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It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.

—Richard Feynman



Preface

Black holes are thought to be the final product of the complete gravitational
collapse of massive bodies. In the framework of standard physics, the spacetime
metric around astrophysical black holes should be well approximated by the Kerr
solution. However, macroscopic deviations from standard predictions may be
expected from a number of scenarios beyond Einstein’s theory of general relativity.
Astrophysical black holes are thus an ideal laboratory for testing strong gravity.

The main aim of this book is to discuss the electromagnetic techniques to study
the strong gravity region around astrophysical black holes. For completeness,
gravitational wave methods will be also reviewed, but only very briefly and without
the necessary details to start working on the corresponding line of research. This
book has not the ambition to be a complete manual on this research field.
Hopefully, it may be a good starting point. The reader should be already familiar
with the theory of general relativity (at a more advanced level than that one can
learn in an introductory course in an undergraduate program), while it is not
required a background in astronomy/astrophysics.

Chapters 1–5 provide a general introduction on some basic concepts. Some
topics are not necessary to understand the rest of the book (in particular some topics
in Chap. 2), and in such a case they are briefly reviewed without many details, but
they may be useful to get a complete overview of current knowledge on black
holes. Chapters 6–11 are the core of the book. Chapters 6–10 discuss the main
techniques to test astrophysical black holes with electromagnetic radiation.
Chapter 11 briefly reviews the approaches available with gravitational waves.
Chapters 12–14 summarize the state of the art of tests of the Kerr black hole
hypothesis. Appendices A–F provide more details on some particular calculations,
briefly discuss some related topics not covered in Chaps. 1–14, or summarize some
useful formulas. The Glossary at the end of the book can be useful to learn/recall
some quite common terms.

I am particularly grateful to Alejandro Cardenas-Avendano for reading a pre-
liminary version of the manuscript and providing useful feedback. I thank Matteo
Guainazzi for useful comments and suggestions about the part devoted to X-ray
missions and X-ray data analysis, and Kostas Kokkotas about the part on
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gravitational waves. I would like also to thank Javier Garcia-Martinez, Jiachen
Jiang, Daniele Malafarina, Yueying Ni, James Steiner, and Jingyi Wang for valu-
able comments to improve the manuscript and for some figures. This work was
supported by the NSFC (grants 11305038 and U1531117), the Thousand Young
Talents Program, and the Alexander von Humboldt Foundation.

Shanghai, China Cosimo Bambi
December 2016
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Conventions

Throughout the paper, I employ units in which GN ¼ c ¼ 1, unless stated
otherwise, and the convention of a metric with signature ð�þ þ þÞ. Greek letters
(l, m, q,…) are used for spacetime indices and can assume the values 0, 1, 2, and 3.
Latin letters (i, j, k,…) are used for space indices and can assume the values 1, 2,
and 3. The time coordinate can be indicated either as t or as x0.

The Riemann tensor is defined as

Rl
mqr ¼ @Cl

mr

@xq
� @Cl

mq

@xr
þCl

kqC
k
mr � Cl

krC
k
mq ;

where Cl
mqs are the Christoffel symbols of the Levi-Civita connection

Cl
mq ¼ 1

2
glk

@gkq
@xm

þ @gmk
@xq

� @gmq
@xk

� �
:

The Ricci tensor is defined as Rlm ¼ Rk
lkm. The Einstein equations read

Glm ¼ Rlm � 1
2
glmR ¼ 8pTlm :

xv
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Chapter 1
Introduction

A black hole, roughly speaking, is a region of the spacetime in which gravity is so
strong that nothing can exit or even communicate with the exterior region. The event
horizon is the boundary of the black hole. In the Universe, there are compact objects
that can be naturally interpreted as black holes and they could be something else only
in the presence of new physics. However, it is fundamentally impossible to confirm
the existence of a black hole by observations. If someone inside a certain region
is unable to communicate with an external observer at a certain time, we cannot
conclude that such a region is a black hole. The communication between the interior
and the exterior may be possible at a later time. The identification of a black hole and
of its event horizon require the knowledge of the spacetime at any time, including
also the faraway future. On the other hand, any human observation can only last for
a finite time. For this reason it is fundamentally impossible to prove the existence of
a black hole.

There are several conventions among the scientific community. Some authors like
using the term black hole candidate to indicate any astrophysical black hole, just
because it is impossible to prove a similar object meets the mathematical definition
of black hole. Other authors adopt a less conservative perspective and call black hole
any astrophysical compact object that is interpreted as a black hole when there is a
dynamical measurement of its mass (without testing the possible existence of some
kind of horizon), bestowing the term black hole candidate to compact objects for
which there is no dynamical measurement of their mass but share common features
observed in sources with a black hole.

The idea of the possibility of the existence of extremely compact objects such that
even light cannot escape from their strong gravitational field can be dated back to the
dark stars of Michell and Laplace at the end of the 18th century. General relativity
was proposed by Albert Einstein at the end of 1915, and the simplest black hole
solution was discovered immediately after, by Karl Schwarzschild, in 1916. How-
ever, the actual properties of black holes were understood only much later. In 1958,
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4 1 Introduction

David Finkelstein was the first to realize the true physical meaning of the event
horizon. Even the astrophysical implications of such solutions were initially not
taken very seriously. Influent scientists, like Arthur Eddington, were more inclined
to believe that “some unknown mechanism” could prevent the complete collapse of
a massive body and the formation of a black hole in the Universe.

In 1964, Yakov Zel’dovich and, independently, Edwin Salpeter proposed that
quasars were powered by a central supermassive black hole. In the early 1970s,
Thomas Bolton and, independently, Louise Webster and Paul Murdin identified the
X-ray source Cygnus X-1 as the first stellar-mass black hole candidate. Since then,
an increasing number of astronomical observations have pointed out the existence of
stellar-mass black holes in some X-ray binaries and of supermassive black holes at
the center of many galaxies. Thanks to technological progresses and new observa-
tional facilities, in the past 10–15 years it was possible to start studying the physical
properties of these objects and of their environments. Tests of general relativity in
the strong field region of black holes are now at the beginning. The detection of grav-
itational waves from the coalescence of two black holes by the LIGO experiment in
September 2015 has opened a new window to study these intriguing objects.

It is curious that the term black hole is relatively recent. While it is not clear who
used the term first, it appeared for the first time in a publication in the January 18,
1964 issue of Science News Letter. It was on a report on a meeting of the American
Association for the Advancement of Science by journalist Ann Ewing. The term
became quickly very popular after it was used by John Wheeler at a lecture in New
York in 1967.

1.1 Dark Stars in Newtonian Gravity

John Michell in 1783 and, independently, Pierre-Simon Laplace in 1796 were the
first to consider the possibility of the existence in the Universe of extremely compact
objects, so compact to be black because even light could not escape from their
strong gravitational field. Their idea was discussed in the framework of Newtonian
mechanics and these dark compact objects are usually referred to as dark starts.

The energy E of a test-particle of massm in the gravitational field of a spherically
symmetric body of mass M is simply (in this section about Newtonian gravity, we
reintroduce GN and c)

E = 1

2
mv2 − GNMm

r
, (1.1)

where v is the velocity of the test-particle and r is the distance between the test-
particle and the center of the massive body. If the test-particle has energy E < 0, it
is trapped in the gravitational field of the massive body. If E > 0, the particle can
escape to infinity with a finite velocity. The escape velocity is the minimum velocity
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that a test-particle on the surface of the massive body needs to escape to infinity.
If r∗ is the radius of the massive body, the escape velocity is

vesc =
√
2GNM

r∗
. (1.2)

In the corpuscular theory of light developed in the 17th century, light would be
made of small particles traveling in a straight line and with a finite velocity v = c.
If the escape velocity in Eq. (1.2) is higher than c, the surface of the body cannot
emit radiation and therefore the body looks black. This is the concept of dark star
discussed by Michell and Laplace. The massive body is thus a dark star if its radius
is smaller than the critical value

rcrit = 2GNM

c2
. (1.3)

It is just a coincidence that the critical radius rcrit for the existence of a Newtonian
dark star is exactly equal to the radius of the event horizon of a Schwarzschild black
hole in Schwarzschild coordinates.

1.2 Black Holes in Theoretical Physics

1.2.1 Black Hole Solutions and No-Hair Theorem

Albert Einstein proposed the theory of general relativity at the end of 1915 [17]. In
1916, Karl Schwarzschild derived the spherically symmetric vacuum solution of the
Einstein equations [42], now called the Schwarzschild solution, which describes the
spacetime of a non-rotating black hole. TheReissner–Nordström solution, describing
the spacetime of a non-rotating black hole with a possible non-vanishing electrically
charge, was found immediately after: in 1916, Hans Reissner solved the Einstein
equations for a point-like charged mass [38], and, in 1918, Gunnar Nordström found
the metric for a spherically symmetric charged mass [34].

The solution found by Schwarzschild appeared singular at the Schwarzschild
radius, but at that time it was not understood that such a surface was the black hole
event horizon. In 1924, Arthur Eddington showed that this singular surface could
be removed by a coordinate transformation. In 1933, Georges Lemaitre pointed out
that the singularity at the Schwarzschild radius was an artifact of the choice of the
coordinates and that the spacetime is regular there.

In 1958, David Finkelstein realized the actual nature of the singular surface at the
Schwarzschild radius [19]. He described the event horizon as a one-way membrane
and understood that, if something crosses the horizon, it cannot influence the exte-
rior region any more. Finkelstein found an analytic extension of the Schwarzschild
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solution and, in 1960, Martin Kruskal found the maximal extension of the Schwarz-
schild solution [31]. It is worth noting that the physical implications of the Kruskal
solution is questionable, to say the least, because astrophysical black holes form from
gravitational collapse, while the Kruskal solution makes sense only in the case of a
static spacetime.

In 1963, Roy Kerr found the solution for a rotating black hole in general rel-
ativity [29], now called the Kerr solution. This was an important step, because
astrophysical bodies have naturally a non-vanishing angular momentum. In 1965,
Ezra Newman and collaborators found the solution for a rotating and electrically
charged black hole [33], today known as the Kerr–Newman solution.

Starting from the work by Werner Israel [27], Brandon Carter [12], and
David Robinson [40], it was understood that, under certain assumptions, the black
holes of general relativity are relatively simple objects, in the sense that they can be
fully characterized by a small number of parameters, namely the black hole mass M ,
the black hole spin angular momentum J , and the black hole electric charge Q. This
result is known under the name of no-hair theorem, to indicate that black holes have
only a small number of features (hairs). In the context of tests of astrophysical black
holes, it is also relevant the uniqueness theorem, according to which black holes are
only described by the Kerr–Newman solution. However, violations of the no-hair
theorem or of the uniqueness theorem are possible if we relax some assumptions or
we consider theories beyond general relativity.

At the end of the 1960s, Roger Penrose and Stephen Hawking proved, under quite
general assumptions, the inevitability of the creation of singularities in a gravitational
collapse in general relativity [25, 36]. This led Penrose to propose the cosmic censor-
ship conjecture, according to which singularities produced by gravitational collapse
must be hidden behind an event horizon and the final product of a collapse must be a
black hole [37]. While today we know some physically reasonable counterexamples
in which a naked singularity can be created for an infinitesimal time from regular
initial data, see e.g. the review article [28], it is commonly thought that some form of
the cosmic censorship conjecture holds and the final product of gravitational collapse
in classical general relativity is indeed a black hole.

1.2.2 Beyond the Purely Classical Picture

In the 1970s, a number of studies pointed out a strong analogy between black holes
and thermodynamic systems [6–8]. In particular, it was possible to formulate the four
laws of black holemechanics, in close analogywith the four laws of thermodynamics,
by relating the black hole mass to energy, the area of the event horizon to entropy,
and the surface gravity to temperature.
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Hawking showed that black holes are not really “black” but radiate like a black-
body1 with a temperature proportional to the surface gravity of the black hole [22].
Such a radiation is due to quantum effects and it is today called the Hawking radia-
tion. A black hole is expected to slowly evaporate. If this semiclassical treatment is
correct, the evaporation of a black hole may not be a unitary process, violating the
laws of quantum mechanics. This is the so-called information loss paradox [23].

Blackhole thermodynamics is presumably irrelevant for astrophysical blackholes.
The temperature of a black hole is TBH = κ/(2π), where κ is the surface gravity of
the event horizon. For a Schwarzschild black hole, we have

TBH = 1

8πM
= 5.32 · 10−12

(
M�
M

)
eV . (1.4)

A black hole should radiate any particle with a mass lower than the black hole tem-
perature, while the emission of heavier particles should be exponentially suppressed,
so the total emission rate depends on the black hole mass and the particle content of
the theory. Neglecting these complications, the luminosity of a Schwarzschild black
hole due to Hawking radiation is

LBH ∼ 10−21

(
M�
M

)2

erg/s . (1.5)

For stellar-mass black holes of 5–20 M� and supermassive black holes of 105–
1010 M�, this radiation is completely negligible and impossible to detect, even in
a foreseeable future. For much smaller black holes, possibly created in the early
Universe, the effect may be important, but there are today strong constraints on the
possible cosmological abundance of these objects.

The spacetime singularity at the center of black holes is an inevitably consequence
of the gravitational collapse and its existence is guaranteed by the singularity the-
orems pioneered by Penrose and Hawking. However, such a spacetime singularity
may be a pathological prediction of classical general relativity and may be removed
by yet unknown quantumgravity effects.Whilewe do not have today any reliable and
predictable theory of quantum gravity, there are some speculations on the possible
fate of spacetime singularities and of classical black holes.

A number of different approaches suggest that black holes, strictly speaking, may
never form. The gravitational collapse would never create an event horizon, but only
an apparent horizon for a finite time [3–5, 20, 24, 26]. However, the timescale of this
process would likely be so long that our observations may not be able to distinguish
these objects from classical black holes.

It has been also argued that quantum gravity effects may not show up at the Planck
scale, as it can be expected in the scattering of two particles, but at the gravitational

1Deviations from a perfect blackbody spectrum arise due to the finite size of the black hole, the
mass and the spin of the emitted particles, etc.
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radius of the system, and therefore the black holes predicted in classical general
relativitymay actually be intrinsically quantum objects [16, 32]. In such frameworks,
the metric description simply breaks down inside the object, and the evaporation
process slightly deviates from Hawking’s predictions, making the process unitary
and solving the information loss paradox.

1.3 Black Holes in the Universe

1.3.1 Discovery of Astrophysical Black Holes

Since normal stars have a radius much larger than their Schwarzschild radius, it was
initially thought that the existence of the surface singularity in the Schwarzschild
solution had no physical implications, because the solution holds in the vacuum
only, while a different solution is necessary for the interior of the star.

In the 1920s, it was known that white dwarfs were dead stars without nuclear
fusion and it was suggested that they were supported by the degenerate pressure
of electrons. In 1931, Subrahmanyan Chandrasekhar pointed out the existence of a
maximum mass, now called the Chandrasekhar limit, above which the degenerate
electron pressure could not balance the gravitational force and the body had to col-
lapse to a point [13]. This conclusion was however criticized bymany physicists, like
Arthur Eddington, arguing the existence of a yet unknown mechanism capable of
stopping the collapse.

It was later realized that a dead star with a mass exceeding the Chandrasekhar
limit could be supported by the degenerate pressure of neutrons and become a neutron
star. In 1939, Robert Oppenheimer and George Volkoff found that even neutron stars
have a maximum mass, and that the degenerate pressure of neutrons cannot support
a star exceeding this limit [35]. Once again, it was advocated the existence of new
physics to prevent the complete collapse of the body.

Quasars are a class of very luminous active galactic nuclei. They were discovered
in the 1950s and called “quasi-stellar radio sources”, later shortened to “quasars”.
Their nature was initially unknown. In 1964, Yakov Zel’dovich and, independently,
Edwin Salpeter were the first to propose that quasars could be powered by the accre-
tion disk around a black hole [41, 45]. Their ideawas initially not taken very seriously,
and other possibilities, like that inwhich quasarswould have been supermassive stars,
were considered more promising.

The first object identified as a black hole was Cygnus X-1, which is one of the
strongest X-ray sources in the sky. It was discovered in 1964 [10]. In 1971, it was
found that Cygnus X-1 had a massive stellar companion and, by studying the orbital
motion of the companion star, it was possible to infer the mass of the compact
object [9, 43]. Since the latter exceeded the maximum mass for a neutron star, the
most natural interpretation was that it was a stellar-mass black hole. Such a discov-
ery is a milestone in black hole astrophysics and helped convincing the astronomy
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Fig. 1.1 An artist’s illustration of Cygnus X-1. The stellar-mass black hole pulls material from a
massive, blue companion star toward it. This material forms an accretion disk (in red, orange, and
yellow in the picture) around the black hole. We also see a jet originating from the region close to
the black hole. Credit: NASA

community about the existence of black holes in the Universe. Figure1.1 shows an
artist’s illustration of Cygnus X-1.

1.3.2 Recent Studies and Future Prospectives

Today we have strong evidence for the existence of at least two classes of astrophysi-
cal black holes. Stellar-mass black holes have a mass M ≈ 5–100 M�. Most of them
are in X-ray binaries and, from the study of the orbital motion of the stellar compan-
ion, it is possible to see that the compact object exceeds the maximum mass for a
neutron star [39]. Stellar-mass black holes can also be in binary systems black hole-
black hole or black hole-neutron star, and in this case we can detect the gravitational
waves in the last stage of the coalescence [1]. There are also attempts to find iso-
lated stellar-mass black holes, for instance with microlensing techniques [21, 44].
Supermassive black holes have a mass M ∼ 105–1010 M� and reside in galactic
nuclei [30]. There may also exist a third class of objects, intermediate mass black
holes, with amass filling the gap between the stellar-mass and the supermassive ones,
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but their nature is more uncertain, because there are not dynamical measurements of
their masses [14].

There are currently two popular techniques to probe the spacetime geome-
try around astrophysical black holes with electromagnetic radiation. They are the
continuum-fitting method [46] and the analysis of the X-ray reflection spectrum
(often called the iron line method) [11].

The continuum-fitting method is the analysis of the thermal spectrum of geomet-
rically thin and optically thick accretion disks. This technique is normally applied
to stellar-mass black holes only, because the temperature of the disk depends on the
mass of the compact object. The spectrum of thin disks around stellar-mass black
holes is in the soft X-ray band. In the case of supermassive black holes, the spectrum
is in the UV/optical bands, where extinction and dust absorption limit the ability
to make an accurate measurement. Under the assumption that astrophysical black
holes are Kerr black holes, the continuum-fitting method can be used to measure the
black hole spin parameter a∗ = J/M2. Relaxing the Kerr black hole hypothesis, this
technique can constrain possible deviations from the Kerr solution.

The reflection spectrum is produced by illumination of the inner part of the
accretion disk. Its features, in particular the shape of the iron Kα line, are strongly
determined by the relativistic effects occurring in the vicinity of the compact object
(Doppler boosting, gravitational redshift, light bending). An accurate measurement
of the reflection spectrum can potentially probe the metric around black holes.

In the future, other approaches could be available to test astrophysical black holes.
For instance, the quasi-periodic oscillations (QPOs) observed in the X-ray power
spectrum of black holes are a promising tool. Their frequency can be measured with
high precision and this could permit one to get strong constraints on the properties of
the compact object. However, todaywe do not know the exactmechanism responsible
for these phenomena, and different models provide different measurements, which
means that this technique cannot yet be used to test fundamental physics.

Today it is not possible to image the accretion flow around a black hole with a
resolution necessary to detect the black hole “shadow”, but this should not be out of
reach in the next few years [15, 18]. The best candidate for this kind of observations
is SgrA∗, the supermassive object at the center of the Galaxy, because it should be
the black hole with the largest angular size in the sky. The shadow of a black hole
is a dark area over a bright background in the direct image of its accretion flow.
The boundary of the shadow is expected to depend on the spacetime metric around
the compact object and on the viewing angle of the observer. If the accretion flow
is geometrically thick and optically thin, the boundary of the shadow corresponds
to the apparent photon capture sphere. Very-long baseline interferometric (VLBI)
observations at sub-millimeter wavelengths could image the shadow of SgrA∗ within
the next few years.

Gravitational waves are now opening a newwindow for the study of astrophysical
blackholes. InFebruary 2016, theLIGO/Virgo collaboration announced the detection
of gravitational waves in September 2015 from the coalescence of two black holes,
each of them of about 30 M� [1]. The detection of another event was reported in [2].
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The sensitivity of current ground-based gravitational wave antennas is increasing
and more detections are expected for the future. These experiments will provide
unprecedented new data to test general relativity in the strong gravity regime.

1.4 Open Problems

In the past 10–15 years, the quality and the amount of observational data of black
holes have significantly increased.Many phenomena are nowquite understood,while
others are not yet clear. Some techniques have been developed to probe the region
very close to these objects and measure their properties. Gravitational waves have
been detected. Future observational facilities promise to make further progresses.
There are still a number of open questions, ranging from fundamental physics to
astrophysics. This is a non-complete list of relevant puzzles:

1. Are astrophysical black holes the Kerr black holes predicted by general relativity?
In the past 60 years, Einstein’s theory of gravity has been quite accurately tested
in weak gravitational fields, mainly with experiments in the Solar System and
with observations of binary pulsars. There is today an increasing interest in the
possibility of testing the theory in the strong gravity regime and verifying the
actual nature of astrophysical black holes.

2. What is the spin distribution of stellar-mass and supermassive black holes? What
is the natal spin distribution and how the spin evolves with time? If black holes
are the Kerr black hole of general relativity, they should be characterized by only
two parameters, namely the mass and the spin. The mass can be measured with
dynamical methods. Spin measurements are more challenging and are a hot topic
today. They can help us to understand the process of collapse, the evolution of a
binary system, the history of the merger of galaxies, etc.

3. What is the mechanism responsible for the formation of the jets observed in these
systems? There are several proposals in the literature, but we do not know which
of them, if any, is correct.

4. What is the mechanism responsible for the QPOs observed in the X-ray power
spectrum of black holes? If properly understood, QPOs may become a new
approach to get accurate measurements of the fundamental properties of these
objects, like determining the black hole spin or testing the Kerr metric.

References

1. B.P. Abbott et al., LIGO Scientific and Virgo Collaborations. Phys. Rev. Lett. 116, 061102
(2016), arXiv:1602.03837 [gr-qc]

2. B.P. Abbott et al., LIGO Scientific and Virgo Collaborations. Phys. Rev. Lett. 116, 241103
(2016), arXiv:1606.04855 [gr-qc]

3. A. Ashtekar, M. Bojowald, Class. Quant. Grav. 22, 3349 (2005), arXiv:gr-qc/0504029

http://arxiv.org/abs/1602.03837
http://arxiv.org/abs/1606.04855
http://arxiv.org/abs/gr-qc/0504029


12 1 Introduction

4. C. Bambi, D.Malafarina, L.Modesto, Eur. Phys. J. C 74, 2767 (2014), arXiv:1306.1668 [gr-qc]
5. C. Bambi, D. Malafarina, L. Modesto, JHEP 1604, 147 (2016), arXiv:1603.09592 [gr-qc]
6. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)
7. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)
8. J.D. Bekenstein, Phys. Rev. D 9, 3292 (1974)
9. C.T. Bolton, Nature 235, 271 (1972)
10. S. Bowyer, E.T. Byram, T.A. Chubb, H. Friedman, Science 147, 394 (1965)
11. L.W. Brenneman, C.S. Reynolds, Astrophys. J. 652, 1028 (2006), arXiv:astro-ph/0608502
12. B. Carter, Phys. Rev. Lett. 26, 331 (1971)
13. S. Chandrasekhar, Astrophys. J. 74, 81 (1931)
14. M. ColemanMiller, E.J.M. Colbert, Int. J. Mod. Phys. D 13, 1 (2004), arXiv:astro-ph/0308402
15. S. Doeleman et al., Nature 455, 78 (2008), arXiv:0809.2442 [astro-ph]
16. G. Dvali, C. Gomez, Fortsch. Phys. 61, 742 (2013), arXiv:1112.3359 [hep-th]
17. A. Einstein, Ann. Phys. 49, 769 (1916) (Ann. Phys. 14, 517 (2005))
18. H. Falcke, F. Melia, E. Agol, Astrophys. J. 528, L13 (2000), arXiv:astro-ph/9912263
19. D. Finkelstein, Phys. Rev. 110, 965 (1958)
20. V.P. Frolov, G.A. Vilkovisky, Phys. Lett. B 106, 307 (1981)
21. A. Gould, Astrophys. J. 535, 928 (2000), arXiv:astro-ph/9906472
22. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) (Commun. Math. Phys. 46, 206 (1976))
23. S.W. Hawking, Phys. Rev. D 14, 2460 (1976)
24. S.W. Hawking, Phys. Rev. D 72, 084013 (2005), arXiv:hep-th/0507171
25. S.W. Hawking, R. Penrose, Proc. Roy. Soc. Lond. A 314, 529 (1970)
26. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006), arXiv:gr-qc/0506126
27. W. Israel, Phys. Rev. 164, 1776 (1967)
28. P.S. Joshi, D. Malafarina, Int. J. Mod. Phys. D 20, 2641 (2011), arXiv:1201.3660 [gr-qc]
29. R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)
30. J. Kormendy, D. Richstone, Ann. Rev. Astron. Astrophys. 33, 581 (1995)
31. M.D. Kruskal, Phys. Rev. 119, 1743 (1960)
32. S.D. Mathur, Fortsch. Phys. 53, 793 (2005), arXiv:hep-th/0502050
33. E.T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, J. Math. Phys.

6, 918 (1965)
34. G. Nordström, Proc. Kon. Ned. Akad. Wet. 20, 1238 (1918)
35. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)
36. R. Penrose, Phys. Rev. Lett. 14, 57 (1965)
37. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969) (Gen. Rel. Grav. 34, 1141 (2002))
38. H. Reissner, Ann. Phys. 59, 106 (1916)
39. R.A. Remillard, J.E. McClintock, Ann. Rev. Astron. Astrophys. 44, 49 (2006),

arXiv:stro-ph/0606352
40. D.C. Robinson, Phys. Rev. Lett. 34, 905 (1975)
41. E.E. Salpeter, Astrophys. J. 140, 796 (1964)
42. K. Schwarzschild, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 189 (1916),

arXiv:physics/9905030
43. B.L. Webster, P. Murdin, Nature 235, 37 (1972)
44. L. Wyrzykowski et al., Mon. Not. Roy. Astron. Soc. 458, 3012 (2016), arXiv:1509.04899

[astro-ph.SR]
45. Y.B. Zeldovich, Dokl. Akad. Nauk 155, 67 (1964) (Sov. Phys. Dokl. 9, 195 (1964))
46. S.N. Zhang, W. Cui, W. Chen, Astrophys. J. 482, L155 (1997), arXiv:astro-ph/9704072

http://arxiv.org/abs/1306.1668
http://arxiv.org/abs/1603.09592
http://arxiv.org/abs/astro-ph/0608502
http://arxiv.org/abs/astro-ph/0308402
http://arxiv.org/abs/0809.2442
http://arxiv.org/abs/1112.3359
http://arxiv.org/abs/astro-ph/9912263
http://arxiv.org/abs/astro-ph/9906472
http://arxiv.org/abs/hep-th/0507171
http://arxiv.org/abs/gr-qc/0506126
http://arxiv.org/abs/1201.3660
http://arxiv.org/abs/hep-th/0502050
http://arxiv.org/abs/stro-ph/0606352
http://arxiv.org/abs/physics/9905030
http://arxiv.org/abs/1509.04899
http://arxiv.org/abs/astro-ph/9704072


Chapter 2
Black Hole Solutions

In 4-dimensional general relativity and in the absence of exotic fields, black holes are
completely described by three parameters: the mass M , the spin angular momentum
J , and the electric charge Q. This is the conclusion of the no-hair theorem, which
holds under specific assumptions. Violations of the no-hair theorem are possible. For
instance, hairy black holes naturally emerge in the presence of non-Abelian gauge
fields or of fields non-minimally coupled to gravity.

Starting from the Oppenheimer-Snyder model, which describes the gravitational
collapse of a homogeneous ball of dust, we know how the complete collapse of a
body forms a black hole with a central spacetime singularity. In extensions of general
relativity, the picture of the collapse of a massive body may be somewhat different.
It is possible that, strictly speaking, black holes cannot form, but only temporary
apparent horizons can be created. The latter can however be interpreted as event
horizons if the observation time is much shorter than the lifetime of the apparent
horizon.

2.1 Definition of Black Hole

Roughly speaking, a black hole is a region of the spacetime in which gravity is so
strong that it is impossible to escape or send information to the exterior region. A
more technical definition is the following:

A black hole in an asymptotically flat spacetimeM is the set of events that do
not belong to the causal past of the future null infinity J−(I +), namely

B = M − J−(I +) �= ∅ . (2.1)

The event horizon is the boundary of the region B.
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This definition of black hole uses the concepts developed by Penrose for study-
ing causality and asymptotic properties of asymptotically flat spacetimes [49]. See
also [42].I + indicates the future null infinity,1 namely the region toward which out-
going null lines extend. Heuristically, in spherical-like coordinates, it is the region
t + r → ∞ at finite t − r . J−(P) is called the causal past of the region P and
is the set of all events that causally precede P; that is, there exists at least one
smooth future-directed time-like curve extending from any element in J−(P) to
P . All future-directed curves (either time-like or null) starting from the region B
fail to reach null infinity I +. A black hole is thus an actual one-way membrane: if
something crosses the event horizon it can no longer send any signal to the exterior
region.

The event horizon is a global property of an entire spacetime and it can be only
determined if we know the whole spacetime, including the faraway future. It has
thus no direct observational implications and, for this reason, it is often not a very
useful concept in many studies. The apparent horizon is instead a local property of
the spacetime and is slicing-dependent. Here we do not discuss all the details, which
can be found, for instance, in [7, 42, 50, 60].

Let us consider a 3 + 1 foliation of the spacetime. A trapped surface is a smooth
closed 2-dimensional surface in a 3-dimensional space-like slice such that all null
geodesics emanating from this surface are pointing inwards. The trapped region is
the union of all the trapped surfaces of the slice. The apparent horizon is the outer
boundary of the trapped region. Figure2.1 shows a simple sketch illustrating these
concepts. Outward-pointing light rays behind an apparent horizon thusmove inwards
and therefore they cannot cross the apparent horizon. In the case of an event horizon,
the light raysmay initiallymove outwards and then inwards at some later time. Under
certain conditions, the existence of an apparent horizon implies that the slice contains
an event horizon; however, the converse may not be true [61].

As it will be discussed in Sect. 2.5, it is possible that black holes cannot form
in the Universe, but only apparent horizons can be created. Nevertheless, human
observations may be completely unable to check the actual nature of the horizon of
astrophysical black holes because any real observation only lasts for a finite time,
which may be much shorter than the timescale necessary to distinguish the two
scenarios.

An event horizon is a null surface in spacetime. Let us introduce a scalar function
f such that at the event horizon f = 0. The normal to the event horizon is nν = ∂μ f
and is a null vector. The condition for the surface f = 0 to be null is [12, 55]

gμν
(
∂μ f

)
(∂ν f ) = 0 , (2.2)

where gμν is the metric of the spacetime. In general, one can find the event horizon
of a spacetime by integrating null geodesics backwards in time, see [12, 55] for the

1The symbol I is usually pronounced “scri”.
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Fig. 2.1 Sketch of a 3-dimensional space-like slice with a trapped region (hatched area). Inside the
trapped region, there are trapped surfaces. The outer boundary of the trapped region is the apparent
horizon (red closed curve). The green arrows represent null geodesics. All the null geodesics
emanating from the surfaces inside the trapped region move inwards. In the case of the surface
outside the trapped region (black closed curve outside the hatched area), we see that the arrows can
point either outwards or inwards. See the text for more details

details. In the case of a stationary and axisymmetric spacetime,2 the procedure can
significantly simplify. In a coordinate system adapted to the two Killing isometries
(stationarity and axisymmetry), and such that f is also compatible with the Killing
isometries, Eq. (2.2) reduces to

grr (∂r f )2 + 2grθ (∂r f ) (∂θ f ) + gθθ (∂θ f )2 = 0 (2.3)

in spherical-like coordinates (t, r, θ, φ). The surfacemust be closed and non-singular
(namely geodesically complete) in order to be an event horizon and not just a null
surface.

If we assume that there is a unique horizon radius for any angle θ (Strahlkörper
assumption), we can write f as f = r − H(θ), where H(θ) is a function of θ only
and the event horizon is rH = H(θ); see [12, 55] for the details and the limitations
of the Strahlkörper assumption. The problem is thus reduced to finding the solution
of the differential equation

grr + 2grθ

(
d H

dθ

)
+ gθθ

(
d H

dθ

)2

= 0 . (2.4)

2A space-time is stationary if it posses a time-like Killing vector field, and is static if it posses a
hypersurface-orthogonal time-like Killing vector field. It is always possible to choose coordinates
in which the time-like Killing vector field is ∂t . In this case, in a stationary spacetime the metric
is invariant under translations in t , namely the metric coefficients are independent of t . In a static
spacetime, the time-like Killing vector is orthogonal to the hypersurfaces of constant t , which
implies g0i = 0.
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Reference [30] argues that the event horizon equation grr = 0 (valid, for instance,
in the Kerr spacetime in Boyer–Lindquist coordinates) would hold whenever the
surfaces r = const. have a well-defined causal structure, in the sense that any surface
r = const. must be null, space-like, or time-like. In such a case, the surface r = H
would be null and would correspond to the event horizon, the surfaces r = const.
at larger radii would be all space-like, and the surfaces r = const. at smaller radii
would be all time-like.

A Killing horizon is a null hypersurface on which there is a null Killing vector
field. In a stationary and axisymmetric spacetime and employing a coordinate system
adapted to the two Killing isometries, the Killing horizon is given by the largest root
of

gtt gφφ − g2
tφ = 0 . (2.5)

In general relativity, the Hawking rigidity theorem shows that the event and the
Killing horizons coincide [22], so Eqs. (2.4) and (2.5) provide the same result. In
alternative theories of gravity, this is at least not guaranteed [30].

In general relativity, the event horizon must have S2 × R topology, and even this
property is regulated by certain theorems [22, 29]. For instance, toroidal horizons can
form, but they can only exist for a short time, in agreement with these theorems [27].

2.2 Black Holes in General Relativity

2.2.1 Schwarzschild Solution

In general relativity, the simplest black hole metric is the Schwarzschild solution,
which describes the spacetime of a non-rotating uncharged black hole in a vacuum
and asymptotically flat spacetime. In the Schwarzschild coordinates (t, r, θ, φ), the
line element is

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 , (2.6)

where M is themass of the black hole. TheSchwarzschildmetric is relatively straight-
forward to find and its derivation is presented in many textbooks.

As a consequence of Birkhoff’s theorem, the Schwarzschild metric is the only
spherically symmetric vacuum solution of the Einstein equations. This means it
describes the exterior region of any spherically symmetric body, independently of its
interior, which may also change in time (but maintaining its spherical symmetry).

The line element in Eq. (2.6) is singular at the surface r = 2M , in the sense that
gtt vanishes and grr diverges. This is the event horizon, as it can be seen from the
procedure explained in the previous section. Here H = 2M and is independent of θ .
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The singularity is due to the choice of the coordinates, but the spacetime is regular
there. For instance, the Kretschmann scalar K is

K = Rμνρσ Rμνρσ = 48M2

r6
. (2.7)

The Kretschmann scalar only diverges at r = 0, which is the real singularity of the
spacetime, both in the sense of curvature singularity (curvature invariants diverge)
and in the sense that the spacetime is geodetically incomplete (any geodesic reaching
r = 0 stops there).

The singularity at the event horizon can be removed by a change of coordinates.
For instance, the Lemaitre coordinates (T, R, θ, φ) are related to the Schwarzschild
coordinates by

dT = dt +
(
2M

r

)1/2 (
1 − 2M

r

)−1

dr ,

d R = dt +
( r

2M

)1/2
(
1 − 2M

r

)−1

dr , (2.8)

and the line element of the Schwarzschild solution becomes

ds2 = −dT 2 + 2M

r
d R2 + r2dθ2 + r2 sin2 θdφ2 , (2.9)

where

r = (2M)1/3
[
3

2
(R − T )

]2/3

. (2.10)

The metric is now regular at the event horizon r = 2M , corresponding to the points
4M = 3(R − T ), and it is still singular at r = 0, R = T , which is indeed the true
singularity in this spacetime.

Other common coordinates to write the Schwarzschild solution are the
Kruskal–Szekeres coordinates, the Eddington–Finkelstein coordinates, and the
Gullstrand–Painlevé coordinates. The Kruskal–Szekeres coordinates are employed
to write the maximal analytic extension of the Schwarzschild solution. In this case,
the line element reads

ds2 = −32M3

r
e−r/(2M)dV dU + r2dθ2 + r2 sin2 θdφ2 , (2.11)

where U = τ − ρ and V = τ + ρ are light-cone coordinates and
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τ =
{ (

r
2M − 1

)1/2
er/(4M) sinh

(
t

4M

)
if r > 2M ,(

1 − r
2M

)1/2
er/(4M) cosh

(
t

4M

)
if 0 < r < 2M .

ρ =
{(

r
2M − 1

)1/2
er/(4M) cosh

(
t

4M

)
if r > 2M ,(

1 − r
2M

)1/2
er/(4M) sinh

(
t

4M

)
if 0 < r < 2M .

(2.12)

As briefly discussed in Sect. 2.6, themaximal extension of the Schwarzschild solution
includes also a white hole and a parallel universe, which are not present in the
Schwarzschild spacetime in Schwarzschild coordinates.

2.2.2 Reissner–Nordström Solution

If a non-rotating black hole has a non-vanishing electric charge, the metric is
described by the Reissner–Nordström solution. As a useful recipe to remember, the
Reissner–Nordström line element can be obtained from the Schwarzschild one in
Eq. (2.6) with the substitution M → M − Q2/(2r), where Q is the electric charge
of the black hole. The result is3

ds2 = −
(
1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2 + r2dθ2

+r2 sin2 θdφ2 . (2.14)

The solution of grr = 0 is

r± = M ±
√

M2 − Q2 , (2.15)

where the larger root, r+, is the event horizon, while the smaller root, r−, is the inner
horizon. The latter is a Cauchy horizon and is unstable [13, 51]. The horizons only
exist for |Q| ≤ M . For |Q| > M , there is no horizon, the singularity at r = 0
is naked, and the Reissner–Nordström solution describes the spacetime of a naked
singularity rather than that of a black hole.

3In international system units, the line element reads (reintroducing also GN and c)

ds2 = −
(
1 − 2GNM

c2r
+ GNQ2

4πε0c4r2

)
dt2 +

(
1 − 2GNM

c2r
+ GNQ2

4πε0c4r2

)−1

dr2 + r2dθ2

+ r2 sin2 θdφ2 ,

(2.13)

where 1/(4πε0) is the Coulomb force constant.
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2.2.3 Kerr Solution

A rotating uncharged black hole in 4-dimensional general relativity is described by
the Kerr solution. In Boyer–Lindquist coordinates, the line element is

ds2 = −
(
1 − 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ + Σ

Δ
dr2 + Σdθ2

+
(

r2 + a2 + 2a2Mr sin2 θ

Σ

)
sin2 θdφ2 , (2.16)

whereΣ = r2 +a2 cos2 θ ,Δ = r2 −2Mr +a2, a = J/M , and J is the spin angular
momentum of the black hole. It is often convenient to introduce the dimensionless
spin parameter a∗ = a/M = J/M2.

As in the Reissner–Nordström metric, there are two solutions for the equation
grr = 0; that is

r± = M ±
√

M2 − a2 . (2.17)

r+ is the radius of the event horizon, which requires |a| ≤ M . For |a| > M there
is no horizon and the spacetime has a naked singularity at r = 0. It is worth noting
that the topology of the spacetime singularity in the Kerr solution is different from
that in the Schwarzschild and Reissner–Nordström spacetimes. It is still a curvature
singularity and a singularity in the sense of geodesics incompleteness, but this is true
only in the equatorial plane. In particular, geodesics outside the equatorial plane can
reach the singularity and extend to another universe. The Kretschmann scalarK is

K = 48M2

Σ6

(
r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

)
, (2.18)

and we can see that K diverges at r = 0 only for θ = π/2.
Let us consider the Kerr–Schild coordinates (t ′, x, y, z), which are related to the

Boyer–Lindquist ones by

x + iy = (r + ia) sin θ exp

[
i
∫

dφ + i
∫

a

Δ
dr

]
,

z = r cos θ ,

t ′ =
∫

dt −
∫

r2 + a2

Δ
dr − r , (2.19)

where i is the imaginary unit, namely i2 = −1. r is implicitly given by

r4 − (
x2 + y2 + z2 − a2

)
r2 − a2z2 = 0 . (2.20)
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The singularity at r = 0 and θ = π/2 corresponds to z = 0 and x2 + y2 = a2,
namely it is a ring. It is possible to extend the spacetime to negative r , and the ring
connects two universes. However, the region r < 0 posses closed time-like curves,
which means it is possible to go backward in time. More details can be found, for
instance, in [9].

As in the Reissner–Nordström case, the inner horizon r− is likely unstable, but in
the Kerr metric there is not a definitive proof. This would make the Kerr solution for
r < r− physically not relevant.

2.2.4 No-Hair Theorem

The most general case of a rotating and electrically charged black hole is described
by theKerr-Newman solution. In analogywith the Reissner–Nordströmmetric, it can
be obtained from the line element (2.16) with the substitution M → M − Q2/(2r).
The horizon is located at

r+ = M +
√

M2 − Q2 − a2 , (2.21)

and exists for
√

Q2 + a2 ≤ M .
The no-hair theorem asserts that black holes have only three asymptotic charges

(themass M , the spin angular momentum J , and the electric charge Q of the compact
object) and no more. There are a number of assumptions behind this assertion. The
spacetimemust be stationary, asymptotically flat, and have 4 dimensions; the exterior
regionmust be regular (no naked singularities and/or closed time-like curves); matter
is described by the energy-momentum tensor of the electromagnetic field (but the
theorem still holds in the presence of many other fields). For more details, see,
e.g., [11]. The no-hair theorem was pioneered in the late 1960s and early 1970s by
Israel [28], Carter [8], and Robinson [53], and its final form is still a work in progress.
The name no-hair is to indicate that black holes have no features (hairs), although, to
be precise, black holes can have three hairs (M , J , and Q). The fact that there is only
the Kerr-Newman solution is the result of the uniqueness theorem. In the context
of tests of the Kerr metric and of general relativity, both theorems are relevant. For
instance, as a matter of principle, one may have different classes of black holes
(each with characteristic M , J , and Q hairs), thus violating the uniqueness theorem,
without any violation of the no-hair theorem.

2.3 Beyond the No-Hair Theorem

The no-hair theorem holds under specific assumptions. For instance, if the spacetime
has more than 4 dimensions, there are also other kinds of black holes, e.g. theMyers-
Perry black holes [44], as well as other “black objects” [16, 17]; see, for instance,
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the review article [18]. In an n-dimensional spacetime, a Myers-Perry black hole
is characterized by the mass M and other (n − 1)/2 parameters if n is odd, n/2
parameters if n is even, associated to the independent components of the angular
momentum. So the number of hairs increases with n. “Hairy” black holes naturally
arise also in the presence of non-Abelian gauge fields [58, 59].

In some alternative theories of gravity, the theoremmay still holds, and an example
is a simple scalar-tensor theory, in which the black hole solutions are the same as in
general relativity [54]. Roughly speaking, this is because the Kerr metric is solution
of the field equations

Rμν = 0 , (2.22)

and even the field equations of other theories of gravity may reduce to this simple
form in the vacuum [52].

In other frameworks, the black hole solutions of general relativity may still be
solutions of the new field equations, but their uniqueness is not guaranteed. A rel-
evant example of violation of the no-hair theorem is presented in [25], where the
authors discovered a family of hairy black holes in 4-dimensional Einstein’s grav-
ity minimally coupled to a complex, massive scalar field. Here hairy black holes
are possible by introducing a specific harmonic time-dependence in the scalar field,
while the spacetime metric and the energy-momentum tensor of the scalar field are
still stationary. There are also cases, like dynamical Chern–Simons gravity, in which
non-rotating black holes are described by the Schwarzschild solution, but rotating
black holes are not those of Kerr [65].

In general, we can distinguish two kinds of hairs, called, respectively, primary
and secondary hairs. Primary hairs are real hairs of the black hole: if such hairs
were to exist, then M , J , and Q would not completely characterize the compact
object, and one or more additional parameters would be necessary. An example is
a 5-dimensional Myers-Perry black hole: it is the 5-dimensional generalization of
Kerr black holes and it has two angular momenta, so one more hair: J ′ [44].

Secondary hairs are instead related to some new charge that is common to all
black holes. For instance, in Einstein-dilaton-Gauss-Bonnet gravity, a black hole has
a scalar charge proportional to the volume integral of theGauss–Bonnet invariant [33,
40]; that is, the scalar charge is determined by the black hole mass and it is not an
additional degree of freedom.

In alternative theories of gravity, there may be further complications and the
phenomenology can be much richer. For instance, some theories may not have black
hole solutions.An example is themodel ofmassive gravity discussed in [1]. The static
and spherically symmetric vacuum solution of the corresponding field equations does
not describe a black hole but a naked singularity.

In some theories even the definition of black hole may be problematic. For
instance, in models with violation of the Lorentz symmetry, null geodesics may
depend on the energy of the massless particle. In this case, there are different “event
horizons” for photons with different energies, and it is possible that some high energy
photons can always escape to infinity, so that there is no real black hole.
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It is also possible that some frameworks have black hole solutions, but there is no
mechanism to create black holes. In general relativity, black holes emerge as exact
solutions of the Einstein equations. However, this is not enough to say that such
solutions are physically relevant. In general relativity, we know that black holes can
form fromgravitational collapse andwe have also some simple analyticalmodels that
showhow this is possible (see Sect. 2.4). In some alternative theories, the gravitational
collapse may simply be unable to create a black hole. For instance, black holes may
be unstable solutions or would require a set-up impossible to realize. A possible
example is represented by the model discussed in [67].

In general, black hole solutions in alternative theories of gravity are known in the
non-rotating limit, either in analytic or numerical form, because static and spherically
symmetric solutions are relatively easy to find. In some cases, analytic slow-rotating
solutions have been found, see e.g. [38, 48, 64, 65]. Exact rotating black hole solu-
tions, especially in analytic form, are more difficult to obtain [34]. This is actually
true even in general relativity, and it is proved by the fact that the Kerr metric was
discovered more than 45 years after the Schwarzschild solution.

2.4 Gravitational Collapse

When a star exhausts all its nuclear fuel, the gas pressure cannot balance the star own
weight, and the body shrinks to find a new equilibrium configuration. For most stars,
the pressure of degenerate electrons stops the collapse and the star becomes a white
dwarf. However, if the collapsing part of the star is too heavy, the mechanism does
not work, matter reaches higher densities, and protons and electrons transform into
neutrons. If the pressure of degenerate neutrons stops the collapse, the star becomes a
neutron star. If the collapsing core is still too massive and even the neutron pressure
cannot stop the process, there is no known mechanism capable of finding a new
equilibrium configuration, and the body should undergo a complete collapse. In this
case, the final product is a black hole.

The aim of this section is to present the simplest and the next-to-simplest grav-
itational collapse models. These solutions are analytic and nicely show how the
gravitational collapse of a spherically symmetric cloud of dust creates a spacetime
singularity and an event horizon. For a review, see e.g. [32]. Numerical simulations
can treat more realistic models, where the final product is still a black hole [2, 3].

We want to consider a spherically symmetric collapse, so the spacetime must be
spherically symmetric. This means the metric is invariant under the group of spatial
rotations SO(3) and we can define the 2-dimensional metric induced on the unit
2-sphere as

dΩ2 = dθ2 + sin2 θdφ2 . (2.23)

We introduce the function R such that 4π R2 represents the area of each 2-sphere in
the spacetime. The 4-dimensional line element reads
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ds2 = gabdxadxb + R2dΩ , (2.24)

where a, b = 0, 1 and R is a function of x0 and x1. Choosing x0 = t and x1 = r
and diagonalizing gab, we find that the most general line element of a spherically
symmetric spacetime can be written as

ds2 = −e2λdt2 + e2ψdr2 + R2dΩ2 , (2.25)

where λ, ψ , and R are functions of t and r only.
Let us assume that the collapsing body can be described by a perfect fluid. The

coordinate system of the line element in Eq. (2.25) is called comoving because the
coordinates t and r are “attached” to every collapsing particle. This is the rest-frame
of the collapsing fluid and therefore the fluid 4-velocity is uμ = (e−λ, 0, 0, 0). The
energy momentum tensor is

T μ
ν = diag (ρ, P, P, P) , (2.26)

where ρ and P are, respectively, the energy density and the pressure of the fluid.
With the line element in Eq. (2.25), the Einstein tensor reads

Gt
t = − F ′

R2R′ + 2Ṙe−2λ

R R′
(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (2.27)

Gr
r = − Ḟ

R2 Ṙ
− 2R′e−2ψ

R Ṙ

(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (2.28)

Gt
r = −e2ψ−2λGr

t = 2e−2λ

R

(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (2.29)

Gθ
θ = Gφ

φ = e−2ψ

R

[(
λ′′ + λ′2 − λ′ψ ′) R + R′′ + R′λ′ − R′ψ ′] + (2.30)

−e−2λ

R

[(
ψ̈ + ψ̇2 − λ̇ψ̇

)
R + R̈ + Ṙψ̇ − Ṙλ̇

]
. (2.31)

From the Einstein equations, we can get the following equations

Gt
t = 8πT t

t ⇒ F ′

R2R′ = 8πρ , (2.32)

Gr
r = 8πT r

r ⇒ Ḟ

R2 Ṙ
= −8π P , (2.33)

Gt
r = 0 ⇒ Ṙ′ − Ṙλ′ − ψ̇ R′ = 0 , (2.34)

where the prime ′ and the dot ˙denote, respectively, the derivative with respect to r
and t . F is the Misner-Sharp mass [41]

F = R
(
1 − e−2ψ R′2 + e−2λ Ṙ2) , (2.35)
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which is defined by the relation

1 − F

R
= gμν (∂μ R) (∂ν R) . (2.36)

From Eq. (2.32), we can see that the Misner-Sharp mass is proportional to the grav-
itational mass within the radius r at the time t

F(r) =
∫ r

0
F ′dr̃ = 8π

∫ r

0
ρR2R′dr̃ = 2M(r) . (2.37)

It is worth noting that nμ = ∂μ R is the normal to the surface R = const. Therefore,
as seen in Sect. 2.1, when 1 − F/R = 0, the surface R = const. is a null surface
(and defines the location of the apparent horizon in the dust collapse models in the
next subsections).

A fourth relation can be obtained from the covariant conservation of the matter
energy-momentum tensor

∇μT μ
ν = 0 ⇒ λ′ = − P ′

ρ + P
. (2.38)

2.4.1 Dust Collapse

For dust, P = 0, and Eqs. (2.32)–(2.34), and (2.38) become

F ′

R2R′ = 8πρ , (2.39)

Ḟ

R2 Ṙ
= 0 , (2.40)

Ṙ′ − Ṙλ′ − ψ̇ R′ = 0 , (2.41)

λ′ = 0 . (2.42)

Equation (2.40) shows that, in the case of dust, F is independent of t , namely there
is no inflowor outflow through any spherically symmetric shell with radial coordinate
r . This means that the exterior spacetime is described by the Schwarzschild solution.
In the general case with P �= 0, this may not be true, and the interior region must be
matchedwith a non-vacuumVaidya spacetime. If rb is the comoving radial coordinate
of the boundary of the cloud of dust, F(rb) = 2M , where M is the Schwarzschild
mass of the vacuum exterior.

Equation (2.42) implies that λ = λ(t) and permits one to choose the time gauge
in such a way that λ = 0. It is indeed always possible to define a new time coordinate
t̃ such that dt̃ = eλdt and therefore gt̃ t̃ = −1.

Equation (2.41) becomes Ṙ′ − ψ̇ R′ = 0 and we can write
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R′ = eg(r)+ψ . (2.43)

We introduce the function f (r) = e2g(r) − 1 and Eq. (2.35) becomes

Ṙ2 = F

R
+ f . (2.44)

The line element can now be written as

ds2 = −dt2 + R′2

1 + f
dr2 + R2dΩ2 . (2.45)

This is the Lemaitre–Tolman-Bondi, or LTB, metric [6, 36, 56].
The Kretschmann scalar of the line element in (2.45) is

K = 12
F ′2

R4R′2 − 32
F F ′

R5R′ + 48
F2

R6
, (2.46)

and diverges if R = 0. The system has a gauge degree of freedom that can be fixed
by setting the scale at a certain time. It is common to set the area radius R(t, r) to
the comoving radius r at the initial time ti = 0, namely R(0, r) = r , and introduce
the scale factor a

R(t, r) = ra(t, r) . (2.47)

We have thus a = 1 at t = ti and a = 0 at the time of the formation of the
singularity. The condition for collapse is ȧ < 0. From Eq. (2.39), the regularity of
the energy density at the initial time ti requires to write the Misner-Sharp mass as
F(r) = r3m(r), where m(r) is a sufficiently regular function of r in the interval
[0, rb]. Equation (2.39) becomes

ρ = 3m + rm ′

a2 (a + ra′)
. (2.48)

The function m(r) is usually written as a polynomial expansion around r = 0

m(r) =
∞∑

k=0

mkrk , (2.49)

where {mk} are constants. Requiring that the energy density ρ has no cusps at r = 0,
m1 = 0.

From Eq. (2.46), we see that the Kretschmann scalar diverges even when R′ = 0
if m ′ �= 0. However, the nature of these singularities is different: they arise from
the overlapping of radial shells and are called shell crossing singularities [24]. Here
the radial geodesic distance between shells with radial coordinates r and r + dr
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vanishes, but the spacetime may be extended through the singularity by a suitable
redefinition of the coordinates. To avoid any problem, it is common to impose that the
collapse model has no shell crossing singularities, for instance requiring that R′ �= 0
or that m ′/R′ does not diverge.

At the initial time ti, Eq. (2.44) becomes

ȧ(ti, r) = −
√

m + f

r2
, (2.50)

and we can see that the choice of f corresponds to the choice of the initial velocity
profile of the particles in the cloud. In order to have a finite velocity at all radii, it
is necessary to impose some conditions on f . It is common to write f (r) = r2b(r)

and b(r) as a polynomial expansion around r = 0:

b(r) =
∞∑

k=0

bkrk . (2.51)

2.4.2 Homogeneous Dust Collapse

The simplest model of gravitational collapse is the Oppenheimer-Snyder model [46].
It describes the collapse of a homogeneous and spherically symmetric cloud of dust.
In this case, ρ = ρ(t) is independent of r , so m = m0 and b = b0. The interior
metric is the time reversal of the Friedmann–Robertson–Walker solution

ds2 = −dt2 + a2

(
dr2

1 + b0r2
+ r2dΩ2

)
. (2.52)

b0 = 0 is the counterpart of a flat universe and corresponds to a marginally bound
collapse, namely the scenario in which the falling particles have vanishing velocity
at infinity. Equation (2.44) becomes

ȧ = −
√

m0

a
+ b0 . (2.53)

For b0 = 0, the solution is

a(t) =
(
1 − 3

√
m0

2
t

)2/3

. (2.54)

The formation of the singularity occurs at the time

ts = 2

3
√

m0
. (2.55)



2.4 Gravitational Collapse 27

The curve tah(r) describing the time at which the shell r crosses the apparent
horizon can be obtained from

1 − F

R
= 1 − r2m0

a
= 0 . (2.56)

For b0 = 0, the solution is

tah(r) = ts − 2

3
F = 2

3
√

m0
− 2

3
r3m0 . (2.57)

TheFinkelstein diagramof the gravitational collapse of a homogeneous and spher-
ically symmetric cloud of dust is sketched in Fig. 2.2. At the time t = t0, the radius
of the surface of the cloud crosses the Schwarzschild radius. We have the forma-
tion of both the event horizon in the exterior region and the apparent horizon at the
boundary r = rb, i.e. t0 = tah(rb). As shown in Fig. 2.2, the exterior region is now
settled down to the static Schwarzschild spacetime, while the radius of the apparent
horizon propagates to smaller radii and reaches r = 0 at the time of the formation
of the singularity ts.

t

Interior

Exterior

Rb(t)

t = t0

t = ts

2M

Fig. 2.2 Finkelstein diagram for the gravitational collapse of a homogeneous and spherically sym-
metric cloud of dust. Rb(t) is the radius of the cloud (in the Schwarzschild coordinates of the exterior
region) and separates the interior from the vacuum exterior. The cloud collapses as t increases and
at the time t = t0 the horizon forms at the boundary when Rb(t0) = 2M . In the interior, the apparent
horizon propagates inwards and reaches the center of symmetry at the time of the formation of the
singularity t = ts. For t > ts, the spacetime has settled down to the usual Schwarzschild solution.
Figure courtesy of Daniele Malafarina
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2.4.3 Inhomogeneous Dust Collapse

In the inhomogeneous dust collapse scenario, ρ depends on both t and r , so we have
m = m(r), b = b(r), and a = a(t, r). While the Hawking-Penrose singularity theo-
rems assure that, under certain conditions, the formation of a singularity is inevitable
after the formation of an apparent horizon [23], the picture of the collapse may be
different from the simpleOppenheimer-Snydermodel. In particular, it is possible that
the singularity is naked for an infinitesimal time, namely there may be null geodesics
that start from the singularity and go to null infinity, see e.g. [10, 31, 45, 63].

If we want to impose that the energy density has no cusps at the center, m1 = 0
and the simplest form of the function m is

m(r) = m0 + m2r
2 . (2.58)

Now the density profile is described by two parameters, m0 and m2. Imposing the
condition that ρ must be a decreasing function of r (the density of the cloud is higher
at the center and lower at larger radii), m2 < 0.

Equation (2.44) is now

ȧ = −
√

m

a
+ b . (2.59)

In the marginally bound case b = 0, the solution is

a(t, r) =
(
1 − 3

√
m(r)

2
t

)2/3

, (2.60)

and we see that each shell collapses with a different scale factor and a different
velocity. The singularity and the apparent horizon are now described by the curves

ts(r) = 2

3
√

m
(2.61)

tah(r) = 2

3
√

m
− 2

3
r3m . (2.62)

If m = m0 + m2r2, we find

ts(r) = 2

3
√

m0 + m2r2
(2.63)

tah(r) = 2

3
√

m0 + m2r2
− 2

3
r3

(
m0 + m2r

2
)

. (2.64)



2.4 Gravitational Collapse 29

t

Interior

Exterior

Rb(t)
t = t0

t = t1

2M

Fig. 2.3 Finkelstein diagram for the gravitational collapse of an inhomogeneous and spherically
symmetric cloud of dust. Rb(t) is the radius of the cloud (in the Schwarzschild coordinates of
the exterior region) and separates the interior from the vacuum exterior. The cloud collapses as t
increases. At the time t = t0, a singularity and a horizon form at the center of the cloud at the same
time. Null geodesics from the singularity can reach distant observers and therefore the singularity
is temporarily naked. In the interior, the apparent horizon propagates outwards and reaches the
boundary at the time t1 > t0. The exterior spacetime settles down to the usual Schwarzschild
solution when the whole star is inside the event horizon. Figure courtesy of Daniele Malafarina

In the dust case, the boundary of the cloud rb is arbitrary and, for m2 < 0, it is
possible to find null geodesics that begin at r = 0 at the time of the formation of
the singularity and reach observers at infinity [10, 31, 45, 63]. The actual picture
depends on the parametersm0,m2, and rb. Figure2.3 shows the case in which a naked
singularity forms at the time t = t0 at r = 0 together with the apparent horizon.
The singularity is immediately covered by the apparent horizon, which propagates
to larger radii. When it reaches the boundary r = rb, the exterior spacetime settles
down to the Schwarzschild solution.

2.4.4 Gravitational Collapse for a Distant Observer

In the previous subsections, we adopted comoving coordinates. With such a choice,
the black hole and the central singularity are created in a finite time. As already
pointed out in the seminal paper by Oppenheimer and Snyder [46], an external
observer sees the surface of the collapsing body asymptotically shrinking to the
radius of the event horizon of the black hole, without really seeing the formation of
the black hole due to the asymptotically increasing gravitational redshift.



30 2 Black Hole Solutions

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

t/r0

r/r
0

r0’’

Shell 2 

Shell 1 

r0’

Fig. 2.4 Evolution of the radial coordinates of the inner and of the outer boundaries of shell 1 and
shell 2 (solid lines) with respect to the time t of a distant observer. The three horizontal dashed lines
indicate the coordinate of the horizon before the collapse of shell 1 (r ′

0 = 2M , lower line), after the
collapse of shell 1 and before the collapse of shell 2 (r ′′

0 = 2M + 2M1, central line), and after the
collapse of shell 2 (r0 = 2M +2M1 +2M2, upper line). M , M1, and M2 are, respectively, the mass
of the pre-existing black hole, of shell 1, and of shell 2. See the text for more details. From [37]
under the terms of the Creative Commons Attribution License

The picture of gravitational collapse as seen by a distant observer can be under-
stood within the toy-models discussed in [37, 66]. Let us consider a pre-existing
black hole of mass M and two spherically symmetric shells of matter collapsing
onto the black hole and with the mass, respectively, M1 and M2. The two shells have
a finite thickness, so each shell has inner and outer boundaries. The evolution of such
a system is shown in Fig. 2.4.

At the beginning, we have the pre-existing black hole and the two shells at large
radii. The event horizon of the black hole is at r ′

0 = 2M . After the collapse of shell 1,
the horizon of the new black hole is at r ′′

0 = 2M +2M1. However, the distant observer
does not see (for the moment) the outer boundary of shell 1 crossing the horizon r ′′

0 .
The radius of the outer boundary of shell 1 seems to asymptotically approach r ′′

0 , due
to the infinite gravitational redshift. Then we have the collapse of shell 2. Now the
horizon of the black hole is at r0 = 2M + 2M1 + 2M2 and the distant observer does
not see the outer boundary of shell 2 crossing the surface at the radial coordinate r0.

Let us notice that the radiation emitted by the most outer boundary of any collaps-
ing configuration is more andmore redshifted, so that any distant observer eventually
sees a black hole for any practical purpose (even if the analytical formula predicts a
non-zero emission of radiation at any time). The calculations of the radiation emit-
ted by a collapsing body within some simple toy-models are presented in [35]. The
light curves for a homogeneous and inhomogeneous, spherically symmetric, col-
lapsing balls of dust are shown in Fig. 2.5. At late times, the emission of radiation is
exponentially suppressed.
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Fig. 2.5 Light curves of a
homogeneous (red solid
curve) and inhomogeneous
(blue dashed curve),
spherically symmetric,
collapsing balls of dust
assuming a simple model of
emission. Time T in units
2M = 1; luminosity in
arbitrary units. From [35]
under the terms of the
Creative Commons
Attribution License

2.5 Beyond the Standard Picture

It is natural to expect that the singularity at the center of black holes is due to the
breakdown of the classical theory and that it should be removed when unknown
quantum gravity effects are taken into account. If we believe that the energy scale of
quantum gravity is the Planck mass MPl, we may expect that the Kretschmann scalar
is bounded by

K � 1

M4
Pl

. (2.65)

From Eq. (2.7), we see that new physics should show up at the radius

r ≈ (
M M2

Pl

)1/3
. (2.66)

However, as already mentioned in Sect. 2.2, charged or rotating black holes have
the inner horizon at r = r−, which is unstable. This means that deviations from these
metrics should be at least at r−. In the case of extremal or almost extremal objects,
r− approaches r+, and therefore new physics may be not far from the event horizon.

There are also arguments suggesting that black holes may be macroscopic quan-
tum objects. Roughly speaking, the identification of the Planck scale as the funda-
mental energy scale of quantum gravity arises when we quantize general relativity
and find the problems of unitarity and renormalizability. The theory looks like a good
effective theory at low energies, namely for energies E  MPl, but it breaks down
when E approaches MPl. However, this conclusion is obtained by considering the
scattering of two particles. In a system made of many components, it is possible that
the actual scale of quantum gravity is given by the gravitational radius ∼ M , where
M is the mass/energy of the system, see e.g. [14, 15, 21, 39]. In these scenarios, the
metric description typically breaks down inside the black hole.

If the metric description holds at the center of black holes, we can imagine two
ways to solve the central singularity, in the sense that geodesics do not stop at r = 0
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and predictability is not lost. One of these possibilities is a wormhole-like solution. In
this scenario, the singularity is replace by a “throat” connecting two universes. For a
static/stationary black hole solution, we can have awormhole, namely a topologically
non-trivial structure connecting two asymptotically flat universes. In the case of a
black hole formed from gravitational collapse, the throat can connect the original
universe to a baby universe generated by the gravitational collapse inside the black
hole. The alternative possibility to solve the singularity is to have a spacetime in
which the center r = 0 can never be reached in a finite time (with a finite value of the
affine parameter in the case of null geodesics). These are the two natural scenarios
to solve the central singularity, and there are not more, because one has to preserve
the property that, roughly speaking, inside a black hole everything must fall to its
center. The problem of a geodesically incomplete spacetime can thus be fixed either
postulating the extension of the spacetime beyond r = 0 or the impossibility of
reaching r = 0 in a finite time. Other solutions seem at least to require more exotic
physics.

The quantum gravity inspired models studied in [4, 5, 20, 67] are characterized
by the fact that gravity becomes repulsive at very high densities. The result is that
the singularity is replaced by a bounce, after which the collapsing matter starts
expanding. In principle, we may have two scenarios: (i) there is a bounce and the
creation of a baby universe inside the black hole, or (i i) there is no black hole, in the
sense that the collapse only creates an apparent horizon, which can be interpreted as
a black hole for a while by the exterior observer if the observational time is shorter
than the time scale of the evolution of the process.

In general, both scenarios may be possible, and it depends on the specific model.
The scenario (i) is not easy to realize. A similar spacetime can be obtained with
a cut-and-paste procedure, in which a singular manifold is extended beyond the
singularity by removing the singularity and sewing the spacetime to a new non-
singular manifold describing an expanding baby universe. However, this is possible
only in very simple examples. Matching of the twomanifolds involves the continuity
of the first and second fundamental forms across some hypersurface, which is not
possible in general due to the lack of a sufficient number of free parameters.

In the case of the scenario (i i) and under certain conditions, the lifetime of the
apparent horizon might exactly scale as the Hawking evaporation time. It is thus
possible to argue a link between instability of this kind of objects and Hawking
radiation [5].

2.6 Penrose Diagrams

Penrose diagrams are 2-dimensional spacetime diagrams used to figure out the global
properties and the causal structure of asymptotically flat spacetimes. Since they are
2-dimensional diagrams, everypoint represents a 2-dimensional sphere of the original
4-dimensional spacetime. Penrose diagrams are obtained by a conformal transfor-
mation of the original coordinates such that the entire spacetime is transformed into
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a compact region. Since the transformation is conformal, angles are preserved, and
null geodesics remain lines at 45◦. Time-like geodesics are inside the light-cone,
space-like geodesics are outside. A more detailed discussion on the topic can be
found, for instance, in [57, 62].

It is probably easier to start from the simplest example, namely the Penrose dia-
gram for the Minkowski spacetime. In spherical coordinates (t, r, θ, φ), the line
elements is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 . (2.67)

We perform the following conformal transformation

t = 1

2
tan

T + R

2
+ 1

2
tan

T − R

2
,

r = 1

2
tan

T + R

2
− 1

2
tan

T − R

2
, (2.68)

where the use of the tangent function tan is to bring points at infinity to points at a
finite value in the new coordinates. The line element now reads

ds2 =
(
4 cos2

T + R

2
cos2

T − R

2

)−1 (−dT 2 + d R2
)

+ r2dθ2 + r2 sin2 θdφ2 . (2.69)

The Penrose diagram for theMinkowski spacetime is shown in Fig. 2.6. The semi-
infinite (t, r) plane is now a triangle. The dashed vertical line is the origin r = 0.
Every point corresponds to the 2-sphere (θ, φ). There are five different asymptotic
regions. Without a rigorous treatment, they can be defined as follows:

Fig. 2.6 Penrose diagram
for the Minkowski
spacetime. See the text for
the details

i0

i+

i−

I +

I −

r = 0

T

R
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Future time-like infinity i+: the region toward which time-like geodesics
extend. It corresponds to the points at t → ∞ with finite r .

Past time-like infinity i−: the region from which time-like geodesics come.
It corresponds to the points at t → −∞ with finite r .

Spatial infinity i0: the region toward which space-like slices extend. It cor-
responds to the points at r → ∞ with finite t .

Future null infinity I +: the region toward which outgoing null geodesics
extend. It corresponds to the points at t + r → ∞ with finite t − r .

Past null infinity I −: the region from which ingoing null geodesics come.
It corresponds to the points at t − r → −∞ with finite t + r .

Such asymptotic regions are points or segments in the Penrose diagram and their
T and R coordinates are:

i+ T = π , R = 0 .

i− T = −π , R = 0 .

i0 T = 0 , R = π , (2.70)

and

I + T + R = π , T − R ∈ (−π;π) .

I − T − R = −π , T + R ∈ (−π;π) . (2.71)

Penrose diagrams become a powerful tool to explore the global properties and the
causal structure of more complicated spacetimes. The simplest non-trivial example
is the Schwarzschild spacetime. If we consider its maximal extension in Kruskal–
Szekeres coordinates and we perform the following coordinate transformation

V = 1

2
tan

T + R

2
+ 1

2
tan

T − R

2
,

U = 1

2
tan

T + R

2
− 1

2
tan

T − R

2
, (2.72)

the line element becomes

ds2 = 32M3

r
e−r/(2M)

(
4 cos2

T + R

2
cos2

T − R

2

)−1 (−dT 2 + d R2
)

+ r2dθ2 + r2 sin2 θdφ2 . (2.73)
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Fig. 2.7 Penrose diagram for the maximal extension of the Schwarzschild spacetime. See the text
for the details

The Penrose diagram of the maximal extension of the Schwarzschild spacetime
is shown in Fig. 2.7. The asymptotic regions i+, i−, i0, I +, and I − are those
already found in the Minkowski case. We can distinguish four regions, indicated,
respectively, by I, II, II, and IV in the figure.

The region I corresponds to our universe, namely the exterior region of the
Schwarzschild spacetime in Schwarzschild coordinates. The region II is the black
hole, so the Schwarzschild spacetime in Schwarzschild coordinates has only the
regions I and II. The central singularity of the black hole at r = 0 is represented
by the line with wiggles above the region II and the diagram clearly shows it is a
space-like singularity.4 The event horizon of the black hole at r = 2M is the red line
at 45◦ (it is indeed a null surface) separating the regions I and II. Any ingoing light
ray in the region I is captured by the black hole, while any outgoing light ray in the
region I reaches future null infinity I +. Null and time-like geodesics in the region
II cannot exit the black hole and they necessarily fall to the singularity at r = 0.

The regions III and IV emerge from the extension of the Schwarzschild spacetime.
The region III corresponds to another universe. The red line at 45◦ separating the
regions II and III is the event horizon of the black hole at r = 2M . Like in the region
I, any light ray in the region III can either cross the event horizon or escape to infinity.
No future-oriented null or time-like geodesics can escape from the region II. Our
universe in the region I and the other universe in the region III cannot communicate:
no null or time-like geodesic can go from one region to another.

4Singularities, like trajectories, can be space-like, null, or time-like, depending on their causal
properties. Space-like singularities are represented by lines with an inclination lower than 45◦
(like space-like trajectories). Time-like singularities are represented by lines with an inclination
higher than 45◦ (like time-like trajectories). The singularity at r = 0 in the Penrose diagram of the
Schwarzschild solution is represented by a horizontal line and is thus space-like. For more details,
see e.g. [19] and references therein.
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Fig. 2.8 Penrose diagram
for the complete collapse of
a homogeneous cloud of
dust, corresponding to the
situation in Fig. 2.2. The
letter S indicates the interior
region of the collapsing star
and the black arc extending
from i− to r = 0 is its
boundary. See the text for the
details

i0

i+

i−

I +

I −

Sr = 0

r = 0

Fig. 2.9 Penrose diagram
for the complete collapse of
an inhomogeneous cloud of
dust with a temporary naked
singularity, namely the
situation in Fig. 2.3. The
letter S indicates the interior
region of the collapsing star
and the black arc extending
from i− to r = 0 is its
boundary. See the text
and [43, 47] for the details.

i0

i+

i−
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S

r = 0

r = 0

The region IV is a white hole. If a black hole is a region of the spacetime where
null and time-like geodesics can only enter and never exit, a white hole is a region
where null and time-like geodesics can only exit and never enter. The red lines at
45◦ separating the region IV from the regions I and III are the horizons at r = 2M
of the white hole.

Figure2.7 is the Penrose diagram for the maximal extension of the Schwarzschild
solution, which is static. However, black holes in the Universe should be created
from gravitational collapse of massive bodies. The corresponding Penrose diagrams
are shown in Figs. 2.8 and 2.9 and are substantially different from the diagram in
Fig. 2.7. Figure2.8 is for the case of the collapse of a homogeneous cloud of dust (the
Penrose diagramcorresponding to the Finkelstein diagram in Fig. 2.2): the singularity
is created at the same time t = ts for all shells. Figure2.9 shows the collapse of an
inhomogeneous cloud of dust with the formation of a temporary naked singularity



2.6 Penrose Diagrams 37

(the counterpart of the Finkelstein diagram in Fig. 2.3) [43, 47]: here the singularity
is created first at the center and, for an infinitesimal time, is naked.

The Penrose diagram for a static spacetime with a massive body would be equiv-
alent to that for the Minkowski spacetime in Fig. 2.6. In the case of a collapsing
body, the diagram changes when the radius of the body crosses the corresponding
Schwarzschild radius at r = 2M . At this point, we have the formation of the event
horizon, represented by the red line at 45◦ in Figs. 2.8 and 2.9. Now the exterior
region looks like the region I in the Penrose diagram of the Schwarzschild spacetime
with the future null infinity I +. In the interior region, the radius of the body goes
to the space-like singularity at r = 0. There is no white hole or parallel universe.

Figures2.8 and 2.9 show the Penrose diagrams of two examples of complete col-
lapse in classical general relativity. The picture changeswhenwe consider “quantum”
effects, broadly defined. The left diagram in Fig. 2.10 is the Penrose diagram for the
formation of a black hole from the collapse of a star and its “complete evaporation”
due to Hawking radiation. Even in this case, the event horizon is represented by a
red line at 45◦. While the evaporation process progressively reduces the radius of the
horizon and the object emits radiation moving along null geodesics, as an artifact of
the conformal transformation the horizon is still a line at 45◦ and it seems like all
Hawking radiation is emitted together at once. In the case of complete evaporation,
the upper part of the Penrose diagram is like that of the Minkowski spacetime.

The right diagram in Fig. 2.10 is one of the Penrose diagrams for the gravita-
tional collapse with bounce studied in [4, 20]. The diagram is slightly different if the
evaporation of the apparent horizon is associated to some Hawking-like process. In
these scenarios, there is neither formation of black hole nor formation of spacetime

i0

i+

i−

I +

I −

r = 0 S

i0

i+

i−

I +

I −
Sr = 0

r = 0
r = 0

Fig. 2.10 Penrose diagrams for the formation and the Hawking evaporation of a black hole (left)
and for the gravitational collapse with bounce and without formation of singularities (right). The
letter S indicates the interior region of the collapsing star and the black arc extending from i− is its
boundary. See the text for the details
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Fig. 2.11 Penrose diagram for the maximal extension of the Kerr spacetime. See the text for the
details

singularity. When the radius of the collapsing object crosses the corresponding
Schwarzschild radius, we have an apparent horizon and the object first looks like
a black hole for a finite time and then a white hole for a finite time. Eventually the
apparent horizon disappears.

More details on Penrose diagrams associated to scenarios of gravitational collapse
beyond classical general relativity can be found in [26].
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Fig. 2.12 Penrose diagram for the maximal extension of the Reissner–Nordström spacetime. See
the text for the details

Figure2.11 shows the Penrose diagram for the maximal extension of the Kerr
spacetime. The region I is our universe outside the black hole and the red line at
45◦ separating the regions I and II and labeled by r+ is the event horizon. As in the
Schwarzschild spacetime, the region III is another universe and the region IV is a
white hole. The region II is the black hole interior between the event horizon r+
and the inner horizon r−. The singularity at r = 0 is time-like (not space-like as in
Schwarzschild) and therefore it is a vertical line and can be avoided by a test-particle.
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A test-particle in the region I can cross the event horizon, cross the inner horizon,
and then enter the ring singularity outside the equatorial plane (green trajectory). The
latter is a “gate” to the region I, which is an anti-universe at r < 0. Alternatively,
the test-particle can cross the event horizon, cross the inner horizon, and then cross
again the inner horizon to reach the region IV’, which is a white hole, to eventually
enter the region I’ representing another universe (orange trajectory).

ThePenrose diagram for themaximal extension of theReissner–Nordström space-
time is shown in Fig. 2.12. It is very similar to the diagram in Fig. 2.11 for the Kerr
solution, with the remarkable difference that the singularity at r = 0 is not a ring
singularity and therefore the region I and III in Fig. 2.11 do not exist in the Reissner–
Nordström spacetime.
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Chapter 3
Motion Around Black Holes

The electromagnetic spectrum of an astrophysical black hole results from the
radiation emitted by the particles in the accretion disk and in possible jets/outflows.
The spacetime metric determines the motion of these particles and the propagation
of the radiation from the point of emission to the point of detection in the flat far-
away region. The electromagnetic spectrum of a black hole has features related to
relativistic effects, like Doppler boosting and gravitational redshift, occurring in the
strong gravity region. The study of geodesic motion is the first step to understand
these effects and to use the electromagnetic spectrum for testing strong gravity.

The study of circular orbits in the equatorial plane is particularly important. In the
Novikov-Thorne model, the accretion disk is in the plane perpendicular to the black
hole spin. The particles1 of the gas move on nearly geodesic circular orbits in the
equatorial plane. The inner edge of the disk is at the radius of the innermost stable
circular orbit (ISCO). The latter assumption is crucial in current techniques of spin
measurements.

3.1 Orbits in the Equatorial Plane

The aim of this section is to study the main properties of equatorial circular orbits
around a compact object in a generic stationary, axisymmetric, and asymptotically
flat spacetime. These orbits are interesting because the particles of the gas in a thin
disk are assumed to follow nearly geodesic circular orbits in the equatorial plane (see
Chap.6).

The geodesic motion of a test-particle in a spacetime with the metric gμν is
governed by the Lagrangian

L = 1

2
gμν ẋ

μ ẋν, (3.1)

1In this context, the term “particle” is used to indicate a parcel of gas.
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44 3 Motion Around Black Holes

where ˙ = d/dτ and τ is an affine parameter of the geodesic. When we consider
time-like geodesics, here and in the rest of the book, τ will be the proper time of the
test-particle.

The line element of a generic stationary and axisymmetric spacetime can always
be written in the following form2

ds2 = gttdt
2 + 2gtφdtdφ + grrdr

2 + gθθdθ2 + gφφdφ2, (3.2)

where the metric coefficients are independent of t and φ. This is often called the
canonical form of the line element for a stationary and axisymmetric spacetime and
is obtained when the coordinate system is adapted to the two Killing isometries.

Since the metric is independent of the coordinates t and φ, we have two constants
of motion, namely the specific energy at infinity E and the axial component of the
specific angular momentum at infinity Lz:

d

dτ

∂L

∂ ṫ
− ∂L

∂t
= 0 ⇒ pt ≡ ∂L

∂ ṫ
= gtt ṫ + gtφφ̇ = −E, (3.3)

d

dτ

∂L

∂φ̇
− ∂L

∂φ
= 0 ⇒ pφ ≡ ∂L

∂φ̇
= gtφ ṫ + gφφφ̇ = Lz . (3.4)

The term “specific” is used to indicate that E and Lz are, respectively, the energy
and the angular momentum per unit rest-mass.3 This is automatic when the affine
parameter τ is the proper time. In such a case, the conservation of the rest-mass reads
gμν ẋμ ẋν = −1. We remind the reader that here we use the convention of a metric
with signature (− + ++). For a metric with signature (+ − −−), we would have
pt = E and pφ = −Lz . Equations (3.3) and (3.4) can be solved to find the t- and
the φ-component of the 4-velocity of the test-particle

ṫ = Egφφ + Lzgtφ
g2tφ − gtt gφφ

, (3.5)

φ̇ = − Egtφ + Lzgtt
g2tφ − gtt gφφ

. (3.6)

From the conservation of the rest-mass, gμν ẋμ ẋν = −1,we canwrite the equation

grr ṙ
2 + g2θθ θ̇

2 = Veff(r, θ), (3.7)

2Here and in the rest of the book we will only consider stationary and axisymmetric spacetimes
whose line element can be written as in Eq. (3.2). However, this is not “the most general” stationary
and axisymmetric spacetime. In principle, even the gtr metric coefficient may be non-vanishing,
see Sect. 7.1 in [12] for more details. Nevertheless, black hole solutions in general relativity and in
other theories of gravity seem to have gtr = 0.
3In this and in the next sections about equatorial orbits, we will mainly focus on time-like geodesics,
because we have in mind the motion of the gas in a thin accretion disk around a black hole.
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where Veff is the effective potential of the test-particle with specific energy E and
axial component of the specific angular momentum Lz

Veff = E2gφφ + 2ELzgtφ + L2
z gtt

g2tφ − gtt gφφ

− 1. (3.8)

Circular orbits in the equatorial plane are located at the zeros and the turning
points of the effective potential: ṙ = θ̇ = 0, which implies Veff = 0, and r̈ = θ̈ = 0,
which require, respectively, ∂r Veff = 0 and ∂θVeff = 0. From these conditions, we
could obtain the specific energy E and the axial component of the specific angular
momentum Lz of a test-particle in equatorial circular orbits. However, it is faster to
proceed in the following way. We write the geodesic equations as

d

dτ

(
gμν ẋ

ν
) = 1

2

(
∂μgνρ

)
ẋν ẋρ. (3.9)

Since ṙ = θ̇ = r̈ = 0 for equatorial circular orbits, the radial component of Eq. (3.9)
reduces to

(∂r gtt) ṫ
2 + 2

(
∂r gtφ

)
ṫ φ̇ + (

∂r gφφ

)
φ̇2 = 0. (3.10)

The angular velocity Ω = φ̇/ṫ is

Ω± = −∂r gtφ ±
√(

∂r gtφ
)2 − (∂r gtt )

(
∂r gφφ

)

∂r gφφ

, (3.11)

where the upper (lower) sign refers to corotating (counterrotating) orbits, namely
orbits with angular momentum parallel (antiparallel) to the spin of the central object.

From gμν ẋμ ẋν = −1 with ṙ = θ̇ = 0, we can write

ṫ = 1
√−gtt − 2Ωgtφ − Ω2gφφ

. (3.12)

Equation (3.3) becomes

E = − (
gtt + Ωgtφ

)
ṫ

= − gtt + Ωgtφ√−gtt − 2Ωgtφ − Ω2gφφ

. (3.13)

Equation (3.4) becomes

Lz = (
gtφ + Ωgφφ

)
ṫ

= gtφ + Ωgφφ√−gtt − 2Ωgtφ − Ω2gφφ

. (3.14)
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As can be seen from Eqs. (3.13) and (3.14), E and Lz diverge when their denom-
inator vanishes. This happens at the radius of the photon orbit rγ

gtt + 2Ωgtφ + Ω2gφφ = 0 ⇒ r = rγ . (3.15)

Usually – e.g. in the Kerr metric, but it is quite a common property even for black
holes in alternative theories of gravity – there are circular orbits for r > rγ and there
are no circular orbits for r < rγ . In such a case, the radius of the photon orbit is the
equatorial circular orbit with smallest radius for massless and massive particles, and
massive particles can reach the photon orbit in the limit of infinite specific energy E .
However, in some particular spacetimes, circular orbits with r < rγ may exist, and
it is also possible the presence of two or more photon orbits.

The radius of the marginally bound orbit rmb is defined by

E = − gtt + Ωgtφ√−gtt − 2Ωgtφ − Ω2gφφ

= 1 ⇒ r = rmb. (3.16)

The orbit is marginally bound, which means that the test-particle has the sufficient
energy to escape to infinity (the test-particle cannot reach infinity if E < 1, and can
reach infinity with a finite velocity if E > 1).

The radius of the marginally stable orbit rms, more often called the ISCO radius
rISCO, is defined by

∂2
r Veff = 0 or ∂2

θ Veff = 0 ⇒ r = rISCO. (3.17)

Since equatorial circular orbits at r < rISCO are unstable, in the Novikov-Thorne
model for thin accretion disks the inner edge of the disk is assumed at the ISCO
radius.

In the Kerr metric, equatorial circular orbits are always stable for r > rISCO, while
they are radially unstable for r < rISCO. In more general spacetimes, the picture may
be more complicated. For instance, it is possible that equatorial circular orbits are
stable for r > r̃ , while there are some stable “islands” at smaller radii, say for
r1 < r < r2, r3 < r < r4, etc. (and the orbits are unstable for r < r1, r2 < r < r3,
etc.). See e.g. [2]. In this case, it is possible that an accreting compact object has an
accretion disk with the inner edge rin = r̃ , and then some annuli of accreting material
at smaller radii.

To figure out the origin of the ISCO, which has no counterpart in Newtonian
mechanics, we can consider the motion around a Schwarzschild black hole. In the
case of motion in the equatorial plane (θ = π/2 and θ̇ = 0), Eq. (3.7) is

1

2
ṙ2 = E2 − 1

2
−Ueff , (3.18)
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where

Ueff = −M

r
+ L2

z

2r2
− L2

z M

r3
. (3.19)

Equation (3.18) can be seen as the equation of motion in Newtonian mechanics for
a particle in the effective potential Ueff . The first term on the right hand side of
Eq. (3.19) corresponds to the usual potential of Newtonian gravity for a spherically
symmetricmassive body. The second term is the centrifugal potential, which is repul-
sive and inNewtonian gravity prevents that a test-particle with non-vanishing angular
momentum falls to the center. The third term, which gets important at small radii and
is attractive, is absent in Newtonian mechanics and is responsible for the existence of
the ISCO radius. The correction of the Schwarzschild solution to Newtonian gravity
makes the gravitational force stronger than the centrifugal force. Figure3.1 shows
the effective potential around a massive spherically symmetric body in Newtonian
gravity and around a Schwarzschild black hole.

While the ISCO is a relativistic concept and has no Newtonian counterpart, this
does notmean that the ISCOmust always exist.Within the description of aNewtonian
motion in an effective potential,we can say that the ISCOexistswhen at a certain point
gravity becomes so strong that stable orbits are not possible any more. However, if
the gravitational force is never strong enough, there is no ISCO. Thismay happen, for
instance, in the spacetime around a massive body made of non-interacting particles
(where, indeed, there is no event horizon), see e.g. [3, 9]. The gravitational mass
within the shell of radius r decreases as r decreases, and therefore it is possible that
gravity is never strong enough to have an ISCO.

Fig. 3.1 Effective potential
Ueff (r) for a test-particle
moving in the gravitational
field of a Schwarzschild
black hole (red solid curve)
and of a point-like mass in
Newtonian gravity (blue
dashed curve). Here
Lz = 3.9 M and M = 1. See
the text for more details
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3.2 Orbits in the Equatorial Plane in the Kerr Metric

The spacetime around astrophysical black holes is thought to be well approximated
by the Kerr solution, and therefore it is useful to revise the results of the previous
section in the case of the Kerr metric (2.16). More details can be found in the seminal
paper [4]. The conserved specific energy E and the conserved specific axial com-
ponent of the angular momentum Lz of a test-particle in equatorial circular orbits,
Eqs. (3.13) and (3.14), reduce to

E = r3/2 − 2Mr1/2 ± aM1/2

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

, (3.20)

Lz = ± M1/2
(
r2 ∓ 2aM1/2r1/2 + a2

)

r3/4
√
r3/2 − 3Mr1/2 ± 2aM1/2

, (3.21)

where the angular velocity of the test-particle is now

Ω± = ± M1/2

r3/2 ± aM1/2
(3.22)

and, again, the upper sign refers to corotating orbits, the lower sign to counterrotating
ones. Figures3.2 and 3.3 show, respectively, E and Lz as a function of r for different
values of the spin parameter of the black hole.

From the vanishing of the denominator in the expression of E and Lz , we get the
equation for the radius of the photon orbit

r3/2 − 3Mr1/2 ± 2aM1/2 = 0. (3.23)

Fig. 3.2 Specific energy E
of a test-particle moving in a
Kerr spacetime in a circular
equatorial orbit as a function
of the radial coordinate r .
Every curve corresponds to
the case of motion in a
spacetime with a black hole
with a different value of the
spin parameter. The values
are a/M = 0, 0.5, 0.8, 0.9,
0.95, 0.99, and 0.999
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Fig. 3.3 As in Fig. 3.2 for
the axial component of the
specific angular
momentum Lz
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The solution is

rph = 2M

{
1 + cos

[
2

3
arccos

(
∓ a

M

)]}
. (3.24)

For a = 0, rγ = 3M . For a = M , rγ = M for corotating orbits and 4M for
counterrotating orbits.

From the condition E = 1, we find the radius of the marginally bound orbit in
the Kerr metric

rmb = 2M ∓ a + 2
√
M (M ∓ a). (3.25)

For a = 0, rmb = 4M . For a = M , rmb = M for a corotating orbit and

rmb =
(
3 + 2

√
2
)
M ≈ 5.83M (3.26)

for counterrotating orbits.
Lastly, the ISCO radius in the Kerr metric is given by

rISCO = 3M + Z2 ∓ √
(3M − Z1) (3M + Z1 + 2Z2) ,

Z1 = M + (
M2 − a2

)1/3 [
(M + a)1/3 + (M − a)1/3

]
,

Z2 =
√
3a2 + Z2

1 . (3.27)

For a = 0, rISCO = 6M . For a = M , rISCO = M for corotating orbits and rISCO = 9M
for counterrotating orbits. The derivation can be found, for instance, in [6].

It is worth noting that, in the Kerr metric but also in many other black hole metrics
in alternative theories of gravity, the ISCO radius is located at the minimum of the
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energy E . It can thus be obtained also from the equation dE/dr = 0. After some
manipulation, one finds

dE

dr
= r2 − 6Mr ± 8aM1/2r1/2 − 3a2

2r7/4
(
r3/2 − 3Mr1/2 ± aM1/2

)3/2 M, (3.28)

and r2 − 6Mr ± 8aM1/2r1/2 − 3a2 = 0 is the same equation as that we can obtain
from Eq. (3.17), see [6]. Moreover, the minimum of the energy E and of the axial
component of the angular momentum Lz are located at the same radius. After some
manipulation, dLz/dr is

dLz

dr
= r2 − 6Mr ± aM1/2r1/2 − 3a2

2r7/4
(
r3/2 − 3Mr1/2 ± aM1/2

)3/2
(
M1/2r3/2 ± aM

)
, (3.29)

and we see that dE/dr = 0 and dLz/dr = 0 have the same solution.
Figure3.4 shows the radius of the event horizon r+, of the photon orbit rγ , of

the marginally bound circular orbit rmb, and of the ISCO rISCO in the Kerr metric in
Boyer–Lindquist coordinates as functions of a/M .

It is worth noting that, in the case of an extremal Kerr black hole with a =
M , one finds r+ = rγ = rmb = rISCO = M for corotating orbits. However, the
Boyer–Lindquist coordinates are not well-defined at the event horizon and these
special orbits do not coincide [4]. If we write a = M − ε with ε → 0, we find

r+ = M + √
2ε + · · · , rγ = M + 2

√
2ε

3
+ · · · ,

rmb = M + 2
√

ε + · · · , rISCO = M + (4ε)1/3 + · · · . (3.30)

Fig. 3.4 Radial coordinates
of the event horizon r+, of
the photon orbit rγ , of the
marginally bound circular
orbit rmb, and of the ISCO
rISCO in the Kerr metric in
Boyer–Lindquist coordinates
as functions of a/M . For
every radius, the upper curve
refers to the counterrotating
orbit, the lower curve to the
corotating orbit
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We can then evaluate the proper radial distance between r+ and the other radii [4].
Sending ε to zero, the result is

∫ rγ

r+

r ′ dr ′
√

Δ
→ 1

2
M ln 3,

∫ rmb

r+

r ′ dr ′
√

Δ
→ M ln

(
1 + √

2
)

,

∫ rISCO

r+

r ′ dr ′
√

Δ
→ 1

6
M ln

(
27

ε

)
, (3.31)

which clearly shows that these orbits do not coincide even if in Boyer–Lindquist
coordinates they have the same value. The energy E and the axial component of the
angular momentum Lz are

r = rγ E → ∞, Lz → 2EM,

r = rmb E → 1, Lz → 2M,

r = rISCO E → 1√
3
, Lz → 2√

3
M.

(3.32)

3.3 Geodesics in the Kerr Metric

The motion of massive and massless test-particles in a background metric is deter-
mined by the geodesic equations,which are secondorder partial differential equations
in the coordinates {xμ}

ẍμ + Γ μ
ρσ ẋ

ρ ẋσ = 0, (3.33)

where here the dot ˙denotes the derivative with respect to some affine parameter of
the geodesic and Γ μ

ρσ s are the Christoffel symbols. If the spacetime is stationary and
axisymmetric, it is possible to exploit the conservation of the energy and of the axial
component of the angular momentum and slightly simplify the equations of motion.

The Kerr metric is a special case, because there are four constants of motion
(mass, energy, axial component of the angular momentum, and the so-called Carter
constant) instead of three [5]. This implies that, in some coordinate system (for
example, in Boyer–Lindquist coordinates), the equations of motion are separable
and of first order, which significantly simplifies the calculations. Such a property is
not only of the Kerr metric, but of any Petrov type D spacetime. However, in the
Kerr metric, and not in any Petrov type D spacetime, these equations can be reduced
to elliptic integrals. This section reviews how we can obtain the master equations of
motion. More details can be found, for instance, in [6] and in Appendix B.
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The Hamilton–Jacobi equation for the geodesic motion of a test-particle is

2
∂S

∂τ
= gμν ∂S

∂xμ

∂S

∂xν
, (3.34)

where S is the Hamilton’s principal function. In Boyer–Lindquist coordinates, the
metric of the Kerr solution is given by

(
∂

∂s

)2

= − A

ΣΔ

(
∂

∂t

)2

− 4aMr

ΣΔ

(
∂

∂t

) (
∂

∂φ

)
+ Δ

Σ

(
∂

∂r

)2

+ 1

Σ

(
∂

∂θ

)2

+Δ − a2 sin2 θ

ΣΔ sin2 θ

(
∂

∂φ

)2

, (3.35)

where A = (
r2 + a2

)2 − a2Δ sin2 θ . Equation (3.34) becomes

2
∂S
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= − A

ΣΔ

(
∂S
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)2

− 4aMr

ΣΔ

∂S

∂t

∂S

∂φ
+ Δ

Σ

(
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)2

+ 1

Σ

(
∂S
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)2

+Δ − a2 sin2 θ

ΣΔ sin2 θ

(
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)2

= − 1

ΣΔ

[(
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) ∂S

∂t
+ a

∂S

∂φ

]2

+ 1

Σ sin2 θ

[
a sin2 θ

∂S

∂t
+ ∂S

∂φ

]2

+ Δ

Σ

(
∂S

∂r

)2

+ 1

Σ

(
∂S

∂θ

)2

. (3.36)

At this point, we look for a solution of the Hamilton–Jacobi equation of the form

S = 1

2
δτ − Et + Lzφ + Sr (r) + Sθ (θ). (3.37)

where δ = −1 (δ = 0) for time-like (null) geodesics and Sr and Sθ are, respectively,
functions of r and θ only. Equation (3.36) becomes

δΣ = 1

Δ

[(
r2 + a2

)
E − aLz

]2 − 1

sin2 θ

(
aE sin2 θ − Lz

)2 − Δ

(
∂S

∂r

)2
−

(
∂S

∂θ

)2

= 1

Δ

[(
r2 + a2

)
E − aLz

]2 −
(

L2z
sin2 θ

− a2E2

)

cos2 θ − (Lz − aE)2

−Δ

(
∂S

∂r

)2
−

(
∂S

∂θ

)2
, (3.38)
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which can be rewritten as

Δ

(
∂S

∂r

)2

− 1

Δ

[(
r2 + a2

)
E − aLz

]2 + (Lz − aE)2 + δr2

= −
(

∂S

∂θ

)2

−
(

L2
z

sin2 θ
− a2E2 + δa2

)
cos2 θ. (3.39)

In Eq. (3.39), the left hand side depends on r only, while the right hand side depends
on θ only. So they must be separately equal to a constant Q, which is the so-called
Carter constant. We can now write two equations, one for r and one for θ

Δ

(
∂S

∂r

)2

= 1

Δ

[(
r2 + a2

)
E − aLz

]2 − [
Q + (Lz − aE)2 + δr2

]
, (3.40)

(
∂S

∂θ

)2

= Q −
(

L2
z

sin2 θ
− a2E2 + δa2

)
cos2 θ. (3.41)

The solution for S is thus

S = 1

2
δτ − Et + Lzφ +

∫ r

dr ′
√
R(r ′)
Δ

+
∫ θ

dθ ′√Θ(θ ′), (3.42)

where we have introduced the functions R(r) and Θ(θ)

R(r) = [(
r2 + a2

)
E − aLz

]2 − Δ
[
Q + (Lz − aE)2 + δr2

]
, (3.43)

Θ(θ) = Q −
[
a2

(
δ − E2

) + L2
z

sin2 θ

]
cos2 θ. (3.44)

Since

pμ = ∂S

∂xμ
, (3.45)

and pφ = Lz , Eq. (3.41) provides the Carter constant Q

Q = p2θ + p2φ cot
2 θ + a2(δ − E2) cos2 θ. (3.46)

For Q = 0, the motion is in the equatorial plane at any time. In the Schwarzschild
limit a = 0, the Carter constant reduces to

Q =
(

p2θ + p2φ
sin2 θ

)

− p2φ = L2 − L2
z , (3.47)

where L = p2θ + p2φ/ sin2 θ is the total angular momentum. In the general case with
a 
= 0, there is not a direct physical interpretation ofQ.
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The equations of motion can be obtained by setting to zero the partial derivatives
of S with respect to the four constants of motion, δ, E , Lz , andQ. From ∂S/∂Q = 0,
we get

∫ r dr ′
√
R

=
∫ θ dθ ′

√
Θ

. (3.48)

From ∂S/∂δ = 0, ∂S/∂E = 0, and ∂S/∂Lz = 0, we find, respectively,

τ =
∫ r

dr ′ r
′2

√
R

+ a2
∫ θ

dθ ′ cos
2 θ ′

√
Θ

, (3.49)

t = τ E + 2M
∫ r dr ′

Δ
√
R

[
r ′2E − a (Lz − aE)

]
r ′, (3.50)

φ = a
∫ r dr ′

Δ
√
R

[(
r ′2 + a2

)
E − aLz

] +
∫ θ dθ ′

√
Θ

(
Lz

sin2 θ ′ − aE

)
. (3.51)

An important property of the Kerr metric (not of any Petrov type D spacetime) is that
the integrals in Eq. (3.48) are elliptic integrals (see Appendix B). Such a property
is very useful in numerical calculations and is commonly exploited in astrophysical
codes.

Since ẋμ = pμ = gμν pν , Eq. (3.45) provides the expression for the first order
equations of motion

Σ2ṙ2 = R, (3.52)

Σ2θ̇2 = Θ, (3.53)

Σφ̇ = 1

Δ

[
2aMrE + (Σ − 2Mr)

Lz

sin2 θ

]
, (3.54)

Σ ṫ = 1

Δ
(AE − 2aMrLz) , (3.55)

where still A = (
r2 + a2

)2 − a2Δ sin2 θ .

3.4 Image Plane of a Distant Observer

In the calculations of the electromagnetic spectrum of black holes, it is usually
necessary to compute the image of the disk in the plane of the distant observer or,
in other words, to relate the point of the photon emission in the disk to the detection
point in the plane of the distant observer. In general, one has to consider a grid in
the plane of the distant observer and photons with momentum orthogonal to the
plane. The photon trajectories are then integrated backwards in time and one finds
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the position of the emission point in the disk. In the Kerr metric, there are some
simplifications due to the existence of the Carter constant.

3.4.1 General Case

We have a black hole surrounded by an accretion disk and an observer at the distant
D from the black hole and with the viewing angle i , as sketched in Fig. 3.5 [8]. The
image plane of the distant observer is providedwith a systemofCartesian coordinates
(X,Y, Z). Another system of Cartesian coordinates (x, y, z) is centered at the black
hole. The two Cartesian coordinates are related by

x = D sin i − Y cos i + Z sin i,

y = X,

z = D cos i + Y sin i + Z cos i. (3.56)

Let us assume the black hole metric is expressed in spherical-like coordinates.
Far from the compact object, the spatial coordinates reduce to the usual spherical
coordinates in flat spacetime and they are related to (x, y, z) by

r =
√
x2 + y2 + z2,

θ = arccos
( z
r

)
,

φ = arctan
( y

x

)
. (3.57)

Fig. 3.5 The Cartesian
coordinates (x, y, z) are
centered at the black hole,
while the Cartesian
coordinates (X, Y, Z) are for
the image plane of the distant
observer, who is located at
the distant D from the black
hole and with the inclination
angle i . From [1]
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Let us consider a photon at the position (X0,Y0, 0) and with 3-momentum
k0 = −k0 Ẑ perpendicular to the image plane. The initial conditions for the pho-
ton position are

t0 = 0,

r0 =
√
X2
0 + Y 2

0 + D2,

θ0 = arccos
Y0 sin i + D cos i

r0
,

φ0 = arctan
X0

D sin i − Y0 cos i
. (3.58)

For the photon 4-momentum, from kμ = (∂xμ/∂ x̃α)k̃α where k̃α is the 4-momentum
in Cartesian coordinates, we have

kr0 = −D

r0
k0,

kθ
0 =

cos i − (Y0 sin i + D cos i) D
r20√

X2
0 + (D sin i − Y0 cos i)2

k0,

kφ

0 = X0 sin i

X2
0 + (D sin i − Y0 cos i)2

k0, (3.59)

while kt0 can be obtained from the condition gμνkμkν = 0 with the metric tensor of
flat spacetime (the observer is in the flat faraway region), so

kt0 =
√(

kr0
)2 + r20

(
kθ
0

)2 + r20 sin
2 θ0(k

φ
0 )2. (3.60)

With the photon initial conditions (3.58), (3.59), and (3.60), one can compute the
trajectory of any photon with position (X0,Y0, 0) in the image plane and compute
the transfer function of the accretion disk (see Sect. 6.3.1).

3.4.2 Kerr Spacetime

In the Kerr metric, it is more convenient to follow a different approach, which can
be generalized to other spacetimes of Petrov type D.

Let us consider the non-coordinate basis, or orthonormal tetrad and its covariant
counterpart, {E(α)} and {E(α)}, defined by

E(α) = Eμ

(α)∂μ, η(α)(β) = Eμ

(α)gμνE
ν
(β), (3.61)

E(a) = E (α)
μ dxμ, η(α)(β) = E (α)

μ gμνE (β)
ν , (3.62)

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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where det|Eμ

(α)| > 0 to preserve the orientation, η(α)(β) is the Minkowski metric, and
η(α)(β) is its inverse. The components of a generic vector V μ and of its dual-vector
Vμ in the non-coordinate basis are

V (α) = E (α)
μ V μ, V(α) = Eμ

(α)Vμ. (3.63)

More details on non-coordinate basis can be found in textbooks like [10].
Let us consider a stationary, axisymmetric, and asymptotically flat spacetime

whose line element can be written in the following form

ds2 = −e2νdt2 + e2μdr2 + e2ρdθ2 + e2σ (dφ − ωdt)2 , (3.64)

where the functions μ, ν, ρ, σ , and ω are independent of t and r . One can identify a
special class of observers, the so-called locally non-rotating observers, whose world
lines are r = const., θ = const., and φ = ωt + const. These observers somewhat
rotate with the geometry of the spacetime (see the next section for more details). The
non-coordinate basis of these observers are given by [4]

Eμ

(t) =
(
e−ν, 0, 0, ωe−ν

)
, Eμ

(r) =
(
0, e−μ, 0, 0

)
,

Eμ

(θ) =
(
0, 0, e−ρ, 0

)
, Eμ

(φ) =
(
0, 0, 0, e−σ

)
, (3.65)

and

E (t)
μ =

(
eν, 0, 0, 0

)
, E (r)
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0, eμ, 0, 0

)
,

E (θ)
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(
0, 0, eρ, 0

)
, E (φ)

μ =
(

− ωeσ , 0, 0, eσ
)
. (3.66)

In the Kerr metric, Eqs. (3.65) and (3.66) becomes, respectively,
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ΣΔ
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)
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√
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)
, (3.67)

and

E (t)
μ =

(√
ΣΔ

A
, 0, 0, 0

)
, E (r)
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(
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√
Σ

Δ
, 0, 0

)
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E (θ)
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)
, E (φ)
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− 2Mar sin θ√
Σ A

, 0, 0, sin θ
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Σ
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. (3.68)



58 3 Motion Around Black Holes

The conjugate momenta pμ = ∂L /∂ ẋμ are (writing ẋμ as pμ)

pt = −
(
1 − 2Mr

Σ

)
pt − 2aMr sin2 θ

Σ
pφ = −E,

pr = Σ

Δ
pr =

√
R

Δ
,

pθ = Σpθ = √
Θ,

pφ = −2aMr sin2 θ

Σ
pt + sin2 θ

(
r2 + a2 + 2a2Mr sin2 θ

Σ

)
pφ = Lz . (3.69)

The tetrad components can be quickly obtained by using E (α)
μ or Eμ

(α)

p(t) = E (t)
μ pμ = −Eμ

(t) pμ,

p(r) = E (r)
μ pμ = Eμ

(r) pμ,

p(θ) = E (θ)
μ pμ = Eμ

(θ) pμ,

p(φ) = E (φ)
μ pμ = Eμ

(φ) pμ. (3.70)

Now the position of a photon in the image plane of the distant observer is given
by [6]

X0 = lim
r→∞

(
rp(φ)

p(t)

)
= λ

sin i
, (3.71)

Y0 = lim
r→∞

(
rp(θ)

p(t)

)
= ±

√
q2 + a2 cos2 i − λ2 cot2 i, (3.72)

where i is again the viewing angle of the distant observer and λ and q are defined
by

λ = Lz

E
, q2 = Q

E2
, (3.73)

and are constants of motion along the photon path. In other words, the photon at the
position (X0,Y0, 0) is characterized by the constants of motion λ and q, and it is then
possible to integrate the photon trajectories to relate the photon position in the image
plane to the point of emission in the accretion disk (this is discussed in Sect. 6.3.2).

3.5 Frame Dragging

In the framework of Newtonian gravity, only the mass of a body is responsible for
the gravitational force. On the contrary, its angular momentum has no gravitational
effects. In general relativity, even the angular momentum alters the geometry of the

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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spacetime. Frame dragging refers to the capability of a spinning massive body of
“dragging” the spacetime.

In Eq. (3.4), Lz is the specific angular momentum of a test-particle as measured
at infinity. However, even if Lz = 0, the angular velocity of a test-particle Ω = φ̇/ṫ
may be non-vanishing if gtφ 
= 0. In other words, the spinning body generating
the gravitational field forces the test-particle to orbit with a non-vanishing angular
velocity. If Lz = 0, from Eq. (3.4) we find

Ω = − gtφ
gφφ

. (3.74)

In the case of the Kerr metric, we have

Ω = 2Mar
(
r2 + a2

)
Σ + 2Ma2r sin2 θ

. (3.75)

The angular velocity of the event horizon is the angular velocity at the event
horizon of a test-particle with vanishing angular momentum at infinity:

ΩH = −
(
gtφ
gφφ

)

r=r+
, (3.76)

where r+ is the radius of the event horizon. In the case of the Kerr metric, ΩH =
a∗/(2r+).

The phenomenon of frame dragging is particularly strong in the ergoregion, which
is the exterior region of the spacetime in which gtt > 0. In the Schwarzschild
spacetime, there is no ergoregion. In the Kerr spacetime, the ergoregion is between
the event horizon and the static limit; that is

r+ < r < rsl, (3.77)

where rsl the radius of the static limit and in Boyer–Lindquist coordinates is

rsl = M +
√
M2 − a2 cos2 θ. (3.78)

The static limit is simply the surface gtt = 0, while gtt < 0 (> 0) at r > rsl (< rsl).
Ergoregions may exist even inside spinning compact bodies like neutron stars, so it
is not a concept related to black holes only. However, spacetimes with an ergoregion
and without a horizon are usually unstable (even if the timescale of the instability
might be long enough that we cannot exclude the possibility that ergoregions exist
inside compact stars) [7, 11].

In the ergoregion, frame dragging is so strong that static test-particles are not
possible, namely test-particles with constant spatial coordinates. Everything must
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rotate. This can be easily seen by the line element of a static test-particle (dr =
dθ = dφ = 0)

ds2 = gttdt
2. (3.79)

Outside the ergoregion, gtt < 0, and therefore a static test-particle follows a time-like
geodesic. Inside the ergoregion, gtt > 0, and a static test-particle would correspond
to a space-like trajectory, which is not allowed.
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Chapter 4
Astrophysical Black Holes

In general relativity, black holes can form from the complete gravitational collapse
of massive bodies. When a star exhausts all its nuclear fuel, it shrinks to find a new
equilibrium configuration. In the case of ordinary stars, the degenerate pressure of
electrons or of neutrons can eventually stop the collapse and the final product is,
respectively, a white dwarf or a neutron star [94]. For very heavy stars, there is no
mechanism to stop the collapse and the final product is thought to be a black hole.
Black holes may have been formed even in the early Universe from the collapse of
primordial inhomogeneities or during phase transitions.

Astrophysical observations have discovered at least two classes of black holes in
the Universe. Stellar-mass black holes can have a mass from about 3 M� and up to
∼100 M�. The known stellar-mass black holes in X-ray binaries1 have masses in
the range 5–20 M�, while heavier objects, up to ∼60 M�, have been observed by
gravitational wave detectors. Supermassive black holes are at the center of galaxies
and have a mass M ∼ 105–1010 M�. Both object classes can be naturally interpreted
as black holes. As it has been already pointed out, it is fundamentally impossible to
prove the existence of an event horizonwith a real observation, so some authors prefer
to adopt a more conservative attitude and call all these objects black hole candidates.
Stellar-mass black holes have a mass exceeding 3 M�, which is the maximum mass
for a relativistic star. Supermassive black holes are too heavy, too compact, and too
old to be clusters of neutron stars. The non-detection of any thermal component from
the surface of these objects is also consistent with the idea that they have an event

1X-ray binaries are binary systems of a compact object (black hole or neutron star) and a stellar
companion. The X-ray radiation is mainly generated by gas falling from the companion star (donor)
to the compact object (accretor). The gas releases energy as it falls into the gravitational potential
of the compact object and X-rays are emitted from the inner part of the accretion disk (see Sect. 4.5
for more details).
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horizon. The only possible explanation in the framework of conventional physics is
that these objects are the black holes of general relativity, and they could be something
else only in the presence of new physics.

Today there is an increasing number of observational data suggesting also the
existence of intermediate-mass black holes, objects with a mass M ∼ 102–104 M�
filling the gap between the stellar-mass and the supermassive ones. However, their
nature is not clear, evenbecause there are nodynamicalmeasurements of theirmasses.
It is possible that current intermediate-mass black hole candidates are actually a
heterogeneous class of objects, including real intermediate-mass black holes and
also other sources.

4.1 Stellar-Mass Black Holes

From stellar evolution arguments, we expect that in our Galaxy there are about
108–109 black holes formed from the collapse of very massive stars [97, 101], and a
similar number can be expected in any typical galaxy. However, the identification of
these remnants is not easy. In the end, only in quite exceptional cases we can discover
a stellar-mass black hole. This can happen, for instance, when the object is in a binary
and we can observe the X-ray radiation from its accretion disk. Another way is to
observe the gravitational waves produced by the coalescence of two black holes (or
of a black hole and a neutron star, even if there has not been yet a similar observation).
There are also attempts to exploit other approaches, for instance microlensing events
to detect isolated stellar-mass black holes [3].

A stellar-mass black hole is a compact object with amass exceeding themaximum
mass for a neutron star [88]. Assuming general relativity and reasonable equations
of state for matter above nuclear densities, the maximum mass of a relativistic star
cannot be more than 3 M� [48, 54, 91]. If a compact object exceeds this bound,
it cannot be interpreted as a relativistic star made of neutrons, mesons, or quarks:
there is no known mechanism capable of balancing its own weight and preventing
a complete collapse when the nuclear reactions are off. A similar object is thus
classified as a black hole. We have also a body of observational evidence that is
consistent with the fact that these objects have some kind of horizon (see Sect. 4.4).
The observed gravitational waves from the coalesce of stellar-mass black holes well
match with those expected from black holes in general relativity.

Today we have 24 “confirmed” stellar-mass black holes2 in X-ray binaries (black
hole binaries), where the term confirmed is sometimes used to indicate that these
objects have a dynamical measurement of their mass and that the latter exceeds
3 M�. We know also about 40 “unconfirmed” stellar-mass black holes. The latter
have no dynamical measurements of their masses, but they present features that

2This number does not include the black holes observedwith gravitational waves, but the latter could
also be considered “confirmed” stellar-mass black holes because we have robust measurements of
their masses from the gravitational wave signal.
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can be associated to black holes. However, it is likely that at least some of the
unconfirmed black holes are actually neutron stars. Some authors call black holes
the confirmed black holes, and black hole candidates the unconfirmed ones. The
current stellar-mass black holes in X-ray binaries are mainly in our Galaxy and, in
a minor number, in nearby galaxies. Their number is clearly much lower than the
number of black hole remnants in our Galaxy from stellar evolution considerations.
22 binaries with a confirmed stellar-mass black hole are sketched in Fig. 4.1. The
size of these systems can be better understood by the comparison with the Sun and
the distance Sun-Mercury, in the top left corner of Fig. 4.1.

Black hole binaries can be grouped into two classes: low-mass X-ray binaries
and high-mass X-ray binaries. Low-mass X-ray binaries (LMXBs) are systems in
which the stellar companion is not more than a few Solar masses (�3 M�). The mass
transfer from the donor star to the black hole occurs by Roche lobe overflow [53,
62]. These systems are typically transient X-ray sources, because the mass transfer
is not continuous. For instance, a similar X-ray binary may be bright for a period
ranging from some days to a few months and then be in a quiescent state for months
or even decades. During the quiescent state, the X-ray luminosity is typically below
1032 erg/s. This may allow the optical detection of the stellar companion and the
measurement of the mass of the compact object. Stellar evolution models suggest
the existence of a population of 103–104 stellar-mass black holes in LMXBs in the
Galaxy [51, 108]. Today we know 18 confirmed stellar-mass black holes in LMXBs,
and about 40more objects are not dynamically confirmed. New black hole candidates
in LMXBs are regularly discovered every year, at a rate of about 2 objects/yr, when
they pass from a quiescent state to an outburst [15].

The second class of systems is represented byhigh-massX-ray binaries (HMXBs).
Here the stellar companion is massive (�10 M�) and the mass transfer from the
companion star to the black hole is usually due to the wind3 of the former, but
even incipient Roche lobe overflow might be possible. These binaries are persistent
X-ray sources, with typical X-ray luminosities around 1037 erg/s. Among the 24
confirmed black holes, 6 are in HMXBs (Cygnus X-1, LMCX-1, LMCX-3, M33 X-
7, NGC 300-1, IC 10 X-1). Only Cygnus X-1 is in our Galaxy.

In this classification, GRS1915+105 is quite a special object. It is a LMXB,
because the stellar companion has a mass ∼0.5 M�. However, it is a bright X-ray
source since 1992. This may be explained with its large accretion disk (see Fig. 4.1),
which can thus provide enough accretion material at any time.

Gravitational wave detectors can observe the gravitational radiation emitted by
a binary system of two stellar-mass black holes (binary black holes) at the last
stage of their coalescence. In September 2015, the two LIGO antennas detected
the coalescence of two black holes with a mass, respectively, of 36 ± 5 M� and
29 ± 4 M� [1]. The merger produced a black hole with a mass 62 ± 4 M�, while
3.0 ± 0.5 M� was radiated in gravitational waves. The event was called GW150914

3Flows of gas ejected from the upper atmosphere of a star are quite common. In the case of HMXBs,
the wind can be driven by radiation pressure on the resonance absorption lines of heavy elements
[21].
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Fig. 4.1 Sketches of 22 X-ray binaries with a stellar-mass black hole confirmed by dynamical
measurements. For every system, the black hole accretion disk is on the left and the companion star
is on the right. The orientation of the disks indicates the inclination angles i of the binaries. The
distorted shapes of the stellar companions is due to the gravitational fields of the black holes. The
size of the latter should be about 50km, to be compared with the distance Sun-Mercury of about
50 millions km and the radius of the Sun of 0.7 millions km (top left corner). Figure courtesy of
Jerome Orosz

(because detected on 14 September 2015). The masses of the initial and the final
black holes are larger than the masses of the known stellar-mass black holes in X-ray
binaries, but it is clear that heavier black holes produce a stronger gravitational wave
signal and therefore are easier to detect. On 26December 2015, the LIGO experiment
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detected the gravitational waves from the coalescence of another system. The event,
called GW151226, was generated by the coalescence of two black holes with a mass,
respectively, of about 14 and 7 M� [2].

4.1.1 Dynamical Mass Measurements

Relatively robust mass measurements can be obtained through dynamical meth-
ods, by studying the orbital motion of the stellar companion, typically with optical
observations. The system can be studied within Newtonian mechanics, because the
companion star is relatively far from the black hole.4

The key-quantity is the mass function (reintroducing Newton’s gravitational con-
stant GN)

f (M) = K 3
c Porb

2πGN
= M sin3 i

(1 + q)2
, (4.1)

where Kc = vc sin i is themaximum line-of-sight Doppler velocity of the companion
star, vc is the velocity of the companion star, i is the inclination angle of the orbital
plane with respect to the line of sight of the observer, Porb is the orbital period,
M is the mass of the compact object, and q = Mc/M where Mc is the mass of
the companion star. Equation (4.1) is valid for circular orbits, which is usually a
reasonable assumption considering the short circularization timescale and the age of
the X-ray binary [106].

If we can get an independent estimate of i and q and we can measure Kc and Porb,
fromEq. (4.1) it is possible to determine themass of the compact objectM . In general
relativity, the maximummass for a compact star made of neutrons, mesons, or quarks
for plausible matter equations of state is about 3 M� [48, 54, 91]. If M turns out to
be higher than this limit, the object is classified as a black hole because it cannot be
explained otherwise in the framework of conventional physics. In alternative theories
of gravity, the 3 M� bound may somewhat change, but usually not too much [4, 25].
Of course, it is important to be sure that the object is compact and is not a star. An
ordinary star should be observed in the spectrum of the binary. Moreover, the short
timescale variability can confirm that the dark object is compact.

The estimate of the inclination angle i is crucial and its uncertainty usually dom-
inates that of the mass measurement. The inclination angle is often obtained by
modeling optical/near infrared light curves. Especially in LMXBs, light curves are

4Systems in which the companion star is very close to the black hole cannot exist, because the
strong gravitational field around the compact object would disrupt an ordinary star.
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characterized by a specific modulation due to the tidal distortion of the compan-
ion star and the amplitude of the modulation depends on the inclination angle i [72].
However, estimates from different groups of the same binary sometimes do not agree
because of systematic effects not fully under control. In the case of GRS 1915+105,
the estimate of the inclination angle comes from the orientation of the radio jet,
assuming that the latter is orthogonal to the plane of the binary [31]. Upper bounds
on i are sometimes obtained from the absence of the detection of X-ray eclipses.

The mass ratio q can be obtained from a number of different approaches. The
most reliable technique is currently the measurement of the broadening of some
photospheric lines from the companion star [103]. Other approaches are based, for
instance, on fitting stellar atmosphere models [10] or stellar evolutionary models
[109].

Examples of measurements of light curves and of radial velocities are shown in
Figs. 4.2 and 4.3. In Fig. 4.2, we have the optical light curves in the U, B, and V
bands (top panels) and the radial velocity (bottom panels) of Cygnus X-1. In the left
panels, the fitting model has an eccentric orbit with eccentricity e = 0.018. In the
right panels, the fitting model assumes that the orbit is circular. Figure4.3 shows the
X-ray light curve (top panel) and the radial velocity (bottom panel) of M33 X-7. The
low count rate in the top panel in Fig. 4.3 is due to the occultation by the companion
star of the accretion disk around the black hole. M33 X-7 is currently the only known
black hole binary presenting X-ray eclipses.

Table4.1 shows some selected measurements of the orbital parameters of
17 LMXBs and of 4 HMXBs with a dynamically confirmed stellar-mass black hole.
The mass estimates of the black holes are typically higher than 5 M�. In some cases,
the same mass function f (M) exceeds 5 M�, which means the mass of the com-
pact object is heavier than 5 M� independently of the estimate of the mass of the
companion star Mc and the viewing angle of the orbit i , since M > f (M).

Accurate mass measurements are important for a number of reasons. First, it is
the crucial estimate to classify a compact object as a black hole or not. Accurate mass
measurements are necessary in the continuum-fitting method to measure the black
hole spin parameter (see Chap.7). More in general, accurate mass measurements
are required to test black hole formation models. Present data show an unexpected
absence, or at least a low number, of objects in the interval 2–5 M�, namely between
neutron stars and black holes [82]. Numerical simulations of black hole formation
typically do not predict a similar feature in the mass distribution of remnants from
massive stars. The absence of high mass neutron stars may be attributed to the
supernova explosion model (for instance, it could be explained within a delayed
supernova explosion scenario), while the absence of low mass black holes may be
due to systematic effects (for instance, incorrect estimates of the inclination angles
of the orbits).

http://dx.doi.org/10.1007/978-981-10-4524-0_7
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Fig. 4.2 Black hole binary Cygnus X-1. Top panels optical light curves in the U, B, and V bands.
Bottom panels radial velocity. The solid lines are the best-fitting models assuming an eccentric orbit
with eccentricity e = 0.018 (left panels) and a circular orbit (right panels). From [73]. © AAS.
Reproduced with permission
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(a)

(b)

Fig. 4.3 Black hole binary M33 X-7. Top panel the Chandra ACIS light curve in the 0.5–5keV
energy band. The low count rate at the center is the X-ray eclipse. Bottom panel radial velocity
curve. The solid line corresponds to the best-fittingmodel, the dashed line is the best-fitting sinusoid.
The radial velocity shows a nearly sinusoidal variation. From [80]. Reprinted by permission from
Macmillan Publishers Ltd

4.2 Supermassive Black Holes

Supermassive black holes have a mass in the range M ∼ 105–1010 M� [52]. They
are harbored at the center of galaxies, and actually it is thought that every normal
galaxy has a supermassive black hole at its center, namely every galaxy that is not
too small.5 Small galaxies usually have no supermassive object in their nucleus.

As in the case of stellar-mass black holes, there is no direct observational evidence
that these objects are really black holes. They are supposed to be supermassive black
holes because, at least in some cases, they are too massive, too compact, and too old

5Exceptions might be possible: the galaxy A2261-BCG has a very large mass but it might not have
any supermassive black hole at its center [87].
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to be a cluster of non-luminous bodies, like white dwarfs, neutron stars, or stellar-
mass black holes [56]. Within standard physics, the only explanation is that they are
supermassive black holes.

Such a conclusion follows from the consideration that a similar cluster would
have a lifetime due to evaporation and/or physical collisions of its constituents much
shorter than 10Gyr, making its observation in the Universe at the present time highly
unlikely [56]. Assuming favorable conditions for a long cluster lifetime (the lowest
possible concentration tominimize collisions, cluster of equal-mass objects to reduce
the velocity of the cluster evolution, etc.), one employs some model for the cluster
structure and finds the timescale for evaporation and physical collisions.

Evaporation is an inevitable process due to gravitational scattering and makes
some bodies escape from the system. Following [56], in the case of a Plummer
model for the cluster, the evaporation timescale is

tevap(m0) ≈ 4.3 · 104 x
ln (0.8 x)

(
108 M�/pc3

ρh

)1/2

yr , (4.2)

where x = Mh/m0, Mh is the half-mass of the cluster, and m0 is the mass of the
non-luminous bodies the cluster is made of. ρh is the half-mass density, namely the
mean density within the cluster half-radius Rh (the radius of the spherical surface
within which there is the half-mass of the cluster).

The timescale for a body of the cluster to collide with another body is, still
assuming a Plummer model, [56]

tcoll(m0, r0) ≈
[
23.8 G1/2

N M1/3
h ρ

7/6
h

r20
m0

(
1 + m0

21/2 M2/3
h ρ

1/3
h r0

)]−1

s , (4.3)

where r0 is the radius of the non-luminous bodies and it has been reintroduced
Newton’s constant GN.

Considering a cluster of half-mass Mh and half-mass density ρh , its lifetime
depends on the mass and the radius of its constituents and cannot exceed the shorter
timescale between tevap and tcoll; that is τ(m0, r0) < min(tevap, tcoll). For a certain
combination of Mh and ρh , the maximum cluster lifetime is

τmax(Mh, ρh) = max [τ(m0, r0)] . (4.4)

Figure4.4 shows the contour levels of τmax on the plane (Mh, ρh) according to the
analysis in [56], which considers the possibilities that the cluster is made of brown
dwarfs, white dwarfs, neutron stars, and stellar-mass black holes. If the dark mass
at the center of the Galaxy and of NGC 4258 were a cluster of these non-luminous
bodies, the cluster lifetime would be much shorter than 10Gyr. This would make its
observation today definitively unlikely. If these dark masses cannot be clusters of
non-luminous bodies, the simplest interpretation is that they are supermassive black
holes.
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Fig. 4.4 Contour levels of the maximum possible lifetime τmax of a cluster of non-luminous objects
with half-mass Mh and half-mass density ρh . The processes considered for the cluster lifetime are
those of evaporation and physical collisions of its constituents. The black dots represent the location
of specific supermassive black holes in this plane. If we demand that the possible cluster of non-
luminous bodies is older than 10Gyr, only the observations from the supermassive black holes in
our Galaxy and in NGC 4258 can rule out the dark cluster scenario. From [56]. ©AAS. Reproduced
with permission

Today, themost stringent dynamical constraints on the existence of a supermassive
black hole and against the dark cluster scenario are obtained from the observational
data of SgrA∗, the supermassive object at the center of our Galaxy [39]. From the
study of the Newtonian motion of individual stars, we can infer that the mass of
the compact object is about 4 · 106 M�. An upper bound on the size of the black
hole can be obtained from the minimum distance approached by one of these stars,
which is less than 45 AU and corresponds to ∼1,200 M for a 4 · 106 M� object.
Figure4.5 shows the astrometric positions and orbital fits for seven stars orbiting the
supermassive black hole at the center of the Galaxy.

4.3 Intermediate-Mass Black Holes

The initial mass of a stellar-mass black hole should depend on the properties of
the progenitor star: on its mass, on its evolution, and on the supernova explosion
mechanism [6]. A crucial quantity is the metallicity of the star. For a low-metallicity
star, themaximummass of the black hole remnant should be around 100M�, because
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Fig. 4.5 Astrometric positions and orbital fits for seven stars orbiting the supermassive black hole
at the center of the Galaxy. From [39]. © AAS. Reproduced with permission

stars withM > 130M� are supposed to undergo a runaway thermonuclear explosion
that completely destroys the system, without leaving any black hole remnant. All the
known stellar-mass black holes in X-ray binaries have M < 20 M� (see Table4.1).
In the event GW150914 detected by LIGO, each of the two black holes in the binary
system had a mass M ≈ 30 M� and merged to form a black hole with M ≈ 60 M�
[1].

In the case of the supermassive black holes at the center of galaxies, their actual
formationmechanism is not clear. However, observations show that theirmass ranges
from about 105 to about 1010 M� [40].

The term intermediate-mass black holes refers to black hole candidates with a
mass M ∼ 102–104 M� [23]. They may be the remnants of primordial massive stars
of zero-metallicity, the so-called Pop III stars [55]. Intermediate-mass black hole
candidates may form at the center of stellar clusters by merger [61, 86]. They may
be some unevolved supermassive black holes that, for some reason, did not grow
enough [71].

Observational evidence of this class of objects is still controversial, because there
are no dynamical measurements of their masses. For instance, intermediate-mass
black hole candidates may be associated to some ultraluminous X-ray sources. The
latter are X-ray sources in nearby galaxies with an X-ray-luminosity LX > 1039–
1042 erg/s [22]. If they radiate isotropically, their luminosity would exceed the
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Eddington limit for a stellar-mass object.6 At the same time, they do not look like
underluminous supermassive black holes (for instance, they are not at the center of
their galaxy and there may be more than one object in a single galaxy). The nature of
these objects is not clear. They may be intermediate-mass black holes with mass in
the range 102–104 M�. Otherwise, they may be stellar-mass black holes in which the
emission is not isotropic and/or their accretion luminosity may exceed the Edding-
ton limit. For instance, numerical simulations show that it is possible to exceed the
Eddington luminosity by an order of magnitude in the case of non-isotropic emission
and a moderate super-Eddington accretion mass rate [70].

Since the formation of intermediate-mass black holes in dense stellar clusters
seems to be quite a likely possibility, several studies have explored the presence
of these objects in globular clusters. This can be done by studying the kinematics
of the stars in the cluster. Measurements of the radial velocity profile and of the
velocity dispersion profile are compared with theoretical models. The presence of an
intermediate-mass black hole at the center of the cluster would increase the velocity
dispersion in the cluster core. Some studies support the conclusion that at least some
globular clusters have an intermediate-mass black hole at the center [36, 37], but
there is not yet a common consensus on this.

4.4 Existence of Event Horizons

Asdiscussed inChap. 2, a back hole is a region of the spacetime causally disconnected
to future null infinity. If an observer enters the black hole, it cannot communicate
with an observer in the exterior region any more. The fact that this must be “forever”
is crucial and clearly implies that no human experiment can really prove the existence
of a black hole or of an event horizon, because our observations can only last for a
finite time. The existence of an apparent horizon is instead more accessible and fits
better with what one would expect to observe from astrophysical black holes. In the
special case of a stationary spacetime, the event and the apparent horizons coincide
for an observer at infinity, which also means that they cannot be observationally
distinguished if the observational timescale is much shorter than that of the evolution
of the system.

Bearing in mind it is fundamentally impossible to prove the existence of a black
hole with real data, it is anyway very interesting that a number of observations are
consistent with the fact that astrophysical black holes have an event horizon and there
are no observations that are inconsistent with this hypothesis. The next subsections
briefly review these observations. The key-point is that the accreting gas can release
radiation if the compact object has a surface, or can at least heat the compact object
increasing its temperature. The accretion energy can instead be lost in the presence
of an event horizon. The comparison between observations of neutron stars and black

6The Eddington limit is the maximum luminosity for an object and is reached when the pressure of
the radiation luminosity balance the gravitational force. See AppendixG for more details.

http://dx.doi.org/10.1007/978-981-10-4524-0_2
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holes makes these arguments stronger, because in the neutron star case we observe
what we expect for an object with a surface, while if the source is a black hole we
observe what we would expect in the present of an event horizon.

4.4.1 Type I X-Ray Bursts

In the case of a neutron star, the gas of accretion can be accumulated on the neutron
star surface and eventually develop a thermonuclear instability. This causes a ther-
monuclear explosion called type I X-ray burst. The phenomenon seems to be well
understood and theoretical models well agree with observations. These bursts are
observed from binaries in which the compact object is a neutron star, but they have
been never observed from binaries in which the compact object is supposed to be a
black hole [99]. It seems thus that both neutron stars and black holes behave as we
would expect, and the absence of bursts from sources with a black hole can be easily
explained with the fact that the gas cannot accumulate on the surface of the compact
object. The gas instead crosses the event horizon and then cannot emit radiation to
the exterior region any more [66, 107].

4.4.2 X-Ray Binaries in Quiescent State

Most X-ray binaries are transient sources, and they spend a long period in a quiescent
state with low mass accretion rate and luminosity. Even supermassive black holes
may be observed in quiescent state, and the best example is SgrA∗. One may argue
that the luminosity of black holes in quiescent state is too low with respect to their
mass accretion rate [68]. The interpretation is that the gas crosses the event horizon
and is lost, while in the presence of a surface it should stop on the surface and
released radiation. However, this depends on the theoretical model and the presence
of outflows makes the argument weaker.

The argument gets instead stronger when we compare neutron stars and black
holes in quiescent state, because the accretion scenario should be roughly the same
and independent of the actual nature of the central object.

It turns out that black holes can be extremely underluminous in comparison with
neutron stars. Figure4.6 shows the luminosity of X-ray transients in which the com-
pact object is supposed to be either a black hole (filled circles) or a neutron star (open
circles) as a function of the orbital period Porb [67], since the mass accretion rate
should be proportional to Porb. The luminosity of neutron stars is a factor 100 higher
than the luminosity of black holes, which becomes a factor 1,000 when measured
in Eddington units (black holes have a mass about ten times larger). Once again,
the interpretation is that the thermal energy locked in the gas can be completely lost
when the gas crosses the event horizon, while in the neutron star case the gas hits the
surface of the compact object and releases energy [67].
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Fig. 4.6 Eddington scaled
luminosity in the energy
range 0.5–10keV of X-ray
binaries with black holes
(filled circles) and neutron
stars (open circles) in
quiescent state. The diagonal
hatched areas highlight the
fact that binaries with black
holes and neutron stars
occupied two different
regions in the plane, and the
former are about three orders
of magnitude fainter than the
latter. From [67]

Last, it is quite interesting that, during the quiescent period, neutron star binaries
have a thermal blackbody-like component in the X-ray band, which is interpreted as
the emission from the neutron star surface. No similar component is found in binaries
with a black hole [59]. The non-detection of thermal component may be interpreted
as evidence for the absence of a surface and it is consistent with the existence of a
horizon.

4.4.3 SgrA∗

The strongest constraint on the possible emission of radiation from the surface of
black holes is probably reported in [9] (see also [8]). The object under consideration
is SgrA∗. The basic idea is, again, that in the presence of a surface the energy of the
accreting gas must ultimately be radiated, while in the case of a black hole it can be
lost after the gas crosses the event horizon.

The argument is based on three assumptions: (i) SgrA∗ is powered by accretion,
(i i) it has already reached a steady state, and (i i i) it should emit as a blackbody
if it has a surface instead of an event horizon. Relaxing one of these assumptions
requires new physics. However, this is not impossible: for instance, the blackbody
assumption is clearly violated in scenarios in which black holes are actually Bose-
Einstein condensates of gravitons [26, 27]. A similar condensate does not emit as a
blackbody because its constituents do not follow the Boltzmann statistics.

Let L tot be the total accretion luminosity, namely the gravitational binding energy
released by a particle falling onto the possible surface of SgrA∗. L tot is in part
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converted into radiation, Lobs = ηrL tot where ηr is the radiative efficiency, and in part
into the kinetic energy of outflows, Lk = ηkL tot where ηk is the outflow efficiency.
If there is a horizon,

L tot − Lobs − Lk (4.5)

is advected and cannot be observed any more. If there is a surface, such an energy
should be radiated (it cannot heat the object and increase its temperature because we
are assuming a steady state). This radiation should be in the form of a blackbody
spectrum, so the luminosity observed at infinity can be written as

Lsurf = 4πσ R2
aT

4 , (4.6)

where σ is the Stefan-Boltzmann constant, Ra is the apparent radius of SgrA∗, and T
the temperature of its putative surface. Since no thermal component is observed in the
spectrum of SgrA∗, it is possible to put an upper bound on Lsurf/L tot or, equivalently,
a lower bound on ηr + ηk. The constraint is shown in Fig. 4.7: the region above the
black line is excluded.

Fig. 4.7 Constraints from SgrA∗ on the ratio between the surface luminosity and the electromag-
netic accretion luminosity asmeasured at infinity, Lsurf/Lobs, as a function of the photosphere radius
Ra as seen at infinity. D ≈ 8kpc is the distance of the source. The constraints from IRmeasurements
exclude the region of the plane above the black line. The red, green, and blue horizontal lines are
the constraints on Ra/D from VLBI observations, respectively at 1.3, 3, and 7mm wavelengths.
The region on the right of each line is excluded by the corresponding VLBI observation. In the
end, the allowed region is the small corner in the bottom left part of the plane. From [9]. © AAS.
Reproduced with permission
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At the same time,mm-very long baseline interferometric (VLBI) observations can
constrain the size of SgrA∗. These observations can image the accretion flow around
SgrA∗ and put an upper bound on Ra/D, where D is the distance of SgrA∗ from us.
Figure4.7 shows the measurements of the size of SgrA∗ at 1.3, 3, and 7mm and the
region on the right of the corresponding line is excluded. Actually the observation at
1.3mm is smaller than the apparent diameter of the horizon and is usually interpreted
as an orbiting accretion flow. However, it can still provide the correct length scale of
the system.

Combining the constraint from the non-detection of any thermal component and
the upper bound on the apparent size of SgrA∗, the allowed region is the small left
bottom corner in Fig. 4.7. Since we do not observe any radiation from the surface of
SgrA∗, the gravitational energy should be released in the form of radiation and kinetic
energy of outflows. Observations eventually require that ηr + ηk > 0.996. However
ηr is estimated to be 10−4–10−2 and we do not observe any powerful outflow. The
interpretation is that such a gravitational binding energy is indeed lost when the gas
crosses the event horizon of SgrA∗.

4.5 Spectral States

Roughly speaking, the electromagnetic spectrum of accreting black holes has four
main components, as sketched in Fig. 4.8. In the radio/IR band, we may observe the
synchrotron radiation emitted by particles accelerated in jets. It is typically a flat
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Fig. 4.8 Sketch of the electromagnetic spectrum of a black hole. The thermal component of the
accretion disk is in the optical/UV bands for supermassive black holes and in the soft X-ray band in
the case of black hole binaries. The hard X-ray spectrum is dominated by the direct radiation from
a hot corona (power-law component) and the reflection spectrum of the disk (reflected component).
The radio/IR part of the spectrum is due to jets. See Fig. 4.11 and the text for more details
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power-law (S ∝ Eγ with γ ≈ 0) with a break at low frequencies and one at high
frequencies. The thermal component of the accretion disk is in the soft X-ray band
(∼1keV) for stellar-mass black holes and in the optical/UV bands (∼1–10eV) for
the supermassive ones. This is because the temperature of the disk roughly scales
as M−0.25. The hard X-ray spectrum can be usually approximated by a power-law
(S ∝ E−Γ with Γ ≈ 1–3). It is attributed to a corona, a hotter electron cloud (T ∼
100keV) which enshrouds the central disk and acts as an X-ray source as the result
of inverse Compton scattering of the thermal photons from the accretion disk off the
electrons in the corona. The reflected component is produced by the illumination of
the disk by the corona and presents some emission lines.

The contribution from each component may change from source to source, from
different observations of the same source, and somecomponentsmaynot beobserved.
Black holes can thus be found in different spectral states. The transition between
different states was discovered in the early 1970s with Cygnus X-1, and then studied
in more details with stellar-mass black holes in transient X-ray sources. This section
provides a basic review on the topic, without entering the details and without dis-
cussing the fast variability, which is also very important for the classification of the
spectral states but is beyond the scope of this introductory review. It should be noted
that the spectral state classification is still a work in progress, some spectral states and
their physical interpretation are not yet well understood, and different authors may
use a different nomenclature. More details on the topic can be found, for instance,
in [7, 45] and references therein.

4.5.1 Observations

Both transient and persistent X-ray sources exhibit different spectral states. Transient
sourcesmay stay in a quiescent state with a very low luminosity for several months or
even decades and then have an outburst. The latter typically lasts from some days to
a few months. However, exceptions are possible, and an example is GRS1915+105,
which started its current outburst in 1992.

During an outburst, the spectrum of the source changes. Black hole transients can
be conveniently studied in the hardness-intensity diagram (HID), see Fig. 4.9. The
x-axis is for the hardness of the source, which is the ratio between its luminosity in
the hard and in the soft X-ray bands, for instance between the luminosity in the 6–10
and 2–6keV bands, but other choices are also common. The y-axis is for the X-ray
luminosity, for instance in the 2–10keV band, but even in this case other options are
possible, for instance the count number of the instrument. The HID diagram depends
on the source (e.g. the interstellar absorption) and on the instrument (e.g. its effective
area at different energies), but, despite that, it turns out to be extremely useful to study
transient sources.

The prototype of an outburst in a transient source can be described as follows.
The source is initially in the quiescent state. In the case of A0620-00, we observed
an outburst in 1975 and then the source has always been in a quiescent state. Other
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Fig. 4.9 Sketch of the
hardness-intensity diagram
(HID) of a transient X-ray
source with a stellar-mass
black hole, bearing in mind
that there may be differences
between different sources or
even for the same source but
during different outbursts.
See the text for more details

X
-r

ay
 L

um
in

os
ity

Hardness

Low-Hard StateHigh-Soft State

From/To Quiescent State

Hard-Intermediate State

Hard-Intermediate State

Soft-Intermediate State

Soft-Intermediate State

Jet Line

Jet Line?

sources, likeGX339-4, aremuchmore active andwehave observed several outbursts.
The quiescent state is characterized by a very low accretion luminosity, say

Lquiescent
acc < 1033 erg/s ,

< 10−6 LEdd , (4.7)

where LEdd is the Eddington luminosity of the source. The spectrum is usually hard
(but the source may be too faint to detect its spectrum).

At the beginning of the outburst, the hardness of the source is high. The source
becomes brighter and brighter, essentially maintaining the same hardness. The initial
rise may be so fast in some sources, say a few days, that it may not be observed by
instruments. The source is in the so-called low-hard state: the flux in the 1–10keV
range is relatively low, and the spectrum is hard with a power-law index around 1.7
(i.e. S ∝ E−Γ with Γ ≈ 1.7). However, despite its name, at the end of the state the
photon flux may not be low any more. The thermal component is subdominant, and
the temperature of the inner part of the disk may be low, around 0.1keV or even
lower, but it increases as the luminosity of the source rises. During the low-hard
state, compact mildly relativistic steady jets are common.

The source then moves to lower values of hardness. We have first the hard-
intermediate state, where the power-law index is around 2.4 and the thermal disk
component becomes more important, and then the soft-intermediate state. These
states may be identifies by studying the fast variability of the source. It is worth
noting that there exists a jet line, not well understood for the moment, in the HID
[30]: when the source crosses the jet line, we observe transient jets. The hardness of
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the source may oscillate from lower to higher values near the jet line, with the result
that we can observe several transient jets. Unlike the steady jet of the low-hard state,
these jets are typically highly relativistic.

The source then enters the high-soft state, which is a rather stable state. The name
is to indicate that the flux in the 1–10keV band is high and the hardness is low.
The thermal spectrum of the disk is the dominant component in the spectrum, and
it is indeed in the soft X-ray band. The temperature of the inner part of the disk
is around 1keV. In this spectral state, we do not observe any kind of jet. However,
strong winds and outflows are common (while they have never been observed in the
low-hard state). The luminosity of the source may somewhat decreases and changes
hardness, remaining on the left side of the HID, as shown in Fig. 4.9.

At a certain point, the hardness of the source increases. The source re-enters
the soft-intermediate state, the hard-intermediate state, then the low-hard state, and
eventually, when the hardness is high, the luminosity drops down and the source
returns to the quiescent state till the next outburst. Between the soft-intermediate and
the hard-intermediate states, we may observe transient jets, but the existence of a jet
line is not clear here.

The low-hard and the high-soft states are the two “historical” states. They were
the first to be identified and their name was coined to distinguish the case of a low
flux and hard spectrum from that of a high flux and soft spectrum. However, as it can
be seen from Fig. 4.9, when the source is in the low-hard state it does not necessarily
have a flux lower than when it is in the high-soft state.

From the shape of the path of a source on the HID, this diagram is called “q-
diagram” or “turtle-head diagram”. Any source follows this path counter-clockwise.
Figure4.10 shows the HID for low (left panels) and high (right panels) inclination
sources. The gray area in the low hardness region is only reached by sources with
a low inclination angle, as a result of inclination dependent relativistic effects on
accretion disks [64]. This is one more feature that makes the HID source-dependent.

In the case of persistent sources, the picture is slightly different. The most studied
source is Cygnus X-1 (the other persistent sources are in nearby galaxies, so they
are fainter and more difficult to study). This object spends most of the time in the
low-hard state, but it occasionally moves to a softer state, which is usually interpreted
as a high-soft state. LMC X-1 is always in the high-soft state. LMC X-3 is usually
observed in the high-soft state, rarely in the low-hard state, and there is no clear
evidence that this source can be in an intermediate state.

GRS1915+105 is definitively a special source. The system is a LMXBs, but the
source is not transient. Since 1992, it has always been bright without a period of
quiescence. The reason may be the large accretion disk around the black hole (see
Fig. 4.1), so that there is enough material for the accretion process at any time.
This source has never been observed in the typical low-hard state with power-law
component with photon index Γ ≈ 1.7 and, on the contrary, the thermal component
is always present (again, probably because of the large reservoir of material in the
accretion disk).
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Fig. 4.10 Hardness-intensity diagram (HID) of stellar-mass black holes in transient sources
observed from low (left panels) and high (right panels) viewing angles. The gray area of very soft
spectra is only reached by sources observed from a low inclination angle, because of inclination
dependent relativistic effects on accretion disks. Figure4.1 from [64], reproduced by permission
of Oxford University Press

In the case of supermassive black holes, there are at least two important differ-
ences. First, the fundamental scale of a black hole is the gravitational radius rg = M ;
that is, the length and time scales of most processes are proportional to M . 1 day for
a stellar-mass black hole corresponds to 3,000 years for a supermassive black hole of
107 M�, whichmakes impossible to study the evolution of a specific system. Second,
the temperature of the disk scales as T ∼ M−0.25 (see Sect. 6.1). The thermal com-
ponent of the disk is in the soft X-ray band for a stellar-mass black hole, but in the
optical/UV band for a supermassive one. Despite these two issues, it seems that the
two object classes behave in a similar way and it is possible to use for supermassive
black holes the same spectral states as black hole binaries.

It is worth noting that neutron stars in LMXBs exhibit a similar behavior to that
of X-ray transients with a black hole, and one can obtain similar HIDs. This should
not be a surprise, because the qualitative behavior of these systems is determined by
the accretion process and the presence of a compact object, regardless of its exact
nature.

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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Fig. 4.11 Corona-diskmodel. The black hole is surrounded by a cold accretion disk, which radiates
like a blackbody locally and as a multi-color blackbody when integrated radially. The corona is
a hot (∼100keV) electron cloud acting as an X-ray source, due to inverse Compton scattering of
the thermal photons from the accretion disk off the electrons in the corona. Within the lamppost
geometry, the corona is compact and located just above the black hole. The corona illuminates
also the disk, producing a reflection component with some emission lines. See the corresponding
spectrum in Fig. 4.8

4.5.2 Theoretical Models

Figure4.11 shows an accreting black hole in the framework of the disk-coronamodel.
The compact object is surrounded by a thin accretion disk, which has the inner edge
at some radius rin. If the corona is compact and just above the black hole, the set-up
is called the lamppost geometry. In such a scenario, the corona could be the base of
the jet. As shown in Fig. 4.11, the source has a thermal component from the accretion
disk. Through inverse Compton scattering of the thermal photons from the accretion
disk off the electrons in the corona, the latter acts as an X-ray source and produces
a power-law component in the spectrum of the object. The corona illuminates also
the accretion disk, producing a reflection component with some emission lines.

The geometry of the accretion flow changes in different spectral states. Figure4.12
shows the proposal of [28], in which the key-parameter is the mass accretion rate.
There is now a body of observational evidence that this model is too simple and that
it is not only the mass accretion rate that determines the spectral state of a source.
The HID and the study of the fast variability clearly show that a classification based
on the sole mass accretion rate is not adequate. However, the model points out some
important features.

In the quiescent state, the accretion rate is low. The inner edge of the disk rin is
“truncated”, namely it is at some radius larger than the one of the ISCO. The source
can exhibit jets (the two black triangles above and below the black dot representing
the black hole). Near the black hole, the accretion process is described by models
like the advection dominated accretion flow (ADAF) [65], in which the gas is hot
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Fig. 4.12 Sketch of the geometry of the accretion flow in different spectral states as a function of
the mass accretion rate (in Eddington units) according to the proposal of [28]. This picture seems
today too simple to explain observations. See the text for more details

because it cannot efficiently radiate. The accretion luminosity is thus very low and
most of the energy is swallowed by the central object.

In the low-hard state, the accretion rate probably ranges from a few percent to
something like 70% of the Eddington limit. At low accretion rates, the disk is trun-
cated at some radius larger than the ISCO one, but the inner edge approaches the
compact object as the accretion rate/luminosity increases [85]. The temperature of
the inner edge of the disk increases accordingly, because the disk is closer to the black
hole and the accretion rate is higher (this follows from the properties of thin disks,
which will be discussed in Chap.6). There are observations in the hard state in which
the inner edge of the disk may be at the ISCO or at least not far from it [29, 84]. The
truncation of the accretion disk is still a controversial and complicated issue. When
the disk is truncated, it may coexists with a hot, optically thin and geometrically
thick, accretion flow extending from the inner edge of the disk to the ISCO. Even in
the low-hard state we observe steady jets.

In the intermediate states, the source present some features common to the low-
hard and the high-soft states. The inner edge of the disk might be at the ISCO.
Jets are now transient and highly relativistic, so the mechanism responsible for their

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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formation may be different from that of the steady jets in the low-hard and quiescent
states. For the moment, however, we do not know the exact origin of both steady and
transient jets.

In the high-soft state, the accretion disk is probablywell described by theNovikov-
Thorne model [69, 83] (see Sect. 6.1 for more details), at least when the accretion
luminosity is between 5 and 30% of the Eddington limit [60]. The inner edge is
thought to be at the ISCO radius. We normally do not observe any jet.

The very high state of Fig. 4.12may be reached by some sources in some outbursts.
In the HID diagram, it may occurs when the luminosity is very high and the source
is switching from the hard to the soft state. It is not used any more as name for a
spectral state.
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Chapter 5
Observational Facilities

Astrophysical black holes can be studied with electromagnetic radiation and
gravitational waves. In the case of electromagnetic radiation, we can study the pho-
tons released by the gas in the accretion disk, jet, and outflows, as well as the photons
emitted by possible bodies (like stars) orbiting the black hole. In the case of gravita-
tional waves, we can detect the radiation emitted by the inspiral of a compact object
into a black hole, the inspiral and merger of two black holes, and the ringdown of a
black hole.

The electromagnetic spectrum of a black hole ranges from the radio to the
γ -ray band (see Table5.1 for the list of the bands of the electromagnetic spectrum).
The photon energy is determined by the emission mechanism and the environment
conditions. Photons with different wavelengths carry different information about the
black hole and its environment, and require different observational facilities to be
detected. In this chapter, we will briefly reviewX-ray observatories only, because the
X-ray band is the photon energy range of interest for the continuum-fitting method,
X-ray reflection spectroscopy, and QPOs discussed in Part II and Part III in this book.

In the case of gravitational waves, the wave frequency depends on the size of the
system. In particular, the wavelength roughly scales as the linear size of the system
emitting gravitational radiation. Gravitational waves from black holes are expected
to range from a few nHz, in the case of the inspiral of supermassive black holes, to a
few kHz, for the merger and ringdown of stellar-mass black holes. Like in the case
of electromagnetic radiation, gravitational waves with different wavelengths require
different observational facilities to be detected.

5.1 X-Ray Observatories

Earth’s atmosphere blocks out most of the radiation from space, see Fig. 5.1. If it
were not so, life on Earth – at least as we know – would be impossible, because
γ -rays, X-rays, and UV photons are harmful for any organism. X-ray observatories
must thus be on board of rockets or satellites. The first X-ray observatory can be

© Springer Nature Singapore Pte Ltd. 2017
C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity,
DOI 10.1007/978-981-10-4524-0_5

89



90 5 Observational Facilities

Table 5.1 Bands of the electromagnetic spectrum. Please note that different authors may use
slightly different definitions

Band Wavelength Frequency Energy

Radio >0.1m <3GHz <12.4µeV

Microwave 1mm–0.1m 3–300GHz 12.4µeV–1.24meV

Infrared (IR) 700nm–1mm 300GHz–430THz 1.24meV–1.7eV

Visible 400–700nm 430–790THz 1.7–3.3eV

Ultraviolet (UV) 10–400nm 7.9 · 1014-3 · 1016 Hz 3.3–124eV

X-Ray 0.01–10nm 3 · 1016-3 · 1019 Hz 124eV–124keV

γ -Ray <0.01nm >3 · 1019 Hz >124keV

Fig. 5.1 Atmospheric opacity as a function of photon wavelength. Since the atmosphere is opaque
at most wavelengths, only optical and radio telescopes can be at ground level on Earth. γ -ray, X-ray,
UV, and IR observational facilities are required to be on board of rockets or satellites. Credit: NASA

considered a V2 rocket launched in 1948, which was used to observe the Sun, the
brightest X-ray source in the sky. The first extrasolar X-ray source was discovered in
1962 (Scorpius X-1, an X-ray binary with a neutron star of 1.4 M� and a companion
of 0.42 M�) by a team led by Riccardo Giacconi with an X-ray detector on board of
an Aerobee 150 sounding rocket [3]. The Einstein Observatory was the first X-ray
observatory with a Wolter type I telescope [4]. It was launched on 13 November
1978 and worked for about 3 years at an altitude of about 500km. Table5.2 lists a
selection of recent, present, and future X-ray missions.



5.1 X-Ray Observatories 91

Ta
bl
e
5.
2

Su
m
m
ar
y
of

a
se
le
ct
io
n
of

re
ce
nt
,p
re
se
nt
,a
nd

fu
tu
re

X
-r
ay

m
is
si
on

s.
N
ot
es
:1
M
A
X
I
is
on

bo
ar
d
of

th
e
In
te
rn
at
io
na
lS

pa
ce

St
at
io
n;

th
e
la
un
ch

da
te

is
re
pl
ac
ed

by
th
e
in
iti
al
fu
nc
tio

n
ch
ec
ko
ut
on

th
e
In
te
rn
at
io
na
lS

pa
ce

St
at
io
n;
pe
ri
ge
e
an
d
ap
og
ee

ar
e
th
os
e
of

th
e
In
te
rn
at
io
na
lS

pa
ce

St
at
io
n.

2
E
xp

ec
te
d.

3
SR

G
an
d
A
T
H
E
N
A
w
ill

no
to

rb
it
ar
ou
nd

E
ar
th
,b
ut

w
ill

be
lo
ca
te
d
at
th
e
L
2
po
in
t(
1.
5
m
ill
io
ns

km
fr
om

E
ar
th
)

M
is
si
on

L
au
nc
h
da
te

E
nd

of
m
is
si
on

Pe
ri
ge
e
(k
m
)

A
po
ge
e
(k
m
)

In
st
ru
m
en
ts

A
dv
an
ce
d
Sa

te
lli
te
fo
r
C
os
m
ol
og

y
an
d

A
st
ro
ph
ys
ic
s
(A

SC
A
)

ht
tp
://
he
as
ar
c.
gs
fc
.n
as
a.
go
v/
do
cs
/a
sc
a/

20
-2
-1
99
3

14
-7
-2
00
0

50
0

60
0

G
IS

(0
.7
–1
0
ke
V
)

SI
S
(0
.4
–1
0
ke
V
)

R
os
si
X
-r
ay

T
im

in
g
E
xp
lo
re
r
(R
X
T
E
)

ht
tp
://
he
as
ar
c.
gs
fc
.n
as
a.
go
v/
do
cs
/x
te
/

30
-1
2-
19
95

5-
1-
20
12

38
0.
9

38
4.
5

A
SM

(2
–1
0
ke
V
)

PC
A
(2
–6
0
ke
V
)

H
E
X
T
E
(1
5–
25
0
ke
V
)

C
ha
nd
ra

X
-r
ay

O
bs
er
va
to
ry

(C
X
O
)

ht
tp
://
ch
an
dr
a.
ha
rv
ar
d.
ed
u

23
-7
-1
99
9

st
ill

ac
tiv

e
14
,3
07
.9

13
4,
52
7.
6

A
C
IS

(0
.2
–1
0
ke
V
)

H
R
C
(0
.1
–1
0
ke
V
)

L
E
T
G
(0
.0
8–
2
ke
V
)

H
E
T
G
(0
.4
–1
0
ke
V
)

X
M
M
-N

ew
to
n

ht
tp
://
w
w
w
.c
os
m
os
.e
sa
.in

t/
w
eb
/x
m
m
-n
ew

to
n

ht
tp
://
sc
i.e
sa
.in

t/
xm

m
-n
ew

to
n/

10
–1
2-
19
99

st
ill

ac
tiv

e
5,
66
2.
7

11
2,
87
7.
6

E
PI
C
-M

O
S

(0
.1
5–
15

ke
V
)

E
PI
C
-p
n
(0
.1
5–
15

ke
V
)

R
G
S
(0
.3
3–
2.
5
ke
V
)

O
M

(o
pt
ic
al
/U
V
ba
nd
)

In
te
rn
at
io
na
lG

am
m
a-
R
ay

A
st
ro
ph
ys
ic
s

L
ab
or
at
or
y
(I
N
T
E
G
R
A
L
)

ht
tp
://
sc
i.e
sa
.in

t/
in
te
gr
al
/

17
-1
0-
20
02

st
ill

ac
tiv

e
6,
28
1.
9

15
6,
85
9.
1

IB
IS

(1
5
ke
V
–1
0
m
eV

)

SP
I
(1
8
ke
V
–8

m
eV

)

JE
M
-X

(3
–3
5
ke
V
)

(c
on
tin

ue
d)

http://heasarc.gsfc.nasa.gov/docs/asca/
http://heasarc.gsfc.nasa.gov/docs/xte/
http://chandra.harvard.edu
http://www.cosmos.esa.int/web/xmm-newton
http://sci.esa.int/xmm-newton/
http://sci.esa.int/integral/


92 5 Observational Facilities
Ta

bl
e
5.
2

(c
on
tin

ue
d)

M
is
si
on

L
au
nc
h
da
te

E
nd

of
m
is
si
on

Pe
ri
ge
e
(k
m
)

A
po
ge
e
(k
m
)

In
st
ru
m
en
ts

Sw
if
tG

am
m
a-
R
ay

B
ur
st
M
is
si
on

(S
w
if
t)

ht
tp
://
sw

if
t.g

sf
c.
na
sa
.g
ov

20
-1
1-
20
04

st
ill

ac
tiv

e
56
0.
1

57
6.
3

B
A
T
(1
5–
15
0
ke
V
)

X
R
T
(0
.2
–1
0
ke
V
)

U
V
O
T
(o
pt
ic
al
/U

V
ba
nd
)

Su
za
ku

ht
tp
://
gl
ob

al
.ja
xa
.jp

/p
ro
je
ct
s/
sa
t/
as
tr
o_

e2
/

ht
tp
://
w
w
w
.a
st
ro
.is
as
.ja
xa
.jp

/s
uz
ak
u/
in
de
x.
ht
m
l.

en

10
-7
-2
00
5

2–
9-
20
15

55
0

55
0

X
R
S
(0
.3
–1
2
ke
V
)

X
IS

(0
.2
–1
2
ke
V
)

H
X
D
(1
0–
60
0
ke
V
)

M
on
ito

r
of

A
ll-
sk
y
X
-r
ay

Im
ag
e
(M

A
X
I)
1

ht
tp
://
is
s.
ja
xa
.jp

/e
n/
ki
bo

ex
p/
th
em

e/
fir
st
/m

ax
i/

3–
8-
20
09

1
st
ill

ac
tiv

e
40
91

41
61

SS
C
(0
.5
–1
0
ke
V
)

G
SC

(2
–3
0
ke
V
)

N
uc
le
ar

Sp
ec
tr
os
co
pi
c
Te
le
sc
op
e
A
rr
ay

(N
uS

TA
R
)

ht
tp
://
w
w
w
.n
us
ta
r.c
al
te
ch
.e
du

13
-6
-2
01
2

st
ill

ac
tiv

e
60
7.
5

62
3.
9

FP
M
A
(3
–7
9
ke
V
)

FP
M
B
(3
–7
9
ke
V
)

Sp
ek
tr
um

-R
oe
nt
ge
n-
G
am

m
a
(S
R
G
)

ht
tp
://
he
a.
ik
i.r
ss
i.r
u/
SR

G
/e
n/

20
17

2
–

L
2
or
bi
t3

L
2
or
bi
t3

eR
O
SI
TA

(0
.3
–1
0
ke
V
)

A
R
T-
X
C
(0
.5
–1
1
ke
V
)

E
nh

an
ce
d
X
-r
ay

T
im

in
g
Po

la
ri
za
tio

n
(e
X
T
P)

ht
tp
://
w
w
w
.is
dc
.u
ni
ge
.c
h/
ex
tp
/

20
22

2
–

55
02

55
02

SF
A
(0
.5
–2
0
ke
V
)

L
A
D
(1
–3
0
ke
V
)

PF
A
(2
–1
0
ke
V
)

W
FM

(2
–5
0
ke
V
)

A
dv
an
ce
d

Te
le
sc
op
e

fo
r
H
ig
h

E
ne
rg
y

A
st
ro
-

ph
ys
ic
s
(A
T
H
E
N
A
)

ht
tp
://
w
w
w
.th

e-
at
he
na
-x
-r
ay
-o
bs
er
va
to
ry
.e
u

20
28

2
–

L
2
or
bi
t3

L
2
or
bi
t3

X
-I
FU

(0
.2
–1
2
ke
V
)

W
FI

(0
.1
–1
5
ke
V
)

http://swift.gsfc.nasa.gov
http://global.jaxa.jp/projects/sat/astro_e2/
http://www.astro.isas.jaxa.jp/suzaku/index.html.en
http://www.astro.isas.jaxa.jp/suzaku/index.html.en
http://iss.jaxa.jp/en/kiboexp/theme/first/maxi/
http://www.nustar.caltech.edu
http://hea.iki.rssi.ru/SRG/en/
http://www.isdc.unige.ch/extp/
http://www.the-athena-x-ray-observatory.eu


5.1 X-Ray Observatories 93

5.1.1 X-Ray Missions

An X-ray telescope has two basic elements: the optics and the detector. The optics
is used to focus the radiation entering the telescope on the detector. In the case of
visible light, the optics of a telescope can be based either on lenses or on mirrors.
However, in the case of X-ray photons it is not possible to employ the conventional
techniques used for visible light. There is no counterpart of lenses for X-ray photons
and X-rays are transmitted or absorbed by conventional mirrors, not reflected.

The optics inmostX-ray observatories employs grazing incidentmirrors, inwhich
the angle of incidence of the X-ray photon must be very small (hence the name
“grazing”). Snell’s law reads n1 cosα1 = n2 cosα2, where ni is the refractive index
and αi is the angle between the propagation direction of the X-ray photon and the
boundary of the two materials. Vacuum has n = 1. For normal materials, n < 1 in
the X-ray band. Total reflection occurs at all grazing angles smaller than the critical
angle αc given by

αc = arccos n . (5.1)

For 1–10keV photons (wavelength 0.1–1nm) and typical materials employed in X-
ray mirrors (e.g. gold), the critical angle is about 1◦. X-ray mirrors are usually coated
with a thin layer of reflective material, like gold. In general, the refractive index can
be written as n = 1 − δ + iβ, where

δ = nareλ2

2π
f1(λ) , β = nareλ2

2π
f2(λ) , (5.2)

na is the atomic density of the material, re is the classical electron radius, λ is the
photon wavelength, and f1 and f2 are the atomic scattering functions that depend
on λ and the material. n has an imaginary part to take absorption into account. As
the photon energy increases, λ decreases, and n approaches 1. This limits the energy
range of a telescope, because αc becomes too small. The 10–15keV upper bound of
the energy range of Chandra and XMM-Newton is determined by the optics. The
more modern technology employed in NuSTAR allows to have a telescope covering
higher energies.

X-ray mirrors must face other two problems. First, the mirror surface must be
very smooth to prevent photon scattering. In typical mirrors, the roughness of the
surface should not exceed 1/10 the photon wavelength. This is easy to achieve for
visible photons with wavelengths in the range 400–700nm, but it is technologically
much more challenging for X-rays, with wavelengths less than 1nm. Second, single
optical reflection in grazing incidence introduces optical distortions. The problem of
optical distortion was solved in the 1950s by Hans Wolter, who proposed three types
of mirror configurations, called, respectively,Wolter telescopes of type I, II, and III.
The three configurations are shown in Fig. 5.2. Current X-ray observatories usually
employ some version of the Wolter type I configuration. Wolter telescopes require
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Fig. 5.2 Wolter telescopes
of type I (top picture),
II (central picture), and
III (bottom picture). Credit:
NASA’s Imagine the
Universe

two successive reflections from a pair of mirrors, either paraboloid/hyperboloid or
paraboloid/ellipsoid.

The detector of an X-ray telescope counts X-ray photons and measures their
properties (arrival time, energy, etc.). There are several types of detectors for X-ray
telescopes, but for soft X-ray photons (say 0.1–10keV) they all work in a similar
way. When an X-ray photon hits the detector, it produces free electrons due to pho-
toelectric effect or photoionization. These electrons then generate an electric current
proportional to the energy of the X-ray photon.
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Fig. 5.3 The twelve chips of the EPIC-pn camera of XMM-Newton and the connections to the
integrated preamplifiers. Image courtesy of ESA/MPI-semiconductor laboratory/MPE/Institut für
Astronomie und Astrophysik Tübingen

CCD (charge-coupled device) detectors are among themost commonX-ray detec-
tors in current X-ray missions. While CCDs are properly imaging detectors, X-ray
CCDs are also used as X-ray spectrometers. In the case of visible light, a single pho-
ton can produce a single electron in a pixel of the camera, and images are built up by
detecting many photons. In the case of X-rays, the energy of a single photon is high
enough to produce a number of electrons (hundreds or thousands) proportional to its
energy, so it is possible to measure the photon energy. XMM-Newton has three CCD
detectors, called EPIC (European photon imaging camera): two EPIC-MOS (metal
oxide semiconductor), each of them with seven MOS-CCDs, and one EPIC-pn with
twelve pn-CCDs (see Fig. 5.3). The energy resolution at 6keV is around 150eV (full
width half maximum) and is slightly different for EPIC-MOS and EPIC-pn. ACIS
on board of Chandra is a CCD detector with an energy resolution of about 170eV at
6keV.

NuSTAR has CZT (cadmium zinc telluride, CdZnTe) detectors, which are semi-
conductor detectors particularly suitable for high energy photons. NuSTARS is
indeed designed to detect photons up to 79keV, see Table5.2. The energy resolution
is lower than CCD detectors, and it is about 400eV at 6keV.

X-ray micro-calorimeters promise to reach very good energy resolution. XRS on
board of Suzaku had an energy resolution of 6.5eV, but it was never used becausewas
shut down by a cooling system malfunction immediately after the launch. Hitomi
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(ASTRO-H before the launch) was launched in February 2016 and had a micro-
calorimeter with an energy resolution of 7eV in the range 0.3–12keV. However,
Hitomi broke into several parts after the launch due to excessive rotational rate
caused by a malfunction of the satellite. The first micro-calorimeter employed in
X-ray astronomy will probably be X-IFU, on board of ATHENA, which is expected
with an energy resolution of 2.5eV.

5.1.2 X-Ray Spectrum Analysis

The outcome of an observation is a data set called the event list. Roughly speaking,
the event list is a table. Every row is an event, namely the “detection of something”
by the instrument. It may be an X-ray photon from the target source, but also a
background X-ray photon or a cosmic ray. Every column of the event list is reserved
for the measurement of a specific quantity of the events, like the detection time, the
position coordinates of the event (usually in some detector coordinates), the energy,
etc.

The detector does not directly measure the energy of an event, but its PHA (pulse
height amplitude). The PHA is an engineering unit: it describes the integrated charge
per pixel from an event recorded in the detector. The PHA is related to the energy
of the event, and such a relationship is determined by the response of the detector.
A gain table (which may depend on the energy, the detection point in the detector,
etc.) is used to convert the PHA of an event into its energy, say E . A related quantity
is the PI (pulse invariant), which is an integer. For example, the PI may be given by

PI =
[

E

14.6 eV

]
+ 1 , (5.3)

where [. . .] denotes the integer part inside the brackets. With the definition in
Eq. (5.3), if E = 478eV we have PI = 33. The relation between the PI and the
energy E can have any form and, usually, is not linear as in the example in Eq. (5.3).

The spectrum measured by a detector can be written as

C(h) = τ

∫
dE R(h, E) A(E) s(E) . (5.4)

C(h) is in units of counts per spectral bin, where h is the spectral channel in units
of PHA or PI. On the right hand side of Eq. (5.4), we have: the exposure time τ , the
energy E , the redistributionmatrix R(h, E), the effective area A(E), and the intrinsic
spectrum of the source s(E). In general, one has also to take the background into
account, so s(E) in Eq. (5.4) is replaced by s(E)+b(E), where b(E) is the (focused)
background. Non-focused background b′(E) may show up outside the integral and
be insensitive to the redistribution matrix and the effective area.
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Fig. 5.4 Response of the
EPIC-pn detector to
monochromatic lines of 0.3,
0.5, 2.0, and 6.0keV. Figure
courtesy of Matteo
Guainazzi

The redistribution matrix is related to the response of the detector: it roughly
corresponds to the probability that a photon of energy E is detected in the channel h.
For a given detector, it strongly depends on the energy. In the case of an ideal detector,
the redistribution matrix would be a δ-function, say R(h, E) = δ(h−hE ). The width
of the curve R(E) defines the instrument resolution at the energy E . Figure5.4 shows
the redistribution matrix of the EPIC-pn camera on board of XMM-Newton for four
different photon energies E .

The effective area A(E) depends on the optics, possible filters, and the detector. It
is somehow a measurement of the efficiency of these elements and is usually in units
of cm2. A larger effective area increases the photon count for the same exposure time.
In the absence of pile-up1, this is a benefit in general, because it reduces the intrinsic
Poisson noise of the source. Figure5.5 shows the effective area of instruments of
XMM-Newton, Chandra, Suzaku, NuSTAR, eXTP, and ATHENA.

Figure5.6 shows three examples of observed spectrum C(h). The two spectra in
the top panels, which look similar, are the AGN Ark120 (left panel) and the Coma
Cluster (right panel) measured with the EPIC-pn camera. The Coma Cluster is a
cluster of more than 103 galaxies, and is a completely different source with respect
to anAGN. The bottom panel is again the observed spectrum of theAGNArk120, but
now measured by SIS/ASCA. It does not look like the observed spectrum in the top
left panel obtained from the EPIC-pn camera. These pictures show that the shape of
the count spectra does not have much to do with the intrinsic spectrum of the source
s(E), but is instead mainly determined by the characteristics of the instruments, i.e.
the redistribution matrix and the effective area.

A detector measures C(h), and we have to determine s(E). We could think of
inverting Eq. (5.4) to have s(E) in terms of C(h), but in general this is not possible

1Pile-up occurs in the case of bright sources, when two or more photons are detected as a single
event. This clearly causes a distortion in the observed spectrum. For example, the CCD detectors
on board of XMM-Newton and Chandra suffer pile-up in the case of bright X-ray binaries, while
NuSTAR does not. There are specific procedures to fix the problem of pile-up in an observation,
but this inevitably causes a loss of information.
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Fig. 5.5 Effective area as a
function of energy for a
selection of instruments on
board of X-ray satellites
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because of cross-correlations among different energies. We can thus employ the
so-called forward-folding approach, which goes as follows:

1. We consider a theoretical model for the intrinsic spectrum s(E).
2. We convolve the theoretical model with the instrument response, namely redistri-

bution matrix (RMF file of the instrument) and effective area (ARF or ancillary
file), and we get the expectedC(h) for the input parameters used in the theoretical
model. The outcome is called the folded spectrum.2

3. Wecompare the observed spectrumwith the folded spectrumwith somegoodness-
of-fit statistical test.

4. We find “the best fit”, namely we minimize the goodness-of-fit test by changing
the input parameters in the theoretical model. The best fit parameters correspond
to our measurements.

5. We calculate the confidence intervals on the best fit parameters.

2The unfolded spectrum is the spectrum obtained by inverting Eq. (5.4). Equation (5.4) cannot be
inverted in general, but one can invert this equation under some assumptions/simplifications, and
the result is the unfolded spectrum.
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Fig. 5.6 Top left panel spectrum of the AGNArk120 from the EPIC-pn camera on board of XMM-
Newton. Top right panel spectrum of the Coma Cluster from the EPIC-pn camera. Bottom panel
spectrum of the AGN Ark120 from the SIS instrument on board of ASCA. The shape of the count
spectra is mainly determined by the response of the telescope and of the detector, not by the intrinsic
spectrum of the source. Figures courtesy of Matteo Guainazzi

5.2 Gravitational Wave Detectors

Gravitational waves were predicted by Einstein immediately after the formulation of
general relativity. However, generally speaking, they are a prediction of any relativis-
tic theory of gravity. Matter makes the spacetime curved and therefore the motion of
matter alters the background metric around. Gravitational waves are “ripples” in the
curvature of the spacetime propagating at a finite velocity. Nevertheless, for a given
source, different gravity theories may predict a different gravitational wave signal,
even if the motion of matter may be the same.

The first observational evidence for the existence of gravitational waves followed
the discovery of the binary pulsar PSR 1913+16 by Russell Alan Hulse and Joseph
Hooton Taylor in 1974. It was the first binary pulsar to be discovered and Hulse and
Taylor got the 1993 Noble Prize in physics for it. It is a binary system of two neutron
stars, and one of them is seen as a pulsar, whichmakes this system a perfect laboratory
for testing general relativity. Since the discovery of PSR 1913+16, the orbital period
of the system has decayed in agreement with the expectations from general relativity
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Fig. 5.7 Cumulative shift of the periastron time of PSR 1913+16 over about 30 years, from 1975 to
2005. The dots with the small error bars are the data and the solid curve is the prediction of general
relativity for the emission of gravitational waves. From [9]. ©AAS. Reproduced with permission

for the emission of gravitational waves. From the radio data covering about 30 years
of observations, we have [9]

Ṗcorrected
ṖGR

= 1.0013 ± 0.0021 , (5.5)

where Ṗcorrected is the (corrected) observed orbital decay3 and ṖGR is the orbital
decay due to gravitational waves expected in general relativity. Figure5.7 shows the
perfect agreement between the data (the black dots with the small error bars) and
the theoretical prediction (the solid line). The study of the orbital decay of binary
pulsars can constrain alternative theories of gravity, see e.g. [10, 11] and references
therein.

As a ripple in the curvature of the spacetime, the passage of a gravitational wave
causes a temporal variation in the proper distance of a set of test-particles or, alter-
natively, tidal deformations in an extended body. Figure5.8 shows the deformations

3One has to remove the effect due to the relative acceleration between us and the pulsar caused by
the differential rotation of the Galaxy.
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Fig. 5.8 Impact on a ring of test-particles by the six possible polarization modes for gravitational
waves in a metric theory of gravity. The wave propagates along the z direction, as indicated in the
top right corner of each panel. In general relativity, there are only the polarization modes (a) and
(b). From [10] under the terms of Creative Commons Attribution-Non-Commercial 3.0 Germany
License

of a ring of test-particles by the six possible polarization modes in a metric theory
of gravity. An observer feels the passage of a gravitational wave as a distortion of
the spacetime by the effect of a strain. If two test-particles are at a distance L , a
gravitational wave causes a variation ΔL , and the strain h = ΔL/L is related to the
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amplitude of the gravitational wave. h is the quantity measured by a detector and
clearly depends on the position of the detector with respect to the propagation direc-
tion of the gravitational wave. In general relativity, there are only the polarization
modes (a) and (b) of Fig. 5.8, which are usually denoted by h+ and h×, respectively.

Direct detection of gravitational waves is very challenging, and indeed the first
direct detection has been possible only very recently [1]. This is because the expected
amplitude of gravitational waves passing through Earth is extremely small, with h of
order 10−20. If r is the distance of the source from the detection point, h ∝ 1/r . To
have a simple idea of the technological difficulties to detect gravitational waves, we
can consider that the Earth’s radius R ≈ 6,000km would change by ΔR = 60 fm
(1 fm = 10−15 m) because of the passage of a gravitational wave with h = 10−20.
Such a value of ΔR is much smaller than the radius of an atom (∼105 fm).

Table5.3 lists a selection of recent, present, and future/proposed gravitational
wave detectors. There are three main types of detectors, which will be briefly review
in the next subsections: resonant detectors, interferometers (either ground-based or
space-based), and pulsar timing arrays.

Figure5.9 shows the sensitivity curves of some gravitational wave detectors and
the expected strength of gravitational wave sources. The x-axis is for the frequency ν

of the gravitational waves. The y-axis is for the (dimensionless) characteristic strain
hc, which is defined as [7]

|hc(ν)|2 = 4ν2|h̃(ν)|2 , (5.6)

where h̃(ν) is the Fourier transform of h(t). hc is not directly related to the amplitude
of the gravitational wave, while includes the effect of integrating an inspiralling sig-
nal. The energy density in gravitational waves is another commonly used quantity [7]
(reintroducing the constant c and GN for clarity)

ρc2 = c2

16πGN

∫ +∞

−∞
(2πν)2 h̃(ν) h̃∗(ν) dν =

∫ +∞

−∞
SE (ν)dν , (5.7)

where h̃∗ is the complex conjugate of h̃ and SE (ν) is the spectral energy density (i.e.
the energy per unit volume of space and unit frequency)

SE (ν) = c2

16πGN
(2πν)2 h̃(ν) h̃∗(ν) . (5.8)

The gravitational wave frequency is determined by the size of the source. In
particular, the wavelength of a gravitational wave is usually of the order the size of
the source, as one could indeed expect considering that the wave is a ripple in the
curvature of the spacetime caused by matter motion. For a system of mass M and
size R, the frequency of the gravitational wave is roughly
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been removed for clarity. The figure also shows the expected characteristic strain and frequency of
a number of possible sources

ν ∼
(
M

R3

)1/2

∼ 1

(
ρ

108 g/cm3

)1/2

Hz . (5.9)

If we have a binary system of two 10 M� black holes separated by 10 gravitational
radii (M/R3 ∼ 1013 g/cm3), the frequency of the emitted gravitational waves is about
300Hz. If the distance between these two black holes is 100 gravitational radii, the
frequency is about 10Hz.

The frequency band of the sensitivity of a detector is also related to the size of
the detector. Within the same kind of detectors, roughly speaking a larger/smaller
detector may be sensitive to lower/higher frequencies (modulo other complications).

5.2.1 Resonant Detectors

Resonant detectors consist of a large resonant body (bar) which is stretched and
squeezed by the passage of a gravitational wave. The sensitivity of the detector is
peaked at its mechanical resonance, which corresponds to the first longitudinal mode
of the bar and in most detectors is around 1kHz.

The first gravitational wave detector was the resonant detector constructed by
Joseph Weber in the 1960s. It was a 2m aluminum cylinder held at room temper-
ature and isolated from vibrations in a vacuum chamber. The claim of detection of
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Fig. 5.10 Cartoon of the AURIGA detector. The mechanical resonator is an aluminum cylinder of
3m of length, 60cm of diameter, and with a mass of 2,300kg. The bar is cooled down to 100mK
to reduce the thermal noise. The acoustic noise of the laboratory is suppressed by placing the bar
in two vacuum chambers. Mechanical noise (floor vibrations caused by nearby moving vehicles or
walking persons, seismic noise, etc.) is reduced by placing the experiment on the top of a 200 tons
heavy concrete platform which sits on a sand layer. The suspensions are also adopted to reduce
mechanical noise. Figure adapted from http://www.auriga.lnl.infn.it

gravitational waves was reported in [8]. However, such a detector was only able to
measure strains of order 10−16. This should not be enough to detect gravitational
waves from astrophysical sources.

Figure5.10 is a cartoon of the AURIGA detector, which was an INFN (Istituto
Nazionale di Fisica Nucleare) experiment installed at the Laboratori Nazionali di
Legnaro, near Padua, in Italy. The bar was an aluminum cylinder of 3m of length,
60cmof diameter, andwith amass of 2,300kg. The challengewas to reduce a number
of noises caused by the atoms of the bar itself and by the surrounding environment.
The bar was cooled down to 100mK to reduce the thermal noise, namely the motion
of the atoms of the bar. The bar was inside two vacuum chambers to reduce the
acoustic noise of the laboratory. Mechanical noise due to the vibration of the floor
was reduced by placing the detector on the top of a 200 tons heavy concrete platform
sitting on a sand layer and by some mechanical suspensions. The vibration of the bar
was read out by a smaller mass (resonant transducer) of about 1kg. The transducer
had the same resonant frequency as the bar, so it could pick up resonantly the bar
vibrations. Since it was much lighter, the amplitude of its vibrations could be much
larger.

EXPLORER, ALLEGRO, NAUTILUS, and AURIGA were all cylindrical bar
detectors and worked in a similar way. MiniGRAIL and Mario Schenberg were
instead spherical detectors. The mass of MiniGRAIL was 1,150kg and the diameter
was 65cm. The cryogenic chamber was cooled down to 20mK. Spherical antennas

http://www.auriga.lnl.infn.it
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are technologically more challenging, but they present some advantages in the possi-
bility of detecting gravitational waves; see e.g. [2] and reference therein. In particular,
a spherical detector can detect gravitational waves arriving from any direction.

Resonant detectors (both bar and spherical detectors) did not receive funds for
some years and their groups have joined gravitational wave laser interferometers.

5.2.2 Interferometers

Gravitational wave laser interferometers are based on a Michelson interferometer.
The set-up of the advanced LIGO detectors is sketched in Fig. 5.11. There are two
arms, which are orthogonal each other. A beamsplitter splits the original laser beam
into two beams, which are reflected by the two mirrors at the end of the two arms and
eventually recombine and produce an interference pattern. In general, the passage of
a gravitational wave would change the travel time in the two arms in a different way:
depending on the propagation direction of a gravitational wave with respect to the
orientation of the interferometer, one of the arms can be stretched, while the other can
be squeezed. The photodetector at the place of the interference pattern can measure
a change in the proper length of the arms. To increase the effective path length of

Fig. 5.11 Sketch of the advanced LIGO detectors, location and orientation of the LIGO detectors
at Hanford (H1) and Livingston (L1) (a), and sensitivity curves in terms of equivalent gravitational
wave strain amplitude (b). From [1] under the terms of the Creative Commons Attribution 3.0
License
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Fig. 5.12 Aerial view of the interferometer detector Virgo (Cascina, Pisa, Italy). From the Virgo
collaboration under the Creative Commons CC0 1.0 Universal Public Domain Dedication

the laser light in the arms, there are partially reflecting mirrors, which make the laser
light run along the arms many (typically hundreds) times.

TAMA 300 was the first laser interferometer to work, but its sensitivity is limited
by its small size. The length of its arms is 300m. GEO 600 is a laser interferometer
with arms of 600m. In the case of LIGO and Virgo, the length of the arms is,
respectively, 4 and 3km. Figure5.12 shows the aerial view of the Virgo detector,
near Pisa, in Italy. KAGRA and the Einstein Telescope are underground detectors,
to reduce the seismic noise. The Einstein Telescope will have a equilateral triangle
geometry, with three arms of 10km and two detectors in each corner.

Space-based laser interferometersworkwith a constellation of satellites (e.g. three
satellites in eLISA and four clusters of three satellites in the case of DECIGO). The
working principle is the same as the ground-based laser interferometers, and one
wants to monitor the proper distance among mirrors located in different satellites.
The distance between satellites is larger than the length of the arms of ground-based
laser interferometers, so these experiments are sensitive to gravitational waves at
lower frequencies (see Fig. 5.9). This is also possible because the limitation at low
frequencies in ground-based experiments is due to seismic noise, but there is no
seismic noise in space. In the case of DECIGO, the distance among the satellites
should be ∼103 km, while the arms of eLISA should be ∼106 km.
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The sensitivity achievable by a laser interferometer can be understood as follows.
We can consider the case of LIGO, where the laser wavelength is λ ∼ 1µm and the
interferometer arms have L = 4km. If we could measure ΔL only with a precision
of order the size of a fringe, i.e. ΔL ∼ λ, the minimum detectable strain would
be h ∼ λ/L ∼ 3 · 10−10. Gravitational waves with a strain of order 10−20 can be
detected if we can measure changes in the arm length much smaller than λ. The
photodetector of the experiment can indeed monitor changes in the photon flux and
reach a sensitivity ΔL ∼ λ/

√
N , where N is the number of photons arriving at the

detector and
√
N is its fluctuation, being a Poisson process. If P is the laser power,

N ∼ P/(νEγ ), where ν is the frequency of the gravitational wave (we can collect
photons for a time t ∼ 1/ν) and Eγ is the photon energy. If we consider P ∼ 1W,
ν = 100Hz, and λ ∼ 1µm, we find N ∼ 1016 and h ∼ 10−18. Moreover, the two
arms of the interferometer are two Fabry–Perot optical cavities, and they can store the
light for many round trips. For ν = 100Hz and L = 4km, the light can make about a
thousand round trips during the passage of a gravitational wave, which increases the
effective arm length by the factor ∼103 and the interferometer sensitivity becomes
h ∼ 10−21.

5.2.3 Pulsar Timing Arrays

In a pulsar timing array experiment, one monitors 20–50 well-known millisecond
pulsars to find possible variations in the distance of these pulsars. Like in the inter-
ferometers in the previous subsection, the passage of gravitational waves contracts
the space in one direction and expands the space in the other direction, thus changing
the arrival time of the pulsar signals. Since millisecond pulsars can be used as very
precise clocks, it is possible to infer variations in the time arrival of the signal of
order of some ns. Two review articles on pulsar timing arrays are [5, 6].

The distance between Earth and these pulsars in the Galaxy is 1–10kpc, which is
definitively much larger than the length scale involved in the interferometric detec-
tors. Pulsar timing array experiments can thus detect gravitational waves of very low
frequency, in the range 1–100nHz. There are two main possible sources for such low
frequency gravitational waves. (i) Binary systems of two supermassive black holes
with an orbital period ranging from a few months to a few years. Even if they are
far from us, the power emitted in gravitational waves is huge, and the signal may be
strong enough to be detected. (ii) Gravitational waves produced in the early Universe.
There is a number of different scenarios predicting a background of low frequency
gravitational waves, like decay of cosmic strings, inflationary models, and first order
phase transitions. In all these cases, the frequency of the gravitational waves would
be very low because of the cosmological redshift.

Table5.4 lists the present pulsar timing array projects and the near future SKA
experiment. With the available pulsar data, it is only possible to get some upper
bounds on the amplitude of low frequency gravitational waves. These bounds can
be improved with time, because the precision is determined by the observational
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Table 5.4 List of pulsar timing array projects. EPTA, PPTA, NANOGrav, and IPTA are already
operative. SKA is expected to start in 2020

Project

European Pulsar Timing Array (EPTA)
http://www.epta.eu.org

Parkes Pulsar Timing Array (PPTA)
http://www.atnf.csiro.au/research/pulsar/ppta/

North American Nanohertz Observatory for Gravitational Waves (NANOGrav)
http://nanograv.org

International Pulsar Timing Array (IPTA)
http://www.ipta4gw.org

Square Kilometre Array (SKA)
https://www.skatelescope.org

time of the pulsars. We may also discover new millisecond pulsars suitable for these
measurements. This would increase the number of sources monitored, which is also
helpful to improve the sensitivity.
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Chapter 6
Thin Accretion Disks

The standard framework for the description of geometrically thin and optically thick
accretion disks1 is the Novikov-Thorne model [38, 40], which is the relativistic
generalization of the Shakura–Sunyaev one [47]. The model is relatively simple,
and it is formulated in a generic stationary, axisymmetric, and asymptotically flat
spacetime. The time-averaged radial structure of the accretion disk follows from the
fundamental laws of the conservation of rest-mass, energy, and angular momentum.

In the Kerr metric, the Novikov-Thorne model has four fundamental parameters:
the black holemassM and the black hole spin parameter a∗, both related to themetric
of the spacetime, themass accretion rate Ṁ , and the viscosity parameter α. The latter,
however, does not enter the equations for the time-averaged radial structure of the
accretion disk.

6.1 Novikov-Thorne Model

The Novikov-Thorne model describes geometrically thin and optically thick accre-
tion disks around black holes. Accretion is possible because viscous magnetic or
turbulent stresses and radiation transport energy and angular momentum outward.
There are slightly different versions of themodel, but the typical assumptions are [40]:

1. The spacetime is stationary, axisymmetric, asymptotically flat, and reflection-
symmetric with respect to the equatorial plane.

2. The accretion disk is non-self-gravitating; that is, the impact of the disk’s mass
on the background metric is ignored.

1An accretion disk is geometrically thin (thick) if the disk opening angle is h/r � 1 (h/r ∼ 1),
where h is the semi-thickness of the disk at the radial coordinate r . The disk is optically thick (thin)
if the photon mean free path in the disk l = 1/(σn), where σ is the photon scattering cross-section
in the disk medium and n is the number density of scattering particles in the disk, is l � h (l � h).

© Springer Nature Singapore Pte Ltd. 2017
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3. The accretion disk is in the equatorial plane; that is, the disk is perpendicular to
the black hole spin.

4. The inner edge of the disk is at the ISCO radius.
5. The accretion disk is geometrically thin, namely the disk opening angle is h/r �

1, where h is the semi-thickness of the disk at the radial coordinate r .
6. We suppose to average over time scales Δt that are short enough to assume that

the spacetime is stationary (for instance, the mass accreted by the central object
does not appreciable change the background metric) and large enough to neglect
possible inhomogeneities in the accretion fluid.

7. The particles of the gas follow nearly-geodesic circular orbits in the equatorial
plane. In this case, we can use the expressions for the 4-velocity, the energy,
the axial component of the angular momentum, and the angular velocity found
in Sects. 3.1 and 3.2. It is worth noting that here the term “particle” is used to
indicate a parcel of gas.

8. Radial heat transport is ignored, and energy and angular momentum are radiated
from the disk surface.

9. Magnetic fields are ignored.
10. Energy and angular momentum from the disk’s surface are only carried away by

photons with wavelength λ � M .
11. The effect of energy and angular momentum transport by photons emitted from

the disk and returning to the disk due to strong light bending in the vicinity of
the black hole (returning radiation) is neglected.

Some assumptions are sometimes relaxed, while others cannot. For instance, the
fact that the inner edge of the disk is assumed at the ISCO radius plays a crucial role
in the spin measurements via the continuum-fitting and iron line methods. However,
it is straightforward to relax this assumption and set the inner edge of the disk at a
larger radius. The time-average radial structure of the disk changes, but not the form
of its equations. The fact that the accretion disk must be geometrically thin cannot be
relaxed, because otherwise other assumptions are not satisfied and the structure of
the disk is completely different. The effect of the returning radiation was neglected in
the original paper [40], but it is often taken into account in spin measurements via the
continuum-fitting method [29] and is definitively non-negligible in the calculation
of the polarization of the spectrum of the disk (see Sect. 7.3).

6.1.1 Validity of the Novikov-Thorne Model

The validity of the Novikov-Thorne model has been explored in a number of studies.
The assumptions 1 and 2 are very natural. The Assumption 1 holds in the Kerr metric
and in any plausible extension. The disk’s mass is usually many orders of magnitude
smaller than the mass of the central black hole, so its effects on the metric of the
spacetime can indeed be ignored; see Sect. 6.5 for more details.

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_7
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The validity of the assumption 3 depends on the origin and the evolution of the
system. The cases of stellar-mass black holes and of supermassive black holes are
somewhat different. Let us first consider stellar-mass black holes. If the object is the
final product of the supernova explosion of a heavy star in a binary, its spin should
be orthogonal to the orbital plane of the binary in the case of a symmetric explosion
without strong shocks and kicks [18]. A misalignment may be introduced by a non-
symmetric supernova explosion and/or shocks and kicks, as well as in those systems
formed through multi-body interactions (binary capture or replacement), where the
orientation of the spin of the black hole and that of the orbital angular momentum of
the binary are initially uncorrelated.

The inner part of the disk – which is the one important in the continuum-fitting
and the iron line measurements – may be in any case expected to be in the equatorial
plane perpendicular to the spin of the compact object as a result of the Bardeen–
Petterson effect [12, 28]. This mechanism works for thin disks, because it requires
α > h/r , where α ∼ 0.01–0.1 is the viscosity parameter. The combination of the
Lense-Thirring precession with the disk viscosity eventually drags the innermost
part of the disk into alignment with the black hole spin. Because of the short range of
the Lense-Thirring effect, the outer part tends to remain in its original configuration.
“Bardeen–Petterson configuration” refers to a system in which the inner part of the
disk is flat and perpendicular to the black hole spin, while the outer part is also flat
but in the plane perpendicular to the angular momentum vector of the binary.

The alignment timescale of thin disks has been estimated to be in the range
106–108 years, and therefore the disk should be already adjusted in the black hole
equatorial plane for not too young systems [50] (but see [33, 34] for more details).
However, the actual timescale depends on some unknown parameters, like the vis-
cosity α, [24, 32] and it should be noted that at least some numerical simulations do
not find the adjustment of the disk [16, 57]. If the inner part of the disk is a hot, geo-
metrically thick accretion flow, the picture is different and the inner disk precesses
as a solid body [22]. Future X-ray spectropolarimetric measurements of the thermal
spectrum of accretion disks will be able to check the validity of the assumption that
the disk is in the equatorial plane (see Sect. 7.3).

In the case of supermassive black holes, the orientation of the accretion disk with
respect to the black hole spin is expected to change during the evolution of the system,
in particular because of galaxy merger processes. However, the Bardeen–Petterson
effect should have had the time to make the inner part of the disk orthogonal to the
black hole spin in the case of prolonged disk accretion.

The assumption that the inner edge of the disk is at the ISCO radius has a crucial
role in the spin measurements via the continuum-fitting and the iron line methods.
This is because, assuming the Kerr metric, there is a one-to-one correspondence
between the spin parameter a∗ and the ISCO radius rISCO (see Fig. 3.4), and the
exact position of the inner edge of the disk has a strong impact on the features of
the spectrum. Observations show that the inner edge of the disk does not change
appreciably over several years when the source is in the thermal state. The most
compelling evidence comes from LMC X-3. The analysis of many spectra collected
during eight X-ray missions and spanning 26 years shows that the radius of the inner

http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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Fig. 6.1 Top panel Accretion disk luminosity in Eddington units versus time for 766 spectra of
LMC X-3. The shaded region does not satisfy the thin disk selection criterion L/LEdd < 0.3, as
well as the data below the dotted line, which marks L/LEdd = 0.05. Bottom panel fitted value of the
inner disk radius of the 411 spectra in the top panel that can meet the thin disk selection criterion.
See the text for more details. From [51]. c© AAS. Reproduced with permission

edge of the disk is quite constant [51], see Fig. 6.1. The most natural interpretation
is that the inner edge is associated to some intrinsic property of the geometry of the
spacetime, namely the radius of the ISCO, and is not affected by variable phenomena
like the accretion process.

From the theoretical point of view, the fact that the inner edge of the disk is
at the ISCO radius is related to the assumption of the model that the shear stress,
driving the accretion at large radii, vanishes at the ISCO. Within a hydrodynamical
description, the problem has been studied in [2, 39, 46]. The conclusion of these
studies is that deviations from the Novikov-Thorne model decrease monotonically
with the disk thickness h/r . So, thin disks with h/r � 1 should be well described
by the Novikov-Thorne model.

The case of magnetized accretion disks is more difficult to address, and studies
with general relativistic magnetohydrodynamics (GRMHD) simulations have been
reported in [36, 37, 41, 45]. In particular, the impact of deviations from the Novikov-
Thorne model in the spin measurements via the continuum-fitting method has been
discussed in [27] (see also Sect. 7.2). According to [27], there are deviations from
the theoretical model, but they decrease as the disk thickness h/r decreases. This
thus requires the Assumption 5 and justifies the Assumption 9. Moreover, current
measurements via the continuum-fitting method are dominated by the uncertainties
on the black hole mass, distance, and viewing angle, while deviations from the
Novikov-Thorne model are subdominant.

The Assumption 6 is necessary because we want that the accretion process is
stationary and axisymmetric. Since inhomogeneities in the accretion flow are present
in the reality, physical quantities of the gas are averaged over a time intervalΔt short
enough to have negligible changes in the background metric (which is not a problem

http://dx.doi.org/10.1007/978-981-10-4524-0_7
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for our observations of stellar-mass and supermassive black holes) and long enough
to assume that the system is perfectly stationary. With the same spirit, we have to
average over the coordinate φ to remove deviations from a perfectly axisymmetric
configuration. For any “real” quantity Ψ (t, r, θ, φ), in what follows we will use the
quantity

〈Ψ (r, θ)〉 = 1

2πΔt

∫ Δt

0

∫ 2π

0
Ψ (t, r, θ, φ) dtdφ . (6.1)

The notation 〈.〉 will be omitted for simplicity.
The Assumption 7 requires that the radial acceleration of the gas due to pressure

gradients is negligible in comparison with the gravitational acceleration due to the
black hole. This requires that, as the gas falls onto the black hole, its potential energy
is transported away or radiated away, and only a negligible part is converted to internal
energy of the gas [40]. This is true in the case of radiatively efficient accretion flow
and it is the case for thin disks.

Concerning the Assumption 8, heat advection scales as∼h2, so even this assump-
tion requires thin accretion disks.

The condition λ � M permits us to neglect possible coherent superpositions of
the radiation reaction in nearby regions of the disk and superradiance phenomena.
In the case of stellar-mass black holes, M ≈ 10 km, while the radiation emitted by
the inner part of the disk is mainly in the X-ray band and the condition λ � M is
surely satisfied. The same conclusion holds for supermassive black holes.

Returning radiationmaybeneglected in somecases, but not in others. For instance,
it is quite important in the case of the spectrum of the polarization, see Sect. 7.3, and
it is indeed included in standard calculations.

In spin measurements, it is clearly very important to select the observations and
the sources in which the disk is geometrically thin and its inner edge is at the ISCO
radius. In the case of the continuum-fitting method, one usually selects sources in
the high-soft state with a strong contribution from the thermal disk emission. The
luminosity of the source should be between ∼5% and 20–30% of the Eddington
limit [35]. At lower luminosities, the disk may be truncated. In such a case, the inner
edge of the disk would be at a radius larger than the ISCO. For higher accretion rates,
the disk is not thin any more: several assumptions of the model are not valid and
even the inner edge of the disk may not be at the ISCO radius. Thick disks are briefly
reviewed in Appendix E.

6.1.2 General Case

The power of the Novikov-Thorne model is that the time-averaged radial structure of
the accretion disk can be obtained by the conservation laws of rest-mass, energy, and
angularmomentum; that is, it is independent of the specific properties of the accretion

http://dx.doi.org/10.1007/978-981-10-4524-0_7


118 6 Thin Accretion Disks

fluid. In this subsection, we briefly discuss the master equations; the details of the
calculations can be found in the original paper [40].

From the equation of the conservation of rest-mass,∇μ (ρuμ) = 0, where ρ is the
time-averaged rest-mass density and uμ is the time-averaged 4-velocity of the fluid,
we integrate over the 3-volume of the disk between r and r + Δr and over the time
Δt . By using Gauss’s theorem, we obtain that the time-averaged mass accretion rate
is independent of the radius r

Ṁ = −2π
√−G�̃ur = const. , (6.2)

where G = −α2grr gφφ is the determinant of the near equatorial plane metric (which
means it is evaluated at θ = π/2 and depends only on r ) and α2 = g2tφ/gφφ − gtt is

the lapse function. �̃ is the time-averaged surface density

�̃(r) =
∫ h

−h
ρdz , (6.3)

where z is the usual z-coordinate of cylindrical-like coordinates.
From the conservation laws of energy, ∇μT tμ = 0, and angular momentum,

∇μT φμ = 0, we can obtain the time-averaged energy flux emitted from the sur-
face of the disk F (r) (as measured in the rest-frame of the accretion fluid) and the
time-averaged torque Wr

φ(r)

F (r) = Ṁ

4πM2
F(r) , (6.4)

Wr
φ(r) = Ṁ

2πM2

(ΩLz − E)

∂rΩ
F(r) . (6.5)

Here E , Lz , and Ω are, respectively, the conserved specific energy, the conserved
axial component of the specific angular momentum, and the angular velocity for
equatorial circular geodesics introduced in Sect. 3.1. F(r) is the dimensionless
function

F(r) = − ∂rΩ

(E − ΩLz)
2

M2

√−G

∫ r

rin

(E − ΩLz) (∂x Lz) dx , (6.6)

where rin is the inner edge of the disk and is assumed to be at the ISCO radius, namely
rin = rISCO. However, in the case of a disk truncated at a larger radius it is sufficient
to set a different rin without changing the form of this equation.

At first approximation, the total power of the accretion process Lacc is converted
into radiation and kinetic energy of jets/outflows, so we can write the total efficiency
η, defined as Lacc = ηṀ , as

η = ηr + ηk . (6.7)

http://dx.doi.org/10.1007/978-981-10-4524-0_3
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Here ηr is the radiative efficiency and can be measured from the bolometric lumi-
nosity2 Lbol from the equation Lbol = ηr Ṁ if the mass accretion rate is known. ηk is
the fraction of gravitational energy converted to kinetic energy of jets/outflows and
is usually assumed to vanish in the Novikov-Thorne model.

The accretion process in the Novikov-Thorne model can be summarized as fol-
lows. The particles of the accreting gas slowly fall onto the central black hole. When
they reach the ISCO radius, they quickly plunge onto the black hole without emitting
additional radiation.We usually assume that ηk is negligible and theNovikov-Thorne
radiative efficiency is

ηNT = ηr = 1 − EISCO , (6.8)

where EISCO is the specific energy of a test-particle at the ISCO radius.
Actually, not all the radiation emitted by the disk can escape to infinity. A part

of it leaves the disk, but it is then captured by the black hole. In this case, Eq. (6.8)
becomes

ηNT = 1 − EISCO − ζE , (6.9)

where ζE takes into account the radiation captured by the black hole and can be
written as [52]

ζE = 1

Ṁ

∫ ∞

rISCO

[∫ π/2

0

∫ 2π

0
C Υ (−nt ) cos θ sin θdθdφ

]
F (r) 4rdr . (6.10)

Here C = 0 (1) for the radiation that escapes to infinity (is captured by the black
hole), Υ takes into account possible angular dependence of the emission process
(for instance, Υ = 1 for isotropic emission, and Υ ∝ 1 + 2 cos θ for limb-darkened
emission expected in an electron scattering atmosphere), and nμ = kμ/k(t) is the
normalized photon 4-momentum, where kμ is the photon 4-momentum and k(t) is
the photon energy in the rest-frame of the emitter. See [52] and references therein
for more details.

Equation (6.9) receives an additional small correction if we include the returning
radiation; that is, some photons leave the disk and return to the disk due to the strong
light bending in the vicinity of the black hole [29].

6.1.3 Kerr Spacetime

In the special case of the Kerr metric, we can plug the expressions found in Sect. 3.2
into the equations of the time-averaged radial structure of the accretion disk. E , Lz ,

2The bolometric luminosity is the total electromagnetic luminosity of an object, namely the elec-
tromagnetic luminosity integrated over all wavelengths.

http://dx.doi.org/10.1007/978-981-10-4524-0_3
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andΩ are given, respectively, by Eqs. (3.20), (3.21), and (3.22).
√−G = r and F(r)

in Eq. (6.6) can be written as3

F(x) = 3

2

1

x4
(
x3 − 3x + 2a∗

)
[
x − x0 − 3

2
a∗ ln

(
x

x0

)

− 3 (x1 − a∗)2

x1 (x1 − x2) (x1 − x3)
ln

(
x − x1
x0 − x1

)
− 3 (x2 − a∗)2

x2 (x2 − x1) (x2 − x3)
ln

(
x − x2
x0 − x2

)

− 3 (x3 − a∗)2

x3 (x3 − x1) (x3 − x2)
ln

(
x − x3
x0 − x3

)]
, (6.11)

where x = √
r/M , x0 = √

rISCO/M , and x1, x2, and x3 are the three roots of x3 −
3x + 2a∗ = 0, so

x1 = 2 cos

(
1

3
arccos a∗ − π

3

)
, x2 = 2 cos

(
1

3
arccos a∗ + π

3

)
,

x3 = −2 cos

(
1

3
arccos a∗

)
. (6.12)

Neglecting the radiation emitted by the disk and captured by the black hole or
returning to the disk, the Novikov-Thorne radiative efficiency ηNT = 1 − EISCO can
be written with the help of Eq. (3.20) evaluated at the ISCO radius (3.27). ηNT only
depends on the value of the black hole spin parameter a∗ and is a monotonically
increasing (decreasing) function of the spin for a corotating (counterotating) disk,
see Fig. 6.2. In particular, for the special cases of Schwarzschild and extremal Kerr
black holes, we have

ηNT(a∗ = 0) = 1 − 2
√
2

3
≈ 0.057 ,

ηNT(a∗ = 1) = 1 − 1√
3

≈ 0.423 (corotating disk) ,

ηNT(a∗ = 1) = 1 − 5√
27

≈ 0.038 (counterrotating disk) . (6.13)

It is worth noting that the accretion process onto a black hole can be a very efficient
mechanism to convert rest-mass into radiation. In the case of nuclear fusion inside
stars, less than 1% of rest-mass is converted to energy. As we can see here, the
accretion process onto a black hole is much more efficient and can reach ∼42% if
the black hole has a∗ = 1.

3The expression of F here is slightly different from that in [40] because our F has the factor
M2/

√−G in order to have this quantity dimensionless and independent of M .

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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Fig. 6.2 Novikov-Thorne radiative efficiency ηNT = 1 − EISCO as a function of the spin a in the
Kerr metric. The upper curve is for corotating orbits, the lower curve for counterrotating orbits.
The dotted horizontal lines correspond (from top to bottom) to the Novikov-Thorne radiative effi-
ciency for a/M = 1 (ηNT ≈ 0.423), a/M = 0.998 (ηNT ≈ 0.321), a/M = 0 (ηNT ≈ 0.057), and
a/M = 1 in the case of a counterrotating disk (ηNT ≈ 0.038)

6.2 Transfer Function for Thin Disks

Now we want to calculate the spectrum of the accretion disk of a black hole as
seen by a distant observer. In the case of thin accretion disks, the calculations can
be conveniently split into two parts with the approach of the transfer function [15]:
(i) the calculation of the local spectrum of the radiation at the surface of the disk, and
(ii) the calculation of the propagation of the radiation from the disk to the detector
in the flat faraway region.

In some cases, the local spectrum of the radiation is only determined by the
astrophysicalmodel and is independent of the backgroundmetric. The local spectrum
of the radiation on the surface of the disk is described by the specific intensity
Ie(νe, re, ϑe) as measured in the rest-frame of the accreting gas. Ie typically depends
on the photon frequency νe, on the emission radius re, and possibly on the emission
angle with respect to the normal to the disk ϑe. The frequency νe and the emission
angle ϑe are given as measured in the rest-frame of the fluid. If the system is not
axisymmetric, the local spectrum depends on the exact position on the disk, not just
on the emission radius. In the same way, the spectrum may depend on two angles,
not only ϑe.

The observed flux (for instance, in erg s−1 cm−2 Hz−1) can be written as

Fobs(νobs) =
∫

Iobs(νobs, X,Y )dΩ̃ =
∫

g3 Ie(νe, re, ϑe)dΩ̃ , (6.14)
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where Iobs is the specific intensities of the radiation detected by the distant observer
(for instance, in erg s−1 cm−2 str−1 Hz−1), dΩ̃ = dXdY/D2 is the element of the
solid angle subtended by the image of the disk in the observer’s sky, and D is
the distance of the observer from the source. Iobs = g3 Ie follows from Liouville’s
theorem [31], where g = νobs/νe is the redshift factor.

The transfer function f (g∗, re, i) only depends on the metric of the spacetime and
the position of the observer. It takes into account all the relativistic effects (gravita-
tional redshift, Doppler boosting, light bending). For a specified metric, the transfer
function depends on the emission radius re, the viewing angle of the distant observer
i , and the relative redshift factor g∗ defined as

g∗ = g − gmin

gmax − gmin
, (6.15)

which ranges from 0 to 1. Here gmax = gmax(re, i) and gmin = gmin(re, i) are, respec-
tively, the maximum and the minimum values of the redshift factor g for the photons
emitted from the radial coordinate re and detected by a distant observer with polar
coordinate i . Figure6.3 remarks the difference between the emission angleϑe and the
viewing angle i . The former is the angle of propagation of a photon with the normal
to the disk at its emission point (as measured in the rest-frame of the fluid). The latter
is the inclination angle of the whole disk with respect to the distant observer.

Introducing the transfer function f , the observed flux can be rewritten as

Fobs(νobs) = 1

D2

∫ ∞
rISCO

∫ 1

0
πre

g2√
g∗(1 − g∗)

f (g∗, re, i)Ie(νe, re, ϑe) dg
∗ dre . (6.16)

Fig. 6.3 The viewing angle i is the inclination angle of the disk, namely the angle between the
axis normal to the disk and the line of sight of the distant observer; it is the same in Newtonian
gravity and in general relativity. The emission angle ϑe is the angle, measured in the rest-frame of
the gas and at a certain emission point, between the normal to the disk and the photon propagation
direction. In Newtonian gravity, i = ϑe, but in a curved spacetime the two angles are different in
general
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Fig. 6.4 Impact of the
viewing angle i on the
transfer function f . The
spacetime is described by the
Kerr metric with the spin
parameter a∗ = 0.998. The
emission radius is re = 4 M .
The values of the viewing
angle are indicated. From [7]

Fig. 6.5 Impact of the
dimensionless spin
parameter a∗ on the transfer
function f . The spacetime is
described by the Kerr metric,
the emission radius is
re = 7 M , and the viewing
angle is i = 30◦. The values
of the spin parameter are
indicated. From [7]

The expression of the transfer function f is

f (g∗, re, i) = 1

πre
g
√
g∗(1 − g∗)

∣∣∣∣ ∂ (X,Y )

∂ (g∗, re)

∣∣∣∣ , (6.17)

where |∂ (X,Y ) /∂ (g∗, re)| is the Jacobian. The transfer function thus acts as an
integration kernel to calculate the spectrum detected by the distant observer starting
from the local spectrum at any point of the disk. Let us note that in the specific
intensity Ie, νe and ϑe must be written in terms of g∗ and re.

In the Kerr metric, for a given emitting radius re and viewing angle i , the transfer
function is a closed curve parameterized by g∗, see Figs. 6.4 and 6.5. This is true
except in the special case i = 0. The points g∗ = 1 and g∗ = 0 are connected by
two curves, so we have two branches of the transfer function, say f1(g∗, re, i) and
f2(g∗, re, i). This is because two points of the same ring with radius re have the
same redshift factor, but the points are different and therefore the transfer function
is usually different. In non-Kerr metrics, it is possible to find some differences. For
example, the transfer function may not be a closed curve if there is a region of the
disk that cannot be seen by the distant observer. This can happen in some metrics for
large values of the viewing angle, as a consequence of the different light bending.

In the case of isotropic emission (Ie independent of ϑe and of the emission
azimuthal angle) in an axisymmetric system (e.g. no orbiting spots), Eq. (6.16) can
be written as
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Fobs(νobs) = 1

D2

∫ ∞

rISCO

∫ 1

0

πre g2√
g∗(1 − g∗)

[
f1(g

∗, re, i) + f2(g
∗, re, i)

]
Ie(νe, re) dg

∗ dre .

(6.18)

If Ie does depend on ϑe, it is necessary to perform the integral twice, for the upper
branch and for the lower one, so Eq. (6.16) becomes

Fobs(νobs) = 1

D2

∫ ∞

rISCO

∫ 1

0

πre g2√
g∗(1 − g∗)

f1(g
∗, re, i)Ie(νe, re, ϑe,1) dg

∗ dre

+ 1

D2

∫ ∞

rISCO

∫ 1

0

πre g2√
g∗(1 − g∗)

f2(g
∗, re, i)Ie(νe, re, ϑe,2) dg

∗ dre , (6.19)

where ϑe,1 and ϑe,2 indicate the emission angles with relative redshift factor g∗,
respectively in the branches 1 and 2.

The accretion disk is optically thick, so it is opaque and cannot be crossed by
photons. Moreover, higher order images produced by photons orbiting one or more
times the compact object are usually neglected in the calculations.

6.3 Calculation of the Transfer Function

6.3.1 General Case

In this subsection, we discuss the calculation of the transfer function in a generic
stationary and axisymmetric spacetime. We have to relate the position of the photon
in the image plane of the distant observer, (X,Y ), with the emission point in the
disk, to know the emission radius re, the redshift factor g, and the emission angle
ϑe. In the general case, it is necessary to consider a grid of photons and numerically
compute their trajectories from the image plane to the disk by solving the geodesic
equations. The photon initial conditions have been already presented in Sect. 3.4.

Solving the geodesic equations for a photon with position in the image plane
(X,Y ), we find the position of emission in the disk. The redshift factor g is, by
definition, the ratio between the photon frequency measured by the distant observer
νobs and that measured in the reference frame of the gas νe, and therefore

g = νobs

νe
= −uμ

obskμ

−uν
ekν

, (6.20)

where uμ
obs = (1, 0, 0, 0) is the 4-velocity of the distant observer, kμ is the 4-

momentum of the photon, uν
e = ute(1, 0, 0,Ω) is the 4-velocity of the particles of

the gas, and Ω = uφ
e /ute is the angular velocity of the gas.4 From the normalization

4In the notation of Chap.3, ṫ = ute and φ̇ = uφ
e .

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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condition gμνuμ
e u

ν
e = −1, we can find the expression for ute

ute = 1√−gtt − 2gtφΩ − gφφΩ2
. (6.21)

Plugging Eq. (6.21) into Eq. (6.20), we obtain

g =
√−gtt − 2gtφΩ − gφφΩ2

1 − λΩ
, (6.22)

where λ = −kφ/kt as in Eq. (3.73) (kt = −E , where E is the photon energy) is a
constant of motion along the photon trajectory (as a consequence of the fact that the
spacetime is stationary and axisymmetric).

If the local spectrum depends on the emission angleϑe, the latter must be rewritten
in terms of the emission radius and redshift factor. The normal to the disk is

nμ =
(
0, 0,

√
gθθ , 0

)∣∣∣
re,θe=π/2

, (6.23)

and therefore the cosine of the emission angle ϑe is

cosϑe = ± nμkμ

uν
ekν

∣∣∣
e
= ±

√
gθθ

√−gtt − 2gtφΩ − gφφΩ2

1 − λΩ

kθ

kt
, (6.24)

where kθ is the θ -component of the 4-momentum of the photon at the point of
emission in the disk and, in the general case, it is determined at the end of the geodesic
integration. In Eq. (6.24) cosϑe > 0 and therefore, for viewing angles 0 < i < π/2,
the sign is + if we are considering photons moving from the distant observer to the
disk and − in the case of photons moving from the disk to the distant observer.

At the end of the integration of the photon trajectories we have re = re(X,Y ), g =
g(X,Y ), andϑe = ϑe(X,Y ). From the first two relations, it is possible to numerically
compute the Jacobian in the transfer function

∣∣∣∣ ∂(X,Y )

∂(g∗, re)

∣∣∣∣ = (gmax − gmin)

∣∣∣∣∂X∂g
∂Y

∂re
− ∂X

∂re

∂Y

∂g

∣∣∣∣ . (6.25)

This completes the calculation of the transfer function f for a specific background
metric. If we know the local spectrum of the radiation, we can obtain the observed
flux via Eq. (6.16).

The numerical calculation of the transfer function in a generic stationary, axisym-
metric, and asymptotically flat spacetime is discussed in [7]. Since the calculation
process takes time, the standard strategy is to tabulate the transfer function. The
observed spectrum is calculated during the data analysis, by integrating Eq. (6.16)
with the tabulated f and the specific intensity from the astrophysical model under
consideration.

http://dx.doi.org/10.1007/978-981-10-4524-0_3
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6.3.2 Kerr Spacetime

In the Kerr metric, it is possible to exploit the existence of the Carter constant and
proceed in a different way which, after some more tedious analytical calculations,
permits us to solve some elliptic integrals rather than the second order geodesic
equations. The advantage of the elliptic integrals is that the numerical calculations
become faster and more accurate.

First, since the photon trajectories are independent of the photon energy, as done
at the very end of Sect. 3.4 it is convenient to use the two parameters λ = −kφ/kt
and q2 = Q/k2t , which are constants of motion.

In the Kerr metric, the angular velocity is given by Eq. (3.22), and Eq. (6.21)
becomes

ute = r3/2e + aM1/2

r1/2e

√
r2e − 3Mre + 2aM1/2r1/2e

. (6.26)

The redshift factor in Eq. (6.22) reduces to

g = r1/2e

√
r2e − 3Mre + 2aM1/2r1/2e

r3/2e + aM1/2 − M1/2λ
. (6.27)

The normal to the disk at the point of emission becomes nμ = (0, 0, 1/re, 0) and
the emission angle ϑe assumes quite a compact form

cosϑe = qg

re
, (6.28)

because uν
ekν = kt/g and q = −kθ /kt .

As done in Sect. 3.4, the photon position in the image plane of the distant observer
can be written in terms of the constants of motion λ and q

X = λ

sin i
, Y = ±

√
q2 + a2 cos2 i − λ2 cot2 i . (6.29)

The Jacobian in the transfer function f can thus be rewritten as

∣∣∣∣ ∂(X,Y )

∂(g∗, re)

∣∣∣∣ = q (gmax − gmin)

Y sin i

∣∣∣∣∂λ

∂g

∂q

∂re
− ∂λ

∂re

∂q

∂g

∣∣∣∣ . (6.30)

From Eq. (6.27), we can write λ = λ(g, re)

λ = r3/2e

M1/2
+ a − r1/2e

gM1/2

√
r2e − 3Mre + 2aM1/2r1/2e . (6.31)

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3


6.3 Calculation of the Transfer Function 127

In order to calculate ∂q/∂re and ∂q/∂g in Eq. (6.30), it is sufficient to solve the
photon trajectories on the (r, θ) plane. If we define

R̃ = R

E2
= r4 + (

a2 − λ2 − q2
)
r2 + 2M

[
q2 + (λ − a)2

]
r − a2q2 , (6.32)

Θ̃ = Θ

E2
= q2 + a2 cos2 θ − λ2 cot2 θ , (6.33)

the equation to solve is

sr

∫ D

re

dr ′√
R̃

= sθ

∫ i

π/2

dθ ′√
Θ̃

, (6.34)

where sr = ±1 and sθ = ±1, depending on the photon propagation direction.
The two integrals in Eq. (6.34) can be reduced to elliptic integrals, see Appendix B

for more details. Roughly speaking, we have

∫ D

re

dr ′√
R̃

= Cr F[ψr (re), κr ] ,

∫ i

π/2

dθ ′√
Θ̃

= Cθ F[ψθ(π/2), κθ ] , (6.35)

where F is the elliptic integral of the first kind with argument ψ j and modulus κ j

( j = r, θ ). Cr , Cθ ,ψr ,ψθ , κr , and κθ are functions of λ and q. From these equations,
one can write re as a function of λ and q

re(λ, q) = ψ−1
r

{
F−1

[
Cθ

Cr
F[ψθ(π/2), κθ ], κr

]}
. (6.36)

Special attention has to be paid for the direction of propagation, namely for sr and
sθ . The latter change sign at the possible turning points rt and θt , which occur when
R̃ = 0 and Θ̃ = 0, respectively [14].

If we plug Eq. (6.31) into Eq. (6.36), we can write q = q(g, re). With λ = λ(g, re)
and q = q(g, re), we can evaluate the Jacobian in the transfer function, Eq. (6.30).
This is the approach employed in [49]. In [15], the calculations to arrive at the
transfer function are slightly different. One obtains g = g(λ, q) and re = re(λ, q) to
calculate the inverse Jacobian. However, since one typically wants to compute the
transfer function for some specific values of g and re and does not know λ and q, the
approach of [15] requires additional calculations.

It is worth noting that usually these calculations are not possible in non-trivial
generalizations of the Kerr metric, because in the Kerr metric the function R̃ is
already a polynomial of fourth order. In specific generalizations of the Kerr metric,
the integrals (6.35) can be transformed to a hyper-elliptic integral [30]. In the more
general case of a Petrov type D spacetime, this may not be possible and eventually
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there may not be a significant advantage to have the equations of motion separable
and of the first order.

6.4 Evolution of the Spin Parameter

Accretion from a thin disk is an efficient mechanism to spin a black hole up. The
accreting gas moves on nearly geodesic circular orbits in the equatorial plane. As the
gas loses energy and angular momentum, it approaches the ISCO radius and then
quickly plunges onto the central object without an appreciable emission of additional
radiation. In this case, the mass and spin angular momentum of the black hole change
as

M → M + δM , J → J + δ J , (6.37)

where δM and δ J are, respectively, the mass and the angular momentum carried by
the gas, namely

δM = EISCOδm , δ J = L ISCOδm . (6.38)

EISCO and L ISCO are, respectively, the specific energy and the specific angular
momentumof the gas at the ISCO radius, while δm is the gas rest-mass. The evolution
of the spin parameter turns out to be governed by the following equation [10]

da∗
d lnM

= 1

M

L ISCO

EISCO
− 2a∗ . (6.39)

The black hole is spun up if the right hand side is positive, and spun down if the
right hand side is negative. The equilibrium value of the spin parameter is reached
when the right hand side vanishes and only depends on the background metric; that
is, different types of black holes may have different equilibrium values of the spin
parameter.

In the case of the Kerr metric, it is possible to integrate Eq. (6.39) and find an
analytic expression for the spin parameter a∗ as a function of the black hole mass
M . The solution is [10]

a∗ =
⎧⎨
⎩

√
2
3
M0
M

[
4 −

√
18 M2

0
M2 − 2

]
if M ≤ √

6M0 ,

1 if M >
√
6M0 ,

(6.40)

assuming an initially non-rotating black hole with mass M0. The plot of the function
a∗(M) is shown in Fig. 6.6. From Eq. (6.40), the equilibrium value of the spin para-
meter is 1 and requires that the black hole increases its mass by the factor

√
6 ≈ 2.4.

As shown in Fig. 6.6, at the beginning the spin increases quite quickly. The black
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Fig. 6.6 Evolution of the spin parameter a∗ of aKerr black hole accreting from a thin disk according
to the formula in Eq. (6.40), in which it is neglected the radiation emitted by the disk and captured by
the black hole as well as the so-called returning radiation. The black hole has the initial massM0 and
the initial spin parameter a∗ = 0. The three dashed vertical lines indicate when the black hole spin
reaches the valuesa∗ = 0.99 (M/M0 ≈ 2.03), 0.998 (M/M0 ≈ 2.20), and1 (M/M0 = √

6 ≈ 2.45)

hole has roughly to double its mass to get the spin a∗ = 0.99, but it still needs a
non-negligible amount of gas to reach 1.

If we include the effect of the radiation emitted by the disk and captured by the
black hole, Eq. (6.38) becomes

δM = (EISCO + ζE) δm , δ J = (L ISCO + ζL) δm , (6.41)

where ζE is given by Eq. (6.10) and ζL is [52]

ζL = 1

Ṁ

∫ ∞

rISCO

[∫ π/2

0

∫ 2π

0
C Υ nφ cos θ sin θdθdφ

]
F (r) 4rdr . (6.42)

As in Eq. (6.10), C = 0 (1) for the radiation that escapes to infinity (is captured by
the black hole), while Υ takes into account the fact that the emission may not be
isotropic. Equation (6.39) becomes

da∗
d lnM

= 1

M

L ISCO + ζL

EISCO + ζE
− 2a∗ . (6.43)

In the Kerr spacetime, from Eq. (6.43) the equilibrium value of the spin parameter is
the well-known Thorne limit aTh∗ ≈ 0.998 [52]. While this value is very close to 1,
if a∗ = aTh∗ we find ηNT ≈ 0.321, which is not very close to the maximum radiative
efficiency ηmax

NT ≈ 0.423 for a∗ = 1.
The fact that it is impossible to spin a black hole up to the extremal limit a∗ = 1

is consistent with the third law of black hole mechanics [11]. In analogy with the
third law of thermodynamics, in which it is impossible to reduce the temperature of a
system to zero in a finite number of operations, the third law of black hole mechanics
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forbids to reach an extremal Kerr black hole from accretion of a finite amount of
mass.

The Thorne limit receives corrections from the returning radiation, namely the
radiation emitted by the disk and returning to the disk due to the strong light bending
in the vicinity of the black hole. Taking this effect into account, the equilibrium value
of the spin parameter becomes a∗ ≈ 0.9983 for isotropic emission and a∗ ≈ 0.9986
for limb-darkened emission [29].

Equation (6.39) and its extensions can be applied to non-Kerr black hole solu-
tions in which a test-particle plunges from the ISCO radius onto the black hole (but
exceptions in which this is not true are possible [6]). In this case, the equilibrium
spin parameter may be either larger or smaller than 1, depending on the background
geometry [3, 4].

In the case of a thick disk, it is possible to use an expression similar to Eq. (6.39),
see Appendix E.2 and references therein. The accretion process from a thick disk
may be, at least in principle, even more efficient to spin a black hole up [1, 44].

The presence ofmagnetic fields in the plunging regionmay reduce the equilibrium
value of the spin parameter becausemagnetic fields can transport angular momentum
outward. For instance, in the simulations in [19, 48], the equilibrium spin parameter
is around 0.95.

6.4.1 Spins of Black Holes

Generally speaking, the value of the spin parameter of a black hole can be expected
to be determined by the competition of three physical processes: the event creating
the object, mergers, and gas accretion.

In the case of black hole binaries, it is usually thought that the spin of a black
hole is mainly natal and that the effect of the accretion process is negligible [23].
However, see [17] for a different conclusion. The argument is that a stellar-mass
black hole has a mass around 10 M�. If the stellar companion is a few Solar masses,
the black hole cannot significantly change its mass and spin angular momentum
even swallowing the whole star. If the stellar companion is heavy, its lifetime is too
short: even if the black hole accretes at the Eddington rate, there is not the time to
transfer the necessary amount of matter to significantly change the black hole spin
parameter. One may expect that a black hole cannot swallow more than a few M�
from the companion star, and for a 10 M� object this is not enough to significantly
changes a∗ [23].

If the black hole spin were mainly natal, its value should be explained by studying
the gravitational collapse of massive stars. While there are still uncertainties in the
angular momentum transport mechanisms of the progenitors of stellar-mass black
holes, it is widely accepted that the gravitational collapse of a massive star with Solar
metallicity cannot create fast-rotating remnants [54, 55]. The birth spin of these black
holes is expected to be low (see e.g. [17] and references therein). However, this is not
what we observe. As it is discussed in Chaps. 7 and 8, black hole spin measurements

http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_8
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show that some of these objects have a spin parameter close to 1. In the case of
LMXBs, the black hole in GRS 1915+105 has a∗ > 0.98 [35] and M = 12.4 ±
2.0 M� [43], while the stellar companion’s mass is M = 0.52 ± 0.41 M�. In the
case of HMXBs, the black hole in Cygnus X-1 has a∗ > 0.98 [20] and M = 14.8 ±
1.0 M�, while the stellar wind from the companion is not an efficient mechanism to
transfer mass. Both the spin constraints are at 3-σ .

While black holes in LMXBs and HMXBs should form in different environments,
in both cases the origin of so high spin values is not well understood. Fragos and
McClintock [17] show indeed that the accretion process immediately after the for-
mation of a black hole binary may be very important and eventually responsible for
the high spins of black holes in LMXBs. Amore speculative explanation is discussed
in [5]. If the metric around astrophysical black holes had some particular deviations
from the Kerr background, the accreting objects may look like very fast-rotating Kerr
black holes after swallowing a few Solar masses from the companion star, and this
would make observations consistent with the expected low value of the initial spin.

The case of supermassive black holes in galactic nuclei is different. The initial
value of their spin parameter is likely completely irrelevant: their mass has increased
by several orders of magnitude from its original value, and the spin parameter has
evolved accordingly. On average, the capture of small bodies (minor merger) in
randomly oriented orbits should spin the compact object down, since the magnitude
of the orbital angular momentum for corotating orbits is always smaller than the one
for counterrotating orbits [21]. The case of coalescence of two compact objects with
comparable mass (major merger) can be rigorously computed only if we know the
exact nature of these objects and the theory of gravity, as the background is not fixed
and the emission of gravitational waves is important. In general relativity and in the
case of random merger of two black holes, the most probable final product is a black
hole with a∗ ≈ 0.70, while fast-rotating objects with a∗ > 0.9 should be rare [13].

Accretion from a disk can potentially be a very efficient way to spin a compact
object up [13]. If accretion proceeds via short episodes (chaotic accretion) [25], the
net effect is not different from minor mergers in randomly oriented orbits and the
compact object is spun down. On the contrary, prolonged disk accretion is a very
efficient mechanism to spin the compact object up. In this case, Kerr black holes in
AGN may have a spin parameter close to the Thorne limit [13]. Such a possibility
seems to be supported by some observations [53]. Nearby supermassive black hole
accreting from a more spherically symmetric gas distribution may instead have lost
most of their spin angular momentum acquired in a previous stage and have lower
spin, or they may be in the process of spinning down.

6.5 Deviations from the Kerr Metric

The Kerr metric should be able to well describe the gravitational field around an
astrophysical black hole. In general relativity, initial deviations from theKerr solution
are indeed quickly radiated away through the emission of gravitational waves (“black
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holes rapidly go bald”) [42]. As shown in the next subsections, the gravitational field
of an accretion disk is normally completely negligible, and even the black hole
electric charge can be safely ignored in the metric of the spacetime.

6.5.1 Accretion Disk

The mass of the accretion disk inevitably introduces deviations from the Kerr back-
ground. However, on general grounds, it is clear that for typical accretion disks the
effect should be completely negligible. If M is the mass of the black hole and m is
the mass of the disk, in the case of a stellar-mass black hole in a binary the ratio is5

m/M ∼ 10−9–10−10. This is a small parameter and it can be used as the expansion
parameter in the corrections of observational quantities from the Kerr case. The cor-
rections will be of a similar order of magnitude and therefore negligible for present
and future observations.

For instance, the impact of the mass of the accretion disk in the measurement
of the black hole spin is discussed in [9] within a simple analytical model. In Weyl
coordinates {t, ρ, z, φ}, the general form of a static and axisymmetricmetric depends
only on the two functions λ(ρ, z) and ν(ρ, z) in the line element

ds2 = −e2λdt2 + e2(ν−λ)
(
dρ2 + dz2

) + ρ2e−2λdφ2 . (6.44)

Writing the Einstein equations for the vacuum, it is easy to see that, if λ1 and λ2 are
two solutions, then λ3 = λ1 + λ2 is also a solution. The non-linearity of the Einstein
equations shows up in the function ν, which is given by

ν3 = ν1 + ν2 + 2
∫

ρ

[ (
∂λ1

∂ρ

∂λ2

∂ρ
− ∂λ1

∂z

∂λ2

∂z

)
dρ

+
(

∂λ1

∂ρ

∂λ2

∂z
+ ∂λ1

∂z

∂λ2

∂ρ

)
dz

]
, (6.45)

where ν1 and ν2 are the solutions of the function ν associated, respectively, to the
solutions λ1 and λ2.

If we combine the Schwarzschild solution in Weyl coordinates, which is given
by the two functions (λBH, νBH), with the Lemos–Letelier solution (λD, νD), which
describes a thin disk, we obtain the metric of a spacetime with a central non-rotating
black hole and a thin accretion disk. The solution has three free parameters: the black
hole massM , the diskmassm, and the inner radius of the disk b. The Lemos–Letelier

5A rough estimate ofm/M can be obtained in the following way. For a black hole with M = 10 M�
accreting at∼10%of theEddington limit, themass accretion rate is∼10−8 M�/yr; see e.g. Eq. (G.2).
Considering that the disk may be essentially created and destroyed during an outburst, and that the
latter may last for about one month, we find that the mass of the disk ism ∼ 10−9 M�. In this case,
m/M ∼ 10−10.
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disk is not the kind of thin disk expected around an astrophysical black hole, but it
can work as a toy model to get a rough estimate of the impact of the mass of the disk
in a spin measurement.

In the continuum-fitting and the iron line methods discussed in the next chapters,
the key-quantity is the position of the ISCO radius. To be more precise, the radial
coordinate of the ISCO has no physical meaning, being determined by the coordinate
system, which is arbitrary. A good proxy for the measurement of the spin is the
Novikov-Thorne radiative efficiency ηNT = 1 − EISCO [26]. In the Kerr metric, the
Novikov-Thorne radiative efficiency for small values of the spin is

ηNT = 1 − 2
√
2

3
∓

√
3

54

( a

M

)
+ O

(
a2

M2

)
. (6.46)

Following Sect. 3.1, we can obtain the ISCO radius and EISCO for a generic stationary
and axisymmetric spacetime. Form � M ,mb2 � M3, and assuming the inner edge
of the disk b at the ISCO radius, for themetric of a non-rotating black hole surrounded
by a Lemos–Letelier disk, we find [9]

ηNT = 1 − 2
√
2

3
+ 49

144
√
3

( m

M

)
+ O

(
m2

M2

)
. (6.47)

Even in the most favorable conditions, the spin measurement may reach a precision
at the level of some per cent. Ifm/M ∼ 10−9, the mass of the disk can be definitively
neglected. It should be taken into account only if we could measure the spin with a
similar precision, which is out of reach even in the future.

6.5.2 Electric Charge

In general, astrophysical bodies may acquire a non-vanishing electric charge because
of the difference between the mass of protons and electrons [56]. For instance, in
the case of an object surrounded by an atmosphere of positive ions and electrons
in thermal equilibrium, when the object is uncharged the escape velocity can be
reached easier by electrons, because their mass is smaller. As electrons leave the
atmosphere, the electrostatic field around the object grows, and an equilibrium is
eventually reached when the sums of all forces acting on ions and electrons are
equal, which results in a non-vanishing electric charge of the object.

In the case of an accreting black hole, the gravitational force acting on protons and
electrons is the same, but the electromagnetic radiation and the electrostatic force act
differently on the two particle species. A rough estimate of the equilibrium electric
charge of an accreting black hole can be obtained as follows. We consider spheri-
cally symmetric accretion of a plasma of protons and electrons onto a spherically
symmetric object of mass M , ignoring relativistic effects. The equations of motion

http://dx.doi.org/10.1007/978-981-10-4524-0_3
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for the proton and electron fluids are

mpv̇p = −mpM

r2
+ σγ pL

4πr2
+ eQ

r2
, (6.48)

mev̇e = −meM

r2
+ σγ eL

4πr2
− eQ

r2
. (6.49)

vp and ve are, respectively, the proton and electron fluid velocities, the dot ˙ is the
derivative with respect to time, and L is the accretion luminosity. σγ p and σγ e are
the scattering cross-sections of photons with, respectively, protons and electrons. Q
is the electric charge of the black hole and e is the proton electric charge.

Considering that mp � me and σγ e � σγ p, accretion is possible (v̇p, v̇e ≤ 0) for
a luminosity L below the Eddington luminosity

LEdd = 4πMmp

σγ e
= 1.257 · 1038

(
M

M�

)
erg/s . (6.50)

The equilibrium electric charge is reached for v̇p = v̇e and is

Qeq = σγ eL

4πe
= 0.962 · 1021

(
M

M�

)
e , (6.51)

where in the last passage it is assumed that the black hole is accreting at the Eddington
luminosity. If this is not the case, the expression on the right hand side must be
multiplied by the factor L/LEdd.

Let us now write the Reissner–Nordström line element as

ds2 = −
(
1 − rSch

r
+ r2Q

r2

)
dt2 +

(
1 − rSch

r
+ r2Q

r2

)−1

dr2

+ r2dθ2 + r2 sin2 θdφ2 . (6.52)

rSch and rQ are defined as

rSch = 2GNM

c2
= 2.953 · 103

(
M

M�

)
m , (6.53)

rQ =
√

GNQ2

4πε0c4
= 1.381 · 10−36

( |Q|
e

)
m , (6.54)

where Newton’s constant GN and the speed of light c have been reintroduced for
convenience. 1/(4πε0) = 8.988 · 109 Nm2 C−2 is Coulomb’s constant in vacuum. If
we plug the equilibrium electric charge Qeq in Eq. (6.54), we obtain
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rQ = 1.33 · 10−15

(
M

M�

)
m . (6.55)

rQ � rSch and deviations from the Schwarzschild metric are extremely small that
can be neglected in any present and future observation. The electrostatic field around
a black hole due to Qeq may instead be important in the case of putative small black
holes, with a mass much smaller than M� [8].
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Chapter 7
Continuum-Fitting Method

Within the Novikov–Thorne model, it is relatively straightforward to compute the
thermal spectrum of a thin accretion disk as detected by a distant observer in the
flat faraway region. With the assumptions that the metric around the compact object
is described by the Kerr solution and that the inner edge of the disk is at the ISCO
radius, we can measure the black hole spin parameter a∗. This technique is called the
continuum-fitting method and was proposed in [53]. Up to now, we have estimated
the spin of about ten stellar-mass black holes with this technique. The continuum-
fitting method can also be extended to non-Kerr spacetimes to test the metric around
astrophysical black holes [1, 21].

The continuum-fitting method is probably the most robust technique available
today [29, 30]. The physics behind is relatively well understood. However, it has
also some weak points. First, corrections for non-blackbody effects are important
and are taken into account by disk atmosphere models, but the validity of these
models is sometimes criticized. Second, the measurement of the spin requires inde-
pendent measurements of the mass M of the compact object, the distance D, and
the inclination angle of the disk i . These measurements are usually obtained by
optical observations, but systematics effects are not always under control and the
uncertainty on these quantities is usually large (eventually these uncertainties pro-
vide the main contribution in the final uncertainty of the spin parameter). Third,
the continuum-fitting method is normally applied to stellar-mass black holes only,
because the thermal spectrum of a Novikov–Thorne disk is in the soft X-ray band
(∼1keV) for M ≈ 10 M� and in the optical/UV band (∼1–10eV) for a compact
object of 105–1010 M�. In the second case, extinction and dust absorption limit the
ability of an accurate measurement. Attempts to apply the technique to supermas-
sive black holes have been limited to very special cases [9, 12]. The spectrum is also
relatively simple without specific features, so we can measure only one parameter of
the near horizon geometry. If we assume the Kerr metric, this is enough to measure
the spin parameter. If we want to test the Kerr metric, there is typically a degeneracy
between the estimate of the spin and possible deviations from the Kerr solution.

© Springer Nature Singapore Pte Ltd. 2017
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7.1 Calculation of the Spectrum

If we assume that the Novikov–Thorne disk is in local thermal equilibrium, its emis-
sion is blackbody-like and we can define an effective temperature Teff from the
time-averaged energy flux F in Eq. (6.4), namely

F = σT 4
eff , (7.1)

where σ = 5.67 · 10−5 erg s−1 cm−2 K−4 is the Stefan–Boltzmann constant. The
resulting profile of the effective temperature in theKerr spacetime is shown in Fig. 7.1
for different values of the spin parameter and assuming that the inner edge of the
disk is at the ISCO radius.

Since a Novikov–Thorne disk is realized when the mass accretion rate is
Ṁ ∼ 0.1 ṀEdd, from Eq. (6.4) we see that F ∝ M−1 and therefore

Teff ∼
(
0.1 ṀEdd

4πσM2

)1/4

∼
(
10M�
M

)1/4

keV , (7.2)

where ṀEdd is given in Eq. (G.2). Equation (7.2) is a rough estimate of Teff , but clearly
shows why the temperature of thin disks is in the soft X-ray band in the case of black
hole binaries and in the optical/UV band when M is 105–1010 M�.

Since the temperature of the disk near the inner edge can be high, corrections
for non-blackbody effects can be important. This is usually taken into account by
introducing the color correction term (or hardening factor) fcol, which is largely due
to electron scattering in the disk and in practice is obtained from disk atmosphere
models [10, 11]. The color temperature is defined as Tcol(r) = fcolTeff . The local
specific intensity of the radiation emitted by the disk is (reintroducing the speed of
light c)

Fig. 7.1 Radial profile of
the effective temperature Teff
of a Novikov–Thorne
accretion disk in Kerr
spacetime for different
values of the spin parameter
a∗. Here M = 10 M� and
Ṁ = 1018 g s−1
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Ie(νe) = 2hν3
e

c2
1

f 4col

Υ

exp
(

hνe
kBTcol

)
− 1

, (7.3)

where h is the Planck constant and kB is the Boltzmann constant. Υ is a function of
the angle ϑe between the propagation direction of the photon emitted by the disk and
the normal of the disk surface [3]. The most common choices are

Υ =
{
1 (isotropic emission) ,

(3/7) (1 + 2 cosϑe) (limb-darkened emission) ,
(7.4)

The choice of the form of Υ affects the final measurement, but the impact is small.
It is one of the uncertainties in the model.

The calculation of the thermal spectrum of thin accretion disks has been exten-
sively discussed in the literature; see e.g. [1, 24] and references therein. The photon
flux number density as measured by a distant observer is

NEobs = 1

Eobs

∫
Iobs(νobs)dΩ̃ = 1

Eobs

∫
g3 Ie(νe)dΩ̃

= A1

(
Eobs

keV

)2 ∫
1

M2

Υ dXdY

exp
[

A2
gF1/4

( Eobs
keV

)] − 1
, (7.5)

where dΩ̃ = dXdY/D2 is, as in Sect. 6.2, the element of the solid angle subtended
by the image of the disk in the observer’s sky, F is the dimensionless function in
Eq. (6.6), and A1 and A2 are two constants given by (reintroducing the constants GN

and c)

A1 = 2 (keV)2

f 4col

(
GNM

c3h3/2D

)2

= 0.07205

f 4col

(
M

M�

)2 (
kpc

D

)2

photons keV−1 cm−2 s−1 , (7.6)

A2 =
(

keV

kB fcol

) (
GNM

c3

)1/2 (
4πσ

Ṁ

)1/4

= 0.1331

fcol

(
1018 g s−1

Ṁ

)1/4 (
M

M�

)1/2

. (7.7)

In Eq. (7.5), the redshift factor g and the function F depend on the emission point
in the disk. The integral can be performed after ray-tracing calculations have related
any point of emission in the disk to the point of detection in the plane of the distant
observer. We have thus to find g = g(X,Y ) and F = F(X,Y ).

One can also employ the formalism of the transfer function discussed in the
previous chapter. In such a case, it is necessary to write νe and ϑe in terms of g∗ and

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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Fig. 7.2 Images of a
Novikov–Thorne accretion
disk around a Schwarzschild
black hole (top panel) and a
Kerr black hole with the spin
parameter a∗ = 0.999
(bottom panel). The viewing
angle is i = 80◦ and the
colors are for gTcol (in keV),
where g is the redshift factor
and Tcol is the color
temperature. The other
parameters are: M = 10 M�,
Ṁ = 1018 g s−1, and
fcol = 1.6. The outer radius
of the accretion disk is at
rout = 25 M

re, and perform the integral in Eq. (6.18) or in Eq. (6.19). In the case of the thermal
spectrum of the disk, the local spectrum Ie does depend on the metric via Eq. (7.1).
However, the time consuming block of the calculations is related to the ray-tracing
part, and therefore it can be convenient to have the transfer function of the spacetime
already tabulated.

Figure7.2 shows the images of a Novikov–Thorne accretion disk around a
Schwarzschild black hole (top panel) and a Kerr black hole with the spin para-
meter a∗ = 0.999 (bottom panel). The color indicates the value of gTcol in keV, so
the two images are essentially two plots of gTcol(X,Y ). The boundary of the hole
at the centre of the image of the disk is the apparent image of the inner edge of the
disk. The external boundary of the image corresponds instead to the apparent image
of the outer edge of the disk, which is here assumed very small (rout = 25 M) for
graphical reasons.

In the image of the accretion disk around a Schwarzschild black hole, the asymme-
try with respect to the Y -axis is due to the Doppler shift. In the semi-plane X < 0, the
gas is moving in the direction of the observer and the emitted radiation is blueshifted.
In the semi-plane X > 0, the gas is moving in the opposite direction and the radiation
is redshifted. In the image in the bottom panel referring to a rotating black hole, part
of the asymmetry with respect to the Y -axis is also due to light bending, because
photon trajectories depend on the photon angular momentum with respect to the

http://dx.doi.org/10.1007/978-981-10-4524-0_6
http://dx.doi.org/10.1007/978-981-10-4524-0_6
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black hole spin. This, in particular, causes the asymmetry with respect to the Y -axis
in the apparent image of the inner edge of the disk. In both images, the asymmetry
with respect to the X -axis is due to light bending.

In the Kerr metric, because of the presence of the Carter constant, in Boyer–
Lindquist coordinates the photon equations of motion are separable and of first order.
Since the spacetime is stationary and axisymmetric, eventually it is only necessary
to solve the motion in the (r, θ) plane, which (in the specific case of the Kerr metric
in four dimensions) can be reduced to the problem of solving some elliptic integrals
[24]. In extensions of the Kerr metric, the presence of the Carter constant still results
in separable equations of motion, but one has now to solve at least hyper-elliptic
integrals. In the case of a general stationary and axisymmetric metric without Carter
constant, it is necessary to solve the second order geodesic equations. Usually it is
computationally more convenient to start from the point of detection in the plane
of the distant observer and trace backward in time the photon trajectory to find the
emission point in the disk. More details can be found, for instance, in [1].

In the Kerr metric, the thermal spectrum of a thin accretion disk has five “main”
parameters: the black hole mass M , the mass accretion rate Ṁ , the inclination angle
of the disk with respect to the line of sight of the distant observer i , the distance
of the source D, and the spin parameter a∗. The impact of these parameters on the
spectrum of a thin disk are shown in Fig. 7.3. The hardening factor fcol may be
computed from disk atmosphere models. For stellar-mass black holes accreting at
10% of the Eddington limit, one finds fcol ≈ 1.5–1.7 [10, 11].

7.2 Spin Measurements

The analysis of the thermal spectrum of geometrically thin and optically thick accre-
tion disks was suggested as a technique to measure the spin parameter of black holes
in [53]. Assuming that the compact object is a Kerr black hole, the model depends on
five parameters (M, Ṁ, i, D, a∗). However, it is not possible to infer all these para-
meters from the data of the spectrum of a thin disk, because there is a degeneracy.
As shown in Fig. 7.3, the shape of the spectrum is quite simple and eventually the
absence of peculiar features permits one to obtain the same spectrum with different
combinations of (M, Ṁ, i, D, a∗).

However, if we can obtain independent measurement of M , D, and i ,1 one can
fit the thermal component of the spectrum of a black hole and infer a∗ and Ṁ .
This is the continuum-fitting method. The technique is relatively robust, because the
Novikov–Thorne model is based on the conservation laws of rest-mass, energy, and
angular momentum, while there are no assumptions concerning the properties of

1In the case of the viewing angle i , one usually measures the inclination angle of the orbital plane
of the binary system (see Sect. 4.1.1) and then assumes that it is the same as the inclination angle
of the accretion disk.

http://dx.doi.org/10.1007/978-981-10-4524-0_4
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Fig. 7.3 Impact of the model parameters on the thermal spectrum of a thin disk: mass M (top left
panel), mass accretion rate Ṁ (top right panel), viewing angle i (central left panel), distance D
(central right panel), and spin parameter a∗ (bottom panel). When not shown, the values of the
parameters are: M = 10 M�, Ṁ = 2 ·1018 g s−1, D = 10kpc, i = 45◦, and a∗ = 0.7. M in units of
M�, Ṁ in units of 1018 g s−1, D in kpc, and flux density NEobs in photons keV

−1 cm−2 s−1. From
[2], reproduced by permission of IOP Publishing. All rights reserved

the accreting gas or the geometry of the system. Nevertheless, there are some weak
points, as already discussed at the beginning of this chapter.

Current estimates with the continuum-fitting method of the spins of stellar-mass
black holes under the assumption of the Kerr background are reported in the sec-
ond column in Table7.1. As we can see, some objects look like very fast-rotating
black holes with a∗ close to 1, some objects have an intermediate value of the spin
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Table 7.1 Summary of the continuum-fitting and iron line measurements of the spin parameter of
stellar-mass black holes under the assumption of the Kerr background. In some cases, only upper
or lower bounds have been obtained. See the references in the last column for more details

BH Binary a∗ (Continuum) a∗ (Iron) Principal references

GRS 1915-105 >0.98 0.98 ± 0.01 [28, 32]

Cyg X-1 >0.98 0.97+0.014
−0.02 [14, 18, 19, 34, 48,

52]

GS 1354-645 — >0.98 [13]

LMC X-1 0.92 ± 0.06 0.97+0.02
−0.25 [16, 47]

GX 339-4 <0.9 0.95 ± 0.03 [15, 20, 35, 36]

MAXI J1836-194 — 0.88 ± 0.03 [38]

M33 X-7 0.84 ± 0.05 — [27]

4U 1543-47 0.80 ± 0.10a — [41]

IC10 X-1 �0.7 — [43]

Swift J1753.5 — 0.76+0.11
−0.15 [37]

XTE J1650-500 — 0.84 ∼ 0.98 [51]

GRO J1655-40 0.70 ± 0.10a >0.9 [37, 41]

GS 1124-683 0.63+0.16
−0.19 — [4, 33]

XTE J1752-223 — 0.52 ± 0.11 [39]

XTE J1652-453 — <0.5 [6]

XTE J1550-564 0.34 ± 0.28 0.55+0.15
−0.22 [46]

LMC X-3 0.25 ± 0.15 — [45]

H1743-322 0.2 ± 0.3 — [44]

A0620-00 0.12 ± 0.19 — [17]

XMMU J004243.6 <−0.2 — [31]
aThese sources were studied in an early work of the continuum-fittingmethod, within a more simple
model, and therefore the published 1-σ error estimates are doubled following [29]

parameter, and other sources may be slow- or non-rotating black holes. There is
(controversial) evidence for at least one negative value of the spin parameter; that
is, this object would have a counterrotating disk. More details can be found in the
references reported in the last column in Table7.1.

The validity of theNovikov–Thornemodel has been already discussed in Sect. 6.1.
Here we just point out that the thermal spectrum of a thin disk of an astrophysical
blackhole shoulddeviate from that calculated in theNovikov–Thornemodel, but such
deviations should not be important for the precision of current spin measurements.

The impact of deviations from the Novikov–Thorne model in the spin measure-
ments have been discussed in [23]. Without entering the details, Kulkarni et al. [23]
find that there are indeed deviations from the theoretical model: some radiation is
emitted inside the ISCO and the emission peak seems to be at smaller radii with
respect to the Novikov–Thorne prediction. Both effects would lead to overestimate
the value of the spin. Figure7.4 compares the disk luminosity from GRMHD simu-
lations (solid lines) with the Novikov–Thorne model (dashed lines) for a∗ = 0, 0.7,

http://dx.doi.org/10.1007/978-981-10-4524-0_6


144 7 Continuum-Fitting Method

Fig. 7.4 Luminosity profile
from GRMHD simulations
(solid lines) and from the
Novikov–Thorne model
(dashed lines) for a∗ = 0,
0.7, 0.9, and 0.98 (from
bottom to top). See the text
for more details. Figure7.1
from [23], reproduced by
permission of Oxford
University Press

0.9, 0.98 (from bottom to top). The error in the spin estimate due to these deviations
from the Novikov–Thorne model is smaller for low viewing angles and high spins,
and larger for high viewing angles and low spins. The deviations decrease as the disk
thickness h/r decreases. In the end, these effects do not seem to be important for
current spin measurements, particularly because spin errors are dominated by the
uncertainties in the measurements of M , D, and i , but also because any additional
radiation appears to manifest distinctly as a non-thermal component [23, 54].

7.3 Polarization of the Disk’s Spectrum

In the vacuum or in isotropic media, electromagnetic radiation propagates as a trans-
verse wave inwhich the electric andmagnetic fields are always orthogonal each other
and oscillate in the plane perpendicular to the propagation direction. The polariza-
tion of an electromagnetic beam refers to the polarization of its electric field and is
described by the polarization degree and the polarization vector. The polarization
degree, δ, is the fraction of polarized radiation, and ranges from 0 (unpolarized radi-
ation) to 1 (completely polarized radiation). The polarization vector, f , indicates the
oscillation direction of the electric field in the plane perpendicular to the propagation
direction of the beam. Since only the oscillation direction matter, the polarization
vector is usually normalized to 1, f · f = 1. The 4-vector f μ is space-like and has a
gauge degree of freedom ( f μ → f μ +αkμ, where α is a constant and kμ is the pho-
ton 4-momentum). The polarization vector can also be replaced by the polarization
angle, ψ , describing the angle of the electric field with respect to some reference
axis in the plane perpendicular to the propagation direction.

Thermal radiation is unpolarized. However, because of Thomson scattering of
photons off free electrons in the dense atmosphere of the disk, the thermal radiation
from an accretion disk around a black hole becomes partially polarized. With refer-
ence to the rest frame of the gas, the degree of polarization depends on the emission
angle ϑe, namely the angle between the normal to the disk surface and the direction
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Fig. 7.5 Polarization degree
as a function of the emission
angle ϑe, i.e. the angle
between the propagation
direction of the photon and
the normal to the disk
surface. From [26] under the
terms of the Creative
Commons Attribution
License

of propagation of the X-ray photon (see Fig. 6.3), and ranges from 0 (ϑe = 0◦, photon
direction parallel to the normal to the disk) to about 12% (ϑe = 90◦, photon direction
orthogonal to the normal to the disk) [3]. The polarization degree as a function of ϑe

is shown in Fig. 7.5. The orientation of the polarization vector is instead parallel to
the disk plane and orthogonal to the direction of propagation of the photon. The same
scattering in the disk atmosphere causes a limb-darkened emission and the correct
value for Υ can be found in the table in [3].

In Newtonian gravity, it would be straightforward to obtain the angle and the
degree of polarization of an accretion disk around a black hole as measured by a
distant observer. With reference to Fig. 7.2, the polarization vector would be parallel
to the X -axis. The value of the polarization degree would be given by the curve
plotted in Fig. 7.5 for i = ϑe. In curved spacetime, there are some complications and
it is necessary to perform some calculations. [7, 8, 42] were the first to study the
polarization of the radiation of the electromagnetic spectrum of an accreting black
hole. More recent studies have been reported in [25, 40] for the Kerr metric, and in
[22, 26] for generic stationary, axisymmetric, and asymptotically flat spacetimes.

In a curved spacetime, it is first necessary to compute the polarization degree and
the polarization angle at each point in the image of the distant observer, and then
one can integrate over the image to get the spectra of the degree and of the angle of
polarization. In terms of the Stokes parameters I , Q,U , and V [3], for each point in
the image of the source we have

Q + iU = δ I e2iψ , (7.8)

where V = 0 because the radiation is linearly polarized. The radiation field is
decomposed into a completely polarized component I p = δ I and an unpolarized

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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one I u = (1 − δ)I . At the point of the detection, we have

〈Qobs〉 + i〈Uobs〉 = 1

ΔΩ̃

∫
(Qobs + iUobs) dΩ̃

= 1

ΔΩ̃

∫
g3δe Iee

2iψobsdΩ̃ , (7.9)

where 〈·〉 indicates the average over the image,ΔΩ̃ is the total solid angle subtended
by the disk in the observer’s sky, and the redshift factor g = νobs/νe enters from the
conservation of the quantity I/ν3 along the photon path, namely Iobs/ν3

obs = Ie/ν3
e .

In analogy to the calculations of the disk’s thermal spectrum, Eq. (7.9) requires
to ray-trace photons from the emission point in the disk to the detection point in the
plane of the distant observer or, alternatively, backward in time, from the detection
point in the plane of the distant observer to the emission point in the disk. In the
case of polarization, both approaches are used, because the latter is not clearly more
convenient than the former when it is necessary to take into account the effect of
returning radiation. Equation (7.9) requires thus to solve the geodesic equations, but
also to parallel transport the polarization vector along the photon trajectories. The
polarization degree is a scalar, but the polarization vector is not, and therefore it is
necessary to study the evolution of the polarization angle along the photon geodesic.

For every photon trajectory, one has to simultaneously solve both the geodesics
equation and the equation of the parallel transport of the polarization vector, namely

d f μ

dτ
= −Γ μ

νρ f ν dx
ρ

dτ
. (7.10)

In the numerical integration of these two equations, it may be convenient to check at
any step that the following relations are satisfied within a certain precision

kμk
μ = 0 , f μ fμ = 1 , f μkμ = 0 . (7.11)

As for the integration of the geodesic equations, the cases of the Kerr metric (and,
in general, of any Petrov type D spacetime) and of a generic black hole metric are dif-
ferent. TheWalker–Penrose theorem asserts that, in any Petrov type D spacetime, for
any 4-vector orthogonal to a null geodesic and parallel transported along such a null
geodesic there is a complex-valued constant of motion (Walker–Penrose constant)
along the photon path [3, 49, 50]. In the Kerr metric in Boyer–Lindquist coordinates,
the Walker–Penrose constant reads

κ = (κ1 − iκ2 sin θ) (r − ia cos θ) , (7.12)

where
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κ1 = kt f r − kr f t + a sin2 θ
(
kr f φ − kφ f r

)
,

κ2 = (
r2 + a2

) (
kφ f θ − kθ f φ

) − a
(
kt f θ − kθ f t

)
. (7.13)

The existence of theWalker–Penrose constant is related to the existence of the Carter
constant, and in the sameway it is exploited in astrophysical codes for theKerrmetric
to optimize the calculations. In the absence of the Walker–Penrose constant, which
is the case for a generic stationary, axisymmetric, and asymptotically flat spacetime,
one has to solve Eq. (7.10) as discussed in [22, 26].

We note that, in general, radiation that is initially completely polarized is detected
in the observer’s plane as partially polarized, because different points of the image
have photons with different ψobs. The total intensity at the detection point is

〈Iobs〉 = 1

ΔΩ̃

∫
g3 IedΩ̃ = 〈I uobs〉 + 〈I pobs〉 . (7.14)

The observed averaged polarization degree is [24]

〈δobs〉 =
√〈Qobs〉2 + 〈Uobs〉2

〈Iobs〉 , (7.15)

and the observed averaged polarization angle is determined from the following two
relations [24]

sin (2〈ψobs〉) = 〈Uobs〉√〈Qobs〉2 + 〈Uobs〉2
, (7.16)

cos (2〈ψobs〉) = 〈Qobs〉√〈Qobs〉2 + 〈Uobs〉2
. (7.17)

With the abovemachinery,we can compute the spectrumof the polarization degree
and of the polarization angle for a specific model. In the Kerr spacetime, there are
five basic parameters, namely the mass of the object M , the distance of the source
D, the inclination angle of the disk with respect to the line of sight of the observer i ,
the mass accretion rate Ṁ , and the spin parameter a∗.

Figure7.6 shows the spectrum of the polarization degree (left panel) and of the
polarization angle (right panel) without including returning radiation, for the accre-
tion disk around a Schwarzschild black hole (solid lines) and a Kerr black hole with
a∗ = 0.9 (dashed lines). The viewing angle is i = 45◦, 60◦, and 75◦ (from bottom to
top in the left panel, from top to bottom in the right panel). The interpretation of these
spectra is quite straightforward. For the polarization degree, low energy photons are
mainly emitted at large radii, where the effect of light bending is small and therefore
ϑe ≈ i (ϑe = i in Newtonian gravity). High energy photons are mainly emitted
from the inner part of the accretion disk, where light bending is stronger and there-
fore ϑe can be significantly smaller than i , reducing the polarization degree. For the
polarization angle, the situation is similar. Low energy photons are not significantly
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Fig. 7.6 Polarization degree (left panel) andpolarization angle (right panel) of the thermal spectrum
of a thin disk as a function of the photon energy andwithout including returning radiation. The central
object is a Schwarzschild black hole (solid lines) and a Kerr black hole with the spin parameter
a∗ = 0.9 (dashed lines). The viewing angle is i = 45◦, 60◦, and 75◦. From [26] under the terms
of the Creative Commons Attribution License

Fig. 7.7 Intensity (left panels), polarization degree (central panels), and polarization angle (right
panels) of the thermal spectrum of a Novikov–Thorne thin disk around a Schwarzschild black
hole as a function of the photon energy including direct and returning radiation. In each plot, the
dotted curve represents the contribution from the direct radiation, the dashed curve the contribution
from the returning radiation, and the solid curve is the total flux. The mass of the black hole is
M = 10 M�, the accretion luminosity is 10% of the Eddington limit, and the viewing angle is
i = 45◦ (top panels), 60◦ (central panels), and 75◦ (bottom panels). The polarization angle is
defined in a different way with respect to that in Fig. 7.6. From [40]. © AAS. Reproduced with
permission



7.3 Polarization of the Disk’s Spectrum 149

Fig. 7.8 As in Fig. 7.7 in the case of a Kerr black hole with a∗ = 0.9. From [40]. © AAS.
Reproduced with permission

affected by the curved spacetime near the compact object and therefore their angle
reflects that at the emission point, where the polarization vector is parallel to the disk
and orthogonal to the direction of propagation of the photon. High energy photons
come from the strong gravity region and the orientation of their polarization vector
has changed in a non-trivial way.

Figures7.7 and 7.8 show the spectrum of the intensity (left panels), of the polar-
ization degree (central panels), and of the polarization angle (right panels) including
both direct and returning radiation (solid lines). The contribution of the direct radia-
tion (dotted lines) is dominant at low energies, since these photons aremainly emitted
at large radii where light bending is weak and there is not much returning radiation.
High energy photons come from the inner part of the accretion disk, where gravity
is strong and returning radiation is important. These plots show that the effect of
returning radiation becomes non-negligible for energies above 1–2keV.

The apparent image of an accretion disk around a Kerr black hole with the spin
parameter a∗ = 0.99 is shown in Fig. 7.9. In the top panel, only direct radiation
is taken into account; in the bottom panel, the calculations include both direct and
returning radiation. The contour map shows the relative intensity of the total (namely
polarized and unpolarized) radiation, Iobs/Iobs,max (logarithmic scale). The black seg-
ments show the polarization of the radiation: the length of the segment is proportional
to the polarization degree, while its orientation corresponds to that of the polarization
vector.
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Fig. 7.9 Apparent images of
an accretion disk around a
Kerr black hole with the spin
parameter a∗ = 0.99, the
mass M = 10 M�, accreting
at 10% of the Eddington
limit, and observed from the
viewing angle i = 75◦. In
the top panel, only direct
radiation is taken into
account; in the bottom panel,
the calculations include both
direct and returning
radiation. The color map
shows the total intensity of
the radiation. The segments
report the properties of the
polarization of the radiation:
the length of every segment
is proportional to the
polarization degree, while
the orientation of every
segment corresponds to the
orientation of the
polarization vector. From
[40]. © AAS. Reproduced
with permission

Since themeasurement of the polarization can estimate the inclination angle of the
accretion disk with respect to the line of sight of the distant observer, this technique
will be hopefully able to test the assumption 3 of the Novikov–Thorne model in
Sect. 6.1, namely whether the accretion disk is in the equatorial plane perpendicular
to the black hole spin, as well as whether it is correct to assume that the inclination
angle of the inner part of the disk coincides with the orbital plane of the binary (which
is the standard assumption for the measurement of i necessary in the continuum-
fitting method). In principle, future polarization measurements may be able to see
whether a disk is warped at some radius as a result of the Bardeen–Petterson effect,
due to an initial misalignment between the black hole spin and the inner edge of the
disk [5].

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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Chapter 8
X-Ray Reflection Spectroscopy

Within the disk-corona model, the corona is a hot (T ∼ 100 keV), usually optically
thin, electron cloud, which enshrouds the central disk and acts as a source of X-rays
due to inverse Compton scattering of thermal photons from the disk off free electrons
in the corona. Multiple inverse Compton scattering produces a power-law spectrum
for the corona. The geometry of the corona is currently unknown, and several con-
figurations have been proposed in the literature, see Fig. 8.1. The corona illuminates
also the disk, producing a reflected component with some emission lines. The most
prominent line is usually the iron Kα one, which is at 6.4–6.97 keV, depending on
the ionization degree of the disk surface.

The first detection of a broad iron line in the spectrum of a black hole was reported
in [1], but its relativistic origin was not understood. X-ray reflection around black
holes was first discussed in [15, 18]. In [7], it was pointed out that reflection of the
inner part of the accretion disk produces emission lines that are broad and skewed,
as a result of the strong Doppler boosting and gravitational redshift occurring in the
strong gravitational field of the black hole. The first clear detection of a broad iron
line was reported in [37], based on the ASCA data of the AGN MCG-6-30-15.

The analysis of the iron Kα line is a hot topic today, because it is potentially quite
a powerful tool to test astrophysical black holes. The technique can be applied to both
stellar-mass and supermassive black holes, because this line can be seen in both object
classes and its shape does not directly depend on the mass of the compact object.
While one has to fit the whole reflection spectrum of the source, information about
the spacetime metric in the vicinity of the black hole is mainly extracted from the
iron line. For this reason, the technique of fitting the reflection spectrum to determine
the black hole spin is often called the iron line method. However, a simple model in
which a broad iron line is added to a power-law component can only be useful in a
preliminary study, and should not be employed to obtain the measurement of a black
hole spin.

© Springer Nature Singapore Pte Ltd. 2017
C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity,
DOI 10.1007/978-981-10-4524-0_8
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154 8 X-Ray Reflection Spectroscopy

Fig. 8.1 Examples of possible corona geometries: lamppost geometry (top left panel), sandwich
geometry (top right panel), spherical geometry (bottom left panel), and toroidal geometry (bottom
right panel)

With respect to the continuum-fitting method discussed in the previous chapter,
this technique has some advantages. It is independent of the mass and of the distance
of the source. It does not require an independent measurement of the viewing angle
of the observer, which can be inferred from the fit of the reflection spectrum. It
is potentially much more powerful to probe the spacetime geometry, because the
reflection spectrum has a more complicated structure than a multi-color blackbody
spectrum and, in the presence of high quality data, it is possible to break possible
parameter degeneracy. However, there are also some disadvantages. The validity
of the Novikov-Thorne model is not as well studied as in the case of black holes
in X-ray binaries in the high-soft state, for which the continuum-fitting method is
applied. The geometry of the corona is not yet known. The emissivity profile is
usually approximated by phenomenological models, which inevitably introduces
systematics effects in the measurements of the parameters.

8.1 Reflection Process

The physics behind X-ray reflection and iron line fluorescence can be understood
in terms of an X-ray power-law continuum illuminating a semi-infinite slab of cold
gas, see Fig. 8.2. When an X-ray photon enters the slab, it interacts with the cold
gas through Compton scattering off free/bound electrons, photoelectric absorption
followed by fluorescent line emission, or photoelectric absorption followed byAuger
de-excitation. Since the disk is optically thick, only the properties of its “skin” deter-
mine the reflection spectrum.
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Fig. 8.2 Disk reflection. The accretion disk around a black hole is illuminated by the radiation
from a hot corona. The spectrum of the incident radiation is described by a power-law E−Γ , where
Γ is the photon index. The reflection spectrum can be obtained from radiative transfer calculations
and presents some emission lines. See the text for more details. Adapted from [29]

The reflection spectrum can be obtained by solving numerically radiative transfer
equations describing the interaction of the X-ray photons with the gas on the surface
of the accretion disk. The resulting reflection spectrum is characterized by emission
lines in the 1–8 keV range and the so-called Compton hump around 20 keV (see top
right panel in Fig. 8.2).

In the case of neutral iron, photoelectric absorption of an X-ray photon can eject
one of the two electrons in the K-shell (principal quantum number n = 1). The
absorption threshold is 7.1 keV. An L-shell electron (n = 2) moves to the K-shell
and releases 6.4 keV of energy: 34% of the times this energy is released with the
emission of a photon (fluorescent line emission) and 66% of the times this energy is
transferred to another electron, which is ejected from the atom (Auger de-excitation).
Let us note that the so-called neutral iron line at 6.4 keV is actually a combination of
several transitions in the energy range 6.39–6.43 keV. The fluorescent line is called
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Kα when an L-shell electron moves to the K-shell, Kβ when an M-shell electron
(n = 3) moves to the K-shell, etc.

In the case of ionized iron, there are two differences. First, the absorption threshold
and the de-excitation energy slightly increase. The fluorescent emission line can shift
up to 6.97 keV for H-like iron ions. This is because electrons aremore strongly bound
to the nucleus. Second, the probabilities of fluorescent line emission and of Auger
de-excitation change. From FeI (neutral iron) to FeXXIII (iron nucleus with four
electrons), both processes are possible and the probability changes are modest. For
FeXXIV, FeXXV, and FeXXVI (iron nucleus with, respectively, three, two, and one
electron), the Auger de-excitation cannot take place because it requires at least two
electrons in the L-shell. For FeXXV and FeXXVI, there are no L-shell electrons, so,
strictly speaking, there is no fluorescence but only recombination. However, there
is an effective fluorescence yield taking into account the probability of a Kα line
emission in the recombination cascade.

The iron line is usually themost prominent feature in theX-ray reflection spectrum
of black holes because the iron is more abundant than other heavy elements (the iron-
26 nucleus is more tightly bound than lighter and heavier elements, so it is the final
product of nuclear reactions) and the probability of fluorescent line emission is also
high (for neutral matter, the fluorescence yield is proportional to Z4, where Z is the
atomic number). Moreover, around 6 keV the galactic absorption is negligible, the
spectrum of the source is clean because there are just a few other ions emitting or
absorbing radiation, and most X-ray detectors are quite sensitive around this energy.

The calculations of the reflection spectrum require a large number of atomic
data. The model usually depends on four parameters: the photon power index of the
incident radiation Γ , the ionization parameter ξ at the surface of the accretion disk,
the iron abundance AFe (usually expressed in terms of the Solar iron abundance),
and the emission angle of the radiation at the surface of the disk ϑe.

8.1.1 Photon Index of the Illuminating Radiation

The spectrum of the radiation illuminating the accretion disk has a power-law form,
E−Γ , where Γ is the photon index. This is indeed the kind of spectrum that can
be expected by multiple inverse Compton scattering of the thermal photons from
the disk off the free electrons in the corona. AGN have usually Γ around 2, but in
particular sources Γ may either be close to 1 or larger than 3. The impact of the value
of Γ on the spectrum of the reflected component is shown in Fig. 8.3 for ξ = 10,
100, 103, and 104 erg cm s−1 and AFe = 1 (Solar iron abundance). Here Γ ranges
from 1.2 to 3.4 (from yellow to violet according to the scale on the right).
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Fig. 8.3 Impact of the photon index Γ on the reflection spectrum. The panels (a), (b), (c), and (d)
show, respectively, the spectra for ξ = 10, 100, 103, and 104. The photon index is Γ = 1.2, 1.4,
1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, and 3.4 (from yellow to violet according to the scale on the
right). No rescaling is applied. ξ in units of erg cm s−1. The iron abundance is AFe = 1. From [12].
c©AAS. Reproduced with permission

8.1.2 Ionization Parameter of the Disk Surface

The ionization parameter is traditionally defined as

ξ(r) = 4πFX(r)

ne(r)
, (8.1)

where FX(r) and ne(r) are, respectively, the X-ray flux and the comoving electron
number density at the radius r . It is possible to define four regimes of ionization (for
more details, see Sect. 3.5.1 in [12], which is the most recent study on the topic and
correct some previous results present in the literature):

1. The disk is weakly ionized (ξ � 100 erg cm s−1). The iron atoms/ions are in the
form of FeI-FeXVII. Reflection produces an emission complex around 6.4 keV,
which is the iron Kα line. The spectrum has also the iron Kβ line around 7.1 keV,
which can indeed be produced up to FeXVII.

2. The disk is mildly ionized (ξ ∼ 200–500 erg cm s−1). The iron ions are in the
form of FeXVIII-FeXXIV, which implies there is no Kβ emission. The spectrum
shows a rich complex of emission lines at energies between 6.4 to 6.7 keV.
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Fig. 8.4 Impact of the ionization parameter ξ on the reflection spectrum. The left panel shows
the spectra for ξ = 1, 5, 20, and 100, multiplied, respectively, by 1, 102, 104, and 106 to avoid
overlapping in the figure. The dashed curve is the incident power-law for the case ξ = 1. The right
panel shows the spectra for ξ = 200, 500, 1000, 2000, and 5000, multiplied, respectively, by 1, 10,
102, 103, and 104. The dashed curve is the incident power-law for the case ξ = 200. ξ in units of
erg cm s−1. The photon index is Γ = 2 and the iron abundance is AFe = 1. From [12]. c©AAS.
Reproduced with permission

3. The disk is highly ionized (ξ ∼ 1000 erg cm s−1). The emission is centered at
about 6.7 and 6.9 keV, which implies that most of the iron ions are in the form
of FeXXV (He-like ions) and FeXXVI (H-like ions). The line emission profile is
thermally broadened into a symmetric profile via Compton scattering.

4. The disk is completely ionized (ξ � 5000 erg cm s−1). There is no iron line in
the reflection spectrum, because the iron is completely ionized.

Let us note that the above values of ξ corresponds to the case of photon index Γ = 2.
For a different value ofΓ , the values of ξ slightly changes (see [12] for more details).

Figure8.4 shows the impact of the ionization parameter ξ on the reflection spec-
trum. The left panel shows the spectra for ξ = 1, 5, 20, and 100 erg cm s−1, mul-
tiplied, respectively, by 1, 102, 104, and 106 for graphical reasons. The right panel
shows the spectra for ξ = 200, 500, 1000, 2000, and 5000 erg cm s−1, multiplied,
respectively, by 1, 10, 102, 103, and 104. The photon index is Γ = 2 and the iron
abundance is AFe = 1.

8.1.3 Elemental Abundance of the Disk

The elemental abundance in the accretion disk affects the reflection spectrum, since
it regulates the probability of interactions of the X-ray photons with the atoms/ions
in the accretion disk. Figure8.5 shows the impact of the iron abundance AFe on the
reflection spectrum. AFe is given in terms of the Solar iron abundance. In the left
panels, we can see the temperature profile of the accretion disk as a function of the
Thomson optical depth. In the right panels, there is the corresponding spectrum. The
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Fig. 8.5 Impact of the iron abundance AFe on the reflection spectrum. The left panels show the
temperature profile of the accretion disk, while the right panels show the corresponding spectrum.
The iron line abundance is AFe = 0.5, 1, 5, and 10 (from yellow to violet) and is expressed in terms
of the Solar iron abundance. These models have been multiplied, respectively, by the factors 0.01,
1, 100, and 104 for graphical reasons. The ionization parameter is ξ = 10 (top panels), 100 (central
panels), and 1000 erg cm s−1 (bottom panels), while the photon index is always assumed Γ = 2.
From [12]. c©AAS. Reproduced with permission

ionization parameter is ξ = 10 (top panels), 100 (central panels), and 1000 erg cm s−1

(bottompanels). The photon index isΓ = 2 for all models. The spectra in every panel
are rescaled to avoid overlapping.
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8.1.4 Inclination Angle of the Reflected Radiation

The spectrumof the reflected radiation at the surface of the accretion disk does depend
on the emission angle of the photon, ϑe. In general, the latter is not equivalent to the
inclination angle of the disk with respect to the line of sight of the distant observer,
i , due to light bending, and therefore the emission angle changes in different parts
of the disk.

Figure8.6 shows the reflection spectrum for different inclination angles of the
reflected radiation at the disk surface. The ionization parameter is ξ = 1, 10, 100,
and 1000 erg cm s−1 (from top to bottom). The spectrum for different emission angles
is reported in the left panels. The central panels show the ratio between the spectra

Fig. 8.6 Reflection spectrum for different inclination angles of the reflected radiation at the disk
surface, ϑe. The left panels show the spectra. The central panels show the ratio between the spectra
in the left panels and the angle-averaged spectrum. The right panels show the integrated flux as
a function of the inclination angle. The solid and dashed lines in the right panels correspond,
respectively, to the so-called limb-brightening and limb-darkening emissions, which are commonly
used in relativistic blurring kernels. The inclination angle ranges from 20◦ (yellow curves) to 85◦
(violet curves). The ionization parameter is ξ = 1, 10, 100, and 1000 erg cm s−1 (from top to
bottom). From [13]. c©AAS. Reproduced with permission
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in the left panels and the angle-averaged spectrum. In the right panels, we see the
integrated flux as a function of the emission angle, which ranges from 20◦ (yellow
triangles) to 85◦ (violet triangles).

8.2 Iron Line Profile

The radiative transfer calculations briefly discussed in the previous section pro-
vide the shape of the reflection spectrum in the rest-frame of the accreting gas, say
Se(νe, ϑe), where νe and ϑe are, respectively, the photon frequency and the polar
angle of the emitted photon with respect to the normal of the disk. The normalization
of the spectrum depends on the specific properties of the corona and on the position
of the emission point in the disk. Assuming the disk is axisymmetric, the normaliza-
tion can be described by some function of the emission radius only, say N (re). The
specific intensity of the reflected radiation can be written as

Ie(νe, re, ϑe) = N (re)Se(νe, ϑe) . (8.2)

Ie takes into account the microphysics and the astrophysical model. If we know the
transfer function f , which takes into account the photon relativistic effects, we can
calculate the observed flux as discussed in Sect. 6.2

Fobs(νobs) = 1

D2

∫ ∞

rISCO

∫ 1

0
πre

g2√
g∗(1 − g∗)

f (g∗, re, i)Ie(νe, re, ϑe) dg
∗ dre .

(8.3)

With the formalism of the transfer function, we can thus separate the calculations
involving the astrophysical model (reflection spectrum) from those involving the
relativistic effects on the photons (Doppler boosting, gravitational redshift, light
bending). The function N (re) may depend on the background metric (see below the
case of the lamppost set-up), but it is a minor job and the transfer function formalism
is very convenient for the calculations.

While it is necessary to fit the full reflection spectrum to study a source and
determine its parameters, in this section we will restrict the attention to the iron Kα

line only. This will permit to better understand the impact of the strong gravity region
on the shape of the reflection spectrum.

The shape of the line is primarily determined by the background metric, the
geometry of the emitting region, the disk emissivity, and the disk’s inclination angle
with respect to the line of sight of the distant observer. In the Kerr background, the
relativistic emission line profile emitted by an accretion disk illuminated by an X-ray
coronawith arbitrary geometry is typically parametrized by the black hole spin a∗, the
inner and the outer edge of the emission region rin and rout, and the viewing angle i .
The intensity profile may be modeled as a power-law Ie ∝ r−q , where the emissivity

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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index q is a free parameter to be determined by the fit. A more sophisticated choice
is to assume a broken power-law, i.e.

Ie ∝
{

(rbreak/r)
qin if r < rbreak ,

(rbreak/r)
qout if r > rbreak .

(8.4)

The intensity profile in Eq. (8.4) has three free parameters, qin, qout, and rbreak. A
variant of Eq. (8.4) is to have two free parameters, qin and rbreak, and impose qout = 3,
which corresponds to the Newtonian limit in the lamppost geometry at large radii
far from the X-ray source (see later Sect. 8.2.2). However, if we assume a specific
corona geometry, it is possible to compute the intensity profile. For instance, [6]
have computed the emissivity index q = q(r) according to the height of the primary
X-ray source h for a point-like hot corona located above the black hole on the axis
of the accretion disk.

Galactic black hole binaries have line of sight velocities of just a fewhundred km/s,
which makes their relative motion negligible in the spectrum. In the case of AGN,
the cosmological redshift of the source can instead be important for some objects
and it can be an additional parameter of the model. However, it can be typically
obtained from other observations and does not represent a free parameter in the fit
of the reflection spectrum.

Figure8.7 shows the contribution from different annuli of the accretion disk to
the total iron line profile. The central object is a Kerr black hole with a∗ = 0.99.
The inclination angle of the disk with respect to the line of sight of the distant
observer is i = 45◦. The emissivity profile ismodeled by a power-lawwith emissivity
index q = 3. The inner edge of the disk is at the ISCO radius, rISCO ≈ 1.45 M
in Boyer-Lindquist coordinates for a∗ = 0.99. The rest-frame energy of the line
is Ee = 6.4 keV. The total photon flux is indicated by the black dotted line. The
photons from the annulus rISCO < r < 3 M produce the extended low energy tail
in the iron line profile. This is the innermost part of the accretion disk, where the
gravitational redshift is stronger and thus some photons have energies significantly
lower than 6.4 keV. As wemove to larger radii, the annulus spectrummoves to higher
energies. This is because the gravitational redshift becomes milder. Moreover, we
clearly see that the spectrum of each annulus has two “horns”, one at high and one
at low energies. The former is produced by Doppler blueshift (photons emitted by
gas moving in the direction of the observer), the latter by Doppler redshift (photons
emitted by gas moving in the direction opposite to the observer). In the case of the
spectrum of the innermost annulus, the region rISCO < r < 3 M , the two horns are
not evident because of the strong light bending, which makes the high energy horn
(around 5 keV in Fig. 8.7) very broad. The photons with the highest energies come
from the annulus 10 M < r < 20 M , where the Doppler blueshift due to the motion
of the gas is still high while the gravitational redshift is muchweaker than in the inner
part of the accretion disk. The range 10 M < r < 20 M is valid in the Kerr metric
and for i = 45◦, which is the case in Fig. 8.7. These radial coordinates change if we
consider a different viewing angle i , while the exact value of the spin parameter a∗ is
not very important (at least for moderate values of the viewing angle i) because we



8.2 Iron Line Profile 163

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1  2  3  4  5  6  7  8

P
ho

to
n 

Fl
ux

Eobs (keV)

rISCO < r < 3 M
3 M < r < 5 M
5 M < r < 7 M

7 M < r < 10 M
Total

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1  2  3  4  5  6  7  8

P
ho

to
n 

Fl
ux

Eobs (keV)

10 M < r < 20 M
20 M < r < 50 M

50 M < r < 150 M
150 M < r < 400 M

Total

Fig. 8.7 Contribution from different annuli of the disk to the iron line profile. The spacetime
is described by the Kerr metric with a∗ = 0.99. The value of the other parameters is: viewing
angle i = 45◦, emissivity index q = 3, inner radius rin = rISCO ≈ 1.45 M (in Boyer-Lindquist
coordinates), outer radius rout = 400 M . The radiation from the inner region rISCO < r < 3 M is
strongly redshifted, so the spectrum is in the 0.5–6.0 keV range. At larger radii, the gravitational
redshift is milder, and the spectrum of the annulus shifts to higher energies. The photons with the
highest energies are emitted from the region 10 M < r < 20 M , where the gravitational redshift is
weaker but the Doppler blueshift is still important. For r > 20 M , even the effect of the Doppler
boosting gets weaker and the spectrum shrinks to its rest-frame energy of 6.4 keV. The characteristic
horns in the spectrum of an annulus are due to the Doppler redshift and blueshift. Flux of the photon
number in arbitrary units

are already relatively far from the black hole. If we move to larger radii, the energy
range of the spectrum shrinks to the rest-frame energy 6.4 keV. This is the signal that
even the Doppler boosting is becoming weaker and weaker.
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8.2.1 Impact of the Model Parameters

The impact of the model parameters on the iron line profile is shown in Figs. 8.8, 8.9,
8.10, 8.11, 8.12, and 8.13. Figure8.8 shows the effect of the inclination angle of the
disk with respect to the line of sight of the distant observer, i . For small values of i
(face-on disk), the Doppler boosting is weak. For high inclination angles (edge-on
disk), the Doppler boosting is strong and moves the high energy peak of the profile
to higher energies. The location of the high energy peak can indeed be helpful to
infer the inclination angle i from the fit. However, there are some complications (the
intensity profile and the ionization of the material) that make such a measurement
not so straightforward as suggested by Fig. 8.8.

In Fig. 8.9 we consider different values of the emissivity index q, assuming that
Ie ∝ r−q at all radii. As the value of q increases, the contribution of the radiation
emitted at small radii increases its weight on the total profile. For high values of

Fig. 8.8 Impact of the
viewing angle i on the iron
line profile. The emissivity
index is q = 3, the spin
parameter is a∗ = 0.7, the
inner radius is rin = rISCO,
the outer radius is
rout = 400 M , and the
rest-frame energy of the line
is Ee = 6.4 keV. For
i = 10◦, the normalization of
the line profile has been
reduced for graphical
reasons. Flux of the photon
number in arbitrary units
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Fig. 8.9 Impact of the
emissivity index q on the
iron line profile. The viewing
angle is i = 45◦, the spin
parameter is a∗ = 0.7, the
inner radius is rin = rISCO,
the outer radius is
rout = 400 M , and the
rest-frame energy of the line
is Ee = 6.4 keV. Flux of the
photon number in arbitrary
units
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Fig. 8.10 Impact of the
inner emissivity index qin on
the iron line profile assuming
the intensity profile in
Eq. (8.4) with rbreak = 6 M
and qout = 3. The viewing
angle is i = 45◦, the spin
parameter is a∗ = 0.7, the
inner radius is
rin = rISCO ≈ 3.393 M , the
outer radius is rout = 400 M ,
and the rest-frame energy of
the line is Ee = 6.4 keV.
Flux of the photon number in
arbitrary units
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Fig. 8.11 Impact of the spin
parameter a∗ on the iron line
profile. The viewing angle is
i = 45◦, the emissivity index
is q = 3, the inner radius is
rin = rISCO, the outer radius
is rout = 400 M , and the
rest-frame energy of the line
is Ee = 6.4 keV. For
a∗ = −1, the normalization
of the line profile has been
reduced for graphical
reasons. Flux of the photon
number in arbitrary units
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q, the peak is not in the high energy part of the profile, but at lower energies. The
Doppler blueshift is dominant at 10–20 gravitational radii from the central object
for moderate values of the viewing angle. However, if q is very high, the emissivity
is already low there. In Fig. 8.10 the emissivity profile is modeled as in Eq. (8.4)
with rbreak = 6 M . The figure shows the iron line profiles for different values of qin
assuming qout = 3. For larger values of rbreak, the iron line profile is only weakly
affected by the values of rbreak and qout.

The impact of the spin parameter a∗ is illustrated in Fig. 8.11. Assuming that the
inner edge of the disk is at the ISCO radius, the main effect of the spin is to set rin
and therefore the spin determines the extension of the low energy tail of the iron line
profile.

If we relax the assumption that the inner edge of the disk is at the ISCO radius, rin
is another free parameter of the model. Figure8.12 shows the iron line profile from
a Kerr black hole with the spin parameter a∗ = 0.998. To facilitate the comparison
with Fig. 8.11, the inner edge of the disk is set at the same radial coordinate (in Boyer-
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Fig. 8.12 Impact of the inner radius rin on the iron line profile. To facilitate the comparison with
Fig. 8.11, rin is set to the ISCO radius corresponding to the spin parameter a∗ = −1, 0, 0.7, 0.9,
and 0.998. The viewing angle is i = 45◦, the emissivity index is q = 3, the spin parameter is
a∗ = 0.998, the outer radius is rout = 400 M , and the rest-frame energy of the line is Ee = 6.4 keV.
The normalization of the case with rin set to the ISCO radius corresponding to the spin parameter
a∗ = −1 has been reduced for graphical reasons. Flux of the photon number in arbitrary units

Fig. 8.13 Impact of the
outer radius rout on the iron
line profile. The viewing
angle is i = 45◦, the
emissivity index is q = 3,
the spin parameter is
a∗ = 0.7, the inner radius is
rin = rISCO, and the
rest-frame energy of the line
is Ee = 6.4 keV. Flux of the
photon number in arbitrary
units
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Lindquist coordinates) as the ISCO radius for a Kerr black hole with the values of
a∗ considered in Fig. 8.11. While the iron line profiles in Figs. 8.11 and 8.12 are not
identical, the profiles with the same inner radius are definitively similar. This means
that the main impact of the spin is the determination of the inner edge via the ISCO
radius, while its effect on the iron line profile is much weaker when we relax the
assumption rin = rISCO.

Last, Fig. 8.13 shows how the outer radius of the disk rout alters the iron line profile.
For small values of rout, the iron line profile has a cusp in its central part. Such a cusp
is more or less pronounced, depending on the values of the other parameters. For
instance, in Fig. 8.13, the cusp is at∼4.7 keV for rout = 15 M . This cusp results from
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the Doppler redshifted peak from the annulus at larger radii (see Fig. 8.7). Indeed,
as the outer edge of the disk moves to larger radii, the position of the cusp moves
to larger radii too. For very large values of rout, we do not see any cusp. Iron line
profiles in current data do not show any cusp, which can be explained either with
the fact that the outer radius of the emitting region is large enough that the reflection
flux is too low, or that the data are not good enough to identify such a small feature
even if present.

8.2.2 Emissivity Profile from a Lamppost Corona

Modeling the emissivity profile with a power-law is a quite crude approximation.
In the presence of a specific theoretical model, it would be possible to predict the
emissivity profile as a function of the radical coordinate r . In the lamppost geometry,
the corona is assumed to be a point-like source along the spin axis of the black hole.
The set-up is sketched in Fig. 8.14. For the moment, the lamppost geometry is just
one among other possible scenarios and we do not know if it is the set-up realized
in Nature.

In Fig. 8.14, the height of the corona with respect the black hole is h. In Newtonian
gravity, without light bending, a light ray path is like the red arrow in the figure. At
the radius r in the accretion disk, the incident angle is ϑi. The intensity of the incident
radiation is

Ii(r, h) ∝ cosϑi

r2 + h2
= h(

r2 + h2
)3/2 . (8.5)

For r 
 h, we have Ii ∝ r−3. Ii (incident radiation) and Ie (reflected radiation) have
the same radial profile, so the emissivity index q = 3 corresponds to the Newtonian
limit at large radii for a lamppost corona.

Fig. 8.14 Lamppost geometry. The primary X-ray source (corona) is located above the rotational
axis of the black hole at the height h. The photons emitted by the primary X-ray source illuminate
the accretion disk. Each photon hits the accretion disk at some radius r and with incident angle ϑi
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In curved spacetime, light bending plays a non-negligible role, especially if the
corona is just above the black hole. The calculations can be done numerically [6]. If
we write

Ii(r, h) ∝ r−ε , (8.6)

the results for the Kerr metric are shown in Fig. 8.15. ε is a non-trivial function of the
radial coordinate and mainly depends on the height of the corona h. The exact value
of the spin parameter of the spacetime is ignored here, because its impact on ε is
weak. At large radii, we recover the Newtonian limit ε = 3. At small radii and with
a corona just above the black hole, ε can be significantly larger than 3. At least some
observations seem to require high, or even very high, values of q at small radii [41,
42]; see however [35].

It is clear that more realistic models of a lamppost corona may be more compli-
cated. For instance, the corona may not be point-like but have a finite size, it may
not be exactly along the spin axis, the emitting region may have a finite velocity, etc.
See e.g. [42].

Fig. 8.15 The emissivity
index ε in the lamppost
corona geometry for different
values of the height of the
primary source h. rg = M is
the gravitational radius. The
vertical dashed lines mark
the position of the ISCO
radius for Kerr black holes
with the spin a∗ = 0.99, 0
(Schwarzschild), −1
(extremal Kerr black hole
and counterrotating disk).
Figure3 from [6],
reproduced by permission of
Oxford University Press
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8.3 Spin Measurements

As shown in the previous section, the photons in the iron line are strongly affected by
the relativistic effects occurring in the strong gravity region around the black hole.
If the physics and astrophysics behind are properly understood, the analysis of the
reflection spectrum can be a powerful tool to test the nature of the compact object. If
we assume the Kerr metric, the spacetime metric affects the shape of the reflection
spectrum only through the spin parameter a∗. The mass of the black hole M only
sets the scale of the system and does not play any role in the shape of the reflection
spectrum. While it is necessary to fit the whole reflection spectrum to measure the
black hole spin, the iron Kα line is the strongest feature sensitive to the gravitational
field at a few gravitational radii from the compact object. This is the reason of the
name “iron line method” to mean the study of the reflection spectrum to measure
black hole spins. Two recent reviews on spinmeasurements with the iron linemethod
are [2, 30].

With respect to the continuum-fitting method, the iron line one has some advan-
tages. It is independents of the mass and the distant of the black hole, two quantities
that are usually known only with large uncertainty. It does not require the viewing
angle as input parameter, but i can be inferred from the iron line itself from the max-
imum Doppler blueshift. Since the iron line profile is independent of the mass of the
compact object, this technique can be used to infer the spin of both stellar-mass and
supermassive black holes. The iron line profile has also a more complicated structure
than the thermal spectrum of a thin disk, so it can potentially measure more than one
parameter of the strong gravity region around the black hole.

Current iron line spin measurements of stellar-mass black holes are summarized
in the third column in Table7.1 in Sect. 7.2. When the measurements from both
the thermal spectrum and the iron line are available for the same object, the two
measurements usually agree. This is a good indication of the validity of the two
techniques. When the two measurements do not agree, it is likely that at least one of
them is obtained from observations in which the Novikov-Thorne model is not valid
(e.g. the inner edge of the disk is not at the ISCO radius) or there are systematics
effects not under control.

Table8.1 summarizes current spin measurements of supermassive black holes.
Here the second column is for the spin measurement and the third column is for
the luminosity of the source in Eddington unit. Several sources seem to have a spin
parameter very close to 1. While it is possible that these objects are fast-rotating
black holes, their spin measurement should be taken with some caution, because the
validity of the Novikov-Thorne model is not guaranteed. For example, the accretion
rate may be too high and the disk may not be geometrically thin. See Sect. 8.4.2 for
more details. However, fast-rotating black holes in galactic nuclei can be expected
in the case of prolonged disk accretion (see Sect. 6.4).

Figure8.16 shows a sample of 17 supermassive black holes with a measurement
of their mass M and of their spin parameter a∗. While the statistics is not high and
the uncertainty in some measurements is quite large, we may see a few interesting

http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_6
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Table 8.1 Summary of the iron line measurements of the spin parameter of supermassive black
holes under the assumption of the Kerr background. The third column shows the total luminosity
in Eddington units (see the discussion in Sect. 8.4.2 for its relevance). See the references in the last
column and [2] for more details

AGN a∗ (Iron) LBol/LEdd Principal references

IRAS 13224-3809 >0.995 0.71 [40]

Mrk 110 >0.99 0.16 ± 0.04 [40]

NGC 4051 >0.99 0.03 [26]

MCG-6-30-15 >0.98 0.40 ± 0.13 [3, 23]

1H 0707-495 >0.98 ∼1 [28, 40, 45]

NGC 3783 >0.98 0.06 ± 0.01 [4, 26]

RBS 1124 >0.98 0.15 [40]

NGC 1365 0.97+0.01
−0.04 0.06+0.06

−0.04 [5, 32, 33]

Swift J0501.9-3239 >0.96 — [40]

Ark 564 0.96+0.01
−0.06 >0.11 [40]

3C 120 >0.95 0.31 ± 0.20 [20]

Ark 120 0.94 ± 0.01 0.04 ± 0.01 [25, 27, 40]

Ton S180 0.91+0.02
−0.09 2.1+3.2

−1.6 [40]

1H 0419-577 >0.88 1.3 ± 0.4 [40]

Mrk 509 0.86+0.02
−0.01 — [40]

IRAS 00521-7054 >0.84 — [36]

3C 382 0.75+0.07
−0.04 — [40]

Mrk 335 0.70+0.12
−0.01 0.25 ± 0.07 [27, 40]

Mrk 79 0.7 ± 0.1 0.05 ± 0.01 [10, 11]

Mrk 359 0.7+0.3
−0.5 0.25 [40]

NGC 7469 0.69 ± 0.09 — [27]

Swift J2127.4+5654 0.6 ± 0.2 0.18 ± 0.03 [24, 27]

Mrk 1018 0.6+0.4
−0.7 0.01 [40]

Mrk 841 >0.56 0.44 [40]

Fairall 9 0.52+0.19
−0.15 0.05 ± 0.01 [19, 27, 34, 40]

features. First, it seems that black holeswithM ≈ 106–107 M� have a spin parameter
close to 1, while the spin of heavier black holes with M ≈ 107–109 M� may be
lower. Second, the objects in this sample are all radio-quiet AGN (see Appendix C).
Their radio luminosity is low because they do not have powerful jets. Since their
spin is instead high, this seems to exclude the idea that radio-quiet AGN would be
slow-rotating black holes and radio-loud AGN would be fast-rotating black holes.
If the jet of a black hole is powered by its spin, it is likely that, in analogy with
stellar-mass black holes (see Sect. 4.5), jets appear only for relatively short times
(see Appendix D).

http://dx.doi.org/10.1007/978-981-10-4524-0_4
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Fig. 8.16 Sample of
17 supermassive black holes
with a measurement of their
mass M and of their spin
parameter a∗. The masses
have an error bar
corresponding to 1-σ , the
spins have an error bar
corresponding to 90%
confidence level. From [30]

)

8.4 Validity of the Model

8.4.1 Relativistic Origin of Broad Iron Lines

The interpretation that broad iron lines are a feature of the reflection spectrum of
the accretion disk is today well supported by observations and there is a common
consensus on the fact that these iron lines are generated from the inner part of the
disk. Most of the alternative proposals to explain broad iron lines are relatively easy
to rule out [8]. In principle, warm absorbers, namely absorbing clouds that partially
cover the power-law source, may somehowmimic the X-ray reflection spectrum and
produce a broad iron line. The absorber model was proposed in [21, 22, 38], but is
now ruled out by observations.

First, absorbing passing clouds may indeed be expected in the case of AGN, but
they are definitively more unlikely in the case of black hole binaries. On the other
hand, we observe broad and skewed iron lines in the spectrum of both supermassive
and stellar-mass black holes, and the line shapes are very similar. It is thus natural
to imagine that such a feature is more likely related to the background metric rather
than to the astrophysical environment, which is different for AGN and black hole
binaries.

Second, the absorbermodel can predict a broad iron line, but it does not predict any
Compton hump at higher energies. X-ray missions like XMM-Newton or Chandra
can onlymeasure theX-ray spectrumup to about 10 keV (seeTable5.2), and therefore
they cannot observe the Compton hump at 20–40 keV. After the launch of NuSTAR
in 2012, it has been possible to measure the X-ray spectrum of black holes up to
70–80 keV and verify the presence of the Compton hump. Risaliti et al. [33] studied
the supermassive black hole in the AGN NGC 1365 with both XMM-Newton and
NuSTAR. The result is shown in Fig. 8.17, where we can see that both the absorber
and the reflectionmodels could explain the broad iron line at 3–7 keV, but the absorber
model clearly fails to fit the spectrum above 10 keV. The NuSTAR data of NGC 1365
definitively support the reflection origin of the iron line and rule out the absorber
model.

http://dx.doi.org/10.1007/978-981-10-4524-0_5
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Fig. 8.17 Theoretical predictions of the absorbermodel (red solid curve) and of the reflectionmodel
(green solid curve), and observational data of XMM-Newton (blue dots) and NuSTAR (yellow dots)
of the AGN NGC 1365. At low energies, the absorber and the reflection models predict a similar
iron line, and the XMM-Newton data cannot distinguish the two scenarios. At higher energies, the
two models predict different spectra. The reflection model has the Compton hump at 20–40 keV.
The NuSTAR data support the reflection model and rule out the absorber model. See [33] and the
text for more details. Image Credit: NASA/JPL-Caltech

Third, temporal variations of the corona luminosity inevitably cause temporal
variations in the reflection spectrum. However, the speed of light is finite, and there-
fore the response of the reflection spectrum has some time delay with respect to the
variability of the corona. Such a time delay, which is called the reverberation lag,
can be inferred by studying the light curves made in different X-ray energy bands,
exploiting the fact that the primary and the reflection spectra have different shapes.
Zoghbi et al. [45] found a 30s lag in the high frequency variations of the soft and
iron-L line dominated bands relative to the harder, power-law dominated band in
1H 0707-495. This is exactly what one should expect from the reflection model, due
to the additional light travel time of the reflection signal with respect to the direct
power-law component from the corona.

Figure8.18 shows the lag-energy spectra for five supermassive black holes. The
amplitudes of the lags have been rescaled in order to have the relative lag between 3–4
and 6–7 keV equal for all the sources (the masses of these black holes are different).
The iron line lag, namely the lag around the energy of the iron Kα line, is similar
in all the sources, while the lag at lower energies is different. The interpretation is
that the reflection spectrum cannot depend on the accretion flow, which is different
in any source, but it must be related to metric of the spacetime, which is roughly the
same for every object.
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Fig. 8.18 Lag-energy spectra for 1H0707-495 (blue), IRAS 13224-380 (red), Ark 564 (green),
Mrk 335 (cyan), and PG 1244+026 (purple). The shape of the iron line lag is similar in all the
sources, while the lag at lower energies is different. This strongly supports the relativistic origin of
the iron line and its importance as a tool to test strong gravity, because it suggests that the physics
behind is quite independent of the properties of the accretion flow and depends on some fundamental
property, namely the background geometry. Here the lags have been rescaled because the masses,
and therefore the characteristic timescales, of these objects are different. From [39]

8.4.2 Spin Measurements

As the continuum-fitting method, even the analysis of the iron line relies on the
validity of the Novikov-Thorne model. In particular, a crucial assumption is that the
inner edge of the disk is at the ISCO radius. This is a subtle point and we should
distinguish the cases of stellar-mass and supermassive black holes.

For stellar-mass black holes, the validity of the Novikov-Thorne model for the
continuum-fitting method has already been discussed in Sect. 7.2. If the source is in
the high-soft state with an accretion luminosity between 5 and 30% of its Eddington
limit, deviations from the model are small. However, the reflection spectrum is dom-
inant when the source is in the low-hard state. For such a spectral state, there has not
yet been a systematic study on the validity of the Novikov-Thorne model as in the
high-soft state. As discussed in Sect. 4.5, observations show that at the beginning of
the low-hard state, when the mass accretion rate is low, the disk may be truncated at
a radius larger than the ISCO radius. As the mass accretion rate increases, the inner
edge of the disk approaches the central object. The measurement of the spin via the
iron line approach may thus require that the source is at the end of the low-hard state
or in the hard-intermediate state.

For example, in the case of the black hole binary GX 339-4, we have both obser-
vations in which the inner edge of the disk seems to be at the ISCO radius and whose
data are thus suitable for spin measurements [14], as well as observations in which
the disk is truncated and it would bewrong to assume rin = rISCO in the analysis of the

http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_4
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Fig. 8.19 Impact on the iron line profile of the model parameters studied in [6] within a lamppost
geometry. Panels (a) and (b): impact of the height of the primary source h. Panels (c) and (f): impact
of the photon index Γ of the spectrum of the primary source. Panels (d) and (e): impact of the spin
parameter a∗. Panels (g), (h), and (i): irradiation by the base of a jet moving at the velocity v. Panels
(j) and (k): irradiation by an elongated jet, where htop is the top height of the jet and hbase is the
height of the base of the jet. Panel (l): irradiation by an accelerated jet moving from the height
h = hbase to h = htop, where v100 is the velocity at h = 100 rg. If not stated otherwise, the black
hole spin is a∗ = 0.99 and the height of the primary source is h = 3 rg. In all profiles, the viewing
angle is i = 30◦, the inner edge of the disk is at the ISCO radius, and the outer edge of the disk is at
400 rg. rg = M is the gravitational radius. All profiles are normalized to have the same number of
photons in the iron line. See the text for more details. Figure9 from [6], reproduced by permission
of Oxford University Press
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reflection spectrum [9]. In the latter case, spin measurements could be still possible
in principle, but with the current quality of the data we cannot break the degeneracy
between a∗ and rin and therefore we cannot measure the black hole spin if we relax
the assumption rin = rISCO. In the presence of high quality data and with the correct
astrophysical model, it may be possible to measure both a∗ and rin separately.

For supermassive black holes, the iron line method is used at any accretion lumi-
nosity, as shown by the third column in Table8.1.1 It is unclear if the ISCO assump-
tion is correct. For low accretion luminosities, the disk may be thin but truncated
at a radius larger than the one of the ISCO. The high values of the spin parameters
reported in Table8.1 are often in sources with a high accretion luminosity. In this
case, it is possible that the disk becomes fat and the inner edge of the disk is inside the
ISCO (see Appendix E). This would lead to an overestimate of the black hole spin.
Such a high values of the black hole spin should thus be taken with some caution,
because the uncertainty does not include possible systematic effects related to these
issues.

Dauser et al. [6] have explored the actual capability of the iron line method to
measure black hole spins within the lamppost set-up. They results are summarized in
Fig. 8.19, which shows the iron line profile for different values of the parameters of
the corona model. The conclusion of this work is that a spin measurement seems to
be possible only in the case of a compact corona at not more than a few gravitational
radii from the black hole. If the corona is not compact or it is not close to the black
hole, the iron line is narrower and it is not possible to distinguish a fast-rotating
black hole with an elongated corona from a slow-rotating black hole. In such a case,
it would be only possible to infer a lower value for the spin parameter.

8.5 Reverberation Mapping

In the framework of the corona-diskmodel, “iron line reverberation” refers to the iron
line signal as a function of time in response to a δ-function like pulse of radiation from
the corona. The resulting line spectrum as a function of both time and across photon
energy is called the 2D transfer function. As shown for the first time in [31, 43], the
shape of the 2D transfer function is determined by the fundamental properties of the
black hole and the system geometry. An accurate measurement of the 2D transfer
function can better map the spacetime geometry in the strong gravity region than the
corresponding time-integrated measurement [17].

Within the lamppost model, the set-up is that shown in Fig. 8.20. The corona
illuminates the cold accretion disk. Because of the finite speed of light, photons
emitted from different points in the accretion disk are detected at different times by

1It is worth noting that even the estimates of LBol/LEdd in Table8.1 have to be taken with some
caution, because it is difficult to get reliable measurements of the mass and of the total luminosity
for these objects. In the end, it is currently impossible to say if one of these sources is in the right
spectral state to apply the Novikov-Thorne model and the iron line method.
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Fig. 8.20 Cartoon explaining the shape of the 2D transfer function of an iron line generated from a
system with lamppost geometry. The corona above the rotational axis of the black hole illuminates
the accretion disk and, because of the finite speed of light, photons emitted from different parts of
the disk arrive at the detector at different times. The purple path is the shortest one, so the iron line
photons from the point of emission in the disk associated to that path are the first to arrive. After
these photons, we have those associated to the blues paths. The photons emitted at smaller (larger)
radii than the photons from the purple path are more (less) affected by gravitational redshifted.
The same is true for the photons of the green paths with respect to the photons of the blue paths.
The 2D transfer function thus develops two branches, one with photons of higher energies and one
with photons of lower energies emitted closer to the black hole. The low energy branch ends when
we detect the last photons from the inner edge of the disk. The high energy branch, after having
reached a maximum energy determined by the balance between gravitational redshift and Doppler
blueshift, tends to the asymptotic value of the line (6.4 keV for neutral matter). The energy width
of this branch at late time is determined by Doppler boosting

the distant observer. The 2D transfer function becomes nonzero as the first photons
reach the observer (purple path in Fig. 8.20). After that, the observer detects photons
with slightly longer path. These photons (blue paths in Fig. 8.20) are emitted at
larger and smaller radii with respect to the first photons, and therefore they are,
respectively, less and more affected by the gravitational redshift occurring near the
black hole. The 2D transfer function thus develops two branches, one at higher and
one at lower energies. Photons arriving later are even less and more affected by
gravitational redshift (green paths in Fig. 8.20). The low energy branch of the 2D
transfer function ends when the observer detects the photons emitted from the inner
edge of the accretion disk. No photons are emitted from smaller radii. On the other
hand, the high energy branch continues receiving photons, even if the signal is weaker
and weaker because the intensity is lower and lower at larger radii. The photons of
the high energy branch approach the rest-frame energy of the iron line (gravitational
redshift becomes weaker and weaker), and the small energy width of the 2D transfer
function is due to Doppler boosting for the gas orbital motion (red path in Fig. 8.20).



8.5 Reverberation Mapping 177

Fig. 8.21 2D transfer functions in the Kerr spacetime. The spin parameter is a∗ = 0 (top panels),
0.5 (central panels), and 0.95 (bottom panels). The viewing angle is i = 10◦ (left panels) and
80◦ (right panels). The height of the source is h = 10 M and the index of the intensity profile is
q = 3. Flux of the photon number in arbitrary units. From [16], reproduced by permission of IOP
Publishing. All rights reserved

Examples of 2D transfer functions in the Kerr metric are shown in Fig. 8.21. The
black hole spin is a∗ = 0 (top panels), 0.5 (central panels), and 0.95 (bottom panels).
The inclination angle of the diskwith respect to the line of sight of the distant observer
is i = 10◦ (left panels) and 80◦ (right panels).

The 2D transfer functions in the case of a low viewing angle are easier to interpret.
Here the Doppler boosting is negligible, so the shape of the 2D transfer function is
determined by the gravitational redshift. The extension of the low energy branch in
these 2D transfer functions is determined by the position of the ISCO radius, which
depends on the black hole spin. For a fast-rotating black hole, the low energy branch
can reach very low energies. The radiation coming from larger radii and reaching the
distant observer at later times is quite independent of the metric in the strong gravity
region, and the three plots are very similar.
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In the case of a large viewing angle (right panels in Fig. 8.21), the 2D transfer
function has definitively a more complicated structure due to the combination of
gravitational redshift and Doppler boosting. At later times, the 2D transfer function
is wider than the low viewing angle case because the line is still broad due to Doppler
boosting.

With the current X-ray facilities, iron line reverberation mapping is not possible
because of the low photon count rate. For the time being, there are just measurements
of reverberation lags in AGN between different X-ray bands. However, iron line
reverberation mapping should not be out of reach for the next generation of X-ray
satellites. Black hole binaries are brighter than AGN, but the timescale variability
is much shorter. For the next generation of X-ray missions, like eXTP [44], black
hole binaries are more promising sources for iron line reverberation measurements
because the effective area of the detector is large enough to be able to count a sufficient
number of photons in a short time.
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Chapter 9
Quasi-periodic Oscillations

Quasi-periodic oscillations (QPOs) are a common feature in the X-ray power density
spectrum (PDS) of neutron stars and stellar-mass black holes [16, 26]. They are seen
as relatively narrow peaks at characteristic frequencies. High-frequency QPOs in
black hole binaries (∼100Hz) are particularly interesting because:

1. Their frequency is in the expected range for matter orbiting near the ISCO radius
of the source.

2. They depend only very weakly on the observed X-ray flux, which suggests that
the frequency is mainly determined by the metric of the spacetime and is not very
sensitive to the properties of the accretion flow.

3. The centroid frequency can be measured with high precision.

Thanks to these properties, it is thought that, if properly understood, QPOs can be
a powerful tool to test black holes and get precise measurements of the background
metric. For the moment, the actual mechanism responsible for the production of
QPOs is not known. There are several proposals in the literature, like the relativistic
precession models [20–22], the resonance models [1, 2, 9], and the diskoseismology
models [14, 19, 27].

Table9.1 shows a summary of spin measurements of the stellar-mass black hole
GRO J1655-40 from different QPO models. All these measurements assume that
the metric around the compact object is described by the Kerr solution. This source
has high-frequency QPOs at 300 and 450Hz. The measurement with the relativistic
precession model employs also a low-frequency QPO and does not need the mass of
the object as an input parameter. The diskoseismology model requires the two high-
frequencyQPOs as input parameters, and provides an estimate of the black holemass
and spin. The other measurements require the black hole mass as an input parameter,
and in the case of GRO J1655-40 the value of the mass is known from optical
observations. As shown in this table, the correct interpretation of the two frequencies
is crucial and different models provide completely different measurements of the
black hole spin.

© Springer Nature Singapore Pte Ltd. 2017
C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity,
DOI 10.1007/978-981-10-4524-0_9
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Table 9.1 Summary of the spin measurements of GRO J1655-40 from different QPO models. All
these measurements assume that the metric around the compact object is described by the Kerr
solution. In the case of the measurements with the relativistic precession model and the diskoseis-
mology model, there is no assumption about the mass of the object. In the other measurements, the
value of the mass adopted to infer the black hole spin is reported in the third column

Model a∗ Assumed mass (M�) References

Relativistic precession model 0.290 ± 0.003 – [11]

Diskoseismology model 0.917 ± 0.024 – [27]

Warp resonance model 0.9–0.99 5.1–5.7 [8]

3:2 Parametric resonance model 0.96–0.99 6.0–6.6 [25]

2:1 Forced resonance model 0.31–0.42 6.0–6.6 [25]

3:1 Forced resonance model 0.50–0.59 6.0–6.6 [25]

2:1 Keplerian resonance model 0.31–0.42 6.0–6.6 [25]

3:1 Keplerian resonance model 0.45–0.53 6.0–6.6 [25]

Table 9.2 As in Table9.1 for GRS 1915+105. The lower value of the spin estimate from the forced
and the Keplerian resonance models is negative, namely the disk would have an angular momentum
antiparallel to the black hole spin

Model a∗ Assumed mass (M�) References

Diskoseismology model 0.926 ± 0.020 – [27]

Warp resonance model 0.93-0.99 14–16 [8]

3:2 Parametric resonance model 0.69–0.99 10.0–18.0 [25]

2:1 Forced resonance model (−0.41)–0.44 10.0–18.0 [25]

3:1 Forced resonance model (−0.15)–0.61 10.0–18.0 [25]

2:1 Keplerian resonance model (−0.41)–0.44 10.0–18.0 [25]

3:1 Keplerian resonance model (−0.13)–0.55 10.0–18.0 [25]

Table9.2 shows the case of the black hole binary GRS 1915+105. This source
has high-frequency QPOs at 113 and 168Hz. Again, every model predicts a very
different black hole spin.

On the basis that stellar-mass and supermassive black holes have a very similar
behavior and that the scale of these systems is their mass M, high-frequency QPOs
are expected in AGN as well. For objects with M > 106 M�, high-frequency QPOs
should be below 1mHz. However, due to insufficient observation lengths and mod-
eling problems, QPOs are more difficult to detect in AGN. The first robust detection
of a QPO in an AGN was reported in [5] from the Seyfert galaxy RE J1034+396.

QPOs have been detected even in some ultra-luminous X-ray sources associated
to intermediate-mass black hole candidates. For instance, Pasham et al. [13] have
reported the detection of twin peak QPOs from M82 X-1 at 3.32 ± 0.06Hz and
5.07± 0.06Hz. If these frequencies are interpreted within the relativistic precession
model, the mass of the black hole candidate would be M = 415 ± 63M� [13].
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High-frequency QPOs have been also studied in the context of tests of the Kerr
metric [3, 4, 7, 10]. In general, there is a strong correlation between the estimate
of the black hole spin and possible deviations from the Kerr solution, because each
frequency is just a number, and it is not difficult to obtain by simply adjusting
the parameters of the background metric. However, if it is possible to break the
parameter degeneracy, for instance by adding an independent constraint from other
observations, andwe suppose to know the correct astrophysicalmodel, the constraints
can be quite strong.

9.1 Observations

Detectors on board of X-ray missions can typically measure the time of arrival of
every X-ray photon hitting the detector with an accuracy of microseconds. If we have
the photon count rateC(t), it can be Fourier transformed and squared to give a power
density. If we use the Leahy normalization, the power density spectrum is

P(ν) = 2

N

∣
∣
∣
∣

∫ T

0
C(t)e−2π iνtdt

∣
∣
∣
∣

2

, (9.1)

where N is the total number of counts and T is the duration of the observation. QPOs
are narrow features in the X-ray power density spectrum of a source.1 In the case
of black hole binaries, QPOs can be grouped into two classes: low-frequency QPOs
(LFQPOs) and high-frequency QPOs (HFQPOs).

Low-frequency QPOs have a frequency in the range 0.1–30Hz. They may either
vary in frequency on very short timescales (∼1 min) or be relatively stable. There
are different kinds of LFQPOs and they are called, respectively, type-A, type-B, and
type-C QPOs. For instance, type-A QPOs typically manifest when the source is in
the high soft state, just after the intermediate state. The presence of type-B QPOs is
used to define the soft intermediate state. Type-C QPOs are mainly detected when
the source is in the bright end of the hard state or in the hard intermediate state.

High-frequency QPOs have a frequency in the range 40–450Hz. In four systems,
we have detections of pairs of HFQPOs (even if not always simultaneously) with
the two frequencies that turn out to be in the ratio 3:2. These two QPOs are usually
called, respectively, the upper and the lower HFQPOs. Table9.3 shows the sources
with detections of a pair of HFQPOs.

Figure9.1 shows the power density spectrum obtained from an observation of the
stellar-mass black hole XTE J11550-564. In the large panel, we see a type-B QPO at
∼5Hz and a type-C QPO at 13Hz. In the small panel, we have a HFQPO at 183Hz.

1Broad structures in the X-ray power density spectrum are instead called “noise”.
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Table 9.3 Black hole binaries with a measurement of two high-frequency QPOs

BH binary Lower frequency (Hz) Upper frequency (Hz) References

GRO J1655-40 300 450 [17, 18, 24]

XTE J1550-564 184 276 [18]

GRS 1915+105 113 168 [15, 16]

H1743-322 166 242 [6]
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Fig. 9.1 Power density spectrum from an observation of XTE J1550-564. We see a type-B QPO at
∼5Hz, a type-C QPO at 13Hz (marked by an arrow), and a HFQPO at 183Hz in the inset (marked
by an arrow). Figure9.1 from [12], reproduced by permission of Oxford University Press

QPOs are usually modelled by a Lorentzian

P(ν) ∝ λ

(ν − ν0)
2 + (λ/2)2

, (9.2)

where ν0 is the centroid frequency and λ is the full width at half maximum.
A Lorentzian, strictly speaking, would correspond to the power spectrum of the
signal of an exponentially damped sinusoid, namely

x(t) ∝ exp

(

− t

τ

)

· cos (2πν0t) . (9.3)

The coherence time of the signal is τ = 1/ (πλ) and its quality factor is Q = ν0/λ.
The term QPO is usually reserved for a signal with Q > 2, while the signal is called
peaked noise if Q < 2.



9.2 Fundamental Frequencies of a Test-Particle 185

9.2 Fundamental Frequencies of a Test-Particle

Equatorial circular orbits of a test-particle are characterized by three fundamental
frequencies:

1. Orbital frequency (or Keplerian frequency) νφ , which is the inverse of the orbital
period.

2. Radial epicyclic frequency νr , which is the frequency of radial oscillations around
the mean orbit.

3. Vertical epicyclic frequency νθ , which is the frequency of vertical oscillations
around the mean orbit.

These three frequencies only depend on the metric of the spacetime and on the radius
of the orbit. While they are defined as the characteristic frequencies for the orbital
motion of a free particle, there is a direct relation between these frequencies and the
ones of the oscillation modes of the fluid of an accretion flow [23].

In Newtonian gravity with the potential V = −M/r, the three fundamental fre-
quencies have the same value:

νφ = νr = νθ = 1

2π

M1/2

r3/2
. (9.4)

These frequencies are plotted as a function of the radial coordinate r in the top left
panel in Fig. 9.2.

In the Schwarzschild metric, the main difference from Newtonian gravity is the
existence of the ISCO radius and of the photon radius. Circular orbits with radii
smaller than rISCO are radially unstable. The radial epicyclic frequency νr must thus
reach a maximum at some radius rmax > rISCO and then vanishes at the ISCO. The
orbital and the vertical epicyclic frequencies are instead defined up to the innermost
circular orbit, the so-called photon orbit (see Sect. 3.1). There are no circular orbits
with radius smaller than the one of the photon orbit. The three fundamental frequen-
cies as a function of the radial coordinate r in the Schwarzschild background are
shown in the top right panel in Fig. 9.2. We always have νφ = νθ > νr , see below
Eq. (9.18).

In the Kerr metric, νθ > νr is still true and, for corotating orbits, νφ ≥ νθ . The
three fundamental frequencies as a function of the radial coordinate r in the Kerr
spacetime with the spin parameter a∗ = 0.9 and 0.998 and for corotating orbits are
shown, respectively, in the bottom left and bottom right panels in Fig. 9.2.

In the case of a generic stationary and axisymmetric spacetime, the picture may
be more complicated. The ISCO radius may be determined by the stability of the
orbit along the vertical (instead of the radial) direction. In some metrics, there is also
the possibility of the existence of one or more regions of stable circular orbits inside
the ISCO and therefore at smaller radii. These regions of stable orbits are separated
by a gap from the “traditional” ISCO; the details depend on the specific metric.

http://dx.doi.org/10.1007/978-981-10-4524-0_3
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Fig. 9.2 Fundamental frequencies of a test-particle. Top left panel Newtonian gravity with the
potential V = −M/r; the three fundamental frequencies have the same value. Top right panel
Schwarzschild metric; the orbital and the vertical epicyclic frequencies have the same value, the
radial epicyclic frequency vanishes at the ISCO radius. Bottom left panel Kerr metric with the spin
parameter a∗ = 0.9. Bottom right panel Kerr metric with the spin parameter a∗ = 0.998

9.2.1 General Case

For a generic stationary and axisymmetric spacetime, we write the line element in
the canonical form, namely

ds2 = gttdt
2 + 2gtφdtdφ + grrdr

2 + gθθdθ2 + gφφdφ2. (9.5)

We can then proceed as in Sect. 3.1 and find the orbital angular velocity

Ωφ = dφ

dt
= −∂rgtφ ±

√
(

∂rgtφ
)2 − (∂rgtt)

(

∂rgφφ

)

∂rgφφ

(9.6)

http://dx.doi.org/10.1007/978-981-10-4524-0_3
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This is the expression found in Eq. (3.11). The orbital frequency is νφ = Ωφ/2π .
For the calculation of the radial and the vertical epicyclic frequencies, we can

start from the conservation of the rest-mass gμν ẋμẋν = −1. As done in Sect. 3.1, we
introduce the effective potential Veff defined in Eq. (3.8) and we have

grr ṙ
2 + gθθ θ̇

2 = Veff . (9.7)

In the linear regime, we can consider separately small perturbations around circular
equatorial orbits along, respectively, the radial and the vertical directions. For the
radial direction, we assume θ̇ = 0, we write ṙ = ṫ(dr/dt), and Eq. (9.7) becomes

(
dr

dt

)2

= 1

grr ṫ2
Veff . (9.8)

We derive Eq. (9.8) with respect to the coordinate t and we obtain

d2r

dt2
= 1

2

∂

∂r

(
1

grr ṫ2
Veff

)

= Veff

2

∂

∂r

(
1

grr ṫ2

)

+ 1

2grr ṫ2
∂Veff

∂r
. (9.9)

If δr is a small displacement around the mean orbit, namely r = r0 + δr , we have

d2r

dt2
= d2δr

dt2
,

Veff(r0 + δr) = Veff(r0) +
(

∂Veff

∂r

)

r=r0

δr + O(δ2r ) = O(δ2r ),

(
∂Veff

∂r

)

r=r0+δr

=
(

∂Veff

∂r

)

r=r0

+
(

∂2Veff

∂r2

)

r=r0

δr + O(δ2r )

=
(

∂2Veff

∂r2

)

r=r0

δr + O(δ2r ). (9.10)

A similar expression can be derived for the coordinate θ to find the vertical epicyclic
frequency, introducing a small displacement around the mean orbit δθ , i.e. θ =
π/2 + δθ . Neglecting, respectively, terms O(δ2r ) and O(δ2θ ), we find the following
differential equations

d2δr
dt2

+ Ω2
r δr = 0, (9.11)

d2δθ

dt2
+ Ω2

θ δθ = 0, (9.12)

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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where

Ω2
r = − 1

2grr ṫ2
∂2Veff

∂r2
, (9.13)

Ω2
θ = − 1

2gθθ ṫ2
∂2Veff

∂θ2
. (9.14)

The radial epicyclic frequency is νr = Ωr/2π and the vertical one is νθ = Ωθ/2π .

9.2.2 Kerr Spacetime

In the Kerr metric, the three fundamental frequencies can be written in an analytic
and compact form:

νφ = ± 1

2π

M1/2

r3/2 ± aM1/2
, (9.15)

νr = νφ

√

1 − 6M

r
± 8aM1/2

r3/2
− 3a2

r2
, (9.16)

νθ = νφ

√

1 ∓ 4aM1/2

r3/2
+ 3a2

r2
. (9.17)

The Schwarzschild limit follows by imposing a = 0 and we obtain that the orbital
and the vertical epicyclic frequencies coincide

νφ = νθ = 1

2π

M1/2

r3/2
, νr = νφ

√

1 − 6M

r
. (9.18)

The Newtonian limit can be quickly recovered from the Schwarzschild case by con-
sidering only the leading order term inM/r and the result is given in Eq. (9.4). In the
Kerr spacetime νθ ≥ νr , but it may not be true in general. If the ISCO is marginally
vertically stable, νθ = 0 at the ISCO, and therefore we have νr > νθ .

It may be useful to have an estimate of the order ofmagnitude of these frequencies.
For a Schwarzschild black hole, the orbital frequency is

νφ(a∗ = 0) = 220

(
10M�
M

) (
6M

r

)3/2

Hz. (9.19)

HFQPOs at 40–450Hz are thus of the right magnitude to be associated to the orbital
frequencies near the ISCO radius of stellar-mass black holes.
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9.3 Relativistic Precession Models

The relativistic precession model was proposed in [20, 21] to explain the frequencies
of the QPOs in the power density spectrum of neutron stars, for which there are more
data and of higher quality, and was later extended to the QPOs of stellar-mass black
holes in [22]. Themodel does not provide amechanism responsible for the production
of the observed QPOs, but it simply relates the observed frequencies with those of
the orbital motion of a test-particle.

Motta et al. [11] have proposed a variant of the original version of this model,
which seems to be supported by some observations of the black hole binary in
GRO J1655-40. See also [12], where the authors discuss the case of XTE J1550-564.
From the three fundamental frequencies discussed in the previous section, one finds
the periastron precession frequency νp and the nodal precession frequency νn

νp = νφ − νr,

νn = νφ − νθ . (9.20)

In the Kerr metric, all these frequencies depend on three parameters, which are the
black hole mass, the black hole spin, and the radial coordinate r. In the case of a
simultaneous detection of three QPOs, one may argue that they are associated to the
same event, and therefore the three frequencieswould have the same radial coordinate
r. The detection of three frequencies in the same observation would thus permit one
to solve the system of equations and get the values of M, a∗, and r.

GRO J1655-40 is the only source for which we currently have the detection of
three QPOs, with two of them HFQPOs, at the same time. Motta et al. [11] have
proposed the following interpretation. The low-frequency type-C QPO νC would
correspond to the nodal precession frequency νn, while the lower HFQPO νL and
the upper HFQPO νU would be associated, respectively, to the periastron precession
frequency νp and to the orbital frequency νφ :

νC = νn, νL = νp, νU = νφ. (9.21)

Such an interpretation well fits the data of GRO J1655-40 and provides the
following measurements of the mass and the spin of the black hole

M = (5.31 ± 0.07)M�, a∗ = 0.290 ± 0.003. (9.22)

The measurement of the mass is consistent with some dynamical estimates from
optical observations (but not with others, as there are several measurements reported
in the literature and they are not in agreement). The spin estimate is not consistent
with those from the continuum-fitting and the iron linemethods, see Table7.1. For the
moment, it is not clear which measurement, if any, is correct. However, it is evident
that QPOs have the capability of providing quite precise estimates of the metric. The
uncertainty on the spin parameter in Eq. (9.22) is ∼1%. This is definitively smaller

http://dx.doi.org/10.1007/978-981-10-4524-0_7
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than the spin uncertainties from the continuum-fitting and iron line approaches in
Table7.1, which can be easily explained by noticing that it is indeed easier tomeasure
the centroid frequency of QPOs than to fit the spectrum of the disk.

9.4 Resonance Models

It is remarkable that in the four sources for which we have two HFQPOs the ratio
of the two frequencies is 3:2, see Table9.3. This cannot be accidental and the cor-
rect theoretical model should be able to explain this feature. The resonance models
proposed by Abramowicz and Kluzniak start from this point to explain the origin of
HFQPOs [1, 2, 9].

InEqs. (9.11) and (9.12), the radial and theverticalmodes are decoupled.However,
it is natural to expect that in a more realistic description there are non-linear effects
coupling the two epicyclic modes. In this case, the equations can be written as

d2δr
dt2

+ Ω2
r δr = Ω2

r Fr

(

δr, δθ ,
dδr

dt
,
dδθ

dt

)

, (9.23)

d2δθ

dt2
+ Ω2

θ δθ = Ω2
θFθ

(

δr, δθ ,
dδr

dt
,
dδθ

dt

)

, (9.24)

where Fr and Fθ are some functions that depend on the specific properties of the
accretion flow. If we knew the details of the physical mechanisms of the accretion
process, we could write the explicit form of these two functions and solve the system.
Since this is not the case, we can guess possible properties and consequences of these
equations and see if they can be fitted in a plausible physical scenario.

9.4.1 Parametric Resonances

A simple but physically interesting scenario is to imagine that vertical oscillations
are governed by the Mathieu equation [1, 25]:

d2δθ

dt2
+ Ω2

θ δθ = −Ω2
θ h cos(Ωr t)δθ . (9.25)

This is the case with Fr = 0 and Fθ = −δrδθ . The solution of Eq. (9.23) is simply
δr = h cos(Ωr t) and so we obtain Eq. (9.25). The Mathieu equation describes a
parametric resonance with

http://dx.doi.org/10.1007/978-981-10-4524-0_7
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Ωr

Ωθ

= 2

n
, n = 1, 2, 3, . . . (9.26)

The resonance is stronger for smaller values of n. In the Kerr background, νθ > νr ,
and therefore the resonance n = 3 can naturally explain the observed 3:2 ratio if the
upper frequency νU is associated with νθ and the lower frequency νL with νr . In more
general spacetimes, the phenomenology may be richer [3].

9.4.2 Forced Resonances

The equation for vertical oscillations may also include a forced resonance, in which
the force frequency is equal to the one of the radial oscillations [25]. In this case the
equation is

d2δθ

dt2
+ Ω2

θ δθ + [non linear terms in δθ ] = h(r) cos(Ωr t). (9.27)

The non-linear terms allow resonant solutions for δθ , with frequencies like

Ω− = Ωθ − Ωr, (9.28)

Ω+ = Ωθ + Ωr . (9.29)

In the Kerr metric, the observed 3:2 ratio may be explained with νθ : νr = 3 : 1
(νU = νθ and νL = ν−) or with νθ : νr = 2 : 1 (νU = ν+ and νL = νθ ). Again,
in non-Kerr backgrounds in which the ISCO is marginally vertically stable, we may
have other possibilities [3].

9.4.3 Keplerian Resonances

The possibility of a coupling between the Keplerian and the radial epicyclic frequen-
cies might exist, even if it seems to be less theoretically motivated than the one in
which the coupling is between the two epicyclic oscillations. In the Kerr metric, the
simplest combinations are

νφ : νr = 3 : 2 (νU = νφ and νL = νr),

νφ : νr = 3 : 1 (νU = νφ and νL = 2νr),

νφ : νr = 2 : 1 (νU = 3νr and νL = νφ). (9.30)
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Chapter 10
Imaging Black Holes

Under certain conditions, a precise observation of the direct image of the accretion
flow around a black hole may provide information about the spacetimemetric around
the compact object. In particular, if the black hole is surrounded either by an optically
thin emitting medium or by a Novikov–Thorne accretion disk, the image will have
a dark area over a brighter background. Such a dark area is commonly called the
shadow of the black hole [6], but the name may be misleading because it is not
produced as common shadows, in which a body blocks light. In the case of a black
hole surrounded by an optically thin emitting medium, the boundary of the shadow
corresponds to the apparent photon capture sphere. For a black hole surrounded by
a Novikov–Thorne accretion disk, the boundary of the shadow corresponds to the
apparent image of the ISCO. In other situations, e.g. a black hole surrounded by an
optically thick emitting medium, there may not be any shadow.

The current interest in the possibility of imaging astrophysical black holes is
mainly motivated by the special situation of SgrA∗, the supermassive black hole at
the center of the Galaxy. SgrA∗ is the black hole with the largest angular size in the
sky. Its mass is about 4 ·106 M� and its distance from us is around 8 kpc. The angular
size of its gravitational radius rg = M in the sky is (ignoring light bending)

M

D
= 2.4 · 10−11

(
M

4 · 106 M�

) (
8 kpc

D

)

= 5

(
M

4 · 106 M�

)(
8 kpc

D

)
μas, (10.1)

where μas stands for micro arc second. It is widely thought that sub-mm very-long
baseline interferometric (VLBI) facilitieswill be soon able to image SgrA∗ and detect
its shadow [5]. This can be achieved thanks to three particular conditions:

1. The angular resolution θres of VLBI facilities scales as λ/d, where λ is the elec-
tromagnetic radiation wavelength and d is the distance among different stations.
For λ < 1mm and with stations located in different countries (d > 103 km), it

© Springer Nature Singapore Pte Ltd. 2017
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is possible to reach an angular resolution of the order of the angular size of the
apparent image of SgrA∗ (λ/d ∼ 10 μas).

2. The emitting medium around SgrA∗ is optically thick at wavelengths λ > 1mm,
but becomes optically thin for λ < 1mm.

3. The interstellar scattering dominates over intrinsic source structures at wave-
lengths λ > 1mm, but becomes subdominant at sub-mm wavelengths.

Another potential candidate is the supermassive black hole at the center of the
giant elliptical galaxy M87: its distance from us is about 103 times the distance
between us and SgrA∗, but its mass is about 109 M�. Its apparent image in the sky
should be somewhat smaller than the one of SgrA∗, but maybe only by a factor 2–3.
However, the supermassive black hole inM87may not be surrounded by an optically
thin medium for sub-mm wavelengths.

In the case of stellar-mass black holes in our Galaxy, the distance is 1–10 kpc, but
their mass is about 10 M�. The result is that the angular size of their gravitational
radius in the sky is about 10−5 μas. A similar high angular resolution is out of reach
for present and near future observational facilities, but it could be possible in the case
of X-ray interferometry techniques. Observational facilities with similar properties
are already under discussion, but they will be unlikely realized in the next 20 years.

In this chapter, wewill discuss the calculations of the apparent image of the photon
capture sphere and of the ISCO. A different issue is the comparison of these predic-
tions with future observations. For example, VLBI observations sample the Fourier
space conjugate to the image plane at a small number of points. An analysis with
the images discussed here could only be performed either after image reconstruction
has taken place, or if these images are taken into the Fourier domain and sampled
there, so that inference takes place at the level of the Fourier plane. Moreover, at the
moment it is not completely clear whether such observations can reach the necessary
precision to test the spacetime metric around black holes. However, it is not strictly
necessary to get very precise measurements of the boundary of the shadow to probe
themetric around a black hole. In the presence of the correct astrophysical model, the
direct image of the accretion flow may already provide the necessary information,
see, for instance, [2] or [10].

10.1 Imaging the Photon Capture Sphere

Let us consider an ideal experiment, in which a distant observer can shoot photons
at a black hole. This is the set-up already introduced to compute the thermal and the
reflection spectrum of a thin accretion disk, but now we do not consider any disk. We
have just the observer and the black hole. We can then define a region in the image
plane of the distant observer such that, if a photon with 3-momentum orthogonal to
the image plane is fired inside this region, it will be captured by the black hole, while
the photon will be scattered back to infinity is it is outside such a region.



10.1 Imaging the Photon Capture Sphere 195

Neglecting the possibility of exotic situations like the ones studied in [4], such
a region in the image plane of the distant observer will have a simple shape and its
boundary will correspond to the photon capture sphere (or photon ring) as seen by
the distant observer. The photon capture sphere is the surface (in general, it is not
a sphere) separating scattered and captured photons. More specifically, if a photon
coming from infinity crosses the photon capture sphere, it is capturedby theblackhole
and then crosses the event horizon. If this is not the case, the photon is scattered and
comes back to infinity. In general, the photon capture sphere is different for photons
with angular momentum parallel and antiparallel to the black hole spin. Typically
the photon capture sphere is the photon orbit, but its image on the observer’s sky is
larger due to light bending.

In a real observation, we cannot fire photons to a black hole and perform a similar
scattering experiment. However, if the black hole is completely surrounded by an
optically thin emitting medium, its image is a dark area over a bright background.
The dark area is the so-called black hole shadow and its boundary is the image of
the photon capture sphere as seen by the distant observer. Neglecting the interstellar
scattering, the boundary of the shadow is very sharp and only depends on the space-
time metric in the strong gravity region. See the left panel in Fig. 10.1. The reason of
this result will be explained in Sect. 10.1.4. The intensity map of the image is instead
determined by the properties of the accretion flow and the emission mechanisms.

Fig. 10.1 Direct image of a black hole surrounded by an optically thin emitting medium with the
characteristics of that of SgrA∗. The black hole spin parameter is a∗ = 0.998 and the viewing angle
is i = 45◦. The emitting gas is in free fall and has an emissivity ∝1/r2. Left panel image from
ray-tracing calculations. Right panel image from a simulated observation of an idealized VLBI
experiment at 0.6mm wavelength taking interstellar scattering into account. The solid green curve
and the dashed purple curve show, respectively, the intensity variations of the image along the
x-axis and the y-axis. From [6]. © AAS. Reproduced with permission
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10.1.1 Spherically Symmetric Spacetimes

In the case of a spherically symmetric black hole spacetime, the apparent photon
capture sphere is a circle, for obvious symmetry reasons. The calculation of the
radius of this circle in the sky of the observer is straightforward. Without loss of
generality, the line element of a static, spherically symmetric, and asymptotically
flat spacetime can be written as

ds2 = −A(r)dt2 + B(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (10.2)

where A(r) and B(r) must reduce to 1 for r → ∞. Now we want to determine
the apparent size of the central object as seen by a distant observer; that is, the
photon impact parameter separating photons captured by the black hole and photons
scattered back to infinity.

As the spacetime is spherically symmetric, we can do the calculations in the
equatorial plane θ = π/2. The metric coefficients in Eq. (10.2) do not depend on the
t and φ coordinates, and therefore there are two constants of motion, the energy E
and the angular momentum Lz . From the Euler-Lagrange equations, we find

ṫ = E

A(r)
, φ̇ = Lz

r2
. (10.3)

We plug the above expressions for ṫ and φ̇ into gμν ẋμ ẋν = 0 (null geodesics), and
we find

ṙ2 = 1

B(r)

[
E2

A(r)
− L2

z

r2

]
. (10.4)

If ṙ2 vanishes before hitting the object, the photon reaches a turning point and
then comes back to infinity. In the opposite case, the photon falls onto the object. The
impact parameter is λ = Lz/E and the critical one separating captured and scattered
photon orbits is given by the minimum value of λ for which the equation ṙ2 = 0 has
a solution; that is,

λc = r√
A(r)

, A(r) − 1

2
r A′(r) = 0. (10.5)

λc corresponds to the value of the radius of the shadow as seen by a distant observer.
Let us note that (i) λc only depends on A(r), not on B(r), and (i i) we are assuming
the existence of a photon capture sphere outside the compact object. The assumption
(i i) may not be true in some spacetimes: there may be no photon capture sphere or
there may be more than one.

A simple example is the Schwarzschild spacetime, where A(r) = 1 − 2M/r . In
this case, the solution of the system (10.5) is

λSch = 3
√
3M ≈ 5.196M. (10.6)
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10.1.2 Kerr Metric

Starting from [1], the apparent image of the photon capture sphere of the Kerr space-
time has been studied by many authors. The master equations are Eq. (3.52) for null
orbits, i.e.

Σ2ṙ2 = R, (10.7)

where1

R = r4 + (
a2 − λ2 − q2

)
r2 + 2M

[
(a − λ)2 + q2

]
r − a2q2, (10.8)

and Eqs. (3.71) and (3.72) for the photon position in the image plane of the distant
observer, namely

X = λ

sin i
, Y = ±

√
q2 + a2 cos2 i − λ2 cot2 i . (10.9)

Motion is only possible when R ≥ 0, and therefore the analysis of the position of
the roots of the function R can be used to distinguish the capture from the scattering
orbits. The three kinds of photon orbits are:

1. Capture orbits: R has no roots for r ≥ r+, where r+ is the radial coordinate of
the black hole event horizon. In this case, photons come from infinity and then
cross the horizon.

2. Scattering orbits: R has real roots for r ≥ r+, which correspond to the photon
turning points. If the photons come from infinity, they reach a minimum distance
from the black hole, and then go back to infinity.

3. Unstable orbits of constant radius: these orbits separate the capture and the scat-
tering orbits and are determined by

R(r∗) = ∂R

∂r
(r∗) = 0, and

∂2R

∂r2
(r∗) ≥ 0, (10.10)

where r∗ is the larger real root of R.

The apparent image of the photon capture sphere of a Kerr black hole can be deter-
mined by finding the unstable orbits of constant radius and employing Eq. (10.9) to
obtain the image in the observer’s sky.

The apparent image of the photon capture sphere is represented by a closed curve
determined by the set of unstable circular orbits (λc, qc) in the plane of the distant
observer. The equations R = 0 and ∂R/∂r = 0 are

1In this chapter, the function R indicates the function R of Chap.3 divided by E2, where E is the
photon energy. Since we are considering photon orbits, the geodesics are independent of E .

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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R = r4 + (a2 − λ2
c − q2

c )r
2 + 2M[q2

c + (λc − a)2]r − a2q2
c = 0,

∂R

∂r
= 4r3 + 2(a2 − λ2

c − q2
c )r + 2M[q2

c + (λc − a)2] = 0. (10.11)

In the Schwarzschild background (a = 0), the shadow of the black hole is a circle
of radius

r = 3
√
3M ≈ 5.196M, (10.12)

and we recover the result in Eq. (10.6). For a = 0, one finds

λc = M(r2∗ − a2) − r∗(r2∗ − 2Mr∗ + a2)

a(r∗ − M)
,

qc = r3/2∗
√
4a2M − r∗(r∗ − 3M)2

a(r∗ − M)
, (10.13)

where r∗ is the radius of the unstable orbit. After some manipulation of these equa-
tions, we can find the image of the photon capture sphere in the plane of the distant
observer [1, 3]

X = M

a∗ sin i

[
t2 + a2∗ − 3 − 2

(
1 − a2∗

)
t

]
, (10.14)

Y = ±
{

(1 + t)3

a2∗

[
3 − t − 4

(
1 − a2∗

)
t2

]
+

(
a2∗ − X2

M2

)
cos2 i

}1/2

M, (10.15)

where here t is an auxiliary parameter whose range is determined by the fact that the
expression inside the square root in Eq. (10.15) must be positive and depends on the
specific values of the spin parameter a∗ and the viewing angle i .

Figure10.2 shows the impact of the spin parameter a∗ on the shape of the apparent
photon capture sphere of a Kerr black hole. The inclination angle is i = 85◦, to
maximize the relativistic effects. For a∗ = 0, the shadow is a circle with radius
r = 3

√
3 M , which is larger than the radius of the event horizon r+ = 2M because

of light bending and because actually the radial coordinate of the event horizon has
no physical meaning, as the choice of the coordinate system is arbitrary in general
relativity. As the spin parameter increases, we see that both the left and the right
parts of the boundary of the shadow move to the right in the image plane of the
distant observer. The reason is that photon orbits are different if the photon angular
momentum is parallel/antiparallel to the black hole spin. As seen in Sect. 3.2, and in
Fig. 3.4, the value of the photon radius decreases (increases) if the the photon angular
momentum is parallel (antiparallel) to the black hole spin. For this reason, the image
of the black hole that we can obtain firing photons from the distant observer to the
black hole is like the image obtained considering photons moving from the black
hole to the distant observer with X → −X .

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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Fig. 10.2 Impact of the spin
parameter a∗ on the shape of
the apparent photon capture
sphere of a Kerr black hole.
The viewing angle is
i = 85◦. The spin parameter
is a∗ = 0 (magenta dotted
curve), 0.5 (blue dotted
curve), 0.9 (green dashed
curve), and 0.998 (red solid
curve). See the text for more
details -5
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Fig. 10.3 Impact of the
viewing angle i on the shape
of the apparent photon
capture sphere of a Kerr
black hole. The spin
parameter is a∗ = 0.998.
The viewing angle is i = 5◦
(magenta dotted curve), 30◦
(blue dotted curve), 60◦
(green dashed curve), and
85◦ (red solid curve). See the
text for more details -5
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With a viewing angle smaller than i = 85◦ employed in Fig. 10.2, the difference
between a non-rotating and a fast-rotating black hole would be smaller. For a∗ = 0,
the shadow is independent of the viewing angle i , because of the spherical symmetry
of the system. For i = 0◦, the apparent image of the photon capture sphere is a circle
for any a∗, but the radius is slight different, with the larger one for the Schwarzschild
case and the smallest radius for a∗ = 1.

Figure10.3 shows the apparent image of the photon capture sphere for a Kerr
black hole with a∗ = 0.998 and different values of the inclination angle. For a small
inclination angle, the shadow is almost a circle, while the shape becomes more and
more distorted as the viewing angle increases.
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10.1.3 General Case

If the line element of the spacetime can be written as

ds2 = −
(
1 − 2mr

Σ

)
dt2 − 4amr sin2 θ

Σ
dtdφ + Σ

Δ
dr2 + Σdθ2

+
(
r2 + a2 + 2a2mr sin2 θ

Σ

)
sin2 θdφ2, (10.16)

whereΣ = r2+a2 cos2 θ ,Δ = r2−2mr+a2, andm = m(r) is a function of r only,
we can adopt the approach discussed in the previous subsection. Equation (10.16)
includes as trivial case the Kerr metric when m = M , but also the Kerr-Newman
metric for m = M − Q2/(2r) and other black hole spacetimes for proper choices of
the function m(r).

It is straightforward to check that this family of metrics has the nice properties
of the Kerr solution: we have a Carter-like constant and the equations of motion are
separable. The equation for the radial coordinate of null orbits is still Eq. (10.7), but
now R hasm in the place of M . The photon position in the image plane of the distant
observer is still given by Eq. (10.9). The system in Eq. (10.11) is replaced by [12]

R = r4 + (a2 − λ2
c − q2

c )r
2 + 2m[q2

c + (λc − a)2]r − a2q2
c = 0,

∂R

∂r
= 4r3 + 2(a2 − λ2

c − q2
c )r + 2m[q2

c + (λc − a)2] f = 0, (10.17)

where f is

f = 1 + r

m

dm

dr
. (10.18)

Equation (10.13) becomes

λc = m∗[(2 − f∗)r2∗ − f∗a2] − r∗(r2∗ − 2m∗r∗ + a2)

a(r∗ − f∗m∗)
,

qc = r3/2∗
√
4(2 − f∗)a2m∗ − r∗[r∗ − (4 − f∗)m∗]2

a(r∗ − f∗m∗)
, (10.19)

where m∗ = m(r∗) and f∗ = f (r∗).
In more general cases, when the line element of the spacetime cannot be written in

the form (10.16) withm = m(r), it may be necessary to solve the geodesic equations
of the photons from the image plane of the distant observer to the black hole to check
when the photons are captured by the object or scattered back to infinity. Eventually
the shadow is the set of photons in the image plane of the distant observer that are
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captured by the black hole, and the boundary of the shadow is the closed curve on
the observer’s sky separating captured and scattered photons.

10.1.4 Intensity Map

The calculation of the intensity map of the image of the emitting region requires
some assumptions about the accretion process and the emission mechanisms. The
observed specific intensity at the observed photon frequency νobs at the point (X,Y ) in
the observer’s sky (for instance, in erg s−1 cm−2 str−1 Hz−1) can be found integrating
the specific emissivity along the photon path [9]

Iobs(νobs, X,Y ) =
∫

γ

g3 j (νe)d�, (10.20)

where g = νobs/νe is the redshift factor, νe is the photon frequency in the rest-frame
of the emitter, j (νe) is the emissivity per unit volume in the rest-frame of the emitter,
and d� is the infinitesimal proper length as measured in the rest-frame of the emitter.

The redshift factor can be evaluated from

g = kμu
μ
obs

kνuν
e

, (10.21)

where kμ is the 4-momentum of the photon, uμ
obs = (1, 0, 0, 0) is the 4-velocity

of the distant observer, while uμ
e is the 4-velocity of the accreting gas emitting the

radiation.
For instance, let us consider the simple case of a static and spherically symmetric

spacetime, whose line element is given by Eq. (10.2), and gas in free fall starting
with vanishing velocity at infinity. We have

ute = 1

A(r)
, ure = −

√
1 − A(r)

A(r)B(r)
, uθ

e = uφ
e = 0. (10.22)

Since the spacetime is static and spherically symmetric, without loss of generality
we can restrict the calculations to the equatorial plane θ = π/2, so kθ = 0. The
intensity map in the observer’s sky will be circularly symmetric, and therefore it is
sufficient to compute the intensity map along a line from the center of symmetry.
Since kt and kφ are constants of motion, kr can be inferred from kμkμ = 0, that is:

kr = ±kt

√
B(r)

[
1

A(r)
− b2

r2

]
, (10.23)
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where b is the impact parameter and the sign + (−) is when the photon approaches
(leaves) the massive object (because kt = −E). We see here that the intensity map
of a static and spherically symmetric black hole spacetime depends on both A(r)
and B(r), while the value of λc was only determined by the function A(r)

The infinitesimal proper length is d� = kμuμ
e dτ , where τ is the affine parameter

of the photon trajectory. For the simple static and spherically symmetric spacetime
with gas in free fall, it reduces to

d� = kt
g|kr |dr. (10.24)

Integrating Eq. (10.20) over all the observed frequencies, we get the observed photon
flux Φobs(X,Y ).

The left panel in Fig. 10.1 shows the result of the calculation of the direct image
of a Kerr black hole surrounded by an optically thin emitting medium with the
characteristics of that of SgrA∗. The black hole spin parameter is a∗ = 0.998 and the
viewing angle is i = 45◦. The emitting gas is in free fall and has an emissivity∝1/r2.
The right panel is instead a simulated observation of an idealized VLBI experiment
at 0.6mm wavelength, in which the interstellar scattering is taken into account.

10.2 Imaging Thin Accretion Disks

If the black hole has a geometrically thin and optically thick accretion disk, the
boundary of the shadow describes the image of the inner edge of the disk as seen by
the distant observer. Because of light bending, the shape of the inner edge of the disk
is not an ellipse. Only in the special case i = 0◦, one sees a circle.

The first calculations of the image of a thin accretion disk were presented in [11]
and later in [7]. These calculations have already been discussed in Chap.7, see
Fig. 7.2. In the case of a Novikov–Thorne accretion disk, in which the disk is orthog-
onal to the black hole spin and the inner edge of the disk is at the ISCO radius, we
obtains the images shown in Figs. 10.4 and 10.5. Figure10.4 shows the impact of the
spin parameter a∗ on the boundary of the shadow of a Kerr black hole, assuming that
the viewing angle is i = 60◦. In Fig. 10.5, the spin parameter is a∗ = 0.9 and we
vary the value of the viewing angle i .

10.3 Description of the Boundary of the Shadow

Let us now assume that we have (somehow) a precise detection of the shadow of a
black hole. We want a simple formalism to describe the boundary of this shadow and
compare it with a theoretical model, for instance to determine the black hole spin or
to test the Kerr metric. The detection method may be important and actually favors

http://dx.doi.org/10.1007/978-981-10-4524-0_7
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Fig. 10.4 Impact of the spin
parameter a∗ on the
boundary of the shadow of a
Kerr black hole accreting
from a Novikov–Thorne
disk. The viewing angle is
i = 60◦. From [13]

Fig. 10.5 Impact of the
viewing angle i on the
boundary of the shadow of a
Kerr black hole accreting
from a Novikov–Thorne
disk. The spin parameter is
a∗ = 0.9. From [13]

a different approach to describe and fit the shadow, but here we want to introduce a
simple way to describe its shape assuming that we can have a precise detection of
the boundary.

We have the image of the boundary of the shadow as shown in Fig. 10.6. This
image is symmetric with respect to the X -axis, which is typically the case for the
apparent image of the photon capture sphere and is usually not the case for the image
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Fig. 10.6 The function
R(φ) is defined as the
distance between the center
C and the boundary of the
shadow at the angle φ as
shown in this picture. See the
text for more details

of the inner edge of the disk. We will briefly discuss the most general case without
any symmetry at the end of this section.

We follow the description method presented in [8]. First, we find the “center” C
of the shadow. Its Cartesian coordinates in the image plane of the observer are

XC =
∫

ρ(X,Y )XdXdY∫
ρ(X,Y )dXdY

,

YC =
∫

ρ(X,Y )YdXdY∫
ρ(X,Y )dXdY

, (10.25)

where ρ(X,Y ) = 1 inside the shadow and ρ(X,Y ) = 0 outside. Such a definition
reminds that of center of mass.

Since this shadow is symmetric with respect to the X -axis, we define R(0) as the
shorter segment between C and the shadow boundary along the X -axis. Defining
the angle φ as shown in Fig. 10.6, R(φ) is the distance between the point C and
the boundary at the angle φ. The function R(φ)/R(0) completely characterizes the
shape of the black hole shadow. We prefer R(φ)/R(0) instead of R(φ) because the
latter also depends on the mass and the distance of the black hole, two quantities that
may not be known with high precision or, in any case, that we want to ignore.

Once we have sampled the shadow in this way, we have the set {R(φi )/R(0)},
where {φi } is a set of angle for which we have the measurement of R(φ)/R(0). At
this point, it is possible, for example, to compare two shadows or to fit an observed
shadow with a theoretical model. The theoretical model may depend on the black
hole spin a∗, the viewing angle i , and a number of extra parameters p1, p2, etc. If now
we indicate with Robs(φ)/Robs(0) the observed shadow, we can infer the value of the
parameters of the theoretical model by employing some goodness-of-fit statistical
test. For example, we may introduce the function S defined as
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S(a∗, i, p1, p2, . . .) =
∑
k

(
R(a∗, i, p1, p2, . . . ;φk)

R(a∗, i, p1, p2, . . . ; 0) − Robs(φk)

Robs(0)

)2

, (10.26)

and find the best fit by minimizing S.
In the case of thin accretion disks, the shadow is not symmetric with respect to

the X -axis. Nevertheless, it is easy to extend the previous formalism to any shadow
without special symmetries. We can simply define as R(0) the minimum or the
maximum value of the function R and set the φ = 0 angle there.
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Chapter 11
Gravitational Waves

There are some important differences between the use of electromagnetic radiation
and gravitational waves to study astrophysical black holes. Electromagnetic radiation
is emitted by the particles in the accretion disk. Its properties are determined by
the motion of the particles around the black hole and by the propagation of the
photons from the point of emission to the point of detection. Assuming geodesic
motion, electromagnetic observations can test the metric around astrophysical black
holes and check whether it corresponds to the Kerr solution. We can also consider
a specific framework with deviations from geodesic motion, but still we can only
test the motion of test-particles. Gravitational waves are generated by dynamical
systems, in which the metric changes with time. The properties of the gravitational
waves are determined by both the spacetime metric and the field equations of the
gravity theory. They can thus test both the Kerr metric and the Einstein equations.

The aim of this chapter is to provide a short review on the possible approaches
to study astrophysical black holes using gravitational waves. A detailed discussion
of the topic would require a whole book, and it is thus well beyond the scope of the
present work. There are already a large number of papers in the literature studying
how present and future gravitational wave detectors can probe the strong gravity
region around astrophysical black holes and test general relativity and alternative
theories of gravity. It is likely that such a line of research will grow much more in
the near future.

The most promising sources to test the nature of astrophysical black holes are
inspiral binaries, extreme-mass ratio inspirals (systems in which a stellar-mass com-
pact object slowly falls onto a supermassive black hole), and perturbed black holes
(e.g. after merger). They are very clean astrophysical systems only governed by grav-
ity, which is a significant advantage with respect to the electromagnetic observations
plagued by uncertainties associated to the astrophysical model. On the other hand,
the gravitational wave approach is limited by the low signal-to-noise ratio and is
affected by the systematics associated with the modeling of gravitational waves.

© Springer Nature Singapore Pte Ltd. 2017
C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity,
DOI 10.1007/978-981-10-4524-0_11
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11.1 Emission of Gravitational Waves

For the next sections, it is useful to start with a short review on the theory of the
emission of gravitational waves. More details can be found in standard textbooks,
like [48] or [45].

Let us define the gravitational-field amplitude as

hμν = √−ggμν − ημν , (11.1)

where ημν = diag(−1, 1, 1, 1) is an auxiliary Minkowski metric. We then choose
the coordinate system {xμ} such that

∂μh
μν = 0 . (11.2)

The condition (11.2) is called the harmonic gauge (or the Hilbert gauge or the
de Donder gauge). The choice of the harmonic gauge is similar to the choice of
the Lorentz gauge in Maxwell’s theory, ∂μAμ = 0, where Aμ is the vector potential
of the electromagnetic field.

In harmonic coordinates, the Einstein equations read

�ηh
μν = 16πT μν , (11.3)

where �η = ηρσ ∂ρ∂σ is the d’Alembertian operator of flat spacetime, T μν is

T μν = (−g) T μν + 1

16π
tμν , (11.4)

T μν is thematter energy-momentum tensor, and tμν is the pseudo-tensor (i.e. Lorentz-
covariant tensor) of the gravitational field

tμν = −hαβ∂α∂βh
μν +

(
∂αh

μβ
)(

∂βh
να

)
+ 1

2
gμνgαβ

(
∂γ h

αδ
)(

∂δh
βγ

)

+1

8

(
2gμαgνβ − gμνgαβ

)(
2gγ δgθε − gδθgγ ε

)(
∂αh

γ ε
)(

∂βh
δθ

)

−gμαgβγ

(
∂δh

νγ
)(

∂αh
βδ

)
− gναgβγ

(
∂δh

μγ
)(

∂αh
βδ

)

+gαβg
γ δ

(
∂γ h

μα
)(

∂δh
νβ

)
. (11.5)

The formal solution of Eq. (11.3) is

hμν (t, x) = 4
∫

d3x′T
μν

(
t − |x − x′|, x′)

|x − x′| , (11.6)
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where the integral is performed in the flat 3-dimensional space and |x − x′| is the
Euclidean distance between the point x and the point x′. In Cartesian coordinates
{x, y, z}, we have

|x − x′| =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2 . (11.7)

If the metric gμν slightly deviates from the Minkowski metric and we neglect
terms of second and higher order in hμν , Eq. (11.1) can be written as1

gμν = ημν − hμν , |hμν | � 1 . (11.8)

The Einstein equations (11.3) reduce to

�ηh
μν = 16πT μν , (11.9)

which is a simple wave equation describing “ripples” of the spacetime propagating
with the speed of light. These ripples are the gravitational waves.

Let us now consider small changes in the coordinates that leave ημν unchanged
but induce small changes in hμν . We employ the coordinate transformation

xμ → x ′μ = xμ + ξμ , (11.10)

where ξμ are four arbitrary functions of xμ of the same order as hμν . We find that

hμν → h′
μν = hμν − ∂μξν − ∂νξμ . (11.11)

If �ηξ
μ = 0, such a transformation preserves the harmonic gauge. This is the

analogous of the transformation Aμ → Aμ + ∂μΛ in Maxwell’s theory, where the
Lorentz gauge is preserved if �ηΛ = 0.

hμν is symmetric, and therefore has ten independent components. The harmonic
gauge in Eq. (11.2) gives four conditions and reduces the number of independent
components to six. However, hμν still depends on four arbitrary functions ξμ satis-
fying the equation �ηξ

μ = 0. We can thus further simplify hμν by imposing four
new conditions. We can choose ξ 0 such that the trace of hμν , h = hμ

μ, vanishes,
and the three functions ξ i such that h0i = 0. The harmonic gauge implies that h00
is independent of time and therefore corresponds to the Newtonian potential of the
source. Restricting the attention to gravitational waves (i.e. the time-dependent part
of h00), we can set h00 = 0. Eventually we have

h0μ = 0 , hii = 0 , ∂i h
i j = 0 , (11.12)

1With these assumptions, the indices of hμν are raised and lowered by the Minkowski metric ημν ,
e.g. hμν = ημρηνσ hρσ . Let us note the sign in front of hμν and hμν : gμν = ημν − hμν and
gμν = ημν + hμν .
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which defines the transverse-traceless gauge (TT gauge). Quantities in the TT gauge
are often indicated with TT, e.g. hTTμν . For a gravitational wave propagating along the
z direction in vacuum, we have

hTTμν =

⎛
⎜⎜⎝
0 0 0 0
0 h+ h× 0
0 h× h+ 0
0 0 0 0

⎞
⎟⎟⎠ cos [ω (t − z)] , (11.13)

where ω is the angular frequency of the gravitational wave, while h+ and h× are
the amplitudes of the gravitational wave in the two polarizations. If we consider the
effect of the passage of a similar gravitational wave on a ring of particles in the (x, y)
plane, we find the situation sketched in the panels (a) and (b) in Fig. 5.8.

11.1.1 Quadrupole Formula

In Maxwell’s theory, the emission of electromagnetic radiation by slowly varying
charge distributions can be decomposed into a series of multipoles (l = 0, 1, 2,…).
The monopole moment (l = 0) is proportional to the total electric charge, which
is conserved and therefore does not change with time, and there is no monopole
emission.The series thus consists of l ≥ 1multipoles, and the electric dipole radiation
l = 1 is usually the leading term. In Einstein’s gravity, we can proceed with a similar
expansion to describe the emission of gravitational waves of slowly varying mass
distributions. Now there is no monopole emission, because the mass is a conserved
quantity. The mass dipole moment and the current dipole moment are proportional,
respectively, to the momentum and the angular momentum of the system, which are
both conserved quantities and therefore there is no dipole emission of gravitational
waves. The leading order term is the quadrupole moment (l = 2).

The formal solution of Eq. (11.9) is

hμν (t, x) = 4
∫

d3x′ T
μν

(
t − |x − x′|, x′)

|x − x′| . (11.14)

If we can assume that the region where the source is confined (T μν is non-vanishing)
is much smaller than the wavelength of the emitted radiation

hμν (t, x) = 4
∫

d3x′ T
μν

(
t − |x|, x′)

|x| . (11.15)

In the linearized theory, hμν and Tμν are of the sameorder and therefore ∂μT μν = 0
with the ordinary derivative. We write ∂μT μi = 0 as ∂0T 0i = −∂kT ki . We multiply
both sides by x j and we integrate over the volume V . We obtain

http://dx.doi.org/10.1007/978-981-10-4524-0_5
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∂

∂t

∫

V
T i0x j d3x = −

∫

V

∂T ik

∂xk
x j d3x

= −
∫

V

∂

∂xk
(
T ik x j

)
d3x +

∫

V
T ik ∂x j

∂xk
d3x

= −
∫

Σ

T ik x j dΣk +
∫

V
T i j d3x

=
∫

V
T i j d3x , (11.16)

whereΣ is the surface of the volume V and T μν = 0 onΣ . Since T μν is a symmetric
tensor, we can also write Eq. (11.16) by exchanging i and j and

∂

∂t

∫

V

(
T i0x j + T j0xi

)
d3x = 2

∫

V
T i j d3x . (11.17)

Let us now write ∂μT μ0 = 0 as ∂0T 00 = −∂kT k0. This time we multiply both
sides by xi x j . We integrate over the volume V and we find

∂

∂t

∫

V
T 00xi x j d3x = −

∫

V

∂T k0

∂xk
xi x j d3x

= −
∫

V

∂

∂xk

(
T k0xi x j

)
d3x +

∫

V

(
T k0 ∂xi

∂xk
x j + T k0xi

∂x j

∂xk

)
d3x

= −
∫

Σ
T k0xi x j dΣk +

∫

V

(
T i0x j + T j0xi

)
d3x

=
∫

V

(
T i0x j + T j0xi

)
d3x . (11.18)

We derive with respect to the time t and we use Eq. (11.17)

∂2

∂2t

∫

V
T 00xi x j d3x = ∂

∂t

∫

V

(
T 0i x j + T 0 j x i

)
d3x

= 2
∫

V
T i j d3x . (11.19)

We define the quadrupole moment of the source as

Qi j (t) =
∫

V
T 00(t, x) xi x j d3x . (11.20)

Equation (11.15) becomes (reintroducing c and GN)

hμ0 = 0 ,

hi j = 2

r

GN

c4
Q̈i j (t − r) , (11.21)
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where the double dot stands for the double derivative with respect to t . It is worth
noting that a spherical or axisymmetric distribution of matter has a constant quadru-
pole moment, even if the body is rotating. This implies, for instance, that there is no
emission of gravitational waves in a perfectly spherically symmetric collapse, in a
perfectly axisymmetric rotating body, etc.Gravitationalwaves are emittedwhen there
is a certain “degree of asymmetry”, e.g. the coalescence of two objects, non-radial
pulsation of a body, etc.

If we want Eq. (11.21) in the TT gauge, we have to apply to both sides a projector
to get transverse waves and traceless tensors. The unit vector normal to the wavefront
is n = x/r . The operator to project a vector onto the plane orthogonal to the direction
of n is

Pi j = δi j − nin j . (11.22)

The transverse-traceless projector is

Pi jkl = Pik Pjl − 1

2
Pi j Pkl . (11.23)

The result is

hTTμ0 = 0 ,

hTTi j = 2

r

GN

c4
Q̈TT

i j (t − r) , (11.24)

where
QTT

i j = Pi jkl Qkl . (11.25)

In order to compute the energy emitted in the form of gravitational waves, we can
proceed as follows. We expand the Einstein tensor in terms of hμν , namely

Gμν = G(1)
μν + G(2)

μν + · · · (11.26)

where G(1)
μν is linear in hμν , G(2)

μν is quadratic in hμν , and we neglect higher orders
terms in hμν . We rewrite the Einstein equations as in Eqs. (11.3) and (11.4)

G(1)
μν = 8π

(
Tμν + tGWμν

)
, (11.27)

where tGWμν describes (within our approximation) the energy-momentum tensor of
the gravitational field itself

tGWμν = 1

8π
G(2)

μν . (11.28)
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In the TT gauge, it becomes

tGWμν = 1

32π
〈(∂μh

TT
i j

) (
∂νh

TT
i j

)〉 , (11.29)

where the angular brackets 〈...〉 are introduced to indicate that we are averaging
over several wavelengths. Indeed, the energy-momentum tensor associated to the
gravitational waves cannot be localized within a wavelength. We can instead say
that a certain amount of energy and momentum is contained in a region of space
extending over several wavelengths.

In the case of the gravitational wave propagating along the z direction, Eq. (11.13),
tGWμν has only four non-vanishing components, namely

tGW00 = −tGW0z = −tGWz0 = tGWzz = 1

32π
ω2

(
h2+ + h2×

)
. (11.30)

The 00 component describes the energy density of the gravitational wave, the 0z and
z0 components describe the energy flux along the z direction, while the zz component
is the momentum flux.

From Eqs. (11.29) and (11.30), we find the quadrupole formula for the energy
emission of gravitational waves

LGW = 1

5

GN

c5
〈...QTT

i j · ...QTT

i j 〉 . (11.31)

11.2 Response of Interferometer Detectors

As discussed in Sect. 5.2, the passage of a gravitational wave in an interferometer
detector may cause a change in the difference in the photon travel time along the two
arms. Let us consider the six possible polarizationmodes permitted inmetric theories
of gravity [69]. The space-space components of the metric perturbation hμν at the
detection point can be written as a sum over the six polarization modes (p = +, ×,
x , y, b, and l) and each mode can be written as an expansion of plane waves, namely

hi j (t, x) =
∑
p

h p
i j (t, x)

=
∑
p

∫ +∞

−∞
dν

∫

S2
dk̂ e

2π iν
(
t−k̂·x

)
h̃ p

(
ν, k̂

)
ε
p
i j

(
k̂
)

=
∑
p

∫

S2
dk̂ h p

(
t − k̂ · x

)
ε
p
i j

(
k̂
)

, (11.32)

http://dx.doi.org/10.1007/978-981-10-4524-0_5
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where ν is the gravitational wave frequency, k̂ is the unit 3-vector pointing in the
propagation direction of the gravitational wave, ε p

i j is the p-mode polarization tensor,
andwehave introduced the strainh p of the polarizationmode p causedby thepossible
gravitational wave with propagation direction k̂

h p
(
t − k̂ · x

)
=

∫ +∞

−∞
dν e

2π iν
(
t−k̂·x

)
h̃ p

(
ν, k̂

)
. (11.33)

For a gravitational wave propagating along the z direction, the polarization tensors
are given by

||ε+
i j

(
ẑ
) || =

⎛
⎝
1 0 0
0 −1 0
0 0 0

⎞
⎠ (plus mode) ,

||ε×
i j

(
ẑ
) || =

⎛
⎝
0 1 0
1 0 0
0 0 0

⎞
⎠ (cross mode) ,

||εxi j
(
ẑ
) || =

⎛
⎝
0 0 1
0 0 0
1 0 0

⎞
⎠ (vector-x mode) ,

||εy
i j

(
ẑ
) || =

⎛
⎝
0 0 0
0 0 1
0 1 0

⎞
⎠ (vector-y mode) ,

||εbi j
(
ẑ
) || =

⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ (breathing mode) ,

||εli j
(
ẑ
) || =

⎛
⎝
0 0 0
0 0 0
0 0 1

⎞
⎠ (longitudinal mode) . (11.34)

See Fig. 5.8 for the physical interpretation of each polarization mode.
Now we want to derive the response of an interferometer detector due to the

passage of gravitational waves [51]. Let us consider the coordinate systems of the
detector and of a gravitational wave as in Fig. 11.1. The three unit 3-vectors of the
detector coordinate system are

x̂ =
⎛
⎝
1
0
0

⎞
⎠ , ŷ =

⎛
⎝
0
1
0

⎞
⎠ , ẑ =

⎛
⎝
0
0
1

⎞
⎠ . (11.35)

The gravitational wave coordinate system is rotated by the angles (θ, φ, ψ) with
respect to the detector coordinate system (see Fig. 11.1). If we rotate the detector
coordinate system by the angles (θ, φ), we find

http://dx.doi.org/10.1007/978-981-10-4524-0_5
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Fig. 11.1 Sketch of the
detector coordinate system(
x̂, ŷ, ẑ

)
and of the

gravitational wave

coordinate system
(
l̂, m̂, k̂

)
.

The figure also shows the
angles θ , φ, and ψ

x̂′ =
⎛
⎝
cos θ cosφ

cos θ sin φ

− sin θ

⎞
⎠ , ŷ′ =

⎛
⎝

− sin φ

cosφ

0

⎞
⎠ , ẑ′ =

⎛
⎝
sin θ cosφ

sin θ sin φ

cos θ

⎞
⎠ . (11.36)

With the additional rotation about the propagation direction of the gravitational wave,

k̂, we recover the gravitational wave coordinate system
(
l̂, m̂, k̂

)

l̂ = x̂′ cosψ + ŷ′ sinψ ,

m̂ = −x̂′ sinψ + ŷ′ cosψ ,

k̂ = ẑ′ . (11.37)

In terms of the unit 3-vectors of the gravitational wave coordinate system, the six
polarization modes are

||ε+
i j || = l̂ ⊗ l̂ − m̂ ⊗ m̂ ,

||ε×
i j || = l̂ ⊗ m̂ + m̂ ⊗ l̂ ,

||εxi j || = l̂ ⊗ k̂ + k̂ ⊗ l̂ ,

||εy
i j || = m̂ ⊗ k̂ + k̂ ⊗ m̂ ,

||εbi j || = l̂ ⊗ l̂ + m̂ ⊗ m̂ ,

||εli j || = k̂ ⊗ k̂ . (11.38)

The strain measured by an interferometer detector due to the passage of a gravi-
tational wave with the propagation direction k̂ and the polarization ψ becomes

h(t) =
∑
p

h p
(
t − k̂ · x

)
F p (θ, φ, ψ) , (11.39)

where F p (θ, φ, ψ) is the antenna pattern response for the polarization mode p and
takes into account the relative orientation between the detector and the gravitational
wave, as well as the detector geometry. If the arms of the interferometer detector are
orthogonal each other, we have
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F p (θ, φ, ψ) = 1

2

(
x̂ i x̂ j − ŷi ŷ j

)
ε
p
i j

(
k̂, ψ

)
. (11.40)

The expression of the six antenna pattern responses in terms of (θ, φ, ψ) is [51]

F+ (θ, φ, ψ) = 1

2

(
1 + cos2 θ

)
cos (2φ) cos (2ψ) − cos θ sin (2φ) sin (2ψ) ,

F× (θ, φ, ψ) = −1

2

(
1 + cos2 θ

)
cos (2φ) sin (2ψ) − cos θ sin (2φ) cos (2ψ) ,

Fx (θ, φ, ψ) = sin θ [cos θ cos (2φ) cosψ − sin (2φ) sinψ] ,

Fy (θ, φ, ψ) = − sin θ [cos θ cos (2φ) sinψ + sin (2φ) cosψ] ,

Fb (θ, φ) = −1

2
sin2 θ cos (2φ) ,

Fl (θ, φ) = 1

2
sin2 θ cos (2φ) . (11.41)

In a similar way, it is possible to derive the response of pulsar timing array exper-
iments, see e.g. [18, 21, 41].

11.3 Matched Filtering

If we have a robust and accurate theoretical prediction of the gravitationalwave signal
and if the detector noise is Gaussian and stationary, the optimal detection strategy
is matched filtering. The output of a gravitational wave detector is the sum of the
(possible) signal s(t) and the noise n(t),

x(t) = s(t) + n(t) . (11.42)

Since the noise is Gaussian and stationary, it is fully characterized by its power
spectral density Sn(ν), defined by the relation

〈ñ(ν) ñ∗(ν ′)〉 = 1

2
Sn(ν) δ(ν − ν ′) , (11.43)

where 〈...〉 denotes an ensemble average over many noise realizations and we adopt
the following conventions for the Fourier transform and its inverse

ỹ(ν) =
∫ +∞

−∞
y(t)e−2π iνt dt , y(t) =

∫ +∞

−∞
ỹ(ν)e2π iνt dν . (11.44)

For stationary stochastic noises, the ensemble average can be replaced by a time
average. From Eq. (11.43), it is easy to see that the spectral energy distribution Sn(ν)

is related to the time average of the square of the detector noise by [49]
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lim
T→+∞

1

2T

∫ T

−T
n(t) n∗(t) dt =

∫ +∞

0
Sn(ν) dν . (11.45)

Since the noise n(t) is real, ñ(−ν) = ñ∗(ν), and the spectral energy distribution
Sn(ν) is an even function, Sn(ν) = Sn(−ν). In such a case, Fourier integrals over all
frequencies can be written as integrals over positive frequencies only.

The detectability of a signal is determined by its signal-to-noise ratio (SNR) ρ,
which is defined as

ρ2 = (s|h)√
(h|n) (n|h)

, (11.46)

where h is a template with parameters {ζ i } and (y|w) denotes the overlap of the two
functions y(t) and w(t)

(y|w) = 4Re
∫ +∞

0

ỹw̃∗

Sn
dν . (11.47)

If the templates do not exactly match the signal, e.g. approximate families of wave-
forms are employed, the signal-to-noise ratio is reduced by the factor m (called the
match)

m = (s|h)√
(s|s) (h|h)

. (11.48)

For any template h, the probability of measuring the signal s(t) is

P ∝ e− 1
2 (s−h|s−h) . (11.49)

The waveform h that best fits the signal is the waveform that minimizes the argument
of the exponential. The 1-σ error on a given parameter ζ i is 1/

√
Γi i , where Γi j is

the Fisher matrix

Γi j =
(

∂h

∂ζ i

∣∣∣ ∂h

∂ζ j

)
. (11.50)

More details on matched filtering and Fisher analysis can be found in [20, 23,
32]. It is worth noting that the Fisher method requires that the noise is stationary
and Gaussian, and it is necessary that the signal-to-noise ratio is sufficiently large. If
this is not the case, one may obtain incorrect results and should employ alternative
parameter estimation methods. The Fisher analysis can be used to test alternative
theories of gravity, see e.g. [53, 70].
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Fig. 11.2 Temporal
evolution of the strain, of the
black hole separation, and of
the black hole relative
velocity in the event
GW150914, which was the
coalescence of two
stellar-mass black holes,
each of them of about
30 M. From [1] under the
terms of the Creative
Commons Attribution 3.0
License

11.4 Coalescing Black Holes

Coalescing black holes are among the leading candidate sources for detection by
present and future gravitational wave observatories. Ground-based laser interferom-
eters can detect gravitational waves in the frequency range 10Hz–10kHz and con-
sequently can observe the last stage of the coalescence of stellar-mass black holes.
Both GW150914 and GW151226 were events generated by the coalescence of two
stellar-mass black holes [1, 2]. Gravitational wave experiments sensitive at lower
frequencies can detect signals from the coalescence of two supermassive black holes
or from a system of a supermassive black hole and a stellar-mass compact object.

The coalescence of a system of two black holes is characterized by three stages
(see Fig. 11.2):

1. Inspiral. The two objects rotate around each other. This causes the emission
of gravitational waves. As the system loses energy and angular momentum, the
separation between the two objects decreases and their relative velocity increases.
The frequency and the amplitude of the gravitational waves increase (leading to
the so-called “chirping” character in the waveform) until the moment of merger.

2. Merger. The two black holes merge into a single black hole.
3. Ringdown. The newly born black hole emits gravitational waves to settle down

to an equilibrium configuration.

Because of the complexity of the Einstein equations, it is necessary to employ
certain approximation methods to compute the gravitational wave signal. In the case
of (roughly) equal mass black holes, the three stages above are treated with the
following methods:
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1. Post-Newtonian (PN) methods. They are based on an expansion in ε ∼ U ∼ v2,
whereU ∼ M/R is the Newtonian gravitational potential and v is the black hole
relative velocity. The 0PN term is the Newtonian solution of the binary system.
The nPN term is the O(εn) correction to the Newtonian solution. In general
relativity, radiation backreaction shows up at 3.5PN order in g00, at 3PN order in
g0i , and at 2.5PN order in gi j .

2. Numerical relativity.When the PN approach breaks down because ε is not a small
parameter any longer, one has to solve the field equations of the complete theory.
Since the spacetime is not resolved to infinite precision, even this approach is an
approximate method. The first stable simulation was presented in [57], followed
by [7, 17]. For non-spinning black holes in general relativity, the stage of merger
smoothly connects the stages of inspiral andof ringdown. For spinningblackholes
in general relativity, merger may be a more violent event, depending on the black
hole spins and their alignments with respect to the orbital angular momentum.

3. Black hole perturbation theory. It is based on the study of small perturbations
over a background metric. The method is used to describe the ringdown stage.

In the rest of this section, we briefly discuss the stage of inspiral of a binary black
hole in which the two black hole masses are comparable. A recent review on the
topic is [12]. Extreme-mass ratio inspirals will be briefly reviewed in Sect. 11.5. The
description of merger requires numerical simulations, which is beyond the scope of
the present book focused on electromagnetic approaches. The topic is discussed, for
instance, in the review paper [42] or in the textbook [10]. The stage of ringdown is
characterized by the emission of quasi-normal modes, which are briefly discussed in
Sect. 11.6.

PN methods for the description of the inspiral stage work well until we are very
close to the event of merger, even if this requires to solve the equations to high PN
orders (at least 3.5PN). Within general relativity, the description of a binary system
of two generic compact objects (i.e. not necessarily black holes) is relatively easy,
as a consequence of the Strong Equivalence Principle [71]: if the two objects are
sufficiently far each other that effects related to their finite size can be ignored,
the orbital motion and the gravitational wave signal only depend on the masses
and the spins of the two bodies. For example, this is not true in a typical scalar-
tensor theory, where the scalar field φ is generated by the mass of the objects and
determines the effective gravitational coupling constant. The result is that each object
is characterized by several masses (e.g. gravitational mass, inertial mass, radiation
mass, etc.) and the value of these masses depends on the value of the scalar field at
the location of the object.

Within a PN approach, one has first to study the orbital motion of the binary. In
general relativity, the equation of motion for the binary system is [12]

a = dv
dt

= M

R2

(−n̂ + A1PN + A2PN + A2.5PN + A3PN + · · · ) (11.51)

where M = m1 +m2, m1 and m2 are the masses of the two objects, R = |x1 − x2| is
the Euclidean distance between the two objects, v = v1 − v2 is the relative velocity,
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and n̂ = (x1 −x2)/R. The Newtonian term is−(M/R2)n̂, while (M/R2)AnPN is the
correction of order εn to the Newtonian solution. For example, the 1PN term A1PN

is

A1PN =
[
(4 + 2η)

M

R
− (1 + 3η) v2 + 3

2
η Ṙ2

]
n̂ + (4 − 2η) Ṙv , (11.52)

where v = |v|, η = m1m2/M2, and a dot stands for a derivative with respect to time.
In order to get the gravitational field far from the binary system, it is necessary

to solve some technical issues, see e.g. [12]. Since the source T μν contains hμν ,
which is not confined to a compact region, one finds some divergent or ill-defined
integrals. A few methods have been proposed to fix these problems; e.g. the Post-
Minkowskian approach of [13–16]. The amplitude of the gravitational field far from
the source assumes the form

hi j = 2M

r

(
Hi j + Hi j

0.5PN + Hi j
1PN + Hi j

1.5PN + Hi j
2PN + Hi j

2.5PN + · · ·
)
t ′=t−r

,

(11.53)
where r is the distance of the observer from the source and all variables must be
evaluated at the retarded time t ′ = t − r . The first term on the right hand side of
Eq. (11.53) gives the quadrupole formula, Eq. (11.21). In the case of a binary system

Hi j = 2η

(
vi v j − Mn̂i n̂ j

R

)
. (11.54)

The leading radiation damping terms is at 2.5PN order. Averaging over one orbit,
the rate of increase of the orbital frequency due to the emission of gravitational waves
is

ḟb = 192π

5
(2πM )5/3 f 11/3b F(e) , (11.55)

whereM = η3/5M is the chirp mass and F(e) is a function of the orbital eccentricity
e

F(e) = (
1 − e2

)−7/2
(
1 + 73

24
e2 + 37

96
e4

)
. (11.56)

The gravitational waves emitted during the stage of inspiral are different from
Einstein’s predictions in some alternative theories of gravity and are the same as
in general relativity in others. An interesting example is the case of scalar-tensor
theories. For instance, [47] studied the evolution of compact binary systems of non-
spinning objects in the family of the scalar-tensor theories described by the action

S = 1

16π

∫ (
φR − ω

φ
gμν

(
∂μφ

)
(∂νφ)

) √−gd4x + Sm , (11.57)
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where ω is a function of the scalar field φ, while Sm is the action of the matter sector
and is independent of φ. In this class of theories, Eq. (11.51) becomes

a = dv
dt

= αM

R2

(−n̂ + A1PN + A1.5PN + A2PN + A2.5PN + A3PN + · · · ) (11.58)

where

α = 3 + 2ω0

4 + 2ω0
+ (1 − 2s1)(1 − 2s2)

4 + 2ω0
, (11.59)

ω0 is the value of the function ω far from the system, while s1 and s2 are, respec-
tively, the “sensitivity” of the objects 1 and 2 in the binary (see [47] for details). For
neutron stars, the sensitivity depends the mass and the matter equation of state, and
its numerical value should be around 0.2. For black holes, the sensitivity is exactly
1/2. The 1PN term A1PN in Eq. (11.52) becomes

A1PN =
[(
4 + 2η + 2γ̄ + 2β̄+ − 2ψβ̄−

) αM

R
− (1 + 3η + γ̄ ) v2 + 3

2
η Ṙ2

]
n̂

+ (4 − 2η + 2γ̄ ) Ṙv (11.60)

where γ̄ , β̄+, and β̄− are other functions that exactly vanish in the case of a binary
black hole, but they are different from zero in general. ψ = (m1 − m2)/M . The
leading radiation reaction term is at 1.5PN order, which is associated to the emission
of dipole gravitational radiation. Equation (11.54) becomes

hi j = 2(1 − ζ )M

r

(
Hi j + Hi j

0.5PN + Hi j
1PN + Hi j

1.5PN + Hi j
2PN + · · ·

)
, (11.61)

where ζ = 1/(4 + 2ω0). Equation (11.54) becomes

Hi j = 2η

(
vi v j − αMn̂i n̂ j

R

)
. (11.62)

Since α only appears in the product αM , it cannot be directly measured. As long
as the distortions of each black hole from the companion can be neglected, in the
family of scalar-tensor theories with the action (11.57), the emission of gravitational
waves from a black hole-black hole binary is the same as in general relativity, while
deviations may be present if one or both the objects are not black holes.

11.5 Extreme-Mass Ratio Inspirals

An extreme-mass ratio inspiral (EMRI) is a system of a stellar-mass compact object
(black hole, neutron star, or white dwarf with a mass μ ∼ 1–10 M) orbiting a
supermassive black hole (M ∼ 106–1010 M). Since the system emits gravitational
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waves, the stellar-mass compact object slowly inspirals into the supermassive black
hole until the final plunge. A similar system can easily form by multi-body interac-
tions in galactic centers [62, 63]. Initially, the captured object is in a “generic” orbit,
namely the orbit will have a high eccentricity and any inclination angle with respect
to the black hole spin. Due to the emission of gravitational waves, the eccentricity
tends to decreases (if we are far from the last stable orbit), while the inclination of
the orbit remains approximately constant [24, 27].

EMRIs are an important class of detection candidates for future space-based
gravitational wave interferometers. Detection will be dominated by EMRIs in which
the stellar-mass compact object is a black hole rather than a neutron star or a white
dwarf. There are two reasons. First, heaviest bodies more easily tend to concentrate
at the center [28]. Second, the signal produced by a 10 M black hole is stronger
than the signal from a neutron star or a white dwarf with a mass μ ≈ 1 M.

In the frequency range 1–100mHz, it is possible to detect the last few years of
inspiral into a supermassive black hole of ∼106 M. If the supermassive object is
heavier or the inspiral is at an earlier stage, the emission of gravitational waves is at
lower frequencies.

Since μ/M < 10−5, the evolution of the system is adiabatic; that is, the orbital
parameters evolve on a timescale much longer than the orbital period of the stellar-
mass compact object. A rough estimate can be obtained as follows [25]. If we are far
from the last stable orbit, the Keplerian period is

TK ∼ 8
(
1 − e2

)−3/2
(

M

106 M

)( p

6M

)3/2
min , (11.63)

where p is the semi-latus rectum of the orbit and e is the eccentricity. The timescale
of the radiation backreaction can be estimated as TR ∼ −p/ ṗ and we find

TR ∼ 100
(
1 − e2

)−3/2
(
M

μ

) (
M

106 M

)( p

6M

)4
min . (11.64)

As long as M/μ � 1, we have TR � TK and the evolution of the system is adiabatic.
This simplifies the description, as we can neglect the radiation backreaction and
assume that the small object follows the geodesics of the spacetime. EMRIs are thus
relatively simple systems and offer a unique opportunity to map the metric around
supermassive black holes [9, 26, 60]. Since the value of μ/M is so low, the inspiral
process is slow, and it is possible to observe the signal formany (>105) cycles. In such
a case, the signal-to-noise ratio can be high and it is possible to accurately measure
the parameters of the system. In particular, EMRI detections promise to provide
unprecedented accurate measurements of the mass and the spin of supermassive
black holes [8].

Despite that EMRIs are relatively simple systems, the calculation of inspiral wave-
forms is not easy, and indeed there is currently nomethod to compute accurate EMRI
waveforms. In the past 15–20 years, there have been significant efforts to develop
techniques to evaluate these waveforms. At the moment, the most reliable wave-
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forms are the so-called Teukolsky-based waveforms, which will be briefly reviewed
in the next subsection. However, this approach has been only applied to some special
classes of orbits. Moreover, it is computationally time-consuming. Since the future
detection of EMRIs will be based on matched-filtering and will require a huge num-
ber of waveform templates, there have been efforts to develop techniques capable
of constructing approximate families of waveforms that can be generated quickly
in large numbers. Section11.5.2 briefly discusses the so-called kludge approach.
More details on the calculation techniques for EMRIs can be found, e.g., in [25] and
reference therein.

11.5.1 Teukolsky-Based Waveforms

Teukolsky-based waveforms are obtained from the Teukolsky black hole perturba-
tion theory [66]; see [19] for an extended discussion of this topic and the review
articles [46] or [25] for its application to EMRIs. The calculations require that the
spacetime is described by the Kerr metric (i.e. the supermassive object must be a
Kerr black hole) and follow three steps:

1. The orbit is parametrized by its constants of motion (specific energy E , specific
axial component of the angular momentum Lz , and Carter constant Q) or by
other three orbital parameters (e.g. semi-latus rectum p, eccentricity e, and some
inclination angle i). Only stable orbits are relevant.

2. The stellar-mass object is usually treated as a test-particle. In such a case, we solve
the geodesic equations to find its trajectory, say zμ = {t (τ ), r(τ ), θ(τ ), φ(τ)},
where τ is the affine parameter of the geodesic. Geodesic motion in the Kerr
background has been already discussed in Sect. 3.3 and the equations of motion
are Eqs. (3.52)–(3.55). If we want to take the spin of the stellar-mass object
into account, the calculations are more complicated and we have deviations from
geodesic motion.

3. We employ the Teukolsky formalism to study the evolution of the gravitational
perturbations generated by the geodesic motion of the stellar-mass compact ob-
ject. Eventually we obtain themetric perturbations h+ and h× far from the source,
where we have the detector.

As the calculation of the emission of gravitational waves is based on the Teukoslky
formalism, the approach works for the Kerr metric and can be potentially extended
to other Petrov type D spacetimes. It cannot be employed to study more general
spacetimes because of the absence of the counterpart of the Teukolsky equation.
Without the Teukolsky equation, we should solve ten coupled metric perturbation
equations, which is definitively very challenging.

In the Teukolsky formalism, one studies the perturbations of theWeyl scalars, and
eventually it is possible to recover the metric perturbations far from the source. The
Teukolsky formalism is based on the Newman-Penrose formalism [50]. The details
can be found, e.g., in [19].We introduce four null 4-vectors {lμ, nμ,mμ,m∗ μ}, where

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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lμ and nμ are real, while m∗ μ is the complex conjugate of mμ. In the Kerr metric in
Boyer-Lindquist coordinates, a possible choice is

lμ =
(r2 + a2

Δ
, 1, 0,

a

Δ

)
, nμ =

(r2 + a2

2Σ
,− Δ

2Σ
, 0,

a

2Σ

)
,

mμ = 1√
2 (r + ia cos θ)

(
ia sin θ, 0, 1,

i

sin θ

)
. (11.65)

These four 4-vectors form a tetrad and any tensor can be projected onto such a
tetrad. The two components of the Weyl tensor relevant for the evolution of metric
perturbations are

ψ0 = −Cμνρσ l
μmνlρmσ , ψ4 = −Cμνρσn

μm∗ νnρm∗ σ , (11.66)

where Cμνρσ is the Weyl tensor. The non-vanishing spin coefficients (which will be
used later) are

ρ = − 1

r − ia cos θ
, β = −ρ∗ cot θ

2
√
2

, π = iaρ2 sin θ√
2

, σ = − iaρρ∗ sin θ√
2

,

ν = ρ2ρ∗Δ
2

, γ = ν + ρρ∗ (r − M)

2
, α = π − β∗ . (11.67)

The Teukolsky equation is [66]

[(
r2 + a2

)2
Δ

− a2 sin2 θ

]
∂2ψ

∂t2
+ 4Mar

Δ

∂2ψ

∂t∂φ
+

(
a2

Δ
− 1

sin2 θ

)
∂2ψ

∂φ2

−Δ−s ∂

∂r

(
Δs+1 ∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[
a (r − M)

Δ
+ i cos θ

sin2 θ

]
∂ψ

∂φ

−2s

[
M

(
r2 − a2

)

Δ
− r − ia cos θ

]
∂ψ

∂t
+

(
s2 cot2 θ − s

)
ψ = 4πΣS . (11.68)

Here s is the spin weight of the field and ψ is a certain quantity that depends on
the field. The Teukolsky equation can indeed be used to study the evolution of small
perturbations of a scalar field (s = 0), of amassless fermionic field (s = ±1/2), of an
electromagnetic field (s = ±1), as well as for gravitational perturbations (s = ±2).
For s = 2, ψ = ψ0, but this case is not relevant for the outgoing gravitational waves
to detect far from the source, and therefore it will be ignored in what follows. For
s = −2, ψ is given by

ψ = ρ−4ψ4 . (11.69)

In vacuum ψ4 = 0, and in the Teukolsky equation we consider perturbations around
this background. For s = −2, the source termS on the right hand side of Eq. (11.68)
isS = 2ρ−4T4, where
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T4 = (
Δ + 3γ − γ ∗ + 4ν + ν∗) [ (

δ∗ − 2σ ∗ + 2α
) (
Tμνn

μm∗ ν
)

− (
Δ + 2γ − 2γ ∗ + ν∗) (

Tμνm
∗ μm∗ ν

) ]

+ (
δ∗ − σ ∗ + β∗ + 3α + 4π

) [ (
Δ + 2γ + 2ν∗) (

Tμνn
μm∗ ν

)

− (
δ∗ − σ ∗ + 2β∗ + 2α

) (
Tμνn

μnν
) ]

.

(11.70)

The matter energy-momentum tensor T μν is that of the stellar-mass compact object.
We can employ the energy-momentum tensor of a point-like particle

T μν = μ

Σ sin θ

uμuν

u0
δ[r − r(τ )] δ[θ − θ(τ )] δ[φ − φ(τ)] , (11.71)

where r = r(τ ), θ = θ(τ ), and φ = φ(τ) have been obtained at the step 2.
The Teukolsky equation is separable in the frequency domain. We write

ψ4 = ρ4
∑
lm

∫
dω Rlm Saω

lm e−iωt+imφ , (11.72)

4πΣS =
∑
lm

∫
dω Tlm Saω

lm e−iωt+imφ , (11.73)

where Rlm = Rlm(r), Tlm = Tlm(r), and Saω
lm = Saω

lm (θ). The radial Teukolsky
equation for Rlm is

Δ2 d

dr

(
1

Δ

dRlm

dr

)
+

[
K 2 + 4i (r − M) K

Δ
− 8iωr − λ

]
Rlm = Tlm , (11.74)

where K = (
r2 + a2

)
ω − ma, λ = Elm + a2ω2 − 2amω, and Elm is a separation

constant [66]. The angular Teukolsky equation for Saω
lm is

[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
+ a2ω2 cos2 θ − m2

sin2 θ

+4aω cos θ + 4m cos θ

sin2 θ
− 4 cot2 θ − 2 + Elm

]
Saω
lm = 0 . (11.75)

For r → ∞, the relation between the Weyl scalar ψ4 and the two metric pertur-
bations h+ and h× in the TT gauge is [66]

ψ4 = 1

2

(
∂2h+
∂t2

− i
∂2h×
∂t2

)
. (11.76)
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Inverting this equation we can thus obtain h+ and h×. Inspiral trajectories may be
obtained by pasting together a sequence of geodesic orbits, see e.g. [30]. This is
possible because the system evolves adiabatically. Plugging the resulting slowly
evolving trajectory zμ(τ) into the Teukolsky equation, one finds the typical chirping
character of the waveform.

The Teukolsky equation is traditionally solved in the frequency domain, because
the equation becomes fully separable and the problem is reduced to the integration
of Eqs. (11.74) and (11.75). However, when the orbit significantly deviates from an
equatorial circular one, the resulting waveform is the sum of many orbital frequency
harmonics, which makes it computationally time-consuming. This is an important
issue, because initially the orbit is likely with high eccentricity (e ≈ 1). In such a
case, it may be computationally more convenient to solve the Teukolsky equation
in the time domain. Studies on the Teukolsky equation in the time domain started
in [33, 43].

11.5.2 Kludge Waveforms

While they are based on several approximations, Teukolsky-based waveforms are
currently the most reliable waveforms on the market. However, they are computa-
tionally time-consuming to generate and, at the same time, matched filtering tech-
niques require a huge number of waveform templates. This has led to the search for
approximate families of waveforms that are capable of capturing the main features
of the waveform and that are easy to generate quickly in large numbers. Kludge
waveforms are an example of such approximate families of waveforms.

The numerical kludgewaveforms of [5] are calculated in the following three steps:

1. We calculate an inspiral trajectory in terms, for instance, of (p, e, i) as a function
of time [27]. Let us note that this is not a geodesic trajectory because we are
taking into account the losses of energy and angular momentum.

2. We calculate the trajectory of the stellar-mass object in terms of the
Boyer-Lindquist coordinates. The result is an expression like zμ = {t, r(t),
θ(t), φ(t)}, where the trajectory is parametrized by the time t .

3. The gravitational waveform is calculated from the inspiral trajectory by employ-
ing some approximate formula for the generation of gravitational waves.

For the step 3, one plugs the expression of zμ into the energy-momentum tensor
of a point-like particle, i.e.

T μν(t, x) = μ

∫
dzμ

dτ

dzν

dτ
δ4[x − z(τ )] dτ

= μ
1

u0
dzμ

dτ

dzν

dτ
δ3[x − z(t)] . (11.77)
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We can then plug Eq. (11.77) into (11.14). In the slow motion limit, we can con-
sider the quadrupole formula. Otherwise, we can consider additional terms in the
expansion. For example, the quadrupole-octuple formula reads [55]

h jk = 2

r

(
Q̈ jk − 2ni S̈

i jk + ni
...
M

i jk
)
t ′=t−r

, (11.78)

where n = x/r and

Si jk(t) =
∫

V
T 0i (t, x) x j xk d3x ,

Mi jk(t) =
∫

V
T 00(t, x) xi x j xk d3x . (11.79)

Unlike the Teukolsky approach of the previous subsection, the calculations for
kludge waveforms can be more naturally extended to generic stationary and axisym-
metric spacetimes [9, 26].

11.6 Quasi-normal Modes

If a stable compact object is perturbed, it returns to its equilibrium configuration
through some characteristic damped oscillations, the so-called quasi-normal modes
(QNMs). This is not a special property of black holes, and it is expected even in
neutron stars or other possible strong gravity systems like boson stars, wormholes,
etc. However, the frequency and the damping time of these oscillations do depend on
the specific system and on its fundamental properties, while they are independent of
the initial perturbations. For instance, in the case of a Schwarzschild black hole, the
spectrum of the quasi-normal modes from metric perturbations are only determined
by the black holemassM . For aKerr black hole, the spectrumdepends on themassM
and the spin parameter a∗. The quasi-normal mode spectrum is thus a powerful tool
to test the nature of a compact object. Moreover, quasi-normal modes are not limited
to the case of metric perturbations, but they exist even for matter perturbations in the
spacetime around a compact object.

The spectrum of quasi-normal modes of a stable black hole is an infinite set of
complex angular frequencies. The real part is proportional to the oscillation frequency
of the mode. The imaginary part is inversely proportional to the damping time of
the mode. Linear stability is guaranteed when all quasi-normal modes are damped.
Depending on the astrophysical scenario, some modes can receive more energy than
others and dominate the ringdown stage.

The name “quasi-normal modes” was put forward in [54] to distinguish these
oscillations from the normal modes present in other physical systems. Normal modes
are stationary oscillations. Here, on the contrary, the system is open and loses energy
by emitting some kind of radiation. For this reason, quasi-normal modes of a stable
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system decay with time. This is a consequence of the different boundary conditions
or, equivalently, of the different behavior of the potential at the boundaries. Normal
modes are confined to a finite region, while quasi-normal modes are not. There
are also some other important differences. For example, it is remarkable that quasi-
normalmodes of black holes in asymptotically flat spacetimes do not form a complete
set.

In the past decades, there has been a significant work to develop numerical and
semi-analytical methods to compute the spectrum of quasi-normal modes. More
details can be found in [11, 35, 36] and references therein.

Let us first consider matter perturbations in a certain black hole spacetime. Such
a possibility may not have direct astrophysical implications, but it is easier to study.
In the linear approximation, the matter field does not backreact on the equilibrium
background metric, and the evolution of the matter perturbations turns out to be
determined by the equation of motion of the matter field under consideration in the
equilibrium background metric. This is indeed the way in which one obtains the
equation of motion of a matter field from the Least Action Principle.

The simplest example is a scalar fieldΦ of massμ. In flat spacetime, the equation
of motion of Φ is the usual Klein-Gordon equation (� + μ2)Φ = 0, where � =
ημν∂μ∂ν . In curved spacetime, the equation of motion of Φ is still given by the
Klein-Gordon equation, but now � = gμν∇μ∇ν , which can be rewritten as

1√−g

∂

∂xμ

(
gμν

√−g
∂Φ

∂xμ

)
+ μ2Φ = 0 . (11.80)

In general relativity, the spectrum of the quasi-normal modes of a massless scalar
field is not very different from that of the metric, so as a crude approximation one
may calculate the former to get an estimate of the latter. In some alternative theories
of gravity, such a statement is also true, while in other theories the two spectra may
be very different.

The second natural example is the case of perturbations of the electromagnetic
field Aμ. In flat spacetime, we have the Maxwell equation ∂μFμν = 0, where Fμν =
∂μAν − ∂ν Aμ. In curved spacetime, the Maxwell equation can be rewritten as

∂

∂xμ

(√−gFμν
) = 0 . (11.81)

In the same way, one can consider other matter fields, like Dirac fields, massive
vector fields, etc. In all these cases, the evolution of perturbations is governed by the
equation of motion of the matter field in the curved background metric of the black
hole. The evolution of the perturbations is thus only determined by the background
metric and is independent of the field equation of the gravity theory. In other words,
the spectrum of the quasi-normal modes of, for instance, a scalar field in the Kerr
metric is the same in general relativity as in an alternative theory of gravity in which
the Kerr metric is a viable black hole solution.
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Metric perturbations can be generated in the spacetime around a black hole at
the time of its formation, and the study of their evolution has direct astrophysical
implications. The new black hole may be created by non-spherically symmetric
collapse of the progenitor star or by the merger of two black holes, two neutron stars,
or a black hole-neutron star system. At the time of its formation, the black hole is
not in its equilibrium configuration. The system thus emits gravitational waves to
settle down to its equilibrium configuration. Metric perturbations also appear when
a black hole swallows a smaller object. For example, this is the case of an EMRI.

The emission of gravitational waves of a newly born, stable black hole can be
divided into three stages. First, we have an outburst, which lasts for a relatively
short time. The emission of gravitational waves is determined by the non-linear
regime of the gravity theory and the initial perturbations. Second, we have the period
dominated by the quasi-normal modes. The frequency and the damping time of each
mode only depend on the fundamental properties of the system, and are independent
of the initial perturbations, but the energy in each mode is determined by the initial
perturbations. Last, at late time quasi-normal modes are usually suppressed by the
so-called exponential late-time tails [58], which are also a characteristic of the system
under consideration. Ringdown typically refers to the second stage of quasi-normal
modes, but may also include the third stage of exponential late-time tails.

The gravitationalwaves of the outburstwould be interesting, but difficult to predict
theoretically and to measure with the necessary precision. The exponential late-time
tails are difficult to detect, because the signal is very weak. From the observational
point of view, the quasi-normal mode stage is the most interesting one.

The evolution of metric perturbations does depend on the exact field equations
of the gravity theory. In 4-dimensional general relativity, we have to consider metric
perturbations in the Einstein equations, namely

δRμν = 8πδ

(
Tμν − 1

2
gμνT

)
, (11.82)

where T = T ρ
ρ .Wewrite themetric as gμν = g0μν+δgμν , where g0μν is the equilibrium

background metric and δgμν is the perturbation. In the linear approximation, we plug
this expression of gμν into Eq. (11.82) and we neglect terms of the second and higher
order in δgμν .

11.6.1 Calculation Methods of Quasi-normal Modes

The equations governing the evolution of matter field perturbations are relatively
straightforward to obtain ifwe know the black holemetric. In the case of the equations
for the evolution of metric perturbations, they depend on the gravity theory, but
usually there are no special difficulties to face. A different story is solving these
equations to find the spectrum of the perturbations. The standard strategy is to try to
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separate the angular variables θ and φ from the radial and temporal variables r and
t . This is only possible when the background metric has some special symmetries
and, even in this case, it may not be an easy job. The choice of suitable coordinates
is also crucial.

In the case of a scalar field Φ, we can expands Φ in terms of scalar harmonics

Φ (t, r, θ, φ) =
+∞∑
l=0

l∑
m=−l

Ylm (θ, φ)
Φlm (t, r)

r
. (11.83)

In the case of vector or tensor fields, the formalism ismore complicated. Any second-
rank symmetric tensor, say Sμν , can be expanded in tensor harmonics as follows [59,
73]

Sμν =
+∞∑
l=0

l∑
m=−l

10∑
i=1

silm
(
Ai
lm

)
μν

. (11.84)

The expression of the tensor harmonics i = 1, 2, and 3 is

|| (A1
lm

)
μν

|| =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Ylm , || (A2

lm

)
μν

|| = i√
2

⎛
⎜⎜⎝
0 1 0 0
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0 0 0 0
0 0 0 0

⎞
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|| (A3
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)
μν

|| =

⎛
⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Ylm . (11.85)

These tensors have odd parity, namely they change by the factor (−1)l+1 under
space inversion (θ, φ) → (π − θ, π + φ). They are usually referred to as axial
perturbations in the literature. The tensor harmonics i = 4, 5..., and 10 have even
parity, namely they change by the factor (−1)l under space inversion. They are
usually referred to as polar perturbations. Their expression is

|| (A4
lm

)
μν

|| = ir√
2l (l + 1)

⎛
⎜⎜⎝

0 0 ∂θ ∂φ

0 0 0 0
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⎞
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|| (A5
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)
μν

|| = r√
2l (l + 1)

⎛
⎜⎜⎝
0 0 0 0
0 0 ∂θ ∂φ

0 ∂θ 0 0
0 ∂φ 0 0

⎞
⎟⎟⎠ Ylm ,
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|| (A6
lm
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μν

|| = r√
2l (l + 1)
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where

Xlm = 2
∂

∂φ

(
∂

∂θ
− cot θ

)
Ylm ,

Wlm =
(

∂2

∂θ2
− cot θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2

)
Ylm . (11.87)

Let us note that different authors often use different notations and different normal-
izations.

In the case of a spherically symmetric spacetime, the equation governing the
evolution of the metric perturbations does not mix axial and polar perturbations, and
we can thus study axial and polar perturbations separately. If the compact object is
rotating – even slowly – the two types of perturbations couple. In the case of rotating
black holes, it is not convenient to expand the perturbations in tensor harmonics and
other techniques have been developed (see, for instance, the case of the Kerr metric
in Sect. 11.6.3).

The tensor harmonics are orthonormal each other with respect to the inner product

(B,C) =
∫ π

0
dθ

∫ 2π

0
dφ sin θημνηρσ B∗

μρCνσ , (11.88)
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whereημν is theMinkowskimetric and ∗ indicates the complex conjugate. The scalars
{silm} in Eq. (11.84) can thus be evaluated from

silm = (
Ai
lm, S

)
. (11.89)

If we can decouple the angular variables in the perturbation equation, we usually
obtain a Schrödinger-like equation for the radial and temporal variables, say

− d2R

dx2
+ V (r, ω)R = ω2R . (11.90)

V (r, ω) is an effective potential that depends on the initial equation of motion, the
background metric, and the perturbed field. The coordinate x is not the radial coor-
dinate r . For instance, in the Schwarzschild metric x can be the tortoise coordinate
r∗

r∗ = r + 2M ln
( r

2M
− 1

)
, (11.91)

For r → 2M , r∗ → −∞, while for r → ∞ we have r∗ → ∞.
Quasi-normalmodes satisfy specific boundary conditions. In the case of an asymp-

totically flat black hole spacetime and in the context of astrophysical observations,
it is natural to impose pure ingoing wave at the horizon and pure outgoing wave at
spatial infinity; that is,

Ψ ∼ eiωx for x → −∞ (pure ingoing wave) ,
Ψ ∼ e−iωx for x → ∞ (pure outgoing wave) .

(11.92)

Different boundary conditions may be imposed with special potentials or in different
contexts.

It is common to write the frequency of the quasi-normal mode ω as

ω = ωR − iωI . (11.93)

ωR = 2πν and ν is the oscillation frequency of the mode. ωI = 1/τ and τ is the
damping time of the mode. The spacetime is linearly stable under the perturbations
if all quasi-normal modes have positive imaginary part (ωI > 0). The spacetime is
unstable if at least one of the modes has ωI < 0.

In general, it is not easy to solve the equation of the perturbations and find the
spectrum of the quasi-normal modes. Exact solutions are rare and it is usually nec-
essary to employ specific calculation techniques to find approximate solutions; see,
for instance, [36] and references therein.

As a consequence of the incompleteness of the set of quasi-normal modes, at
late time quasi-normal modes are suppressed by exponential or power-law tails; see,
however, [29] for a counterexample. Late-time tails were first studied in [58]. It is not
clear whether this behavior may have astrophysical implications, because the signal
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is very weak at late time, but it is still an interesting feature of the quasi-normal
modes. For instance, massless scalar perturbations and metric perturbations in the
Kerr spacetime decay as

|Ψ | ∼ t−(2l+3) . (11.94)

In other background metrics and/or for different matter field perturbations, the decay
may be different. For example, in the case of a massive scalar field of mass μ,
the decay at late time (t � μ−2M−3) in Schwarzschild and Reissner-Nordström
spacetimes is [37–39]

|Ψ | ∼ t−5/6 sin (μt) . (11.95)

11.6.2 Schwarzschild Metric

For the study of metric perturbations in the Schwarzschild spacetime, we can pro-
ceed as discussed in the previous subsection. For axial perturbation, we obtain the
Schrödinger-like equation (11.90) with the Regge–Wheeler potential [59]2

VRW =
(
1 − 2M

r

)[
l (l + 1)

r2
− 6M

r3

]
. (11.96)

Thepotential for scalar, electromagnetic, and axial perturbations in theSchwarzschild
background can be written in the compact form

V =
(
1 − 2M

r

)[
l (l + 1)

r2
− (1 − s2)

2M

r3

]
, (11.97)

where s = 0 for scalar field perturbations,±1 for electromagnetic field perturbations,
and ±2 for axial metric perturbations. For polar perturbations, we find the Zerilli
potential [73]

VZ =
(
1 − 2M

r

)[
72M3

r5L2
− 12M

r3L2
(l − 1) (l + 2)

(
1 − 3M

r

)

+ (l − 1) l (l + 1) (l + 2)

r2L

]
, (11.98)

where

L = l (l + 1) − 2 + 6M

r
. (11.99)

2Regge andWheeler [59] also considered polar perturbations, but therewas amistake later corrected
in [73].
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Fig. 11.3 Regge–Wheeler
and Zerilli potentials for
l = 2 and 3 as a function of
the tortoise coordinate r∗.
For r∗ → −∞,
V ∼ exp(r∗). For r∗ → ∞,
V ∼ l(l + 1)/r2∗ . Units in
which M = 1 are used

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10  0  10  20

V

l = 3

l = 2

Regge-Wheeler
Zerilli

r*

Fig. 11.4 The l = 2
(diamonds) and the l = 3
(crosses) spectra of
quasi-normal modes for a
Schwarzschild black hole.
The 9th l = 2 mode and the
41st l = 3 mode have
vanishing ωR. From [35]
following the calculations
in [3] under the terms of the
Creative Commons
Attribution License

Re   M

Im
   

M

ω

ω

-12

-10

-8

-6

-4

-2

0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure11.3 shows the Regge–Wheeler and the Zerilli potentials for l = 2 and 3 as
a function of the tortoise coordinate r∗. Both potentials have a maximum near the
photon orbit and tend to 0 when we move to the horizon or to infinity.

The quasi-normal mode spectrum in the Schwarzschild background has been
studied by many authors; see, e.g., [6]. For every l (l ≥ 2, because of the quadrupole
nature of gravitational radiation), we find an infinite set of quasi-normal frequencies.
For every l, the quasi-normal frequencies are labelled by the non-negative integer
number n, where n = 0 corresponds to the fundamental mode and n = 1, 2, 3, etc.
are used for the first, second, third, etc. modes. Figure11.4 shows the l = 2 and
the l = 3 quasi-normal mode spectra of a Schwarzschild black hole. As the number
n increases, the imaginary part increases too, which means the damping time gets
shorter and themode is less and less important in a possible detection of the ringdown
of a black hole. Table11.1 reports the first four frequencies (in units in whichM = 1)
for l = 2, 3, and 4. The conversion factor from ωR in Table11.1 to ν in kHz is
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Table 11.1 The first four quasi-normal frequencies ω = ωR − iωI of a Schwarzschild black hole
for l = 2, 3, and 4. Units in which M = 1 are used

n l = 2 l = 3 l = 4

0 0.37367 − 0.08896i 0.59944 − 0.09270i 0.80918 − 0.09416i

1 0.34671 − 0.27391i 0.58264 − 0.28130i 0.79663 − 0.28443i

2 0.30105 − 0.47828i 0.55168 − 0.47909i 0.77271 − 0.47991i

3 0.25150 − 0.70514i 0.51196 − 0.69034i 0.73984 − 0.68392i

3.231

(
10 M
M

)
kHz . (11.100)

The fundamental mode l = 2 and n = 0 has the frequency ν = ωR/(2π) and the
damping time τ = 1/ωI

ν = 1.207

(
10 M
M

)
kHz , τ = 0.554

(
M

10 M

)
ms . (11.101)

Quasi-normal modes from stellar-mass black holes are in the detection band of
ground-based interferometers, and they have been already observed in GW150914
and GW151226 by LIGO. Quasi-normal modes from supermassive black holes can
instead be detected by space-based interferometers (e.g. eLISA).

11.6.3 Kerr Metric

In the case of the Kerr metric, the approach employed for the Schwarzschild space-
time of studying the metric perturbations through an expansion in tensor harmonics
does not work. As already shown in Sect. 11.5.1, if we use the Newman-Penrose
formalism, we obtain the Teukolsky equation (11.68), which describes the evolution
of perturbations of massless fields of various spin and is fully separable in the fre-
quency domain. The equations to solve are (11.74) and (11.75). The quasi-normal
mode spectrum has been calculated by several authors employing different tech-
niques, see e.g. [22, 34, 40, 52, 61].

If all quasi-normal modes have ωI > 0, the background metric is stable under
linear perturbations. This is the case of the Kerr spacetime [56, 67, 68].

Superradiance is the phenomenon of amplification of an incident wave and was
discovered in [72]. The equation governing the scattering of a massless scalar field
in the Kerr background can be written as Eq. (11.90) with the potential

V =
(

ω − am

r2 + a2

)2

− C2Δ(
r2 + a2

)2 − Δ(
r2 + a2

)3/2
d

dr

rΔ(
r2 + a2

)3/2 , (11.102)
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where C is a separation constant. The asymptotic forms of the solution of the scalar
field are

Φ = e−iωx + Reiωx for r → ∞ ,

Φ = T e−i(ω−mΩH)x for r → r+ ,
(11.103)

where R is the reflection coefficient, T is the transmission coefficient, and ΩH is
the angular velocity of the event horizon (see Sect. 3.5). From the Wronskian of the
scalar field Φ and employing the asymptotic solutions (11.103), it is not difficult to
obtain the following relation (the calculations can be found in many textbooks of
quantum mechanics)

|R|2 = 1 +
(
mΩH

ω
− 1

)
|T |2 . (11.104)

The amplitudes of the incident, reflected, and transmitted waves are, respectively,
1, |R|, and |T |. The incident wave is amplified (i.e. the amplitude of the reflected
wave is larger than the amplitude of the incident wave, |R| > 1) for

mΩH > ω . (11.105)

In superradiance, the incident wave “extracts” rotational energy from the black hole.
There is no superradiance in the case of fermions [31, 44], while superraciance of
metric perturbations is stronger than the case of a massless scalar field [64, 65].

If the reflected wave cannot escape to infinity (for instance, we put amirror around
the black hole), the system becomes unstable, as the reflected wave becomes a new
incident wave, which is amplified again. The process continues and the amplitude
of the wave increases. Something similar can happen, for instance, in the case of a
massive scalar field. Here the effective potential has a barrier at large radii. Such a
barrier can act as a mirror and the reflected wave bounces to become a new incident
wave, with the result that the amplitude of the wave increases and increases. The
observation of Kerr black holes with certain masses may thus be used to constrain
the mass of hypothetical new scalar fields [4].
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Part III
Testing the Kerr Paradigm



Chapter 12
Non-Kerr Spacetimes

Techniques like the continuum-fitting and the iron line methods were originally pro-
posed to measure black hole spins assuming that the spacetime metric around black
holes is described by the Kerr solution. Under this assumption, the electromagnetic
spectrum is computed in the Kerr metric and then the theoretical predictions are
compared with observational data to find the best fit and estimate the values of a∗
and of the other free parameters of the model.

With the same spirit, we can employ some non-Kerr metric, compute the expected
spectrum in this non-Kerr spacetime, and compare the new predictions with the
available data.We can then see if the non-Kerr model fits the data better than the Kerr
one and constrain possible deviations from the Kerr background. Deviations from
the Kerr metric may be expected, for instance, from classical extensions of general
relativity [4], macroscopic quantum gravity effects [9, 10, 13], or the presence of
exotic matter [16, 18].

There are two natural approaches to test the Kerr black hole hypothesis. In the
top-bottom approach, we have a specific theoretical model in which the spacetime
metric around an astrophysical black hole is not described by the Kerr solution. The
key-point is that we have a theoretically motivated non-Kerr metric. Some examples
will be discussed in Sect. 12.1. In the bottom-up approach, we consider instead a
phenomenological parameterization of the metric, which ideally should be able to
describe the spacetime of any possible black hole (or compact object capable of
mimicking a black hole) in any possible gravity theory. A number of deformation
parameters are used to quantify possible deviations from the Kerr metric, and we
want to constrain the values of these deformation parameters. This approach will be
reviewed in Sect. 12.2.

© Springer Nature Singapore Pte Ltd. 2017
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12.1 Theoretically-Motivated Spacetimes

If we have a theoretical model that predicts macroscopic deviations from the Kerr
solution in the metric around an astrophysical black hole, we can compare the theo-
retical predictions in the Kerr and non-Kerr models with observations and see which
of them can better explain some astrophysical data. The advantages of this approach
is that there are some theoretical reasons to study such a scenario and the predictions
are (usually) relatively precise.

There are two disadvantages. First, there are a large number of theoretical frame-
works predicting deviations from theKerr solution, and there are currently no reasons
to prefer a model over the others. This would require to repeat the analysis for any
model, which would be very dispersive. Actually, it may also be possible that, even
assuming that the Kerr solution is not adequate to describe the metric around astro-
physical black holes, we do not have the right model. Second, it is typically very
difficult to find rotating black hole solutions in these models. In many gravity the-
ories we know their non-rotating black hole solutions, in some cases we know the
black hole solutions in the slow-rotation approximation, but only in a few cases we
have the complete rotating black hole solutions. If we only know the non-rotating
black hole solution of a certain theory, we cannot test such a theory, because the
astrophysical data may not be consistent with the non-rotating solution but may be
consistent when we employ the rotating one.

12.1.1 Kerr Black Holes with Scalar Hair

Kerr black holes with scalar hair were proposed in [16] and represent an example
of theoretical model in which deviations from the Kerr metric are possible because
of the presence of exotic matter. We have Einstein’s gravity minimally coupled to a
massive, complex, scalar field. The action is

S =
∫

d4x
√−g

{
R

16π
− 1

2
gμν

[(
∂μΦ∗) (∂νΦ) + (

∂νΦ
∗) (∂μΦ

)]− μ2Φ∗Φ
}

,

(12.1)

where μ is the mass of the scalar field. The black hole solutions can be found using
the following metric and scalar field ansatz

ds2 = −e2F0Ndt2 + e2F1
(
dr2

N
+ r2dθ2

)
+ e2F2r2 sin2 θ (dϕ − Wdt)2 , (12.2)

Φ(t, r, θ, φ) = e−iwt eimϕφ(r, θ) , (12.3)

where N = 1 − rH/r , rH > 0 is the location of the event horizon, w ∈ R
+ is the

scalar field frequency, and m ∈ Z
+ is the azimuthal harmonic index. There is an
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infinite countable number of families of Kerr black holes with scalar hair, each
family being obtained for different values of m and of the number of nodes, n, of the
scalar field profile φ in the equatorial plane. In what follows, we will focus on the
n = 0 nodeless family with m = 1. These are likely the most stable configurations,
as increasing either of these integer numbers (roughly) increases the energy of the
solutions, corresponding to more excited states.

Kerr black holes with scalar hair avoid the no-hair theorem thanks to a harmonic
time-dependence in the scalar field. The spacetimemetric and the energy-momentum
tensor of the scalar field are stationary.

Even if the scalar field is complex, its energy-momentum tensor and the metric of
the spacetime are real. Themetric is describedby four functions (F0, F1, F2, andW ) of
the coordinates r and θ , whereas the scalar field introduces a fifth function of the same
coordinates. These functions are found, numerically, by solving a system of five non-
linear coupled partial differential equations, with appropriate boundary conditions
that guarantee asymptotic flatness and regularity on and outside the horizon; see [17]
for all the details. Of crucial importance is the synchronization condition,w = mΩH,
whereΩH is the angular velocity of the horizon. This condition guarantees regularity
of a non-trivial scalar field at the horizon, and has a very clear physical interpretation
in the context of the superradiance phenomenon ofKerr black holes [16]. The vacuum
Kerr metric can be written in this coordinate system, which differs from the standard
Boyer–Lindquist coordinates by a radial shift. The explicit form of the coefficients
of the Kerr metric in this coordinates can be found in [17, 18].

A generic Kerr black hole with scalar hair is described by three “charges”. The
first two can be separated in their horizon (BH) and scalar field (S) contributions.
They are the ADM or total mass M = MBH + MS, and the total angular momentum
J = JBH + JS.1 The third one is a Noether charge, Q, which is conserved in a local
sense (of a continuity equation), but, unlike the mass and angular momentum, has
no associated Gauss law, and hence cannot be measured by an observer at infinity.
This Noether charge is a consequence of the U (1) global symmetry of the complex
scalar field and provides a measure of the hairiness of the black hole. A given family
of Kerr black holes with scalar hair (i.e. with specific values of m and n) bifurcates
from a subset of vacuum Kerr black holes, see Fig. 12.1. In this limit, MS = 0 = JS
and Q = 0. When the horizon size vanishes, which in particular implies rH → 0,
the hairy black holes reduce to rotating boson stars (with the same values of m and
n, as boson stars also form an infinite countable number of families). In this limit,
MBH = 0 = JBH and Q = mJS. This latter condition, which was first observed for
rotating boson stars in [31, 37], also holds for Kerr black holes with scalar hair. Thus
we can write, for the hairy black holes,

1 = JBH
J

+ Q

mJ
⇔ q = 1 − JBH

J
, q ≡ Q

mJ
, (12.4)

1The expression total angular momentum is used to indicate the angular momentum computed as
the Komar integral associated to axisymmetry at spatial infinity.
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Fig. 12.1 Domain of existence of Kerr black holes with scalar hair (blue shaded region) in an ADM
mass (here denoted MADM to avoid ambiguities) vs horizon angular velocity diagram. VacuumKerr
black holes exist below the black solid line that corresponds to the extremal Kerr solution. Kerr
black holes with scalar hair bifurcate from the vacuum Kerr solution at a particular existence line,
corresponding to the Kerr black holes that can support stationary bound states of the massive
Klein Gordon equation (blue dotted line) [16]. This is the q = 0 limit. In the q = 1 limit, Kerr black
holes with scalar hair reduce to boson stars (red solid line). Constant q lines are roughly parallel
to the boson star spiral. The green dashed line is the set of extremal (zero temperature) Kerr black
holes with scalar hair. From [28], reproduced by permission of IOP Publishing. All rights reserved

where q ∈ [0, 1] is the normalized Noether charge, which measures the fraction of
angular momentum in the scalar field. This parameter provides a useful and compact
measure of the hairiness, with q = 0 for vacuumKerr black holes (no hair) and q = 1
for boson stars (only hair).

Since the hairy black hole solutions are only known numerically, for what follows
we can consider three specific Kerr black holes with scalar hair. The data for these
solutions are publicly available.2 These three solutions are:

1. Configuration III (q = 0.128) is a Kerr-like hairy black hole. Only a relatively
small fraction of the total mass and angular momentum is stored in the scalar
field (5% of the mass and 13% of angular momentum). The input parameters
used in obtaining this solution are: rH = 0.2 and ΩH = 0.975. In units of the
scalar field mass,3 the ADMmass is M = 0.415 and the total angular momentum
is J = 0.172. The black hole mass is MBH = 0.393 and the black hole angular
momentum is JBH = 0.15. The scalar field mass is MS = 0.022 and the scalar
field angular momentum is JS = 0.022.

2The data files are available at http://gravitation.web.ua.pt/index.php?q=node/416.
3That is, we have rescaled, in this discussion,μrH → rH,ΩH/μ → ΩH,μM → M andμ2 J → J .
Let us note that any solution can have any physical mass for an appropriate choice of μ.

http://gravitation.web.ua.pt/index.php?q=node/416
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2. Configuration IV (q = 0.846) is already quite different from the vacuum Kerr
solution. A large fraction of its mass and angular momentum are in the scalar field
(75% of the mass and 85% of the angular momentum). The input parameters are:
rH = 0.1 and ΩH = 0.82. The ADM mass is M = 0.933 and the total angular
momentum is J = 0.739. The black hole mass is MBH = 0.234 and the black
hole angular momentum is JBH = 0.114. The scalar field mass is MS = 0.699
and the scalar field angular momentum is JS = 0.625.

3. ConfigurationV (q = 0.998) essentially describes a rotating boson starwith a tiny
black hole at its center. The mass and angular momentum are almost fully in the
scalar field (98.2% of the mass and 97.6% of the angular momentum). The input
parameters are: rH = 0.04 and ΩH = 0.68. The ADM mass is M = 0.975 and
the total angular momentum is J = 0.85. The black hole mass is MBH = 0.018
and the black hole angular momentum is JBH = 0.002. The scalar field mass is
MS = 0.957 and the scalar field angular momentum is JS = 0.848.

Figure12.1 shows a representation of the location of these three solutions in the
domain of existence of Kerr black holes with scalar hair.

12.1.2 Black Holes in Einstein–Dilaton–Gauss–Bonnet
Gravity

Black holes in Einstein–dilaton–Gauss–Bonnet gravity represent an example of non-
Kerr black holes in an extension ofEinstein’s theory of gravity and forwhichweknow
the rotating solution numerically [22]. These solutions can evade the no-hair theorem
for scalar-tensor theories [32] because of the presence of a non-trivial coupling
between gravity and the dilaton field. The action of the model is the low-energy
effective action for the heterotic string and reads [38]

S = 1

16π

∫
d4x

√−g

[
R − 1

2
gμν

(
∂μΦ

)
(∂νΦ) + αe−γΦ + R2

GB

]
, (12.5)

where Φ is the dilaton field, γ is the coupling constant of the dilaton field, α is
another parameter of the theory, and R2

GB is the Gauss–Bonnet correction

R2
GB = Rμνρσ R

μνρσ − 4RμνR
μν + R4 . (12.6)

The equations of motion are of second order and the theory is ghost-free.
The black hole solutions can be found using the following metric ansatz [22]

ds2 = − f dt2 + m

f

(
dr2 + r2dθ2

)+ l

f
r2 sin2 θ

(
dφ − ω

r
dt
)2

, (12.7)
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where f , m, l, and ω are functions of r and θ only. The event horizon is located at
the radial coordinate r = rH defined by f (rH) = 0 (independent of θ ). The boundary
conditions at the horizon are:

f |r=rH = m|r=rH = l|r=rH = 0 , ω|r=rH = ΩHrH ,
∂Φ

∂r

∣∣∣
r=rH

= 0 . (12.8)

The boundary conditions at infinity are:

f |r→∞ = m|r→+∞ = l|r→∞ = 1 , ω|r→∞ = Φ|r→∞ = 0 . (12.9)

The axial symmetry of the spacetime and its regularity impose the followingboundary
conditions on the symmetry axis θ = 0:

∂ f

∂θ

∣∣∣
θ=0

= ∂m

∂θ

∣∣∣
θ=0

= ∂l

∂θ

∣∣∣
θ=0

= ∂ω

∂θ

∣∣∣
θ=0

= ∂Φ

∂θ

∣∣∣
θ=0

= 0 . (12.10)

The absence of conical singularities requires:

m|θ=0 = l|θ=0 . (12.11)

The mass M , the spin angular momentum J , and the dilaton charge D are found
from the asymptotic behavior of f , ω, and Φ, namely

f |r→∞ → 1 − 2M

r
, ω|r→∞ → 2J

r2
, Φ|r→∞ → −D

r
. (12.12)

Numerical solutions are obtained by solving numerically a set of five second
order coupled non-linear partial differential equations for the functions f , m, l, ω,
and Φ imposing the boundary conditions (12.8)–(12.11). Varying ΩH, it is possible
to obtain different rotating solutions, and the values of M , J , and D are computed
a posteriori from the asymptotic behaviors of f , ω, and Φ, as shown in (12.12).
Kleihaus et al. [22] only consider the case γ = 1, but otherwise γ would be another
parameter of the black hole solutions.

The domain of the existence of black holes in Einstein–dilaton–Gauss–Bonnet
gravity studied in [22] is shown in Fig. 12.2 by the pink shaded region. The x-
axis is for the spin parameter a∗ = J/M2, while the y-axis is for the scaled hori-
zon area aH = AH/(16πM2), where AH is the area of the event horizon. The
Schwarzschild solution is at a∗ = 0 and aH = 1. The Kerr solutions are all on the
black solid curve. Non-rotating black holes in Einstein–dilaton–Gauss–Bonnet grav-
ity are along the segment a∗ = 0 and aH ∈ [0.85; 1]. The bound aH = 0.85 is deter-
mined by the existence of a critical horizon size. The latter also exists for rotating
solutions and gives the lower boundary in the existence domain. It is worth noting
that black holes in Einstein–dilaton–Gauss–Bonnet gravity can have a spin parame-
ter exceeding 1. However, the extremal black holes (those with the highest spins and
vanishing surface gravity) are not regular solutions, see [22] for the details.
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Fig. 12.2 Domain of existence of black holes in Einstein–dilaton–Gauss–Bonnet gravity studied
in [22] (pink shaded region in the large figure) in a scaled horizon area aH = AH/(16πM2) (AH
is the area of the event horizon) vs spin parameter a∗ = J/M2. Kerr black holes are all mapped
to the black solid curve. The other curves indicate black holes with a specific value of α1/2ΩH:
α1/2ΩH = 0.034 (red solid line), 0.047 (green dashed line), 0.055 (blue dotted line), 0.082 (magenta
dotted line), 0.110 (cyan dashed-dotted line), 0.126 (black dotted line). The inset shows that black
holes in Einstein–dilaton–Gauss–Bonnet gravity can have a spin parameter exceeding the Kerr
bound |a∗| ≤ 1. From [22]

12.1.3 Manko–Novikov Metric

TheManko–Novikov solution is something between a theoretically-motivatedmetric
and a phenomenological parametrization. This metric is a stationary, axisymmetric,
and asymptotically flat exact solution of the vacuum Einstein equations with an
infinite number of free parameters [25]. The no-hair theorem does not apply because
these spacetimes have naked singularities and/or closed time-like curves exterior
to their horizon. If we employ the Manko–Novikov metric to test the nature of
astrophysical black holes, we are considering the possibility that the latter may not
be black holes but compact bodiesmade of some kind of exoticmatter. In otherwords,
general relativity would hold, and the Manko–Novikov metric would describe the
vacuum solution of the exterior gravitational field. The surface of the object must be
at some radial coordinate larger than the null surface in the Manko–Novikov metric
in order to cover the pathological region of the solution. The interior spacetime is
supposed to be described by some interior solution, which is not necessary to know
if we want to study the expected electromagnetic spectrum of an accretion disk in
the exterior background.

The line element of the Manko–Novikov solution in quasi-cylindrical and prolate
spheroidal coordinates is, respectively,
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ds2 = − f (dt − ωdφ)2 + e2γ

f

(
dρ2 + dz2

)+ ρ2

f
dφ2 =

= − f (dt − ωdφ)2 + k2e2γ

f

(
x2 − y2

) ( dx2

x2 − 1
+ dy2

1 − y2

)

+k2

f

(
x2 − 1

) (
1 − y2

)
dφ2 , (12.13)

where

f = e2ψ A/B ,

ω = 2ke−2ψCA−1 − 4kα
(
1 − α2

)−1
,

e2γ = e2γ
′
A
(
x2 − 1

)−1 (
1 − α2

)−2
, (12.14)

and

ψ =
+∞∑
n=1

αn Pn
Rn+1 , (12.15)

γ ′ = 1

2
ln

x2 − 1

x2 − y2
+

+∞∑
m,n=1

(m + 1)(n + 1)αmαn

(m + n + 2)Rm+n+2 (Pm+1Pn+1 − Pm Pn)

+
[+∞∑
n=1

αn

(
(−1)n+1 − 1 +

n∑
k=0

x − y + (−1)n−k(x + y)

Rk+1 Pk

)]
, (12.16)

A = (x2 − 1)(1 + ab)2 − (1 − y2)(b − a)2 , (12.17)
B = [x + 1 + (x − 1)ab]2 + [(1 + y)a + (1 − y)b]2 , (12.18)
C = (x2 − 1)(1 + ab)[b − a − y(a + b)]

+(1 − y2)(b − a)[1 + ab + x(1 − ab)] , (12.19)

a = −α exp

[+∞∑
n=1

2αn

(
1 −

n∑
k=0

(x − y)

Rk+1 Pk

)]
, (12.20)

b = α exp

[+∞∑
n=1

2αn

(
(−1)n +

n∑
k=0

(−1)n−k+1(x + y)

Rk+1 Pk

)]
. (12.21)

Here R = √
x2 + y2 − 1 and Pn are the Legendre polynomials with argument xy/R

Pn = Pn
( xy
R

)
, Pn(x) = 1

2nn!
dn

dxn
(
x2 − 1

)n
. (12.22)

It is worth noting that Eqs. (12.16), (12.20) and (12.21) correct a few typos in the
original Manko–Novikov metric written in [25]: see [6, 11].
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The solution has an infinite number of free parameters: k, α, and αn (n =
1, . . . ,∞). For α �= 0 and αn = 0, it reduces to the Kerr metric. For α = αn = 0, we
find the Schwarzschild solution. For α = 0 and αn �= 0, we obtain the static Weyl
metric. Without loss of generality, we can put α1 = 0 to bring the massive object
to the origin of the coordinate system. The simplest non-Kerr metric has three free
parameters (k, α, α2, and αn = 0 for n �= 2), which are related to the mass, M , the
spin parameter, a∗ = J/M2, and the dimensionless anomalous quadrupole moment,
q = −(Q − QKerr)/M3, of the object by the relations

α =
√
1 − a2∗ − 1

a∗
, k = M

1 − α2

1 + α2
, α2 = q

M3

k3
. (12.23)

q measures the deviation from the quadrupole moment of a Kerr black hole. In
particular, since QKerr = −a2∗M3, the solution is oblate for q > −a2∗ and prolate for
q < −a2∗ . However, when q �= 0, even all the higher order multipole moments of the
spacetime have a different value from the Kerr ones.

It is often useful to change coordinate system. The relation between the prolate
spheroidal coordinates and the quasi-cylindrical coordinates is given by

ρ = k
√(

x2 − 1
) (
1 − y2

)
, z = kxy , (12.24)

with inverse

x = 1

2k

(√
ρ2 + (z + k)2 +

√
ρ2 + (z − k)2

)
,

y = 1

2k

(√
ρ2 + (z + k)2 −

√
ρ2 + (z − k)2

)
. (12.25)

The relation between the Schwarzschild coordinates and the quasi-cylindrical coor-
dinates is given by

ρ =
√
r2 − 2Mr + a2∗M2 sin θ , z = (r − M) cos θ . (12.26)

The Manko–Novikov solution is written in prolate spheroidal coordinates and
requires that the spin parameter does not exceed 1; that is, |a∗| ≤ 1. There is currently
no extension to describe objects with |a∗| > 1 available in the literature. The metrics
discovered in [26, 27] are similar to the Manko–Novikov solution, but they have
a small number of extra parameters. They are also written in prolate spheroidal
coordinates. Such a family of solutions can be easily extended to describe objects
with |a∗| > 1 after introducing oblate spheroidal coordinates [2].

Figure12.3 shows the impact of the anomalous quadrupolemoment q on the value
of the ISCO radius rISCO for different values of the spin parameter a∗. The location
of the ISCO radius is important in techniques like the continuum-fitting and the iron
line methods. Every curve for a given a∗ has a discontinuity at a particular value of
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Fig. 12.3 ISCO radius rISCO
as a function of the
anomalous quadrupole
moment q for different
values of the spin parameter
a∗. rISCO in
Schwarzschild-like
coordinates. Units in which
M = 1 are used
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the anomalous quadrupole moment, say qc, because the ISCO is determined by the
orbital stability along the radial direction (as in the Kerr metric) for q > qc and by
the orbital stability along the vertical direction for q < qc.

12.2 Phenomenological Parametrizations

With the top-bottom approach discussed in the previous section,we can only compare
the predictions of the standard theory with a specific alternative model. However,
there are a large number of potential alternative scenarios and no one seems to be
more motivated than the others. Moreover, even speculating that the metric around
astrophysical black holes is not described by the Kerr solution, it is unlikely that we
already have the right model. From these arguments, we may thus prefer a bottom-up
approach and try to see whether it is possible to constrain possible deviations from
the Kerr solution in a model-independent way.

It is remarkable that the same model-independent spirit has been successfully
employed to test the Schwarzschild solution in the weak field limit with Solar Sys-
tem experiments. The approach is called the Parametrized Post-Newtonian (PPN)
formalism [29] and can be summarized as follows. The starting point is to write the
most general static, spherically symmetric, and asymptotically flat metric in terms
of the expansion parameter M/r , where M is the mass of the central object and r
is some radial coordinate. The PPN approach is traditionally formulated in isotropic
coordinates and the line element reads

ds2 = −
(
1 − 2M

r
+ β

2M2

r2
+ ...

)
dt2

+
(
1 + γ

2M

r
+ ...

) (
dx2 + dy2 + dz2

)
. (12.27)
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When arranged in the more familiar Schwarzschild coordinates, the line element
becomes

ds2 = −
(
1 − 2M

r
+ (β − γ )

2M2

r2
+ ...

)
dt2

+
(
1 + γ

2M

r
+ ...

)
dr2 + r2dθ2 + r2 sin2 θdφ2 . (12.28)

The second term in gtt , i.e. 2M/r , is required to recover the Newtonian limit. β and
γ are free parameters to be measured by experiments.

The only spherically symmetric vacuum solution of Einstein’s equations is the
Schwarzschild metric and it requires β = γ = 1. Other theories of gravity may have
a different spherically symmetric vacuum solution, and in this case β and γ may not
be exactly 1. Current observational data in the Solar System provide the following
constraints on β and γ [5, 35]

|β − 1| < 2.3 · 10−4 , |γ − 1| < 2.3 · 10−5 , (12.29)

confirming the validity of the Schwarzschild solution in the weak field limit within
the precision of current observations.

In order to test the Kerr metric around astrophysical black holes, we would like to
employ a similar approach. We would like to consider the most general stationary,
axisymmetric, and asymptotically flat metric capable of describing the spacetime
around a compact object. Such ametric should have a number of free parameters to be
determined by observations and a posteriori we should check whether astrophysical
data require that the values of these free parameters is consistent with the Kerr
solution.

However, this is not so easy, and indeed there is currently no satisfactory formalism
to test the Kerr metric. The crucial point is that nowwe want to test the strong gravity
region and we cannot use an expansion in M/r . There is an infinite number of way
to deform the Kerr metric and no natural way to distinguish leading order and higher
order corrections. Moreover, since we are in the strong gravity regime, deformations
of the Kerr metric naturally produce pathological features like naked singularities or
regions with closed time-like curves. The result is that there are several proposals in
the literature [7, 12, 14, 19, 20, 23, 24, 33], each of these with its advantages and
disadvantages. In the next subsections, we will briefly review a few examples.

12.2.1 Johannsen–Psaltis Metric

The Johannsen–Psaltis metric [20] has been extensively employed in the literature to
test the Kerr metric around astrophysical black holes. The procedure to obtain such
a metric is quite ad hoc and can be summarized as follows. First, we consider the
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Schwarzschild metric and we add the function h(r) of the radial coordinate r only
to take into account possible deviations from the Schwarzschild solution. The new
line element reads

ds2 = −
(
1 − 2M

r

)
(1 + h) dt2 + (1 + h)

(1 − 2M/r)
dr2 + r2dθ2 + r2 sin2 θdφ2 . (12.30)

h(r) is chosen to have the form

h =
+∞∑
k=0

ε2k

(
M

r

)k

. (12.31)

At this point, we apply the Newman–Janis algorithm, which is essentially a trick
to obtain a rotating black hole solution from the non-rotating one. After a (wrong)
coordinate transformation, the line element in Boyer–Lindquist coordinates reads

ds2 = −
(
1 − 2Mr

Σ

)
(1 + h) dt2 + Σ (1 + h)

Δ + ha2 sin2 θ
dr2 + Σdθ2

+
[
r2 + a2 + 2a2Mr sin2 θ

Σ
+ a2 (Σ + 2Mr) sin2 θ

Σ
h

]
sin2 θdφ2

−4Mar sin2 θ

Σ
(1 + h) dtdφ , (12.32)

where h is

h =
+∞∑
k=0

(
ε2k + ε2k+1

Mr

Σ

)(
M2

Σ

)k

. (12.33)

The metric has an infinite number of deformation parameters {εk} and it reduces
to the Kerr solution when all the deformation parameters vanish. However, ε0 must
vanish in order to recover the correct Newtonian limit, while ε1 and ε2 are already
strongly constrained by experiments in the Solar System through Eq. (12.29) [7]. The
simplest non-trivial metric is thus that with ε3 free and with all the other deformation
parameters set to zero. The transformation to eliminate some off-diagonal terms
and arrive at the expression in Eq. (12.32) is not correct, see the discussion in [1].
However, since the original non-rotating metric was not a solution of any equation
and eventually we only want a parametrization to test the Kerr metric, this does not
introduce any real mistake.

Figure12.4 shows the contour levels of the ISCO radius rISCO (top panel) and
of the Novikov–Thorne radiative efficiency ηNT = 1 − EISCO (bottom panel) in the
Johannsen–Psaltis metric with non-vanishing deformation parameter ε3. The con-
straints that we can obtain from several measurements of the spectrum of astrophys-
ical black holes approximately follow the contour levels of the Novikov–Thorne
radiative efficiency (see next chapter).
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Fig. 12.4 Contour levels of
the ISCO radius rISCO (top
panel) and of the
Novikov–Thorne radiative
efficiency ηNT = 1 − EISCO
(bottom panel) in the
Johannsen–Psaltis metric
with the non-vanishing
deformation parameter ε3.
The black dotted line
separates spacetimes with a
regular event horizon (on the
left of the line) from those
with naked singularities (on
the right). rISCO in
Boyer–Lindquist coordinates
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An extension of the Johannsen–Psaltis metric is the Cardoso–Pani–Rico parame-
terization [7]. Here the deformed Schwarzschild line element replacing Eq. (12.30)
is

ds2 = −
(
1 − 2M

r

) (
1 + ht

)
dt2 +

(
1 + hr

)
(1 − 2M/r)

dr2 + r2dθ2 + r2 sin2 θdφ2 , (12.34)

and we have two independent functions, ht (r) and hr (r). Then one can proceed as
in the case of the Johannsen–Psaltis metric. The new line element is

ds2 = −
(
1 − 2Mr

Σ

) (
1 + ht

)
dt2 + Σ (1 + hr )

Δ + hra2 sin2 θ
dr2 + Σdθ2

+ sin2 θ

{
Σ + a2 sin2 θ

[
2
√

(1 + ht ) (1 + hr ) −
(
1 − 2Mr

Σ

) (
1 + ht

)]}
dφ2 ,

−2a sin2 θ

[√
(1 + ht ) (1 + hr ) −

(
1 − 2Mr

Σ

) (
1 + ht

)]
dtdφ , (12.35)
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where

ht =
+∞∑
k=0

(
εt2k + εt2k+1

Mr

Σ

)(
M2

Σ

)k

, (12.36)

hr =
+∞∑
k=0

(
εr2k + εr2k+1

Mr

Σ

)(
M2

Σ

)k

. (12.37)

Now there are two infinite sets of deformation parameters, {εtk} and {εrk}. The
Johannsen–Psaltis metric is recovered when εtk = εrk for all k, and the Kerr met-
ric when εtk = εrk = 0 for all k.

12.2.2 Johannsen Metric

The Johannsen metric [19] is another phenomenological parametrization to test the
Kerr metric. It is obtained by imposing that the corresponding Hamilton–Jacobi
equations remain separable. While there is no theoretical reason to impose such a
condition, and actually we know non-Kerr black hole solutions in alternative theories
of gravity inwhich such a condition is not realized, itmay facilitate some calculations.
Themost important properties of this parametrization are that: (i) themetric is regular
everywhere on and outside of the event horizon, and (i i) it was explicitly shown that
it is able to recover some black hole solutions in alternative theories of gravity for
suitable choices of the deformation parameters.

InBoyer–Lindquist coordinates, the line element of the Johannsenparametrization
reads [19]

ds2 = −
Σ̃
(
Δ − a2A22 sin

2 θ
)

B2 dt2 −
2a
[(
r2 + a2

)
A1A2 − Δ

]
Σ̃ sin2 θ

B2 dtdφ

+ Σ̃

ΔA5
dr2 + Σ̃dθ2 +

[(
r2 + a2

)2
A21 − a2Δ sin2 θ

]
Σ̃ sin2 θ

B2 dφ2 (12.38)

where

B = (
r2 + a2

)
A1 − a2A2 sin

2 θ , Σ̃ = Σ + f ,

Σ = r2 + a2 cos2 θ , Δ = r2 − 2Mr + a2 , (12.39)

and
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A1 = 1 +
∞∑
n=3

α1n

(
M

r

)n

,

A2 = 1 +
∞∑
n=2

α2n

(
M

r

)n

,

A5 = 1 +
∞∑
n=2

α5n

(
M

r

)n

,

f =
∞∑
n=3

εn
Mn

rn−2
. (12.40)

In the expressions of A1, A2, A5, and f in (12.40), the summation starts, respec-
tively, from n = 3, 2, 2, and 3 after imposing that the spacetime is asymptotically
flat, has the correct Newtonian limit, and the metric is consistent with Solar System
experiments without constraints on its parameters; see [19] for the details. If we only
consider the leading order in the expressions of A1, A2, A5, and f , we have a metric
with four deformation parameters, α13, α22, α52, and ε3. Regularity of the exterior
region imposes the following constraints [19]

α13, ε3 > −
(
M + √

M2 − a2
)3

M3
, (12.41)

α22, α52 > −
(
M + √

M2 − a2
)2

M2
. (12.42)

12.2.3 Konoplya–Rezzolla–Zhidenko Metric

The Konoplya–Rezzolla–Zhidenko metric [23] was proposed to try to address the
following issues:

1. Many parametrizations are based on an expansion in M/r . If we want to test
the strong gravity region near the black hole horizon, where M/r is not a small
quantity, we have an infinite number of roughly equally important parameters,
which makes it impossible to isolate the dominant terms and focus the efforts on
the measurement of a small number of parameters.

2. One would like to have a so general parametrization that it is possible to recover
anyblack hole solution in any (knownandunknown) alternative theories of gravity
for specific values of its free parameters. While it is difficult to assert how general
a parametrization can be, several proposals in the literature fail to recover the
known black hole solutions in alternative theories of gravity.

3. Astrophysical black holes may have a non-negligible spin angular momentum,
which plays an important rule in the features of the electromagnetic spectrum
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associated to the strong gravity region, and therefore the spin cannot be ignored
in any test of the Kerr metric. The Newman–Janis algorithm is a simple trick
to obtain a rotating black hole solution from the non-rotating one. However, it
is not guaranteed that such an algorithm works beyond general relativity. In the
literature there are some examples in which the algorithm works [8, 21, 36], as
well as examples in which it fails [15]. It is thus unclear whether a parametrization
based on theNewman–Janis algorithmcan be employed to test astrophysical black
holes.

The Konoplya–Rezzolla–Zhidenko metric addresses the three issues above in the
following way. First, it is not based on an expansion in M/r . There is a hierarchical
structure in the deviations from the Kerr spacetime, so that higher order terms neces-
sarily provide smaller and smaller corrections. Second,Konoplya et al. [23] explicitly
show that their proposal can well approximate with a few parameters the metrics of
rotating dilaton black holes and of rotating black holes in Einstein–dilaton–Gauss–
Bonner gravity. For example, this is not possible with the Johannsen–Psaltis and
the Cardoso–Pani–Rico metrics. Third, the Konoplya–Rezzolla–Zhidenko metric is
not obtained from the Newman–Janis algorithm, because the initial ansatz is already
suitable to describe rotating black holes.

Assuming reflection symmetry across the equatorial plane and neglecting coeffi-
cients of higher orders, the line element of the Konoplya–Rezzolla–Zhidenko metric
reads [23]

ds2 = − N2 − W 2 sin2 θ

K 2 dt2 − 2Wr sin2 θ dt dφ + K 2r2 sin2 θ dφ2

+Σ B2

N2 dr2 + Σ r2 dθ2 , (12.43)

where
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Following [28], we can introduce six deformation parameters {δ j } ( j = 1, 2, . . . , 6),
which are related to the coefficient r0, a20, a21, ε0, k00, k21, and w00 appearing in the
Konoplya–Rezzolla–Zhidenko metric by the following relations

r0 = 1 +
√
1 − a2∗ , a20 = 2a2∗

r30
, a21 = −a4∗

r40
+ δ6 , ε0 = 2 − r0

r0
,

k00 = a2∗
r20

, k21 = a4∗
r40

− 2a2∗
r30

− δ6 , w00 = 2a∗
r20

. (12.45)

Here the mass is M = 1 and a∗ is the spin parameter. r0 is the radial coordinate in the
equatorial plane of the event horizon. The physical interpretation of the deformation
parameters can be summarized as follows [23]:

δ1 → related to deformations of gtt ,
δ2, δ3 → related to rotational deformations of the metric,
δ4, δ5 → related to deformations of grr ,

δ6 → related to deformations of the event horizon.

The mass-quadrupole moment is the same as in the Kerr metric, and deviations
from the Kerr solution are only possible in the strong gravity region.

12.2.4 Ghasemi–Nodehi–Bambi Metric

The proposal in [12] is somewhat different from the other parametrized metrics. It
can be used to see which parts of the Kerr solution can be tested by observations and
which parts are more elusive and they have a small impact on observable quantities.
The ansatz for the line element is

ds2 = −
(
1 − 2b1Mr

r2 + b2a2 cos2 θ

)
dt2 − 4b3Mar sin2 θ

r2 + b4a2 cos2 θ
dtdφ

+ r2 + b5a2 cos2 θ

r2 − 2b6Mr + b7a2
dr2 + (

r2 + b8a
2 cos2 θ

)
dθ2

+
(
r2 + b9a

2 + 2b10Ma2r sin2 θ

r2 + b11a2 cos2 θ

)
sin2 θdφ2 . (12.46)

The line element of theKerrmetric is recoveredwhen bi = 1 for all i . The asymptotic
mass is b1M and the asymptotic specific angular momentum is b3a (if b1 = 1). Solar
System experiments already constrain b6 to be very close to 1. We can thus set b1,
b3, and b6 equal to 1 and consider as free parameters the remaining eight: b2, b4, b5,
b7, b8, b9, b10, and b11.
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The line element in (12.46) is surely not a very general line element to describe
black holes in alternative theories of gravity. Basically we already assume that the
metric around a black hole is at least close to the Kerr solution, and we want to check
whether we can constrain small deviations from it.

12.3 Important Remarks

The parametrizations discussed in the previous section can be employed to test the
Kerr metric with observations of the electromagnetic spectrum of astrophysical black
holes. The properties of the electromagnetic radiation are determined by the motion
of the gas in the accretion disk and by the propagations of the photons from the point
of emission in the disk to the point of detection in the flat faraway region. In ametric
theory of gravity [34], test-particles follow the geodesics of the spacetime, and all
the relativistic effects in the electromagnetic spectrum are determined by the metric
of the spacetime.

In this context, these parametrizations can be used to test the Kerr metric as the
PPN formalism can be used to test the Schwarzschild solution in the weak field
limit. It is not possible to directly test the Einstein equations. For instance, we cannot
distinguish a Kerr black hole of general relativity from a Kerr black hole in an
alternative metric theory of gravity, because the motion of particles and photons is
the same. It is indeed important to bear in mind that the Kerr metric is a black hole
solution even in some alternative theories of gravity [30]. If we want to directly
test the Einstein equations, we should use gravitational (rather than electromagnetic)
waves, because their emission is governed by the Einstein equations [3].

The possible detection of deviations from theKerrmetric does not directly implies
that general relativity is not the correct theory of gravity. As discussed in Sect. 12.1,
deviations from the Kerr solution can be possible with new physics either in the grav-
ity or in the matter sectors. In the framework of conventional physics, astrophysical
black holes can only be explained as black holes and deviations from the Kerr metric
should be extremely small (see Sect. 6.5). In the presence of new physics, such a
conclusion does not hold. It may also happen that the metric around an astrophysical
black hole is not well described by the stationary black hole solution of its gravity
theory: black holes rapidly go bald in general relativity, but not necessarily in other
theories of gravity.

In the case of a non-metric theory of gravity, test-particles may not follow the
geodesics of the spacetime. For instance, the photon trajectory may depend on the
photon energy or on the photon polarization. Photons may follow the geodesics of
a certain metric, while the particle in the disk may follow the geodesics of another
metric. In this context, it may still be possible to employ the phenomenological para-
metrizations discussed above in order to test the particle motion in the strong gravity
region around a black hole. For instance, we may consider different parameterized
metrics for different particle species.

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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Chapter 13
Testing the Kerr Paradigm with X-Ray
Observations

The electromagnetic radiation emitted from the inner part of the accretion disk of a
black hole is significantly affected by relativistic effects (Doppler boosting, gravita-
tional redshift, light bending) occurring in the strong gravity region and determined
by the metric of the spacetime around the compact object. If we have the correct
astrophysical model, the study of the properties of the electromagnetic radiation
can be a tool to test the Kerr paradigm. In the previous chapters, we have already
discussed the calculations of the structure of Novikov–Thorne accretion disks, of
the thermal and reflection spectra of Novikov–Thorne accretion disks, and of the
fundamental frequencies of a test-particle in a generic stationary, axisymmetric, and
asymptotically flat spacetime. It is straightforward to consider a specific non-Kerr
metric and obtain the expected properties of the electromagnetic radiation in this
spacetime. We can then compare our theoretical predictions with the available data
and constrain the value of some deformation parameter or check whether the data
prefer the Kerr solution or the non-Kerr metric.

In this chapter, we will discuss how to test the Kerr black hole hypothesis with
X-ray observations. Since this is quite a new research field and still under develop-
ment, the observational constraints that can be found now in the literature will be
presumably replaced by new and more accurate constraints in the near future. For
this reason, here we will focus the attention on the method – what we can do with
this approach – and the problems to face, rather than listing current observational
constraints on certain deformation parameters.

13.1 Continuum-Fitting Method

Figure7.3 in Chap.7 shows the impact of the model parameters on the thermal spec-
trum of a thin disk around a Kerr black hole. If we compute the thermal spectrum of a
thin disk in one of the phenomenological parametrizations discussed in Sect. 12.2, the
spectrumwill also depend on the deformation parameters of the metric. For instance,

© Springer Nature Singapore Pte Ltd. 2017
C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity,
DOI 10.1007/978-981-10-4524-0_13

261

http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_12


262 13 Testing the Kerr Paradigm with X-Ray Observations

Fig. 13.1 As in Fig. 7.3 for
the Johannsen–Psaltis
deformation parameter ε3.
The values of the other
parameters are: M = 10 M�,
Ṁ = 2 · 1018 g s−1,
D = 10 kpc, i = 45◦, and
a∗ = 0.7. Flux density NEobs

in photons keV−1 cm−2 s−1.
From [7], reproduced by
permission of IOP
Publishing. All rights
reserved
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if we consider the Johannsen–Psaltis metric with the deformation parameter ε3 (all
the other deformation parameters vanish), we find the spectra shown in Fig. 13.1.

Let us now compare the panels in Figs. 7.3 and 13.1. It is not necessary a quan-
titative analysis to understand that the impact of the spin parameter a∗ and of the
deformation parameter ε3 is very similar if all the other parameters are fixed, while
the impact of the other parameters (M , Ṁ , i , D) seems to be quite different.

First, the thermal spectrum of a thin disk has a very simple shape: it is just a
multi-color blackbody spectrum. It is not really necessary to have a sophisticated
theoretical model to fit the data. If we have a theoretical model and we change its
parameters, it is not difficult to find a good fit. Of course, a wrong theoretical model
would lead to wrong measurements, but this is a different issue.

Second, the spacetime metric mainly affects the thermal spectrum of a thin disk
because it determines the location of the inner edge of the disk (in the Novikov–
Thorne model, the inner edge of the disk is at the ISCO radius, which depends on the
metric). In this way, a variation of the metric can move the high energy cut-off of the
spectrum to lower or higher energies. If we are not considering metrics substantially
different from the Kerr one, the variation of the other relativistic effects determined
by changing the metric are too weak to produce a characteristic feature in the disk’s
thermal spectrum.

From the above considerations, it is easy to guess that, in general, the continuum-
fitting method cannot simultaneously measure both the spin and the deformation
parameters. Even in the Kerr metric, the spectrum depends on five parameters (M ,
Ṁ , i , D, and a∗). If we have independent estimates of M , i , and D, for instance from
optical observations,we canfit the softX-ray component and infer the values ofa∗ and
Ṁ .Without independent estimates ofM , i , and D, it is impossible tomeasure the spin
of the black hole because the spectrum is degenerate, namely different combinations
of the values of the parameters of the model may provide good fits and it is not
possible to establish a measurement. In the case of a parametrized metric with only
one deformation parameter, it may not be sufficient to have independent estimates
of M , i , and D to constrain a∗, Ṁ , and the deformation parameter. Of course, this
depends on the specific choice of the deformation parameter. Some deformation
parameters may be degenerate with the spin, some deformation parameters may have

http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_7
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no effect at all on the thermal spectrum of the disk, and some deformation parameters
may produce so dramatic effects on the spectrum that they could be easily ruled out
or strongly constrained.

Kong et al. [20] have studied the constraints on the Johannsen–Psaltis deformation
parameter ε3 from the available spin measurements of the continuum-fitting method.
The same analysis could be repeated for the deformation parameter of another para-
metrized metric, as well as for a non-Kerr metric motivated by some theoretical
model. In principle, we should calculate the thermal spectrum in our model, fit the
data, and find the best fit and the allowed region at the confidence level of interest.
However, it is often possible to proceed in a different way to get a simple estimate of
the constraints on a deformation parameter from an already existing spin measure-
ment with the continuum-fitting method of a certain black hole. The approach can
be motivated a posteriori.

As an example, we can consider the Johannsen–Psaltis metric with the only possi-
ble non-vanishing deformation parameter ε3, which is the case discussed in [20]. We
choose a black hole whose spin has been already determined with the continuum-
fitting method (see Table7.1). The thermal spectrum of the disk of such a black hole
depends now on six parameters, three of them are known from independent obser-
vations (M , i , D) and the other three should be measured with the analysis of the
thermal spectrum of the disk (a∗, Ṁ , ε3). Instead of working on some observational
data, we adopt the theoretical spectrum of the disk around a Kerr black hole, whose
spin parameter a∗ and mass accretion rate Ṁ have the values of the measurement
reported in the literature. Such a spectrum is then compared (for instance, by calcu-
lating the χ2) with the theoretical spectra computed in spacetimes in which a∗, Ṁ ,
and ε3 vary.1 The values of M , i , and D are always fixed to their measurements. In
the end, we get the function

χ2 = χ2(a∗, Ṁ, ε3) (13.1)

in a three-dimensional grid. After marginalizing over Ṁ , we get χ2(a∗, ε3). The
values of a∗ and ε3 that minimize χ2(a∗, ε3) are the measurements of the spin and
the deformation parameters – by construction, the value of a∗ is that of the measure-
ment reported in the literature and ε3 = 0, modulo other pairs of (a∗, ε3) for which
χ2(a∗, ε3) = 0. If the Kerr measurement in the literature is ã∗ ± Δ, we compute
χ2(ã∗ ± Δ, 0), and the allowed region is now defined as the values of a∗ and ε3 for
which

χ2(a∗, ε3) ≤ χ2(ã∗ ± Δ, 0) . (13.2)

A priory, this approach is not completely justified, because we are assuming that
the object is a Kerr black hole and that the best fit is for the Kerr metric. However,

1The analysis reported in [20] is slightly different, because Ṁ is inferred from the measurement of
the radiative efficiency. See [20] for more details.

http://dx.doi.org/10.1007/978-981-10-4524-0_7
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Fig. 13.2 Constraints on the spin a∗ and the Johannsen–Psaltis deformation parameter ε3 from the
study of the disk thermal spectrum of the black hole in LMC X-3. The red solid line tracks the
minimum of χ2 for a fixed ε3. The dashed-dotted green lines are the boundaries of the allowed
region (1-σ error) along the red line. The blue dashed lines are the boundaries that one could infer
if the best fit were exactly for ε3 = 0. The black dotted line separates spacetimes with a regular
event horizon (on the left of the line) from those with naked singularities (on the right). See the text
for more details. From [20]

depending on the test-metric, it is possible to justify the method a posteriori, as
explained below.

Figure13.2 shows the constraints on the spin a∗ and the Johannsen–Psaltis defor-
mation parameter ε3 for the black hole inLMCX-3obtainedwith the above procedure
in [20]. The red solid line tracks the minimum of χ2(a∗, ε3) for a fixed ε3. Let us
denote this quantity χ2

min(ε3), and amin∗ (ε3) the value of its spin parameter. The two
blue dashed lines are the boundaries of the allowed region defined in Eq. (13.2). We
remind that χ2(ã∗, 0) = 0 by definition, as we are not introducing any kind of noise
but just comparing theoretical spectra. The two green dashed-dotted curves are the
boundaries of the allowed region defined as

χ2(a∗, ε3) ≤ χ2(ã∗ ± Δ, 0) + χ2
min(ε3) . (13.3)

The idea behind is the following. If the spacetime of the black holewere characterized
by a certain non-vanishing ε3, assuming the correct metric the continuum-fitting
method should provide the spin parameter amin∗ (ε3). However, if we assume the Kerr
metric, the spin measurement would be ã∗. The spin uncertainty would be roughly
given by Eq. (13.3).

The justification of this approach can be understood from the boundaries of the
allowed regions given by Eqs. (13.2) and (13.3) in Fig. 13.2, respectively the blue
dashed and the green dashed-dotted curves. The difference is negligible considering
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Fig. 13.3 As in Fig. 13.2 for
the black hole in A0620-00.
From [20]

the spin uncertainty for a fixed ε3. In other words, the spacetimes along the red
solid lines have a very similar disk’s thermal spectrum and χ2

min(ε3) ≈ 0. It is not
important where the absolute minimum of χ2 exactly is: the spacetimes along the red
solid line cannot be distinguishedwith the continuum-fittingmethod. Ifwe proceeded
to constrain a∗ and ε3 from the analysis of real data, we would get constraints very
similar to those shown in Fig. 13.2, which have been instead obtained very quickly
and without much effort.

Such a simplified analysis can be repeated for other black holes with a spin mea-
surement from the continuum-fitting method [20]. Figure13.3 shows the constraints
on the spin a∗ and the Johannsen–Psaltis deformation parameter ε3 from the disk’s
thermal spectrum of the black hole in A0620-00. There are no qualitative differences
with respect to the case of LMC X-3.

As the spin parameter of the measurement assuming the Kerr metric increases, we
find some differences. Figure13.4 shows the constraints for the black hole inM33X-
7.Assuming theKerrmetric, the spin isa∗ = 0.84 ± 0.05 [24]. The continuum-fitting
method roughlymeasures the radiative efficiency ofNovikov–Thorne accretion disks
ηNT, whose contour levels were shown in Fig. 12.4 for the Johannsen–Psaltis metric
with non-vanishing ε3. From that figure, it is clear that high values of ηNT cannot
be reached for large values of ε3. As a consequence, the solid red line, the dashed
blue lines, and the dashed-dotted green lines are as in Fig. 13.4 for M33 X-7. The
allowed regions from Eqs. (13.2) and (13.3) do not coincide for large values of ε3.
The constraint provided by the dashed blue lines should approximate the constrain
that one could obtain by reanalyzing the data. Indeed, the spacetimes along the two
red solid lines at ε3 � 13 have similar disk’s thermal spectra and χ2

min(ε3) ≈ 0, while
those along the red solid line extending from the connection point to larger ε3 have
a higher χ2. If the metric around the black hole in M33 X-7 were described by the
Johannsen–Psaltis metric with a larger value of the deformation parameter ε3, the
spin measurement assuming the Kerr metric should have provided a lower value of

http://dx.doi.org/10.1007/978-981-10-4524-0_12
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Fig. 13.4 As in Fig. 13.2 for
the black hole in M33 X-7.
From [20]

Fig. 13.5 Constraints on the
spin a∗ and the
Johannsen–Psaltis
deformation parameter ε3
from the study of the disk
thermal spectrum of the
black hole in
GRS 1915+105. The black
dotted line separates
spacetimes with a regular
event horizon (on the left of
the line) from those with
naked singularities (on the
right). See the text for more
details. From [20]

a∗, consistently with that we would have expected from the contour levels of ηNT in
Fig. 12.4.

Figures13.5 and 13.6 show the constraints for GRS 1915+105 and Cygnus
X-1, respectively. In these two cases, the Kerr spin measurement is a∗ > 0.98 (see
Table7.1). In Figs. 13.5 and 13.6, the spacetimes inside the region delimited by the
blue dashed curve have a disk’s thermal spectrum similar to those in Kerr spacetimes
with a∗ > 0.98, while the spacetimes outside such a region have a disk’s thermal
spectrum similar to those in Kerr spacetimes with a∗ < 0.98. Once again, this is
consistent with the contour levels of ηNT in Fig. 12.4. It is worth noting that the
observation of a black hole that looks like a very fast-rotating Kerr black hole can
put a bound on ε3 independently of its spin. In the case of GRS 1915+105 and

http://dx.doi.org/10.1007/978-981-10-4524-0_12
http://dx.doi.org/10.1007/978-981-10-4524-0_7
http://dx.doi.org/10.1007/978-981-10-4524-0_12
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Fig. 13.6 As in Fig. 13.5 for
the black hole in
Cygnus X-1. From [20]

Cygnus X-1 in which the Kerr spin measurement is a∗ > 0.98, we have 0 � ε3 � 5.
The difference in the allowed region between GRS 1915+105 and Cygnus X-1 is
mainly due to the different viewing angle, which is i = 66◦ for GRS 1915+105 and
i = 27◦ for Cygnus X-1.

In principle, one couldfind a sourcewith a thermal spectrumharder than thatwhich
is expected for a Kerr black hole with a∗ = 1. This would essentially correspond to
a spacetime in which the Novikov–Thorne radiative efficiency exceeds the Kerr
black hole bound ηNT = 0.42 and could be an indication of deviations from the Kerr
geometry. For instance, such a scenario is possible for thin disks in the spacetimes
discussed in [19]. For the time being, there are no observations of this kind and
therefore all the data are consistent with the Kerr metric.

The possibility of testing the Kerr black hole hypothesis from the study of the
polarization of the thermal spectrum of the disk has been investigated in [22, 23].
At the moment, considering the expected sensitivity of the first generation of X-ray
polarimetric detectors, this approach does not seem to be able to provide competitive
constraints with respect to the other techniques.

13.2 X-Ray Reflection Spectroscopy

The reflection spectrum of a thin accretion disk has a more complicated shape than
the thermal spectrum. We can thus guess that the technique is potentially more pow-
erful to test the metric around a black hole. This is indeed what one can find with
a simple quantitative analysis [15]. However, this can be achieved under two condi-
tions: (i)we have the correct astrophysical model, and (ii)we need high quality data.
The astrophysical model is more complicated than the one for the continuum-fitting
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Fig. 13.7 Impact of the deformation parameters ε3, α13, α22, and α52 on the transfer function f .
The spacetime is described by the Johannsenmetric with the spin parameter a∗ = 0.8. The emission
radius is re = 6.855 M and the viewing angle is i = 30◦. In every plot, one of the deformation para-
meters assumes the values 0 (black solid line),±1, and±2, while the other deformation parameters
vanish. From [8]

method and not fully under control at the moment. For instance, the geometry of the
corona is currently unknown and therefore it is common to employ phenomenolog-
ical emissivity profiles that inevitably introduce systematic errors. The flux of the
disk’s reflection component is weak and the intrinsic Poisson noise of the source may
wash out small features determined by relativistic effects that are useful to probe the
spacetime metric.

One can construct a reflection model for a certain metric with the approach dis-
cussed in Sect. 6.2 and the difference between Kerr and non-Kerr model would only
be in the calculation of the transfer function. The local spectrum (with the possi-
ble exception of its emissivity profile) does not depend on the spacetime. A similar
model has been presented in [8] for the Johannsen metric, but it would be straightfor-
ward to consider a different background metric. Figure13.7 shows the impact of the
deformation parameters ε3, α13, α22, and α52 of the Johannsen metric on the transfer
function f . Integrating the transfer function over the emission radius and the relative
redshift factor for a single iron line, we obtain the profiles shown in Fig. 13.8.

The next subsections discuss some issues related to the use of this technique to test
the nature of astrophysical black holes. It is worth stressing – once again – that precise
tests of the Kerr metric with this technique will only be possible in the presence of the
correct astrophysical model. In this context, one of the most crucial ingredients is the
possibility of having the correct theoretical prediction of the emissivity profile. For
the time being, the iron line method seems to be the most promising techniques, or

http://dx.doi.org/10.1007/978-981-10-4524-0_6
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Fig. 13.8 Impact of the deformation parameters ε3, α13, α22, and α52 on the iron line shape. The
spacetime is described by the Johannsen metric with the spin parameter a∗ = 0.8. The viewing
angle is i = 30◦. The profile of the emissivity is modeled with a simple power law with emissivity
index q = 3, namely Ie ∝ 1/r3e . The inner edge of the disk is at the ISCO radius rin = rISCO, and
the outer edge is at rout = 400 M . From [8]

at least one of the most promising techniques, to test the Kerr black hole hypothesis
with electromagnetic radiation. However, we cannot yet assert that precise tests of
the Kerr metric, as shown by some simulations for the next generation of X-ray
missions (see e.g. Sect. 13.2.2), will be possible.

13.2.1 Fitting a Non-Kerr Model with Kerr Models

The shape of the iron Kα line determined by the relativistic effects occurring in the
strong gravity region around a black hole is discussed in Sect. 8.2 and, in particular,
illustrated in Fig. 8.7. While the iron line profiles in many non-Kerr spacetimes are
similar to the Kerr predictions and can be understood with Fig. 8.7, there are also
scenarios in which the expected profile is quite different. Considering that current
X-ray data are normally fitted with Kerr models and there is no tension between
observations and theoretical models, in the sense that the fits are acceptable, space-
times with very different predictions can be ruled out. Such a statement also depends
on the quality of the available data.

Let us now illustrate such a strategy to rule out scenarios with exotic iron lines
with an example. We consider the Kerr black holes with scalar hair discussed in

http://dx.doi.org/10.1007/978-981-10-4524-0_8
http://dx.doi.org/10.1007/978-981-10-4524-0_8
http://dx.doi.org/10.1007/978-981-10-4524-0_8
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Fig. 13.9 Iron line profiles of an extremal Kerr black hole (red solid curve) and of the three Kerr
black holeswith scalar hair named configurations III, IV, andV inFig. 12.1. The “wiggles” appearing
in the shape of these lines, in particular for the configurations III and IV, are due to resolution effects
of the numericalmetric. From [28], reproduced by permission of IOPPublishing. All rights reserved

Sect. 12.1.1 and, in particular, the three configurations called, respectively, III, IV,
and V. Here we follow the study presented in [28]. Assuming that the inclination
angle of the disk with respect to the line of sight of the observer is i = 45◦ and
employing the emissivity profile 1/r3, the iron Kα lines in the reflection spectrum
of the accretion disk in the spacetimes III, IV, and V are shown in Fig. 13.9. The
same figure also shows the iron line profile of an extremal Kerr black hole (red solid
curve).

The iron line shape ofConfiguration III is not too different from that expected from
a fast-rotating Kerr black hole. The dimensionless parameter q of Configuration III
is indeed much smaller than those of the other two configurations; that is, the scalar
field contribution is small and the spacetime is mainly determined by the central Kerr
black hole. On the contrary, the iron line of Configuration V is definitively different
from those studied so far and its shape seems also to be difficult to understand in terms
of the contributions from different annuli of Fig. 8.7. In the case of Configuration IV,
its iron line is surely different from that studied in the Kerr metric, but it is not as
weird as that of Configuration V.

As done in Sect. 8.2, the best way to understand the shape of the iron line is to
see the contributions from different annuli. This is shown in Figs. 13.10, 13.11, and
13.12, respectively for the spacetimes III, IV, and V. Figure13.10 is not qualitatively
different from Fig. 8.7 and therefore the interpretation is the same.2

Figure13.11 already presents some important differences. The contribution from
the inner annulus is very large and it is responsible for the “bump” in the total iron

2Since the metric of the spacetimes III, IV, and V is given numerically, the precision of the calcu-
lations is lower and a smaller accretion disk is employed. The “wiggles” in the shape of these lines
are due to resolution effects of the numerical metric.

http://dx.doi.org/10.1007/978-981-10-4524-0_12
http://dx.doi.org/10.1007/978-981-10-4524-0_12
http://dx.doi.org/10.1007/978-981-10-4524-0_8
http://dx.doi.org/10.1007/978-981-10-4524-0_8
http://dx.doi.org/10.1007/978-981-10-4524-0_8
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Fig. 13.10 Total iron Kα line (red solid line) and contributions to the total iron line from different
annuli (lines 1, 2, 3, 4, and 5) for Configuration III. The annulus 1 has the inner edge at the ISCO
radius and the outer edge at the radius r = rISCO + 1. The annulus 2 has the inner edge at the
same radius as the outer edge of the annulus 1 and the outer edge at the radius r = rISCO + 2. The
annulus 3 has the inner edge at the same radius as the outer edge of the annulus 2 and the outer edge
at the radius r = rISCO + 4. The annulus 4 has the inner edge at the same radius as the outer edge of
the annulus 3 and the outer edge at the radius r = rISCO + 10. The annulus 5 has the inner edge at
the same radius as the outer edge of the annulus 4 and the outer edge at the radius r = rISCO + 25,
which corresponds to the outer edge of the disk. Units in which 1/μ = 1 are used. See the text,
Sect. 12.1.1, and the original paper for more details. From [28], reproduced by permission of IOP
Publishing. All rights reserved

line profile. Since we are assuming an intensity profile ∝ 1/r3, the emission at very
small radii is always high, especially if the inner edge of the disk is at a smaller
radius. However, in the case of a fast-rotating Kerr black hole a large fraction of
photons is captured by the black hole. Here gravity is “weaker” and it is easier for
photons emitted at small radii to escape to infinity.

In the case of Configuration V, such an effect is amplified, as shown in Fig. 13.12.
Now most of the mass of the object comes from the scalar field cloud and the central
black hole only provides a small contribution. The two peaks at 1–2 keV are produced
near the inner edge of the disk, where the gravitational redshift is strong but the light
bending is much weaker than the one around a black hole (and indeed the radius of
the event horizon is very small). This permits to a large fraction of photons to escape
to infinity. The two horns in the iron line profile of the inner annulus are produced
by Doppler redshift and blueshift, like the two horns expected from annuli at large
radii in the Kerr metric.

How can we decide if a certain iron line is so different from the Kerr predictions
that can be excluded by current observations? A simple and fast selection criterion
can be the following.We simulate an observationwith a past or current X-raymission
using the iron line calculated in the exotic spacetime. We then treat the simulation
as real data and we fit the spectrum with a Kerr model. If the Kerr model is clearly
unable to provide at least an acceptable fit, we can conclude that similar iron lines

http://dx.doi.org/10.1007/978-981-10-4524-0_12
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Fig. 13.11 As in Fig. 13.10
for Configuration IV.
From [28], reproduced by
permission of IOP
Publishing. All rights
reserved
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Fig. 13.12 As in Fig. 13.10
for Configuration V.
From [28], reproduced by
permission of IOP
Publishing. All rights
reserved
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have never been seen so far, as there is currently no tensions between observational
data and theoretical predictions in the Kerr spacetime. It is important to check that
this is true for any viewing angle and even changing the emissivity profiles. This
approach was employed in [28] for the case of Ker black holes with scalar hair. See
also [12, 33] for similar studies to test other exotic objects.

Figure13.13 shows the results of a simulation of the spectrum of the solution V
Kerr black hole with scalar hair. The theoretical model is a simple power-law with
a single iron line. Such a spectrum is definitively simple, but it is enough to rule
out exotic scenarios. For this kind of tests, it is important to have bright sources,
so the simulation is done assuming the typical parameters for a bright black hole
binary with a strong iron line: the total energy flux in the 0.7–10 keV range is about
4 · 10−9 erg/s/cm2 and the iron line has an equivalent width of about 200 eV. The
simulation is doneusingXSPEC3 with the background, the ancillary, and the response

3XSPEC is an X-ray spectral-fitting software commonly used in X-ray astronomy. See [2] and
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/index.html for more details.

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/index.html
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Fig. 13.13 Simulation of the spectrum of Configuration V Kerr black hole with scalar hair in
a binary with XIS/Suzaku. Top panel folded spectra of the simulated data and of the best fit.
Bottom panel ratio between the simulated data and the best fit. The minimum of the reduced χ2 is
χ2
min,red = 6.08. See the text for more details. Figure courtesy of Yueying Ni

matrix files of XIS/Suzaku assuming an exposure time of 100 ks (see Sect. 5.1 for
the explanation of these concepts). The photon count turns out to be about 3 · 107.
The data are then treated as real data and fitted with XSPEC with a power-law and
an iron line for a Kerr model. The top panel in Fig. 13.13 shows the folded spectra
of the simulated data and of the best fit. The bottom panel is the key-plot for our
selection criterion: it is the ratio between the simulated data and the best fit. It is
clear that we are missing important features, as the spectrum cannot be fitted with
the Kerr model. The minimum of the reduced χ2 is another indication of a bad fit
(χ2

min,red = 6.08 in the simulation in Fig. 13.13). Similar iron lines are not observed
in real data and therefore we can argue that the metric around astrophysical black
holes is not described by the solution V.

Figure13.14 is the counterpart of Fig. 13.13 forConfiguration III.While themetric
is not equivalent to the Kerr one, the fit obtained from the Kerr model is good. In
this case, we can conclude that we cannot distinguish Configuration III from a Kerr
black hole with a similar observation. As the photon count increases (for a specific
instrument, this requires a longer exposure time), the error bars of the data become
smaller and it is possible to resolve smaller differences. However, such an approach
employing the analysis of simulations rather than real data is a simple criterion to

http://dx.doi.org/10.1007/978-981-10-4524-0_5
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Fig. 13.14 As in Fig. 13.13 for Configuration III. The minimum of the reduced χ2 is χ2
min,red =

1.01. See the text for more details. Figure courtesy of Yueying Ni

distinguish spacetimes with predictions significantly different from Kerr from those
with similar predictions, but it cannot be used to performprecise tests. For this reason,
we can adopt typical parameters of an observation and of a source, without looking
at the possible best observations. If we use this approach and we find a simulation
that does not provide a good fit, but it is neither so horrible, we cannot arrive at any
conclusion: we should perform a more detailed analysis with real observations of
specific sources.

13.2.2 Constraining Deviations from the Kerr Metric

The natural way to test the Kerr black hole hypothesis using X-ray reflection spec-
troscopy is not with the approach of the previous subsection, but fitting simulations or
real data with a model in which the metric of the spacetime is either a certain solution
of a well specified theoretical framework or a parametrized metric. Eventually we
will obtain a measurement of the parameters of the model, including those related to
the metric of the spacetime.

As a simple example of a similar measurement, we briefly review the study in [27]
based on some simulated observations with NuSTAR and LAD/eXTP. The results
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obtained with NuSTAR can be seen as the typical constraints that can be obtained
today with current X-ray missions, while those with LAD/eXTP can be seen as the
constraints that will be possible to obtain with the next generation of satellites. See
Sect. 5.1 and references therein for more details about these two missions.

Figures13.15 and 13.16 show the constraints on the deformation parameters of
the version of the Konoplya–Rezzolla–Zhidenko metric discussed in Sect. 12.2.3.
These simulations do not consider a specific source, but simply employ the typical
parameters for a bright black hole binary, which is likely the most suitable type of
source for this kind of measurements. Themodel of the simulated observation is sim-
ple: a power-law component with a single iron Kα line. The power-law continuum,
representing the spectrum from the hot corona, is generated with the photon index
Γ = 2. The iron line used in the simulations is generated assuming the Kerr metric
(δ j = 0 for all j) with the spin parameter a∗ = 0.7 and the inclination angle i = 45◦.
The intensity profile is ∝ 1/r3e . The energy flux of the source is 6 · 10−9 ergs/s/cm2

in the range 1–9 keV, and the equivalent width of the iron line is 230 eV.
At 6 keV, the effective area ofNuSTAR is about 800 cm2, and the energy resolution

is about 400 eV. Among the expected four instruments on board of eXTP, LAD is the
most suitable for the study of bright sources. It has an unprecedented effective area
of more than 30,000 cm2 at 6 keV, which is a significant advantage with respect to
current X-ray missions for testing the Kerr metric. The energy resolution at 6 keV is
expected to be better than 200 eV. For both NuSTAR and LAD/eXTP, the exposure
time of the simulations is τ = 100 ks.

The simulated observations are treated as real data and fitted with XSPEC with
the model

powerlaw + KRZ . (13.4)

powerlaw is amodel already inXSPEC to describe a power-law component.KRZ is
a tablemodelwith the iron line in theKonoplya–Rezzolla–Zhidenkometricwith three
parameters (a∗, i , and the non-vanishing deformation parameter under investigation).
In the fit, there are six free parameters: the photon index of the power-law continuum
Γ , the normalization of the continuum, the spin a∗, the inclination angle i , one of
the six deformation parameters δ j , and the normalization of the iron line. The results
are the constraints in Figs. 13.15 and 13.16, which show the contour levels of χ2 in
the plane spin parameter versus deformation parameter.

The most remarkable result is the significant difference in the constraining power
between NuSTAR and LAD/eXTP. In the case of the NuSTAR observation, it is
impossible to constrain the deformation parameter. The much higher photon count
number with LAD/eXTP permits to measure both the spin and the deformation
parameters, and the constraints look impressive. A particular case is the deformation
parameter δ6. It does not appreciably affect the shape of the iron line, and even in
the case of LAD/eXTP it is impossible to get a meaningful bound on its value.

The difference between NuSTAR and eXTP is mainly due to the very large effec-
tive area of the LAD instrument. Actually, the constraints from LAD/eXTP are so
stringent that systematics effects may be dominant. For this purpose, it will be very

http://dx.doi.org/10.1007/978-981-10-4524-0_5
http://dx.doi.org/10.1007/978-981-10-4524-0_12
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Fig. 13.15 Δχ2 contours from simulations with NuSTAR (left panels) and LAD/eXTP (right
panels) of a bright black hole binary, assuming an exposure time of 100 ks. The reference model
is a Kerr black hole in which the spin parameter is a∗ = 0.7 and the inclination angle is i = 45◦. It
is compared with the predictions for spacetimes with non-vanishing Konoplya–Rezzolla–Zhidenko
deformation parameters δ1 (top panels), δ2 (central panels), and δ3 (bottom panels). The red, green,
and blue curves indicate, respectively, the 1-, 2-, and 3-σ confidence level limits. See the text and the
original paper for more details. From [27], reproduced by permission of IOP Publishing. All rights
reserved

important to fit the future X-ray data with sophisticated theoretical models. Current
uncertainties, in particular concerning the behavior of the emissivity profile, may
prevent or limit the possibility of performing accurate tests of the Kerr metric.
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Fig. 13.16 As in Fig. 13.15 for the Konoplya–Rezzolla–Zhidenko deformation parameters δ4 (top
panels), δ5 (central panels), and δ6 (bottom panels). The red, green, and blue curves indicate,
respectively, the 1-, 2-, and 3-σ confidence level limits. See the text and the original paper for more
details. From [27], reproduced by permission of IOP Publishing. All rights reserved

13.2.3 Iron Line Reverberation Mapping

As discussed in Sect. 8.5, the time information in the iron line signal can be a valu-
able tool to better probe the spacetime geometry around a black hole [14, 16]. In
particular, this technique can constrain certain deformation parameters that can-
not be constrained, or whose constraints are weak, by the standard time-integrated

http://dx.doi.org/10.1007/978-981-10-4524-0_8
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Fig. 13.17 Impact of the Cardoso–Pani–Rico deformation parameters εt3 and εr3 on the 2D transfer
function: Kerr spacetime with εt3 = εr3 = 0 (top panel) and non-Kerr spacetimes with εt3 = −2 and
εr3 = 0 (central left panel), εt3 = 2 and εr3 = 0 (central right panel), εt3 = 0 and εr3 = −2 (bottom
left panel), εt3 = 0 and εr3 = 2 (bottom right panel). In all the plots, the spin parameter is a∗ = 0.95,
the viewing angle is i = 45◦, the height of the source is h = 10 M , and the intensity profile is
∝ 1/r3. The color of the 2D transfer function indicates the photon number density and ranges from
light gray to black as the density increases (in arbitrary units). From [16]

measurement. As a simple example to understand this point, we can consider a defor-
mation parameter that only alters the photon propagation time. If Doppler boosting,
gravitational redshift, and light bending do not change, a standard time-integrated
measurement cannot constrain the value of such a deformation parameter. A rever-
beration measurement, which is sensitive to the time of arrival of photons, may do
it.

Jiang et al. [16] have studied the constraining power of iron line reverberationmea-
surements within the Cardoso–Pani–Rico metric with the deformation parameters
εt3 and εr3. Figure13.17 shows the impact of εt3 and εr3 on the 2D transfer function.
From these plots, we see that deviations from the Kerr background affect the 2D
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Fig. 13.18 Δχ2 contours obtained from a simulation with Nline = 104 photons in the iron line
with the analysis of the time-integrated spectrum. The simulated observation of the spectrum of a
Kerr black hole with the spin parameter a∗ = 0.95 and the viewing angle i = 70◦ is fitted with the
spectra calculated in the Cardoso–Pani–Rico metric in which the only non-vanishing deformation
parameter is either εt3 (left panel) or εr3 (right panel). The free parameters in the fit are: the spin
parameter, the deformation parameter (εt3 in the left panel and εr3 in the right panel), the viewing
angle, the ratio between the continuum and the iron line photon flux, and the photon index of the
continuum. From [16]; see the original paper for more details

transfer function. However, it is necessary a quantitative analysis to figure out the
difference between the constraining power of a time-integrated and of a reverberation
measurement.

Figure13.18 shows the constraints froma simulationof a time-integratedmeasure-
ment in which the spacetime is described by the Kerr metric. The spin parameter is
a∗ = 0.95 and the viewing angle is i = 70◦. The simulated spectrum is fitted with the
spectra calculated in the Cardoso–Pani–Rico metric in which the only non-vanishing
deformation parameter is either εt3 (left panel) or εr3 (right panel). Here the key-point
is that the deformation parameter εr3 cannot be constrained by the time-integrated
measurement, even assuming a favorable source with a high spin and a large incli-
nation angle, two ingredients that should maximize the relativistic effects affecting
the photons. In this simulation, the photon count in the iron line is Nline = 104. If we
increase this number, we reduce the intrinsic noise of the source and themeasurement
(typically) becomes more precise, but we only make the width of the allowed region
thinner. As we can see in the right panel in Fig. 13.18, the allowed region extends to
very large values of εr3.

Figure13.19 illustrates the constraints from the same simulation when the time
information is taken into account. The allowed region is now very small and εr3 cannot
assume large values. The possibility of getting very strong constraints as those shown
inFig. 13.19 clearly relies on the possibility of having the correct astrophysicalmodel.
If this were not the case, the constraints might be stringent, but wrong. As discussed
in [16], a crucial role is also played by the signal to noise. In the case of a low
photon count in the iron line, the time sampling of the reverberation measurement
effectively dilutes the signal to noise by apportioning the signal into additional time
bins. The measurement is thus significantly affected by Poisson noise of the source.
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Fig. 13.19 As in Fig. 13.18, but from the analysis of the 2D transfer function. The free parameters
in the fit are: the spin parameter, the deformation parameter (εt3 in the left panel and εr3 in the right
panel), the viewing angle, the height of the source h, the ratio between the continuum and the iron
line photon flux, and the photon index of the continuum. From [16]; see the original paper for more
details

Reverberationmeasurements can provide stronger and stronger constraints than time-
integrated observations when Nline increases. With the X-ray data available today,
the signal is too diluted, and reverberation mapping has no advantages with respect
to a measurement of the time-integrated spectrum.

13.3 Quasi-periodic Oscillations

As discussed in Chap. 9, QPOs posses a few interesting properties that make them
a promising technique to get very precise measurements of the metric around astro-
physical black holes. In particular, their frequencies can be determined with high
accuracy, and therefore they can potentially provide more precise measurements
than other techniques like the continuum-fitting and the iron line methods. However,
there is currently no consensus on which mechanism is responsible for their produc-
tion, or even if it is a single mechanism or there are multiple mechanisms. Different
models provide a different measurement of the parameters of the background metric,
which means that QPO data cannot be used to test fundamental physics at this time.

Despite the current uncertainty on the exact mechanism responsible for QPOs,
several authors have already explored the possibility of using QPOs to test the Kerr
metric [1, 5, 6, 9, 17, 25, 32]. Even if QPO data can potentially provide very
accurate measurements, there is a fundamental degeneracy among the estimate of
the spin parameter and possible deviations from the Kerr solution. In other words,
the fact that the QPO frequencies can be measured with high precision permits
one to obtain a narrow allowed region on the spin parameter versus deformation
parameter plane, but (depending on the specific deviation from the Kerr solution) it
may be impossible to break the degeneracy and constrain deviations from Kerr. This
appears to be a fundamental characteristic of this approach and is easy to understand.

http://dx.doi.org/10.1007/978-981-10-4524-0_9
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The QPO frequencies are just a few numbers and even if they are measured with
infinite precision, the same few numbers can be obtained in many different scenarios
by properly adjusting the metric.

Let us consider an explicit example [9]. We employ a variant of the Konoplya–
Rezzolla–Zhidenko metric of Sect. 12.2.3. The line element is still given
by Eq. (12.43), but now [21]

N 2(r, θ) = r2 − 2Mr + a2

r2
− η

r3
,

B2(r, θ) = 1 ,

Σ(r, θ) = r2 + a2 cos2 θ

r2
,

K 2(r, θ) =
(
r2 + a2

)2 − a2 sin2 θ
(
r2 − 2Mr + a2

)

r2
(
r2 + a2 cos2 θ

) + ηa2 sin2 θ

r3
(
r2 + a2 cos2 θ

) ,

W (r, θ) = 2Ma

r2 + a2 cos2 θ
+ ηa

r2
(
r2 + a2 cos2 θ

) , (13.5)

where a = J/M . This metric can be obtained from the Kerr solution by adding a
static deformation η such that

M → M + η

2r2
. (13.6)

It is convenient to rewrite η as

η = r0
(
r20 − 2Mr0 + a2

)
, (13.7)

where r0 is the radial coordinate of the black hole event horizon. If we write

r0 = rKerr + δr = M +
√
M2 − a2 + δr , (13.8)

we can use δr as the deformation parameter to quantify possible deviations from
the Kerr spacetime. If δr = 0, r0 reduces to the radial position of the event horizon
of a Kerr black hole. In the general case, δr measures the difference of the radial
coordinate of the event horizon with respect to that of a Kerr black hole with the
same mass and spin.

Let us now constrain the quantity δr/rKerr from the current QPO data of
GRO J1655-40 assuming the relativistic precession model discussed in Sect. 9.3.
Presently, we have an observation in which we can measure all the three frequencies
(νU, νL, and νC) and one in which we observe two frequencies (νU and νC) [26].
Moreover, we have an independent dynamical measurement of the mass of the black
hole [11]. In summary, we have the following six measurements:

http://dx.doi.org/10.1007/978-981-10-4524-0_12
http://dx.doi.org/10.1007/978-981-10-4524-0_12
http://dx.doi.org/10.1007/978-981-10-4524-0_9
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(νU, νL, νC) = (441 ± 2, 298 ± 4, 17.3 ± 0.1) Hz ,

(νU, νL, νC) = (451 ± 5, −, 18.3 ± 0.1) Hz ,

Mdyn = 5.4 ± 0.3 M� . (13.9)

The free parameters are five: the mass M , the spin parameter a∗, the radius of the
observation with three frequencies, the radius of the observation with two frequen-
cies, and the deformation parameter. Figure13.20 shows the constraints on a∗ and
δr/rKerr [9].

Now we want to investigate if the constraints of Fig. 13.20 can be improved if,
in the future, we can get better measurements of the frequencies than those avail-
able today and reported in (13.9). Assuming that GRO J1655-40 is indeed a Kerr
black hole with a∗ = 0.29 and M = 5.31 M�, we employ the following set of seven
measurements

(νU, νL, νC) = (441.4 ± 1.0, 298.0 ± 1.0, 17.59 ± 0.05) Hz ,

(νU, νL, νC) = (451.0 ± 1.0, 313.1 ± 1.0, 18.36 ± 0.05) Hz ,

Mdyn = 5.4 ± 0.3 M� . (13.10)

The QPO frequencies are now six and their uncertainty is smaller than in the mea-
surements in (13.9). The measurement of the mass is the same, because it is not
obvious that we can have better dynamical measurements in the near future. We also
note that (assuming the Kerr metric) the radial coordinate of the two sets of QPOs
is, respectively, r1 = 5.67 M and r2 = 5.59 M . The new constraints are shown in
Fig. 13.21. It is remarkable that the allowed region is now very thin. However, if we
consider the allowed range of δr/rKerr, it is almost the same as in Fig. 13.20. The
frequency measurements in (13.10), despite being much better than in (13.9), do not
help to break the degeneracy between the spin and possible deviations from the Kerr
metric.

As discussed in [9], in order to break the parameter degeneracy between a∗ and
δr/rKerr we should have two or more three-frequency observations at very different
radii. This would be equivalent to measure the spacetime metric at several radii and,
in the case of many three-frequency observations, to be able to get the radial profile
of the metric. It is currently unclear whether this can be a realistic possibility. For
sure, it is natural to expect that better observations/measurements are possible when
the QPO is at smaller radii.

13.4 Violation of the Kerr Bound |a∗| ≤ 1

In the Kerr spacetime, the condition for the existence of the event horizon is |a∗| ≤ 1.
If |a∗| > 1, there is no horizon, and theKerrmetric describes the spacetime of a naked
singularity. According to the cosmic censorship conjecture, naked singularities can-
not be created by gravitational collapse [30], even if we know some counterexamples
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Fig. 13.20 Constraints on
the spin parameter a∗ and the
deformation δr/rKerr for the
black hole in GRO J1655-40
using current QPO
observations within the
relativistic precession model.
The red-solid line,
blue-dashed line, and
green-dotted line represent,
respectively, the contour
levels Δχ2 = 2, 4, and 9
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Fig. 13.21 As in Fig. 13.20,
but assuming the set of
measurements in
Eq. (13.10), where the QPO
frequencies are six and their
uncertainties are smaller than
those of current data
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in which, starting from regular initial data, a naked singularity can be created for
an infinitesimal time [18]. Can an astrophysical black hole have a spin parameter
|a∗| > 1? Can we measure with the techniques discussed in the previous sections a
spin parameter |a∗| > 1? And in the case we had such a measurement, how should
it be interpreted? These questions can be addressed as follows:

1. First, we should bear in mind that an object with |a∗| ∼ 1 is a fast-rotating body
if it is very compact. For instance, the spin parameter of Earth is about 103 and
there is no violation of any principle because the vacuum solution holds up to the
Earth surface. The Earth radius is rEarth ≈ 6, 400 km, which is much larger than
its gravitational radius rg = M ≈ 4.4 mm.

2. The Kerr metric with |a∗| > 1 is not a viable astrophysical scenario. For instance,
Giacomazzo et al. [13] found that in general relativity stellar models with |a∗| > 1
do not collapse without losing angular momentum. If we consider an existing
Kerr black hole and we try to overspin it up to |a∗| > 1, we fail [10]. The same
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negative result is found by considering the collision of two black holes at the
speed of light in full non-linear general relativity [31]. None of these studies
proves that it is impossible to create a Kerr spacetime with |a∗| > 1, but at least
they suggest that nakedKerr singularitiesmaynot be physicalmerely because they
may not be created in an astrophysical process. Assuming it is somehow possible
to create a similar object, Pani et al. [29] have shown that the spacetime would
be unstable independently of the boundary conditions imposed at the excision
radius r , which means that possible unknown quantum gravity corrections at the
singularity cannot change these conclusions. Very compact objects described by
the Kerr solution with |a∗| > 1 can unlikely exist in Nature.

3. If the measurement of the spin parameter of a black hole gave a value larger
than 1 assuming the Kerr metric, the measurement would be presumably wrong,
but it would be a clear indication of new physics. As discussed at the point 2,
the Kerr metric with |a∗| > 1 is not a viable astrophysical scenario. This means
that: (i) the metric around the objects is not described by the Kerr solution, and
(ii) we do not know the value of the spin parameter. Since spin measurements
strongly depend on the exact background metric, they can provide the correct
value only if we employ the right metric. A non-Kerr object with |a∗| < 1 may be
measured to have |a∗| > 1 when it is assumed the Kerr metric. The contrary may
also be possible, namely a non-Kerr object with |a∗| > 1 could be interpreted
with |a∗| < 1 if we incorrectly adopt the Kerr metric.

4. It is worth noting that |a∗| = 1 is a critical value only in theKerrmetric. In the case
of other black hole solutions, the critical bound is typically different, and it may be
either larger or smaller than 1, depending on the spacetime geometry. For instance,
Fig. 12.2 shows that black holes in Einstein–dilaton–Gauss–Bonnet gravity may
have a spin parameter slightly larger than 1. If the metric is not described by the
Kerr solutions, the results in [10, 13, 31] mentioned at the point 1 do not hold and
there are indeed examples showing that it is possible to spin a non-Kerr compact
object up to |a∗| > 1 [3, 4].
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Chapter 14
Tests with Other Approaches

This chapter provides, for completeness, a quick overview on a number of approaches
to test the Kerr metric that are alternative to those discussed in Chap. 13 based on
X-ray observations. Some topics have been only very briefly discussed in Part II,
while other techniques are based on physics not mentioned before in this book. Some
of these measurements are sensitive to different relativistic effects with respect to the
X-ray observations in Chap.13, and they can thus be seen as complementary tests to
investigate the strong gravity region around astrophysical black holes.

14.1 The Special Case of SgrA∗

SgrA∗ is the name of the radio source at the center of the Galaxy and is identified
with the supermassive black hole in the nucleus of the Milky Way. Its mass is about
4 · 106 M� and its distance from us is about 8 kpc. It is a peculiar object among
all the black holes in the Universe, because it is the only nearby supermassive black
hole. The next subsections list a number of possible techniques potentially capable of
probing the spacetime metric around SgrA∗ and test the Kerr black hole hypothesis
with this object. Some of these techniques may not be used in the case of other black
holes, or at least they do not seem to be so promising as in the case of SgrA∗.

14.1.1 Accretion Structure Imaging

As already discussed in Chap. 10, it is widely believed that sub-mm VLBI facilities
will be soon able to image SgrA∗ and detect its shadow. In the ideal case, the bound-
ary of the shadow of a black hole surrounded by an optically thin emitting medium
corresponds to the apparent image of the photon capture sphere, which is only
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determined by the spacetime metric and is independent of the particular proper-
ties of the accretion flow. In the reality, the situation is more complicated, and at
present it is not clear whether it will be possible to measure the apparent photon
capture sphere of SgrA∗ with a sufficient precision to perform tests of the Kerr met-
ric. Despite that, several authors have calculated the boundary of the shadow of a
number of black holes in alternative theories of gravity and in parametrized metrics
[4–8, 12–14, 16–18, 29, 30, 41, 46, 50, 63, 69, 73, 74].

Figure14.1 shows the impact of the Cardoso–Pani–Rico deformation parameters
εt
3 (left panels) and εr

3 (right panels) on the apparent boundary of the photon capture
sphere. The small inset in every panel is for the function R(φ)/R(0) discussed in
Sect. 10.3. The deformation parameter εt

3 mainly alters the size of the shadow for
any value of the spin parameter a∗. This is understandable, because εt

3 describes a
deformation in gtt (and only in gtt if a∗ = 0), which regulates the intensity of the
gravitational field. In other words, varying εt

3 we change the value of the photon
capture radius. On the contrary, the deformation parameter εr

3 can affect the shape of
the shadow and the effect is more important as the spin increases. This is because εr

3
can alter the boundary of the photon capture spheremainly through its presence in gtφ ,
which vanishes when a∗ = 0. As shown in Sect. 10.1.1, for a static and spherically
symmetric spacetime the boundary of the photon capture sphere is only determined
by gtt and is completely independent of grr .

Considering the current uncertainties on the possibility of being able to get a very
precise detection of the photon capture sphere, tests of the Kerr metric may require
the analysis of the complete image of the accretion structure around SgrA∗. However,
the image of the accretion structure does not depend on the metric only, but also on
the astrophysical model. SgrA∗ is thought to have a radiatively inefficient accretion
flow, or RIAF, but there are several models in the literature [81]. The uncertainty in
the choice of the correct model to describe the accretion structure around SgrA∗ is
clearly a weak point of this approach.

Johannsen et al. [47] constrain the metric around SgrA∗ with the available mm-
VLBI data of the Event Horizon Telescope (EHT) obtained with the current three-
station array, and simulate future constraints obtainable with the forthcoming eight-
station array. The Event Horizon Telescope1 is a project involving mm and sub-mm
observatories equipped with VLBI instrumentation to get high resolution images
of the accretion flow around supermassive black holes at 230 and 345 GHz. One
of the main goals of this project is the observation of the shadow of SgrA∗. The
current three-station array consists of the James Clerk Maxwell Telescope and the
Sub-Millimeter Array in Hawaii (Hawaii), the Submillimeter Telescope Observa-
tory (SMT) in Arizona, and some dishes of the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) in California. Observations of SgrA∗ with
the three-station arrayHawaii-SMT-CARMAwere conducted from2008 to 2013 [33,
36, 37]. With the forthcoming eight-station array, the sensitivity and the resolution
will be significantly increased, especially thanks to the better sensitivity of the Ata-
cama LargeMillimeter/submillimeter Array (ALMA) in Chile and the long baselines

1http://www.eventhorizontelescope.org/.
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Fig. 14.1 Impact of the Cardoso–Pani–Rico deformation parameters εt
3 (left panels) and εr

3 (right
panels) on the boundary of the photon capture sphere as seen by a distant observer. The spin
parameter is a∗ = 0.5 (top panels) and 0.9 (central and bottom panels). The viewing angle is
i = 85◦ (top and central panels) and 45◦ (bottom panels). The small inset in every panel shows the
function R(φ)/R(0) discussed in Sect. 10.3. From [41], under the terms of the Creative Commons
Attribution License

from the stations in the northern hemisphere and the South Pole Telescope (SPT) in
Antarctica.

Johannsen et al. [47] employ the quasi-Kerr metric of [42], which reads

gQK
μν = gK

μν + εhμν , (14.1)

http://dx.doi.org/10.1007/978-981-10-4524-0_10
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where gK
μν is the Kerr metric in Boyer–Lindquist coordinates, ε is the deformation

parameter, and hμν has the following four non-vanishing components

htt = 5 [1 + 3 cos (2θ)]

32M2r2

[
2M

(
3r3 − 9Mr2 + 4M2r + 2M3

)

− 3r2 (r − 2M)2 ln

(
r

r − 2M

) ]
,

hrr = − 5
(
1 − 3 cos2 θ

)
16M2 (r − 2M)2

[
2M (r − M)

(
3r2 − 6Mr − 2M2

)

− 3r2 (r − 2M)2 ln

(
r

r − 2M

) ]
,

hθθ = −5r [1 + 3 cos (2θ)]

32M2

[
− 2M

(
3r2 + 3Mr − 2M2)

+ 3r
(
r2 − 2M2) ln

(
r

r − 2M

) ]
,

hφφ = −5r [1 + 3 cos (2θ)]

32M2

[
− 2M

(
3r2 + 3Mr − 2M2)

+ 3r
(
r2 − 2M2

)
ln

(
r

r − 2M

) ]
sin2 θ . (14.2)

For sufficiently small values of the spin and of the deformation parameter ε, the
physical interpretation of the quasi-Kerr metric is that the mass-quadrupole moment
of the central object is

Q = − (
a2 + εM2

)
M , (14.3)

which reduces to the Kerr one for ε = 0. Within a specific radiatively inefficient
accretion flow model, Johannsen et al. [47] obtain the constraints on the spin para-
meter a∗, the inclination angle θ , and the deformation parameter of the quasi-Kerr
metric ε in Fig. 14.2 from the available data with the three-station arrayHawaii-SMT-
CARMA. The red square indicates the maximum of the 2D probability density. The
cyan, blue, and violet regions denote, respectively, the 1-, 2-, and 3-σ confidence
level areas. From current observations, the metric around SgrA∗ is consistent with
the Kerr one at 2-σ . As pointed out in [47], these constraints are actually dominated
by systematic model uncertainties, which neglect several effects.

Figure14.3 shows the constraints obtained from a simulated observation with the
forthcomingeight-station array, assuming a single 24hobserving run at 230GHz [47].
The difference between the constraining power of the three-station array Hawaii-
SMT-CARMA and the eight-station array is impressive. It is important to remark
that precise tests of the Kerr metric as shown in Fig. 14.3 will be only possible by
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Fig. 14.2 Constraints on the spin parameter a∗, the deformation parameter of the quasi-Kerr metric
ε, and the inclination angle θ for SgrA∗ from the observations of the three-station array Hawaii-
SMT-CARMA. The red square indicates the maximum of the 2D probability density. The cyan,
blue, and violet regions denote, respectively, the 1-, 2-, and 3-σ confidence level areas. The gray
region is ignored in the analysis, because the spacetimes there have an ISCO radius close to regions
with pathological properties of the metric (naked singularities and closed time-like curves). The
dashed white lines mark the spacetimes with ISCO radius r = 6 M (upper line) and 5 M (lower
line). See the text for more details. From [47]

Fig. 14.3 As in Fig. 14.2, but from a simulated observation with the forthcoming eight-station
array, assuming a 24 h observing run at 230 GHz. See the text for more details. From [47]

employing a sophisticated astrophysical model capable of describing the accretion
flow of SgrA∗, while a similar model is not available at the moment.

14.1.2 Accretion Structure Spectrum

If we do not have a sufficiently high angular resolution to image the accretion flow,we
can stillmeasure the spectrumof the accretion structure aroundSgrA∗. Of course, this
causes a loss of information, just like iron line reverberation mapping in Sect. 13.2.3

http://dx.doi.org/10.1007/978-981-10-4524-0_13
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is more informative than the standard time-integrated measurement. The possibility
of testing the Kerr metric around SgrA∗ from the analysis of the spectrum of its
accretion structure was explored in [53] within the ion torus model of [65, 72]. In
practice, however, it seems to be difficult to test the Kerr metric with this approach.
At present, there are several models in the literature that have been proposed to
describe the accretion flow around SgrA∗ and we do not know which one, if any,
is the right one [81]. Unlike the Novikov–Thorne model for thin accretion disks,
these models are not very constrained, namely they have several free parameters that
should be inferred from observations. It seems unlikely that we can, at the same time,
both determine with a sufficient precision the astrophysical parameters and constrain
possible deviations from the Kerr solution.

14.1.3 Orbiting Hot Spots

SgrA∗ exhibits powerful flares in the X-ray, near-infrared, and sub-millimeter
bands [32, 39, 67]. During a flare, the flux increases up to a factor 10. There are
a few flares per day. Every flare lasts 1-3 hours and has a quasi-periodic substruc-
ture with a timescale of about 20 min. These flares may be associated with blobs of
plasma orbiting near the ISCO of the supermassive black hole [44], even if current
observations cannot exclude other explanations [57, 66, 85]. Temporary clumps of
matter should indeed be common in the region near the ISCO radius [31] and, if so,
they may be studied by the GRAVITY instrument for the ESO Very Large Telescope
Interferometer (VLTI) [35].

The radiation emitted by a blob of plasma orbiting the strong gravity region of
a black hole is affected by the metric of the spacetime and can potentially be used
to test the Kerr metric [52]. Figure14.4 shows some images of a monochromatic
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Fig. 14.4 Specific intensity of the primary image (left panel) and of the secondary image (right
panel) of a hot spot of radius Rspot = 0.5 M orbiting a Schwarzschild black hole at the ISCO radius.
The viewing angle of the observer is i = 60◦ and the time interval between two adjacent spot images
is T/5, where T is the orbital period of the hot spot. From [52]
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Fig. 14.5 Spectrogram (left panel) and light curve (right panel) of the hot spot in Fig. 14.4. In the
panel of the spectrogram, we can clearly distinguish the spectra of the primary and of the secondary
images. The panel of the light curve shows the total light curve and that generated by the primary
image. In both panels, the five arrows refer to the five images shown in Fig. 14.4. From [52]

blob of plasma orbiting the ISCO of a Schwarzschild black hole and observed at a
viewing angle i = 60◦. The left panel is for the primary images and the right panel
is for the secondary images (caused by the strong light bending in the vicinity of the
black hole). The color of the images indicate the intensity of the radiation. The flux
of higher order images is weaker and weaker. The model employed for describing
the blob of plasma is discussed in [52].

Figure14.5 shows the spectrogram, namely the spectrum as a function of time, of
the blob of plasma in Fig. 14.4. An accurate measurement of the spectrogram would
be surely an ideal tool to test the metric around SgrA∗. However, in the reality the
situation is much more complicated. The astrophysical model (shape and size of the
blob of plasma, spectrum of the blob of plasma in its rest-frame, etc.) is likely more
important than the small features associatedwith the relativistic effects characterizing
the background metric [52].

At the moment, it is not clear if tests of the Kerr metric are possible with this
approach. In some spacetimes, the photon capture radius can be significantly different
from that of Kerr black holes, and in this case it is possible to identify specific
signatures of these metrics [51, 54]. In general, it seems more likely that relativistic
effects cannot really be identified and eventually the radiation from a blob of plasma
can (at best) only provide an estimate of the orbital frequency. Since the observed
period of the quasi-periodic substructure of the flares of SgrA∗ ranges from 13 to
about 30 min, the orbital radius of these hot spots should change and be at a radius
larger than the ISCO. For a Kerr black hole of 4 · 106 M�, the ISCO period ranges
from about 30 min (a∗ = 0) to 4 min (a∗ = 1 and corotating orbit). The shortest
period ever measured is 13 ± 2 min, and it may be an upper bound for the ISCO
period. In the Kerr metric, such a measurement translates into the spin estimate
a∗ ≥ 0.70 ± 0.11 [68]. In the case of a metric with a non-vanishing deformation
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parameter, there is clearly a degeneracy between the estimate of the spin and possible
deviations from the Kerr solution. Such a degeneracy may be broken with another
measurement, for instance a precise estimate of the spin parameter of SgrA∗ by the
observation of a radio pulsar.

14.1.4 Accurate Measurements in the Weak Field

The nature of SgrA∗ can be potentially investigated evenwith accuratemeasurements
of the spacetime metric at relatively large radii. In this case, the gravitational field
is weak, M/r � 1, and we can adopt an approach similar to the PPN formalism of
Solar System experiments. If a spacetime is stationary, axisymmetric, asymptotically
flat, Ricci-flat outside the source, and analytic about the point at infinity, its metric
in the region outside the source can be expanded in terms of the mass moments
{M�} and the current moments {S�} [40, 45].2 In the case of reflection symmetry,
the odd M-moments and the even S-moments are identically zero, so the leading
order terms are the mass M0 = M , the spin angular momentum S1 = J , and the
mass quadrupole moment M2 = Q. In the case of a Kerr black hole, the metric is
completely determined by M and J , and all the moments {M�} and {S�} are locked
to the mass and the spin by the following relation [40, 45]

M� + i S� = M

(
i

J

M

)�

, (14.4)

where in this expression i is the unit imaginary number. In particular, the mass
quadrupole term is Q = −J 2/M .

This approachhas the advantage that it is quite general and relies on a small number
of assumptions. Even the requirement of the Ricci-flat spacetime may approxima-
tively hold in many cases. Here the spin measurement is really a spin measurement,
and it should not be correlated to possible deviations from the Kerr solution in the
near horizon region because the latter corresponds to higher order corrections. Such
a measurement could be combined with a measurement in the strong gravity regime,
which is usually a constraint on the spin and possible deviations from the Kerr geom-
etry [15]. In some favorable cases, it could be possible to determine also the mass

2The expansion in multipole moments is also possible when the spacetime is not axisymmetric, but
in this case themass and the currentmoments of order � are tensors. If the spacetime is axisymmetric,
there are some simplifications, and the mass and the current moments of any order � are completely
determined by two scalars, namely M� and S�. In the case of tests of the Kerr metric in the weak
field, it is common to assume that the spacetime is axisymmetric, because it sounds a physically
plausible hypothesis and simplifies the problem. Let us also note that some assumptions may not
hold in some relevant cases. For instance, black hole solutions in alternative theories of gravity
may not be Ricci-flat, and an example is the case of black holes in Einstein–dilaton–Gauss–Bonnet
gravity of Sect. 12.1.2. The analyticity assumption may also not hold, as in the case of the presence
of a massive scalar field with a Yukawa type solution.

http://dx.doi.org/10.1007/978-981-10-4524-0_12
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quadrupole moment Q. This could permit us to test the Kerr metric at the quadrupole
term, because, in the case of a Kerr black hole, we must recover that Q = −J 2/M .
Higher order terms can unlikely be tested, but clean measurements of J and Q would
instantly be very helpful if combined with observations in the strong gravity field.

14.1.4.1 Radio Pulsars

It is thought that a population of radio pulsars is orbiting SgrA∗ with a short orbital
period and there is already an intense work to detect these objects [56]. For instance,
Chennamangalam and Lorimer [25] argue that there may be ∼200 pulsars in the
inner parsec region (orbital period �104 yrs). Accurate timing observations of a
radio pulsar orbiting SgrA∗ in a very close orbit (�1 yr) would allow a precise
measurement of the mass, the spin, and – in exceptional cases – even of the mass
quadrupole moment of the supermassive black hole at the center of our Galaxy if the
system is sufficiently free of external perturbations [55].

Because of the high electron density in the ionized gas at the center of the Galaxy,
this kind of observations must be made at much higher frequencies than those nor-
mally used for pulsar timing, which further challenges these measurements. A more
serious problem is the possible presence of a population of stars or black holes orbit-
ing very close to SgrA∗. The presence of these bodies may strongly affect, or even
prevent, a clean measurement of the spin and of the quadrupole moment of SgrA∗
with the radio pulsar. At the moment it is impossible to make predictions about the
potentialities of future observations because we do not know the actual situation near
SgrA∗.

Assuming a population of 103 objects with a mass M = M� isotropically distrib-
uted within 1 mpc around SgrA∗, Liu et al. [55] have estimated the necessary orbital
period of the pulsar to get a measurement of the mass, the spin, and the quadrupole
moment of SgrA∗. Figure14.6 shows the timescales of secular orbital precession for

Fig. 14.6 Precession
timescale from the mass
(M), the spin (S), the
quadrupole moment (Q), and
stellar perturbation (P) for a
pulsar orbiting SgrA∗ as a
function of orbital period Pb,
assuming an orbital
eccentricity of 0.5 and 103

objects, all with mass
M = M�, within 1 mpc
around SgrA∗. From [55].
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a pulsar orbiting SgrA∗ as a function of its orbital period: the contributions are from
the mass monopole M (pericenter advance), the spin S (frame dragging), the quadru-
pole moment Q, and stellar perturbation P . The orbital eccentricity is assumed to be
0.5. The precession timescale of the pericenter advance is already lower than that of
stellar perturbation for a 10 year orbital period, which means that the observation of
a radio pulsar with an orbital period less than 10 years can already be used to esti-
mate the black hole mass M . The measurement of the spin would require an orbital
period less than 0.5 years to have the contribution from frame dragging significantly
above that from stellar perturbation. The measurement of the quadrupole moment Q
requires an orbital period less than 0.1 years. These estimates have to be taken as a
general guide and the actual situation may be different. For instance, a population
of 10 M� black holes in this region may completely spoil the measurement of the
parameters of the metric around SgrA∗, as well as a significant anisotropy in the
distribution of these bodies may challenge it.

Assuming that we can observe a radio pulsar in an orbit of several months, timing
observations could measure the mass and the spin of SgrA∗. Since the pulsar is in
the weak field of SgrA∗, this would be a clean measurement of the spin parameter a∗
(with the restrictions listed at the beginning of the subsection), namely independent
of the higher order multipole moments of the spacetime. First of all, such a mea-
surement should satisfy the Kerr bound |a∗| ≤ 1, because otherwise SgrA∗ could not
be a Kerr black hole. Second, the spin measurement could be combined with other
observations of the strong field (shadow, hot spot, etc.) in which there is typically a
strong correlation between the estimate of the spin and possible deviations from the
Kerr solution. The combination of different measurements may break the parameter
degeneracy and permit to test the Kerr metric [15].

14.1.4.2 Normal Stars

Even normal stars in compact orbits can be used to probe the weak gravitational field
of SgrA∗ and measure its spin parameter and, possibly, its mass quadrupole moment.
The idea was proposed in [77] and further explored in [9, 58].

If SgrA∗ is rotating fast, the observation of at least two stars with an orbital period
of 0.1 years or less and in orbits with a high eccentricity, say ∼0.9, may provide a
measurement of the mass, the spin, and the mass quadrupole moment of SgrA∗ and
thus test the Kerr nature of this object at the level of the quadrupole term. Today
we know stars with an orbital period as short as 10 years. These objects are still too
far from SgrA∗ and currently no relativistic effects in their orbit are observed (but
they should be observed in the near future). However, observational facilities like
GRAVITY [35], with the capability of accurate astrometricmeasurements at the level
of 10 μas (micro arc second) close to SgrA∗, may observe stars with a sufficiently
short orbital period to test the Kerr metric.

Will [77] has proposed to test the Kerr metric by measuring the precession of the
orbital plane of these stars. The advance of the pericenter of these stars is dominated
by themass term of the supermassive object, while the contribution of the spin and the
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quadrupole moment would be subdominant and difficult to estimate. On the contrary,
in the weak field limit, the precession of the orbital plane is only determined by the
spin (through the frame-dragging) and the mass quadrupole moment; see [77] for
the details. Here the dominant contribution comes from the spin, but in the case of
sufficiently compact orbits it is also possible to infer the mass quadrupole moment
Q. As in the pulsar case, a measurement of the spin could already be useful in
combination with other measurements probing the strong gravity field. In the case
a quadrupole moment measurement is also available, one can check a posteriori
whether it satisfies the Kerr relation Q = −J 2/M .

Recently, Zhang et al. [86] have shown that measurements of the spin of SgrA∗
might be possible even with stars with orbital configurations similar to those already
known, in the case of long-term high precision observations.

14.2 Testing the Kerr Paradigm in the Weak Gravity
Region

SgrA∗ is not the only black hole for which we may get accurate measurements at
relatively large radii. However, in the case of other black holes we may not have
independent measurements in the strong gravity field. In order to test the Kerr metric
with these objects, we need to have measurements good enough to determine M , J ,
and Q. One can then check a posteriori whether Q = −J 2/M , as it is expected in
the case of a Kerr black hole.

The ideal candidate for this kind of tests is a pulsar binary in which the companion
is a stellar-mass black hole [75]. A similar system is not known at the moment. The
chances of a discovery are not clear. Stellar evolution studies suggest that in our
Galaxy there are about 108 neutron stars. Only a small fraction of them, when they
have a beam of electromagnetic radiation pointing toward Earth, can be see as pulsars
by us. The expected number of pulsars in the Galaxy is about 4,000, and we currently
know about 2,500 pulsars. If the estimate of the total number of pulsars is correct,
the probability of the existence of a pulsar binary with a stellar-mass black hole
companion among the objects not yet discovered is not high.

Even if the uncertainty is large in comparison with what could be possible with a
pulsar binary, the measurement of the mass quadrupole moment of a black hole has
been done in [70] and it could be relatively improved in the future [71]. The object is
the supermassive black hole in the quasar OJ287. Optical observations show a quasi-
periodic light curve characterized by two timescales, one of ∼12 years and another
of ∼60 years. The interpretation is that the system is a binary black hole, with the
secondary black hole orbiting the more massive primary one with an orbital period
of ∼12 years and a periastron precession of ∼60 years [49]. The observed major
outbursts occurring every∼12 years are thought to be due to the secondary black hole
that crosses the accretion disk of the primary. Within this interpretation, Valtonen
et al. [70] have employed a 2.5PN (Post-Newtonian) accurate orbital dynamics to
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fit current observational data. Since the mass quadrupole moment interaction term
enters at the 2PN order, it is possible to constrain the mass quadrupole moment of the
primary black hole. Writing the quadrupole moment as Q = −q(J 2/M), where q =
1 for a Kerr black hole, the current observational data provide the measurement [70]

q = 1 ± 0.3 , (14.5)

namely the mass quadrupole moment is tested at the level of 30%. In the next few
years, this test could be improved at the level of 10% [71].

14.3 Gravitational Waves

As it has been already stressed throughout the book, there is at least an important
difference on how electromagnetic radiation and gravitational waves can test astro-
physical black holes. The study of the electromagnetic spectrum can essentially test
the motion of particles around the black hole. If we assume that particles follow the
geodesics of the spacetime, we can measure the metric. Otherwise, it is also possible
to test some specific framework with deviations from geodesic motion, but still we
test the motion of particles. In the case of gravitational waves, the signal is deter-
mined by the evolution of the spacetime metric, so it depends on both the metric and
the field equations of the gravity theory. Each approach has its own advantages and
disadvantages. In general, it is difficult to say which one is more promising, because
it depends on the specific scenario we want to test. In the case of model-independent
tests, it is also difficult to compare the constraints from the two approaches because
there is no direct link outside a well defined theoretical model. We can generically
say that the two approaches can be complementary.

There are a large number of studies on the possibility of testing astrophysical black
holes and general relativity in the strong gravity regime with gravitational waves.
The two main review articles on the capabilities of gravitational wave detectors
to constrain new physics are probably [83] (for ground-based detectors and pulsar
timing-arrays) and [38] (for space-based detectors). A more recent review paper
listing the expected gravitational wave signals in some specific theories of gravity is
[78].

In the case of gravitational waves, the most natural approach is to consider a
specific alternative theory of gravity, compute its gravitational wave signal from the
kind of events we want to study, and then check whether the observational data (if
available) prefer general relativity or the alternative theory of gravity. However, it is
also possible to employ an approach in which the gravitational wave signal is para-
metrized in order to take into account generic deviations from general relativity [10,
11, 28, 82].

As discussed in Chap. 11, the typical event is the coalescence of two black holes or
of a black hole with another compact object. Particularly suitable sources for testing
the spacetime metric around black holes with space-based detectors are EMRIs, in

http://dx.doi.org/10.1007/978-981-10-4524-0_11
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which a stellar-mass compact object (a black hole, but potentially also a neutron
star or a white dwarf) slowly inspirals into a supermassive black hole. Assuming the
emission of gravitational waves as in general relativity, we can map the metric of
the spacetime around the supermassive black hole [20, 42, 62]. Otherwise, we can
perform the calculations within a theoretical framework [23, 60, 64]. While EMRIs
are often thought to be the best class of events to test astrophysical black holes,
accurate tests may be prevented by mismodelling due to unknown self-force effects
already in general relativity [19, 61]. Tests within specific theoretical models can
be performed by studying the inspiral phase of binary black holes in which the two
objects have roughly the same mass [76, 79, 80]. We can also study the ringdown
phase and see whether the final black hole oscillates as it is predicted in general
relativity or there are deviations from it [21, 22, 26, 34, 43, 59].

14.3.1 Constraints from GW150914

In the events GW150914 [1] and GW151226 [3], the signal-to-noise ratio was,
respectively, 24 and 13. The statistics is good enough to be confident that we re-
ally observed gravitational waves from the coalesce of a binary system. GW150914
was probably quite a fortuitous event, in the sense it was relatively close to Earth
and the masses of the two black holes were high, thus producing a strong signal. The
signal was also at the most sensitive frequency band of LIGO.

The simplest consistency check is to measure the mass and the spin parameter of
the final black hole from different parts of the signal of GW150914 [2]. Figure14.7
shows the constraints that we can obtain from the analysis of the inspiral stage
(dashed dark-violet curve), the post-inspiral stage (dashed-dotted violet curve), and
the whole signal (black solid curve) assuming the coalescence of two black holes in
general relativity. The inspiral and post-inspiral analysis provide consistent results,
while a priori this would not be guaranteed either in the presence of different compact
objects or in alternative theories of gravity.

Chirenti and Rezzolla [27] have studied the ringdown signal of GW150914 to
check whether the final object could be a rotating gravastar rather than a Kerr black
hole. The quasi-normal modes of a rotating gravastar are different and not consistent
with the signal of GW150914.

Konoplya and Zhidenko [48] study the quasi-normal frequencies of a scalar field
in the Konoplya–Rezzolla–Zhidenko metric in Eq. (13.5) in order to constrain the
deformation parameter δr/rKerr. In general relativity and in other theories of gravity,
the frequencies of a scalar field are not very different from those of the gravitational
waves derived from the field equations. However, this is not always true and there are
also examples of gravity theories in which the scalar field quasi-normal frequencies
canbequite different from those of the gravitationalwaves. The analysis in [48] shows
that it is difficult to constrain deviations from the Kerr solution from GW150914
because the measurement of the spin and the deformation parameter are correlated.
This would remain true even in the presence of the detection of additional modes.

http://dx.doi.org/10.1007/978-981-10-4524-0_13
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Fig. 14.7 Consistency test with GW150914. The dashed dark-violet curve represents the 90%
confidence level constraints on themass and the spin parameter of the final black hole in GW150914
as they are inferred from the analysis of the inspiral signal assuming general relativity. The dashed-
dotted violet curve shows the 90% confidence level constraints as inferred from the post-inspiral
signal. The black solid curve provides the constraints obtained from the analysis of the inspiral,
merger, and ringdown signals of GW150914. From [2]

Yunes et al. [84] point out several weak points in the study presented in [48]. One
is the lack of a sound theoretical framework to discuss the emission of gravitational
waves. Unlike the properties of the electromagnetic radiation emitted by the accretion
flow, we need to know the dynamics of the system. The beginning of the ringdown
signal is not suitable to distinguish objects that posses similar photon capture spheres.
The frequency and the damping time of the quasi-normal modes may be related,
respectively, to the orbital frequency and the instability timescale of circular null
geodesics, and therefore to the photon capture sphere. The beginning of the ringdown
signal cannot be seen as a conclusive proof for the formation of an event horizon
after the merger, because we can only probe the photon capture sphere. See [24] for
more details.

Themost detailed analysis on the constraints that can be obtained fromGW150914
on the nature of the remnant and on general relativity in the strong field regime is
presented in [84]. The authors show that the data of GW150914 can constrain:

1. The emission mechanism of gravitational waves. For instance, the activation of
scalar fields, gravitational leakage into large extra dimensions, the variability of
Newton’s constant, etc.

2. The propagation of gravitational waves. For instance, the speed of gravity, mod-
ified dispersion relations, gravitational Lorentz violation, etc.



14.3 Gravitational Waves 301

3. The nature of the compact object, namely if it is a Kerr black hole or something
else.

Yunes et al. [84] point out that the limitation to constrain newphysicswithGW150914
is mainly related to our poor knowledge of the coalescence regime in alternative
theories of gravity.

The observed drop in the signal of GW150914 after reaching peak amplitude is
consistent with the quick hair-loss expected for Kerr black holes in general relativity
and is not what one would expect in the case of compact objects made of exotic
matter. This fact can constrain the effective viscosity of the putative exotic matter
the remnant would be made of [84].

References

1. B.P. Abbott et al., LIGO Scientific and Virgo Collaborations. Phys. Rev. Lett. 116, 061102
(2016), arXiv:1602.03837 [gr-qc]

2. B.P. Abbott et al., LIGO Scientific and Virgo Collaborations. Phys. Rev. Lett. 116, 221101
(2016), arXiv:1602.03841 [gr-qc]

3. B.P. Abbott et al., LIGO Scientific and Virgo Collaborations. Phys. Rev. Lett. 116, 241103
(2016), arXiv:1606.04855 [gr-qc]

4. A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov, U. Camci, Astrophys. Space
Sci. 344, 429 (2013), arXiv:1212.4949 [physics.gen-ph]

5. A. Abdujabbarov, M. Amir, B. Ahmedov, S.G. Ghosh, Phys. Rev. D 93, 104004 (2016),
arXiv:1604.03809 [gr-qc]

6. L. Amarilla, E.F. Eiroa, Phys. Rev. D 85, 064019 (2012), arXiv:1112.6349 [gr-qc]
7. L. Amarilla, E.F. Eiroa, Phys. Rev. D 87, 044057 (2013), arXiv:1301.0532 [gr-qc]
8. L. Amarilla, E.F. Eiroa, G. Giribet, Phys. Rev. D 81, 124045 (2010), arXiv:1005.0607 [gr-qc]
9. R. Angelil, P. Saha, D.Merritt, Astrophys. J. 720, 1303 (2010), arXiv:1007.0007 [astro-ph.GA]
10. K.G. Arun, B.R. Iyer, M.S.S. Qusailah, B.S. Sathyaprakash, Class. Quantum Gravity 23, L37

(2006), arXiv:gr-qc/0604018
11. K.G. Arun, B.R. Iyer, M.S.S. Qusailah, B.S. Sathyaprakash, Phys. Rev. D 74, 024006 (2006),

arXiv:gr-qc/0604067
12. F. Atamurotov, A. Abdujabbarov, B. Ahmedov, Astrophys. Space Sci. 348, 179 (2013)
13. F. Atamurotov, A. Abdujabbarov, B. Ahmedov, Phys. Rev. D 88, 064004 (2013)
14. C. Bambi, Phys. Rev. D 87, 107501 (2013), arXiv:1304.5691 [gr-qc]
15. C. Bambi, Class. Quantum Gravity 32, 065005 (2015), arXiv:1409.0310 [gr-qc]
16. C. Bambi, K. Freese, Phys. Rev. D 79, 043002 (2009), arXiv:0812.1328 [astro-ph]
17. C. Bambi, N. Yoshida, Class. Quantum Gravity 27, 205006 (2010), arXiv:1004.3149 [gr-qc]
18. C. Bambi, F. Caravelli, L. Modesto, Phys. Lett. B 711, 10 (2012), arXiv:1110.2768 [gr-qc]
19. L. Barack, Class. Quantum Gravity 26, 213001 (2009), arXiv:0908.1664 [gr-qc]
20. L. Barack, C. Cutler, Phys. Rev. D 75, 042003 (2007), arXiv:gr-qc/0612029
21. E. Berti, V. Cardoso, Int. J. Mod. Phys. D 15, 2209 (2006), arXiv:gr-qc/0605101
22. E. Berti, V. Cardoso, C.M. Will, Phys. Rev. D 73, 064030 (2006), arXiv:gr-qc/0512160
23. P. Canizares, J.R.Gair, C.F. Sopuerta, Phys. Rev.D 86, 044010 (2012), arXiv:1205.1253 [gr-qc]
24. V. Cardoso, E. Franzin, P. Pani, Phys. Rev. Lett. 116, 171101 (2016) (Erratum: Phys. Rev. Lett.

117, 089902 (2016)), arXiv:1602.07309 [gr-qc]
25. J. Chennamangalam,D.R. Lorimer,Mon.Not. R.Astron. Soc. 440, 86 (2014), arXiv:1311.4846

[astro-ph.HE]
26. C.B.M.H. Chirenti, L. Rezzolla, Class. Quantum Gravity 24, 4191 (2007), arXiv:0706.1513

[gr-qc]

http://arxiv.org/abs/1602.03837
http://arxiv.org/abs/1602.03841
http://arxiv.org/abs/1606.04855
http://arxiv.org/abs/1212.4949
http://arxiv.org/abs/1604.03809
http://arxiv.org/abs/1112.6349
http://arxiv.org/abs/1301.0532
http://arxiv.org/abs/1005.0607
http://arxiv.org/abs/1007.0007
http://arxiv.org/abs/gr-qc/0604018
http://arxiv.org/abs/gr-qc/0604067
http://arxiv.org/abs/1304.5691
http://arxiv.org/abs/1409.0310
http://arxiv.org/abs/0812.1328
http://arxiv.org/abs/1004.3149
http://arxiv.org/abs/1110.2768
http://arxiv.org/abs/0908.1664
http://arxiv.org/abs/gr-qc/0612029
http://arxiv.org/abs/gr-qc/0605101
http://arxiv.org/abs/gr-qc/0512160
http://arxiv.org/abs/1205.1253
http://arxiv.org/abs/1602.07309
http://arxiv.org/abs/1311.4846
http://arxiv.org/abs/0706.1513


302 14 Tests with Other Approaches

27. C. Chirenti, L. Rezzolla, arXiv:1602.08759 [gr-qc]
28. N. Cornish, L. Sampson, N. Yunes, F. Pretorius, Phys. Rev. D 84, 062003 (2011),

arXiv:1105.2088 [gr-qc]
29. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Phys. Rev. Lett. 115, 211102 (2015),

arXiv:1509.00021 [gr-qc]
30. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Int. J. Mod. Phys. D 25, 1641021

(2016), arXiv:1605.08293 [gr-qc]
31. J.P. De Villiers, J.F. Hawley, J.H. Krolik, Astrophys. J. 599, 1238 (2003),

arXiv:astro-ph/0307260
32. K. Dodds-Eden, P. Sharma, E. Quataert, R. Genzel, S. Gillessen, F. Eisenhauer, D. Porquet,

Astrophys. J. 725, 450 (2010), arXiv:1005.0389 [astro-ph.GA]
33. S. Doeleman et al., Nature 455, 78 (2008), arXiv:0809.2442 [astro-ph]
34. O. Dreyer, B.J. Kelly, B. Krishnan, L.S. Finn, D. Garrison, R. Lopez-Aleman, Class. Quantum

Gravity 21, 787 (2004), arXiv:gr-qc/0309007
35. F. Eisenhauer et al., Proc. SPIE Int. Soc.Opt. Eng. 7013, 2A (2008), arXiv:0808.0063 [astro-ph]
36. V.L. Fish et al., Astrophys. J. 727, L36 (2011), arXiv:1011.2472 [astro-ph.GA]
37. V.L. Fish et al., Astrophys. J. 820, 90 (2016), arXiv:1602.05527 [astro-ph.GA]
38. J.R. Gair, M. Vallisneri, S.L. Larson, J.G. Baker, Living Rev. Relativ. 16, 7 (2013),

arXiv:1212.5575 [gr-qc]
39. R. Genzel, R. Schödel, T. Ott, A. Eckart, T. Alexander, F. Lacombe, D. Rouan, B. Aschenbach,

Nature 425, 934 (2003), arXiv:astro-ph/0310821
40. R.P. Geroch, J. Math. Phys. 11, 2580 (1970)
41. M. Ghasemi-Nodehi, Z. Li, C. Bambi, Eur. Phys. J. C 75, 315 (2015), arXiv:1506.02627 [gr-qc]
42. K. Glampedakis, S. Babak, Class. Quantum Gravity 23, 4167 (2006), arXiv:gr-qc/0510057
43. S. Gossan, J. Veitch, B.S. Sathyaprakash, Phys. Rev. D 85, 124056 (2012), arXiv:1111.5819

[gr-qc]
44. N.Hamaus, T. Paumard, T.Muller, S. Gillessen, F. Eisenhauer, S. Trippe, R. Genzel, Astrophys.

J. 692, 902 (2009), arXiv:0810.4947 [astro-ph]
45. R.O. Hansen, J. Math. Phys. 15, 46 (1974)
46. T. Johannsen, D. Psaltis, Astrophys. J. 718, 446 (2010), arXiv:1005.1931 [astro-ph.HE]
47. T. Johannsen, C. Wang, A.E. Broderick, S.S. Doeleman, V.L. Fish, A. Loeb, D. Psaltis, Phys.

Rev. Lett. 117, 091101 (2016), arXiv:1608.03593 [astro-ph.HE]
48. R. Konoplya, A. Zhidenko, Phys. Lett. B 756, 350 (2016), arXiv:1602.04738 [gr-qc]
49. H.J. Lehto, M.J. Valtonen, Astrophys. J. 460, 207 (1996)
50. Z. Li, C. Bambi, JCAP 1401, 041 (2014), arXiv:1309.1606 [gr-qc]
51. Z. Li, C. Bambi, Phys. Rev. D 90, 024071 (2014), arXiv:1405.1883 [gr-qc]
52. Z. Li, L. Kong, C. Bambi, Astrophys. J. 787, 152 (2014), arXiv:1401.1282 [gr-qc]
53. N. Lin, Z. Li, J. Arthur, R. Asquith, C. Bambi, JCAP 1509, 038 (2015), arXiv:1505.05329

[gr-qc]
54. D. Liu, Z. Li, C. Bambi, JCAP 1501, 020 (2015), arXiv:1411.2329 [gr-qc]
55. K. Liu, N. Wex, M. Kramer, J.M. Cordes, T.J.W. Lazio, Astrophys. J. 747, 1 (2012),

arXiv:1112.2151 [astro-ph.HE]
56. D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy (Cambridge University Press, Cam-

bridge, 2005)
57. S. Markoff, H. Falcke, F. Yuan, P.L. Biermann, Astron. Astrophys. 379, L13 (2001),

arXiv:astro-ph/0109081
58. D. Merritt, T. Alexander, S. Mikkola, C.M. Will, Phys. Rev. D 81, 062002 (2010),

arXiv:0911.4718 [astro-ph.GA]
59. P. Pani, E. Berti, V. Cardoso, Y. Chen, R. Norte, Phys. Rev. D 80, 124047 (2009),

arXiv:0909.0287 [gr-qc]
60. P. Pani, V. Cardoso, L. Gualtieri, Phys. Rev. D 83, 104048 (2011), arXiv:1104.1183 [gr-qc]
61. E. Poisson, A. Pound, I. Vega, Living Rev. Relativ. 14, 7 (2011), arXiv:1102.0529 [gr-qc]
62. F.D. Ryan, Phys. Rev. D 52, 5707 (1995)
63. J. Schee, Z. Stuchlik, Int. J. Mod. Phys. D 18, 983 (2009), arXiv:0810.4445 [astro-ph]

http://arxiv.org/abs/1602.08759
http://arxiv.org/abs/1105.2088
http://arxiv.org/abs/1509.00021
http://arxiv.org/abs/1605.08293
http://arxiv.org/abs/astro-ph/0307260
http://arxiv.org/abs/1005.0389
http://arxiv.org/abs/0809.2442
http://arxiv.org/abs/gr-qc/0309007
http://arxiv.org/abs/0808.0063
http://arxiv.org/abs/1011.2472
http://arxiv.org/abs/1602.05527
http://arxiv.org/abs/1212.5575
http://arxiv.org/abs/astro-ph/0310821
http://arxiv.org/abs/1506.02627
http://arxiv.org/abs/gr-qc/0510057
http://arxiv.org/abs/1111.5819
http://arxiv.org/abs/0810.4947
http://arxiv.org/abs/1005.1931
http://arxiv.org/abs/1608.03593
http://arxiv.org/abs/1602.04738
http://arxiv.org/abs/1309.1606
http://arxiv.org/abs/1405.1883
http://arxiv.org/abs/1401.1282
http://arxiv.org/abs/1505.05329
http://arxiv.org/abs/1411.2329
http://arxiv.org/abs/1112.2151
http://arxiv.org/abs/astro-ph/0109081
http://arxiv.org/abs/0911.4718
http://arxiv.org/abs/0909.0287
http://arxiv.org/abs/1104.1183
http://arxiv.org/abs/1102.0529
http://arxiv.org/abs/0810.4445


References 303

64. C.F. Sopuerta, N. Yunes, Phys. Rev. D 80, 064006 (2009), arXiv:0904.4501 [gr-qc]
65. O. Straub, F.H. Vincent, M.A. Abramowicz, E. Gourgoulhon, T. Paumard, Astron. Astrophys.

543, A83 (2012), arXiv:1203.2618 [astro-ph.GA]
66. M. Tagger, F. Melia, Astrophys. J. 636, L33 (2006), arXiv:astro-ph/0511520
67. G. Trap et al., Astron. Astrophys. 528, A140 (2011), arXiv:1102.0192 [astro-ph.HE]
68. S. Trippe, T. Paumard, T. Ott, S. Gillessen, F. Eisenhauer, F. Martins, R. Genzel, Mon. Not. R.

Astron. Soc. 375, 764 (2007), arXiv:astro-ph/0611737
69. N. Tsukamoto, Z. Li, C. Bambi, JCAP 1406, 043 (2014), arXiv:1403.0371 [gr-qc]
70. M.J. Valtonen et al., Astrophys. J. 709, 725 (2010), arXiv:0912.1209 [astro-ph.HE]
71. M.J. Valtonen, S. Mikkola, H.J. Lehto, A. Gopakumar, R. Hudec, J. Polednikova, Astrophys.

J. 742, 22 (2011), arXiv:1108.5861 [astro-ph.CO]
72. F.H. Vincent, W. Yan, M.A. Abramowicz, A.A. Zdziarski, O. Straub, Astron. Astrophys. 574,

A48 (2015), arXiv:1406.0353 [astro-ph.GA]
73. S.W. Wei, Y.X. Liu, JCAP 1311, 063 (2013), arXiv:1311.4251 [gr-qc]
74. S.W. Wei, P. Cheng, Y. Zhong, X.N. Zhou, JCAP 1508, 004 (2015), arXiv:1501.06298 [gr-qc]
75. N. Wex, S. Kopeikin, Astrophys. J. 514, 388 (1999), arXiv:astro-ph/9811052
76. C.M. Will, Phys. Rev. D 50, 6058 (1994), arXiv:gr-qc/9406022
77. C.M. Will, Astrophys. J. 674, L25 (2008), arXiv:0711.1677 [astro-ph]
78. K. Yagi, L.C. Stein, Class. Quantum Gravity 33, 054001 (2016), arXiv:1602.02413 [gr-qc]
79. K. Yagi, L.C. Stein, N. Yunes, T. Tanaka, Phys. Rev. D 85, 064022 (2012) (Erratum: Phys. Rev.

D 93, 029902 (2016)), arXiv:1110.5950 [gr-qc]
80. K. Yagi, N. Yunes, T. Tanaka, Phys. Rev. Lett. 109, 251105 (2012) (Erratum: Phys. Rev. Lett.

116, 169902 (2016)), arXiv:1208.5102 [gr-qc]
81. F. Yuan, R. Narayan, Annu. Rev. Astron. Astrophys. 52, 529 (2014), arXiv:1401.0586 [astro-

ph.HE]
82. N. Yunes, F. Pretorius, Phys. Rev. D 80, 122003 (2009), arXiv:0909.3328 [gr-qc]
83. N. Yunes, X. Siemens, Living Rev. Relativ. 16, 9 (2013), arXiv:1304.3473 [gr-qc]
84. N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955 [gr-qc]
85. F. Yusef-Zadeh, D. Roberts, M. Wardle, C.O. Heinke, G.C. Bower, Astrophys. J. 650, 189

(2006), arXiv:astro-ph/0603685
86. F. Zhang, Y. Lu, Q. Yu, Astrophys. J. 809, 127 (2015), arXiv:1508.06293 [astro-ph.HE]

http://arxiv.org/abs/0904.4501
http://arxiv.org/abs/1203.2618
http://arxiv.org/abs/astro-ph/0511520
http://arxiv.org/abs/1102.0192
http://arxiv.org/abs/astro-ph/0611737
http://arxiv.org/abs/1403.0371
http://arxiv.org/abs/0912.1209
http://arxiv.org/abs/1108.5861
http://arxiv.org/abs/1406.0353
http://arxiv.org/abs/1311.4251
http://arxiv.org/abs/1501.06298
http://arxiv.org/abs/astro-ph/9811052
http://arxiv.org/abs/gr-qc/9406022
http://arxiv.org/abs/0711.1677
http://arxiv.org/abs/1602.02413
http://arxiv.org/abs/1110.5950
http://arxiv.org/abs/1208.5102
http://arxiv.org/abs/1401.0586
http://arxiv.org/abs/0909.3328
http://arxiv.org/abs/1304.3473
http://arxiv.org/abs/1603.08955
http://arxiv.org/abs/astro-ph/0603685
http://arxiv.org/abs/1508.06293


Appendix A
Stationary and Axisymmetric Spacetimes

The aim of this appendix is to collect together some useful expressions for generic
stationary and axisymmetric spacetimes and for the special case of the Kerr metric.
More details can be found in Chap.3 and in [2].

A.1 General Case

The so-called canonical form of the line element of a generic stationary, axisymmet-
ric, and asymptotically flat spacetime is1

ds2 = −e2νdt2 + e2ψ (dφ − ωdt)2 + e2λdr2 + e2μdθ2 , (A.1)

where ν, ψ , ω, λ, and μ are functions of the coordinates r and θ and are independent
of t and φ.

In this class of spacetimes, it is always possible to introduce the so-called locally
non-rotating observers [1]. These observers carry an orthonormal tetrad of 4-vectors
which represent their locally Minkowskian coordinate basis vectors [3]. The ortho-
normal tetrad at any point of the spacetime is given by

Eμ

(t) =
(
e−ν, 0, 0, ωe−ν

)
, Eμ

(r) =
(
0, e−λ, 0, 0

)
,

Eμ

(θ) =
(
0, 0, e−μ, 0

)
, Eμ

(φ) =
(
0, 0, 0, e−ψ

)
, (A.2)

and the corresponding basis of one-forms is

1As pointed out in Sect. 3.1, this is not “the most general” stationary and axisymmetric spacetime,
because even the gtr metric coefficient may be non-vanishing in the most general case.
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E (t)
μ =

(
eν, 0, 0, 0

)
, E (r)

μ =
(
0, eλ, 0, 0

)
,

E (θ)
μ =

(
0, 0, eμ, 0

)
, E (φ)

μ =
(

− ωeψ, 0, 0, eψ
)

. (A.3)

The metric of any locally non-rotating observer is η(a)(b) and is related to the
metric gμν by

η(a)(b) = Eμ

(a)gμνE
ν
(b) , η(a)(b) = E (a)

μ gμνE (b)
ν . (A.4)

The relation between the components of vectors and dual vectors in the two reference
systems is

V (a) = E (a)
μ V μ , V(a) = Eμ

(a)Vμ . (A.5)

For instance, the 3-velocity of a massive particle with respect to a locally non-
rotating observer is

v(i) = E (i)
μ uμ

E (t)
ν uν

, (A.6)

where uμ is the particle 4-velocity. In the case of time-like equatorial circular orbits
(e.g. the motion of particles in a Novikov–Thorne accretion disk), one finds

v(r) = v(θ) = 0 , v(φ) = eψ−ν (Ω − ω) , (A.7)

where Ω = uφ/ut is the angular velocity of the particle.

A.2 Kerr Metric

In Boyer–Lindquist coordinates, the line element of the Kerr metric reads

ds2 = −
(
1 − 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ

+ Σ

Δ
dr2 + Σdθ2 + sin2 θ

(
r2 + a2 + 2Ma2r sin2 θ

Σ

)
dφ2 , (A.8)

with contravariant form

(
∂

∂s

)2

= − A

ΣΔ

(
∂

∂t

)2

− 4Mar

ΣΔ

(
∂

∂t

)(
∂

∂φ

)

+ Δ

Σ

(
∂

∂r

)2

+ 1

Σ

(
∂

∂θ

)2

+ Δ − a2 sin2 θ

ΣΔ sin2 θ

(
∂

∂φ

)2

, (A.9)
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where

Σ = r2 + a2 cos2 θ ,

Δ = r2 − 2Mr + a2 ,

A = (
r2 + a2

)2 − a2Δ sin2 θ . (A.10)

With the notation of Eq. (A.1), we have

e2ν = ΣΔ

A
, e2ψ = A sin2 θ

Σ
,

e2λ = Σ

Δ
, e2μ = Σ , ω = 2Mar

A
. (A.11)

The orthonormal tetrad carried by locally non-rotating observers is given by

Eμ

(t) =
(√

A

ΣΔ
, 0, 0,

2Mar√
AΣΔ

)
, Eμ

(r) =
(
0,

√
Δ

Σ
, 0, 0

)
,

Eμ

(θ) =
(
0, 0,

1√
Σ

, 0

)
, Eμ

(φ) =
(
0, 0, 0,

√
Σ

A

1

sin θ

)
. (A.12)

The associated basis of one-forms is

E (t)
μ =

(√
ΣΔ

A
, 0, 0, 0

)
, E (r)

μ =
(
0,

√
Σ

Δ
, 0, 0

)
,

E (θ)
μ =

(
0, 0,

√
Σ, 0

)
, E (φ)

μ =
(

−2Mar sin θ√
AΣ

, 0, 0,

√
A

Σ

)
. (A.13)

A.3 Kerr Metric in Kerr–Schild Coordinates

In the Kerr–Schild coordinates (t, r, θ, φ), the metric is regular at the event horizon.
In these coordinates, the line element of the Kerr solution reads

ds2 = −
(
1 − 2Mr

Σ

)
dt2 + 4Mr

Σ
dtdr − 4Mar sin2 θ

Σ
dtdφ

+
(
1 + 2Mr

Σ

)
dr2 − 2a

(
1 + 2Mr

Σ

)
sin2 θdrdφ + Σdθ2

+ sin2 θ

(
r2 + a2 + 2Ma2r sin2 θ

Σ

)
dφ2 , (A.14)

where Σ = r2 + a2 cos2 θ as before.
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If we indicate with (tKS, rKS, θKS, φKS) the Kerr–Schild coordinates and with
(tBL, rBL, θBL, φBL) the Boyer–Lindquist ones, the relation between the two coordi-
nate systems is

dtKS = dtBL + 2Mr

Δ
drBL ,

drKS = drBL ,

dθKS = dθBL ,

dφKS = Ma

Δ
drBL + dφBL . (A.15)

The radial coordinate of the even horizon is still

rH = M +
√
M2 − a2 , (A.16)

but now neither grr nor other metric coefficients diverge there.
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Appendix B
(r, θ)-Motion in the Kerr Spacetime

We want to solve Eq. (6.34)

sr

∫ D

re

dr ′
√
R̃

= sθ

∫ i

π/2

dθ ′
√

Θ̃
, (B.1)

where

R̃(r) = r4 + (
a2 − λ2 − q2

)
r2 + 2M

[
q2 + (λ − a)2

]
r − a2q2 , (B.2)

Θ̃(θ) = q2 + a2 cos2 θ − λ2 cot2 θ . (B.3)

sr = ±1 and sθ = ±1 according to the direction of propagation. The point of
emission in the disk is at (re, θe = π/2). The observer is at (D, i), where D → ∞.
The goal is to obtain re in terms of the constants of motion λ and q:

re = re(λ, q) . (B.4)

Equation (B.4) is necessary to calculate the Jacobian (6.30) in the transfer function.
More details on the integration of photon orbits in the Kerr spacetime can be found,
for instance, in [3–5], and references therein.

B.1 θ-Motion

With the change of variable μ = cos θ , we have to solve the integral

Iμ =
∫ μobs

0

dμ√
Ũ

, (B.5)

where the disk is at μ = 0, the observer at μ = μobs, and
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Ũ = q2 − (
λ2 + q2 − a2

)
μ2 − a2μ4 . (B.6)

Here we are interested in photons emitted from the disk in the equatorial plane
(μe = 0) and detected by the distant observer at μobs �= 0. For μ = 0, Ũ = q2, so
q2 ≥ 0 or the square root in the integral is not real. We can thus restrict our attention
to the orbits with q2 > 0. Orbits with q2 ≤ 0 do not connect the disk with the plane
of the distant observer.

Ũ can be written as

Ũ = a2
(
μ2

− + μ2
) (

μ2
+ − μ2

)
, (B.7)

where

μ2
± = ∓ (

λ2 + q2 − a2
) +

√
4q2a2 + (

λ2 + q2 − a2
)2

2a2
. (B.8)

For μ = 0, Ũ = q2 = a2μ2+μ2−, and therefore both μ2+ and μ2− are non-negative
(positive in our case with q2 > 0).

μ2 cannot exceed μ2+ or from Eq. (B.7) Ũ would become negative. The integral

of 1/
√
Ũ from some μ to μ+ can be written as (see Eq. 213.00 in [2])

∫ μ+

μ

dμ′
√
Ũ

= 1√
a2

(
μ2+ + μ2−

) cn−1(cosψμ, κμ) , (B.9)

where cn−1 is the inverse of the Jacobian elliptic function cn, and ψμ and κμ are,
respectively, the argument and the modulus of the Jacobian elliptic function

cosψμ = μ

μ+
, κ2

μ = μ2+
μ2+ + μ2−

. (B.10)

The Jacobian elliptic functions can be defined as cn(x, k) = cosϕ and sn(x, k) =
sin ϕ, where

x =
∫ ϕ

0

dθ√
1 − k2 sin2 θ

. (B.11)

Let us note that cn−1(cosψμ, κμ) = F(ψμ, κμ), where F(ψμ, κμ) is the incom-
plete elliptic integral of the first kind. The latter can be defined as

F(ϕ, k) =
∫ ϕ

0

dθ√
1 − k2 sin2 θ

, (B.12)

or, after a change of variables, as
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F(x, k) =
∫ x

0

dt√(
1 − t2

) (
1 − k2t2

) . (B.13)

It follows that F(x, k) = sn−1(x, k).
It is easy to see that photons hitting the image plane of the distant observer with

Y > 0 must have a turning point, which means that μ starts from 0, and its value
first increases to reach the maximum value μ+ and then decreases to μobs. If Y < 0,
there is no turning point, so μ starts from 0 and monotonically increases to μobs. In
the presence of a turning point, the integral is

Iμ =
∫ μ+

0

dμ√
Ũ

+
∫ μ+

μobs

dμ√
Ũ

(Y > 0) . (B.14)

In the absence of a turning point, the integral is

Iμ =
∫ μ+

0

dμ√
Ũ

−
∫ μ+

μobs

dμ√
Ũ

(Y < 0) . (B.15)

Equations (B.14) and (B.15) can be rewritten in a compact form as

Iμ = 1√
a2

(
μ2+ + μ2−

)
[
K (κμ) + sY cn

−1(cosψμ, κμ)
]

, (B.16)

where sY = 1 (respectively 0,−1) for Y > 0 (respectively= 0,< 0),ψμ is evaluated
at μ = μobs, and K (κμ) is the complete elliptic integral of the first kind, namely

K (κμ) = cn−1(cosψμ = 0, κμ) . (B.17)

B.2 r-Motion

Let r1, r2, r3, and r4 be the four roots of the equation R̃(r) = 0. We write

R̃(r) = (r − r1)(r − r2)(r − r3)(r − r4) . (B.18)

The procedure for finding the roots of a quartic equation are discussed, for instance,
in [1]. Since R̃(r → ±∞) = ∞ and R̃(r = 0) = −a2q2 ≤ 0, at least two roots
are real. We can distinguish two cases: (i) there are two complex roots and two real
roots, or (i i) there are four real roots.



312 Appendix B: (r, θ)-Motion in the Kerr Spacetime

B.2.1 R̃(r) = 0 Has Two Complex Roots and Two Real Roots

Let r1 and r2 be the two complex roots (r1 = r∗
2 , where r

∗
2 is the complex conjugate

of r2) and r3 and r4 the two real roots (assuming r3 > r4). Since

R̃(0) = r1r2r3r4 = |r1|2r3r4 = −a2q2 ≤ 0 , (B.19)

r3 must be non-negative and r4 must be non-positive. Since R̃ ≥ 0, the motion of the
photon is in the region r ≥ r3.

Let us write the four roots as r1 = u + iw, r2 = u − iw, r3 = −u + v, and
r4 = −u − v, where u, v, and w are real numbers and v is positive. The integration
from r3 to r > r3 can be written as the inverse Jacobian elliptic function cn−1, see
Eq. 260.00 in [2]

∫ r

r3

dr ′
√
R̃

= 1√
AB

cn−1(cosψ2, κ2) , (B.20)

where

cosψ2 = (A − B)r − r4A + r3B

(A + B)r − r4A − r3B
, (B.21)

κ2
2 = (A + B)2 − (r3 − r4)

2

4AB
, (B.22)

and

A =
√

(v − 2u)2 + w2 , B =
√

(v + 2u)2 + w2 . (B.23)

B.2.2 R̃(r) = 0 Has Four Real Roots

Let us assume that r1 ≥ r2 ≥ r3 ≥ r4. From

R̃(r = 0) = r1r2r3r4 = −a2q2 ≤ 0 , (B.24)

it follows that r4 ≤ 0. Since R̃(r) ≥ 0, motion is allowed in the region r ≥ r1,
r2 ≥ r ≥ r3, and r ≤ r4. In our case, we are interested in the region r ≥ r1, because

the observer is far from the black hole. For r1 �= r2, the integral of 1/
√
R̃ from r1

to some r can be written in terms of the inverse Jacobian elliptic function sn−1, see
Eq. 258.00 in [2]
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∫ r

r1

dr ′
√
R̃

= 2√
(r1 − r3)(r2 − r4)

sn−1(sinψ4, κ4) , (B.25)

where

sinψ4 =
√

(r2 − r4)(r − r1)

(r1 − r4)(r − r4)
, κ2

4 = (r2 − r3)(r1 − r4)

(r1 − r3)(r2 − r4)
. (B.26)

Again, sn−1(sinψ4, κ4) = F(ψ4, κ4) where F(ψ4, κ4) is the incomplete elliptic
integral of the first kind. For the special case r1 = r2, we have

∫ r

r1

dr ′
√
R̃

= 1√
(r1 − r3)(r1 − r4)

· ln
[√

(r − r3)(r − r4)

r − r1
+ r21 + r3r4 + 2rr1

(r − r1)
√

(r1 − r3)(r1 − r4)

]
. (B.27)

B.2.3 Integration over r

If R̃(r) = 0 has two complex roots and two real roots, the allowed region of interest
for us is r ≥ r3. In the case of four real roots, the allowed region from the emission
point in the disk to the detection point is r ≥ r1. The possible turning point will thus
be at rt = r3 in the first case, and at rt = r1 in the second case. Let us define

I∞
r =

∫ ∞

rt

dr ′
√
R̃

, I er =
∫ re

rt

dr ′
√
R̃

. (B.28)

Necessary and sufficient condition for the existence of a turning point is

I∞
r < Iμ , (B.29)

where Iμ is the integral defined in Eq. (B.16). In the presence of a turning point, r
starts from re, first decreases to rt , and then increases to ∞. The integration over r
along the photon path is

Ir = −
∫ rt

re

dr ′
√
R̃

+
∫ ∞

rt

dr ′
√
R̃

= I∞
r + I er . (B.30)

In the absence of a turning point, r monotonically increases from re to ∞ and we
have

Ir =
∫ ∞

re

dr ′
√
R̃

= I∞
r − I er . (B.31)
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B.3 Determination of the Emission Point re

We have to distinguish three cases: (i) R̃(r) = 0 has two complex roots and two real
roots, (i i) R̃(r) = 0 has four real roots and r1 �= r2, and (i i i) R̃(r) = 0 has four real
roots and r1 = r2.

In the case (i), we have

I∞
r = 1√

AB
cn−1(cosψ∞, κ2) , I er = 1√

AB
cn−1(cosψe, κ2) , (B.32)

where

cosψ∞ = A − B

A + B
, cosψe = (A − B)re − r4A + r3B

(A + B)e − r4A − r3B
. (B.33)

If we plug these two expressions into Eqs. (B.30) or (B.31) and we impose Iμ = Ir ,
we obtain re

re = r4A − r3B − (r4A + r3B) cn(cosψ2, κ2)

(A − B) − (A + B) cn(cosψ2, κ2)
, (B.34)

where

cosψ2 = √
AB

(
Iμ − I∞

r

)
. (B.35)

Since in cn(cosψ2, κ2) the sign ofψ2 does notmatter, it is not necessary to distinguish
the cases with (Iμ > I∞

r ) and without (Iμ < I∞
r ) turning point.

In the case (i i), I∞
r and I er are, respectively,

I∞
r = 2√

(r1 − r3)(r2 − r4)
sn−1(sinψ∞, κ4) ,

I er = 2√
(r1 − r3)(r2 − r4)

sn−1(sinψe, κ4) , (B.36)

with

sinψ∞ =
√
r2 − r4
r1 − r4

, sinψe =
√

(r2 − r4)(re − r1)

(r1 − r4)(re − r2)
(B.37)

Imposing Iμ = Ir , we obtain re

re = r1(r2 − r4) − r2(r1 − r4) sn2(sinψ4, κ4)

(r2 − r4) − (r1 − r4) sn2(sinψ4, κ4)
, (B.38)
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where

sinψ4 = 1

2

(
Iμ − I∞

r

) √
(r1 − r3)(r2 − r4) . (B.39)

Since the Jacobian elliptic function sn compares at the square, it does not matter if
sinψ4 is positive or negative, so if there is or there is no turning point.

Lastly, there is the case (i i i), in which R̃(r) = 0 has four real roots and r1 = r2.
Here, we do not have turning point, so

Ir =
∫ ∞

re

dr√
R̃

= 1√
(r1 − r3)(r1 − r4)

{
− ln

[
1 + 2r1√

(r1 − r3)(r1 − r4)

]

+ ln

[√
(re − r3)(re − r4)

re − r1
+ r21 + r3r4 + 2r1re

(re − r1)
√

(r1 − r3)(r1 − r4)

]
. (B.40)

From Iμ = Ir , the solution for the emission radius re is

re = 1

r1

{
r3r4 −

[
γ r1 + r21 + r3r4√

(r1 − r3)(r1 − r4)

]2
}

·
{
1 −

[
γ − 2r1√

(r1 − r3)(r1 − r4)

]2
}−1

, (B.41)

where γ is

γ =
[
1 + 2r1√

(r1 − r3)(r1 − r4)

]
exp

[
Iμ

√
(r1 − r3)(r1 − r4)

]
. (B.42)
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Appendix C
AGN Classification

Active galactic nuclei (AGN) are very bright galactic nuclei, powered by the mass
accretion onto their central supermassive black hole. FigureC.1 shows the AGN
classification, groups and subgroups, and the corresponding fraction of members.
While it is thought that any normal galaxy has a central supermassive black hole at
its center, only a small fraction of them host an AGN. In most galaxies, the central
supermassive object is “dormient”, like SgrA∗, which has a luminosity of the order
of 10−7 in Eddington units.

About 93% of the galaxies are non-active. Among the 7% of the active galax-
ies, most of them are star-forming galaxies or low-ionization nuclear emission-line
regions (LINERs). The latter are sometimes considered AGN. Proper AGN are rel-
atively rare: they are in 0.5% of the active galaxies, which means only in 0.035% of
all galaxies.

AGN are mainly classified according to their luminosity and spectral features. It
is thus useful to briefly review their possible spectral components:

1. Radio emission from jets with the typical spectrum from synchrotron radiation.
2. IR emission from the thermal spectrum of the accretion disk, which is reprocessed

by gas and dust around the nucleus. This occurs when the accretion disk is
obscured by gas and dust.

3. Optical continuum mainly from the thermal spectrum of the accretion disk, and
in part from possible jets.

4. Narrow optical lines from cold material orbiting relatively far from the super-
massive black hole. The orbital velocity of this material is 500–1,000km/s.

5. Broad optical lines from cold material orbiting close to the supermassive black
hole. The orbital velocity of this material is 1,000–5,000km/s. The lines are broad
due to Doppler boosting.

6. X-ray continuum from a hot corona and possible jets.
7. X-ray lines fromfluorescence emission of the gas in the accretion disk illuminated

by the X-ray continuum. The iron Kα line at 6.4keV is usually one of the most
prominent lines.

© Springer Nature Singapore Pte Ltd. 2017
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Fig. C.1 Sketch of the AGN family and of its subgroups. This classification has to be taken with
caution, because different authors may use slightly different classifications. The diagram shows
also the fraction of members in each subgroup. AGN represent only 0.035% of the galactic nuclei.
Most of the AGN are radio-quiet and belong to the class of Seyfert galaxies

The AGN classification is sometimes confusing, some objects may not be easily
associated to a specific group, and different authors may use different classifica-
tions. With reference to Fig.C.1, we see that AGN can be grouped into two classes,
radio-quiet and radio-loud AGN. In radio-quiet AGN, the jet component is absent
or negligible, so the radio luminosity is low. Radio-loud AGN have powerful jets.
These jets may be powered by the black hole spin.
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Fig. C.2 Sketch of a radio-loud AGN according to the unified AGN model [1]. The black hole is
surrounded by an accretion disk, which may be obscured by a dusty torus. The broad line region
is close to the black hole and there are clouds orbiting with high velocity. The narrow line region
is relatively far from the black hole and there are clouds moving at lower velocity. The arrows
represent the lines of sight of the observer. Depending on the angle between the jet and the line of
sight of the observer, the AGN can appear as a blazar, as a radio-loud quasar, or as a radio galaxy

Radio-quiet AGN may be grouped into four classes: Seyfert extremely lumi-
nous far IR galaxies (Seyfert-ELFs), Seyfert galaxies, narrow emission line galaxies
(NELGs), and radio-quiet quasars. The classification is based on a number of prop-
erties. For instance, Seyfert galaxies have an optical continuum and emission lines.
Seyfert 1s have both narrow and broad emission lines, while Seyfert 2s have only nar-
row emission lines. Seyfert galaxies of type 1.5, 1.8, and 1.9 are grouped according
to their spectral appearance.

Radio-loud AGN can be grouped into three classes: radio galaxies, radio-loud
quasars, and blazars. Blazars are characterized by rapid variability and by polarized
optical, radio and X-ray emission. They are divided into BL Lacertae objects (BL
Lac objects) and optically violent variable quasars (OVV quasars). OVV quasars
have stronger broad emission lines than BL Lac objects.

According to the unified AGNmodel [1], all AGNwould essentially belong to the
same class of objects. They look different because they are observed from different
viewing angles. FiguresC.2 and C.3 illustrate the idea of the unified AGN model. In
the case of blazars, the jet would be along our line of sight. As the angle between
the jet and our line of sight increases, we would have radio-loud quasars and then
radio galaxies. In the case of radio-quiet AGN (Fig.C.3), we have a similar situation,
even if there is no jet: depending on the viewing angle of the observer, the AGN can
appear as a radio-quiet quasar, as a Seyfert 1 galaxy, or as a Seyfert 2 galaxy.
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Seyfert 2

Seyfert 1

Radio-quiet Quasar

Fig. C.3 As in Fig.C.2, in the case of a radio-quiet AGN. Depending on the viewing angle of the
observer, the AGN can appear as a radio-quiet quasar, as a Seyfert 1 galaxy, or as a Seyfert 2 galaxy
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Appendix D
Jets

Jets are a common feature of several astrophysical objects, including protostars, stars,
neutron stars, and black holes. Jets are observed both from stellar-mass black holes
in X-ray binaries and from supermassive black holes in galactic nuclei, see e.g. [5,
11, 21]. The exact mechanism responsible for the formation of black hole jets is
currently unknown.

D.1 Formation Mechanisms

The two most popular mechanisms for the formations of black hole jets are the
Blandford–Znajekmodel [4] and theBlandford–Paynemodel [3], bothwith a number
of variants and extensions. There are also proposals of hybrid models, in which the
two mechanisms can coexist [10].

In theBlandford–Znajekmechanism, magnetic fields thread the black hole horizon
and can extract the rotational energy of the compact object [4]. This mechanism
exploits the existence of the ergoregionvia thePenrose process [15].However, strictly
speaking, the extraction of the rotational energy of a compact object may be possible
even in the case of neutron stars in the presence of magnetic fields anchored on the
surface of the body.

In the original paper by Blandford and Znajek, the jet power PBZ was derived
assuming a∗ � 1. In this case, one finds PBZ ∝ a2∗ . A more detailed analysis
provides the following formula [18]

PBZ = κ

16π
Φ2

BΩ2
H f (ΩH) . (D.1)

κ is a numerical constant which depends on the magnetic field configuration; for
instance, in the Kerr metric κ = 0.053 for a split monopole geometry and 0.044 for
a parabolic geometry. ΩH is the angular frequency at the black hole horizon

© Springer Nature Singapore Pte Ltd. 2017
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ΩH =
(

− gtφ
gφφ

)

r=rH

(General case) (D.2)

= a∗
2rH

(Kerr metric) . (D.3)

Equation (D.2) assumes that the spacetime is stationary and axisymmetric and holds
when the metric is written in the canonical form (see Sect. 3.1). ΦB is the magnetic
flux threading the black hole horizon

ΦB =
∫ π

0

∫ 2π

0

∣∣Br
∣∣√−g dθdφ . (D.4)

f (ΩH) is a dimensionless function that takes into account higher order terms in ΩH,
so

f (ΩH) ≈ 1 + c1M
2Ω2

H + c2M
4Ω4

H + · · · (D.5)

where {ci } are numerical coefficients. For a Kerr black hole with a thin accretion disk,
c1 = 1.38 and c2 = −9.2 [18]. The jet power eventually depends on the background
metric, the angular frequency of the horizon ΩH, and the magnetic field.

In the Blandford–Payne mechanism, magnetic fields thread the accretion disk,
corrotating with it [3]. Now the energy is provided by the gravitational potential
energy of the accretion flow. The power of the jet can be written as

PBZ ∼ ε Lacc ln

(
rout
rin

)
, (D.6)

where ε is the efficiency of the transformation of the binding energy of the accreting
matter into jet power at the inner radius of the disk rin, and rout is the outer radius of
the disk.

D.2 Observations

D.2.1 Stellar-Mass Black Holes

In the case of black hole binaries, we observe two kinds of jets [5]. Steady jets
manifest when a source is in the low-hard state. The jet is steady, typically not very
relativistic, andmay extend up to a few tens ofAU.Transient jets are instead observed
when a source switches from the hard to the soft state and crosses the “jet line” (see
Sect. 4.5). These pc-scale jets appears as blobs of plasma emitting mainly in the radio
band and are relativistic. They have features similar to the kpc-scale jets observed

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_4
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in AGN and for this reason the black hole binaries producing transient jets are also
called microquasars [11].

If the mechanism responsible for the formation of jets were the Blandford–Znajek
model, one may expect a correlation between black hole spin measurements and
estimates of the jet power. Fender et al. [6] have studied spin measurements of black
hole binaries reported in the literature and inferred from the continuum-fitting and the
iron linemethods.Their plots donot showanycorrelationbetweenblackhole spin and
jet power. Narayan and McClintock [12] have proposed that the Blandford–Znajek
mechanism is responsible for the formation of transient jets. They selected some spin
measurements obtained via the continuum-fitting method and used a different proxy
for the jet power. They find a correlation between black hole spin measurements and
jet power. For the moment, this is a controversial issue [14, 8]. Both conclusions
are based on a small number of data with large uncertainty. Future observations
should be able to increase the number of sources and decrease the uncertainty in
these measurements, and provide a conclusive answer to this issue [8].

If some kind of jets were powered by the black hole spin, the combination of spin
measurements and estimates of the jet power could be used to test the Kerr metric
[1, 2, 16].

D.2.2 Supermassive Black Holes

In the case of AGN, only a small fraction of them, around 1%, exhibit relativistic
kpc-scale jets. One of the most spectacular example is Cygnus A, see Fig.D.1. Radio
images of this object show two very collimated jets from the very center of the galaxy,

Fig. D.1 Radio image of Cygnus A. The bright dot at the center is the location of the supermassive
black hole, where the two relativistic jets are generated. The jets are stopped by the intergalactic
medium, forming two giant lobes. Image courtesy of NRAO/AUI



324 Appendix D: Jets

where it is supposed to be located its supermassive black hole. The two jets extend
well outside the galaxy, for hundreds of kpc.

Jets dominate the spectrum of a source at radio frequencies. There are apparently
two distinct populations of AGN: radio-loud AGN and radio-quiet AGN [17]. This is
particularly evident on the plane optical luminosity vs radio luminosity. For the same
optical luminosity, radio-loud AGN have a radio luminosity 3–4 orders of magnitude
higher than that of radio-quiet AGN. These two populations seem really to follow
two different tracks with a gap between them.

The origin of the radio-quiet/radio-loud dichotomy is not understood [17]. Some
authors have also doubted about the actual existence of this dichotomy, suggesting
it is a bias of observations.

In the case of AGNwith an accretion luminosity above 1% of the Eddington limit,
the most natural interpretation is that their jets are the counterpart of the transient jets
in black hole binaries. This conclusion may be supported by the consideration that
microquasars show intermittent jets for a few percent of the time, which is similar to
the fraction of radio-loudAGN[13]. The time scale of these systems is proportional to
their mass, so intermittent jets in black hole binaries look like persistent jets in AGN.
However, in the case of AGN with a luminosity below 1% of the Eddington limit,
this explanation cannot work: black hole binaries with a low accretion luminosity
are all radio-loud.

Another popular interpretation is that the dichotomy is determined by the black
hole spin. When the accretion luminosity is low, it turns out that radio-loud AGN are
in elliptical galaxies, while radio-quiet AGN are mainly in spiral galaxies. Galaxies
with different morphology have likely a different merger and accretion history. This,
in turn, may have produced two populations of black holes, with high and low values
of spin [20]. A difference in radio luminosity of 3–4 orders of magnitude between
the two populations is impossible to explain if the jet power is proportional to Ω2

H,
but in the case of thick disks the jet power may scale as Ω6

H [18].
If jets are powered by the rotational energy of the accreting compact object, it is

possible to extract energy and have an accretion efficiency η > 1, where Lacc = ηṀ .
Some observations indicate that some AGNmay have η > 1 [7, 9]. If these measure-
ments are correct, the jet is extracting energy from the system, and it is likely that
this is the rotational energy of the black hole; some version of the Blandford–Znajek
mechanism is working. While in the past some GRMHD simulations have not been
able to find high efficiency from the formation of jets, more recently Tchekhovskoy
et al. [19] have presented simulations in which η > 1.
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Appendix E
Thick Accretion Disks

The Novikov–Thorne model reviewed in Chap.6 describes geometrically thin and
optically thick accretion disks around black holes. It assumes that the self-gravitation
of the disk and the gas pressure are negligible, so the fluid elements follow the
geodesics of the background metric. If the gas pressure cannot be neglected, the disk
can be geometrically thick and the fluid elements do not follow the geodesics of the
background metric any longer. This appendix briefly reviews the so-called Polish
doughnut model [3, 1]. It is a simple model to describes thick accretion disks in
which the self-gravitation of the disk is still neglected but the gas pressure is taken
into account.

E.1 Polish Doughnut Model

Like the Novikov–Thorne model for thin disks, even the Polish doughnut model
can be formulated in a generic stationary, axisymmetric, and asymptotically flat
spacetime. We can thus write the line element as

ds2 = gttdt
2 + grrdr

2 + gθθdθ2 + 2gtφdtdφ + gφφdφ2 , (E.1)

where the metric elements are independent of the t and φ coordinates. The disk is
modeled as a perfect fluid with purely azimuthal flow. Its energy-momentum tensor
is thus

T μν = (ρ + P)uμuν + gμνP , uμ = (
ut , 0, 0, uφ

)
, (E.2)

where ρ and P are, respectively, the energy density and the pressure of the fluid.
From the definitions of the specific energy of the fluid element −ut , its angular

velocity Ω = uφ/ut , and its angular momentum per unit energy l = −uφ/ut , we
have the following relations
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ut = −
√

g2tφ − gtt gφφ

gφφ + 2lgtφ + l2gtt
, (E.3)

Ω = − lgtt + gtφ
lgtφ + gφφ

, (E.4)

l = −gtφ + Ωgφφ

gtt + Ωgtφ
. (E.5)

It is worth noting that l is conserved for a stationary and axisymmetric flow in a
stationary and axisymmetric spacetime [3].

The disk’s structure can be inferred from the Euler equation, ∇νT μν = 0. One
finds

aμ = −gμν + uμuν

ρ + P
∂νP , (E.6)

where aμ = uν∇νuμ is the fluid 4-acceleration. If the pressure is independent of
the t and φ coordinates (which follows from the assumption that the spacetime is
stationary and axisymmetric) and if the equation of state is barotropic, i.e. ρ = ρ(P),
aμ can be written as a gradient of a scalar potential W (P)

aμ = ∂μW , W (P) = −
∫ P d P ′

ρ(P ′) + P ′ . (E.7)

After some algebra, it is possible to write Ω as a function of l, i.e. Ω = Ω(l), and
integrate the Euler equation to get W 2

W = Win + ln
ut
uint

+
∫ l

lin

Ωdl ′

1 − Ωl ′
, (E.8)

where Win, lin, and uint are, respectively, the potential, the angular momentum per
unit energy, and (minus) the energy per unit mass at the inner edge of the fluid
configuration. Actually, in Eq. (E.8) Win, lin, and utin can be replaced by the value
of W , l, and ut at any other point of the fluid boundary. In the Newtonian limit, W
reduces to the total potential, i.e. the sum of the gravitational potential and of the
centrifugal one, and at infinity W = 0.

If the metric of the spacetime is known, there is only one unspecified function,
Ω = Ω(l), which characterizes the fluid rotation. In the zero-viscosity case, this
function cannot be deduced from any equation, and it must be given as an assumption
of the model. In this sense, the model is not very constrained as in the case of the
Novikov–Thorne one, in which the radial structure of the disk follows from the
equations of conservation of rest-mass, energy, and angular momentum.

2In the special case l = const., Ω is not constant, but Eq. (E.8) is still correct and the integral
vanishes.
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Imposing a specific relation between Ω and l, we can find the equipotential sur-
faces W = const. < 0, i.e. the surfaces of constant pressure describing the possible
boundaries of the fluid configuration. One of these surfaces may have one (or more)
sharp cusp(s), which may induce the accretion onto the compact object: like the cusp
at the L1 Lagrange point in a close binary system, the accreting gas can fill the Roche
lobe and then be transferred to the compact object. The mechanism does not need
the fluid viscosity to work, so the latter may be, at least in principle, very low.

Aparticularly simple case is the configurationwith l = const., which ismarginally
stable with respect to axisymmetric perturbations (the criterion for convective sta-
bility is simply that l does not have to decrease outward) [6, 5]. In this specific case,
the integral in Eq. (E.8) vanishes and

W = ln(−ut ) + const. . (E.9)

In the Kerr spacetime, we find five qualitatively different configurations [1].
Figure E.1 shows these five possibilities in the case of a black hole with the spin
parameter a∗ = 0.8. We have:

1. l < lms, where lms is the angular momentum per unit energy of the marginally
stable equatorial circular orbit (or ISCO). In this case, there are no closed equipo-
tential surfaces and therefore there is no accretion disk (the angular momentum
of the fluid is too low).

2. l = lms. This is the limiting case between l < lms and lms < l < lmb. At the ISCO
radius there is a flex (not a minimum) of W . The disk exists as an infinitesimally
thin unstable ring at the ISCO.

3. lms < l < lmb, where lmb is the angular momentum per unit energy of the mar-
ginally bound equatorial circular orbit. There is only one equipotential surface
W = Wcusp with a cusp on the equatorial plane. The cusp is located between the
marginally bound and the marginally stable radius. Equipotential surfaces with
W > Wcusp do not represent any disk configuration, while those with W < Wcusp

describe the surface of non-accreting disks. Accretion starts when the gas fills the
equipotential surface with the cusp.

4. l = lmb. This is the limiting case between lms < l < lmb and l > lmb. The cusp is
located in the equatorial plane and belongs to the marginally closed equipotential
surface W = 0. Accretion is possible in the limit of a disk of infinite size.

5. l > lmb. The angular momentum of the fluid is too high and no accretion is
possible. There are no equipotential surfaces W ≤ 0 with cusps.

In non-Kerr backgrounds, the picture may be slightly different [4]. For instance,
there may not be marginally bound orbits and there may be disks with more than one
cusp.
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Fig. E.1 Equipotential surfaces around a Kerr black hole. The spin parameter is a∗ = 0.8, which
implies lms = 2.712 and lmb = 2.894. Top left panel l = 2.600 and there is no disk. Top right panel
l = lms and it is possible an unstable ring at r = rISCO. Central left panel l = 2.800, there is an
infinite number of disks without cusp, and there is a disk with a cusp. Central right panel l = lmb,
there is an infinite number of disks without cusp, and the disk with a cusp is that with W = 0.
Bottom panel l = 3.000 and there is no disk with a cusp. See the text for more details
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E.2 Evolution of the Spin Parameter

As done in Sect. 6.4 for the thin disk case, we can now consider the evolution of the
spin parameter of a black hole accreting from a thick disk. The argument is the same
and Eq. (6.39) becomes

da∗
d lnM

= 1

M

L in

Ein
− 2a∗ , (E.10)

where Ein and L in are, respectively, the specific energy and the specific angular
momentum of the gas at the inner edge of the disk.

Accretion from a thick disk is potentially more efficient to spin a black hole up [2].
If we consider Eq. (E.10) in the Kerr metric, we can see that the equilibrium spin
parameter is still 1 but it can be reached after accreting a smaller amount of matter
with respect to the thin disk case. If we take into account the radiation emitted by the
disk and captured by the black hole, the counterpart of Eq. (6.43), we can potentially
get closer to 1 than with a thin disk, because of the lower radiative efficiency. If we
consider the extreme case with l = lmb, Ein = 1 and η = 1− Ein = 0. The situation
in a realistic case is actually more complicated and it depends on the viscosity of the
accreting fluid, but numerical calculations suggest that it is indeed possible to get a
spin parameter very close to 1 [8].

E.3 Spectrum of an Ion Torus

The Polish doughnut model can be provided with amicroscopic model for the accret-
ing gas and be used to model the spectrum of black holes with a geometrically thick
disk. While it is a relatively simple model and more realistic scenarios would require
GRMHD simulations, it may capture some key-features of the accretion spectrum
of the source. For instance, the Polish doughnut model has been employed in [9, 10]
to try to describe the spectrum of the accretion structure around SgrA∗.

Straub et al. [9] andVincent et al. [10] use the Polish doughnut model to describe a
radiatively inefficient and advection dominated accretionflow like the one expected in
the case ofSgrA∗. They employ agas pressure dominatedoptically thin 2-temperature
plasma model for the microscopic physics. The model has seven parameters: the
black hole spin of the background metric, the viewing angle of the observer, and five
parameters for the accretion flow and its microphysics:

http://dx.doi.org/10.1007/978-981-10-4524-0_6
http://dx.doi.org/10.1007/978-981-10-4524-0_6
http://dx.doi.org/10.1007/978-981-10-4524-0_6
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background metric spin parameter a∗
observer viewing angle i
ion torus dimensionless specific angular momentum λ

magnetic to total pressure ratio β

polytropic index n
energy density at the center ρc

electron temperature at the center Tc

where

λ = l − lms

lmb − lms
(E.11)

ranges from 0 to 1.
For a non-relativistic gas with negligible radiation pressure, the polytropic index

is n = 3/2. The pressure P is the sum of the magnetic pressure Pm and the gas
pressure Pgas, which, for simplicity, can be supposed to have a constant ratio

P = Pm + Pgas , Pm = B2

24π
= βP . (E.12)

B is the intensity of the magnetic field. The gas is described by a 2-temperature
plasma, so the gas pressure is the sum of the ion and electron contributions. The
pressure P , the energy density ρ, and the electron temperature T can be written
as [9, 10]

P = Kρ5/3 , (E.13)

ρ = 1

Kn

[ (
Kρ1/n

c + 1
)ω − 1

]n
, (E.14)

T = Tc

(
ρ

ρc

)1/n

, (E.15)

where

K = 1

ρ
1/n
c

exp

(
Wc − Ws

n + 1
− 1

)
, (E.16)

and Wc and Ws denote the scalar potential W evaluated, respectively, at the center
and at the surface of the accretion disk.

With this set-up, we can compute the spectrum of an ion torus. The observed
specific flux is given by

Fobs(νobs) =
∫

IobsdΩ̃ . (E.17)
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Fig. E.2 Left panel spectrum of an ion torus for the following set of parameters: a/M = 0.5,
i = 60◦, λ = 0.3, β = 0.1, n = 3/2, ρc = 10−17 g/cm3, and Tc/Tv = 0.02. Tv is the viral
temperature. Right panel contribution from every radiative mechanism to the spectrum in the left
panel bremsstrahlung emission (blue solid line), Comptonization of bremsstrahlung emission (violet
dotted line), synchrotron radiation (red dashed line), and Comptonization of synchrotron radiation
(green dashed-dotted line). From [7], reproduced by permission of IOP Publishing. All rights
reserved

The specific intensity Iobs can be evaluated by integrating along every photon path
the emission and absorption contributions

Iobs(νe) =
∫

g3
[
je(νe) − α(νe)Ie(νe)

]
d� , (E.18)

where je and α are, respectively, the emission and absorption coefficient, d� =
uμkμdτ is the infinitesimal proper length as measured in the rest frame of the emitter,
and τ is the affine parameter of the photon trajectory.

Neglecting absorption (α = 0) and assuming that the electromagnetic spectrum
of the accretion structure is produced by bremsstrahlung, synchrotron processes, and
inverse Compton scattering of both bremsstrahlung and synchrotron photons off free
electrons in the medium, the emission coefficient can be written as

je(νe) = jbreme (νe) + j synce (νe) + jCbreme (νe) + jCsyne (νe) . (E.19)

FigureE.2 shows an example of spectrum from this model (left panel) and the con-
tributions from every emission mechanism (right panel).
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Appendix F
Astrophysical Constants

Quantity Symbol, Equation Value
Speed of Light in Vacuum c 2.99792458 · 108 m s−1

Newton’s Constant GN 6.6738(8) · 10−11 m3 kg−1 s−2

Boltzmann Constant kB 1.3806488(13) · 10−23 J K−1

8.6173324(78) · 10−5 eV K−1

Stefan–Boltzmann Constant σSB 5.670373(21) · 10−8 W m−2 K−4

Permeability of Free Space μ0 4π · 10−7 N A−2

Permittivity of Free Space ε0 = 1/(μ0c2) 8.854187817... · 10−12 F m−1

Electron Charge Magnitude e 1.602176565(35) · 10−19 C
Electron Mass me 9.10938291(40) · 10−31 kg
Proton Mass mp 1.672621777(74) · 10−27 kg

Classical Electron Radius re = e2/(4πε0mec2) 2.8179403267(27) · 10−15 m
Thomson Cross Section σTh = 8πr2e /3 0.6652458734(13) · 10−30 m−2

Astronomic Unit AU 1.49597870700 · 1011 m
Parsec (1 AU/1 arc sec) pc 3.08567758149 · 1016 m

Solar Mass M� 1.9885(2) · 1030 kg
Solar Luminosity L� 3.828 · 1026 W

3.828 · 1033 erg s−1

Schwarschild Radius of the Sun rSch = 2GNM�c−2 2.953250077(2) · 103 m
Gravitational Radius of the Sun rg = GNM�c−2 1.476625038(1) · 103 m
Characteristic Time τ = rg/c GNM�c−3 4.922549095 · 10−6 s

Characteristic Frequency ν = 1/τ 1/(GNM�c−3) 2.030254466 · 105 Hz

© Springer Nature Singapore Pte Ltd. 2017
C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity,
DOI 10.1007/978-981-10-4524-0
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Appendix G
Glossary

Active galactic nucleus (AGN). Compact region at the center of a galaxy powered by
the mass accretion onto a supermassive black hole. The term is also used to indicate
the central supermassive black hole. See Appendix C about the AGN classification.

Black hole binary (BHB). Binary system in which one of the two objects is a
stellar-mass black hole.

Binary black hole. Binary system in which both objects are black holes. The term
can be used to indicate either a binary system of two stellar-mass black holes or a
binary system of two supermassive black holes.

Blazar. A class of particularly bright quasars. According to the unified AGNmodel,
blazars are those radio-loud AGN in which the relativistic jet points in the direction
of Earth. See Appendix C for more details.

Bolometric luminosity. Total electromagnetic luminosity of an object, namely the
electromagnetic luminosity integrated over all wavelengths.

Broad line region (BLR). It is the region “close” to a supermassive black hole, where
cold material orbits with a velocity of 1,000–5,000km/s. This material produces
broad lines because of the Doppler boosting.

Corona. This term is used to indicate some kind of hot, usually optically-thin, elec-
tron cloud which enshrouds the central disk and acts as a source of X-rays. See
Chap.8 and Fig. 8.1 for more details.

Eddington luminosity. It is the maximum luminosity for an object. Such a luminos-
ity is reached when the pressure of the radiation luminosity balances the gravitational
force towards the object. The Eddington luminosity of an object ofmassM is (assum-
ing a ionized gas of protons and electrons)

LEdd = 4πGNMmpc

σTh
= 1.26 · 1038

(
M

M�

)
erg/s , (G.1)

© Springer Nature Singapore Pte Ltd. 2017
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where GN is Newton’s gravitational constant, mp is the proton mass, c is the speed
of light, and σTh is the electron Thomson cross section.

In the special case of a black hole, the Eddington luminosity sets the maximum
accretion luminosity. If we write LEdd = ηr ṀEddc2, where ηr is the radiative effi-
ciency, the Eddington accretion rate is

ṀEdd = 1.40 · 1018
(
0.1

ηr

) (
M

M�

)
g/s

= 2.22 · 10−8

(
0.1

ηr

)(
M

M�

)
M�/yr . (G.2)

Effective area. It is somehow a measurement of the efficiency of the optics and the
detector of an instrument at detecting photons. It is usually measured in units of cm2.
See Sect. 5.1.2 for more details.

Hardness. It is the ratio between the luminosities in the hard and softX-ray bands, but
the exact definitionmay vary. For instance, it may be the ratio between the luminosity
of the 6–10keV band and of the 2–6keV band, i.e. H = L6−10 keV/L2−6 keV.

Hard X-ray band. There is not a universal definition of “hard X-ray band”, so the
exact energy range must be specified. In some contexts, it may indicate, for instance,
the 6–10keV band. In other contexts, it may be used for the X-ray spectrum above
10keV.

Hawking radiation. If quantum effects are taken into account, black holes radiate
(almost) like a blackbody with the temperature TBH = κ/(2π), where κ is the surface
gravity at the event horizon. Such a radiation is called the Hawking radiation. For a
Schwarzschild black hole, the temperature is

TBH = 1

8πM
= 5.32 · 10−12

(
M�
M

)
eV . (G.3)

The luminosity of a black hole due to Hawking radiation depends on the black hole
mass and the particle content of the theory. The black hole luminosity can be written
as

LBH = σ4πR2T 4
BH ∼ 10−21

(
M�
M

)2

erg/s , (G.4)

where σ is some constant that takes into account the particle content and also depends
on the black hole mass. The constant σ would be the Stefan–Boltzmann constant if
the black hole emission were exactly that of a blackbody. A black hole emits any
particle of the theory (not only electromagnetic radiation) and the spectrum of the
emitted particles deviates from the blackbody one due to the mass and the spin of the
particles, the finite size of the black hole, etc. The value of LBH is extremely low for
M ≥ M�, and the Hawking radiation can be unlikely detected from astrophysical

http://dx.doi.org/10.1007/978-981-10-4524-0_5
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black holes, even in the future. This radiation causes the “evaporation” of the black
hole: the black hole emits particles and its mass decreases. The evaporation time can
be obtained from

dM

dt
= LBH = 4πR2σT 4

BH = σ

44π3

1

M2
. (G.5)

Integrating by parts, we find (assuming for simplicity σ = const.)

τevap =
∫ τevap

0
dt ∼ σ

44π3

∫ M

0
M̃2d M̃ ∼ 1065

(
M

M�

)3

yrs . (G.6)

High-mass X-ray binary (HMXB). X-ray binary with a high-mass (M > 10 M�)
stellar companion. HMXBs are often persistent sources, because mass accretion
onto the compact object originates from the wind of the companion star, which is a
relatively stable process. The compact object may be either a black hole or a neutron
star.

High-soft state. It is one of the two “historical” states of a black hole binary. The
spectrum is soft and dominated by the thermal component of the accretion disk. See
Sect. 4.5 for more details.

Geometrically thin/thick disk. An accretion disk is geometrically thin (thick) if the
disk opening angle is h/r � 1 (h/r ∼ 1), where h is the semi-thickness of the disk
at the radial coordinate r .

Innermost stable circular orbit (ISCO). It is the circular orbit separating unstable
and stable circular orbits. See Sects. 3.1 and 3.2 for more details.

Low-hard state. It is one of the two “historical” states of a black hole binary. The
spectrum is hard and dominated by the power-law component. See Sect. 4.5 for more
details.

Low-mass X-ray binary (LMXB). X-ray binary with a low-mass (M < 3 M�)
stellar companion. LMXBs are often transient sources, because mass accretion onto
the compact object occurs via Roche lobe overflow from the companion star, which
is not a stable process. The compact object may be either a black hole or a neutron
star.

Marginally stable circular orbit. It is the circular orbit separating unstable and
stable circular orbits. It is equivalent to innermost stable circular orbit (ISCO). See
Sects. 3.1 and 3.2 for more details.

Narrow line region (NLR). It is the region “far” from a supermassive black hole,
where cold material orbits with a velocity of 500–1,000km/s. This material produces
narrow lines because the effect of the Doppler boosting is weak.

Optical band. Spectrum of the electromagnetic radiation in the wavelength range
400–700nm (energy range 1.7–3.3eV). See Table5.1 for more details.

http://dx.doi.org/10.1007/978-981-10-4524-0_4
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_4
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_5
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Optically thin/thick. A medium is optically thin (thick) if the photon mean free
path in the medium l = 1/(σn), where σ is the photon scattering cross-section in
the medium and n is the number density of target particles in the medium, is l � d
(l � d), where d is the linear size of the medium under consideration.

Persistent X-ray source. It is a “persistent” X-ray source in the sky. It is the opposite
of a transient X-ray source. In the context of X-ray binaries, it is often a high-mass
X-ray binary (HMXB).

Photon orbit. It is a circular orbit for massless particles and it can be reached by
massive particles in the limit of infinite energy. See Sects. 3.1 and 3.2 formore details.

Quasar. A class of bright AGN. According to the unified AGN model, quasars are
those objects in which the line of sight is close to the axis of symmetry of the system.
See Appendix C for more details.

Soft X-ray band. There is not a universal definition of “soft X-ray band”, so the
exact energy range must be specified. In some contexts, it may indicate, for instance,
the 2–6keV range. In other contexts, it may be used for the X-ray spectrum below
10keV.

Synchrotron radiation. Electromagnetic radiation emitted by relativistic charged
particles when their acceleration is perpendicular to their velocity. This is the typical
emission mechanism of charged particles moving through magnetic fields. In the
case of black holes, synchrotron radiation is often associated to the emission of jets.

Transient X-ray source. It is a “temporary”X-ray source in the sky. It is the opposite
of a persistent X-ray source. In the context of X-ray binaries, it is often a low-mass
X-ray binary (LMXB).

UV band. Spectrum of the electromagnetic radiation between the optical and X-ray
bands. The photon wavelength is between 400nm (3.3eV) and 10nm (124eV). See
Table5.1 for more details.

http://dx.doi.org/10.1007/978-981-10-4524-0_3
http://dx.doi.org/10.1007/978-981-10-4524-0_3
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