhar and I wrote the series of papers on stellar perturbations,
there was a growing interest in the subject, also motivated by the fact that the construc-
tion of ground based interferometric detectors, LIGO in the US and Virgo in Italy, had just
started. Many studies addressed the problem of finding the frequencies of the QNMs, to es-
tablish what kind of information they carry on the internal structure of the emitting source.
The collective effort developed using essentially two different perturbative approaches: one
in the frequency domain, as for the theory developed by Thorne and collaborators or by
Chandrasekhar and myself, another in the time domain. The time domain approach ba-
sically consists in separating the equations of stellar perturbations as usual in terms of
spherical harmonics, and in solving the resulting equations in terms of two independent
variables, radial distance and time. The equations are excited using some numerical input,
like for instance a Gaussian impulse, and then the QNM frequencies are found by looking
at the peaks of the Fourier transform of the signal obtained by evolving the time-dependent
equations numerically. A disadvantage of this evolution scheme is that one cannot get the
complete spectrum of the QNMs either for a star or for a black hole. The reason is that,
although any perturbation is the sum of the harmonics involved, in practice only a few of
them can be clearly identified; thus, to find some more modes one has to proceed empir-
ically by changing the initial conditions. However, the evolution of the time dependent
equations is, still today, the only viable perturbative method to find the QNM frequen-
cies and waveforms emitted by rapidly rotating relativistic stars. To describe the problems
which emerge when dealing with the perturbations of a rapidly rotating star is beyond the
scope of this paper; I will discuss some related issues in the concluding remarks.

3. Neutron star oscillations

We shall now show how the theory of perturbations of non-rotating stars can be applied
to gain some insight into the internal structure of the emitting source. Different classes
of modes probe different aspects of the physics of neutron stars. For instance the fun-
damental mode (f -mode), which has been shown to be the most efficient GW emitter by
most numerical simulations, depends on the average density, the pressure modes (p-modes)
probe the sound speed throughout the star, the gravity modes (g-modes) are associated with
thermal/composition gradients and thew-modes are spacetime oscillations. Furthermore,
crustal modes, superfluid modes, magnetic field modes can, if present, add to the com-
plexity of stellar dynamics. The sensitivity of ground based gravitational detectors has
steadily improved over the years in a broad frequency window; the advanced version of
LIGO and Virgo, and especially third generation detectors like ET, promise to be powerful
instruments to detect signals emitted by oscillating stars. The frequencies of quasi normal
modes are encoded in these signals; therefore, as the Sun oscillation frequencies are used
in helioseismology to probe its internal structure, we hope that in the future it will be pos-
sible to use gravitational waves to probe the physics of neutron stars. One of the issues
which is interesting to address concerns the equation of state of matter in a neutron star
core, which is actually unknown. This problem is of particular interest, because the ener-
gies prevailing in the inner core of a neutron star are much larger than those accessible to
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high energy experiments on Earth. In the core, densities typically exceed the equilibrium
density of nuclear matter,ρ0 = 2.67× 1014 g/cm3; at these densities neutrons cannot be
treated as non-interacting particles, and the main contribution to pressure, which comes
from neutrons, cannot be derived only from Pauli’s exclusion principle. Indeed, with only
this contribution, we would find that the maximum mass of a neutron star is 0.7 M⊙ which,
as observations show, is far too low. This clearly shows that NS equilibrium requires a
pressure other than the degeneracy pressure, the origin of which has to be traced back to
the nature of hadronic interactions. Due to the complexity of the fundamental theory of
strong interactions, the equations of state appropriate to describe a NS core have been ob-
tained within models, which are constrained, as much as possible, by empirical data. They
are derived within two main, different approaches: the nonrelativistic nuclear many-body
theory, NMBT, and the relativistic mean field theory, RMFT. In NMBT, nuclear matter is
viewed as a collection of pointlike protons and neutrons, whose dynamics is described by
the nonrelativistic Hamiltonian:

H =
∑

i

p2
i

2m
+

∑

j>i

vi j +
∑

k> j>i

Vi jk , (19)

wherem and pi denote the nucleon mass and momentum, respectively, whereasvi j and
Vi jk describe two- and three-nucleon interactions. These potentials are obtained from fits
of existing scattering data (Wiringa, Stoks & Schiavilla 1995), (Pudlineret al. 1995). The
ground state energy is calculated using either variational techniques or G-matrix pertur-
bation theory. The RMFT is based on the formalism of relativistic quantum field theory,
nucleons are described as Dirac particles interacting through meson exchange. In the sim-
plest implementation of this approach the dynamics is modeled in terms of a scalar and
a vector field (Walecka 1974). The equations of motion are solved in the mean field ap-
proximation, i.e. replacing the meson fields with their vacuum expectation values, and the
parameters of the Lagrangian density, i.e. the meson masses and coupling constants, can be
determined by fitting the empirical properties of nuclear matter, i.e. binding energy, equi-
librium density and compressibility. Both NMBT and RMFT can be generalized to take
into account the appearance of hyperons. In the following we shall consider some EOS
representative of the two approaches, which have been used in the literature.

It should be stressed that different ways of modeling hadronic interactions affect the
pulsation properties of a star, which we are going to discuss.

3.1 The axial and polar w-modes

As shown in Section 2, the axial perturbations are described by a Schroedinger-like equa-
tion with a central potential barrier which depends on the energy and pressure distribution
in the unperturbed star, i.e. on the equation of state. The slowly damped modes are not ex-
pected to be associated with significant gravitational wave emission, because they are effec-
tively trapped by the potential barrier; in addition they appear if the star has a compactness
close to the static Schwarzschild limit, which establishes that constant density star solutions
of Einstein’s equations exists only forM/R< 4/9 ≃ 0.44 . Conversely, thew-modes, which
are highly damped, exist also for stars with ordinary compactness. They have been shown
to exist also for the polar perturbations and in that case they are coupled to negligible fluid
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Figure 3. The frequency of the first polar (dashed line) and axial (continuous line) w-modes are
plotted as a function of the star compactness for the EOSs A, B, WFF, L.

motion. In Figure 3 we compare the frequencies of the lower axialw-modes computed
in (Benhar, Berti & Ferrari 1999) with those of the lower polarw-modes computed in
(Andersson & Kokkotas 1988) for several EOSs. The main features of different EOS are,
very briefly, the following. EOS A (Pandharipande 1971a) is pure neutron matter, with
dynamics governed by a nonrelativistic Hamiltonian containing a semi-phenomenological
interaction potential. It is obtained using NMBT. EOS B (Pandharipande 1971b) is a gen-
eralization of EOS A, including protons, electrons and muons inβ-equilibrium, as well as
heavier baryons (hyperons and nucleon resonances) at sufficiently high densities (NMBT).
EOS WFF (Wiringa, Fiks & Fabrocini 1988) is a mixture of neutrons, protons, electrons
and muons inβ-equilibrium. The Hamiltonian includes two- and three-body interaction
potentials. The ground state energy is computed using a more sophisticated and accurate
many-body technique (NMBT). In EOS L (Pandharipande & Smith 1975) neutrons interact
through exchange of mesons (ω, ρ, σ). The exchange of heavy particles (ω, ρ) is described
in terms of nonrelativistic potentials, the effect ofσ-meson is described using relativistic
field theory and the mean-field approximation.

From Figure 3 we see that for each selected EOS the frequency of thepolar w-modes is
a rather steeply decreasing function of the stellar compactnessM/R, whereas for theaxial
modes the dependence ofνw0 on the compactness is weak, and ranges within intervals that
are separated for each EOS. This means that if an axial gravitational wave emitted by a
star at a given frequency could be detected, we would be able to identify the equation of
state prevailing in the star’s interior even without knowing its mass and radius. Hence, the
detection of axial gravitational waves would allow us to constrain the EOS models, with
regard to both the composition of neutron star matter and the description of the hadronic
interactions. Until very recently, the common belief was thatw- modes are unlikely to
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be excited in astrophysical processes. However, it has been shown that they are excited
in the collapse of a neutron star to a black hole, just before the black hole forms (Baiotti
et al. 2005). Unfortunately the typical frequencies of these modes (of the order of several
kHz) are higher than the frequency region where the actual gravitational wave detectors are
sensitive.

3.2 Polar quasi normal modes

The polar metric perturbations are physically coupled to the fluid perturbations. As shown
in Section 2.1, the frequencies of the polar QNMs can be computed by solving a system
of equations involving only the metric perturbations; however, they carry a strong imprint
of the internal composition of the star, which is present in Eqs. (15) through the pressure
and energy density profiles in the unperturbed star, which appear as coefficients of the
differential equations. According to a scheme introduced by Cowling in Newtonian gravity
(Cowling 1942), polar modes can be classified on the basis of the restoring force which
prevails when the generic fluid element is displaced from the equilibrium position: forg-
modes, or gravity modes, the restoring force is due to buoyancy, forp-modes it is due to
pressure gradients. The mode frequencies are ordered as follows

..ωgn < .. < ωg1 < ω f < ωp1 < .. < ωpn ..

and are separated by the frequency of the fundamental mode (f -mode), which has an inter-
mediate character betweeng- andp-modes. As discussed in Section 3.1, general relativity
predicts also the existence of polarw-modes, that are very weakly coupled to fluid motion
and are similar to the axialw-modes (Kokkotas & Schutz 1992). The frequencies of axial
and polarw-modes are typically higher than those of the fluid modesg, f andp.

If we are mainly interested in gravitational wave emission, the most interesting mode
is the f -mode. For mature neutron stars, its frequency is in the range 1− 3 kHz, which
is in the bandwidth of ground based detectors Virgo and LIGO (although not in the re-
gion where they are most sensitive); the damping times are of the order of a few tenths of
seconds, therefore the excitation of thef -mode would appear in the Fourier transform of
a gravitational wave signal as a sharp peak and could, in principle, be extracted from the
detector noise by an appropriate data analysis. Moreover, the fundamental mode could be
excited in several astrophysical processes, for instance in the aftermath of a gravitational
collapse, in a glitch, or due to matter accretion onto the star. For this reason, since the early
years of the theory of stellar perturbations, the interest of scientists working in this field
has initially been focussed on the determination of thef -mode frequencies. After the work
of Lindblom & Detweiler in 1983 and of Cutler & Lindblom in 1987, who respectively
computed theℓ = 2 andℓ > 2 f -mode eigenfrequencies for the EOSs available at that time,
more recently this work has been updated, and extended to other modes, by Anderson &
Kokkotas (1998) and Benhar, Ferrari & Gualtieri (2004). In particular, in these two papers
the f -mode frequencyν f and the corresponding damping timeτ f have been computed to
establish whetherν f scales with the average density of the star, as it does in Newtonian
gravity, and whether there also exists a scaling law forτ f . The sets of EOSs used in the
two works are not identical, because the papers were written six years apart, although some
EOSs appear in both (see the two papers for details). The work done by Benhar, Ferrari &
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Gualtieri (2004) also includes examples of hybrid stars, namely neutron stars with a core
composed of quarks. In Anderson & Kokkotas (1998)ν f andτ f have been fitted by a lin-
ear function of the average density of the star (M/R3)1/2, and of its compactnessM/R, as
follows.

ν f = 0.78+ 1.635

√

M̃

R̃3
,

1
τ f
=

M̃3

R̃4

[

22.85− 16.65

(

M̃

R̃

)]

, (20)

whereM̃ = M/1.4 M⊙ and R̃ = R/(10 km). Here and in the following formulaeν f is
expressed in kHz andτ f in s. The fits forν f andτ f obtained by Benhar, Ferrari & Gualtieri
(2004) using the new set of EOSs are

ν f = a+ b

√

M
R3
, a = 0.79± 0.09 (in kHz), b = 33± 2 (in km), (21)

and

1
τ f
=

cM3

R4

[

a+ b
(M

R

)]

, a = [8.7± 0.2] · 10−2, b = −0.271± 0.009. (22)

In Eqs. (21) and (22) mass and radius are in km (i.e. mass is multiplied by G/c2) and
c = 3 · 105 km/s. The data for the different EOSs used by Benhar, Ferrari & Gualtieri
(2004), and the fits given in Eqs. (20)–(22) are shown in Figure 4.ν f is plotted in the
upper panel as a function of the average density; the fit (20) is shown as a black dashed
line labelled ‘AK fit’, whereas the new fit is indicated as a red continuous line labelled ‘NS
fit’. The NS fit is lower by about 100 Hz than the AK fit, showing that the new EOSs
are, on average, less compressible than the old ones. The quantity (R4/cM3)/τ f given in
Eq. (22) is plotted in the lower panel of Figure 4 versus the stellar compactnessM/R. In
this case the AK fit forτ f (20), and the NS fit (22) are nearly coincident. For comparison,
in both panels of Figure 4 we show the frequency and the damping time of thef -mode of
a population of strange stars, namely stars entirely made of up, down and strange quarks,
modeled using the MIT Bag-model, spanning the allowed range of parameters, which are
the Bag constant, the coupling constantαS and the quark masses (see Benharet al. 2007
for details). The parameters of the fits for strange stars are

for ν f a = −[0.8± 0.08] · 10−2 , b = 46± 0.2, (23)

and
for τ f a = [4.7± 5 · 10−3] · 10−2, b = −0.12± 3 · 10−4 . (24)

In Figure 4 the fits for strange stars are labelled as ‘SS fit’. It is interesting to note that
the SS fits are quite different from those appropriate for neutron stars (AK- and NS-fits).
First of all the errors on the parameters are much smaller, which indicate that the linear
behaviour is followed by these stars, both forν f and forτ f , irrespective of the values of the
parameters of the model. Moreover, the difference between the fits is much larger for lower
values of the average density.

The empirical relations given in Eqs. (20)–(24) could be used to constrain the values
of the star mass and radius, where the values ofν f and τ f are identified in a detected
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Figure 4. The frequency of the fundamental mode is plotted in the upper panel as a function of the
square root of the average density for the different EOSs considered by Benhar, Ferrari & Gualtieri
(2004). We also plot the fit given by Anderson & Kokkotas (1998) plotted as AK-fit and our fit (NS-
fit). The NS-fit is systematically lower (about 100 Hz) than the AK-fit. The damping time of the
fundamental mode is plotted in the lower panel as a function of the compactnessM/R. The AK-fit
and our fit, plotted respectively as a dashed and continuous line, do not show significant differences.

gravitational signal. The stellar parameters would be further constrained if other modes
are excited and detected and, knowing them, we would gain information on the equations
of state of matter in the neutron star core, whose uncertainty is due, as explained earlier,
to our ignorance of hadronic interactions. Furthermore, if the neutron star mass is known,
as it may be if the star is in a binary system, the detection of a signal emitted by the star
oscillating in thef -mode may provide some further interesting information (Benharet al.
2007). In Figure 5 we plotν f as a function of the stellar mass, for neutron/hybrid stars
and for strange stars modeled using the MIT bag model. Note that 1.8 M⊙ is the maximum
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Figure 5. The frequency of the fundamental mode is plotted as a function of the mass of the star,
for neutron/hybrid stars (continuous lines) and for strange stars modeled using the MIT bag model,
spanning the set of parameters indicated in the range allowed by high energy experiments (dashed
region).

mass above which no stable strange star can exist. We see that there is a small range of
frequency where neutron/hybrid stars are indistinguishable from strange stars; conversely,
there is a large frequency region where only strange stars can emit. Moreover, strange stars
cannot emit gravitational waves withν f . 1.7 kHz, for any value of the mass in the range
we consider. For instance, if the stellar mass isM = 1.4 M⊙, a signal withν f & 2 kHz
would belong to a strange star. Figure 5 also shows that, even if we do not know the mass
of the star (as it is often the case for isolated pulsars), ifν f & 2.2 kHz, apart from a very
narrow region of masses where stars with hyperons would emit (EOS BBS1 and G240), we
can reasonably rule out that the signal is emitted by a neutron star. In addition, it is possible
to show that, sinceν f is an increasing function of the Bag constantB, if a signal emitted by
an oscillating strange star were detected, it would be possible to set constraints onB much
more stringent than those provided by the available experimental data (Benharet al. 2007).

In conclusion, the QNM frequencies can be used to gain direct information on the
equation of state of matter in a neutron star core.

The crucial question now is: do we have a chance to detect a signal emitted by a
star oscillating in a polar quasi-normal mode? Detection chances depend on how much
energy is channeled into the pulsating mode, which is unknown, and on whether the mode
frequency is in the detector bandwidth. The signal emitted by a star pulsating in a given
mode of frequencyν and damping timeτ, has the form of a damped sinusoid

h(t) = Ae−(t−t0)/τ sin[2πν(t − t0)] for t > t0, (25)
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wheret0 is the arrival time of the signal at the detector (andh(t) = 0 for t < t0). The wave
amplitudeA can be expressed in terms of the energy radiated in the oscillations,

A ≈ 7.6× 10−24

√

∆E⊙
10−12

1 s
τ

(

1 kpc
d

) (

1 kHz
ν

)

. (26)

where∆E⊙ = ∆EGW/M⊙c2. This quantity is unknown. Therefore to assess the detectability
of a signal we can only evaluate how much energy should be emitted in a given mode, in
order for the signal to be detected by a given detector with an assigned signal to noise ratio
(S/N)

( S
N

)2

=
4Q2

1+ 4Q2

A2τ

2Sn
. (27)

In this equationQ = πντ is the quality factor andSn is the detector spectral noise density.
Assuming as a bench-mark for∆E⊙ the energy involved in a typical pulsar glitch, in which
case a mature neutron star might radiate an energy of the order of∆EGW = 10−13M⊙c2,
and assumingν ∼ 1500 Hz,τ ∼ 0.1 s, d = 1 kpc, we findA ≈ 5 × 10−24. Such a
signal is too weak to be seen by actual detectors, therefore we conclude that 3rd generation
detectors are needed to detect signals from old neutron stars. More promising are the
oscillations of newly-born neutron stars; indeed, since a NS forms as a consequence of
a violent, and generally non-symmetric event – the gravitational collapse – a fraction of
its large mechanical energy may go into non-radial oscillations and would be radiated in
gravitational waves. Thus, during the first few seconds of the NS life more energy could
be stored in the pulsation modes than when the star is cold and old. In addition, during this
time the star is less dense than at the end of the evolution; consequently, the frequencies
of the modes which depend on the stellar compactness (as for instance thef -mode) are
lower and therefore span a frequency range where the detectors are more sensitive (Ferrari,
Miniutti & Pons 2003). For instance, if we assume that an energy∆EGW = 1.6 · 10−9 M⊙c2

is stored in thef -mode of a neutron star just formed in the Galaxy, the emitted signal
would be detectable with a signal to noise ratioS/N = 8 by advanced Virgo/LIGO, and
with S/N = 2.7 by Virgo+/LIGO, the upgraded configurations now being in operation.

4. Stellar perturbations and magnetar oscillations

Magnetars are neutron stars whose magnetic field is, according to current models, as large
as 1015 G (Thompson & Duncan 1993, 2001). During the last three decades some very
interesting astrophysical events have been observed which are connected to magnetar ac-
tivity and stellar pulsations. They involve Soft Gamma Repeaters (SGRs), which are
thought to be magnetars; these sources occasionally release bursts of huge amount of en-
ergy (L ≃ 1044 − 1046 ergs/s), and these giant flares are thought of being generated from
large-scale rearrangements of the inner field, or catastrophic instabilities in the magneto-
sphere (Thompson & Duncan 2001; Lyutikov 2003). Up to now, three of these events
have been detected: SGR 05026-66 in 1979, SGR 1900+14 in 1998 and SGR 1806-20 in
2004. In two of them (SGR 1900+14 and SGR 1806-20), a tail lasting several hundred
seconds has been observed, and a detailed study of this part of the spectrum has revealed
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the presence of quasi-periodic oscillations (QPOs) with frequencies

18, 26, 30, 92, 150, 625 and 1840 Hz

for SGR 1806-20 (Watts & Strohmayer 2006), and

28, 53, 84 and 155 Hz

for SGR 1900+14 (Strohmayer & Watts 2006). The discovery of these oscillations stimu-
lated an interesting and lively debate (still ongoing) among groups working on stellar per-
turbations, about the physical origin of these sequences. Of course in order to study these
oscillations the magnetic field and its dynamics have to be included in the picture, while
rotation plays a less important role, since observed magnetars are all very slowly rotating.
The problem presents extreme complexity both at conceptual and at computational levels;
therefore it is usually approached using simplifying assumptions and/or approximations.
Some of the studies try to explain the observed modes in terms of torsional oscillations of
the crust (Samuelsson & Andersson 2007; Sotani, Kokkotas & Stergioulas 2007), others at-
tribute the observed spectra to global magneto-elastic oscillations (Glampedakis, Samuels-
son & Andersson 2006), still others investigate the interaction between the torsional oscil-
lations of the magnetar crust and a continuum of magnetohydrodynamicmodes (the Alfven
continuum) in the fluid core (Levin 2007; Sotani, Kokkotas & Stergioulas 2008; Colaiuda,
Beyer & Kokkotas 2009; Cerdá-Durán, Stergioulas & Font 2009; Colaiuda & Kokkotas
2010; Gableret al. 2011) using different approaches and approximations. In particular,
in (Colaiuda & Kokkotas 2010) the torsional oscillations of a magnetar have been studied
in a general relativistic framework, perturbing Einstein’s equations in the Cowling approx-
imation, i.e. neglecting gravitational field perturbations. By this approach the crust-core
coupling due to the strong magnetic field has been shown to be able to explain the origin of
the observed frequencies, at least for SGR 1806-20, if a suitable stellar model is considered.
With this identification, constraints on the mass and radius of the star, and consequently on
the EOS in the core, can be set; estimates of the crust thickness and of the value of the
magnetic field at the pole can also be inferred.

Thus, the theory of stellar perturbations has been generalized to magnetized stars, al-
though for now only with considerable restriction, since only torsional oscillations have
been considered (i.e. axial perturbations) and only in the Cowling approximation. Never-
theless, it already provides very interesting information on the dynamics of these stars and
allows us to confront the predictions with astronomical observations.

5. Concluding remarks

I would like to conclude this review by mentioning the fact that the theory of perturbations
of rotating stars has not been developed to the same extent as the theory of non-rotating
stars. The main reason is that the mathematical tools appropriate for a successful variable
separation has not been found yet. When the perturbations of a non-rotating black hole are
studied, separation of variables is achieved by expanding all tensors in tensorial spherical
harmonics. In the case of Kerr perturbations, namely of perturbations of an axisymmetric,
Petrov type D background, the same result is obtained by expanding the Newman-Penrose
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quantities in oblate spheroidal harmonics. When perturbing a rotating star, i.e. an axisym-
metric solution of Einstein+hydro equations, an expansion in terms of tensorial spherical
harmonics leads, as we have seen in the case of slow rotation in Section 2.2, to a coupling
between polar and axial perturbations. If rotation is not slow, the number of couplings to
be considered increases to such an extent that the problem becomes untreatable, both from
a theoretical and from a computational point of view. One may argue that, since the back-
ground of a rapidly rotating star is not spherically symmetric, tensorial spherical harmon-
ics are unappropriate, and this is certainly true. However, even if we try to use the oblate
spheroidal harmonics and the Newmann Penrose formalism fails: the coupling between the
metric and the fluid makes the separation impossible, at least in terms of these harmonics
(unlike the Kerr metric, the metric describing a star is not of Petrov type D). For this reason,
perturbations of rotating stars have been studied either in the slow rotation regime, or using
the Cowling approximation, which neglects spacetime perturbations, or using other simpli-
fying assumptions. For instance, as far as the mode calculation is concerned, the Cowling
approximation allows determination with reasonable accuracy the frequency of the higher
orderp-modes, of theg-modes and of the inertial modes, like ther-modes, thus allowing
us to gain information on the onset of related instabilities. Conversely, the determination of
the f -mode frequency, which is so important from the point of view of gravitational wave
emission, is not very precise, leading to errors as large as∼20%.

However, it should be mentioned that non-linear simulations of rotating stars have pro-
duced very interesting results; for instance in a recent paper, Stergioulas and collaborators
(Zink et al. 2010) have been able to follow the frequency of the non-axisymmetric fun-
damental mode of a sequence of rotating stars with increasing angular velocity, up to the
onset of the CFS instability, making also very optimistic estimates of the amount of gravi-
tational radiation which could be emitted in the process. To describe matter in the neutron
star they used a simple model (a polytropic equation of state and uniform rotation); how-
ever, their result indicates that numerical relativity is making giant steps in this field. Thus,
supercomputers are making accessible very complex problems, which only ten years ago
one would not have dreamed of solving; however, perturbation theory still remains a very
powerful tool to investigate many physical problems and it should be used in parallel with
the numerical work to gain a deeper insight into the physics of stellar oscillations.
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1. Introduction

First, I would like to thank the organizing committee for inviting me to this very interesting
conference. Nobel laureate Subrahmanyan Chandrasekhar is certainly deserving of such
an accolade. I would like to turn from the theoretical topics that have occupied most of
today’s lectures, to a more experimental topic, that of the history of the Chandra X-ray Ob-
servatory. This Observatory was built to explore the high energy Universe which features
such exotic objects as neutron stars and black holes. Chandra was very interested in black
holes as is illustrated by his description that “The black holes of nature are the most perfect
macroscopic objects there are in the Universe: the only elements in their construction are
our concepts of space and time.” One of the closest examples of a massive black hole is
the one at the centre of our Galaxy in SgrA∗ shown in Figure 1 from a 500 ks Chandra
image obtained by Munoet al. (2003). This remarkable object is emitting X-rays at a rate
of only 2 × 1033 ergs/s which is nearly nine orders of magnitude below that of an active
galactic nucleus (AGN). One interesting feature of this object is the flaring activity that
was detected by Chandra (Baganoffet al. 2001). These flares occur aperiodically with a
frequency of approximately once per day and represent increases of up to a factor of one
hundred in luminosity for up to an hour in duration.

A brief outline of the paper is as follows which describes different phases of its history
in the following Sections: a brief history of the Observatory; the early years; the big test;
construction at last; testing; launch. The last Section describes a few results.

∗e-mail: garmire@astro.psu.edu
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Figure 1. The 16 arcmin square region of the Galactic Centre with SgrA∗ at the centre of the image
was obtained from a 500 ks exposure using the Chandra X-ray Observatory (Chandra archives at
http://chandra.harvard.edu/photo/2003/0203long).

2. A brief history of the Observatory

The idea of building an X-ray telescope was advanced by Riccardo Giacconi and Bruno
Rossi in a seminal paper in 1960 (Giacconi & Rossi 1960). The idea used grazing inci-
dence X-rays on highly polished metal surfaces shaped into paraboloidal and hyperboloidal
shapes to form a sharp image. A schematic diagram of this concept is shown in Figure 2.

Following the discovery of an extra-solar X-ray source in 1962 (Giacconiet al. 1962),
Giacconi and his collaborators at American Science and Engineering proposed a program
of X-ray astronomy to NASA which included a large focusing X-ray telescope of 4 feet
(1.2 m) with a focal length of 30 feet (∼10m) in 1963 and an angular resolution of about
one arcmin. NASA accepted the Sounding Rocket portion of the proposal but deferred on
the large telescope. In 1968 NASA initiated the High Energy Astrophysics Program of
four large observatories to cover the field from X-rays to high energy cosmic rays which
included a 1.2 m diameter X-ray telescope. The program was cancelled in 1973 by NASA
and reconstituted as a much smaller program that included a 0.6 m X-ray telescope which
became the Einstein Observatory in 1978. In 1976 Dr. Riccardo Giacconi and Dr. Harvey
Tananbaum, then at Harvard, submitted a letter proposal to NASA to begin the study of a
1.2 m diameter X-ray observatory. NASA accepted the idea and organized a study group
to define the Observatory. In order not to call attention to the fact that this was another
large observatory program being initiated by NASA like the Hubble Telescope, the group
decided to call the observatory the Advanced X-ray Astrophysics Facility to make it sound
less expensive. In 1985 four focal plane instruments and two grating designs were selected
for study. These included the High Resolution Camera, the Advanced CCD Imaging Spec-
trometer to the AXAF CCD Imaging Spectrometer (later changed to the Advanced CCD
Imaging Spectrometer after the name Chandra was chosen for the Observatory), the Bragg
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Figure 2. Schematic representation of the Giacconi-Rossi concept as applied to the Chandra X-ray
Observatory mirrors. In Chandra the focal surface contains the High Resolution Camera and the
Advanced CCD Imaging Spectrometer on a translation table (http://chandra.harvard.edu/graphics/
resources/illustrations/cxcmirrors-72.jpg).

Crystal Grating Spectrometer and the X-ray Calorimeter together with the Low Energy and
Medium/High Energy objective transmission gratings. The Observatory was to be in low
earth orbit and be serviced by the Space Shuttle astronauts. The instruments were designed
to be changed for new improved instruments as new technology became available.

3. The early years

Even though instruments had been selected and a spacecraft contractor was selected shortly
thereafter, there was no guarantee that the program would receive a ‘New Start’ by Congress.
The AXAF program received the highest ratings in the 1980 and 1990 Decadal Surveys by
the astronomical community, but Congress was reluctant to fund a program with such a
high technical risk, that of producing 0.5 arcsec X-ray mirrors which were better than any
mirrors made thus far by an order of magnitude. Dr. Charles Pellerin, director of the
NASA Astrophysics Division, proposed a clever way to sell the program. By combin-
ing the Hubble Space Telescope, the Compton Gamma-Ray Observatory, AXAF and the
Space Infrared Telescope into a Great Observatories Program (a name suggested by George
Field) he produced a package that was more saleable to Congress. To put the Congressional
staffers at ease, a bargain was made to make the largest mirror and test it to prove that the
technology was up to the challenge. If the mirror failed the test, then the program would
not go forward. In 1991 the largest of the AXAF mirror pairs was completed and ready for
testing after a tremendous effort by the Telescope Scientist, Dr Leon van Speybroeck, and
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Figure 3. Upper left: The mirror assembly being readied for testing at the MSFC testing facility
(http://chandra.harvard.edu/graphics/resources/illustrations/veta772.jpg); upper right: the polishing
process at HDOS (http://chandra.harvard.edu/graphics/resources/illustrations/presentPolish1-72.jpg);
lower left: the completed P1 mirror before coating it with Iridium (http://chandra.harvard.edu/
graphics/resources/illustrations/2cmountedprimary.jpg); lower right: one of the AXAF mirrors
after the coating process (http://chandra.harvard.edu/graphics/resources/illustrations/barrel.jpg).

the mirror fabricators at Hughes Danbury Optical Systems (HDOS). Dr. Martin Weisskopf,
the AXAF project scientist, and Danny Johnson, the Project Engineer, were in charge of
the design and construction of the testing facility at Marshal Space Flight Center (MSFC),
which they successfully completed in time for the X-ray testing of the mirror pair. The test-
ing revealed that the mirrors sagged in the 1g field of the test facility and special fixturing
had to be created to remove the effects of gravity on the mirrors. Once this was done, the
mirrors passed the test with flying colours. Figure 3 shows the mirrors ready for testing at
the MSFC facility.

Although the mirror test had been successful, the program was still not out of the
woods. The Super Conducting Super Collider had experienced very significant over runs
in its budget and was cancelled in 1992. The Space Station was also experiencing very large
over runs in costs. Attempts within NASA to cancel the Space Station failed in Congress
and NASA was told to proceed using what money it had with no budgetary increases. This
placed severe constraints on the science budget. The Office of Management and Budget
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(OMB) had projected that the AXAF program would have a total run out cost in excess
of 6 billion dollars, making it a target for cancellation as well. Charlie Pellerin at NASA
HQ called a meeting to discuss ways to reduce the cost of AXAF and to control the run
out costs of the mission. The Hubble Space Telescope was alerting Congress to the very
substantial costs of servicing a mission in low Earth orbit. There was some reluctance
among the AXAF scientists to descope AXAF, but a presentation by Leonard Fisk, the
Associate Administrator of NASA, convinced the group that descoping was the only way
to keep the program alive. The decision after much debate was to reduce the number of
mirror pairs from six to four and to carry only the two focal plane instruments which could
be used for enhanced spectroscopy by employing the objective gratings behind the mirrors
to produce a dispersed spectrum. In consultation with TRW, the prime contractor, and the
instrument teams, the observatory was redesigned to go to a high Earth orbit that could
not be serviced by the Space Transportation System, thereby guaranteeing that there would
be no mission servicing costs. With this change of design, Congress agreed to fund the
construction of the observatory. In order to salvage the higher resolution spectroscopy
portion of the mission, a second mission called AXAF-S was designed to carry the high-
resolution calorimeter and Bragg crystal spectrometer. Unfortunately, after a preliminary
design of this mission, it was cancelled.

4. Construction at last

In 1993 the program went into high gear. The mirror facility at the Hughes Danbury Optical
Systems plant began the process to grind, figure and polish the remaining three mirror
pairs. The polishing process is illustrated in Figure 3, where the axis of the mirror is nearly
horizontal and narrow shaping and polishing tools are used to polish and figure the surface
between metrology measurements in the metrology facility, specifically designed for the
AXAF mirrors.

The creation of the AXAF mirrors, which are an order of magnitude more precise than
any such mirrors ever made, are the result of the leadership and ability of the Telescope
Scientist, Dr. Leon van Speybroeck of the Center for Astrophysics at Harvard and the ded-
icated and skillful engineers and opticians at HDOS. After the mirrors were figured and
polished and tested at HDOS they traveled to the Optical Coatings Laboratory Inc (OCLI)
in Santa Rosa, CA, where they were coated with Iridium to provide the highest reflectiv-
ity at X-ray wavelengths. One of the mirrors is shown in Figure 3 at the OCLI facility.
Following the coating of the mirror surface the mirrors were shipped to Eastman Kodak
where they were assembled into a holding fixture that provided the accurate alignment of
the mirror pairs to complete the High Resolution Mirror Assembly (HRMA). This process
is shown in Figure 4.

This process was crucial to the formation of a high quality image. Each mirror pair
must focus on the same point to provide a sharp image. Unfortunately, the inner mirror pair
slipped slightly in the gluing process so that a ghost image was formed about one half arc
second away from the focus of the other mirror pairs. Since this was the smallest mirror
pair with the least area at the lower energies, this image is not usually apparent. It can be
detected if a source is piled up in the primary image, thereby reducing the intensity of the
center of the image and revealing the fainter image from the inner pair of mirrors which is
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Figure 4. Upper left: The fabrication of the High Resolution Mirror Assembly (HRMA) at Eastman
Kodak (http://chandra.harvard.edu/graphics/resources/illustrations/hrma11.jpg); upper right: the
carbon fiber epoxy telescope tube covered with a protective coating (http://chandra.harvard.edu/
graphics/resources/illustrations/craftOptBench45-72.jpg); lower left: the epoxy structure of the
spacecraft at TRW’s Space and Electronics Group. This material was adopted to reduce the weight of
the AXAF (http://chandra.harvard.edu/graphics/resources/illustrations/craftBusRed1-72.jpg); lower
right: The telescope being inserted into the spacecraft (courtesy of Robert Burke and Blake Bullock
of Northrop Grumman Aerospace Systems).

not piled up. The optical bench or telescope tube was fabricated at Kodak as well as the
HRMA. This large carbon fiber epoxy structure is shown in Figure 4. The telescope tube
was not baked to reduce the volatiles that were trapped in the matrix. These volatiles slowly
escaped after the telescope was in orbit and may have been part of the reason that the cold
filter of the Advanced CCD Camera was slowly coated with an unknown layer of material.
The spacecraft was designed, assembled and tested at TRW Space and Electronics Group
(now part of Northrop Grumman Aerospace Systems). Figure 4 shows the spacecraft under
construction at the Redondo Beach, CA facility of TRW. The telescope tube and HRMA
were brought together in the spring of 1998. Figure 4 shows the mating of the telescope to
the Observatory.
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5. The instruments

The scientific instruments for AXAF consist of two focal plane cameras, the High Res-
olution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS) as well as
two objective transmission grating assemblies located just behind the mirrors. The objec-
tive transmission gratings were the responsibility of the two Principal Investigators, Dr.
Claude Canizares of MIT for the high and medium energy transmission gratings, and Dr.
Albert Brinkman of the Space Research Organization of the Netherlands for the low en-
ergy transmission grating. The HRC team was led by Dr. Steven Murray of the Center
for Astrophysics at Harvard, and the ACIS team was led by Dr. Gordon Garmire of the
Pennsylvania State University.

The objective transmission grating were challenging to construct in that they were
extremely thin and had to be self supporting in order to transmit the lowest energy X-rays
as well as survive the high acoustic levels encountered during a Space Shuttle launch. I
don’t have time to go into the details of the fabrication process other than to say that it
uses high resolution lithography. An example of a completed grating assembly is shown in
Figure 5.

The High Resolution Camera employed micro-channel plates similar to the Rosat and
Einstein Observatory high resolution imagers. A large micro-channel plate formed the
imaging array and three smaller plates formed the spectroscopic array imager. The micro-
channel plates used 10 micron pores which formed the limiting spatial resolution of the
camera. With the 10 m focal length of the HRMA this provided an angular resolution of
about 0.2 arcsec on the sky, over sampling the point spread function of the HRMA which
is about 0.5 arcsec. The HRC does not provide a very accurate determination of the X-
ray energy, but when combined with the transmission gratings, particularly the low energy
grating, it can achieve an energy resolution E/∆E of about 1000. Another advantage of the
HRC is that it provides 16 microsecond time resolution for the X-ray events for sources
that are positioned on the central micro-channel plate of the spectroscopy array and are
below the telemetry saturation level. Figure 5 (upper right) shows a picture of the HRC and
Figure 5 (lower left) shows the completed HRC with its electronics ready for mounting on
the translation table that moves the camera in and out of the focal plane of the HRMA.

The ACIS instrument employs CCDs as the basic detecting element. The CCDs for
ACIS, which were fabricated by MIT’s Lincoln Laboratory, are of two types: front illu-
minated and back illuminated. Front illuminated CCDs expose the portion of the silicon
chip that the CCD is constructed on that is covered by the readout gates and insulators.
This limits the lowest energy that the CCD can detect to about 0.4 keV with a small narrow
(in energy) window at 0.25 keV. The depth of the depleted silicon under the gate struc-
ture is about 50 microns, which results in a upper energy cut-off at around 8 keV. The
energy resolution of the CCD varies from about 100 eV at 1 keV to about 160 eV at 6
keV. The back illuminated CCD has been thinned to about 40 microns thick and the read-
out gate structure is away from the incoming X-rays such that the incident X-rays fall on
the thinned silicon layer that is only covered by about 0.03 microns of a special backside
treatment. This increases the quantum detection efficiency of the back illuminated CCD to
about 60% at 0.25 keV. The CCDs must be covered by an optically opaque film to prevent
them from responding to visible light which is focused by the HRMA onto the focal plane.
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Figure 5. Upper left: The objective transmission grating assembly mounted behind the HRMA.
Either the high and medium transmission gratings or the low energy transmission gratings can be
rotated into place behind the HRMA to provide a dispersed spectrum of the object under study
(http://chandra.harvard.edu/graphics/resources/illustrations/gratingsLow1-72.jpg); upper right: The
High Resolution Camera as observed from the HRMA (http://chandra.harvard.edu/graphics/
resources/illustrations/HRClabel-72.jpg); lower left: The HRC with its electronics assembly ready
for mounting to the translation table (http://chandra.harvard.edu/graphics/resources/illustrations/
HRCbox-72.jpg); lower right: The ACIS array of 10 CCDs. The four CCDs in the square array
are the imaging array front illuminated CCDs and the six CCDs in a linear array form the spectro-
scopic array to image the spectrum dispersed by the transmission gratings. The two mirror surface
CCDs are the back illuminated CCDs. The gold colored bars across a portion of the CCDs are radia-
tion shields to prevent X-rays from impinging upon the frame store portion of the CCDs. The optical
blocking filters are not shown in this view (Courtesy of MITs Lincoln Laboratory, Bernie Kosicki).

The polyimide plastic film, provided by the Luxel Corporation, that is 2000 Angstroms
thick and coated by 1600 Angstroms of aluminum covers the four front illuminated CCDs
comprising the imaging array. The spectroscopic array of 6 CCDs, two of which are back
illuminated, is covered by the polyimide film of the same thickness and a 1300 Angstrom
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Figure 6. Upper left: The complete ACIS camera and electronics assembly. The white straps
are thermal conductors which will be connected to radiators on the spacecraft to cool the CCDs
and camera housing (Courtesy of Ball Brothers Aerospace Corporation); upper right: The HRMA
being prepared for insertion into the vacuum chamber at the MSFC test facility (photo cour-
tesy of Robert Burke, Northrop Grumman Aerospace Systems); lower left: Making some adjust-
ments to the HRMA mount at the MSFC test facility (Courtesy of Robert Burke, Northrop Grum-
man Aerospace Systems); lower right: The instruments being assembled and tested at BBRC
(http://chandra.harvard.edu/graphics/resources/illustrations/modul1-72.jpg).

aluminum film. Over the course of the mission, a slow buildup of some form of contam-
inant has coated the filter, decreasing the low energy efficiency of the ACIS instrument.
By using the onboard calibration source, it has been possible to measure this buildup and
correct the quantum efficiency accordingly. A picture of the ACIS CCD array is shown in
Figure 5 (lower right). The completed ACIS instrument with its electronics is shown in
Figure 6.

The CCDs are read out every 3.24 seconds in their normal mode of operation. Special
modes, such as using a reduced number of CCDs or using only a portion of a CCD, can
reduce the sample time to 0.2 seconds. Continuously clocking of a CCD can reduce the
sample time to 3 milliseconds but one loses a spatial dimension of the image. The pixel
size is 24 microns resulting in an image with a sampling every 0.492 arc second, about the
same as the point spread of the HRMA.
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Several problems developed during the construction of the ACIS instrument. During
the assembly of the flight unit focal plane array, it was discovered that the flex prints that
carry the voltages and clocking signals to the CCD and the data stream from the CCDs
were failing. The printed-through holes in the circuit boards attached to the CCDs were
cracking, creating open circuits upon thermal cycling. This was a major problem, since
the flight unit used these boards and they would have to be debonded from the CCDs and
replaced. A company was found called Speedy Circuits that could quickly supply new
boards that could survive the thermal cycling. The company said you can have two of the
following three choices: quick delivery; reliable units; or low cost. Obviously at this point
we opted for the first two choices.

6. Testing

The delays caused by the flex print problem made it impossible to provide the finished
camera in time for the calibration of the instruments at the Marshall Space Flight Center in
Huntsville, Alabama which was scheduled in March through May of 1997. ACIS provided
a “two chip” camera for the calibration to at least see how the CCDs would perform in the
focal plane of the HRMA. The full ACIS arrived in Huntsville after the HRMA was taken
to TRW for integration into the spacecraft. This calibration in the facility did provide some
useful information about the CCDs in a calibrated X-ray beam. The setup at the calibration
facility is shown in Figure 6. The ACIS instrument travelled to Ball Brothers Research
Center in Boulder, CO next for integration onto the translation stage that carries the two
cameras into the focal plane of the HRMA. The translation stage is shown in Figure 6
(lower right).

The next step was to integrate the translation table and instruments with the telescope
and spacecraft at TRW (Figure 7). The next major problem encountered, besides the dif-
ficulty of producing high quality CCDs, especially the back illuminated versions, was en-
countered during the vacuum test of the full Observatory at TRW (Figure 7, upper right).
In order to verify that there were no light leaks that might degrade the CCD operation on
orbit, the protective vacuum sealed door covering the CCDs and filter had to be opened in
the vacuum chamber and lights shown onto the spacecraft to simulate solar, lunar and Earth
shine illumination. When the command was given to open the door, the mechanism failed
and the door did not open. There was no way to open the door with this kind of failure.
The only remedy for this problem was to remove ACIS from the Observatory and return the
unit to Lockheed Martin Aerospace Corp., where the door was designed and fabricated, for
testing and redesign as needed. After extensive testing, no failure mechanism was found
that could cause the door to stick shut. Some redesign of the opening mechanism permitted
an evaluation of the door opening process so that it might be possible to try opening the
door without breaking the opening mechanism and thereby seek solutions to the sticking
should it occur on orbit. Thankfully, the door opened without a problem on orbit, but we
still do not know what caused the failure at the TRW test. The ACIS door is shown in
Figure 7.

In making a complex observatory there are literally thousands of people involved. I
cannot give credit to all of them in the space here, but I do want to mention all of the people
involved in the ACIS experiment. They are given in Figure 8 (left panel).
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Figure 7. Upper left: Mating the translation table assembly to the spacecraft at TRW
(http://chandra.harvard.edu/graphics/ resources/illustrations/obsassemb772.jpg); upper right: The
Observatory ready to be lifted into the vacuum chamber for the thermal vacuum testing
(http://chandra.harvard.edu/graphics/resources/illustrations/chandaFinalExam-72.jpg); lower left:
The ACIS door and door opening mechanism. The horizontal shaft rotates to pull the door into
this position, which is the open position. The opposite rotation closes the door against the o-
ring seal shown in the lower right panel (Courtesy of Mark Bautz, MIT); lower right: The ACIS
camera showing the door, CCDs and the o-ring seal. The camera is under vacuum at launch
to protect the thin optical blocking filters from the acoustic load generated by the launch vehicle
(http://chandra.harvard.edu/graphics/resources/illustrations/ACISlabel-72.jpg).

7. Launch!

The Chandra X-ray Observatory finally arrived at the Kennedy Space Center in the spring of
1999. Figure 8 (right panel) shows the full Observatory with the rocket booster attached that
will send it into a highly elliptical orbit. The onboard rocket, which is part of the spacecraft,
will then increase the orbital altitude and circularize the orbit. Eileen Collins was the
Mission Commander, the first woman to assume this role. After two unsuccessful launch
attempts the Space Shuttle Columbia roars into space with the Chandra X-ray Observatory
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Figure 8. Left: The ACIS development team and the most of the original co-investigators; right:
The complete Chandra X-ray Observatory with the booster rocket attached in the hanger at KSC
(http://chandra.harvard.edu/graphics/resources/illustrations/99pp0704-72.jpg).

on board. The launch turned out to be a nail biter. Quoted below are the mission notes from
NASA.

“During the countdown for launch on the third attempt, a communications problem
occurred that resulted in the loss of the forward link to Columbia. The problem was cor-
rected at the Merritt Island Launch Area (MILA) ground facility and communications was
restored. As a result of this problem, the time of the planned launch was slipped seven
minutes to 12:31 a.m. EDT on July 23.

About 5 seconds after liftoff, flight controllers noted a voltage drop on one of the
shuttle’s electrical buses. Because of this voltage drop, one of two redundant main engine
controllers on two of the three engines shut down. The redundant controllers on those two
engines — centre and right main engines — functioned normally, allowing them to fully
support Columbia’s climb to orbit.

The orbit attained, however, was 7 miles short of that originally projected due to prema-
ture main engine cutoff an instant before the scheduled cutoff. This problem was eventually
traced to a hydrogen leak in the No. 3 main engine nozzle. The leak was caused when a
liquid oxygen post pin came out of the main injector during main engine ignition, striking
the hotwall of the nozzle and rupturing three liquid hydrogen coolant tubes.

The orbiter eventually attained its proper altitude and successfully deployed the Chan-
dra X-ray Observatory into its desired orbit.”1

After the Space Shuttle achieved orbit, the bay doors were opened and the Chandra X-
ray Observatory with its attached booster rocket was ejected from the payload bay. Figure 9
(left panel) shows the last views of the Observatory as it drifts off in preparation for the

1http://www.nasa.gov/missionpages/shuttle/shuttlemission/archives/sts-93.html
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Figure 9. Left: The view of Chandra and its attached booster as it drifts away from STS-93.
(http://chandra.harvard.edu/graphics/resources/illustrations/deploy/sts93-deploy1-72.jpg); right: The
orbital insertion sequence following the STS-93 launch and ejection of the Observatory from the
Space Shuttle (TRW document).

Figure 10. Left: The ACIS team feeling much relief now that the ACIS door was open in-
cluding yours truly (Courtesy of Mark Bautz, MIT); right: The Project Scientist, Martin Weis-
skopf, pointing and the ACIS PI, Gordon Garmire, watching the data from Leon X-1 be-
ing acquired as the first image of an X-ray source viewed by the Chandra X-ray Observatory
(http://chandra.harvard.edu/graphics/resources/illustrations/occ/group/group7-721.jpg).

insertion into a high elliptical orbit. It took almost another week before the Observatory
reached its final orbit of 10,000 by 138,000 km, requiring five different burn sequences
using the onboard rocket. Each burn was a source of worry. The orbital insertion sequence
is shown in Figure 9 (right panel). Once the final orbit was achieved, the activation of
the spacecraft and instruments followed. The moment that the ACIS Team was waiting
for occurred on August 12th, when the ACIS door was finally opened without a hitch.
Figure 10 shows the relief of the some of the team members.
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The next step was to verify that the telescope was working and focusing X-rays. After
suitable guide stars were located, Chandra began to accumulate data on the ACIS camera
back illuminated CCD. After a few tense moments an image began to appear, somewhat off-
axis but in reasonably good focus. The telescope scientist, Leon van Speybroeck, breathed
a huge sigh of relief at this point and said in his low-key manner, “At least we don’t have a
pile of glass at the bottom of the telescope tube!” The project scientist and the ACIS PI are
shown in Figure 10 watching the data come in on the source we called Leon X-1 in honour
of the Telescope Scientist.

8. Results

Next I would like to show just a few images from the past ten years of observations.
The Observatory and instruments have performed essentially flawlessly for this time span.
There was a brief period at the very beginning of the mission when ACIS was exposed
to protons from the trapped radiation belts that were scattered by the telescope onto the
CCDs. This caused radiation damage to the front illuminated CCDs, reducing their ability
to transfer charge, but by placing ACIS out of the telescope focal plane during the radiation
passages, further damage could be avoided. The back illuminated CCDs are protected by
40 microns of silicon before the protons could reach the transfer portion of the CCD. This
was enough shielding to prevent damage to these devices. Data analysis techniques have
been developed by the ACIS team to partially mitigate this problem in the front illuminated
CCDs (Townsleyet al. 2000).

The closest massive black hole is the one at the Galactic Centre associated with the
radio source Sgr A∗. This object is found to emit X-rays, but at a very low level of about
2×1033 erg/s, which is some nine orders of magnitude below typical AGN activity (see
Figure 1). This may be the result of a supernova remnant that has engulfed the black hole
and its environs, thereby making accretion difficult (see Maedaet al. 2002). The X-ray
source has been observed to flare on a daily basis, increasing in intensity by nearly two
orders of magnitude for a period of order an hour, then falling rapidly back to its quiescent
level (Baganoffet al. 2001). The cause of the flares is not known. I’m sure Chandra would
have been interested in this phenomenon.

Another object that exhibits relativistic plasma phenomenon is the Crab Nebula (Fig-
ure 11). In a time laps image of the Crab Nebula, some of the wisps are seen to move at
velocities as high as 0.5c (Hester 2008). The pulsar is clearly the centre of the wisp activity.

Another supernova remnant containing a pulsar is G292.0 +1.8. This is one of the few
oxygen rich remnants in a nearby galaxy and shows clumps of gas rich in Mg, Si and S
(Parket al. 2007). A strong shock front can be seen along some of the outer perimeter of
the remnant. The pulsar is in the blue nebulosity to the southwest portion of the nebula in
Figure 11 (upper right).

Another supernova remnant, RCW 103, is shown in Figure 11 (lower left). This rem-
nant was the first SNR with a pulsar located at the very centre of the nearly circular nebula
(Tuohy & Garmire 1981). The pulsar has been found to be the slowest rotating neutron star
with a period of 6.67 hr (De Lucaet al. 2006). It is likely to be in a binary system with
the same period (Pizzolatoet al. 2008) or a magnetar with a fall-back disk (Li 2007). This
pulsar experienced a large outburst in 2000, increasing in luminosity by a factor of 100,
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Figure 11. Upper left: The Crab Nebula as viewed by Chandra (left) and Hubble (right); (Courtesy
of David Burrows, Penn State); upper right: the oxygen-rich SNR G292.0+1.8. The pulsar is located
just south of the central bar in the blue nebulosity (courtesy of Peter Roming, Penn State); lower left:
The supernova remnant RCW 103 with a central pulsar of extremely slow rotation period of 6.67 hr
(courtesy of Audrey Garmire, Penn State); lower right: the colliding clusters of galaxies, 1E0657
(http://chandra.harvard.edu/photo/1e0657/1e0657.jpg).

then decaying very slowly over the next seven years (Garmireet al. 2000). No optical or
IR candidate has conclusively been found for this object (De Lucaet al. 2008).

The last object I wish to show is the colliding clusters of galaxies 1E0657 (Figure 11,
lower right panel). This remarkable collision reveals that the dark matter (which does not
interact with baryons and is traced by gravitational lensing) follows the galaxies through
the collision process (the blue clouds), while the hot plasma shows strong interaction (pink
clouds). This collision has been used as strong evidence for the presence of dark matter in
the clusters as opposed to modified gravity to explain the velocity dispersion of galaxies
and the confinement of the hot plasma found in clusters of galaxies (Cloweet al. 2006).

The naming of the Chandra X-ray Observatory was the result of a contest conducted
by NASA and open to the world. There were more than 6000 entries from 61 countries.
The winners were a high school student from Idaho, Tyrel Johnson and a high school
teacher from California, Jatila van der Veen. These two submitted the winning essays that
selected Chandra in honour of Subrahmanyan Chandrasekhar as the name of this ‘Great
Observatory’.
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Some memories of Chandra∗

Robert M. Wald†

Department of Physics, University of Chicago, Chicago, USA

Abstract. Five noted scientists, all close colleagues and friends of Subrah-
manyan Chandrasekhar, share thoughts and memories of the man whose centen-
nial we celebrate.

Chandra was particularly intolerant of scien-
tists motivated primarily by the hope of receiv-
ing recognition from others rather than by a
deep, inner conviction that their work was of
importance and interest. — Robert Wald

I first met Subrahmanyan Chandrasekhar in December 1972, but did not get to know
him well until early 1976, more than a year after I arrived at the University of Chicago as
a postdoc in the relativity group. For nearly 20 years after that, until his death in 1995, we
interacted on an almost daily basis. My memories of those conversations and interactions
have faded considerably over the past 15 years — I simply do not have Chandra’s remar-
kable ability to recall all details of events that occurred long ago. However, the overall
impression that Chandra left on me and many other scientists is something that will never
fade away.

To many who met him but did not get to know him well, Chandra must have seemed an
exceptionally austere and formidable figure — an impression with a great deal of validity.

∗Reproduced with permission fromPhysics Today. c© 2010 American Institute of Physics.
†Robert Wald is the Charles H. Swift Distinguished Service Professor.
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Of all the scientists I have met, Chandra had the highest standards for both intellectual rigor
and personal integrity. He applied those standards most uncompromisingly to himself, but
he also did not tolerate failings by others in such matters. He was particularly intolerant of
scientists motivated primarily by the hope of receiving recognition from others rather than
by a deep, inner conviction that their work was of importance and interest, whatever anyone
else might think. He was equally intolerant of scientists who rested on their laurels or were
otherwise lazy or sloppy, rather than applying their full intellectual efforts toward their
work. It was not unusual for Chandra to ask questions of a seminar speaker that were aimed
at discerning the speaker’s convictions or at probing how carefully the speaker had thought
through the relevant issues. Often those were uncomfortable moments for the speaker.

To get to know Chandra well, a barrier first had to be crossed, a barrier undoubtedly
enhanced by the man’s impeccable dress — a suit and tie on all occasions — and by his
impeccable speech and manners. It is unfortunate that this barrier had the effect of isolating
him from a portion of the scientific community. I believe all that was needed to cross the
barrier was some expression to him of the depth of one’s passion for research or other
intellectual endeavors. With the barrier crossed, the very sensitive, caring, and above all
loyal nature of Chandra’s personality would become readily apparent. The combination
of those very human qualities with Chandra’s almost superhuman discipline, self-sacrifice,
and dedication to science had a profound and lasting effect on all who knew him.

In his scientific career of more than 65 years, Chandra’s enthusiasm for the pursuit of
science never declined, nor did his fortitude in carrying out major projects. I do not recall a
single instance in which he appeared to be motivated by personal gain, nor a single occasion
when he made an excuse for not doing something he felt should be done. If he thought a
visit to a collaborator or other scientist would help advance his research, he would make the
visit without seeking reimbursement for his travel expenses. Similarly, he never requested
summer salary from his NSF grant. It appears that the free pursuit of his own scientific
research was so important to Chandra that he did not want it tainted or encumbered with
issues involving personal gain or accountability.

Chandra will be remembered for the next hundred years and beyond primarily for his
truly major contributions to a remarkably broad range of areas in physics and astronomy.
He ensured that his scientific legacy will pass on to future generations in unadulterated
form by writing a definitive monograph on each of the topics on which he worked. It is
highly appropriate that Chandra be remembered primarily for his scientific work. But it
also is important that he be remembered for his personal qualities.

To convey a more complete picture of what Chandra was like as a person, I present four
reminiscences from scientists who knew him well. John Friedman, professor of physics at
the University of Wisconsin–Milwaukee, was one of Chandra’s last students and closely
collaborated with him in the early 1970s. Abhay Ashtekar, Eberly Professor of Physics
at the Pennsylvania State University, was a student in the Chicago relativity group in the
early 1970s, a postdoc in the group in the late 1970s, and a close friend of Chandra’s there-
after. Valeria Ferrari, Professor of Physics at the University of Rome I (“La Sapienza”),
was Chandra’s closest collaborator during the last 10 years of his life. Roger Penrose,
Emeritus Rouse Ball Professor of Mathematics at Oxford University, was someone whose
research Chandra particularly admired and whose scientific advice Chandra sought when
he encountered particularly challenging problems. The excerpts below were written about
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a year after Chandra’s death and are taken fromS. Chandrasekhar: The Man Behind the
Legend, edited by Kameshwar C. Wali (Imperial College Press, 1997). They are reprinted
here with the permission of the publisher and the authors.

Chandra’s meticulous script was as elegant as ever,
lengthy error-free art, ink on bond. He smiled with
mischievous pleasure that I had also been working
by candle. — John Friedman

John Friedman

Despite the fact that he was still sole editor ofThe Astrophysical Journal, Chandra spent as
much time on research as did his most dedicated students. Beginning his work by 5 am, he
finished each 13-hour workday late in the evening. As part of his moral instruction to us,
Chandra did not hesitate to point out that by the time his colleagues arrived in the morning,
he had already put in half as many hours as they would work in a day. He described a
visit to Caltech mainly by noting that the physicists had spent several evenings during the
week at cocktail parties. How, he asked, could they get anything done if this was the way
they lived? If a few supremely talented physicists could afford such lapses, Chandra placed
himself (and, of course, us) among that vast majority for whom success in science was a
matter of character. . . .

In my last year of graduate work, Chandra and [his wife] Lalitha were scheduled to
spend six months at Oxford, and Chandra asked me to come with him to finish up my thesis
work, a collaboration with him on the stability of rapidly rotating “configurations,” none of
which had, at that time, been observed. [My wife] Paula, Mack (our six-month old son),
and I traveled to Oxford in time for the great blackout of ’72, one of the miners’ strikes.

In the darkness of that winter, when Chandra went home to his apartment with Lalitha
and I to the row house we rented from the Rev. Gauntlett of Maid Marion Way in Nottin-
gham, we worked by candlelight . . . . It was dim and as damp as England’s winters have
always been. I might have been feeling a little down myself, tired from our son’s cries and
straining to check equations in the dark. But when I came in to work, Chandra’s meticulous
script was as elegant as ever, lengthy error-free art, ink on bond. He smiled with mischie-
vous pleasure that I had also been working by candle. Amid 13th century stone walls, built
to sequester from the town a secular clergy that once comprised Oxford, he was obviously
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proud that we each had again spent a day and an evening showing our devotion. It was, he
said, as if we were medieval scribes.

The beautiful hand in which his equations were written mirrored Chandra’s understan-
ding of the equations themselves. For most physicists on the mathematical side, equations
are viewed abstractly in a way that highlights the properties their expressions share as ope-
rators on a Hilbert space, while astrophysicists usually take from mathematics only what
is needed for the problem at hand. Chandra, however, fell in neither camp. For his time,
Chandra was, to my knowledge, unique in the way he treated the equations of relativis-
tic astrophysics seriously as objects in themselves, their structure clear in the manner he
displayed them, their meaning to be found in this structure. That mathematics was the
language of nature he never doubted, and he served nature all his life.

Chandra was also unique in the way he combined a deep understanding of classical ma-
thematics, of astrophysics and of the history of science, particularly the history of classical
physics and astronomy. [Andrzej] Trautman and Roger Penrose were then the physicists
to whom Chandra seemed closest in temperament and perspective, while his interests were
closest to those of the astrophysical relativists, Kip Thorne and James Bardeen. The un-
derstanding that grew from Chandra’s history distinguished the problems he worked on,
and the unmatched artistry with which he handled his language of equations distinguished
their solutions. He was as devoted to science as anyone I have ever met.

Chandra got up spontaneously and told some
wonderful ghost stories — one told to him by
Dirac! They were short, dry and crisp and we
all gasped when the punch line came and then
laughed. — Abhay Ashtekar

Abhay Ashtekar

I first met Chandra when I arrived at the University of Chicago as a green graduate student
in ’71. He had just turned sixty. I had done my undergraduate work in India and to me — as
to most other Indian students in science — Chandra’s stature was god-like. We had heard of
the innumerable discoveries he had made whose meaning and scope we understood only in
the vaguest terms. But there was a feeling of awe and admiration and a conviction that for a
single person to accomplish all this, he had to be superhuman. And so, I was very surprised
when I first met him. Yes, he did have that pristine air about him, and yes, everything he
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did — the way he dressed, the way he sat in seminars, even the hard-backed chairs he chose
to sit on — everything had an aura about it that set him apart. One immediately sensed a
refined, dignified and austere personality, just of the type one would expect of a legendary
figure like him. Yet. when it came to science, there was unexpected openness. He treated
us, students in the newly formed relativity group at Chicago, as if we were his colleagues,
his equals. He would come to all seminars, including the ones given by students. He would
ask us technical questions with genuine interest. When discussions began, he seemed to
become genuinely young, almost one of us. I still remember the smile that would light up
his face in the middle of a talk when he heard a beautiful result. Sometimes, when he had
cracked a hard problem, something that he found truly satisfying, he would tell us about it.
The joy he experienced was so manifest and so contagious! . . .

Chandra was a master storyteller; I have yet to encounter his equal. He had such
a fantastic memory for dates and details that, in the anecdotes he recounted, everything
became alive. And his anecdotes ranged from incidents that took place in the lofty halls of
the Trinity College in Cambridge to his small cabin in the ship he took across the North Sea
when he went to Russia. He would recount the events as if they had happened yesterday.
We would later shake our heads in astonishment. For, here was Chandra telling about a
storm he encountered during the North Sea passage in 1934, or his interesting meetings
with the then President of the University of Chicago in 1946, with such clarity and in such
detail that we could not have matched in describing events that took place in our own lives
just a year before!

I still vividly recall the first time that I heard him tell a story. The students and postdocs
in the relativity group had organized a potluck dinner. Chandra and his wife Lalitha came
with a delicious vegetarian casserole. When it came to coffee time, there was some unease
about how the event was going to end. Do we just say good-bye and leave? Students had
planned the menu well but hadn’t thought of anything specific as an after-dinner activity.
So, there was some unease. Chandra got up spontaneously and told us some wonderful
ghost stories — one told to him by Dirac! They were short, dry and crisp and we all gasped
when the punch line came and then laughed. Then other people got up to tell other stories
and the evening ended in a relaxed and friendly mood.

Valeria Ferrari

My collaboration with S. Chandrasekhar started in October of 1983. We had met in Rome
after the X International Conference on General Relativity, held in Padova in the summer
of 1983, and he had invited me to work with him on some relations existing between the
mathematical theory of black holes and exact solutions of Einstein’s equations possessing
two space-like Killing vectors.

I arrived in Chicago a few days after he had been awarded the Nobel Prize. I was afraid
that the commitments associated with such an important event would prevent Chandra from
working with me. But my fears were unwarranted, because he was more interested in the
work we were doing than in giving interviews to the press. Our first paper was completed
in two weeks.

For me, this first interaction with Chandra was surprising in many respects. Knowing
the breadth and wide range of his scientific accomplishments and having listened to his
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Chandra turned out to be entirely different
from my preconception. In our work, for
example, he never used his authority to im-
pose his view on a subject; we always dis-
cussed and confronted our ideas as if we
were on the same footing. — Valeria Ferrari

lectures at conferences, I had nurtured the idea that he was very strict and rigorous, a
man totally and exclusively dedicated to science, and so overwhelming that it would be
difficult for me even to talk to him. But Chandra turned out to be entirely different from
my preconceptions. In our work, for example, he never used his authority to impose his
view on a subject; we always discussed and confronted our ideas as if we were on the
same footing. At the same time he was an extraordinary teacher, and shared with me his
knowledge and the secrets of his technical ability.

I had to change my views also about Chandra’s personality. In spite of his strict appea-
rance, he was a very warm person, to whom friendship was of great importance. Although
I came to know him only during the last twelve years of his life, from many episodes that
he narrated to me I think that this had always been the case. For example, in remembering
[Arthur] Eddington, with whom he had had the famous scientific dispute that strongly af-
fected his life and his career, he never expressed feelings of resentment or disrespect. I was
surprised to learn that while Eddington attacked Chandra’s work in international confe-
rences (he characterized the theory of the limiting mass for the white dwarfs [as] “a stellar
buffoonery”), in private they remained on good terms, joining for tea or for a bicycle ride.
Chandra was convinced that Eddington’s opposition to his theory was motivated by honest
scientific disagreement, and his enormous respect, admiration and affection for him were
unharmed by these events. At that time Chandra was in his mid-twenties. Chandra told me
that when he used to see Eddington walking the streets of Cambridge with an umbrella un-
der his arm, he thought that this was the picture of a man who had dedicated his life to the
pursuit of science and finally had reached a sense of harmony and contentment. Thinking
of his own future, he would think that he would also experience a similar sense of harmony,
peace and contentment in his old age. “But,” he would add, “it hasn’t turned out that way.”
He had a feeling of disappointment because the hope for contentment and a peaceful out-
look on life as a result of single-minded pursuit of science had remained unfulfilled. I used
to wonder, how could a man like Chandra have this feeling of discontentment about his
life? Chandra did not exactly know the reason himself. However, I used to feel a sense of
relief in seeing that the excitation for a new result, or the occurrence of a problem difficult
to solve, was always able to divert his mind from these sad thoughts.
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It is almost as though he had made a tacti-
cal retreat, circling around and exploring
the details of the surrounding terrain —
stellar dynamics, radioactive transfer, and
the stability of various types of astrophysi-
cal structures — before he felt ready for an
assault on the profound issue that his early
work had uncovered. — Roger Penrose

Roger Penrose

This world has seen some scientists of extraordinary ability — some who are quick and
often arrogant, others cautious and possessing genuine humility. Among that small propor-
tion who are of real and rare distinction are the very few who are truly great. It has been
my considerable good fortune to have made the acquaintance of some four or five of those
that fall into this final category, but only one of them could I claim to have known at all
well — Subrahmanyan Chandrasekhar . . . .

My acquaintance with Chandra dates back to1962, when I first encountered him at the
Warsaw International Conference on General Relativity and Gravitation. That occasion had
a particular significance for Chandra with regard to general relativity, as it marked his entry
into the world of general relativists. In fact, he attended that meeting as a “student,” as his
way to acquaint himself best with the current activity in that subject.

Why did Chandra have such determination, at the age of 51, to break entirely into a
new field, demanding the learning of many new concepts and techniques, where much of
the vast expertise that he had built up over many decades would have little direct relevance?
It would be natural to suppose, and as I would strongly suspect myself, that it was his desire
finally to address the profound conundrum that his early work had thrown up, dating back to
his calculations in 1930 on the boat from India to England — that white dwarf stars of more
than about one and one-half solar masses cannot sustain themselves against gravitational
collapse. It seems clear that even at that time, Chandra was basically aware of the awesome
implications of this conclusion, namely that the collapse of the star must eventually take it
out of the realm of known physics and into an area shrouded in puzzlement and mystery.
But he was by nature an extremely cautious individual, as is made manifest in the modest
way he stated his conclusion:

The life-history of a star of small mass must be essentially different from the life-history
of a star with large mass. For a star of small mass the natural white-dwarf stage is an
initial step towards complete extinction. A star of large mass cannot pass into the white-
dwarf stage and one is left speculating on other possibilities.



292 Robert M. Wald

He was not the sort who would attempt, without due preparation, to make “authori-
tative” assessments of the likely fate of the material of a body indulging in gravitational
collapse. There are, indeed, still many possible loopholes in the arguments which lead to
the final conclusion that has now become an accepted implication of present-day theory —
that, at least in some cases, the fate of a body in gravitational collapse must be to en-
counter a space-time singularity, representing, for the constituents of that body, an end to
time!

The issue had been at the root of his difficulties with Eddington, when Eddington had
so unfairly attacked his work at a meeting of the Royal Astronomical Society in 1935.
Eddington, also, was aware of the implications of Chandra’s findings, but regarded this
as areductio ad absurdum and preferred to move along his own highly speculative route
towards a fundamental theory, thereby rejecting the sound reasoning within the accepted
tenets of procedure that had characterized what Chandra had achieved. Chandra appears
to have been deeply hurt by Eddington’s reaction — the reaction of a man whom Chan-
dra had previously so admired and looked up to. In response, Chandra turned his back on
Cambridge and on the immediate problems thrown up by the structure of white dwarfs, ap-
parently devoting his attention entirely to other problems. Yet the question of the ultimate
fate of a gravitationally collapsing body must have continued to nag at his physical unders-
tandings for many intervening years — even while he was engaging in thorough studies
of matters pertaining to quite other astrophysical questions. It is almost as though he had
made a tactical retreat, circling around and exploring the details of the surrounding terrain
— stellar dynamics, radiative transfer, and the stability of various types of astrophysical
structures — before he felt ready for an assault on the profound issue that his early work
had uncovered.

His assault was carefully prepared, and required many years of study of the intricacies
of Einstein’s general relativity. Not only did he familiarize himself with the standard ma-
thematical techniques and conceptual notions that had been developed for that subject over
the years, but he engaged the assistance of certain relativists, such as Andrzej Trautman
(and even myself), who had specialist knowledge of some of the less familiar modern ma-
thematical procedures, to give a series of lectures in Chicago to him, his coworkers, and
students.

Chandra’s first contributions in which he was able to bring general relativity to bear
on astrophysical questions showed that there were additional instabilities, beyond those
of Newtonian theory, making their mark earlier than had been expected, and leading even
more surely to the ultimate situation of a black-hole fate for a collapsing star. He then
moved to the study of black holes themselves, and became fascinated by the beauty of these
structures — particularly the Kerr geometry that pertains to a stationary rotating black hole,
the ultimate configuration of gravitational collapse. He eventually referred to black holes,
in the prologue to his epic book on the subject,The Mathematical Theory of Black Holes,
as “the most perfect macroscopic objects that there are in the universe.” . . .

His fascination with black holes gained as much from aesthetics as from a desire to
push forward the frontiers of scientific knowledge. In his later years Chandra became
quite explicit as to the importance of aesthetic qualities in science and in his own work in
particular.
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This brings out what must surely be one of Chandra’s very special qualities: his pro-
found appreciation of the beauty of mathematical formulae. This appreciation extended
into pure mathematics as well as applied, and he had an especial admiration for the work of
Srinivasa Ramanujan. (He often expressed to me his delight in the fact that the only known
photograph of Ramanujan was one that he had himself retrieved. Ramanujan had served as
an important inspiration for Chandra in his early aspirations to become a scientist.) Chan-
dra’s wonderful way with mathematical formulae must have been a quality that benefited
him also through his earlier work — and provided a thread of continuity throughout his
scientific researches in various disparate fields of endeavor. However, this quality is parti-
cularly apparent in his work in relativity theory. No doubt he was struck by the fact that
the closer his researches took him to fundamental issues in physics — in the analysis of the
very nature of space-time — the greater was the mathematical elegance that he encountered
in the equations . . . .

What are the qualities that stand out in my memories of Chandra? That he was a
great and prolific scientist, there is no doubt, and a deeply individual original thinker. He
was enormously systematic and well organized, and he worked incredibly hard. He was a
rigorous and somewhat autocratic taskmaster, but he had a genuine appreciation of quality
in others. He was a loyal friend, reliable, and totally honest. He was deeply sensitive, but
proud. He was a difficult man to criticize, and on occasion his pride might get the better
of him — but he would be scrupulously generous with his critics if he could be found to
be in error. He was polite and enormously dignified: a greatly cultured individual with a
feeling for what is valuable in humanity wherever it might be found. He respected life in
all forms (he was a strict vegetarian) and had deep appreciation of the works of Nature.
He particularly valued the arts and took great pleasure in them, perceiving profound links
between artistic and scientific values. [See S. Chandrasekhar, Beauty and the quest for
beauty in science,Physics today, 1979 July, pp. 25–30.]

How did he view the status of his own scientific contributions in relation to his initial
aspirations? One recalls Chandra’s distinctive way of working — reminiscent of the great
mathematician David Hilbert — whereby (in essence) Chandra would devote different de-
cades of his life to different topics, culminating each with a definitive book, and leaving
each topic behind when he embarked on the next. What does one conclude from this? It
might seem that these decades must have represented, to him, completed work that would
be neatly wrapped up in the final book. Perhaps so; yet I detected a restlessness in him
indicative of a dissatisfaction with what he had ever been able to achieve.

I suspect that his work in relativity theory was what brought him closest to the ultimate
goals that he was striving for. He must have derived great satisfaction from his study
of black holes, but there were always profound questions left open — and the more that
were resolved, the more new ones would appear. Moreover, in his black-hole work, it
was the vicinity of the horizon that was being studied, and this lay far outside the central
region where the matter of the collapsing star would meet its fate. To gain insights into the
nature of this region one must study the space-time singularities — where space and time
themselves reach their final termination. Chandra’s work on colliding plane waves must
surely have been directed towards gaining an understanding of these singularities, for they
provide specific models where one can examine the generation of singularities explicitly.
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It is inevitable that the results of this work must remain inconclusive, despite the power
and insights that Chandra and his associates were able to provide. If the problem of the
ultimate fate of a collapsing star — or a collapsing universe — remains unresolved, it is no
discredit to him. He opened our eyes to this profound and deeply important problem and
he made great strides towards resolving it. Quite apart from all his other achievements, that
in itself might be thought to be enough for any man.
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